\qquad JOB NO. \qquad 08031 DISCIPLINE \qquad Plant Design subject Study Calculation for E-System Clamp flem. \qquad A-243 c. Elbows call. No. $\frac{5 R 8031-5510}{3}$ No. of sheet 35

THIS CALCULATION HAS BEEN PERFORMED
BY STAFF AND IS REVIEWED AND ACCEPTED BY
fiche ON.

$$
4 / 22 / 63
$$

STUDY CALCULATION

FOR

E-SYSTEM CLAMP ON ELBOWS

```
SR 8031-S510
```


BY

BECHTEL POWER CO.

PLANT DESIGN STRESS STAFF

CALCULATION SHEET
\qquad 0 ORIGINATOR \qquad DATE \qquad $4-1 \cdot 23$ CHECKED \qquad A Yt DATE 4/11183 PROJECT \qquad Liner ck JOB NO. 08031

SUBJECT \qquad Claw in induced stresses SHEET NO. \qquad

Table of Content

1 Introduction
a Piping system
b. Clamp
c. Method of Calculation

2 Local Stress Calculations
a. Clamp Preload stresses
b. Differential Thermal Expansion Stresses
c. Constraint of Pressure Expansion Stresses
d. Stresses Induced by Pad Bearing
3. Primary Stress Intensity \& Fatigue Evaluation
a. Calculation of Stress Indices
b. Primary stress Intersity
c. Fatigue Evaluation
4. Conclusion
5. References
6. Attachments - No.1,2,3 and 4

CALCULATION SHEET
\qquad c. K. Mu DATE $4-18-83$ CHECKED \qquad AyH date $4 / 18 / 83$ Project \qquad -merck JOB NO. 08031 subject. \qquad Clamp Induced Stresses SHEET NO. \qquad

1. Introduction

The purpose of this calculation is to investigate the impact of the local stresses in the pipe wall due to the use of E-system clamp at the end of elbow. For limerick project, the BOP piping systems which involve clamps attached on elbows are:

2 On Nuclear Class 1 Core Spray, Carbon Steel Clamp, Stainless Steel Pipe.
on Nuclear class/Feedwater, both the clamp and pipe are Carbon steel.
on Nuclear class 3 MSRV lines inside drywell, both clamp and pipe are carbon steel. The local stresses on both core spray and Feedwater lines are evaluated. This calculation includes the detailed calculations of the primary stress and usage factor for

CALCULATION SHEET
CALL. NO. SR8O31-SSIO REV. NO. O ORIGINATOR \qquad c.K. Wu date \qquad $4-18-8 ?$ Checked \qquad DATE \qquad $4 / 18 / 83$ PROJECT \qquad Limerick JOB NO. \qquad oro31 SUBJECT \qquad clamp Induced Stresses sheet no. \qquad
(a) Piping System
(i) Pipe Size \& Material - Stainless Steel

$$
\begin{aligned}
& \alpha_{p}=9.11 \times 10^{-6} \\
& E_{p}=28.3 \times 10^{6} \mathrm{psi} \\
& O D_{p}=12.75 \mathrm{in} \\
& t_{p}=0.688 \mathrm{in} \\
& I=475.8 \mathrm{in}^{4}
\end{aligned}
$$

(ii) Load Condition

The load histogram specified in the design specification for Core Spray Lines is considered in this calculation

* Design Pressure 1250 Psi
* Design Temperature $582^{\circ} \mathrm{F}$

The operating temperature at the clamp is $150^{\circ} \mathrm{F}$

* 10 operating cycles of cold water injection with thermal transient from $150^{\circ} \mathrm{F} \rightarrow 50^{\circ} \mathrm{F}$ at step change.

$$
\text { * } 50 \text { cycles of (ORE + SR V building response) }
$$

CALCULATION SHEET
\qquad c. K . Hue date \qquad $4-18-83$ CHECKED \qquad AyH date 4/18/83
\qquad PROJECT Limerick \qquad Clamp Induced stresses. Job no. \qquad 0803 subject \qquad SHEET NO. \qquad

* 2650 cycles of SRV building response
* 380 cycles of Thermal ($522^{\circ} \mathrm{F}$) and Pressure (1000 psi) operating loads including start up ξ Shot down
(b) Clamp (Sketch shown in attachment 1.)
(i) Size \& Material - Carbon Steel

$$
\begin{aligned}
& \alpha_{c}=6.07 \times 10^{-6} \\
& E_{c}=27.9 \times 10^{6} \mathrm{psi} \\
& t_{c}=1.25 \mathrm{in} \\
& \text { O. DC }=16.45 \mathrm{in}
\end{aligned}
$$

i) Load

The total load (including $O B E+S R V_{\text {building response) }}$ from snubber is 14 K . The snubber load due to SRV alone is 4.25 K .

The local stresses induced ir the presence of clamp are

* preload
* Constraint of thermal expansion
* Constraint of Pressure expansion
* Snubber load

CALCULATION SHEET
\qquad DATE \qquad $4-18-83$ CHECKED \qquad DATE $4 / 18 / 83$ PROJECT \qquad Limerick JOB NO. \qquad 08031 SUBJECT \qquad Clamp Indued Stresses SHEET NO. \qquad 4
(c) Method of Calculation

Piping stresses are calculated in accordance with Code equations specified in ASME Section II NR 3650 . The local stresses due to snubber loads, thermal and pressure constraints are calculated and added to piping stresses. The total stresses are compared with Nuclear Class 1 code allowables. Primary stress intensity is evaluated for Design condition. Primary plus Secondary stress intensity and Peak stress intensity are calculated for each loading condition and the total usage factor for 40 years of plant life is conservatively calculated.

The following equations are used.
(i) Primary Stress

$$
E Q .9 \quad B_{1} \frac{P D}{2 t}+B_{2} \frac{M D}{2 I}+\left(P_{L}+P_{b}\right)_{l}<1.5 \mathrm{~S}_{\mathrm{m}}
$$

(ii) Primary Plus Secondary

$$
E Q .10 \quad S_{N}=C_{1} \frac{P D}{2 t}+C_{2} \frac{M D}{2 I}+\frac{1}{2(1-\nu)} E \propto\left|\Delta T_{1}\right|
$$

$$
+C_{3} E_{a_{b}}\left|\alpha_{a} T_{a}-\alpha_{b} T_{b}\right|+S_{n \ell}
$$

\qquad DATE \qquad $\angle-8-83$ CHECKED \qquad DATE $4 / 18 / 83$
PROJECT \qquad timer \ll JOB NO. \qquad ore SUBJECT. \qquad Clamp Induced Stresses SHEET NO. \qquad
(iii) $E Q \| \quad S_{p}=K_{1} C_{1} \frac{P D}{2 t}+C_{2} \frac{M D}{2 I}+\frac{1}{2(1-\nu)} E \alpha\left|\Delta T_{1}\right|+\frac{1}{1-\nu} E \propto\left|\Delta T_{2}\right|$

$$
\begin{aligned}
& \quad+K_{3} c_{3} E_{a b}\left|\alpha_{a} T_{a}-\alpha_{b} T_{b}\right|+S_{p l} \\
& S_{a_{t} t}=\frac{K_{e}}{2} S_{p}
\end{aligned}
$$

where $\left(P_{L}+P_{b}\right)$ - Primary Local Membrane Stress Intensity
Sone - Local Primary plus Secondary Stress Intensity
Siple - Local Peak Stress Intensity

CALCULATION SHEET
\qquad date \qquad $4-11-83$ CALC. No SR 8031-SS10 REV. No. \qquad 0 PROJECT \qquad Limerick checked \qquad AH date \qquad 4/11/83 PROJECT \qquad Clamp induced stresses jot no. 08031 subject SHEET NO. \qquad 6
2. Local Stress Calculations
a. Clamp Preload Stresses

Although piping stresses due to clamp preload are nonrecurring secondary type in nature, the potential for pipe damage due to bolt overtorgue is assessed.

Bot Torque $T=90 \mathrm{ft}-16^{*}$
Bolt diameter $d=1.25,8 \cup N-2 A$
Assume lubricated bolt (No friction)

$$
\begin{aligned}
& T=F d \sin \theta, \quad \theta=11.31^{\circ}, \quad \sin \theta=0.196 \\
& F=\frac{T}{d \sin \theta}=\frac{90 \times 12}{1.25(0.196)}=440816
\end{aligned}
$$

To Calculate the pressure between the U-bolt and the pipe wall, static equilibrium equation is used.

* Note: The prelood torque is given by Limerick Pipe clamp inst, illation spec. $803-p-143-30-4$

CALCULATION SHEET
TALC. NO. SRCO31-SSIO REV. NO. \qquad
ORIGINATOR \qquad DATE \qquad $4-11-93$ CHECKED \qquad Wy H DATE \qquad PROJECT \qquad Limerick JOB NO. \qquad 08031 SUBJECT \qquad Clamp induced stresses sheet no. \qquad

$$
2 F=\int_{0}^{\pi} P(R d \theta)(2 b) \sin \theta
$$

Where: $p=$ clamp pre-luad induced pressure

$$
\begin{aligned}
& R=\frac{12 \cdot 75}{2}=6.375^{\prime \prime} \\
& 2 b=w: d \text { of strap }
\end{aligned}
$$

(strop is weed ketwen U-bout \& pipe for Snug fit)

$$
\begin{aligned}
\Rightarrow z & =\int_{0}^{-} P R(2 b) \sin \theta d \theta \\
& =(2 b) P R \int_{0}^{\pi} \sin \theta d \theta \\
& =4 b P R \\
\Rightarrow \quad P & =\frac{F}{(2 b \cdot R}=\frac{4408}{(2.86)(6375)}=242 p 5 i
\end{aligned}
$$

CALCULATION SHEET \qquad

ORIGINATOR \qquad DATE \qquad $4-11-83$ CHECKED \qquad DATE \qquad $4 / 11 / 83$ PROJECT \qquad Limerick JOB NO. \qquad 08031 Clamp induced stresses sheet no. \qquad 8

The resulting longitudinal $\&$ hoop stresses can be calculated by using the equation presented by Park.

From eq. 12, Page 301, $4^{\text {th }}$. Edition. "Formulas for stress \& strain", it is obvious:

$$
\begin{aligned}
& M=\frac{p}{2 \lambda^{2}} e^{-6 \lambda} \sin b \lambda \\
& \lambda=4 \sqrt{\frac{3\left(1-U^{2}\right)}{R_{p}^{2} t_{p}^{2}}} \\
& \nu=0.3 \\
& R_{p}=\frac{12.75}{2}=6.375 \\
& t_{p}=0.688 \\
& \lambda=4 \frac{3(1-0.32)}{(6.375 \times 0.698)^{2}}=0.614 / i n \\
& b=\frac{2.86}{2}=1.43 \\
& e^{-t \lambda}=0.416 \\
& s, b \lambda=0769 \\
& M=\frac{242}{2(0.614)^{2}}(0.416)(0.769)=103 \mathrm{men} / 1 \mathrm{~m}
\end{aligned}
$$

CALCULATION SHEET
TALC. NO. SR $8031-5510$ \qquad

ORIGINATOR \qquad c. K. Hue DATE $4-11-83$ CHECKED \qquad DATE \qquad project Limerick \qquad Clamp induced stresses. Job no. 08031 SUBJECT \qquad SHEET NO. \qquad 9

Max. long tudinal stress

$$
S_{1}=\frac{6 M}{t_{p}^{2}}=\frac{6 \cdot 103}{(0.688)^{2}}=1306 \mathrm{psi}\binom{\text { compression at outer surface }}{\text { tension at inner surface }}
$$

Max hoop Stress

$$
\begin{aligned}
& S_{2}=\frac{P R_{p}}{t_{p}}\left(1-e^{-b \lambda} \cos b \lambda\right) \\
& \cos b \lambda=0.639 \\
& S_{2}=\frac{242.6 .375}{0.688}(1-0.416 \times 0.639) \\
&=1648 \mathrm{PSi}
\end{aligned}
$$

If con be seen from next section that the effective area of the pipe resisting the radial load from the Clamp is greater than the U-Rolt, therefore the U-Bolt will yield before pipe. In addition, the deformation of U-Bolt will reduce the piping stresses somewhat.

CALCULATION SHEET
CALC. No SR8031-SSIO REV. NO. \qquad

ORIGINATOR \qquad DATE $4-11-83$ CHECKED \qquad DATE $4 / 11 / 83$ PROJECT \qquad Limerick clamp induced stresses JOB NO. \qquad SUBJECT \qquad SHEET NO.
b. Differential Thermal Expansion stresses

This section calculates the stresses induced in the Pipe wall due to the differential thermal expansion rate of a stainless steel pipe constrained by a carbon steel Clamp

Assumptions
*. The clamp represents a ring around the pipe causing
a. uniform external force on it.
= Area of clamp that is acting on the pipe to be the cross section area of the U-bolt

C Area \because Pits upon which clamp is acting includes the reinforcement area
d. Charge in temperatime $=582-70=512^{\circ} \mathrm{F}$

CALCULATION SHEET
CALL. NO. SR 8031 -SS10 REV. NO.
\qquad date \qquad $4-11-83$ CHECKED \qquad date PROJECT \qquad Limerick Job no. SUBJECT \qquad clamp induced stresses SHEET NO. \qquad

$$
\begin{aligned}
A_{p} & =0.688\left(2.86+\sqrt{R_{p} t_{p}}\right) \\
& =3.409 \mathrm{in}^{2}
\end{aligned}
$$

Geometry Compatibity requires:
Change in pipe diameter = change in clamp diameter

$$
\begin{aligned}
& \alpha_{p} \Delta T\left(O D_{p}\right)+\frac{\sigma_{p}}{E_{p}} O . D_{p}=\alpha_{c} \Delta T\left(I O_{c}\right)+\frac{\sigma_{c}}{E_{c}}\left(I \cdot D_{c}\right) \\
& 9.11 \times 10^{-6} \times 512(12.75)+\frac{\sigma_{p}}{28.3 \times 10^{6}}(12.7 E)=6.07 \times 10^{-6} \times 512 \times 13.95+\frac{\sigma_{c}}{27.9 \times 10^{6}} 13.95 \\
& \quad \cdot \\
& 59470.08+0.451 \sigma_{p}=43354.368+0.5 \sigma_{c} \\
& 16115.712=0.5 \sigma_{c}-0.451 \sigma_{p} \quad \cdots \cdots \cdots(1)
\end{aligned}
$$

Force compatibility yields:

$$
\sigma_{p} A_{p}+\sigma_{c} A_{c}=0
$$

$$
\begin{equation*}
\Rightarrow 3.409 \sigma_{p} \cdots 1.227 \sigma_{c}=0 \tag{2}
\end{equation*}
$$

CALCULATION SHEET
CALL. NO. SR 8031 -5510 REV. NO. \qquad

ORIGINATOR \qquad c. K Hu DATE $4-11-83$ CHECKED \qquad GYM DATE \qquad $4 / 11 / 83$ PROJECT \qquad Limerick JOB NO. 08031 Clamp induced Stresses SHEET NO. \qquad 12

From (2)

$$
\sigma_{p}=-\frac{1.227}{3.409} \sigma_{c}=-0.36 \sigma_{c}
$$

\Rightarrow From (1)

$$
\begin{aligned}
& 16115.712=0.5 \sigma_{c}+(0.451) \cdot(0.36) \sigma_{c} \\
& \sigma_{c}=24331 p \mathrm{si} \\
& \sigma_{c}=\frac{P_{c} R}{t}, \quad t=\frac{A_{c}}{2 b}=\frac{1.227}{2.86}=0.429 \\
& R_{c}=\frac{16.45}{2}=8.225 \\
& F_{c}=\frac{\sigma_{c} t}{R}=\frac{24331 \cdot 0.429}{8.225}=1269 \mathrm{Psi}
\end{aligned}
$$

Ry the same equation from Roark as described in section A. one can $\{$ nd the max. long: tudival \& hoop stresses

$$
\begin{aligned}
M & =\frac{P}{2 \lambda^{2}} e^{-b \lambda} \sin b \lambda \\
& =540 \mathrm{in}-1 b / \mathrm{in}
\end{aligned}
$$

Max. longitachinal stresses

$$
\begin{aligned}
& S_{1}=\frac{6^{\prime \prime}}{t_{f}^{2}}=\frac{654=}{t_{p}^{2}}=6845 p s i\left[\begin{array}{l}
\text { Coup on outer surface } \\
\text { torsion oner Surface }
\end{array}\right] \\
& \bar{S}_{2}=\frac{p p}{t_{p}}\left(1-e^{-b \lambda} \cos b \lambda\right)=8640 \mathrm{psi}
\end{aligned}
$$

\qquad DATE \qquad $<-11-83$ Checked \qquad DATE \qquad
PROJECT \qquad Limerick JOB NO. \qquad 0803
\qquad Clomp induced stresses \qquad

Temp. $522^{\circ} \mathrm{F}\left\{300^{\circ} \mathrm{F}\right.$ are used to calculate the interaction pressure for later fatigue evaluations.

$$
\begin{aligned}
& \alpha_{p} \Delta T\left(0 D_{p}\right)+\frac{\sigma_{p}}{E_{p}} \circ D_{p}=\alpha_{c} \Delta T\left(I \cdot D_{c}\right) \frac{\sigma_{c}}{E_{c}}\left(I D_{c}\right) \\
T= & 5.20 .5 \\
& 9.11 \times 10^{-6} \times 452(12.75)+\frac{\sigma_{p}}{28.3 \times 10^{6}}(12.75)=6.07 \times 10^{-6} \times 4.52 \times 13.95+\frac{\sigma_{c}}{279 \times 10^{6}} 15.95 \\
\Rightarrow & 14228=0.5 \sigma_{c}-0.45 \sigma_{p} \\
& \sigma_{p} A_{p}+\sigma_{c} A_{c}=0 \\
& 3.409 \sigma_{p}+1.227 \sigma_{c}=0
\end{aligned}
$$

From (3) \& (4)

$$
\begin{aligned}
14228 & =0.5 \sigma_{c}+(0.451)(0.36) \sigma_{c} \\
\sigma_{c} & =21481 \mathrm{PSi} \\
P_{c} & =\frac{\sigma_{c} t}{R}=\frac{21481 \cdot 0.429}{8.225}=1121 \mathrm{ps}_{i}
\end{aligned}
$$

CALCULATION SHEET

ORIGINATOR \qquad DATE \qquad $4-11-83$ CALC. NO. S58031-S510. REV. NO. 0 DATE CHECKED \qquad AyH date $4 / 14 / 83$ PROJECT \qquad Limerick JOB NO. \qquad Clamp induced stresses SHEET NO SUBJECT \qquad
\qquad

$$
T=300^{\circ} \mathrm{F}
$$

$$
\begin{aligned}
& 9.11 \times(300-70)(12.75)+\frac{\sigma_{p}}{28.3}(12.75)=6.07 \times 230 \times 13.95+\frac{\sigma_{c}}{27.9} \times 13.95 \\
& 26715.075^{\prime}+\frac{12.75}{28.3} \sigma_{p}=19475.595+\frac{13.5}{27.9} \sigma_{c}
\end{aligned}
$$

$$
\begin{aligned}
& \gamma 239.48 /=0.5 \sigma_{c}-0.451 \sigma_{p} \\
& \sigma_{p}=-0.36 \sigma_{c} \\
& \Rightarrow 7239.48=0.5 \sigma_{c}+(0.451)(0.36) \sigma_{c} \\
& \sigma_{c}=10929827 \\
& P_{c}=\frac{10929.827 .0 .429}{8.225}=570 \mathrm{psi}
\end{aligned}
$$

CALCULATION SHEET
CALC. No. SS $803:-5510_{\text {REV. NO. }}$ \qquad
\qquad DATE \qquad $4-11-83$ CHECKED \qquad DATE \qquad $4 / 11 / 83$ PROJECT \qquad Limerick clamp induced stresses JOB NO. \qquad 08031 SUBJECT \qquad SHEET NO
C. Constraint of Pressure Expansion Stresses When the pipe ie pressurized it will expand. The longitudinal and hoop stresses in the pipe wall due to the restraint of free expansion by the clamp is evaluated.

Clamp constraint of pipe Expansion due to
internal pressure

CALCULATION SHEET
TALC. NO. \qquad REV. NO. \qquad \circ

ORIGINATOR \qquad DATE \qquad $4-11-83$ CHECKED \qquad DATE \qquad PROJECT \qquad Limerick clamp induced stresses JOB NO. \qquad 08031 SUBJECT \qquad SHEET NO. \qquad

Assumptions
a. $P_{i}=1250 \mathrm{PSN}$
b clamp acting uniformly on the pipe
From equation 13, page 302 of Roork's Formulas:

$$
\begin{aligned}
& M=\left(\frac{p_{i}}{2 \lambda^{2}}\right)\left[\frac{A}{A+t_{p}(2 b)+\frac{2 t_{p}}{\lambda}}\right] \\
& p_{i}=1250 \\
& \lambda=0.614 \\
& A=\text { cross -sectional area of clamp }=1.227 \mathrm{in}^{2} \\
& t_{p}=0.688 \\
& 26=286 \\
& M=\frac{1250}{2.0 .614^{2}}\left[\frac{1.227}{1.227+0.688(2.86)+\frac{2.0 .668}{0.614}}\right] \\
&=374 \mathrm{in}-16 / \mathrm{in}
\end{aligned}
$$

Mas. longitudinal stress

$$
\begin{aligned}
& S_{1}=\frac{6 M}{t_{p}^{2}}=\frac{6 \cdot 382}{0.688^{2}}=4744 \mathrm{psi} \\
& V_{0}=2 M \lambda \\
& P=\frac{210}{26}=\frac{4 M \lambda}{26}=\frac{4 \cdot 374 \cdot 0 \cdot 6+}{2 \cdot 86}=321 \mathrm{psi}
\end{aligned}
$$

\qquad DATE $4-11-83$
\qquad clamp induced stresses CHECKED \qquad date $4 / 11 / 83$
\qquad
SUBJECT

Max. hoop
stresses

$$
S_{2}=\frac{P R}{t}\left(1-e^{-b x} \cos b x\right)
$$

$$
=2184 \mathrm{psi}
$$

d. Stresses Induce by Pad Bearing

Most of the snubber load against the pipe will be resisted by the rectangular central pad under the
snubber attachment point. The stresses can be calculated
ky. the method outlined in wired bulletin 107, which is computerized in Bechtel's in-house program ME-210. Assumptions

1) 100% of scrubber load is acting on central pad.

CALCULATION SHEET
CALL. NO. SR 8031-S510 REV. NO. \qquad
ORIGINATOR \qquad DATE $4-11-83$ CHECKED \qquad SHH DATE \qquad PROJECT \qquad Limerick JOB NO. \qquad 08031 SUBJECT Clamp induced stresses SHEET NO. \qquad 18
3) Pad Area $=4.5 \times 5.01=22.55 \mathrm{in}^{2}$

The stresses calculated by computer program $M E-210$ (Re f,2) based on 14 K load are summarized in the following.

Location	Direction	STRESSES (KS)	
		Primary + Secondary	
butter Surface	longitudinal	4.25	13.70
	circumference	4.30	13.48
Inner Surface	longitudinal	4.25	7.54
	Circumferencial	4.30	7.16

Tats er

CALCULATION SHEET
TALC. NO. SR8031-SSIO REV. NO. O
ORIGINATOR \qquad DATE $4-11-23$ CHECKED \qquad DATE $4 / 11 / 83$ PROJECT \qquad Limerick subject Clamp induced stresses. Jo8no 0803/
\qquad
3. Primary stress Intensity \& Fatigue Evaluation
a) Calculation of stress Indices

From Table $N R-3681(a)-1, N B-3000$, ASME code, 1980

$$
\begin{aligned}
& \text { Edition For elbours: } \\
& R_{1}=0.5 \\
& C_{1}=\frac{2 R-r}{2(R-r)} \\
& R=\text { curved pipe radius } \\
& r=\text { mean radius of } x \text {-section } \\
& R=1.50=1.5 \times 12=18 \\
& r=6.031 \\
& C=\frac{2.18-6.031}{2(18-6.031)}=1.252
\end{aligned}
$$

$$
c_{2}=1.95 / \frac{2 / 3}{b_{2}} \text {, but not less than } 1.5
$$

$$
R_{2}=0.75 C_{2}
$$

$$
b_{2}=\frac{t R}{r^{2}}
$$

$$
t=\text { wall thickness }=0.68 \varepsilon \text {. }
$$

$$
K=18
$$

$$
r=6.031
$$

$$
b_{2}=\frac{0.688 \cdot 18^{\circ}}{6.031^{2}}=0.340
$$

CALCULATION SHEET
\qquad AVG date
\qquad 411183 PROJECT \qquad Limerick JOB NO. 08031 subject \qquad clan induced stresses sheet no. \qquad

$$
\begin{aligned}
& C_{2}=1.95 / b_{2} / 3=4.003 \\
& B_{2}=0.75 C_{2}=3.002 \\
& K_{1}=K_{2}=K_{3}=1.0
\end{aligned}
$$

The stress indices $c_{2} \xi E_{2}$ can be reduced at elbow ends based on following arguments.

$$
\text { Ref. } 5
$$

i) L.K. Several discussed, in the paper' entitled" Experience
with Simplified Inelastic Analysis of Piping Designed for Elevated Temperature Service", that stresses and Strains at the elbow midsection were found by Mark to govern the fatigue life of pipe elbows.

Toward the end of elbow, the stress intensification effect should bs less than that at the elbow midsection. In the present study, the clamp is located at the end of the elbow.

From. Figure 14d \because Several's paper, o reduction foetor 0.50 cal lase applied on c_{2} \& B_{2} due to "for anal frow midsection" effect. f The fir te element results given m Ref 7 also hair the ED. $69(5 / 76)$

CALCULATION SHEET
catt. n. SRSO31-5S10 .REV, NO. \qquad ORIGINATOR \qquad CK Hue DATE $4-11-83$ CHECKED \qquad DATE \qquad $4 / 11 / 83$

PROJECT \qquad Limerick JOB NO O8031 21
\qquad clamp induced stresses \qquad

Ref. 6
ii) In Mark's paper"entitled "piping - Flexibility Analysis", it is noted that stress intensification factor is reduced by the presence of a ring stiffer or flange at the end of an elbow t. For $b_{2}=0.34$ the reduction factor is $\frac{(0.34)^{2 / 3}}{(0.34)^{1 / 2}}=0.84$. This additional reduction factor is deemed appropriate for the problem under consideration.

Flexibility of the elbow will be reduced because of the use of the clamp. However, based on

- Markl's paper, the difference will be ho more than 15% for this clamped elbow r. The change of the flexibility for one plow of the whole piping system will not have significant change in thermal expansion and seismic stresses.

Therefime, it is reasonable that this flexibility effect is neglected.
\qquad
ORIGINATOR \qquad DATE $4-11-83$ CHECKED \qquad AH date \qquad PROJECT \qquad Limerick Job no 08031 SUBJECT \qquad clamp induced stresses SHEET NO. \qquad 22

By is \& ins

$$
\begin{aligned}
& c_{2}=4.003 \times 0.5 \times 0.84=1.681 \\
& \theta_{2}=3.002 \times 0.5 \times 0.84=1.261
\end{aligned}
$$

Because the clamp is not an integral part of the pipe, ie. there is no geometry structural discontinuity, peak stress due to local stress effect is insignificant. Therefore, no modification for K_{1}, K_{2} and K_{3} is necessary, ie., $K_{1}=K_{2}=K_{3}=1.0$

CALCULATION SHEET
CALL. NO SR 8031 -SS10 REV. No 0
originator \qquad DATE $4-11-83$ CHECKED \qquad AyH DATE $4 / 11 / 83$ project. \qquad erick
\qquad Clamp induced stresses Job no. \qquad $\frac{0803}{23}$ subject SHEET NO
(b) Primary Stress Intensity

$$
\begin{aligned}
& E_{q} . \quad 9 \quad B_{1} \frac{P D_{0}}{2 t}+B_{2} \frac{D_{0}}{2 I} M \leq 1.5 \mathrm{Sm} \\
& S_{m}=13990 \mathrm{psi} \\
& B_{1}=0.5 \\
& P=1250 \mathrm{psi} \\
& D_{0}=12.75 \mathrm{in} \\
& A=0.688 \mathrm{in} \\
& I=475.8 \mathrm{in} \\
& B_{2}=1.261 \\
& M=M_{W t}+\left(M_{O B E}{ }^{2}+M_{\text {SoU }}\right)^{1 / 2} \\
& M_{x}=4898+17153=22051 \mathrm{ft}-1 \mathrm{~b} \\
& M_{y}=846+15838=16684 \mathrm{ft}-16 \\
& M_{z}=1315+6207=7522 \mathrm{ft}-1 \mathrm{~b} \\
& M=\sqrt{22051^{2}+16684^{2}+7522^{2}}=28656 \mathrm{ft}-1 \mathrm{~b} \\
& =343876 \mathrm{in}-1 \mathrm{~h} \\
& E_{\text {G. }} . \quad q=\left(P_{L}+P_{b}\right)_{l}+B_{1} \frac{P D_{0}}{2 t}+B_{2} \frac{P_{0}}{2 I} M \\
& \left(P_{2}+P_{k}\right)_{l}=\text { STresses due to number load } \\
& =4300 \mathrm{psi} \\
& \text { Eq. } 9=4300+5791+5810 \\
& =15901<1.5 \mathrm{sm}=20985 \mathrm{psi}
\end{aligned}
$$

CALCULATION SHEET
call. No:SR8031-S510 Rev. no. O
\qquad DATE $4-11-83$ CHECKED \qquad AH DATE \qquad PROJECT \qquad Limerick JOB NO. 08031
\qquad Clary induced stresses SHEET NO. \qquad 24
c). Fatigue Evaluation

Load on Pad $=$ (Uniform Pressure) \times (Pad area) \times (Contact ratio)

Due to snumber load $=14,00016$

Due to Thermal discontinuity $=1269 \times 22.5 \times 1.3=37118 \mathrm{ib}$
Due to pressure discontinuity $=321 \times 22.5 \times 1.3=9389 \mathrm{k}$
Total load $=14000+37118+9389=60507-16$
stresses induced by clamp $=\left(\frac{60507}{14000}\right) 13700=59210 \mathrm{psi}$

$$
\begin{aligned}
& C_{2}=1.681 \\
& c_{1}=1.252 \\
& P_{0}=1120 P_{i} \\
& \sin u e\left(M_{\text {OCt }}+M_{\operatorname{SAM}}+M_{\text {SRo }}\right)>M_{-4} \\
& M_{x}=2\left[\left(M_{2 n E}\right)_{x}+\left(M_{S A M}\right)_{x}+\left(M_{S N} 1\right)_{x}\right] \\
& =2[(118+9)+12 / 20+6500] \\
& =60938 \text { Ft-1 } 1 \%
\end{aligned}
$$

CALCULATION SHEET

ORIGINATOR \qquad DATE \qquad $4-1-83$ CHECKED \qquad ort \qquad PROJECT \qquad Limerick JOB NO. \qquad clampinduced stresses SHEET NO. \qquad

$$
\begin{aligned}
M_{y} & =2[(14140)+4450+3109] \\
& =43398 \mathrm{Ft}-16 .
\end{aligned}
$$

$$
\begin{aligned}
M_{z} & =2[(5172)+4599+1428] \\
& =22398 \text { Ft }-16
\end{aligned}
$$

$$
M=\sqrt{60398^{2}+43398^{2}+22398^{2}}
$$

$$
=77672 \text { It }-16
$$

$$
=932067 \mathrm{in-16}
$$

$$
\begin{aligned}
& C_{1} \frac{P_{0} D_{0}}{2 t}+C_{2} \frac{D_{0}}{2 I} M+\text { Clamp induced local stresses }^{2 \cdot 0.688}+1.681 \frac{12.75}{2(475.8)} 932067+59210 \\
= & 1.252 \frac{1120.12 .75}{2 \cdot}+20993+59210 \\
= & 12993+209 \mathrm{psi}>35 \mathrm{~m}=41970 \mathrm{psi}
\end{aligned}
$$

Since eq. $10>3 \mathrm{sm}$, further consideration $i=$ required according to code.

CALCULATION SHEET

ORIGINATOR \qquad DATE $\triangle-11-83$ CALC. NoS K8031-5S10 aEv.no. \qquad PROJECT \qquad CHECKED \qquad ore 411183 PROJECT subject Clamp induced stresses JOB NO. \qquad 08031 26

First, ${ }_{6} \mathrm{~g}_{\mathrm{g}}(12)$ is considered

$$
\begin{aligned}
& C_{2}\left(\frac{D_{0}}{2 I}\right) M_{i}^{*}=1.681 \frac{12.75}{2(475.8)} M_{i}^{*} \\
& M_{i}^{*}=\sqrt{7034^{2}+6302^{2}+2234^{2}} \times 12=116460 \text { im-16 } \\
& C_{2}\left(\frac{D_{0}}{2 I}\right) M_{i}^{*}=2623 \text { psi }<3 S_{m}=41970 \text { psi }
\end{aligned}
$$

$E_{q} .13$

Since $\alpha_{a} T_{a}-\alpha_{b} T_{b}=0$

$$
C_{1} \frac{P_{0} D_{0}}{2 t}+C_{2}\left(\frac{D_{0}}{2 I}\right) M_{i} \leq 3 \mathrm{Sm}
$$

From the Code, the range of Primary plus secondary membrane plus bending stress intensity are to be included. It is noted that the membrane stresses induced by snubber load on clamp should be included, since it is secondary membrane stress.

$$
\begin{aligned}
& \Rightarrow 4300+C_{1} \frac{P_{0} D_{0}}{2 t}+C_{2} \frac{D_{0} M}{2 I} \\
& =4300+12993+2245 \\
& =25038 \text { Psi }<35_{m}=41970 \text { Psi }
\end{aligned}
$$

Egos $12 \xi 13$ are satisfied.

CALCULATION SHEET
\qquad date \qquad $\leq-11-83$ CHECKED \qquad DATE \qquad PROJECT _ limerick \qquad Clamp induced stresses JOB NO. \qquad 08031
\qquad SHEET NO. \qquad 27

In view of the load histogram for the piping system under consideration, it is decided that eq. .1 can be calculated from four different load set pairs:
i) Cold Water Injection at Startup (load set (2), $n=10$ cycles
it is found from the load histogram that $P_{0}=1000 \mathrm{psi}$ and $T=522^{\circ} \mathrm{F}$ are appropriate.
then \Rightarrow Load $\quad=$ pressure \times Pad area \times contact ratio
Due to Thermal constraint $=1121 \times 22.5 \times 1.3=32789^{\prime} 16$
Due to pressure constraint $=321 \times \frac{1000}{1250} \times 22.5 \times 1.3=7511 \mathrm{16}$

$$
\begin{aligned}
& \text { Total load }=32789+7511=40300 \quad 16 \\
& \text { local stresses }=\frac{40300}{14000} 13700=39436 \text { psi } \\
S_{n}= & C_{1}\left(\frac{P_{0} D_{0}}{2 t}\right)+C_{2}\left(\frac{D_{0}}{2 I}\right) M_{i}+\frac{1}{2(1-2)} E \propto\left|\Delta T_{1}\right|+\text { local stresses } \\
= & 11601+2623+\frac{28.3 \times 9.11 \times 22}{2(1-0.3)}+39436 \\
= & 68760
\end{aligned}
$$

CALCULATION SHEET
CALL. NO.SR8031-5510 REV. NO. O
originator. \qquad DATE \qquad $4-14-83$ CHECKED \qquad AH DATE H/14/S3 PROJECT \qquad Limerick JOB NO. \qquad 08031
subject \qquad clamp induced stress SHEET NO. \qquad

$$
\begin{aligned}
k_{e} & =1.0+\frac{1-n}{n(m-1)}\left[\frac{S_{n}}{3 S_{m}}-1\right] \\
& =1.0+\frac{0.7}{0.3 \cdot 0.7}\left[\frac{68760}{3.13990}-1\right] \\
& =3.128
\end{aligned}
$$

$$
\begin{aligned}
s_{p} & =k_{1} C_{1}\left(\frac{p_{1} p_{i}}{2 t}\right)+k_{2} C_{2}\left(\frac{D_{0}}{2 I}\right) M_{i}+\frac{1}{2(1-\nu)} k_{3} E \alpha\left|\Delta T_{1}\right|+\frac{1}{1-\nu} E \alpha\left|\Delta T_{2}\right| \\
& =68760+\frac{1}{1-0.3} 28.3 \times 9.11 \times 46 \\
& =68760+16942 \\
& =85702
\end{aligned}
$$

$$
S_{a}=\frac{1}{2} k_{e} s_{p}=\frac{1}{2}(3.128)(85702)
$$

$$
=134038
$$

$$
N=450
$$

$$
r / N=0.022
$$

\qquad c. K. Mu DATE $\angle-18-83$ CHECKED
\qquad rev. no. \qquad 0 $4 / k^{2} / 83$ PROJECT \qquad limerick jor no. \qquad 08031 date \qquad SUBJECT \qquad Clam is induced stresses 29
(ii) $O B E+S R V$ Loadings (Load set (12) \&,$n=50$ Cycles $P=760 \mathrm{PSi}$
Since $\left(M_{\text {OPE }}{ }^{2}+M_{\text {SRV }}{ }^{2}\right)^{1 / 2}+M_{\text {SAM }}>M_{\text {th }}$,

$$
\begin{aligned}
M_{i} & =2\left[\left(M_{\text {ORE }}{ }^{2}+M_{\text {SRO }}{ }^{2}\right)^{1 / 2}+M_{\text {SAM }}\right] \\
& =893265 \text { in -16 } \\
S_{n} & =C_{1}\left(\frac{P_{0} D_{0}}{2 t}\right)+C_{2}\left(\frac{D_{0}}{2 I}\right) M_{i}+10 \text { cal stresses } \\
& =8817+1.621\left(\frac{12.75}{2.475 .8}\right) 893265+10 \mathrm{cal} \text { stresses } \\
& =8817+20119+10 \mathrm{cal} \text { stresses }
\end{aligned}
$$

For local stresses:
sub load $=14000 \mathrm{ib}$
Thermal expansion constraint $=570 \times 22.5 \times 1.3=16675$

$$
\left(T=300^{\circ} \mathrm{F}\right)
$$

as in (i), pressure constraint $=7511$

$$
\begin{aligned}
& \text { total load }=14000+16675+7511=38186 \mathrm{lb} \\
& \text { local stresses }=38186 / 14000 \times 13700=37368 \mathrm{psi} \\
& S_{n}=8817+20119+37368 \\
& =66304 \\
& K_{e}=1.0+\frac{1-n}{n(m-1)}\left[\frac{S_{n}}{35 n}-1\right]=2.933 \\
& S_{p}=S_{n} \\
& S_{a}=\frac{1}{2} 1<e=e_{p}=97223 \\
& N=1300 \\
& n / N=0.0385
\end{aligned}
$$

CALCULATION SHEET
\qquad dATE \qquad $<-11-83$ Checked \qquad A VI DATE 4/14/e3 PROJECT \qquad Limerick job no. SUBJECT \qquad Clamp danced stresses SHEET NO. 08031 \qquad
ii) SRV Loadings (Load set (4) \& (1)), $n=7650$ cycles

$$
S_{n}=C_{2}\left(\frac{D_{0}}{2 I}\right)\left(M_{\text {sRV }}\right)_{\text {range }}+10 \text { cal stresses due to SRV }
$$

$$
M_{\text {SRI }}=88145 \mathrm{in}-1 \mathrm{~b}
$$

$$
M_{\text {DEE }}+M_{\text {SRO }}=289892 \text { in }-1 \mathrm{~b}
$$

$$
\frac{M_{\text {SRO }}}{M_{\text {AE }}+M_{\text {GEV }}}=\frac{88145}{289892}=0.304
$$

The same ratio is used to calculate local stresses due to SRV
local stresses due to SRV $=13700 \times 0.304$

$$
=1165 \mathrm{psi}
$$

$$
\begin{aligned}
& \left(M_{\text {ser }}\right)_{\text {range }}=2 . M_{\text {seP }} \\
& S_{n}=1.681 \times \frac{12.75}{2.475 .8} 2(88145)+4165 \\
& =8135 \\
& S_{p}=S_{n} \quad K_{e}=1.0 \\
& S_{a}=\frac{1}{2} S_{p}=-068 \\
& N>10^{6} \\
& n / N \approx 0
\end{aligned}
$$

CALCULATION SHEET
TALC. NO. SR8031-SSIO GEV. NO. O
ORIGINATOR \qquad DATE \qquad $4-11-83$ CHECKED \qquad DATE $4 / 14 / 83$ PROJECT \qquad limerick JOB NO. SUBJECT \qquad Clan induced stresses SHEET NO.
\qquad 31
iv) Thermal \& Pressure Loadings for the rest of operating cycles (including startup \& shut down) $P=1000$ Psi, $T=522^{\circ} \mathrm{F}$
$S_{n}=C_{1}\left(\frac{P_{10} D_{0}}{2 t}\right)+C_{2}\left(\frac{D_{0}}{2 I}\right) M_{+n}+10$ cal stress due to thermal \& pressure

10 ccl stress $\left(\theta^{\circ} h+p\right)=(32789+7511) / 14000 \times 13700=39436$

$$
\begin{aligned}
S_{n} & =11601+1.681 \frac{12.75}{2.475 .8} 116460+39436 \\
& =53660 \\
S_{p} & =S_{n} \\
K_{e} & =1.0+\frac{1-n}{n(m-1)}\left[\frac{S_{n}}{3 S_{m}}-1\right] \\
& =1.93 \\
S_{0} & =\frac{1}{2}(2.039)(53660) \\
& =5 / 1740 \\
N & =19000 \\
n / N & =3.0 / 19000=0.02
\end{aligned}
$$

$$
\text { Unease factor }=0.022+0.0385+0+0.02=0.0805
$$

CALCULATION SHEET
\qquad c.K. Mu DATE \qquad $4-11-83$ CHECKED \qquad AH date $4 / 1 / 183$ PROJECT \qquad Limerick دов no. O803/ subescr Clamp induced stresses
\qquad SHEET NO. \qquad 32
4. Conclusion

Based on the worst case, the calculation has shown that the calculated stresses meet the class 1 code allowables. In addition, it should pointed out that the results are calculated very conservatively. Some of the conservatism are summarized in the following:
i) Based on projected clamp pad bearing area, only 60% of the snubber load will be applied on central pad. 100% load is used in the calculation.
ii) Stress indices can further be reduced if the method outlined on ORNL's report "End effects on elbows subjected to moment Loadings" or stress indices provided in tableS NB $3685.1-1$ and- 2 is used.
iii) WRC bulletin 107 is weed to calculate clamp induced local stresses. This method is for lug (integral attachmat) on straight pipe, stresses should be lower for clamp (non-integral attachment) or elbows.
\qquad
originator \qquad DATE \qquad $4-11-83$ CHECKED \qquad DATE \qquad $4 / 11) 83$

PROJECT \qquad Limerick JOB NO. Q8031 SUBJECT \qquad clamp induced stresses SHEET NO. \qquad
(iv) Tho operating temperature at the clamp is $150^{\circ} \mathrm{F}$. However in calculating thermal constraint stresses the higher temperatures (ie., $582^{\circ} \mathrm{F}, 522^{\circ} \mathrm{F}, \ldots+300^{\circ} \mathrm{F}$) ave weed.
(V) The sign of local stresses is ignored and the local stresses are added absolutely. The is very conservative in the evaluation of stress intensities.

Combiner son between the result w thous clamp effect and that with the clamp effect is summarized in the following table.

Core Spray Line

	w/o Clamp	w/ clamp
Primary stress	15370^{*}	15901
Usage Factor	0.0032	0.0805

The results for Fecdwoter line are also shown: (the detailed calcuintion is not included here)

	No Clamp	Clamp
Primary Stress	$8104 *$	7130
Usage Factor	0.0036	0.049

CALCULATION SHEET
\qquad DATE \qquad $\angle-11-83$ CALC. NOSR8031-S510 REV. No. \qquad 0

PROJECT \qquad Limerick CHECKED \qquad AYE DATE \qquad $4 / 11 / 83$ SuBJ ET \qquad Clamp induced stresses JOB NO. \qquad 08031 SUBJECT SHEET NO. \qquad 34
5. References:

1. Roar R.T. "Formulas For stress and Strain", Me Grow Hill, $4^{\text {th }}$ Edition.
2. WRC Bulletin 107, "Local stresses In Spherical and Cylindrical Skills due to External Loading".
3. "ASME Boiler and Pressure Vessel Code", Section III
4. Rodabaugh E.C., IsKander S.K. and Moore S. E., "END Effects on Elbows Subjected to Moment Loadings", March, 1978, ORNL. (Attachment 2)
5. Severud L.K., "Experience with Simplified" Inelastic Analysis of Piping Designed for Elevated Temperature Services", ASME Century 2 Nuclear Engiveering Conference, August $19-21,1980$.
6. Mark A.R.C., "Piping-Flexibility Analysis", ASME Transactions, 1955 (Attachment 3)
7. T. kame K. I wot, J. Asakurs aid H. Takeda, " stress Distribution = of on Elbow witt Straight Pipes", F $1 / 5$ Transactions of the $4^{\text {th }}$ International Conference on SMI RT. (Atachonent 4.)

ED-69 (5/76)

ORIGINATOR \qquad C.K Hus - k

CALCULATION SHEET

PROJECT \qquad SUBJECT \qquad clamp induced stresses JOB NO. \qquad 1

2

3

4
8. Load histogram -Cone Spray for Limerick

5
6
7
8
9
10

CALCULATION SHEET
CALL. NO.SRES31-SSIO REV. NO. O \qquad
ORIGINATOR \qquad DATE \qquad $4-18-23$ CHECKED \qquad AH date \qquad $4 / 19183$
PROJECT \qquad L....or. ie JOB NO. \qquad 08031
\qquad Attachment $1 \quad 1 \circ \neq 2$ SUBJECT \qquad Clam Irduud Stresses SHEET NO \qquad

From page 9, it is noted that the stresses in pipe wall induced by specified clamp preload ie insignificant. Although this stress is one time nonrecurring load lie., no effect or fatigue life), the stress on central pad will be incorporated into eq. 9 to assess the effect of this preload.

By using eqs on page 23 \& note

$$
\begin{aligned}
\text { Preiod on central pad } & =\text { (uniform pressure }) \times(\text { pad area }) \times \text { cotactratio } \\
& =242 \times 22.5 \times 1.3 \\
& =70791 \mathrm{~b}
\end{aligned}
$$

Pretend stress on central pad area $=7079 / 14000 \cdot 4300=2175 \mathrm{psi}$

$$
\begin{aligned}
\pi_{3} .9 & =2195+15901 \\
& =18075<1.5 \mathrm{sm}=20985 \mathrm{psi}
\end{aligned}
$$

DOCUMENT/PAGE PULLED

NO. OF PAGES
REASON
\square PAGE ILEGIB:E
\square HARD COPY FILED AT. PDT
C

DETER COPY REQUESTED ON

CAGE TOO LARGE TO FUM
\square HARD COPY FLED AT:
PAR CF
OTHER
FILMED ON APERTURE CARD NO

L.At Elvaied Tompurime Soruigs

Screcning rules and prelimunary desizn of FFTF piping nere developed in 1974 based on expected behavior and eryunecring judertent, approximate calculations. and a few detailed inelastic analises of pipelines. This paper pruvides findings from six adituonal detailed inelastic anainses with correlations to the simplified analysis screening rules. In addition, simplified analysis methods for treating weldment local stresses and strains as well as fabrication induced flaws are described. Based on the FFTF experience. recommendations for future Code and Technology work to reduce design analysis costs are identified

NOMENCLATURE

$a=$ Neuber equivalent grain half-length
$C_{2}=$ Stress index $=1.95 / \mathrm{A}^{2 / 3}$
${\widetilde{C_{2}}}_{2}=$ Weld shrinkage stress index
$D_{0}=$ Outer diateter of pipe
$\mathrm{E}=$ Young's modulus
$h=$ Notch depth
$\mathrm{K}_{\mathrm{N}}=$ Fatigue strength reduction factor
$K_{2}=$ Local stress index
$\mathrm{K}_{\mathrm{t}}=$ Elastic stress concentration factor
$K_{T}=$ Factor applied to peak thermal strain component
$K_{\varepsilon}=$ Elastic strain concentration factor
$\mathrm{N}=$ Number of applied cycles
$\mathrm{N}_{\mathrm{d}}=$ Number of cesign-allowed cycles
$P=$ Primary stress intensity
$Q=$ Secondary stress intensity
$R=$ Bend radius of elbow
$r=$ Mean pipe radius
$5=$ Screeniny stress 1 imit
$35_{\mathrm{m}}=$ Allowable design stress intensity range limit
$S_{\mathrm{mc}}=$ Stress 1 imit at colo end of stress r ange
$S_{r h}=$ Stress limit at hot end of stress range
$T=$ Time of applied stress
$T_{0}=$ Allowable time for desion
$\Delta T_{1}=$ Linear thermal gradient temperature range thrsugh wall
$t=$ Pipe wall thickmess
a $=$ Coefficient of thermal expansion
s = Carry cuer factor
$\lambda=$ Pipe factor $=\frac{t R}{r^{2}}$

[^0]```
 = Poisson's ratio
O = Flow shape parameter
\sigma}\mp@subsup{}{}{\mathrm{ TE }}=\mathrm{ Maximum thermal expansion secondary
 bending stress
\sigma}\DeltaT1 = Maximum radial gradient thermal
 stress
\sigma}\mp@subsup{\sigma}{W}{}=\mathrm{ Dead weight stress
\sigmap}=\mathrm{ Pressure stress
O
\varepsilon
\varepsilon
\varepsilon}e= Elastic strain
\varepsilon
 = Peak thermal strain
```


## INTRODUCTION

The Fast Flux Test Facility (FFTF) Diping design activities have progressed fiom the preliminary desion in the early 1970's through detailed ASME Section III code analyses including detailed inelastic analyses for elevated temperaturn sseration. Design activities concluded in 1979 with final as-buflt reconciliation of stress reports for construction and installation modifications. An overvich of the flow of these activities is provised by Figure 1. As described in 1975 [1]*, significant project cost and schedule benefits can $2 e$ obtained if sereoning rules and simplified aralyses can be used to confidently identify a pipeline configuration that will pass detalied stress analys is code lirits. The screening rules for prelifinary design [1] used on the FFTF project have served very m-11. Detailed AS"E Code analyses using alastic me:hods [2] and inelastic methods [3-5] have demonstrated that all cole desion rules and limits are met. Acco singly, s correlation of $t$ cetalies inelastic analysis findinas with the simplified analysis screening rules will be presented.

Before presenting the correlations, a short overview of the screening rules and background will be given. After the comparisons, simplifications in the detailed implastia analy:ns and supalemontary
 Finally, the paper concludes with recomendations for future code and technology work to reduce design analysis costs.

## SCREENING RULES AND BACKGROUND

The preliminary design screening rules and limits [1] for primary stresses, shown in Figure 2. were easy to meet due to the low design pressures of the FFTF piping. These low primary stress levels helped control ratcheting and stress rupture danage at la levels.

Screening linits for orimary plus secondary stress ranges (See Figure 3) considcred linits associated with creed ratchet, creep fatigue, and shakedown. These limits here applied to the very simple screening equation of:

$$
\begin{equation*}
{ }^{\sigma_{T E}}+\sigma_{\Delta T_{1}} \leq \bar{S} \tag{1}
\end{equation*}
$$

where:
${ }^{0}{ }^{0} E=$ Maximum secondary bending stress in pipeline, usually at an elbow.


FIGURE 1. General Ingredients and Flow of Piping System Design Analysis, ASME III, I.

Temperature $\left(^{\circ} \mathrm{C}\right.$ )


FIGURE 2. Preliminary Design Limits for Pressure and height Stresses Using $50 \%$ of Code Case 1311-8 Primary Stress Limits.


FIGURE 3. Primary Plus Secondary Stress Limits for 316 SS.
${ }_{\Delta T_{1}}=$ Maximum thermal shock radial gradient stress considering all of the plant thermal transient and equal to

$$
\frac{E_{a}\left(\Delta T_{1}\right)}{2(1-v)}
$$

##  creep fatigue, creep ratcheting, and experience factors.

A major feature of the screening rules and limits is the shakedown and relaxation of stress during the hold-time providing the transient stress range is always less than the "elastic action" range. This is depicted in Figure 4. "Elastic action" range for primary plus secondary stress range $P+Q$ is defined by:

$$
\begin{equation*}
3 \bar{S}_{m}=1.5 S_{m c}+S_{r h} \tag{2}
\end{equation*}
$$

where the standard $A$ SME Code terminolosy of the ASME Code Case 1592, Paragraph T-1325 Test No. 4 [18] is used.

If the $(P+Q)_{R}$ exceeds 3 S , then the relaxation of stress could bo as shown in Fiqure 5 and not similar to ronotonic relaxation and not affected by the transients as shown in Figure 4.

Based on approximate calculations, expected behavior, engineering judoment, and a few detalled inelastic analyses of pipelines [9], [3], it was deemed important to provide enough flexibility into the piping isometric designs to satisfy Equation (1)
and keep the $(P+Q)_{R}$ less than $3 \mathrm{~S}_{\mathrm{m}}$. Results from inelastic analyses of pipelines is given in Figures 6 and 7.

Additional background is presented in Reference [1].


FIGLRE 4. Typical History for Pipeline Primary Plus Secondary Stress when $(P+Q)_{R} \leq 1.5 S_{m c}+S_{r H}$.


FIGURE 5. Typical History for Pipeline Primary Plus Secondary Stress when $(P+Q)_{R} \leq 1.5 S_{m c}$ $+\mathrm{SrH}_{\mathrm{r}}$.


FROM A-B IS TEMPERATURE CHANGES:

$$
1200^{\circ} \mathrm{F} \rightarrow 350^{\circ} \rightarrow 1200^{\circ} \mathrm{F}
$$

FROM C-D IS TEMPERATURE CHANGES:

$$
1200^{\circ} \rightarrow 70^{\circ} \rightarrow 1200^{\circ} \mathrm{F}
$$

FIGURE 6. CLS Pipeline Inelastic Analysis Results (Ref. 3).


FIGURE 7. HOOD Stress Distribution in Criterid Elbon Inside Surface (Ref. 3).
 INGS WITH SIMPLIFIED д̈んiLYSIS SCREETiNA RULES

Table 1 presents the correlation data. The dctailed inelastic analyses ir:lude pipolinas $c^{f}$ simple, stort runs as depicted in Figure $\mathcal{E}$ and
table 1. CORRELATION OF DETAILED INELASTIC ANALYSIS FIMDINGS WITH SIMPLIFIED ARALYSIS SCREENING RULES


|  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| '30 | $2=41$ | $4: 1$ | Heta | 2. ${ }^{\text {ats }}$ |
| 1.0 | 1.8 |  |  | $\underset{\sim}{7}$ |
| 1. | 1.1 | ni | $12:$ | \% |
| 1.1 | $1)$ | 24 | T 7 | 4 ? |
| 2 | - | 4. | is | \%. |
| 14 | 6.5 | 1.1 | 12.2 | 141 |








FIGURE 8. Primary Crossover Piping Mesh (Ref. 4).
fairly complex, long runs as depicted in Figures 9 and 10 .

The simplified analysis screening values for the pipelines of Table 1 are cross-plotted on the screening rule limit curves in Figures 11 and 12.

The pipelines chosen for inelastic analyses had the highest simplified analysis screening values and the least design margins. The design margins were identified by detailed elastic ELTEMP [2] and simplified inelastic analyses such as the full relaxation Bree [7] and the 0'Donnell-Porowski [8] methods. Accordingly, since even the most severely loaded FFTF pipelines were demonstrated to meet all the code requirements by inelastic analyses, many other FFTF pipelines with similar but less severe loads and thermal transients are also qualified.

- However, for these pipelines, some of the very conservative code elastic analysis limits (such as the $S_{q}$ limits) were exceeded. See Figure 12.


## SIMPLIFICATIONS IN DETAILED INELASTIC A:ALYSES

Detailed inelastic analyses of piping do require same simplifying in modeling and analysis procedures to keep the analysis costs within reasonable limits. These simplifications are tecnnically justified by the satisfaction of ad hoc rules
and conscruative modeling. The simplifications in modeling include:

- Uen of constant bending elbew elements (Type i7, of tila ianic coly.iol prizaru- [6]
- Extrapolating elbow midsection stresses and strains to those for the elbow end weidrents by use of "carry-over" factors and indices to account for nonuniformities introduced during the fabrication and welding of an elbow to a straight pipe section
- Use of indices and fracture mechanics crackgrowth models to assess local peak stresses and strains

In general, detailed irelastic analyses of a pipeline system provide primary and secondary stress effects. substructuring techniques or use of indices are reeded to account for peak stresses and strains. The simplification in inelastic aralysis procedures include:

- Enveloping and ?umping of thernal transients
- Extranolating ratchet and elastic followup strains to end of design life

The techrical bases for some of the simplified methods identified above will be discussed in the following paragraphs.

## Constant Eending Elbow Elements

The technical justification for accepting use of the constant bending elbow elements depends on each pipeline analysis application. Considerations include findings from prior elastic analyses of the pipeline such as the level of stress expected, the ratio of in-plane to out-of-plane bending on each elbow, and the number of elbow element secments used to model each elbow. Hibbitt [9] and Pan and Jetter [3] discuss the limitations of the constant bend element. Figure 13 shows a typical model of a $90^{\circ}$ elbow using three $30^{\circ}$ segments, 16 elements around the circumference and 11 layers through the wall.

A basic step in justifying the number of segments, number of elements around the circumference, and the number of through-wall layers to model each elbow in a pipeline was the comparison of elastic stress levels, moments, forces and displacements canputed using the inelastic pipeline model to those computed using conventional elastic analysis pipeline models typical of analyses to $N B-3500$ of Sec tion III of the ASME BSPV Code. Correlations to within $5 \%$ to $10 \%$ were judged acceptable. Moreover, for large diameter, thin wall elbows typical of breeder reactor plant piping, comparisons of elbow detailed shell finite element or finite difference elastic analysis findings with constant tending elbow element findings were also utilizec. As seen in Figure 14 a , the degree of ovalization varies around the elbow arc. Ovalization of $50 \%$ to $60 \%$ of the raxi- at the elbox ridsection exists at the junction of the straight tancent pipe. -cwever, the elbow net elastic flexibility has been shown by tests $[10-12]$ to be adeouately predict:d by use of the sirple formula of $k=1.65 /$ a given in the ASME Code, $1: 3-3500$ [13]. This formis riglects local flexibility distribution and varying ovality
along the elbow arc. This ovality also penetrates one to two diameters into the tangent straight pipe portion (Figure $14 b \& 14 \mathrm{c}$ ). The code approach involves the flexibility factor as a conctant factor applied to the eloow arc portion (Figure lisu). Accordingly, it is an "effective" flexibility factor for modeling the total elboa and effective tangent pipe flexibility for use in the total pipeline system flexibility analysis.


FIGLRE 9. 8-inch SHL Inelastic Analysis Finite Element Model (Ref. 5).

As previously noted, test data [10 - 12] have been used to develop and have confirmed the simplified flexibility methods and models for elbows with straight tangents. The highest elastic stress indice in the elbow midsection has also been shown to be adequately predicted by use of the code formula of $C_{2}=1.95 / \lambda^{2 / 3}$. Therefore, by assuring that the constant bending elbow elements used in the pipeline model provide numerical values of stress and deformation for elastic loading that correspond with sufficient accuracy to those computed using the standard Code formula and flexibility methods, the model is deemed adequate for use in the inelastic analyses, provided plasticity and creep effects are limited as discussed below.


FIGLRE 10. Analytical Model of System 61 Priniary Hot Leg Loop No. 1 (Ref. 5).


FIGURE 11. Primary Plus Secondary Stress Rance Limits for Preliminary Design of $3: 6$ S Pipelines.


FIGURE 12. Preliminary Design Primary Plus Secondary Stress Limits for 316 SS Fipelines.

The thermal expansion and thermal radial gradfent maxirm elastically-calculated stresses imposed on the eltowis were. for FFTF, kept less than the 3 S level. This 1 imfted the plasticity and creep effects to local and small portions of the pipeline wall.

Thus, many elbow element segments necessary to capture stress redistribution associated with gross plasticity and creep throughout the elbow wore not monetect. In addition, en the ping lime reonon-o war expected to "shakeduwn" (figures 4 and 6), good margins between the Code limits and the calculated values of accumulated inelastic strain and crecpfatigue damage were expected to offset possible limitations associated with the approximate elbow model.

Some details of the elbor models ured in FFTF inelastic analyses are given in Table 2. Generally, the FFTF andyses $[3,4,5]$ found two or three elbow elerent segtents with $14: 0: 2$ elements around the circurferences and 10 or 11 layers through the wall were sufficient at reasonable cost.


FIGURE 13. Typical Constant Bending Elbow Elements.


FIGURE 14a. Typical Variations of Stress and Ovalization Along Pipe for In-Plane Bending.


FIGURE 14b. Typical Distribution of Axial Surface Along Pipe for In-Plang Bendir3 Load.


FIGURE 14c. Typical Variation of Ovalization Along Pipe for In-Dlane Bending Loid.


FIGURE 14d. Flexibility Factors Along Pipe for InPlane Bending Load.

## Stresses and Strains at Elbow End Weldments

Elbows are often attached to straight portions of piping by girth weldments located at the junction of the elbow torus and the tangent straight pipe. Stresses and strains at the elbow midsection were found by Markl $[14,15]$ to govern the fatique life of pipe elbows tested below temperatures where creep effects are significant. Accordinaly, the ASME Code [13] in NB- 3600 provides stress indices for butt welding elbows that are based on midsection stresses, but a $D_{0} / t \div 100$ is required. For FFIF, the largest $D_{0} / t$ is 64 . As the $D_{0} / t$ ratio gets larger, the stresses at the elbow and weldments
 $c_{2}$ - mLI Shareact inctor



FIGURE 15. Relating Weld oand e to Elbow Midsection oand $c$ Due to Moment Loading.

TABLE 2. ELBON MOEEL DESCRIPTIOHS

may becone larger than at the elbar midsection. Considering the limitations of Markl's test data, it was decided to also calculate stresses and strains at the elbow end weldments, in addition to those at the elbaw midsection for the FFTF.

Detailed inelastic analysis of pipelines using the constant bending elbow element (No. 17 of the MARC finite element computer program) $[6,9]$ do not account for the secondary stresses due to fabrication mismatch or radial shrinkage at the welds. In addition, peak stresses and strains due to weld surface irregularities, etc. are not directly included in the pipeline inelastic model. Accordingly, a simplified method of evaluation was devised and conceptually described in Figure 15.

The simplified method consisted of using the pipeline system model to predict inelastic response for primary and secondary stresses excluding fabrication mistatch and weld local effects. Stresses and strains at the elbow end weld joints were then approximated using the values computed for the elbow midsection combined with carryover and shrinkage factors.

The carryover factors sere determined from detailed shell finite element, finite difference analyses of the FFTF elbar designs, and from consideration of the experimental data $[10,11,12]$ on ovality distribution such as shown in Finures 14 b and 145 . For the FFTF applications, a carryover factor of $1 / 2$ was found conservative. However, higher factors may te needed for larger and thinner-walled pise eloows.

Radial welds on FFTF to join the spamless pipe and machined elbows were done by an zutomatic widing machine. The meld reinforcement and surtace
irregularities were murh nilder than typical manual weids. Fabrication aligrement and mismatch tolerances and the welds wore all kept within Code
limits. Accordingly, tha condo steness indiens tied
 ate to account for local stress concentrations and fatigue strength reduction factors. Thus, a local indice for the girth welds based on the code [13] was taken to be 1.8 in ragnitude. The cote does not have a factor for radial weld shrinkage effects.

Discontinuity stresses of the type dopicted in Figure 16 and due to rasial shrinkage in thinwall piping, were approximated by elastic anairsis of a number of shell shrinkzoe distributions and $\mathrm{R} / \mathrm{t}$ ratios. Dased on thase firtirgs and coce indices for girth :elids, the sescisl indices of Fthurs 17 nere adopted. These irdices were intended for use in predicting the maxim stresses and strains at velds in the pipe axial direction tecause the $\mathrm{K}_{2}$ $=1.8$ local factor was considered an axial fatigue strength reduction faztor. in appropriats " 2 value relatlve to the =tzelelbew hoop direction was judged to be $\sim 1.1$ to 1.2 .

"ax mer.
FIGURE 16. Discontinuity Stress Due to Radial Shrinkage in helds.

To obtain approxinate values of elbow and weld maximum stresses and strains for comparing to the elbow midsection stresses, the method was as depicted in Figure 15. The $1 / 4$ factor is based on the $1 / 2$ carryover factor and the maximum axial stress of $\sim 1 / 2$ of the raximum hoop stress. Table 3 shows combined indices for the various FFTF pipe sizes for both elbow nidsections and elbow end meldments. Note that as the diameter gets larger, the weld indices are larger than for the bend midsection. These indices were used with the elastic flexibility analyses of the pipelines and are based on shrinkage and mismatch data of Table 4.

To obtain stresses and strains at elbow end weldments for use with the inelastic analysis code evaluation, a simplified methad was used. The hoop and axial maximum stress and strain values computed for the elbow midsecticns, using the inelastic pipe analysis, were first exanined. The values at the elbow end weldments, exclusive of weld shrinkage and configuration peak stress effects, were taken as $1 / 2$ of the midsection values. The radial weld strinkage produces stell bending under axia? membrane load. One apprcach is to apply the stress indices of Figure 17 as rultipliers with weld peak stress indices to the calculated effective stress and strain, exclusive of weld effects. That is:

$$
\text { weld offf }=\left(\frac{1}{2} B \tau_{2} k_{2}\right) \text { eff } \text { at elbow midsection }
$$



FIGURE 20. Analysis Program for Develosing Accept ance Criteria for Fabrication-Induced Surface Flaws.

## Crack-Growth Analysis

In the design of FFTF piping, the range of primary plus secondary stresses in pipe fittings such as elbows and tees, were limited to a value of 3 S m as given in Table 5. Due to the radial shrinkage of the weldments joining the fittings to the straight pipe sections, the welds also represent location of increased stresses. Outside the fittings on straight pipe section surfaces, the maximum applied stress range is about half that of the fitting (i.e., $1 / 2 \cdot 3 \mathrm{~s}_{\mathrm{m}}$ ).

The evaluation of the flaws were divided into two stages; crack initiation and crack propagation. Nomally, a non-flawed 5mooth surface will require many cycles of stressing before a small crack will develop. However, a notched or flawed surface can initiate a crack very early in the part life and then the question shifts to how fast will the crack grow. Figure 22 shows the threshold flaw size calculated for the crack to grow under various applied stress ranges. For maximum allowable design stresses the threshold sizes are given in Table 6.

The crack-growth fracture mechanics analyses were accomplished conservatively assuming that the surface flaw, which is normally not as sharp as a crack, to be a crack. The determination of the applied stress intensity, $\Delta K$, was based on the methods of Section $x 1$ of the ASME Boiler and Pressure Vessel Code. Other formula based on the work of Hsu and Liu [24] and Shah and Kobayashi [25] were also employed for further insight.

The crack-growth andlyses indicate the growths are fairly sensitive to stress level (see Fioure 23) but very little growth is expected belaw 8000F $\left(427^{\circ} \mathrm{C}\right)$. See Figure 24 .

The crack-growth rate and threshold stress intensity data (see Figure 25 and 26) used vere based on work by james $[22,23]$. To account for long-time high-temperature effects, an environmental rate acceleration factor (Figure 27) was obtained by extrapolation.

TALLE 5. PIPHIG STRESS RANGE DOUTDS

Lic.i+irn


| Elbow Ends | 800 | 427 | 25 | 172 | 843 |
| :--- | ---: | ---: | ---: | ---: | ---: |
| Elbow Erds | 1050 | 555 | 18 | 124 | 843 |
| Elbow Ends | 300 | 427 | 427 | 2 | 14 |
|  | 1050 | 566 |  | $10^{9}$ |  |


| Straight Pipe | 800 | 427 | 18 | 124 | 843 |  |
| :--- | ---: | :--- | ---: | :--- | :---: | :---: |
| Straight Pipe | 1050 | 565 | 14 | 97 | 843 |  |
| Straight Pipe | 800 | 8 | 4278 | 2 | 14 | $10^{9}$ |
|  | 1050 | 566 |  |  |  |  |



FIGURF 21. Typical Fatigue Strength Reduction Factors $\mathrm{K}_{\mathrm{N}}$ for Drill-Induced Flaw Stapes.

An example of the creep-fatigue and crackgrowth analyses findings is given in Table 7. As shown in Table 7, the high-temperature elbow midsections are located where such flaws may cause non-satisfaction of the creep-fatigue criteria. However, the high-temperature elbow ends and straight pipe sections do have adequate creepfatigue rargins. When a drill-induced 0.010 -inch $(0.025-7)$ deep blemish, which is not as sharp as a crack, was assumed a crack, its orowth kas predicted at $\sim 0.042$ inches $(0.10 \mathrm{~mm})$ for the high temperature


FIGURE 22. Estimated Thresholds for Flaw Growth.
TABLE 6. ThaESHOLD FLAW SIZE FOR CRACK GRONTH


* $1 \mathrm{ml} 1=0.025 \mathrm{~mm}$
elbow midsection. The other locations had very small growth, $<0.001$ inches. The wall thickness, in this case, was $\sim 3 / 8$ inch ( 9.5 m ).

The high-temperature crack-growth results are fairly uncertain due to the vary rapid change in growth rate as the applied stress and effective stress intensity change (see Figures 25 and 26 ) and the cyclic time change. This time-dependent effect is often referred to as a "frequency" or "hold-time" effect (see Figure 27). Thus, although the crack extension for a 0.010 -inch ( 0.025 mm ) crack-like flaw in a high-temperature high-stressed elbow midsection is calculated to be 0.042 inch ( 0.10 m ), it could actuaily be much larger or much smaller. A 50\% increase in stress level would increase the predicted crack growth to 0.13 inch ( 3.3 mm ). A $50 \%$ increase in depth, 0.010 inch ( 0.025 mm ) to 0.015 inch $),(0.037 \mathrm{~mm})$ results in a predicted crack growth of 0.27 inch ( 6.9 mm ).

Above $\varepsilon \supset \partial^{\circ} \mathrm{F}\left(427^{\circ} \mathrm{C}\right)$, creep effects can great ly enhance the crack-growth rates and reduce the low-cycle fatigue life. If the maximum allowable code design stress is developed during operation, a very small flaw, as little as 2 to 4 mil deep, may grow during the design cyclic life to unacceptabie levels. Thus, elbows, which do have local areas stressed to the code limits, should have all surface flaws removed. In straight pipe sections, the operating stresses are usually less than half those in the elbows. Round bottom flaws
up to 10 mil deep may be tolerated with nn significant adverse effects on the piping fatique integrity, provided all operating vibratory induced stresses are as lod as cxpest...

For operation below $800^{\circ} \mathrm{F}\left(427^{\circ} \mathrm{C}\right)$, where creep effects are insignificant, the crack growth is slow and the lui-cycle fatigue life for a given cyclic stress level is greatly increased. Thus, low temperature (below $200 \circ \mathrm{~F}$ ) piping flaws anywhere on the piping, up to 10 mil in depth, could be tolerated.


FIGURE 23. Crack-Growth Rate vs Stress for $10500^{\circ} \mathrm{F}$.


HED $78 \mathrm{Cl}-301.10$

Figure 24. Crack Growth vs Te-perature.


HEDL 7801-301.2
FIGURE 25. Upper Bound for Fatigue-Crack Propagation Behavior of Annealed 316 SS in an Air Environment at 10000 F for the Full Range of Effective Stress Intensities.

From the findings presented and from other analyses and considerations, it was concluded that, in general, high-temperature straight pipe will tolerate drill holes and surface flaws on the order of 0.015 -inch $(0.037 \mathrm{~m})$ deep. Low-temperature (below $800^{\circ} \mathrm{F}$ ) large pipe and elbows will tolerate $0.025-$ inch $(0.64-\mathrm{mm})$ deep drill holes with no need for blending.

Based on the creep-fatigue and crack growth fracture mechanics stress analyses, limits were developed that depend on whether the flaw is located on a piping fitting (such as an elbow) or on a straight section of piping, and on the intended operating temperature. The acceptance criteria developed called for all of the following surface defects to be blended out:

1) For low temperature piping with operating temperatures $8000 \mathrm{~F}(4270)$, or below
a) Any surfaces defects over 0.010 inch ( 0.025 m ) in depth.
b) Any are strikes or weld splatter.


FIGURE 26. Fatigue-Crack Growth Behavior of Annealed 304 SS in Sodium Vaccuum Nitrogen, and Air Environment at 10000 F.


FIGURE 27. Frequency Effects on Crack Growth for Stress Intensities Over $15000 \mathrm{lb} /(\text { in. })^{3 / 2}$
2) For high temperature piping with operating temperatures above $800^{\circ} \mathrm{F}\left(427^{\circ} \mathrm{C}\right)$,
a) Any surface defects of any perceptable depth in elbows or fittings.
b) Any surface defects with sharp bottoms of any perceptable depth in pipe surfaces.
c) Any smooth bottom defect over 0.010 inch $(0.025 \mathrm{~mm})$ in depth in pipe surfaces
d) Any are strikes or meld splatter.

TABLE 7. SUW:AARY OF CREEP-FATIGUE AHD CRACK-GROWTH ANALYSIS RESULTS


| 10x+1/308 |  |  | ixin | $\begin{aligned} & 6.1 \\ & \text { yen } \\ & \text { ix } 102 \end{aligned}$ | $1 \times \operatorname{tog}$ | avive | 64/98 | $\begin{aligned} & \text { Pove } \\ & \text { Ixion } \end{aligned}$ | $\begin{aligned} & \text { on } \\ & 1,01 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11909 Anmito | * | 0 | *) | 0.10 | 1.0 | 11 | 5 $1.10^{-7}$ | 5 | 0.002 |
| fibour *iturtion | 130 | 5 | *) | 0.34 26 \% | 0.n | r.t | $4 \times 10^{-7}$ | 1 m | 0.01\% |
| ta* *-metom | 208 4 150 | 4 | 12, | - | 2. $n$ | 0 : | \%ow | -- | *-* |
| fine tes | 80 | 8 | *) | 0.811 | 1.0 | 3.5 | $2.20 \cdot 1$ | , | 2.0008 |
| t130 1 Ni | 1050 | 13 | (4) | 0.45 | Q." | 4.0 | $5.17^{-4}$ | 123 | 0.0005 |
| tron tei | 80.170 | 2 | 10* | 0 | Q.71 | 0.4 | $0 \times$ | * | - |
| Strelet Pime | *00 | เ8 | *) | 1 | 1.0 | 4.0 | $0 \times$ | *. | 0 |
| い-a>*) | (195) | - | 4) | 0.4 | 57 | 3.1 | \%-* | -- | 0 |
| Suetersome | 3x + 3050 | 2 | 169 | 9 | 2.70 | 0.4 | 0** | *** | 0 |



The depth of blend was also controlled so that the residual wall thickness was adequate to meet primary and secondary stress limits. Defects greater than 0.025 inch ( 0.64 mm ) in depth were given case-by-case evaluation and repair treatment.

The $10-\mathrm{mil}$ limit in the acceptance criteria was a conservative limit chosen with the recognition that considerably larger flaws could be tolerated. But the field inspection technique was too crude to allow the limit to approach the maximum calculated capability any closer. Moreover, most of the flaw types experienced previousiy in construction were less than 10 mil deep. Flaws greater than 10 mil , but not greater than 25 mil deep, are blended out. Flaws deeper than 25 mil are given special evaluation and the appropriate action determined on a case-by-case basis.

High-temperature piping elbows should be free of defects as they are generally the most vulnerable locations for effects of surface flaws on piping integrity. This is due to the uncertainty in the time-dependent crack-growth rates, and the elbows are locations of maximum stresses, and there is potential for vibration-induced high-cycle stresses. As it is difficult to accurately predict system vibratory response, measurements and inspection for pipe vibratory motion have been taken and will continue during FFTF plant startup testing. This will assure that the piping has sufficient margins against high-cycle fatigue.

## CONCLUSIONS AND RECOMENDATIONS

Simplified rules and preliminary design limits developed for FFTF piping in 1974, based on expected behavior, engineering judgment, approximate calculations, and detailed inelastic analyses of three pipelines have served very well. All designs based on these simplified rules and limits have been confirmed by detailed code and inelastic analyses.

Six additional FFTF pipelines have had detailed irelastic analyses and comparisons to simplified analysis finding have been performed. Accordingly, detailed system inelastic analyses of pipelines are practical for primary and secondary stress/strain
evaluations. However, simplifind analys is mothods were needed and developed for weldment radial
shrinkage and local surface stresses and strains. The use of $K$ indices, as in clastic analvsis, seems to be the oniy practical suy to treat naficuntis.

Simplified analyses and elastic analyses provide significant insight for designing a pipeline and they help provide valuable data useful for comparing with detailed inelastic analysis results. After adequate compariso.ns of detailed inelastic analysis response for lines limited to $P+Q \leq 3 \mathrm{~S}$, where the temperature hold-time relaxation continues monotonically unaffected by the thermal transient, the develonment of less conservative elastic anzlysis rules should be atte-วteo by RSME Code bodies. Moreover, it is our experience that by keepins tne pipeline primary plus secondary stresses in the range where shakedown in crees occurs, the (i.e, $\left.P+Q_{\lambda} \leq 3 \zeta_{a}\right)$ creep-fatigue life will be governed by the stress-time history and very little usuage will be consumed ty the cycle fraction related to the strain range. That is, the in $^{\prime} \mathrm{id}_{\mathrm{d}}$ fraction is small and the $T / T$ g is designed so that elastic followup is not significant and the $P+Q$ stress ranges are less than the elastic shakedown range. Then the creep damage will correspond to monotonic relaxation during the service life and be acceptably low. Of course, elbow end welcment radial shrinkage, mismatch and configuration rust be controlled or the weld will become design controlling.

Scratches, dings, chisel marks, etc. inadvertently get imposed on piping and equipment while the plant is under construction. Accordingly, considering that such flaws can reduce the operational fatigue capabilities, an acceptance criteria should be developed for identifying what flaws can be tolerated and what flaws should be removed prior to insulatirg and placing the pipe into operation. For future designs, to provide a sacrificial layer of material that could be blended off, it is recanmended that $0.025-$ inch $(0.64-\mathrm{m})$ allowance be applied in the design like a corrosion allowance or wall thickness tolerances. Moreover, more high temperature cycle fatigue and crack-growth data are desired in the ASME code to assess fabrication ind ciced flaws and vibratory stresses. In particular, threshold $\Delta K$ and da/dik crack-growth rates up to $1200{ }^{\circ} \mathrm{F}$ are desired. Smooth bar high-cycle fatigue data to $10^{9} \mathrm{C}$. les are also desired.

Significant advances in methods and technology for elevated temperature piping design have occurred in recent years but improvements are still expected and desired to reduce design costs and to enhance the reliability of the piping.

## ACKNOML EDGEMENT

This paper is based on work performed at the Hanford Engineering Development Laboratory (HEDL), Richland, washington operated by Westinghouse Hanford Company, for the U.S. Department of Energy. The author is grateful to the HEDL Plant Analysis staff who carried out many of the analyses providing input to this paper. Special thanks go to M.J. Anderson, W.L. Chen, S.N. Huang, M.R. Lindquist, G. D. Sumers and E. O. Weiner.

## REF ERENCES

1 Severud, L.K., "Simplified Methods and Application to Preliminary Design of Piping for Elemis : : raverur Second National Congress on Pressure Vessels and Piping, San Francisco, CA, June 23-27, 1975, Advances in Desion for Elevated Temperature Environment, ASME, Niew York, if.

2 Sampson, R.C. and Jagels, R.E., "Stress Analysis for the Design of Liquid Metal Piping in the Fast Flux Test Facility," 78-PVP-21, Presented at the Joint ASME/CSME Pressure Vessels and Piping Conference, Montreal, Canada, June 25-30, 1978.

3 Pan, Y.S. and Jetter, R.1., "1nelastic Analys is of Pipelines in FFIF CLS Module," Pressure Vessel and Piping Conference, Miami Zeach, FL, June $26-28,1974$, Pressure lessels anc Pizing: Analys is and Conputers, ASME, liew York, i.t.

4 Chen, h.L. and weiner, E.O., "Irelastic Analysis of Pipeline in FFTF Heat Trarsport System," PVP-PB-028, Presented at the Joint ASME/CSME Pressure Vessels and Piping Conference, Montreal, Canada, June 25-30, 1978.

5 Huang, S.N., "Inelast ic Analysis of Two Pipelines in the Fast flux Test Facility," PVP-36, Presented at the Third U.S. National Congress on Pressure Vessels and Piping, San Francisco, CA, June 25-29, 1979.

6 MARC-CDC, "Non-Linear Finite Element Analys is Program, (User's Information Manual)" Ref. F, Control Data Corporation, Minneapolis, MN, May 1974.

7 Bree, J. "Elastic Plastic Behavior of Thin Tubes Subjected to Internal Pressure and Intermittent High-Heat Fluxes with Application to Fast Nuclear Reactor Fuel Elements," Journal of Strain Analysis, Vol. 2, 1967, pp. 226-238.

8 O'Donnell, W.J. and Porowski, J., "Upper Bounds for Accumulated Strains Due to Creep Ratcheting," Welding Research Council Bullet in No. 195, June, 1974. Also, Iransactions of the ASMंE Pressure Vessel. Piping and Materiais Conference, Miami FL, June 24-28, 1974.

9 Hibbitt, H.D., "Specia! Structural Elements for Piping Analysis," Presented at Pressure Vessels and Piding Conference, Miami FL, June 24-28, 1974, Pressure Vessels and Piding: Analysis and Computers, ASIE, hew York, iir.

10 Pardue, P. and Vigness, T., "Properties of Thin-Walled Curved Tubes of Short-Bend Radius," Trans. ASME, Vol. 73, 1951, pp. 77-87.

11 Gross, N. and Ford, H., "The Flexibility of Short-Radius Pipe Bends," Proceedings of the Institute of Mechanical Engineers. Series B, Vol. 1, 1952-1953, pp. 480-491.

12 Imanasa, J. and Uragami, K., "Experimental Study of Flexibility Factors and Stresses of Welding Elbows with End Effects," Proceedings of the Second International Conference on iressure Vessel Technology, Part 1, San Antonio, ix, Oct. 1-4, 1973, pp. 417-426.

13 ATME Boiler ond prociure vessel Cone, Section Ill: liuclear Power plont Components, Division 1: Metal Components, ASME, New York, NY, 1971.

14 Mark1, A.R.C., "Fatique Tests of helding Elbows and Comparable Double-litre Bends," Trans. ASME, Vol. 69, 1947 p. 7.

15 Markl, A.R.C., "Fatigue Tests of Piping Components," Trans. ASME, Vol. 14, 1952, p. 301.

16 Liebowitz, H., Vandervetat, $\mathrm{H}_{\text {. }}$, and Sanford, R., "Stress Concentrations Due to Sharp Notches," Experimental Mechanics, Dec. 1057, pp. 513-51\%.

17 Juvinall, R.C. Stress, Strain, and Strength, "cGraw Hill, lien :orx, iy, 19E7, pp. 252-259.

18 ASME Boiler and Pressure Vessel Cote, "Class 1 Case interpretations: code Case :चJT-5, Comporents in Elevated Terperature Service," and "Class III Case interpretations: Code Case 1592," New York, NiY, 1971.

19 Maiya, P.S., "Effects of Notches on Crack Initiation in Low-Cycle Fatigue," Materials Science and Engineering, Vol. 38, 1979, pp. 289-294.

20 Chow, J.G.Y. and Soo, P., "Development of a Procedure for Estimating the High Cycle Fatigue Strength of Some High Terperature Structural Alloys," Methods for Precicting Material Life in Fatigue, $\overline{\text { ASME Kin', Dec. } 2-7,1979 \text {, New York, NY. }}$

21 Jaske, C.E. and O'Donnell, W.J., "Fatigue Design Criteria for Pressure Vessel Alloys, ASME Journal of Pressure vessel Technology, Nov. 1977.

22 James, L.A., "Fatigue-Crack Propagation in Austenitic Stainless Steels," HEDL-SA 1051 Atomic Energy Review, International Atomic Energy Agency, Vienna, Austria, Jan. 1976.

23 James, L.A., "Frequency Effects in the Elevated Temperature Crack Growth Behavior of Austenitic Stainless Steel - A Design Approach," 78-PVP-97, Presented at the Joint ASME/CSME Pressure Vessel and Piping Conference, Montreal, Canada, June 25-30, 1978.

24 Hsu, T.M. and Liu, A.F., "Stress Intensity Factors for Truncated Eliliptical Cracks,* Handout at the Seventh National Symposium on Fracture Mechanics, College Park, MD, August 27-29. 1973.

25 Shah, K.C. and Kobayashi, A.S., "On the Surface Flaw Problem," in The Surface Crack: Physical Problems and Computational Solutions, RSNE, New York, iy 1972, pp. 79-124.

Piping-Flexibility Analysis
By A. R. C. MARKL. ${ }^{1}$ LCUISVILLE, KY.

A steadily expanding literature bears testimony to the growing recognition of the importance of the problem of providing flexibility in piping and to the many difliculties besetting efforts at establishing a simple rational approach for its solution. This paper aims to outline the various phases of the problem, with particular emphasis on the phenomena of plastic flow and fatigue which distinguish the behavior of piping systems under thermal expansion from the ordinary room-temperature steady-state structural problem and lead to the concept of a limiting-stress range rather than an allowable stress as the criterion of the adequacy of a layout. In treating his subject, the author has sought to present the consensus of the Task Force on Flexibility charged with reformulating Chapter 3 of Section 6 of the Code for Pressure Piping. Their Proposed Rules are included as a focal fint on which it is hoped broad discussion will center.

Introdection
IN the course of a general review and revision of the Code for Pressure Piping, initiated in 1951, a Task Force on Flexibility ${ }^{2}$ was apponted by ASA Sectional Committee B31.1 to study and report on the adequacy of the current provisions of the chapter on "Expansion and Elexibility" included in Section 6 of the Code. Two subgroups ${ }^{\text {d }}$ were formed, one to deal with stresses and their allowable limits, and the second to digest available information on physical properties entering into pipingflexibility analysis.

The former group, with the findings of which this paperis solely concerned, came to the conclusion that a complete reformulation of this chapter was desirable to improve its clarity and, more importantly, to bring its clauses into accord with advanced theoretical concepts, new research results, and accumulated experience. A working group ${ }^{*}$ was charged with the task of devising rules which would realize this objective and still be readily understandable and easy to apply. A draft effecting a satisfactory compromise between scientific truth and the simplicity so essential to any borly of rules dertined for wide application was produced and accepted by the Sectional Committee.

However, since the Proposed Rules depart appreciably from past practice in several respects, primarily by their open reeognition of the concept of stress range, it was thought desirable to publish them first in nonmandatory form as a Task Force Report (121) ${ }^{6}$ to permit piping engineers at large to familiarize themseives with them, test their suitability by application to their
${ }^{1}$ Chief Rescarch Engineer. Tube Turns.
${ }^{2}$ For membership, see source (121). Numbers in parentheses refer to the Bibliography at the end of the paper.
${ }^{1}$ Under the chairmanship of H. C. E. Meyer and R. Michel, respectively.

+ With S. W. Spiel vogel as chairman, and N. Blair. H. V. Wallstrom, and the author as members.
- The original formulation by Suberoup 1 is transcribed in Appendix 1: alternate clauses introduced later in deference to a dissenting viewpoint arergiven s-parately in Appendix 2.

Contributed by the Power Division and presented at a joint session of the Power, Applied Mechanics, Heat Transfer, Safety. Metals Engineering, and Petroleum Divisons, Joint AsTM-AsME Research Committec on Eiffert of Temperature on the Properties of Metals, and Research Committee on Hish-Tempersture Steam Gemeration, at se Annual Meeting. Niww York. N. Y.. November 29 -December 4 , 1953, of The Amerbix Suctery of Mechanical Endinelis.
individual problems, and assist in arriving at a final formulation assuring uniform interpretation and intelligent enforcement. At the same time, the author was invited to prepare a paper to explain the hasic philosophy and scientific background underlying the Proposed IRules.

The Problem
The objective of piping-flexibility analysis is to assure sufety - ainst failure of the piping material or anchor structure from overstress, against leakage at joints, and against overstrain of connected equipment, without waste of material. While expansion joints of various types in some instances prove useful for this purpose, by far the more common and generally preferable practice is to provide for thermal expansion by utilizing the inherent flexbility of the pipe run itself acting as a spring in bending or torsion.

Piping-flexibility analysis resolves itself into the following:
1 The calculation of the forces, moments, and stresses (and desirably also, displacements) at all significant locations in a tubular structural frame under the influence of thermal expansion.

2 Their comparison with allowable limits.
The frame can be in one or more planes. The number of redundants will vary with the number of branch lines or intermediate restraints (guides, braces, and so on). For a space system, there will be six unknown reaction components (three forces and three moments, or three forces and their lever arms) for each anchor point in excess of one; intermediate restraints introduce a lesser number of unknowns.

As compared with the parallel structural problem, the evaluation of the reactions, stresses, and deformations in a piping system under thermal expansion involves a number of additional considerations, of which the following are the most important:

1 Piping components other than straight pipe, notably elbows and bends, exhibit peculiar stress-and-strain behavior under bending which generally reflects itself in increased flexibility, usually accompanied bv interisification of stresses.

2 Piping systems are not intended to behave elastically in their entirety. As a result of local creep (at high temperatures) or local yieiding (even at ordinary temperatures) relaxation may take place whereby the reactions and stresses in the operating condition are lowered and substantially equivalent reactions and stresses are made to appear in the cold or ofi-stream condition. This process can be anticipated by cold springing.

3 Owing to the cyclic nature of the operation of all piping systems, fatigue becomes a factor requiring consideration, particularly where the fluid carried is corrosive to any degree.

The General Process of Solution
In the flexibility analysis of any syatem of given line size, configuration, and material, with a predetermined amplitude and number of temperature cycles, the following steps are involved:

1 The significant physical propertics of the material, such as expansion coefficient, modulus of elasticity, Poisson's ratio, yield stress, creep and relaxation stress, and endurance strength have to be determined. This paper will not concern itself with the
Note: Statements and opinions advanced in papers are to of understood as individual expresseons of their authors and not thove of the Soriety. Manuseript remeived at ASME Headquarters, July 27, 1953. Paper No. 53-A-51.
first three conatants, for which the values and the basis for their selection have heen covered by a separate paper by the chairman of the second subgroup of the Task Foree (124). The way in which the strength properties enter into the solution of the prollem under the Proposed Rules, on the other hand, will be diseussed in detal at the appropriate proint in this development.

2 Assumptions have to be made regarding the dimensions of the piping, notably those associated with the cross section. For simplicity, the Proposed Rules disregard dimensional tolerances and the uncertain and erratic changes in thicknesa caused by eorrosion or efovion and permit use of the nominal dimensions throughout.

3 Conditions of end restraint have to be assessed. The Proposed Rules give no preseriptions in this respect, but general practice is to take the ends as fully fixed in the absence of detailed snalysis of the rotations and deffertions of vessel shells, pump or turbine casings, pipe anchors, or other structures to which the line may be connerted. However, equipment expansions must be taken into account since they may cause increased forces, moments, or stresses.

4 The significance of different forms of intermediate restraints has to be appraised. Major restrictions to free movement of the line due to guides, solid hangers, or braces are usually taken into account in calculations or other forms of analysis. Secondary restraints, such as unbalanced spring forces or frictional forces at supports, usually are ignored: however, caution should be exercised in extending this practice to systems whose weight is great in relation to their stiffness, a condition often encountered in pump or turbine leads because of manufacturers' limitations upon thrusts,
5 A method of analysis suitable to the importance of the system must be selected. The solution can be approached by analytical, graphical, chart, or model-test methods, or even by comparison with past successful layouts, and may invoive various degrees of approximation. However, for approximate solutions an allowance for the probable error should be included.

6 Finally, a comparison of the results has to be made with allowable limits. These are clearly established in the Proposed Rules for the stresses, but left to the designer's judgment and consultation with manufacturers of equipment in the case of reactions, because of the diversity in shape and design of connected structures.

## Flexibility Factor

It has been stated earlier that the calculation of the reactions and atressers in a piping system is complicated by peculiarities of stress-snd-strain distribution in certain piping components under bending, one of the effects of which is to endow such fittings with (usually) greater flexibility than would be predicted from the ordinary beam theory.

In calculations, this is commonly taken into account by the application of a so-called flexibility factor. This can be defined as the ratio of the rotation per unit length of the part in question produced by a monient, to the rotation per unit length of a straight pipe of the same nominal size and schedule or weight produced by the xame-moment:- It is applied either as a multiplier of the length of the part, or as a divisor of its nominal moment of inertia (the moment of inertia of the matehing pipe) or of the elasticity mofulus. Available information on its magnitude for different tvpes of fittings will be discussed briefly in the text following.
Curved Etbous or Bends. These are by far the moat significant group of piping components from the atandpoint of providing increased flexibility. At the same time, they constitute the only group for which flexibility factors have been derived theoretically and confirmed by an adequate amount of lesting.

The increased flexibility of curved tubular members result. from their flattening along one or the other axis under bending

The flexibility fartor $k$ in common use in this country was developed by von Kairmán (3) in 1911. from a first approximation of an assumed Fourier-series solution. It was rrdeveloped on a different basis and experimentally cheched by Hovgaard (11) in 1926. It is usually given as

$$
\begin{equation*}
k=\frac{12 h^{2}+10}{12 h^{2}+1} \tag{1}
\end{equation*}
$$

where $h=t R / r^{2}$ is the so-called flexibility characteristic which depends on the pipe-wall thickness $t$, its mean radius $r$, and the radius of curvature $R$ of the center line of the pipe.

Originally this factor was used only for correcting the deflection of curved members bent in the plane of their curvature. This practice continued until Vigness ( 70 ), in 1942, demonstrated that it applied equally to transverse or out-of-plane bending.

The first-approximation Kármán-Hovguard factor has been used generally for both types of loading until Beskin (77), among others, pointed out the need for using more terms in von Kármán's Fourier series for bend proportions where the characteristic $h$ falls below: 0.3. The following close approximation suggested in Beskin's development commends itself by its general validity* and startling simplicity-

$$
\begin{equation*}
k=\frac{1.65}{h}, \geq 1 \tag{2}
\end{equation*}
$$

This formula strictly applies only to the central portion of a curved tube of relatively large arc under bending, and does not consider the effects of internal pressure or end restraints.

The effect of ordinary stemm pressures on the flexibility of $6-\mathrm{in}$. and $12-\mathrm{in}$. bends has been investigated by Wahl (12). He foufnd the tendency toward restoration of the circular form to be of a low order, and as a result it has become customary to neglect this effeet. This conclusion may need modification for thin-wall short-radius elbows of large diameter.

With regard to end restraints, it is obvious that even straight tangents will tend to reduce ovalization of the curved pipe and therewith impair its flevibility. The reatraining influence of end tangents has been demonstrated by diameter measurements reported by the author ( 87 ) and more ihoroughly explored by Parcule and Tigness (92) - Its effect, however, was found to be relatively minor for ares 90 deg or greater. For smaller ares, the reduction in flexibility would be expected to be more pronounced, but since it is known to be accompanied by a commensurate redurtion in stress intensification, it is ignored in the interest of keeping calculations reasonably simple.

The effect of the attachment of stiff rings or flanges to the ends of curved pipe, on the other hand, was found to be quite marked in the tests conducted by Pardue and Vigness; each Hange appeared to cancel the influence of approximately 30 deg of arc of the bend. In the Proposed Rules, these data have been used to derive simple empiricat-correction factors $h^{1 / 4}$ and $h^{1 / 4}$ designed to reduce flexibility factors in the range below $h=1$ to

$$
\begin{align*}
& k^{\prime}=\frac{1.65}{h^{1 / 4}} \\
& k^{\prime}=\frac{1.65}{h^{3 / 2}} \tag{2b}
\end{align*}
$$

-The more generally known formulas for the flexibility factor of curved pipe are discussed briefly in Appendix 3. It will be noted that Equastion $12 \mid$ elosely ayproximates von Kármán's third approximationt and Jenks proposed formula as orikinaliy given in the discussion of Shiptnan's paper (17).

a. 1 Flexibiuty and Stress-Intensimcation Factors por

Curved Pipe With and Without Flanges
CURVED PIPE WITH AND (Ta upper graph, upper pairs of connected test points are averaces of kiva, and kre: lower puints are averaccs of ky. and kTA, as given in favies and 4 of reference ( 1 m); in towet sram, trans ceat of values for in-plane and 12 and 16 of the samue source.)
for 90 -deg eibows flanged at one and both ends, respectively
A comparison of the test data with Equations [2], [2a], and
$[2 b]$ is given in the upper chart in Fig. 1. It will be noted that
Equations [2] and [2a] are in satisfactory accord with the results of these specific tests, while Equation $[2 b \mid$ overestimates the flexibility factor for low values of $h$. A study of the lower chart leads to similar observations with respect to the corresponding stress-intensification factors, which are obtained by the application of the same correction factors. In view of the limitation of available test data to a single pipe size, bend radius, and flange type, attempts at a more refined correlation appear unwarranted at the present time. The corrections are to be regarded as no more than first crude approximations, defensible on the basis that inaccuracies in evaluation of both tlexibility and stressintensification factors tend to cancel each other, at least with respect to stress calculations.

Mitre Bends. On the basis of isolated test data and service experience, these piping components arr known to porsese increased flexibility approxching that of curved benis, particularly where both mitre spacing and mitre angle are smail so that the mitre bend comes to resemble a curved cilow. In-plane bending
teat data on 4 -mitre quarter-bends with tangents of various ength followed by flanges st mach end, on which Zeno reports in a discussion of Pardue and 'igness' paper (99), are of particu-
lar interest in this connection. The stiffening effect of flanges placed clase to the ends of the betul is equally evident as in the case of curved betwls, hut tas the tangents are lengthened to approximately two pipe diameters, the flexibility factor asymptotically approaches so pre cent of that computed for a corresponding curved bend.
In the absence of a theoretiral development, the sparse available test data on mitre bends, including the results of unpublished load-deflection tests secrured in connection with fatigue tests reported by the author (114), have been evaluated conservatively in the Proposed Kules as

$$
\begin{equation*}
k=\frac{1.52}{h^{1 / 4}} \tag{3}
\end{equation*}
$$

The characteristic $h$ herein is as defined under Equation [1], except that an equivalent radius $R$, is used which is given as

$$
\begin{equation*}
R_{,}=\frac{s}{2} \cot \alpha \text { for } s \leq r(1+\tan \alpha) \tag{3a}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{0}=\frac{r}{2}(1+\cot \alpha) \text { for } s \geq r(1+\tan \alpha) \tag{3b}
\end{equation*}
$$

where $s$ is the mitre spacing at the center line, $r$ is the pipe-wall radius, and $\alpha$ is one half the angle between adjacent mitre axes (or the angle defining the out-of-squareness of the mitre cut). It should be noted that for wide spacing, Equation $[3 b]$, the mitre bend is to be taken as consisting of a number of arcs with intervening tangents.
Corrugated Pipe. Straight or curved corrugated pipe and creased bends are the only other shapes to which increased flexibility is assigned under the Proposed Rules. The limited test data available on these types of components are summarized in a paper by Rossheim and MarkI ( 55 ) on the basis of which a uniform flexibility factor $k=5$ is suggested as a first approximation. This should be used with caution, since the flexibility of corrugated and creased pipe may be expected to vary with diameter, thickness, and bend radius of the pipe, and height, pitch, and contour of the corrugations. The effect of some of these variables has been demonstrated theoretically for idealized shapes by Donnell (26) and Hetényi ( 80 ). It also has been found experimentally. Dennison (45), working with 6 -in. standard-weight pipe, reports a value of 5 for the flexibility of creased bends and between 6.4 and 7.2 for that of corrugated tangents and bends, and tests reported by Rossheim and Markl gave values of 3.7 and 2.9 for specially made $2-\mathrm{in}$. standard-weight corrugated tangents and bends.
Other Components Forged or fabricated tees or screwed or flanged connections comprise some of the components which may exhibit increased or decreased flexibility as compared with straight pipe, depending upon their individual dimensions and contours. Because of the lack of a sound basis for even a crude empirical formulation, the Proposed Ruies assign unit flexibility to all such parts; the error incurred by so doing will never become critical since such fittings usually constitute only a amall part of the line.
It may be worth while to draw attention to the fact that the Proposed Rules do not make it mandatory to tue the specific flexibility (and stress-intenvitication) factors given therein for any of the piping components. This reprisents a tacit admission of the tentative nature of the evaluation of existing data made by the Task Force, and points up the desirability of a more thorough theoretical and experimental exploration of the fieid.

## Stress-Intenstfication Factoras

In discussing stress-intensification factors for piping compo-
nents, it is necess ary to distinguish between formulas or values derived from theory or static stran-guge tests and suth ohtained from full-sende fatigue teata. The primary ditfermee between them bies in the fon of reference. Theory refers to an idend homogeneous noteh iree material, while the resalts of fatigue tests of eommerrial problacts preferably are related to paralle-l resuite on commercial pipe joined by butt wolling, which itself contains stress raisers in the form of surface imperfections. This change in reference point, and possibly also the redistribution and attendent relief of peak stresees oceurring under evelie lowding, accounts for the obsers ation that stress-intensification factors derived from fatigue tosts are generally lower than those predieted hy theory or measured in strain-gage tests.

Since pipe is the primary constituent of piping systems and service falures of piping are almost alwavs associated with the effects of cyrlic loading (generally aggravated by corrosive influences) the stress-intensitieation factor will be defined here as the ratio of the bending moment producing fatigue failure in a given number of eveles in a straight pipe of nominal dimensions, to that producing failure in the same number of cycles in the part under consideration.

This definition implies that the curves of failure stress versus number of cycles to failure parallel each other for straight pipe and other piping components. While this is not strictly true, test data conform reasonably well to a law expressed by

$$
\begin{equation*}
i S V_{0.2}=C \ldots \tag{4}
\end{equation*}
$$

where $i$ designates the stress-intensification factor, $S$ the nominal endurance strength (cyclic moment' applied at point of failure divided by section modulus of matching pipe, rather than fitting), $V$ the number of stress reversals to failure, and $C$ a materials constant.

From Rossheim and the author's tests (55), later confirmed by tests run by the author's present company (114), a value $C=$ $245,000 \mathrm{x}$ as established as suitable for Grade B carbon steel at room temperature. From additional unpublished test data in the author's company's files, a tentative value $C=281,000$ was deduced for stainless steel, type 316, at room temperature. Finally, Stewart and Schreitz's tests (116) suggested a value $C$ $=183,500$ for stainless steel, type 347 , at 1050 F .
In view of the all too common misconception that fatigue is always associated with a large number of losiding cycles, it appears pertinent to point out that the author has found Equation [4] to be as valid for the determination of stress-intensification factors at 20 as at $2,000,000$ cycles. The author has observed no evidence of leveling off of the $S-V$ curve at either end, except in the case of straight pipe which to some extent tends to follow the trend of polished-bar tests. The endurance limit of commercial piping components is not reached as soon as in the case of polished bars. The thought suggests itself that possibly the number of cycles defining the knee in the $S-V$ curve is the higher, the higher the stress-intensification factor.

The foregoing gives the general approach used in setting stressintensification factors. In the following the detailed sources are given from which the values of $i$ published in the Proposed Rules are taken. At the same time, isolated additional test data are adduced from the fatigue-test files of the author's company to round out the picture.

Fittings for Directional Changes. These can be treated as a group becuuse of their striking similarities in behavior under bending fatigue. In the course of evaluating and correlating fatigue tests on mitre hends, forged and fabricated tees, similarities in
, Where the stresa amplitude applied in the tests exceeded the yield strength in bending. a fictitions moment based on a straight-line extension of the elavtic moment-deflection curve was computed to conform with usual calrulation practice.
crack location and direction obtruded themselves upon the author's observation. It secmed as if all these fittings conformed to some extent to the behavior of curved elbows or bents This led the auchor to suggest a common empirical exprosion for the stress-intensification factor (114) which is

$$
i=\frac{0.9}{h_{0}^{1 / 2}}: \geq 1
$$

where
$h_{e}=r\left(t_{,} R_{e} / r^{2}\right)=$ effective flexibility characteristie (dimensionless)
$c=\left(t_{e} / t\right)^{1 . s}=$ section-modulus correction factor (dimensionless)
$=1$ wherever fitting has same thickness as matehing pipm
$t_{e}=$ effective fitting thickness, in.
= average of crotch and side-wail thickness, for welding tees ${ }^{*}$
$=$ pipe-wall thickness increased by one-half excess thickness provided in either run or branch, by use of thicker piping or pad or saddle, for reinforced fabricated intersections
$=t$ for welding elbows, curved or mitre bends, or unreinforced fabricated intersections of a thickness equal to that of matching pipe
$t=$ thickness of matching pipe, in.
$r=$ mean radius of matching pipe, in.
$R_{s}=$ effective bend radius, in.
$=R=$ radius to center line of curvature for elbows or smooth bends
$=r+r_{c}$ for welding tees, ${ }^{s}$ where $r_{\text {e }}$ designates crotch radius
$=r$ for single-mitre hends and unreinforced and reinforced fabricated $90-\mathrm{deg}$ branch intersections
$\leq \frac{s}{2} \cot \alpha: \leq \frac{r}{2}(1+\cot \alpha)$ for multiple-mitre bends, where $s$ designates mitre spacing at center line, in., and $\alpha$ designates one-half angle between adjacent mitre aves, deg
The condensed information given in the Proposed Rules is directly derived from reference (114). The correction factors $h^{1 / 6}$ and $h^{1 / 2}$ proposed to account for the effect of end flanges on the stress-intensification factor for curved or mitre bends have been discussed already under the heading Flexibility Factor. Note that the higher of the stress intensifications for the flanged elbow and the flange itself must be used.

Corrugated Pipe. This type pipe and corrugated or creased bends have been assigned a stress-intensification factor of 2.5 in the Proposed Rules. This substantially follows the recommendation given by Rossheim and Markl ( 55 ) in a paper evaluating the information available up to the year 1939; the value selected is that for "noncyclie" service since correction for definitely cyclic service is effected under the Proposed Rules by the application of a stress-reduction factor. Considering the important influence of the diameter-to-thickness ratio of the pipe, as also the shape, thickness variation, height, and pitch of the corrugations of any specific manufuctured product of this type, the assignment of a constant stress-intensification factor obviously represents a grose oversimplification. A more thorough theoretical and experimental exploration of this type of construction appears urgently neeried, if it is to be used in severe services.

Bolied Flanged Cinnections. These present a dual problem from the standpoint of piping-flexibility analysis. It is necessary not only to guard against ultimate failure by rupture but al:o against disabloment of the joint through leakage across t.e

[^1]gasket. The values of the stress-intensification factors shown in the Proposed Rules are taken from a paper by Markl and George (97) and werve to predict ultimate rupture in joints bolted to about 40,000 psi stress. With lower boit stresens there is the possibility of premature leakage. Although there are no published data on the subject, the authon judges from isolated test runs conducted by his company that freetiom from leakage can be assured by application of a fartor $t$ of the order of 1.5 regardless of the type of flange, except in the active creep range where periodical retightening may become neceswary.
Pipe Joints. These joints when mate by butt welding form the basis for comparison for all other fittings, and hence take a factor of 1 . Fillet-welded and screwed joints are assigned the same values as single-fillet-welded and screwed flanges, since the failure of a flanged connection of a ductile material usually occurs in the attachment to the pipe.
Tapered Transitions. Components such as are used for connecting pipe of different wall thicknesses or for the hub ends of flanges or valves can be given the following approximate stressintensification factors on the basis of isolated unpublished tests run by the author's company:
\[

$$
\begin{aligned}
& 15 \text {-deg taper, } i=1.1 \\
& 30 \text {-deg taper, } i=1.2 \\
& 45 \text {-deg taper, } i=1.3
\end{aligned}
$$
\]

Only the small end of the hub need be considered in such an analysis, since possible higher stress intensifications at the large end, of course, are compensated by the relatively lower stress level corresponding to the increased thickness (which also explains why ASA welding neck flanges always fail at the sttachment end, never at the root of the hub). Incidentally, it will be noted that the factor of 1.3 for a 45 -deg taper is the same as for a fillet weld, the two representing the same geometrical shape.

Other Components. Components such as reducing elbows and tees, box-type fittings, anchor structures, and the like, in the absence of directly applicable data must be evaluated by analogy with fittings for which factors are available.
It already has been pointed out that neither the flevibility nor the stress factors given in the Proposed Rules are made mandatory. While the formulas and values given are based on the best available information, they are by no means to be taken as scientific fact. The prime purposes served by their publication are to call attention to the existence of such stress intensifications, to provide standardized assumptions in place of complete chaos, and, finally, to stimulate further research by all connected with the piping industry.

## Primary Analysis

For the purposes of a brief study of available methotis of analysis of piping systems under thermal expansion, let it be assumed that the system be installed with 100 per cent cold spring, i.e., that members be cut short by the full amount of their anticipated expansion and then pulled into line, Fig. 2. Let it be assumed further that the proportional limit of the material should not be exceeded at any point during this initial prestressing. It follows from these assumptions that the system will be free of expansion


Fig. 2 Statem Cut Short fur Colo-springing
stress in its hot or operating condition, and will not undergo inelastic action leading to relavation, the consideration of which will be cliscussed in another section of this puper.

The evaluation of the forces, moments, and stresses existing in the initial prestrussed cold condition evidently reduces to the analysis of a tubular-frame structure under the influence of given end and intermediate displarements and rotations. This is a standard structural problem, but for the need of correcting the deffection and computed stresers of certain members by the applieation of the flexibility and stress-intensification factors discussed in the text preceding.
The initial cold reaction' $R$ at the line terminals and the controiling stress $S_{t}$ in the line for 100 per cent cold spring are given by the following generalized expressions

$$
\begin{align*}
R=e E_{E} I F_{r} & =\frac{Z F_{t}}{i F_{t}} S_{E}=F S_{E}  \tag{6a}\\
S_{E} & =e E_{E} i \frac{i F_{t}}{Z} \tag{6b}
\end{align*}
$$

where $\boldsymbol{e}$ is the unit expansion from installation temperature to maximum operating temperature upon which the amount of cold spring was based; $E_{\text {e }}$ is Young's modulus at the installation temperature; $I$ and $Z$ are, respectively, the moment of inertia and section modulus of the pipe; $i$ is the stress intensification factor at the controlling point; $F$, and $F$, are shape factors expressing the over-all effect of line configuration and axial dimensions, including flexibility factors; and $F$ is a composite factor relating the reaction to the controlling stress.
While general solutions of this problem have long been available, their application to piping-flexibility analysis has been restricted because of the specialized hnowledge and formidable expenditure of time required to carry out a calculation. Equations $(\dot{\sigma} a)$ and $[6 b]$ are deceptively simple, but the shape factors $F$, and $F$, appearing therein, in themselves generally represent extremely complex mathematical expressions. To reduce their computation to practical limits, some of the foremost pipingstress analysts have expended considerable effort and ingenuity in devising simplifications consisting either of preorganization of parts of the solution without affecting accuracy, or of making approximations of greater or lesser validity.

Among devices of the first kind applied primarily to strictly mathematical solutions, the following are the most important: ${ }^{10}$
1 Preintegration of recurring shape coefficients (17).
2 Introduction of virtual center of gravity or elastic center (38).

3 Introduction of conjugate axes (41).
4 Application of prineiple of eyelic permutation of co-ordinates ${ }^{4}$ to reduce multipline problem to single-plane problem (61).
5 Exploitation of symmetry of simultaneous equations to reduce number of operations required (61).
6 Application of matrix method to provide elearer visualization of components entering into the problem (117).

* For darity, the developments in this and the following section refer to a single end force which is all that is neeted in the ease of a single-plane bend with two hinged ends. The delinition of $R$ can be expanded to relate to the $3(n-1)$ force compnonents and $3(n-1)$ moment components created by cold springenk or thermal expansion of a space system with $n$ points of fixation without loss of validity of the ennclustons derived.
to The wope of the paper permits no more than a brief enumeration of various approachos. Tis stable interested readers to arquaint themselves with them, patenthetical references are given to the betterknown sources employing them without, however, implying that they are neressanly the origmal proponents.
${ }^{11}$ First application of thos roncept is credited to G. W. Watts and W. R. Burrows.

Among approximate assumptions lewing to a variable degree of arcuracy, the following are probubly the most common:

1 Subdiviaion of line into short clements, the maw of which is concentrated at thair mid-points ( 51 ) ; if the elements selected are short enough, this methuni is practically precise.
2 Sulstitution of square corners for curved members; this widely used approximation ignores the incressed flexibility of elbows and lewis to an overestimate of reactions and either an over or underestimate of the stressers depending upon whether the stress-intensification factors are considered or ignored.

3 Correction of developed squarm-corner length of system by addition of a virtual length representing the excess thesibility of all the ellows (105); in effect, this distributes the excess eliow flexibility uniformly over the entire system. The accurary of the results is considerably improved as compared with the foregoing approach.

4 Concentration of the excess flexibility of each elbow in a single point located at the intersection of its two tangents (120); this modification of the square-corner solution is somewhat more complex and more accurate.

5 Introduction of two or more weighted points for each elbow; this further refinement of the square-corner solution leads to almost precise results with proper selection of the weights assigned to the points.
6 Assumption that neutral axis parallels line connecting anchors (20); this produces precise results for symmetrical eases, but the accuracy very rapidly diminishes as the shape departs from symmetry or becomes antisymmetrical.
7 Assumption that neutral axis connects the anchors directly; this, in effect, assumes a hinged system, and may lead to major error where the ends are rigidly anchored.
8 Assumption that bending and torsional rigidity are identical (30); taking the shear modulus equal to one half the elasticity modulus in tension simplifies the solution of space problems without leading to excessive error.
9 Assumption that the stress-intensification factors are identical for in-plane and out-of-plane bending (114); use of the higher of the two for either condition leads to a conservative error not in excess of 20 per cent for elbows and common fuil-size intersections. The suggested stress-intensification factors tabulated in the Proposed Rules utilize this assumption.

In addition to purely mathematical approaches (to which the preceding text primarily refers), there are graphoanalytical methods (io) of equal range of accuracy, in which the moments are built up from one end to the other with the aid of precalculated solutions for each element of the line. Furthermore, a number of chart sulutions have been published which represent more or less complete precalculations of entire systems of unit stiffness and displacement ( $33,37,105$ ); the latter obviously are restricted to simple configurations.

While many methots are theoretically suitable for application to systems with any number of terminal and intermediate restraints, the computation work increases rapidly with the number of relundints. For this reason mathematical and semimathematical methoxis rarcly have heen applied to systems with more thiu three points of fixation. To supply $t^{\prime}$ a need for a means of evaluating the fle xibility of lines with many brateches or intermediate restraints, such as guides or wind braces, modeltesting methods have been devised wherein the reactions caused by given end displacements are measured by either springa ( 52,56 , 60) or eleetric striun gages (78). Of hate, memory-endowed electronic or other computing devices have been utilized by at least
two companies (123). Once the operations are coded properly, which is a time-consuming task for experts in this field, thew machines are capable of solving any problem of the same type and thus serve to expand greatly the number of systems whinh can be calculated within a given time.

## Self-Spring and Cold-Spring Effects

In order to forus the realer's attention on "methois" of anvivsis, the problem of calculating forees, moments, and stresses in the foregoing has been reducel to a familiar structural problem by imposing special conditions. In what follows, the scope of the investigation will be broulened to embrace all conceivable conditions of installations and temperature or stress which might be encountered in actual practice.

Let it be assumed that a system be installed cut short an arhitrary amount, so that a gap cel is left betucen the end of the line and one terminal. This problem is identical with that shown in Fig. 2 and is solved in general terms by Equations [ $6 a$ ] and $[66]$, except for the introduction of the so-called cold-spring factor $c$ which ranges from zero (for no cold spring) to unity (for 100 pwr cent cold spring). Equations $[G a]$ and $[6 b]$ are based on $c=1$. Obviously, both the initial cold reaction and the initial colld stress for the more general case will differ from those given by these equations by a factor $c$. Actually, since reaction and stress are interrelated by a factor $F$, which is constant for any line of given shape and dimensions, a study of the behavior of the system can be restricted to a study of the controlling stresses created therein by changing temperature conditions. The initial cold stress is

$$
\begin{equation*}
S_{\varepsilon}^{\prime}=c S_{E} \ldots \tag{7}
\end{equation*}
$$

As the line is brought up to temperature this stress decreases. becoming zero when the line has expanded by the amount ce per unit length. Upon further expansion by the amount ( $1-c$ ) e remaining to give a total of $e$, a stress of reversed sign ${ }^{12}$ is produced (initial hot stress)

$$
\begin{equation*}
S_{\mathrm{A}}^{\prime}=(1-c) \frac{E_{t}}{E_{t}} S_{g} \tag{8}
\end{equation*}
$$

where $E_{A}$ is Young's modulus at the hot or maximum operating temperature.
In the absence of yielding or creep in either the cold or hot condition, the controlling stross thereafter will alternate between the two limits given by Equations $\{7]$ and $[8]$ during successive cycles of cooling down and heating up. This is generally true of moderately stressed lines operating at temperatures at which the metal is not subject to creep, and also of lines operating at elevated temperatures which have been cold sprung sufficiently to keep the initial hot stress below the creep limit.

Where these conditions are not met, initially high stressers, particularly in the hot condition, will relas with time until they reach a level which can be maintained indefinitely; this phenomenon is illustrated by the recordings traeed in Fig. 3 whirh are taken from laboratory tests of a small-scale expansion loop which was alternately heated to approximately 950 F and allowed to coul to atmospheric temperature. It will be noted that the controlling hot stress (and therewith also the hot reaction) dropped off to a constant level after the first few eycles; the line has sprung itself, whence the designation "self-spring." If the asymptotic value toward which the hot stress tends be designated as $S_{\text {, }}$ then the ultimate hot stress after adjustment becomes

$$
\begin{equation*}
S_{t}^{*}=S_{r} \tag{9}
\end{equation*}
$$

[^2]

Fig. 3 Eqfect of Relaxation Upon Reactions and Streasea

Upon cooling down, each unit length of the line contracts again by an amount $e$, the stress reverses, and the ultimate cold stress becomes

$$
\begin{equation*}
S_{*}^{\prime}=S_{g}-\frac{E_{t}}{E_{*}} S_{1} \ldots \tag{10}
\end{equation*}
$$

The preceding four equations fully circumscribe the extreme stress conditions encountered during the service life of a system, whether it be installed with cold spring or not, and whether it be subject to relaxation or not.

Now, as Stromeyer (6) pointed out in 1914, and Dennison (45) re-mphasized more recently, service failures are associated with cyclic, rather than static-stress application. Fatigue, with corrosion usually an important contributory factor, must be accepted as the primary cause of falurc. Resistance to fatigue is measured by the so-called endurance limit (fully reversed stress sumported over an indefinite number of cyeles, in the millions) or by the endurance strength (stress supported over a given number of cycles), the latter being of more direct significance to the present problem, since even in the process industries the number of major temperature cyeles rarely exceeds six per day, corresponding to approximately 40,000 over a 20 -yr life. Actually, the stresses uaually are not fully reversed in actual piping installations, but since the mean stress is indeterminate, particularly where relaxation oceurs, and of subordinate importance to the stress range, the latter is taken as the sole criterion in the Proposed Rules. For-simplicity, these set the value of the "calculated-stress range" equal to the stress $S_{E}$ produced by 100 per cent cold spring; that this is a reasonably correet or at least conservative assumption will be shown in the text that follows.

For the initial condition (which is maintained throughout where no adjustment occurs), the stress range is given by the summation of the stresses given by Equations [7] and [8]

$$
S_{t}^{\prime}+S_{s}^{\prime}=\frac{E_{s}}{E_{s}} S_{\varepsilon}+\left(1-\frac{E_{s}}{E_{c}}\right) c S_{E}
$$

For the ultimate condition in the case where relaxation does occur, it is given by the summation of Equations \{9] and [10]

$$
\begin{equation*}
S_{s}^{*}+S_{k}^{*}-S_{s}+\left(1-\frac{E_{c}}{E_{\mathrm{t}}}\right) S_{t} \tag{12}
\end{equation*}
$$

As one limit, applicable to lines of small temperature change, set $E_{*}=E_{c}$; then

$$
\begin{align*}
& S_{c}^{\prime}+S_{A}^{\prime}=S_{E}  \tag{11a}\\
& S_{i}^{\prime}+S_{\Delta}^{\prime \prime}=S_{g} \tag{12a}
\end{align*}
$$

As a second approximate limit, for hot lines where the relaxation limit $S_{r}$ is small, set $E_{\mathrm{A}}=2 / 3 E_{c}$; then

$$
\begin{align*}
& S_{t}^{\prime}+S_{\mathrm{A}}^{\prime}=\frac{2+c}{3} S_{g}  \tag{116}\\
& S_{t}^{\prime}+S_{\mathrm{t}}^{\prime \prime}=S_{E}-\frac{1}{2} S^{\prime} \tag{12b}
\end{align*}
$$

Note that at one limit the stress range equals $S_{E}$; i.e., is constant and independent of the amount of cold spring, and that at the other it is lower than $S_{E}$ and affected only to a minor extent by the values of $c$ and $S$.

In the following four equations the corresponding reactions are given as obtained by multiplying the right-hand terms of Equations [7] to [10] by $R / S_{E}$

$$
\begin{align*}
& R_{c}^{\prime}=c R \ldots \ldots \ldots  \tag{13}\\
& R_{t}^{\prime}=(1-c) \frac{E_{\lambda}}{E_{e}} R \ldots \ldots  \tag{14}\\
& R_{A}^{\prime}=\frac{S_{t}}{S_{E}} R \ldots \ldots \ldots \ldots  \tag{15}\\
& R_{s}^{\prime}=\left(1-\frac{E_{e}}{E_{\mathrm{A}}} \frac{S_{t}}{S_{E}}\right) R \tag{16}
\end{align*}
$$

Detailed diseussion of the refaxation limit $S$, has been deferred to this point because, under the Proposed Rules, it is considered to affect only the computation of reartions. With the establishment of the approximate stress range $S_{g}$ as the primary criterion of the flexibility of the piping system proper, individual stresseg at any one time during the temperature evele have come to lie ignored. In the case of the rewetions, on the other hand, the extreme values in the hot and cold conditions are taken to controi directly; the reason is that strain-sensitive equipment, such as pumps or turbises, can be soriously damaged by a single overlout, even though this may be promptly relaxed as a result of yielding or creep somew here in the sy stem.
The relaxation limit $S$, can be defined as the asymptotic value toward which the stress in a prestressed structure with a fixed
distance between ita terminaly tends as the material flows as a result of yielding or creep. It is not poseible to aswign an accurate value to this property, at least under bewding (the predominant type of loading introduced by thermal expansion) where higher stresses are necessary to produce flow than under tension (the type of loading for which most of the yield and creep data have been developed). However, it appears conservative for the present purposes to sot its value equal to the lesswr of the tensile yield strength and 160 per cent of the strexs profucing 0.01 per cent creep in 1000 hr at the kiven temperature; this corresponds to $S_{r}=1.6 S_{\mathrm{s}}$, where $S_{\mathrm{t}}$ is the allowable $S$-value at operating metal temperature. The splection of $S$-values in the Power Piping Section ${ }^{13}$ is based on the rule given under Table P-7 of Section I of the ASME Boiler Construction Code, which states that the $S$-value equals the lesser of 25 per cent of the tensile strength, $62^{\frac{1}{2}}$ per cent of the yield strength, 100 per cent of the stress producing 0.01 per cent creep in 1000 hr , and 60 per cent of the average or 80 per cent of the minimum stress producing rupture in $100,000 \mathrm{hr}$.
Actually, the Proposed Rules rest on a much more conservative basis; in effect, they assume $S=S_{k}$. In addition, they credit only two thirds of the designed cold spring in the computation of the initial hot reaction, while requiring the use of the full amount of the cold spring in computing the corresponding cold reaction. The ultimate hot reaction is, of course, ignored, since it is never greater than the initial hot reaction. This leads to the following equations:

1 Extreme hot reaction, paralleling Equation (14]

$$
\begin{equation*}
R_{n}=\left(1-\frac{2}{3} c\right) \frac{E_{\mathrm{t}}}{E_{c}} R \tag{17}
\end{equation*}
$$

2 Extreme cold reaction, greater of values given by Equations [13] and [16] after substituting $S_{r}=S_{k}$, with the further proviso


Fig. 4 Relation of Reactiona Computed ay Proposed Rutes to Theoretical Renctiona
that $\left(S_{\mathrm{N}} / S_{g}\right)\left(E_{c} / E_{\mathrm{N}}\right)$ not be taken greater than unity (reaction otherwise would obtain same sign as $R_{\mathrm{A}}$ which always is higher)

$$
\begin{equation*}
R_{e}=c R \text { or }\left(1-\frac{E_{e}}{E_{k}} \frac{S_{k}}{S_{k}}\right) R \tag{18}
\end{equation*}
$$

Fig. 4 gives a qualitative comparison of the reactions computed by the Proposed Rules (heavy solid lines) and the corresponding theoretical values; the dash lines indicate the magnitude of the reactions in the absence of rubxation, while the daxi-fot lines illustrate the motitiention of the latter as a result of relaxation.

[^3]
## Allowable Stress Range

It has been suggested earlier that $S=1.6 S_{6}$ representa a conservative estimate of the stress at which flow starts undiv a bending moment at elevated temperature. By the same when, $S_{r}=1.6 S_{c}$, where $S_{c}$ is the $S$-value at the minimum or (uminalv) installation temperature, might be taken to express a suitahin condition for flow at the minimum temperature. The sum of these two limiting stresses, or

$$
\begin{equation*}
S_{\mathrm{ov}}=1.6\left(S_{e}+S_{\mathrm{s}}\right) \tag{19}
\end{equation*}
$$

then could be considered the maximum stress range $S_{\Delta v}$ to which a system could be subjected without producing tlow at either limit.
In the Proposed Rules, the allowable range of the expanston stresses by themselves has been established tentatively as follows

$$
\begin{equation*}
S_{A}=f\left(1.25 S_{e}+0.50 S_{\mathrm{k}}\right) \ldots \tag{20}
\end{equation*}
$$

Hercin $f$ is a stress-range reduction factor for cyclic conditions, varying from $f=1$ for $N \leq 7000$ cycles, to $f=0.5$ for $N \geq 250,0 \mathrm{ck})$ rycles, as shown in Fig. 5. The variation roughly follows the law

$$
\begin{equation*}
f \mathrm{~V}^{0.2}=6 . \tag{21}
\end{equation*}
$$



Fig. 5 Plot of Stresa-Reduction Factor Contained in Proposed Rules
which parallels the correlation of fatigue-test data on piping components suggested by the author ( 87 ) in 1946; see also Equation [4]. The motive for seriecting 7000 cyeles as the starting point for the application of the factor $f$ was to free the calculation of everyday systems from this added complication: 7000 eycles roughly conform to a cycle per day over a period of 20 years, which is more than most systems are subjected to.
To obtain the maximum combined-stress range, the allowance $S_{P F F}=0.75 S_{\text {s set asite in }}$ in the Proposed Rules for pressure and weight stresses has to be added to the allowable expansionstress range given by Equation [20]; this is done here on the assumption that $f$ is unity, which covers the usual range of eonditions

$$
S_{A}+S_{p W}=1.25\left(S_{0}+S_{4}\right)
$$

By comparison with Equation [19], it will be noted that the Proposed Rules as written utilize at most is per cent of the. availabte stress range $S_{\mathrm{tv}}$ dedured in the opening paragraph of this section; however, selection of a proper value for the factor on the right side of tha- equation is open for discussion and revien.
An estimate of the average safety factor against rupture inherent in the Propowal Rules in the range between 7000 and $2: 50$ ) (060 eycles is derived in Tuble 1 from the limited experimental duta

## TABLE 1 ESTIMATE: OF SAFETY FACTOR FOR A LIFE OF 7000 C'YCLES

```
Material
Grade
Constant test trmpwrature
Tenla conducted by
Factor C in formula SSN*,2 = C
Average strma ramgen SA' oa 2f'%owma,z to nrudame
 Averageestroler reveruci hemimg in Foral cyeles.
Section of C'ode for I'rensure t'\aunz
Allowable stresy Ne = St poi nt prven temumrature
 under given *ection of Code for l'rowsure J'ging
Allowable stress rance NA + syw = L.25 (N
 psi per Promoust Kulos+
 Safety factor in trrins of strese = NA'/(SNA + NpW)
Safety factor in terims of life = {NA (NAA +N\rhow) |
```

a See Equation ( 20 ).
svailable. In terms of stress, the safety factor is found to be of the order of 2 ; in terms of cyclic life, it is of the order of 30 . The very least safety factor available, considering the 25 per cent spread encountered between individual test data, might be estimated as 1.25 in terms of stress and 3 in terms of life. This emphasizes the need for making a conservative estimate of the number of cycles of major temperature change a system is likely to undergo.
In the range below 7000 cycles, the safety factor provided in the Proposed Rules increases. For example, for one eycle per week over 20 years, or a total of approximately 1006 cycles, the safety factor in terms of stress would inerease by roughly 50 per cent. The minimum safety factor probably would be close to 2 , which would be more than ample, provided the actual stresses are evaluated properly.

As far as the zone from 250,000 eyeles upward is coneerned, no estimate of the safety factor will be ventured, since the proportionality between the moment supported by pipe and fittings will be progressively lost. Fortunately, this zone has little practical sagnificance with regard to expansion problems. "

A note of caution is ' n order. The provisions of the Proposed Rules do not take into account corrosion which would lower the endurance strength an unpredictable amount.

## Allowable Reactions

The degree of flexibiiity required in a piping system is often controlled by the forces and it -ments the connected equipment can sustain without becoming inoperative or requiring excessive maintenance. Most frequently, the problem of setting allowable reactions arises in connection with equipment containing moving parts such as pumps or turbines, but it sometimes also requires consideration for other strain-sensitive equipment, such ax largediameter, thin-wall pressure vessels or exchanger shells with removable tube bundles fitting with close clearances.

With good logic, piping-atress analvats expect to be able to turn to equipment manufacturers for puidance in this matter on the premise that the latter should be in a pesition to advise what provisious have been mate for ahaorbing piping reactions in the design of individual parts of their units and the completed asembly. The attitude often encountered in the past, that piping strains are no direet coneern of the equipment designer, is fast disappearing, and it is beeoming more and more recognized that lines connecting pumps or turbines of similar equipment would present no more of a problem than other lines, but for the fart that the piping has to absorb not only the expansion of the line. but also to protect the equipment from the effects of its own evpansion. If this were not the case, the piping engineer coutd very simpiy discharge his task by ricifly anehoring his line adjaeent to the equipment.

Unfortunately, only a few of the major manufacturers publish
${ }^{14}$ The rules are not intended to cover transmitted vibrations of prenure pulsations.

| Carbon steel |  | Stainlean steel |  |
| :---: | :---: | :---: | :---: |
| Grate is Room |  | Tvpe 316 | Type 347 |
|  |  | Hoom | 1650 F |
| Aut | \% ${ }^{\text {a }}$ | Author + 夫's. | Stewart and |
| comts | $y(s 7)$ | (unputiontied) 28loues | Sehrrits (116) $185.500$ |
|  | 00 | 2810040 | $13 \sin 0$ |
|  | 00 | 95*(10 | 62470 |
| Power | Oil | Oil | Oil or |
| piping | piping | pipiog | pewer |
| 150000 | 20000 | 18750 | 13100 |
| 37500 | 50000 | 46875 | 32750 |
| 2.22 | 167 | 2.04 | $1{ }^{1} 91$ |
| 34 | 13 | 35 | 25 |

allowable thrusts and moments for thrir standard units (106. 115) or are prepared to advise whether the reactions computed by their customers for a specific installation can be toleratect. In general, even they are indined to understate the capacity of their equipment, primarily berause of a fear of diserepancies between the results of calculations based on simplifying assumptions and the reactions impowerd upon the unit is actual service. It would appear that a change in policy toward permitting more liheral allowances would be contingent upon the following developments:

1 More general adoption of assumptions and methods of analysis of proved accuracy or conservatism; to foster this is one of the purposes of the Proposed Rukes.
2 Improved understanding of the necessity of realizing the assumed design conditions in the actual installation. This implies proper specification and supervision of cold spring; also, a tlear realization of the fact that calculations based on the assumption of a weightless system and frictionless supports can grossly underestimate reactions caused by thermal expansion where these are small in relation to the weight of piping supperted.
3 Publication of information on the order of magnitude of the various components of piping reactions expected to be produced in well-designed piping syc:ems leading to and from strainsensitive pieces of equipment. ${ }^{18}$

Untii better information becomes available, piping designers will be forced to continue to resort to rules of thumb to guide them in preparing their layouts. Some of these are given in the form of blanket limits upon thrusts; as an example, Baggerud and Jernstrom (51) suggested 3000 lb as an upper limit for ships turbines. Others provide limits for both the resulting thrust and the resulting moment, the moment in foot-pounds often being taken equal to the thrust in pounds. Others consider the components of the reactions soparately for different directions, hicher limits usually being assigned to downward louds than to lateral thrusts. All of the rules eited seemingly di-rgard the size of the unit, although they are actually intended to apply to couditions customarily encountered in specific fiehfo of engineering.

To take eare of the size effect, some rules are given in terms of pounds thrust per diameter inch or peripheral inch of the noure. Paul (\%), for example, sugersts 100 ib per peripheral inch of turbine nozzle as a reswmable thrust, Auther rule of this thatater, which has been propased by Wohawairk (102), rehters the thruat to the sum of the somimal diannetese if the stection and dhacharge piping and at the some tine differentiates wiht respert to the anchorage of the unit. Rules expreseas in terms of kilowatt rating or equiphent weight attempt to aerompliah the same purpose.

[^4]Finally, there are a number of advorates of expressing the limitation in terms of the piping stress at the terminal. For example, Hoath (90) suggests a nomuinal bending stress of 9000 psi (with no credit for cold spring) as a sativfactory dewign basis; other experienced strexe analyats have catablishoud individual limits depending upon the type of cquipment connected.
The foregoing recital of different approwher has been given with the thonght of stimulating discussion by those who are more familiar with the subject than the author can claim to be. It is his thought that ressonably conservative empirical rules of some form will always be necessary as a first general guide to a piping designer; if the reactions obtained therofrom should be exceeded in a specific layout of visually adequate proportions, consultation with the manufacturer is advised, at least in the case oi important units.

## What S:-tems Require Analysis

The forvgoing review of the theoretical considerations and experimental data underiying the Proposed Rules inescapably leads to the conclusion that, even after considerable simplification and idealization with resuitant loss in accuracy, the flexibility analysis of any but the simplest piping system presents a formidable task, and that accordingly it would be unreasonable to demand that each line be analyzed by the most precise approach available. Approximations must be permitted, provided their effect can be at least roughly evaluated and compensated for. This is not enough; in many instances, perhaps in the majority of cases, appraisal of the flexibility by visual inspection or comparison with similar layouts with satisfactory service periormance must be accepted in lieu of a mathematical analysis or tests.

The group formulating the Proposed Rules has attempted to reflect this point of view in the following general clauses contained in paragraphs $620(a)$ and $620(b)$ :
1 Formal calculations or model tests shall be required only where reasonable doubt exists as to the adequate flexibility of a syatem.
2 Each problem shall be analyzed by a method appropriate to the conditions.
3 Where simplifying assumptions are used in calculations or model tests, the likelihood of attendant underestimates of forces, moments, and stresses shall be taken into account.
These clauses admittedly are vague and offer no concrete guidance toward arriving at a decision whether analysis is necessary
in any specific case, what degree of approximation will be arepptable, and how it is to be compensated for; furthermore, thev fo not indieate whose juigment in this matter is to be accepteri, thi. engineer's, the customer's, or the inspection authority's. Th... formulating group devoted earnest consideration to these cmi. . tions, but came to the conclusion that the variables involvel in flexibility analysis are too numerous, and their individual effo.. too unpredictable, to permit the establishment of a simple set if explicit rules, observance of which would assure protection to. life, health, and investment without imposing an impossible burden of work on piping engineers.

Variables fall into three major classifications:
1 Material and temperature-dependent physical propertio.
2 Cross-sectional properties.
3 Shape factors, i.e., properties associated with the dimm. sions and configuration of the line axis.

In the first group the expansion coefficient and the elastivits modulus assume primary importance as measures, respectiv.l. of the amount of atrain introduced into the system and the elantio resistance opposed by the material. Yield and creep strenght reflect modifying influences of plastic flow upon the resistanco. and at the same time provide important yardsticks for the dic termination of the allowable stress range, which is further conditioned on the endurance strength of the material.

Among the cross-sectional properties, the moment of inertis and section modulus of the pipe similarly provide measures of the forces and moments generated and the resistance of the pipw thereto; the influence of the latter is modified by any strows intensifications present.

While the foregoing properties enter piping-flexibility calculations more or less directiy as factors, the dimensions and contivuration of the line axis and the shape of its components (as reffected in their flexibility factors) exert a much more complex effect on the forces and moments, and therewith the stresses.

It will be apparent from the foregoing that any rule or formula intended to provide a demarcation line between flexible and stiff, or understressed and overstressed layouts must contain factors representative of the material, the temperature, and the line size, length, and shape. The first three major variables can be taken care of readily, but attempts at reducing the effects of line length and configuration to a simple and reasonably accurate shape factor meet with almost insuperable difficulties.
The most promising approach toward a first approximation is to express this factor in terms of the ratio of the developed


Fta. 6 Suapy Factorn for Simple Single-Pline Configerattona
line length $I$., to the distanee $U$ between anchors. What can be accomplished by this approseh is thown in Fige 6 which was developed froms a study publisheal tov the author in one of his company's bullutins (105) th This is hased on square-corner assumptions atal embraces aloust all moneivable proportions of single-plane contigurations of the I... /.,. U -, and expansion U-types. The ahorisoms are ratios 1,1 : the ordinatex real the ratio $f$ of the eontrolling atross in a butud of any of the shapes investigated to that in a square labenul of equal anchor distanee, pipe size and material, and temperature change. It will be noted that

$$
\begin{equation*}
f=\frac{1}{\left(L_{\mathrm{N}} / U-1\right)^{2}} \tag{23}
\end{equation*}
$$

roughly deacriles the upper boundary of the entire family of curves except that applying to meommon proportions of a U-bend with unsqual legs, for which it may produce a gross underestimate of the strusmes. As a rule, however, the stresses will be overestimated. For example, a stro-s ratio of the order of 6 is obtained for the square L-bend $\left(L_{,}, l^{\prime}=\sqrt{2}\right)$, whereas by definition this should be unity. Obviously, the criterion is too insensitive to prediet even the results of a square-corner solution with any degree of reliability. Sinen the latter itself often provides no more than a crude first approximation, it becomes evident that a formula of this simple character will not serve to provide a reliable means of distinguishing systems which must be calculated from those for which calculation can be waived.

This same criticism applies to the formula given in the alternate version of paragraph $630(\mathrm{c})$ of the Proposed Rules ${ }^{17}$ which assigns a definite limiting value to the stress ratio $f$

$$
\begin{equation*}
0.03 \frac{U^{1}}{D Y} \geq \frac{1}{\left(L_{2} / U-1.05\right)^{1 /}} \tag{24}
\end{equation*}
$$

where $U$ and $L_{*}$, respectively, again designate anchor distance and developed line length ( ft ), and $D$ and $Y$ are the nominal pipe size and the resultant of the restrained thermal expansion and net linear terminal displacements (in.). The left-hand term in this case also contains approximations; specifically, it assumes a constant relationship between the allowable stress range and the modulus of elasticity.

Assuming that it would be possible to establish a criterion enabling the piping designer to eliminate amply flexible systems from consideration, the next problem is that of distinguishing the remaining systems with respect to the accuracy required in their calculation. Systems carrying flammable, noxious, or otherwise dangerous fluids, or failure of which would entail a major financial loss, obviously are more in need of precise analysis than those where a break is merely inconvenient and readily repaird. In the latter instances the application of approximate methods would appear economically justified from a standpoint of time saving: the use of approximations aloo may be necessary for more critical piping systems involving branch lines or intermediate restraints.

Wherever approximate methodis are used, the question immediately arises hew to compensate for the attendant error. Again, no simple rule can be advanced. The oniv advice which can be offered is to compare the resulta obtained by the approximate method it is proposed to use, with those of prectes calculations for a sufficient number of cases covering the extrene conditions it is expected to encounter, and to derive correction factors therefrom. In sume methods, such as thoser published by the author's company (105), such a check has already been made by the proponent of the method.
" See "Study of Shape Factor."
${ }^{11}$ Transcribed in Appendix 2.

## Concluston

The Proposed Ruled present an atteapt bo some of the country's leating piping engimers gathered as a tavk forre operating under Sectional Committee ASA B31.1 to reduce the complex problem of providing alequate flexibility in a piping system to a fows simple cuide lines refleting the late-t advancess in theoretieal understanding and acoumulated pravtiral experience. It has been the author's awignment to assmible the factual evidence underlving this document and exph.in certain concepts, such as stres--intensification futor, stress ranse, self--pring, which have been inherent in past formulations of the chapter on "Expatision and Flexibility," but are more openly referred to in the new draft.
On reviewing the evidence, numerous gaps in our knowletge of the magaitude of certain properties entering into the problem have become apparent. On the other hand, not all the present knowledke available on certain phases could be utilized in framing the Code Rules because of the nerd for keeping them simple. This has necessitated a weighing of the signiticance of the various factors and their effect on the over-all aceuracy of the prediction of reactions and stressers.

While the Proposed Rules reprement the group's best effort, the interpretation of the facts given therein is not necessarily the only one possible. Publication of the thought processes leading to their adoption is intended to provohe discussion by engineers at large, to uncover additional data not available to the group. and ultimately to lead to an improved formulation, particulariy with regard to the clauses intended to promote uniformity of practice and intelligent enforcement.

## Acknowledgments

The author wishes to recognize his indebtedness to Mesars. N. Blair, A. Mefutchan, J. D. Mattimore, H. C. E. Meyer, and S. W. Spielvogel for encouragement and wholehearted assistance rendered in the preparation of this paper.

## BIBLIOGRAPHY

## (In approximately chronolozical order)

1 "Formanderung und Beanspruchung federnder Ausgleichrohre." by A. Bantlin. Mitteilunken uber Forschunksarbeitea. bulletin 96, 1910; also Leitschrift des Fereines deutscher Ingenieure. vol. 54. 1910, p. 43.

2 "Expansion of Pises," by R. C. Tagkart. Transactions of the American Society of Civil Sngineers, paper no. 1167, December, 1910.

3 "Uber die Formanderung donnwandizer Rohre" by Th. von Kármân. Zeitschrift des Vereines dentscher Ingenieure. vol. 55 , 1911. p. 1889.
4. "Flexibilite des Tubes," by M. Marber. Bulletin Association Technique Maritime, vol. 22, 1911, pp. 441-457.

5 "Die Biekung krummer Rohre," by H. Lorenz, Dingler's Polistechnical Sournal, Soptemiter 14, 1912, p. 577

6 "Flastieity and Endurance of steam Pipes," by C. E. Stromeyor. Empineering, June 19. 1914, p. 857

7 "Pipe Bends, Their Goowing Use and Efficiency," by Mechanical Expert's Department of Crane Company. The Valve World. October. $19: 5$

8 LL Iptitude Flawtique des Tuy auterics a Vapeur an point de vue Dilatation," by II. Carlier, obtainable throuch author. Wandrez. Binche, Ifainatt. Betzium, 1920, 1923. 1925. 1927.

9 "The Rasticity of Pipe Bends." by S. Crocker and S. S. Sanford, Wechaniral Endimeriag, vol. 45, 1023. p. 159.

10 "Vxpation steam Bends," tyy P. If. Gallo. The Blaxt Furnace and Steam Ptant, May, June, July, 1925.

11 "The Elastic Deformation of Pire Rends," by Wm. Hovgaard. Journal of Mathematics and Phusics. Mamachusetts Instutute of Technolegy, Cambrifge, Mast., vol. 6. November. 1926, pp. 69118.

12 "Stresses and Reactions in Expmn-ion Pise Rends," by A. M. Wahl, Trank. ASME, vol, 49-50, paper tAP-50-49, 1928.

13 "The Flexibility of Main Pipe Beniv," 1.y J. I. Finniecome. The Engineer (London), August 17, 24. 31, and september 7, 1928.

14 "Deformation of Plate Pipe Renis," by Wm. Hovgaard, Journal of Mathematics and Physics, M.I.T., vol. 7. October. 1928, pp. $19527 \times$

15 "Further Research on Pipe Bends," by Wm. Hovzaurd Journal of Wathemutirn and Ithysies, M.1.T., vol, 7, December, 1925 , pp. 239-290

16 "Detlections and Nitrewes in Pipe Bends," hy 11 m . Ifovgaard, World Enziteering Conkrees, Tukyo, Japan, vol, 3, 1929, pp. 1 -30. 17 "Dhwikn of steam Piping to Care for lixpansion, by W. II. Shipman, Trans ASMIt, vol, 51, 15,29, 00. $415-415$

18 "sitesoms in Turkine Pige Bendr," by A. M. Wahl. J. W. Bowley, and (i, Back, Wechanical Eingineering, vol, 11, 1929, pp. 823-8.28.

19 "Tests of Hizh-Pressure Pipe Bends," by Wim. Hovgaard. Journal of Mathematics and Physics, M.I.T., vol. S. December, 1929. pp. 293-344.

20 "A Graphic Method for Determining Expansion Stresses in Pipe Lines," by C. T. Mitchell. Trans. A.SM1, vol. 52 , paper ESP. 52-25, 1930.

21 "The Bending of Curved Pipes," by Wm. Itovgaard. Third International Congress for Applied Mochanies, Stockholm, Sweden vol. 2, 1930, pp. 331-341

22 "The Design of Piping to Secure Flexihilitv." bv A. Mic. Cutchan. Heating. Piping and . A ir Conditioning, Syptember, 1930. 23 "Frietional Revistance and Elexibility of Seamless-Tube Fittings Used in Pipe Welding." Is \& Crocker and I. MeCutehan Trans, ASME, vol. 53, paper 1:SP-5.3-17, 1931

24 "Bending of Curved Pipes," by 8. Crocker, Heating. Piping and Air Conditioning, May, 1931.

25 "Creased Pipe Bends Offer Cireater Flexihility;" by W. Paul, Power, vol. 73, June 2, 1931.

26 "The Flexibility of Corruzated Piper Under Longitudinal Forces and Bending," by L. H. Donnell, Trans. AsME, vol. 54 . paper APM-54-7. 1932.

27 "Flexibility of Plain and Creased Pipe Bends." by A. M. Houser and 5 . Hfirschberz. Power, vol. 74, October 20, 1931.

28 "Designing High Temperature steam Piping. Part 1. Flexibility of 1000 F Line," by Arthur McCutchan. Heating. Piping and Air Conditioning. October. 1931.

29 "Some Changes of Shape Characteristics of a Smooth. a Corrugated, and a Creased Bend Under Load," by E. T. Cope and E. A. Wert, Mechanical Engineering. vol, 54, 1932. pp. 875-876.

30 "The Graphical Determination of Expansion Thruats and Btresses in Steam Lines." by F. B. Cocks. The Institution of Civil Engineers, London, England, 1932.

31 "Load-Deflection Refations for Larze Plain. Corrugated, and Creased Pipe Bends." by E. T. Cope and E. A. Wert. Trans. AsME, vol. 54, paper F:P-54-12, 1932.

32 "How to Obtain Flexihility in Pipe Lines," by E. T. Cope and E. A. Wert. Poweer, vol. 75, March 22, 1932

33 "Flexiblity of Pipe Bends," by Pittsburgh Piping and Equipment Companv, Pittsburgh, Pa, June, 1932,

34 "Selection of Pipe Bends simplified," by W: G. Hooper. Heating. Piping an \& Air Conlitioning, vol. 4. Oetober, 1932.

35 "Engineering Data on Pipe and Pipe Bends." by Crane Company, Technical Paper No, 401. Chicaso, 1933.

36 "Graphic solution of Some Common Pipe Bends." by S.
Kameros, Heating. Piping and Air Conlitioning. July, 1933.
37 "A Manual for the Desien of Piping for Flexibility by the Use of Graphs," by I. A. Wert, S. Smith, and E. T. Cope, The Detroit Edison Company, 1934

38 "Methot of Calculatine Thermal Expansion Stresses in Piping," by R. II. Tinkey, Marine Engineering and Shipping Ive, vol. 39 , April. 1934.

39 "La Tuyauterie de Vapeur-Son Aptitude Elastique à Absorber les Effots de la Dilatation." by II. Carlior, obtainehle through author. Wanvirez. Binthe, Hainant, Belxitm, I 935
4) "Design of Modern Industrial Piping Syatems-Flesibility of Piping," by F. L. snyder. Heating. Piping and Air Conditioning. April, 1935.

41 "Applieation of Elastic-Point Theory to Piping Stress Calculations," by S. W. Spielvogel and S. Kameros. Trans. ASME vol. 57, paper FSP-57-10, 1935.

42 "Pattaburkh Pipung Deaign Mantal." by E. A. Wert and 8. Smith. Pittaburgh Piping and Figupment Company, September. 1935.

43 "A Simplified Mothod for Solving Pioing Problents." hy S. W. Spmelvogel and \& K atherims, Ilation, Piping and Air Conditioning, Se ptetniwer and thetrier, 1955.

44 "Stratat it ThremDimenamal Pipe Rends," by William Hovgaard. Trans, AsME, vol. 57, paper fsp-\%-12. 1935.

45 "The strength and Elexibitaty of Corrugated and Creased

Bend Piping," by R. L. Dennison, Journal American Society of Sarna
Engineers, vol. 47. 1935; also Engineering, Janaary 24. Fehruary 24 March 1.3. 1936i.
16. "Load-Deflection Teats of Several One-Plane Expansion

Bends," by W. Budd and D. Cooper. Undergraduate thesis, Dept. of
Naval trehitecture ani Marine Emgmeerimg M.I.T., 1936.
47 "Find leactrons and Sirucues in Throe-Dimen-ional Pion
Lines," hy 1: B. Karelite and I. II. Mar-hant, Journal of Appled Mechanics, Trans, AㄷNE, vol. 59. 1932. pp, A-68-A-74
is "Data sheets for Design of Pipung," by H. E. Mavrorap Journal of Applied Mechanics. Trans. INME, vol. 59, 1933. pis A-89-A-91.

49 "Further Studies of Three-Dimensional Pipe Bends," bs Williaur Ifovgaard. Trans. AsME, vol, 39, 11967. pp, 647-650.

50 "A Method for Determination of Iteactions and Stresses it
Expansion Pipe Bends," by F. Peiter and M. J. Fish, Combrastion December, imas.

51 "Giraphical Analysiy of Pipe Stresses," by O. J. Baggerus anci
K. W. Jernstrom. Trans, of Society of Naval Architects and Marime Eingineers, 1939

52 "The Determination of the Expansion Forces in Piping ly Model Test," by Harold W. Semar, Journal of A pplied Mechantics. Trans. ANML, vol. til, 1939, pp. A-21-24.
53. "Design of Piping for Elexibility With Flex-Anal Charts."
by E. A. Wert and R. Simith, Power Piping Division, Blaw-Knor Company. Pittsburch. Pa., 1940.

54 "stresses and Deflections of Three-Dimensional Pipe Bends." by If. Poritsky and II. D. Snively, Journal of Applied Mechanics. Trans. ASME, vol, 62, 1940 , pp. A-17-21.
55. "The Significance of, and Suggested Limits for, the Stress in Pipe Lines Dile to the Combined Effecta of Pressure and Expansion by D. B. Rosstreim and A. R. C. Markl, Trans. ASME, vol. 62 , 1940. pp, 443-460

56 "Model Tests Solve High-Pressure Pipe Problems," by J. D Conrad, Poker, October. 1940. pp. 58-61.

57 "Piping Flexibiity and Stresses," by D. R. Zeno and A. D. Iinieratos. Cornell Maritime Press, New York, 1941.

58 "Refinery Piping-Providing for Expansion in Hot Lines." by R. G. Lovell, Petroleum Engineer, vol. 12, no. 11, 1941, pp. 27, 28, and 30 .

59 "Models Help Determine Pipe Stresces," by J. D. Conrad, Westinghouse Engineering, 1941, vol. 1, no. 3. May, 1941, p. 22.
tiv "Solving Pipe Problems," by F. M. Hill, Mechanical Engineering, vol. 63, 1941, pp. 19-22.

61 "Design of Piping Systems," by D. B. Rossheim, A. R. C. Markl. H. Wallstrom, E. Slezak. The M. W. Kellogg Company. New Yor!., N. Y.. 1941.

62 "Stress Calculations for High-Temperature Piping," by S. W. Spielvogel. Power, Junuary, February, 1041

63 "Thermai Expansion Stresses in Piping." by Mason 8. Noyes, Journal of the American Society of Naval Engineering, vol. 53, May, 19+1. pp. 275-374.

64 "Zur Frage der Elastizith1, der Benaspruchungen und der Festigkeit warmbetriebener Rohrleitungen," by S. Berg. H. Bernhard, and II. Richter. Forschong auf dem Getiete des Ingenieuruesens, July-August, 1941.

65 "Model Test Checks Pipe-Stress Calculation," by S. W. Spielvogel, Power, October, 1941.

66 ."A Simplification in the Meyer-Hovgaard System of Pipe Stress Formis, " by W. E. Bleick. Journal of the American Society of Naad Endincering, vol, 33. November, 1941.

67 Expansion of Formulas for Caleulating Loads, Rotation, and Deffection of Quarter Bendis and Taneentr of Pipes." by A, \& MeCormack, Journal of Applied Mechanics, Trans. ASME, vol. 64. 1942. pp. A-38-A-42.
ts "An Analytical Method for Determining the Flexibility of Piping Having Two or More Anchorages," hy Harry Miller, Jowrnat of Applied Mechanica. Trans. AsME, vol. 64, 1942. pp. A-165-170,

69 "Piping stresat C aleulations simphitied," by S. W. Spielvogel. MeGraw-Hill Book Co. Ine.. New York, N. Y., 1943.

70 "Elastie Propertien of Curved Tubes," by Irwin Vigness, Trans. AMF. vol. 6i3. Febriars, 1913, pp. 105-120.
71 "Decign of 大team Transmisoion Pining," by Arthur Midictchan, Ifouting. Piping and Air Conditionang. August and septeruber, 1945.

72 "Expansions of Formulas for Calenlating Loads, Rotations, and Deflectwas of Quarter Mends and Tancenta of Pipes." by A. S. Ah4 ormick, Desisn Dasta Book 2, AsME, 1944

73 "Simplified Methoif of Analvais of Reartiona Developed by Expansion in a Throw- Inchor Piring System," by Boris Lochak, Trans. AsME, vol. B6. 1914 pp. 311 -31s

74 "A General Analysis of High Temperature Piping." by Sid-
ney Austin，Journal of the American Socidy of Naral Engincers．vol． 56， 1944.

75 ＂Mometr－Distribution Analysis for Three－Dimensional Pipe Structures，＂by R．C．Dellart．Journal of Appied Mechanics．Trans． AsME，vel．66，1941．pp．A－241－A－214．
 and A．Mifot han，Piping Heneilmok，Mefiraw－Itill Boeh Company，


77 ＂Benting of C＂urved Thin Tuties＂by Lemo Beekin，Journal Applied Mechanics，Trans．AsME．vol．6\％，1415，pp．A－1－\％
75＂Analyzing Piping Streaves by Te－ts of Mortets．＂by L．C． Andrews，IIetting．Piping and Air Conditionind，Auky－1， 1945.

79 ＂The Ams of Pipe siresa Inve－thations，＂by（ierald Anthons Paul，Power Hant Enyincering，Soptember，1945，pp．103－104．

80 ＂Beans on Elastic Foundation，＂hy M．Netényi．Vniversity of Michigan Pres．，Ann Artior．Mirh．，1915，1p．1：6－17s．

31 ＂Simphified Pife Line Computatoms，＂by Peyton Bryan， Petroleam Fngineer， 1941 ．

82 ＂Elertrieal Mudel Laboratory Determines Streas in Piping
System，＂by L．C．Andrews，National Pitroleum Neics， 1946.
83 ＂Etude de la Deformation et des Tenabos Internes de Tuyaux a Lime Moyenne Plane，sans Prewion Interne，by J． Barthelemy and II．De Leirix，Mulhetin de I＇Isoneiation Technique Maritime et Acrunautique，vol．45，1946．p．139，and vol，46，1947，p． 411.

84 ＂Characteristics of Short Radus Tube Bends，2nd Partial Report（Theoretieal），＂by P．S．Symonds and T．F．Pardue．Naval Research Laboratory Report no， $0-2701$ ．Febraary 18， 1946.

85 ＂Reinforcement of Branch Pieces，＂by J．S．Blair．Repprint （1947）from Éngincerznu（Lundon），July 5，sept，E．，Nov，29．Dee，6， 13，20，27， 1946.

86 ＂Methods of Making Piping Flexibility Analyses，＂a series of papers published in Heating．Piping and Air Cowhtioning．initiated by S．Crocker and A．MeCutchan，with the following suhauthors S．Crocker and A．McCutchan，June．1946，pp．69－73；S．W．Spiel－ vogel．July，1946，pp．78－81：M．J．Tish．September，1946，pp，83－68 W．G．Hooper，November，1946，pp．70－76；R．C．Delfart，January， 1947，pp．91－95；11．V．Wallatrom，May，1947，pp．69－74：Lale C． Andrews．Ausust．1947，pp．73－77；Henry Carlier．Aoptember． 1947 pp．86－89：E．W．Wolosewick．September，194s，pp．7s－81；L．E． Partsch．July，1950，pp．02－93：T．F．Bridge February．1951．Pp． 107－109；J．E．Brock，July，1952，pp．；8－81：A．McCutchan and W．P．Gregory，March．1953，pp．92－97；S．Crocker and A．Me－ Cutchan，July，1953．pp．87－90．

87 ＂Fatigue Tests of Weiding Eihows and Comparable Double－ Mitre Bends，＂by A．R．C．Markl．Trans．AsME，vol．69，1947，pp． 869－879．

88 ＂Analysis of Stresses in Unsvmmetrical Pipe Frame，＂by Jesse Yeakel，Petroleum Refiner，Junc，1947，pp．113－116．

89 ＂The Model Test Method，＂bs L．C．Andrews．Heating Pip－ ing and Air Contitioning．August，1947．pp．73－7．

90 ＂Steam Pipework Desien in Ships，＂by P．T．Hoath．Trans． The Institute of Marine Enkincers，vol．LIX．September． 1947

91 ＂Determination by Moment Diatributions of the Reactions and the Moments Arisine from the Expansion of Piping Systems，＂ by R．C．Deffart．Montana state College Bulletin No． 3 ．Mareh． 1948. 92 ＂Thrnats and Strevers in Two－Dimensional Pipe Expansion Bends．＂by J．12．Finniecome．The Enjineer（London），pp．3ixa－3s4． 1948.

93 ＂Model Text Analysis of Stean！Pipine．＂by L．C．Andrews， Combustion，vol．20，April， 1949 pp．5．3－56．

94 ＂On Ikending of Curved Thin－W alled Tuhes，＂by E．Reisoner． Proceedinzs of the National Amudemy of Science， 1949.

95 ＂Pipe－siress Analysis for Thermal Exmansion，＂by Simon W． Lewaren．The fhl athl Gas Joninal．Mis 5，1949，Dp，x0－

96 ＂Let the Flexibtity Prism Help You Analvze Pitue Streas Power Generation，＂by Charles II，（ireen．Power Gicheration．Derens－ ber．1949，pp．54－62．

97 ＂Fatigue Tests on Flanzed Assemblies，＂by A．R．C．Marki and IT，H．George．Trans．AsMF．，vol．72，1950．pp．77－7．

98 ＂Expancion of L－Type Bendx．＂by F．E．Wolosewick． Petroleum Retiner， 1050 ．

99 ＂Propertios of Thin－Walled Curved Tubes of Ahort－Bend Radius，＂by T．E．．Pardue and I．Vigness．Trans．AsME．vol．i3， 1951．pp．77－47．

100 ＂Introsinetion to Piping Tlewhility＂（hy A．I．C．Mark）， Piping Eingmering Paper 4．01．Tube Turns，Ine．．Louisville，Ky．， February，Wiat
 wick．Heating．Piping and A ir Comdationsmg，July，1050．pp．102－106． 102 ＂Equmpment Stresses Imposed by Piping．＂by F．E．Wolose－ wick．Petroiem Retiner．Auzust，1950．pp，89 91．

103 ＂Joints for High－Presare，High－Temperature Piping．＂by I．II．Carison and W．S．Hlack，Trans．AsM1．，vol．73，1951，pp． 237－246．

104 ＂Forees in Pipe Bends From Expansions，＂by F，E．Wolose－ wivk，l＇strotem Refiner，Oetolxor，1950，pl． 10.6108.
l05＂Z－La，T－ami Vixparion（＇Rendo＂（ty A．16．C．Markl）．
 tucky．Derember． 1950
（1＋6）＂Th－tallation＂Jistruetion Lathet H／－110－75 for Type E


107 ＂Advanoco in Appleed Sterhanus．＂iv ic．A．Clark and E．， Reisstrer，Academic Press，Inc．，New York．19．01．
fos＂－Bethouts of Divorbuge Expasti－ions of Long－Range Trans－ misoion Pipiug．＂by F．\＆．Holuwwink．Petraloun Refiner．February． 1951．pp，69－74．

109 ＂Tables Speed Eixpansion－Bend Seleetion，＂by S．W．Spiel－ vozet．Porrer，November，I⿴囗十力丶

110 ＂Tables for Fikwomg Pipe shape＂by S．W．Spielvogel， Porer，June， 1952.

111 ＂Easy Tables Crack Tough Pipe Problem，＂by S．W．Spiel－ vogel，Pouct，Oetober． 1952.

112 ＂The Experinwotal Determination of Pipe Reactions，＂by W．E．，Conper，U．S．Atomic Finerigy fommionon by G．E．．． 1952
113 ＂Piping Flexthlyty Analyois ly Model Test，＂by L．C． Andrews．Trans．1＊M1．，vol．74，1952，1p，123－133．
114 ＂Fatipue Tests of Piping Compments．＂hy A．R．C．MarkI Trans．AN1F：vol．74．1052，pp．257－303．
115 ＂Stean Piping Sy－toms Connweted to Turhines，＂Bulletin GE．T－1911．Turbine Division of the General Blectric Co．
116 ＂Thermal Shork and Other Cotoparison Tests of Austenitic and Ferritic Steels for Main Stean Pipink－A Summary Report，＂ Gy II．C．Stewart and W．（：Schreitz，Trans，ASME，vol．75， 1453. pp．1051－1072．

117 ．．．A Matrix Method for Flexibility Analysis of Piping Sys－ tents，＂by J．E．Brock．Trans，AsME，vol．7t．1952，pp．501－516．
118 ＂Experiments on Short－iladius Pipe Bends，＂by N．Gross． presented at meeting of The Institution of Mechanical Engineers． London．Eingland．December 12， 1952.

119 ＂The Flexifality of Short－Ratius Pipe Bends，＂by N．Gross and H．Ford，presenter at meeting of The Institution of Mechanical Enkineers．London．December 12． 1952.

120 ＂Thermal Strexses in Piping Systems，＂by William E． Wilbur，Petroteum Refiner．Mareh，1953．pp．143－168．
121 ＂Proposed Elexibility Section for AsA Code for Pressure Piping．＂Report of Task Force on Flexiblality of ASA Committee B31．1．May 4．1953，ohtainahle from AsME：Otfices， 29 W．39th St．， New York 18，N．Y．
122 ＂Proposed Ilexibility Section of the Code for Presoure Pin－ ing．＂announcement in Merhonical Endinering．vol．75，June． 1953. 123 ＂The Solution of Pipe－Expansion Problems by Punched－ Card Machines，＂by L．H．Johnson，presented at the Fall Meeting． ASME．Rochester．N．Y．，Oct．5－7． 1953.
124 ＂Plastic Constants and Coefficients of Thermal Expansion of Piping Materials Proposed for $195+$ Corle for Pressure Piping，＇ by R．Michel，published in this issue，pp．151－159．

## Appendix 1

Text of Profosed Rites for Ciraper 3 of Section 6 or Code yor Presnitre Piping as Formilated by Task Force： on Flexibility
（Nore：The provivions of this chapter are not applicable to gas，air，and oil erostcountry transmission（underground） piping．）

6if Pramble．（a）Pipiug systems are subject to a divervity of loudings ereating stresses of diferent types and patterns，of whish onls the following more significant ones aed generally be con－ sidered in piping stress analysis：

1 Prequire，intermal or external．
2 Weight of pige，filtimgs and valves，contained fluid and insulation．

## 3 Thermal expatesion of the line

The first two loadinge produce sustained stresses which are evalu－ ated by conventional methods．The streses due to thermal ex－
panxion, on the other hand, it of sufficient initial magnitude will be relaxed as a result of loral flow in the form of yielding or in the form of creep. The atrowe reftuction which has taken place will appear as a atreve of reverayd sign in the cold condition. This phenomenon is designated as self-springing of the line and is similar in effect to cold apringing. The amount of such self-spmong. ing will depend on the magmuste of the initial hot stress and the temperature. Accordingly, white the hot strose tends to diminish with time, the sum of the hot and eold stresses during any one cycle will remain substantially constant. This sum is referred to as the stress range. The fact that the stress range is he determining factor leads to the selection of an allowable combined atress (range) in terms of the sum of the hot and cold S-values.
(b) The beneficial effect of julicious cold springing in assisting the system to attain its most favorable condition snoner is recognized. Inasmuch as the life of a system under cyclic condition depends primarily on the stress range rather than the stress level at any one time, no credit for cold apring is warranted with regard to stresses. In calculating end thrusts and moments acting on equipment containing moving or removable parts with close clearances, the actual reactions at any one time rather than their range are significant and cretit accordisgly is allowed for cold spring in the calculations of thrusta and moments.
618 Materiais. (a) This chapter applies to all classes of materials permitted by the Code.
(b) The thermal expansion range $e$ shall be determined from Table-is as the difference between the unit expansion shown for the maximum normal-operating metal temperature and that for the minimum normal operating metal temperature (for hot lines, this may usually be taken as the erection temperature). For materials not included in this table, reference shall be made to authoritative source data, such as publications of the Nationsi Bureau of Standards.
(c) The cold and hot moduli of elasticity, $E_{e}$ and $E_{b}$, respectively, shall be taken from Table - ${ }^{18}$ as the values shown for the minimum and maximum nornal-operating metal temperatures, respectively. For materials not included in this table, reference shall be made to authoritative source data, such as publications of the National Bureau of Standards.
(d) Poisson's ratio may be taken as 0.3 for all ferrous materisls at all temperatures. (Elsewhere in the Code there will be found tables of values of Poisson's ratio for various materials which tables are given for general information.)
(e) The $S$-values, $S_{c}$ and $S_{s}$ at the minimum and maximum operating metal temperatures, raspectively, to be used for determining the allowable expansion-stress range $S_{A}$ shall be taken for the type of piping system involved from the applicable tables in the respective sections of the Code. In the case of welded pipe, the longitudinal-joint efficiency may be disregarded.
619 General. (a) Piping systems shall be designed to have sufficient flexibility to prevent thermal expansion from causing 1-failure from overstress of the piping material or anchors, 2leakage at juints, or 3 -detrimental distortion of connected equipment resulting from excessive thrusta and moments.
(b) Flesibility shall be provided by changes of direction in the piping through the use of bends, loops, and off-sets: or provision shall be made to absorb thermal strains by expanvion joints of the slip joint or bellows types. is If desirable, flexibility may be provided by creasing or corrugating partions or all of the pipe.
(c) In order to modify the effect of expansion and contraction,

[^5]runs of pipe may be cold sprung. Cold spring may be taken inta, account in the calculation of the reartions as shown in paragraph, $631(t)$ provided an eifective method of obtaining the deagnerd colld spring is specitied and used.
6.30 Raxic Assumptions and Requirements. (a) Formal calcular tions or model testa shall be required only where reason:able doubt exista as to the sudequate flexibility of a system. Each problom shall be analyzed by a method appropriate to the conditions.
(b) Standard aswamptions and requirements are kiven in paragraphs $(d)$ to (g). Where simplifying assumptions are nwal in calculations or model tests, the likelihood of attendant under. estimates of forecs, moments, and stresses shall be taken into. account.
(c) In calculating the flexibility of a piping system betwonn anchor points, the system shall be treated as a whole. The significance of all parts of the line and of all restraints surh is solid hangers or guides, shall be considered.
(d) Calculations shall take into sccount stress-intensification factors found to exist in components other than plain straizht pipe. Credit may be taken for the extra flexibility of surh components. In the absence of more diractly applicable data, the flexibility factors and stress-intensification factors shown in Chart I may be used.
(e) Dimensional properties of pipe and fittings as used in flexibility calculations, shall be based on nominal dimensions
$(f)$ The total expansion range from the minimum to the maximum normal-operating temperature shall be used is all calculations, whether piping is cold sprung or not. Not only the expansion of the line itself, but also linear and angular movements of the equipment to which it is attached, shall be considered
(g) Flexibility calculations shall be based on the modulus of elasticity $E_{e}$ at room temperature.
621 Stresses and Reactions. (a) Using the above assumptions, the stresses and reactions due to expansion shail be investigated at all significant points.
(b) The expansion stresses shall be combined in accordance with the following formula
where
$$
S_{g}=\sqrt{S_{g}{ }^{2}+4 S_{t}^{\mathrm{t}}}
$$
$S_{3}=i M_{6} / Z=$ resultant bending stress, psi
$S_{t}=M_{i} / 2 Z=$ torsional stress, psi
$M_{\mathrm{b}}=$ resultant bending moment, $\mathrm{lb} / \mathrm{in}$.
$M_{t}=$ torsional moment, $\mathrm{lb} / \mathrm{in}$.
$Z=$ section modulus of pipe, in. ${ }^{2}$
$i=$ stress-intensification factor
(c) The maximum computed expansion stress, $S_{\boldsymbol{E}}$. shall not exceed the allowable stress, $S_{A}$, where
$$
S_{A}=f\left(1.25 S_{0}+0.5 S_{A}\right)
$$
aubject to the limitations of paragraph $6 \geqslant 2(b)$ where
$S_{c}=$ allowable stress ( $S$-value) in the cold condition $S_{\mathrm{A}}=$ allowable stress ( $S$-value) in the hot condition $S_{\text {, }}$ and $S_{A}$ are to be taken from tables in the applicable sections of the Code.
$f=$ stress-range reduction factor for cyclic conditions to be applied; in the absence of more applicable data the values of $f$ shall be taken from the following tabie:

| Total no. of full | Strest-reduction |
| :---: | :---: |
| temp cyeles over expected life | Stresa-reduction <br> factor |
| 7000 and lose. | $f$ |
| 14000. | 1.0 |
| 22000 | 09 |
| 4.690 | 0.8 |
| 100000 | 0.7 |
| 250000 and over | 0.6 |

(d) The reactions (forces and moments) $R_{4}$ and $R$, in the hot and cold conditions, respeetively, shall the obtained as follows from the reartions $R$ derised from ther flexibility calculations:

$$
\begin{aligned}
& R_{\star}=\left(1-\frac{2}{3} c\right) \frac{E_{\star}}{E_{c}} R \\
& R_{c}=c R
\end{aligned}
$$

or

$$
R_{\bullet}=\left(1-\frac{S_{\mathrm{A}}}{S_{\mathrm{g}}} \frac{E_{c}}{E_{\mathrm{A}}}\right) R
$$

whichever is greater, and with the further conditions that
$\left(S_{\downarrow} / S_{\varepsilon}\right)\left(E_{c} / E_{\mathrm{N}}\right)$ is leas than I ,
where
$c=$ cold spring factor varying from zero for no cold spring to one for 100 per cent cold spring
$S_{5}=$ maximum computed expansion stress
$E_{z}=$ modnlus of chasticity in the cold condition
$E_{A}=$ modulus of elasticity in the hot condition
$R=$ range of reactions curresponding to the full repansion range based on $E_{c}$
$R_{e}$ and $R$, represent the maximum reactions estimated to occur in the cold and hot conditions. respertivels
(e) The reactions so computed shall not exceed limits whirh the attached equipment can safelv sustain.

622 Supports. (a) Pipe supports and restraints not expressly considered in flexibility caleulations thall he designed to minimize interference with the thermal expansion of the line.
(b) The design and spacing of supporta shall be checked to assure that the sum of the loncitu linal stresses due to weight and pressure does not exceed $S_{h}$. Where this sum exceeds ${ }^{1} / S_{h}$ but does not exceed $S_{k}$, the amount in excess of $1 /, S_{k}$ shall be subtracted from $S_{A}$.

## Appendix 2

Altervate: Clalses for Chapter 3 of Section 6 of Code for Presstre Piping as Proposed by Tue M. W. Kellogg Compaiy

620 Basic Aesumptions and Requirements. (a) Formal analysis or model tests shall be required for pipe lines whech simultaneously satisfy the following conditions:

Maximutu normal operating nnetal temperature over 800 F .
Nominal pipe diameter over 6 in.
Rated service presure over 15 pai.
The method of investigation shatil be appropriately mblected to conform with the condition of the problem under examination.
(b) The requirements for analvsis shall be considered satisfied for duplicate unita of successfullv sperating installations or for replacements of piping systems with a reoord of satisfactory service.
(c) It is recognized that for operating conditions not satisfying concurtently the provisions of paraeraph (a), an analysia for each piping sratem is economically impramionl. An analysis is, therefore, mandifory only if the following approximate criterion is not satisfied

$$
\frac{D Y}{U^{2}(R-1.05)^{\top}}, \leqq 003
$$

The constants 105 and 0.03 , as well as the mpement of ${ }^{1 / 3}$, represent only aperoximate valucs, whith will be subject to further investigation and correction as needed.

## In the formoing equation

$D=$ nominal pipe size, in
$Y=$ resultant of reatrained thermal expansion and net linear terminal dixplavetuents, in.
$U=$ anchor diatance (hength of straight line joining anchors). ft .
$R=$ ratio of developed pipe length to anchor distance, dimensionless.
(d) Standard assumptions and requirements are given in paragraphs (f) to (i).
(e) In calculating the flevithility of a piping system between anchor points, the system shail be treated as a whole. The signifieance of all parts of the line and of all restraints such as solid hangers or guides, shall be considered.
(f) For calculations made in conformity with paragraph (a), stress-intensitication and tlexibility factors may be omitted if the piping system is not subiject to more than 2000 stress cyeles during its expected life. For lines subject to more than 2000 stress cycies, calculations shali take into account stress-intensification factors found to exi-t in components other than plain straight pipe. Credit may be taken for the extra flesibility of such components. In the absence of more directly applicable data, the flexibility factors and stress-intensification factors shown in Chart I may be used.
(g) For thermal-expan-ion analysis, dimensional properties of pipe and fittings shall be based on nominal dimensions.
(h) The total expatsion range from the minimum to the maximum normal operating temperature shall be used in all calculations, whether piping is cold sprung or not. Not only the expansion of the line itself, but ala linear and angular movements of the equipment to which it is attached, shall be considered.
(i) Flexibility calculations shall be based on the modulus of elast, ity $E_{\text {e }}$ at room temperature.

621 Stresses and Reactions. (c) The masimum combined pressure and expansion stress shall not exceed 0.75 times the rated ultimate tensile strength of the annealed material at room temperature. The maximunt computed expansion stress $S_{E}$ shall not exceed the following allowable value

$$
S_{A}=f\left(1.25 S_{8}+0.25 S_{A}\right)
$$

## where

$S_{c}=$ allowable stress ( $S$-value) in the cold condition
$S_{\mathrm{h}}=$ allowable stress (S-value) in the hot condition
( $S_{e}$, and $S_{\text {s }}$ are to be tibenf from the tables in the applicable sections of the Code.)
$f=$ stress-reduction factor to be applied for eyclic service; in the absence of more applicable data the values of $f$ shall be taken from the following table:

| Total no. of full | Stress-reduction |
| :---: | :---: |
| temp cycles over expected life | factor. $f$ |
| \%000) and leas | 10 |
| 14090 | 0.9 |
| 22000 | 0.8 |
| $45004)$ | 07 |
| 100000 | 06 |
| 250000 and over | 05 |

If the sum of longitudind proswure ant weight -tresses is less
 may be added to $S_{\text {, }}$

G222 Supports. (h) The de-iten and spacing of supports shall be cheched to asoure that the sum of the longitudimal stresses due
 presaure stresaes shall the brased on the eroded dimensions of the pipe.

Chart 1 Flexibility and Strebe-Intensification Factora yoh


## Appendix 3

## Flexibility Factora for Curved Pipe

In the following, the three successive approximations of von Karmán's flexibility fartor are shown both in the form in which they are usualls: found in lit-rature (117) and in a reformulation by the author which makes them easier to compare

$$
\begin{aligned}
k_{1} & =\frac{12 h^{2}+10}{12 h^{2}+1} \\
& =1+\frac{9}{12 h^{2}+1} \\
k_{2} & =\frac{105+4136 h^{2}+4800 h^{1}}{3+536 h^{2}+4800 h^{4}} \\
& =1+\frac{9+0.255000 / h^{2}}{12 h^{2}+1.3400+0.007500 / h^{2}} \\
k_{2} & =\frac{252+73,912 h^{2}+2.446 .176 h^{4}+2.822 .400 h^{6}}{3+3280 h^{2}+329,376 h^{4}+2.822 .400 h^{6}} \\
& =1+\frac{9+0.300306 / h^{2}+0.00105867 / h^{4}}{12 h^{2}+1.4004+0.013946 / h^{2}+0.00001276 / h^{4}}
\end{aligned}
$$

In discussing Shipman's paper (17), Jenks gave the following formulation as reflecting the $n$th approximation of the von Kármán flexibility constant

$$
k_{n}=\frac{12 h^{2}+10-j}{12 h^{2}+1-j}=1+\frac{9}{12 h^{2}+1-j}
$$

where $j$ is a complex function of $h$ which has the following values:
$\begin{array}{lllllllllllllll}h & 0 & 0.05 & 0.1 & 0 & 0.3 & 0 & 4 & 0 & 5 & 0 & 75 & 1.00\end{array}$

The flexibility factors obtained from the preceding four formulas are compared with those obtained from Equation [2]

$$
k_{B}=\frac{1.65}{h}, \geqq 1
$$

for four values of $h$ covering the normal useful range. It will be observed that this simple approximation gives values closely comparing with the more precise of the other formulations:

| Flexibility e amacteristic A | 0.05 | 0.1 | 0.5 | 1 |
| :---: | :---: | :---: | :---: | :---: |
| von Kirmán firat approximation. $k_{1}$ | 9.74 | 19.04 | 3.25 | 1.69 |
| von Karmain second approximation, is, | 26.4 |  | 3 3 3 | 1.69 1.69 |
| Fon Karmin third approximation, $k_{2}=$ | 34.0 34.6 | 17.3 17.3 | 3.29 3.29 | 1.69 1.69 |
| aks $n$th approximation, $k n=$ | 34.6 33.0 | 17.3 16.5 | 3. 3.39 | 1.69 1.65 |

## Discussion

John E. Brock. ${ }^{30}$ This is one of the most important papers which has ever been written on the subjuct of piping. The entite industry is indebted to the members of the Task Force and of the working group for the study and inventive effort that is represented by the May 4, 1953, Report, and the present paper goes beyond this in presenting not only the results but also the rationale. Further, it should be remarked that the manner of presenting not only this paper but alow the Twa Force Report is in keeping with the excellent tradition established in connection with the development of the ASM15: Builer and Pressure Vessel Cole and carried on in the ASME-aponsored Amprican Standard Code for Pressure Piping-a tradition of orderly de velopment incorporating contributions by as many internated

* Director of Research, Midwest Piping Company, St. Louis, Mo. Mem, AsME.
persons as possible, with full and sympathetic study being given to all minority viewpoints, and with active solicitation of all hinds of eriticism. A xperial word of praive is due to the author of this paper, for although the Task Force Report represents a joint -FFort, it is evident that at leant in the preparation of this everellent paper, the author has gone far beyond the call of duty.

The writer's further comments will be given under the headings of the section titles to which they pertain.

Flesibility Factors and Stress-Intenstfintion Factors. The practical piping engineer is not in a position to select from all the theoretical and experimental data which have appeared on the subject of fiexibility fictors and stress-intensification factors in piping components. The selection represented by the simplified Formulas [2] through [6] in the text of the paper and in Chart 1 of the Report will be of great convenienee. While it is not unlikely that further research in years to come may suggest mordituration of some of these formulas, it may be fairly stated that they represent as good a selection as may presently be made and they are a great improvement over previous formulas in simplicity and convenience. It is particularly striking that, with proper interpretation of the quantities involved, Formula (5) is valid for so many different piping components, and the author is to be thanked for having introduced this formula in his paper, reference (114). ${ }^{21}$

The author mentions that the bend-flexibility factor given by Formula [1] or [2] or other similar formulas was used only for "in-plane" bending before Vigness (\%) showed that it also should be used for "out-of-plane" bending. Unfortunately, the appearance of the Vigness paper was not sufficient to change a rather firmly established practice. The Task Force Report does not emphasize the applicability of this factor to both types of bending, and many analvsts continue to ignore the increased out-of-plane flexibility. In the writer's opinion, the Report should forcibly direct the reader's attention to this development.
One other remark is in order concerning stress-inteusification factors. The second paragraph of the section headed StressIntensification Factors adequately defines these factors for the purposes of the paper. However, there are other types of stressintensification factors applying to pipe lowdings other than those of interest in piping-flexibility analysis. For example, the factor

$$
i=\frac{4 R_{\text {bead }}-D_{\text {ipe }}}{4 R_{\text {beed }}-2 D_{\text {pipe }}}
$$

gives the intensification of hoop stress due to internal pressure which takes place at the throat of a pipe lend or elbow (118).

Primary Analysis. The author's exposition is the first, of which the writer is aware, that lists the sources of inaccuracy in analytical evaluations of what he calls "shape factors." It is vitally important that these sources of crror be recognized, for othervise the analvst and those to whom the analvsis is submitted cannot have a meeting of minds. That is definitely not to say, however, that the corresponding errors should be eliminated or outlawed; a good anaisst is on the lookout for approximations which afford a considerable saving in effort at the expense of but a small and tolerable loss in accuracy. However, the approximation should not be hidden or denied: instead, it should be delineated fully and its effects on the tinal resultes should be evaluated.

Substitution of square corners for curved members is only one of the many wavs that an actual piping configuration may be "idealized" prelinunary to the actual matheinatical or model analysis. Frequently it is justitied to noglect relatively shaght changes in direction, small offeets, and so on, in ord $r$ to simplafy the eontirurition actuallv subjected to analysis; however. the ex'ent of such "itealization" should be made clear.

[^6]The "sequare-corner approximation" whirh is widely used still has never been evaluated fully. Life is short and probletos are difficult es, that thir indealization will contimes to be usel. Lut it is to be hoped tiant further dovelopments will remble us to make reliabie catimates of its effects on calculated reaults and that atill other developments will provide a truly -imple methud of correct-
 known to ber within talerable limits of aceurary. The writer is not partimarly hopeful that there deva opmenta will be forthcoming in a mitter of just a few years, though.
One indheation of how deecptive this area may be, may be seen from the author's statement tinat ther squarcoeorner approximation ". . leade tor an overestimate of reactions. "This was an opinion which the writer sharest antil he was hrought up short hos a statement of Dr. E. G. Baker: "A serious abigection (to the square-corner approximation) has been that squarcerofner errors are usually on the wrong sifie, that is, flexibility is over-estimated." ${ }^{\prime 2}$ An attempt to reconcile the differnme leauls the writer to the conclusion that both statements are correct - if applied to the proper type of comliguration. The writer's experience, and presumably also that of the author, have been mainly with stationary installations whereas that of Dr. Baker is with marine installations, A bend or cillow, as compared to a square corner, has two opposing effects on flewibility
On the one hand, the Karmaa-Hovgaard-Vigness-Beskin, etc., flexibility factor causes the bend to be more flexible than the corner; on the other hand, the bend or elbow "short-cuts" the corner and g-ometrically offers a stiffer path. In stationary installations, the bend radius is small compared to a representative dimension (say, the straizht-line distance between end points) that characterizes the contiguration, and consequently the increased flexibility is of greater influence than is the shortcut effect. On the other hand, marine installations are likely to be more confined and the bend radius is a larger fraction of the corresponding represantative dimension so that the short-cut effect preiominates.


Fig. 7 Comparison of Squire-Conamp Approtimition and Exiet Suletion for Equal Lear L-Bend

That the squar-corner appmximation can give values of reactive forces and moments which aro sometimes too hich and sometimes too low mav be seen from Fig. F of this diseussion, whem the simplest possuble case is analvzed-that of an eque: leg L bend. (In proparing tig. 7 , valuea were calculated only for $L / h$ - 0, 1, 4, 9 , and intinitv.) If the tangenta are short relative to the bend radius, the short-cut effert governs and the squaricorner approximation underestimatis reactions. For longer
"Private communication. April 29, 1953.
or
tangents, however, the increased flexibility of the bend governs
and the reactions are overeatimatent in the square-corner appon. mation. Of comer- the effect depenits upon the value of the thetiol. flexibility factor, $k$.

Another point shombld be raised conerrning the nature of tha approximations implieft in erertain analytical solutions. In strictly two-dimencional eases, there is such a thing as a "neuthel axis" and the revultant force system can be reduced to a sinel. force pawing thruugh the "elastic centroid" of the configurathens and twing alone the neutral axis. In symmetrical fase the nentral axis dows indead parallel the line-conneeting awhors, but as the author in lieates, errors result from making this assumy-tion in nonsymme trical eases. In entheral threw-dimen-ional cases, there is no sie h thing as a neutral axis. The resultant fore. system eonsists of three moment components and three force cous ponents all of wheth can be represented in variots ways, namell as a wreneh, as a motor, as a combination of a line vector ant a froe vector, and so on.

Only in verv sperial eases does the wrench or motor becone singular, reducing to a line vector of force with the free-moment vertor vaniahing, and onlv in these cacos is it possible to sprak of a neutral axis. Attempts to represent a threedimensional problem in terms of a nentral axis imply doing some violenes to the fundamental principles of mechataies. Again, this is not to say that the aftempts are not warrantol if they succeed in affording a great simplification with but little loss in accurary but it does not appear that the question of how much the accuracy suffers has been explored adequately.
Finallv, some inaceuraey is involved in neglecting secondary bending terms for bends and elhows, 23 In almost all cases the error is slight and the simplification great; however, for tight configurations involving short-radius thin-wall elbows, the secondary terms may become of great importance. In faisness it should be mentioned that no great difficulty is involved in taking the secondary terms into account in using the Piping Handbook method of analysis.

Self-Spring and Cold-Spring Effects. The analyses of the Report and of the paper awoume that there is a single quantity $c$ which characterizes the amount of cold epring in the system. In certain actual designs, however, different degrees of cold spring are emploved in two or three of the co-ordinate dimensions. It is not clear what computational procedure mav he implied in such cases by the rules incorporated in the Report,

The writer invites the author's further comments concerning the factor $1 / 3$ which appears in Formula (17). The use of this factor theoretically results in an overevtimate of the initial hot reaction and this fart, coupled with the extrome conservatism or ostrichlike attitude of many manufacturers of rotating or reciproeating equipment, mav result in the rejection of some designs which actually are adequate. It is reognized that the $1 / 1$ limitation on the amount of mild spring that ean be counted for certain computational purposes has been a part of the Code for several years. Dise the Task Foric have partimular reason for reaffirming this attitule? Dowe the $2 /$, limitation refleyt recognition of the fact that all computations and analyses are but imperfect wavs of predicting physical hehavior, and that no matter how carefully cold-upringing is calculated and performed, wetual reactions are not likelv to be reduced to teres than one third their calculated values without cold apring? If this is so, the writer would suggest that the formula for $R_{\text {s }}$ become

$$
R_{A}=\left(1-\frac{2}{3} c\right) \frac{F_{t}}{E_{c}} R
$$

[^7]$$
R_{A}=\frac{E_{\Delta} R}{3 E_{s}}
$$
(whichever is larger) so that cold spring in exeess of 100 per cent might not be employed to reduce the theoretical value of $R_{h}$ below what is reasomathie.

The statement ". . sorvice failures are associated with eyelic, rather than static stress applieation . . "appears in support of the stress-range wotwept. Ohe may remark in pros-ing that the worvice failures to whieh reference is mate are cloarly those in piping and connections and wot in rotating or reciprocating mechatnisal equipment where a mal- or nonfunction is more usually the rosult of static overload. However, there are practical cases where static stress rather that stross range governs the integrity of the piping itself. In very "tizht" configurations conupoed of very thin-wall piping and componenis, loeal crippling may govern. The phenomenon is one of instability rather than of strength and it is recognized that the Code cannot include rules for such exceptional cases.

Allowable Stress Range. The writer believes that the stressrange conerpt is uscful and generally valid and is pleased to see it recognized by the proposed ruies of the Task Force Report. However, he feels that there should be keway for designer and user, if conditions call for it, to agree upon other criteria appropriate to the particular situation involved.

The last paragraph of this section of the paper should not escape attention and the Code rules themselves should contain an admonitory remark concerning the effect of corrosion.

Allowable Reactions. The writer would like to commend the author's evaluation of the lack of realism retlected in the limitations on allowable piping reactions presentiy established by manufacturers of the equipment to which the piping attaches and of the economies which would result from sh upward revision of such limitations. The writer understands that this is a question under consideration by a group of users of major rotating equipment.

What Systems Require Analysis? It would be most helpful if the proponents of Formula [23] would present an evaluation of the applicability and accuracy of this formula and if others were to contribute to the subject. Formulas like this conatitute, in effect, greatly simplified methods of analysis which, if their range of validity could be assessed, would be very usciul for ranging shots and highly approximate analysis. However, the writer sides with the majority opinion of the Task Foree in not wishing to raise this or a similar approximate formula to the dignity of a criterion for mandatory requirement for analysis.

Conclusion. The writer has submitted comments on the May 4, 1953, Report directly to the Task Force (and it should be hoped that all persons having an interest in the problem of piping flexibility will similarly contribute their coraments). One point which was developed in these comments deserves mention here. The Code should definitely provide for alternate procedures of interpretation in certain exceptional cases where all interested parties can agree upon an answer based upon sound enkineering principles even if this implies deviating from a strict and literal appication of the Code rules. Otherwise. legal ar contract technicalities, enforced by inspectors poueriess to make exceptions, may require uneconomical design.
F. M. Kamarck. ${ }^{14}$ Referring to the Proamble $6 t^{\gamma}$ of the Proposed Rules for Chapter 3. Section 6, of the Code for P'ressure Piping, and also to the fourth and fifth paragraphs under SertSpring and Cold-Spring Effects of the present paper, dealing with the relavation of the first hot cyele of a piping syotem, the following comments are offered:

## ${ }^{14}$ Staff Engineer, Burns and Roe. Inc.. New York. N. Y.

The first stress eycle indicateg that the stress exceeded the elastic limit in one or more areas and mant have produced localized deformation that later shoved up as self-spring and strose when the line was allowed to become cohl. This overstrest is not desirable and neither is the change of gritin structure that will take place in these deformed areas. This chatiged grain structure will have a higher ereep rate from the reat of the pipe where the krain strueture was toot redically altemal by overstress, 2s, 26 In other worits, any piying system that shows a rapid relaxation (other than the normal creep characteristic for the designed stress) bas been weakened in some area or areas and its strongth is no longer certain. This, the writer summits, is not a good approach to the design of high-temperature pijing.

The writer believes that it has been iairly well established that this localized deformation does not take plase in the cantilever portions of the piping system (except powsibly for a very small distance adjacent to bends and elbows when these contain overstress), and that this relaxing deformation occurs in the bends and elbows of the piping system with the present approach to design.

For most load-resisting members any permanent deformation or set that accompanies stresses below the yield point of the material does not damage the members seriously. It is the permanent deformation that occurs at the yicld point that is dangerous.

The problem should be tackled at its souree, bends, and elbows, and something should be done at these points. The writer also believes it to be incorrect for the proposed Code section to accept local overstress in any part of a piping system. Reinforcement would be added in any other place where it was known that high local stress was present. Why not at benis and elbows? It appears that the stress-intensification factor for bends and elbows requires serious re-evaluation and revision upward,

It is felt that the proposed Code section should raquirc higher schedule thickness for bends and elbows (also possibly tees) than the required pipe thickness so as to eliminate or minimize local deformation caused by exceeding the elastic limit.

Such a requirement also will aid the more economical design of piping systems. At present too high a price is being paid for the false tlexibility of bends and elbows by a stresw-intensification factor that not only cancels out any apparont gain but causes an overdicsign of the whole piping system in order to prevent the stressintensification factor from carrying the stress in the elbows over the allowable stresa limit. Thickening the elbows will tend to eliminate what is generaliy a minor soure of flexibility of the piping system, but will bring the stress characteristic into line with the rest of the piping design. Relavation, if it should occur, should be through slow ereep and uniformly relative through the various stressed portions of the piping system.
H. C. E. Meyer. ${ }^{27}$ To the suthor should go the thanks of the Society and industry in general for his most excellent paper.

Many years ago the writer discovered that when he became involved in the subject of stresses in piping as the result of thermal expansion he was entering a lahyrinth from which he has not been able to extrieate himwif to this dav.

That the subjeet is a ment complex one is attestand by the long Bibliography accompanving the paper, and sume of the names that appear in this biblogeraphs are ones that will tong the rememberes. Such men as Prof. William Hovetard, Mre, Sahin Crocker, Mr. D. B. Kossheim, Mr. A. R. C. Markl, and many, many othery
" "Analysis of Basic Problems of High Temperature Creep," by O. D. Sherhy and J. F: Vorn.
m "Metallurgieal Aspects of Strength at Wigh. Temperature." by G. V. Smith.
"Gibbs \& Cox. Inc., New York. N. Y.
have done much to throw light on the subject and provide means to calculate the stroses and reations which may be encountered in service as a result of the expansion of pipang.

The mere diflicultes involved in computing the physical charseteristics of elahorate piping systems are in themsives enormous, and we owe an everlasting deft of gratitude to l'rofeswor Hovgaard for the havic equations her deveroped.

On the surface it would appear that once we had methods for determining the stresses, all that would be necessary would be to set sativfuctory limits on such stresses for various conditions, and that would be the end of the matter. However, in a paper by Mr. D. B. Rossheim and Mr. A. R. C. Marhl in July, 1940, the conception of a stress range came into prominence.

When the writer was first asked to aceept membership on the Subeommittee on Flexibility, he wasstill very much of the opinion that, by determining the stresses as accurately as practicable and establishing limits for these stresses, all would be well, as this method had given satisfactory results in the many Naval vesseis where they were applied.

But then the stress-range concept began to enter the picture and, while it took the writer some time to get even a haz" view of the importance of this conception, it became a part of the proposed revision to the Code as the result of two very fortuitous circumstances.
The writer was required to spend considerable time in Europe a year ago, but before leaving asked a small group to work on a draft of the proposed revision. This group consisted of Messrs. Markl, Spielvogel, Blair, and Wallstrom, and the writer cannot refrain from stating once more his appreciation to these men for the wonderful work thes did in coming up with a proposed draft, which, after the committee as a whole met, was submitted to the Executive Committee as a report, and has been circulated to the membership.
The second fortuitous circumstance is that for the past vear the writer has been somewhat "under the weather" which perhaps has given him more time to think, and as a result has come to accept the concept of the stress range not merely with some reluctance but enthusiastically as a stroke of genius.

In order to come to this conclusion, he had to develop a certain few mental images which would make it clear what was involved in using the stress-range concept.

The first point was that in Professor Hovgaard's work he states that where a pipe is increased in length between two anchorage points as the result of temperature, the stresses are substantially the same as would orcur if the anchorage points were moved mechanically by an external force which produced a displacement equal to the increase in length due to temperature, except for differences due to changes in moduli of clasticity.
The second point was that based on the foregoing statement: if we were to erect a piping system cold with 100 per cent cold spring in all directions, we could compute the stresers in the cold condition and when this system was heated up to the full temperature, the stress in the hot condition would be zero.

On the other hand, if the system were erected with zero cold spring, the stresses would be equal to those occurring in the cold condition with $l(x)$ pur cent cold spring exeept that thes would be opposite in sign and that they would be somewhat lese because of the differences in moduli of chaxticits.

Next, when cstablishing limits of atross for the strosess as computed for the cold condition with 100 per cent cold spring, the stress which can oevar under any future conditions is limited, whether cold spring is used or not.

We have the phenotnena of self-woring and relaxation to consider, and while these fastors will mot affeet the stress range to which the pupe will be subjertent, thes will tond to roliceve the maximum atresses in either the hot or cold condition.

Thus the use of cold spring in so far as strest is concerned the. comes of little importance, but is of importance where the remetions and moments at attachments to equipment are concerned.
The proposed revision to the Code includey the necessary formulas for dealing with these restetions.
In considering this complex subject, the eommittee has kept strongly in mind three fundamental prineiples:
(a) Any requirements in a Code must be kept as simple as passible, sinee a Code is not a texthook, but an attempt to establish sigmposts as to when danger might evist.
(b) The greatest curse of regulations is that they regulate too much and, by so doing. cramp the frecdom of the designer. and sometimes even rrsult in freak designs being developed to circumvent unreasonable regulations.
(c) Since the whole subject is exceedingly complex, the determination, as to the method to be used for making analyses and as to when such computations are required, should be left in the hands of the designers who, on the other hand, should be prepared to provide necessary data, if and when a serious need for same is indieated.
In conclusion, the writer wishes to thank the author and all the members of the committee for what they have accomplished and state that it is his belief that the sooner this proposed Code can be adopted, the better it will be for industry:
There are many comments that still have to be digested but it is hoped that before long the conmittee can meet again and clean: up the loose ends.
L. Pich ${ }^{2 s}$ The author's paper and the reports of the Task Force are valuable contributions to a better understanding and clarification of the many problems involved in the growing field of pipe-stress analysis.
This discussion is concerned only with the brief statements given br the zuthor on approximate assumptions. Since detailed, correct pipe-stress calculations are very time-onsuming, a large volume of work is done by usitg approximate assumptions. Therefore a more detailed conime at on some of these assumptions seems worth while.
While the author's statements hold for the majority of pipestress problems, some exceptions t ay oceur. Regarding the substitution of square corners for curved members, there are pipe bends having large radii ( $R=5 D$, or larger), and heavy wall thicknesses, whose virtual lengths are smallet than those of the substituting square corners. This will be the case when the virtual bend length, $L^{\prime}=1.571 K R$ is less than the length of the square corner, $L=2 R$. or for all bends, whose flexibility factors are less than

$$
K=\frac{2}{1.571}=1.273
$$

While there are few bends with such low $k$-values, their existence, nevertheless, should be noted. Substitution of square corners for such bends will tend to "loosen up" rather than "tighten" the pipe.

Whether the substitution of square corners for bends and elbows will result in an over or underestimate of the streases is diffienlt to predict. Be-ides the flewhility factor and atress-intensification factor, the proportion of curved member longths to total pipe length, and the lecation of the curved members with respect to the neutral avis (thrust line) will also affeet the end regults. The netural axis itself may shift condiderably when the square-corner substitution is made, thus changing the moment arms as well as the forces. A shift of the point of maximum stress for the two asaumetions also may result.
") Oil Refinery Divivion, Arthur G. Mekee and Co., Cleveland, Ohio. Assoc. Mem. ASME.

Regarding the assumption that the neutral axis parallels the line connecting the anchers, this holds only for symmetry with respect to a line. For pipes which are symmetrical with respect to a point (such as a symmetrical Z-shape), this nssumption would place the neutral axis as passing through the anchors. But such a position of the neutril axis would result in zerobending moments and zero-bending stress at the anchors, which obviously is ineorrect.
C. S. L. Robisson. ${ }^{n}$ The stress range with emphasis on the anticipated cyeling is certainly of greater physical significance than the maximum combined stress. It is better not to combine (as we have been doing) stress components like the pressure longitu-final stress and the weight-load stress with the thermalexpansion stress which may be relieved by yielding or by cold spring. The pressure longitudinal stress mav be considered fully by conservative selection of pipe-wall thickness to accommodate the pressure circumferential stress. With shipboard piping the weight-load stresess are negligible because numerous supports are used to limit sway and vibration.

It also may be pointed out that the stress-range concept is useful where the movement is not entirely thermal. Such an example occurs in shiphoard piping. If a pipe extends over a considerable length of the vessel, its flexibility may be increased to accommodate hull strains. Both this hull-movement stress and the thermal-expansion stress will be reduced by any plastic strain in the piping, and what are most serious about these stresses are their periodicities.

However, it is undesirable to state: "Formal calculations or model tests shall be required only where reasonable doubt exists as to the adequate flexibility of a system." This statement implies that the approximate thermal-expansion stresses are readily observable. Such is irequently not so. Furthermore, with higher temperatures (above, say, 500 F ) detailed thernal-stress estimates are profitable not only because of the larger thermal movements but also because of the greater cost of the alloy piping and of its fabrication. With the current lessening of business activity more, and not less, attention could be directed to thermal-stress details. Our ASA Code may be too conservative but this should be corrected by increasing the allowable stress or stress-range values.

Ernest L. Robinson *o The writer wishes to emphasize the importance of recognizing and trying to evaluate and limit the maximum accumulated total strain in any worst loeation.

The paper is an excellent exposition of the proposed new section on flexibility of the Code for Pressure Piping. Certainly it is highly desirable to take cognizance of the stress ranke and prescribe a limitation for it. Certainly the initial stres- does relax and tenis to anneal away. But, by this very process, it does add to accumulated creep.
Creep is not uniform but it tends to be concentrated in the most highly stressed elbows or runs of pipe while the lower stressed lengths provide follow-up elasticity to muitiply creep in critical regions. It would be desirable to trv to pvaluate the situation in these plaves and prescribe suitable limits.
The writer is somewhat less than - -tistied with the comparioons embotied in the aleebraic formulations given in the Apmendis to the report of the Tavk Force. These formulations represent only one set of conditions whereas it wuhl sem appropriate to give cognizance to at least fuur sets of conditions: (a) hot condition; (b) cold condition; (c) range of stress or strain; (d) maximum total local creep.

[^8]The Task Foree reported that the amount of relaxation is unknown and cannot be juiged reliabiy. If this were completely so, the writer would point out that thin uncertainty would constitute a very good reason for taking steps to assure complete freedom from stress in the hot condition in order to minimize local ereep due to relaxation. However, the writer would point out that either the relaxation propertiow of piping materials are well known or mav be readily determined by well-known relaxation creep tests. If the proposed new section is to make no provision for estimating numerically the relaxation characteristies of a piping system, the writer recommends that it ought to give definite encouragement to the elimimation of all need for relaxation during the early periods of operation by requiring installation to be such as will assure it to be free from stress when hot.
D. B. Rosshetai ${ }^{11}$ and E. F. Sueaffer. ${ }^{32}$ The author is to be congratulated for the broadly comprehensive discussion he has presented, which more than fulfills the purpose of the paper in explaining the background of the Task Force Report. In this paper the author has documented carefully the accepted facts, and his well-thought-out conclusions are largely incontestabie within the confines of present-day knowledge. Therefore this discussion will attempt to do no more than call attention to a few points on which we feel further progress is mostly to be desired.

We note that in describing the General Process of Solution, wherein the author has listed significant physical properties of the pipe material, he has omitted such properties as tensile strength and various measures of ductility, as well as impact values and transition temperature. While we do not have any specific proposals to offer at this time we should like to suggest that fracture in pipe materials often may be dependent upon properties which at present are largely unassessed, and that a fully dependable design basis awaits further fundamental research in the mechanism of fracture made uader the co-operation of engineers and physical metallurgists.

Under the subject Flexibility Factor, we should like io call attention to what we believe is a noteworthy omission in not discussing the work of Clark and Reissner (author's reference 107), who succeeded in obtaining an asymptotic solution of the differential equations leading to the simple expression:

$$
k=\sqrt{\frac{3\left(1-\nu^{2}\right)}{h}}
$$

where
$k=$ flexibility factor
$\nu=$ Poisson's ratio
$h=$ flexibility characteristic
Using a value of $\nu=0.20$ the flexibility factor is found to be

$$
k=\frac{1.65}{h}
$$

thus confirming by rigorous analysis the Beskin approximation given as the author's Formula [2].

On the sulject sirese-Intensification Futors, it might be wall to point out that there is sone inconsinteney in attemption carefuliv to evaluate loral stresses and evelie effects under thermal expansion of piping while ignoring them in other forms of loailing. In both piping and veseed eodes at present, local effeets generally are taken care of br a margin in the allowable stresses, and detinitely cyclie service is beft to the responvibility of the designers. With piping calculations, stress intensitications at least have of een

[^9]gone unaskessed; thus past experience would not appear to support an extreme need for the detailed reengnition of them which is proposed. Further supporting this conts ntion it is also recalled that the suthor points out elvewhere that a safety factor of about $\mathbf{2}$ is available at the proposed allowable stress levels, even up to 7000 cyeles.
Regarding the author's Formula [4], expressing a relation between failure stress and number of cyrles, there appears to be a good possibility that the component 0.2 may vary considerably depending on the material and powibly upon its condition (i.e., cold-worked or heat-treated). Evidence of this appeared in cyclic tests of $18-8$ corrugated expansion joints where an exponent of about 0.33 was indicated. Further data relating to this question have been presented by L. F. Coffin.
Attention is again directed to the efforts of Clark and Reissner from which a theoretical outer-surface circumferential stressintensification factor of
$$
\frac{0.813^{2} \sqrt{12\left(1-\nu^{2}\right)}}{h^{1 / 2}}=\frac{1.80}{h^{1 / 2}}
$$
may be obtained for pipe bends subjected to in-plane bending if Poisson's ratio is taken as 0.29 . If the stress-intensification factor is related to the fatigue properticy of straight pipe, following the author's definition, the foregoing relation should be divided by a factor of 2 , representing the stress-intensification factor inherent in plain pipe as compared to polished bars. The operation yields
$$
i=\frac{0.9}{h^{1 / 2}}
$$
which offers partial substantiation of the author's Formula [5].
Regarding the section Self-Spring and Cold-Spring Effects, we believe that designers should be warned of certain practical aspects of applying cold spring. If the operation is to be fully effective, it is not usually sufficient to cut the pipe short and simply pull the ends together for the closing weld; countermoments also should be applied when the last joint is made to arrest angular displacements of the adjoining parts (as would he required on the bend presented in Fig. 2, in addition to simply pulling the ends together through a distance eL). For the coldspringing of high-pressure turbine leads in space configurations, the writers' company has found it expedient to apply such countermoments by suitably located forces, the loration and magnitude of which are carefully calculated.

The author's remarks regarding the so-ralled relaxation limit invite some comments. At a temperature where viscous creep is significant, it would seem that the asymptotic value of residual stress would be zero. At lower temperatures, the process taking place consista of local yielding accompanied by the usual strain hardening. This leads eventually to a fully elastic action, and the whole operation would scem to be dependent niore upon the shape of the part than the material of which it is made. We should be interested to have the author point out anv evidence he has found to support the existence of the relaxation limit as a bona fide material proparte

In his discussion of Allowable Resactions, the author directs attention to a probliom which has tren the surce of a conviderable waste of pipe nuterial. Wie recier particulatly to the case of pumps, turbines, and other eqpipment for which the manufacturers have been known to make it a condition of their warranty that no piping ractions be impowal whatsonever is the author points out, such a requirement is quite impractical since the piping minst ustally absorb expusion of the equipment as well as its own expansion. It is boped that enntinued emphasis of this point will indure equipment mamulaturere to invertigate and provide for reasonable limits of allowable piping reactions.

At some length the author has discussed What Svatems 1 ... quire Analysis. We concur with the nuthor and others on the. Task Force regarding the impowibility of formulating simpler rules which will predict accurately the stresses in any pipung system. We further agree that the vague guidance which ther Task Force felt more or less compelled to retain is quite suth cient for a Standard of Good Practice. The salient point, bowever, is that the Piping Code may be considered no longor surh standard sinee it is rapidly being adopted as a Safety Corle, it + rules becoming mandatory and enforerable by law. Thus the proposed wording leaves the designer in a legally indeferaitle. position unless he takes on a full burden of calculations. Furthermore, all permissible wording operates to the detriment of the responsible manufacturer who would be obliged to live up to thin. most stringent interpretation, whereas those who have no reputation to maintain would not hesitate to use the ioophole affordeci and prepare no calculations whatsoever

The solution of Alt. Par 620 proposed to the Task Force by our representative, Mr. Wallstrom, is admittedly not beyoud improvement. Besides changes to the values given, additional eriteria might incorperate such considerations as severity of otering or hazard to personnel. Regardless of the exact rules, however. we are convinced that it is a step in the right direction to set up definite requirements stipulating that certain piping be calculated The fact that a precise detection of every case of overstress cannot be had, short of making detailed calculations of each line should not lead to the other extreme of requiring essentially no analysis at all. Even the most experienced piping-stress analyats often do not anticipate correctly the results of their calculations. Hence we conclude that if a criterion exists which for the average user of the Code will even moderately reduce the guesswork in this matter, such a criterion still must be adjuiged a worth-while tool with which to encourage sounder engineering

## Atthor's Closure

The voluminous discussion of this paper is an encourazing token of the wide interest commanded by its subject. The author, the Task Force. and piping engineers at large owe a large debt of gratitude to the discussers who have given freely of their knowledge and experience, either to highlight the improvements made in the code formulation or direet attention to remaining shortcomings - the latter mostly the result of oversimplification in the interest of providing rules which could be followed by the average engineer.
In order not to add unduly to the length of this paper, the author's clowing remarks will be confined primarily to those phases about which questions have been raised. It is gratifying to note that the general approach has met with unanimous approval and dissenting comments are largely of a cautionary nature, intended to warn against ton implicit a reliance on the rules to the exclusion of good judgment.

The suggested flexibility and stress-intensification factors have been areepted generally as reflewting the best available information. In fact. Mreswrs. D B. Rossheim and E. F. Sheaffer have gone further hy demonstrating in detail how well the pro. foosed values fur curvel mombers are confirmed by Clark and Prisoner's math-is Mr. J. I. Broch's sugbestion, that equal applicability of these fartors to out-of-plate hending be emphassized in the Proposed ! Kulew, has since been acted upon by a changer in Nute 1 to Chart 1 shown it the last, April 1, 1954. draft of the Task Foree Report.
Mr. F. MI. Kamarch is alone in fuestioning the flexibility of elbows and bemds and suggesting upward revision of the stress-inten-ifieation fartors: the anthor emonfteres to difficulty in following his motivation. Mesars. Rossheim and Sheaffer appear
to incline to the opposite view. while to incline to the opposite view; while accepting the values sur-
geated for the stress-intensification factors as proper, they question whether it is really necessary to include them in calculations, referring to pressure-vessel denign practice where similar factors are tacitly absorbed in the safety factor. While conewling that a similar precedent exi-ts for piping-stress analysis, the author believes it unsound to submerge calculable varables in the safpoty factor, its function being to take carre of remdual uneretainties. If the safety factor now emboriedi in the rules was felt to be too high-and there are experienced piping-xtress analvats who ineline to this virw-it would appear more logical to correct this by expanding the allowable -tress range, following Mr. C. S. I. Robinxon's excellent adivice.

Whether the rules are too conservative or not depends on their future interpretation by customers and inspection authorities. In the author's opinion, the strese range adopted is sufficiently conservative to allow the designer a reasomable amount of latitude, by which is meant that the error introduced by making approximations could run to something like 25 per cent without causing concern. In this phase of engineering, as ia others of a complex nature, hard and fast roles sever should be allowed to take precelence over sound engineering juigment; they should be used only to develop it or to suppiement it. Both Mr. H. C. . . Meyer and Mr. J. E. Brock have warned against fettering the stress analyst by too strict a regulation or too literal an interpretation of any rules devised; the author would like to join them in a plea for enlightened enforcement, neither too strict nor too lenient. Perhaps the body of authoritative opinion encompassed in this discussion may help to bring this about.

While still on the subject of approximations and accuracy, the suthor wishes to signify his agreement with the conclusions reached by Mr. J. E. Brock and Mr. L. Pach relative to the effect of square-corner assumptions. It might be added that much greater deviations from the mathematically accurate results than are revealed in Fig. 7 of the paper would be obtained if the complete range of flexibility factors (up to 25) for long-radius welding elbows within the range of sizes and thicknesses of American Standard B36.10 were considered.

The only remaining isoue of importance concerns the effects of local yielding or creep and the resultant relaxation. The author concurs with Mr. E. L. Robinson that a complete analysis of a piping system under thermal expansion should consider at least several stages or factors descriptive of its strest-and-strain history, and desirabiy should include the initial hot and cold stresses and strains, the ultimate (relayed) hot and cold stresses and strains, the stress range and the mean stress (primarily for the
ultimate condition), and fimally the total strain. However, even if the knowledige and experience were avalable to set limits for each of these items, the complexity engendered would be prohibitive so that every single analysis would require the attention of at expert. To reduce the problem to a practical level, the streas range, the initial hot reaction, and the ultimate cold reactron were selected from this array as the most significant performance yardsticks; and the limits for the stress range, and the stress eomnoting the relaxation limit (an operating constant rather than a true phivical property), were related to the allow:ble stresses established elsewhere in the Conle for Pressure P'iping.

No separate limitation on the total amount of creep was established, the reasoning being that the stross-riange limitation would at the same time serve to control the total strain, and this view it still held by the Suhgroup as applicable to the average piping system. However, Mr. V. L. Robinson's comments led to an investigation of lest usual configurations characterized by small branch-s where relaxation would not be effective as a re-ult of elastic follow-up from the larger, lower stressed portion of the line and the long-time ductility of the grain boundary (which could be as low as I per cent) could be exhausted; to cover thowe cases, a cautionary note has since been inserted in the preamble (see April 1, 1054, issue of the Task Force Report).

Mr. Kamarch, while approaching this topic from a differeat angle, appears to have been guided by the same fear as Mr. Robinson. However, his statement that any stressing beyond the elastic limit, even though it occurs only once, constitutes a dangerous weakening is not borne out by experience, in the piping field or elsewhere. It would condemn as unsafe the bulk of hightemperature piping installed in the past 20 years which has been designed to stress limits not much different from, often considerably higher than, those established in the Proposed Rules. This includes carbon-molybdenum steel piping, which is known for its low ductility under prolonged ereep loading.

Of course, where legitimate doubt exists as to the ability of a material or system to absorb creep. 100 per cent cold spring remains a solution. However, as Messrs. Rossheim and Sheaffer point out, it is not as simple to cold-spring a system properly, as would appear at first glance. Incidentaliy, the $\frac{1 / 2}{}$ factor in the formula for the hot reaction, about which Mr. Brock has raised questions, has been put there to aliow for the uncertainty of attaining the designed cold spring in actual installation; the single formula given in the Proposed Rules, however, is sufficient, since the cold-spring factor $c$ by definition is limited to ucity as a maximum.
A Hachment 4

## TRANSACTIONS

of the

4th International Conference on

# STRUCTURAL MECUMARS Whertin TGHMELUY 

San Francisco, California, USA = 15-19 August 1977
Transaction General Editors
Thomas A. JAEGER Bruno A. BOLEY

## Vol. F. Structural Analysis of <br> Reactor Core and <br> Coolant Circuit Structures

Division F Coordinators
R L. CLOUD Westinghouse Electric Corp Pitsourgh Pa USA
D. G. H. LATZKO, Delt: University of Technology, Dett: The Netheriands
International Association for Structural Mechanics in Reactor Technology







[^0]:    
    
     ASMI Headywaricrs Marh 17 ivsod

[^1]:    *For welding tees conforming to ASA Standard B16.9, axsumption of $R,=1.35 \mathrm{r}$ and $\left.i^{2}=1.50\right) t$ usually will produce conservative estimates of $i$ on the basis of representative measurements.

[^2]:    ${ }^{11}$ All expressions are shown as absolute values.

[^3]:    "t The author would prefer basing the expansion stresses for all services on the $S$-values in this section.

[^4]:    is The tabulation of average ractions againat putups on p. 4.33 of the paper hy D. B. Rusetheim and the auther (53) is indirative of the type of information desired.

[^5]:    ${ }^{\text {4 }}$ Tables of these properties will be provided upon a lootion of these rules. In the trontime, data prialished in Fiping Ilandtooks or catalogs may be used.
    ${ }^{10}$ In this cases, snchors or tiea of aneficiont atrength and rigitity shall be installe $\mathrm{f}^{\prime}$ to provide for end forces due to thid pressure and other
    causes.

[^6]:    ${ }^{11}$ Numbers in parentheses refer to the author's bibliography.

[^7]:    " Author's reference (75), p. 801.

[^8]:    20 Engineer, Central Technieal Devertment, Shiphoildine Division,
    

    * structural Eingineer. Turtme Wiviton, (ieneral blectric Company, Schenectady. N. Y Fellow AsME.

[^9]:     York, N. Y. Merm. AsME.
    "Mechanical Engineer, The M. W. Kellozg Company.

