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The importance of module reliability

Stoker (2021a)

PV module hotspot (Image by Dirk Jordan / NREL)

Jordan et al. (2021)

PV modules damaged by hail (Photo by Dennis Schroeder / NREL)

Willuhn (2022)

Stoker (2021b)

PV cell metallization cracking (Image by Tim Silverman / NREL)
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Reliability-related trends
Accelerating Solar Deployment

DOE (2021)

Longer Module Lifetimes

Modified from Jordan 
et al. (2022)

Price and Performance Pressure

Smith et al. (2021)

Changing Environments

IPCC (2007)
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Supply chain impacts
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Woodhouse et al. (2022)



Goals of the DuraMAT Technology Scouting Report

• Track technology changes that could affect PV module reliability
• Assess changes in module reliability risks over time
• Identify the need for new research related to reliability

“PV moves pretty fast. If you don't stop and look around once in a while, you 
could miss it.“ – Inspired by Ferris Bueller’s Day Off
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• DuraMAT Industry Advisory Board
• Nick Bosco (NREL)
• David Feldman (NREL)
• Peter Hacke (NREL)
• Al Hicks (NREL)
• April Jeffries (Osazda Energy) 
• Dirk Jordan (NREL)
• Mike Kempe (NREL)
• David Miller (NREL)
• Heather Mirletz (NREL, Colorado School of Mines)
• Ingrid Repins (NREL)
• Tim Silverman (NREL)

Thank you
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PV module technology changes
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Categories of technology change

Large modules Interconnects Bifacial Cell technology
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Large modules

Large modules
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Interconnects Bifacial Cell technology



Larger wafers
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Author synthesis of mono c-Si wafer size data from ITRPV (2017–2021)

Drivers & Benefits

improvements in manufacturing capabilities
• larger wafers provide potential for cost savings

enables larger module sizes
• large format modules – higher energy output

efficiency gains
• cell cutting

Potential Risks

requires adaptation of cell and module processes
• significant process changes

introduction of additional process steps
• cell cutting (see next slide) can increase reliability risks

handling of larger wafers and cells is more complex 
• especially when coupled with thinner cells (increased fracture risk)
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Cell cutting
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Author synthesis of data from ITRPV (2017–2021). The 2020–2031 values are for cells ≥ 182 x 182 
mm2. Cell dimensions are unspecified for earlier data.

Bosco et al. (in review)

Drivers & Benefits

reduces resistive losses
• by lowering electric current

potentially higher shade tolerance
• through changed junction box position & wiring pattern

Potential Risks

potentially increased cell fracture risk through edge-defects
• dependent on cell cutting technologies and process 

control

changed mechanical stress and strain field
• potential for reduced cell deformation and decreased cell 

fracture risk

orientation of half cut cells can decrease fracture risk
• fracture risk of current industry standard is similar to the 

risk for full-size cells
• rotation of 90 degrees can reduce the probability of 

fracture under static loading conditions

rotated cells
less likely 
to fracture
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Thinner cells
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Author synthesis of data from ITRPV (2017–2021)

Drivers & Benefits

reduced material input
• cost savings

new advanced cell technologies
• thinner wafers have higher efficiency potential when paired with n-type 

technologies such as SHJ and TOPCon

Potential Risks

potentially reduced cell yield on production line
• handling of thin cells is complex and can break before lamination
• new manufacturing processes need to be adopted

cell cracking risk after lamination not inherently higher than for thick cells,
depends on
• stress localizations around interconnect technologies
• stress state and effective area of cell under tension
• packaging technology (glass-glass vs. glass-backsheet)
• edge-damage caused by the cutting process
• residual stresses caused by firing of the metallization

adaptation of thinner cells has been slower than predicted
• caused by complications in packaging process (likely ongoing)

12



Larger modules
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Drivers & Benefits

wafer/cell size
• larger cells allow for larger module sizes

increased power output
• larger active area
• improved cell-to-module (CTM) power ratio: CTM = 𝑃𝑃module

𝑃𝑃cell ⋅ 𝑛𝑛cell

Potential Risks

potentially more frequent cell breakage due to 
• weather (wind & hail), or shipping, handling, and installation

increased weight
• OSHA handling issues with very large modules; 100-lb modules may be the 

practical limit
• implications for mounting structure design and cost

increase in electrical current
• electrical balance of sys. (wire size, fusing, bypass diode) must be adapted

new testing equipment necessary to accommodate large modules
• such as dynamic mechanical loading (DML) to assess hail damage and 

inform insurance coverage
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Interconnects

Interconnects
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More busbars

traditional zero-gap technologies
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Drivers & Benefits

increasing cell sizes require a larger number of interconnects
• improved manufacturing capabilities of wafers (cost reduction)

reduction in finger width 
• less silver metallization (cost reduction)
• increase active cell area (efficiency gain)

improved redundancy and reliability
• higher likelihood of fractured cell fragments staying electrically connected
• minimizes localized mechanical stresses around busbars

Potential Risks

introduction of new manufacturing processes and materials
• geometry change from rectangular ribbons to wires
• material change from metallurgical connections to mechanical contact
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Geometry & process changes

traditional zero-gap technologies
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Author synthesis of data from ITRPV (2017–2021)
SolarTech Universal (2022)

Drivers & Benefits

increasing number of busbars
• allows for reduction of cross-sectional ribbon area

allow for low-temperature approaches
• future-proofing for new cell technologies as SHJ

increased efficiency
• increase active cell area and light reflection on wire
• reduced gap between cells or overlapping cells

Potential Risks

geometry changes
• multiwire might need thicker encapsulant

process changes
• new components, such as structured foils, may require new reliability tests

shingled/overlapping cells
• potentially higher stresses at overlapping cell edge, increasing fracture risk
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Material changes

Drivers & Benefits

potential regulatory requirements
• materials containing lead are restricted under EU Directive (RoHS 2)

cost savings potential
• reduction of silver content

reduce processing temperatures and material input
• required for new cell technologies such as SHJ
• reduce thermal stresses
• elimination of processing steps such as soldering at high temperature

Potential Risks

change in solder materials (high vs. low temp & lead-containing vs. lead-free)
• potential degradation from poorer mechanical characteristics
• change from metallurgical connection to mechanical contact will require 

new accelerated tests and development of standards

Electrically conductive adhesives
• introduction of possible new degradation mechanisms such as debonding 

or corrosion of non-silver conductive particles
Author synthesis of data from ITRPV (2017–2021)

traditional zero-gap technologies
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Bifacial modules

Large modules Interconnects Bifacial Cell technology
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Bifacial modules
Drivers & Benefits

enabled by new(er) cell technologies
• increased power output 
• cost gap between mono- and bifacial module keeps decreasing

Potential Risks

increased weight
• glass-glass construction with large format module leads to higher risk of 

damage during shipping, handling, and installation

corrosion
• acetic acid formation from EVA encapsulant

cell fracture risk
• benefits of putting cells into neutral axis, might be offset by residual 

stresses introduced during lamination
• thinner glass front sheets make cells more prone to crack during hail events

rear-side potential induced degradation (PID)
• degradation due to depolarization of the passivation layers (PID-p)
• corrosive PID (PID-c) due to corrosion of the Si below the passivating layers

rear-side light-induced degradation (LID)
• potentially very slow to no recovery
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Author synthesis of ITRPV (2022)
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Thinner glass

Author synthesis of ITRPV (2018–2021)

Drivers & Benefits

bifacial module technology
• need for transparent backsheet

decreasing weight  - cost savings
• lighter glass reduces shipping and installation costs, but ultrathin glass can 

be expensive

Potential Risks

change in structural integrity
• possibly larger deflection due to mechanical loading

lower resistance to environmental factors and handling
• decreased resistance to severe weather events (hail, wind, snow), and 

handling during installation

change in heat treatment
• thinner glass can require a process change from tempering to heat-

strengthening, which can increase the risk of glass breakage
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Polyolefin encapsulant

Author synthesis of ITRPV (2017–2021)

Drivers & Benefits

reduces acetic acid corrosion (compared to EVA)
• but polyolefin encapsulant is ~10% more expensive than EVA and has 

~0.25% lower transmission

reduces risk of rear-side PID
• especially relevant for glass-glass type constructions

Potential Risks

cost-reduction methods introduce new manufacturing processes
• different encapsulant types at the front and back of the cell might 

introduce new, unknown failure modes
• co-extruded encapsulants – possible difficulties in controlling the thickness 

and uniformity of thin polyolefin layers

process changes necessary
• possible longer manufacturing times and narrower control windows for 

temperature

long-term durability unknown 
• often 10-20 years of data needed to discover issues
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Cell technology

Large modules Interconnects Bifacial Cell technology
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Transition to n-type cells
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Author synthesis of data from Stoker (2021c) and InfoLink (2022)

Drivers & Benefits

increased efficiency
• higher charge carrier lifetime
• improved temperature coefficient
• less sensitive to metallic impurities of the silicon

reduced light-induced degradation (LID)
• boron-oxygen defect disappears when using n-type doping with phosphorous

reduced light and elevated temperature-induced degradation (LeTID)
• possibly due to reduced hydrogen content in n-type cells and/or other factors

Potential Risks

complexity & purity multiply cell sensitivities
• vulnerabilities include diffusion of impurities into bulk wafer, UV-LID, and 

degradation of ultrathin layers
• may need specific stress combinations and long test cycles

potentially different PID polarization
• cell architectures (e.g., TOPCon, PERT, PERC) show different PID trends

potentially lower reliability from new n-type cell market entrants
• extended cell reliability testing might not be in place yet
• packaging optimization still ongoing

higher silver content in contacts increases costs
• copper (as a silver replacement) could introduce new reliability issues

mono 
p-PERC

n-type

Al-BSF etc.
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Cell technologies
p-type

PERC (Passivated Emitter and Rear Cell)

transition to n-type
TOPCon (Tunnel Oxide Passivating Contact) SHJ ( Silicon hetero-junction solar cell)

Potential Risks & Challenges

• current production cells close to practical 
efficiency limits - further improvements 
difficult

• bifaciality is lower compared to TOPCon/SHJ 

• physical separation of rear metal from bulk Si 
reduces surface recombination and improves 
carrier lifetime and cell voltage (720 mV)

• inherently bifacial

• superior surface passivation quality improves 
carrier lifetime and increases cell voltage even 
further (750 mV)

• inherently bifacial and very high bifaciality

• newer technology than SHJ - less production 
history, but fundamentally compatible with 
the conventional Si solar cell process

• after deposition, process temperature limited 
to <200°C, impacts metallization and 
interconnect technologies

• substantially different manufacturing process
• higher tool costs

Drivers & Benefits

• supply chain is aligned with the technology
• industry transitioned from boron to gallium 

doping to mitigate boron-oxygen LID 
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Case study: recent 700 W SHJ module announcement 
Power output 700 W

Module size ≈1.3 m x 2.35 m ≈ 3.0 m2

Cell size 210 mm / half-cut

Cell thickness 120 μm 

Module efficiency 22.52%

Metallization low temperature, low silver

Interconnect type multiwire

Interconnect # 24

Cell technology n-type SHJ
a-Si film replaced with microcrystalline Si

Cell efficiency 25.2%

VOC 750 mV

Cell SHJ inherently high bifaciality

Module bifacial
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(Photo from Risen Energy Group, with permission)

Xiao (2022)



Next steps

26

• Synthesize feedback from reviewers and webinar audience
• Prioritize trends and risk areas by potential impact
• Identify key knowledge gaps and potential new research 

needed to fill those gaps
• Finalize the report and distribute for peer review

• Update annually, starting in 2023



Additional trends

(HZB)

(Photo by Dennis Schroeder / NREL)

(Photo by Werner Slocum / NREL)

(Photo by Dennis Schroeder / NREL)

Agrivoltaics

Building-integrated PV

Floatovoltaics

Tandems

(Photo by Werner Slocum / NREL)

Trackers

Standardization
module size cell size connectors

…
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Thank you!
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funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Solar Energy Technologies Office, agreement number
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