
Get Better Code Density than 8/16 bit
MCU’s

NXP LPC1100 Cortex M0

Oct 2009

2

Outline
Introduction

ARM Cortex-M0 processor

Why processor bit width doesn’t matter
– Code size

– Performance

– Cost

Conclusions

3

ARM Cortex-M Processors

ARM Cortex-A Series:
Applications processors for
feature-rich OS and user applications

ARM Cortex-R Series:
Embedded processors for
real-time signal processing
and control applications

ARM Cortex-M Series:
Deeply embedded processors
optimized for microcontroller
and low-power applications

Cortex-M family optimised for deeply embedded
– Microcontroller and low-power applications

4

ARM Cortex-M0 Processor

32-bit ARM RISC processor
– Thumb 16-bit instruction set

Very power and area optimized
– Designed for low cost, low power

Automatic state saving on interrupts and exceptions
– Low software overhead on exception entry and exit

Deterministic instruction execution timing
– Instructions always takes the same time to execute*

*Assumes deterministic memory system

5

Thumb instruction set

Thumb®

ARM7 ARM9 Cortex-A9Cortex-R4Cortex-M3Cortex-M0

Thumb instruction set upwards compatibility

32-bit operations, 16-bit instructions
– Introduced in ARM7TDMI (‘T’ stands for Thumb)
– Supported in every ARM processor developed since
– Smaller code footprint

Thumb-2
– All processor operations can all be handled in ‘Thumb’ state
– Enables a performance optimised blend of 16/32-bit instructions
– Supported in all Cortex processors

6

Instruction set architecture
Based on 16-bit Thumb ISA from ARM7TDMI

– Just 56 instructions, all with guaranteed execution time
– 8, 16 or 32-bit data transfers possible in one instruction

Thumb-2
System, OS

Thumb
User assembly code, compiler generated

ADC ADD ADR AND

BIC BL BX

EOR LDM LDR LDRB

LDRSH LSL LSR MOV

ORR POP PUSH ROR

STM STR STRB STRH

TST BKPT BLX CPS

REVSH SXTB SXTH UXTB

ASR

CMN

LDRH

MUL

RSB

SUB

REV

UXTH

NOP

WFI

SEV WFE

YIELD

DMB

DSB

ISB

MRS

MSR

B

CMP

LDRSB

MVN

SBC

SVC

REV16

7

Program registers r0
r1
r2
r3
r4
r5
r6
r7
r8
r9

r10
r11
r12

r15 (PC)
r14 (LR)

All registers are 32-bit wide
– Instructions exist to support 8/16/32-bit data

13 general purpose registers
– Registers r0 – r7 (Low registers)
– Registers r8 – r12 (High registers)

3 registers with special meaning/usage
– Stack Pointer (SP) – r13
– Link Register (LR) – r14
– Program Counter (PC) – r15

Special-purpose registers - xPSR

r13 (SP)

xPSR

Instruction behaviour

Most instructions occupy 2 bytes of memory

When executed, complete in a fixed time
– Data processing (e.g. add, shift, logical OR) take 1 cycle
– Data transfers (e.g. load, store) take 2 cycles
– Branches, when taken, take 3 cycles

The instructions operate on 32-bit data values
– Processor registers and ALU are 32-bit wide!

MUL
15 0

MUL r0, r1; Assembler

a = a * b; C code

8

9

Thumb instructions

Cortex M0 requires instruction fetches to be half word
aligned

Thumb instructions are aligned on a two-byte boundaries

32 bit instructions are organized as 2 half words

10

Nested Vectored Interrupt Controller

NVIC enables efficient exception handling
– Integrated within the processor - closely coupled with the core
– Handles system exceptions & interrupts

The NVIC includes support for
– Prioritization of exceptions
– Tail-chaining & Late arriving interrupts

Fully deterministic exception handling timing behavior
– Always takes the same number of cycles to handle an exception
– Fixed at 16 clocks for no jitter
– Register to trade off latency versus jitter

Everything can be written in C

11

Interrupt behaviour

On interrupt, hardware automatically stacks corruptible state

Interrupt handlers can be written fully in C
– Stack content supports C/C++ ARM Architecture Procedure Calling Standard

Processor fetches initial stack pointer from 0x0 on reset

r0
r1
r2
r3
r12

r15 (PC)
r14 (LR)

xPSR Memory

r13 (SP)

Stack

Growth

Push

12

Traditional approach

Exception table
– Fetch instruction to branch

Top-level handler
– Routine handles re-entrancy

IRQVECTOR

LDR PC, IRQHandler

. .

IRQHandler PROC

STMFD sp!,{r0-r4,r12,lr}

MOV r4,#0x80000000

LDR r0,[r4,#0]

SUB sp,sp,#4

CMP r0,#1

BLEQ C_int_handler

MOV r0,#0

STR r0,[r4,#4]

ADD sp,sp,#4

LDMFD sp!,{r0-r4,r12,lr}

SUBS pc,lr,#4

ENDP

Writing interrupt handlers
ARM Cortex-M family

NVIC automatically handles
– Saving corruptible registers
– Exception prioritization
– Exception nesting

ISR can be written directly in C
– Pointer to C routine at vector
– ISR is a C function

Faster interrupt response
– With less software effort

WFI, sleep on exit

13

Software support for sleep modes

ARM Cortex-M family has architected support for sleep states
– Enables ultra low-power standby operation
– Critical for extended life battery based applications
– Includes very low gate count Wake-Up Interrupt Controller (WIC)

NVIC

Cortex-M0

WIC

Wake-up

External interrupts

Wake-up
sensitive
Interrupts

Power Management Unit

Deep
Sleep

Sleep
– CPU can be clock gated
– NVIC remains sensitive to interrupts

Deep sleep
– WIC remains sensitive to selected interrupts
– Cortex-M0 can be put into state retention

WIC signals wake-up to PMU
– Core can be woken almost instantaneously
– React to critical external events

14

Instruction set comparison

15

Code Size

16

Code size of 32 bits versus 16/8bit MCU’s

The instruction size of 8 bit MCU’s is not 8 bits
– 8051 is 8 to 24 bits
– PIC18 is 18 bits
– PIC16 is 16 bits

The instruction size of 16 bit MCU’s is not 16 bits
– MSP430 can be up to 32bits and the extended version can be up to 64 bits
– PIC24 is 24 bits

The instruction size for M0 is mostly 16 bits

17

Code size of 32 bits versus 16/8bit MCU’s

16-bit multiply example

Time: 1 clock cycle
Code size: 2 bytes

Time: 8 clock cycles
Code size: 8 bytes

Time: 48 clock cycles*
Code size: 48 bytes

MULS r0,r1,r0 MOV R1,&MulOp1
MOV R2,&MulOp2
MOV SumLo,R3
MOV SumHi,R4

MOV A, XL ; 2 bytes
MOV B, YL ; 3 bytes
MUL AB; 1 byte
MOV R0, A; 1 byte
MOV R1, B; 3 bytes
MOV A, XL ; 2 bytes
MOV B, YH ; 3 bytes
MUL AB; 1 byte
ADD A, R1; 1 byte
MOV R1, A; 1 byte
MOV A, B ; 2 bytes
ADDC A, #0 ; 2 bytes
MOV R2, A; 1 byte
MOV A, XH ; 2 bytes

MOV B, YL ; 3 bytes

ARM Cortex-M016-bit example8-bit example

MUL AB; 1 byte

ADD A, R1; 1 byte

MOV R1, A; 1 byte

MOV A, B ; 2 bytes

ADDC A, R2 ; 1 bytes

MOV R2, A; 1 byte

MOV A, XH ; 2 bytes

MOV B, YH ; 3 bytes

MUL AB; 1 byte

ADD A, R2; 1 byte

MOV R2, A; 1 byte

MOV A, B ; 2 bytes

ADDC A, #0 ; 2 bytes

MOV R3, A; 1 byte

Consider an device with a 10-bit ADC
– Basic filtering of data requires a 16-bit multiply operation
– 16-bit multiply operation is compared below

18

* 8051 need at least one cycle per instruction byte fetch as they only have an 8-bit interface

19

What about Data ?

8 bit microcontrollers do not just process 8 bit data
– Integers are 16 bits
– 8 bit microcontroller needs multiple instructions integers
– C libraries are inefficient
– Stack size increases
– Interrupt latency is affected

Pointers take multiple Bytes.

M0 can handle Integers in one instruction

M0 can efficiently process 8 and 16 bit data
– Supports byte lanes
– Instructions support half words and bytes.

LDR, LDRH, LDRB

M0 has efficient Library support
– Optimized for M0

20

What about Data ?

For 16 bit processors have issues with
– Long integers
– Floating point types
– Data transfers between processor registers and memory

16 bit processors have 16 bit registers
– Two registers required for 32 bit transfers
– Increased stack requirements

M0 has 32 bit registers and 32 bit memories
– Less cycles for long integers
– Good floating point performance
– Less cycles for data transfers

21

What addressing modes?

16/8 bit processors are limited to 64K of space
– Data memory limited and segmented
– Requires banking or extensions to instruction set
– Memory pointers are extended

Require multiple instructions and registers

All cause increased code space

M0 has a linear 1G address space
– 32-bit pointers
– unsigned or signed 32-bit integers
– unsigned 16-bit or 8-bit integers
– signed 16-bit or 8-bit integers
– unsigned or signed 64-bit integers held in two registers.

22

Code size increase due to paging

23

Code size increase for large memory model
(Extended program counter and Registers)

24

Code Size Performance

0.00

0.50

1.00

1.50

2.00

2.50
a2

tim
e

ai
fir

f

ai
iff

t

bi
tm

np

ca
nr

dr

iir
flt

pn
trc

h

pu
w

m
od

rs
pe

ed

HC08
M0 using microlib

25

Code Size Performance
M0 code size is on average 10% smaller than best MSP430 average

Code size for basic functions

0

50

100

150

200

250

300

350

M
ath8bit

M
ath16bit

M
ath32bit

M
atrix2dim

8bit

M
atrix2dim

16

M
atrixm

ult

S
w

itch8bit

S
w

itch16bit

C
od

e
Si

ze
 (B

yt
es

)

MSP430

 MSP430F5438

 MSP430F5438 Large model

Cortex M0

26

Code Size Performance
M0 code size is 42% and 36% smaller than best MSP430 generic

Floating Point and Fir Filter Code Size

0
200
400
600
800

1000
1200
1400

G
en

er
ic

M
S

P
43

0

 M
S

P
43

0F
54

38

 M
S

P
43

0F
54

38
la

rg
e

da
ta

m
od

el

 C
or

te
x-

M
0

C
od

e
Si

ze
(b

yt
es

)

MathFloat
Firfilter

27

Code Size Performance
M0 code size is 30% smaller than MSP430F5438

Whet

0

1000

2000

3000

4000

5000

6000

7000

G
eneric

M
S

P
430

 M
S

P
430F5438

 M
S

P
430F5438

large data
m

odel

 C
ortex-M

0

C
od

e
Si

ze
 (B

yt
es

)

What is CoreMark?

Simple, yet sophisticated
– Easily ported in hours, if not minutes
– Comprehensive documentation and run rules

Free, but not cheap
– Open C code source download from EEMBC website
– Robust CPU core functionality coverage

Dhrystone terminator
– The benefits of Dhrystone without all the shortcomings

• Free, small, easily portable

• CoreMark does real work

28

CoreMark Workload Features
Matrix manipulation allows the use of MAC and common math ops

Linked list manipulation exercises the common use of pointers

State machine operation represents data dependent branches

Cyclic Redundancy Check (CRC) is very common embedded function

Testing for:
– A processor’s basic pipeline structure
– Basic read/write operations
– Integer operations
– Control operations

29

30

Code Size Performance (CoreMark)
M0 code size is 16% smaller than generic MSP430

CoreMark Code size

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Generic MSP430 M0

C
od

e
Si

ze
 (B

yt
es

)

31

Code Size Performance (CoreMark)
M0 code size is 53% smaller than PIC24

CoreMark Code size

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

PIC24 M0

C
od

e
Si

ze
 (B

yt
es

)

31

32

Code Size Performance (CoreMark)
M0 code size is 51% smaller than PIC18

CoreMark Code size

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

PIC18 M0

C
od

e
Si

ze
 (B

yt
es

)

32

33

Code Size Performance (CoreMark)
M0 code size is 49% smaller than Atmel AVR8

CoreMark Code size

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Atmel AVR8 Mega644 M0

C
od

e
Si

ze
 (B

yt
es

)

34

Code Size Performance (CoreMark)
M0 code size is 44% smaller than Renesas H8

CoreMark Code size

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Renesas(H8) M0

C
od

e
Si

ze
 (B

yt
es

)

34

35

Peripheral code

Part Init Code (Bytes) Data rx code (Bytes)
AVR8 ATmega644 28 32
MSP430 50 28
M0 LPC11xx 68 30

35

36

Speed Optimization effects

0.00

0.50

1.00

1.50

2.00

t0 t1 t2 t3
0

2000

4000

6000

8000

10000

12000

CoreMark Score

Code Size

36

37

Size Optimization effects

1.00

1.05

1.10

1.15

1.20

1.25

1.30

s0 s1 s2 s3
0

2000

4000

6000

8000

10000

12000

CoreMark Score

Code Size

37

38

Size Optimization effects

1.00

1.05

1.10

1.15

1.20

1.25

1.30

s0 s1 s2 s3
0

2000

4000

6000

8000

10000

12000

CoreMark Score

Code Size

38

39

What About Libraries
33% reduction using optimized Libs

Auto BM Compile Lib Total Compile Lib Total
a2time 4032 4552 8584 4084 9364 13448
aifftr 4636 6712 11348 4708 12668 17376
aifirf 3300 4500 7800 3356 8388 11744
aiifft 4348 6636 10984 4402 12284 16686
basefp 3348 4668 8016 3404 10460 13864
bitmnp 4776 4412 9188 4828 8328 13156
canrdr 3272 4412 7684 3328 8328 11656
idctrn 4564 6884 11448 4616 13012 17628
iirflt 4552 4540 9092 4608 8388 12996
matrix 6632 4872 11504 6684 10716 17400
pntrch 3204 4512 7716 3260 8412 11672
puwmod 3436 4500 7936 3492 8388 11880
rspeed 2728 4540 7268 2780 8328 11108
tblook 3612 4864 8476 3668 10728 14396
ttsprk 5060 4540 9600 5116 8388 13504

average (8) 3663 4496 8159 3717 8491 12208

NXP M0

MicroLib Standard Lib

39

40

Performance

41

Computation Performance

42

Computation Performance
uS

ec

16 bit FIIR filter performance at 1MHz

43

Computation Performance

CoreMark Score

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

PIC18 Renesas (8
bit)

AVR8
ATMega644

MSP430 M0

C
or

em
ar

k
(M

ar
k/

se
c)

44

Cost

45

Does the core size matter?

The M0 core is the smallest cortex core
About 1/3 of the M3 for similar configuration
Similar size to 8 bit cores

46

Core Size Matters

Normalized Cost As a Function of Flash Memory Size

0.00

0.50

1.00

1.50

2.00

2.50

32 64 128 256 512
Memory Size

N
or

m
al

iz
ed

 C
os

t

47

Tools

48

MCU Tool Solutions

NXP’s Low cost
Development Tool Chain

Rapid Prototyping
Online Tool

Traditional Feature Rich
Tools (third party)

49

NXP’s FIRST Low Cost Toolchain

Eclipse-based IDE LPCXpresso
Starter Board

Evaluation Product Development

50

LPCXpresso
LPCXpresso will provide end-to-end
solution from evaluation all the way to
product development

Attractive upgrade options to full blown
suites and development boards

LPCXpresso will change the perception
about NXP’s solution for tools

Key competition:
– Microchip MPLAB
– Atmel AVR Studio

“LPCXpresso will change the Tool Landscape for NXP”

51

LPCXpresso Components
NXP has created the first single perspective Eclipse IDE

This offers the power and flexibility of Eclipse in combination with a
simple and easy to learn user interface

Supports all NXP products (currently up to 128k)

LPC3154 HS USB download and debug engine

LPC134x Target board

LPC3154

52

Evaluation

LPC3154

The target board is very simple with one LED and a layout option for USB

Traces between the two boards can be cut, to allow SWD connection to any
customer target. (Eval target can be reconnected by jumpers)

53

Exploration

LPC13xx
Base boardLPC3154

Customers can upgrade to full version of Red Suite (Discount coupon)

Customers can buy an add-on EA base board that connects a wide
range of resources to the I/O and peripherals of the LPC13xx.
Customers can also upgrade to other EA boards (Discount coupon)

54

Development

Traces can be cut and the LPC13xx target board will out of the picture

Customers can then use the JTAG connection to download code into their own
application board using the same existing IDE and JTAG connector

Note: Customers can directly jump to this stage and use LPCXpresso for their complete
application development without ever having to upgrade

LPC3154

Customer’s own
board which
will use JTAG

55

mbed LPC1768 Value Proposition
New users start creating applications in 60 seconds

Rapid Prototyping with LPC1700 series MCUs
– Immediate connectivity to peripherals and modules for prototyping

LPC1700-based system designs
– Providing developers with the freedom to be more innovative & productive

mbed C/C++ Libraries provide API-driven approach to coding
– High-level interfaces to peripherals enables rock-solid, compact code
– Built on Cortex Microcontroller Software Interface Standard (CMSIS)

Download compiled binary by saving to the mbed hardware
– Just like saving to a USB Flash Drive

Tools are online - there is nothing to configure, install or update, and
everything works on Windows, Mac or Linux

Hardware in a 40-pin 0.1" pitch DIP form-factor
– Ideal for solderless breadboard, stripboard and through-hole PCBs

56

First Experience – Hassle-Free Evaluation

Up pops a USB Disk
linking to website Remove board

from the box
Plug it in…

No Installation!

“Hello World!” in 60 seconds

Save to the board and
you’re up and running

Compile a program online

57

mbed Technology
USB Drag ‘n’ Drop Programming Interface

► Nothing to Install: Program by saving binaries

► Works on Windows, Linux, Mac, without drivers

► Links through to mbed.org website

Online Compiler

► Nothing to Install: Browser-based IDE

► Best in class RealView Compiler in the back end

► No code size or production limitations

High-level Peripheral Abstraction Libraries

► Instantly understandable APIs

► Object-oriented hardware/software abstraction

► Enables experimentation without knowing MCU details

#include “mbed.h”

Serial terminal(9,10);

AnalogIn temp(19);

int main() {

if(temp > 0.8)

terminal.printf(“Hot!”);

}

58

Example Beta Projects - Videos

Rocket Launch
– http://www.youtube.com/watch?v=zyY451Rb-50&feature=PlayList&p=000FD2855BEA7E90&index=11

Billy Bass
– http://www.youtube.com/watch?v=Y6kECR7T4LY

Voltmeter
– http://www.youtube.com/watch?v=y_7WxhdLLVU&feature=PlayList&p=000FD2855BEA7E90&index=8

Knight Rider
– http://www.youtube.com/watch?v=tmfkLJY-1hc&feature=PlayList&p=000FD2855BEA7E90&index=4

Bluetooth Big Trak
– http://www.youtube.com/watch?v=RhC9AbJ_bu8&feature=PlayList&p=000FD2855BEA7E90&index=3

Scratch Pong
– http://www.youtube.com/watch?v=aUtYRguMX9g&feature=PlayList&p=000FD2855BEA7E90&index=5

http://www.youtube.com/watch?v=zyY451Rb-50&feature=PlayList&p=000FD2855BEA7E90&index=11
http://www.youtube.com/watch?v=Y6kECR7T4LY
http://www.youtube.com/watch?v=y_7WxhdLLVU&feature=PlayList&p=000FD2855BEA7E90&index=8
http://www.youtube.com/watch?v=tmfkLJY-1hc&feature=PlayList&p=000FD2855BEA7E90&index=4
http://www.youtube.com/watch?v=RhC9AbJ_bu8&feature=PlayList&p=000FD2855BEA7E90&index=3
http://www.youtube.com/watch?v=aUtYRguMX9g&feature=PlayList&p=000FD2855BEA7E90&index=5

59

More information

Available from NXP Distributors and eTools

Boards cost $99

Learn More:
http://www.standardics.nxp.com/support/development.hardware/mbed.lpc176x/

http://mbed.org

Featured Articles:
– Circuit Cellar
– Elektor

http://www.standardics.nxp.com/support/development.hardware/mbed.lpc176x/
http://mbed.org/
http://www.standardics.nxhttp/www.circuitcellar.com/archives/viewable/Cantrell-227.pdf
http://www.elektor.com/news/mbed-sense-simplicity.1040956.lynkx

60

Rapid Prototyping
for Microcontrollers

61

Microcontrollers are getting cheap
– 32-bit ARM Cortex-M3 Microcontrollers @ $1

Microcontrollers are getting powerful
– Lots of processing, memory, I/O in one package

Microcontrollers are getting interactive
– Internet connectivity, new sensors and actuators

Creates new opportunities for microcontrollers

What’s happening in Microcontrollers?

62

Rapid Prototyping

Rapid Prototyping helps industries create new products
– Control, communication and interaction increasingly define products
– Development cycles for microelectronics have not kept pace

3D Moulding 3D Printing 2D/3D Design Web Frameworks

63

mbed
Getting Started and Rapid Prototyping with ARM MCUs

– Complete Targeted Hardware, Software and Web 2.0 Platform

Lightweight Online Compiler

LPC Cortex-M MCU in a
Prototyping Form-Factor

Dedicated Developer
Web Platform

High-level Peripheral APIs

Rapid Prototyping
for Microcontrollers

64

mbed Audience

mbed’s focus on Rapid Prototyping has a broad appeal

Designers new to embedded applications
– Enables new designs where electronics is not the focus

Experienced embedded engineers
– Enables fast proof-of-concepts to reduce risk and push boundaries

Marketing, distributors and application engineers
– A consistent platform enables effective and efficient demonstration,

support and evaluation of MCUs

65

Conclusion

LPC1100 Family Based on the Cortex-M0 core

– There are many users of 8 and 16 bit microcontrollers that are reluctant to
use 32 bit architectures citing either overkill or complexity.

– The M0 is an architecture that makes this argument irrelevant.

– The LPC ARM Cortex-M0 family provides a microcontroller that is very low
power, has better real-time performance than microcontrollers of lower bit
width and provides a bridge to the full spectrum of the LPC families.

66

	Get Better Code Density than 8/16 bit MCU’sNXP LPC1100 Cortex M0
	Outline
	ARM Cortex-M Processors
	ARM Cortex-M0 Processor
	Thumb instruction set
	Instruction set architecture
	Program registers
	Instruction behaviour
	Thumb instructions
	Nested Vectored Interrupt Controller
	Interrupt behaviour
	Writing interrupt handlers
	Software support for sleep modes
	Instruction set comparison
	Code Size
	Code size of 32 bits versus 16/8bit MCU’s
	Code size of 32 bits versus 16/8bit MCU’s
	16-bit multiply example
	What about Data ?
	What about Data ?
	What addressing modes?
	Code size increase due to paging
	Code size increase for large memory model (Extended program counter and Registers)
	Code Size Performance
	Code Size Performance
	Code Size Performance
	Code Size Performance
	What is CoreMark?
	CoreMark Workload Features
	Code Size Performance (CoreMark)
	Code Size Performance (CoreMark)
	Code Size Performance (CoreMark)
	Code Size Performance (CoreMark)
	Code Size Performance (CoreMark)
	Peripheral code
	Speed Optimization effects
	Size Optimization effects
	Size Optimization effects
	What About Libraries
	Performance
	Computation Performance
	Computation Performance
	Computation Performance
	Cost
	Does the core size matter?
	Core Size Matters
	Tools
	MCU Tool Solutions
	NXP’s FIRST Low Cost Toolchain
	LPCXpresso
	LPCXpresso Components
	Evaluation
	Exploration
	Development
	mbed LPC1768 Value Proposition
	First Experience – Hassle-Free Evaluation
	mbed Technology
	Example Beta Projects - Videos
	More information
	Rapid Prototypingfor Microcontrollers
	What’s happening in Microcontrollers?
	Rapid Prototyping
	mbed
	mbed Audience
	Conclusion

