U.S. NUCLEAR REGULATORY COMMISSION

REGION III

Report No. 50-254/0L-87-02

Docket Nos. 50-254; 50-265

Licenses No. DPR-29: DPR-30

Licensee: Commonwealth Edison Company

Post Office Box 767 Chicago, IL 60699

Facility Name: Quad Cities Nuclear Power Station

Examination Administered At: Quad Cities Nuclear Power Station

Examination Conducted: December 7-11, 1987

Examiners: G.M. Nejfelt

D.E. Hills

J.M. McGhee

Approved By: T.M. Burdick, Chief

Operator Licensing Section

DE Aille 1/25/88

Par neget 1/25/08.

1/25/88 Date

Examination Summary

Examination Administered on December 7-11, 1987 (Report No. 50-254/OL-87-02): Written examinations were administered to s.x (6) Senior Reactor Operator (SRO) candidates and seven (7) SRO candidates were given oral examinations. Results: All candidates passed.

DETAILS

1. Examiners

G.M. Nejfelt, Chief Examiner

D.E. Hills

J.M. McGhee

2. Exit Meeting

At the conclusion of the site visit, the examiners met with facility representatives. The following personnel attended this exit meeting:

Facility Representatives

R.L. Bax, Station Manager

R. Robey, Services Superintendent

J. Neal, Training Supervisor

N.P. Digrindakis, Regulator Assurance Group Leader

C. Norton, Quality Assurance Engineer

NRC Representatives

G.M. Nejfelt, Operating Licensing Examiner

A.D. Morrongiello, Resident Inspector

The following items were discussed during the exit meeting:

- a. No generic training weaknesses or strengths were observed during the operating examinations. (This comment was further substantiated upon review of examination results in NRC Regional Offices.)
- b. Security and radiological accesses for examiners to the plant did not result in any undue delays.
- Status of the suspension of NRC Requalification Examinations was discussed.
- d. Active versus inactive license status in accordance with 10 CFR 55 as it applies to a Senior Reactor Operator Limited to Fuel Handling License was discussed.

Examination Review

Responses to licensee's comments, and other changes made to the December 7, 1987 examination are provided respectively in Attachment 1 and Attachment 2. Discrepancies identified during the oral portion of the examinations between training lesson plans and plant procedures are provided in Attachment 3.

ATTACHMENT 1

RESPONSE TO QUAD CITIES NUCLEAR POWER STATION COMMENTS CONCERNING QUESTIONS AND ANSWERS OF THE NRC ADMINISTERED SENIOR REACTOR OPERATOR LICENSE EXAMINATION OF DECEMBER 7, 1987.

5.07 Facility Comment:

The required answer does not include the pellet cracking and swelling that are the bases for LHGR [Linear Heat Generation Rate] limits. This would would be an appropriate response to the question and should also be accepted for full credit.

Reference - HTFF Chapter 9, Page 45, Paragraph 1. - HTFF Chapter 9, Page 22, Paragraph 1.

NRC Resolution:

Comment is accepted, as an alternate answer for the changes in pellet geometry. The answer key point is revised to read:

- "a. Fuel pellets have a tendency to increase in density [0.5].
- b. The change in density causes the pellet geometry to:

decrease in the pellet length and a decrease in the pellet diameter [0.75]

OR

crack [0.37] and swell [0.38]."

5.09.b Facility Comment:

Answer "b" only discusses axial flux shaping. Another acceptable answer should be "Radial flux shaping" or "flux shaping" alone which accounts for both axial and radial shaping.

Reference - Reactor Theory lesson plan Page 25.

NRC Resolution:

Comment is partially accepted. The reference used does not substantiate that the gadolina rods are used for radial flux shaping. Furthermore, the reference stated that the "... deep rods locations set the desired radial power shape...."

However, since "flux shaping" infers both radial and axial directions, partial credit will be given for "flux shaping." The answer key point value is revised to read:

"b. Facilitate axial [0.25] flux shape or power shape control [0.25] (limits flux peaking problems and simultaneously simplifies control rod patterns)."

General Comment Concerning Section 6

Facility Comment:

The use of general operating procedures and abnormal operating procedures for this section of the exam was felt to be an unusual practice. It required the examinee to memorize facts in these procedures when this information would be readily available during plant operation. This line of questioning also made the questions more integrated plant response questions instead of ones that dealt with the design, control or instrumentation of a plant system.

NRC Resolution:

None of the facility comments pertaining to Section 6 questions substantiated that candidates were required to memorize any procedure. The references made in Section 6 questions to procedures were provided to aid candidates to associate questions concerning design intent, construction, operation, and interrelationships with normal nuclear power plant operation and reactor safety.

Reference - NUREG 1021, ES-402.A.2, Revision 4.

NOTE: The average grade for Section 6 was approximately 867%.

6.01.a Facility Comment:

The required answer to this question could be considered incorrect. By adhering to the referenced procedure, the correct answer would be true but in reality an additional trip of the RCIC [Reactor Core Isolation Cooling] turbine is still active. This trip is the "local manual" trip. If this trip was considered by the examinee, the correct response would be false. Either answer should be acceptable.

Reference - RCIC Pages 13, 16.

Reference - Procedure Change Request to add this trip to the stated procedure.

NRC Resolution:

Question 6.01, Part a, is deleted. The question total point value is reduced from 1.50 points to 1.00 point.

6.02.a Facility Comment:

This question should be deleted because it is misleading and confusing. The question infers that the fluid is flow of the shutdown cooling flow path when it really is referring to a small flow path to an auxiliary heat exchanger on the pump oil cooler. The question infers that increased RHR [Residual Heat Removal] service water is required as pressure is reduced in the shutdown cooling mode of RHR. In fact, RHR service water is always on during shutdown cooling and there is always flow to this heat exchanger. This flow can never be increased since it is always valved in. It is impossible to answer the question as stated.

NRC Resolution:

Comment is not accepted. This question did not infer that the fluid flow is in the shutdown cooling flow path. Also, the "additional" cooling by RHR service water was the consequence of following the procedure for SHUTDOWN COOLING START-UP AND OPERATION, QOP 1000-5, Section F.2, Revision 13.

This question came directly from Quad Cities Lesson Plan, LIC-1000, RHR, Revision 2, page 8.

6.03.a Facility Comment:

Answer "a" should not require "mode switch in refuel" for full credit. This is not specified in Tech Specs [Technical Specifications].

Reference - Tech Spec Page 3.10/4.10-2.

NRC Resolution:

Comment is accepted, because it is consistent with the exact wording used in Technical Specification (TS) 3.10.A.1.a. The answer key point value for Question 6.03, Part a, is reassigned as:

"With any control rod out [0.17] and fuel on any refueling hoist [0.17] and refueling platform near or over the vessel [0.16]."

NOTES:

- (1). TS 3.10.A for both Unit 1 and Unit 2 requires that "The reactor mode switch shall be locked in the Refuel position during core alterations, and the refueling interlocks listed below [e.g., Refueling Platform Hoist Upward Travel Blocks] shall be operable...."
- (2). QFP 100-1, MASTER REFUELING PROCEDURE, Section E.1.b(3), Revision 13, Page 4, specifically states that the mode switch is in "Refuel" for the Refueling Platform Hoist Upward Travel Blocks.

6.04.a Facility Comment:

Answer should allow for similar wording responses such as "oscillations" or "instabilities."

NRC Resolution:

Comment is accepted. Also, other synonyms will be given full credit. Part "a" of the answer key is revised to read:

"a. Vibration or Oscillations or Instabilities [0.50]."

6.06 Facility Comment:

The question is confusing in that it asks for a relation between Unit 2 being at power and the electrical lineup of a Unit 1 switchgear. Each is independent of each other. If Unit 2 is at power Unit One may or may not be, and it is Unit One's condition that determines the loading of transformer T-12. With Unit One at power T-12 carries buses 12 and 13. With Unit One shutdown, T-12 carries buses 11, 12, 13, and 14.

NRC Resolution:

Comment is accepted. Because the question did not state, if Unit 1 was or was not at power, the answer key is revised to read:

"Any two of the following buses: 11, 12, 13, and/or 14. [0.50 point for each bus]."

Reference - QOP 6100-5, REMOVING RESERVE AUXILIARY TRANSFORMER 12(22) FROM SERVICE WITH UNIT 1(2) SHUTDOWN, Section C.3, Revision 3.

6.08 Facility Comment:

Answer "a" is incorrect. The correct answer is HPCI [High Pressure Coolant Injection] WILL AUTO INJECT. There is no HPCI trip on low vacuum. The adverse affect would be gland steam and valve leak-off steam would cause the room to become airborne. Another adverse affect would be the room temperature rising to the isolation/trip setpoint. Either of these effects should be acceptable for full credit.

Reference - HPCI page 13.

Reference - HPCI page 31/32.

Answer "b" is correct, but for the wrong reason. The lack of high pressure oil will prevent the stop and control valves from opening. If the turbine could start, which it cannot, the emergency oil pump would provide adequate lubrication.

Reference - HPCI Page 8.

Reference - HPCI Page 9.

Reference - HPCI Pages 4 and 5, Section d and e.

Answer "c" - Another adverse affect that should be accepted for full credit would be reduced system flow to the reactor since a portion of the flow is diverted to the torus.

Answer "d" is incorrect. The correct answer is HPCI WILL NOT INJECT. The motor Gear Unit (MGU) will hold the turbine to 2000 RPM by running and staying on the Low Speed Stop (LSS). Insufficient discharge head will prevent injection to the reactor.

Reference - HPCI Page 12.

NRC Resolution:

All comments are accepted. The answer key is revised to read:

"a. (1). WILL AUTO INJECT.

- (2). Gland seal condenser will be unable to maintain a vacuum (because non-condensable gases would not be removed to maintain -10 inches of water).
- b. (1). WILL NOT AUTO INJECT.
 - (2). The lack of high pressure oil will prevent the stop and control valves from opening.
- c. (1). WILL NOT AUTO INJECT.
 - (2). It would be possible to drain the CCST into the torus

OR

It could be possible to reduce system flow to the reactor.

d. (1). WILL NOT AUTO INJECT.

(2). The desired system flow would be unable to be achieved (to accommodate varying reactor pressures. At operating pressure, the HPCI discharge head would be insufficient to inject, because the motor gear unit (MGU) would hold the turbine speed to 2,000 RPM by running and staying at the low speed stop (LSS)).

[0.50 point for each item]. (Correct alternate answers will be accepted)."

6.09 Facility Comment:

The question implies a required action to be performed and misleads the examinee to produce actions for the question when by the referenced procedure NO ACTIONS ARE REQUIRED. This question should be deleted.

Reference - QOA 8650-1.

NRC Resolution:

Comment is not accepted. The question asked for the "effect(s)" and not for any action to be performed.

6.11.a Facility Comment:

Answer "a" is incorrect. The correct answer is TRUE. The ACAD [Atmospheric Containment Atmosphere Dilution] System is placed into operation manually when predetermined plant conditions exist. It does not start automatically.

Reference - QOP 0500-1.

NRC Resolution:

Comment is accepted. The question did not specifically refer to the ACAD Containment Atmosphere Monitoring (CAM) Subsystem that would be automatically initiated upon a Core Spray (CS) initiation signal, as stated in QOP 2400-1, Section F.2.a, Revision 7. The answer key is revised to read:

"a. True"

6.13 Facility Comment:

Answer "a" infers that the APRM [Average Power Range Monitor] 15% scram is not valid when the mode switch is in "Shutdown." A better answer would be "... 15% when not in the RUN mode."

Answer "a" and "b" weight the response "high flux" heavily. Since APRMs are flux detectors, this can be assumed and should not be required in the answer for full credit.

NRC Resolution:

Comments are accepted. Parts a and b for Question 6.13 is revised to read:

- "a. APRM (fixed high flux) less than equal to 15% rated neutron flux [0.25] in REFUEL Mode or STARTUP HOT STANDBY Mode or °60 when not in RUN Mode. [0.25].
- b. APRM (variable high flux) less than equal to '0.58 W + 62' (FRP/MFLPD) [0.25] in RUN Mode [0.25] (maximum set point of 120% for core flow of greater than equal to 98E+6 lbm/hr)."
- NOTE: The inference that the APRM 15% scram is not valid in the SHUTDOWN position of the mode selector switch is based on the exact wording used in QOP 700-4, Section E.2.a, Revision 5, which reads:

"APRM high flux _ 15% of rated neutron flux when in REFUEL or STARTUP HOT STANDBY Mode. (TS)."

6.14.a Facility Comment:

Answer "a" is incorrect. The correct answer is OPEN. The system lesson plan is incorrect in stating the valve is normally shut. The procedure for normal Core Spray Standby Operation has this valve open.

Reference - QOP 1400-1, Page 2.

NRC Resolution:

Comment is accepted.

Part "a" of Question 6.14 is deleted, because of the conflict in position of the core spray minimum bypass flow valve (MO-1402-38A/B) between the System Lesson Plan, CORE SPRAY SYSTEM, LIC-1400, Revision 1, and procedure QOP 1400-1, Revision 4. The total point value for Question 6.14 is reduced from 1.50 points to 1.00 point.

6.15 Facility Comment:

In answer "b", the time delay should not be required for full credit since it is not considered a part of the setpoint. At Quad Cities Station, the setpoint is considered simply 300% steam flow.

Reference - Tech Specs Page 3.2/4.2-8.

NRC Resolution:

Comment is accepted. However, to be consistent with comment provided, QOP 1300-2, Section E.1, Revision 6, needs to be revised.

The answer key "b" is revised; and the question point values are redistributed to read:

- "a. RCIC turbine area [0.15] high temperature [0.15]; and 200 +/- 5 degrees F [0.20].
- b. RCIC Steam Line high flow [0.30]; and 300% of rated steam flow [0.20] (with a turbine delay of 3 seconds).
- c. Reactor vessel low pressure [0.30]; and 50 +/- 2 psig [0.20]."

6.16

Facility Comment: The fact that the opposite gas treatment train is started requires the use of a cross connect line. This could be

assumed and should not be required for full credit.

NRC Resolution: Comment is accepted. The answer is revised to read:

"Start the opposite train and draw air through the affected train [0.75] from the turbine building [0.50]

(via the train cross connect)."

6.17

Facility Comment: At Quad Cities Station, the ECCS [Emergency Core Cooling

System] fill system is also referred to as the

"Jockey fill" or "keep fill" or "Maintenance fill" system.
Any of these answers should also be considered correct.

NRC Resolution: Comment is accepted. The answer key is revised to read:

"... the ECCS Fill System (other acceptable names are: Jockey Fill, Keep Fill, or Maintenance Fill System)."

7.01 Facility Comment:

This question should be deleted for the following reasons:

a. The stated panel and alarm are physically located in the HRSS building.

b. A Radiation Protection Technician (RCT) would respond to this alarm, not an operator.

c. Operators do not have access to this building since it is locked at all times.

NRC Resolution:

Comment is accepted. The Question point value of 1.50

points was deleted.

7.03 Facility Comment:

This question is both confusing and misleading because of the introductory statement describing a lighting strike. It is not clear if an actual toxic gas condition exists. Based on these considerations, any three immediate operator actions listed in the referenced procedure should be acceptable for full credit. Additionally, since step 6 of the referenced procedure, which is where the list answer originates, directs the operator to follow QOA-010-5 (Control Room Inaccessible). Any three immediate operator actions from this procedure [QOA 010-5] should be considered a correct response for full credit.

Reference - QOA 5750-13.

Reference - QOA 010-5.

NRC Resolution:

Comment is partially accepted. The question clearly sought the actions to be taken, "... if occupation of the control room is no longer possible." Only those actions of QOA 010-5 that are specifically performed in the control room prior to its evacuation are added to the answer key. Question 7.03 Answer Key is revised to read:

- "- Remove breathing air mask.
- Isolate air line manifold supply valve.
- Don an air pack.
- Evacuate control room (CR) to shutdown/cooldown the unit.
- Announce on the public address system that the CR is being evacuated.
- Manually scram the reactor, if possible.
- Leave Feedwater System in automatic on the low flow bypass valve, if possible.
- Notify the Chicago Load Dispatcher, if possible.

[Any 3 of 8 required with each worth 0.50 point]."

7.05 Facility Comment:

Answer "a" is correct, but other similar intent responses should be accepted.

Answer "b-2" is correct but other similar intent wording, such as "adequate steam cooling" or "adequate core cooling" should be acceptable.

NRC Resolution:

Comments are accepted. Similar wording is acceptable. No change to answer key is warranted.

7.07 Facility Comment:

Another procedure could be used for the condition stated in the question. Any immediate actions required in "Reactivity Addition" procedure under the loss of feedwater heaters should be added to the list of acceptable responses.

Reference - QOA 400-1.

NRC Resolution:

Comment is not accepted. The Question specially requested "... five (5) Immediate Operator Actions using QOA 3500-1, LOSS OF FEEDWATER HEATERS."

7.08 Facility Comment:

This question asks for an answer for which there is no procedure or guideline and should be deleted from the exam. The question misleads the examinee to define an operable accumulator. Tech Specs, which is referenced in the question, states that if certain actions are taken, the accumulator need not be considered inoperable. This is very different than operable.

Reference - QOP 300-10.

NRC Resolution:

Comment is not accepted. The answer key is taken directly from QOP 300-10, CRD SYSTEM ACCUMULATOR GAS DISCHARGING, Section E.2, Revision 4; and is based upon required Technical Specifications knowledge.

7.09 Facility Comment:

The question implies that a reactor trip is required for varying conductivities in the stator cooling system. The answer key values of time are correct for the generator trip but not a reactor trip. It must be noted that the referenced procedure, QOA 5300-1, refers to a unit trip. In this context the unit is the main generator and not the reactor.

NRC Resolution:

Comment is accepted. Full credit will be give if reference is either made to a unit or to a turbine trip with the appropriate time limitations.

7.10

Facility Comment:

A description of the Iodine Spiking Phenomenon or stating that iodine will increase should be acceptable for full credit.

NRC Resolution:

Comment is accepted. Also, other similar wording would be acceptable. No change to answer key is warranted.

7.11

Facility Comment:

Answer "a" is incorrect. The correct answer is MORE THAN. Unit 1 MAPLHGR would change to 70% of its original value while Unit 2 will change 84%.

Answer "c" is incorrect. Regarding Rod Block Monitor (RBM) rod blocks, U-1 will be LESS THAN U-2 as stated in the answer. The question simply asks for "rod blocks" which could also mean APRM rod blocks. U-1 APRM rod blocks WILL BE THE SAME as U-2 APRM rod blocks. Both the SAME or LESS THAN responses should receive full credit.

Reference - QOA 202-4, Pages 1, 2, and 3.

NRC Resolution:

The comment first part is accepted. The answer key is revised to read:

"a. MORE THAN. (Unit 1 factor is 0.70; and Unit 2 factor is 0.84)."

The comment second part is accepted, because it was not specified in the Question that only the APRM rod block set points were desired. The answer key is revised to read:

"c. SAME AS or LESS THAN. (Unit 1 and Unit 2 APRM set points are reduced by 3.5%; and Unit 1 RBM rod block set points are reduced by 3.5%, while the Unit 2 RBM rod block set points are reduced by 4.0%)."

7.12 Facility Comment:

This question asks why condenser level is limited BELOW 35% level and references an operating procedure. The reference procedure infers but never states structural damage will occur at or above 35% as the answer key

states. Either the fact that circ [circulating water] pumps are running or structural damage may occur should be acceptable for full credit.

Reference - QOP 201-1, Page 3.

NRC Resolution:

Comment is accepted. The answer key is revised to read:

"Structural damage may occur to the condenser (if level is exceeded and additional structural support is not installed) OR circulation water pumps are running. [1.00]"

NOTES:

(1). The Caution Statement of QOP 201-2, Section F.2.a, Revision 4, is quoted as:

"Do not exceed 35% on the wide range monitor while circulating water pumps are running. Structural damage may occur to the condenser if this level is exceeded and additional structural support is not installed."

(2) It is unclear in the caution statement provided in NOTE (1) above, if the circulation pumps are needed to be running to cause structural damage above a main condenser level of 35%. Because of this ambiguity, credit is allowed for the alternate answer provided.

7.13 Facility Comment:

The answer key is wrong in saying drive water does not cool.... Drive water DOES supply cooling header.

WRC Resolution:

Comment is accepted. The answer key is revised to read:

"Electrical disarm is preferred because drive water cools [0.5] and it minimizes crud accumulation in the drive [0.5]."

7.15

Facility Comment:

Answer "b" should allow for alternate, similar wording responses such as fouling or plugging.

NRC Resolution:

Comment is accepted. Similar wording for response is acceptable. The answer key is revised to read:

"b. biofouling (other possible answers are 'fouling' and 'plugging')."

8.13 Facility Comment:

In addition to the actions specified in the answer key, other similar actions are specified in QAP 300-27. These SCRE [Shift Control Room Engineer] actions should also be acceptable for credit.

Reference - QAP 300-27, Operating Department Procedure Revision Training.

NRC Resolution:

Comment is accepted. Although the question specifically reference QAP 1100-5, TEMPORARY PROCEDURE AND TEMPORARY CHANGES TO PERMANENT PROCEDURES, it is not expected that a candidate memorizes a procedure. Therefore, the question modification is limited to those additional actions that would be taken by a SCRE involving the Operation Department. The answer key is revised to read:

- "- The SCRE will consider initiating training of shift personnel.
- The SCRE will ensure that the Shift Engineer receives an authorized copy of the temporary procedure.
- If training is determined to be necessary, the SCRE will attach to a copy of the temporary procedure the appropriate list of names of personnel needing training.
- If training was necessary, the SCRE will ensure that the proper training is completed within one (1) week.
- If training was done, the SCRE will file list of names of personnel receiving training."

NOTE: Neither QAP 1100-5, Revision 17, nor QAP 300-27, Revision 1, references each other, although each procedure have separate administrative requirements for temporary procedures (e.g., QAP 300-27 requires the use of form QAP 300-T20; and QAP 1100-5 allows retention of a terminated temporary procedure, if the temporary procedure is stamped, "TERMINATED," while QAP 300-27 does not).

8.15 Facility Comment:

This question should be deleted since it does not apply to operations at Quad Cities Station. It is a valid question for Maintenance or Contractor personnel. Fire watches applicable are generally the ones specified in Tech Specs.

NRC Resolution:

Comment is not accepted. The licensee's knowledge of conducting normal business using the facility procedure, particularly, in the area of fire protection is expected.

8.17

Facility Comment:

This question should be deleted. The question strongly implies that something must be checked prior to rod maintenance. At Quad Cities Station, and as stated in the reference procedures, shutdown margin [SDM] is verified simply by checking with a qualified Nuclear Engineer. The question leads the examinees to put down incorrect responses when something "physical" is asked for.

NRC Resolution:

Comment is not accepted. A means to physically verify the SDM is provided in Unit 2 TS BASIS 3.3.A.1, Amendment No. 21; and it is correctly stated in the answer key. Secondly, the Question did not state that the SDM must be performed by procedure QOP 300-14, but rather how can the SDM be physically verified before using QOP 300-14.

8.22 Facility Comment:

At Quad Cities Station, Gene Schabilion is the Station Industrial Hygiene Advisor. His name vice his title should be acceptable for full credit. It is also noted in the reference procedure that anyone, not only the SCRE, should contact the Hygienist if there is a question of safety. Regarding this concept, another appropriate response to the question may be "contact the man in charge of the work to get his men out of the space."

NRC Resolution:

First part of comment, concerning the use of Station Industrial Hygiene Advisor's actually name, is acceptable for full credit. However, the second part of comment, concerning contacting "the man in charge of the work," is not acceptable, because the question specifically required the candidate to provide who the SCRE would contact to obtain a "definitive" answer for a worker health and safety concern.

The question answer key is revised to read:

"Station Industrial Hygiene Advisor or the actual name of the Station Industrial Hygiene Advisor provided by the facility. [0.50]"

ATTACHMENT 2

EXPANSION OR CLARIFICATION OF QUAD CITIES NRC SENIOR REACTOR OPERATOR LICENSE EXAMINATION OF DECEMBER 7, 1987.

Question No.	Answer Key Modification				
5.02	Point values were redistributed. Answer key was revised to read:				
	"a. LHGR - fuel pellet expansion [0.50]; and 1% plastic strain on cladding. [0.50]				
	b. APLHGR - decay heat and stored heat following LOCA [0.50]; and clad temperature of 2200 degrees F. [0.50]				
	c. CPR - loss of nucleate boiling (around cladding) [0.50]; and boiling transition. [0.50]"				
6.09	Point values were redistributed; and an alternate answer for full credit was added. The answer key was revised to read:				
	"Loss of high speed protective relaying or direct transfe trip capability for incoming power lines (0403 and 0404). (The Unit 2 generator trip scheme upon loss of these line is necessary, because the Iowa-Illinois System cannot handle the output from both units). OR Loss to transmit/operate in Economic Generation Control (EGC). [1.00]				

ATTACHMENT 3

TRAINING DEPARTMENT MATERIAL DISCREPANCIES NOTED DURING THE ADMINISTRATION OF QUAD CITIES SRO ORAL OPERATOR LICENSING EXAMINATIONS ON DECEMBER 8, 49, and 10, 1987

- 1. FIRE PROTECTION SYSTEM, LIC-4100, Revision 8: No plant procedures was located that electrically disconnected the diesel-driven fire pump discharge valve as stated in the lesson plan. Also, no reference was made in the lesson plan of the administrative controls that are used to prevent the inadvertent closure of this valve (e.g., the removal of the control handles in the control room; and the valve was chained and locked with a break away lock).
- 2. SERVICE WATER SYSTEM, LIC-3900, Revision 1; and CIRCULATION WATER SYSTEM, LIC-4400 Revision 2: The lesson plans stated that hypochlorite could be injected into the circulating water system either via a batch method or service water system. SERVICE WATER SYSTEM, QOP 3900-1, Revision 3, does to provide means for sodium hypochlorite injection as indicated in LIC-3900. Also, CIRCULATING WATER SYSTEM, QOP 44-2, Revision 7, Section F.1.h and F.2.c, require the operation of the circulating water hypochlorite system. However, QOP 4500-0, Revision 5, has deleted all operational hypochlorite procedures. No reference to the Chemistry Department procedures is stated in the QOPs.
- STANDBY LIQUID CONTROL SYSTEM (SBLC), LIC-1100, Revision 1: Interlock associate with both SBLC pumps running has been removed.
- 4. "Site Specific Training Procedure," Revision 4, Page 6, stated that if a card reader red light occurs, the person should immediately contact security; and "Quad Cities Nuclear Power Station Training Department Booklet," 1985 Revision, Page 3, stated that the person should wait five (5) minutes before contacting security.
- 5. SERVICE WATER, LIC 3900, Revision 1, Page 12: Lesson Plan stated that the low fire protection pressure alarm is 65 psig. The actual alarm set point is 68 psig.

U. S. NUCLEAR REGULATORY COMMISSION SENIOR REACTOR OPERATOR LICENSE EXAMINATION

r.*	FACILITY:	QUAD_CITIES
	REACTOR TYPE:	BWB-GE3
St Ded Eline of 8.25 AM. Not 5 cotes must gar to danly al self question ! 111. 5.07, 60 6.06, 7.09, 1 8.14.6).	DATE ADMINSTERED:	87/12/07
6.06, 7.09, 1 8.14.6).	EXAMINER:	NEJEELI:_G:
	CANDIDATE	

INSTRUCTIONS TO CANDIDATE:

Use separate paper for the answers. Write answers on one side only. Staple question sheet on top of the answer sheets. Points for each question are indicated in parentheses after the question. The passing grade requires at least 70% in each category and a final grade of at least 80%. Examination papers will be picked up six (6) hours after the examination starts.

VALUE_	S OF CANDIDATE'S	_YALUE		CAIEGORY
			5.	THEORY OF NUCLEAR POWER PLANT OPERATION, FLUIDS, AND THERMODYNAMICS
25.10	25.15		,	PLANT SYSTEMS DESTEN- CONTROL.
21.00	2455			PLANT SYSTEMS DESIGN, CONTROL, AND INSTRUMENTATION
-26.00	25:40 gu		7.	PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND RADIOLOGICAL CONTROL
99.85	-24:19		8.	ADMINISTRATIVE PROCEDURES, CONDITIONS, AND LIMITATIONS
_102.3.5	Final Grade		χ.	Totals

All work done on this examination is my own. I have neither given nor received aid.

Candidate's Signature

MASTER COPY

NRC RULES AND GUIDELINES FOR LICENSE EXAMINATIONS

During the administration of this examination the following rules apply:

- Cheating on the examination means an automatic denial of your application and could result in more severe penalties.
- Restroom trips are to be limited and only one candidate at a time may leave. You must avoid all contacts with anyone outside the examination room to avoid even the appearance or possibility of cheating.
- 3. Use black ink or dark pencil only to facilitate legible reproductions.
- 4. Frint your name in the blank provided on the cover sheet of the examination.
- 5. Fill in the date on the cover sheet of the examination (if necessary).
- 6. Use only the paper provided for answers.
- Print your name in the upper right-hand corner of the first page of each section of the answer sheet.
- 8. Consecutively number each answer sheet, write 'End of Category __' as appropriate, start each category on a new page, write only on one side of the paper, and write 'Last Page' on the last answer sheet.
- 9. Number each answer as to category and number, for example, 1.4, 6.3.
- 10. Skip at least three lines between each answer.
- 11. Separate answer sheets from pad and place finished answer sheets face down on your desk or table.
- 12. Use abbreviations only if they are commonly used in facility literature.
- 13. The point value for each question is indicated in parentheses after the question and can be used as a guide for the depth of answer required.
- 14. Show all calculations, methods, or assumptions used to obtain an answer to mathematical problems whether indicated in the question or not.
- 15. Fartial credit may be given. Therefore, ANSWER ALL PARTS OF THE QUESTION AND DO NOT LEAVE ANY ANSWER BLANK.
- 16. If parts of the examination are not clear as to intent, ask questions of the examiner only.
- 17. You must sign the statement on the cover sheet that indicates that the work is your own and you have not received or been given assistance in completing the examination. This must be done after the examination has been completed.

- 18. When you complete your examination, you shall:
 - a. Assemble your examination as follows:
 - (1) Exam questions on top.
 - (2) Exam aids figures, tables, etc.
 - (3) Answer pages including figures which are part of the answer.
 - b. Turn in your copy of the examination and all pages used to answer the examination questions.
 - c. Turn in all scrap paper and the balance of the paper that you did not use for answering the questions.
 - d. Leave the examination area, as defined by the examiner. If after leaving, you are found in this area while the examination is still in progress, your license may be denied or revoked.

QUESTION 5.01 (1.00)

SELECT the one correct statement that describes the condition known as *Condensate Depression:*

- Can lead to condensate pump cavitation, if condensate depression is too great.
- b. Decreases as hotwell level rises.
- c. Reduces thermal cycle efficiency.
- d. Increases as condensate temperature increases.

QUESTION 5.02 (3.00)

STATE the 'Cause of Failure;' AND the 'Limiting Condition' for each of the following core thermal limits:

- a. LHGR
- b. APLHGR
- C. CPR

QUESTION 5.03 (1.00)

SELECT the one correct answer. For a reactor that is just critical, a given reactivity addition will:

- a. cause a shorter period at BOL than at EOL.
- b. cause a shorter period at EOL than at BOL.
- c. cause a shorter period that is the same throughout core life.
- d. have no effect on reactor period because the reactor is critical.

QUESTION 5.04 (1.00)

SELECT the one correct answer. As a subcritical reactor nears criticality, the length of time to reach equilibrium count rate after an insertion of equal positive reactivity:

- a. IS THE SAME as the length of time required to reach equilibrium count rate after an equal insertion of negative reactivity.
- b. INCREASES, primarily because of the increased population of delayed neutrons present in the core with no increase in prompt neutrons.
- c. DECREASES, because the source neutrons are becoming less important in relation to the total neutron population.
- d. INCREASES, because of a larger number of neutron life cycles required to reach equilibrium.

QUESTION 5.05 (1.00)

ANSWER each of the following items either TRUE or FALSE.

The percentage of power from decay heat from reactors that have respectively operated continuously at 100% power for 30 and 365 days is SSSENTIALLY THE SAME after a scram for the:

- a. First hour
- b. First week

QUESTION 5.06 (2.00)

SELECT the one correct choice in the parentheses for each of the following items:

- a. The delayed neutron fraction, beta bar (INCREASES, DECREASES, or REMAINS CONSTANT) over core life, because...
- b. the percentage of reactor power from ...
 - (1). U-235 (INCREASES, DECREASES, or REMAINS CONSTANT)
 - (2), U-238 (INCREASES, DECREASES, or REMAINS CONSTANT)
 - (3). Pu-239 (INCREASES, DECREASES, or REMAINS CONSTANT)

QUESTION 5.07 (1.25)

DESCRIBE how fuel pellets deform under operating conditions. INCLUDE the change(s) that occur in the pellet density and geometry.

DUESTION 5.08 (1.50)

If a multiple feedwater heater or string loss occurs with the unit at 75% power, EXPLAIN what happens to reactor power. (INCLUDE the reactivity coefficient(s) involved; and EXPLAIN to the point where reactor power stabilizes for full credit). (No operate action).

QUESTION 5.09 (1.00)

LIST two (2) reasons for the use of gadol, a rods in the core fuel bundle.

QUESTION 5.10 (2.00)

A reactor startup is planned approximately 12 hours after a scram from a two month 100% power run. EXPLAIN the difference between the expected and the previous rod reactivity worths for each of the following:

(a). center control rods;

(b). peripheral control rods.

QUESTION 5.11 (1.00)

DESCRIBE two (2) removal mechanisms of Xe-135 from the reactor core.

QUESTION 5.12 (1.00)

SELECT the one following statement that correctly completes the statement: Departure from nucleate boiling is the point where...

- a. the void fraction equals one.
- b. the heat transfer mechanism changes from nucleate boiling to single phase.
- c. radiative heat transfer becomes insignificant.
- d. the heat transfer rate sustainable with nucleate boiling reaches its maximum.

QUESTION 5.13 (1.75)

DESCRIBE (i.e., significant or insignificant, increase or decrease, large or small, as appropriate) and EXPLAIN the effects of withdrawing a 'deep control rod' (Notch 00-18) in terms of:

- a. change in core power. (0.75)
- b. void effect (negative reactivity). (0.50)
- c. axial power shape. (0.56)

5. __ THEORY OF NUCLEAR POHER PLANT OPERATION: FLUIDS, AND THERMODYNAMICS

QUESTION 5.14 (1.00)

EXPLAIN why the steady state MCPR value is increased for core flow less than rated core flow.

QUESTION 5.15 (2.00)

Core loading requires a shutdown margin (SDM) at least R + 0.25% delta K in the most reactive condition during the operating cycle. DEFINE the term ${}^*R^*$ in this SDM.

QUESTION 5.16 (1.50)

STATE the damage that would be caused to an induction motor (i.e., RHRS service water pump) by repeated starts and/or jogs, and EXPLAIN why repeated starts would cause this damage.

QUESTION 5.17 (1.00)

During a reactor startup, the first reactivity addition caused count rate to increase from 20 cps to 40 cps. The second reactivity addition caused count rate to increase from 40 cps to 80 cps. SELECT the correct following statement.

- a. The first reactivity addition was larger.
- b. The second reactivity addition was larger.
- c. The first and second reactivity additions were equal.
- d. There is not enough data given to determine relationship of reactivity values.

QUESTION 5.18 (1.50)

- a. EXPLAIN the difference between driven flow and driving flow within the reactor vessel. (1.00 point)
- b. STATE which one of these flows provides the greater contribution to the total core flow. (0.50 point)

(**** END OF CATEGORY 5 ****)

QUESTION 6.01 (1.50)

ANSWER each of the following items either TRUE or FALSE concerning QOA 1300-7, RCIC LOCAL MANUAL OPERATION:

- The mechanical overspeed trip (5600 rpm) of the trip throttle valve is the only trip signal active for local manual operation.
- Steam Supply Isolation Valve, MO-1301-16, is placed in the LOCAL position, all position indication in the control room for that valve is lost.
- A local self-powered tachometer for Unit 1 RCIC turbine was installed for fire protection considerations.

QUESTION 6.02 (1.50)

STATE why each of the following conditions would be imposed during shutdown cooling operations:

- a. During the normal shutdown cooling mode of operation, additional cooling by the RHR service water is required as reactor coolant pressure decreases.
- b. RHR inlet temperature to its heat exchanger is used to determine reactor coolant temperature.
- c. While using shutdown cooling, the MOVs to the suppression chamber (MO-1001-34 A/B and MO-10001-36 A/B) are not open.

QUESTION 6.03 (1.50)

LIST three (3) sets of conditions that would cause 'Refueling Platform Hoist Upward Travel Blocks.'

QUESTION 6.04 (1.00)

FILL in each of the following blanks with the correct one word answer. The purpose for placing a second main feedwater regulator into service when using QOP 600-3, during reactor power operation, is to reduce _____ at critical power limits. The critical power levels seem to be unpredictable but tend to occur above ____ % power.

(**** CATEGORY 6 CONTINUED ON NEXT PAGE ****)

QUESTION 6.05 (1.50)

EXPLAIN the potential consequence(s) of losing the Reactor Building Exhaust Fans. (INCLUDE equipment automatic trip set point(s) as applicable for full credit.)

QUESTION 6.06 (1.00)

LIST the two (2) buses that are fed by Transformer \$12, when Unit 2 is at power. (Stated in Procedure QOA 6100-1 for loss of transformer during power operation.)

QUESTION 6.07 (0.75)

With a station blackout, STATE the three (3) expected automatic Group Isolations of QOA 6100-4, STATION BLACKOUT.

QUESTION 6.08 (4.00)

STATE, for each of the High Pressure Coolant Injection (HPCI) System component failures listed below, whether the HPCI System 'IS' or 'IS NOT' still capable of automatic injection. If it 'IS NOT' capable of automatic injection, EXPLAIN why. If it 'IS' capable of automatic injection, then DESCRIBE any adverse effect(s)/consequence(s) of automatic injection with this failure. CONSIDER each component failure as a separate case.

Assume that no operation action occurs, the component fails at the time of < the automatic initiation signal, and reactor power is 100%.

- a. The gland seal exhauster fails to operate. (1.00)
- b. The turbine auxiliary lube oil pump fails to operate. (1.00)
- c. The alternate minimum flow valve (2301-14) (e.g., valve 2301-3 is inoperable and left opened) fails to close, when system conditions require it to be close. (1.00)
- d. The HPCI pump discharge flow element output signal to the HPCI flow controller is failed at its maximum output. (1.00)

QUESTION 6.09 (1.00)

.

STATE the effect(s) that losing the microwave radio system would have upon routine Unit 2 operations with Unit 1 on line.

QUESTION 6.10 (2.50)

ANSWER each of the following questions either TRUE or FALSE concerning the Rod Worth Minimizer (RWM) rod blocks:

- After transferring from the A to B computer or back, the RWM is automatically initialized.
- b. Whenever reactor power is below the low power set point, only INSERT rod blocks are active.
- c. The RWM low power set point requires both rated steam flow and rated feedwater flow to be below 20% of their values.
- d. If the RWM fails or is powered down with the mode switch in NORMAL, rod blocks will be applied only for reactor power levels less than 30%.
- e. Any rod inserted one or more notches beyond its insert limit will cause an insert block to be issued for all rods without exception.

QUESTION 6.11 (2.00)

ANSWER each of the following questions either TRUE or FALSE concerning the Atmospheric Containment Atmosphere Dilution (ACAD)/Containment Atmosphere Monitoring (CAM) System:

- a. The ACAD cannot be automatically initiated.
- b. The Shift Engineer must receive authorization to place the ACAD/CAM mode switches (Panels 901-55/902-55 and 901-56/902-56) in OFF during a post-LOCA situation.
- c. If CAMs are turned completely off (i.e., the heater boxes are allowed to cool), it will require 15 minutes to 1 hour to warm the unit up before it will be operable.
- d. The hydrogen and oxygen monitor indications are not valid beyond their alarm points.

(**** CATEGORY 6 CONTINUED ON NEXT PAGE ****)

QUESTION 6.12 (1.00)

STATE why the physical location of the drywell radiation monitors result in the need to apply a correction factor to the readings obtained on the monitor to convert the readings to actual dose rate.

QUESTION 6.13 (2.10)

LIST the four (4) APRM reactor scrams; and INCLUDE the set points/conditions for each APRM reactor scram.

QUESTION 6.14 (1.50)

ANSWER each of the following questions concerning the Core Spray (CS) System either TRUE or FALSE:

Se. The minimum bypess flow valve (MO-38 A/B) in each loop is normally open during standby operation, because there is no corespray flow.

The inboard injection valve (MO-25 A/B) is interlocked with the core spray testable check valve to prevent cycling the testable check valve when inboard injection valve is open.

Upon an automatic initiation of core spray, the CS systems logic will only inject CS flow into the recirculation loop that appears to have a break.

QUESTION 6.15 (1.50)

STATE the three (3) Reactor Core Isolation Cooling (RCIC) System automatic isolations (Group 5); and INCLUDE the set points.

QUESTION 6.16 (1.25)

If radioactive materials have accumulated on the Standby Gas Treatment System (SBGTS) Filters during operation, radioactive dacay will cause internal heating of the filters. If heating is sufficient to require cooling, DESCRIBE the filter cooling flow path that can be used in accordance with QDP 1600-1, DRYWELL PRESSURE RELIEF THROUGH SBGTS.

QUESTION 6.17 (0.50)

STATE the auxiliary system that prevents water nammers from occuring in the Core Spray (CS) System.

QUESTION 7.01 (1.50) 5

DOUGTED

STATE three (3) Immediate Operator Actions for a 'HVAC EXHAUST FILTER TEMPERATURE HIGH. alarm using QOA 701-0. HRSS LSP ANNUNCIATOR PROCEDURES.

QUESTION 7.02 (1.50)

With the reactor critical, a control rod position indication does not change from position 16 when a control rod withdraw signal is applied. STATE three Immediate Operator Actions required by QOA 300-2, INABILITY TO DRIVE A CONTROL ROD: CONTROL ROD STUCK.

QUESTION 7.03 (1.50)

On July 29, 1987, a lightning strike on the 345 KV line caused a power fluctuation that resulted in a toxic gas analyzer system isolation of the control room.

Other than a manual reactor scram (and its corresponding immediate operator actions), LIST three (3) Immediate Operator Actions required by QDA 5750-13, TOXIC AIR OR SMOKE IN THE CONTROL ROOM, if occupation of the control room is no longer possible. (1.5 points)

QUESTION 7.04 (3.00)

- a. QGA 500-7, LEVEL/POWER CONTROL, describes the method of lowering Reactor Pressure Vessel (RPV) water level to reduce the heat generation rate. EXPLAIN how lowering RPV water level assists in reducing the heat generation rate.
- b. In order to lower RPV water level, QGA 500-7 prescribes terminating and preventing all injection into the RPV except from the boron injection system or the control rod drive system. EXPLAIN why injection is still allowed from these two sources.
- c. QGA 500-7 further prescribes that RPV water level be lowered until any one of three conditions is met. One of these conditions is that RPV water level drops to -143 inches. EXPLAIN the significance of this -143 RPV inches water level.

QUESTION 7.05 (3.00)

a. QGA 500-2, EMERGENCY REACTOR PRESSURE VESSEL (RPV) DEPRESSURIZATION, requires verification that the suppression pool level is above 5.0 feet prior to opening all the Automatic Depressurization System (ADS) valves.

EXPLAIN why this limit on suppression pool level is imposed for Emergency RPV Depressurization using the ADS valves. (1.00 point)

- b. QGA 500-2 further prescribes that if fewer than 3 ADS valves are open and RPV pressure is at least 50 psig above suppression chamber pressure then rapidly depressurize the RPV using one or more of several systems (e.g., main turbine bypass valves, main steam line drains, HPCI turbine, RCIC turbine, RPV head vent, steam jet air ejectors, RWCU).
 - (1). EXPLAIN why RPV pressure is required to be at least 50 psig above suppression chamber pressure prior to performing this step. (INCLUDE the significance of this 50 psig value). (1.00 point)
 - (2). EXPLAIN why three (3) ADS values are the minimum number required for Emergency Depressurization. (1.00 point)

QUESTION 7.06 (1.50)

The unit is operating at 100% power, when a complete loss of essential services occurs. LIST five (5) control room indications, which would be disabled due to the loss of essential service power.

QUESTION 7-07 (2.50)

While the unit is operating at 75% power in EGC, an "A" feedwater heater high level occurs. STATE five (5) Immediate Operator Actions using QDA 3500-1, LOSS OF FEEDWATER HEATERS.

QUESTION 7.08 (1.00)

STATE the two (2) conditions required before an inoperable Control Rod Drive (CRD) Accumulator is reclassified as operable in accordance with QOP 300-10, CRD SYSTEM ACCUMULATOR GAS DISCHARGING, and Technical Specifications.

QUESTION 7.07 (1.50)

Using the Immediate Operator Actions for LOSS OF STATOR COOLING, QOA 5300-1, STATE the maximum time that the unit can remain critical for each of the following stator cooling water conductivity values:

- a. 0.2 umho/cm
- b. 2.0 umho/cm
- c. 20.0 umho/cm

QUESTION 7.10 (1.00)

EXPLAIN why an Off-Gas System chimney monitor alarm may be likely to occur following a rapid power reduction.

QUESTION 7.11 (1.00)

In single loop operation, SELECT for each parameter listed below, if the Unit 1 value is changed (MORE THAN, SAME AS, or LESS THAN) the Unit 2 change in value:

- a. maximum average planar linear heat generation rate (MAPLHGR) limit multiplication correction factor.
- b. minimum critical power ratio (MCPR) safety limit.
- c. Rod Block Set Points.

QUESTION 7.12 (1.00)

STATE why the main condenser level is limited below 35% level when implementing QOP 201-1, DRAINING THE REACTOR VESSEL AND RECIRCULATION LOOFS.

QUESTION 7.13 (1.00)

If a control rod is required to be taken out of service, EXPLAIN why it is preferable to electrically disarm the drive in accordance with QOP 300-7, CRD SYSTEM, DRIVE DISARMAMENT, rather than valving out the drive in accordance with QOP 300-8, CRD SYSTEM, HYDRAULIC CONTROL MODULE ISULATION.

QUESTION 7.14 (1.50)

STATE the three (3) restrictions imposed by Technical Specifications and QOP 1100-1, STANDBY OPERATION OF STANDBY LIQUID CONTROL SYSTEM (SLCS), which allow the SLCS to be inoperable with fuel in the reactor vessel.

QUESTION 7.15 (1.50)

FILL in each of the following blanks with a single word answer concerning QOP 1000-5, SHUTDOWN COOLING STARTUP AND OPERATION:

- a. If both recirculation pumps are off, temperature stratification may occur due to lack of upward core flow. This may result in reactor
- b. In the event of inadequate heat transfer across the RHR heat exchanger or inadequate RHR service water flow, consideration should be given to ______ of the heat exchanger as the possible cause.
- c. The differential temperature between the reactor vessel flange and _____ is to be maintained less than 140 degrees F.

QUESTION 7.16 (2.00)

Reactor Pressure Vessel (RPV) water level cannot be determined. The RPV is therefore flooded in accordance with QGA 500-6, REACTOR PRESSURE VESSEL FLOODING. Injection into the RPV is controlled in accordance with the procedure to maintain at least three Automatic Depressurization System (ADS) valves open and RPV pressure at least 77 psig above suppression chamber pressure, but as low as practical. Forty minutes later with five ADS valves open (reactor pressure has remained above suppression chamber pressure for this entire time) RPV water level instrumentation is available; temperature near the RPV cold water level instrument leg vertical runs is below 212 degrees F; and suppression chamber pressure is below 55 psig. Under these conditions, QGA 500-6 then prescribes that all injection into the RPV be terminated and RPV water level be reduced. QGA 500-6 also prescribes a maximum concurry time limit after commencing termination of injection into the RPV after which flooding is to be resumed, if RPV water level indication is not restored.

EXPLAIN why QGA 500-6 requires this RPV:

- a. water level reduction. (1.0 point)
- b. flooding to be resumed, if water level indication is not restored within the Maximum Core Uncovery Time Limit. (1.0 point)

QUESTION 8.01 (1.00)

13

SELECT the one correct answer. If an entry condition for an Emergency Operating Procedure (QGA) occurs, for a QGA procedure that has been completed, then the completed QGA procedure:

- a. is immediately performed again.
- is perfomed again, after completing the QGAs that have been started.
- c. is not required to be performed again.
- d. can be performed again, but it is entirely at the discretion of the Shift Engineer.

QUESTION 8.02 (1.00)

SELECT the one correct answer. QAP 500-9, PREVENTATIVE MAINTENANCE, requires the Operations Department to:

- a. lubricate motors and equipment which have a circulating oil system or a reservoir.
- b. lubricate motors and equipment without a circulating oil system or a reservoir.
- c. lubricate all motors and equipment.
- d. lubricate neither motors nor equipment.

QUESTION 8.03 (1.00)

Technical Specifications (TSs) require the reactor to be shutdown, if it is determined that a jet pump is inoperable. STATE two (2) reasons, which are taken into consideration by the design base accident (DBA) for loss of coolant accident (LOCA), for this requirement.

QUESTION 8.04 (1.00)

A spurious unplanned control room ventilation system isolation requires: (SELECT the one correct answer from the following.)

- A one (1) hour telephone notification to the NRC Operations Center.
- b. A four (4) hour telephone notification to the NRC Operations Center.
- c. No NRC telephone notification.
- d. Only a telephone call to the NRC Resident Inspector.

QUESTION 8.05 (1.50)

STATE the Technical Specification Basis for requiring a Condenser Low Vacuum Scram (1.00); and how this scram can be bypassed. (0.50)

QUESTION 8.06 (1.00)

FILL in each blank with the correct value. Unit 1 Technical Specification Basis states that a leak as small as _____ gpm is possible to be detected by the Main Steam Line Tunnel High Temperature Alarm. The alarm set point for this high temperature alarm is _____ degrees F.

QUESTICN 8.07 (1.50)

INDICATE whether each of the following statement concerning Unit 2 secondary containment is either TRUE or FALSE.

- Each train of the Standby Gas Treatment (SBGT) System is required to have the capability to maintain at least a 1/2 inch of water vacuum within the secondary containment.
- b. The SBGT charcoal filter should be tested, if it was exposed to paint fumes.
- c. An efficiency of 94.9% is adequate for the SBGT filter to retain particulates that may be released to the reactor building following an accident.

(**** CATEGORY 8 CONTINUED ON NEXT PAGE ****)

QUESTION 8.08 (1.00)

STATE the primary disadvantage, as provided in the Technical Specification Basis, of lowering the reactor vessel low water level scram set point.

QUESTION 8.09 (1.00)

Other than personnel safety considerations, STATE the Shift Engineer's principal purpose for reviewing an area, in which, radiography is to be performed.

QUESTION 8.10 (1.50)

In accordance with the Generating Station Emergency Plan (GSEP), LIST three (3) conditions that would prevent the evacuation of nonessential personnel, after assembly/accounting of personnel within the Protected Area has been completed.

QUESTION 8.11 (1.00)

STATE two (2) conditions required by QAP 300-2, CONDUCT OF SHIFT OPERATIONS, to use the PULL-TO-LOCK switch position for testing.

QUESTION 8.12 (1.00)

SELECT the correct answer. An orderly unit shutdown will be initiated immediately with reduction of coolant temperature to less than 212 degrees F, as rapidly as other plant constraints permit, when Chemistry issues an ACTION LEVEL:

- a. One.
- b. Two.
- c. Three.
- d. Four.

QUESTION 8.13 (1.00)

If a temporary procedure review by the SCRE involves the Operation Department (i.e., operation of a RHR pump), STATE two (2) SCRE actions that are required to be performed in addition to the review, in accordance with QAP 1100-5, TEMPORARY PROCEDURES AND TEMPORARY CHANGES TO PERMANENT PROCEDURES.

QUESTION 8.14 (2.00)

ANSWER each of the following questions either TRUE or FALSE concerning QAP 1120-6, ENTERING A LOCKED HIGH RADIATION AREA WITHOUT A TIMEKEEPER:

- Entry into a high radiation area is absolutely prohibited without the use of a safety man in lieu of a timekeeper.
- b. Transfer of the 'R-key' between individuals is only routinely allowed between security guards.
- c. The safety man is required to immediately notify the control room, when an individual enters and leaves a high radiation area.
- d. An individual will only be allowed one 'R-key' at a given time.

QUESTION 8.15 (0.50)

FILL in the blank with the correct value. QAP 1170-14, FIRE WATCH RESPONSIBILITIES, states that persons performing fire watch duties for other than cutting and welding jobs shall make a round of the assigned area at least once every _____ unless otherwise defined in Technical Specifications.

QUESTION 8.16 (1.00)

STATE the two (2) restrictions imposed upon the Shift Engineer during absences from the control room/Shift Engineer's Office by QAP 300-1; OPERATIONS DEPARTMENT ORGANIZATION.

QUESTION 8.17 (1.25)

EXPLAIN how an adequate shutdown margin (SDM) can be physically verified before performing maintenance on a control rod drive using QOP 300-14, CONTROL ROD OR CRP MAINTENANCE.

QUESTION 8.18 (1.50)

EXPLAIN the Technical Specification Basis for requiring the Rod Worth Minimizer (RWM) to be operable for less than 20% power.

QUESTION 8.19 (1.00)

SELECT the one correct answer. When performing QAP 300, EQUIPMENT OUT-OF-SERVICE, the individual items should be normally taken out in the following specific order:

- a. electrical feed, main isolation points, control switch.
- b. main isolation points, control switch, electrical feed.
- c. control switch, electrical feed, main isolation points.
- d. main isolation points, electrical feed, control switch.

QUESTION 8.20 (1.00)

FILL in each blank with the correct value or one word answer. QAP 300-19, REVIEW OF ACTIVE OUT-OF-SERVICES, requires:

Monthly, at least [a.] ____ percent of those out of services older than [b.] ____ days and not in a high radiation area shall be physically reviewed.

QUESTION 8.21 (1.50)

LIST by title, the position that would assume each of the following on-site fire protection position title, in accordance with QAP 1170-17, FIRE PROTECTION PROGRAM:

- a. Fire Commissioner.
- b. Fire Chief.
- c. Assistant Fire Chief.

QUESTION 8.22 (0.50)

QAP 1150-6, ACCESS TO CONFINED SPACES, defines what constitutes a confined space and the requirements of working in such an area. If the SCRE has any concern, which may affect worker health and safety, STATE by title, the person that the SCRE would contact to obtain a definitive answer to his concern.

(**** END OF CATEGORY 8 ****)
(******* END OF EXAMINATION ********)

ANSHER 5.01 (1.00)

c. [1.00 point]

REFERENCE

HTFF Text, Chp. 7, Heat Transfer, Rev. 1, pg. 7-45. 293007K109 ..(KA's)

ANSWER 5.02 (3.00)

- a. LHGR fuel pellet expansion [0.50]; and 1% (0.10) plastic strain (0.30) on cladding (0.10). [0.50]
- b. APLHGR decay heat £0.253, and stored heat following LOCA [0.253; and clad temperature £0.403 of 2200 degrees F [0.40].
- CPR loss of nucleate boiling to.403 around cladding [0.103; and boiling transition [0.50].

REFERENCE

HTFF Text, Chp 9, BWR THERMAL LIMITS, Rev. 1, Fig. 9-5, pg. 9-15.

Quad Cities, N-NOLR-FA84; SRO REQUAL, Question No. 5.05.

293009K112 293009K101 293009K108 293009K107 ..(KA's)

ANSHER 5.03 (1.00)

b. [1.00 point]

REFERENCE

GE Student Text, LIC-THEO, REACTOR THEORY, Rev. 2, Figure 46 Quad Cities, N-NOLR-FA84; SRO REQUAL, Question No. 5.11. 292008K108 ..(KA's)

ANSWER 5.00 (1.00)

d. [1.00 point]

REFERENCE

GE Student Text, LIC-THEO, REACTOR THEORY, Rev. 2, Figure 46. Quad Cities, N-NOLR-SRO-D-85; SRO REQUAL, Quest. No. 5.03. 292008K105 .. (KA's)

ANSWER 5.05 (1.00)

a. True b. False

[0.50 point for each)

REFERENCE

Reactor Theory, LIC-THED, REACTOR THEORY, Rev. 2, Figure 7 at top of page. 292008K130 ..(KA's)

ANSWER 5.06 (2.00)

a. Decreases

b. (1). Decreases

(2). Remains Constant

(3). Increases

[0.50 point each]

REFERENCE

Reactor Theory, Lic-Theo, Rev. 2, pg. 13 and Figure 29 292003K103 ..(KA's)

ANSWER 5.07 (1.25)

Fuel pellets have a tendency to increase in density [0.5]. This causes a decrease [0.25], in the pellet length [0.25] and a decrease [0.25] in the pellet diameter [0-25] . On crack [0.37] and swell [0.38]. 0.75

REFERENCE

HTFF Text, Chp. 9, BHR THERMAL LIMITS, 19. 9-46. 9-22, 9-44, and 9-45. 293009K131 ..(KA's)

ANSWER 5.08 (1.50)

Reactor power increases [0.50], due to the reduction in feedwater temperature [0.30]. Positive reactivity is inserted by the moderator temperature coefficient [0.30]. Natural feedback to limit power increase is provided by the void coefficient [0.20] and the fuel temperature coefficient (doppler) [0.20].

REFERENCE

QOA 3500-1, LOSS OF FEEDWATER HEATERS, Rev. 4, pg. 2.

Quad Cities Lesson Plan, LIC-THEO, REACTOR THEORY, Rev. 2, pgs. 15-18.

259001K312 ..(KA's)

ANSWER 5.09 (1.00)

- a. Allow more fuel to be loaded (without increasing the number of control rods) [0.50].

 [0.25] flux shape or [0.25]
- b. Facilitate axial power shape control (limits flux peaking problems and simultaneously simplifies control rod patterns). (0.50)

REFERENCE

Quad Cities Lesson Plan, LIC-THEO, REACTOR THEORY, Rev. 2, pg. 25. 292007K101 ..(KA's)

ANSHER 5.10 (2.00)

- a. The center control rods will be worth less [0.50] because the xenon concentration will be highest in regions of the core where neutron flux was highest during the previous operational phase [0.50].
- b. The peripheral control rods will be worth more [0.50] because the thermal flux will be pushed to the core edge by the xenon building in the core center [0.50].

REFERENCE

GE Reactor Theory, LIC-THEO, Rev. 2, pg. 24. 292006K108 292006K107 ..(KA's)

5. IHEORY OF NUCLEAR FOHER PLANT OPERATION: ELUIDS: AND IHERMODYNAMICS

ANSHER 5.11 (1.00)

- a. Burnout (Xe-135 absorption of a thermal neutron to become Xe-136 with a small thermal neutron cross section). [0.50]
- b. Decay (Xe-135 half-life to Cs-135 is 9.2 hours). [0.50]

REFERENCE

GE Reactor Theory, LIC-THEO, Rev. 2, pg. 23. 292006K104 ..(KA's)

ANSWER 5.12 (1.00)

d. [1.00 point]

REFERENCE

HTFF Text, Chp. 8, BWR THERMAL HYDRAULICS, Rev. 1, pg. 8-12. 293008K108 ..(Ka's)

ANSWER 5.13 (1.75)

- a. Core power is significantly [0.25] increased [0.25], because of its large rod worth [0.25].
- b. Void effect is small [0.25], because the increase voids affect only a small length of fuel [0.25].
- c. Only a small effect in axial power shape [0.25] because most of the bundle is controlled [0.25].

REFERENCE

GE Reactor Theory, LIC-THEO, Rev. 2, pg. 21. 292005K112 .. (KA's)

ANSWER 5.14 (1.00)

This ensures that the MCPR will be maintained greater than that required (Unit 1 TS 1.1.A) [0.50] even in the event that the motor-generator set speed controller causes the scoop tube positioner for the fluid coupler to move to the maximum speed position [0.50]. (Alternate word is acceptable for full credit).

REFERENCE

Unit 1 TS BASIS 3.5.K, Amendment No. 66, pg. 3.5/4.5-22. 293009K123 ..(KA's)

ANSHER 5.15 (2.00)

The value of R is the difference [0.50] between the calculated core reactivities [0.50] at the beginning of the operating cycle [0.50] and any time later in the cycle [0.30] where it would be greater than at the beginning [0.20].

REFERENCE

Unit 2 TS BASIS 3.3.A.1, Amendment No. 2, pg. 3.3/4.3-7 292002K110 ..(KA's)

ANSWER 5.16 (1.50)

- a. Life of the winding insulation would be (greatly) reduced. [0.50]
- b. The heat produced [0.50] by each acceleration or jog is much more than that produced (and dissipated) by the motor under full load [0.50].

REFERENCE

QOP 1000-4, RHRS SERVICE WATER SYSTEM STARTUP AND OPERATION, Section F.5.b, Rev. 9, pg. 2. 291005K106 ..(KA's)

ANSWER 5.17 (1.00)

a. [1.00 point]

5. __IHEORY_OF_NUCLEAR_POWER_PLANI_OPERATION: ELUIDS:AND_IHERMODYNAMICS

REFERENCE

Quad Cities Lesson Plan, LIC-THEO, REACTOR THEORY, Rev. 2, pgs. 9 & 11. 292008K103 ..(KA's)

ANSKER 5.18 (1.50)

- a. Driving flow is provided to the jet pumps from the recirculation pumps [0.50], while driven flow comes from the vessel downcomer region (e.g., dryer and separator drains plus feed flow). [0.50]
- b. Driven flow. [0.50]

REFERENCE

Quad Cities Lesson Plan, RECIRCULATION, LIC-0202-1, Rev. 1, pgs. RECIR-2 & RECIR-3.
290002K102 293006K102 ..(KA's)

ANSHER 6.01 41.500

o. bry True.

b e., True.

[0.50 point each]

REFERENCE

QOA 1300-7, RCIC LOCAL MANUAL OPERATION, Rev. 5, pg. 3 P&ID, Diagram of RCIC Piping, N-50, Rev. AB 217000K406 ..(KA's)

ANSWER 6.02 (1.50)

- a. ... because, the line could flash to steem (n temperature of 281 degrees F could be approached, which is the saturation temperature for 50 psig). [0.50]
- b. ... to obtain temperature reading with no reactor recirculation pump operating. [0.50]
- c. ... to prevent draining water from reactor vessel. [0.50]

REFERENCE

QOF 1000-5, SHUTDOWN COOLING STARTUP AND OPERATION, Rev. 13, pgs. 1 and 2. Quad Cities Lesson Plan, L%C-1000, RHR, Rev.2, pg. 8. IE Rpt No. 50-245/87019 (DRP), pg. 7. 205000K102 205000K101 205000K114 205000K115 ..(KA's)

ANSWER 6.03 (1.50)

- a. 5-Mode switch in refuel [0.20] With any control rod out [0.10] and fuel on any refueling hoist [0.10] and refueling platform near or over the vessel [0.10]
- b. Hoist overload. [0.50]
- c. High position limitations. [0.50]

REFERENCE

QFP 100-1, MASTER REFUELING PROCEDURE, Section E.1.b(3), Rev. 13, pg. 4. 234000K402 ..(KA's)

ANSHER 6.04 (1.00) or Oscillations or Installation

a. Vibration: [0.50]

b. 40 +/- 5%. [0.50]

REFERENCE

GOP 600-3, FLACING THE SECOND MAIN FEEDWATER REGULATOR IN SERVICE,
 Section A, Rev. 5, pg. 1
259001K307 ..(KA's)

ANSWER 6.05 (1.50)

- Loss of these fans may result in a positive pressure inside the reactor building [0.50]. Excessive building pressure would eventually cause one (of the six) reactor building blow off panels (refuel floor level) to be released [0.50].
- The reactor building supply fans [0.25] automatically trip at a building pressure of + 1.0 +/- 0.2 inches [0.25].

REFERENCE

QDA 5750-5, LOSS OF REACTOR BUILDING EXHAUST FARS, Sect. E, Rev. 7, pg. 2 288000K305 ..(KA's)

ANSHER 6.06 (1.00)

Buses 12 10.53 and 13 10.53 o Any thing of the fellowing buses: 11, 12, 13, 13.

REFERENCE

QOA 6100-1, Loss of Transformer 12(22) During Power Operation, Rev. 2, Section B, pg. 1. 262001K103 .. (KA's)

ANSWER 6.07 (0.75)

a. Group I b. Group II

Group III C.

[0.25 point for each item]

REFERENCE

QOA 6100-4, STATION BLACKOUT, Rev. 2, Section B.6, pg. 1. 223002K601 ..(KA's)

ANSWER 6.08 (4.00)

- (1). WILL NOT AUTO INJECT. a .
 - (2). Gland seal condensor will be unable to maintain a vacuum (because non-condensable gases would not be removed to maintain -10 inche, of water).
- b.
- (1). WILL NO? AUTO INJECT. The tank of high present of well present the (2). Unable to meet system lubristion requirement (during startum) and 1/4 speed operation below 2.000 and 1/w speed operation below 2,000 rpm)
- WILL (1) . "AUT" INJECT. C.
 - (2). It would be possible to drain the CCST into the torus,
- (1). MUTO INJECT. It would be possible to reduce agricum stone to The d.
 - (2). The desired system flow would be unable to be achieved (to eccomodate varying reactor pressurest of punting pressure the

[0.50 point for each item] (Correct alternate answers will be accepted). running; staying of low speed stry (LSS). REFERENCE

Road Cities Lesson Plan, LIC-2300-1, HPCI SYSTEM, Rev. 0, pgs. HPCI-9, HPCI-12, HPCI-13, HPCI-17, and HPCI-31.

Guad Cities SRO Requal Exam, Question 6.09, date unknown. 206000A214 206000K417 206000K413 206000K401

.. (KA's)

ANSWER 6.09 (1.00)

Loss of high speed protective relaying £0.403 and c'rect transfer trip [0.403 capability for incoming power lines (0403 and 0404). [0.20] (The Unit 2 generator trip scheme upon loss of these lines is necessary, because the Iowa-Illinois System cannot handle the output from both units).

REFERENCE

Loss to transmit / operate in EGC. [1,00]

QOA 8650-1, LOSS OF POWER TO MICROWAVE RADIO BUILDING, Section E.1, Rev. 1, pg. 2 262001K404 ..(KA's)

ANSWER 6.10 (2.50)

- a. False (operator needs to press SYSTEM INITIALIZE button).
- b. False (INSERT and WITHDRAWAL rod blocks are active).
- c. False (either steam flow or feedwater flow).
- d. False (at any power).
- False (except for rods withdrawn errors or rods in the current sequence step).
 [0.50 pt for each item]

REFERENCE

QOP 207-1, NEW ROD WORTH MINIMIZER OPERATION, Section E, Rev. 3, pgs. 1-2 201006K402 201006K401 201006K409 ..(KA's)

ANSWER 6.11 (2.00)

- a. Felse (auto start upon CS initiation signal) | TRAK.
- b. False (Shift Engineer can authorize this)
- c. False (2-6 hours)
- d. True

REFERENCE

QOP 2400-1, ACAD/CAM SYSTEM, Sections E and F.2.a, Rev. 7, pgs 2-3 223001K404 ..(KA's)

ANSWER 6.12 (1.00)

Drywell radiation monitors are not physically inside the drywell [0.75]; and are located inside sleeves OR shielded by the material around the detector [0.25].

REFERENCE

QOP 2400-1, ACAD/CAM SYSTEM, Section E.3, Rev. 7, pg. 2. 272000K119 ..(KA's)

ANSWER 6.13 (2.10)

- a. APRM (fixed high flux) [0.30] / less then equal to 15% rated neutron flux [0.10] in REFUEL or STARTUP HOT STANDBY Mode [0.10] of when
- b. APRM (variable) high flux) (FRP/MFLPD) (0.58 W + 62° (FRP/MFLPD) (0.16) in Run Mode [0.10] (maximum set point of 120% for core flow of greater than equal to 98E+6 lbm/hr)
- c. APRM INOPERABLE [0.30] due to:
 - (1). Less than 50% of assigned LPRM's in OPERATE. [0.10]
 - (2). APRM module unplugged. [0.10]
 - (3). APRM mode switch not in OPERATE. [0.10]
- d. APRM downscale [0.30] with an associated IRM Hi Hi or INOP [0.10] in Run Mode [0.10].

REFERENCE

QOP 700-4, APRM SYSTEM OPERATION, Section E.2, Rev. 5, pg. 2. 215005K402 ..(KA's)

ANSHER 6.14 (1.50)

a. False: (This is a normally closed valve).)

a by True.
b.e. False. (Both CS pumps will inject into both loops).

[0.50 point for each]

REFERENCE

QOA 1400-1, CS SYSTEM AUTOMATIC INITIATION, Sec. B.1, Rev. 8, pg. 1.

Quad Cities Lesson Plan, CS SYSTEM, LIC-1400, Rev.1, pgs. CS-5 and CS-6.

Quad Cities SRO Requal Exam, Question No. 6.08.d, Licensee's ref. pg.

1951G.

209001K408 209001K407 209001K405 ..(KA's)

ANSWER 6.15 (1.50)

- a. RCIC turbine area [0.15] high temperature [0.15] 200 +/- 5 degrees F [0.20].
- b. RCIC Steam Line high flow [0.30]
 300% of rated steam flow [0.10] with a turbine delay **C0.10] of 3 **L** second [0.10]
- c. Reactor vessel low pressure [0.30] 50 +/- 2 psig [0.10]

REFERENCE

QOP 1300-2, RCIC System Manual Startup, Section E.1, Rev. 6, pg. 1 259002K116 217000K107 ..(KA's)

ANSWER 6.16 (1.25)

Start the opposite train and draw air through the affected train [0.75] from the turbine building [0.25] via the train cross connect (0.25).

REFERENCE

QOP 1600-1, DRYWELL PRESSURE RELIEF THROUGH SBGTS, Sec. D.2, Rev. 5, pg. 1. 261000K40Z 261000G001 ..(KA's)

ANSWER 6.17 (0.50)

REFERENCE Fill System. [0.50] Jacky Fill, Key Fill, or Maintenance REFERENCE Fill System).

Lesson Plan No. LIC-1400, CS SYSTEM, Sec. B.13.a, Rev. 1, pg. CS-8. 209001K402 ..(KA's)

ANSWER

7.01 (1.50)

Turn off filter exhaust fens 1 and 2.

Turk on bypass exhaust fan.

- Determine if there is a fire in HVAC charcoal bed by looking for signs of excessive heat.
- If there is Andication of a fire, notify Shift Engineer.

Delita

- Contact Chemistry Supervisor.

[3 of 5 required at 0,50 Rts each]

REFERENCE

QDA 701-B Revision 1, Item B-5, pg. 2 294001K116 (KA's)

ANSWER 7.02 (1.50)

- Attempt to operate the drive in both positions (to determine the exact position).
- Verify normal drive water flow fluctuation.
- Increase drive water pressure and attempt to move the rod.
- If control rod does not move, consult TS (TS 3.3.A.2.a and TS 4.3.A.2).

[3 of 4 required at 0.50 pts each]

REFERENCE

QOA 300-2, Inability to Drive A Control Rod: Control Rod Stuck, Rev. 4 201001G014 ..(KA's)

ANSHER 7.03 (1.50)

- Announce in the Juden abdown Sytum that ca is bling excepted. - Manually Scham Menter, 1/ 1055, the.
- Leave techniter System & Automotice
as low flow bygans of possible.
- N. Ag the Charles Link Dispetiles,

Remove breathing air mask.

Isolate air line manifold supply valve. 4 possible.

Don an air pack.

Evacuate CR to shutdown/cooldown the unit. [3 of 4 required with each worth 0.50 point each]

REFERENCE

QOA 5750-13, TOXIC AIR OR SMOKE IN THE CONTROL ROOM, Rev. 5, pgs. 1-2 "IE Rpt No. 50-254/87019 (DRP) dtd 10-15-87, pg. 10 LER 87014, Rev. 0 294001K113 294001K111 ..(KA's) - QUA 010-5, PLANT OPORATION WITH THE CONTROL ROOM INACCESSIBLE, KIN, 4.

ANSWER 7.04 (3.00)

- As RPV water level is lowered, the driving head for natural 2. circulation is decreased [0.5]. The resultant reduction in core flow causes an increase in void fraction to add negative reactivity to the core [0.5].
- To continue attempts to achieve reactor shutdown [1.0].
- C. Flow stagnation water level;

lowest water level in the downcomer region, which can support natural circulation flow through the steam seperators with no control rod insertion from a 100% power control red pattern and no boron injection;

top of the active fuel [1.0]. (Any of these answers is acceptable for full credit).

REFERENCE

QGA 500-7, LEVEL/POWER CONTROL, Rev. 1, pg.3. Emergency Operating Procedures (QGAs) Lesson Plan, pg. 125. GE Emergency Operating Procedure Fundamentals, pg. C7-2. 295037K303 295037K209 295037K102 293008K134 293008K121 .. (KA's)

ANSWER 7.05 (3.00)

- a. to ensure that steam will not be discharged directly into the air space of the suppression chamber. [1.00]
- b. (1). At least 50 psig is needed to keep the relief valves open. (Emergency depressurization can be considered complete below this value). [1.00]
 - (2). This is the minimum number required to attain the depressurization rate needed to maintain peak cladding temperature less than 1500 degrees F. [1.00]

REFERENCE

QGA 500-2, EMERGENCY REACTOR PRESSURE VESSEL (RPV) DEPRESSURIZATION, Rev. 1, pg. 3.

GE Emergency Operating Procedure Fundamentals, pg. C2-1.
Emergency Operating Procedures (QGAs) Lesson Plan, pg. 97.
218000G007 295030K301 295030K208 295025A204 218000K302

.. (KA's)

ANSWER 7.06 (1.50)

- HPCI flow controller (2340-1)
- Off-gas panel (901-54 (902-54))
- process radiation monitor panel (901-10 (902-10))
- RPIS, rod select, RWM
- feedwater level control system
- process computer
- control room panels 90X-3, 5, 6, and 7
- process radiation recorder (panel 912-4)
- PCI relay panel (901-17 (902-17))
- SRM, IRM, APRM recorders
- RCIC flow controller and testable check valve
- YARWAY narrow range level instrumentation
- main steam relief and safety valve acoustic position monitors (Alternate correct answers will be acceptable).

 [Any 5 worth 0.30 point each]

REFERENCE

QOA 6800-3, 120/240 VAC ESSENTIAL SERVICE BUS FAILURE, Rev. 8, pgs. 3 & 4. Quad Cities SRO Repl Exam, Question No. 7.01.b, Ref. No. N-NOLR-SRO-C-85, 262002K305 262002K303 262002K302 262002K301 ..(KA's)

ANSWER 7.07 (2.50)

- Reduce loads as necessary.
- Trip EGC and return to MANUAL flow control.
- Reduce recirculation flow at least 20% speed.
- Place RWM mode switch in the BYPASS position. (QOP 207-2 is not required to be completed.)
- Insert control rods starting at the present location in sequence and work backwards.
- Any rods inserted should be continuously inserted all the way to position 00.
- Check flow control line (FCL) and continue control rod insertion until the reactor is under the 100% FCL.
- Monitor reactor power and water level.
- Verify 'A' heater string isolates and bypass opens.
- If reactor power is low enough to permit operation in two heater strings (Note: it will be) prevent heat bypass opening by putting bypass valve control switch to PULL-TO-STCP. As soon as "A" heater level is reduced, return switch to normal. Notify Shift Engineer if switch position is off normal.

[5 of 10 required at 0.50 pt each]

REFERENCE

QOA 3500-1, LOSS OF FEEDWATER HEATERS, Rev. 4, pg. 2 Feedwater Heater LIC-3200-2, Rev. 1, pg. 24 P&ID M-61, Diagram of Extraction Steam Piping, Rev. H 259001G014 ..(KA's)

ANSWER 7.08 (1.00)

- a. Control rod with an inoperable accumulator is inserted 'full in.'
 (0.5)
- b. Its directional control valves are electrically disarmed. (0.5)

REFERENCE

QOP 300-10, CRD SYSTEM ACCUMULATOR GAS DISCHARGING, Section E.2, Rev. 4, pg. 1
Technical Specification 3.3.D
201001G001 ..(KA's)

ANSHER 7.09 (1.50)

a. 60 +/- 6 minutes
b. 3 +/- 0.5 minutes
c. immediately TRIP unit
[0.5 pts each]

REFERENCE

QDA 5300-1, LOSS OF STATOR COOLING, Section C, Revision 4, pg. 1 245000K605 245000K303 ..(KA's)

ANSWER 7.10 (1.00)

The release rate of radioactive iodine increases due to the iodine spiking phenomenon.

REFERENCE

QOA 5400-1, Off-Gas Explosion - Recombiner and Filters Bypassed, Section E, Rev. 6, pg. 3 271000K102 ..(KA's)

ANSWER 7.11 (1.00)

b. MORE THAN. (Unit 1 factor is 0.70; and Unit 2 factor is 0.84).

C SAME AS (Unit 1 and Unit 2 set points all are reduced by 3.5%).

REFERENCE

Unit 1 TS License Condition, Item K, Am. 73 (6/30/81), pg. 6, Unit 2 TS 3.6.H.3., Amendment No. 95, pg. 3.6/4.6-5a. 202001G001 ..(KA's)

ANSWER 7.12 (1.00)

Structural damage may occur to the condenser (if level is exceeded and additional structural support is not installed). (1:0)

REFERENCE Circulation water pumps are running [1.0].

GOP 201-1, Draining The Reactor Vessel and Recirculation Loops, Section F.2.a, Rev. 4, pg. -2 3
245000G001 ..(KA's)

ANSWER 7.13 (1.00)

Electrical disarm is preferred because drive water does not cool [0.5] and it minimizes crud accumulation in the drive [0.5].

REFERENCE

QOP 300-7, CRD System, Drive Disarmament, Rev. 1
QOP 300-8, CRD System, Hydraulic Control Module Isolation, Rev. 7
Unit 2 TS Basis 3.3.4.2, Amendment No. 21, pg. 3.3/4.3-7
201003G001 201003G006 ..(KA's)

ANSWER 7.14 (1.50)

- a. Reactor is in Cold Shutdown Condition.
- b. All control rods are fully inserted.
- c. Core loading is limited (to that which can be made subcritical in the most reactive condition during the operating cycle with the strongest operable control rod in its full out position and all other operable rods fully inserted). (Alternate wording is acceptable).

[0.50 pt each]

REFERENCE

QOP 1100-1, Standby Operation of SLCS, Section E.1, Rev. 6, pg. 1 Units 1 and 2 TS 3.4.A 211000G005 211000G001 ..(KA's)

7.15 (1.50) ANSWER

re-pressurization

biofouling (other pessible answers are "July" and pluying") b.

shell C.

(0.5 pts each)

REFERENCE

QOP 1000-5, Shutdown Cooling Startup and Operation, Sections D.6, D.8, and E.2, Rev. 13, pg. 2-3

ANSWER 7.16 (2.00)

- RPV water level must be reduced to verify proper level instrument 8. response. [1.0]
- To ensure adequate core cooling. [1.0] (Correct definitions of Maximum Core Uncovery Time Limit will also be given full credit).

REFERENCE

QGA 500-6, REACTOR PRESSURE VESSEL FLOODING, pg. 15. GE Emergency Operating Procedure Fundamentals, pg. C6-6. Emergency Operating Procedure (QGAs) Lesson Plan, pg. 119. 295031K101 295024K305 216000K501 216000K324 295031K201 .. (KA's)

ANSWER 8.01 (1.00)

a. [1.00]

REFERENCE

QGA-00, QGA MANUAL PREFACE, Rev. 3, pgs. 1-3 295031K305 295026G005 295026A202 ..(KA's)

ANSWER 8.02 (1.00)

a. [1.00]

REFERENCE

QAP 500-9, PREVENTATIVE MAINTENANCE, Sec. C.4.a, Rev. 2, pg. 2, 294001K117 294001K106 ..(KA's)

ANSWER 8.03 (1.00)

- the blowdown area would increase. [0.50]
- eliminate the capability of reflooding the core. [0.50]

REFERENCE

Unit 1 TS BASIS 3.6.G, no Amendment No. listed, pg. 3.6/4.6-23. Unit 2 TS BASIS 3.6.G, Amendment No. 95, pg. 3.6/4.6-13. Quad Cities SRO Repl Exam, Question 8.10.a, date unknown. 202001G006 ..(KA's)

ANSWER 8.04 (1.00)

b. [1.00]

REFERENCE

IE Rpt No. 50-254/87019 (DRF) dtd 10-15-87 for closing violation 254/87008-01, pg. 3 10 CFR 50.72 290003G003 ..(KA's)

ANSWER 8.05 (1.50)

- Acts as a backup to the main stop valve closure scram [0.50] such that the pressure and neutron flux transient is less severe [0.50].
- When not in the 'RUN' mode. [0.50]

REFERENCE

Quad Cities Lesson Plan, REACTOR PROTECTION SYSTEM, LIC-0500-1, Rev. 1, pg. 30.

Unit 2 TS BASIS, Amendment No. 86, pg. 3.1/4.1-3.

Quad Cities, SRO SRO Requal Exam, N-NOLR-SRO-B-85, Question No. 8.05,

Items a & c.

212000G006 212000K412 212000K111 ..(KA's)

ANSWER 8.06 (1.00)

7.5 +/- 2.5 gpm [0.50] 200 +/- 10 degrees F [0.50]

REFERENCE

Unit 1 TS BASIS, no Amendment No. listed, pg. 3.2/4.2-8. 239001K114 ..(KA's)

ANSWER 8.07 (1.50)

a. False (1/4 inch)

b. True

c. False (99% efficiency)

[0.50 point each]

REFERENCE

Unit 2 TS BASIS 4.7.C, Amendment No. 34, pg. 3.7/4.7-17. 290001K104 290001G006 ..(KA's)

ANSWER 8.08 (1.00)

Lowering the reactor vessel low water level scram would increase the capability requirement of each of the ECCS components. [1.00]

(**** CATEGORY 8 CONTINUED ON NEXT PAGE ****)

B. . . ADMINISTRATIVE PROCEDURES. CONDITIONS. AND LIMITATIONS

REFERENCE

Unit 1 TS BASIS, no Amendment No. listed, pg. 1.1/2.1-14. 259002G006 ..(KA's)

ANSWER 8.09 (1.00)

... to anticipate actuation of any Engineered Safety Feature. [1.00]

REFERENCE

QAP 900-5, IN-FLANT RADIOGRAPHY--REQUIRED NOTIFICATIONS AND ACTIONS, Rev. 2, Section C.1, ... 50-265 LER 86018, Rev. 0 294001K103 ...(KA's)

ANSWER 8.10 (1.50)

- Severe weather conditions threaten safe transport.
- A significant radiological hazard would be encountered.
- There is a security threat occurring which would have an adverse impact on the personnel while leaving the site.
- A condition similar to these in magnitude which, in the opinion of the Station Director, CCC Director, or Manager of Emergency Operations, would adversely affect the site personnel.

[0.50 point each for any 3 items]

REFERENCE

GSEP, Section 6.4.3.1, Rev. 6, pg. 6-35 2940014116 ..(KA's)

BRESITOR	- YALUE	REFERENCE_
5.01 5.02 5.03 5.04 5.05 5.06 5.07 5.08 5.09 5.10 5.11 5.12 5.13 5.14 5.15 5.16 5.17 5.18	1.00 3.00 1.00 1.00 1.00 2.00 1.25 1.50 1.00 2.00 1.75 1.00 2.00 1.50	ZZZ0000001 ZZZ0000003 ZZZ0000004 ZZZ0000006 ZZZ0000007 ZZZ0000007 ZZZ00000010 ZZZ0000011 ZZZ0000011 ZZZ0000011 ZZZ0000013 ZZZ0000014 ZZZ0000015 ZZZ0000016 ZZZ0000017 ZZZ0000017 ZZZ0000017
6.01 6.02 6.03 6.04 6.05 6.06 6.07 6.08 6.09 6.10 6.11 6.12 6.13 6.14 6.15 6.16 6.17	1.50 1.50 1.50 1.00 1.50 1.00 2.50 2.00 1.00 2.10 1.50 1.50	ZZZ0000019 ZZZ0000020 ZZZ0000021 ZZZ0000023 ZZZ0000024 ZZZ0000025 ZZZ0000025 ZZZ0000027 ZZZ0000027 ZZZ0000030 ZZZ0000031 ZZZ0000031 ZZZ0000033 ZZZ0000033 ZZZ0000034 ZZZ0000035
	26.10	
7.01 7.02 7.03 7.04 7.05 7.06 7.07 7.08 7.09 7.10 7.11 7.12 7.13 7.14	1.50 1.50 3.00 3.00 1.50 2.50 1.00 1.50 1.00 1.00	ZZZ0000036 ZZZ0000037 ZZZ0000038 ZZZ0000040 ZZZ0000041 ZZZ0000042 ZZZ0000043 ZZZ0000044 ZZZ0000045 ZZZ0000046 ZZZ0000047 ZZZ0000048 ZZZ0000049

PESTION	_YALUE	REFERENCE_
7.15 7.16	1.50 2.00 26.00	ZZZ0000050 ZZZ0000051
8.01 8.02 8.03 8.04 8.05 8.06 8.07 8.08 8.09 8.10 8.11 8.12 8.13 8.14 8.15 8.16 8.17 8.18 8.19 8.20 8.21 8.22	1.00 1.00 1.00 1.00 1.50 1.00 1.50 1.00 1.0	ZZZ0000052 ZZZ0000053 ZZZ0000055 ZZZ0000056 ZZZ0000057 ZZZ0000059 ZZZ0000060 ZZZ0000061 ZZZ0000061 ZZZ0000063 ZZZ0000065 ZZZ0000065 ZZZ0000065 ZZZ0000066 ZZZ0000067 ZZZ0000067 ZZZ0000067 ZZZ0000070 ZZZ0000070 ZZZ0000071 ZZZ0000072 ZZZ0000073

DESILON	_YALUE	REFERENCE_
5.01 5.02 5.03 5.04 5.05 5.06 5.07 5.08 5.09 5.10 5.11 5.12 5.13 5.14 5.15 5.16 5.17	1.00 3.00 1.00 1.00 2.00 1.25 1.50 1.00 2.00 1.75 1.00 2.00 1.50 1.50	ZZZ0000001 ZZZ0000003 ZZZ0000004 ZZZ0000006 ZZZ0000007 ZZZ0000008 ZZZ0000009 ZZZ0000010 ZZZ0000011 ZZZ0000011 ZZZ0000013 ZZZ000013 ZZZ0000015 ZZZ0000015 ZZZ0000016 ZZZ0000016 ZZZ0000017 ZZZ0000018
6.01 6.02 6.03 6.04 6.05 6.06 6.07 6.08 6.09 6.10 6.11 6.12 6.13 6.14 6.15 6.16 6.17	1.50 1.50 1.50 1.00 1.50 1.00 0.75 4.00 1.00 2.50 2.00 1.50 1.50 1.50 1.50	ZZZ0000019 ZZZ0000020 ZZZ0000021 ZZZ0000023 ZZZ0000024 ZZZ0000025 ZZZ0000026 ZZZ0000027 ZZZ0000029 ZZZ0000030 ZZZ0000031 ZZZ000031 ZZZ000032 ZZZ000033 ZZZ000033 ZZZ000033
7.01 7.02 7.03 7.04 7.05 7.06 7.07 7.08 7.09 7.10 7.11 7.12 7.13 7.14	1.50 1.50 3.00 3.00 1.50 2.50 1.00 1.50 1.00 1.00	ZZZ0000036 ZZZ0000037 ZZZ0000038 ZZZ0000039 ZZZ0000040 ZZZ0000041 ZZZ0000042 ZZZ0000043 ZZZ0000044 ZZZ0000045 ZZZ0000047 ZZZ0000047 ZZZ0000048 ZZZ0000049

UESIION	TAPFAE	REFERENCE_
7.15	1.50 2.00 26.00	ZZZ0000050 ZZZ0000051
8.01 8.02 8.03 8.04 8.05 8.06 8.07 8.08 8.09 8.10 8.11 8.12 8.13 8.14 8.15 8.16 8.17 8.18 8.19 8.20 8.21 8.22	1.00 1.00 1.00 1.00 1.50 1.00 1.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.25 1.50 1.00 1.25 1.50 1.00 1.25	ZZZ0000052 ZZZ0000054 ZZZ0000055 ZZZ0000057 ZZZ0000057 ZZZ0000059 ZZZ0000060 ZZZ0000061 ZZZ0000061 ZZZ0000063 ZZZ0000065 ZZZ0000065 ZZZ0000065 ZZZ0000067 ZZZ0000067 ZZZ0000067 ZZZ0000070 ZZZ0000070 ZZZ0000071 ZZZ0000072 ZZZ0000073

B. - ADMINISTRATIVE PROCEDURES. CONDITIONS. AND LIMITATIONS

ANSWER 8.11 (1.00)

- It is impractical to modify the equipment or procedure to allow testing in a normal alignment.
- The test is per a regular procedure.
- An operator is available to return the switch immediately when the test is completed or if interrupted.
 [0.50 point each for any 2 items]

REFERENCE

QAP 300-2, CONDUCT OF SHIFT OPERATIONS, Sec. C.8.b(3), Rev. 19, pg. 5. 294001K106 ..(KA's)

ANSWER 8.12 (1.00)

c. [1.00 point]

REFERENCE

QAP 300-22, WATER CHEMISTRY CONTROL, Sec. C, Rev. 4. 294001A114 294001A116 ..(KA's)

ANSHER 8.13 (1.00)

- ^ will consider initiating training of shift personnel. [0.50]

- rensure the Shift Engineer receives an authorized copy of the temporary procedure. [0.50]

REFERENCE AP 300-27, Revision 1, OPERATION DEPARTMENT PRICEDURE REVISION TRAINING

PROCEDURES, Sec. C.6, Rev. 17, pg. 2. 294001K106 ..(KA's)

To training is determined to be necessary the SCRE will but of named of the appropriate but of named of having the appropriate but the propriate of the series of the series that the propriate of the series of the series that the propriate the training is amplified within one (1) week.

Herming was done the scale will file list of name of preserved training.

8.__ADMINISTRATIVE_PROCEDURES._CONDITIONS. AND_LIMITATIONS

ANSWER 8.14 (2.00)

a. False.

b. False.

c. False.

d. True.

[0.50 point each]

REFERENCE

QAP 1120-6, ENTERING A LOCKED HIGH RADIATION AREA WITHOUT A TIMEKEEPER, Sec. C, Rev. 9, pgs. 2 & 3, 94001K103 ..(KA's)

ANSWER 8.15 (0.50)

20 (or less) minutes. [0.50]

REFERENCE

QAP 1170-14, FIRE WATCH RESPONSIBILITIES, Sec. C.4, Rev. 1, pg. 1. 294001K116 ..(KA's)

ANSWER 8.16 (1.00)

be within 10 minutes of the control room. [0.50]
 be able to be reached immediately. [0.50]

REFERENCE

QAP 300-1, OPERATIONS DEPARTMENT ORGANIZATION, Sec. C.3.b, Rev. 15, pg. 2. 2940014103 ..(Ka's)

ANSWER 8.17 (1.25)

This margin is demonstrated by full withdrawal of the strongest rod [0.50] and partial withdrawal of an adjacent rod [0.50] to exceed a calculated margin (R + 0.25% delta K) [0.25].

B. __ADMINISTRATIVE_PROCEDURES._CONDITIONS.

REFERENCE

QOP 300-14, CONTROL ROD OR CRD MAINTENANCE, Sections C.6 & F.1, Rev. 7. Unit 2 TS BASIS, 3.3.4.1, Amendment No. 21, pg. 3.3/4.3-7. 201001G006 ..(KA's)

ANSWER 8.18 (1.50)

To assure that the maximum in sequence individual control rod or control rod segments which are withdrawn [0.50] could not be worth enough to cause the rod drop accident design limit (280 cal/gm) to be exceeded [0.50], if the rods were to drop out of the core in a manner defined for the rod drop accident [0.50]. Alternate wording is acceptable.

REFERENCE

Unit 1 TS BASIS 3.3.B.3, pg. 3.3/4.3-11, No Amendment No. listed. 215004G006 ..(KA's)

ANSWER 8.19 (1.00)

c. [1.00]

REFERENCE

QAP 300-14, EQUIPMENT CUT-DF-SERVICE, Sec. C.13, Rev. 14, pg. 3. 294001K102 294000K101 ..(KA's)

ANSWER 8.20 (1.00)

a. 30 +/- 5 %

b. 30 +/- 5 days

[0.50 point for each item]

REFERENCE

QAP 300-19, REVIEW OF ACTIVE OUT-OF-SERVICES, Sec. C.2, Rev. 7, pg. 1, 294001K102 ..(KA's)

ANSHER 8.21 (1.50)

a. Station Manager

b. Shift Foreman.

c. Radwaste Foreman.

[0.50 point each]

REFERENCE

QAP 1180-17, FIRE PROTECTION PROGRAM, Sections C.b(1), C.b(5), & C.b(6), Rev. 1, pgs. 2 & 4.
294001K116 ..(KA's)

ANSWER 8.22 (0.50)

REFERENCE provided by the fail to

QAP 1150-6, ACCESS TO CONFINED SPACES, Sec. C.2.a, Rev. 4, pg. 1. 294001K114 ..(KA's)

(**** END OF CATEGORY 8 ****)
(****** END OF EXAMINATION ********)

· BEACIOR_IHEORY_EORMULAS:

$$P = \frac{\sum \delta_{th} V}{3.12 \times 10^{10} \text{ fissions/sec}}$$

$$P_{th} = \frac{1}{2 - - - 2} = e^{-(B^2 L_{th}^2)}$$
 $1 + (B L_{th}^2)$

$$m = \frac{1}{1-K} = \frac{C_{final}}{C_{initial}}$$

$$\alpha_{T} = \frac{1}{f} \frac{\Delta f}{\Delta t} + \frac{1}{p} \frac{\Delta p}{\Delta t} - B^{2} \frac{\Delta L_{f}^{2} + \Delta L_{th}^{2}}{\Delta t} + \frac{2}{\Delta t}$$

$$\rho = \frac{1}{\tau} + \frac{\overline{G}}{1 + \tau}$$

$$\Delta p = \ln \frac{\kappa_{\text{final}}}{\kappa_{\text{initial}}}$$

$$\tau = \frac{1}{\rho}$$

$$P_1 = P_0 \frac{\overline{R}_{eff} - P_0}{\overline{R}_{eff} - P_1}$$

DATA_SHEET

THERMODYNAMICS_AND_ELVID_MECHANICS_EORMULAS:

$$\eta = \frac{\dot{o}_{in}}{\dot{o}_{in}}$$

$$\Delta T_{\text{di}} = \frac{\Delta T_{\text{din}}}{\Delta T_{\text{din}}} - \frac{\Delta T_{\text{dout}}}{\Delta T_{\text{din}}}$$

$$= \frac{\Delta T_{\text{din}}}{\Delta T_{\text{din}}} - \frac{\Delta T_{\text{dout}}}{\Delta T_{\text{dout}}}$$

$$T_{c1} - T_{ps} = \frac{Gr^2}{4k}$$

$$\dot{\hat{\mathbf{D}}} = \frac{\mathbf{A} \triangle \mathbf{T}_{total}}{\triangle \mathbf{X}_{a}} - \frac{\triangle \mathbf{X}_{n}}{\triangle \mathbf{X}_{b}} - \frac{\triangle \mathbf{X}_{n}}{\mathbf{K}_{a}} \times \frac{\triangle \mathbf{X}_{n}}{\mathbf{K}_{b}}$$

$$\dot{Q} = \frac{2 \pi L \Delta T}{1 + \frac{\ln R_2 / R_1}{K} + \frac{\ln R_3 / R_2}{K_3}}$$

$$\eta = \frac{(h_{in} - h_{out})real}{(h_{in} - h_{out})ideal}$$

$$P_1V_1 = P_2V_2$$
 $T_1 = T_2$

$$G = \frac{\sum_{f \in h} f}{B.8 \times 10^{9}}$$

GENIBIEUGAL_PUMP_LAWS:

$$\frac{N_1}{N_2} = \frac{\dot{m}_1}{\dot{m}_2} \qquad \frac{(N_1)^2}{(N_2)^2} = \frac{H_1}{H_2} \qquad \frac{(N_1)^3}{(N_2)^3} = \frac{P}{P}$$

BADIATION AND CHEMISIRY EDRMULAS:

 $1 W = 3.12 \times 10^{10}$ fissions/sec

 $\sigma = 0.1714 \times 10^{-8} \text{ Btu/hr ft}^2 \text{ R}^4$

1 inch = 2.54 cm

 $g_c = 32.2 \text{ 1bm-ft/1bf-sec}^2$ $c^2 = 931 \text{ MEV/AMU}$

$$R/hr = 6CE/d^{2}$$

$$I_{x} = I_{0} e^{-mx}$$

$$C_{1}V_{1} = C_{2}V_{2}$$

$$G = \underbrace{Dilution_{Rate}}_{Volume}$$

$$I = I_{0} \underbrace{(i)}_{10}^{n}$$

$$C = C_{0} e^{-Gt}$$

$$A = A_{0} e^{-\lambda t}$$

$$A = \lambda N$$

CO

DNYERSIDNS:	
$1 \text{ gm/cm}^3 = 62.4 \text{ lbm/ft}^3$	Density of water $(20 \text{ C}) = 62.4 \text{ lbm/ft}^3$
1 gal = 8.345 lbm	
1 ft ³ = 7.48 gal	Avogadro's Number = 6.023 x 10 ²³
1 gal = 3.78 liters	Heat of Vapor (H20) = 970 Btu/1bm
1 1bm = 454 grams	Heat of Fusion (ICE) = 144 Btu/lbm
e = 2.72	1 AMU = 1.66 × 10 ⁻²⁴ grams
$\pi = 3.14159$	Mass of Neutron = 1.008665 AMU
1 KW = 738 ft-1bf/sec	Mass of Proton = 1.007277 AMU
1 KW = 3413 Btu/hr	Mass of Electron = 0.000549 AMU
1 HP = 550 ft-1bf/sec	One atmosphere = 14.7 psia = 29.92 in. Hg
1 HP = .746 KW	°F = 9/5 °C + 32
1 HP = 2545 Btu/hr	°C = 5/9 (°F - 32)
1 Btu = 778 ft-1bf	•R = •F + 460
1 MEV = 1.54 x 10-16 Btu	°K = °C + 273
$h = 4.13 \times 10^{-21} \text{ M-sec}$	

C = 3 x 10⁸ m/sec

AXEBAGE IHERMAL CONDUCTIVITY TKY

Material	K
Cork	0.025
Fiber Insulating Board	0.028
Maple or Dak Wood	0.096
Building Brick	0.4
Window Glass	0.45
Concrete	0.79
1% Carbon Steel	25.00
1% Chrome Steel	35.00
Aluminum	118.00
Copper	223.00
Silver	235.00
Water (20 psia, 200 degrees F)	0.392
Steam (1000 psia, 550 degrees F)	0.046
Uranium Dioxide	1.15
Helium	0.135
Zircaloy	10.0

MISCELLANEOUS_INEORMATION:

$$E = mc^{2}$$

$$KE = 1/2 mv^{2}$$

PE = mgh

Geometric Object	Area	Volume
Triangle	A = 1/2 bh	111111111111111111111111111111111111111
Square	A = 5 ²	111111111111111111111111111111111111111
Rectangle	A = L x W	111111111111111111
Circle	A = πr ²	111111111111111111
Rectangular Solid	A = 2(LxW + LxH + WxH)	V=L×W×H
Right Circular Cylinder	$A = (2 \pi r^2) h + 2(\pi r^2)$	V = πr ² h
Sphere	A = 4 mr ²	$V = 4/3 \ (\pi r^2)$
Cube	111111111111111111111111111111111111111	V = 5 ³

DAIA_SHEET

MISCELLANEOUS_INEORMATION_(continued):

				10 (CFR 20 Apr	pendix B	
				Table	• I	Tabl	e II
Material	Half-Life	Gamma Energy MEV per Disintegration		Col I Air uc/ml	Col II Water uc/ml	Col I Air uc/ml	Col II Water uc/ml
Ar-41	1.84 h	1.3	Sub	2×10-6		4×10 ⁻⁸	
Co-60	5.27 y	2.5	5	3×10 ⁻⁷	1×10 ⁻³	1×10 ⁻⁸	5×10 ⁻⁵
1-131	B.04 d	0.36	5	9×10 ⁻⁹	6×10 ⁻⁵	1×10-10	3×10 ⁻⁷
Kr-85	10.72 y	0.04	Sub	1×10 ⁻⁵		3×10 ⁻⁷	
Ni -65	2.52 h	0.59	S	9×10 ⁻⁷	4×10 ⁻³	3×10 ⁻⁸	1×10-4
Pu-239	2.41×10 ⁴ y	0.008	S	2×10 ⁻¹²	1×10 ⁻⁴	×10 ⁻¹⁴	5×10-6
Sr-90	29 y		S	1×10 ⁻⁹	1×10 ⁻⁵	3×10 ⁻¹¹	3×10 ⁻⁷
Xe-135	9.09 h	0.25	Sub	4×10-6		1×10 ⁻⁷	
	le radionucl es not decay ous fission	ide with T _{1/2} > by alpha or 2	2 hr	3×10 ⁻⁹	9×10 ⁻⁵	**10 ⁻¹⁰	3×10-6

Neutron Energy (MEV)	Neutrons per cm ² equivalent to 1 rem	Average thus to deliver					
thermal 0.02 0.5	970×10 ⁶ 400×10 ⁶ 43×10 ⁶ 24×10 ⁶	670 280 (neutrons) 30					

Energy (MEV)	Water	Concrete	Iron	Lead
0.5	0.090	0.21	0.63	1.7
1.0	0.067	0.15	0.44	0.77
1.5	0.057	0.13	0.40	0.57
2.0	0.048	0.11	0.33	0.5
2.5	0.042	0.097	0.31	0.49
3.0	0.038	0.088	0.30	0.47

5.0376

0.016395 0.016406 0.016417 0.018428 0.016440

001641

1.8487 1.8448 1.8409 1.8371 1.8333

166.8 162.8 164.8 164.8 164.8

Table 1. Saturated Steam: Temperature Table - Continued

		Table 1	Satura	ted Stear	n: Temper	eture T	able-Cor	ntinued	100		
Temp Fahr	Abs Press Lb per Sq in	Sat Liquid	Evap	Sat Vapor Vg	Sat Liquid	Evap - h tg	Sat Vapor hg	Sat Liquid St	Entropy Evap Sig	Sat Vapor Sg	Temp fahr 1
180 f 162 f 164 f 186 f 186 f	7.5110 7.850 8.203 8.568 8.947	0.016510 0.016522 0.016534 0.016547 0.016559	50.21 48.172 46.232 44.383 42.621	50 22 48 189 46 249 44 400 42 638	148 00 150 01 152 01 154 02 156 03	990.2 989.0 987.8 986.5 985.3	1138 2 1139 0 1139 8 1140 5 1141 3	0.2662 0.2662 0.2694 0.2725 0.2756	1.5480 1.5413 1.5346 1.5279 1.5213	1.8111 1.8075 1.8040 1.8004 1.7969	182 0 182 0 184 0 186 0 188 0
194.6 192.5 194.5 196.5	9.340 9.747 10.168 10.605 11.058	0.016577 0.016585 0.016598 0.016611 0.016524	40 941 39 337 37 808 36 348 34 954	40.967 39.354 37.824 36.364 34.970	154 04 160 05 162 05 164 06 166 08	984 1 982 8 981 6 980 4 979 1	1142 1 1142 9 1143 7 1144 4 1165 2	0.2787 0.2818 0.2848 0.2879 0.2910	1.5148 1.5082 1.5017 1.4952 1.4888	1.7934 1.7900 1.7865 1.7831 1.7798	190.5 192.5 194.5 194.5 196.5
296 8 294 8 298 0 212 8 218 8	11 526 12 512 13 568 14 696 15 901	0.016637 0.018664 0.016691 0.016719 0.016747	33 622 31 135 28 862 26 782 24 878	33 639 31 151 28 878 26 799 24 894	168.09 172.11 176.14 180.17 184.20	977 9 975 4 972 8 970 3 967 8	1146.0 1147.5 1149.0 1150.5 1152.0	0.2940 0.3901 0.3761 0.3171 0.3171	1 4824 1 4697 1 4571 1 4447 1 4323	1.7764 1.7698 1.7632 1.7568 1.7505	296.6 264.6 266.0 212.6 216.0
278 8 224 8 228 0 237 9 236 8	17 186 18 556 20 015 21 567 23 216	0.016775 0.016805 0.016834 0.016864 0.016895	23 131 21 529 20 056 18 701 17 454	23 148 21 545 20 073 18 718 17 471	188 23 192 27 196 31 200 35 204 40	965.2 962.6 960.0 957.4 954.8	1153 4 1154 9 1156 3 1157.8 1159 2	0.3241 0.3300 0.3359 0.3417 0.3476	1 4201 1 4081 1 3961 1 3842 1 3725	1 7442 1 7380 1 7320 1 7260 1 7201	278.8 224.0 228.0 237.0 236.0
248 8 244 9 248 0 252 8 256 8	24 968 26 826 28 796 30 883 33 091	0.016926 0.016958 0.016990 0.017022 0.017055	16 304 15 243 14 264 13 358 12 520	16 321 15 260 14 281 13 375 12 538	208 45 312 50 216 56 220 67 224 69	952 1 949 5 946 8 944 1 941 4	1160 6 1162 0 1163 4 1164 7 1166 1	0.3533 0.3591 0.3649 0.3706 0.3763	1 3609 1 3494 1 3379 1 3266 1 3154	17142 17085 17028 16977 16917	248 8 246 8 248 8 252 8 256 8
260 8 264 0 268 0 272.0 276 0	35 427 37 894 40 500 43 249 46 147	0.017089 0.017123 0.017157 0.017157 0.017153	11 745 11 025 10 358 9 738 9 162	11 762 11 042 10 375 9 755 9 180	228 76 232 83 236 91 240 99 245 08	938.6 935.9 933.1 930.3 927.5	1167.4 1168.7 1170.0 1171.3 1172.5	0 3819 0 3876 0 3937 0 3987 0 4043	1.3043 1.2933 1.2823 1.2715 1.2607	1 6862 1 6808 1 6755 1 6702 1 6650	250 8 254 8 254 8 272 5 275 8
288 8 284 8 288 0 282 8 296 6	49 200 52 414 55 795 59 350 63 084	0.017264 0.01730 0.01734 0.01738 0.01741	\$ 627 8 1280 7 6634 7 2301 6 8259	8 644 8 1453 7 6807 7 2475 6 8433	249 17 253 3 257 4 261 5 265 6	924 6 921 7 918 8 915 9 913 0	1173 8 1175 0 1176 2 1177 4 1178 6	0 4098 0 4154 0 4208 0 4263 0 4317	1.2501 1.2395 1.2290 1.2186 1.2082	1 6599 1 6548 1 6498 1 6449 1 6400	280 5 284 5 288 6 282 8 286 8
300. 6 304. 6 372. 6 372. 6	67.005 71.119 75.433 79.953 84.688	0.01745 0.01749 0.01753 0.01753 0.01761	6 4483 6 0955 5 7655 5 4566 5 1673	6.4658 6.1130 5.7830 5.4742 5.1849	269 7 273 8 278 0 282 1 286 3	910 0 907 0 904 0 901 0 897 9	1179.7 1180.9 1187.0 1183.1 1184.1	0 4372 0 4426 0 4479 0 4533 0 4586	1.1979 1.1877 1.1776 1.1676 1.1576	1 6351 1 6303 1 6756 1 6709 1 6162	386 6 384 6 388 6 317 8 316 8
12% # 124 # 124 # 121 # 132 # 236 #	89 643 94 825 100 245 105 907 111 820	0.01766 0.01770 0.01774 0.01779 0.01783	4.8961 4.6418 4.4030 4.1788 3.9681	4 9138 4 6595 4 4708 4 1966 3 9859	290.4 294.6 298.7 302.9 307.1	894.8 891.6 888.5 885.3 822.1	1185 3 1186 5 1187 2 1188 2 1189 1	0.4640 0.4692 0.4745 0.4798 0.4850	11477 11378 11280 13183 11086	1.6116 1.6071 1.6075 1.5981 1.5936	379 6 324 9 375 0 337 6 236 8
344.8 344.8 348.8 032.8	117 992 124 430 131 142 138 138 145 424	0.01787 0.01792 0.01797 0.01801 0.01806	3 7699 3 5834 3 4078 3 2423 3 0863	3 7878 3 6013 3 4258 3 2603 3 1044	311 3 315 5 319 7 323 9 328 1	878.8 875.5 872.2 868.9 865.5	1190 1 1191 0 3191 1 1192 7 1193 6	0 4902 0 4954 0 5006 0 5058 0 5110	1 0990 1 0894 1 0799 1 0705 1 0611	1.5892 1.5849 1.5806 1.5763 1.5721	348 0 344 0 348 0 357 6 354 8
364.8 364.8 364.8 372.8 375.1	153 010 162 903 169 113 177 648 186 517	0 01811 0 01816 0 01821 0 01826 0 01831	2 9392 2 8007 2 6691 2 5451 2 4279	2 9573 2 8184 2 6873 2 5633 2 4462	332 3 335 5 340 8 345 0 349 3	862 1 858 6 855 1 851 6 848 1	1194 4 1195 2 1195 9 1196 7 1197 4	0.5161 0.5212 0.5263 0.5314 0.5365	1 0517 1 0424 1 0332 1 0240 1 0148	1.5637 1.5595 1.5554	364 8 364 8 368 0 372 8 375 8
388. 8 384. 8 538. 5 387. 8 397. 8	195 729 205 294 215 220 225 516 236 193	0 01836 0 01842 0 01847 0 01853 0 01858	2 3170 2 2120 2 1126 2 0184 1 9291	2 3353 2 2304 2 1311 2 0369 1 9477	353 6 357 9 362 2 366 5 370 8	844.5 840.0 837.2 833.4 829.7	1199.3 1199.9	0.5416 0.5466 0.5516 0.5567 0.5617	1 0057 0 9966 0 9876 0 9786 0 9696		368 0 384 0 388 0 387 0 397 0
465 2 664 5 466 6 412 5 415 8	241.75/A 25/A.725 270(4/0) 28; 844 296 (6)	0.01864 0.01870 0.01875 0.01881 0.01887	1 8444 1 7640 1 6877 1 6152 1 5467	1.8630 1.7827 1.7054 1.6340 1.5651	375 1 379 4 383 8 388 1 392 5	825 9 822 0 818 2 814 2 810 2	1201.0 1201.5 1201.9 1202.4 1202.8	0.5667 0.5717 0.5768 0.5816 0.5868		15195	480 0 434 0 486 0 412 0 418 8
429.8 424.8 428.8 437.8 436.5	306 TAV 327 391 336 46.3 351 00 366 03	0.01894 0.01900 0.01906 0.01913 0.01913	1 4808 1 4 84 1 3 91 1 30266 1 2488	1 4997 1 4374 1 3787 1 37174 1 26896	396 9 40: 3 405 7 410 1 414 6	806.2 802.2 798.0 793.9 789.2	1204.9	0 5915 0 5964 0 6014 0 6063 0 6112	0.8990	1.4966	426 8 424 8 428 8 432 8 436 8
445 0 444 0 448 0 457 6 456 0	38) 57 397 50 4 (4 06 43) 14 448 73	0.01936 0.01933 0.01940 0.01947 0.01954	119761 119874 110017 105767 7015 8	1,21687 116806 117157 1,97711 1,03472	419 0 423 5 478 0 432 5 437 0	785.4 781.1 776.7 772.3 767.8	1204 6 1204 7 1204 8	0.6161 0.6254 0.6354 0.6354	0.8557	1 4851 1 4815 1 4778	440 0 444 0 445 0 457 0 456 0

Table 1. Saturated Steam: Temperature Table-Continued

	Abs Press		Specific V		6.4	Enthalp	y Cat	541	Entrop	Temp	
Temp Fahr t	Sq In	Sat Liquid	Evap	Sat Vapor Vg	Sat Liquid hi	Evap h i		Sat Liquit St	d Evap		Fahr
464.0 464.0 472.8 478.8	466 87 485 56 504 83 574 67 545 11	0.01961 0.01969 0.01976 0.01984 0.01992	0.97463 0.93588 0.89885	0.99424 0.95557 0.91862 0.88329 0.84950	446 1 450 7 455.2 459.9	763.2 758.6 754.0 749.3 744.5	1204 F 1204 7 1204 6 1204 5 1204 3	0.6405 0.6454 0.6502 0.6551 0.6599	0.8299 0.8213 0.8127 0.8042 0.7956	1 4704 1 4667 1 4629 1 4592 1 4555	464.9 464.9 468.9 472.8 476.9
480.0 484.0 482.0 492.0	566 15 587 81 610 10 633 03 656 61	0.02000 0.02009 0.02017 0.02026 0.02034	0.76613 0.73641 0.70794	0.81717 0.78622 0.75658 0.72820 0.70100	464 5 469 1 473 8 478 5 483 2	739.6 734.7 729.7 724.6 719.5	1204 1 1203 8 1203 5 1203 1 1202 7	0.6648 0.6696 0.6745 0.6793 0.6842	0.7871 0.7785 0.7700 0.7614 0.7528	1.4518 1.6481 1.4444 1.4407 1.4370	494.1 494.1 492.1 496.1
500.0 504.0 588.0 512.0 516.8	680 86 705 78 731 40 757 72 784 76	0.0~,43 6,42053 0.02062 0.02072 0.02081	0.62938	0.64991 0.62592	487 9 492 7 497 5 502 3 507 1	714.3 709.0 703.7 698.2 692.7	1202 2 1201 7 1201 1 1200 5 1199.8	0.6890 0.6939 0.6987 0.7036 0.7085	0.7443 0.7357 0.7271 0.7185 0.7099	1.4333 1.4296 1.4258 1.4221 1.4183	580.0 584.0 588.6 512.6 518.8
528.0 524.8 528.0 532.0 536.0	812 53 841 04 870 31 900 34 931 17	0.02091 0.02100 0.02123 0.02134	0.51814 0.49843 0.47947	0.53916 0.51955 0.50070	512 0 516 9 521 8 526 8 531 7	687.0 681.3 675.5 669.6 663.6	1199 0 1198 2 1197 3 1196 4 1195 4	0.7133 0.7182 0.7231 0.7280 0.7329	0.7013 0.6926 0.6839 0.6752 0.6665	1.4146 1.4108 1.4070 1.4032 1.3993	524.0 524.0 524.0 532.0 535.0
548.0 548.0 552.0 556.0	962 79 995 27 1028 49 1062 59 1097 55	0 02146 0 02157 0 02169 0 02184 0 02194	0.42677 0.41048 0.39479	0.44834 0.43217 0.41660	536.8 541.8 546.9 552.0 557.2	657.5 651.3 645.0 638.5 632.0	1194 3 1193 1 1191 9 1190 6 1189 2	0.7378 0.7427 0.7476 0.7525 0.7575	0.6489 0.6460 0.6311 0.6222	1.3954 1.3915 1.3876 1.3837 1.3797	546 8 544 8 548 0 557 0 556 8
560.0 564.0 568.0 572.0 576.0	1133 38 1176 10 1207 72 1246 26 1285 74	0.0220 0.0222 0.0223 0.0224 0.0226	0.33741	0 27320 0 35975 0 34678	567.4 567.6 572.9 578.3 583.7	625.3 618.5 611.5 604.5 597.2	1184.5	0.7625 0.7674 0.7725 0.7775 0.7825	0.6132 0.6041 0.5950 0.5859 0.5766	1 3757 1 3716 1 3675 1 3634 1 3592	560 0 564 0 568 0 572 0 576 8
580.0 584.0 586.0 592.0 596.0	1326 17 1367 7 1410 0 1453 3 1497 8	0.02279 0.0229 0.0231 0.02329 0.0234	0.28752 0.27608 0.26498	0.31048 0.29919 0.28827	589 1 594 6 600 1 605.7 611.4	589 9 582 4 574 7 566 8 558 8	1174.8 1172.6	0.7876 0.7927 0.7978 0.8030 0.8082		1.3464	586.8 584.9 588.9 582.4 596.6
0.0 M.0 M.0 2.0 6.6	1543.2 1589.7 16.6/3 1686.1 1735.9	0.02364 0.02382 0.02402 6.02422 0.02444	0.24384 0.23374 0.22394 0.21442 0.20616	0.26747 0.25757 0.74796 0.23865 0.27960	617 J 622 9 628 8 634 8 640 8	550.6 542.2 533.6 524.7 515.6	1167 7 1165 1 1162 4 1159 5 1156 4	0.8134 0.8187 0.8240 0.8294 0.8348	0.5196 0.5097 0.4997 0.4896 0.4794	1.3330 1.3284 1.3238 1.3190 1.3141	600 0 604 0 600 0 612 0 616 0
0.0 4.8 8.0 2.8 5.0	1786.9 1839.0 18.14 1947.0 2002.8	0.02466 0.02489 0.02514 0.02539 0.02566	0.19615 0.18737 0.17880 0.17044 0.16226	0.22081 0.21226 0.20394 0.19583 0.18792	646 9 653 1 659 5 665 9 672 4	506.3 496.6 486.7 476.4 465.7	1153.2 1149.8 1146.1 1142.2 1138.1	0.8403 0.8458 0.8514 0.8571 0.8628	0.4689 0.4583 0.4474 0.4364 0.4251	1 3097 1 3041 1 2988 1 2934 1 2879	624.5 624.5 628.8 637.6 636.6
8.5 4.0 8.5 2.0 4.0	2059 9 2118 3 2178 1 2239 2 2301 7	0.02595 0.02625 0.02657 0.02691 0.02728	0.15427 0.14644 0.13876 0.13124 0.12387	0.18021 0.17269 0.16534 0.15816 0.15115	679 1 685 9 692 9 700 0 707 4	454.6 443.1 431.1 418.7 405.7	1133 7 1129.0 1124.0 1118 7 1113 1	0.8686 0.8746 0.8806 0.1568 0.8931	0.4134 0.4015 0.3893 0.3767 0.3637	1 4671 1 2761 7699 1 7634 1 2567	644 E 644 E 645 E 656 E
M. B M. D M. D M. D 2. S 16. B	2365.7 2431.1 2498.1 2566.6 2636.8	0.02911	0.11663 0.10947 0.10229 0.09514 0.08799	0.14431 0.13757 0.13087 0.12424 0.11769	714 9 722 9 731 6 740 2 749 2	392 1 377 7 362 1 345 7 328 5	1107.0 1100.6 1093.5 1085.9 1077.6	0.8995 0.9064 0.9137 0.9212 0.9287	0.3502 0.3361 0.3210 0.3054 0.2892	1.2498 1.2425 1.2347 1.2266 1.2179	864.8 864.8 868.0 672.8 676.0
0.8 H.9 H.0 17.0 K.0	2708 5 2782 1 2857 4 2934 5 3013 4	0.03037	0.08080	0.11117 0.10463 0.09799 0.09110 0.08371	758.5 768.2 778.8 790.5 804.4	310 1 290 2 268 2 243 1 212 8	1068.5 1058.4 1047.0 1033.6 1017.2	0 9365 0 9447 0 9535 0 9634 0 9749	0.2720 0.2537 0.2337 0.2110 0.1841	1.2085 1.1984 1.1872 1.1744 1.1531	606.1 654.1 634.1 634.1 636.1
MO 0 12 0 MA 0 15 0 15 47*	3094 3 3135 5 3177 2 3198 3 3208 2	0.03662 0.03824 0.04108	0.03857 0.03173 0.02192 0.01304 0.00000	0.07519 0.06997 0.06300 0.05730 0.05078	822 4 835 0 854 2 873 0 906 0	172 7 144 7 102 0 61 4 0.0	995 2 979 7 956 2 934 4 906 0		0.1490 0.1746 0.0876 0.0527 0.0000	1.1390 1.1252 1.1046 1.0856 1.0612	780 6 782 8 764 8 765 8 785 47*

^{*}Critical temperature

Table 3. Superheated Steam

lbs Press Lb Sq In Sat Tempi		Sal Water	Sat Steam	Tempe 200	erature -	Degrees 300	Fahrenh 350	eif. 400	450	500	SOU	790	800	900	1800	1100	1206
1	5h			98.76	148.26	198.26	248.26	298.76	348.26	398 76	498 26	598 76	691.76	798 2%	8 56.25	998.2%	1091.76
(101.74)	5	0 0 16 14 69 73 0 1326	333 6 1105 8 1 9781	392 5 1150 7 7 0509	422.4 1172.9 7.5841	452.3 1195.7 2.1152	487 1 1218 7 2.1445	511 9 1241 8 2.1722	541 7 1265 1 2 1985	571 5 1288 6 2.2237	631 1 1336 1 2 2708	690 7 1384 5 2 3144	750.3 1433.7 2.3551	809.8 1483.8 2,3934	869 4 1534 9 2 4295	925 0 1585 8 2 4540	988 6 1639 7 2 4969
(162.24)	\$8. 8 8	0.01641 130.20 0.2349	73.53 1131.1 1.8443	37 76 78 14 1148 6 1 8716	87.76 84.21 1171.7 1 9054	137.76 90.24 1194.8 1.9369	187 76 96 25 1218 0 1 9664	237 76 102 24 1241 3 1 9943	287 76 108 23 1264 7 2 0208	337.76 114.21 1288.2 2.0460	437 76 126 15 1335 9 2 0932	537 76 138 08 1384 3 2 1369	637 76 150 01 1433 6 2 1776	737 76 161 94 1483 7 2.2159	837 76 173 86 1534 7 2.2521	937 76 185 78 1586 7 2 2865	1037 7 197 7 1639 2 319
16 (193.21)	\$h h 5	0.01659 161.26 0.2836	38.42 1143.3 1.7879	6.79 38.84 1146.6 1.7928	56 79 41 93 1170 2 1 8273	106.79 44.98 1193.7 1.8593	156.79 48.02 1217.1 1.8892	206 79 51 03 1240 6 1 9173	256.79 54.04 1264.1 1.9439	306 79 57 04 1287 8 1 9697	406 79 63 03 1335 5 2 0166	506.79 69.00 1384.0 2.0603	606 79 74 98 1433 4 2 1011	706 79 80 94 1483 5 2.1394	806.79 85.91 1534.6 2.1757	906 79 92 87 1586 6 2,2101	1006 7 98 8 1639 2.243
14 696 12 00)	\$4 4 4 5	\$167 180 17 3171	26 799 1150 5 1 7568		38 00 28 42 1168 8 1 7833	88.00 30.52 1192.6 1.8158	138 00 32 60 1216 3 1 8453	188 00 34 67 1239 5 1.8743	238 00 36 72 126) 6 1 9010	288 00 38 77 1287 4 1 9265	388 00 42 86 1335 7 1.9739	488 00 46 93 1383 8 2.0177	588 00 51 00 1433.2 2.0585	688.00 55.06 1483.4 2.0969	788 00 55 13 1534 5 2 1332	888 00 63 19 1586 5 2 1676	\$88.0 67.2 16.39 2.200
15 (3.03)	\$n * n 5	0 01673 181 21 0 3137	26.290 1150.9 1.7552		36 97 27 837 1168 7 1 7809	86 97 29 899 1192 5 1 8134	136.97 31.939 1216.2 1.8437	186 97 33 963 1739 9 1 8720	736 97 35 977 1763 6 1 8988	286.97 37.985 1287.3 1.9242	386 97 41 986 1335 2 1.9717	486 97 45 978 1383 8 2 0 155	586 97 49 964 1433 7 2 0563	686 97 53 946 1483 4 2 0946	786 97 57.926 1534 5 2 1309	886 97 6) 905 1586 5 2 1653	986.9 65.88 1639 2.198
28 27.961	\$h h	0.01683 196.27 0.3358	20 087 1156 3 1.7320		22 04 20 788 1167 1 1 7475	77 04 22 356 1191 4 1 7805	122 04 23 900 1215 4 1 8111	172 04 25 528 1239 7 1 8397	222 04 26 946 1263 0 1 8666	272 04 28 457 1286 9 1 8921	372 04 31 466 1334 9 1 9397	472 04 34 465 1383 5 1.9836	572 04 37 458 1432 9 2 0744	672.04 40.447 1483.2 2.0628	772.04 43.435 1534.3 2.0991	872 04 46 420 1586 3 2 1336	972 0 49 40 1639 2 166
25 40 (7)	\$h . h s	0.01693 208.51 0.3535	16.307 1160 6 1.7141		9.93 16.558 1165.6 1.7212	59.93 17.829 1190.7 1.7547	105 93 19 076 1214 5 1 7856	159 93 70 307 1238 5 1 8145	209 93 21 527 1262 5 1 8415	259 93 22 740 1286 4 1 8672	359 93 25 153 1334 6 1 9149	459 93 27 557 1383 3 1 9588	559 93 29 954 1432 7 1 9997	659 93 32 348 1483 0 2 0381	759 93 34 740 1534 1 2 0744	859 93 37 130 1586 7 2 1089	959 5 39 5 1639 2.14
36 50 341	50	0.01701 218.93 0.3682	13.744 1164 1.6995			49.56 14.810 1189.0 1.1334	99 66 15 859 1213 6 1 7647	149 66 16 892 1237 8 1 7937	199 66 17 914 1261 9 1 8210	249 66 18 929 1286 0 1 8467	345 66 20 945 1334 7 1 8946	449 66 22 951 1383 0 1.9386	549 66 24 952 1432 5 1.9795	649 66 26 949 1482 8 2:0179	749 66 28 943 1534 0 2 0543	849 66 30 936 1586 7 2 0888	949 (32 9, 1639 2 12
35 257 29)	Sh v	0.01708 228.03 0.3809	11 896 1167 1 1 6872			40 71 12 654 1187 8 1 7152	90.71 13.562 1212.7 1.7468	140.71 14.453 1237.1 1.7761	190.71 15.334 1261.3 1.8035	240.71 16.207 1785.5 1.8294	340 71 17 939 1333 9 1 8704	#40 71 19 662 1382 # 1 9214	540 71 21 379 1432 3 1 9624	640 71 13 092 1482 7 2 0009	740.71 24.803 1533.9 2.0372	840 71 26 512 1586 0 2 0717	940 28.2 1631 2.10
40 267 25)	\$5. 6 5	0.01715 236.14 0.3971					82 75 11 838 1211 7 1 7312	132.75 12.624 1236.4 1.7608	182 75 13 398 1260 8 1 7883	232 75 74 165 1285 0 1 8143	337 75 15 685 1333 6 1 8624	432 75 17 195 1387 5 1 9065	537 75 18 695 1437 1 1 9476	632 75 20 199 1482 5 1 9860	732 75 21 697 1533 7 2 0274	832 75 23 194 1585 8 2 0569	932 24 6 163 2 08
45 274 44	5h	243 49	9 399 1172 1			25.56 9.777 1185.4 1.6849	75 56 10 497 1210 4 1 7173	125 56 11 201 1235 7 1 7471	175.56 11.892 1260.2 1.2748	225.56 12.577 1284.6 1.8010	325 56 13 937 1333 3 1.8492	425.56 15.276 1382.3 1.8934	525 56 16 514 1431 9 1 9345	625.56 17.950 1482.3 1.9730	725.56 19.782 1533.6 2.0093	\$25.56 20.613 1585.7 2.0439	163
50 281 021	SA v	0.01727 250.21 0.4112	8 5)4]] 74]] 6586			18 98 8 769 1184 1 1 6720		118 95 10 062 1234 9 1.734 9	168 98 10 683 1259 6 1 7628	218 98 11 306 1284 1 1 7890	318 98 12 529 1332 9 1 8374	418 98 13 741 1382 0 1 8816	518 98 14 947 1431 7 1 9227	618 98 16 150 1482 2 1 9613	718 98 17 350 1533 4 1 9977	818 98 18 549 1 385 6 2 032	918 191 163 2.06
\$5 28.7.07.	\$ h		11.76.0			12.93 7.945 1182.9 1.6601	62 93 8 546 1208 9 1 8933	112 93 9 130 1234 2 1 7237	167.93 9.702 1259.1 1.7518	212 93 10 267 128) 6 1 7781	312 93 11 381 1332 6 1 8266	12 485	13.583	14 677	712 93 15 769 1533 3 1 987		163
252.71)	\$ n		7 174 1177 6 1 6440			7.29 7.257 1181.6 1.6492	57.29 7.815 1208.0 1.6825	\$354 \$354 1233 5 17134	1.7417	207.29 9.400 1283.2 1.7681	307 29 10 425 1332 3 1 8168	407.29 11.438 1381.5 1.8612		607 29 13 450 1481 8 1 9410	707 29 14 452 1533 7 1 9774	807.29 15.452 1585.3 2.0120	2.0
65 297.98	\$6 8	267.63	3179.1			2.62 6.675 1180.7 1.6390	52 32 7.195 1207 0 1.6731	102 02 7 697 1232 7 1 7040	1.7324		302 02 9 615 1331 9 1 8077	407.07 10.552 1381.3 1.8522	502 C2 11 484 1431 1 1 8935	602 02 12 412 1481 6 1 9321	1.9685	2.0631	2.0
7 4 (302-93)	5.0	272.74	6.205 1160.6 1.6316				47 07 6 664 1206 0 1 6640	92 07 7 133 1237 0 1 6951	74/0 7590 12573 17237	197 07 8 039 1282 2 1 7504	8.922	1381.0	10.659	597 07 11 527 1481 5 1 9238	19603	1585 1	2.0
75 (307 6.1)	51	0.01753					47.39 6.204 1225.0 1.6554	1231.2	7 0.74 1256 7	1281 7	13313	9 135	9.945	562 39 16 750 1481 3 1 9161	1537 7	12 355 1585 0	16

Sh = superheat, F v = specific volume, cu ft per lb

h = enthalpy. Btu per lb s = entropy. Btu per R per lb

			Specific Vo	lume	aturated S	Enthal	-	1 able	Fatra		
Abs Press Lb/Sq In	Temp Fahr t	Sal Liquid	Evap V _{tg}	Sat Yapor Ya	Sat Liquid hy		Sat. Vanno	Sal Liquid	f Evap	Sat. Vanor	Abs Pres Lb/Sq in
8.88865 8.25 8.50 1.8 5.8 10.0 14.884 15.8	32 018 59 323 79 586 101 74 162 24 193 21 212 000 213 03	0 01602 0 01603 0 01607 0 01613 0 01640 0 01657 0 01671 0 01672	2 1235 1 641 6 333 5 7 73 5: 2 38 40 9 26 78 6 26 274	1235.5 641.5 9 333.60 71.532 38.420 26.799 26.290	0 0003 27 382 47 623 69 73 130 20 161 26 180 17 181 21	1075 5 1060 1 1048 6 1036 1 1000 9 982 1 970 3 969 7	1075 5 1087 4 1096 3 1105 8 1131 1 1143 3 1150 5 1150 9	0.9000 0.0547 0.0925 0.1249 0.2849 0.2849 0.3121 0.3137	2.0425	2 1872 2 0967 2 0370 1 9781 1 8443 1 7879 1 7568 1 7552	8.8885 8.25 8.56 1.3 5.8 16.4 16.8 15.3
29.5 39.5 48.5 56.3 68.0 78.0 86.1 86.1	227 96 250 34 267 25 281 02 292 71 302 93 312 04 320 28	0.016834 0.017009 0.017151 0.017274 0.01738: 0.01748; 0.017573 0.017659	13.7266 10.4794 8.4967 7.1562 6.1875 5.4536	13 7436 10 4965 8 5140 7 1736 6 2050 5 4711	196.27 218.9 236.1 250.2 262.2 272.7 287.1 290.7	960 1 945 2 933 6 923 9 915 4 907 8 900 9 894 6	1156.3 1164.1 1169.8 1174.1 1177.6 1180.6 1183.1 1185.3	0.3358 0.3682 0.3921 0.4112 0.4273 0.4411 0.4534 0.4643	1.3962 1.3313 1.2844 1.2474 1.2167 1.1905 1.1675 1.1470	1.7320 1.6995 1.6765 1.6586 1.6440 1.6316 1.6208 1.6113	26.3 30.3 48.8 56.8 56.1 76.3 88.1 90.1
190.8 116.2 128.8 138.8 148.8 150.0 160.0 170.0 180.0	327 82 334 79 341 27 347 33 353 04 358 43 363 55 368 42 373 08 377 53	0.01782 0.01782 0.01789 0.01796 0.01803 0.01809 0.01815 0.01827 0.01833	4 0306 3 7097 3 4364 3 2010 2 9958 2 8155 2 6556 2 5129	4.0484 3.7275 3.4544	298.5 305.8 312.6 319.0 325.0 336.6 336.1 341.2 350.9	888 6 883 1 877 8 872 8 868 0 863 4 859 0 854 8 850 7 846 7	1187 2 1188 9 1190 4 1191 7 1193 0 1194 1 1195 1 1196 0 1196 9 1197 6	0 4743 0 4834 0 4919 0 5971 0 5141 0 5206 0 5269 0 5328	1.1284 1.1115 1.0960 1.0815 1.0554 1.03554 1.0435 1.0322 1.0215 1.0113	1.6027 1.5930 1.5879 1.5013 1.5752 1.5695 1.5641 1.5591 1.5543 1.5543	196.8 118.7 129.7 136 16' 15, 166.5 176.8 186.0 386.8
200 8 216 0 226 0 230 0 240 0 250 0 250 0 270 0 200 0 200 0	381.80 385.91 389.88 393.70 397.39 400.97 404.44 407.80 411.07 414.25	0 01839 0 01844 0 01855 0 01855 0 01865 0 01870 0 01875 0 01886 0 01886	2 16373 2 06779 1 97991	2 2873 2 18217 2 08629 1 99846 1 91769 1 84317 1 77418 1 71013 1 65049 1 59482	355 5 359 9 364 2 368 3 372 3 376 1 379 9 383 6 387 1 390 6	842 8 839 1 835 4 831 8 828 4 825 0 821 8 815 1 812 0	1198 3 1199 0 1199 6 1200 1 1200 6 1201 1 1201 5 1201 9 1202 3 1202 6	0.5498 0.5490 0.5540 0.5588 0.5634 0.5679 0.5722 0.5764 0.5805	1,0016 0,9323 0,9834 0,9748 0,9665 0,9585 0,9508 0,9433 0,9361 0,9291	1 5454 1 5413 1 5324 1 5336 1 5296 1 5264 1 5230 1 5197 1 5166 1 5135	290.0 210.0 220.0 230.0 240.0 250.0 250.0 270.0 280.0 290.0
300 0 350 0 400 0	417.35 431.73 444.60	0.01889 0.01912 0.01934	1 52384 1 30647 1 14162	1.54274 1.32554 1.16095	394.0 409.8 424.2	808 9 794 2 780 4	1202 9 1204 0 1204 6	0.5882 0.6059 0.6217	0 9223 0 8909 0 8630	1.5105 1.4968 1.4847	360 0 350 0 486 0
450 0 500 0 550 0 800 0 850 0 700 0	456 28 467 01 476 94 486 20 494 89 503 08	0.01954 0.01975 0.01994 0.02013 0.02032 0.02050	1 01274 0 90787 0 82183 0 74962 0 68811 0 63505	1 03179 0 92762 0 84177 0 76975 0 70843 0 65556	4373 4495 4609 4717 4819 4916	767.5 755.1 743.3 732.0 720.9 710.2	1204 8 1204 7 1204 3 1203 7 1202 8 1201 8	0.6360 0.6490 0.6611 0.6723 0.6828 0.6928	0.8378 0.8148 0.7936 0.7738 0.7552 0.7377	1 4738 1 4639 1 4547 1 4461 1 4381 1 4504	450.0 500.0 550.0 680.0 650.0 780.0
758 8 890 0 850 0 960 0 950 0 1650 0 1650 0 1180 0 7158 0 7158 0	544.58 550.53 556.28	0.02069 0.07087 0.02106 0.02123 0.02141 0.02159 0.0214 0.02232	0.58880 0.54809 0.51197 0.47968 0.45064 0.42436 0.40047 0.37863 0.35859 0.34013	0.60649 0.56696 0.53302 0.50091 0.47705 0.44596 0.42224 0.40058 0.38073 0.36245	500 9 509 8 518 4 526 7 534 7 542 6 550 1 557 5 564 8 571 9	699 8 689 6 679 5 669 7 660 0 650 4 640 9 631 5 622 2 613 0	1200 7 1199 4 1198 0 1196 4 1194 7 1192 9 1191 0 1189 1 1187 0 1184 8	0.7022 0.7111 0.7197 0.7279 0.7358 0.7434 0.7507 0.7578 0.7647 0.7714	0.7210 0.7051 0.6899 0.6753 0.6612 0.6476 0.6344 0.6216 0.6091 0.5969	1 4237 1 4163 1 4096 1 4032 1 3970 1 3910 1 3851 1 3738 1 3683	750 8 900 8 850 9 900 0 1900 8 1850 0 1100 8 1100 8
1250 0 1350 0 1350 0 1450 0 1580 0 1580 0 1580 0 1580 0 700 0	572 38 577 42 582 32 587 07 591 70 596 20 600 59 604 87 609 05 613 13	0.02250 0.02269 0.02268 0.02307 0.02327 0.02346 0.02367 0.02407 0.02428	0.32306 0.30722 0.29150 0.27871 0.26584 0.25372 0.24335 0.23159 0.22143 0.21178	0.34556 0.37991 0.31537 0.30178 0.28511 0.27719 0.26601 0.25545 0.24551 0.23607	578 8 585 6 592 3 598 8 605 3 611 7 618 0 624 2 636 5	603 8 594 6 585 4 576 5 567 4 558 4 549 4 540 3 540 3 522 2	1182 6 1180 2 1177 8 1175 3 1177 8 1170 1 1167 4 1161 6 1158 6	0.7780 0.7843 0.7906 0.7966 0.8026 0.8026 0.8026 0.8142 0.8154 0.8354 0.8309	0 5850 0 5733 0 5620 0 5507 0 5397 0 5288 0 5182 0 5076 0 4971 0 4867	1 3630 1 3577 1 3525 1 3474 1 3423 1 3373 1 3324 1 3274 1 3225 1 3176	1254 £ 1360 0 1356 0 1450 0 1550 0 1560 0 1650 0 1780 8
750 0 880 0 850 0 850 0 990 0 851 6 900 0 1 100 0 200 0 301 0 460 0	617 12 621 02 624 83 626 56 632 22 635 80 642 76 649 45 655 89 662 11	0.02450 0.02472 0.02495 0.02517 0.02565 0.02665 0.02669 0.02727 0.02790	0.20263 0.19390 0.18558 0.17761 0.16999	0 22713 0 21861 0 21052 0 20278 0 19540 0 18831 0 17501 0 16277 0 15133 0 14076	642 5 648 5 654 5 660 4 666 3 677 1 683 8 695 5 707 2 719 0	513 1 503 8 494 6 485 2 475 8 466 5 406 0 384 8	1155 6 1152 3 1149 0 1145 6 1142 0 1138 3 1130 \ 1132 2 1133 2 1103 7	0.8363 0.8417 0.8470 0.8522 0.8524 0.8625 0.8727 0.8628 0.8929 0.9931	0.4765 0.4662 0.4561 0.4459 0.4358 0.4256 0.4053 0.3848 0.3848 0.3430	1.3128 1.3079 1.3030 1.2981 1.2931 1.2881 1.2780 1.2676 1.2569 1.2460	1758 8 1896 0 1856 0 1856 0 1958 0 1958 0 2786 0 2786 0 2786 0 2786 0 2786 0
7500 0 1500 0 700 0 1600 0 1600 0 1600 0 200 0	668 11 673 91 679 53 684 96 690 22 695 33 700 78 705 67	0.02859 0.02938 0.03029 0.03134 0.03762 0.03478 0.03478	0.07171 0.05158 0.05073 0.01711 0.01171	0 13068 0 12110 0 11194 0 10305 0 09420 0 08500 0 0 05078	731 7 744 5 757 3 770 7 785 1 801 8 874 0 874 0	3616 3376 3123 2851 2547 2184 1600 561	1093 3 1082 0 1082 7 1055 8 1039 8 1070 3 901 7 906 0	0 9139 0 9247 0 9356 0 9468 0 9588 0 9738 0 9914 1 0051	0.3206 0.2977 0.2741 0.2491 0.2215 0.1891 0.1460 0.0000	1.2345 1.2275 1.2097 1.1958 1.1803 1.1619	2500 2 2500 8 2700 8 2700 8 2800 8 2800 8 3800 0 3900 1 3208 6 3208 7

Table 3. Superheated Steam - Continued

Abs Press 1b/Sq In (Sat Temp)		Sal Water	Sat	Tempe 350	nature -	Degrees 450				100	***	***	1844	1144			
80 (317 04)	Sn *	0.01757 282 15 0.4534	5.471 1183.1 16208	37.96 5.807 1264.0 1.6473	87 96 6 218 1230 5 1 6790	137 96 6 627 1256 1 1 7080	187 96 7 018 1281 3 1 7 349	237.96 7.408 1306.2 1.7502	287 96 7 794 1330 9 1 7842	387 96 8 560 1380 5 1.8289	487 96 9 319 1430 5 1 8702	587 96 10 075 1481 1 1 9089	687 96 10 829 1532 6 1 9454	787 96 11 581 1584 9 1 9800	887 96 12 331 1638 0 2 0131	987.96 13.381 1692.0 2.0446	1400 1087 96 13 829 1746 8 2 0750
85 (316.26)	51.	0.01762 286.52 0.4590	\$ 167 1184 2 1 6159	33.74 5.445 1203.0 1.6396	83 74 5 840 1229 7 1 6716	133 74 6 723 1755 5 1 7008	183 74 6 597 1280 8 1 7279	233 74 6 966 1305 8 1 7532	283 74 7 330 1330 6 1 7777	383.74 8.052 1380.2 1.8220	483 74 8 768 1430 3 1 8634	583.74 9.480 148).0 1.9021	683.74 10.190 1532.4 1.9386	783 74 10 898 1584 7 1 9733	883 74 11 604 1637 9 2 0063	983 74 12 310 1691 9 2 0379	1083 74 13 014 1746 8 2 0682
(320 28)	Sh N N	0 01766 290 59 0 4643	4 895 1185 3 1 6113	29.72 5.128 1207.0 1.6323	79 72 5 505 1228 9 1 6646	129 72 5 869 1254 9 1 6940	179.72 6.223 1780.3 1.7212	229.72 6.572 1305.4 1.746.7	279 72 6.317 1330 2 1.7707	379 72 7 600 1380 0 1 8156	479 72 8.277 1430 1 1.8570	579 72 8 950 1480 8 1 8957	679.72 9.621 1532.3 1.9323	779.72 10.290 1584 6 1.9669	879.72 10.958 1637.8 2.0000	979 72 11 625 1691 8 2 0316	1079 72 12 290 1746 7 2 0619
(324.13)	Sh w	0.01770 294.70 0.4694	4 651 1186 2 1 6069	25.87 4.845 1200.9 1.6253	75.87 5.205 1228.1 1.6580	175.87 5.551 1754.3 1.6878	175.87 5.889 1779.8 1.7149	225.87 6.221 1305.0 134594	275.87 6.548 1329.9 1.7645	375.87 7.196 1379.7 1.8094	475 87 7 838 1479 9 1 8509	575.87 8.477 1480.6 1.8897	675 87 9 113 1537 1 1 9767	775.87 9.747 1584.5 1.9609	875 87 10 380 1637 7 1.9940	975.87 11.512 1691.7 2.0256	1075.87 11.643 1746.6 2.0559
1 96 (327.82)	50 00 00	0 01774 298 34 0 4763	4 431 1187.2 1 6027	22 18 4 590 1199 9 1 6187	72 18 4 935 1227 4 1 6516	122 18 5 266 1253 7 1 6814	172 18 5 588 1279 3 1 7088	222 18 5 904 1304 6 1 7 344	272 18 6 216 1329 6 1 7586	372 18 6 833 1379 5 1.8036	472.18 7.443 1429.7 1.8451	572 18 8 050 1480 4 1 8839	672 18 8 655 1537 0 1 9205	772.18 9.258 1584.4 1.9552	872 18 9 860 1637 6 1 9883	972 18 10 460 1691 6 2 0199	1072 18 11 060 1746 5 2 0502
105 (331.37)	Sh * h	0.01778 302.24 0.4790	4 231 1188 0 15988	18 63 4 359 1198 8 1 6122	68 63 4 690 1726 6 1 6455	118 63 5 007 1253 1 1 6755	168 63 5 315 1278 8 1 7031	218 63 5 617 1304 7 1 7288	268 63 5 915 1329 2 1 7530	368 63 6 504 1379 7 1 798 1	468 63 7 086 1429 4 1 8396	568 63 7 665 1480 3 1.8785	668 63 8.241 1531 8 1.915)	768 63 8 816 1584 7 1 9498	868 63 9 389 1637 5 1 9828	968 63 9 961 1691 5 2 0145	1068.63 10.532 1746.4 2.0448
118 (334.79:	\$6 8 5	0 01782 305.80 0.4834	4 048 1188 9 1 5950	15 77 4 149 1197 7 1 606 1	65.21 4.468 1226.8 1.6396	115.7. 4.772 1257.5 1.6698	165.21 5.068 1278.3 1.6975	215.71 5.357 1303.8 1.7233	265.71 5.647 1378.9 1.7476	365.21 6.205 1379.0 1.7928	465.21 6.761 1429.2 1.8344	565.21 7.314 1487.1 1.8732	665.21 7.865 1531.7 1.9099	765.21 8.413 1584.1 1.9446	865.21 8.961 1637.4 1.9777	965.71 9.507 1691.4 2.0093	1065.21 10.053 1746.4 2.0397
115 (338.08)	Sfi k k	0.01785 309.25 0.4877	3 881 1189 6 1 5913	11 97 3 957 1196 7 1 6001	61 92 4 265 1225 0 1 6340	111.92 4.508 1251.8 1.6644	161 97 4 841 1277 9 1 6922	211.92 5.119 1303.3 1.7181	5 302 1328 6 1 7425	361 97 5 932 1378 7 1.7877	461 97 6 465 1429 0 1 8294	561.92 6.994 1479.9 1.8682	7.521 1531 6 1.9049	761.92 8.046 1584.0 1.9396	861 92 8 570 1637 2 1 9727	961 97 9 093 169) 4 2 0044	9 615 1746 3 2 8347
120 (34) 27	5h * h	0 01789 31258 0 4919	3 7275 1190 4 1 5879	873 37815 1195 6 15943	58 73 4 0786 1224 1 1 6286	108.73 4.3610 1251.2 1.6582	158 73 4 6341 1277 4 1 6677	208 73 4 9009 1307 9 1 7132	258.73 5.1637 1326.2 1.7376	358 73 5 6813 1378 4 1 7829	458 73 6 1928 1428 8 1 8246	558 73 6 7006 1479 8 1 8635	658 73 7.2060 153) 4 1.9001	758 73 7 7096 1583 9 1 9349	858 73 8.2119 1637 1 1.9680	958 73 8 7130 1691 3 1 9996	1058 73 9 2134 1746 2 2 6300
130 (347.33)	\$5. 8 5	0 01796 318 95 0 4998	3 4544 1191.7 1 5813	2.67 3.4699 1193.4 1.5833	52 67 3 7489 1272 5 1 6187	107 67 4 0129 1249 9 1 6493	152 67 4.2672 1276.4 1.6775	202 67 4 5151 1302 1 1 703 7	252 67 4 7589 1327 5 1 7283	352 67 5.2384 1377 5 1 7737	452.67 5.7118 1428.4 1.8155	552.67 6.1814 1479.4 1.8545	652 67 6 6486 1531 1 1 8911	752 67 7 1140 1583 6 1 9755	852 67 7.5781 1636 9 1 9591	952.67 8.0411 16971 1.9907	1052 67 8 5033 1746 1 2 07 11
140 (353.04)	Sh * h	0.01803 324.96 0.5071	3.2190 1193 0 1.5752		46 96 3 4661 1270 8 1 6085	96 96 3 7 43 1248 7 1 6400	146 96 3 9526 1275 3 1 6686	196 96 4 1844 1301 3 1 6949	246 96 4.4119 1326 8 1.7196	346 96 4 8588 1377 4 1.7652	446 96 5.2995 1428 0 1.8071	546 96 5 7364 1479 1 1 846 l	646 96 6 1709 1530 8 1 8828	746 96 6 6036 1583 4 1 9176	846 96 7 0349 1636 7 1 9508	946 96 7 4652 1690 9 1 9825	1046 96 7 8946 1745 9 2 0129
150 (358 43)	0.000	0.01809 330.65 0.5141	3.0139 1194 1 1.5695		4157 37708 12191 15993	91.57 3.4555 1247.4 1.6313	141 57 3 6 799 1274 3 1 6607	19157 38978 7300.3 16867	241.57 4.1112 1326.1 1.7115	341 57 4 5798 1376 9 1 7573	441 57 4 9421 1427 6 1 7997	541 57 5 3507 1478 7 1 8383	64157 5.7568 1530.5 1.8751	741 57 6 1612 1583 1 1 9099	841 57 6 5642 1636 5 1 9431	941 57 6 9661 1690 7 1 9748	1041 57 7 3671 1745 7 2 0052
160 (363.55	Sn × ×	0:01815 336.07 0:5706	2 8336 1195 1 1 564)		36.45 3.0060 1717.4 1.5906	86.45 3.2288 1246.0 1.6231	136.45 3.4413 1273.3 1.6527	186.45 3.6469 1299.6 1.6790	236.45 3.8480 1375.4 1.7039	336 45 4 2470 1376 4 1 7499	436 45 4 6295 1427 7 1 7919	536.45 5.0132 1478.4 1.8310	636 45 5 3945 1530 3 1 8678	736.45 5.7741 1582.9 1.9027	836.45 6.1522 1636.3 1.9359	936.45 6.5793 1690.5 1.9676	1036 45 6 9055 1745 6 1 9980
176	\$5 5 5 5	0.01831 341.74 0.5269	2 6738 1196 0 1 559)		31.58 2.8367 1715.6 1.5875	\$1.58 3.0285 1244.7 1.6152	131 58 3.2306 1272 2 1 6447	181 58 3 4755 1274 8 1 6717	21158 36158 13747 16968	311.58 3.9879 1375.8 1.7428	437 58 4 3536 1476 8 1 7850	531 58 4 7155 1478 0 1 8241	631 58 5 0749 1530 0 1 8610	731 58 5 4325 1582 6 1 8959	831 58 5.7888 1636 1 1.9291	931.58 6.1440 1690.4 1.9608	1031 58 6 4983 1745 4 1 9913
180 273.08	5. * * * *	0.01677 346 19 0.5378	2,5312 1196.9 1,5543		26.97 2.6.074 12.(3.8 1.574.)	76.97 2.8508 1743.4 1.6078	126.92 3.0433 1271.2 1.6376	176.97 3.2786 1291.9 1.662.7	276.97 3.4090 1324.0 1.6900	326.92 3.742.7 1375.3 1.7367	426.97 4.1084 1476.3 1.7784	576 92 4 4508 1477 7 1 8176	626.92 4.7907 1529.7 1.8545	726 97 5.1289 1587 4 1.8894	876 92 5 4657 1635 9 1 9727	926 92 5.8014 1690 2 1.9545	1026 92 6 1363 1745 3 1 9849
190	56 8 6	0.01833 350.64 0.5384	2 4030 1197 6 1 5498		22.47 2.496; 1217.0 1.5667	72.47 2.6915 1242.6 1.6006	127.47 2.6756 1270.1 1.6307	172.47 3.0525 1797.1 1.658	227.47 3.2745 1323.3 1.6435	327.47 3.5601 1.574.8 1.7299	427.47 3.8889 1475.9 1.7722	527.47 4.7140 1477.4 1.8115	627.47 4.5365 1579.4 1.8484	772.47 4.8572 1582 1 1.8834	822 47 5) 766 1635 7 1 9166	927.47 5.4949 1690.0 1.9484	1072 47 5.8174 1745 1 1.9789
201 OSL TO	50	0.018)* 951 0.54)4	2 2471 3196 h 1 5454		18.70 2.7098 12.10 1.5593	68.20 7.5490 1740.6 1.5508	11876 13731 17713 1874	168.20 2.8529 129-7 14518	218.70 3.058.5 137.7 1.672.2	\$18.20 \$3.783 1175.75 1.735		518.20 4.0008 14771 1.8057	618.75 2.307 / 15.75 / 1.8426	718.20 4.6128 1561.9 1.8776	\$18.20 4.9165 1636.4 1.9109	918 20 5 718 1685 5 1 947 7	1018 70 5 5709 1745 0 1 9737

Sh = superheat. F v = specific volume, cu ft per lb

h = enthalpy. Blu per lb s = entropy. Blu per R per lb

Table 3. Superheated Steam - Continued

A CONTRACTOR OF THE PROPERTY O

Abs Press	-		-	1			Supe			-						-	
(Sat Temp)		Sat Water	Sat Steam	400	450	- Degree 500	550	\$00	700	800	900	1800	1100	1200	1300	1480	1500
218 (385.91)	Sh v h	0.01844 359.91 0.5490	2 1822 1199.0 1.5413	14 09 2 2364 1208 2 1 5522	64 09 2 4181 1239 2 1 5872	114 09 2 5880 1268 0 1 6180	2.7504 1295.3	214 09 2 9078 1321 9 1.6715	314.09 3.2137 1373.7 1.7182	414 09 3.5128 1425 1 1.7607	514 09 3.8080 1476.7 1.8001	614.09 4.1007 1528.8 1.8371	714 09 4.3915 1581 6 1.8721	814 09 4 6811 1635 2 1 9054	914 09 4 9695 1689 6 1 9372	1014 09 5.2571 1744 8 1.9677	
229 (389.88)	Sh h h	0.01850 364.17 0.5540	2 0863 1199 6 1.5374	10 12 2 1240 1206 3 1 5453	60.12 2.2999 1237.8 1.5808	110 12 2 4638 1266 9 1 6120	160.12 2.6./99 1294.5 1.6400	210 12 2 7710 1321 2 1 6658	31012 3.0642 1373.2 1.7128	410 12 3.3504 1424 7 1.7553	510 12 3.6327 1476.3 1.7948	610 12 3.9125 1528 5 1.8318	710 12 4 1905 1581 4 1.8668	810 12 4.4671 1635 0 1.9002	910.12 4.7426 1689.4 1.9320	1010 12 5.0173 1744 7 1.9625	
236 (393.70)	Sh n s	0 01855 368.28 0 5588	1.9985 1200.1 1.5336	6.30 2.0212 1204.4 1.5385	56.30 2.1919 1236.3 1.5747	106 30 2 3503 1265 7 1 6062	156 30 2 5008 1293 6 1.6344	2 6461 1320 4 1 6604	306 30 2 9276 1372 7 1 7075	406.30 3.2020 1424.2 1.7502	506.30 3.4726 1476.0 1.7897	606.30 3.7406 1528.7 1.8268	706.30 4.0068 1581 i 1.8618	806.30 4.2717 1634.8 1.8952	906.30 4.5355 1689.3 1.9270	1006 30 4 7984 1744 5 1 9576	
248 (397.39)	Sh v h	0.01860 372.27 0.5634	1.9177 1200.6 1.5299	2.6! 1.9268 1202.4 1.5320	52 61 2 0978 1234 9 1 5687	102 61 2 2463 1264 6 1 6006	152 61 2 3915 1292 7 1 6291	202.61 2.5316 1319.7 1.6552	302 61 2 8024 1372 1 1 7025	402.61 3.0661 1423.8 1.7452	502 61 3.3259 1475.6 1.7848	602 61 3.5831 1527 9 1.8219	702.61 3.8385 1580.9 1.8570	802 61 4 0926 1634 6 1 8904	902.61 4.3456 1689.1 1.9223	1002 61 4.5977 1744 3 1.9528	
250 (400.97)	Sh k h	0.01865 376.14 0.5679	1.8432 1201 1 1.5264		49.03 2.0016 1233.4 1.5629	99 03 2 1504 1263 5 1 5951	149.03 2.2909 1291.8 1.6239	199.03 2.4262 1319.0 1.6502	299.03 2.6872 1371.6 1.6976	399.03 2.9410 1423.4 1.7405	499 03 3.1909 1475 3 1.7801	599.03 3.4382 1527.6 1.8173	699 03 3.6837 1580 6 1.8524	799 03 3 9278 1634 4 1 8858	899 03 4 1709 1688 9 1.9177	999 03 4 4131 1744 2 1 9482	
260 (404.44)	\$6 8 5	0 01870 379 90 0 5722	1 7742 1201 5 1 5230		45.56 1.9173 1231.9 1.5573	95 56 2 0619 1262 4 1 5899	145.56 2.1981 1290.9 1.6189	195 56 2 3289 1318 2 1 6453	295.56 2.5808 1371.1 1.6930	395 56 2 8256 1423 0 1 7359	495.56 3.0663 1474.9 1.7756	595 56 3 3044 1527 3 1.8128	695.56 3.5408 1580.4 1.8480	795.56 3.7758 1634.2 1.8814	895 56 4 0097 1688 7 1 9133	995.56 4.2427 1744.0 1.9439	1095 5 4.475 1800 1,773
270 (407.80)	5h	0 01875 383 56 0 5764	1,7101 1201.9 1,5197		42 20 1 8391 1230 4 1 5518	92.20 1.9799 1261.2 1.5848	142.20 2.1121 1290.0 1.6140	192 20 2 2388 1317 5 1 6406	292.20 2.4824 1370.5 1.6805	392.20 2.7186 1422.6 1.7315	497.20 2.9509 1474.6 1.7713	592 20 3 1806 1527 1 1 8085	697.70 3.4084 1580 1 1.8437	792 20 3.6349 1634 0 1.8771	892.20 3.8603 1688.5 1.9090	992.20 4.0849 1743.9 1.9396	1092.2 4.308 1800 1.969
290 (4)1 (17)	\$h * h	0.01880 387 12 0.5805	1.6505 1202.3 1.5166		38 93 1 7665 1228 8 1 5464	88 95 1 903 7 1260 0 1 5798	138 93 2 0327 1289 1 1 6093	188 93 2 1551 1316 8 1.6361	288 93 2 3909 1370 0 1 6841	388 93 2 6 1 94 1 4 2 2 1 1 7 2 7 3	488 93 2 8437 1474 2 1.7671	588 93 3 0655 1526 8 1.8043	688 93 3.2855 1579 9 1.8395	788 93 3.5042 1633 8 1.8730	888 93 3.7217 1688 4 1.9050	986 93 3 9384 1743 7 1 9356	1088 9 4 154 1799 1 964
			•												-		
790 414.25)	5h * *	0.01885 390.60 0.5844	1.5948 1202.6 1.5135		35.75 1.6988 1227.3 1.5412	85.75 1.8327 1258.9 1.5750	135.75 1.9578 1288 1 1.6048	185.75 2.0772 1316.0 1.6317	285.75 2.3058 1369.5 1.6799	385.75 2.5269 1421.7 1.7232	485.75 2.7440 1473.9 1.7630	585 75 2 9585 1526 5 1 8003	685.75 3.1711 1579.6 1.8356	785.75 3.3824 1633.5 1.8690	885.75 3.5926 1688.2 1.9010	985.75 3.8019 1743.6 1.9316	1085.75 4.0106 1799.7 1.9610
300 417.35)	5h * h	0.01889 393.99 0.5882	1.5427 1202 9 1.5105		32 65 1 6356 1225 7 1 5351	82 65 1 7665 1257 7 1 5703	132.65 1.4883 1287.2 1.6003	182 65 2 0044 1315 2 1 6274	282 65 2 2263 1368 9 1 6758	382 65 2 4407 1421 3 1 7192	482.65 2.6509 1473.6 1.7591	582 65 2 8585 1526 2 1,7964	682.65 3.0643 1579.4 1.8317	782 65 3.7688 1633 3 1.8652	882 65 3 4721 1688 0 1 8972	982 65 3 6746 1743 4 1 9278	1082 65 3 8764 1799 6 1 9572
310 420.36)	Sh h h	0.01894 397.30 0.5920	1 4939 1203.2 1.5076		29 64 1.5763 1224 1 1.5311	79 64 1 7044 1256 5 1 5657	129 64 1 8233 1286 3 1 5940	179 64 1 9363 1314 5 1 6233	279 64 2 1520 1368 4 1.6719	379 64 2 3600 1420 9 1 7153	479 64 2.5638 1473 2 1.7553	579 64 2 7650 1525 9 1 7927	679.64 2.9644 15.79.2 1.8280	779 64 3 1625 1633 1 1.8615	879.64 3.3594 1687.8 1.8935	979 64 3 5555 1743.3 1 9741	1079 64 3 7509 1799 4 1 9536
326 123.31)	\$25 h 5	0 01899 400.53 0.5956	1.4480 1203.4 1.5048		26.69 1.5207 1222.5 1.5261	76.69 1.6462 1255.2 1.3612	126 69 1.7623 1285 3 1.5918	176.65 1.8725 1313.7 1.6192	276 69 2 0823 1367 8 1 6680	376.69 2.2843 1420.5 1.7116	476.69 2.4821 1472.9 1.7516	576 69 2 6774 1525 6 1 7890	676.69 2.8708 1578.9 1.8243	776.69 3.0628 1632.9 1.8579	876.69 3.2538 1687.6 1.8899		1076 65 3 6332 1799 3 1 9500
330 126 18	Sh h s	0 01903 403.70 0 5991	1.4048 1203.6 1.5021		23.82 1.4684 1220.9 1.5213	73.82 1.5915 1254.0 1.5568	123.82 1.7050 1284.4 1.5876	173.82 1.8125 1313.0 1.6153	273.82 2.0168 1367.3 1.6643	373.82 2.2132 1420.0 1.7079	473.82 2.4054 1472.5 1.7480	573.82 2.5950 1525.3 1.7855	673.82 2.7828 1578.7 1.8208	773.62 2.9692 1632.7 1.8544		3.3389 1742.9	1073 82 3 5227 1799.2 1 94 65
348 128 99:	\$ h	0.01908 406.80 0.6026	1.3640 1203 8 1.4994		21.01 1.4191 1219.2 1.5165	71.01 1.5399 1252.8 1.5525	121 01 1 6511 1283 4 1 5836	171.01 1.7561 1312.2 1.6114	271.01 1.9552 1366.7 1.6606	371.01 21463 1419.6 1.7044	471.01 2.3333 1472.2 1.7445	571.01 2.5175 1525.0 1.7820	671.01 2.7000 1578.4 1.8174	771.01 2.8811 16.32.5 1.8510	871.01 3.0611 1687.3 1.8831	971.01 3.2402 1742.8 1.9138	1071 01 3 4 186 1799 0 1 9432
350 131 73:	Sh k h	0.01912 409.83 0.6059	1.3255 1204 0 1.4968		18.27 1.3725 1217.5 1.5119	68.27 1.4913 1251.5 1.5483	118.27 1.6002 1282 4 1.5757	168.27 1.7028 1311.4 1.6077	268.27 1.8970 1366.2 1.6571	368.27 2.0832 1419.2 1.7009	468.27 2.2652 1471.8 1.7411	568.27 2.4445 1524.7 1.7787	668.27 2.6219 1578.2 1.8141	768.27 2.7980 1632.3 1.8477	868.27 2.9730 1687.1 1.8798	968.27 3.1471 1742.6	3.3205 1796.9 1.9400
360 (34.41)	50 00 0	0.01917 412 91 0.6092	1.2891 1204 1 1.4943		15.59 1.3285 1215.8 1.5073	65.59 3.4454 1250.3 1.544.1	115.59 1.5521 1281.5 1.5758	165.59 1.6525 1310.6 1.6040	265.59 1.8421 1365.6 1.653	365.59 2.0237 1418.7 1.6976	465.59 2.2009 1471.5 1.7379		665.59 2.5482 1577.9 1.8109	765.59 2.7196 1632.1 1.8445	865.59 2.8898 1686.9	965.59 3.0597 1742.5	1065 59 3 2279 1798 8 1 9368
300 30 E.S.	Sh.	0.01925 418.59 0.6156	1.2218 1204.4 1.4894		10.39 1.2472 1717.4 1.4982	60 39 1 3606 1247 7 1 5360	110.39 1.4635 1279.5 1.5683	160.39 1.5598 1309.0 1.5965	260 39 1 7410 1364 5 1 6470	360.39 1.9139 1417.9 1.6911			660.39 2.4124 15.77.4 1.8047	760 39 2.5750 1631 6 1.8384	860.39 2.7366 1686.3	960.39 7.8973 1742.2	

Sh = superheat. f w = specific volume, cu ft per lb

h = enthalpy, Btu per lb s = entropy, Btu per R per lb

Table 3. Superheated Steam - Continued

the state of the s

Abs Press Lb/Sq In (Sat Temp)		Sat Water	Sat Steam	Temp 450	erature -	Degree:	Fahren 600	heit \$50	780	800	900	1800	1186	1200	1300	1400	1500
490 (*44 60)	\$h h	0 01934 424 17 0 6217	1.1610 1204 6 1.484 7	5.40 1.1738 1208.8 1.4894	55.40 1.284) 1245.1 1.5282	105 40 1 3836 1277 5 1 3611	155 40 1 4763 1307 4 1 5901	205 40 1 5646 1335 9 1 6163	255 40 1 6499 1363 4 1 6406	355 40 1 8151 1417 0 1 6850	455 40 1 9759 1470 1 1 7255	555 40 2 1 3 3 9 1523 3 1 7632	655 40 2 2901 1576 9 1 7988	755 40 2 4450 163) 2 1 8325	855 40 2 5987 1686 2 1 86 47	955 40 2 7515 1741 9 1 3955	1055 4 2 903 1798 1 925
42 6 (449.40)	Sh + h	0 01942 429 56 0 6276	1 1057 1204 7 1 4802	11071 1205.2 1.4808	50 60 1 21 48 1242 4 1 5206	100 60 1.3113 1275 4 1.5542	150 60 1 400 7 1305 8 1 5835	200 60 1 4856 1334 5 1 6100	250 60 1 5676 1 362 3 1 6345	350 60 1 7258 1416 2 1 6791	450 60 1.8795 1469 4 1.7197	550 60 2 0304 1522 7 1 7575	650 60 2 1795 1576 4 1 7932	750 60 2 3273 1630.8 1.8269	850 60 2 4739 1685 8 1.8591	950.60 2.6196 1741.6 1.8899	1050 6 2 764 1 798 1 919
441 (454.03)	Sh v h	0.01950 434.77 0.6337	1.0554 1204.8 1.4759		45 97 1 1517 1239 7 1 5132	95.97 1.2454 1273.4 1.5474	145 97 1 3319 1304 2 1 5772	195.97 1.4138 1333.2 1.6040	245.97 1.4926 136.1 1.6286	345.97 1.6445 1415.3 1.6734	445.97 1.7918 1468.7 1.7142	545.97 1.9363 1522.1 1.7521	645.97 2.0790 1575.9 1.7878	745.97 2.2203 1630.4 1.8216	845 97 2.3605 1685 5 1.8538	945.97 2.4998 1741.2 1.8847	1045 9 2 638 1797 1 914
446 (458.50)	Sh * h	0.01959 439.83 0.6387	1.0092 1204.8 1.4718		41 50 1 0939 1236 9 1 5060	91.50 1.1852 1271.3 1.5409	141 50 1.2691 1302 5 1 5711	191 50 1 3482 1331 8 1 5982	241 50 1 4242 1360 0 1 6230	341 50 1 5 703 14 14 4 1 6680	441.50 1.7117 1468.0 1.7089	54) 50 1,8504 1521 5 1,7469	641.50 1.9872 1575.4 1.7826	741.50 2.1226 1629.9 1.8165	841.50 2.2569 1685.1 1.8488	941 50 2 3903 1:40 9 1.8797	1041 5 2 523 1797 1 909
488 (462 82)	Sh w h	0 01967 444 75 0 6439	0.9668 1204.8 1.4677		37.18 1.0409 1234 1 1.4990	87.18 1.1300 1269 1 1.5346	137 18 1.2115 1300 8 1 5652	187 18 1.2881 1330 5 1 5925	237 18 1 3615 1358 8 1 6176	337 18 1 5023 1413 6 1 6628	437.18 1.6384 1467.3 1.7038	537.18 1.7716 1520.9 1.7419	637 18 1.9030 1574 9 1.7777	737 18 2 0330 1629 5 1.8116	837.18 2.1619 1684.7 1.8439	937 18 2.2900 1740 6 1.8748	1037 1 2 417 1797 1 904
580 (467.01)	Sh v h	0 01975 449 52 0 6490	0.9276 1204.7 1.4639		32 99 0 9919 1231 2 1 4921	82 99 1 0791 1267 0 1 5284	132.99 1.1584 1299.1 1.5595	182 99 1 2327 1329 1 1 5871	232 99 1 3037 1357 7 1 6123	332 99 1 4397 1412 7 1 6578	432 99 1 5708 1466 6 1 6990	532 99 1.6992 1520 3 1.7371	632 99 1 8256 1574 4 1 7730	737 99 1 9507 1629 1 1 8069	832 99 2 0746 1684 4 1 8393	932.99 2.1977 1740.3 1.8702	1032 9 2 320 1796 1 899
\$29 (47),07)	Sh	0 01982 454 18 0 6540	0.8914 1204.5 3.4601		28 93 0 9466 1228 3 1 4853	78 93 1 0321 1284 8 1 5223	128 93 1 1094 1297 4 1 5539	178 93 1 1816 1327 7 1 5818	228 93 1 2504 1356 5 1 6072	328.93 1.3819 3411.8 1.6530	428 93 1 5085 1465 9 1 6943	528 93 1 6323 1519 7 1 7325	628 93 1.7542 1573 9 1.7684	728 93 1 8746 1628 2 1 8024	828 93 1 9940 3684 0 1 8348	928.93 2.1125 1740.0 1.8657	1028 9 2.230 1796 1.895
540 (4.75-01)	Sh.	0.01990 458.71 0.6587	0.8577 1204.4 1.4565		24 99 6 9045 1225 3 1 4786	74 99 0 9884 1767 5 1 5164	174 99 1 0640 1295 7 1 5485	174 99 1 1342 1326 3 1 5767	224 9) 1 2010 1355) 1 6023	324 99 1 3284 1410 9 1 6483	474 99 1 4508 1465 1 1 6897	574 99 1 5704 1519 1 1 7280	624 99 1 6880 1573 4 1 7640	774 99 1 8047 1678 2 1 7981	824 99 1 9193 1683 6 1 8305	974 99 2 0336 1739 7 1 8615	1074 9 2 147 1796 4 1 891
														,			
560 (4.78.84)	\$5.00	0.01998 463.14 0.6634	0.8764 1204.2 1.4529		2116 0.8653 1222.2 1.4720	71 16 0 9479 1260 3 1 5106	121 16 1 0217 1293 9 1 5431	171 16 1 0907 1324 9 1 5717	221 16 1 1552 1354 2 1 5975	321 16 1 2787 1410 0 1 6438	421 16 1.3972 1464 4 1.6853	521 16 1 5129 1518 6 1 7237	621.16 1.6266 1572.9 1.7598	721.16 1.7388 1627.8 1.7939	82116 1.8500 1683.3 1.8263	921 16 1.9603 1739 4 1.8573	1021 1/ 2.069/ 1796 1.887/
580 (482 57)	\$h h s	0.02006 467.47 0.6679	0.7971 1203.9 1.4495		17.43 0.8287 1239 1 1.4654	67.43 0.9100 1258.0 1.5049	117.43 0.9824 1292 1 1.5380	16743 1 0492 1323 4 1 5668	217.43 1.1125 1353.0 1.5929	317 43 1 2374 1409 2 1 6394	417.43 1.3473 1463.7 1.6811	517.43 1.4593 1518.0 1.7796	617.43 1.5693 1572.4 1.7556	717.43 1.6780 1627.4 1.7898	817.43 1.7855 1682.9 1.8223	917.43 1.8921 1739.1 1.8533	1017-43 1 9981 1795 (1 883)
\$80 4 86 20)	\$h * h s	0 02013 471 70 0 6 723	0.7697 1203 7 1.4461		13 80 0.7944 1215 9 1.4590	63.80 0.8746 1255.6 1.4993	113 80 0 9456 1290 3 1 5329	163.80 1.0109 1322.0 1.5621	213 80 1 0776 1351 8 1 5884	313 80 1.1892 1408 3 1.6351	413.80 1.3008 1463.0 1.6769	513.80 1.4093 1517.4 1.7155	613.80 1.5160 1571.9 1.7517	713 80 1 6211 1627 0 1 7859	813 80 1.7252 1682 6 1.8184	913.80 1.8284 1738.8 1.8494	1013.80 1 930 1795.6 1 879
658 494 891	Sh * h	0.02032 481.89 1.6828	0 *084 1207 8 1 438		5 11 0 7173 1207 6 1 4430	55 11 0 7954 1249 6 1 4858	105.11 0.8634 1285.7 1.5207	155.11 0.9254 1318.3 1.5507	205 11 0 9835 1348 7 1 5775	305 11 1 0929 1406 0 1 6249	405.11 1.1969 1461.2 1.667.1	505 11 1.2979 15/5 9 1.7059	605 11 1 3969 1570 7 1 7422	705 11 1 4944 1625 9 1 7765	805 11 1 5 909 1681 6 1 8092	905 11 1 6864 1738 0 1 8403	1005 11 1 781 1794 5 1 870
780 503 08:	51	0.02050 491.60 0.6928	0 6556 1201 8 1 4304			46 97 0 7271 1243 4 1 4726	96 92 0.7928 1281 0 1.5090	146 97 0 8520 1314 6 1 5399	196 92 0 9077 1345 6 1.5673	296.92 1.0102 1403.7	396.92 1.1078 1459.4 1.6580	496 92 1 2023 1514 4 1 6970	396 92 1.2948 1569 4 1.7335	u96.97 1.3858 1624.8 1.7679	796 92 7 4757 1680 7 1 8006	896.92 1.5647 1707.7 1.837.8	996.92 1.6530 1794.3 1.8617
750 510 84	50 . 4 .	0.02069 500.89 0.7022	0 6095 1200 7 1 4232			39 16 0 6676 1236 9 1 4598	89 16 0 7313 1276 1 1 4977	135 15 6 7882 1310 7 1 5296	189 16 0 8409 1342 5 1.5577	289 16 0.9386 1401 5 1 6065	389 16 1.0306 1457 6 1.6494	489 16 1 1195 1512 9 1 6886	589 16 1 2063 1568 2 1 7252	689 16 1.2916 1623 8 1.7598	789 16 1 3759 1679 8 1 7926	889 16 1 4592 1736 4 1 8239	901 16 1 54 19 1 79 3 6 8 5 38
800 518 211	\$8. 8 8	0.02087 509.81 0.7111	1199.4			31 79 0.6151 1230 1 1.4472	81.79 0.6774 127) 1 1.4869	131.79 0.7323 1306.8 1.5198	181.79 0.7828 1339.3 1.5484	281 79 0 8759 1399 1 1 5980	381 79 0 963 1 1455 8 1 6413	481.79 1.0470 1511.4 1.6807	581 79 1 1289 1566 9 1 7175	681.79 1.2093 1622.7 1.7522	781 79 1.2885 1678 9 1.7851	881.79 1.3669 1735.7 1.8164	981.79 1.4446 1792.9 1.8464
#56 525-24)	\$h * h +	518.40	0.5330 1198.0 1.4096			24.76 0.5683 1223.0 ± 4347	74 76 0.6296 1265.9 1.4763	124.76	174.76 0.7315 1336.0 1.5396	274 76 0.8205 1396 8	374 76 0 9034 1454 0 1 6336	474 76 0 9830 1510 0 1 6733	574.76 1.0605 1565.7 1.7102	674 7/ ₃ 1.1366 1621 6 1.7450	774.76 1.2115 1678.0 1.7780	874.76 1.2855 1734.9 1.8094	974.76 1.3588 1.797.3 1.8395
900 331 95	Sh		0.5009 1196.4 1.4037			18 05 0 5263 12 15 5	68 05 0 5869 1260 6	118 05 0 6 388 1298 6	168.05 0.6858 1337.7	268 05 0 7713 1394 4 1 5822	368 05 0.8504 1452 2	468 05 0 9262 1508 5 1 6662	568 05 0 9998 1564 4 1 7033	668 05 1 0720 1620 6 1 7382	768.05 1.1430 1677.1 1.7713	868 05 1 2131 1734 1 1 8028	968 05 1.2875 1751 6 1.8329

Sh = superheat f v = specific volume, cu ft per lb

fi = enthalpy. Btu per lb s = entropy. Btu per R per lb