
ibm.com/redbooks

Linux for
IBM System z9 and IBM
zSeries

Gregory Geiselhart
Robert Brenneman

Eli Dow
Klaus Egeler

Torsten Gutenberger
Bruce Hayden

Livio Sousa

Running Linux on IBM System z9 and
IBM zSeries

Using and configuring the Linux
2.6 kernel

Virtualizing with z/VM

Front cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

Linux for IBM System z9 and IBM zSeries

January 2006

International Technical Support Organization

SG24-6694-00

© Copyright International Business Machines Corporation 2006. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

First Edition (January 2006)

This edition applies to Version 5, Release 1 of z/VM and multiple distributions of Linux for zSeries
based on the 2.6 Linux kernel.

Note: Before using this information and the product it supports, read the information in
“Notices” on page vii.

Contents

Notices . vii
Trademarks . viii

Preface . ix
The team that wrote this redbook. ix
Become a published author . x
Comments welcome. xi

Chapter 1. Introduction to z/Architecture . 1
1.1 The zSeries and System z9 servers . 2
1.2 The central processing complex . 2

1.2.1 Processing units . 2
1.3 The channel subsystem . 2
1.4 Logical partition concepts . 4

1.4.1 LPAR dispatching . 4

Chapter 2. Linux 2.6 kernel. 9
2.1 Choosing a 64-bit or 31-bit Linux distribution . 10

2.1.1 Linux 31-bit compatibility mode. 10
2.2 Performance and scalability enhancements . 11

2.2.1 The new Linux process scheduler. 12
2.2.2 System swap setting . 13
2.2.3 Kernel preemption. 13
2.2.4 Fast user-space mutual exclusion . 13
2.2.5 I/O performance and scalability enhancements 14
2.2.6 I/O schedulers . 14
2.2.7 Extended attributes and access control lists 16
2.2.8 Memory management enhancements. 17
2.2.9 Native POSIX Threading Library. 17
2.2.10 NFS version 4 . 19

2.3 Introduction to sysfs . 20
2.3.1 Organization of the /sys directory . 20
2.3.2 New sysfs command for Linux on zSeries . 22
2.3.3 Device configuration with sysfs . 24
2.3.4 SLES9 hardware configuration . 24
2.3.5 RHEL4 hardware configuration . 28
2.3.6 Device node naming with udev . 32
2.3.7 Hotplug detection and device node naming 33
2.3.8 Distribution considerations when naming devices 36

© Copyright IBM Corp. 2006. All rights reserved. iii

2.4 S/390 tools and utilities . 37
2.4.1 The cmsfslst command . 38
2.4.2 The tunedasd command . 38
2.4.3 The dasdview command . 39

Chapter 3. Virtualization with z/VM . 41
3.1 z/VM and virtualization . 42

3.1.1 z/VM guest support . 42
3.2 Installing z/VM 5.1 . 43

3.2.1 Installation to FCP-attached SCSI disk . 43
3.3 Distributions for Linux on zSeries . 47

3.3.1 SUSE Linux Enterprise Server 9. 47
3.3.2 Red Hat Enterprise Linux 4 . 47
3.3.3 Non-commercial distributions . 48
3.3.4 IBM middleware for Linux on zSeries . 48

3.4 Running Linux under z/VM . 49
3.4.1 Managing guest virtual memory . 49
3.4.2 Managing z/VM storage . 49
3.4.3 Managing the VM scheduler . 53
3.4.4 Performance monitoring . 56

Chapter 4. Networking Overview . 59
4.1 Networking options . 60
4.2 Physical networking options . 60

4.2.1 Open Systems Adapter-2 (OSA-2) . 60
4.2.2 Open Systems Adapter-Express (OSA-Express) 60
4.2.3 Channel-to-channel adapter . 76
4.2.4 Common Link Access to Workstation (CLAW) 82

4.3 HiperSockets . 83
4.4 Virtualization technology . 91
4.5 Point-to-point connectivity . 91

4.5.1 Guest LAN. 93
4.6 Guest LAN configuration . 96

4.6.1 Create a z/VM Guest LAN. 96
4.6.2 Persistent Guest LANs . 97
4.6.3 The VMLAN statement . 98
4.6.4 Create a virtual Network Interface Card . 100
4.6.5 NIC definition in the user directory . 100
4.6.6 NIC definition using CP commands . 102
4.6.7 Connect the virtual NIC to the Guest LAN 103
4.6.8 Example of building a z/VM Guest LAN . 104
4.6.9 Undoing the definitions . 106
4.6.10 Configuring Linux to connect to a Guest LAN 107

iv Linux for IBM System z9 and IBM zSeries

4.7 Virtual Switch. 108
4.8 Introduction to VLANs . 109

4.8.1 What is a Virtual LAN . 109
4.8.2 VLAN standards . 113
4.8.3 How IEEE 802.1Q VLANs work . 114
4.8.4 VLAN support on z/VM Guest LAN . 119
4.8.5 VLANs on z/VM Virtual Switch . 119
4.8.6 VLAN isolation. 120

4.9 VSWITCH configuration . 121
4.9.1 Transport mode: IP or Ethernet. 121
4.9.2 Configure controller service machines . 121
4.9.3 Defining a VSWITCH . 124
4.9.4 VSWITCH failover support . 126

4.10 Layer 2 test scenario . 126
4.10.1 Requirements . 126
4.10.2 Test overview . 128
4.10.3 External devices . 132
4.10.4 z/VM system configuration . 132
4.10.5 Configuring Linux . 136
4.10.6 Setting up the file server . 137
4.10.7 NFS server configuration . 141
4.10.8 Setting up the Web servers. 142
4.10.9 Setting up the firewalls . 144
4.10.10 Setting up the load balancer . 145
4.10.11 Testing . 150
4.10.12 Recommendations . 152

4.11 Summary . 152

Chapter 5. FCP-attached SCSI disks . 155
5.1 FCP configuration using sysfs. 156

5.1.1 Querying FCP device information . 158
5.2 SCSI device configuration files . 159

5.2.1 FCP device configuration in SLES9 . 160
5.2.2 FCP device configuration in RHEL4 . 162

5.3 Persistence SCSI disk naming with udev . 164
5.3.1 Persistent SCSI disk naming in RHEL4 . 165
5.3.2 Persistent SCSI disk naming in SLES9. 167

5.4 The FCP LUN Access Control feature . 168
5.4.1 FCP LUN Access Control operation . 170
5.4.2 Installing the FCP LUN Access Control feature 171
5.4.3 Using the configuration utility . 172
5.4.4 A sample scenario. 173

5.5 Multipathing for SCSI disks . 175

 Contents v

5.5.1 Multipathing using EVMS on SLES9. 176
5.5.2 Multipathing using mdadm on RHEL4. 184

Chapter 6. Using ECKD storage. 187
6.1 ESS operating mode . 188
6.2 Configuring DASD at IPL with SLES9 . 189
6.3 Configuring DASD at IPL with RHEL4. 189
6.4 Parallel Access Volumes. 190

6.4.1 Defining PAV devices . 191
6.4.2 Preparing PAV devices in Linux . 192
6.4.3 Defining PAV devices with EVMS . 192
6.4.4 Using PAV on with mdadm . 198
6.4.5 Using PAV devices with LVM2 . 201

Related publications . 205
IBM Redbooks . 205
Other publications . 206
Online resources . 207
How to get IBM Redbooks . 207
Help from IBM . 207

Index . 209

vi Linux for IBM System z9 and IBM zSeries

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions
are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer
of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm
the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on
the capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:
This information contains sample application programs in source language, which illustrates programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the
sample programs are written. These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to IBM's application
programming interfaces.

© Copyright IBM Corp. 2006. All rights reserved. vii

Trademarks
The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

DB2®
developerWorks®
Domino®
ECKD™
Enterprise Storage Server®
Enterprise Systems
Architecture/370™
Enterprise Systems
Architecture/390®
ESCON®
Eserver®
Eserver®
eServer™

FICON®
HiperSockets™
IBM®
Informix®
Lotus®
Multiprise®
OS/390®
PR/SM™
RACF®
Rational®
Redbooks (logo) ™
Redbooks™
RS/6000®

S/390®
System z9™
System/360™
System/370™
Tivoli®
TotalStorage®
VTAM®
WebSphere®
z/Architecture™
z/OS®
z/VM®
z9™
zSeries®

The following terms are trademarks of other companies:

IPX, Java, and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States,
other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

viii Linux for IBM System z9 and IBM zSeries

Preface

This IBM Redbook discusses configuring and administering Linux® systems
running on IBM System z9 and zSeries. It is intended for system administrators
and IT architects responsible for deploying Linux servers on System z9 and
zSeries servers.

We examine new features and enhancements of the Linux 2.6 kernel. We
demonstrate Linux device configuration using sysfs and udev and discuss
running Linux servers under z/VM. Networking options available for Linux on IBM
System z9 and zSeries are examined in detail. Configuration of FCP-attached
SCSI disks and traditional ECKD storage is demonstrated.

The team that wrote this redbook
This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Poughkeepsie
Center.

Gregory Geiselhart is a Project Leader for Linux on zSeries at the International
Technical Support Organization, Poughkeepsie Center in New York.

Robert Brenneman is a Software Engineer at the Test and Integration Center
for Linux in Poughkeepsie, New York.

Eli Dow is a Software Engineer at the Test and Integration Center for Linux in
Poughkeepsie, New York. He holds a Bachelor of Science degree along with a
Masters of Computer Science from Clarkson University and is the author of
numerous IBM developerWorks articles in the subject area of Linux.

Klaus Egeler is an IT Systems Management Specialist with IBM Global Services
Germany. He has more than fifteen years of experience as a VSE and VM
systems programmer. He has worked with Linux for zSeries and S/390 for more
than four years. He has contributed to several Linux related IBM Redbooks.

Torsten Gutenberger is an IT specialist for s/390 and zSeries, working in the
EMEA Central Region Hardware Support Center in Mainz, Germany. He holds a
degree in IT engineering and has nine years experience in s/390 and zSeries
environment, including a three-year assignment to the zSeries EMEA Product
Support Group (EPSG) in Montpellier, France.

© Copyright IBM Corp. 2006. All rights reserved. ix

Bruce Hayden is an I/T Architect in IBM Global Services. He has 22 years of
experience as a VM systems programmer including five years working with Linux
on zSeries. He holds a degree in Computer Science from the University of
Missouri-Rolla. His areas of expertise include z/VM, Rexx, CMS Pipelines, and
Linux. He has contributed to previous IBM Redbooks.

Livio Sousa is a Technical Sales Support member of the Linux for zSeries team
in Brazil. He is holds a degree in Information Technology and has five years of
experience in the operating systems field. He has worked for IBM since 2002
responsible for planning, implementation, running and supporting new workload
projects. He has contributed to previous IBM Redbooks.

Thanks to the following people for their contributions to this project:

David Bennin, Roy Costa, Octavian Lascu
International Technical Support Organization, Poughkeepsie Center

Alan Altmark
IBM Endicott, New York

Bruce Booth
IBM Toronto, Canada

Mike MacIsaac
IBM Poughkeepsie, New York

Simon Williams
IBM Australia

Become a published author
Join us for a two- to six-week residency program! Help write an IBM Redbook
dealing with specific products or solutions, while getting hands-on experience
with leading-edge technologies. You'll team with IBM technical professionals,
Business Partners and/or customers.

Your efforts will help increase product acceptance and customer satisfaction. As
a bonus, you'll develop a network of contacts in IBM development labs, and
increase your productivity and marketability.

Find out more about the residency program, browse the residency index, and
apply online at:

ibm.com/redbooks/residencies.html

x Linux for IBM System z9 and IBM zSeries

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome
Your comments are important to us!

We want our Redbooks to be as helpful as possible. Send us your comments
about this or other Redbooks in one of the following ways:

� Use the online Contact us review redbook form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbook@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYJ Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

 Preface xi

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xii Linux for IBM System z9 and IBM zSeries

Chapter 1. Introduction to
z/Architecture

In this chapter, we provide an introductory overview of the current zSeries
hardware and a high level introduction to some parts of the z/Architecture.

1

© Copyright IBM Corp. 2006. All rights reserved. 1

1.1 The zSeries and System z9 servers
The IBM Eserver zSeries and System z9 are based on z/Architecture - the next
step in the evolution from the System/360 to the System/370, System/370
extended architecture (370-XA), Enterprise Systems Architecture/370
(ESA/370), and Enterprise Systems Architecture/390 (ESA/390).

1.2 The central processing complex
This section describes the central processing complex.

1.2.1 Processing units
All processor units (PUs) are physically the same. At Power-on Reset (POR),
distinct microcode loaded in the PU determines its processor type:

� Central Processor (CP)

CPs are enabled to execute any operation system available on zSeries
(including z/OS, z/VM, Linux, VSE, and TPF).

� Integrated Facility for Linux (IFL)

IFLs are processors enabled specifically for Linux workloads. Both z/VM and
Linux (either in LPAR mode, or as a z/VM) can execute on an IFL.

� Integrated Facility for Applications (IFA)

Also known as an IBM zSeries Application Assist Processor (zAAP), an IFA is
designed to exclusively execute Java™ applications running under z/OS.

� Internal Coupling Facility (ICF)

ICFs are provided exclusively for use by the Coupling Facility (CF) in a
Parallel Sysplex.

� System Assist Processor (SAP)

SAPs are specialized processors that run the channel subsystem Licensed
Internal Code (LIC) to control I/O operations.

1.3 The channel subsystem
I/O devices are attached to the zSeries system through the channel subsystem
(CSS). Components of the channel subsystem include:

2 Linux for IBM System z9 and IBM zSeries

� Control unit

A control unit (CU) provides the logic to operate and control an I/O device. An
I/O device can be attached to one or more control units. Control unit function
can be:

– Implemented in a separate physical unit
– Integrated inside the I/O device
– Integrated within the channel itself

� Channel

A channel is a specialized processor that communicates with the control unit.
Channels are located in the zSeries I/O cage and manage data movement
between main storage and the control unit.

� Subchannel

One subchannel is dedicated to each I/O device accessed by the channel
subsystem. The subchannel provides information about the attached I/O
device to the channel subsystem (such as the CHPID, device status, and
channel path availability). Subchannels are addressed using the
system-unique 16-bit subchannel number. The number of available
subchannels depends on the system model, and is limited to a maximum of
65,536 per system.

� Channel path

A control unit is attached to the channel subsystem by one or more channel
paths. Depending on the zSeries model and configuration, an I/O device can
be accessed by as many as eight different channel paths. Types of channel
paths supported on zSeries include:

– Enterprise Systems Connection (ESCON)
– Fiber Connection (FICON)
– Open Systems Adapter-2 (OSA-2)
– OSA Express

Channel paths are addressed using the system-unique, eight-bit channel
path identifier (CHPID). The actual number of available channel paths
depends on the system model, and is limited to a maximum of 256 per
system.

� SAP

The SAP schedules an I/O operation. It finds an available channel path to the
intended device and guarantees completion of the I/O operation. However,
the SAP does not move data between main storage and the channel.

Note: Although supported on the z800 and z900, parallel channels are not
supported on the z890 and z990.

 Chapter 1. Introduction to z/Architecture 3

1.4 Logical partition concepts
Processor Resource/System Manager (PR/SM) is a standard feature of all
zSeries CPCs. This allows a CPC to be divided into multiple logical partitions
(LPARs). LPARs allow workloads to be isolated in different system images, so
you can run production work separately from test work, or even consolidate
multiple servers into a single processor.

An LPAR has the following properties:

� Each LPAR is a set of physical resources (processor, storage, and channels)
controlled by an operating system image (such as z/VM, z/OS, or Linux). An
LPAR is defined through IOCP/HCD. A Power-on-Reset (POR) is required to
add or remove LPARs.

� LPAR options (such as the number of logical CPs, LPAR weight, LPAR
capping, and storage size are defined in the Activation Profiles on the
Hardware Management Console (HMC).

� Physical processors and channels can be shared between multiple LPARs, or
dedicated to single LPAR. In general, sharing processors maximizes zSeries
system utilization.

� Physical storage used by an LPAR is dedicated to the LPAR.

1.4.1 LPAR dispatching
The LPAR Scheduler Licensed Internal Code (LIC) is responsible for dispatching
logical CPs on a physical processor. The LPAR scheduler LIC runs on all
physical CPs and uses the Start Interpretive Execution (SIE) instruction to
dispatch logical CPs. This instruction copies a logical CP’s status (PSW,
registers, etc.) from the HSA to the physical CP. The physical CP then executes
the code specific to the logical CP. When intercepted, the logical CP status is
saved in HSA. At this point, another logical CP is dispatched (starting the
process over).

Note: A physical CP is a physical processor (CP or IFL) on the CEC. A logical
CP is a processor available to an LPAR for dispatching work. The number of
logical CPs assigned to an LPAR must less than or equal to the number of
available shared or dedicated processors.

4 Linux for IBM System z9 and IBM zSeries

To illustrate LPAR dispatching, we consider the example in Figure 1-1.

Figure 1-1 LPAR dispatching example scenario

The figure shows a 10-CP IBM zSeries 990 16-way processor configured with
five LPARs:

� LP1 is defined with two dedicated processors.

� LP2 through LP5 share the remaining eight processors:

– LP2 is defined with six logical CPs.
– LP3 is defined with three logical CPs.
– LP4 and LP5 are each defined with two logical CPs.

This yields a total of 13 logical CPs.

The two dedicated CPs are for use exclusively by LP1. For this LPAR, the
number of physical CPs is equal to the number of logical CPs. Any of the
remaining eight shared processors can be used by LP2 through LP5.

Every logical CP represents a dispatchable unit of work. When a logical CP is
ready to run, it is placed on the logical CP ready queue. This queue is ordered by
a priority based on LPAR weight and the number of logical CPs. The steps to
dispatch logical CPs are shown in Figure 1-2 on page 6.

LP5

16-way
z990

with 10
CPs

LP4LP3LP2LP1

CPCPCP CP
CP

CPCP CP CPCP

Dedicated
Physical CPs

Shared Physical
CPs

Logical CP

5 LPARs
LP1 to LP5

Logical CP

Logical CP

Logical CP

Logical CP

Logical CP

Logical CP

Logical CP

Logical CP

Logical CP

Logical CP

Logical CP

Logical CP

Logical CP

Logical CP

 Chapter 1. Introduction to z/Architecture 5

Figure 1-2 Logical CP dispatching

To dispatch a logical CP, these steps are followed:

1. A logical CP is selected from the logical CP ready queue.

2. The LPAR scheduler LIC dispatches the selected logical CP on a physical
processor.

3. The logical CP executes on physical CP until it is intercepted. When a
physical CP is taken away from a logical CP, it is said to be intercepted. An
intercept can occur because:

– The logical CP’s time slice expires.

– A logical CP running over its target weight is preempted by an I/O
operation on a logical CP under its target weight.

– The operating system running in the logical CP voluntarily relinquishes its
time slice (when it has no work to perform, for instance).

4. When the time slice expires or the logical CP is intercepted, the state of the
logical CP is saved and control returns to PR/SM (which starts executing on
the physical CP again).

Logical CP
ready queue Physical CPs

CP0 CP3CP2CP1
LP2

LCP2

LP3
LCP2

LP3
LCP0

LP2
LCP4

LP4
LCP1

CP7

LP2
LCP3

CP6

LP4
LCP0

CP5

LP3
LCP1

CP4

LP5
LCP0

LP2
LCP1

LP2
LCP0

LP5
LCP1

LP2
LCP5

1

2

3 P R / S M4

5

6 Linux for IBM System z9 and IBM zSeries

5. LPAR scheduler LIC determines why the logical CP ended. If it is has
additional work to perform, it is requeued on the logical CP ready queue.

This process occurs on each physical CP.

LPAR weights
LPAR weights control the distribution of shared CPs between LPARs. LPARs with
dedicated CPs do not use LPAR weights. Weights determine the guaranteed
minimum amount of physical CP resources an LPAR should receive. The
guaranteed minimum can become a maximum when either:

� All LPARs use all of their guaranteed amount (for instance, all LPARs are
completely CPU-bound).

� The LPAR is capped using traditional LPAR capping.

An LPAR might use less than the guarantee if it does not have much work to do.
Similarly, it can use more than its weight if the other LPARs use less than their
guaranteed amount. An LPAR’s weight and number of logical CPs determine the
priority of its logical CPs in the logical CP ready queue.

 Chapter 1. Introduction to z/Architecture 7

8 Linux for IBM System z9 and IBM zSeries

Chapter 2. Linux 2.6 kernel

Linux 2.6 kernel provides support for many new architectures, file Systems, And
Devices. Enterprise Ready Linux Distributions Featuring The Linux 2.6 kernel
show improved performance, scalability, speed, and stability. This chapter
discusses some of these new functions. Topics in this chapter include:

� Choosing a 64-bit or 31-bit Linux distribution
� Performance and scalability enhancements
� Introduction to sysfs
� S/390 tools and utilities

2

© Copyright IBM Corp. 2006. All rights reserved. 9

2.1 Choosing a 64-bit or 31-bit Linux distribution
The Linux 2.6 kernel has undergone a substantial testing in 64-bit mode, and is
intended for large-scale, highly available systems. The IBM strategy is focused
on middleware applications running on 64-bit platforms. Whenever possible, a
64-bit enterprise Linux distribution is recommended. The 64-bit kernel offers
greater memory addressability, and provides greater flexibility for running Linux
on zSeries. With the 64-bit kernel, you can run many small Linux images or fewer
but larger Linux images in a given z/VM partition. Applications that can benefit
most from 64-bit technology include:

� Databases
� Applications requiring access to large amounts of data
� Java applications

2.1.1 Linux 31-bit compatibility mode
Although most middleware has been or will be ported to 64-bit, it is important to
note that not all will benefit from the larger address space. In these cases, the
middleware continues to operate in 31-bit addressing mode on a 64-bit Linux
distribution using compatibility mode. See Figure 2-1 on page 11.

Note: For information about the availability of IBM middleware on Linux for
zSeries, see:

http://www.ibm.com/linux/matrix/linuxmatrixhwz.html

10 Linux for IBM System z9 and IBM zSeries

http://www.ibm.com/linux/matrix/linuxmatrixhwz.html

Table 2-1 Compatibility mode system call emulation

2.2 Performance and scalability enhancements
Much of the Linux 2.6 kernel development is intended to increase performance
and improve scalability. Some of the major changes made to the kernel include:

� Reduction in the number of global locks

To improve system responsiveness, many global locks have been replaced
with fine-grained locks. For instance, both the block I/O layer lock and all
global locks in the virtual memory layer have been replaced.

� Increase in the number of unique users and groups

The user and group ID variables have increased from a 16-bit value to a
32-bit value, increasing the maximum number from 65,000 to over 4 billion.
Similarly, the number unique processes has increased from 32,000 to over 1
billion.

� Increase in the number of simultaneously attached devices

Prior to the Linux 2.6 kernel, a Linux system was limited to 255 different types
of devices (the device major number); each device type is limited to 255

64-bit hardware

64-bit Linux

64-bit system call interface

31-bit compatibility layer

31-bit libraries 64-bit libraries
31

-b
it

ap
pl

ic
at

io
n

31
-b

it
ap

pl
ic

at
io

n

64
-b

it
ap

pl
ic

at
io

n

31
-b

it
ap

pl
ic

at
io

n

64
-b

it
ap

pl
ic

at
io

n

64
-b

it
ap

pl
ic

at
io

n

 Chapter 2. Linux 2.6 kernel 11

specific instances (the device minor number). With 2.6, up to 4095 device
types can be connected. Each device type can now support more than 1
million connected instances.

We look at other performance and scalability improvements in 2.6:

� The new Linux process scheduler
� System swap setting
� Kernel preemption
� Fast user-space mutual exclusion
� I/O performance and scalability enhancements
� I/O schedulers
� Extended attributes and access control lists
� Memory management enhancements
� Native POSIX Threading Library
� NFS version 4

2.2.1 The new Linux process scheduler
The Linux 2.6 kernel implements a major rewrite to the process scheduler. Often
referred to as the O(1) scheduler, the new scheduler requires a constant number
of operations to select the next process regardless of the number waiting in the
queue. Its efficiency leads to excellent scalability for multiprocessor systems,
even under large workloads. Other benefits are available in the new process
scheduler include:

� Soft CPU affinity

With soft CPU affinity, processes tend to run on a single processor as long as
possible, and resist migration to another processor unless necessary. This
avoids situations where tasks bounce needlessly between CPUs.

� Hard CPU affinity

By default, processes are runnable on all processors and pass CPU soft
affinity on to their children. With hard CPU affinity, the scheduler uses two
arrays (each position in the array corresponding to a list of processes with the
same priority value). Processes in the active array run for one time slice. This
is calculated based on their priority and prior blocking rate. They then move to
the expired array. When all processes in the active array have expired, the
arrays are switched and the scheduling begins again. Hard affinity is
designed to provide higher scalability for SMP systems.

12 Linux for IBM System z9 and IBM zSeries

� Interactive workload performance

Because a processes time slice is calculated partly by its prior blocking rate,
the scheduler tends to favor interactive tasks. Interactive workloads should
see improved performance even under heavy load.

2.2.2 System swap setting
A new interface to the proc virtual filesystem allows greater control over system
paging. When needed, the Linux virtual memory manager attempts to obtain
memory pages from the page cache or by swapping pages from user processes.
In the 2.6 kernel, the new /proc/sys/vm/swappiness parameter influences how
memory pages are obtained:

� Values closer to 0 indicate the system is less likely to swap.
� Values closer to 100 indicate the system is more likely to swap.

The default setting for Linux on zSeries is 60, and has been chosen as
appropriate for a typical system.

2.2.3 Kernel preemption
With Linux 2.4 kernel, tasks running in kernel mode cannot be preempted. With
Linux 2.6 kernel, some parts of the kernel are preemptable. This can decrease
kernel latency and provide greater responsiveness, particularly to interactive
tasks.

2.2.4 Fast user-space mutual exclusion
Responsiveness in the Linux 2.6 kernel has been improved by the introduction of
fast mutexes (referred to as futexes). Designed as a fast synchronization

Note: For more details on the O(1) process scheduler, see "Kernel Korner -
What’s New in the 2.6 Scheduler" by Rick Lindsley in Linux Journal, March
2004 available at:

http://www.linuxjournal.com/article/7178

Note: Do not change this value unless testing has indicated a different value
is appropriate for your workload.

Note: Kernel preemption is disabled on Linux for zSeries distributions
because this option might expose timing issues and have an adverse effect on
performance for traditional workloads.

 Chapter 2. Linux 2.6 kernel 13

http://www.linuxjournal.com/article/7178

primitive, futexes operate in both user-space, and kernel-space. Futex
operations begin in user-space. If no contention exists for the futex, the operation
completes in user-space. Expensive system calls to kernel-space are required
only if contention exists for the futex.

2.2.5 I/O performance and scalability enhancements
Several improvements have been made to the I/O subsystem. In the Linux 2.6
kernel, there is no global I/O request lock. Instead, each I/O device has its own
I/O request lock. Both the asynchronous I/O and direct I/O layers have been
rewritten:

� The asynchronous I/O system allows applications to perform reads and writes
without waiting for the operation to complete. Previously, processes issuing
writes in rapid succession (database write transactions for instance) could
experience performance penalties.

� Direct I/O allows data transfers to occur directly between user buffers and the
I/O device (without using kernel buffers), and replaces raw devices in the
Linux 2.4 kernel. Applications access block device node (such as /dev/sdb1)
instead of /dev/raw01.

Both features are exploited at the application level. With asynchronous I/O,
database servers can realize an overall throughput improvement of up to 50%.
For more details on I/O options for database servers, see:

http://www.ibm.com/developerworks/linux/linux390/perf/tuning_rec_database_G
enRec.html

Both Informix database server for Linux 2.6 kernel and IBM DB2 UDB ESE v8.2
can use these options.

2.2.6 I/O schedulers
The biggest changes to the I/O subsystem is the additional of several new I/O
schedulers. The I/O scheduler is responsible for reducing device seek time by:

Note: For details on the asynchronous and direct I/O subsystems, see
Asynchronous I/O Support in Linux 2.5 by Suparna Bhattacharya, et al
reprinted from the Proceedings of the Linux Synopsium, July 23-26, 2003 at:

http://archive.linuxsymposium.org/ols2003/Proceedings/All-Reprints/Reprin
t-Pulavarty-OLS2003.pdf

14 Linux for IBM System z9 and IBM zSeries

http://archive.linuxsymposium.org/ols2003/Proceedings/All-Reprints/Reprint-Pulavarty-OLS2003.pdf
http://archive.linuxsymposium.org/ols2003/Proceedings/All-Reprints/Reprint-Pulavarty-OLS2003.pdf
http://www.ibm.com/developerworks/linux/linux390/perf/tuning_rec_database_GenRec.html

� Sorting I/O requests to the device by block number

As I/O requests are handled by kernel, the I/O scheduler sorts requests by
block number. This allows the device read/write head to perform a sequential
scan of the disk surface.

� Merging I/O requests to a device

New I/O requests are merged into the sorted list to reduce the number of
required read/write head scans.

Four new I/O schedulers are available in Linux 2.6 kernel:

� Completely fair queuing (cfq)

This is the default scheduler on Linux for zSeries. The cfq scheduler attempts
to service all users (processes) of a particular device equally over time. That
is, in a given time interval each process using a device should have a roughly
equal number of I/O requests serviced. Systems with RAID 5 storage work
well with this scheduler.

� Anticipatory (as)

The as scheduler attempts to minimize situations where many write requests
are interrupted by a few read requests. After an I/O operation, the scheduler
pauses in anticipation of an I/O request for an adjacent block . This is a
behavior typically suitable for desktop workstations. The as scheduler is not
intended to use for by storage servers.

� Deadline

With the deadline scheduler, I/O requests are assigned a deadline by which
they must be processed. If a request reaches its deadline, the scheduler
immediately processes the request (even if it is out of sorted order).

� Noop

The noop scheduler processes requests in the merged order in which they
are received. No further optimization is performed.

Selecting an I/O scheduler
The specific I/O scheduler to use is determined at system IPL by the elevator
parameter in the /etc/zipl.conf file (Example 2-1 on page 16):

Note: For details on operation of the I/O scheduler, see "Kernel Korner - I/O
Schedulers" by Rob Love in Linux Journal, February 2004 at:

http://www.linuxjournal.com/article/6931

 Chapter 2. Linux 2.6 kernel 15

http://www.linuxjournal.com/article/6931

Example 2-1 Elevator parameter of the /etc/zipl.conf file

cat /etc/zipl.conf
[defaultboot]
 default = ipl

[ipl]
 target = /boot/zipl
 image = /boot/image
 ramdisk = /boot/initrd
 parameters = "root=/dev/dasda1 selinux=0 TERM=dumb elevator=cfq"

Valid elevator parameter values are:

fcq Selects the completely fair scheduler
as Selects the anticipatory scheduler
deadline Selects the deadline scheduler
noop Selects the noop scheduler

In kernel versions greater than 2.6.9, the I/O scheduler can be selected at
runtime using the /sys/block/dev/queue/scheduler interface (where dev is the
DASD device number).

2.2.7 Extended attributes and access control lists
The 2.6 kernel supports extended attributes (EAs) and access control lists
(ACLs):

� EAs are name/value pairs associated with file objects that describe
characteristics of the object (such as mime type and character set encoding).

� ACLs are EAs that extend the traditional set of Linux permissions (read, write,
and execute for owner, group, and other). Using ACLs, permissions to
specific file objects can be granted regardless of owner and group
membership (greatly simplifying Linux user and group management).

ACL support offers greater interoperability between Linux and other
POSIX-compliant operating systems. ACLs are supported on the ext2, etx3, jfs,
xfs, and reiserfs filesystems. The getfacl and setfacl commands are used to
view and modify ACLs.

Note: Remember to run the zipl command after changing the /etc/zipl.conf
file. Changes take effect after the next system IPL.

16 Linux for IBM System z9 and IBM zSeries

2.2.8 Memory management enhancements
Major changes have been made to the memory management system in the 2.6
kernel with the implementation of reverse page mapping (rmap). Reverse page
mapping allows the kernel to map virtual pages efficiently to physical addresses.
Previously, mapping physical pages back to their virtual addresses was a costly
operation (in the worst case, it required examining every page table in the
system). With rmap, additional kernel structures have been added for the
backwards translation. This feature allows the virtual memory manager to make
more intelligent decisions on what to swap out to disk (as well as what to bring
back from disk).

2.2.9 Native POSIX Threading Library
Native POSIX Thread Library (NPTL) is the default thread library for 2.6,
replacing the LinuxThreads library. NPTL offers significant performance
improvements over LinuxThreads. In addition, LinuxThreads is not compliant
with the POSIX standard for threads.

Current Linux distributions offer the ability to enable your earlier and existing
threading functionality. That means you can use LinuxThreads without code
changes. However, it is highly recommended that you make any necessary code
changes to allow your enterprise applications to take advantage of NPTL.
Another advantage to using NPTL is that in process listings, threads are now
shown under the processes to which they belong. Previously, each thread was
listed as a separate process. NPTL also supports thread local storage and
futex-based synchronization. Each of these can result in dramatic performance
gains.

If you are running with NPTL but still want to runit with LinuxThreads, you have to
tell your system to use LinuxThreads. To do this, the LD_ASSUME_KERNEL
variable has to be set to 2.4.19 with the command:

export LD_ASSUME_KERNEL=2.4.19

Process information for threaded applications displayed by the ps command
varies according to the thread library used:

� With LinuxThreads, a thread appears as a child processes of the main thread.
This can lead to confusion: Is the child entity a thread or a process?

� With NPTL, as expected, no child thread information is displayed. The ps
command displays only child processes.

To illustrate the difference, The Teste.class Java application creates numerous
child threads. Figure 2-1 on page 18 shows the process list displayed when using
the LinuxThreads library.

 Chapter 2. Linux 2.6 kernel 17

Figure 2-1 Running Test.class using LinuxThreads

In the figure, PIDs 2794 through 2800 are threads, but appears as processes.
Figure 2-2 shows a process list taken from a Linux 2.6 kernel system using
NPTL.

Figure 2-2 Running Test.class using NTPL

In this case, only a single process (PID 1594) is reported. Information on threads
running in the process is available in the /proc/1594 directory.

ps -a -x -f
..PID TTY STAT TIME COMMAND
 1 ? S 0:05 init [5]
.
.
.
1182 ? Ss 0:00 /usr/sbin/sshd -o PidFile=/var/run/sshd.init.pid
 1523 ? Ss 0:00 _ sshd: root@pts/0
 1526 pts/0 Ss 0:00 | _ -bash
 2794 pts/0 R+ 0:00 | _ java Teste class
 2795 pts/0 S+ 0:00 | _ java Teste class
 2796 pts/0 S+ 0:00 | _ java Teste class
 2797 pts/0 S+ 0:00 | _ java Teste class
 2798 pts/0 S+ 0:00 | _ java Teste class
 2799 pts/0 S+ 0:00 | _ java Teste class
 2800 pts/0 S+ 0:00 | _ java Teste class
.
.
.

ps -a -x -f
..PID TTY STAT TIME COMMAND
 1 ? S 0:05 init [5]
.
.
.
.1182 ? Ss 0:00 /usr/sbin/sshd -o PidFile=/var/run/sshd.init.pid
 1523 ? Ss 0:00 _ sshd: root@pts/0
 1526 pts/0 Ss 0:00 | _ -bash
 1594 pts/0 S+ 0:00 | _ java Teste class
.
.
.

18 Linux for IBM System z9 and IBM zSeries

To determine which threading library in use, use the getconf command, as in
Example 2-2 on page 19.

Example 2-2 The getconf command on SLES9

getconf GNU_LIBPTHREAD_VERSION
NPTL 0.61
export LD_ASSUME_KERNEL=2.4.19
getconf GNU_LIBPTHREAD_VERSION
linuxthreads-0.10

The previous example executes on a SLES9 system. On a RHEL4 system, the
getconf command returns (Example 2-3):

Example 2-3 The getconf command on RHEL4

getconf GNU_LIBPTHREAD_VERSION
NPTL 2.3.4
export LD_ASSUME_KERNEL=2.4.19
getconf GNU_LIBPTHREAD_VERSION
linuxthreads-0.10

If the threading library is NPTL, getconf returns:

� NPTL 0.61 for SLES9
� NPTL 2.3.3 for RHEL4

In both cases, the response is linuxthreads-0.1 if LinuxThreads is used.

2.2.10 NFS version 4
The Linux 2.6 kernel includes revision 4 of the Networking File System (NFSv4).
NFS allows sharing filesystems across a network (a machine can locally mount
filesystems on remote machines). Improvements include:

� Secure network transactions

With NFSv4, remote procedure calls (RPC) transactions can be secured
using the General Security Service (GSS) API. The GSS framework provides
mechanisms for authentication, privacy, and integrity checking between client
and server.

� Reduced number of remote procedure calls

Prior to version 4, NFS transactions translated to numerous low-level RPC
transactions. NFSv4 implements compound procedure calls. This combines
several low-level RPC transactions into a single high-level RPC transaction.
With compound procedure calls, network traffic (and the associated latency)
is reduced.

 Chapter 2. Linux 2.6 kernel 19

� New file locking mechanism

NFSv4 implements byte-range file locking, replacing the lockd protocol
formerly provided by the Network Lock Manager. With this model, the lockd
and mountd daemons are no longer used, resulting in significant CPU
savings for NFS servers.

In this newer implementation, clients request a lock from the server. After the
lease is granted, the server maintains a lease on the lock. Before expiration,
the client must renew the lease in order to hold the lock. If the lease expires,
the server releases the lock.

2.3 Introduction to sysfs
The 2.6 kernel introduces sysfs, a new virtual filesystem interface to devices
attached to the system. Benefits offered by sysfs include:

� Simplification of the /proc virtual filesystem

Originally designed as an interface to processes running on the system, over
time /proc incorporated interfaces to device drivers. With sysfs, device driver
interfaces have been moved to the /sys directory.

� Consistent device configuration

With the /proc device interface, individual drivers were free to choose their
specific file formats. With sysfs, device driver interfaces are consistent:

– The directory path for a device under /sys indicates the type of device, and
the subchannel for the device.

– Each file in a device subdirectory accesses a single attribute of the device.

� Simplification of the /dev directory

Prior to 2.6, the /dev directory contained the statically created device nodes
for all possible devices. In 2.6, device nodes are dynamically created in /dev
as devices are attached to the system.

2.3.1 Organization of the /sys directory
Figure 2-3 on page 21 illustrates a portion of the /sys directory. As shown in the
figure, the /sys directory structure provides information about the device type, its
device node name, and the subchannel used to the device. Regular files in a

Note: Some device driver interfaces remain in the /proc directory. However
these should be treated as read-only.

20 Linux for IBM System z9 and IBM zSeries

device subdirectory access attributes of the device. Symbolic links allow the
device to be accessed from various points in the tree.

Figure 2-3 A portion of the /sys directory

Directories found in the tree include:

� The /sys/devices directory

The /sys/devices/css0 directory contains all subchannels detected by the
Linux 2.6 kernel. Subchannel directory names take the form 0.0.nnnn where
nnnn is the hexadecimal subchannel number. Subchannel directories in turn
device directories of the form 0.0.xxxx where xxxx is unit address of the
device. Status and configuration options for a device exist as regular files
under the device directory.

Active network devices are found in the /sys/devices/type/0.0.addr
directory where type is the type of network device and addr is its unit address.
Figure 2-4 on page 22 shows the device directory for the QDIO device at
address 0x0600.

/sys

block

bus

class

devices

ccw

ccwgroup

css0

drivers

devices

drivers

devices

0.0.0002

dasd-eckd

0.0.0202

0.0.0202

0.0.0202

online

devtype

cutype

dasda dasda1 device block

 Chapter 2. Linux 2.6 kernel 21

Figure 2-4 The /sys/devices/qeth/0.0.0600/ directory

To query the online status of the device, run this command:

cat /sys/devices/qeth/0.0.0600/online
1

The device is online as indicated by the 1 (0 indicates the device is offline).

� The /sys/bus directory

This directory contains the ccw and ccwgroup subdirectories. CCW devices
are accessed using channel command words. Devices in the ccw
subdirectory use only one subchannel in the channel subsystem. Devices in
the ccwgroup subdirectory use more than one subchannel per device. For
example, DASD devices use a single subchannel, while a QDIO device uses
three. Symbolic links under the ccw and ccwgroup subdirectories point back
to the /sys/devices entry for the specific device.

� The /sys/class directory

This directory groups similar devices together.

� The /sys/block directory

This directory contains a subdirectory for each block device on the system.

2.3.2 New sysfs command for Linux on zSeries
To help manage sysfs, several new commands have been provided:

� The lsdasd command displays information for DASD devices.

� The lscss command displays subchannel information. Figure 2-5 on page 23
shows output from the lscss command.

ls /sys/devices/qeth/0.0.0600/
. canonical_macaddr checksumming if_name priority_queueing state
.. card_type chpid ipa_takeover recover ungroup
add_hhlen cdev0 detach_state online route4 vipa
broadcast_mode cdev1 fake_broadcast portname route6
buffer_count cdev2 fake_ll portno rxip

22 Linux for IBM System z9 and IBM zSeries

Figure 2-5 Output from the lscss command

� The lstape command shows tape device information.

� The chccwdev command enables or disables devices:

chccwdev -e dev bring device online
chccwdev -d dev bring device offline

Figure 2-6 on page 24 illustrates using the chccwdev command.

lscss
Device Subchan. DevType CU Type Use PIM PAM POM CHPIDs
--
0.0.0103 0.0.0000 3390/0A 3990/EC F0 F0 FF 74754849 00000000
0.0.0201 0.0.0001 3390/0A 3990/EC yes F0 F0 FF 74754849 00000000
0.0.0202 0.0.0002 3390/0A 3990/EC yes F0 F0 FF 74754849 00000000
0.0.0009 0.0.001F 0000/00 3215/00 yes 80 80 FF 00000000 00000000
0.0.0600 0.0.0020 1732/01 1731/01 yes 80 80 FF 06000000 00000000
0.0.0601 0.0.0021 1732/01 1731/01 yes 80 80 FF 06000000 00000000
0.0.0602 0.0.0022 1732/01 1731/01 yes 80 80 FF 06000000 00000000
0.0.000C 0.0.0023 0000/00 2540/00 80 80 FF 00000000 00000000
0.0.000D 0.0.0024 0000/00 2540/00 80 80 FF 00000000 00000000
0.0.000E 0.0.0025 0000/00 1403/00 80 80 FF 00000000 00000000
0.0.0190 0.0.0026 3390/0A 3990/EC F0 F0 FF 74754849 00000000
0.0.019D 0.0.0027 3390/0A 3990/EC F0 F0 FF 74754849 00000000
0.0.019E 0.0.0028 3390/0A 3990/EC F0 F0 FF 74754849 00000000
0.0.0592 0.0.0029 3390/0A 3990/EC F0 F0 FF 74754849 00000000
0.0.0191 0.0.002A 3390/0A 3990/EC F0 F0 FF 74754849 00000000
0.0.B020 0.0.002B 1732/03 1731/03 80 80 FF 90000000 00000000
0.0.B030 0.0.002C 1732/03 1731/03 80 80 FF 90000000 00000000
0.0.B033 0.0.002D 1732/03 1731/03 80 80 FF 90000000 00000000
0.0.B130 0.0.002E 1732/03 1731/03 80 80 FF 91000000 00000000

Note: The chccwdev command does not work on ccwgroup devices (such
as OSA or CTC devices).

 Chapter 2. Linux 2.6 kernel 23

Figure 2-6 Using the chccwdev command

These commands perform actions which can be accomplished using sysfs
directly, but are provided as merely for convenience.

2.3.3 Device configuration with sysfs
Linux 2.6 kernel uses sysfs to enable, disable and configure devices. SLES9 and
RHEL4 differ in the methods used to configure devices at system IPL. In this
section, we look at automatic device configuration in both distributions.

2.3.4 SLES9 hardware configuration
SLES9 uses a new scheme to configure devices. At boot time, the system
configures hardware devices based on configuration files found in the
/etc/sysconfig/hardware directory.

lsdasd -a 0.0.0300
0.0.0300(none) : offline
chccwdev -e 0.0.0300
Setting device 0.0.0300 online
Done
lsdasd
0.0.0201(ECKD) at (94: 0) is dasda : active at blocksize 4096, 600840 blocks, 2347 MB
0.0.0202(ECKD) at (94: 4) is dasdb : active at blocksize 4096, 600840 blocks, 2347 MB
0.0.0300(ECKD) at (94: 8) is dasdc : active at blocksize 4096, 90000 blocks, 351 MB
chccwdev -d 0.0.0300
Setting device 0.0.0300 offline
Done
lsdasd
0.0.0201(ECKD) at (94: 0) is dasda : active at blocksize 4096, 600840 blocks, 2347 MB
0.0.0202(ECKD) at (94: 4) is dasdb : active at blocksize 4096, 600840 blocks, 2347 MB

Note: When configuring a new device, ensure its device driver is first loaded.
The correct module for each device, how to load it and its parameters can be
found in Linux on zSeries Device Drivers, Features, and Commands March
23, 2005, SC33-8281.

Note: The sysconfig package provides hardware configuration tools and
scripts. Sample hardware configuration files can be found in the
/etc/sysconfig/hardware/skel directory.

24 Linux for IBM System z9 and IBM zSeries

Configuring FCP devices
To configure an FCP device, follow these steps:

1.Copy the /etc/sysconfig/hardware/skel/hwcfg-zfcp file to
/etc/sysconfig/hardwar/hwcfg-zfcp-bus-ccw-0.0.nnnn (where nnnn is the
FCP device device number). Change the FCP_LUN and WWPN parameters
for your specific environment (see Figure 2-7).

2. Bring the device online using the hwup command:

hwup zfcp-bus-ccw-0.0.nnnn

If it is successful, the device will be automatically brought online at reboot.

Figure 2-7 Hardware configuration file for FCP device at virtual address b025

cat /etc/sysconfig/hardware/hwcfg-zfcp-bus-ccw-0.0.b025
#!/bin/sh
#
hwcfg-zfcp
#
Default configuration for a zfcp device
$Id: hwcfg-zfcp,v 1.3 2004/02/24 10:47:10 hare Exp $
#

STARTMODE="auto"
MODULE="zfcp"
MODULE_OPTIONS=""
MODULE_UNLOAD="yes"

Scripts to be called for the various events.
If called manually the event is set to 'up'.
SCRIPTUP="hwup-ccw"
SCRIPTUP_ccw="hwup-ccw"
SCRIPTUP_scsi_host="hwup-zfcp"
SCRIPTDOWN="hwdown-scsi"
SCRIPTDOWN_scsi="hwdown-zfcp"
CCW_CHAN_IDS sets the channel IDs for this device
If not set or empty the channel ID from the file name
is used
CCW_CHAN_IDS=""
CCW_CHAN_NUM set the number of channels for this device
If not set it or empty default to '1'
CCW_CHAN_NUM=1
fcp LUNs configured for this adapter.
Note that IBM ESS (aka 'Shark') ignores
all but the first 4 charaters of the
fcp LUN.
ZFCP_LUNS="0x5005076300cd9589:0x520c000000000000"

 Chapter 2. Linux 2.6 kernel 25

Configuring DASD devices
To configure a DASD device, follow these steps:

1. Copy the /etc/sysconfig/hardware/skel/hwcfg-eckd file to
/etc/sysconfig/hardwar/hwcfg-dasd-bus-ccw-0.0.nnnn (where nnnn is the
DASD device number).

2. Bring the device online using the hwup command:

hwup dasd-bus-ccw-0.0.nnnn

If successful, the device will be automatically brought online at reboot.
Figure 2-8 on page 26 shows a DASD configuration file.

Figure 2-8 Hardware configuration file for DASD device at virtual address 202

Configuring QDIO network devices
To configure a QDIO network device, follow these steps:

1. Copy the /etc/sysconfig/hardware/skel/hwcfg-qeth file to
/etc/sysconfig/hardwar/hwcfg-qeth-bus-ccw-0.0.nnnn (where nnnn is the
base QDIO device number).

Note: For more details on using FCP devices, see Chapter 5, “FCP-attached
SCSI disks” on page 155.

cat /etc/sysconfig/hardware/hwcfg-dasd-bus-ccw-0.0.0202
#!/bin/sh
#
hwcfg-dasd-bus-ccw-0.0.0202
#
Configuration for a DASD device (ECKD mode)
#
STARTMODE="auto"
MODULE="dasd_eckd_mod"
MODULE_OPTIONS=""
MODULE_UNLOAD="yes"
Scripts to be called for the various events.
If called manually the event is set to 'up'.
SCRIPTUP="hwup-ccw"
SCRIPTUP_ccw="hwup-ccw"
SCRIPTDOWN="hwdown-ccw"
SCRIPTDOWN_ccw="hwdown-ccw"
DASD_USE_DIAG selects whether DIAG access mode
should be activated for this device
DASD_USE_DIAG="0"

26 Linux for IBM System z9 and IBM zSeries

2. Edit the new hardware configuration file, supplying your specific hardware
parameters (see Figure 2-9).

3. Bring the device online using the hwup command:

hwup qeth-bus-ccw-0.0.nnnn

Figure 2-9 Hardware configuration file for QDIO interface at virtual address 700

Be sure to create a network configuration file in the /etc/sysconfig/network
directory. Network configuration file names take the form
ifcfg-xxxx-bus-ccw-0.0.nnnn where xxxx denotes the interface name, and nnnn
denotes the device number.

cat /etc/sysconfig/hardware/hwcfg-qeth-bus-ccw-0.0.0700
#!/bin/sh
#
hwcfg-qeth-bus-ccw-0.0.0700
#
Hardware configuration for a qeth device at 0.0.0700
Automatically generated by netsetup
#
STARTMODE="auto"
MODULE="qeth"
MODULE_OPTIONS=""
MODULE_UNLOAD="yes"

Scripts to be called for the various events.
SCRIPTUP="hwup-ccw"
SCRIPTUP_ccw="hwup-ccw"
SCRIPTUP_ccwgroup="hwup-qeth"
SCRIPTDOWN="hwdown-ccw"

CCW_CHAN_IDS sets the channel IDs for this device
The first ID will be used as the group ID
CCW_CHAN_IDS="0.0.0700 0.0.0701 0.0.0702"

CCW_CHAN_NUM set the number of channels for this device
Always 3 for an qeth device
CCW_CHAN_NUM=3

CCW_CHAN_MODE sets the port name for an OSA-Express device
CCW_CHAN_MODE="suselin7"

Note: Similar skeletal hardware configuration files exist for IUCV, CTC, and
LSC devices. The file name reflects the type of device to configure.

 Chapter 2. Linux 2.6 kernel 27

2.3.5 RHEL4 hardware configuration
RHEL4 device configuration differs according to the device.

Configuring FCP devices
To configure an FCP device, follow these steps:

1. Modify the /etc/modules.conf file:

alias eth0 qeth
options dasd_mod dasd=201,202
alias scsi_hostadapter zfcp

2. Map the FCP devices in the /etc/zfcp.conf file (Example 2-4):

Example 2-4 Mapping the devices

0.0.b020 0x01 0x5005076300cd9589 0x01 0x5210000000000000
0.0.b022 0x02 0x5005076300cd9589 0x01 0x5211000000000000
0.0.b030 0x03 0x5005076300c19589 0x01 0x5210000000000000
0.0.b033 0x04 0x5005076300c19589 0x01 0x5211000000000000

3. Generate a new initial ramdisk containing the zfcp module and the FCP
mapping. The steps are illustrated in Figure 2-10 on page 29.

28 Linux for IBM System z9 and IBM zSeries

Figure 2-10 Generating a new initial ramdisk containing the zfcp device driver

4. Execute the zipl command to update the bootloader, as shown in
Figure 2-11 on page 30:

cd /boot
mv initrd-2.6.9-6.37.EL.img initrd-2.6.9-37.EL.img.orig
mkinitrd -v --with=scsi_mod --with=zfcp --with=sd_mod initrd-2.6.9-6.37.EL.img
2.6.9-6.37.EL
Creating initramfs
Looking for deps of module ide-disk
.
.
.
Using modules: ./kernel/drivers/md/dm-mod.ko ./kernel/drivers/s390/block/dasd_mod.ko ...
/sbin/nash -> /tmp/initrd.uU2014/bin/nash
/sbin/insmod.static -> /tmp/initrd.uU2014/bin/insmod
/sbin/udev.static -> /tmp/initrd.uU2014/sbin/udev
/etc/udev/udev.conf -> /tmp/initrd.uU2014/etc/udev/udev.conf
copy from /lib/modules/2.6.9-6.37.EL/./kernel/drivers/md/dm-mod.ko(elf64-s390) to ...
.
.
.
Loading module dm-mod
.
.
.
Loading module sd_mod

 Chapter 2. Linux 2.6 kernel 29

Figure 2-11 Updating the bootloader with zip1

Configuring DASD devices
To configure a DASD device, follow these steps, follow these steps:

1. Update the /etc/modprobe.conf file with the new DASD addresses.

alias eth0 qeth
options dasd_mod dasd=201,202,300

zipl -V
Using config file '/etc/zipl.conf'
Target device information
 Device..........................: 5e:00
 Partition.......................: 5e:01
 Device name.....................: dasda
 DASD device number..............: 0201
 Type............................: disk partition
 Disk layout.....................: ECKD/compatible disk layout
 Geometry - heads................: 15
 Geometry - sectors..............: 12
 Geometry - cylinders............: 3338
 Geometry - start................: 24
 File system block size..........: 4096
 Physical block size.............: 4096
 Device size in physical blocks..: 25596
Building bootmap '/boot//bootmap'
Building menu 'rh-automatic-menu'
Adding #1: IPL section 'linux' (default)
 kernel image......: /boot/vmlinuz-2.6.9-6.37.EL at 0x10000
 kernel parmline...: 'root=LABEL=/' at 0x1000
 initial ramdisk...: /boot/initrd-2.6.9-6.37.EL.img at 0x800000
Preparing boot device: dasda (0201).
Preparing boot menu
 Interactive prompt......: enabled
 Menu timeout............: 15 seconds
 Default configuration...: 'linux'
Syncing disks...
Done

Note: For more details on using FCP devices, see Chapter 5, “FCP-attached
SCSI disks” on page 155. The RHEL4 installation guide also provides
information about FCP device configuration:

http://www.redhat.com/docs/manuals/enterprise/RHEL-4-Manual/s390-multi-in
stall-guide/s1-s390info-zfcp.html

30 Linux for IBM System z9 and IBM zSeries

http://www.redhat.com/docs/manuals/enterprise/RHEL-4-Manual/s390-multi-install-guide/s1-s390info-zfcp.html
http://www.redhat.com/docs/manuals/enterprise/RHEL-4-Manual/s390-multi-install-guide/s1-s390info-zfcp.html

2. Generate a new initial ramdisk (Example 2-5):

Example 2-5 Generating a new ramdisk

cd /boot
mv initrd-2.6.9-6.37.EL.img initrd-2.6.9-37.EL.img.orig
mkinitrd -v --with=scsi_mod --with=zfcp --with=sd_mod \
initrd-2.6.9-6.37.EL.img 2.6.9-6.37.EL
Creating initramfs
Looking for deps of module ide-disk
.
.
.

3. Execute the zipl command to update the bootloader:

zipl -V

For more information, see the RHEL4 installation guide at:

http://www.redhat.com/docs/manuals/enterprise/RHEL-4-Manual/s390-multi-inst
all-guide/s1-s390info-adddasd.html

Configuring network devices
To configure a network device, follow these steps:

1. Ensure the /etc/modprobe.conf file has an alias for the interface name to the
device driver.

alias eth0 qeth
alias eth1 qeth
options dasd_mod dasd=201,202,300

2. Create the appropriate network configuration file in the
/etc/sysconfig/network-scripts directory. Configurations file names have the
form ifcfg-ndev where ndev is the name of the network interface. A network
configuration file for the eth1 adapter (a QDIO device) is shown in Figure 2-12
on page 32.

Note: If your system uses FCP devices, be sure to include the zfcp device
driver in the initial ramdisk. Also ensure the devices are mapped in the
/etc/zfcp.conf file.

 Chapter 2. Linux 2.6 kernel 31

http://www.redhat.com/docs/manuals/enterprise/RHEL-4-Manual/s390-multi-install-guide/s1-s390info-adddasd.html

Figure 2-12 The /etc/sysconfig/network-scripts/ifcfg-eth1 configuration file

For more information about adding network interfaces, see:

http://www.redhat.com/docs/manuals/enterprise/RHEL-4-Manual/s390-multi-inst
all-guide/s1-s390info-addnetdevice.html

2.3.6 Device node naming with udev
In the Linux 2.6 kernel, dynamic device node naming is accomplished with udev -
a user space tool that creates device nodes in /dev. The udevinfo command is
used to show information about the device nodes created by udev:

udevinfo -q symlink -n /dev/dasda
disk/by-path/ccw-0.0.0201
disk/by-id/0X0201

A device node can be referenced more than one name:

udevinfo -q symlink -n /dev/dasda
disk/by-path/ccw-0.0.0201
disk/by-id/0X0201

The symbolic links to device nodes differ based on distribution. For instance, with
DASD device at address 201:

� In SLES9, udev creates symbolic links:

– /dev/disk/by-path/ccw-0.0.0201
– /dev/disk/by-id/0X0201

� In RHEL4, udev creates the /dev/dasd/0.0.0201/disc symbolic link.

IBM QETH
DEVICE=eth1
BOOTPROTO=static
BROADCAST=9.12.5.255
IPADDR=9.12.4.83
NETMASK=255.255.254.0
NETTYPE=qeth
NETWORK=9.12.4.0
ONBOOT=yes
PORTNAME=lnxrh2
SUBCHANNELS=0.0.0700,0.0.0701,0.0.0702
TYPE=Ethernet

32 Linux for IBM System z9 and IBM zSeries

http://www.redhat.com/docs/manuals/enterprise/RHEL-4-Manual/s390-multi-install-guide/s1-s390info-addnetdevice.html

2.3.7 Hotplug detection and device node naming
When devices are attached to the system, events are generated by
/sbin/hotplug. These events are intercepted by udev (running in user space).
From the hotplug event, udev obtains device information form sysfs, and
dynamically adds the appropriate device node to the /dev/directory.

In order to ensure consistent and deterministic device node naming, udev using
device naming conventions specified in a rules file. Rules in this file specify what
device node name is assigned by udev (based on attributes of the device
obtained from sysfs). Each distribution for Linux on zSeries uses its specific udev
rules file:

� SLES9 uses the /etc/udev/udev.rules file.
� RHEL4 uses the /etc/udev/rules.d/50-udev.rules file.

Rules rely on regular expression matching to map device attributes to device
node names. Attributes can refer to the bus a device is attached to, a unique
vendor ID for the device, the kernel name for the device, or a device attribute
from sysfs. Based on the regular expression, udev creates a symbolic link to the
device node in the /dev directory. Figure 2-13 illustrates sample udev rules for
DASD and FCP devices.

Figure 2-13 Sample udev rules for DASD and FCP devices

When creating device names, udev uses the first matching regular expression in
the ruleset file. With this ruleset, udev creates device nodes:

� DASD devices:

– /dev/dasdn for the entire device (for instance, /dev/dasda)
– /dev/dasdnm for each partition on the device (for instance, /dev/dasda1)

In addition, symbolic links of the form /dev/dasd/0.0.nnnn/disk and
/dev/dasd/0.0.nnnn/partm are created (where nnnn is the device unit address
and m is the partition number on the device).

Note: With RHEL4, udev dynamically manages all device node naming.
SLES9 also uses udev, however 2.4 static device node names are defined in
/dev for backwards compatibility.

KERNEL="dasd*[a-z]", SYMLINK="dasd/%b/disk", NAME="%k"
KERNEL="dasd*[0-9]", SYMLINK="dasd/%b/part%n", NAME="%k"

KERNEL="sd*[a-z]", SYMLINK="scsi/%s{fcp_lun}-%s{wwpn}/disk", NAME="%k"
KERNEL="sd*[0-9]", SYMLINK="scsi/%s{fcp_lun}-%s{wwpn}/part%n", NAME="%k"

 Chapter 2. Linux 2.6 kernel 33

� FCP devices:

– /dev/sdn for the entire device (for instance, /dev/sda)
– /dev/sdnm for each partition on the device (for instance, /dev/sda1)

In addition, symbolic links of the form /dev/scsi/lun-wwpn/disk and
/dev/scsi/lun-wwpn/partm are created (where lun is the LUN, wwpn is the
device WWPN, and m is the partition number on the device).

Figure 2-14 on page 34 shows the device nodes created by this example.

Figure 2-14 Device nodes created by the sample udev ruleset

ls -lah /dev/dasd/
total 0
drwxr-xr-x 10 root root 200 Apr 18 18:03 .
drwxr-xr-x 8 root root 3.1K Apr 18 18:03 ..
drwxr-xr-x 2 root root 100 Apr 18 17:03 0.0.0201
drwxr-xr-x 2 root root 80 Apr 18 17:03 0.0.0202
ls -lah /dev/dasd/0.0.0201
total 0
drwxr-xr-x 2 root root 100 Apr 18 17:03 .
drwxr-xr-x 10 root root 200 Apr 18 18:03 ..
lrwxrwxrwx 1 root root 11 Apr 18 17:03 disc -> ../../dasda
lrwxrwxrwx 1 root root 12 Apr 18 17:03 part1 -> ../../dasda1
ls -lah /dev/scsi/
total 0
drwxr-xr-x 5 root root 100 Apr 18 17:03 .
drwxr-xr-x 8 root root 3.1K Apr 18 18:03 ..
drwxr-xr-x 2 root root 80 Apr 18 17:03 0x5210000000000000-0x5005076300cd9589
drwxr-xr-x 2 root root 60 Apr 18 17:03 0x5212000000000000-0x5005076300cd9589
ls -lah /dev/scsi/0x5212000000000000-0x5005076300cd9589/
total 0
drwxr-xr-x 2 root root 60 Apr 18 17:03 .
drwxr-xr-x 5 root root 100 Apr 18 17:03 ..
lrwxrwxrwx 1 root root 9 Apr 18 17:03 disk -> ../../sda

Tip: Use the udev man page when creating customized udev rules. The
udevinfo command is also useful in creating custom rules as illustrated in
Figure 2-15 on page 35.

34 Linux for IBM System z9 and IBM zSeries

Figure 2-15 Using udevinfo to create custom device naming rules

udevinfo -a -p /sys/block/dasda/

udevinfo starts with the device the node belongs to and then walks up the
device chain, to print for every device found, all possibly useful attributes
in the udev key format.
Only attributes within one device section may be used together in one rule,
to match the device for which the node will be created.

 looking at class device '/sys/block/dasda':
 SYSFS{dev}="94:0"
 SYSFS{range}="4"
 SYSFS{removable}="0"
 SYSFS{size}="4806720"
 SYSFS{stat}=" 837 322 37488 530 1236 1291 20224 8930
0 5800 9460"

follow the class device's "device"
 looking at the device chain at '/sys/devices/css0/0.0.0001/0.0.0201':
 BUS="ccw"
 ID="0.0.0201"
 SYSFS{availability}="good"
 SYSFS{cmb_enable}="0"
 SYSFS{cutype}="3990/ec"
 SYSFS{detach_state}="0"
 SYSFS{devtype}="3390/0a"
 SYSFS{discipline}="ECKD"
 SYSFS{online}="1"
 SYSFS{readonly}="0"
 SYSFS{use_diag}="0"

 looking at the device chain at '/sys/devices/css0/0.0.0001':
 BUS="css"
 ID="0.0.0001"
 SYSFS{chpids}="74 75 48 49 00 00 00 00 "
 SYSFS{detach_state}="0"
 SYSFS{pimpampom}="f0 f0 ff"

 looking at the device chain at '/sys/devices/css0':
 BUS=""
 ID="css0"
 SYSFS{detach_state}="0"

 Chapter 2. Linux 2.6 kernel 35

2.3.8 Distribution considerations when naming devices
In SLES9, familiar Linux 2.4 kernal device names are statically defined in /dev. If
a device is detached from a Linux guest, on reboot udev correctly creates new
symbolic links to the device node. However, symbolic links to the detached
device node are not removed.

To illustrate, we consider a system originally configured with four DASD devices:

� Device 0201 assigned to /dev/dasda
� Device 0202 assigned to /dev/dasdb
� Device 0300 assigned to /dev/dasdc
� Device 0400 assigned to /dev/dasdd

In Figure 2-16, device 0300 is detached and the system rebooted.

Figure 2-16 SLES9 symbolic links

On reboot, device 0400 (which was previous named /dev/dasdd) now becomes
/dev/dasdc. Although, as expected udev has created the
/dev/disk/by-path/ccw-0.0.0400 symbolic link to /dev/dasdc, the previous
/dev/disk/by-path/ccw-0.0.0400 symbolic link has not been removed.

In general, this is not a problem unless automation scripts use the symbolic link
name and expect those symbolic links to be consistent. To avoid this problem,
SLES9 provides the /etc/init.d/boot.udev script. This reloads and updates all
udev information in the /dev directory. However, it must be activated at IPL:

insserv boot.udev

lsdasd
0.0.0201(ECKD) at (94: 0) is dasda : active at blocksize 4096, 600840 blocks, 2347 MB
0.0.0202(ECKD) at (94: 4) is dasdb : active at blocksize 4096, 600840 blocks, 2347 MB
0.0.0400(ECKD) at (94: 8) is dasdc : active at blocksize 4096, 90000 blocks, 351 MB
ls -lah /dev/disk/by-path
total 8.0K
drwxr-xr-x 2 root root 4.0K Apr 18 19:49 .
drwxr-xr-x 4 root root 4.0K Apr 15 21:56 ..
lrwxrwxrwx 1 root root 11 Apr 15 21:56 ccw-0.0.0201 -> ../../dasda
lrwxrwxrwx 1 root root 12 Apr 15 21:56 ccw-0.0.0201p1 -> ../../dasda1
lrwxrwxrwx 1 root root 11 Apr 15 21:56 ccw-0.0.0202 -> ../../dasdb
lrwxrwxrwx 1 root root 12 Apr 15 21:56 ccw-0.0.0202p1 -> ../../dasdb1
lrwxrwxrwx 1 root root 11 Apr 18 14:14 ccw-0.0.0300 -> ../../dasdc
lrwxrwxrwx 1 root root 12 Apr 18 14:14 ccw-0.0.0300p1 -> ../../dasdc1
lrwxrwxrwx 1 root root 11 Apr 18 19:49 ccw-0.0.0400 -> ../../dasdc
lrwxrwxrwx 1 root root 12 Apr 18 14:16 ccw-0.0.0400p1 -> ../../dasdc1

36 Linux for IBM System z9 and IBM zSeries

With RHEL4, udev completely replaces and updates the /dev directory at IPL (no
static device nodes are defined in the /dev directory). For more information about
creating udev rules, see the Linux 2.4 to 2.6 Transition Guide, LNUX-14MG.

2.4 S/390 tools and utilities
The s390 tools package contains tools such as the zipl and dasdfmt commands
specifically for running Linux on zSeries. For SLES9, these tools are provided in
the s390-tools RPM package. With RHEL4, they are included in the s390utils
RPM package. Use the rpm command to list the entire contents of the package:

rpm -qil s390-tools respective rpm -qil s390utils

Partial contents of the s390utils package is shown in Figure 2-17.

Figure 2-17 Content summary of the s390utils package

rpm -qi s390utils
Name : s390utils Relocations: (not relocatable)
.
.
.
This package contains utilities related to Linux for S/390.
The most important programs contained in this package are:

 - The cmstools suite to list, check, copy and cat files from a CMS volume.
 - chccwdev, a script to generically change attributes of a ccw device.
 - dasdfmt, which is used to low-level format eckd-dasds with
 either the classic linux disk layout or the new z/OS
 compatible disk layout.
 - dasdview, which displays DASD and VTOC information and dumps the content
 of a DASD to the console.
 - fdasd, which is used to create or modify partitions on
 eckd-dasds formatted with the z/OS compatible disk layout.
 - qetharp to query and purge address data in the OSA and HiperSockets hardware
 - qethconf to configure IBM QETH function IPA, VIPA and Proxy ARP.
 - tunedasd, a tool to adjust tunable parameters on DASD devices
 - zipl, which is used to make either dasds or tapes bootable
 for system IPL or system dump.
 - zdump, which is used to retrieve system dumps from either
 tapes or dasds.

 Chapter 2. Linux 2.6 kernel 37

2.4.1 The cmsfslst command
The cmsfslst command lists files on a CMS formatted volume accessed from a
Linux guest. In Figure 2-18 on page 38, the cmsfslst command output lists CMS
files on the 302 minidisk (accessed as Linux device /dev/dasdf).

Figure 2-18 Using the cmsfslst command

2.4.2 The tunedasd command
The tunedasd command reads and modifies performance parameters for DASD
devices. Provided functions include:

� Read and reset performance statistics profile for a DASD device.

� Read and set the caching mode on the storage server.

� Reserve, release, or unconditionally reserve a device. This function is only
available for ECKD devices.

Figure 2-19 on page 39 illustrates tunedasd usage. First, we check the caching
mode for device /dev/dasda, then we set the caching mode for device /dev/dasdc
to prestage (Sequential Prestage) with 100 cylinders to be cached.

lsdasd
0.0.0200(ECKD) at (94: 0) is dasda : active at blocksize 4096, 600840 blocks, 2347 MB
0.0.0201(ECKD) at (94: 4) is dasdb : active at blocksize 4096, 600840 blocks, 2347 MB
0.0.0202(ECKD) at (94: 8) is dasdc : active at blocksize 4096, 180000 blocks, 703 MB
0.0.0300(ECKD) at (94: 12) is dasdd : active at blocksize 4096, 900 blocks, 3 MB
0.0.0301(ECKD) at (94: 16) is dasde : active at blocksize 4096, 900 blocks, 3 MB
0.0.0302(ECKD) at (94: 20) is dasdf : active at blocksize 4096, 900 blocks, 3 MB
cmsfslst -d /dev/dasdf
FILENAME FILETYPE FM FORMAT LRECL RECS BLOCKS DATE TIME
 DIRECTOR P0 F 64 6 1 4/19/2005 14:28:34
 ALLOCMAP P0 F 4096 1 1 4/19/2005 14:28:34
PROFILE EXEC D1 V 70 22 1 4/19/2005 14:28:34
RHEL4 EXEC D1 V 54 12 1 4/19/2005 14:28:34
RHEL4U1 EXEC D1 V 29 9 1 4/19/2005 14:28:34
SLES8 EXEC D1 V 25 9 1 4/19/2005 14:28:34

38 Linux for IBM System z9 and IBM zSeries

Figure 2-19 Using the dasdtune command

2.4.3 The dasdview command
The dasdview command displays DASD and VTOC information, and dumps
DASD content to the console (to dump DASD content, specify the start point and
offset and you can print the volume label and VTOC entries. Figure 2-20 uses the
dasdview command to list information for /dev/dasda.

Figure 2-20 Using the dasdview command

tunedasd -g /dev/dasda
normal (0 cyl)
echo set on > /proc/dasd/statistics
tunedasd -c prestage -n 100 /dev/dasdc
WARNING: This is a very large number of cylinders ;) 100
Setting cache mode for device </dev/dasdc>...
Done.

lsdasd
0.0.0200(ECKD) at (94: 0) is dasda : active at blocksize 4096, 600840 blocks, 2347 MB
0.0.0201(ECKD) at (94: 4) is dasdb : active at blocksize 4096, 600840 blocks, 2347 MB
0.0.0300(ECKD) at (94: 8) is dasdc : active at blocksize 4096, 900 blocks, 3 MB
0.0.0301(ECKD) at (94: 12) is dasdd : active at blocksize 4096, 900 blocks, 3 MB
0.0.0302(ECKD) at (94: 16) is dasde : active at blocksize 4096, 900 blocks, 3 MB
dasdview -i -f /dev/dasda

--- general DASD information --
device node : /dev/dasda
device number : hex 200 dec 512
type : ECKD
device type : hex 3390 dec 13200

--- DASD geometry ---
number of cylinders : hex d0a dec 3338
tracks per cylinder : hex f dec 15
blocks per track : hex c dec 12
blocksize : hex 1000 dec 4096

 Chapter 2. Linux 2.6 kernel 39

40 Linux for IBM System z9 and IBM zSeries

Chapter 3. Virtualization with z/VM

This chapter describes the benefits of running Linux as guest systems under
z/VM and covers the following topics:

� z/VM and virtualization

� Installing z/VM 5.1

� Distributions for Linux on zSeries

� Running Linux under z/VM

3

© Copyright IBM Corp. 2006. All rights reserved. 41

3.1 z/VM and virtualization
z/VM provides a highly flexible test and production environment for deploying the
latest On Demand Business solutions. Using IBM virtualization technology, z/VM
provides the capability to run full-function operating systems guests such as
Linux on zSeries and z/OS. Both 64-bit and 31-bit guests are supported.

3.1.1 z/VM guest support
z/VM presents a unique approach to computer operating systems. It provides
each end user with an individual working environment known as a virtual
machine (VM). The virtual machine simulates the existence of a dedicated, real
machine, including server functions, storage, and I/O resources. However, virtual
machines support much more than just end users. Application programs and
operating systems can run in virtual machines. z/VM can support multiple
z/Architecture and Enterprise Systems Architecture/390 (ESA/390) operating
systems. For example, you can run multiple Linux and z/OS images on the same
z/VM system that runs z/VM applications and end users. As a result, application
development, testing, and production environments can share a single physical
computer.

With the virtual machine capability of z/VM, you can:

� Run multiple Linux images

Many Linux images can run concurrently and independently on a single z/VM
image.

� Test applications that terminate abnormally.

Using the isolation provided by z/VM, applications that cause exceptions can
be tested in one VM, while production applications can continue operating
normally in other VMs.

� Test new operating system releases and maintenance levels.

New operating system releases can be tested at the same time current
releases continue to perform production work. You can perform installation
and testing of program temporary fixes (PTFs) c at the same time normal
production operations are in progress.

� Provide backup facilities for the primary system.

A z/VM system is not model-dependent, and can operate on various server
models, provided minimum hardware requirements are met. This enables a
smaller server model with less real storage, fewer channels, and fewer DASD
devices to provide backup for a larger production model, normally at a
reduced level of performance.

42 Linux for IBM System z9 and IBM zSeries

� Perform operator training concurrent with production work processing.

The real machine does not have to be dedicated to training additional or new
operators or to providing initial training when a new operating system is
installed. Operator errors cannot cause termination of real machine
operations.

� Simulate new system configurations before the installation of additional
channels and I/O devices.

The relative load on channels and I/O devices can be determined using a
simulated I/O configuration.

� Test customer-written system exits.

Customer-written system exits can be tested without disrupting production
work.

Read more about zSeries virtualization capabilities on the Web at this Web site:
http://www.ibm.com/servers/eserver/zseries/virtualization/features.html

3.2 Installing z/VM 5.1
On major enhancement that was introduced with z/VM 5.1 is the installation from
DVD. You can either use the Hardware Management Console (HMC) equipped
with a DVD drive, or a workstation with a DVD drive accessible over FTP. DVD
installation requires IBM Hardware Management Console Version, 1.8.0 or later.
For details on installing z/VM 5.1 from DVD, consult z/VM: Guide for Automated
Installation and Service, GC24-6099.

3.2.1 Installation to FCP-attached SCSI disk
z/VM 5.1 supports Fibre Channel Protocol (FCP) attached SCSI disks for use as
both system and guest storage devices. This enables z/VM to be installed on and
operate from either SCSI or traditional extended count key data (ECKD) disks.

Prior to z/VM 5.1, SCSI disk support was limited to Linux guests configured for
FCP SCSI devices. Native SCSI disk support z/VM 5.1 is provided for logical
units defined in an IBM TotalStorage Enterprise Storage Server (ESS) connected
to a Fibre Channel fabric.

For details on how to configure and use FCP SCSI devices in a z/VM Linux
guest, see Linux for zSeries: Fibre Channel Protocol Implementation Guide,
SG24-6344.

When used by CMS and CP, SCSI disks are emulated as 9336 model 20
fixed-block-architecture (FBA) disks. With z/VM 5.1, SCSI disks can be used for

 Chapter 3. Virtualization with z/VM 43

http://www-1.ibm.com/servers/eserver/zseries/virtualization/features.html
http://www-1.ibm.com/servers/eserver/zseries/virtualization/features.html

system paging, spooling, directory services, and minidisks. z/VM guests that
support FBA disks (such as CMS and Linux) can use SCSI disks without
requiring specific SCSI support (using FBA emulation). Figure 3-1 illustrates
SCSI support in z/VM 5.1.

Figure 3-1 SCSI support in z/VM 5.1

z/VM supports emulated FBA disks up to one terabyte minus one page in size.
However, directory, paging, and spool storage must be allocated within the first
64GB of a CP-formatted volume. Other CP allocations (such as TDSK, PERM,
and PARM) can be allocated past the first 64GB.

Note: The maximum size of FBA SCSI disks allocated for use by CMS or GCS
guests is 381GB. However, FBA SCSI disks used by CMS should not be larger
than 22GB. CMS file system control and status data structures must reside
below 16 MB in virtual storage. With larger minidisks, the system might not be
able to obtain sufficient virtual storage below 16 MB to access the disks. For
more details, consult z/VM: CP Planning and Administration, SC24-6043.

Linux
ECKD

z/OS
ECKD

Linux
FBA

CMS
FBA

Linux
SCSI

z/VM
SCSI

CP

CCW Translation
I/O Scheduler

FBA Emulation
SCSI Driver Stack

Dedicated
Subchannel

Channels

ESCON/FICON Storage Area Network
(Fibre-Channel Fabric)

FCP
Channel

44 Linux for IBM System z9 and IBM zSeries

Figure 3-2 illustrates our system configuration for installing z/VM 5.1 to SCSI
disk.

Figure 3-2 Configuration for installation to SCSI disk

In the ESS, three Logical Unit Numbers (LUNs) are defined for the z/VM system
volumes:

� LUN 5300 is allocated for the 510RES volume.
� LUN 5301 is allocated for the 510W01 volume.
� LUN 5302 is allocated for the 510SPL volume.
� LUN 5303 is allocated for the 510PAG volume.

The LUNs are connected to the Fibre Channel fabric using Worldwide Port Name
5005076300C19589. The z/VM 5.1 system defines FCP devices B000-B003
connected to FCP CHPID 000B. The CHPID connects to the fabric through a
FICON or FICON Express card.

Note: For details on FCP concepts and defining FCP-attached SCSI devices,
consult Linux for zSeries: Fibre Channel Protocol Implementation Guide,
SG24-6344.

FCP CHPID 000B

510RES 510W01 510SPL 510PAG

z/VM 5.1

B000 B003B002B001

5300 5301 5302 5303

zSeries

FCP Fabric

IBM ESS WWPN
5005076300C19589

 Chapter 3. Virtualization with z/VM 45

To install z/VM 5.1 on a SCSI disk, an emulated FBA device must be created for
the disk. z/VM 5.1 provides two methods to define an emulated device:

� The EDEVICE statement in the SYSTEM CONFIG file, described in z/VM: CP
Planning and Administration, SC24-6043

� The CP SET EDEVICE command, described in z/VM: CP Command and
Utility Reference, SC24-6008

To create an emulated FBA device for an FCP-attached SCSI disk, we need to
supply:

� The Worldwide Port Name (WWPN) used to access the SCSI disk
� The Logical Unit Number (LUN) address of the SCSI disk
� The FCP device number used access the SCSI disk
� An emulated device number to access the emulated FBA disk

Table 3-1 contains the information we need to define four, emulated FBA devices
for installing z/VM 5.1.

Table 3-1 SCSI disks used for z/VM 5.1 installation

The SET EDEVICE command syntax to define an emulated FBA device is:

SET EDEVICE rdev TYPE FBA ATTR 2105 fcpdev WWPN wwpn LUN lun

Parameters to the command include:

rdev The emulated device number to create
fcpdev The FCP device used to access the SCSI disk
wwpn The WWPN on the ESS used to access the SCSI disk
lun The LUN address of the SCSI disk

Note: Emulated FBA SCSI disks can also be defined using z/VM’s Hardware
Configuration Manager (HCM) and Hardware Configuration Definition (HCD)
support. For details, see z/OS and z/VM: Hardware Configuration Manager
User’s Guide, SC33-7989 and z/VM: I/O Configuration, SC24-6100.

Volume WWPN LUN
Device number

FCP Emulated

510RES 5005076300C19589 5300000000000000 B000 5300

510W01 5005076300C19589 5301000000000000 B001 5301

510SPL 5005076300C19589 5302000000000000 B002 5302

510PAG 5005076300C19589 5303000000000000 B003 5303

46 Linux for IBM System z9 and IBM zSeries

3.3 Distributions for Linux on zSeries
In this section, we look at some of the Linux distributions available for zSeries.

3.3.1 SUSE Linux Enterprise Server 9
Released in August 2004, SUSE Linux Enterprise Server 9 (SLES9) from Novell
is based on the Linux 2.6 kernel. A 30-day evaluation copy of SLES9 for IBM
zSeries is available at this Web site:

http://www.novell.com/products/linuxenterpriseserver/eval.html

Release notes for SLES9 are available on the Novell SUSE Web site:

http://www.novell.com/products/linuxenterpriseserver/release_notes_final.tx
t

Novell charges an annual subscription fee for SUSE SLES8 updates. The price
depends on the hardware model and the number of engines used to run SLES9.
For pricing details, see the Novell SUSE Web site:

http://www.novell.com/products/linuxenterpriseserver/pricing.html

3.3.2 Red Hat Enterprise Linux 4
Released in February 2005, Red Hat Enterprise Linux 4 (RHEL4) is based on the
Linux 2.6.9 kernel. An evaluation copy ofRHEL4 for IBM zSeries is available at
Red Hat:

http://www.redhat.com/software/rhel/eval/

For more information about RHEL 4, see the Red Hat Web site:

http://www.redhat.com/docs/manuals/enterprise/

Because RHEL4 is a commercial distribution, Red Hat charges an annual
subscription fee when you use their Linux distribution. The price depends on the
amount of processors that are used for the Linux workload. Red Hat also offers

Note: If you use the evaluation copy, we recommend installing the latest
updates from SUSE to take advantage of any new features and any security
fixes. After updating, check the /var/adm/rpmconfigcheck file for a list of
updates that could not be applied.

Note: You will receive a 30 day free access to RHEL 4 packages and we
always recommend installing the latest update from Red Hat in order to benefit
from new features, the most current device drivers, and security and bug fixes.

 Chapter 3. Virtualization with z/VM 47

http://www.novell.com/products/linuxenterpriseserver/eval.html
http://www.novell.com/products/linuxenterpriseserver/release_notes_final.txt
http://www.novell.com/products/linuxenterpriseserver/release_notes_final.txt
http://www.novell.com/products/linuxenterpriseserver/release_notes_final.txt
http://www.novell.com/products/linuxenterpriseserver/release_notes_final.txt
http://www.novell.com/products/linuxenterpriseserver/pricing.html
http://www.novell.com/products/linuxenterpriseserver/pricing.html
http://www.redhat.com/docs/manuals/enterprise/RHEL-4-Manual/release-notes/as-s390/
http://www.redhat.com/docs/manuals/enterprise/RHEL-4-Manual/release-notes/as-s390/
http://www.redhat.com/software/rhel/eval/

two types of contracts, the Standard Edition and the Premium Edition. The major
difference between the two contract types is the response time when you report a
problem. For the complete information about the contracts and the pricing please
see the Red Hat Web site:

http://www.redhat.com/software/rhel/compare/z/

3.3.3 Non-commercial distributions
Several non-commercial Linux distributions are available for zSeries:

� Debian

Debian is a non-commercial Linux distribution available for several
architectures, including the IBM S/390 platform. The latest stable release is
Debian GNU/Linux 3.0, also called woody, S/390. This release is based on
the Linux kernel 2.4.17. For more information, see the Debian Web site:

http://www.debian.org

� Slack/390

Slack/390 is a port of Slackware Linux to the IBM S/390 and zSeries
distributed under GNU Public Licence (GPL). For more information, consult
the Slack/390 Web site:

http://www.slack390.org

� Build your own

IBM provides patches on developerWorks that are meant to be applied to the
vanilla versions of the kernel, gcc, gdb, and so forth. You can get these
packages from the official Web sites where they are hosted.

http://www.kernel.org
http://www.ibm.com/developerworks/linux/linux390/april2004_recommended.s
html#downloads
http://www.gnu.org

3.3.4 IBM middleware for Linux on zSeries
Many IBM middleware products run on Linux for zSeries. A complete list of IBM
products that run on Linux, consult IBM Middleware Available on Linux:

http://www-1.ibm.com/linux/matrix/linuxmatrixhwz.html

Note: Commercial support for Slack/390 can be obtained from Sine
Nominee Associates. For details, consult Sine Nominee’s Web site:

http://sinenomine.net/node/484

48 Linux for IBM System z9 and IBM zSeries

http://www.slack390.org
http://www.redhat.com/software/rhel/compare/z/
http://www.debian.org
http://sinenomine.net/node/484
http://www.kernel.org
http://www.gnu.org
ftp://ftp.software.ibm.com/software/linux/IBMSoftwareOnLinux.pdf
http://www.ibm.com/developerworks/linux/linux390/april2004_recommended.shtml#downloads

Specific IBM middleware product availability for can be found from the Web sites
listed in Table 3-2.

Table 3-2 IBM middleware available for Linux on zSeries

3.4 Running Linux under z/VM
In this section, we look at some of the factors to consider when running Linux
guests under z/VM.

3.4.1 Managing guest virtual memory
One of the major values of running Linux guests under z/VM is the ability to
overcommit real memory. With z/VM, the sum of virtual memory allocated to
Linux guests typically exceeds the amount of real memory in the LPAR. z/VM
paging algorithms are optimized to overcommit memory.

The extent to which memory can be overcommitted depends workloads running
on the z/VM system. For example, a system might run with 95% of its Linux
guests idle 95% of the time. They are never all active at the same time. In this
case, it might be possible to overcommit memory by a ratio of 15:1, virtual to real
memory. By contrast, a system where all Linux guests are always busy can
require a 2:1 ratio of virtual:real memory.

3.4.2 Managing z/VM storage
z/VM uses three types of storage:

� Main storage is allocated from physical memory. Programs execute in main
storage. In addition, all I/O operations occur in main storage.

� Expanded storage is also allocated from physical memory. Expanded storage
is addressable only as whole pages. Expanded storage acts as a fast paging
device. As demand for main storage increase, z/VM can quickly page to
expanded storage.

IBM middleware product URL

Data management http://ibm.com/zseries/os/linux/db2.html

Lotus Domino http://ibm.com/zseries/os/linux/lotus.html

Rational http://ibm.com/zseries/os/linux/rational.html

Tivoli http://ibm.com/zseries/os/linux/tivoli.html

WebSphere http://ibm.com/zseries/os/linux/websp.html

 Chapter 3. Virtualization with z/VM 49

http://ibm.com/zseries/os/linux/db2.html
http://ibm.com/zseries/os/linux/lotus.html
http://ibm.com/zseries/os/linux/rational.html
http://ibm.com/zseries/os/linux/tivoli.html
http://ibm.com/zseries/os/linux/websp.html

� Paging space

Paging space resides on DASD. When demand exceeds the capacity of
expanded storage, z/VM uses paging space.

Figure 3-3 illustrates the three types of z/VM storage.

Figure 3-3 z/VM storage usage

Configuring expanded storage
Always configure some system memory as expanded storage. The VM paging
subsystem is optimized for expanded storage, and can achieve higher overall
throughput when expanded storage is available.

Expanded storage should be used even with a 64-bit address space. For
example, in a system with 10 GB of real storage, it is usually better to define 8
GB of main storage and 2 GB of expanded storage (rather than defining the
entire 10 GB as main storage).

Even with 64-bit support, z/VM 5.1 still performs I/O below the 2 GB bar. This
means that Linux guests performing I/O require VM system memory pages
below 2 GB. In the event of memory contention below 2 GB, z/VM can utilize
expanded storage, rather than move pages to DASD.

z/VM storage

CPU works directly on pages in Main
storage

Pages may move from Main storage to
Expanded storage or Paging space

Pages move from Expanded storage to
Paging space only through Main storage

Pages never move from Paging space to
Expanded storage

Paging space (DASD)

Expanded
storage

Main storage

CPU(s)

50 Linux for IBM System z9 and IBM zSeries

DASD paging subsystem
When configuring z/VM paging subsystem:

� Allocate entire DASD volumes to page space.

Do not define nonpaging storage (minidisk or spool space) on VM paging
volumes. The paging subsystem uses seldom-ending channel commands to
achieve high paging throughput. Minidisks or spool space on paging volumes
can interrupt paging channel activity and cause lower paging throughput.

� Use more, smaller paging volumes.

More small volumes provide better performance than fewer large volumes. I/O
operations to a single physical disk are serialized. With three 3390-3 volumes,
three I/O operations can proceed in parallel. A single 3390-3 volume can only
process one I/O operation at a time.

� Distribute paging volumes across control units and I/O paths.

On an IBM ESS, a single logical disk is mapped to several physical disks. To
avoid contention, ensure the disks are distributed to different control units and
RAID-5 arrays.

When defining VM paging space, begin by allocating an amount equal to the sum
of the virtual storage size of all guests. Under load conditions, the system paging
space utilization averages should be less than 50%. If not, add more paging
space.

VDISK swap device
Linux systems should always be defined with some swap space, even if they are
not expected to need it. For Linux systems that are expected to swap, VDISK
offers a attractive option as a fast swap device. VDISK is a virtual disk in memory
accessed using the fba_dasd device driver. To Linux, VDISKs appear as a real
disk devices.

Tip: When defining expanded storage, begin by configuring 25% of available
memory as expanded storage.

Note: On an IBM ESS, volumes on the same control unit with consecutive
device numbers are most likely all on the same array. VM paging activity for
a stressed system can easily saturate a single array on an ESS.

Tip: The CP Q ALLOC PAGE command shows current paging utilization.

 Chapter 3. Virtualization with z/VM 51

Because it resides in memory, access to the VDISK is extremely fast. With a
VDISK, most memory pages are not allocated until actually needed, when Linux
actually writes to the swap device. However, some memory is allocated for the
control blocks VM needs manage the device when the VDISK is defined.

DCSS swap device
A new option for a virtual swap device is Discontiguous Storage Segment
(DCSS), a separate memory area that is not part of the guest's virtual memory
space. DCSS avoids a priority inversion problem that exists with VDISK devices.
VDISK devices were designed to hold very important data areas such as lock
files. VM prefers to steal memory pages from a running guest rather than from a
VDISK. This means that VM might steal pages from your running guest to
allocate them to the VDISK.

Linux guest virtual machine size
To reduce the likelihood of performing I/O, Linux attempts to uses all available
memory for file system buffers. For this reason, the virtual machine size for Linux
guests should be as small as possible. A Linux system that does not require 1GB
of memory will eventually fill any unused memory with file system buffers.
Because main storage is shared among all VM guests, this can adversely affect
the VM scheduler, discussed in 3.4.3, “Managing the VM scheduler” on page 53.
In general, more small Linux guests get better response time than fewer large
ones.

As a rule of thumb, to find an optimal virtual machine size for a Linux guest:

1. Initially define the guest virtual machine size to be about two-thirds as large
as the recommended memory size for the applications running on the guest.

2. Define a VDISK or DCSS swap device for the guest. Use a size that is twice
the guest virtual machine size.

3. Start the guest and run the application with a realistic workload test. Monitor
memory consumption and swap device activity during the test.

Optimal virtual machine size can be inferred based on swap device activity:

� If the guest never swaps, the virtual machine size is likely too large and
should be reduced.

� If swapping affects performance, the virtual machine size is too small and
should be increased.

Note: With VM 5.1 system, VDISK control blocks are allocated below 2GB.
Avoid using VDISKs on system with contention for main storage below 2GB.

52 Linux for IBM System z9 and IBM zSeries

� If the guest begins to swap as load increases, the guest virtual machine size
is correct. Ideally, as the workload reaches steady state, Linux swapping
slows down or even stops.

3.4.3 Managing the VM scheduler
The VM scheduler attempts to keep as many logged-on virtual machines running
concurrently as possible, based on availability of processor cycles, real storage,
and paging space. Logged-on virtual machines reside on one of three lists:

� Dormant list contains virtual machines with no immediate task to perform.
� Eligible list contains virtual machines waiting for a system resource.
� Dispatch list contains virtual machines contending for processor time.

As virtual machines have tasks to perform, they move between the three lists as
shown in Figure 3-4.

Figure 3-4 VM scheduler lists

Virtual machines on the dispatch list are characterized based on their resource
consumption:

Dispatch list Eligible list

VM
Definition
block E1

VM
Definition
block En

.

.

.

.

.

.

.

.

Dormant list

LogonLogoff

Virtual machine
has work to perform

Virtual machine
becomes idle

Resource limit
exceeded

Virtual machine
is ready

Virtual machine
is waiting

Resource available
or
E0

Dispatch time
slice

expires

VM
Definition
block D1

VM
Definition
block Dn

.

.

.

.

.

.

.

.

 Chapter 3. Virtualization with z/VM 53

� Q1 virtual machines have not recently consumed their entire CPU time slice.
These guests are considered interactive resource consumers such as users
editing a VM configuration file or executing short-running VM commands.

� Q2 virtual machines have consumed at least one entire CPU time slice in Q1.
These guests are considered to be intermediate resource consumers such as
users executing long-running VM commands.

� Q3 virtual machines have consumed at least two entire CPU time slices, one
in Q1 and one in Q2. Linux systems typically fall into Q3, as do other
operating systems running under z/VM.

� Q0 virtual machines are critical users that do not wait for the resources to
become available. These virtual machines are discussed in “The QUICKDISP
option” on page 55.

Virtual machines on the eligible list are assigned a corresponding E1, E2, E3, or
E0 classification.

SRM settings
Virtual machines wait on the eligible list for resources to become available before
moving to the dispatch list (if no resource constraints exist, virtual machines
move immediately to the dispatch list). Resource availability is determined by
SRM settings and virtual machine classification.

The CP SET SRM command is used to adjust SRM settings. The critical SRM
settings are LDUBUF and STORBUF:

� LDUBUF controls allocation of paging resources.

Use the SET SRM LDUBUF i j k command to adjust this control:

i Sets the percentage of paging space available to Q1 virtual machines.

j Sets the percentage of paging space available to Q1 and Q2 virtual
machines.

k Sets the percentage of paging space available to Q1, Q2, and Q3 virtual
machines.

For systems that support only Linux guests, an appropriate LDUBUF setting
is:

SET SRM LDUBUF 100 100 100

For systems with a significant number of CMS users, an appropriate LDUBUF
setting is:

SET SRM LDUBUF 100 90 90

� STORBUF controls allocation of real storage.

Use the SET SRM STORBUF i j k command to adjust this control:

54 Linux for IBM System z9 and IBM zSeries

i Sets the percentage of main storage available to Q1 virtual machines.

j Sets the percentage of main storage available to Q1 and Q2 virtual
machines.

k Sets the percentage of main storage available to Q1, Q2, and Q3 virtual
machines.

For systems that support only Linux guests, an appropriate STORBUF setting
is:

SET SRM STORBUF 125 125 125

For systems with a significant number of CMS users, an appropriate
STORBUF setting would be:

SET SRM STORBUF 200 150 125

As an example, we consider a system with 512MB of real storage running eight
Linux guests. Each within a virtual memory size of 128 MB. If the STORBUF
setting is 125 125 125, then five guests will be in Q3, and the remaining three will
be in E3. In order to be dispatched, the E3 guests must wait until a guest in Q3
goes idle, or until the time slice for a Q3 guest expires.

The QUICKDISP option
As noted, the Q0 classification for critical virtual machines that do not wait for
resource availability on the eligible list. Instead, these guests move immediately
to the dispatch list. To designate a virtual machine as Q0, use the CP SET
QUICKDSP command. Alternatively, add the OPTION QUICKDSP statement to
the user’s directory entry.

The QUICKDSP option is valuable in preventing service machines from
becoming a bottleneck for other work. For instance, if the TCP/IP stack is placed
on an eligible queue, all TCP/IP connectivity to the VM system stops until TCP/IP
is runnable again.

Note: It is possible to over-commit resources by specifying values greater
than 100. When over-committing real storage, be sure to allocate enough
paging space. Setting this value too high can lead to system thrashing.

Important: Adding QUICKDISP to guests should be done carefully. It should
only be assigned to guests that service other guests, such as TCP/IP, RACF,
or other vital subsystems. QUICKDISP should definitely be assigned to the
guest used to maintain the VM system.

 Chapter 3. Virtualization with z/VM 55

SHARE settings
Share settings control the priority of guests in the dispatch list when contention
for processor time exists. There are two types of share settings:

� Absolute share allows a guest access to a specified percentage of CPU
resource. With an absolute share of 3% a guest gets 3% of the CPU,
regardless of how many other virtual machines are running. This is useful for
workloads with a well known usage pattern. It ensures a guest is not
completely starved for CPU time, provided SRM settings allow it to stay in the
dispatch queue. The responsiveness of a guest with an absolute share does
not slow down as the system load increases.

� Relative share allows a guest to have its importance defined relative to other
running guests. Two virtual machines with a relative share of 100 have equal
access to the CPU resources. A guest with a relative share of 200 has twice
as much access to CPU resources as a guest with relative share of 100.
Relative share is suitable for workloads without a well defined usage pattern.

Logical CPUs
On systems with more than one physical processor, assign as many logical
CPUs as there are physical CPUs in the LPAR. There is no performance benefit
in allocating more logical CPUs than available physical CPUs. The logical CPU
units of work will simply queue up on the available physical CPUs and be
executed in sequence.

3.4.4 Performance monitoring
Performance monitoring is a tool for collecting performance data critical for
running a VM production system. The only way to correctly identify a
performance problem is with data. Two tools which can provide that data are the
VM Performance Toolkit, and Velocity Software's ESALPS tool suite.

Note: Share settings are a more consistent way to assign processor
resources than changing the number of virtual CPUs defined to a guest. When
defining a Linux guest user directory entry, define as many virtual CPUs as
there are physical CPUs in the LPAR. Share settings can then be used to
dynamically adjust the priorities of the guests running on the system.

Note: It can be advantageous to define more logical CPUs than physical
CPUs when testing multi-threaded code. For instance, defining 16 logical
CPUs on a system with two physical processors can expose timing and
locking problems during system test.

56 Linux for IBM System z9 and IBM zSeries

The VM Performance Toolkit is pre installed with z/VM 5.1, but it is separately
licensed from VM and is not free.

Velocity Software's ESALPS tool suite is another tool that can collect
performance data to assist in diagnosing VM performance problems.

Both tools provide data on guest CPU utilization, memory utilization, general I/O
activity, Paging activity, network activity, and much more. It is nearly impossible
to diagnose the cause of performance problems without a performance analysis
tool.

 Chapter 3. Virtualization with z/VM 57

58 Linux for IBM System z9 and IBM zSeries

Chapter 4. Networking Overview

This chapter describes the various networking options available for your Linux on
zSeries servers. In this chapter, we discuss the following topics:

� Physical networking options

� HiperSockets

� Virtualization technology

� Virtual Switch

� Introduction to VLANs

� Layer 2 test scenario

4

© Copyright IBM Corp. 2006. All rights reserved. 59

4.1 Networking options
The networking options available to Linux on zSeries can be split broadly into
two categories: physical hardware and virtualization technology. Physical
hardware, as the term suggests, covers physical network interfaces, or in the
case of HiperSockets, a networking implementation that requires zSeries
hardware. Virtualization technology covers the networking options available to
those users who run Linux in a z/VM environment.

The z/VM operating system can use any of the physical networking options.
Linux systems running as virtual machines in a z/VM environment have the
choice of using any of the physical options, any of the virtualization technology
options, or a combination of both, including:

� Physical networking options

– Open Systems Adapter-2 and Open Systems Adapter-Express
– Channel-to-channel adapter
– Common Link Access to Workstations (CLAW)
– HiperSockets

� Virtualization technology

– Point-to-point connectivity
– Guest LAN
– z/VM Virtual Switch (VSWITCH)
– Layer 2 LAN Switching

4.2 Physical networking options
In this section, we look at the type of physical networking connections available
for Linux on zSeries.

4.2.1 Open Systems Adapter-2 (OSA-2)
The Open Systems Adapter-2 (OSA-2) card was the first open systems
connection interface available on S/390 servers. On zSeries servers, it has been
replaced to by the OSA-Express card. The exception is that the z900 server
supports the OSA-2 ENTR card as the OSA-2 token-ring feature. However, the
OSA-2 card is not discussed in this book.

4.2.2 Open Systems Adapter-Express (OSA-Express)
The Open Systems Adapter-Express (OSA-Express) Gigabit Ethernet (GbE),
1000BASE-T Ethernet, Fast Ethernet (FENET), token-ring, and Asynchronous

60 Linux for IBM System z9 and IBM zSeries

Transfer Mode (ATM) are next generation cards that supersede the OSA-2 family
of cards. OSA-Express cards provide significant enhancements over OSA-2 in
function, connectivity, bandwidth, network availability, reliability, and recovery.
OSA-Express cards are available for all zSeries processors and S/390 G5 and
G6 processors. The OSA-Express2 Gigabit Ethernet short wavelength (GbE SX)
and long wavelength (GbE LX) features, as well as the 10 Gigabit Ethernet Long
Reach (10 GbE LR) feature, are the newest members of the OSA-Express family
for zSeries servers. They provide increased bandwidth over the OSA-Express
features. See Figure 4-1 on page 62 for a diagram of OSA-Express connectivity
options.

Each OSA-Express card has one port on G5 and G6 servers and two ports on
zSeries servers. The OSA-Express2 zSeries GbE SX and LX cards have two
ports and the 10 GbE LR has only one port. Each individual port has a unique
CHIPD associated with it. They can be attached directly to a LAN or ATM
network. For Linux connectivity, these cards are recognized by the hardware I/O
configuration as one of the following channel types:

� OSD (Queued Direct I/O)
� OSE (Non-Queued Direct I/O)

QDIO mode
Queued Direct I/O (QDIO) is a highly efficient data transfer mechanism. It
reduces system overhead and improves throughput by using system memory
queues and a signaling protocol to directly exchange data between the
OSA-Express microprocessor and TCP/IP stack.

Terminology: If not specifically stated, the term OSA-Express applies to both
the OSA-Express and the OSA-Express2 features throughout this book.

Note: For detailed descriptions of OSA-Express operating modes and
limitations, refer to the IBM Redbook OSA-Express Implementation Guide,
SG24-5948.

 Chapter 4. Networking Overview 61

Figure 4-1 OSA-Express connectivity

QDIO versus non-QDIO
Figure 4-2 on page 63 illustrates the much shorter I/O path length of QDIO mode
compared to non-QDIO mode. In QDIO mode, I/O interrupts and I/O path lengths
are minimized and measurements have shown that there is a significant
improvement in performance versus non-QDIO mode, in particular, a reduction
of System Assist Processor (SAP) utilization and improved response time.

Benefits of running in QDIO mode include:

� Dynamic OSA Address Table (OAT) update
� LPAR-to-LPAR communication
� Internet Protocol (IP) Assist functions
� Checksum offload

Ethernet

z990 server

FENET

10 GbE LR

1000BASE-T

FENET

GbE

4/16/100 Mbps4/16/100 Mbps

GbE

FENET

FDDI

FDDI

z890 server

155 ATM

GbE

4/16/100 Mbps

1000BASE-T

10
 G

bE
 LR

4/16/100 Mbps

G
bE

155 ATM

z800 server

FENET

z900 server

Token Ring

ATM
Network

ATM
Network

Token Ring

62 Linux for IBM System z9 and IBM zSeries

Figure 4-2 QDIO and non-QDIO data paths

Dynamic OSA Address Table (OAT) update
The TCP/IP stack of each operating system that shares a port on an
OSA-Express card in QDIO mode dynamically registers all its IP addresses with
the card. Whenever IP addresses are deleted from or added to a network stack,
the device drivers download the resulting IP address list changes to the
OSA-Express card.

For OSA-Express cards shared by multiple systems, this removes the
requirement to manually enter the information into the OAT using Open Systems
Adapter/Support Facility (OSA/SF), which is a program product that runs on
z/OS or z/VM. A user might still have a requirement to use OSA/SF however, for
example, if you need to enter SNA definitions into the card when the card is
running in non-QDIO mode.

Transport Modes
For IP and non-IP workloads, the OSA-Express2 features and the current
OSA-Express features on z890 and z990 systems support two transport modes:

Host
Memory

Host
Memory

Control
Unit

IOP

Channel

OSA-Express
non-QDIO

OSA-Express
QDIO

 Chapter 4. Networking Overview 63

Layer 2 (Link or Ethernet Layer) and Layer 3 (Network or IP Layer). Each mode
processes network data differently.

Layer 2 has these characteristics:

� Uses the MAC destination address to identify hosts and send and receive
Ethernet frames.

� Transports Ethernet frames (not IP datagrams) to and from the operating
system TCP/IP stack and the physical network.

� Does not ARP offload; ARP processing performed by each operating system
TCP/IP stack.

� Supports MAC level unicast, multicast, and broadcast.

Layer 3 has the following characteristics:

� Data is transmitted based on IP address.

� Only IP addresses are used to identify hosts on the LAN segment.

� All Address Resolution Protocol (ARP) processing is done by the adapter
itself, not by any operating system sharing the adapter. See “Address
Resolution Protocol and OSA-Express” on page 67 for more information.

� A single Media Access Control (MAC) address is managed by the adapter for
all guests sharing the adapter port.

LPAR-to-LPAR communication
Using EMIF, a port on the OSA-Express card can be shared across multiple
LPARs, as depicted in Figure 4-3 on page 65. Also, access to a port on the card
can be shared concurrently among multiple TCP/IP stacks within the same
LPAR.

When port sharing, the OSA-Express card running in QDIO mode has the ability
to send and receive IP traffic between LPARs without sending the IP packets
over the network.

For outbound packets, OSA-Express uses the next-hop address provided by the
TCP/IP stack to determine where to send the packet. If this next-hop address
had been registered by another TCP/IP stack sharing this OSA-Express, the
packet is delivered directly to that TCP/IP stack, and not sent out over the LAN.
This makes possible the routing of IP packets within the same host system.

64 Linux for IBM System z9 and IBM zSeries

LPAR-to-LPAR communication also applies to OSA-Express FENET when the
mode is non-QDIO.

Figure 4-3 LPAR-to-LPAR communication

Restriction: Port sharing is supported only between ports that are of the
same transport mode, for example Layer 2 with Layer 2 and Layer 3 with
Layer 3. Attempted communications between a Layer 2 connection and a
Layer 3 connection sharing the same OSA-Express port result in a network
timeout condition. To resolve this, you should have the Layer 2 connection
and the Layer 3 connection on separate OSA-Express ports that are
connected to the same LAN segment. With this solution, the communication
between these connections is now sent out onto the physical LAN segment,
and full MAC resolution will be achieved.

Note: HiperSockets for zSeries also provides a highly efficient way to
communicate between different LPARs, with better throughput. See 4.3,
“HiperSockets” on page 83 for more information.

LPARs in same zSeries server

Linux
LPAR

z/OS
LPAR

OSA-Express
LPAR-to-LPAR
communication

Does not go onto network

Connection through shared OSA-Express

 Chapter 4. Networking Overview 65

Internet Protocol (IP) Assist functions
When an OSA-Express port is configured for Layer 3 mode, the QDIO microcode
assists in IP processing and offloads the TCP/IP stack functions for the following:

� Multicast support
� Broadcast filtering
� Building MAC and LLC headers
� ARP processing

Offloading the processing of these functions means that CP cycles are freed up
to do other work. In a single guest, the effect might not be significant, but in a
z/VM LPAR with Linux guests generating a moderate-to-high volume of network
traffic, there will be an overall storage saving.

Checksum offload for Linux and z/OS
Checksum processing calculates the TCP/UDP and IP header checksums to
verify the integrity of data packets. This function is usually performed by a host
system’s TCP/IP stack. OSA-Express cards on the z990 and z890 processors
have the ability to perform checksum processing on behalf of the upstream
TCP/IP stack using a function called checksum offload. This function is only
available for IPv4 packets and is not available in Layer 2 mode.

By moving the checksum calculations to an OSA-Express Gigabit or
1000BASE-T Ethernet card, host CPU cycles are reduced. This support is
available with z/OS V1R5 and later and Linux for zSeries.

Non-QDIO mode
When running in non-QDIO mode, a port on the OSA-Express card is defined as
channel type OSE.

In non-QDIO mode, the data follows a longer I/O path as discussed previously.
Linux uses the LCS device driver to communicate with the device when it is

Note: To use checksum offload with Linux for zSeries, you must set the
checksumming attribute of the qeth device to hw_checksumming. Linux for
zSeries supports inbound checksum offload for inbound packets only. Refer to
Linux on zSeries, Device Drivers, Features, and Commands, March 23, 2005,
SC33-8281, for additional information about the checksumming attribute of the
qeth device driver.

Note: The zSeries OSA-Express cards have two ports. Each port has an
associated CHPID. It is possible to configure one CHPID as type OSD (QDIO)
and one CHPID as OSE (non-QDIO), or both CHPIDs as OSD or OSE.

66 Linux for IBM System z9 and IBM zSeries

running in this mode. The non-QDIO mode requires the use of OSA/SF for
customization of the OSA-Express if you want to share the card across multiple
LPARs or Linux guests.

The OSA-Express 1000BASE-T, FENET, and token-ring cards support both
non-QDIO and QDIO modes. The OSA-Express Gigabit Ethernet card and all
OSA-Express2 cards only support QDIO mode.

Unless you have a specific requirement (such as supporting SNA traffic), we
recommend that you always run the OSA-Express card in QDIO mode.

Address Resolution Protocol and OSA-Express
Address Resolution Protocol (ARP) is a networking protocol used to resolve IP
addresses to physical hardware addresses. These hardware addresses are
known as Media Access Control (MAC) addresses.

When an application running on machine X wants to send a datagram to
machine Y, it typically uses machine Y’s IP address as the address that it uses to
try and reach the destination. However, the device driver controlling the Network
Interface Card does not understand IP addresses and wants to send the
datagram using a MAC address as the destination address.

The ARP protocol attempts to resolve the IP address into a MAC address. It does
this by referencing a lookup table (called an ARP cache). If the address is not
found in the ARP cache, an ARP request is broadcast over the network. If one of
the machines that receives the broadcast recognizes its own IP address, it
answers the requesting machine with an ARP reply message. This reply includes
the MAC address of that host. This information is then stored in the requesting
system’s ARP cache. Any subsequent datagrams to this destination IP address
are translated to a MAC address by referring to the ARP cache.

In the majority of computer systems, a network card is owned by a single TCP/IP
stack; therefore, there is a one-to-one relationship between the IP address and
MAC address. Figure 4-4 on page 68 illustrates MAC address and IP address
processing in a distributed environment.

 Chapter 4. Networking Overview 67

Figure 4-4 Packet processing in non-mainframe environments

OSA ports can be shared across multiple LPARs or guests. When the port is
operating in Layer 3 mode, each TCP/IP stack running in these systems has a
unique IP address that is dynamically registered with the OSA-Express port.
However, all of the registered IP addresses are associated with the same MAC
address. The OSA-Express port responds to ARP requests from other machines
in the network for any IP address that is registered in the port.

The OSA-Express port removes the Logical Link Control (LLC) header, which
includes the MAC address from incoming IPv4 packets, and uses the registered
IP address to forward packets to the recipient TCP/IP stack. This is how the port
delivers IPv4 packets in Layer 3 mode to the correct Linux image. Apart from
broadcast packets, a Linux image can only receive packets for IP addresses it
has configured in the stack and registered with the OSA-Express port. See
“Primary and secondary router function” on page 70 for the only exception to this
statement.

As the OSA-Express QDIO microcode builds LLC headers for outgoing IPv4
packets and removes them from incoming IPv4 packets, the operating system’s
network stacks only send and receive IPv4 packets without LLC headers.

IBM zSeries Open Storage Attachment

Linux

LAN
adapter

device
driver

network
stack application

LAN

MAC addr
IP header
datagram

MAC addr
IP header
datagram

MAC addr
IP header
datagram

68 Linux for IBM System z9 and IBM zSeries

Figure 4-5 illustrates MAC address and IP address processing by OSA-Express
in Layer 3 mode.

Figure 4-5 Packet processing by OSA-Express

Letting the OSA-Express hardware handle the LLC header allows multiple
operating systems to share an OSA-Express adapter port. Usually, LLC
processing by the OSA-Express port also yields better performance than letting
the Linux images that share the port handle the LLC header themselves. For
IPv6, the OSA-Express port in QDIO mode passes complete packets to the Linux
image, and the driver lets the network stack compose packets with an LLC
header.

If the OSA-Express port is operating in Layer 2 mode, there is once again a
one-to-one relationship between the IP address and MAC address. But the OSA
port can still be shared by multiple TCP/IP stacks. Each TCP/IP stack sets a
MAC address for itself into the OSA and the TCP/IP stack is responsible for
responding to ARP requests with its MAC address. If a z/VM VSWITCH is used
in layer 2 mode, z/VM sets the MAC address on behalf of the TCP/IP stack. See ,
“Planning for unique MAC addresses” on page 127.

IBM zSeries Open Storage Attachment

zSeries

Linux

OSA
Express

qeth
driver

network
stack application

LAN

MAC addr
IP header
datagram

IP header
datagram

IP header
datagram

 Chapter 4. Networking Overview 69

Primary and secondary router function
A port on an OSA-Express card that is operating in Layer 3 mode can be
configured to forward unknown IP addresses to a particular TCP/IP stack for
routing. For example, a Linux system could act as a router to provide a means of
connecting an external LAN segment to systems running within a zSeries
machine on a different subnet.

In order for the OSA-Express port to forward datagrams to a specific TCP/IP
stack, the Linux system must have set the primary_router setting in the
OSA-Express device driver. If the OSA-Express port is being shared by multiple
systems, only one of those systems can act as the primary router. Refer to Linux
on zSeries, Device Drivers, Features, and Commands, March 23, 2005,
SC33-8281, for detailed information about the primary_router setting.

Hardware configuration
The IOCP statements in Figure 4-6 show an OSA-Express card, CHPID 01. The
card is being shared by two LPARs.

Figure 4-6 OSA-Express IOCP statements

Using EMIF, devices can be shared across multiple LPARS (for example,
devices C100-C102) and within LPARs. Devices C100-C102 can be used on
each LPAR. Within a single LPAR, device addresses must be unique, so one
TCP/IP stack can use addresses C100-C102 and a second stack can use
devices C104-C106. On the z990 and z890, there is a limit of 480 total devices
per OSA-Express port. The OSA-Express2 feature raises this limit to a maximum
of 1920 total devices per port.

A more in-depth review of the OSA-Express and OSA-Express2 features are
beyond the scope of this book. Refer to the IBM Redbook OSA-Express
Implementation Guide, SG24-5948.

z/VM considerations
Multiple virtual machines can share the same physical OSA port. All guests can
be defined with the same three virtual device addresses for the OSA interface.
However, each guest must use a unique set of three real device addresses.

ID MSG1=' IOCP DECK' ,
MSG2=' SYS6.IODFF1 - 04-03-02 15:25'
RESOURCE PARTITION=((SC47,2),(SC69,8))
CHPID PATH=(01),SHARED,PARTITION=((SC47,SC69),(SC47,SC69)),TYPE=OSD
CNTLUNIT CUNUMBR=C100,PATH=(01),UNIT=OSA
IODEVICE ADDRESS=(C100,015),CUNUMBR=(C100),UNIT=OSA
IODEVICE ADDRESS=C10F,UNITADD=FE,CUNUMBR=(C100),UNIT=OSAD

70 Linux for IBM System z9 and IBM zSeries

The syntax of the DEDICATE statement is:

DEDICATE virtual_address real_address

For example, you might choose C200-C202 as the virtual addresses for all of
your guests. Each guest must, however, have unique real addresses. So in the
first guest, you might use addresses C200-C202, in the second guest,
C203-C205, and so on.

Using OSA-Express with Linux
As we previously discussed, a port on an OSA-Express card can run in one of
two modes, QDIO or non-QDIO.1 Here, we review the parameters for running the
card in QDIO mode. In non-QDIO mode, the OSA-Express port acts like as an
Interconnect Controller, and Linux for zSeries uses the LAN Channel Station
(LCS) device driver (lcs.o) to control the port. The LCS device driver is not
discussed in this book.

In QDIO mode, the following two modules are required in order for Linux to use
the OSA-Express port.

� qdio controls the interface between the processor and the OSA-Express
CHPID.

� qeth controls the OSA-Express port.

Two other modules, ipv6 and 8021q, are typically loaded automatically to provide
support for IPv6 and Virtual LANs. For our purposes, we only need to configure
the qeth module. The Linux 2.6 kernel introduced a new device driver

Important: The first device address is the OSA read device. It must be an
even-numbered device. The second device is the OSA write device, and its
address must be one greater than the read device. Using the examples above,
you specify the device list C200, C201, C202 as the first device to the
OSA-Express device driver. See the next section for the syntax and details on
how to do this. The device list for the C203-C205 devices would be C204,
C205, C203. By using this convention, we use every device address and thus
do not waste addresses by skipping to the next even-numbered address to
start the next device set. For example, C200, C201, C202 followed by C204,
C205, C206 would mean we waste C203, and therefore, we are not able to
fully use the OSA-Express device.

1 The OSA-Express 1000BASE-T, FENET, and token-ring cards support both non-QDIO and QDIO
modes. The OSA-Express Gigabit Ethernet card and all OSA-Express2 cards only support QDIO
mode.

 Chapter 4. Networking Overview 71

configuration interface, so instructions for configuring devices in Linux are
presented separately for the Linux 2.4 and Linux 2.6 kernels.

Linux 2.4 Kernel
The file /etc/chandev.conf is used to specify the parameters for the device driver.
Here is an example /etc/chandev.conf configuration for an OSA-Express port
running in QDIO mode:

noauto;qeth-1,0xc300,0xc301,0xc302,0,0;add_parms,0x10,0xc300,0xc302
,portname:OSA1

Table 4-1describes the device parameters.

Table 4-1 Device driver parameters for qeth

Parameter Description

noauto Stops auto-detection of channel devices.

qeth-1,0xc300,0xc301,0xc302,0,0

qeth-1 The device interface number. A value of “-1” indicates that the next
available device number will be automatically allocated. For
example, if we already had qeth0 and qeth1 devices defined to the
channel device layer, the next device to be defined would be qeth2.

0xc300 The read subchannel address.

0xc301 The write subchannel address.

0xc302 The data subchannel address.

0 The number of kilobytes to be allocated for read and write buffers.
0 specifies the default value (8192 KB in QDIO mode).

0 The relative port number of the CHPID. OSA-Express devices use
only port 0.

add_parms,0x10,0xc300,0xc301,portname:OSACHP03

add_parms Used to pass additional parameters to the driver.

0x10 Identifies the device as an OSA-Express CHPID in QDIO mode.

0xc300,0xc302 The desired device address range.

portname:OSA1 Identifies the port for sharing by other operating system images.
See “OSA port names” on page 74 for more information about port
names and if this parameter is required.

72 Linux for IBM System z9 and IBM zSeries

Linux 2.6 kernel
The device driver creates files in the /sysfs filesystem when it is loaded. The
driver and the devices controlled by it are configured by writing values into these
files. A command to activate an OSA-Express port running in QDIO mode is:

echo 0.0.c300,0.0.c301,0.0.c302 > /sys/bus/ccwgroup/drivers/qeth/group

The device is defined as part of the qeth group. The three device numbers are
specified in device bus-ID form with 0.0 proceeding each device number. The
device numbers are the read, write, and data channels of the device. The qeth
device driver uses the device bus-ID of the read subchannel and creates a
directory for the device:

/sys/devices/qeth/0.0.c300

The directory contains several files that control attributes of the device, with one
file per attribute. The device driver also creates other directories that are
symbolic links to the device directory. In this example, the additional directories
created are:

/sys/bus/ccwgroup/drivers/qeth/0.0.c300
/sys/bus/ccwgroup/devices/0.0.c300

The device driver automatically senses the type of the OSA port and sets all the
device attributes to their default values. If any of the attributes need to be
changed, the new value is written to the appropriate file. For example, if the port
name needs to be specified, this command is used:

echo OSA1 > /sys/devices/qeth/0.0.c300/portname

See the document Linux on zSeries, Device Drivers, Features, and Commands,
March 23, 2005, SC33-8281 for a description of all the qeth driver attributes.

Once the desired attributes are set, the device is brought online by writing a 1 to
the online file:

echo 1 >/sys/devices/qeth/0.0.c300/online

Setting a device online associates it with an interface name which is available in
the if_name file and can be retrieved by reading the file:

cat /sys/devices/qeth/0.0.c300/if_name
eth0

This is the name used to activate the device.

Note: Most systems do not need a port name specified. See “OSA port
names” on page 74 to see if your system requires one.

 Chapter 4. Networking Overview 73

OSA port names
If a port name is required, it must be one to eight upper case characters and it
must match the port name specified by all operating systems sharing the port. If it
is not required, we advise omitting it. It is never required on z990, z890, or later
systems. It is required on all S/390 G5 and G6 systems. For z800 and z900
processors, a port name is no longer required if you have driver 3G, EC stream
J11204 MCL032 (OSA Level 3.33) installed (with the appropriate levels of z/VM
and Linux). Refer to the Washington Systems Center Flash OSA-Express MCL
Enhancements - October 2003 for detailed information. The full text of the WSC
Flash can be found at the following Web site:

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/FLASH10250

Linux configuration files for OSA
The Linux distributions discussed in this book include configuration files and
scrips to automatically define and start network connections at boot time. This
section describes those files for configuration of RHEL 4 and SLES 9.

Red Hat Enterprise Linux 4 configuration
The network configuration files are found in the /etc/sysconfig/network-scripts/
directory. The configuration file is named ifcfg-ethX, where X is the interface
number starting with 0 for the first interface. These configuration files have both
network and hardware information in the same file. An example of a configuration
file for the eth0 interface is in Figure 4-7.

Figure 4-7 Example ifcfg-eth0 file for RHEL 4

The variables NETTYPE, PORTNAME, and SUBCHANNELS are unique to
zSeries and an OSA-Express adapter. The NETTYPE variable specifies the
driver name, in this case the qeth driver. The SUBCHANNELS variable specifies
the device addresses of the OSA adapter, with 0.0 proceeding each four-digit

IBM QETH
DEVICE=eth0
BOOTPROTO=static
BROADCAST=9.12.5.255
IPADDR=9.12.4.84
MTU=1492
NETMASK=255.255.254.0
NETTYPE=qeth
NETWORK=9.12.4.0
ONBOOT=yes
PORTNAME=OSA1
SUBCHANNELS=0.0.0300,0.0.0301,0.0.0302
TYPE=Ethernet

74 Linux for IBM System z9 and IBM zSeries

http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/FLASH10250

device address. The PORTNAME variable optionally specifies the port name for
this interface. Most systems do not need a port name specified. See “OSA port
names” on page 74 to see if your system requires one.

SUSE Linux Enterprise Server 9 configuration
Hardware configuration files are found in the /etc/sysconfig/hardware directory
and network configuration files are found in /etc/sysconfig/network. The
hardware configuration files are named using the driver name and device
address. For example, an OSA port at address 300 has a hwcfg (hardware
configuration) file named hwcfg-qeth-bus-ccw-0.0.0300. The contents of this file
are shown in Figure 4-8.

Figure 4-8 Example hwcfg-qeth-bus-ccw-0.0.0300 file

#!/bin/sh
#
hwcfg-qeth-bus-ccw-0.0.0300
#
Hardware configuration for a qeth device at 0.0.0300
Automatically generated by netsetup
#

STARTMODE="auto"
MODULE="qeth"
MODULE_OPTIONS=""
MODULE_UNLOAD="yes"

Scripts to be called for the various events.
SCRIPTUP="hwup-ccw"
SCRIPTUP_ccw="hwup-ccw"
SCRIPTUP_ccwgroup="hwup-qeth"
SCRIPTDOWN="hwdown-ccw"

CCW_CHAN_IDS sets the channel IDs for this device
The first ID will be used as the group ID
CCW_CHAN_IDS="0.0.0300 0.0.0301 0.0.0302"

CCW_CHAN_NUM set the number of channels for this device
Always 3 for an qeth device
CCW_CHAN_NUM=3

CCW_CHAN_MODE sets the port name for an OSA-Express device
CCW_CHAN_MODE="OSA1"

 Chapter 4. Networking Overview 75

The comments in the file describe each variable’s usage. Normally, only the
device addresses and the optional port name need to be changed. Most systems
do not need a port name specified. See “OSA port names” on page 74 to see if
your system requires one.

Additional variables that are allowed in the hwcfg file are described in the sample
file /etc/sysconfig/hardware/skel/hwcfg-qeth. For example, other options for the
qeth driver can be specified in a variable named QETH_OPTIONS. If a new
hardware configuration file is created for an existing adapter, activate it with the
hwup command. For example, the command to activate the hardware
configuration file shown in Example 4-8 is hwup qeth-bus-ccw-0.0.0300.

The network configuration files found in the /etc/sysconfig/network directory are
also named using the driver name and device address. For example, the
configuration file for the same OSA port at address 300 is named
ifcfg-qeth-bus-ccw-0.0.0300. SUSE provides a sample file of the variable names
and allowed values for a network configuration file in the
/etc/sysconfig/network/ifcfg.template file. After the file has been customized with
the correct network parameters, it is activated with the command ifup
qeth-bus-ccw-0.0.0300.

4.2.3 Channel-to-channel adapter
Channel-to-channel (CTC) is a mainframe point-to-point connection technology,
using real hardware channels. It has been in existence for a long time and is
used to interconnect different physical servers, logical partitions, or both.
Because all zSeries operating systems use the same link protocol, it is possible
to connect a Linux server not only to another Linux, but also to a z/VM or z/OS
TCP/IP stack. CTC support exists for a number of channel technologies including
ESCON and FICON channels.

ESCON CTC connectivity
To connect two systems using ESCON, you must define two channels. On one
side, the channel is defined as CHPID type CTC, on the other side, as CHPID
type CNC. The ESCON CTC connection can either be point-to-point or switched
point-to-point (that is, it can be connected to an ESCON director).

EMIF allows LPARs to share channel paths, and so optionally, they can share
any control units and associated I/O devices configured to these shared
channels. Sharing channel paths means that you can reduce the number of
physical connections between processor complexes. Both CTC and CNC
channels can be defined as shared channels; see Figure 4-9 on page 77.

76 Linux for IBM System z9 and IBM zSeries

Figure 4-9 CTC connection with shared channels

FICON CTC connectivity
Channel-to-channel communication in a FICON environment is provided
between two FICON (FC) channel FCTC control units. Each end of the
connection requires two devices, a device for read I/O and a device for write I/O.
The read device on one side needs to be connected to the write device on the
other side and vice versa.

There are several differences between the ESCON and FICON CTC
implementations, as shown in Table 4-2.

Table 4-2 ESCON and FICON CTC differences

Characteristic ESCON FICON

Number of required channels At least 2 1 or 2

Channel dedicated to CTC function Yes No

Number of unit addresses supported Up to 512 Up to 16384

Data transfer bandwidth 12-17 MBps Up to 2 Gbps

CTC
Channel

CNC
Channel

E
M
I
F

LP1A

LP2A

LP3A

E
M
I
F

LP1B

LP2B

LP3B

 Chapter 4. Networking Overview 77

The details of these differences are as follows:

� ESCON CTC connectivity is provided by a pair of ESCON channels, one
defined as CTC and the other defined as CNC. At least two ESCON channels
are required.

FICON CTC connectivity can be implemented using one or two FICON (FC)
native channels.

� An ESCON channel defined as CTC can only support the CTC function. Only
a control unit (type SCTC) can be defined on an ESCON CTC channel.

The FICON native (FC) channel supporting the FCTC control unit can
communicate with an FCTC control unit on another machine, and
simultaneously, the same FICON (FC) channel can also support operations to
other I/O control unit types such as DASD and tape.

� An ESCON CTC channel supports a maximum of 512 unit addresses
(devices).

A FICON native (FC) channel supports a maximum of 16,384 unit addresses
(devices).

� An ESCON channel has a data transfer bandwidth of 12-17 MB, significantly
less than the FICON or FICON Express channels.

� An ESCON channel supports only one actively communicating I/O operation
at a time, while the FICON channel supports up to 32 concurrent I/O
operations.

� An ESCON channel operates in half duplex mode, transferring data only in
one direction at a time. A FICON channel operates in full duplex mode,
sending and receiving concurrently.

For detailed information about FICON CTC implementation, refer to the
Redpaper FICON CTC Implementation, REDP-0158.

Using a CTC with Linux
The CTC device driver in Linux supports both ESCON and FICON CTC devices
as well as virtual CTC devices created by z/VM. It supports both network
connections over these devices and TTY connections between Linux servers.
Only network connections are described in this book. Refer to the appropriate
level of the Linux on zSeries device drivers manual for your kernel level for
information about configuring the ctc driver for TTY connections.

Number of concurrent I/O operations 1 Up to 32

Data transfer mode Half duplex Full duplex

Characteristic ESCON FICON

78 Linux for IBM System z9 and IBM zSeries

If your Linux distribution has the ctc driver compiled as a module, it must be
loaded first. The device driver is a single module named ctc. Load the module
with the modprobe command to ensure that any other required modules are
loaded:

modprobe ctc

The configuration of the driver is different in the 2.4 and 2.6 kernels. We describe
each level separately.

Linux 2.4 kernel
The ctc device is configured by the channel device layer using the file
/etc/chandev.conf. An example chandev.conf entry for a ctc device follows:

ctc0,0x7c00,0x7c01,0,0,0,0

Table 4-3 describes the device parameters.

Table 4-3 Parameters for the ctc device driver

Parameter Description

ctc0 The device interface name must be ctc followed by a number. The first
device is ctc0.

0x7c00 The read subchannel address. It must be connected to the write
subchannel address on the peer system.

0x7c01 The write subchannel address must be connected to the read
subchannel address on the peer system.

0 This number represets the memory allocated for buffers. 0 specifies
that the driver should decide on the allocation.

0 The CTC protocol number. The values are:
0 Compatibility mode (the default.) Not used with Linux, z/OS, or

OS/390 peers. It is used for VM TCP/IP.
1 Extended mode used for Linux to Linux peers.
2 A CTC-based TTY, only for non-network Linux-Linux connections
3 Compatibility mode for OS/390 and z/OS peers.
4 A CTCMPC device, used by IBM Communications Server for Linux

for CTC-based connections to VTAM

0 Specifies that checksumming is not done on received IP packets.

0 Hardware statistics are not gathered. This field is not supported by the
ctc driver.

 Chapter 4. Networking Overview 79

Linux 2.6 kernel
The device driver creates files in the /sysfs filesystem when it is loaded. The
driver and the devices controlled by it are configured by writing values into these
files. An example of a command to define a ctc device follows:

echo 0.0.7c00,0.0.7c01 > /sys/bus/ccwgroup/drivers/ctc/group

The two devices are defined as part of single ctc device. The two device
numbers are specified in device bus-ID form with 0.0 proceeding each device
number. The first number is the read device and the second number is the write
device. The ctc device driver uses the device bus-ID of the read subchannel and
creates a directory for the device:

/sys/devices/cu3088/0.0.7c00

The directory contains several files that control attributes of the device, with one
file per attribute. The device driver also creates other directories that are
symbolic links to the device directory. In this example, the additional directories
created are:

/sys/bus/ccwgroup/drivers/ctc/0.0.7c00
/sys/bus/ccwgroup/devices/0.0.7c00

The default ctc protocol is 0, meaning a peer that is not Linux, z/OS, or OS/390. If
this is incorrect, the protocol must be changed before the device is brought online
by writing to the device’s protocol file. For example, to specify that the peer
system is another Linux server:

echo 1 >/sys/devices/cu3088/0.0.7c00/protocol

After the desired attributes are set, the device is brought online by writing a 1 to
the online file:

echo 1 >/sys/devices/cu3088/0.0.7c00/online

Setting a device online associates it with an interface name which will be
displayed on the Linux console. If access to the console is not available, you can
use the dmesg command to discover the name. To confirm which device is used
by a specific interface name, examine the symbolic link in the networking class
directory. For example, to check the ctc0 interface name:

readlink /sys/class/net/ctc0/device ../../../devices/cu3088/0.0.7c00

The ctc0 interface is associated with device 0.0.7c00.

Linux configuration files for CTC
The Linux distributions discussed in this book include configuration files and
scrips to automatically define and start CTC network connections at boot time.
This section describes those files for configuration of RHEL 4 and SLES 9.

80 Linux for IBM System z9 and IBM zSeries

Red Hat Enterprise Linux 4 configuration
The network configuration files are found in the /etc/sysconfig/network-scripts/
directory. The configuration file is named ifcfg-ctcX, where X is the interface
number starting with 0 for the first interface. These configuration files have both
network and hardware information in the same file. An example of a configuration
file for the ctc0 interface is shown in Figure 4-10. Note that in this file, the variable
GATEWAY defines the partner IP address on a point to point link.

Figure 4-10 Example ifcfg-ctc0 file for RHEL 4

SUSE Linux Enterprise Server 9 configuration
Hardware configuration files are found in the /etc/sysconfig/hardware directory
and network configuration files are found in /etc/sysconfig/network. The
hardware configuration files are named using the driver name and device
address. For example, an CTC adapter pair at address 7C00 has a hwcfg
(hardware configuration) file named hwcfg-ctc-bus-ccw-0.0.7c00. SUSE provides
a sample configuration in the file /etc/sysconfig/hardware/skel/hwcfg-ctc. The
comments in that file describe each variable. Use the hwup command to activate
the adapter after customizing the file.

The network configuration files found in the /etc/sysconfig/network directory are
also named using the driver name and device address. For example, the
configuration file for the same CTC adapter at address 7C00 is named
ifcfg-ctc-bus-ccw-0.0.7c00. SUSE provides a sample file of the variable names
and allowed values for network configuration in the file
/etc/sysconfig/network/ifcfg.template. Use the ifup command to activate the
network connection after customizing the file.

Recommendations
We do not recommend using ESCON or FICON CTCs as networking
connectivity options for your Linux on zSeries systems. For inter-LPAR
communications, we recommend that you use HiperSockets or OSA-Express.

IBM CTC
DEVICE=ctc0
BOOTPROTO=static
IPADDR=9.12.4.84
GATEWAY=9.12.4.85
NETMASK=255.255.255.255
ONBOOT=yes
SUBCHANNELS=0.0.7c00,0.0.7c01
NETTYPE=ctc
CTCPROT=0
TYPE=CTC

 Chapter 4. Networking Overview 81

For communications inside a single z/VM LPAR, we recommend VSWITCH.
Although CTC bandwidth is good (particularly FICON Express), CTC connectivity
is less fault tolerant than other solutions. Sometimes, if one side of the link has a
problem, one or even both of the systems have to be re-IPLed in order to restart
the CTC link. For communications between the zSeries machine and other
systems in the network, we recommend that you use any of the OSA-Express2
features, OSA-Express Gigabit Ethernet or OSA-Express 1000BASE-T.

4.2.4 Common Link Access to Workstation (CLAW)
Common Link Access to Workstation (CLAW) is a point-to-point protocol. A
CLAW device is an ESCON channel-attached device that supports CLAW
protocol. These devices can be used to connect your Linux for zSeries system to
another system, for example, an RS/6000 or a Cisco Channel Interface
Processor (CIP) card.

The CLAW device driver for Linux is not discussed in this book. For a detailed
review of the driver and its parameters, refer to the appropriate level of the Linux
on zSeries device drivers manual for your kernel level. The documentation can
be found at the following Web site:

http://www.ibm.com/developerworks/linux/linux390/

The name of the documents for each kernel level at the time of the writing of this
book are:

� Linux 2.4 kernel

Linux on zSeries, Device Drivers and Installation Commands, March 23,
2005, SC33-8282

� Lunux 2.6 kernel

Linux on zSeries, Device Drivers, Features, and Commands, March 23, 2005,
SC33-8281

Recommendations
CLAW devices are old technology and are not as efficient or reliable as some
other solutions. Instead, for communications between Linux and other systems in
the network, we recommend that you use OSA-Express Gigabit or 1000BASE-T.

82 Linux for IBM System z9 and IBM zSeries

http://www.ibm.com/developerworks/linux/linux390/

4.3 HiperSockets
HiperSockets provides very fast TCP/IP communications between servers
running in different logical partitions (LPARs) on a zSeries machine. The z890
and z990 processors support up to 16 HiperSocket internal LANs. The z800 and
z900 processors support up to four HiperSockets. Each HiperSocket is defined
as a CHPID of type IQD.

To communicate between servers running in the same zSeries Central
Electronics Complex (CEC), HiperSockets sets up I/O queues in the zSeries
processor’s memory. The packets are then transferred at memory speeds
between the servers, thereby totally eliminating the I/O subsystem overhead and
any external network latency.

HiperSockets implementation is based on the OSA-Express Queued Direct
Input/Output (QDIO) protocol; therefore, HiperSockets is called internal QDIO
(iQDIO). HiperSockets is implemented in microcode that emulates the Logical
Link Control (LLC) layer of an OSA-Express QDIO interface.

So although HiperSockets is a type of virtualization technology, it relies on
zSeries microcode to run. Therefore for the purposes of this book, we categorize
it as a physical networking option.

Typically, before a packet can be transported on an external LAN, a LAN frame
has to be built, and the MAC address of the destination host or router on that
LAN has to be inserted into the frame. HiperSockets does not use LAN frames,
destination hosts, or routers. TCP/IP stacks are addressed by inbound data
queue addresses instead of MAC addresses. The zSeries server microcode
maintains a lookup table of IP addresses for each HiperSocket. This table
represents an internal LAN. At the time a TCP/IP stack starts a HiperSockets
device, the device is registered in the IP address lookup table with its IP address
and its input and output data queue pointers. If a TCP/IP device is stopped, the
entry for this device is deleted from the IP address lookup table.

HiperSockets copies data synchronously from the output queue of the sending
TCP/IP device to the input queue of the receiving TCP/IP device by using the
memory bus to copy the data through an I/O instruction. The controlling
operating system that performs I/O processing is identical to OSA-Express in
QDIO mode. The data transfer time is similar to a cross-address space memory
move, with hardware latency close to zero.

HiperSockets operations are executed on the processor where the I/O request is
initiated by the operating system. HiperSockets starts write operations. The
completion of a data move is indicated by the sending side to the receiving side
with a Signal Adapter (SIGA) instruction. Optionally, the receiving side can use
dispatcher polling instead of handling SIGA interrupts. The I/O processing is

 Chapter 4. Networking Overview 83

performed without using the System Assist Processor (SAP). This new
implementation is also called thin interrupt. HiperSockets does not contend with
other system I/O activity and it does not use CPU cache resources; therefore, it
has no association with other activity in the server.

Figure 4-11 HiperSockets basic operation

The HiperSockets operational flow (Figure 4-11) consists of five steps:

1. Each TCP/IP stack (image) registers its IP addresses into HiperSockets’
server-wide Common Address Lookup table. There is one lookup table for
each HiperSockets LAN.

2. The address of the TCP/IP stack’s receive buffers are appended to the
HiperSockets queues.

zSeries server

Common Lookup Table across entire HiperSocket LAN

Device Driver

TCP/IP

LPAR 1

Device Driver

TCP/IP

LPAR 2

Device Driver

TCP/IP

LPAR 3

1 1

4/5
3

1

2 2 2

84 Linux for IBM System z9 and IBM zSeries

3. While data is transferred, the send operation of HiperSockets performs a
table lookup for the addresses of the sending and receiving TCP/IP stacks
and their associated send and receive buffers.

4. The sending processor copies the data from its send buffers into the target
processor’s receive buffers (zSeries server memory).

5. The sending processor optionally delivers an interrupt to the target TCP/IP
stack. This optional interrupt uses the thin interrupt support function of the
zSeries server, which means the receiving host will look ahead, detecting and
processing inbound data. This technique reduces the frequency of real I/O or
external interrupts.

For a detailed review of HiperSockets, refer to the IBM Redbook zSeries
HiperSockets, SG24-6816.

Hardware configuration
The IOCP statements in Figure 4-12 show two HiperSocket LANs. The
HiperSocket LANs are being shared by multiple LPARs.

Figure 4-12 HiperSockets IOCP statements

Figure 4-13 on page 86 provides a graphical representation of this configuration.

ID MSG1='IODFA2',MSG2='SYS1.IODFA2 - 2004-08-04 03:26', *
 SYSTEM=(2066,1), *
 TOK=('ZAPHOD',000000011C8A2066032619730104217F00000000,0*
 0000000,'04-08-04','03:26:19','SYS1','IODFA2')
 RESOURCE PARTITION=((CF0A,E),(CF0B,F),(CF01,A),(CF02,B),(LINUX*
 1,9),(VM1,5),(VM2,6),(VM3,7),(VM4,8),(ZOSL,C),(ZOSS,D),(*
 ZOS1,1),(ZOS2,2),(ZOS3,3),(ZOS4,4))

CHPID PATH=(FA),SHARED, *
PARTITION=((LINUX1,VM1,ZOS1,ZOS2,ZOS3),(LINUX1,VM1,VM2,V*

 M3,VM4,ZOSL,ZOSS,ZOS1,ZOS2,ZOS3,ZOS4)),TYPE=IQD
 CHPID PATH=(FB),SHARED, *

PARTITION=((LINUX1,VM1,ZOS1,ZOS2,ZOS3),(LINUX1,VM1,VM2,V*
 M3,VM4,ZOSL,ZOSS,ZOS1,ZOS2,ZOS3,ZOS4)),TYPE=IQD

 CNTLUNIT CUNUMBR=FA00,PATH=(FA),UNIT=IQD
CNTLUNIT CUNUMBR=FB00,PATH=(FB),UNIT=IQD
IODEVICE ADDRESS=(FA00,032),CUNUMBR=(FA00),UNIT=IQD
IODEVICE ADDRESS=(FB00,032),CUNUMBR=(FB00),UNIT=IQD

 Chapter 4. Networking Overview 85

Figure 4-13 HiperSockets example environment

z/VM considerations
Each HiperSockets connection requires three I/O devices. One device is used for
read control, one device is used for write control, and one device is used for data
exchange. The device number for the control write device must be the device
number for the read control device plus 1. The device number for the data
exchange device can be any number.

We can use the VM DEDICATE command to reserve these devices for a
particular Linux guest.

The syntax of the DEDICATE statement is:

DEDICATE virtual_address real_address

z800 CEC

HiperSockets CHPID FA
 192.0.1.0

HiperSockets CHPID FB
192.0.2.0

LPAR
ZOS2

LPAR
ZOS3

SYSPLEXSYSPLEX

ZOSTLINUXA

FA00-FA02
192.0.1.60

FA00-FA02
192.0.1.63

FB00-FB02
192.0.2.65

FA00-FA02
192.0.1.64

FB00-FB02
192.0.2.64

FA00-FA02
192.0.1.62

FA00-FA02
192.0.1.61

TCPIP

LPAR
VM1

IP NETWORK

9.190.12.10

LPAR
ZOS1

LPAR
LINUX1

OSA-Express OSA-Express

FA00-FA02
192.0.1.66

86 Linux for IBM System z9 and IBM zSeries

Figure 4-14 illustrates the DEDICATE statement usage in the directory entry for a
Linux guest.

Figure 4-14 From a user directory of a HiperSockets interface dedicated to a Linux guest

Using HiperSockets with Linux
From a Linux on zSeries perspective, the HiperSockets interface looks a lot like
an OSA-Express (QDIO mode) interface. Linux uses the qdio and qeth modules
to exploit HiperSockets.

Linux 2.4 kernel
An example /etc/chandev.conf configuration for a HiperSockets interface follows:

noauto;qeth-1,0xfa00,0xfa01,0xfa02;add_parms,0x10,0xfa00,0xfa02

Table 4-4 provides a description of the parameters.

Table 4-4 qeth device driver parameters

DEDICATE FA00 FA00
DEDICATE FA01 FA01
DEDICATE FA02 FA02

Parameter Description

noauto Stops auto-detection of channel devices.

noauto;qeth-1,0xfa00,0xfa01,0xfa02,0,0

qeth-1 The device interface number. A value of “-1” indicates that the next
available device number will be automatically allocated. Even
though we used “qeth” as the device interface type, the actual
interface name will start with “hsi”. So, for example, you would do
an “ifconfig hsi0” to display the interface after the device drivers
have been loaded.

0xfa00 The read subchannel address.

0xfa01 The write subchannel address.

0xfa02 The data subchannel address.

0 The number of kilobytes to be allocated for read and write buffers.
0 specifies the default value (8192 KB in QDIO mode).

0 The relative port number of the CHPID. HiperSockets devices use
only port 0.

add_parms,0x10,0xfa00,0xfa02

 Chapter 4. Networking Overview 87

Linux 2.6 kernel
The device driver creates files in the /sysfs filesystem when it is loaded. The
driver and the devices controlled by it are configured by writing values into these
files. An example of a command to activate a HiperSockets device follows:

echo 0.0.fa00,0.0.fa01,0.0.fa02 > /sys/bus/ccwgroup/drivers/qeth/group

The device is defined as part of the qeth group. The three device numbers are
specified in device bus-ID form with 0.0 proceeding each device number. The
device numbers are the read, write, and data channels of the device. The qeth
device driver uses the device bus-ID of the read subchannel and creates a
directory for the device:

/sys/devices/qeth/0.0.fa00

The directory contains several files that control attributes of the device, with one
file per attribute. The device driver also creates other directories that are
symbolic links to the device directory. In this example, the additional directories
created are:

/sys/bus/ccwgroup/drivers/qeth/0.0.fa00
/sys/bus/ccwgroup/devices/0.0.fa00

The device driver automatically senses that the device is a HiperSockets device
and sets all the device attributes to their default values. If any of the attributes
need to be changed, the new value is written to the appropriate file.
HiperSockets device usually do not need any attributes changed.

See the document Linux on zSeries, Device Drivers, Features, and Commands,
March 23, 2005, SC33-8281 for a listing and description of all the attributes of a
HiperSockets device and the qeth driver.

Once the desired attributes are set, the device is brought online by writing a 1 to
the online file:

echo 1 >/sys/devices/qeth/0.0.fa00/online

add_parms Used to pass additional parameters to the driver.

0x10 Identifies the device as an OSA-Express CHPID in QDIO mode.

0xfa00,0xfa02 The desired device address range.

Note: We do not need to use a PORTNAME when using HiperSockets.

Parameter Description

88 Linux for IBM System z9 and IBM zSeries

Setting a device online associates it with an interface name which is available in
the if_name file and can be retrieved by reading the file:

cat /sys/devices/qeth/0.0.fa00/if_name
hsi0

This is the name used to activate the device.

Linux configuration files for HiperSockets
The Linux distributions discussed in this book include configuration files and
scrips to automatically define and start network connections at boot time.
Because HiperSockets uses the same qeth device driver as OSA adapters, the
configuration files are very similar to the files described in “Linux configuration
files for OSA” on page 74. There are two differences to note for HiperSockets
when reading that section:

1. The network interface name is hsiX, not ethX, where X is the interface
number starting with 0 for the first interface.

2. A port name cannot be specified.

HiperSockets Network Concentrator
Traffic between HiperSockets and OSA-Express can be bridged transparently
using the HiperSockets Network Concentrator. See Figure 4-15 for an example.
This function allows network traffic to flow between the HiperSockets LAN and
the physical LAN on the same subnet without requiring intervening network
routing overhead, thus increasing performance and simplifying the network
configuration. This is achieved by configuring a connector Linux system that has
HiperSockets and OSA-Express connections defined. The HiperSockets
Network Concentrator registers itself with HiperSockets as a special network
entity to receive data packets destined for an IP address on the external LAN
using an OSA-Express port. The HiperSockets Network Concentrator also
registers IP addresses to the OSA-Express on behalf of the TCP/IP stacks using
HiperSockets, hence providing inbound and outbound connectivity and making
all systems appear to be on the same physical network.

HiperSockets Network Concentrator support is performed using the
next-hop-IP-address in the Queued Direct Input/Output (QDIO) header, instead
of using a Media Access Control (MAC) address. Therefore, VLANs in a switched
Ethernet fabric are not supported by this support. TCP/IP stacks using only
HiperSockets to communicate among each other with no external network
connection see no difference, and the HiperSockets support and the networking
characteristics are unchanged.

 Chapter 4. Networking Overview 89

To exploit HiperSockets Network Concentrator, refer to the instructions detailed
in the appropriate level of the Linux on zSeries device drivers manual for your
kernel level. The documentation can be found at:

http://www.ibm.com/developerworks/linux/linux390/

The name of the documents for each kernel level at the time of the writing of this
book are:

� Linux 2.4 kernel

Linux on zSeries, Device Drivers and Installation Commands, March 23,
2005, SC33-8282

� Linus 2.6 kernel

Linux on zSeries, Device Drivers, Features, and Commands, March 23, 2005,
SC33-8281

Figure 4-15 HiperSockets Network Concentrator example

z800 CEC

HiperSockets CHPID FA
 192.0.1.0/24

LPAR
ZOS2

LPAR
ZOS3

SYSPLEXSYSPLEX

ZOSSLINUXA

FA00-FA02
192.0.1.60

FA00-FA02
192.0.1.65

FA00-FA02
192.0.1.64

FA00-FA02
192.0.1.62

FA00-FA02
192.0.1.61

TCPIP

LPAR
VM1

192.0.1.0/24

C000-C002
192.168.1.10

LPAR
LNUXFWD

OSA-Express OSA-Express

FA00-FA02
192.0.1.66

90 Linux for IBM System z9 and IBM zSeries

http://www.ibm.com/developerworks/linux/linux390/

Recommendations
HiperSockets is an excellent choice if you need to communicate across servers
running in multiple LPARs in a single processor.

These servers can communicate at memory speeds, bypassing all the network
overhead and delays. With HiperSockets, a maximum frame size can be defined
according to the traffic characteristics for each of the HiperSockets LANs. By
contrast, LANs such as Ethernet and token ring have a maximum frame size
determined by their architecture.

Because there is no server-to-server traffic outside the zSeries CEC, a much
higher level of network availability, security, simplicity, performance, and cost
effectiveness is achieved as compared with servers communicating across a
LAN. For example, because HiperSockets has no external components, it
provides a very secure connection. For security purposes, servers can be
connected to different HiperSockets LANs. All security features, such as firewall
filtering, are available for HiperSockets interfaces as they are with other TCP/IP
network interfaces. HiperSockets looks like any other TCP/IP interface.
Therefore, HiperSockets is transparent to applications and supported operating
systems.

If you need to communicate across different LPARs within a zSeries processor,
we recommend that you use HiperSockets.

4.4 Virtualization technology
In a z/VM environment, the Linux operating system runs inside a virtual machine
(VM Guest). The Linux server can still use physical interfaces, such as an
OSA-Express card, but VM also provides virtual interfaces that the Linux guest
can use. These interfaces are a VM control program simulation of a physical
interface. They can be broadly split into two categories, point-to-point
connectivity and VM simulated LAN technology.

4.5 Point-to-point connectivity
Prior to z/VM V4.2, the virtual connectivity options for connecting one or more
virtual machines were limited to virtual channel-to-channel adapters (CTCA) and
the Inter-User Communications Vehicle (IUCV) facility. These virtual interfaces
are classified as point-to-point connections.

Using point-to-point connectivity, the z/VM TCP/IP stack or a Linux guest has to
act as a router between the external network (using a physical interface) and the

 Chapter 4. Networking Overview 91

Linux guests (which are using virtual interfaces.) This means that additional
routing definitions are required in the network so that other machines know that,
in order to communicate with the Linux guests, they must go through the z/VM
TCP/IP or Linux router. Although the bandwidth of point-to-point connections is
considerable and thus affords the rapid movement of large amounts of data
between guests, these interfaces have a number of drawbacks.

Using CTCA links as an example, in order for a Linux guest to communicate with
the external network, you must define CTCA device pairs on both the Linux and
VM TCP/IP side. If you also have a requirement for individual Linux guests to
communicate with each other, you also need to configure additional CTCA
devices for those links (see the connections between Linux1 and Linux 2 in
Figure 4-16 on page 92). CTCA devices on both sides of the connection then
need to be coupled together. Static routing statements must be defined in both
the Linux and VM TCP/IP stacks. Finally, if one side of the point-to-point
connection goes down, it is often difficult to subsequently reconnect the two
guests. Frequently, one of the Linux guest machines has to be rebooted in order
to reestablish the connection.

Figure 4-16 VM point-to-point connections

Linux1
10.0.1.1

Linux5
10.0.1.5

10.0.1.1

VM TCP/IP Stack
9.190.10.12

Linux2
10.0.1.2

Virtual
CTC

Linux3
10.0.1.3

Virtual
CTC

Linux4
10.0.1.4

Virtual
CTC

Linux6
10.0.1.6

IUCV

Linux7
10.0.1.7

IUCVIUCV

OSA Card

Virtual
CTC

External LAN
9.190.10.0/24

92 Linux for IBM System z9 and IBM zSeries

Recommendations
Given the complexity of managing a point-to-point network within a z/VM system,
we do not recommend it as a solution. When it was the only topology we had
available to communicate among guests, obviously, it was acceptable. We now
recommend that you use one of the z/VM LAN technologies, Guest LAN or
VSWITCH.

4.5.1 Guest LAN
From z/VM V4.2 and later, the z/VM control program (CP) has been enhanced to
provide a feature known as Guest LAN. This feature enables you to create
multiple Virtual LAN segments within a z/VM environment. As can be seen from
Figure 4-17 on page 94, Guest LANs do not have a physical connection to the
external network. Instead, they must use a router (z/VM TCP/IP or Linux) in the
same fashion as was required for point-to-point topology. The Linux router, z/VM
TCP/IP stack, must have an external interface, such as an OSA-Express card,
and an interface connected to the Guest LAN.

Note: Although the structures and simulated devices related to the Guest LAN
under z/VM are virtual, we use the term Guest LAN and not Virtual LAN,
because the term Virtual LAN (VLAN) has a different meaning in the
networking world.

 Chapter 4. Networking Overview 93

Figure 4-17 z/VM Guest LAN

There is no architectural limit on the number of Guest LAN segments that can be
created. The actual limit is governed by available machine resources, but this is
more of a theoretical limit than a practical one. The number of Guest LANs that
can be created can be considered unlimited for all practical purposes.

In contrast to point-to-point connections, to connect to a Guest LAN, individual
guest machines create a virtual Network Interface Card (NIC). They can connect
this NIC to the Guest LAN and communicate with other guests using standard
TCP/IP protocols. Defining links to individual guests and coding static routes for
each link are no longer required, because the guests exist in the same Guest
LAN segment.

Note: A z/VM Guest LAN is contained solely within a z/VM LPAR. A Linux
guest connected to that Guest LAN cannot directly communicate (using its
Guest LAN interface) with hosts outside of the Guest LAN.

Linux1
10.0.1.11

Linux5
10.0.1.15

10.0.1.1

VM TCP/IP Stack
9.190.10.12

Linux2
10.0.1.12

Virtual
QDIO

Linux3
10.0.1.13

Virtual
QDIO

Linux4
10.0.1.14

Virtual
QDIO

Linux6
10.0.1.16

Linux7
10.0.1.17

OSA Card

Virtual
QDIO

External LAN
9.190.10.0/24

Virtual
QDIO

Virtual
QDIO

Virtual
QDIO

94 Linux for IBM System z9 and IBM zSeries

Guest LANs versus Dedicated Hardware
When do you choose Guest LANs versus dedicated hardware connections?
Here are some guidelines to consider:

� Dedicated hardware connections can be best for some environments:

– When intense network activity is expected.
– When direct external connectivity is required.

� Guest LANs may be best for other environments:

– When network hardware is limited.

– When multiple nodes are guests in the same z/VM host image.

– When network activity must be isolated from primary network (for
instance, test environments, student labs, or application server access to
database servers.)

– When system storage below the 2 GB line is constrained. Each dedicated
interface might require up to 132 locked memory pages.

– When most communication is among guests.

As z/VM Guest LAN is a virtualization technology, it is not limited to the use of
zSeries hardware. Guest LAN is supported on all IBM mainframe hardware from
IBM 9672 Generation 5 processors onward, including the Multiprise 3000.

When Guest LAN was first released with z/VM V4.2, the virtual NIC simulated a
HiperSockets device, as introduced on the zSeries 900.

From z/VM V4.3, the Guest LAN could be defined to use either simulated
HiperSockets (iQDIO, or internal QDIO) devices or simulated QDIO devices. The
QDIO device that is simulated is the OSA-Express Ethernet adapter. All Guest
LAN examples in this book use the QDIO Guest LAN and not the HiperSockets
Guest LAN.

QDIO versus iQDIO
When deciding whether to deploy QDIO Guest LAN or HiperSockets (iQDIO)
Guest LAN, consider the following information:

Note: Even though QDIO and HiperSockets Guest LANs are different, when it
comes to defining the virtual Network Interface Card to the Linux guest, they
both use the same qdio and qeth device drivers. However, QDIO Guest LANs
use a device identifier of ethx, and HiperSockets Guest LANs use a device
identifier of hsix.

 Chapter 4. Networking Overview 95

� QDIO (OSA-Express simulation)

– IPv4 and IPv6 support
– Easy to migrate from QDIO Guest LAN to VSWITCH
– Ethernet transport
– Asynchronous
– Can be used as an OSA-Express test network

� iQDIO (HiperSockets simulation)

– IPv4 support
– Supports multicast router connections
– Deploy MTUs larger than 8 K
– Synchronous
– Can be used as a HiperSockets test network
– Slightly smaller path length in CP than QDIO Guest LAN

4.6 Guest LAN configuration
To create a Guest LAN, use the following required steps:

1. Create a z/VM Guest LAN segment in the z/VM host system.

2. Create a virtual Network Interface Card (NIC) in each guest machine that will
be connected to the Guest LAN.

3. Connect the virtual NIC in each guest machine to the Guest LAN.

4. After the Linux guest has been booted, configure the appropriate device
drivers in that guest to connect to the Guest LAN.

4.6.1 Create a z/VM Guest LAN
z/VM Guest LANs can be created in one of two ways: either by a DEFINE LAN
statement in the z/VM CP SYSTEM CONFIG file or by using the DEFINE LAN CP
command. Why choose one over the other? Guest LANs created with the DEFINE
LAN command are only valid for the life of a z/VM system. In other words, if that
system is shut down and then IPLed, the Guest LAN is no longer be defined. We
recommend that for production Guest LANs you make a permanent entry in the

Important: Although the syntax in the following sections is valid, always refer
to the relevant level of z/VM reference manual for a complete description of all
command syntax.

For the following examples, we used z/VM Version 5 Release 1.0 CP Planning
and Administration, SC24-6083, and z/VM Version 5 Release 1.0 CP
Commands and Utility Reference, SC24-6081.

96 Linux for IBM System z9 and IBM zSeries

CP SYSTEM CONFIG file. This is known as a persistent Guest LAN. For testing
purposes, the DEFINE LAN command is perfectly valid because it provides the
flexibility to dynamically create Guest LANs as required.

4.6.2 Persistent Guest LANs
In order to define a persistent Guest LAN, we need to add a DEFINE LAN
statement to the CP SYSTEM CONFIG file. For a complete discussion of making
changes to this file, refer to the relevant level of the z/VM reference manual.

The syntax of the DEFINE LAN statement is as follows:

DEFINE LAN lanname [operands]

Where the following is true:

lanname Is a 1-8 alphanumeric name of the z/VM Guest LAN.

operands Defines the characteristics of the z/VM Guest LAN.

Table 4-5 summarizes the operands accepted by the DEFINE LAN statement.

Table 4-5 Operands of the DEFINE LAN statement

Operand Description

OWNERid ownerid Establishes the owner of the LAN. The OWNERid is either a
user id or SYSTEM. In our examples, the ownerid will be
SYSTEM.

TYPE lantype Specifies the type of LAN. Valid types are HIPERsockets for
simulated HiperSockets adapters or QDIO for simulated
QDIO adapters. HiperSockets is the default.

IP | ETHernet For QDIO Guest LANs, this indicates whether the transport
for the LAN is Ethernet or IP. An Ethernet LAN operates at
the Layer 2 level of the OSI model. An IP LAN operates at
Layer 3 of the OSI model.

MAXCONN maxconn Sets the maximum number of simultaneous adapter
connections permitted. When MAXCONN is specified as
INFinite, there is no limit on the number of connections. Any
other value limits the number of simultaneous connections to
a decimal value in the range of 1-1024.

 Chapter 4. Networking Overview 97

As an example, to create a QDIO type Guest LAN named TSTLAN owned by
SYSTEM, use:

DEFINE LAN TSTLAN OWNERID SYSTEM TYPE QDIO

4.6.3 The VMLAN statement
In addition to the DEFINE LAN statement, we can also add VMLAN statements
to the CP SYSTEM CONFIG file to establish system-wide attributes for all z/VM
Guest LANs that have been defined to the z/VM operating system. This includes
Virtual Switches, which is discussed later.

Each VMLAN statement specifies a different system wide attribute and
operands. Each attribute and operands are described separately.

VMLAN LIMIT [operands] See Table 4-6 on page 99.

VMLAN ACCOUNTing [operands] See Table 4-7 on page 99

VMLAN MACPREFIX macprefix See Table 4-8 on page 99

VMLAN MACIDRange [operands] See Table 4-9 on page 100

MFS size Sets the Maximum Frame Size (MFS) for adapters on this
network. When an adapter is connected to this LAN, it will
adopt the network MFS. The MFS value determines the
amount of storage to be allocated for internal structures and
limits the effective Maximum Transfer Unit (MTU) size for the
coupled adapters. The MFS operand is not valid for the QDIO
Guest LAN; however, the effective MFS is 8 K for a QDIO
adapter.

UNRESTricted Defines a LAN with no access control; therefore, any user
can connect to the LAN. When neither UNRESTricted nor
RESTricted are specified, UNRESTricted is the default value.

RESTricted Defines a LAN with an access list to restrict connections. The
LAN owner will use the SET LAN command to grant or
revoke access to specific VM users (by user ID). The
COUPLE command will only allow authorized users (those
on the access list) to connect a simulated adapter to a
RESTRICTED network.

ACCOUNTING value Allows a Class B user to control whether accounting records
are created for the LAN being defined.

GRANT userlist Defines the list of users to be included in the Initial Access
List of a RESTRICTED LAN. If the GRANT operand is
omitted, the default is to GRANT the LAN owner.

Operand Description

98 Linux for IBM System z9 and IBM zSeries

Table 4-6 Operands of the VMLAN LIMIT statement

Table 4-7 Operands of the VMLAN ACCOUNTing statement

Table 4-8 Operands of the VMLAN MACPREFIX statement

Operands Description

PERSistent INFinite | maxcount INFinite means that there will be an infinite number
of PERSISTENT z/VM Guest LAN segments and
Virtual Switches allowed on the system. INFinite is
the default. Use the maxcount parameter to define
a number of PERSISTENT Guest LANS (between
0 and 1024) permitted to run on the system.

TRANSient INFinite | maxcount INFinite means that there will be an infinite number
of TRANSIENT z/VM Guest LAN segments
allowed on the system. INFinite is the default. Use
the maxcount parameter to define a number of
TRANSIENT Guest LANS (between 0 and 1024)
permitted to run on the system.

Operands Description

SYSTEM ON | OFF Set the default accounting state for z/VM Guest LAN segments
and Virtual Switches owned by the SYSTEM user ID. The
default state of this attribute is OFF.

USER ON | OFF Set the default accounting state for z/VM Guest LAN segments
owned by individual users. The default state of this attribute is
OFF.

Operands Description

macprefix Specifies the three-byte prefix (manufacturer ID) used when generating
locally administered MAC addresses on the system. It must be six
hexadecimal digits within the range of 020000 through 02FFFF
(inclusive). In combination with the MAC ID used on the NICDEF
directory statement, the MACPREFIX allows unique identification of
virtual adapters within a network. If MACPREFIX is not specified, the
default is 020000 02-00-00).

 Chapter 4. Networking Overview 99

Table 4-9 Operands of the VMLAN MACIDRange statement

4.6.4 Create a virtual Network Interface Card
You must create a virtual Network Interface Card (NIC) for each guest machine.
After it is defined, this NIC can be connected to the Guest LAN. To the guest
operating system, the NIC devices look like a range of OSA devices. The NIC
can be defined permanently through a User Directory statement or temporarily
(for the life of the Guest’s session) through a CP command.

4.6.5 NIC definition in the user directory
To create a virtual Network Interface Card that will remain permanently defined
to a VM guest machine (that is, across guest sessions and across IPLs of the
z/VM operating system), use the NICDEF statement in the z/VM User Directory.
The NICDEF statement defines virtual devices that are fully simulated by CP.
The NIC automatically joins the Guest LAN when the z/VM user ID is logged on.
The syntax of the NICDEF statement for Network Interface Cards is as follows:

NICDEF vdev [operands]

Where the following is true:

vdev Specifies the base virtual device address for the adapter.

Operands Description

SYSTEM xxxxxx-xxxxxx The range of identifiers (up to six hexadecimal digits each)
to be used by CP when generating the unique identifier
part (last six hexadecimal digits) of a virtual adapter MAC
address. If a SYSTEM MACIDRANGE is not specified, CP
creates unique identifiers in any range (000001-FFFFFF).
This operand is required.

USER xxxxxx-xxxxxx USER xxxxxx-xxxxxx is the subset of the SYSTEM range
of identifiers that are reserved for user definition of MACIDs
in the NICDEF directory statement. When specified, CP
does not assign MACIDs within this USER range during
creation of virtual adapters defined dynamically (DEFINE
NIC) or with the NICDEF (or SPECIAL) directory statement
without the MACID operand. In these cases, CP generates
a unique identifier for the adapter outside of the USER
range. Any MACID values specified on a NICDEF directory
statement must be within the USER range, or the virtual
adapter is not defined during LOGON processing. If a
USER MACIDRANGE is not specified, CP creates unique
identifiers within the SYSTEM MACIDRANGE. This
operand is optional.

100 Linux for IBM System z9 and IBM zSeries

operands Defines the characteristics of the virtual NIC.

Table 4-10 lists the operands accepted by the NICEF command.

Table 4-10 Operands for the NICDEF user directory statement

Operands Description

TYPE HIPERs
or
TYPE QDIO

HIPERs indicates that a simulated HiperSockets adapter
should be created. QDIO indicates that a simulated QDIO
adapter should be created. If a LAN is identified in this
statement or another with the same vdev, the NIC is
automatically coupled to the specified ownerid lanname.

DEVices devs The number (decimal) of virtual I/O devices to be created for
a simulated NIC. If devs is omitted, the default number of
devices is three.

LAN ownerid lanname
or
LAN SYSTEM lanname

Identifies a Guest LAN segment or Virtual Switch for an
immediate connection to the NIC. If ownerid and lanname
are omitted, the simulated adapter is left in the uncoupled
state. When ownerid and lanname are specified, the
adapter is automatically connected to the designated Guest
LAN. Note that the ownerid can be specified as a name or
using an asterisk (*) to represent the user ID of the current
virtual machine. An ownerid of SYSTEM is used for a
system owned Guest LAN or a Virtual Switch.

CHPID xx A two-digit hexadecimal number that represents the CHPID
number to be allocated in the virtual machine I/O
configuration for this adapter. If CHPID is omitted, an
available CHPID is automatically assigned to this adapter.
This option is required when a HiperSockets adapter is
being created for a z/OS guest, because z/OS
configurations require a predictable CHPID number. During
LOGON, CP attempts to use the specified CHPID number.
If the specified CHPID number is already in use, this
adapter is not defined. To correct this situation, you must
eliminate the conflicting device or select a different CHPID.

MACID xxxxxx Aunique identifier (up to six hexadecimal digits) used as
part of the adapter MAC address. During LOGON, your
MACID (3 bytes) is appended to the system MACPREFIX
(3 bytes) to form a unique MAC address for this adapter. If
MACID is omitted from this definition, CP generates a
unique identifier for this adapter. If the specified MACID is
already in use, this adapter is not defined. To correct this
situation, you must eliminate the conflicting device or select
a different MACID.

 Chapter 4. Networking Overview 101

Figure 4-18 shows an example CP User Directory entry for a Linux guest that
connects to a QDIO Guest LAN.

Figure 4-18 User directory entry for a Linux guest: Connecting to a QDIO Guest LAN

4.6.6 NIC definition using CP commands
To create a virtual Network Interface Card that will only last for the life of a guest
(that is, it will need to be redefined when the guest next logs on to the system),
use the following command syntax:

DEFINE NIC vdev [operands]

Where the following is true:

vdev Specifies the base virtual device address for the adapter.

operands Define the characteristics of the virtual NIC.

Table 4-11 lists the operands accepted by the DEFINE NIC command.

Table 4-11 Operands for the DEFINE NIC command

USER LNX23 LNX23 128M 1G G
 INCLUDE IBMDFLT
 IPL CMSPARM AUTOCR
 MACHINE XA
 CONSOLE 0009 3215
 NICDEF 0700 TYPE QDIO DEV 3 SYSTEM TSTLAN
 MDISK 0191 3390 3274 025 LEVW01 MR
 MDISK 0201 3390 3339 0200 LX3EA3 M
 MDISK 0202 3390 3539 3138 LX3EA3 M

Operands Description

TYPE HIPERsockets Defines this adapter as a simulated HiperSockets NIC. This
adapter will function like the HiperSockets internal adapter. A
HiperSockets NIC can function without a z/VM Guest LAN
connection, or it can be coupled to a HiperSockets Guest
LAN.

TYPE QDIO Defines this adapter as a simulated QDIO NIC. This adapter
will function like the OSA-Express (QDIO) adapter. A QDIO
NIC is only functional when it is coupled to a QDIO Guest LAN
or a Virtual Switch.

102 Linux for IBM System z9 and IBM zSeries

4.6.7 Connect the virtual NIC to the Guest LAN
Now that we have defined the virtual NIC, just as in a real network we need to
connect that device to the LAN. If we had used the NICDEF User Directory
statement to define our NIC, the guest machine would automatically connect to
the LAN whenever it logged on. However, if we chose to use the DEFINE NIC
command, we have an additional step to perform before the device is connected
to the Guest LAN.

Use the COUPLE CP command to attach the virtual NIC to a compatible Guest
LAN. The syntax of the COUPLE command for this scenario is:

COUPLE vdev TO [operands]

Where the following is true:

vdev Specifies the base virtual device address for the adapter.

operands Defines where to connect the NIC.

Table 4-12 lists the operands accepted by the COUPLE command for the
purpose of connecting a virtual NIC to a Guest LAN.

Table 4-12 Operands for the COUPLE command

DEVices devs Determines the number of virtual devices associated with this
adapter. For a simulated HiperSockets adapter, devs must be
a decimal value between 3 and 3072 (inclusive). For a
simulated QDIO adapter, devs must be a decimal value
between 3 and 240 (inclusive). The DEFINE NIC command
will create a range of virtual devices from vdev to vdev + devs
-1 to represent this adapter in your virtual machine. The
default value is 3.

CHPID nn A two-digit hexadecimal number that represents the CHPID
number the invoker wants to allocate for this simulated
adapter. If the requested CHPID number is available, all of the
virtual devices belonging to this adapter will share the same
CHPID number. This option is only useful if you need to
configure a virtual environment with predictable CHPID
numbers for your simulated devices.

Operands Description

Operands Description

vdev The base address of the network adapter.

 Chapter 4. Networking Overview 103

Remember that a virtual NIC can only be coupled to a compatible Guest LAN.
For example, a QDIO NIC cannot be coupled to a Guest LAN of type
“HIPERsockets.”

4.6.8 Example of building a z/VM Guest LAN
We now demonstrate how to build a z/VM Guest LAN in Figure 4-19.

Figure 4-19 Steps to build a z/VM Guest LAN

To build a z/VM Guest LAN, follow these steps:

1. Define a QDIO Guest LAN owned by SYSTEM. This command was run from
the MAINT user.

2. Define a Network Interface Card (NIC) of type QDIO. This command was run
from Linux guest user LNX23.

3. Couple the NIC to the Guest LAN. This command was also run from LNX23.

Now that we have built a Guest LAN, we can use the CP QUERY LAN command
to verify the status of the LAN, as shown in Figure 4-20 on page 105.

ownerid lanname The ownerid is the name of the owner of the Guest LAN (for
example, SYSTEM). The lanname is the name of the Guest LAN
or Virtual Switch.

Tip: If you choose to use the DEFINE NIC and COUPLE approach instead of
the NICDEF User Directory statement, consider adding these two commands
into your guest’s PROFILE EXEC file so that they are automatically executed
whenever the guest logs on.

Operands Description

DEFINE LAN TSTLAN OWNERID SYSTEM TYPE QDIO 1
LAN SYSTEM TSTLAN is created
Ready;

DEFINE NIC 0700 QDIO 2
NIC 0700 is created; devices 0700-0702 defined
Ready;

COUPLE 0700 TO SYSTEM TSTLAN 3
NIC 0700 is connected to LAN SYSTEM TSTLAN
Ready;

104 Linux for IBM System z9 and IBM zSeries

Figure 4-20 CP QUERY LAN command

In order to display information about the virtual NIC that we have defined, we can
use the QUERY NIC CP command, as shown in Figure 4-21. If we use the
DETAILS parameter of this command, we can get additional information about
the IP addresses bound to this NIC and the amount of data that has been
transmitted and received through this interface (TX packets/bytes and RX
packets/bytes, respectively).

Notice that there is no IP addressing information and the number of bytes
transmitted and received are both zero. Also, the port name value is set to
UNASSIGNED. This tells us that the Linux guest has not started using this
device for TCP/IP communications.

Figure 4-21 CP QUERY NIC commands

Finally, we said that the virtual NIC simulates an OSA-Express QDIO device.
This is confirmed by using the CP command QUERY VIRTUAL OSA from the
guest machine, as shown in Figure 4-22 on page 106.

QUERY LAN TSTLAN ACTIVE
LAN SYSTEM TSTLAN Type: QDIO Active: 1 MAXCONN: INFINITE
 PERSISTENT UNRESTRICTED MFS: 8192 ACCOUNTING: OFF
Ready;

QUERY NIC
Adapter 0700 Type: QDIO Name: UNASSIGNED Devices: 3
 Port 0 MAC: 02-00-00-00-00-06 LAN: SYSTEM TSTLAN MFS: 8192

Q NIC DETAILS
Adapter 0700 Type: QDIO Name: UNASSIGNED Devices: 3
 Port 0 MAC: 02-00-00-00-00-06 LAN: SYSTEM TSTLAN MFS: 8192
 RX Packets: 0 Discarded: 0 Errors: 0
 TX Packets: 0 Discarded: 0 Errors: 0
 RX Bytes: 0 TX Bytes: 0
 Unassigned Devices:
 Device: 0700 Unit: 000 Role: Unassigned
 Device: 0701 Unit: 001 Role: Unassigned
 Device: 0702 Unit: 002 Role: Unassigned

 Chapter 4. Networking Overview 105

Figure 4-22 CP QUERY VIRTUAL OSA command

4.6.9 Undoing the definitions
Before moving on to describe how to connect a Linux guest to the Guest LAN, we
review how to undo the previous definitions in an orderly fashion. This is only for
completeness, and you should not follow these steps unless you no longer want
to use the z/VM Guest LAN that you created.

Disconnect from a Guest LAN
Use the CP UNCOUPLE command to disconnect a virtual NIC from a Guest LAN
segment. Figure 4-23 illustrates this command.

Figure 4-23 UNCOUPLE command

Remove the virtual NIC from the guest machine
To remove a virtual NIC from a guest machine, use the CP DETACH NIC
command. The command disconnects the virtual adapter from the Guest LAN
(assuming the UNCOUPLE command has not been invoked) and removes each
virtual device that has been created. Figure 4-24 illustrates the DETACH NIC
command.

Figure 4-24 DETACH NIC command

Q VIRTUAL OSA
OSA 0700 ON NIC 0700 UNIT 000 SUBCHANNEL = 0010
 0700 QDIO-ELIGIBLE QIOASSIST NOT AVAILABLE
OSA 0701 ON NIC 0700 UNIT 001 SUBCHANNEL = 0011
 0701 QDIO-ELIGIBLE QIOASSIST NOT AVAILABLE
OSA 0702 ON NIC 0700 UNIT 002 SUBCHANNEL = 0012
 0702 QDIO-ELIGIBLE QIOASSIST NOT AVAILABLE

UNCOUPLE 700
NIC 0700 is disconnected from LAN SYSTEM TSTLAN
Ready;

DETACH NIC 0700
NIC 0700 is destroyed; devices 0700-0702 detached
Ready;

106 Linux for IBM System z9 and IBM zSeries

Remove the Guest LAN
To remove a Guest LAN from the system, use the CP DETACH LAN command. This
command removes the LAN from the System LAN table, disconnects any virtual
adapters that were using the LAN, and releases system resources associated
with the LAN. Figure 4-25 illustrates the DETACH LAN command.

Figure 4-25 DETACH LAN command

4.6.10 Configuring Linux to connect to a Guest LAN
Now that we have created a z/VM Guest LAN and connected our guest’s virtual
NIC to that LAN, it can now be used by Linux. Because z/VM creates a virtual
network adapter (NIC) that simulates a real OSA-Express or HiperSockets
adapter, the configuration Linux for a virtual adapter is the same as it is for a real
one. Please refer back to the previous sections of this book that described the
configuration of the real adapters:

� For a type QDIO network adapter, see “Using OSA-Express with Linux” on
page 71.

� For a type HIPERSOCKETS network adapter, see “Using HiperSockets with
Linux” on page 87.

Recommendations
Linux guests connected to a z/VM Guest LAN must communicate with the
physical network through a z/VM TCP/IP or Linux router. This adds both latency
and increased CPU utilization to the environment. It also means that it is
impossible to participate in an external VLAN. We discuss VLANs in 4.7, “Virtual
Switch” on page 108. Additional subnetting is required in this environment,
because the Linux guests must be on a separate subnet.

z/VM Guest LANs might, however, be appropriate in environments where
physical network cards are limited, where there is a requirement for multiple
Linux guests in the same z/VM LPAR to communicate with one another, and
when the network activity of the Linux guests needs to be isolated from the
physical network.

Given that VSWITCH can also fulfill these functions and does not have any of the
drawbacks previously listed, it might be a more appropriate solution for your
environment. We recommend that you use VSWITCH running in Layer 2
Switching mode rather than the standard z/VM Guest LAN.

DETACH LAN TSTLAN OWNER SYSTEM
LAN SYSTEM TSTLAN is destroyed
Ready;

 Chapter 4. Networking Overview 107

4.7 Virtual Switch
The z/VM Virtual Switch (VSWITCH) introduced with z/VM V4.4 builds on the
Guest LAN technology delivered in earlier z/VM releases. VSWITCH connects a
Guest LAN to an external network using an OSA-Express port. Two additional
OSA-Express ports can be specified as backups in the VSWITCH definition. The
Linux guests connected to the VSWITCH are on the same subnet as the
OSA-Express port or ports and other machines connected to that physical LAN
segment.

The z/VM V4.4 implementation of VSWITCH operates at Layer 3 (network layer)
of the OSI model. It only supports the transport of IP packets. In other words, it
only can be used for TCP/IP applications. All destinations are identified as IP
addresses, thus no MAC addresses are used because they are link layer
independent. ARP processing is offloaded to the OSA-Express adapter. In this
environment, all hosts share the same OSA-Express MAC address. In a method
similar to the description in “Address Resolution Protocol and OSA-Express” on
page 67, all traffic destined for the physical portion of the LAN segment is
encapsulated into an Ethernet frame with the OSA-Express’s MAC as the source
MAC address. For inbound packets, the OSA-Express strips the Ethernet frame
and forwards the IP packet to the Virtual Switch for delivery to the guest by the
destination IP address within the IP packet.

In z/VM V5.1, the VSWITCH implementation was extended to also have the
ability to operate at Layer 2 (data link layer) of the OSI model. In Layer 2 mode,
the VSWITCH:

� Uses the MAC destination address to send and receive Ethernet frames,
even between the virtual adapters and adapters on the physical portions of
the LAN segment.

� Transports Ethernet frames (not IP datagrams) to and from the operating
system TCP/IP stack and the physical network.

� Does not offload ARP processing to the OSA-Express adapter; ARP
processing performed by the operating system TCP/IP stack.

� Supports MAC level unicast, multicast, and broadcast.

Because the VSWITCH is essentially connected to the physical LAN, the
requirement for an intermediate router between the physical and (internal) Guest
LAN segments is removed. This reduces network latency. It also reduces overall
CPU consumption, in some test cases by as much 30%. Removing the router
also means that you no longer need specialized skills to configure and administer
a VM-based or Linux-based router.

VLANs facilitate easy administration of logical groups of machines that can
communicate as though they were on the same physical LAN. VSWITCH

108 Linux for IBM System z9 and IBM zSeries

provides support for IEEE 802.1Q VLANs. This means that Linux guests
connected to a VSWITCH can participate in a VLAN environment.

z/VM Virtual Switch can also function in a disconnected mode, where either an
OSA port is not associated, or the associated OSA does not flow traffic to the
external network. It might seem that a VSWITCH without an OSA is just the
same as a QDIO Guest LAN, but this is not the case; the VSWITCH provides
layer 2 support and additional control over VLAN membership and handling of
untagged frames. Refer to 4.8.5, “VLANs on z/VM Virtual Switch” on page 119
for more detail.

4.8 Introduction to VLANs
Starting with z/VM 4.4, VSWITCH and Guest LAN include the capability to
support IEEE 802.1Q Virtual LANs within the simulated network. This section
introduces the concept of Virtual LANs and some of the terminology involved.

4.8.1 What is a Virtual LAN
A virtual LAN allows a physical network to be divided administratively into
separate logical networks. In effect, these logical networks operate as though
they are physically independent of each other.

A VLAN-capable switch automatically manages the separation of traffic between
VLANs for the devices attached to the switch. A VLAN ID can be assigned to
each switch port and only packets that match the VLAN ID are sent to the device.
See Figure 4-26 on page 110 for a diagram of a simple switch.

Important: Avoid using the term bridging to describe a Virtual Switch. While
this function looks as though it bridges between a Guest LAN and the
Ethernet, bridging usually refers to the copying of an entire Layer 2 frame
from one network to another. It also performs whatever frame translation is
required on the way, such as in the case of translational bridging between
Token Ring and Ethernet. VSWITCH handles only Ethernet packets, and does
not qualify as a full Layer 2 network bridge.

 Chapter 4. Networking Overview 109

Figure 4-26 An Ethernet switch

In the figure, each port is identified by a column and row number, such as A1 for
the port in the upper left and B6 for the port in the lower right. Each port in this
switch except A1 is called an access port. These ports are defined to a single
VLAN only and provide connections for non-VLAN aware devices. The number in
each access port is the VLAN number assigned to that port. Only frames that
match the VLAN ID of that port are sent to the device attached to the port,
however, the VLAN information is removed from the frame before it is sent. Also,
all packets sent from the device to the port are tagged by the switch with the
same VLAN ID before being sent to their destination.

Notice that multiple access ports have the same VLAN number. All of these ports
are on the same subnet and the devices attached to these ports can
communicate with each other. For instance, ports B3 and B5 are in VLAN 3 and
packets can be exchanged between the ports. But they cannot directly
communicate with the devices attached to any of the other ports. It is as though
ports B3 and B5 are a separate physical device with two ports.

IBM zSeries Open Storage Attachment

T

2

1

1

2

2

1

3

3

2

1

4

1

3

5

2

1

6

A

B

110 Linux for IBM System z9 and IBM zSeries

Trunk ports
In Figure 4-26, port A1 is a special port called a trunk port, labeled as T. This
port is different from an access port because packets from multiple VLANs flow in
and out of it. It is used to connect switches together or to connect other VLAN
aware devices. An example of two switches with connected trunk ports is shown
in Figure 4-27.

Figure 4-27 Ethernet switches connected via trunk ports

Notice that the access ports on both switches share the same VLAN IDs. The
switches could be in locations separated by a great distance, yet the devices
attached to them are in the same subnet, isolated from other devices. For
example, VLAN 3 is assigned to two access ports on one switch and four access
ports on the other. The connected trunk ports are what allow the VLAN three
frames to flow from one switch to the other. This concept of trunking switches
together can be extended beyond the two switches shown here.

A more typical example is shown in Figure 4-28 on page 112. This example
shows how a router is used with VLANs.

IBM zSeries Open Storage Attachment

T

2

1
1

2

2
1

3

3
2

1

4
1

3

5
2

1

6
A

B

T

2

1
1

2

2
1

3

3
2

1

4
1

3

5
2

1

6

A

B

 Chapter 4. Networking Overview 111

Figure 4-28 VLAN scenario with routing

We make the following observations about the network in this diagram:

� Switch ports are represented by dark squares. The larger squares are trunk
ports, the small squares are access ports.

� Again we have two switches in physically separate locations, and connected
by trunk ports.

� Switch 2 has a hub with several systems connected to it.

� Switch 1 has a trunk port connection to a router which, in turn, is connected to
an external WAN, represented by the cloud.

� VLAN 11 is a network that exists across both locations. Data sent between
VLAN 11 devices in the separate locations flows though the trunk port
connection.

Router

Hub

Switch
2

Switch
1

VLAN10 VLAN12

VLAN11

LINUXA

112 Linux for IBM System z9 and IBM zSeries

� The router is a VLAN-capable device, attached to one of the trunk ports. The
correct definitions in the router provide a routing path between VLAN 10 and
VLAN 12, and between either of these networks and the WAN. This is usually
done by defining a virtual network device against the physical port on the
router, linking that virtual interface to the VLAN, and enabling the interface for
routing.

� VLAN 11 has no access to any other VLAN, or the WAN. Even though VLAN
11 shares access to trunk ports in both switches with VLAN 12, the VLAN
architecture prevents traffic from flowing between the two networks.

If routing to VLAN 11 is required, the Switch 1 trunk port to the router could be
included into VLAN 11 and a virtual interface for VLAN 11 defined in the
router.

� The only machines in the entire network that are permitted to access the
server LINUXA are those in VLAN 11. This is for the same reason that VLAN
11 cannot access the external network. There is no routing path between
VLAN 11 and the other VLANs.

Later in this chapter, we present a working scenario of VLANs using a switch
coupled to a z/VM Virtual Switch. See 4.10, “Layer 2 test scenario” on page 126.

4.8.2 VLAN standards
Several virtual LAN mechanisms exist; most of them are proprietary and operate
on a single vendor’s equipment.

Port-based VLANs
Port-based VLANs are most often proprietary solutions that function within a
single vendor’s switch hardware. They provide a method of dividing a single
network device (the switch) into separate broadcast domains. How the switch
accomplishes this task internally is platform-specific.

Attention: VLANs are different from Emulated LANs (ELANs). A VLAN uses
the same frame format as the underlying medium, while an ELAN often uses
one network technology to carry the frames of another. An example of this is
Asynchronous Transfer Mode (ATM) ELAN, which allowed Ethernet and Token
Ring traffic to be carried over an ATM backbone by emulating those frame
formats over ATM cells.

Do not confue VLANs and ELANS with the various simulated LAN
technologies we use on zSeries and z/VM!

 Chapter 4. Networking Overview 113

Importantly, end stations have no way to participate in multiple VLANs because
the switch isolates the devices attached to it from the VLANs in the switch.

IEEE 802.1Q VLAN tagging
IEEE 802.1Q defines a standard virtual LAN mechanism that is being
implemented across equipment from many different vendors. It uses a header,
called the VLAN tag, added to packets transmitted over the network. The tag
contains information that allows the network to manage the separation of the
different virtual LANs.

Cisco Inter-Switch Link VLANs
Cisco Systems has a proprietary VLAN trunking mechanism called Inter-Switch
Link (ISL). If your site uses Cisco networking equipment, you might be using ISL
VLANs. ISL VLANs are not compatible with IEEE 802.1Q VLANs, but Cisco
switches provide a function that allows mapping between ISL VLANs and 802.1Q
VLANs.

4.8.3 How IEEE 802.1Q VLANs work
VLAN adds additional information to the data packet. The extra data is referred to
as the VLAN tag. The tag appears immediately after the Ethernet frame header,
and before the data payload of the frame.

The format of the VLAN tag on Ethernet is shown in Figure 4-29 on page 115.

Important: In this book we investigate the IEEE 802.1Q VLAN only, because
this is the VLAN standard supported under Linux and z/VM. For the remainder
of this book, when we refer to VLANs, we are specifically referring to IEEE
802.1Q VLANs (unless stated otherwise).

114 Linux for IBM System z9 and IBM zSeries

Figure 4-29 VLAN tag format for Ethernet

In most instances, only the Tag Protocol Identifier (TPID) and Tag Control
Information (TCI) fields are used. This gives the impression that the VLAN
header is only four bytes. In fact, the specification defines that additional
information can be carried in the tag, including an Extended Routing Information
Field (E-RIF) which would be used in source-routing environments (the
Canonical Format Indicator (CFI) bit in the TCI indicates whether the E-RIF is
present or not).

The three-bit priority field at the start of the TCI can be used by switch equipment
to prioritize frames on different VLANs. On Linux, the vconfig command has
parameters that allow the priority field to be set for the VLAN being defined.

The VLAN tag is never included in a packet sent to a non-VLAN device. Part of
the function of a VLAN-capable device is to add or remove VLAN tags as
required, usually based on the learned capability of the peer device.

Note: The VLAN priority is separate from IP priority mechanisms. VLAN
priority is used to prioritize the frames of a VLAN relative to other VLANs,
while IP prioritization operates within the IP layers of routers. Still other
prioritization schemes can exist, like the traffic shaping facilities provided by
Linux.

1 - 2
Octets

3 - 4

E-RIF
(present only if

required)

TPID
(Ethernet
encoded)

TCI Length/Type
field

7
(max 36)

N

priority

C
FI VID

8 6 5 4 1 8 1

Octets

Bits

1 2

 Chapter 4. Networking Overview 115

Untagged frames
A device does not have to support VLANs in order for it to join a network that
uses them. A frame generated by a device that is not VLAN-capable is called an
untagged frame when it arrives at the VLAN-capable switch.

The action taken by the switch in this case can vary. The switch can assign a
default VLAN number to be assigned to any untagged frames that enter the
switch, or it can tag the frames with a port-specific VLAN number, providing a
function similar to a port-based VLAN.

Connecting to a VLAN
VLAN-capable devices attach to VLANs through the use of virtual network
interfaces. Each VLAN has its own separate virtual interface. The diagram in
Figure 4-30 on page 117 shows the layered relationship of the components
involved in packet transmission.

116 Linux for IBM System z9 and IBM zSeries

Figure 4-30 Layer diagram for VLAN-capable devices

In Figure 4-30, eth0 is a non-VLAN device. After a routing decision has selected
eth0 as the interface for the packet to be transmitted on, the IP layer, places the
packet onto the queue for eth0. Because eth0 is non-VLAN, when the packet
gets to the front of the queue it is given to the NIC driver for encoding and
transmission in the network with no other action. If the switch that this interface
connects to is VLAN-aware, it must be configured to handle these frames. See
“Untagged frames” on page 116 for more information.

IP Layer

NIC 2NIC 1 NIC 3

vlan21vlan20

eth1eth0 eth2

vlan40vlan30

172.26.15.8

NIC driver

8021q

NIC driver NIC driver

8021q

0.0.0.0
172.26.53.16172.26.56.16

172.26.60.16
172.26.55.16

172.26.59.16

Interface
queues

Source
Addresses

Routing

Attention: This diagram is not meant to be a representation of the way that
VLANs are implemented in any particular device. It is a conceptual overview
only.

 Chapter 4. Networking Overview 117

The eth1 interface supports connections to two VLANs, 20 and 21. The virtual
interfaces for these VLANs are vlan20 and vlan21, respectively. As for any other
interface, packets can arrive at the queues for these interfaces as a result of the
IP layer making a routing decision. For VLAN interfaces, however, the kernel
VLAN code processes the packet by adding the VLAN tag and passing the
tagged packet to the driver for the interface to which the VLAN belongs.

The IP address associated with eth1 is a dummy address (that is, an address
which does not match a real network configuration). Figure 4-30 on page 117
shows eth1 configured as 0.0.0.0, which is commonly used for this purpose
because it can never be used as a source address. The practical effect of this is
that the IP interface eth1 will not generate any traffic, because the IP layer does
not direct any packets to that interface for transmission, nor will the network send
any packets to that address. This means that switch port does not need any
configuration to support untagged frames. It can operate purely as a trunk port.

The eth2 interface has an almost identical configuration to eth1, except for the
address associated with it. Here, a valid IP address is configured on the eth2
interface. When the IP layer selects 172.26.53.16 as a source address, the
packet is not processed by VLAN, resulting in an untagged frame being
transmitted. The switch that eth2 is connected to must know what to do with such
frames arriving when tagged frames are expected. The 802.1Q specification
refers to this kind of port as a hybrid port, it can act both as a trunk port to handle
tagged frames, and as an access port to handle untagged frames.

Some equipment, and also z/VM 5.1, define a default VLAN ID used for any
interfaces that are not defined with an explicit VLAN ID specified. This avoids a
problem with a device generating untagged frames when communicating with
VLAN-aware switch. Linux, on the other hand, can generate untagged frames in
the way described for eth2 when connected to a trunk port, even if that port is
defined with permissions for a specific list of VLAN IDs. Some equipment
associates these frames with a native or internal VLAN used for control or
management of the equipment. It is possible that these frames could cause
problems or interference, so it is best to not allow them to be created.

Note: In Linux, when VLAN interfaces are configured, the physical interface
the VLAN is associated with must be provided as part of the configuration.
This allows the VLAN support to send the packet to the correct interface
queue.

118 Linux for IBM System z9 and IBM zSeries

4.8.4 VLAN support on z/VM Guest LAN
Starting with z/VM 4.4, a simulated QDIO or HiperSockets network can provide
IEEE 802.1Q VLAN function to attached guests. The Guest LAN simulation
works in exactly the same manner as in previous z/VM releases, except that it
can pass VLAN tagged frames between guests that are VLAN-aware. When
using VLANs over Guest LAN, the Guest LAN simulation does not interfere with
the VLAN tagging of network frames. This means that a guest attached to a
Guest LAN must be VLAN-aware in order to participate in the VLAN network.

Another feature added to z/VM simulated HiperSockets with z/VM 4.4 is
broadcast capability. This means that guests attached to a simulated
HiperSockets can now use applications and protocols that use IP broadcast, in
addition to the IP multicast support added in a previous release.

4.8.5 VLANs on z/VM Virtual Switch
z/VM Virtual Switch supports IEEE 802.1Q VLANs. This means that guests
attached to a VSWITCH under z/VM 4.4 or later can participate in VLAN
networking. When an OSA-Express port is attached to the VSWITCH, VLAN
operations extend between the VSWITCH and the LAN via the OSA-Express.

A VSWITCH can be created as a VLAN-aware switch and it performs VLAN tag
processing according to its configuration. The guest need not be VLAN-aware in
order to communicate to a specific VLAN. In the case where the guest is coupled
to a virtual access port on the VSWITCH, the VSWITCH adds the correct VLAN
tag to frames as they leave the guest and remove it when the guest receives
frames. If the configuration of the VSWITCH does not specify a VLAN ID for that
guest, the frames are sent and received using the default VSWITCH VLAN ID.

Note: Using untagged frames in a VLAN environment can result in
unexpected connectivity problems and potential security issues. To avoid this,
always ensure that network traffic specifies a VLAN ID. You can do this by
using a dummy address on the base interface, as illustrated with eth1 in
Figure 4-30 on page 117. An example of what can happen with untagged
frames in a VLAN environment is shown in 4.8.6, “VLAN isolation” on
page 120.

Important: At this time, the HiperSockets microcode on zSeries processors
does not support VLAN-tagged frames. VLAN support applies only to
simulated HiperSockets on z/VM 4.4.

 Chapter 4. Networking Overview 119

If an OSA Express is associated with your VLAN-aware VSWITCH, this OSA
Express port functions similar to a trunk port with access to all of the VLAN IDs
appearing in the VSWITCH. When you configure the port on the LAN switch the
OSA Express connects to, you can choose to make that port belong to any of the
VLAN numbers configured in the VSWITCH, extending those VLANs out of the
VSWITCH into the LAN. If the VLAN IDs already exist in the LAN, the guests on
the VSWITCH are present on the same VLAN.

4.8.6 VLAN isolation
This section discusses VLAN isloation.

VSWITCH VLAN filtering
VSWITCH provides an additional feature that provides further isolation. Using
either the CP SET VSWITCH command or an external security manager in z/VM 5.1
or later, you can control VLAN access by VM user ID in the VSWITCH. This is
analogous to defining the VLAN membership of a trunk port on a LAN switch.
You specify the VLAN IDs that a guest is allowed to see. Only frames tagged with
those VLAN IDs are passed to the guest.

Note: The guest does not require any configuration for VLAN support. Guests
that do not support VLAN send and receive frames on the VLAN with which
the CP has been configured to connect them.

VSWITCH can provide many options for controlling which guests receive
frames on which VLANs. This is called VLAN filtering and is described in
““VSWITCH VLAN filtering” on page 120”.

Attention: In z/VM 4.4, there appears to be one exception. Regardless of the
VLAN IDs specified, untagged frames from within the VSWITCH are always
passed to the guest if the destination IP address matches an address that the
guest has configured. This could result in unauthorized access to different
network resources. This exception has been fixed in z/VM 5.1 by removing the
option VLAN ANY on the DEFINE VSWITCH command. Now a VLAN-aware
VSWITCH defines a default VLAN ID applied to untagged frames.

We recommend that you do not use untagged frames in your environment. For
VLAN-unaware guests, use the CP SET VSWITCH command to grant the guest
access to one VLAN ID only. For VLAN capable systems, always configure the
base interface with a dummy IP address as described in “Connecting to a
VLAN” on page 116.

120 Linux for IBM System z9 and IBM zSeries

The rules that apply to packet delivery on a z/VM Virtual Switch are explained in
the “Working with Virtual Networks” chapter of z/VM Virtual Machine Operation,
SC24-5955.

4.9 VSWITCH configuration
Complete the following required steps to implement VSWITCH:

1. Configure one or more z/VM TCP/IP virtual machines to act as controllers for
the VSWITCH.

2. Define a VSWITCH to act as a LAN segment for the virtual machines.

3. Create a simulated Network Interface Card (NIC) on each virtual machine.

4. Link the Linux system to the VSWITCH.

4.9.1 Transport mode: IP or Ethernet
A VSWITCH is defined in either IP or Ethernet data transport mode. Additionally,
this mode applies to all connections made to it. Here are some things to consider
when deciding which mode to deploy:

� Do your servers or applications need to have their own unique MAC
addresses? Load Balancers are an example of servers with this requirement.

� Do you plan to deploy non-IP based applications in your network? SNA or
NetBIOS applications are an example of this.

� Does your virtual LAN segment need to operate in a manner that closely
resembles a physical LAN segment?

4.9.2 Configure controller service machines
The VSWITCH’s connection to an OSA-Express interface is enabled by a
controller virtual machine. A controller is a z/VM service machine running the VM
TCP/IP stack. In order for a VSWITCH to provide connectivity to a physical LAN,
at least one TCP/IP service machine must be configured to be a controller which
manages the VSWITCH connection. At least one TCP/IP service machine must
be configured to be a controller.

Recommendation: We recommend that you define at least two new TCP/IP
service machines dedicated to this purpose for backup and isolation reasons.
Do not add this function to your primary TCP/IP service machine. In our
example, we define two virtual machines to act as VSWITCH controllers.

 Chapter 4. Networking Overview 121

Figure 4-31 shows the lines that we added to the VM User Directory for our
controller machines.

Figure 4-31 VSWITCH controller user definitions

Note that the user entries include a IUCV *VSWITCH statement, which is
required for the machines to be considered as VSWITCH controllers.

AUTOLOG changes
For the controller service machines to start automatically when VM is IPLed, we
added two lines to our AUTOLOG1 PROFILE EXEC, as shown in Figure 4-32 on
page 123. Other commands required for VM system setup can also be placed in
this file or the system configuration file, including defining your VSWITCH
devices. This is described later.

USER VSWCTL1 TCPIP 32M 128M ABCG
 INCLUDE TCPCMSU
 IUCV *VSWITCH MSGLIMIT 65535
 OPTION QUICKDSP SVMSTAT MAXCONN 1024 DIAG98 APPLMON
 SHARE RELATIVE 3000
 LINK 5VMTCP10 0491 0491 RR
 LINK 5VMTCP10 0492 0492 RR
 LINK TCPMAINT 0591 0591 RR
 LINK TCPMAINT 0592 0592 RR
 LINK TCPMAINT 0198 0198 RR
 MDISK 0191 3390 66 1 LX4USR MR

USER VSWCTL2 TCPIP 32M 128M ABCG
 INCLUDE TCPCMSU
 IUCV *VSWITCH MSGLIMIT 65535
 OPTION QUICKDSP SVMSTAT MAXCONN 1024 DIAG98 APPLMON
 SHARE RELATIVE 3000
 LINK 5VMTCP10 0491 0491 RR
 LINK 5VMTCP10 0492 0492 RR
 LINK TCPMAINT 0591 0591 RR
 LINK TCPMAINT 0592 0592 RR
 LINK TCPMAINT 0198 0198 RR
 MDISK 0191 3390 67 1 LX4USR MR

Note: Unlike previous networking configurations that used the z/VM TCP/IP
stack, there is no requirement to configure manually IP addresses or devices
when using VSWITCH. The only settings required in the stack’s PROFILE
TCP/IP file are listed in Figure 4-33 on page 123.

122 Linux for IBM System z9 and IBM zSeries

Figure 4-32 PROFILE EXEC for AUTOLOG1

Profile for TCP/IP and PROFILE EXEC
On z/VM 5.1, create files named VSWCTL1 TCPIP and VSWCTL2 TCPIP on the
TCPMAINT 198 disk with the contents shown in Figure 4-33. On earlier VM
releases, you have to name this file PROFILE TCPIP and place it on the 191 disk
of each VSWITCH controller machine.

Figure 4-33 VSWCTL1 TCPIP file

Create a PROFILE EXEC on the 191 disk of each controller service machine.
This can either be copied from the PROFILE EXEC of the existing TCP/IP
service machine or copy the file TCPROFIL EXEC file on TCPMAINT 591 to the
191 disk as PROFILE EXEC.

The SYSTEM DTCPARMS file
Modify the SYSTEM DTCPARMS file on the TCPMAINT 198 disk and add the
lines shown in Figure 4-34. This designates that the controller machines will run
the TCP/IP stack code.

Figure 4-34 Lines in SYSTEM DTCPARMS

When you have made all the configuration changes, start the controller machines
using the XAUTOLOG command:

XAUTOLOG VSWCTL1
XAUTOLOG VSWCTL2

You can verify that the controller machine have initialized correctly using the
QUERY CONTROLLER command. You should see output similar to the following:

'CP XAUTOLOG VSWCTL1'
'CP XAUTOLOG VSWCTL2'

; Simple profile for a VSWITCH controller machine
OBEY
OPERATOR TCPMAINT MAINT
ENDOBEY
VSWITCH CONTROLLER ON

:nick.VSWCTL1 :type.server :class.stack
:nick.VSWCTL2 :type.server :class.stack

 Chapter 4. Networking Overview 123

Q CONTROLLER
Controller VSWCTL1 Available: YES VDEV Range: * Level 510
 Capability: IP ETHERNET VLAN_ARP
Controller VSWCTL2 Available: YES VDEV Range: * Level 510
 Capability: IP ETHERNET VLAN_ARP

If you only see one controller or the message: “HCPSWQ2835E CONTROLLER * does
not exist,” then you must log on to the controller VMs to see what error has
prevented their start up.

4.9.3 Defining a VSWITCH
A VSWITCH is created using the CP DEFINE VSWITCH command from a user ID
with Class B privileges. Or, a DEFINE VSWITCH statement can be added to the
SYSTEM CONFIG file and the switch will be created during system start up.

The syntax of the DEFINE VSWITCH statement is as follows:

DEFINE VSWITCH switchname [operands]

Where the following is true:

switchname Is the name of the Virtual Switch.

operands Define the attributes of the Virtual Switch.

Important: The controller virtual machines (VSWCTL1 and VSWCTL2) are
involved only in device initialization. After the VMs are initialized, data
transfers occur directly between the OSA device and the Linux guest without
passing through the controller stack.

124 Linux for IBM System z9 and IBM zSeries

Table 4-13 summarizes the common operands accepted by the DEFINE
VSWITCH statement and command.

Table 4-13 Common operands of the DEFINE VSWITCH statement

Operands Description

RDEV rdev-list A real device address to be used to connect the Virtual
Switch to a QDIO OSA-Express device. You can specify a
maximum of three real device numbers. Each real device
address represents a trio of devices. For example, specifying
RDEV 111 222 333 means that the first devices, 111-113, are
used to provide the connection to the real hardware LAN
segment. If there is a problem with the connection, devices
222-224 are used next to provide the connection, and if those
devices fail to connect, devices 333-335 are used. This
feature provides dynamic recovery for OSA-Express device
failures.

CONnect Indicates that the device identified by the RDEV keyword
must be activated, and traffic must flow through the device to
the real LAN segment.

CONTRoller *
or
CONTRoller userid

Identifies the z/VM user ID that controls the OSA-Express
device connected at the device address identified by rdev.
CONTROLLER * means that CP selects from any of the
eligible z/VM TCP/IP stacks. If you specify multiple real
devices on the RDEV keyword, specify CONTROLLER *, or
allow it to default. The controller functions are then spread
across multiple z/VM TCP/IP stacks, providing more flexibility
in case of a failure.

IP
or
ETHernet

Indicates whether the transport for the Virtual Switch is
ETHERNET or IP. An ETHERNET Virtual Switch operates at
the Layer 2 level of the OSI model, and an IP Virtual Switch
operates at Layer 3.

VLAN defvid Defines the default VLAN id associated with untagged frames
on this switch. The default is VLAN UNAWARE, which
indicates that the virtual switch will ignore VLAN tags.

PORTType type Defines the default port type for guests attached to this virtual
switch. The type can be ACCESS or TRUNK. This operand is
not valid if VLAN UNAWARE is specified.

PORTname portname A 1-to-8 character name that identifies the OSA-Express
adapter. You can specify a maximum of three port names.
Multiple port names are used when different port names are
needed for the multiple rdevs specified on the RDEV
operand.a

 Chapter 4. Networking Overview 125

Linking a Linux guest to the VSWITCH is exactly the same as linking a guest to a
Guest LAN. See 4.6.4, “Create a virtual Network Interface Card” on page 100 for
the description of that process.

4.9.4 VSWITCH failover support
Failover support for Virtual Switches provides recovery for controller failures and
OSA-Express port failures. A redundant system would use two or three virtual
controllers and two or three separate OSA cards. If one controller fails, another
controller takes over. A port on each card is plugged into an access port on the
same subnet, which can be in separate physical switches if the switches are
linked together, or trunk ports with identical configurations. If one OSA port fails,
traffic is switched to use another OSA port.

On a z/VM 5.1 system, when a VSWITCH is defined with multiple OSA devices
and multiple virtual controllers are available, z/VM pairs backup controllers to the
backup OSA devices, attaches them to the controllers, and performs as much
initialization as possible for the backup ports. This reduces the elapsed time to
recover from an error.

In the event of an OSA or controller failure, data transfer to the network is
suspended and the data transfer queues are moved to the backup device.
Output traffic is queued while this occurs. After the backup device is initialized,
the queued traffic is sent. Some input traffic might be lost during the period when
no OSA port is responding to the real LAN segment.

4.10 Layer 2 test scenario
To demonstrate the Layer 2 function available in the z/VM 5.1 Virtual Switch, we
created a test scenario with several virtual and real Linux servers in a simulated
web hosting environment. We wanted to demonstrate VLAN separation, Layer 2
(MAC) addressing, multiple interfaces, failover, and the use of external devices
working with the virtual servers. This can be a complicated environment, but we
try to keep it as simple as possible for this demonstration. Real world
environments can be even more complicated in order to follow security and
processing needs, but we hope that our demonstration gets you started.

4.10.1 Requirements
To use Layer 2 LAN Switching, you need the following prerequisites:

� zSeries 990 or 890 server at Driver Level 55K

a. See “OSA port names” on page 74 for more information about port names.

126 Linux for IBM System z9 and IBM zSeries

� OSA-Express or OSA-Express2 Ethernet adapter

The code level must be at least 6.23 (available in October 2004). We used
code level 6.27 in our testing and we recommend that this level or later is
used.

� z/VM V5.1 with APAR VM63538

In our testing, we used z/VM 5.1 at service level 0501 with APAR VM63665.
Enter QUERY VMLAN on your VM system to see the service level of the CP
networking support

� Linux qeth device driver that supports Layer 2. Layer 2 support for the June
2003 stream (kernel 2.4.21) was released on developerWorks in October
2004. Layer 2 support for the April 2004 stream (kernel 2.6.5) was released
on developerWorks in March, 2005. Check with your distributor to see if Layer
2 support is available in your Linux distribution. In our testing, we used SUSE
SLES 8 running with kernel 2.4.21-281 and the qeth driver supplied with the
kernel.

Planning for unique MAC addresses
MAC addresses used by z/VM virtual adapters must be unique within your
physical network. To ensure uniqueness, each z/VM system should have a
unique MAC address prefix. The address prefix is six hexadecimal digits in the
range of 020000 to 02FFFF, inclusive. This range falls within the allowable range
of addresses classified as Locally Administered.

The administrator of the VM system should work with the LAN administrator to
decide what MAC addresses are locally generated and associated with each VM
system and its guests. They assign MAC addresses using a combination of the
VMLAN statement in SYSTEM CONFIG and the NICDEF statement in the User
Directory.

The VMLAN statement (4.6.3, “The VMLAN statement” on page 98) contains a
MACPREFIX parameter that enables the administrator to specify a three-byte
manufacturer ID prefix for all MAC addresses in this z/VM system. The VMLAN
parameter MACIDRANGE controls the range of identifiers that can be used by
CP when generating the unique identifier component of a virtual NIC’s MAC
address.

In the User Directory, a NICDEF statement is added to each guest connected to
the VSWITCH. The optional MACID parameter of NICDEF enables the
administrator to specify a unique identifier that appends to the MACPREFIX to
form a unique MAC address for that guest. If MACID is omitted, CP generates a
unique identifier based on the range specified in the VMLAN MACIDRANGE
parameter. If you specify your own MACID value in the NICDEF, and the MACID

 Chapter 4. Networking Overview 127

is already in use, the adapter is not be created, and you need to remove the
conflicting device or select a different MACID.

These locally generated MAC addresses are visible across the physical portion
of the LAN segment. In our test, we specified the default MACPREFIX of 020000
on the VMLAN statement. This is not a good idea in your own datacenter, but it
was sufficient for our tests.

4.10.2 Test overview
Our sample test environment has two sample customers who could be just two
departments of the same company with a Web application available on the
Internet. One customer requires two load-balanced Web servers, and the other
has just one. Also, one customer requires that their Web server is behind a
firewall; the other does not. We attempt to convince this customer at a later time
that a firewall should be a requirement! Our example Web hosting company
stores their Web pages on a common file server. Our company also requires a
separate administrative network that is connected to each server and is used for
administration of the Linux servers, back ups, software installation, and so forth.
This administrative network is also protected by firewalls to prevent one
customer from accessing the other’s servers.

We want to build this environment using a combination of virtual Linux servers
and real servers. The decision of when to use a virtual versus a real server
depends on the usage of the server, its utilization, software and hardware
support, and so on. Our configuration gives us the freedom of moving a server
function from a real to a virtual server or vice versa, due to the flexibility of our
networking options.

Figure 4-35 on page 129 is a logical diagram of our network.

128 Linux for IBM System z9 and IBM zSeries

Figure 4-35 Example test network - logical view

The physical implementation is shown in Figure 4-36.

 Chapter 4. Networking Overview 129

Figure 4-36 Example test network: physical view

There are many virtual LANS (VLANs) defined. Table 4-14 defines the purpose
of each one. A numbering scheme was used for the VLAN IDs to make the
management and usage of each one more clear. VLAN IDs in the range 101-199
are Internet accessible, 201-299 are only accessible from inside or private
networks, and 301-399 are used between firewalls and administrative interfaces
of the servers.

Table 4-14 Example network VLAN definitions

VLAN id Base IP and mask Usage

Internet facing networks

VLAN 101 192.168.1.0/24 “Customer A” Internet addresses

VLAN 102 192.168.2.0/24 “Customer B” Internet addresses

Interconnection networks

VLAN 201 10.1.251.0/24 Administrative access

130 Linux for IBM System z9 and IBM zSeries

IP addresses and routing
We used the Internet standard private IP ranges for our entire test network, with
the assumption that addresses starting with 192.168 represent Internet facing
addresses and addresses starting with 10.1 represent internal transport or
administrative addresses. Table 4-15 documents the IP address assignments.
Static routes are used to direct the administrative access through the proper
interface. See Table 4-16 on page 132 for a list of the routing assignments. All IP
addresses ending in 250 are the assigned to the external access router which is
not shown in the table.

Table 4-15 Example network IP addresses

VLAN 202 10.1.252.0/24 Intermediate access

Administrative access networks

VLAN 301 10.1.1.0/24 “Customer A” back end network

VLAN 302 10.1.2.0/24 “Customer B” back end network

IP name Interface IP address VLAN Usage

custalb1 eth0
eth0:0

192.168.1.1
192.168.1.2

101
101

External load balancer

custaweb1 eth0
eth1

192.168.1.3
10.1.1.1

101
301

Customer A web server 1

custaweb2 eth0
eth1

192.168.1.4
10.1.1.2

101
301

Customer A web server 2

extfw1 eth0
eth1

10.1.252.1
192.168.2.5

202
102

Customer B external firewall

custbweb1 eth0
eth1

192.168.2.1
10.1.2.1

102
301

Customer B web server

itsofw1 eth0
eth1

10.1.251.1
10.1.1.5

201
301

Customer A administrative
firewall

itsofw2 eth0
eth1

10.1.251.2
10.1.2.5

201
302

Customer A administrative
firewall

fileserv1 vlan301
vlan302

10.1.1.10
10.1.2.10

301
302

File server with trunk access

VLAN id Base IP and mask Usage

 Chapter 4. Networking Overview 131

Table 4-16 Routing table

4.10.3 External devices
Our test environment used a Cisco Catalyst 6509 switch that has VLAN and
routing support.

The servers External Load balancer A and External FW (firewall) are devices
external to z/VM. They could be either commercially available, off-the-shelf
devices dedicated to this function or they could be general purpose servers
programmed to perform this function. In our case, they were identical desktop
Personal Computers loaded with SUSE Linux SLES 9 and programmed to
perform different roles. Their configuration is described later.

4.10.4 z/VM system configuration
Our test network required at a minimum one connection from an OSA-Express
port to a trunk port on the physical switch. See the description of this type of port
in “Trunk ports” on page 111. We also required back up network connections, so
we used two OSA ports connected to two switch trunk ports. The majority of our
virtual servers connect to two different subnets, two different VLANs, so two
virtual switches are required to implement the required VLAN access restrictions.
Because we have two OSA ports and two Virtual Switches, it is logical to assign
one OSA port as the primary interface to one switch and the other OSA port as
the primary to the other. This way both ports are utilized, but at the same time
both are available for backup. If a single OSA port cannot handle all of the

IP name Network Netmask Gateway Interface

custalb1 Default n/a 192.168.1.250a

a. This address is defined on the access router outside of the test network.

eth0

custaweb1 10.1.0.0
Default

255.255.0.0
n/a

10.1.1.5
192.168.1.250a

eth1
eth0

custaweb2 10.1.0.0
Default

255.255.0.0
n/a

10.1.1.5
192.168.1.250a

eth1
eth0

extfw1 Default n/a 10.1.252.250a eth0

custbweb1 10.1.0.0
Default

255.255.0.0
n/a

10.1.2.5
192.168.2.250a

eth1
eth0

itsofw1 Default n/a 10.1.251.250a eth0

itsofw2 Default n/a 10.1.251.250a eth0

fileserv1 Default n/a 10.1.1.5 vlan301

132 Linux for IBM System z9 and IBM zSeries

network traffic for your environment during a failure of one of the ports, then
additional OSA ports are needed for backup.

The device addresses for our OSA ports are 2D40 and 2E40, with 2D43 and
2E43 as the address of the backup devices. As described in “Hardware
configuration” on page 70, each OSA port actually uses three device addresses.

Defining Virtual Switches
One or more VSWITCH controller machines are required to be operating to use a
Virtual Switch, so make sure the tasks described in 4.9.2, “Configure controller
service machines” on page 121 have been completed. We added statements to
our SYSTEM CONFIG file to define our Virtual Switches during system start up.
See “Defining a VSWITCH” on page 124 for the syntax of the DEFINE command.
Here are the lines from our SYSTEM CONFIG file:

Define Vswitch VSWTCHN1 Rdev 2D40 2E43 Ethernet VLAN 1 Porttype ACCESS
Define Vswitch VSWTCHN2 Rdev 2E40 2D43 Ethernet VLAN 1 Porttype ACCESS

Notice that we have specified Ethernet for Layer 2 mode. The default VLAN ID is
1, which matches the native VLAN ID of our switch. And the default connection is
through an access port. A VSWITCH can also be defined dynamically with a CP
DEFINE command. In our example, the syntax of the command is the same as the
SYSTEM CONFIG statement.

Another line that should be added to the SYSTEM CONFIG file is a VMLAN
statement. This is to ensure that the virtual MAC addresses created in the z/VM
system are unique in your network. See “Planning for unique MAC addresses” on
page 127 for further information. In our test system we added this line:

VMLAN MACPREFIX 020000

This is also the default value if no VMLAN MACPREFIX statement is in the
SYSTEM CONFIG file. We recommend that you do not use this default value in
your systems, but assign a unique number to each one. In our example, our
system is the only one on the isolated network.

Defining virtual Linux servers
Our example network has six virtual Linux servers in it. The VM user ID, host
name, VLAN access, and usage of each server is shown in Table 4-17

Table 4-17 VM user id list

VM User id Host name VLANs Usage

LNXNFW1 itsofw1 201
301

Admin firewall A

 Chapter 4. Networking Overview 133

The column of VLAN numbers is the VLAN IDs that each host is connected to, as
also shown in Figure 4-35 on page 129.

Each user ID except LNXNFS1 is connected to both Virtual Switches. The
directory entry for each user has the following lines:

NICDEF 0600 TYPE QDIO LAN SYSTEM VSWTCHN1
NICDEF 0610 TYPE QDIO LAN SYSTEM VSWTCHN2

User id LNXNFS1 only connects to VSWTCHN2, using this line in its directory:

NICDEF 0600 TYPE QDIO LAN SYSTEM VSWTCHN2

Defining VLAN permissions
Only VM user IDs that have been granted permission are allowed to connect a
virtual NIC to a Virtual Switch. Included in this permission is the type of access
(ACCESS or TRUNK) and the permitted VLAN id (ACCESS port) or ids (TRUNK
port.) Each user ID and Virtual Switch requires a separate command or
definition. There are three ways to define this access: SYSTEM CONFIG file
statements, CP commands, or RACF/VM permissions.

SYSTEM CONFIG file
The following lines in Example 4-1 are added after the Define Vswitch lines:

Example 4-1 VLAN permissions in the SYSTEM CONFIG file

Modify Vswitch VSWTCHN1 Grant LNXNFW1 Porttype ACCESS VLAN 201
Modify Vswitch VSWTCHN2 Grant LNXNFW1 Porttype ACCESS VLAN 301
Modify Vswitch VSWTCHN1 Grant LNXNFW2 Porttype ACCESS VLAN 201
Modify Vswitch VSWTCHN2 Grant LNXNFW2 Porttype ACCESS VLAN 302
Modify Vswitch VSWTCHN1 Grant LNXNWA1 Porttype ACCESS VLAN 101
Modify Vswitch VSWTCHN2 Grant LNXNWA1 Porttype ACCESS VLAN 301

LNXNFW2 itsofw2 201
302

Admin firewall B

LNXNWA1 custaweb1 101
301

Customer A web server 1

LNXNWA2 custaweb2 101
301

Customer A web server 2

LNXNWB1 custbweb1 102
302

Customer B web server 1

LNXNFS1 fileserv1 301
302

Common file server

VM User id Host name VLANs Usage

134 Linux for IBM System z9 and IBM zSeries

Modify Vswitch VSWTCHN1 Grant LNXNWA2 Porttype ACCESS VLAN 101
Modify Vswitch VSWTCHN2 Grant LNXNWA2 Porttype ACCESS VLAN 301
Modify Vswitch VSWTCHN1 Grant LNXNWB1 Porttype ACCESS VLAN 102
Modify Vswitch VSWTCHN2 Grant LNXNWB1 Porttype ACCESS VLAN 302
Modify Vswitch VSWTCHN2 Grant LNXNFS1 Porttype TRUNK VLAN 301 302

These permissions are automatically granted during every VM system IPL.

CP commands
These commands can be executed as part of the system start up process, if the
SYSTEM CONFIG file statements are not used, or used to dynamically set up
the test environment.

Example 4-2 VLAN permissions as CP commands

CP SET VSWITCH VSWTCHN1 GRANT LNXNFW1 PORTTYPE ACCESS VLAN 201
CP SET VSWITCH VSWTCHN2 GRANT LNXNFW1 PORTTYPE ACCESS VLAN 301
CP SET VSWITCH VSWTCHN1 GRANT LNXNFW2 PORTTYPE ACCESS VLAN 201
CP SET VSWITCH VSWTCHN2 GRANT LNXNFW2 PORTTYPE ACCESS VLAN 302
CP SET VSWITCH VSWTCHN1 GRANT LNXNWA1 PORTTYPE ACCESS VLAN 101
CP SET VSWITCH VSWTCHN2 GRANT LNXNWA1 PORTTYPE ACCESS VLAN 301
CP SET VSWITCH VSWTCHN1 GRANT LNXNWA2 PORTTYPE ACCESS VLAN 101
CP SET VSWITCH VSWTCHN2 GRANT LNXNWA2 PORTTYPE ACCESS VLAN 301
CP SET VSWITCH VSWTCHN1 GRANT LNXNWB1 PORTTYPE ACCESS VLAN 102
CP SET VSWITCH VSWTCHN2 GRANT LNXNWB1 PORTTYPE ACCESS VLAN 302
CP SET VSWITCH VSWTCHN2 GRANT LNXNFS1 PORTTYPE TRUNK VLAN 301 302

RACF/VM permissions
We recommend that your VM systems use an external security manager,
especially for production systems. Starting with z/VM 5.1, RACF/VM can control
access to a VSWITCH. A complete description of how to set up RACF on your
system is outside the scope of this book. However, if you have it set up, see
Figure 4-37 on page 136 for the commands to enable VSWITCH access in our
environment.

 Chapter 4. Networking Overview 135

Figure 4-37 RACF/VM commands for a Virtual Switch

More information about how to configure RACF/VM to protect Guest LANs and
Virtual Switches can be found in the publication RACF V1R10 Security
Administrator’s Guide, SC28-1340.

4.10.5 Configuring Linux
We installed SUSE Linux SLES 8 from the installation CDs, and also service
pack 4 using the installation instructions found on the CDs. We selected the
“Minimum System” and added these extra packages on some servers:

Web server Packages apache, expat, and mm
File server Packages nfs-utils and vlan

Also, the latest available kernel from SUSE Linux at the time of this writing was
obtained and installed. This is package k_deflt-2.4.21-281.s390.rpm.

RACF
RDEFINE VMLAN SYSTEM.VSWTCHN1 UACC(NONE)
RDEFINE VMLAN SYSTEM.VSWTCHN2 UACC(NONE)
RDEFINE VMLAN SYSTEM.VSWTCHN1.0101 UACC(NONE)
RDEFINE VMLAN SYSTEM.VSWTCHN1.0102 UACC(NONE)
RDEFINE VMLAN SYSTEM.VSWTCHN1.0201 UACC(NONE)
RDEFINE VMLAN SYSTEM.VSWTCHN2.0301 UACC(NONE)
RDEFINE VMLAN SYSTEM.VSWTCHN2.0302 UACC(NONE)
PERMIT SYSTEM.VSWTCHN1 CLASS(VMLAN) ACCESS(UPDATE) ID(LNXNFW1 LNXNFW2 LNXNWA1 LNXNWA2
LNXNWB1)
PERMIT SYSTEM.VSWTCHN1.0201 CLASS(VMLAN) ACCESS(UPDATE) ID(LNXNFW1)
PERMIT SYSTEM.VSWTCHN1.0201 CLASS(VMLAN) ACCESS(UPDATE) ID(LNXNFW2)
PERMIT SYSTEM.VSWTCHN1.0101 CLASS(VMLAN) ACCESS(UPDATE) ID(LNXNWA1)
PERMIT SYSTEM.VSWTCHN1.0101 CLASS(VMLAN) ACCESS(UPDATE) ID(LNXNWA2)
PERMIT SYSTEM.VSWTCHN1.0102 CLASS(VMLAN) ACCESS(UPDATE) ID(LNXNWB1)
PERMIT SYSTEM.VSWTCHN2 CLASS(VMLAN) ACCESS(UPDATE) ID(LNXNFW1 LNXNFW2 LNXNWA1 LNXNWA2
LNXNWB1 LNXNFS1)
PERMIT SYSTEM.VSWTCHN2.0301 CLASS(VMLAN) ACCESS(UPDATE) ID(LNXNFW1)
PERMIT SYSTEM.VSWTCHN2.0302 CLASS(VMLAN) ACCESS(UPDATE) ID(LNXNFW2)
PERMIT SYSTEM.VSWTCHN2.0301 CLASS(VMLAN) ACCESS(UPDATE) ID(LNXNWA1)
PERMIT SYSTEM.VSWTCHN2.0301 CLASS(VMLAN) ACCESS(UPDATE) ID(LNXNWA2)
PERMIT SYSTEM.VSWTCHN2.0302 CLASS(VMLAN) ACCESS(UPDATE) ID(LNXNWB1)
PERMIT SYSTEM.VSWTCHN2.0301 CLASS(VMLAN) ACCESS(UPDATE) ID(LNXNFS1)
PERMIT SYSTEM.VSWTCHN2.0302 CLASS(VMLAN) ACCESS(UPDATE) ID(LNXNFS1)
END

136 Linux for IBM System z9 and IBM zSeries

The Linux qeth driver is configured for Layer 2 support. The lines in
/etc/chandev.conf we added for our network are shown in Figure 4-38. See
“Using OSA-Express with Linux” on page 71 for an explanation of these
parameters. The parameter for Layer 2 support has been highlighted in the
example.

Figure 4-38 Configuration file /etc/chandev.conf

The Linux network device configuration can be done with YaST or by creating or
editing the files in /etc/sysconfig/network.

4.10.6 Setting up the file server
The file server demonstrates a trunk port connection to a Virtual Switch. We
described trunk port connections to switches in “Trunk ports” on page 111. A
trunk port connection from a Linux server to a VSWITCH is also possible
connected to up to 4 VLANs. Linux must be configured in this case with a VLAN
aware connection. On SUSE Linux, the VLAN package is required. We set up the
connection manually to test it, then modified the configuration files so that it
would start automatically, as described in the following paragraphs.

Note: While this installation is for testing layer 2 support, we used a layer 3
(VSWITCH type IP) network connection for the initial install. We did not
investigate if layer 2 support is available in the SUSE Linux installation image.

noauto;qeth0,0x0600,0x0601,0x0602;add_parms,0x10,0x0600,0x0602,layer2
qeth1,0x0610,0x0611,0x0612;add_parms,0x10,0x0610,0x0612,layer2

Note: Our test network uses only Linux servers with the 2.4 kernel, because
Layer 2 support in the 2.6 kernel was not available in a Linux distribution at the
time this book was written. The Layer 2 support for 2.6 kernels is documented
in the book Linux on zSeries, Device Drivers, Features, and Commands,
March 23, 2005, SC33-8281. The instructions for defining a qeth device for
the 2.6 kernel has been described in “Linux 2.6 kernel” on page 73. In addition
to those instructions and before the devices are placed online, enable layer 2
mode with these commands:

echo 1 >/sys/devices/qeth/0.0.0600/layer2
echo 1 >/sys/devices/qeth/0.0.0610/layer2

Then bring the device online as instructed with the command:

echo 1 >/sys/devices/qeth/0.0.0600/online
echo 1 >/sys/devices/qeth/0.0.0610/online

 Chapter 4. Networking Overview 137

Manual network configuration
VLAN support is usually built as a module called 8021q.o. Use the insmod or
modprobe command to load the module before attempting any operations to
configure or use VLANs. The following shows how to load the module using the
modprobe command:

modprobe 8021q

You do not need to load a module if your kernel includes the VLAN support in the
kernel, rather than separately in a module.

When the module is loaded, you can see the following messages in your system
log or dmesg output:

802.1Q VLAN Support v1.8 Ben Greear <greearb@candelatech.com>
All bugs added by David S. Miller <davem@redhat.com>

The physical interface used to connect to a VLAN must be activated prior to
configuring any VLAN interfaces. For our system, the physical interface is eth0.
We are only using this connection for VLAN aware traffic, so we configure a
dummy IP address on it. You can use the address 0.0.0.0 as a valid dummy
address (in fact, the IP configuration scripts in SLES 8 seemed to recognize what
we were doing when we used 0.0.0.0, and our configuration was very easy). The
command is:

ifconfig eth0 0.0.0.0 mtu 1492 up

Configure a VLAN interface
We created our VLAN virtual interface using the vconfig command. Apart from
creating and deleting virtual interfaces, the vconfig command allows you to
control the operation of the VLAN interfaces. For instance, you can specify the
priority of packets on your VLANs, which changes the relative priority of packets
for different VLANs.

The vconfig command has settings for the default method in which the virtual
devices are named. SLES 8 specifies the format VLAN_PLUS_VID_NO_PAD in its
scripts which creates interface names as “vlanxxxx”, where xxxx is the vlan
number with no leading zeros. The following commands create virtual interfaces
for VLANs 301 and 302 for the eth0 interface:

vconfig set_name_type vlan_plus_vid_no_pad
vconfig add eth0 301
vconfig add eth0 302

We can examine the output from the ifconfig -a command or display the file
/proc/vlan/config to see if the command worked. See the contents of this file in
Figure 4-39 on page 139.

138 Linux for IBM System z9 and IBM zSeries

Figure 4-39 Display the VLAN device configuration

Bring up the VLAN interface
The VLAN interface added using vconfig supports the usual Linux interface
configuration commands such as ip and ifconfig. We configured the virtual
interface in the same way as any other network interface on your system. The
following command configures the vlan301 virtual interface on eth0 with the IP
address 10.1.1.10:

ifconfig vlan301 10.1.1.10 netmask 255.255.255.0 up

If the iproute2 utility is installed on your system, you can use the ip command to
configure the interface instead. You would use these ip commands to get the
same result as the ifconfig command above:

ip addr add 10.1.1.10/24 dev vlan301
ip link set vlan301 up

Automatic network configuration
VLAN support is a fairly recent addition to Linux. Configuring VLANs has been a
manual process because the network configuration scripts provided with most
distributions were not VLAN-aware. SUSE Linux has set up their network scripts,
however, so as long as you can use the right names for your VLAN interfaces,
the system will set up your VLAN interfaces automatically.

cat /proc/net/vlan/config
VLAN Dev name | VLAN ID
Name-Type: VLAN_NAME_TYPE_PLUS_VID_NO_PAD
vlan301 | 301 | eth0
vlan302 | 302 | eth0

Tip: The iproute2 utility by Alexey Kuznetsov, which provides the ip command,
allows a great degree of flexibility in configuring the Linux IP stack. Many
distributors now include it by default, and have rewritten their network
configuration scripts using iproute2 instead of the traditional IP configuration
commands such as route and ifconfig. In addition, iproute2 provides the
facilities to control Linux advanced routing features like multiple route tables,
traffic shaping, and policy routing.

 Chapter 4. Networking Overview 139

To configure a VLAN on SLES8, create a file in the /etc/sysconfig/network
directory called ifcfg-vlanX, replacing X with the VLAN number you are
configuring.

In our test configuration, we need three configuration files. One is for the physical
interface (eth0) and the other two are for the VLAN configuration. Each
configuration file is shown in an example. File ifcfg-eth0 for the physical interface
is shown in Figure 4-40, and for the VLANs, file ifcfg-vlan301 is shown in
Figure 4-41 on page 141, and file ifcfg-vlan302 is shown in Figure 4-42 on
page 141.

Figure 4-40 File ifcfg-eth0

Restriction: In addition to the naming issue, the configuration requires that
the vconfig per_kernel option be set to on. This means that VLAN numbers
have scope across the kernel, rather than just per interface. If you need the
ability to have the same VLAN numbers on different real interfaces
representing different VLANs, you will not be able to use SUSE’s configuration
method and will have to create your own.

VLAN numbers should be allocated universally, so it is unlikely that this
restriction will cause a problem for you.

Important: The name of the ifcfg file you create is critical. If the file is named
incorrectly, (more accurately, if the name you pass to the ifup script, which
has to match the last part of the ifcfg file name, is not correct), the SUSE Linux
network configuration processing will not call the correct script to configure the
interface.

BOOTPROTO="static"
STARTMODE="onboot"
IPADDR="0.0.0.0"
MTU="1492"

140 Linux for IBM System z9 and IBM zSeries

Figure 4-41 File ifcfg-vlan301

Figure 4-42 File ifcfg-vlan302

The ETHERDEVICE field is an additional variable for VLAN configurations. This
is used to instruct vconfig the physical interface on which to configure the VLAN.
The STARTMODE field works the same as for physical interfaces, allowing you
to add your VLAN interfaces to your network configuration and have them
activated automatically at boot-time.

When the files have been created, we can start the interfaces by issuing ifup
commands with the interface names as the parameters. The following
commands start all the interfaces:

ifup eth0
ifup vlan301
ifup vlan302

4.10.7 NFS server configuration
The purpose of this server is to be a file server for the Web servers and to
demonstrate a trunk port connection to a virtual switch. In our example, we used
NFS (network file system) to host the Web content and allow remote access by
the Web servers. The directories shown in Figure 4-43 on page 142 were
created to copy the default directory structure of an apache web server for each
of our customers, A and B. The document root, base directory, for the Web
server of customer A is /www/custa, and the document root for customer B is
/www/custb.

ETHERDEVICE="eth0"
BOOTPROTO="static"
STARTMODE="onboot"
IPADDR="10.1.1.10"
NETMASK="255.255.255.0"
NETWORK="10.1.1.0"
BROADCAST="10.1.1.255"

ETHERDEVICE="eth0"
BOOTPROTO="static"
STARTMODE="onboot"
IPADDR="10.1.2.10"
NETMASK="255.255.255.0"
NETWORK="10.1.2.0"
BROADCAST="10.1.2.255"

 Chapter 4. Networking Overview 141

Figure 4-43 File server directory structure

We created the file /etc/exports with the contents shown in Figure 4-44 to make
the document root directories available to the respective Web servers.

Figure 4-44 File /etc/exports

The NFS server was started manually for testing, then configured to start
automatically when Linux started. The following commands in Example 4-3 were
used:

Example 4-3 Starting the NFS server

/etc/init.d/portmap start
/etc/init.d/nfslock start
/etc/init.d/nfsserver start
chkconfig portmap on
chkconfig nfslock on
chkconfig nfsserver on

4.10.8 Setting up the Web servers
The Web servers run apache to serve Web pages to the Internet. The Web
content is stored on the file server and exported to the Web server using NFS.
The apache configuration of each server is identical, except for the directory it

/www
/www/custa
/www/custa/htdocs
/www/custa/cgi-bin
/www/custa/icons
/www/custa/icons/small
/www/custb
/www/custb/htdocs
/www/custb/cgi-bin
/www/custb/icons
/www/custb/icons/small

See the exports(5) manpage for a description of the syntax of this file.
This file contains a list of all directories that are to be exported to
other computers via NFS (Network File System).
This file used by rpc.nfsd and rpc.mountd. See their manpages for details
on how make changes in this file effective.
/www/custa 10.1.1.0/255.255.255.0(ro,sync,root_squash)
/www/custb 10.1.2.0/255.255.255.0(ro,sync,root_squash)

142 Linux for IBM System z9 and IBM zSeries

accesses on the file server. The servers for Customer A receive Web
connections from a load balancer, so their network configuration is different from
the Customer B server. The changes required for this set up are described as
part of the Load Balancer configuration, in 4.10.10, “Setting up the load balancer”
on page 145. In this section, we only show the set up of the Customer B Web
server.

Because the Web content is stored on the file server, the Web server must
access the file server using an NFS client. The default document root (the
directory where it serves files from) for the apache Web server software in SLES
8 is /srv/www, so we mount the NFS file system at that directory. To
automatically mount the file system every time Linux starts, we add a line to the
/etc/fstab file. We added the following line to our fstab:

10.1.2.10:/www/custb /srv/www nfs ro,rsize=8192,wsize=8192,soft 0 0

The nfs mount options are recommended in the man page for nfs (from the man
nfs command.) The final steps are to configure the system to start the required
services automatically, manually start the services, and mount the file system.
We used the following commands:

chkconfig portmap on
chkconfig nfs on
/etc/init.d/portmap start
mount -a

The -a option on mount instructs the mount command to mount any unmounted
file systems. Entering the command mount shows it mounted successfully, as
hilighted in Figure 4-45.

Figure 4-45 Mounted filesystems

All that is left to do is start apache and also configure it to start automatically:

chkconfig apache on
/etc/init.d/apache start

mount
/dev/dasdb1 on / type ext3 (rw)
proc on /proc type proc (rw)
devpts on /dev/pts type devpts (rw,mode=0620,gid=5)
/dev/dasdc1 on /usr type ext3 (rw)
shmfs on /dev/shm type shm (rw)
10.1.2.10:/www/custb on /srv/www type nfs (ro,rsize=8192,wsize=8192,soft,addr=10.1.2.10)

 Chapter 4. Networking Overview 143

4.10.9 Setting up the firewalls
Our test uses Linux servers as firewall devices. Linux has a built in packet
filtering capability in the kernel that is configured using the iptables command. A
Linux based packet filtering firewall was sufficient for our test network, but it might
not be sufficient for all installations. Special purpose firewall devices are available
that implement more sophisticated firewalls. This includes specialized virtual
firewalls that can run on zSeries under z/VM. One goal of our test was to show
that both physical and virtual firewalls can be used together in a single
implementation.

A firewall is really both a packet filter and a router because it forwards packets
from one subnet to another. After the basic network configuration is up and
working, our first task is to set up the servers to forward packets correctly, and
then set up the packet filter. SLES 8 and SLES 9 will enable forwarding during
the boot process if the variable IP_FORWARD is set to yes in the file
/etc/sysconfig/sysctl. After this variable is changed, we entered the following
command to make it active.

/etc/init.d/boot.ipconfig start

This command is automatically run as part of the boot process, but we can run it
manually to change the kernel setting for forwarding.

In order to quickly create a test firewall, we used the SuSEfirewall2 package at
level 3.1 supplied with SUSE Linux. Only a few of the parameters are changed in
the configuration file to create a working firewall. The configuration file is named
/etc/sysconfig/SuSEfirewall2. This file contains many comments to explain the
parameters and give examples. Table 4-18 lists which parameters we changed
and why we made the changes.

Table 4-18 SuSEfirewall2 parameters

Parameter name and value Comments

FW_DEV_EXT="eth0" This is the network interface that connects
to the untrusted network, in other words,
the Internet.

FW_DEV_DMZ="eth1" This is the interface that connects to a
partially trusted network. This network
contains our servers and limited access is
allowed from the untrusted network.

FW_ROUTE="yes" Configure the kernel to forward packets.

FW_MASQ_DEV="" Set this variable to null because we are
not using masquerading.

144 Linux for IBM System z9 and IBM zSeries

To configure the firewall at boot time, enter this command:

chkconfig SuSEfirewall2 on

Start the firewall with the following command:

/etc/init.d/SuSEfirewall2 start

The firewall logs both successful and blocked connections on the console and in
the /var/log/messages file. Check this file to see if the firewall is working
correctly.

4.10.10 Setting up the load balancer
We set up the load balancer (also called a Director) using the instructions found
at the Linux Virtual Server (LVS) project web site at:

http://www.linuxvirtualserver.org/

LVS ties a group of server machines together using various network and
scheduling techniques, so that they present a single server image to clients
requesting a service. All traffic for the server is initially sent to a single load
balancing and scheduling machine, which it then sends to back-end servers for
processing.

An LVS installtion implements one of three network techniques:

� Network address translation (LVS-NAT)

Packets arriving at the LVS Director (load balancer) are address-translated to
the IP address of one of the back-end servers for processing by the
application. When the response is generated, the director reverses the
address translation so that the load balancer appears to have processed the
request. Both the incoming and outgoing packets are processed by the
director.

� IP tunneling (LVS-TUN)

Packets arriving at the LVS Director are “tunnelled” using IP encapsulation to
a back-end server, which processes the request. The back-end server
responds back to the client directly. A description of implementing this
method on a zSeries Linux server can be found in the IBM Redbook Linux on
IBM ̂zSeries and S/390: Distributions, SG24-6264.

FW_TRUSTED_NETS="10.1.0.0/16" Define our trusted network.

FW_FORWARD="0/0,192.168.2.0/24,tcp,8
0"

Forward http requests from anywhere to
our web servers.

Parameter name and value Comments

 Chapter 4. Networking Overview 145

http://www.linuxvirtualserver.org/

� Direct routing (LVS-DR)

Packets arriving at the LVS Director are redirected to one of the back-end
boxes by changing only the MAC address on the incoming packet and
forwarding it to the back-end server. The back-end server responds back to
the client directly. This method requires that the director and the back-end
servers are on the same LAN segment.

For our network, we set up an LVS-DR director. Prior to the Layer 2 support in
the OSA-Express and the Virtual Switch, it was not possible to use the Direct
Routing method for load balancing on a zSeries server. SUSE Linux includes the
support necessary for load balancing in their kernel and in their distribution. The
additional packages required on the director are ipvsadm and mon. The Web
servers do not require any additional packages; the support is already included in
the kernel.

LVS direct routing
The director requires an extra IP address assigned to it which is called the virtual
IP (VIP.) The back-end server that actually processes a request is called a real
server. The IP address of a real server is called the real IP (RIP.) A director
works by accepting a connection to its VIP for a defined service, such as port 80
for a Web server, and forwarding that request to a real server to be processed. If
there are multiple real servers, then the director must use some kind of selection
algorithm to select which server to send the request to. The real server must be
configured to accept a request sent to the VIP and after processing it sends the
response directly back to the client.

LVS-DR implements this by accepting the connection request, selecting a real
server, changing the destination MAC address of the Ethernet frame to one of
the real servers, and then sending that frame with no other modifications to that
server. This is a very efficient operation, because very little processing of the
received frame is done by the director. The real server accepts the request as
though it was sent directly to it and processes it as normal.

In order for a real server to accept the request forwarded from the director, it
must have the VIP configured as an alias IP on an interface. But, we do not want
the real server to respond to ARP requests for the VIP; the director should do
that. So we create the VIP as an alias on the loopback interface and instruct the
Linux kernel to hide the VIP by never responding to an ARP request.

LVS Scheduling algorithms
As we write this book, the LVS project has defined 10 scheduling algorithms for
load balancing, most of which are variations on three primary selections:

146 Linux for IBM System z9 and IBM zSeries

� Round-Robin Scheduling

This algorithm directs the connection to a different server in a round-robin
manner. All servers are consider equal. A variation on this algorithm assigns
a scheduling weight to each server.

� Least-Connection Scheduling

This algorithm directs the connection to the server with the least number of
connections. It must keep track of active connections for each real server.
There are variations of this algorithm that assign weights to each server or
does processing based on the network delays to each server.

� Hashing

The server is selected based on a hash table lookup based on the source or
destination IP address.

In our example, we use round-robin scheduling.

Setting up the Web servers
Connection requests from users are addressed to the VIP on the director which
in turn are redirected to the real servers, our Web servers. Therefore, the Web
servers must have an interface configured with the VIP address so that they will
accept packets addressed to the VIP. But we cannot just assign the VIP as an
alias IP on the primary interface, because the Web server would attempt to
respond to ARP requests that must only be responded to by the director server.
Therefore, we must configure Linux to hide the VIP from ARP requests. This is
done by using the loopback interface and setting some parameters in the kernel.

The alias IP is put on the loopback interface so that we do not prevent the
primary interface from responding to ARP requests. We created an interface
named lo:1 and configured it with a file named
/etc/sysconfig/network/ifcfg-lo:1 with this content:

BOOTPROTO="static"
STARTMODE="onboot"
IPADDR="192.168.1.2"
NETMASK="255.255.255.255"
POST_UP_SCRIPT=hidearp

Two lines have been emphasized. The IPADDR is the VIP of the director. The
POST_UP_SCRIPT is a script name found in the directory
/etc/sysconfig/network/scripts that is called after the interface is activated. In the

Note: The documentation for the ifcfg configuration file variables is found in
the ifcfg man page. Enter man 8 ifcfg to read it.

 Chapter 4. Networking Overview 147

script, we set kernel parameters to hide the loopback interface from ARP
requests. Here is the contents of this script:

echo 1 >/proc/sys/net/ipv4/conf/all/hidden
echo 1 >/proc/sys/net/ipv4/conf/lo/hidden

After creating this script, be sure to make it executable.

To test the setup, enter this command:

ifup lo:1

See Figure 4-46 for a listing of the commands issued on our system to verify the
set up.

Figure 4-46 Verification of the web server virtual interface

Setting up the Director
On this Linux server we set up the VIP as an alias on the primary interface. We
do want this server to respond to ARP requests for the VIP address. In SUSE
Linux SLES 9, both the primary and alias IP address can be configured in one
file. Example 4-4 is the contents of our /etc/sysconfig/network/ifcfg-eth0 file:

Example 4-4 The /etc/sysconfig/network/ifcfg-eth0 file

BOOTPROTO='static'
BROADCAST='192.168.1.255'
IPADDR='192.168.1.1'
MTU='1492'
NETMASK='255.255.255.0'
NETWORK='192.168.1.0'
REMOTE_IPADDR=''
STARTMODE='onboot'
IPADDR_0='192.168.1.2'
NETMASK_0='255.255.255.0'

The variable IPADDR defines the address of the primary interface. The variable
IPADDR_0 defines the IP address of the VIP address.

ifconfig lo:1
lo:1 Link encap:Local Loopback
 inet addr:192.168.1.2 Mask:255.255.255.255
 UP LOOPBACK RUNNING MTU:16436 Metric:1
cat /proc/sys/net/ipv4/conf/all/hidden
1
cat /proc/sys/net/ipv4/conf/lo/hidden
1

148 Linux for IBM System z9 and IBM zSeries

The ipvsadm command is the command line interface to the kernel based load
balancing code. SUSE Linux supplies this module and scripts to save and
restore the configuration. We manually entered our configuration the first time
and then saved it so that it was set up every time Linux started.

Table 4-19 explains the options of the ipvsadm command used in our
configuration.

Table 4-19 Options for the ipvsadm command

The commands we entered are in Example 4-5:

Example 4-5 Using the ipvsadm command

ipvsadm -A -t 192.168.1.2:80 -s rr
ipvsadm -a -t 192.168.1.2:80 -r 192.168.1.3:80 -g -w 1
ipvsadm -a -t 192.168.1.2:80 -r 192.168.1.4:80 -g -w 1
/etc/init.d/ipvsadm save
chkconfig ipvsadm on

:The last two commands save our configuration as file /etc/ipvsadm.rules
(Example 4-6) and configure the rules to be automatically loaded when Linux
starts. We checked our settings by entering the ipvsadm command without any
arguments:

Example 4-6 Saving the /etc/ipvsadm.rules

ipvsadm
IP Virtual Server version 1.2.0 (size=4096)
Prot LocalAddress:Port Scheduler Flags
 -> RemoteAddress:Port Forward Weight ActiveConn InActConn
TCP 192.168.1.2:http rr
 -> 192.168.1.4:http Route 1 0 0
 -> 192.168.1.3:http Route 1 0 0

Option Comment

-A Add a new service

-a Add a real server to the configuration

-s Specify the scheduler to use. We used “rr” for Round Robin

-t Specify a real server and port as host:port

-g Specify the method as LVS-DR (also called gatewaying)

-w Specify the weight of a real server. We did not use a weighted scheduler,
so this is ignored in our configuration.

 Chapter 4. Networking Overview 149

4.10.11 Testing
The first step we did in our testing was to verify our setup of z/VM, starting with
the VSWITCH controller virtual machines. Here is our query in Example 4-7:

Example 4-7 Verifying z/VM setup

q controller
Controller VSWCTL1 Available: YES VDEV Range: * Level 510
 Capability: IP ETHERNET VLAN_ARP
 SYSTEM VSWTCHN1 Primary Controller: * VDEV: 2D40
 SYSTEM VSWTCHN2 Backup Controller: * VDEV: 2D43
Controller VSWCTL2 Available: YES VDEV Range: * Level 510
 Capability: IP ETHERNET VLAN_ARP
 SYSTEM VSWTCHN2 Primary Controller: * VDEV: 2E40
 SYSTEM VSWTCHN1 Backup Controller: * VDEV: 2E43

If your Virtual Switches have not been defined yet, your output will be different.
Next, we queried our Virtual Switches, showing the definition of each switch and
its access list (Example 4-8):

Example 4-8 Querying the Virtual Switches

q vswitch accesslist
VSWITCH SYSTEM VSWTCHN1 Type: VSWITCH Connected: 6 Maxconn: INFINITE
 PERSISTENT RESTRICTED ETHERNET Accounting: OFF
 VLAN Aware Default VLAN: 0001 Default Porttype: Access
 State: Ready
 QueueStorage: 8
 Portname: UNASSIGNED RDEV: 2D40 Controller: VSWCTL1 VDEV: 2D40
 Portname: UNASSIGNED RDEV: 2E43 Controller: VSWCTL2 VDEV: 2E43 BACKUP
 Authorized userids:
 LNXNFW1 VLAN: 0201 Porttype: Access
 LNXNFW2 VLAN: 0201 Porttype: Access
 LNXNWA1 VLAN: 0101 Porttype: Access
 LNXNWA2 VLAN: 0101 Porttype: Access
 LNXNWB1 VLAN: 0102 Porttype: Access
 SYSTEM VLAN: 0001 Porttype: Access
VSWITCH SYSTEM VSWTCHN2 Type: VSWITCH Connected: 6 Maxconn: INFINITE
 PERSISTENT RESTRICTED ETHERNET Accounting: OFF
 VLAN Aware Default VLAN: 0001 Default Porttype: Access
 State: Ready
 QueueStorage: 8
 Portname: UNASSIGNED RDEV: 2E40 Controller: VSWCTL2 VDEV: 2E40
Portname: UNASSIGNED RDEV: 2D43 Controller: VSWCTL1 VDEV: 2D43 BACKUP
 Authorized userids:
 LNXNFS1 VLAN: 0301 0302 Porttype: Trunk
 LNXNFW1 VLAN: 0301 Porttype: Access
 LNXNFW2 VLAN: 0302 Porttype: Access

150 Linux for IBM System z9 and IBM zSeries

 LNXNWA1 VLAN: 0301 Porttype: Access
 LNXNWA2 VLAN: 0301 Porttype: Access
 LNXNWB1 VLAN: 0302 Porttype: Access
 SYSTEM VLAN: 0001 Porttype: Access

Alternative commands are QUERY VSWITCH and QUERY VSWITCH DETAILS. The
DETAILS operand displays information about every connection to the VSWITCH.
The command with no options just displays a summary of the switch definition. If
your system is using RACF/VM to control access to the VSWITCH, the
ACCESSLIST operand will not show any users in the access list. You have to
use the RACF RLIST command to display the access authorizations.

All the Linux servers are brought up and the connections between them verified
using the ping command. We found errors with mistyped IP addresses and
incorrect VLAN assignments that caused failures. After all the connections were
verified, we checked the routing through the firewalls to see if packets could
make the complete round trip. Then the firewall code was started and checks
were done to see if it was passing through the correct packets and blocking the
others. This verified that the basic configuration was correct.

At this point, we were ready to create some simulated network traffic and see
how it reacted to errors. A simple script was created to use the w3m command to
fetch Web pages in a loop to create simulated traffic. The sample script is shown
in Figure 4-47. It retrieves the Web page, prefixes each output line with a time
stamp, and sends the line to standard out. The output of this script can be logged
to check for any gaps when the Web page could not be retrieved. We also
opened ssh sessions to the servers with the administrative IP addresses and ran
commands such as vmstat 1 to generate regular output. And finally, we started
ping to various IP addresses.

Figure 4-47 Fetch web pages in a loop

With all these tests running, we introduced errors. Here is a list of ideas we had
for errors:

1. Stop each Customer A Web server to force the load balancer to fail over.
2. Unplug the network cable from each OSA port.
3. Do a forced logoff of each VSWITCH controller user id.
4. Detach OSA device from the VSWITCH controller user id.

#!/bin/bash
Fetch a web page over and over
while [1 = 1]; do
 w3m -dump $1 2>&1 | awk '{print strftime("%T"), $0}'
 sleep 1s
done

 Chapter 4. Networking Overview 151

5. Deactivate each port on the Cisco switch.
6. Reboot Linux servers and check that all connections come back up.

In each case, the system recovered, usually with a brief outage. Some
connections in some of the tests did not drop, but the connection might have
briefly experienced a slow response. Whether or not there was an outage
depended on the connection (an established connection or an attempt to create
a new one), the direction of the connection (ingoing or outgoing), and how severe
the failure was (for example, the reboot of Linux took longer to recover.) We were
impressed at how well the network connections recovered during our testing.

4.10.12 Recommendations
VSWITCH is a very powerful virtualization solution. It removes the requirement
for an intermediate router between an external LAN and the internal Guest LAN.
This can save significant amounts of CPU cycles if your environment is
moderately to heavily used. VSWITCH supports the IEEE 802.1Q VLAN
standards, which are important to many organizations. The failover capabilities of
VSWITCH are very impressive. With only a minimal amount of effort, it is
possible to configure a highly available networking environment.

VSWITCH provides significant benefits over the older point-to-point technologies
and has more function than the base Guest LAN implementation. For
communications within a single z/VM environment, VSWITCH is a very good
solution.

The Layer 2 Switching support available as part of z/VM V5.1 VSWITCH, is a
very powerful solution that builds on earlier z/VM LAN technology. Running as a
Layer 2 Switch means that Linux guests can exist and operate in the network in
exactly the same way as physical machines. Advanced networks can be created
and supported with interactions of Linux servers both inside and outside of your
zSeries server. Non-IP protocols, such as SNA, IPX™, NetBIOS, and DECnet,
are now supported, as is IPv6, which means that there are more opportunities to
consolidate machines to a z/VM environment.

We recommend that you run VSWITCH running in Layer 2 mode if you have a
requirement to run multiple Linux systems in a z/VM environment. This option is
the current state of the art network virtualization technology for z/VM.

4.11 Summary
Networking options for Linux on zSeries have matured significantly since Linux
first became available on the mainframe in December 1999. From a hardware
perspective over that period, we started with OSA-2 cards, many running at just

152 Linux for IBM System z9 and IBM zSeries

10 Mbps. Since then, we have seen the introduction of OSA-Express 2 10
Gigabit Ethernet Long Reach, OSA-Express Gigabit Ethernet, 1000BASE-T, and
HiperSockets.

We have seen perhaps even greater advances in networking technology in the
virtualized world of z/VM. Originally, apart from a direct connection to a physical
interface, the only methods of connecting Linux guests to each other or to an
external network were through IUCV or virtual channel to channel adapters.
These point-to-point technologies were cumbersome, prone to error, and alien
concepts to Linux administrators used to an Ethernet world.

With the introduction of z/VM Guest LAN technology, and in particular the latest
Layer 2 Virtual Switch solution, z/VM now has a network virtualization capability
that is unparalleled in the industry.

We recommend that you use OSA-Express2, OSA-Express Gigabit Ethernet, or
1000BASE-T for your machine’s physical network interfaces. For internal
communications, it really depends on what systems are being connected
together. For LPAR-to-LPAR communications, we recommend HiperSockets.
When multiple Linux guests within a z/VM environment need to communicate
with each other, a HiperSockets Guest LAN is one of the best choices. When
multiple Linux guests need to communicate within a z/VM LPAR and also with
the external network, we recommend that you use a Virtual Switch running in
Layer 2 Switching mode.

 Chapter 4. Networking Overview 153

154 Linux for IBM System z9 and IBM zSeries

Chapter 5. FCP-attached SCSI disks

In this chapter, we discuss how to configure and use SCSI disks accessed using
Fibre Channel Protocol (FCP) in the Linux 2.6 kernel on zSeries. Topics include:

� FCP configuration using sysfs

� SCSI device configuration files

� Persistence SCSI disk naming with udev

� The FCP LUN Access Control feature

� Multipathing for SCSI disks

5

Note: For an introduction to FCP on Linux for zSeries, see Linux on zSeries
and S/390: Fibre Channel Protocol Implementation Guide, SG24-6344.

© Copyright IBM Corp. 2006. All rights reserved. 155

5.1 FCP configuration using sysfs
Configuration of FCP-attached devices has changed significantly in the Linux 2.6
kernel. The /proc/scsi/zfcp/map interface used in the Linux 2.4 kernel is no longer
available or required. Instead, the Linux 2.6 kernel uses sysfs to map FCP device
information to the SCSI subsystem. The SCSI device Worldwide Port Name
(WWPN) and Logical Unit Number (LUN) values exist as attributes of the FCP
device in sysfs.

Figure 5-1 illustrates the sysfs directory structure for an FCP device at address
B002.

Figure 5-1 Portions of sysfs relevant to the zfcp driver

Dynamically adding and removing SCSI disks is simplified in the Linux 2.6
kernel, in contrast to the Linux 2.4 kernel, using the sysfs filesystem. The
following examples illustrate the procedure:

Note: For details on FCP device mapping, see Linux on zSeries and S/390:
Fibre Channel Protocol Implementation Guide, SG24-6344.

/sys

bus

devices css0

ccw

ccwgroup

drivers

devices

drivers

devicesclass

block

firmware

0.0.0000

0.0.0002

0.0.b002

0.0.b002

0.0.b002zfcp

0.0.0001

156 Linux for IBM System z9 and IBM zSeries

1. Set the virtual FCP adapter online. To bring FCP device B002 online:

echo 1 > 0.0.b002/online

To bring the device offline:

echo 0 > 0.0.b002/online

As an alternative, use the chccwdev command:

chccwdev -e 0.0.b002
Setting device 0.0.b002 online
Done
chccwdev -d 0.0.b002
Setting device 0.0.b002 offline
Done

2. Add a WWPN. To add WWPN 0x5005076300cd9589 to the FCP device:

echo 0x5005076300cd9589 > 0.0.b002/port_add

The WWPN appears as a subdirectory for the device (the
0.0.b002/0x5005076300cd9589 subdirectory).

3. Add a Logical Unit (LUN) to the WWPN . To add LUN 0x520b000000000000
to the WWPN:

echo 0x520b000000000000 > 0.0.b002/0x5005076300cd9589/unit_add

The LUN is now available to Linux. As this is the first SCSI disk, it maps to the
sda device. This can be checked using:

cat /sys/block/sda/device/fcp_lun
0x520b000000000000

When added, the LUN is mapped to the SCSI subsystem in sysfs. A
subdirectory of the form host:bus:target:lun is added to the
/sys/bus/scsi/devices directory:

cat /sys/bus/scsi/devices/0:0:1:2/fcp_lun
0x5209000000000000

Note: The zfcp device driver must be loaded before FCP device entries
appear in sysfs. To load the driver, issue the modprobe command:

modprobe zfcp

Entries in /sys directory allow us to configure a SCSI device. In these
examples, we assume the current directory is /sys/bus/ccw/drivers/zfcp.

 Chapter 5. FCP-attached SCSI disks 157

5.1.1 Querying FCP device information
Information for an FCP device is available in sysfs. For example, attributes for
the device B002 device can be read from files found in the
/sys/bus/ccw/drivers/zfcp/0.0.b002 directory.

Both RHEL4 and SLES9 still maintain the /proc/scsi/scsi file interface
(Example 5-1):

Example 5-1 File interfacde in HREL4 and SLES9

cat /proc/scsi/scsi
Attached devices:
Host: scsi0 Channel: 00 Id: 01 Lun: 00
 Vendor: IBM Model: 2105800 Rev: 1.62
 Type: Direct-Access ANSI SCSI revision: 03
Host: scsi0 Channel: 00 Id: 01 Lun: 01
Vendor: IBM Model: 2105800 Rev: 1.62
Type: Direct-Access ANSI SCSI revision: 03

SLES9 provides several additional commands to query SCSI devices:

� The lsscsi command uses sysfs to report information about SCSI devices.
The -g option lists the generic SCSI device name for each SCSI disk
(Example 5-2):

Example 5-2 Using the sscsi command

lsscsi -g
[0:0:1:0] disk IBM 2105800 1.62 /dev/sda /dev/sg0
[0:0:1:1] disk IBM 2105800 1.62 /dev/sdb /dev/sg1
[0:0:1:2] disk IBM 2105800 1.62 /dev/sdc /dev/sg2
[0:0:1:3] disk IBM 2105800 1.62 /dev/sdd /dev/sg3
[0:0:1:4] disk IBM 2105800 1.62 /dev/sde /dev/sg4

� The systool command uses sysfs to report devices by bus, class, and
topology. The -v option reports all device attributes; the -b option reports
device information for a specific bus (Example 5-3 on page 159):

Note: A complete list of all attributes for an FCP device can be found in Linux
on zSeries Device Drivers, Features, and Commands March 23, 2005,
SC33-8281.

Note: The sg device driver must be loaded to obtain generic SCSI device
names. If not loaded, the reported generic name appears as “-”.

158 Linux for IBM System z9 and IBM zSeries

Example 5-3 Usuing the systool command

systool -vb scsi
Bus = "scsi"

 Device = "0:0:1:0"
 Device path = "/sys/devices/css0/0.0.0013/0.0.b002/host0/0:0:1:0"
 delete = <store method only>
 detach_state = "0"
 device_blocked = "0"
 fcp_lun = "0x5206000000000000"
 hba_id = "0.0.b002"
 model = "2105800 "
 online = "1"
 queue_depth = "32"
 rescan = <store method only>
 rev = "1.62"
 scsi_level = "4"
 timeout = "30"
 type = "0"
 vendor = "IBM "
 wwpn = "0x5005076300cd9589"

� The udevinfo command reports device information from udev (Example 5-4):

Example 5-4 Using the udevinfo command

udevinfo -q all -n /dev/sda1
P: /block/sda/sda1
N: sda1
M: 0660
S: disk/by-path/ccw-0.0.b002-zfcp-0x5005076300cd9589:0x5206000000000000p1
disk/by-id/1IBM_2105_20622513p1
O: root
G: disk

The -q all option specifies all sysfs device attributes are to be reported; the -n
/dev/sda1 option displays disk and partition information for the /dev/sda1
device.

5.2 SCSI device configuration files
SCSI device configurations defined using sysfs are lost at the next system IPL.
To define devices that persist across IPLs, the Linux 2.6 kernel uses
configuration files executed early in system boot. FCP device configuration files
differ between SLES9 and RHEL4.

 Chapter 5. FCP-attached SCSI disks 159

5.2.1 FCP device configuration in SLES9
FCP device configuration files for SLES9 are found in the
/etc/sysconfig/hardware directory. A unique configuration file exists for each
device to be configured at system boot. FCP configuration file names take the
form:

hwcfg-zfcp-bus-ccw-0.0.xxxx

The xxxx value is the device number of the FCP subchannel.

A sample configuration file for an FCP device at address B002 is shown in
Figure 5-2.

Figure 5-2 The /etc/sysconfig/hardware/hwcfg-zfcp-bus-ccw-0.0.b002 configuration file

SCSI device WWPN and LUN values are defined using the ZFCP_LUNS
parameter (in the form WWPN:LUN). Multiple SCSI devices can be defined
separated by a space.

Note: A skeletal FCP configuration is provided as the
/etc/sysconfig/hardware/skel/hwcfg-zfcp file.

#!/bin/sh
#
hwcfg-zfcp-bus-ccw-0.0.b002
#
Configuration for the zfcp adapter at CCW ID 0.0.b002
#
STARTMODE="auto"
MODULE="zfcp"
MODULE_OPTIONS=""
MODULE_UNLOAD="yes"

Scripts to be called for the various events.
If called manually the event is set to 'up'.
SCRIPTUP="hwup-ccw"
SCRIPTUP_ccw="hwup-ccw"
SCRIPTUP_scsi_host="hwup-zfcp"
SCRIPTDOWN="hwdown-scsi"
SCRIPTDOWN_scsi="hwdown-zfcp"
ZFCP_LUNS="0x5005076300cd9589:0x5206000000000000 0x5005076300cd9589:0x5207000000000000"

160 Linux for IBM System z9 and IBM zSeries

Manually configuring an FCP device
To manually configure a new FCP device:

1. Copy a sample FCP device configuration file to the /etc/sysconfig/hardware
directory. Use an existing configuration file, or the provided FCP skeletal file.
Name the new file appropriately (for instance, hwcfg-zfcp-bus-ccw-0.0.1234
for an FCP device at address 1234).

2. Provide the specific WWPN and LUN values as ZFCP_LUN parameter.

3. Execute the hwup command, providing the name of the new configuration file
as a parameter:

hwup zfcp-bus-ccw-0.0.1234

This configures each SCSI device defined in the configuration file.

Configuring an FCP device using YaST
The version of YaST provided with SLES9 supports FCP-attached SCSI devices.
With YaST, you can add, remove, and configure SCSI disks. The add SCSI disk
dialog is shown in Figure 5-3 on page 162.

Note: New WWPN and LUN values can be added to the configuration file at
any time. The new SCSI device will be available automatically after reboot,
provided the system is not booted from the new device. To boot from a new
SCSI device, it is necessary to install a boot loader (using the zipl command)
on the disk. If the root filesystem resides on the disk, a new initial ramdisk
must also be created (using the mkinitrd command). For details on how to
create a new initial ramdisk and install a boot loader, consult Cloning
FCP-attached SCSI SLES9 Linux, REDP3871.

Note: The chccwdev command (used to bring the device online and offline)
automatically looks for the appropriate device configuration file located in
the /etc/sysconfig/hardware directory. If the system is booted from SCSI
disk, the disk cannot be taken offline using the chccwdev command. The
following message appears on the system console:

scsi0 (1:0): rejecting I/O to device being removed

 Chapter 5. FCP-attached SCSI disks 161

Figure 5-3 YaST dialog to add SCSI disk

The appropriate hardware configuration file for the FCP device is automatically
created in the /etc/sys/hardware directory. For more details on using YaST to
manage SCSI disks, consult Linux on zSeries and S/390: Fibre Channel Protocol
Implementation Guide, SG24-6344.

5.2.2 FCP device configuration in RHEL4
As with RHEL3, RHEL4 maps WWPNs and LUNs using the /etc/zfcp.conf file to.
However, the file format has improved since RHEL3; entries can now span
multiple lines, as shown in Figure 5-4 on page 163.

162 Linux for IBM System z9 and IBM zSeries

Figure 5-4 FCP configuration files for RHEL4

During system boot, RHEL4 executes the /sbin/zfcpconf.sh script, which, in turn,
loads the zfcp device driver and executes the /etc/zfcp.conf file.

Device mapping is specified in the general format used by RHEL3. However, the
FCP device number is now specified in the form:

0.0.devno

The leading zeros indicate the host and bus numbers (always zero in both case);
the devno portion is the actual FCP device address. For details on how to map
FCP devices, see Linux on zSeries and S/390: Fibre Channel Protocol
Implementation Guide, SG24-6344.

To automatically configure a new SCSI device under RHEL3, a new initial
ramdisk must be created. The boot loader must also be reinstalled.

Creating a new initial ramdisk
The FCP mapping specified in the /etc/zfcp.conf file determines how LUNs are
assigned to SCSI devices (the first LUN entry is assigned to /dev/sda, the
second to /dev/sdb, and so on). To create a new initial ramdisk using a new SCSI
device mapping, issue the commands shown in Figure 5-5 on page 164.

cat /etc/zfcp.conf
0.0.b020 0x01 0x5005076300cd9589 0x00 0x5213000000000000
0.0.b020 0x01 0x5005076300cd9589 0x01 0x5212000000000000
cat /etc/modprobe.conf
alias eth0 qeth
options dasd_mod dasd=201,202
alias scsi_hostadapter zfcp

Note: With RHEL4, the alias scsi_hostadapter zfcp statement must be
included in the /etc/modprobe.conf file.

 Chapter 5. FCP-attached SCSI disks 163

Figure 5-5 Creating an initial ramdisk

Reinstall the boot loader
After a new initial ramdisk is created, we reinstall the boot loader (pointing to the
new initial ramdisk) using the zipl command. Rather than provide command line
parameters, we use the /etc/zipl.conf configuration file shown in Figure 5-6).

Figure 5-6 The /etc/zipl.conf file

5.3 Persistence SCSI disk naming with udev
At system boot in the Linux 2.4 kernel, SCSI disks are mapped to device node
names according to the order in which the LUNs are mapped. The mapping
order is typically determined by the address of the FCP device and the accessed
LUN. For instance, the first LUN mapped to the first FCP device is assigned to
device node name /dev/sda, the second to /dev/sdb, and so on.

cd /boot
mv initrd-2.6.9-6.37.EL.img initrd-2.6.9-6.37.EL.img.old
mkinitrd -v --with=scsi_mod --with=zfcp --with=sd_mod initrd-2.6.9-6.37.EL.img \
2.6.9-6.37.EL
.
.
Loading module scsi_mod
Loading module sd_mod
Loading module scsi_transport_fc
Loading module zfcp
.
.
.

Note: The initial ramdisk is created in the /boot directory. We first save the
original initial ramdisk (rather than overwrite it).

[defaultboot]
default=linux
target=/boot/
[linux]
 image=/boot/vmlinuz-2.6.9-6.37.EL
 ramdisk=/boot/initrd-2.6.9-6.37.EL.img
 parameters="root=LABEL=/"

164 Linux for IBM System z9 and IBM zSeries

This can lead to a unpredictable situation when new SCSI disks are added to the
system. For example, consider a Linux server with SCSI disks accessed using
an FCP device at address 0x0010 and mapped to device node /dev/sda. Adding
additional SCSI disks accessed by an FCP device at address 0x000A causes
this device to be mapped to /dev/sda on system reboot (the device at address
0x0010 is then mapped to /dev/sdb).

In the Linux 2.6 kernel, udev provides a predictable mechanism to map SCSI
disks to their respective device nodes. This improves system reliability; after
system reboot (or in the event of channel path failure and recovery), SCSI device
node assignments remain unchanged. Both RHEL4 and SLES9 support
persistent udev device naming rules.

5.3.1 Persistent SCSI disk naming in RHEL4
With RHEL4, udev device naming rules are specified in the files found in the
/etc/udev/rules.d directory. Files are read in lexical order and determine the udev
device naming conventions. By default, two rule files are provided (10-udev.rules
and 50-udev.rules).

Several options are available to define persistent device naming for SCSI disks.
To illustrate, we show an example that uses symbolic links composed of the
SCSI disk WWPN and LUN. Add the following lines to the
/etc/udev/rules.d/50-udev.rules file:

KERNEL="sd*[a-z]", SYMLINK="scsi/%s{fcp_lun}-%s{wwpn}/disk"
KERNEL="sd*[0-9]", SYMLINK="scsi/%s{fcp_lun}-%s{wwpn}/part%n"

These lines use regular expressions to create symbolic links in the /dev directory.
The symbolic links are create using the WWPN (the %s{wwpn} expression) and
LUN (the %s{fcp_lun} expression) as part of the name. Because the WWPN and
LUN uniquely identify a SCSI device, the symbolic link deterministically identifies
the SCSI device.

The rules create a unique subdirectory in /dev/scsi for each SCSI disk detected
by a hotplug event. As shown Figure 5-7 on page 166, the symbolic link name is
uniquely identified by the device LUN and WWPN.

 Chapter 5. FCP-attached SCSI disks 165

Figure 5-7 Directories created by udev to map SCSI disks

As shown in Figure 5-8, each subdirectory in turn contains symbolic links to the
familiar device node name (/dev/sda for instance).

Figure 5-8 Symbolic links created by udev to uniquely identify SCSI disks

The disk symbolic link points to the SCSI device (/dev/sda). The part1 symbolic
link points to the first partition on the SCSI disk (/dev/sda1); part2 points to the
second partition (/dev/sda2).

Using the generated udev names, we can identify each device regardless of the
order in which the device is brought online. For instance, to modify the partition
table on the SCSI disk, use:

fdisk /dev/scsi/0x5211000000000000-0x5005076300cd9589/disk

In this example, udev name corresponds to /dev/sda because it was the first
SCSI disk brought online. If the device is brought offline then brought back
online, it could be assigned to another device name (/dev/sdd for instance). In
this case however, the disk (and all its partitions) can still be referred to by its
udev name (composed from the WWPN and LUN).

Selecting the correct attributes to ensure unique device identification is critical to
writing udev rules. Use output of the udevinfo command to identify these
attributes.

BUS="scsi*", SYSFS{fcp_lun}="0x5213000000000000",
SYSFS{wwpn}="0x5005076300cd9589", SYMLINK="sda_simlink"

ls -lah /dev/scsi
total 0
drwxr-xr-x 5 root root 100 Apr 15 18:48 .
drwxr-xr-x 10 root root 2.9K Apr 15 18:48 ..
drwxr-xr-x 2 root root 80 Apr 15 18:40 0x5211000000000000-0x5005076300cd9589
drwxr-xr-x 2 root root 80 Apr 15 18:48 0x5212000000000000-0x5005076300cd9589
drwxr-xr-x 2 root root 80 Apr 15 18:48 0x5213000000000000-0x5005076300cd9589

ls -lah /dev/scsi/0x5211000000000000-0x5005076300cd9589
total 0
drwxr-xr-x 2 root root 80 Apr 15 18:40 .
drwxr-xr-x 5 root root 100 Apr 15 18:48 ..
lrwxrwxrwx 1 root root 9 Apr 15 18:40 disk -> ../../sda
lrwxrwxrwx 1 root root 10 Apr 15 18:40 part1 -> ../../sda1
lrwxrwxrwx 1 root root 10 Apr 15 18:40 part2 -> ../../sda2

166 Linux for IBM System z9 and IBM zSeries

5.3.2 Persistent SCSI disk naming in SLES9
SLES9 provides two start-up scripts (/etc/rc.d/boot.scsidev and
/etc/init.d/boot.udev) to establish persistent device naming.

To execute /etc/init.d/boot.udev during at system boot process, enable the script
using the insserv command:

insserv boot.udev

When enabled, udev creates two persistent symbolic links for each detected
SCSI disk (this also occurs automatically each time a device is added or
removed from a running system). Each symbolic is composed from the SCSI
device WWPN and LUN. Symbolic links are added to the /dev/disk/by-path
directory, and have the following format:

ccw-0.0.b008-zfcp-0x5005076300cd9589:0x5206000000000000
ccw-0.0.b008-zfcp-0x5005076300cd9589:0x5206000000000000p1

The /dev/disk/by-id directory contains symbolic links composed from the device
vendor identification (gathered from the device itself). These have the form:

1IBM_2105_20722513
1IBM_2105_20722513p1

Writing custom udev rules
It is possible to define a custom set of udev naming rules (similar to the method
used in RHEL4). In SLES9, udev rules are applied to the /etc/udev/udev.rules
file.

Using the method described in 5.3.1, “Persistent SCSI disk naming in RHEL4” on
page 165, we add the following lines to the /etc/udev/udev.rule file:

Note: We recommend changing the device SYMLINK name (never changing
the KERNEL name) when writing custom udev rules.

Note: Although SLES9 supports the /etc/rc.d/boot.scsidev startup script, the
/etc/init.d/boot.udev is the preferred mechanism to create persistent device
names.

Note: Because vendor device registration is voluntarily, there is no guarantee
the vendor identification is unique. Therefore, we recommend using the
symbolic links in the /dev/disk/by-path directory. In addition the, the symbolic
link in /dev/disk/by-path use meaningful names based on device number,
WWPN, and LUN (allowing easy identification of the physical device).

 Chapter 5. FCP-attached SCSI disks 167

KERNEL="sd*[a-z]", SYMLINK="scasi/%s{fcp_lun}-%s{wwpn}/disk"
KERNEL="sd*[0-9]", SYMLINK="scasi/%s{fcp_lun}-%s{wwpn}/part%n"

Figure 5-9 shows the entries in the /dev/scsi directory created by our custom
udev naming rules.

Figure 5-9 The /dev/scsia directory created by udev to map SCSI disks

5.4 The FCP LUN Access Control feature
Mechanisms exist to control access to devices in a SAN fabric:

� Zoning is defined at the SAN switch, zoning determines whether connectivity
between two WWPNs is permitted.

� LUN masking is defined at the storage controller, LUN masking determines if
a WWPN can access a LUN.

When multiple Linux servers on zSeries share an FCP channel, by default each
server has connectivity to all devices in the FCP fabric defined to the channel.
Figure 5-10 on page 169 illustrates several Linux servers sharing a single
channel.

Note: The SYMLINK parameter uses /dev/scsi directory because the
/etc/rc.d/boot.scsidev startup script uses the /dev/scsi directory by default.

ls -lah /dev/scsia
total 0
drwxr-xr-x 2 root root 80 Apr 19 08:34 .
drwxr-xr-x 5 root root 100 Apr 19 08:30 ..
drwxr-xr-x 2 root root 4096 Apr 19 08:34 0x5206000000000000-0x5005b076300cd9589
drwxr-xr-x 2 root root 4096 Apr 19 08:34 0x5207000000000000-0x5005b076300cd9589
drwxr-xr-x 2 root root 4096 Apr 19 08:34 0x5208000000000000-0x5005b076300cd9589
drwxr-xr-x 2 root root 4096 Apr 19 08:21 0x520a000000000000-0x5005b076300cd9589

168 Linux for IBM System z9 and IBM zSeries

Figure 5-10 The effect of channel sharing in a SAN environment

In the figure, not the following:

� Three Linux guests running under z/VM share the same FCP channel.

� Using Multiple Image Facility (MIF), the FCP channel is also shared by a
Linux server running in an LPAR.

In this case, zoning and LUN masking cannot be used to control connectivity.
Each Linux server is granted to the LUNs on the storage server. A single WWPN
is advertised to the SAN fabric (namely, the WWPN of the shared FCP channel).
All four Linux servers are either granted access to the four LUNs, or they are all
denied access.

FCP LUN Access Control provides a mechanism to define individual access
rights to storage controller WWPNs and LUNs for each operating system image
sharing an FCP channel. An access control table (ACT) defines access rights to
the shared FCP channel. Individual operating systems sharing the FCP channel
are granted or denied access to specific LUNs based on rules defined in the
ACT.

IBM zSeries Open Storage Attachment
zSeries

z/VM LPAR

LINUX1 LINUX2 LINUX3

Linux LPAR

HBA HBA HBA

LUN1 LUN2 LUN3 LUN4

FCP channel

SAN switch

WWPN

 Chapter 5. FCP-attached SCSI disks 169

5.4.1 FCP LUN Access Control operation
FCP LUN Access Control is available as licensed internal code (LIC) on System
z9 and zSeries servers (at a minimum, LIC driver level 55 is required). Operation
of the LUN Access Control feature is illustrated in Figure 5-11.

Figure 5-11 Operation of FCP LUN Access Control feature

In the figure:

� The ACT input file is an XML document.

This describes the operating systems, WWPNs, and LUNs accessed over the
FCP channel. Rules in the ACT grant or deny operating system access to
specific WWPNs and LUNs.

� The configuration utility compiles the ACT input file to generate a binary ACT.

Using the zfcp device driver, the binary ACT is sent to FCP channel over a
privileged FCP subchannel. With access control enabled, the FCP adapter
intercepts outgoing I/O requests. Only those requests allowed by the ACT are
sent by FCP channel to the FCP fabric. The configuration utility is provided as
a separate RPM package.

IBM zSeries Open Storage Attachment

ACT
input file configuration

utility

harddrive
on SE

FCP channel

zfcp
device driver

privileged FCP subchannel

XML input

binary output

170 Linux for IBM System z9 and IBM zSeries

� The FCP adapter saves the ACT on the primary and alternate Support
Elements (SEs).

When a power on reset (POR) is performed, the ACT is read from the SE and
restored to the FICON Express card. This ensures access control remains in
effect across PORs, or in the event the card is replaced. If the primary SE is
unavailable, the ACT is restored from the alternate SE.

5.4.2 Installing the FCP LUN Access Control feature
To install the LUN Access Control feature:

1. Download the configuration utility from Resource Link.

The utility is available as an RPM package for both 31-bit (the
actcli-1.1.0.s390.rpm file) and 64-bit (the actcli-1.1.0.s390x.rpm file)
distributions. The configuration utility can be obtained from IBM Resource
Link. The RPM package contains:

– The actcli command (the interface to the configuration utility)

– The FCP LUN Access Control user’s guide (Configuration Utility for FCP
LUN Access Control User’s Guide, SC33-8280)

– ACT template files in XML format

2. Install the prerequisite software.

For the Linux 2.6 kernel, the distribution should be based on the IBM
developerWorks Linux on zSeries April 2004 stream at:

http://www.ibm.com/developerworks/linux/linux390/april2004_documentation
.html

For the Linux 2.4 kernel, the distribution should be based on the June 2003
stream with all features from the 2004-01-30 code drop available at:

http://www.ibm.com/developerworks/linux/linux390/june2003_recommended.ht
ml

The libxml2 package is also required (version 2.5.7 or higher). This is
available as an RPM package from:

ftp://xmlsoft.org

If you are running Linux as a z/VM guest, z/VM 4.4 and higher are supported.
z/VM 4.4 and z/VM 5.1 systems must include APAR VM63328.

3. Define access to at least one privileged FCP unit address.

The Linux for zSeries instance where the configuration utility runs must have
access to at least one of the unit addresses 0xFC or 0xFD on the FCP
channel defined in the IOCDS. If running Linux under z/VM, be sure to attach

 Chapter 5. FCP-attached SCSI disks 171

http://www.ibm.com/developerworks/linux/linux390/april2004_documentation.html
http://www.ibm.com/developerworks/linux/linux390/june2003_recommended.html
ftp://xmlsoft.org

the device to the guest. The Linux device node used to access the FCP
channel is created by actcli_init command and is named /dev/zfcp_cfdc.

Access rights are granted using the FCP privileged devices (the 0xFC and
0xFD unit addresses). Ensure these unit addresses are only attached to
trusted users. Access to the control port may require re-initialization of the
device:

chccwdev -d 0.0.0xb0fc
chccwdev -e 0.0.0xb0f

4. Install the configuration utility.

Use the rpm command to install the configuration utility. The actcli
executable installs in the /usr/bin directory; XML templates install in the
/opt/act directory.

5.4.3 Using the configuration utility
The configuration utility uses the actcli command to access the FCP channel.
The following examples show some typical scenarios:

� To syntax check an ACL source file named config01_acl.xml:

actcli -v -D /dev/zfcp_cfdc -N config01_acl.xml 0.0.b0fc

If no errors are detected, a binary ACT is generated downloaded to the FCP
adapter at device 0.0.b0fc.

� To reset an FCP adapter accessed from device 0.0.b0fc:

actcli -v -D /dev/zfcp_cfdc -P allow 0.0.b0fc

The adapter is reset to default values (no access control restrictions).

� To retrieve the current ACT from the FCP adapter at address 0.0.b0fc and
store it in file current_config.xml:

actcli -v -D /dev/zfcp_cfdc -L 0.0.b0fc > current_config.xml

The current ACT is retrieved from FCP adapter, converted to XML, and saved
as a file.

� To block all outgoing requests from the FCP adapter from all subchannels:

actcli -v -D /dev/zfcp_cfdc -P deny 0.0.b0fc

Note: Version 1.1.2 of the actcli command adds the string “Operation
executed successfully.” (which is intended as a console message) to the
beginning of the file. Do not forget to delete this line if you intent to modify
the XML file.

172 Linux for IBM System z9 and IBM zSeries

The FCP adapter continues to accept configuration commands over the
privileged unit addresses (0xFC and 0xFD).

5.4.4 A sample scenario
We create a simple access control file for three LUNs and two Linux z/VM
guests. All are connected to the FCP fabric over one FCP channel to a single
storage controller WWPN. The ACT is downloaded to the adapter using the
command:

actcli -v --device /dev/zfcp_cfdc -N b0fc_acl.xml 0.0.b0fc

If the ACT input file denies access to an open FCP connection, the new ACT
configuration is not loaded to the adapter. For example, in Figure 5-12 the
b0fc_default.xml ACT input file blocks access from the LNXSU1 Linux guest to
LUN 0x5212000000000000. A warning message is issued and the operation
terminates.

Figure 5-12 Configuration with conflicting access rights

Using the -F option can force the ACT to be loaded as shown in Figure 5-13 on
page 174.

actcli -v --device /dev/zfcp_cfdc -N b0fc_default.xml 0.0.b0fc
actcli: opening communication to FCP adapter via /dev/zfcp_cfdc.
Sending request to adapter B0FC ...
Adapter completed request ...
actcli: FSF Status: Access conflict(s) detected. 1 open connection(s) exist.
4 of the affected connections are listed:
LUN: 5212000000000000 configuring rule in XML in line 33
VM guest ID: LNXSU1 2nd level VM guest ID: devno: B005 cssID: 1
partition: 19
actcli: New Access Control Table not activated.
Need -F,--force to break open connections.

 Chapter 5. FCP-attached SCSI disks 173

Figure 5-13 Forcing an FCP ACL configuration change

We decided to configure a simple access control table to show the restricted
access. We used three LUNs: 0x5210000000000000, 0x5211000000000000,
0x5212000000000000 accessible with the physical FCP channels 90 and 91.
These are attached to the storage controller WWPNs 0x5005076300cd9589 and
0x5005076300c19589. Two Linux images (LNXSU2 and LNXRH2), running in
z/VM guests on the z990, providing the two CHPIDs 90 and 91.

LNXSU2 had exclusive read/write access on LUN 5210000000000000
LNXRH2 had exclusive read/write access on LUN 5211000000000000
LNXSU2 and LNXRH2 had read only access on LUN 5212000000000000

With our access control table activated, trying to access LUN
0x5211000000000000 in LNXSU2 results in (no matter if the LUN is already
accessed by LNXRH2 or not), which proves the exclusive read/write right on
LUN 0x5211000000000000 by LNXRH2:

zfcp: Access denied, cannot open unit 0x5211000000000000 on remote port
0x5005076300cd9589 on adapter 0.0.b006
zfcp: unit erp failed on unit 0x5211000000000000 on port 0x5005076300cd9589
on adapter 0.0.b006

This is an access denied message, generated by the access control feature.
Don’t confuse it with:

zfcp: FCP-LUN 0x5211000000000000 at the remote port with WWPN
0x5005076300cd9589 connected to the adapter 0.0.b006 is already in use in
LPAR9, CSS1

actcli -v -F --device /dev/zfcp_cfdc -N b0fc_acl.xml 0.0.b0fc
actcli: ACT Identifier: CHPID90_EX1
======================================
Warning:
You are about to force a change of the FCP LUN Access Control configuration.
Be sure that you understand the concequences this will have for
your installation.
Production systems might unintentionally be rendered inoperable
or go down because of denied accesses!
Sensitive data might be open for access that is not intended.

Are you sure you want to download the new configuration? (y/n) [n]: y
actcli: opening communication to FCP adapter via /dev/zfcp_cfdc.
Sending request to adapter B0FC ...
Adapter completed request ...
actcli: FSF Status: Downloaded ACT activated successfully
actcli: but not saved on alternate SE.
Retry the latest --new-table operation.

174 Linux for IBM System z9 and IBM zSeries

zfcp: unit erp failed on unit 0x5211000000000000 on port 0x5005076300cd9589
on adapter 0.0.b006

Remember, without the access control feature it was possible to access any LUN
in read/write mode (assuming a running physical connection, correct masking,
zoning and binding definitions) as long as this LUN was not accessed by another
linux images using the same FCP channel. Using different physical FCP
channels, the same LUN could even be read/write accessed by several Linux
images.

5.5 Multipathing for SCSI disks
In this section, we look at using multipathing with SCSI disks on Linux for
zSeries. In general, there are two reasons establishing a multiple paths to a
device:

� High availability provides several physical paths to a device offers high
availability in a failure scenario; if one path fails, other paths to the device are
still available.

� Performance is achieved by using multiple paths simultaneously to write to or
read from a device can significantly increase I/O performance.

Redundant paths defined to Linux appear as separate Linux devices as shown in
Figure 5-14 on page 176.

Important: If Linux was booted from SCSI, be careful when modifying the
access control list. Ensure, that boot disk grants the correct access rights.

 Chapter 5. FCP-attached SCSI disks 175

Figure 5-14 A multipath scenario

In the figure, two paths to a single physical LUN (0x5209000000000000). Linux
accesses each path using a separate device:

� Device /dev/sdb accesses the LUN using WWPN 0x5005076300cd9589 over
FCP device b009.

� Device /dev/sdg accesses the LUN using WWPN 0x5005076300c19589 over
FCP device b100.

5.5.1 Multipathing using EVMS on SLES9
In this section, we illustrate using multipathing using EVMS on SLES9.
Figure 5-15 on page 177 shows the subchannel and udev mapping for the disks.

IBM zSeries Open Storage Attachment

z990
Linux

/dev/sdb /dev/sdg

FCP switch

ESS

LUN
0x5209000000000000

WWPN
0x5005076300c19589

WWPN
0x5005076300cd9589

device b009 device b100

176 Linux for IBM System z9 and IBM zSeries

Figure 5-15 Subchannel and udev information about multipath disks

From this information, we see:

� Device /dev/sdb is connected using device b009. It is attached to CHPID 90,
and accesses the LUN using WWPN 0x5005076300cd9589.

� Device /dev/sdg is connected using device b100. It is attached to CHPID 91,
and accesses the LUN using WWPN 0x5005076300c19589.

After formatting and partitioning the SCSI disks, we start the ncurses interface to
EVMS using the evmsn command. Use the Tab bar to switch between the
different available views. We first ensure the two devices are in the available
object list, then:

1. Assign a DOS Segment Manager to each multipath disk.

From the EVMS main menu, navigate to the Add Segment Manager dialog in
Figure 5-16 on page 178 using Actions → Add → Segment Manager →
Storage Object.

lscss | grep "B"
0.0.B006 0.0.000F 1732/03 1731/03 yes 80 80 FF 90000000 00000000
0.0.B009 0.0.0011 1732/03 1731/03 yes 80 80 FF 90000000 00000000
0.0.B100 0.0.0013 1732/03 1731/03 yes 80 80 FF 91000000 00000000
udevinfo -q all -n /dev/sdb
P: /block/sdb
N: sdb
M: 0660
S: disk/by-path/ccw-0.0.b009-zfcp-0x5005076300cd9589:0x5209000000000000
O: root
G: disk
udevinfo -q all -n /dev/sdg
P: /block/sdg
N: sdg
M: 0660
S: disk/by-path/ccw-0.0.b100-zfcp-0x5005076300c19589:0x5209000000000000
disk/by-id/1IBM_2105_20922513
O: root
G: disk

 Chapter 5. FCP-attached SCSI disks 177

Figure 5-16 Add DOS Segment Manager selection

Select the DOS Segment Manager and click Next to assign the segment
manager to a specific disk as shown in Figure 5-17.

Figure 5-17 Add segment manager to SCSI disk

178 Linux for IBM System z9 and IBM zSeries

Use the spacebar to select the desired disk and click Next to assign a
segment manager to the disk in Figure 5-18.

Figure 5-18 Assign the segment manager to a Linux disk

Repeat these steps for each multipath disk.

2. Create EVMS segments on the disks.

Next, create a EVMS segment on each SCSI disk. From the Disk Segments
view, select the SCSI disk and press Enter to open the disk details dialog box
in Figure 5-19 on page 180.

 Chapter 5. FCP-attached SCSI disks 179

Figure 5-19 The disk details dialog

Select Create Segment, and press OK on the next screen to confirm the
operation. Create an EVMS segment on each multipath disk.

3. Create a multipath storage region.

When EVMS is restarted, navigate Actions → Create → Region to the
Create Storage Region dialog shown in Figure 5-20 on page 181.

Important: When segments are created on each SCSI disk, exit and
restart the EVMS ncurses interface. When restarted, EVMS will see the
new segments created on the devices.

180 Linux for IBM System z9 and IBM zSeries

Figure 5-20 Create a multipath storage region

Select the Multipath Region Manager option and click Next to choose the
disks to use in the multipath region in Figure 5-21.

Figure 5-21 Choose disks in the multipath region

 Chapter 5. FCP-attached SCSI disks 181

Click Create to complete the operation.

4. Create a Compatibility Volume.

Next, create a compatibility volume on the multipath region by navigating
Actions → Create → Compatibility Volume to the panel in Figure 5-22.

Figure 5-22 Create a compatibility volume

Choose the multipath region created in the previous step (md/md0 in the
figure). Hit Create to complete the operation. The newly created volume is
now available under the Storage Regions view.

5. Create a file system on the volume.

To use the new volume, a filesystem must be created on it. Select the volume
in the logical volumes view and pressing Enter for the panel shown in
Figure 5-23 on page 183.

182 Linux for IBM System z9 and IBM zSeries

Figure 5-23 Create a filesystem on the volume

Select the Make file System option and press Enter for the panel shown in
Figure 5-24.

Figure 5-24 Select the filesystem type

Click Next to customize options in Figure 5-25 on page 184.

 Chapter 5. FCP-attached SCSI disks 183

Figure 5-25 Customize filesystem options

Press Make to complete the operation.

The EVMS configuration can be activated using the evms_activate command

5.5.2 Multipathing using mdadm on RHEL4
With RHEL4, multipathing is implemented using the mdadm (multiple device
administration) driver. To illustrate using mdadm, we consider the example
shown in Figure 5-26 on page 185.

Note: The multipath array requires at least one working path to the LUN. If the
last path to the LUN is lost, the file system enters read-only when access is
re-established.

184 Linux for IBM System z9 and IBM zSeries

Figure 5-26 Multipath example using mdadm

In this example, LUN 0x5211000000000000 is accessed over two paths to
device nodes /dev/sdb4 and /dev/sdd4. These devices are combined in the
/dev/md7 mdadm device node, and an ext3 filesystem is created on the device.

To create the mdadm device node, we use the mdadm command:

mdadm -C /dev/md7 --level=multipath --raid-devices=2 /dev/sdb4 /dev/sdd4
mdadm: array /dev/md7 started.

We can check the new device node status using the -D option of the mdadm
command (Example 5-5):

Example 5-5 Using mdadm with -D

mdadm -D /dev/md7
/dev/md7:
 Version : 00.90.01
 Creation Time : Wed May 4 12:03:43 2005
 Raid Level : multipath
 Array Size : 19530624 (18.63 GiB 19.100 GB)
 Raid Devices : 2

IBM zSeries Open Storage Attachment

ESS

LUN
0x5211

WWPN
500507cd9589

WWPN
500507c19589

FCP switch

z990

Linux

/dev/sdd4/dev/sdb4

/dev/md7

ext3

 Chapter 5. FCP-attached SCSI disks 185

 Total Devices : 2
Preferred Minor : 3
 Persistence : Superblock is persistent

 Update Time : Wed May 4 12:03:43 2005
 State : clean
 Active Devices : 2
Working Devices : 2
 Failed Devices : 0
 Spare Devices : 0

 Number Major Minor RaidDevice State
 0 8 20 0 active sync /dev/sdb4
 1 8 52 1 active sync /dev/sdd4
 UUID : dc50d458:39b13736:bd76c363:029d22cb
 Events : 0.1

Finally, we create an ext3 filesystem on /dev/md7:

mke2fs -j /dev/md7
mke2fs 1.35 (28-Feb-2004)
warning: 224 blocks unused.
.
.
.

186 Linux for IBM System z9 and IBM zSeries

Chapter 6. Using ECKD storage

This chapter discusses traditional ECKD DASD storage management in the
Linux 2.6 kernel on zSeries. Topics include:

� ESS operating mode

� Configuring DASD at IPL with SLES9

� Configuring DASD at IPL with RHEL4

� Parallel Access Volumes

6

© Copyright IBM Corp. 2006. All rights reserved. 187

6.1 ESS operating mode
The IBM TotalStorage Enterprise Storage Server (ESS) offers different modes of
operation. Depending on the workload, the operation mode can be adjusted for
better performance. Operation modes include:

� Normal Cache Replacement

In this mode, the cache is managed using the ESS standard algorithms. This
is the default value for SCSI disks, and for ECKD DASD in SLES9 and SLES8
(beginning with Service Pack 3).

� Sequential Access or Prestage

Sequential access is the default for SLES7 and earlier versions of SLES8.
This mode can lead to degraded performance for workloads that require
random I/O.

� Inhibit Cache Loading or Record Access

These special modes should be used carefully, but can provide good
performance when performing random I/O.

� Bypass Cache

This special mode should also be used carefully. It may provide a moderate
performance improvement for random I/O.

Operation mode cannot be changed for SCSI disks; the FCP driver uses Normal
Cache Replacement. The -g option of the tunedasd command returns the current
mode; the -c option sets the operation mode (Example 6-1:

Example 6-1 Using the tunedasd command

tunedasd -g /dev/dasdb
normal
tunedasd -c sequential /dev/dasda
Setting cache mode for device </dev/dasda>...
Done.

Note: For more information about ESS operating mode, see the
developerWorks site:

http://www.ibm.com/developerworks/linux/linux390/perf/tuning_rec_dasd_cac
hemode.html

188 Linux for IBM System z9 and IBM zSeries

http://awlinux1.alphaworks.ibm.com/developerworks/linux390/perf/tuning_rec_dasd_cachemode.shtml
http://awlinux1.alphaworks.ibm.com/developerworks/linux390/perf/tuning_rec_dasd_cachemode.shtml

6.2 Configuring DASD at IPL with SLES9
With SLES9, you no longer need to run the mkinitrd (to create an initial ramdisk)
and zipl (to modify the bootloader) commands in order to configure new ECKD
DASD devices at Linux IPL. These are automatically recognized by sysfs at
system boot. Figure 6-1 shows the sysfs entry for the DASD device at address
0403.

Figure 6-1 The sysfs structure for ECKD DASD

The configuration files for DASD devices are found in the
/etc/sysconfig/hardware directory. File names take the form
hwcfg-dasd-bus-ccw-0.0.xxxx where xxxx is the value of the device virtual
address. To create an ECKD DASD configuration file manually, use the skeletal
configuration file in the /etc/sysconfig/hardware directory:

cp /etc/sysconfig/hardware/skel/hwcfg-dasd-eckd \
/etc/sysconfig/hardware/hwcfg-dasd-bus-ccw-0.0.0201

In the example, the skeletal configuration file is used to configure the ECKD
DASD device at address 0201. To bring the new online, use the hwup command:

hwup /etc/sysconfig/hardware/skeldasd-bus-ccw-0.0.0201

Alternatively, the chccwdev command with the -e option brings the device online:

chccwdev -e 0.0.0201

6.3 Configuring DASD at IPL with RHEL4
Configuring DASD devices at IPL for RHEL4 is slightly different than SLES9. To
configure the device at system boot:

1. Add the device the /etc/modprobe.conf file:

cat /etc/modprobe.conf
alias eth0 qeth

ls /sys/bus/ccw/drivers/dasd-eckd/ -go
total 0
drwxr-xr-x 2 0 Apr 25 16:04 .
drwxr-xr-x 7 0 Apr 25 16:04 ..
lrwxrwxrwx 1 0 Apr 25 16:04 0.0.0403 ->../../../devices/css0/0.0.0000/0.0.0403

Note: The boot device still needs to be specified in /etc/fstab and
/etc/zipl.conf. No further definitions needed for ECKD DASD devices needed
at system boot.

 Chapter 6. Using ECKD storage 189

options dasd_mod dasd=201,202,1592
alias scsi_hostadapter zfcp

2. Creating a new initial ramdisk (Example 6-2):

Example 6-2 New initial ramdisk

cd /boot
mv initrd-2.6.9-6.37.EL.img initrd-2.6.9-6.37.EL.img.old
mkinitrd -v --with=scsi_mod --with=zfcp --with=sd_mod \
initrd-2.6.9-6.37.EL.img 2.6.9-6.37.EL

3. Execute the zipl command to update the bootloader.

For more detailed information, refer to the RedHat documentation, Installation
Guide for the IBM S/390 and IBM eServer zSeries Architectures.

6.4 Parallel Access Volumes
Parallel Access Volumes (PAV) allows a zSeries host system to perform multiple,
concurrent data transfers to a single volume on a storage server. With PAV, the
storage server volume is accessed using a base device and one more alias
devices. The base represents the real volume, and aliases represent alternate
access paths to the volume. Multiple read requests can be processed
concurrently. To maintain data integrity, write operations to the same domain are
serialized (however, as almost all writes are cache hits, there is typically only a
short delay). PAV functionality is handled by the storage server (eliminating I/O
enqueues and rescheduling that would normally be handled by the host channel
subsystem).

Linux does not attempt to start more than one simultaneous I/O operation a
single device. In order to take advantage of parallel access, a PAV volume is
represented as multiple Linux devices, the base device and its alias devices.
These devices are aggregated into a single logical volume using a volume
manager such as LVM, EVMS, or mdadm.

Note: Be sure to first bring the device online:

chccwdev -e 0.0.1592
Device already is online

Note: If DASD is to be a boot device, do not forget to define it in /etc/fstab and
/etc/zipl.conf.

190 Linux for IBM System z9 and IBM zSeries

To use PAV with Linux for zSeries:

� The volume must reside on a storage server that supports PAV.

� Linux must run as a z/VM guest (Linux running in an LPAR does not support
PAV).

� A mutipath tool (such as LVM, mdadm, or EVMS) must be used to prevent
data inconsistency when using PAV.

6.4.1 Defining PAV devices
PAV devices must first be defined in the IOCDS, and configured in the ESS (for
details, refer to IBM TotalStorage Enterprise Storage Server Model 800,
SG24-6424). In Figure 6-2, C70D is defined as base devices, and C7C8 and
C7C9 are defines as alias devices. The relevant IOCDS statements are in
Example 6-3:

Example 6-3 IOCDS statements

IODEVICE ADDRESS=(C70D),UNITADD=00,CUNUMBR=(C70C), *
STADET=Y,UNIT=3390B

IODEVICE ADDRESS=(C7C8),UNITADD=18,CUNUMBR=(C7CC), *
STADET=Y,UNIT=3390A

IODEVICE ADDRESS=(C7C9),UNITADD=18,CUNUMBR=(C7CD), *
STADET=Y,UNIT=3390A

After the IOCDS changes are activated, we check their availability in z/VM using
the Q PAV command shown Figure 6-2.

Figure 6-2 Checking PAV device availability

Once the PAV devices are available, we attach the devices to the Linux guest.

Q PAV
Device C70D is a base Parallel Access Volume with the following aliases: C7CC C7CD
Device C7C8 is an alias Parallel Access Volume device whose base device is C70C
Device C7C9 is an alias Parallel Access Volume device whose base device is C70C

Ready; T=0.01/0.01 10:14:19
ATT C70D LNXSU2
DASD C70D ATTACHED TO LNXRH2 C70C WITH DEVCTL
Ready; T=0.01/0.01 10:17:04
ATT C7C8-C7C9 LNXSU2
C7C8-C7C9 ATTACHED TO LNXSU2
Ready; T=0.01/0.01 16:03:20

 Chapter 6. Using ECKD storage 191

6.4.2 Preparing PAV devices in Linux
When attached to the Linux guest and brought online, the PAV device nodes
should be created automatically. The base and alias devices address the same
physical disk. Therefore, the volume can be formatted and partitioned using
either the base or alias device. In Figure 6-3, we bring the PAV devices online
and check their status using the lsdasd command.

Figure 6-3 Setting the PAV devices online

The lscss command shows the subchannels used to the devices. These
subchannels share the physical channels 88, 89, 8C and 8D (Example 6-4):

Example 6-4 Using the lscss command

lscss | grep "C7"
0.0.C70D 0.0.0015 3390/0C 3990/E9 yes F0 F0 FF 88898C8D 00000000
0.0.C7C8 0.0.0016 3390/0C 3990/E9 yes F0 F0 FF 88898C8D 00000000
0.0.C7C9 0.0.0017 3390/0C 3990/E9 yes F0 F0 FF 88898C8D 00000000

6.4.3 Defining PAV devices with EVMS
When they are online, we format and partition the volume:

dasdfmt -f /dev/dasdd
fdasd /dev/dasdd

Next, we start EVMS using the evmsn command. Use the Tab key to switch
between the different views. Using EVMS, we create a single logical volume from
the PAV devices. From the EVMS logical view, we:

1. Delete any existing logical volumes.

chccwdev -e c70d c7c8 c7c9
Setting device 0.0.c70d online
Done
Setting device 0.0.c7c8 online
Done
Setting device 0.0.c7c9 online
Done
lsdasd
0.0.0201(ECKD) at (94: 0) is dasda : active at blocksize 4096, 600840 blocks, 2347 MB
0.0.0301(ECKD) at (94: 4) is dasdb : active at blocksize 4096, 600840 blocks, 2347 MB
0.0.0401(ECKD) at (94: 8) is dasdc : active at blocksize 4096, 601020 blocks, 2347 MB
0.0.c70d(ECKD) at (94: 12) is dasdd : active at blocksize 4096, 1803060 blocks, 7043 MB
0.0.c7c8(ECKD) at (94: 16) is dasde : active at blocksize 4096, 1803060 blocks, 7043 MB
0.0.c7c9(ECKD) at (94: 20) is dasdf : active at blocksize 4096, 1803060 blocks, 7043 MB

192 Linux for IBM System z9 and IBM zSeries

We first delete any existing logical volume on the PAV devices. Navigate
Actions → Delete → Volumes to the display the Delete Logical Volumes
dialog shown in Figure 6-4.

Figure 6-4 EVMS Delete Logical Volumes dialog

Use the spacebar to select the PAV logical volumes; click Delete to continue.
In the dialog box that follows, select the Write zeros option to delete any
existing data.

2. Create an EVMS storage region.

Next, change to the Available Objects view and navigate Actions →
Create → Region to display the create storage region dialog. Select the MD
Multipath Region Manager option as shown in Figure 6-5 on page 194.

Note: Any existing data on the volume will be lost.

 Chapter 6. Using ECKD storage 193

Figure 6-5 EVMS create storage region dialog

Click Next to go to the dialog box in Figure 6-6, add the desired PAV devices,
and click Create.

Figure 6-6 Select storage object

3. Create an EVMS volume on the region.

Next, we create an EVMS volume on the region. Navigate Action →
Create → EVMS Volume to display the dialog in Figure 6-7 on page 195.
Enter the name of the EVMS volume and hit Enter. When prompted, click
Create to build the multipath volume.

194 Linux for IBM System z9 and IBM zSeries

Figure 6-7 EVMS create volume dialog

4. Save the EVMS configuration.

Up to this point, changes have not been committed to disk (this is indicated by
an X in the dirty column). To save the definitions:

a. Navigate Actions → Save to the Save Changes Configuration dialog box.

After an EVMS multipath volume is created, the participating devices cannot be
brought offline (for instance, using the chccwdev command).

Create a file system on the multipath volume
To use the multipath volume, we create a file system on it using EVMS. First, we
must quit, then restart EVMS (EVMS needs to scan the volumes which compose
the multipath volume).

When EVMS is restarted, we:

1. Select the multipath array in the Logical Volumes view.

Press Enter to open the volume related properties window shown in
Figure 6-8 on page 196.

Note: PAV multipath arrays built by LVM2 and EVMS are not compatible.
However, EVMS storage container are compatible with LVM1 volume groups.
This means that EMVS regions (created on a storage container) are
compatible with LVM logical volumes (built on LVM1 volume groups).

 Chapter 6. Using ECKD storage 195

Figure 6-8 EVMS volume properties window

Select the Make File System option.

2. Select filesystem type.

Next, create your type of filesystem. In Figure 6-9, we choose an ext2/ext3
filesystem. Click Next to continue.

Figure 6-9 Select filesystem type to create

3. Select the PAV logical volume.

196 Linux for IBM System z9 and IBM zSeries

Choose the PAV logical volume on which the filesystem is to be created. In
Figure 6-10, we choose the previously create /dev/evms/dasd_pav logical
volume.

Figure 6-10 Select the PAV logical volume

Click Next to customize the filesystem configuration as shown in Figure 6-11.

Figure 6-11 Filesystem configuration options

4. To complete the operation, click Make Filesystem.

 Chapter 6. Using ECKD storage 197

Checking PAV operation
To ensure EVMS is utilizing PAV, we can use the Performance Toolkit to monitor
disk I/O. First we mount the PAV logical volume, then write to a file on the
filesystem (Example 6-5):

Example 6-5 Mounting the PAV and writing a file

mount /dev/evms/dasd_pav /mnt
cd /mnt
cat /dev/zero > output
cat: write error: No space left on device
ls -l
total 7065808
drwxr-xr-x 3 root root 4096 May 4 11:53 .
drwxr-xr-x 20 root root 4096 May 4 08:50 ..
drwx------ 2 root root 16384 May 4 11:49 lost+found
-rw-r--r-- 1 root root 7228289024 May 4 11:58 output

In Figure 6-12, we see all three paths to the physical device are used during the
process.

Figure 6-12 Checking I/O activity to a PAV logical volume

6.4.4 Using PAV on with mdadm
With RHEL4, we use mdadm to take advantage of the PAV devices. We create an
array of DASD devices: one base DASD device and two alias DASD devices. In
our example, we configure PAV for devices /dev/dasdd, /dev/dasde, and
/dev/dasdf as shown in Figure 6-13 on page 199.

Note: An existing EVMS configuration can be activated after Linux is rebooted
using the command evms_activate command.

198 Linux for IBM System z9 and IBM zSeries

Figure 6-13 PAV devices /dev/dasdd, /dev/dasde, and /dev/dasdf

As illustrated in Figure 6-14, different subchannels are used to access the base
and alias volumes. These subchannels share physical channels 88, 89, 8C and
8D.

Figure 6-14 Subchannel used by PAV devices

1. We first create PAV DASD array /dev/md4 using the mdadm command:

mdadm -C /dev/md4 --level=multipath --raid-devices=3 /dev/dasdd1 \
/dev/dasde1 /dev/dasdf1
mdadm: array /dev/md4 started.

2. Next, we create a file system on the newly created array (Example 6-6):

Example 6-6 Creating files on the array

mke2fs -j /dev/md4
mke2fs 1.35 (28-Feb-2004)
Filesystem label=
OS type: Linux
Block size=4096 (log=2)
Fragment size=4096 (log=2)
903168 inodes, 1803008 blocks
90150 blocks (5.00%) reserved for the super user
First data block=0
Maximum filesystem blocks=1849688064
56 block groups
32768 blocks per group, 32768 fragments per group
16128 inodes per group

lsdasd
0.0.0201(ECKD) at (94: 0) is dasda : active at blocksize 4096, 600840 blocks, 2347 MB
0.0.0202(ECKD) at (94: 4) is dasdb : active at blocksize 4096, 600840 blocks, 2347 MB
0.0.0300(ECKD) at (94: 8) is dasdc : active at blocksize 4096, 900 blocks, 3 MB
0.0.c70c(ECKD) at (94: 12) is dasdd : active at blocksize 4096, 1803060 blocks, 7043 MB
0.0.c7cc(ECKD) at (94: 16) is dasde : active at blocksize 4096, 1803060 blocks, 7043 MB
0.0.c7cd(ECKD) at (94: 20) is dasdf : active at blocksize 4096, 1803060 blocks, 7043 MB

lscss | grep "C7"
0.0.C70C 0.0.0030 3390/0C 3990/E9 yes F0 F0 FF 88898C8D 00000000
0.0.C7CC 0.0.0031 3390/0C 3990/E9 yes F0 F0 FF 88898C8D 00000000
0.0.C7CD 0.0.0032 3390/0C 3990/E9 yes F0 F0 FF 88898C8D 00000000

 Chapter 6. Using ECKD storage 199

Superblock backups stored on blocks:
 32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632

Writing inode tables: done

Using the -D option, the mdadm command displays the device array
information (Example 6-7):

Example 6-7 Using mdadm with -d for device arrays

mdadm -D /dev/md4
/dev/md4:
 Version : 00.90.01
 Creation Time : Wed May 4 13:06:08 2005
 Raid Level : multipath
 Array Size : 7212032 (6.88 GiB 7.39 GB)
 Raid Devices : 3
 Total Devices : 3
Preferred Minor : 4
 Persistence : Superblock is persistent

 Update Time : Wed May 4 13:06:08 2005
 State : clean
 Active Devices : 3
Working Devices : 3
 Failed Devices : 0
 Spare Devices : 0

 Number Major Minor RaidDevice State
 0 94 13 0 active sync /dev/dasdd1
 1 94 17 1 active sync /dev/dasde1
 2 94 21 2 active sync /dev/dasdf1
 UUID : 2cf81aac:309e4182:508ba054:fc51d3f3

 Events : 0.1

To check the currently active members of the array, use the --examine option as
shown in Figure 6-15.

Figure 6-15 Print the contents of the superblock on the md device

mdadm --examine --brief --scan --config=partitions
ARRAY /dev/md4 level=multipath num-devices=3 UUID=9252b5f8:57ea5f9e:a96b9e66:f1d3ed62
 devices=/dev/dasdd1,/dev/dasde1,/dev/dasdf1

200 Linux for IBM System z9 and IBM zSeries

In the RHEL4, mdadm is not able to take full advantage of the PAV. It can only
use alias devices as redundant paths to the physical device. To illustrate this, we
mount the same array twice and started two disk write processes (Example 6-8):

Example 6-8 Multiple paths in RHEL4

mount /dev/md4 /mnt
cd /mnt
cat /dev/zero > output
mount /dev/md4 /tmp
cd /tmp
cat /dev/zero > other

In Figure 6-16, we see that only the base device (C70C) is used to write the two
files.

Figure 6-16 Monitoring I/O activity to an mdadm device array

6.4.5 Using PAV devices with LVM2
LVM2 can also be used in RHEL4 for PAV devices. In our example, the LVM2
volume group and logical volume contains one base (/dev/dasde1) and two alias
DASD devices (/dev/dasdf1 and /dev/dasdg1). In Figure 6-17 on page 202, we
create the physical volumes using the pvcreate command.

 Chapter 6. Using ECKD storage 201

Figure 6-17 Creating LVM2 physical volumes

Next, we create a logical volume group the vgcreate command in Figure 6-18 on
page 202.

Figure 6-18 Creating an LVM volume group

The we create a logical volume group using the lvcreate command in
Figure 6-19.

Figure 6-19 Creating an LVM logical volume

In Figure 6-20, the vgdisplay command shows information about the created
logical volume.

pvcreate /dev/dasde1
 Physical volume "/dev/dasde1" successfully created
pvcreate /dev/dasdf1
 Found duplicate PV 5BFiCJrRPxEhLXqZXClySSI9tT1TACdT: using /dev/dasde1 not /dev/dasdf1
 Found duplicate PV 5BFiCJrRPxEhLXqZXClySSI9tT1TACdT: using /dev/dasdg1 not /dev/dasdf1
 Physical volume "/dev/dasdf1" successfully created
pvcreate /dev/dasdg1
 Found duplicate PV WlaYpEb3GPcwnFWPqpEN2o6z8ArG6D3F: using /dev/dasde1 not /dev/dasdg1
 Found duplicate PV WlaYpEb3GPcwnFWPqpEN2o6z8ArG6D3F: using /dev/dasdf1 not /dev/dasdg1
 Physical volume "/dev/dasdg1" successfully created

vgcreate pav_rh /dev/dasde1
 Found duplicate PV rcKqqJCkSsHwW8ow4Z6AHEtn2b8v5w19: using /dev/dasdf1 not /dev/dasde1
 Found duplicate PV rcKqqJCkSsHwW8ow4Z6AHEtn2b8v5w19: using /dev/dasdg1 not /dev/dasde1
 Volume group "pav_rh" successfully created

lvcreate -L 100M -n lvpav_rh pav_rh
 Found duplicate PV rcKqqJCkSsHwW8ow4Z6AHEtn2b8v5w19: using /dev/dasdf1 not /dev/dasde1
 Found duplicate PV rcKqqJCkSsHwW8ow4Z6AHEtn2b8v5w19: using /dev/dasdg1 not /dev/dasde1
 Logical volume "lvpav_rh" created

202 Linux for IBM System z9 and IBM zSeries

Figure 6-20 Display information about the /dev/pav_rh/lvpav_rh logical volume

In Figure 6-21 on page 203, output from the lvmdiskcan command shows
duplicate physical volumes have been found by LVM (device nodes /dev/dasde1
and /dev/dasdf1). The duplicate devices correspond the PAV aliases devices.

Figure 6-21 Showing the PAV members with lvmdiskscan

lvdisplay
 Found duplicate PV rcKqqJCkSsHwW8ow4Z6AHEtn2b8v5w19: using /dev/dasdf1 not /dev/dasde1
 Found duplicate PV rcKqqJCkSsHwW8ow4Z6AHEtn2b8v5w19: using /dev/dasdg1 not /dev/dasde1
 --- Logical volume ---
 LV Name /dev/pav_rh/lvpav_rh
 VG Name pav_rh
 LV UUID cyuF4y-Ssd4-PNxQ-46P6-CZy4-W6Ts-rcyCke
 LV Write Access read/write
 LV Status available
 # open 0
 LV Size 100.00 MB
 Current LE 25
 Segments 1
 Allocation inherit
 Read ahead sectors 0
 Block device 253:2

lvmdiskscan
 /dev/dasda [2.29 GB]
 /dev/dasda1 [99.98 MB]
 /dev/dasda2 [2.19 GB]
 /dev/dasdb [2.29 GB]
 /dev/dasdb1 [2.29 GB]
 /dev/dasdc [3.52 MB]
 /dev/dasdc1 [3.50 MB]
 /dev/dasde [6.88 GB]
 /dev/dasde1 [6.88 GB] LVM physical volume
 /dev/sdb4 [18.63 GB]
 /dev/dasdf [6.88 GB]
 Found duplicate PV rcKqqJCkSsHwW8ow4Z6AHEtn2b8v5w19: using /dev/dasdf1 not /dev/dasde1
 /dev/dasdf1 [6.88 GB] LVM physical volume
 /dev/dasdg [6.88 GB]
 Found duplicate PV rcKqqJCkSsHwW8ow4Z6AHEtn2b8v5w19: using /dev/dasdg1 not /dev/dasde1
 /dev/dasdg1 [6.88 GB] LVM physical volume
 6 disks
 6 partitions
 0 LVM physical volume whole disks
 3 LVM physical volumes

 Chapter 6. Using ECKD storage 203

To remove an alias device from an active logical volume group, it must be first
toggled offline by Linux (before being detached by z/VM). To bring all PAV
devices offline, the logical volume first be deactivated. As with mdadm, RHEL4
uses LVM2 only for redundant paths (and not concurrent access).

204 Linux for IBM System z9 and IBM zSeries

Related publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

IBM Redbooks
For information about ordering these publications, see “How to get IBM
Redbooks” on page 207. Note that some of the documents referenced here may
be available in softcopy only.

� Linux for S/390, SG24-4987

� Linux on IBM ̂zSeries and S/390: Performance Toolkit for
VM, SG24-6059

� Linux on IBM ̂zSeries and S/390: Distributions,
SG24-6264

� Linux on IBM ̂zSeries and S/390: ISP/ASP Solutions,
SG24-6299

� Linux on zSeries and S/390: Fibre Channel Protocol Implementation Guide,
SG24-6344

� IBM TotalStorage Enterprise Storage Server Model 800 Performance
Monitoring and Tuning Guide, SG24-6422

� IBM TotalStorage Enterprise Storage Server Model 800, SG24-6424

� zSeries HiperSockets, SG24-6816

� Linux on IBM ̂zSeries and S/390: Systems Management,
SG24-6820

� Linux on IBM ̂zSeries and S/390: Large Scale Linux
Deployment, SG24-6824

� IBM ̂zSeries 990 Technical Guide, SG24-6947

� Linux on IBM ̂zSeries and S/390: Best Security Practices,
SG24-7023

� Linux on IBM ̂zSeries and S/390: Securing Linux for
zSeries with a z/OS Central LDAP Server, REDP-0221

� Linux on IBM ̂zSeries and S/390: TCPIP Broadcast on
z/VM Guest LAN, REDP-3596

© Copyright IBM Corp. 2006. All rights reserved. 205

� Linux on IBM ̂zSeries and S/390: VSWITCH and VLAN
Features of z/VM 4.4, REDP-3719

� Running Linux Guests in less than CP Privilege Class G, REDP-3870

� Cloning FCP-attached SCSI SLES9 Linux, REDP3871

� Networking Overview for Linux on zSeries, REDP-3901

Other publications
These publications are also relevant as further information sources:

� Connectivity, SC24-6080

� CP Commands and Utilities Reference, SC24-6081

� z/VM: CP Planning and Administration, SC24-6083

� Getting Started with Linux on zSeries, SC24-6096

� Directory Maintenance Facility Commands Reference, SC24-6133

� Directory Maintenance Facility Tailoring and Administration Guide,
SC24-6135

� z/VM: Migration Guide, GC24-6103

� Secure Configuration Guide, SC24-6138

� What's new in Performance Toolkit for VM in z/VM V5.1, GM130637

� Linux 2.4 to 2.6 Transition Guide, LNUX-14MG

� Linux on zSeries Device Drivers, Features, and Commands March 23, 2005,
SC33-8281

� How to use Execute-in-Place Technology with Linux on z/VM March 23,
2005, SC33-8283

� udev - A Userspace Implementation of devfs by Greg Kroah-Hartman
reprinted from the Proceedings of the Linux Synopsium, July 23-26, 2003

http://www.kroah.com/linux/talks/ols_2003_udev_paper/Reprint-Kroah-Hartman-
OLS2003.pdf

� Asynchronous I/O Support in Linux 2.5 by Suparna Bhattacharya, et al
reprinted from the Proceedings of the Linux Synopsium, July 23-26, 2003

http://archive.linuxsymposium.org/ols2003/Proceedings/All-Reprints/Reprint-
Pulavarty-OLS2003.pdf

� "Kernel Korner - I/O Schedulers" by Rob Love in Linux Journal, February
2004

http://www.linuxjournal.com/article/6931

206 Linux for IBM System z9 and IBM zSeries

http://www.linuxjournal.com/article/6931
http://www.kroah.com/linux/talks/ols_2003_udev_paper/Reprint-Kroah-Hartman-OLS2003.pdf
http://archive.linuxsymposium.org/ols2003/Proceedings/All-Reprints/Reprint-Pulavarty-OLS2003.pdf

� "Kernel Korner - What’s New in the 2.6 Scheduler" by Rick Lindsley in Linux
Journal, March 2004

http://www.linuxjournal.com/article/7178

� IBM Middleware Available on Linux, found at:

ftp://ftp.software.ibm.com/software/linux/IBMSoftwareOnLinux.pdf

Online resources
These Web sites and URLs are also relevant as further information sources:

� IBM developersWorks Linux on zSeries

http://www.ibm.com/developerworks/linux/linux390/

� SUSE Linux Enterprise Server 9 home page

http://www.novell.com/products/linuxenterpriseserver/

� RedHat Enterprise Linux home page

http://www.redhat.com/software/rhel/server/

� IBM Software for Linux

http://www.ibm.com/linux/matrix/linuxmatrixhwz.html

� IBM TotalStorage products for IBM ̂zSeries and System z9

http://www.ibm.com/servers/storage/product/products_zseries.html

� XML C parser and toolkit of Gnome

http://xmlsoft.org/

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips,
draft publications and Additional materials, as well as order hardcopy Redbooks
or CD-ROMs, at this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

 Related publications 207

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.novell.com/products/linuxenterpriseserver/
http://www.redhat.com/software/rhel/server/
ftp://ftp.software.ibm.com/software/linux/IBMSoftwareOnLinux.pdf
http://www.linuxjournal.com/article/7178
http://www.ibm.com/linux/matrix/linuxmatrixhwz.html
http://www.ibm.com/servers/storage/product/products_zseries.html
http://xmlsoft.org/
http://www.ibm.com/developerworks/linux/linux390/

ibm.com/services

208 Linux for IBM System z9 and IBM zSeries

http://www.ibm.com/services/
http://www.ibm.com/services/

Index

Symbols
/dev/disk/by-id 167
/dev/disk/by-path 167
/dev/zfcp_cfdc 172
/etc/chandev.conf 72
/etc/init.d/boot.udev 36, 167
/etc/modprobe.conf 163, 189

alias scsi_hostadapter zfcp 163
/etc/rc.d/boot.scsidev 167
/etc/sysconfig/hardware 24
/etc/sysconfig/hardware/skel 24
/etc/sysconfig/hardware/skel/hwcfg-zfcp 160
/etc/sysconfig/sysctl 144
/etc/udev/rules.d 165

10-udev.rules 165
50-udev.rules 165

/etc/udev/rules.d/50-udev.rule 33
/etc/udev/udev.rules 33, 167
/etc/zfcp.conf 162
/proc/scsi/scsi 158
/proc/sys/vm/swappiness 13
/proc/vlan/config 138
/sys/block/dev/queue/scheduler 16

Numerics
8021q module 71

A
actcli command 171
ARP 67
asynchronous I/O 14
AUTOLOG1 122

C
channel 3
channel path 3
channel subsystem (CSS) 2
channel-to-channel adapter 76
chccwdev command 23, 161, 189
CHPID 3

type IQD 83
CLAW 82

© Copyright IBM Corp. 2006. All rights reserved.
cmsfslst command 38
control unit 3
COUPLE command 103–104
CP 2
custom udev rules 167

D
dasdview command 39
Debian 48
DEDICATE statement 71
DEFINE LAN command 104
DEFINE NIC command 102, 104
DEFINE VSWITCH command 124

operands 125
DETACH LAN command 107
DETACH NIC command 106
direct I/O 14

E
ECKD 43

DASD configuration file 189
DASD configuration in RHEL4 189
DASD configuration in SLES9 189

EDEVICE statement 46
emulated FBA device 46
ESCON channel 76
ESS 188

operation mode 188
Bypass Cache 188
Inhibit Cache Loading 188
Normal Cache Replacement 188
Prestage 188
Record Access 188
Sequential Access 188

EVMS 192
add Segment Manager 177
create compatibility volume 182
create EVMS segment 179
create filesystem 182
create storage region 193
create volume 194
delete logical volume 193
multipath array 195

 209

PAV logical volume 197
save configuration 195

evms_activate command 184, 198
evmsn command 177, 192

F
FCP 43

/sbin/zfcpconf.sh script 163
add LUN 157
add WWPN 157
bring device online 157
configuration files 159
configure device using YaST 161
create initial ramdisk 163
device attributes 158
LUN 46

masking 168
LUN Access Control 168

ACT 169
ACT template file 171
configuration utility 170
installation 171
operation 170
prerequisite software 171
privileged FCP unit address 171
sample scenario 173

manually configure device 161
multipathing 175

create multipath storage region 180
using EVMS 176
using mdadm 184

udev device naming 165
in RHEL4 165
in SLES9 167

WWPN 46
zoning 168

FICON channel 76
firewall

packet filtering 144
routing 144

futexes 13

G
getconf command 19
getfacl command 16
GNU_LIBPTHREAD_VERSION 19

H
HiperSockets 83

IOCP statements 85
z/VM 86

HiperSockets Network Concentrator 89
hwup command 25, 161, 189

I
I/O scheduler 14

anticipatory (as) 15
completely fair queuing (cfq) 15
deadline 15
elevator parameter 15
noop 15
request merging 15
request sorting 15

IBM developersWorks 207
IBM middleware for Linux 48
ICF 2
IFA 2
IFL 2
initial ramdisk 190
insserv command 167
ip command 139
iproute2 utility 139
iptables command 144
ipv6 module 71
iQDIO 83
IUCV 91

L
Layer 2 126

prerequisites 126
sample scenario 128

/etc/chandev.conf file 137
firewall configuration 144
IP addresses 131
load balancer 145
logical diagram 128
NFS server configuration 141
physical implementation 129
start firewall 145
virtual Linux servers 133
VLAN definitions 130
VLAN interface 138
VLAN permissions 134
VMLAN statement 133
VSWITCH controllers 133

210 Linux for IBM System z9 and IBM zSeries

Web server configuration 142
z/VM system configuration 132

unique MAC addresses 127
Layer 3 64
LCS device 66
LD_ASSUME_KERNEL environment variable 19
libxml2 package 171
Linux 2.6 kernel 10

kernel preemption 13
access control lists 16
choosing 64-bit or 31-bit 10
compatibility mode 10
extended attributes 16
global locks 11
major changes 11
maximum number of users 11
number of attached devices 11
reverse page mapping (rmap) 17
swap setting 13

Linux under z/VM performance tuning 49
configuring z/VM paging 51
Linux guest virtual machine size 52

Linux Virtual Server project 145
LinuxThreads 17
LLC header 68
load balancer 121, 145

direct routing 146
IP tunneling 145
network address translation 145

logical CP 4
LPAR 4

dispatching 4
LPAR-to-LPAR networking 64
lscss command 22, 192
lsdasd command 22, 192
lsscsi command 158
lstape command 23
lvcreate command 202
LVM2 201
lvmdiskcan command 203

M
MAC address 64, 127

prefix 127
mdadm 184, 198

check device node status 185
create device node 185

mdadm command 185
mkinitrd command 161

N
NFSv4 19
NIC 94
NICDEF statement 100, 127

MACID parameter 127
non-QDIO 66
NPTL 17

O
O(1) scheduler 12
OSA

ARP processing 64
checksum offload 66
IP assist functions 66
Layer 2 64
non-QDIO 66
non-QDIO mode 62, 66
OAT 63
Open Systems Adapter-2 60
Open Systems Adapter-Express 60
OSA-Express 60, 71

ethernet adapter 127
port name 73–74
port sharing 64–65
primary router 70

P
PAV 190

base and alias devices 192
IOCDS definition 191
prerequisites for Linux 191
using EVMS 192
using LVM2 201

physical CP 4
PR/SM 4
priority queuing 63
process scheduler 12

CPU affinity 12
interactive performance 13

ps command 17
pvcreate command 201

Q
qdio mode 61

 Index 211

qdio module 71
qeth device driver 127
qeth group 73, 88
qeth module 71
QUERY ALLOC PAGE command 51
QUERY LAN command 105
QUERY NIC command 105
QUERY PAV command 191
QUERY VIRTUAL OSA command 106
QUERY VMLAN command 127

R
Redbooks Web site 207

Contact us xi
RHEL4 47

S
s390-tools package 37
s390utils package 37
SAP 2–3
SCSI disks 43

allocation restrictions 44
FBA emulation 43–44
IBM TotalStorage Enterprise Storage Server 43
size restrictions 44

SET EDEVICE command 46
SET SRM command 54
setfacl command 16
Slack/390 48
SLES9 47
subchannel 3
swap device

DCSS 52
VDISK 51

sysfs filesystem 73, 80, 88
systool command 158

T
TCP/IP passthru 67
tunedasd command 38, 188

-c option 188
-g option 188

U
udevinfo command 32, 159, 166
UNCOUPLE command 106

V
vconfig command 138
vgcreate command 202
vgdisplay command 202
virtual channel-to-channel adapter 91
virtualization 42
VLAN 109

access port 110
difference from ELAN 113
example 111
IEEE 802.1Q 114
ISL 114
isolation 120
Linux configuration files 140
port-based 113
standards 113
support on z/VM Guest LAN 119
tagging 114
trunk port 111, 132
virtual interface 116
VSWITCH filtering 120
VSWITCH support 119

VM 5.1
DVD installation 43

VM Guest LAN 93
VM scheduler

dispatch list 53
dormant list 53
eligible list 53
logical CPUs 56
OPTION QUICKDSP statement 55
SHARE settings 56

absolute share 56
relative share 56

SRM settings 54
virtual machine classification 53

VMLAN statement 98, 127
MACIDRANGE parameter 127
MACPREFIX parameter 127

VSWITCH
configuration 121

IP vs ethernet mode 121
controller virtual machine 121

automatically starting 122
directory entry 122
PROFILE EXEC 123
PROFILE TCPIP 123
QUERY CONTROLLER command 123
SYSTEM DTCPARMS 123

212 Linux for IBM System z9 and IBM zSeries

creating 124
failover support 126

Z
z/VM

memory contention below 2 GB 50
performance monitoring 56

z/VM storage 49
expanded storage 49

recommendations 50
main storage 49
paging space 50

recommendations 51
z/VM V5.1 127
zAAP 2
zipl command 161, 164

 Index 213

214 Linux for IBM System z9 and IBM zSeries

(0.2”spine)
0.17”<

->
0.473”

90<
->

249 pages

Linux for IBM
 System

 z9 and IBM
 zSeries

®

SG24-6694-00 ISBN 0738492590

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed by
the IBM International Technical
Support Organization. Experts
from IBM, Customers and
Partners from around the world
create timely technical
information based on realistic
scenarios. Specific
recommendations are provided
to help you implement IT
solutions more effectively in
your environment.

For more information:
ibm.com/redbooks

Linux for
IBM System z9 and IBM
zSeries

Running Linux on
IBM System z9 and
IBM zSeries

Using and
configuring the Linux
2.6 kernel

Virtualizing with
z/VM

This IBM Redbook discusses configuring and administering
Linux systems running on IBM System z9 and zSeries. It is
intended for system administrators and IT architects
responsible for deploying Linux servers on System z9 and
zSeries servers.

We examine new features and enhancements of the Linux 2.6
kernel. We demonstrate Linux device configuration using
sysfs and udev and discuss running Linux servers under
z/VM. Networking options available for Linux on IBM System
z9 and zSeries are examined in detail. Configuration of
FCP-attached SCSI disks and traditional ECKD storage is
demonstrated.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team that wrote this redbook
	Become a published author
	Comments welcome

	Chapter 1. Introduction to z/Architecture
	1.1 The zSeries and System z9 servers
	1.2 The central processing complex
	1.2.1 Processing units

	1.3 The channel subsystem
	1.4 Logical partition concepts
	1.4.1 LPAR dispatching

	Chapter 2. Linux 2.6 kernel
	2.1 Choosing a 64-bit or 31-bit Linux distribution
	2.1.1 Linux 31-bit compatibility mode

	2.2 Performance and scalability enhancements
	2.2.1 The new Linux process scheduler
	2.2.2 System swap setting
	2.2.3 Kernel preemption
	2.2.4 Fast user-space mutual exclusion
	2.2.5 I/O performance and scalability enhancements
	2.2.6 I/O schedulers
	2.2.7 Extended attributes and access control lists
	2.2.8 Memory management enhancements
	2.2.9 Native POSIX Threading Library
	2.2.10 NFS version 4

	2.3 Introduction to sysfs
	2.3.1 Organization of the /sys directory
	2.3.2 New sysfs command for Linux on zSeries
	2.3.3 Device configuration with sysfs
	2.3.4 SLES9 hardware configuration
	2.3.5 RHEL4 hardware configuration
	2.3.6 Device node naming with udev
	2.3.7 Hotplug detection and device node naming
	2.3.8 Distribution considerations when naming devices

	2.4 S/390 tools and utilities
	2.4.1 The cmsfslst command
	2.4.2 The tunedasd command
	2.4.3 The dasdview command

	Chapter 3. Virtualization with z/VM
	3.1 z/VM and virtualization
	3.1.1 z/VM guest support

	3.2 Installing z/VM 5.1
	3.2.1 Installation to FCP-attached SCSI disk

	3.3 Distributions for Linux on zSeries
	3.3.1 SUSE Linux Enterprise Server 9
	3.3.2 Red Hat Enterprise Linux 4
	3.3.3 Non-commercial distributions
	3.3.4 IBM middleware for Linux on zSeries

	3.4 Running Linux under z/VM
	3.4.1 Managing guest virtual memory
	3.4.2 Managing z/VM storage
	3.4.3 Managing the VM scheduler
	3.4.4 Performance monitoring

	Chapter 4. Networking Overview
	4.1 Networking options
	4.2 Physical networking options
	4.2.1 Open Systems Adapter-2 (OSA-2)
	4.2.2 Open Systems Adapter-Express (OSA-Express)
	4.2.3 Channel-to-channel adapter
	4.2.4 Common Link Access to Workstation (CLAW)

	4.3 HiperSockets
	4.4 Virtualization technology
	4.5 Point-to-point connectivity
	4.5.1 Guest LAN

	4.6 Guest LAN configuration
	4.6.1 Create a z/VM Guest LAN
	4.6.2 Persistent Guest LANs
	4.6.3 The VMLAN statement
	4.6.4 Create a virtual Network Interface Card
	4.6.5 NIC definition in the user directory
	4.6.6 NIC definition using CP commands
	4.6.7 Connect the virtual NIC to the Guest LAN
	4.6.8 Example of building a z/VM Guest LAN
	4.6.9 Undoing the definitions
	4.6.10 Configuring Linux to connect to a Guest LAN

	4.7 Virtual Switch
	4.8 Introduction to VLANs
	4.8.1 What is a Virtual LAN
	4.8.2 VLAN standards
	4.8.3 How IEEE 802.1Q VLANs work
	4.8.4 VLAN support on z/VM Guest LAN
	4.8.5 VLANs on z/VM Virtual Switch
	4.8.6 VLAN isolation

	4.9 VSWITCH configuration
	4.9.1 Transport mode: IP or Ethernet
	4.9.2 Configure controller service machines
	4.9.3 Defining a VSWITCH
	4.9.4 VSWITCH failover support

	4.10 Layer 2 test scenario
	4.10.1 Requirements
	4.10.2 Test overview
	4.10.3 External devices
	4.10.4 z/VM system configuration
	4.10.5 Configuring Linux
	4.10.6 Setting up the file server
	4.10.7 NFS server configuration
	4.10.8 Setting up the Web servers
	4.10.9 Setting up the firewalls
	4.10.10 Setting up the load balancer
	4.10.11 Testing
	4.10.12 Recommendations

	4.11 Summary

	Chapter 5. FCP-attached SCSI disks
	5.1 FCP configuration using sysfs
	5.1.1 Querying FCP device information

	5.2 SCSI device configuration files
	5.2.1 FCP device configuration in SLES9
	5.2.2 FCP device configuration in RHEL4

	5.3 Persistence SCSI disk naming with udev
	5.3.1 Persistent SCSI disk naming in RHEL4
	5.3.2 Persistent SCSI disk naming in SLES9

	5.4 The FCP LUN Access Control feature
	5.4.1 FCP LUN Access Control operation
	5.4.2 Installing the FCP LUN Access Control feature
	5.4.3 Using the configuration utility
	5.4.4 A sample scenario

	5.5 Multipathing for SCSI disks
	5.5.1 Multipathing using EVMS on SLES9
	5.5.2 Multipathing using mdadm on RHEL4

	Chapter 6. Using ECKD storage
	6.1 ESS operating mode
	6.2 Configuring DASD at IPL with SLES9
	6.3 Configuring DASD at IPL with RHEL4
	6.4 Parallel Access Volumes
	6.4.1 Defining PAV devices
	6.4.2 Preparing PAV devices in Linux
	6.4.3 Defining PAV devices with EVMS
	6.4.4 Using PAV on with mdadm
	6.4.5 Using PAV devices with LVM2

	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

