If you have issues viewing or accessing this file contact us at NCJRS.gov.

DOJ-2052-KD-JC-R-12 $\quad B \in \mathbb{R}$

DJ-N-78-12
JUL 81980
In Response to:
Contract Number J-42669

FINAL REPORT:
A Study of
Justice Impact Analysis

Technical Appendices

Submitted to:
The Office for Improvements in the Administration of Justice

Department of Justice Washington, D. C. 20530

By:
Jeanna F. Celeste Katherine E. Douglass John M. Dawson

MATHTECH, Inc.
4630 Montgomery Avenue Bethesda, Maryland 20014
(301) 657-1610
VOLURE: II
appendid Λ
Description of Methodologies A-1
sppendix BDocumentation of the Feedback Experiment on the Resultsof the Abolftion of Diversit:y Jurisdiction B-1
APPENDIX C
The Q-GERT Network: A Technical Description $\mathrm{C}-1$
APPENDIX D
Data Sources D-1

APPENDIX A
 DESCRIPTION OF METHODOLOGIES

A wide variety of methodologies are potentially applicable to studying the impact of governmental rule changes on the justice system. The usefulness of particular methods for particular impact studies depends upon such considerations as the nature of the proposed change, data availability, and other factors. Some of the methods discussed here have already been applied to problems of judicial impact assessment, and some have been used in other types of impact studies. Others have not yet been applied to impact assessment problems, but we suggest that they could be usefully adapted to this purpose.

1. Predicting Through Analogy

This is an approach which is indigenous to the policymakers. It is a nontechnical approach in which the policymaker takes over the actual mechanics of the prediction process, and may request a bare minimum of intervention by scientific and technical personnel.

While these analyses tend to be "soft", they are familiar and understandable to those who are responsible for making estimates of the effects of legislation and rule changes on the justice system.

An excellent example is provided in the testimony given by
Paul Nejelski, Deputy Assistant Attorney General, Office of Improvements in the Administration of Justice before the Senate Committee on Veterans Affairs in August 1977. The Committee was holding hearings on S-364, which provided, among other things, that persons who are aggrieved or injured by an adverse decision by the Veterans Administration would be permitted to challenge such decisions in federal district court. Since Veterans Administration decisions are generally not subject to external appeal, this legislation would have resulted in a new subset of case filings in the federal justice system. While the Department of Justice took no position on the legislation at the time of the testimony, they as well as members of the Committee were interested in the impact of such legislation. Nejelski estimated this effect by treating appeals rates for similar claims against the Social Security Administration as an analogy. He stated that one could roughly anticipate 4,600 additional case filings per year, which amounted to a 3.4% increase in the average case load for each sitting judge. Since backlogs are typical, this would result either in additional delay in processing claims of all sorts, or an increase in system personnel costs.

This estimating procedure was simple and straightforward, and certainly provided a ball park estimation of the effect - one which should be clear and obvious to administrators and legislators who have responsibility for operating and financing the administration of justice.

2. Bureaucratic Delegation

One current approach is to rely upon permanent,
in-house staff, who presumably qualify on the basis of relevant experience. There are two examples that we are aware of, in California and New Jersey.

The California Approach

The California Judicial Council employs an individual full-time whose job is judicial impact assessment. This individual has a background in public administration, particularly the court system in that State. More to the point, that individual was employed by Ralph Anderson and Associates and made analytical contributions to the study commissioned by the Judicial Council, reported in Guidelines for Determining the Impact of Legislation on the Courts (1974): As the title implies, the emphasis is on guidelines, and not on sophisticated mathematics. A summary of these guidelines, extracted from the Anderson report, is included here in Figure A-1.

The Anderson study sets out a series of steps to be used to formulate "Judicial Impact Reports", and places a premium on establishing a continuing procedure for a Judicial Impact Analysis Team. As recommended by the Guidelines, the Team, operating under the auspices of the Judicial Gouncil, would consist of individuals with a broad governmental management background, and their approach would be a systematic, in-depth evaluation of individual pieces of legislation which are likely to have caseload impact, case disposition impact, and/or fiscal impact.

Step One

READ THE BILL AND OBTAIN CERTAIN INFORMATION

- Is the latest version of the bill being analyzed?
- What does the bill provide?
- Does the bill make technical or substantive changes?
- What court(s) would be affected?
- When would the bill become operative?

- COURT PROCEDURE

- Will the bill add new or modify established procedures for bringing a person to trial?
- Will the bill add new or modify estabiished procedures for conducling a trial?
- Wili the bill add new or modify established procedures for post-frial sentencing and appeal?
- Will the jurisdiction of a particular level of court (e.g., municipal, superior) be changed?
- Will the jurisdiction of courts in general be changed (e.g., as a result of adding or removing matters from the court process)?
- Will the bill establish new or modify existing authority of judges?
- COURT ADMINISTRATION
- Will the bill affect the duties and/or responsibilities of court personnel?
- Will the bill authorize or require the hiring of additional court personnel?
- Will the bill require that certain courtrelated facilities shall be provided?
- Will the bill require certain records to be kept and/or furnished to others?
- Will the bill specify operating hours for the courts?
- Will the bill revise the organization of the courts?
- COURT FINANCING
- Will new sources of rev. enue be provided?
- Will existing sources of revenue be increased, decreased or eliminated?
- Will the allocation of existing revenue sources be changed?
- Will the present financ. ing responsibility of the state or counties be changed?

Step Three

- CASELOAD IMPACT
- Will the bill make access to the court easier or more difficult?
- Will the bill shift a matter from one court to another?
- Will the bill increase or restrict appeal possibilities?
- Will the bill expand or restrict matters presently subject to the court process?
- CASE DISPOSITION IMPACT
- Will the bill affect an element of the pre-trial process?
- Will the bill affect an element of the trial process?
- Will the bill affect an element of the post-trial process?
- Will the bill change the responsibility of the court, the judge, or non-judicial personnel?
- Will the bill increase or decrease court personnel and/or facilities?
- FISCAL IMPACT
- Will the bill require more or less personnel?
- Will the bill necessitate an increase or permit a decrease in services and sup. plies?
- Will the bill necessitate additional capital outlay?
- Will the bill change the amount of revenue available to operate the court, or the manner in which it is allocated?
- JUDICIAL IMPACT REPORT-SUMMARY ANALYSIS
- Bill type, number and author
- Introduced
- Last amended
- Summary of the bill
- Summary of the effect of the bill on the courts
- Summary of the total impact of the bill on the courts
- JUDICIAL IMPACT REPORT-ANALYSIS
- Bill iype, number and author
- Date iniroduced
- Date last amended
- General description of provisions
- Affect on the courts
- Analysis of total impact

The procedure involves four steps:

1) Read the bill for a thorough understanding of its provisions.
2) Determine generally how the bill would affect procedure, administration and/or financing of the courts.
3) Determine specifically the bill's caseload impact, case disposition impact, and/or fiscal impact.
4) Present analysis of total impact in written form.

The Anderson method creates a major role for relevant experience, and computer applications would derive from questions that arise in the course of a particular analysis. In other words, machine capabilities serve to enhance analysis that is based on experience, rather than creating rigid constraints as seems to be the case when they are used as the primary or only means of estimating judicial impact.

Further, it is reasonable to expect that the Judicial Impact Analysis Team, operating over an extended period of time would improve its estimates, based on the results of empirical evaluations of actual impacts. They are also likely to discover additional computer applications, but importantly these would derive from - and be valued precisely because of the aid they provide in the actual preparation of judicial impact statements. In such circumstances, institutional support for more complex computer applications in response to felt needs is built into the process, while at the same time the outputs, the Judicial Impact Reports, are presented in texms which are acceptable to legislators and policymakers, who should be the chief beneficiaries.

The Anderson model is an impressive piece of work because the "Technology" is consistent with the perception of the problem held by relevant decisionmakers. This is not to say that successful implementation would automatically follow.

The key component is the Judicial Impact Analysis Team, and the success of the Anderson model depends upon selection of appropriate personnel and their performance over an extended period of time. The members of the Team must be selected on the basis of their broad range of governmental and judicial experience. They must also be individuals who are capable of integrating these experiences and working with one another toward a common objective. This raises questions of "group chemistry", which is highly unpredictable, and which could radically affect the quality of the Team performance.

A sufficient time period must also be provided for the members of the team to develop and improve both formal and informal procedures necessary to produce best estimates of judicial impact. Further, a feedback process must be designed so that impact analyses are reviewed and corrected once historical data on actual impact is available, though this could be done in relatively short order for postdictive impact estimates.

The Anderson model implies no less investment in time and money than would be required to develop a complex simulation model. In fact it would appear that personnel of the quality required to produce good
estimates of judicial impact might entail considerable cost, and a commitment on the part of the sponsor to provide a trial period of no less than two years.

3. The New Jersey Approach

In New Jersey, the Legislative Code of Ethics makes provision for any member of the State Senate to require that a "fiscal note" be attached to any proposed legislation that "if enacted, would increase or decrease State revenues or increase State expenditures or would require the appropriation of State funds not set forth in dollars" in the text of the bill. The requirement goes to the Executive Director of the Office of Fiscal Affairs. There are some types of legislation where a "fiscal note" is mandatory; otherwise, it is a matter of discretion resting with the members of the Senate.

The Fiscal Affairs director then, according to the rules, passes the request on to the Director of the Division of Budget and Accounting in the Department of the Treasury, where the actual work is done. The rules are totally mute on methods, procedures, form or content of the resulting "fiscal note. "Figure A-2 shows an example of such a product, which goes back up the line to the Senate. It should be noted that in this example, the authors of the note give "no dollar estimate, " but do predict that "extra staff would definitely be required" under the legislation considered.

Figure $A_{H 2}$

FISCAL NO'TE TO SENATE, No. 551
 STATE OF NEW JERSEY

DATED : APRIL 25, 1978
Senate Bill No. 551 requires that one-half of all fees collected in the Law Division or Chancery Division of the Superior Court be returned by the State Treasurer to the treasurer of any county in which the fee was paid.

The Judiciary advises that if this legislation were enacted, it would create many problems and inequities.
It further advises it would be almost impossible to administer.
While no dollar estimate is given, the Judiciary states that with present volume running about 200,000 trunsactions per year, extra staff would definitely be required.

In compliance with written request received, there is hereby submitted a fiscal estimate for the above bill, pursuant to P. L. 1902, c. 27.

California and New Jersey should be distinguished in the sense that California proceeds on a set of guidelines, while New Jersey does not, and also that the latter State places the "trigger" for analysis within the legislature itself. (In this connection, it may be noteworthy that the U.S. Senate via its own rules has imposed on legislative sponsors a requirement to attach a paperwork impact statement to legislative proposals.)

Certainly, as part of this project is would be desirable to make contact with the California Judicial Council and the New Jersey Department of Treasury for details on actual methods developed by staff for conducting justice impact studies.

4. Environmental Impact Statement

An environmental impact statement (EIS) is a type of
cost-benefit analysis that has received a good deal of attention in the context of the Alaskan pipeline, the supersonic transport, and in a number of nuclear reactor proposals."' It has also been used on occasion in court cases, such as Reserve Mining v. EPA on industrial pollution of water sources.** EIS is a requirement of the Environmental

* Fischhoff, B., "Cost Benefit Analysis and the Art of Motorcycle Maintenance," 8 Policy Sciences, pp.177-202 (1977).

514 F. 2d 492 (8th Cir. 1975). See Thomas, William A., "Scientific and Judicial Treatment of Uncertainty, "Proceedings of the Fourth Symposium on Statistics and the Enviromment (1976).

Policy Act of 1969 , and is intended to evaluate the potential noneconomic impact on environmental quality associated with some proposed program or policy -- i. e. costs and benefits formulated in ecological terms. In furtherance of the Act, the Council on Environmental Quality developed a method for EIS production which was published by the Department of the Interior. * Before describing it, we should note that the CEQ procedure has been used extensively, and it is fair to say that the Legislature is now quite familiar with it.

Under the CEQ technique, a matrix is developed in which the individual actions in a proposed program are first arrayed across the top of a table; down the side are the pertinent "existing characteristics and conditions of the environment. "The table is filled in for each action by checking what aspects of the environment will be affected, in terms of (1) magnitude of the impact (which is to be an objective determination), and (2) importance (which is a subjective rating of how much the impact will matter, apart from magnitude). On each of these two points, the interaction of program and environment is rated on a scale running from 1 to 10 , and may be either positive or negative. An example of such a matrix is shown in. Figure A-3 below.It is taken from the Geological Survey Circular 645 in which the CEQ method is published, and is part of an actual EIS produced

[^0]FigúreA-3
Actual Example of an EIS Matrix

for a proposed phosphate mining lease in California. It shows nine kinds of mineral extraction and processing activities that would be carried out under the lease, and thirteen aspects or uses of the environment that would be affected by the mining activities. For example, "trucking" is rated as having a mid-level (5) impact on "rare and unique species," in terms of magnitude, but the importance of it (the subjective element) is given the highest possible score (10). The term. "importance," as used by CEQ may confound both subjective and objective elements, as well as considerations of total magnitude of impact, that some refinement or redefinition may be needed. Neither the CEQ procedures, nor the example we cite, encourages the analyst to develop row- and column-totals for overall evaluations; rather, the emphasis is on discussion and interpretation of the individual cell entries. The EIS concept has been criticized for failure to develop overall or "bottom line" evaluations; CEQ notes possible lack of comparability of ratings from one row or column of the matrix to another. We would want to explore ways of enhancing comparability, since the matrix approach naturally invites aggregation of ratings. The RFP acknowledges that an EIS is clearly dependent on the bias of the source of importance ratings, and the objective part -- the magnitude ratings -- may involve an expensive and time-consuming data gathering process.

CEQ's method is particularly attractive for two reasons: one, it is a technique that the Legislative Branch (and presumably many parts of the Executive Branch) is already comfortable with; and, two, it is a potential means of dealing directly with the issue of the quality of justice, which is one that is particularly difficult to analyze in economic terms. Other methods discussed in this proposal (e.g. Delphi) may be useful in improving on the subjective elements of the procedure. Whether data requirements woula be a serious obstacle in the context of justice would have to be considered; we would expect that there must be some kinds of proposed laws or regulations where they would not.

5. Regression Methods

Regression models express the value of a dependent variable (the effect) as a mathematical function of one or more independent variables (the causes) and an error term - a random variable whose distribution is assumed to have certain characteristics. Given a set of sample values for the dependent variable and a particular set of independent variables, statistically optimal values can be found for the coefficients in the regression equation. The standard technique for choosing these optimal .values is the least squares method. This technique involves finding the values of the coefficient which produce the smallest sum of the squared differences between the actual values of the dependent variable in the
sample and the "theoretical" values assigned by the regression equation. By comparing the minimum sums of squared differences attainable by using different independent variables, one can evaluate the utility of alternative independent variables as predictions of the dependent variable.
"District Court Caseload Forecasting: An Executive Summary," prepared by the Battelle Institute for the Federal Justice Center represents an example of the application of regression methods to the problem of caseloads in different sections of the justice system.

The report compares two different types of regression approaches: an auto-regressive model and an indicator model. Auto-regression is a technique for forecasting futuz values of a variable by identifying patterns in the past fluctuations of that variable (e.g. trends, cycles, etc.). The independent variables in an autogression equation are functions of the values of the dependent variable of specified previous points in time. By contrast, the indicator method uses variations in the values of other factors to predict variation in the dependent variable.

Both methods used twenty years of data (i.e. 20 individual data points) to predict future district caseloads for each of 42 different types of cases. An advisory committee of experts on the justice system was consulted in developing the list of potential independent variables or indicators. The initial list had to be modified to meet the requirements of data availability. A total list comprised over 150 different indicators.

Although the complete results are not reported in the Executive Summary, the examples which are presented and the general discussions suggest, that their efforts were fairly successful - according to the criterion of variance explained. That is, they were able to construct regression equations which generated theoretical values for the dependent variables which were very close to the actual values. In general they concluded that the indicator method was more useful than the autoregressive approach. There are some problematic aspects to the way these methods were applied, however, that make some of the results questionable or of lesser value.

The precision of the forecasts generated by autoregressive techniques depend heavily on the number of observations included in the analysis. In numerous instances, too few years of data were available to make the results useful. This problem might be overcome somewhat by using monthly instead of yearly data. However, the more time series data is disaggregated, the more complicated the pattern which the equation must capture (e.g. seasonal effects), and thus the more parameters needed to explain the same proportion of the variance.

There are a number of difficulties in accepting the conclusion that the indicator method predicts better than the autoregressive method. According to Johnston (Johnston, Econometric Methods, 2nd ed., McGrawHill, New York), if there is serial dependence in caseloads (i. e. if the caseload is related to time) then ordinary least squares methods (instead
of generalized least squares) overestimate the predictive ability of the indicator model and incorrectly estimate the variance explained by the autoregressive model (see Douglas A. Kibbs, Jr., "Problems of Statistical Estimation and Causal Inference in Time-Series Regression Models, " Ch. 10 in Herbert I. Costner, ed., Sociological Methodology 1973-74, San Francisco, Jossey-Buss, 1974).

The authors also point out that the results of the two approaches are not directly comparable because the dependent variables used in the different analyses were somewhat different. While the dependent variable in the autoregression equations was caseload per year, the dependent variable in the indicator equations was actually the three-year moving median of caseload per year (i.e. for each year, the value for that year as well as the two years surrounding it were considered, ard the median value for all three years was used as the caseload value for that particular year). The use of the three-year moving median is a smoothing technique which tends to mask the yearly fluctuation in the smoothed variable. To the extent that both the dependent variable (caseload) and the independent variable(s) are related to time, smoothing will tend to increase the variances explained. Since smoothing was not done in the autoregressive approach, it is not surprising that it does not perform as well.

While the Battelle group did find indications that accounting for most of the variance in many of the caseload categories under consideration,
confidence in the predictive power of these models is somewhat undermined by their theoretical weakness. Many of the indicators included in these models do not make intuitive or social scientific sense as causes of caseload variation. Because the variables to be included in each model were selected by the computer and not by the researchers or justice system experts, the most theoretically reasonable variables might be left out if others already explained most of the variance. The authors note that this problem is associated with the fact that many of the indicator variables were highly correlated over time. In general, the dependent variables as well as many of the independent variables tend to be highly related to time and this relationship results in a high correlation between independent and dependent variables, which need have no theoretical or causal significance. While this might not be a problem if forecasting is the purpose of such analysis, it is a serious issue if the aim is to predict policy impacts. To pick an extreme example - using these techniques we are likely to find that the number of judges is a good predictor of caseload (because caseload increases over time and there is pressure to increase the number of judges over time). This does not mean however, that a policy decision which involves decreasing the number of judges will result in a decreased caseload, but perhaps only in an increased backlog.

The approach used in the Battelle report was primarily designed for forecasting and not for impact assessment. Modifications are clearly
needed if these techniques are to be used for predicting the effects of policy on administrative changes. The Battelle analysts are aware that they must take into account the possibility of such legislative changes or "surprise events" in making their forecasts. However, the focus of the present task is exactly reversed. Instead of putting the major emphasis on forecasting trends, but considering the possibility of "surprise events." We must attend primarily to the effects of particular legislative changes, the probability of which is considered quite high, while keeping in mind the overall trends in caseloads which would occur apart from this proposed change.

In order to correct the regression estimates in terms of the possibility of "surprise events" the Battelle groups asked experts to identify a set of potential surprise events (supreme count decisions, legislative actions, wars, etc.), to give individual estimates of the probability of each of the events, and to estimate their expected impact on caseload. In making use of the estimares of several experts there is always the problem of aggregating their responses into a single overall estimate. Aggregation is more problematical and less meaningful the more disagreement, or variance, there is among the individual estimates. The report states that while agreement was fairly great among the probability estimate, there was wide variation in the impact estimates in both degree and direction. No feedback procedures were used in the process; there are a variety of estimation procedures involving experts and using feedback mechanism
(discussed elsewhere) which might be used to achieve a more refined aggregate estimate than is obtained by simply using the median response, as was done in the Battelle project.

In the Battelle report, the expert estimates regarding the expected impacts of surprise events were used to adjust the regression forecasts and the adjusted values were compared to the unadjusted values. While this approach is a useful corrective device for forecasting purposes it is a rather ad hoc and unsysternatic method for making impact assessments. Alternative approaches, designed specifically for impact assessment, should be explored that make more direct use of regression techniques and of the data which they employ. For example, rather than asking the experts to make direct predictions about the impact of the proposed change on the dependent variable itself - i. e. caseload, they might be asked to explore what independent variables might be affected by the proposed legislation - e.g. number of judges, proportion of cases requiring a jury, amount in controversy, etc. In some instances this task might be fairly straightforward - for example, it might only require a careful and knowledgeable reading of the bill. Once the relevant independent variables have been identified and estimates of their values have been made, then regression techuiques can be used to derive predicted values for the dependent variable, based on the estimated (or known) values of the independent variables. Of course, the use of regression methods requires that data be available on both types of variables. However, the kind of data
needed is the same as that used by Battelle in their indicator based forecasting models. Undoubtedly, other studies of the justice system also exist which have analyzed data using regression methods. This approach to impact assessment is thus designed to build upon, as well as contribute to an existing body of data and social scientific findings about the justice system. In the process of carrying out a series of impact studies this body of knowledge can be continuously integrated and expanded, thus making the impact assessment process progressively easier and also more accurate.

6. Models of the Criminal Justice System

There are a number of computer models of the criminal justice system. With variations on the theme, the purpose of these models is to map the flow of offenders through the CJS. This is done by determining the probabilities at each branching point in the system from a base case file. For example, if a certain number of crimes of a certain type are committed, there is some probability in a given instance that the offender will be arrested. Then, of those arrested, some proportion will be referred to juvenile court, some will be given a summary hearing, and the remainder proceed to preliminary arraignment. This type of analysis continues along the various decision paths in the system until final disposition of the offender is effected; dismissal, acquittal, or if convicted, institutionalization or probation, finally culminating in release. At each stage, the flow of offenders is translated into data on workload and costs.

One of the first models of this sort was JUSSIM, developed by Carnegie Mellon University, which modeled the CJS as a linear steady state production process. To utilize the model, a base case file is created by the user who must classify types of crimes and their pattern of flow through the system. Then the operator, interacting with the : model, may introduce changes in the caseload, or changes in system procedure and determine the effect of such changes on the flow of offenders through the CJS.

According to published reports, the JUSSIM model has been used in Allegheny County (Pittsburgh) and in California. It has also been sold to numerous other public and private organizations, but apparently has not been widely applied.

The modest rate of acceptability is due to number of problems presented by the model. While based on very simple mathematical principles, it requires an extensive data set, which must be supplied by the user, in order to establish the base case file. Then to measure the effect of caseload or system changes requires a good deal of skill on the part of the operator who must estimate changes in system parameters (specifically branching ratios). Further, the model does not take into account feedback due to recidivism, a major system characteristic; it is unable to deal with queuing delays due to the common phenomenon of system saturation; and it is not able to cope with the effects of random events.

One direct offshoot of JUSSIM is PHILJIM, which was designed for the Philadelphia Planning Council and the Alaska State Department of Corrections. These models are similar to JUSSIM but incorporate the capability to handle case backlogs. Intended as a management tool to aid in policy decisions, data collection problems and inadequate institutional support have rendered these projects dormant.

JUSSIM II, also designed by Carnegie Mellon University, includes a feedback capability, based on a Markov transition model, to take account of recidivism. This second generation model also provides for projections beyond a single year. Its shortcomings, similar to JUSSIM, are attributable to its degree of simplification and the fixed characteristics of its parameters. It is a new model and it is not clear whether it will result in more widespread application than its predecessors.

The Dynamic Offender Tracking Simulation (DOTSIM), designed by the Public Safety System of Santa Barbara, California includes a provision for handling queuing delays and random processing of offenders. The data requirements are even more formidable than with JUSSIM: branching probabilities must be established as well as resource requirements at each stage.

DOTSIM was demonstrated using sample data, but not fully implemented. It has not been adopted in Ventura County, or by other State planning agencies which expressed initial interest. One reason for this may be the degree of expertise (considerably greater than with JUSSIM) required to implement and operate the simulation.

There are other models of this sort; however, their characteristics are similar to those outlined above. Reviewing these models, one is left with two impressions. First there is a radical trade-off between simplicity and effective performance. The JUSSIM models are simple, but their ability to deal with random events and subtle system changes is all but nil. More complex models, such as DOTSIM, are intended to provide a better, dynamic approximation of the real world, but require operators with considerable sophistication. This latter point suggests a second fundamental problem; a lack of fit between the technical requirements of the model (data and operation) and the requirements of legislative and judicial personnel who are expected to use them. While an experienced operator may become adept at formulating changes in base case data files and branching ratios, these considerations are not typically familiar to legislative and judicial policy planners. Individuals who confront policy responsibilities must be confident and combortable with the procedures used to estimate changes in resource requirements, or they will use other means.

This problem may result from the fact that computer models of this sort are necessarily formulated in a fashion which is consistent with machine and data requirements, rather than being derived from the requirements of policy planners. In any event, the limited number of documented applications suggests that those with policy responsibilities simply do not feel that the limited rasults generated by such models justify their costs.

7. Cost-Benefit Analysis

Cost-benefit analysis involves a five-step process of estimating the costs of a proposed program or policy: (1) identification of possible significant consequences; (2) estimation of the probability of each consequence; (3) estimation of the losses that would result from each such outcome, (4) the weighting of the losses by multiplying them by their probabilities, and (5) the summation of the weighted losses across all outcomes to obtain the overall expected loss that could be anticipated from that policy. The steps on the benefit side are the same, except that the focus is on what would be gained, rather than lost. Ultimately, expected losses are to be compared with expected gains. This process is a desirable concept since it forces policy makers to take a hard look at advantages and disadvantages in a formalized way that can contribute a scientific basis for decision. Another very desirable feature is that, in theory, it makes it possible to reach a "bottom line" that indicates which way the policy maker should go, from a scientific point of view.

Our view is that in adapting the cost-benefit approach to judicial impact assessment, the benefit side of the equation should be viewed in terms of reduction in costs, or of one type of costs relative to another. For example, if we find an alternative to some proposed policy with lower costs, the difference in costs is a potential "bencfit" attributable to the alternative.

Cost measurement concepts and procedures must be tailored to the purposes of justice impact assessment. Certain fairly standard issues
must be addressed in so doing. Some of these are as follows: Should we cover both costs to the system itself and to the institutions and members of the public who are its users? Should capitol or developmental costs be "expensed" (i. e. counted in total against a single budget year) or amortized, and if amortized, over what period of time? Similarly, if a program would handle an immediate and heavy backlog of cases, should the associated costs be amortized? Can costs borne by different parts of the justice system, or by different people, or by a proposal and its alternatives, be measured in such a way as to permit comparisons or meaningful aggregations? Can the concept of nonmarket prices be applied in this context, and can the concept of quality indexes be used effectively to evaluate factors such as quality of justice?

The Box-Jenkins approach to forecasting will be evaluated for its potential as a tool for making cost projections into the future. In our judgment it is the best available method for treating time series where projections are to be made, particularly if there is seasonality or other forms of autocorrelation that must be accounted for. It does however, require that data be available for a considerable number of time periods, which will undcubtedly limit its utility in this context.

There are certain difficulties with the cost-benefit approach that could be expected in the area of judicial impact measurement. We certainly recognize the difficulty of assigning dollar amounts to certain types of losses;
for example, what is "justice," or a human life, worth? A common problem in cost-benefit analysis is that mere mortals are not.always able to identify all possible significant consequences of some proposed course of action. This should be remedied by mixing into the analytical process people from both inside and outside of the justice system, to be sure the overall point of view is neither too narrow nor unrealistic. Also, the method can be criticized for its "bottom line" emphasis since the costs may be distributed unevenly with some parts of the system disproportionately impacted, relative to any compensation. This may be remedied through appropriate weightings, or ameliorated by highlighting disproportionate impacts along with the overall cost figure. In essence, we are saying that the concept of calculating expected losses merits serious consideration, with consideration given to whether. difficulties such as these can be overcome.

8. Queuing Theory and Network Models

Queuing theory is a mather atical technique which can be used to estimate the changes in backlogs which might occur in various parts of the justice system as a consequence of proposed legislation. The queuing approach models the basic element of the justice system as a network which describes case flows. This network consists of nodes: functional offices, stages of pleadings, levels of dispositions, etc.and arcs, which indicate the connections or paths between these decision points. Queuing networks describe each of the activities in a network as
a queuer served by one or more servers (i. e. judges, magistrates, clerk of the court, marshalls, etc.). Once the network is described, predictions of backlog and waiting time depend on the values of the following types of parameters:
(1) arrival rate - i.e. the number of cases which enter the system pér month,
(2) capacity - the number of cases which can be handled simultaneously at each node, and
(3) processing time.

While capacity is fixed, both arrival rate and processing are treated as random variables, of known distribution. The assumption of randomness is a nice one, because in real systerns neither arrival rate nor processing time are fixed - they fluctuate because of a whole variety of factors - the complexity of the particular case, for example.

Since arrival rate is a parameter of the system, queuing theory cannot be used to predict caseload. However, once estimates of caseload and processing time are made using other methods (regression, expert opinion, or any other procedure), queuing theory makes it possible to estimate the impact of rule changes on the average number of cases waiting in the queue, on the average time each case waits, and on the average time each case is in the system (processing time plus waiting time). The queuing model also makes it possible to explore the different effects of alternative proposals or of mechanism which might be used to remedy
some of the undesirable effects of an otherwise desirable legislative proposal. For example, suppose a bill is proposed which would "increase justice" by expanding the jurisdiction of the federal justice system or permit appeals on a broader range of cases. Such a bill would probably have the adverse effect of increasing caseload and/or processing time and therefore of increasing backlog. A queuing model could be used to explore, for example, how many additional judges would have to be added to reduce the backlog to its previous proportions.

Queuing theory also makes it possible to consider systematically whether the cost of proposals to decrease processing time or backlog in fact effectively reduce total costs. This capability is particularly useful in estimating the impact of proposals to create additional district and circuit court judgeships and to reform and improve administrative procedures. Specifically, decision makers must weigh the costs of expansion against the reduction in waiting time. Waiting time is costly to society, and these costs can often be measured or at least approximated. For instance, persons who sit in jail waiting for trial consume resources and may forego earnings as well. Attorneys, police, prosecutors, defendants and litigants in civil cases spend time waiting in court for their case to come to trial. In cases like these, a waiting time can be measured with relative ease. In other instances, measuring queue costs may be more difficult.

Nonetheless, the example in Table 1 shows how knowledge of these costs, together with knowledge of the caseload and processing rates, can be used to compare the total costs of the existing system with the total costs of, say, a proposed increase in the number of judges in a district court. Using hypothetical numbers, Table. A-1 presupposes that 10 new cases arrive each day, and that the costs of waiting are $\$ 20.00$ per case, The example further assumes that the existing courtroom costs are $\$ 300$ per day and disposes of 12 cases each day. An additional two judges might raise courtroom costs to $\$ 500$ per day but also increase the "service" rate to 20 cases per day. Using queuing theory, however, the table shows that the total costs of the expanded court exceed those of the present court. More generally, queuing theory can inform estimates of judicial impact by providing a framework for determining whether the costs of expansion are worth the benefits of speedier trials.

9. Delphi

In ancient Greece, one went to Delphi for guidance from the oracle, and when that guidance was obtained, one did not question its basis. In modern usage, the term refers to any process of synthesizing the views of diverse individuals on some subject on which they are denominated experts. When properly done, the results are fed back to the experts so that they may revise their views, which are then resynthesized. This process is to be continued until the participants reach a consensus.

Table A-1

Hypothetical Example

Cases arrive: 10 per day ost of waiting: $\$ 20$ per case		
	No New Judges	2 New Judges
Cost	\$300/day	\$500/day
Service rate	12/day	20/day
Expected no. cases in queue per day	5	1
Waiting costs per day	\$100	\$ 20
Courtroom costs per day	\$300	\$500
Total costs per day	\$400	\$520

While we have no data to support this, we suggest that there are two very common, serious defects in Delphi applications: (1) cutting the process short before a true consensus is reached, and (2) lack of amenability of the participants to any change in their views. Both of these are avoidable, by using the technique only where the necessary time and other resources are available to carry the process to fruition, and by making sure that persons chosen as participants understand what is expected and are willing to comply.

There are two problems in using Delphi that are inherent in the way the human mind works. One is the relative inability to visualize or predict extreme cases -- i. e. how very good or how very bad things can actually be. *. If the extremes of the distribution of possible consequences of a policy are omitted, the estimation or prediction process is inherently less precise than it might appear to be. One possible remedy for this may be to increase the emphasis on having the participants gage their own level of certainty in their opinions. The other is that there is less precision in predicting output variables than input variables. ** For example, we
*
Lichtenstein, S., et al., "Calibration of Probabilities: The State of The Art, " in Jungerman, J. and G. DeZeeaw, eds., Proceedings of the Fifth Conference on Subjective Probability, Utility, and Decision Making (forthcoming).
**
Dawes, R. and B. Corrigan, "Linear Model.s in Decision Making," 81 Psychological Bulletin, p. 95-106 (1974).
would get less precision by asking experts to predict changes in caseload or costs. In the terminology of regression analysis, it is better to ask the expert to focus on the independent variables than the dependent variable, although the latter is probably what the policymaker. normally asks the expert to address. This means the process can be improved when caseload or costs in the justice system are modeled, and we ask for predictions of how the bill or rulemaking in question will affect the various elements of the model, and then run those predictions through to see what change in caseload or costs is implied. Even in the absence of a detailed and sophisticated model, the experts can be used to good advantage by asking them to identify the predictors or independent variables, and then combine their estimates of them in a purely linear * fashion.

10. Bayesian Analysis

Bayesian analysis is founded on a formula for revising probability estimates by combining initial estimates with inferences about those probabilities which are based on data. The principal virtue of this method is that it allows the analyst to merge data from different sources; moreover, the initial estimates of the probabilities can be entirely subjective. It can be viewed as a mathematically valid means of updating

[^1]or revising the analyst's or policymaker's original beliefs about the truth of a hypothesis, in light of subsequent findings. When the initial or prior estimates and the subsequent likelihood data are both provided, it is possible for anyone else to substitute their own "priors," combine them with the data and see what "posteriors" their own beliefs imply.

One practical application of Bayes' method in the context of justice impact assessment would be as a way of modifying the inferences drawn from data obtained by analogy to take account of perceived differences between the analyzing and the present case. The method of analysis was used in Mr. Nejelski's testimony on S. 364. In that case, data on appeals to the district courts from denials of Social Security benefits were applied to the volume of Veterans Administration's claim denials to estimate the number of appeals likely to be taken to district courts under S. 364, if it became law. To use Bayesian analysis, the range of possible caseloads, from zero to infinity, could be broken up into intervals. Expert opinion, if available, could then be used to estimate the probability of the caseload falling into each of the various intervals. These estimates would then be combined with the Social Security data.

One distinct advantage in a method that incorporates subjective "priors" is that it may be a means of incorporating into the predictive process two phenomena that are conceptually difficult: the "bulge phenomenon" (how much and how persistent) and the possible impact of Supreme Court rulings on the legislation or rulemaking in question.

11. Sensitivity Analysis

Sensitivity analysis means varying the parameters -their values -- in a model to see whether that has any significant effect on the dependent variable. Parameters which, when increased or decreased in value, have little effect on the output are unimportant and can be disregarded or deleted from the model. Suppose that the effects of a legislative proposal are modeled by relating changes in case filings, number of magistrates and number of judges to changes in the number of case dispositions per year. Suppose that, using the model, raising or lowering the number of magistrates (with the number of judges held fixed) shows less than a 1% change in caseload; this would tell us that the legislation is not likely to create a requirement for more magistrates.

This approach might be used either to reduce concern over possible impact on certain parts of the justice system in a given case, or to simplify a model by eliminating unimportant parameters. In some cases this type of analysis may not be feasible or economical, particularly with very involved stochastic models. With simpler models, it may be relatively easy to do without extensive computerization.

12. Monte Carlo Simulation

Monte Carlo simulation is not new in the criminal justice field, though little appears to have been done with it on the civil side. A model is first constructed of the flow of cases through the judicial system,
e.g. a criminal case beginning at the arrest stage and proceeding along various possible branches to various kinds of final dispositions; the model is stochastic if the various branchings are probabilistic. Once heuristic prodabilities are assigned to the various branches, an offender population of stated characteristics can be run repeatedly through the model. Thereby, we can observe the relative frequencies of, say, convictions, acquittals, appeals, etc. which can be expected if the model is correct. This repeated running of populations through the stochastic model, and building up of frequency distributions, is what is known as Monte Carlo simulation, or experimentation with the use of computers.

Often this kind of simulation is an enormous undertaking. But we would propose to investigate the possibility that for certain kinds of legislation of interest in the federal justice field, simple models could be formulated and programmed, and simulation trials run that would predict policy impacts on caseloads and costs, without a great deal of time and expense. Needless to say, this may not always be the method of choice, even when feasible.

13. Dialectical/Forensic

Conclusions or recommendations stemming from even the most objective methods of analysis are dependent on the validity of certain assumptions. Another way of putting this is that the analyst's bias is an unavoidable element in any analysis. One way of minimizing any
harmful consequences of such bias is to have the analyst report the assumptions along with the conclusions. Another approach, which could actually capitalize on bias, would be to have individuals of known and opposing bias do independent studies of the same question. Conceptually, this may be a way to find the boundaries on the range of possible consequerces of some policy change which is contemplated. Bias may be institutional, rather than individual, of course. For some piece of legislation that is expected to have some impact on the judicial system, there may be some group very much in favor of it; if they were asked to predict impacts, they may naturally tend to operate on assumptions that would show minimal likelihood of significant adverse consequences. Groups identified with the judiciary itself might have very different assumptions, and rather different predictions.

Somewhat related to the dialectical approach would be one of assigning to different analysts the task of describing and quantifying the best or worst possible case -- i. e. to become an advocate for the likelihood of one extreme or the other. As in the dialectical case, the immediate objective would be to establish the limits on the range of possibilities. It would have the advantage, however, of a greater potential supply of suitable analysts. In either case, it would be desirable to develop. some method of combining the results to get an estimate of the most likely outcome, although the limits themselves may be the most useful information.

APPENDIX B
DOCUMENTATION OF THE FEEDBACK EXPERIMENT
ON THE RESULTS OF
THE ABOLITION OF DIVERSITY JURISDICTION

As the last phase in the methodological developnent of the Justice Resource project, the feedback experiment concept was implemented in the study of the abolition of diversity jurisdiction. The technique of the feedback experiment was used to introduce the element of human behavioral adaptation to the computer simulation of the justice system. By eliciting the reactions of an expert panel to simulation results, human adaptation to change in the federal justice system can be accounted for.

The technique of a feedback experiment is useful in studying change in the justice system in the following ways: (1) as previously stated, a feedback experiment can add the dimension of human behavior to an otherwise mechanical simulation model; (2) feedback experiments can be used to test hypotheses about how the justice system would work under specific conditions, using the simulation model; and (3) feedback experiments can be used to generate behavioral rules or operating rules about the justice system, enhancing our knowledge of how that system functions.

The process of the feedback experiment is that of producing computer simulation results, asking feedback panel members to review it and suggest behavioral changes that specific individuals or groups in the justice system might make. Then the simulation is run with new inputs corresponding to those changes, asking panel members to review the results again, and repeating the process of resimulation and review until panelists are satisfied that no further changes should be made, or until the process breaks down. In this particular
study, the abolition of diversity jurisdiction, the initial simulation results compared the present condition of the justice system with its condition if all diversity jurisdiction cases were removed. Panelists then suggested behavioral modifications that might be made in response to the preabolition/postabolition difference. This served as the first round of the experiment, with subsequent rounds resulting from behavioral changes being incorporated into the simulation.

The Orientation Meeting

On February 25, 1980, an orientation meeting for the feedback panelists was conducted. In addition to reviewing the project and the subject of study (i.e., abolition of diversity jurisdiction), the panelists were given a brief description of the Justice Resource Model. The three most important topics in terms of the function of the panel were:

- the role of experts on the feedback panel,
- safeguards to minimize personal bias, and
- calibration.
- The Role of Experts

The members of a feedback panel of experts must understand how judges, government litigators, and private attorneys use their time and the kinds of decisions they make in handilng cases. Consequently, the panel was made up of people who were likely to be able to predict how such individuals would react to a range of potential changes in the system. The three members of this panel were asked to assess how decision-making processes and time utilization would be affected by changes such as an increased volume of cases, or an increase in the amount of time case-processing events require. Ordinarily, a panel member would be expected to know the behavior of one of these types of human resources
particularly well, and would bring that perspective to bear in a simulation review. For example, the panel member representing district court judges was responsible for understanding and analyzing the behavior of judges. The two other panelists who took part in this experiment represented the U.S. At orney's Office (both civil and criminal attorneys), and the private bar.

- Safeguards

Three device have been built into the procedure to help minimize personal bias, and to prevent any one panelist from engineering all the impact results.
(1) Jurisdictional limitation: A panel member is permitted to make changes only on those aspects of the data or the model that relate to his own expertise. He may, of course, take issue with the judgments of others. These disagreements form part of the record, and they may have contributed to changed decisions by the other panelists in later runs.
(2) A requirement for stating reasons: A panel member may feel that something in the model should be changed because the simulation shows some condtion that would trigger a behavioral modification. The panelist is required to state what that modification is, and the reasons for making it. Personal perspective is thereby exposed and made part of the record of the impact study. This also makes it easier for a person to do the work of a panelist. One can make a statement and support it with his own rationale.
(3) The striking of compromises: In the review proces, one panel member may want to make changes that conflict with the views of another panel member. For instance, in response to a rising backlog, the judge expert may want to see more dismissals on the merits; at the same time the attorney representative may feel that more cases should be brought to trial. These
changes come to bear on the same element of data, namely, the probability that a case will last all the way to trial. However, these changes would have opposite effectis. Part of the parel function, therefore, is to reach compromises when this kind of conflict arose. This, in effect, simulates the real-life process by which attorneys and judges have to resolve differences as to how the justice system should operate.

- Calibration

Calibration was explained to the panel members as the means by which the project team obtained specific coefficients used to translate verbal responses into numerical computer inputs. Each panelist was given two lists of variables, one of output variables and one of input variables. (See pages B-31-34.) For each variable, a hypothetical number was listed as the figure aurrently in the system (either as input or output). Based on that number, panelists were asked to make judgments as to what amount of increase or decrease would represent "some" or an "immaterial" difference, a "moderate" difference, or a "significant" difference in that variable.

Once each panelist had responded with three levels for each variable, their responses were translated into coefficients. Then, during the feedback rounds, when a panelist suggested that he would make some level of change in a particular variable, his coefficient representing that level of change was multiplied by the current value for that variable. In this manner, the panelist's own ideas of what constituted levels of change were translated into computer inputs without the panelist having to think in numerical or percentage terms, although that was also permitted.

Pre/Post-change Results

Once the orientation meeting had been held and calibration values had been obtained for each member, the experiment was begun by producing a simulation run. The output consisted of statistics representing the current level of operation in the federal justice system. These statistics were labeled "Base Line" on the Record of Feedback Experiment Results (in Figure $\mathrm{B}-1$ on page B-6. The "Post Change" column was produced by terminating subsequent filings of diversity jurisdiction cases. This second set of statistics were produced by allowing the simulation to run after the diversity jurisdiction cases were eliminated.

These results cannot be considered complete since the computer did not make any behavioral adaptations to this change. It is at this point that the feedback rounds began.

Round--by-round: Procedure
Each member of the expert panel was assigned a contact person from the project team at the orientation meeting. Appointments were scheduled between the panel members and their respective contact persons for each round.

The contact persons arrived at their respective expert's office and presented them with the "Record of Feedback Experiment Results." They first reviewed what information each output type provided. The panelists were then requested to examine the results produced in the pre and post-change simulations and to consider how the actor types they represented would react to the system changes.

Their opinions regarding the potential behavioral adaptations were recorded on "Adaptation Records" which were provided at the beginning of each round. Later in the experiment, some of the experts simply discussed their

opinions while their contact persons took notes; after each meting the contact persons transcribed their notes onto the Adaptation Records for that round.

At the end of each set of meetings, all the contact persons met to discuss the behavioral adaptations suggested by the experts. "Translation" sheets were developed in the course of these later meetings. These sheets contained the list of behavioral adaptations proposed and the corresponding parametric changes which were made to operationalize the changes. (See pages $B-46,52,58)$. Beginning with the second round, experts were provided with the translation sheets containing the list of behavioral adaptations from the previous round. They were permitted to study these sheets and to refer to them during the feedback round. This enabled the panel members to understand how the other actors were behaving and what measures each was undertaking in response to the changes in system outputs. This information should have aided the experts in their interpretation of new simulation results since changes in the outputs were caused by the adaptations introduced by system actors.

Upon reaching Round 3, two of the three experts found themselves confused by certain of the output results. In order to proceed with the experiment, a panel conference was scheduled to discuss the results. This is discussed in greater detadi later in this Appendix.

The conference provided the first opportunity during the feedback experiment for panel members to discuss their intentions with one another, and to come up with compromises. The output results were examined and discussed jointly. The decision to end the experiment was arrived at during this conference and agreed to by all panel members.

Round-by-round: Results and Summary of Behavioral Adaptations
Outputs produced in each simulation run were of four main types. The first, utilization, provided information on the percentage of time system actors (in this case federal district judges, and assistant U.S. attorneys in criminal and civil divisions) spent on case-related activities.

The second output type was the elapsed time in working days that different types of cases took from the time they entered the system until their termination. Statistics were provided for Federal Question cases not involving the U.S. as a party, Diversity Jurisdiction cases, Federal Criminal, and Civil/U.S. cases.

The third type of output was the number of case completions, or case terminations. These outputs were given for each of the four case types mentioned above. The last type of output was called the average dally backlog. These statistics were broken down into subcategories of courtroom and noncourtroom activities for each actor type. The interpretation for this type of output was that the figures represented the number of cases awaiting service In the courtroom or in the actor's office at the start of each day. The courtrom activities included injunctions, trials, and other hearings (e.g., arraignments, sentencing hearings, motions hearings, etc.). Noncourtroom activities consisted of writing memoranda, holding conferences, conducting legal. research, etc.

Round 1 began with panelists examining the pre-change (baseline) and post-change outputs from the first computer simulations. The percent increases and decreases were calculated for each actor or case type within the four major categories (see Figure B-2, pages B-9). The behavioral adaptation records for all panel members on each round are available on pages $B-42-46,49-52,55-57$. To summarize, there were three main behavioral changes offered by the panelists

Output Type	Base Line	Post Change	Post Change vs. Baseline
	$\begin{aligned} & 63.2 \% \\ & 71 \% \\ & 65.5 \% \end{aligned}$	$\begin{aligned} & 56.4 \% \\ & 72.4 \% \\ & 64.5 \% \end{aligned}$	11\% decrease 2% increase 1.5\% decrease
Elapsed Time (Days) Federal Question Diversity Jurisdiction Criminal Civil/U.S.	$\begin{array}{r} 239 \\ 241.5 \\ 94.8 \\ 190.9 \end{array}$	$\begin{array}{r} 238 \\ -\cdots \\ 92.4 \\ 187.6 \end{array}$	0.5% decrease 2. 5% decrease 1.7\% decrease
No. of Case Completions Federal Question Diversity Jurisdiction Criminal Civil/U.S.	$\begin{aligned} & 753 \\ & 405 \\ & 328 \\ & 595 \end{aligned}$	$\begin{aligned} & 760 \\ & -- \\ & \hline 365 \\ & 573 \end{aligned}$	1.0\% decrease 11.4\% increase 3.7\% decrease
Average Daily Backlog (Cases) Courtroom Activities Judges Criminal Attorneys Civil Attorneys Noncourtroom Activities Judges Criminal Attorneys Civil Attorneys Private Cases Judges	$\begin{array}{r} 4.15 \\ .77 \\ .51 \\ 1.8 \\ 2.9 \\ 2.33 \\ 2.68 \end{array}$	$\begin{array}{r} 2.34 \\ .55 \\ .36 \\ .65 \\ 3.02 \\ 1.91 \\ 1.03 \end{array}$	44\% decrease 28\% decrease 25\% decrease 64\% decrease 4\% increase 18\% decrease 62\% decrease

in Round 1. The judge expert noted a significant redution in courtroom backlog once diversity furisdiction cases had been eliminated. Hie, therefore, became a more aggressive manager by accelerating the scheduling of courtrom appearances and the completion of noncourtroom activities for all case types but most especially for criminal cases. He accelerated the cases on the premise that he wanted to insure compliance with the Speedy Trial Act for criminal cases and to give priority to the oldest civil cases (older than 6 months) in the system.

The judge predicted that the pressure he was applying to accelerate the civil cases would result in an increased tendency on the part of civil attorneys to settle cases out of court.

The panel member representing the U.S. attorneys took special notice of the reduction in the judges courtroom queue. He took this reduction to indicate that there would be less rescheduling of cases ready for courtroom service. This alleviated the problem for attorneys of having to prepare cases a second time for a courtroom appearance. He expected the principal effect to lie with U.S. attorneys in their noncourtroom time prior to trial for civil/U.S. cases.

The representative for the private bar mace several observations though none was implemented as a behavioral change to the computer model. The first observation related to his assumption that following the abolition of diversity jurisdiction, cases which would have been filed in federal courts would now be filed in the State courts. Thus, the private bar's workload may not be affected.

The second observation the private bar expert made was that the greater availability of judges might logically lead to more case filings. He predicted that any increase in private filings would be quite small since he believed that: attorneys now file as many private cases as come to their attention.

The third observation made by the private bar panelist was that many attorneys handle both civil and criminal matters in federal courts. The Increase in criminal case completions (from the pre-change to post-change condition) would cause attorneys to neglect their civil casework in favor of criminal cases. Given the existence of a specialized criminal bar, however, this change would be quite small.

- Round 2 began by having the experts study the translation sheet for Round 1 behavioral changes (page $B-47$) and the simulation outputs for Round 1 (pages $B-12$). Then they discussed any changes they noticed with their contact persons.

Fhe next step involved having each expert react to the outputs and suggest any additional behavioral changes. In summary, the changes introduced in Round 2 included the judge's attempt to achieve a significant reduction of time in the time to dispose of private civil cases. He effected this change by giving these cases priority over public cases and by putting more pressure on the private bar to accelerate their scheduling of courtroom appearances and the - completion of noncourtroom activities. The judge expert was also attempting, through these means, to increase the judge utilization rate to its previous level.

The U.S. Attorney panelist presumed there would be a morale problem among the criminal personnel due to the overwork caused by the substantial reduction in elapsed time for handing criminal cases. He, therefore, made the policy decision to assign some criminal cases to civil personnel, at least on a temporary basis.

The private bar predicted two opposing tendencies: (1) reduction in "junk" case filings due to the increased probability of having to go to court and the pressure to speed up case handing of the existing cases; and (2)

Output Type	Base Line	Post Change	Round 1	Round 1 vs. Post Change
Utilization (\% Time on CaseRelated Judge Activities) Criminal Attorneys Civil Attorneys	$\begin{aligned} & 63.2 \% \\ & 71 \% \\ & 65.5 \% \end{aligned}$	$\begin{aligned} & 56.4 \% \\ & 72.4 \% \\ & 64.5 \% \end{aligned}$	$\begin{aligned} & 56 \% \\ & 74 \% \\ & 61 \% \end{aligned}$	$\begin{aligned} & 25 \% \text { decrease (sig) } \\ & 2.2 \% \text { increase } \\ & 5.4 \% \text { decrease (sig) } \end{aligned}$
Elapsed Time (Days) Federal Question Diversity Jurisdiction Criminal Civil/U.S.	$\begin{array}{r} 239 \\ 241.5 \\ 94.8 \\ 190.9 \end{array}$	$\begin{aligned} & 238 \\ & --- \\ & 92.4 \\ & 187.6 \end{aligned}$	$\begin{aligned} & 205 \\ & -72.5 \\ & 157.7 \end{aligned}$	14\% decrease (sig) \qquad 22\% decrease (sig) 16\% decrease (sig)
No. of Case Completions Federal Question Diversity Jurisdiction Criminal Civil/U.S.	$\begin{aligned} & 753 \\ & 405 \\ & 328 \\ & 595 \end{aligned}$	760 ---- 365 573	$\begin{aligned} & 773 \\ & -- \\ & 362 \\ & 590 \end{aligned}$	2% increase \qquad . 7% increase 3% increase
Average Daily Backlog (Cases) Courtroom Activities Judges Griminal Attorneys Civil Attorneys Noncourtruom Activities Juăges Criminal Attorneys Civil Attorneys Private Cases Judges	$\begin{array}{r} 4.15 \\ .77 \\ .51 \\ 1.8 \\ 2.9 \\ 2.33 \\ 2.68 \end{array}$	$\begin{array}{r} 2.34 \\ .55 \\ .36 \\ .65 \\ 3.02 \\ 1.91 \\ 1.03 \end{array}$	$\begin{array}{r} 1.45 \\ .40 \\ .21 \\ .62 \\ 2.59 \\ 1.22 \\ .62 \end{array}$	38\% decrease (sig) 27\% decrease (sig) 42\% decrease (sig) 39% decrease (sig) 14\% decrease 36% decrease (sig) 40\% decrease (sig)

Increase in filings due to the reduction in delay time. As the judge becomes a better manager there will be fewer reschedulings; thus, attorneys will spend less time on each case and will leave time to file new cases. These two opposing tendencies will cancel each other out so filings will not change. - Round 3 started with the panel members examining the translation of Round 2 behavioral adaptations (pages $B-53$) and the simulation outputs for Round 2 (pages B-14). Panel members discussed the changes with their contact person. Two panelists became confused about one of the output statistics and raised questions about its interpretation. For the U.S. Attorney representative, his questions regarding the statistic were serious enough that he felt he could not participate in Round 3. The private bar expert also raised questions about the statistic"s interpretation but felt sufficient confidence in the outputs as a whole that he was able to complete Round 3. When his contact person asked whether a meeting of the other panel members might be helpful to him in considering how to interpret the confusing statistic, he replied that it would be. The U.S. Attorney expert also wanted to meet with the other panel members to discuss the results.

Of the three panel members, the judge expert was least concerned about the significance of the statistic. When asked if he felt a meeting of the panelists was necessary, he replied that it was not but that he would be willing to meet if the other members found it important to do so.

The behavioral adaptations suggested for Round 3 included the following. Given the drop in the judge utilization rate, the judge expert predicted that judges would become more deliberative: (1) spending more time on noncourtroom work for all case types, and (2) increasing the courtroom activity In private cases.

The expert on the private bar suggested that, given the pressure implied

FIGURE B-4. SIMULATION RESULTS AT THE START OF ROUND 3

Output Type	Base Line	Post Change	Round 1	Round 2	Round 2 vs. Round 1
$\begin{array}{cc} \text { Utilization } \begin{array}{c} \text { (\% } \end{array} \begin{array}{l} \text { Time on Case- } \\ \text { Related } \end{array} \\ \text { Judge } \quad \text { Activities) } \\ \text { Criminal Attorneys } \\ \text { Civil Attorneys } \end{array}$	$\begin{aligned} & 63.2 \% \\ & 71 \% \\ & 65.5 \% \end{aligned}$	$\begin{aligned} & 56.4 \% \\ & 72.4 \% \\ & 64.5 \% \end{aligned}$	$\begin{aligned} & 56 \% \\ & 74 \% \\ & 61 \% \end{aligned}$	$\begin{aligned} & 54.9 \% \\ & 59.4 \% \\ & 75.7 \% \end{aligned}$	2 \% decrease 25 \% decrease 19.4% increase
Elapsed Time (Days) Federal Question Diversity Jurisdiction Criminal Civil/U.S.	$\begin{array}{r} 239 \\ 241.5 \\ 94.8 \\ 190.9 \end{array}$	$\begin{aligned} & 238 \\ & -- \\ & 92.4 \\ & 187.6 \end{aligned}$	$\begin{aligned} & 205 \\ & 72.5 \\ & 157.7 \end{aligned}$	$\begin{aligned} & 146.4 \\ & \because \\ & 63.1 \\ & 165.9 \end{aligned}$	40% decrease \qquad 14.9% decrease 5 \% increase
No. of Case Completions Federal Question Diversity Jurisdiction Criminal Civil/U.S.	$\begin{aligned} & 753 \\ & 405 \\ & 328 \\ & 595 \end{aligned}$	$\begin{aligned} & 760 \\ & ---- \\ & 365 \\ & 573 \end{aligned}$	773 \qquad 362 590	$\begin{aligned} & 789 \\ & - \\ & 308 \\ & 64 亡 \end{aligned}$	2.1% increàse \qquad 17.5\% decrease 8.1% increase
Average Daily Backlog (Cases) Courtroom Activities Judges Criminal Attorneys Civil Attorneys Noncourtroom Activities Judges Criminal Attorneys Civil Attorneys Private Cases. Judges	$\begin{array}{r} 4.15 \\ .77 \\ .51 \\ 1.8 \\ 2.9 \\ 2.33 \\ 2.68 \end{array}$	$\begin{array}{r} 2.34 \\ .55 \\ .36 \\ .65 \\ 3.02 \\ 1.91 \\ 1.03 \end{array}$	1.45 .40 . 21 .62 2.59 1.22 .62	$\begin{array}{r} 1.21 \\ .23 \\ .31 \\ .57 \\ .99 \\ 3.87 \\ \\ .59 \end{array}$	19.8% decrease 73.9% decrease 32.3% increase 8. 8% decrease 161.6\% decrease 68.5% increase 5 \% decrease

by the fast pace at which criminal cases were being processed, defense counsel would be more willing to negotiate more pleas. He stated that the dramatic increase in civil case completions show an unrealistic degree of cooperation by the private bax to the pressure being applied by the judge to speed up cases. The behavioral adaptations which he foresaw as being related to this situation were that private counsel would increase the time spent on federal question and civil/U.S. cases and that they would request more delays for civil/U.S. cases. The final prediction the private bar expert made was that the pressure to accelerate scheduling for civil cases would cause a greater willingness on the part of private counsel to settle civil cases out of court.

Panel Conference was the next round in the feedback experiment. All the panel members and the contact persons met to discuss the problems encountered during Round 3 and to examine the Round 3 outputs (page $B-16$).

The research team had prepared a document that summarized the behavioral changes for Rounds 1-3 (pages $B-60$) and a summary of feedback results for observations deriving from the first three rounds (pages B-61).

During the course of the meeting, panelists made a number of suggestions for ways to improve the feedback methodology including clearing up misunderstandings about the limits on their jurisdiction, requests for more detailed output information, etc. These suggestions will be discussed in the next section.

The panel agreed that the conference was a good end to the feedback experiment. No further rounds were undertaken.

Issues and Considerations
Several issues arose out of the experience of the feedback experiment conducted on the abolition of diversity jurisdiction. The three panel

Output Type	Base Line	Post Change	Round 1	Round 2	Round 3	Round 3 vs. Round 2
Utilization (\% Time on CaseRelated Juage Activities) Criminal Attorneys Civil Attorneys	$\begin{aligned} & 63.2 \% \\ & 71 \% \\ & 65.5 \% \end{aligned}$	$\begin{aligned} & 56.4 \% \\ & 72.4 \% \\ & 64.5 \% \end{aligned}$	$\begin{aligned} & 56 \% \\ & 74 \% \\ & 61 \% \end{aligned}$	$\begin{aligned} & 54.9 \% \\ & 59.4 \% \\ & 75.7 \% \end{aligned}$	$\begin{aligned} & 63.5 \\ & 60.1 \\ & 71.1 \end{aligned}$	13.5\% increase 1.2\% increase 6.5\% decrease
Elapsed Time (Days) Federal Question Diversity Jurisdiction Criminal Civil/u.s.	$\begin{aligned} & 239 \\ & 241.5 \\ & 94.8 \\ & 190.9 \end{aligned}$	$\begin{aligned} & 238 \\ & --- \\ & 92.4 \\ & 187.6 \end{aligned}$	$\begin{aligned} & 205 \\ & --- \\ & 72.5 \\ & 157.7 \end{aligned}$	$\begin{array}{r} 146.4 \\ -\cdots . \\ 63.1 \\ 165.9 \end{array}$	$\begin{gathered} 170.3 \\ - \\ 64.6 \\ 228.5 \end{gathered}$	14.0\% increase \qquad 2.0\% increase 27.4\% increase
No. of Case Completions Federal Question Diversity Jurisdiction Criminal Civil/U.S.	$\begin{aligned} & 753 \\ & 405 \\ & 328 \\ & 595 \end{aligned}$	$\begin{aligned} & .760 \\ & ---- \\ & 365 \\ & 573 \end{aligned}$	$\begin{aligned} & 773 \\ & - \\ & \hline 362 \\ & 590 \end{aligned}$	$\begin{aligned} & 789 \\ & -- \\ & 308 \\ & 642 \end{aligned}$	$\begin{aligned} & 776 \\ & - \\ & 301 \\ & 644 \end{aligned}$	1.7\% decrease \qquad 2.3\% decrease 0.3% increase
Average Daily Backlog (Cases) Courtroom Activities Judges Criminal Attorneys Civil Attorneys Noncourtroom Activities Judges Criminal Attorneys Civil Attorneys Private Cases Judges	$\begin{array}{r} 4.15 \\ .77 \\ .51 \\ 1.8 \\ 2.9 \\ 2.33 \\ 2.68 \end{array}$	$\begin{array}{r} 2.34 \\ .55 \\ .36 \\ .65 \\ 3.02 \\ 1.91 \\ 1.03 \end{array}$	$\begin{array}{r} 1.45 \\ .40 \\ .21 \\ .62 \\ 2.59 \\ 1.22 \\ \\ .62 \end{array}$	$\begin{array}{r} 1.21 \\ .23 \\ .31 \\ .57 \\ .99 \\ 3.87 \\ .59 \end{array}$	$\begin{array}{r} 2.04 \\ .25 \\ .42 \\ .96 \\ 1.02 \\ 4.75 \\ \\ 1.47 \end{array}$	40.7\% increase 8.0\% increase 26.2\% increase 40.6\% increase 2.7\% increase 18.5\% increase 59.9\% increase

participants made a number of suggestions as to how the feedback methodology might be improved. The issues discussed at the panel conference (and during individual feedback rounds) are listed below.

1. Panel members felt that in order to be able to suggest behavioral adaptations they needed more detailed output information. The types of outputs that the panelists : suggested would be helpful include:
a) the disaggregation of non-courtroom and courtroom activities by case type and by particular activity OR the frequency of particular activities as they occur in different types of cases;
b) case tracking information on criminal cases so that panel members can easily determine when cases awe nearing deadlines imposed by the Speedy Trial Act (STA); cases in the model should be granted STA exemptions in the same proportions as they occur in the actual system;
c) information on the length of time individual cases have been in the system so that cases can be prioritized by age;
d) the disaggregation of cases listed under "completions" by type of termination (e.g., pleas, dismissals, etc.).
e) the panelist representing the U.S. Attorneys suggested that the model needed to be able to simulate the "matter" workload. A good deal of time is expended by assistant U.S. attorneys working on matters that never become cases; they are disposed of before entering the courts. This work time should be counted separately from the case workload and a statistic
produced to reflect this effort.
2. Panel members felt that the role of the private bar was not well enough defined for that panelist to be able to make decisions. Suggestions for improving this role included:
a) split the private bar role into plaintiff
and defense roles;
b) provide a profile of cases in the State court systems, since a large portion of the caseload of the private bar conslsts of State level cases.
3. There appeared to be some confusion among certain panel members as to what their areas of jurisdiction included. Some problems also arose in the translation of behavioral adaptations into parameter changes for the model. This was due to the research team's failure to obtain agreement on the part of multiple panel members when changes were suggested which affected more than one actor"s jurisdiction.

It would be helpful, in future feedback panels, to develop lists defining the variables which each panelist has jurisdiction over and those which require agreement by two or more members.

While these suggestions are very helpful in continuing the methodological development, each should be considered in terms of how such changes would be implemented.

The request by panel members for more detall in the slinulation outputs (1.a.) is very understandable in that the greater the level of detail avallable, the more specific one can be in suggesting behavioral changes. As they are currently generated, simulation outputs provide statistics representing the
average queue length for courtroom activities cver a simulated period of time. The statistics are broken out by actor type for public cases (judge and U.S. attorneys) and private cases (judge alone). Average queue lengths are also produced by actor type for non-courtroom activities. The breakdown of courtroom and non-courtroom activities into particular events is feasible for assistant U.S. attorneys by general case type, i.e., civil or criminal. Data are available from the U.S. Department of Justice through their U.S. Attorney Case-Weighting Study. Comparable data for federal judges is not currently available. Published studies reporting the proportions of courtroom and non-courtroom activities are available from the Federal Judicial Center.* Breakdowis of particular activities by case type have not been published.

Panel members seemed not to find the average queue lengths for courtroom and non-courtroom activities particularly useful or interpretable without the additional level of detail requested. Perhaps simply a breakdown in the utilization rate into courtroom and non-courtroom activities would prove more helpful if the data cannot be disaggregated further.

The request for criminal case tracking information (see l.b.) on pg. B-17) which would enable panel members to know when these cases are in danger of exceeding the Speedy Trial requirement is not available directly. In the criminal sequential model, once criminal defendants are arrested and not released prior to trial, a "clock" is set which keeps account of elapsed time. These cases are given priority handling to ensure their rapid movement through the system.

* Allocation of Resources to U.S. At.torneys ${ }^{-}$Offices: A Case-Weighting Study, INSLAW, 1979.

If they exceed the Speedy Trial time limit, they exit the system and are calculated as "Speedy Trial failures."

It would be fairiy simple to fimplement a computerized means of testing for excludable delays to the Speedy Trial requirement. Cases which had failed to meet the time limit could be checked to see if an excludable delay had been granted; if not, they would exit the system as failures; if so, they could be returned to the resource queues to receive trial. Such a mechanism is not currently in place. However, the actual proportion of "failing" cases can be compared with the simulated number and a decision can be made as to the accuracy or inaccuracy of the current handling of these cases.

The requests made in l.c. and l.d. above, present conceptual problems For the Resource model. This is due to the random assignment of events for civil cases. It is not possible to determine the length of time cases take before reaching a particular processing stage, e.g., trial. This is because the trial may be scheduled any time during the life of a given case. It is most probable that the trial will occur near the end of a case but the order of events is quite flexible due to the random selection procedure. Thus, providing the age of cases would not necessarily reflect the reality of the situation. Similarly, the type of termination for individual cases is not readily determinable. This is related to the general nature of case profile assignments which only specify activities to be undertaren. Thus, cases which end after completing certain events may represent an early dismissal, a settlement arrangement, or some other type of termination. It is not clear exactly what type of termination has occurred.

The criminal sequential model, on the other hand, would have much less difficulty meeting these needs. Events are chosen probabilistically in this model so when a case is terminated by a dismissal it is recorded as a dismissal
at a particular processing stage.
The age of cases, in terms of elapsed time, is an output statistic for criminal cases just as it is for all the civil case types. The only priority given to criminal cases regarding their age is the monitoring of cases proceeding to trial under the Speedy Trial requirenent. In order to make the age of cases available throughout their lives, extensive reprogramming work would be required. It does seen plausible that such information could be obtained from this sequential model.

A sequential model of the type used to process criminal cases has not proved itself to be a useful tool for handling civil cases. It is not likely that switching to a sequential modeling of civil caseflow would enhance the capability of a simulation model to make accurate impact predictions. Thus, even though more data may be obtainable regarding termination status and case age through this modeling techalque, it is, overall, a less efficient way of modeling civil cases.

The request made in l.e. relating to calculation of the time expended by assistant U.S. attorneys on matters is modeled by having a workload of cases that consist only of very preliminary service events. An example of such a case might have an event schedule that consists of one or two non-courtroom activities by an assistant U.S. attorney, no judge service, one external delay event, and then termination. The non-courtroom events may represent phone calls, conferences, or other investlgative tasks performed on a matter before an indictment or an information is prepared. The external delay event would probably represent the time spent by investigative agencies conducting background work on the matter. In the criminal sequential model, matters which are returned for additional investigative work or are held while other pending charges/court cases are investigated or disposed of are also modeled.

Obtaining statistics reflecting the work done on matters alone, would involve a considerable increase in computer processing time per simulation run. The computer would have to check the entire case profile each time it initiated an activity to determine whether or not it was matter-related or casemrelated. Any matter-related work would have to be totaled separately from case-related non-courtroom activities. This could be accomplished by modeling matter queues for the assistant U.S. attorneys and taking transaction information from them. New coding would have to be programmed into the model in order to be able to provide statistical information on resource utilization on the matter workload. While those efforts may accomplish the goal of providing this additional information it would be so at considerable expense.

The suggestions made in 2.a. that the panel role representing the private bar be divided into plaintiff and defexse roles creates no particular problems. This is a methodological problem which should be handled in a way that facilitates the panel member's task of responding to the simulation results. If the separation of the private bar role into two parts makes participation on the feedback panel more straightforward, then future panels should be so constructed.

In order to fulfill the data request of $2 . b$. the National Center for State Courts should be contacted for information related to caseloads in the State courts. Private bar respondents should be given this information and be permitted to study it before responding to simulation results. Again, this represents a situation in which a methodological procedure can be easily altered to accommodate the participation of a panel member; it is our opinion that this feature should be incorporated into future feedback procedures.

The third issue raised (see \#3., page $B-18$) must be handled by the research team conducting the feedback experiment. When behavioral adaptations
are suggested that have a bearing upon several actors, all panel members implicated in the change must be consulted and a compromise arrived at. The preparation of lists of variables over which each actor has jurisdiction and which he/she must discuss with other panelists should be of assistance during the actual feedback procedure.

The conclusion reached upon completing this feedback experiment was that it had shown itself to be a useful tool for incorporating subjective judgment I Into the computerized model. Several rounds were successfully completed eliciting opinions on behavioral adaptations for system actors and translating these into changes in model parameters. The suggestions that came from the expert panel were quite helpful, though some may be difficult to implement. Subsequent efforts aimed at utilizing the feedback procedure will clearly benefit from their incorporation.

The following pages are the actual record of the feeüback experiment. The orientation document, adaptation records, and translation sheets are incluäed.

Introduction

We welcome you to a justice impact analysis. During this week, we will be concentrating on a quantitative impact study in which a computer simulation is used to analyze the impacts on the federal justice system resulting from the introduction of new legislation. You will be asked to examine simulation. results and to make judgments as to the behavioral responses of system actors. Actors will include federal judges, assistant U.S. attorneys, and litigants.

This document will provide you with descriptions of a justice impact analysis, and the computer model used in the simulation. The document will tell you how your judgmental advice will be used in the analysis; In the orientation session, we wili show you the simulation and how to make your adjustments to the factors in the computer model.

The question of how to make an estimate of the "impact" of new legislation on the justice system has been the subject of much discussion during recent years. Analyses have been considered by all three branches of government, and published examples of such analyses exist for various legislative, rulemaking, and procedural changes.

MATHTECH has been funded by the Office for Improvements in the Administration of Justice to develop methodologies for analyzing judicial impacts. Your participation is part of the last major developmental phase in our Justice Impact Analysis.

In the course of the project we have defined three major kinds of impact analyses:
(a) quick estimates of the major impacts of legislation, such as is often done now in a short time frame by in-house staff;
(b) systematic qualitative analyses of the provisions of legislation, on a section by section basis, to identify all the expected major effects; and
(c) quantitative analyses of expected effects, to show how great changes are likely to $b e$, and to compute the interaction effects of those changes as they ripple through the justice system.

Our research project has concentrated on the second and third of these justice impact analyses -- the qualitative and quantitative. We have completed a qualitative analysis of the 1974 Juvenile Justice Amendments to see how well we might have forecast the results that occurred as a result of the passage
of that legislation. We have also done qualitative impact studies of the effects to be expected from the Small Business Judicial Access bill, and of possible legislative changes in diversity jurisdiction.

We have completed quantitative studies of the effects of the 1974 Juvenile Justice Act, and of the curtailment or abolition of diversity jurisdiction. Reports of these analyses have been provided to our sponsor.

Each of the three kinds of analyses has its advantages and disadvantages. The quick analyses have the advantage of fast results, but they run the risk of missing major effects, as well as any secondary effectis.

Qualitative analyses have the advantage of providing a systematic comparison of the effects that can be expected from each of the proposed changes, and they can be produced in a relatively short time. The disadvantage of such analyses is that they typically cannot say by how much the system will change, nor can the complex interactions within the justice system be fully considered.

A quantitative analysis has the merit of using a computer simulation which details each of the events in the life cycle of a case, placed in the context of the full workload of a federal district court. It provides detailed summaries of what happens to the cases and the system, in terms of elapsed time, backlogs, delays, terminations, and the time demands placed on judges and attorneys. More importantly, the simulation can handle a level.
of complexity in system interactions which the human mind cannot. There are two difficulties with quantitative analyses: (a) they are more time-consuming and expensive than the other methods, and (b) subjective judgments must be explicitly included. During this week, we will be conducting a feedback experiment. The primary purpose of this experiment is to add the dimension of human behavior to the simulation. The combination of feedback techniques with simulation is not without precedence. It has been used by other governmental agencies, e.g:, the Department of Defense in estimating the tactical changes following the use of new weapons systems, and the Department of State in estimating the results of changes in disarmament on international relations. In industry, the methods have been used in the banking field, and in making long-range plans for major corporations.

The Role of Experts

The feedback panel is a systematic way of bringing out explicitly the subjective judgments of experts, and of finding consensus where that is possible. In this experiment, we will be treating you as feedback expeirs.

The members of this panel of experts must understand how judges, government litigators, and private attorneys use their time and the kinds of decisions they make in handing cases. Consequently, the panel is made up of people who are likely to be able to predict how such individuals would react to a range of potential changes in the system. They will be asked to assess how decision-making processes and time utilization will be affected by changes such as an increased volume of cases, or an increase in the amount of time caseprocessing events require. Ordinarily, a panel member would know the behavior of one of these types of human resources particularly well, and would bring that perspective to bear in a simulation review. For example, a judge on the panel would be responsible for understanding and analyzing the behavior of judges. It is important that one or more of the panelists represent the point of view of litigants: the decision to seek legal counsel, bring a lawsuit, how vigorously to defend, how long to persevere, and so on are important factors. Other points of view would also need to be represented, e.g., the private bar, the U.S. Attorney's Office, and so on.

The Computer Model of the Justice System

On our first day of the experiment, we will show you how the events in the justice system are represented in our computer model. Basically, we have represented the operation of a federal. district court that has five judges and eleven assistant U.S. attorneys. Each simulation represents one work year, during which cases enter the system at approximately the same rate as they would in a medium-sized district court. Cases are divided into four classes: ćriminal, U.S. civil, federal question, and diversity jurisdiction cases. Each of the cases is assigned a profile of events, such as hearings, delays, injunctions, negotiations, etc. The profiles characterize actual cases in the federal justice system. They are selected from distributions of all possible case events for particular case types.

The data we are using have come from a variety of sources -data tapes from the Administrative Office of the U.S. Courts, special studits of caseweights, other detailed studies, and some subjective estimates.

Our computer model has been "equilibrated," i.e., put into equilibrium, to reflect the curwent state of the federal justice system. Thus, computer results are reasonable with respect to published statistics.

After the model was equilibrated, it was tested to see whether the computer model would produce intuitively reasonable results when the inputs were changed. For example, when we removed a whole category of cases from the system (e.g., abolition
of diversity jurisdiction cases) one expected result was that judges would have more work time available. The model outputs reflected this change in a way that seemed logical (i.e., judge backlogs were reduced, judge utilization proportions decreased, etc.). However, the simulation results suggested additional questions which the computer model was not able to answer. To wit, if the abolition situation were to occur, the judges might be expected to change the way they handle the remaining cases. The simulation alone cannot determine how judges would alter theix behavior.

This is the kind of question which we need your professional judgment on. We need to be able to tell the computer how to shift case-handing priorities, so that the results reflect some of the behavioral adaptations that might be expected from actors involved in the system. This can be accomplished by creating a process whereby expert opinion may be obtained for input to the simulation. The bulk of this week's activities will involve eliciting your reactions to the results of the model's operations and successively adjusting some of the model,'s components until a new equilibrium that includes human judgment is reached.

Each of you will represent one set of system actors:
(1) judges
(2) attorneys, or
(3) litigants. You will each be asked how your actors' behavior would shift if the world changed the way our computer model says it wotild. These judgmental changes will be translated into computer instructions, and a new set of results will be computed.

This translation will be made by our staff, after we have "calibrated" your word definitions into computer coefficients. Calibration is the process of converting your subjective estimates into quantitative terms. That is, we will ask each expert to state a level of change in various factors that he/she would consider significant and then translate these statements into numerical terms for the computer.

You will be provided with the results of the computer calculations following the first simulation, and you will be asked two questions:
(1) Do the new results seem reasonable, and if not, why not?
(2) Given the ner state of affairs, would you change your actors' behavior; and if so, how?

This information will be input to the computer for the second run of the simulation. The output of the second simulation will contain not only the results of the legislative changes bu:. also the results of behavioral adaptations by all system actors to those changes. You will again be asked to examine these results and make judgments regarding their reasonableness. You will also be asked to suggest additional behavioral modifications. for the actor type you represent. This process will be repeated until all experts are satisfied that the results reflect all impacts created by the legislative change: At this point, the simulation results give us a picture of legislative impacts with human adaptations to the change.

We have built in three devices to help minimize personal bias, and to prevent any one panelist from engineering the impact results.
(1) Jurisdictional limitation: A panel member is permitted to make changes only in those aspects of the data or the model that relate to his or her own expertise. For instance, the judge panelist may change only the judge data. This should prevent any one panelist from engineering the whole impact result. He may, of course, take issue with the judgments of others. These disagreements will form part of the record, and they may contribute to changed decisions by the other person in later runs. Also, a whole new run can be made reflecting the results if the behavioral preference of the critic replaced that of the responsible player.
(2) A requirement for stating reasons: A panel member may feel that something in the model should be changed because the simulation shows some condition that would trigger some behavioral modification. The panelist must state what that modification is, and the reasons for making it. Personal perspective will thereby be exposed and made part of the record of the impact study. This should, incidentally, make it easier for a person to do the work of a panelist.
(3) The striking of compromises: In the review process, one panel member may want to make changes that conflict with the views of another panel member. For instance, in response to a rising backlog, the judge expert may want to see more dismissals on the merits; at the same time the attorney representative may feel that more cases should be brought to trial. Thes changes
come to bear on the same element of data, namely, the probability that a case wili last all the way to trial. However, these changes would have opposite effects. Part of the panel function, therefore, would be to reach compromises when this kind of conflict arises. This, in effect, simulates the real-life process by which attorneys and judges have to resolve differences as to how the justice system should operate.

The results of a completed feedback experiment are:

- the quantitative impact analysis with human feedback; a description of the system outputs which reflect the modified behavior of the system actors following the legislative/rulemaking cinange, or management action, which has been the subject of analysis;
- a completed record of how the panel of experts interacted, both with each other and with the computer simulation, in the process of determining what the post-change outputs would be;
- a detailed documentation of conflicts which occurred between panel members during the experiment.

Diagram of the Justice Resource Computer Model

The computer model used in our justice impact analysis is represented in Figure 1. This diagram shows the stages of activity in the computer model, and the directions in which cases and resources flow. This is intended as a very brief overview of the model. A much more detailed explanation will be provided at the orientation meeting. The following is a key to the letter and number codes on the diagram:

Model Inputs

A. Filing rates: interarrival rate for cases
B. Profile: frequencies of different case activities injunction
trial (episodes)
other courtroom appearances noncourtroom activities (judge) noncourtroom activities (attorney) external delay events
C. External delay: duration of delay events
D. Courtroom service: duration of courtroom events injunction
trial (bench or jury)
other courtroom appearances
E. Noncourtroom service (judge): duration of noncourtroom events
F. Noncourtroom service (attorney): duration of noncourtroom events

\longrightarrow Flow of Cases

Figure 1
sustice resconce moder
ovarview of Flow of cases and Rosources
$\ddot{0}$
\vdots
\vdots
0

- Model Outputs

1. Judge courtroom queues
number of cases waiting
time spent waiting (per case)
2. Attorney courtroom queues
number of cases waiting time spent waiting (per case)
3. Judge noncourtroom queues
number of cases waiting
time spent waiting (per case)
4. Attorney noncourtroom queues
number of cases waiting
time spent waiting (per case)
5. Terminations
number of case completions by case type
total time in the system by case
6. Judge utilization
amount of judge time spent on case-related activities
7. Attorney utilization
amount of attorney time spent on case-related actiricies

VARIABLES	Baseline (Hypothetical Data)	LEVELS OF CHANGE		
Output		Some	Moderate	Significant
Utilization	67%	$\pm 5 \%$	$\pm 10 \%$	$\pm 11 \%$
Case completions per year	500 cases	± 15	± 25	± 26
Elapsed time per case	300 work days	± 7	± 20	± 21
Backlog of cases awaiting service courtroom	5 cases	$\pm .5$	± 1	$\pm>1$
Backlog of cases awaiting service .. noncourtroom	10 cases	± 1	± 2	$\pm>2$
Input or Processing				
Probability of trial	6 68	$\pm .5$	± 1	$\pm>1$
Courtroom time for tried cases	3.5 days	$\pm .5$	± 1	$\pm>1$
Noncourtroom tine for tried cases (attorney)	15 days	± 1	± 3	$\pm>3$
Courtroom time for cases that do not go to trial	25 days	$\pm .5$	± 1	$\pm>1$
Noncourtroom time for cases that do not go to trial (attorney	10 days	$\pm .5$	± 2	$\pm>2$

CALIBRATION RECORD

VARIABLES	Baseline (Hypothetical Data)	LEVELS OF CHANGE		
Output		Some	Moderate	Significant
Utilization	67\%	$\pm 3 \%$	$\pm 10 \%$	> 10%
Case completions per year	500 cases	± 20	± 40	>40
Elapsed time per case	300 work days	± 10	± 25	>25
Backlog of cases awaiting service courtroom	5 cases	\pm -	± 1	>1
Backlog of cases awaiting service noncourtroom	10 cases	± 1	± 2	>2
Input or Processing				
Probability of trial	6\%	$\pm<1$	± 1	>1
Courtroom time for tried cases	3.5 days	$\pm .5$	± 1	>1
Noncourtroom 1 ime for tried cases (attorney)	15 days	± 1	± 3	>3
Courtroom time for. cases that do not go to trial	25 days	$\pm .5$	± 1	>1
Noncourtroom time for cases that do not go to trial (attorney	10 days	± 1	± 2	>2

POSITIVE
CALIBIRATION RECORD

VARIABLES	Baseline (Hypothetical Data)	LEVELS OF CHANGE		
Output		Some	Moderate	Significant
Utilization	67\%	70	72	77
Case completions pex year	500 cases	525	550	575
Elapsed time per case	300 work days	325	350	400
Backlog of cases awaiting service courtroom	5 cases	5.5.	6	7
Backlog of cases awaiting service noncourtroom	10 cases	11	13	15
Input on Processing				
Probability of trial	6\%	7\%	9\%	10\% or more
Courtroom time for triet cases	3.5 days	4.0	4.5	5
Noncourtroom time for tried cases (attorney)	15 days	17	20	23
Courtroom time for cases that do not go to trial.	25 days	3.0	3.5	4 or more
Noncourtroom time for cases that do not go to trial (attorney	10 days	11	12	13

CAIIBRATION RECORD

VARIABLES	Baseline (Hypothetical Data)	LEVELS OF CHANGE		
Output		Some	Moderate	Significant
Utilization	67\%	66	64	60
Case completions per year	500 cases	475	450	425
Elapsed time per case	300 work days	290	275	250
Backlog of cases awaiting service courtroom	5 cases	4	3	2
Backlog of cases awaiting service nonccurtroom	10 cases	9	7	5
Input or Processing				
Probability of trial	6\%	5	4.5	4.0
Courtrnom time for tried cases	3.5 days		3.0	2.5
Noncourtroom time for tried cases (attorney)	15 days	13	11	9
Courtroom time for cases that do not go to trial	25 days		2.0	1.5
Noncourtroom time for cases that do not go to trial (attorney	10 days	9	8	7

Round \#
Actor Type \qquad Judge

1. Spend $2 / 3$ of additional time on courtroom activities. $1 / 3$ on non-courtroom activities.
2. Give first courtroom priority to injunctions.
3. Give courtroom priority to criminal cases that would otherwise be in danger of failure to comply with Speedy Trial Act requirements.
4. Give next courtroom priority to oldest civil cases (oldex than 6 months).
5. Give next courtroom priority to other civil cases involving U.S. (public civil cases).
6. Give next courtroom priority to other civil cases not involving U.S. (private civil cases).
7. Give next courtroom priority to other criminal cases.
8. Non-courtroom activity priorities:
a) preparation for $2-7$ above, in that order
b) other activity relating to 2-7 above, in that order
c) other activity

PREMISE

1. Backlog for courtroom activities needs to be reduced much more than does backlog for noncourtrocm activities.
2. Need immediate attention.
3. Failure to comply with STA will require dismissal of criminal cases.
4. Reduce civil case backlog.
5. Public civil cases probably more important than private civil cases. Put pressure on civil cases older than 6 months - many will settle -may increase my noncourtroom activities.
6. Less important than public civil cases.
7. No hurry, so long as disposition complies with STA.
8. Non-courtroom activity should be in preparation for or related to courtroom activity before one engages in other types of non-courtroom activity.

ADAPTATION RECORD

Round \# 1

Actor Type Private Bar
OPINION AS TO
POTENTIAL ACTOR ADAPTATION

PREMISE

1. Impact on the private bar cannot be measured by looking only at the federal system.
2. The significant reduction in the backlog of judges (courtroom and noncourtroom) might result in more private case filings. Any increase, however, would be mitigated by the slightly smaller reductions in attorney backlogs.
3. The high-moderaie increase in the completion of criminal cases may cause a decline in civil filings.
4. Diversity cases will be taken out of the federal system, but presumably most of these cases will be filed in the state courts. Without data on the impact on the state systems of this influx of diversity cases, the impact on the pxivate bar cannot be evaluated. Attorneys may simply spend the same time and resources in state courts.
5. The availability of judges would lead logically to more filings. This assumes that there are cases that are not now filed that could be -perhaps an enroneous assumption given the many reasons attorneys file-- as a settlement tactic, on principle, etc., that are not related to a desire for courtroom treatment. If such an increase occuraed, it would be small.
6. Many attorneys handle, in federal courts, both civil and criminal maiters. Increased criminal case completi-ns will force these attorneys to neglect their civil matters in favor of criminal cases. Given the existence of a specialized criminal bar, however, this change may be small.

Federal Attorney

(

opinion as to
POTENTIAI, ACTOR ADAPTATION

PREMISE

1a. Change in judge non-courtroom queue is the only post-change result that would affect behavior.
b. Good judge will over-schedule - i.e. too many cases set down for courtroom attention on a given day - on grounds that counsel will more often overestimate than under-estimate time required for an episode of courtroom service.
c. Effect of over-scheduling is that often some case will take longer than expected and some other case will be "kicked over" - i.e. have to be rescheduled.
d. "Kicking over" will be a frequent problem when the courtroom queue have four cases waiting (pre-change) but if it goes down to 2.34 (post-change), judge will most often be able to get through all cases scheduled. This means that this amount of reduction would eliminate the "kicking over" phenomenon.
e. Consequence of having case kicked over is that counsel will have to prepare again for the courtroom activity that is re-scheduled.
f. Implication of queue length reduction is some savings in non-courtroom preparation time - i.e. reduction in non-courtroom processing time.

OPINION AS TO
.POTENTIAL ACTOR ADAP'TATION

PREMISE

g. As ith affects Federal attorneys, this reduction would be in civil cases that presently receive low priority in a juage's courtroom queue - cases other than those with a statutory priority.
h. More specifically, the alleviation in the kicking-over problem will be in the preparation time for non-trial episodes that are not usually disposed of quickly - e.g. hearing on motion to suppress evidence. (Sub-point here is tendency of judge, in taking cases from his queue, to favor those which will not take much time).
i. How much the kick-over problem affects Federal counsel, versus private counsel, and hence, how much improvement there would be in preparation time depends on at least two factiors which may vary among Federal districts: (a) How geographically wide-spread the private bar is - attorney travelling a long way may not have case kicked-over. (b) Whether juckes treat Federal litigators the same as private bar, or regard their time as being less important.
j. Additional point concerning filing note: Alleviation of kick-over problem would make small monetary claim cases more economically attractive to private bar - would take some that are now passed over. This is a moot point here, since as regards Federal court, those would mainly be diversity jurisdiction cases.
\qquad Actor Type Federal Attorney (cont)

OPINION AS TO
POTENTTAL ACTOR ADAPTATION

PREMISE

k. Point as to private bar: When a case has to be re-scheduled, this will sometimes mean that private counsel is delayed in clearing up some matter that would advance the case - i.e. would shift the case over to Federal counsel for next activity.

Translation - Round 1

Behavioral Change	Corresponding Parameter Change
1. Given significant reduction in courtroom backlog, with Diversity Jurisdiction cases eliminated, judge becomes more aggressive: accelerates scheduling of courtroom appearances and finishing noncourtroom work. This would affect all case types, but most especially criminal cases.	.79 x duration of external delay - crimjnal cases .86 x duration of external delay - Civil/U.S., and Federal Question 1.21 x probability to external delay branch - Criminal $1.14 \times$ probability of external delay branch - Civil/U.S. Federal Question (puts external delay at the front, and causes case processing activities to occur in more rapid sequence)
2. Judge predicts that the pressure to accelerate \#l would result in an increased tendency to settle.	```.79 x probability of trial - Criminal cases .86 x probability of trial - Civil/U.S. and Federal Question (more settlements = fewer trials)```
3. Reduction in judge courtroom queue means liess rescheduling of cases ready for courtroom service, alleviating the problem of having to prepare again,	Number of episodes of noncourtroom service, Civil/U.S., is reduced from 7 to 6 on premise that one of two nontrial courtroom appearances is a rescheduled event.

GONTINUED

Translation - Round 1

Behavioral Changes:

1. Given a significant reduction in courtroom backlog with Diversity Jurisdiction cases eliminated, judge becomes a more aggressive manager: accelerates the scheduling of courtroom appearances and the completion of noncourtroom work. This would affect all case types, but most especially criminal cases.
2. Judge predicts that the pressure to accelerate Civil cases in \#l would result in an increased tendency to settle.
3. Reduction in judge courtroom queue means less rescheduling of cases ready for courtroom service, alleviating the problem of having to prepare again, principally affecting Federal attorneys in Civil/U.S. cases prior to trial.

ADAPTATION RECORD

Round \# 2

Actor Type Judge

OPINION AS TO : POTENTIAL ACTOR ADAPTATION	PREMISE
Continue priorities with following changes:	

a) place private civil cases ahead of public civil cases for courtroom and non-courtroom activity.
b) delete the priority established in \#7 in Round 1.
2. Increase time spent on case-related activities to 75% by handling 1 more courtroom case per day and .4 noncourtroom case per day.
la. Shorten disposition time of private civil cases significantly.
lb. Unnecessary.
2. Effect very significant changes (upward) in a verage daily backlog of couxtroom \& non..court room activity and utilization time.

ADAPTATION RECORD.

Round \# \qquad

Actor Type \qquad Private Bar

1. Reduction in filings of all case types.
2. Increase in filings of all case types.

PREMISE
la. "Junk" cases faced with reality of going to court, so fewer would be filed.
b. Pressure of having to speed up handling existing cases will mean less time to spend on new cases.

2a. Tendency to file moxe cases given reduction in delay (if attorneys are turning away cases), meaning courts may be more attractive.
b. If the judge becomes a better manager, and fewer cases are rescheduled, atcorneys will spend less time on each case. This will leave time to file new cases.
3. Conclusion - These tendencies will cancel each other out and filings will not change.
3. (Reduction) change in elapsed time is not sufficient to make the use of courts attractive to potential litigants.

Round : \qquad 2

Federal Attorney
Actor i'pe \qquad -

OPINION AS TO
 POTENTIAL ACTOR ADIPTATION

PREMISE

1. USA would assign a moderate amount of routine criminal cases to AUSA's who normally handle civil cases.

1a. Reduction in average elapsed time in criminal cases from 92.4 to 72.5 days is highly important, as it implies major increase in the pressure under which AUSA's assigned to criminal cases must work; particularly significant since, by statute, judge cannot pressure AUSA on criminal case for first 30 of those days; more significant than the reduction (and consequent increase in AUSA pressure) in Civil/U.S. cases.
b. Increase in AUSA/criminal pressure enough to create serious morale problem, erode quality of performance, and push prosecutor to breaking point; cannot tolerate any further raduction in elapsed time average for criminal cases.
c. Absent some alleviation of pressure, can expect "cheaper pleas" to be accepted, and somewhat more plea bargaining generally, resulting in further degradation in morale and quality of performance.
d. One specific effect of pressure at the level implied by such a reduction in elapsed time would be that A USA's could not work on cases as a series of complete, meaningful tasks; would have to be doing something on all cases every day, juggling them.

```
Federal Attorney (cont)
```

OPINION AS TO
POTENTIAL ACTOR ADAPTATION

PREMISE

e. One rationale alternative to "cheap pleas" is to assign some of the routine criminal work to civil/U.S. AUSA's. This would hopefully be temporary. Given 12 AUSA/criminal and 5 A USA/civil personnel - and it is assumed no additional personnel can be added to the litigation itself - the ease of doing this would depend on whether some of those 5 are already familiar with criminal case processing; otherwise, might have to draw on the civil AUSA's who are experienced litigators.
f. If processing time has been reduced in criminal cases in response to growing pressure to move cases along, we wo uld expect to find, after this reassignment of criminal work, quality of performance improve with a concommitant increase in preparation and some decrease in courtroom time in tried cases (owing to improved preparation).
(Note: in Round 1, the changes in Resource Model parameters did not have AUSA/criminal personnel cutting corners, hence no need to restore any time on cases)
g. Critical assumption relative to (c) above: We are assuming that a policy already exists referring to as many cases as possible to the States, and diversion is used to maximum extent - hence, there is no fat that could be trimmed through reduction in overall criminal caseload.

Behavioral Change

. Achieve significant reduction of ti me to dispose of private cases by placing them ahead of public cases, for judge service, and by placing more:pressure on private bar to accelerate scheduling of courtroom appearances and noncourtroom activities.

Hopefully increase judge utilization rate by means of the behavioral change \#1, above.
3. Alleviate significant over-work and morale problem for AVSA/criminal personnel implied by the substantial reduction in elapsed time through a moderate (but hopefully temporary) poli.cy of assigning sorne criminal cases to civil personnel.

Corresponding Parameter Change
Change private/public priority branching ratio from .5 to 1.25 $x .5=.625$
... and make significant reduction in external delay time (in judge involved cases) in Federal Question cases by reducing frequency of external delay from 3 to 2 .

Reassign one civil attorney to handle criminal cases.

Translation - Round 2

Behavioral Changes:

1. Achleve significant reduction of time to dispose of private cases by placing them ahead of public cases, for judge service, and by placing more pressure on private bar to accelerate scheduling of courtroom appearances and noncourtroom activities.
2. Increase judge utilization rate by means of the behavioral change in no. 1 above.
3. Alleviate significant overwork and morale problem for AUSA/criminal personnel implied by the substantial reduction in elapsed time in criminal cases through a moderate (but hopefully temporary) policy of assignirg some criminal cases to civil personnel.

ADAPTATION RECORD

Round \# \qquad
Actor Type Judge

OPINION AS TO	PREMISE
NIIAL ACIOR ADAPTATION	

2. Increase courtroom activity in private cases moderately.

Round \# 3

Actor Type Private Bar

1. More plea bargaining in criminal cases.
2. More time spent on civil/U.S. and federal question cases.
3. More delays requested on civil/U.S. cases..-
4. More out of court settlements for civil/U.S. cases. $=$

PREMISE

1. Extra criminal U.S. Attorney, and decline in criminal elapsed time indicate extra pressure.
2. Increased civil and federal question completions and increased federal question elapsed time indicate-less attention being paid to these cases.
3. Increased pressure to complete civil cases.
4. Increased pressure to complete civil cases.

Round 3 - U.S. Attorney unable to respond to outputs; wants to schedule a panel conference before proceeding.

Translation - Round 3

1. Given the drop in the judge utiization rate, judges will become more deliberative: (a) spending more time on noncourtroom work for all case types, and also (b) increasing the courtroom activity in private cases.
2. Given the pressure implied by the fast pace at which crimuna \perp cases are being processed, defense counsel will negotiate more pleas.
3. The dramatic increase in civil case completions show an unrealistic degree of cooperation by the private bar to the pressure being applied by the judge to speed up cases: private counse \perp will increase the time spent on federal question and civıl/U.S. cases and will ask for more delays on civil/U.S. cases.
4.

The pressure to accelerate the scheduling for civil cases wilı cause a greater willingness on the part of private counsel to settle cases.

1. (a) Increase the duration of noncourtroom activities by 16\%.
(b) Increase the duration and frequency "other courtroom" appearances by 16% (change trequency trom 2 to 3 , and duration from 1.5 to 1.16).
2. Reduce the probability of going to trial for crimınal cases by 10\%.
3. Increase by 16% the duration of external delay for federal question and civil/ U.S. cases, and increase by 16\% the frequency of external delay episodes for civil/U.S. cases.
4. Decrease the probabilıty of going to trial for civiम/U.S. cases by 14%.
5. Given the drop in the judge utiliration rate, judges will become more deliberative: (a) spending more time on noncourtroom work for all case types, and also (b)increasing the courtroom activity in private cases.
6. Given the pressure implied by the fast pace at which criminal cases are being processed, defense counsel will negotiate more pleas.
7. The dramatic increase in civil case completions show an unrealistic degree of cooperation by the private bar to the pressure being applied by the judge to speed up cases: private counsel will increase the time spent on federal question and civiJ/U.S. cases and will ask for more delays on civil/U.S. cases.
8. The pressure to accelerate the scheduling for civil cases will cause a greater willingness on the part of private counsel to settle cases.

SUMMARY OF BEHAVIORAL CHANGES

ROUNDS 1-3

1. Judige accelerates case scheduling
2. Increase in civil case settlements
I. Judge places priority on private cases
3. Assign some routine criminal cases to AUSA/civil
4. More judge service time on cases .
5. Private defense counsel negotiate more pleas
6. Private counsel demand more time for civil cases
7. Private counsel more willing to settle
```
SUMMARY OF FEEDBACK RESULTS
    ROUNDS 1-3
March 18, 1980
```

1. No increase in the rate of case filings.
2. Judges push to accelerate caseflow to increase their own utilization rate, but it does not increase unless more work is created (e.g., more service time per case).
3. There is some appearance of a downward trend in elapsed times relative to baseline levels.

APPENDIX C

THE Q-GERT NETWORK: A TECHNICAL DESCRIPTION

- Q-GERT Conventions
- Q-GERT Output
- Node-by-Node Description of the Resource Model
- Feasible Stage Selection for Each Criminal Case Decision Point
- Description of Files
- Description of Q-GERT Inputs
- Q-GERT Input Data Format
- Listing of Data Cards and FORTRAN Listing

Q-GERT Conventions

Q-GERT is a network modeling vehicle and a computer analysis tool. GERT is an acronym for Graphical Evaluation and Review Techniqui. The Q is appended to indicate that queueing systems can be modeled in graphic form. A fundamental contribution of $Q-G E R T$ is its method for graphically modeling systems in a manner that permits direct computer analysis. The Q-GERT Analysis Program has been developed to provide this computer analysis.

Q-GERT satisfies the need for a network approach to the modeling of systems that involve procedural, risk and random elements. It provides industrial engineers, business analysts aperations researchers with a graphical vehicle for modeling, analysis and communication. It performs a function similar to that provided by circuit diagrams for electrical engineers, free body diagrams for mechanical and civil engineers, signal flow graphs and block diagrams for systems analysts and PERT/CPM networks for project managers. Q-GERT networks are models of systems that consist of activities, resources and queues. Q-GERT can be used in conjunction with project management, risk analysis and decision making. Basically, Q-GERT supports a systems approach to problem resolution consisting of four steps. First, a system is decomposed into its significant elements. Second, the elements are analyzed and described. Third, the elements are integrated in a network model of the system. Fourth, system performance is assessed through the evaluation of the network model.

The network model is comprised of nodes, which may represent entry points, exit points, decision points, or points at which changes are made to transactions flowing through the network. Nodes are connected by branches, or activities, which may represent the expenditure of time, or which may simply serve to connect nodes, without the passage of time.

Each nodes is assigned a unique number, which appears in the righthand portion of the node. In addition values for attributes may be assigned within the node. The code for these values assignments are located in the central portion of the node. Activities may contain code indicating the probability of a transaction taking that path, the value of an attribute of transaction taking that path, or code for a time associated with that activity. Time assignments and value assignments may occur either directly through network coding or through additional FORTRAN programming, termed User Functions (UF).

Node types used in the system include the following:
Source nodes: used to generate transactions and place them into the system. Source nodes are characterized by an incoming flow symbol and an arc that represents the generation of transactions into the system.

In this illustration, the node number of the source node is 5,1 represents the Sr the generation of transactions, and 2 is the arc connecting the source node with the rest of the network.

Regular nodes: used as decision points or points for value assignments to attributes. Regular nodes can be characterized by several different types of branching, or ways in which activities may be selected. Four types of branching used in regular nodes are represented by the following:

Coding for value assignments for attributes is illustrated below:

In this illustration, 1 EX 3 indicates that attribute 1 is to be assigned values sampled from an exponential distribution defined by parameter Set 3. $2+A T 1$
indicates that a value of 2 is to be added to the value of attribute 1.
Queue nodes: used as waiting points for transactions requiring resource services, or for resources requiring their counterparts before service can begin. Queue nodes generally take the following form:

I is the initial number of transactions at the Q-node. M is the maximum number of transactions permitted at the Q-node.

Ranking of transaction in the Queue nodes (R in the above illustrations may be based on the value of an attribute of the transactions in the queue, for example:

In this illustration, $B / 2$ indicates that transactions are to be ordered on the basis of the biggest value of attribute 2. That is, the transaction with the biggest value of attribute 2 would be the first in the queue, and the transaction with the lowest value of attribute 2 would be the last in the queue.

Match nodes: used to combine resources or parts of cases that must proceed together through the network. Match nodes are always associated with queue nodes, which are the points at which resources or cases wait for their complement.

Allocate nodes: used to link transactions with resources when both are ready for service activity. Allocate nodes are always associated with queue nodes, which holds accumulating transactions until the resource is ready to provide service. Allocate nodes are also associated with free nodes, which release resources from cases to which they were. providing service and returns the resources to allocate nodes.

In the above illustration, allocate node 20 indicates that 2 resources of type 1 are to be allocated.

Free nodes: used to release resource from cases to which they were providing service and returns the resources to allocate nodes. The form of the free node is as follows:

RES represents the resource to be freed, U represents the number of units of that resource to be freed, and ALLOC NODES represents the allocate node(s) to which the resource will return.

A typical sequence of queue, allocate and free nodes is as follows:

In this illustration, transactions wait for service at queue node 10. The transactions are linked with one resource of type lat allocate node 11. Service is performed on activity 12, 13. One unit of resource type 1 is freed at free node 13, and the resource unit is returned to allocate node 11.

This brief summary of Q-GERT methods and conventions should serve as an introduction to the Resource Model. For more extensive information about Q-GERT modelling, the reader is referred to Modeling and Analysis Using Q-GERT Networks (Pritsker: 1979), from which all of the illustrations in this section were drawn.

MDIE	Lfitel	AVE．	MIN．	M	CLIF：FEMT NLIHEER	fvefthge
19	INJI－JIS	0.0	0.	0.	0	0.0
20	1H．1－FITT	0.1	0.	0.	0	0.0
39	TOC－－17\％	0.7691	0.	4.	2	0． 2645
40	TOE－ATT	$0.10 \cdot 0$	0.	3.	0	0． 0143
74	JLGET－CT	1． 5 cer	1.	15.	0	0.540^{6}
75	Jnne－CT	0．562\％	0.	13.	2	0.345
76	AILSECT	1．5．Es	0.	6.	0	0.3539
77	JILG4－C：T	．1．E0，48	4．	E．	0	0.410%
78	1T11－5，－r T	8.4103	0.	5.	0	0.8 ce
79	A7T1－CT	0.16 E	U．	\％．	－	0．41ごご
80	ATTE゙ST	0.1388	0.	2.	1	$0.44 E 5$
81	FTTE－CT	0.118	1.	3.	0	0.4875
\＆：	GTta－ET	0．0sici	0.	E．	0	0.86 .14
83	ATTE－C：T	0．11E？	ci_{0}	2.	0	0．36．2
84	GTTE－CT	0.3780	0.	5.	1	0.7185
$8: 5$	ATTT－ET	a．1ET：	0.	E．	0	9．4E\％
Eic	ATT S－LT	0． 65.73	${ }^{1}$	E．	0	U． 1 entit
87	GTTG－CT	6． 0585	0.	E．	0	（1． 36.72
E：a	GTTIG－ET	0． 0.36	0.	E．	0	0.6 cins
89	GTT11－ET	0． 1.488	0.	2.	0	0.1808
90	GTtse－ct	0.005	0.	E．	0	（1． 1248
91	ATT1S－CT	4． $0+1 \mathrm{t}$	0.	E．	0	0.1485
$10 \cdot 4$	JIIS1－140：	2． 4112	0.	ご5．	3	1.145
125	JILSE－NE	0． 8.85	0.	10.	1	0.4517
126	JILGS－HC：	2． 3 Ser	0.	20.	0	1． 1708
127	JIVG4－NC	1．5EP？	0.	16.	0	0.7430
128	Incse－115：	0.95105	0.	10.	1	0.4585
$1{ }^{\prime \prime}$	HTTI－HE	1.5342	${ }_{0}$	10.	1	1.745
130	FTTE゙－ HC	2.1154	0.	11.	0	2.6383
131	HTTE－NS	0.6070	0.	． 5.	0	0.9080
13 z	FTTA－18：	0． 8.53	0.	6.	0	1． 0708
133	FITTS－HC．	1． 04.38	0.	7.	2	1.8215
134	FTTE－NE	5． 1384	0.	14.	3	4.4485
135	FATT	0.9738	0.	7.	0	1． 2600
136	HTTE－NG：	1.1508	0.	11.	$\stackrel{2}{2}$	$0.76{ }^{1}$
137	GTTC－HE	1． 04.4	4.	8.	1	0.5854
123	GTTIO－NE：	1．7576	0.	13.	0	1．0578
135	GTT11－1\％	0． 0.5	0.	9.	0	（1．5\％
140	GTT1E－NC．	0.3207	0.	5.	0	9． 2545
141	GTTIS－140	11．4Eins	0.	6.	0	0.10 .300
185	FF：I－11－． 11	0.0	0.	1.	0	0.0
199	FPPI－M－J	0.0	0.	1.	0	（1） 0
200	FFP1－M－13．	0． 0	0.	1.	0	c． 1
C01	FFPI－M－14	0.0	0.	1.	0	（1．0
20E	FFPI－M－ 15	IV． 9	9.	1.	9	
19	W\％1－T1	4.85	1.	9.	0	0.6
19\％	PFI－E	0.45 .46	0.	10.	1	0.4824
193	［FP1－． 13	00^{3}	0.	5.	0	6． 515
194	FFFI－14	0.80	0.	6.	0	（1．5035
195	PR1－J5	0.6719	$\dot{0}$	4.	0	¢． $2 \cdot 0$

＊＊NUMBER IN Q－NODE＊＊－section of the report which provides in－ formation on Q －node statistics
NODE－the Q－node number for which statistics are to be printed
LABEL－a user supplied name associated with the Q－node
AVE．－the time weighted average number of transactions in the Q － node for the firsi simulation run
MIN．－the minimum number of transactions in the Q－node for the first simulation run
MAX．－the maximum number of transactions in the Q －node for the first simulation run
CURRENT NUM13ER－ihe number of transactions in the Q－node at the end of the first simulation run

- \bullet FESOLIFCE UTILIEATIDN**

FESEIFCE	LAEEL	NDU IN USE	AVE. In USE	Mñ․ IN USE	14011 Fivilafile	HVE. fyAILFELE	$\begin{gathered} \text { MAX. } \\ \text { AVAILABLE } \end{gathered}$
1	NHILIEE 1	1	0.795	1	0	10.205	1
2	HIDNEE2	1	0.605	1	0	0.285	1
3	JU』GE3	0	0.757	1	1	1).c43	1
4	. MUNGE4	0	0.752	1	1	0.248	1
5	HIDSES	0	0.689	1	1	0.331	1
6	ATTYI	1.	0.784	1	0	0.216	1
7	fittre	1	0.701	1	0	0.299	1
8	ATTY3	1	0.590	1	0	0.410	1
9	ATTY4	1	0.695	1	0	0.305	1
10	ATtY's	1	0.687	1	0	0.313	1
11	ATtig	1	0.98 .4	1	0	0.016	1
12	ATTY?	0	0.685	1	1	0.315	1
13	ATTY'E	1	0.664	1	0	$0.35 E$	1
14	GTTYG	1	0.719	1	0	0.281	1
15	GTTY10	0	0.698	1	1	0.308	1
16	HTTY11	1	0.663	1	0	0.357	1
17	GTtilic	0	0.524	1	1	O.4FE	1
18	ATtis	1	0.630	1	0	0.370	1

RESOURCE UTILIZATION-heading to indicate resource utilization section of the report
RESOURCE-the resource number
LABEL-the user supplicd name associated with the resource type
NOW IN USE-the number of resource units in use at the end of the first simulation run
AVE. IN USE-the time weighted average number of resource units in use for the first simulation run
MAX. IN USE- the maximum number of resource units in use during the first simulation run
NOW AVAILABLLE-the number of resource units available for use at the end of the first simulation run
AVE. AVAILABLE-the time weight average number of resource units available for use for the fir:t simulation run
MAX. AVAILABLIE-the maximum number of resource units available during the first simulation run

B. User outputs

In addition to the standard Q-GERT outputs for each simulation run, the current versions of the Resource and Criminal Models have output formats developed specifically for them. These outputs measure more precisely the types of information desired for JRE studies.

The first type of user statistic is resource utilization calculated as the time the resources actually spend working on cases. The standard Q-GERT utilization statistic is the amount of time resources spend working and the time they spend waiting in hold queues for other resources. The user statistic does not add in time spent waiting for other resources. Figure C-1 is computer output showing this user statistic for utilization.

The second type of user statistic is the number of cases realizing (reaching) various points in the Criminal Justice Sequential Model (see Figure C-2). The far left column names each node of interest, beginning with investigation, through incarceration (these points parallel the Criminal Justice Caseflow Model, Diagram II-I). Beginning with declination - 1, the following nodes represent sink nodes, or points at which cases exit the system. The sum of cases passing through those nodes represents the total criminal completions for the specified time period. The second column, labeled AVE, is the average amount of time a case takes to reach that node from the time the case enters the system. STD DEV is the standard deviation of the time, SD OF AVE is the standard deviation of the averages, and MINIMUM and MAXIMUM are the shortest and longest times of cases entering that node. OBS is the number of times cases passed through that node. This should not be confused with the number of cases passing through the node, because, in some places, it is possible for a case to pass through a node more than once (e.g., some cases may be investigated more than once).

The third user output is titled "Output Report" (Figure C-3). This report averages the standard Q-GERT statistics and user statistics and provides standard deviations and standard errors for each. Utilization is the average over resources and over runs for each resource type. Elapsed time provides the averages over runs for each case type, as does number of completions. Average waiting time is the average amount of time judges and attorneys spend waiting in the courtroom areas. Average queue length is the average number of cases in each type of queue over runs.

FIGURE C－1

User Statistics for Utilization

	＊＊USEF MEAN	STATESTCG FOR T STA DFU	MTNTMUM	VAFTABIES AT TIME MAXITMUM	0.1 OOOE＋OA TN FUN TTME：TMTEFUAL．	3＊＊ CUFB．UALUE
JUTIGE 1	$0.6495 E+00$	$0.477112+00$	0.0	0.100010 .1	$0.15006+04$	0.0
JUIIGE2	0.63685100	$0.48095+00$	0.0	O．1000E＋0．1．	$0.150 O E+04$	$0.1000 E+0.1$
JUIITE3	$0.66595+00$	$0.47175+00$	0.0	0． $1.000 \mathrm{E}+0 \mathrm{l}$	0．1．50）E＋04	0.0
JULGE4	$0.638615+00$	$0.48045 \cdots+00$	） 0.0	$0.1000 E+01$	0．1．300E＋04	$0.1000 E+01$
JUnGES	$0.6361 E+00$	$0.48115+00$	0.0	$0.1000 \mathrm{E}+01$	O．1．GOOE＋OA	0.0
ATT1	$0.6302 E+00$	O．4897E＋00	） 0.0	$0.1000 \mathrm{E}+0 \mathrm{l}$	O． 1 OOOE＋OA	0.0
ATT2	$0.6205 E+00$	$0.48935+0$	） 0.0	$0.1000 \mathrm{E}+0 \mathrm{~L}$	$0.1500 \mathrm{E}+04$	$0.1000 E+0.1$
ATT3	$0.5770 E+00$	O．4940）	0.0	O． $1.000 \mathrm{O}+0.1$	O． $1.600 \mathrm{E}+0.4$	0.0
ATTA	$0.6575 E+00$	$0.474 \cdots 1 .+00$	0.0	0．1000E＋01	O． $1.60 \mathrm{EO}+04$	$0.1000 \mathrm{E}+01$
ATTS	$0.5725+00$	0．4947F＋00	0.0	$0.1000 \times+01$	0．1500\％＋0A	$0.10005+01$
ATTG	$0.6155 \mathrm{E}+00$	O． $486951+00$	0.0	$0.10001:+0.1$	$0.15005+0.4$	0.0
ATT7	$0.6231 \mathrm{E}+00$	$0.484613+00$	0.0	$0.10005+0.1$	0.1500104	$0.1000 \mathrm{E}+0.1$
ATTG ATTS	0．2666E＋00	0．442＂以＋00	0.0		O． $1.15006+04$	O． 0
ATT10	$0.74815+00$	$0.43415+00$	0.0	UES $0.1000 \mathrm{~F}+0 \mathrm{j}$	O．A以OOEサOA	$0.1000 \mathrm{E}+0.1$
ATT11	$0.7311 E+00$	O．44341：＋00	0.0	$0.10005+01$	$0.1500 E+04$	0．1000E：＋01
ATT12	$0.7113 \mathrm{E}+00$	$0.45311 \mathrm{~F}+00$	0.0	0.1000 （1） 0	0． $11.100015+04$	$0.1000 \mathrm{E}+0 \mathrm{I}$
ATT13	O．70701゙＋00	（）．4\％W上F＋00	） 0.0	$0.1000 E+0 \%$	$0 \cdot 1500 \%+04$	0.100 OEFtol

FIGURE C-2

Observations in Criminal Sequential Model
**USER STATTSTTCS FOF VAFTABLES BASEM ON OBSERUATTON AT TTME:

	AVE:	STG MEV	Scior Aut:	MTNIMUM	MAXTMUM	OES
INUSTGTN	0.4086	1.0091	0.0730	0.0	7.5048	
GFNITJUFIY			No Val. ulys	F:COFCNロ	$7+648$	1.91.
INDTMNT			NO Values	Fiwcomown		
AFFGNMNT	2 E + 4.3	2 argm	0.3413	0.1968		
ITNFFMTN	1. 4054	1. 2746	0.2089	0.1.726	1.3 .7086 4.7379	69
I, C, FFEF	$2 \mathrm{O}+71.98$	1. 1.653	0.3916	- 0.920	1.6379 6.0960	31.
F-LEABFGN	$5+3095$	3.0836	0.4316	0.7624	6.0860 1.4 .7941	1.4 \square 61.
FEEAFEN	9, 2687	4, 23030	1.417\%	A.030\%	1.4 .7841 1.7 .8396	\% 9
F.C.FFEF	$5 \cdot 2124$	2.9780	0.7019	1.82w\%	11.7204	1.9
BENCH	7. 2609	$3 \cdot 53 \% 6$	1.1.783	4.3984	$14+2014$	1.8 9
WRE-SENT	9.8752 8.3670	2.9277	0.9759	6.5634	11% - 915	9
SENTFFEF	3.880\%	6.0791	0.9862	0.2 \%6\%	28.98\%\%	38
SENTENC	1.0.11\% 1.	6.090%	1.00,34	0.6982	29.4330	38
TECLI TN-1.	1. 636%	1. +693	0. 0.3686	0.8923	30.1931	38
STATE-CT	1. 4947	1. 3 31\%	0.36 .6 0.305%	0.31.3	7 - 595	1.9
NO \&TLI...			NO VAIUES	mrommoma	5.7590	1.9
COMM	1. 9950	1. 9290	0.6 A \%	9.3093		
UDL - FFFOR	2.0788	2 c 360	0.4263	0.3093 0.3303	$9+9248$ 9.9249	1.4 30
INECLTM-2	3 + 320	4.1392	1. 3.3794	0.3.303	9.9249 13.827%	30 9
LIECLTM-3	3.336%	1.0993	- 0.7773	0.4288 2.692	13 $4+13273$ 4.1139	9
ARUITTAL..	16.3429	4.4039	I. 9696	- $9+0711$	$4+11.39$ 20.5059	\cdots
FINES	13, 31.4	5.8601	$3+3833$	9,0711	20.5059 20.2726	\%
AFFEAL	13.9191	6 +28w2	3.6298	8.126\%	20.3720 20.6032	3
FROEATN	10.5401	$5 \cdot 118 \%$	1.8203	$5 \cdot 69 \%$	20.6022 20.9711	3
MIXEED-GT	I. 1.18781	$8.0 \% 0 \%$	3.2888	1.0424	$20+9939$	6
FAFOTEE	120.690\%	4.7047	$2 \cdot 1040$	8. 784		5
SFILIT TMCAETN	10.2196		3.298%	1.994a	$1.6+0006$	4
I. MLAETN	1.3 .3860	20.60%	1.4 .4974	$3+9886$	32.9634	\because

MEAN STH DEV STAERF

UTILIZATION

JURE:	0.34	0.0	0.0
ATTOFNEY (CRTMINAL.. $)$	1.00	0.0	0.0
ATTOFNEY (CTUTL..	0.40	0.0	0.0

ELAF"SEM TMME

FEDERAL QUESTTON
MIU, JuF。
CEIMINAL
CIUIL/U.S.
$16 \cdot 63$
0.0
0.0
no values recommer

NO. OF COMFLETTONS

cIUTL/U.S.	0.0	0.0	0.0
CETMINAL..	9.50	13.44	9.90
IIJU. JUR.	0.0	0.0	0.0
FELEEAL RUESTION	0.0	0.0	0.0

AUEFAGE WAITING TIME

TOC . . Jinc
0.05
0.02
0.02

TOC-ATT
0.06
0.07
0.05

AUERAGE QUEUE LENGTH

JING-CT	0.34	0.0	0.0
ATT-CT (CFIMINAL)	1.84	0.0	0.0
ATT-CT (CIUIL)	0.07	0.0	0.0
JHG-NC	0.40	0.0	0.0
ATT-NC (CRIMINAL)	29.27	0.0	0.0
ATT-NC (CIUIL)	0.35	0.0	0.0
FRI-J	0.13	0.0	0.0

INITIALIZATION

NODE
41 CRIMINAL CASE GENERATION NODE Activity, 41,41: Generates cases at a rate sampled from an exponential distribution of parameter set 1 (EX,1)

42 CRIMINAL FRONT LOADING NODE 1 in 1: Assigns a number to each transaction as ATTRIB 1 beginning with 1 and incrementing by 1 Activity, 42,42: Generates cases in 0 time up to the number desired: Al.EQ.

43 CIVIL/U.S. CASE GENERATION NODE
Activity, 43,43: Generates cases at a rate sampled from an exponential distribution of parameter set 2 (EX,2)

44 CIVIL/U.S. FRONT LOADING NODE
1 in 1: Assigns a number to each transaction as ATTRIB 1 beginning with 1 and incrementing by 1 Activity, 42,42: Generates cases in 0 time up to the number desired: Al.EQ.

45 FEDERAL QUESTION CASE GENERATION NODE Activity, 45,45: Generates cases at a rate sampled from an exponential distribution of parameter set 3

46 FEDERAL QUESTION FRONT LOADING NODE
1 in 1: Assigns a number to each transaction as ATTRIB 1 beginning with 1 and incrementing by 1 Activity, 46,46: Generates cases in 0 time up to the number desired: Al.EQ.

47 DIVERSITY JURISDICTION CASE GENERATION NODE
Activity, 47, 47: Generates cases at a rate sampled from an exponential distribution of parameter set 4

48 DIVERSITY JURISDICTION FRONT LOADING NODE
1 in 1: Assigns a number to each transaction as ATTRIB 1 beginning with 1 and incrementing by 1 Activity, 48,48: Generates cases in 0 time up to the number desired: Al.EQ.

1502 UF 2: User Function 2 assigns a number to ATTRIB 2 (attorney number) by random sampling from all civil/U.S. attorneys. Probabilistic branching on judge vs. no judge for civil/U.S. cases.

1522 CO 1: A constant value of 1 is assigned to ATTRIB 2 (attorney number) as an indentifier for Federal Question cases. Probabilistic branching on judge vs. no judge for Federal Question cases.

2 CO 2: A constant value of 2 is assigned to ATTRIB 2 (attorney number) as an identifier for Diversity Jurisdiction cases. Probabilistic branching on judge vs. no judge for Diversity Jurisdiction.

11 UF 57: Test for speedy trial; track time from arraignment Branch to 182 on All $=0$ speedy trial completions.

3 UF 3: User Function 3 assigns a number to ATTRIB 3 (judge number) by random sampling from all judges.
4 UF 4: User Function 4 assigns number to:
ATTRIB 4: Frequency of external delay, sampled from a distribution for civil/U.S. cases (Parameter Set 21)
ATTRIB 5: Frequency of injunction activities sampled from a distribution for civil/U.S. cases (Parameter Set 22)
ATTRIB 7: Frequency of other courtroom activities, sampled from a distribution for civil/U.S. cases (Parameter Set 23)
ATTRIB 8: Frequency of judge noncourtroom activities, sampled from a distribution for civil/U.S. cases (Parameter Set 24) ATTRIB 9: Frequency of attorney noncourtroom activities sampled from a distribution for civil/U.S. cases (Parameter Set 25).

3 UF 3: User Function 3 assigns a number to ATTRIB 3 (judge number) by random sampling from all judges.
4 UF 4: User Function 4 assigns numbers to:
ATTRIB 4: Frequency of external delay, sampled from a distribution for Federal Question cases (Parameter Set 7)
ATTRIB 5: Frequency of injunction activities, sampled from a distribution for Federal Question cases (Parameter Set 8)
ATTRIB 7: Frequency of other courtroom activities, sampled from a distribution for Federal Question cases (Parameter Set 9) ATTRIB 8: Frequency of judge noncourtroom activities, sampled from a distribution for Federal Question cases (Parameter Set 10)

11 UF 30: User Function 30 assigns a number to ATTRIB 11 (routing attribute):
1 represents bench trial
2 represents jury trial
Based on probability of bench vs. jury trial for each case type.
6 CO 0: Assigns a constant value of 0 to ATTRIB 6 (trial attribute), for cases with no trial.

6 CO 1.1: Assigns a constant value of 1.1 to ATTRIB 6 (trial attribute), for cases with bench trial.

6 CO 1.2: Assigns a constant value of 1.2 to ATTRIB © (trial attribute), for cases with jury trial.

1514 UF 33: User Function 33 assigns a number to: ATTRIB 4: Frequency of external delay sampled from a distribution for civil/U.S. cases with no judge (Parameter Set 62) ATTRIB 3,5,6,7: All set to 0 (judge number, frequency of injunction, trial, frequency of other court activities).

4 UF 32: User Function 32 assigns a number to: ATTRIB 4: Frequency of external delay, sampled from a distribution for Federal Question cases with no judge (Parameter Set 61) ATTRIB 3,5,6,7,8,9: All set to 0 (judge number, frequency of injunction, trial, frequency of other court activities, frequency of judge noncourtroom activities, frequency of attorney noncourtroom activity).

1554 UF 31: User Function 31 assigns a number to: ATTRIB 4: Frequency of external delay sampled from a distribution for diversity jurisdiction cases with no judge (Parameter Set 60) ATTRIB $3,5,6,7,8,9$: All set to 0 (judge number, frequency of injunction, trial, frequency of other court activities, frequency of judge noncourtroom activities, frequency of attorney noncourtroom activities).
60. 1 UF 35: User Function 35 assigns a number to ATTRIB 1 (case identifier) that is unique to each case.
$50 \quad 11$ UF 5: User Function 5 assigns a number to ATTRIB 11 (routing attribute)
$1=$ case not completed (ATTRIB 4,5,6,7,8, or $9=0$)
$2=$ case completed (ATTRIB 4,5,6,7,8 and $9=0$)
Return to network if this is a criminal case.
62 Completed case branches on value of ATTRIB 2
(attorney number or case type)
ATTRIB $2 \geq 6 \leq 13:$ Civil/U.S.
ATTRIB $2=2$: Federal Question
ATTRIB 2 = 1: Diversity Jurisdiction
Civil/U.S. case statistics node
Interval statistics collected.
71 Criminal case statistics node
Interval statistics collected.
Diversity Jurisdiction statistics node
Interval statistics collected.
Federal Question statistics node Interval statistics collected.

11 UF 34: Tests on value of ATTRIB 4 for all except criminal cases.
Noncompleted case branches on value of ATTRIB 4
(frequency of external delay)
ATTRIB $4=0$: no remaining external delay
ATTRIB $4 \geq 0$: external delay remains
11 UF 49: User Function 49 tests on probability of external delay for all case types
Cases with remaining external delay branch probabilistically to:
select external delay stage or
route to node 61 to select from all possible stages
61 Stage selector node
11 UF 6: User Function 6 randomly selects a value for ATTRIB 11
(routing attribute) from the following values:
$64=$ injunction activity
$65=$ other court activity
$66=$ bench trial activity
67 = jury trial activity
$68=$ judge noncourtroom activity
69 = attorney noncourtroom activity
63 = external delay activity
Branch to Node 71 for criminal completions on All $=71$
If the case is criminal, next stage is selected based on criminal flow
Branch to node 71 for criminal completions on All $=71$.

63 External delay selection node 10 UF 50: User Function 50 sets queue ranking for external delays 4 UF 43: Decrements ATTRIB 4 (frequency of external delays) by one

64 Injunction selection node 10 UF 5l: User Function 51 sets queue ranking for injunction.

Other court selection node 10 UF 52: User Function 52 sets queue ranking for other courtroom

Bench trial selection node
10 UF 53: User Function 53 sets queue rankings for trial
6 UF 7: User Function 7 sets the number of bench trial episodes by sampling from frequency distributions:
Card 15: frequency of bench trial episodes for criminal cases Card 31: frequency of bench trial episodes for civil/U.S. cases Card 43: frequency of bench trial episodes for federal question cases. Card 52: frequency of bench trial episodes for diversity jurisdiction cases
User Function 7 also adds a constant value of 1000 (bench trial marker to the frequency that was sampled)

Jury trial selection node
10 UF 53: User Function 53 sets queue ranking for trial
6 UF 8: User Function 8 sets the number of jury trial episodes by sampling from frequency distributions:
Card 16: frequency of jury trial episodes for criminal cases Card 32: frequency of jury trial episodes for civil/U.S. cases Card 44: frequency of jury trial episodes for federal question cases Card 53: frequency of jury trial episodes for diversity jurisdiction cases
User Function 8 also adds a constant value of 2000 (jury trial marker) to the frequency that was sampled

NODE
51 Branches to private case node (196) judge queues (74-79) and attorney queues (79-91,224) based on value of Attribute 3 (judge number) and Attribute 2 (attorney number)
ATTRIB $3=1$ through 6 branch to appropriate judge queue (74-79)
ATTRIB $2=1,2 \quad$ branch to private case queue (196)
ATTRIB $2=7$ through 19 branch to appropriate attorney queue (79-91,224)
Private case node
Branches on value of Atrribute 10 (priority attribute)
ATTRIB $10=7,3,5$ (trial in progress,other court, trial)
Branch to node 198
ATTRIB $10 \neq 7,3,5$ (injunction) branch to node 197
Private injunction clones node Removes private injunction clones from the system

Branches to queue nodes $(191-195,221)$ based on value of Attribute 3
ATTRIB $3=1 \quad$ branch to queue node 191
ATTRIB $3=2$ branch to queue node 192
ATTRIB $3=3$ branch to queue node 193
ATTRIB $3=4 \quad$ branch to queue node 194
ATTRIB $3=5$ branch to queue node 195
ATTRIB $3=6 \quad$ branch to queue node 221

Queue node for private case clones with Attribute 3 (judge number) $=1$

Queue node for private case clones with Attribute 3 (judge number) $=2$

Queue node for private case clones with Attribute 3 (judge number) $=3$

Queue node for private case clones with Attribute 3 (judge number) $=4$

Queue node for private case clones with Attribute 3 (judge number) $=5$

Queue node for private case clones with Attribute 3 (judge number) $=6$

Queue node for all cases at a courtroom stage (injunction, other court, bench trial, jury trial) with Attribute 3 (judge number) $=1$
B/10: cases ordered within queue based on biggest value of Attribute 10 (priority attribute) (see Table __, Case Attributes)

Queue node for all cases at a courtroom stage (injunction, other court, bench trial, jury trial) with Attribute 3 (judge number) $=2$ $\mathrm{B} / 10$: cases ordered within queue based on biggest value of Attribute 10 (priority attribute).
$B / 10$: cases ordered within queue based on biggest value of Attribute 10 (priority attribute).

86 Queue node for all cases at a courtroom stage (injunction, other court, bench trial, jury trial) with Attribute 2 (attorney number) $=13$ B/10: cases ordered within queue based on biggest value of Attribute 10 (priority attribute).

Queue rode for all cases at a courtroon stage (injunction, other court, bench trial, jury trial) with Attribute 2 (attorney number) $=14$ B/10: cases ordered within queue based on biggest value of Attribute 10 (priority attribute).

88 Queue node for all cases at a courtroom stage (injunction, other court, bench trial, jury trial) with Attribute 2 (attorney number) $=15$ B/10: cases ordered within queue based on biggest value of Attribute 10 (priority attribute).

Queue node for all cases at a courtroom stage (injunction, other court, bench trial, jury trial) with Attribute 2 (attorney number) $=16$ B/10: eases ordered within queue based on biggest value of Attribute 10 (priority attribute).

90 Queue node for all cases at a courtroom stage (injunction, other court, bench trial, jury trial) with Attribute 2 (attorney number) $=17$ B/10: cases ordered within queue based on biggest value of Attribute 10 (priority attribute).

91 Queue node for all cases at a courtroom stage (injunction, other court, bench trial, jury trial) with Attribute 2 (attorney number) $=18$ B/10: cases ordered within queue based on biggest value of Attribute 10 (priority attribute).

Queue node for all cases at a courtroom stage (injunction, other court, bench trial, jury trial) with Attribute 2 (attorney number) $=19$ B/10: cases ordered within queue based on biggest value of Attribute 10 (priority attribute).

Allocate node for resource 1 (judge 1), indicates 1 of that resource to be aliocated

Allocate node for resource 2 (judge 2), indicates 1 of that resource to be allocated

Allocate node for resource 3 (judge 3), indicates 1 of that resource to be allocated

4 Allocate node for resource 4 (judge 4), indicates 1 of that resource to be allocated

Allocate node for resource 5 (judge 5), indicates 1 of that resource to be allocated

Allocate node for resource 6 (judge 6), indicates 1 of that resource to be allocated

7 Allocate node for resource 7 (attorney 1), indicates 1 of that resource to be allocated

8

9

Allocate node for resource 8 (attorney 2), indicates 1 of that resource to be allocated

Allocate node for resource 9 (attorney 3), indicates 1 of that resource to be allocated

Allocate node for resource 10 (attorney 4), indicates 1 of that resource to be allocated

Allocate node for resource 11 (attorney 5), indicates 1 of that resource to be allocated

Allocate node for resource 12 (attorney 6), indicates 1 of that resource to be allocated

Allocate node for resource 13 (attorney 7), indicates 1 of that resource to be allocated

Allocate node for resource 14 (attorney 8), indicates 1 of that resource to be allocated

Allocate node for resource 15 (attorney 9), indicates 1 of that rescurce to be allocated

Allocate node for resource 16 (attorney 10), indicates 1 of that resource to be allocated

Allocate node for resource 17 (attorney 11), indicates 1 of that resource to be allocated

Allocate node for resource 18 (attorney 12), indicates 1 of that resource to be allocated

Allocate node for resource 19 (attorney 13), indicates 1 of that resource to be allocated

Judge route node
11 UF 9: User Function 9 follows judge route node logic (see chart) to place value in Attribute 11 (routing attribute): ATTRIB $11=1$ route judge resource and case to node 94 (pass the case)
ATTRIB $11=2$ route judge resource and case to node 184 (private case)
ATTRIB $11=3$ route resource and case to node 39 (trial or other court judge hold queue)
ATIRIB $11=4$ route judge resource and case to node 19 (injunction judge hold queue)

Sends attorney resource and case to node 93

Figure C-4

Judge Route Node Logic (UF 9 at Node 92).

Attorney route node
11 UF 10: User Function 10 follows attorney route node logic (see chart) to place value in Attribute 11 (routing attribute):
ATTRIB $11=1$ Route attorney resource and case to node 95 (pass the case)
ATTRIB $11=3$ Route attorney resource and case to node 40 (trial or other court attorney hold queue)
ATTRIB $11=4$ Route attorney resource and case to node 20 (injunction attorney hold queue)

Private case node: Branches on value of Attribute 10 (priority attribute)
ATTRIB $10-8,9$ Send judge resource and case to node 101 (injunction or injunction pending)
If ATTRIB $10 \neq 8,9$ Branch on value of Attribute 3 (judge number)
ATTRIB $3=1$ Send judge resource and case to queue node 185 (private queue for judge 1)
ATTRIB $3=2$ Send judge resource and case to queue node 199
(private queue for judge 2)
ATTRIB $3=3$ Send judge resource and case to queue node 200 (private queue for judge 3)
ATTRIB $3=4$ Send judge resource and case to queue node 201 (private queue for judge 4)
ATTRIB $3=5$ Send judge resource and case to queue node 202 (private queue for judge 5)
ATTRIB $3=6$ Send judge resource and case to queue node 222 (private queue for judge 6)

Queue node for judge resource and case with Attribute 3 (judge number) $=1$

Queue node for judge resource and case with Attribute 3 (judge number) $=2$

Queue node for judge resource and case with Attribute 3 (judge number) $=3$

Queue node for judge resource and case with Attribute 3 (judge number) $=4$

Queue node for judge resource and case with Attribute 3 (judge number) $=5$

Queue node for judge resource and case with Attribute 3 (judge number) $=6$

Match node for private case clone from queue node 191 and judge resource and case from queue node 185. Indicates that case and clone are to be matched on value of Attribute 1 (case identifier)

Match node for private case clone from queue node 199. Indicates that case and clone are to be matched on value of Attribute 1 (case identifier)

188 Match node for private case clone from queue node 193 and judge resource and case from queue node 200. Indicates that case and clone are to be matched on value of attribute 1 (case identifier)

189 Match node for private case clone from queue node 194 and judge resource and case from queue node 201. Indicates that case and clone are to be matched on value of Attribute 1 (case identifier)

Match node for private case clone from queue node 195 and judge resource and case from queue node 202. Indicates that case and clone are to be matched on value of Attribute 1 (case identifier)

Match node for private case clone from queue node 222 and judge resource and case from queue node 221. Indicates that case and clone are to be matched on value of Attribute 1 (case identifier)

Combines cases and clones that were matched at nodes 186-190, 223. Indicates that 2 transactions (a case and its clone) are required for the first release and each subsequent release of this node, and that the attributes of the case that is released will be those of the case or clone that had the biggest value of Attribute 10 (priority attribute)

Figure C-5

Attorney Route Nocie Logic (UF 10 at Node 93).

Figure C-5: (cont'd.)

101 Branches on value of Attribute 10 (priority attribute):
ATTRIB $10=3$ Other courtroom, send to node 102
ATTRIB 10) $=4$ Other courtroom pending, send to node 102
ATTRIB $10=8$ Injunction, send to node 103
ATTRIB $10=9$ Injunction pending, send to node 103
ATTRIB $10=5$ Trial, send to node 104
ATTRIB $10=6$ Trial pending, send to node 104
ATTRIB $10=7$ Trial in progress, send to node 104
Activity 102, 105 UF, 23 User Function 23 samples from time distributions:
Card 45: other courtroom time for Federal Question cases Card 54: other courtroom time for Diversity Jurisdiction cases
11 UF 40: User Function 40 collects utilization statistics on judge's busy time

Activity 103,106 UF, 24 User Function 24 samples from time distributions:
Card 42: injunction time for Federal Question cases
Card 43: injunction time for Diversity Jurisdiction cases 11 UF 40: User Function 40 collects utilization statistics on judge's busy time

Activity 104,107 UF, 25 User Function 25 samples from time distributions:
Card 43: bench trial time for Federal Question cases
Card 52: bench trial time for Diversity Jurisdiction cases
Card 44: jury trial time for Federal Question cases
Card 53: jury trial time for Diversity Jurisdiction cases 11 UF 40: User Function 40 collects utilization statistics on judge's busy time

7- CO 1: Attribute 7 (frequency of other courtroom activity) decremented by a constant value of 1
11 UF 41: User Function 41 collects utilization statistics on judge's idle time
11 CO 6: ATTRIB 11 (routing attribute) set to constant value of 6
5- CO 1: Attribute 5 (frequency of injunction) decremented by a constant value of 1
11 UF 41: User Function 41 collects utilization statistics on judge's idle time

11 UF 14: Set $\operatorname{INJ}(J)=0$ (injunction signal of judge $=$ no injunction)

If $\operatorname{INJ}(J)=2$ (injunction signal of judge was $=$ private injunction)

107 6- CO 1: Attribute 6 (trial attribute) decremented by a constant value of 1 Activity 107,110: ATTRIB 6 (trial attribute) $=1000$ bench trial complete Activity 107,110: ATTRIB 6 (trial attribute) $=2000$ jury trial complete
11 UF 41: User Function 41 collects utilization statistics on judge's idle time

11011 UF 15: set $\operatorname{ICRT}(J)=0$ (courtroom signal of judge $=$ no court activity
11 CO 2: Attribute 11 (routing attribute) $=2$
6 CO 0: Attribute 6 (trial attribute) set to a constant value of 0 (trial completed)
Case sent to both node 50 and node 156
10 CO 7: Attribute 10 (priority attribute) set to a constant value of 7 (trial in progress)
11 CO 1: Attribute 11 (routing attribute) set to a constant value of 1
Case sent to both node 51 and node 156

NODE

9410 UF 11 User Function 11 assigns a higher value to Attribute 10 (priority attribute)
If ATTRIB 10 was $=8,9$ set ATTRIB $10=9$
If ATTRIB 10 was $=7$ set ATTRIB $10=7$
If ATTRIB 10 was $=6,5$ set ATTRIB $10=6,6$
If ATTRIB 10 was $=6,3$ set ATTRIB $10=6,4$
If ATTRIB 10 was $=3,4$ set ATTRIB $10=4$
146 Free node for Judge resources
Indicates that 1 resource of Attribute 3 (judge number) is to be freed, first to return to appropriate allocate node 1-6 (courtroom), then to appropriate allocate node 21-26 (noncourtroom)
Branches on value of Attribute 3 (judge number):
ATTRIB $3=1$ send case to queue node 74
($C 0, d$) adds delay of constant value, d, to case time ATTRIB $3=2$ send case to queue node 75
($C 0, \mathrm{~d}$) adds delay of constant value, d, to case time ATTRIB $3=3$ send case to queue node 76
(CO,d) adds delay of constant value, d, to case time ATTRIB $3=4$ send case to queue node 77
(CO,d) adds delay of constant value, d, to case time ATTRIB $3=5$ send case to queue node 78 (CO,d) adds delay of constant value, d, to case time ATTRIB $3=6$ send case to queue node 79
(CO, d) adds delay of constant value, d, to case time

NODE
9510 UF 12 User Function 12 assigns a higher value to Attribute 10 (priority attribute)

If ATTRIB 10 was $=8.9$	set ATTRIB $10=9$
If ATTRIB 10 was $=7$	set ATTRIB $10=7$
If ATTRIB 10 was $=6.5$	set ATTRIB $10=6.6$
If ATTRIB 10 was $=6.3$	set AITRIB $10=6.4$
If ATTRIB 10 was $=5,6$	set ATTRIB $10=6$
If ATTRIB 10 was $=3,4$	set ATTRIB $10=4$

Free node for attorney resources Indicates that 1 resource of Attribute 2 (attorney number) is to be freed, first to return to appropriate allocate node 7-18, 225 then to appropriate allocate node 27-38 (noncourtroom) Branches on value of Attribute 2 (attorney number):
ATTRIB $2=7$ send case to queue node 80
(CO, d) adds delay of constant value, d , to case time ATTRIB $2=8$ send case to queue node 81
(CO,d) adds delay of constant value, d, to case time
ATTRIB $2=9$ send case to queue node 82
($C O, d$) adds delay of constant value, d, to case time
ATTRIB $2=10$ send case to queue node 83
(CO,d) adds delay of constant value, d, to case time
ATTRIB $2=11$ send case to queue node 84
($C O, \mathrm{~d}$) adds delay of constant value, d, to case time ATTRIB $2=12$ send case to queue node 85
(CO, d) adds delay of constant value, d , to case time ATTRIB $2=13$ send case to queue node 86
($C 0, d$) adds delay of constant value, d, to case time ATTRIB $2=14$ send case to queue node 87
(CO, d) adds delay of constant value, d , to case time ATTRIB $2=15$ send case to queue node 88
(CO, d) adds delay of constant value, d , to case time ATTRIB $2=16$ send case to queue node 89
($C \sigma, d$) adds delay of constant value, d, to case time ATTRIB $2=17$ send case to queue node 90
(CO, d) adds delay of constant value, d , to case time ATTRIB $2=18$ send case to queue node 91
(CO, d) adds delay of constant value, d , to case time ATTRIB $2=19$ send case to queue node 224
(CO, d) adds delay of constant value, d , to case time

NODE
19 Judge injunction hold queue node

97 Match node for attorney and judge resources with cases Indicates resource and case to be matched on value of Attribute 1 (case identifier)

Combines case judges and attorneys that were matched at node 97 Indicates that 2 transactions (judge and attorney) are required for the first release of this node, and that the attributes of the case that is released will be there of the transaction that had the biggest value of Attribute 10 (priority attribute) 11 UF 36: User Function 36 collects utilization statistics on judge and attorney idle time
Activity 98,99 UF, 22 User Function 22 samples from time distributions:
Card 14: injunction time for criminal cases
Card 30: injunction time for civil/U.S. cases
5 UF 44: User Function 44 decrements ATTRIB 5 (frequency of injunction) by 1 , unless a criminal case 11 UF 13: User Function 13 sets:
INJ $(J)=0$ (injunction signal of judge $=$ no injunction) $\operatorname{INJ}(A)=0$ (injunction signal of attorney $=$ no injunction) 11 UF 37: User Function 37 collects utilization statistics on judge and attorney idle time

Free node for judge resources
Indicates that 1 resource of Attribute 3 (judge number) is to be freed, to return to appropriate allocate node 1-6 (courtroom).

39 Judge trial and other court hold queue node
40 Attorney trial and other court hold queue node
113 Match node for attorney and judge resources with cases.
Indicates resource and case to be matched on value of Attribute 1 (case identifier)

11411 UF 16: User Function 16 sets:
$\operatorname{ICRT}(J)=0$ (courtroom signal of judge $=$ no courtroom appearance)
$\operatorname{ICRT}(A)=0$ (courtroom signal of attorney $=$ no courtroom appearance)
If ATTRIB $10=3,4,6.3,6.4$ (priority attribute $=$ other court or
other court pending)
Activity 114,115 UF, 26 User Function 26 samples from time
distributions:
Card 15: bench trial time for criminal cases
Card 31: bench trial time for civil/U.S. cases
Card 16: jury trial time for criminal cases
Card 32: jury triall time for civil/U.S. cases
Card 17-20: other courtroom time for criminal cases
Card 33: other courtroom time for civil/U.S. cases
11 UF 36: User Function 36 collects u+ilization statistics on judge and attorney busy time

11511 UF 17: User Function 17 decrements Attribute 6 (trial attribute) by a value of 1 if Attribute 10 (priority attribute) $=5,6,7$ (trial, trial pending, or trial in progress)
Branches on value of Attribute 10 (priority attribute)
ATTRIB $10=3,4$ (other courtroom or other courtroom pending), send to node 116
ATTRIB $10 \neq 3,4$ Branch on value of Attribute 6 (trial attribute)
ATTRIB $6=1000$ Bench trial complete, send to node 118
ATTRIB $6=2000$ Jury trial complete, send to node 118
ATTRIB $6 \neq 1000$, 2000 Trial in progress, send to node 117
11 UF 37: User Function 37 collects utilization statistics on
judge and attorney idle time
1167 UF 45: User Function 45 decrements ATTRIB 7 (frequency of other court) decremented by 1 unless a criminal case
11 CO 3: Attribute 11 (routing attribute) set to a constant value of 3
Case and resources sent to node 156
Case also sent to node 50
11811 UF 18: User Function 18 sets:
$\operatorname{ICRT}(J)=0$ (judge courtroom signal $=$ no courtroom appearance)
ICRT (A) $=0$ (attorney courtroom signal $=$ no courtroom appearance)
11 CO 5: Attribute 11 (routing attribute) set to a constant value of 5 6 UF 46: User Function 46 sets ATTRIB 6 (trial attribute) to a value of 0 , unless a criminal case
Case and resources sent to node 156
Case also sent to node 50
117 10 UF 56: User Function 56 sets queue ranking for a trial in
progress
11 CO 4: Attribute 11 (routing attribute) set to constant value
of 4
Case and resources sent to node 156
Case also sent to node 51

15611 UF 19: User Function 19 sets:
ATTRIB 11 = - ATTRIB 11 (routing attribute)
If $\operatorname{INJ}(J)=1$ (injunction pending)
Branches on value of Attribute 11:
ATTRIB $11<0$ (injunction): send to node 157
ATTRIB $11=2$ (private case complete): send to node 158
ATTRIB $11=5$ (public trial complete): send to node 158
ATTRIB $11<5$ (other court or public/private trial in progress):
send to node 159

Branch on probability of internal delay for judge
p (.0001) send to node 160
p (.9999) send to node 148
11 CO 0: Attribute 11 (routing attribute) set to constant value of 0
Activity 160,157 UF, 59 User Function 59 sets duration of internal delay for judge (all cases from node 160 take this branch) Activity 160,163 ATTRIB $2 \geq 7$ cases with Attribute $2 \geq 7$ (attorney numbers greater than or equal to 7) (public cases) sent to node 163

11 UF 64: User Function 64 frees judge according to allocation table
Branches on value of ATTRIB $11=1,5$ send to node 157
Branches on value of ATTRIB $11=-1,-5$ send to node 159
11 UF 66: User Function 66 frees judge according to resource
allocation table
Branches on value of ATTRIB $11=1,3$ send to node 157
Branches on value of ATTRIB $11=-1,-3$ send to node 159
Free node for judge resources
Indicates that 1 resource of Attribute 3 (judge number) is to be freed. Case sent to node 111

Branches on value of Attribute 3 (judge number)
ATTRIB $3=1$ Resources with cases with judge number 1
ATTRIB $3=2$ Resources with cases with judge number 2
ATTRIB $3=3$ Resources with cases with judge number 3
ATTRIB $3=4$ Resources with cases with judge number 4
ATTRIB $3=5$ Resources with cases with judge number 5
ATTRIB $3=6$ Resources with cases with judge number 6
Free node for judge resource 1
Indicates 1 resource of that number to be freed, first to allocate node 2 (noncourtroom), then to allocate node 1 (courtroom)

Free node for judge resource 2
Indicates 1 resource of that number to be freed, first to allocate node 22 (noncourtroom), then to allocate node 2 (courtroom)
$121 \quad$ Free node for judge resource 3 Indicates 1 resource of that number to be freed, first to allocate node 23 (noncourtroom), then to allocate node 3 (courtroom)

Free node for judge resource 4
Indicates 1 resource of that number to be freed, first to allocate node 24 (noncourtroom), then to allocate node 4 (courtroom)
$149 \quad 11$ UF 66: User Function 66 frees judge according to resource allocation table
Branches of value of ATTRIB $11=1,3$ send to node 157 ATTRIB $11=-1,-3$ send to node 159

Free node for judge resource 6
Indicates 1 resource of that number to be freed, first to allocate node 26 (noncourtroom), then to allocate node 6 (courtroom)

111 Branches on value of Attribute 11 (routing attribute)
ATTRIB $11=-6$ send to node 42
ATTRIB $11=-2$ send to node 112
ATTRIB $11=-1$ send to node 112
ATTRIB $11=0$ send to node 112
ATTRIB $11=1$ send to node 112
ATTRIB $11=2$ send to node 112
ATTRIB $11 \geqslant 2$ send to node 163
Node to sink private case clones used to free jucge resources
11 UF 20: User Function 20 sets Attribute 3 (used as routing attribute at this node) based on value of Attribute 11: ATTRIB $11-5,0,5$ set ATTRIB $3=6$ (public trial complete) Sets $\operatorname{INJ}(A)=1$ (attorney injunction signal $=$ injunction pending) if $\operatorname{INJ}(J)=1$ (if judge injunction signal $=$ injunction pending) Branching on:
ATTRIB $11=1$ (routing attribute $=$ injunction) send to node 181 ATTRIB $3=7$ (routing attribute $=$ public trial complete) send to node 181
ATTRIB $11 \neq 1$, ATTRIB $3 \neq 7$ (other court or continued public trial) send to node 229)

11 UF 67 User Function 67 frees attorney according to allocation table. Branches on value of ATTRIB $11=1$ send to node 181 ATTRIB II $=0$ send to node 167

164 Branch on probability of internal delay for attorney
p. . 0001 send to node 181
p. . 9999 send to node 228

Activity 164,181:
UF 60 sets attorney internal delay time
$228 \quad 11$ UF65 User Function 65 frees the attorney following end of trial according to allocation table. Branches on value of ATTRIB $11=1$ send to node 181 ATTRIB $11=0$ send to node 167

181 Free node for attorney resources
Indicates that 1 resource of Attribute 2 (attorney number) is to be freed.

Branches on value of Attribute 2 (attorney number)
ATTRIB $2=79$ send to node 168
ATTRIB $2=7$ send to node 169
ATTRIB $2=8$ send to node 170
ATTRIB $2=9$ send to node 171
ATTRIB $2=10$ send to node 172
ATTRIB $2=11$ send to node 173
ATTRIB $2=12$ send to node 174
ATTRIB $2=13$ send to node 175
ATTRIB $2=14$ send to node 176
ATTRIB $2=15$ send to node 177
ATTRIB $2=16$ send to node 178
ATTRIB $2=17$ send to node 179
ATTRIB $2=18$ send to node 180
Free node for attorney resource 19
Indicates 1 resource of that number to be freed, first to allocate node 227 (noncourtroom), then to allocate node 225 (courtroom)

Free node for attorney resource 7
Indicates 1 resource of that number to be freed, first to allocate node 27 (noncourtroom), then to allocate node 7 (courtroom)

Free node for attorney resource 8 Indicates 1 resource of that number to be freed, first to allocate node 28 (noncourtroom), then to allocate node 8 (courtroom)

Free node for attorney resource 9
Indicates 1 resource of that number to be freed, first to allocate node 29 (noncourtroom), then to allocate node 9 (courtroom)

Free node for attorney resource 10 Indicates 1 resource of that number to be freed, first to allocate node 30 (noncourtroom), then to allocate node 10 (courtroom)

Free node for attorney resource 11 Indicates 1 resource of that number to be freed, first to allocate node 31 (noncourtroom), then to allocate node 11 (courtroom)

Free node for attorney resource 12
Indicates 1 resource of that number to be freed, first to allocate node 31 (noncourtroom), then to allocate node 11 (courtroom)

175 Free node for attorney resource 13 Indicates 1 resource of that number to be freed, first to allocate node 33 (noncourtroom), then to allocate node 13 (courtroom)

176 Free node for attorney resource 14
Indicates 1 resource of that number to be freed, first to allocate node 34 (noncourtroom), then to allocate node 14 (courtroom)

Free node for attorney resource 15
Indicates 1 resource of that number to be freed, first to allocate node 35 (noncourtroom), then to allocate node 15 (courtroom)

Free node for attorney resource 16
Indicates 1 resource of that number to be freed, first to allocate node 36 (noncourtroom), then to allocate node 16 (courtroom)

Free node for attorney resource 17
Indicates 1 resource of that number to be freed, first to allocate node 37 (noncourtroom), then to allocate node 17 (courtroom)

68 Judge noncourtroom branching node 10 UF 54 Branches on value of Attribute 3 (judge number)
ATTRIB $3=1 \quad$ send to queue node 124
ATTRIB $3=2$ send to queue node 125
ATTRIB $3=3$ send to queue node 126
ATTRIB $3=4$ send to queue node 127
ATTRIB $3=5 \quad$ send to queue node 128
ATTRIB $3=6 \quad$ send to queue node 129
69 Attorney noncourtroom branching node
10 CO 1: Assigns a constant value of 2 to Attribute 10 (priority attribute)
ATTRIB $2=7$ send to queue node 130
ATTRIB $2=8$ send to queue node 131
ATTRIB $2=9$ send to queue node 132
ATTRIB $2=10$ send to queue node 133
ATTRIB $2=11$ send to queue node 134
ATTRIB $2=12$ send to queue node 135
ATTRIB $2=13$ send to queue node 136
ATTRIB $2=14$ send to queue node 137
ATTRIB $2=15$ send to queue node 138
ATTRIB $2=16$ send to queue node 139
ATTRIB $2=17$ send to queue node 140
ATTRIB $2=18$ send to queue node 141
ATTRIB $2=19$ send to queue node 226
124 Queue node for all cases at noncourtroom stage with Attribute 3 (judge number) $=1$

125 Queue node for all cases at noncourtroom stage with Attribute 3 (judge number) $=2$

126 Queue node for all cases at noncourtroom stage with Attribute 3 (judge number) $=3$

127 Queue node for all cases at noncourtroom stage with Attribute 3 (judge number) $=4$

128 Queue node for all cases at nonsourtroom stage with Attribute 3 (judge number) $=5$

129 Queue node for all cases at noncourtroom stage with Attribute 3 (judge number) $=6$

130 Queue node for all cases at noncourtroom stage with Attribute 2 (attorney number) $=7$

131 Queue node for all cases at noncourtroom stage with Attribute 2 (attorney number) $=8$

Queue node for all cases at noncourtroom stage with Attribute 2 (attorney number) $=9$

Queue node for all cases at noncourtroom stage with Attribute 2 (attorney number) $=10$

Queue node for all cases at noncourtroom stage with Attribute 2 (attorney number) $=11$

Queue node for all cases at noncourtroom stage with Attribute 2 (attorney number) $=12$

Queue node for all cases at noncourtroom stage with Attribute 2 (attorney number) $=13$

Queue node for all cases at noncourtroom stage with Attribute 2 (attorney number) $=14$

Queue node for all cases at noncourtroom stage with Attribute 2 (attorney number) $=15$

Queue node for all cases at noncourtroom stage with Attribute 2 (attorney number) $=16$

Queue node for all cases at noncourtroom stage with Attribute 2 (attorney number) $=17$

Queue node for all cases at noncourtroom stage with Attribute 2 (attorney number) $=18$

Queue node for all cases at noncourtroom stage with Attribute 2 (attorney number) $=19$

Allocate node for resource 1 (judge 1) Indicates l of that resource to be allocated

Allocate node for resource 2 (judge 2) Indicates 1 of that resource to be allocated

Allocate node for resource 3 (judge 3) Indicates 1 of that resource to be allocated

Allocate node for resource 4 (judge 4) Indicates 1 of that resource to be allocated

Allocate node for resource 5 (judge 5) Indicates 1 of that resource to be allocated

26	Allocate node for resource 6 (judge 6) Indicates 1 of that resource to be allocated
27	Allocate node for resource 7 (attorney 1)
	Indicates 1 of that resource to be allocated
28	Allocate node for resource 8 (attorney 2)
	Indicates 1 of that resource to be allocated
29	Allocate node for resource 9 (attorney 3)
	Indicates 1 of that resource to be allocated
30	Allocate node for resource 10 (attorney 4)
	Indicates 1 of that resource to be allocated
31	Allocate node for resource 11 (attorney 5)
	Indicates 1 of that resource to be allocated
32	Allocate node for resource 11 (attorney 6)
	Indicates 1 of that resource to be allocated
33	Allocate node for resource 12 (attorney 7)
	Indicates 1 of that resource to be allocated
34	Allocate node for resource 13 (attorney 8)
	Indicates 1 of that resource to be allocated
35	Allocate node for resource 14 (attorney 9)
	Indicates 1 of that resource to be allocated
36	Allocate node for resource 15 (attorney 10)
	Indicates 1 of that resource to be allocated
37	Allocate node for resource 16 (attorney 11)
	Indicates 1 of that resource to be allocated
38	Allocate node for resource 17 (attorney 12)
	Indicates 1 of that resource to be allocated
227	Allocate node for resource 18 (attorney 13)
	Indicates 1 of that resource to be allocated
142	Activity 142, 144 UF, 27 User Function 27 sets noncourtroom judge time by sampling from distributions:
	Card 21: noncourtroom judge time for Criminal cases
	Card 34: noncourtroom judge time for Civil/U.S. cases
	Card 46: noncourtroom judge time for Federal Question cases
	Card 55: noncourtroom judge time for Diversity Jurisdiction cases
	11 UF 40 User Function 40 collects utlization statistics on judge busy time

Allocate node for resource 6 (judge 6) Indicates 1 of that resource to be allocated

Allocate node for resource 7 (attorney 1) Indicates 1 of that resource to be allocated

Allocate node for resource 8 (attorney 2) Indicates 1 of that resource to be allocated

Allocate node for resource 9 (attorney 3) Indicates 1 of that resource to be allocated

Allocate node for resource 10 (attorney 4) Indicates 1 of that resource to be allocated

Allocate node for resource 11 (attorney 5) Indicates 1 of that resource to be allocated

Allocate node for resource 11 (attorney 6) Indicates 1 of that resource to be allocated

Allocate node for resource 12 (attorney 7) Indicates 1 of that resource to be allocated

Allocate node for resource 13 (attorney 8) Indicates 1 of that resource to be allocated

Allocate node for resource 14 (attorney 9) Indicates 1 of that resource to be allocated

Allocate node for resource 15 (attorney 10) Indicates 1 of that resource to be allocated

Allocate node for resource 16 (attorney 11) Indicates 1 of that resource to be allocated

Allocate node for resource 17 (attorney 12) Indicates 1 of that resource to be allocated

Allocate node for resource 18 (attorney 13) Indicates 1 of that resource to be allocated

Activity 142,144 UF, 27 User Function 27 sets noncourtroom judge time by sampling from distributions:
Card 21: noncourtroom judge time for Criminal cases
Card 34: noncourtroom judge time for Civil/U.S. cases
Card 46: noncourtroom judge time for Federal Question cases Card 55: noncourtroom judge time for Diversity Jurisdiction cases 11 UF 40 User Function 40 collects utlization statistics on judge busy time

1448 UF 47 User Function 47 decrements ATTRIB 8 by l, unless a criminal case
11 UF 41 User Function 41 collects utilization statistics or judge idle time
11 UF 62 User Function 62 frees judge according to allocation table
Branches on value of ATTRIB $11=1,0$
165 Free node for judge resources Indicates 1 resource of Attribute 3 (judge number) is to be freed

Activity 143,145 UF, 28 User Function 28 sets noncourtroom attorney time by sampling from distributions:
Parameter Set 58: noncourtroom attorney time for Criminal cases Parameter Set 59: noncourtroom attorney time for Civil/U.S. cases 11 UF 38: User Function 38 collects utilization statistics on attorney busy time

9 UF 48 User Function 48 decrements ATTRIB 8 by 1, unless a criminal case
11 UF 39 User Function 39 collects utilization statistics on attorney idle time
11 UF 63 User Function 63 frees the attorney according to allocation table

Free node for attorney resources
Indicates resource of attribute 2 (attorney number) is to be freed

The structure of attributes, arrays, and parameter sets can be more clearly presented in tabular form. The following pages, originally prepared by Dr. Ken Musselman and Mr. Robert Hannan, of Pritsker and Associates, Inc., detail the format of the attributes, arrays, and parameter sets used in the Diversity Jurisdiction resource model.

Each case in this model is uniquely identified by a set of attributes. These attributes are used to distinguish the case from other cases, determine its direction of flow, and assist in data collection and analysis. A description of these attributes is presented below. The functions performed by each attribute are listed in capital letters. A message's location in the network determines which of the attribute's functions is currently being performed.

Attribute Number

1

2
Attorney number

Attorney number	
1	Private case (Federal Question)
2	Private case (Diversity Jurisdiction)
$7-19$	Public case (Criminal or Civil/U.S.)

A. Judge number

0 No judge involvement
1-6 Judge involvement
B. Routing attribute at node 163 to free attorney
A. Frequency of external delay
B. Negative value of the time when a case begins "STT" day clock for speedy trials

5 Frequency of an injunction
6

7

Description

A. Generation counter
B. Match attribute (Case Identifier)
A. Trial index

1ABC Bench trial with ABC episodes 2XYZ Jury trial with XYZ episodes
B. Last stage complered in Criminal case flow

Frequency of other courtroom activity

Frequency of noncourtroom activity（attorney）

10	Queue ranking	
	10	Speedy case－injunction
	9	Injunction pending
	8	Injunction
	7	Trial in progress
	6.7	Speedy case－trial in progress
	6.6	Speedy case－trial pending
	6.5	Speedy case－trial
	6.4	Speedy case－other courtroom pending
品	6.3	Speedy case－other courtroom
Q	6.2	Speedy case－noncourtroom（judge）
\bigcirc	6.1	Speedy case－noncourtroom（attorney）
\bigcirc	6.05	Speedy case－external delay
島	6	Trial pending
U	5	Trial
易	4	Other courtroom pending
	3	Other courtroom
	2	Noncourtroom（judge）
	1	Noncourtroom（attorney）
	0	External delay

11 A．Routing attribute
B．Dummy att．ribute

PARAMETER SET DESCRIPTIONS

This section describes the function of each parameter set as well as its distribution type.

Case TypeEpisodes* Duration*
Civil/U.S.
Injunctive Action 22 39
Trial
Bench 29 50
Jury 33 51
Other Courtrocm 23 53
Noncourtroom - Judge 24 57
Noncourtroom - Attorney 59
Judge Involvement -- 25
No Judge Involvement --
External Delay
Judge Involvement 2137
No Judge Involvement 62 --
Federal
Question
Injunctive Action842
Trial
Bench 26 44
Jury 30 45
Other Courtroom 9 40
Noncourtroom - Judge 10 54
External Delay -- 34
Juage Involvement 7 --
No Judge InvolvementDiversityJurisdiction
Injunctive Action
Trial
Bench 27 46
Jury 31 47
Other Courtroom 13 41
Noncourtroom - Judge 14 55
External Delay -- 35
Judge Involvement 67
No Judge Involvement 60
*Triangular Distributions

In the Justice Resource Model it was necessary to supplement the network with FORTRAN support subprograms. These subprograms, which include UI, UF, UO, FUS, NSTG, DVRSN, NEXTA, NACT, and CHNG, are designed to accommodate nonstandard routing logic as well as user-specified input and output. The function of each of these subprograms is outlined below.

Subroutine UI

Before each analysis run, the Q-GERT Analysis Program calls subroutine $U I$ to allow the user to initialize userdefined program variables, output user specified information, and create special initial conditions. Specific to this model, subroutine UI:

- Reads user input specifications
- Resets specific network parameters
(1) Echos user input specifications
(Changes values of those parameter sets sampling from a triangular distribution

Function UF
The function subprogram UF (N) contains FORTRAN programming inserts that are required to model special. features of the Justice Resource Model. It is called by the Q-GERT

Analysis Program each time function type UF is encountered. The argument N is the UF number prescribed by the modeler to differentiate from among the various calls to UF. A description of the programming code associated with each UF number is given below.

UF Number Description

1
$\mathrm{UF}=$ attorney number (Criminal). $\mathrm{UF}=$ attorney number (Civil/U.S.). UF $=$ judge number. $\mathrm{UF}=$ frequency of external delay, A4. Also set are:

A5, frequency of injunction (given there is an injunction),
A7, frequency of other courtroom activity (\geq 1) ,
A8, frequency of noncourtroom activity (judge), and
A9, frequency of noncourtroom activity (attorney).

Return if this is a Criminal case. If not, $U F=1$, if any of A4, A5, A6, A7, A8, or A9 >0 (case has not been completed). UF $=0$, otherwise (case has been completed).

UF routes case into a randomly selected stage. If this is a Criminal case, the next stage is selected based on the flowchart of a Criminal case.

UF $=$ number of trial (bench) episodes.
$\mathrm{UF}=$ number of trial (jury) episodes.
UF routes case, with judge, based on judge route node logic.

UF routes case, with attorney, based on attorney route node logic.

11 UF increases priority of passed over case if Al0 $=3,5,5.3,6.5$, or 8 .

Same as UF 11.

13
14

UF sets $\operatorname{INJ}(J)=0$ and $\operatorname{INJ}(A)=0$.
UF sets $\operatorname{INJ}(J)=0$, if $\operatorname{INJ}(J)=2$. (If INJ $(J)=1$, return.)

UF sets $\operatorname{ICRT}(J)=0$.
UF sets $\operatorname{ICRT}(J)=0$ and $\operatorname{ICRT}(A)=0$, if $A 10=3$, 4, 6.3, or 6.4.

UF sets $A 6=A 6-1$ if $A 10=5,6,6.5,6.6,6.7$, or 7.

UF sets $\operatorname{ICRT}(J)=0$ and $\operatorname{ICRT}(A)=0$.
UF routes case for freeing the judge based on injunction status and case type.

UF routes case for freeing the attorney based on injunction status and case type.
UF sets duration of external delay.
UF sets duration of injunction (Criminal or Civil/ U.S.).

UF sets duration of a private other courtroom service (Federal Question or Diversity Jurisdiction).

UF sets duration of a private injunction (Federal Question or Diversity Jurisdiction).

UF sets the duration of a private trial (bench or jury) (Federal Question of Diversity Jurisdiction).
UF sets the duration of a trial (bench or jury) or an other courtroom service (Criminal or Civil/ U.S.).

UF sets the duration of the judge's noncourtroom service.
UF sets the duration of the attorney's noncourtroom service.
UF sets trial/nontrial routing attribute, All.

UF sets trial bench/jury routing attribute, All. UF sets frequency of external delay, A4 (≥ 1) for Diversity Jurisdiction case with no judge. Also, frequencies represented by A3, A5, A6, A7, A8, and $A 9$ are set $=0$.

UF sets frequency of external delay: A4 (≥ 1), for Federal Question case with no judge. Also, frequencies represented by $A 3, A 5, A 6, A 7, A 8$, and A9 are set $=0$.

UF sets frequency of external delay, A4 (> 1) for Civil/U.S. case with no judge. Also, frequencies represented by $A 3, A 5, A 6, A 7$, and $A 8$ are set $=0$, and $A 9$ is randomly set to be >0.
$\mathrm{UF}=0$, if $\mathrm{A} 4=0$ or if it is a Criminal case. Otherwise, UF $=1$.

UF assigns a unique number to each transaction (beginning with l).

UF collects utilization statistics on both the judge and attorney (busy)

UF collects utilization statistics on both the judge and attorney (idle).

UF collects utilization statistics on just the attorney (busy).

UF collects utilization statistics on just the attorney (idle).

UF collects utilization statistics on just the
judge (busy) judge (busy).

UF collects utilization statistics on just the judge (idle).

UF clears user statistics array.
UF decrements A4 by 1 , unless it is a Criminal case.

UF decrements $A 5$ by 1 , unless it is a Criminal case.

UF decrements $A 7$ by 1 , unless it is a Criminal case.

UF sets A6 to zero, unless it is a Criminal case, in which case A6 is set equal to itself.

UF decrements A8 by 1 , unless it is a Criminal case.

UF decrements A9 by 1 , unless it is a Criminal case.

With a given probability for each case type (not including Criminal), UF routes the ase to external delay.

UF sets the queue ranking for external delay.
UF sets the queue ranking for an injunction.
UF sets the queue ranking for other courtroom.
UF sets the queue ranking a trial.
UF sets the queue ranking for noncourtroom (J).
UF sets the queue ranking for noncourtroom (A).
UF sets the queue ranking for a trial in progress.
UF tests whether or not this is the beginning of a speedy trial. If so, the time since arraignment is tested against the speedy trial time threshold. $U F=1.0$ if within time limit; otherwise, $U F=0.0$.

UF initiates intercurrent charges, if any one threshold is passed.

UF sets $S T(I)$ according to judge's internal delay.
UF sets $S T(I)$ according to attorney's internal delay.

NA
UF frees the judge following a noncourtroom activity according to the resource allocation table.

UF frees the attorney following a noncourtroom activity according to the resource allocation table.

64 UF frees the judge following an end of trial activity according to the resource allocation table.

65 UF frees the attorney following an end of trial activity according to the resource allocation table.

66 UF frees the judge following a trial episode or other courtroom activity according to the resource allocation table.

67 UF frees the attorney following a trial episode or other courtroom activity according to the resource allocation table.

Subroutine vo

After each analysis run, the Q-GERT Analysis Program calls subroutine vo to colleat, print and reinitialize (for the next run) user-collected statisiics.

Subroutine FUS
At the end of the simulation, the Q-GERT Analysis Program calls subroutine FUS to calculate and print pertinent userdefined statistics.

Function NSTG
This routine selects one of the possible branches following a decision point in the Criminal case structure.

Subrnutine DVRSN

This routine determines the outcome of a diversion for which there are three possibilities: the selection of one of two possible sinks (which represents a successful diversion)
or the selection of an unsuccessful diversion (which results in the eventual return to the point where the diversion was initiated in the Criminal case flow).

Function NEXTA

This routine selects the next stage for a case in the Criminal case structure. The stage selected by this routine is either a Criminal case sink or a Criminal activity.

Function NACT

This routine handles three functions in the Criminal case structure. The first function is to return the appropriate user function value so that the next activity in the Criminal case flow may be initiated; the gecond function is to set the appropriate attributes of the current cass; the final function is to generate the occurrence of injunctions and external delays in the case.

Subroutine CHNG

This routine makes the appropriate parameter changes when an intercurrent change is found to be necessary, This is done by reading the parameter set number and the corresponding values for the change. Once the values are read, the appropriate arrays are filled.

RANDOM NUMBER STREAMS

This section defines the random number streams used in the execution of the Justice Resource Model. The seed values associated with these streams are given in the Q-GERT echo check.
StreamNumber
Subject of Random Number Generation
Criminal case
Civil/U.S. case
Federai Question case
Diversity Jurisdiction case
A. Stage selection
B. Probability of checking private case at node 92
Judge selection

DEFINITION OF A SIMULATION TIME UNIT

One unit of simulation time is equivalent to one working day (8 hours). A further breakdown of this relationship is presented in Table 5.

Table 5. Simulation/Actual Equivalence Time Table.

	Simulation Time	Actual Time
1.00000	1 day	
0.12500	1 hour	
0.09375	.45 minutes	
	0.06250	30 minutes
	0.03125	15 minutes
	0.02083	10 minutes
	0.01042	5 minutes

GLOSSARY OF USER-DEFINED PROGRRM VARIABLES

This glossary contains significant program variable definitions used within the user-written subprograms of the Justice Resource Model. Those variables standard to the Q-GERT Analysis Program are excluded from this list.

ICA
ICJ
ICRT(I)

IDRTN(I)

IECHO

IEPSD (I)

INJ (I)

ISCOL(I)

KATH
M2
N3
NACR
NACV

Attorney number
Judge number
Courtroom status array for resource I
0 - Free for assignment
1 - Other courtroom activity (judge only)
2 - Trial (bench/jury) or other courtroom activity
3 - Trial (bench/jury) (judge only); judge reserved for a private case

Diversion return stage array - defined for first seven decision points < 0 - If return point for the diversion initiated at decision point I is a decision point
> 0 - If return point for the diversion initiated at decision point I is an activity

Variable to suppress user echo check
1 - Iuppress
0 - Otherwise
 activity
> 0 - Activity I requires multiple episodes. Parameter set IEPSD(I) gives parameters for generation
Injunction status array for resource I
o - No injunction
1 - Injunction pending or in progress
2 - Injunction in progress (judge only)
User CoLCT number for the collection of interval statistics on Criminal case dispom sition sinks

Transaction counter
Attorney number
Juage number
Number of attorneys (Criminal)
Number of attorneys (Civil/U.S.)

NBRNCH (I)

NCNGN

NCSAR

NCSAV

NCSJ
$\operatorname{NEXTS}(I, J)$

NFOLW(I)

NJ
NOCSJ

NOCSR

NOCSV

Number of possible branches emanating from decision point I
>0 - Number of parameter sets to be changed < 0 - Last user data card

Suppression index after an attorney's (Criminal) noncourtroom activity

1 - Suppress ICRT and INJ test 0 - Otherwise

Suppression index after an attorney's (Civil/U.S.) noncourtroum activity 1 - Suppress ICRT and INJ test 0 - Otherwise

Suppression index after a judge's noncourtroom activity
l - Suppress ICRT and INJ test 0 - Otherwise

Stage J follows decision point I ($J=1,2, \ldots$, NBRNCH (I)) < 0 - Decision point next > 0 - Activity next > 205 - Sink next $=0$ - Error 550
> 0 - Activity I followed by activity given by the value of NFOLW(I)
< 0 - Activity I followed by decision point given by NFOLW(I)
$=0$ - Error 550
Number of judges
Suppression index after a judge's other courtroom activity

1 - Suppress ICRT test
0 - Otherwise
Suppression index after an attorney's (Criminal) other courtroom activity 1 - Suppress ICRT test
0 - Otherwise
Suppression index after an attorney's (Civil/U.S.) other courtroom activity 1 - Suppress ICRT test
0 - Otherwise

Program Variable	Definition
NQCI	Number of cases in resource's courtroom (public) queue
NQC2	

WTMNJ

WTMNR
. WTMNV

WTMXJ
WTMXR

WTMXV

Definition
Minimum waiting time for a judge
Minimum waiting time for an sttorney
(Criminal)
Minimum waiting time for an attorney
(Civil/U.S.)
Maximum waiting time for a judge
Maximen waiting time for an attorney
(Criminal)
Maximum waiting time for an attorney
(Civil/U.S.)

Minimum waiting time for an storney (Criminal)

Minimum waiting time for an attorney (Civil/U.S.)

Maximum waiting time for a judge
Maximen waiting time for an attorney (Criminal)

Maximum waiting time for an attorney (Civil/U.S.)

USER-SPECIFIED PROGRAM ERROR MESSAGES

This section augments Appendix 2 of Reference 1 with those errors which relate specifically to the Justice Resource Model.

Error Code	Location	Condition
333	UF4	Frequency of other courtroom services is 0 for Federal Question case. See parameter set 9 .
334	UF4	Frequency of other courtroom services is 0 for Diversity Jurisdiction case. See parameter set 13.
336	UF4	Frequency of other courtroom services is 0 for Civil/U.S. case. See parameter set 23.
337	UF22	Public case has impossible attorney number assigned to it.
338	UF23	Private cas 2 has impossible case type assigned to it.
339	UF24	Private case has impossible case type assigned to it.
340	UF25	Private case has impossible case type assigned to it.
341	UF28	J/A case has impossible attorney number assigned to it.
342	UF26	Injunction is being handled as a trial B/J or an other courtroom activity.
343	UF26	Noncourtroom J/A or an external delay is being handled as a trial B / J or an other courtroom activity.

Error Code	Location	Condition
344	UE26	Other courtroom activity has impossible attorney number assigned to it.
345	UF26	Trial B / J has impossible attorney number assigned to it.
346	UF31	Frequency of external delay is less than 1 for Diversity Jurisdiction case with no judge. See parameter set 60 .
347	UF32	Frequency of external delay is less than 1 for Federal Question case with no judge. See parameter set 61 .
348	UF33	Frequency of external delay is less than 1 for Civil/U.S. case with no judge. See parameter set 62.
350	UF36	Attorney statistics are being kept on a private case.
351	UF36	Judge statistics are being kept on a case involving no juage service.
352	UF37	Attorney statistics are being kept on a private case.
353	UF37	Judge statistics are being kept on a case involving no judge service.
354	UF38	Attorney statistics are being kept on a private case.
355	UF39	Attorney statistics are being kept on a private case
356	UF40	Judge statistics are being kept on a case involving no judge service.
357	UF41	Judge statistics are being kept on a case involving no judge service.
358	UF4	Criminal case is being assigned attributes.
359	UF29	Criminal case is being tested for trial.
360	UF30	Criminal case is being tested for B / J trial.

Error Code	Location	Condition
361	UF26	Other courtroom (Criminal case) activity number (i.e., A6) is infeasible.
362	UF28	Noncourtroom-attorney (criminal case) activity number (i.e., A6) is infeasible.
363	UF49	Probability of external delay for a criminal case is being sested at node 162.
550	NEXTA	Invalid branch selected from a decision point.
551	NEXTA	Invalid branch selected from diversion.
601	UI	Number of judges greater than ϵ.
602	UI	Number of attorneys greater than 13.
603	UI	Maximum waiting time for a judge is less than minimum waiting time.
604	UI	Maximum waiting time for an attorney (Criminal) is less than minimum waiting time.
605	UI	Maximum waiting time for an attorney (Civil/ U.S.) is less than minimum waiting time.
606	UI	First activity emanating from node 203 does not end at node 205 (intercurrent changefirst test for thresholds).
607	UI	Activity emanating from node 205 doesınot end at node 205 (subsequent tests for intercurrent change thresholds).
608	UI	Incorrect activity number for a delay duration for a case passed by a judge.
609	UI	Second activity emanating from node 146 not found.
610	UI	Incorrect activity number for delay duration for a case passed by a judge.
611	UI	Incorrect activity number for delay duration for a case passed by an attorney.

Error Code	Location	Condition
612	UI	Second activity emanzting from node 147 not found.
613	UI	Incorrect activity number for delay duration for a case passed by an attorney.
614	UI	Incorrect activity number for second activity emanating from node 150.
615	UI	Incorrect activity number for first activity emanating from node 150.
616	UI	Incorrect activity number for both activities emanating from node 150.
617	UI	Incorrect activity number for second activity emanating from node 152.
618	UI	Incorrect activity number for first activity emanating from node 152.
619	UI	Incorrect activity numbers for both activities emanating from node 152.
620	UI	Incorrect activity number for second activity emanating from node 154.
621	UI	Incorrect activity number for first activity emanating from node 154.
622	UI	Incorrect activity numbers for both activities emanating fiom node 154.
623	UI	Incorrect activity number for second activity emanating from node 158.
624	UI	Incorrect activity number for first activity emanating from node 158.
625	UI	Incorrect activity numbers for both activities emanating from node 158 .
626	UI	Incorrect activity number for second activity emanating from node 164.
627	UI	Incorrect activity number for first activity emanating from node 164.

Error Code	Location	Condition
628	UI	Incorrect activity numbers for both activities emanating from node 164.
629	UI	Incorrect end node for statistics clearing activity.
630	CHNG	Negative value read for the number of parameter sets to be changed. Probable cause--a second intercurrent change has occurred.
631	CHNG	Negative value read for parameter set number. Intercurrent change data input error.
632	CHNG	Negative value read for parameter 1. Intercurrent change data input error.
633	UI	Activity starting at node 62 and ending at node 71 not found.

Table C-1. Feasible Stage Selection for Each Criminal Case Decision Point.

D.P. ${ }^{\text {a }}$	NBRNCH	$\begin{aligned} & \text { D.P. } \\ & \text { INDEX } \end{aligned}$	NEXT stage	NEXTS (I, J)	BRANCH DESCRIPTION
1	5	1	DP2	-2	Declination/reinvestigation decision Grand Jury/Information Diversion (Community Service/Probation) Arrest and Arraignment Referral to State Court
		2	DP3	-3	
		3	DP8	-8	
		4	A4	4	
		5	S2	207	
2	2	1	AI	1	Reinvestigation Declination
		2	S1	206	
3	4	1	DP8	-8	```Diversion (Community Service/Probation) Grand Jury Arrest and Arraignment Information```
		2	A2	2	
		3	A4	4	
		4	A5	5	
4	4	1	DP8	-8	```Diversion (Community Service/Probation) Inđictment Arrest and Arraignment No Bill```
		2	A3	3	
		3	A4	4	
		4	S3	208	
5	2	1	DP8	-8	Diversion (Community Service/Probation) Arrest and Arraignment
		2	A4	4	
6	2	1	DP8	-8	Diversion (Community Service/Probation) Arrest and Arraignment
		2	A4	4	
7	2	1	DP8	-8	Diversion (Community Service/Probation) Declinatirn/Enter plea
		2	DP11	-11	
8	2	1	DP9	-9	Community Service Voluntary Probation
		2	DP10	-10	
9	2	1 I	IDRTN(I)	100	Unsuccessful Diversion Successful Diversion via Community Service
		2	S4	209	
10	2	11	$\begin{gathered} \operatorname{IDRTN}(\mathrm{I}) \\ \mathrm{S} 5 \end{gathered}$	100	Unsuccessful Diversion Successful Diversion Via Voluntary Probation
				210	
11	3	1	S6	211	```Declination Case Preparation/Plea Bargain (Not Guilty Plea) Preparation for Sentencing (Guilty Plea)```
		2	DP13	-13	
		3	Al2	12	

Table C-1. Continued.

$\text { D.P. }{ }^{1}$	NBRNCH	D.P. INDEX	NEXT STAGE	$\begin{aligned} & \text { NEXTS } \\ & (I, J) \end{aligned}$ BRANCH DESCRIPTION
12	2	1	NA	0	
		2	NA	0	
13	2	1	A6	6	Initial Case Preparation Plea Bargaining Negotiations
		2	A7	7	
14	2	1	S7	212	Declination Plea Bargain Negotiations
		2	A7	7	
15	2	1	- NA	0	
		2	NA	0	
16	2	1	A8	8	Successful plea Bargain (Rearraignment) Final Case Preparation (No Plea Bargain)
		2	A9	9	
17	2	1	A10	10	Bench Trial Jury Trial
		2	A11.	11	
18	2	1	A12	12	```Conviction (Preparation for Sentencing) Acquittal or Dismissal```
		2	S8	213	
19	6	1	DP20	-20	```Probation/Rearrest Mixed Sentence/Rearrest Split Sentence/Parole Incarceration/Parole Fines Appeal```
		2	DP21	-21	
		3	DP22	-22	
		4	DP23	-23	
		5	S9	214	
		6	S10	215	
20	2	1	A4	4	Rearrest and Arraignment Probation
		2	sil	216	
21	2	1	A4	4	Rearrest and Arraignment Mixed Sentence
		2	$\mathrm{s} 12$	217	
22	2	1	DP24	-24	Parole/Rearrest Split Sentence
		2	S14	219	
23	2	1	DP24	-24	Parole/Rearrest Incarceration
		2	515	220	
24	2	1	A4	4	Rearrest and Arraignment Parole
		2	S13	218	

In order to operate the Q-GERT program on the Justice Data Center's CMS system, a brief outline of file structure and input format is necessary. The Resource Model program utilizes the following files:

- USERDJ SCRAT D Input cards for Resource and Criminal Model. The following pages present the format for input cards. The Q-GERT cards define the structure of the network, while the "Sample Input Cards" are the parameters to be changed by the user.

Main Q-GERT program, divided into three parts. These files have been made part of the Al.PROGLIB on the OS system. The original files exist in packed form on disk.

User FORTRAN inserts for Resource and Criminal Model. This file is also part of the Al.PROGLIB on the OS system. The original file exists on disk.

JCL cards for submitting the Resource Model to the batch system under CMS. The input card file is inserted after the FILEDEF statements.

CONTINUED

SECTION DESCRIPTION
Criminal Case Structure
Echo Check (Suppress Flag)
Criminal Case Structure (User Defined) PCINJ
Simulation Parameters SIM PAR
System Parameters
Criminal Parameter Sets
Civil/U.S. Parameter Sets
Federal Question Parameter Sets
Diversity Jurisdiction Parameter SetsIncurrent ChangesParameter Changes
End of Uses DataIECHOPCEXD
PROB
UDP 1 - UDP 24
Card 1 - Card 12
Card 13 - Card 28

CARD NAMES

Card 29 - Card 40
Card 41 - Card 49
Card 50 - Card 58
IC 1 - IC 3
PARCH 1 - PARCH 3

NEG

Card Name

Description

** SYSTEM PARAMETERS

Number of units of each resource type available

Beさa parameters associated with each each resource type

Card 3 Amount of time a particular resource is willing to wit for another resource

Suppression indicators to prevent certain trsts from being made prior to freeing various resource types

Speedy trial time threshold
Delay durations
Probability of no judge involvement for a given case type

Card 8 Probability of internal delay for a judge or attorney following completion of a trial

Probability of an external delay stage given that at least one more episode of this stage remains

Card 10

Card 11

Card 12

Probability. of an injunction occurring in the iife of a particular case type

Probability of trial occurring in the life of a particular case type

Probability of having a judge and attorney accept a public case

** CRIMINAL PARAMETER SETS **

Card 13 Criminal interarrival time parameters

Card 14 Criminal injunction duration parameters

Card 15
Criminal bench trial duration and episode parameters

Card 16

Card 17

Card 18

Card 19

Card 19A

Card 20

Card 21

Card 22

Card 23

Card 24

Card 25

Card 26

Criminal jury trial duration and episode parameters

Criminal grand jury (other courtroom) duration and episode parameters

Criminal indictment (other courtroom) duration parameters

Criminai arraignment (other courtroom) duration parameters

Cximinal rearraignment hearings (other courtroom) duration parameters

Criminal sentencing (other courtroom) duration parameters

Criminal pre-sentencing investigation (noncourtroom-judge) duration parameters

Criminal investigation (noncourtroomattorney) duration parameters

Criminal information (noncourtroomattorney) duration parameters

Criminal initial case preparation (noncourtroom-attorney) duration parameters

Criminal plea bargaining negotiations (noncourtroom-attorney) duration and episode parameters

Criminal final case preparation (noncourtroom-attorney) duration parameters

Card Name

Card 27 Criminal preparation for sentencing (noncourtroom-attorney) duration parameters

Card 28
Criminal external delay duration parameters
** CIVIL/U.S. PARAMETER SETS **

Card 29
Card 30

Card 31

Card 32

Card 33

Card 34

Card 35

Card 36

Card 37

Card 38

Card 39

Card 40

Civil/U.S. interarrival time parameters
Civil/U.S. injunction duration and episode parameters

Civil/U.S. Dench trial duration and episode parameters

Civil/U.S. jury trial duration and episode parameters

Civil/U.S. other courtroom duration and episode parameters

Civil/U.S. noncourtroom (judge) duration and episode parameters

Civil/U.S. noncourtroom (attorney/judge involvement) episode parameters

Civil/U.S. noncourtroom (attorney/no judge involvement) episode parameters

Civil/U.S. noncourtroom (attorney) duration parameters

Civil/.. involvement) episode parameters

Civil/U.S. external delay (no judge involvement) episode parameters

Civil/U.S. external delay duration parameters

Card
Name
Description

** FEDERAL QUESTION PARAMETER SETS

Card 41 Federal Question interarrival time parameters

Card 42

Card 43

Cara 44

Card 45

Card 46

Card 47

Card 48

Card 49
Federal Question injunction duration and episode parameters

Federal Question bench trial duration and episode parameters

Federal Question jury trial duration and episode parameters

Federal Question other courtroom duration i.nd episode parameters

Federal Question noncourtroom (judge) duration and episode parameters

Federal Question (judge involvement) external delay episode parameters

Federal Question (no judge involvement) external delay episode parameters

Federal Question external delay duration parameters
** DIVERSITY JURISDICTION PARAMETER SETS **

Card 50

Card 51

Card 52

Card 53

Card 54

Diversity Jurisdiction interarrival time parameters

Diversity Jurisdiction injunction duration and episode parameters

Diversity Jurisdiction bench trial duration and episode parameters

Diversity Jurisdiction jury trial duration and episode parameters

Diversity Jurisdiction other courtroom duration and episode parameters
Card Name DescriptionCard 55 Diversity Jurisdiction noncourtroom(judge) duration and episodeparameters
Card 56 Diversity Jurisdiction (judge involve-ment) external delay episodeparameters
Card 57
Diversity Jurisdiction (no judge
Diversity Jurisdiction (no judge involvement) external delay episode parameters
Card 58 Diversity Jurisdiction external delayduration parameters
** INTERCURRENT CHANGES
IClIntercurrent changes testing timesIC2IC3
PARCHG 1 Number of parameter sets changed
PARCHG 2 Parameter set number
PARCHG 3 Parameter values
** END OF USER DATA **
NEG End of user data

Q-GERT Input Data Format

1. GEN - general project information

Field Number	Description	Value	Default	Editing	Associsted Erross
1	Card type	GEN	(Required)	$=$ 'GEN'	8101
2	Analyst name	Apha fiold (up 12 sisnticant characters)	12 blanks	If present, first character must be alphabatic (only first 12 characteis are processed)	102
3	Fropet name or number	Alpha field	12 blanks	(see previous fie'd)	103
4	Month	Integer	i	Integer betricen 0 and 12	104
5	Day	Integer	1	Interor betreen 0 and 31	105
6	Year	Integrer	2001	Integer betreen 1970 and 2001	106
7	Niumber of STAtistics nodes	Integer	0.	Interer between 0 and masimum number of nodes	107
8	Sumber of SLNt nocies	Integer	0	Integer betreen 0 and maximum number of rodes	108
9	Number of SIN's noce releases to end a run	Integer	value in Fiold 8	Integer	109
10	Time to end cne run of the netrork	Real	1.E20	Positive real	110
11	Number of tuns of the network	Inteser	1	Posiite integer	111
12	Indicator for output reperts in addition to the final summary repert	$\left\|\begin{array}{l} \text { First Run, Each Run. } \\ \text { Cunulative \& Each } \\ \text { Rיn, Summary Only } \end{array}\right\|$	First	$={ }^{\prime} F^{\prime}$ or E^{\prime} or ' C^{\prime} or $S^{\prime}{ }^{\prime}$	112
13	Time from which statistics mill be kept on each run	Real	10	Non-negative real	i13
14	Maximum number of atiribuies mith each transaction flowing through the notwois	Integer	0	Non-negative integer	114
15	Run number for berinning of event tracing	Integer	$0 \rightarrow n 0$ tracing	Integer betrieen 0 and value of Fioid 11	115
16	Run nuwher for cading of event tacing (this run mill be traced)	Integer	Value of Ficld 15	Integer betricen value of Fiedd 15 and value of Fied 11	115
17	Run number for beginaing of nodal tracing	Intoger	$0 \rightarrow$ no tracing	Integer between 0 and value in Field 11	115
18	Run reneber for ending of nodal twace, (this run is traced)	Intcger	Vive in Hield 17	Intener betrien value in Ficld 17 and value in Ficld 11	116
19	Indicator tiat only input cards with errors aie to be listed	E, rors only All cards	all input cards Histed	$={ }^{\prime} \mathrm{E}$ '	119
20	Esccution option	El - No execution ER - No precution if any input discrepanciss E3-No csecution if fotal input discrepancy	E3	$\begin{aligned} & =\text { 'E1', 'E2', 'E3', or 'E4' } \\ & (E 4-E c h o ~ s u p p r e s s e d) ~ \end{aligned}$	120
21	Largest node aurabes cicined by uscr. (Specify only when including subinetroiks.)	Interer	MXXNOD	Lnteger -	
22	Larest activity number defined by user. (Specify only when inciuding subnetworks).	Integer	MXNPO	Interar	

2. REG-resular node description or SOU-source node description

$\begin{array}{\|l} \hline \text { Field } \\ \text { Number } \end{array}$	Description	Value	Defoult	Editing	Associated Erfors
1	Card tipe	REG cr SOU	(Rcquired)	$={ }^{\prime} \mathrm{REG}^{\prime}$ or ${ }^{\prime}$ SOU'	8000
2	Niode number	Integer	(Required)	Intoge: betreen 1 and maximum number of nodes	8092
3	Initial number of incoming transactions to rclease the node.	Integer	$\left\lvert\, \begin{array}{\|l\|l\|} \hline 1 \text { if REG } \\ 0 \text { if } S O U \end{array}\right.$	Non-nceative interar (0 if and only if SOU)	8003
4	Subequent number of incoming transactions to release the rode (afer the first: rclease)	Interer (to specify - infinite, use cefault)	Infinite	Peitife introg	8003
5	Output characteristics of node		Deterministic	$=P^{\prime},{ }^{\prime} D^{\prime}, F^{\prime}$, or ' A^{\prime}	205
6	Indicator that this node is to mar's	Mask	$\begin{aligned} & \text { MifSOU } \\ & \text { No Mif REG }= \end{aligned}$		205
7	Critarion for essociating an a!tribute set with a transaction pasing through a node/		Last $\quad=$ ' ${ }^{\text {', 'L', 'S', or 'B' }}$		207
	If S mall or B ig specified, the number of the attribute to be used or ' N ' for mart time	Integer or 'M'			7207

3. SIN - sink node description or STA - statistics node description

Fiold Number	Description	Value ${ }^{\text {- }}$	Default	Editing	Associated Errors
1	Card tspe	SIN or STA	(Required)	$=$ 'STN' or 'STA'	8000
2	Roc'e numbe:/Label for output identification	Irteree/6 characters	$\mathbf{c}_{12 n e q u i r d d)}$ $\text { \| } 512 n+s$	Interer beiween 1 and maximum number of nodes	8002
3	Lnitial number of incoming transactions to release the node	Integer	1	Positive integet	8003
4	Subsequeni nunber of fecauing transartions to release the node (afler the first relezas)	Inteerer (to speciiy infinite, use default)	Infinite	Positive integer	8003
5	Output characteristics of mode	Probabilistic Deterministic First (conditional, take first) All (conditional, take all)	Detcrministic		205
6	Statistical quantities to be collected	First (time of first rclesse) All (time of all releases) Between (time betreen releases) Interval (time interval from most recent marking of transaction to relcasa of this node) Delay (delay from lirst arsiving transaction until the ncde is relcased)	First	$={ }^{\prime}{ }^{\prime},{ }^{\prime}{ }^{\prime}, \mathrm{B}^{\prime}, \mathrm{I}^{\prime}$, or ' D^{\prime}	306
7	The upper limit of the first cell for the histegrem to be obuained for this node. The fist cell of the histos:em mill contain the number of times the statistic of interest at this node had a alue less than or cqual to the value given in this field.	Real or ' ${ }^{\prime}$ '	$\left\lvert\, \begin{aligned} & N \rightarrow \text { no re- } \\ & \text { porting of } \\ & \text { statistics } \end{aligned}\right.$	Real or ' ${ }^{\prime}$ '	
8		Real or ' ${ }^{\prime}$ '	$\left\lvert\, \begin{aligned} & \mathrm{N} \rightarrow \text { nore- } \\ & \text { porting of } \\ & \text { statistics } \end{aligned}\right.$	Positive teal 0: ${ }^{\prime}$ '	.
9	Critcrion for azsociating an attribute set nith a transaction passing through a node /	Hold the attribute set of the transaction arriving First Last or hold attsibute set of the transaction with the Smallest value in a given attribute Bigeest value in a given attribule	Last	= 'F', 'L', 'S', or 'B'	206
	If Small or Bis specified, the number of the attribute to be used or 'M' for mest time	Integer or Mars Tíme	Mark Time	Integer betrien 1 and maximura sumber of attributes specificd for a transection or ' M '	7207

4. QUE - queue mede description

Ficld Number	Description	Value	Default	Editing	Associated E:rors
1	Card tipe	QUE	(Required)	= 'QUE'	8000
2	Nodr numbe:/Label for ouiput identification	Integer / 8 chas. acters	$\begin{array}{\|l} \hline \text { (Required)/ } \\ \text { Blanks } \end{array}$	Interer betricen 1 and marimum number of nodes	8002
3	Initial number in queve	Intrger	0	Non-negativa integer	403
4	Marimum number permitied in queue	$\begin{aligned} & \text { Integer (to } \\ & \text { specify } \\ & \text { ininite, use } \\ & \text { default) } \end{aligned}$	Infinite	Non-negative integer	404
5	Output characteristics of node	Detorministic Probabilistic	Deterministic	$=$ 'P'or 'D'	205
6	Ranking procedure for Q nodel	FIFO-first infirst out LIFO-last infirst out S mall value first (based on altibute value) Big value first (based on attribute valua)	FIFO.	$={ }^{\prime} F^{\prime}, L^{\prime}, S^{\prime}$, or 'B'	$40 \hat{0}$
	For Q-nodes ranked by Small or Big, the number of the attribute on which the rankirg is based	Integcr or Marl Time	Mars Time	Integer betreen 1 and mazimum number of attributes or ' If '	7207
7	Balking or blocking information	Blocking or Intrget $=$ node number to which baikers are sent	Buikers are lost to system.	$=$ ' B ' or integer belpeen I and marimum number of nodes	$\begin{aligned} & 407 \\ & 8407 \\ & 8408 \\ & 8409 \end{aligned}$
8	The uppor limit of the first cell for the histcgram to be obtained for this node.	Real or ' N '	$\begin{aligned} & \mathrm{N} \rightarrow \text { no re. } \\ & \text { porting of } \\ & \text { statistics } \end{aligned}$	Real or 'N'	
9	The ridth of each cell of the historam. Each histogram contains 20 cells.	Real or ' N '	$N \rightarrow \text { no se. }$ porting of statistics	Positive Real or 'x'	
10-31	Solocior nedos or the MATCH node on output side of Q-node (if any) (but not if a service attivity emanates from the Q-node) Yihen mose than one S-ncode is spatifind, the order of appeazance in these fiedds deteraines the pricrity given to the associated S.nodes.	Integer	No S-node or MATCH node node on outpus side of Q-node	Integer betrieen 1 and maximum number of nodes	$\begin{aligned} & 8110 \\ & 8411 \end{aligned}$

10. ACT - Activity description

Fieid Numbe	Disctiption	Value	Defoult	Editing	Associated Enors
1	Card Type	ACT	(Required)	$=$ 'ACT'	8000
2	Stur node	Integer	(Hinquired)	Number of an existing node	0202
3	Erd aude	Integer	(Required)	Number of an existing node (not an assembly node)	$8: 23$
4	Distribution or function type	2 character ID chosen from list of distribution types (Table A1)	CO	$=2$ character 1 D from Table Al	1004
5	Pa-ameter set number or value of constant	Integer or Real	0.0		105
6	Activity number/	Integer	System. assigned	Integer betreen 0 and maximum number of activity numbers	$\begin{aligned} & 1006 \\ & 906 \\ & 006 \\ & 0105 \end{aligned}$
	Labal for server identification	8 characters	Blank		
7	The number of severs represented by this branch	Integer	1	Non-negative inleger	$\begin{aligned} & 1077 \\ & 9007 \end{aligned}$
8 or	Frobability (only applicable if shat node has "t banciang o: stast rode is a SELector using RFS rule)	Real number betreen 0 . and 1. or etribute number Fibete protability is stored	0.5	Real number between 0. and 1. of nonnegative integer	$\begin{aligned} & 10098 \\ & 90088 \end{aligned}$
8	Order of testing conditions Conly applicable if start node has 'f' bamchims o: sinit node is a SELnctor using POR rule")	Non-negative number (integer or real)	$\begin{aligned} & \begin{array}{l} 0(=\text { condi- } \\ \text { tions tested } \\ \text { in order of } \\ \text { input: } \end{array} \\ & \hline \end{aligned}$	Non-negative number	9008
9	Condition code (only applicable if start node has 'F' or ' A ' branching)	See Condition Codes List**	$\begin{aligned} & \begin{array}{l} \text { Start node } \\ \text { released } \\ \text { (Ni.R). } \end{array} \end{aligned}$		$\begin{aligned} & 1009 \\ & 9009 \\ & 9010 \\ & 9011 \end{aligned}$

[^2]9. $P A R$ - parameter set description

Field Number	Description	Value	Default	Editing	Associated Errors
1	Card type	PAR	(Required)	= 'PAR'	89.00
2	Parameter sct number	Integer	(Required)	Integer betreen 1 and maximum number of parameter sets	8902
3	Parameter 1	Real	0.	Real	903
4	Pameter 2	Real	-100°	Real	903
5	Pasamster 3	Freal	10:0	Real	903
6	Parameter 4°	Real	0.	Real	903
7	Randon Number Stream	Integer	MXSTR $=10$	Integer	903

A sample is obtained from a distribution such that if a sample is less than the minimum value, the sample value is given the minimum value. Similarly, if the sample is greater than the maximum value, the sample value is assigned the maximum value. This is not sampling from a truncated distribution but sampling from a distribution with a given probaiility of obtaining the minimum and maximum values.
The parameters required to sample from the distributions are described below. The parameter values for the lognormal iLO), triangular (TR), beta (BE), gamma (GA), and beta PERT (BP) are modificd to simplify random sampling. Thus, parameter sets for these distributions must not be used for eny other distributions, i.c., a parameter set for a lognormal distribution must only be used for sampling from a lognormal distribution.
For COnstonts, no PAR card is used. The value of the constant is taken as the value given to parameter set specification.

For $\mathrm{NO}_{\mathrm{m}} \mathrm{mal}, \mathrm{LO}$ mormal, BELa, and GAmma distributions
Parameter 1 The mean value
Parameter 2 The minimum value
Parameler 3 . The marimum value
Parameter 4 The standard deviation

For UNiform distribution

Parameter 1 Not used
Parameter 2 The winimum value
Parameter 3 The maximum value
Parameter 4 Notused

For Exponential distribution

Parameter 1 The mean value
Parameter 2 The minimum value
Parameter 3 The masimum value
Paramoter 4 Not used

For ERlang distribution

Parameter 1 The mean time for the Erlang variable divided by the value given to Parameter 4
Parameter 2 The minimum value
Parameter 3 The marimum value
Parameter 4 The number of exponential deviates to be included in the sample obtained from the Erlang distribution

For POisson distribution

Parameter 1 The mean minus the minimum value
Paramete: 2 The minimum value
Parameter 3 The maximum value
Parameter 4 Not used
Care is required when usirg the
$P O$ isson since it is not usually used to represent an interval of time. The interfectation of the mean slould be the mean number of time units per time period.
For BP ard TRinngular distribution Parameter 1 The most tikely value m Parameter 2 The optimistic value a Parameter 3 The pessimistic value b Parameter 4 Not used

8. VAS - zaiue assignments to attributes of transactions

$\begin{gathered} \text { Field } \\ \text { Number } \end{gathered}$	Description	Vaiue	Default	Editing	Associated Errors
1	Card type	VAS	(Required)	= 'VAS'	8003
2	Node number at rihich assiznment is to be made	lnteger	(Required)	Integer betreen 1 and maxinum number of nodes	$\begin{aligned} & 8802 \\ & 8812 \end{aligned}$
3	Number of the ettribute to which the assignoment is to be made	Integer	1	Integcr between 1 and maximum number of attributes	8803
4	Distribution or function type for the essignent	2 character ID chosen from list of distribution types (Table Al)	C0	$=2$ character ID from Table Al	804
5	Parameter set number for the assignment	Integer or Real	0.0	Integer or Real	605
6-20	(Repeat Fiedds 3,4 , and 5 to specify up to 7 additional assignments. Use only 1 VAS input eard for cach node at which as:snments tale place)				$\begin{aligned} & 806 \\ & 8507 \end{aligned}$

25. RES - resource type definition

Field Number	Description	Value	Default	Editing	Associated Errors
1	Card Type	RES	(Required)	= 'RES'	8000
2	Resource Niumber/	Integer.	(Required)	Nonnegative integer \leq MRLRES	8002
	Labcl	8 characters	Blanks		
3	Number of units of this resource type available	Integer	1	Positive Integer	
4-13	Resource ALLOCATE nodes to be polled when resource is freed	Integer	No ALLO. CATE nodes associated with resource definition	Integar between 1 and maximum number of nodes	

26. ALL - cllocate node description

Ficld Number	Description	Value	Default	Editing	Associated Errors
1	Card type	ALL	(Required)	= 'ALL'	8000
2	Node number	Integer	(Required)	Integer between 1 and maximum number of nodes	8002
3	Queue selection ruie	3 character ID from list of queue selection rules (Table A1)	POR	$=3$ character ID from Table A1	503
4	Resource number	Intcger	1	Integer between 1 and max. number of resources	
5	Resource unita required by waiting transactions at assciated Q-nodes	Integer	1		
6	Q-node in which transaction is waiting for rescurces/	Integer	(At least 1 required)	Integer between 1 and maximura number of node3	
	Node number to which transaction is to be routed when resources are allocated	Integer	No routing	Integer between 1 ana maximium number of nodes	
7-16	(Rapeats of Field 6)				

27. FRE - free node description

Finid Number	Description	Value	Defult	Editing	Associated Errors
1	Card type	FRE	(Required)	= 'FRE'	8000
2	Node number	Integer -	(Required)	Integer between 1 and max. number of nodes	8002
3	Output characteristics	P, D, F, A	D	$={ }^{\text {' }}$ ', ' D^{\prime} ' F ', or ' A^{\prime}	
4	Resource number	Integer or At where k is an attribute number	1		
5	Resource units to be freed	Integer or Ak: xame \& is ittribute L , or	1		
6-15	ALLOCATE nodes in the order to be polled to allecate freed resource units	Integer	Use ALLOC list given in RES catd for resource number	List of ALLOC nodes concatenated to list provided unless a negative value is given after list	

11. MOD - node modification information (required only if network contains nodes to be modified)

Finld Number	Dascription	Value	Default	Editing	$\begin{gathered} \text { Associated } \\ \text { Errors } \end{gathered}$
1	Cadtype	1:OD	(Required)	$=$ 'MOD'	8030
2	Activity number	Integer	(Required)	Integer between 1 and maximum zumber of activities	9102
3	Node to be rephced (number of node to be replaced when the activity given in Field 2 is completed)	Integer	(Required)	Number of existing mode	9103
4		Integer	(Required)	Number of existing node not equal to value in Field 3	$\begin{aligned} & 110.1 \\ & 9103 \end{aligned}$
6-24	(If multipie teplacements are to occur upon cospletinn of activity prescribed by Hied 2, then Fiblds 3 and 4 stoula be repeated for cach audititional seplacement. The limit of replacenents is 11 .				$\begin{aligned} & 1105 \\ & 0105 \end{aligned}$

13. FIN - firish of all networks

Fiold Number	Description	Value	Default	Editing	Associated Errors
1	Card type	FIV		Blank card or $=\mathrm{F}^{\prime} \mathrm{NL}^{\prime}$	$\begin{aligned} & 1301 \\ & 8000 \end{aligned}$

FAF：1．， $8695,0000 \mathrm{I}, 1000.191 *$

PAF： 3 ， $3963,00001,1000 ., 93 *$
PAS，4y． $7555,00001 \times 1000.1,4 *$
FAR゙，焉ry14．，19．．，1＊：
FAK，Sy，1，6． 1 ，1＊
Faf：y，3，5，3．14＋， $3 *$
 F－4Fy4，2．5，2．，3．，3＊ FARy10．2．5．2．，3．，＂3＊ FARE12，1．5y1．，2．，1，4＊ PAF，13，2，E，2．，3．，4＊ FARy，1，3．5．3．74．5，4＊ FAF，1．6，3．5，3，4，1， FAF：，1．8，3．5，3，4，1，1＊ FAFiy．9y，．5．1，2，1，1＊
 FAKy 21，4．5．4．y5．， 2 2＊ PaRy22，1．5，1，2，！2 2＊ FARy23．2．5，2．，3．，2 2＊ FAKy24．2．5．2．y
 FAFy26．3．5，3．，4．9．3＊ FAFy27，2，5，2．y3．g，4＊ FARy28，2．5．2．，3．，y1＊ FAF：29，3．5，3．54，，23

 FEF： $34,100+99^{\circ}, 101,1,3 *$
FAF゙y 35，85 ．84．8 86．，，4＊ FAL：36y 20．19． $21+7,1 *$
 PAFi．3日，．0001，．00001，．001，1＊ FAF，39y．0125，．01，＋1，，2＊ FAl：40： $1.975,+18, \cdot 195, y 3 *$ FAEA41．4875y，18：．195， 4 ＊
 PAF：43s，025y，02y，03，4＊

 FAR，46，，5，45，55，4＊ FAl：， 47 ， $4375 y, 43,445,, 4$ 类
 FAF：40，，5y，45，，55y 5 1类 FAF， $70,3 \% 5 y, 37,28,2,2 *$

 FABy 5 ： 1.25 ，12，13， $2 *$

PAR：65．5．5．1．，6．，11＊
FAR，66，6，13，．1＊
PAE， $67,4,5,4,15.1,4 *$
PAK， $68, \ldots, \cdot 1 *$
PARy $69, \%, 11 *$
PARy 70， $6,13,1$ ，
FAF：71，915，20，2＊
PAR，72，91：6，：6＊
＊RUEUE NOHES＊
QUE，19／INJ－JLG，，R1，（10）97＊
QUE，20／INJ－ATTH，D．（10）97＊
QUE，39／TOC－JLG，, II，（10）113＊
QUE，40／TOC－ATT，， $\mathrm{R},(10) 113 *$
QUE，74／JNGI－CT，$, \mathrm{I}, \mathrm{F} / 10$（10）1＊

 QUE：77／JNOA－CT，： $\mathrm{D}, \mathrm{B} / 10$（10）4＊ QUE：7E／JIGS－CT，$, \mathrm{D}, \mathrm{E} / 10$（10）5＊ QUE，79／JIGG－CT，$, \mathrm{D}, \mathrm{R} / 10,(10) 6 *$ QUE，BO／ATTL－CT，， $\mathrm{I}, \mathrm{B} / 10$（10） 7 \％ QUE， $31 /$ ATT2－CT，, H， $\mathrm{E} / 10$（10） 3 米 QUE， $\mathrm{Q} 2 / \mathrm{ATTS}$－CT，：$, \mathrm{H}, \mathrm{B} / 10,(10) 9$＊ QUEy日3／ATT4－CT，, D， $\mathrm{B} / 10,(10) 10$＊ QUE，84／ATTS－CT，， $11, \mathrm{E} / 10,(10) 11 *$ QUEyGS／ATTO－CT，$, \mathrm{R}, \mathrm{E} / 10$（10）12＊ QUE：ES／ATTF－CT，，yIFE／10．（10）13＊ QUE：S7／ATTE－CT，：IIYE／10，（10）14＊
 QUE，G：／ATT10－CT，． D ，E／10．（10） 16 ＊

QUEy $125 / J N G 2-N \mathrm{C},:, \mathrm{IH}$（10）22＊
QUE：126／JNG3－NCy，Fif（10）23＊
RUE：127／JIGG4－NC，，Tiy（10）24＊

QUEy 129／JHGE－NC：？
QUE：130．ATTI－NC，$, \mathrm{D},(10) 27 *$
QUE： 3 Bi，ATTA－NC： 9 II，（10）28＊
QUE：： $32 / 4$ TT3－NC：， $51,(10) 29 \%$
 RUE，154／ATTS－NC：ッIッ（10）Z！ QUE： $135 / A T T S-N C \cdot y, 110(10) 32 *$ QUE， $36 / A T T 7-N C,, 10,(10) 33 *$ QUE： $137 / A T T E-N C, \cdot, \mathrm{D} ;(10) 34 *$ QUE： 3 38／ATTY－NC，：DV：10）35＊
 QUE：：AO／ATTSA－NCy，y 1 ，（10） 37 \％ QUE，141／ATT：2－NC： 9 II．（10）38＊

 QUE：200／FFT－TM－J3：（10） $168 *$

 QUE＝191／PRI－J1－（10）106＊ QUE 192／PRI－J2，（10）187\％ QUE：193；PRI－J3．（10）182＊ DUE，194／PRI－J4：（10）189＊ QUE：195／PRI－－J5，（10）190＊ QUE：2J．／PRI－J6，（10）223＊ QUE：222FFRI－M－J6．（10＇）223＊ QUE，224／ATT13－CT，， $\mathrm{II}, \mathrm{E} / 10$ ，（10）225＊ QUE，226／ATT13－NC，，Di，（10）227＊
＊FESOURCE NODES＊
FES．1／JULGE1，1，1，21＊
RES：2／JULGE2：1，2，22＊

INJUNCTION：JULGE IS WAITING FGR ATTORNEY INJUNCTION：ATTORNEY IS WAITING FOR JUNGE TFIAL B／J OR Q．C．JUNGE IS WAITING FOR AT TRTAL E／J OR O．C．ATTORNEY IS WAITING FDF COURTRODM CASE RUEUE FOR JUDGE 1.

2.
 3. 4. 5.

NON－COURTFOOL CASE QUEUE FOR JURCE 1. 2. 3.
4.
5.

RESF3／JUNGEZ，1．3．23＊－
FES，4／JUNGE4，1，4，24＊ FES：5／JULGEE，1，5，25＊ FES：6iJUNGEG，1，6，26＊ RES，7／ATTY1，1，7，27＊ RESy $8 / A T T Y 2,1,8,28 *$ FES．9／ATTY3．1．9．29＊ RESy 10／ATTY4，1，10，30＊ RES，11／ATTYE，1，11，31＊ RES．12／ATTYB，1，12，32＊ RES．13／ATTY7，1，13，33＊ RES，14／ATTYE，1，14，34＊ FEES，15／ATTY9，1，15，35＊ RESEIC／ATTY10，1，16．36＊ RES．1．7／ATTY11，1，17，37＊ RESy 18／ATTY12，1，18，38＊ RESy19／ATTY13，1，225，227＊ ＊allocate numes＊
ALL，1．，1，J．74／92＊ ALL，2， $2,2,1,75 / 92 *$ ALL． $3:$ ，3．1．76／92＊ ALL：4yッチッ1．77／92＊
 ALL s6， $6,1.79 / 92 *$ ALL，7，9741，80／96＊ ALL，Ely，8．1．81／96＊ ALL： $9,9,9,1, \mathrm{~g} 2 / 96$＊ ALL：10y，10：1，83／96＊ ALL：ing：11：1．84／96＊ ALL， 2 2，12，1，85／96＊ ALL：13，：1391，86／96＊ ALL．y 1 A：，14．1．57／96 ALL，y5：y $15,1,88 / 96 \%$ ALLEAる．16．1．89／96＊ AlLLy．7．，17，1．90／96＊ ALLyie：，18．1．91／96＊ ALL，21：－1，1，124／142＊ fLL：22．，2，1：123／142＊ ALL， $23 y, 3 y=125 / 142 *$
 ALLy25y，5，1．128／442＊ ALLy： ALL・マ7， $7,1,130 / 143$＊ ALL，239，8y，131／143＊ ALL 2y\％ $9.1 .132 / 143$ 出

 ALL：
 ALL sing，14，1．9137／143＊ ALL， $35,1591,138 / 143 *$
 ALL＂：7\％，17：1，140／143＊ ALL，3＂w，isy．i，14L／i43＊ ALL：225\％1901，224／95＊ AlL．227\％19，1，226／143＊ ＊FFEEE NODES： FFEy 100, AB，1＊ FRE：119．，1，1，21，1＊ FFE，120， $2,1,22,2 *$ FREy121，y3：1，23．3＊ FRE，122，1，1，24，4＊ FRE，123，5，1，25：5＊ FRE，1AG，F，AB，1＊ FFE，147，Fッ今2，1＊ FRE，157，A3，1＊ FRE，165，A3：1＊ FFE，16́， $\mathrm{A} 2,1 *$

COURTROGM：JULGE 1 HANLILES THE CASE． 2 3 | 4 |
| :--- |
| 5 |

NON－COUFTFOOM：JULGE 1 HANILES THE CASE． $\frac{2}{3}$ 3 4
5

FREE JULIGE CT／NC AFTEF INJUNCTION． FREE JUNGE 1 NC／CT AFTER COURTRDOM CASE． 2 3 4

5
FREE JUNGE CT／NC AFTEF FASSING COURTROOM FREE ATTORNEY CT／NC AFTER FASSING COURTRD FFIEE JUIIGE CT／NC TO HANILE GN INJUNCTION． free junge ct／ine after non－countrodm case FFEE ATTORNE：CT／NC AFTEF NON－COURTROOM C

FRE，168，，19，1，227，225＊
FFE：157，，7，1，27，7＊
FRE，170，18，1，28，8＊
FKEy171，99，1，29．9＊
FREy $172,10,1,30,10 *$
FFE，173，，11，1，31，11＊
FREy，174，12，1，32，12＊
FRE，175，13，1，33，13＊
FRE，176，14，1，34，14＊
FRE，177，15，1，35，15＊
FKE，179，，16，i．36．1．6＊
FEE，179：，17，1．37，17＊
FFE：180n，18，1，38．18＊
FFE，181：，A2，1＊
FFE，231，：6．1，26，6＊
WATCH NOHES＊
MAT，113．1，39／49，40＊
MAT，97，1，19／98，20＊
MAT．186．1，155／183．191／183＊
MAT．197，1，199／1835192／183＊
MAT，189．1．200／183．193／183＊
MAT，189y1，201／183．194／183＊
HAT．1．90，1，202／183．195／183＊
HAT $22331,221 / 1532222 / 183 *$

STAn70／CIUTh／US，1，3．，I，150．，150．，＊
 STA，72／2IV－JUF：1．1．，1，150．，150．．＊ STA，73／FELI－RUES：1，1．15y150．4150．：＊

WSOURCE MOLES＊
SOU：41．，1，II＊
SOU， $12 \mathrm{z}, 1, \mathrm{~A}^{2}$
SOU：43： 1, MK
SOUy A4，1，A＊
50U：AEyy．，I＊
SOU：A6＞力1，A＊
SOU：47ッッ1ッ的
50uy 45×1 ， 1 \％
50U，203ッ91，11＊
＊EGULAE NODES＊＇

FEGy50，1，1，F\％

KEG：52．1．1． $11 *$

FEGyEAsI＝1： 1 ＊
REG：55ンコッ1，F\％
REEYGろ，1，1，F＊

FEG758．1．1． 1 娄
FEG：59，191，D＊

FEEGy 1,1 1．1．F＊
REGy 2,151 ，F\％
FEC：63．1．1， 1 ＊
 REC，6E：1．1，I＊ FEG．66．1．1，DK EEG．67，1，1，I＊ REGy $6 \mathrm{E}_{2} 1,1, \mathrm{~F}$＊ KEG；69，1，1，F＊ FEG，92，1，1，F＊ REG，93，1，1，F＊
cIVIL／U．S．CASE GENEFATION CIVIL／U．S．CASE FFONT ENI LOADER CRTHINAL CASE GENERATTON CEIMINAL GASE FRONT ENI LOARER IIUERSITY JURISIICTION GENERATION IIUERGITY JURTSLICTION FFRNT ENI LOADEF FEDERAL QUEETIDN GENEFATION femefal ghestion front enli lobinef
match attorney anli judige for a trial． MATCH ATTORNEY ANO JUIGE FOR AN INJUNCTIO

RECORN STATISTICS FOR CIUIL CFI HIUERSIT FEIEEAAL
FEDERAL RUEGTGON FFONT EMII LOADER

SET JUNGE AND FREQUENCIES：CIVILA． SET JUNGE \＃AND FREQUENCIES：FETEFAL RUES GET Junge \＃ani frequenctes：miversity Ju SET TEIAL／NON－TRIAL ATTBIEUTE．
$:$
DEEIDE WHICH gTAGE THE CASE WILL ENTER． FOUTE FINISHETI CASE FOR FROFEF STATISTICS EXTERNAL DELAY
INJUNCTION
OTHER COURT（O．C．）
TFIAL EENCH
TEIAL JURY
NON－COURTRGOM：JUIGE
NON－COUFTHODG：ATTOFNEY
JUDGE ROUTES THE CASE．
ATTOFNEY FOUTES THE CASE．
PASSEI CASE S FFIORITY IS INCREASED：JUNG
FASSEL CASE＇S FRIORITY IS INCREASEL：ATTO

FEG：96y1，1，I＊ SEGyOg．1，1，IN
 FEG，101，1，1，F＊ REGy102，1，1，IN K゙EG，103：1，1． 1 ＊
 REG，10F，1，1，［1＊ KEEv106：1，1，［1＊ REG：107y1．1，F゙＊下EGy10日，1，1，11＊ FEG：109，1，1，DK REGy110，1，1，D＊ FEG： $111,1: 1$ F＊ REO，112，1：1＊ KEEG： $11401,1, \mathrm{HK}$ FEGy1よ REGy1．tay1，1，IN KEGg117，1，1，I＊ REE：116，1．1，［1＊
 REGy 143 y， 1 y D ＊ FEG：144：1．1，A＊下E日：145ッ1：1，A REG：148，1．1，F水 FEG：149y1，1，F゙来 REG：150：1，1：F＊
 FEO：162，1，1，FW FEG：153，1．1．I 中 KEG：154，1．y，FFW

 PES，150，1．，1，F＊ REE：160．1． 1 ，A＊ REC．161．1y1，Fれ

 RECy 16Ay y 1yF゙\％ FEG：167：1y1gF先

 RECい176．1，1，F゙K

 REW，208y：1．F F
 FE゙っy 230，1．y．y I\％ WU世I UE AFGIGNMENT CARES＊

 VAEy $46 y$ I．INy 1 ＊ VASy48，1：T以ッ1＊
 UAS， 50,114 UF， $5 *$ UAS，52， 3 yUF， 3 ， 4 y UF， $4 *$
 UASッ54， 3 ，UF， 3,4, UF， $4 *$ VAS：55．11，UF，25＊ VASy 56,11 UUF， $30 *$

INJUNCTION HANLLEI EY JUTIGE AND ATTORNEY． INJUNCTTON IS FINISHED EY JUAGE ANE ATTOF ROUTE JUNEE ONIY CASE ． OTHEF COUFT EX JUTIGE ONLY． INJUNCTION EY JUIGE QNLY． TRTAL BY JUIGE ONLY．
LEEREMEST OTHEF COUFT FFKEQUENCY：JUDGE ON LUECFEMENT IHJUNCTIGN FFEEUENCY：JUNGE ONL IECFEMENT TFIAL FFERUENCY：JUIGE ONLY．

FEROUE JUIGE ONLY TFANEACTIONS FFBOH THE N TRIAL OR OTHER COURT CASE：JUNGE AN

MECFFMENT OTHEF COUFT FFFEOUENCY：JUDGE AN SET TEIAL IN FROGFESS ATTKIEUTE：JURGE AN TRIAL COMFILETE：JUIIGE AND ATTORNEY． NUN－EOUFTROOM：JUNGE
NON－COURTEOOM：ATTOFNEY
IECFEPIENT NON COUFTFOCM FFEQUENCY：JUTIGE． LIECFEYENT NOK－COLSETROOM FREGUENEY：ATTORN

SET ATTOFNEY F FOF CIUIL／U．S．CASES．
SET ATTOFNEY＊FOF FEDEFALL GUESTIONS CASE GET ATTOFNEY F FOF IIUEFSITY JUFISDICTION CHECK TNJUNCTION STATUS FOF JUIGE．

CHECK THJUNCTTON GTATUE FOF ATTOFNEY： MELAY FOF ATTORNEY LECTSION NADE．

UAS，57，6，CU，O．＊
VAS，58， $6, \mathrm{CO}, 1,1$＊
UAS．59．6．00，1．2＊
VA5．60， 1, UF，35＊
VAS，61，11，UF，6＊
VAS，OU：10，UF，50，A，UF，43＊
UAS， $64.10 . U F, 51 *$
VAS．65，10，UF，52＊
UAS，66，10，UF，53，6，UF，7＊
VAS，67，10．UF，ड3．6．UF，8＊
VAS．69．10．UF，54＊
UAS．69，10，UF，55＊
VA5y92．119UF：9＊
VAS：93．11．UF：10＊
VAS．94：10．UF：13＊
VAS： 95,10 UF， 12 ．

VAS．99， 5, UF，A4，11，UF，13．11，UFy 37%
VAS：102．11．UF，40\％
UAS，103，11，UF，40
VAS：10A，11，UF， 40 ＊

UAS．10S．11，4F，41，5－CO．1．＊
VASy 107，6－，CO，1，11， $\mathrm{UF}, 41 *$

UAS． $109.10,[0,7,11, C 0,1, *$
UAS：110，11．UF，2E，11，CUR2， $6,00,0$＊
UAS．114，11，UF，16．11，UF． 36 米
UAS，115，11，UF，37，11，UF，17＊
VA5．116．7．UF，A5，11，C0． $3 . *$
VAS日1．7，10．UF，56，11， $\mathrm{CO}, 4 . *$

VAS．142．11．01F：40\％
VAB，143911，UF， 3 BE

U45． $150,0, \mathrm{DF}, 7$
पany i5l，4y，if，30\％
UnG，152，\％， 00.1 .4

VAE，isay $2, C 0,2$ ．

Vats．156，ABUF，19＊
VAK－160．45．CO：O．＊
VAEmbigjugUFy she
UAG：152． $\mathrm{A}=\mathrm{UF} \times 47$ \％

UAW－204yingUF，42
UAS 228, ： 1 ，UF， 65%
UA： $229, \pm 154 F, 67 \%$

AC：41，EO末

ACT：42，60\％
$\mathrm{ACT}, 43,43, E X, 2 \%$
ACT： 43,150 示
ACT，44，44，（9）A1，LE．I＊
AET，AA，15O＊
ACT：4S．45，EX，3＊
ACT，45，152＊
ACT，46，A6．（9）AI，LE．1＊

ACT：47：47：EX：4＊
ACT：47：154＊
ACT：48，48，（9）A1，LE．1＊
ACT：48，154＊
ACT，A\％，114，（9）A11．EQ．1＊
ACT，A9，182，（F）Al1．ER．O＊
ACTy 50,62 ，（9）A11．EEO．O＊
ACT， 50.161 （9）A11．EQ．1＊
ACү，51，74，（9）A3．EQ．1＊
ACT，51，75，（9）A3．ER．2＊
ACT，S1．76．（9）A3．EQ．3＊
ACTy 51：77，（\％）A3．EQ．4＊
 ACT：51：79y（9）A3．EQ． 6 ＊ ACTッ51：80．（9）A2．EG．7＊ ACT：H1ッ81：（9）AT．EG．8＊ ACTッ51．92．（9）的2．EQ．9＊ ACT，51．883．（9）A2．EC4．10＊
 ACY： 51.8 8．（8）A2．EA．12＊ ATy54．a6y（9）A2，ER＋I 3＊ ACT： 51.87 （9）A2．ER．1．4＊

 AET＝E1．50．（9）A2，EQ． 17 ＊ ACT：51：91：（9）A2．EA．18＊

 ACTME1．196．（9）A2．EQ．2＊ Act－52． 5 E \％ ACr，53，55\％

ACT：55．06．（9）A11．EG．1＊
 ACT：56．ES．（9）A11．ER．1＊ ACT：56：59．（9）A11．EA．2＊ AC 1： 07.60 \％
ACT： 50.60%
AcT： 59464
＋E：60． 0 茧

ACT：61：65：（9）M51，EQ．65＊

ACT： 61.67%（9）A土 $1.20 .67 \%$

AET：E2．7世：（9）N2．EE，1＊

Act 85951%
ACTr 56
ACT：67982＊
ACT：69，12ג，（9）AB．E日． 1 ＊

ACT：6日，126．（9）A3．ER．3＊
AET：6e，127，（9）A3．EA．4＊
ACT： 68.128 （9）A3．ER．5＊ ACT， $68.129,(9) \mathrm{AB}, \mathrm{EQ} .6 *$ ACTン69．130：（9）A2＋EQ．7＊ ACT． 69.131 （9）A2．EG．8＊ ACT， $69,132,(9) A 2, E R .9 *$ ACT：69，133，（9）A2．EA．10＊

COURTROOM CASE SENT TO JUNGE 1. 2. 3. 5.

THE CASE TS A TFIAL．
THE CASE IS WON－TRUAL．
gtage is an tinumation．
STAGE IS OTHER COUET（O．C．）．
STAEE IS TRTAL BENCH．
stage is trtal Jusy．
BTAGE IS NOH－COURTROOM（NUNGE）．
STAGE IS NOH－COURTROOM（ATTORNEY）．
STAGE IS EXTEFMAL DELAY（RERUTRED．

ITUEFSITY JUFISDIOTT
FEDETALL RUESTIONS CA
STAGE＝EXTERNAL DELAY
STAOE ：－INJUNCTON
STAGE＝OTHER COUET
STAGE＝TRIAL BENCH
STAGE＝TRTAL JURY
NON－COURTROOM CASE SENT TO JUROE 1.

4.

ACT． 69,1 ．34，（9）A2．ER．11＊ ACT，69，135，（9）A2．ER．12＊ ACl ，69y133，（9）A2．EA．13＊ ACT，69，137，（9）A2．ER．14＊ ACT， 69,158 ，（ 9 ）A2．EG．15＊ ACT， $69,139,(9) A 2 . E Q+16 *$ ACT，69：140，（9）A2．EQ．17＊ ACT．69，141，（9）A2．ER．18＊ ACT． 69,226 （9）A2．ER．19＊ ACTy92．74．（9）A11．EQ．1＊ ACT：92，184，（9）A1．1．ER．2＊ ACT，92，39，（9）A11．ER．3＊ ACT：92，1．9，（9）A11．ER．A＊ ACT：93：20，（9）A11，EQ．A＊ ACTy 9 y 40 （9）A11．EQ． $3 *$ ACT， 93 ，95，（9）A11，ER．1＊
ACT， $24,146 *$
ACT：95．147＊
ACT：9今，93＊
ACT：98．99，UF，22＊
ACT：99．100＊
ACT： 1.00 ：166＊ ACT，101，102（9）A10．EQ． 3 \％ ACTy101，102，（9）A10．EQ．4＊ ACT，101：103，（9）A10．EQ．8＊ ACT：101，103．（9）A10．EQ．9\％ ACT，101，104，（9）A10．EQ．5＊ ACT：101：104．（9）A10．ER．6＊ ACT，101，104，（9）A10．EQ．7＊ ACT：102．105．15F，23＊
ACT：103：106．4F゙，24＊
ACT：1047107．0F．25＊
ACT：105．156\％
ACT：106y108＊
ACT，107：110，（7JAB．ER．1000\％
ACT ，107，110．（9）A6．EQ．2000＊
ACl 1207：109＊
ACT：100．1．65\％
AL゙： $1090=1 \%$
ACT：ACG， 1 OCO
act． $110,50 \%$
ACT： 10.15 E 来 ACT，111．112，（9）A11．EQ．－6＊ ACT：111，112，（9）A11．E日．－2＊ ACT：111：112，（9）A11．EG，－1＊ ACT： 111.112 ，（9）A11．ER．O＊

 ACT．111，i．63＊ ACT－14．j15，UF：26类
 ACT 7215 116．（9）A10．ER．4＊

 AOTV115，118，（9）AÓ E E（2000＊ ACT：1．5．11．7＊ ACT， $116,50 \%$ ACT：116．156＊ ACT，117，E1． ACT．117．156＊ ACT，118，50＊ ACTM118，156＊ ACT，119．111＊ ACT，120，111＊ ACT：121．111＊ ACT－122，111＊－

JUNGE：FASS THE CASE．
JUNGE：TETAL E／J，ANU O．C． JUIGE（COUFTROOR）：TH．JUNCTION ATTOFNEY（COURTROOM）：INJUNCTION ATTOFNEY（COURTROMM：TFIAL B／A DR ATTOFNET（COUFTROOM）：FASS THE CASE free the junge gni fass the case． FREE THE ATTOFNEY ANA FASS THE CASE．

INJUNCTION DURATION：JUDGE／ATTORNET． FREE JUGGE AFTEF JUDGE／ATTORNEY INJUNCTID FREE ATTORNEY AFTER JUNGE／ATTORNEY INJUNC JUNGE（FRINATE）D．C．

JUNGE（FRTVATE）INJUNETION．
JUNGE（FRTVATE）TRIAL E／B．

DURGTION JUNGE（FEIVATE）O．C．
INJUNCTION． TFIIAL B／J．
FFREE JUIGE AFTER FRIUATE O．C．
TRTAL IS FTHESHEN．
TRIAL IS FINISHED．
FREE Nudge after private injunction． BETURN CASE FOR THE NEXT TFiAL EFTGODE． FREE JuLge after privatie taial b／j， FETUEN CASE FOR NEXT STAGE． FREE JUNGE AFTEF FEIUATE TRIAL E／J．
nio not ffee attoriney for frivate cases．

FREE ATtORNEY．
［UGEATION OF TEIAL EJJ GINA D．C．J／A CT．

RETURN CGSE FOR THE NEXT TEIAL EFISONE． FREE JUIGE ANI ATTORNEY． geturin case for the next stage． FREE JUIGE ANL ATTORNE，

ACT，123，111＊
ACT：142，144，UF，27＊
ACT：143，145，UF，23 3
ACT，14Ay 16 \％（9）A11．EQ．1＊
ACT：14A，155，（9）A11．ER．0＊ ACT，144，50．（9）A11．ER．O＊
ACT， $145,166,(?) A 11, E Q .1 *$
ACTy145，50，（8）A11．EQ．O＊
ACTy 14 可，167，（9）A11，EN， $0 *$
ACT，146，74，CO， $7,4,(9) A 3, E G .1 *$
ACT：146，75，CO，7，5，（9）A3．ER．2＊
ACT：146，76，CD：，7，6，（9）A3．EQ．3＊
ACF，146，77，C口，7，7y（9）A3．EN．4＊
$A C T, 146,78, C(0,7,7,(9) A B+E Q .5$ 出
 ACT，1A7．80．CO，7：10．（9）A2．EQ．7＊ ACT，147，B1，CO，7， 71 （ 9 ）A2 $+E C+8 *$
 $\mathrm{ACT}, 147, \mathrm{~B}, \mathrm{CO}, 7,13,(9) \mathrm{A}, \mathrm{E} \mathrm{E}, 10 *$
 ACT：147，B5，CO，7，15，（9）A2，EQ，12＊ ACTy $147,36, C O, 7,16,(9) A 2+E C, 13 *$ ACT：147， $97, C 0,7,17,(9) A 2 . E Q \cdot 14 *$
 ACT： $14789 . \mathrm{CO}, 7,19 .(9) A 2 . E Q .16 *$

 ACT，14By157．（9）A11．EW．5＊ $A C Y$－ $48,4 \%$（9）A11，ER．1＊
 ACTy 1．43：159y（9）A11．EQ．－1宩 ACT：A A9，157，（5）A11．EG．3＊
 AC（1， 49 ，159，（9）A11，EQ．$-3 *$ ACTध $1.49 \% 159,(9) A 11 . E Q .-1 *$ ACT y 150 ： 51 （6）（65，（8）．39＊
 ACT ISI． 60 F
 ACT ；152，53：（3）28，（8）．68＊ ACT：153．60尔
 АСТ，154y 54 ：（ 6 ） 30 ，（8）． $60 *$ ACT，150．60＊

 ACT，1E65EE，（9）A11．EQ． $5 *$
 ALT：157．111米
ACT： 158.160 ，（6） 31 y（8）． 0001 ＊ ACT：158，14日，（4）32，（3）． $9999 *$ ACT：159：19．（马）A3．ER．1＊
 ACY：159：121：（9） 3 ．EC． $3 *$ ACT：159y122，（9）A3．EA．4＊ ACTy，59，223，（9）AB．ER．5＊ ACT，159y231，（9）AB．EG．6＊ ACT，160y157y1F，59y23＊ ACT：160．163，（9）A2，GE，7＊ ACT： 161.162 （9）A11．EC．1．＊ ACT 151.51 .49 A11．EQ．O＊ ACT，162．61，（9）A11．ER．0＊ ACTy 162,63 （9）Ai1．EO． $1 *$ ACT，163，181，（9）A11．EQ．1＊ ACT，163：164，（9）A3．ER．7＊ ACTg163，227＊

DLFGTION FOR NDI－COURTFOOM CASE：JULGE． MUFATION FOR NON－COURTFOOM CASE：ATTOFNEY FFEE JUIGE．

FFEE ATTOFNEY．

JULGE 1：RETUFIN FASSEI／DELAYEN CASE． $\frac{2}{3}$ 3
4
5

CTVIL／U．S．CASE：NO JUMGE REQUIFEI．

FELERAL RUESTIONS CASE：NO JUHGE RE

IIUERSITY JUFISLICTION CASE：NO JUI

JULGE I．S FERITREN FOE TNJUNCTION． JUNGE IS FTNISHEI WITH FRIVATE CASE． JULGE IS FINTSHEN WITH FURLC CASE． JUIGE IS IN THE MTMIIE OF A CASE

LELAY FQR JUNGE AFTEF FINISHING A FREE JUTGE 1. 2. 3. 4. 5.

ATTORNEY IS FEQUIRED FOF AN INJUNCTION． ATTORNEY IS FINISHED WITH A CASE． ATTOFRNE IS IN THE MILILE OF A CASE．

ACT，164，191，UF，60，24，（6），0001＊ ACT，164，228，C0，0．，33，（8）．9999＊
ACT，165，50＊
ACT， 156 ，50共
ACT．157．168，（9）A2，EQ．19＊
ACT，157．169，（9）A2．EQ：7＊
ACT，157，170，（9）A2．EQ．8＊
ACT．167，171，（9）A2，EQ．9＊
ACT，167，172，（9）A2．EQ．10＊ ACT，167，1．73，（9）A2．EQ．11＊ ACT，167，174，（9）A2．EQ．12＊ ACT：167．175．（9）A2．EQ．13＊ ACT，167，176，（9）A2．ER．14＊ ACT：167，177，（9）AC．EG．15＊ ACT，137，178，（9）A2．ER．16＊ ACT，167．179．（9）A2．EQ．17＊ ACT，167：180，（9）A2，EQ．18\％ ACT．182．156＊
ACT，183，101＊
ACT：184，10t，（9）A10．ECR．8．＊ ACT：1EA．101：（9）A10．EQ．9．＊ ACT，184，185，（9）A3．EQ．1＊ ACT，1E4，199，（9）A3．ER．2＊ ACT，134，200（9）AS．EC．3＊ ACT：154：201：（9）AB．ER．4＊ ACT：134．202．（9）A3．EQ．5＊ ACT：184．222，（9）A3．EA． $6 *$ ACT，196．199．（9）A10．ER．7＊ ACT．196，193，（9）A10．EQ．3＊ ACT，196．198．（9）A10．EQ．5＊ ACT：196．197\％
ACT．1．95．1．91，（9）AB．ER．1＊ ACT，198．192y（9）AB．ECR．2＊ ACT：1．88．193．（9）A3．EC1．3＊ AC．T．198，194，（9）A3．ER．4＊ ACT，198，15E：（9）A3．ER．5＊ ACT， $1=8,2214(9) A 3 \cdot E Q .6 *$
 ACT： $238.184 \times(9)$ AII．EG． $1 . *$
 ACT．229．181．（9）A11．ER．1＊
 ACT，203，205：C0．600．91＊
 ACT， $205230, C 0,0$, （9）A11，EQ．O＊ ACT， $251,111 \%$ COL：ISNUSTGTN＊ COL：\quad GRNAJUEY＊ COLyASNDTHAT＊ COL：A－AREGUMNT＊ COL WFINFBMTN＊ COL：CT．C．FEEF＊ COL． $7 / F L E A E F G N *$ COLy CHE K－ARGN＊ COLッジッ．C．PEEF＊ COL ：O／EENCH＊ COL． $1.1 / J U R T *$ COLy $12 /$ FRE－SENT＊ COL y $5 /$ SENTPREF＊ COL：14／SENTENC＊ COL y $15 /$ MECLITN－1＊ COL：1E／STATE－CT＊ COL，17／NO BILL＊ COL，18／COMM－SERU＊


```
C
    GEGIN USER DATA INFUT - FIRST FEAI ECHO CHECK FAEAMETEFE BJUOOZ5O
        EJUG0740
    99 FEAD(5,200)(ICOM(I),I=1,4),IECHO
        200 F'OFNMT(A1,3A3,IE)
        IF(ICOM(1),EG.STAK)GO TO 99
    C
    EEGIN CRIMINAL CASE INFUT - CASE STRUCTURE'
    IF (IECHO.EQ.1)WFITE (6,300)
    300 FOFMAT(1H1,SH*****,5X,2{HUSEF ECHO CHECK SUFFFESSED,5X,5H*****)
        号 FEAM(5,165)(ICOM(I),I=1,4), (FCINN(J),J=1,14)
        165 FOFMAAT (A1,3AS,14F5,2)
    IF(ICOM(1),EQ.STAR)GO TO 65
        70 FEAK(5,165)(ICOM(I),I=1,4),(FCEXM(J), J=1,1.4)
        IF!ICOM(1).ER.STAF)GO TO 70
        75 REAL(E,175)(ICOM(I),I=1,4), RLSE, EAIL,(F'KITR(I),I=1,5)
```



```
            IF(ICOIT(1), EQ.STAE)GO TO 75
    C
    C
    MEFINE FROEAEILITIES FOR IECISION POINTS
        10 90 I=1,24
        NE=NEFNCH(I)
        O FEAN(5,180)(ICOM(K゙),K゙:=1,4),(FNEXT(I,J)yJ=1,NB)
    100 FOFMAT(A1, 3AB,6F゙S, 2)
        IF(TEOM(1),EQ,STAK)GO TO 80
        90 COMTTNUE
    FEAD STMULATION FARAMETEFS
    260 FEAO(5,3GO)(ICOM(I),I=1,4) TEFG,TTFIN,NFUNS.
    300 TOFMAT(A1,3AZ,OFE.2,IS)
        IF(TCOM(1) , EQ.STAR)EO TO 260
    C
    C
    GET UF USEF STATISTICS CLEEAFING ACTIUITY
    TF:TBEG.LE.O.) GU TO 3600
    EEUTI=TEEO
    WWAC=-1-MXNON
    GALIN EEVNT
    3500 CONTNNDE
    NEXT:HFE(2O3)
    NTHOM-NSET(NEXT+1)
    IFtM##OÖ+EU.204)GO TO 261
    MENT=HGET (MEXT)
    NMMU口=NSET(NEXT+1)
    TF (MLMOI,NE,204)CALL EFEOR(629)
    Z&1 GSET (NEXT+2)=TEIEO
    C
    EEGIN SYSTEM FAFRAMETEFS - INFUT
    201 FEAN(E, ZO1)(TEOM(I),I=1,A) NN,NACF,NACU
```



```
    IF(10Om(1)+EO.STAF)GO TO 20.1
    IF(NJ,ET,6)COLIWEREOR(6O1)
    NTOT:NACRHNACU
    IF:NTGT.GT, 13)CNLL EFFOR(6O2)
    FAFAM(70y!):=0.
    FAFAM(70:2)=7.
    FABAM (70, (3)=7+NACE
    FABAM(70,4)=0.
    FARAM(71,1)=0.
    FAFGM(71,2)=20-NACU
    FaNam(71,3)=20.
    FAFAM (71,4)=0.
    FAFAM (72,1)=0.
    FAFAM(72,2)=1.
    FAFAM (72,3)=NJ+1
    FAFAM}(72,4)=0
    202 FEAM(5;302)(ICOM(T),I=1, 4), EETAJ,EETAR,EETAU
    302 FOFMMAT(A1,3A3,3F5.2)
        IF{ICOM(1),ER.STAF)GO TO 202
    203 FEAII(S,303)(ICOM(I),I=1,4),WTMNJ,WTMXJ,WTMNF,WTMXF,WTMNU,WTMXV
    ZOZ FONMAT (A1,ZAZ,GFS.2)
```



```
            IF(ICOM(1),EQ,STAK)GO TG 22G
    227 FEAM(5,327)(ICOM(I),I=1,4),(FAFAM(68,\),J=1,4)
    EJUUO2240
    &JU02250
    327
    FOFMAT (A1, 3A`3,4FE.2)
    IF(ICOM(1),EO.STAFS)GO TO 227
    22B FEAN(E,328)(TCOM(I),I=1,4),(FANAM(69,J),J=1,4)
    328 FOFMAT (AD, 3A3,4F5,2)
        IF(ICOM(1).EQ.STAK)GO TO 228
    229 FEAN(E, 329)(ICOM(I),I=1,4),(FAFAM(36,J),J=1,4)
    329 FOFMAT (A1, 3AB,4F5, 2)
        IF(ICOM(1),EQ.STAF)GO TO 22Q
C
    GEGIN CIUIL FARMETEFS - INFUT
    230 REAIL(5,330)(TCOM(I),I=1,4), (FAFAM(2,J),N=1,4)
    30 FOFMAT (A1.3AB,4F5,2)
        IF(ICOM(1), EQ,STARSGOTO 230 E,NUN2390
        :
```



```
    3%H. FOFMiAT (A1, 3AZy8FS.2% EJUO2410
    TF(ICOM(1).EQ.STAK)GO TO 231 EJU02420
    232 FEAO(5,332)(ICOM(I),I=1,4), (FAFAM(29,J),J=1,4),(FARAM(50;K),K=1,4)EJUO2430
    32 FOKHAT(A1,3AZ,8F5,2)
    IF(ICOM(1).EQ.STAF)GO TO 232 E,JUO24EO
    233 FEAM(E, 333)(ICOM(I),I=1,4),(FAFAM(3J,J),J=1,4),(FAFAM(51,NK),N゙=1,4)EJUO2460
    33 FOFMAT(A1.3A3, 8F5,2) EJUO2470
    IF(ICOH(1),EQ.STAF)GOTG 233 EJUO2480
```



```
    IF(ICUH(1).EQ.STAF)GO TO 234 EUJUO2510
```



```
    3JS FOFMAT(A1,JAZy&F5.2) E.NJO2530
    TE(1COMS1),EQ,STAFSGO TO 235 EJUO254O
```



```
    3こら FU&MAT(A1,3A3,AF5,2) EJUO2560
        IF(ICOm(1),EQ:STAF)GQ TO 236 E.JUO2570
    {% FE:M(5y337)(ICOM(I),I=1,4) %(FAFAM(64y,J),J=1,4)
    3#7 FOLMAT(A1, 3AZ,AF5.2)
    E,JUO2580
    FOLMAT(A143AZ,AF5.2) . EJUO2590
    TF(1COM(1), EG.ST&FOGO TO 237 EJUO2600
```



```
    ##S F(CNMAT (A1,3m3,4FE.2)
    BJUO2620
    T:(TCOi(1), EQ,STAF)GO TO 238 E EJUO2630
```



```
    LF, ICOM(1), FO.5TAF)GO TO 239
    BJluO2650
```



```
    Z5J FEAR(E,340%(TCOM(I),I=1,4),(FAFAM(62yJ)yJ=1,4) EJUO2670
```



```
        I! (1COA(1).EQ.STAF)EO TO 240 EJUO2690
        2.% Fi二Am(E) 341)(TCOM(I) y I=1,4),(FAFAM(37,J),J=1,4)
```



```
            1!゙ィTCOM(1).EO.5TAFS`GO TO 241
C
    BEGIN FEREFAL QUESTION FAKAMETEFS - INFUT
    2*2 FEnN(Ey, 招)(ICOM(I),I=1,4)y(FAFAM(3,J),J=1,4)
    342 FG&AAT (AI, SABy 4FE,2)
    342 FGLCAT(AI, 3ABY4FE,2)
    IF(ICOM(1) , EQ.STAF)GO TO 2.42 :
    EJUO2780
```



```
    34% FOFWAT(A1,SA3y8F5.2)
    TF(T0OM(1) EG GTOF)OOTO 2A3
    2A4 FEAN(F, 34A)(ICOM(I),I=1,A),(FAFAM(2G,J), J=1:4), (FAFAM(44,N゙),N゙=1, 4)EJUO2820
    34A FOFAMAT(A1, 3MB, BFF,2% E.JUO2830
    IF(ICOM(1), EQ, STAF\GO TO 244 EJJUO2840
```



```
    3^E FOFWAT(A1, ЗA3,8F5.2) EJJO2860
    IF(ICOM(1),EQ,STAF)GO TO 24E EJUO2870
    2AS FEAIM(S,346)(ICOM(I),I=1,4),(FAFAM(9:J), N=1,4), (FAFAM(4O,K),K゙=1,4) EJUG2B80
    346 FOFMAT(A1, 3AZ,8F5.2) EJUO2890
    IF(ICOM(1),EQ,STAF)GO TO 24B E,JU02900
    247 FEAI(5,347)(ICOM(I);I=1,4) (FAFAM(10,J),J=1,4) %(FAFAM(5,4,N゙) %K=1,4)EJUO2910
    347 FOFMAT(A1,3AZ,8FE,2). EJUO2920
        IF(ICOM(1),EQ,STAF:EOTD 2A7 EJUO2930
    248 FEAII(5,348)(ICOM(I),I=1,4),(FARA|(7,J), J=1,4)
    34S FOFMAT (A1,3A3,4F5,2)
    < EuU02950
    IF(ICOM(1).EQ.STAF)GOTO 248 EJUO296O
```


 WRITE（ 6,412 ）FAL B BJU04420
112 FORMAT（／10X，32HFFOEABILITY OF AN INTEFNAL DELAY／10X，37HFOLLOWJNG TFJUOA430 IFTAL COMFLETION（ATTORNEY） 7 （1H－）FFG．2）EJUOA440 WFI＇TE（G，447）FFC EJU04450
447 FOFMAT $/ 110 X, 35 H F F O E A B I L I T Y$ THAT JUNGE ANI ATTOFNEY／10X：4AHACCEFT AENJO446O C

HEGIN CFIMINAL FAFAMETEF ECHO EJUO4470 FJU04480 むJU04490
1 FUBLIC CASE（GIVEN BUTH AVAILAELE）－FFS．2） WFITE（6，413） BJU04520 WFITE（6，41．4）NACF
414 FOFMAT（：／10X，19HNUMBEF OF ATTUFNEYS． $25(1 H-19 I 6)$ WFITE（S，A15）EETAF
415 FDEMAT（／10Y，25HBETA FACTOR FOF ATTORNEYSy 19（1H－），F6．2） WIITTE $(6,416)$ WTMNF
416 FOFMAT（／10X，3ZHITNIMUN WAITING TIME FOF ATTOFNEY，11（1H－）yF6．2） WたITE（6，A17）WTMXF
417 FGFMAT（／10X， 3 SHMAXIMUM WATTING TIME FOF ATTORNEY，11（1H－），FG． 2 ） HFTTE（ 6,418 ）NOCSF：
418 FOFMAT（／10X，27HSUFPFESS ATTOFNEY ICFT TEST／10X，32H（AFTEF OTHEF CUUEJUO4G2O 1RTFOOM ACTIUITY），12（IH－），IG） WFITE（6，A1．9）NESAF EJUO4630 EJU046．40
 IUN－COURTROUM ACTIUITY） $14(1 H-)$ IS B．JU04660 HFTTE（ 6,420 ）STT E．JU04670

 HにTTE（ $6: 465$ ）FLSE EJUO4700
465 FOGMAT（／10X，22HFROBAEILITY OF FELEASE，22（1H－），FG．2） JHTTE（ $6,46 \leq$ ）BATL
A6S FOFITAT（AOX，19HFFOEAEILITY OF EAIL．2S（1H－），FG．2） WH：ITE（ 6,421 ） EJULOA710 EJUOA720
W：ITE（S，421）B，BUO4740

421 FOFMAT（／IOX，SOHCRIMINAL CASE INTEFAFETUAL IISTFIEUTION FARAMETEFE）EJUO4750 IU 123 $I=1.4$ USITE（6y422）I，FAFAM（1，I）

4n3 COMTTNUE
 E．JUOA760 EJJUO4770 EJUO4780 BJU04790 E．JIOM800

429 FQEMAT（ $/ 1 \times, 10 H T M L T C T E N T, 3 X, 4(2 X, F 6,2))$ UFETE $(6,430)$（F゙ARAM（ $63, J), J=1,4$ ）

 WFITE（ 6,432 ）（FAR゙AM（5，J），$J=1,4$ ）
432 FGFMAT（／1X；10HSENTENCING， $3 X, 4(2 X, F 6,2\rangle)$ WFITE（6，433）（FARAM（56，ل， F ） $\mathrm{J}=1,4$ ）
433 FOFMAT（ $/ 1 X, 12 H F R E-S E N T(J), 1 X: 4(2 X, F 6,2)$ ） WEITE（ 6,434 ）（FAFAM $(58, J)$ ，$J=1,4$ ）
434 FOFWAT（ $/ 1 \times$, JHINUESTIGATION，4（2X．F6．2）） WRITE（6，435）（FARAM（20，J），J＝1，4）
435 FOFMAT（／1X，11HINFOFMATION：2X：4（2X，F6．2）） WFITE $(6,4 \pi 6)$（F゙AR゙円M（ $65, J$ ），$J=1: 4$ ）
43世 FOFMAT（／1X，13HINTL CSE FREP，4（2X，F6．2））
437 FOFMMA（ $/ 1 X, 12 H F L E A$ EARGAIN， $1 \times, 8(2 X, F 6,2)$ ） HFITE（ 6,438 ）（FAFAM $(68,-1), J=1,4)$
438 FOFMAT（ $/ 1 X, 12 H F N L$ CSE FREF， $1 X, 4(2 X, F 6,2)$ ） WFITE（6，439）（FAFAM（69，J） $\mathrm{J}=1,4$ ）

EJUO4850
FJJU4860 EJUO4870 E．JUO4880 EJU104890 FJIlO4900 EJUO49：10 EJUO4920 EJJU0．4930 EJUO4940 BJU04950 BJU04960 EJUO4970 E．JU04980 EJU04990 E．JU05000 EJU05010 EJUOS020 EJUO5030 EJU05040 EJU05050 EJU05060 EJUO5070 E．JU05080 HJUOS090 RUU05100 EJUOS110 E．JUOS120
$39 \operatorname{FORMAT}(/ 1 X, 12 H F R E-S E N T$ (A),1X,4(2X,FG.2)) EJUOS130 WRITE $(6,440)$ (FARAM ($36, J), J=1,4$) EJUO5140
440 FORMAT ($/ 1 X$, THEXT IIELAY, $4 X, 4(2 X, F 6.2)$) BJUO5150
c E.JU05160

BEGIN CIUIL / US ECHO EJUOS170

WRITE(C,4A1) BJUOS180

441 FOFIMAT(1H1,///29X:21HCIUIL / US FARAMETERS/28X,23(1H-)) - Ju0 200

WRITE(6,41 A) MACU B.JUOE200 WRITE(6:A15)EETAN BJU05210 EJUOS220 WRITE (6.416) WTMNU EJUOS230

 WRITE(6.419)NESAU BJUO5260 WFITE(G,4A2)FC EJUOS270
 HRTTE (A,AA3)FENC EJUOS290
443 FOFMAT (/10X,25HFFORABILITY THAT EXTERNAL/10X, 28HIELAY IS NEXT STAGEJUOE300 1E SELECTER,16(1H-),F6.2) EJU05310 WRITE (G:444)FIU EJUOS320
 WRITE (6,445)FTV EJJUOE3AO
445 FORMAT ($/ 10 \times, 22 H F R O R A B I L I T Y$ OF A TRIAL, 22(1H-),F6.2) FJUOE350

440 FOFMAT (/10X, 22HFFOBAEILITY OF A BENCH/IOX,3IHTRIAL (GIUEN THAT TETEJUOE370 1AL OCCUF:S):13(1H-) FFG.2) EJUO5380 WKITE($6: 4 A B$) BJUOS390
 15)
B.JUOS410 T1ロ 449 I $=1,4$ EJU05420
MEITE(3.422)I,FARAM(2,I) EJUO5430
449 CORTINUE E.JU05440 WRITE(6,424) WRITE $(5,425)$ (FARAM $(39, J), J=1,4)$ (FARAM $(22, K), K=1,4)$ BJU05460

- WRTE $(6,426)($ VARAM $(50, J), J=1, A)$) (FARAM $(29, K), k=1,4)$ E. 1405470 UFITE (6,427) (FARTM (51, J) , J=1, A) (FARAM ($33, K), K=1,4$) EJU05480

ASO FOEMAT ($1 \times, 1$ 1HOTHEF COURT, $2 \times, 8(2 x, F 6.2)$)
EJU05500

 WRETE (5,452) (FARAM (25, j), $j=1,4$) .
452 FOLMAT ($1 \times, 1$ SHNONCORT (A/J), $32 \mathrm{X}, 4(2 \mathrm{X}, \mathrm{FG}, 2)$) E. 1005530 WFITE $(b, A B T S)$ (FARAM ($S A, J), J=1,4)$
4S3 FGFMAT ($/ 1 X, 1$ HHONCOFT (A/NJ) , $32 \mathrm{X}, 4(2 \mathrm{X}, \mathrm{FB}, 2$)) WFI PE (6,454) (FARAM (59, J), J=1, 4)
 URCTE $(6, A 55$) (FARAM (21, J), J=1, 4)
 WFITE(0,456$)(F$ ARAM ($62, J), J=1,4$)
 WEITE ($6: 457$) (FARAM ($37:-1), \mathrm{J}=1,4$)
437 FORMAT ($/ 1 X$, GHEXT RELAY, $4 X, 4(2 X, F 6,2)$)
FJJUO5540 E.JUO5S50
WRTTE(6.45e)
458 FORMAT ($1 \mathrm{H} 1, / / / 27 \times 2$ 27FFEIERAL QUESTION FARAMETERS/26X,29(1H-)) EJUO5690
WETTE(6,459)
EJUOS5700
BJU05710
459 FORMAT ($/$)
WFITE $(6,443)$ FEDF
BJUOS720
EJUO5730
WFITE (6,444)FIF
EJUUO5740
WRITE(o,445)FTF E.JUOS750
WFITE 6,416)FETF EJU05760
WEITE (6,460) EJUOE770
A6O FORMAT (/10X,SJHFEUERAL QUESTION INTEFAFRIUAL DISTRIEUTIUN FARAMETEEJUOSTBO
1F5)
E.JUO5790
IIO $461 I=1,4$
WFITE (6,422)I, FARAM (3,1)
RJU05800
BJU05810
461 CONTINUE
EJU05820
WFITE (G,424) E.JU05830

```
        WFITE(6,42E)(PARAM(42,J),J=1,A),(FARAM(8,N゙),N゙=1,4) E,JU05840
        WFITE(6,426)(FAFAM(44,J),J=1,4),(FAFAM(26,N゙),k゙=1,4)
        #JU05850
        WKITE (6,427) (FAFAN(45,J), J=1,4), (FGFFAM(3O,K゙),K゙=1,4)
        EJUOE860
        WRITE ( },,450)(FAFAM(40, 1),J=1,4), (FAFAM(0,K゙),K゙=1,4
        WFITTE (6,4S゙1)(F゙ABAM(54,J;y,j=1,4),(FAR゙AM(10,N゙),K゙=1,4)
        &.JU05870
        WFITE(S,45S)(F゙ARAM(7,J),J=1,4)
        F.JU05880
    WFTTE (6,45S)(F゙AFAM(61,J), J=1,4)
    F.JU05890
    EJU05%00
    WRITE(á,457) (FARAM (34,J) y,j=1,4)
    EJJOS910
    C
    EEGIN IIUERSITY JHFISNICTION ECHO
    EJ|O5920
    B.J1005930
    E.JuO5940
    WFITE(6,462) EJUNOS950
```



```
        *)
            WITE(6y458) EJJJ05980
            #.JUOS970
            WFITE(6,442)FM
    FJUNE590
                    WEITE(6,44Z)FENN FJUOGOOO
            WFITE(6.444)FJI! EJU06010
            WFITE (S,44E)FTN
            WFITE (6,446)FETII
            WFITE(6,463)
    4GJ FORNAT(/10X,59HNIUERSITY JURISIICTION INTEFARFIUAL ITSTFTEUTTON FAEJUOGOGO
        1FAMETEFS)
                                    [.JW06060
            IO A64 I=1,4 E E,JU06070
            WGITE(E,G22)I:FAFGM(4,I) EJUO60EO
    4EA CONTINUE
            WFITE(6.424)
    BJUC6090
            WFITE(E:42S)(F゙AFAM(43,J), J=1,4),(FAFAM(12,nN゙),N゙=1,4)
```



```
            WFITE(6,427) (FMFAM(47,J),J=1,4) %(FAFAM(31,N゙),N゙=1,4)
            WFITE(C,A5O)(F゙ARAM(AI,J),J=1,4), (FARAM(13,N),N==1,4)
```



```
            WFITE(6,455) (F'ARAM (67,J), J=1,4)
            WBITE(6y, 56)(FARAM(60,J), J=1,4)
            WFITEE(6,AE7)(FARAM(3E,J):J=1,4)
    C
    ELHO INTERCUFGENT CHANGE FARGMETERS
                WHITE(6:520)
    220 FOH:AAT(1H1,///25X.3OHINTEFCUREENT CHANGE FARAMETERG/24X,32(1H-))
```



```
                            #.Ju05990
                            010
                    ENU06020
                                    FHJJO6030
                                    EJlJO6040
    #JU06100
    EJU06110
    Evu06:120
    EJJOS130
    E.JU06140
    B.JU06150
    EJUO6160
    8.JU0.6170
    E.JU06180
    #JU061.90
    BJNOG200
    FJUJOG200
    FJU06220
    F.J106230
    B.fiNOS240
```



```
        *心.2)
                            BJUOS260
                WETTE(6,G22)TSJC E.JUO6270
```



```
        *), F6 6+2)
                W&1TE(6,523) BJJU06300
```



```
        *5X,11(1H-):5%,12(1H-))
            WNTTE(6,504)T(1), IQT(1)
                FJNO6320
                            ENNO6330
                            B.JU06:340
EJUO6350
```



```
                WFTTE(6,525)T(2),IGT(2)
    B2FFOEMAT(/OX,14HTOC-ATT (THME),12X,F6,2g11X,15)
                WFITE(6s526)T(#),IQT(3)
```



```
                WFITE(6,527)T(A) yIOT(1)
    527 FOWMAT(6Xy17HATT-CT (CFT隹LNAL),9X,F6.2y11XyTE)
        WFTTE(6y520)T(5),\aT(5)
    528 FORMAT(,\deltaX,1%HATT-CT (CTUIL/U,5,),7X,F6.2,11X,I5)
            WFITE(G.525;T(6),IGT(6)
    52g FOFMAT(/6Xy6HUHG-NC,2OX,FG.2,11X,I5)
        WFLTE(6,530)T(7), ICT(7)
    53O FOFN&AT (/6X,I7HATT-NC (CRTMINAL),9X,FG.2,11X,I5)
        HFTTE(6,531)T(8),IGT(8)
        531 FOFMAT(/6X,19HATT-NC (CIUIL/U.S.),7X,FG.2,11X,IS)
            WF゙ITE(6,532)T(9),IGT(9)
        532 FOFMAT (/6X,SHFRI-J,21X,F6.2y11X,I5)
        1000 CONTINUE
    MJN06360
    $.JJO&370
    M.JU06390
    EJU06400
    B.JuO6410
    EJHOG420
    E.JU08430
E.JNO6440
E.JUOG450
B.JU06470
WFITE(6,S32)T(9),IGT(9)
EJU06500
    C
        ENTER TUHATTON OF DELAY FOR A CASE FASSEE EY A JUNGE
[JU06510
C
C
BJU06540
```


1760 CONTINUE
EJU07280
IF (NUNQ,NE,2P)CALL ERFOR(621) EJUO7290
$\operatorname{asET}(I A 2+6)=1$.
E.JU07300

DF (NUNA. NE. 30)CALL ERROF ($\$ 22$).
OSET (TA1+6) $=1,-F D$
1770 CONTINUE
F. 1007310
E. 11007320

EJU07330
B. 1107340

EJU07350
E. 1007360
E. $J 007370$

BJ 1007380
B.JU07390

EJJU07400
BJUOT410
E.JUO7420

BJUO7430
EJUO 7440
E.JUO7450

1790 CONTINUE
E.JU07460
E.JU07470

EJJOO 480
EJU07490
EJU0 5500
$\operatorname{WSET}($ IA $1+6)=1,-F \cdot J I$
E.JUO7510
E. J 107520
E. 1007530

BJU07540
E.JUO7550
B.JUO 7560
$3 J U 07570$
BJu075s0
E. J 407590

EJJU07600
G. 11007610

EJU07620
EJU07630
1900 CONTIMEE
IF(NUAE, NE 2A)CALL ERFOR(627)
aset (1A2te) $=1$ 。

ENJO7640
E.JU07550
E. 1007660
aset (1a $1+0)=1$, FAD

FJU07680
1910 CONTINUE
FJU07690
E. E LU07700

EJUOT710
BJuO7720
BJU07730
E. 1.107740
B.JU07750

EJU07760
EJU07770

EJUO7780
B. 1407790

2021 H00E NO (T)
EJU07800
BuluO8.
C CET UF COLCT WLMEERS FOR ACTIUITY MILESTONES
E. 11007820
B.JU07830
B.JU07840
E. 1407850
no $1850 \quad \mathrm{I}=1,14$
EJU07860
$\operatorname{Incol}(I)=I X$
$I X=I X+1$
E. 1007870

1e50 CONTINUE EJU07650
c
C SET UF COLCT NUMEEFS FOR TIME IN SYSTEM FOR CFIMINAL SINKS
$101860 \quad \mathrm{I}=1,15$

- .1407890 E.JU07900
c
EJU07910
$1 \mathrm{SCOL}(I)=\mathrm{IX}$
EJu07920
$I X=I X+1$
FuJUO7930
E.JU07940

1860 CONTINUE
EJU07950
$\stackrel{C}{C}$ SET CUMULATIUE FROEABILITIES
n0 512 $I=1,24$
EJU08000
SUM $M=O=\mathrm{O}$, $\mathrm{FNCH}(I)$ EJUOBO 10 E.JUCB020
no 513 J=1,NE EJUOBOZO
SUM=SUM+FNEXT(I,J) EJUOBO40
FNEXT(I:J)=SUM
CONTINUE EJUOROSO

CONTINUE
CALL CFFFS(5)
CALL CFTES (6)
CALL CFTR(7)
CALL CFTE(B)
CALL CFTE (9)
CALL CFTR(10)
CALL CFTFi(12)
CALL CFTFR(13)
CALL CPTR(14)
CALL CFFTK(16)
CALL CFTR(18)
CALL CFTE(19)
CALL CFTE(20)
CALL CFTE(21)
CALL CFTES(22)
CALL CFTFE(23)
CALL CFTE(24)
CALL CFTF(25)
CALL CFTE(26)
CMLL CFTE (27)
CALL CFTE(28)
CHLL CFTF (29)
CALL CFTF(30)
LALL CFTE(31).
CALL CFTR(32)

CALL CFTE (3A)
CALL CPTR (35)
CALLL CFTE(36)
CALL CHTR(37)
Grith CFTE(E3)
Cht ETFE(37)

CALL CFTE(A1)
Cotu CFTE(M2)
CALL CFTR(43)
C:BL CFTR(A4)
CAEL CFTFA (AS)
CALL CFTE (AS)
CinL EPTR (A7)
CAL CPTR(AB)
CALL CFTR (A9)
CALL CFTR(50)
Catioctaicel)
CALL CFTE(52)
COLLLETE(S3)
CALL CPTK(SA)
CAL CFTR(S5)
CaL CFTR(E6)
Chil CFTF゙(57)
CALL CFTFK(SB)
CALL CFTR(59).
CALL CPTR(60)
CALL CPTF(61)
CALL EFTE(62)
CALL CFTF(63)
CALL CPTR(SA)
CALL CPTE(das 2
CALL CFTR (66)
CALL CPTR(GO7)
CALL CFTR(69) EjuOEOGO EJUOQ8070 EJJU08080 EJUOBO90 EJJU08100 EJJOB110 EJJOOB120 EJJOOB130 EJJOQ140 EJJOOR150 BJUOB160 EUNU08170 E.JUO8.180 E.JU08190 EJUOB200 EJU08210 EJUOR220 EJUOR230 E.JUOS240 E JuOg250 EJJOOB260 EJU08270 E.JU0S280 EJUOB290 EJU0 8300 EJUO83: EJJOQ320 EJLOOB30 EJJU08340 EJJOSSESO EJJUOB360 EJUOR370 E.JU08300 EJJU08390 E.ju08400 EJJOBA10 EJJOE 420 हJJOO8430 EJJUOE440 EJJOB450 EJulug 460 EJUCO8470 EJU008480 E. 1108490 EJJU0s500 E.11085510 \&JU08520 E. 11008530 EJUOSE40 EJUOOE550 EJUOQ560 EJU0 08570 EJUO8580 EJU08590 EJU08600 EJU08610 BJUOSG20 EJU08630 EJUOOB640 EJUOO8650 BJU08660 EJU08670 EJU08680
CALL CFTK(69) E EJUOB690
END EJUOB710

FUNCTION UF（IFN）

BJU08720
COMMOM／STRAC／KTRAC，NFRNT3，NNFTS，KITRCE，KTRCS，NTETR（EO） EJU0037：30
COMMON／GBAR／NDE：NFTEU（250），NFEL（250），NFELF（250），NFEL2（250）， FJJU08740

COMMON／GTAT／JCELS（120．20）：JSINK（120）：NERKB，NEEKS．NCLCT，NIT．
 ＊），SNONE（120），SUMA（120，7），WIATH（120）\％XLOW（120），XSTUS（120）
， 1 uobre
EJJUOE750 E． .100877 .0 EJJUO日780 COMMON／QUE／BLMAX（100），ESMAX（100），ESMIN（100）．9IMN（2（100），MAXCS，

＊，TLCE（100），TLCQ（100），XFALK（100），NSAR2（100），LABLS（100．2） EIMENSION XAEA（28O）
EqUTVALENCE（ $\operatorname{NabA}(1)$ ）XAEA（1））
COMMON TTRANS／HESCE（ 63000 ）：KNOLIOMFAD，NDFTR，NLSTR（1300）
 EQUTVALENCE（NESCF（1）？DESCR（1）），（XOSTR（1）：NDSTF（1））
 ＊（ixXyNICH（250，2），NLFT（250）：NN，NOQ，NSIGN（250）？NTYFE（250），LAEIN ＊（550．2） EJU08790 B． .1008800 EJ1009810 EJUOEg20 F．JU08830 FJU08840 E． 1400850 E． 1408960 8，Ju0e870 BJU088830 E．J1008390 131408900 E．JU08910

FEAR ATT (11) EJuOS990
mata ATT/LI*O., E．JU09000
UF $=-99$. E，J1009010
G0 T0（1，2，3，4，5，6，7，8，9，10，11，11，13，14，15，16，17，160．19，20．21，22，EJU09020

GESIGN ATTORNEY（CRIBINAL）WITH LOWEST UTILIZATION E．JU09060 GE WITH EGUAL FROBABILITY IF TNOW ERUALS ZEFR EJUO9070 EJU009080

1 IF（THOW．GE，O．）GO TO 10A
16 Treuck E． 1109090
$\because \%$
F．ju0g110
U1：$=7$
RUM＝TIEU（7）
$\mathrm{K}=6+\mathrm{NACR}$
$10101 \mathrm{I}=7$ ガ
IF（TIEU（I）．LT．FUM）GO TO 1021
0010101
［iJU09120
E．JU09130
E．JU09140
EJU09150 EJU09160
EJUOO 170 E．JU09 180
1091 UF＝I． EJU09190
IOI CONTINUE E．JUOQ200
C
C
C
C
$101 \quad \mathrm{I}=\mathrm{LN}(70)$
IF（I．E日．（7＋NACF ） $1=6+N A C F$
U゙゙ニI
FETUFN
C
C
C
C

B11109220
EJUOQ230
EJJO9240
E，JU09250
BJUOP260
B． JLOP 270
EJU09280
E．JU09290
EJU09300
E． 1409310
EJU09320
EJUOY330
玉いい゚ッヂ30
EJUO9350
EJU09360
EJU09370
201 IF（TIFU（I）．LT，FUMJN）GO TO 202
$203 \quad I=I+1$
IF（I．LE．19）G0 T0 201
GO TO 99
202 FLMJN＝TIRU（I）
$U F=I$
GO TO 203 E．JU09380 FJU09390 EJJU09400 EJJ09410 BJU09420 EJUO9430

c		EJue9440
c	FANDOMLY ASSIGN ATTORNEY NUMEEE (20-NACU)-19 (CIUIL/U.S.)	E.JU09450
${ }_{204}$		E.JU09460
	$\mathrm{I}=\mathrm{JN}(71)$	EJJU09470
	IF (I, EG. 20$) \mathrm{I}=19$	EJU09480
	UF=I	TJU09490
	RETURN	EJU09500
c		BJ409510
c	AgGign Junge uith lowest utilization or with erual	E.JU09520
c	FROBABILITY IF TNOW EQUALS ZERO.	BJuO9530
C 3		E.Ju09540
	IF (TNOW.GE.0.0)GO TO 3014	BJu09550
	$\mathrm{I}=1$.	E.J109560
	UF=1	EJ1009570
	RUMIN=TIRU(I)	EJU09580
3011		EJU09590
3613	$T=T+1$ I	E.J109600
	TF(I.LE.NJ)GO TO 3011	E. 5109610
	60 TO 99	E.N096620
3012	FUMIN=TIFU(I)	E.1409630
	UF= T	E.JU09640
	(a) 103013	FJ1409650
C		E.JU09660
c	Emanomit asstgn Junge numberi 1-NJ.	EJU09670
c		E.JU07680
3014	$I=\operatorname{lin}(72)$	BJU09690
		E.J1099700
	UF=I	EJU09710
	EETUEN	EJU09720
C		E.JU09730
c		EJU09740
c		EJU09750
*	Call getat (att)	E.1109760
	JFF(ATT (2). (GE. (20-NACU)) G0 TO 40\%	E.JU09770
		E.1109780
	IF (ATT (2), BE, 2) OL TO $429^{\text {a }}$	EJU09790
c		BJ1409800
c	FEMERAm QUEETIONS CASE	F.Ju05810
c		FJu09820
	-TRE\%	ENHOFE30
	Uf: 1	Bu10098.40
	Ft-mbanac 3 ?	EJU09850
cc		EJU09860
	TEST FOR AN INJUNCTION (FEDERAL QUESTIONS)	E.JU09970
c		E.1U09880
	TFERN,LE, FIF SOS TO 439	EJU09890
	のTT(5) =0.	EJU09800
	60150149	EJU09910
42:		E.4099920
	ATT $(5)=1$.	E.JU09930
44%	2mera)	E.JU09940
	IF(I, LT.1)CALL EREOR(333)	E.1009950
		E.JU09960
	T=TR(10)	EJL09970
	ATT (8) = I	EJ1409980
	$\operatorname{ATT}(9)=0$.	EJU09990
	E0 ro 459	EJU10000
C		E.JU10010
C	IIVERSITY JUETSIITCTION CASE	EJU10020
c		EJU10030
429	$\mathrm{I}=\mathrm{TF}(67)$	EJu10040
	$\mathrm{UF}=1$	B.1010050
	FSN=EFANIL (4)	EJUL0080
C		EJU10070
cc	TEST FOR AN INJUNCTION (IIVERSITY JUFISAICTION)	E. 11410080
		E. 1410090
	IF (EN, LE, PIII)G0 TO. 469	EJU10100
	ATT(5) $=0$.	EJU10110
	G0 T0 479	EJU10120
469	$I=T E(12)$	BJU10130
	ATT (5) = I	BJU10140
479	$I=T R(13)$	EJJ10150

c		EJutog70
c	STAGE = OTHEE COURT.	E 11108080
0		EJJU10890
	UF=65	E.JU10900
	G0 1098	E.JU10910
635	IFE(STAGE .GE, TS)G0 TO 640	E. 101610920
C		E.JU10930
c	STAGE = NON-COURTROOM (JUNGE).	Ejulu940
C		EJUL0950
	UF= $=68$	EJU10960
	G0 7099	EJU10970
640	$U F=59$	E. 1410980
c		BJU10990
c	GTASE = NON-COURTRODM (ATTOFNEY).	EJU11000
c		EJU11010
	IFF(ATt (9) , EQ, O,)UF=63	5, 3 U11020
C		E.JU11030
c	STAGE = EXTERNAL nELAY (REGUTREI).	EJU11040
c		E.JS11050
	G0 ro 99	WU11060
C		EJU11070
C	CRIMINAL CASE	FJU11080
C		EJU11090
600	NEXTMEATEA(6)	EJJ11100
	IFINEXT. CE , 5000) GO TO 610	EJJ. 11110
	NEXT=NEXTA(NEXT)	B.JU11120
610	UF:=NACT (NEXT, TNOW)	EJU11130
	RETUFAN	E.JU11140
C		EJU11150
C	SET THE NUMBEE Of ThE TRTAL (B) EFisunes.	E.JU11160
C		EJUL1170
7	TC=GATRE(2)	EJU11180
		EJU11190
	1F:IC.EE. $)$ go T0 71	EJU11200
	r! (IC. GE. 2) $00 ~ r o ~ 72 ~$	BJU13210
c		EJU11220
c	Prouate case (FERERAL GUESTIONS)	EJU11230
c		EJU11240
	T:-7R(26)	EJU11250
	U4-I+1000	EJU11250
	co ro 9	EJU11270
c		FJU11290
c	Finval Case (DIVEREITY JuEISaICtION)	EJU11290
c		EdU11300
$\%$	-Trm(2)	BJu12310
	Us $=1+1000$	FJU11320
	Qu 7099	EJU11330
c		EJUli 340
C	CETMINAL CASE	EJU11350
c.		EJU1 560
7	I-TE(23)	EJU11370
	UF: $2+1000$	EJU11380
	(50) T0 94	EJU11390
c		EJU11400
c	Cuvilalus. CASE	EJUT1410
[E.JU11420
70	I: \times PR(29)	EJU11430
		EJUI 1440
	001049	EJU11450
0		EJU11460
C	SET THE NUMEER OF THE TRIAL (J) EFISONES.	EJU11470
C		EJU11480
5	1C=GATRE (2)	EJU11490
	IF (IC.GE. (20-NACU) ${ }^{\text {(}}$ (GO TO 80	EJU11500
	IF (IC.GE.7)EOTO 81	EJU11510
	IF (IC.GE.2)GO TO 82	EJU11520
c		E, JU11530
c	PRIUATE CASE (FEDERAL QUESTIONS)	EJU11540
C	. . .	BJU11550
	$I=T R(30)$	EJU11560
	UF= $=1+2000$	BJU11570
	GO T0 99	BJU11580

c		EJU11590
C	PRIVATE CASE（IIUERSITY JURISAICTION）	EJU11600
c		E． 0111610
82	I＝TR（31）	EJUL1620
	$U F=I+2000$	BJU11630
	GO 7097	EJU11640
c		FJU11650
C	CRIMINAL CASE	EJU11660
C		BJu11670
81	$\mathrm{I}=$ TEく 32 ）	EJU11680
	UF $=1+2000$	EJU11690
	G0 7099	EJU11700
c		EJU11710
c	CIUIL／U．S．CASE	EJul1 1720
C		EJuili ${ }^{\text {a }}$
80	$\mathrm{I}=$ TE（ 33 ）	BJu11740
	$U F=I+2000$	E．JU11750
	G0 T0 99	EJU11760
c		EJU11770
c	SELECT BRANCH masen on junge route node logic	E．JU11780
c		E．JU11790
9	CALL getat（att）	EJU11300
	H2＝ATT（2）+0.5	EJU11810
	$\mathrm{M}=$ ATr（ 3 ）+0.5	EJULIE820
	IF（ATT（2）．LE，2．）G0 T0 975	EJU11830
c	－${ }^{\text {ata }}$	EJU11840
0	FUBLTC－CASE－－	FJu11850
c		EJU11860
	IF゙（ATT（10）＋GE．8，）GO TO 920	FJu11870
c		E．JU11880
C	JUHGE IS NOT CURFENTLY IN AN INJUNCTION．	FJU11850
c	TF（TN（M27）EQ，1） 50 TO 990	E．Ju11900
C	TF（INS（M3）EEQ．1）60 T0 990	B． 1111910 $8 . J U 1920$
c	dugee is not being called to an inumetiom，	EJU11930
c		EJU11940
	IFGATT（10）EEQ，7．0R，ATT（10）．EQ．6．7）60 TO 960	EJU11950
c		EJU11960
C	Cose In Frocece	E．JU1970
c		E．10111980
		Eu41590
c		19.142000
c	MOT A Jinge only tetal efj．	FJU12010
c		F． 1.112020
		E．J122030
C		E． 1412040
0	HOY A J／A TRIAL E／J FOR THE JUNGE	EJU12050
0		Fuldi2060
		R 3142070
c		EJU12080
c	WOY A J／A tRIAL E／J FOF THE ATtORNEY．	E．1U12090
c		EJU12100
C	TEST WORKLGAL	E．1H12110
c	TEat wankoa	F．JU12120
	IF	
（ST（ME）－TNOU）．LE．0．0）G0 TO 901	EJUL2130	
	N2NC＝12s＋n3	［1J12140
	N0C $1=73+\mathrm{M} 3$	Eulli2150
	$\mathrm{HaC2}=170+\mathrm{CO}$	E． 1412160
	IFCM3．EQ，6）NQC2m2210	EJU12170
	WOEK＝XMINQ（NQNC）＋EETAJ＊XNINQ（NQC1）＋EETAJ＊XNINQ（NQC2）	E． 1412180
	IF゙（WORK．LT．1．0）G0 T0 902	EJUL2190
	WT Incurisx	FJU12200
		EJU12210
903	IF（WTIM，LT．（ST（192）－TNOW））GO To 990	EJUL2220
$c^{\text {c }}$		BJU12230
c	WAIT FOR ATTY	EJU12240
c	－	BJU12250
901	$\operatorname{ICRT}(\mathrm{M2})=2$	E．JU12260
	ICRT（M3）$=2$	B． 5112270
	G0 T0 960	EJUi2280
902	WTIM＝WTMX	FJU12290
	60.10903	FJU12300

IF（INJ（M3）EQ．1）GO TO 730
JUGGE IS NOT EEING CALLEA TO AN INWUNCTION．
IF（INJ（M2）EEQ，1）GO TD 970 －
$\begin{array}{ll}C \\ C & \text { FEQUIFEI ATTOFNEY IS NOT IN AN INUUNETION STATUS．} \\ C & \text { TEST IF ATTOFNEY IS IN A COUFTKOQM STATUS }\end{array}$
TEST IF ATTOFNEY IS IN A COUFTROQM STATUS
IF（ICFT（MR）EER．2）GO TO 910
C．GET J／A TO INJUNCTION FENIIING STATUS．
INJ（M2）$=1$
TiNJ（M3j＝1
GO TO 940
C
810
TEGT IF THERE IS A TEANSACTION IN Q－NOLE 40
TF（NFEL（AO），ER．O）GO 70912
IQ＝I．EINK゙（AD）－NEKS
NEXT＝MFEOくIQ）
C GET ATTEIBUTE 2 OF NEXT
TK゙＝NAAT（NEXT）＋ 1
IF（MESCF（IN）EQ，H2）GOTO 915
C
916
ATYRIEUTE 2 OF 3 IS NOT EQUAL TO M2 OF M3 FESFEOTIUELY
NEXT＝NFTR（NEXT）
IF（NEXT．ERAO）GOTO Y12
60 70813
C GET ATTKIRUTE 3 OF HEXT

JF（WESCR（IK），EQ．MO）GO TO 990
6070916
WONTINUE
TEST TU SEE IF THEEE IS A TRANGACTION TN R－NOLE $2 O$ ．
IT（MBEL（2O）EQ，O）GO TO 990
［0～LSJMK（20）－NEKS

C
c
C
\vdots
C
c
c
GA，ATTRLBLTE 1 OF NEXT
$\because O$ TK N N A T（AEXT）

ATHRLEUTE 1 JS NOT EQUAL TO ATT（1）
HEXT＝NFTR（MEXT）
ITH（NEXT＋ER．O）GO TO 990
e0 107070
CONTINUE
13F＝4．
601097
CONTINUE
TEET TO SEE IF THEFE IS A TRANSACTION IN Q－NONE 40.
IF゙（NEEL（AO）EQ．O）GO TO 990
TGーI．ENK゙（AOンーNSKS
NEXT＝MFEQ（IO）
GET ATTRIEUTE OF NEXT．
7071 TK゙＝NQAT（NEXT）
IF（LESCF：（IK゙）EQA．ATT（1））GO TO 960
C
C
C
ATTRIEUTE 1 IS NOT EQUAL TO ATT（1）
NEXT＝NFTR（NEXT）
IF（NEXT ．EQ．O）GO TD 990
GO TO 7071
CONTINUE
$\mathrm{LF}=3$ ．
GO TO 99
EJU12320
EJU1\％330
BJU12340
EJU12350
B．JU12360
EJU12370
EJU12380
B． 1112390
B． 1112400
EJU12410
EJU12420
E．JU12430
EJU12440
EJU12450
EJU12460
BJUL2470
EJU12480
EJU12490
EJU12500
EJU12510
EuU12520
EJU12530
सJU12540
EJU12550
EJU12560
EJU12570
EJU12580
E．JU12590
EJUJ12600
EJU1．2610
EJU12620
EJU12630
EJU12640
EJU12650
EJU12660
BJu12670
EJU12680
EJU12690
BJU12700
EJU12716
EJリ12720
EJU12730
EJU12740
EJU12750
EJU12760
EJU12770
EJUL2780
BJH12790
B． 1012800
EJU12310
EJU12920
FJU12830
BJU12840
EJUL2850
Eulu2e60
EJU12870
E．JU12880
EJU12890
EJU12900
EJU12910
EJU12920
EJUI2930
EJU12940
EJUI2950
EJU13760
EJU12970
EJU12980
EJU12990
EJU13000
EJU13010
E．JU13020
EJU13030
EJU13040
IF（INJ（M3），EG．1）GO TO 990

 1037 IK゙=IK゙-1 . IF (IESCR(IK) +EQ.M2)GO TO 1090 GO TO 1036
1050 CONTINUE
TEST TO SEE IF THEFE IS A TFANSACTION I Q-NOME 19.
IF(NFEL (19) +EQ. OSGQ TO 1090 IQ=LSIAK(19)-NSKS

170

$I=$ GATRE (σ)
E.JU15400
A. $\mathrm{J}=\mathrm{I}-1$

EJU15410
CALL Patre (AJ, 6)
EJU15420
G0 T0 99
EJUJE430 EJJU15440
SET ATTEIEUTE 11 FOR INJ/NO-INJ(A).
J=GATEE(3)
IF (INJ(J) E EG. 1) 60 TO 190 BJU15450 EJUTEA60 EJUIS470

だ=GATRE(11)
UF $=\mathrm{K}$
G0 1099
$\mathrm{K}=$ GATRE(11)
$U F=-K$
00 TO 99

```
gEt FlaG for attorney with comfleten trial ghJ.
```

IF (ATT (11) EEQ. - 5.$)$ ATT $(3)=7$.
IF $(\operatorname{ATT}(11) . E Q+\quad 0$.$) ATT (3)=7$.
IF(ATT(11) EEQ. S.)ATT(3) $=7$.

IF(INJ(M2) , EQ. 1) UF=1,
call FUTAT(ATT)
EOTO 99
c
C ExTERMOL nelay seruice TrME
2. 1LwGnTFB(2)

IF (TC .GE 7 OG TO 211
IFSLO GE 2,00 TO 2t2
c
c
c
C
c
c
C
2
c
c
c
21.

C
C
C
2
C
C
C
C
2

Lf:rks.sn)
GQ TO \% .
huvescety Jumssmiction case
$2, ~ U F=T R(3 E)$
GU TO 99
CREMINAL CAGE

GO TO $\%$
CIUTLA.S. CASE
U":TR(3\%)
60 ro 90
PUELIC INJUNCTION SERUICE TIME.
IC=GATFB(2)
ICJEGATFE(3)
IF (IC. GE (20 -NACU)) 60 TO 220
IF (IC . LT, 7)CALL ERFOR(337)
CFIMINAL CASE
$U F=T R(38)$
GOT0 97
CIUILNUS. CASE
$U F=T R(39)$
GO T0 97
C
C
C
OTHER COUFTRIOOM SERUICE TIME

IC＝GATRH（2）
4．JU16180
ICNTGATFE（3）
IF（IC GE，3）CALL ERROF（338） IF（IC ．LEE ，2）OO TO 23O

FELEFAAL QUESTION CASE
$U F=T F(40)$
GOTO 98
DIUEREITY JURTSDICTION CASE
$U F=T R(41)$
GO TO 98
FRIUATE INJUNCTION SEGUICE TIME
24 IC＝GATRE（2）
ICJ＝GATFE（3）
IF（IC－GE，3）CALL ERKOR（339）
IF（IC ，OE，2）GO TO 240
C
C
C
C
C
C
240
C
C
C
ご
FEDEFAL QUESTION CASE
UF゙＝Tに（A2）
607090
C IIUEFSITY JUFTSIICTION CASE
C
c
C
2

60 TO 98
C
C
C

L	MVUESETTY JUFTSMTCTION CASE
0	
－66	1：GATEE（6）
	IT［TT＋GE 2000） 0070252
	UF－T®（96）
	E0 7098
20.	UF＝T下゙くイ7）
	G0 T0 7

59の日Thiscs
FJU16190
EJUN 6200
EJUI6210
FJU16220
EJU16330
EJU16240
E．JU16250
EJUJ6260
EJU16270
日コい16280
PJU16290
RJU16300
H．lul6310
EJU16320
E，J16330
FJUJ6340
ENJ16350
EJU116360
E． 1 U16370
FJU16380
EJU16390
EJUL6400
EJU16410
EJU16A20
EJUs． 6430
EJU16A保
B．JU16450
EJU16460
EJU16470
Full 6480
FJUL6490
EJU16500
BJU16510
GJU16520
EJUN6530
EJUJ6540
EJU16550
EJLI6560
EJU165\％0
EJUJ．6580
FuU16500
B， 1016600
EJUN 6610
EJUl． 6620
EJUl6630
FJU． 6640
EJU16650
स 1416660
BJUN6670
BJU16880
EJU16690
HJU16700
EJUJ6710
EJU16720
Evulu 6730
BJU16740
EJU16750
EJU16760
B． 3116770
ENUI6780
EJJJ16790
EJUN．6800
EJUN6910
E．JUI6820
E．jU16830
EJUI6840
B，JU16850
EuU16860
EJU16870
EJU16880
EJU16890
FJU16900
EJU16910
EJU16920
E．JU16930
EJU16940
EJU16950
BJUL6960
8JU16970

39 IA=GATRE (2) EJU202Z0
IF(IA.LE,2) CALL ERROR (355) EJU2O240
CALL TIM (O.0,IA) EJU20250
007099

40 IJ=GATRE (3)
IF (IJ,LE.O) CALL ERROR (3S6)
CALL TIM(1.0.IJ)
$60 T 099$

41 IJ=GATRE(3)
EJU20250 BJU20270
BJU20280
Bju20290
EJU20300
BJU20310
E. 1420320

EJJU20330
BJU20340.
E.JU20350

EJU20360
E.JU20370
E.JU203e0

EJU20390
[H J ZO 0400
EJU20410
EJU20420
EJU20430
EJU20440
EJU20450
E.JU20460

EJJU20470
E.JU20480

EJU20490
をJU20500
B. J 20510
E.JU20520
[.JU20530
EJU20540
E. 1120550
E. 1420560
E. 1420570
B. 1120580
B. 1420590
B.JU20000

BJU20610
EJU20620
EJU20630
E. 11120.540
E. J U20650
B. 5420660

EJU20670
\&JU20690
E.JU20690

EJU20700
E.J120710

Bution
BJU20730
EJU20740
Eijii20 750
B.JU20760

BJU20770
E.JU20780
E.JU20790

FuU20500
EJU20510
BJU20820
EJU20830
B. 1420840

BUU20850
BJU20860
E. 11220870

BJU20880
BJU20890
EJU20900
EJU20910
EJU20920
BJU20930
BJU20940
BJU20950
EJU20960
EJU20970
BJU20980
BJU20990 EJU21000
49 IC=GATRE(2)
IF (IC.GE. (20-NACV)) GO TO 490
BJu21010
IF (IC.GE,7)CALL EFFIOR(363)
IF (IC.GE.2)GO TO 492

… …1．

c
c
c FEIERAL QUESTION CASE
C

FN＝ERAMLI（3） EJU21060 EJU21070

C UF＝0．0 BJUZIO90

EXTERNAL NELAY WHEN UF＝1．0
IF（FN，LE，FEEIF）UF＝1．0
RETURN
EJU21120
Bulu21130
EJU21140
EJU21150
E．JU21160
EJU21170
492 RN＝TRANII（4）
$U F=0.0$
C
C
C
External delay when uf＝1．0
EJU21180
Bulu21190
EJU21200
EJUS 1210
EJU21220
TF（FN，LE F FEMD）UF $=1.0$
RETUFN
EJJ21230
EJU21240
EJU21250
BJu21260
EJU21270
490 RH＝LRANTR（2）
$\mathrm{UF}=0.0$
EJU21280
EJU21290
BJU21300
EJU21310
EJU21320
E．JU21330
EHIU21340
E． 1421350
EJU21360
EJU21370
E．JU21390
EJU21390
EJJV1400
EJU21410
EJJU21420
EJU21430
B．JU21490
EJU21450
140.0
wit in sol
ウォロ
SET QUEUE RANFING FOR OTHER COURTROOM
32 UF： 3.0
G0 T0 501
000
ELE QUEUE RONKING FOR TRIAL
33 UF：5．0
60 10501
C
C
C
get queue ranking for noncourtroom（Junge）
IA UF $=2.0$
Gie 70801
SET QUEUE RANKING FOR NONCOURTROUM（ATTORNEY）
$55 U F=1.0$
60 T0 501
C
C
SET QUEUE RANKING FOR TRIAL IN FRQGRESS
$56 \quad U F=7.0$
IF（GATRB（4），LT ．0．0）UF＝6．7
FETURN
Is this the beginning of a speeny trial．
$57 U F=1.0$
QR＝GATER（10）
IF（QR．EQ，6，5．OR，QR，EQ，G．6）GO TO 570
FETURN
ロロロの
TEST TIME SINCE ARRAIGNMENT AGAINST SFEENY TRIAL
TIME THFESHOLD（STT）（A4＝－（TIME OF ARFAIGNMENT））
5\％O IF（（TNOW＋GATRR（4））．LE．STT）RETURN
B．JU21．470
BJU21480
BJI2 2190
EJU21500
E． 11421510
EJuz1520
EJU2：530
E．JIU21540
EJU21550
BJU21560 EJU21570 E． 1421580 EJULIE90 E． 1121600 BJUS 1610 B． 1021620 EJU21530 E．JU21640 EJU21550 E． 1421660 EJJU21670 E．JU21690 EJU21690 BJU21700 EJU21710 EJU21720 E．JU21730
E．JU21740 EJU21750
EJU21760
B．JU21770
FJU21780
EJU21790
EJU21800
EJU21810
EJU21820
EJU21830
BJU21840
EJU21850
BJU21950
C
c
c
GII NOT INITIATE SFEEIY TRIAL WITHIN TIME LIMIT

	$U F=0.0$	E，J1521890
	FETUFIN	EJU21890
C		BJU21900
C	INTEFCUFEENT CHANGES TFIGGEFER SY AUERAGE WAITING TIMES	EJU21810
C	ANI AVERABE QUEUE LENGTHS（TF ANY ONE THFESHOLII IS FASSED	EJU21920
C	ALL INTERCURRENT CHANGES ARE MALIE．）	EJU21930
c		EJIJ21910
5 E	AUGJ＝0．0	BJU21950
	AVGK゙＝0．0	BJU21960
	AUGL $=0.0$	BJU21970
	AVGitio 0.0	EJU21980
	AUGN $=0.0$	EJU21990
	AVGO $=0.0$	EJJJ22000
	AUGF $=0.0$	EJU22010
	XNJ $=$ NJ	EJUS2020
	XNAR $=$ NACF	EJU22030
	XNAV＝NACU	EJU22040
	NLS m NSK゙S＋1	E，JU22050
	LTLI．．NSK゙StNaM	EJU22060
	H0 581 I＝NIEMLCRL	EJU22070
		EJU22080
		EJU22090
		［JU22100
		EJu22110
		EJU22120
		EJJ22．30
		EJU22140
		E小U22150
		EJU22160
		EJu22170
		E．JU22180
		EJU22150
	Ea T0 5ed	EJu22200
c		Eulia2210
C	AUEFAGE WASTENG TSME＇	EJU22220
c		EJU22230
C		EJU23240
C	TU心－JW゙心（TJME	玉JU22250
C		EJU22260
－33	1－6107（1）．EQ．0）60 T0 531	EJU22270
	MremF－35	EJU22280
－		В ${ }^{\text {du229 }}$
		B．ju2300
3w		Eulue2310
		FJU22320
	6010531	EJU22330
C		EJU22340
0	TH心－ATT（TTME）	WJU22350
C，		EJU23360
… 4		BJU22370
		B．JU22380
	内サisJm゙（40）－N5バS	HJJ52390
	GOT0 5814	E．JU22400
C	．．．．．．．－．．－－．．．．．．	EJリJ22910
C	GVEFAGE QUELUE LENGTHS	FJU22420
C	－	FJU22430
C		BJU22440
C	W0－CT	BJU22450
C		DJU22460
E95	AUG」＝AUGJt（TINIG（NSTNK（I））（TNOW－TEEG））	E．JU22470
	E0 TO 381	BJU22480
c		FJU22490
C	ATT－CT（CFIMINAL）	EJU32500
586	AVGK＝AUGK＋（TINIQ（NSINK（I））／（TNOW－TEEG））	EJU22510
	GO T0 581	BJu22520
C		F．JU22530
C	ATT－CT（CIUIL）	EJU22540
C		EJU22550
597	AVGL＝AVGL $+(T I N I Q(N S I N K(I)) /(T N O W-T B E G))$	EJU22500
	GO TO 581	EJU22570
C		EJU22580
c	JLIG－NC	BJU22590
C		BJU22600
588	AUCK＝AUGM $+(T I N I Q(N S I N K(I)) /(T N O W-T E E G) ~) ~$	E．ju22610
	GO TO 581	EJU22620
C		EJU22630
c	ATT－NC（CRIMINAL．）	EJU22640
C		FJU22650
589	AUGN＝AUGN＋（TINIQ ${ }^{\text {（NSINK }}(\mathrm{I})$ ）／（TNQW－TEEG）$)$	EJU22660
	GO TO 581	H．JU22670
C		EJU22680
C	ATT－NG（CIUIL）	FJU22690
c．．	．．．，．．．．C－134．	EJU22700

```
    5B10 AÜGO=AUGO+(TINIG(NSINK'(I))/(TNOW-TEEG))
    GO TO 581
    C
    FRI - J
    5811 AVGF=AVGF+(TINIO(NSTNK(I))/(TNOW-TEE(G))
        581 CONTINUE
        IF(IGT(3).EQ.0)GO TO 5815
        AVGJ=AUGJ/XNJ
        IF(AVGJ.GT,T(3))GO TO 5813
    -5815 IF(IOT(4).EQ.0)00 TO 5816
```



```
        IF(AVGK.GT.T(A))GO TO 5813
    5816 TF(IOT(S).EQ+O)GO TO 5917
    AUGL=AUGL/XNR\
    IF(AVGL.GT.TCS))GO TO 5813
    5817 IF(IOT(6), EQ(0)GO TO 5818
        AVGM=AVGM/XXNS
        IF(AVGM.GT.T(6))GO TO 5813
    5815 IF(TQT(%).EG.0)G0 T0 5819
        AVGN=AVGN/XNAF
        IF(AVGN.GT.T(7))GO TO 5813
        5819 IF(IGT(B).ER.0)G0 T0 5920
        AUGO=AVGO/XNAU
        IF(AVGO.GT+T(B))GO TO 5S13
    5920 IF(IGT(9).EQ.0)G0 TO 5921
    GVGF=AUGFFXNJ
    IF(AVGF,GT+T(9))GO TO 5S13
    5 8 2 1 ~ U F = 1 . 0
    EETUEN
    5B.3 CALL CHNG
        WRITE(G,7002) AVGJ,AVGK,AVGL,AVGM,AUGN,AVGO,AUGF
    7002 FOFmAT(7(1Y,F10.5))
        WFITE(6,582.2) TNOW
    5S22 FOFBAT (SX, SAHINTEFICURFENT CHANGGS MADE AT TIVE ,FG.3)
    UF=0.0
    RETUEM
C
        5% ICJ=GATRH(3)
            ST(ICJ)=TNOW+EIJJ
            UF=[IJ
            RETUKH
    C
    GET ST(I) ACCOROING TO ATTORNEY'S INTERNAL RELAY
        # ICA:=GATFE(2)
            ST(ICA)=TNOW+HIA
            UF=1HA
            FEETUES!
    c L, Lumitr uF
    && FETURN
    C FREETNG JUGGE (NC)
                            :
        \therefore\therefore IC=GNTEE(3)
            IF(NCSJ.EG.1)GO TO 621
            TF(TNJ(1E).EQ.1)G0 TO 622
            IF(ICRT(IC).EG.2.OF.ICRT(IC),EQ.3)GO TO 622
        S21 NONC=123+IC
            NaC1=73+IC
            NOC2=190+IC
            IF(IC.EQ.G)NOC2=221
            IF(EETAJ*XNING(NQC1)+RETAJ*XNINQ(NOC2),GE.XNING(NONC))GO TO 622
            C
            SENI Jumge to NC
            UF=0.0
            RETURN
            C S SENII Junge to C
            622 UF=1.0
            RETURN
            C
                    C
        63 IC=GATREB(2)
            IF(IC.LE.(19-NACU))GO TO 633
            ATTORNEY (CIUIL)
                C-135
```

EJU22710
EJU22720
EJUL22730
EJU22740
B. 1022750

EWU22760
BJU22770
E. 1422780
E. 11222790

EJU22800
E.ju22esio
E.JU22820
E.JU228:30

EJU22840
EJU22950
EJU22e60
EJU228870
EJJ22980
EJU228990
EJU22900
EJIJ22910
EJU22920
EJU22930
EJU22940
E. 1022950
E. 1022960

EJU22970
EJU22980
EJU22990
E.J123000

EJJI23010
[iJJ23020
EJU23030
B.JU23040

EJU23050
E. 1123060
E. 1423070
E.JU23080

EJU23090
EJJ23100
EHU23:10
BJlj23120
BJu23130
BJ123140
EJJU23150
EJU23.160
E. 1 232170
E. 1 U33.180
E.JU23190

GJU23200
E. 1423210
B. 1123220
E. 5423230
E.JU23240

EJU23250
B. 1023260

EJU23270
EJU23280
EJJS3290
E. 1123300
E. 1 U23310
E.JU23320
E.JU23330

BJIL23340
B.JU23350

EJU23360
EJU23370
EJj23380
EJU23390
BJU23400
B.1123410

EJU23420
BJU23430
EJU23440
BJU23450
BJU23460
E. JU23470

EJU23490
EJU23490
E.JU23500

EJU23510
E.JU23520

BJU23530
EJU23540
EJU23550

IF（NCSAU，EQ． 1 ）EOO TO 631
BJU23560
632 IF（INJSIC）．EG．1）GO TO 637
EJU23570
638 IF（ICRT（IC）．EQ．2）GO TO 637
631 NCNC $=123+1 C$
IF（IC．EO．19）NGNC＝226
NaC1＝73＋TC
IF゙（IC．EQ．19）NOC．1＝224
IF（TC．LE．（19－NACU））GO TO 634
IF（EETAUXXNINQ（NQC1）．GE，XNINQ（NQNE））GOTO 637
GO T0 636
EJU23580
E． 1423590
BJ J 23600
EJU23610
BJ1U23620
EJU23630
FJU23640
E．ju23650
EJU23660
BJU23670
BJU23680
EJU23690
EJJU23700
EJU23710
BJU23720
－BJU23730
BJU23740
EJU23750
EJU23760
EJUS3770
E． .423780
EJU23790
EJU23800
B． 1123810
EJU23820
EJU23830
B．JU23840
BJU23850
BJU23860
E． 1423870
EJJU23830
EJU23890
BJU23900
EJU23910
BJU239220
BJリ23930
EJU23940 EJU23950 BJU23960 EJU23970 EJU23980
GO 00642
－BJU23990 H．JU24000 BJU24010 EJU24020 EJU24030 EJU24040 E． 1 U24050 EJU24060 EUJU24070 EJll24080 B．JU24090 EJJ24100 BJIJ24110 EJU24120 BJU24130 B． 1024140 EJU24150 E．JU24160 BJU24170 BJU24180 EJU24190 EJU24200 EJU24210 BJリ24220 EJU24230
E．JU24240
BJU24250
BJU24260
EJU24270
B．Y U 4280
E 51524270
BJU24300
BJU24310
EJU24320
EJU24330
E．JU24340
BJU24350
EJU24350 EJU24370 E．JU24380 FJU24390 E．JU24400 HJU24410 E．11124420
666 UF $=1.0$

TEST IF THIS IS A FRIVATE CASE
660 IF (ICA.LE, 2)GO TO 664
IF(INJ(ICA).ER.I)GO TO 6\&1

NGNC=123+ICA вJU24720
IC (ICA, EQ + 19) NQNC=226
$\cdot 10 C 1=78+1 C A$ EJU24730

IF (ICA.EX.19)NACI=224 8JU24740

YF(ICA.LE. (19-NACV)) GO TO 662
ATTORNEY (CIVIL)
TF (EE?AUSXNINO(NQC:1) .LT.XNINQ(NQNE))GO TO 661
GOTO So3
EJU24750
B. 1424760
B. 1024770

BJU24780 H. 11224790 B. 1424800 E. 1.24810

SEAB JURGE TO C

CHECK IF ThIS is a FUEI.IC CASE

IF\{ICA.OT, 2)CSTAT (ICN) =1.0
FETUE:
SENA JUME TO NC 601 Uf:- $-1+0$ E. 1424820玉.JU24830 B. 1024840 E. 1424850 R.U2AB6O E.JU24870 BJU24980 BJU2A890 E. 1424900 E. H254510 B. 10920 E. 1434930 BJII24940 E. 1124950 B. 1129960 BJU24970
 EJJU24990 E. 1425000 E.JU25010 E. 1 U25020

IF (ICA.GT, 2)UF=UF*3.0 EJU25030
IF (ICA. BT .2$) \operatorname{cSTAT}(I C J)=0.0$
RETUFN EWU25040

INJ STATUS HAS FREUIOUSLY BEEN TESTEII
67 TIS=GATRE(10) B. 1425090 E. 1425100 EJU25110
IC=GATRE (2)
IC J=GATRE (3)
IF (TIS.EQ.7.0.OR.TIS.EG.6.7)GO TO 670
FREEING ATTORNEY (OTHER CQURTROOM/SFEEIY TRIAL TIME LIMIT) EJU25120 EJJ25130 EJUT25140 EJU25150 E. 1 U25160 E. 1425180

IF(IC.LE.(19-NACU))GO TO 672 EJU25190
ATTORNEY (EIUIL) BJU25200 EJU25210
IF (NOCSU.EG. 1) GO TO 631 EJU25220
GO TO 638. G-137


```
    202 XS=SUHA(I,I)
    E.j1126930
    XN=SUMA(I,3)
    IF(XN.EQ.O.O) CO TO }00
    A\cupG:=XS/XN
    XSS=SUMA(Iy2)
    XF(XN*XS5-X5*XS)204,204,203
    203 IF(XN.EQ.1.)GO TO 2OA
    STE=(((XN*XGG)-(XS*XS) )/(XN* (XN-1, ) ) ***O.5
    GO TO 2OE
    204 ST[=0.
    205 SE=STH/SQNT (XN)
    NK = NSINK゙(I)-89
    00 T0(206,207,208,209), NK
    2OS WFITTE(6,508)AVG,STL,SE
    50G FOFMAT (/3X.10,1CIUIL/U.S.,*X,3(2X,F8.2))
    Q0 T0 20:1
    207 WIITE(G:5Og)GUG:STH,SE
    50% FOFMAT (/3X, BHCFTMINAL,11X,3(2X,FB,2))
        00 T0 201
    208 WNTTE(6,510)AVG,STH,SE
    510 FOFHAT(/3X,gHMIU. JUF., 10X,3(2X,F8,2))
        (30) T0 201
    209 WFITE(6,511)AVG,STH,SE
    511 FOFMAT (/3X,1GHFENERAL QUESTION, 3X,3(2X,FG,2))
        GO TO 201
    605 JK゙:=NSINKK(I)-69
        (30)T0 (601,603:605.607), SK
601 WFTITE(6,602)
    6O2 FOFMAT(% SX,10HCIUIL/U,S,F18X,18HNO VALUES FECORNED)
    G0 T0 203
    SOS WEITE(SyGOA) -
```



```
        O0 TO 201
    605 WRJTE(S%606)
    SOG FORMAT(/3%ygHOIIV. JUR., 19X, %HNO UALUES FECOFNEN)
        G0 T0 201
    80% WHITE(6y60日)
```



```
    #3. LONTTTNUE
C
        COMPLETCOMS
        W゙TE(6,512)
```



```
        ぶ=1
    309 XS*HOLIM(JK., )
        Xi==NFUN
        ADB:=XS/XN
        XSS=:HOLIN(JK, 2)
        TF(XN*X5S-XS*XS)302y 302,301
    301 TF\XN.EQ.1+)G0 T0 302
        ET[##(((XNWXSS)-(XS*XS)).((XN*(XN-1.)))**0.S
        GO TO 30%
    O2 STIM=0.
    #%z G:=%5゙M/SQFT(%N)
        E0 (0 (304,305,306,307) , JK
    Z\cupA WFTTE(6,5OB)AVG,STY,SE
        ЈK=2
        GO T0 308
    30S WFITE(6,50%)AUG,STIISE
        」バ=3
        GO TO 308
306 WFITE(G,510)AVG,STI,SE
        JK゙=4
        GO TO 308
        E.JU26940
        EJU26950
        EJU26960
        EJU26960
        EJU26980
        F.JU26990
        EJU27000
        EJU27010
        BJU27020
        E|u27030
    E.JU27040
    EJU27050
    E.JU27080
    B.JU27070
    BJU27080
    B.JJ27090
    E.JU27100
    B.JU27110
    E.JU27120
    EJU27130
    E,NU27140
    EJU27150
    BJU27160
    EJU27170
    EJU27180
    E.JU27190
E.JU27200
EJUU27210
EJU27220
&JU27230
EJU27240
E.JU27250
BJU27260
BJU27270
E||27280
BJU27290
BJ1U27300
B.JU27310
EJU27320
Bulj27330
E.JU27340
BJ|27350
EJU27360
E,JU27370
EJU27380
EJU27390
EJU27400
HJU27410
FuJU27420
EJU27430
EJU27440
E.JU27450
FJU27460
FJu27470
EJU27480
EJU27490
EJU27500
Bu\27510
8.JU27520
EJU27530
& &JU27540
8JU27550
EJU27560
E.JU27570
```


139 WTSNJ=0.
BJU2BA00
140 WTGEJ=WTSOJ/SQRT(XN) EJU2EA10

BJU28420
513 FORMAT (//IX,2OHAVERAGE WAITING TIME//ZX.7HTOC-JIG, 12X,3(2X,FE.2)) EJJ2EAZO GO TO 101

137 WXSA=SUMA (I,6)
WSSA=SUPA $(I, 3)$
AWTA $=W X S A / X N$
IF (XN*WSSA-WXSA*WXSA) 142,142,141
141 IF (XN.EQ.1.)GO TO 142
WTSMA $=(((X N * W S S A)-(W X S A * W X S A)) /(X N *(X N-1))) * *$.
GO 10143
142 WTSIA $=0$.
143 WTGEA=WTSNA/SRRT (XN)
WRTTE ($6: 51$ 4) AWTA, WTEDA,WTSEA
514 FOFAMAT ($3 X$. 7 HTOC-ATT, $12 X, 3(2 X, F 8.2)$)
101 CONTINUE WFITE(6.515)
515 FOFifAT (//1X,2OHAUEFAGE RUEUE LENGTH)
AVG $\rfloor=\times 5 J / X N J$
AVGK=XSK/XNAF:
GUGL=XSL/XNAU
AUGM=XSM/XNJ
AVGN=XSM/XIAAR
AVGO $=\times 50 /$ XNAU
ANGF $=\times S F^{\prime} / \times N J$
IF (XNJ*XSS.J-X5J*XSJ) $107,109,110$
124 TF (XNAEWXSSK゙-XSK*XSK゙) 111,111,112

1.0 IF (XN1.E(2.1.) 00 TO 109
 (60 70123
\%y gius.e.

 E0 TO 124

 G0 TO 125
111 EIMK=0.

WFTTE(6) E17)AVGK, STLK, SEK
E17 FOHMAT(JX.17HATT-CT (CFIMINAL), $2 X, 3(2 X, F G, 2)$) co ro 120
114 IF Y YNAV.EO.1.) 00 TO 113
 G0 T0 127
113 5MM-0.
12\% SEL=ETMLSGRT(XNAV) WFRTE (6, 513)AVGL,STHL, SEL
 GO TO 128
116 IF (XNJ.EQ.1.) GO TO 115 (XM) (Y (XN 1 (GO TO 129
115 5 TMM=0.
129 SEM=STLM/EAFT (XNJ) WFITE (6 SJ. 9)AUGM, STLM, SEM
 GO TO 130
113 IF (XNAF.EQ.1.) GO TO 117 STIN=(((XNAFI*XSSN)-(XSN*XSN))/(XNAF* (XNAF:-1.)))**0.S GO TO 131
117 STMN=0.
131 SEN=STIN/SQRT (XNAF:) WFITE(6,520)AUGN,STEN,SEN
520 FORMAT ($/ 3 X, 17$ HATT-NC (CFIMINAL), $2 \mathrm{X}, 3(2 \mathrm{X}, \mathrm{FB}, 2)$) g0 TO 132
$120 \mathrm{IF}(X N A V, E R .1$.$) GO TO 119$ STLO= (($(X N A U * X S S O)-(X S O * X S O)) /(X N A U *(X N A U-1)),) * * 0: 5$ GO TO 133
F.JU28440 EJU28430
BJU28460
EJU28470
FJU28480
BJU28490 ENU28500
BJU2ES10
BJU28520
E. Ju2es:30

EJU28540
E JU28550
m Ju2e560
B.JU28570
E. 1428580

EJU28590
BJU20600
BJU28510
EJj28620
EJJ28630
EJU28540
EJU28650
EJU20660
EJU28670
BJU28680
EJU28690
EJU28700
EU1U287:0
T.JU2e720
E. 1128730

EJU2S740
EJU28750
EJU2E760
FJu28770
F3 128780
स 1028790
Fuil2a600
FJU28E10
FJu28520
FJU28e30 EJU28340
EJU28850
E.JU28560
E.JU288270

BJU28890
E.JU25890

EJU28900
Eulu2a910
B. 11229220

B11128930
B. 11 I 28940
B. 3025950
B. 1428960
E. 11229270 EJU28980
BJU23990
B. 1129000

EJJU29010
EJU29020
E.JU25030

BJU29040
BJU29050
BJU29060
BJU29070
EJU29080
BJU29090
BJU29100
BJU29110
EJU29120
EJU29130
EJU29140
HJU29150
E.JU29160

EJU29170
BJu29180

EJU29250
GOTO 135
EJU29260
$1215 T D F=0$.
135 SEF=STIFF/SART(XNJ)
BJU29270
WRITE (6, 522)AUGP:STDF,SEF BJ1129290
BJU29280
S22 FOEMAT(/3X, EHFFI-J,14X,3(2X,FB.2))
BJU29290
RETURN
BJU29300
B. 3427310
ENI
FUNCTION NSTG(IX)
BJU29320
EJUU29330
COMMON/CFMNL/NFOLW(15),UFA(15), IEFSII(15), IATTE(15), NERNCH(25), E JU29340
*
NEXTS $(25,6)$, FNEXT $(25,6)$, ITHTH(7), FCTNJ 115$)$, FCEXI (15), EJU29350
IACOL(15), ISCOL(15), SFEEM(15), FLSE, BAIL, FMITF(5) EJ129360
IITHENSION UAL (6), FFOE (6)
B.JU29370
THIS FUNCTION SELECTS THE NEXT STAGE FOLLOWING DECISION FOINT IX EJU29390
$\mathrm{NB}=\mathrm{NEFNCH}(I X) \quad$ EJU29400
$1025 \mathrm{I}=1$, NB
BJU29410
BJU29420
FROR(I)=FNEXT(IX,I) BJU29430
VAL (I) $=$ NEXTS (IX,I) EJU29440
25 CONTINUE
NSTG=[IFROE (FROR, UAL, NEFNCH (IX), 1)
RETUEN
ENL
SUBFOUTINE RUFISN(LAST,NEXT)
COMHON/CRMNL/NFOLU(15), UFA(15), IEFSH(15), IATTR(15),NEFNCH(25), EJU29500
等:
HEXTS(25, 6), FNEXT 25,6), IMRTN(7), FCINJ(15), FCEXT(15), EJu29510

B. 1229520
EJU29530
THIS ROUTINE HETERYINES THE OUTCOME OF A IIUFFSSION EJU29F40
IF THE DIUERSION IS SUCCESSFUL
E.JU29550
EJU29560
NEXT $=209$ OF 210 - WHICH IMIICATE A SINK (CASE COMFLETION) BJU29570
घJU29560
IT THE DIUESEION TS URSUCEESSFUL - EHU2GE90

STAUE IM THE CRTMTMAL CASE FLOW EJU29610
WJU29620
LAST IS THE RECISION FOINT AT WHICH THE HIVERSION WAS INITIATEI BH29630
AEXT=NETG(9)
NEXT=NEXTX (-5)
NEXTHNETG(NEXT)
IF゙ (NEXT, EG•100DNEXT=IRRTN(LAST)
EETVEN
ER
FGRETION NETTA(IA) EJU29710

\%

THLS ROUTINE DETEFMINES THE NEXT STAGE IN THE CRIMINAL
ChBE STRUCTGEE FOR THE CURRENT CASE
HETERMINE IF THE CURRENT TRANSACTION IS JUST ENTEFING THE SYSTEM
IF(IX.GT.O)GO TO 25
NETTA $=1$
FETURN
DETERMINE IF THE CURREIUT TEANSACTION HAS JUST COMFLETES TFIAL
25 CONTINUE
IF (IX,GE,1000) Ga TO 500
CURFEENT TFANSACTIONIS NOT COMFLETING TRIAL
HETERMINE IF THE CURRENT TRANSACTION COULII HAUE MULTIFLE EFISOIES EJUZ9920
EJU29930
IF (IEFSII (IX).LE.O)GO TO 50 EJUL29940
HETERMINE IF THE NUMEFF OF EPISOLIES REMAINTNG IS > 0 EJU29950
U E.JU29970
$J=\operatorname{IATTR}(I X)$
$K=\operatorname{GATFE}(J)$
F 1429980
IF (K.LE.O)GO TO 50
C-143
BJU29990
BJU30000

$\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \end{aligned}$		FJU30010
	THE CUFRENT TFANSACTION HAS EFISDLES REMAINING	E. 1430020
		E.JU30030
	MEXTA $=1 \times$	EJU30040
	REETURN	EJU330050
50	CONTINUE	EJU30060
C		BJU30070
c	LETEFMINE THE NEXT STAGE OF THE CURFENT TRANSACTION	EJU30080
c		EJU30070
	NEXT $=$ NFOLW(IX)	EJU30100
75	CONTINUE	EJU30110
	IF (NEXT)300,200,100	EJU30120
200	CALL EFFiOR(550)	EJU30130
300	continue	E.JU30140
C		EJU30150
C	CUFFENT STAGE IS A IUECISION FOINT	EJU30160
0		EJU30170
	NEXT=NEXT* (-1)	EJJJ30180
	LAST=NEXT	E.JU30190
C		E.JU30200
C	SELECT NEXT Stage	EJU30210
c		EJU30220
325	NEXT=NSTG(NEXT)	EJU30230
	IF (NEXT) $350,250,100$	EJU30240
250	CALL ERFOR(550)	BJU30250
250	CONTINUE	E.JU30260
C		E, 1130270
c	RESULT OF FATH SELECTIDN IS A necision point	E.JU30280
C		E.JU30290
c	FIFST CHECK IF IF $=8$ (THE IIUERSION LECTSION FOINT)	EJU30300
C		E, JU30310
	NEXT=NEXT* (-1)	EJu30320


```
IF(IFANI(E),GT, PCEXI(IX))FETUFNN EJUS2280
NACT=63 E.JU32300
I=GATFE(B)
I=I+5000
CALL FATFE(1.,5)
CALL PATRE(FLOAT(I),G)
FETURN
C CURFENT TFANSACTION WAS PREUIOUSLY IELAYENI FRIOR TO STAFTT OF TETAL.
1540 CONTINUE
KILY=0
NILLY=KIILY
IN゙(K゙LLY,GLE , 5)NDLY=F
IF(IFAND(B),GT FMMTR (NLLLY) )RETURN
NACT=63
I=GATES(6)
    I=I+5000
    ILY=KLIL_Y&1
    CALL FATRE (ILY,5)
    CALL FATFE(FLOAT(I) y6)
    FETUFN
    ENII
    GUHROUTINE CHNG
    CUMMON /QVAF/ NIE&NFTELS2EO),NFEIN(2G0), NRELF(250),NFEL2(25O),
        *NFUN, NBUMS NTLG(250),FAFAM(100, 4) ,TEEG TNON
            IIMENETON ICÖN(4)
            NATEGEF STAR
            MATA STAR/1H*/
        ッாோ
        : NEAN(E,2)(ICOH(I),I=1;4):NCHNG
    * Fgrmint(A1,3A3yI5)
    1F:ICGM(1),EQ.STBF) GO TO 1
    IF(NCHMSTLT,O) CALLLEFROF(SJO)
    C
    GLAL MGHNG EARAMETER CHANGES
    1-200 1-2 semad
```



```
    A B%FAT (AI,SAZ,IE:
    I: (TCOM(1), EQ, ETAFS EO TO 3
    If (FW,LT.O) CALL ERFOF (63I)
```



```
    & FORNMT (AIsGOS=4F5.2)
    IF:ICOM(1)+EQ,STfR) GO T0 G
    IF (FmFAM(IFG,d) +IN,O+) CALL EFFOR(632)
    TL*(XHS,ET, 4), OR&(IFS.LT,70)) CALL CFTR(IFS)
&゙g C&NTINUE
    FETUNA
    EwL!
    E,JU32310
    BJU32320
    ENJUS2330
    #jlj32340
    BJU32350
    &JU32360
    E.ju32370
    EJUZ2380
    B.JU32380
    EJU32400
    EJU32410
    FJU32420
    E.JU32430
    EJUろ2440
    E.JU32450
    FJU32460
    B.JU32470
    E.JU32480
    EJU32490
    E,JU32500
    HJU32510
    2.JU32520
    FJU32530
    &.JU32540
    E,JU32550
    #JU32530
    BJU32570
    EJU32580
    E.JU32580
    FJ152500
    F.JU32610
    EN1J32620
    EJU32630
    EJU32640
    EJU32650
    #NU32660
    ENUJ2670
    FJU3=600
    EJU32490
    EJJこ2700
    B.JU32710
    BJU32720
    EJU32730
    FJu32740
    EJU32750
    『,JUこ2760
    E.1452770
    EJU32780
    F,JU32790
    #.Ju32800
    BNU32810
```


APPENDIX D

DATASOURCES

There are a number of kinds and sources of data which should regularly be considerod at the outset of a JRE study, when data sources must be matched up with data needs. We make one major distinction, between "objective" and "subjective" data. Briefly put, "subjective" data are data that must be extracted from peoples' minds for the purposes of a JRE; "objective" data means everything else -- i.e., data routinely recorded for purposes other than research, and data maintained for, or acquired in the course of, scientific research. The problems with objective data, as a type of JRE source, are access and the degree of similarity between the fact patterns from which they arose and the fact patterns to which the JRE relates. With subjective data, the main problems are developing methods of elicitation, and finding the most appropriate respondents.

Data Sources -- Objective Data

Data for the execution of justice resource estimates are available from a number of sources and in a number of forms. Data and estimation methodology are intertwined; however, assuming network simulation is the prime technique for arriving at justice resource estimates, a number of general observations can be made on available data.

Various components of the federal justice system collect, process, and analyze data. In each case the reasons are different and at present there is no overarching rationale, nor system of coordination, to link the data-gathering efforts of the Department of Justice, the federal courts, and ancillary agencies. Collected data serve essentially managerial functions of public institutions and the oversight functions of Congress. Facilitating scholarly or applied research is not a prime objective of most data collection. Existing information can be, and is, most productively used in important studies that focus on "macro" or systemwide variables. However, most scholarship and applied management research concerned with more detailed "micro" level variables affecting the case processing system have involved considerable independent data collection efforts.

Since they represent two separate branches of the national government, the Department of Justice and the federal court system collect and report data reflecting different tasks. There is some overlap in these two bodies of information but each exhibits idiosyncrasies of method, categorization, and selection. The problems arising from distinctive
features of these data bases are numerous and too closely linked to specific subjects and operations to be discussed in detail here. But, they do raise serious questions about attempts to combine data from several sources in the execution of a single resource estimate.

With these preliminary points in mind, the following is a general overview of salient characteristics of data, including sources within the Judicial and Executive branches.

Dockets

Each federal district court maintains an abbreviated history of aach case that comes before it. For most districts, the information included in these capsule histories or dockets is a matter of local judicial policy administered by a clerk of the court. Dockets tell us when and how a case began, the judge who presided, record milestones in the case, motions by the parties, the eventual disposition and final award or sentence. For each recorded bit of data, a date is included so that in addition to charting the flow of a case from milestone to milestone, event to event the dockets can tell us the amount of calendar time elapsed between key decisional points. Obviously, dockets compriee an invaluable source of raw data for network simulation.

Case Files

For every docket sheet there are often copious supplementary records maintained in the archives of individual courts. These provide elaboration on the brief docket entries and include support information bail, pleas, all defense, prosecution (plaintiff) motions, opinions of the bench, results of discovery, and contributions of expert witnesses. Like the dockets, this content of case files are governed by local courts. Compared to case dockets, these files probably contain little data of direct relevance for network simulation.

The Administrative Office of United States Courts (A.O.)

The A. O. collects and processes some form of data from court : dockets on every case that enters the federal court system. Using a series of reporting forms (JSl through JS5) the Statistical Analysis and Reports Division receives regular breakdowns on criminal and civil cases, which are required either by the Judicial Conference or Congress. The A. O. is currently pilot testing the automation of dockets, which would ultimately link all 94 districts to Washington in an elaborate and uniform data collection network. As yet however, the preponderance of reporting is done by hand, by clerks from raw dockets.

This case reporting effort results in massive amounts of data, from which several important publications result:

- Annual Report of the Director - This provides an overview of the operations of the entire system. Reporting is by circuit and by district, cases are categorized by statute or offense and, where relevant, basis of federal jurisdiction. Usually one can determine on the basis of these large categories the number of a certain type of case (assuming it is one included in A.O.'s system of categories) in a given district and
nationally, method of disposition, outcome of disposition and, for criminal cases, some detailed information on ${ }^{2 r}-8$ tatus of defendants and convicted offenders.
$=\quad$ Court Management Statistics - This report issued annually, provides an overall statistical profile of every federal court. It includes data on various types of actions per judgeships and courtwide median times from filing of a case to disposition.
- Federal Offender/Sentences Imposed Reports - Combined, these reports may be the most elaborately detailed of A. O. publications. They provide information on methods of criminal disposition and type of sentence broken down by district and by very specific offense categories.
- Reports on Implementation of the Speedy Trial Act - The

Speedy Trial Act imposed time limits on several stages of the federal criminal process. Congress requires regular reporting of the progress made by courts in meeting these deadlines. This is accomplished through reports which show both national and district statistics on time intervals from arrest to indictment, indictment to arraignment, arraignment to trial (appeal or dismissal), and trial to sentencing. These reports also include reasons for delay in meeting deadines and statistics on the number of persons detained prior to trial. While not broken down by offenses, these data may allow the setting of ranges and probabilistic distributions for those processing arcs in network simulation that correspond to the stages affected by the Speedy Trial Act.

The A.O. does not report all the data it collects, nor does it combine these data in every permutation of currently reported categories. The Statistical Analysis and Reports Division can retrieve collected, but unreported, data through the use of special programs. When faced with the task of executing a justice resource estimate this Division should be formally notified of our exact data needs to determine if they can provide them from their files.

COURTRAN I

This is the pilot project mentioned above. Currently operational in ten (10) districts, this software package introduces a discipline to the sequencing and scheme of docketing in the affected courts. It also enables a wide range of calculations from the resultant data. If adopted throughout the country it will homogenize a currently idiosyncratic and inconsistent process of data collection. Until then, the COURTRAN courts may be considered a possible sample from which some generalization might be possible. In the discussion of the specific data requirements of network simulation the points at which COUR TRAN might be particularly useful will be included.

The Department of Justice

The Department of Justice is a potentially rich source of data. Like the federal court system, DOJ collects, processes and analyzes large amounts of data from managerial and Congressional reporting services. Profiles of the activities of the Department can be found in the Annual Report of the Attorney General and more detailed information on criminal and civil cases can be found in the annual United States Attorneys' Offices Statistical Report. As with comparable publications of the Court System, some data can be drawn from these essential documents. Data which are collected but unpublished are available through the Legal Information Systems Service and all available data files are listed in the Information Systems Catalog, prepared by the staff of Information and Communications Systems of the Office of Management and Finance. As will be noted below, data from these sources should be used in conjunction with that collected by the courts, but there are also mechanisms which allow for rapid retrieval in certain areas.

Published Judicial Opinions

Published judicial opinions are coded by the West Publishing Company according to a highly detailed dictionary of key words, and in systems such as JURIS and LEXIS, are entered full-text into computer files. Whether by manual search in West publications (by key words), or by word or phrase-based retrieval in the computerized systems, one can readily get a list of cases that pertain to the subject one intends to research. The published record of factual findings and legal rulings that can be accessed from that list supply data on an aggregation of cases, all on the same specified topic. The kinds of information that one might expect to find in these records, and limitations on their research utility, include the gollowing:

- Outcomes - numbers of dismissals, withdrawals, settlements, judgments, bench or jury trials, etc. This sort of information could be useful in validating network simulation, although only with careful expert-opinion interpretation. Not all published opinions deal with case dispositions, but may instead contain rulings on motions or other matters short of final outcome. That is, some intermediate decision point may be reported. The object may, however, be to retrieve cases in which an intermediate maiter, such as a type of motion corresponding to some internal part of a network diagram, without particular concern for what the verdict or judgment later proved to be. Published opinions at the appellate level give counts of cases, by specified type which extend to post-trial adjudications.
- Types of parties - whether plaintiff or defendant is a private individual, a small business, a corporation, a State, the United States, etc. Some information about the kinds of parties in cases on a given subject can be expected to be found in published opinions. This may be needed as part of the modeling of inputs to a case processing system. Knowing what type of party was involved can lead to a decision as to whether subsequent experiences in the case processing system vary according to type of litigant. This may then, influence system modeling.
- Factual background - what conditions are evident that might explain why the case arose. This could be important in estimating feedback relationships between external factors ind the case processing system.
- Elapsed time - total time from case filing to date of opinion. To the extent the opinion explains what transpired, it will show not only what path the case followed through the system, but what amount of time was involved, as well.

These few observations above indicate that published opinions, because of their retrievability and content, have some research potential. The actual extent of research utility has not to our knowledge been established, though we may be able to make some contribution in that area in the justice resource project. Some shortcomings of published opinions as research data should be noted:

- Deciding to publish - whether a judge or judicial panel will decide to publish their findings or rulings. We know of no requirement on a judge to write; a ruling may be made in open court and not reduced to writing, or written and circulated only to the parties, or written and not circulated beyond the case file. Judges are not subject to a "publish-or-perish" rule, and the decision is mainly individualistic.
- Coverage - what aspects of a case are written about in the opinion. This depends on what the judge feels is necessary to explain the ruling, and is highly individualistic, tied to both the particular judge and the particular case. Apart from a statement of outcome, some description of the parties, some background on how the issue arose, and time from filing to opinion, there may be nothing that one could expect to find consistently covered.
- Sampling bias - relating to what subset of cases on a given subject enter into the published opinions. It is likely that the cases on a given factual subject that result in published opinions will mainly be those where some novel legal question has to be answered. These cases cannot be expected to be typical of all such fact questions. The nature and extent of bias in reporting could be explored by comparing the data from a sample of published opinions with the same sort of data in a sample of case files drawn from the same jurisdiction and time period.

It is also somewhat of a shortcoming that extracting such data requires that the data gatherer possess some degree of legal training, since judicial opinions are written for a legally-trained leadership, and a point one wishes to research may be found in the midst of a discussion of some intricate legal matter. This problem may be more than offset, however, by the fact that published judicial opinions are in a completely centralized data source, requiring no field expeditions, authorizations, and cooperation on the part of study respondents.

Automated Data Processing Case Retrieval Systems

One means for expediting JRE research on case-processing systems is the utilization of automated data processing (ADP) case retrieval systems. ADP systems encompass a broad range of information on such subjects as arrests, crime trend analysis, court caleridaring, docketing, jury management, and workload analysis. 1 / Some of the ADP systems which would seem mosí pertinent to the Justice Resource Estimation project might be the court caseload management and reporting systems, case disposition records, juvenile data systems, courtroom event systems, courts workload analysis, and case statistics systems. Many of these data systems contain information relating to the specifics of the court actions for each case passing through the justice system. Certain problems associated with their use are accessibility and scarcity of automated systems with federal level data. Information from State and local jurisdictions are considerably more numerous and contain a great deal of detailed information. Data for the federal court system are less often available and frequently lack the desired level of detail.

Some of the exemplary ADP systems utilized at the local level are being expanded to include federal cases. For example, the

1/ For a more complete listing, see the Directory of Automated Criminal Justice Information Systems, U.S. Department of Justice, Law Enforcement Assistance Administration.

Prosecutor's Management Information System (PROMIS) of the District of Columbia was first transferred for use in twenty-two other jurisdictions and is now planned for implementation in the D. C. District Court.* - Other ADP systems that provide useful iniormation for the JRE project are the Federal Legal Information Through Electronics (FLITE) and the Department of Justice's own Justice Retrieval and Inquiry System (JURIS). FLITE is basically a military justice data system. The full text of the U.S. Code is in the system, as well as opinions of the U.S. Court of Military Appeals, and published and unpublished decisions of the Comptroller General. Use of FLITE would be most helpful in researching cases and decisions pertaining to military law.

JURIS is a legal information retrieval system operated by the U.S. Department of Justice (DOJ) primariily for the use of DOJ attorneys in pursuing legal research. JURIS piovides an interactive capability via terminal (leased line or dial up).

* See the "Overview of PROMIS," page D-18. ** See the "Overview of FLITE," page D-20.

JURIS is ideal for arranging information pertaining to caselaw, statutes, or published digest materials. JURIS can facilitate and speed up the process of locating published opinions on federal cases of a certain type. One can be relatively certain that a search on the JURIS system will elicit the case type or will cite the cases which are of interest. This saving of time and effort may permit the legal researcher to devote more time to reviewing relevant opinions and cases rather than to searching for these materials.

One other case retrieval system should be mentioned, which is LEXIS. It is similar to JURIS in being a full-text, key word in context system, accessible through remote terminals, and may without a great deal of distortion of reality be thought of as the private-sector version of JURIS. It is strictly proprietary. Its coverage of federal judicial opinions appears to be more extensive than JURIS, with respect to how far it extends into the past. Perhaps the major difference between JURIS and LEXIS from our point of view is that LEXIS includes opinions from the reporters for a number of States.

```
STATE(S)-------m----mm---0ISTRICT OF COLUMAIA
JURESDICTIONISI-m-m-mASHIAGICN
NAME OF SYSTEM---m-*--PROSECUTOR'S MANAGEMEAT INFCRYATION SYSTEM
CODE NAME------------------PRGMIS
FEDERAL REGION(S
SYSTEN CATEGORY-m---------COURTS
AGENCYISI----------------U.S. ATTCRNEY'S OFFICE
POPULATICN AREA SERVEC----700,000
PRESENT STATUS-------------CPERATIDNAL
    CCRTRACTCRISI
    INSLAH (ACTIVE)
OPE.ITIONAL DATE----------01/01/71
CEST CF SYSTEN
    TOTAL DEVELCPMEAT CCSTS---ACT REPORTEC
    TCTAL ANNUAL CCSTS--------57,000
    TCTAL LEA: FUNCS USED-----NCT REPCRTEC
TRANSFERREC SYSTEM------NNO
TELECCPIER----------------NRNE
PLANNED ACOITIONS--IMPLEMENTATICN FOR FECERAL CASES IN DISTRICT CF CCLUMBIA. AOAPTATION
    TD INCLUDE CONSUMER COMPLAINTS.
SOFTHARE---O-OSNOSNASTER
                        3330 CISKS, 3275/3277 CRT'S
                            CPU-LEESEC, PERIPHERAL--LEASED
ENVIRCNMENT------5HARED GNLY WITH DTHER CRIHINAL JUSTICE SYSTEYS
INTERFACE-----------TEFMINAL WITH WALES
    TERMIAAL WITH NCIC
DOCUMENTATION---m--CCMPLETE
```

PROMIS IS AN ALTOMATED INFCRMATICN SYSTEM IESICNED TO ASSIST THE PRCSECUTOR IN THE PLANNING, CCNTROL AND RESEARCF OF A LARGE VCLUME CHIMINAL CASE SYSTEM. PRCMIS RANKS PENOING Cases mcecroing te their relative upgency for frciecuticn so that the management of the PROSECUTORS OFFICE CAN INTELLIGENTIY ALLCCATE SCARCE NANPCWER FCR PREPARATIGN AND TRIAL OF C. SES. IT AUTOMATICALIY PRCCUCES WITNESS SLBPCENAS ANC SCHEDULING REPCRTS. PRCMIS ALSO TRACKS ALL CASES IN THE CCLRT SYSTEM THROUEH FINAL DISPCSITION, ANC CAPTURES FOR RESEARCH PURPOSES ALL PARTICULARS AECLT EVERY CEURT ACTICN IN A CASE. PRCMIS HAS BEEN CESIGNATED AN EXENPLARY PROJECT EY LEAA ANC IS CURRENILY BEING TRANSFERRED TU TWENTY-TWO OTHER JURISDICTIONS.

RESPCNSIBLE AGEACY CONTACT
DAY PROCESSING COATACT
DEAN C. MERRILL SAPE
VICE PRESICENT. IASLAW
1125 FIFTEENYH ST. N.h. 625
WASHINGTCA.C.C. 20005
202 872-9380

FUNCTICN	qangiage	documentatich	MCDE	states
ARAESTS	coect	ccmplete	MIXED	CPERATICOL
CALENCARING/SCHECULING	ccsel	COMPLETE	MixEO	CPERATICAs:
CASE CONTROL	cosol	CCMflete	BATCH	CPERAPICSM
CASE DISPCSITION REFCRTS	ccact	CCMFLETE	BATCH	CPERATIC:
CCMM-ON-L INE ENOUIAY	FASTER	Complete	CN-LINE	cPERAIICos.
CRIPE TREND AMALYSIS	ccact	COMPLETE	8ATCH	comparicor

CONTINUED

OVERVIEW OF FLITE $\{1976$)

```
STATE(S)-----------------mEEERAL
JUPISDICYICNISI------------FEC GCVI
NAME.CF SYSTEM----------FFEERAL LEGAL IAFCRNITICN THRCUGF ELECTRONICS
CODE NAME-------m----------FIITE
FEDERAL REGICN(S)---------00
SYSTEM CATEGGFY-\cdots----CCURIS,CTHFR
AGENT,Y\S1--m-m-m--------NMCGE ADVCCATE GEA, ISAF
POPULATICN AREA SERVEC----NCT PEPCRTEC CCATRACTTCR(S)
PRFSENT STATUS--MPERATINAAL CCNTRACTCZ(SI
OPERATICNAL DATE----m------01/01/ET
CEST CF SYSTEM
    TOTAL DEVELCPNENT COSTS---2.j00.000
    TCTAL ANNUAL COSTS-------5CO.ECO
    tCtal leaa fungS uSED-----nc leab funcS received
IRANSFERRFO SYSTEN-------NC
TELECCDIER----m-----NCNE
PLANNED ADOITIDAS---DEVELCPMENT OF CATA EANK CF FECERAL STATUTOFY, REGLLATCRY, ANC
    OFCISICNAL LON
SCFTWARE-------------CPMVT ASP:
HARCWARE------------IEM 360/65
    3330 DISK, }1403\mathrm{ PNTR, 2540 CRCP, TI 924-6 TADE STATICNS
    CPU-LEASEL, PERIPHERAL--LEASEO
ENVIRCANENT--------SHAREC WITH DTHEF ECVEFANEAYAL SYSTEM
INTERFACE--------NC INTERFACE SYSTENS
COCUMENTATICN-------PERTIAL
```

FLITE (FECERAL LEGAL INFORMATICA THROUGF ELECTRCAICSI IS A SYSTEM WFICH USES COMPUTER TEEMNOLCGY TU STORE, SEARCH ARO RETRIEVE LEGAL INFORMATIUN. IT IS A DEPARIMENT OF DEFENSE ACTIVITY, MANAGEE ANC CPFRATEL RY THE U.S. AIF FCRGE AS EXECLIIVE AGEAT. THE FLITE SEARCT SERVICE IS, AVAILABLE TO ALL DCC ACTIVITIES, HITHGLT CHARGE, AAD TC ALL FEEERAL, STATE, AND LECAL GCVERNGENT $\triangle G E N C I E S$ CN A CEST REINRLESENENT QASIS. THE CATA EANK IACLLUCES TRE FULL TEXT OF THF UNITEC STATES CEJE: CCMFTRCLLEE EENEFAL CECISIONS (PUELISTEC AND UNPUPLISHED): COURTS-MARITAL REPORTS: MAAUAL FGR COLETS AAPTIAL (19GGREV.); EGARE CF CCNTRACT APDEALS DECISICNS: ARMEC SERVICES FFDCUREMENT RFGUIGTICNS; INTERASTICAAL LAL AGREENENTS: CCURT CF CLAIMS DECISICNS: U.5. SUPRENE CCLRT FEPCRIS: FECERAL SUPPLEMEAT: FEUERAL FEPCFITER $2 D$ SERIES.

RESPCNSIBLE AGEACY CCATACT
A. C. BERTHELSON, CHIEF attorney sect icn. fitte HO USAF/JAESL DENVER, COLCPACC 303 B25-1161

CATA PROCESSING CORTACT
CHARLES P. HCWEQTON, CHIEF
EEP SECTIJN, FLITE
to USAF/JAESL
CEAVER. COLCFALD 80279
302 825-1161
LANGLAGE DCCUMERTATION MCCE
CCECL BARTIAL BATCH

```
STATE(S)-------------mEDERAL
JURISOICYICNSSI-----------FES GCVT
NAME GF SYSTEM------------JUSYICE RETRIEVAL AAC INGLIRY SYSTEN
CODF: NAME------m-------JURIIS
FEחEZRAL REGICN(SI---------00
SYSTEM CATECOAY---------COURTS,CTHER
AGENCY(S)-----------------CEPARTMEAT CF JLSTICE
POPULATION AREA SEPVEC----NCT GEPCRTEC CCATFACTCR(S)
PRESENT STATUS----------CPERATIONAL NCNE PEPORTEO
OPERATICNAL DATE----------07/O1/74
CCST CF SYSTEM
    TCTAL CEVELCPNEAT CCSTS---3CO,COO
    TCTAL AMNUAL CCSTS---.---*00,000
    TCTAL LEAA FUNLS USED----ND LEAA fUNCS RECEIVEO
TRANSFFRREC SYSTEN-----NASA ERECCN.
TELECCPIER-----------------NONE
PLANMED ADEITIONS---ENHANCENENT CF USER IATERFACE StruCtURE
SNFTWARF----------ES/MVT QEL 21.7:CICS VZ.3
HAPCHARE------------\RM 370/155 2M
                        3330 DISK, Q-R 20CO CRT, CFCF, PRITR, TAPE
                        CFIJ-LEASEC, PERIPFERAL--LEASEO
ENVIRCNMENT---------SHARFT. WITH CTHER GCVERAMEATAL SYSTEM
INTEAFACE----------- INTERCACE SYSTENS
SCCUMENTATTIN-------DARTIAL
```

THE JURIS SYSTEN PRCVICES OA IATERACTIVE CAPAEILITY VIA TERYINAL (LEASED LINE OR CIAL-UP) fir ofpaftyent cf justice atthrneys tr pursue legal research. the full text andior index terns ef legal cocunents: e.g., ccuft cecisicns, are stcrec in the complter anc are reTRIEVEC BY SPECIFYING TC. THE COMPUTER hFICH hCRDS ARE CESIRED. THE SYSTEN IS USED TO SUPdert geaefal legal reseadct, as well as inctvidual litigaticn effegts.

GESPCNSIBLE AGEACY COATACT
CATA PROCESSING COATACT
B. h. BASHEER, CHIEF SANE
LEEAL IAFERNATICN SYST
DEDAQTMENT CF JLSTICE
WASHINGTON, C.C.
20530
202 376-7123
**** syster Flncticns ****

		functicn	lanelage	dCCumentaticn	mCDE	Status
LEGAL	INFO	RETマIEVAL	ASSEPELY	PARTIAL	MIXED	cperational

CASELAW:

U.S. Supreme Court

Federal Reporter, 2nd Series
Federal Supplement
Court of Claims
Federal Rules Decisions
Court of Military Review, Vols.1-50
Military Justice Reporter

DIGEST:

Modern Federal Practice Digest
Supreme Court Reporter
Federal Reporter, 2nd Series
Federal Supplement
Federal Rules Decisions
Federal Digest
Regional Reporters (State cases)
STATUTORY LAW:
United States Code
Public Laws
Executive Orders
Code of Federal Regulations, Titles 10, 18, 28, 37, and selected portions of $7,24,36$, and 40

ADMINIS TRATIVE LAW:

Comptroller General Decisions, Vols. 1-54
Nuclear Regulatory Commission Decis. an 3

DIS TRICT OF COLUMBIA LAW:

D. C. Court of Appeals (criminal decisions only)
Atlantic Reporter, 2nd Series (DCCA only)
U.S. Attorneys Office briefs filed in the U.S. Court of Appeals, D.C. Circuit

Selected D. C. Superior Court decisions (criminal only)
Washington Law Reporter

1900 - advance sheets
June 1962 - slip opinions (West proofs)
January 1970-slip opinions (West proofs)
February 1956 - June 1975
March 1975 - advance sheets
1951-1975
1975 - to date

1960 - advance sheets
1960 - advance sheets
1960 - advance sheets
1960 - advance sheets

1967 - advance sheets

1970 ed. through Supp. II
93rd Congress - 95th Congress
July 1973 - April 1975
1974 ed.

July 1921 - June 1975
March 1972 - April 1978

February 1971 - May 1975
June 1976 - November 1977
January 1974 - May 1975
January 1966 - November 1974
October 1969 - April 1976

Special Studies

Once the data requirements have been established, the research analysts then have the rather large task of ferreting out applicable research reports. There are various means by which this might be accomplished. One avenue might be to inquire of experts in the field of interest as to possible studies that might have generated the kind of data currently being sought. Possible constraints on this approach include the time available for locating and requesting assistance from experts, as well as their willingness to cooperate and their knowledgeability about the subject matter. It may or may not be readily apparent who the "experts in the field" actually are. The "justice system" consists of lawyers representing a very broad array of interests, judges, court clerks, court administrators, and many other less permanent actors such as clients, defendants, witnesses, etc. Any of these types of actors may have had occasion to know about research pertaining to the justice system. In addition, there are numerous scholars of the legal system who would, presumably, be familiar with pertinent studies. Research personnel at the Federal Judicial Center are an excellent source of scholars who are familiar with studies relevant to legislative and other impacts on the federal justice system. In many, if not all, cases, guidance of the intended JRE user will be helpful, both in locating studies, and in locating the appropriate experts.

Libraries, particularly institutions which specialize in specific subject areas, often will have reference personnel who have a
great deal of expertise in recalling and locating research materials. These may also provide a rich source for familiarizing a project team with applicable studies as well as realizing the "state-of-the-art" in the field. = The use of libraries should include a routine search of available empirical studies using Readers' Guide to Current Periodical Literature, Public Affairs Information Service, and Index to Legal Periodicals. The SCORPIO system for scanning the book and periodical holdings of the Library of Congress will greatly aid in this effort.

The time and effort expended in locating and examining relevant studies will sometimes be better spent than the time, money, and work hours needed to develop a research study. The construction and preliminary testing of data gathering instruments is usually a rather expensive and timeconsuming process. The data collection and preparation for data analysis stages may likewise require a great deal of time and effort on the part of many employees. The analyses of the data and writing of results, etc., are also crucial points in the research that are dependent on highly skilled and knowledgeable individuals. In those instances in which time, finances, and highly skilled personnel are at a premium, a secondary analysis of a relevant body of data will provide a considerable economy of scarce resources.

Secondary analysis basically entails the testing of hypotheses "on data that were originally collected and analyzed by others for some other purpose." *

Gerald S. Ferman and Jack Levin, Social Science Research. (New York: John Wiley and Sons, 1975), pp.58-59.

Freed from the collection and processing of data, the researcher may devote his major efforts to the development and analysis of the problem.

The primary problem associated with conducting a secondary analysis is the location of data that provide a good "fit" with the hypotheses of interest. Because the data collection instruments were not specifically designed to provide data for the questions posed by the JRE researcher, there may not be enough information or detail in the responses to completely satisfy the needs of the current study. The main job, therefore, is to select very carefully the data set that comes closest to matching the information requirements with the data. If the data are too far from addressing the principal issues, a secondary analysis would be useless. The section of this report that deals with subjective data raises the point, however, that the proper sort of opinion or expert judgment may be able to transform, through analogy, data generated in one setting into data suitable in another setting.

Our experience in the justice resource project in tracking down data in the areas of juvenile justice and class action reform are illustrative of the above steps. Experts were contacted and special library resources were tapped and scrutinized in order to arrive at candidate studies for secondary analyses.

The class action portion of the project may be used as an example of the investigative process that took place in obtaining sources of secondary data. Numerous experts were consulted, including two who had worked directly in the area of class action research/litigation. Several Federal

Circuit Executives, from various parts of the country were contacted for advice in locating federal level research. Two researchers contacted were employed in the Research Division of the Federal Judicial Center. The archival resources utilized were primarily the Library of Congress, including the American Law Section, several local law libraries, the Federal Judicial Center Library, and LEAA's library, the National Criminal Justice Reference Service.

The next major steps involved the obtaining and examination of documents procured through the search process. Research reports were read and authors were contacted for more detailed information or clarification. Further contacts were initiated to seek out sources for raw data when the studies were thought to be pertinent. At this latter point, a Class Action Data Catalog was established in order to organize the procurement process. The data catalog consisted of a matrix with the data sources referenced down the rows and specifications of the data contents across the columns. The data specifications noted were:

1) the authorship, date, and location of the publication;
2) the current physical location and proprietorship of the raw data files;
3) data availability: machine readability and costs;
4) case selection factors: sampling techniques, period of data collection, substantive area of the law, and geographic spread;
5) number of cases; and,
6) research documentation.

The data catalog also included a column for comments which were maintained on an ongoing basis to enable the research team to monitor the progress of obtaining data files from the various sources.

- Once the data files were received they were examined to determine the "fit" of the available data to the research problems. This involved finding time distributions for the activities that occur in class action cases, probabilities for activity occurrences, and time distributions for system actors performing the activities.

The Federal Justice Research Program of the Office for Improvements in the Administration of Justice and the Executive Office for U.S. Attorneys funded a project to develop a case-weighting system for U.S. Attorneys' Offices. The purpose behind the study was to improve the ability of the various offices to estimate the number of assistant U.S. attorney positions needed for incorporation in the budget.

The case weights estimated the workload associated with particular types of cases. The service times associated with the particular events and activities occurring in the lives of cases were also tabulated.

This level of detail is what the simulation model requires in order to accurately assign the amount of time to the various activities which modeled attorneys perform. The same level of detail is needed for all modeled actors, federal judges and any other system resources which the user may wish to examine.

The data collected and published in the "Allocation of Resources to U.S. Attorney's Offices: A Case-Weighting Approach" was used in estimating the processing times for various case events. Also special data runs were made to produce distributions of processing times for specific case events and activities of federal criminal cases.

Such studies are needed for both U.S. Attorneys and the judiciary in order to make most efficient use of simulation models.

END

[^0]: * Leopold, L., et al., "A Procedure for Evaluating Environmental Impact:, "Geological Survey Circular 645 (1971).

[^1]: *

 Dawes, supra, n. 2 .

[^2]: - For each activity emenating from a start node with F (conditional, take first) output, an order value should be specified. When the start node is released, conditions on essociated branches will be tested in ascending order (low yalues first) based or this value.
 : "The "proferred order" for selection from free servers is ascending order (low value first) based on this value.
 ** Cendition codes allowed are: T.R.V Time, A. Value

 | T.A.V | Time A. Value |
 | :---: | :---: |
 | T.RAK | Time \cdot A, Attribute ${ }^{\text {c }}$ |
 | Aj.A.V | Attribute j.R.Value |
 | Aj.A.Ak | Attributn j.A.Attribute |

 Where $\boldsymbol{A}=$ [LT; $L E ; E Q: N E ; G T ;$ or $G E \mid$

 | Ni.R | Node i Released |
 | :--- | :--- |
 | Ni.N | Node iNot Relcasca |
 | NAj.R | Node AjReleased |
 | NAj.N | Node Aj Not Released |

