Aqueous and Solid Phase Characterization of Potential Tank Fill Materials

By J.C. Seaman*, S.P. Simner, and C. Logan

*Senior Research Scientist Assistant Director – Research/Quality Assurance Savannah River Ecology Laboratory The University of Georgia Aiken, SC 29802 Phone: 803-725-0977 Email: <u>seaman@srel.uga.edu</u>

Signatures & Date: John C. Seaman – SREL Program Manager

Greg Flach – SRR Technical Representative

EXECUTIVE SUMMARY

SREL conducted a series of batch and column studies to address uncertainty in the realistic pH and E_h ranges associated with the grouted waste tank systems, including an evaluation of three candidate Tank Closure Grout (TCG) formulations. The paste component formulations for the three TCG test materials included conventional reducing TCG made with Ordinary Portland Cement (OPC; 18%), blast furnace slag (BFS; 30%) and fly ash (FA; 52%); TCG with no BFS (TCG-NBFS) made with OPC (18%), and FA (82%); and a Consolidated Low Strength Material (CLSM) made with OPC (7.7 %), and FA (92.3 %). The three paste materials were cured for 90 days, size-reduced, and for column testing mixed with quartz sand to requisite grout proportions. The granular paste (batch) or paste + sand equivalents of cast grout (column) were then subjected to different atmospheric conditions, including open to the laboratory atmosphere (i.e., oxidizing), under a constant Ultra-High Purity (UHP) N₂ purge, and within an anaerobic Coy Chamber with anoxic conditions maintained by addition of a 95% N₂/5% H₂ gas mixture to establish a consistent 2% H₂ atmosphere. Batch tests consisted of size-reduced grout materials equilibrated with pore water simulant for 150+ days, with pH and E_h monitored weekly and small aliquots of the pore waters collected for chemical analysis. Column tests were also performed in which the size-reduced TCG formulations were constantly leached under saturated conditions with the pore-water simulant that was either in equilibrium with the lab atmosphere or purged with UHP N₂ to reduce dissolved O₂ levels.

The observed results generally agreed with previous laboratory tests aimed at defining achievable E_h and pH conditions in tank waste grouted systems (SRNL-STI-2015-00446; SRNL-STI-2016-00432; SRNL-STI-2018-00484). The pH results were predominantly consistent with both the values derived from geochemical modeling and more recent laboratory testing. The TCG displayed the highest pH followed by the TCG-NBFS and finally the CLSM, with both the TCG and TCG-NBFS appearing to better maintain a higher pH (i.e., buffer the system) than the CLSM under all three test atmospheres. The observed E_h values, however, were less extreme than values used in waste release models (WRMs) to represent various stages in the aging of reducing tank1 closure grout. The lowest E_h values were observed for all samples equilibrated in the anaerobic Coy Chamber under a H₂/N₂ atmosphere, with the N₂ glovebag yielding the next lowest values and the batch samples open to the lab atmosphere yielding the highest E_h values. Even though there was a great deal of scatter in the data, the TCG materials containing the BFS generally provided the lowest E_h values (i.e., most reducing) under all batch and column test conditions, followed by TCG-NBFS and then CLSM.

The original dry feed materials, the three initially cured TCG formulations, and the TCG materials that were subjected to various batch treatments were extensively characterized by XRF and XRD analysis. Initial XRF analysis evaluated the two most common sample preparation methods, i.e., pressed pellets and borate fused beads. Although results were generally consistent for both preparation methods, analysis of pressed pellets overestimated the level of CaO in FA materials while underestimating the SiO₂ content. Thus, all grout and dry feed materials were analyzed as fused beads. Minor changes to Na₂O and K₂O contents were observed for batch samples that had been subjected to

extended leaching, but such changes were insufficient to correlate with any significant changes to the mineralogy of the batch tested materials.

X-ray diffraction patterns of both pre-leached and leached samples were dominated by amorphous phases presumed to be associated with unreacted silicate glasses in the BFS and FA components, and amorphous calcium silicate hydrate (C-S-H) and calcium aluminosilicate hydrate (C-A-S-H) gels formed via the hydration/pozzolanic reactions of the OPC, BFS, and FA. As anticipated, the poorly reacting crystalline phases of FA (i.e., quartz, mullite, hematite, and magnetite) were also detected in all pre-leached and leached samples. In addition to the aforementioned phase constituents, all pre-leached samples indicated the presence of strätlingite, calcite, ettringite, and varied (aluminaferric oxide-mono) AFm carbonates and/or sulfates. Ettringite was not detected in any leached samples, and the AFm phases either typically disappeared in the leached samples or their proportions were significantly reduced. Strätlingite persisted to some degree in almost all of the leached samples irrespective of the leaching environment; however, it was barely detectable (and therefore not quantifiable) for the CLSM, TCG-NBFS, or TCG subjected to a reducing environment. In addition, for all TCG samples (containing BFS) strätlingite was barely apparent above background irrespective of the leaching environment. Calcite persisted in all samples and the highest calcite proportions were detected for samples subjected to the oxic environment during leaching. These results were anticipated and presumed due to sample carbonation in the CO₂-containing oxic environment. Hydrotalcite and a phase tentatively identified as kuzelite (or monosulfoaluminate) were also observed but only in the BFS-containing TCG samples; both minerals persisted in all the leached TCG samples irrespective of leaching environment. Hydrotalcite was anticipated due to the magnesia (MgO) content of the BFS (approximately 6 wt% measured via XRF). Monosulfoaluminate is a reaction product of tricalcium aluminate (a primary cement phase) and ettringite (a cement hydration product).

Table of Contents

EXECUTIVE SUMMARY	i
List of Tables List of Figures List of Acronyms and Abbreviations	. v
INTRODUCTION	
MATERIALS AND METHODS	. 2
Batch Test Methods	11
RESULTS 1	14
Batch Tests – pH and E _h 1 Batch Tests – Major Cations (Na, K, Ca, Mg, Al, and Fe) 1 Column Results – pH and E _h 1 XRF Analysis of TCG Paste Formulations 2 XRD Analysis of TCG Paste Formulations 2	15 19 24
CONCLUSIONS	36
ACKNOWLEDGEMENTS	37
REFERENCES	38
APPENDIX A: MANUFACTURER CERTIFICATION REPORTS FOR DRY FEEDS A	\ 1
APPENDIX B: XRD ANALYSIS OF TANK CLOSURE GROUTS E	31
APPENDIX C: RATIONALE FOR XRD PEAK ASSIGNMENTS C	21
APPENDIX D: ICDD POWDER DIFFRACTION FILES D)1

List of Tables

Table 1. Tank waste porewater conditions reflecting three stages of reducing TCG aging (Denham as	nd
Millings, SRNL-STI-2012-00404).	1
Table 2. Tank Fill Grout Paste Formulations: A. Provided in SRR-CWDA-2019-00038; B. Masses	
required for each kg of dry feed materials	
Table 3. TCG treatment configuration for column and batch testing	7
Table 4. Leaching solution prescribed in RFQ No. 190129 (from SRNL-STI-2012-00404)	8
Table 5. Stock solution and final dilute background solution for batch equilibrations and column	
leaching tests	9
Table 6. Summary of final batch and column test durations.	. 10
Table 7. Chemical composition of standard reference cements and the initial dry feed materials	
analyzed by XRF using the pressed pellet and the lithium borate fused bead sample preparation	
method.	. 26
Table 8. Chemical composition of different initial TCG formulations, and batch-weathered TCG	
materials	. 27
Table 9. XRF results for the K2O and Na2O contents of initial TCG formulations and samples expose	ed
to extended leaching, compared to mass balance estimates of K ₂ O and Na ₂ O lost during batch	
equilibration, i.e., delta K ₂ O and Na ₂ O.	. 28
Table 10. Phases and wt% in BFS.	. 29
Table 11. Phases and wt% in FA.	. 29
Table 12. Phases and wt% in OPC.	. 30
Table 13. Summary of phases identified by XRD analysis of batch-treated TCG samples	. 32
Table 14. Results for the Rietveld Refinement of the batch-treated CLSM formulations	. 34
Table 15. Results for the Rietveld Refinement of the batch-treated TCG-NBFS formulations	. 34
Table 16. Results for the Rietveld Refinement of the batch-treated TCG formulations.	. 35
Table 17. Summary of batch equilibration results compared to geochemical modeling values for	
reducing grouts (SRNL-STI-2012-00404; SRR-CWDA-2016-00086)	. 37

List of Figures

Figure 1. Photograph of the three dry feed materials used to make the TCG formulations outlined in
Table 2 (L to R: Type I/II Ordinary Portland Cement, Lehigh Grade 100/120 Blast Furnace Slag, and
SEFA Class F Fly Ash)
Figure 2. Examples of the three TCG past formulations cured for 90 days in clear transparent
containers: TCG, TCG-NBFS, and CLSM
Figure 3. Size Reduction of TCG and TCG-NBFS samples
Figure 4. CLSM monolith removed from curing mold and sticking to rasp during attempts to size
reduce for batch and column testing (A). Material clumping in bag during manual size reduction (B). 6
Figure 5. Batch equilibration tubes open to the treatment atmosphere
Figure 6. Mixing TCG materials with sand for column leaching tests
Figure 7. Photograph of 40 mm diameter, homogeneous lithium borate flux beads made from (Bottom:
Left to Right) flux blank with no sample added, TCG, TCG-NBFS, and an iron steel slag material12
Figure 8. Preparation of samples for XRD analysis
Figure 9. Batch pH and redox potential values for batch grout samples equilibrated under three
treatment environments: Oxic – the open laboratory; Anoxic – inside an N ₂ bag (< 1% O ₂); and
Reducing – inside a Coy Chamber (H ₂ /N ₂ atmosphere)16
Figure 10. Major cations (Na, K, Ca) under two batch treatment environments: Oxic – the open
laboratory and Reducing – inside a Coy Chamber (H ₂ /N ₂ atmosphere)
Figure 11. Major cations (Mg, Al and Fe) under two batch treatment environments: Oxic - the open
laboratory and Reducing – inside a Coy Chamber (H ₂ /N ₂ atmosphere)
Figure 12. Effluent pH and E _h values monitored manually for column leaching tests using various TCG
formulations subject to two different inlet solution treatment scenarios
Figure 13. Effluent pH and E _h values monitored with flow through cells for column leaching tests
using various TCG formulations subject to two different inlet solution treatment scenarios20
Figure 14. Major cations (Na, K and Ca) present in effluent from the column experiments. Data
reflects effluent from manual flow through columns
Figure 15. Major cations (Mg, Al and Fe) present in effluent from the column experiments. Data
reflects effluent from manual flow through columns
Figure 16. Large columns containing intact TCG + Sand monoliths packed in sand

List of Acronyms and Abbreviations

	u de la constante de
ACI	American Concrete Institute
AFm	alumina-ferric oxide-mono
AFt	alumina-ferric oxide-tri
ASTM	American Society for Testing and Materials
BFS	Blast Furnace Slag
C-A-S-H	Calcium Aluminosilicate Hydrate
CLSM	Controlled Low-Strength Material
CRMs	Certified Reference Materials
C-S-H	Calcium Silicate Hydrate
CTF	Cognizant Technical Function
DIW	Deionized Water
DOE	Department of Energy
EPA	Environmental Protection Agency
FA	Fly Ash
FTF	F-Area Tank Farm
FY	Fiscal Year
GOF	Goodness of Fit
HTF	H-Area Tank Farm
ICDD	International Centre for Diffraction Data
ICP-MS	Inductively Coupled Plasma-Mass Spectrometer
OPC	Ordinary Portland Cement
ORP	Oxidation Reduction Potential
MCR	Manufacturer Certification Report
NIST	National Institute of Standards & Technology
PA	Performance Assessment
PDF	Powder Diffraction File
QA	Quality Assurance
QC	Quality Control
REF	Reference Sample
SD	Standard Deviation
SREL	Savannah River Ecology Laboratory
SRM	Standard Reference Material
SRR	Savannah River Remediation LLC
SRS	Savannah River Site
TCG	Conventional Tank Closure Grout Formulation containing BFS
TCG-NBFS	Tank Closure Grout without Blast Furnace Slag
UHP	Ultra-High Purity
USEPA	United States Environmental Protection Agency
w/cm	Water-to-Cementitious Material Ratio
WRM	Waste Release Model
XRD	X-Ray Diffraction
XRF	X-Ray Fluorescence

INTRODUCTION

The Performance Assessments (PA) for the Savannah River Site (SRS) F-Area Tank Farm (FTF) and H-Area Tank Farm (HTF) assume that solubility controls the behavior of several key radionuclides, including neptunium (Np), plutonium (Pu), uranium (U) and technetium (Tc). Solubility limits for these radionuclides are controlled by the pH and E_h conditions attributed to the interaction of grouted tank waste with soil moisture and groundwater. Infiltration passes through the tank materials and drives changes in the composition and mineralogy of the grout materials. Over time, the pH, E_h and pore solution composition will vary as the tank grout ages and degrades, with the system becoming more oxidized and the pH decreasing. This aging process has been described as a series of degradation stages that can be related to the number of pore volumes in contact with the tank waste materials, which can then be converted to reaction time within a flow and transport model (Denham and Millings, SRNL-STI-2012-00404).

Denham et al. (SRNL-STI-2012-00404) developed a sequential batch reaction model describing radionuclide release from residual tank waste based on component solubility as controlled by tank grout degradation in contact with water that has passed through the closure cap. Infiltration passes through the tanks and drives changes in grout mineralogy/composition, with the emerging fluid reflecting such interactions that vary over time. Three stages of grout degradation summarized in **Table 1** can be defined by the amount of infiltrating water that contacts the grout materials (i.e., pore volumes), which can then be converted to time. However, major uncertainties to this approach include defining the initial infiltrate composition and the mineralogy/composition of the Tank Closure Grout (TCG) materials.

Parameter	Red. Region II	Ox. Region II	Ox. Region III
pН	11.1	11.1	9.2
E _h (volts)	-0.47	0.56	0.68
Ca ²⁺ (molar)	4.0E-03	4.0E-03	6.6E-05
Na ⁺ (molar)	1.0E-03	1.0E-03	1.0E-03

Table 1. Tank waste porewater conditions reflecting three stages of reducing TCG aging
(Denham and Millings, SRNL-STI-2012-00404).

More recently, a series of laboratory tests were conducted to determine the solubility values of Pu, Np, U, and Tc under various grouted waste tank conditions (King and Hobbs, SRNL-STI-2015-00446; King and Hobbs, SRNL-STI-2016-00432; Layton, SRR-CWDA-2016-00086; King, SRNL-STI-2018-00484). These tests have focused on measuring contaminant solubility under pH and E_h conditions that reflect the three stages of reducing grout degradation (i.e., RRII, ORII, and ORIII). These tests have used residual tank waste samples and waste simulants in contact with grout-representative phases to evaluate contaminant solubility. The laboratory tests have generally been successful in achieving the target pH conditions associated with the three degradation stages; however, it has been far more difficult to achieve the target E_h values using standard grout materials. For

08-20-20

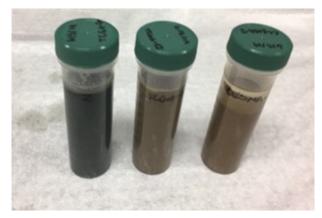
instance, E_h values for the RRII chemical conditions with representative grout solids have been considerably less negative than the target value (-0.47 V), with the addition of ferrous sulfide (FeS) used to produce more reducing conditions. Such discrepancies in E_h can impact contaminant solubility. While Np was more insoluble than the Waste Release Model (WRM) value, the observed solubilities of Pu, Tc, and U were actually greater because of the more oxidizing conditions. Even so, the higher solubilities were shown to have a negligible impact on peak doses in 1,000 or 10,000 years (Layton, SRR-CWDA-2016-00086). In general, the highest and lowest E_h values observed in previous testing were approximately +0.5 V and -0.2 V, respectively, even with the addition of non-representative oxidants and reductants (King and Hobbs, SRNL-STI-2015-00446; King and Hobbs, SRNL-STI-2016-00432, Layton, SRR-CWDA-2016-00086; King, SRNL-STI-2018-00484). This uncertainty with respect to E_h condition remains a key question concerning radionuclide solubility based on inspection of E_h -pH solubility diagrams contained in SRNL-STI-2012-00404.

In an effort to address the uncertainties related to the chemical conditions associated with the aging of grouted tank waste the University of Georgia's Savannah River Ecology Laboratory (SREL) conducted a series of experimental tests evaluating the dynamic interactions of pore-water solutions in contact with TCG. Experiments focused on monitoring changes in aqueous chemistry (i.e., E_h, pH, DO, alkalinity, solution components, etc.) that occur in grouted tank closure systems with extended leaching. Dynamic column experiments and extended batch equilibrations evaluated the interactions of three TCG formulations under simulated leaching conditions designed to predict potential leachate chemistries that will impact the residual waste layers in various SRS waste tanks. In addition to monitoring eluate chemistry, changes in the properties and solid phase composition of TCG materials were extensively characterized by x-ray diffraction (XRD) spectroscopy and x-ray fluorescence (XRF) spectroscopy.

MATERIALS AND METHODS

Three TCG formulations were created for testing using the following dry-feed materials (**Figure 1**): (1) Type I/II Ordinary Portland Cement (OPC; Holcim US, Inc. Birmingham, AL 35221), (2) Class F fly ash (FA; The SEFA Group, Inc. Lexington, SC 29073), and (3) Grade 100/120 blast furnace slag (BFS; Lehigh Cement, Cape Canaveral, FL 32920). The manufacturer certification reports for the dry feeds used in this study are provided in **Appendix A**. An image of the three dry feed materials is provided in **Figure 1**. The final test paste formulations are outlined in **Table 2**, consisting of three dry feed mixtures: conventional TCG made with OPC (18%), BFS (30%) and FA (52%); TCG without BFS (TCG-NBFS) made with OPC (18%), and FA (82%); and a Consolidated Low Strength Material (CLSM) made with OPC (7.7 %), and FA (92.3 %).

Figure 1. Photograph of the three dry feed materials used to make the TCG formulations outlined in Table 2 (L to R: Type I/II Ordinary Portland Cement, Lehigh Grade 100/120 Blast Furnace Slag, and SEFA Class F Fly Ash).


The TCG paste materials were prepared and cured for the required duration following the applicable requirements of ASTM C192, *Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory*. The water to cementitious materials ratio for the first two TCG formulations was 0.579 (w/cm), i.e., 579 gm of water (579 mL) added to 1 kg of mixed dry cement, slag, and fly ash. The w/cm ratio for the CLSM was 0.847. The paste materials were poured into labeled 2" ID x 4" plastic concrete cylinder molds for curing (Test Mark Industries, Inc.). A limited set of monoliths were also created using transparent 50 mL polypropylene containers. Laboratory tap water was used in the production of the TCG formulations. Two separate batches of each paste formulation were created. One batch was wrapped in moist towels, sealed in plastic bags and then cured in a sealed cooler in the laboratory. This batch was used for all "open" system atmosphere tests. The second batch of curing cylinders was wrapped in an anoxic Coy Chamber (95% N₂/5% H₂ atmosphere). This batch was used for the "closed" system under a reducing atmosphere.

After 90 days, selected monoliths representing each formulation and atmosphere treatment were sliced open to produce the required "size reduced" (granular) paste materials for batch and column testing. **Figure 2** provides an example of the three test formulations after curing in the transparent cylinders, with the TCG formulation displaying the darker color generally attributed to the presence of BFS (Chaouche et al., 2017), and the TCG-NBFS and CLSM materials having the browner color. The greater amount of bleed water is also clearly apparent for the CLSM materials.

4.					
	Tank H	Fill Grout Paste Dry Ingr	redients		
Materials	Cement Type I/II	Slag Grade 100/120	Fly Ash Class F	Sand	Water
	lbs/yd ³	lbs/yd ³	lbs/yd ³	lbs/yd ³	gal/yd ³
TCG Paste	125	210	363	2590	48.5
TCG Paste w/o Slag (TCG-NBFS)	125	N/A	573	2590	≤ 48.5
CLSM	50	N/A	600	2515	66.00
3.					
	Tank F	Fill Grout Paste Dry Ingr	redients		
Materials	Cement Type I/II	Slag Grade 100/120	Fly Ash Class F	Sand*	Water**
	gm/kg	gm/kg	gm/kg	gm/kg grout	w/m
TCG Paste	180	300	520	3,711	0.579
TCG Paste w/o Slag (TCG-NBFS)	180	N/A	820	3,711	0.579
CLSM	77	N/A	923	3,869	0.847
gm of sand required for	each kg of TCG past	e			
*water to dry feed mate	rial ratio				

Table 2. Tank Fill Grout Paste Formulations: A. Provided in SRR-CWDA-2019-00038; B.Masses required for each kg of dry feed materials.

Figure 2. Examples of the three TCG past formulations cured for 90 days in clear transparent containers: TCG, TCG-NBFS, and CLSM.

The size reduction process is illustrated in **Figure 3**. The "open" system materials cured in the lab cooler were size-reduced in the lab while the "closed" system materials were size reduced inside the Coy Chamber to reduce exposure to O_2 . After removal from the cylinder (Fig. 3A), the monoliths were placed in 6 mil, clear polyethylene plastic bags and broken up by hand using a rock hammer. The resulting materials were then screened through a 2 mm sieve. An example of the TCG formulation

08-20-20

displaying the darker color associated with BFS is provided in **Figure 3B**. There was no observed difference in appearance between the TCG materials cured in the lab and the TCG materials cured in the Coy Chamber. All materials retained on the 2 mm sieve were then placed back in the plastic bags (**Fig. 3C**), and repeatedly crushed by hand until the entire sample passed through the sieve. This was done to avoid any selective sampling of the cured materials based on hardness. An example of the TCG formulation without BFS is provided in **Figure 3D** displaying the brown color. The resulting < 2 mm fraction was further crushed to yield a smaller, < 0.5 mm fraction. Initially efforts to create a smaller < 0.15 mm fraction were deemed impractical, especially when braking up materials in the Coy Chamber. Even so, this procedure generated two size fractions for testing, i.e., (1) the "size-reduced" 0.5 to 2 mm fraction and (2) the "crushed" < 0.5 mm fraction. The two size fractions were then sealed in plastic containers and stored under an inert atmosphere until their use in batch or column experiments. The sand was only added to the size-reduced materials when the dynamic columns were being packed.

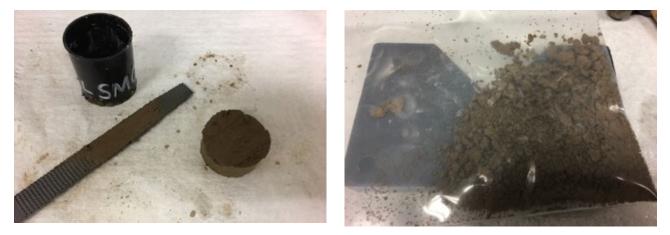
Figure 3. Size Reduction of TCG and TCG-NBFS samples

A. TCG Monolith

C. Size Reducing TCG-NBFS

B. >2 mm TCG Retained

D. > 2mm TCG-NBFS Retained



This size reduction procedure generally worked well for the TCG and TCG-NBFS formulations, but not for the CLSM. Even after curing 90 days, the CLSM monoliths were still quite friable and difficult to break up without creating additional clumps that were further retained on the sieve (**Figure 4**). Therefore, only the "size-reduced" 0.5 to 2 mm fraction was used in testing the CLSM.

Figure 4. CLSM monolith removed from curing mold and sticking to rasp during attempts to size reduce for batch and column testing (A). Material clumping in bag during manual size reduction (B).

A. CLSM

B. CLSM

Batch Test Methods

The test matrix for batch and column experiments is provided in **Table 3**. Batch testing was initially only planned for the "open" lab atmosphere and the "closed" Coy Chamber atmosphere treatments. The batch experiment was expanded to include a third intermediate atmosphere in which the batch samples were equilibrated in a glove bag under constant UHP N₂ purge to reduce exposure to O₂ without creating the extremely low E_h values observed in the Coy Chamber. Oxygen levels in the chamber were routinely maintained at less than 1%, which correlates to a dissolved O₂ levels of < 0.4 ppm.

Twenty gram samples (20 ± 0.1) of the size-reduced grout paste formulations (both "size reduced" and "crushed") were weighed into labeled 50-mL centrifuge tubes with vented caps for gas exchange (Bio-Reaction Tubes, polypropylene tubes with 0.22 µm hydrophobic membrane in the vent cap; VWR, Radnor, PA 19087-8660). The weight of each test tube was recorded at each step in the experiment to facilitate mass balance calculations and account for moisture losses due to evaporation with extended equilibration times. Examples of the test tubes containing either the size-reduced and crushed materials, and a full treatment set out in the lab are shown in **Figure 5**. Three replicates were used for each batch treatment.

Table 3. TCG treatment configuration for column and batch testing.

Batch Test ID#	Column Test ID#	System	Material	Form			
	Open Atmosphere Treatments						
O1SR(a,b,c)	O1(a,b)	Open/oxic	TCG paste	Size-Reduced (SR)			
O1Cr(a,b,c)		Open/oxic	TCG paste	Crushed (Cr)			
	OI1(a)	Open/oxic	TCG with Sand- Intact Monolith	Intact			
O2SR(a,b,c)	O2(a,b)	Open/oxic	TCG paste w/o blast furnace slag	Size-Reduced (SR)			
O2Cr(a,b,c)		Open/oxic	TCG paste w/o blast furnace slag	Crushed (Cr)			
O3SR(a,b,c)	O3(a,b)	Open/oxic	CLSM paste	Size-Reduced (SR)			
	Close	ed Atmosphere Coy Cha	mber				
C1SR(a,b,c)		Closed/anoxic	Tank Closure Grout paste	Size-Reduced (SR)			
C1Cr(a,b,c)		Closed/anoxic	Tank Closure Grout paste	Crushed (Cr)			
C2SR(a,b,c)		Closed/anoxic	Tank Closure Grout paste w/o	Size-Reduced (SR)			
C2Cr(a,b,c)		Closed/anoxic	Tank Closure Grout paste w/o	Crushed (Cr)			
C3SR(a,b,c)		Closed/anoxic	CLSM paste	Size-Reduced (SR)			
		N ₂ Anoxic Atmosphere					
N1SR(a,b,c)	N1(a,b)	N ₂ Atm	Tank Closure Grout paste	Size-Reduced (SR)			
N1Cr(a,b,c)		N ₂ Atm	Tank Closure Grout paste	Crushed (Cr)			
NI1(a)	NI1(a)	N ₂ Atm	TCG with Sand- Intact Monolith	Intact			
N2SR(a,b,c)	N2(a,b)	N ₂ Atm	Tank Closure Grout paste w/o blast furnace slag	Size-Reduced (SR)			
N2Cr(a,b,c)		N ₂ Atm	Tank Closure Grout paste w/o blast furnace slag	Crushed (Cr)			
N3SR(a,b,c)	N3(a,b)	N ₂ Atm	CLSM paste	Size-Reduced (SR)			

Notes: "SR" and "Cr" after number in Test ID refers to "size-reduced" and "crushed" samples that are included in batch testing with "a,b,c" in Test ID# denoting three replicates (a, b, and c). For column tests only two SR replicates (a and b) were conducted. For intact testing, only one sample type (TCG with Sand) was exposed to the open air leachate, and one was exposed to the N_2 purged leachate. Figure 5. Batch equilibration tubes open to the treatment atmosphere.

A. Size-Reduced TCG

B. Crushed TCG

C. Batch Treatments

A surrogate soil pore-water solution (**Table 4**) based on the predicted composition of SRS rainwater (Strom and Kaback; WSRC-RP-92-450) that has equilibrated in contact with kaolinite and amorphous silica was used as the target test leachate (Denham and Millings; SRNL-STI-2012-00404). **Table 5** provides the recipe to the concentrated TCG leachate stock solution along with the final concentration of the simulant. The stock and final test solutions were made from research grade chemicals using deionized water, 18.2 M Ω cm at 25 °C (Milli-Q Element, Millipore, Inc., Billerica, MA 01821). The pH of the test solution was typically between 6 and 7. There was no attempt to mimic the dissolved levels of Si and Al in the leaching solution due to concerns over the stability of such a solution. The levels of chloride (Cl⁻) were higher in the test solution due to charge balance constraints with the major cations. This discrepancy is unlikely to impact batch or column results.

Parameter	Value	FW(g/M)	g/L	mg/L
pH	4.68			
Dissolved Gases	М			
O ₂ (aq)	2.19E-04	32	7.0E-03	7.01
CO ₂ (aq)	1.07E-05	44	4.7E-04	0.47
Solutes	M			
Cl	2.74E-05	35.45	9.7E-04	0.97
Na ⁺	8.69E-06	22.99	2.0E-04	0.20
Ca ⁺²	2.06E-06	40.08	8.3E-05	0.08
Mg ⁺²	1.34E-06	24.31	3.3E-05	0.03
Al ³⁺	8.43E-07	26.98	2.3E-05	0.02
H ₄ SiO ₄ (aq)	1.90E-03	64.1	1.2E-01	121.8
SO_4^{-2}	1.35E-05	96.1	1.3E-03	1.30

Table 4. Leaching solution prescribed in RFQ No. 190129 (from SRNL-STI-2012-00404).

TCG Stock Solution (1 mL for each L of leachate solution)					
Stock Solution	М	FW	g/L		
NaCl	8.69E-03	58.44	0.508		
CaCl ₂ .2H ₂ O	2.06E-03	147.01	0.303		
MgCl ₂ .6H ₂ O	1.34E-03	203.3	0.272		
Na ₂ SO ₄	1.35E-02	142.08	1.918		
Final Dilute Treat	ment Solution				
Solutes			mg/L		
Cl			0.24		
Na ⁺			0.82		
Ca ⁺²			0.08		
Mg ⁺²			0.03		
SO ₄ ⁻²			1.30		

 Table 5. Stock solution and final dilute background solution for batch equilibrations and column leaching tests.

Twenty mL of the dilute test solution were added to each batch tube, and the tubes were all weighed before placement on an orbital shaker at ≈ 100 rpm. Each day the batch slurries were vigorously shaken by hand to ensure effective mixing. The test leachate was pre-equilibrated in the Coy Chamber for the "closed" system treatments to reduce dissolved O₂ levels prior to its use in batch tests. At least once a week, the tubes were shaken by hand and then allowed to settle. After settling, the pH and oxidation reduction potential (ORP) values were taken in the clear supernatant solution above the slurry. A 1 mL aliquot of the solution was then taken for chemical analysis. The sample was acidified (2% HNO₃) for preservation, and then analyzed for major elements (i.e., Na, K, Ca, Mg, Al, and Fe) by inductively coupled plasma mass spectrometry (ICP-MS) in accordance with the quality assurance (QA) protocols of EPA Method 6020B. One mL of fresh test leachate was then added to each tube to maintain a fixed solid to liquid ratio (L/S = 1). As the batch tests continued, it became obvious that solution was being lost from the samples due to evaporation. To account for this discrepancy, each sample tube was weighed and the observed loss of mass was corrected for by addition of deionized water.

The initial batch experiments were started near the end of September 2019. It soon became obvious that the ORP values observed for the "closed" system (i.e., Coy Chamber) were exceptionally low because of the H_2/N_2 atmosphere used in keeping the system anoxic. To address this issue, a third batch treatment began in January 2020 using the same TCG paste formulation treatments as before. The samples were equilibrated in a glove bag under a constant purge of UHP N₂ controlled by a Neutronics Model 1100 O₂ Analyzer set to maintain an O₂ level less than 1%. The pH and ORP values of the batch treatments were measured on a weekly basis in a manner consistent with the other batch treatments.

After 130 days of equilibration, Replicate A for each batch treatment was removed for analysis of the remaining solid materials. Any supernatant water on the surface of the grout slurry was drained and the samples were then quick frozen with liquid N₂. The residual materials were then freeze dried in preparation for subsequent XRF and XRD analysis. Additional sample preparation details will be discussed below. At the same time that Replicate A was removed, an additional 10 mL of test solution was added to each Replicate C. As before, the remaining batch test replicates B and C were equilibrated continuously on an orbital shaker. Each day all remaining batch samples were vigorously shaken by hand as before, with the pH and ORP measured at least once a week. Each workday, 10 mL of solution was removed from the replicate C samples and then replaced with 10 mL fresh test solution (**Table 5**). As before, the 10 mL sample was acidified (2% HNO₃) for preservation, and then analyzed for major elements (i.e., Na, K, Ca, Mg, Al, and Fe) by ICP-MS. This was done to simulate the removal of soluble grout components due to pore-water exchange in a dynamic system.

The week of March 9th, 2020 the SREL was alerted that UGA would likely close all facilities in response to the Covid-19 pandemic. In preparation for closure, most of the ongoing experiments were terminated the week of March 16th due to limited access to SREL and the SRS. A summary of the duration of each experiment is provided in **Table 6**. All of the column tests were terminated because they required daily maintenance to continue. Batch tests in the "open" lab and the Coy Chamber (i.e., "closed" test) were suspended and the residual treatments (Reps B and C) were quick frozen with liquid N₂ and freeze dried for subsequent XRF and XRD analysis, as done previously with the Replicate A samples. However, the ongoing batch test in the N₂ glovebag was continued because it could be reasonably maintained with limited access to the lab. After closure, essential lab personnel were granted limited access to labs for the purposes of monitoring facilities and equipment, and maintaining critical experiments that could not be suspended. Thus, the batch study under the N₂ atmosphere was allowed to continue for similar duration as the other two experiments.

Treatment Size Fraction**		Batch Equilibration Duration (days)		Column Duration (days)		
	Fraction**	А	В	C*	А	В
	Intact	-	-	-	68	-
Open	SR	130	172	130 + 42	130	67
	Cr	130	172	130 + 42		-
	Intact	-	-	-	68	-
N_2	SR	141	141	141	130	67
	Cr	141	141	141	-	-
NL/LL	SR	130	172	130 + 42	-	-
N_2/H_2	Cr	130	172	130 + 42	-	-

Table 6. Summary of final batch and column test durations.

*Batch Rep C for open and N_2/H_2 treatments subject to 42 days of enhanced leaching after first 130 days of equilibration. This consisted of removing 10 mL of solution from the batch sample and replacing it with 10 mL of fresh test solution (Table 5) every work day.

**Batch experiments with SR and Cr samples were performed for TCG and TCG-NBFS formulations. Only SR samples were used in CLSM batch experiments (Table 3).

Column Test Methods

The column leaching tests were restricted to one of the size reduced treatments (i.e., 0.5 to 2 mm fraction) plus intact monoliths. The size reduced materials for the three cured paste formulations (i.e., TCG, TCG-NBFS, and CLSM) were mixed with clean guartz sand (Ottawa sand) according to the ratios defined in Table 2 (i.e., 3.71 g sand/g TCG paste or TCG-NBFS paste, and 3.87 g sand/g CLSM paste). The sand was added to help maintain constant flow through the size-reduced TCG materials and to achieve equivalent proportions of cementitious materials and sand as in monolithic production grouts, i.e., equivalent reaction capacity. The size reduced materials plus sand (TCG + sand ≈ 100 g) were packed to a uniform bulk density. The system was then saturated from the bottom in an upflow manner to facilitate saturation. Two saturated column replicates were conducted with each of the three grout formulations under two different inlet solution treatments (open to the atmosphere and purged with UHP N_2), i.e., 3 grouts x 2 leachates x 2 replicates = 12 columns. A multi-channel peristaltic pump (Fisherbrand FH100M Multichannel Pump) was used to maintain a constant flow rate in all 12 columns. One set of columns was leached with the dilute (Table 5) treatment solution in equilibrium with the lab atmosphere, and the second set was leached with the same solution that was continuously purged with UHP N₂. Oxygen (O₂) levels in the headspace above the purged solution were typically less than 1%, consistent with the N₂ batch treatments. For one set of column replicates, the effluent pH and ORP were manually monitored on a weekly basis. To reduce leachate exposure to the atmosphere that could result in anomalous changes to pH and ORP values, a section of tubing containing effluent exiting the columns was collected for immediate measurement of pH and ORP before exposure. The pH and ORP values for the second column replicate were monitored continuously using flow-through pH and ORP cells.

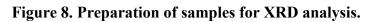
Figure 6. Mixing TCG materials with sand for column leaching tests. A. Size Reduced TCG **B.** Ottawa Sand

C. Empty Flow-Thru Cell

D. Cell packed with TCG/Sand Mixture

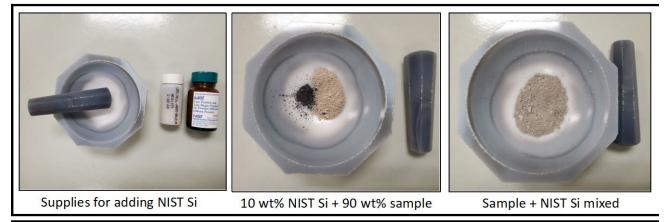
After saturation, the pressure head was continuously monitored at the inlet of each column as an indicator of hydraulic conductivity and column plugging. A 0-30 PSI pressure transducer was attached to each column inlet and the output voltage was calibrated to a water column that was open to the atmosphere at the column inlet. Column leachate samples were collected each week and weighed to verify flow rates, and samples were retained for subsequent analysis of major elements (i.e., Na, K, Ca, Mg, Al, and Fe) by ICP-MS.

TCG Analysis


The initial dry cementitious materials, resulting paste formulations, and size-reduced materials exposed to the batch leaching scenarios were analyzed for mineralogy by x-ray diffraction (XRD; ASTM C1365-06) and composition by x-ray fluorescence (XRF; ASTM C114-15). Note that XRD was performed on Replicates A and C though no XRD pattern differences were detected between the replicates; **hence, only XRD data for Replicate C is presented in this report.** Prior to XRF and XRD analysis the dry feeds and test grout pastes were wet milled using isopropyl alcohol (3 g sample/7 mL isopropyl alcohol) for 10 minutes in a XRD-McCrone Mill (Retsch Inc.) at the level 4 power setting. The McCrone Mill was designed to rapidly grind materials for XRD analysis while preserving the materials crystalline structure, and has been widely used in the preparation of cementitious materials for XRD analysis (Schreiner et al., 2018; Snellings et al., 2014). As noted in the discussion of the batch methods, the TCG materials were all freeze dried prior to milling for XRD and XRF analysis. After grinding, the slurry was washed into a recovery pan using additional alcohol and then placed in a drying oven at 40 °C.

The dry feed materials and several certified reference materials (CRMs) were initially prepared as pressed pellets for XRF analysis. However, discrepancies were noted in the results when compared to previous grout data. Homogeneous glass beads were created using a 1 gm of milled sample mixed with 10 gm of lithium borate flux (49.75% Lithium Tetra-borate/49.75% lithium metaborate with 0.5% lithium bromide wetting agent) and fused using a Katanax X-300 Fusion Fluxer (SPEX SamplePrep. Inc., Metuchen, NJ 08840). A photograph of some of the resulting flux beads is shown in **Figure 7**.

Figure 7. Photograph of 40 mm diameter, homogeneous lithium borate flux beads made from (Bottom: Left to Right) flux blank with no sample added, TCG, TCG-NBFS, and an iron steel slag material.



For XRD, the dried size-reduced samples were worked into a powder and mixed with 10 wt% National Institute of Standards & Technology (NIST) Standard Reference Material (SRM) Silicon. The NIST silicon is used both as a means to correct peak displacement within the XRD patterns but also as an internal standard (of known wt%) that aids in the quantification of amorphous and crystalline phases in the samples. **Figure 8** indicates the steps involved in preparation of the sample for XRD analysis.

Dried material worked into useable powder for XRD with mortar and pestle

Empty XRD sample holder

Powder loaded onto holder

Powder pressed into holder well

Samples were analyzed using a Bruker D2 Phaser XRD (Bruker AXS LLC, Madison, WI) set to the following scan parameters:

20 Range	Step Size (Δ2θ)	Time per Step	Sample Spin Speed
5-70°	0.02°	4 sec.	30 rpm

Phase identification was achieved using Bruker DIFFRAC.EVA (https://www.bruker.com/products/x-ray-diffraction-and-elemental-analysis/x-ray-diffraction/xrdsoftware/eva.html) by comparing each pattern to reference patterns (referred to as powder diffraction (PDFs)) compiled by the International Center for Diffraction Data (ICDD). Specifically, the authors utilized the ICDD PDF-4+ (2019) database (refer to the ICDD website at http://www.icdd.com).

Phase proportions were determined via Rietveld analysis using Bruker DIFFRAC-TOPAS (https://www.bruker.com/products/x-ray-diffraction-and-elemental-analysis/x-ray-diffraction/xrdsoftware/topas.html). The software uses a curve-fitting algorithm to match the peaks of reference samples to those identified in the XRD scan. Curve-fitting each phase ultimately allows the proportions (wt%) of the crystalline phases to be calculated. The use of the internal Si standard also allows the proportion of amorphous phase in each sample to be determined. Additional information regarding the fundamentals of Rietveld refinement is provided at http://profex.doebelin.org/wpcontent.pdf

RESULTS

Batch Tests - pH and E_h

Table 17 in the Conclusions section provides a summary of all the batch and column data. Both the "crushed" and "size-reduced" fractions for the test materials performed in a similar fashion, so all of the presented data reflects the average of the two size fractions combined. In addition, the pH and E_h does not include sample replicates that were used for the enhanced leaching treatments discussed below. The pH and E_h values for the batch equilibration experiments are provided in **Figure 9** for all three atmospheric treatments, i.e., open lab atmosphere (**9A and 9D**), N₂ purged atmosphere (**9B and 9E**), and Coy Chamber reducing atmosphere (**9C and 9F**). A clear difference was observed in the pH values under all three atmospheric treatments, with the TCG displaying the highest pH followed by the TCG-NBFS and finally the CLSM, with both the TCG and TCG-NBFS appearing to better maintain a higher pH (i.e., buffer the system) than the CLSM under all three test atmospheres. The observed pH values were consistent with geochemical modeling and laboratory tests evaluating contaminant solubility in tank waste grouted systems, with both the TCG and TCG-NBFS displaying pH values that are 11.1 (see **Table 1**) or higher under all test environments (SRNL-STI-2015-00446; SRNL-STI-2016-00432; SRNL-STI-2018-00484).

Trends with respect to E_h for the three different TCG paste formulations were more difficult to discern given the level of scatter in the data (Fig. 9D thru 9F). As expected, the lowest E_h values were

observed for all samples equilibrated in the anaerobic Coy Chamber under a H_2/N_2 atmosphere (**9F**), with the N_2 glovebag (**9E**) yielding the next lowest values and the batch samples open to the lab atmosphere yielding the highest E_h values (**9D**). In general, the TCG materials containing the BFS provided the lowest E_h values (i.e., most reducing) under most test conditions, followed by the TCG-NBFS and then CLSM. For TCG, the E_h ranged from -0.42 to 0.16 V in the Coy Chamber, -0.12 to 0.18 V under the N_2 atmosphere and 0.12 to 0.26 V under the oxidizing open system. For the TCG-NBFS, the E_h ranged from -0.36 to 0.23 V in the Coy Chamber, 0.03 to 0.22 V under the N_2 atmosphere and 0.16 to 0.28 V under the oxidizing open system. And finally, for the CLSM the E_h ranged from -0.45 to 0.30 V in the Coy Chamber, 0.03 to 0.27 V under the N_2 atmosphere and 0.20 to 0.35 V under the oxidizing open system. The similar performance of the three TCG formulations in the Coy Chamber suggests that the results were more controlled by the atmospheric condition than the TCG formulation.

These results are generally consistent with previous reports concerning the inability to observe the low E_h values assumed in the TF PA geochemical modelling for RRII (-0.47 V) in the absence of added amendments (SRNL-STI-2015-00446; SRNL-STI-2016-00432; SRNL-STI-2018-00484). Even though the E_h values were generally higher than the RRII target (-0.47 V), they still remained lower than two oxidized grout stages, ORII (0.56 V) and ORIII (0.68 V), for both the open and N₂ purged systems.

Batch Tests – Major Cations (Na, K, Ca, Mg, Al, and Fe)

Figures 10 and 11 provide the pore water composition data for the three TCG formulations in the open atmosphere treatment and the Coy Chamber. Similar data for the N_2 purge treatment was not collected due to logistical limitations incurred from lab closure. It is important to note that very limited solution was removed from the batch equilibrations during initial sampling for major cation analysis (1 mL for each sampling event), and that solution was replaced with 1 mL of fresh simulant. Thus, changes in pore water composition during this period reflect reactions occurring within the batch tube. After 130 days, labeled "Enhanced Leaching" on **Figures 10 and 11**, an additional 10 mL was added to Replicate C for each treatment and then removed the following day to mimic pore water turnover. This was continued until the batch studies were suspended, yielding 420 mL of leachate solution. Just prior to starting the Enhanced Leaching, Replicate A from each batch treatment was removed from testing for XRF and XRD analysis. Replicate B was maintained and monitored in the same manner as before the "Enhanced Leaching" began for Replicate C.

In **Figures 10 and 11**, it is apparent that most of the soluble components are derived from the TCG materials, as demonstrated by comparison with the control batch tubes that contained no grout materials, only the dilute pore water simulant (**Table 5**). When the enhanced leaching started, the concentration of all measured cations present in the pore water simulant decreased dramatically. The final concentrations for Ca, Na, Mg and K after enhanced leaching are also reported in **Table 17** for comparison with the concentrations used in geochemical modeling efforts for predicting contaminant solubility in grouted tank systems.

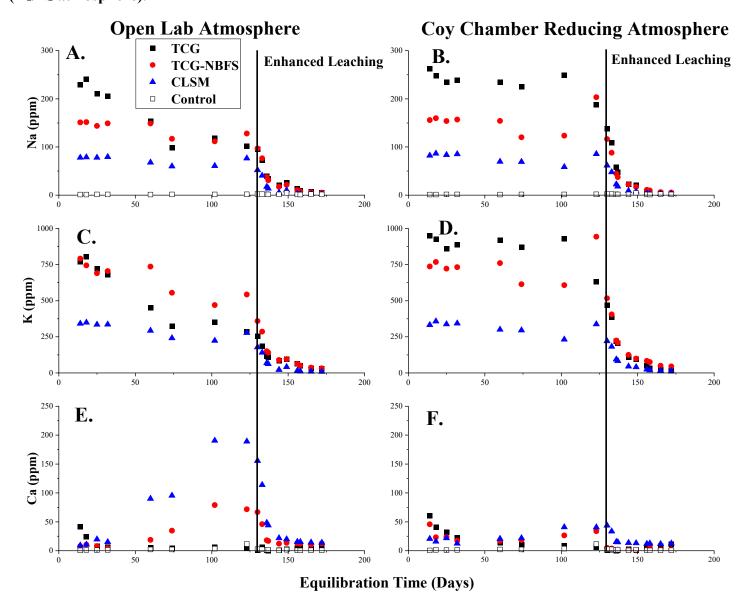

08-20-20

Figure 9. Batch pH and redox potential values for batch grout samples equilibrated under three treatment environments: Oxic – the open laboratory; Anoxic – inside an N₂ bag (< 1% O₂); and Reducing – inside a Coy Chamber (H₂/N₂ atmosphere).

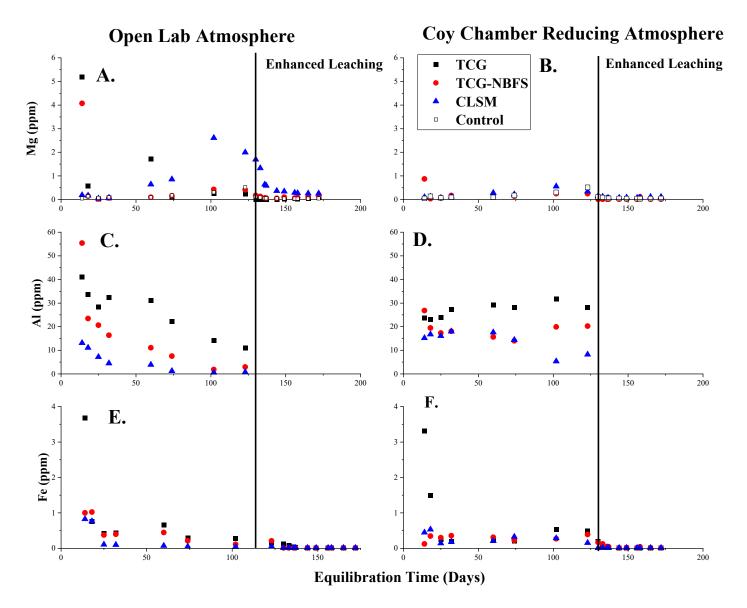
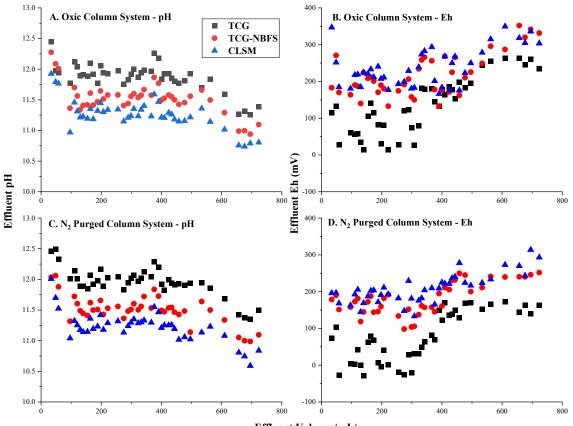

SREL Doc.: R-21-0001

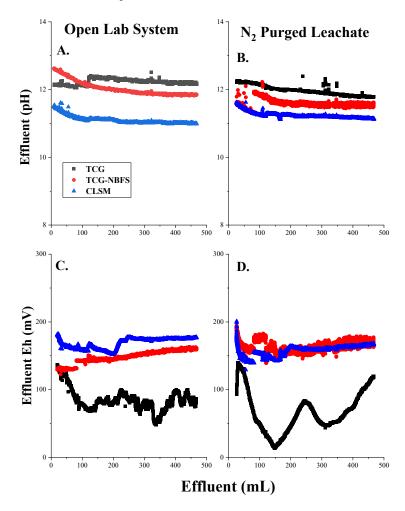
Figure 10. Major cations (Na, K, Ca) under two batch treatment environments: Oxic – the open laboratory and Reducing – inside a Coy Chamber (H₂/N₂ atmosphere).

08-20-20


Figure 11. Major cations (Mg, Al and Fe) under two batch treatment environments: Oxic - the open laboratory and Reducing - inside a Coy Chamber (H₂/N₂ atmosphere).

Column Results - pH and E_h

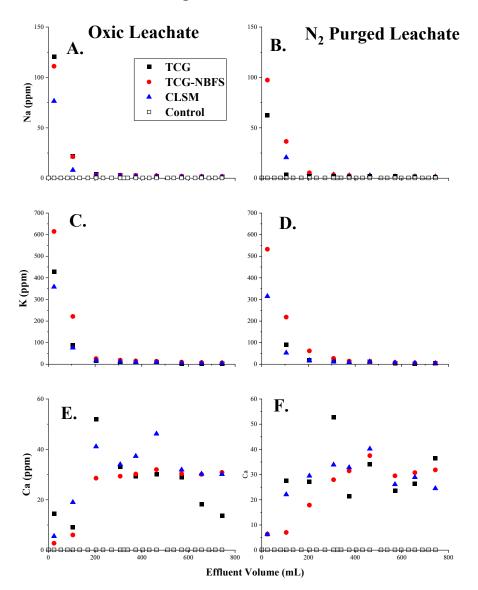
The pH and E_h results for the manual column systems are presented in **Figure 12**. The total leached effluent at the time the column tests were suspended reflects an L/S ratio (paste solids only, not sand) of \approx 38, with an initial flow rate of \approx 5.0 mL d⁻¹. No decrease in saturated hydraulic conductivity was observed over the course of leaching for any of the column treatments based on the inlet pressure readings. It is important to note that the two column treatments consist of the dilute pore water solution in equilibrium with the lab atmosphere and the same solution constantly purged with UHP N₂. Oxygen levels in the head space above the N₂ purged leachate were typically less than 1%. Consistent with the batch studies, the TCG consistently showed the highest effluent pH in both test atmospheres, followed by the TCG-NBFS formulation and then the CLSM. The effluent pH for both systems is quite similar and appears to be decreasing with increasing leaching. Data collected from the automated column system presented in **Figure 13** suggests that the decrease in pH and the increases in E_h may reflect limited changes associated with sample exposure to the atmosphere while taking the measurements manually. Even so, there was not a great deal of difference in the pH values for the two atmosphere treatments, with the TCG pH remaining above the 11.1 value used for geochemical modeling.



Effluent Volume (mL)

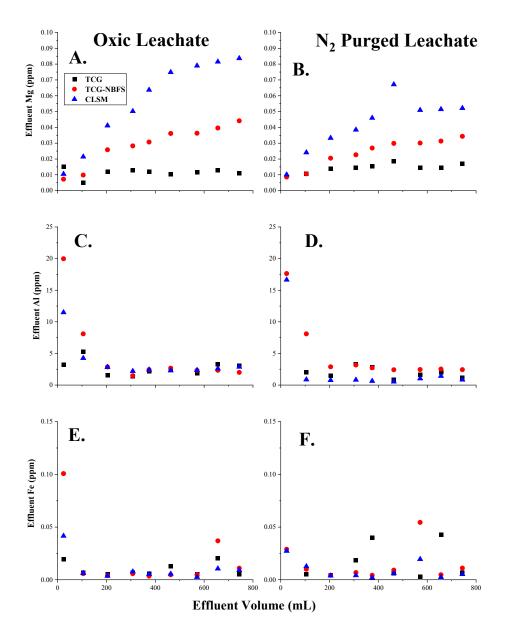
Observed trends with respect to the E_h results for the three materials are somewhat clearer than observed for the batch experiments, although there is still considerable data fluctuation and overlap, with initial values E_h for TCG starting out around 0.0 V and increasing to around 0.3 and 0.2 V for the open and N₂ purged systems, respectively. Although this is higher than the value used in PA TF geochemical models for the RRII stage of weathering, it is much lower than the ORII or ORIII E_h values as well (**Table 1**).

The pH and E_h results for the column systems monitored continuously with flow-through cells are presented in **Figure 13**. As observed for the manual columns the effluent pH was generally higher for TCG followed by TCG-NBFS and then the CLSM for both atmospheric treatments and remain fairly constant over the course of leaching. However, the manual columns were subject to greater leaching because the manual columns were started at an earlier date.


Figure 13. Effluent pH and E_h values monitored with flow through cells for column leaching tests using various TCG formulations subject to two different inlet solution treatment scenarios.

The major cations present in the column leachates are provided in **Figures 14** and **15**. As with the batch data, the column results are summarized in **Table 17**. Such information can be used to

constrain future modeling efforts aimed at evaluating the aging of waste tank grout. The inlet levels of cations (i.e., Na, Ca, and Mg in **Table 5**) present in the test solution (i.e., Control) are provided in the graphs for comparison. In general, the leaching trends are quite similar under the two atmospheric treatments. A significant amount of Na and K are initially leached from all the TCG materials, with Na levels approaching those of the inlet test solution, 0.8 ppm. In contrast, the Ca levels display a more complicated leaching history, at first increasing and then decreasing with continued leaching, but still much higher than the inlet solution, i.e., control.


Figure 14. Major cations (Na, K and Ca) present in effluent from the column experiments. Data reflects effluent from manual flow through columns.

The leaching behavior for the other major cations is a bit more complicated (**Figure 15**). Magnesium levels in the column effluent are initially quite low for all TCG formulations, lower than the inlet solution, 0.03 ppm (**Table 5**). Over time they appear to increase for the CLSM and TCG-NBFS treatments, with levels that are a bit higher than the inlet solution. In contrast the Mg levels for

TCG show little change, remaining around 0.01 ppm. For effluent Al, there are initially higher levels in the TCG-NBFS and CLSM leachates that decrease over time to a value < 5.0 ppm. This is still higher than the level predicted by geochemical modeling to mimic the test solution (**Table 4**), despite the fact that no Al was added to the inlet solution for these studies. Even though the effluents were filtered (0.45 µm pore size) before analysis, these levels may reflect colloidal materials. The levels of dissolved Fe were generally quite low, which is indicative of the moderate reducing conditions for both test atmospheres.

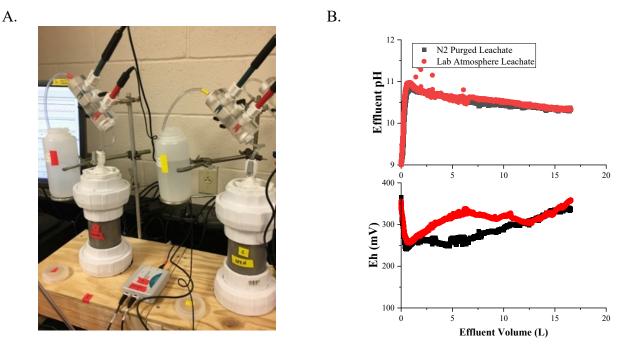

Figure 15. Major cations (Mg, Al and Fe) present in effluent from the column experiments. Data reflects effluent from manual flow through columns.

Figure 16A shows the automated column system with two sand-packed columns surrounding intact TCG + Sand monoliths in a manner such that pore water flows in an upward direction contacting the outer monolith surface, maintaining saturation, and then exiting the column and passing through a flow-thru cell containing both a pH and ORP electrode. The solution then flows into a 1L plastic bottle for sample collection. The effluent pH and ORP values for both columns were constantly monitored. **Figure 16B** provides the effluent pH and E_h values for the two columns, the only difference being the inlet treatment solution, with one equilibrated with the lab atmosphere and the second leached with the same test solution that was constantly purged with UHP N₂.

Despite the different inlet solutions, the effluent pH and E_h values were quite similar for the two columns. In both cases it initially took a couple pore volumes for the effluent pH to reach a maximum of 11 before slowly decreasing to about 10.5 with extensive leaching. Aside from occasional scatter in the data, it is difficult to distinguish between the pH results of the two inlet solution treatments. Even so, the significant rise in pH when compared to the inlet solutions (pH \approx 6 to 7) demonstrates the impact of the TCG monoliths on the effluent pH. The effluent E_h values were also quite similar for the two treatments except for a time during leaching when the column leached with the inlet solution in equilibrium with the atmosphere was somewhat higher (≈ 25 to 50 mV). Although the lower E_h is consistent with less dissolved O₂ present in the N₂-purged inlet solution treatment, it may reflect drift in the ORP electrode, as the data become quite similar with continued leaching. However, the E_h values for the intact columns were considerably higher than values observed for columns packed with size-reduced TCG paste under the same inlet solution treatments. This suggests that the impact of the two TCG + sand monoliths may be limited by slow diffusion (mass transfer) of pore solutions within the intact monoliths when compared to the much faster movement of pore solutions contained within the surrounding sand matrices (i.e., mobile vs immobile pore water). It is important to note that the pH and ORP electrodes were routinely calibrated on a weekly basis.

XRF Analysis of TCG Paste Formulations

The composition of the dry feed materials and two CRMs are reported in **Table 7**. The data shows a comparison between of the two sample preparation methods for XRF analysis, i.e., pressed pellets and fused lithium-borate beads. In general, the two sample preparation method yielded quite similar results for the two CRMs, with major elements generally displaying recoveries within \pm 5% of the certified value. The dry feed compositions are generally consistent with reported compositions used by Denham and Millings (SRNL-STI-2012-00404, from Langton, 2009, SRNL-STI-2009-00477) for estimating the solubility of residual contaminants present in grouted tank waste, and by Dyer (2018, SRNL-STI-2018-00586) in modeling SDU pore fluids resulting from Saltstone and SDU grout aging. However, two clear differences are evident with respect to the CaO and SiO₂ contents for the FA (2019-IR-05-0195), with the pressed pellets providing an overestimate of the CaO content and an underestimate of the SiO₂ content. Thus, the flux bead method was used for the preparation of all samples for XRF analysis. The flux bead method is also preferable in that it yields a stable test sample that can be stored indefinitely for reanalysis later.

Table 8 provides the XRF results for the initial grout formulations, plus grout samples that were subjected to various batch leaching scenarios. Three sets of data reflect samples that were initially cured 90 days, size reduced, and then equilibrated approximately 130+ days (i.e., Replicate A) under the three test atmospheres, the open lab, the N₂ purged glovebag and the H₂/N₂ Coy Chamber. As expected, results for these samples are consistent with the initial cured formulations because very little mass was ever removed from the batch vessels. The remaining two sets of samples reflect the enhanced leaching treatments from the open lab and Coy Chamber batch tests.

A mass balance calculation was performed on the major cation extraction data for the batch tests presented in **Figures 10 and 11**, starting at the point when the "enhanced leaching" began, with a total extraction volume of approximately 420 mL for each sample. The sum of component mass (i.e., Na, K, Ca, Mg, Al, and Fe) extracted was then converted to an oxide basis for comparison with the XRF results. These values were then subtracted from the initial material composition based on XRF, assuming an initial sample mass for the batch tests of ≈ 20 g. The results for these two sets do show evidence of loss of Na and K in the XRF results. In **Table 9**, the Na₂O and K₂O results for the initial three TCG formulations and those formulations subject to enhanced extraction are provided for comparison. The total mass loss for the other measured components was too small to be detected in the XRF data.

			*									
		Al ₂ O ₃	CaO	Fe ₂ O ₃	K ₂ O	MgO	Na ₂ O	SiO ₂	SO ₃	TiO ₂	ZnO	SrO
SRM FLX110	Certified Values	4.70	68.13	0.18	0.94	0.65	0.05	22.01	2.88	0.17	0.003	0.04
Pressed Pellet Samples		4.97	67.80	0.18	0.89	0.68	0.11	22.17	2.99	0.16	0.00	0.04
	Recovery (%)	106%	100%	100%	95%	105%	220%	101%	104%	94%	33%	98%
Fused Bead Samples		4.80	65.70	0.26	1.00	0.79	0.05	22.10	2.80	0.18	0.001	0.04
	Recovery (%)	102%	96%	143%	107%	122%	100%	100%	97%	106%	40%	106%
SRM FLX131	Certified Values	23.10	42.89	3.24	0.29	1.62	0.47	8.73	18.19	1.15	0.006	0.07
Pressed Pellet Samples		22.86	43.27	3.13	0.27	1.57	0.53	8.53	18.19	1.13	0.01	0.07
	Recovery (%)	99%	101%	97%	94%	97%	114%	98%	100%	98%	150%	104%
Fused Bead Samples		22.20	43.66	3.22	0.32	1.66	0.44	8.30	16.90	1.24	0.01	0.07
	Recovery (%)	96%	102%	99%	111%	102%	94%	95%	93%	108%	132%	110%
Dry Feed Materials P	ressed Pellet Result	:s										
	Unique Identifier	Al ₂ O ₃	CaO	Fe ₂ O ₃	K ₂ O	MgO	Na ₂ O	SiO ₂	SO ₃	TiO ₂	ZnO	SrO
Class F Fly Ash	2019-IR-05-0195	28.77	11.91	9.58	2.35	1.05	0.24	44.39		1.96	0.02	0.12
Type II Portland Cement	2019-IR-05-0201	4.62	68.28	3.23	0.56	1.58	0.17	20.57	2.30	0.20	0.09	0.09
Grade 100/120 BFS (LeHigh)	2019-IR-05-0261	13.57	42.76	0.79	0.23	6.23	0.35	31.75	2.27	0.52	0.00	0.10
Dry Feed Materials I	Fused Beads Results	6										
Class F Fly Ash	2019-IR-05-0195	25.30	1.40	9.67	2.50	0.95	0.29	56.70	0.09	1.52	0.04	0.11
Type II Portland Cement	2019-IR-05-0201	5.10	63.76	3.48	0.51	1.44	0.16	19.70	2.27	0.28	0.10	0.10
Grade 100/120 BFS (LeHigh)	2019-IR-05-0261	12.10	42.42	0.95	0.33	6.22	0.15	32.40	2.76	0.59	0.03	0.12

Table 7. Chemical composition of standard reference cements and the initial dry feed materials analyzed by XRF using the pressed pellet and the lithium borate fused bead sample preparation method.

SREL Doc.: R-21-0001

08-20-20

Table 8. Chemical composition of different initial TCG formulations, and batch-weathered TCG materials.

	Al ₂ O ₃	CaO	Fe ₂ O ₃	K ₂ O	MgO	Na ₂ O	SiO ₂	SO ₃	TiO ₂	ZnO	SrO
Initial Cured Materials											
TCG	17.30	26.75	5.73	1.51	2.62	0.26	41.20	1.46	1.03	0.03	0.12
TCG-NBFS	21.10	14.23	8.59	2.24	1.06	0.25	48.60	0.56	1.35	0.04	0.13
CLSM	23.90	6.99	9.16	2.39	1.04	0.26	52.80	0.29	1.47	0.03	0.12
	Al ₂ O ₃	CaO	Fe ₂ O ₃	K ₂ O	MgO	Na ₂ O	SiO ₂	SO ₃	TiO ₂	ZnO	SrO
Equilibrated in Open Lab - Rer	noved After Batch Equilibrat	tion 130 to	140 days (Batch Re	p A)						
TCG-O	17.40	26.09	5.78	1.39	2.62	0.18	42.00	1.37	1.06	0.03	0.12
TCG-NBFS-O	21.50	14.28	8.58	2.12	1.08	0.24	48.50	0.43	1.33	0.03	0.13
CLSM-O	23.70	6.68	9.16	2.39	1.06	0.24	53.40	0.14	1.46	0.03	0.13
Equilibrated in N ₂ Chamber - R	emoved After Batch Equilib	ration 130	to 140 day	s (Batch I	Rep A)	ĺ		Ì			
TCG-N2	17.40	26.69	5.74	1.44	2.60	0.21	41.40	1.42	1.03	0.03	0.12
TCG-NBFS-N2	21.70	13.98	8.52	2.17	1.08	0.23	48.60	0.51	1.32	0.04	0.12
CLSM-N2	23.80	6.67	9.26	2.42	1.05	0.21	53.10	0.26	1.48	0.03	0.13
Equilibrated in Coy Chamber -	Removed After Batch Equili	bration 13	0 to 140 da	ys (Batch	Rep A)						
TCG-C	17.30	26.81	5.72	1.39	2.63	0.17	41.50	1.40	1.04	0.03	0.12
TCG-NBFS-C	21.60	14.07	8.51	2.12	1.12	0.23	48.70	0.44	1.34	0.03	0.13
CLSM-C	23.70	6.71	9.20	2.42	1.05	0.26	53.20	0.21	1.46	0.02	0.13
	Al ₂ O ₃	CaO	Fe ₂ O ₃	K ₂ O	MgO	Na ₂ O	SiO ₂	SO ₃	TiO ₂	ZnO	SrO
Enhanced Leaching - Oxic Env	vironment (Batch Rep C)										
TCG-O	18.00	25.63	5.78	1.24	2.57	0.17	42.20	1.27	1.06	0.03	0.12
TCG-NBFS-O	21.70	13.57	8.70	1.97	1.09	0.19	49.30	0.25	1.35	0.03	0.13
CLSM-O	23.70	6.62	9.26	2.35	1.06	0.24	53.50	0.05	1.47	0.02	0.13
Enhanced Leaching - Coy Cha	mber Reducing Environment	(Batch Re	ep C)								
TCG-C	17.50	26.34	5.80	1.17	2.64	0.13	41.80	1.41	1.05	0.03	0.12
TCG-NBFS-C	21.50	13.68	8.60	1.80	1.09	0.22	49.50	0.32	1.34	0.03	0.13
CLSM-C	23.70	6.44	9.32	2.29	1.03	0.24	53.70	0.10	1.48	0.02	0.13

Table 9. XRF results for the K₂O and Na₂O contents of initial TCG formulations and samples exposed to extended leaching, compared to mass balance estimates of K₂O and Na₂O lost during batch equilibration, i.e., delta K₂O and Na₂O.

	K ₂ O	Delta	Na ₂ O	Delta	
	-	K ₂ O*	-	Na ₂ O*	
	%		%		
Enhanced Leaching - Oxic Env	conment (Batch Rep C)				
TCG	1.	51 0.29	0.26	0.10	
TCG-O	1.	24 0.29	0.17	0.10	
TCG-NBFS	2.2	0.37	0.25	0.09	
TCG-NBFS-O	1.	97	0.19		
CLSM	2.	³⁹ 0.15	0.26	0.04	
CLSM-O	2	35 0.13	0.24	0.04	
Enhanced Leaching - Coy Cha	ber Reducing Environm	ent (Batch]	Rep C)		
TCG	1.	⁵¹ 0.43	0.26	0.12	
TCG-C	1.	17	0.13	0.12	
TCG-NBFS	2.2	²⁴ 0.51	0.25	0.11	
TCG-NBFS-C	1.	80	0.22	0.11	
CLSM	2	³⁹ 0.20	0.26	0.05	
CLSM-C	2.2	29 0.20	0.24	0.03	

*The amount of a component removed as a weight percentage from batch samples based on the ICP-MS analysis of sampled pore solutions, e.g., an estimate of the difference on K_2O for TCG minus that in the leached TCG-O (see Fig. 10).

XRD Analysis of TCG Paste Formulations

Data presented in this section is related to phase identification and quantification for the individual dry feeds (i.e., BFS, FA, and OPC) and the pre- and post-leached tank closure paste samples from the batch equilibrations (i.e., the tank closure grout formulations without the sand component). A more thorough discussion of the XRD data (including XRD patterns) is provided in **Appendix B**, with additional documentation supporting XRD peak assignments and the matching ICDD PDFs provided in **Appendix C** and **Appendix D**, respectively.

The phases and their proportions identified for the BFS, FA, and OPC are presented in **Tables 10, 11,** and **12**, respectively. BFS (**Table 10**) is primarily composed of amorphous silicate glasses and Lehigh add approximately 2-3 wt% gypsum (CaSO₄.2H₂O) and limestone (calcite – CaCO₃), as an activator and grinding aid, respectively. BFS will exhibit pozzolanic activity in the presence of the cement reaction product portlandite (Ca(OH₂)) to form calcium (aluminum) silicate hydrates (C-A-S-H), which are partially responsible for the strength gain associated with BFS-containing cementitious blends. FA (**Table 11**) is a semi-amorphous material composed of silicate glasses and crystalline mullite (3Al₂O₃•2SiO₂), quartz (SiO₂), hematite (Fe₂O₃), and magnetite (Fe₃O₄). Similar to BFS, the

glassy phase of FA can undergo pozzolanic activity in the presence of portlandite but the crystalline phases are essentially inert. As such, the crystalline phases are expected to persist in the hydrated tank closure grout samples. The typical (and anticipated) cement phases (Table 12) are alite (Ca₃SiO₅), belite (Ca₂SiO₄), tri-calcium aluminate (Ca₃Al₂O₆), and tetracalcium aluminoferrite (Ca₂AlFeO₅). In addition, gypsum (CaSO₄•2H₂O), bassanite (hemihydrate - CaSO₄•0.5H₂O), limestone (calcite -CaCO₃), and trace ettringite (Ca₆Al₂S₃O₁₈•32H₂O) and portlandite (Ca(OH)₂) are also present. Gypsum is added to OPC as a set retarder and this mineral can actually lose water to form bassanite at the elevated temperatures that may occur during the clinker grinding process. Portlandite and ettringite are reaction products of cement hydration and indicate that the cement likely underwent mild hydration due to air-moisture contact during storage. The phases present in pre-hydrated cement react during hydration and are thus not anticipated to be present in the hydrated material. The primary hydration products of cement include calcium silicate hydrate (C-S-H), portlandite, AFt (alumina-ferric oxide-tri) phases (e.g., ettringite) and AFm (alumina-ferric oxide-mono) phases (e.g., monosulfoaluminate) (refer to Appendices A and C for additional information on cement hydration products). Though portlandite is a primary reaction product of cement it is expected to be consumed by secondary cement reactions, by carbonation, and by the pozzolanic reactions of BFS and FA.

Batch ID	Phase (wt%)							
Batch ID	Amorphous	Gypsum	Calcite	Quartz				
2019-IR-05-0261*	95.63 2.15 2.22 Trace**							
2019-IR-03-0201* 95.63 2.15 2.22 Iface** * The manufacturer certification report (MCR) for BFS is provided in Appendix A. ** The quartz polymorphs described for BFS in Appendix B were barely above								

Table 10. Phases and wt% in BFS.

Table 11	Phases	and	wt%	in F	A.
----------	--------	-----	-----	------	----

Batch ID	Phase (wt%)								
Batch 1D	Amorphous Mullite Quartz Hematite Magnet								
2019-IR-05-0195*	63.92	17.63	13.33	2.50	2.61				
* The MCR for FA is provided in Appendix A .									

Batch ID	Phase (wt%)									
	Alite	Belite	Aluminate	Ferrite	Gypsum	Bassanite	Calcite	Portlandite	Ettringite	
2019-IR-05-0201*	64.06	10.67	2.17	15.12	2.24	1.55	3.28	0.90	Trace **	
* The MCR for OPC is ** Trace is indicated for Rietveld refinement res for additional informati	or ettringite	e because	the peak is bare	-	U			,		

Table 12. Phases and wt% in OPC.

Table 13 contains a summary of the phases identified in each of the batch tested pre- and postleached tank closure paste formulations with a qualitative indication of confidence in phase identification. The bases for the confidence levels are discussed in **Appendix B**.

Tables 14, 15, and **16** provide phase proportions for CLSM, TCG-NBFS, and TCG, respectively. It is important to note, however, that not all of the phases identified by XRD were quantifiable since in many cases the crystal structure information required for Rietveld refinement was missing from the ICDD PDFs. Phase identification and quantification data are presented in greater detail in **Appendices B** and **C** and what follows is a brief data summary.

X-ray diffraction patterns of both pre-leached and leached samples were dominated by amorphous phases presumed to be associated with unreacted silicate glasses in the BFS and FA components, and amorphous calcium silicate hydrate (C-S-H) and calcium aluminosilicate hydrate (C-A-S-H) gels formed via the hydration/pozzolanic reactions of the OPC, BFS, and FA. As anticipated the poorly reacting crystalline phases of FA (i.e., quartz, mullite, hematite, and magnetite) were also detected in all pre-leached and leached samples. In addition to the aforementioned phase constituents, all pre-leached samples indicated the presence of strätlingite (Appendix C-2), calcite (Appendix C-1), ettringite (Appendix C-3), and varied AFm carbonates and/or sulfates (including hemicarboaluminate, monocarboaluminate, and/or monosulfoaluminate) (Appendices C-4 and C-5). Ettringite was not detected in any leached samples, and the AFm phases either disappeared in the leached samples or their proportions were significantly reduced. Strätlingite persisted to some degree in almost all of the leached samples irrespective of the leaching environment; however, it was barely detectable (and therefore not quantifiable) for the CLSM, TCG-NBFS, or TCG subjected to a reducing environment. In addition, for all TCG samples (containing BFS) strätlingite was barely apparent above background irrespective of the leaching environment. Calcite persisted in all samples and the highest calcite proportions were detected for samples subjected to the oxic environment during leaching. These results were anticipated and presumed due to sample carbonation in the CO₂-containing oxic environment. Hydrotalcite (Appendix C-8) and a phase tentatively identified as kuzelite (or monosulfoaluminate) (Appendix C-7) were also observed but only in the BFS-containing TCG samples; both minerals persisted in all the leached TCG samples irrespective of leaching environment. Hydrotalcite was

08-20-20

anticipated due to the magnesia (MgO) content of the BFS (approximately 6 wt% measured via XRF). Monosulfoaluminate is a reaction product of tricalcium aluminate (a primary cement phase) and ettringite (a cement hydration product).

DHACE		SAMPLES OBSERVED	IN	CONFIDENCE
PHASE	CLSM	TCG-NBFS	TCG	LEVEL
Strätlingite Ca ₂ Al ₂ SiO ₇ .8H ₂ O	 CLSM-REF CLSM-OPEN CLSM-CLOSED CLSM-N₂ 	 TCG-NBFS-REF TCG-NBFS-OPEN TCG-NBFS-N₂ 	 TCG-REF TCG-OPEN TCG-CLOSED TCG-N₂ 	HIGH
Ettringite $Ca_6Al_2(SO_4)_3(OH)_{12}(H_2O)_{26}$	• CLSM-REF	• TCG-NBFS-REF	• TCG-REF	HIGH
Kuzelite $Ca_2Al(SO_4)_{0.5}(OH)_6(H_2O)_3$	Not Observed	Not Observed	 TCG-REF TCG-OPEN TCG-CLOSED TCG-N₂ 	MEDIUM
Calcium Iron Oxide Sulfite Hydrate Ca ₄ Fe ₂ O ₆ (SO ₃).12H ₂ O	Not Observed	Not Observed	 TCG-REF TCG-CLOSED TCG-N₂ 	LOW
Calcium Aluminum Silicate Hydrate CaAl ₂ Si ₇ O ₁₈ .1.7H ₂ O	Not Observed	• TCG-NBFS-REF	• Not Observed	LOW
Calcium Aluminum Oxide Carbonate Sulfate Hydroxide Hydrate 3CaO.Al ₂ O ₃ .0.17CaSO ₄ .0.5Ca(OH) ₂ .0.33CaCO ₃ .xH ₂ O	• CLSM-REF	Not Observed	TCG-REFTCG-OPEN	LOW
Calcium Aluminum Carbonate Hydroxide Hydrate (Hemicarboaluminate) Ca ₂ Al(CO ₃) _{0.25} (OH) _{6.5} (H ₂ O) ₂	• CLSM-REF	• TCG-NBFS-REF	• TCG-REF	MEDIUM
Calcium Aluminum Iron Oxide Carbonate Hydroxide Hydrate Ca ₈ Al ₂ Fe ₂ O ₁₂ CO ₃ (OH) ₂ .22H ₂ O	• CLSM-REF	 TCG-NBFS-REF TCG-NBFS- CLOSED TCG-NBFS-N₂ 	 TCG-OPEN TCG-CLOSED TCG-N₂ 	LOW
Hydrotalcite Mg _{0.67} Al _{0.33} (CO ₃) _{0.17} (OH) ₂ (H ₂ O) _{0.5}	Not Observed	Not Observed	 TCG-REF TCG-OPEN TCG-CLOSED TCG-N₂ 	MEDIUM
Calcium Aluminum Carbonate Hydroxide Hydrate (Monocarboaluminate) Ca ₄ Al ₂ (CO ₃)(OH) ₁₂ (H ₂ O) ₅	• CLSM-REF	 TCG-NBFS-REF TCG-NBFS- CLOSED TCG-NBFS- N₂ 	Not Observed	MEDIUM

Table 13. Summary of phases identified by XRD analysis of batch-treated TCG samples.

08-20-20

PHASE		SAMPLES OBSERVE	D IN	CONFIDENCE
FHASE	CLSM	TCG-NBFS	TCG	LEVEL
Mullite General: 3Al ₂ O ₃ .2SiO ₂ Actual: Al ₂ (Al _{2.588} Si _{1.412})O _{9.706}	• All Samples	• All Samples	All Samples	HIGH
Portlandite Ca(OH) ₂	Not Observed	• Not Observed	 TCG-REF TCG-OPEN TCG-CLOSED TCG-N₂ 	MEDIUM
Quartz SiO ₂	All Samples	All Samples	• All Samples	HIGH
Calcite CaCO ₃	• All Samples	• All Samples	• All Samples	HIGH
Hematite Fe_2O_3	• All Samples	• All Samples	All Samples	HIGH
Silicon Si	• All Samples	• All Samples	• All Samples	HIGH
Calcium Silicate Hydrates <i>C-S-H</i>	Possibly present	in all samples but most pre	dominant in TCG-REF	MEDIUM
Magnetite Fe_3O_4	All Samples	All Samples	• All Samples	HIGH

			-		Pha	ase (wt%)				
CLSM Sample	Amorphous	Mullite	Quartz	Hematite	Magnetite	Calcite	Strätlingite	Ettringite	Hemicarbo- aluminate	Monocarbo- aluminate
REF (Non- Leached)	66.12	14.11	10.23	2.09	1.10	0.88	2.72	0.49	1.88	0.38
OPEN	65.55	14.75	10.95	2.12	1.48	3.01	2.14	-	-	-
CLOSED	68.79	14.75	11.19	2.12	1.64	1.51	Trace *	-	-	-
N2	66.92	15.24	11.24	2.14	1.69	1.10	1.71	-	-	-
* Trace is indic refinement resu		-	-	•	-				trations) for Riet	tveld

Table 15. Results for the Rietveld Refinement of the batch-treated TCG-NBFS formulations.

TCG-NBFS		Phase (wt%)											
Sample	Amorphous	Mullite	Quartz	Hematite	Magnetite	Calcite	Strätlingite	Ettringite	Hemicarbo- aluminate	Monocarbo- aluminate			
REF (Non- Leached)	66.97	11.69	8.64	1.79	0.99	2.63	1.85	1.41	2.61	1.43			
OPEN	68.66	11.87	9.07	1.81	1.01	6.08	1.51	-	-	-			
CLOSED	72.58	11.32	9.12	1.73	1.07	2.79	-	-	-	1.39			
N2	71.17	11.77	8.55	1.86	0.79	2.27	1.75	-	-	1.84			

	Phase (wt%)											
TCG Sample	Amorphous	Mullite	Quartz	Hematite	Magnetite	Calcite	Ettringite	Strätlingite	Hydrotalcite	Kuzelite	Portlandite	Hemicarbo- aluminate
REF (Non- Leached)	78.40	6.06	5.44	1.22	0.14	1.14	0.91	Trace *	1.42	0.78	0.42	4.07
OPEN	77.85	6.55	5.64	1.30	0.22	5.37	-	Trace	2.67	0.41	-	-
CLOSED	78.92	5.48	5.28	1.29	0.15	3.38	-	Trace	3.07	1.75	0.08	-
N2	79.66	6.64	5.96	1.44	0.24	1.30	-	Trace	2.78	1.77	0.20	-
* Trace is indicated	for strätlingite l	because the	e peak is t	arely above	background a	nd its incl	usion (at suc	h low concentra	tions) for Rietv	eld refinem	ent resulted in	pattern

Table 16. Results for the Rietveld Refinement of the batch-treated TCG formulations.

simulation anomalies; hence it was omitted during Rietveld quantification.

CONCLUSIONS

SREL conducted a series of batch and column studies to address uncertainty in the realistic pH and E_h ranges associated with grouted waste tank systems, including an evaluation of three candidate TCG paste formulations. After curing for 90 days, the size reduced pastes were equilibrated under different atmospheric conditions, including open to the laboratory atmosphere (i.e., oxidizing), under a constant N₂ purge, and within an anaerobic Coy Chamber with anoxic conditions maintained by addition of a 95% N₂/5% H₂ gas mixture. The grout materials were equilibrated with pore water simulant for 150+ days, with pH and E_h monitored weekly and small aliquots of the pore waters collected for chemical analysis. Column tests were also performed in which the size-reduced TCG formulations were constantly leached under saturated conditions with the pore-water simulant that was either in equilibrium with the lab atmosphere or purged with UHP N₂ to reduce dissolved O₂ levels.

A summary of the solution chemistry results from the current set of experiments is provided in **Table 17**. The observed results were consistent with previous laboratory tests aimed at defining achievable E_h and pH conditions in tank waste grouted systems. The pH results were consistent with both the values derived from geochemical modeling and more recent laboratory testing. The TCG displayed the highest pH followed by the TCG-NBFS and finally the CLSM, with both the TCG and TCG-NBFS maintaining a higher pH (i.e., buffer the system) than the CLSM under all three test atmospheres. The observed E_h values, however, were less extreme than values used in WRMs to represent various stages in the aging of reducing tank closure grout. The lowest E_h values were observed for all samples equilibrated in the anaerobic Coy Chamber under a H_2/N_2 atmosphere, with the N_2 glovebag yielding the next lowest values and the batch samples open to the lab atmosphere yielding the highest E_h values. Even though there was a great deal of scatter in the data, the TCG materials containing the BFS generally provided the lowest E_h values (i.e., most reducing) under all batch and column test conditions, followed by TCG-NBFS and then CLSM.

The original dry feed materials, the three initially cured TCG paste formulations, and the TCG paste materials that were subjected to various batch treatments were extensively characterized by XRF and XRD analysis. The composition of the dry feed materials and the TCG paste formulations were consistent with previous analyses. Only minor changes to Na₂O and K₂O contents were observed for batch samples that had been subjected to extended leaching, but such changes were insufficient to correlate with any significant changes in mineralogy of the batch tested materials.

Irrespective of sample formulation or testing environment, XRD patterns were dominated by amorphous phases and unreacted quartz, mullite, hematite, and magnetite from the FA. In addition, all pre-leached samples indicated the presence of strätlingite, calcite, ettringite, and varied AFm carbonates and/or sulfates. Ettringite was not detected in any leached samples, and the AFm phases either disappeared in the leached samples or their proportions were significantly reduced. Strätlingite persisted to some degree in almost all of the leached samples irrespective of the leaching environment; however, it was barely detectable (and therefore not quantifiable) for the CLSM, TCG-NBFS, or TCG subjected to a reducing environment. In addition, for all TCG samples (containing BFS) strätlingite was barely apparent above background irrespective of the leaching environment. Calcite persisted in all samples and the highest calcite proportions were detected for samples subjected to the oxic environment during leaching. These results were anticipated and presumed due to sample carbonation in the CO₂-containing oxic environment. Hydrotalcite and a phase tentatively identified as kuzelite (or monosulfoaluminate) were also observed but only in the BFS-containing TCG samples; both minerals persisted in all the leached TCG samples irrespective of leaching environment.

Table 17. Summary of batch equilibration results compared to geochemical modeling values for reducing grouts (SRNL-STI-2012-00404; SRR-CWDA-2016-00086).

	pН	Eh (volts)	Ca ²⁺ (molar)	Na ⁺ (molar)	Mg ²⁺ (molar)	K^+ (molar)
Leaching solution prescribed in SF	RNL-STI-2012-0	0404				
	4.68		2.1E-06	8.7E-06	1.3E-06	
Chemical Conditions of Reducing	Grout Pore Water	r (SRNL-STI-2012-0	0404; SRR-CWD	A-2016-00086)		
Red. Region II	11.1	-0.47	4.0E-03	1.0E-03		
Ox. Region II	11.1	0.56	4.0E-03	1.0E-03		
Ox. Region III	9.2	0.68	6.6E-05	1.0E-03		
Test Conditions			Current Study			
Batch Test - Open Atmosphere*	pH Range	Eh Range (Volts)	Ca ²⁺ (molar)	Na ⁺ (molar)	Mg ²⁺ (molar)	K^+ (molar)
TCG	11.1-12.6	0.12-0.26	2.0E-04	2.3E-04	3.6E-06	7.1E-04
TCG-NBFS	10.1-12.4	0.16-0.28	3.1E-04	2.2E-04	6.0E-06	8.2E-04
CLSM	9.2-11.9	0.20-0.35	3.5E-04	1.0E-04	1.1E-05	2.3E-04
Batch Test - N2 Purged Atmospher	e					
TCG	12.1-12.7	(-0.12)-0.18	ND	ND	ND	ND
TCG-NBFS	11.5-12.2	0.003-0.22	ND	ND	ND	ND
CLSM	10.8-11.8	0.02-0.27	ND	ND	ND	ND
Batch Test Coy Chamber - Reducin	ng Atmosphere*					
TCG	11.6-12.8	(-0.42)-0.16	2.8E-04	1.3E-04	1.6E-06	4.3E-04
TCG-NBFS	11.0-12.4	(-0.36)-0.23	5.8E-05	2.3E-04	5.3E-07	1.2E-03
CLSM	9.22-12.1	(-0.45)-0.30	3.1E-04	1.1E-04	4.5E-06	3.4E-04
Column Test - Open Atmosphere**	*					
TCG	11.3-12.5	0.01-0.26	3.4E-04	6.0E-05	4.5E-07	7.3E-05
TCG-NBFS	10.9-12.3	0.13-0.35	7.7E-04	7.3E-05	1.8E-06	1.7E-04
CLSM	10.7-11.9	0.17-0.35	7.5E-04	5.6E-05	3.4E-06	8.8E-05
Column Test - N2 Purged Atmosph	ere**					
TCG	11.3-12.5	(-0.03)-0.17	9.1E-04	6.5E-05	7.0E-07	1.1E-04
TCG-NBFS	11.0-12.1	0.10-0.25	8.0E-04	5.8E-05	1.4E-06	1.3E-04
CLSM	10.6-12.0	0.13-0.31	6.1E-04	4.9E-05	2.1E-06	1.0E-04

*Cation data for batch tests reflect the final solution after the "enhanced leaching" treatment.

**Cation data for column experiments reflect the final effluent composition.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the assistance of M. Shapiro and J. Lott in the lab.

REFERENCES

Note: References associated with the Appendices are also indicated here.

- ACI 225R-16, Guide to the Selection and Use of Hydraulic Cements, American Concrete Institute (2016).
- ACI 232.2R-18, Report on the Use of Fly Ash in Concrete, American Concrete Institute (2018).
- ASTM C114-15 (Current) Standard Test Methods for Chemical Analysis of Hydraulic Cement.
- ASTM C192 (Current), Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory.
- ASTM C1365-06 (Current), Standard Test Method for Determination of the Proportion of Phases in Portland Cement and Portland-Cement Clinker Using X-Ray Powder Diffraction Analysis.
- Bae, S., Characterization of Morphology and Hydration Products of High-Volume Fly Ash Paste by Monochromatic Scanning X-ray Micro-diffraction (μ-SXRD), Cement and Concrete Research 59 (2014) 155-164.
- Claret, F., (2018) Deciphering Mineralogical Changes and Carbonation Development during Hydration and Ageing of a Consolidated Ternary Blended Cement Paste, International Union of Crystallography Journal (IUCrJ) 5 [2] 150-157.
- Chaouche, M., X. Gao, M. Cyr, M. Cotte, L. Frouin (2017). "On the origin of the blue/green color of blast-furnace slag-based materials: Sulfur K-edge XANES investigation." Journal of the American Ceramic Society 100(4): 1707-1716.
- Denham, M.E. and Millings, M.R. (2012) Evolution of Chemical Conditions and Estimated Solubility Controls on Radionuclides in the Residual Waste Layer During Post-Closure Aging of High-Level Waste Tanks, Savannah River Site, Aiken, SC, August 2012, SRNL-STI-2012-00404, Rev. 0.
- Dilnesa, B.Z., Iron in Carbonate Containing AFm Phases, Cement and Concrete Research 41 (2011) 311-323.
- Dyer, J.A. (2018) Geochemical Model of E_h and pH Transitions in Pore Fluids during Saltstone and SDU Concrete Aging. October 2018, SRNL-STI-2018-00586.
- Grattan-Bellew, P.E., Effects of Preferred Orientation on X-ray Diffraction Patterns of Gypsum, American Mineralogist 60 (1975) 1127-1129.
- Gruskonjak, A. (2006) Hydration of Alkali-Activated Slag: Comparison with Ordinary Portland Cement, Advances in Cement Research 18 [3] 119-128.
- Hay, M.S., P.E. O'Rourke, and H.M. Ajo (2012) Summary of XRD and SEM Analysis of Tank 18 Samples., Savannah River National Laboratory, Aiken, SC. SRNL-L3100-2012-00017.
- Hunnicutt, W.A, (2013) Characterization of Calcium-Silicate-Hydrate and Calcium-Alumino-Silicate-Hydrate, Thesis: University of Illinois at Urbana-Champaign; available at <u>https://www.ideals.illinois.edu/bitstream/handle/2142/45395/William_Hunnicutt.pdf?sequence=1&</u> isAllowed=y
- Ingram, K.D. (1991) A Review of Limestone Additions to Portland Cement and Concrete, Cement & Concrete Composites 13, 165-170.
- Ipavec, A. (2011) Carboaluminate Phases Formation During the Hydration of Calcite-Containing Portland Cement, Journal of the American Ceramic Society 94 [4] 1238–1242.

- Kilic, A.M. (2007) The Phase Transition in Natural Gypsum, Asian Journal of Chemistry **19** [4] 3157-3168.
- King, W.D. and D.T. Hobbs (2015) Determining the Release of Radionuclides from Tank Waste Residual Solids: FY2015 Report, September 2015, SRNL-STI-2015-00446, Revision 0.
- King, W.D. and D.T. Hobbs (2016) Determining the Release of Radionuclides from SRS Tank 18F Waste Residual Solids: FY2016 Report, August 2016, SRNL-STI-2016-00432, Revision 0.
- King, W.D. (2018) Determining the Release of Radionuclides from SRS Tank 12H Waste Residual Solids Following Tank Closure, October 2018, SRNL-STI-2018-00484, Rev. 1.
- Layton, M.H. (2018) Evaluation of Waste Release Testing Results against the Tank Farm Performance Assessment Waste Release Model, Savannah River Site, Aiken, SC, Rev. 1, November 2018. SRR-CWDA-2016-00086.
- Lothenbach, B., (2011) Supplementary Cementitious Materials, Cement and Concrete Research 41, 1244–1256.
- Matchei, T., (2007) The Role of Calcium Carbonate in Cement Hydration, Cement and Concrete Research 37, 551-558.
- Portland Cement Association, Concrete Information: Ettringite Formation and the Performance of Concrete, PCA R&D Serial No. 2166.
- Pott, U., (2020) Investigation of the Incompatibilities of Cement and Superplasticizers and Their Influence on the Rheological Behavior, Materials 13, 977.
- Savija, B., (2016) Carbonation of Cement Paste: Understanding, Challenges, and Opportunities, Construction and Building Materials 117, 285-301.
- Schreiner, J., Jansen, D., Ectors, D., Goetz-Neunhoeffer, F., Neubauer, J., and Volkmann, S. (2018). New analytical possibilities for monitoring the phase development during the production of autoclaved aerated concrete. Cement and Concrete Research 107, 247-252.
- Snellings, R., Bazzoni, A., and Scrivener, K. (2014). The existence of amorphous phase in Portland cements: Physical factors affecting Rietveld quantitative phase analysis. Cement and Concrete Research 59, 139-146.
- Snyder, K.A., (2009) Hydrated Phases in Blended Cementitious Systems for Nuclear Infrastructure, NUCPERF 2009 Conference Proceedings.
- SREL DOC No. R-20-0001 (Rev. 2.0), Batch-to-Batch Characterization of Dry Feed Materials Used in Saltstone Production, Savannah River Ecology Laboratory (University of Georgia) (2019).
- Strom, R. N., and D.S. Kaback (1992). SRP Baseline Hydrogeologic Investigation: Aquifer Characterization Groundwater Geochemistry of the Savannah River Site and Vicinity (U), Westinghouse Savannah River Company, Environmental Sciences Section, Aiken, SC. WSRC-RP-92-450.
- Toby, B.H., R (2006) Factors in Rietveld Analysis: How Good is Good Enough? Powder Diffraction 21 (1) 67-70.
- USEPA (2014). "USEPA Method 6020B, Rev. 2. Inductively coupled plasma-mass spectrometry." Office of Solid Waste, Washington, DC.

APPENDIX A: Manufacturer Certification Reports for Dry Feeds

Lehigh Grade 120 BFS

			2019 IR-05 0261 Page 4 of 7							
			LÆ	HIC						
Material C	ertificatio	n Report	HEIDELBE	RGCEMENT	Group					
	GGBFS ASTM C989	ement	Date 1-Feb-19							
Type.	ASTM COOD C		Silo # 611/612	2						
		Genera	Information							
Address: 575 Cargo F Cape Canav	veral, FL 32920		Source Location: Lehigh Cement 575 Cargo Road Cape Canaveral	l Florida 32920						
	Lehish Come	nt Company, Cape Canav	rage test data. The data is typical of GG veral, FL Ptant. Individual shipmonts may	BFS shipped by very						
		st Data on ASTM	"Standard" Requirements							
ilen:	Shenaical (C968, Table 2)	Rossie		(Coss, Tahtat)						
Gen.	Link	Result	Itom	Limit	Result					
ulide S (%)	2.5 max	0.9	Content (%) spension in Water (C-1038) (%)	12 max 0.020 max	660 2.1 0.012					
Suitete Ion - SO ₈ (%)	NA	32	Sing Activity Index (SAI %) vorage of Lest 5 Samples: Avg 7 Day Index							
Waminum Oxide - Al2O3 (%)	NA	13.8	Avg 28 Day Index Current Sampleas 7 Day Index 28 Day Index	115 min 110 min	92 118 91					
		Test Data on CCS	RL Reference Coment	110 min	116					
	Chemical	rost Data un CC		Physical						
liens	Limit	Result	Rem	Liveli	Result					
olal Aikalies as NayO (%) CyS CyS CyA CyA	08.0-08.0	0.78 57 15 7	Blaine Fineness (m2/kg) Compressive Strength MPa (psi): 7 Day 28 Day	34.5 (5000) min	382 4628					
C.AF		8	1	- Ser D (DOCO) man	40.5 (5875)					
		Options	al Test Data							
	Chemical			Invoical						
liem	Linit	Rosult	kern	Limit	Result					
% Total Alkalles		0.42	Specific Gravity (Latest Result)	+ •	2.85					
%CI (Chioride)	· · ·	<0.01	1 Day Accelerated (C-1073) psi		2770					
		Certificati	on Statement							
ement is manufactured with		gent as it is not requi	ns. This product meets ASTM C989 red or beneficial. PO# SRR A075187		gele g					

SRRAOTBIBTR-4 Watto April

Client: Mr. Tom Hendrix

P.O. Box 6

The SEFA Group

Moncks Corner, SC 29461

SEFA Class F FA

2019 IR-05- 0145 Page 6 of 8

 Date:
 February 5, 2019

 TEC Services I.D.:
 TEC 06-0509

 Lab No.:
 18-1378-WI

	REPORT OF FLY AS	H TESTS		A location and a second	
Sample I.D. No.: WI113018		I	Date Sampled:		per 30, 2018
Manufacturer: Winyah Station (Thermally Beneficiated)	D	Date Received:	Decem	ber 4, 2018
			Results		tion (Class F)
Chem	ical Analysis**		(wt%)	ASTM C618-08a	AASHTO M295-11
Silicon Dioxide (SiO ₂)			53.0		
Aluminum Oxide (Al ₂ O ₃)			28.6		
Iron Oxide (Fe ₂ O ₃)			10.56		
Sum of Silicon Dioxide, Iron Oxide & Alu	minum Oxide (SiO ₂ +Al ₂ O ₃ +Fe ₂ O ₃)		92.2	70 % min.	70 % min.
Calcium Oxide (CaO)			1.5		
Magnesium Oxide (MgO)			1.1		
Sodium Oxide (Na ₂ O)			0.34		
Potassium Oxide (K ₂ O)			2.45		
"Sodium Oxide Equivalent (Na ₂ O+0.65	58K ₂ O)"		1.95		
Sulfur Trioxide (SO ₃)			0.08	5 % max.	5 % max.
Loss on Ignition		0.2	6 % max.	5 % max.	
Moisture Content	0.0	3 % max.	3 % max.		
Total Chlorides			0.007		
Available A	kalies**				
Sodium Oxide (Na2O) as Available Alkalie			0.17		
Potassium Oxide (K2O) as Available Alkal			1.31		
Available Alkalies as "Sodium Oxide Equi	valent (Na ₂ O+0.658K ₂ O)"		1.03		1.5 % max.*
Physical A	And the second se	Test Date			
Fineness (Amount Retained on #325 Sieve)		12/7/18	25.4%	34 % max.	34 % max.
Strength Activity Index (Using Lehigh Lee	ls Alabama Portland Cement)				
At 7 D	ays:	12/21/18	81%	75 % min. [†]	75 % min. [†]
Control Average, psi: 4790	Test Average, psi: 3870	12/21/10	0170	(of control)	(of control)
At 28 D	ays:	- 1/11/19	80%	75 % min. [†]	75 % min. [†]
Control Average, psi: 6050	Test Average, psi: 4860		0070	(of control)	(of control)
Water Requirements (Test H2O/Control H2	0)	- 12/14/18	98%	105% max. [†]	105% max. [†]
Control, mls: 242	Test, mls: 237	- 12/14/10	9070	(of control)	(of control)
Autoclave Expansion:		12/7/18	-0.03%	± 0.8 % max.	± 0.8 % max.
Uniformity Re	quirements	Test Date	Variation		
Specific Gravity: 2.34	Average: 2.34	12/4/18	-0.1%	5 % max. from average	5 % max. from average
% Retained #325 Sieve: 25.4	Average: 23.5	12/7/18	1.9%	5 % max. from average	5 % max. from average

[†] Meeting the 7 day or 28 day strength activity index will indicate specification compliance

* Optional

**Chemical Analysis performed on January 4, 2019.

The results of our testing indicate that this sample complies with ASTM C618-08a and AASHTO M295-11 (2015) specifications for Class F pozzolans. Respectfully Submitted,

Testing, Engineering & Consulting Services, Inc.

6. Shore

Dean Roosa Project Manager

ISO 17025 H-H US Army Corps

Testing, Engineering & Consulting Services, Inc. 235 Buford Drive | Lawrenceville, GA 30046 770-995-8000 | 770-995-8550 (F) | www.tecservices.com

Shawn P. M. Comick

Shawn McCormick Laboratory Principal

Holcim Type I/II Cement

£	NSF	Material: Porti		and the second sec	Certification	
~ Ho	lcim		and Cement	Date Issued:	17-Jan-2019 to 17-Jan-2	019
	PROTAGE & ATT	Type: I-II (M	27. . .		14-Feb-2019	
		ALC: NOT THE REAL	and the second sec	fication	Machine Sciences	
	This cemei	nt meets the specifical	the second s	C150 and AASHTO M85 for Type I-II (MH) cement.	
			General	Information	200	
Supplier:	Holdim (US) Inc. d/b/a L	afargeHolcim US		Source Location: Holly Hill Plan	nt Silo: 25	
Address:	8700 West Bryn Mawr Av Chicago, IL 60631	ve		2173 Gardner Holly Hill, SC	and a set	
Contact:				Contact: Scott Poaps /	(803) 496-2995	
The follow	ing is based on average tes	t data during the test p	period. The dat	a is typical of product shipped from this	s source; individual shipmen	ts may vary.
		Test Dat	a on ASTM	Standard Regulrements	A STREET BOOM DO	
	Chemi	cal		•	Physical	
Item		Limit '	Result	Item	Limit 1	Result
SiO ₂ (%)		-	19.4	Air Content (%)	12 max	6
AlsOs (%)		6.0 max	4.6	Blaine Fineness (m²/kg)	260-430	396
Fe ₂ O ₃ (%)		6.0 max	3.3			
CeO (%)		and the	63.1	Autoclave Expansion (%) (C151)	0.80 max	0.02
MgO (%)		6.0 max	1.3	Compressive Strength MPa (psi)		
SO ₂ (%) ³		3.0 max	3.3	3 day	10.0 (1450) min	28.8 (4180
Loss on Ignit	ion (%) *	3.5 max	2.3	7 day	17.0 (2470) min	34.3 (4970
Insoluble Re	sidue (%)	1.50 max	0.36			
CO. (%)			1.3	Initial Vicat (minutes)	45-375	80
CaCO ₃ in Lin	nestone (%)	70 min	84			
Potential Pha	ase Compositions *:			Mortar Bar Expansion (%) (C1038)	0.020 max	0.009
C.S (%)			58			
C+3 (76)		-	12			
CaS (%)		8 max	7			
C.S (%)		-	10			

c	hemical		Physical				
Item	Limit '	Result	Itom	Limit '	Result		
Equivalent Alkalies (%)	0.60 max	0.47	Heat of Hydration kJ/kg (cal/g) (ASTM C1702) 3 Days *		276 (66)		

Notes (*1-9)

1 - Dashes in the Limit / Result columns mean Not Applicable.
 2 - It is permissible to exceed the specification limit provided that ASTM C1038 Nortar Bar Expansion does not exceed 0.020% at 14 days.
 3 - Adjusted per Annex A1.6 of ASTM C150 and AASHTO M85.

4 - Test results represent the most recent value and is provided for information only.

5 - Limit = 3.0 when limestone is not an ingredient in the final cement product

1/17/2019

This cement was ground with the proper amount of gypsum and grinding aid.

PO# 5RRA0789198-3 Additional Data Item Limestone Base Cement Phase Composition Inorganic Processing Addition Result Amount (%) 3.6 C.S (%) 60 SiO: (%) 2.3 C.S (%) 12 AlaOs (%) 0.6 C.A (%) 7 -FerOs (%) 0.5 -C.AF (%) 10 CaO (%) 51.3 -SO, (%) 0,1 .

Printed: 2/14/2019 1:59:41 PM Version: 180412

Suth Poops Scott Poeps, Quality Manager

Grind 17

APPENDIX B: XRD Analysis of Tank Closure Grouts

APPENDIX B: XRD Analysis of Tank Closure Grouts

X-ray diffraction data is presented for the following sample types:

- 1. The BFS, FA, and cement (OPC) that were used to prepare the tank closure pastes for the batch leaching experiments. These are analyzed since they are the starting point for all the tank closure paste mixes and some of the phases present in these materials will likely persist in the hydrated samples.
- 2. Hydrated tank closure pastes that had *not* been subjected to batch leaching treatments; these were used as reference samples to indicate the pre-treatment mineralogy.
- 3. Tank closure pastes subjected to batch leaching treatments under OPEN (oxic), CLOSED (reducing), and anoxic (N₂) environments.

Before presenting the XRD data it is important to acknowledge some complexities that exist with respect to phase identification and quantification when analyzing XRD scans for multicomponent systems. Such complexities are not necessarily associated with analysis of the dry feeds because those systems have, in general, been well-studied, partial information about the physical and chemical make-up of the samples is available from the manufacturer, and their chemistry and/or mineralogy is, to some degree, controlled by industrial standards. However, there are limitations that exist (with respect to phase identification and ultimately quantification) when analyzing unknown systems, such as the hydrated and leached samples from this study; these include:

Peak Overlap – different phases present in a sample may exhibit peaks at similar 2θ diffraction angles. As such, the individual peaks are not discrete and the XRD indicates a peak with shape and intensity matching the sum of the individual peaks (refer to Figure B-1). For abundant phases (>10 wt%), peak overlap is often relatively easy to detect but overlap of trace (<2 wt%)) or minor (<10 wt%) phases (especially if the overlapping peak is associated with a major phase) can make definitive phase identification difficult.

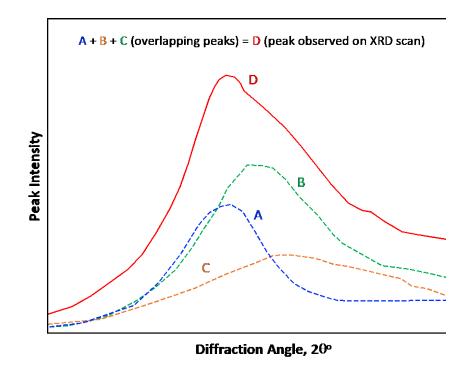


Figure B-1: Peak overlap from different phases in XRD scans.

2. Peak Shift – XRD phase identification of multiphase samples is achieved by comparing the XRD scan for the material of interest with verified scans for individual phases from a crystallographic database, such as the International Centre for Diffraction Data (ICDD). Matching is partly achieved by comparing the peak positions in the measured sample with the peak positions of the verified database material. Note that the peak positions are dependent on crystallographic structure, in particular interplanar spacing (refer to <u>https://serc.carleton.edu/research_education/geochemsheets/BraggsLaw.html</u>). However, the database entries are not limitless and phases in the measured sample may differ from the database entries due to slight differences in stoichiometry, anion and cation substitutions, and water content in the case of cementitious/pozzolanic materials. All of these factors can influence the crystal structure and the interplanar spacings, which may result in the characteristic peak shift illustrated in Figure B-2.

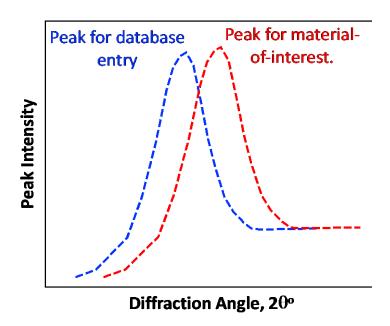


Figure B-2: Peak shift between material-of-interest and crystallographic database entry.

3. Peak Intensity – in addition to peak position (or diffraction angle 2θ), relative peak intensity is also used in the identification of unknown phases. Each peak is based on the diffraction of X-rays from a particular atomic plane within the crystal structure. Powder XRD relies on the sample being composed of millions of randomly orientated grains that are ideally $<10 \mu m$ in diameter, and this helps to ensure that all the crystal planes are randomly orientated and, additionally, that the most abundant planes within the crystal are characterized as such on the XRD scan. If, however, one crystal plane is preferentially orientated with respect to the X-ray incident beam, then that plane will be indicated as the highest intensity peak on the XRD scan though it may not be the most abundant plane in the crystal system. Some materials are in the form of platelets and these can be orientated during XRD sample preparation (refer to Figure B-3). As the powder samples are pressed into the well of the XRD sample holder, plate-like crystals can be forced to lie in a particular or preferred orientation rather than being randomly orientated. The preferred orientation results in a specific crystallographic plane becoming orientated towards the XRD incident beam, and the diffraction peak intensity associated with that crystallographic plane is enhanced. With respect to this study, it is noteworthy that both ground gypsum and portlandite exhibit plate-like morphologies and are subject to preferred orientation.

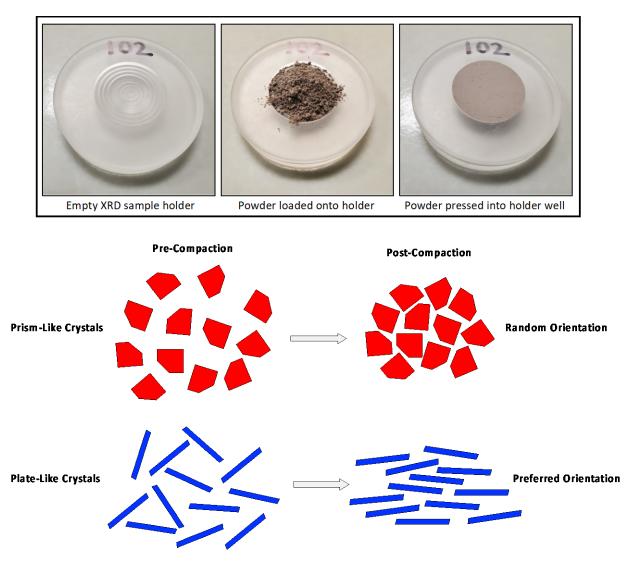


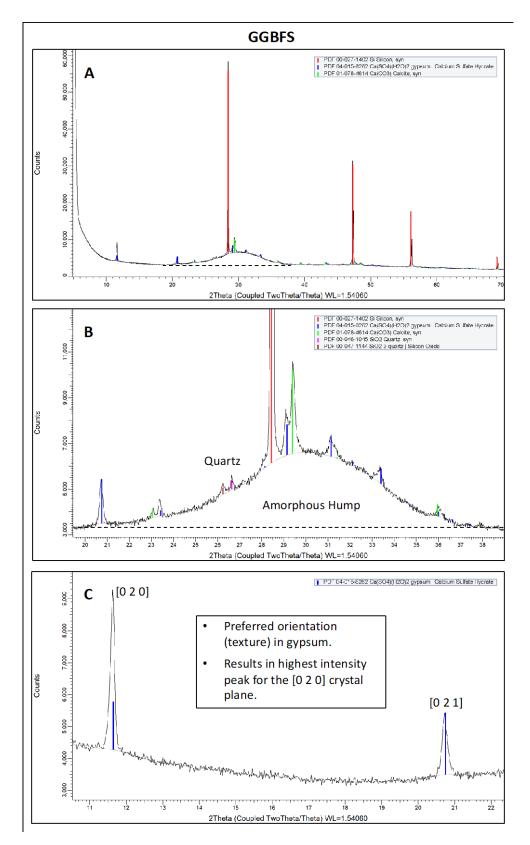
Figure B-3: Preferred orientation of plate-like crystals.

- 4. Phase Proportion as the proportion of a phase in a multicomponent system decreases, it becomes more difficult to identify since the lower-intensity characteristic peaks are absent. Strategies available to evaluate the overlap of two abundant phases are not necessarily applicable if a trace/minor phase is overlapped by a more abundant phase. In addition, many of characteristics peaks of trace/minor phases may be masked by background noise. Hence, for trace and minor phases the analyst may be relying on a single peak to identify a given phase; this is problematic unless the analyst has prior knowledge of the system and expectations of the phases that should be present.
- 5. Phase Structure Information in order to conduct phase quantification, a phase must first be identified; identification is, of course, dependent on the previously mentioned complexities of XRD analysis (i.e., Items 1-4). In addition, while it may be possible to identify a phase via comparison with verified patterns from a crystallographic database, the database may not contain the structure information that is needed to conduct quantification

via Rietveld refinement. This topic is beyond the scope of this report but it should be noted that a number of phases have been tentatively identified in the hydrated/leached samples, but the database information was ultimately missing the structure data required for quantification. Additional information regarding the fundamentals of Rietveld refinement is provided at http://profex.doebelin.org/wp-content/uploads/2015/02/Lesson-1-XRD-and-Rietveld-Refinement.pdf.

DRY FEEDS XRD DATA

Lehigh Grade 120 BFS


Figure B-4 (A-C) indicates the XRD data for the Lehigh Grade 120 BFS used to prepare the samples in this study. **Table B-1** also indicates the phases observed, the 20 diffraction angles at which peaks were discernible, the ICDD powder diffraction file (PDF) for each phase, and additional pertinent information. In addition, the ICDD PDF data sheets for each phase are provided in **Appendix D**.

PHASE	OBSERVED PEAKS (20)	ICDD PDF	COMMENTS
Gypsum Calcium Sulfate Dihydrate CaSO4•2H2O	11.63° 20.72° 29.09° 31.14° 33.37°	04-015-8262	 Additive to BFS to enhance reactivity. Indicates preferred orientation (texture) at [h k l] = [0 2 0] (2θ = 11.63°).
Calcite (Limestone) Calcium Carbonate CaCO ₃	23.08° 29.41°	01-078-4614	• Additive to BFS to enhance grinding.
β-Quartz Silicon Dioxide SiO ₂	26.25°	00-047-1144	Potential quartz carryover from smelting process.
Quartz Silicon Dioxide SiO ₂	26.63°	00-046-1045	Potential quartz carryover from smelting process.

The XRD scan (**Figure B-4 (A)**) is characterized by well-defined peaks associated with either crystalline gypsum (CaSO₄•2H₂O), limestone (calcite – CaCO₃), and the 10 wt% NIST Si standard (which is added for peak alignment and as an internal standard for phase quantification). Lehigh adds 2-3 wt% each of gypsum and limestone as an activator and grinding aid, respectively. The scan is also characterized by an "amorphous hump" that correlates with the glassy (amorphous) BFS phases. Amorphous materials, such as BFS aluminosilicate glasses, have no long-range atomic order and produce a broad low intensity hump, rather than the high-intensity, well-defined diffraction peaks associated with the long-range atomic order of crystalline materials. Thus, with XRD it is not possible to determine any phase information for the amorphous portion of BFS. Magnification of the XRD scan (**Figure B-4 (B)**) reveals two trace peaks between 26-27° 20; these have tentatively been identified as two quartz polymorphs. Any quartz present during the iron smelting process will ultimately be contained in the slag byproduct. One final point of note is

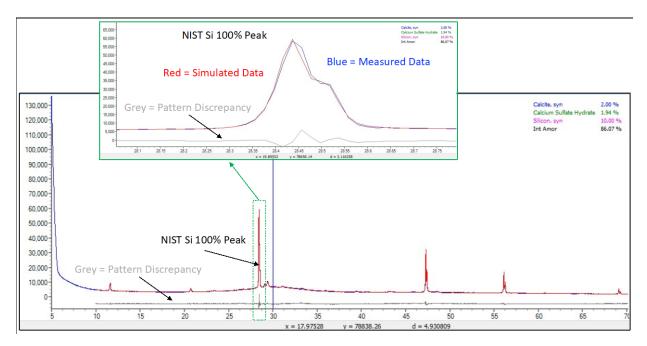
indicated in Figure B-4 (C). With respect to XRD, crystalline materials are characterized by peaks which exhibit specific 20 diffraction angles and specific relative intensities; each peak is associated with diffraction from a specific crystal plane denoted by unit cell coordinates [h k l] (refer to https://www.doitpoms.ac.uk/tlplib/miller indices/printall.php regarding crystal plane designations). As shown in Figure B-4 (C), the relative peak intensities of the ICDD reference sample are denoted by the vertical blue lines, but the peak intensity associated with the [0 2 0] plane in the measured sample is three times larger than the reference sample. This anomaly is referred to as preferred orientation or texture. Gypsum, when ground during the BFS manufacturing process, forms flat, plate-like crystals that tend to lie on the flat crystal faces (Grattan-Bellew, 1975) particularly, as discussed in the earlier text, during sample preparation for XRD analysis in which powders are pressed into shallow sample holder wells (refer to Figure **B-3**). Thus, sample preparation preferentially orientates the [0 2 0] gypsum plane to the incident X-ray beam, which produces the highest intensity peak.

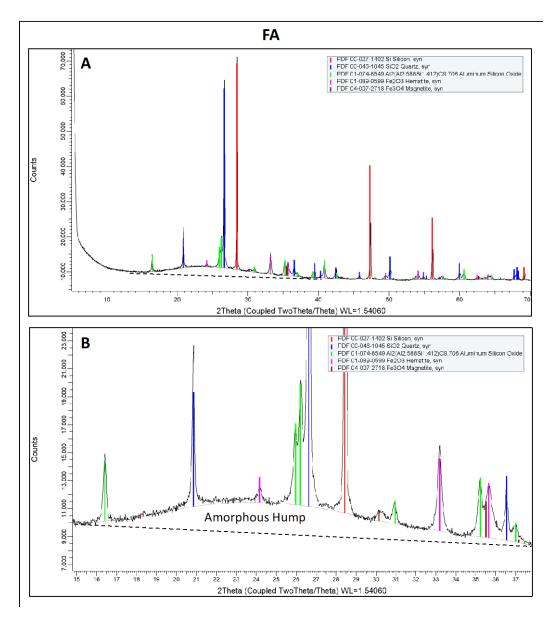
BFS phase proportions (determined by the internal standard Rietveld method) are provided in Table B-2. These proportions are in line with those reported in SREL DOC. No. R-20-0001, which detailed the compositions of multiple BFS batches previously utilized at the Savannah River Site (SRS). The GOF value refers to the "Goodness of Fit" between the XRD pattern for the actual sample and the simulated pattern. The relevance of GOF and other pattern-simulation discrepancy values are discussed by Toby (2006), though as the author notes, GOF does not provide a clear basis for rejecting or accepting a simulated pattern. In this study, the GOF values are provided merely as a means of comparison to indicate deviations between the actual and simulated scans. Discrepancies between the measured and simulated patterns can be visualized when using the Rietveld refinement software (i.e., DIFFRAC-TOPAS for this study). Figure B-5 shows the measured and simulated patterns for the BFS used in this study, and indicates that pattern discrepancy is predominantly associated with the peaks for the NIST Si standard. DIFFRAC-TOPAS does include a number of options for enhancing pattern fit and the authors evaluated a number of said options in addition to consulting the XRD Applications Team at Bruker Nano Inc. (Madison, WI). Ultimately, the simulated pattern provided an acceptable fit to the measured data, and the observed minor discrepancies are not thought to impact the validity of the phase quantification data.

Figure B-4: XRD scan for BFS used to produce study samples (A = complete scan; B & C = magnified portions of scan).

Batch ID	Phase (wt%)							
Datti iD	Amorphous	Gypsum	Calcite	Quartz**	GOF			
2019-IR-05-0261*	95.63	2.15	2.22	Trace	2.43			
* The MCR for BFS is provided in Appendix A .								
 ** The quartz polymorphs evident in Figure B-4 (B) were barely above background and not included in Rietveld refinement. 								

Table B-2: Crystalline and amorphous phase wt% in BFS.



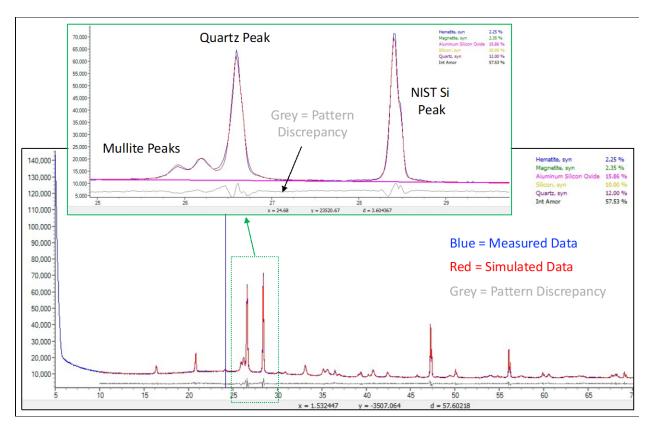

Figure B-5: Rietveld refinement data illustrating discrepancies between measured and simulated patterns for BFS.

SEFA Class F FA

Figure B-6 indicates the XRD scan for the SEFA Class F FA used in the preparation of samples for this study. Information regarding the diffraction angles at which each phase was observed and the matching phase from the ICDD are provided in **Table B-3**. In addition, the data sheets for each ICDD PDFs are provided in **Appendix D**.

FA is a semi-amorphous silicate glass containing multicomponent oxides of silicon, aluminum, iron, and calcium, and the FA scan is characterized by crystalline peaks for mullite (3Al₂O₃•2SiO₂), quartz (SiO₂), hematite (Fe₂O₃), and magnetite (Fe₃O₄), all of which are identified in **ACI 232.2R**, *Report on the Use of Fly Ash in Concrete*, as potential FA mineral phases. The amorphous portion of the FA (characterized by the "amorphous hump in **Figure B-6 (B)**) is

susceptible to pozzolanic activity but the crystalline phases are considered low activity components; refer to **SREL DOC. No. R-20-0001** for additional information on FA activity. The crystalline and amorphous phase proportions are indicated in **Table B-4**. Discrepancies between the measured XRD pattern and the Rietveld simulated pattern are presented in **Figure B-7**. Similar to BFS the main discrepancy is for the NIST Si peaks but the FA also indicates discrepancies for the quartz phase. Ultimately, the discrepancies observed in the data are relatively insignificant and the quantification numbers are considered valid.


Figure B-6: XRD scan for FA used to produce study samples (A = complete scan; B = magnified portion of scan).

PHASE	PROMINENT PEAKS (2θ)	ICDD PDF	COMMENTS
	16.42°		
Mullite	25.96°		
Aluminum Silicate	26.23°	01-074-8549	• Primary phase in low-Ca FA.
3Al ₂ O ₃ •2SiO ₂	35.21°		
	40.81°		
Quartz	20.85°		
Silicon Dioxide	26.63°	00-046-1045	• Primary phase in low-Ca FA.
SiO_2	50.11°		
Hematite	24.17°		
Iron (III) Oxide or Ferric Oxide	33.19°	01-089-0599	• Primary phase in low-Ca FA.
Fe_2O_3	35.66°		
Magnetite			
Iron (II,III) Oxide or Ferrous-Ferric	30.21°	04-007-2718	Potential phase in law Co EA
Oxide	50.21	04-007-2718	• Potential phase in low-Ca FA.
Fe_3O_4			

Table B-3: Phases observed in FA.

Table B-4: Crystalline and amorphous phase wt% in FA.

Batch ID	Phase (wt%)							
Datch 1D	Amorphous	Mullite	Quartz	Hematite	Magnetite	GOF		
2019-IR-05-0195*	63.93	17.62	13.34	2.50	2.61	2.08		
* The MCR for FA is provided in Appendix A .								

Figure B-7: Rietveld refinement data illustrating discrepancies between measured and simulated patterns for FA.

Holcim Type I/II Cement

Figure B-9 indicates the XRD scan for the cement used in the preparation of grout samples for this study. Information regarding the diffraction angles at which each phase was observed and the matching phase from the ICDD database are provided in **Table B-5**. In addition, the data sheets for each ICDD PDF are provided in **Appendix D**.

The typical (and anticipated) cement phases (per ACI 225R, *Guide to the Selection and Use of Hydraulic Cements*) are alite (Ca₃SiO₅), belite (Ca₂SiO₄), tri-calcium aluminate (Ca₃Al₂O₆), and tetracalcium aluminoferrite (Ca₂AlFeO₅). In addition, gypsum (CaSO₄•2H₂O), bassanite (hemihydrate - CaSO₄•0.5H₂O), limestone (calcite – CaCO₃), and trace ettringite (Ca₆Al₂S₃O₁₈•32H₂O) and portlandite (Ca(OH)₂) are also observed (refer to Figure B-8 (C and D)). Gypsum is added to OPC as a set retarder and this mineral can actually lose water to form bassanite at the elevated temperatures that may occur during the clinker grinding process (Kilic et al, 2007; Pott et al., 2020). Limestone (calcite) is also added to the Holcim cement as a filler material and a grinding aid (Ingram et al., 1991). Portlandite and ettringite (Figure B-8 (D)) are reaction products of cement hydration and indicate that the cement likely underwent mild hydration due to air-moisture contact during storage. The cement phase proportions are identified in Table B-6. The main cement phases are also measured by the manufacturer and presented in

the cement MCR in **Appendix A** and **Table B-6**. The alite and belite are in fairly good agreement but the vendor values for tri-calcium aluminate (typically termed *aluminate*) and tetra-calcium aluminoferrite (typically termed *ferrite*) are significantly different. Since the peaks for aluminate and ferrite in the measured sample are very discrete and not susceptible to significant overlap with other phases, the authors are confident in the proportions presented in **Table B-6**. It is conceivable, of course, that a multiple-ton batch of cement will exhibit heterogeneity, and such heterogeneities would be expected to manifest when analyzing gram-sized XRD samples from ton-sized batches of material. The Rietveld discrepancy plot is presented in **Figure B-9**, and indicates more phase discrepancies (confirmed by the GOF = 3.65 in **Table B-6**), which is not surprising since the cement is a multi-phase material subject to significant peak overlap between phases. However, the figure also demonstrates that ultimately the simulated and measured patterns are well matched.

 Table B-5: Phases observed in cement.

PHASE	OBSERVED PEAKS (20)	ICDD PDF	COMMENTS
Ettringite Calcium Sulfoaluminate 3CaO.Al ₂ O ₃ .3CaSO ₄ .32H ₂ O	9.11°	04-013-3691	 AFt phase produced via the early reaction between gypsum (CaSO₄•2H₂O) (added to cement) and tricalcium aluminate (3CaO•Al₂O₃).
Gypsum Calcium Sulfate Dihydrate CaSO ₄ .2H ₂ O	11.65° 20.73° 29.15°	04-015-8262	 Additive to cement to reduce flash setting. Indicates preferred orientation (texture) at [h k l] = [0 2 0] (2θ = 11.65°).
Bassanite Calcium Sulfate Hemihydrate CaSO4.0.5H2O	14.74° 25.65° 29.68°	00-041-0224	• Gypsum added to cement can dehydrate due to heat associated with milling cement clinker.
Alite (Hatrurite) Tricalcium Silicate Ca ₃ SiO ₅	14.90° 25.19° 32.15° 32.53° 34.31°	00-055-0738	• Primary phase in cement.
Portlandite Calcium Hydroxide Ca(OH) ₂	18.02°	00-044-1481	 Portlandite is a principal hydration product of cement resulting from the reactions of alite and belite with water. Possible preferred orientation (texture) at [h k l] = [0 0 1] (2θ = 18.02°).
Ferrite Tetracalcium Aluminoferrite Ca ₂ (Al,Fe) ₂ O ₅	24.36° 33.53° 33.90°	04-008-6822	Primary phase in cement.
Calcite (Limestone) Calcium Carbonate CaCO ₃	29.35°	01-078-4614	 Additive to cement as a filler/grinding aid. Main (100%) calcite peak overlapped by alite.
Aluminate Tricalcium Aluminate Ca ₃ Al ₂ O ₆	21.82° 26.65° 33.22°	00-006-0495	Primary phase in cement.
Belite (Larnite) Dicalcium Silicate Ca ₂ SiO ₄	31.02° 26.65° 33.22°	01-080-8935	Primary phase in cement.Most belite peaks are severely overlapped by alite.

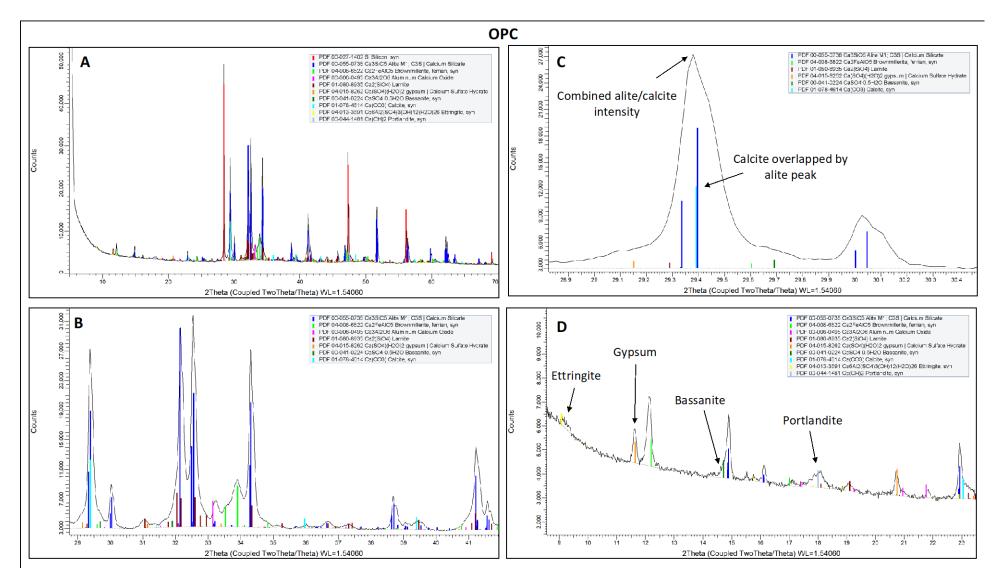


Figure B-8: XRD scan for cement used to produce study samples (A = complete scan; B, C & D = magnified scan portions).

Batch ID	Analysis		Phase (wt%)									
Datti ID	Source	Alite	Belite	Aluminate	Ferrite	Gypsum	Bassanite	Calcite	Portlandite	Ettringite	GOF	
2019-IR-05-0201*	This Study	64.06	10.67	2.17	15.12	2.24	1.55	3.28	0.90	Trace **	3.58	
2017 IK 05 0201	MCR	58	12	7	10	-	-	-	-	-	N/A	
* The cement MCR is provided in Appendix A.												
** Trace is indicated for ettringite because the peak is barely above background and its inclusion (at such low concentrations) in the Rietveld refinement resulted in pattern simulation anomalies; hence it was omitted during Rietveld quantification.												

 Table B-6: Crystalline phase wt% in cement.

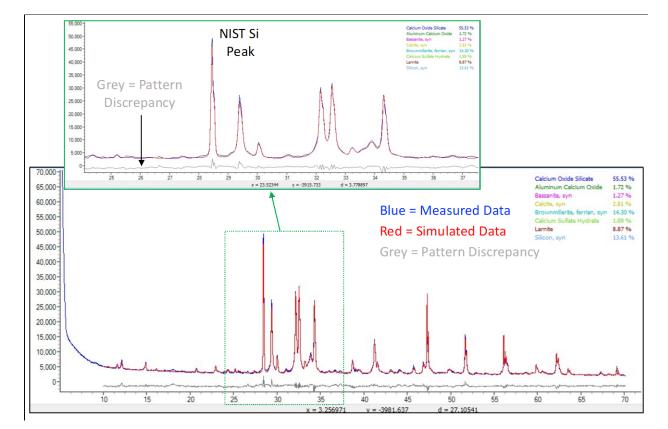


Figure B-9: Rietveld refinement data illustrating discrepancies between measured and simulated patterns for cement.

TANK CLOSURE PASTES

The tank closure paste samples used in batch testing contain the following dry cementitious material proportions (**Table B-7**); this information is relevant regarding the phases formed during hydration/pozzolanic reactions and because of the residual unreacted phases (from each dry feed) that may persist in the scans of hydrated/leached samples.

Tank Closure Grout	Component (wt%)							
Sample	Lehigh Grade 120 GBFS	SEFA Class F FA	Holcim Type I/II Cement					
CLSM	0	92.3	7.7					
TCG-NBFS	0	82.1	17.9					
TCG	30.1	52.0	17.9					

Table B-7: Dry feed component proportions in tank closure grouts.

The phases identified (or tentatively identified) in the various tank closure paste samples are indicated in **Table B-8**, which also indicates the 20 diffraction angles at which peaks were discernible, the best-matching ICDD PDF, and the specific samples in which each phase was observed. The reader should also refer to **Appendix C**, which includes more detailed information regarding the rationale for the appearance of the indicated phases and **Appendix D**, which contains the ICDD PDF data sheets for each phase. Note also that many of the technical references regarding the observed phases are indicated in the tables of **Appendix C** rather than directly in this text. Regarding the certainty of phase identification, in **Table B-8** mineral phases are marked with a confidence level of HIGH, MEDIUM, and LOW. It should be noted that the assigned confidence levels are somewhat arbitrary and highly dependent on the analyst's knowledge and perception of the data. However, the authors have spent considerable time analyzing the data, in addition to reviewing research data for similar systems to provide rationales for inclusion of a particular phase. Phases marked LOW or MEDIUM are thus marked because they suffer from one or more of the following deficiencies:

- 1. Trace phase barely above background.
- 2. Phase may exhibit only one observable peak.
- 3. Peak shift compared to the ICDD pattern.
- 4. Significant peak overlap (especially between 10.6° and $11.6^{\circ} 2\theta$).
- 5. The authors were unable to find previous research studies that specifically identified the same, or similar, phases associated with cement/FA and cement/FA/BFS systems.

			-	C		
PHASE	OBSERVED	ICDD PDF		SAMPLES OBSERVED IN	N	CONFIDENCE
rnase	PEAKS (20)	ICDDFDF	CLSM	TCG-NBFS	TCG	LEVEL
Strätlingite Ca2Al2SiO7.8H2O	7.09° 14.15° 21.35°	00-029-0285	 CLSM-REF CLSM-OPEN CLSM-CLOSED CLSM-N₂ 	 TCG-NBFS-REF TCG-NBFS-OPEN TCG-NBFS-N₂ 	 TCG-REF TCG-OPEN TCG-CLOSED TCG-N₂ 	HIGH
Ettringite $Ca_6Al_2(SO_4)_3(OH)_{12}(H_2O)_{26}$	9.11° 15.80° 18.94° 22.97°	04-013-3691	• CLSM-REF	• TCG-NBFS-REF	• TCG-REF	HIGH
Kuzelite Ca2Al(SO4)0.5(OH)6(H2O)3	9.92°	04-013-3303	Not Observed	Not Observed	 TCG-REF TCG-OPEN TCG-CLOSED TCG-N₂ 	MEDIUM
Calcium Iron Oxide Sulfite Hydrate Ca4Fe2O6(SO3).12H2O	10.52°	00-044-0448	Not Observed	Not Observed	TCG-REFTCG-CLOSEDTCG-N₂	LOW
Calcium Aluminum Silicate Hydrate CaAl2Si7O18.1.7H2O	10.66° 21.29°	00-021-0132	Not Observed	• TCG-NBFS-REF	Not Observed	LOW
Calcium Aluminum Oxide Carbonate Sulfate Hydroxide Hydrate 3CaO.Al ₂ O ₃ .0.17CaSO ₄ .0.5Ca(OH) ₂ .0.33CaCO ₃ .xH ₂ O	10.70°	00-060-0312	CLSM-REF	Not Observed	TCG-REFTCG-OPEN	LOW
Calcium Aluminum Carbonate Hydroxide Hydrate (Hemicarboaluminate) Ca2Al(CO3)0.25(OH)6.5(H2O)2	10.80° 21.71° 30.99°	04-018-9908	• CLSM-REF	• TCG-NBFS-REF	• TCG-REF	MEDIUM
Calcium Aluminum Iron Oxide Carbonate Hydroxide Hydrate Ca&Al2Fe2O12CO3(OH)2.22H2O	11.06°	00-045-0572	• CLSM-REF	 TCG-NBFS-REF TCG-NBFS-CLOSED TCG-NBFS-N₂ 	 TCG-OPEN TCG-CLOSED TCG-N₂ 	LOW

 Table B-8: Phases identified via XRD analysis of tank closure grouts.

PHASE	OBSERVED	ICDD PDF		SAMPLES OBSERVED II	N	CONFIDENCE
FIASE	PEAKS (20)	ICDDFDF	CLSM	TCG-NBFS	TCG	LEVEL
Hydrotalcite Mg0.67Al0.33(CO3)0.17(OH)2(H2O)0.5	11.60°	04-015-4253	Not Observed	Not Observed	 TCG-REF TCG-OPEN TCG-CLOSED TCG-N₂ 	MEDIUM
Calcium Aluminum Carbonate Hydroxide Hydrate (Monocarboaluminate) Ca4Al2(CO3)(OH)12(H2O)5	11.68° 23.51°	04-011-4223	• CLSM-REF	 TCG-NBFS-REF TCG-NBFS-CLOSED TCG-NBFS- N₂ 	Not Observed	MEDIUM
Mullite General: 3Al2O3.2SiO2 Actual: Al2(Al2.588Si1.412)O9.706	16.42° 25.96° 26.23° 35.21° 40.81°	01-074-8549	All Samples	All Samples	All Samples	HIGH
Portlandite Ca(OH) ₂	18.02° 34.09°	00-044-1481	Not Observed	Not Observed	 TCG-REF TCG-OPEN TCG-CLOSED TCG-N₂ 	MEDIUM
Quartz SiO2	20.85° 26.63° 50.11°	00-046-1045	All Samples	All Samples	All Samples	HIGH
Calcite CaCO3	23.08° 29.41°	01-078-4614	All Samples	All Samples	All Samples	HIGH
Hematite Fe ₂ O ₃	24.17° 33.19° 35.66°	01-089-0599	All Samples	All Samples	All Samples	HIGH
Silicon Si	28.44° 47.30° 56.12°	00-027-1402	All Samples	All Samples	All Samples	HIGH
Calcium Silicate Hydrates <i>C-S-H</i>	29.35°	00-012-0739 00-009-0329 00-015-0641	Possibly present ir	n all samples but most predomin	nant in TCG-REF	MEDIUM

PHASE	OBSERVED ICDD PDF			CONFIDENCE		
	PEAKS (20)	ICDDFDF	CLSM	TCG-NBFS	TCG	LEVEL
Magnetite Fe3O4	30.21°	04-007-2718	All Samples	All Samples	All Samples	HIGH

CLSM

XRD scans for the pre-leached CLSM sample and samples exposed to the various leaching environments are provided in **Figures B-10 through B-13**; tentatively identified phases are indicated in grey text on the XRD scans. **Figure B-14** provides a direct scan comparison to all CLSM samples (note that the background noise has been removed for enhanced clarity in **Figure B-14**). **Table B-9** indicates the quantitative data determined by Rietveld refinement using 10 wt% NIST Si as an internal standard (note that phases identified as MEDIUM or LOW confidence, per are in grey). Not surprisingly, since the CLSM contains 92.3% FA and 7.7% cement, all samples are dominated by the presence of the FA-containing "amorphous hump" and crystalline peaks associated with poorly-reacting quartz, mullite, hematite, and magnetite. Note also that the proportions of these phases are fairly consistent from one sample to another. The pre-leached sample indicates the presence of calcite, strätlingite, ettringite, hemicarboaluminate, monocarboaluminate, and a Ca-Al-CO₃-SO₃ hydrate. Rationales for the presence of these phases is as follows:

- Calcite an additive to cement and BFS but also associated with the carbonation of cement hydration products, such as portlandite and calcium silicate hydrates (refer to Appendix C-1). It is noteworthy, however, that the calcite peak at approximately 29.4° 2θ (refer to Figure B-10 (C)) may be overlapped with peaks associated with calcium silicate hydrate (C-S-H) or calcium aluminosilicate hydrate (C-A-S-H) (i.e., the primary reaction products from hydration/pozzolanic reactions that serve to bind the cured cementitious structure) though the presence of C-S-H is perhaps more apparent when evaluating the TCG samples.
- Strätlingite formed in aluminum-rich cement systems (e.g., cement/FA blends) (refer to Appendix C-2).
- Ettringite AFt phase produced via the early reaction in cement between gypsum and tricalcium aluminate (refer to Appendix C-3).

<u>Note</u>: AFt stands for "alumina-ferric oxide-tri" and has a general formula of $[Ca_3(A1,Fe)(OH)_6 \cdot 12 H_2O]_2 \cdot X_3 \cdot nH_2O$, where X_3 denotes three (tri) anions such as CO_3^{2-} or SO_4^{2-} .

• Hemicarboaluminate / Monocarboaluminate – AFm phases produced in cement systems with added limestone; carbonate anions can substitute for sulfate anions in monosulfoaluminate (a cement hydration product caused by the reaction of ettringite with tricalcium aluminate) (refer to Appendix C-4).

<u>Note</u>: AFm stands for "alumina-ferric oxide-mono" and has a general formula of $[Ca_2(Al,Fe)(OH)_6)]$ ·X·nH₂O, where X equals a single (mono) anion, such as CO_3^{2-} or SO_4^{2-}

• **Ca-Al-CO₃-SO₃ Hydrate** – AFm phase similar to the carboaluminates in which carbonate anions have been partially substituted by sulfate anions (refer to **Appendix C-5**).

Ettringite and the carboaluminate phases were only observed in the pre-leached samples. The proportion of ettringite would be expected to decrease as hydration continues due to ongoing reactions with tri-calcium aluminate in the cement to form monosulfoaluminate; however, the role of leaching in the disappearance of this phase must also be considered. Mineral phase solubility will ultimately be considered as part of a fiscal year 2021 (FY21) effort directed towards understanding the aqueous chemistry of tank closure grouts under various environmental conditions. Equally, both carboaluminate phases disappear for all leached samples; under non-leaching conditions and in the presence of "free" carbonate anions, hemicarboaluminate would be expected to convert to monocarboaluminate. Thus, it is conceivable that the complete loss of the carboaluminate phases is potentially associated with leaching. Only calcite and strätlingite persist in the leached samples though the proportion of strätlingite decreases, particularly for the CLOSED and N₂ treatments. The calcite proportion increases in all the leached samples (when compared to the non-leached reference sample), and as expected, the concentration is highest in the OPEN system with exposure to higher CO₂ concentrations and enhanced carbonation.

Regarding the Rietveld quantification data, **Table B-9** indicates GOFs in the range of 2.37 - 2.60. This is comparable to the GOF of 2.08 for the FA dry feed indicated in **Table B-4**. Figure B-15 indicates the comparison between the measured and simulated patterns and as with the FA, the main discrepancies for CLSM are associated with the NIST Si and the quartz phases.

	Phase (wt%)										
CLSM Sample	Amorphous	Mullite	Quartz	Hematite	Magnetite	Calcite	Strätlingite	Ettringite	Hemicarbo- aluminate	Monocarbo- aluminate	GOF
REF (Non- Leached)	66.12	14.11	10.23	2.09	1.10	0.88	2.72	0.49	1.88	0.38	2.58
OPEN	65.55	14.75	10.95	2.12	1.48	3.01	2.14	-	-	-	2.60
CLOSED	68.79	14.75	11.19	2.12	1.64	1.51	Trace *	-	-	-	2.45
N_2	66.92	15.24	11.24	2.14	1.69	1.10	1.71	-	-	-	2.37
	-	* Trace is indicated for strätlingite because the peak is barely above background and its inclusion (at such low concentrations) for Rietveld refinement resulted in pattern simulation anomalies; hence it was omitted during Rietveld quantification.									

Table B-9: Rietveld quantification data for CLSM samples.

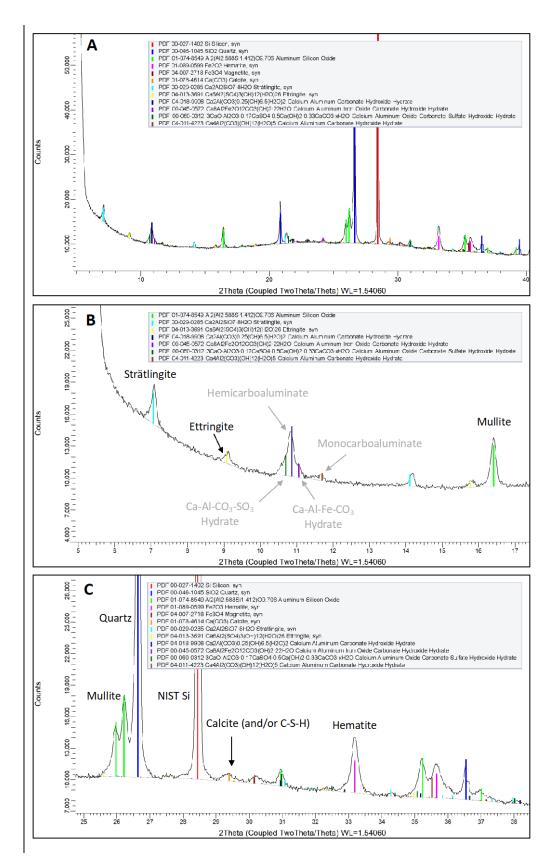


Figure B-10: XRD scan of pre-leached CLSM reference sample.

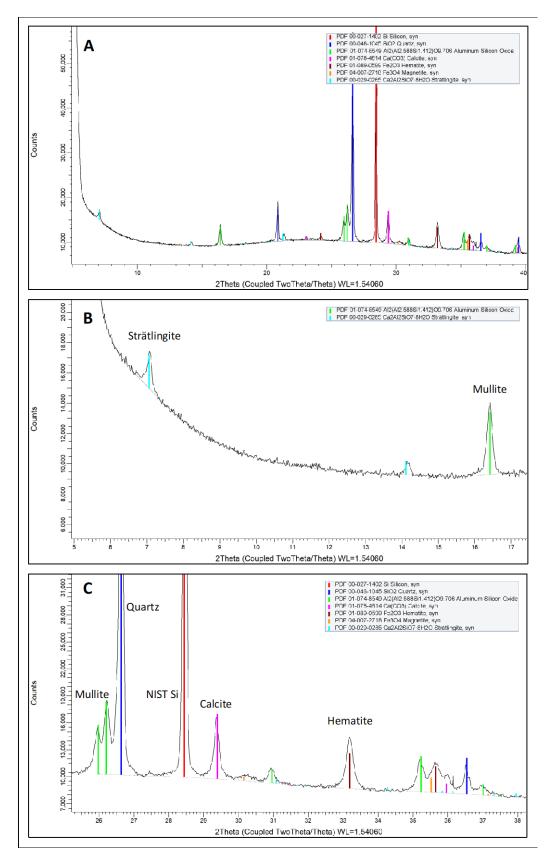


Figure B-11: XRD scan of CLSM-OPEN sample.

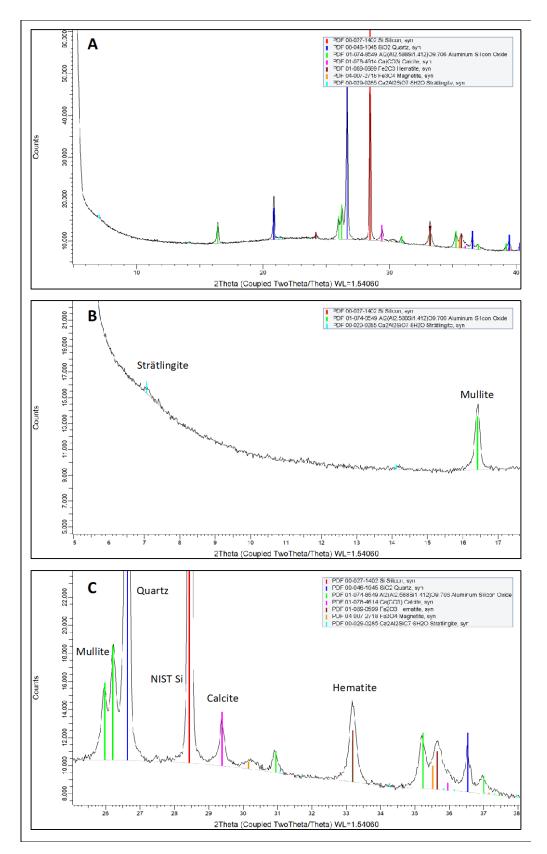


Figure B-12: XRD scan of CLSM-CLOSED sample.

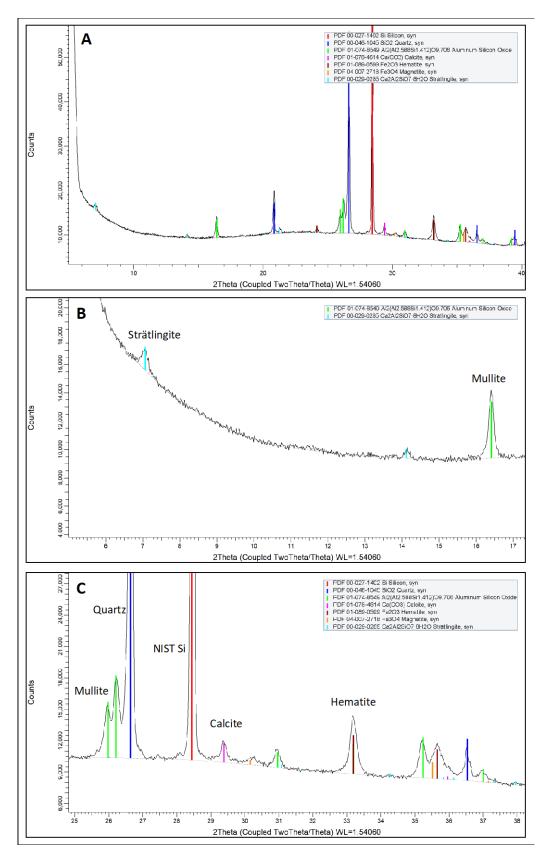


Figure B-13: XRD scan of CLSM-N₂ sample.

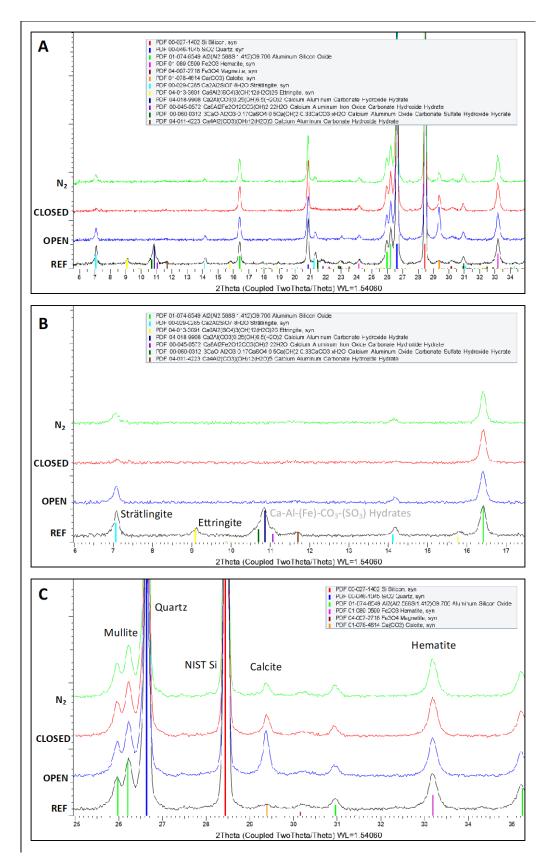


Figure B-14: XRD scan comparison for all CLSM samples.

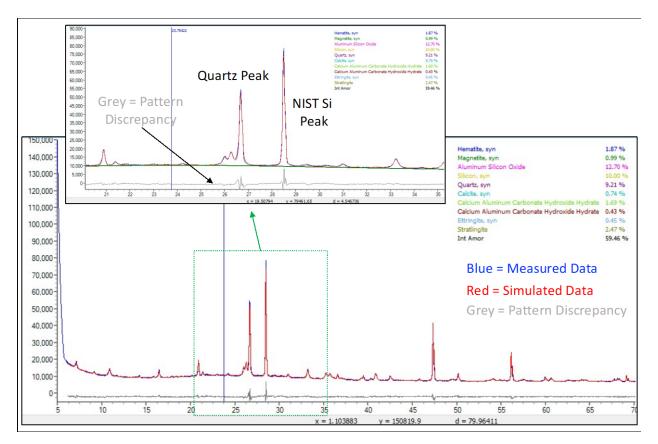


Figure B-15: Rietveld refinement data illustrating discrepancies between measured and simulated patterns for the non-leached CLSM sample.

TCG-NBFS

XRD scans for the pre-leached TCG-NBFS samples and samples exposed to the various leaching environments are provided in **Figures B-16** through **B-19**. **Figure B-20** provides a direct scan comparison between all TCG-NBFS samples. Table B-10 indicates the quantitative data determined by Rietveld refinement. Phases that were detected by XRD but were lacking crystal structure data in the ICDD PDF have not been quantified.

The TCG-NBFS samples contain 82.1 wt% FA and 17.9 wt% cement and as with the CLSM samples, the XRD scans are dominated by the amorphous and poorly reacting crystalline phases associated with FA. The non-leached TCG reference sample indicates the presence of calcite, strätlingite, ettringite, and hemi- and mono-carboaluminates, all of which were also observed in the non-leached CLSM sample. Also, note that as with the CLSM, the calcite peak may overlap peaks associated with C-SH and/or C-A-S-H phases, though these are more apparent in the TCG reference sample. In addition to the aforementioned phases, some Ca-Fe-Al-CO₃ and Ca-Al-Si hydrates were also tentatively identified. Rationales for the presence of these additional phases is as follows:

- **Ca-Fe-Al-CO₃ Hydrate** this phase is essentially an Fe-substituted carboaluminate phase; in multicomponent systems Fe can substitute for Al many AFm phases (refer to **Appendix C-5**).
- **Ca-Al-Si Hydrate** in Al-rich cement systems (e.g., cement/FA blends) the Al may be substituted into the calcium silicate hydrates (C-S-H) to form calcium aluminosilicate hydrates (C-A-S-H); refer to **Appendix C-6**).

As with CLSM many of the phases observed in the non-leached reference sample are not detected in the leached samples; these phases may have disappeared as the hydration reactions progress or alternatively mineral dissolution and subsequent leaching may be occurring. For the OPEN sample (**Figure B-17**) only strätlingite and calcite are apparent. For the CLOSED sample, however, the low-angle strätlingite peak is not observed but trace amounts of the Fe-substituted carboaluminate and the monocarboaluminate are tentatively identified. The strätlingite peak returns in the N₂ sample and the carboaluminate phases observed in the CLOSED sample are also indicated. Calcite is present in all samples and, as expected, the highest proportion is detected for the OPEN sample.

Regarding the Rietveld quantification data, **Table B-10** indicates GOFs in the range of 2.45 - 2.85. **Figure B-21** indicates the comparison between the measured and simulated patterns and as with the CLSM, the main discrepancies for the TCG-NBFS are associated with the NIST Si and the quartz phases.

	Phase (wt%)										
TCG-NBFS Sample	Amorphous	Mullite	Quartz	Hematite	Magnetite	Calcite	Strätlingite	Ettringite	Hemicarbo -aluminate	Monocarbo- aluminate	GOF
REF (Non-Leached)	66.97	11.69	8.64	1.79	0.99	2.63	1.85	1.41	2.61	1.43	2.45
OPEN	68.66	11.87	9.07	1.81	1.01	6.08	1.51	-	-	-	2.62
CLOSED	72.58	11.32	9.12	1.73	1.07	2.79	-	-	-	1.392	2.85
N2	71.17	11.77	8.55	1.86	0.79	2.27	1.75	-	_	1.843	2.48

Table B-10: Rietveld quantification data for TCG-NBFS samples

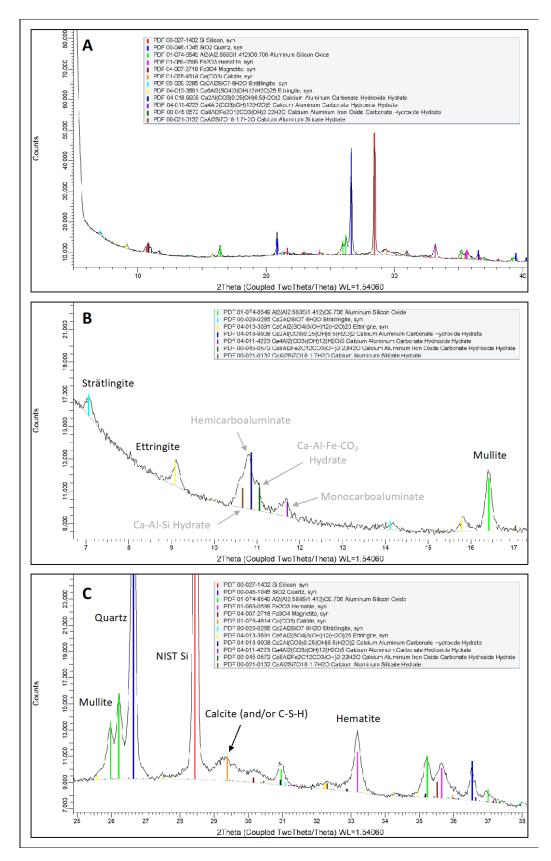


Figure B-16: XRD scan of pre-leached TCG-NBFS reference sample.

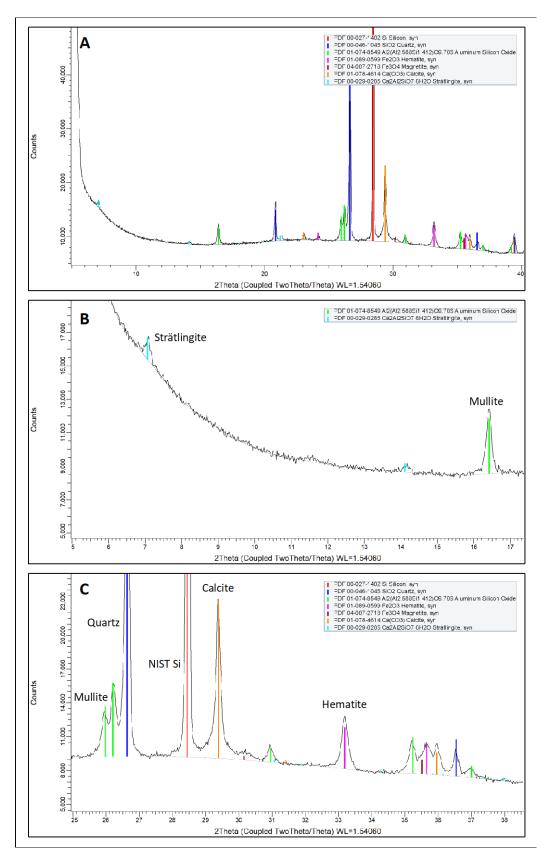


Figure B-17: XRD scan of TCG-NBFS-OPEN sample.

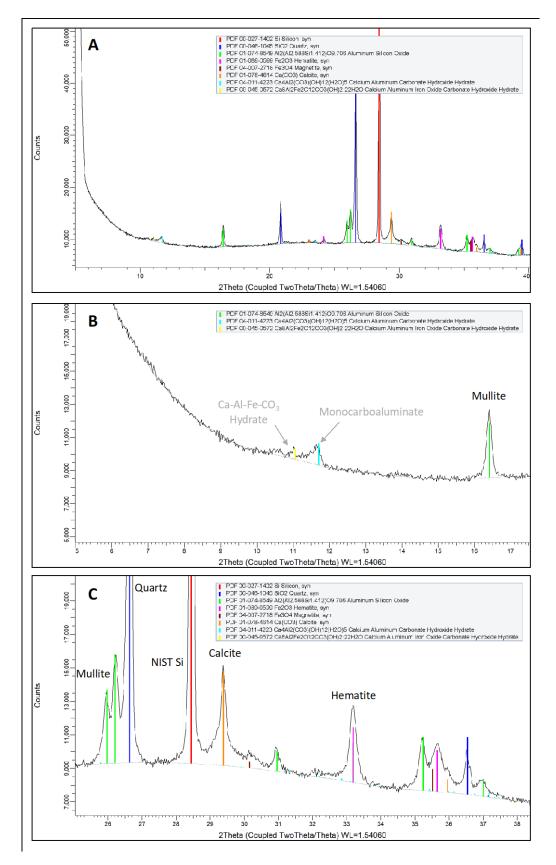


Figure B-18: XRD scan of TCG-NBFS-CLOSED sample.

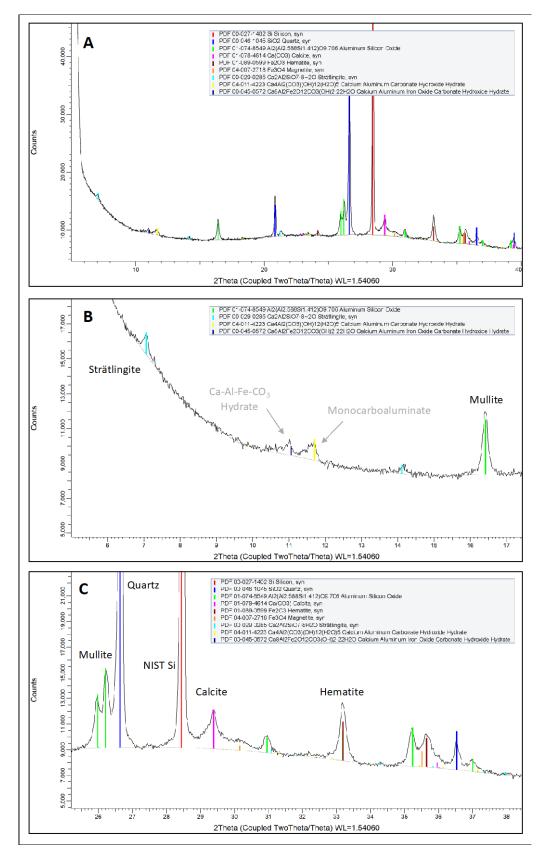


Figure B-19: XRD scan of TCG-NBFS-N₂ sample.

Figure B-20: XRD scan comparison for all TCG-NBFS samples.

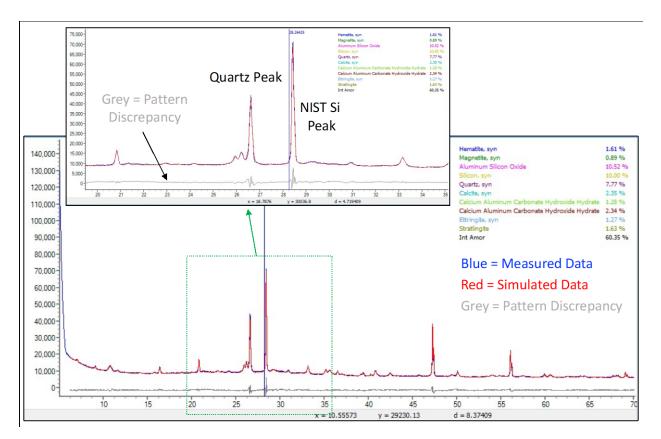


Figure B-21: Rietveld refinement data illustrating discrepancies between measured and simulated patterns for the non-leached TCG-NBFS sample.

TCG

XRD scans for the pre-leached TCG sample and samples exposed to the various leaching environments are provided in **Figures B-22** through **B-25**. **Figure B-26** provides a direct scan comparison between all TCG samples. Table B-11 indicates the quantitative data determined by Rietveld refinement. Phases that were detected by XRD but were lacking crystal structure data in the ICDD PDF have not been quantified.

The TCG samples contain 30.1 wt% BFS, 52.0 wt% FA, and 17.9 wt% cement. As expected, the amorphous phase content has increased for the TCG (in comparison to the CLSM and TCG-NBFS samples) with the addition of BFS (approximately 78 wt% compared to 65-70 wt%). Additionally, the proportions of the FA crystalline phases of quartz, mullite, hematite, and magnetite have decreased due to the incorporation of the BFS.

The non-leached TCG reference sample indicates the presence of calcite, strätlingite, ettringite, and hemicarboaluminate, which were also observed in the CLSM and TCG-NBFS reference samples. It is important to note that despite the detection of strätlingite, it is barely above background and could ultimately not be quantified. Indeed, inclusion of this phase in Rietveld refinement resulted in simulation data anomalies, and thus the phase was omitted from the evaluation. A number of additional phases, including kuzelite, hydrotalcite, portlandite, and a Ca-Fe-SO₃ hydrate, were detected in the TCG reference sample (**Figure B-22 (B**)). There is also a broad peak around 29.3° 20 (**Figure B-22 (C**)), which was somewhat apparent in the CLSM and TCG-NBFS samples, but appears more prominent in the TCG samples. Whilst this peak position also corresponds to calcite, other studies reveal that C-S-H and C-A-S-H phases indicate crystalline peaks around the same 20 angle. It is thus possible that the calcite wt% indicated in Table X.12 are slightly high though the analyst has attempted to ensure that the fit of the calcite peak compensates for the presence of the broad C-S-H peak.

Rationales for the presence of these additional phases is as follows:

- **Kuzelite** kuzelite is the mineral name for the AFm monosulfoaluminate phase which is formed via the reaction of tri-calcium aluminate (in cement) and the cement hydration product ettringite (refer to **Appendix C-7**).
- Hydrotalcite formed in BFS-containing systems due to high Mg concentrations (refer to Appendix C-8). Hydrotalcite has the potential for XRD peak overlap with gypsum (added to both cement and BFS) at 11.6° 2θ. However, since, in both cement and BFS, gypsum is added to influence the hydration/pozzolanic reactions, it is assumed that gypsum has been consumed.
- **Portlandite** portlandite is a primary cement hydration product but its presence in TCG samples is unexpected, partly because it was not observed in the CLSM or TCG-NBFS samples, but also because it is assumed that portlandite will be consumed during the alkali-dissolution and subsequent reaction of BFS. For these reasons the authors were unsure

about designating the observed peak as portlandite. However, when the portlandite peak at $18^{\circ} 2\theta$ emerges, a second (yet extremely small) characteristic portlandite peak also emerges at $34^{\circ} 2\theta$ (see Figure B-22 (C)). It should also be noted that the size of the portlandite peak is misleading since, with a plate-like morphology, portlandite exhibits preferred orientation (which was discussed earlier in this section), and the proportion of portlandite determined by Rietveld analysis is actually less than 0.5 wt% (refer to Appendix C-9).

- **Ca-Fe-SO₃ Hydrate** similar to sulfoaluminate AFm phase in which the Al has been substituted with Fe to produce a sulfoferrite phase (refer to **Appendix C-5**).
- C-S-H / C-A-S-H C-S-H is the primary reaction product of cement-based systems; C-A-S-H is formed in high-Al systems such as cement blends with FA or BFS (refer to Appendix C-6).

As with the CLSM and TCG-NBFS samples, many of the aforementioned phases disappear during the batch leaching experiments though both kuzelite and hydrotalcite appear to persist for all the environmental treatments. The persistence of these phases (under the various environments) will likely be considered as part of the FY21 studies related to the aqueous chemistry of tank closure grouts. As anticipated, the trend for calcite is identical to the CLSM and TCG-NBFS samples in that the calcite proportion is highest for the OPEN sample with higher CO₂ concentrations.

Regarding the Rietveld quantification data, **Table B-11** indicates GOFs in the range of 3.19 - 3.87, which is higher than any of the other samples presented evaluated in this study. **Figure B-27** indicates the comparison between the measured and simulated patterns, and it is apparent that the discrepancies are associated with those phases that could not be modeled due to a lack of complete crystal structure data.

		Phase (wt%)											
TCG Sample	Amorphous	Mullite	Quartz	Hematite	Magnetite	Calcite	Ettringite	Strätlingite	Hydrotalcite	Kuzelite	Portlandite	Hemicarbo- aluminate	GOF
REF (Non- Leached)	78.40	6.06	5.44	1.22	0.14	1.14	0.91	Trace *	1.42	0.78	0.42	4.07	3.87
OPEN	77.85	6.55	5.64	1.30	0.22	5.37	-	Trace	2.67	0.41	-	-	3.19
CLOSED	78.92	5.48	5.28	1.29	0.15	3.38	-	Trace	3.07	1.75	0.08	-	3.50
N_2	79.66	6.64	5.96	1.44	0.24	1.30	-	Trace	2.78	1.77	0.20	-	3.44
	* Trace is indicated for strätlingite because the peak is barely above background and its inclusion (at such low concentrations) for Rietveld refinement resulted in pattern simulation anomalies; hence it was omitted during Rietveld quantification.												

Table B-11: Rietveld q	uantification data	a for TCG samples.
------------------------	--------------------	--------------------

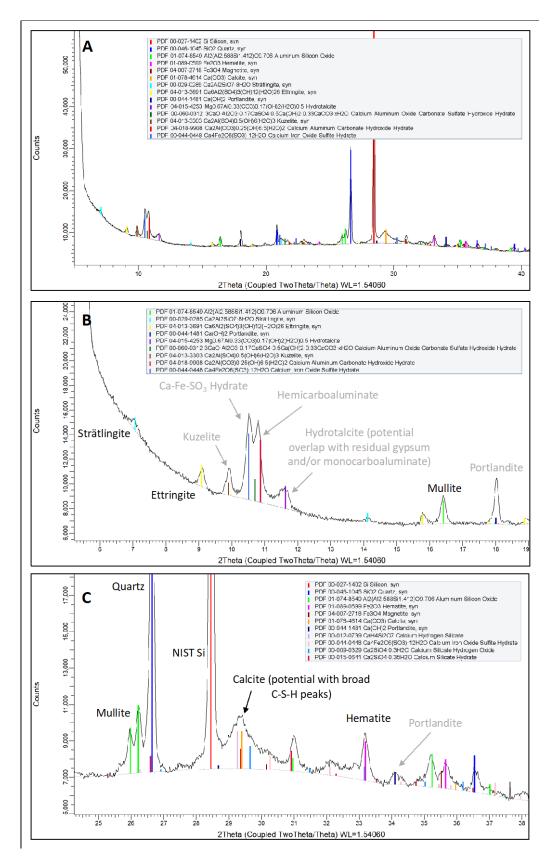


Figure B-22: XRD scan of pre-leached TCG reference sample.

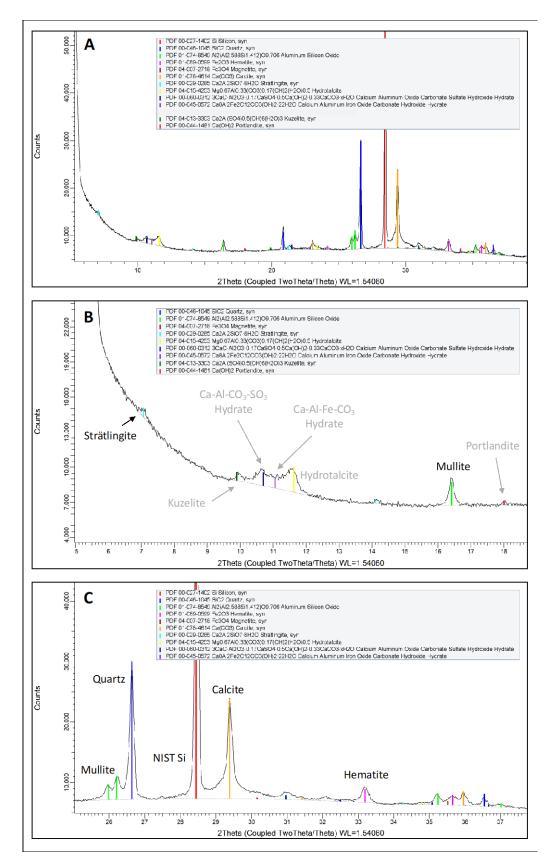


Figure B-23: XRD scan of TCG-OPEN sample.

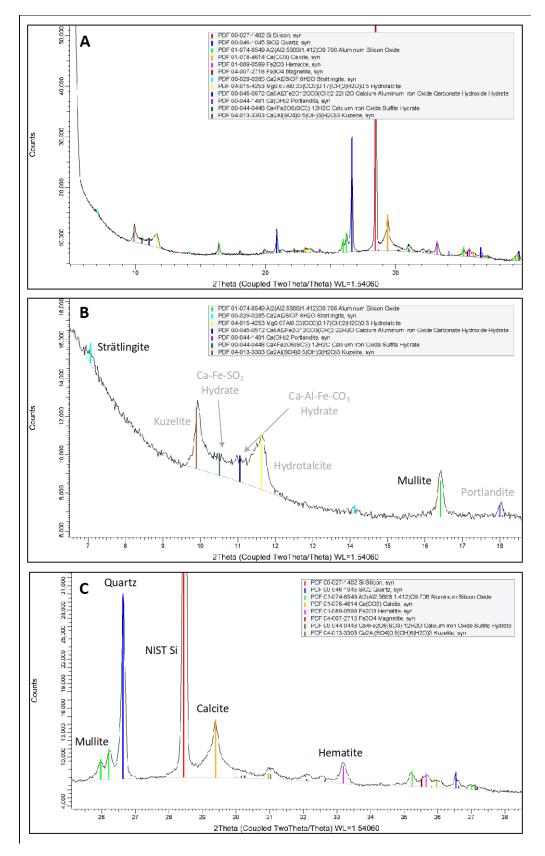


Figure B-24: XRD scan of TCG-CLOSED sample.

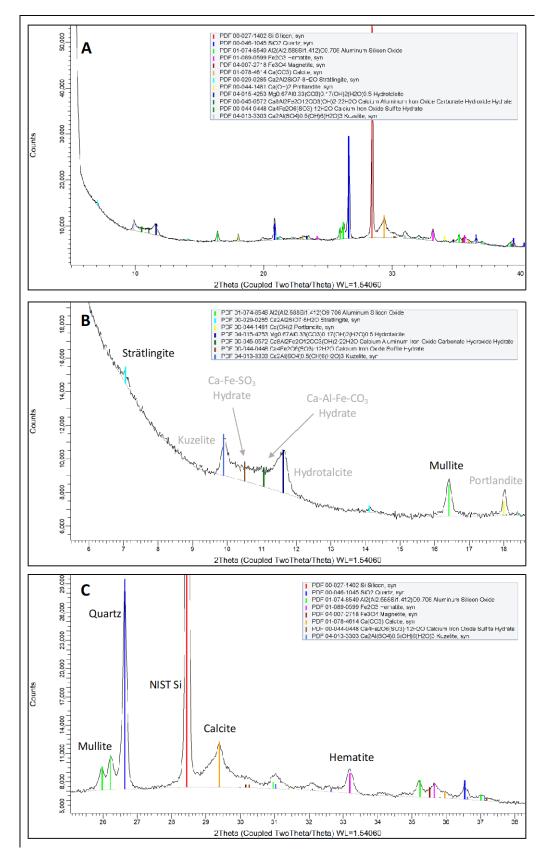


Figure B-25: XRD scan of TCG-N₂ sample.

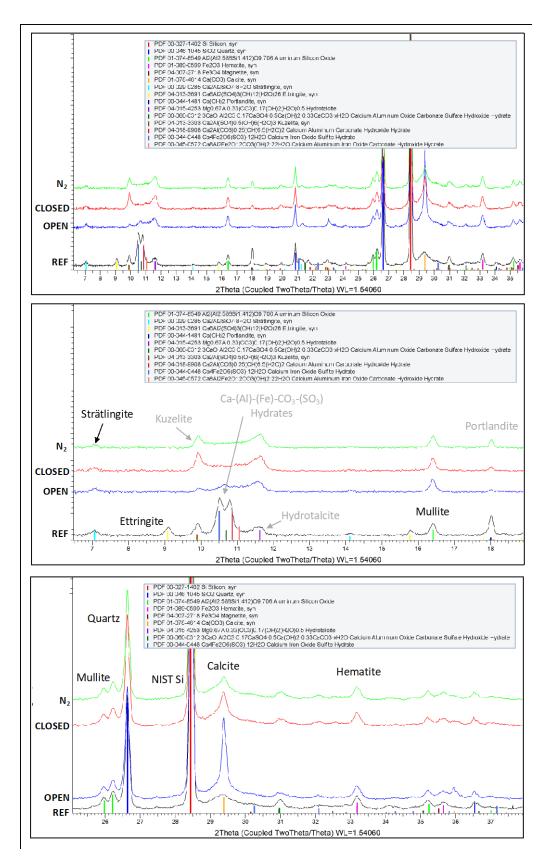
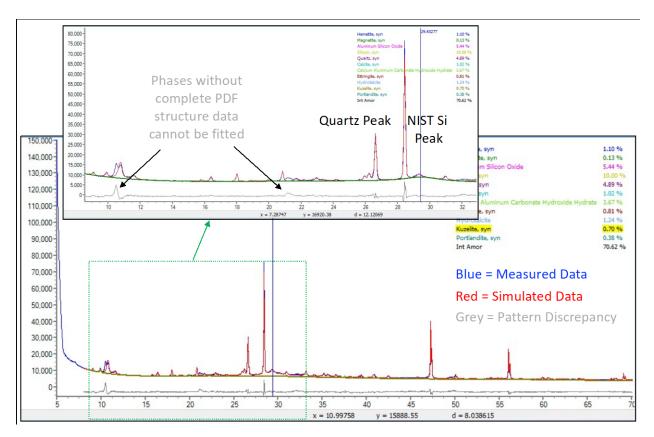



Figure B-26: XRD scan comparison for all TCG samples.

Figure B-27: Rietveld refinement data illustrating discrepancies between measured and simulated patterns for the non-leached TCG sample.

APPENDIX C: Rationale for XRD Peak Assignments

(Note: References identified in Appendix C are detailed at the end of Appendix B)

 $(z-t)H_2O$

APPENDIX C-1: Calcite

DHACE	PEAKS OBSERVED	ICDD PDF	OBSERVED IN WHICH SAMPLES				
PHASE	(2θ)		CLSM	TCG-NBFS	TCG		
Calcite (Limestone) CaCO ₃	23.08° 29.41°	01-078-4614	• All samples	• All samples	• All samples		

• Limestone (predominantly calcite – CaCO₃) is added to cement and BFS but is also the product of carbonation reactions.

- For cement, it was originally added as a substitute for cement clinker to reduce the energy consumption and costs associated with cement production (**Ingram et al., 1991**); for BFS, limestone is added as a grinding aid.
- Free calcite can interact with monosulfoaluminate (refer to page **Appendix C-7**); carbonate anions can displace the sulfate anions and produce calcium carboaluminate compounds (e.g., 3CaO•Al₂O₃•CaCO₃•11H₂O) (refer to hemi- and mono-carboaluminates in **Appendix C-4**).
- Calcite may also react directly with tricalcium aluminate to form calcium hemi- and mono-carboalumiantes with the general formulas of 3CaO•Al₂O₃•CaCO₃•12H₂O and 3CaO•Al₂O₃•3CaCO₃•32H₂O, respectively (**Ingram et al., 1991**).
- Calcite may form due to the carbonation¹ of cement hydration products including calcium hydroxide (Ca(OH)₂ portlandite) and calcium silicate hydrates (C-S-H gels) (Savija et al., 2016).

 $Ca(OH)_2 + CO_2 = CaCO_3^2 + H_2O$ (CaO)_x(SiO₂)(H₂O) + xCO₂ = xCaCO₃ + SiO₂(H₂O)_t³ +

• Hence, portlandite and C-S-H are expected to decrease as calcite increases.

Notes:

- ¹ Carbonation occurs when CO₂ in the presence of moisture reacts with Ca-bearing phases to form CaCO₃.
- ² Calcite is only one polymorph of calcium carbonate that may result from the carbonation of cement-based systems; other polymorphs include vaterite and aragonite though both are meta-stable and will ultimately convert to calcite (**Savija et al., 2016**).
- ³ SiO₂(H₂O)_t = amorphous silica gel.

APPENDIX C-2:	Strätlingite
----------------------	--------------

	PEAKS	ICDD PDF	OBSERVED IN WHICH SAMPLES					
	OBSERVED (2θ)		CLSM	TCG-NBFS	TCG			
Strätlingite Ca ₂ Al ₂ SiO ₇ .8H ₂ O	7.09° 14.15° 21.35°	00-029-0285	 CLSM-REF CLSM-OPEN CLSM-CLOSED CLSM-N₂ 	 TCG-NBFS-REF TCG-NBFS-OPEN TCG-NBFS-N₂ 	 TCG-REF TCG-OPEN TCG-CLOSED TCG-N₂ 			

• Strätlingite is an example of a Al-substituted calcium silicate hydrate (C-A-S-H) (also termed calcium aluminosilicate hydrate).

• **Bae et al. (2014)** indicated the formation of strätlingite in binary Type I/II cement / Class F FA systems; formed by the pozzolanic reaction of amorphous aluminosilicate FA with portlandite.

• Also predicted by thermodynamic modeling in cement / FA systems with > 33 wt% FA (Loftenbach et al., 2011).

APPENDIX C-3: Ettringite

	PEAKS		OBSERVED IN WHICH SAMPLES					
PHASE	OBSERVED (2θ)	ICDD PDF	CLSM	TCG-NBFS	TCG			
Ettringite Ca ₆ Al ₂ (SO ₄) ₃ (OH) ₁₂ (H ₂ O) ₂₆	9.11° 15.80° 18.94° 22.97°	04-013-3691	• CLSM-REF	• TCG-NBFS-REF	• TCG-REF			
 Ettringite (or calcium trisulfoaluminate hydrate) is an AFt¹ phase and is produced via the early and rapid reaction² between gypsum (CaSO₄•2H₂O) (added to both cement and BFS) and tricalcium aluminate (3CaO•Al₂O₃) in cement. 3CaO•Al₂O₃ + 3CaSO₄•2H₂O + 26H₂O = 3CaO•Al₂O₃•3CaSO₄.32H₂O (or Ca₆Al₂(SO₄)₃(OH)₁₂•26H₂O) Ettringite subsequently reacts with tricalcium aluminate to form the AFm³ phase calcium monosulfoaluminate hydrate (refer to Appendix C-7) per the following reaction: 								
 2(3CaO•Al₂O₃) + 3CaO•Al₂O₃•3CaSO₄•32H₂O + 4H₂O = 3(3CaO•Al₂O₃•CaSO₄•12H₂O) Monosulfoaluminate can react with limestone (calcite – CaCO₃) (added to both cement and BFS); carbonate anions can displace the sulfate anions and produce calcium carboaluminate compounds (e.g., 3CaO•Al₂O₃•CaCO₃•11H₂O) (refer to Appendix C-4). The displaced sulfate anions may subsequently interact with residual calcium monosulfoaluminate to reform ettringite. 								
Notes:								
¹ AFt phases have the general	formula Ca ₃ (Al,Fe)($(OH)_6 \bullet 12 H_2O]_2 \bullet X_3 \bullet$	•nH ₂ O, where X denotes	s an anion such as SO_4^{2-} a	and CO_3^{2-} .			
² Typical cement reactions are detailed in Portland Cement Association , <i>Concrete Information: Ettringite Formation and the</i> <i>Performance of Concrete</i> , PCA R&D Serial No. 2166.								
Terjormanee of concreae, I	³ AFm phases have the general formula $Ca_2(Al,Fe)(OH)_6)$] •X•nH ₂ O, where X denotes an anion such as SO ₄ ²⁻ and CO ₃ ²⁻ .							

APPENDIX C-4: Carboaluminates

DULACE	PEAKS		OBSERVED IN WHICH SAMPLES				
PHASE	OBSERVED (2θ)	ICDD PDF	CLSM	TCG-NBFS	TCG		
Calcium Aluminum Carbonate Hydroxide Hydrate (Hemicarboaluminate) Ca2Al(CO3)0.25(OH)6.5(H2O)2	10.80° 21.71° 30.99°	04-018-9908	• CLSM-REF	• TCG-NBFS-REF	• TCG-REF		
Calcium Aluminum Carbonate Hydroxide Hydrate (Monocarboaluminate) <i>Ca</i> ₄ <i>Al</i> ₂ (<i>CO</i> ₃)(<i>OH</i>) ₁₂ (<i>H</i> ₂ <i>O</i>) ₅	11.68° 23.51°	04-011-4223	• CLSM-REF	 TCG-NBFS-REF TCG-NBFS-CLOSED TCG-NBFS-N₂ 	• Not observed		

• AFm carboaluminate phases can be formed in cement systems that contain limestone (CaCO₃) additives or are open to CO₂-containing environments.

• Carbonate anions can displace sulfate anions in the hydration product monosulfoaluminate to produce calcium carboaluminate compounds (Ipavec et al., 2011; Matschei et al., 2007).

• Hemicarbonate appears during early hydration but can covert to moncarboaluminate if carbonate anions (either from residual limestone additive or dissolved CO₂) are available (**Ipavec et al, 2011.; Matschei et al., 2007**).

APPENDIX C-5: AFm-Type Phases

DUACE	PEAKS		OBSERVED IN WHICH SAMPLES				
PHASE	OBSERVED (2θ)	ICDD PDF	CLSM	TCG-NBFS	TCG		
Calcium Iron Oxide Sulfite Hydrate Ca ₄ Fe ₂ O ₆ (SO ₃).12H ₂ O	10.52°	00-044-0448	Not observed	Not observed	 TCG-REF TCG-CLOSED TCG-N₂ 		
Calcium Aluminum Oxide Carbonate Sulfate Hydroxide Hydrate 3CaO.Al ₂ O ₃ .0.17CaSO ₄ .0.5Ca(OH) ₂ . 0.33CaCO ₃ .xH ₂ O	10.70°	00-060-0312	• CLSM-REF	Not observed	TCG-REFTCG-OPEN		
Calcium Aluminum Iron Oxide Carbonate Hydroxide Hydrate <i>Ca</i> ₈ <i>Al</i> ₂ <i>Fe</i> ₂ <i>O</i> ₁₂ <i>CO</i> ₃ <i>(OH)</i> ₂ <i>.</i> 22 <i>H</i> ₂ <i>O</i>	11.06°	00-045-0572	• CLSM-REF	 TCG-NBFS-REF TCG-NBFS-CLOSED TCG-NBFS-N₂ 	 TCG-OPEN TCG-CLOSED TCG-N₂ 		

• The above phases were tentalively identified by XRD; they are essentially AFm phases with full or partial cation and/or anion substitution (i.e., Al ⇔ Fe and SO₄²⁻⇔ CO₃²⁻).

• Anion substitution in AFm phases was previously discussed with respect to the formation of monocarboaluminates via the displacement of SO₄²⁻ by CO₃²⁻ in monosulfoaluminate (refer to **Appendix C-3**).

• Dilnesa et al. (2011) report on the formation of Fe-containing monocarbonate AFm phases with the general formula Ca₃(Al_xFe_{2-x})O₆•CaCO₃•nH₂O.

APPENDIX C-6: CSH-Type Phases

DHACE	PEAKS OBSERVED		OBSERVED IN WHICH SAMPLES				
PHASE	(2θ)	ICDD PDF	CLSM	TCG-NBFS	TCG		
Calcium Silicate Hydrate <i>C-S-H</i>	≈ 29.2° ¹	00-012-0739 00-009-0329 00-015-0641	Most evident in TCG-REF but potentially present in other samples but hidden by calcite peak overlap.				
Calcium Aluminum Silicate Hydrate CaAl ₂ Si ₇ O ₁₈ .1.7H ₂ O	10.66° 21.29°	00-021-0132	• TCG-NBFS-REF				

• C-S-H is the main hydration product formed during the hydration of cementitious materials.²

• Al-substituted C-S-H (or C-A-S-H) can be formed in cement-based systems containing BFS and/or FA.

• C-S-H can be amorphous but can also C-S-H with long range order can also produce well-defined (but often broad) XRD diffraction peaks.

Note:

¹ Work by **Hunnicutt (2013)** indicates C-S-H and C-A-S-H peaks located at approximately 29.2° 20.

² SREL DOC No. R-20-0001 provides information on the C-S-H and C-A-S-H hydration/pozzolanic products for blended cement systems.

PHASE	PEAKS OBSERVED (2θ)	ICDD PDF	OBSERVED IN WHICH SAMPLES				
			CLSM	TCG-NBFS	TCG		
Kuzelite (Monosulfoaluminate) <i>Ca₂Al(SO₄)_{0.5}(OH)₆(H₂O)₃</i>	9.92°	04-013-3303	Not observed	Not observed	 TCG-REF TCG-OPEN TCG-CLOSED TCG-N₂-C 		
• Ettringite, formed during early hydration reactions (refer to Appendix C-2) reacts with tricalcium aluminate (in the cement) to form the AFm ¹ phase calcium monosulfoaluminate hydrate (mineral name: kuzelite) per the following reaction: $2(3CaO.Al_2O_3) + 3CaO•Al_2O_3•3CaSO_4•32H_2O + 4H_2O = 3(3CaO•Al_2O_3•CaSO_4•12H_2O)$							
• Monosulfoaluminate can react with limestone (calcite – CaCO ₃) (added to both cement and BFS); carbonate anions can displace the sulfate anions and produce calcium carboaluminate compounds (e.g., 3CaO•Al ₂ O ₃ •CaCO ₃ •11H ₂ O) (refer Appendix C-4).							
• The displaced sulfate anions may subsequently interact with residual calcium monosulfoaluminate to reform ettringite.							
<u>Note</u> :							

¹ AFm phases have the general formula $Ca_2(Al,Fe)(OH)_6)$]•X•nH₂O, where X denotes an anion such as SO₄²⁻ and CO₃²⁻.

APPENDIX C-8: Hydrotalcite

DILACE	PEAKS		OBSERVED IN WHICH SAMPLES		
PHASE	OBSERVED (2q)	ICDD PDF	CLSM	TCG-NBFS	TCG
Hydrotalcite ¹ Mg _{0.67} Al _{0.33} (CO ₃) _{0.17} (OH) ₂ (H ₂ O) _{0.5}	11.60°	04-015-4253	Not observed	Not observed	All samples

• For this study, hydrotalcite was only observed in BFS-containing samples.

• Empirical studies of ternary cement-BFS-FA systems indicate the formation of hydrotalcite (Claret et al., 2018; Snyder et al., 2009)

• Hydrotalcite is also thermodynamically predicted in BFS-containing systems (Gruskovnjak et al., 2006).

Notes:

¹ The hydrotalcite has potential XRD peak overlap with gypsum, though it is assumed that the gypsum (added to the cement and BFS) has been consumed during hydration/pozzolanic reactions.

APPENDIX C-9: Portlandite

PHASE	PEAKS OBSERVED (2θ)	ICDD PDF	OBSERVED IN WHICH SAMPLES		
			CLSM	TCG-NBFS	TCG
Portlandite	18.02° ¹				
$Ca(OH)_2$	34.09°	00-044-1481	Not observed	Not observed	All samples ²
• Portlandite is a principal (belite) with water. ³	hydration product of	cement resulting fr	om the reactions of trica	alcium silicate (alite) and	l dicalcium silicate
2	$(3CaO \bullet SiO_2) +$	$6H_2O = 3C_2$	aO•2SiO ₂ •3H ₂ O (C-S-H	$()$ + $3Ca(OH)_2$	
	$2(2CaO \cdot SiO_2) +$	$4H_2O = 3C$	CaO•2SiO ₂ •3H ₂ O (C-S-H	H) + $Ca(OH)_2$	
• Portlandite can subsequer form tetracalcium alumin	2	0,		1	lcium aluminate (to
3	$3CaO \cdot Al_2O_3 +$	$Ca(OH)_2 + 12H$	$H_2O = 3CaO \cdot Al_2O$	$O_3 \bullet Ca(OH)_2 \bullet 12H_2O$	
4Ca	$Al_2O_3 \bullet Fe_2O_3 +$	2(Ca(OH) ₂) +	$10H_2O = 6CaO$	$\mathbf{O} \cdot \mathrm{Al}_2\mathrm{O}_3 \cdot \mathrm{Fe}_2\mathrm{O}_3 \cdot \mathrm{12H}_2\mathrm{O}_3$	
• Portlandite is also consum	ned by carbonation a	nd by the pozzolani	ic reactions of FA and E	BFS.	
Note:					
¹ ICDD PDF 00-044-1481 (Ag result in the highest peak int <u>https://rruff.info/portlandite/</u> 2θ.	ensity occurring at 1	$8.02^{\circ} 2\theta$ as observe	d in this study. The read	ler is referred to	
² Portlandite was tentatively id portlandite would be expected					
³ Typical cement reactions are of Concrete, PCA R&D Ser		l Cement Associati	ion, <i>Concrete Informat</i>	ion: Ettringite Formatio	on and the Performanc

Appendix D: ICDD Powder Diffraction Files

00-	006-04	195							Mav 15, 202	20 1:29	PM (Steve Simner)
Empi		rmula: A	12 Ca3 C		vironme %: Al19.9 Entry	97 Ca44			98.0 K Chemi omic %: Al18.18		mula: Ca3 Al2 O6 7 O54.55
Radi	ation: C	uKa1 (1.5	405 Å)	d-Spacing:	Diffracto	meter	Intens	ity: Diffr	actometer - Peak		
Auth	or's Uni	em: Cubio t Cell [a ensity: 3	: 15.262		: 3554.96		Z: 24.00 M: F(30)		ol: 148.12]).0146, 47)		
Space Group: Pa-3 (205) Molecular Weight: 270.19 g/mol Crystal Data [a: 15.262 Å b: 15.262 Å c: 15.262 Å a: 90.00° β: 90.00° γ: 90.00° XtlCell Vol: 3554.96 Å ³ XtlCell Z: 24.00 a/b: 1.000 c/b: 1.000] Reduced Cell [a: 15.262 Å b: 15.262 Å c: 15.262 Å a: 90.00° β: 90.00° γ: 90.00° RedCell Vol: 3554.96 Å ³] Reduced Cell [a: 15.262 Å b: 15.262 Å c: 15.262 Å a: 90.00° β: 90.00° γ: 90.00° RedCell Vol: 3554.96 Å ³											
AC U	Atomic parameters are cross-referenced from PDF entry 04-008-8069 AC Space Group: Pa-3 (205) AC Unit Cell [a: 15.263(3) Å b: 15.263(3) Å c: 15.263(3) Å a: 90° β: 90° γ: 90°] Space Group Symmetry Operators: Space Group Symmetry Operators: Space Group Symmetry Operators AC Space Group Symmetry Operat										
Seq	Operato	or	Seq	Operator	Seq	Opera	tor	Seq	Operator	Seq	Operator
1 2 3 4 5 ADP	x,y,z -x,-y,-z x+1/2,-y -x+1/2,y -x,y+1/2 Type: U	-z+1/2	6 7 8 9 10	x,-y+1/2,z+1/2 -x+1/2,-y,z+1/2 x+1/2,y,-z+1/2 z,x,y -z,-x,-y	11 12 13 14 15	-z+1/2 -z,x+1 z,-x+1	-x+1/2,-y ,x+1/2,y /2,-y+1/2 /2,y+1/2 ,-x,y+1/2	16 17 18 19 20	z+1/2,x,-y+1/2 y,z,x -y,-z,-x y+1/2,-z+1/2,-x -y+1/2,z+1/2,x	21 22 23 24	-y,z+1/2,-x+1/2 y,-z+1/2,x+1/2 -y+1/2,-z,x+1/2 y+1/2,z,-x+1/2
	ic Coordi										
<u>Atom</u>	Num	Wyckoff	Symn	netry x	y	z	SOF	Uiso	AET		
Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca C	1 2 3 4 5 6 7 8 9 10 11 12 13 14	4a 4b 8c 24d 24d 24d 24d 24d 24d 24d 24d 24d 24d	3. 3. .3. .3. 1 1 1 1 1 1 1 1	0.0 0.5 0.2561 0.375 0.1386 0.2526 0.2444 0.2777 0.4835 0.2664 0.245 0.2664 0.235 0.3491 0.1509	0.0 0.0 0.375 0.375 0.3763 0.3838 0.0133 0.2335 0.1241 0.1315 0.2841 0.4047 -0.0385 -0.0104	0.0 0.2561 0.375 0.1272 0.1209 0.0197 0.0046 0.0103 0.2536 0.1049 0.2921 -0.017- -0.024	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	$\begin{array}{c} 0.006\\ 0.0084\\ 0.0079\\ 0.0117\\ 0.01307\\ 0.00647\\ 0.00647\\ 0.00673\\ 0.01477\\ 0.01373\\ 0.0121\\ 0.01423\\ 0.0132\\ 0.01207\\ \end{array}$			
Aniso	•	splaceme				ani17	Uani23				
Ca a a a a a a a a a a a a a a a a a a	1 2 3 4 5 6 7 8 9 10 11 12 13 14	Uani11 0.006 0.0084 0.0079 0.0117 0.0079 0.006 0.0056 0.0078 0.0078 0.0138 0.0138 0.0142 0.009 0.0066 metry A	Uani22 0.006 0.0084 0.0079 0.0117 0.009 0.0059 0.0059 0.0059 0.0059 0.0086 0.0182 0.0094 0.0159 0.0154	0.006 0. 0.0084 5. 0.0079 6. 0.0117 0. 0.0223 0. 0.0096 -5 0.0086 -5 0.0176 -1 0.0188 -0 0.0098 -5 0.0176 -1 0.0188 -0 0.0191 -5 0.0191 -5 0.0147 0.	0014 0 0E-5 5 5E-4 6 0013 0 .5E-4 0 .0011 -2 .5E-4 -0 .0011 -2 .0E-4 -0 .0D11 7 .0012 -0 .0022 -0 .0031 0	ani13 0014 0E-5 5E-4 0014 0026 0012 2.0E-4 5E-4 0.0013 0E-4 0034 0039 0.0031 0024	0.0014 5.0E-5 6.5E-4 0.0014 -5.0E-4 -5.5E-4 -5.5E-4 -5.5E-4 -0.0011 -6.5E-4 -0.0031 0.0027 -0.0041 5.0E-4				
Subf	iles: Cen	nent and	Hydratio	n Product, Con	nmon Pha	se, Inor	ganic, Su	percondu	cting Material	Pearso	n Symbol: cP264.00
Cros	s-Ref PD)F #'s: 0	4-008-80)69 (Primary)							
Type Prima	r ences: ry Referen Il Structure		Refere Swansc Crystal	nce n et al. Natl. Bur Structure Source	. Stand. (U. : LPF.	. S.), Cir	c. 539 199	5.			

Mav 15, 2020 1:29 PM (Steve Simner) Analysis: Spectrographic analysis (wt.%): <1 "Na"; <0.1 "Fe", "Mn"; <0.01 "Cu", "Mg", "Si", "Ag", "Sr"; <0.001 "Cr", "Sn". Deleted Or Rejected By: Deleted by corrected NBS card Set 8. Temperature of Data Collection: 298 K.

00-009-0329

Jul 7, 2020 7:50 AM (Steve Simner)

Status DeletedQuality Mark: Low-PrecisionEnvironment: AmbientTemp: 298.0 K (Assigned by ICDD editor)Chemical Formula:Ca2 Si O4 ·0.3 H2 OEmpirical Formula: Ca2 H0.6 O4.3 SiWeight %:Ca45.12 H0.34 O38.73 Si15.81Atomic %: Ca25.32 H7.59 O54.43 Si12.66Compound Name:Calcium Silicate Hydrogen OxideEntry Date: 09/01/1959Modifications:Quality

Radiation: CuKa (1.5418 Å) Filter: Ni Beta Intensity: Visual

Molecular Weight: 177.65 g/mol

Subfiles: Inorganic

References:		
Туре	DOI	Reference
Primary Reference		Heller, Taylor. Crystallographic Data Ca Silicates, London, HMSO 195663.
		Deleted Or Rejected By: Delete: Weissmann parcel December 1

Database Comments: Deleted Or Rejected By: Delete: Weissmann parcel December 1, 1963 (for Set 15). Sample Preparation: Synthetic product, formed hydrothermally at 200 C and above. Warning: Unindexed pattern.

d-Spacing	d-Spacings (21) - Ca2 Si O4 ·0.3 H2 O - 00-009-0329 (Stick, Fixed Slit Intensity) - Cu Kɑ1 1.54056 Å																			
<u>20 (°)</u>	d (Å)	I	h	k		*	<u>20 (°)</u>	d (Å)	I	h	k		*	<u>20 (°)</u>	d (Å)	I	h	k	I	*
16.31056 21.65738 23.39040 26.91370 29.65467 31.47439 33.15224	5.430000 4.100000 3.800000 3.310000 3.010000 2.840000 2.700000	20 10 20 10 100 20 60					35.02221 36.19040 38.95717 42.19350 47.56777 48.10274 50.67295	2.560000 2.480000 2.310000 2.140000 1.910000 1.890000 1.800000	20 40 5 5 100 80 60					54.93501 59.59747 63.44267 64.17687 69.58105 74.88368 83.04155	$\begin{array}{c} 1.670000 \\ 1.550000 \\ 1.465000 \\ 1.450000 \\ 1.350000 \\ 1.267000 \\ 1.162000 \end{array}$	20 40 10 10 5 20 30				

00-012-0739

Jul 7, 2020 7:48 AM (Steve Simner)

Status PrimaryQuality Mark: BlankEnvironment: AmbientTemp: 298.0 K (Assigned by ICDD editor)Chemical Formula: Ca H4 Si2 O7Empirical Formula: Ca H4 O7 Si2Weight %: Ca18.88 H1.90 O52.76 Si26.46Atomic %: Ca7.14 H28.57 O50.00 Si14.29Compound Name: Calcium Hydrogen SilicateEntry Date: 09/01/1962

Radiation: CuKa (1.5418 Å) Filter: Ni Beta

Crystal System: Orthorhombic

Author's Unit Cell [a: 10.04 Å b: 3.82 Å c: 8.32 Å Volume: 319.10 Å³ Z: 2.00 MolVol: 159.55 c/a: 0.829 a/b: 2.628 c/b: 2.178] Calculated Density: 2.209 g/cm³ Measured Density: 2.23 g/cm³ SS/FOM: F(14) = 0.8(0.1391, 124)

Molecular Weight: 212.27 g/mol **b:** 10.040 Å **c:** 3.820 Å **a:** 90.00° XtlCell Vol: 319.10 Å³ Crystal Data [a: 8.320 Å **β:** 90.00° **y:** 90.00° **XtiCell Z:** 2.00 **c/a:** 0.459 a/b: 0.829 c/b: 0.380] Reduced Cell [a: 3.820 Å **b:** 8.320 Å **c:** 10.040 Å **a:** 90.00° **B:** 90.00° **y:** 90.00° **RedCell Vol:** 319.10 Å³] Subfiles: Cement and Hydration Product, Inorganic Pearson Symbol: 0?28.00 Pearson Symbol w/o H: 0?20

References:									
Туре	DOI	Reference							
Primary Reference		Funk, Thilo. Z. Anorg. Allg. Chem. 1955, 278, 245.							

Database Comments: Warning: One or more of the 4th-8th strongest lines are unindexed. Unit Cell Data Source: Powder Diffraction.

d-Spacing	s (15) - Ca	H4 Siž	2 07	- 0	0-01	L 2-07 3	9 (Stick, Fi	xed Slit Inte	ensity) - C	u Ko	11	.54056	5 Å
<u>20 (°)</u>	d (Å)	I	h	k		*	<u>20 (°)</u>	d (Å)	I	h	k	I	*	
10.78023	8.200000	60	0	0	1		43.03680	2.100000	10	4	1	0		
17.44279	5.080000	10	2	0	0		47.56777	1.910000	10	0	2	0		
21.23803	4.180000	40	0	0	2		50.07746	1.820000	100	0	1	4		
23.32814	3.810000	10	0	1	0		52.22818	1.750000	10	2	2	1		
26.26706	3.390000	10	3	0	0		60.45716	1.530000	10	6	1	0		
29.25702	3.050000	100	2	1	Ó		70,78267	1.330000	10	4	2	3		
35.45118	2.530000	10	3	1	Ó		75.37195	1.260000	10	0	3	1		
39.49092	2.280000	10												

00-015-0641

Status PrimaryQuality Mark: Low-PrecisionEnvironment: AmbientTemp: 298.0 K (Assigned by ICDD editor)Chemical Formula: Ca2 Si O4 '0.35 H2 OEmpirical Formula: Ca2 H0.7 O4.35 SiWeight %: Ca44.90 H0.40 O38.98 Si15.73Atomic %: Ca24.84 H8.70 O54.04 Si12.42Compound Name: Calcium Silicate HydrateEntry Date: 09/01/1965Modifications: CellParamSourceFormula: Ca2 H0.7 O4.35 Si

Radiation: CuKa (1.5418 Å) Filter: Ni Beta Intensity: Visual

Molecular Weight: 178.55 g/mol

Subfiles: Cement and Hydration Product, Inorganic

References:

 Type
 DOI
 Reference

 Primary Reference
 Funk. Z. Anorg. Allg. Chem. 1958, 297, 103.

Database Comments: General Comments: Low temperature form. Warning: Unindexed pattern. Unit Cell Data Source: Powder Diffraction.

d-Spacings (30) - Ca2 Si O4 ·0.35 H2 O - 00-015-0641 (Stick, Fixed Slit Intensity) - Cu Ka1 1.54056 Å <u>20 (°)</u> d (Å) I h k i 16.52505 5.360000 20 47.72697 **1.904000** 100

16.52505	5.360000	20	47.72697	1.904000	100
21.13573	4.200000	2	50.52270	1.805000	80
23.57919	3.770000	10	52.71433	1.735000	10
25.28059	3.520000	10	54.23116	1.690000	80
26.58641	3.350000	80	55.33035	1.659000	80
29.35541	3.040000	100	59.63984	1.549000	50
30.91611	2.890000	100	62.25797	1.490000	2
32.29122	2.770000	10	63.63670	1.461000	2
33.53568	2.670000	20	64.92948	1.435000	2
34.74204	2.580000	20	66.76147	1.400000	2
36.49495	2.460000	20	74.74546	1.269000	20
38.26802	2.350000	10	76.88002	1.239000	2
40.03982	2.250000	2	82.00863	1.174000	80
42.99381	2.102000	20	98.99804	1.013000	10
46.30760	1.959000	2	103.33029	0.982000	10

00-021-0132

Jun 1, 2020 6:21 PM (Steve Simner)

Status PrimaryQuality Mark: IndexedEnvironment: AmbientTemp: 298.0 K (Assigned by ICDD editor)Chemical Formula: Ca Al2 Si7 O18 ·1.7 H2 OEmpirical Formula: Al2 Ca H3.4 O19.7 Si7Weight %: Al8.86 Ca6.58 H0.56 O51.73 Si32.27Atomic %: Al6.04 Ca3.02 H10.27 O59.52 Si21.15Compound Name: Calcium Aluminum Silicate HydrateEntry Date: 09/01/1971Modification Date: 09/01/2003Modifications: Quality

Intensity: Visual

Crystal System: Orthorhombic Author's Unit Cell [a: 15.2 Å b: 16.6 Å c: 7.26 Å Volume: 1831.84 Å³ Z: 4.00 MolVol: 457.96 c/a: 0.478 a/b: 0.916 c/b: 0.437] Calculated Density: 2.209 g/cm³ SS/FOM: F(18) = 2.6(0.0453, 154)

 Molecular Weight: 609.25 g/mol

 Crystal Data [a: 15.200 Å b: 16.600 Å c: 7.260 Å a: 90.00° β: 90.00° γ: 90.00°

 XtlCell Z: 4.00 c/a: 0.478 a/b: 0.916 c/b: 0.437]

 Reduced Cell [a: 7.260 Å b: 15.200 Å c: 16.600 Å a: 90.00° β: 90.00° γ: 90.00°

 Reduced Cell [a: 7.260 Å b: 15.200 Å c: 16.600 Å a: 90.00° β: 90.00° γ: 90.00°

 Subfiles: Cement and Hydration Product, Inorganic, Micro & Mesoporous (Zeolite), Mineral Related

 Zeolite Classification: ZZ9 (Unknown structure)

 Pearson Symbol: 0?132.40

 Pearson Symbol: 0?132.40

References:		
Туре	DOI	Reference
Primary Reference		Simonot-Grange, Watelle-Marion, Cointot. Bull. Soc. Chim. Fr. 19682747.
Database Comr	nents:	General Comments: Natural specimen, contains "Ca0.92", "Na0.20", "Mg0.04", "K0.08". Sample Preparation: Heated to 257 C at 15 torr. Warning: Lines with abs(delta 2Theta)>0.06 DEG. Unit Cell Data Source: Powder Diffraction.
		Si7 O18 ·1.7 H2 O - 00-021-0132 (Stick, Fixed Slit Intensity) - Cu Ka1 1.54056 Å h k l * 20 (°) d (Å) I h k l *

00-027-1402					Mav 19, 2020) 10:21 AM (Steve Simne
Status Primary Quality M Empirical Formula: Si We Mineral Name: Silicon, syn Modifications: Lambda	eight %: Si100.00) Ato	mic %: Si100.		mpound Name:	ical Formula: Si Silicon cation Date: 09/01/2008
Radiation: CuKa1 (1.5406 Å) /Ic: 4.7	Internal Stan	dard: \	V d-Spacing:	Diffractor	neter Intensi	ty: Diffractometer - Peak
Crystal System: Cubic SP Author's Unit Cell [a: 5.430 Calculated Density: 2.329 g/		ne: 160. ay SS/	18 Å ³ Z: 8.0 FOM: F(11) = 4		Vol: 20.02] 021, 13)	
Space Group: Fd-3m (227) Crystal Data [a: 5.431 Å KtiCell Z: 8.00 a/b: 1.000		jht: 28. 5.431 Å		β: 90.0	0° γ: 90.00°	XtiCell Vol: 160.18 Å ³
Reduced Cell [a: 3.840 Å		3.840 Å	a: 60.00°	β: 60.0	0° γ: 60.00°	RedCell Vol: 40.05 Å ³]
Atomic parameters are cros AC Unit Cell [a: 5.4317(6) Å Space Group Symmetry Operate	b: 5.4317(6)		•	7888 a: 90°	AC Space Gro β: 90° γ: 90	up: Fd-3m (227) °]
Seq Operator Seq	Operator	Seq	Operator	Seq	Operator	Seq Operator
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	z,-x+1/4,-y+1/4 -z,x+3/4,y+3/4 -z+1/4,x,-y+1/4 z+3/4,-x,y+3/4 -z+1/4,-x+1/4,y z+3/4,x+3/4,-y y,z,x -y,-z,-x y,-z+1/4,-x+1/4 -y,z+3/4,x+3/4	21 22 23 24 25 26 27 28 29 30	-y+1/4,z,-x+1/4 y+3/4,-z,x+3/4 -y+1/4,-z+1/4,x y+3/4,z+3/4,-x x,z,y -x,-z,-y x,-z+1/4,-y+1/4 -x,z+3/4,y+3/4 -x+1/4,z,y+1/4 x+3/4,-z,y+3/4	31 32 33 34 35 36 37 38 39 40	$\begin{array}{c} -x+1/4, -z+1/4, y\\ x+3/4, z+3/4, -y\\ y, x, z\\ -y, -x, -z\\ y, -x+1/4, -z+1/4\\ -y, x+3/4, z+3/4\\ -y+1/4, -x, z+3/4\\ -y+1/4, -x, z+3/4\\ -y+1/4, -x+1/4, z\\ y+3/4, -x+3/4, -z\end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
tom Num Wyckoff Sym i 1 8a -43m		z 125 0.1	SOF IDP 25 1.0	AET		
tom Num Wyckoff Sym i 1 8a -43m Trystal (Symmetry Allowed ubfiles: Ceramic (Semicondu (Mineral, Synthetic) Iineral Classification: Diam prototype Structure [Formu	 0.125 0 Centrosymmetr ctor), Common Ph ond (supergroup), order]: C 	125 0.1 ic ase, Edu 2C-dian Prototy	25 1.0 ucational Patterr nond (group) pe Structure [, Forensi Pearso Alpha O	n Symbol: cF8.0 rder]: C	
tom Num Wyckoff Sym i 1 8a -43m Crystal (Symmetry Allowed Subfiles: Ceramic (Semicondu (Mineral, Synthetic) Aineral Classification: Diam Prototype Structure [Formu PF Prototype Structure [Formu 00-005-0 04-002-0 Cross-Ref PDF #'s: 04-003-4 04-006-2	 0.125 0 Centrosymmetrictor), Common Philond (supergroup), Jala Order]: C Cormula Order]: C D565 (Alternate), 0 Maternate), 0 Maternate), 0 	125 0.1 ic ase, Edu 2C-dian Prototy C,cF8,22 0-026-14 4-004-51 4-004-52	25 1.0 ucational Patterr nond (group) pe Structure [7 LPF Proto 481 (Alternate), 456 (Alternate), 599 (Alternate), 591 (Alternate),	Pearso Pearso Alpha O type Str 04-001-7 04-004-0 04-004-0 04-006-4	n Symbol: cF8.0 rder]: C ucture [Alpha C 7247 (Primary), 04 3352 (Alternate), 1 896 (Alternate), 1 528 (Alternate), 1	0 Drder]: C,cF8,227 1-002-0118 (Alternate), 04-003-3353 (Alternate),
Num Wyckoff Sym i 1 8a -43m Crystal (Symmetry Allowed Crystal (Symmetry Allowed Subfiles: Ceramic (Semicondu (Mineral, Synthetic) Mineral Classification: Diam Prototype Structure [Formu PF Prototype Structure [Formu OPF Prototype Structure [Formu 04-005-0 04-002-0 04-007-5 Cross-Ref PDF #'s: 00-005-0 04-002-0 04-007-5 References: Vpe DOI Natl. E Natl. E	 0.125 0 Centrosymmetrictor), Common Philond (supergroup), Jala Order]: C Cormula Order]: C D565 (Alternate), 0 D891 (Alternate), 0 2527 (Alternate), 0 2522 (Alternate), 0 2523 (Alternate), 0 	125 0.1 ic ase, Edu 2C-dian Prototy C,cF8,22 0-026-14 4-006-22 4-006-22 4-006-28	25 1.0 ucational Patterr nond (group) pe Structure [7 LPF Proto 481 (Alternate), 456 (Alternate), 591 (Alternate), 736 (Alternate),	Pearso Pearso Alpha O type Str 04-001-7 04-004-0 04-004-0 04-006-4	n Symbol: cF8.0 rder]: C ucture [Alpha C 7247 (Primary), 04 3352 (Alternate), 1 896 (Alternate), 1 528 (Alternate), 1	0 Drder]: C,cF8,227 4-002-0118 (Alternate), 04-003-3353 (Alternate), 04-005-9699 (Alternate),
tom Num Wyckoff Sym i 1 8a -43m irystal (Symmetry Allowed ubfiles: Ceramic (Semicondu (Mineral, Synthetic) lineral Classification: Diam irototype Structure [Formu PF Prototype Structure [Formu PF Prototype Structure [Formu 00-005-0 04-002-0 iross-Ref PDF #'s: 00-005-0 04-002-0 eferences: 04-002-0 04-007-5 ype DOI Refer rimary Reference rystal Structure Natl. E Crystal patabase Comments: Addititi from J NBS S	0.125 0.: Centrosymmetr ictor), Common Ph iond (supergroup), ila Order]: C brmula Order]: C brmula Order]: C b b b b c c b c	125 0.1 ic ase, Edu 2C-dian Prototy C,cF8,22 0-026-1: 4-003-1: 4-006-2: 4-006-2: 4-007-8: 0-0	25 1.0 ucational Patterr nond (group) pe Structure [7 LPF Proto 481 (Alternate), 456 (Alternate), 591 (Alternate), 591 (Alternate), 736 (Alternate), 1976, 13, 35. 00-005-0565 and a0. a0 uncorrect	n, Forensi Pearson Alpha O type Str 04-001-7 04-003-3 04-004-6 04-002-7 04-012-7 1 00-026- ed for re	n Symbol: cF8.0 rder]: C ucture [Alpha C 2247 (Primary), 04 352 (Alternate), 6 528 (Alternate), 7 888 (Alternate) 7888 (Alternate)	0 Drder]: C,cF8,227 4-002-0118 (Alternate), 04-003-3353 (Alternate), 04-005-9699 (Alternate), 04-006-6436 (Alternate), mments: Reflections calculate
Num Wyckoff Sym i 1 8a -43m Crystal (Symmetry Allowed Commetry Allowed Commetry Allowed Subfiles: Ceramic (Semicondu (Mineral, Synthetic) Aineral Classification: Diam Prototype Structure [Formu. Prototype Structure [Formu. PF Prototype Structure [Formu. 00-005-0 Cross-Ref PDF #'s: 04-003-0 Cross-Ref PDF #'s: 04-003-2 04-006-2 04-007-5 Creferences: Ype Ype DOI Reference rimary Reference Natl. E rystal Structure Crysta Oatabase Comments: Additia From p NBS S Source Source	0.125 0.:): Centrosymmetr ictor), Common Ph ind (supergroup), ila Order]: C prmula Order]: C D565 (Alternate), 0 2527 (Alternate), 0 2527 (Alternate), 0 2522 (Alternate), 0 2523 (Alternate), 0 2523 (Alternate), 0 2524 (Alternate), 0 2525 (Alternate), 0 2526 (Alternate), 0 2527 (Alternate), 0 2527 (Alternate), 0 2528 (Alternate), 0 2529 (Alternate), 0 2529 (Alternate), 0 2520 (Alternate), 0 2520 (Alternate), 0 2521 (Alternate), 0 2522 (Alternate), 0 2522 (Alternate), 0 2525 (Alternate), 0 2526 (Alternate), 0 2527 (Alternate), 0 2527 (Alternate), 0 2528 (Alternate), 0 2529 (Alternate), 0 2529 (Alternate), 0 2520 (Alter	125 0.1 ic ase, Edu 2C-dian Prototy C,cF8,22 0-026-1: 4-004-5: 4-004-5: 4-004-5: 4-004-5: 4-004-5: 4-007-8: 0007-8: 000000000000000000000000000000000000	25 1.0 ucational Patterr nond (group) pe Structure [7 LPF Proto 481 (Alternate), 456 (Alternate), 591 (Alternate), 591 (Alternate), 736 (Alternate), 1976, 13, 35. 00-005-0565 and a0. a0 uncorrect No. 640. Temp	n, Forensi Pearso Alpha O type Str 04-001-7 04-003-3 04-004-6 04-002-7 04-012-7	n Symbol: cF8.0 rder]: C ucture [Alpha C 2247 (Primary), 04 352 (Alternate), 6 528 (Alternate), 7 888 (Alternate) 7888 (Alternate)	0 Drder]: C,cF8,227 4-002-0118 (Alternate), 04-003-3353 (Alternate), 04-005-9699 (Alternate), 04-006-6436 (Alternate), 04-006-6436 (Alternate), mments: Reflections calculated Source or Locality: This sample
ii 1 8a -43m Crystal (Symmetry Allowed Subfiles: Ceramic (Semicondu (Mineral, Synthetic) Mineral Classification: Diam Prototype Structure [Formu PF Prototype Structure [Formu PF Prototype Structure [Formu Cross-Ref PDF #'s: 04-003-4 04-003-4 04-002-2 04-007-5 References: Type DOI Reference Primary Reference Natl. E Crystal Structure Crysta Database Comments: Addition NBS S	O.125 0.: Centrosymmetr Ictor), Common Ph Ind (supergroup), Ila Order]: C Dormula Order]: C Doff (Alternate), 0 10555 (Alternate), 0 10527 (Alternate), 0 527 (Alternate), 0 5232 (Alternate), 0 5232 (Alternate), 0 conal Patterns: To r precision measurer Standard Reference e: Powder Diffracti 402 (Stick, Fixed S k	125 0.1 ic ase, Edu 2C-dian Prototy C,cF8,22 0-026-1: 4-004-5: 4-004-5: 4-004-5: 4-004-5: 4-004-5: 4-007-8: 0007-8: 000000000000000000000000000000000000	25 1.0 ucational Patterr nond (group) pe Structure [7 LPF Proto 481 (Alternate), 456 (Alternate), 591 (Alternate), 591 (Alternate), 736 (Alternate), 1976, 13, 35. 00-005-0565 and a0. a0 uncorrect No. 640. Temp	n, Forensi Pearso Alpha O type Str 04-001-7 04-003-3 04-004-6 04-002-7 04-012-7	n Symbol: cF8.0 rder]: C ucture [Alpha C 2247 (Primary), 04 352 (Alternate), 6 528 (Alternate), 7 888 (Alternate) 7888 (Alternate)	0 Drder]: C,cF8,227 4-002-0118 (Alternate), 04-003-3353 (Alternate), 04-005-9699 (Alternate), 04-006-6436 (Alternate), 04-006-6436 (Alternate), mments: Reflections calculated Source or Locality: This sample

Mav 19. 2020 10:21 AM (Steve Simner)

00-027	7-1402				
<u>2θ (°)</u>	d (Å)	I	h	k	

<u>2θ (°)</u>	d (Å)	I	h	k		*
136.88996	0.828200	3	5	3	3	

00-029-0285

Status Primary Quality Mark: Indexed **Environment:** Ambient Temp: 298.0 K (Assigned by ICDD editor) Chemical Formula: Ca2 Al2 Si O7 '8 H2 O Empirical Formula: Al2 Ca2 H16 O15 Si Weight %: Al12.90 Ca19.16 H3.86 O57.37 Si6.71 Atomic %: Al5.56 Ca5.56 H44.44 O41.67 Si2.78 Compound Name: Calcium Aluminum Silicate Hydrate Mineral Name: Strätlingite, syn Entry Date: 09/01/1979

Internal Standard: Si

Crystal System: Rhombohedral **Aspect:** R* (148) Author's Unit Cell [a: 5.747(1) Å **c:** 37.64(1) Å **Volume:** 1076.62 Å³ **Z:** 3.00 MolVol: 358.87 c/a: 6.550] Calculated Density: 1.936 g/cm³ **SS/FOM:** F(25) = 58.5(0.0107, 40) Measured Density: 1.9 g/cm³

Space Group: R* Molecular Weight: 418.32		
Crystal Data [a: 5.747 Å b: 5.747 Å c: 3		
XtlCell Vol: 1076.62 Å ³ XtlCell Z: 3.00 c/		
Reduced Cell [a: 5.747 Å b: 5.747 Å c: 1	.2.978 Å α: 77.21° β: 77.21°	γ: 60.00° RedCell Vol: 358.87 Å ³]

Sign: =-

Subfiles: Cement and Hydration Product, Inorganic, Mineral Related (Mineral, Synthetic) Pearson Symbol: hR36.00 Pearson Symbol w/o H: hR20

References:

35.84650

2.503000

<5 <5 20 10

õ

Туре	DOI	Reference
Primary Reference Optical Data Powder Data (Additonal References)		Kuzel, H. Neues Jahrb. Mineral., Monatsh. 1976319. Hentschel, G., Kuzel. Neues Jahrb. Mineral., Monatsh. 1976326. Am. Mineral. 1977, 62, 395.

Analysis: Chemical analysis not given. General Comments: Occurs as a mineral at Bellerberg, Mayen/Eifel, Germany (Hentschel, G., Kuzel, Neues Jahrb. Mineral., Monatsh., 326 (1976)). Sample Preparation: Prepared by slow hydration of glasses with the composition "C2 A S" or CAS in saturated lime solutions at 20 C over 120 days. Unit Cell: Powder data indexed by aid of single-crystal data. Warning: Lower quality mark was set by the editor. Unit Cell Data Source: Powder Diffraction.

d-Spacing	ıs (25) - Ca2	AI2 S	i 07	·8 F	12 0	- 00-0	029-0285 (S	tick, Fixed S	Slit Int	ensi	ty) -	Cuł	(a1 1.54
<u>2θ (°)</u>	d (Å)	I	h	k	I	*	<u>20 (°)</u>	d (Å)	I	h	k	I	*
7.06588	12.500000	100	0	0	3		36.14516	2.483000	10	0	2	1	
14.11342	6.270000	40	0	0	6		37.32786	2.407000	10	0	2	4	
17.97783	4.930000	10	1	0	1		37.96595	2.368000	20	1	1	9	
18.43020	4.810000	5	0	1	2		42.61087	2.120000	10	1	1	12	
20.16472	4,400000	10	1	0	4		43.55960	2.076000	<5	0	2	10	
21.23803	4.180000	70	0	Ó	9		44.76169	2.023000	10	Ó	1	17	
24.36610	3.650000	<5	1	Ó	7		44.99620	2.013000	<5	2	0	11	
26.01710	3.422000	5	ō	ĩ	8		48.18406	1.887000	10	ō	ž	13	
31.08148	2.875000	20	1	1	Ó		48,40231	1.879000	5	2	1	1	
31.71501	2.819000	<5	ō	1	11		49.38175	1.844000	<5	2	1	4	
31.92424	2.801000	<5	Ĩ	1	3		49.93084	1.825000	<5	1	ž	5	
34.27608	2.614000	20	1	1	6		50.91529	1.792000	5	Ō	Ō	21	

00-041-0224 Jun 8, 2020 10:47 AM (Steve Simner) Temp: 295.0 K Status Primary **Quality Mark:** Indexed **Environment:** Ambient Chemical Formula: Ca S O4 .0.5 H2 O Empirical Formula: Ca H 04.5 S Weight %: Ca27.61 H0.69 O49.60 S22.09 Atomic %: Ca13.33 H13.33 O60.00 S13.33 Compound Name: Calcium Sulfate Hydrate Mineral Name: Bassanite, syn **CAS Number:** 10034-76-1 Entry Date: 09/01/1991 Radiation: CuKa1 (1.5405 Å) Filter: Ni Beta Internal Standard: Si d-Spacing: Diffractometer Cutoff: 22.10 Å Intensity: Visual - Peak SPGR: I2 (5) Crystal System: Monoclinic **b:** 6.932 Å Author's Unit Cell [a: 12.028 Å **c:** 12.691 Å **β:** 90.183° Volume: 1058.15 Å³ Z: 12.00 MolVol: 88.18 c/a: 1.055 **a/b:** 1.735 c/b: 1.831] Calculated Density: 2.733 g/cm³ Measured Density: 2.7 g/cm³ Color: White SS/FOM: F(30) = 27.3(0.0087, 126) Molecular Weight: 145.15 g/mol Space Group: I2 (5) Crystal Data [a: 12.691 Å **b:** 6.932 Å **c:** 12.028 Å a: 90.00° β: 90.18° XtlCell Vol: 1058.15 Å³ **v:** 90.00° **XtiCell Z:** 12.00 c/a: 0.948 **a/b:** 1.831 c/b: 1.735] Reduced Cell [a: 6.932 Å **b:** 9.392 Å **c:** 9.418 Å a: 79.51° β: 68.41° **y:** 68.34° RedCell Vol: 529.07 Å³] **πωβ:** =1.558 **εγ:** =1.586 Sign: =+ Atomic parameters are cross-referenced from PDF entry 04-013-8392 AC Space Group: I121 (5) **b:** 6.9312(3) Å **c:** 12.6919(5) Å AC Unit Cell [a: 12.0275(4) Å **a:** 90° **β:** 90.18(1)° **y:** 90°] **Space Group Symmetry Operators:** Seq Operator Seq Operator 1 x,y,z 2 -x,y,-z Atomic Coordinates: Num Wyckoff SOF IDP AET Atom Symmetry х 0.0 0.5 0.1667 Ca 2a 0.0 0.4553 1.0 1 2 2 1 0.0 0.2724 2b 4c 0.4553 0.2724 1.0 1.0 2 3 4 1 0.7276 0.2724 0.3333 1.0 0.2752 0.4496 0.0833 0.25 1.0 1.0 567 89 1 0.7248 0.0 0.2752 0.2752 0.4167 1.0 0.1291 0.1291 0.726 0.726 0.0173 0.5173 1.0 1.0 1 0.2985 0.2985 0.0725 0.4435 0.4435 0.3306 10 0.8507 1.0 0.3507 0.184 11 12 13 1.0 1.0 1 0.0725 0.2538 0.2538 0.684 0.1556 0.6556 1 0.3306 1.0 0.6185 0.6185 1.0 1.0 14 15 16 17 18 19 20 21 22 23 24 1 1.0 1.0 1.0 0.1824 0.3102 0.9889 0.4889 1 0.1824 0.3102 0.5714 0.0639 0.8222 1.0 1.0 1.0 0.0639 0.5714 0.3222 1 0.0 0.3333 0.5 0.59855493 0.4508 0.0 0.333 0.333 1.0 1.0 1.0 1 0.428 0.671 0.307 0.55 0.621 0.523 Crystal (Symmetry Allowed): Non-centrosymmetric - Enantiomorphic, Optical Activity, Pyro / Piezo (p), Piezo (2nd Harm.)

Subfiles: Cement and Hydration Product, Ceramic (Bioceramic), Common Phase, Inorganic, Mineral Related (Mineral, Synthetic) Pearson Symbol: mC90.00 Pearson Symbol w/o H: mC78 ANX: A2B2X9

Cross-Ref PDF #'s: 00-033-0310 (Deleted), 00-036-0617 (Alternate), 04-011-1765 (Primary), 04-013-8392 (Alternate), 04-014-0553 (Primary)

References:		
Туре	DOI	Reference
Primary Reference Crystal Structure Optical Data Unit Cell		Poellmann, H., Kuzel, HJ., Mineralogical Inst. of University, Erlangen, Germany. ICDD Grant-in-Aid 1989. Crystal Structure Source: LPF. Dana's System of Mineralogy, 7th Ed. 1951, II, 476. Kuzel, HJ., Hauner, M. ZemKalk-Gips 1987, 40, 628.

 Jun 8. 2020 10:47 AM (Steve Simner)

 Additional Patterns: To replace 00-033-0310 and 00-036-0617. ANX: A2B2X9. Analysis: Analysis (wt.%):

 CaO 38.5, "S O3" 55.0, "H2 O" 6.5: "Ca S O4 ·0.53 H2 O". Footnotes for HKL and Superlattice D-spacings:

 *Not permitted by space group. Sample Preparation: Dehydration of gypsum in "H N O3" (60%).

 Rehydration at pressure of water/pressure of oxygen=0.35 at 22 C. Temperature of Data Collection: 295 K. Warning: One or more lines are unindexed.

d-Spacing	js (57) - Ca	S 04	·0.5 I	H2 0	- 0	0-041	-0224 (Sticl	k, Fixed Slit	Inte	nsity)	- Cı	ı Ka	1 1.9
2θ (°)	d (Å)	I	h	k	I	*	<u>20 (°)</u>	d (Å)	I	h	k	1	*
14.72047	6.012770	80	2	0	0		52.70190	1.735380	10	6	2	0	
20.30067	4.370840	5	-2	0	2		52.78183	1.732940	10	0	4	0	
20.74066	4.279100	5 5	-2	1	1		53.90202	1.699540	5	-1	4	1	
22.24075	3.993760	5	-1	0	3		54.14174	1.692580	20	6	0	4	
23.23077	3.825750	5	-3	0	1		55.10177	1.665340	20	2	4	0	
24.63080	3.611370	5	0	1	3		57.13196	1.610890	5	-2	4	2	
25.67082	3.467370	50	0	2	0		58.42218	1.578350	5	-3	4	1	
27.68088	3.219980	5	-1	2	1		59.77202	1.545890	5	4	2	6	
29.33095	3.042480	10	0	2	2		60.33218	1.532870	5	1	1	8	
29.69099	3.006400	100	4	0	0		60.86238	1.520780	5	6	2	4	
31.90109	2.802980	90	2	0	4		61.74235	1.501200	5	4	4	0	
32.96109	2.715220	10	4	0 2	2 3		62.82211 63.01211	1.477970 1.473970	5 10	-7 2	1 4	4 4	
34.26108 34.89122	2.615110 2.569310	5 5	1 3	2	1		63.92226	1.455160	5	-3	3	4 6	
38.42124	2.340980	5	0	2	4		64.46216	1.444270	5	-3	1	8	
39.65142	2.271140	5 5	4	2 2	ō		64.61210	1.441280	5	3	i	8 8	
40.47133	2.227000	5	3	2	3		65.34226	1.426930	5	-6	3	8 3	
41.34137	2.182120	5	-2	2	4		66.87223	1.397950	5	-5	4	ĭ	
42.25143	2.137200	10	4	2	ż		68.96253	1.360590	5	-8	ö	4	
42.71146	2.115240	10	Ó	ō	6		71.97260	1.310910	10	6	4	Ó	
44.64143	2.028170		Õ	3	3		72.73287	1.299070	10	4		8	
45.26163	2.001810	5 5	3	3	Ō		75.11299	1.263700	10	8	2 2 3 4	4	
46.45164	1.953260	5	-5	2	1		76.61311	1.242650	10	3	3	8	
47.61171	1.908340	10	6	0	2		78.76313	1.214030	5	7	4	1	
49.24159	1.848920	20	-4	2	4		79.99302	1.198430	5	4	3	8	*
49.36175	1.844700	30	4	2	4		81.42360	1.180950	5	10	0	2	
50.29164	1.812750	5 5	4 5	3 2	1		82.43287	1.169030	5	6	2 3	8 0	
51.01168	1.788840	5	5	2	3 3		83.48339	1.156970	5	9	3	0	
52.19194	1.751130	5	6	1	3								

00-044-0448

Jun 1, 2020 6:19 PM (Steve Simner)

 Status Primary
 Quality Mark: Star
 Environment: Ambient
 Temp: 298.0 K

 Chemical Formula:
 Ca4 Fe2 O6 (S O3) ·12 H2 O
 Structural Formula: 3 Ca O · Fe2 O3 · Ca S O3 ·12 H2 O

 Empirical Formula:
 Ca4 Fe2 H24 O21 S
 Weight %: Ca24.14 Fe16.82 H3.64 O50.58 S4.83

 Atomic %:
 Ca7.69 Fe3.85 H46.15 O40.38 S1.92
 Compound Name: Calcium Iron Oxide Sulfite Hydrate

 Entry Date:
 09/01/1994

Radiation: CuKa1 (1.5405 Å)Filter: Ni BetaInternal Standard: Si d-Spacing: DiffractometerCutoff: 9.80 ÅIntensity: Diffractometer - PeakI/Ic: 1.2

 Crystal System: Rhombohedral
 SPGR: R-3c (167)

 Author's Unit Cell [a: 5.903 Å
 c: 50.531 Å
 Volume: 1524.87 Å³
 Z: 3.00
 MolVol: 508.29
 c/a: 8.560]

 Calculated Density: 2.17 g/cm³
 Color: Colorless SS/FOM: F(25) = 42.6(0.0100, 59)
 Color: 508.29
 c/a: 8.560]

Molecular Weight: 664.24 g/mol **Space Group:** R-3c (167) Crystal Data [a: 5.903 Å **b:** 5.903 Å **c:** 50.531 Å **a:** 90.00° **β:** 90.00° Y: 120.00° **XtlCell Vol:** 1524.87 Å³ XtlCell Z: 3.00 c/a: 8.560 a/b: 1.000 c/b: 8.560] RedCell Vol: 508.29 Å³] Reduced Cell [a: 5.903 Å **b:** 5.903 Å **c:** 17.185 Å a: 80.11° β: 80.11° Y: 60.00°

Crystal (Symmetry Allowed): Centrosymmetric

Subfiles: Inorganic Pearson Symbol: hR52.00 Pearson Symbol w/o H: hR28

References:		
Туре	DOI	Reference
Primary Reference		Poellmann, H., Ecker, M., Friedrich-Alexander Univ., Erlangen-Nurnberg, Erlangen, Germany. ICDD Grant-in-Aid 1993.

Database Comments: Chemical analysis (wt.%): CaO 33.52, "Fe2 O3" 23.80, "S O2" 9.51, "H2 O" 32.15. General Comments: 35% relative humidity. Sample Preparation: Prepared by mixing "Fe (O H)3", CaO and "Na2 S O3" in stoichiometric ratio with excess water at 60 C. Temperature of Data Collection: 298 K.

d-Spacings (25) - Ca4 Fe2 O6 (9	S 03) ·12 H2 O	- 00-044-0448 (Stick	. Fixed Slit Intensity) - Cu Ka1 1.54056 Å

<u>20 (°)</u>	d (Å)	I	h	k	I	*	<u>2θ (°)</u>	d (Å)	I	h	k	I	*
10.51034	8.409950	100	0	0	6		44.50155	2.034220	15	1	1	18	
21.09067	4.208870	45	0	0	12		49.29163	1.847160	4	1	2	8	
22.36073	3.972600	27	0	1	8		50.19184	1.816120	3	0	1	26	
30.26096	2.951060	27	1	1	0		50.75175	1.797390	10	2	0	20	
32.10111	2.785970	17	1	1	6		53.41203	1.713970	2	1	1	24	
34.28108	2.613630	6	1	1	9		53.73186	1.704520	17	3	0	0	
35.82119	2.504710	8	0	2	4		54.92182	1.670370	12	3	0	6	
37.18131	2.416150	26	1	1	12		58.32210	1.580820	5	1	1	27	
37.96129	2.368280	9	2	0	8		60.23199	1.535180	4	1	2	20	
39.76142	2.265110	14	0	1	20		61.40211	1.508700	3	0	1	32	
40.61144	2.219640	2	1	1	15		62.94214	1.475440	5	2	2	0	
43.14141	2.095150	3	1	0	22		63.98227	1.453940	4	2	2	6	
43.33146	2.086400	3	2	0	14								

00-044-1481	Mav 15. 2020 3:20 PM (Steve Simner)
	Femp:298.0 K (Assigned by ICDD editor)Weight %:Ca54.09 H2.72 O43.19droxideMineral Name:Portlandite, syn
Radiation: CuKo1 (1.5406 Å) Filter: Graph Mono Internal Stand Intensity: Diffractometer - Peak I/Ic: 2.9	dard: Si d-Spacing: Diffractometer Cutoff: 15.00 Å
Crystal System: Hexagonal SPGR: P-3m1 (164) Author's Unit Cell [a: 3.5899(4) Å c: 4.916(3) Å Volume: 54.8 Calculated Density: 2.242 g/cm ³ Color: White SS/FOM: F(25) =	· · ·
Space Group: P-3m1 (164) Molecular Weight: 74.09 g/mol Crystal Data [a: 3.590 Å b: 3.590 Å c: 4.916 Å a: 90.00° XtlCell Z: 1.00 c/a: 1.369 a/b: 1.000 c/b: 1.369] Reduced Cell [a: 3.590 Å b: 3.590 Å c: 4.916 Å a: 90.00°	β: 90.00° γ: 120.00° XtlCell Vol: 54.87 ų β: 90.00° γ: 120.00° RedCell Vol: 54.87 ų
Atomic parameters are cross-referenced from PDF entry 04-006- AC Unit Cell [a: 3.5918(66) Å b: 3.5918(66) Å c: 4.9063(96) Å Space Group Symmetry Operators:	9147 AC Space Group: P-3m1 (164) α: 90° β: 90° γ: 120°]
Seq Operator Seq Operator Seq Operator Seq Operator Seq Opera	tor Seq Operator Seq Operator
1 x,y,z 3 -y,x-y,z 5 -x+y,-x,z 7 -y,-x,z	9 x,x-y,z 11 -x+y,y,z
2 -x,-y,-z 4 y,-x+y,-z 6 x-y,x,-z 8 y,x,-z ADP Type: U Atomic Coordinates:	10 -x,-x+y,-z 12 x-y,-y,-z
Atom Num Wyckoff Symmetry x y z SOF	Uiso AET
Ca 1 1a -3m. 0.0 0.0 0.0 1.0 C 2 2d 3m. 0.33333 0.66666 0.234 1.0 H 3 2d 3m. 0.33333 0.66666 0.4256 1.0	0.01194 0.01203 0.04203
Anisotropic Displacement Parameters:	
Atom Num Uani11 Uani22 Uani33 Uani12 Uani13 Uani23	
Ca 1 0.0083 0.0083 0.0193 0.0042 0.0 0.0 D 2 0.0106 0.0106 0.0149 0.0053 0.0 0.0 H 3 0.0528 0.0228 0.0205 0.0264 0.0 0.0 Crystal (Symmetry Allowed): Centrosymmetric	
Crystal (Symmetry Anowed): Centrosymmetric	
Subfiles: Cement and Hydration Product, Common Phase, Forensic, Inor (Excipient) Mineral Classification: Brucite (group), hydroxide (subgroup) Pears	ganic, Mineral Related (Mineral, Synthetic), Pharmaceutical son Symbol: hP5.00 Pearson Symbol w/o H: hP3
04-006-9147 (Alternate), 04-006-9148 (Alternate), Cross-Ref PDF #'s: 04-006-9151 (Alternate), 04-006-9152 (Alternate), 04-010-3117 (Primary)	04-006-9149 (Alternate), 04-006-9150 (Alternate), 04-007-5231 (Alternate), 04-008-0220 (Alternate),
References: Type DOI Reference	
Primary Reference Martin, K., McCarthy, G., North Dakota State University Crystal Structure Optical Data Winchell, A., Winchell, H. Microscopic Character of Artif	
Database Commonte, deviation in intensity of the ten strongest reflecti	ttern. General Comments: Average relative standard ons for three specimen mounts = 2.2%. Astringent. n Sigma Chemical Co. Unit Cell Data Source: Powder
d-Spacings (28) - Ca (O H)2 - 00-044-1481 (Stick, Fixed Slit Intensity) - (20 (°) d (Å) I h k l * 20 (°) d (Å) I	Cu Ka1 1.54056 Å h k l *
18.00730 4.922000 72 0 0 1 62.63192 1.482000 9	2 0 1
28.67094 3.111000 27 1 0 64.23143 1.448900 7m 34.10125 2.627000 100 1 0 1 64.23143 1.448900 7m	1 0 3
36.52569 2.458000 1 0 2 71.80861 1.313500 6 47.12003 1.927100 30 1 0 2 77.65202 1.228600 1	1 1 2 2 0 2 0 0 4
50.81200 1.795400 31 1 1 0 79.09241 1.209800 2	1 1 3
54.35646 1.686400 14 1 1 81.90694 1.175200 2 56.09070 1.638300 1 0 0 3 84.74839 1.142900 5m 59.42442 1.554100 3 2 0 84.74839 1.142900 5m	2 1 0 1 0 4 2 1 1

© 2020 International Centre for Diffraction Data. All rights reserved.

Page 1 / 2

00-044 2θ (°)	- 1481 d (Å)	I	h	k	I	*	<u>20 (°)</u>	d (Å)	I	h	k	Mav 15, 2020 3:20 PM (Steve Simner)
86.19403 93.20601 96.02628 98.87902 98.87902	$\begin{array}{c} 1.127400 \\ 1.060100 \\ 1.036300 \\ 1.013900 \\ 1.013900 \end{array}$	2 3 2 2m 2m	2 2 3 1 3	0 1 0 1 0	3 2 0 4 1		103.13890 106.06233 107.57460 110.51638 118.26283	0.983300 0.964100 0.954700 0.937390 0.897400	<1 1 2 <1 1	0 2 2 1 2	0 0 1 0 2	5 4 3 5 0

00-045-0572

Mav 15, 2020 2:58 PM (Steve Simner)

 Status Primary
 Quality Mark: Star
 Environment: Ambient
 Temp: 298.0 K

 Chemical Formula: Ca8 Al2 Fe2 O12 C O3 (O H)2 ·22 H2 O
 Structural Formula: 6 Ca O · Al2 O3 · Fe2 O3 · Ca C O3 · Ca (O H)2 ·22 H2 O
 Structural Formula: Al2 C Ca8 Fe2 H46 O39
 Weight %: Al4.62 C1.03 Ca27.44 Fe9.56 H3.97 O53.39

 Atomic %: Al2.04 C1.02 Ca8.16 Fe2.04 H46.94 O39.80
 Compound Name: Calcium Aluminum Iron Oxide Carbonate Hydroxide Hydrate
 Entry Date: 09/01/1995

Radiation: CuKo1 (1.5405 Å) Filter: Ni Beta Internal Standard: Si Cutoff: 17.70 Å Intensity: Integrated I/Ic: 1.5

 Crystal System: Rhombohedral
 SPGR: R3c (161)

 Author's Unit Cell [a: 5.882 Å
 c: 47.934 Å
 Volume: 1436.23 Å³
 Z: 1.50
 MolVol: 957.49
 c/a: 8.149]

 Calculated Density: 2.027 g/cm³
 Color: Colorless SS/FOM: F(21) = 63.9(0.0059, 56)
 Color: 8.149
 Color: 8.149

Space Group: R3c (161) Molecular Weight: 1168.61 g/mol Crystal Data [a: 5.882 Å **b:** 5.882 Å **c:** 47.934 Å **a:** 90.00° **β:** 90.00° **y:** 120.00° **XtlCell Vol:** 1436.23 Å³ XtlCell Z: 1.50 c/a: 8.149 **a/b:** 1.000 c/b: 8.149] Reduced Cell [a: 5.882 Å **b:** 5.882 Å **c:** 16.335 Å a: 79.63° **γ:** 60.00° **RedCell Vol:** 478.74 Å³] **β:** 79.63°

Crystal (Symmetry Allowed): Non-centrosymmetric - Pyro / Piezo (p), Piezo (2nd Harm.)

Subfiles: Inorganic Pearson Symbol: hR49.00 Pearson Symbol w/o H: hR26

References:		
Туре	DOI	Reference
Primary Reference		Ecker, M., Poellmann, H., Friedrich-Alexander-Univ. Erlangen-Nurnberg, Germany. ICDD Grant-in-Aid 1994.

Analysis: Chemical analysis (wt.%): CaO 37.8, "Fe2 O3" 13.4, "Al2 O3" 8.6, "C O2" + "H2 O" 40.1. General Comments: 35% relative humidity. Sample Preparation: Prepared by mixing "Fe (O H)3", "Al (O H)3", CaO and "Na2 C O3" in molar equation with excess water at 25 C. Temperature of Data Collection: 298 K.

d-Spacing	js (21) - Ca8	3 AI2 I	Fe2	012	с оз	(O H)2 ·22 H2 (0 - 00-045-	0572	(Stic	k, Fi	ixed S	Slit I	intensity) - Cu Ka1 1.54056 Å
<u>20 (°)</u>	d (Å)	I	h	k	I	*	<u>20 (°)</u>	d (Å)	I	h	k		*	
11.06036	7.992940	100	0	0	6		45.93154	1.974160	6	1	1	18		
22.23071	3.995540	30	0	0	12		52.37175	1.745540	4	2	0	20		
22.90075	3.880130	12	0	1	8		52.77199	1.733240	3	0	1	26		
30.37098	2.940620	6	1	1	Ó		53.95178	1.698090	4	3	0	0		
32.41108	2.760030	4	1	1	6		55.25189	1.661170	5	3	0	6		
34.81110	2.575040	5	1	1	9		59.06195	1.562770	2	3	0	12		
36.02120	2.491260	3	0	2	4		61.75239	1.500980	3	1	2	20		
37.95130	2.368880	7	1	1	12		62.11203	1.493150	3	2	0	26		
38.37133	2.343910	4	2	0	8		64.38222	1.445870	2	2	2	6		
41.61143	2.168580	8	ō	1	20		64.81235	1.437310	2	ō	1	32		
44.29146	2.043380	2	ž	Ō	14									

00-046-1045 Mav 15, 2020 1:20 PM (Steve Simner) Status Primary **Quality Mark:** Star **Environment:** Ambient **Temp:** 296.0 K Chemical Formula: Si O2 Empirical Formula: 02 Si Weight %: 053.26 Si46.74 Atomic %: 066.67 Si33.33 Compound Name: Silicon Oxide Mineral Name: Quartz, syn Entry Date: 09/01/1996 Radiation: CuKa1 (1.5406 Å) Filter: Ge Mono Internal Standard: Si d-Spacing: Diffractometer Intensity: Diffractometer - Integrated I/Ic: 3.41 SPGR: P3221 (154) Crystal System: Hexagonal c: 5.40524(8) Å Volume: 113.01 Å³ Z: 3.00 Author's Unit Cell [a: 4.91344(4) Å MolVol: 37.67 c/a: 1.100 Calculated Density: 2.649 g/cm³ Measured Density: 2.66 g/cm³ Color: White **SS/FOM:** F(30) = 538.7(0.0018, 31) **Space Group:** P3221 (154) Molecular Weight: 60.08 g/mol Crystal Data [a: 4.913 Å **b:** 4.913 Å **c:** 5.405 Å **a:** 90.00° β: 90.00° **y:** 120.00° XtlCell Vol: 113.01 Å³ **XtlCell Z:** 3.00 c/a: 1.100 a/b: 1.000 c/b: 1.100] Reduced Cell [a: 4.913 Å **b:** 4.913 Å **c:** 5.405 Å **a:** 90.00° **RedCell Vol:** 113.01 Å³] **β:** 90.00° **y:** 120.00° **πωβ:** =1.544 **εγ:** =1.553 Sign: =+ Atomic parameters are cross-referenced from PDF entry 04-012-0490 AC Space Group: P3221 (154) AC Unit Cell [a: 4.91427(12) Å **b:** 4.91427(12) Å **c:** 5.4058(2) Å **a:** 90° **β:** 90° v: 120° 1 **Space Group Symmetry Operators:** Operator Seg Operator Seq Seq Operator -x+y,-x,z+1/3 5 -x,-x+y,-z+2/3 3 x,y,z -y,x-y,z+2/3 4 y,x,-z 6 x-y,-y,-z+1/3 ADP Type: U **Atomic Coordinates:** Atom Num Wyckoff Symmetry SOF Uiso AET Х v 0.4723 0.416 0.66666 0.7881 Si 3a 6c .2. 1 0.0 0.2658 1.0 1.0 0.00754 0.01747 1 **Anisotropic Displacement Parameters:** Atom Num Uani11 Uani22 Uani33 Uani12 Uani13 Uani23 0.0075 0.0063 0.0124 -4.0E-5 -5.0E-5 0.0095 0.00475 -0.0020.026 õ 0.016 -0.003 0.02 Crystal (Symmetry Allowed): Non-centrosymmetric Subfiles: Cement and Hydration Product, Common Phase, Forensic, Inorganic, Metal & Alloy, Mineral Related (Mineral, Synthetic), Pharmaceutical (Excipient)

Mineral Classification:Quartz (supergroup), Class MemberPearson Symbol:hP9.00Prototype Structure [Formula Order]:Si O2Prototype Structure [Alpha Order]:O2 SiLPF Prototype Structure [Formula Order]:Si O2,hP9,152LPF Prototype Structure [Alpha Order]:O2 Si,hP9,152

Cross-Ref PDF #'s: 00-033-1161 (Alternate), 01-085-0335 (Alternate), 04-005-4494 (Alternate), 04-012-0490 (Alternate)

References:

Type DOI	Reference
Primary Reference	Kern, A., Eysel, W., Mineralogisch-Petrograph. Inst., Univ. Heidelberg, Germany. ICDD Grant-in-Aid 1993.
Crystal Structure	Crystal Structure Source: LPF.
Optical Data	Swanson, Fuyat. Natl. Bur. Stand. (U. S.), Circ. 539 1954, 3, 24.
Structure	Z. Kristallogr. 1992, 198, 177.

Additional Patterns: To replace 00-033-1161. See PDF 01-085-0335. General Comments: Low temperature **Database Comments:** quartz. 20 determination based on profile fit method. Temperature of Data Collection: 296(1) K. Unit Cell Data Source: Powder Diffraction.

d-Spacing	s (58) - Si O	2 - 00)-04	6-10	45 (Stick	, Fixed Slit	Intensity) - (Cu Ka1	l 1.5	405	6 Å	
<u>2θ (°)</u>	d (Å)	I	h	k	1	*	<u>2θ (°)</u>	d (Å)	I	h	k	1	*
20.85950	4.254990	16	1	0	0		50.62056	1.801740	<1	0	0	3	
26.63929	3.343470	100	1	0	1		54.87338	1.671730	4	2	0	2	
36.54309	2.456870	9	1	1	0		55.32347	1.659190	2	1	0	3	
39.46405	2.281490	8	1	0	2		57.23362	1.608270	<1	2	1	0	
40.29891	2.236130	4	1	1	1		59.95837	1.541530	9	2	1	1	
42.44898	2.127710	6	2	0	0		64.03401	1.452890	2	1	1	3	
45.79177	1.979860	4	2	0	1		65.78421	1.418410	<1	3	0	0	
50.13753	1.817960	13	1	1	2		67.74212	1.382100	6	2	1	2	
~ ~ ~ ~ ~			-		-		ee						

© 2020 International Centre for Diffraction Data. All rights reserved.

Page 1 / 2

00-046 2θ (°)	- 1045 d (Å)	Ŧ	h	ŀ	ı	*	20 (°)	d (Å)	I	h	k		av 15. 2020 1:20 PM (Steve Simner)
20(1)	u (A)	1		ĸ			20(1)	u (A)	1		ĸ	<u> </u>	
68.14202	1.374960	7	2	0	3		104.19936	0.976174	<1	3	2	0	
68.31610	1.371880	5	3	0	1		106.58922	0.960785	<1	3	2	1	
73.46578	1.287910	2	1	0	4		112.10978	0.928526	<1	4	1	0	
75.65768	1.255950	3	3	0	2		114.05664	0.918159	<1	3	2	2	
77.67304	1.228320	1	2	2	0		114.46250	0.916060	2	4	0	3	
79.88168	1.199820	2	2	1	3		114.63466	0.915176	2	4	1	1	
80.04440	1.197790	<1	2	2	1		115.88056	0.908890	<1	2	2	4	
81.17066	1.183990	2	1	1	4		117.53232	0.900851	<1	0	0	6	
81,48879	1.180170	2	3	1	0		118.30814	0.897188	<1	2	1	5	
83.83772	1.152980	1	3	1	1		120.11906	0.888910	1	3	1	4	
84.95477	1.140650	<1	2	0	4		121.84790	0.881352	<1	1	0	6	
87.43656	1.114550	<1	3	Õ	3		122,59978	0.878167	<1	4	ĩ	ž	
90.82841	1.081550	2	3	1	2		127.24516	0.859796	<1	3	0	5	
92.78531	1.063800	<1	4	ō	ō		131.19674	0.845837	<1	ĩ	1	6	
94.64763	1.047720	1	1	Õ	5		132,74954	0.840746	<1	5	ō	1	
95.11542	1.043800	<1	4	õ	1		134.28623	0.835918	<1	4	Õ	4	
96.23447	1.034610	1	2	1	4		136.41685	0.829560	1	2	Õ	6	
98,74719	1.014900	1	2	ž	3		137.88751	0.825393	ž	4	ĩ	3	
102.22753	0.989576	<1	1	1	5		140.31020	0.818911	<1	3	3	õ	
102.56347	0.987246	<1	3	1	ŝ		143.24225	0.811682	3	5	ŏ	ž	
103.87331	0.978345	<1	3	ō	4		144.11007	0.809668	<1	ŝ	3	ī	

00-047-1144

Mav 18, 2020 4:08 PM (Steve Simner)

, .	······································
Internal Standard: SiO2	2 d-Spacing: Diffractometer Intensity: Diffractometer - Peak
Crystal System: Hexago Author's Unit Cell [a: - Calculated Density: 2.5	4.996 Å c: 5.453 Å Volume: 117.87 Å ³ Z: 3.00 MolVol: 39.29 c/a: 1.091]
Space Group: P6222 (18 Crystal Data [a: 4.996 XtlCell Z: 3.00 c/a: 1 Reduced Cell [a: 4.996	Å b: 4.996 Å c: 5.453 Å α: 90.00° β: 90.00° γ: 120.00° XtiCell Vol: 117.87 Å ³
AC Unit Cell [a: 4.9977	
Space Group Symmetry Op Seg Operator Seg	
Seq Operator Set 1 x,y,z 4	eq Operator Seq Operator -x,-y,z 7 y,x,-z+2/3 10 -y,-x,-z+2/3
2 -y,x-y,z+2/3 5 3 -x+y,-x,z+1/3 6 ADP Type: U	y,-x+y,z+2/3 8 -x,-x+y,-z+1/3 11 x,x-y,-z+1/3 x-y,x,z+1/3 9 x-y,-y,-z 12 -x+y,y,-z
Atomic Coordinates:	
Atom Num Wyckoff	Symmetry x y z SOF Uiso AET
Si 1 3c D 2 12k	222 0.5 0.0 0.0 1.0 0.01974 1 0.4164 0.2381 0.1419 0.5 0.03959
Anisotropic Displacement	
D 2 0.0529 0	Jani22 Uani33 Uani12 Uani13 Uani23 0.0184 0.0167 0.0092 0.0 0.0 0.0374 0.0381 0.0298 -0.0064 -0.0174 wwed): Non-centrosymmetric - Enantiomorphic, Optical Activity, Piezo (2nd Harm.)
Prototype Structure [Fe LPF Prototype Structur	e [Formula Order]: Si O2,hP9,180 LPF Prototype Structure [Alpha Order]: O2 Si,hP9,180
Cross-Ref PDF #'s: 04-	007-1808 (Alternate)
References:	
	Reference
Primary Reference I Crystal Structure	Liu, X., Su, W., Zhao, X., Wang, Y. Mater.Lett. 1993, 18, 234. Crystal Structure Source: LPF.
i Database Comments: i r	Sample Preparation: ZSM-5 zeolites, heated for 5 hours at 400 C to remove water and organics, were put nto the high-pressure chamber and the pressure was brought to 2.50 GPa. Then the temperature was ncreased to 800 C. After being held at that temperature for 20 minutes, the specimens were quenched to oom temperature under pressure and the pressure released. Warning: Not enough reflections above the ntensity cut off to meet higher quality mark criteria. Unit Cell Data Source: Powder Diffraction.

d-Spacing	s (11) - Si (02 - 0	0-04	7-1	144	(Stick	, Fixed Slit	Intensity) -	Cu l	Ka1 1	.540)56 <i>i</i>	Â.
<u>2θ (°)</u>	d (Å)	I	h	k		*	<u>2θ (°)</u>	d (Å)	I	h	k	I	*
20.50857 26.24342 35.90583 38.99230 41.68344 44.99620	4.327000 3.393000 2.499000 2.308000 2.165000 2.013000	20 100 18 16 14 12	1 0 1 2 0	0 1 1 0 2	0 1 0 2 0 1		49.41033 54.02367 54.68650 56.17654 58.92810	1.843000 1.696000 1.677000 1.636000 1.566000	11 8 7 6 19	1 0 1 2 2	1 2 0 1 1	2 2 3 0 1	

00-055-0738

Jun 29, 2020 3:05 PM (Steve Simner)

Status PrimaryQuality Mark: IndexedEnvironment: AmbientTemp:298.0 K (Assigned by ICDD editor)Chemical Formula:Ca3 Si O5Empirical Formula:Ca3 O5 SiWeight %:Ca52.66 O35.04 Si12.30Atomic %:Ca33.33 O55.56 Si11.11Compound Name:Calcium SilicateAlternate Name:Alite M1; C3SEntry Date:09/01/2005Modification Date:09/01/2017Modifications:FQM

Radiation: CuKo1 (1.5405 Å) d-Spacing: Calculated Intensity: Calculated

 Crystal System:
 Monoclinic
 SPGR:
 Pc (7)

 Author's Unit Cell [a: 27.8736(2) Å
 b: 7.0590(5) Å
 c: 12.2575(8) Å
 β: 116.030(6)°
 Volume: 2167.14 Å³

 Z: 18.00
 MolVol:
 120.40
 c/a:
 0.440
 a/b:
 3.949
 c/b:
 1.736
 Calculated Density:
 3.149 g/cm³

 SS/FOM:
 F(30) = 478.4(0.0005, 121)
 Calculated Density:
 3.149 g/cm³
 Calculated Density:
 3.149 g/cm³

Space Group: Pc (7) Molecular Weight:			
Crystal Data [a: 25.046 Å b: 7.059 Å			
XtlCell Vol: 2167.14 Å ³ XtlCell Z: 18.00			
Reduced Cell [a: 7.059 Å b: 12.257 Å	c: 25.046 Å	α: 90.06° β: 90.00° γ: 90.00°	RedCell Vol: 2167.14 Å ³
]			

Crystal (Symmetry Allowed): Non-centrosymmetric - Optical Activity, Pyro / Piezo (p), Piezo (2nd Harm.)

Subfiles: Cement and Hydration Product, Ceramic, Inorganic Pearson Symbol: mP162.00

Cross-Ref PDF #'s: 00-049-0442 (Primary), 00-055-0739 (Primary), 00-055-0740 (Primary), 04-018-9701 (Primary)

References:		
Туре	DOI	Reference
Primary Reference		de Noirfontaine, MN., CNRS-CECM, Vitry-sur-Seine, France. Private Communication 2003.
Unit Cell		de Noirfontaine, MN., Dunstetter, F., Courtial, M., Gasecki, G., Signes-Frehel, M. "Polymorphism of tricalcium silicate in portland cement: a fast visual identification of structure and superstructure." Powder Diffr. 2003, 18, 7.

Database Comments: Additional Patterns: See 00-049-0442, 00-055-0739 and 00-055-0740. Processing Information: Rietveld refinement. Warning: One or more lines are unindexed.

00-055 2θ (°)		I	h	k	ī	*	20 (°)	d (Å)	I	h] k	Jun 29	. 2020 3:05 PM (Steve Simner)
26 (°) 45.58884 45.66892 45.69080 45.76148 45.77125 46.78031 46.85451 49.61718 49.73288 49.87537 49.87828	d (Å) 1.988200 1.984900 1.98100 1.981100 1.980700 1.940300 1.940300 1.837400 1.835800 1.831800 1.826900 1.826800	I 8 24 16 15 54 51 117 14 34 23 13 270	3 9 0 6 -12 0 9 9 -15	k 200330203203	-5 -6 -6 3 -3 4 2 6 -3 2 4	*	20 (°) 59.83557 59.85265 60.61031 60.98570 62.11896 62.17449 62.23940 62.35101 62.45370 63.41367 63.56379	d (Å) 1.544400 1.544000 1.526500 1.518000 1.491800 1.491800 1.490400 1.488000 1.485600 1.465600 1.462500	I 48 9 19 10 114 123 126 40 83 38 81	-18 -16 3 6 3 -15 9 -12 0 3 9		4 6 -4 -4 6 0 8 4 -8 -4	-
51.65384 51.75758 55.80163 55.86067 56.14665 56.33401 56.40932 59.82703	$\begin{array}{c} 1.768100\\ 1.764800\\ 1.646100\\ 1.645200\\ 1.644500\\ 1.636800\\ 1.631800\\ 1.631800\\ 1.629800\\ 1.544600 \end{array}$	378 211 10 26 8 8 113 161 125	6 0 -15 6 -12 6 9 -15 12	24 0334 022	-6 0633-2 422		63.77327 66.41288 67.12493 67.22330 68.03848 68.20182 70.92376 72.31141 79.04552	1.458200 1.406500 1.393300 1.376800 1.376800 1.373900 1.327700 1.305600 1.210400	8 8 51 15 20 14 13 14	-15 3 -18 18 0 -12 15 6 -8	342004245	3 4 2 0 8 4 2 4 5	

00-060	0-0312												Jun	1. 2020	6:23 PI	M (Steve	Simner)
Empirica Atomic 9	Primary Il Formula Il Formula W: Al10.43 nd Name:	: Al2 3 C1.7	a O C0.3 2 Ca	Al2 3 Ca 20.8	O3 ∙(4 H3 7 H1).17 C 09.6 5.65 (7 S0.17)50.44 S0.8	5 Ca (O H Weight % 39)2 •0.3 6: Al1	3 Ca 4.15	a C (C1.	03 ·x 04 Ca	H2 0 42.03	3 H0.79 O	/ ICDD ed 40.56 S1. 09/01/201	.43	
Internal	Standard	: Si d	l-Spa	acin	g: D	iffract	ometer	Intensity	: Diffr	acto	mete	er - P	eak				
	System: R Unit Cell					pect: 49.52	R* (148) 2 Å Vol	u me: 1428	3.28 Å	3	c/a	: 8.5	81]	SS/FOM	l: F(23) =	= 20.1(0.01	55, 74)
Crystal I XtlCell V	roup: R* Data [a: ! 'ol: 1428.2 I Cell [a:	5.771 8 ų	Å c/	b: ! /a: 8	Veig 5.771 3.581 5.77	Å a,	81.42 g/ma c: 49.520 /b: 1.000 c: 16.839	Å a: 90 c/b: 8.5		•		.00° .13°	•	120.00° 60.00°	RedCel	l Vol: 476.	09 ų]
Subfiles	: Cement a	nd Hy	drati	on F	rodu	ct, Ind	organic	Pearson S	Symbo): h	R?						
Reference					_												
Type Primary Re		F	Refer Poelln contai	nann,	H. "S	ynthe \2-, \C	ses, propertie 03\2- and \	es and solid so	solutior es Jahr	of te b. Mi	ernar neral	y lam ., Abh	ellar ca . 2006	alcium alun 5, 182, 173	ninate hydr	oxi salts (AFı	m-phases)
Databas	e Comme	nts: S	Samp	le Pi	epar	ation:	nalysis (wt Prepared f r Diffractio	rom a mixt	" 39.1 :ure of	, "Al trica	2 O3 alciu	3'' 18. malu	2, ''S minat	O3" 2.0, e, gypsun	"C O2" 2.4 1, lime an	4, "H2 O" 4 d calcite. U	I0.1. nit Cell
d-Spacing <u>20 (°)</u>	gs (23) - 3 (d (Å)	Ca O · I		03 ∙0 k).17 (I	Ca S O	4 ·0.5 Ca (<u>20 (°)</u>	OH)2 ∙0.3 d(Å)	3 Ca C I	03 ⁻ h		2 O - I	00-06 <u>*</u>	0-0312 (Stick, Fixe	d Slit Inter	isity) - Cu
10.70170 21.49818 22.84186 25.28789 30.97104 32.49613 32.87665 34.02118 35.07879 36.66469 38.01595 38.81732	8.260000 4.130000 3.890000 3.519000 2.753000 2.753000 2.752000 2.556000 2.449000 2.365000 2.318000	80 30 5	0 0 1 1 0 1 1 0 1 2	0 0 1 0 1 0 1 0 1 2 1 0	6 12 8 10 0 18 6 16 9 4 12 8		40.39561 40.60456 43.80360 44.05043 45.49699 46.66056 51.94095 55.07809 55.58504 56.28892 59.80996	2.231000 2.220000 2.065000 2.054000 1.992000 1.945000 1.652000 1.652000 1.633000 1.545000	10 20 15 20 20 10 10 10 5 5	0 0 1 1 0 2 3 0 3 3	2 1 0 1 2 0 0 0 0 0	10 20 24 22 18 16 20 0 30 6 12					

01-074-8549

Mav 15, 2020 1:25 PM (Steve Simner)

Status Primary **Quality Mark:** Star **Environment:** Ambient Temp: 298.0 K (Assigned by ICDD editor) Chemical Formula: Al2 (Al2.588 Si1.412) 09.706 Empirical Formula: Al4.588 09.706 Si1.412 Weight %: Al38.84 O48.72 Si12.44 Atomic %: Al29.21 O61.80 Si8.99 Compound Name: Aluminum Silicon Oxide Entry Date: 09/01/2008 Modification Date: 09/01/2016 Modifications: Quality Radiation: CuKa1 (1.5406 Å) d-Spacing: Calculated Intensity: Calculated - Peak I/Ic: 0.8 I/Ic - CW ND: 0.19 Crystal System: Orthorhombic **SPGR:** Pbam (55) Author's Unit Cell [a: 7.5741(2) Å **b:** 7.6856(2) Å **c:** 2.88582(7) Å Volume: 167.99 Å³ **Z:** 1.00 **a/b:** 0.985 c/b: 0.375] Calculated Density: 3.151 g/cm³ MolVol: 167.99 c/a: 0.381 Structural Density: 3.15 g/cm³ **SS/FOM:** F(30) = 999.9(0.0001, 32) R-factor: 0.069 Space Group: Pbam (55) Molecular Weight: 318.74 g/mol Crystal Data [a: 7.574 Å **b:** 7.686 Å **c:** 2.886 Å **a:** 90.00° **B:** 90.00° **y:** 90.00° XtlCell Vol: 167.99 Å³ XtlCell Z: 1.00 c/a: 0.381 a/b: 0.985 c/b: 0.375] Reduced Cell [a: 2.886 Å **b:** 7.574 Å **c:** 7.686 Å **a:** 90.00° **y:** 90.00° RedCell Vol: 167.99 Å³] **β:** 90.00° AC Space Group: PBAM (55) AC Unit Cell [a: 7.5741(2) Å **b:** 7.6856(2) Å **c:** 2.88582(7) Å y: 90°] a: 90° **β:** 90° Space Group Symmetry Operators: Seq Operator Seq Operator Seq Operator <u>Seq</u> **Operator** x+1/2,-y+1/2,-z -x+1/2,y+1/2,z -x+1/2,y+1/2,-z 3 -x,-y,z x,y,-z 5 6 7 x,y,z -x,-y,-z 4 8 x+1/2,-y+1/2,z ADP Type: B Atomic Coordinates: <u>Ato</u>m Num Wyckoff Symmetry SOF Biso AET X 1.0 0.5 0.353 0.0 0.0 0.0 1.91 2a 1 2 3 4 Al Si Al 0.3415 0.3415 4h 0.15103 0.5 1.91 0.15103 0.264 0.5 0.5 4h 1.91 4h 0.21 0.147 1.91 0.5 0.0 0.5 0000 1.0 1.0 567 4h 0.3501 0.4256 1.91 4g 2d 0.1289 0.2212 1.91 0.0 1.91 0.559 0.429 0.072 n 8 4h 0.5 0.147 1.91 Crystal (Symmetry Allowed): Centrosymmetric Subfiles: Inorganic Pearson Symbol: oP15.71 Prototype Structure [Formula Order]: Al4.8 Si1.2 09 Prototype Structure [Alpha Order]: Al4.8 O9 Si1.2 **ANX:** A3X5 Cross-Ref PDF #'s: 04-014-4567 (Related Phase) **References:** Type DOI Reference Primary Reference Calculated from ICSD using POWD-12++. Tkalcec, E., Kurajica, S., Ivankovic, H. "Diphasic aluminosilicate gels with two stage mullitization in temperature range of 1200 - 1300 C". J. Eur. Ceram. Soc. 2005, 25, 613. Structure 10.1016/i.jeurceramsoc.2004.02.015 ANX: A3X5. Analysis: Al4.588 O9.706 Si1.412. Formula from original source: Al2 (Al2.588 Si1.412) O9.706. Database Comments: ICSD Collection Code: 152977. Calculated Pattern Original Remarks: Not leached sample heat treated at 1290 K. Wyckoff Sequence: h4 g d a(PBAM). Unit Cell Data Source: Powder Diffraction. d-Spacings (183) - Al2 (Al2.588 Si1.412) 09.706 - 01-074-8549 (Stick, Fixed Slit Intensity) - Cu Ka1 1.54056 Å 2θ (°) d (Å) h k Т * 2θ (°) d (Å) h 16.41805 5.394690 42.82168 507 2.110050 1 0 16 3 2 0 1 23.12627 23.47152 25.97878 3.842800 0 2 46.02002 1.970570 0 13 1 0 0 3.787050 0 2 ñ 47.26830 1.921400 11 57 Ō 4 3.426960 0 48.00742 1.893530 4 0 678 1202 26.21165 30.96201 33.18587 **3.397040** 2.885820 48.86150 ŏ 1000 1 0 2 0 1.862410 83 43 1 188 1 0 49.00336 1.857350 1 3 1 87 49.36404 49.53797 2.697340 363 1.844620 1 1 18 16 56 .24094 544610 1.838550 489 0 0 1 3 1 13 10 37.01220 50.72636 53.42851 1.798230 1.713480 3 2.426800 155 ŝ ŏ 2.398600 13 0 4 48 97 38.99968 2.307580 11 210 574 2 0 2 53.77344 1.703300 3 4 0 2 1 22

© 2020 International Centre for Diffraction Data. All rights reserved.

53.93702

57.58300

58.22801

1

1

ź 3 õ

194

39.21614

40.84645

42.57002

295340

2.207410

2.121940

1.698520

1.583150

1

1

n

Ó

135

47

01-074	-8549											May 15, 2020 1:25 PM (Steve Simner)
<u>20 (°)</u>	d (Å)	I	h	k	I	*	<u>2θ (°)</u>	d (Å)	I	h	k	<u> </u>
58.97651 59.57208	1.564830 1.550600	11 8	1 4	4 1	1 1		104.29507 104.97366	0.975540 0.971088	1 6	6 3	5 5	0 2
60.62435	1.526180	347	3	3	1		105.53989	0.967430	4	5	3	2
61.50557 62.43360	1.506410 1.486230	6 5	1 5	5 1	0 0		106.40487 107.04921	0.961940 0.957926	2 4	0 0	0 6	3 2
63.04214	1.473340	5	2	4	1		107.84367	0.953064	5	1	8	0
63.50074 64.53027	1.463800 1.442910	73 155	4 0	2 0	1 2		108.33926 108.33926	0.950079 0.950079	16m 16m	1 6	6 0	2 2
65.47956	1.424270	32	2	5	0		108.85638	0.947003	11m	1	1	3
66.26499 67.09166	1.409280 1.393910	51 8	5 1	2 1	0 2		108.85638 109.55625	0.947003 0.942902	11m 8m	8 6	0 1	0 2
69.51860	1.351060	14m	0	2	2		109.55625	0.942902	8m	7	4	0
69.51860 69.65958	1.351060 1.348670	14m 29m	3 2	4 0	1 2		110.11821 111.41773	0.939660 0.932333	3 4	8 2	1 0	0 3
69.65958	1.348670	29m	4	4	0		111.62173	0.931204	3	2	8	0
70.45259 70.79247	1.335420 1.329840	81 38	1 1	5 2	1 2		112.08210 112.54869	0.928677 0.926145	2 10m	2 1	6 2	2 3
70.90102	1.328070	51	2	1	2		112.54869	0.926145	10m	2	1 5	3
71.32023 71.84463	1.321290 1.312930	19 13	5 3	1 5	1 0		112.91773 113.26600	0.924163 0.922309	7 3	6 6	2	1 2
72.41868 73.93248	1.303930 1.280930	10	5 0	3 6	0 0		113.77672 113.77672	0.919619 0.919619	4m	4 8	5 2	2 0
74.18524	1.277190	10 98	2	5	1		114.11286	0.917867	4m 1	5	4	2
74.51792 74.92942	1.272310 1.266340	35 89	2 5	2 2	2 1		115.35499 116.45677	0.911518 0.906048	4 1	0 2	8 2	1 3
75.20725	1.262350	34m	1	6	ō		116.67402	0.904987	1	1	8	1
75.20725 76.39454	1.262350 1.245660	34m 14	6 6	0 1	0 0		117.24848 117.89834	0.902209 0.899114	1 5m	4 6	7 6	1 0
76.78838	1.240250	25 7	1	3	2		117.89834	0.899114	5m	8	0	1
77.06920 78.16392	1.236430 1.221830	7 13	3 4	1 4	2 1		118.15807 118.64361	0.897891 0.895626	1 1m	3 3	8 6	0 2
78.81198	1.213400	4	2	6	0		118.64361	0.895626	1m	7	4	1
79.92329 80.41670	$1.199300 \\ 1.193180$	5 22m	6 2	2 3	0 2		119.10762 119.25408	0.893487 0.892817	3 2	8 3	1 1	1 3
80.41670	1.193180	22m	4	5	0		119.69938	0.890795	2	6	3	2
80.58922 80.81837	$1.191060 \\ 1.188260$	4 16	3 5	2 3	2 1		120.10116 120.30976	$0.888990 \\ 0.888060$	2 1	5 8	7 3	0 0
82.28292	1.170780	1	0	6	1		120.72848	0.886208	1	2	8	1
83.52141 83.52141	1.156540 1.156540	3m 3m	1 6	6 0	1 1		121.05278 123.29496	0.884787 0.875276	1 2	7 3	5 2	0 3
83.76551	1.153790	17	0	4	2		125.10249	0.867996	2	1	7	2
84.31464 84.80148	1.147670 1.142320	1	4 3	0 6	2 0		126.11032 127.14666	0.864082 0.860163	1 8m	5 0	5 4	2 3
84.95661	1.140630 1.135090	1 3	1 4	4	2 2		127.14666 127.83506	0.860163	8m	7 3	1 8	2
85.46977 85.72621	1.132350	4	6	1 3	õ		127.83506	0.857618 0.857618	3m 3m	4	0	3
86.38473 87.04534	$1.125400 \\ 1.118550$	4 8	3 2	3 6	2 1		128.07575 128.62053	0.856739 0.854770	3 2m	4 1	8 4	0 3
88.13913	1.107470	3	6	2	1		128.62053	0.854770	2m	4	6	2
88.51865 88.60779	$1.103700 \\ 1.102820$	15 14	2 4	4 5	2 1		129.30731 129.57592	0.852328 0.851385	1 2m	4 2	1 7	3 2
88.92757	1.099680	27m	4	2	2		129.57592	0.851385	2m	6	4	2
88.92757 90.29043	$1.099680 \\ 1.086590$	27m 2	5 1	4 7	1 0		130.09204 130.09204	0.849592 0.849592	7m 7m	5 8	7 4	1 0
91.11000	1.078940	1	5	5	Ó		130.49626	0.848205	22m	1	9	0
91.92972 92.97463	1.071450 1.062130	2 2	7 3	1 6	0 1		130.49626 131.17166	0.848205 0.845921	22m 12	3 7	3 5	3 1
93.10668	1.060970	2	4	6	0		131.59880	0.844498	2	7	2	2
93.84920 93.84920	1.054520 1.054520	2m 2m	2 6	7 3	0 1		133.36136 133.92770	0.838799 0.837026	1 4m	2 4	4 2	3 3
94.44885	1.049400	1	3	4	2		133.92770	0.837026	4m	9	1	0
94.68799 95.39010	1.047380 1.041520	1 3m	4 1	3 5	2 2 2		135.23506 136.80845	0.833039 0.828433	2 1	2 6	9 7	0 0
95.39010 96.15304	1.041520 1.035270	3m 2	7 5	2	0 2		137.77626 139.10233	0.825702	18	3 9	7 2	2 0
98.48615	1.016890	13	1	1 7	1		139.85011	0.822084 0.820106	2 7	7	3	2
98.91337 99.31585	$1.013640 \\ 1.010610$	12 5	2 5	5	2 1		141.98001	0.814713 0.814112	4 3m	8 1	4 9	1 1
99.64024	1.008190	20	5 3	5 2 7	2		142.22632 142.22632	0.814112	3m	3	4	3
99.82101 100.14683	1.006850 1.004450	22 8	3 7	7 1	0 1		143.64383 144.12799	0.810743 0.809627	8 1	1 5	5 6	3 2
101.20935	0.996758	9	7	3	ō		144.43209	0.808935	1	3	9 5	0
101.34312 102.04045	0.995804 0.990882	13 19m	4 2	6 7	1 1		144.77406 145.04955	0.808165 0.807551	1 2	6 5	5 1	2 3
102.04045	0.990882	19m	6	4	1		145.70112	0.806121	3	8	5	0
102.84812 103.67635	0.985287 0.979665	12 2	4 7	4 2	2 1		146.94020 148.48383	0.803487 0.800360	2 4	9 2	1 9	1 1
103.90788	0.978114	2 1	5	6	0							

$\ensuremath{\textcircled{\text{\scriptsize C}}}$ 2020 International Centre for Diffraction Data. All rights reserved.

la: Ca (C O3) Ic - CW ND: 0.87 35 c/a: 3.420 , 30) Vol: 368.11 Å ³ /ol: 122.70 Å ³] .67)
35 c/a: 3.420 , 30) Vol: 368.11 Å ³ /ol: 122.70 Å ³]
, 30) Vol: 368.11 Å ³ /ol: 122.70 Å ³]
/ol: 122.70 ų]
.67)
(: ABX3
eted), 00-003-0596 -0586 (Alternate), nary), 01-072-1937 1-078-4615 1-080-2794 1-080-2798 1-080-2802 1-080-2802 1-080-2810 1-083-4601 1-083-4605 1-083-4605 1-083-4613 1-083-4617 1-083-4617 1-083-4617 1-083-4621 1-083-4625 1-083-4629 1-086-2340 4-001-7249 4-007-2808
-008-0212 4-016-9713
008-0212
008-0212
008-0212

 Structure
 10.1154/1.3257906

 Structure
 10.1154/1.3257906

 Structure
 Sitepu, H. "Texture and structural refinement using neutron diffraction data from molybdite (Mo O3) and calcite (Ca C O3) powders and a Ni-rich Ni50.7 Ti49.30 alloy". Powder Diffr. 2009, 24, 315.

 Structure
 For Diffraction Data. All rights reserved.

01-078-4614

Mav 15. 2020 1:18 PM (Steve Simner)

ANX: ABX3. Analysis: C1 Ca1 O3. Formula from original source: Ca (C O3). ICSD Collection Code: 166364. Calculated Pattern Original Remarks: Refinement using the March-dollase model for preferred orientation. Database Comments: A refinement using the generalized-spherical-harmonic model is given in ICSD 166365. Sample Source or Locality: synthetic. Temperature of Data Collection: 293 K. Wyckoff Sequence: e b a (R3-CH). Unit Cell Data Source: Powder Diffraction.

d-Spacings (78) - Ca (C O3) - 01-078-4614 (Stick, Fixed Slit Intensity) - Cu Ka1 1.54056 Å													
<u>2θ (°)</u>	d (Å)	I	h	k	1	*	<u>20 (°)</u>	d (Å)	I	h	k	1	*
23.04868	3.855560	93	0	1	2		96.09884	1.035710	10m	1	1	15	
29.39051	3.036450	1000	1	0	4		97.64909	1.023360	2	2	1	13	
31.42014	2.844780	20	0	0	6		99.11078	1.012150	19	0	3	12	
35.96312	2.495150	141	1	1	0		102.19509	0.989802	3	3	2	1	
39.39967	2.285070	183	1	1	3 2		102.91247	0.984846	9	2	3 3	2	
43.14984	2.094760	147	2	0	2		103.48954	0.980923	2	1		10	
47.10240	1.927780	63	0	2	4		104.06823	0.977045	7	1	2	14	
47.48490	1.913140	181	Q	1	8		105.80340	0.965745	7	3	2	4	
48.48909	1.875840	190	1	1	6		106.09567	0.963889	14	0	4	8	
56.55185	1.626030	32	2	1 2	1 2		107.26889	0.956572	3 2	0	2 3	16 5	
57.38722 58.05162	1.604330 1.587540	86 9	1 1	ő	10		107.99875 108.59061	0.952126 0.948579	2 1m	2 0	0	5 18	
60.65378	1.525510	48	2	1	4		108.59061	0.948579	1m	3	1	11	
60.97592	1.518220	21	2	ō	8		109.52631	0.943076	14	4	1	0	
61.34894	1.509880	23	1	ĭ	9		110.42307	0.937920	6	2	2	12	
63.03642	1.473460	19	ī	2	5		111.77091	0.930382	ĭ	ī	4	3	
64.64782	1.440570	57	3	ō	õ		114.00088	0.918449	ź	3	ż	7	
65.57697	1.422390	29	ŏ	ŏ	12		115.07936	0.912910	ī	4	ō	10	
69.16563	1.357090	10	2	1	7		117.89474	0.899131	5	2	3	8	
70.21173	1.339410	17	0	2	10		118.74229	0.895169	4	1	4	6	
72.86825	1.296990	24	1	2	8		119.17401	0.893183	5	2	1	16	
73.64687	1.285190	5	3	0	6		120.68350	0.886406	5	1	1	18	
76.25657	1.247570	10	2	2	0		127.20514	0.859945	1	5	0	2	
77.12239	1.235710	16	1	1	12		127.91402	0.857329	5	3	2	10	
78.40928	1.218620	1	2	2	3		128.45313	0.855372	1	1	2	17	
80.21432 80.92361	$1.195680 \\ 1.186980$	1 4	1 3	3 1	1 2		128.63001 130.80966	0.854736 0.847140	2 5	3 0	1 5	14 4	
81.49213	1.180130	4 19	2	1	10		131.61813	0.844434	5 1	1	5 4	9	
82.06043	1.173390	2	õ	1	10		132.75546	0.840727	1	2	2	9 15	
83.74948	1.153970	35	1	3	4		133.85052	0.837266	4	ō	1	20	
84.78225	1.142530	16	2	2	6		134.42830	0.835482	i	2	3	11	
85.85887	1.130940	1	3	ī	Š		135.68013	0.831715	3	3	3	Ō	
86.42203	1.125010	ā	ĭ	ź	11		138.77348	0.822968	ĭ	ž	ž	š	
91.46354	1.075690	1	1	3	7		141.54130	0.815795	1	2	4	ĩ	
91.88329	1.071870	1	ō	4	2		142.68132	0.813014	5	4	2	2	
93.00760	1.061840	6	2	0	14		144.57684	0.808608	1	0	4	14	
94.68799	1.047380	21	4	0	4		147.58162	0.802167	5	2	4	4	
94.97043	1.045010	23	3	1	8		148.10935	0.801103	4	5	0	8	
96.09884	1.035710	10m	1	0	16		149.55089	0.798297	5	3	3	6	

01-080-8935 Mav 15, 2020 1:31 PM (Steve Simner) Status Alternate **Quality Mark: Star Environment:** Ambient Temp: 293.0 K **Phase:** β Chemical Formula: Ca2 (Si O4) Empirical Formula: Ca2 O4 Si Weight %: Ca46.54 O37.15 Si16.31 Atomic %: Ca28.57 O57.14 Si14.29 Compound Name: Calcium Silicate Mineral Name: Larnite Alternate Name: c2S, β-Ca2 (Si O4) Entry Date: 09/01/2013 Radiation: CuKa1 (1.5406 Å) d-Spacing: Calculated Intensity: Calculated - Peak I/Ic: 0.75 I/Ic - CW ND: 0.15 Crystal System: Monoclinic **SPGR:** P21/n (14) **c:** 9.3108(5) Å **β:** 94.513(4)° Author's Unit Cell [a: 5.5051(3) Å **b:** 6.7551(3) Å Volume: 345.17 Å³ c/a: 1.691 **Z:** 4.00 MolVol: 86.29 a/b: 0.815 c/b: 1.378] Calculated Density: 3.314 g/cm³ Structural Density: 3.31 g/cm³ **SS/FOM:** F(30) = 491.8(0.0019, 32) R-factor: 0.053 Space Group: P21/n (14) Molecular Weight: 172.24 g/mol Crystal Data [a: 9.311 Å **b:** 6.755 Å **c:** 5.505 Å **a:** 90.00° **B:** 94.51° **y:** 90.00° XtlCell Vol: 345.17 Å³ c/b: 0.815] XtiCell Z: 4.00 c/a: 0.591 **a/b:** 1.378 **a:** 90.00° Reduced Cell [a: 5.505 Å **b:** 6.755 Å **c:** 9.311 Å **y:** 90.00° RedCell Vol: 345.17 Å³] β: 94.51° Atomic parameters are cross-referenced from PDF entry 04-007-8540 AC Space Group: P121/n1 (14) **a:** 90° **AC Unit Cell [** a: 5.48(2) Å **b:** 6.76(2) Å **c:** 9.28(2) Å **y:** 90°] **β:** 94.55° Space Group Symmetry Operators: Seq Operator Seq Operator Seq Operator Seq Operator -x+1/2,y+1/2,-z+1/2 x+1/2,-y+1/2,z+1/2 2 3 4 x,y,z -x,-y,-z Atomic Coordinates: Num Wyckoff IDP AET Atom Symmetry SOF 0.338 -0.002 -0.224 0.26 0.284 0.429 6-b 8-b Ca Ca Si O O O 4e 1 1.0 1.0 2 3 4 5 4e 0.421 0.434 0.308 4e 0.26 1.0 4-a 4e 4e 0.32 0.002 1.0 1#a 1 0.033 1.0 -0.2531#a 6 4e -0.36 0.366 1.0 0.483 1#a 0 4e 0.178 -0.325-0.4211.0 1#a Crystal (Symmetry Allowed): Centrosymmetric Subfiles: Cement and Hydration Product, Ceramic, Common Phase, Forensic, Inorganic, Mineral Related (Mineral, Natural), Pharmaceutical (Excipient) Mineral Classification: Olivine (group), related structures Pearson Symbol: mP28.00 Prototype Structure [Formula Order]: Ca2 Si O4 ANX: AB2X4 00-009-0351 (Alternate), 00-029-0371 (Deleted), 00-033-0302 (Primary), 00-049-1673 (Primary), 01-077-0388 (Alternate), 01-083-0460 (Alternate), 01-083-0461 (Alternate), 01-083-0462 (Alternate), 01-083-0463 (Alternate), 01-083-0464 (Alternate), 01-083-0465 (Alternate), 01-084-7116 (Alternate), 04-007-2687 (Alternate), 04-007-8540 (Primary), 04-007-9746 (Alternate), 04-008-1786 (Alternate), 04-008-8073 (Alternate), 04-013-6288 (Alternate), 04-013-6299 (Alternate), 04-013-6291 (Alternate), 04-013-6292 (Alternate), 04-013-6293 (Alternate), 04-013-6294 (Alternate), 04-0 Cross-Ref PDF #'s: References: DOI Reference Type Calculated from ICSD using POWD-12++. Primary Reference Crystal Structure Crystal Structure Source: LPF. Yamnova, N.A., Zubkova, N.V., Eremin, N.N., Zadov, A.E., Gazeev, V.M. "Crystal structure of larnite - Ca2 Si O4 and specific features of polymorphic transitions in dicalcium orthosilicate". Kristallografiya 2011, 56, 235. Structure Yamnova, N.A., Zubkova, N.V., Eremin, N.N., Zadov, A.E., Gazeev, V.M. Crystallogr. Rep. 2011, 56, 210. Structure ANX: AB2X4. Analysis: Ca2 O4 Si1. Formula from original source: Ca2 (Si O4). ICSD Collection Code: 421708. Calculated Pattern Original Remarks: For description of atomic environment (AE) see isotypic

421708. Calculated Pattern Original Remarks: For description of atomic environment (AE) see isotypic **Database Comments:** compound in CCode 24640. Sample Source or Locality: near Gazeev, Lakargi Mountain, Kabardino-Balkaria, Russia. Temperature of Data Collection: 293 K. Wyckoff Sequence: e7 (P121/N1). Unit Cell Data Source: Single Crystal.

d-Spacing	d-Spacings (198) - Ca2 (Si O4) - 01-080-8935 (Stick, Fixed Slit Intensity) - Cu Ka1 1.54056 Å												
<u>2θ (°)</u>	d (Å)	I	h	k		*	<u>2θ (°)</u>	d (Å)	I	h	k		*
16.21495 18.10428	5.461800 4.895850	1 36	0 -1	$1 \\ 0$	1 1		20.83721 22.40884	4.259490 3.964180	8 2	1 -1	1 1	0 1	
19.10763	4.640970	89	0	Ō	2		23.23421	3.825190	54	0	1	2	
© 2020	© 2020 International Centre for Diffraction Data. All rights reserved.												

Page 1 / 3

01-080-8935		-		31 PM (Steve Simner)
20 (°) d (Å) I 23.48637 3.784690 45 26.36562 3.377550 64 27.52215 3.238190 99 28.09050 3.173950 61 29.28843 3.046800 133 31.06541 2.876450 263 31.78491 2.812960 159 32.04464 2.790750 1000 32.17613 2.780150 837 32.60544 2.744020 862 32.76648 2.73090 92 34.34666 2.608790 629 34.75177 2.57300 9 35.90865 2.498810 9 36.01955 2.491370 5 36.68129 2.447930 146 36.90489 2.433610 73 37.31741 2.40750 138 37.42476 2.400990 173 38.77418 2.320480 27 39.10743 2.301470 11 34.412067	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	29 (°) d (Å) I 59.75674 1.550490 47 60.21468 1.535580 7 60.56034 1.527640 69 60.76164 1.523060 87m 60.76164 1.523060 87m 61.17838 1.513680 42 61.43596 1.507950 10 62.45837 1.485700 55m 62.61593 1.482340 80m 62.61593 1.48220 23 65.06390 1.432360 7 65.33557 1.427060 46m 65.33557 1.427060 42m 65.41395 1.406480 32m 66.41395 1.406480 32m 67.30113	hkI* -2 33006-142134224134223313043-142035-314-323-3152416-331-22524113-2413-243331-2234-13-2413-2431-2234-35-2031-2234-13-24-13-24-15-17-24-17-24-17-24-17-24-13-10-23-22-23-3-3-41-1-7-2-7-3-7<	31 PM (Steve Simner)
57.95645 1.589920 33 58.07446 1.586970 71m 58.07446 1.586970 71m 58.19216 1.584040 50 58.61159 1.573700 139 58.89505 1.566800 15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	76.41047 1.245440 26m 76.41047 1.245440 26m 76.74302 1.240870 27 76.90646 1.238640 20m 77.28689 1.233490 1m 77.28689 1.233490 1m 78.00205 1.223960 8m 78.00205 1.223960 8m	-3 3 4 3 4 0 0 5 3 -3 4 1 0 2 7 3 1 5 -1 2 7 -4 0 4	
59.42190 1.554160 60m © 2020 International C		78.54916 1.216800 37m	2 2 6	Page 2 / 3

01-080)-8935											May 1	15, 2020 1:31 PM (Steve Simner)
<u>2θ (°)</u>	d (Å)	I	h	k	1	*	<u>20 (°)</u>	d (Å)	I	h	k	*	_
78.54916	1.216800	37m	-1	5	3		79.88408	1.199790	7m	4	1	3	
78.68419	1.215050	16	-3	4	2		80.14496	1.196540	25	2	5	1	
78.88343	1.212480	7m	2	5	0		81.02504	1.185750	8m	1	2	7	
78.88343	1.212480	7m	-2	1	7		81.02504	1.185750	8m	-2	3	6	
79.07443	1.210030	17	-3	1	6		81.26697	1.182830	14m	3	4	2	
79.30342	1.207110	9m	-2	5	1		81.26697	1.182830	14m	-2	5	2	
79.30342	1.207110	9m	-4	2	3		81.54823	1.179460	49	3	3	4	
79.52124	1.204350	7m	4	2	2		81.83339	1.176070	6	3	2	5	
79.52124	1.204350	7m	-4	1	4		82.04768	1.173540	26	-3	4	3	
79.88408	1.199790	7m	1	5	3		82.56017	1.167550	21	0	5	4	

01-089-0599 Mav 15, 2020 1:22 PM (Steve Simner) Status Alternate **Quality Mark: Star Environment:** Ambient Temp: 298.0 K (Assigned by ICDD editor) Phase: a Chemical Formula: Fe2 O3 Empirical Formula: Fe2 O3 Weight %: Fe69.94 O30.06 Atomic %: Fe40.00 O60.00 Compound Name: Iron Oxide Mineral Name: Hematite, syn Alternate Name: iron(III) oxide Modification Date: 09/01/2011 Modifications: Reflections Entry Date: 09/01/2001 Radiation: CuKa1 (1.5406 Å) d-Spacing: Calculated Intensity: Calculated - Peak I/Ic: 3.09 I/Ic - CW ND: 0.79 Crystal System: Rhombohedral **SPGR:** R-3c (167) **Volume:** 301.15 Å³ **Z:** 6.00 Author's Unit Cell [a: 5.032(1) Å **c:** 13.733(4) Å MolVol: 50.19 c/a: 2.729] Calculated Density: 5.283 g/cm³ Structural Density: 5.28 g/cm³ SS/FOM: F(30) = 999.9(0.0002, 31) R-factor: 0.045 Space Group: R-3c (167) Molecular Weight: 159.69 g/mol Crystal Data [a: 5.032 Å **b:** 5.032 Å **a:** 90.00° **B:** 90.00° **y:** 120.00° XtlCell Vol: 301.15 Å³ **c:** 13.733 Å XtlCell Z: 6.00 c/a: 2.729 **a/b:** 1.000 c/b: 2.729] Reduced Cell [a: 5.032 Å **b:** 5.032 Å **c:** 5.422 Å a: 62.35° β: 62.35° **y:** 60.00° RedCell Vol: 100.38 Å³] Atomic parameters are cross-referenced from PDF entry 04-003-2900 AC Space Group: R-3cH (167) **a:** 90° AC Unit Cell [a: 5.0342(3) Å **b:** 5.0342(3) Å **c:** 13.7483(4) Å **β:** 90° **y:** 120°] Space Group Symmetry Operators: Seq Operator Operator Seq Operator Seq <u>Seq</u> **Operator** -y,-x,z+1/2 -x,-x+y,-z+1/2 10 4 y,-x+y,-z 7 x,y,z -x,-y,-z 5 6 8 9 y,x,-z+1/2 11 12 x+y,-x,z -x+y,y,z+1 x,x-y,z+1/2 3 -y,x-y,z x-y,x,-z x-y,-y,-z+1/2 ADP Type: B **Atomic Coordinates:** Wyckoff Atom Num Symmetry SOF Biso AET х 3. .2 1 2 12c 0.0 0.0 0.3553 1.0 0.61876 Fe 6-a 0.6942 0.0 1.0 0 18e 0.25 0.68187 4-a **Anisotropic Displacement Parameters:** <u>Atom</u> Num Bani11 Bani22 Bani12 Bani13 Bani23 Bani33 0.629 0.629 0.599 0.315 0.34 0.0 0.044 0.0 0.088 0.693 0.681 Crystal (Symmetry Allowed): Centrosymmetric

Subfiles: Common Phase, Forensic, Inorganic, Metal & Alloy, Mineral Related (Mineral, Synthetic), Pharmaceutical (Excipient), Pigment/Dye

Mineral Classification:Corundum (supergroup), corundum (group)Pearson Symbol:hR10.00Prototype Structure [Alpha Order]:Al2 O3LPF Prototype Structure [Formula Order]:Al2 O3,hR30,167LPF Prototype Structure [Alpha Order]:Al2 O3,hR30,167ANX:A2X3

Cross-Ref PDF #'s	00-001-1053 (Alternate), 00-002-0915 (Deleted), 00-002-0919 (Deleted), 00-003-0800 (Deleted), 00-013-0534 (Deleted), 00-033-0664 (Primary), 01-071-5088 (Primary), 01-072-6225 (Alternate), 01-072-6226 (Alternate), 01-073-3825 (Alternate), 01-076-5088 (Primary), 01-072-6225 (Alternate), 01-079-1741 (Alternate), 01-080-2377 (Alternate), 01-080-5405 (Alternate), 01-080-5406 (Alternate), 01-080-5407 (Alternate), 01-080-5408 (Alternate), 01-080-5409 (Alternate), 01-080-5401 (Alternate), 01-080-5407 (Alternate), 01-080-5413 (Alternate), 01-080-5414 (Alternate), 01-080-7077 (Alternate), 01-080-5407 (Alternate), 01-080-5499 (Alternate), 01-087-1164 (Alternate), 01-080-7077 (Alternate), 01-084-9870 (Alternate), 01-089-0596 (Alternate), 01-087-1164 (Alternate), 01-089-0598 (Alternate), 01-089-8103 (Alternate), 01-089-5104 (Alternate), 01-087-1164 (Alternate), 01-089-0598 (Alternate), 01-089-8103 (Alternate), 01-089-8104 (Alternate), 04-002-2983 (Alternate), 04-002-4944 (Alternate), 04-002-5211 (Alternate), 04-002-7501 (Alternate), 04-003-1445 (Alternate), 04-003-2900 (Primary), 04-003-5818 (Alternate), 04-004-8410 (Alternate), 04-003-1445 (Alternate), 04-005-4630 (Alternate), 04-006-8037 (Alternate), 04-006-8687 (Alternate), 04-006-8177 (Alternate), 04-006-2616 (Alternate), 04-006-5021 (Alternate), 04-007-6009 (Alternate), 04-007-9266 (Alternate), 04-008-7622 (Alternate), 04-008-7623 (Alternate), 04-008-7624 (Alternate), 04-007-9266 (Alternate), 04-008-7622 (Alternate), 04-008-7627 (Alternate), 04-008-8479 (Alternate), 04-010-3230 (Alternate), 04-015-6944 (Alternate), 04-015-6945 (Alternate), 04-013-4794 (Alternate), 04-015-6943 (Alternate), 04-015-9569 (Alternate), 04-015-9570 (Alternate), 04-015-9571 (Alternate), 04-015-9572 (Alternate), 04-015-9573 (Alternate), 04-015-9570 (Alternate), 04-015-9575 (Alternate), 04-015-9572 (Alternate), 04-015-9685 (Alternate), 04-015-9578 (Alternate), 04-015-9579 (Alternate), 04-015-9577 (Alternate), 04-015-9685 (Alternate), 04-015-9578 (Alternate), 04-015-9579 (Alternate), 04-015-9580
-------------------	--

01	-08	9-0	599
----	-----	-----	-----

01-089-0599 References:		Mav 15, 2020 1:22 PM (Steve Simner)
Туре	DOI	Reference
Primary Reference		Calculated from ICSD using POWD-12++.
Additional Reference		Sadykov, V.A., Isupova, L.A., Tsybulya, S.V., Cherepanova, S.V., Litvak, G.S., Burgina, E.B., Kustova, G.N., Kolomiichuk, V.N., Ivanov, V.P., Paukshtis, E.A., Golovin, A.V., Avvakumov, E.G. Golden Book of Phase Transitions, Wroclaw 2002, 1, 1.
Crystal Structure		Crystal Structure Source: LPF.
Structure	10.1006/jssc.1996.0168	Sadykov, V.A., Isupova, L.A., Tsybulya, S.V., Cherepanova, S.V., Litvak, G.S., Burgina, E.B., Kustova, G.N., Kolomiichuk, V.N., Ivanov, V.P., Paukshtis, E.A., Golovin, A.V., Avvakumov, E.G. "Effect of mechanical activation on the real structure and reactivity of iron(III) oxide with corundum-type structure". J. Solid State Chem. 1996, 123, 191.

Database Comments: ANX: A2X3. Analysis: Fe2 O3. Formula from original source: Fe2 O3. ICSD Collection Code: 82137. Calculated Pattern Original Remarks: Sample calcinated at 1073 K. Stable above 773 K (2nd ref., Tomaszewski), below Ia3-, m.p. 1523 K. Wyckoff Sequence: e c(R3-CH). Unit Cell Data Source: Powder Diffraction.

04-007-2718				Mav 15, 2020 1:22 PM (Steve Simner)					
Status Alternate Q Chemical Formula: F Compound Name: Irr Entry Date: 09/01/20	on Oxide	pirical Fo	rmula: Fo ame: Mag	jnetite, syn	ight %: Fe7	2.36 O27.64	Atomic	n temperature phase. %: Fe42.86 O57.14 xide	
Radiation: CuKa1 (1.	5406 Å) d ·	Spacing:	Calculate	d Intensi	ty: Calculate	d - Peak I/Ic	: 4.91	I/Ic - CW ND: 1.4	
Crystal System: Cubi Author's Unit Cell [a Structural Density: 5	a: 8.375(2) Å		ie: 587.43	3 Å3 Z: 8.0 999.9(0.0001,		: 73.43] Calc ctor: 0.016	ulated	Density: 5.236 g/cm ³	
Space Group: Fd-3m Crystal Data [a: 8.3 XtlCell Z: 8.00 a/b Reduced Cell [a: 5.9	75Å b:8. p:1.000 c,	375Å c /b: 1.000	: 8.375 Å		•	•		ll Vol: 587.43 ų Cell Vol: 146.86 ų]	
AC Space Group: Fd- AC Unit Cell [a: 8.37 Space Group Symmetry	75(2) Å b: • Operators:	8.375(2) Å			a: 90° β: 1		For	Oronator	
Seq Operator 1 x,y,z 2 -x,-y,-z 3 x,-y+1/4,-z+1/4 4 -x,y+3/4,z+3/4	11 z,-x+ 12 -z,x+ 13 -z+1	rator -1/4,-y+1/4 -3/4,y+3/4 /4,x,-y+1/4 4,-x,y+3/4		Operator -y+1/4,z,-x+1 y+3/4,-z,x+3/ -y+1/4,-z+1/4 y+3/4,z+3/4,-	/4 31 4 32 4,x 33	Operator -x+1/4,-z+1/4,y x+3/4,z+3/4,-y y,x,z -y,-x,-z	Seq 41 42 43 44	Operator z,y,x -z,-y,-x z,-y+1/4,-x+1/4 -z,y+3/4,x+3/4	
5 -x+1/4,y,-z+1/4 6 x+3/4,-y,z+3/4 7 -x+1/4,-y+1/4,z 8 x+3/4,y+3/4,-z 9 z,x,y 10 -z,-x,-y	15 -z+1, 16 z+3/ 17 y,z,x 18 -y,-z, 19 y,-z+		25 26 27 28 29 30	x,z,y -x,-z,-y x,-z+1/4,-y+1 -x,z+3/4,y+3/ -x+1/4,z,-y+1 x+3/4,-z,y+3/	35 36 /4 37 4 38 /4 39	y, x, 1/4,-z+1/4 -y,x+3/4,z+3/4 -y+1/4,x,-z+1/4 y+3/4,-x,z+3/4 -y+1/4,-x+1/4,z y+3/4,x+3/4,-z	45 46 47 48	z+1/4,y,x+1/4 z+3/4,-y,x+3/4 -z+1/4,-y+1/4,x z+3/4,y+3/4,-x	
5 -x+1/4,y,-z+1/4 6 x+3/4,-y,z+3/4 7 -x+1/4,-y+1/4,z 8 x+3/4,y+3/4,-z 9 z,x,y	15 -z+1, 16 z+3/ 17 y,z,x 18 -y,-z, 19 y,-z+ 20 -y,z+	4,x+3/4,-y ,-x -1/4,-x+1/4 -3/4,x+3/4	26 27 28 29 30	x,z,y -x,-z,-y x,-z+1/4,-y+1 -x,z+3/4,y+3/ -x+1/4,z,-y+1	35 36 /4 37 4 38 /4 39	y,-x+1/4,-z+1/4 -y,x+3/4,z+3/4 -y+1/4,x,z+1/4 +3/4,-x,z+3/4 -y+1/4,-x+1/4,z y+3/4,x+3/4,-z	45 46 47	-z+1/4,y,-x+1/4 z+3/4,-y,x+3/4 -z+1/4,-y+1/4,x	

Subfiles: Battery Material, Common Phase, Forensic, Inorganic, Metal & Alloy, Micro & Mesoporous, Mineral Related (Mineral, Synthetic), Pharmaceutical (Excipient), Pigment/Dye

Mineral Classification: Spinel (supergroup), 1C-oxide (group)Pearson Symbol: cF56.00Prototype Structure [Alpha Order]: Fe3 04LPF Prototype Structure [Formula Order]: Fe3 04,cF56,227LPF Prototype Structure [Alpha Order]: Fe3 04,cF56,227ANX: AB2X4

04-007-2718	May 15, 2020 1:22 PM (Steve Simner)
0100/2/20	00-001-1111 (Deleted), 00-002-1035 (Deleted), 00-003-0862 (Deleted), 00-007-0322 (Deleted), 00-011-0614
	(Deleted), 00-019-0629 (Primary), 00-026-1136 (Primary), 00-065-0731 (Primary), 01-071-4918 (Alternate),
	01-072-2303 (Alternate), 01-074-1909 (Alternate), 01-074-1910 (Alternate), 01-075-0449 (Alternate),
	01-075-1610 (Alternate), 01-075-9710 (Alternate), 01-076-1849 (Alternate), 01-076-5948 (Alternate),
	01-078-6086 (Primary), 01-080-6402 (Alternate), 01-080-6403 (Alternate), 01-080-6404 (Alternate), 01-080-6408 (Alternate)
	01-080-6405 (Alternate), 01-080-6406 (Alternate), 01-080-6407 (Alternate), 01-080-6408 (Alternate), 01-080-6409 (Alternate), 01-080-6410 (Alternate), 01-080-6409 (Alternate), 01-082-3507 (Alternate),
	01-084-2782 (Alternate), 01-084-6015 (Alternate), 01-084-6684 (Alternate), 01-084-6685 (Alternate),
	01-084-6686 (Alternate), 01-084-6687 (Alternate), 01-084-6688 (Alternate), 01-084-6689 (Alternate),
	01-084-6690 (Alternate), 01-084-6691 (Alternate), 01-084-6692 (Alternate), 01-084-6693 (Alternate),
	01-084-6694 (Alternate), 01-084-6695 (Alternate), 01-084-6696 (Alternate), 01-084-6697 (Primary),
	01-084-6698 (Alternate), 01-084-6699 (Alternate), 01-084-6700 (Alternate), 01-087-2334 (Alternate), 01-087-000 (Alternate), 01
	01-088-0866 (Alternate), 01-089-3854 (Alternate), 01-089-4319 (Alternate), 03-065-3107 (Alternate), 04-001 7822 (Alternate), 04-001 782
	04-001-7822 (Alternate), 04-001-7909 (Alternate), 04-001-9000 (Alternate), 04-001-9326 (Alternate), 04-002-0264 (Alternate), 04-002-0618 (Alternate), 04-002-0643 (Alternate), 04-002-1855 (Alternate),
	04-002-2487 (Alternate), 04-002-2707 (Alternate), 04-002-2709 (Alternate), 04-002-2981 (Alternate),
	04-002-3194 (Alternate), 04-002-3668 (Alternate), 04-002-5310 (Alternate), 04-002-548 (Alternate),
	04-002-5632 (Alternate), 04-002-5683 (Alternate), 04-002-5903 (Alternate), 04-002-6866 (Alternate),
	04-002-6955 (Alternate), 04-002-8141 (Alternate), 04-002-8629 (Alternate), 04-002-9019 (Alternate),
	04-002-9635 (Alternate), 04-003-1446 (Alternate), 04-004-2838 (Alternate), 04-005-4307 (Alternate),
Cross-Ref PDF #'s:	04-005-4319 (Primary), 04-005-4404 (Alternate), 04-005-4551 (Alternate), 04-005-5733 (Alternate),
	04-005-6268 (Alternate), 04-005-9786 (Alternate), 04-005-9788 (Alternate), 04-005-9815 (Alternate), 04-006-0225 (Alternate), 04-006-0424 (Alternate), 04-006-0225 (Alternate), 04-006-1668 (Alternate),
	04-006-2406 (Alternate), 04-006-2467 (Alternate), 04-006-2752 (Alternate), 04-006-4615 (Alternate),
	04-006-6497 (Alternate), 04-006-6550 (Alternate), 04-006-6692 (Alternate), 04-006-8076 (Alternate),
	04-007-1427 (Alternate), 04-007-6010 (Alternate), 04-007-8567 (Alternate), 04-007-8976 (Alternate),
	04-007-9093 (Alternate), 04-008-0315 (Alternate), 04-008-0777 (Alternate), 04-008-4423 (Alternate),
	04-008-4511 (Alternate), 04-008-4512 (Alternate), 04-008-8145 (Alternate), 04-008-8146 (Alternate),
	04-008-8147 (Alternate), 04-008-8148 (Alternate), 04-009-4225 (Alternate), 04-009-8417 (Alternate),
	04-009-8418 (Alternate), 04-009-8419 (Alternate), 04-009-8420 (Alternate), 04-009-8421 (Alternate), 04-009-8422 (Alternate), 04-009-842
	04-009-8422 (Alternate), 04-009-8423 (Alternate), 04-009-8424 (Alternate), 04-009-8425 (Alternate), 04-009-8426 (Alternate), 04-009-8427 (Alternate), 04-009-8428 (Alternate), 04-009-8429 (Alternate),
	04-009-8430 (Alternate), 04-009-8431 (Alternate), 04-009-8432 (Alternate), 04-009-8433 (Alternate),
	04-009-8434 (Alternate), 04-009-8435 (Alternate), 04-009-8436 (Alternate), 04-009-8437 (Alternate),
	04-009-8438 (Alternate), 04-009-8439 (Alternate), 04-009-8440 (Alternate), 04-009-8441 (Alternate),
	04-009-8442 (Alternate), 04-009-8443 (Alternate), 04-011-5952 (Alternate), 04-013-7099 (Alternate),
	04-013-7100 (Alternate), 04-013-9806 (Alternate), 04-013-9807 (Alternate), 04-013-9808 (Alternate),
	04-013-9809 (Alternate), 04-013-9810 (Alternate), 04-013-9811 (Alternate), 04-014-1396 (Alternate), 04-014-1396 (Alternate), 04-015-2100 (Alternat
	04-014-9664 (Alternate), 04-015-3100 (Alternate), 04-015-3101 (Alternate), 04-015-3102 (Alternate), 04-015-8202 (Alternat
	04-015-8200 (Alternate), 04-015-8203 (Alternate), 04-015-8204 (Alternate), 04-015-8207 (Alternate), 04-015-8209 (Alternate), 04-015-8211 (Alternate), 04-015-8213 (Alternate), 04-015-8214 (Alternate),
	04-013-0219 (Alternate), 04-013-0211 (Alternate), 04-013-0213 (Alternate), 04-013-0214 (Alternate), 04-020-0779 (Alternate), 04-021-0451 (Alternate), 04-022-0447 (Alternate)

Former PDF Numbers: 01-088-0315

References:

Туре	DOI	Reference
Primary Reference		Calculated from LPF using POWD-12++.
Structure	10.1107/S0108768197007842	Sasaki, S. "Radial Distribution of Electron Density in Magnetite, \Fe3 O4\." Acta Crystallogr., Sect. B: Struct. Sci. 1997, 53, 762.

Database Comments: ANX: AB2X4. LPF Collection Code: 1252695. Polymorphism: Room temperature phase. Sample Preparation: STARTING MATERIALS:Fe3O4. Compound Preparation: crystals grown at 1300 K. CRUCIBLE: sealed evacuated silica tube. Temperature of Data Collection: 296 K. Unit Cell Data Source: Single Crystal.

d-Spacings	d-Spacings (34) - Fe3 O4 - 04-007-2718 (Stick, Fixed Slit Intensity) - Cu Ka1 1.54056 Å												
<u>20 (°)</u>	d (Å)	I	h	k	1	*	<u>2θ (°)</u>	d (Å)	I	h	k	1	*
26(7) 18.33290 30.15685 35.52139 37.15740 43.17170 47.26935 53.56146 57.09790 62.70257 65.92981 67.92978 65.92981 67.13964 74.18592 75.19117 79.16836	4.835310 2.961010 2.525160 2.093750 1.921360 1.709540 1.611770 1.480500 1.395830 1.324200 1.22580 1.208830	92 290 1000 78 205 5 83 271 348 8 1 26 63 27 20	123243454546564	1 2 1 2 0 3 2 1 4 3 4 2 3 2 4	1 0 1 2 0 1 2 1 0 1 2 0 3 2 4		89.89604 94.74740 97.67342 98.65255 102.59867 105.59729 106.60634 110.69959 113.84231 114.90667 119.26262 122.65416 128.62053 132.44761 139.42086	1.090330 1.046880 1.023170 1.015620 0.987003 0.967062 0.960678 0.913787 0.913787 0.892778 0.872739 0.872739 0.874770 0.841719 0.821236	86 32 1 11 44 9 19 2 1 5 32 65 1 13	7 876876898698910	303425641463432	1 0 3 4 2 1 2 0 1 2 4 1 4 3 0	<u>.</u>
82.11656 86.98604	1.172730 1.119160	4 24	7 6	1 4	1 2		144.12143 145.81003	0.809642 0.805885	39 9	9 10	5 2	1 2	

04-008-6822	Jun 1, 2020 6:53 PM (Steve Simner)
Chemical Formula: Ca2 Fe Al O5 Empirical For Atomic %: Al11.11 Ca22.22 Fe11.11 O55.56 Co	ronment: AmbientTemp: 298.0 K (Assigned by ICDD editor)rmula: Al Ca2 Fe O5Weight %: Al11.10 Ca32.99 Fe22.98 O32.92mpound Name: Calcium Iron Aluminum Oxidernate Name: iron(III) aluminium oxide bis(calcium oxide)/01/2011Modifications: Reflections
Radiation: CuKo1 (1.5406 Å) d-Spacing: Calcul	ated Intensity: Calculated - Peak I/Ic: 1.87 I/Ic - CW ND: 0.3
Crystal System: Orthorhombic SPGR: Pcmn (62 Author's Unit Cell [a: 5.58 Å b: 14.5 Å c: 5 c/a: 0.957 a/b: 0.385 c/b: 0.368] Calcula SS/FOM: F(30) = 457.2(0.0019, 35) R-factor: 0	.34 Å Volume: 432.06 Å ³ Z: 4.00 MolVol: 108.02 ated Density: 3.735 g/cm ³ Structural Density: 3.73 g/cm ³
Space Group: Pcmn (62) Molecular Weight: 24 Crystal Data [a: 5.580 Å b: 14.500 Å c: 5.3 XtlCell Z: 4.00 c/a: 0.957 a/b: 0.385 c/l Reduced Cell [a: 5.340 Å b: 5.580 Å c: 14.50	40 Å α: 90.00° β: 90.00° γ: 90.00° XtlCell Vol: 432.06 Å ³ b: 0.368]
AC Space Group: Pcmn (62) AC Unit Cell [a: 5.58 Å b: 14.5 Å c: 5.34 Å Space Group Symmetry Operators:	α: 90° β: 90° γ: 90°]
Seq Operator Seq Operator 1 x,y,z 3 -x+1/2,-y+1/2,z+1/	Seq Operator Seq Operator /2 5 -x,y+1/2,-z 7 x+1/2,-y,-z+1/2
2 -x,-y,-z 4 x+1/2,y+1/2,-z+1/2 Atomic Coordinates:	2 6 x,-y+1/2,z 8 -x+1/2,y,z+1/2
Atom Num Wyckoff Symmetry x y Fe 1 4a -1 0.0 0.0 Fe 2 4c .m. -0.072 0.25 Al 3 4a -1 0.0 0.0 Al 4 4c .m. -0.072 0.25 Ca 5 8d 1 0.028 0.112 O 6 8d 1 0.25 -0.015 O 7 8d 1 0.055 0.133 O 8 4c .m. -0.137 0.25 Crystal (Symmetry Allowed): Centrosymmetric Centrosymmetric	z SOF IDP AET 0.0 0.5 6-a -0.055 0.5 4-a 0.0 0.5 6-a -0.055 0.5 4-a 0.05 0.5 4-a 0.48 1.0 7-g 0.25 1.0 2#a 0.0 1.0 1#a 0.607 1.0 4-a
Subfiles: Forensic, Inorganic, Mineral Related (Miner Prototype Structure [Formula Order]: Ca2 Fe2 C LPF Prototype Structure [Formula Order]: Ca2 Fe LPF Prototype Structure [Alpha Order]: Ca2 Fe2 Cross-Ref PDF #'s: 00-011-0124 (Deleted), 04-002	D5 Prototype Structure [Alpha Order]: Ca2 Fe2 O5 Fe2 O5,oP36,62 O5,oP36,62 ANX: A2B2X5
References:	
Type DOI Refere Primary Reference Calcula	ted from LPF using POWD-12++.
Structure 10 1107/S0365110X59000433 Bertaul	E.F., Blum P., Sagnieres A. "Structure du Ferrite Bicalcique et de la Brownmillerite". Acta logr. 1959, 12, 149.
Database Comments: dimension. 10% <r factor<1<="" td=""><td>Code: 1900467. Minor Warning: No e.s.d reported/abstracted on the cell 5% (for powder). LPF Editor Comment: unit for interplanar spacing d omitted, ata Source: Powder Diffraction.</td></r>	Code: 1900467. Minor Warning: No e.s.d reported/abstracted on the cell 5% (for powder). LPF Editor Comment: unit for interplanar spacing d omitted, ata Source: Powder Diffraction.
d-Spacings (198) - Ca2 Fe Al O5 - 04-008-6822 (Stick, 20 (°) d (Å) I h k l * 20 (°	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
© 2020 International Centre for Diffractio	n Data. All rights reserved. Page 1 / 3

04-008-	6822										Jun 1, 2020 6:53 PM (Steve Simner)
20 (°)	d (Å)	I	<u>h</u>	<u>k</u>	<u> *</u>	<u>20 (°)</u> 76.60510	d (Å)	<u>I</u>	<u>h</u>	k	
41.87231 41.99204	2.155670	78 77	1	3	2	76.60510	1.242760 1.242760	2m 2m	13	10 3	2 3
44.18537 45.16044	2.048040 2.006060	121 1	1 1	6 4	1 2	76.92998 77.07068	1.238320 1.236410	3 11m	1 2	8 9	3 2
46.17640 47.07081	1.964260 1.929000	1 459	0 2	5 0	2 2	77.07068 77.40221	1.236410 1.231940	11m 1	4 4	0 1	2 2
47.51073 48.33007	1.912160 1.881640	27 15	2	1 5	2 1	77.64451 78.02404	1.228700 1.223670	4 7	3 4	7 5	2 1
48.81292	1.864150	84	2	2	2	78.39394	1.218820	5m	3	9	0
49.13108 49.88178	1.852820 1.826680	8 17m	1 1	5 7	2 1	78.39394 78.66950	1.218820 1.215240	5m 7	4 2	9 2 7	2 3
49.88178 50.29906	1.826680 1.812500	17m 225	2 0	6 8	0 0	78.92155 78.92155	1.211990 1.211990	29m 29m	0 3	5 4	4 3
50.92351 50.92351	1.791730 1.791730	23m 23m	0	6 3	2 2	79.22091 79.22091	1.208160 1.208160	7m 7m	0 4	12 6	0 0
52.42960	1.743750	4	3	1	1	79.52995	1.204240	20	2	0	4
52.68490 52.93256	1.735900 1.728360	95 10	3 2	3 6	0 1	79.85850 80.84301	1.200110 1.187960	9 1m	22	1 2	4 4
53.64381 53.64381	1.707110 1.707110	2m 2m	1 3	6 2	2 1	80.84301 81.08619	$1.187960 \\ 1.185010$	1m 1	3 1	9 5	1 4
53.78675 54.03021	1.702910 1.695810	1 2	2 1	4 0	2 3	81.33770 81.63883	$1.181980 \\ 1.178380$	1 1	0 4	11 6	2 1
54.42878 55.61284	1.684330 1.651240	- 6 1m	1 1	1 2	3 3	81.87310 82.33084	1.175600 1.170220	1 9	3 4	5 4	3 2
55.61284	1.651240	1m	3	3	1	82.51969	1.168020	6m	1	9	3
56.00960 56.15263	1.640480 1.636640	11 8	1 0	8 7	1 2	82.51969 83.29915	$1.168020 \\ 1.159060$	6m 19	3 2	8 10	2 2
57.31694 57.55034	1.606130 1.600170	3 53	2 1	5 3	2 3	83.54088 83.54088	1.156320 1.156320	13m 13m	1 2	11 8	2 3
58.03640 58.32655	1.587920 1.580710	21 144	2 3	7 4	1 1	83.82701 84.75479	$1.153100 \\ 1.142830$	25 9m	1 1	12 6	1 4
58.74351 58.94299	1.570480	5 28	1 3	7 5	2 0	84.75479 85.45298	1.142830 1.135270	9m 15	2 3	4 6	4 3
59.68737	1.565640 1.547880	9	1	9	0	85.86924	1.130830	17	4	7	1
60.19478 60.90003	1.536040 1.519930	123 77	1 2	4 8	3 0	86.69767 87.07844	$1.122140 \\ 1.118210$	7 3	0 3	7 10	4 1
61.45086 61.81500	1.507620 1.499610	4 100m	2 0	6 8	2 2	87.61789 87.61789	1.112710 1.112710	2m 2m	2 5	5 1	4 0
61.81500 62.13561	1.499610 1.492640	100m 10m	2	0 1	2 3 3	88.08808 88.08808	1.107980 1.107980	2m 2m	2 3	12 9	0 2
62.13561	1.492640	10m	2 3 1	29	2 1	88.33899	1.105480	10	4	8	0 3
62.41211 63.22781	1.486690 1.469460	3 13	2	9 2 5	3	88.68494 88.88260	1.102060 1.100120	6 3m	1 1	10 7	4
63.49638 63.91293	1.463890 1.455350	22 43	1 3	3	3 2	88.88260 89.10183	$1.100120 \\ 1.097980$	3m 3m	4 2	6 9	2 3
64.17687 64.17687	1.450000 1.450000	6m 6m	0 1	10 8	0 2 3	89.10183 89.42479	1.097980 1.094850	3m 3	4 4	0 1	3 3
65.02463 65.65751	1.433130 1.420840	1 27	2 3	3 6	3 1	89.53894 89.66177	1.093750 1.092570	4 4m	1 3	13 7	0 3
66.13788 66.40755	1.411680 1.406600	10 6	2 3	7 4	22	89.66177 90.00320	1.092570 1.089310	4m 1	5 5	0 1	1 1
67.03230	1.395000	21	4	0	0	90.20572	1.087390	7m	2	11	2
67.40777 67.40777	1.388140 1.388140	25m 25m	1 2	6 4	3	90.20572 90.39551	1.087390 1.085600	7m 3m	5 2	3 12	0
67.89051 68.43023	1.379440 1.369870	1 29	0 4	9 2	2 0	90.39551 90.82948	$1.085600 \\ 1.081540$	3m 4	4 3	2 1	3 4
69.15341 69.54745	1.357300 1.350570	20 35m	1 3	10 5	1 2	90.97272 90.97272	1.080210 1.080210	6m 6m	1 5	12 2	2 1
69.54745 69.94282	1.350570 1.343900	35m 18	4 4	0 1	1 1	91.54998 91.54998	1.074900 1.074900	24m 24m	0 3	8 11	4 0
70.22918	1.339120	3m	1	9 7	2	91.80052	1.072620	4	3	2	4
70.22918 70.47805	1.339120	3m 35	3 0	0	1 4	92.59129 93.02694	1.065520 1.061670	1	5 4	3 7	1 2
70.82064 70.97236	1.329380 1.326910 1.320900	11 3	0 4	1 2	4 1	93.41923 93.73662	1.058240 1.055490 1.054310	5 1	3 1	3 8	4 4
71.34450 71.84463	1.320900 1.312930	124 16m	2 0	8 2	2 4	93.87361 94.23581	1.054310 1.051210	1 2m	3 3	11 10	1 2
71.84463 72.54826	1.312930 1.312930 1.301920	16m 1	1 4	2 7 4	3 0	94.23581 94.23581 94.85936	1.051210 1.045940	2m 10m	4 1	4 1	
72.67446	1.299970 1.293180	1	4	3	1	94.85936 95.48451	1.045940	10m	5	4	1
73.11767 73.30085	1.290400	2 1	1 3	1 6	4 2	95.48451	1.040740 1.040740	15m 15m	1 2	11 7	3 4
73.55154 73.55154	1.286620	6m 6m	2 3	10 0	0 3	95.68984 96.09884 96.23324	1.039050 1.035710	6 2	3 0	4 14	4 0
73.80211	1.286620 1.282870 1.280970	1 2	1 3	11 1	0 3	96.23324 96.90968	1.034620 1.029190	1 1m	4 0	9 13	1
74.12831 74.34572	1.280970 1.278030 1.274830	1 10m	1 0	2 10	4 2	96.90968 96.90968 97.17443	1.029190 1.029190 1.027090	1m 4m	5 4	05	2 2 3 2 5 2
74.34572	1.274830	10m	2	6	3	9/1/443	1.027090	4m	5	1	2
74.93635 74.93635	1.274830 1.266240 1.266240	4m 4m	3 4	2 4	3 1	97.42696 97.90080	1.025100 1.021400	10 8m	1 4 5	3 8 5	
75.27583 75.88514	1.2613/0	1 2m	3 0	8 4	1 4	97.90080 98.15413	1.021400 1.019440	8m 2 3	5	5 2 13	1 2 1
75.88514 76.02306	1.252750 1.250820	2m 1	1 2	3 10	4 1	98.50576 99.79127	1.016740 1.007070	3 19m	2 1	13 4	5
76.27027	1.247380	3	ī	11	ī	99.79127	1.007070	19m	5	3	2
© 2020 T	nternati	ional	Cen	tre f	for Diff	raction Da	ata. All riα	ihts ri	eser	ved	d. Page 2/3

04-008	-6822											Jun	1.	2020 6:53 PM (Steve Simner)
<u>2θ (°)</u>	d (Å)	I	h	k		*	<u>20 (°)</u>	d (Å)	I	h	k		*	
100.03113	1.005300	12m	3	9	3		100.03113	1.005300	12m	4	10	0		

04-011-4223 Mav 15, 2020 3:03 PM (Steve Simner) Temp: 293.0 K Status Primary **Quality Mark:** Star **Environment:** Ambient **Chemical Formula:** Ca4 Al2 (C O3) (O H)12 (H2 O)5 Empirical Formula: Al2 C Ca4 H22 O20 Weight %: Al9.49 C2.11 Ca28.20 H3.90 O56.29 Atomic %: Al4.08 C2.04 Ca8.16 H44.90 O40.82 **Compound Name:** Calcium Aluminum Carbonate Hydroxide Hydrate Entry Date: 09/01/2008 Modifications: Reflections Modification Date: 09/01/2011 Radiation: CuKa1 (1.5406 Å) d-Spacing: Calculated Intensity: Calculated - Peak I/Ic: 2.02 I/Ic - CW ND: 0.53 Crystal System: Triclinic (Anorthic) **SPGR:** P1 (1) Author's Unit Cell [a: 5.7747(14) Å **b:** 8.4689(11) Å **c:** 9.923(3) Å a: 64.77(2)° **β:** 82.75(2)° y: 81.43(2)° Volume: 433.02 Å³ **Z:** 1.00 MolVol: 433.02 **c/a:** 1.718 **a/b:** 0.682 c/b: 1.172] Calculated Density: 2.18 g/cm³ Structural Density: 2.18 g/cm³ **Color:** Colorless **SS/FOM:** F(30) = 204.8(0.0041, 36) R-factor: 0.027 Space Group: P1 (1) Molecular Weight: 568.44 g/mol Crystal Data [a: 8.469 Å **b:** 9.923 Å a: 97.25° **β:** 98.57° **y:** 64.77° XtlCell Vol: 433.02 Å³ **c:** 5.775 Å XtlCell Z: 1.00 c/a: 0.682 **a/b:** 0.853 c/b: 0.582] **a:** 64.77° Reduced Cell [a: 5.775 Å **b:** 8.469 Å **c:** 9.923 Å RedCell Vol: 433.02 Å³] β: 82.75° **y:** 81.43° AC Space Group: P1 (1) AC Unit Cell [a: 5.7747(14) Å **b:** 8.4689(11) Å **c:** 9.923(3) Å a: 64.77(2)° β: 82.75(2)° **y:** 81.43(2)°] **Space Group Symmetry Operators:** Operator Seq x,y,z ADP Type: U **Atomic Coordinates:** Atom Num Wyckoff SOF Uiso AET Symmetry х 0.51859 0.12026 0.80513 0.00895 1a 1 1.0 1 0.47978 0.01418 0.8882 0.62138 0.19288 0.30979 1.0 1.0 0.00885 2 3 4 1a 1 1a 1 0.977 0.38122 0.69525 1.0 0.00899 1a 1a 1a 0.0 0.4929 2.1E-4 0.50613 -1.8E-4 0.50349 1.0 1.0 0.00667 567 89 1 1a 0.1537 0.2112 0.9215 1.0 0.0102 1a 1a 0.8474 0.3064 0.7896 0.891 0.0808 0.979 1.0 1.0 0.00942 0.01019 1 10 1a 1 0.6953 0.115 0.0185 1.0 0.00995 11 12 13 1a 1a 0.3452 0.6416 0.2925 0.7186 0.5784 0.4259 1.0 1.0 1 0.00934 0.01099 0.3945 0.6129 0.9336 1a 1 0.7985 0.4857 1.0 0.00913 $\begin{array}{c} 14\\15\\16\\17\\18\\9\\21\\223\\24\\526\\27\\29\\31\\323\\34\\56\\37\\89\\40\end{array}$ 1a 1a 0.5262 0.2025 1.0 1.0 1 0.1862 0 0097 0.0678 0.00923 0.0676 0.5743 0.4347 0.7998 0.3012 0.7062 1a 1 0.9301 1.0 0.00993 0.4271 0.564 1a 1a 1 1.0 1.0 0.00949 0.01 0.504 0.5887 0.4084 0.9112 0.3436 0.1221 0.7565 0.6866 0.3088 0.8143 0.02777 0.9018 0.1055 1a 1 1.0 1.0 1.0 0.02065 1a 1a 1 0.6001 0.9531 0.5596 0.0904 1a 1 0.5562 0.9433 1.0 0.02584 1a 1a 1.0 0.03031 1 0.4126 1.0 0.02676 0.3952 0.1929 0.3334 0.2037 0.3118 0.2016 1.0 1.0 1.0 0.0767 0.8248 0.01863 0.02107 1a 1 1a 1a 1 1 0.8852 0.01418 0.241 0.719 0.807 1.0 1.0 1.0 0.013 0.011 0.012 1a 1 0.181 0.842 0.992 0.032 1a 1a 1 1 0.942 0.309 0.218 0.225 0.746 1.0 1.0 1.0 1a 1 0.69 0.347 0.012 0.526 0.011 0.014 1a 1a 1 1 0.347 0.664 0.798 0.173 0.004 1.025 0.314 0.724 0.968 0.005 1.0 1.0 1.0 1.0 1a 1a 1a 0.445 1 0.011 0.519 0.011 1 1 0.011 1a 1a 1a 0.012 1 0.755 0.502 0.499 0.468 0.798 1.0 1.0 1.0 0.011 0.012 0.268 1 1 0.782 1 0.676 0.736 0.034 1a H H H 41 42 43 1a 1a 1a 0.750 0.853 0.205 0.143 1.0 1.0 1.0 0.695 0.43 0.034 1 0.308 0.268 0.313 0.024 0.024 1a 1 1.049 H H H 44 45 46 0.627 0.534 0.49 0.817 0.914 0.996 1.0 1.0 1.0 1a 0.027 1 1a 0.027 0.031 1a 1 0.49 0.233 47 1a 0.496 1.032 1.0 0.031

04-0	11-42	223							Mav 15, 2020 3:03 PM (Steve Simner)
Atom	Num	Wyckoff	Symme	etry x	y y	z	SOF	Uiso	AET
Н	48	1a	1	-0.02				0.036	
Н	49	1a	1	0.24	1 0.988	3 0.48	8 1.0	0.036	
Anisoti	ropic Dis	splacemen	t Parame	ters:					
Atom	Num	Uani11	Uani22	Uani33	Uani12	Uani13	Uani23		
Ca	1	0.0079	0.0099	0.0069	1.0E-4	-0.0027	-0.0012		
Ca Ca Ca	2	0.0077	0.0095	0.0071	-0.0011	-0.0018	-9.0E-4		
Ca	3	0.0078	0.0098	0.007	-2.0E-4	-0.0029	-0.0011		
Ca Al	4 5	0.0081	0.0096	0.0069	-0.0011	-0.0021	-7.0E-4		
AI	5	0.0061 0.0066	0.0077 0.0074	0.005	-2.0E-4	-0.0021	-0.0012 -0.001		
Al O	6	0.0000	0.0074	0.0051 0.0097	-2.0E-4 -0.0024	-0.0018 -0.0019	-0.001		
ŏ	8	0.012	0.0099	0.0078	-0.0019	-0.0019	-0.0035		
ŏ	9	0.0089	0.0102	0.0115	0.0016	-0.0032	-0.0047		
ŏ	10	0.0089	0.0093	0.0115	3.0E-4	-0.0021	-0.0042		
Õ	11	0.0109	0.0102	0.0076	-0.0015	-0.0033	-0.0035		
0	12	0.0129	0.0111	0.0091	-0.0023	-0.0022	-0.0036		
0	13	0.0094	0.0101	0.008	0.0012	-0.0028	-0.004		
0	14	0.0088	0.009	0.0099	0.0	-0.0014	-0.0027		
0	15	0.0101	0.0108	0.0069	-5.0E-4	-0.0027	-0.0034		
0	16	0.0106	0.0136	0.0052	0.0019	-0.0026	-0.004_		
0	17	0.0107	0.012	0.0052	0.0018	-0.0024	-0.0035		
0	18	0.0106	0.0125	0.0067	-7.0E-4	-0.0023	-0.0035		
0 0	19 20	0.0261 0.0207	0.0288 0.0196	0.0318 0.0243	0.0032 -0.004	-0.009 -0.0017	-0.0159 -0.011		
ŏ	20	0.0253	0.0226	0.0245	-0.0053	6.0E-4	-0.0096		
ŏ	21	0.0233	0.0220	0.0243	5.0E-4	-0.0047	-0.0132		
ŏ	22 23	0.0405	0.0269	0.025	-3.0E-4	-0.0042	-0.0127		
ŏ	24	0.0261	0.0298	0.0232	-0.001	-0.0092	-0.0085		
õ	25	0.0138	0.0203	0.0233	-0.0028	-0.0042	-0.0094		
Ó	26	0.0206	0.0226	0.0236	-0.0042	-0.0023	-0.0122		
С	27	0.0127	0.0171	0.0175	0.002	-0.002	-0.0126		
Crysta	al (Sym	metry Al	lowed):	Non-centr	osymmetr	ic - Enant	iomorphic,	Optical A	Activity, Pyro / Piezo (p), Piezo (2nd Harm.)

Subfiles: InorganicPearson Symbol: aP49.00Pearson Symbol w/o H: aP27LPF Prototype Structure [Formula Order]: Ca4 Al2 [C O3] [O H]12 [H2 O]5,aP27,1LPF Prototype Structure [Alpha Order]: Al2 C Ca4 H22 O20,aP27,1ANX: AB2C4X20

Former PDF Numbers: 01-087-0493

References: Type	DOI	Reference
Primary Reference		Calculated from LPF using POWD-12++.
Structure	10.1107/S0108270198004223	Francois, M., Renaudin, G., Evrard, O. "A Cementitious Compound with Composition 3CaO·Al2O3·CaCO3·11H2O". Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1998, 54, 1214-1217.

 Database Comments:
 ANX: AB2C4X20. Habit: plate-like. LPF Collection Code: 1413466. Sample Preparation: STARTING

 Database Comments:
 MATERIALS:Ca(OH)2. Compound Preparation: hydrothermal synthesis at 393 K and 0.2 GPa for 1 m. CRUCIBLE: sealed silver. Temperature of Data Collection: 293 K. Unit Cell Data Source: Single Crystal.

d-Spacing	ıs (198) - Ca	a4 Al2 (C O	3)(οн)12 ((H2 O)5 - 04	4-011-4223	(Stick,	Fixe	d Slit	Int	ensity)	- Cu K	a1 1.54	4056	Å
<u>20 (°)</u>	d (Å)	I	h	k		*	<u>20 (°)</u>	d (Å)	I	h	k	1	*				
9.86974	8.954320	24	0	0	1		26.94439	3.306300	4	0	-1	2					
11.70558	7.553770	1000	0	1	1		27.16354	3.280120	2	0	1	3					
15.54352	5.696190	7	1	0 0	0		28.25294	3.156070	1	-1	2 -2	1					
17.84524	4.966330	9m	1	0	1		29.01420	3.074970	2	0	-2	1					
17.84524	4.966330	9m	1	1	1		29.34130	3.041430	2	0	2	3					
18.13997	4.886300	10	0	-1	1		29.53873	3.021550	6	-1	2	0					
18.33106	4.835790	10	0	1	2		29.68978	3.006520	5	1	1	3					
18.41707	4.813400	11	1	1	0		29.91116	2.984770	3	0	0	3					
19.02673	4.660520	16	-1	0	1		30.44562	2.933580	2	-1	2	2					
19.81366	4.477160	27	0	0	2		31.17498	2.866590	71	1	-1	2					
20.41770	4.346050	42	-1	1	0		31.33325	2.852470	128m	2	0	0					
21.00235	4.226370	4	-1	1	1		31.33325	2.852470	128m	-1	-1	2					
21.20252	4.186920	5	0	2	1		31.67499	2.822470	28	2	1	1					
22.33056	3.977900	42	1	1	2		32.19130	2.778370	51	-1	-2	1					
23.33516	3.808870	58	0	2	0		32.34220	2.765750	10m	0	3	1					
23.53563	3.776880	283m	0	2	2		32.34220	2.765750	10m	2	1	0					
23.53563	3.776880	283m	-1	-1	1		32.49152	2.753380	4	0	3	2					
24.41112	3.643370	23m	1	0	2		32.85902	2.723420	102	1	0	3					
24.41112	3.643370	23m	1	2	1		33.11778	2.702730	3	-1	1	3					
25.79491	3.450970	46	-1	1	2		33.65521	2.660790	5	-2	0	1					
26.05560	3.417030	4	1	2	2		33.81580	2.648520	19	1	3	2					
26.14187	3.405950	4	-1	0	2		34.04343	2.631330	2	1	3	1					
26.71693	3.333930	2	1	2	0		34.14560	2.623690	4	2	1	2					
© 2020	Internat	ional	Cen	tre	for	Dif	fraction D	ata. All ri	ights r	ese	rve	d.					

Page 2 / 3

04-01 1 2θ (°)	L-4223 d (Å)	I	h	k	*	<u>20 (°)</u>	d (Å)	I	h	 k	1av 15	. 2020 3:03 PM (Steve Simner)
34.74955 34.87063	2.579460 2.570780	6 10	-2 -1	1 0	0 3	50.72938 50.95002	1.798130 1.790860	1m 1	-3 0	1 0	0 5	
35.43410 35.62694	2.531180 2.517920	109 41	-2 0	1 3	1 3	51.07962 51.07962	1.786620 1.786620	1m 1m 2m	-1 -3	2 -1	5 1	
35.99251 36.14275 36.14275	2.493180 2.483160 2.483160	58 79m 79m	-2 2 2	-1 0 2	1 2 2	51.49500 51.49500 52.25484	1.773180 1.773180 1.749170	2m 2m 6m	1 2 -1	-3 4 4	2 1 0	
36.75562 36.75562	2.443150 2.443150 2.443150	73m 73m	0	1 -2	4 2	52.25484 52.42993	1.749170 1.743740	6m 1	-2 1	3 0	3 5	
36.97289 37.17461	2.429290 2.416570 2.416570	25 185m	2 0	-1 2	1 4	52.64668 52.64668	1.737070 1.737070	1m 1m	3 3 2	1 2	3 3 5	
37.17461 37.33268	2.406700	27	1	3	0	53.02780 53.02780	1.725480 1.725480	4m 4m	-2	2	4	
38.06894 38.47932 38.47932	2.361830 2.337580 2.337580	4 159m 159m	-1 1 -1	3 1 3	1 4 2	53.50131 53.50131 53.69511	1.711320 1.711320 1.705600	11m 11m 2m	1 -1 0	4 4 4	5 4 5	
38.60498 38.89359	2.330260 2.313630	51 4	-2 -2	0 1	2 2	53.69511 54.11822	1.705600 1.693260	2m 9	-3 3	0 3	2 2	
39.23233 39.61017	2.294430 2.273410	23 3m	2 1	1 -1 -2	3	54.32369 54.32369	1.687340 1.687340	15m <u>1</u> 5m	2 -3 2	-3 1	1 2 5	
39.61017 39.80721 40.25289	2.273410 2.262610 2.238580	3m 2 28m	-1 2 0	-2 2 0	3 2 3 4	54.56840 54.75160 54.75160	1.680350 1.675160 1.675160	7 9m 9m	2 3 -1	1 3 0	5 1 5	
40.25289 40.57670	2.238580 2.221460	28m 3	-1 1	-1 -2	32	55.08562 55.08562	1.665790 1.665790	11m 11m	0 2	5 4	3 0	
40.72927 41.18526	2.213490 2.190030	21 1	0 0	-3 3	1 4	55.22302 55.45957	1.661970 1.655440	42 44	-3 3	-2 0	1 3	
41.52247 41.52247 41.71489	2.173020 2.173020 2.163440	16m 16m 43m	-1 -2 1	3 2 3	3 0 4	55.54303 55.54303 55.63628	1.653150 1.653150 1.650600	53m 53m 40	0 3 3	-2 3 -1	4 3 2	
41.71489 41.82883	2.163440 2.157810	43m 22m	22	-1 3	2 2	55.93466 56.02520	1.642500 1.640060	27 39m	-3 0	-1	2 6	
41.82883 42.30537	2.157810 2.134600	22m 17m	-1 1	1 0	4 4	56.02520 56.44818	1.640060 1.628770	39m 18m	-3 0	2 2 -3	1 3	
42.30537 42.75514	2.134600 2.113180	17m 75	2 -2	3 2	1 2	56.44818 56.94900	1.628770 1.615630	18m 2m	2 -2	-1 3	4 4	
43.17798 43.86929 44.28941	2.093460 2.062060 2.043470	48 15 1	0 2 0	4 3 4	2 3 1	56.94900 57.06581 57.06581	1.615630 1.612600 1.612600	2m 4m 4m	-2 0 1	-3 3 -4	2 6 1	
44.58213 44.58213	2.030730 2.030730	22m 22m	2 -2	-2 1	1 3	57.38175 57.50083	1.604470 1.601430	14 17	3 0	3 -1	0 5	
44.80862 45.11179	2.020990 2.008110	19 45	1	4	3 1	57.77345 57.77345	1.594520 1.594520	1m 1m	0 -3	1 2	6 2	
45.57068 45.57068 46.15378	1.988950 1.988950 1.965170	26m 26m 2	2 -2 0	2 0 2	4 3 5	58.13345 58.13345 58.43477	1.585500 1.585500 1.578040	9m 9m 21m	3 -1 1	1 -2 1	4 4 6	
46.21448 46.72061	1.962730 1.942640	2 47m	2 0	1 -1	4 4	58.43477 58.64758	1.578040 1.572820	21m 21m 10	-2 3	4 -2	2 1	
46.72061 46.83811	1.942640 1.938040	47m 52	-1 1	3 2	4 5 5	59.01671 59.01671	$1.563860 \\ 1.563860$	6m 6m	3 -3	3 1	4	
47.01474 47.01474 47.37163	1.931170 1.931170 1.917450	30m 30m 1	0 -2 3	1 2 1	5 3 1	59.44926 59.44926 59.75712	1.553510 1.553510 1.546240	6m 6m 15	1 -3 2	-3 0 5	3 3 3	
47.71526 47.92940	1.904440 1.896430	20 2	00	4 -3	0 2	60.13258 60.13258	1.537480 1.537480	7m 7m 7m	0 -1	-4 5	2 3	
48.14499 48.14499	$1.888440 \\ 1.888440$	14m 14m	0 1	4 1	4 5	60.57348 60.57348	1.527340 1.527340	7m 7m	-1 -2	-1 1	5 5	
48.25423 48.25423 48.49074	1.884420 1.884420 1.875780	14m 14m 6m	3 -2 0	0 -2 3	1 2 5	60.74004 60.74004 60.83672	1.523550 1.523550 1.521360	1m 1m 1m	0 1 0	5 5 4	0 5 6	
48.49074 48.70911	1.875780 1.867880	6m 4m	-1 1	4	2	60.83672 60.93684	1.521360	1m 2	-3	-2	2	
48.70911 48.93765	1.867880 1.859690	4m 52m	1 3	3 4 1	5 0 2	61.12652 61.23482	$\begin{array}{c} 1.519100 \\ 1.514840 \\ 1.512420 \end{array}$	10 19	3 3 1	-1 4 5	3 3 0	
48.93765 49.24898 49.51009	1.859690 1.848660 1.839520	52m 4 4m	-2 -1 -2	3 4 3	1 1 2	61.30846 61.30846 61.41971	1.510780 1.510780 1.508310	20m 20m 17m	0 -2 -1	5 4 5	5 0 1	
49.51009 49.51009 49.62728	1.839520 1.839520 1.835450	4m 7	-2 3	-1 2 0	2 3 1	61.41971 61.64850	$1.508310 \\ 1.503260$	17m 12	-3 2 2	2 2	3 6	
49.73955 49.88207	1.831570 1.826670	19 24m	-3 2 -1	0 -2 -3	1	61.86674 61.86674	1.498480 1.498480	8m 8m	-1	3 1	6 6	
49.88207 50.02810 50.02810	1.826670 1.821680 1.821680	24m 53m 53m	2	-3 0 4	2 2 4 2	61.98199 62.14717 62.21898	1.495970 1.492390 1.490840	4 8 9	-1 0 3	3 0 4	6 6 1	
50.59170 50.72938	1.821080 1.802700 1.798130	1 1 1m	2 -2 2	4 3 4	2 0 3	62.45931 62.45931	1.485680 1.485680	9 1m 1m	-1 -3	5 -1	1 4 3	

04-013-3303 Jun 3, 2020 3:17 PM (Steve Simner) Status Primary **Quality Mark:** Blank **Environment:** Ambient Temp: 298.0 K (Assigned by ICDD editor) **Chemical Formula:** Ca2 Al (S O4)0.5 (O H)6 (H2 O)3 Empirical Formula: Al Ca2 H12 O11 S0.5 Weight %: Al8.67 Ca25.75 H3.89 O56.54 S5.15 Atomic %: Al3.77 Ca7.55 H45.28 O41.51 S1.89 Compound Name: Calcium Aluminum Sulfate Hydroxide Hydrate Mineral Name: Kuzelite, syn Entry Date: 09/01/2010 Modification Date: 09/01/2011 **Modifications:** Reflections Radiation: CuKa1 (1.5406 Å) d-Spacing: Calculated Intensity: Calculated - Peak I/Ic: 3.03 I/Ic - CW ND: 0.28 Crystal System: Rhombohedral **SPGR:** R-3 (148) Author's Unit Cell [a: 5.7586(3) Å **c:** 26.7946(12) Å **Volume:** 769.51 Å³ **Z:** 3.00 c/a: 4.653 MolVol: 256.50] Calculated Density: 2.015 g/cm³ Structural Density: 1.98 g/cm³ SS/FOM: F(30) = 999.9(0.0006, 31) R-factor: 0.038 Molecular Weight: 311.25 g/mol **Space Group:** R-3 (148) Crystal Data [a: 5.759 Å **b:** 5.759 Å **c:** 26.795 Å a: 90.00° **y:** 120.00° XtlCell Vol: 769.51 Å³ **B:** 90.00° XtlCell Z: 3.00 a/b: 1.000 c/b: 4.653] **c/a:** 4.653 Reduced Cell [a: 5.759 Å **b:** 5.759 Å **c:** 9.530 Å a: 72.41° β: 72.41° **y:** 60.00° RedCell Vol: 256.50 Å³] AC Space Group: R-3H (148) **AC Unit Cell [a:** 5.7586(3) Å **b:** 5.7586(3) Å **c:** 26.7946(12) Å **a:** 90° **B:** 90° y: 120°] **Space Group Symmetry Operators:** Operator Seq Operator Operator Seq Operator Operator Operator Seq Seq <u>Seq</u> Seq 3 4 y,-x+y,-z 5 2 6 X,Y,Z -x,-y,-z -y,x-y,z -x+y,-x,z x-y,x,-z ADP Type: B **Atomic Coordinates:** Wyckoff Atom Num Symmetry SOF Biso AET 0.0 0.0 0.0 1.0111 -3. 1.0 AI 1 2 3a Ca 6c 3. 0.66666 0.33333 0.02134 1.0 1.17665 1.34998 3.2 0H0S00 3 4 18f 18f 1 0.2511 0.211 -0.0547 -0.115 0.03731 1.0 0.0667 1.ŏ 3.50107 5 3. 0.66666 0.33333 0.11542 1.0 6c 6c 6c 0.0 0.0 0.0 0.4955 0.5486 0.25 6 7 3. 3. 2 22664 4.61106 4.63661 8 18f 1 0.2688 0.1821 0.4771 0.2502 0 9 18f 1 0.2688 0.1821 0.4771 0.1668 4.63661 **Anisotropic Displacement Parameters:** Num Bani11 Bani22 Bani33 Bani13 Bani23 Atom Bani12 0.57 0.64 0.57 0.64 1.9 2.25 0.29 0.32 0.0 0.0 0.0 0.0 123567 Ca O O S O 0.91 1.07 2.13 0.54 0.17 -0.03 3.83 1.96 3.83 1.96 2.85 2.76 1.92 0.98 0.0 0.0 1.7 0.0 6.1 3.1 0.0 6.1 5.07 Ô 8 3.58 3.58 4.64 4.64 1 59 0.23 -0.04 1.59 Crystal (Symmetry Allowed): Centrosymmetric Subfiles: Cement and Hydration Product, Inorganic, Mineral Related (Mineral, Synthetic) Pearson Symbol: hR26.50 Pearson Symbol w/o H: hR14.5 LPF Prototype Structure [Formula Order]: Ca2 Al (S O4)0.5 (O H)6 (H2 O)3,hR63,148 LPF Prototype Structure [Alpha Order]: Al Ca2 H12 O11 S0.5,hR63,148 **ANX:** A2B3C6X33 Former PDF Numbers: 01-073-6176, 01-083-1289 **References:** DOI Reference Type Primary Reference Calculated from LPF using POWD-12++.

 Structure
 Allmann R. "Refinement of the hydrid layer structure (Ca2Al(OH)6)+·(1/2SO4·3H2O)-". Neues Jahrb. Mineral., Monatsh. 1977136-144.

 Database Comments:
 ANX: A2B3C6X33. LPF Collection Code: 1214961. Minor Warning: Density calculated using chemical formula and reported structure differ by 1.736%. short interatomic distances for partly occupied sites. Significant Warning: Significant warning from the LPF Editor exist. Unit Cell Data Source: Single Crystal.

04-013-3303	
-------------	--

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	04-013 d-Spacing		2 AI (S	5 04)0.5	6 (O H)6 (H2 O)3 - 04-	•013-3303 (Stick,	Fixe	d Sli	Jun 3, 2020 3:17 PM (Steve Simner) t Intensity) - Cu Ka1 1.54056 Å
	20 (°)	d (Å)	I	h	k	*	20 (°)	d (Å)	I	h	k	<u> *</u>
78.53915 1.216930 3 0 3 15	9.89499 18.07807 18.97225 19.86471 22.20432 24.36074 29.98921 31.03389 32.16644 32.64947 36.62674 37.12127 38.09373 38.49113 39.84061 40.36011 41.21063 43.26763 43.26763 43.26763 43.26763 43.26763 43.26763 51.08912 52.0896 52.47138 54.10609 54.2178 57.25178	8.931530 4.902890 4.673780 4.465770 4.000230 3.650790 2.780460 2.780460 2.740420 2.451450 2.451450 2.451450 2.451450 2.336890 2.260790 2.336890 2.260790 2.336890 2.260790 2.336890 2.260790 2.336890 2.360350 2.60790 2.336890 2.60790 2.336890 2.60790 2.336890 2.60790 2.336890 2.60790 2.336890 2.60790 2.336890 2.60790 2.336890 2.60790 2.336890 2.60790 2.336890 2.60790 2.358680 1.88740 2.60790 1.886500 1.886500 1.825390 1.786310 1.778150 1.642670 1.642670 1.652360 1.557930 1.541680 1.517920 1.557930 1.357630 1.357630 1.357630 1.357630 1.357630 1.357630 1.357630 1.357630 1.357630 1.357630 1.357630 1.357630 1.357630 1.357630 1.357630 1.357630 1.332410 1.327530 1.227530	1000 28 2248 233 35 1 184 95 11 1203 52 535 140 37 29 138 25 66 67 130 277m 23 1 29 3 14 628 21 84 9 12 11mm 31 7 31 51 117 31 51 117 31 52 53 54 55 54 55 54 55 54 55 55 54 56 67 130 277m 23 146 62 12 34 11 20 31 11 20 31 11 20 31 11 20 32 53 54 55 55 54 55 55 54 55 55 54 56 67 13 52 57 57 57 57 57 57 57 57 57 57 57 57 57	0100101010102110200012112010021213200101102322023121121231321014030	00100110011120102001210021220111102013203211110222211320313001123020412	3 1 2 6 4 5 7 9 0 8 -3 1 2 -6 10 4 5 12 11 7 -9 8 13 -1 -2 10 -4 5 12 11 -7 0 -8 3 13 16 6 -1 0 -1 7 11 9 0 -3 16 13 -1 -2 -6 19 4 -1 4 -5 17 12 -1 8 -7 -9 -8 21 -6 11 -1 2 -1 9 0 -3 16 13 -1 -2 -6 19 4 -1 4 -5 17 12 -1 8 -7 -9 -8 21 -6 11 -1 2 -1 9 0 -3 16 13 -1 -2 -6 19 4 -1 4 -5 17 12 -1 12 -1 19 -1 12 -1 19 -1 12 -1 19 -1 12 -1 19 -1 12 -1 19 -1 12 -1 12 -1 19 -1 12	78.73912 79.14407 79.14407 79.64495 81.04816 81.23955 82.48356 82.48356 82.64816 84.23787 84.73193 85.01738 85.53044 85.91075 86.02418 86.15696 86.80289 87.01130 87.90249 87.90248000100000000000000000000000000000000	1.214340 1.209140 1.209140 1.202790 1.185470 1.183160 1.168540 1.166540 1.166540 1.148520 1.143080 1.139970 1.129190 1.121050 1.121050 1.121050 1.121050 1.121050 1.121050 1.121050 1.121050 1.121050 1.121050 1.09840 1.09840 1.09840 1.09840 1.09840 1.09840 1.09840 1.09840 1.057330 1.055470 1.055470 1.055470 1.055470 1.047860 1.047860 1.047860 1.047860 1.047860 1.047860 1.047860 1.047860 1.047860 1.047860 1.047860 1.047860 1.047860 1.047860 1.047860 1.022130 1.012160 1.022130 1.022130 1.022130 1.022130 1.00330 1.00330 1.00330 1.0096728 0.994666 0.992392 0.990888 0.987482 0.990888 0.997287 0.978267 0.978267 0.978267 0.978267 0.978267 0.955932 0.9554273 0.9554273 0.9554273 0.954273 0.9554273 0.954273 0.954273 0.954273 0.954273	1 1 mm 8 1 4 2 2 7 6 1 3 2 4 8 5 2 2 6 3 3 3 2 1 1 3 9 7 1 2 1 2 1 1 1 1 2 5 5 2 1 8 8 1 1 1 1 5 1 3 1 m 2 1 4 2 4 1 4 1 1 m m m m 1 1 5 5 5 5 1 1	0221412013330412123002021313122101131400340502335040135322214130411	4123000411221023322343214241403041322131205001120415330303402135024	5 -17 -12 -11 7 22 20 8 -21 -13 1 -2 23 10 -19 -4 -14 -15 5 -5 18 11 -7 -22 -20 0 -8 -3 -3 -16 -6 23 -3 -16 -6 23 -3 -16 -6 23 -10 25 14 -22 -20 0 -8 -3 -3 -16 -6 -23 -11 -19 -22 -20 0 -8 -3 -3 -16 -6 -23 -11 -11 -2 -22 -20 0 -8 -8 -3 -12 -22 -20 0 -8 -8 -3 -12 -22 -20 0 -8 -8 -3 -12 -22 -20 0 -8 -8 -3 -12 -12 -22 -20 0 -8 -8 -3 -16 -6 -23 -11 -11 -22 -22 -20 0 -8 -8 -3 -16 -6 -23 -11 -11 -22 -22 -20 0 -8 -8 -3 -12 -11 -22 -22 -20 0 -8 -8 -3 -16 -6 -23 -11 -11 -22 -22 -20 0 -8 -8 -3 -16 -7 -7 -22 -7 -22 -20 -0 -8 -8 -3 -16 -6 -23 -11 -11 -22 -22 -20 -0 -8 -8 -3 -16 -6 -7 -7 -22 -7 -22 -22 -20 -0 -8 -8 -3 -16 -6 -7 -7 -22 -7 -7 -22 -7 -7 -22 -7 -7 -22 -7 -7 -7 -22 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7

04-013-3691

Temp: 296.0 K Status Primary **Quality Mark:** Star **Environment:** Ambient Chemical Formula: Ca6 Al2 (S O4)3 (O H)12 (H2 O)26 Empirical Formula: Al2 Ca6 H64 O50 S3 Atomic %: Al1.60 Ca4.80 H51.20 O40.00 S2.40 Weight %: Al4.30 Ca19.16 H5.14 O63.74 S7.66 Compound Name: Calcium Aluminum Sulfate Hydroxide Hydrate Mineral Name: Ettringite, syn Entry Date: 09/01/2010 Modification Date: 09/01/2011 Modifications: Reflections Radiation: CuKa1 (1.5406 Å) d-Spacing: Calculated Intensity: Calculated - Peak **I/Ic:** 1.65 I/Ic - CW ND: 0.35 SPGR: P31c (159) Crystal System: Hexagonal Author's Unit Cell [a: 11.229(1) Å **c:** 21.478(3) Å **Volume:** 2345.34 Å³ **Z:** 2.00 MolVol: 1172.67 c/a: 1.913] Calculated Density: 1.777 g/cm³ Structural Density: 1.78 g/cm³ SS/FOM: F(30) = 999.9(0.0000, 33) R-factor: 0.033 Space Group: P31c (159) Molecular Weight: 1255.08 g/mol **γ:** 120.00° Crystal Data [a: 11.229 Å **b:** 11.229 Å **c:** 21.478 Å **a:** 90.00° **β:** 90.00° **XtlCell Vol:** 2345.34 Å³ XtiCell Z: 2.00 c/a: 1.913 a/b: 1.000 c/b: 1.913] **Reduced Cell [a:** 11.229 Å **b:** 11.229 Å **c:** 21.478 Å **a:** 90.00° **β:** 90.00° **Y:** 120.00° RedCell Vol: 2345.34 Å³] AC Space Group: P31c (159) AC Unit Cell [a: 11.229(1) Å **b:** 11.229(1) Å **c:** 21.478(3) Å **a:** 90° **β:** 90° y: 120°] **Space Group Symmetry Operators:** Operator Seq Operator Operator Seq Seq -x+y,-x,z y,x,z+1/2 -x,-x+y,z+1/2 x,y,z 3 4 5 2 6 -y,x-y,z x-y,-y,z+1/2 **Atomic Coordinates:** Wyckoff IDP AET Atom Num Symmetry SOF х ν 2a 3.. 0.0 0.0 0.0 1.0 2a 6c 3.. 1 0.0 0.002 0.0 0.813 0.25 0.875 0.993 0.997 0.985 6c 1 0.184 0.122 0.122 0.192 0.945 1 1 0.002 0.869 0.054 0.809 0.81 0.128 0.2 0.871 0.791 0.342 0.405 0.362 0.019 0.999 1 0.026 0.801 0.99 0.003 0.778 1 1 0.005 0.006 0.994 0.06 0.92 0.046 1 1 1 0.044 0.018 0.936 0.684 0.957 1 1 1 0.091 0.666 0.965 0.003 0.078 0.923 0.206 0.232 0.221 0.34 1 1 1 0.401 0.63 0.536 0.627 0.795 0.793 0.792 0.99 1 1 1 0.918 0.073 0.265 0.293 0.295 0.789 0.406 0.476 0.456 0.622 1 1 1 0.654 0.624 0.556 0.573 0.408 0.388 0.362 1 1 1 0.754 0.33 0.4 0.266 0.126 1 1 1 0.200 0.337 0.291 0.752 0.116 0.492 0.104 0.598 0.865 1 1 3.. 3.. 1 1 0.699 0.639 0.877 0.687 0.86 0.66666 0.425 0.33333 0.33333 0.33333 1.0 1.0 1.0 0.66666 0.819 0.66666 0.076 0.519 0.628 0.195 0.195 0.195 0.192 0.227 0.62 1.0 0.724 0 987 0.685 0.243 0.667 1 0.728 0.239 0.325 0.667 ٥ 0.667 1 3.. 3.. 3.. 1.0 0.33333 0.66666 0.492 0.66666 0.751 0.009 2b .33333 1.0 2b 0.33333 1.0

04-013-3691

Crystal (Symmetry Allowed): Non-centrosymmetric

Mav 15, 2020 2:18 PM (Steve Simner)

 Subfiles: Cement and Hydration Product, Common Phase, Inorganic, Mineral Related (Mineral, Synthetic)

 Mineral Classification: Ettringite (supergroup), 2H (group)
 Pearson Symbol: hP250.00

 Pearson Symbol w/o H: hP122
 LPF Prototype Structure [Formula Order]: Ca6 Al2 (S O4)3 (O H)12 (H2 O)26,hP124,159

 LPF Prototype Structure [Alpha Order]: Al2 Ca6 H64 O50 S3,hP124,159

Cross-Ref PDF #'s: 01-084-8852 (Alternate), 04-011-5267 (Alternate)

References:		
Туре	DOI	Reference
Primary Reference		Calculated from LPF using POWD-12++.
Structure		Goetz Neunhoeffer F., Neubauer J. "Refined ettringite (Ca6Al2(SO4)3(OH)12·26H2O) structure for quantitative X-ray diffraction analysis". Powder Diffr. 2006, 21, 4-11.
		LPF Collection Code: 1253398. Sample Preparation: STARTINGMATERIALS: Ca O (sucrose aqueous

Database Comments: Database Comments: STARTINGMATERIALS: Ca O (sucrose aqueous solution), Al2 (S O4)3 (H2 O) n (CO2-free aqueous solution). COMPOUND PREPARATION: reacted at 296 K for 1 d, precipitate washed with dilute ammonia, dried. Temperature of Data Collection: 296 K. Unit Cell Data Source: Powder Diffraction.

d-Spacings (136) - Ca6 Al2 (S O4)3 (O H)12 (H2 O)26 - 04-013-3691 (Stick, Fixed Slit Intensity) - Cu Ka1 1.54056 Å															
<u>2θ (°)</u>	d (Å)	I	h	k		*	<u>20 (°)</u>	d (Å)	I	h	k		*		
8.22641	10.739000	26	0	0	2		42.69981	2.115790	6	4	0	5			
9.08625	9.724600	1000	ĩ	ŏ	ō		42.78445	2.111800	Ğ	-4	-1	ĭ			
9.97636	8.858860	82	1	0	1		43.09583	2.097260	3	1	0	10			
12.26863	7.208340	14	1	0	2		43.43141	2.081830	21	-4	-1	2			
15.35577	5.765410	42	1	Q	3		43.74434	2.067660	9	3	0	8			
15.77110	5.614500	478	1	1	0		43.91051	2.060220	36	-3	-2	4			
16.49561	5.369500	4	0	0	4		44.49302	2.034590	2	-4	-1	3			
17.81194	4.975540	131	-1	-1 0	2 0		44.69787	2.025740	2 3	-3	-1 0	7 6			
18.23027 18.86322	4.862300 4.700550	28 265	2 1	0	4		45.03938 45.16115	2.011170 2.006030	5 11	4 -1	-1	10			
20.02936	4.429430	5	2	Ő			45.79128	1.979880	9	-3	-2	5			
22.08073	4.022340	54	2 2	ŏ	2 3 5		45.94655	1.973550	18	-4	-1	4			
22.61026	3.929320	11	1	ŏ	5		46.16646	1.964660	1	2	o	10			
22.89836	3.880530	399		-1	4		46.66259	1.944920	66	5	ŏ	Ō			
24.19415	3.675550	24	-1 2	1	Ó		46.78107	1.940270	17	5 -2	-2	8			
24.55126	3.622890	16	-2	-1	1		47.25787	1.921800	3	3	0	9			
24.68078	3.604170	87	2 -2	0	4		47.45330	1.914340	3m	1	0	11			
25.59469	3.477510	186		-1	2		47.45330	1.914340	3m	5	0	2			
26.51146	3.359300	5	1	0	6		47.76001	1.902760	15m	-3	-1	8			
27.25084	3.269810	43	-2	-1	3		47.76001	1.902760	15m	-4	-1	5 6			
27.49323	3.241530	112	3	0	0		48.01200	1.893360	8	-3	-2	6			
27.81082	3.205230	7	3	0	1		48.46022	1.876890	6	5	0	3			
28.74417 29.42449	3.103240 3.033020	8 7	3 -2	0	2 4		48.60879	1.871500 1.854410	6 52	3 -2	3 -1	0			
29.42449	3.018370	/ 57	-2 -1	-1 -1	6		49.08617 49.39003	1.843710	52 39	-2 -3	-1	10 2			
30.24113	2.952950	2	3	0	3		49.82409	1.828660	19m	5	0	4			
30.52545	2.926090	6	ĩ	ŏ	7		49.82409	1.828660	19m	-4	-2	1			
30.99637	2.882700	2	ź	ŏ	6		50.33054	1.811440	26	-4	-2 -2 -2	2			
31.85127	2.807250	23	2	ž	ŏ		50.54038	1.804410	10	-3	-2	2 7			
32.02120	2.792740	21	2 -2	2 -1	5		50.61003	1.802090	11	4	0	8			
32.23074	2.775060	256	3	0	4		50.98144	1.789830	24m	0	0	12			
32.95147	2.715990	19	-2 3	-2	2 0		50.98144	1.789830	24m	-3	-1 -2 -3	9 3			
33.18866	2.697120	34		1			51.28118	1.780070	8	-4	-2				
33.34603	2.684750	59	0	0	8		51.68115	1.767230	34	-3	-3	4			
33.45698	2.676100	18	-3 -3	-1	1		51.90068	1.760270	29	1 5	0	12			
34.25068	2.615880	131		-1	2		52.33788	1.746590	13m	5	1	0 7			
34.63843 34.63843	2.587480 2.587480	8m 8m	1	0 0	8 5		52.33788 52.52394	1.746590 1.740840	13m	-4 5	-1	1			
34.95962	2.564440	314	-2	-1	6		52.52594	1.738750	2 2	-4	1 -2	4			
35.53899	2.523950	23	3 -2 -3 -2	-1	3		53.07887	1.723940	16	-5	-1	2			
36.07347	2.487770	23	-2	-2	4		53.34820	1.715870	3	-3	-2	8			
36.94358	2.431150	11	4	Ō	ò		53.70599	1.705280	35	-1	-2 -1	12			
37.08696	2.422080	20	-1	-1	8		53.99544	1.696820	7	-5	-1	3			
37.27727	2.410150	61	-3	-1	4		54.24367	1.689640	3	-4	-2	5			
37.91358	2.371150	3	4	0	2		54.57544	1.680150	43	-3	-1	10			
38.26328	2.350280	33	2	0	8		54.84386	1.672560	3	3	0	11			
38.82290	2.317680	6	1	0	9		55.12044	1.664820	74	-4	-1	8			
39.09735	2.302040	5	4	0	3		55.26055	1.660930	33	-5	-1	4			
39.41547	2.284190	1	-3	-1	5		55.92725	1.642700	1	5	0	7			
40.39598 40.39598	2.230980	52m	3	0	7		56.21732	1.634910	3	-4 1	-2	6 13			
40.39598 40.81593	2.230980 2.208990	52m 284	3 .7	2 -2	0 6		56.44667	1.628810	2m 2m	1 -3	0 -2	13 9			
40.81595	2.184340	204 32	-2 -3 -3	-2	2		56.44667 56.75199	1.628810 1.620770	2m 54	-5	0	0			
41.90386	2.154120	151	-3	-1	6		57.19827	1.609180	4	-2	-1	12			
42.40197	2.129960	21	-3	-2	3		57.60782	1.598710	14	4	3	0			
42.56707	2.122080	21	4	1	õ		57.78218	1.594300	2	4	3	ĭ			
	Internat					Diffr									

04-013-3691												av 15	5, 2020 2:18 PM (Steve Simner)
<u>2θ (°)</u>	d (Å)	I	h	k		*	<u>2θ (°)</u>	d (Å)	I	h	k	1	*
58.12140	1.585800	4	-4	-1	9		60.35957	1.532240	4	-4	-3	4	
58.30309	1.581290	23	-4	-3	2		60.79297	1.522350	5m	4	0	11	
58.55647	1.575050	40m	5	0	8		60.79297	1.522350	5m	5	2	3	
58.55647	1.575050	40m	-4	-2	7		61.05201	1.516510	15	-4	-2	8	
58.77515	1.569710	3	-5	-1	6		61.38047	1.509180	43	-2	-2	12	
58.89299	1.566850	6	3	0	12		62.00086	1.495560	11	-5	-2	4	
59.16516	1.560290	3	-4	-3	3		62.19626	1.491330	7	-3	-1	12	
59.29512	1.557180	4	5	2	0		62.58538	1.482990	2	6	1	0	
59.52897	1.551620	1m	6	0	4		62.73134	1.479890	6m	1	1	14	
59.52897	1.551620	1m	-5	-2	1		62.73134	1.479890	6m	-6	-1	1	
59.71244	1.547290	3	-3	-2	10		62.89274	1.476480	1	6	0	6	
59.97811	1.541070	10	5	2	2		63.23549	1.469300	5	3	2	11	

04-015-4253	Mav 15. 2020 3:21 PM (Steve Simner)
Chemical Formula: Mg0.67 Al0.33 (C O3)0.17 (O H)2 (H2 O)0.5 Empi Weight %: Al11.36 C2.60 H3.86 Mg20.77 O61.42 Atomic %: Al4.60 C2.3	mp: 298.0 K (Assigned by ICDD editor) irical Formula: Al0.33 C0.17 H3 Mg0.67 O3.01 7 H41.78 Mg9.33 O41.92 neral Name: Hydrotalcite
Radiation: CuKa1 (1.5406 Å) d-Spacing: Calculated Intensity: Calcul	ated - Peak I/Ic: 2.78 I/Ic - CW ND: 0.71
Crystal System: RhombohedralSPGR: R-3m (166)Author's Unit Cell [a: 3.054(3) Åc: 22.81(2) ÅVolume: 184.24 Å3Calculated Density: 2.12 g/cm3Structural Density: 2.09 g/cm3ColcR-factor: 0.0740.074Colc	Z: 3.00 MolVol: 61.41 c/a: 7.469] pr: Colorless SS/FOM: F(30) = 999.9(0.0001, 32)
XtiCell Z: 3.00 c/a: 7.469 a/b: 1.000 c/b: 7.469]	00.00° γ: 120.00° XtlCell Vol: 184.24 Å ³ 3.72° γ: 60.00° RedCell Vol: 61.41 Å ³]
	β: 90° γ: 120°]
Space Group Symmetry Operators: Seq Operator Seq Operator Seq Operator 1 x,y,z 3 -y,x-y,z 5 -x+y,-x,z 7 -y,-x,z 2 -x,-y,-z 4 y,-x+y,-z 6 x-y,x,-z 8 y,x,-z ADP Type: B	Seq Operator Seq Operator 9 x,x-y,z 11 -x+y,y,z 10 -x,-x+y,-z 12 x-y,-y,-z
Atomic Coordinates: Atom Num Wyckoff Symmetry x y z SOF Bis	o AET
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5674 5674
Anisotropic Displacement Parameters: <u>Atom Num Bani11 Bani22 Bani33 Bani12 Bani13 Bani23</u>	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Subfiles:Inorganic, Mineral Related (Mineral, Natural)Mineral ClassificatPearson Symbol:hR7.18Pearson Symbol w/o H:hR4.18LPF Prototype Structure [Formula Order]:(Mg0.67 Al0.33) (C O3)0.17LPF Prototype Structure [Alpha Order]:Al0.33 C0.17 H3 Mg0.67 O3.01,hR	
Cross-Ref PDF #'s: 04-014-8854 (Alternate) Former PDF Numbers: 01-	070-2151
DOI References: Type DOI Reference Primary Reference Calculated from LPF using POWD-12++. Structure Allmann R., Jepsen H.P. "Die Struktur des Hydrotalkits". Neues	a Jahrh Minoral Monatch 1969544 FE1
Structure Allmann R., Jepsen H.P. "Die Struktur des Hydrotalkits". Neues ANX: AB6X18. LPF Collection Code: 1714293. Sample S Region, Czech Republic. Minor Warning: Density calcula differ by 1.415%. OH2 refined as a group without local factor<12% (for single crystal). LPF Editor Comment: s	Source or Locality: Specimen from Vezna, Vysocina ated using chemical formula and reported structure ting individual atomic coordinates. 7% <r< td=""></r<>
d-Spacings (65) - Mg0.67 Al0.33 (C 03)0.17 (O H)2 (H2 O)0.5 - 04-015-4253 20 (°) d (Å) I h I h I h I h I h I h I h I h I h	(Stick, Fixed Slit Intensity) - Cu Ka1 1.54056 Å

	7.603330					23.37998					
© 2020	Internati	onal	Cen	tre	for	Diffraction Da	ta. All rig	hts	rese	rve	d.

Page 1 / 2

04-015													15,	2020 3:21 PM (Steve Simner)
<u>20 (°)</u>	d (Å)	I	h	k		*	<u>20 (°)</u>	d (Å)	I	h	k		*	
34.09804	2.627240	9	1	0	1		97.21493	1.026770	2	2	0	14		
34.79116	2.576470	226	0	1	2		100.93884	0.998697	1	2	1	1		
35.38702	2.534440	18	0	0	9		101.33834	0.995838	4	1	2	2		
37.45146	2.399340	1	1	0	4		102.94242	0.984641	1	2	1	4		
39.34516 44.06059	2.288110 2.053550	231	0	0	5 7		104.15219 104.35209	0.976487 0.975163	10	1	2	5 18		
46.81226	1.939050	239	0 0	1	8		104.35209	0.975165	6	0 0	2	16		
47.81152	1.900830	5	ŏ	ō	12		105.87391	0.965296	2	1	ō	22		
52.96625	1.727340	56	ĭ	ŏ	10		107.41166	0.955696	ī	2	ĭ	7		
56.33137	1.631870	38	ō	ĭ	11		108.28284	0.950417	3	ō	ō	-		
60.58838	1.527000	70	1	1	0		109.47817	0.943356	9	1	2	8		
61.92959	1.497110	75	1	1	3		112.09566	0.928603	1	0	1	23		
63.58224	1.462120	31	1	0	13		114.55414	0.915589	3	2	1	10		
65.85954	1.416970	21	1	1	6		117.61001	0.900481	6	1	2			
67.45957	1.387200	12	0	1	14		120.12622	0.888878	3	0	2			
71.38812 71.80103	1.320200 1.313620	9	0	2 0	1 2		120.97929 121.78669	$0.885108 \\ 0.881614$	6	1	1	21		
72.16104	1.307950	9	2 1	1	2 9		123.18110	0.875746	4 5	3 0	0 3	0 3		
73.44453	1.288230	1	ō	2	4		124.95434	0.868580	6	2	1	13		
74.66761	1.270130	20	2	ō	5		126.21796	0.863670	1	2	ō			
74.86845	1.267220	7	ō	ŏ	18		126.52028	0.862519	î	ī	ŏ	25		
75.73001	1.254930	26	1	Ó	16		127.50756	0.858823	2	3	Ó	6		
77.89607	1.225360	2	0	2	7		129.38317	0.852061	2	1	2	14		
79.89368	1.199670	16	0 2 1	0	8		131.50322	0.844815	1	0	0			
80.63902	1.190450	1		1	12		135.35083	0.832693	2m	0	1	26		
84.64244	1.144060	5	0	2	10		135.35083	0.832693	2m	3	0	9		
87.39430 89.59822	1.114980 1.093180	8 5	2	0 0	11 19		140.47540 141.48457	0.818486 0.815936	5	2 0	1 2	16 22		
90.33285	1.086190	2	0	0	21		145.34896	0.815956	6	1	2	22		
91.26516	1.077510	1	1	1	15		147.84525	0.801633	1	1	2	17		
93.66947	1.056070	7	ō	ź	13		148.78019	0.799779	î	3	ō	12		
94.69986	1.047280	1	ŏ	ī	20				-	0	Ũ			

23,42009

25.05256

129m

1

3.551520

1 3 0

-1

ž

1

04-015-8262 Mav 15, 2020 1:16 PM (Steve Simner) Status Alternate **Quality Mark: Star Environment:** Non-ambient Pressure Temp: 298.0 K (Assigned by ICDD editor) Pressure: 0.0001 GPa **Chemical Formula:** Ca (S O4) (H2 O)2 Empirical Formula: Ca H4 O6 S Weight %: Ca23.28 H2.34 O55.76 S18.62 Atomic %: Ca8.33 H33.33 O50.00 S8.33 **Compound Name:** Calcium Sulfate Hydrate Alternate Name: gypsum Entry Date: 09/01/2012 Radiation: CuKa1 (1.5406 Å) d-Spacing: Calculated Intensity: Calculated - Peak I/Ic - CW ND: 0.6 I/Ic: 1.73 Crystal System: Monoclinic **SPGR:** C2/c (15) Author's Unit Cell [a: 6.277(2) Å **b:** 15.181(6) Å **c:** 5.672(2) Å **β:** 114.11(2)° **Z:** 4.00 Volume: 493.34 Å³ **a/b:** 0.413 c/b: 0.374] Calculated Density: 2.318 g/cm³ c/a: 0.904 MolVol: 123.33 Structural Density: 2.32 g/cm³ **SS/FOM:** F(30) = 168.6(0.0051, 35) Space Group: C2/c (15) Molecular Weight: 172.17 g/mol Crystal Data [a: 6.277 Å **b:** 15.181 Å **a:** 90.00° **β:** 114.11° XtlCell Vol: 493.34 Å³ **c:** 5.672 Å **y:** 90.00° c/b: 0.374] XtlCell Z: 4.00 c/a: 0.904 **a/b:** 0.413 Reduced Cell [a: 5.672 Å **b:** 6.277 Å **c:** 8.214 Å a: 67.54° RedCell Vol: 246.67 Å³] **β:** 81.02° **y:** 65.89° AC Space Group: C12/c1 (15) AC Unit Cell [a: 6.277(2) Å **b:** 15.181(6) Å **c:** 5.672(2) Å **a:** 90° **B:** 114.11(2)° v: 90° 1 Space Group Symmetry Operators: Operator Seq Seg Operator <u>Seq</u> Operator <u>Seq</u> Operator -x,y,-z+1/2 4 x,-y,z+1/2 2 3 x,y,z -x,-y,-z ADP Type: U **Atomic Coordinates:** Atom Num Wyckoff Symmetry SOF Uiso AET 0.32727 0.1705 0.75 0.25 $0.0 \\ 0.0$ 1.0 4e 0.0099 S Ca O O O 1 2 3 22 4e 1.ŏ 0.0117 0.08319 0.19997 0.59103 0.91298 1.0 1.0 1.0 8f 1 0.27218 0.0169 4 8f 0.38195 0.0169 1 8f 0.20823 0.06826 -0.07831 0.0241 -0.234 1.0 н 6 8f -0.258 0.087 0.033 -0.244 н 8f 1 0.02 0.044 Crystal (Symmetry Allowed): Centrosymmetric Subfiles: Cement and Hydration Product, Ceramic (Bioceramic), Common Phase, Forensic, Inorganic, Mineral Related, Pharmaceutical (Excipient) Pearson Symbol: mC48.00 Pearson Symbol w/o H: mC32 LPF Prototype Structure [Formula Order]: Ca (S 04) (H2 0)2,mS32,15 LPF Prototype Structure [Alpha Order]: Ca H4 O6 S,mS32,15 ANX: ABX6 00-003-0044 (Deleted), 00-003-0053 (Deleted), 00-006-0047 (Deleted), 01-072-0596 (Alternate), 01-074-1905 (Alternate), 01-078-6179 (Alternate), 01-078-6180 (Alternate), 04-008-9805 (Alternate), Cross-Ref PDF #'s: 04-009-1810 (Alternate), 04-009-3817 (Alternate), 04-010-9409 (Primary), 04-012-1412 (Alternate), 04-015-7420 (Alternate), 04-015-8263 (Alternate), 04-015-8264 (Alternate), 04-015-8265 (Alternate), 04-015-8265 (Alternate), 04-015-8264 (Alternate), 04-015-8265 (Alternate), 04-015-8264 (Alternate), 04-015-8265 (Alternate), 04-015-8265 (Alternate), 04-015-8264 (Alternate), 04-015-8265 (Alternate), 04-015-8264 (Alternate), 04-015-8265 (Alternate), 04-015-8265 (Alternate), 04-015-8265 (Alternate), 04-015-8265 (Alternate), 04-015-8264 (Alternate), 04-015-8265 (Alternate), 0 04-015-8266 (Alternate) Former PDF Numbers: 01-076-8724 **References:** Type DOI Reference Primary Reference Calculated from LPF using POWD-12++. Comodi P., Nazzareni S., Zanazzi P.F., Speziale S. "High-pressure behavior of gypsum: A single-crystal X-ray study". Am. Mineral. 2008, 93, 1530-1537. Structure 10.2138/am.2008.2917 Database Comments: ANX: ABX6. LPF Collection Code: 1221415. Pressure of Datacollection: 0.0001 GPa. Sample Source or Locality: Specimen from Valle di Caramanico, Abruzzo, Italy. Unit Cell Data Source: Single Crystal. d-Spacings (199) - Ca (S O4) (H2 O)2 - 04-015-8262 (Stick, Fixed Slit Intensity) - Cu Ka1 1.54056 Å <u>20 (°)</u> 20 (°) d (Å) <u>d (Å)</u> h k 11.64874 7.590500 783 0 2 0 28.14652 3.167760 16.52393 5.360360 Õ 29.15062 3.060890 699 0 18.71755 20.75071 0 4.736800 14 -1 1 31.14078 2.869660 477m 2 0 1 2 4 2.869660 2.784740 2.728060 1000 31.14078 4.277050 0 477m -2 2 23.42009 3.795250 3.795250 129m Õ ō 32.11567 91 -1

© 2020 International Centre for Diffraction Data. All rights reserved.

32.80156

33.40456

2.680180

11

343m

1

1

5

0

04-015-8262	-	Mav 15. 2020 1:16 PM (Steve Simner)
20 (°) d (Å) I h k I * 33.40456 2.680180 343m 2 2 0	20 (°) d (Å) I 71.29970 1.321620 22	<u>h k l *</u> -4 6 2
34.55976 2.593190 43m 0 0 2	71.85918 1.312700 2m	-3 3 4
34.55976 2.593190 43m -1 5 1	71.85918 1.312700 2m	-3 9 1
35.44872 2.530170 7 0 6 0	72.06096 1.309520 1	0 10 2
35.99729 2.492860 109 -2 0 2	72.76406 1.298590 1	3 1 2
36.31388 2.471850 12 -1 3 2	73.04416 1.294300 2	0 0 4
36.64857 2.450040 68 0 2 2	73.73846 1.283820 2 74.21646 1.276730 19m	3 7 1 0 2 4
37.42864 2.400750 39 -2 4 1 37.95929 2.368400 2 -2 2 2 39.37455 2.286470 5 2 4 0	74.21646 1.276730 19m 74.70065 1.269650 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
39.61362 2.273220 1 0 6 1 40.69720 2.215160 121 1 5 1	75.01691 1.265080 6m 75.01691 1.265080 6m	0 12 0 -1 5 4
42.22390 2.138530 17 0 4 2	75.73711 1.254830 1	-1 9 3
43.39286 2.083590 143 -2 4 2	76.09904 1.249760 12m	2 2 3
43.51752 2.077910 58 2 2 1 43.66418 2.071270 110m -1 5 2	76.09904 1.249760 12m 76.33524 1.246480 24m 76.32524 1.246480 24m	-5 1 2 4 6 0
43.66418 2.071270 110m -3 1 1 44.25498 2.044980 43 1 1 2 44.63911 2.028270 6 1 7 0	76.33524 1.246480 24m 76.65247 1.242110 15m 76.65247 1.242110 15m	$\begin{array}{cccc} -4 & 0 & 4 \\ 2 & 10 & 1 \\ -4 & 6 & 3 \end{array}$
45.57625 1.988720 27 -1 7 1	76.93880 1.238200 24	4 2 1
46.28035 1.960090 5 -2 6 1	77.10687 1.235920 10	-2 6 4
46.48742 1.951840 27 -3 1 2	77.40668 1.231880 13	2 8 2
46.99307 1.932010 2 -3 3 1	77.55008 1.229960 16m	0 12 1
47.54214 1.910970 7 1 3 2	77.55008 1.229960 16m	-4 2 4
47.93020 1.896400 135m 2 6 0	77.92178 1.225020 3m	0 4 4
47.93020 1.896400 135m 3 1 0	77.92178 1.225020 3m	-5 1 1
48.44209 1.877550 114 2 4 1	78.48299 1.217660 1	-5 3 2
48.82994 1.863540 26 -1 1 3 49.66021 1.834310 3 -3 3 2 50.39125 1.809400 116 0 6 2	79.71573 1.201900 32m 79.71573 1.201900 32m 79.83772 1.200370 21	2 4 3 -4 8 1 -4 8 2
50.76869 1.796830 52 -2 2 3	80.26683 1.195030 3	-5 3 1
51.07441 1.786790 13 3 3 0	80.54846 1.191560 8	4 4 1
51.23056 1.781710 23 0 8 1	81.15326 1.184200 1m	-3 9 3
51.41472 1.775760 89 -2 6 2	81.15326 1.184200 1m	-4 4 4
51.89498 1.760450 3 -1 3 3	81.85282 1.175840 6	-5 3 3
53.15135 1.721760 2m -1 7 2	82.05958 1.173400 6	-2 <u>1</u> 0 3
53.15135 1.721760 2m -3 5 1	82.23934 1.171290 1m	-1 7 4
53.65365 1.706820 9 1 5 2	82.23934 1.171290 1m	-2 12 1
54.48272 1.682790 20 0 2 3	83.13072 1.160980 1	1 1 4
55,20356 1,662510 56 -2 4 3	83.13072 1.160980 1 83.45777 1.157260 12m 83.45777 1.157260 12m	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
55.58395 1.652030 2m -3 1 3 55.58395 1.652030 2m -3 5 2 55.91689 1.642980 29 2 6 1	83.90023 1.152280 17m 83.90023 1.152280 17m	0 6 4 -3 11 1
56.79938 1.619530 71m 2 0 2	84.71730 1.143240 7m	4 8 0
56.79938 1.619530 71m -2 8 1	84.71730 1.143240 7m	5 1 0
57.64331 1.597810 4m -1 5 3	85.02936 1.139840 34m	0 10 3
57.64331 1.597810 4m -1 9 1	85.02936 1.139840 34m	-4 8 3
58.19860 1.583880 17m 2 2 2	85.32826 1.136610 12m	0 12 2
58.19860 1.583880 17m 2 2 58.19860 1.583880 17m 3 1 1 58.27360 1.582020 19 2 8 0	85.32826 1.136610 12m 85.32826 1.136610 12m 85.47070 1.135080 9m	0 12 2 -1 13 1 1 3 4
58.39865 1.578930 11 -3 3 3	85.47070 1.135080 9m	-2 8 4
58.72422 1.570950 9 0 4 3	85.67178 1.132930 1	2 6 3
59.60340 1.549860 7 -4 0 2	85.94947 1.129980 1	-3 11 2
60.43753 1.530450 20 0 8 2	86.12467 1.128130 5	-2 12 2
60.92309 1.519410 14m 3 3 1	86.59851 1.123170 1	-5 5 3
60.92309 1.519410 14m -4 2 2	86.85706 1.120490 5	-2 2 5
61.34669 1.509930 11 -2 8 2	87.08720 1.118120 9m	3 7 2
61.34669 1.509930 11 -2 8 2 61.56720 1.505050 5 -3 7 1 61.97739 1.496070 2m 1 7 2	87.08720 1.118120 9m 87.08720 1.118120 9m 87.68414 1.112040 1	-4 6 4 -1 11 3
61.97739 1.496070 2m 1 9 1	87.91344 1.109730 1	-5 1 4
62.11619 1.493060 7 -2 6 3	88.12812 1.107580 1	2 10 2
62.27749 1.489580 2 2 4 2 62.47147 1.485420 8 1 1 3	89.04332 1.098550 1m 89.04332 1.098550 1m	1 13 1 -1 1 5 -3 3 5
63.84375 1.456760 12m 0 10 1 63.84375 1.456760 12m -3 7 2 64.21108 1.449310 1 -1 9 2	89.32751 1.095790 2 90.39232 1.085630 22m	-2 4 5
64.21108 1.449310 1 -1 9 2 64.80628 1.437430 34 -4 4 1 65.06441 1.432350 20m 1 3 3 65.06441 1.432350 20m 4 0 0	90.39232 1.085630 22m 90.97164 1.080220 7m 90.97164 1.080220 7m 91.32391 1.076970 1	4 0 2
65.06441 1.432350 20m 4 0 0 65.40361 1.425740 13m 0 6 3	91.32391 1.076970 1 91.48431 1.075500 1	3 1 3
65.40361 1.425740 13m 2 8 1	91.86120 1.072070 1m	5 5 0
65.88889 1.416410 23 -2 0 4	91.86120 1.072070 1m	-1 9 4
66.35907 1.407510 2 4 2 0 66.74907 1.400230 19 -4 2 3 67.17572 1.392370 6 -2 2 4	92.15270 1.069440 12m 92.15270 1.069440 12m	0 8 4 4 2 2
67.59997 1.384660 7 -1 1 4	92.98827 1.062010 13m 92.98827 1.062010 13m 93.35835 1.058770 2 93.68682 1.055920 1m	-4 2 5
68.80213 1.363370 44m 2 6 2 68.80213 1.363370 44m -2 10 1 69.30799 1.354650 2 -3 1 4	93.68682 1.055920 1m 93.68682 1.055920 1m	-3 9 4 3 3 3 -5 7 3
70.17086 1.340090 10m 4 4 0	93.93879 1.053750 5	2 8 3
70.17086 1.340090 10m -1 3 4	94.75811 1.046790 2	4 8 1
70.55090 1.333800 14 -4 4 3	94.95010 1.045180 6m	-5 5 4
70.77839 1.330070 9 -1 11 1	94.95010 1.045180 6m	-6 0 2
70.96682 1.327000 4 -2 4 4	95.07223 1.044160 6	-2 12 3
71.12479 1.324440 15m -2 8 3	95.35747 1.041790 1m	4 10 0
71.12479 1.324440 15m -4 6 1	95.35747 1.041790 1m	-4 8 4
© 2020 International Centre for Diff		

04-015	5-8262										M	lav	15,	2020 1:16 PM (Steve Simner)
<u>2θ (°)</u>	d (Å)	I	h	k		*	<u>2θ (°)</u>	d (Å)	I	h	k		*	
95.71300 95.71300 96.13578 96.13578 96.31237 96.54199 96.54199	$\begin{array}{c} 1.038860\\ 1.038860\\ 1.035410\\ 1.035410\\ 1.033980\\ 1.032130\\ 1.032130\\ 1.032130\end{array}$	9m 9m 6m 4 9m 9m	4 -4 -6 -2 3 -4	4 10 5 2 6 9 4	2 3 5 2 5 2 5 2 5		97.32017 97.32017 97.59280 97.59280 98.04278 98.04278	$\begin{array}{c} 1.025940 \\ 1.025940 \\ 1.023800 \\ 1.023800 \\ 1.020300 \\ 1.020300 \\ 1.020300 \end{array}$	5m 5m 6m 6m 1m 1m	0 1 -2 -6 0 -3	2 7 14 2 12 13	541 331		

04-018-9908

Jun 1, 2020 6:25 PM (Steve Simner)

 Status Primary
 Quality Mark:
 Blank
 Environment:
 Ambient
 Temp:
 297.0 K
 Phase:
 Room temperature phase.

 Chemical Formula:
 Ca2 Al (C O3)0.25 (O H)6.5 (H2 O)2
 Empirical Formula:
 Al C0.25 Ca2 H10.5 O9.25

 Weight %:
 Al10.04 C1.12 Ca29.83 H3.94 O55.07
 Atomic %:
 Al4.35 C1.09 Ca8.70 H45.65 O40.22

 Compound Name:
 Calcium Aluminum Carbonate Hydroxide Hydrate
 Entry Date:
 09/01/2015

Radiation: CuKa1 (1.5406 Å) d-Spacing: Calculated Intensity: Calculated - Peak I/Ic: 4.81 I/Ic - CW ND: 0.34

 Crystal System: Rhombohedral
 SPGR: R-3c (167)

 Author's Unit Cell [a: 5.7757(1) Å
 c: 48.812(2) Å
 Volume: 1410.15 Å³
 Z: 6.00
 MolVol: 235.03
 c/a: 8.451

] Calculated Density: 1.899 g/cm³
 Structural Density: 1.82 g/cm³
 Color: White

 SS/FOM: F(30) = 745.1(0.0013, 32)
 Color: White
 Color: White

Molecular Weight: 268.71 g/mol **Space Group:** R-3c (167) **β:** 90.00° **γ:** 120.00° Crystal Data [a: 5.776 Å **b:** 5.776 Å **c:** 48.812 Å **a:** 90.00° **XtiCell Vol:** 1410.15 Å³ XtlCell Z: 6.00 c/b: 8.451] c/a: 8.451 **a/b:** 1.000 Reduced Cell [a: 5.776 Å **b:** 5.776 Å **c:** 16.609 Å **a:** 79.99° **β:** 79.99° **y:** 60.00° **RedCell Vol:** 470.05 Å³]

AC Space Group: R-3cH (167) AC Unit Cell [a: 5.7757(1) Å b: 5.7757(1) Å c: 48.812(2) Å α: 90° β: 90° γ: 120°] Space Group Symmetry Operators:

Seq	Operato	or	Seq Op	perator	Seq	Operator	<u></u>	eq Oper	ator
2 3 ADP T	x,y,z -x,-y,-z -y,x-y,z 'ype: U		5 -x	x+y,-z +y,-x,z /,x,-z	7 8 9	-y,-x,z+1/2 y,x,-z+1/2 x,x-y,z+1/2	1	1 -x+y,	+y,-z+1/2 y,z+1/2 y,-z+1/2
Atomic	c Coordi	nates:							
Atom	Num	Wyckoff	Symm	<u>etry x</u>	y	z	SOF	Uiso	AET
Al Ca O O O O C	1 2 3 4 5 6 7	6b 12c 36f 12c 18e 36f 6a	-3. 3. 1 3. .2 1 32	0.30 0.66 0.21 0.56 0.66	5666 0.33 19 0.0 55 0.47 5666 0.33	184 0.520 3333 0.938 0.75 74 0.094	4 1.0 75 1.0 0.25 0.083	0.0127 0.0214 0.0224 0.063 0.025 0.025 0.025	
Crysta	al (Sym	metry A	llowed):	Centrosy	mmetric				

 Subfiles:
 Inorganic
 Pearson Symbol:
 hR46.00
 Pearson Symbol w/o H:
 hR25

 LPF Prototype Structure [Formula Order]:
 Ca2 AI [C 03]0.25 [0 H]6.5 [H2 0]2,hR126,167
 LPF Prototype Structure [Alpha Order]: AI C0.25 Ca2 H10.5 09.25,hR126,167
 ANX:
 A2B6C12X55

Former PDF Numbers: 01-082-3613

References: Type	DOI	Reference
Primary Reference		Calculated from LPF using POWD-12++.
Structure	10.1107/S010876811203042X	Runcevski T., Dinnebier R.E., Magdysyuk O.V., Pollmann H. "Crystal structures of calcium hemicarboaluminate and carbonated calcium hemicarboaluminate from synchrotron powder diffraction data". Acta Crystallogr., Sect. B: Struct. Sci. 2012, 68, 493-500.
Database Com	Preparation: Compou database: number of nents: ((Ca4Al2(OH)12)(OH comment on minor el	PF Collection Code: 1128746. Polymorphism: Room temperature phase. Sample nd Preparation: heated. Temperature of Data Collection: 297 K. Test from external formula units Z is assumed to be misprinted as 6 instead of 3 (CO3)0.5·4H2O));in table 3;(agreement with refinement). Minor Warning: LPF ror in the publication exist. Minor warning from the LPF Editor exist. LPF Editor ratomic distances for partly occupied sites. Significant Warning: Density calculated

using chemical formula and reported structure differ by 4.160%. Unit Cell Data Source: Powder Diffraction.

d-Spacing	s (190) - C	Ca2 Al (C 03)0.2	25 (OH)6.	5(H2O)	2 - 04-018-	9908 (S	tick, I	ixec	l Slit	t Intens	sity) - Cu Ka1 1.5405	56 Å
20 (°)	d (Å)	I	h	k	I	*	<u>20 (°)</u>	d (Å)	I	h	k	I	*		

<u>20 (°)</u>	d (Å)	I	h	k		*	<u>20 (°)</u>	d (Å)	I	h	k		
10.86619 18.08864 19.16085 21.83162	8.135330 4.900050 4.628200 4.067670	1000 4 28 115	0 0 1 0	0 1 0 0	6 2 4 12		30.93971 31.24562 31.43567 32.88324	2.887850 2.860270 2.843410 2.721470	116 3 8 58 26	1 0 1 1	1 1 1 1	0 14 3 6	
22.97222 25.47616	3.868220 3.493420	104 7	0 1	1 0	8 10		34.40458 35.17798	2.604530 2.549020	26 76	1 1	0 1	16 9	

04-018-9908 2θ (°) d (Å) I	hkl*		n 1. 2020 6:25 PM (Steve Simner)
36.07122 2.487920 2 36.64873 2.450030 80 38.18766 2.354760 74 38.88537 2.314100 21 40.49411 2.225800 20 41.11872 2.193420 46 41.78525 2.159960 26	2 0 2 0 2 4 1 1 12 2 0 8 0 2 10 0 1 20 1 1 15	Bit C Bit C <th< td=""><td></td></th<>	
44.54815 2.032200 29m 44.54815 2.032200 29m 44.64190 2.028150 25 45.86596 1.976830 59 46.93898 1.934110 21 48.12630 1.889130 1 48.24116 1.884900 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
48.69883 1.868250 19 49.03966 1.856060 12 49.94049 1.824670 1 50.35195 1.810720 5 50.49755 1.805840 3 51.81655 1.752930 3 51.98350 1.757660 15 52.33401 1.746710 45	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
52.57498 1.739270 5 54.28051 1.688580 7 55.03150 1.667300 47 55.22410 1.661940 11m 55.22410 1.661940 11m 55.79905 1.646170 1 56.27579 1.633350 42	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	92.03162 1.070530 1m 3 1 20 92.03162 1.070530 1m 3 1 21 92.03162 1.070530 1m 2 3 17 92.03488 1.065570 1 2 3 17 93.88524 1.054210 6 1 4 12 94.14904 1.051950 1 3 0 36 94.64407 1.047750 1 3 2 19 95.48451 1.040740 1m 0 4 2	
56.51245 1.627070 4 57.28343 1.606990 6 58.39581 1.579000 2 59.90696 1.542730 15 60.35479 1.532350 1 60.77841 1.522680 2 61.73186 1.501430 15	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	95.48451 1.040740 1m 1 3 31 95.76178 1.038460 7m 1 0 46 95.76178 1.038460 7m 2 32 96.40406 1.033240 1 2 33 97.27322 1.026310 4 3 1 32 98.17747 1.019260 1 3 2 22 98.58957 1.016100 1 4 0 28	
62.04556 1.494590 22 63.73223 1.459040 8 64.47917 1.443930 12 64.72694 1.439000 3m 64.72694 1.439000 3m 65.17740 1.430140 1 65.61228 1.421710 12m	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
65.61228 1.421710 12m 65.82918 1.417550 1 66.13894 1.411660 1 67.01490 1.395320 1 67.48605 1.386720 2m 67.48605 1.386720 2m 67.86312 1.379930 1		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
67.94872 1.378400 1 68.22555 1.373480 2 68.95386 1.360740 8m 68.95386 1.360740 8m 69.23556 1.355890 1 69.41928 1.352750 2 70.65194 1.332140 17	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
71.14707 1.324080 1 71.141121 1.319830 1 71.61904 1.316510 2 72.52566 1.302270 4m 73.39414 1.288990 1m 73.39414 1.288990 1m	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
73.88807 1.281590 1 74.36754 1.274510 5 75.17301 1.262840 2 75.57418 1.257130 1 76.16513 1.248840 1m 76.16513 1.248840 1m	2 1 28 2 2 18 1 3 16 1 2 29 0 4 2 3 1 17 0 1 38	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
76.50329 1.244160 6m 76.50329 1.244160 6m 77.74672 1.227340 1m 77.74672 1.227340 1m 77.92253 1.225010 2 78.25162 1.220680 1 79.08459 1.211360 1 79.08459 1.209900 1	$\begin{array}{cccccc} 4 & 0 & 4 \\ 1 & 1 & 36 \\ 2 & 2 & 21 \\ 0 & 4 & 8 \\ 1 & 3 & 19 \\ 4 & 0 & 10 \end{array}$	111.04599 0.934405 1m 4 1 27 111.04599 0.934405 1m 4 2 8 112.32154 0.927374 1m 2 4 10 112.32154 0.927374 1m 2 31 112.64259 0.925639 3m 2 1	
79.38613 1.206060 4 80.91044 1.187140 8 81.81650 1.176270 2m 81.81650 1.176270 2m 82.82653 1.164470 1 83.11147 1.161200 1m	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	113.21359 0.922587 1m 3 3 15 114.27908 0.917006 2m 2 3 32 114.27908 0.917006 2m 2 4 13 115.26568 0.911968 1m 0 5 22 115.26568 0.911968 1m 4 2 14 115.77582 0.909411 1 2 0 50	
83.11147 1.161200 1m 83.47632 1.157050 1 © 2020 International	3 1 23 4 0 16	116.23094 0.907157 1 3 3 18 116.59792 0.905358 1 2 2 42 raction Data. All rights reserved.	Page 2 / 3

04-018 2θ (°)	-9908 d (Å)	I	h	k	I	*	<u>20 (°)</u>	d (Å)	I	h	k	Jur	<u>1</u>	. 2020 6:25 PM (Steve Simner)
117.10046 117.10046 118.18600	0.902921 0.902921 0.897760	1m 1m 1m	2 3 1	4 1 5	16 41 2		118.18600 118.55958 118.55958	0.897760 0.896016 0.896016	1m 1m 1m	4 0 5	2 4 1	17 38 4		