

QSA Global, Inc.

40 North Avenue Burlington, MA 01803 Telephone: (781) 272-2000 Toll Free: (800) 815-1383 Facsimile: (781) 359-9191

29 June 2017

Mr. Pierre Saverot Spent Fuel Licensing Branch U.S. Nuclear Regulatory Commission Office of Nuclear Material Safety and Safeguards Division of Spent Fuel Management Mailstop EBB-3D-02M 11555 Rockville Pike One White Flint Rockville, MD 20852

71-9296

RE: Response to RAI Request for CoC number USA/9296/B(U)-96

Dear Mr. Saverot:

QSA Global, Inc. provides the following in response to Huda Akhavannik's letter dated 5 April 2017 requesting additional information in support of our 13 January 2017 amendment request for the Model 880 package designs.

1-1 *Clarify which jacket version is depicted on the licensing drawings and its importance to safety.*

As discussed in telephone conversation with NRC on 14 April 2017, the licensing drawings are dimensioned to cover all jacket options with variations in overall height noted as a range on the drawings. As discussed, the drawings indicate the jacket is "optional" which was intended to imply that the jacket is not important to safety (NITS). For clarification purposes, we have revised drawing R88000 to Revision X. This revision will list the jacket, jacket rivets, and sealant currently identified as "optional" on the drawing, as also "NITS" in the drawing BOM for these items.

As discussed on 14 April 2017, and as will be clarified in the attached SAR revision, the presence of the lithium-ion batteries and electronics in the Version 3 jacket will have no adverse impact on the package during normal or hypothetical accident conditions. The details associated with the batteries and electronics are not included on the descriptive drawings as they have no significant impact on the package integrity and are not expected to be installed/replaced by general users of the package.

QSA has decided to rescind its request to add Version 3 of the optional jacket to the Model 880SC package design. As such, we no longer request approval of drawing R880SC Revision F under the certificate, and request that reference for this package remain at Revision E of the drawing. The enclosed SAR Revision 12, has been updated to remove reference of the Version 3 jacket with the Model 880SC package design.

ADD6 NMSSDI

www.qsa-globai.com

2-1 Clarify the package weight for those packages that use jacket version 1 or 3.

The maximum package weights, with the heaviest jacket attached, are specified on drawing R88000 Rev X on sheet 1 in the table column labelled "Maximum Total Package Weight with Jacket". Since the jacket's only significant impact on package compliance is how its weight impacts the overall final package weight, any version of the jacket is compliant to the drawings so long as the overall package weight does not exceed that specified on the drawing with the jacket attached, and the jacket meets the other dimensional specifications for the final package assembly on the drawing.

The 1 pound discrepancy noted when comparing weight increases for the Version 3 jacket to the jacketless versions of the different models is related to a rounding discrepancy correction made on the jacketless versions of the package, but which was not carried over in description of the package with jacket attached. When changed, the maximum values for the package with the jacket were not increased to accommodate slight variations in the base unit's mass which was corrected for the rounding issue. When we determined the maximum package weight for the packages with the Version 3 jacket, a uniform 3 pounds were added to each previous value listed in the "Maximum Total Package Weight with Jacket" column of the table on sheet 1 of drawing R88000.

This discrepancy has no effect on the NCT or HAC drop test results of the package since the overall maximum package weight for the heavier jackets (versions 2 and 3) were tested and found compliant under Test Report #1 for Test Plan 186, Revision 1 (Section 2.12.11 of the SAR) and Test Plan 216 Report Revision 0 (Section 2.12.19 of the SAR).

As noted in response to item 1-1, QSA no longer requests approval of the Model 880SC for use with the Version 3 jacket.

2-2 Describe the performance of the Model 880SC with respect to the drop tests described for NCT and HAC, the puncture test as described under HAC and the cumulative damage as described under the HAC with jacket version 3.

As noted in response to item 1-1, QSA no longer requests approval of the Model 880SC for use with the Version 3 jacket, so these questions are no longer applicable to this pending amendment request.

- 3-1 Provide the lithium-ion battery test report and describe in the SAR the performance of the Model 880 package with jacket version 3 with respect to the thermal tests described for NCT and HAC.
 - a) Test Plan 216 was submitted to support use of jacket version 3 with respect to satisfying NCT requirements. In Section 3.2 of Test Plan 216, the applicant discusses the NCT testing for the new jacket version. In regards to the NCT Heat test, the applicant states that the test will not be performed because the new jacket will not change the previous evaluation in Test Plan 100. The tests in Test Plan 100 were performed on a Type A Model 880 package without a jacket and no thermal heat test was performed. In regards to the NCT Cold test, the applicant states that this test will not be performed because the new jacket will not be performed because the new jacket and no thermal heat test was performed. In regards to the NCT Cold test, the applicant states that this test will not be performed because the new jacket will not change the previous evaluation in Test Plan 186. The tests in Test Plan 186 were performed on the Model 880 Pipeliner with a different jacket that did not include lithium-ion batteries and the thermal test was not performed. The applicant should describe in the SAR the performance of the Type B Model 880 package with the version 3 jacket including lithium-ion batteries with respect to the NCT heat and cold tests.

Based on discussions with NRC staff on 18 April 2017, the expected increase in package temperature due to the battery pack presence was estimated to be $\sim 2^{\circ}$ C. Further measurements were made and documented in Technical Report 318 to determine the temperature rise to the package from the lithium-ion battery pack for NCT both when the battery cells are not charging during transport, and also when they are charging during transport. Results of the Model 880 when demonstrating compliance to the requirements of 10 CFR 71.43(g) with the package in still air (shaded), shows the maximum package temperature increases from 47°C to 50°C. Under the insolation conditions in 10 CFR 71.43(g), results for the Model 880 package with the Version 3 jacket showed no increase in the maximum package temperature from that previously assessed for the package.

In addition, the LiFePO₄ cells used in the Version 3 jacket comply with the requirements of United Nations "Recommendations on the Transport of Dangerous Goods – Manual of Tests and Criteria", Sixth revised edition (2015) Part III, Section 38.3¹. This includes testing to the T.2 Thermal test conditions. Under this test, test cells are stored for at least six hours at a test temperature equal to $72 \pm 2^{\circ}$ C, followed by storage for at least six hours at a test temperature equal to $-40 \pm 2^{\circ}$ C. The maximum time interval between test temperature extremes is 30 minutes. This test is repeated until 10 total cycles are complete, after which all test cells are stored for 24 hours at ambient temperature ($20 \pm 5^{\circ}$ C). The manufacture of the LiFePO₄ cells confirmed the Version 3 cells passed the 38.3 testing. To meet the testing under T.2, the cells must show no leakage, no venting, no disassembly, no rupture and no fire.

Based on the above analysis, under the NCT heat test and cold test requirements, this nominal temperature increase per battery cell will have no adverse impact on the package integrity or conformance and the battery cells will remain intact and undamaged when exposed to temperatures between 72°C to -40°C. The applicable sections of the SAR have been updated to reflect the temperature impact of the lithium-ion battery pack when the package is transported with the Version 3 jacket.

Test Plan 216 was submitted to support use of jacket version 3 with respect to satisfying HAC b) requirements. On page 7 of Test Plan 216, the applicant states that the lithium-ion battery may be the only material used in the proposed jacket version 3 that may change the results of the original thermal test evaluation. The application then states, "the lithium-ion battery will be tested and/or evaluated at 800°C for 30 minutes separately in another report." Staff requests this lithium-ion battery test report. Additionally, the applicant should demonstrate the thermal performance of the package with jacket version 3 in order to demonstrate that the battery will not have a significant impact on the results of the original thermal test evaluation. This demonstration should include the effects of the preceding HAC tests (30 ft. drop, puncture, etc. on the damaged package/battery, followed by the 30 minute fire (and subsequent immersion). As part of evaluating the thermal tests, the effects of the flammable electrolyte jets should be considered and demonstrated to not lead to exceeding the melting temperature of any important to safety components and materials in the transport package. In SAR section 2.7.4, the applicant states that the July 2011 Fire Protection Research Foundation report in, "Lithium-Ion Batteries Hazard and Use Assessment", suggests that batteries that combust in a fire will produce small localized heat jets. The applicant states that these heat jets, "... are not expected to produce enough sustained heat to exceed the melding temperature of the stainless steel shell protecting the shield." The applicant should

¹ United Nations "Recommendations on the Transport of Dangerous Goods – Manual of Tests and Criteria", Sixth Revised (2015).

demonstrate how the analysis in the Fire Protection Research Foundation report provides adequate evidence that the localized heat jets will not produce enough sustained heat to exceed the melting temperature of materials important to safety in the transport package.

As discussed during our conversation with NRC staff on 18 April 2017, the report referenced in Test Plan 216 was not generated. Evaluation of the battery pack cell performance under the thermal test conditions is provided as follows.

The battery pack cells, used in the Version 3 jacket, are comprised of four (4) Lithium iron phosphate (LiFePO₄) cathode cells with a graphite anode. This battery cell chemistry is safer than the typical lithium cobalt oxide composition. The LiFePO₄ cell materials also include copper, aluminum and a steel casing.

The LiFePO₄ battery pack cells, used in the Version 3 jacket, are designed with the following protective features:

- Vent seals which activate under high pressure build-up.
- A Current Interrupt Device (CID) which activates on excessive pressure due to an overcharge condition.
- A Shutdown separator which activates when the cells reach a temperature of 130°C as this temperature could melt the battery cell's poly separator.

Under the HAC thermal test (800°C for 30 minutes), the individual cells contained within the battery pack would be expected to exceed the threshold temperature needed to exhibit thermal runaway. Typically, this would occur to cells exposed to temperatures in the 150°C - 260°C range which would allow melting of the cell separators.

As noted in The Fire Protection Research Foundation reference below², the severity of a cell thermal runaway event will depend upon a number of factors, including the cell state of charge (SOC), the ambient environmental temperature, the electrochemical design of the cell and the mechanical design of the cell. For any given cell, the most severe thermal runaway reaction will occur when the cell is at 100% SOC, or is overcharged, because the cell will contain maximum electrical energy. During a thermal runaway reaction for a fully (or overcharged) cell, a number of things occur:

Cell internal temperature increases for fully charged cells can reach temperatures in excess of 600°C (1,110°F), although LiFePO₄ cells are generally lower. This is also within the typical temperature range of 800°C – 1,000°C specified in DOT/FAA/TC-TN15/17³.

These temperatures are considered sufficient to cause hot surface ignition of flammable mixtures, but do not reach levels that will cause the melting of pure copper, nickel or steel. The shell of the 880 packages does not begin to melt until 1,400°C.

The figure below shows an 18650 cell that underwent thermal runaway. Although the aluminium within the cell melted and the cell separator was consumed, the cell's steel case and the copper current collector from the anode remained intact.

² Lithium-ion Batteries Hazard and Use Assessment Final Report, July 2011 Fire Protection Research Foundation.

³ Fire Hazards of Lithium Batteries, DOT/FAA/TC-TN 15/17, February 2016.

An 18650 cell that has undergone thermal runaway.

- 2. Cell internal pressure increases for cylindrical designs will not cause appreciable swelling. In these cases, if sufficiently heated externally, the case wall may soften to allow bulging of the cell base.
- 3. Cell Venting. Cylindrical cells have venting mechanisms installed in their cap assemblies that activate when internal pressures are high (typically > 200 psi). CIDs contained in the cells activate to control the venting during thermal runaway.
- 4. Cell vent gases may ignite. This is dependent on the environment around the cell. The gases are not self-igniting and there must be sufficient oxygen in the surrounding environment to sustain combustion as well as an ignition source. During the thermal test, the battery pack is protected by the jacket and the 880 body weldment. Access to oxygen will therefore require combustion of the jacket material and breach of the battery pack case prior to accessing the individual LiFePO4 cells contained within the watertight case.

Should conditions for ignition occur, the flames emanating from the battery pack cells will be highly directional (e.g., flames from 18650 cells are often described as "torch-like"). Since the battery pack cells are aligned parallel to the 880 body weldment, any flames that may be generated under the thermal test would also be oriented parallel to the 880 weldment and not be directed directly facing the body weldment. This will further minimize any temperature increase to the steel shell during the thermal test condition.

5. If thermal runaway occurs in one cell, it is likely to cause thermal runaway in adjacent cells. Under the thermal HAC testing, it is conservatively assumed that all (4) cells in the battery pack will undergo thermal runaway.

When evaluating the impact of the LiFePO4 cells contained in the Version 3 jacket of the Model 880 Series packages during the HAC, the worst case scenario would be for all cells in the battery pack to undergo thermal runaway during the thermal test of 10 CFR 71.73(a)(4). In this case, the expected package temperature exterior to the shell could be expected to increase to \sim 1,000°C. This temperature increase will be in localized to a small area surrounding and in contact with the individual battery pack cells that come into direct contact with the base of the shell. This value is below the melting point of 304L stainless steel of \sim 1,400°C. Based on this localized temperature increase of ~1,000°C, no failure or breach of the shell weldment will occur even if all cells in the battery pack undergo thermal runaway during the HAC thermal test.

As noted in Section 3.5.1 and supported by section 2.7.4.5 of the SAR, damage to the outer containment (shell), sufficient to impact the integrity of the depleted uranium shield, would require significant gaps in the shell (e.g. greater than 1.5 in²) to allow ingress of oxygen inside the weldment, before pyrolization of the foam and subsequent oxidation of the depleted uranium shield could be induced. Based on the information related to Li-ion cells under thermal runaway conditions, the added heat generated by these cells will be insufficient to cause a breach of the 880 body weldment, and therefore, the Model 880 Series packages will retain their shielding integrity and containment during the HAC thermal test when assembled with the Version 3 jacket.

The SAR has been updated in Section 3 to reflect this additional information.

3-2 *Quantify in the SAR whether the lithium-ion batteries will have an effect on the package surface temperature.*

The applicant has requested to add an optional version 3 jacket with lithium-ion batteries without updating the thermal analysis or describing any added heat load from the batteries or any effect on the package surface temperature. The application should describe if there is any internal heat load associated with the batteries, and if so, demonstrate the effect of the added heat load from the lithium-ion batteries on the package surface temperature.

The thermal evaluation in Section 3.4.1.1 et. al. of the SAR has been updated based on our response to Question 3-1a).

3-3 *Identify in the SAR any established codes and standards applicable to the use of lithium-ion batteries in a transportation package.*

The applicant has requested to add an optional version 3 jacket with lithium-ion batteries without identifying any applicable codes and standards. The applicant should identify any codes and standards applicable for use of lithium-ion batteries in the transport package to provide staff with quality assurance of the lithium-ion batteries used.

Although the LiFePO₄ cells used in the Version 3 jacket comply with the requirements of UN 38.3 (see footnote reference 1 on page 3), this is standard for transport of lithium-ion cells and would be required of any battery/cell transported compliant to 49 CFR 173.185. As described in response to question 3-1(a) of this letter, the Version 3 jacket including the battery pack with the LiFePO₄ cells, is not important to the safety (NITS) or integrity of the Model 880 Delta, 880 Sigma or 880 Elite transport packages. We maintain that adding a requirement to the descriptive drawings for the LiFePO₄ cells to this established regulatory standard is unnecessary since it would complicate the drawing to address a requirement ensured under an existing, applicable regulation.

The document revisions associated with these changes are included as enclosures to this letter. Should you have any additional questions, or wish to discuss this response further, please contact me.

Sincerely,

j. 786

.

e-Signed by Lori Podolak on 2017-06-29 18:56:22 GMT

Lori Podolak	e-Signed by Michael Fuller on 2017-06-29 19:08:34 GMT	June 29, 2017
Manager,	RA/QA Approval	Date
Regulatory Affairs/Quality Assurance		
Ph: (781) 505-8241	e-Signed by Steve Grenier on 2017-06-29 19:08:19 GMT	June 29, 2017
Fax: (781) 359-9191		
Email: Lori.Podolak@qsa-global.com	Engineering Approval	Date

Enclosures:

- Lithium-ion Batteries Hazard and Use Assessment Final Report, July 2011 Fire Protection Research Foundation
- Fire Hazards of Lithium Batteries, DOT/FAA/TC-TN 15/17, February 2016
- SAR Revision 12
- List of Affected Pages
- Revision Description for the Model 880 Series SAR from Revision 11 to Revision 12

 cc: ATTN: Document Control Desk Director, Division of Spent Fuel Storage and Transportation Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission 11555 Rockville Pike One White Flint Rockville, MD 20852

Safety Analysis Report

QSA Global, Inc.

Model 880 Series Type B(U) - 96 Transport Package

June 2017

Revision 12

QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page i

Contents

SECTION	- GENERAL INFORMATION	
1.1 INT	RODUCTION	
	CKAGE DESCRIPTION	
1.2.1	Packaging	
1.2.2	Contents	
1.2.3	Special Requirements for Plutonium	
1.2.4	Operational Features	
1.3 Api	PENDIX	
1.3.1	Drawing R88000	
1.3.2	Drawing R880SC	<i>1-14</i>
1.3.3	Drawing R88095	
SECTION 2	2 - STRUCTURAL EVALUATION	
	SCRIPTION OF STRUCTURAL DESIGN	
2.1.1	Discussion	
2.1.2	Design Criteria	
2.1.3	Weight and Centers of Gravity	
2.1.4	Identification of Codes and Standards for Package Design	
	TERIALS	
2.2.1	Material Properties and Specifications	
2.2.2	Chemical, Galvanic or Other Reactions	
2.2.3	Effects of Radiation on Materials	
	BRICATION AND EXAMINATION	
2.3.1	Fabrication	
2.3.2	Examination	
	NERAL REQUIREMENTS FOR ALL PACKAGES	
2.4.1	Minimum Package Size	
2.4.2	Tamper-Indicating Feature	
2.4.3	Positive Closure	
	TING AND TIEDOWN STANDARDS FOR ALL PACKAGES	
2.5.1	Lifting Devices	
2.5.2	Tie-Down Devices RMAL CONDITIONS OF TRANSPORT	
2.6 NOI 2.6.1	Heat	
2.6.2	Cold	
2.6.2	Reduced External Pressure	
2.6.4	Increased External Pressure	
2.6.5	Vibration	
2.6.6	Water Spray	
2.6.7	Free Drop	
2.6.8	Corner Drop	
2.6.9	Compression or Stacking	
2.6.10		
	POTHETICAL ACCIDENT CONDITIONS	
2.7.1	Free Drop	
2.7.2	Crush	
2.7.3	Puncture	
2.7.4	Thermal	

QSA Global, Inc. Burlington, Massachusetts

June 2017 - Revision 12 Page ii

2.7.5	Immersion - Fissile Material	2-29
2.7.6	Immersion - All Packages	2-29
2.7.7	Deep Water Immersion Test (for Type B Packages Containing More than $10^5 A_2$)	2-30
2.7.8	Summary of Damage	
	IDENT CONDITIONS FOR AIR TRANSPORT OF PLUTONIUM OR PACKAGES WITH LARGE QUANTITI	
	IVITY	
2.9 ACC	IDENT CONDITIONS FOR FISSILE MATERIAL PACKAGES FOR AIR TRANSPORT	2-34
2.10 SI	pecial Form	2-34
	UEL RODS	
2.12 A	PPENDICES	2-35
2.12.1	Test Plan and Report 100 (Feb 2000)	
2.12.2	Test Plan 108 Issue 5 (Jul 2000)	
2.12.3	Test Report 108 Minus Appendices A-C (Aug 2000)	
2.12.4	Test Plan 115 (Feb 2001)	
2.12.5	Test Plan Report 115 Minus Appendices (March 2001)	
2.12.6	Test Plan Report 125 Rev B (Mar 2003)	
2.12.7	Test Plan Report 74 (Feb 1998)	
2.12.8	<i>Test Plan 80 Rev 1 (Mar 1999)</i>	
2.12.9	Test Plan 80 Report Minus Manufacturing Records (Jun 1999)	
2.12.10		
2.12.11	Test Report #1 for Test Plan 186 Rev 1 (minus Sections 8.4 & 8.5)	
2.12.11		
2.12.12		2-48
2.12.13		
2.12.14		
2.12.15		
2.12.10		
2.12.17		
2.12.18		
SECTION 3	- THERMAL EVALUATION	3-1
3.1 DESC	CRIPTION OF THERMAL DESIGN	
3.1.1	Design Features	
3.1.2	Decay Heat of Contents	
3.1.3	Summary Tables of Temperatures	
3.1.4	Summary Tables of Maximum Pressures	
	TERIAL PROPERTIES AND COMPONENT SPECIFICATIONS	
3.2.1	Material Properties	
3.2.2	Component Specifications	
	ERAL CONSIDERATIONS	
3.3.1	Evaluation by Analysis	3-3
3.3.2	Evaluation by Test	
3.4 THE	RMAL EVALUATION UNDER NORMAL CONDITIONS OF TRANSPORT	
3.4.1	Heat and Cold	
3.4.2	Temperatures Resulting in Maximum Thermal Stresses	
3.4.3	Maximum Normal Operating Pressure	
	RMAL EVALUATION UNDER HYPOTHETICAL ACCIDENT CONDITIONS	
3.5.1	Initial Conditions	
3.5.2	Fire Test Conditions	
3.5.3	Maximum Temperatures and Pressure	
3.5.4	Temperatures Resulting in Maximum Thermal Stresses	
3.5.5	Fuel/Cladding Temperatures for Spent Nuclear Fuel	
0.0.0	Cremer of the of the spent intered it her interesting the spent interesting the s	

QSA Global, Inc.	June 2017 - Revision 12
Burlington, Massachusetts	Page iii
3.5.6 Accident Conditions for Fissile Material Packages for Air Transpor	4 2.10
3.6 APPENDIX	
3.6.1 Technical Report 318 (June 2017)	
SECTION 4 – CONTAINMENT	
4.1 DESCRIPTION OF THE CONTAINMENT SYSTEM	4-1
4.1.1 Special Requirements for Damaged Spent Nuclear Fuel	
4.2 CONTAINMENT UNDER NORMAL CONDITIONS OF TRANSPORT	
4.3 CONTAINMENT UNDER HYPOTHETICAL ACCIDENT CONDITION	
4.4 LEAKAGE RATE TESTS FOR TYPE B PACKAGES	
4.5 APPENDIX	
SECTION 5 - SHIELDING EVALUATION	
5.1 DESCRIPTION OF SHIELDING DESIGN	
5.1.1 Design Features	
5.1.2 Summary Table of Maximum Radiation Levels	
5.2 SOURCE SPECIFICATION	
5.2.1 Gamma Source	
5.2.2 Neutron Source	
5.3 Shielding Model	
5.3.1 Configuration of Source and Shielding	
5.3.2 Material Properties	
5.4 SHIELDING EVALUATION	
5.4.1 Methods	
5.4.2 Input and Output Data 5.4.3 Flux-to-Dose-Rate Conversion	
5.4.5 Flux-to-Dose-Rate Conversion 5.4.4 External Radiation Levels	
5.5 APPENDIX	
SECTION 6 - CRITICALITY EVALUATION	
SECTION 7 – PACKAGE OPERATIONS	
7.1 PACKAGE LOADING	
7.1.1 Preparation for Loading	
7.1.2 Loading of Contents	
7.1.3 Preparation for Transport	
7.2 PACKAGE UNLOADING	
7.2.1 Receipt of Package from Carrier	
7.2.2 Receipt of Contents	
7.3 PREPARATION OF EMPTY PACKAGE FOR TRANSPORT	
7.4 OTHER OPERATIONS	
7.4.1 Package Transportation By Consignor 7.4.2 Emergency Response	
7.4.2 Emergency Response	
SECTION 8 - ACCEPTANCE TESTS AND MAINTENANCE PROGRAM	
8.1 ACCEPTANCE TEST	
8.1.1 Visual Inspections and Measurements	
8.1.2 Weld Examinations 8.1.3 Structural and Pressure Tests	
8.1.5 Structural and Pressure Tests 8.1.4 Leakage Tests	
8.1.4 Leakage Tests 8.1.5 Component and Material Tests	
0.1.9 Component and Material Tesis	

QSA Global, Inc. Burlington, Massachusetts

June 2017 - Revision 12 Page iv

8.1.6	Shielding Tests	
8.1.7	Thermal Tests	
8.1.8	Miscellaneous Tests	
8.2 MA	INTENANCE PROGRAM	
8.2.1	Structural and Pressure Tests	
8.2.2	Leakage Tests	
8.2.3	Component and Material Tests	
8.2.4	Thermal Tests	
8.2.5	Miscellaneous Tests	
8.3 APP	PENDIX	
SECTION 9	9 – QUALITY ASSURANCE	
9.1 U.S	2. QUALITY ASSURANCE PROGRAM REQUIREMENTS	
	NADA QUALITY ASSURANCE PROGRAM REQUIREMENTS	

List of Tables

TABLE 1.2A: MODEL 880 SERIES PACKAGE INFORMATION	.1-3
TABLE 1.2.B: ISOTOPE INFORMATION PERMITTED IN THE MODEL 880 SERIES PACKAGES	
TABLE 2.2.A: MECHANICAL PROPERTIES OF PRINCIPAL PACKAGE MATERIALS	.2-2
TABLE 2.6.A: SUMMARY TEMPERATURES NORMAL TRANSPORT	.2-6
TABLE 2.7.A: SUMMARY OF DAMAGES DURING TESTING	
TABLE 2.10.A: TYPICAL SPECIAL FORM CAPSULE TRANSPORT INFORMATION	.2-35
TABLE 3.1.A: SUMMARY TABLE OF TEMPERATURES	.3-1
TABLE 3.1.B: SUMMARY TABLE OF MAXIMUM PRESSURES	
TABLE 3.2.A: THERMAL PROPERTIES OF PRINCIPAL TRANSPORT PACKAGE MATERIALS	.3-2
TABLE 3.4.A: INSOLATION DATA	.3-5
TABLE 5.1.A: MODEL 880 DELTA SN TP186A SUMMARY TABLE OF EXTERNAL RADIATION LEVELS	
EXTRAPOLATED TO CAPACITY OF 150 CI IR-192 (NON-EXCLUSIVE USE) AND HYPOTHETICAL ACCIDENT	
TRANSPORT CONDITION TESTING ³	
TABLE 5.1.B: MODEL DELTA SN TP186A SUMMARY TABLE OF EXTERNAL RADIATION LEVELS EXTRAPOLATED	,
TO CAPACITY OF 150 CI IR-192 (EXCLUSIVE USE) ¹	
TABLE 5.1.C: MODEL 880 DELTA SN D2375 SUMMARY TABLE OF EXTERNAL RADIATION LEVELS	
EXTRAPOLATED TO CAPACITY OF 150 CI SE-75 (NON-EXCLUSIVE USE) ²	5-3
TABLE 5.1.D: MODEL 880 ELITE SN E1060 SUMMARY TABLE OF EXTERNAL RADIATION LEVELS	
EXTRAPOLATED TO CAPACITY OF 150 CI SE-75 (NON-EXCLUSIVE USE) ²	
TABLE 5.1.F: MODEL 880SC SN TP206B SUMMARY TABLE OF EXTERNAL RADIATION LEVELS EXTRAPOLATED	
TO CAPACITY OF 150 CI IR-192 (NON-EXCLUSIVE USE) AND HYPOTHETICAL ACCIDENT TRANSPORT	
CONDITION TESTING ³	
TABLE 5.1.G: MODEL 880SC SN TP206B SUMMARY TABLE OF EXTERNAL RADIATION LEVELS EXTRAPOLATED	
TO CAPACITY OF 150 CI IR-192 (EXCLUSIVE USE) ¹	5-5
TABLE 5.1.H: MODEL 880SC SUMMARY TABLE OF EXTERNAL RADIATION LEVELS EXTRAPOLATED TO	
CAPACITY OF 150 CI SE-75 (NON-EXCLUSIVE USE) ²	
TABLE 7.1.A: ISOTOPES PERMITTED IN THE MODEL 880 SERIES	7-1

QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page v I

List of Figures

FIGURE 1.2.A - 880 DELTA, 880 SIGMA AND 880 ELITE PACKAGES WITH OPTIONAL JACKET (VERSION 1)	.1-2
FIGURE 1.2.B – 880SC PACKAGE WITH OPTIONAL JACKET (VERSION 1)	.1-2
FIGURE 1.2.B - MODEL 880 DELTA, 880 SIGMA AND 880 ELITE TRANSPORT PACKAGES	.1-4
FIGURE 1.2.C - MODEL 880SC TRANSPORT PACKAGE	.1-4
FIGURE 1.3.A – SKETCH OF MODEL 880 DELTA, 880 SIGMA OR 880 ELITE WITHOUT OPTIONAL JACKET	
PREPARED FOR TRANSPORT	.1-10
FIGURE 1.3.B – SKETCH OF MODEL 880 DELTA, 880 SIGMA OR 880 ELITE WITH OPTIONAL JACKET #1	
PREPARED FOR TRANSPORT	.1-10
FIGURE 1.3.C – SKETCH OF MODEL 880 DELTA, 880 SIGMA OR 880 ELITE WITH OPTIONAL JACKET #2	
PREPARED FOR TRANSPORT	.1-11
FIGURE 1.3.D – SKETCH OF MODEL 880 DELTA, 880 SIGMA OR 880 ELITE WITH OPTIONAL JACKET #3	
PREPARED FOR TRANSPORT	.1-11
FIGURE 1.3.E – SKETCH OF MODEL 880 WITHOUT OPTIONAL JACKET PREPARED FOR TRANSPORT	.1-12
FIGURE 1.3.F – SKETCH OF MODEL 880SC WITH OPTIONAL JACKET VERSION #1 PREPARED FOR TRANSPORT	.1-12
FIGURE 2.6.A – SPECIMEN P01 ORIENTATION FOR THE PENETRATION TEST	.2-10
FIGURE 2.6.B – SPECIMEN TP206(A) ORIENTATION FOR THE PENETRATION TEST	.2-11
FIGURE 2.6.C - SPECIMEN TP206(B) ORIENTATION FOR THE PENETRATION TEST	.2-11
FIGURE 2.7.A - 9 M DROP TEST ORIENTATION - END DROP	.2-13
FIGURE 2.7.B - MODEL 880 (TP108(C)) 9 M DROP TEST ORIENTATION – BOTTOM DROP	.2-14
FIGURE 2.7.C - MODEL 880 (TP108(D)) 9 M DROP TEST ORIENTATION – LEFT SIDE DROP	.2-14
FIGURE 2.7.D - MODEL 880SC (TP206(C)) 9 M DROP TEST ORIENTATION - SHALLOW ANGLE DROP	
FIGURE 2.7.E - MODEL 880 (TP108(C)) PUNCTURE DROP ORIENTATION - BOTTOM SURFACE	
FIGURE 2.7.F - MODEL 880 (TP108(D)) PUNCTURE DROP ORIENTATION - LEFT SIDE SURFACE	.2-17
FIGURE 2.7.G - MODEL 880 (TP206(A)) PUNCTURE DROP ORIENTATION - LOCK COVER	
FIGURE 2.7.H - MODEL 880 (TP206(C)) PUNCTURE DROP ORIENTATION – LOCK COVER	.2-18
FIGURE 2.7.I - MODEL 880 (TP108(B)) PUNCTURE DROP ORIENTATION – LOCK COVER	
FIGURE 2.7.J - MODEL 880 (TP186(A) JACKET VERSION 2) PUNCTURE DROP ORIENTATION - LOCK COVER	
FIGURE 2.7.K - MODEL 880 (TP186(B) JACKET VERSION 2) PUNCTURE DROP ORIENTATION - LOCK COVER	
FIGURE 2.7.L - MODEL 880 (TP206(B)) PUNCTURE DROP ORIENTATION – LOCK COVER	
FIGURE 2.7.M - MODEL 880 (TP216-2 JACKET VERSION 3) PUNCTURE DROP ORIENTATION - LOCK COVER	
FIGURE 3.4.A: MODEL OF CYLINDRICAL PACKAGE FOR HEAT ANALYSIS	
FIGURE 5.4.A SAMPLE SURFACE CORRECTION FACTOR DISTANCE CRITERIA	

QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page 1-1

Section 1 - GENERAL INFORMATION

1.1 Introduction

The Model 880 Series are designed as industrial radiography exposure devices, source changers and transport packages for Type B quantities of special form radioactive material. They conform to the Type B(U)-96 criteria for packaging in accordance 10 CFR 71, 49 CFR 173, IAEA Regulations for the Safe Transport of Radioactive Material No. TS-R-1 (2009 Edition) and Canadian Nuclear Safety Commission (CNSC) PTNS Regulations SOR/2015-145. This submission is formatted in accordance with NUREG-1886 "Joint Canada – United States Guide for Approval of Type B(U) and Fissile Material Transportation Packages" dated March 2009.

1.2 Package Description

The Model 880 Series packages are constructed in accordance with the drawings included in Section 1.3. The 880 has four versions for Type B quantity transport. Table 1.2.A lists the maximum activity capacities of each version. The physical construction of the 880 Delta and the 880 Sigma (including the shield construction) is identical. These devices differ from the 880 Elite devices in the size and weight of the shield as well as the overall package weight. The 880SC construction is identical to the 880 Delta except that the 880 Delta front and rear plates are replaced with a different lock assembly plate on the 880SC.

The shields for the 880 Delta and 880 Sigma vary in Ir-192 unit capacity which is based on the natural variability in the shield consistency created during the depleted uranium pouring/cooling process. These variations can produce shields with slightly lower shielding capacity than the 150 Curies required for the 880 Delta (e.g. 130 Curies of Ir-192) and are therefore made into 880 Sigma packages. (Note that the capacity for both the 880 Delta and 880 Sigma are the same for Se-75. The gamma energy from Se-75 is less penetrating than Ir-192 therefore the shield variations which are clearly observable for Ir-192 do not occur with Se-75. Since the shielding on the 880 Sigma is greater than the shielding for the 880 Elite, and the 880 Elite is rated for the same Se-75 capacity as the 880 Delta, the 880 Sigma will be adequate to shield Se-75 at that same capacity. The shield used on the 880SC is the same shield used on the 880 Delta and radiation profiles for the 880SC demonstrate unit capacity equal to the 880 Delta.

All 880 Series packages allow for the use of an optional jacket which facilitates the package use as a radiography device/source changer and transport package. There are three versions of the jacket for use on the 880 Delta, 880 Sigma and 880 Elite packages. The 880SC can use the Version 1 jacket. These jackets do not impair the package's ability to meet the Type B requirements as described in this Safety Analysis Report (SAR).

QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page 1-2

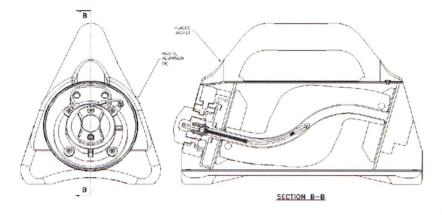


Figure 1.2.A - 880 Delta, 880 Sigma and 880 Elite Packages with Optional Jacket (Version 1)

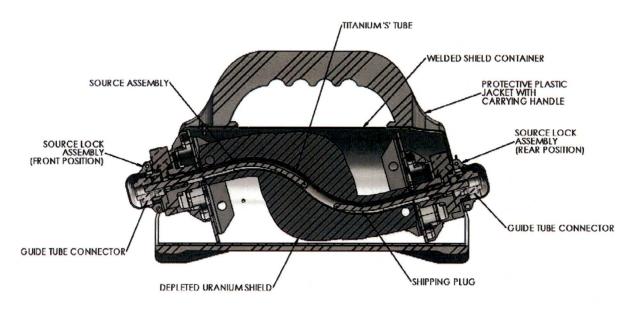


Figure 1.2.B – 880SC Package with Optional Jacket (Version 1)

The 880 Delta, 880 Sigma and 880 Elite packages without the jacket measure approximately 5 inches (127 mm) in diameter by 13 5/16 inches (338 mm) long. The packages with Version 1 of the jacket measures approximately 13 $\frac{1}{2}$ inches (343 mm) long by 7 $\frac{1}{2}$ inches (191 mm) wide by 9 inches (229 mm) tall. The packages with Version 2 of the jacket measures approximately 13 $\frac{1}{2}$ inches (343 mm) long by 6 inches (152 mm) wide by 11.33 inches (288 mm) tall. The packages with Version 3 of the jacket measures approximately 13 $\frac{1}{2}$ inches (343 mm) long by 6 inches (152 mm) wide by 11.33 inches (343 mm) long by 6 inches (152 mm) wide by 13 $\frac{1}{2}$ inches (343 mm) long by 6 inches (152 mm) wide by 13 $\frac{1}{2}$ inches (343 mm) long by 6 inches (152 mm) wide by 13 $\frac{1}{2}$ inches (343 mm) long by 6 inches (152 mm) tall.

QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page 1-3

The 880SC package without the jacket measure approximately 5 inches (127 mm) in diameter by 15 ¼ inches (387 mm) long. The 880SC package with Version 1 of the jacket measures approximately 15 ¼ inches (387 mm) long by 7 ½ inches (191 mm) wide by 9 inches (229 mm) tall.

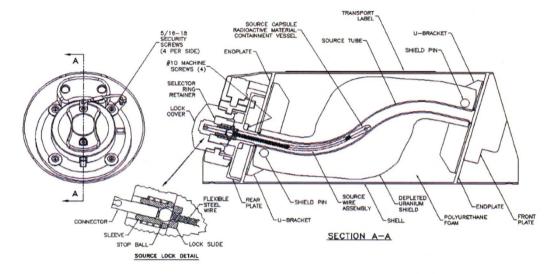
The general package information is shown in Table 1.2.A. The maximum weight of the package contents will not exceed 0.04 lbs (18 grams) as special form sources attached to a source wire assembly.

Model	Nuclide	Form	Maximum Capacity ¹	Maximum DU Weight	Maximum Weight Without Jacket	Maximum Weight With Jacket (Version 1)	Maximum Weight With Jacket (Version 2 or 3)
880	Ir-192	Special Form Sources	150 Ci	34.4 lbs	46 lbs	52 lbs	55 lbs
Delta	Se-75	Special Form Sources	150 Ci	(15.6 kg)	(21 kg)	(24 kg)	(25 kg)
880	Ir-192	Special Form Sources	130 Ci	34.4 lbs	46 lbs	52 lbs	55 lbs
Sigma	Se-75	Special Form Sources	150 Ci	(15.6 kg)	(21 kg)	(24 kg)	(25 kg)
880 Elite	Ir-192	Special Form Sources	50 Ci	25 lbs	37 lbs	42 lbs	45 lbs
	Se-75	Special Form Sources	150 Ci	(11 kg)	(17 kg)	(19 kg)	(20 kg)
	Ir-192	Special Form	150 Ci	34.4 lbs	46 lbs	52 lbs	
880SC	Se-75	Sources	150 Ci	(15.6 kg)	(21 kg)	(24 kg)	NA

Table 1.2A: Model 880 Series Package Information

¹The Model 880SC uses only the Version 1 optional jacket.

1.2.1 Packaging


Except for the shield assembly, fill foam, copper spacers, some of the lock assembly components, lock cover, shield pin, source wire assembly and optional jackets, all material of construction are stainless steels. On the Model 880 Delta, 880 Sigma and 880 Elite packages, the keyed lock assembly mount and the lock cover can be either stainless steel or aluminum. The major components of the package consist of the following:

- Welded cylindrical body
- Depleted Uranium shield
- Rear plate with locking assembly (Models 880 Delta, 880 Sigma or 880 Elite Only)
- Front plate with shield port (Models 880 Delta, 880 Sigma or 880 Elite Only)

¹ Maximum Capacity Activity for Ir-192 is defined as output Curies as required in ANSI N432 and 10 CFR 34.20 and in line with TS-R-1 and Rulemaking by the USNRC and the USDOT published in the Federal Register on 26 January 2004.

QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page 1-4

- Lock Assembly plates (Model 880SC Only)
- Shipping Plug Assembly (Model 880SC Only)
- Optional jacket (three versions)
- Containment System

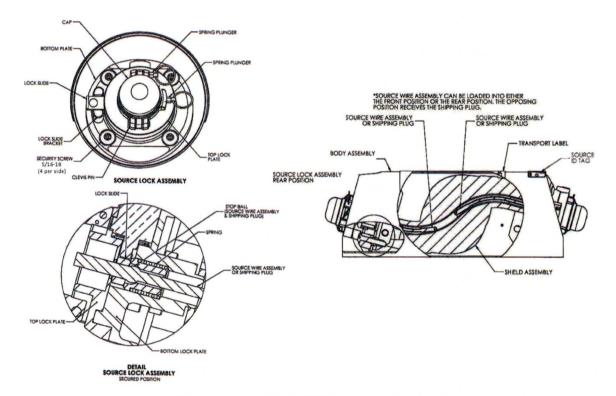


Figure 1.2.C - Model 880SC Transport Package

QSA Global, Inc. Burlington, Massachusetts

June 2017 - Revision 12 Page 1-5

The following paragraphs describe the major components of the transport package

1.2.1.1 Welded Cylindrical Body

The welded body consists of a 5 inch (127 mm) diameter, 0.059-0.071 inch (1.5-1.8 mm) walled stainless steel tube with 0.12 inch (3 mm) thick endplates welded to the inner tube diameter at both ends. Both endplates are parallel to each other but are angled at 75° to the horizontal tube. The endplates are machined at the 75° angle to reduce the welding gap at the tube-shell interface. A U-bracket is welded to each endplate and located on the inside cavity of the shell tube.

1.2.1.2 Depleted Uranium Shield

The depleted uranium shield is centrally located within the welded body between the endplates. It is fastened to each U-bracket by a 0.37 inch (9.5 mm) diameter, titanium shield pin. The pin passes through a hole on the end (ear) of the shield and holes of the U-bracket. A U-shaped copper spacer fills the gap between the shield and U-bracket. The shield is not supported by the source tube (S-tube).

An S-shaped titanium source tube is cast into the center of the shield. The source tube provides a cavity for the source wire assembly and the shipping plug assembly to travel through during use. For the Models 880 Delta, 880 Sigma and 880 Elite, the source capsule is positioned at the center of the shield when the source wire is in the secured position. For the Model 880SC the source capsule is positioned approximately 4 mm (0.15 inches) away from the center of the shield when the source wire is in the secured position.

The depleted uranium shield weights are shown in Table 1.2.A. The difference in weight is contained in the center section of the shield. The end (ear) sections of the two shield types are structurally the same.

Polyurethane foam is poured through a hole in the endplate and U-bracket to fill the cavity around the depleted uranium shield. This prevents contamination to and from the shield. A label with all the necessary transport information is attached to the cylindrical shell body.

1.2.1.3 Rear Plate with Locking Assembly (Model 880 Delta, 880 Sigma and 880 Elite Only)

The rear plate assembly is attached to the welded body with four (4) 5/16-18, $1\frac{1}{2}$ inch long security (tamperproof) screws and thread lubricant through rivnuts assembled into the endplate. The security screws are torqued to 110 ± 5 inchpounds.

The rear plate assembly consists of a source wire locking mechanism fastened to the rear plate with four (4), #10-32, 1 $\frac{1}{4}$ inch long (or 1 3/16 inch long) machine screws and loctite. These screws are torqued to 30 ± 5 inch-pounds. A lock mount with keyed plunger lock is secured to the rear plate with two (2), #10-32, $\frac{1}{2}$ inch long

QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page 1-6

machine screws and loctite. Torque requirements for the lock mount screws are not needed. The keyed plunger lock serves as a tertiary lock for transport. It can only be engaged when the source wire assembly is located in the fully shielded position as described in Section 1.2.4. The lock mount for the keyed plunger lock can be made from aluminum or stainless steel. Additionally the aluminum version can include a stainless steel sleeve which is inserted between the lock mount and the keyed plunger lock.

The locking mechanism of the rear plate assembly is protected during storage and transportation by a lock cover. This lock cover can be either aluminum or stainless steel.

1.2.1.4 Front Plate with Shield Port Assembly (Model 880 Delta, 880 Sigma and 880 Elite Only)

The front plate assembly is attached to the welded body with four (4) 5/16-18, $1\frac{1}{2}$ inch long security (tamperproof) screws and thread lubricant through rivnuts assembled into the endplate. The security screws are torqued to 110 ± 5 inchpounds.

The front plate assembly consists of shielded port mechanism contained within the front plate. The mechanism can only be opened with a guide tube connector fitting inserted into the opening and rotated. A knob covers the port and blocks access to the shield disc. The shield disc and knob both block access to the source assembly.

1.2.1.5 Locking Plate Assembly (Model 880SC Only)

The locking plate assembly is attached to the welded body with four (4) 5/16-18, $1\frac{1}{2}$ inch long security (tamperproof) screws and thread lubricant through rivnuts assembled into the endplate. The security screws are torqued to 110 ± 5 inchpounds. The Model 880SC uses two locking plate assemblies located at the front and rear ends of the package. These locking plates are used to secure a source wire assembly on one end of the package and a shipping plug assembly on the opposite end of the package. The source wire assembly and the shipping plug assembly can be loaded into either side of the transport package.

The locking plate assembly consists of a locking mechanism fastened to the plate with four (4), $\frac{1}{4}$ -28, $\frac{3}{4}$ inch long screws and loctite. These screws are torqued to 60 \pm 5 inch-pounds. A keyed plunger lock is incorporated into the top lock plate. The keyed plunger lock serves as a tertiary lock for transport. It can only be engaged when the source wire and shipping plug assemblies are located in the fully shielded position. The locking mechanism of the plate assembly is protected during storage and transportation by a stainless steel cap.

QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page 1-7

1.2.1.6 Shipping Plug Assembly (Model 880SC Only)

During transport of a radioactive source assembly in the 880SC package, a shipping plug assembly is loaded into the other locking plate assembly on the opposite side of the package. During transport and storage, this shipping plug assembly provides additional shielding to the package and it is only removed during radiography operations.

1.2.1.7 Optional Jacket

The package cylinder can be modified to include an optional polyurethane jacket. There are three versions of the jacket which can be used for these packages. The Models 880 Delta, 880 Sigma and 880 Elite can use any of the optional jackets, the Model 880SC can use only the Version 1 jacket design.

All versions of the jacket provide a handle, a stable base and are attached to the shell cylinder by rivets or screws located outside the shield cavity area. Version 1 of the jacket has a handle section that may also contain an optional handle support tube and wire molded in for additional reinforcement. Version 2 of the jacket incorporates wheels on the base to facilitate movement during use as a radiography exposure device. Version 3 of the jacket incorporates a PM-Tag assembly used for unit tracking purposes. This assembly includes antennas in the handle support, lithiumion batteries and other circuitry associated with the functionality of the PM-Tag. The PM-Tag assembly parts are sealed in a watertight plastic box located in the base of the jacket.

All jackets include a cutout to allow permanent labeling to be attached directly to the shell cylinder. Space is available on the permanent label for stick-on DOT shipping labels. The permanent label has the required information etched similar to other previously approved Type B packages (CoC 9283, 9269) which have demonstrated the ability to pass the fire test.

1.2.1.8 Containment System

The locking assembly on the Model 880 Delta, 880 Sigma and 880 Elite transport packages is similar to the locking assembly on the previously approved model 660-OP package, Certificate number 9283. This allows the same source wire assemblies to be used in the Model 880 Delta, 880 Sigma and 880 Elite as in the 660-OP package.

The locking assembly on the Model 880SC transport package utilizes many of the same components as the other Model 880 style package designs with some modifications to limit source assembly placement within the package. The 880SC package is designed to transport the same source wire assemblies used in the Model 880 Delta, 880 Sigma and 880 Elite style packages.

QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page 1-8

The radioactive material of these source assemblies is sealed in a special form source capsule. The source capsule, stop ball and connector are swaged to a flexible steel wire to form the source wire assembly.

1.2.2 Contents

The Model 880 Series transport packages are designed to transport special form capsules containing the isotopes listed in Table 1.2.A. Additional information for the contents is provided in Table 1.2.B. Table 1.2.B has been adjusted to include the maximum decay heat for Ir-192 adjusted to account for content activity of the source, and to include the weight of the source wire assembly holding the radioactive contents. Actual content to output activity varies based on the capsule configuration as well as variations in isotope self-absorption. A factor of 2.3 was used for Ir-192 to convert output activity to content activity as this factor reflects the worst case variation for Ir-192 sources transported in these packages. The source capsules are loaded into the Model 880 Series device and secured according to the procedure described in Section 7.

The maximum weight of the contents for the shield containers listed in Table 1.2.B are calculated based on the package capacity, the lowest specific activity of Ir-192 (200 Ci/gram) used in source production for these devices and the weight of the remaining source assembly components that comprise the source holder.

Note: Ir-192 of higher specific activity can be used but this would produce sources with lower total mass of the contents. Se-75 has a lower density than Ir-192 and will produce source capsules of lesser maximum weight than their Ir-192 counterparts. Values listed in the Table 1.2.B are the maximum content masses.

Participal Destantian Astricitati Consula Form ² Chamical District Maximum Maximum									
Package ID	Isotope	Activity Capsule Form ²		Activity ¹ Capsule Form ² Chemical/Physical		Chemical/Physical	Maximum	Maximum	
		1		Form	Content Weight	Decay Heat ³			
	L			· · · · · · · · · · · · ·					
880 Delta	Ir-192	150 Ci	Special Form	Metal	18 gram	3 Watts			
	Se-75	150 Ci	Special Form	Metal-Selenide		0.76 Watts			
			-	Compound					
880 Sigma	Ir-192	130 Ci	Special Form Metal		18 gram	2.4 Watts			
	Se-75	150 Ci	Special Form	Metal-Selenide		0.76 Watts			
				Compound					
880 Elite	Ir-192	50 Ci	50 Ci Special Form Me		18 gram	1 Watt			
	Se-75	150 Ci	Special Form	Metal-Selenide		0.76 Watts			
			-	Compound					
880SC	Ir-192	150 Ci	Special Form	Metal	18 gram	3 Watts			
	Se-75	150 Ci	Special Form	Metal-Selenide		0.76 Watts			
L				Compound					

Table 1.2.B: Isotope Information Permitted in the Model 880 Series Packages

¹ Maximum Activity for Ir-192 is defined as output Curies as required in ANSI N432 and 10 CFR 34.20 and in line with TS-R-1 and Rulemaking by the USNRC and the USDOT published in the Federal Register on 26 January 2004.

² Special Form is defined in 10 CFR 71, 49 CFR 173, and IAEA TS-R-1.

³ Maximum decay heat for Ir-192 is calculated by correcting the output activity to content activity. A factor of 2.3 is used for Ir-192 to account for source capsule and self-absorption in this conversion. No corrections are made for Se-75.

QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page 1-9

1.2.3 Special Requirements for Plutonium

Not applicable. This package is not used for the transportation of plutonium.

1.2.4 Operational Features

These packages do not involve complex containment systems for source securement. The sources for these packages are all special form, welded capsules. The source wire assembly is held securely in the device by components of the rear plate assembly on the Models 880 Delta, 880 Sigma and 880 Elite style packages and by components of the locking plate assembly on the Model 880SC package. On the Model 880 Delta, 880 Sigma and 880 Elite packages, the sleeve, in conjunction with the selector ring retainer, prevents the stop ball of the source wire from being pulled through the rear of the package during transport. On the Model 880SC, the sleeve, in conjunction with the lockslide and top and bottom lock plates, prevents the stop ball of the source wire from being pulled out the rear of the package during transport.

For the Model 880 Delta, 880 Sigma and 880 Elite packages, the lock slide in the rear plate assembly, prevents the stop ball from being pushed out through the front of the package when in the secured position. When the Model 880 Delta, 880 Sigma and 880 Elite packages are prepared for transport, the lock slide is locked in the secured position and the selector ring is rotated to the lock position preventing source movement. A cover over the source wire connector prevents access to the source assembly until a keyed lock is actuated and the cover removed. This cover is in place during transport of the package.

For the Model 880SC package, the sleeve in the locking plate assembly, prevents the stop ball from being pushed forward past the center of the shield out through the opposite end of the package when in the secured position. When the Model 880SC is prepared for transport, the lock slide further secures the source wire in the lock position preventing its removal from the package. A cap is installed over the source wire connector which prevents access to the source assembly until a spring plunger is released to allow opening of the cover. This cover is in place during transport of the package.

The 880 Series transport containers are assembled and secured as described in Section 7.

1.3 Appendix

Figures 1.3.A. through 1.3.G show sketches of the Model 880 style packages as prepared for transport in the possible transport configurations. Additional drawings of the Model 880 style transport packages are also enclosed in this appendix.

QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page 1-10 Figure 1.3.A – Sketch of Model 880 Delta, 880 Sigma or 880 Elite without optional Jacket Prepared for Transport

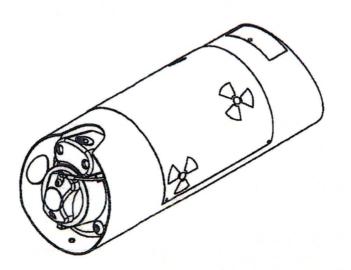
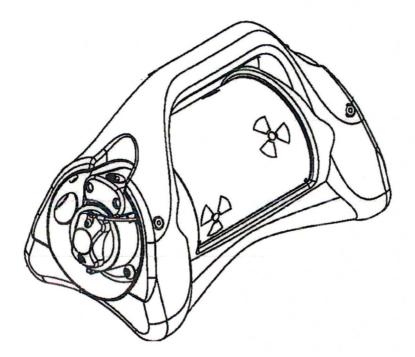



Figure 1.3.B – Sketch of Model 880 Delta, 880 Sigma or 880 Elite with optional Jacket #1 Prepared for Transport

QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page 1-11 1

Figure 1.3.C – Sketch of Model 880 Delta, 880 Sigma or 880 Elite with optional Jacket #2 Prepared for Transport

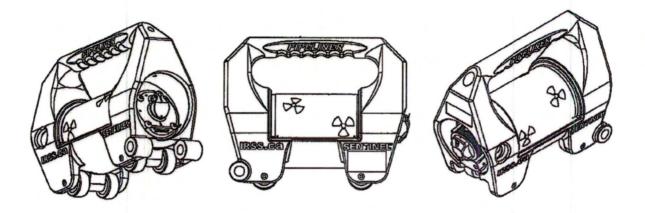
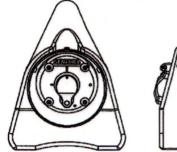
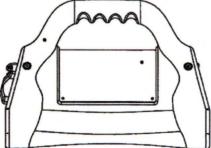
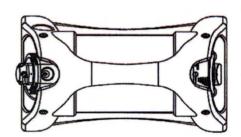





Figure 1.3.D – Sketch of Model 880 Delta, 880 Sigma or 880 Elite with optional Jacket #3 Prepared for Transport

QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page 1-12

Figure 1.3.E - Sketch of Model 880 without optional Jacket Prepared for Transport

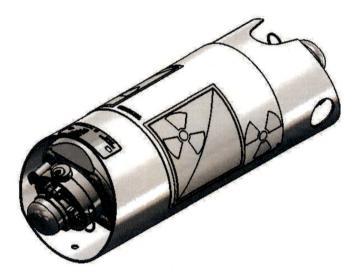
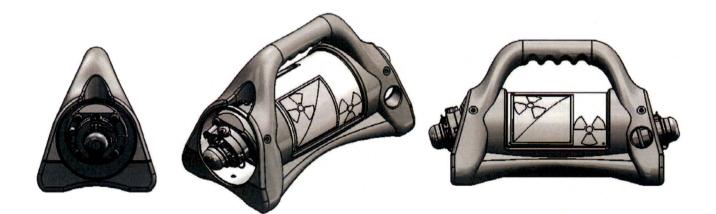
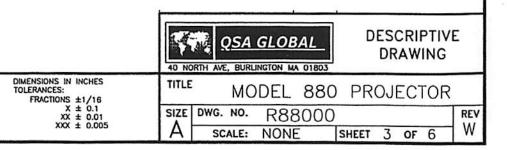



Figure 1.3.F - Sketch of Model 880SC with optional Jacket Version #1 Prepared for Transport

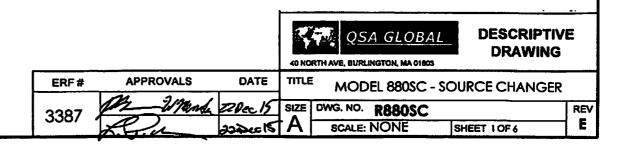

QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page 1-13

1.3.1 Drawing R88000

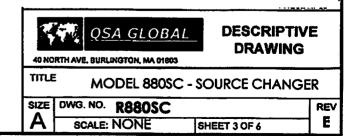
1	APPROVAL	S				······		1				_
1	SCrai	11-20-17	64	- <i>1</i>	OSA	GLO	BAL	D	ES(CRII	PTIV	E
	Abar	RUAJ 17		•					DR	AW	ING	
0	K Free	LAJ an17	40 (NORTH /	ve, bur	LINGTON I	A 01803					
	DIMENSIONS IN INCH TOLERANCES: FRACTIONS ±1/	16	TITLE	:	мо	DEL	880	PR	JIC	ECT	OR	
	X ± 0 XX ± 0 XXX ± 0	.01	SIZE	DWG.	NO.	R88	0000	-				REV
	××× ± 0		A	S	CALE:	NONE		SHEET	1	OF	6	W

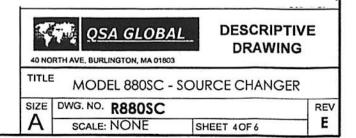
DIMENSIO

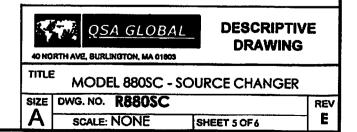
	40 NORTH AVE, BURLINGTON MA 01803	
NS IN INCHES ES: NONS ±1/16	MODEL 880 PROJECTOR	2
	SIZE DWG. NO. R88000	REV
XXX ± 0.005	A SCALE: NONE SHEET 2 OF 6	W

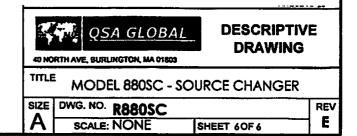

	40 NORTH AVE, BURLINGTON MA 01803	0.0025
DIMENSIONS IN INCHES TOLERANCES: FRACTIONS ±1/16	MODEL 880 PROJECTOR	2
	SIZE DWG. NO. R88000	REV
MA 2 0.000	A SCALE: NONE SHEET 4 OF 6	٦ W I

5	40 1			GLO		D			PTIVI ING	E
DIMENSIONS IN INCHES TOLERANCES: FRACTIONS ±1/16	TITLE		МО	DEL	880	PR	OJI	ECT	FOR	
	SIZE A	DWG. N		R88	8000	SHEET	5	OF	6	rev W


	DESCRIPTIVE 40. NORTH AVE, BURLINGTON MA 01803 DESCRIPTIVE DRAWING						
DIMENSIONS IN INCHES TOLERANCES: FRACTIONS ±1/16	MODEL 880 PROJECTOR						
		REV					
XXX ± 0.005	A SCALE: NONE SHEET 6 OF 6	W					


QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page 1-14


1.3.2 Drawing R880SC



40 NORTH AVE, BURLINGTON, MA 01803							
TITLE	мо	DEL 880SC	- SOURCE CHANGER				
SIZE	DWG. NO	. R880SC		REV			
A	SCAL	E: NONE	SHEET 2OF6	E			

QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page 1-15

1.3.3 Drawing R88095

QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page 2-1

Section 2 - STRUCTURAL EVALUATION

This section identifies and describes the principal structural engineering design of the packaging, components, and systems important to safety and compliance with the performance requirements of 10 CFR Part 71 and TS-R-1.

2.1 Description of Structural Design

2.1.1 Discussion

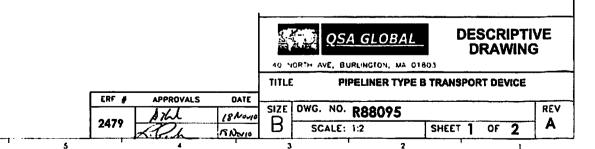
The Model 880 Series transport packages are described in Section 1.2, "Package Description."

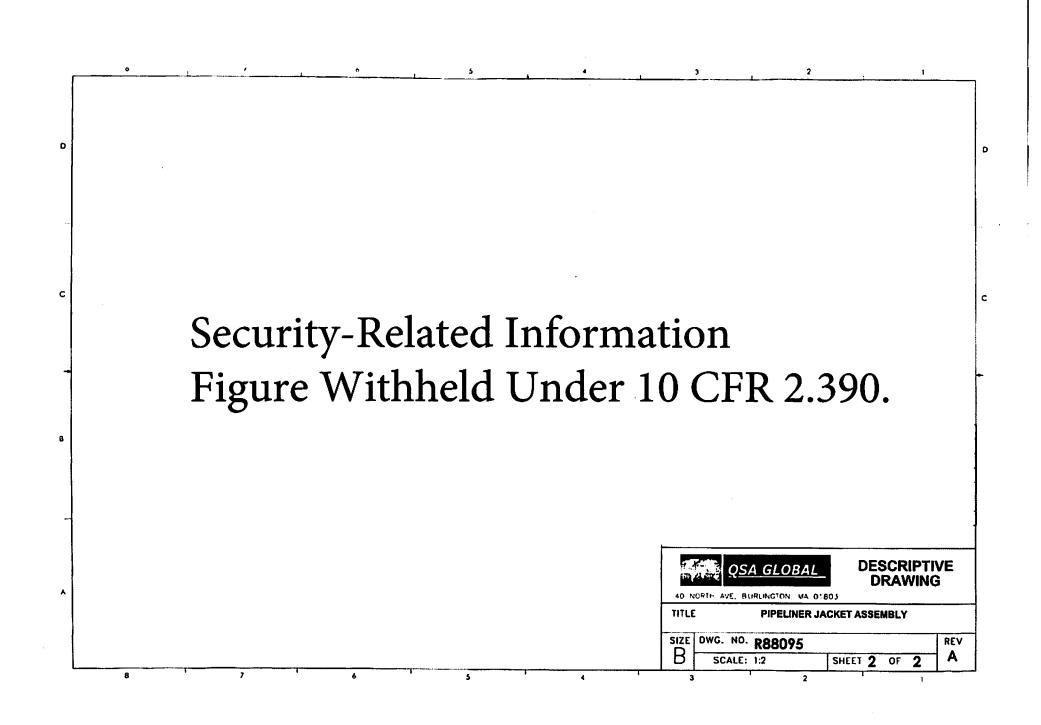
2.1.2 Design Criteria

The Model 880 Series transport packages are designed to comply with the requirements for Type B(U) packaging as prescribed by 10 CFR 71, IAEA TS-R-1 (2009 Edition) and CNSC PTNS SOR/2015-145. All design criteria are evaluated by a straightforward application of the appropriate section of these requirements.

2.1.3 Weight and Centers of Gravity

The transport package weight varies from 37 lbs (17 kg) up to 55 lb (25 kg). The center of gravity of the 880 Series transport packages is approximately 2.5 inches (64 mm) above the bottom of the package.


2.1.4 Identification of Codes and Standards for Package Design


See Section 2.1.2 relating to design criteria of the package. For components important to safety or package integrity, any applicable, specific codes or standards related to the finished assemblies for these transport packages are specified on the drawings contained in Appendix 1.3. All component fabrication (including assembly) is controlled under the QSA Global, Inc. Quality Assurance Plan approved by the USNRC and ISO. All welding under this plan adheres to the standards referenced on the drawings in Appendix 1.3. All hardware meets the standards referenced on the drawings in Appendix 1.3. All external fabrication deemed critical to safety is either verified to equivalent in-house standards or dedicated as appropriate for use prior to release as part of this transport package.

In general, the transport aspects of this design was based on the Type A and Type B(U) container requirements of 49 CFR, 10 CFR 71, CNSC PTNS and IAEA regulations as identified in Section 1.1.

n

C

QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page 2-2

2.2 Materials

2.2.1 Material Properties and Specifications

Table 2.2.A lists the relevant mechanical properties (at ambient temperature) of the principal materials used in the Model 880 Series transport package. The location and use of these materials is shown on the drawings contained in Section 1.3. The sources in the last column are listed after the tables.

Material	Form	Condition	Tensile	Yield	Elongation	Specification
Matchai	Torm	Condition	Strength	Strength	(%)	Specification
			(ksi)	(ksi)		
Aluminum Type 6061	Bar	T6	45	40	17	Ref #1 Page 61
Brass Type 360	Bar	H02	58	45	25	Ref #1 Page 337
Copper Type C101 or C110	Sheet	H02	42	36	14	Ref #1 Page 276 & 284
Depleted Uranium (Minimum 99%)	Casting	As Cast	58	29	4	Ref #1 Page 822
Stainless Steel Type CF3	Casting	As Cast	70	30	35	ASTM A743
Stainless Steel Type CF16FA	Casting	As Cast	65	28	25	ASTM A743
Stainless Steel Type XM-7 (S30430)	Fastener	NA	80	30	10	Federal Specification FF-S-86.
Stainless Steel Type 303	Bar	Annealed	85	35	50	Ref #2 Page 19
Stainless Steel Type 304/304L	Plate/Sheet	Annealed	70	25	40	ASTM A240 or A666
Stainless Steel Type 304/304L	Bar	Annealed	70	25	30	ASTM A276 or A479
Stainless Steel Type 304L	Tube	Annealed	70	25	40	ASTM A249 or A269
Stainless Steel Type 304L	Bar	Annealed	75	30	35	ASTM A743 Grade CF3
Stainless Steel Type 316	Fastener	CW	95	60	20	ASTM F593
Stainless Steel Type 430	Fastener	NA	Ref #3 Note	NA	NA	A276, A580 per NAS1330 or as specified in Ref #3
Stainless Steel Type 630 (17-4PH)	Bar	H900	190	170	10	ASTM A564
Stainless Steel Type 18-8	Fastener	NA	70	45	30	Commercial Grade Item
Titanium Tube Ti-3AL-2.5V	Tube	Grade 9 Annealed	90	70	15	ASTM B338 Grade 9
Titanium Shield Pin Ti-6AL-4V	Rod	Grade 5	130	120	10	ASTM B348
Tungsten	Bar	Class 1	94	75	2	ASTM B777 Class 1

Table 2.2.A: Mechanical Properties of Principal Package Materials

Resource references:

- 1. American Society for Metals, Metals Handbook Ninth Edition, Volume 2 Properties and Selections: Nonferrous Alloys and Pure Metals, 1979.
- 2. American Society for Metals. Metals Handbook Ninth Edition, Volume 3 Properties and Selections: Stainless Steels, Tool Materials and Special-Purpose Metals, 1980.

QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page 2-3

3. National Aerospace Standard, NAS1330, Nut, Blind Rivet – Countersunk Head. Note: Fastener used is NAS1330C5E having 6870 Lb-Min Ultimate Thread Strength Tested per ASTM F606.

2.2.2 Chemical, Galvanic or Other Reactions

The non-safety related materials are aluminum, brass and polyurethane. Version 3 of the optional jacket also includes lithium-ion batteries and other circuitry associated with the functionality of the PM-Tag. The aluminum and brass are more susceptible to corrosion and chemical reaction than the safety materials, but pose no threat to safety or containment.

The lithium-ion batteries, and other circuitry in Version 3 of the optional jacket, are contained in a watertight plastic container within the jacket. These components do not come in contact with the other package components and will pose no threat to safety or containment due to chemical, galvanic or other reactions during transport.

The lithium-ion battery/cells comply with the transport requirements of 49 CFR 173.185 which requires all lithium cell(s) or batteries to comply with UN Manual of Tests and Criterial Sub-Section 38.3. This includes performance based testing that would simulate transport conditions and requires the battery/cells to maintain their integrity without leakage, rupture or other failure. So long as the lithium-ion cells and battery retain their integrity, there will be no chemical, galvanic or other reactions that could adversely impact the package integrity during transport.

The safety related materials used in the construction of the Model 880 Series transport packages are depleted uranium metal, stainless steel, titanium, tungsten, and copper. There will be no significant chemical or galvanic action between any of these components.

To prevent the possible formation of a eutectic alloy from steel and depleted uranium during the Hypothetical Accident Conditions thermal scenario, defined by 10 CFR 71.73(c)(4), copper separators are used at all steel-uranium interfaces. With this construction, there will be no significant chemical or galvanic reaction between package components during normal or hypothetical accident conditions of transport.

2.2.3 Effects of Radiation on Materials

Depleted uranium, tungsten, steel and polyurethane foam have been used in this package as well as other transport packaging for decades without degradation of the package performance over time due to irradiation from the package contents.

2.3 Fabrication and Examination

2.3.1 Fabrication

Package components are procured, manufactured and inspected for use under QSA Global, Inc. NRC approved QA Program Number 0040. This QA program is based on the application of guidance contained in NUREG/CR-6407 "Classification of Transportation Packing and Dry Spent Fuel Storage System Components According to Importance to Safety" (1996) and Regulatory Guide 7.10 Revision 3 "Establishing Quality Assurance Programs for Packaging Used in Transport of Radioactive Material" (2015). Quality Class A components on the package are considered to be important to the package safety. All transport packages will be evaluated

QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page 2-4

and documented for compliance to the drawings provided in Section 1.3 prior to initial use as part of a Model 880 Series transport package.

2.3.2 Examination

Section 8 describes the acceptance testing and routine maintenance requirements for package components used on the Model 880 Series packages.

2.4 General Requirements for All Packages

2.4.1 Minimum Package Size

The Model 880 transport package is cylindrically shaped, with the smallest overall dimensions of 5 inches (127 mm) in diameter and 13 5/16 inches (338 mm) in length. Therefore, it exceeds the minimum package size requirements specified in the referenced regulations.

2.4.2 Tamper-Indicating Feature

The front port of the Model 880 Delta, 880 Sigma and 880 Elite packages are designed to require a special tool (guide tube fitting) to be placed in the front port and rotated before the shield can be opened. This prevents any inadvertent or unintentional opening of the package during transport. A provision for a tamper indicator seal wire around the knob of the front plate assembly is provided. This seal wire is not readily breakable, therefore if it is broken during transport, it serves as evidence of possible unauthorized access to the contents. Use of either of these features meets the tamper indicator requirements for these packages.

For the Model 880SC, a tamper indicator seal wire is inserted through the lock assembly top plate and cap on each locking assembly. This seal wire is not readily breakable, therefore if it is broken during transport, it serves as evidence of possible unauthorized access to the contents. Use of these features meets the tamper indicator requirements for this package.

2.4.3 Positive Closure

These packages do not involve complex containment systems for source securement. The sources for these packages are all special form, welded capsules. The source wire assembly is held securely in the packages by components of the rear plate or locking plate assemblies (as applicable). These components prevent the stop ball of the source wire from moving from the secured position in the package.

When the Model 880 Series packages are prepared for transport, the sleeve and the lock slide maintain the source wire assembly locked in the secured position preventing source movement. A cover/cap over the source wire connector prevents access to the source assembly during transport. These features maintain positive closure of the transport package and containment of the radioactive material during transport.

QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page 2-5

2.5 Lifting and Tiedown Standards for All Packages

2.5.1 Lifting Devices

The Model 880 transport package has no lifting device but can be lifted by grasping the steel welded cylinder with two hands. The optional plastic jackets incorporate handles to be used for lifting and carrying. The plastic jacket handles were tested and proven in Test Plan Report 115 Rev 1 and Test Plan 188 Report #1 Rev 12 (See Section 2.12) to withstand a static load of 125 times the package weight without failure.

The 1-1/4-inch diameter hole through the side of the shell cylinder at the lock end could possibly be used as a hoisting point. When lifted from this hole, the minimum factor of safety is 40 against yielding.

If the jacket or hoisting point feature were to fail, it would not affect the shield container and source wire security. As a result, the package safety would not be compromised. Therefore, the lifting devices comply with the requirements of 10 CFR 71.45(a).

2.5.2 Tie-Down Devices

The Model 880 has no system of tie down devices that are a structural part of the transport package. The package could possibly be tied down using the 1-1/4 inch hole, but is not recommended. This hole can withstand a g-force equal to a static force 11 times the weight of the package when applied in tension. At this force, a factor of safety of 4 exists before yielding. As demonstrated in Test Plan Report 115 (Section 2.12) Version 1 of the package handle if used as a tie down can withstand 125 times the weight of the package without failure. As demonstrated in Test Plan Report 188 (Section 2.12), the handle on Version 2 of the package jacket, if used as a tie down, can withstand 25 times the weight of the package without failure. There are no other tie-down features that are part of the structure of the package. The package can be blocked and braced according to standard transportation practices.

2.6 Normal Conditions of Transport

2.6.1 Heat

The decay heat source for the Model 880 Series transport packages are listed in Table 1.2.B. Iridium-192, supplies approximately 8.6 milliwatts per Curie based on assuming a decay energy of 1.46 MeV/decay. The thermal evaluation for the heat test is described in Section 3 and is based on the decay energy of Ir-192 as this is greater than Se-75 (see Table 1.2.B).

The Version 3 jacket includes a lithium-ion battery and electronic circuitry. The Model 880 devices transported with the Version 3 jacket can be transported under two configurations that can affect the package compliance with the heat conditions under normal transport. The Model 880 with the Version 3 jacket can be transported as follows:

QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page 2-6

- <u>Transport Configuration 1</u>: Similar to the transport modes for the Version 1 and 2 transport jackets.
- <u>Transport Configuration 2</u>: This configuration places the Model 880 with the Version 3 transport jacket inside a charging box where the lithium-ion batteries are charging during transport. In this transport condition, the charging box acts as an overpack during transport for the Model 880 package. This transport configuration is not applicable to the Model 880 when transported by commercial carriers, airlines or ships. This configuration is only applicable to road transport of the package by users of the package within vehicles equipped with a charging box.

Calculations supporting the decay heating performance of the Model 880 packages is contained in Section 3.4.1.2 and summarized in Table 2.6.A. In all transport configurations, the maximum temperature of the package is 50°C (122°F) in the shade and still air at 38°C. Accounting for solar heating effects (Section 3.4.1.1), the maximum temperature of the package surface was calculated to be 65.4°C (149.6°F).

2.6.1.1 Summary of Pressures and Temperatures

Table 2.6.A: Summary Temperatures Normal Transport				
Temperature Condition	Model 880 Series	Comments		
Insolation (38°C in full sun)	65.4°C (149.7°F)	Section 3.4.1.1.		
Decay Heating (38°C in shade) (Model 880 Series without the optional jacket)	47°C (117°F)	Section 3.4.1.2		
Decay Heating (38°C in shade) (Model 880 Series using the Version 3 jacket transported outside of the charging box)	48°C (118°F)	Section 3.4.1.2		
Decay Heating (38°C in shade) (Model 880 Series using the Version 3 jacket transported inside of the charging box)	50°C (122°F)	Section 3.4.1.2		

Table 2.6.A: Summary Temperatures Normal Transport

As all components are vented to ambient, no pressure will build up in the package under Normal Transport conditions that would adversely affect package performance or integrity. Evaluation of pressures for this package are contained in Section 3.4.2 and summarized in Table 3.1.B.

2.6.1.2 Differential Thermal Expansion

Expansion of the outer steel shell circumference during Normal Transport is approximated by:

$$\mathbf{E} = \pi \mathbf{D} \alpha \Delta \mathbf{T}$$

QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page 2-7

Where: D =	Diameter of the outer shell (5 in)			
$\alpha =$	Coeffic	Coefficient of Thermal expansion		
$\Delta T =$	Cold te	Cold temperature differential (from -40°F to 65°F)		
$\Delta T =$	Hot temperature differential (from 65°F to 150°F)			
Substituting w	ituting we get: $E = \pi (5 \text{ in})(9.9\mu\text{in/in}^\circ\text{F})(105^\circ\text{F}) = 0.016 \text{ in} (E = \pi (5 \text{ in})(9.9\mu\text{in/in}^\circ\text{F})(85^\circ\text{F}) = 0.013 \text{ in} (h)$			

Manufacturing tolerance on this component is $\pm 1/16$ inch, therefore the thermal expansion encountered during Normal Transport will be insignificant with respect to the manufacturing tolerances of the package.

Reference: "American Society for Metals, Volume 1", 10th Edition.

2.6.1.3 Stress Calculations

As shown in Section 2.6.1.2, thermal differentials will have no adverse effect on the package. Mechanical loads at the maximum weight of the series (55 lbs) are distributed across the central 1/3 of the package body and are small compared to the yield strength of the steel (30,000 psi – See Table 2.2.A).

Inner diameter of body = (5 in - 2(0.071 in)) = 4.86 inArea of Central 1/3 of body cylinder = $(4.86 \text{ in})(4 \text{ in}) = 19.44 \text{ in}^2$ Stress on body cylinder = 55 lbs/19.44 in² = 2.8 psi

This material stress is insignificant to the yield strength of the outer stainless steel cylinder.

2.6.1.4 Comparison with Allowable Stresses

All stresses calculated in Section 2.6.1 are well below strengths for the materials of construction. Further, the Model 880 Series package was fully tested and passed under Normal Conditions of transport. It is therefore concluded that the Model 880 Series package will satisfy the performance requirements specified by the regulations.

2.6.2 Cold

An ambient air temperature of -40° C (-40° F) in still air and shade has no effect on the safety of the package. The safety materials: stainless steel, titanium, tungsten and depleted uranium retain their mechanical properties at this temperature. This temperature will also have no adverse effect on the battery contained in the Version 3 jacket which comply with 49 CFR 173.185, as these batteries are required to retain integrity after repeated exposure to -40° C (-40° F). Thus, it is concluded that the Model 880 transport package will withstand the normal transport cold condition.

QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page 2-8

2.6.3 Reduced External Pressure

The Model 880 Series transport packages are open to the atmosphere and contains no components which could create a differential pressure relative to atmospheric conditions or components within the package. The authorized contents are special form source capsules that meet a minimum ANSI N43.6-2007 and ISO 2919-1999 classification of Class 3 for pressure. This classification is more limiting than the reduced external pressure requirement as it covers 25 kN/m^2 to $7MN/m^2$. Therefore, the reduced external pressure requirements of 3.5 psi in 10 CFR, 8.7 psi (60 kPa) in 49 CFR and IAEA will not adversely affect the package containment.

The Model 880 Series transport packages are open to the atmosphere and contains no components which could create a differential pressure relative to atmospheric conditions or components within the package. The authorized contents are special form source capsules that meet a minimum ANSI N43.6-2007 and ISO 2919-1999 classification of Class 3 for pressure. This classification is more limiting than the reduced external pressure requirement as it covers 25 kN/m^2 to $7MN/m^2$. Therefore, the reduced external pressure requirements of 3.5 psi in 10 CFR, 8.7 psi (60 kPa) in 49 CFR and IAEA will not adversely affect the package containment.

2.6.4 Increased External Pressure

The Model 880 Series transport packages are open to the atmosphere and contain no components which could create a differential pressure relative to atmospheric conditions. The authorized contents are special form source capsules that meet a minimum ANSI N43.6-2007 and ISO 2919-1999 classification of Class 3 for pressure. This classification is more limiting than the reduced external pressure requirement as it covers 25 kN/m² to 7 MN/m². Therefore, the increased external pressure requirements of 20 psi in 10 CFR 71 will not adversely affect the package containment.

2.6.5 Vibration

The lock assemblies on the Model 880 Series package are secured using the fasteners similar to those used on the Model 660 devices (Reference Certificate of Compliance USA/9283/B(U)). The Model 880 Delta, 880 Sigma and 880 Elite packages have been use in transport since 2001 without incident caused by vibration. The lock assembly of the Model 880SC utilizes fasteners similar to those used on the other Model 880 packages, and will also not be adversely impacted by vibration incident to transport.

The shield in the Model 880 Series packages is attached to the brackets by titanium pins. These pins are secured by stainless steel cotter pins. Cotter pins are routinely used in high vibration situations (i.e. wheel bearing nut retention) and will easily withstand vibration incident to transport.

The compact profile of the package ensures a limited affect from transport vibration and acceleration to critical components of the device. The lock attachment screws and end plate screws are tightened to a prescribed torque to prevent unintentional release even after repeated use. It is therefore concluded that the Model 880 Series packages will withstand vibration normally incident to transport.

QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page 2-9

2.6.6 Water Spray

The Model 880 Series transport packages are constructed of water-resistant materials throughout. Therefore, the water spray test would not reduce the shielding effectiveness or structural integrity of the package.

2.6.7 Free Drop

A total of ten test specimens have been tested and evaluated for compliance to these requirements. Four units were tested as described in Test Plan Report 108 to evaluate the non-jacket and Version 1 jacket configurations and two additional units were tested as described in Test Plan Report 186 #1 to evaluate the Version 2 jacket configuration (Section 2.12). One additional unit was tested as described in Test Plan 216 Report to evaluate the Version 3 jacket configuration (Section 2.12). The remaining three test units were tested to evaluate compliance of the Model 880SC under Test Plan Report 206 #1. Justification for drop test orientations and test conditions are contained in Test Plan 108, Test Plan 186, Test Plan 206 and Test Plan 216 (Section. 2.12). The test units were subjected to the 1.2 meter (4 foot) free drop followed by the hypothetical accident 9 m drop and puncture bar drop tests.

Drop orientation impact locations for the 1.2 m free drop included the lock cover and cylinder lip, the cylinder bottom surface, the cylinder left side surface, the lock cap and the lock cover. As seen in Test Reports 108, 186, 206 and 216 (Section 2.12), the test units sustained some damage but remained fully functional with the sources remaining secured and shielded after testing. Radiation profiles performed at the conclusion of all the testing showed that there was no significant increase in radiation levels from any of the test units. The Model 880 Series packages maintained their structural integrity and shielding effectiveness under the normal transport drop test conditions and the packages comply with the requirements of this section.

2.6.8 Corner Drop

This test is not applicable, as the transport package does not transport fissile material, nor is the exterior of the transport package made from either fiberboard or wood.

2.6.9 Compression or Stacking

Test Plan and Report 100 (Section 2.12) documents that Test Specimens P01 and P02 were subjected simultaneously to a compressive load of 459 lbs (209 kg) for a period of 24 hours. This exceeds five times the maximum transport package weight of 46 lbs for the heaviest version of the Model 880 (without the optional jacket). The actual compressive weight of 459 lbs (209 kg) is greater than 13 kPa (2 lb/in²) multiplied by the vertically projected area of the transport package.

Following the test, no damage to the specimens was observed. Radiation profiles performed at the conclusion of the test showed no significant increase in radiation levels. The Model 880 series package maintained its structural integrity and shielding effectiveness and demonstrated that the packages comply with the requirements of this section.

QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page 2-10

2.6.10 Penetration

Models 880 Delta, 880 Sigma and 880 Elite

Test Plan and Report 100 (Section 2.12) documents that Test Specimen P01 was subjected to the penetration test. The penetration bar impacted on top, exterior of the steel cylinder at the point where the shield is closest to the steel cylinder (see Figure 2.6.A).

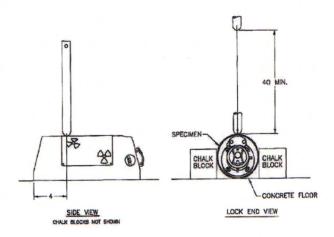


Figure 2.6.A – Specimen P01 Orientation for the Penetration Test

The penetration bar impacted as intended and caused minor damage to the steel cylinder. Radiation profiles performed at the conclusion of the test showed no significant increase in radiation levels. The Model 880 series package maintained its structural integrity and shielding effectiveness and demonstrated that the packages comply with the requirements of this section.

Model 880SC

Test Plan and Report 206 (Section 2.12) documents that Test Specimens TP206(A) and TP206(B) were subjected to the penetration test. The penetration bar impacted on the lock and the lock slide as these were determined to be the most vulnerable to impact (see Figures 2.6.B and 2.6.C).

QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page 2-11

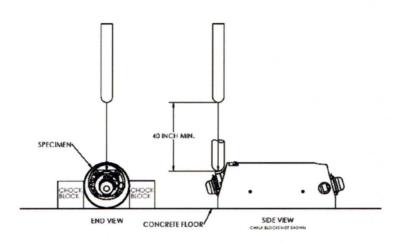


Figure 2.6.B - Specimen TP206(A) Orientation for the Penetration Test

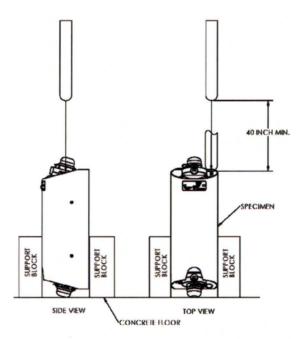


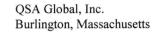
Figure 2.6.C - Specimen TP206(B) Orientation for the Penetration Test

The penetration bar impacted as intended and caused minor damage to the steel cylinder and lock slide components. Radiation profiles performed at the conclusion of the test showed no significant increase in radiation levels. The Model 880SC package maintained its structural integrity and shielding effectiveness and demonstrated that the package complies with the requirements of this section.

QSA Global, Inc. Burlington, Massachusetts

June 2017 - Revision 12 Page 2-12

2.7 Hypothetical Accident Conditions


Sections 2.7.1 through 2.7.5 summarize evaluations and testing for the hypothetical accident conditions of transport tests. Section 2.7.8 summarizes the results of this testing. The test sequence as specified in 10 CFR 71.73 was determined to be the order which would result in the maximum damage to the package, considering the subsequent application of the fire test, because the 880 weldment provides containment and protection to the depleted uranium shield. This weldment protects the shield from damage during the puncture test and also limits shield degradation due to oxidation during the thermal test. The intention of the 30 ft drop was to breach the 880 weldment and/or remove the lock assembly which could allow aggregate damage during the subsequent puncture test allows for additional damage to an area weakened by the 30 ft drop, thereby possibly creating or expanding any breach in the containment which would make the container shield susceptible to oxidation during the thermal testing which would produce the worst case potential damage to the containment system.

A total of ten test specimens have been tested and evaluated for compliance to these requirements. Four units were tested as described in Test Plan Report 108 to evaluate the non-jacket and Version 1 jacket configurations and two additional units were tested as described in Test Plan Report 186 #1 to evaluate the Version 2 jacket configuration (Section 2.12). One additional unit was tested as described in Test Plan Report 216 to evaluate the Version 3 jacket configuration (Section 2.12). The drop of test units from Test Plan 186 were conducted with the test specimens at or below -40° C (-40° F) to evaluate the effect of the cold temperature on the jacket material. Three test specimens were tested as described in Test Plan Report 206 #2 to evaluate the 880SC package configuration. Justification for drop test orientations and test conditions are contained in Test Plan 108, Test Plan 186, Test Plan 206 and Test Plan 216 (Section 2.12).

2.7.1 Free Drop

2.7.1.1 End Drop

This orientation was used for Test Specimens TP108(B), TP186(A), TP186(B), TP206(A), TP206(B) and TP216-2 these orientations are shown in Figure 2.7.A. Results of this testing for TP108(B) produced one broken rear plate security screw, deformation of the steel cylinder and the rear plate puckered. Test unit TP186(A) produced cracks in the jacket, a slight bend to the rear plate, and damage to the lock cover after testing. Test unit TP186(B) caused the jacket to shatter into 5-6 major pieces after impact and caused bending to the jacket mounting screws. Some additional damage was also received by the lock assemblies and weldment shell. Results of this testing for TP206(A) produced two broken lock plate security screws and the top of the lock assembly moved approximately 1/8" away from the weldment end plate. Results of this testing for TP206(B) produced minor damage to the shell and cap. Results of this testing for TP216-2 produced crushing of the dust cover and shell on the rear plate end. The selector ring was also inoperable preventing the ability to unlock the source. In all cases the source remained secured and the shielding intact. Radiation profiles performed at the conclusion of this (and subsequent testing) showed no significant increase in radiation levels and that the package had maintained its structural integrity.

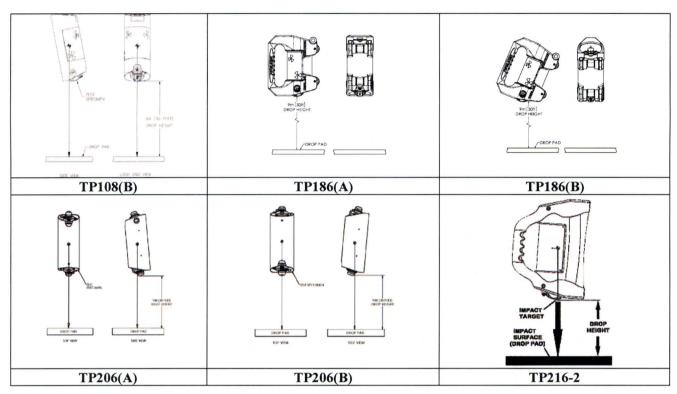
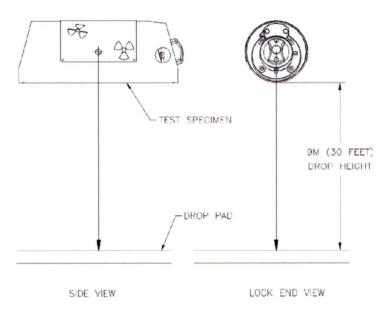



Figure 2.7.A - 9 m Drop Test Orientation – End Drop

2.7.1.2 Side Drop

The side drop was performed on Test Specimens TP108(C) and TP108(D). These drop orientations are shown in Figures 2.7.B and 2.7.C. Results of the testing on specimen TP108(C) produced flattening of the steel cylinder bottom and bending of the front endplate near the bottom. This caused associated binding in movement of the outlet port but did not adversely affect source securement or unit shielding.

QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page 2-14

Figure 2.7.B - Model 880 (TP108(C)) 9 m Drop Test Orientation – Bottom Drop

Results of the testing on specimen TP108(D) produced flattening of the left side of the steel cylinder. Radiation profiles performed at the conclusion of the 9 m (and subsequent testing) showed no significant increase in radiation levels for either test unit and demonstrated that the package maintains its structural integrity under these drop orientations.

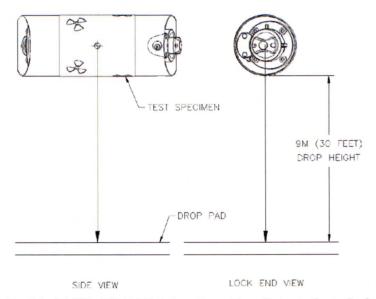
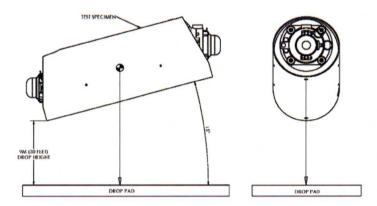


Figure 2.7.C - Model 880 (TP108(D)) 9 m Drop Test Orientation – Left Side Drop


QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page 2-15

2.7.1.3 Corner Drop

Not Applicable. The 880 Series package does not have corners.

2.7.1.4 Oblique Drops

The oblique drop was performed on Test Specimen TP206(C). This drop orientation is shown in Figure 2.7.D. Results of this testing for TP206(C) produced minor damage to the shell and rear cap. The rear cap opened but remained attached to the assembly. The source remained locked and secured.

Figure 2.7.D - Model 880SC (TP206(C)) 9 m Drop Test Orientation – Shallow Angle Drop

Radiation profiles performed at the conclusion of this and subsequent testing showed no significant increase in radiation levels and that the 880SC package had maintained its structural integrity

The oblique drop was not performed on the Model 880 Delta, 880 Sigma or 880 Elite package configurations. In an oblique drop, the energy generated at impact would be distributed across the initial and secondary impact surfaces. This will produce less force on impact at the initial impact location and the force from the secondary impact will cause deformation of the ends of the steel cylinder without contributing to damage which could result in container failure.

Unlike the End and Side drops described in Sections 2.7.1.1 and 2.7.1.2, an oblique drop for these package configurations is less likely to cause a container failure by the mechanisms identified in Test Plans 108 and 186 (Section 2.12). These included fracture or penetration of the projector weldment, displacement of the shield within the projector weldment, distortion or fracture of the source, and failure of the source lock assembly and/or lock mounting screws.

QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page 2-16

2.7.1.5 Summary of Results

See Table 2.7.A for additional test unit results summary. In all cases, radiation profiles performed at the conclusion of all testing showed no significant increase in radiation levels for the test units and demonstrated that the 880 Series packages comply with the requirements of this section.

2.7.2 Crush

Not applicable. This package is not used for the Type B transport of normal form radioactive material.

2.7.3 Puncture

Justification for all test unit puncture orientations are included in Test Plan 108 Report, Test Plan 186 Report #1, Test Plan 206 Report #2 and Test Plan 216 Report (Section 2.12). Following the 9 meter (30 foot) free drop, the test specimens were subjected to the puncture test, in accordance with their respective test plan (Section 2.12). The drop of test unit TP186(A) was conducted with the test specimen at or below -40° C (-40° F) to evaluate the effect of the cold temperature on the jacket material. (The jacket material had broken away from the 880 weldment on test unit TP186(B) during the 9 meter (30 foot) drop and so this unit was tested for the puncture test at ambient temperature since the materials remaining on the 880 package would not be significantly affected by testing at -40° C (-40° F).

The drop orientation for each test specimen was selected based on an assessment following the 9 meter (30 foot) drop tests of which orientation would impart the most damage to the specimen.

2.7.3.1 Side Puncture Drop

<u>Test Specimen TP81(C)</u>: Test Specimen TP108(C) impacted the puncture bar on the steel cylinder bottom surface (see Figure 2.7.E). Results of this testing produced no new observable damage to the test specimen. Radiation profiles performed at the conclusion of this (and subsequent testing) showed no significant increase in radiation levels and that the package had maintained its structural integrity.

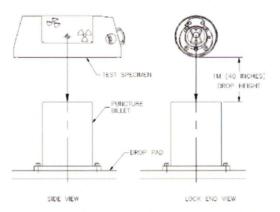
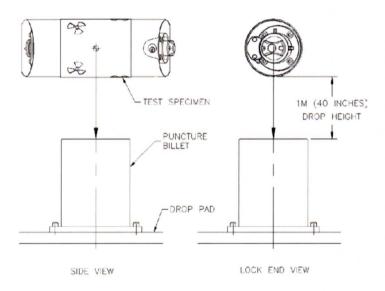



Figure 2.7.E - Model 880 (TP108(C)) Puncture Drop Orientation – Bottom Surface

QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page 2-17 <u>Test Specimen TP108(D)</u>: Impacted the puncture bar on the steel cylinder left side surface (see Figure 2.7.F). Results of this testing produced no new observable damage to the test specimen. Radiation profiles performed at the conclusion of this (and subsequent testing) showed no significant increase in radiation levels and that the package had maintained its structural integrity.

Figure 2.7.F - Model 880 (TP108(D)) Puncture Drop Orientation – Left Side Surface

2.7.3.2 Oblique Puncture Drop

<u>Test Specimen TP206(A)</u>: Impacted the puncture bar at a shallow angle on the top of the lock cap and lock assembly front plate (see Figure 2.7.G). The drop orientation was changed from Test Plan 206 based on the condition of the test unit after the 30-foot (9 meter) drop test. Since the top two lock plate screws were sheared/broken off during the 30-foot drop, the puncture test was modified to attempt to completely shear off the source lock assembly or try to dislodge or shear off the remaining two bottom screws holding the lock assembly to the end plate weldment. The test unit impacted as intended and produced no additional damage. The source remained locked and secured after the test. Radiation profiles performed at the conclusion of this testing showed dose levels well below the 1 R/hr at a meter limit from the package.

QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page 2-18

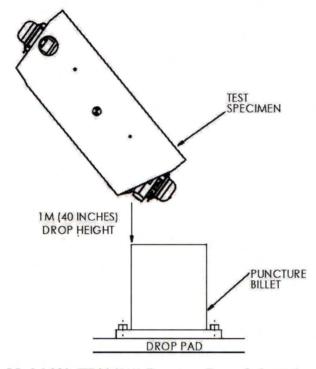


Figure 2.7.G - Model 880 (TP206(A)) Puncture Drop Orientation - Lock Cover

<u>Test Specimen TP206(C)</u>: Impacted the puncture bar at a shallow angle on the bottom side of the rear source lock assembly (see Figure 2.7.H). The test unit impacted as intended and produced minor damage to the source caps. The source remained locked and secured after the test. Radiation profiles performed at the conclusion of this testing showed dose levels well below the 1 R/hr at a meter limit from the package.

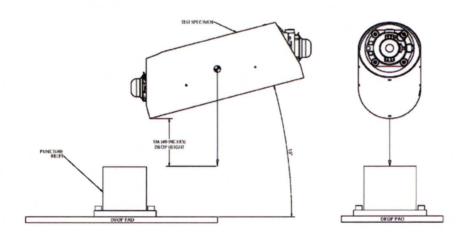
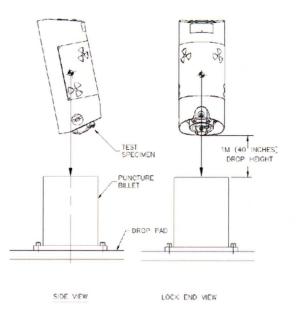



Figure 2.7.H - Model 880 (TP206(C)) Puncture Drop Orientation – Lock Cover

QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page 2-19

2.7.3.3 End Puncture Drop

<u>Test Specimen TP108(B)</u>: Impacted the puncture bar on the lock cover (see Figure 2.7.I). To achieve the designed impact orientation, this test specimen was dropped on the puncture bar twice. Results of this testing produced denting of the lock cover. Radiation profiles performed at the conclusion of this (and subsequent testing) showed no significant increase in radiation levels and that the package had maintained its structural integrity.

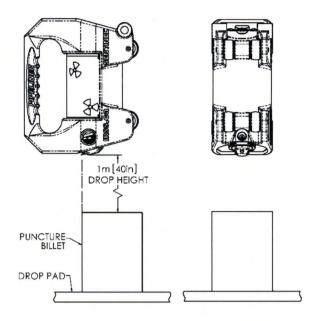


Figure 2.7.I - Model 880 (TP108(B)) Puncture Drop Orientation – Lock Cover

<u>Test Specimen TP108(G)</u>: The test unit included the optional jacket (Version 1), and impacted the puncture bar on the lock cover (see Figure 2.7.I). Results of this testing produced no new observable damage to the test specimen. Radiation profiles performed at the conclusion of this (and subsequent testing) showed no significant increase in radiation levels and that the package had maintained its structural integrity.

<u>Test Specimen TP186(A)</u>: Impacted the puncture bar on the lock cover (see Figure 2.7.J) as intended. After the initial impact, the side of the device impacted the post causing additional cracking to the jacket. Results of this testing produced additional denting of the lock cover, but it remained in place. The rear plate casting was also bent further inward causing the source position to move approximately 1/16th of an inch. Radiation profiles performed at the conclusion of this testing showed no significant increase in radiation levels and that the package had maintained its structural integrity.

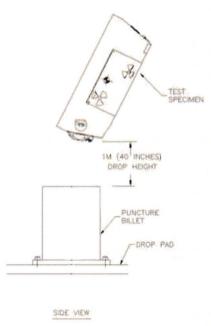

QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page 2-20

Figure 2.7.J - Model 880 (TP186(A) Jacket Version 2) Puncture Drop Orientation - Lock Cover

<u>Test Specimen TP186(B)</u>: Was tested at ambient temperature without the jacket since the jacket had broken away from the 880 weldment during the 9 m (30 foot) drop and the remaining weldment materials are not significantly affected by temperatures of -40° C (- 40° F).

The test unit impacted the puncture bar on the lock cover (see Figure 2.7.K) as intended. Results of this testing produced additional denting of the lock cover, but it remained in place. The 880 weldment shell was also bent in areas around the front and rear plates. Radiation profiles performed at the conclusion of this testing showed no significant increase in radiation levels and that the package had maintained its structural integrity

QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page 2-21

Figure 2.7.K - Model 880 (TP186(B) Jacket Version 2) Puncture Drop Orientation – Lock Cover

<u>Test Specimen TP206(B)</u>: Impacted the puncture bar on the lock cap (see Figure 2.7.L). The test unit impacted as intended and the cap remained open for this drop since it had become dislodged during the 30-Foot drop test. After the puncture drop, the cap was broken off and the bottom lock plate appeared slightly bent. The source remained locked and secured after the test. Radiation profiles performed at the conclusion of this testing showed dose levels well below the 1 R/hr at a meter limit from the package.

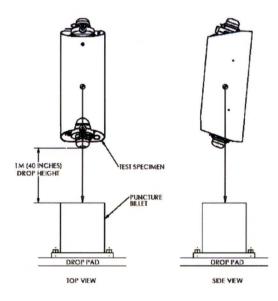


Figure 2.7.L - Model 880 (TP206(B)) Puncture Drop Orientation – Lock Cover

QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page 2-22

<u>Test Specimen TP216-2</u>: The test unit included the optional jacket (Version 3), and impacted the puncture bar on the lock cover (see Figure 2.7.M). Results of this testing produced no new observable damage to the test specimen. Radiation profiles performed at the conclusion of this (and subsequent testing) showed no significant increase in radiation levels and that the package had maintained its structural integrity.

Figure 2.7.M - Model 880 (TP216-2 Jacket Version 3) Puncture Drop Orientation - Lock Cover

2.7.3.4 Summary of Results - Puncture Drop

See Table 2.7.A for additional test unit results summary. Additional inspections were performed using radiography to check for potential internal damage. A more detailed summary is given in the applicable test reports referenced in each section (Section 2.12). In all cases, radiation profiles performed at the conclusion of the puncture testing showed no significant increase in radiation levels for the test units and demonstrated that the 880 Series packages comply with the requirements of this section.

2.7.4 Thermal

Because no damage occurred during the Hypothetical Accident Conditions of Transport Tests that could result in oxidation of the depleted uranium shield, thermal testing was not performed on any of the 880 Series test specimens. Compliance for this requirement was assessed. The assessment demonstrates that the thermal test would not be sufficient to weaken the package and cause its failure under the final profile criteria.

Review of the condition of the test specimens after the drop tests suggests the fire test would have no effect on the resulting radiation measurements if the thermal test was performed. This is justified based on the condition of the test specimens after the drop tests and the properties of the materials used to secure and shield the source within the specimens. Without oxidation of the shield the shielding integrity of the package is maintained and it will meet the requirements of 10 CFR 71.73(c)(4).

QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page 2-23

The battery pack cells, used in the Version 3 jacket, are comprised of four (4) Lithium iron phosphate (LiFePO₄) cathode cells with a graphite anode. This battery cell chemistry is safer than the typical lithium cobalt oxide composition. The LiFePO₄ cell materials also include copper, aluminum and a steel casing.

The LiFePO₄ battery pack cells, used in the Version 3 jacket, are designed with the following protective features:

- Vent seals which activate under high pressure build-up.
- A Current Interrupt Device (CID) which activates on excessive pressure due to an overcharge condition.
- A Shutdown separator which activates when the cells reach a temperature of 130°C as this temperature could melt the battery cell's poly separator.

Under the HAC thermal test (800°C for 30 minutes), the individual cells contained within the battery pack would be expected to exceed the threshold temperature needed to exhibit thermal runaway. Typically, this would occur to cells exposed to temperatures in the 150°C - 260°C range which would allow melting of the cell separators.

As noted in the DOT/FAA report in reference 1 of this section, during thermal runaway, the cell internal temperature can increase with a typical temperature range of 800° C – 1,000°C. These temperatures are considered sufficient to cause hot surface ignition of flammable mixtures, but do not reach levels that will cause the melting of pure copper, nickel or steel. The shell of the 880 packages does not begin to melt until 1,400°C.

If thermal runaway does occur in one cell, it is likely to cause thermal runaway in adjacent cells. Under the thermal HAC testing of 10 CFR 71.73(a)(4), it is conservatively assumed that all (4) cells in the battery pack will undergo thermal runaway. In this case, the expected package temperature, exterior to the shell, could be expected to increase to \sim 1,000°C. This temperature increase will be localized to a small area surrounding and in contact with the individual battery pack cells that come into direct contact with the base of the shell. This value is below the melting point of 304L stainless steel of \sim 1,400°C. Based on this localized temperature increase of \sim 1,000°C, no failure or breach of the shell weldment will occur even if all cells in the battery pack undergo thermal runaway during the HAC thermal test.

As noted in Section 3.5.1 and supported by section 2.7.4.5 of the SAR, damage to the outer containment (shell), sufficient to impact the integrity of the depleted uranium shield, would require significant gaps in the shell (e.g. greater than 1.5 in²) to allow ingress of oxygen inside the weldment, before pyrolization of the foam and subsequent oxidation of the depleted uranium shield could be induced. Based on the information related to lithium ion cells under thermal runaway conditions, the added heat generated by these cells will be insufficient to cause a breach of the 880 body weldment, and therefore, the Model 880 Series packages will retain their shielding integrity and containment during the HAC thermal test when assembled with the Version 3 jacket. The battery cells contained in the Version 3 jacket will not prevent the package from meeting the thermal test requirements of 10 CFR 71.73 (c)(4).

QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page 2-24

Resource reference:

1. Fire Hazards of Lithium Batteries, DOT/FAA/TC-TN 15/17, February 2016.

2.7.4.1 Summary of Pressures and Temperatures

See Tables 3.1.A and 3.1.B for summary tables of temperature and maximum pressure related to the Model 880 Series package. The Model 880 Series containers are vented to atmosphere. As such, no pressure will build up in the units under Hypothetical Accident conditions.

2.7.4.2 Differential Thermal Expansion

Expansion of the 880 steel cylinder circumference is approximated by:

$$E = \pi D \alpha \Delta T$$

Where:

D = inner Diameter of the steel cylinder = 4.87 in = 0.12 m or

Outer diameter of the depleted uranium shield = 4.38 in = 0.11 m

 α = Material Coefficient of Thermal Expansion

 ΔT = Fire temperature differential (from 38°C (311°K) to 800°C (1,073°K)

Substituting gives:

 $E = \pi (4.87 \text{ in})(9.9 \text{ }\mu\text{in/in}^\circ\text{F})(1,372^\circ\text{F}) = 0.2 \text{ in steel}$ $E = \pi (4.38 \text{ m})(28 \mu\text{m/m}^\circ\text{F})(762^\circ\text{K}) = 0.29 \text{ in depleted uranium}$

This translates to a diameter increase of 0.026 inches for the steel shell and 0.04 inches for the depleted uranium. Since the depleted uranium modulus of elasticity is less than stainless steel (190 GPa versus 210 GPa, from Mechanics of Materials, Fall 1999) and the expansion rate is approximately the same, the weldment shell will keep the depleted uranium compressed within its volume. The rear plate and front plate attachment screws will expand at approximately the same rate as the steel encasement thus maintaining the security of the source within the package.

2.7.4.3 Stress Calculations

As was shown in Section 2.7.4.2, thermal differentials will have no detrimental effect on the interfaces between the outer steel cylinder, shield or endplates. The Model 880 Series transport packages are open to the atmosphere and contain no components which could create a differential pressure relative to atmospheric conditions. See Section 2.7.4.5 for additional considerations.

QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page 2-25

2.7.4.4 Comparison of Allowable Stresses

All stresses calculated in Section 2.7.4 are well below strengths for the materials of construction. Further, the Model 880 Series package was fully tested and passed under Normal and Hypothetical Accident Conditions of transport. It is therefore concluded that the Model 880 Series package will satisfy the performance requirements specified by the regulations. See Section 2.7.4.5 for additional considerations.

2.7.4.5 Additional Thermal Analysis

a. Condition of the Test Specimens

Damage to the outer containment was not sufficient to increase oxygen ingress to the shield, build up pressure within the assembly through the pyrolization of the foam, or expand a trapped volume of air within the cylinder. The container is vented to the atmosphere through both the front and rear end plates. These vents will relieve any internal generation or expansion of gases created by the elevated temperatures.

Damage incurred during the drop testing (4 foot, 30 foot and puncture) was minimal, consisting of insignificant deformation of the weldments, lock mounting block and dust cover, slight bowing of the end plates and loss of two locking plate bolts. There were no holes or tears in the cylinder weldment to allow air to circulate through the package. None of the damage significantly increased, or created new, pathways for the ingress of oxygen. Oxygen ingress has been shown empirically to be the primary contributing factor in the oxidation of depleted uranium shields during thermal testing (see Section 2.12 regarding previous testing on the 650L, 680-OP and 660 packages). Further analysis against shield degradation due to oxidation is contained in Section 2.12 in Test Plan 206 Report #2 and Section 2.7.4.5.b.

Without the possibility of gross shield oxidation, and subsequent shield degradation, failure under the thermal test conditions would require mechanical degradation of the packages' support structure. The Model 880 support structure is predominately of welded stainless steel construction.

The internal support structure for the test specimen shields was intact and fully functional. The internal support structure consists of the shield, cylinder weldment, shield pins, U-shaped brackets, and endplates with rivnuts. The source assemblies were intact, undamaged and secure in the shielded position. The source assembly consists of the source capsule, flexible wire, stop ball and source connector.

QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page 2-26

The rear plate assemblies remained intact and continued to secure the source assemblies in the shielded position within the package. For the Model 880 Delta, 880 Sigma and 880 Elite, the securing components of the rear plate assembly consists of the rear plate, lock slide, sleeve, selector ring, selector ring retainer, four #10 machine screws, and four 5/16-18 security screws. For the Model 880SC, the securing components of the rear plate assembly consists of the lock slide, sleeve, top lock plate, bottom lock plate, four ¹/₄-28 screws, and four 5/16-18 security screws.

The effect of structural yielding under self-weight at temperature caused by the degradation of mechanical properties of the materials of construction is insignificant. The likely failure modes are further assessed in Sections 2.7.4.5.c.

b. Oxidation of Depleted Uranium (DU) Shielding

Significant oxidation of the depleted uranium does not occur if there is insufficient flow of oxygen available to the shield. Two major contributing factors to limiting this oxidation are the oxygen inhibitive nature of charred polyurethane foam and the packages' ability to contain the foam once charred. This has been demonstrated by thermal testing conducted by QSA Global Inc. in support of previous Type B package submissions described in the following paragraphs.

Under Test Plan 74 (Section 2.12), the Model 660 Series, Specimen D was tested successfully through normal and accidental conditions. Before thermal testing, the unit showed gaps in the outer containment (shell to endplate interface) up to $\frac{1}{2}$ inch wide and 1 inch long. Pyrolized foam was contained within the unit. Although the shield oxidized slightly on the end nearest the largest gap, the unit passed final profile at 0.0047 R/hr at one meter.

Under Test Plan 72-S2 (Section 2.12), in support of Certificate of Compliance number USA/9035/B(U) for the Model 680-OP Series, camera s/n B198 was subjected to thermal testing. Before testing, the unit was intact and essentially undamaged with no gaps between mating surfaces. After the 30 foot and puncture drop tests, ³/₄ inch long by 1/16 inch wide gaps were present on both sides of the unit at the side plate/shell interface. Thermocouple readings showed temperatures of up to 1000°C on the unit and over 900°C within the depleted uranium shield. The foam was completely pyrolized but was contained within the unit. No oxidation of the shield occurred and the unit passed final profile at 0.330 R/hr at one meter.

Under Test Plan 80 Report (Section 2.12), in support of Certificate of Compliance number USA/9269/B(U) for the Model 650L, test specimen TP80(B) was subjected to thermal testing. The drop tests (30 foot and puncture) caused the outer shell to split completely open and the inner shell to crack, creating a 3 inch long by ½ inch wide gap. Subsequent thermal testing caused pyrolization of all the foam and vaporization in the area of the gap. Some minor oxidation of the shield was also noted. Thermocouples recorded temperatures in

QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page 2-27

the shield of over 900°C and close to 1000°C at the shell. Although the shield oxidized slightly in the area of the gap, the unit passed final profile at 0.028 R/hr at one meter.

As demonstrated in previous thermal testing, minor air gaps in the containment surrounding the shield are insufficient to allow significant oxidation of the depleted uranium shield during the thermal test. The Model 880 Series test specimens had no breach of the shield containment and would therefore prevent oxygen ingress to the shield and any resulting deterioration of the depleted uranium shield during the thermal test.

c.

Material Properties at Elevated Temperatures

The melting temperature for all materials of the internal support structure, rear plate/locking assemblies and source assembly are above the thermal test temperature of 800°C. The thermal expansion for the internal support structure materials is less than the design clearance allowed for assembly. Further, the stainless steel and titanium components of the internal support structure, rear plate/locking assemblies and source assembly retain about 30% and 60% of their room temperature strength at 800°C.

The load condition for the thermal test is for the internal structure to support the static weight of the shield in suspension. The dynamic impact nature of the drop tests can subject the structure to a force over 100 times the static weight of the shield. This means the strength of the materials used in the structure would need to decrease by two orders of magnitude or to about 1% of their strength at room temperature. The 30-minute thermal test is not long enough for significant creep deformation to occur in the structure.

(1) Tear Out of the Shield Support Pin

If the device were suspended with its diametrical axis in the vertical, the weight of the shield would be supported by the front and rear brackets. Tear out of the materials under the pin can be assessed by assuming one (1) pin supports the entire shield.

Tear out Area = 0.4 in X 0.059 in (material thickness) X 4 = 0.09 in^2

Weight of Shield = 34.4 lbs. (max)

Therefore: $34.4 \text{ lbs.} / 0.09 \text{ in}^2 = 382 \text{ psi}$

The strength of 304 stainless steel at 800 $C^\circ = -15,000$ psi

(Reference: ASM Stainless Steels, J.R. Davis ed., 1994, p. 508)

This gives a factor of safety of approximately 39 against failure.

QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page 2-28

(2) Depleted Uranium Cracking around the Titanium Pin

The pin is in poor contact with the supporting brackets (0.060 inches thickness each side) and is in intimate contact with the shield (possible line to line). The heat transmitted through conduction from the outer shell through the bracket to the pin will be dissipated by the mass of the shield at the point of contact. Whereas upon heat up of the shield, the heat flow from the shield to the pin will be substantial. Therefore, the shield and pin should be at approximately the same temperature throughout the thermal test. Based on this assumption, the relative expansion coefficients for the materials are compared to determine if the pin will exert damaging force on the depleted uranium shield.

The volume expansion coefficient of materials is taken to be approximately three times the linear expansion coefficient (Reference: ASM Material Properties Handbook Titanium Alloys, ed. Rodney Boyer, Gerhard Welsch, E.W. Collings, 1994, p. 516). As such:

- Linear expansion coefficient Titanium 11.0E-6 in/in [·]C^o (Reference: ASM Metals Handbook Desk Edition, ed. Howard E. Boyer, Timothy L. Gall, 1985, p. 1.4)
- Linear expansion coefficient Depleted Uranium 12.0E-6 in/in [·]C^o (Reference: Universal reference calculator, TAD Technical Services Corp)

Based on the linear expansion coefficients, the two materials will expand volumetrically at approximately the same rate. This will prevent the pin from exerting force onto the inside diameter of the hole in the shield. Therefore, the material around the pin will remain intact and the shield will remain secured to the brackets.

(3) De-Attachment of the Rear Lock Assembly

On the test unit where two security screws failed, two (3) of the four (4) security screws remained intact after the drop and puncture testing. These screws retained the lock assembly to prevent the source from movement relative to the shield. If the device were suspended as in 2.7.4.5.c(1) with the lock assembly downward, the self-weight of the assembly would put all three screws in tension. At temperature, the stresses would be:

Stress area of 5/16-18 screw: 0.0524 in² (Reference Manual of Steel Construction , 7th Edition, page 4-125)

Total stress area (2 screws): $2(0.0524 \text{ in}^2) = 0.1048 \text{ in}^2$

QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page 2-29

At 15,000 psi*, the screws will support a weight of:

 $15,000 \text{ psi} (0.1048 \text{ in}^2) = 1,572 \text{ lbs.}$

The lock assembly weighs approximately two (2) lbs. Therefore, the lock assembly will remain attached and undisturbed as the remaining screws can easily support the weight.

* The use of 15,000 psi is based on the yield strength of the stainless steel security screws at temperature.

d. Conclusions

The test specimens were subjected to the 9 m drop and 1 m puncture tests in accordance with Test Plan 108 (Section 2.12), Test Plan 186 #1, Test Plan 206 and Test Plan 216. These test plans conform to the requirements in 10 CFR Part 71 and IAEA TS-R-1 for Type B(U) transport packages.

The test specimens demonstrated that the Model 880 Series transport packages satisfy the test requirements of their respective Test Plans as demonstrated in Test Plan Reports 108, 186 #1 and 206 #2, and 216 (Section 2.12). The Model 880 Series package, in any transport configuration described on the drawings referenced in Section 1.3, does not adversely affect the results of these tests. This conclusion is drawn from the drop test results and thermal analysis as supported by the test data, test inspection data and damage assessments.

Based on the previous empirical data and analyses, we conclude that oxidation of the shield will not occur, the structural integrity of the package will remain intact and the containment of the source will not be affected. As such, the Model 880 style packages comply with the requirements of this section.

2.7.5 Immersion - Fissile Material

Not applicable. This package is not used for transport of Type B quantities of fissile material.

2.7.6 Immersion - All Packages

The Model 880 Series transport packages are open to the atmosphere and contain no components, other than the watertight battery case used on the Version 3 jacket, that would create a differential pressure under immersion. All other materials are impervious to water and would not be affected.

In the case of the battery case, the case is sonically sealed creating a watertight enclosure with the exception of the two connectors which have O-rings. Under 50-feet of water, it is possible for the O-rings to leak. At that point, a fuse in the tag would render the tag electronics inoperable.

QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page 2-30

Should the watertight seal on the battery case breach for any reason during transport and allow ingress of water to the interior of the case, this could create a short circuit condition for the individual lithium ion cells leading to, under worst case conditions, thermal runaway for the cells. Should this occur, as described in Section 2.7.4, this condition will not cause a breach of package integrity and the 880 package will meet the criteria in 10 CFR 71.51(a)(2).

Regarding the source capsule transported in the Model 880 packages, the primary containment system in these packages is a special form source, which minimally meets the ANSI N43.6 and ISO 2919 requirements for Class 3 pressure testing. Therefore, the Model 880 Series could withstand the immersion test criteria since the Class 3 pressure test requirements are in excess of the required 150 kPa (21.7 lb ft/in2).

2.7.7 Deep Water Immersion Test (for Type B Packages Containing More than 10⁵ A2)

Not applicable. This packaged does not transport normal form radioactive material in quantities exceeding 10⁵A₂.

2.7.8 **Summary of Damage**

Table 2.7.A summarizes the results of the Normal Conditions of Transport and Hypothetical Accident testing performed on the Model 880 Series, in the sequence that the tests were completed.

Test Specimen	Test	Weight	Actual Impact Point	Damage		
TP108(B)	4-foot free drop	44.2 1bs	Lock cover & shell lip	• Shell bottom rear lip bent.		
	30-foot free drop	44.4 lbs	Lock cover & shell lip	One rear plate security screw broken.Rear plate puckered.Shell lip bent further.		
	Puncture drop #1	44.4 1bs	Lock cover	• Lock cover dented.		
	Puncture drop #2	NA	Lock cover	• Lock cover dented.		
	Damage After all Testing					

Table 2.7.A: Summary of Damages During Testing

QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page 2-31

Test Specimen	Test	Weight	Actual Impact Point	Damage				
	• Shell at rea	ar end is be	ent in toward	l lock by about 1 inch at bottom.				
	• Shell at front end has two spot dimples about 3/16 inch deep.							
	• Rear plate is puckered in at selector ring about 1/16 inch.							
	-	-	-	ight is broken.				
	 Rear plate security screw at top left & bottom right is bent. Rear plate security screw at bottom left slightly is bent. 							
	• Lock cover is dented 3/16 inch at three spots.							
		• Rear plate tube feature is slightly bent but intact.						
	 Three rear plate security screws are slightly bent but intact. One rear plate security screw broken end remained in the rivnut. 							
TD108(C)	One rear p 4-foot free	44.3	Shell					
TP108(C)	drop	44.5 lbs	bottom					
	drop	105	surface	• Shell rear lip bent in.				
	30-foot free	44.4	Shell	• Shell bottom flattened further.				
	drop	lbs	bottom	• Shell rear top bent.				
	1		surface	• Front endplate bent near bottom.				
				• Outlet port binds.				
	Puncture	44.4	Shell	None observed.				
	drop	lbs	bottom					
			surface					
	Damage After all Testing							
	-	• Shell top has two spot dimples about 3/16 deep.						
	· ·	• Front plate knob pin is bent about 3/16 inch.						
				pact surface.				
TP108(D)	4-foot free	44.4	Shell left	• Shell left side flattened.				
	drop 30-foot free	1bs 44.3	side Shell left					
	drop	44.5 lbs	side	• Shell left side flattened further.				
	Puncture	44.3	Shell left	None observed.				
	drop	lbs	side	• None observed.				
	urop	Damage After all Testing						
	Shell left s	ide is depr		1/8 to 1 inch.				
				t about 3/16 inch.				
				eft side about 1/8 inch.				
TP108(G)	4-foot free	48.8	Lock	• Lock cover dented.				
(with	drop	lbs	cover					
Version 1	30-foot free	48.8	Lock	• Shell rear side lip bent.				
jacket)	drop	lbs	cover &	• Two jacket rivets broken.				
			shell side	• Label rivets missing.				
		10-	lip					
	Puncture	48.8	Lock	• None observed.				
	drop	lbs	cover	A Annall Trating				
			D	amage After all Testing				

QSA Global, Inc. Burlington, Massachusetts

June 2017 - Revision 12 Page 2-32

Test Specimen	Test	Weight	Actual Impact Point	Damage	
TP186(A) (with Version 2 Jacket – Unit Tested at -40°C)	 Shell left s Rear plate Jacket rive Lock cover Lock cover Label rivet 	Il left side at rear end is bent about 5/8 inch. Il left side at front end is bent about 3/16 inch. r plate security screw at top right is slightly bent. cet rivets on left side are broken. k cover is dented about 3/16 inch. k cover pin at bottom is loose and can be removed. el rivets missing. apparent internal damage. free 54 lbs Lock • Crushed and cracked lock cover p cover * Broke head off one lock cover • Rear plate bent in 1/8". • Lock cover broken. • Lock cover pin broken.		 about 3/16 inch. ight is slightly bent. en. inch. and can be removed. • Crushed and cracked lock cover. Broke head off one lock cover mounting screw. Cracks in jacket. Rear plate bent in 1/8". Lock cover broken. Lock cover pin broken. 	
	 drop Plunger ke Lock plate Lock cove Lockslide Source wi 	ey lock wo e mounting e required er pin moun was bent a re assembl	cover Dan uld not opera screws bent use of hamm nting holes v and jammed	 Additional lock cover damage. Additional damage/bending to rear plate. Source position moved ~1/16". nage After all Testing ate t and threads stripped during removal. her and pry bar to remove from 880. were deformed. between rear plate and selector ring retainer. hnector bent/damaged but source remained locked and 	
TP186(B) (with Version 2 Jacket – Unit Tested at -40°C for all but Puncture)	4-foot free drop 30-foot free drop Puncture drop	54 1bs 54 1bs 54	Lock cover Lock cover	 Dented lock cover. Cracked jacket. Jacket shattered. Jacket mounting screws bent the 880 shell. Additional damage to lock plate and lock assembly. 880 shell bent inward. Additional denting to lock cover. Additional handing to 280 shell 	
	drop lbs cover Additional bending to 880 shell. Damage After all Testing • Plunger key lock would not operate • Lock cover assembly was broken and pins misaligned. • Key lock pin deformed and jammed in selector ring.				
TP206(A)	4-foot free drop	44.8 lbs	Front Cap	Dent to cap, but remained closed.Spring Plunger damaged.Lock slide fully functional.	

QSA Global, Inc. Burlington, Massachusetts

June 2017 - Revision 12 Page 2-33

Test Specimen	Test	Weight	Actual Impact Point	Damage		
	Penetration Bar	44.8 1bs	Lock	Minor scuffing of lock.		
	30-foot free drop	44.8 lbs	Front Cap	 Two top plate bolts missing, Minor cap damage, cap opened after drop. Damage to top of lock. 		
	Puncture drop	44.8 lbs	Top of Front lock plate	Minor additional damage to lock and cap at area of impact.Dent to top of shell.		
				amage After all Testing		
	Lock capTop securRear plate	was dented rity screws	l. sheared, bot /8" away fro	ate due to damage. tom two security screws bent but intact. om shield body weldment endcap.		
TP206(B)	4-foot free drop	44.85 lbs	Rear Cap	Dent to cap, and cap opened after test.Spring Plunger damaged.Lock slide fully functional.		
	Penetration Bar	44.85 lbs	Lock Slide	• Minor dent to lock slide and top plate.		
	30-foot free drop	44.85 lbs	Rear Cap	 Minor damage to shell and cap, cap remained attached to the assembly. 		
	Puncture drop	44.85 lbs	Rear Cap	 Cap broke off the unit. Bottom lock plate slightly bent. Lock slide non-operational due to binding on the lock slide bracket but secured source in stored position. 		
	Damage After all Testing					
	Minor daTop plateBottom lo	e surface sc ock plate sl e non-oper	ng to shell. uffing. ightly bent.	to binding on the lock slide bracket but secured source		
TP206(C)	4-foot free drop	44.8 lbs	Rear End Shell Base	Base of shell on both ends deformed/bent.Lock slide fully functional.		
	30-foot free drop	44.8 lbs	Rear End Shell Base	Minor damage to shell and rear cap.Rear cap opened but remained attached to unit.		
	Puncture drop	44.8 lbs	Rear Lock Plate, Bottom	 Minor damage to rear cap. Cap bent but attached to unit. Front cap damaged but attached. Minor damage to shell. 		

QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page 2-34

Test Specimen	Test	Weight	Actual Impact Point	Damage		
			D	amage After all Testing		
	Minor dat	mage to rea	r cap. Cap	bent but attached to unit.		
	Front cap	damaged b	ut attached.			
	Minor dat	mage to she	11.			
TP216-2	4-foot free	51.3	Rear Cap	• Scuff mark at point of impact on dust cover.		
	drop	lbs		• Bent pins of dust cover.		
	30-foot free	51.3	Rear Cap	Crushed dust cover.		
	drop	lbs		• Shell edges bent in 2 places.		
	Puncture	51.3	Rear Cap	• Slightly more dust cover compression after drop.		
	drop	lbs				
	Damage After all Testing					
	Minor damage to rear cap. Cap bent but attached to unit.					
	Minor damage to shell.					
	 Lockslide and source connector bent about 0.06 inches but source remained locked and secured. 					

Based on these results, it is concluded that the Model 880 Series transport package maintains structural integrity and shielding effectiveness during Hypothetical Accident Conditions and Normal Conditions of Transport.

2.8 Accident Conditions for Air Transport of Plutonium or Packages with Large Quantities of Radioactivity

Not applicable. This package is not used for transport of plutonium or normal form radioactive material. This package is also not used for transport of special form material in quantities \geq 3,000 A₁.

2.9 Accident Conditions for Fissile Material Packages for Air Transport

Not Applicable. This package is not used for transport of Type B quantities of fissile material.

2.10 Special Form

The Model 880 Series transport package is designed for use with a variety of special form source capsules attached to a flexible source wire assembly. All special form sources transported in the Model 880 Series will meet a minimum ANSI N43.6 and ISO 2919 Classification of 3 for pressure testing.

Typical special form sources transported in this container and their associated source wire assembly are shown in Table 2.10.A.

QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page 2-35

Special Form Capsule	Radionuclide	Special Form Reference	Typical Source Wire Assembly Identification
875 Capsule	Ir-192	USA/0392/S-96	A424-9
875 Series	Ir-192	USA/0335/S-96	A424-23
X540/1	Se-75	USA/0502/S-96	A424-25 & A424-25W

Table 2.10.A: Typical Special Form Capsule Transport Information

Based on performance testing, any source capsule that has been tested and achieved special form classification from a Competent Authority and also has achieved an ANSI/ISO Pressure Classification rating of 3 can be safely transported in the Model 880 Series package so long as the source wire assembly properly locates the source capsule within the package radiation shielding. Therefore any compatible source capsule/source wire assembly meeting these criteria should be approved for transport without requirement of amendment to the Type B(U) certification.

Examples of typical special form certifications, including the current approved capsule drawings, are included in Section 2.12.

2.11 Fuel Rods

Not applicable. This package is not used for transport of fuel rods.

2.12 Appendices

- 2.12.1 Test Plan and Report 100 (Feb 2000)
- 2.12.2 Test Plan 108 Issue 5 (Jul 2000)
- 2.12.3 Test Report 108 Minus Appendices A-C (Aug 2000)
- 2.12.4 Test Plan 115 (Feb 2001)
- 2.12.5 Test Plan Report 115 Minus Appendices (March 2001)
- 2.12.6 Test Plan Report 125 Rev B (Mar 2003)
- 2.12.7 Test Plan Report 74 (Feb 1998)
- 2.12.8 Test Plan 80 Rev 1 (Mar 1999)
- 2.12.9 Test Plan 80 Report Minus Manufacturing Records (Jun 1999)
- 2.12.10 Test Report #1 for Test Plan 188 Rev 1 (minus Sections 7.3 7.5)
- 2.12.11 Test Report #1 for Test Plan 186 Rev 1 (minus Sections 8.4 & 8.5)
- 2.12.12 USDOT Special Form Certificate USA/0392/S-96 Rev 11
- 2.12.13 USDOT Special Form Certificate USA/0335/S-96 Rev 11
- 2.12.14 USDOT Special Form Certificate USA/0502/S-96 Rev 9
- 2.12.15 Test Plan 206 (Sep 2013)
- 2.12.16 Test Plan 206 Report #1 minus Appendices D & E (Nov 2013)
- 2.12.17 Test Plan 206 Report #2 minus Appendices D & E (Nov 2013)
- 2.12.18 Test Plan 216 (Nov 2016)
- 2.12.19 Test Plan 216 Report minus manufacturing docs (Dec 2016)

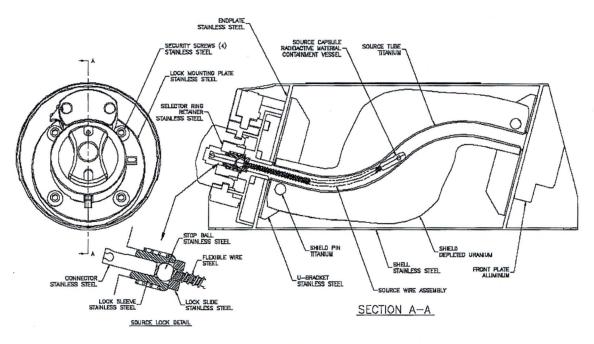
QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page 2-36

2.12.1 Test Plan and Report 100 (Feb 2000)

SENTINEL

TE	ST PLAN NO. 100
TEST PLAN COVER SHEET	
TEST TITLE: NORMAL TRANSPORT TESTS	
PRODUCT MODEL: MODEL 880	
ORIGINATED BY: S. Glance	DATE: - 9 FEB 00
TEST PLAN REVIEW	
ENGINEERING APPROVAL:	DATE: 15 FEBOO
QUALITY ASSURANCE APPROVAL: D.W. Kustz REGULATORY APPROVAL: C. KOMMA	DATE: 17 Feb 00
REGULATORY APPROVAL: C. KOMMA	DATE: 15 F8600
COMMENTS:	
TEST RESULTS REVIEW	
ENGINEERING APPROVAL:	DATE: 26FEBCO
QUALITY ASSURANCE APPROVAL:	DATE: 25 Feb 00
REGULATORY APPROVAL:	DATE: 25F3B00

Amersham QSA


TABLE OF CONTENTS

1.0	PURPOSE	2		
2.0	PACKAGE DESIGN DESCRIPTION	2		
3.0	FAILURES OF INTEREST	3		
4.0	TEST CONDITIONS AND ORIENTATIONS	4		
5.0	CHANGES TO TEST CONDITIONS OR ORIENTATIONS	7		
6.0	PASS AND FAIL CRITERIA	7		
7.0	TEST EQUIPMENT	7		
8.0	TEST SPECIMEN			
9.0	TEST PROCEDURE	7		
APPENDIX A: DRAWINGS AND FIGURES9				
APPENDIX B: WORKSHEETS				

Model 880 Type A Transport Tests

1.0 Purpose

The purpose of this test is to demonstrate the Model 880-transport package meets the normal transport requirements of 49CFR173, 10CFR71, and IAEA Safety Series 6 (As amended 1990).

2.0 Package Design Description

The transport package safety features for the Model 880 are described in figure 1. The radioactive material, sealed in a special form source capsule, is located, secured and protected in the package by the following component relationships.

The capsule, stop ball and connector are swaged to a flexible steel wire. These four components form the source wire assembly. The stop ball is held securely by the lock slide and sleeve of the lock assembly. The sleeve prevents the stop ball from being pulled through the rear of the package, while the lock slide prevents the stop ball from being pushed out of the front. Both the sleeve and lock slide are captured by the selector ring retainer and lock mounting plate.

The selector ring retainer is fastened to the lock mounting plate with four, #10, stainless steel machine screws. The lock mounting plate is bolted to the welded endplate of the cylinder shaped shell housing using four, 5/16-18 by 1-1/2 inch long stainless steel security screws.

A U-shaped bracket welded to the endplate holds a 3/8-inch diameter titanium pin that connects the shield within the U of the bracket. This structure secures the shield to the welded package. Copper spacers prevent

contact of the depleted uranium shield with the stainless steel components. This method of shield attachment is repeated at both ends of the shell.

The shield is centered in the shell and has the source tube cast into its center. The source tube provides a cavity for the source wire assembly to travel through during use. The capsule with radioactive material is positioned at the center of the ball of the shield within the source tube cavity.

Polyurethane foam fills the air void between the shield and shell inner walls. The foam acts only to prevent the ingress of material into the air void.

The outlet port, located at the front end, serves to block access into or out of the source tube cavity. Four security screws fix the front plate to the shell endplate.

A plastic jacket, not shown in figure 1, may be used to carry the package. This jacket will not be on the specimen for the tests below. Testing without the jacket will not significantly affect the results of the 4-foot drop test; in fact the plastic material and geometry of the jacket will prevent enough damage to the shell to cause failure of the lock mounting plate. The extra drop energy supplied by the 4-pound jacket would be offset by its impact absorption characteristics. The jacket would provide better protection against the penetration bar at its most vulnerable area and would provide additional support to the shell under compression. Therefore testing without the jacket would give more conservative test conditions.

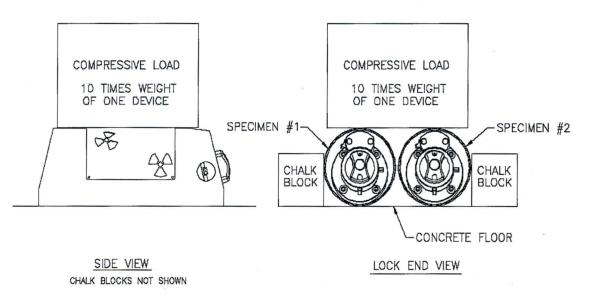
3.0 Failures of Interest

The failures of interest will depend upon the test being performed on the package. Each test will be conducted on the same specimen so as to incur a cumulative damage affect to the package.

The compression test will try to flatten the package to deform the shell enough to shorten the distance from the source to an outer surface measurement point. This may raise radiation measurements above the requirement limits of 200 mR/hr at the surface.

The penetration test will attempt to puncture through the shell housing at its thinnest and most unsupported area. This may reduce the effectiveness of the package and raise radiation levels due to possible access to the inner void of the shell housing. Material thickness and support of other features on the package would prevent sufficient damage from the bar's impact and therefore not considered.

The 4-foot free drop test will try to shear the four lock mounting plate screws upon impact on the bottom edge of the shell at the lock end. This may produce enough deformation to the shell to bend the lock mounting plate and shear the screws. This could remove the source wire assembly from the package or increase radiation levels as a result of relocation of the capsule within the shield.


Two other orientations reviewed for the four-foot free drop are:

- 1. Shear the shield pins by orientating the shell and shield pins parallel with the impact surface. The pins are designed to take at least a 500-G load upon impact. The estimated load at impact for this drop is about 50G's. Therefore this orientation will not be considered.
- 2. Bend the U-bracket by orientating the shell and bracket parallel with the impact surface. The shield is less than ¼ -inch from the shell. This prevents sufficient shield travel when you consider the shell deflects to meet the shield upon impact. Therefore this orientation will not be considered.

4.0 Test Conditions and Orientations

The materials used in the construction of the package, see figure 1, retain their mechanical properties within the temperature range of -40 F to +158 F and pressure range of 3.6 psi to 20 psia as specified in the test requirements. Except for the source capsule (tested special form), the package is open to the atmosphere allowing inner and outer pressures to equalize naturally. Therefore testing at ambient conditions, both temperature and pressure would not change the results of these tests and are therefore acceptable initial conditions.

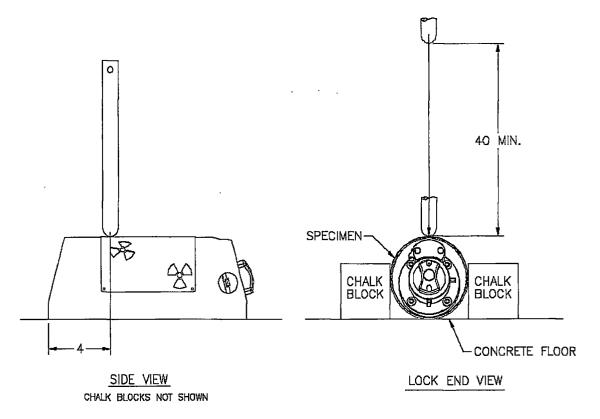

Since the materials of construction are metallic and do not loose strength when exposed to a water spray, the water spray test per 49CFR173.465(b) is not required and will not be conducted.

Figure 2. Stacking Test Setup.

Orientation for the stacking test, as shown in figure 2, is with the cylindrical shell housing lying horizontally with its longitudinal surface touching the ground. This would be its natural orientation during transport. The load is distributed opposite the floor contact surface. Two packages will be tested together to provide a stable setup. If this is the case, then the compressive load will be 5 times the weight of each specimen. For example, if the specimen weighs 40 lbs., then the total compressive load for 2 specimen tested together is $5 \times 40 \times 2 = 400$ lbs. The actual compressive weight will be determined at the time of the test.

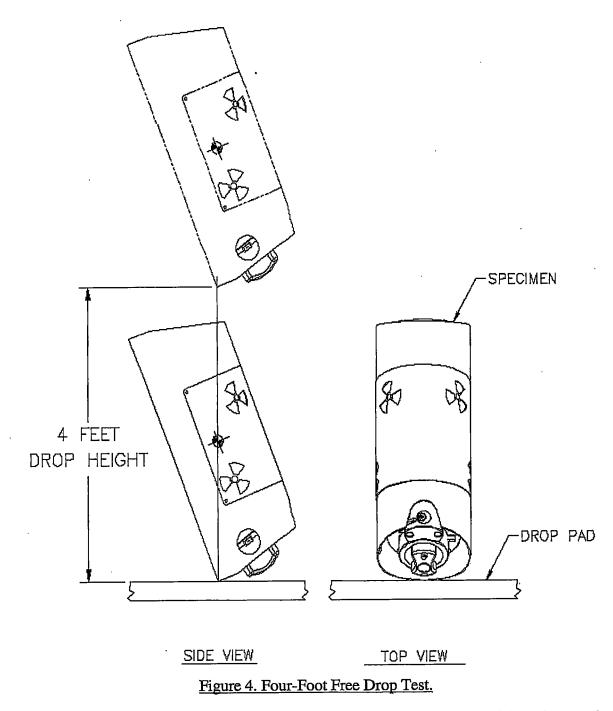

Blocking or specimen restraint may be used to prevent the specimen from rolling, provided the blocking or restraint does not support the specimen vertically. Use figure 2 as a guide to place the blocks next to the specimen.

Figure 3. Penetration Test Setup.

Orientation for the penetration test, as shown in figure 3, is with the cylindrical shell lying horizontally with its longitudinal surface touching the ground. The ends of the shell are reinforced by welded endplates and the shield is in close proximity to the housing at the midpoint. The most vulnerable spot for sufficient penetration is at a point about 4 inches from either end of the shell. This point provides the least support for the shell.

Blocking or specimen restraint may be used to prevent the specimen from rolling, provided the blocking or restraint does not support the specimen vertically. Use figure 3 as a guide to place the blocks next to the specimen.

Orientation for the 4-foot free drop, as shown in figure 4, is with the longitudinal axis of the package nearly vertical, but at a slight angle to the impact surface. The impact point is on the bottom edge of the shell at the lock end with the center of gravity directly over that point. This is the most vulnerable spot to produce enough deformation of the housing to bend the lock mounting plate and shear the attachment screws.

5.0 Changes to Test Conditions or Orientations

Changes to the planned test conditions or orientations shall only be done after careful consideration and documented justification. Prior to performing the test, Engineering, Regulatory and Quality Assurance shall approve the justification.

6.0 Pass and Fail Criteria

Post Test Initial Assessments.

• An initial assessment shall be made upon the completion of each test to evaluate the specimen's performance against the requirements of the test.

Post Test Final Assessment.

- A final assessment shall be made upon the completion of the entire test sequence to evaluate the specimen's performance against the test requirements and determine a pass or fail judgement. The specimen(s) shall be considered passing the test requirement, if the following conditions apply to the specimen after being subjected to all three tests:
 - 1. The source capsule must remain within the source tube, attached to the source wire and undamaged.
 - 2. The radiation profile results must be less than 200 mR/hr at the package's surface and must not be a significant increase between initial profile measurements and post-test profile measurements. Profile measurements evaluated against type A quantities of radioactive material, in this case 27.0 curies of IR192.

7.0 Test Equipment

Table of key test equipment:

Equipment	Drawing No.	Serial No.	Tolerance	Used on	
Weight Scale				All tests	
Temperature gage				All tests	
Penetration bar	BT10129, Rev. B			Penetration test	
Drop pad	AT10122, Rev B			Free drop test	

8.0 Test Specimen

The test specimen is clearly described on drawing number TP100 revision A. A minimum of two test specimen shall be manufactured in accordance with drawing TP100 and the AEA Technology QSA Inc. quality assurance system.

9.0 Test Procedure

- 1. Manufacture and inspect the specimens per the test specimen drawing.
- 2. Perform and record radiation profile inspections per WI-Q09.
- 3. Conduct stacking test per 49 CFR 173.465 (d).
 - Record test data, damage descriptions (if any), initial test assessment.
- 4. Conduct penetration test per 49 CFR 173.465 (e).

- Record test data, damage descriptions (if any), initial test assessment.
- 5. Conduct 4-foot free drop test 49 CFR 173.465 (c).
 - Record test data, damage descriptions (if any), initial test assessment.
- 6. Perform and record radiation profile inspections per WI-Q09.
- 7. Record final test assessment.

¢

Appendix A: Drawings and Figures.

• Test Specimen TP100, Revision A.

Appendix B: Worksheets.

- Compression Test.
- Penetration Test.
- 4-foot Free Drop Test.
- Final Test Assessment.

÷

Compression Test 49 CFR 173.465(d)					
Test Specimen:					
Drawing No	Rev	Serial N	lumber:		
Weight:	Scale u	used:			
Test Setup:					
Photograph setup					
Use Figure 2 to position the spe	cimen and appl	y the compressive l	oad.		
Setup verified by:		Date:			
Compressive Load:		<u> </u>	······································		
Weight:	Scale us	sed:			
Test Period:					
Start date & time:	An	ıbient Temp	Gage used:		
Stop date & time:	Ambient Temp Gage used:		Gage used:		
Damage description:		······	· · · · · · · · · · · · · · · · · · ·		
Photograph damage (if present)					
Post test initial assessment:					
Witnessed by: Quality Assurance Review by:		Date:			

Notes:

Penetration Test 49 CFR 173.465 (e)				
Test Specimen:				
Drawing No	Rev	Serial Number:		
Test Setup:				
Photograph Setup				
Use Figure 3 to position specimen, locate im	pact point an	d set drop height (40 inches).		
Setup verified by:		Date:		
Penetration Bar:				
Drawing No	Rev	Weight:		
Test Period:	,			
Date & time:	Ambient Ten	np Gage used:		
Specimen Damage:		· · · · · · · · · · · · · · · · · · ·		
Photograph Damage (if present)				
·				
		······································		
Post test initial assessment:				
Recorded by:		Date:		
Witnessed by:		Date:		
Quality Assurance Review by: Date:				

Notes:

,

.

Free Drop Test 49 CFR 173.465 (c)				
Test Specimen:		· · · · · · · · · · · · · · · · · · ·		
Drawing No	Rev	Serial Number:		
Pretest weight	Sc	ale Used		
Test Setup:				
Photograph Setup				
Use Figure 4 to position specimen, loca	ate impact point ar	nd set drop height (4 feet).		
Setup verified by:	<u></u>	_Date:		
Drop surface:				
Drawing No	Rev	Location:		
Test Period:				
Date & time:	Date & time: Ambient Temp Gage used:			
Specimen Damage:				
Photograph Damage (if present)				
Post test weight	Sca	le Used		
Post test initial assessment:				
۱ <u>ــــــــــــــــــــــــــــــــــــ</u>				
		·····		
Recorded by:	• • • •	Date:		
Witnessed by:		Date:		
Quality Assurance Review by: Date:				

Notes:

٦

۰.

Final Test Assessment 49 CFR 173.412 (j)						
Test Specimen:	Test Specimen:					
Model 880 Serial Number(s):						
Loss or Dispersal of Radioactive Contents:						
Did the source capsule remain within the source tube, attached to the source wire and undamaged?						
	Date:					
Increase in radiation levels:	<u>-</u>					
Are the final radiation profile results less than 2	200 mR/hr at the package's surface?					
Is there a significant increase between pre-test j measurements?						
erified by: Date:						
Comments:						
······································						
·						
Engineering Review by:	Date:					
Regulatory Review by:	Date:					
Ouality Assurance Review by: Date:						

TEST PLAN # 100 RESULTS

TABLE OF CONTENTS 1.0 INTRODUCTION.....

:

!

1.0	INTRODUCTION.	2
2.0	TEST SPECIMEN	2
3.0	CHANGES TO TEST CONDITIONS OR ORIENTATIONS	2
4.0	COMPRESSION TEST DATA	2
5.0	PENETRATION TEST DATA	2
6.0	FOUR FOOT FREE DROP TEST DATA	3
7.0	RADIATION MEASUREMENT DATA (SERIAL NUMBER P01 ONLY)	3
8.0	POST TEST FINAL ASSESSMENT.	3
APPE	NDIX A. TEST DATA	4

Model 880 Type A Transport Test Results

1.0 Introduction

This document describes the type A transport test results for the Model 880-transport package. The tests were conducted in accordance with AEA Technology QSA test plan #100.

One test specimen was tested and assessed to the type A test requirements. The test specimen experienced minor deformation to the shell, had radiation measurements less than 200 mR/hr at the surface with type A quantity material, and showed no significant increase in radiation measurement compared with the pre-test radiation measurements.

The final assessment concludes the model 880 transport package meets the requirements for Type A per DOT 49CFR173, NRC 10CFR71, and IAEA Safety Series 6 (As amended 1990).

2.0 Test Specimen

Two test specimen were manufactured at the AEA Technology QSA facility to the test specimen drawing TP100, revision A. One specimen was tested through all tests with the other as a spare.

Both specimens are identical except for the front plate assembly differences. These differences are documented on the route card or attached list.

3.0 Changes to Test Conditions or Orientations

There were no changes to the planned test conditions or orientations.

4.0 Compression Test Data

Both test specimen, serial number P01 & P02, tested.

Damage description.

• There was no apparent damage to either test specimen.

· Post Test Initial Assessment.

• The damage caused by the test indicates the test specimens meet the requirements of the test.

5.0 Penetration Test Data

Test performed on test specimen serial number P01 only.

Damage description.

• A spherical bent approximately 1/8 inch deep at the point of impact. Point of impact as per the setup, 4 inches from front end and on top.

Post Test Initial Assessment.

The damage caused by the test indicates the test specimens meet the requirements of the test.

TEST PLAN # 100 RESULTS

6.0 Four Foot Free Drop Test Data

Test performed on test specimen serial number P01 only.

Damage Description.

- The rear end of the shell lip bent up towards the lock assembly. Bend of the shell lip approximately 1/2 inch out of original location.
- The front end of shell has a slight, ¹/₄ inch dent.

Post Test Initial Assessment.

The damage caused by the test indicates the test specimens meet the requirements of the test.

Function Check.

• The dummy source easily cycles in and out of the package without hindrance.

7.0 Radiation Measurement Data (Serial number P01 only)

Radiation measurements taken on the test specimen consisted of slowly scanning over the surface and at a meter of the package. The highest measured readings are recorded for each quadrant and each end.

A 147-curie source was used for the pre-test radiation measurements. This produced surface readings on the shell below 200 mR/hr and port readings on the ends under 300 mR/hr. One-meter readings around the shell were below 1 mR/hr and at or under 2 mR/hr at the ends.

A 128-curie source was used for the post-test radiation measurements. This produced the same results as the pre-test measurements with very little difference between each measured point.

Factored for a 27-curie source, the maximum intensity is calculated to be under 50 mR/hr at the surface and under 0.4 mR/hr at a meter.

8.0 Post Test Final Assessment.

The test specimen was tested in accordance with test plan #100 and therefore tested to the normal transport test requirements of DOT 49CFR173, NRC 10CFR71, and IAEA Safety Series 6 (As amended 1990). The model 880-transport package sustained very little damage and remained intact.

The dummy source remained secured in its fully shielded position within the source tube, attached to the source wire and undamaged.

The radiation profile results for a 27.0 curie, IR192 source is less than 200 mR/hr at the package's surface and there is no significant increase between initial profile measurements and post-test profile measurements.

Based on the above results, the model-880 prototype build passes the normal transport test requirements of 49CFR173, 10CFR71, and IAEA Safety Series 6 (As amended 1990).

TP\$100 RESULTS

60-FRAD
ZSKBRO

RADIATION TREASUREMENT SUMMARY								
10-Feb-00		Curie		ity Capacity				
	147.3	Curie	Activity Used					
S/N P01	Direct At Surface	Surface Factor	Direct At Meter	Capacity Factor	Corrected At Surface	Corrected At Meter		
Тор	95	1.27	0.5	1.02	123 [·]	0.5		
Right	110	1.27	0.5	1.02	142	0.5		
Front	250	1.10	2.0	1.02	280	2.0		
Left	150	1.27	0.6	1.02	194	0.6		
Rear	230	1.10	1.3	1.02	258	1.3		
Bottom	145	1.27	0.8	1.02	188	0.8		
25-Feb-00		Curie Curie	Max Activi Activity Us	ity Capacity sed				
S/N P01	Direct	Surface	Direct	Capacity	Corrected	Corrected		
	At Surface	Factor	At Meter	Factor	At Surface	At Meter		
Тор	130	1.27	0.6	1.17	193	0.7		
Right	110	1.27	0.6	1.17	164	0.7		
Front	210	1.10	1.6	1.17	271	1.9		
Left	110	1.27	0.5	1.17	164	0.6		
Rear	170	1.10	1.4	1.17	219	1.6		
Bottom	120	1.27	0.7	1.17	179	0.8		
25-Feb-00		Curie Curie	Max Activi Activity Us	ity Capacity sed				
S/N P01	Direct At Surface	Surface Factor	Direct At Meter	Capacity Factor	Corrected At Surface	Corrected At Meter		
Тор	130	1.27	0.6	0.21	35	0.1		
Right	110	1.27	0.6	0.21	29	0.1		
Front	210	1.10	1.6	0.21	49	0.3		
Left	110	1.27	0.5	0.21	29	0.1		
Rear	170	1.10	1.4	0.21	39	0.3		
Bottom	120	1.27	0.7	0.21	32	0.1		

۱

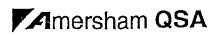
•

'880 Pmtnt 1, IPC

SHIELDING PROFILE AND INSPECTION FORM

WI. QO9 WORKShert

Model:82	<u> </u>	Serial Number:	<u>PO (</u>	,	_ Radionuclide: <u>IR 19</u>	Max.Cap	acity: <u>1</u>	$\overline{0}$
				Shie	ld Data			
Shield Heat	#: <u>3890</u>	9-1	Mass o	f Shield	: <u>33,50</u> Lbs.	Lot #:	024-	1
				Initia	l Profile			
Source Mod	del:		Sourc	e SN:	A	ctivity:	C	;;
Survey Inst.: SN: Date Cal.: Da								·
Surface			e Corre Factor	ction		Adjusted Intensity mR/hr		
Тор					MA		-	
Right					Capacity Correction			
Front					Factor:			
Left								
Rear								
Bottom					•			
Inspector:				Dat	te:	NCR #:	· · · ·	\geq
				Final	Profile			•
Source Mod	lei: <u>424-</u> 4	Source SN:	D287	79	Activity: <u>147.3</u> Ci	Mass of Devic	ce:	Lbs.
Survey Inst.	:AN(PDR	<u> </u>	13924	tol	Date Cal.: 10 May 99	Date Due:_	16 May	<u>00</u>
		Observed Inten	isity mR/hr			Adjusted Intensity mR/hr		
Surface	At Surface	Surface Corr. Factor		One-	. <u>1991 - 1997</u> - 1997 - 199 - 1997 -	At Surface	ر At On	e Meter
Тор	95	1.27	12	.5		12.2.	12.1	.5
Right	110	1.27	15	5_		141	15.1	.5
Front	250	1.10	40	2.0	Capacity Correction	278	40.4	2.0
Left	150	1.27	71	۵.		192	17.1	.6
Rear	230	1.10	45	1.3	ł	256	°45.4	1.3
Bottom '	145	1.27	20	.8		186	20.2	,8
Inspector:	Mar	nf	(Dat	e: 10 FEDOO	NCR #:	NIA	
omments: <u>Sourca</u>	QI6-1/1							



- COPY

SENTINEL

SHIELDING PROFILE AND INSPECTION FORM

Model: 8	30	Serial	Number:	POI	Radionuclide:_IR_I	92 Max.Cap	oacity: <u>150</u>		
				Shi	eld Data				
Shield Heat	t#:		\	Mass of Shiel	d:Lbs	Lot #:			
Initial Profile									
Source Mol	Source Motel: Source SN: Activity: Ci								
Survey Inst			SN:		Date Cal.:	Date Due:			
Surface				Correction		Adjusted	Intensity mR/hr		
Тор				<u> </u>	× N/A				
Right					Capacity Correction				
Front					Factor:				
Left			<u> </u>			L			
Rear									
Bottom									
Inspector:				Da	ite:	NCR #:			
			-	Fina	l Profile				
Source Mod	lel: <u>424-9</u>	Sou	urce SN:	2879	Activity: <u>128.0</u> Ci	Mass of Devic	e:Lbs.		
Survey Inst.	- AN/POR	27T	SN: 5M3	92401	Date Cal.: 10 MAY 99	Date Due:	0 MAY 00		
	,	Obser	rved Intens	sity mR/hr		Adjusted Ir	ntensity mR/hr		
Surface	At Surface		ce Corr. actor	At One Meter		At Surface	At One Meter		
Тор	130	ί.	27	.6		193	.7		
Right	110	1	.27	.6		163	,7		
Front	210	1	.10	1.6	Capacity Correction	270	1.9		
Left	110	١.	27	.5	Factor:	163	.6		
Rear ''	170	۱.	10	1.4		219	1.6		
Bottom	120).	27	.7		178	8		
nspector:	Dome Cr	unt		Da	te: 25 feb 00	NCR #:			
omments:						Q16-1/	1		

TEST PLAN # 100 RESULTS

Appendix A. Test Data.

Compression 49 CFR 173.46	
Test Specimen:	······································
Drawing No. TPIOO Rev. A	Serial Number: PO
Weight: <u>42,95 lbs.</u> Scale used:	OHAUS # 35014
Test Setup:	······································
Photograph setup	
Use Figure 2 to position the specimen and apply the co	ompressive load.
Setup verified by: Dave mis	Date: <u>23 feb ao</u>
Compressive Load:	
Weight: <u>459 /6s</u> Scale used: R	brt Beam Scale # L48239
Test Period:	
Start date & time: 23 feb 00 12:05 PM Ambient T	OMEG
Stop date & time: 24 feb 00 12:30 PM Ambient T	emp. <u>73,1 F</u> Gage used: <u># ENG</u>
Damage description:	
Photograph damage (if present)	
	······································
landa a seconda en la composición de la	
Post test initial assessment:	
NO DAMAGE THEREFORE INITIAL INT	Dications ANE TOFE TEST
NO DAMAGE MORE ANT THE	TO AF ALC - BT
SPECIMEN MEETS THE REQUIREMENT	DES OF 14715 7531.
	Date: 24 feb 00 Date: 24 feb 00

. ::::

Compression 49 CFR 173	
Test Specimen:	
Drawing No. TP100 Rev. A	Serial Number: PO2
Weight: <u>43.00 165</u> Scale used	: <u>OHAUS # 35014</u>
Test Setup:	
Photograph setup	
Use Figure 2 to position the specimen and apply the	e compressive load
· · · · · · _ · · · · · ·	-
Setup verified by: Dave Chunt	Date: <u>23 +eb 00</u>
Compressive Load:	
Weight: <u>459</u> /bs. Scale used:	Port Branne Scala #1482207
Weight. <u>409</u> ,705. Scale used.	TOT DEGM OLATE 2702 37
Test Period:	
Start date & time: 23 feb 00 12:05 PM Ambien	OMEGA of Temp 73 4° E Gage used: #ENG-1
Stop date & time: <u>24 feb 00 12:30 PM</u> Ambier	AMELA I
Damage description:	
Photograph damage (if present)	
NO DAMAGE	
Post test initial assessment:	
NU DAMAGE THEREFOLE WITH	A INDICATIONS ANE THE TES
SPECIMEN MEETS THE REPUBE	
Recorded by: Due Churt	Date: 24 feb 00
Witnessed by:	Date: ZFFEB00

Page 11

Penetration Test 49 CFR 173.465 (e)							
Test Specimen:							
Drawing No. <u>TPIOO</u> Rev. <u>A</u> Serial Number: <u>POI</u>							
Test Setup:							
Photograph Setup							
Use Figure 3 to position specimen, locate impact point and set drop height (40 inches).							
Setup verified by: Dave Cunt Date: 24 Seb 00							
Penetration Bar:							
Drawing No. <u>BT10129</u> Rev. <u>B</u> Weight: <u>13.4 /65</u> SN 1							
Test Period:							
Date & time: <u>24 feb 00 2:53 PM</u> Ambient Temp. <u>58° F</u> Gage used: <u>ENG-12</u>							
Specimen Damage:							
Photograph Damage (if present)							
DENT .134 DEEP							
Post test initial assessment:							
MINUR DAMAGE INDICATES THE TEST SPECIMEN MEETS THE							
REDNZEMENTS OF THIS TEST.							
Recorded by: Dave (int Date: 24 feb 00							
Witnessed by: Stare Storie Tarte Date: 24 Fes 10 / 24 For 50							
Quality Assurance Review by: Denight. Kuit Date: 24 FEB 00							

Notes:

		Free Dr 49 CFR 17				
Test Specimen:	_,	······		<u></u>	•	
Drawing No	TP 100	Re	v. <u>A</u>	Ser	ial Number:	POI
Pretest weight	42.95	<u> </u> 64	Sca	le Usec	1	35014
Test Setup:			<u>~4</u> .~	·		
Photograph Setup						
Use Figure 4 to pos	tion specimen, lo	cate impact	point an	d set dı	op height (4	feet).
Setup verified by: _		-	-			
Drop surface:						
Drawing No. A T	10122	Re	v. <u>B</u>	Loo	cation: <u>Vauy</u>	TREE GEOVELAND. N
Test Period:						ÓMEGA HA
Date & time: <u>24</u>	Feb 00 3:00	<u>PM</u> Amb	ient Terr	ıp. <u>59</u>	<u> </u>	used: #ENG-12
Specimen Damage				·····		<u> </u>
Photograph Damage	e (if present)					
Post test weight	42,90	165	Scal	e Used	350	14
				<u></u>		
						·
Post test initial ass	essment:					
DAMAGE:	= DEVICE SHELI				14 ¹¹	(DINED)
	F DEVICE SHELL F DEVICE SHELL					PRIDE YA"
<u> </u>						
Recorded by: ()	he Churt	1/11		Date: Date:	24 feb	
Witnessed by: Solution Quality Assurance I	eview hy:	<u>ZIGNIC</u>	$ \rightarrow $		24 Feb o	
Quality Assurance i	Leview Dy. Dami	W. But		Dale.	24 100 0	8
Notes:					e	•••
A less 1			_			
-D * MINAR DA			est sp	ecime	~ meers	でして
requireme	nts of titis t		10			
The weet the set	1 - 1	Page				
Functional		nny Sour	US Pre	2 8 075	AND SEC	wes
Du 24 feb a			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
(SUCANESU						

Final Test Assessment 49 CFR 173.412 (j)							
Test Specimen:							
Model 880 Serial Number(s): Pol							
Loss or Dispersal of Radioactive Contents:							
Did the source capsule remain within the source tube, attached to the undamaged?	ne source wire and						
Verified by: Date: 2	5 feb 00						
Increase in radiation levels: 💥 For 27	WRIES OF IRIAZ						
Are the final radiation profile results less than 200 mR/hr at the pac	ckage's surface? Yes *						
Is there a significant increase between pre-test profile measurement measurements?							
Comments:							
	······						
	······································						
· · · · · · · · · · · · · · · · · · ·							
· · · · · · · · · · · · · · · · · · ·							
Engineering Review by: 5 Grand Date: 2	S Fesci						
	5 Essee						
	s Feb oo						

f.

	. · · ·		ι	~/0 M10-	7730 t 29650
No	Description of nonconformance	Disposition	Prod.	Eng.	Insp.
	DWG ABBOIZ REV1 TRIGGGR ASSEMBLY OPARTS NOT AVAILAGE FOR ASSEMBLY	USE WITHOUT	RWE 23fel-00	(SD) 23 (03-00)	Da) 23 feb00
	SAN POL + POZ DWG. BBBOITS REV 1 LOCK MUUNT ASSEMBLY () TRIGGER ASSEMBLY NOT INCLUDED. (2) TRIGGER ASSY SCREW NOT INCLUDED.	USE WITHOUT TRIGGEN ASSY	<u> К ЕО</u> С. 1 ³ 5сь 00	3) 73 (~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	De 23.feb 20
	S/N POIT POZ DWG- B88011 REV. 2 BODY WELDMENT (D) TUBE SLEEVE (A88006) GIUED TO FRONT + REAL ENDPLATES. (2) SHIELD SPACE (ABEAR) TOPED TO SHIELD. (3) BOTH ENDS OF STURE RADIUS + DEBUREED ON INSIDE TO REMOVE SHARPEDGES.	UPDATE DWGS	RWE 2321.00	@) 23 Fazard	Da 23 feb 00
	 (1) STAMPED SERIAL NUMBER TO ENOPLATE S/N POI + POZ DWG- I368020 REV.1 REAR PLATE ASSEMBLY (1) STAMPED SERIAL NO. ON BACK. (2) TURGUED ITEM IZ TO 30 IN-LEISING. (3) TURGUED ITEM IZ TO 30 IN-LEISING. 	UPDATE DWGS. -TURQUE WR		(SZ) Z3Fe610	Da 23 feb 83
	 ADDED UIBRATITE TO ITEMS 12+13. UBRICATED ITEMS 5+8 SLIDE CHANGED TO REV.3, DUGARROZA. S/N POI + POZ DWG B88030 REV1. FIZONT PLATE ASSEMBLY OREPLACED PIN TO DWG A88037 REV.3. 	uppare Dube,	Kth E 23 Feb 00	CD ZSR4B00	Da 23 feb 00
	 MODIFICO ROTOR TO-DWG BEBOZZ RENS MODIFICO KNOB TO DWG ABOZZ RENS ADDED GROP FOUR PER DWG ABBOZE RENI ADDED GROP FOUR PER DWG ABBOZE RENI ADDED FINIT DISK PER DWG ABBOZE RENI ADDED FUT HO SCAWS 	(s/~ PO1.0~~			R .

.

	6/0 M107730 + Q89650							
No	Description of nonconformance		Prod.	Eng.	Insp.			
	DWG. 7P100 + TP104 TEST SPECIMEN DWG.	UPDATE OWE	R109 23 Juli 00	3 23 Ferson	Du 23 feb co			
	() ADDER ANT: -SIEZE TO 5/16 BOLTS. (2) ADDED RELIGF TO LUK PLATES TO CLEAR WELD (416 1+19/1 AT BOHOM LIP RELIGEN BOLT 1445)	, ,						
	S/n Poi + Poz							
		, _, _, _, _, _, _, _, _, _, _, _,						
				<i>.</i>				
			•	.				
I				·,	1			

.

.

							ROUTE CAR	D	•		:			
QC Lot		A_	Comple	ete Lot:			Total WO Qty.:	· _			•••••	Serial No	- P01	
					Rte. Cd. Qty.:1						Lot No: <u>NA</u>			
art #	TP100	Description MODEL 880 TEST			ST UN	IT TYPE	A Dwg	TP100		Rev A		WO Q89650		
)per.	Seq.	Department	Operation	Operation Description		By	Date	Qiy Acc	Qıy Rej	Reference		Comments		
010		ASSY / MS	ASSEMBLE PE	R NOTES I	-4	RW	2 Feb OC) 		ТР	100		<u> </u>	
<u> </u>		·····						<u> </u>			,			
020		QC	INSPE	CTION	(DQ	23 feb	1	0	SOP-	Q015			
							· · ·	<u> </u>			· · · ·		·	
									· ·		<u> </u>			
030		QA	QA RI	EVIEW	<u> </u>		23			SOP-0	Q025		.	<u> </u>
				:	 ,	\$	/ Feb 00	·		& TP	100	<u>.</u>	,	
	·			· · ·							<u>. </u>		<u> </u>	<u> </u>
)040	·	1C	STOCKROOM PROCESSING		IG	ûc	DEFEL			SOP-				· · · · · · · · · · · · · · · · · · ·
		——————	DELIVER 1	OQC FOR									· · ·	· .
		<u></u>	TEST	'ING			·							
						·	· · · · · · · · · · · · · · · · · · ·							<u></u>
				•				:			• • •	·	· · · · · · · · · · · · · · · · · · ·	. 4
														÷
		·····	l				<u>l</u>]						
rawing TP100		Checklist Initials NOTE 1. TORQUE 110 +/-5" LBS.			-wi-	-Step	Checklist		Init	ials	WI-Ste	pChe	cklist	Initi
TPIOO		OTE 3 TOTA		42.95			···							
				Do 23 Feb				· ·						
• 										·			- <u> </u>	<u> </u>
		·			┨				-					
		·		· · · · · ·							·	;	<u> </u>	
							; 							
NGIN	ERIN		23 Fos.				TORY- File OK	mit	23 Fc	500	MATE	UALS:	<u>Ilan Ca</u>	23 F1
RODL	CTION	RWE	vance 23%	et-00		QUALITY	ASSURANCE>	D.W.1	Just	23 Fe	600	ISSUE	NUMBER:	l
						•	•		-					QP2

SENTINEL

.

	SENTINE		· .	:	· ·	· · · · · · ·				
NO	DESCRIPTION OF NONCONFORMANCE	DISPOSITION	INDIV/ DATE	INSP/DATE	PART NUMBER	DESCRIPTION	СМ	SERIAL/ LOT NO.	INITIALS	DATE
		· · · · · · · · · · · · · · · · · · ·			88011	BODY WELDMENT	A	POI	Rtve	Hel-00
					88020	REAR PLATE ASSY.	A	POI	REVE	3-1-00
•										
	·					· ·				
				· · ·		· · ·				
	·	· · · · · · · · · · · · · · · · · · ·					·			
						j.				
	· · · · · · · · · · · · · · · · · · ·	· · ·								
		÷	· · ·	. •	MTE SN	MTE DESCRIPTION	CAL	DUE DATE	INITIALS	DATE
	·				A55415	TORQUE WRENCH	4-8	2-00	ROC	Filo OD
	·····	· · ·	·		35014	SCALE	11 - :	24-00	(Too)	23 500 00
	· ·									
		· · · · · · · · · · · · · · · · · · ·		[• •				
		: •							· ·	
									ŀ	
			:							
	· · · · · · · · · · · · · · · · · · ·									
						CHANGE	VERIFIC	ATION		
					PART NUMBER	DESCRIPTION	REV	ECO	INDIVIDUAL	VERIFIED
				· ·						
			· ·		· · ·					
•	······································		· · · · · · · · · · · · · · · · · · ·				1			

.

.

.

SINCO electroni	• c s	Ba	21 OCT 99 Certific	ate No. 1054915
127 RIVERNECK ROAD CHELMSFORD, MA 01824			KEMA	CERTIFIED
	CERTIFICATE O	F CALIBRATIC	N E	ISO 9002 REGISTERED
		OR INOLOGIES	CERT.M	10. 10458.01
)
Description: OMEGA ENGINEERIN				
Serial No: T179139	Asset No:		Simco ID: 249	948-10
Dept: NONE	PO No: P4	732-00		
Calibration Date: 10/18/99	Calibration Inte	rval: 12 Months	Recall Date: 1	0/18/00
Arrival Condition: MEETS MANUFACTURER'S SPE	:C'S.	Service: CLEAN/CALIBR	ATE TO MFR'S SPE	EC
Procedure: PER MFRS. SPEC Temperature: 67°F			l Ratio: 2.00:1 lative Humidity: 38] %
Standards Used:		Intvl		
		<u>e Date Mos Acc</u> 08/00 6 +/-1		<u>NIST No</u> 413348
POTENTIOMETER				255343
	· .			
				the state of the s
a an	# Read Andread Angres	···· · · · · ·	· · ·	na na managalatina (n. 12
			1.1.1	
Work performed by: DK- Duane A. Archambault Technician (11468)		Reviewed by: Phillip A. Maltais Lab Supervisor	1. Math	
All calibrations are performed using Standards and Technology (NIST) or or ratio calibration techniques. Our of The information shown on this certif reproduced, except in full, without pr Dated: 10/18/99	internationally recog the National Physic calibration system co icate applies only to	gnized standards trac cal Laboratory (NPL omplies with MIL-S the instrument iden	ceable to the Nationa), or using natural ph TD-45662A and AN tified above and may	ysical constants SI/NCSL Z540-1.
	Page 1 of 1			-

Metrology Service, Inc. Data Sheet HMSCC: 10972 Page 2 Customer: AEA TECHNOLOGY P.O. No.: P4634-00 Date Cal: 11/24/99 Date Due: 11/24/00 Manufacturer: TOLEDODate Due: 11/Serial No.: 2642125-2VTTechnician: DDModel No.: 8582Cal. Proc. No: 01 ID.No.: 268

 Serial No.: 2042120 2.1
 Cal. Proc. No: 01

 Model No.: 8582
 Cal. Proc. No: 01

 Standard No.: 018
 Cal.: 03/24/99
 Due: 03/24/00

 Standard No.:
 Cal.: Due: Due: Due: Due:

 2 ID.No.: Department: Deviation u.: Accuracy: +/-4% Accuracy: Standard No.: Cal.: Due: Gage Type: 0-10.0lb SCALE Required: : 0 1.0 2.0 5.0 7.0 10.0 lb Deviation: : Measured: : REF 1.000 2.000 5.000 7.000 10.000 lb Customer: AEA TECHNOLOGY P.O. No.: P4634-00 Date Cal: 11/24/99 Manufacturer: NCIDate Due: 11/24/00Serial No.: SR878400111Technician: DDModel No.: 8300Cal. Proc. No: 01Standard No.: 018Cal.: 03/24/99Standard No.:Cal.: Due:Standard No.:Cal.: Due:Standard No.:Cal.: Due: Date Due: 11/24/00 Manufacturer: NCI ID.No.: 269 2 ID.No.: Department: Department: Deviation u.: Accuracy: +/-4% Accuracy: Standard No.: Cal.: Due: Gage Type: 0-10.01b DIGITAL SCALE Required: : 0 1.0 2.0 5.0 7.0 10.01b Deviation: : Measured: : REF 1.000 2.000 5.002 7.002 10.002lb Customer: AEA TECHNOLOGY P.O. No.: P4634-00 Date Cal: 11/24/99 Manufacturer: DILLON Date Due: 11/ Technician: DD Cal. Proc. No: 22 . Date Due: 11/24/00 ID.No.: 3500 Serial No.: D-3500 2 ID.No.: Model No.: Department: Model No.: Standard No.: 018 Standard No.: 031 Standard No.: Deviation u.: Cal.: 03/24/99 Due: 03/24/00 Cal.: 02/23/95 Due: 02/23/00 Cal.: Due: Accuracy: +/-4% Accuracy: Standard No.: Cal.: Due: Gage Type: 0-5001b FORCE GAGE : Required:: 0 50.0 100.0 150.0 Deviation:: 200.0 lb Deviation: : Measured: : REF 51.0 103.0 153.0 202.0 lb P.O. No.: P4634-00 Customer: AEA TECHNOLOGY Date Cal: 11/24/99 Manufacturer: 0'HAUS Date Due: 11/24/00 ID.No.: 35014 Serial No.: 35014 Model No.: DS10 Technician: DD 2 ID.No.: Cal. Proc. No: 01 Model No.: DS10 Standard No.: 018 Standard No.: 031 Department: Deviation u.: Cal.: 03/24/99 Due: 03/24/00 Cal.: 02/23/95 Due: 02/23/00 Accuracy: +/-4% Cal.: Due: Accuracy: Standard No.: Standard No.: Cal.: Due: Gage Type: 0-1101b DIGITAL SCALE Required: : 0 5.0 10.0 20.0 50.0 70.0 100.01b Deviation: : Measured: : REF 5.00 10.00 20.00 50.00 69.95 100.001b ·------______

CERTIFICATE OF CALIBRATION

Mertler To lebo Test and Inspection Report prepared by Commission Basic Contine

This is to certify that the undersigned has inspected the following for

AEA TECHNOLOGIES

Make	NES	
Capacity	2000	LB.
Grad Size _	.5	
Type	DRT BEAM	Scale

Model No. PORT BEAM	•
Serial No. <u>~ ~ 482397</u>	
Location ASSEMBIY-11	
I. D. No	

SCALE READINGS

	BEFORE ADJUSTMENTS	AFTER ADJUSTMENTS
0	0	NA
500 LB.	500.0	
. 1000 "	1000,0	
1500 "	1498.0	

SCALE PASSES

This is to certify that the weighing device identified above has been calibrated using certified test weight traceable to the National Institute of Standards and Technology (formerly NBS) and is guaranteed accurate to the tolerance indicated. Traceability # 12.691 $c\tau$:

Inspection in accordance with National Bureau of Standard Handbook 44 and Mil Standard C-45662A.

Additional Data:

Scale Inspector <u>Commine & Belleville</u> Date: <u>11-22-99</u> Company <u>Mettle Date: 5-22-2000</u> Service Report / Order No. HUNT Metrology Service, Inc. Data Sheet HMSCC-10012 Page 22 Customer: AEA TECHNOLOGY P.O. No.: 3753 Date Cal: 04/01/99 ID.No.: 273 A&BManufacturer: THREADS, INC.2 ID.No.:Serial No.:Technician: PRepartment:Model No.:Cal. Proc. No: 15iation u.:Standard No.: 006Cal.: 02/10/99Due: 08/31/99Accuracy: GO +0.000 20"Standard No.: 021Cal.: 02/10/99Due: 08/31/99Accuracy: NG -0.000 20"Standard No.:Cal.: 02/10/99Due: 08/31/99Standard No.:Cal.:Due:Due: 08/31/99 Manufacturer: THREADS, INC. ID.No.: 273 A&B Department: Deviation u.: Gage Type: GO/NO GO PLAIN PLUG SET

 GO
 NO GO

 Required:
 0.6250"
 0.6256"

 Deviation:
 +0.00001"
 -0.00001"
 -0.00001"

 Measured:
 +0.62501"
 +0.62501"
 -0.62559"
 -0.62559"

 Customer: AEA TECHNOLOGY P.O. No.: 3753 Date Cal: 04/01/99 ID.No.: 285 A&B Manufacturer: REGAL BELOIT Date Due: 04/01/00 ID.NO.:Manufacturer:REGAL BELOITDate Due:04/01/002 ID.No.:Serial No.:Technician:PRDepartment:Model No.:Cal.Proc. No:15viation u.:Standard No.:011Cal.:03/23/99Due:06/30/99Accuracy:GO-0.000 30"Standard No.:Cal.:Due:Due:Accuracy:NG +0.000 30"Standard No.:Cal.:Due:Gage Type:1.0"-8 UN-2A THREAD RING SET(SET PLUG PASSES)NO. CO Department: Deviation u.: NO GO Required: : 0.9100" Deviation: : 0.0000" Measured: : 0.9100" Customer: AEA TECHNOLOGY P.O. No.: 3753 Date Cal: 04/01/99 ID.No.: ASSY-1Manufacturer: MITUTOYO2 ID.No.:Serial No.: Date Due: 04/01/00 Technician: PR 2 ID.No.:Serial No.:Technician: PRDepartment: MACHINE SHOPModel No.: 101-105Cal. Proc. No: 03eviation u.:Standard No.: 026Cal.: 02/10/99Accuracy: +/-0.000 10"Standard No.:Cal.: Deviation u.: Accuracy: +/-0.000 10" Cal.: Due: Cal.: Due: Cal.: Cal.: Accuracy: Standard No.: Standard No.: Due: Gage Type: 0-1.0" OD MICROMETER 1.000" Required: : 0 Deviation: :REF 0 Measured: :REF 0.1000" 0.1150" 0.2500" 0.5000" 0.7500" 1.0000" Customer: AEA TECHNOLOGY P.O. No.: 3753 Date Cal: 04/02/99 ID.No.: ASSY-15 (A) Manufacturer: CRAFTSMAN Date Due: 04/02/00 2 ID.No.: Serial No.: Technician: PR

 Serial NO.:
 Model No.:
 44593
 Cal. Proc. No: 23

 Model No.:
 158
 Cal.:
 07/06/98
 Due:
 07/06/99

 Standard No.:
 159
 Cal.:
 07/06/98
 Due:
 07/06/99

 Standard No.:
 160
 Cal.:
 07/06/98
 Due:
 07/06/99

 Standard No.:
 160
 Cal.:
 07/06/98
 Due:
 07/06/99

 Standard No.:
 Cal.:
 07/06/98
 Due:
 07/06/99

 Department: Deviation u.: Accuracy: +/-4% Accuracy: Standard No.:Cal.:Gage Type: 25.250 in/lb TORQUE WRENCH C.W.(PART 1 OF 2) Required:25.050.075.0100.0150.0200.0250.0lbDeviation::+0.32+0.63-0.74+0.3+2.4+5.0+4.1lbMeasured::25.3250.6374.26100.3152.4205.0254.1lb 200.0 250.0 lb

etrology Service, Inc. Data Sheet HMSCC-10012 Page 23 customer: AEA TECHNOLOGY P.O. No.: 3753 Date Cal: 0+/02/00Date Due: 04/02/00ID.No.: ASSY-15 (B) Manufacturer: CRAFTSMAN Date Suc. Technician: PR Serial No.: 2 ID.No.:

 Serial No.:
 Model No.: 44593
 Cal. Proc. No: 44593

 Standard No.: 158
 Cal.: 07/06/98
 Due: 07/06/99

 Standard No.: 159
 Cal.: 07/06/98
 Due: 07/06/99

 Standard No.: 160
 Cal.: 07/06/98
 Due: 07/06/99

 Department: Deviation u.: Accuracy: +/-4% Accuracy: Gage Type: 25.250 in/lb TORQUE WRENCH C.C.W. (PART 2 OF 2) Required:25.050.075.0100.0150.0200.0250.0lbDeviation::-0.51+1.02+1.26+2.1+3.6+4.8+6.1lbMeasured:::24.4951.0276.26102.1153.6204.8256.1lb Customer: AEA TECHNOLOGY P.O. No.: 3753 Date Cal: 04/01/99ID.No.:ASSY-2Manufacturer: MITUTOYODate Due: 04/01/002 ID.No.:Serial No.:Technician: PRDepartment:MACHINE SHOPModel No.: 505-644-50Cal. Proc. No: 16eviation u.:Standard No.: 026Cal.: 02/10/99Due: 08/31/99Accuracy:+/-0.0010"Standard No.: 137Cal.: 02/10/99Due: 08/31/99Accuracy:Standard No.: 137Cal.: 02/10/99Due: 02/28/00Standard No.:Cal.:Due:Cal.:Due: Date Cal: 04/01/99 Deviation u.: Gage Type: 0-8.0" DIAL CALIPER Required: : 0 PARA ID OD 1.0" 2.0" 4.0" 6.0" 8.0" Deviation: : REF .0005 +.0005 +.0005 +.0005 +.0005 -.0010 -.0010 Measured: : REF .0005 1.0005" 1.0005" 2.0005" 4.0005" 5.9990" 7.9990 1.0005" 2.0005" 4.0005" 5.9990" 7.9990" Customer: AEA TECHNOLOGY P.O. No.: 3753 Date Cal: 04/01/99 ID.No.: ASSY-4 (A) Manufacturer: MITUTOYO Date Due: 04/01/00 Technician: PR Serial No .: · 2 ID.No.: 2 ID.No.:Department:ModelNo.: 505-628-50Cal. Proc. No: 10Department:ModelNo.: 027Cal.: 02/10/99Due: 08/31/99Accuracy:+/-0.0010"StandardNo.: 088Cal.: 02/10/99Due: 08/31/99Accuracy:StandardNo.: 134Cal.: 02/10/99Due: 02/28/00StandardNo.:134Cal.:Due: Deviation u.: Gage Type: 0-12.0" DIAL CALIPER (PART 1 OF 2) Required: : 0 PARA ID D. OD. 2.0" 4.0" 4.0" Deviation:REF.0010-.0010-.0010-.0010Measured::REF.00100.99900.9990"1.9990"3.9990" Customer: AEA TECHNOLOGY P.O. No.: 3753 Date Cal: 04/01/99 ID.No.: ASSY-4 (B) Manufacturer: MITUTOYO Date Due: 04/01/00 Serial No.: Technician: PR 2 ID.No.: Model No.: 505-628-50 Cal. Proc. No: 16 Department: MACHINE SHOP Standard No.: 027Cal.: 02/10/99Due: 08/31/99Standard No.: 088Cal.: 02/10/99Due: 08/31/99 Deviation u.: Accuracy: +/-0.0010" Standard No.: 134 Cal.: 02/10/99 Due: 02/28/00 Accuracy: Standard No.: Cal.: Due: Gage Type: 0-12.0" DIAL CALIPER (PART 2 OF 2) Required:6.0"8.0"10.0"12.0"Deviation:-.0010-.0010-.0010-.0010Measured:5.9990"7.9990"9.9990"11.9990"

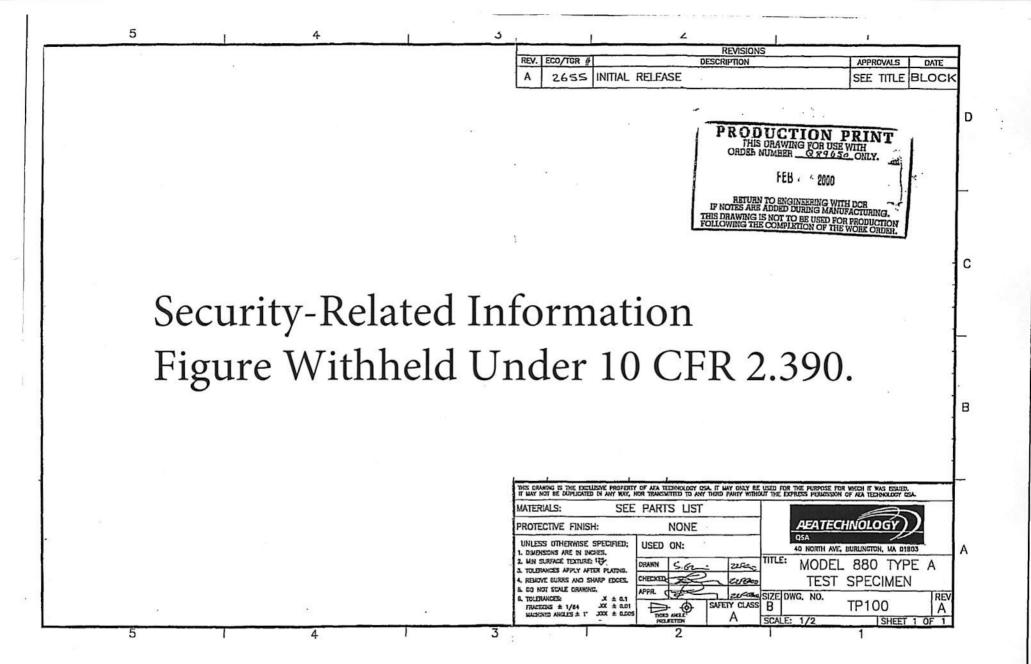
• #					ROUTE CAR	D	r .				
2C Lot#	<u>930</u>	Comple	te Lot:	- · ·	Total WO Qty.)	Serial	No: POI		
M: A		Split Lo	t :	· . • .*	Rte. Cd. Qty.			13 (48 F2) 50 23 5000	Lot No: NA		•
	OTYPE FABRIC		CT2ST SPEC	CONTRACT	Dwg B	10 + TPI	- A	Rev YA	WO MI	23 Febas 0773	
	TP104 23	sta				Qty	Qty	· · · ·		0115	<u>U</u>
Oper. Seq.	Department	Operation I	Description	Ву	Date	Acc	Rej	Reference	(Comments	· · · · · ·
010	MS	WEI	.D	DRI) 3 FEBOU			A88010	REV.2		
020	QC	INSPI	ECT	mer	3 3 54600	2	2	23 3 FL 0 0 A88010	REV.2 LOT#	QCL#118	າອະ
030	MS/ ASSY.	ASSEM	IBLE		- NA-	<u> </u>		:A88012	REV.I	ATTACHO	2)
· · ·				Pich C	10-2	<u> </u>		B88013	REV.I	4	
		·		RW	E Fehod			B88020	REV.1		
				18904				B88030	REV.I		
)040	QC	INSPE	CT		NA -			A88012	REV.I,	<u> </u>	
		···.		De	23 feb 23 feb		0	B88013	REV.1	54 135 T 660 . 19	9
					23500		Ð	B88020	REV.1 LOT#	60054	1-)
		ASSEM	BLE		4		Ð	- B88030	REV.I		
050	MS	ENDPLATES	PROPERLY	DFW			Zoch	B88011	REV. 2 WI-AS		
	QC	ATTACHED	O SHIELD	Ŧ	Feb oc		<i>?∲</i>	.B88011	REV.2 LOT#	<u> </u>	
0070	MS/ASSY	TACK.WELD &	·	PRE	4 FEB 00		A	B88011	REV.2 WI-A	and a state of the second	
080	QC MS	* INSPECT & INIT WELD ,FOAM &		17 12 1	5 // FERG		& ,	B88011	REV.2 REV.1B880111	K Track L	14 Filo27 <u>いっに</u> ち 48.AS40
)090		FINAL INS		R20 1	2 17F2F0		<u>-7</u> @	TRID MEB	Vinder & Orecsize REV.P		
0100				-				1 100 112 0 A I 77 FLAD 1 10 00 1 10 00 231-00 B880000 231-00	REV.		
0110 0120	QC QA	FINAL PR		4	ole\$5 Shif		_	B88000 500 500 500 500 500 500 500 500 50	REVA	•	
				(TD			4	000 1 (00	· · · · · · · · · · · · · · · · · · ·		· · · ·
130	IC	STOCKROOM PR	UCESSING	1.Roi	to care	213	(es	SOP-M02			
VI-STEP	Checklist		Initials	WI-Step	Checklist	DQ 23 FE	Initi	ials Drawin	g Checklist		Initials
9.3	PERFORM &			9.20	VERIFY S.N.	OF		#	0 TOTAL	PACKAGE	6a
	CUT OF SHIELD) : :	RTOE	•	SHELL vs.	. ^	RT	n	WEIGHT		42.95
			Nor		LABELS	171 - 	19550				74.10
				9.21	TORQU	E	KTO	2		· · ·	
			<u> </u>		• 1.112	· .		·			
	VERIFY S.N. C STAMPED ON		RTOE	9.23	FUNCTONAL T W/ DUMMY S		RO	2a			
	· .							·		· ·	· ·
<u>_</u>	· · · · · · · · · · · · · · · · · · ·										
NGINFERI	NC. S-Gre	A	6570		TONY I A	mfull	3 Fel	200 MATE	<u> </u>	Cai	2 Fahr

÷

...

· ·

, 	,			·			·	T		ferre en
NO	DESCRIPTION OF	DISPOSITION	INDIV/ DATE	INSP/DATE	PART NUMBER	DESCRIPTION	СМ	SERIAL/ LOT NO.	INITIALS	DA l'E
-1, 1,	09.580,0020 88010 NCR-4989- 11-2	SEENCR -	8A VOIDED ME	B3Fy20	88001	D.U. SHIELD	thear (38909-1	RIDE	49/200
<u>,</u>	NCR ACL 11852	SUBAT DLR TO OLG DUG.			88004	ENDPLATE	A	00034-2	DRB	13 125:00
		(1/16 min) 69350500	Chirl 3FEGOU		88010	ENDPLATE WELD'T.	A	Lot 00034-5	MZB	3Feb00
		REDESFLOC			88011	BODY WELDMENT	Α	00054-2		23 feb 00
		F3Reb00			88020	REAR PLATE ASSY.	A	00054-1	B	23 feb 00
n	P/N 38037 RWZ	RWKin MS	lo Tim	F 6500	88021	LOCK MTG. PLATE	A	00034-1	Da	23 feb OD
	Rewark from 1	DEW 4 FEDOU		/ / ~	CBL004	7 X 19 CABLE	A	000	RUZ	\$F.6.00
	Ð	Aveg 00 # 4 /25 00			. SCR003	10-32 X 1 ¼ SCREW	A	99139-1	KWE	711-00
	ngsher	and y febru			*	WELD ROD	A	26T 9404&-4	DATS	16 En 00
3	add I-lat Dre on each	FYFeb 00			*	a 16 Feb 0 Die 150				
	End Plate between :	90 4 4 300			MTE SN	MTE DESCRIPTION	CAL	DUE DATE	INITIALS	DATE
	Costa Più + Analiet	Cmp 4 Febol			A954-2	CALIPERS	4-	1-00	RWC	Feb-00
	(at installition of Pin ASM)	RWE TELLA	>	:	A554-15	TORQUE WRENCH	4-	2-00	RZOE	7-2h00
	P/ 65006-6) 2per	she 0070			269	FOAM SCALE	11-	-24-00	RWE	Feb-00
				and the second sec	35014	SCALE	11-	24-00	Da	23560
5	operation .0030 to	Procent to 0250			\$			i		
	0050 not performed doe	D 7 Poso		:						
	to part availability	RWE TELLOC	1					<u> </u>		
		CMF7FBOU	· · · · · · · · · · · · · · · · · · ·				-	: 		
<u> </u>	IT IS ACCEPTABLE TO GO	CUT OF SB	LIENCE		· · · ·		· ?.			
	ON THIS ROUTE CORD FOR	e Proques Pu	epases .			· · · ·		<u> </u>		
	& FUNCTIONAL TEST NA	S BEEN PERM	emeo.			CHANGE	VERIFIC	ATION		
	DWK 10FEB00	any office			PART NUMBER	DESCRIPTION	REV	ECO	INDIVIDUAL	VERIFIED
ļ		Rem 10Fe								
		@ COFe	1	· · · · · · · · · · · · · · · · · · ·						
6	Fail Initial Profilessee Attached SPIF/G-11/921193		1		7 ASSY BOBOIL					-
\overline{G}	14"ATT + 1/. OVER SIZE	ΠΔΓ	Dw 17 feb 00	A) 14	GN00		-		• •	


÷

· • . * ...

SENTINEL

Smet Lot ____

					•	TP	100		-				
INSPECTION INST	RUCTION	ORIGINATOR / DAT	E Day	elimis	23 feb 00	REVA	PARTNO.	TPIOC)	SUPPLIER	Asser	BLY	·
AND RECORD		QA APPROVAL/ DA	The last		3 Feb 00	CM A	MANA	DESCRIPTION	MODEL	880 7		ST SPEC	IMEN
CHARACTERISTICS	TOLERANCE	MTE / SN.	AQL	1	. 2	3	4	5	6	7	8	9	10
GENERAL VISUAL	NA	NA	C/1002	0/2									
VERIFY ALL ITEMS PRESENT PER DWG.	NA	NA		0/2									
NOTE TORQUE 110 IN LB ± 5	± 5 IN B	SEE ROUTE CARD		0/2									
NOTE 2 INSTALL DUMMY SOURCE ASSY	NA	NA		0/2	./		\mathbb{Z}						
Note 3 Record Total Weight	NA	SEE ROUTE CARD		0/2									
Note 4 Mark SN ON ENOPLATE & LABEL	NA	NA	V	02									
COMMENTS:		PO/WO #						·					
		TRAVELER / Q	CL#	NA						/.			
· · · · ·		LOT / SERIAL #		<u>P01</u> P02					· .				
	· · ·	lot qty.		2									
		QTY. REJ/NCR	.# ·	ONA									
	•	QTY. ACC.		2									
·		INSP / DATE	(Dw 23 100 00		<u> </u>							

24 FEBOD TEST PLAN # 100 AUD # 104 DE UNAZIONS (1) ADDED A . 094 D'AMETER HOLE IN SHELL AT THE TOP FRONT END OF BOTH TEST SPECIMEN (PO1 + PO2). THIS WILL PROVIDE Single POINT HANG FOR THE . DRUD TESTS. GD 24 Jozod (Da) 24 feb 00 N 25FBB00 DWK 25 Feb 00

Safety Analysis Report for the Model 880 Series Transport Package

QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page 2-37 2.12.2 Test Plan 108 Issue 5 (Jul 2000)

TEST PLAN 108

ħ

MODEL 880

RADIOGRAPHY PROJECTOR TYPE (B) TRANSPORT PACKAGE TESTS

As of

July 13, 2000

Contents

SEC	TION	1 INTRODUCTION	4
SEC	TION	2 TRANSPORT PACKAGE DESCRIPTION	5
SEC	TION	3 REGULATORY COMPLIANCE	8
SEC		4 DISCUSSION ON SYSTEM FAILURE MODES OF INTEREST	
		Normal and Accident Conditions of Transport	
SEC		I 5 ASSESSMENT OF PACKAGE CONFORMANCE	
		cegnatory kequienents	10
	5.1.1	Normal Conditions of Transport (71.43(f))	
	5.1.2 5.2]	Hypothetical Accident Conditions (71.51(a))	10
		I 6 CONSTRUCTION AND CONDITION OF TEST SPECIMENS	
SEC		8 TEST PROCEDURE	13
010		Jeneral	
		Roles and Responsibilities	
	8.3	Fest Specimen Preparation and Inspection	15
		Summary of Test Schedule	
	0.4 C		10
8.5		M (4-FOOT) FREE DROP TEST (10 CFR 71.71(C)(7))	19
	8.5.1	1.2m Free Drop Test Set-up	
	8.5.2	Specimen TP108(A) Orientation for the 1.2m Drop Test	
	8.5.3	Specimen TP108(B) Orientation for the 1.2m Drop Test	
	8.5.4	Specimen TP108(C) Orientation for the 1.2m Drop Test	
	8.5.5	1.2m Free Drop Test Assessment	23
8.6		FREE DROP TEST (10 CFR 71.73(C)(1))	24
	8.6.1	9m Free Drop Test Set-up	
	8.6.2	Specimen TP108(A) Orientation for the 9m Drop Test	
	8.6.3	Specimen TP108(B) Orientation for the 9m Drop Test	
	8.6.4	Specimen TP108(C) Orientation for the 9m Drop Test	
	8.6.5	9m Free Drop Test Assessment	28
8.7		NCTURE TEST (10 CFR 71.73(C)(3))	29
	8.7.1	Puncture Test Set-up	
	8.7.2	Specimen TP108(A) Orientation for the Puncture Test	
	8.7.3	Specimen TP108(B) Orientation for the Puncture Test	
	8.7.4	Specimen TP108(C) Orientation for the Puncture Test	
	8.7.5	Puncture Test Assessment	33

8.9 TEST INSPECTION	35
 8.10 THERMAL TEST (10 CFR 71.73(C)(4)) 8.10.1 Physical Thermal Test Set-up 8.10.2 Thermal Test Assessment 	

8.12	1EST SPECIMEN STU	RAGE	
SECT	ION 9 WORKSHEETS		 40

·

. .

List of Figures and Tables

Fig. 2.1	Model 880 Projector Transport Package
Fig. 2.2	Model 880 Projector with Jacket
Fig. 8.5.2.1	Specimen TP108(A) Orientation for the 1.2m Drop Test
Fig. 8.5.3.1	Specimen TP108(B) Orientation for the 1.2m Drop Test
Fig. 8.5.4.1	Specimen TP108(C) Orientation for the 1.2m Drop Test
Fig. 8.6.2.1	Specimen TP108(A) Orientation for the 9m Drop Test
Fig. 8.6.3.1	Specimen TP108(B) Orientation for the 9m Drop Test
Fig. 8.6.4.1	Specimen TP108(C) Orientation for the 9m Drop Test
Fig. 8.7.2.1	Specimen TP108(A) Orientation for the Puncture Test
Fig. 8.7.3.1	Specimen TP108(B) Orientation for the Puncture Test
Fig. 8.7.4.1	Specimen TP108(C) Orientation for the Puncture Test

Test Plan No. 108

Section 1 Introduction

This document describes the mechanical test plan for the Model 880 Projector to meet NRC requirements for Type B(U)-85 packages as described in the Code of Federal Regulations, 10 CFR Part 71, revised as of March 31, 1999. The test plan also covers the criteria stated in the IAEA Regulations for the Safe Transport of Radioactive Material, Safety Series No.6 1985 Edition (As Amended 1990).

This document describes the test package specifications, testing equipment, testing scenario, justifies the package orientations for the different test specimens and provides test worksheets to record key steps in the testing sequence.

Section 2 Transport Package Description

Figure 2.1 describes the Model 880 projector transport package. Figure 2.2 shows the transport package with the plastic jacket.

The radioactive material is sealed in a special form source capsule. The source capsule, stop ball and connector are swaged to a flexible steel wire to form the source wire assembly. The source wire assembly is held securely to the device by components of the rear plate assembly. One of these components, the sleeve, in conjunction with the selector ring retainer, prevents the stop ball of the source wire from being pulled through the rear of the package. Another component, the lock slide, prevents the stop ball from being pushed out of the front when in the secured position. A cover over the source wire connector prevents access to the source assembly until a keyed lock is actuated and the cover removed. This cover is in place during transport of the package. This source assembly securing mechanism is functionally identical to the existing model 660 and 680 projector transport packages.

The selector ring retainer is fastened to the rear plate with four, #10 stainless steel machine screws. The rear plate is attached to rivnuts assembled on the endplate weldment with four 5/16-18 stainless steel security screws. The endplate weldment consists of the endplate disc, a U-shaped bracket and the four rivnuts. The U-brackets are welded to the endplate disc and the endplate disc is welded to the cylindrical shell.

The shield is fastened within the device at each end by a titanium shield pin. The pin passes through the shield and the U-bracket. The shield is centered in the shell and has the source tube cast into its center. The source tube provides a cavity for the source wire assembly to travel through during use. The source capsule is positioned at the center of the ball of the shield within the source tube cavity when the source wire is in its secured position.

The model 880 uses polyurethane foam to fill the cavity around the depleted uranium shield. The foam prevents contamination to and from the depleted uranium shield.

Previous thermal tests have shown charred polyurethane foam will inhibit the flow of oxygen to the shield and prevent oxidation from occurring during a fire as long as the foam remains confined. This is shown on AEA Technology QSA Test plan number 70.

It has also been shown the charred foam will not support the shield at temperatures of 800°C. The model 880 relies on the shield pins to hold the shield in place at all times. These pins are designed to retain the shield throughout testing without the added support of the foam.

The outlet port, located at the front end, serves to block access into or out of the source tube cavity. Four stainless steel security screws fix the front plate to the endplate rivnuts.

The plastic jacket is not part of the Type B transport package and therefore not considered for the type B transport testing. The absence of the jacket will present a worst case 30-foot drop and puncture test condition. In a drop, the plastic jacket protects the transport package from further damage by absorbing energy upon impact.

However, since the jacket will usually be on the package during transport and its weight will add approximately 4lbs, one specimen will be tested with the jacket. The "with jacket" 30-foot drop and puncture orientations will be based on damage observed from previously selected orientations and speculative damaging effects the jacket may have on the safety aspects of the package.

The weight of the Model 880 transport package without the jacket is not greater than 46 pounds. The total weight of the package with the jacket is not greater than 50 pounds.

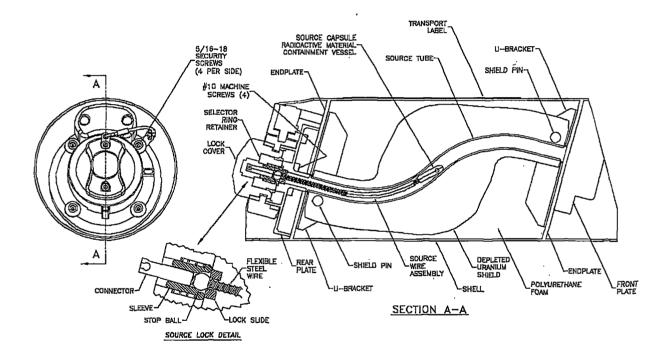
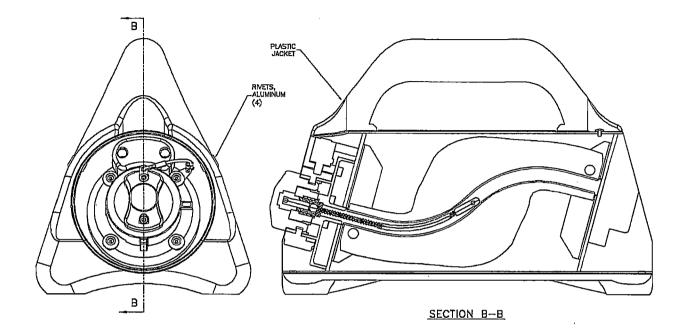



FIGURE 2.1: MODEL 880 PROJECTOR TRANSPORT PACKAGE.

.

FIGURE 2.2: MODEL 880 PROJECTOR WITH JACKET.

.

Section 3 Regulatory Compliance

The purpose of this plan, which was developed in accordance with AEA Technology QSA SOP-E005, is to demonstrate that the Model 880 projector complies with the Type B(U)-85 transport package test requirements of 10 CFR 71 and the IAEA Safety Series No.6.

The tests for Normal Conditions of Transport (10 CFR 71.71) were performed under AEA Technology QSA test plan number 100. However, the 4-foot drop will be performed as the first test to produce typical damage that might occur during normal transport conditions. The 4-foot drop of test plan number 100 was the only test to produce any significant damage to the package.

The water spray preconditioning of the package will not be performed as the Model 880 projector is constructed of waterproof materials throughout. The water spray would not contribute to any degradation in structural integrity.

The Hypothetical Accident Tests (10 CFR 71.73) to be performed are the 9m (30 foot) free drop test and the puncture test.

The crush test (10 CFR 71.73(c)(2)) will not be performed because the radioactive contents are qualified as Special-Form radioactive material.

The thermal test of (10 CFR 71.73(c)(4)) will either be evaluated using a finite element analysis model or subjected to a simulated fire test in an oven at 800°C for at least 30 minutes.

Material	Melting Point
Stainless steel	1390°C (2530°F)
Depleted uranium	1135°C (2075°F)
Titanium	1700°C (3100°F)
Tungsten	3410°C (6170°F)
Copper/Brass	1080°C (1980°F)
Aluminum	580°C (1080°F)
Rubber/Plastic	Less than 540°C (1000°F)

The melting points for the materials of the package are listed below:

The immersion test will not be performed. Only the source capsule (containment vessel) is sealed and able to pressurize as a result of 50 feet of water depth. The source capsule is designed and tested to withstand external pressures well in excess of 22 lbf/in^2 .

Section 4 Discussion on System Failure Modes of Interest

4.1 General

The tests in this plan focus on damaging those components of the package which could cause displacement of the source from its stored position within the depleted uranium shield and which affect the integrity of the shield itself.

4.2 Normal and Accident Conditions of Transport

The modes of failure under normal and accident conditions that could lead to elevated dose rates include the following:

- 4.2.1 Fracture or penetration of the projector weldment.
- 4.2.2 Displacement of the shield within the projector weldment and distortion or fracture of the source.
- 4.2.3 Failure of the source lock assembly and/or lock mounting screws.

The test conditions specified in this Test Plan are intended to challenge the ability of the Model 880 package with respect to these failure modes.

Section 5 Assessment of Package Conformance

5.1 **Regulatory Requirements**

5.1.1 Normal Conditions of Transport (71.43(f))

There should be no loss or dispersal of radioactive contents, no significant increase in external surface radiation levels and no substantial reduction in the effectiveness of the packaging.

IAEA Safety Series No. 6 para. 537 stipulates the same criteria except that it states in paragraph 537(b) that the loss of shielding integrity should not result in more than a 20% increase in the radiation level at any external surface of the package.

5.1.2 Hypothetical Accident Conditions (71.51(a))

There should be no escape of radioactive materials greater than A_2 in one week and no external dose rate greater than 1 R/hr at 1m from the external surface with the maximum radioactive contents which the package is designed to carry.

5.2 Test Package Contents

The Model 880 projector is designed to carry a special form source. Containment of the radioactive source is tested at manufacture. The source capsule design has been certified in accordance with the performance requirements for special form as specified in 10 CFR Part 71 and IAEA Safety Series #6.

This test plan therefore does <u>not</u> discuss/specify tests of the containment of the radioactive source. The purpose of the tests is to demonstrate that the source remains shielded within the limits specified by the regulations.

Since source integrity has been demonstrated through special form testing, a simulated source will be used during testing of the package. The radiation levels after testing will be measured by replacing the simulated source with an active source. The post-test measurements will be compared with pre-test measurements to verify the source has not shifted within the shield.

Section 6 Construction and Condition of Test Specimens

The Model 880 transport package test specimens will be constructed in accordance with AEA Technology QSA drawing B88015 revision A and the AEA Technology QSA Quality Assurance Program. The weight of the test specimens per this drawing is not greater than 46 pounds.

The "With Jacket" test specimen will be constructed in accordance with AEA Technology QSA drawing B88000 revision A and the AEA Technology QSA Quality Assurance Program. This specimen is the same as the specimen built to drawing B88015 revision A, but with the plastic jacket and rivets added. The weight of the "With Jacket" test specimen is not greater than 50 pounds.

The structural materials of the Model 880 are made of AISI Type 300 series stainless steel and titanium. The shielding materials are depleted uranium and tungsten. The non-safety related parts are made from aluminum, brass, copper, plastic, and rubber.

Except for the thermal test, all tests of this plan will subject the test specimen to an impact from a drop. The mechanical strength and ductility of the critical components of the package must continue to perform as expected at the ambient temperature conditions of -40° F to 100° F.

The fracture toughness, strength and ductility, of the structural materials in the Model 880 does not change significantly at or between the temperatures of -40° F to 100°F. The shielding materials are relatively brittle throughout this entire temperature range. Therefore, any temperature within the -40° F to 100°F range for the 4-foot, 30-foot, and puncture tests will have the same result. So, the test specimen will be dropped at ambient temperature at time of testing.

The internal operating pressure of the containment system, namely the source capsule, is considered to be in equilibrium with the outside pressure of the package. The sealed capsule is welded at atmospheric pressure and except for the capsule, the package is open to the atmosphere. Therefore, the initial internal pressure of the containment system is considered to be insignificant.

Section 7 Material and Equipment List

The equipment list worksheets in Section 9 identify the equipment required, with additional space to list other necessary equipment and measuring instruments needed to perform the tests. Additional materials and equipment used to facilitate the tests will be listed as needed.

Section 8 Test Procedure

8.1 General

All test specimens are to be tested in the sequence presented below. Each test has been designed to check the integrity of various components of the package. An assessment of transport integrity of the package can be made based on the cumulative effect of the tests performed on the package

After completing the 4-foot, 30-foot, and puncture drop test sequence on all three specimens, a "With Jacket" test specimen will follow the same drop sequence. The "With Jacket" test specimen will have an orientation chosen from either the first three orientations or another orientation selected to produce the most damage to the package. The justification and description for this orientation shall be documented.

The tests have the following sequence:

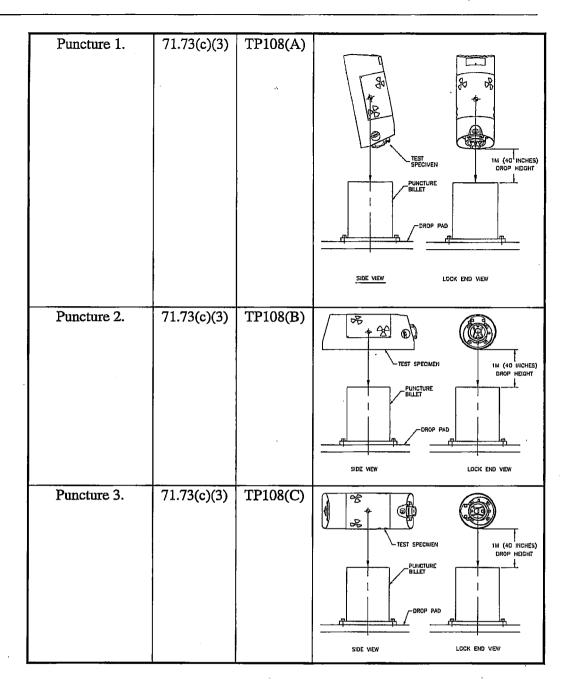
- 1. Test specimen preparation and inspection
- 2. 1.2m (Four-foot) free drop test (10 CFR 71.71(c)(7))
- 3. 9m (30-foot) free drop test (10 CFR 71.73(c)(1))
- 4. Puncture test (10 CFR 71.73(c)(3))
- 5. Test inspection.
- 6. Thermal test or analysis (10 CFR 71.73(c)(4)).
- 7. Final test inspection and/or assessment.
- 8. Test specimen storage.

8.2 Roles and Responsibilities

The responsibilities of the groups identified in this plan are:

- Engineering executes the tests according to the test plan and summarizes the test results. Engineering also provides technical input to assist Regulatory Affairs and Quality Assurance as needed.
- **Regulatory Affairs** monitors the tests and reviews test reports for compliance with regulatory requirements.
- Quality Assurance oversees test execution and test report generation to assure compliance with the AEA Technology QSA Quality Assurance Program.
- Engineering, Regulatory Affairs and Quality Assurance are jointly responsible for assessing test and specimen conditions relative to 10 CFR 71 and IAEA Safety Series #6.
- Quality Control is responsible for ensuring test and specimen data is measured and recorded throughout the test cycle.

8.3 Test Specimen Preparation and Inspection


- 1. Manufacture five Model 880 projectors per AEA Technology QSA drawing number B88015, revision A. Clearly and indelibly mark each specimen: "TP108(X)". Where X is an alphabetically incremented letter beginning with "A". One of the five projectors will be used as a spare and used to replace a specimen dropped onto the wrong impact point, if necessary. The spare, if used, will follow the same test sequence as the initially selected specimen.
- 2. Measure and record the weight of each specimen.
- 3. Inspect the test specimens to ensure that:
 - All fabrication and inspection records are documented in accordance with the AEA Technology QSA Quality Assurance Program.
 - The test specimens comply with the requirements of the drawing.
- 4. Measure and record the location of the source from the front plate using the source location tool.
- 5. Perform and record the radiation profile in accordance with AEA Technology QSA Work Instruction WI-Q09.
- 6. Engineering, Regulatory Affairs and Quality Assurance will jointly verify that the test specimens comply with the drawings and the AEA Technology QSA Quality Assurance Program.
- 7. Prepare the test specimens for transport.

8.4 Summary of Test Schedule

This section provides an overall view of the test specimen orientations for each test.

Normal Conditions Test	Para.	Specimen	Diagram
1.2m Drop 1.	71.71(c)(7)	TP108(A)	TEST SPECIMEN DROP PAD SIDE VIEW LOCK END VIEW
1.2m Drop 2.	71.71(c)(7)	TP108(B)	TEST SPECIMEN
1.2m Drop 3.	71.71(c)(7)	TP108(C)	TEST SPECIMEN

Accident Conditions Test	Para.	Specimen	Diagram
9m Drop 1.	71.73(c)(1)	TP108(A)	TEST SPECIMEN SPECIMEN SIDE VIEW LOCK END VIEW
9m Drop 2.	71.73(c)(1)	TP108(B)	TEST SPECIMEN SIDE VIEW SIDE VIEW SIDE VIEW SIDE VIEW SIDE VIEW SIDE VIEW SIDE VIEW SIDE VIEW
9m Drop 3.	71.73(c)(1)	TP108(C)	DROP PAD SIDE VIEW LOCK END VIEW

8.5 1.2m (4-foot) Free Drop Test (10 CFR 71.71(c)(7))

The Normal Transport Conditions Test is the 1.2m (4-foot) free drop test as described in 10 CFR 71.71(c)(7).

The figures of section 8.5.2.1, 8.5.3.1, and 8.5.4.1 illustrate the orientations for the test specimens.

8.5.1 1.2m Free Drop Test Set-up

To set up a package for the 1.2m (4-foot) drop test:

- 1. Place each specimen on the drop surface and position it according to the specimen-specific orientation shown in Figure 8.5.2.1, Figure 8.5.3.1, or Figure 8.5.4.1
- 2. Raise the package so that the impact target is 1.2m (4 feet) above the drop surface. Ensure the center of gravity is over the impact point
- 3. Measure and record the ambient temperature.
- 4. Photograph the set-up.
- 5. Start the video recorder.
- 6. Drop the package.
- 7. Stop the video recorder.
- 8. Record the damage to the package and take a photographic record.

8.5.2 Specimen TP108(A) Orientation for the 1.2m Drop Test

Figure 8.5.2.1 shows the package orientation for Specimen TP108(A). The object of the drop is to use the shell lip as leverage to drive the rear plate across the endplate to shear the rear plate mounting screws. This drop is meant to stiffen the impact area to reduce energy absorption during the 30-foot drop test.

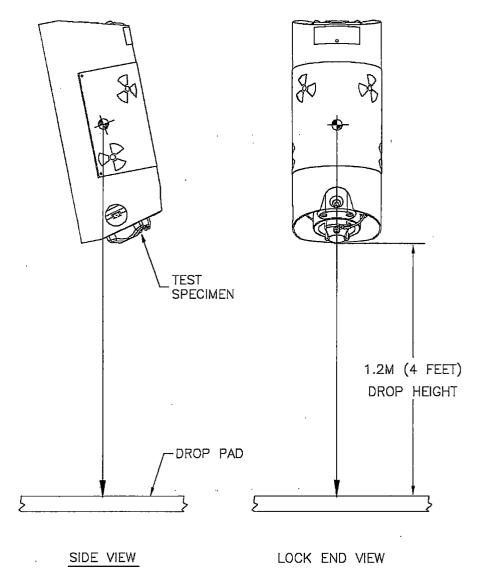


Figure 8.5.2.1: Specimen TP108(A) Orientation for the 1.2m Drop Test

t

8.5.3 Specimen TP108(B) Orientation for the 1.2m Drop Test

Figure 8.5.3.1 shows the package orientation for Specimen TP108(B). The object of this drop is to test the integrity of the shield pins and to determine the effect of the drop on the depleted uranium shield.

The specimen will be dropped with its axis parallel to the drop surface onto the cylindrical shell with the transport label facing up.

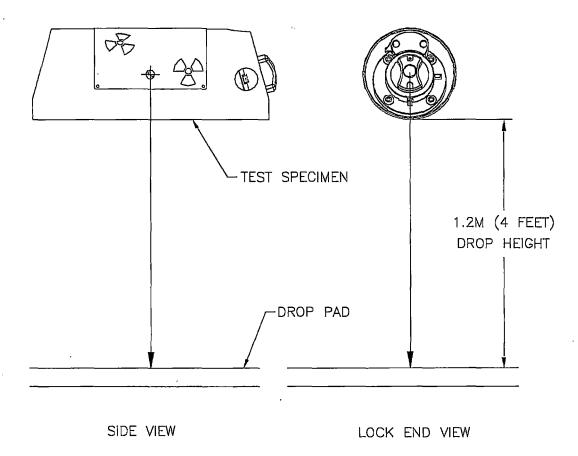


Figure 8.5.3.1: Specimen TP108(B) Orientation for the 1.2m Drop Test

8.5.4 Specimen TP108(C) Orientation for the 1.2m Drop Test

Figure 8.5.4.1 shows the package orientation for Specimen TP108(C). The object of this drop is to test the integrity of the U-brackets and to determine the effect of the drop on the depleted uranium shield.

The specimen will be dropped with its axis parallel to the drop surface onto the cylindrical shell with the transport label facing out to the side.

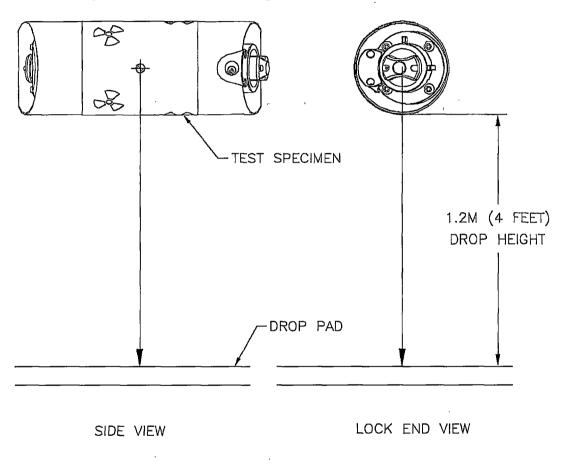


Figure 8.5.4.1: Specimen TP108(C) Orientation for the 1.2m Drop Test

8.5.5 1.2m Free Drop Test Assessment

Upon completion of each test, Engineering, Regulatory Affairs and Quality Assurance team members will jointly take the following actions:

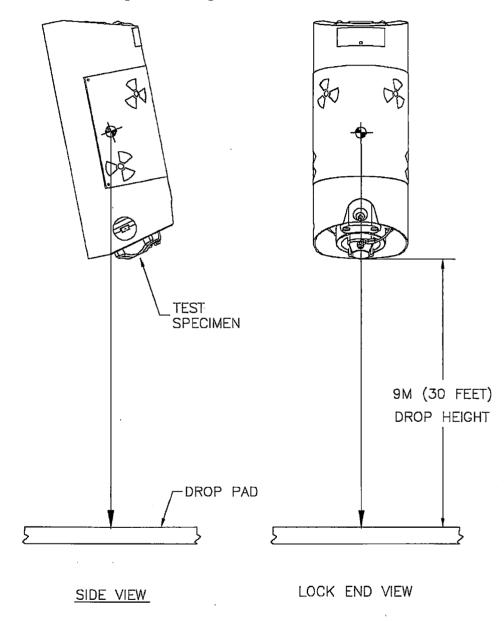
- Review the test execution to ensure that each test was performed in accordance with 10 CFR 71, IAEA Safety Series #6, and this test plan.
- Make a preliminary evaluation of the specimens relative to the requirements of 10 CFR 71 and IAEA Safety Series #6.
- Assess the damage to each specimen to decide whether testing of that specimen is to continue.
- Evaluate the condition of each specimen to determine what changes, if any, are necessary in package orientation in the 30-foot drop test to achieve maximum damage.

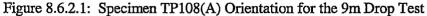
8.6 9m Free Drop Test (10 CFR 71.73(c)(1))

The first Hypothetical Accident Test is the 9m (30-foot) free drop test as described in 10 CFR 71.73(c)(1).

The figures of section 8.6.2.1, 8.6.3.1, and 8.6.4.1 illustrate the orientations for the test specimen.

8.6.1 9m Free Drop Test Set-up


To set up a package for the 9m (30-foot) drop test:


- 1. Measure and record the weight of each of the test specimens.
- 2. Place each specimen on the drop surface and position it according to the specimen-specific orientation as shown in Figure 8.6.2.1, Figure 8.6.3.1, or Figure 8.6.4.1.
- 3. Raise the package so that the impact target is 9m (30 feet) above the drop surface. Ensure the center of gravity is over the impact point
- 4. Measure and record the ambient temperature.
- 5. Photograph the set-up.
- 6. Start the video recorder.
- 7. Drop the package.
- 8. Stop the video recorder.
- 9. Record the damage to the package and take a photographic record.

AEA Technology QSA Burlington, Massachusetts

8.6.2 Specimen TP108(A) Orientation for the 9m Drop Test

Figure 8.6.2.1 shows the package orientation for Specimen TP108(A). The object of the drop is to use the shell lip as leverage to drive the rear plate across the endplate to shear the rear plate mounting screws.

8.6.3 Specimen TP108(B) Orientation for the 9m Drop Test

Figure 8.6.3.1 shows the package orientation for Specimen TP108(B). The object of this drop is to test the integrity of the shield pins and to determine the effect of the drop on the depleted uranium shield.

The specimen will be dropped with its axis parallel to the drop surface onto the cylindrical shell with the transport label facing up.

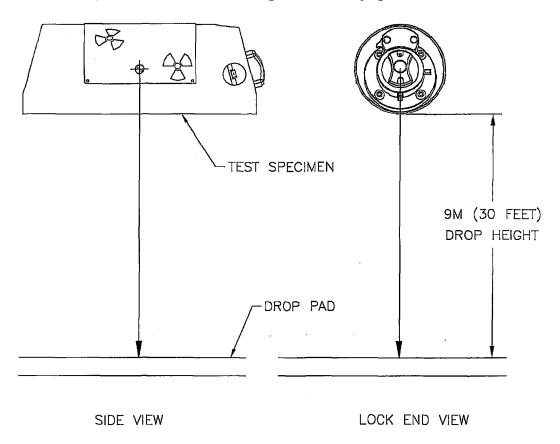


Figure 8.6.3.1: Specimen TP108(B) Orientation for the 9m Drop Test

8.6.4 Specimen TP108(C) Orientation for the 9m Drop Test

Figure 8.6.4.1 shows the package orientation for Specimen TP108(C). The object of this drop is to test the integrity of the U-brackets and to determine the effect of the drop on the depleted uranium shield.

The specimen will be dropped with its axis parallel to the drop surface onto the cylindrical shell with the transport label facing out to the side.

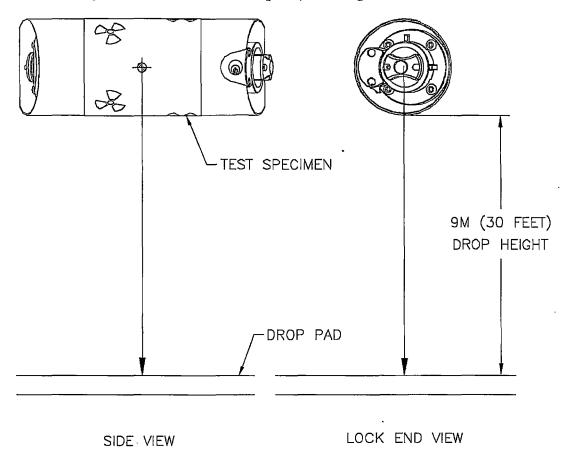


Figure 8.6.4.1: Specimen TP108(C) Orientation for the 9m Drop Test

8.6.5 9m Free Drop Test Assessment

Upon completion of each test, Engineering, Regulatory Affairs and Quality Assurance team members will jointly take the following actions:

- Review the test execution to ensure that each test was performed in accordance with 10 CFR 71, IAEA Safety Series #6, and this test plan.
- Make a preliminary evaluation of the specimens relative to the requirements of 10 CFR 71 and IAEA Safety Series #6.
- Assess the damage to each specimen to decide whether testing of that specimen is to continue.
- Evaluate the condition of each specimen to determine what changes, if any, are necessary in package orientation in the puncture test to achieve maximum damage.

8.7 Puncture Test (10 CFR 71.73(c)(3))

The package is dropped from a height of 1m (40") onto the puncture billet. This test uses the 12" high puncture billet. The billet meets the minimum height (8") required in 10 CFR 71.73(c)(3). The specimen has no projections or overhanging members longer than 12" which could act as impact absorbers, allowing the billet to cause the maximum damage to the specimen. The billet is to be bolted to the drop surface used in the drop tests.

The figures: 8.7.2.1, 8.7.3.1, and 8.7.4.1 illustrate the orientations for each puncture test.

The justification for each puncture orientation is the same as the orientation for the 30-foot drop test. If the orientation needs to be changed, the new orientation must be documented and approved with a justification describing how it would be a worst condition than the planned orientation.

8.7.1 Puncture Test Set-up

NOTE:

Because each test is designed to add to damage inflicted on a specific component or assembly in the preceding test, it is important that each specimen maintain its identity throughout the battery of tests and that the set-up instructions specific to the specimen are strictly followed.

To set up a package for the puncture test:

- 1. Measure and record the weight of the test specimen.
- 2. Measure and record the ambient temperature.
- 3. Position the test package according to the specimen-specific orientation shown in figures 8.7.2.1, 8.7.3.1, or 8.7.4.1.
- 4. Raise the package so that the impact target is 1m (40") between the impact point on the package and the top of the puncture billet. Ensure the center of gravity is over the impact point
- 5. Photograph the set-up.
- 6. Start the video recorder.
- 7. Drop the package.
- 8. Stop the video recorder.
- 9. Record the damage to the package and take a photographic record.

8.7.2 Specimen TP108(A) Orientation for the Puncture Test

The objective of this drop orientation (Figure 8.7.2.1) is to continue the damage inflicted on the specimen by the 9m-drop test.

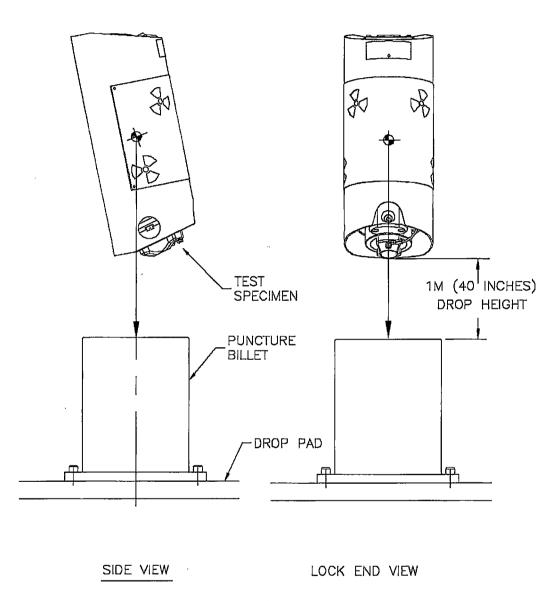
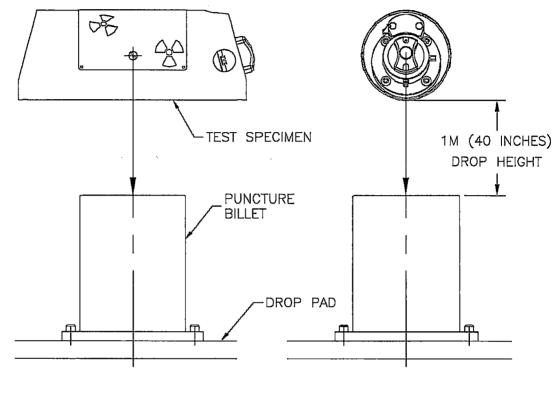
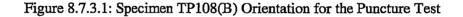



Figure 8.7.2.1: Specimen TP108(A) Orientation for the Puncture Test


8.7.3 Specimen TP108(B) Orientation for the Puncture Test

The objective of this drop orientation (Figure 8.7.3.1) is to continue the damage inflicted on the specimen by the 9m-drop test.

SIDE VIEW

LOCK END VIEW

8.7.4 Specimen TP108(C) Orientation for the Puncture Test

The objective of this drop orientation (Figure 8.7.4.1) is to continue the damage inflicted on the specimen by the 9m-drop test.

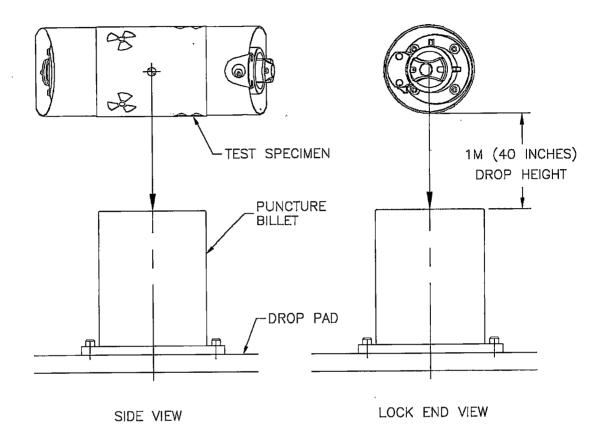


Figure 8.7.4.1: Specimen TP108(C) Orientation for the Puncture Test

8.7.5 Puncture Test Assessment

Upon completion of the test, **Engineering**, **Regulatory** Affairs and **Quality** Assurance team members will jointly take the following actions:

- Review the test execution to ensure that the tests were performed in accordance with 10 CFR 71, IAEA Safety Series #6, and this test plan.
- Make a preliminary evaluation of each specimen relative to the requirements of 10 CFR 71 and IAEA Safety Series #6.
- Justify and describe the orientation for the "With Jacket" test specimen test sequence.

8.8 "With Jacket" Test Sequence

Repeat the 4-foot, 30-foot, and puncture drop test sequence on the "with jacket" test specimen per the orientation determined in section 8.7.5. Document and justify the selected orientation.

8.9 Test Inspection

Perform the test inspection after the puncture tests.

- 1. Measure and record the damage to each of the test specimens. Measure and record the package for signs of any permanent strain.
- 2. Measure and record the location of the source from the front plate using the source location tool.
- 3. Remove and assess the condition of the simulated source.
- 4. Reassemble the packages using a representative active source, making sure that the source position and the package configuration are the same as they were immediately after the puncture test.
- 5. Measure and record a radiation profile of each test specimen in accordance with AEA Technology QSA Work Instruction WI-Q09.
- 6. Assess the significance of any change in radiation at the surface and at one meter from the packages.
- 7. Determine whether it is necessary to radiograph the test specimens for inspection of hidden component damage or failure.
- 8. Record any damage or failure found in radiograph of the test specimens, if performed.

8.10 Thermal Test (10 CFR 71.73(c)(4))

The thermal test shall be evaluated using either a finite element thermal analysis or a physical test. Either shall be performed to the requirements of 10 CFR 71.73 (c)(4).

The thermal test specimen orientation will be determined on an assessment performed after the puncture test. The documented justification must consider the worst case position for the specimen due to the damage inflicted from the previous tests.

If a finite element analysis is to be performed, no further actions are required under this section and proceed to section 8.11.

If a physical test is to be performed, complete section 8 of this test plan. The test environment will be a vented oven operating above 800°C. There will sufficient airflow to allow combustion. Air will be allowed to enter the oven through the door opening. The temperature of the package's exterior surface closest to the air entry point will be monitored throughout the test to ensure that the package remains above 800°C.

If the specimen is burning when it is removed, the unit is allowed to extinguish by itself and then cool naturally. The final evaluation of the package shall be performed when the specimen reaches ambient temperature.

8.10.1 Physical Thermal Test Set-up

To set up a package for the thermal test:

- 1 Heat the oven above 800°C.
- 2 Attach thermocouples to the package's external surface.
- 3 Place the package in the oven and close the door.
- 4 When all thermocouples indicate 800°C, start the 30-minute timer.
- 5 Measure and record the oven and test specimen temperatures.
- 6 Monitor the specimen and oven temperature throughout the 30-minute test period to ensure that all temperatures remain above 800°C.
- 7 At the end of 30-minutes, remove the specimen from the oven.
- 8 Allow the specimen to self-extinguish and cool.
- 9 Photograph and weigh the test specimen.

8.10.2 Thermal Test Assessment

Upon completion of the test, **Engineering**, **Regulatory Affairs** and **Quality Assurance** team members will jointly take the following actions:

- Review the test execution to ensure that the tests were performed in accordance with 10 CFR 71, IAEA Safety Series #6, and this test plan.
- Make a preliminary evaluation of each specimen relative to the requirements of 10 CFR 71 and IAEA Safety Series #6.

8.11 Final Test Inspection

Perform the following inspection after the thermal test.

- 1. Measure and record the damage to each of the test specimens.
- 2. Measure and record the location of the source from the front plate using the source location tool.
- 3. Remove and assess the condition of the simulated source.
- 4. Reassemble the packages using a representative active source, making sure that the source position and the package configuration are the same as they were immediately after the thermal test.
- 5. Measure and record a radiation profile of each test specimen in accordance with AEA Technology QSA Work Instruction WI-Q09.
- 6. Assess the significance of any change in radiation at the surface and at one meter from the packages.
- 7. Determine whether it is necessary to dismantle either of the test specimens for inspection of hidden component damage or failure.
- 8. If the decision is taken to proceed with the inspection, record and photograph the process of removing any component.
- 9. Measure and record any damage or failure found in the process of dismantling the test specimens.

Engineering, Regulatory Affairs, and Quality Assurance team members will make a final assessment of each test specimen and jointly determine whether the specimens meet the requirements of 10 CFR 71 and IAEA Safety Series #6.

8.12 Test Specimen Storage

Place the test specimens in an appropriate container and store the container in the "low level" waste room. Dispose the test specimens only when the governing regulatory body provides written authorization to do so.

Section 9 Worksheets

Use the following worksheets for executing the tests of section 8. Each test shall have three worksheets; an equipment list, a procedure checklist, and a data sheet. Record the information onto copies of these worksheets for each test performed.

Attach a copy of the relevant inspection report or calibration certificate after the range and accuracy of the equipment has been verified.

SENTINEL AEA Technology QSA Burlington, Massachusetts

1est Pian 108 June 2000 Page 41 of 46

Drop & Puncture Test Equipment List

Test:		
Description * Mark NA when not used.	Enter the Model and Serial Number	Attach Inspection Report or Calibration
Test Specimen, Drawing No.		Certificate
Drop Surface, Drawing No.		
* Puncture Billet, Drawing No.	a marka yangan yangan dan kana kananan marka yangan yangan yangan yangan yangan yangan yangan yangan yangan ya	- Management and a state of the st
Record any additional tools used to facilitate the test and a calibration certificates.	tach the appropriate ins	pection réport or
	<u></u>	
·		
Signature Completed by:	Print Name	Date
Verified by:		

.

Drop & Puncture Test Checklist

Test:			
Test Location:			
Step	Data	Measuring	
1. Record test specimen serial number:			
2. Record the test specimen weight:		anon and a second s	
3. Record the ambient temperature (°C):			
4. Record set-up orientation figure:		I	
5. Verify set-up orientation and drop height.	I - <u></u>		
6. Photograph set-up in at least two perpendicular planes.			
7. Begin video recording of the test so that impact is recorded.			
8. Release the test specimen.			
9. Stop the video recorder. Ensure the point of impact and orientation specified in the plan has been achieved.			
10. Record the damage to the test specimen on a separate sheet and attach.			
 Engineering, Regulatory Affairs and Quality Assurance make a preliminary assessment relative to 10 CFR 71. Record the assessment on a separate sheet and attach. 			
Test witnessed by (Signature)	Print Name	Date	
Engineering:		anananan Capanan Seria Seria Seria da Andrea Seria (1999)	
Regulatory Affairs:			
Quality Assurance:			

Drop & Puncture Test Data Sheet

	بر
Test Unit Model/Serial No.:	Test:
Test Date:	Test Time:
Describe drop orientation and drop height:	· · · · · · · · · · · · · · · · · · ·
Describe drop orientation and drop height.	
Describe impact (location, rotation, etc.):	
Describe on-site inspection (damage, broken parts, etc.)	:
	· · · · ·
On-site test assessment:	
·	
Engineering: Regulatory:	QA:
Describe any post-test disassembly and inspection:	
Describe any change in source position:	
Describe any change in source position.	
Describe results of radiography:	
Completed by:	Date:

Thermal Test Equipment List

Test:	<u> </u>	
Description * Mark NA when not used.	Enter the Model and Serial Number	Attach Inspection Report or Calibration Certificate
Test Specimen, Drawing No.		
Thermometer		
Record any additional tools used to facilitate the test and a calibration certificates.	tach the appropriate ins	
	dan kan dan dan dingkan kan kan kan kan kan kan kan kan kan	
		· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·
Signature	Print Name	Date
Completed by:		
Verified by:		

Thermal Test Checklist

.

Test:			
Test Location:	· · · · · · · · · · · · · · · · · · ·		
Step	Data	Measuring instr	ument: !;
1. Record test specimen serial number:			
2. Record the start time:			
3. Record the oven temperature(°C):			ataana <mark>nomehaana</mark> hana
4. Record the test specimen temperature (°C):			
5. Monitor oven and test specimen temperature.	-		
6. Record stop time:			
7. Record the oven temperature(°C):		and an and a second	
8. Record the test specimen temperature (°C):			
9. Remove test specimen, let it self extinguish and co	pol.	· · · J	<u> </u>
10. Record the damage to the test specimen on a sepa	rate sheet and attach.		
11. Engineering, Regulatory Affairs and Quality Assu 71. Record the assessment on a separate sheet and		ry assessment relative to 10) CFR
Test witnessed by (Signature)	Print Name	Date	
Engineering:	in an		and a second
Regulatory Affairs:			
Quality Assurance:			

SENTINEL AEA Technology QSA Burlington, Massachusetts

1

Thermal Test Data Sheet

Test Unit Model/Serial No.:	Test:		
Test Date:	Test Tin	ne:	
Describe orientation:		······	
Describe on-site inspection (damage, bro	ken parts, etc.):		<u> </u>
	· · · ·		
On-site test assessment:			
On-she lest assessment.			
	·		
	llatory:	QA:	
Describe any post-test disassembly and in	nspection:		
· · ·			
	··· ,		
			,
Describe any change in source position:			. <u> </u>
Describe menults of an dis-			
Describe results of radiography:			
Completed by:	Date:		

Safety Analysis Report for the Model 880 Series Transport Package

QSA Global, Inc. Burlington, Massachusetts

June 2017 - Revision 12 Page 2-38 2.12.3 Test Report 108 Minus Appendices A-C (Aug 2000)

Test Report 108 August 2000 Page 1 of 16

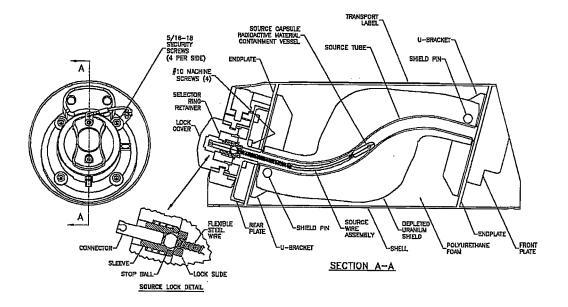
Test Report #108

Model 880 Type (B) Transport Package Test Results

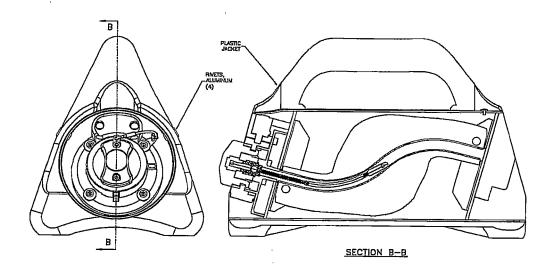
TABLE of CONTENTS

SECTION 1 INTRODUCTION
SECTION 2 CONSTRUCTION AND ACCEPTANCE OF TEST SPECIMENS
SECTION 3 TEST OBJECTIVES AND ORIENTATIONS
SECTION 4 DROP TEST DATA7
SECTION 5 TEST INSPECTION RESULTS 8
SECTION 6 DROP TEST RESULTS 10
SECTION 7 THERMAL ANALYSIS 11
SECTION 8 CONCLUSION
APPENDIX A
APPENDIX B
APPENDIX C
APPENDIX D

Section 1 Introduction


This document describes the results of the package design tests conducted in accordance with Test Plan #108.

The tests described under test plan #108 subjects the Model 880 Projector to the hypothetical accident test requirements for Type B(U)-85 packages as described in the Code of Federal Regulations, 10 CFR Part 71, revised as of March 31, 1999 and the IAEA Regulations for the Safe Transport of Radioactive Material, Safety Series No.6 1985 Edition (As Amended 1990).


This report will show the Model-880 transport package satisfies the test requirements as described in test plan #108 and therefore meets the hypothetical accident test requirements for type B(U)-85 transport packages. Additionally, the plastic jacket does not adversely affect the results of these tests.

.

,

FIGURE 1. MODEL 880 PROJECTOR TRANSPORT PACKAGE.

Section 2 Construction and Acceptance of Test Specimens

A total of seven Model-880 transport package test specimens were manufactured in accordance with the AEA Technology QSA Quality Assurance Program. One of the seven, TP108(A), was not accepted due to borderline initial surface measurements taken during radiation profile inspection. The remainder of the six were constructed per drawing B88015 revision A. One of the six, TP108(G), was identified as the "With Jacket" test specimen and further assembled to meet the requirements of drawing B88000 revision A.

Since the test plan describes orientations for specifically identified test specimens and test specimen TP108(A) was not used, the drop test orientation for each specimen was shifted. TP108(B) took the place of TP108(A), TP108(C) for TP108(B), and so on.

Test Specimen	Package Weight	Initial Source Location	Maximum Initial Surface Measurements	Maximum Initial 1 Meter Measurements	Test Orientation impact point
TP108(A)		Not used – I	Borderline initial st	urface measuremen	ts.
TP108(B)	44.2 lbs.	6-47/64 in.	178 mR/hr	1.2 mR/hr	Lock cover
TP108(C)	44.3 lbs.	6-47/64 in.	178 mR/hr	0.9 mR/hr	Shell bottom
TP108(D)	44.4 lbs.	6-48/64 in.	160 mR/hr	1.1 mR/hr	Shell left side
TP108(E)	44.4 lbs.	6-46/64 in.	193 mR/hr	0.7 mR/hr	Not used
TP108(F)	44.1 lbs.	6-47/64 in.	192 mR/hr	1.0 mR/hr	Not used
TP108(G)	48.8 lbs.	6-48/64 in.	176 mR/hr	1.4 mR/hr	Lock cover

Table 2.1. Test specimen data.

Section 3 Test Objectives and Orientations

3.1 Test objectives

The objective in each of the tests was to target specific areas of the package that could cause displacement of the source from its stored position within the depleted uranium shield and/or affect the integrity of the shield itself.

The modes of failure under the test conditions that could achieve the test objectives and lead to elevated dose rates include the following:

- Fracture or penetration of the shield and shell weldment.
- Displacement of the shield within the shell weldment and distortion or fracture of the source.
- Failure of the source lock assembly and/or rear plate security screws.

3.2 Package Drop Orientations

Test plan #108 identified three basic drop orientations to target three specific areas on the package. One test specimen was used for each orientation in the entire drop test sequence: 4-foot, 30-foot, and puncture, unless otherwise assessed.

The first orientation was an attack on the lock mechanism and its attachment screws by impacting on the lock cover in conjunction with the shell weldment. The object was to use the shell lip as leverage to drive the rear plate across the endplate and shear the rear plate security screws. Test specimen TP108(B) was used for this orientation.

The next orientation attacks the shield and its attachment to the shell weldment by impacting on the bottom surface of the shell weldment. This orientation has two objectives; (1) Fracture the shield by hitting the shield at a point where it is closest to the outer surface. (2) Break the shield attachment pin by forcing the shield through it as the shield is driven back up into the shell or pivots around the center of gravity upon impact. Test specimen TP108(C) was used for this orientation.

The last orientation is similar to the one above. It also attempts to fracture the shield by hitting it at a point in close proximity to the exterior surface. It also could cause failure at the shield and shell connection point by forcing the shield through the attachment pin as the shield or shell translates or rotates in relation to one another. Test specimen TP108(D) was used for this orientation.

The "with jacket" orientation is similar to the first orientation. The first orientation was considered the worst orientation for the package based on the damage recorded on test specimen TP108(B). The justification and description for the orientation is recorded on each of the drop test checklists for the "with jacket" test specimen. The "with jacket" test specimen was TP108(G).

Section 4 Drop Test Data

The drop tests were conducted at Valley Tree in Groveland, Mass., on July 21, 2000. All test specimens were tested as planned per Test plan #108 and hit their intended target impact points.

	st data summa		The second s	
Test Specimen	Test	Weight	Actual Impact Point	Damage Observed at Test Site
TP108(B)	4-foot free drop	44.2 lbs.	Lock cover & shell lip	• Shell bottom rear lip bent.
	30-foot free drop	44.4 lbs.	Lock cover & shell lip	 One rear plate security screw broken. Rear plate puckered. Shell lip bent further.
	Puncture drop #1	44.4 lbs.	Lock cover	• Lock cover dented.
	Puncture drop #2	NA	Lock cover	Lock cover dented.
TP108(C)	4-foot free drop	44.3 lbs.	Shell bottom surface	Shell bottom flattened.Shell rear lip bent in.
	30-foot free drop	44.4 lbs.	Shell bottom surface	 Shell bottom flattened further. Shell rear top bent. Front endplate bent near bottom.
	Puncture drop	44.4 lbs.	Shell bottom surface	Outlet port binds.None observed.
TP108(D)	4-foot free drop	44.4 lbs.	Shell left side	• Shell left side flattened.
	30-foot free drop	44.3 lbs.	Shell left side	• Shell left side flattened further.
	Puncture drop	44.3 lbs.	Shell left side	None observed.
TP108(G) (with	4-foot free drop	48.8 lbs.	Lock cover	• Lock cover dented.
jacket)	30-foot free drop	48.8 lbs.	Lock cover & shell side lip	 Shell rear side lip bent. Lock mount dented. Two jacket rivets broken. Label rivets missing.
	Puncture drop	48.8 lbs.	Lock cover	None observed.

Table 4.1 Test data summary.

.

Test Report 108 August 2000 Page 8 of 16

Section 5 Test Inspection Results

The tables below summarize the inspection results after the drop test sequence. A physical thermal test was not conducted, but instead evaluated by analysis. Since the condition of the test specimens does not change, a final test inspection is not needed.

ς.

Test Specimen	Damage
TP108(B)	• Shell at rear end is bent in toward lock by about 1 inch at bottom.
	• Shell at front end has two spot dimples about 3/16 inch deep.
	• Rear plate is puckered in at selector ring about 1/16 inch.
	• Rear plate security screw at top right is broken.
	• Rear plate security screw at top left & bottom right is bent.
	• Rear plate security screw at bottom left slightly is bent.
	Lock cover is dented 3/16 inch at three spots.
TP108(C)	• Shell bottom is depressed about 3/16 inch.
	• Shell top has two spot dimples about 3/16 deep.
	• Front plate knob pin is bent about 3/16 inch.
TP108(D)	• Shell left side is depressed about 1/8 to 1 inch.
	• Shell right side at rear end is bent about 3/16 inch.
TP108(G)	• Shell left side at rear end is bent about 5/8 inch.
	• Shell left side at front end is bent about 3/16 inch.
	• Rear plate security screw at top right is slightly bent.
	• Jacket rivets on left side are broken.
	• Lock cover is dented about 3/16 inch.
	• Lock cover pin at bottom is loose and can be removed.
	Label rivets missing.

Table 5.1. Damage Measurements.

Table 5.2. Radiograph Inspection.

Test Specimen	Damage
TP108(B)	• Rear plate tube feature is slightly bent but intact.
	• Three rear plate security screws are slightly bent but intact.
,	• One rear plate security screw broken end remained in the rivnut.
TP108(C)	• Shield contacts the shell at the impact surface.
TP108(D)	• U-shaped bracket is bent on the left side about 1/8 inch.
TP108(G)	No apparent internal damage.

Test Specimen	Before Test Measurement	After Test Measurement	Difference
TP108(B)	6-47/64 in.	6-45/64 in.	1/32 in.
TP108(C)	6-47/64 in.	6-47/64 in.	0 in.
TP108(D)	6-48/64 in.	6-48/64 in.	0 in.
TP108(G)	6-48/64 in.	6-46/64 in.	1/32 in.

Table 5.4. Simulated Source Condition Assessment.

Test Specimen	Condition
TP108(B)	No indication of damage
TP108(C)	No indication of damage
TP108(D)	No indication of damage
TP108(G)	No indication of damage

Table 5.5. Maximum Radiation Measurements at Surface.

Test Specimen	Before Test Measurement	After Test Measurement	% Change
TP108(B)	178 mR/hr	180 mR/hr	1.1
TP108(C)	178 mR/hr	180 mR/hr	1.1
TP108(D)	160 mR/hr	150 mR/hr	-6.3
TP108(G)	176 mR/hr	150 mR/hr	-14.8

Table 5.6. Maximum I	Radiation Measurements	s at One Meter from Surface.

Test Specimen	Before Test Measurement	After Test Measurement	% Change
TP108(B)	1.2 mR/hr	1.1 mR/hr	-8.3
TP108(C)	0.9 mR/hr	0.8 mR/hr	-11.1
TP108(D)	1.1 mR/hr	0.8 mR/hr	-27.3
TP108(G)	1.4 mR/hr	0.9 mR/hr	-35.7

Test Report 108 August 2000 Page 10 of 16

Section 6 Drop Test Results

The damage measurements and radiograph inspections, tables 5.1 and 5.2, respectively show no fracture or penetration of the shield or shell weldment, displacement of the shield within the projector or distortion or fracture of the source.

Table 5.1 does reveal one broken and three bent rear plate security screws on test specimen TP108(B). However, the rear plate and lock assembly with source remained firmly attached to the shell weldment and in the shielded position. The bent screws held even after a repeated puncture drop on the same impact point and in the same direction as the 4-foot & 30-foot drops. The "with jacket" specimen, TP108(G), was dropped in a similar orientation as specimen TP108(B), except an adjustment was made to miss hitting the jacket at the bottom rear edge. The damage indicates similar results, although less in magnitude. The rear plate security screws are bent but none are broken on TP108(G).

Radiograph examination of the specimens, from table 5.2, indicates no damage to the shield or its attachment structure. Test specimen TP108(D) showed some minor bending of the U-shaped bracket in the direction in which it was dropped. The shield remains securely fastened to the welded shell for all test specimens.

The source location, see table 5.3, for each of the two specimens, TP108(B) & TP108(G), indicates similar displacement of the source about 1/32 inch towards the front end. This appears to be the result of the lock cover being forced into the rear plate upon impact. The maximum radiation measurements given in tables 5.5 and 5.6 show this displacement does not affect radiation levels at the surface or at one meter from the surface of the package.

Test specimen TP108(G) was measured for radiation levels without the jacket before the tests and with the jacket after the test. This would explain the lower readings and high percent change for this specimen.

The radiation levels at the surface and at one meter did not change significantly; in fact, they changed very little, if at all. The average 1 mR/hr maximum "after test" reading is well below the one R/hr limit for all specimens.

Table 5.4 shows that there was no affect on the simulated source condition for any of the specimen after the test.

Section 7 Thermal Analysis

Review of the damage to all test specimens after the drop tests suggest the fire test would have no affect on the radiation measurements taken after the drop tests. The reasons for this can be justified based on the condition of the test specimen after the drop tests and the properties of the materials used to secure and shield the source within the specimen.

Condition of Test Specimens

- The internal support structure for the shield is intact and fully functional. The internal support structure consists of the shield, shell weldment, shield pins, U-shaped brackets, and endplates with rivnuts.
- There are no holes or tears in the shell weldment to allow air to circulate through the package.
- The source assembly is intact, undamaged and secure in the shielded position. The source assembly consists of the source capsule, flexible wire, stop ball and source connector.
- The rear plate assembly continues to securely attach the source assembly to the package in the shielded position. The securing components of the rear plate assembly consists of the rear plate, lock slide, sleeve, selector ring, selector ring retainer, four #10 machine screws, and four 5/16-18 security screws.

Material Properties at Elevated Temperatures

- The melting temperature for all materials of the internal support structure, rear plate assembly and source assembly is above the thermal test temperature of 800°C.
- The thermal expansion for all materials of the internal support structure is less than the design clearance allowed for assembly.
- The stainless steel and titanium components of the internal support structure, rear plate assembly and source assembly have about 30% and 60% of their room temperature strength at 800°C, respectively.

The load condition for the thermal test is for the internal structure to support the static weight of the shield in suspension. The dynamic impact nature of the drop tests can subject the structure to a force over 100 times the static weight of the shield. This means the strength of the materials used in the structure would need to decrease by two orders of magnitude or to about 1% of their strength at room temperature. The 30-minute thermal test is not long enough for significant creep deformation to occur in the structure.

Section 8 Conclusion

The test specimens were tested in accordance with test plan #108 and therefore as required in 10 CFR Part 71 and IAEA Safety Series No. 6 for type B(U)-85 transport packages.

The Model-880 transport package satisfies the test requirements of test plan #108. The Model-880 with jacket does not adversely affect the results of these tests. This conclusion is drawn from the drop test results and thermal analysis as supported by the test data, test inspection data and damage assessments.

August 2000 Page 16 of 16

APPENDIX D

TEST PHOTOGRAPHS

Test Specimen (B)

Figure 1: Four Foot Drop of Specimen (B)

Figure 2: Thirty Foot Drop of Specimen (B)

Figure 3: Puncture Test of Specimen (B)

Test Specimen (C)

Figure 1: Four Foot Drop of Specimen (C)

Figure 2: Thirty Foot Drop of Specimen (C)

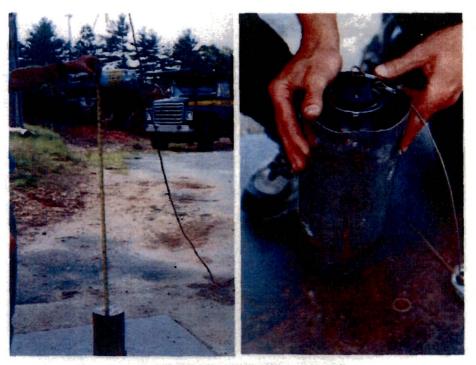


Figure 3: Puncture Test of Specimen (C)

Test Specimen (D)

Figure 1: Four Foot Drop of Specimen (D)

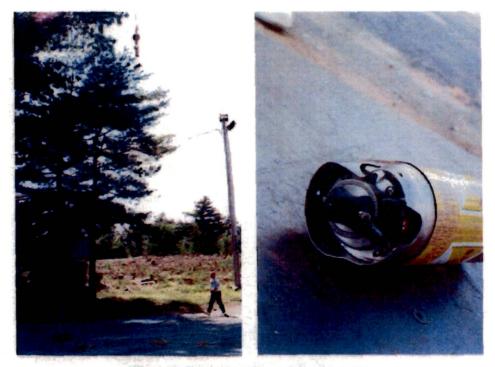


Figure 2: Thirty Foot Drop of Specimen (D)

Figure 3: Puncture Test of Specimen (D)

Test Specimen (G)

Figure 1: Four Foot Drop of Specimen (G)

Figure 2: Thirty Foot Drop of Specimen (G)

1

mangs.

Figure 3: Puncture Test of Specimen (G)

Safety Analysis Report for the Model 880 Series Transport Package

QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page 2-39

2.12.4 Test Plan 115 (Feb 2001)

Test Plan 115 Feb. 2001 Page 1

TEST PLAN 115 MODEL 880 RADIOGRAPHY PROJECTOR ISO 3999-1:2000(E) PERFORMANCE TESTS

Table of Contents

SECTION 1	INTRODUCTION
SECTION 2	GAMMA RADIOGRAPHY PROJECTOR DESCRIPTION 5
SECTION 3	DISCUSSION ON SYSTEM FAILURE MODES OF INTEREST 7
SECTION 4	CONSTRUCTION AND CONDITION OF TEST SPECIMENS 10
SECTION 5	MATERIAL AND EQUIPMENT LIST 11
SECTION 6	TEST PROCEDURES 12
SECTION 7	TESTING SAFETY AND WASTE DISPOSAL
SECTION 8	INITIAL PROJECTION TEST 14
SECTION 9	INITIAL TENSILE TEST FOR SOURCE ASSEMBLIES 15
SECTION 10	ENDURANCE TEST 16
SECTION 11	HORIZONTAL SHOCK TEST 17
SECTION 12	VERTICAL SHOCK TEST 19
SECTION 13	TENSILE TEST FOR GUIDE TUBES
SECTION 14	TENSILE TEST FOR CONTROL CABLE ASSEMBLY
SECTION 15	KINKING TEST FOR GUIDE TUBE 22
SECTION 16	KINKING TEST FOR DRIVE CABLE ASSEMBLY 23
SECTION 17	CRUSHING AND BENDING TEST 24
SECTION 18	FINAL TENSILE TEST FOR SOURCE ASSEMBLIES
SECTION 19	FINAL PROJECTION TEST
SECTION 20	LOCK BREAKING TEST
SECTION 21	WRENCH TEST
SECTION 22	FINAL TEST ASSESSMENT
SECTION 23	TEST WORKSHEETS
SECTION 25	APPENDIX: ISO 3999-1:2000

Test Plan No. 115

Section 1 Introduction

This test plan is intended to qualify the Model 880 Radiographic Projector to the performance requirements of ISO 3999-1:2000(E), "Radiographic protection – Apparatus for industrial gamma radiography – Part 1: Specifications for performance, design, and tests".

The ISO 3999-1:2000(E) tests covered under this plan are the following with their respective ISO 3999-1:2000(E) sections listed in parenthesis:

- Projection Test (6.2)
- Tensile Test for Source Assemblies (6.5)
- Shield Efficiency Test (6.4.1)
- Endurance Test (6.2)
- Horizontal Shock Test (6.4.6.1)
- Vertical Shock Test (6.4.6.2)
- Tensile Test for Guide Tubes (6.7.4)
- Tensile Test for Drive Cable Assembly (6.6.3)
- Kinking Test for Guide Tubes (6.7.3)
- Kinking Test for Drive Cable Assembly (6.6.2)
- Crushing and Bending Tests (6.6.1 & 6.7.2)
- Lock Breaking Test (6.4.2)
- Wrench Test (6.4.3)

This plan outlines the test procedure, describes the test specimen construction, identifies the test equipment, and provides worksheets for test data recording.

The vibration resistance test was evaluated and deemed unnecessary. The only parts that could come loose from vibration are the tamper-proof screws. However, tamper-proof screws have been used on similar devices over the past 25 years and field use of the screws has shown that the screws have never loosened as a result of vibration.

The accidental drop test was previously accomplished under Test Plan 104 in which the device was dropped from a height of 30 feet. After this drop, the dummy source remained secured in its fully shielded position within the source tube, attached to the source wire and was undamaged.

The design of the Model 880 Radiography Projector ensures that the device will operate continually under normal conditions. The Model 880 was designed ruggedly with non-corrosive materials, such as stainless steel, to prevent any harmful rusting or corrosion.

Test Plan 115 Feb. 2001 Page 4

Only the Model 880-150 Ci device will be used to demonstrate compliance with ISO 3999-1:2000(E) performance tests. The Model 880-50 Ci device, by default, will perform the same or better than the Model 880-150 Ci device due to its lower weight and identical structural construction.

The test sequence to be used for the testing is listed in Section 6.

Test Plan 115 Feb. 2001 Page 5

Section 2 Gamma Radiography Projector Description

The Model 880 projector, shown in Figure 2.1, is a portable (Class P), externally projecting source (Category II) device. The device consists of four major assemblies; the body assembly, the rear plate assembly, the front plate assembly, and the jacket assembly. A source assembly is also used and stored with the device.

Test Plan 115 Feb. 2001 Page 6

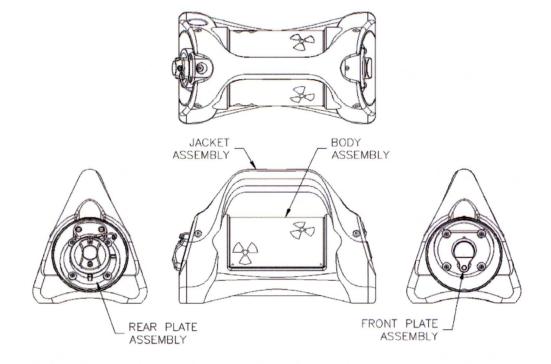


FIGURE 2.1: MODEL 880 PROJECTOR.

Section 3 Discussion on System Failure Modes of Interest

The tests in this test plan subject the test specimen to conditions likely to occur during use. The exposure device and integral safety features shall remain operational after the test and shall experience no loss of shielding efficiency.

A projection test is to be performed to determine the resistance to projection before and after the sequence of operational tests. The maximum force applied to the control handle must not increase by 25% after performing the operational tests. The projection test will be performed before and after the entire sequence of tests instead of each single test. Conducting the test in this manner will give a more conservative test result rather than smaller incremental increases in force from each single test. The test will be set up per Figure 6 in the ISO 3999-1:2000 standards. However, because of limited space, the cable paths used will have added difficulty and will actually be a more tortuous path than the one shown in the figure. The adjustment of this setup will only make the test more difficult and so will not make the test easier to pass. The operational tests include the endurance test, the shielding efficiency test, the horizontal and vertical shock tests, the tensile tests, the kinking tests, and the crushing and bending tests. A failure of the projection test would show an increase of over 125% of the force required to move the source assembly before the test to the force required after the test. A failure would indicate that a part of the exposure device, drive cable, drive cable housing, guide tube, or source assembly was damaged and is restricting movement of the source assembly or drive cable. This could result in an active source getting hung up in an unsecured location.

The source assembly tensile test is also to be performed before and after the sequence of operational tests. The purpose of the test is to ensure that the operational tests do not have any negative effects on the source wire assembly. The same dummy source assembly will be used with all of the operational tests requiring a source assembly except for the shielding efficiency test which requires an active source assembly. If there is enough wear on the swaged features of the assembly, the connections could fail when pulled.

The shielding efficiency test measures the performance of the shield when loaded with a maximum rated activity of 150 curies of Iridium-192. The shield efficiency test was completed on the test device after manufacture on November 10, 2000 and will not be completed again for this test. The results from this test will be included in the final test report at the conclusion of the tests in this test plan. The completion of the shielding efficiency test before the initial projection test and initial tensile test for source assemblies as shown in the test procedure in Section 6 of this test plan will not effect the testing in a negative manner. Performance of the shielding efficiency test does not have any effect on restricting the movement of a source assembly that is measured in the projection test. Also, the dummy source that is to be tested in the tensile test for source assemblies is not the same source assembly that would be used with the shield efficiency test because the shield efficiency test requires an active source. The source used with this test may not be the maximum rated source (150 Ci of Ir-192) that the device can handle but a correction factor will be used to determine the actual maximum dose rates if this is the case. The possible failure mode for this test would be high radiation levels over the

Test Plan 115 Feb. 2001 Page 8

exposure limits for a class P exposure device. Radiation levels over the limits may be the result of a number of factors. The following are possible factors:

- 1. Wrong source position within the shield tube.
- 2. Poor shield design or translation of the design to the manufacturing process.
- 3. Changes in distance of the container's exterior surface relative to the source position.

The endurance test demonstrates that the radiographic system will remain operational after 50,000 cycles. This test will use the same setup as the Projection Test. A failure could cause the source tube to wear resulting in depleted uranium contamination. Also, wear on the front and rear plate mechanisms may prevent the source wire assembly from becoming completely secure in the fully shielded position.

The horizontal shock test demonstrates the ability of the test specimen to withstand swing type impacts occurring during normal use. Three areas of the device that could cause the greatest effect on radiological safety if impacted were chosen for this. The areas include the front cover, the lock, and the rear cover test (see figures 11.1, 11.2, and 11.3). Possible failure would involve the inability to operate the front or rear plate mechanisms. Hitting the small protruding features on each end could cause deformation to the assembly mounting plates or shell endplates that may produce binding in the rotating parts of the mechanisms.

The vertical shock test demonstrates the ability of the test specimen to withstand many short drops expected during normal use. There are two normal carrying positions for this device; one with the jacket and the other without the jacket. Although the jacket would add a small amount of weight to the device, the jacket would also absorb some of the impact. This test will be performed without the jacket to prevent any impact absorption and give a more conservative test assessment. Possible failure could occur at the shield support structure, specifically at the pinned connection. If the connection were to fail, misalignment of the source tube could prevent the source wire from moving. Also, damage to the jacket could result in not being able to use the handle to carry the device.

The purpose of the tensile tests on the controls and guide tubes is to demonstrate that the they are able to withstand tensile stresses that may occur during normal use. The connections could fail if there is enough wear on the swaged features. Also, a failure could indicate that the design or manufacture of the controls or guide tubes is faulty.

The kinking tests on the control cable assembly and guide tubes are done to show that the sheaths are able to withstand the conditions they may likely encounter during use. After performing the kinking tests, the control cable assembly and guide tubes should remain operable without any loss of integrity. Also, a failure could indicate that the design or manufacture of the controls or guide tubes is faulty.

The crushing and bending tests are performed to demonstrate that the control cable assembly and guide tubes remain operational after being stepped on by the heel of a shoe. A mechanical device is used to simulate the crushing effect on the tubes from a shoe. After performing the crushing and bending test, the control cable assembly and guide tubes should remain operational without any loss to integrity.

The lock breaking test is performed to check the durability of the lock on the exposure device. A force of 400 N (90 lbs) is gradually applied to the lock and held for several

Test Plan 115 Feb. 2001 Page 9

seconds before being released. The force will be applied to where the key is inserted because this is the most exposed part of the lock and could become jammed or damaged by a force. The force is applied and released in this way eleven consecutive times at each position. A failure would occur if the exposure container could be opened without unlocking the device. A failure of the lock could develop into having an active source exposed without the operator's knowledge.

The wrench test is used to demonstrate that the handle of the exposure device is able to withstand forces that may be encountered during use. A static load of 25 times the weight of the device is placed at the most fragile part of the handle. A failure would be indicated by the handle becoming unattached from the device or becoming unstable. A failure could result in not being able to use the handle to carry the device or possibly an accidental drop.

Section 4 Construction and Condition of Test Specimens

All radiography system components listed in the table below and used in this test plan are manufactured in accordance with the AEA Technology QSA, Inc. Quality Assurance Program.

The Model 880, 150-Curie assembly, part number B88000 will be the device used in all tests requiring the use of a test projection device.

A Model 424-9 dummy source assembly will be loaded into the test specimen for all tests except the shield efficiency test and accidental drop test. An active Model 424-9 source assembly, part number A42409, with at least 75% of the maximum rated capacity (minimum of 112.5 curies of Iridium-192) shall be loaded into the test specimen for the shield efficiency test.

The radiography system consisting of the components in the table below will be used for the endurance test. The same Model 424-9 dummy source assembly used in the endurance test will be used in the tensile test.

Table of Model 880 Radiography System Components			
Part number	Part Name	Quantity	
B88000 Rev.A	MODEL 880 150 Ci MAX ASSEMBLY	1	
A42409XL Rev.A	MODEL 424-9 DUMMY SOURCE ASSEMBLY	1*	
A42409 Rev.E	MODEL 424-9 SOURCE ASSEMBLY	1*	
BTAN69250	PISTOL GRIP CONTROL SYSTEM, 50 FOOT	1	
B48930-7 Rev.A	SOURCE GUIDE TUBE ASSEMBLY, 7 FOOT	1	
B48907-7 Rev.T	SOURCE GUIDE TUBE ASSEMBLY, 7 FOOT	4	
B48906-7 Rev.Q	SOURCE GUIDE TUBE ASSEMBLY, 7 FOOT	1	

* Note: Either one of the Model 424-9 source assemblies, Dummy (XL) or Active may be used in the system, but not simultaneously.

Test Plan 115 Feb. 2001 Page 11

Section 5 Material and Equipment List

The worksheets in section 24 identify the equipment and procedure required for the tests. Additional materials and equipment used to facilitate the tests will be listed as needed.

Section 6 Test Procedures

The testing shall follow the sequence below.

Device 1: Model 880, 150 Ci Assembly

- 1. Initial Projection Test
- 2. Initial Tensile Test for Source Assemblies
- 3. Shield Efficiency Test (See Section 3)
- 4. Endurance Test
- 5. Horizontal Shock Test
- 6. Vertical Shock Test
- 7. Tensile Test for Guide Tubes
- 8. Tensile Test for Control Cable Assembly
- 9. Kinking Test for Guide Tubes
- 10. Kinking Test for Control Cable Assembly
- 11. Crushing and Bending Tests for Control Cable Assembly and Guide Tubes
- 12. Final Tensile Test for Source Assemblies
- 13. Final Projection Test (See Section 3)
- 14. Lock Breaking Test
- 15. Wrench Test

Section 7 Testing Safety and Waste Disposal

Testing Safety

The shield efficiency test uses active radioactive material and the test specimen contains depleted uranium (low level radioactive material). Handling radioactive material shall be done with caution and only by qualified personnel.

The weight of the test specimen is approximately 50 pounds. Proper lifting techniques shall be used to prevent injury.

Some tests of this plan may result in heavy falling objects and flying debris. Safety glasses and a safe distance must be used.

The possibility of depleted uranium contamination could be present during and after the tests. Qualified personnel shall ensure all applicable surfaces are free of contamination.

Waste Disposal

The test specimen shall be stored in the low-level waste room until authorization by the regulatory department is given to properly dispose.

Section 8 Initial Projection Test

Requirements

The Projection Test demonstrates that the torque required at the controls to move the source assembly from the secured position to the working position and back to the secured position after certain tests remains within 125% of the torque before the tests. The minimum movement rate for projecting and retracting the source assembly shall be a constant 0.75 m/s (2.5 ft/s) of linear movement until the source stops after each cycle.

- 1. The test projection device equipped with the largest diameter and greatest length dummy source assembly recommended for the device.
- 2. The largest recommended guide tube and controls (42 ft. guide tube and 50 ft. control cable) connected to the projection device set up in accordance with Figure 6 of the ISO 3999-1:2000 standards (see Section 3).
- 3. Motor and Controller with torque readout.
- 4. Cycle counter.
- 5. Pneumatic actuator for lock slide actuation.

Section 9 Initial Tensile Test for Source Assemblies

Requirements

The tensile tests demonstrate that the source assembly maintains its integrity after experiencing tensile loads that may be encountered during normal use. The Tensile Test for Source Assemblies is performed before and after the sequence of operational tests. The source assembly should remain operable and maintain its integrity.

- 1. Dummy source assembly. (See Section 3)
- 2. Force gage for measuring the forces required from Section 6.5 of the ISO 3999-1:2000 standard.

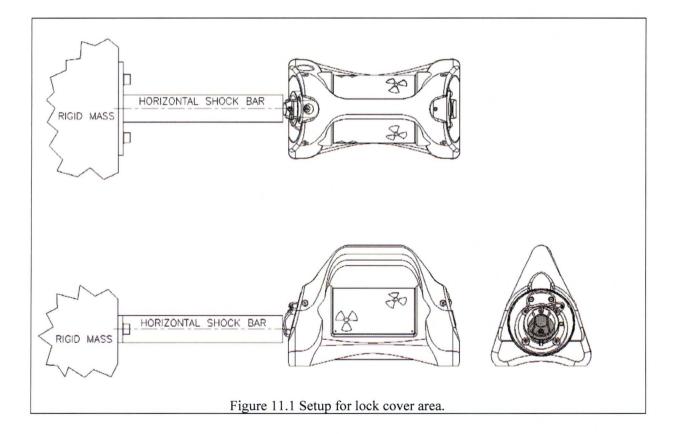
Section 10 Endurance Test

Requirements

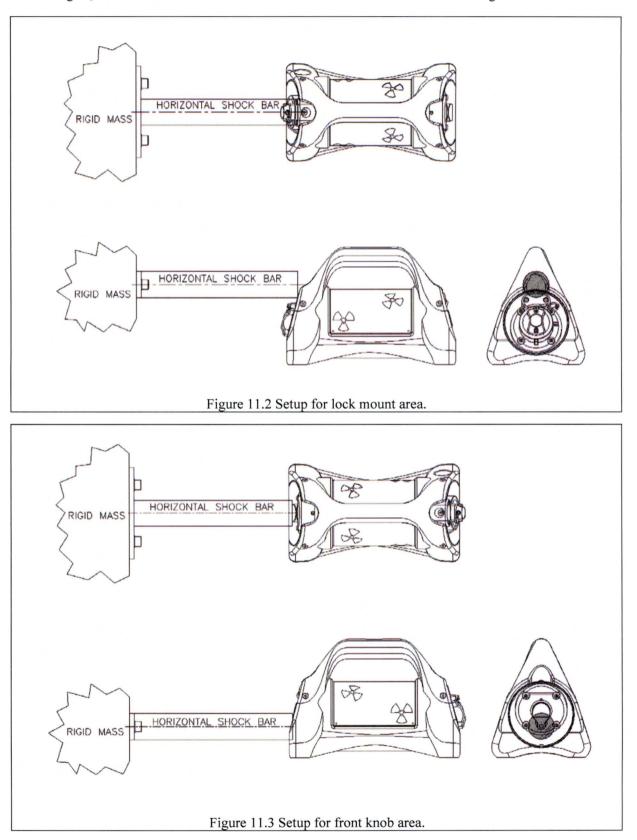
The Endurance Test demonstrates the gamma radiography system remains operational after 50,000 cycles of the source assembly moving from secure to working positions and back. This test is done to check the resistance due to fatigue and wear of the different components and accessories of the device during normal operation. The automatic securing mechanism and the lock should remain operational and effective.

Equipment

The equipment used for this test is equivalent to the equipment used in the initial projection test (see Section 8).


Section 11 Horizontal Shock Test

Requirements


The horizontal shock test demonstrates that the exposure device will withstand the horizontal impacts the device may encounter (see Section 3).

The exposure device and integral safety features shall remain operational after the test and the device shall experience no loss of shielding efficiency.

- 1. The test projection device equipped with a dummy source assembly secured and locked in its most shielded position with all covers.
- 2. A target consisting of a steel bar with a flat vertical face 50 mm (1.97 in.) diameter by 300 mm (11.81 in.) long. The bar shall lie horizontally and be fixed or welded to a rigid mass at least 10 times the mass of the exposure device (500 lbs).
- 3. Suspension equipment for the test projection device that does not cause undesirable rotation around a vertical axis when suspended before being exposed to the shock.

Test Plan 115 Feb. 2001 Page 18

Section 12 Vertical Shock Test

Requirement

The vertical shock test demonstrates that the exposure device will withstand the vertical impacts the device may encounter. This test will be performed without the jacket as shown in Figure 12.1 (see Section 3).

The exposure device and integral safety features shall remain operational after the test and shall experience no loss of shielding efficiency.

- 1. The test projection device equipped with a dummy source assembly secured and locked in its most shielded position with all covers but without the jacket.
- 2. A rigid target consisting of a flat horizontal surface of steel, concrete or solid timber having a mass at least 10 times the test specimen (500 lbs.). The surface shall be covered with a sheet of 7 or 9 ply (25mm thick) fir plywood or equivalent.

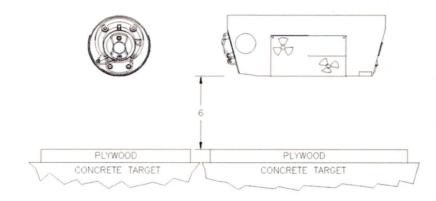


Figure 12.1

Section 13 Tensile Test for Guide Tubes

Requirements

The Tensile Tests demonstrate that the guide tube housing maintains its integrity after experiencing tensile loads that may be encountered during use as shown in Section 6.74 of the ISO 3999-1:2000 standard. The guide tube should remain completely operable without any damage that may restrict travel of the source assembly.

- 1. The test projection device equipped with the dummy source assembly.
- 2. Test apparatus T10281 used to secure the guide tube.
- 3. A force or pressure gage for measuring the required loads.

,

Section 14 Tensile Test for Control Cable Assembly

Requirements

The Tensile Tests demonstrate that the control cable assembly maintains its integrity after experiencing tensile loads that may be encountered during use as shown in Section 6.74 of the ISO 3999-1:2000 standard. The control cable assembly will remain operational after the tests.

- 1. The test projection device equipped with the dummy source assembly.
- 2. The test control cable assembly.
- 3. A force or pressure gage for measuring the required loads.

Section 15 Kinking Test for Guide Tube

Requirements

The kinking test demonstrates that the guide tube will withstand conditions that may be encountered during use as shown in Section 6.73 of the ISO 3999-1:2000 standard. The guide tube shall remain operational after the test without any damage that may restrict the travel of the source assembly.

- 1. The test guide tube.
- 2. A flat test surface equipped with horizontal guides separated by less than or equal to 5 times the diameter of the guide tube.
- 3. A dynamometer.
- 4. A tape measure.

Test Plan 115 Feb. 2001 Page 23

Section 16 Kinking Test for Drive Cable Assembly

Requirements

The kinking test demonstrates that the drive cable housing will withstand conditions that may be encountered during use as shown in Section 6.62 of the ISO 3999-1:2000 standard. The drive cable housing shall remain operational without any loss to structural integrity after the test.

- 1. The test drive cable assembly.
- 2. A stop watch.
- 3. A tape measure.
- 4. A flat test surface.

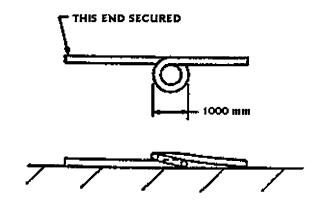
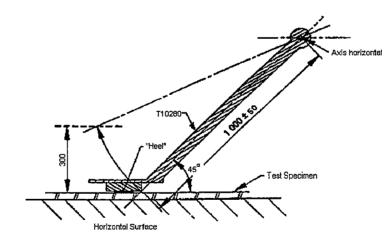


Figure 16.1


Section 17 Crushing and Bending Test

Requirements

The Crushing and Bending Test demonstrates that the drive cable and the guide tubes remain operational after being impacted by the heel of a shoe. The control cable assembly should remain operable without any loss to structural integrity.

Equipment

- 1. Test guide tube and control cable.
- 2. Test surface having a minimum mass of 150 kg (330 lb) and must be hard enough to not deform from the application of a steel punch without the presence of the drive cable housing or guide tube.
- 3. Steel guides to laterally hold housings with length greater than two heel lengths and a height between .5 and .75 times the sheath height for juxtaposed sheaths or single guide tube and between 1.5 and 1.75 times the sheath height for superimposed sheaths.
- 4. Steel punch tool T10280 as shown in figure 17.1.
- 5. Tape measure.

17.1 Crushing Test

Section 18 Final Tensile Test for Source Assemblies

Requirements

The tensile tests demonstrate that the source assembly maintains its integrity after experiencing tensile loads that may be encountered during normal use. The Tensile Test for Source Assemblies is performed before and after the sequence of operational tests. The source assembly should remain operable and maintain its integrity.

- 1. Dummy source assembly. (See Section 3)
- 2. Force gage for measuring the forces required from Section 6.5 of the ISO 3999-1:2000 standard.

Section 19 Final Projection Test

Requirements

The Projection Test demonstrates that the torque required at the controls to move the source assembly from the secured position to the working position and back to the secured position after certain tests remains within 125% of the torque before the tests. The minimum movement rate for projecting and retracting the source assembly shall be a constant 0.75 m/s (2.5 ft/s) of linear movement until the source stops after each cycle.

Equipment

The equipment used for this test is equivalent to the equipment used in the initial projection test (see Section 8).

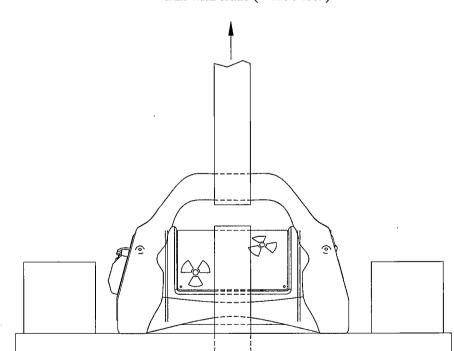
Section 20 Lock Breaking Test

Requirements

The Lock Breaking Test demonstrates that the locking mechanism can withstand a breaking force while in the locked position with the key removed. The lock must remain effective and operable after the test.

Equipment

- 1. The test projection device equipped with a dummy source assembly secured and locked in its most shielded position with all covers.
- 2. The lock breaking tool, Tool number T10345.
- 3. A stopwatch.
- 4. At least 90 lbs. of weights to be added gradually to lock breaking tool during test.


Section 21 Wrench Test

Requirements

The Wrench Test demonstrates that the exposure container handle is able to withstand a static force equal to 25 times the weight of the device (1250 lbs). The force is to be supplied to the most vulnerable part of the handle. The most vulnerable part of the handle is considered to be the middle of the handle the most bending stresses will occur.

Equipment

- 1. The test projection device equipped with a dummy source assembly secured and locked in its most shielded position with all covers.
- 2. A test plate with weights that, when strapped to the device, weighs at least 1250 lbs.
- 3. A scale to verify the weight of the test equipment.
- 4. Crane

Lift with crane (>1250 lbs.)

Fig. 21.1

Test Plan 115 Feb. 2001 Page 29

ı.

Section 22 Final Test Assessment

.

After all the tests have been completed, evaluate the condition of the test specimen and assess its performance relative to the test requirements of standard ISO 3999-1:2000(E).

Test Plan 115 Feb. 2001 Page 30

Section 23 Test Worksheets

Test Plan 115 Initial Pr	ojectio	on Test	с с
Material and Equipment:			<u> </u>
Test device (Model 880) serial number:			
Dummy source assembly serial number:	-		
Drive control assembly and guide tubes. Automatic cycling apparatus including motor, controller, pneur	natic actuato	r and counter	.
			•
Test Procedure:			
1. Assemble system using Figure 6 of ISO 3999-1:2000 as a g	uide.		
2. Assemble and connect the test specimen to the system.			
3. Complete 10 full cycles.			
4. Record the rotational speed (P177 rpm):			
5. Record the highest operational torque for each cycle. 1:	2:	3: 4:	5:
	7.	P. O.	10.
ð:	_ /:	8: 9:	10:
Damage and/or operational malfunctions:			
			<u></u>
Test Assessment:			
		-	
Recorded by:	n		
		ate:	
Witnessed by:	I	Date:	

ζ

Test Plan 115 Initial Tensile Test for Source Assemblies

Material and Equipment:

Dummy source assembly serial number:

Force gage serial number:

Test Procedure:

- 1. Record stop ball to connector measurement:
- 2. Attach control cable to the dummy source assembly.
- 3. Restrain end of source assembly opposite control cable connection.
- 4. Gradually apply 1000 N +44/-0 (225 lb +10/-0) force over 10 seconds, hold for 5 seconds, then release.
- 5. Complete test a total of 10 times.
- 6. Unrestrain source assembly.
- 7. Restrain source assembly at largest diameter and repeat steps 3-5.
- 8. Record stop ball to connector measurement:
- 9. Perform a complete functional operation of the device using the dummy source assembly.

Damage and/or operational malfunctions:

Test Assessment:

Recorded by: _____

Witnessed by: _____

Date: _____

Date: _____

covers, and locking the device. 2. Assemble system using Figure 6 of ISO 3999-1:2000. 3. Set the cycle counter to zero. 4. Cycle the test specimen a minimum of 50,000 times. 5. Record the rotational speed (>2.5 ft/s):	st device (Model 880) serial number:	1 est Plan 115 1	Endurance Test
Dummy source assembly serial number:	mmy source assembly serial number:	Material and Equipment:	· · · · · · · · · · · · · · · · · · ·
Prepare test specimen by securing a dummy source into its fully shielded position, attaching i covers, and locking the device. Assemble system using Figure 6 of ISO 3999-1:2000. Set the cycle counter to zero. Cycle the test specimen a minimum of 50,000 times. Record the rotational speed (>2.5 ft/s):	Prepare test specimen by securing a dummy source into its fully shielded position, attaching all covers, and locking the device. Assemble system using Figure 6 of ISO 3999-1:2000. Set the cycle counter to zero. Cycle the test specimen a minimum of 50,000 times. Record the rotational speed (>2.5 ft/s):	Dummy source assembly serial number: Drive control assembly and guide tubes.	
covers, and locking the device. Assemble system using Figure 6 of ISO 3999-1:2000. Set the cycle counter to zero. Cycle the test specimen a minimum of 50,000 times. Record the rotational speed (>2.5 ft/s):	covers, and locking the device. Assemble system using Figure 6 of ISO 3999-1:2000. Set the cycle counter to zero. Cycle the test specimen a minimum of 50,000 times. Record the rotational speed (>2.5 ft/s):	Fest Procedure:	
Set the cycle counter to zero. Cycle the test specimen a minimum of 50,000 times. Record the rotational speed (>2.5 ft/s):	Set the cycle counter to zero. Cycle the test specimen a minimum of 50,000 times. Record the rotational speed (>2.5 ft/s):		rce into its fully shielded position, attaching all
	Cycle the test specimen a minimum of 50,000 times. Record the rotational speed (>2.5 ft/s):	Assemble system using Figure 6 of ISO 3999-1	:2000.
Record the rotational speed (>2.5 ft/s):	Record the rotational speed (>2.5 ft/s):	. Set the cycle counter to zero.	
Record the highest operational torque:	Record the highest operational torque: Record the total number of cycles (>50,000): Clean the dummy source assembly. Perform a complete functional operation of the device using the dummy source assembly used in the test. mage, maintenance, and/or operational malfunctions: st Assessment: Recorded by: Witnessed by: Date: Reviewed by: Engineering: Regulatory Affairs:	. Cycle the test specimen a minimum of 50,000 ti	imes.
Record the total number of cycles (>50,000):	Record the total number of cycles (>50,000):	. Record the rotational speed (>2.5 ft/s):	
Clean the dummy source assembly. Perform a complete functional operation of the device using the dummy source assembly use test. Damage, maintenance, and/or operational malfunctions: Fest Assessment: Recorded by: Date:	Clean the dummy source assembly. Perform a complete functional operation of the device using the dummy source assembly used in th test. mage, maintenance, and/or operational malfunctions:	. Record the highest operational torque:	
Perform a complete functional operation of the device using the dummy source assembly use test. Damage, maintenance, and/or operational malfunctions: Test Assessment: Recorded by: Date: Da	Perform a complete functional operation of the device using the dummy source assembly used in the test. mage, maintenance, and/or operational malfunctions: st Assessment: Recorded by: Recorded by: Recorded by: Reviewed by: Reviewed by: Reviewed by: Regulatory Affairs: Date: Date	. Record the total number of cycles (>50,000):	
test. Damage, maintenance, and/or operational malfunctions: Fest Assessment: Recorded by: Date: Date	test. mage, maintenance, and/or operational malfunctions: st Assessment: Recorded by: Date: Witnessed by: Date: Reviewed by: Engineering: Date: Regulatory Affairs: Date:	3. Clean the dummy source assembly.	
Test Assessment: Recorded by: Date: Witnessed by: Date: Reviewed by: Date:	st Assessment: Recorded by:		device using the dummy source assembly used in the
Recorded by:	Recorded by:	Damage, maintenance, and/or operational m	alfunctions:
Recorded by:	Recorded by:		
Recorded by:	Recorded by:		
Recorded by:	Recorded by:		
Witnessed by: Reviewed by: Engineering: Date:	Witnessed by: Reviewed by: Engineering: Regulatory Affairs: Date:	Test Assessment:	
Witnessed by: Reviewed by: Engineering: Date:	Witnessed by: Reviewed by: Engineering: Regulatory Affairs: Date:		
Witnessed by:	Witnessed by: Reviewed by: Engineering: Regulatory Affairs: Date:		
Witnessed by: Date: Reviewed by: Date: Engineering: Date:	Witnessed by: Reviewed by: Engineering: Regulatory Affairs: Date:		
Reviewed by: Engineering: Date:	Reviewed by: Engineering: Regulatory Affairs: Date:	Recorded by:	Date:
Engineering: Date:	Engineering: Regulatory Affairs:	Witnessed by:	Date:
	Regulatory Affairs: Date:	Review	ved by:
	Regulatory Affairs: Date:	Engineering:	Date:
	Quanty Assurance: Date:		

Test Plan 115 Feb. 2001 Page 33

,

Target horizontal te Target mass weight est Procedure:	880) serial number: st bar: Tool Number T10333, serial number:
Target mass weight	
est Procedure:	Weight scale used:
 Prepare test spe- covers, and lock 	imen by securing a dummy source into its fully shielded position, attaching all ing the device.
Suspend the test	specimen to the test apparatus.
Contact the area	of impact to the target per figure 11.1.
Swing and raise	the test specimen "center of gravity" up to at least 4 inches above the target center
Release the test	specimen.
Perform steps 4	& 5 for a total of twenty (20) times.
Perform a comp	ete functional operation of the device using a dummy source assembly.
amage and/or o	perational malfunctions:
est Assessment	<u></u>

AEA Technology QSA Burlington, Massachusetts	Test Plan 115 Feb. 2001 Page 35	
Recorded by: Witnessed by:	Date: Date:	

•

1

 Test device (Model 880) serial number: Target horizontal test bar: Tool Number T10333, serial number: Target mass weight: Weight scale use Test Procedure:	shielded position, attaching all			
 Target mass weight: Weight scale use Test Procedure: Prepare test specimen by securing a dummy source into its fully covers, and locking the device. Suspend the test specimen to the test apparatus. Contact the area of impact to the target per figure 11.2. Swing and raise the test specimen "center of gravity" up to at le Release the test specimen. Perform steps 4 & 5 for a total of twenty (20) times. 	shielded position, attaching all			
 Target mass weight: Weight scale use Test Procedure: Prepare test specimen by securing a dummy source into its fully covers, and locking the device. Suspend the test specimen to the test apparatus. Contact the area of impact to the target per figure 11.2. Swing and raise the test specimen "center of gravity" up to at le Release the test specimen. Perform steps 4 & 5 for a total of twenty (20) times. 	shielded position, attaching all			
 Prepare test specimen by securing a dummy source into its fully covers, and locking the device. Suspend the test specimen to the test apparatus. Contact the area of impact to the target per figure 11.2. Swing and raise the test specimen "center of gravity" up to at le Release the test specimen. Perform steps 4 & 5 for a total of twenty (20) times. 				
 Prepare test specimen by securing a dummy source into its fully covers, and locking the device. Suspend the test specimen to the test apparatus. Contact the area of impact to the target per figure 11.2. Swing and raise the test specimen "center of gravity" up to at le Release the test specimen. Perform steps 4 & 5 for a total of twenty (20) times. 				
 covers, and locking the device. Suspend the test specimen to the test apparatus. Contact the area of impact to the target per figure 11.2. Swing and raise the test specimen "center of gravity" up to at le Release the test specimen. Perform steps 4 & 5 for a total of twenty (20) times. 				
 Contact the area of impact to the target per figure 11.2. Swing and raise the test specimen "center of gravity" up to at le Release the test specimen. Perform steps 4 & 5 for a total of twenty (20) times. 	ast 4 inches above the target center.			
 Swing and raise the test specimen "center of gravity" up to at le Release the test specimen. Perform steps 4 & 5 for a total of twenty (20) times. 	ast 4 inches above the target center.			
 Release the test specimen. Perform steps 4 & 5 for a total of twenty (20) times. 	ast 4 inches above the target center.			
6. Perform steps 4 & 5 for a total of twenty (20) times.				
-				
7. Perform a complete functional operation of the device using a d	. Perform steps 4 & 5 for a total of twenty (20) times.			
	ummy source assembly.			
\sim				
Damage and/or operational malfunctions:				
Test Assessment:				

Test Plan 115 Feb. 2001 Page 37

	Recorded by:	Date:
	Witnessed by:	Date:
		115 Horizontal Shock Test
Ma	aterial and Equipment:	
Te	est device (Model 880) serial num	ber:
Ta	arget horizontal test bar: <u>Tool Nur</u>	nber T10333, serial number:
Ta	arget mass weight:	Weight scale used:
Те	st Procedure:	
1.	Prepare test specimen by securin covers, and locking the device.	g a dummy source into its fully shielded position, attaching all
2.	Suspend the test specimen to the	test apparatus.
3.	Contact the area of impact to the	target per figure 11.3.
4.	Swing and raise the test specime	n "center of gravity" up to at least 4 inches above the target center.
5.	Release the test specimen.	
6.	Perform steps 4 & 5 for a total of	f twenty (20) times.
7.	Perform a complete functional op	peration of the device using a dummy source assembly.
Da	mage and/or operational mal	functions:
Те	st Assessment:	

Recorded by:

Witnessed by:

Date:

Date: _____

Test device (Model 880) serial number:		erial and Equipment:
Target Used:	Tee	t device (Model 880) seriel number
 Test Procedure: Prepare test specimen by securing a dummy source into its fully shielded position, attaching all covers, and locking the device. Suspend the test specimen at least 6 inches over the test target upside-down with the jacket removed. Drop the test specimen onto target. Perform steps 2 & 3 a total of one hundred (100) times. Perform a complete functional operation of the device using a dummy source assembly. 	1 65	
 Prepare test specimen by securing a dummy source into its fully shielded position, attaching all covers, and locking the device. Suspend the test specimen at least 6 inches over the test target upside-down with the jacket removed. Drop the test specimen onto target. Perform steps 2 & 3 a total of one hundred (100) times. Perform a complete functional operation of the device using a dummy source assembly. 	Targ	get Used:
 Prepare test specimen by securing a dummy source into its fully shielded position, attaching all covers, and locking the device. Suspend the test specimen at least 6 inches over the test target upside-down with the jacket removed. Drop the test specimen onto target. Perform steps 2 & 3 a total of one hundred (100) times. Perform a complete functional operation of the device using a dummy source assembly. 		
 covers, and locking the device. Suspend the test specimen at least 6 inches over the test target upside-down with the jacket removed. Drop the test specimen onto target. Perform steps 2 & 3 a total of one hundred (100) times. Perform a complete functional operation of the device using a dummy source assembly. 	Гest	Procedure:
 removed. 3. Drop the test specimen onto target. 4. Perform steps 2 & 3 a total of one hundred (100) times. 5. Perform a complete functional operation of the device using a dummy source assembly. 		
 4. Perform steps 2 & 3 a total of one hundred (100) times. 5. Perform a complete functional operation of the device using a dummy source assembly. Damage and/or operational malfunctions:		
5. Perform a complete functional operation of the device using a dummy source assembly. Damage and/or operational malfunctions:	3.]	Drop the test specimen onto target.
Damage and/or operational malfunctions:	i.]	Perform steps 2 & 3 a total of one hundred (100) times.
Damage and/or operational malfunctions:	5.	Perform a complete functional operation of the device using a dummy source assembly.
	Dam	age and/or operational malfunctions:
Test Assessment:		
Test Assessment:		
	l'est	Assessment:

AEA Technology QSA Burlington, Massachusetts	Feb. 2001 Page 39
Recorded by:	Date:
Witnessed by:	Date:

Test Plan 115

Test Plan 115 Tensile Test for Guide Tubes Material and Equipment: Test device (Model 880) serial number: Test apparatus T10281. Force gage serial number: Test Procedure: 1. Prepare test specimen by securing a dummy source into its fully shielded position, attaching all covers, and locking the device. 2. Secure exposure device to prevent movement during test. 3. Attach one end of test specimen to apparatus, T10281. Apply a tensile load of 500 N +44/-0 (112 lb +10/-0) for 30 seconds to the end of test specimen. 4. The 112 lbf. tensile load will register as a minimum of 78.4 psi (84.3 psi with gauge tolerance allowance) on the pressure gauge. 5. Release the pressure. 6. Perform steps 4 & 5 a total of 10 times. Damage and/or operational malfunctions:

1

Test Plan 115 Feb. 2001 Page 40

Test Assessment:				
	· · · · · · · · · · · · · · · · · · ·			
Recorded by:	Date:			
Witnessed by:	Date:			

Test Procedure:

- 1. Secure test device (Model 880) so that it cannot move during test.
- 2. Attach the controls to the test device.
- 3. Apply a tensile load of 500 N +44/-0 (112 lb +10/-0) for 30 seconds to the end of test specimen. The 112 lbf. tensile load will register as a minimum of 78.4 psi (84.3 psi with gauge tolerance allowance) on the pressure gauge.
- 4. Release the pressure.
- 5. Perform steps 3 & 4 a total of 10 times.
- 6. Secure the controls so they will not move during test.
- 7. Apply a force of 1000 N +44/-0 (225 lb +10/-0) tensile force to the free end of the source assembly for 10 seconds.
- 8. Perform step 7 a total of 10 times.

Test Plan 115 Feb. 2001 Page 41

Damage and/or operational malfunctions:	
Test Assessment:	
Recorded by:	Date:
Witnessed by:	Date:

Test Plan 115 Kinking Test for Guide Tubes

Material	and	Equip	ment:
----------	-----	-------	-------

Guide Tube.

Dynamometer	Ser. No.	

Tape measure.

Test Procedure:

- 1. Secure test specimen without connection on a horizontal surface between two parallel plates.
- 2. Make a flat closed loop with guide tube.
- 3. Pull the free end of the loop with a force of 200 N +22/-0 (45 lb +5/-0) over 5 seconds and maintain for 10 seconds.
- 4. Repeat steps 2 through 4 for a total of 10 times using the same point of the guide tube.
- 5. Redo complete test 10 times with a connection in the loop opposite the crossing point.
- 6. Remove the test specimen from the clamp.
- 7. Verify that guide tube is operational.

Test Plan 115 Feb. 2001 Page 42

Damage and/or operational malfunctions:	
Test Assessment:	
· · · · · · · · · · · · · · · · · · ·	
Recorded by:	Date:
Witnessed by:	Date:

Test Plan 115 Kinking Test for Control Cable Assembly Material and Equipment: Control Cable Assembly. Tape Measure. Stop Watch. Test Procedure: Secure the control housing rectilinearly on a horizontal surface and clamp one end of the housing to 1. the tabletop. Make a 1000mm (39.37 in) loop with the housing on the horizontal surface (see figure 17.1). Verify 2. the diameter of the loop using a tape measure. 3. Pull the free end of the housing without allowing it to rotate along its original axis at a minimum speed of 2.0 m/s (6.6 ft/sec). Repeat test for a total of 10 times at each of 10 equidistant points along the length of the control 4. housing. 5. Remove control housing from the clamp. Verify that control assembly is operational. 6.

Test Plan 115 Feb. 2001 Page 43

Damage and/or operational malfunctions:	
Test Assessment:	
Recorded by:	Date:
Witnessed by:	Date:

Test Plan 115 Crushing and Bending Test

Material and Equipment:

Steel Punch, Tool Number T10280.

Tape Measure.

Guide Tube and Control Cable Assembly.

Test Procedure:

- 1. Place the guide tube test specimen on a rigid horizontal test surface with a minimum mass of 150 kg between the lateral guides. The surface must be hard enough that it will not be deformed by a steel punch (heel) without the presence of the object to be tested.
- 2. Place the steel punch (T10280) at a point on the test specimen as shown in Figure 17.1
- 3. Lift the edge of the steel punch heel a minimum of 300mm (11-13/16 in).
- 4. Drop the steel punch onto the test specimen.
- 5. Perform steps 3 & 4 a total of ten (10) times on randomly selected points on the test specimen. One of these points shall be on a joint.
- 6. Verify that the guide tube is operational.
- 7. Place the control cable test specimen in the juxtaposed position on the same surface used with the guide tube and laterally support with guides 0.5 to 0.75 times the control cable housing height.
- 8. Repeat steps 2 through 4 on five randomly selected points on the housing making sure the punch heel hits both juxtaposed housings simultaneously.
- 9. Rotate the control cable test specimen on the surface to the superimposed position between lateral guides 1.5 to 1.75 times the height of a tube.
- 10. Repeat steps 2 through 4 on five randomly selected points making sure that the heel drops on the top tube.
- 11. Verify that the control cable assembly is operational.

Damage and/or operational malfunctions:	
·	
	· · ·
Test Assessment:	
	· · · · · · · · · · · · · · · · · · ·
Recorded by:	Date:
Witnessed by:	Date:
	Duo

Test Plan 115 Final Tensile Test for Source Assemblies

Test Plan 115 Feb. 2001 Page 45

AEA Techn	ology QSA
Burlington,	Massachusetts

Material and I	Equipment:
----------------	------------

Dummy source assembly serial number:

Force gage serial number:

Test Procedure:

- 1. Record stop ball to connector measurement:
- 2. Attach control cable to the dummy source assembly.
- 3. Restrain end of source assembly opposite control cable connection.
- 4. Gradually apply 1000 N +44/-0 (225 lb +10/-0) force over 10 seconds, hold for 5 seconds, then release.
- 5. Complete test a total of 10 times.
- 6. Unrestrain source assembly.
- 7. Restrain source assembly at largest diameter and repeat steps 3-5.
- 8. Record stop ball to connector measurement: ____
- 9. Perform a complete functional operation check of the device using the dummy source assembly.

	19. A.
Damage and/or operational malfunctions:	
Test Assessment:	
Recorded by:	Date:
Witnessed by:	Date:

Test Plan 115 Final Projection Test

Material and Equipment:			Test Plan 115 Feb. 2001 Page 46	
Test device (Model 880) serial number: Dummy source assembly serial number: Drive control assembly and guide tubes. Automatic cycling apparatus including motor, controller, pneumatic	c actuat	or, and	counter.	
Test Procedure:				
1. Assemble system using Figure 6 of ISO 3999-1:2000 as a guide	ð.			
2. Assemble and connect the test specimen to the system.				
3. Complete 10 full cycles.				
4. Record the rotational speed (P 177 rpm):				
5. Record the highest operational torque for each cycle. 1:	2:	_ 3:	4:	5:
6: 7	7:	8:	9:	10:
6. Record the average operational torque:				
Damage and/or operational malfunctions:				
		-		
Test Assessment:				
Recorded by:	_ r	Date:		<u> </u>

.

Test Plan 115 Feb. 2001 Page 47

.

	Test Plan 115 Lock Breaking Test
Ма	iterial and Equipment:
Τe	est device (Model 880) serial number:
Lo	ock Breaking Tool, Tool Number T10345
St	opwatch.
	eights.
Те	st Procedure:
1.	Prepare test specimen by securing a dummy source into its fully shielded position, attaching all covers, and locking the device.
2.	Secure test specimen to prevent movement during test.
3.	Set up Lock Breaking Tool with rod end resting on lock.
4.	Gradually apply a load of 400 N +44/-0 (90 lbs +10/-0) force to lock over 10 seconds by adding weights to the top of the Lock Breaking Tool. Max Force:
5.	Maintain the force for 5 seconds.
6.	Gradually remove weights over 10 seconds.
7.	Repeat test 10 times.
8.	Perform a complete functional operation of the device using the dummy source assembly.
Da	mage and/or operational malfunctions:
Te	st Assessment:
	Recorded by: Date:
	Witnessed by: Date:

Test Plan 115 Wrench Test
Material and Equipment:
Test device (Model 880) serial number:
Weight of test device (Model 880):
Total weight of test equipment:
Scale:
Test Procedure:
1. Prepare test specimen by securing a dummy source into its fully shielded position, attaching all covers, and locking the device.
2. Secure device to plate and add weight to 25 times weight of test specimen as shown in Fig. 22.1.
3. Lift test specimen and weight from middle of handle with crane.
4. Perform a complete functional operation of the device using the dummy source assembly.
Damage and/or operational malfunctions:
Test Assessment:
Recorded by: Date:
Witnessed by: Date:

. Test Plan 115 Feb. 2001 Page 49

Section 25 Appendix: ISO 3999-1:2000

Safety Analysis Report for the Model 880 Series Transport Package

QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page 2-40 **2.12.5** Test Plan Report 115 Minus Appendices (March 2001)

. · ·

Test Report 115 March 2001 Page 1

TEST REPORT 115

MODEL 880 RADIOGRAPHY PROJECTOR

ISO 3999-1:2000 PERFORMANCE TESTS

.

SECTION 1 INTRODUCTION	. 3
SECTION 2 TEST SPECIMEN CONSTRUCTION AND ACCEPTANCE	. 4
SECTION 3 TEST OBJECTIVES AND RESULTS	. 5
SECTION 4 CONCLUSION	15
APPENDIX A - TEST DATA WORKSHEETS	16
APPENDIX B - ROUTE CARDS	17
APPENDIX C - SHIELD PROFILE INSPECTION FORMS	18

••

Test Report 115 March 2001 Page 3

Test Report No. 115

Section 1 Introduction

This report documents the performance of the Model 880 Radiographic Projector to the test requirements of ISO 3999-1:2000, Radiological Safety for the Design and Construction of Apparatus for Gamma Radiography.

The ISO 3999-1:2000 tests were done in the following order:

- Initial Projection Test
- Initial Tensile Test for Source Assemblies
- Endurance Test
- Horizontal Shock Test
- Vertical Shock Test
- Tensile Test for Guide Tubes
- Tensile Test for Control Cable Assembly
- Kinking Test for Guide Tubes
- Kinking Test for Control Cable Assembly
- Crushing and Bending Tests
- Final Tensile Test for Source Assemblies
- Final Projection Test
- Lock Breaking Test
- Wrench Test

A test data worksheet was produced for each test detailing the material and equipment used for the test, the test procedure, a list of any damage or operational malfunctions as a result of the test, and the test assessment. Each test data worksheet is located in Appendix A. Copies of the route cards used in the production of the test device and dummy source assembly are located in Appendix B. In addition, a shield efficiency profile was completed before and after all of the above tests. Copies of the shield profile inspection forms are contained within Appendix C.

Section 2 Test Specimen Construction and Acceptance

All radiography system components listed in the table below and used in this test plan were manufactured and accepted in accordance with the AEA Technology QSA, Inc. Quality Assurance Program.

Except for the tensile test, the test specimen was the Model 880, 150-Curie projector. The projector was manufactured to drawing B88000 Rev. A and is serialized D1000.

A Model 424-9 dummy source assembly was loaded into the test specimen for all tests.

The radiography system consisting of the components in the table below was used for the endurance test. The same Model 424-9 dummy source assembly used in the endurance test was used in the tensile test for the source assembly.

Part number	Part Name	Quantity
B88000 Rev. A	MODEL 880 150 Ci MAX ASSEMBLY	1
A42409XL Rev. A	MODEL 424-9 DUMMY SOURCE ASSEMBLY	1
BTAN69250 Rev. C	PISTOL GRIP CONTROL SYSTEM, 50 FOOT	1
B48930-7 Rev. A	SOURCE GUIDE TUBE ASSEMBLY, 7 FOOT	1
B48907-7 Rev. T	SOURCE GUIDE TUBE ASSEMBLY, 7 FOOT	4
B48906-7 Rev. Q	SOURCE GUIDE TUBE ASSEMBLY, 7 FOOT	1

Section 3 Test Objectives and Results

Initial Projection Test

The initial projection test is used to determine crank torque amounts before any other testing. A final projection test is done following all of the operational tests. ISO-3999:1-2000 standards state that the torque values cannot increase by more than 25% from the initial projection test to the final projection test. The setup for the test is the same as the setup for the endurance test.

The test resulted in an average torque of 41% of full motor torque (or 51 in-lbs).

Initial Tensile Test for Source Assembly

The tensile test demonstrates the source assembly maintains its integrity after experiencing tensile loads likely to occur during use.

The tensile tests resulted in an increase in the stop ball to connector measurement from 1.227 in. to 1.249 in. Inspection of the source assembly under a microscope revealed that the source wire stretched and unraveled slightly nearest the stop ball connector explains the increased measurement. However, a complete functional test with the test Model 880 projector showed that the source assembly was still completely functional. Therefore, the source assembly passed this test.

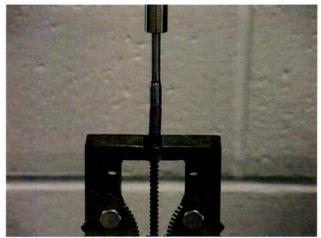


Figure 3.1 Source Assembly Tensile Test Connector and Ball Setup

Test Report 115 March 2001 Page 6

Figure 3.2 Source Assembly Tensile Test Connector and Capsule Setup

Endurance Test

The endurance test demonstrates that the gamma radiation system remains operational after 50,000 cycles of the source assembly moving from secure to working position and back while using the longest recommended guide tubes and controls. The exposure device and integral safety features shall remain operational after experiencing this test.

The device was put through 51,026 cycles at a speed of 3.28 ft/s. The highest operational torque observed was 41.4 % full load torque (or 51 in-lbs). There was no visible damage and there was only negligible wear to the device, drive cable, and guide tubes. One of the crank bearings was broken but the crank still turned freely. There were no functional or operational problems resulting from this test. Therefore, the device passed this endurance test.

Figure 3.3 Endurance Test Setup

Test Report 115 March 2001 Page 7

Horizontal Shock Test

The horizontal shock test demonstrates the exposure device will withstand the horizontal impacts likely to occur during use. The exposure device and integral safety features shall remain operational after the test and the device shall experience no loss to shielding integrity.

The test was performed on three areas of the device: the lock cover area (Fig. 3.4), the lock mount area, and the front knob area (Fig. 3.5). The test was initially performed by measuring the 4 inch pendulum lift from the foot of the impact side of the device. This resulted in the center of gravity being lifted 4.5 inches which is more than the 4 inch lift required by ISO 3999-1:2000. The lock cover and lock mount areas became dented after the 4.5 inch center of gravity lift. However, the two areas did not lose any functionality.

The front knob area was tested twice using the 4.5 inch center of gravity lift. The impacts resulted in the front knob tightening enough to not be able to be pulled and turned by hand. Also, the front plate buckled inward slightly which prevented the fitting entering and turning the slider.

A new front plate assembly was installed and tested by lifting the center of gravity of the device only the required 4 inches. This test resulted only in minor dents to the front knob and very slight buckling of the front plate. The knob could be pulled and turned by hand and the fitting could enter and turn the slider proving that the device passes the minimum requirements of this test.

A further test was performed on the front knob by lifting the center of gravity of the device the 4 inches and allowing it to drop on the impact cylinder at an angle. This test was done to prove that the device could withstand an angled shock to the most fragile area of the device. The test produced only minor dents on the impact side of the front knob. The knob could be pulled and turned by hand and the fitting could enter and turn the slider.

After the tests, the device was put through a complete functional test that resulted in normal operation. Therefore, the device passed the horizontal shock test.

Figure 3.4 Horizontal Shock on Lock Cover

Test Report 115 March 2001 Page 8

Figure 3.5 Horizontal Shock on Front Knob

Vertical Shock Test

The vertical shock test demonstrates the exposure device will withstand the vertical impacts likely to occur during use. The exposure device and integral safety features shall remain operational after the test and shall experience no loss of shielding integrity.

The test was performed on the device without the jacket in the normal carrying position. The device showed no visible damage after being dropped one hundred times from a height of 6 inches. The device functioned properly after having undergone a complete functional test. The device passed the vertical shock test.

Figure 3.6 Vertical Shock Test

Tensile Test for Guide Tubes

Test Report 115 March 2001 Page 9

AEA Technology QSA Burlington, Massachusetts

The tensile test for guide tubes demonstrates that the guide tube housing maintains its integrity after experiencing tensile loads that may be encountered during regular use. The guide tube should remain operable after this test.

This test resulted in no apparent damage to the guide tube. The test dummy source assembly was not restricted while being passed through the guide tube during a functional test. Therefore, the guide tubes pass this test.

Figure 3.7 Tensile Test for Guide Tubes

Tensile Test for Control Cable Assembly

The tensile test for control cable assembly demonstrates that the control cable assembly maintains its integrity after experiencing tensile loads that may be encountered during regular use. The control cable assembly should remain operable after this test.

The test was conducted in two parts. The first part (Fig. 3.8 & 3.9) placed a tensile load on the control cable housing while connected to the device. The second part of the test (Fig. 3.10) placed a tensile load on the control cable itself while inside the control cable housing. This test resulted in no visible damage to the control cable assembly. The control cable was not restricted while being cranked through the control cable housing during a functional test. Therefore, the control cable assembly passes this test.

Test Report 115 March 2001 Page 10

Figure 3.9 Tensile Test for Control Cable Housing

Figure 3.10 Tensile Test for Control Cable with Source Assembly

Kinking Test for Guide Tubes

The kinking test for the guide tube demonstrates that the guide tube withstands conditions that may be encountered during regular use. The guide tube should remain operational after experiencing this test.

The kinking test resulted in no visible damage to the guide tube. A complete functional test verified that the test dummy source assembly passed through the guide tube without any problems. Therefore, the guide tubes passed this test.

Test Report 115 March 2001 Page 11

Figure 3.11 Kinking Test for Guide Tube

Kinking Test for Control Cable Assembly

The kinking test for the control cable assembly demonstrates that the control cable assembly can withstand kinking conditions that may occur during normal use. The control cable assembly should remain operational after performing this test.

After experiencing this test, the control cable assembly maintained its integrity without any apparent damage. A complete functional test was performed satisfactorily. The control cable assembly passed this kinking test.

Crushing and Bending Test

The crushing and bending demonstrates that the guide tubes and control cable assemblies can withstand a crushing test from a simulated heel (Fig. 3.12).

The control cable assembly showed some slight deformation from the impact of the simulated heel but the control cable had no problems passing through the control housings.

Three guide tubes were used in the crushing test. All of the guide tubes showed deformation from the heel impacts at each of the crushed points except for the connection point. The crushing test on the guide tube connection point resulted in no apparent damage. One of the ten crush points on each of the first two guide tubes tested resulted in enough deformation that the source assembly had trouble sliding through the area. Adding extra force to the hand crank allowed the source assembly to be forced through these tight areas. The test on the third guide tube did not require as much added force at the hand crank and the source assembly traveled through all ten crush points on the third guide tube much easier.

Although increased torque was required at the hand crank to push the source assembly through some of the crushed areas of the guide tubes, the source assembly was able to pass through all of the test samples during a functional test. Therefore, the guide tubes pass the crushing and bending test.

Test Report 115 March 2001 Page 12

Figure 3.12 Crushing and Bending Test

Final Tensile Test

The final tensile test demonstrates the source assembly maintains its integrity after having undergone all of the other operational tests. The same dummy source assembly (Serial number TP115DEMO) that was used for this test is the same as used in all of the operational tests.

The tensile tests resulted in an increase in the stop ball to connector measurement from 1.240 in. to 1.250 in. A complete functional test with the test Model 880 projector showed that the source assembly was still completely functional. Therefore, the source assembly passed this test.

Final Projection Test

The final projection test demonstrates that the crank torque amount does not increase by more than 25% after the device and equipment have undergone all other operational tests. The setup that was used for this test is the same as the setup used for the initial projection test and the endurance test.

The test resulted in an average torque of 45% (or 56 in-lbs). The increase from the initial projection test was only approximately 10%. Therefore, the device passes the final projection test.

Test Report 115 March 2001 Page 13

Lock Breaking Test

The lock breaking test demonstrates that the locking mechanism can withstand a breaking force while in the locked position with the key removed. The lock should remain operable after experiencing this test.

The locking mechanism had no visible damage after performance of the lock breaking test. The locking mechanism continued to be completely functional after this test. Therefore, the device passes the lock breaking test.

Figure 3.12 Lock Breaking Test

Wrench Test

The wrench test demonstrates that the handle of the exposure device is able to withstand a static force equal to at least 25 times the weight of the device (1250 lbs). This test was conducted on two different jackets with similar results. The first jacket contained metal wire wrapped around the device connected to a steel tube inside the handle for added support. The second device did not contain any added supports. Both handles lifted a load of 1288 lbs. with only slight bowing of the handle during the lift. The devices were inspected after the lift and showed no visible damage. Therefore, both handle options passed the wrench test.

AEA Technology QSA Burlington, Massachusetts

Section 4 Conclusion

Test Report 115 March 2001 Page 14

The Model 880 system consisting of the projector, control assembly, guide tubes and source assembly, satisfies the projection tests, the tensile tests for source assemblies, the endurance test, the horizontal shock test, the vertical shock test, the tensile and kinking tests for guide tubes and control cable assemblies, the crushing and bending tests, the lock breaking test, and the handle wrench test in accordance with ISO 3999-1:2000.

In addition to the tests performed under this test plan, ISO 3999-1:2000 also calls for a vibration resistance test and an accidental drop test.

A final shield profile was performed after the completion of all tests. There were only minor changes between the shield profile done previous to all the tests and the device remained within acceptable dose ranges. Both shield profile data sheets are located in Appendix C.

The vibration resistance test was evaluated and deemed unnecessary. The only parts that could come loose from vibration are the tamper proof screws. However, the tamper-proof screws are tightened to a prescribed torque to prevent unintentional release after repeated use or vibration. None of the tests performed resulted in a conditions that would increase chance that vibration could cause damage.

The accidental drop test was previously conducted under test plan 108 by dropping a Model 880 Projector from a height of 1.2 m (4 ft) three times to impact three different areas. There was no affect on the simulated source assembly from any of the impacts. Also, a shield profile did not show any increase in dose rate as a result of the impacts.

Safety Analysis Report for the Model 880 Series Transport Package

QSA Global, Inc. Burlington, Massachusetts June 2017 - Revision 12 Page 2-41 I

2.12.6 Test Plan Report 125 Rev B (Mar 2003)

TEST PLAN 125 (Rev. B) Report

MODEL 880 TYPE B CONTAINER TRANSPORT CONDITIONS With #88070 Foot Button Assembly And #88022 Lock Mount Modification

AEA Technology QSA Inc. 40 North Avenue Burlington MA 01803

MARCH 2003

л, Ч.

CONTENTS

SECTION 1. PURPOSE2
SECTION 2. SCOPE OF TESTING
Section 2.1 Normal Conditions of Transport and Accidental Drop
Section 2.2 Hypothetical Accident Conditions
SECTION 3. TEST UNIT DESCRIPTIONS4
Section 3.1 Test Unit #21 – Serial Number 01 4
SECTION 4. CHANGES TO TEST CONDITIONS OR ORIENTATIONS
Section 4.1 Normal and Accident Conditions of Transport
Section 4.2 Hypothetical Accident Conditions
SECTION 5. TEST SPECIMEN RESULTS
Section 5.1 Horizontal Shock Test - Foot Button Assembly
Section 5.2 Horizontal Shock Test - Lock Mount Assembly
Section 5.3 Pentration Shock Test - Foot Button Assembly
Section 5.4 9.m (30 ft.) Free Drop Test - Foot Button Assembly10
SECTION 6. ANALYSIS, SUMMARY, AND CONCLUSIONS
SECTION 7. APPENDIX A - DRAWINGS
SECTION 8. APPENDIX B – CALCULATIONS14
SECTION 9. APPENDIX C – TEST DATA SHEETS
SECTION 10. APPENDIX D – MANUFACTURING RECORDS
SECTION 11. APPENDIX E – TECHNICAL REPORTS
SECTION 12. APPENDIX F – ORIGINAL TEST PLAN

Section 1. Purpose

The purpose of these tests were to assess the Model 880 transport container with the addition of the #88070 (F.C.B.A.) foot control button assembly. With the addition of this assembly and the modification of the #88022 lock mount, they will not adversely affect the packages ability as a "Type B" transport container.

Testing was performed on the 88070 F.C.B.A. to 10CFR71 regulations for 71.73(1) *free drop*, 71.73(3) *puncture*, and 71.71(10) *penetration*. These tests followed a random order except that the 71.73(3) puncture test was to follow the 71.73(1) free drop test if the specimen survived. Also, testing was performed according to ISO 3999-1 regulations for 6.4.6.1 *horizontal shock*. This horizontal shock test was relevant for both the 88070 F.C.B.A. and the 88022 lock mount assembly.

Section 2. Scope of Testing

Section 2.1 Normal Conditions of Transport and Accidental Drop

The tests for accidental drop described in ISO 3999-1, and normal conditions of transport in 10CFR71 are the tests. These tests will include a horizontal shock test, and penetration test.

Horizontal Shock Test

The 880 unit was oriented so the (1) F.C.B.A. and the (2) Lock Mount would impact the end-face of (T10333 SN01) 50 mm (2 in) diameter steel bar. The criteria is 300 mm (12 in) in length lying horizontally, that is fixed or welded to a rigid mass at least ten times the mass of the 880. The 880 was suspended from a fixed point so that, when at rest, the F.C.B.A. and Lock Mount just touches the target. The 880 was moved from its resting position until its center of gravity is 100 mm (4 in) higher than in the resting position and let loose, so that it swung in a pendulum movement against the target. This was carried out for a total of twenty (20) times.

Penetration Test

The 880 unit was oriented so as the foot control button assembly would be facing upward while the jacket will be supported on an unyielding surface. The hemispherical end of a vertical steel cylinder (AEA Technology QSA Drawing #BT10129) of 3.2 cm (1.25 in) diameter and 6 kg (13 lbs.) mass dropped from a height of 1 m (40 in) onto the surface of the F.C.B.A.

Section 2.2 Hypothetical Accident Conditions

The Hypothetical Accident Tests described in 10CFR71 are the 9m (30-foot) drop, the 1m (~3-foot) puncture drop.

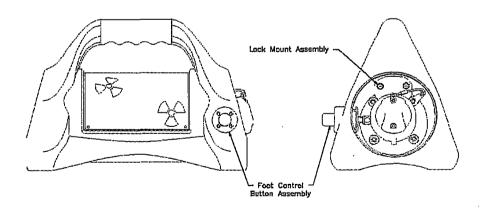
9m (30-foot) Free Drop Test

The 880 radiographic unit was oriented so that the F.C.B.A. would be facing downward toward the test pad (T10261 SN01) for the 9m (30 ft.) drop test. This exposed the assembled unit so the F.C.B.A. received an impact similar to a slap down effect. One test was performed. It is described in the following sections.

Puncture Test

According to the Purpose (Section 1.0 paragraph 4) section of the test plan, an evaluation would be made before this test was to be performed. Normally, the 880 unit would be oriented in a similar angled fashion as above for the 1m (40 in.) drop test. The unit would be dropped onto a test billet (T10119 SN01) so as the F.C.B.A. sustains the full initial impact. This test was not performed. Reasons are described in the following sections.

Section 3. Test Unit Descriptions


Section 3.1 Test Unit 1 – Serial Number 01

The construction of this package is in accordance with the following AEA TECHNOLOGY QSA INC. documentation:

Assembly	Bill of Materials	Assembly Drawing
880 Delta Simulator	88017XLS	B88017XLS Rev A
Drawings	TP125A Rev 1	BTP125A Rev 1
Foot Button Assy	BM 88070 Rev C	A88070 Rev B
Foot Control Shaft	N/A	A88070-4 Rev 3
Rear Plate Assy	BM 88020 Rev 5	B88020 Rev 5

The unit started construction to an earlier revision and Test Plan (See Appendix C Manufacturing Support Documentation). Changes to the unit during construction were recorded as mark-ups on the production prints and subsequently transferred to the above revisions.

As indicated above, the test unit was assembled with a modified rear plate assembly that includes changes to the *lock* mount assembly. Also, the foot control button assembly was modified with a G-10 shaft (Rev. 3) and installed onto the jacket for the testing. The test unit weighed approximately 49 pounds.

FIGURE 1. MODEL 880 (Test Unit #21) WITH FOOT BUTTON AND LOCK MOUNT ASSEMBLIES

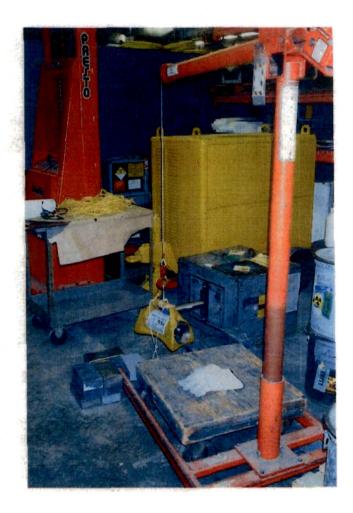
K:\Test Plans & Reports\Tp125 (880 and 88070 Drop Test)\TP125 Report First Cut.doc

Test Plan 125 Report March 2003 Page 5 of 18

Section 4. Changes to Test Conditions or Orientations

Section 4.1 Normal Conditions of Transport and Accidental Drop No changes from plan were performed.

Section 4.2 Hypothetical Accident Conditions of Transport


No changes from plan were performed.

Test Plan 125 Report March 2003 Page 6 of 18

Section 5. Test Specimen Results

Section 5.1 Horizontal Shock Test - Foot Button Assembly

The test unit was set up on a portable crane type apparatus. Lead blocks were stacked around the base of the unit to keep it stationary and in position. The test unit was suspended (see figure 1) from the crane by means of its steel cable and a cloth rope around the test unit's handle. The 50mm 2 in diameter bar (T10333 SN01) was bolted to a Model 770 that weighted approx. 950 lbs.

Figure 1

AEA TECHNOLOGY QSA INC. Burlington, Massachusetts Test Plan 125 Report March 2003 Page 7 of 18

「「「「「「「「「」」」

The test was then performed according to ISO 3999-1 regulations for 6.4.6.1 horizontal shock (see figure 2) test.

The unit was swung from the apparatus for a total of 20 times. The G-10 Shaft inside the F.C.B.A. broke, this was the piece that was expected to break. (see figure 3) The selector ring was not compromised. The unit passed the test.

Figure 3

AEA TECHNOLOGY QSA INC. Burlington, Massachusetts Test Plan 125 Report March 2003 Page 8 of 18

Section 5.2 Horizontal Shock Test - Lock Mount Assembly

The test unit was set up on the portable crane type apparatus as on the F.C.B.A. The same testing was performed. See figure 4.

The unit was swung from the apparatus for a total of 20 times. The Lock Mount Assembly sustained minimal damage. Moreover, the corbin lock actuated smoothly and effortlessly. (See figure 5) The unit passed the test.

Figure 5

K:\Test Plans & Reports\Tp125 (880 and 88070 Drop Test)\TP125 Report First Cut.doc

Test Plan 125 Report March 2003 Page 9 of 18

Section 5.3 Penetration Shock Test – Foot Button Assembly

The test unit was set up so the F.C.B.A. was facing upward. An aluminum angle was used to guide the test bar directly to the center of the F.C.B.A. (as shown in Figure 6).

Figure 6 (rotated 90 degrees)

Upon dropping the bar, the G-10 Shaft broke. The button assembly needed to be disassembled to activate the selector ring and lock slide on the test unit. The test unit worked fine and passed the test.

Figure 7

Test Plan 125 Report March 2003 Page 10 of 18

Section 5.4 9.m (30 ft.) Free Drop Test – Foot Button Assembly

The test unit was set up so that the F.C.B.A. was facing downward according to test plan instructions. The unit was dropped to induce the most rapid and damaging deceleration, which in this case had a slap down effect. See Test Plan 125B section 8.0 for setup orientation, and below (figure 8) for more information.

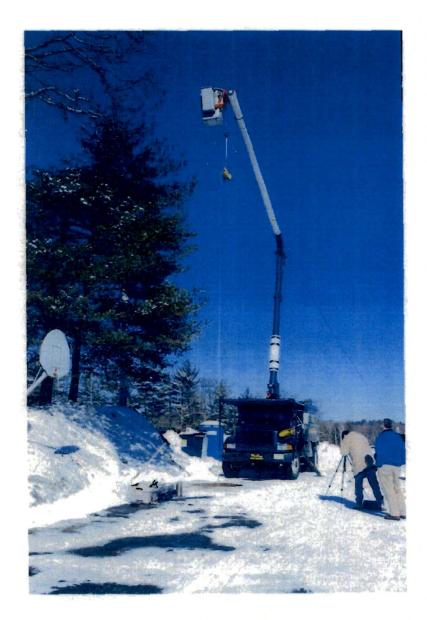


Figure 8

K:\Test Plans & Reports\Tp125 (880 and 88070 Drop Test)\TP125 Report First Cut.doc

AEA TECHNOLOGY QSA INC. Burlington, Massachusetts

Test Plan 125 Report March 2003 Page 11 of 18

When the test unit was dropped, the unit fell as anticipated in the test plan. The polyurethane jacket and stainless steel canister deflected inward from the impact. The F.C.B.A. dented the side of the #88021 rear plate and the G-10 shaft contained within the button assembly shattered upon impact. Unfortunately due to the severe deflection of the components, the back of the F.C.B.A. hit the lock slide forcing it through the selector ring. The unit failed the test. See figure 9 and 10 for visual results. All testing was stopped at this time. Moreover, the Puncture Test was not performed.

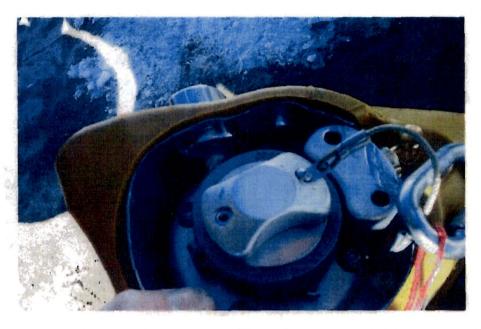


Figure 9

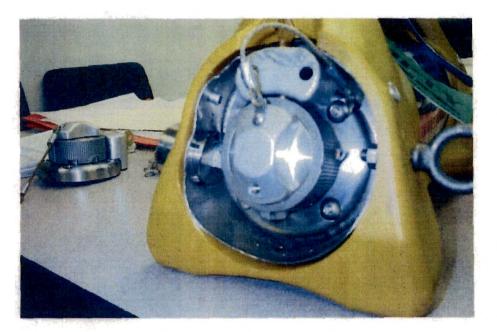


Figure 10

Section 6. Analysis, Summary, and Conclusions

Section 6.1 Analysis of testing not performed

Thermal Analysis

Because of the detailed assessment contained in TP108 a full weight "lead" dummy unit was used for this testing. Also, the melting temperature for all other materials of the internal support structure, rear plate assembly and source assembly is above the thermal test temperature of 800°C.

Moreover, the load condition for the thermal test is for the internal structure to support the static weight of the shield in suspension. The dynamic impact nature of the drop tests can subject the structure to a force over 100 times the static weight of the shield. This means the strength of the materials used in the structure would need to decrease by two orders of magnitude or to about 1% of their strength at room temperature. The 30-minute thermal test is not long enough for significant creep deformation to occur in the structure.

Puncture Test Analysis

This testing was performed on TP108. The testing passed when no damage occurred to the units. Therefore, testing was not performed on the Lock Mount Assembly. Also, the Lock Mount sits below the surface (with or without the jacket) of the radiographic camera and therefore would not be compromised. Moreover, the Lock Cover that is attached to the Rear Plate Assembly aids in the protection of the Lock Mount Assembly.

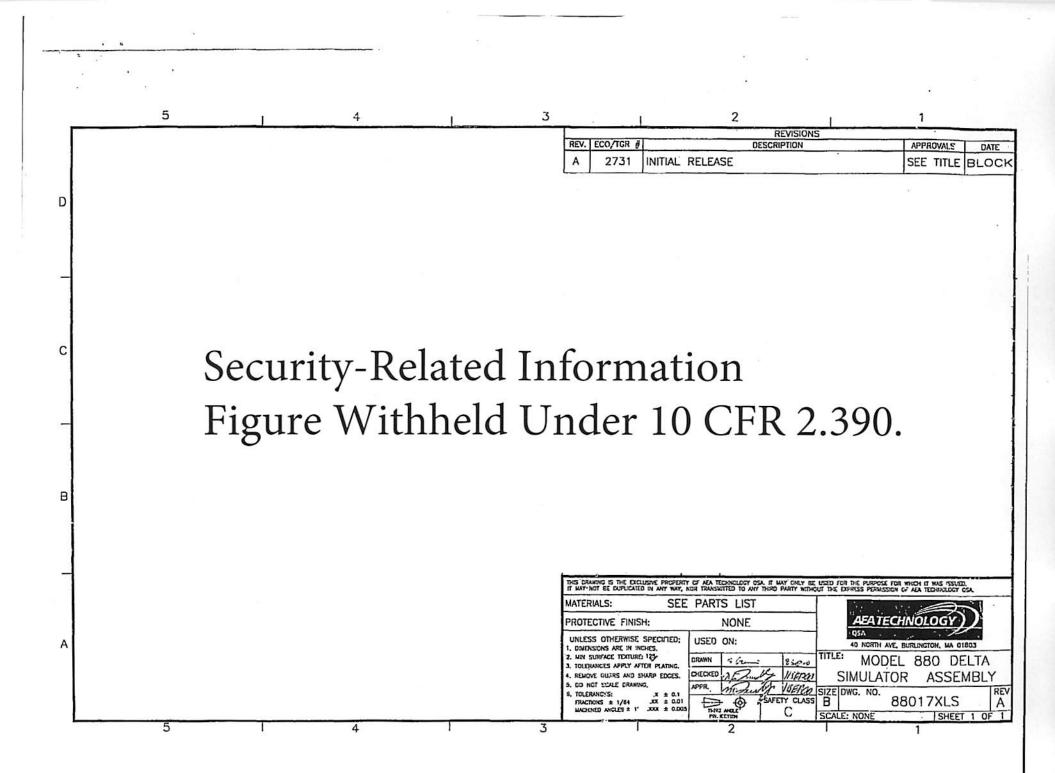
Vertical Shock Test Analysis

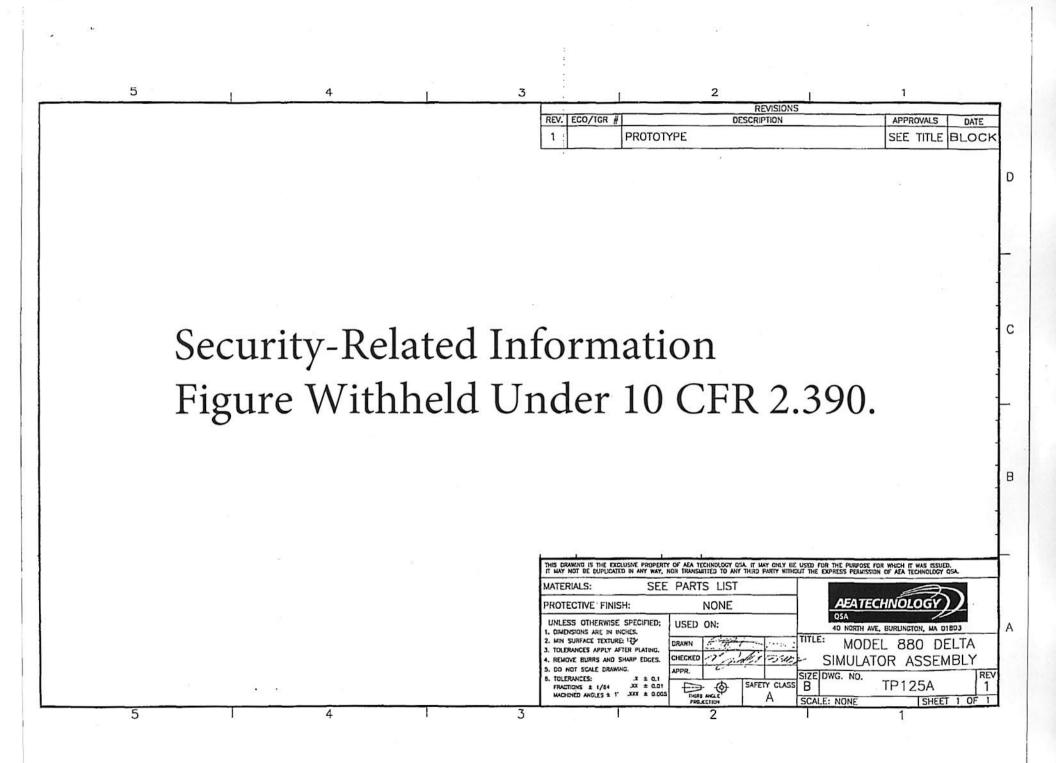
The vertical shock testing that was performed on TP115 for the model 880 unit showed no damage. The device functioned properly after having undergone a complete functional test. Therefore, vertical shock testing was not performed on this test unit.

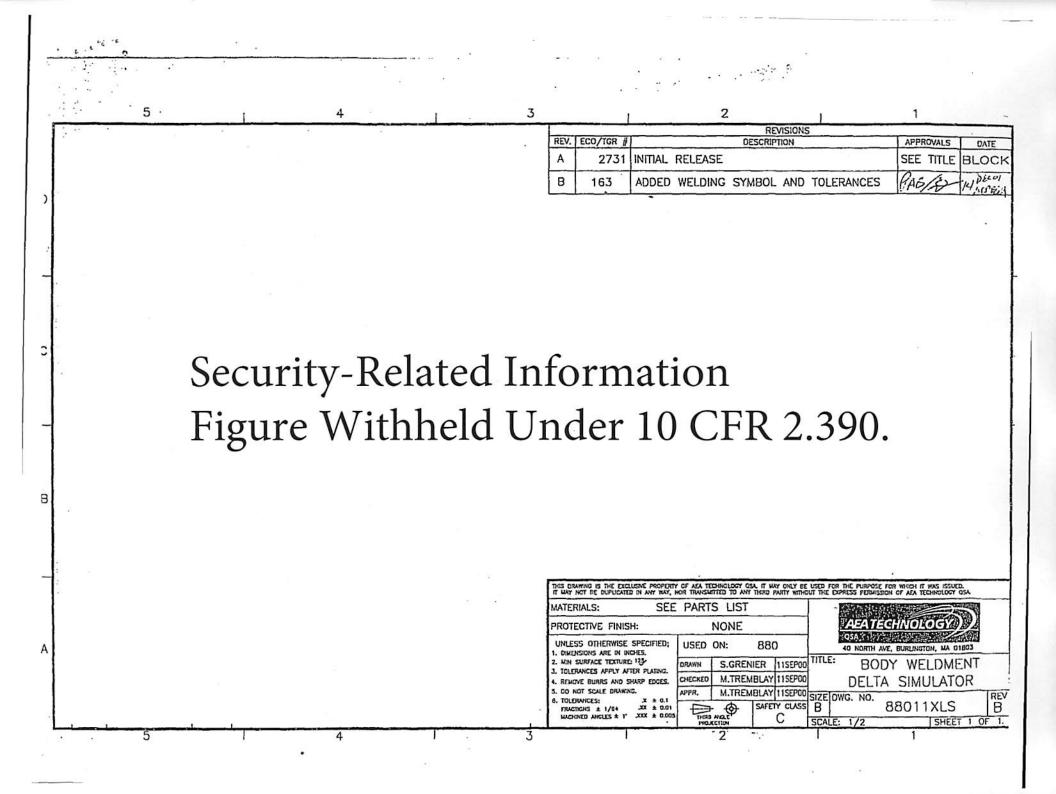
Section 6.2 Summary and Conclusion

The Lock Mount Assembly with its addition of a stainless steel sleeve performed very well. The Lock Mount was also environmentally tested (see Technical Report #40) and performed superior. The design of the lock mount can be modified easily by enlarging its corbin lock retaining hole to accept the stainless sleeve. Moreover, the sleeve will be secured in place from the back with a 8-32 stainless set screw and a removable thread lock material.

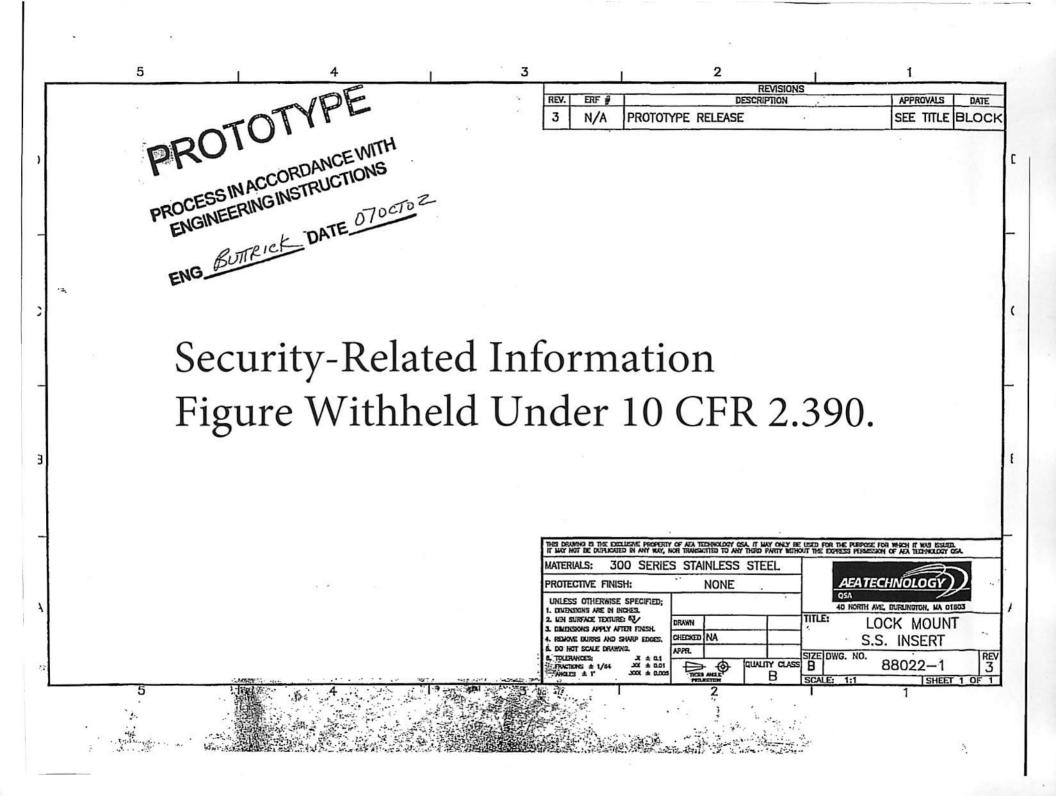
The F.C.B.A. button assembly did pass the Horizontal Shock, and Penetration Test, but failed at the 9m (30ft.) Drop test. The G-10 fiberglass shaft reacted as designed, which shattered upon impact. As stated in the section 5.4, because of the severe force that was distributed through the F.C.B.A. stainless steel housing the lock slide was forced through the side of the selector ring.


From the test data, and the analysis contained within this report, we draw the following conclusions about the Model 880 (as tested):


- 1. The lock mount and F.C.B.A. can withstand the *Normal Conditions of Transport* and *Accidental Drop Test* situations.
- 2. The lock mount can withstand the *Hypothetical Conditions of Transport*.

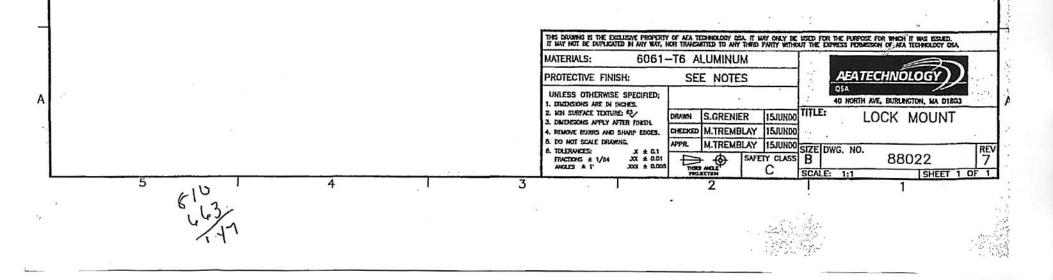

Test Plan 125 Report March 2003 Page 13 of 18

Section 7. APPENDIX A – DRAWINGS


K:\Test Plans & Reports\Tp125 (880 and 88070 Drop Test)\TP125 Report First Cut.doc

PROTOTNPE PROTOTNE PROTOTNE PROTOTNE PROTOTNE () PROTOTNE () PROTOTNE () PROTOTNE () () () () () () () () () () () () ()	J5	REV. ERF ∯ 5 AD	DED ITEMS 17 AND		SEE TITLE BLOCK
PROTOTIVICE WITH PROCESSINACCONDANCE WITH PROCESSINACCONDANCE MUCHONS ENGINEERING INSTRUCTIONS ENGINEERING INSTRUCTIONS ENGINEERING INSTRUCTIONS ENGINEERING INSTRUCTIONS					D
Security-Relat	ted Inf	forma	tion		C
Figure Withh	eld Ur	nder 1	0 CFR	2.390).
					В
		THIS DRUMING IS THE DICILISME	PROPERT OF ALA TELENOLDCY OSA. IT	WAY CHAY BE USED FOR THE FURPOSE	FOR WHICH IT WAS ISSUED.
		MATERIALS:	SEE PARTS LIST		2
3		PROTECTIVE FINISH: UNLESS OTHERWISE SPEC	NONE NFIED: 88	QSA	CHNOLOGY
		1. DIMENSIONS ARE IN INCHES. 2. MIN SURFACE TEXTURE 63/ 3. DIMENSIONS APPLY AFTER FIN 4. REMOVE BURRS AND SHARP		20JULOO TITLE: F	REAR PLATE SSEMBLY
		5. DO NOT SCALE DRAWING. 6. TOLERANCES: X FRUCTIONS ± 1/64 XX	APPR. M.TREMBLAY	A	88020 REV SHEET 1 OF 1
5 4	3	1	2		1

ESS IN ACCORDANCE WITH JONS APP DOESN


D

F

	4	2	1	
		REVISIONS		
REV.	ECO/TGR #	DESCRIPTION	APPROVALS	DATE .
Α	2701	INITIAL RELEASE	SEE TITLE	BLOCK
В	2812	CHANGE PLATING NOTES, ADDED CHAMFERS	N.,	
6		HOLE WAS .858, NOW .880 +.000/003	X	
7	(a)	ADDED 8-32 THREADED HOLE		.he

Security-Related Information Figure Withheld Under 10 CFR 2.390.

3

		REVISIONS		• • •
.V.	ECO/TGR #	DESCRIPTION	APPROVALS	DATE.
		PROTOTYPE RELEASE	SEE TITLE	BLOCK

行行中的现象 网络多边发动的现在分词 化

Security-Related Information Figure Withheld Under 10 CFR 2.390.

S DRAWING IS THE EXCLUSIVE PROPERT MAY NOT BE DUPLICATED IN ANY WAY,	Y OF AEA TECHNOLOGY QSA. IT MAY ON NOR TRANSMITTED TO ANY THIRD PARTY	Y BE USED FOR THE PURPOSE FOR WHICH IT WAS ISSUED. WITHOUT THE EXPRESS PERMISSION OF AEA TECHNOLOGY QSA.
ITERIALS: SPE	CIFICATION #3	
QTECTIVE FINISH:	NONE	AEATECHNOLOGY)
NLESS OTHERWISE SPECIFIED; DIMENSIONS ARE IN INCHES.	USED ON: 880	QSA 40 NORTH AVE, BURLINGTON, MA 01803
MIN SURFACE TEXTURE: 125 TOLERANCES APPLY AFTER PLATING.	DRAWN	TITLE: 8-32 X 3/16 LONG
REMOVE BURRS AND SHARP EDGES.	CHECKED	DOG PT. SET SCREW
DO NOT SCALE DRAWING. TOLERANCES: .X \pm 0.1 FRACTIONS \pm 1/64 .XX \pm 0.01	APPR. SAFETY C	A SCR225 1

, s

FORM E001 rev A

¢.

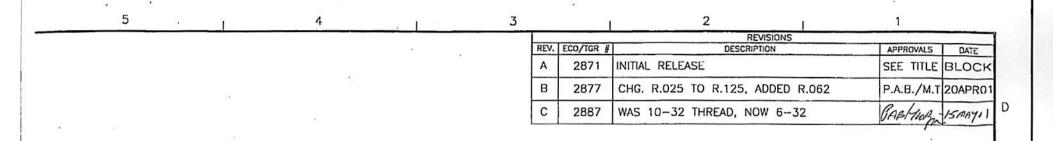
Part No.: 88070

С

Title: _____FOOT CONTROL BUTTON ASSY.

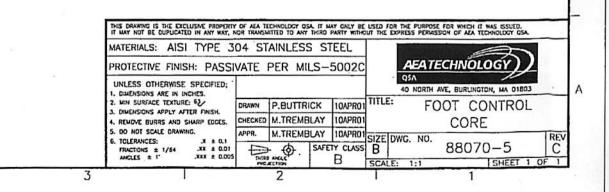
Rev:

Page 1 of 1

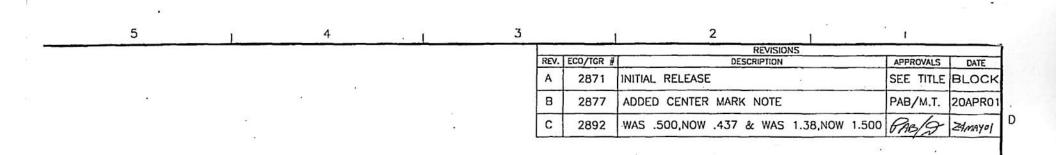

Rev	ERF	Date	Ckd.	Appvd.	Rev	ECO	Date	Ckd.	Appvd.	Rev	ECO	Date	Ckd.	Appvd.
A	2871	6APR01	PAB	MT										1
В	15	25Jun01	RLM	PAB										· · · · · · · · · · · · · · · · · · ·
С	27	11JUL01	PAB	S										†
										r				

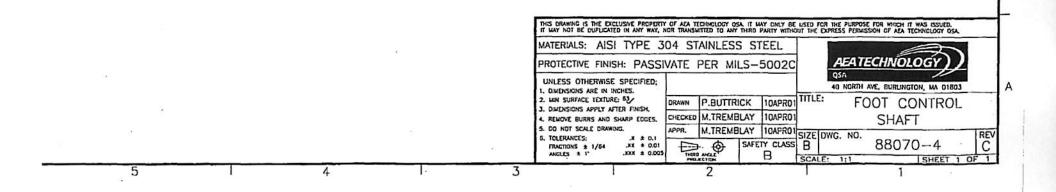
Item	Qty	P /N	Description
1	0	A88070	FOOT CONTROL BUTTON ASSEMBLY
2	1	B88070-1	FOOT CONTROL SLEEVE
3	1	B88070-2	FOOT CONTROL END
4	1	A88070-3	FOOT CONTROL KNOB
5	1	B88070-4	FOOT CONTROL SHAFT
6	1	B88070-5	FOOT CONTROL CORE
7	4	SCR210	#6-32 SOCKET HEAD CAP SCREW 3/8" LONG
8	1	SPR040	SPRING, 3/8" LONG X .48" O.D. (61 lbs./in.)
9	1	SPR041	SPRING, 3/4" LONG X .48" O.D. (19 lbs./in.)
10	1	BAG003	7" x 9" zip lock bag
11	1	INST 02	Instruction Sheet - Foot Control Button
12	1	TOL009	7/64 Hex Key
)- 			
	·		
		· · · · · · · · · · · · · · · · · · ·	
		· · · · · · · · · · · · · · · · · · ·	
		· · · · · · · · · · · · · · · · · · ·	
}			
		· · · · · · · · · · · · · · · · · · ·	ayaayaa ahaa ahaa ahaa ahaa ahaa ahaa a
[_ '		
	Į		
[L	

		REVISIONS		
EV.	ERF #	DESCRIPTION	APPROVALS	DATE
3	27	CHANGED SPRINGS / ADDED BALLOONS	RAB/9	USULCI


07-FEB-03 9:45 AM BAB

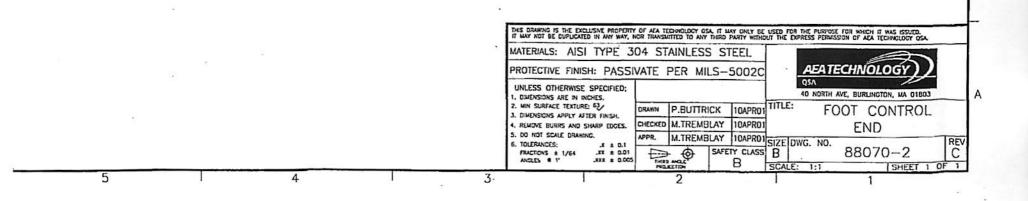
IS DRAWING IS THE EXCLUSIVE PROPERTY MAY NOT BE DUPLICATED IN ANY WAY, N								
ATERIALS: AISI TYPE 3	04 ST	AINLESS	S ST	EEL			3	
ROTECTIVE FINISH:		NONE	+			AEATECHNOLOG	GY)	
INLESS OTHERWISE SPECIFIED; DIMENSIONS ARE IN INCHES.						40 NORTH AVE, BURLINGTON	N, MA 01803	
MIN SURFACE TEXTURE: 63 DIMENSIONS APPLY AFTER FINISH.	DRAWN	P.BUTTRI	СК	10APR01	TITLE:	FOOT CON	NTROL	
REMOVE BURRS AND SHARP EDGES.	CHECKED	M.TREM8	(CACING NO. 1)	10APR01		BUTTON ASS	EMBLY	
DO NOT SCALE DRAWING. TOLERANCES: .X ± 0.1	APPR.	M.TREMB	LAY	10APR01	SIZED	NG. NO. 0007		REV
FRACTIONS ± 1/64 .XX ± 0.01		- 🔶	SAFE	TY CLASS	A	8807	0	B
ANGLES ± 1" .XXX ± 0.005		ECTION		В	SCALE:	1.1	SHEFT 1 OF	- 1

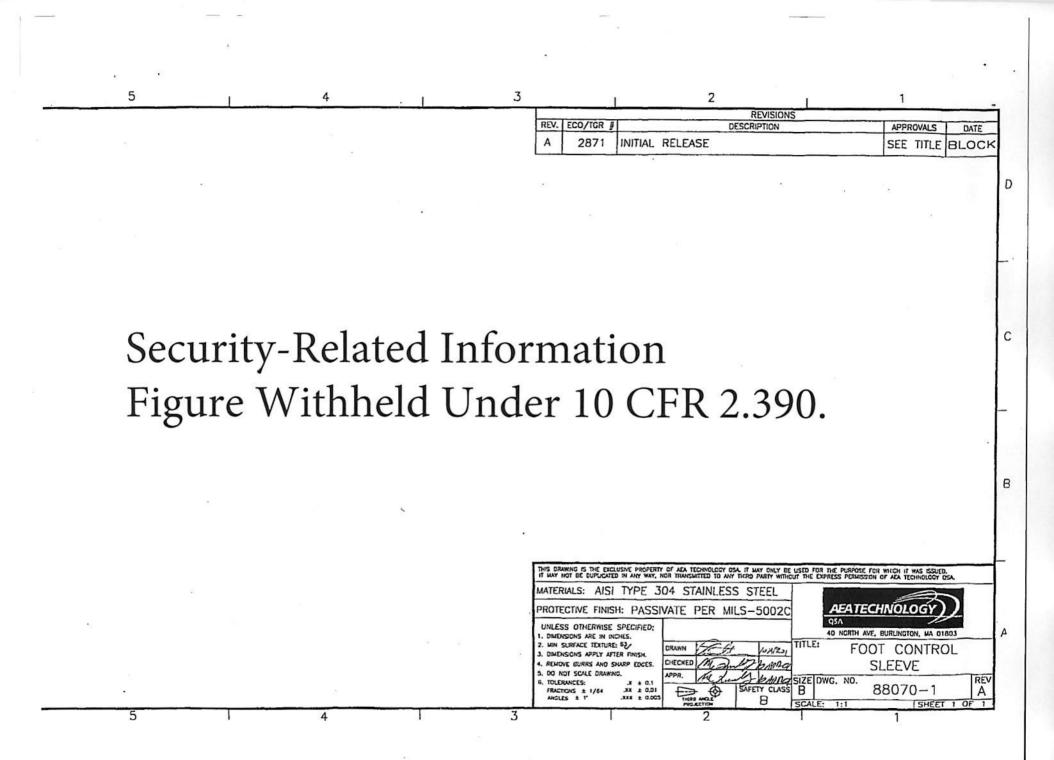

5


4

C

B




B

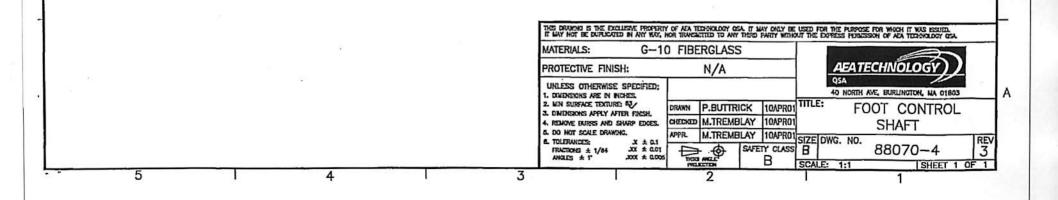
5	 4	- 1	3		1	2	1 .		
				REV.	ECO/TGR #	REVISIONS DESCRIPTION	APPROVALS	DATE	
				A		INITIAL RELEASE	SEE TITLE		
				в	2885	PICTORIAL DRAWING CHANGE	PAB/MT	8MAY01	
5 8				С	5	CHANGED TOERANCES	BABKEM	2650201	D

С

B

		REVISIONS		
REV.	ECO/TGR #	DESCRIPTION	APPROVALS	DATE
Α	2871	INITIAL RELEASE	SEE TITLE	BLOCK
В	2877	CHG. R.025 TO R.063, ADDED DRILL NOTE	78/0	ZOARO

THIS DRAWING IS THE EXCLUSIVE PROPERTY IT MAY NOT BE DUPLICATED IN ANY WAY, N	OF AEA TE	CHNOLOGY QS	A, IT M THIRD I	AY ONLY BE PARTY WITHO	USED FO	OR THE	PURPOSE PERMISS	FOR WH	AEA TEC	HNOLOGY Q	5A.	
MATERIALS: AISI TYPE 3	04 ST						3	1				
PROTECTIVE FINISH: PASSI	5002C	*		AEATI 25A	ECHN	OLO	GY)					
UNLESS OTHERWISE SPECIFIED; 1. DIMENSIONS ARE IN INCHES.						40	NORTH /	AVE, BU	RLINGTO	N, MA 018	803	
2. MIN SURFACE TEXTURE: 63/ 3. DIMENSIONS APPLY AFTER FINISH.	DRAWN	P.BUTTRI	СК	10APR01	TITLE	:	FC	OT	CO	NTRC)L	
4. REMOVE BURRS AND SHARP EDGES.	CHECKED	M.TREMB		10APR01				KN	IOB			
5. DO NOT SCALE DRAWING. 6. TOLERANCES: .X ± 0.1	APPR.	M.TREMB	LAY	10APR01	SIZE	DWG.	NO.					REV
FRACTIONS ± 1/64 .XX ± 0.01		- 🔶	SAFE	TY CLASS	A			88	0/0	70-3		В
ANGLES ± 1' .XXX ± 0.005		THIRD ANGLE		В	SCAL	.E: •	1:1			SHEET	1 0	F 1


ø		•• : = 12		520						3					a									-	-
÷			5	1		1			4				•	3			L		2				1		
															REV.	ECO/TGR #	1		DI	REVISIO	ONS		APPROVALS	DATE	-
															A	2871	INITIAL	RELEAS	Ε.				SEE TITLE	BLOCH	K
															в	2877	ADDED	CENTER	R MAR	K NOTE			PAB/M.T.	20APRO	11
1															С	2892	WAS .	500,NOW	.437	& WAS	1.38,NO	W 1.500			D
															3	N/A	PROTO	TYPE PA	RT		•				1
-		20																		F)					-
:																orn									с
							8			it	hł	ne	ld	U.	n	der	:1	0 0	CF	R	2.3	90	•		-
1		P	R	D	ГО		ΥP	E	*														3).		в
		-	ICINIC		ACCO NG INS	TPI	ICTIC)NS		۰.													э *		
		ENG	Bi	TTR	ick_	DAT	E <u>ZC</u>	SE	Poz						THIS DRA IT MAY N MATER	(MCS-55)	12/21	Ó FIBER	GLASS				WHICH IT WAS ISSUED	asu -	ſ
	-				PAI						>EE\$	1.29	Д		UNLES 1. DIMEN 2. MIN S 3. DIMEN 4. REMON 5. DO NO 6. TOLER FRACT	CTIVE FINIS OTHERWISE HONS ARE IN IN MARACE TEXTURE HONS APPLY AFT E BURRS AND S T SCALE DRAWN WICES: HNG ± 1/64	SPECIFIED; CHES. 2 43/ TER FINISH. HARP EDGES.	DRAWN P CHECKED M APPR. M	TREMB	LAY 10APP	101 101 101 101 101 101 101	5A NORTH AVE, 1 FOOT S . NO. 8	BURLINGTON, KA G FURLINGTON, KA G FURLINGTON, KA G HAFT 8070-4		
	_		5															and the second se				1.1	SHEE	_ UF I	

\$******

5	4	3			2	1		
					REVISIONS			
			REV.	ECO/TGR #	DESCRIPTION	APPROVALS	DATE	
			Α	2871	INITIAL RELEASE	SEE TITLE	BLOCK	
			В	2877	ADDED CENTER MARK NOTE	PAB/M.T.	20APR01	
			С	2892	WAS .500,NOW .437 & WAS 1.38,NOW 1.500			D
			3	N/A	PROTOTYPE PART			

C

В

Section 8. APPENDIX B – CALCULATIONS

K:\Test Plans & Reports\Tp125 (880 and 88070 Drop Test)\TP125 Report First Cut.doc

AEA Technology QSA, Inc.

. د اس

D F.C.B.A.

TEST PLAN 125B September 2002

۱

Horizontal Shock Test ISO 3999-1							
Test Specimen:							
Drawing No. 88017X25/TPIZSA Rev. B Serial Num	ber: <u>12</u>						
Test weight 49 2B5 Scale Used Fisc	DWM IU TE MAY 28 2003						
Test Setup:							
Set up per: ISO 3999-1 (6.4.6.1) horizontal shock test procedure.							
Pictures: K: TEST PLAN TPIZSA							
Notes:							
Horizontal Test Bar:							
Drawing No. <u>710333</u> Sool Rev. <u>A</u> Location:	ENGR TEST CAPE						
Test Period:	,						
Date & time: <u>13FEB03</u> Z: 30 PM							
Specimen Damage:	······································						
G-10 SHAFT BROKE AFTER WITH HIT	FINISHED						
G-10 SHAFT BROKE AFTER WITH HIT TEST OF 20 HITS. F.C.B.A. DID NO	T WORK AT						
COMPLETION. UNIT (880) WAS NOT DAM	AFED, WORKED						
FING. PASSED TEST. Post test assessment:							
·							
Recorded by: 1 Date: 14 FE							
Witnessed by: Charles Annual Date: 13FR	<u>803</u>						
	603						
Q.A. reviewed by: 1 hug the Date: t a fel							

.

Lock MOUNT

AEA Technology QSA, Inc.	TEST PLAN 125B							
	September 2002							
Horizontal Shock Test ISO 3999-1								
Test Specimen:								
Drawing No. 8817x15/779125A Rev. 1	3Serial Number:7							
Test weight 49185 . Scale	Used Five Dumin							
	COL. DATE MAYZ8 2003							
Test Setup:								
Set up per: ISO 3999-1 (6.4.6.1) horizontal shock test procedure.								
Pictures: K. TEST PLAN TPIZSA								
Notes:								
Horizontal Test Bar:								
Drawing No. <u>710333</u> SNO(Rev. A	Location: Ewgl. STock CAGE							
Test Period:	·····							
Date & time: <u>IZFEROZ</u> ZFM								
Specimen Damage:								
ALUMINUM LOCK MOWNT W/S 20 TIMES, FRONT OF LOCK MO FUNCTIONED PROPERTY, KEY PASSED TEST.	ACTUATION WAS SMOOTH.							
Post test assessment:								
Recorded by:	Date: 12 = PAZ							
Witnessed by:	Date: $13 = 6.53$ Date: $12 = 6.53$							
Regulatory reviewed by: K. A. John	Date: /3 Feb 03							
Q.A. reviewed by: 1 ALO UNT	Date: 13 febou							

···-··

.

TEST PLAN 125B September 2002

Penetration Te 10CRF71	st
Test Specimen:	
Drawing No. <u>88017XLS/TP1ZSA</u> Rev. F	Serial Number: 12
Test weight <u>19 285</u> . Scale	CAL DATE 28 MAY 03
Test Setup:	•
Set up per: 10CR71 (71.71(10)) penetration test procedur	re.
Pictures: K: TEST PLAN TPIZS	
Notes:	
Drop surface:	
Drawing No. <u><i>TIOIZ9</i></u> SNOJ Rev. <u>1</u>	Location: Ing. /SHIPPING
Test Period:	
Date & time: <u>17 FEB03</u> 9.30 Am	
Specimen Damage:	
UPON DROPPING BAR ON THE SHAFT BROKE, THE E.C.B.A. DIS-ASSEMBLED TO ACTUATE T AND LOCK SLIDE, UNIT WORKED Post test assessment:	HE SELECTOR RING
Recorded by: PS	Date: 17,FEB03
Witnessed by: Jab	Date: 17FFR02
Regulatory reviewed by: A. Grande	Date: 171=653
Q.A. reviewed by: 1) and man	Date: 17/2003

Page 17

TEST PLAN 125B September 2002

Free Drop Test 10CRF71
Test Specimen:
Drawing No. <u>88017 XLS TP125A</u> Rev. <u>B</u> Serial Number: <u>12</u>
Test weight <u>49185</u> . Scale Used <u>FWC</u> DWM <u>TU</u> CAL. DATE 28 MAYO 3
Test Setup:
Set up per: 10CFR71 (71.73(1)) free drop test procedure.
Pictures: K: TEST PLAN TPIZEB
Notes: <u>SUSPENDED UNIT BY EYEHOOFS FROM A CRAWE UNIT</u> <u>VIDED AND DILITAL CAMERAS WERE USED TO DOCUMENT</u> DLOP.
Drop surface:
Drawing No. <u>TIOZLI SNOI</u> Rev. <u>A</u> Location: <u>GROVELADD</u> , <u>MA</u> .
Test Period:
Date & time: 07 mAROB 9:42 AM
Specimen Damage:
UPON HITTING THE TEST PAD THE F.C.B.A. 'S G-10 SHAFT BROKE AS DESIGNED - UNFORTUNATELY THE F.C.B.A.'S S.S. HOUSING ALSO CAME IN CONTACT WITH THE SELFCEDE BOCK SLIDE FORCING IT THROUGH THE
Post test assessment: SELECTOR RING.
IF THE REAR MOST COMPONENT (F.C.B.A.) WAS ALSO MADE OF G-10 MATERIAL, THAN THERE WOULD RE A CHANCE OF THE F.C.B.A. WOULD PASS THE TEST. Recorded by: PRITE Witnessed by: Mundul Printle Date: 17 MARO3
Regulatory reviewed by: The Date: 18 Marzo
Q.A. reviewed by: Breaucher Date: 19 March 03

Page 15

Puncture Test 10CRF71											
Test Specimen:											
Drawing No. <u>88017XLS / TPIZEA</u> Rev. A	Serial Number: /Z										
Test weight <u>49 LBS</u> Scale Us CAL	ed Fac SwmTE SATE 28 MAYOZ										
Test Setup:	····										
Set up per: 10CR71 (71.73(3)) puncture test procedure and a	ssessed configuration.										
Pictures: N/A											
Notes (assessed configuration):											
Drop surface:											
Drawing No. <u>710241 SNO1</u> Rev. <u>A</u>	Location: GROVELAND, MA.										
Test Period:											
Date & time: 07mARD 3 10:00 AM											
Specimen Damage:											
NOT PERFORMED, UNIT	FALLEN DA										
NOT PERFORMED. UNIT FREE DROF TEST. ALL TES	TING STOPPED										
AT THIS TIME											
Post test assessment:											
Recorded by:	ate: 14/m 2 0 2										
	ate: 17/hALA3										
	ate: 19 Mar 03										
Witnessed by: D. Regulatory reviewed by: D.	ate: 18 Marts										

4

Page 16

TEST PLAN 125B September 2002

Final Test Assessment										
Test Specimen:										
Serial Number(s): $\frac{8017xL}{7xL} \frac{5}{77125} \frac{5}{8017}$										
Foot Control Button evaluation:										
Spring (611b.): Spring (191b.): Stainless steel components: F.C.B.A. working condition after Horizontal shock. YES *										
Foot Control Button Assembly evaluation:										
Is the F.C.B.A. in working condition? THE ASSEMBLIES G-10 SHAFT BROKE ON IMBACT. THE F.C.B.A. HOUSING CAME IN CONTACT W/THE LOCK SLIDE, FORCING IT THROUGH THE SELECTOR RING										
Comments: * THE G-10 SHAFT WAS REPLACED AND THE ASSEMBLY WORKED FINE.										
THE ASSEMBLY NOFRED FINE										
THE F.C.B.A. FAILED THE 9m FREE DROP, THE PUNCTURE TEST WAS NOT PERFORMED.										
Engineering Review by: Thus the Date: C7 ADD03										
SME Review by: Date: Date: Regulatory Review by: Date: 3 Apres 3										
Q.A. Review by: (77, 2000) X Date: 4 Quinlog										

Final Test Assessment
Test Specimen:
Serial Number(s): $88017K \le$
Lock Mount Assembly evaluation:
Aluminum housing: $\underline{Devie} AND \underline{ScRAPED}(ok)$ Stainless steel insert: $\underline{NO} \underline{DAMAEE}$ Corbin lock: $\underline{NO} \underline{DAMAEE}$ Lock Mount Assembly working condition after Horizontal shock. \underline{YEF}
Lock Mount evaluation:
Is the lock mount assembly in working condition?
THE LOCK MOUNT ASSY. STILL WORKS VERY SMOOTHLY.
Comments:
REFER TO TECHNICAL REPORT # 40 FOR ADDITIONAL TEST OF THE LOCK MOUTOT ASSY. WHICH ALSO FAVORS THE S.S. INSERT DESIGN.
Engineering Review by: 150 WT Date: 07AMO3
SME Review by: Date: Date: Regulatory Review by: Image: Im
Q.A. Review by: Denuels Date: 4 Gmil n3
Friday

AEA TECHNOLOGY QSA INC. Burlington, Massachusetts

Test Plan 125 Report March 2003 Page 16 of 18

Section 10. APPENDIX D – MANUFACTURING RECORDS

						Part No	88017XLS		Rev	· B	Page 1 o	f 1
	A	B ATTE	CHNOLOGY		דערר	Des	^{c:} 880 DELTA "	SIMULATO	R" ASSE	EMBLY		
ľ	QS,						"PBUTTEICH	3959203	3 Cka	"R.N	min 9 JA	20
					CARI	Safe Clas		NDIREC		Qty	· /	
	SPS	-E-1724-	·1Rev1				Serial/Lot Number(s): ZI					
ſ	OP#	Work Center	Operation	Part#	Rev	Lot or s/n	Reference Document	Tools	Ву	Date	Comments	
		•		\$ 1 2			<u>, , , , , , , , , , , , , , , , , , , </u>					
								•				
Ľ												
	010	Assy	Attach jacket	88041-1 88011XLS	C B	S/n II	B88017XLS	T10367 T10324	Da	9723	•.	
-				RIV093	Ā				PÆ	°03		
┝	020	Assy	Attach front plate	88030	- c		B88017XLS	Torque		9		
			Torque screws_1	SCR154	A			wrench S/n <i>(8</i> 2	PA2	9 100 3		
L			V								· · · · · · · · · · · · · · · · · · ·	
┝	030,	Assy	Attach rear plate	88020 SCR154	5 A	S/n <u>i/46</u>	B88017XLS	Torque wrench	Ð	Cy Trand	DA 568	
			Torque screws					S/n 182	Dav	JBN P3	V 0.5	
╞	040	Assy	Attach F.C.B.A.	88070	2		B88070			9.50 JA 23		
L									The.	J#53		<u>-</u>
	050	Assy	Label	88042-5 RIV003			B88017XLS		丸	9 5803		
- 	060	QC	Final inspection			Pass	B88017XLS		12	7 Feb 03		
╞						Fail X			(Ju			
F			-			RE-INSPECT						
┝						Accept	tebos					

• · ·

.

.

.

			Part No.: 88017XLS	Rev: A	Page 1 of 1
	EATECHNOLOGY)	ROUTE	Desc: 880 DELTA "SIMUL	ATOR" ASSEMBLY	•** <u>**********************************</u>
Q	A	CARD	Lalust	7DECOI CKd: Rolman	Mon 17 PECO
			Safety JANO WO	Qty:	······································
			Class: CDHA INDIR	FCT	1
SPS	S-E-1724-1Rev1			LECT	1

								· .	••	•	
_				· · ·					· [·]		¥
01	10	Assy	Attach jacket	88041-1 88011XLS RIV093	C A A	S/n	B88017XLS	T10367 T10324	DA	17 Dec. 21:	
02	20	Assy	Attach front plate Torque screws	88030 SCR154	B A		B88017XLS	Torque wrench S/n_182	PAK	17 0261	· · · · · · · · · · · · · · · · · · ·
03	30	Assy	Attach rear plate	88020 SCR154	B A	S/n <u>1146</u>	B88017XLS	Torque wrench S/n <u>182</u>	DAL	UTC DEC DEC	
04	10	Engr	Attach F.C.B.A.	88070	2	·	B88070		DAL	17 201	PA 14 NOU NOU
05	50	QC	Final inspection			Pass Fail	B88017XLS	Da	(Da)	1010a	· · ·
								· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
							· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·
						,					
			• • • • •			:	- .				

a ana a' an	AFA TECHNOLOGY	:			Dovine for	Test Plan	125 A	PAB NOT				Sheet 1 of 1	
	Inspection Instruction		Originator/I					Part No. 8801				Sheet 1 of 1	
	And Record					Dec. OI	Rev A			Supplier	A - PAI	- 187	ELOI
			QA Approva		<u> </u>	POULDI	СМС	PIL N/A	Eng. Approva	Date Tol	GRE	1.00	
	Item Description: Model 8					·····		·····					
	Characteristics	Tolerance	MTE	AQL		2	3	4	5	6		8	9
	General Visual	N/A	N/A	C/100%	01								
	Verify all Items Present Per Drawing	N/A	' N/A	C/100%	01								
	Verify Assembled per Drawing	N/A	N/A	C/100%							<u> </u>		
	Total Weight 50 Lbs Max.	N/A	Scale	C/100%	01								
	Funtional Test With Dummy Source	. N/A	N/A	C/100%	01								
	Verify Foot Control Button Assy Pt. # 88070 Installed	N/A	N/A	C/100%	01								
	Verify Foot Control Button Assy Functions Properly	N/A	N/A	C/100%	01								
	Less Name Plate & Source ID Tag	N/A	N/A	C/100%	91								
			• :									/	
	Comments		PO / WO i	#	INDIRECT								
			Traveler /	QCL #	NA								
			Lot / Seria	al #	21								
			Lot Qty.	·	1								
			Qty. Rej /	NĊR	O NA								
			Qty. Acc.										
			Insp / Dat	e	Du zo Deco								

0

5

		Part No.: 88011XLS	Rev: B A	Page 1 of 1
AEATECHNOLOGY	DOUTE	Desc: Body Weldment "Delta S	Simulator"	
QSA	ROUTE CARD		DECUI Ckd: R. W	mi 12 DEC 01
	CAND	Safety COLITIANO WO Class ATA INDIREC	CT Qty:	(
SPS-E-1724-3Rev1		Serial/Lot Number(s): 2		

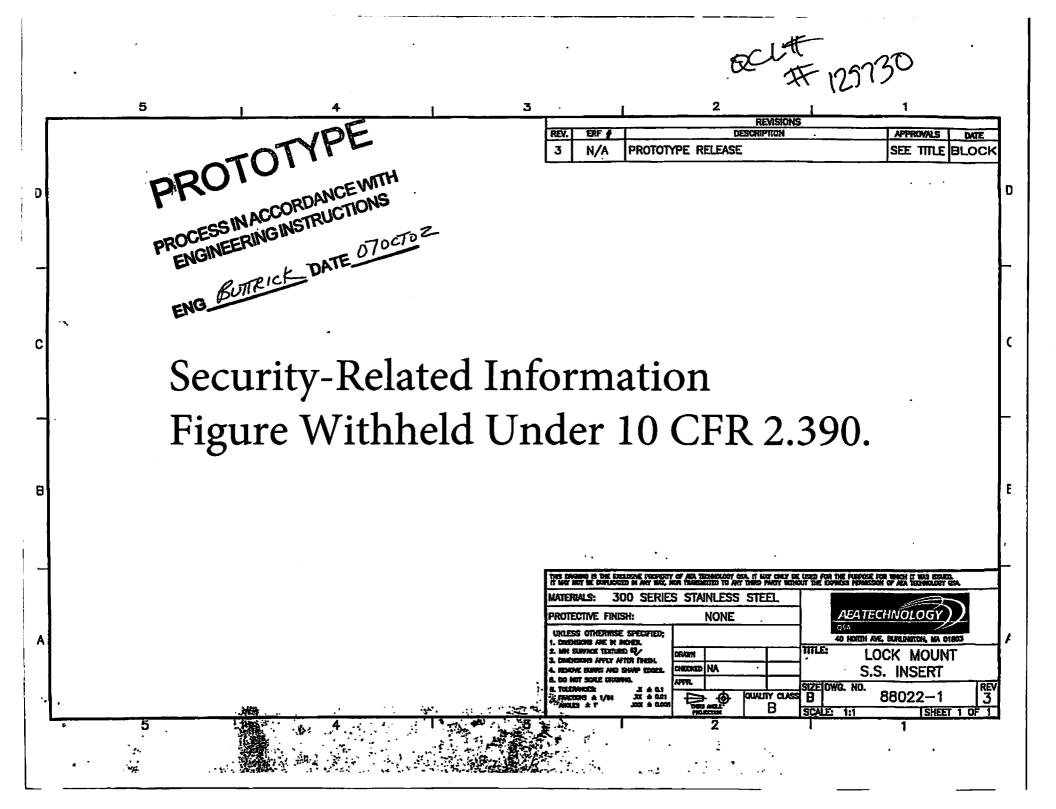
Op #	Work Center	Operation	Part #	Lot or S/N	Reference Documents/Rev	Tools	by	Date	Comments
010	Assy	Stamp S/N	88010	s/ <u>N_2/</u>	B88011XLS	· · · ·	DAL	12 DEC O	\
020	Assy	Assemble shields & End plates	88052-1 88010 88003	Lot# <u>0//7/</u> ~	B88011XLS /	/	reve	12 D.ec	0/
030	Weld	Tack Weld	88011XLS WEL003	Lot# <u>0/626</u> -2	B88011XLS	T10318 S/N <u>0ス</u>	ε .	12 Dec 61	
040	Weld	Weld	88011XLS WEL00 3	Lot# <u>0/026</u> -2	B88011XLS		Е. Р.	12 DeC 0 1	
050	QC	Inspect weld (VT)		Pass X Fail	B88011XLS	(.	De	147a 01	
060	Assy	Foam	FOM001		B88011XLS WI-P1712 SPS-P1712-1	T10329 S/N <u>N4</u>	A43	15 DEC 01	
070	A ssy QC	Inspect			B88011XLS	(B	17 Dec OI	

	AEATECHNOLOGY			·	$\overline{\mathbf{A}}$,					Sheet 1 of 1	n
	mapeenton man action		Originator/D		5-2 Y 11/1 7		Rev B	Part No. 8801		Supplier	- no k	7	18 DECOI
	And Record	-1.1	QA Approval		Jelf.	Mare of	см с	PIL 3	Eng. Approva	Date C	DG B	The second	1822-1
	Item Description: Body We Characteristics								<u></u>	· · · · · · · · · · · · · · · · · · ·	7		
		Tolerance		AQL		2	3	4	5	6		8	9
	General Visual	N/A	N/A	MJ / 1.0	01								
	Verify Assembled per Drawings Route Card Verification	N/A	· N/A	MJ / 1.0	01								
	1.75	+ .02 08	Micro Hite	MJ / 1.0	01								
	8.5	+/1	Micro Hite		01								
	Welded Per Dwg.	N/A	N/A	MJ/1.0	01								
	Stamp Serial # per Dwg.	N/A	N/A	MJ / 1.0	0		_						
	<u>ي</u> .												
· .	· · ·												
. ·	· · · · · · · · · · · · · · · · · · ·	·											
i	Comments		PO / WO #	•	INDIRECT				5				
			Traveler /	QCL #	NA				/				1
	~		Lot / Seria	l# ·	21				-				
-,			Lot Qty.	•	1								
			Qty. Rej / I	NCR	O NA								
			Qty. Acc.	-									
			Insp / Date	(Der Ber	/							

F-Q1807-1, rev. 0

IIR Page 1

:


FIRST ARTICLE REPORT Form F-Q1807-2

Supplier: MACHINE	SHOP	Part No.: 88022-/	P.O. /W.O. ,
T. TO I I	Mount INSERT	Qty. A	Qty./Insp. 2
Drawing No. 880	022-1	Rev. 3	^{CM:} B
Inspected by:	le Anna	Date: 18 Deco2	Lot/Ser.#
Drawing Dimension	Actual Dimension	M&TE Used	SN & Cal. Due Date
SLOT . 188	. 188-, 189	Caliper	#305 10-4-03
. 562	.565560	ý	<i> </i>
,755±.003	,756758	Bore Gage	#111 4-5-03
.875 +.000	.875	Caliper	305 10-4.03
.165	, 164 - , 166	MICRO HITE	271 4-2-03
, 125 Ø Thru	125	pin gage	292 4-2-03
.35	.345 /.350	MILLO HITE	270 4-2-03
.89	.892 / .896		
.93	.933	V V	VV
.16	.158 .160	Caliper	305 10-4-03
,31 Red	.31 Rad	Pin gage	293 4-2-03
300 Serves S.S.	<u>s,s</u>	Visual Imagnot	NA
	Results:	Accented	Rejected
Commentar	Kesuits:	Accepted	Kejecieu
Comments:			
	· · · · · · · · · · · · · · · · · · ·		

QC Forward this inspection report along with the samples to Engineering for review and approval. Retain a copy of the report in the file until approved.

Approved X	Not Approved		
Talk		Date:	OG JANO 3
Engineering			

Engineering return approved report to QC for records retention.

· • •

۲ ۲

٠,

1.0

FIRST ARTICLE REPORT Form F-Q1807-2

		1					
Supplier: A.E.A MA	CHINE Shop	Part No.: 58070-4	P.O. /W.O. Indivect				
Item Description: Fool	Controlshaft	Qty. 10	Qty./Insp. 5				
Drawing No.		Rev. 3	см: В				
Inspected by: Norgie	Benitez	Date: 010ct 02	Lot/Ser.# N/A				
Drawing Dimension	Actual Dimension	M&TE Used	SN & Cal. Due Date				
General Visual	Conform	Visual	N/A				
1.500	1.500	CALIPER	340-8/8/03				
R.030	.030	RADIUS GAGE	QC-10-4/1/03				
Ф.490	.490	Caliper	340-8/8/03				
.60°	. 60°	OPTICAL COMP.	340-8/8/03				
.437	. 437	Coliper					
.500	- 500	<u> </u>	· /				
.156	. 156	. +	\downarrow				
R. 180 (2.PLS)	R.187	Radius Gage	QC-10- 4/1/03				
.115	.115	Caliper	340- 8/8-03				
.230	.230	Caliper	3410-8/8-03				
.360	.360	Caliper	340-8/8-03				
	Results:	Accepted	Rejected X				
Comments:		(⁴)					
QC Forward this inspection report along with the samples to Engineering for review and approval. Retain a copy of the report in the file until approved.							
Approved X	Not Approved	1					
Date: 03 SCT 02							
Enginee	ring return approved re	eport to QC for records	retention.				
-Q1807-2, rev. 2	Page 1 of 1						

	5	4	. 3			2	1	2.2
ſ						REVISIONS		
			Ļ	REV.	ECO/TGR #	DESCRIPTION	APPROVALS	DATE
				Α	2871	INITIAL RELEASE	SEE TITLE	BLOCK
		08.0 10		В	2877	ADDED CENTER MARK NOTE	PAB/M.T.	20APR01
'				С	2892	WAS .500,NOW .437 & WAS 1.38,NOW 1.500		
1				3	N/A	PROTOTYPE PART		

Security-Related Information Figure Withheld Under 10 CFR 2.390. PROTOTYPE

С

В

PROCESS IN ACCORDANCE ENGINEERING INSTRUCTIO	WITH DNS							
ENG BUTTRICK DATE ZO	SEPOZ		THIS DRAWING IS THE EXCLUSIVE PROP IT WAY NOT BE DUPLICATED IN ANY WA MATERIALS: G-	TO FIBERGLAS		used for the purpose in NT The Dopress permissio	DR WHICH IT WAS ESSUED. H OF ARA TILDHIOLOGY GGA.	
I'RETURN PARTS T	O ENGINEERING		PROTECTIVE FINISH: UNLESS OTHERWISE SPECIFIED 1. DURDISONS ARE N INCHES. 2. WIN SUFFACE TEXTURE: 42/ 3. DINENSONS APPLY ATTER FINISH. 4. REMOVE BURRS AND SHARP EDGES 5. DO NOT SCALE RAWING, 6. TOLERARCES: X ± 0. FRACTIONS ± 1/64 JX ± 0. AVGLS ± 1' J00 ± 0.	DRAWN P.BUTTI	BLAY 10APRO1 BLAY 10APRO1 SAFETY CLASS	QSA 40 NORTH AME TITLE: FOC SIZEIDWG, NO.	E BURLINGTON, NA DIBOJ DT CONTROL SHAFT 88070-4 [SHEET 1 0	REV 3 DF 1
5 1	4	3	1	2		1	1	
		··					Ē	

Test Plan 125 Report March 2003 Page 17 of 18

Section 11. APPENDIX E – TECHNICAL REPORTS

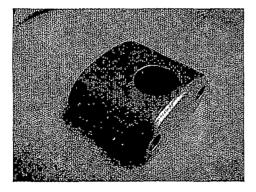
K:\Test Plans & Reports\Tp125 (880 and 88070 Drop Test)\TP125 Report First Cut.doc

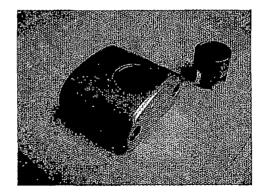
Technical Report No. 40 Page 1 of 4

AEA TECHNOLOGY QSA, Inc. Engineering Department Technical Report

PO PUD	
1 1 1 A	
Prepared by: a Contraction Date: 1/JUNOZ	-
Checked by: Marchan Date: 11-UNOZ	
Engineering Approval: Manual Date: 1/301102	

1.0 PURPOSE


The purpose of the report is to set forth results on testing of the #88022 Lock Mount assembly, then propose and test new designs as to arrive at one that will not experience operating problems in the future.

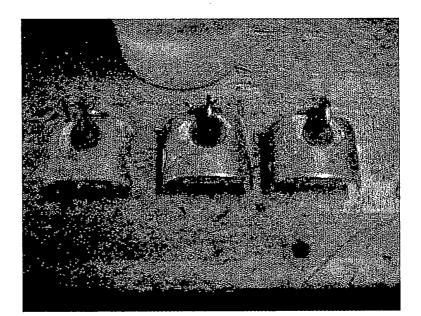

2.0 SCOPE

We have received customer concerns (see CR 151, CR177) about the aluminum #88022 lock mount and its brass #66001-11 lock plunger sticking (not unlocking) after being subjected to several days of marine environment and dark room exposure. Other concerns of mud and water submersion to the lock mount assembly during "normal" daily operations have been made in reference to faulty lock operations. Moreover, corrosion between the aluminum lock mount and the brass lock plunger will be evaluated when tested.

3.0 METHODS

The test method employed was performed on three different designs. The first design is the part as currently manufactured. The second design has a stainless steel sleeve inserted into the existing design's enlarged hole. The third, a rubber o-ring design incorporated into the existing design. Two complete assemblies of each of the three different configurations were used in the testing. The test was as follows.

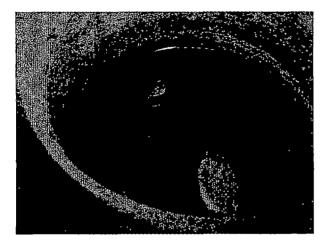
Technical Report No. 40 Page 2 of 4

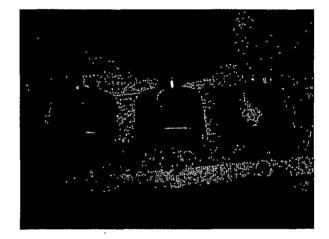

Two different tests were conducted:

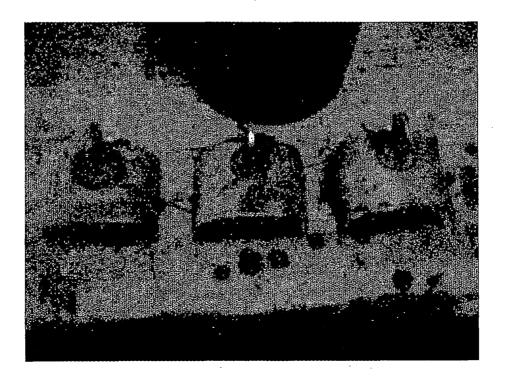
- a. One each of the three different designs were submerged into a heavy salt water mixture for a period of 3 days. Each day the solution was stirred, as to fully coat the samples. On the fourth day the test samples were set on a table at ambient temperature to dry for a period of four hours. The samples were then placed in an oven and were subjected to a temperature of approximately 140 degrees Fahrenheit for a period of 4 hours.
 - The above process was to simulate exposure to a marine environment. The test samples did have some minor corrosion occur between the brass lock plunger and the aluminum housing. The brass lock plunger also had some discoloring around the key area but had little effect in operation.

See pictures below.....

Technical Report No. 40






b. One each of the three different designs were submerged into a thick mud mixture for a period of 3 days. Each day the solution was stirred, as to fully coat the samples. On the fourth day the test samples were set on a table at ambient temperature to dry for a period of four hours. The samples were then placed in an oven and were subjected to a temperature of approximately 140 degrees Fahrenheit for a period of 4 hours.

The above process was to simulate exposure to dirt and mud for long periods of time. A drying cycle was introduced as a normal occurrence during storage or non-use.

See pictures below.....

4.0 INITIAL INPUT

The first sample, which is our normal production part was tested without any modifications. It was assembled by applying a petroleum (AEROSHELL Grease 7) lubricant to the perimeter of the hole on the aluminum lock mount. The brass plunger was than inserted into the hole and secured in place by a 6-32 hex slot machine screw through the side of the assembly.

The second sample, #88022 (Rev. 6) lock mount had the 0.858 diameter drill hole opened to $.880 + .000/-.003 \times .930$ deep. A stainless steel sleeve #88022-1 (Rev. 1) with an outside diameter of 0.875 + .000/-.005 was bonded with a 5 minute epoxy into the .880 hole. The #66001-11 lock plunger was than inserted into the lubricated (AEROSHELL) stainless steel sleeve and secured in place with a 6-32 machine screw.

The third sample, #88022 (Rev. 5) lock mount was modified to accept an o-ring (Green Rubber #AS568-210) approximately 1/8" from the top edge of the .758 diameter hole. Upon insertion of the o-ring the 0.758 diameter hole was greased with the lubricant (AEROSHELL) and the brass lock plunger was secured in place as above.

See attached drawings for more information.

5.0 RESULTS / DISCUSSION

5.1 The parts were first evaluated (not cleaned) while still warm from the oven.

All the salt covered test sample's lock plungers were hard to turn with the key and did not actuate properly. The Stainless steel sleeve sample did however work the best after only a few iterations. The normal production sample was very stiff while turning the key and did not actuate fully. The o-ring sample did not turn or actuate at all.

The mud covered test sample's lock plungers turned easily with the key but did not actuate fully on the current design and the o-ring designed test sample. The stainless steel sample however actuated fully without any effort.

5.2 The parts were then cleaned (washed with water) while turning the key and actuating the lock plunger.

The salt covered stainless steel insert test sample and the o-ring test sample worked well after cleaning. The normal production sample however, never worked properly even after being rinsed thoroughly with water. The production sample was then disassembled, re-cleaned, and reassembled. At which point it worked as designed.

The mud samples were evaluated to find that the regular production sample's key turned fine but did not actuate completely. The o-ring design worked well. The o-ring kept out most of the mud and water enabling it to function properly. The sample with the stainless steel insert worked best. The key turned easily and the lock plunger actuated smoothly.

6.0 REFERENCES

Not applicable.

7.0 CONCLUSION

The overall conclusion is that the #88022 lock mount assembly should be kept clean as possible during normal operation. After use, the radiographic unit and it's lock mount assembly should be washed to remove any dirt, salt, and grime to insure proper functioning.

The conclusion from testing different designs is that the #88026 lock mount should be modified from it's original design to include the #88002-1 stainless steel insert. The stainless steel insert was quoted at approximately \$5.00 each and will be incorporated at the time of assembly. The aluminum lock mount presently is being produced as a finished casting. The light weight aluminum design is both desirable and is a functional alternative to an all solid stainless steel design.

Section 12. APPENDIX F - ORIGINAL TEST PLAN

.

K:\Test Plans & Reports\Tp125 (880 and 88070 Drop Test)\TP125 Report First Cut.doc

TEST PLAN 125 (Rev. B) Model 880 Type B Container With 88070 Foot Button Assembly And 88022 Lock Mount Modification 10CFR71, ISO 3999-1 Transport Conditions

TABLE OF CONTENTS

1.0	PURPOSE	3
2.0	PRODUCT DESIGN DESCRIPTION	4
3.0	FAILURES OF INTEREST	5
4.0	TEST CONDITIONS AND ORIENTATIONS	6
5.0	PASS AND FAIL CRITERIA	7
6.0	TEST SPECIMEN	8
7.0	TESTING SAFETY AND WASTE DISPOSAL	9
8.0	TEST PROCEDURES	10
9.0	TEST WORKSHEETS 1	5
10.0	APPENDIX: 10CFR71, ISO 3999-1, TECH. REPORT #40 2	21

1.0 Purpose

The purpose of these tests is to assess the Model 880 transport container with the addition of the #88070 foot control button assembly. With the addition of these components and the modification of the #88022 lock mount, they will not adversely affect the packages ability as a "Type B" transport container.

The tests will be conducted and witnessed by at least one Engineer (the originator), one Regulatory, and one Quality person. The results of the test will be written in a test report and distributed through the engineering, quality, and regulatory departments for review.

We will test to 10CFR71 regulations for 71.73(1) *free drop*, 71.73(3) *puncture*, and 71.71(10) *penetration*. These tests will follow a random order except that the 71.73(3) puncture test will follow the 71.73(1) free drop test. Also, testing will be performed according to ISO 3999-1 regulations for 6.4.6.1 *horizontal shock*.

This test is a revision to Test Plan 125A. In this test plan, AEA Technology QSA will revert back to the original test plan (TP125) for it's #88070 component design with the following exception. The #88070-4 Shaft which was made of 304 stainless steel will be manufactured from phenolic (G-10 fiberglass) rod stock.


In reference to TP125A, the test failed when the 88070-4 Shaft made impact with the 88024 Titanium lock slide, pushing it through the 88026 Selector ring causing a failure. By manufacturing the Shaft out of G-10 material it would fail first before any damage could occur to the lock slide or the selector ring. See drawing #88070-4 (Rev. 3) for details of the improved design.

Testing not performed under this test (and necessary to demonstrate compliance with 10CFR71, ISO 3999-1, 49CFR and IAEA TR-S-1) will be addressed in an assessment located in the final test report. $T \subseteq -R-1$

2.0 **Product Design Description**

The Model 880 "Delta" source projector, drawing #TP125A (weighted dummy unit) consists of the following components:

- 5" Dia. stainless steel body weldment with a "lead core" containing an S-tube.
- Stainless steel front and rear plate assemblies (with modified lock mount).
- #88041 Polyurethane jacket.
- #88070 foot control button assembly.

3.0 Failures of Interest

3.1 Foot Control Button Assembly

If the lock slide were to be forced from it's locked position, the source wire could become free to float inside the unit.

The drop test will show that the compressive load being transmitted through the 88070 foot control button assembly will not damage the 88024 lock slide located inside the 88020 rear plate assembly.

3.2 Lock Mount

If the aluminum lock mount receives a blow which damages this component and prevents the locking mechanism from actuating properly then the operator might be unable to use the radiographic camera as specified in the operations manual.

The ISO 3999-1 (6.4.6.1) horizontal shock test will show that with the addition of a stainless steel insert, that this will aid in better structural integrity to the lock mount assembly. See drawing 88022-1 for insert information.

Because the lock mount is designed not to extend beyond the surface of the camera body, the ISO 3999-1 (6.4.2) lock-breaking test, 10CFR 71 (71.73.1) free drop and (71.73.3) puncture test would not be relevant tests therefore will not performed.

Moreover, the ISO 3999-1 horizontal shock test is more severe than the 10CFR71 (71.71.10) penetration test. Because of this, the penetration test will not be performed.

4.0 Test Conditions and Orientations

The Foot Control Button Assembly (F.C.B.A.) was designed to thrust the lock slide into it's active position during operation. The F.C.B.A. was also designed to bottom out when the lock slide was fully actuated. With the new design (phenolic) of the lock slide, the force from actuating the F.C.B.A. cannot be translated directly to the lock slide.

4.1 Free Drop Test (3)

The 880 radiographic unit will be oriented so that the F.C.B.A. will be facing downward toward the test pad (T10261 SN01) for the 9m (30 ft.) drop test (see section 8.0). This will expose the assembled unit so the F.C.B.A. will receive an impact similar to a slap down effect. See section 3.2 for lock mount testing information.

4.2 Puncture Test (4)

According to the Purpose (Section 1.0 paragraph 4) section of this test plan an evaluation will be made before this test is performed. Unless stated in the test report, the following will most likely be performed. The 880 unit will be oriented in a similar angled fashion as above for the 1m (40 in.) drop test. The unit will be dropped onto a test billet (T10119 SN01) so as the F.C.B.A. sustains the full initial impact. See section 3.2 for lock mount testing information.

4.3 Penetration Test

The 880 unit will be oriented so as the foot control button assembly will be facing upward while the jacket will be supported on an unyielding surface. The hemispherical end of a vertical steel cylinder (AEA Technology QSA Drawing #BT10129) of 3.2 cm (1.25 in) diameter and 6 kg (13 lbs.) mass will be dropped from a height of 1 m (40 in) onto the surface of the F.C.B.A. See section 3.2 for lock mount testing information.

4.4 Horizontal Shock Test

The 880 unit will be oriented so the (1) F.C.B.A. and the (2) Lock Mount will impact the end-face of (T10333 SN01) 50 mm (2 in) diameter steel bar. The criteria is 300 mm (12 in) in length lying horizontally, that is fixed or welded to a rigid mass at least ten times the mass of the 880. The 880 will be suspended from a fixed point so that, when at rest, the F.C.B.A. and Lock Mount just touches the target. The 880 will be moved from its resting position until its center of gravity is 100 mm (4 in) higher than in the resting position and let loose, so that it swings in a pendulum movement against the target. This will be carried out for a total of twenty (20) times.

5.0 Pass and Fail Criteria

A final assessment shall be made upon the completion of the tests to evaluate the specimen's performance against the test requirements and determine a pass or fail judgement. The specimen(s) shall be considered passing the test requirement if the specimen meets the following criteria:

5.1 Foot Control Button Assembly

The lock slide must not be damaged in a way that the source wire assembly becomes free to move.

The radiographic unit must remain operational after the horizontal shock test. This means either with the actuation of the F.C.B.A. or by manual operation of the lock slide mechanism.

5.2 Lock Mount Assembly

The corbin lock mechanism must actuate freely after being subjected to the horizontal shock test. Also the stainless steel insert must stay in position. The Lock Mount and stainless steel insert will be secured in place with a dog point hex set screw. Loctite will also be added to a set screw prior to assembly. Moreover, the set screw in the Lock Mount assembly cannot back out of position after assembly because the Lock Mount seats up against the 88031 Front Plate.

Final assembly configuration will be noted on QC inspection/acceptance forms. The production unit will be assembled to comply with the tested configuration.

6.0 **Test Specimen**

The test specimen will be a fully weighted dummy "lead core" 880 Delta radiographic camera (reference AEA Technology QSA Drawing No. TP125A). The core will have no depleted uranium, however the lead core will encapsulate a titanium s-tube. The test specimen shall be examined after the test and any defects will be noted.

The test specimen was developed under drawing #88017XLS but stated that the unit was a Safety Class "C". The test unit should be a Safety Class "A" for traceability reasons. Therefore drawing TP125A was developed as a prototype drawing of the test unit with a Safety Class A.

AEA Technology QSA used a lead unit for this test for the soul evaluation of the Mechanical testing of exterior components. Therefore the unit did not need to be profiled.

Lead was also used to replicate the weight of the unit. The lead billet is orientated (center of gravity) in the same location as a DU unit. Moreover, the billet is mechanically attached with the same pins and hardware as a DU unit. Therefore the test unit will react in the same manner as the DU unit.

7.0 Testing Safety and Waste Disposal

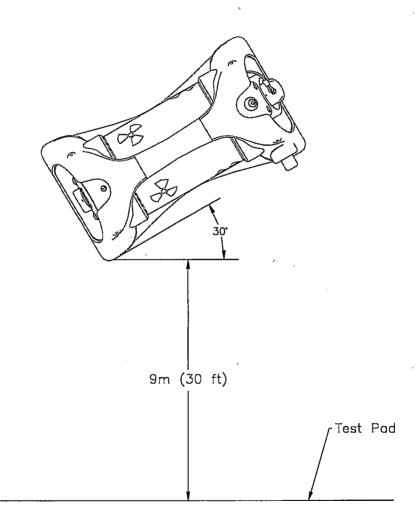
Testing Safety

The tests will not be conducted with any radioactive sources. Instead, the testing of the Model 880 unit will use a dummy source wire assembly.

The weight of the testing will require lifting heavy objects. Proper lifting techniques shall be used to prevent injury.

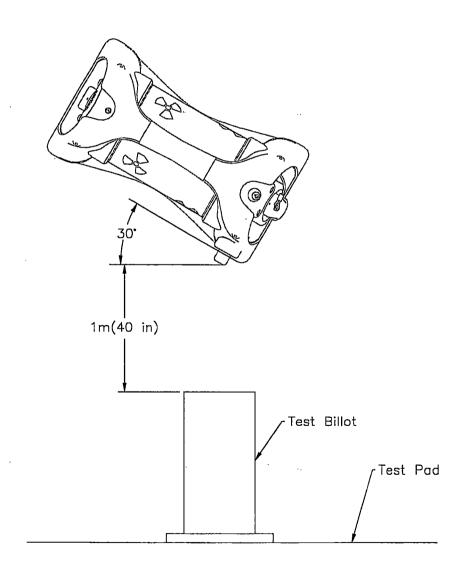
Some tests of this plan may result in heavy falling objects and flying debris. Safety glasses and a safe distance must be used in these cases.

Waste Disposal

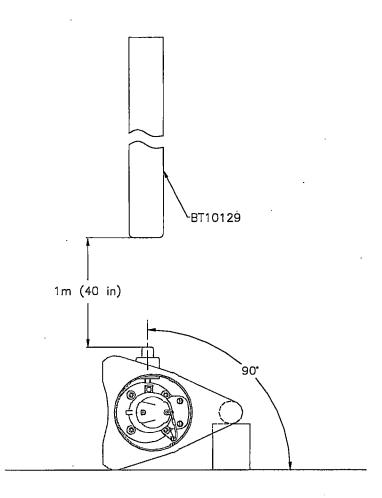

The test Model 880 and accessories will be kept and stored for reference until authorization by the engineering and regulatory department to dispose. No radioactive material will be used in the testing so the test specimens do not need to be kept in any special radiation storage areas.

Once approved for disposal by the engineering department and the regulatory department, the entire test units can be disposed of as standard garbage except for the lead shielding. The lead shall be removed from the Model 880 device and kept for the production department to melt down for other applications if applicable. If the unit remains in good condition, the unit will be repaired if necessary and used for future demo purposes.

8.0 Test Procedures

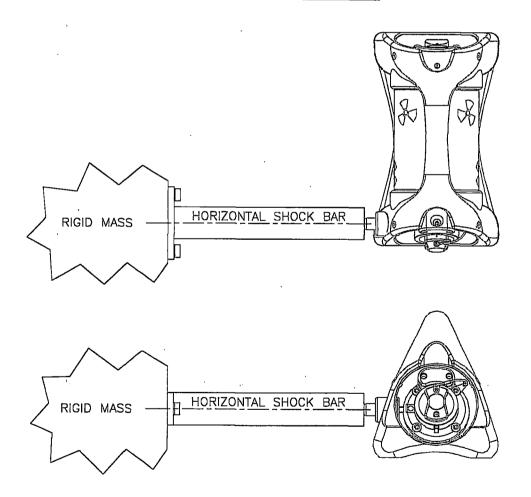

Free Drop Test 9m

- 1. Prepare test device by placing device into a sling device.
- 2. Hold test specimen orientated toward impact surface at a height of 9 m (30 ft) from the top of the drop pad surface to the bottom of the test specimen.
- 3. Drop the test specimen onto the rigid target surface.
- 4. Examine test specimen and evaluate to test requirements.
- 5. Record the results of the test.


Puncture Test 1m

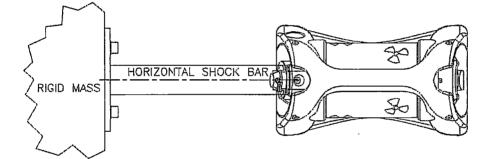
- 1. Prepare test device by placing device into sling device.
- 2. Hold test specimen orientated toward impact surface at a height of 1 m (40 in.) from the top of the test billet surface to the bottom of the test specimen.
- 3. Drop the test specimen onto the test billet surface.
- 4. Examine test specimen and evaluate to test requirements.
- 5. Record the results of the test.

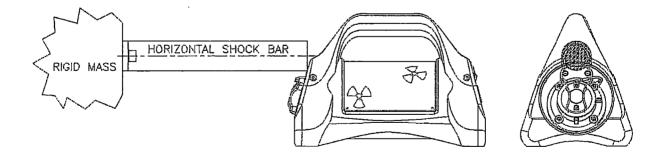
Penetration Test


- 1. Prepare test device by placing device on an unyielding surface.
- 2. Orient F.C.B.A. in a vertical position while supporting handle of jacket.
- 3. Drop steel cylinder (T10129) from a height of 1m (40 in) onto the F.C.B.A.
- 4. Examine test specimen and evaluate to test requirements.
- 5. Record the results of the test.

Horizontal Shock Test

- 1. Prepare test device by placing device into a sling device.
- 2. Orient by suspending the F.C.B.A. in a horizontal position while touching (T10333) horizontal shock bar.
- 3. Move the 880 unit until its center of gravity is 100 mm (4 in) higher than its resting position.
- 4. Let it loose, so that it swings in a pendulum movement against the target for a total of 20 times.
- 5. Examine test specimen and evaluate to the test requirements.
- 6. Record the results of the test.


Foot Button Assembly (1)



Horizontal Shock Test

- 1. Prepare test device by placing device into a sling device.
- 2. Orient by suspending the Lock Mount in a horizontal position while touching (T10333) horizontal shock bar.
- 3. Move the 880 unit until its center of gravity is 100 mm (4 in) higher than its resting position.
- 4. Let it loose, so that it swings in a pendulum movement against the target for a total of 20 times.
- 5. Examine test specimen and evaluate to the test requirements.
- 6. Record the results of the test.

Lock Mount (2)

۰.

	Free Drop Te 10CRF71	est	
Test Specimen:	· · · · · · · · · · · · · · · · · · ·		
Drawing No.	Rev	Serial Number:	
Test weight	Scal	le Used	
Test Setup:			
Set up per: 10CFR71 (71.73(1)) free	e drop test procedure	е.	
Pictures:			
Notes:			
Drop surface:			
Drawing No	Rev	Location:	
Test Period:		· · · · · · · · · · · · · · · · · · ·	
Date & time:			
		,,,,,,,	
Specimen Damage:			
· ····································	·····		
Recorded by:		Date:	
Witnessed by:		Date:	
Regulatory reviewed by:		Date:	
Q.A. reviewed by:		Date:	

TEST PLAN 125B September 2002

Puncture Test 10CRF71							
Test Specimen:							
Drawing No.	Rev	Serial Number:					
Test weight	Sca	ale Used					
Test Setup:							
Set up per: 10CR71 (71.73(3)) puncture tes	st procedure	and assessed configuration.					
Pictures:							
Notes (assessed configuration):		vi					
							
		·····					
Drop surface:							
Drawing No.	Rev	Location:					
Test Period:		· · · · · · · · · · · · · · · · · · ·					
Date & time:	-						
Specimen Damage:							
	·····						
Post test assessment:							
Recorded by:		Date:					
Witnessed by:		Date:					
Regulatory reviewed by:		Date:					
O.A. reviewed by:		Date:					

-{ 1

	Penetration Te 10CRF71	
Test Specimen:	<u> </u>	
Drawing No	Rev	Serial Number:
Test weight	Scale	Used
Test Setup:		
Set up per: 10CR71 (71.71(10))	penetration test procedu	re.
Pictures:		
Notes:		
·		
Drop surface:		
Drawing No	Rev	Location:
Test Period:	<u> </u>	
Date & time:		
Specimen Damage:		
· · · · · · · · · · · · · · · · · · ·		
Post test assessment:		
· · · · · · · · · · · · · · · · · · ·		
Recorded by:		Date:
Witnessed by:		Date:

TEST PLAN 125B September 2002

Horizontal Shock Test ISO 3999-1							
Test Specimen:							
Drawing No	_Rev	Serial Number:					
Test weight	Scale	Used					
Test Setup:							
Set up per: ISO 3999-1 (6.4.6.1) horizontal sh	nock test pro	cedure.					
Pictures:							
Notes:		· · · ·					
		· · · · · · · · · · · · · · · · · · ·					
Horizontal Test Bar:							
· ·	_						
Drawing No.	_ Rev	Location:					
Test Period:							
Date & time:							
Specimen Damage:							
	·						
Post test assessment:	· · · · · · · · · · · · · · · · · · ·	·····					
· · · · · · · · · · · · · · · · · · ·							
Recorded by:		Date:					
Witnessed by:		Date:					
Regulatory reviewed by:		Date:					
Q.A. reviewed by:		Date:					

Final Test Assessment						
Test Specimen:						
Serial Number(s):						
Foot Control Button evaluation:						
Spring (61lb.):						
Foot Control Button Assembly evaluation:						
Is the F.C.B.A. in working condition?						
·						
Comments:						
· · · · · · · · · · · · · · · · · · ·		······································				
	· · · · · · · · · · · · · · · · · · ·					
	· · · · · · · · · · · · · · · · · · ·	<u> </u>				
Engineering Review by:	Date:					
SME Review by:	Date:					
Regulatory Review by:	Date:					
Q.A. Review by:	Date:					

,

,

Final Test Assess	ment
Test Specimen:	· · · · · · · · · · · · · · · · · · ·
Serial Number(s):	
Lock Mount Assembly evaluation:	
Aluminum housing:	
Lock Mount evaluation:	· · · · · · · · · · · · · · · · · · ·
Is the lock mount assembly in working condition?	
Comments:	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	
Engineering Review by:	Date:
SME Review by: Regulatory Review by:	Date:
Q.A. Review by:	Date: Date:

•••

r

TEST PLAN 125B September 2002

Ì

10.0 Appendix: 10CFR71, ISO 3999-1, Technical Report #40, and F.C.B.A. Instruction Sheet.

.

Safety Analysis Report for the Model 880 Series Transport Package

QSA Global, Inc. Burlington, Massachusetts

June 2017 - Revision 12 Page 2-42 **2.12.7** Test Plan Report 74 (Feb 1998)

SENTINEL

Т	est plan no. <u>74</u>
TEST PLAN COVER SHEET	
TEST TITLE: Model 660 Hypothetical Accident Cond	lition lests
PRODUCT MODEL:	
ORIGINATED BY: S. Clonie	DATE: 17DEC 1997
TEST PLAN REVIEW	·
ENGINEERING APPROVAL:	DATE: 17 Dec 97
QUALIZY ASSURANCE APPROVAL: K MAK	DATE: 17 Dec 97
REGULATORY AFFAIRS APPROVAL: C. Kong Man	DATE: 17 DOC 97
COMMENTS:	· · · · · · · · · · · · · · · · · · ·
i	
TEST RESULTS REVIEW	
ENGINEERING APPROVAL:	DATE: 18 Feb 98
QUALITY ASSURANCE APPROVAL: KAN	DATE: 17 Feb 98
REGULATORY AFFAIRS APPROVAL:	DATE: 18 Feb 98

Mersham QSA

Test Plan #74 Results

This document describes the results of package design tests conducted for Hypothetical Accident Conditions (10 CFR 71.73) by Amersham to determine whether Model 660 Series projectors meet NRC requirements for Type B(U) packages.

The Model 660 Series includes the following models: 660, 660A, 660B, 660E, 660AE, and 660BE. Reference Certificate of Compliance 9033.

The tests were conducted in accordance with Amersham Test Plan #74 (dated December 16, 1997). The test plan also covers the criteria stated in IAEA, Safety Series 6 (1985, as amended 1990).

The purpose of the plan was to evaluate the performance of the Model 660 Series projectors that incorporate a proposed design change in which stainless steel endplate screws are used instead of carbon steel screws.

This document reports on the manufacturing and acceptance of the test specimens, execution of the tests, test inspections, and assessment of the units as to their conformity with the requirements of 10 CFR 71.

Section 1 Transport Package Overview

The Model 660 Series projector consists of a source tube enclosed in a depleteduranium shield, an end-plate with a lock assembly, a second end-plate with a storage plug assembly, four steel connecting rods, a sheet metal shell and foam packing material (Figure 1).

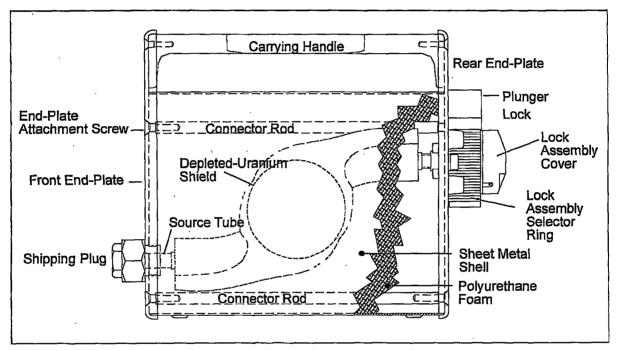


Figure 1: Side View of a Model 660 Series Projector

The shield consists of a 1/2-inch outside diameter source tube with its mid-section set in depleted uranium. One end of the source tube is inserted into a 1/2-inch hole in the lock assembly at the rear end-plate. The other end of the shield's source tube is inserted into another 1/2-inch hole in the shipping plug at the front end-plate. Both 1/2-inch holes allow enough radial clearance for a slip fitting attachment. There is approximately 1/8-inch axial clearance at the front end for assembly.

The source is contained in a special-form, encapsulated capsule assembly which is attached to the source wire assembly. This source wire assembly is secured in the package by the lock assembly. The lock assembly, in turn, is attached to the rear end-plate by four #10 stainless steel screws. There are two versions of the lock assembly used on the Model 660 series projectors. The size, material and location of the end-plate screws are identical on both versions.

The shield, end-plates and the sheet metal shell are connected by four 3/8-inch thick steel rods which are threaded at each end to accept 1/4-inch screws securing the end-plates to the rods.

A polyurethane foam is used to fill the space around the shield and to fill the void within the sheet metal shell. The foam acts as an impact absorber.

The depleted-uranium shield provides the primary radiation protection for the Model 660 Series projector. The shield accomplishes this by limiting the transmission of gamma rays to a dose level at or below 200 mR/hr at the package surface and limiting the dose level at or below 10 mR/hr at one meter from the surface of the package.

The location of the source relative to its stored position in the shield is also an important safety element. A large displacement of the source relative to its stored position could elevate the dose at the surface of the package above regulatory limits.

There are two possible scenarios to displace the source relative to its stored position:

- The shield could move away from the source if the source tubes were bent or fractured during testing.
- The source could move away from the shield if the lock assembly became loose or was removed from the end-plate or if the end-plates themselves became loose or were removed during testing.

The tests in this plan focused on damaging those components of the package which could cause the displacement of the source relative to its stored position within the shield.

Section 2 Test Specimen Production and Acceptance

The test units specified for this plan were seven test specimens manufactured for the Normal Transport Conditions testing under Test Plan #73.

The tests in Test Plan #74 were designed to further the damage inflicted on the units in Test Plan #73. The tests units were manufactured in the Amersham Burlington, Mass., facility in accordance with Amersham Drawing TP73, Rev. A.

As required in both test plans, the TP73 test units are standard Model 660B projectors with the following modifications:

- Shields weighing 37 to 39 pounds
- Supplemental lead added to the shield to increase shield assembly weight to 40 pounds
- Stainless steel screws used for end-plate fasteners instead of carbon steel screws
- End-plate screws with torque values set to either 10 in-lbs or 120 in-lbs

These modifications enabled us to produce test specimens that weighed at least 54 pounds, and to test the use of stainless steel end-plate screws as original equipment and as retrofit components.

Four test units (A, B, C and D) and three spares (S1, S2 and S3) were built according to the Drawing TP73, Rev. A. The units enabled us to test two different impact targets on units with end-plate screws set to different torque values (Table 1).

Table 1: TP73 Units

End-plate screw torque value	120 in:1bs (±10 in:1bs)	10 in-lbs (±2 in-lbs)
Impact bottom edge of rear plate	Specimens A, S1 and S3	Specimens C and S2
Impact top edge of front plate	Specimen B	Specimen D

The test specimens were manufactured in accordance with the Amersham Quality Assurance Program. The program provides for documentation of the manufacturing process, assures that the units comply with the relevant drawings and manufacturing instructions, and specifies radiological profiling of the completed product. Table 2 summarizes key manufacturing and profiling data.

Specimen	A	- B	C .	D	S1	S2	S 3
Completion Date	12/16/97	12/16/97	12/16/97	12/16/97	12/16/97	12/16/97	1/6/98
Total Weight	55.1 lbs	54.9 lbs	55.3 lbs	54.9 lbs	54.8 lbs	55.1 Ibs	55.3 Ibs
Profile Data, Maximum Re	adings						
Package Surface (mR/hr)	142.5	142.5	133.0	133.0	152.0	152.0	147.0
At One Meter (mR/hr)	1.6	1.7	1.5	1.3	1.5	1.6	1.6

Table 2: Test Specimen Manufacturing Data

At the conclusion of Test Plan #73, representatives from Engineering, Quality Assurance and Regulatory Affairs reviewed test inspections and damage assessments on the test specimens. The assessment included radiation profiles on Specimens A, B, C, and D in accordance with Amersham Work Instruction Q09. The radiation profile worksheets are included in Appendix A. The maximum readings for each specimen are shown in Table 3. These readings, which are corrected for maximum capacity, demonstrate that the units met the requirements of 10 CFR 71.71 for normal conditions of transport.

Specimens S1, S2 and S3 were not subjected to Test Plan #73 testing until they were required as spares in Test Plan #74. The units were not profiled at the conclusion of the Normal Transport Conditions tests, as the purpose of the testing was to qualify the units for use in Test Plan #74 and profiling of A, B, C and D had already demonstrated conformity with 10 CFR 71.71 for all orientations.

Specimen	À.	В	C	D.	Sil	S2	S3
Package Surface (mR/hr)	159.0	174.0	188.0	188.0	N/A	N/A	N/A
At One Meter (mR/hr)	1.4	1.2	1.5	1.3	N/A	N/A	N/A

Representatives from Engineering, Quality Assurance and Regulatory Affairs jointly confirmed that:

- The seven units selected for Test Plan #74 were adequately tested under Test Plan #73.
- There were no changes to the units since the final test inspections and assessments performed under Test Plan #73.
- No changes in orientation were required for the hypothetical accident conditions tests in Test Plan #74 because of damage sustained in Test Plan #73 testing.

Section 3 Hypothetical Accident Conditions

The TP73 test units underwent Hypothetical Accident Conditions tests in December 1997 and January 1998.

The testing demonstrated that the stainless steel end-plate screws maintained the end-plate connection throughout the tests. However, Specimen A had unacceptable radiation profile measurements after the thermal tests. Based on the data available, it is inconclusive whether the specimen failed because of a design flaw or because of damage incurred during handling and shipment.

This section describes the execution of the tests, results and the assessments made by representatives from Engineering, Regulatory Affairs and Quality Assurance.

3.1 Test Execution

The following Hypothetical Accident Conditions tests were conducted to meet the requirements of 10 CFR 71.73 and Test Plan #74:

- 30-foot free drop
- Puncture test
- Thermal test

Table 4 summarizes information about execution of the tests. In the table, package orientation is described as:

- BRE where the impact surface is the bottom edge of the rear end-plate
- TFE where the impact surface is the top edge of the front end-plate
- NTP for normal transport position, that is, resting on the bottom

Table 4: Hypothetical Accident Conditions Tests (10 CFR 71.73)

Specimen	A	В	C	D	S1	S2	S3
30-foot Free I	Prop (Valley	Free, Grovela	nd, Mass.)				
Test Date	12/23/97	12/24/97	12/23/97	12/24/97	1/8/98	12/24/97	1/11/98
Attempts	One	One	One	Two	One	One	Two
Orientation	BRE	TFE	BRE	TFE	BRE	BRE	BRE
Comments	Good hit	Good hit	Missed hit Replaced by S2	lst hit on right side; 2nd hit good	Missed hit Replaced by S3	Good hit	1st hit toward base; 2nd toward lock

Specimeni	A.	B	C.	D	St	S2	S3
Puncture Test	(Valley Tree	Groveland, N	lass)				
Test Date	12/23/97	12/23/97	Not	12/24/97	Not	12/24/97	1/11/98
Attempts	One	One	Tested	One	Tested	One	One
Orientation	BRE	TFE	BRE	TFE	BRE	BRE	BRE
Thermal Test	(Manufacturi	ng Science, O	ak Ridge, Ten	n.)			
Test Date	12/30/97	Not	See Note1	12/30/97	Not	12/30/97	1/13/98
Orientation	NTP	Tested		NTP	Tested	NTP	NTP

Table 4: Hypothetical Accident Conditions Tests (10 CFR 71.73) (Continued)

Note 1: Specimen C was subjected to the thermal test only to provide information to help in evaluating other specimens.

Testing began on December 23, 1997, with the four units that were used in the first round of Test Plan #73 testing. In the 30-foot free drop, Specimen C missed its intended impact surface, and was replaced by Specimen S2. S2 underwent normal testing under Test Plan #73 and on December 24, 1997, began testing under Test Plan #74.

The puncture test orientation for Specimens B and D was changed after the 30-foot drop to impact the top edge of the front end-plate to induce more damage, specifically to peel back the area of the end-plate left by the removed handle.

Specimen B did not undergo the thermal test because it was not as damaged as the other units. Specifically, there was no opening between the end-plate and the package, and therefore, it would sustain less damage from thermal testing.

Specimens A, D and S2 underwent thermal testing on December 30, 1997. The units were positioned in the normal transport position, that is, upright and resting on the bottom, to allow optimal airflow in and around the open gap created by damage to the shell and end-plates.

The units were shipped to Amersham's Burlington, Mass., facility on January 2, 1998, for radiographs and profiling. Amersham personnel were not on site in Oak Ridge to supervise the packaging and shipment of the test units.

The radiographs after the thermal tests showed displacement of the shield relative to the positions shown in radiographs taken after the puncture tests. In all three cases, a significant portion of the displacement was on the horizontal plane, indicating that the movement may have been caused during handling or shipment from Oak Ridge to Burlington. The thermal test orientation for these specimens would not have caused movement in the horizontal plane. Profile results of Specimen A showed 9.3 R/hr at one meter. The other units (Specimens B and D) were within acceptable levels. To determine whether handling during transport caused the failure of Specimen A, we prepared Specimen S1 for testing and planned to measure the source position after the thermal test and before shipment.

In the 30-foot free drop, Specimen S1 missed its impact surface, creating the need for another substitution. A new unit, Specimen S3, was built and subjected to testing under Test Plan #73. The new unit underwent the 30-foot free drop and puncture test on January 11 and the thermal test on January 13.

The Specimen S3 was radiographed on site to determine source location before shipment and then radiographed upon receipt in Burlington. Comparison of the two radiographs showed no significant movement of the source. Subsequently the unit passed the radiation profile.

3.2 Damage Inspections

The test units incurred levels of mechanical damage as a result of the 30-foot free drop that were seen in previous testing:

- The rear end-plates were bowed on Specimens A, S2 and S3, producing a 3/ 16-inch (maximum) gap between the shell and end-plate.
- The tops of both end-plates were bent on Specimens B and D. No gap was produced on B; there was a 1/2-inch (maximum) gap on D.
- End-plate corners were crushed on Specimens S1 and C when these units missed their target impact surfaces. Both units were replaced.

In addition, the handle of Specimen B broke.

No additional mechanical damage to the tested units was evident as a result of the puncture test.

All of the stainless steel end-plate screws, including those set to 10 in-lb torque values, held the end-plates to the connecting rods, and there was no breakage.

Inspection of the units, including radiographs, showed that they maintained their structural integrity throughout the 30-foot drop and puncture test, that is, the source remained in the secured and shielded position and the end-plate screws held.

Four units were subjected to the thermal test: A, D, S2 and S3. As expected, the handle melted on each of the four units, and all or some of the foam burned off. There was no substantial oxidation of the shields as occurred in Test Plan #70. The end-plate-screws held the end-plates to the package throughout the testing and did not allow for increased airflow around the shield.

3.3 Test Assessment

The primary area of interest was the performance of the stainless steel end-plate screws. The test proved that the design change resolves the problem of shield performance caused by oxidation as occurred in Test Plan #70 and reported in the Test Plan #70 Test Results. In Test Plan #70, the oxidation occurred when the end-plate was not fully secured because of the breaks in the carbon steel end-plate screws.

Appendix A includes the worksheets for the radiation profiles taken as part of the final test inspection. Table 5 shows the maximum radiation measured in these profiles. The readings have been corrected for maximum capacity.

Table 5: Maximum Readings from Test Plan #74 Final Test Inspection

Specimen	A	в	Ċ.	D	- S1	S2	S3
Profile date	1/5/98	1/5/98	Not	1/7/98	Not	Not	1/19/98
Package Surface (mR/hr)	3000	390	profiled	281	profiled	profiled	1862
At One Meter (mR/hr)	9300	2.7		4.7			9.3

The evaluation of Specimen A and the subsequent testing of Specimen S3 did not resolve whether the movement of the source from its ideal shielded position was the result of a design flaw or the result of damage caused in handling and transport of the package. We were unable to exactly replicate the mechanical damage to Specimen A.

The measurement after the S3 thermal test showed that the source had moved only 0.2 inch, which resulted in acceptable levels of radiation. Test inspection revealed that the source wire had severed. The Specimen A source wire did not break and remained engaged in the lock assembly when the shield moved, pulling the source from the center of the shield which provides maximum shielding.

Although Specimen S3 satisfactorily met all of the test requirements, the damage was not identical to to Specimen A, and therefore, it could not be used as a replacement for Specimen A.

No conclusion can be drawn as to whether the Specimen A failed because of transport damage.

3.4 Conclusions

Based on the testing performed under Test Plan #74, the team concluded that:

- The stainless steel end-plate screws satisfactorily met all of the test requirements and the screws should be used on all Model 660 Series projectors.
- The torque value of the screws is not a significant factor in their performance and retrofitting of projectors with new screws can be accomplished in the field.
- Because of the difficulty of replicating specific mechanical damage, continued testing of TP73 units will probably not resolve the question of whether Specimen A failed because of design or damage from handling.
- Amersham should proceed with design evaluation as if Specimen A had failed because of its design, and examine design changes that would restrict shield movement during thermal testing.

Test Plan #74 Results February 18, 1998 Page 11 of 11

Appendix A: Radiation Profile Worksheets

SENTINEL

B3587 (11) 12 Jan 18 660/660B DEVICE PROFILING FORM TP73"A" Device Model No.: 660B Device Serial No.: after Thermal T10163 Model 424-9 Source Serial Number: X00/6 Activity: 93.2 C < 500 MR/m -Surface-Survey Instrument: AN/PDR 27 Serial No: 5m-39248 Cal Due: 3/18 98 k) ≥ 500 mR/m One Meter Survey Instrument: Tech-50 Serial No: B-814-SCal Due: 7/22/98 Capacitox Corr. Factor SURFACE READINGS ONE METER READINGS mR/hr mR/hr 1,5 Extraplatel Extrapolated Allowed Actual Actual For Capacity 520 80 TOP TOP 3F/m 2 R/m RIGHT RIGHT 40.5 FRONT FRONT 3F/m LEFT LEFT 3R/W REAR REAR 1,8 F/W BOTTOM 81 12,0 BOTTOM > 1 R/hr. No adde mensurements taken on device. DATE: Sam 98 NCR No .:__ p.d. C.O INSPECTOR: Comments: - No surface corrections made. Actual surface enclosed in plastic bagging which varied in thickness from 1/2 - 1".

- Surface doses for general info only. Primary purpose of profile was for I meter neadings. Surface levels on sides and near may be higher a finely collimated beam from s-tube out WI-005 the near of the device which was difficult to quantify precisely without receiving SENJINEL

660/660B DEVICE PE	ROFILING FORM
- 170163 Model 424- 9 Source Serial Number: <u>ΧοδΙ</u>	5M-282VAL
One Meter Survey Instrument: <u>Same</u> s <i>Kon-leaded</i> plug used d Corr. Earter SURFACE READINGS	Gerial No: Cal Due: Luring profile ONE METER READINGS
<u>III Sonf Allowed Actual</u> <u>Corretation</u>	mR/hr Extraplate Allowed Actual
TOP 1.16 104.4 60	TOP 1.0 0.7
RIGHT 1,39 153.6 80	$\mathbf{RIGHT} \underline{0.9} \underline{0.6}$
FRONT [13 389.9 230	FRONT 217 1.8
LEFT 1, 28 115.2 60	LEFT 0.75 D.5
REAR 1,13 152 6 90	REAR 1.5 1.0
BOTTOM 1,19 107.1 60	BOTTOM 0.9 0.6

ì.

Parlo INSPECTOR: DATE: 5 an 98 NCR No .:____

÷2

Comments:

(KNA) 12 Jan 98

Amersham QSA

SENTINEL

.

660/660B DEVICE PROFILING FORM

Device M	odel No.: <u>660 B</u> Device Se	TP73 "D" B3590 (RNA) 12 Jan 98 erial No.: After Thermal
Tion Model 4 2	• •	0016 Activity: 89.7 C
Surface S	urvey Instrument: Bicron	Serial No: <u>B-814-5</u> Cal Due: 7/22/98
	r Survey Instrument: Same	Serial No: Cal Due:
Capacity Corr. Factor	SURFACE READINGS mR/hr	ONE METER READINGS mR/hr
1.56	/	Extrapolated
	Allowed Actual	<u>Allowed</u> <u>Actual</u>
TOP RIGHT FRONT LEFT	$ \begin{array}{c c} & 130 \\ \hline & 180 \\ \hline & 80 \\ \hline & 50 \\ \hline \end{array} $	TOP 2.3 1.5 RIGHT 1.9 1.2 FRONT 2.7 1.7 LEFT 2.2 1.4
RKAR BOTTOM	90	rrar <u>4,7 3.0</u> bottom <u>1,7 1,1</u>
INSPECTO	R. C. C. dv Colo	DATE: 9 0 an 98 NCR No .:
Commente * Surf brog Thick		in multiple layers of plastic - control of knonium oxide. 1/4" 101".
* Sun Ger	face neadings taken veral information pr (KMA)	. Por exposure control and imposed only.
		· V

Amersham QSA

SENTINEL

Device Mo		PROFILING FORM TP74+ TP73"53" Sind# B3586 (KMP) al No.: After Thermal 21 Jan 98
Поі ь Model 424	-9 Source Serial Number:_ <u>Х</u> ०	0/7 Activity: $105-0$
	,	Serial No: <u>5M -392401</u> Cal Due: <u>18 Mar 98</u> 17 Serial No: <u>5M - 392401</u> Cal Due: <u>18 Mar 98</u>
Capecity Corr. Factor 1, 33 TOP RIGHT FRONT LEFT REAR BOTTOM	SURFACE READINGS mR/hr Allowed Actual 70 mR/hr Actual 70 mR/hr 940 mR/hr 110 mR/hr 110 mR/hr 130 mR/hr A	ONE METER READINGS mR/hr Extrapolated <u>Allowed</u> <u>Actual</u> TOP <u>1.9</u> <u>1.4</u> <u>mR/hr</u> RIGHT <u>1.5</u> <u>1.1</u> <u>mR/hr</u> FRONT <u>5.6</u> <u>4.2</u> <u>mR/hr</u> LEFT <u>1.3</u> <u>1.0</u> <u>mR/hr</u> REAR <u>9.3</u> <u>7.0</u> <u>mR/hr</u> BOTTOM <u>1.6</u> <u>1.2</u> <u>mR/hr</u>
Comments:		DATE: 19 Jan G& NCR No.: NA_
A Measure cal	events taken with M date 23 Sept 9B) /1	lodel # ND 3000, S/N 9837 (Nex F 1D 19 Jan 98

.- .

۰.

.

Table of Contents

List of Figures and Tables iv	
1.0 Current Transport Package Overview 2	
2.0 Purpose	
3.0 System Failure of Interest 4	
4.0 Construction and Condition of Test Specimens	
5.0 Material and Equipment List 10	
6.0 Test Procedure 11	
6.1 Roles and Responsibilities	
6.2 Test Specimen Preparation and Inspection 12	
6.3 30-foot Free Drop Test (10 CFR 71.73(c)(1))	•
6.3.1 30-foot Free Drop Setup	
6.3.2 Orientation for the 30-foot Free Drop: Specimens A & C 14	
6.3.3 Orientation for the 30-foot Free Drop: Specimens B & D 15	
6.3.4 30-foot Free Drop Test Assessment 16	
6.4 Puncture Test (10 CFR 71.73(c)(3)) 17	
6.4.1 Puncture Test Setup 17	
6.4.2 Orientation for the Puncture Test: Specimens A & C 18	
6.4.3 Orientation for the Puncture Test: Specimens B & D 19	
6.4.4 Puncture Test Assessment	
6.5 Intermediate Test Inspection	
6.6 Thermal Test (10 CFR 71.73(c)(4)) 21	
6.6.1 Thermal Test	
6.6.2 Thermal Test Assessment	
6.7 Final Test Inspection 24	
6.8 Final Assessment	

7.0 Worksheets	25
Appendix A: Drawings	

Appendix B: Selected Fasteners

Appendix C: Referenced Materials

List of Figures and Tables

Figure 1: Side View of a Model 660 Series Projector
Figure 2: Impact on Bottom Edge of Front End Plate 5
Figure 3: Impact on Top Edge of the Front Plate 5
Figure 4: Impact on Bottom Edge of Rear Plate
Figure 5: Impact on Top Edge of the Rear Plate 6
Table 1: Model 660 Series Variations 8
Figure 6: Orientation for the 30-foot Free Drop: Specimens A & C 14
Figure 7: Orientation for the 30-foot Free Drop: Specimens B & D 15
Figure 8: Orientation for the Puncture Test: Specimens A & C 18
Figure 9: Orientation for the Puncture Test: Specimens B & D 19
Equipment List 1: 30-foot Free Drop26 Checklist 1: 30-foot Free Drop27
Equipment List 2: Puncture Test
Equipment List 3: Thermal Test

Amersham Test Plan #74

This document describes additional package design testing for Sentinel Model 660 Series projectors to meet NRC requirements for Type B(U) packages under Hypothetical Accident Conditions (10 CFR 71.73). Testing under Normal Transport Conditions (10 CFR 71.71) is described in Amersham Test Plan #73.

The test plan also covers the criteria stated in IAEA, Safety Series 6 (1985, as amended 1990). Quality Assurance will be involved in all aspects of this test plan and its execution.

The Model 660 Series includes the following models: 660, 660A, 660B, 660E, 660AE, and 660BE. Reference Certificate of Compliance 9033.

The tests in this plan evaluate a Model 660 Series design change that resulted from tests performed under Amersham Test Plan #70. In that testing, the 30-foot free drop caused failure of the end-plate screws on Specimen D, and subsequent oxidation and loss of the shield during the thermal test. The design change involves the use of stainless steel end-plate screws instead of the carbon steel screws used in the Test Plan #70 specimens.

We are specifying Military Standard screws, MS 51959-81 ($1/4-20 \times 3/4"$ long). The specification is included in Appendix B: Selected Fasteners. The tensile strength of these screws is twice that of the nominal strength of the carbon steel screws (110,000 psi versus 55,000 psi). In addition, at room temperature, the toughness of stainless steel is 40% greater than that of carbon steel; at -40° C, the stainless steel's toughness is four times greater than carbon steel's. Refer to the toughness versus temperature curve in Appendix B: Selected Fasteners.

As noted in the failure analysis by Packaging Technology, Inc. (November 25, 1997), the Specimen D shield experienced a deceleration of 200g in the 30-foot free drop in Test Plan #70. If the two end-plate screws closest to the lock assembly experience the full extent of the shield deceleration load, the tensile stress induced in these screws is calculated as follows:

stress = (shield mass) (impact deceleration) / tensile area

= $(40 \text{ lbs}) (200 \text{ g x } \cos 39^\circ) / (2 \text{ x } 0.0318 \text{ in}^2)$

= 97,800 psi

The induced stress is less than the ultimate strength of the two stainless steel screws (110,000 psi).

This document outlines the testing scenario, justifies the package orientations, and provides test worksheets to record key steps in the testing sequence.

1.0 Current Transport Package Overview

The Model 660 Series projector consists of a source tube enclosed in a depleted-uranium shield, an end plate with a lock assembly, a second end plate with a storage-plug assembly, four steel connecting rods, a sheet metal shell and foam packing material (Figure 1).



Figure 1: Side View of a Model 660 Series Projector

The shield consists of a 1/2-inch outside diameter source tube with its mid-section set in depleted uranium. One end of the source tube is inserted into a 1/2-inch hole in the lock assembly at the rear end-plate. The other end of the shield's source tube is inserted into another 1/2-inch hole in the shipping plug at the front end-plate. Both 1/2-inch holes allow enough radial clearance for a slip fitting attachment. There is approximately 1/8-inch axial clearance at the front end for assembly.

The source is contained in a special-form, encapsulated capsule assembly which is attached to the source wire assembly. This source wire assembly is secured in the package by the lock assembly. The lock assembly, in turn, is attached to the rear end-plate by four #10 stainless steel screws. There are two versions of the lock assembly used on the Model 660 series projectors. The size, material and location of the end-plate screws are identical on both versions.

The shield, end plates and the sheet metal shell are connected by four 3/8-inch thick steel rods which are threaded at each end to accept 1/4-inch screws securing the end plates to the rods.

A polyurethane foam is used to fill the space around the shield and fill void within the sheet metal shell. The foam acts as an impact absorber.

SENTINEL	Test Plan #74
Amersham Corporation	December 17, 1997
Burlington, Massachusetts	Page 3 of 37

The depleted-uranium shield provides the primary radiation protection for the Model 660 Series projector. The shield accomplishes this by limiting the transmission of gamma rays to a dose level at or below 200 mR/hr at the package surface and limiting the dose level at or below 10 mR/hr at one meter from the surface of the package. A fracture of the shield could compromise this protection.

The location of the source relative to its stored position in the shield is also an important safety element. A large displacement of the source relative to its stored position could elevate the dose at the surface of the package above regulatory limits.

There are two possible scenarios to displace the source relative to its stored position:

- The shield could move away from the source if the source tubes were bent or fractured during testing.
- The source could move away from the shield if the lock assembly became loose or was removed from the end plate or if the end plates themselves became loose or were removed during testing.

The tests in this plan focus on damaging those components of the package which could cause the displacement of the source relative to its stored position within the shield and which affect the integrity of the shield itself.

2.0 Purpose

The purpose of this plan, which was developed in accordance with Amersham SOP-E005, is to test and evaluate modifications to the Model 660 Series projectors so that the Type B transport package requirements of 10 CFR 71 are met.

The series includes these models: 660, 660A, 660B, 660E, 660AE, and 660BE. Refer to Appendix A for descriptive drawings of these models.

The Normal Transport Conditions tests (10 CFR 71.71) have been performed on the test specimens as part of Amersham Test Plan #73. These tests included the compression test, penetration test and four-foot free drop.

The Hypothetical Accident Conditions tests (10 CFR 71.73) to be performed are the 30-foot free drop, puncture test, and thermal test.

The crush test (10 CFR 71.73(c)(2)) is not performed because the radioactive contents are special-form radioactive material.

The immersion test and all other conditions specified in 10 CFR 71 will be separately evaluated in accordance with Amersham Work Instruction WI-E08.

3.0 System Failure of Interest

The possible system failure tested in this plan is the failure of the end-plate screws. Failure of the end-plate screws on either plate could cause exposure of the shield to damage during the thermal test, especially if the foam burns.

Two package orientations are specified in this plan:

- Specimen D orientation in Test Plan #70, the orientation that caused the end-plate screw failure.
- Inversion of the Test Plan #70 Specimen D orientation. The impact surface is the top edge of the front plate.

Other orientations that were considered but rejected include:

- End plate sides. Because these surfaces are curved, they provide very small impact surfaces compared to the top or bottom edge of either plate.
- Top edge of the rear plate. The load on the screws provided by this orientation would be less than the load created by the orientation for Specimens B and D.

Figure 2 through Figure 5 show the four possible orientations to impact either the top or the bottom edge of an end-plate. With each figure is a calculation of the loading on the screws of interest. The calculations assume that the end plate is attached only at point **a**.

For sake of illustration, the calculations use 56 pounds for the vertical force. In the calculations:

 $\mathbf{f}_{\mathbf{x}}$ is the component force loading parallel with the axis of the screws.

 $\mathbf{f}_{\mathbf{v}}$ is the component force loading perpendicular to the axis of the screws.

Summing the moments around the impact point (r) and equating it to zero determines the resultant force at the point of the screws (a).

Figures 3 and 4 demonstrate the worst-case loading on the end-plate screws of interests. These are the orientations selected for this test plan.

Two units are to be tested with each orientation, one with the end-plate screws torqued to 120 in-lbs (± 10 in-lbs), the other with the end-plate screws tightened to 10 in-lbs (± 2 in-lbs).

The orientations in this test plan are designed to further the damage to the end-plate screws caused during the execution of Test Plan #73.

SENTINEL Amersham Corporation Burlington, Massachusetts

Test Plan #74 December 17, 1997 Page 5 of 37

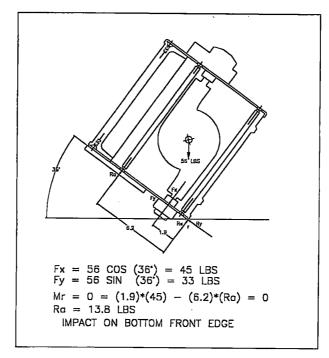


Figure 2: Impact on Bottom Edge of Front End Plate

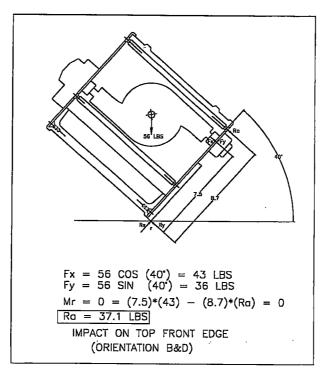


Figure 3: Impact on Top Edge of the Front Plate

SENTINEL Amersham Corporation Burlington, Massachusetts

Test Plan #74 December 17, 1997 Page 6 of 37

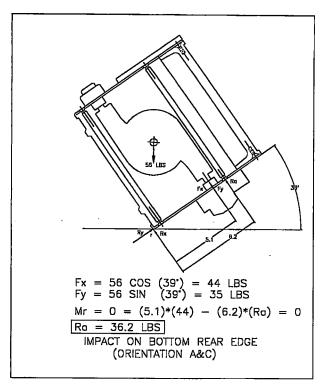


Figure 4: Impact on Bottom Edge of Rear Plate

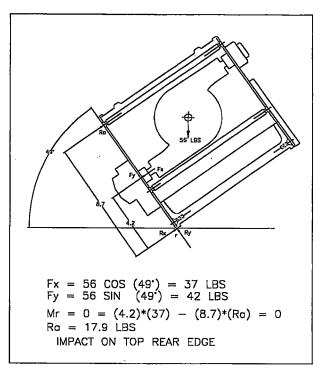


Figure 5: Impact on Top Edge of the Rear Plate

4.0 Construction and Condition of Test Specimens

The test specimens will be the Model 660B units built for the Normal Transport Conditions tests in Test Plan #73. These units were constructed in accordance with Amersham Drawing TP73, Rev. A (Drawing TP73). With the exception of the stainless steel end-plate screws, the units specified in Drawing TP73 are in accordance with the NRC-approved design.

Drawing TP73, specifies the Model 660 Series in its worst-case transport condition, that is, with supplemental lead added to the shield. The added weight induces higher loads during dynamic testing.

For the 30-foot free drop and the puncture tests, the test temperature of specimen must be at or below -40° C at the time of each test, a minimum temperature required by IAEA, Safety Series 6 (1985, as amended 1990). The low temperature represents the worst-case condition for the package because of the potential for reduction in strength of the end-plate screws.

Four test units and two spares were built according to the Drawing TP73 and the Amersham Quality Assurance Program:

End-plate screw torque value	120 in-lbs (±10 in-lbs)	10 m-lbs (±2 m-lbs))
Impact bottom edge of rear plate	Specimen A	Specimen C
Impact top edge of front plate	Specimen B	Specimen D
Spare unit	Specimen S1	Specimen S2

- The tests for Specimens A and C attack the end-plate screws by targeting the bottom edge of the rear end-plate.
- The tests for Specimens B and D attack the top edge of the front plate.

The package orientations specified in this plan are designed to further the damage inflicted on the TP73 test units in testing under Normal Transport Conditions.

NOTE: Because each test is designed to add to damage inflicted on a specific component or assembly in the preceding test, it is important that each specimen maintain its identity throughout the battery of tests and that the setup instructions specific to the specimen are strictly followed.

Table 1 lists the differences between the test specimens and other 660 Series models.

Feature	Test Specimen per Drawing TP73	660 Series Models
Shell Material	Stainless steel	Models 660AE, 660BE and 660E have wires and connectors attached to ends plates for automatic actuation. Models 660, 660A and 660B do not have actuator wires and connectors.
Lock Assembly	Posilok TM	The Model 660 and 660E use a non Posilok lock assembly. All other models feature the Posilok lock assembly.
Actuator Wires and Connectors	No actuator wires and connectors	Models 660AE, 660BE and 660E have wires and connectors attached to ends plates for automatic actuation. Models 660, 660A and 660B do not have actuator wires and connectors.
Shield Capacity	140 Curie	The following models have 120-Curie capacity shields; 660, 660A, 660AE and 660E. The following models have 140-Curie capacity shields: 660B and 660BE.
Body Width	Standard width (5 1/4 inches)	Some Model 660s and Model 660Es have a narrow-body design (4 3/4 inches wide). All other models only use the standard-width body (5 1/4 inches).
Source Tube Material	Titanium	Prior to 1980, the Models 660, 660A, 660AE and 660E were manufactured with zircaloy source tubes. All other units have titanium source tubes.
Use of Lead	Supplemental lead added	Prior to June 1992, some units in the Model 660 Series had lead added to supplement the shielding. The maximum amount of lead added was three pounds. The amount was also limited by a maximum shield weight of 40 pounds and a maximum package weight of 56 pounds.
Weight	54 pounds minimum	Over the last five years, the average package weight has been approximately 50 pounds. Earlier in the product history, the average weight was approximately 53 pounds.
End-plate fasteners	Stainless steel screws MS 51959-81	Standard Model 660 Series projectors have commercial carbon steel end-plate screws.

.

Table 1: Model 660 Series Variations

Feature	Test Specimen per Drawing TP73	660 Series Models
End-plate screw torque value	Specimens A, B and S1 end-plate screws tightened to 120 in-lbs $(\pm 10 \text{ in-lbs})$ Specimens C, D and S2 end-plate screws tightened to 10 in-lbs $(\pm 2 \text{ in-lbs})$	Carbon steel screws used in the standard Model 660 Series projectors are torqued to 80 in-lbs (±10 in-lbs)

Table 1: Model 660 Series Variations (Continued)

The differences listed in Table 1 impact the testing or are made for the following reasons:

- Shell Materials: The shell thickness is 1/16-inch for the carbon steel and stainless steel versions. The likelihood of a crack or brittle flaw increases with the thickness of the section and is a problem in sections greater than 1/8-inch. Additionally, the temperature for transition from ductile to brittle failure is lower for the thinner sections. The thicker carbon steel end plates will reach the ductile-to-brittle transition temperature long before the shell does. The end plates are structural members, while the shell is not structurally significant.
- Lock Style: Damage to the Posilok lock assembly used on the test specimen would represent damage to any Model 660 Series lock assembly, including the non Posilok style assemblies used on the Model 660 and the Model 660E.

The internal components of both lock assemblies are protected by the same lock assembly cover and practically the same selector ring. The cover and selector ring must be significantly damaged before an impact can disrupt the internal components' securement of the source. Because of the strength of the cover and the selector ring, damage to the source securement is more likely to occur from the failure of the lock assembly screws. All models use the same type and size screws in the same locations.

- Actuator Wires and Connectors: The additional parts used for automatic actuation provide no structural support.
- Shield Capacity: The lower-capacity shields are either lighter than or the same weight as the shield used on the Model 660B, making the 660B the worst case for shield failures of interest in these tests.
- **Body Width:** The end plates and shells of the narrow-body versions of the Model 660 and the Model 660E would provide smaller impact surfaces than the standard-width plates and shell used in the test specimen. The smaller impact surfaces would result in greater surface deformation and less deceleration on impact. As a result there would be less transfer of impact forces that could affect the integrity of the source securement.

• Source Tube Material: The Model 660 Series projectors have been manufactured with titanium source tubes exclusively since 1980. Because this represents our current manufacturing methods and because the majority of Model 660 Series units currently in use have titanium source tubes, the test specimens will be manufactured with titanium source tubes. Based on an evaluation of the damage caused by the tests, we will assess the implications for previously fabricated packages which utilized zircaloy.

Note that although listed on the descriptive drawings, stainless steel source tubes have never been used in the fabrication of Model 660 Series units, nor do we intend to use them in future fabrication.

- Supplemental Lead: Prior to June 1992, supplemental lead was used in the production of Model 660 Series projectors with the depleted-uranium shield. Although the addition of supplemental lead is no longer a production technique, the test specimens will be fabricated with the supplemental lead to ensure the maximum device mass.
- **Package Weight:** Because of more efficient casting and the elimination of supplemental lead shielding, the average weight of Model 660 units produced in the last five years is three pounds less than the average weight for units produced in the early years of the series history. Two steps will be taken to build test specimens that will weigh at least 54 pounds:
 - Heavier depleted-uranium shields will be fabricated.
 - Supplemental lead will be added to the shield.

The TP73 will be consistent with current manufacturing procedures and will represent the heavier units in the Model 660 population. Ninety-seven percent of all 660 units produced weigh 54 pounds or less.

- End-plate screws: Stainless steel end-plate screws are being used on the TP73 to test the ability of these fasteners to prevent the failure of the end-plate screws seen in TP70 Specimen D.
- End-plate screw torque values: The greater strength of the selected stainless steel end-plate screws allows tightening to a higher torque value than the carbon steel screws. The higher value is being tested with Specimens A and B to evaluate a new manufacturing standard. A low torque value is being tested with Specimens C and D to simulate an untorqued assembly.

5.0 Material and Equipment List

The test worksheets in Section 7.0 list the key materials and equipment specified in 10 CFR 71 and the necessary measurement instruments.

When video recording is specified in the following tests, select video cameras with the highest shutter speed practical to record testing.

Additional materials and equipment may be used to facilitate the tests.

6.0 Test Procedure

Four units are tested in parallel with the same sequence but with two different package orientations that test the use of stainless steel end-plate screws, as described in Section 3.0. The tests have the following sequence:

- 1. Test specimen preparation and inspection
- 2. 30-foot free drop (10 CFR 71.73(c)(1))
- 3. Puncture test (10 CFR 71.73(c)(3))
- 4. Intermediate test inspection
- 5. Thermal test (10 CFR 71.73(c)(4))
- 6. Final test inspection

6.1 Roles and Responsibilities

The responsibilities of the groups identified in this plan are:

- Engineering executes the tests according to the test plan and summarizes the test results. Engineering also provides technical input to assist Regulatory Affairs and Quality Assurance as needed.
- Regulatory Affairs monitors the tests and reviews test reports for compliance with regulatory requirements.
- Quality Assurance oversees test execution and test report generation to ensure compliance with 10 CFR 71, other regulatory requirements and the Amersham Quality Assurance Program.
- Engineering, Regulatory Affairs and Quality Assurance are jointly responsible for assessing test and specimen conditions relative to 10 CFR 71.
- Quality Control, a function that reports directly to Quality Assurance, is responsible for measuring and recording test and specimen data throughout the test cycle.
- The managers directly responsible for Engineering, Regulatory Affairs and Quality Assurance will identify and document personnel who are qualified to represent their departments in carrying out this test plan.

6.2 Test Specimen Preparation and Inspection

To prepare the test units:

- 1. Select the units tested under Amersham Test Plan #73.
- 2. Inspect the test units to ensure that they match the units described on the Test Plan #73 worksheets and attached damage assessments.
- 3. Confirm that a radiation profile was performed and recorded in accordance with Amersham Work Instruction WI-Q09 at the conclusion of Test Plan #70.
- 4. Measure and record the weight of each test specimen.
- 5. Prepare the packages for transport.

6.3 30-foot Free Drop Test (10 CFR 71.73(c)(1))

The first Hypothetical Accident Conditions test is the 30-foot free drop as described in 10 CFR 71.73(c)(1). This drop compounds any damage caused in the three Normal Transport Conditions tests in Test Plan #73.

Use *Checklist 1: 30-foot Free Drop* on page 27 to ensure that the test sequence is followed. Date and initial all action items, and record required data on the worksheet.

Figure 6 illustrates the orientation for Specimens A and C. Figure 7 shows the orientation for Specimen B and D. The orientations are the same as those for the four-foot free drop in Test Plan #73 except the package is raised 30 feet above the drop surface.

This test requires that test specimens be at or below -40° C at the time of the drop. Follow the Worksheet instructions for measuring and recording the specimen temperature before and after the drop.

6.3.1 30-foot Free Drop Setup

To set up a package for the 30-foot drop test:

- 1. Use the drop surface specified in Drawing AT10122, Rev B.
- 2. Measure and record the weight of test specimen.
- 3. Measure and record the specimen's internal and surface temperature, and ensure that the package is at or below -40° C.
- 4. Place the specimen on the drop surface and position it according to the appropriate orientation.

Refer to Figure 6 for Specimens A and C.

Refer to Figure 7 for Specimens B and D.

- 5. Align the selected center-of-gravity marker as shown in the referenced drawing.
- 6. Raise the package so that the impact target is 30 to 32 feet above the drop surface.

6.3.2 Orientation for the 30-foot Free Drop: Specimens A & C

Figure 6 shows the package orientation for Specimens A and C for the 30-foot free drop.

This orientation targets the bottom edge of the rear end-plate with the objective of loosening or shearing the end-plate screws which hold the plate to the steel connecting rods. The bottom edge of the plate provides the greatest surface area for a direct hit, and thus the most rapid deceleration, and was proven to be the most damaging to the unit during previous testing in Test Plan#70.

Make sure the center of gravity is directly over the point of impact.

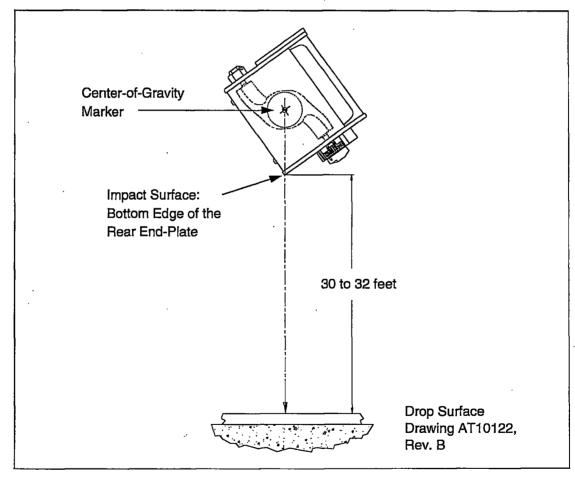


Figure 6: Orientation for the 30-foot Free Drop: Specimens A & C

6.3.3 Orientation for the 30-foot Free Drop: Specimens B & D

Figure 7 shows the package orientation for Specimens B and D for the 30-foot free drop.

This orientation targets the top edge of the front end-plate. The drop is designed to cause deformation of the end plate, which in turn will create multiple loads paths on the end-plate screws.

Make sure the center of gravity is directly over the point of impact.

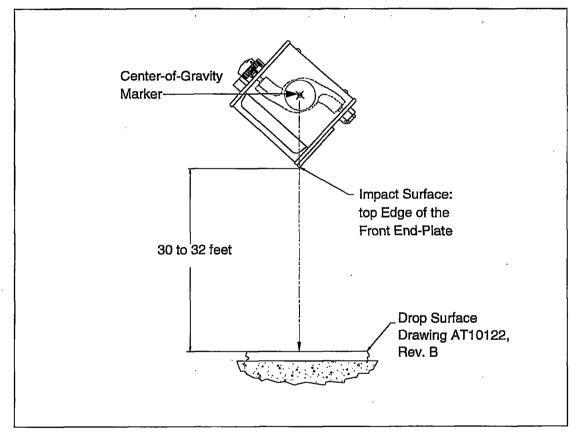


Figure 7: Orientation for the 30-foot Free Drop: Specimens B & D

6.3.4 **30-foot Free Drop Test Assessment**

Upon completion of the test, Engineering, Regulatory Affairs and Quality Assurance team members will jointly perform the following tasks:

- Review the test execution to ensure that the test was performed in accordance with 10 CFR 71. Units S1 and S2 may need to be tested, possibly with torque adjustments, to ensure test compliance.
- Make a preliminary evaluation of the specimen relative to the requirements of 10 CFR 71.
- Assess the damage to the specimen to decide whether testing of that specimen is to continue.
- Evaluate the condition of the specimen to determine what changes are necessary in package orientation in the puncture test to achieve maximum damage.

6.4 Puncture Test (10 CFR 71.73(c)(3))

The 30-foot free drop is followed by the puncture test per 10 CFR 71.73(c)(3), in which the package is dropped from a height of at least 40 inches onto the puncture billet specified in Drawing CT10119, Rev. C.

The billet is to be bolted to the drop surface used in the free drop tests (Figure 8).

Use *Checklist 2: Puncture Test* on page 31 to ensure that test sequence is followed. Date and initial all action items, and record required data.

6.4.1 Puncture Test Setup

There are two different package orientations for the puncture test. Each orientation assures that the package lands on the component or assembly of interest.

NOTE:

Because each test is designed to add to damage inflicted on a specific component or assembly in the preceding test, it is important that each specimen maintain its identity throughout the battery of tests and that the setup instructions specific to the specimen are strictly followed.

This test requires that the test specimens be at or below -40° C at the time of the test. The worksheet calls for measuring and recording the specimen temperature before and after the test.

This test uses the 12-inch high puncture billet (Drawing CT10119, Rev. C). The billet meets the minimum height (8 inches) required in 10 CFR 71.73(c)(3). The specimen has no projections or overhanging members longer than 8 inches which could act as impact absorbers, thus allowing the billet to cause the maximum damage to the specimen.

To set up a package for the puncture test:

- 1. Measure and record the weight of the package.
- 2. Measure and record the specimen's internal and surface temperature, and ensure that the package is at or below -40° C.
- 3. Position the unit according to the appropriate orientation:

For Specimens A and C, refer to Figure 8 on Page 18.

For Specimens B and D, refer to Figure 9 on Page 19.

- 4. Check the alignment of the specified center-of-gravity marker with the targeted point of impact.
- 5. Raise the package so that there is 40 to 42 inches between the package and the top of the puncture billet.

6.4.2 Orientation for the Puncture Test: Specimens A & C

The orientation for Specimens A and C (Figure 8) targets the bottom edge of the rear end-plate to distort the end plate and possibly loosen or shear the end-plate screws.

The bottom edge provides the largest unobstructed flat surface on the plate. The impact will crush the bottom of the end plate into the polyurethane foam, the softest material in the package, and cause the maximum distortion of the plate. Attacking the top edge was rejected because the flat surface area is less than half that of the bottom edge and the carrying handle would deflect much of the energy.

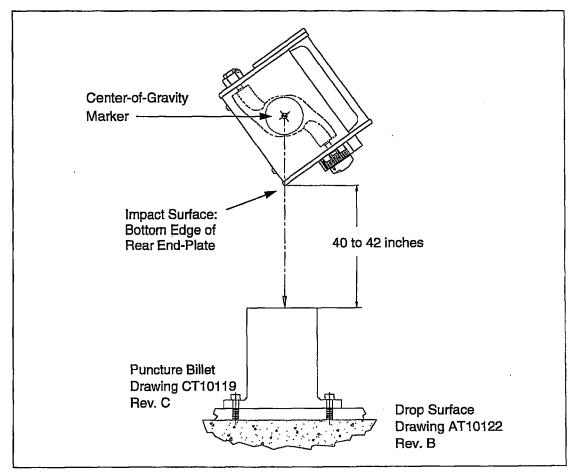


Figure 8: Orientation for the Puncture Test: Specimens A & C

6.4.3 Orientation for the Puncture Test: Specimens B & D

For Specimen B and D, the puncture test impact point is the lower left corner of the rear endplate (Figure 9). This orientation continues the attack on the bottom left screw on the rear end plate that was inflicted with the penetration test and the two free drops. The impact will also have the effect of increasing any gap between the end plate and the shell caused by the previous tests.

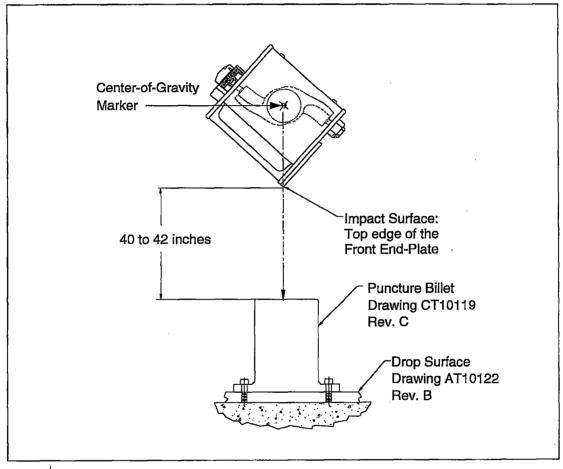


Figure 9: Orientation for the Puncture Test: Specimens B & D

6.4.4 Puncture Test Assessment

Upon completion of the test, Engineering, Regulatory Affairs and Quality Assurance team members will jointly perform the following tasks:

- Review the test execution to ensure that the test was performed in accordance with 10 CFR 71.73.
- Make a preliminary evaluation of the specimen relative to the requirements of 10 CFR 71.73.
- Assess the damage to the specimen to decide whether testing of that specimen is to continue.
- Evaluate the condition of the specimen to determine whether the thermal test should be performed with the specimen.
- Evaluate the condition of the specimen to determine the package orientation for the thermal test to achieve maximum damage.

As part of the evaluation, measure the weight of the specimen.

6.5 Intermediate Test Inspection

Perform an intermediate test inspection after the puncture test.

- 1. Measure and record any damage to the test specimen.
- 2. If a source can be installed without affecting the integrity of the test specimen, profile the package using an active source in accordance with Amersham Work Instruction WI-Q09.
- 3. Assess the significance of any change in radiation at the surface or at one meter from the package.

6.6 Thermal Test (10 CFR 71.73(c)(4))

The final requirement is the thermal test specified in 10 CFR 71.73(c)(4).

To ensure sufficient heat input to the test specimens, each specimen will be pre-heated to a temperature of at least 800° C and held to at least that temperature for 30 minutes. This test condition provides heat input in excess of the requirements specified in 10 CFR 71.73(c)(4), which does not include a pre-heat condition. The pre-heat condition assures equivalent heat input regardless of emissivity and absorptivity coefficients.

The test environment is a vented electric oven operating greater than 800° C. There will be sufficient air flow to allow combustion. Air will be forced into the oven at a minimum rate of 9.6 cubic feet per minute to ensure sufficient oxygen to fully combust all package materials that are capable of burning. This rate is based on the following analysis:

- 1. The only combustible material in the TP73 is the polyurethane foam.
- 2. The chemical composition of polyurethane is $[C_{26}H_{33}NO_{13}]_n$.
- 3. The products of combustion are carbon dioxide (CO_2) and water (H_2O) and the molecular weights of the component materials are:

C = 12 H = 1 O = 16 N = 14

4. The maximum mass of the polyurethane in a TP73 is 988 grams. The maximum amounts of carbon and hydrogen present in the polyurethane are computed as follows:

Polyurethane	C ₂₆	H ₃₃	N	O ₁₃
Molecular Weight	(26x12) +	(33x1)+	(1x14)+	(13x16)
567 =	312 +	33 +	14 +	208
Percent by Mass	55.0%	5.8%	2.5%	36.7%
988 g=	543g+	57g +	25g +	363g

5. The amount of oxygen required to fully combust the carbon to carbon dioxide is computed as follows:

Carbon Dioxide	Ċ	0 ₂
Molecular Weight	(1x12) +	(2x16)
44 =	12 +	32

For a given mass of carbon, 32/12 = 2.67 times that mass of oxygen is required to fully combust the carbon to carbon dioxide. For a TP73 containing 543 grams of carbon, full combustion would require 1450 grams of oxygen.

6. The amount of oxygen required to fully convert the hydrogen to water is computed as follows:

Water	H ₂	0
Molecular Weight	(2x1) +	16
18 =	2+	16

For a given mass of hydrogen, 16/2 = 8 times that mass of oxygen is required to fully convert the hydrogen to water. For a TP73 with 57 grams of hydrogen, full combustion would require 456 grams of oxygen.

- 7. The sum of these oxygen requirements (1450g + 456 g) less the oxygen supplied by the polyurethane (-363 g) equals 1543 grams of oxygen to assure sufficient oxygen to burn the polyurethane foam. At standard conditions, the composition of air is 23.2% oxygen by mass¹. Therefore, 6650 grams of air are required.
- 8. The volume of air is computed at a density of 1.225 grams/liter to be 192 cubic feet:

 $6650g/1.225g/l = 5430 l = 5.43m^3 = 192 ft^3$

9. A 50% safety factor is added and the volume is distributed over the 30-minute test period to determine a minimum air flow rate of 9.6 cubic feet per minute:

 $(192 \text{ ft}^3)(1.5) / 30 \text{ min.} = 9.6 \text{ ft}^3/\text{min.}$

The air will be introduced as compressed air passing through a flowmeter and into the oven via metal tubing. A sufficient length of tubing will be inside the oven to ensure sufficient preheating.

The temperature of the package's exterior surface closest to the air entry point will be monitored throughout the test to ensure that the package remains above 800° C.

If the specimen is burning when it is removed, the unit is allowed to extinguish by itself and then cool naturally. The final evaluation of the package is performed when the specimen reaches ambient temperature.

^{1.} Avallone, Eugene A., and Theodore Baumeister III, Editors, *Marks' Standard Handbook for Mechanical Engineers*, Ninth Edition (New York: McGraw-Hill Book Company, 1987), page 4-27

6.6.1 Thermal Test

To perform the thermal test:

- 1. Bring the oven temperature above 800° C.
- 2. Attach thermocouples to the package's internal and external measurement locations, and inside the oven.
- 3. Place the package in the oven and close the door.
- 4. When the internal temperature of the package goes above 800° C, start air flow and start a 30-minute timer.
- 5. Measure and record the oven temperature, test specimen internal and external temperatures, and the air flow rate. Record whether there is any combustion.
- 6. Monitor the specimen's internal and external temperatures, and the oven temperature throughout the 30-minute test period to ensure that all temperatures remain above 800° C.
- 7. Monitor the airflow rate throughout the test period to ensure that it remains above 9.6 ft^3 /minute.
- 8. At the end of the 30 minutes, repeat Step 5.
- 9. Remove the test specimen from the oven.
- 10. Allow the package to self-extinguish and cool.

6.6.2 Thermal Test Assessment

Upon completion of the test, Engineering, Regulatory Affairs and Quality Assurance team members will jointly perform the following task:

• Review the test execution to ensure that the test was performed in accordance with 10 CFR 71.

6.7 Final Test Inspection

Perform the following inspections after completion of the thermal test:

- 1. Measure and record any damage to the test specimen.
- 2. Profile the package using an active source in accordance with Amersham Work Instruction WI-Q09.
- 3. Assess the significance of any change in radiation at one meter from the package.
- 4. Determine whether it is necessary to dismantle the test specimen for inspection of hidden component damage or failure.
- 5. If you decide to proceed with the inspection, record and photograph the process of removing any component.
- 6. Measure and record any damage or failure found in the process of dismantling the test specimen.

6.8 Final Assessment

Engineering, Regulatory Affairs, and Quality Assurance team members will make a final assessment of the test specimen, and jointly determine whether the specimen meets the requirements of 10 CFR 71.73.

7.0 Worksheets

Use the following worksheets for executing these tests. There are two worksheets for each test: an equipment list and a test procedure checklist.

Use the test equipment list to record the serial number of each measurement device used. Attach a copy of the relevant inspection report or calibration certificate after you have verified the range and accuracy of the equipment.

Quality Control will initial each step on the checklist as it is executed and record data as required. The Engineering, Regulatory Affairs and Quality Assurance representatives must witness all testing to ensure the testing is performed in accordance with this test plan and 10 CFR 71.

Make copies of the forms for additional attempts. Maintain records of all attempts.

Description	Enter the Model and Serial Number	Attach Inspection Report or Calibration Certificate
Drop Surface, Drawing AT10122, Rev. B		
Weight Scale		
Thermometer		
Thermocouple flexible probe		
Thermocouple surface probe		
Record any additional tools used to facilitate the certificate.	test and attach the appropriate in	nspection report or calibration
Verified by:	Signature	Date
Engineering		
Regulatory Affairs		
Quality Assurance		

Equipment List 1: 30-foot Free Drop

١,

Checklist 1: 30-foot Free Drop

Test Location:

	Step	Specimen A	Specimen B	Specimen C	Specimen D
1.	Measure and record test specimen's weight.				
	Record the specimen's weight:	······································			
	Note the instrument used:				
2.	Immerse the test specimen in dry ice as needed to bring specimen temperature below -40° C.				
Ste	ps 1 through 2 witnessed by:				
	Engineering				
	Regulatory Affairs				
	Quality Assurance		· · · · · · · · · · · · · · · · · · ·		
3.	Measure the ambient temperature.				
	Record ambient temperature:				
	Note the instrument used:				
4.	Attach the test specimen to the release mechanism.				
5.	Begin video recording of test so that the impact is recorded.				
6.	Measure the temperature of the specimen. Ensure that the specimen is below -40° C.				
	Record the specimen's internal temperature:				
	Note the instrument used:				· · · · · · · · · · · · · · · · · · ·
	Record the specimen's surface temperature.				
· · · · ·	Note the instrument used:				
7.	Lift and orient the test specimen as shown in the referenced figure for the specimen.	Figure 6 on Page 14	Figure 7 on Page 15	Figure 6 on Page 14	Figure 7 on Page 15
8.	Inspect the orientation setup and verify the drop height.				
9.	Photograph the setup in at least two perpendicular planes.				

Checklist 1: 30-foot Free Drop (Continued)

Test Location:

Attempt Number:

Step	Specimen A	Specimen B	Specimen C	Specimen D
Steps 3 through 9 witnessed by:				
Engineering				
Regulatory Affairs				
Quality Assurance			· · · · · · · · · · · · · · · · · · ·	
10. Release the test specimen.		-		
11. Measure the surface temperature of the test specimen.				
Record the surface temperature:			· · · · · · · · · · · · · · · · · · ·	······································
Note the instrument used:	· · · · · · · · · · · · · · · · · · ·			
12. Measure and record the test specimen's weight.				
Record the specimen's weight:				
Note the instrument used:				
 Pause the video recorder. Ensure that the point of impact and orientation specified in the plan have been achieved and recorded. 				
14. Record damage to test specimen on a separate sheet and attach.				
Steps 10 through 14 witnessed by:				
Engineering		1		
Regulatory Affairs				
Quality Assurance				

.,

Test Plan #74 December 17, 1997 Page 29 of 37

Checklist 1: 30-foot Free Drop (Continued)

Test Location:

Step	Specimen A	Specimen B	Specimen C	Specimen D
 15. Engineering, Regulatory Affairs and Quality Assurance make a preliminary assessment relative to 10 CFR 71. Record the assessment on a separate sheet and attach. Determine what changes are necessary in package orientation for the puncture test to achieve maximum damage. 				
Test Data Accepted by (Signature):			Date:	
Engineering				
Regulatory Affairs				
Quality Assurance				

J

Equipment List 2: Puncture Test

Description	Enter the Model and Serial Number	Attach Inspection Report or Calibration Certificate
Drop Surface, Drawing AT10122, Rev. B		· · · ·
Puncture Billet, Drawing CT10119, Rev. C		
Weight Scale		
Thermometer		
Thermocouple flexible probe		
Thermocouple surface probe		
Record any additional tools used to facilitate the t certificate.	est and attach the appropriate in	nspection report or calibration
Verified by:	Signature	Date
Engineering		
Regulatory Affairs		
Quality Assurance		

Checklist 2: Puncture Test

Test Location:

	Step	Specimen A	Specimen B	Specimen C	Specimen D
1.	Immerse the test specimen in dry ice as need to bring the specimen's temperature below -40° C.				
Ste	p 1 witnessed by:				
	Engineering				
	Regulatory Affairs				······································
	Quality Assurance		· ·		
2.	Measure the weight of the specimen.				
	Record the specimen's weight:				
	Note instrument used:		· · · · · · · · · · · · · · · · · · ·		
3.	Measure the ambient temperature.				
	Record ambient temperature:				
	Note the instrument used:				
4.	Attach the test specimen to the release mechanism.				
5.	Begin video recording of test so that the impact is recorded.				
6.	Measure the surface temperature of the specimen. Ensure that the specimen is below -40° C.				
	Record the specimen surface temperature:				
	Note the instrument used:				
7.	Lift and orient the test specimen as shown in the referenced figure for the specimen.	Figure 8 on Page 18	Figure 9 on Page 19	Figure 8 on Page 18	Figure 9 on Page 19
8.	Inspect the orientation setup and verify drop height.				

Checklist 2: Puncture Test (Continued)

Test Location:

Attempt Number:

Step	Specimen A	Specimen B	Specimen C	Specimen D
9. Photograph the setup in at least two perpendicular planes.				
Steps 2 through 9 witnessed by:				
Engineering				
Regulatory Affairs		· · · · · · · · · · · · · · · · · · ·		•
Quality Assurance				
10. Release the test specimen.				
11. Measure the surface temperature of the test specimen.				
Record the surface temperature:				
Note the instrument used:				
12. Measure and record the test specimen's weight.				
Record the specimen's weight:			-	
Note the instrument used:				
 Pause the video recorder. Ensure that the point of impact and orientation specified in the plan have been achieved and recorded. 				
14. Record damage to test specimen on a separate sheet and attach.		·		
Steps 10 through 14 witnessed by:				
Engineering				
Regulatory Affairs				
Quality Assurance				

.

,

Checklist 2: Puncture Test (Continued)

Test Location:

Attempt Number:

Step	Specimen A	Specimen B	Specimen C	Specimen D
 15. Engineering, Regulatory Affairs and Quality Assurance make a preliminary assessment relative to 10 CFR 71. Record the assessment on a separate sheet and attach. Determine the package orientation for the thermal test that will achieve maximum damage. 				
Test Data Accepted by (Signature):			Date:	
Engineering				
Regulatory Affairs				
Quality Assurance				

۰.

.

ر

Equipment List 3: Thermal Test

Description	Enter the Model and Serial Number	Attach Inspection Report or Calibration Certificate
Air Flowmeter		
Thermocouple (internal)		
Thermocouple (external)	•	
Thermocouple (oven)		
Temperature recorder		
Record any additional tools used to facilitate the t certificate.	est and attach the appropriate in	spection report or calibration
· · · · · · · · · · · · · · · · · · ·		
Verified by:	Signature	Date
Engineering		
Regulatory Affairs		
Quality Assurance		

Checklist 3: Thermal Test

Test Location:

				·····-	rı
	Step	Specimen A	Specimen B	Specimen C	Specimen D
1.	Pre-heat the oven to a temperature above 800° C.				
2.	Attach the thermocouples the specimen's internal and external measuring points.				
3.	Place the package in the oven and close the oven door.				
	Record the date and time that the package is placed in oven.				
4.	When the specimen's internal temperature exceeds 800° C, start the air flow into the oven. Record the time.				
Ste	ps 1 through 4 witnessed by:				
	Engineering		· ·		
	Regulatory Affairs				
	Quality Assurance				**
5.	Measure the oven temperature, the specimen's internal and external temperatures and the air flow rate.				
	Record the oven temperature:				1
	Note instrument used:				
	Record the specimen's internal temperature:			,	
	Note instrument used:	· · ·			
	Record the specimen's external temperature:				
	Note instrument used:]	
	Record airflow rate:				
	Note instrument used:				
6.	Monitor the internal and external temperatures of the specimen and the oven temperature throughout the 30-minute period to ensure that they are above 800° C.				

.

Test Plan #74 December 17, 1997 Page 36 of 37

Checklist 3:	Thermal	Test ((Continued))
---------------------	---------	--------	-------------	---

.

Test Location:

Step	Specimen A	Specimen B	Specimen C	Specimen D
 Monitor the airflow throughout the 30-minute period to ensure a rate of at least 9.6 ft³/min. 				
8. At the end of the 30-minute period, repeat step 5 using the same measurement devices.				
Record the oven temperature:				
Record the specimen's internal temperature:				
Record the specimen's external temperature:				
Record intake air flow velocity:	·			
Steps 5 through 8 witnessed by:				
Engineering				
Regulatory Affairs				
Quality Assurance	· · · · · · · · · · · · · · · · · · ·			
9. Remove test specimen from the oven.				
Record time the specimen is removed.				
Describe combustion when door is opened to remove specimen.				
NOTE: If specimen continues to burn,	let it self-ext	inguish and c	cool naturally	·.
10. Measure the ambient temperature.				
Record the ambient temperature:				
Note the instrument used:				
11. Photograph the test specimen and any subsequent damage				
12. Record damage to test specimen on a separate sheet and attach.				
Steps 9 through 12 witnessed by:				
Engineering				
Regulatory Affairs				
Quality Assurance				

Checklist 3: Thermal Test (Continued)

Test Location:

Step	Specimen A	Specimen B	Specimen C	Specimen D
13. Engineering, Regulatory Affairs and Quality Assurance make a preliminary assessment relative to 10 CFR 71. Record the assessment on a separate sheet and attach.				
Test Data Accepted by (Signature):			Date:	
Engineering				
Regulatory Affairs				
Quality Assurance		1		

Appendix A: Drawings

Test Specimen TP73, Rev. A

Model 660 Gamma Ray Projector Shipping Container Descriptive Assembly C66025, Rev. F (3 sheets)

Model 660 Gamma Ray Projector Shipping Container Descriptive Assembly C66025, Rev. B (4 sheets)

Model 660 Gamma Ray Projector Shipping Container Descriptive Assembly C66030, Rev. D (3 sheets)

Model 660 Gamma Ray Projector Shipping Container Descriptive Assembly C66030, Rev. A (3 sheets)

Model 660 Gamma Ray Projector Shipping Container Descriptive Assembly C66030, Rev. – (4 sheets)

3

5

	PERSON OF ANCIONA CO	THE DESCRIPTION OF THE ACT OF THE PROPERTY AND A THE STATE.	
LIATERIALE.	PLAN (73	BURLINGTON, NA 01803	
SURFACE TEXTURE: U	With States		٦
	X ± 0.1		
APPROVED OCTORD DRAMING	WICLES & I'		Ā
			_

n

	TED		1		RAIRAT	THE PROBLETS	DVV10004		
					560 GA	wma ray f	ROJECT	OR	
2. Turky 00				Shipping container Descriptive Assembly					
ologi A	<u> </u>	<u> </u>			146.0				
Jon 23 J	ANE ANE	•			1	66025		티	

111313 SEE ECO 1222

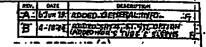
	Ε	(95)	SEE	E(01	222	2	A	6 AN 19	SEE SHT	1		-
٠	۴	3/30/2	SEE	ECO12	22 84	d de			WAS SHT			
		·					۵	11-21- 89	512 SIT W/S SH	1 & THIS T Z OF: 1	SHT I	1
							A		SEE SHT		F	-/A
								_				

NOT	ED		THE ADDA TION PRODUCTS DAVISON, SUBJECT BUILDING AL OTHER
Andread An and a second and a second as a			MODEL 660 GAMMA RAY PROJECTOR SHIPPING CONTAINER DESCRIPTIVE ASSEMIDLY
BP 23 SIM FL	JOST AND AN AVAILABLE	 Ę	

AS NOTED	Trati On- RADIATION PRODUCTS Division
	MODEL 660 GAMMA RAY PROJECTOR SHIPPING CONTAINER DESCRIPTIVE ASSEMBLY
Mind 18 Apr 1 and a	C 66025

11-22

*B*9


D 9-4

1-13

WED SHT A OF A 4 OF THIS SHI WAS-

E.C.O. #718

SEE ELO 1222 ADDED LEAD TO NOTE PER ECO 12

066025

											•
NOTEL		i			MODU		IVISIO?	•			
		MO	u DEI	660	GAM	IA RA	AY P	ROJE	CTOR		
Muly 108	17117-5° 17		<u>im</u>	- Shipping Container							
setongs in	, XXL		\	D		CRIPT		SSE	MB	LY	
VTINITED IT	NOL	<u> </u>	<u> </u>			Č	ື 66	025	5		(登
	PRACTIONS.	A	<u></u>	SCALE	H			HELT	1 12	4	- Prific

Ä	610179	SEE SHT 1	/RET-/
		WAS SHT 2.053	

066026

				•				:	E.
NOT	ED				Í	RADIATIC	HAL OFFICIAT	YS DIVISIO	HR - 1
F805M				MODE	Lœ	50 GAM	MA RAY	PROJE	CTOR
Derfy 6. 27-2	FRIST FRAzen an			- i i i i i i i i i i i i i i i i i i i	HIP	۳. ER			
04085 W	<u>,72</u>	<u>^`</u>				Daves_ 140.	VE ASSEME		LAUK
ATTRONED BY	ANGLES FINICEDORS	A 	·¥	NALE 2:		66	025 Ishtet	2 0 4	; , ,
			1	R -				والتحقيقة والأ	

66025

	•			- 44		• 1
NOTE	>		had a per	RADIATION	PRODUCTS DIV	MOIEION
Pixelet				660 GAM		ULE CTOR
2. Tunky 1. 5-8		Mett in	- `. e	Shipping (ONTAINER	
entering in				RIPTIVE /	ASSEMBL	Y
	A STR		CLASSIFICATION S		5025	40.
	FRACTIONS A		1	the second se		4 1/47
		~				_

C66025

		1	
		•	

SEE SHT

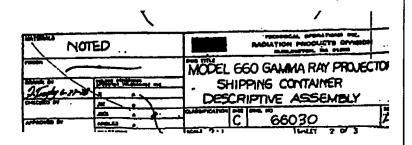
WAS SHT 3 OF 3

*fo*T

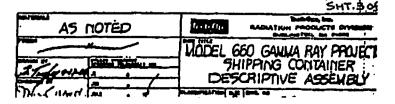
THOUSEL GRANTONS INS
A STATE OF
WAREK EGO CALAN DAY DONAD TOP
STATISTICS CONTRACTOR
DESCRIPTIVE YASSEMBLY
and a state of the
And the second s
FINGTONS A

AS	NOTED	Tech Ons - RADIATION PRODUCTS DMS/ON BURLINGTON, MA BIRDS	Π
		MODEL 660 GAMMA RAY PROJECT	Ŧŀ
2 Trafer NIR			
Man 18Amer		CLASSIFICATION Set 044 M. 66025	ᅴ
Par adard			믝.

SEE SHI


Therefield, armidition and, (.
RADATION PRODUCTS DIVISION
MODEL 660 GAMMA RAY PROJECT
SHIPPING CONTAINER
DESCRIPTIVE ASSEMBLY
A REAL PROPERTY AND A REAL PROPERTY A REAL PROPERTY A REAL PROPERTY A REAL PROPERTY AND A REAL PROPERTY A
C 66030
100 211 Buer 203

SEE FOR LAR


	•		* **	• :
NOTE	Ð			•
7 mpali			MODEL 660 GAMMA RAY PROJE	CTOR
2. Trada	·····	h.ei	SHIPPING CONTAINER	
CHECKE A		<u>\</u>	DESCRIPTIVE ASSEMBLY	
	A 105			
GP. 23 SANSL	AND A		<u>C 66030</u>	坦

~~

AS NOTED	Treloge AADIATIUM PRODUCTS DIVISION
2 for one of a second	HODEL 660 GANNA RAY PROJECTOR SHIPPING CONTAINER DESCRIPTIVE ASSEMBLY
The state of the s	C 66030

1 98 2411

		••		. س		1
NOTEL)' it'''	Y		RADIATION PROD	ATTO DEVISION	*
	- Ha		MODEL 6 9H	60 ganma r Ipping cont	ainer	ECTOR
		<u>}</u>	DESCR	PTIVE ASS	EMBLY	
autor and	PACTORS A	<u> </u>		0003 19441	1 0 4	12

NO	ED		TECHNOLAL GYURAYAMA ATC.
1		MOCEL 660	GAMMA RAY PROJECTO
· Scheres		Sri)PPi	G CONTAINER
	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100		DVE ASSEMELY
1.2.2	reactions a	10 1 10 1 10 1	00050 [-

rs 417 1

에 영향을 알 생 것을 바꾸었는 것을 알 수 있는 것이다.

SENTINEL Amersham Corporation Burlington, Massachusetts Test Plan #74 December 17, 1997 Appendix B

Appendix B: Selected Fasteners

The stainless steel screw selected for the end-plate fasteners is 51959-81 as specified in Military Standard 51959, a copy of which is included in this appendix. The item is highlighted on page 2 of the specification.

The toughness versus temperature curve below shows the consistent toughness of stainless steel over a wide range of temperatures. The curve is excerpted from Deutschman, Aaron D, Walter J. Michels, and Charles E. Wilson, *Machine Design: Theory and Practice* (New York: Macmillan Publishing Co., Inc. 1975), page 136.

Low temperature effects

As the temperature is lowered, there is an increase in yield strength, tensile strength, elastic modulus, and hardness and a decrease in ductility for metals such as aluminum and aluminum alloys, nickel alloys, austenitic steels, lead, and copper. Carbon and low alloy steels tend to become embrittled at much higher temperatures than the aforementioned metals. Embrittlement is measured by loss of toughness over a small temperature range (for example, see Section 3.21) when tested by the Charpy or Izod machines. The transition temperature is taken to be that for which the impact energy is reduced by 50 % of its ductile value. Figure 3-43 shows some average value curves of toughness (energy in foot-pounds) versus temperature for a variety

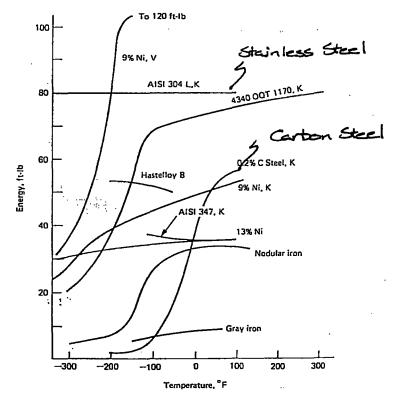


Figure 3-43 Toughness versus temperature for several metals. Note the sharp drop in toughness that takes place within a narrow temperature range. [From V. M. Faires: Design of Machine Elements, 4th ed. The Macmillan Company, New York, 1965.]

9

32

2×

ពុគ

ភូភិ A

ವಳ

- 5

AETENER: VSER:

D

н_

K₁

8

...

1.

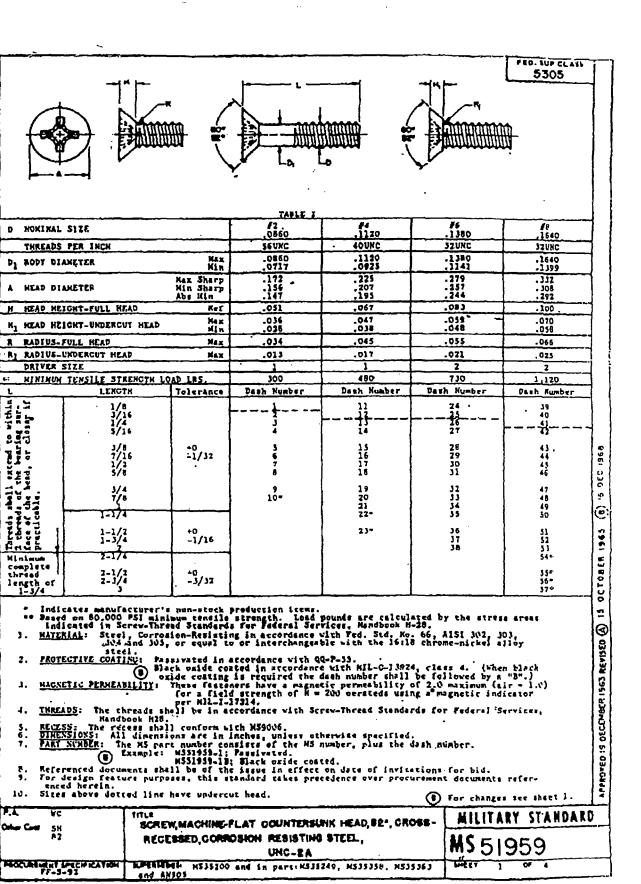
to withla

I succed to the bearly bead, or c

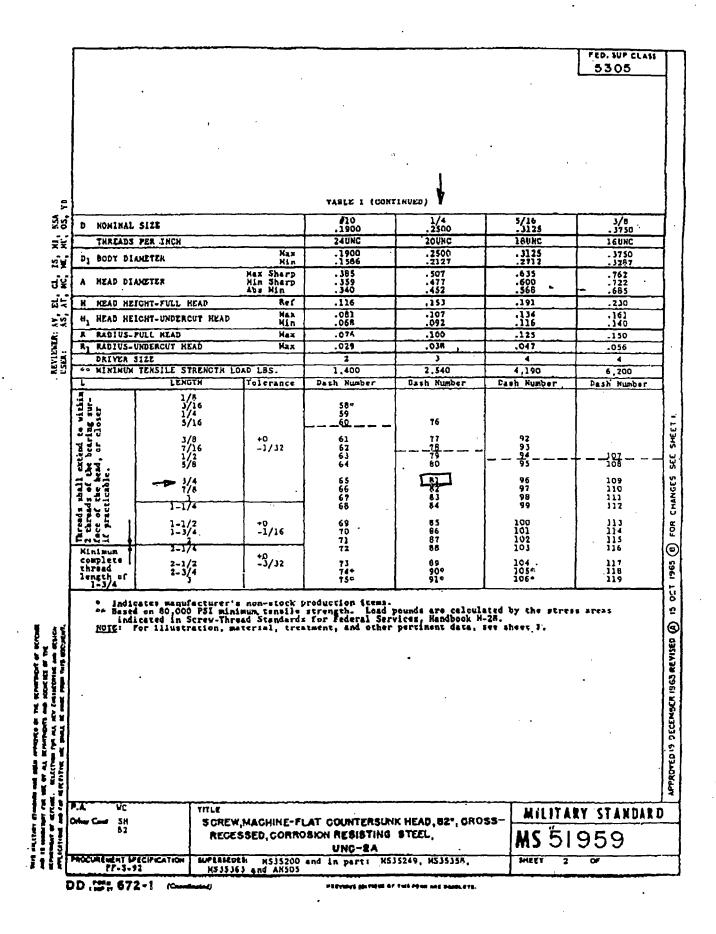
ч

...

3.


2. ٦. 4.

7.


ş; 10.

7.4

.

•

				INTERCHANGE					5305
shee alwi new	ctivated a cts for go bys replac	fter the d minal fize the new	lates india 15 chru 3/1 screvs and	numbers given NS3 cated on the docus i should be used n sment. Replacement	ments. U: 71 for lai until exis	e the da reer sist ting sto	th numbers . The can the strender	given in (ncelled scu pleted. Up	the preceding rews cannot se only the
			,	CROSS REFERENCE	C OF PART	NUMBERS			
	CANC	ellep		NEV	J		ELLED		NEV
HS35241	H53\$200	ANS	05	XS51959	X335249	MSJ5200	A1	1505	N551959
	Dash	Number		Dash Number		Pash	.Kunber		Dash Number
41 50 5X 56 7				No Replacement No Replacement No Replacement No Replacement No Replacement No Replacement No Replacement			C5R14 C5R15 C5R16 C5R18 C5R20 C5R22 C5R24	C5-14 C5-15 C5-16 C5-18 C5-20 C5-22 C5-24	No Replacement No Replacement No Replacement No Replacement No Replacement No Replacement No Replacement
0 0 10 10 10 10 10 10 10 10 10 10 10 10	7 2 3 4 5 6 7	C2R3 C2R4 C2R5 C2R6 C2R7 C2R7	(2-3 C2-4 CZ-5 C2-6 C2-7 C2-8	1 2 3 4 5 6 7	33 32 33 34 35 36 37	21 22 23 24 25 26 27	C6RJ C6R4 C6R5 C6R6 C6R7 C6R9	C6-3 C6-4 C6-5 C6-6 C6-7 C6-8	24 25 26 27 28 29 30
15 5 16 2 17	8 9	C2R9 C2R10 C2R11 C2R12 C3R3 C3R4	CZ-9 CZ-10 CZ-11 CZ-12 C3-3 C3-4	No Replacement 8 No Replacement 9 10 No Replacement No Replacement	38 39 40	28 29 30	C6R9 C6R10 C6R11 C6R12 C6R13 C6R14 C6R14	C6-9 C6-10 C6-11 C6-12 C6-13 C6-14 C6-15	No Replacement 31 No Replacement 32 No Replacement 33 No Replacement
		C3RS C3R6 C3R7 C3R8 C3R9 C3R9 C3R9 C3R1	C3-5 C3-6 C3-7 C3-8 C3-9 C3-20 C3-21	No Replacement No Replacement No Replacement No Replacement No Replacement No Replacement No Replacement	4] 42 43 44	31 32 33 34	C6R16 (GRJ6 C6R20 C6R27 C6R24 C6R26 C6R26 C6R28	C6-16 C6-18 C6-20 C6-22 C6-22 C6-24 C6-26 C6-28	34 No Replacement 35 No Replacement 36 No Replacement 37
16	10 22	C3R12 C3R13 C3R14 C3R15 C3R15 C3R16 C4R3	CJ-12 CJ-13 CJ-14 CJ-15 CJ-16 CJ-16 C4-J	No Replacement No Replacement No Replacement No Replacement No Replacement 11 12	45	35	C6R30 C6R32 C6R34 C6R36 C6R38 C6R40 C6R42	C6-J0 C6-J2 C6-J4 C6-J6 C6-J8 C6-40 C6-42	No Replacement 38 No Replacement No Replacement No Replacement No Replacement No Replacement
20 21 22 23 24 25	17 13 74 15 16 17	C4R4 C4R5 C4R6 C4R7 C4R8 C4R9 C4R9 C4R10	C4-4 C4-5 C4-6 C4-7 C4-8 C4-9 C4-9 C4-10	13 14 15 16 17 No Replacement 18	46 47 48 49	36 37 38 39	C6R44 O6R46 C6R49 C8R4 C8R5	C6-44 C6-46 C6-48 C8-4 C8-5	No Replacement No Replacement No Replacement 39 40 41 41
26 27 28 28 29	18 19 20	C4R11 C4R12 C4R13 C4R14 C4R15 C4R16 C4R16 C4R16	C4-11 C4-12 C4-13 C4-14 C4-15 C4-16 C4-18	No Replacement 19 No Replacement 20 No Replacement 21 No Replacement	50 51 52 53 54	40 41 42 43 44	CBR6 CBR7 CBR8 CRR9 CBR10 CBR11 CBR12	C8-6 C8-7 C8-8 C8-9 C8-10 C8-11 C8-12	43 44 45 No Replacement 46 No Replacement 47
29 30		C4820 C4822 C4824 C583 C584 U585 C586	C4-20 C4-22 C4-24 C5-3 C5-4 C5-5 C5-6	22 No Replacement 23 No Replacement No Replacement No Replacement No Replacement	55 36 57	45 46 47	CAR1J C5R14 C6R15 C8R16 C8R16 C8R18 C8R20 C8R20 C8R22	C8-13 C8-14 C8-15 C8-16 C8-18 C8-18 C8-20 C8-22	No Replacement 48 No Replacement 49 No Replacement 50 No Replacement
		C587 C588 C589 C5810 C5811 C5812 C5813	C5-7 C5-8 C3-9 C5-10 C5-11 C5-12 C5-13	No Replacement No Replacement No Replacement No Replacement No Replacement No Replacement No Replacement	58 59 50 61	48 49 50	C5R24 C8R26 C8R26 C8R30 C8R30 C8R32 C8R32 C8R34 C8R36	C8-24 CR-26 CR-27 CR-30 CR-30 CR-32 CR-34 CR-34 CR-36	51 No Replacement 52 No Replacement 53 No Replacement 54
E P.A.	WC SH 82		REW, MACH	(Continued	RSUNK HE	N	RO58•.	<u> </u>	ARY STANDAR
E PROCUREM	ENT SPECIFIC	ATION SUPE	RIEDEN: HS 3 ANSOS	UNC-2A SZOO and in part:	NSJ5249	, X5J5J5R	, XS35363	MS 5 SHEET J	1959

. . . .

:

.

....

5305

ł

•

· · · · ····

. .

E		ANCELIND ,		GRUSS REFERENC		CAN			NEW
KSJ	5249 NS3520		1505	#551959	HS.15249	NS.35200	AN:	05	M551958
	D4.:	sh Number		Dath Number			Number	r	Dash Number
6	3	CHR38 CAR40 CAR42 CER44 CER44 CER46 CBR46	CB-38 CR-40 CR-47 CE-44 CB-46 CB-46 CH-48	No Replacement SS No Replacement S6 No Replacement 37 SR	96 97 98 39 100	79 60 81	C416R40 C416R42 C416R44 C416R46 C416R46 C416R4R	C416-40 C416-42 C416-42 C416-44 C416-46 C416-48	RD Na Replacener 90 No Replacener 91 92 93
6 6 7 7	7 52 R 53 9 54 0 55	C10R5 C10R6 C10R7 C10R8 C10R9 C10R10	C10-5 C10-6 C10-7 U10-8 C10-9 C10-10	57 60 61 62 63 No Replacement 64	701 102 103 .104	#Z #3 84 85	C316R8 C516R9 C516R10 C516R10 C516R11 C516R12 C516R13 C516R14	C516-8 C516-9 C516-10 C516-11 C516-12 C516-13 C516-14	94 No Replacemen 95 No Replacemen 96 No Replacemen 97
7	3 58	C10811 C10812 C10813 C10814 C10815 C10816 C10828	C10-11 C10-12 C10-13 C10-14 C10-15 C10-16 C10-15	No Replatement 65 No Replacement 66 No Replacement 67 No Replacement	702 702 702	86 87 88	C516R15 C516R16 C516R18 C516R20 C516R22 C516R24 C516R26	C516-15 C516-16 C516-18 C516-20 C516-22 C516-24 C516-26	No Replacemen 98 No Replacemen 90 Replacemen 300 No Replacemen
7	61 7 62	C10820 C10822 C10824 C10826 C10826 C10830 C10837	C10-20 C10-22 C10-24 C10-26 C10-28 C10-30 C10-32	6R Fo Replacement 69 No Replacement 70 No Replacement 71	308 109 110 111	89 90 91 92	C516R28 C516R30 C516R32 C516R34 C516R36 C516R38 C516R38 C516R40	C516-28 C516-30 C516-32 C516-34 C516-36 C516-38 C516-40	10] Na Replacemen 102 Na Replacemen 103 Na Replacemen 104
7 6 8	65	CIORJ4 CIORJ6 CIORJ6 CIOR40 CIOR42 CIOR42 CIOR44 CIOR46	C10-J4 C10-J6 C10-J8 C10-40 C10-42 C10-44 C10-44	No Replacement 72 No Replacement 73 No Replacement 74 No Replacement	1)2]]3]]4]]5	9 J 9 4	C516R42 C516R44 C516R46 C516R46 C616R8 C616R9 C616R9 C616R10	C516-42 C516-44 C516-46 C516-48 C616-5 C616-9 C616-9	No Replacemen 105 No Replacemen 106 107 No Replacemen 108
9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 · 66 67 5 68 69	C10R4& C416R5 C416R6 C416R7 C416R7 C416R5 C416R5 C416R5	C10-48 C416-5 C416-6 C416-7 C416-7 C416-8 C416-9 C416-10	75 76 77 78 79 No Replacement 80	136 117 118	95 96 97	C616R11 C616R12 C616R13 C616R14 C616R14 C616R16 C616R16 C616R18	C616-11 C616-12 C616-13 C616-14 C616-14 C616-15 C616-16 C616-18	No Replacemen 109 No Replacemen 110 No Replacemen 111 No Keplacemen
5. 	72	C416R11 C416R12 C416R13 C416R13 C416R15 C416R16 C416R16 C416R16	C416-11 C416-12 C416-13 C416-13 C476-14 C416-14 C416-16 C416-18	No Replacement BI No Replacement BJ No Replacement BJ No Replacement	119 120 121 722	98 99 100 301	C636R20 C636R22 C636R24 C636R24 C636R28 C636R30 C636R32	C616-20 C616-22 C616-24 C616-26 C616-26 C616-26 C616-30 C616-32	112 No Replacemen 113 No Replacemen 114 No Replacemen 115
9 9 9	75 76	C416R20 C416R22 C416R24 C416R26 C416R26 C416R27 C416R10 C416R12	C416-20 C416-22 C416-24 C416-26 C416-26 C416-25 C416-32	84 No Replacement 55 No Replacement 86 No Replacement 87	123 124 125	102 103 104	C616R36 C616R36 C616R38 C616R40 C616R42 C616R44 C616R46	C616-34 C616-36 C616-36 C616-40 C616-42 C616-42 C616-44 C616-45	No Replacement 116 No Replacement 117 No Replacement 118 No Replacement
9:	7=	C416RJ4 C416R16 C416R3F		No Replacement RS No Replacement	125 127 chru 178	105	C616848	C616-48 -	119 "Use M524671
9: 	Diameters o	ver 3/84 co	vered by KS	52467].	\$	_		- ·	
P.A. Oiler	WC Creat SH FZ	TITL SC	REW, MACH	INE-FLAT COUNTE CORROSION RESIS	ROUNK HE	AD, 82", 0	X058-		ARY STAND

۰.

• .

. .. . ·

A U. 5. GOVERNMENT PRINTING OFFICE: 1868 541-514/A-3540

•

.

..

.

Į

SENTINEL	
Amersham Corporat	ion
Burlington, Massach	usetts

Test Plan #74 December 17, 1997 Appendix C

Appendix C: Referenced Materials

The following is an excerpt from Avallone, Eugene A., and Theodore Baumeister III, Editors, Marks' Standard Handbook for Mechanical Engineers, Ninth Edition (New York: McGraw-Hill Book Company, 1987), page 4-27.

r. bar	0	25	50	75	100	125	150	. 175	200	225
	(112)* 653	114 641	117 629						143 555	149 541
, bar			300	325	350	375	400	425	432	
	156 526	164 509	173 491			212 417				

.

"Hypothetical low-pressure limit.

Loss Due to Throttling A throttling process in a cycle of operations always introduces a loss of efficiency. If To is the temperature corresponding to the back pressure, the loss of available energy is the product of T_0 and the increase of entropy during the throttling process. The following example illustrates the calculation in the case of ammonia passing through the expansion valve of a refrigerating machine.

EXAMPLE. The liquid ammonia at a temperature of 70°F passes through the valve into the brine coil in which the temperature is 20 deg and the pressure is 48.21 psia. The initial enthalpy of the liquid ammonis is $h_{f1} = 120.5$, and therefore the final enthalpy is $h_{f2} + x_2 h_{fq2} =$ And is $n_{f1} = 120.5$, and increase the final entrapy is $n_{f2} + x_2n_{f2} = 64.7 + 553.1x_2 = 120.5$, whence $x_2 = 0.101$. The initial entropy is $s_{f1} = 0.254$. The final entropy is $s_{f2} + (x_2n_{f2}/T_2) = 0.144 + 0.101 \times 1.153 = 0.260$. $T_0 = 20 + 460 = 480$; hence the loss of refrigerating effect is $480 \times (0.260 - 0.254) = 2.9$ Btu.

COMBUSTION

a

REFERENCES: Chigier. "Energy, Combustion and Environment," McGraw-Hill, 1981. Campbell, "Thermodynamic Analysis of Combus-tion Engines," Wiley, 1979. Glassman, "Combustion," Academic Press, New York, 1977. Lefebree, "Gas Turbine Combustion," McGraw-Hill, New York, 1983. Strehlow, "Combustion Fundamentals," McGraw-Hill, New York, 1984. Williams et al., "Fundamental Aspects of Solid Propellant Rockets," Agardograph, 116, Oct. 1969. Basic thermodynamic table type information needed in this area is found in Glushko et al. Thermodynamic and Thermophysical Properties of Combustion Products," Moscow, and IPST translation; Gordon, NASA Technical Paper 1906, 1982; "JANAF Thermochemical Tables," NSRDS-NBS-37, 1971.

Fuels For special properties of various fuels, see Sec. 7. In general, fuels may be classed under three heads: (1) gaseous fuels. (2) liquid fuels, and (3) solid fuels.

The combustible elements that characterize fuels are carbon, hydrogen, and, in some cases, sulphur. The complete combustion of carbon gives, as a product, carbon dioxide, CO2; the combustion of hydrogen gives water, H₂O.

Combustion of Gaseous and Liquid Fuels

Combustion Equations The approximate molecular weights of the important elements and compounds entering into combustion calculations are:

For the elements C and H, the equations of complete combustion are

$$\begin{cases} C + O_2 = CO_2 & H_2 + XO_2 = H_2O \\ 12 lb + 32 lb = 44 lb & 2 lb + 16 lb = 18 lb \end{cases}$$

For a combustible compound, as CH₄, the equation may be written

$$CH_{z} + x \cdot O_{z} = y \cdot CO_{z} + z \cdot H_{z}O_{z}$$

Taking, as a basis, I molecule of CH4 and making a balance of the atoms on the two sides of the equation, it is seen that

$$y = 1$$
 $z = 2$ $2x = 2y + z$ or $x = 2$

Hence,

$$CH_4 + 2O_2 = CO_2 + 2H_2O_16 lb + 64 lb = 44 lb + 36 lb$$

The coefficients in the combustion equation give the combining volumes of the gaseous components. Thus, in the last equation 1 ft' of CH, requires for combustion 2 ft' of oxygen and the resulting gaseous products of combustion are 1 ft¹ of CO₂ and 2 ft³ of H₂O. The coefficients multiplied by the corresponding molecular weights give the combining weights. These are conveniently referred to 1 lb of the fuel. In the combustion of CH4, for example, 1 lb of CH4 requires 64/16 = 4 lb of oxygen for complete combustion and the products are 44/16 = 2.751b of CO₂ and 36/16 = 2.25 lb of H₂O.

Air Required for Combustion The composition of air is approximately 0.232 O₂ and 0.768 N₂ on a pound basis, or 0.21 O, and 0.79 N, by volume. For exact analyses, it may be necessary sometimes to take account of the water vapor mixed with the air, but ordinarily this may be neglected.

The minimum amount of air required for the combustion of 1 lb of a fuel is the quantity of oxygen required, as found from the combustion equation, divided by 0.232. Likewise, the minimum volume of air required for the combustion of 1 ft' of a fuel gas is the volume of oxygen divided by 0.21. For example, in the combustion of CH4 the air required per pound of CH4 is 4/0.232 = 17.24 lb and the volume of air per cubic foot of CH₄ is 2/0.21 = 9.52 ft³. Ordinarily, more air is provided than is required for complete combustion. Let a denote the minimum amount required and xa the quantity of air admitted; then x - 1 is the excess coefficient.

Products of Combustion The products arising from the complete combustion of a fuel are CO2, H2O, and, if sulphur is present, SO₂. Accompanying these are the nitrogen brought in with the air and the oxygen in the excess of air. Hence the products of complete combustion are principally CO₂, H₂O, N2, and O2. The presence of CO indicates incomplete combustion. In simple calculations the reaction of nitrogen with oxygen to form noxious oxides, often termed NO, such as nitric oxide (NO), nitrogen peroxide (NO₂), etc., is neglected. In practice, an automobile engine is run at a lower compression ratio to reduce NO, formation. The reduced pollution is bought at the

O2 -NO2-Material ----- - -G--H₂ N₂ ∞ **CO**₂ H₂O CH C₂H₄ C2H4O S NO ·S0, Molecular weight 32 28 28 64 12 2 44 16 28 32 30 46 46

SENTINEL Burlington, Massachusetts Test Plan #74 December 17, 1997 Page 26 of 37

. . .

Equipment List 1: 30-foot Free Drop

Specimin SI Serial # B3591

Description	Enter the Model and Serial Number	Attach Inspection Report or Calibration Certificate
Drop Surface, Drawing AT10122, Rev. B	01	SEE ATTACH
Weight Scale	OHAUS /35014	SEE ATTACH
Thermometer	OMEGA / ENG-12	SEE ATTACH
Thermocouple flexible probe	OMEGA / ENG-11	SEE ATTACH
Thermocouple surface probe	OMEGA / ENG-13	SEE ATTACH
Record any additional tools used to facilitate the	test and attach the appropriate	e inspection report or calibration
certificate.		
	OMEGA / ENG-14	SEE ATTACH
certificate.		
Certificate. THERMOCOUPLE STRAKENT PROBE	OMEGA / ENG-14	See Attach
Certificate. THERMOCOUPLE STRAKENT PROBE Verified by:	OMEGA / ENG - 14 Signature	SEE ATTACH Date

Amersham Corporation

.....

Test Plan #74 December 17, 1997 Page 27 of 37

	Checklist 1: 30 Test Location: VALLEY TREE GROUELE)-foo IND	t Free] MA	Droj	þ	At	tempt N	umbe	er: \
	Step Sinit	Specific Spe	simen SA	Sp	ecimen B	Sp	ecimen C	Spe	cimen D
1.	Measure and record test specimen's weight.	Des 8	S JAC 98	Ň	A	ľ	N/A	N	A
	Record the specimen's weight:		5 165		, 		1	1	· · · · · ·
	Note the instrument used:	350	214	35	14	29	014	350	IЧ
2.	Immerse the test specimen in dry ice as needed to bring specimen temperature below -40° C.		8 JM 98						
Ste	ps 1 through 2 witnessed by:								
	Engineering	9	28 28						1
**	Regulatory Affairs	LR	129m28						
	Quality Assurance		12 Jan 98						
3.	Measure the ambient temperature.	60 8	85 2	1					
	Record ambient temperature:	36	.9° F						
	Note the instrument used:	ENG		ENG	12 ENG-14	ENG	12 ENG-14	ENG-	12-14
4.	Attach the test specimen to the release (mechanism.	A	8 JAN 98						
5.	Begin video recording of test so that the impact is recorded.	Ba	8 JAN) 98						
6.	Measure the temperature of the specimen. Ensure that the specimen is below -40° C.	Do	G JAD 90	<u></u>					
	Record the specimen's internal temperature:	-71	.4°c		1				
I	Note the instrument used:	ENG	-12 ENG - 11	ENG	-2 ENG·II	ENG	ENGIL	ENG	12 NG-11
	Record the specimen's surface temperature.	-6	4.7°C						
	Note the instrument used:	ENG-	12 ENG-13	ENG	- 2 ENG-13	ENG	-12 ENG-13	ENG-	ENG
7.	Lift and orient the test specimen as shown in the referenced figure for the specimen.	-	ure 6 Page 14	Fig	ure 7 Page 15		gure 6 Page 14	Figu	
8.	Inspect the orientation setup and verify the drop height.	Pa	8 JAD 98	1					
9.	Photograph the setup in at least two perpendicular planes.	Do	8 JAN 98						

• • • • •

 $i \in \mathbb{N}$

Test Plan #74 December 17, 1997 Page 28 of 37

Checklist 1: 30 Test Location: GROVELAND, MA.	-foot Free Drop (Conti	nued)		empt N	umbo	er: _
Step	Specimen	-	eimen B	Spe	cimen C	Spe	ecimen D
Steps 3 through 9 witnessed by:		N	/A	Ŋ	IA .	ß	/A
Engin	eering		1]		
Regulatory A	Affairs Rig 12 mil]				·. ·
Quality Ass	Irance KNA INTan98	,					
10. Release the test specimen.	DW 8 JAN 38						
11. Measure the surface temperature of the tes specimen.	t DW 8 JAN 98						
Record the surface temperature:	- 39.6°C						
Note the instrument used:	ENG-12 ENG-13	ENG-1	NG-13	ENG	12-13 NO-13	ENG	NG-13
12. Measure and record the test specimen's we						-	
Record the specimen's weight:	54.5 lbs						
Note the instrument used:	35014	350	214	354	3(4	35	214
 Pause the video recorder. Ensure that the p of impact and orientation specified in the p have been achieved and recorded. 	oint 2 SIAD						
14. Record damage to test specimen on a separate sheet and attach.	rate De 8 JAA				,		
Steps 10 through 14 witnessed by:			T			Í	
Engin	eering (2) -						
Regulatory A		ł					
Quality Assu	rance Kof jor Jan 98						

đ

· · · .

-- -- -

.....

Test Plan #74 December 17, 1997 Page 29 of 37

Checklist 1: 30-foot Free Drop (Continued)

Test Location: GROVELAND, MA.

Attempt Number: |

Step	Specimen	Specimen B	Specimen C	Specimen D				
 15. Engineering, Regulatory Affairs and Quality Assurance make a preliminary assessment relative to 10 CFR 71. Record the assessment on a separate sheet and attach. Determine what changes are necessary in package orientation for the puncture test to achieve maximum damage. 	ISTURY See Xthat as	N/A	R/A	N/A				
Test Data Accepted by (Signature):			Date:					
Engineering	? Gren	-	18 555 38					
Regulatory Affairs	Relat	Rh	tt Carl R					
Quality Assurance C.	em na	\	19 4698					

Send # B359 30 FOOT FREE DROP. 9 JAN 97 SI ... HIT ON ANOLE REAR END PLATE BOTTOM RIGHT SIDE SPECIMEN ORIENTATION DENTED IN 35 165 GAP BETWEEN SHELL & REAL END PLATE FRONT NUT WILL NOT ROTATE <u>''sı"</u> (KNA) 14 Jan 98 KESSMENT : SI 30 FOOT FREE Dryp TEST EXENTED PER TEST PLAN #77, Phene it WAS PERFORMED in Accarbance with 10 CF/2 72 Dup this wisks in part it TORISHANNE. BASES ON DAMAL AND MISSED HIT THE Group BASES to pot Proceed to New T-TESTS- TESTS. (S) 18 FES 98

۰. .

:

. .

ļ

------.

4

Test Plan #74 December 17, 1997 Page 26 of 37

. .

Equipment L	ist 1: 30-foot Free Drop	Specimin S2 Serie
Description	Enter the Model and Serial Number	Attach Inspection Report or Calibration Certificate
Drop Surface, Drawing AT10122, Rev. B	01	SEE ATTACH
Weight Scale	35014	SEE ATTACH
Thermometer	ENG-12	SEE ATTACH
Thermocouple flexible probe	ENG-11	SEE ATTACH
Thermocouple surface probe	ENG-13	
Record any additional tools used to facilitate the certificate.	test and attach the appropriate	inspection report or calibration
	test and attach the appropriate	SEE ATTACH
certificate.	1	· · ·
certificate.	1	· · ·
Certificate. THERMOCOUPLE STRAKENT PROBE	ENG-14	SEE ATTACH Date
Certificate. THERMOCOUPLE STRAKENT PROBE Verified by:	ENG-14	SEE ATTACH

ي. الم

> Test Plan #74 December 17, 1997 Page 27 of 37

Checklist 1: 30-foot Free Drop Test Location: VALLEY TREE GROUELAND MA

Attempt Number:]

:

D MA
MA
1
35014
ENG-12-
ENG-2 ENG-1
ENG-IZ
Figure 7 on Page 15

Test Plan #74 December 17, 1997 Page 26 of 37

Equipment I	Specimin D Sinil#B359	
Description	Enter the Model and Serial Number	Attach Inspection Report or Calibration Certificate
Drop Surface, Drawing AT10122, Rev. B	01	SEE ATTACH
Weight Scale	35014	SEE ATTACH
Thermometer	ENG-12	SEE ATTACH
Thermocouple flexible probe	ENG-11	SEE ATTACH
Thermocouple surface probe	ENG-13	
Record any additional tools used to facilitate the certificate.	test and attach the appropriate in	nspection report or calibration
Thermocouple straight Probe	ENG-14	See Attach
Verified by:	Signature	Date
Engineering	M. D	14 Jan 98/
Regulatory Affairs	K. Onderland	120 m 98
Quality Assurance	13 Maker	12 Jan 98

۰.

· · ·

.

Test Plan #74 December 17, 1997 Page 27 of 37

.

	Test Location: VALLEY TREE GROUELE							Smit #B257	p
	Step	Speci A		1 • .	vimen B	1 -	imen C	Specimen D	
1.	Measure and record test specimen's weight.		NA		pra-		paf	24 Dec. 97	
	Record the specimen's weight:							54.84 lh	
	Note the instrument used:	3501	4	3501	ч	350	14	35014	}
2.	Immerse the test specimen in dry ice as needed to bring specimen temperature below -40° C.							De 24 Der 37	
Ste	ps 1 through 2 witnessed by:								
	Engineering							h DAI	
	Regulatory Affairs							DP 120,96	ſ
	Quality Assurance							KNA 12Jan98	
3.	Measure the ambient temperature.							24 D26.97	•
	Record ambient temperature:							38.0°F	
	Note the instrument used:	ENG-12	×6-14	ENG-12	NG -14	ENG-12 EN	5-14	ENG-12 ENG-14	
4.	Attach the test specimen to the release mechanism.							Q2 24 DEL 97	
5.	Begin video recording of test so that the impact is recorded.							De 24 DEC 57	
6.	Measure the temperature of the specimen. Ensure that the specimen is below -40° C.							24 Dec 97 MBS	
	Record the specimen's internal temperature:							-72,5°C	
	Note the instrument used:	EN6-12	6.11	ENGT	RG.II	ENG-I	2	ENG-12 ENG-11	
	Record the specimen's surface temperature.		æ1L		19 <u></u>		1 <u></u>	-50,32	
	Note the instrument used:	ENG-12	NG-13	ENG-I	2 13	ENG-I	NG-13	ENG-12	
7.	Lift and orient the test specimen as shown in the referenced figure for the specimen.	Figure on Pag	6	Figur on Pa	e 7	Figur on Pa	e 6	Figure 7 on Page 15	
8.	Inspect the orientation setup and verify the drop height.		,	·				De 24 DEL 97	
9.	Photograph the setup in at least two perpendicular planes.							DW 24 DEC 97	

. .

-

Test Plan #74 December 17, 1997 Page 28 of 37

.

Checklist 1: 30-foot Free Drop (Continued) Test Location: GROUELAND, MA.

Attempt Number: 2

Step		imen A	Speci E	imen 3	Spec (imen C	Specimen D	
Steps 3 through 9 witnessed by:		NA		NA		NA	in	1
Engineering							h Dit Ja	1.8
Regulatory Affairs							CR 129m98]
Quality Assurance	1						KNA 12 Jan 98	
10. Release the test specimen.						(DED 24 DEC	
11. Measure the surface temperature of the test specimen.							24122097	
Record the surface temperature:		-					-48.30	Í
Note the instrument used:	ENG-IT	4-13	ENG-12	NG-13	ENG-I	0-13	ENG-R	Ī
12. Measure and record the test specimen's weight.							24 DEC 97	
Record the specimen's weight:							53.75	ĥ
Note the instrument used:	3501	4	350	14	350	4	35014	
 Pause the video recorder. Ensure that the point of impact and orientation specified in the plan have been achieved and recorded. 							Ded 24 DEL 97	
14. Record damage to test specimen on a separate sheet and attach.							70a) 24 DEL 97	
Steps 10 through 14 witnessed by:								
Engineering							h Bis. E	4
Regulatory Affairs							Lik 12 ange	
Quality Assurance							KIVA 12:Tan98	

·, ·

م. مراجع المانية Test Plan #74 December 17, 1997 Page 26 of 37

uist 1: 30-foot Free Drop	Speamin A Sinil# B258 B # B2588 C # B3589
Enter the Model and Serial Number	Attach Inspection Report or Calibration Certificate
01	SEE Attach.
35014	SEE Attach.
ENG - 12	SER Attach.
ENG-11	SEE Attach.
test and attach the appropriate in	nspection report or calibration
2NG-14	SEE Attach .
Signature	Date
6.10	14 Jan 98
R. Didolate	12 Jan 98 12 Jan 98
KNAKK	12 Jan 98
	Enter the Model and Serial Number $\bigcirc 1$ $35 \bigcirc 14$ ENG - 12 ENG - 11 ENG - 13 test and attach the appropriate in 2NG - 14 Signature \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

....

D #B35

> Test Plan #74 December 17, 1997 Page 27 of 37

	Fest Location: Valley Tree Groveland		_14	Attempt Number: \			
	Step Strut#	B3587 Specimen A	#3588 Specimen B	# 3589 Specimen C	# 3590 Specimen D		
1.	Measure and record test specimen's weight.	23 DEC 97	2402297 MBS	23122.97 Mag	24 626.97 MRB		
	Record the specimen's weight:	55,20 lb	5-1.9016	55.6016	54.85 IL		
	Note the instrument used:	35014	35014	35014	35014		
2.	Immerse the test specimen in dry ice as needed to bring specimen temperature below -40° C.	Pa 23 (Dec 97	Dw 24 Dec 97	Dw 23 (Jec. 97	Dw 24 DEC 97		
Ster	os 1 through 2 witnessed by:			. 10			
	Engineering	h.D.	hit 14 Ente	h Darne	h Daza		
	Regulatory Affairs	Lef 12Dan 98		all 1200-98	Lif 12 Qua		
	Quality Assurance	KNA 12Jan98	KNA 12Jan98	KNA 12Ja-98			
3.	Measure the ambient temperature.	23 Dec. 97	24 Dec.97 MBB	23 Dzc.97 Mac	24 Dec.97 MBB		
	Record ambient temperature:	32.2 F	35,4 ² F	35.1°F	38.4°F		
	Note the instrument used:	ENG 12 ENIG 114	ENG 12 ENG 14	ENG 12 ENG 14	ENGIZ ENG14		
4.	Attach the test specimen to the release mechanism.	Dw 23 Der 97	ANIE	() () () () () () () () () () () () () (Da 24 DEL 97		
5.	Begin video recording of test so that the impact is recorded.	Du 23 Dec 97	De 24 DEC 97	DW 23 DEC 97	Der 24 DEC 97		
6.	Measure the temperature of the specimen. Ensure that the specimen is below -40° C.	De 23 De 57	24 Dec.97 Mag	Der Der 97	240297		
	Record the specimen's internal temperature:	- 74.1°C	- 54.62	- 71.6 C	- 72,5°C		
	Note the instrument used:	ENG 12 ENG 11	ENG 12 ENG 11	ENG 12 ENG 11	ENG 12 ENG 11		
	Record the specimen's surface temperature.	- 52.92	-56,90	- 70.62	-67.52		
	Note the instrument used:	ENG 12 ENG 13	EMG 12 EA1G 13	ENG 12 ENG 13	ENG 12 ENG 13		
7.	Lift and orient the test specimen as shown in the referenced figure for the specimen.	Figure 6 on Page 14	Figure 7 on Page 15	Figure 6 on Page 14	Figure 7 on Page 15		
8.	Inspect the orientation setup and verify the drop height.	De 23 DEC 97	Dw 24 Dec 97	Da 23 Dec 97	De 24 DEL S7		
9	Photograph the setup in at least two	28 D4C.97	24 DEL.97	23 Dec 97	Dw 24 DEC 97		

2

Test Plan #74 December 17, 1997 Page 28 of 37

.....

Checklist 1: 30-foot Free Drop (Continued)

Test Location: VALLEY TREE GEOUELAND MA

Attempt Number:)

Step	Specimen A	Specimen B	Specimen C	Specimen D
Steps 3 through 9 witnessed by:	105			
Engineering	h PATING	A DA Tento	h DATE S	A The Targe
Regulatory Affairs	ap 1 Dan 98	CAB 12Dango	LAB 10 Com A 8	LEP 12000
Quality Assurance	KNA 12 Jan 98	KNA 12Jan 98	KNA 12 Jan 98	KNA 12 Jan 98
10. Release the test specimen.				
11. Measure the surface temperature of the test specimen.	(Der 23 DEL 27	24 Dac 97 (MB3	DW 23 DEL 57	24 Delle7
Record the surface temperature:	- 44.26	- 54.9 2	-42,6°C	-60.0 C
Note the instrument used:	ENG 12 ENG 13	ENG 12 ENG 13	ENG 13	ENG 12 ENG 13
12. Measure and record the test specimen's weight.	Da 23 DEL 31	ENDER 7	DW 23 DEL 97	24 Dzc.97 MB3
Record the specimen's weight:	55.2516	54.501b	55.5016	54,8415
Note the instrument used:	35014	35014	35014	35014
13. Pause the video recorder. Ensure that the point of impact and orientation specified in the plan have been achieved and recorded.	23 85 12 15 12 12 12 12 12 12 12 12 12 12 12 12 12 1	Du 24 DEL 97	23 DEL 27]@ 24 DEL 9 }
14. Record damage to test specimen on a separate (sheet and attach.	D 29 (DEL 97	Dia 29 Der (97	Del 29 DEL (37	Dw 29 DEL 5)
Steps 10 through 14 witnessed by:	. 0	1.0	100	
Engineering	h har as	H. Buze	H Darso	HBA E
Regulatory Affairs /	Left 12 mar 98	LAP 12 grant	RB 12 Opp	LB 12 Dagers
Quality Assurance	KNA 12 Jan 98		KIVA 12 Jan 98	KINA 12 Jom 98

)

Test Plan #74 December 17, 1997 Page 29 of 37

Checklist 1: 30-foot Free Drop (Continued) Test Location: Valley True Gronuland MA Attempt Number: 1									
Step	Specimen A	Specimen B	Specimen C	Specimen D					
15. Engineering, Regulatory Affairs and Quality Assurance make a preliminary assessment relative to 10 CFR 71. Record the assessment on a separate sheet and attach. Determine what changes are necessary in package orientation for the puncture test to achieve maximum damage.	4e e	Attach	er p.P.A.	fan 9B					
Test Data Accepted by (Signature):			Date:						
Engineering h	14 Jan 98								
Regulatory Affairs	22 gan 98								
Quality Assurance 1CN1K1	14 Jan 98								
VV									

30-foot Free Drop Test Assessment

The test was executed per test plan #74, therefore it was performed in accordance with 10 CFR 71.

Unit S2 was needed for replacing Unit C, since Unit C did not hit the target impact point. There was no adjustment to the torque values of the end plate screws. The penetration test and 4-foot free drop test was performed on S2 before the 30-foot free drop test.

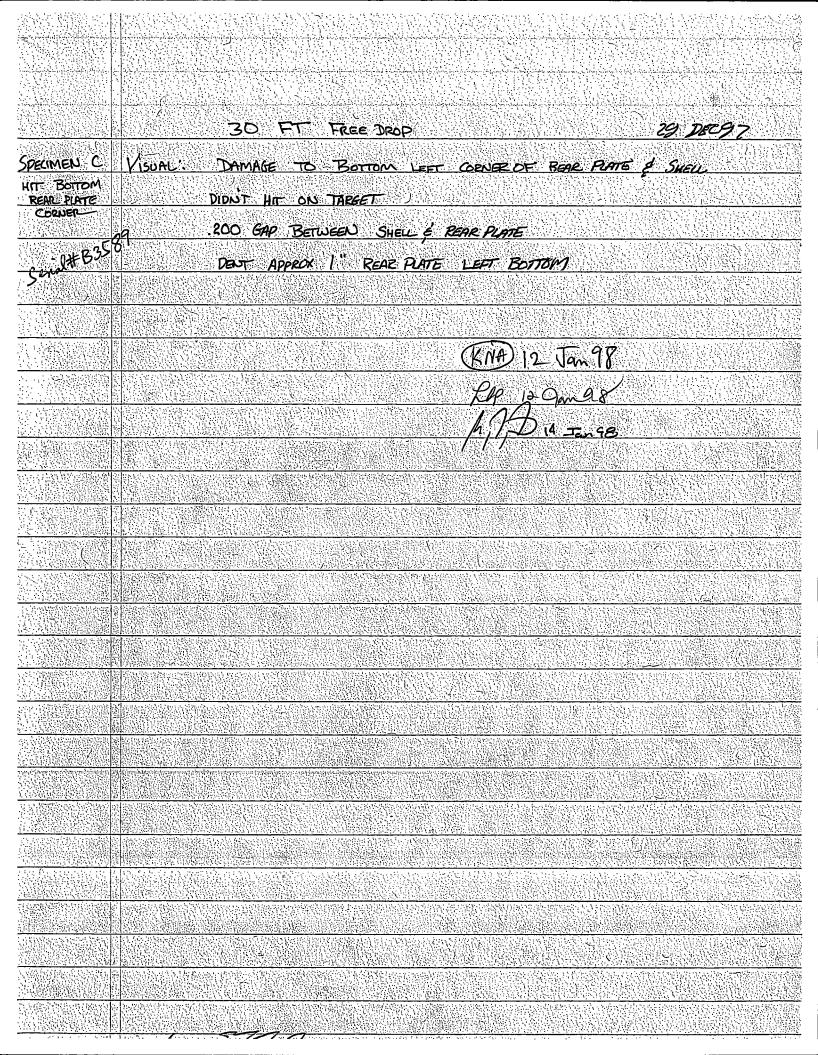
Unit D was dropped twice since it did not hit the target impact point. Second attempt hit same impact point as previous. This produced worst damage of all attempts.

Based on assessment of damage, there is no indication of any damage that would alter original acceptance of test specimens to meet requirements of 10 CFR 71.

As there is no structural damage to the dropped units, conclude that testing will continue as described in test plan 74.

Except for specimen B and D, there was no change in orientation for the puncture test. Orientations for specimen B and D was changed to try to peel back the area of the end plate left by the removed handle.

KIRA 14 Jan 98 KIRA 14 Jan 98 Ref 22 amat


Intermediate Test Inspection

Damage recorded for each test specimen. See attached.

It was decided to delay the radiation profile of the test specimen, since it could possibly affect their structural integrity and affect the outcome of the thermal test.

HIJ 14 Im 98 KNA 14Jan 98 Rel 229mak

	30 FOOT FREE DROP &					
	Conference of the second s					
	PUNCTURE TEST DO 29 DEC 97					
SACCIMEN	VISUAL: BOTTOM SHELL CONVEXED 37 14 CENTER OF SHELL (BOTTOM)					
A	LEFT SIDE .163 GAP OPENING BETWEEN SHELL & REAR PLATE, CROWN OF REAR PLATE 3 34					
HIT REAR PLATE BOTTOM	RIGHT SIDE 149 GAP BETWEEN SHELL & REAR PLATE CROWD OF REAR PLATE 4 10:280 W FRONT TO R					
Servet 83587						
Server						
Specimery B	VISUAL: HANDLE BROKEN OFF, FRONT PLATE TOP BENT IN 45					
B FRONT PLATE	REAR END PLATE BENT OUT 13					
TOP	NO GAP ON SHELL & FRONT OR REAR PLATES [] W FRONT TO PEAR					
Swatt B 3588	CROWN FRONT PLATE 31/2 HIGH CONVEX /16 , FRONT NUT DOESNT SPIN					
<u>Spiicimis N</u> S 2	GAP 147 BOTH SIDES CEOWN 4" HIGH (CONVEXED) BOTTOM SHELL CONVERED 1/4" 1/2" FROM MID POINT TO REAR					
r Rear plate Bottom	FROM NUT SRUGE ERFELLE					
20nd # B3592						
SPECIMEN	GAP HOO FROM PLATE TO STIELE 4 & TO GOLD FROM BASE					
"D" T FRONT PLATE	.094 GAP TOP SHELL TO REAR RATE SHELL TUNST APPROX 18					
TOP RIGHT SIDE						
Smil # B357						
	<u>(KNA) 12 Jan 78</u>					
	KNA) 12 Jan 98 Le 12 ganab AND 14 Jan 98					
	Mild A. Jan 98					

Test Plan #74 December 17, 1997 Page 30 of 37

.....

Equipment	Pecimen A sini#B2587 B # B3588 D #B3590 S2 # B3592						
Description	Enter the Model and Serial Number	Attach Inspection Report or Calibration Certificate					
Drop Surface, Drawing AT10122, Rev. B	SN-01	See Attach					
Puncture Billet, Drawing CT10119, Rev. C	SN-01	SEE ATTACH					
Weight Scale	0HAUS DS10 #35014	SEE ATTACH					
Thermometer	6m2GA HH21 # ENG-12	SEE ATTACH					
Thermocouple flexible probe	# eng-11	See Attach					
Thermocouple surface probe	#ENG13	SEE ATTACHI					
Record any additional tools used to facilitate the test and attach the appropriate inspection report or calibration certificate.							
Thermocouple Straight Probe	# ENG-14	See ATTACH					
Verified by:	Signature	Date					
Engineering	hAD	14 Jan 58					
Regulatory Affairs	L. Prebato	12 gan 9\$					
Quality Assurance	KNAK	12 Jan 98					

1

Test Plan #74 December 17, 1997 Page 31 of 37

.

•	Checklist 2:] Test Location: GROUE LAND MA			Attempt N	umber: {
	Senal #	B3587	B3588	<u>B3592 B3590</u>	
	Step	Specimen A	Specimen B	Specymen Mas 20 Dreft 7	Specimen D
1.	Immerse the test specimen in dry ice as need to (bring the specimen's temperature below -40° C.	DW 24 DEL	DW SH DEC 97	Dw 24 Dec 97	Du fil 97
Ste	p I witnessed by:			m	.00
	Engineering	h. Par	B H. Durn	12 APTange	A Pla Jan
	Regulatory Affairs	RAP 12 QAMES	della grai	alle samer	la jagana
	Quality Assurance		KNA 12 Jan 98	12 Jan 98	KNA 12 Jan 9.
2.	Measure the weight of the specimen.	24.02c97 M2B	24 DEG97 MBB	24 Dzc.97 MBB	24 D2697 Mas
	Record the specimen's weight:	55.2016	54.50 16	55.01 lb	54.84 14
	Note instrument used:	#35014	# 35014	# 35014	#35014
3.	Measure the ambient temperature.	David DEC (97	De 24 DEL (DW 24 DEL (97	De 24 DEC 97
	Record ambient temperature:	36.8 °F	35.6°F	35.3°F	31.6° F
	Note the instrument used:	ENG-12 #ENG-14	ENG-17 #ENG-14	ENG-12 #ENG-14	ENG-12 #ENG-14
4.	Attach the test specimen to the release mechanism.	QW 24 DEL. 97	De 24 DEL (97	De 24 DEC (97	Ded 24 DEL 57
5.	Begin video recording of test so that the impact is recorded.	De 24 De 24 97	De 24 DE (97	Dee) 24 DEC 97	Dee) 24 Deel 97
6.	Measure the surface temperature of the specimen. Ensure that the specimen is below -40° C.	24 622.97 MBB	24 Dec.97	24 D26 87 MBB	24 Dzc.97
	Record the specimen surface temperature:	-70.4°C.	-42.2°C	-57.2°C.	-58.50
	Note the instrument used:	ENG-12 #ENG-13	ENG-12 # ENG-13	ENG-12	ENG-12 # 2MG-13
7.	Lift and orient the test specimen as shown in the referenced figure for the specimen.	Figure 8 on Page 18	Figure 9 on Page 19	Figure 8 on Page 18	Figure 9 on Page 19
8.	Inspect the orientation setup and verify drop height.	De 24 Dec 97	De 24 DEC 97	De 24 DEC 37	De 24 Dec 9)

...

lest Plan #74 December 17, 1997 Page 32 of 37

-- -- -- --

Checklist 2: Puncture Test (Continued) Test Location: VALLEY TREE GROVE LAND, MA.

..

Attempt Number:

: . :

		1	Y		·····
	Step	Specimen A	Specimen B	Specimen Maszupica S· 2	Specimen D
9.	Photograph the setup in at least two perpendicular planes.	(Pa) 24 DEL 97	De 24 DE	Da 24 354	Dw 24 000
Ster	os 2 through 9 witnessed by:				
	Engineering	M. JArange	H. Dasme	HD A Enge	h Parente
	Regulatory Affairs	DP 12 Cpn 98	RB 13 gan 98	Lop Dana 8	LP 10 Anna
	Quality Assurance	KNA 12 Jan 98	KNA 12 Jan 98	KNA 12-JAn98	
10.	Release the test specimen.	De 24 DEC	Da 24 252	D2 24 255	24 Del 97
11.	Measure the surface temperature of the test specimen.	24 Dzc. 97	24 Dic 97	24 026 87	24 Dzc 97
	٠ 	_ <u>mas</u>	1/83	MRB	_M⊠B
	Record the surface temperature:	-65.2°C	- 42,2°C	- 40.12	-48.7°C
	Note the instrument used:	ENG - 12 #ENG-13	ENG - 12 # ENG - 13	ENG-12 #ENG-13	ENG -12 #ENG -13
12.	Measure and record the test specimen's weight.	24 Dzc.97 MOB	24 Dec. 97 M2B	ZHDOC 97 Mab	24 DEC. 97 MTOB
	Record the specimen's weight:	55.05/6	53A116	55.0516	55.2016
	Note the instrument used:	#25014	#35014		#35014
13.	Pause the video recorder. Ensure that the point of impact and orientation specified in the plan have been achieved and recorded.	10 24 Der (Da 24 DEC	Da 24 per.	
14.	Record damage to test specimen on a separate (sheet and attach.	De 29 55(Da 29 Dec (DW 29 DR (57	Da 29 Bec
Ster	os 10 through 14 witnessed by:	_		~	
	Engineering	h Diazon	3 M Draza	h Darne	1 Date
	Regulatory Affairs	Cep 12 games	LAP 13 Amar	LE is gamas	Lip 12 good
	Quality Assurance	K MA 12 Jan 98	KNA 12 Jan 98	KNA 12 Jan 98	KNA 12 Jan 98

Test Pian #74 December 17, 1997 Page 33 of 37

Checklist 2: Puncture Test (Continued) Test Location: VALLEY TREE GROUTHAND, MA.

Attempt Number: \

计算机中心

Step	Specimen A	Specimen B	Specimen	Specimen D
 15. Engineering, Regulatory Affairs and Quality Assurance make a preliminary assessment relative to 10 CFR 71. Record the assessment on a separate sheet and attach. Determine the package orientation for the thermal test that will achieve maximum damage. 	sec	attaches	A, D, A.	Tan 98
Test Data Accepted by (Signature):)		Date:	
Engineering Mig	5		14 Jan	98)
Regulatory Affairs			2204	mat
Quality Assurance K MA			14 Jan 9	8
				······································

Puncture Test Assessment

The puncture test was executed per test plan #74, therefore it was performed in accordance with 10 CFR 71.

Based on assessment of damage, there is no indication of any damage that would alter original acceptance of test specimens to meet requirements of 10 CFR 71.

As there is no structural damage to the dropped units, conclude that testing will continue as described in test plan 74.

Since the damage for specimen B did not produce a gap in the shell or end plates, It was decided to not perform the thermal test on this specimen.

There is no special orientation for the thermal test. All specimen to be oriented on their feet. This will allow optimal air flow in and around open gap areas of the damaged shell and end plates.

KNA 14Jan 98 KNA 14Jan 98 Lik 22 Janat

· · •···

Test Plan #74 December 17, 1997 Page 34 of 37

••••

Equipment	List 3: Thermal Test	Specimin A send#B35 b #B35 52 #B35
Description	Enter the Model and Serial Number	Attach Inspection Report or Calibration Certificate
Air Flowmeter	3367 /ENG-08	see Attach
Thermocouple (internal)	ENG - 18A	SEE ATTACHI
Thermocouple (external)	ENG- 17 A	SEE ATTACH
Thermocouple (oven)	ENG-16 A	SEE ATTACH
Temperature recorder	ENG-16/ENG-17/ENG-18	SEE ATTACH
Temperature recorder Record any additional tools used to facilitate the certificate.	ENG-16/ENG-17/ENG-18	SEE ATTACH
Record any additional tools used to facilitate the	ENG-16/ENG-17/ENG-18	SEE ATTACH
Record any additional tools used to facilitate the certificate.	ENG - 16 /ENG - 17 /ENG - 18 test and attach the appropriate	SEE ATTACH inspection report or calibration
Record any additional tools used to facilitate the certificate.	ENG - 16/ENG-17/ENG-18 test and attach the appropriate ENG-12	SEE ATTACH inspection report or calibration
Record any additional tools used to facilitate the certificate. TRERMOMETER	ENG - 16 /ENG - 17 /ENG - 18 test and attach the appropriate ENG - 12 ENG - 14 Signature	SEE ATTACH inspection report or calibration SEE ATTACH SEE ATTACH Date
Record any additional tools used to facilitate the certificate. TRERMOMETER	ENG - 16/ENG - 17/ENG - 18 test and attach the appropriate ENG - 12 ENG - 14 Signature	SEE ATTACH inspection report or calibration SEE ATTACH SEE ATTACH

Tesi Plan #74 December 17, 1997 Page 35 of 37

Checklist 3: Thermal Test

Attempt Number: 1

	Test Location: MFG SCIENCES OAK RIDGE	, TN. #B3587	· · · · · · · · · · · · · · · · · · ·	Attempt N	umber: #_ <u>B359</u>
	Step	Specimen A	Specimen B	Specimen	Specimen D
1.	Pre-heat the oven to a temperature above 800° C.	902.2 C		De 3:24 PM 902.2	902.2°с
2.	Attach the thermocouples the specimen's internal and external measuring points.	Dw 30 Dec 37		(Dw) 30 Dec 37	(Du) 30 DEC 97
3.	Place the package in the oven and close the oven door.	Da 30 104 197		(Ju) 30 Der 57	200 30 DEL 97
	Record the date and time that the package is placed in oven.	3:25 PM 844°c		6:16 PM 80719°C	4:50 pm 852° c
4.	When the specimen's internal temperature exceeds 800° C, start the air flow into the oven. Record the time.	4:06 PM (D2) 30 DEC 97		7:25 PM	5:34 pm Dw 30 762 97
Stej	os 1 through 4 witnessed by:				
	Engineering	h. Dores	3	6. Da Eng	h Dair
	Regulatory Affairs	LE 12gm98		Le 12gon 98	LB 129ang
	Quality Assurance	KNA 12 Jan 98		KNA12JA98	
5.	Measure the oven temperature, the specimen's internal and external temperatures and the air flow rate.	Du 30 Dec 97		(Da) 30 Dec 97	DW 30 DEL 97
	Record the oven temperature:	904°c		900.7°C	900.0%
	Note instrument used:	ENG-16 ENG-16A			ENG-16A
	Record the specimen's internal temperature:	800°c		800.7 C	8011°C
	Note instrument used:	ENG-18 ENG-18A		ENG-18 ENG-18 A	ENG-18
	Record the specimen's external temperature:	844.3 C	*	823.8 -	842.2°C
	Note instrument used:	ENG-17 ENG-17A		ENG-17 ENG-17 A	ENG-17 ENG-17A
	Record airflow rate:	IOCEM		10 cfm	10 CFM
	Note instrument used:	3367 ENG-08		3367	3367 ENG-08
6.	Monitor the internal and external temperatures of the specimen and the oven temperature throughout the 30-minute period to ensure that they are above 800° C.	0 30 DEC 97		Da 30 De 30 Dec 97	2 30 DE 97

чт.,

Test Plan #74 December 17, 1997 Page 36 of 37

Checklist 3: Thermal Test (Continued)

Test Location: MFG Sciences OAKRIDGE, TN.

Attempt Number: |

		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
	Step	Specimen A	Specimen B	Specimen	Specimen D
7.	Monitor the airflow throughout the 30-minute period to ensure a rate of at least 9.6 ft^3 /min.	122 30 Dec 97		De Be	Dw 30 Dec 97
8.	At the end of the 30-minute period, repeat step 5 using the same measurement devices.	De 30 Det 97		Ca 30 Dec 97	Pre 30 Dec 97
	Record the oven temperature:	905.2°c		901.5°C	907.1°c
	Record the specimen's internal temperature:	8412c		857.0°c	842,5 °C
	Record the specimen's external temperature:	850.4°C		843.0°c	850.4 4
	Record intake air flow velocity:	10 CFM		10 CEM	10 cfm
Step	os 5 through 8 witnessed by:				
	Engineering	4. The ser	3	4DA Jon	A DE 1
	Regulatory Affairs	Ap 120 am	8 .	2 R 10 9 m 98	All 12 Jan 24
	Quality Assurance	KMA 12 Jan 98		KNA12 Jan98	KNA 12 Jan 98
9.	Remove test specimen from the oven.	(a) 30 Dec 97		2 30 BEC	De Bergy
	Record time the specimen is removed.	4:36 PM		7:55 pm	6:04
	Describe combustion when door is opened to remove specimen.	RED HOT NO FLAMES		Red Hot Frames INSIDE	RED NOT SOMELAMES FLAMES FOR REAR
	NOTE: If specimen continues to burn,	let it self-ext	inguish and c	ool naturally	
10.	Measure the ambient temperature.	Per 3Dec			30 06 C Ja 06 C 97
	Record the ambient temperature:	62.3° E		62.3°F	61.9°F
	Note the instrument used:	ENG-12 ENG-14		ENG-12 ENG-14	ENG-12 ENG-14
11.	Photograph the test specimen and any subsequent damage	100 30 Jet 97	(Da 30 Jac 37	Que 30 Dec 27
12.	Record damage to test specimen on a separate sheet and attach.	Se T	hotos + v	ideas	
Step	os 9 through 12 witnessed by:				
	Engineering	h D BF		Magan	1 Dee
	Regulatory Affairs	DE IDGanas		LR 10009R	LP 120 000-18
	Quality Assurance	K MA 12 Jan 98		Kort 12 Jan 98	KNA 12 Jan 18

Test Plan #74 December 17, 1997 Page 37 of 37

Checklist 3: Thermal Test (Continued)

Test Location: MFG SCIENCES OAK RIDGE, TN.

Attempt Number: |

1

Step	Specimen A	Specimen B	Specimen	Specimen D
13. Engineering, Regulatory Affairs and Quality Assurance make a preliminary assessment relative to 10 CFR 71. Record the assessment on a separate sheet and attach.	Stander		see Aldredeo	See Adhrefed
Test Data Accepted by (Signature):	-0 V		Date:	
Engineering	3-Gen	*	18 FGB	. 98
Regulatory Affairs	. Kon Man		12 546	.98
Quality Assurance	MARK		02-MA	R.98
· · · · · · · · · · · · · · · · · · ·				

Post Thermal Temp. at Mfg. Sources 8:35 AM 31 Dec 97 suid# B3587 Epecinen A: Internel temp 17.6°C Specimen D: Toternal temp 54.1- AB BIDE 97 541:32 <u> 5411#B3590</u> Specimen SZ: Internal temp 417.30 MB 30 Dec 97 417.50 A17.50 Spece Stral#83592 @ 31 pc.97 Spec KNA 31 Dec 97

page 1.9.5 Assessment - Specimen A (mermal results) Sinal # 3.3587 hased on physical appearance of Specimen A is probable mat additional movement of the shield a due to thenspirat / handling. (based on rootwographs) · based The shield in Specimen A appears (to have experienced la kral merement from time suncore test D accival - Demal testing. De ec ement is De distance cudence of lateral . Yon S pebe movement in hat Compansens Displaced from the Ront mis position after the mal Cand transport provinate 1/4 in chi punche indicate an nomal was performed with flat 660 <u>Ire</u> were no faces a loads produced denny Leple g) lateral movement, Jalidate mat The lateral in parement was have sult ight handling and Manzport, additional specimens to the thermal Est. le subject The addition observations of the infalting quation at Anertham of the test inits indicate that an enc place down ie not an its normal restriction on the feet The additional test 3 pecemens include: This is a specemen That was anginally id # B3584

gage 345

ge hop. based on The chentation miss, the puncture test was not performed. Upon examination g. C. Through radiographs and usual obsence tran and mechanical measurements, it was edge that al major the damage was de termine d not exactly as in Specemen A price The male test it would preudle information The main amant possible movement result G, The mall test, The 5 tibe I · lointin in income the Afrent miniput in west Similar D Ci was not baned aut in The same location as on A but may as the sens tuke in from the bass of the back was disengaged from Ne boss & The lock assembly it appeared mat The Shield waild have room D more dawn ward. The feleples enjagement of C unes Seveno. March and a second Part Tati AND ANTAL SO DANGE) 18 FEB 98 E. CMR 18 R628 March 19 KMPOLMAD98 the second s A CARDON & Made and Strand Michael MINING OF Telene and here How had the standing of a stand 2.45 No. Jacob March 163 .». non a part of the open of the <u>- 1</u> A LYNAR HIL NA WAN DE DEE <u>. 1.51</u> V. V. 1 MARK MARKEN AND A Provide State NIN CT STATES

page 535

was corrupted during transport handling. tf it deside pass, profile information will not be used as it was subjected to fair 30 first drop tests and had the excessive damage. Other test specimens Subjected to 1 cm 2 30 foot drops did not exhibit the externed of termage Shown try EX-1 Radwijsens & all Three specimiens were taken price to transport D thermal testing, Source position was also Fallen price to transport. The source position was taken upon receipt at Manufacturing Sciences to determine actual position price to Thermal. fadrographs and IA some position will be taken when units are cooled down after Thermal test to record some position priate any minement or Transport, (G) 18 FUS 98 CMR 19FBB9 (KMA) 02 MAR 9R

TEST PLAN # 74

Stecimen D'-PROFILE RESULTS INDIXATE 16'S TEST SPECIMEN PASSED Senif# 3 3590 THE TEST REQUIREMENTS OF 10 CFR 71.73. SPECIMEN "S2"-THE TEAM AGREED TO NOT PROFILE THIS TEST SPECIMEN. Sonal# B3592 TH'S IS BECAUSE THE RESULTS Probably WULLD NOT HAVE MAKERED SINCE THE RESULTS OF SPECIMEN "A" WAS QUESTION ADLE. Also, B PERSONNEL SAFETY WAS GINSIDENED LEFERSON IN THE DEGISION NOT TO PRUSIE "SZ" D 18 85399 mp 19 Feb 94 KMA) 02 MAR 98

SENTINEL

WORKSHEET

	660
Ι.	Device Model Sterle Capacity 140 C: Isotope 1R-192 Source Model 434-9
	TT0763
11.	Maximum acceptable surface reading: <u>200</u> mR/hr [#] If used to show compliance wi'normal transport requirement
	Maximum acceptable meter reading: 10 mR/hr + For normal transport
	Surface Correction Factors:
Ш.	
	lappeneable for normal transport only)
	Top $1,16$ Right $1,28$ Front $1,13$ Left $1,28$ Rear $1,13$ Bottom $1,19$

IV. Specific Instructions for loading/unloading:

2tta

See

V. Approved By: Engineering Date Didnate Productor Regulatory Date C. MMM 9 Jan 98 Quality Assurance Date

Profil	e Worksheet Supplement (PEF-003/97)	Supplement # <u>_PWS-1/98</u>
4.	ALARA Justification	
	Step 1:	
	Assuming surface intensity of 5 R/hr, source securement, working behind supplemental shielding to reduce body interposure estimates for operation as follows:	
	$E_{WB} = \left(500 \ \frac{mR}{hr} \times \ 0.033 \ hr\right)$	
	$E_{Hand} = \left(5,000 \ \frac{mR}{hr} \times \ 0.033 \ h\right)$	hr) = 165 mR
	Step 2 and 3:	
	Dose to personnel the same as general cutting cell work.	
	Profile Operation:	
	5 minutes for assessment of surface dose rates and gen intensity of 1 R/hr, whole body average dose rate of 200 dose rate readings.	
	$E_{WB} = \left(200 \ \frac{mR}{hr} \times \ 0.25 \ hr\right)$	= 50 mR
	$E_{Hand} = \left(1,000 \ \frac{mR}{hr} \times \ 0.083\right)$	hr) = 83 mR

RHP Approval Initials & Date: 9(¥an

WP Form: PEF3-98.sup

,

۰ ،

Revision 0 - 09 Jan 98

Profile	e Worksheet S	upplement (PEF-003/97)	Supplement # <u>PWS-1/98</u>
5.	Authorized Ind	ividuals:	
	Profile:	RT Qualified & Operationally Approved for	Device Profiles
		Others: <u>RSO, RAM, E. Shaffer, R. Kelly</u>	·
	Steps 2 & 3:	RT Qualified & Operationally Approved for	
		Others:E. Shaffer, R. Kelly, RSO, RAM	
			· · · · · · · · · · · · · · · · · · ·
6.	Operational H	<u>lold-points:</u>	
	None.		
7.	Other Applica	able Comments/Criteria:	
	None.		
			· · ·

RHP Approval Initials & Date: 90m

WP Form: PEF3-98.sup

. .

ċ,

Revision 0 - 09 Jan 98

٠,

SENTINEL	
<u>660/660B DEVICE I</u>	TP73"B" B3588 MM Inthe P
Device Model No.: <u>660</u> Device Seria TTo163 Model 424- 9 Source Serial Number: <u>Xoo</u>	Puncture
AN /PDR Surface Survey Instrument: 27T Se	SM-BROVAL
One Meter Survey Instrument: <u>Same</u> <i>X</i> Non-leaded plug used <i>Capaaty</i> <i>Corr. Enclose</i> <i>Liso</i>	
Surf <u>Allowed</u> <u>Actual</u> <u>Gritzet</u> TOP 1.16 104.41 60	TOP
RIGHT 1,29 153.6 80	RIGHT 0.9 0.6
FRONT [113 389.9 230	FRONT 2,7 1.8
LEFT 1, 28 115.2 100	LEFT 0.75 0.5
REAR 1,13 152.10 90	$\frac{15}{10}$
BOTTOM 1, 19 107.1 60	BOTTOM 0.0

Padelo DATE: 5 Jan 98 NCR No.:____ INSPECTOR:

,

.

Comments:

CENTINE!

KNA 12 Jan 98

Mersham QSA

SENTINEL

B3587 (4MB) 12 Jun 18 660/660B DEVICE PROFILING FORM TP73"A" Device Model No.: 660B Device Serial No.: after Thermal T10163 Model 424-9 Source Serial Number: XOOIL Activity: 93.2 C < 500 MR/m Surface Survey Instrument: AN/PDR 27 Serial No: 5M-39248 Cal Due: 3/18/98 2 500 mR/hr One Meter Survey Instrument: Tech-50 Serial No: B-814-Scal Due: 7/22/98 Capacito Corr. Factor ONE METER READINGS SURFACE READINGS mR/hr mR/hr 1,5 Extraplatel -Allowed Actual Extrapolated 10wed Actual PAPACITY 520 780 TOP TOP 3F/m RIGHT RIGHT 40.5 FRONT FRONT 3 F/m RIA LEFT LEFT BRIN 2 R/h RRAR REAR 1,8 F/W 1.2 BOTTOM BOTTOM >1 R/hr. No adde measurements taken on device, DATE: 5 gan 98 NCR No .:_ I do Pot INSPECTOR: Comments: - No surface corrections made. Actual surface enclosed in plastic bagging which varied in thickness from 1/2 - (". - Surface doses for general info only. Primary purpose of profile was for I metter readings. Surface levels on sides and near many be higher , introl than recorded. Radiation was **V**Amersham QSA a Frely collimated beam from s-tube out WI-005 the near of the device which was difficult adde. extremity exposure

SENTINEL

660/660B DEVICE PROFILING FORM

B3590 (KNA) 12 Jan 78 TP73 "D" Device Model No.: 660B Device Serial No.: After Thermal TT0163 Model 424-9 Source Serial Number: XOD 16 Activity: 89.7 C Surface Survey Instrument: Birm Serial No: B-814-5 Cal Due: 7/22/98 One Meter Survey Instrument: Serial No: _____ Cal Due: _____ Capacity Corr. Factor ONE METER READINGS SURFACE READINGS mR/hr mR/hr 1.56 Ethapolated <u>Allowed</u> Allowed Actual Actual 130 2.3 1.5 TOP TOP 180 1.9 12 RIGHT RIGHT <u>8</u>0 1.1 2.7 FRONT FRONT 50 r.Y 2.2 LEFT LEFT 90 3.0 REAR REAR 58 [,[BOTTOM BOTTOM Pidu AR DATE: 9 an 98 NCR NO .:_ INSPECTOR Comments: * surface of unit enclosed in multiple layers of plastic bago for contamination control of knanium oxide. Thickness varies from 1/4" 101". * Sunface neadings taken for exposure control and general information purposes only. (KMA) 12 Jan 98 Amersham QSA

/,

Test Plan #74 December 17, 1997 Page 26 of 37

174 KT 1

. Equipment L	ist 1: 30-foot Free Drop	53 Senal#B35
Description	Enter the Model and Serial Number	Attach Inspection Report or Calibration Certificate
Drop Surface, Drawing AT10122, Rev. B	01	SEE ATTACH
Weight Scale	OHAUS / 35014	SEE ATTACH
Thermometer	OMEGA / ENG-12	SEE ATTACH
Thermocouple flexible probe	OMEGA ENG-11	SEE ATTACH
Thermocouple surface probe	omega / ENG-13	SEE ATTACH
Record any additional tools used to facilitate the certificate.	test and attach the appropriate in	nspection report or calibration
THERMOCOUPLE STRAIGHT PROBE	OMEGA / ENG-14	SEE ATTACH
Verified by:	Signature	Date
Engineering	h.D	14 Jan 98
Regulatory Affairs	L. a. Julio	12 gam ap
Quality Assurance	C. Ronghan	14 Jan 93

-- -- - -----

.

é é x ş

.. .

• • • • •

Test Plan #74 December 17, 1997 Page 27 of 37

	Test Location: VALLEY TREE GROUELP	IND MA		Atter	mpt N	umbe	r: ¥	
	Step	Specimen	Specimen	Spec	imen	Spec	eimen	
		FII JAW 18 53 FII JAN 853		(С		D	
1.	Measure and record test specimen's weight.	55.3 lbs		N	/A	. N/	A	
	Record the specimen's weight:	Du "THO	De II TAD 98					
	Note the instrument used:	35014	35014	350	4	350	14	
2.	Immerse the test specimen in dry ice as needed to bring specimen temperature below -40° C.	0@ "JAO 98	De " Jano 98					
Ste	ps 1 through 2 witnessed by:		.00					
	Engineering	h. Daz	M, D Jange					
	Regulatory Affairs	2P12gonas	Labisamas					
	Quality Assurance	Chip 14/Ang	6 Cm & 14/2019					
3.	Measure the ambient temperature.	FIIJANSO	\$11 JAN 98					
	Record ambient temperature:	42,6°F	42.6F					
	Note the instrument used:	ENG-12 ENG-1	ENG-12	ENG-19	6-14	ENG-I	2 - 14	
4.	Attach the test specimen to the release (mechanism.	DO JAN 98	Der 11 JAN 98					
5.	Begin video recording of test so that the impact C is recorded.	De II JAN 98	Da ii JAN 98					
6.	Measure the temperature of the specimen. Ensure that the specimen is below -40° C.	FIIJANSS	FII JAN 98					
	Record the specimen's internal temperature:	-77.1°C	-77.1°C					
	Note the instrument used:	ENG-12 ENG-1	ENG-12 ENG-11	ENG-I	2-11	ENG	12 NG-1	
	Record the specimen's surface temperature.	-58.2°C	-51.1°C					
	Note the instrument used:	ENG-12 ENG-1	ENG-12 3 ENG-13	ENG-I	NG-13	ENG-1	ENG	
	Lift and orient the test specimen as shown in the	Figure 6	Figure 7 on Page 15	Figur	e 6 ge 14	Figur on Pa	e 7	
7.	referenced figure for the specimen.	on Page 14		0				
	-	on Page 14 De 11 JAN 97	DW 11 140 JAN 98	mp				

<u> 清清</u> - 1.15.15

225

• • • • • • • • • •

••

Test Plan #74 December 17, 1997 Page 28 of 37

.....

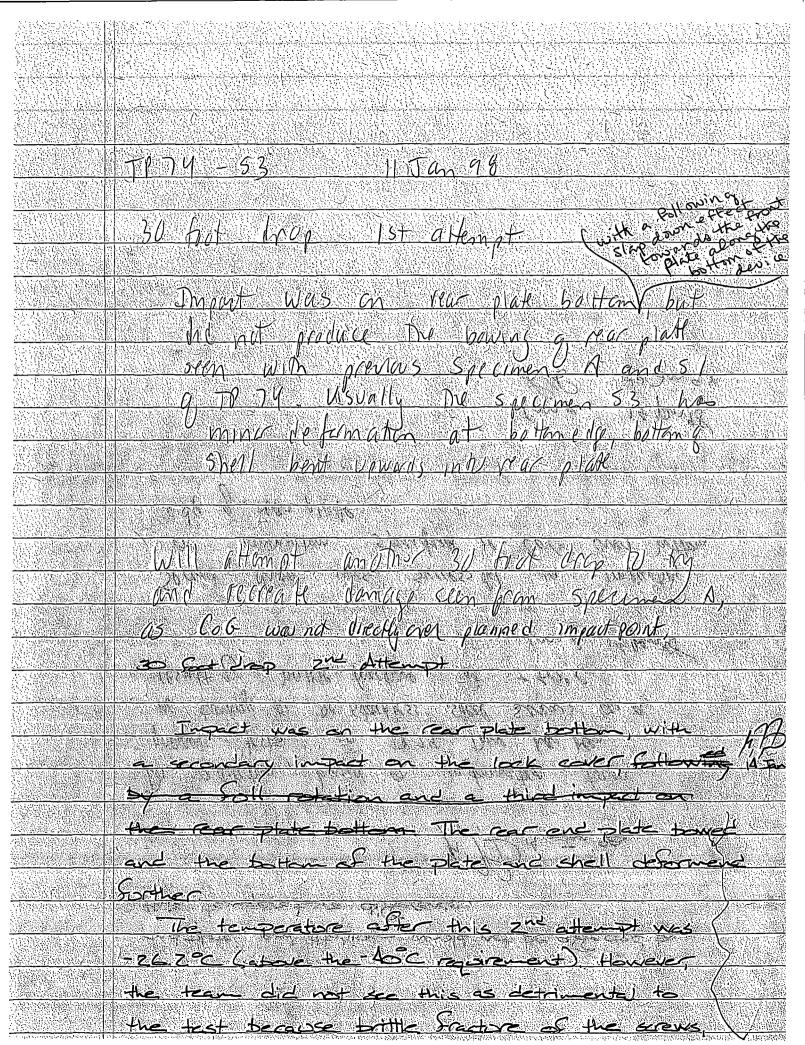
Checklist 1: 30-foot Free Drop (Continued) Test Location: G-ROUELAND, MA.

Attempt Number: *

	Step	Specimen 53 A [*] I	Specimen SB B #2 TOINTAN SR	Speci C	-	Spe	cimen D
Step	os 3 through 9 witnessed by:		NA	N/F	1	N	ΙΑ
	Engineering	h Dar	HIT Inge]
	Regulatory Affairs	Reizan18	Cologan ap				
	Quality Assurance	Com R 14 MAR	Om p2 14 Apr 48				
10.	Release the test specimen.	DO II JAN 98	DW 11 JAN 98				
11.	Measure the surface temperature of the test specimen.		FII JANSP				
	Record the surface temperature:	- <i>45.</i> 4°C	-26.2°C				
	Note the instrument used:	ENG-12-13	ENG-12 ENG-13	ENG-I	0-13	ENG.	13-13
12.		FIIJANSY	軍川 かかいちょう				
	Record the specimen's weight:	55.25 lbs	55.4165				
	Note the instrument used:	35014	35014	350	4	350	514
13.	Pause the video recorder. Ensure that the point of impact and orientation specified in the plan have been achieved and recorded.	Dið II JAN 97	JAN JAN Sr				
14.	Record damage to test specimen on a separate (sheet and attach.	Da II Tan 98	Da AN JAN Stan				
Step	os 10 through 14 witnessed by:		~				
	Engineering	h Dura	H.D.	·			
	Regulatory Affairs	RAP 12 angr	Le isonas	,			
	Quality Assurance	CM R 14/man 88	EMP 14/2014	18			

.

Test Plan #74 December 17, 1997 Page 29 of 37

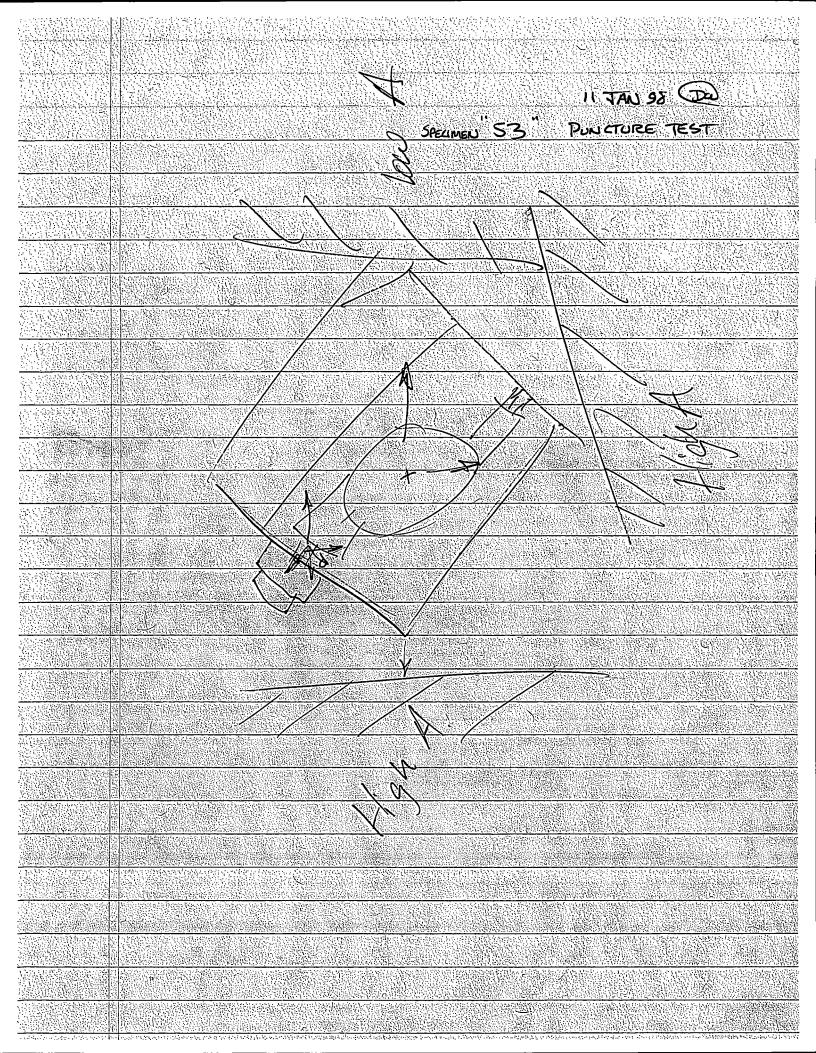

Checklist 1: 30-foot Free Drop (Continued)

. ..

Test Location: GROUELAND, MA.

Attempt Number: 🔆

Step	Specimen 53 A¥1 Di II TAN 98	Specimen 53 B-¥2 Di JAN 98	Specimen C	Specimen D
15. Engineering, Regulatory Affairs and Quality Assurance make a preliminary assessment relative to 10 CFR 71. Record the assessment on a separate sheet and attach. Determine what changes are necessary in package orientation for the puncture test to achieve maximum damage.	Da II JAN 95	Da Jan 98	n/a	N/A
Test Data Accepted by (Signature):			Date:	
Engineering A			14 Jan	98
Regulatory Affairs			2200	nat
Quality Assurance C. Romanam			17 Feb9	



IP 79 53 Assessment: Orientation Fex Runcture Cest -

Team assessed condition & specimen to laternine west lase mentation for lunchere - An alternal recentation was suggester on the bont Nate bottom The intent of This brig would be to the and anic this cast of boss of rear plate re itsingaging the to Near plate connection. This team evaluated and control delemined that This team evaluated and control delemined that This team evaluated and control delemined that This team evaluated and control of the wase to with original constation would be wase to control or original constation would be wase to

<u>Ne west case for Nernal wind be D Tosengage</u> <u>Connection g rear plate D Shrefel contrining</u> <u>an damage D M tube, papel on radiographs</u> <u>fron cache Fost specimens is N, S, - tube</u> <u>was Vamager</u> from 30 fot and puncture.

As junctive is mly a moth dry any miner damage to the front while not politiin west and for thermal, The brop on

7

Test Plan #74 December 17, 1997 Page 30 of 37

Equipment	3 Senal#B358	
Description	Enter the Model and Serial Number	Attach Inspection Report or Calibration Certificate
Drop Surface, Drawing AT10122, Rev. B	01	SEE ATTACH
Puncture Billet, Drawing CT10119, Rev. C	01	SEE ATTACH
Weight Scale	#35014 / OHAUS	SEE ATTACH
Thermometer	ENG-12 OMEGA	SEE ATTACH
Thermocouple flexible probe	ENG-11 OMEGA	SEE ATTACH
Thermocouple surface probe	ENG-13 OMEGA	SEE ATTACH
Record any additional tools used to facilitate the t certificate.	test and attach the appropriate ir	spection report or calibration
THERMOLOUPLE STRAIGHT PROBE	ENG-14 OMEGA	See Attach
Verified by:	Signature	Date
Engineering	MD	14 In 98
Regulatory Affairs	R. Dinho	12 am 98
Quality Assurance	C. Animan	14 Jan 98

Test Plan #74 December 17, 1997 Page 31 of 37

.

	VALLEY TREE Checklist 2: Test Location: GROUELAND MA	Puncture T	est					,
	Test Location: GROUELAND MA	Simil#B258	6		Atte	mpt N	umbe	er: 1
	Step			imen B	•	cimen	1 -	cimen D
1.	Immerse the test specimen in dry ice as need to bring the specimen's temperature below -40° C.	Dud II TANS St	Ň	A/A	N	/A	N	/A .
Ste	p 1 witnessed by:					[
	Engineering	h.T.DAE	.93					
	Regulatory Affairs	Repisque 8						
	Quality Assurance	Cm p19/pn98						
2.	Measure the weight of the specimen.	De "JAN95				·		
	Record the specimen's weight:	55,40 lbs						
	Note instrument used:	#35014	* 35	014	* 350	14	* 35	014
3.	Measure the ambient temperature.	42.6°F						
	Record ambient temperature:	Dai Jag						
	Note the instrument used:	ENG-12 ENG-14	ENG -	15-14	ENG-12	15-14	ENG-I	2 NG-14
4.	Attach the test specimen to the release mechanism.	DU II JAN 98						
5.	Begin video recording of test so that the impact (is recorded.	DU II JAN 98						
6.	Measure the surface temperature of the specimen. Ensure that the specimen is below -40° C.	Da 11 Jan 98						
	Record the specimen surface temperature:	-66.7°C						
	Note the instrument used:	ENG-12 ENG-13	ENG-1	2 	ENG-12	6-14	ENG-I	2-14
7.	Lift and orient the test specimen as shown in the referenced figure for the specimen.	Figure 8 on Page 18	Figur		Figu		Figur	
8.	Inspect the orientation setup and verify drop (height.	Da II JAN 98						

.

Test Plan #74 December 17, 1997 Page 32 of 37

Checklist 2: Puncture Test (Continued) Test Location: VALLEY TREE GROUELAND MA

.

.

Attempt Number: |

		r	· · · · · · · · · · · · · · · · · · ·	
Step	Specimen	Specimen B	Specimen C	Specimen D
9. Photograph the setup in at least two perpendicular planes.	De li Jano 98	N/A	N/A	N/A
Steps 2 through 9 witnessed by:	. 10			
Engineering	h ha Ing	8		
Regulatory Affairs	Legiogan AS		· · · ·	
Quality Assurance	Um p. 19/20 %			
10. Release the test specimen.	Da "JANGB			
11. Measure the surface temperature of the test specimen.	De "JAN 98			
Record the surface temperature:	- 58.2°C			
Note the instrument used:	ENG-12 ENG-13	ENG-12 ENG-13	ENG-12 ENG-13	ENG-12 ENG-13
12. Measure and record the test specimen's weight.	DO "JANJA			
Record the specimen's weight:	255,31bs			
Note the instrument used:	#35014	#35014	#35014	#35014
13. Pause the video recorder. Ensure that the point of impact and orientation specified in the plan have been achieved and recorded.	JANO 98			
14. Record damage to test specimen on a separate sheet and attach.	Dal'I JANI 98			
Steps 10 through 14 witnessed by:				
Engineering	hi Dia Ins	8		
Regulatory Affairs	Cill 120mnt			
Quality Assurance	Cmp14 pan98			· .

SENTINEL
Amersham Corporation
Burlington, Massachusetts

Test Plan #74 December 17, 1997 Page 33 of 37

Checklist 2: Puncture Test (Continued) Test Location: VALLEY TREE GROUELAND MA

Attempt Number: \

Step	Specimen Tab. A 53	Specimen B	Specimen C	Specimen D
15. Engineering, Regulatory Affairs and Quality Assurance make a preliminary assessment	A. Jan 8	N/A	n/a	N/A
Test Data Accepted by (Signature):			Date:	
Engineering 6			1A Jan 9	8
Regulatory Affairs	22200 28			
Quality Assurance C. Longham	17 Feb 98			

Punctore Test Assessment - Specimen 53 Simil# B3586 Inspacked in accordance with Test Flan 74. Little damage noted. Orientation for thermal test should be normal spright position. This will allow the shield to move downward due to the force of gravity. hit iA Jange Cmp 14 pm 88 RUB 22 Jamas

SPECIMEN 53 Ducture PENETRATION TEST "A" ORIENTATION II JAN 98

cenel # B3586

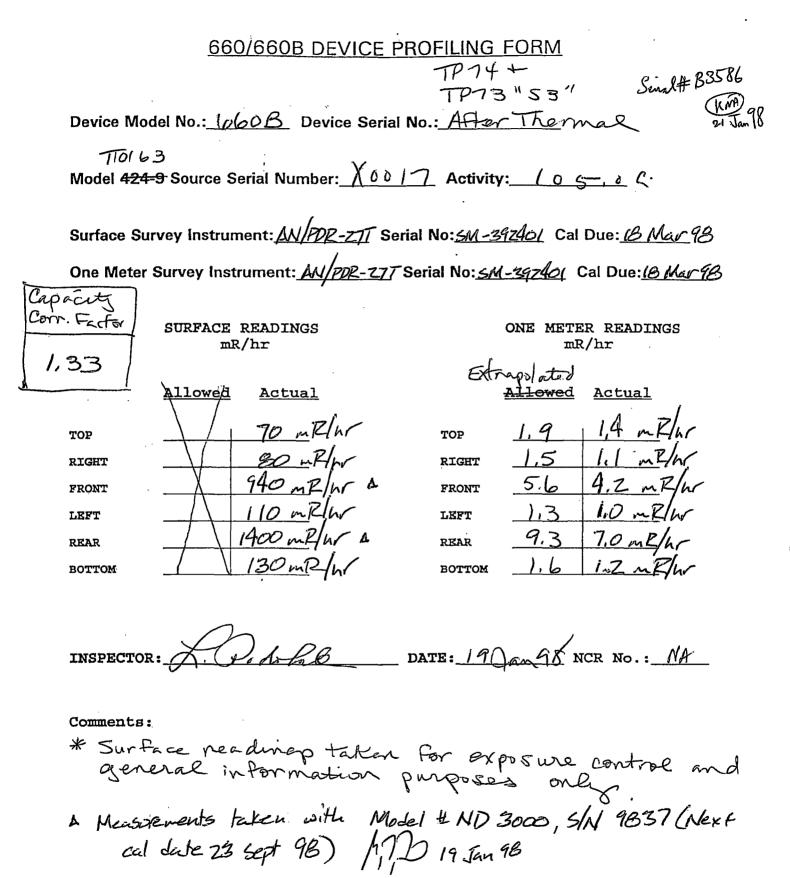
SIX ATTEMPTS BEFORE TARGET HIT LIGHT DENT ABOVE TARGET

FOUR FOOT FREE DROP

DROP ON TARGET IST DROP PAINT CHIPPED ON BOTTOM OF REAR PLATE, NO ADDITIONAL DAMAGE VISIBLE.

30 FREE DROP

IST DROP HIT ON BOTTOM OF REAR PLATE EVENLY ON EACH SIDE CENTER OF GRAVITY SLIGHTLY TO BOTTOM OF DEVICE, BOTTOM OF REAR PLATE & SHELL DENTED IN, NO GAP BETWEEN SHELL & REAR PLATE


2Nd DROP 30 HIT ON BOTTOM OF REAR PLATE ON TABGET BOTTOM OF REAR-PLATE & SHELL DENTED,

SHELL CONVEXED ON BOTTOM

FRONT NUT DOESN'T TURN,

NO ADDITIONAL DAMAGE VISIBAS

SENTINEL

Amersham QSA

WI-Q05

1900098 Smil# 33586 53 50 Source for sition measurement 0,362 unthrended stip plug lengt Almoned section from skield = 43/8" (source dummy wire from "53" specimen) LE 19 gan ag

Test Plan #74 December 17, 1997 Page 34 of 37

Senil # B3586 and #B3589 53 and C **Equipment List 3: Thermal Test** Attach Inspection Report or Enter the Model and Calibration Certificate Description Serial Number WINTERS Air Flowmeter See Attach ENG-08 3367 hedland Thermocouple (internal) See Attach OMEGA/ENG-18 A Thermocouple (external) SEE ATTACH ENG-17 A omega Thermocouple (oven) SEE ATTACH OMEGA ENG-16 A Temperature recorder ENG-16,17,18 See Attach OMEGA Record any additional tools used to facilitate the test and attach the appropriate inspection report or calibration certificate. SEE ATTACH ENG-12 DMEGA THERMOMETER SEE ATTACH ENG-14 OMEGA THERMOCOUPLE STRAIGHT PROBE DIGITAL CALIPER 110142 SOURCE LOCATION TOOL 277 SEE ATTACH Verified by: Signature Date Engineering 13 Jan 58 **Regulatory Affairs** 14 Jan 18 13 Jan 98 Quality Assurance

SOURCE LOCATION BEFORE THERMAL TEST "53" 5.922/"C 5.824

Test Plan #74 December 17, 1997 Page 35 of 37

	Checklist 3:	The	rmal T				
, 	Test Location: MFG Sciences OAK RIDGE TN			Send#B3586	Attempt N S+~J#B35	umbe 89	r: (
	Step	Sp	ecimen A	Specimen	Specimen C	4 -	oimen D
1.	Pre-heat the oven to a temperature above 800° C.	ч	/A	(JAN 98	JAU JAU JAU	N	Ά.
2.	Attach the thermocouples the specimen's internal and external measuring points.		1	The 13 Days	De 13 JAN JAN JAN		
3.	Place the package in the oven and close the oven door.			De 13 JANO 98	Da 13 JAN JAN		
	Record the date and time that the package is placed in oven.			13 JAN 98 424 pm	13 JAN 98 2:51PM		
4.	When the specimen's internal temperature exceeds 800° C, start the air flow into the oven. Record the time.			453pm	3.47.PM De 13 Jan 38		
Ste	os 1 through 4 witnessed by:		Τ				
	Engineering			h) Jazz	eh Mar	498	
	Regulatory Affairs	1		C. Lou Dan	C. Rougnen 13		/
	Quality Assurance			KNA 13 Jan 98	KNA 13 Jang		
5.	Measure the oven temperature, the specimen's internal and external temperatures and the air flow rate.			Da 13 JAN98	D B B B B B B B B B B B B B B B B B B B		
	Record the oven temperature:			891.4°c	896.7°C		
	Note instrument used:	ENG	16 ENG-16A	ENG-16 ENG-16A	ENG-16	ENG-16	6-16A
	Record the specimen's internal temperature:			803.5c	800.9°c		
	Note instrument used:	ENG-	18 ENG-IBA	ENG-18 ENG-18A	ENG-18 ENG-18 A	ENG-18	6-18 A
	Record the specimen's external temperature:			838.3°C	834.9°C		· ·
	Note instrument used:	ENG	-17 ENG-17A	EN6-17	ENG-17 ENG-17A	ENG-17	5-17A
	Record airflow rate:			li cem	II CFM		
	Note instrument used:	336	7 ENG-08	3367 ENG-08	3367 ENG-08	336T	16-08
6.	Monitor the internal and external temperatures of the specimen and the oven temperature throughout the 30-minute period to ensure that they are above 800° C.			Da (13AU 95	IS LANC		

Test Plan #74 December 17, 1997 Page 36 of 37

Checklist 3: Thermal Test (Continued)

Test Location: NFG Sciences OAK Ridge TN

Attempt Number: 1

		·		
Step	Specimen A	Specimen	Specimen C	Specimen D
 Monitor the airflow throughout the 30-minute period to ensure a rate of at least 9.6 ft³/min. 	N/A	00 13 JA0 98		N/A
 At the end of the 30-minute period, repeat step 5 using the same measurement devices. 		CAFE EI 600	Da B JARO 97	
Record the oven temperature:		904.70	902.8°C	
Record the specimen's internal temperature:		8441	853.5°c	
Record the specimen's external temperature:		836.2.	850.9°C	
Record intake air flow velocity:		II CFM	IT CFM	
Steps 5 through 8 witnessed by:			In	
Engineering		4 Dates	A Press	
Regulatory Affairs		C. Anular 135009	C. Noushors	
Quality Assurance		KNA 13 Jan98	KMA 13 Jan98	
9. Remove test specimen from the oven.		Pars Ju	DE IZJAN 95	
Record time the specimen is removed.		525 PM	4:17 PM	
Describe combustion when door is opened to remove specimen.		RED HOT		
NOTE: If specimen continues to burn	, let it self-ex	tinguish and c	ool naturally	
10. Measure the ambient temperature.	N/A	Q213 Ja	De Fan	N/A
Record the ambient temperature:		65.7°F	67.2°F	1
Note the instrument used:	EN6-12 ENG-14	ENG-12 ENG-14	ENG-12 ENG-14	ENG-12 ENG-14
11. Photograph the test specimen and any subsequent damage		De B JAN	13 95 13 95	
12. Record damage to test specimen on a separate sheet and attach.		DA IS JAN 98	Dela	
Steps 9 through 12 witnessed by:			2	
Engineering		h Process	Differen	2
Regulatory Affairs		C. Row Non	CRONAC	769y
Quality Assurance				

· · · · ·

. :

• • • • • · · . •

Test Plan #74 December 17, 1997 Page 37 of 37

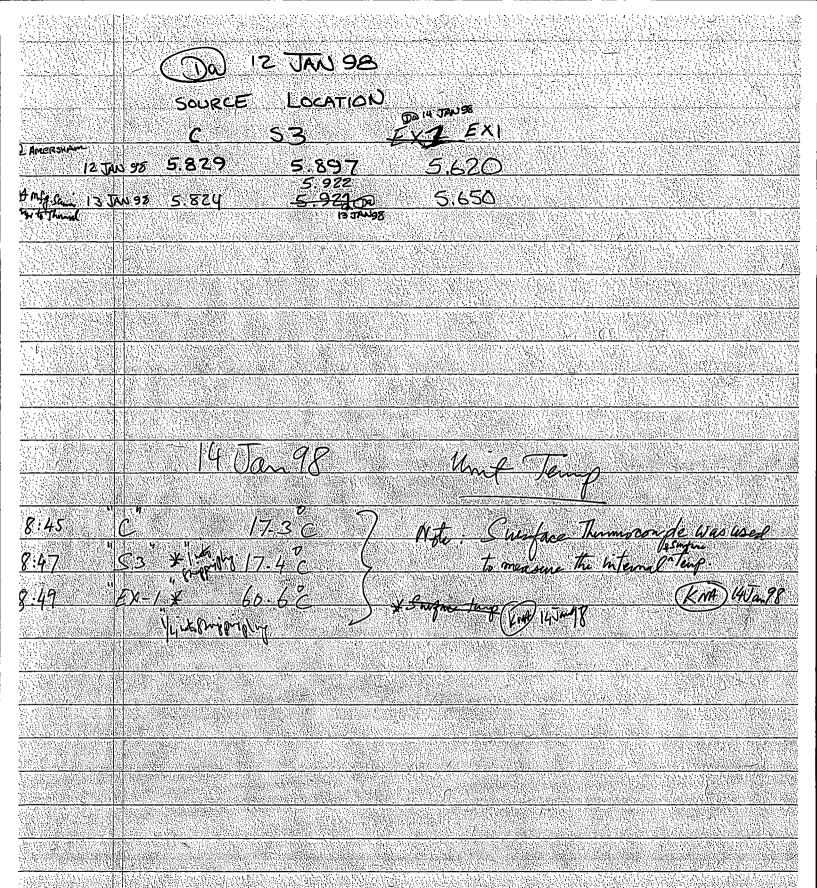
211

Checklist 3: Thermal Test (Continued)

•••

Test Location:

Attempt Number:


Specimen A	Specimen B	Specimen C	Specimen D
NA	sel õ	atained	MA
·		Date:	
Sai		188659	8
Confinen		18 Feb 4	F
		02-MAR	-98
			NA Sel attailed Date: Sai 187559 Umphan 18 Feb 9

· · ·

15 Jan 99 at Mfg. Sciences Specimen Ex-1 <u>Criptzile)</u> :<u>278</u> max leng n 10,534 gaj (rtsid) height to gap height to gap -3.220 right - 12 crain 3.105 left to crown max length 10,450 (leftside) gag (lufe sto) - , 272 deservation - OX de is soft on left side <u> Specimin S3</u> Sen.1# B 3586 (left-side) <u>10. |32</u> Max length No gap <u>) o. /38</u> <u>3.4.38</u> (Rightside) Max length Bowing height left____ (Crown) Ript 3.505 Bory (Csom) height

.15 Jan 98 at Mfg Sciences <u># B3589</u> Specimen C • 2_ 88 gap Max lengt Right Right_ 6-397 height [Crons] Right 2.705 <u>eg</u> <u>eg</u> Mix lengni <u>9 . 936</u> ND.gap Lught (Ciow) 3.2.34 Steinen (Pastial)2:580 Sneinen (Pastial)2:580 Michon (Pastial)2:580 Michon Astrone to take " fort Plate Specnii 53 <u># B.3586</u> <u>First plate - lorse</u>", Source breation 6:610 - · 150 = 6:460. " Front: Not Shuppy Ang gap = .150

shyper play <u>ex.(</u> Whit in 160 April 100 Apri <u>put(Shypin plug)</u> Specinin C # 3.35.89 Distance for front Not to doming Source - 7.822 (Mersined With Piece & Wire)

18 FBB 78. OM R 19 Rbar KNO 02MAR98 17 Feb 98 - Part 71 Assessment 53/ Specimen C after mernae Test Sinil # 33586 Senal # 33589 As specimen C has not gone Through all The tisting, it no puncture test, the thermal was performed for in termational jucposes only on d is not a valid tot specimen. Therefore no assessment to iDCFR 7L is required. Dermal Spleemen 53 indervient De full, g tostong and successfully passed Dr rofile, indicating Mis specific unit all The Type B #Sts. range The radiate passes The specimen 53 was fested to However ty and exactly minic The damage seen in Specimen 6 A g TP 73/74 in aden to validate / 455855 The like had g Transpert amilie to Soutemen A. in Specimen 4 to validate / 45835 D Specemen A Camege from all damage_ tothe was not an , and Prevent replica & camage seen from Therefore cannot conclusively dete termene that from TP 73/TP TH would have pessed Specimen A from TP 73/TP TH would. The tests if, t had not been subjected to themspeat damige. Conclusion is that 33 passes the Type B testing, but Cannot conclude that Specimen A would have -Mpe B test M fassed all

SENTINEL

Amersham Corporation Burlington, Massachusetts

......

.

Test Plan #74 December 17, 1997 Page 34 of 37

EX-1

.

Equipment	List 3:	Thermal Tes	st
-----------	---------	-------------	----

RfD Umt

Description	Enter the Model and Serial Number	Attach Inspection Report or Calibration Certificate
Air Flowmeter	HEDLAND 3367 ENG-08	See Attach
Thermocouple (internal)	OMEGA/ENG-18 A	SEE ATTACH
Thermocouple (external)	OMEGA / ENG-17 A	See Attach
Thermocouple (oven)	OMEGA/ENG-16 A	See Attach
Temperature recorder	OMEGA/ENG-16,17,18	SEE ATTACH
Record any additional tools used to facilitate the t certificate.		•
THERMOMETER.	DMEGA / ENG-12	SEE ATTACH
THERMOCOUPLE STEAIGHT PROBE	OMEGA / ENG-14	SEE ATTACH
SOURCE LOCATION TOOL / DIGITAL	T10142 / # 277	see Atrach
Verified by:	Signature	Date
Engineering	h.1.2	13 Jan 18
Regulatory Affairs	C. Ronanan	14 Jan 98
Quality Assurance	K MAKY	13 Jan 98

V()

EXI SOURCE LOCATION BEFORE THERMAL TEST

..

5.650 De 14 JAN 98

.

. ..

Test Plan #74 December 17, 1997 Page 35 of 37

Checklist 3: Thermal Test								
, 	Test Location: MFG Sciences OAN RIDGE TN	RED Hmit		Attempt Number: 1				
	Step	Specimen EXI	Specimen B	Specimen C	Specimen D			
1.	Pre-heat the oven to a temperature above 800° C.	DW 13 JAN 98						
2.	Attach the thermocouples the specimen's internal and external measuring points.	Dw 13						
3.	Place the package in the oven and close the oven door.	Die u Jai						
	Record the date and time that the package is placed in oven.	D 1370198 5:35 PM						
4.	When the specimen's internal temperature exceeds 800° C, start the air flow into the oven. Record the time.	13 JNN 98 608 pm						
Ste	os 1 through 4 witnessed by:	~~~						
	Engineering	1 Dates	8					
	Regulatory Affairs	C Knonen "Jon	ay					
	Quality Assurance	KNA 13 Jan 98						
5.	Measure the oven temperature, the specimen's internal and external temperatures and the air flow rate.	Da 13' Jag						
	Record the oven temperature:	898.9 c						
	Note instrument used:	ENG-16 ENG-16A	EN6-16 ENG-16A	ENG-16 ENG-16A	ENG-16 ENG-16A			
	Record the specimen's internal temperature:	803.9						
	Note instrument used:		ENG-18 ENG-18A	ENG-18 ENG-18 A	ENG-18 ENG-18 A			
	Record the specimen's external temperature:	845.2						
	Note instrument used:	ENG-17 ENG-17A	ENG-17 ENG-17 A	ENG-17 ENG-17A	ENG-17 ENG-17A			
	Record airflow rate:	10 CFM			·			
	Note instrument used:	3367 ENG-08	3367 ENG-08	3367 ENG-08	3367 ENG-08			
6.	Monitor the internal and external temperatures of the specimen and the oven temperature throughout the 30-minute period to ensure that they are above 800° C.	De 13 JAN 97						

.

SENTINEL Amersham Corporation Burlington, Massachusetts

Test Plan #74 December 17, 1997 Page 36 of 37

· •	Test Location: MFS Skazes	RÉD UNA	•	Attempt N	umber: J
	Step	Specimen Belanya Exi	Specimen B	Specimen C	Specimen D
7.	Monitor the airflow throughout the 30-minute period to ensure a rate of at least 9.6 ft ³ /min.	00 13 JAN 98	N/A	A/A	N/A
8.	At the end of the 30-minute period, repeat step 5 using the same measurement devices.	De 13			
	Record the oven temperature:	904.0 c			
	Record the specimen's internal temperature:	849.9°c			
	Record the specimen's external temperature:	856.5° c			
	Record intake air flow velocity:	10.5 CFM			
Ste	ps 5 through 8 witnessed by:	\sim			
	Engineering	h Pister	8		
	Regulatory Affairs	C. Rourner Bien	18		
	Quality Assurance	KNA 13 Jan 98			
9.	Remove test specimen from the oven.	13 6:38 PM			
	Record time the specimen is removed.	6:38 pm			
	Describe combustion when door is opened to remove specimen.	NO FLAME DED HOT DED 13 VIII)		,	
	NOTE: If specimen continues to burn,	let it self-ext	inguish and c	ool naturally	
10.	Measure the ambient temperature.	D B B B B B B B B B B B B B B B B B B B			
	Record the ambient temperature:	63.1 F			
	Note the instrument used:	ENG-12 ENG-14	ENG-12 ENG-14	ENG-14	ENG-12 ENG-14
11.	Photograph the test specimen and any subsequent damage	A In A			
12.	Record damage to test specimen on a separate sheet and attach.	Da 15 Jan			
Ste	os 9 through 12 witnessed by:				
	Engineering	H. Ders	B		
	Whessed on Island Regulatory Affairs	mesaure			
	Quality Assurance				

Test Plan #74 December 17, 1997 Page 37 of 37

· · · · ·

TN PED	1	Attempt N	umber: /
Specimen	1		
EX-1	Specimen B	Specimen C	Specimen D
NA*	N/A	u/A	N/A
/		Date:	
/	· · ·		
		N/A	NA* N/A N/A

Checklist 3: Thermal Test (Continued)

* NA - as test unit was experimental and not a valid test specimen in in TP74 (MR 1878698