Rutgers University
 Department of Physics \& Astronomy

01:750:271 Honors Physics I Fall 2015

Lecture 14

Title Page
\square
$4 \square$

Page 1 of

Go Back

9. Center of Mass. Linear Momentum II

- Previously: inelastic collisions in 1D

```
In a completely inelastic collision, the bodies stick together.
```


Linear momentum conserved, kinetic energy not conserved (some fraction converted to thermal energy.)

- Ellastic collisions in 1D: both linear momentum and kinetic energy are conserved

Title Page

- Generic setup - stationary target
- The linear momentum
 of the system is conserved:

$$
\vec{P}_{i}=\vec{P}_{f}
$$

- The total kinetic energy of the system is conserved:

$$
K_{i}=K_{f}
$$ change, but the total kinetic energy of the system does not change.

Here is the generic setup for an elastic collision with

After

$$
m_{1} v_{1 i}=m_{1} v_{1 f}+m_{2} v_{2 f}
$$

1D elastic collision - stationary target

$$
v_{1 f}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} v_{1 i} \quad v_{2 f}=\frac{2 m_{1}}{m_{1}+m_{2}} v_{1 i}
$$

Note:

- $v_{2 f}>0$
- $v_{1 f}>0$ if $m_{1}>m_{2} ; v_{1 f}<0$ if $m_{1}<m_{2}$
- $v_{1 f}=0, v_{2 f}=v_{1 i}$ if $m_{1}=m_{2}$ (identical particles)
- Generic setup - moving target

Here is the generic setup for an elastic collision with a moving target.

$$
m_{1} v_{1 i}+m_{2} v_{2 i}=m_{1} v_{1 f}+m_{2} v_{2 f}
$$

$$
\frac{1}{2} m_{1} v_{1 i}^{2}+\frac{1}{2} m_{2} v_{2 i}^{2}=\frac{1}{2} m_{1} v_{1 f}^{2}+\frac{1}{2} m_{2} v_{2 f}^{2}
$$

$$
\begin{aligned}
& m_{1} v_{1 i}+m_{2} v_{2 i}=m_{1} v_{1 f}+m_{2} v_{2 f} \\
& \Downarrow \\
& m_{1}\left(v_{1 i}-v_{1 f}\right)=m_{2}\left(v_{2 f}-v_{2 i}\right) \\
& \frac{1}{2} m_{1} v_{1 i}^{2}+\frac{1}{2} m_{2} v_{2 i}^{2}=\frac{1}{2} m_{1} v_{1 f}^{2}+\frac{1}{2} m_{2} v_{2 f}^{2} \\
& \Downarrow \\
& m_{1}\left(v_{1 i}-v_{1 f}\right)\left(v_{1 i}+v_{1 f}\right)=m_{2}\left(v_{2 f}-v_{2 i}\right)\left(v_{2 f}+v_{2 i}\right) \\
& \Downarrow \\
& v_{1 i}+v_{1 f}=v_{2 f}+v_{2 i}
\end{aligned}
$$

Title Page

1D elastic collision - moving target

$$
\begin{aligned}
& v_{1 f}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} v_{1 i}+\frac{2 m_{2}}{m_{1}+m_{2}} v_{2 i} \\
& v_{2 f}=\frac{2 m_{1}}{m_{1}+m_{2}} v_{1 i}+\frac{m_{2}-m_{1}}{m_{1}+m_{2}} v_{2 i}
\end{aligned}
$$

- Example: two pendulums

- How high will the 1st ball recoil after collision?
- Which way will it swing?
- How high will the 2nd ball swing after collision?
- Step 1:

$$
\begin{gathered}
m g h_{1}=\frac{1}{2} m v_{1 i}^{2} \\
v_{1 i}=\sqrt{2 g h_{1}}
\end{gathered}
$$

- Step 2: collision

$$
\begin{aligned}
& v_{1 f}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} v_{1 i} \\
& v_{2 f}=\frac{2 m_{1}}{m_{1}+m_{2}} v_{1 i}
\end{aligned}
$$

- Step 3:

$$
m_{1} g h_{1 f}=\frac{1}{2} m_{1} v_{1 f}^{2} \quad m_{2} g h_{2 f}=\frac{1}{2} m_{2} v_{2 f}^{2}
$$

- Collisions in 2D
- Linear momentum conserved:

$$
\vec{p}_{1 i}+\vec{p}_{2 i}=\vec{p}_{1 f}+\vec{p}_{2 f}
$$

- Stationary target:

$$
\begin{aligned}
m_{1} v_{1 i}= & m_{1} v_{1 f} \cos \theta_{1} \\
& +m_{2} v_{2 f} \cos \theta_{2}
\end{aligned}
$$

$$
m_{1} v_{1 f} \sin \theta_{1}=m_{2} v_{2 f} \sin \theta_{2}
$$

- If elastic, kinetic energy also conserved:

$$
\frac{1}{2} m_{1} v_{1 i}^{2}+\frac{1}{2} m_{2} v_{2 i}^{2}=\frac{1}{2} m_{1} v_{1 f}^{2}+\frac{1}{2} m_{2} v_{2 f}^{2}
$$

- Systems with varying mass

(a) accelerating rocket at time t in inertial frame
(b) accelerating rocket at time $t+d t$ in the same
frame

$$
v \rightarrow v+d v, \quad d v>0 \quad M \rightarrow M+d M, \quad d M<0
$$

- Suppose the relative speed $v_{\text {rel }}$ between the rocket and exhaust products is known.
- How do we find the acceleration?

Rocket + exhaust products $=$ isolated closed system
\Downarrow

Linear momentum conserved

$$
\vec{P}_{a}=\vec{P}_{b} \quad P_{a, x}=P_{b, x}
$$

$$
P_{a, x}=M v \quad P_{b, x}=(M+d M)\left(v_{x}+d v_{x}\right)+(-d M) u_{x}
$$

Note: u_{x} the x-component of the velocity of the exhaust products relative to the inertial frame

$$
v_{x}+d v_{x}=u_{x}+v_{\mathrm{rel}}
$$

$$
\begin{gathered}
M v=(M+d M)\left(v_{x}+d v_{x}\right)-\left(v_{x}+d v_{x}-v_{\mathrm{rel}}\right) d M \\
M d v_{x}+v_{\mathrm{rel}} d M=0 \Rightarrow M \frac{d v_{x}}{d t}=-v_{\mathrm{rel}} \frac{d M}{d t}
\end{gathered}
$$

Title Page

$$
M a_{x}=-v_{\mathrm{rel}} \frac{d M}{d t}=R v_{\mathrm{rel}}
$$

The 1st rocket equation

$$
v_{f, x}-v_{i, x}=v_{\mathrm{rel}} \ln \frac{M_{i}}{M_{f}}
$$

The 2 nd rocket equation

i-Clicker

	p	v	K
$A)$	same	same	same
$B)$	increases	same	increases

Title Page

```
Page 20 of
```


i-Clicker

	p	v	K
$A)$	same	same	same
$B)$	increases	same	increases

Title Page

Rain falls vertically into an open cart
C) increases increases increases rolling horizontally. What happens to D) same decreases same the momentum, speed and kinetic E) same decreases decreases energy?

10. Rotation

- A rigid body is a body that can rotate with all its parts locked together and without any change in its shape.
- A fixed axis means that the rotation occurs about an axis that does not move.

Home Page

```
    Title Page
```

```
Page 22 of 2
```

```
    Go Back
```

 Full Screen
 - Rotation variables

- rotation axis $=z$ axis
- reference line:
- perpendicular to rotation axis.
- rotates with the body

Title Page

4 -

Page 23 of

```
    Go Back
```


Home Page

- Angular position:

$$
\theta=\frac{s}{r}
$$

Title Page
s length of circular arc \square
r radius of circle

- Positive direction: counterclockwise
- Angular displacement:

$$
\Delta \theta=\theta_{2}-\theta_{1}
$$

$$
\Delta \theta>0 \quad \text { counterclockwise }
$$

$$
\Delta \theta<0 \quad \text { clockwise }
$$

- Average angular velocity:

$$
\omega_{\mathrm{avg}}=\frac{\Delta \theta}{\Delta t}
$$

- Units: rad/s.
- Instantaneous angular velocity:

$$
\omega=\lim _{\Delta t \rightarrow 0} \frac{\Delta \theta}{\Delta t}=\frac{d \theta}{d t}
$$

- Average angular acceleration:

$$
\alpha_{\mathrm{avg}}=\frac{\Delta \omega}{\Delta t}=\frac{\omega_{2}-\omega_{1}}{t_{2}-t_{1}}
$$

- Instantaneous angular acceleration:

$$
\alpha=\lim _{\Delta t \rightarrow 0} \frac{\Delta \omega}{\Delta t}=\frac{d \omega}{d t}
$$

- Units: $\mathrm{rad} / \mathrm{s}^{2}$.

Fig. 10-6 (a) A record rotating about a vertical axis that coincides with the axis of the spindle. (b) The angular velocity of the rotating record can be represented by the vector $\vec{\omega}$, lying along the axis and pointing down, as shown. (c) We establish the direction of the angular velocity vector as downward by using a right-hand rule. When the fingers of the right hand curl around the record and point the way it is moving, the extended thumb points in the direction of $\vec{\omega}$.

- Constant angular acceleration

Table 10-1
Equations of Motion for Constant Linear Acceleration and for Constant Angular Acceleration

Equation Number	Linear Equation	Missing Variable		Angular Equation
$(2-11)$	$v=v_{0}+a t$	$x-x_{0}$	$\theta-\theta_{0}$	$\omega=\omega_{0}+\alpha t$
$(2-15)$	$x-x_{0}=v_{0} t+\frac{1}{2} a t^{2}$	v	ω	$\theta-\theta_{0}=\omega_{0} t+\frac{1}{2} \alpha t^{2}$
$(2-16)$	$v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)$	t	t	$\omega^{2}=\omega_{0}^{2}+2 \alpha\left(\theta-\theta_{0}\right)$
$(2-17)$	$x-x_{0}=\frac{1}{2}\left(v_{0}+v\right) t$	a	α	$\theta-\theta_{0}=\frac{1}{2}\left(\omega_{0}+\omega\right) t$
$(2-18)$	$x-x_{0}=v t-\frac{1}{2} a t^{2}$	v_{0}	ω_{0}	$\theta-\theta_{0}=\omega t-\frac{1}{2} \alpha t^{2}$

Constant angular acceleration \leftrightarrow Constant linear ac-

