Calculation Continuation Sheet

Calculation No. X-CLC-G-00121	Sheet No. 21 of 96	Rev.

Table 4. NCT-ST from Spout Glass (continuation)

Isotope	Content (Ci)	$\begin{gathered} A_{2} \\ \left(\mathrm{Ci} / \mathrm{A}_{2}\right) \end{gathered}$	MAR $\left(A_{2}\right)$	DR	ARF	LPF Melter	LPF WVMP	Release $\left(A_{2}\right)$
	From		Calculated for heel glass	Glass damage ratios and leak path factors taken from Table 2				Calculated for heel glass
a	b	c	deb/c	e	1	8	h	i=d*ertg ${ }^{\text {ch }}$
Pu-240	2.29E-02	2.70E-02	8.50E-01	0.001	1E-6	0.1	0.1	8.50E-12
Pu-241	$1.85 \mathrm{E}-01$	$1.60 \mathrm{E}+00$	1.16E-01	0.001	1E-6	0.1	0.1	$1.16 \mathrm{E}-12$
Am-241	3.80E-01	2.70E-02	$1.41 \mathrm{E}+01$	0.001	1E-6	0.1	0.1	$1.41 \mathrm{E}-10$
Am-243	$4.55 \mathrm{E}-03$	$2.70 \mathrm{E}-02$	$1.68 \mathrm{E}-01$	0.001	1E-6	0.1	0.1	$1.68 \mathrm{E}-12$
Cm-242	$1.05 \mathrm{E}-11$	2.70E-01	3.88E-11	0.001	1E-6	0.1	0.1	3.88E-22
Cm-243	1.85E-03	2.70E-02	6.87E-02	0.001	1E-6	0.1	0.1	$6.87 \mathrm{E}-13$
Cm-244	$4.07 \mathrm{E}-02$	$5.40 \mathrm{E}-02$	$7.53 \mathrm{E}-01$	0.001	1E-6	0.1	0.1	$7.53 \mathrm{E}-12$
subtotal								8.3E-10

Table 5. NCT-ST from Heel Glass

Isotope	Content (Ci)	$\begin{gathered} A_{2} \\ \left(\mathrm{Ci}_{\mathrm{i}} / \mathrm{A}_{2}\right) \end{gathered}$	MAR $\left(A_{2}\right)$	DR	ARF	LPF Melter	LPF WVMP	Release $\left(A_{2}\right)$
	From Table 1		Calculated for heel glass	Glass damage ratios and leak path factors taken from Table 2				Calculated for heel glass
a	b	c	dob/c	e	f	8	h	
C-14	3.47E-03	$8.10 \mathrm{E}+01$	$4.28 \mathrm{E}-05$	0.001	1E-6	0.1	0.1	$4.28 \mathrm{E}-16$
K-40	1.50E-02	$2.40 \mathrm{E}+01$	$6.25 \mathrm{E}-04$	0.001	1E-6	0.1	0.1	$6.25 \mathrm{E}-15$
Mn-54	$1.44 \mathrm{E}-06$	2.70E+01	5.33E-08	0.001	1E-6	0.1	0.1	5.33E-19
Co-60	3.16E-03	1.10E+01	2.87E-04	0.001	1E-6	0.1	0.1	$2.87 \mathrm{E}-15$
Ni-63	$1.52 \mathrm{E}-01$	8.10E+02	$1.88 \mathrm{E}-04$	0.001	1E-6	0.1	0.1	$1.88 \mathrm{E}-15$
Sr-90	$3.12 \mathrm{E}+01$	$8.10 \mathrm{E}+00$	$3.85 \mathrm{E}+00$	0.001	1E-6	0.1	0.1	$3.85 \mathrm{E}-11$
Y-90	$3.12 \mathrm{E}+01$	included with Sr-90						
Zr-95	1.30E-20	$2.10 \mathrm{E}+01$	6.19E-22	0.001	1E-6	0.1	0.1	6.19E-33
Nb-95	2.86E-20	2.20E+01	$1.30 \mathrm{E}-21$	0.001	1E-6	0.1	0.1	$1.30 \mathrm{E}-32$
Nb-95m	1.49E-22	included with Zr -95						
Tc-99	2.01E-03	$2.40 \mathrm{E}+01$	8.38E-05	0.001	1E-6	0.1	0.1	8.38E-16
Cs-137	$5.42 \mathrm{E}+02$	1.60E+01	$3.39 \mathrm{E}+01$	0.001	1E-6	0.1	0.1	$3.39 \mathrm{E}-10$
Ba-137m	$5.12 \mathrm{E}+02$	included with Cs-137						
Eu-154	8.12E-02	1.60E+01	5.08E-03	0.001	1E-6	0.1	0.1	5.08E-14
Hg-206	9.79E-16	5.40E-01	$1.81 \mathrm{E}-15$	0.001	1E-6	0.1	0.1	$1.81 \mathrm{E}-26$
Tl-206	$6.88 \mathrm{E}-14$	included with $\mathrm{Bi}-210 \mathrm{~m}$						
T1-207	2.56E-09	5.40E-01	$4.74 \mathrm{E}-09$	0.001	1E-6	0.1	0.1	$4.74 \mathrm{E}-20$
Tl-208	2.72E-03	included with U-232 Included with Th-229						
T1-209	8.09E-08							

Continued on next page

Calculation Continuation Sheet

Calculation No. X-CLC-G-00121	Sheet No.	Rev.

Table 5. NCT-ST from Heel Glass (continuation)

Isotope	Content (Ci)	$\begin{gathered} A_{2} \\ \left(C i / A_{2}\right) \end{gathered}$	MAR $\left(A_{2}\right)$	DR	ARF	LPF Melter	LPF WVMP	Release $\left(A_{2}\right)$
	From Table 1		Calculated for heel glass	Glass damage ratios and leak path factors taken from Table 2				Calculated for heel glass
a	¢		abb/	6	f	8	h	Hodetath
TI-210	6.54E-11	5.40E-01	$1.21 \mathrm{E}-10$	0.001	1E-6	0.1	0.1	$1.21 \mathrm{E}-21$
Pb-209	3.75E-06	included with Th-229						
Pb-210	5.16E-08	$1.40 \mathrm{E}+00$	3.69E-08	0.001	1E-6	0.1	0.1	3.69E-19
Pb-211	2.57E-09	$5.40 \mathrm{E}-01$	$4.76 \mathrm{E}-09$	0.001	1E-6	0.1	0.1	$4.76 \mathrm{E}-20$
Pb-212	7.56E-03	included with U-232 included with $\mathrm{Rn}-222$ included with $\mathrm{Pb}-210$ included with $\mathrm{Bi}-212$ included with $\mathrm{Pb}-211$ included with U-232 included with Th-229 included with $\mathrm{Rn}-222$						
Pb-214	3.11E-07							
Bi-209	8.10E-25							
Bi-210	5.14E-08							
Bi-211	2.57E-09							
Bi-212	7.56E-03							
Bi-213	3.75E-06							
Bi-214	3.11E-07							
Bi-215	2.10E-15	5.40E-01	3.89E-15	0.001	1E-6	0.1	0.1	$3.89 \mathrm{E}-26$
Po-210	$4.71 \mathrm{E}-08$	included with $\mathrm{Pb}-210$						
Po-211	$7.01 \mathrm{E}-12$	2.40E-03	$2.92 \mathrm{E}-09$	0.001	1E-6	0.1	0.1	2.92E-20
Po-212	4.84E-03	included with U-232 included with Th-229 included with U-230						
Po-213	3.67E-06							
Po-214	3.11E-07							
Po-215	2.57E-09	2.40E-03	$1.07 \mathrm{E}-06$	0.001	1E-6	0.1	0.1	$1.07 \mathrm{E}-17$
Po-216	7.56E-03	included with U-232 included with Rn-222						
Po-218	$3.11 \mathrm{E}-07$							
At-215	1.03E-14	2.40E-03	$4.29 \mathrm{E}-12$	0.001	1E-6	0.1	0.1	$4.29 \mathrm{E}-23$
At-217	3.75E-06	included with Th-229						
At-218	5.92E-11	2.40E-03	$2.47 \mathrm{E}-08$	0.001	1E-6	0.1	0.1	2.47E-19
At-219	2.17E-15	2.40E-03	$9.04 \mathrm{E}-13$	0.001	1E-6	0.1	0.1	$9.04 \mathrm{E}-24$
Rn-217	4.50E-10	2.40E-03	$1.88 \mathrm{E}-07$	0.001	1E-6	0.1	0.1	$1.88 \mathrm{E}-18$
Rn-218	5.92E-14	included with U-230						
Rn-219	2.57E-09	$2.40 \mathrm{E}-03$	$1.07 \mathrm{E}-06$	0.001	1E-6	0.1	0.1	$1.07 \mathrm{E}-17$
Rn-220	$7.56 \mathrm{E}-03$	included with U-232						
Rn-222	3.11E-07	1.10E-01	$2.83 \mathrm{E}-06$	0.001	1E-6	0.1	0.1	$2.83 \mathrm{E}-17$
Fr-221	$3.75 \mathrm{E}-06$	included with Th-229						
Fr-223	3.61E-11	5.40E-01	6.68E-11	0.001	1E-6	0.1	0.1	6.68E-22
Ra-223	2.57E-09	1.90E-01	$1.35 \mathrm{E}-08$	0.001	1E-6	0.1	0.1	$1.35 \mathrm{E}-19$
Ra-224	7.56E-03	included with U-232 included with Th-229						
Ra-225	3.76E-06							
Ra-226	3.12E-07	8.10E-02	$3.85 \mathrm{E}-06$	0.001	1E-6	0.1	0.1	3.85E-17
Ra-228	5.14E-05	5.40E-01	$9.53 \mathrm{E}-05$	0.001	1E-6	0.1	0.1	$9.53 \mathrm{E}-16$
Ac-225	$3.75 \mathrm{E}-06$	included with Th-229						

[^0]
Calculation Continuation Sheet

Calculation No. X-CLC-G-00121	Sheet No.	Rev.	0

Table 5. NCT-ST from Heel Glass (continuation)

Isotope	Content (Ci)	$\begin{gathered} A_{2} \\ \left(\mathrm{Ci} / \mathrm{A}_{2}\right) \end{gathered}$	MAR $\left(A_{2}\right)$	DR	ARF	LPF Melter	LPF WVMP	Release $\left(A_{2}\right)$
	$\begin{aligned} & \text { From } \\ & \text { Table } 1 \end{aligned}$		Calculated for heel glass	Glass damage ratios and leak path factors taken from Table 2				Calculated for heel glass
a	b	c	dib/c	c	f	\%	t	
Ac-227	2.61E-09	2.40E-03	1.09E-06	0.001	1E-6	0.1	0.1	$1.09 \mathrm{E}-17$
Ac-228	5.14E-05	included with Ra-228						
Th-227	2.55E-09	1.40E-01	$1.82 \mathrm{E}-08$	0.001	1E-6	0.1	0.1	$1.82 \mathrm{E}-19$
Th-228	7.56E-03	included with U-232						
Th-229	3.78E-06	1.40E-02	2.70E-04	0.001	1E-6	0.1	0.1	$2.70 \mathrm{E}-15$
Th-230	$6.05 \mathrm{E}-05$	$2.70 \mathrm{E}-02$	$2.24 \mathrm{E}-03$	0.001	1E-6	0.1	0.1	$2.24 \mathrm{E}-14$
Th-231	6.15E-05	included with U-235 unlimited included with U-238						
Th-232	6.74E-05							
Th-234	3.74E-04							
Pa-231	$1.55 \mathrm{E}-08$	1.10E-02	1.41E-06	0.001	1E-6	0.1	0.1	$1.41 \mathrm{E}-17$
Pa-233	$1.05 \mathrm{E}-03$	included with Np-237						
Pa-234	5.61E-07	5.40E-01	1.04E-06	0.001	1E-6	0.1	0.1	$1.04 \mathrm{E}-17$
Pa-234m	$3.74 \mathrm{E}-04$	included with U-238						
U-232	$7.31 \mathrm{E}-03$	2.70E-02	$2.71 \mathrm{E}-01$	0.001	1E-6	0.1	0.1	$2.71 \mathrm{E}-12$
U-233	3.35E-03	1.60E-01	2.09E-02	0.001	1E-6	0.1	0.1	$2.09 \mathrm{E}-13$
U-234	1.60E-03	1.60E-01	$1.00 \mathrm{E}-02$	0.001	1E-6	0.1	0.1	$1.00 \mathrm{E}-13$
U-235	6.15E-05	unlimited						
U-235m	2.61E-02							
U-236	1.84E-04	1.60E-01	1.15E-03	0.001	1E-6	0.1	0.1	$1.15 \mathrm{E}-14$
U-237	7.37E-06	included with Pu-241 unlimited						
U-238	3.74E-04							
Np-237	$1.05 \mathrm{E}-03$	5.40E-02	$1.95 \mathrm{E}-02$	0.001	1E-6	0.1	0.1	$1.95 \mathrm{E}-13$
Np-239	5.97E-03	included with Am-243						
Pu-238	$1.04 \mathrm{E}-01$	2.70E-02	$3.85 \mathrm{E}+00$	0.001	1E-6	0.1	0.1	3.85E-11
Pu-239	2.61E-02	2.70E-02	$9.66 \mathrm{E}-01$	0.001	1E-6	0.1	0.1	$9.66 \mathrm{E}-12$
Pu-240	2.01E-02	2.70E-02	7.43E-01	0.001	1E-6	0.1	0.1	$7.43 \mathrm{E}-12$
Pu-241	2.99E-01	$1.60 \mathrm{E}+00$	$1.87 \mathrm{E}-01$	0.001	1E-6	0.1	0.1	$1.87 \mathrm{E}-12$
Am-241	4.95E-01	2.70E-02	$1.83 \mathrm{E}+01$	0.001	1E-6	0.1	0.1	$1.83 \mathrm{E}-10$
Am-243	5.97E-03	2.70E-02	$2.21 \mathrm{E}-01$	0.001	1E-6	0.1	0.1	$2.21 \mathrm{E}-12$
Cm-242	3.08E-10	2.70E-01	$1.14 \mathrm{E}-09$	0.001	1E-6	0.1	0.1	$1.14 \mathrm{E}-20$
Cm-243	2.16E-03	2.70E-02	$8.01 \mathrm{E}-02$	0.001	1E-6	0.1	0.1	8.01E-13
Cm-244	4.70E-02	5.40E-02	8.70E-01	0.001	1E-6	0.1	0.1	$8.70 \mathrm{E}-12$
				*			subtotal	6.33E-10

Calculation Continuation Sheet

| Calculation No.
 X-CLC-G-00121 | Sheet No. | Rev. | 0 |
| :---: | :--- | :---: | :--- | :--- |

Table 6. NCT-ST from Refractory Glass

Isotope	Content (Ci)	$\begin{gathered} A_{2} \\ \left(\mathrm{Ci} / A_{2}\right) \end{gathered}$	MAR $\left(A_{2}\right)$	DR	ARF	LPF Melter	LPF WVMP	Release $\left(A_{2}\right)$
	From Table 1		Calculated for refractory glass	Glass damage ratios and leak path factors taken from Table 2				Calculated for refractory glass
a	b	c	d=b/c	e	1	9	h	i=derfath
Co-60	$1.33 \mathrm{E}-02$	$1.10 \mathrm{E}+01$	$1.21 \mathrm{E}-03$	0.001	1E-6	0.1	0.1	$1.21 \mathrm{E}-14$
Sr-90	$1.07 \mathrm{E}+02$	$8.10 \mathrm{E}+00$	$1.32 \mathrm{E}+01$	0.001	1E-6	0.1	0.1	$1.32 \mathrm{E}-10$
Y-90	$1.07 \mathrm{E}+02$	included with $\mathrm{Sr}-90$						
TC-99	$5.22 \mathrm{E}-02$	$2.40 \mathrm{E}+01$	$2.18 \mathrm{E}-03$	0.001	1E-6	0.1	0.1	$2.18 \mathrm{E}-14$
Cs-137	2.13E+02	$1.60 \mathrm{E}+01$	$1.33 \mathrm{E}+01$	0.001	1E-6	0.1	0.1	$1.33 \mathrm{E}-10$
Ba-137m	2.01E+02	included with Cs-137						
Eu-154	5.53E-01	$1.60 \mathrm{E}+01$	$3.45 \mathrm{E}-02$	0.001	1E-6	0.1	0.1	$3.45 \mathrm{E}-13$
Hg-206	$2.54 \mathrm{E}-16$	$5.40 \mathrm{E}-01$	4.70E-16	0.001	1E-6	0.1	0.1	4.70E-27
Tl-206	$1.78 \mathrm{E}-14$	included with $\mathrm{Bi}-210 \mathrm{~m}$						
TI-207	2.96E-09	5.40E-01	5.48E-09	0.001	1E-6	0.1	0.1	$5.48 \mathrm{E}-20$
TI-208	$1.81 \mathrm{E}-04$	included with U-232						
T1-209	1.43E-08	5.40E-01	$2.66 \mathrm{E}-08$	0.001	1E-6	0.1	0.1	$2.66 \mathrm{E}-19$
Tl-210	1.67E-11	5.40E-01	3.10E-11	0.001	1E-6	0.1	0.1	$3.10 \mathrm{E}-22$
Pb-209	$6.64 \mathrm{E}-07$	included with Th-229						
Pb-210	$1.34 \mathrm{E}-08$	$1.40 \mathrm{E}+00$	$9.54 \mathrm{E}-09$	0.001	1E-6	0.1	0.1	$9.54 \mathrm{E}-20$
$\mathrm{Pb}-211$	2.97E-09	$5.400 \mathrm{E}-1$	5.50E-09	0.001	1E-6	0.1	0.1	5.50E-20
Pb-212	5.03E-04	included with U-232 included with Rn-222 included with $\mathrm{Pb}-210$ included with $\mathrm{Bi}-212$ included with $\mathrm{Pb}-211$ included with U-232 included with Th-229 included with Rn-222						
Pb-214	7.96E-08							
Bi-209	$1.46 \mathrm{E}-25$							
Bi-210	1.33E-08							
Bi-211	2.97E-09							
Bi-212	5.03E-04							
Bi-213	6.64E-07							
Bi-214	7.96E-08							
Bi-215	2.43E-15	2.40E-03	$1.01 \mathrm{E}-12$	0.001	1E-6	0.1	0.1	$1.01 \mathrm{E}-23$
Po-210	1.22E-08	included with $\mathrm{Pb}-210$						
Po-211	8.10E-12	$2.40 \mathrm{E}-03$	$3.38 \mathrm{E}-09$	0.001	1E-6	0.1	0.1	$3.38 \mathrm{E}-20$
Po-212	3.22E-04	included with U-232included with Th-229included with U-230Included with Ra-223included with U-232included with Rn-222						
Po-213	6.50E-07							
Po-214	$7.96 \mathrm{E}-08$							
Po-215	2.97E-09							
Po-216	5.03E-04							
Po-218	$7.96 \mathrm{E}-08$							
At-215	1.19E-14	$2.40 \mathrm{E}-03$	$4.95 \mathrm{E}-12$	0.001	1E-6	0.1	0.1	$4.95 \mathrm{E}-23$
At-217	6.64E-07	included with Th-229						
At-218	$1.51 \mathrm{E}-11$	2.40E-03	6.30E-09	0.001	1E-6	0.1	0.1	6.30E-20
At-219	2.50E-15	$2.40 \mathrm{E}-03$	$1.04 \mathrm{E}-12$	0.001	1E-6	0.1	0.1	$1.04 \mathrm{E}-23$
Rn-217	7.97E-11	$2.40 \mathrm{E}-03$	$3.32 \mathrm{E}-08$	0.001	1E-6	0.1	0.1	$3.32 \mathrm{E}-19$
Rn-218	$1.51 \mathrm{E}-14$	included with U-230						
Rn-219	2.97E-09	2.40E-03	$1.24 \mathrm{E}-06$	0.001	1E-6	0.1	0.1	$1.24 \mathrm{E}-17$
Rn-220	5.03E-04	included with U-232						
Rn-222	$7.96 \mathrm{E}-08$	1.10E-01	$7.24 \mathrm{E}-07$	0.001	1E-6	0.1	0.1	$7.24 \mathrm{E}-18$

[^1]
Calculation Continuation Sheet

Calculation No. X-CLC-G-00121	Sheet No.	Rev.	0

Table 6. NCT-ST from Refractory Glass (continuation)

Isotope	Content (Ci)	$\begin{gathered} A_{2} \\ \left(\mathrm{Ci} / \mathrm{A}_{2}\right) \end{gathered}$	MAR $\left(A_{2}\right)$	DR	ARF	LPF Melter	LPF WVMP	Release $\left(A_{2}\right)$
	From Table 1	From Table 1	Calculated for refractory glass	Glass damage ratios and leak path factors taken from Table 2				Calculated for refractory glass
a	b	c	d=b/c	e	f	8	h	fratetfath
Fr-221	$6.64 \mathrm{E}-07$	included with Th-229						
Fr-223	4.17E-11	$5.40 \mathrm{E}-01$	7.73E-11	0.001	1E-6	0.1	0.1	$7.73 \mathrm{E}-22$
Ra-223	2.97E-09	1.90E-01	1.56E-08	0.001	1E-6	0.1	0.1	$1.56 \mathrm{E}-19$
Ra-224	5.03E-04	included with U-232 included with Th-229						
Ra-225	$6.66 \mathrm{E}-07$							
Ra-226	7.97E-08	8.10E-02	9.84E-07	0.001	1E-6	0.1	0.1	$9.84 \mathrm{E}-18$
Ra-228	3.21E-05	$5.40 \mathrm{E}-01$	5.95E-05	0.001	1E-6	0.1	0.1	$5.95 \mathrm{E}-16$
Ac-225	$6.64 \mathrm{E}-07$	included with Th-229						
Ac-227	3.02E-09	2.40E-03	1.26E-06	0.001	1E-6	0.1	0.1	$1.26 \mathrm{E}-16$
Ac-228	$3.21 \mathrm{E}-05$	included with Ra-228						
Th-227	$2.95 \mathrm{E}-09$	$1.40 \mathrm{E}-01$	2.11E-08	0.001	1E-6	0.1	0.1	$2.11 \mathrm{E}-18$
Th-228	5.02E-04	included with U-232						
Th-229	$6.70 \mathrm{E}-07$	$1.40 \mathrm{E}-02$	$4.79 \mathrm{E}-05$	0.001	1E-6	0.1	0.1	$4.79 \mathrm{E}-15$
Th-230	$1.52 \mathrm{E}-05$	$2.70 \mathrm{E}-02$	5.63E-04	0.001	1E-6	0.1	0.1	$5.63 \mathrm{E}-14$
Th-231	6.92E-05	included with U-235 unlimited included with U-238						
Th-232	$4.18 \mathrm{E}-05$							
Th-234	$1.16 \mathrm{E}-04$							
Pa-231	$1.78 \mathrm{E}-08$	1.10E-02	$1.62 \mathrm{E}-06$	0.001	1E-6	0.1	0.1	$1.62 \mathrm{E}-16$
Pa-233	8.49E-04	included with Np-237						
Pa-234	$1.74 \mathrm{E}-07$	5.40E-01	$3.22 \mathrm{E}-07$	0.001	1E-6	0.1	0.1	$3.22 \mathrm{E}-17$
Pa-234m	$1.16 \mathrm{E}-04$	included with U-238						
U-232	4.41E-04	$2.70 \mathrm{E}-02$	$1.63 \mathrm{E}-02$	0.001	1E-6	0.1	0.1	$1.63 \mathrm{E}-12$
U-233	5.85E-04	$1.60 \mathrm{E}-01$	$3.66 \mathrm{E}-03$	0.001	1E-6	0.1	0.1	$3.66 \mathrm{E}-13$
U-234	$2.84 \mathrm{E}-04$	$1.60 \mathrm{E}-01$	$1.78 \mathrm{E}-03$	0.001	1E-6	0.1	0.1	$1.78 \mathrm{E}-13$
U-235	6.92E-05	unlimited unlimited						
U-235m	3.72E-02							
U-236	2.08E-04	1.60E-01	1.30E-03	0.001	1E-6	0.1	0.1	$1.30 \mathrm{E}-13$
U-237	5.08E-06	Included with Pu-241 unlimited						
U-238	1.16E-04							
Np-237	8.49E-04	$5.40 \mathrm{E}-02$	1.57E-02	0.001	1E-6	0.1	0.1	$1.57 \mathrm{E}-13$
Np-239	6.72E-03	included with Am-243						
Pu-238	$1.41 \mathrm{E}-01$	$2.70 \mathrm{E}-02$	$5.22 \mathrm{E}+00$	0.001	1E-6	0.1	0.1	$5.22 \mathrm{E}-11$
Pu-239	3.72E-02	$2.70 \mathrm{E}-02$	$1.38 \mathrm{E}+00$	0.001	1E-6	0.1	0.1	$1.38 \mathrm{E}-11$
Pu-240	2.85E-02	$2.70 \mathrm{E}-02$	$1.06 \mathrm{E}+00$	0.001	1E-6	0.1	0.1	$1.06 \mathrm{E}-11$
Pu-241	2.06E-01	$1.60 \mathrm{E}+00$	$1.29 \mathrm{E}-01$	0.001	1E-6	0.1	0.1	$1.29 \mathrm{E}-12$
Am-241	$8.45 \mathrm{E}-01$	$2.70 \mathrm{E}-02$	$3.13 \mathrm{E}+01$	0.001	1E-6	0.1	0.1	$3.13 \mathrm{E}-10$
Am-243	$6.72 \mathrm{E}-03$	$2.70 \mathrm{E}-02$	$2.49 \mathrm{E}-01$	0.001	1E-6	0.1	0.1	$2.49 \mathrm{E}-12$
Cm-242	$4.49 \mathrm{E}-11$	$2.70 \mathrm{E}-01$	$1.66 \mathrm{E}-10$	0.001	1E-6	0.1	0.1	$1.66 \mathrm{E}-21$
Cm-243	3.04E-03	$2.70 \mathrm{E}-02$	$1.13 \mathrm{E}-01$	0.001	1E-6	0.1	0.1	$1.13 \mathrm{E}-12$
Cm-244	$6.77 \mathrm{E}-02$	$5.40 \mathrm{E}-02$	$1.25 \mathrm{E}+00$	0.001	1E-6	0.1	0.1	$1.25 \mathrm{E}-11$
subtotal								$6.73 \mathrm{E}-10$

Calculation Continuation Sheet

Calculation No. X-CLC-G-00121	Sheet No.	26 of 96

Table 7. NCT-ST from LDCC Internal to Melter

Isotope	Content (Ci)	Leach Ratio	Leached (Ci)	$\begin{gathered} A_{2} \\ \left(\mathrm{Ci} / \mathrm{A}_{2}\right) \end{gathered}$	MAR $\left(A_{2}\right)$	DR	ARF	LPF melter	LPF	Release $\left(A_{2}\right)$
	From Table 1	Leach Ratio for glass from Table 2	Calculated for LDCC internal to the melter	From Table 1	Calculated for internal LDCC	From Table 2 For internal LDCC				Calculated for internal LDCC
a	b	c	$\mathrm{d}=\mathrm{b}^{*} \mathrm{c}$	e	f-d/e	g	h	1	1	
C-14	3.47E-3	1.6E-3	5.56E-06	$8.10 \mathrm{E}+01$	$6.87 \mathrm{E}-08$	0.002	1E-5	0.1	0.1	$1.37 \mathrm{E}-16$
K-40	1.50E-2	$1.6 \mathrm{E}-3$	$2.41 \mathrm{E}-05$	$2.40 \mathrm{E}+01$	$1.00 \mathrm{E}-06$	0.002	1E-5	0.1	0.1	$2.00 \mathrm{E}-15$
Mn-54	$1.44 \mathrm{E}-6$	1.6E-3	$2.31 \mathrm{E}-09$	$2.70 \mathrm{E}+01$	$8.55 \mathrm{E}-11$	0.002	1E-5	0.1	0.1	$1.71 \mathrm{E}-19$
Co-60	$3.16 \mathrm{E}-3$	$1.6 \mathrm{E}-3$	$5.07 \mathrm{E}-06$	1.10E+01	$4.61 \mathrm{E}-07$	0.002	1E-5	0.1	0.1	$9.21 \mathrm{E}-16$
Ni-63	1.52E-1	$1.6 \mathrm{E}-3$	$2.44 \mathrm{E}-04$	$8.10 \mathrm{E}+02$	$3.01 \mathrm{E}-07$	0.002	1E-5	0.1	0.1	$6.02 \mathrm{E}-16$
Sr-90	$3.12 \mathrm{E}+1$	1.6E-3	$5.00 \mathrm{E}-02$	8.10E+00	$6.18 \mathrm{E}-03$	0.002	1E-5	0.1	0.1	$1.24 \mathrm{E}-11$
Y-90	$3.12 \mathrm{E}+1$	included with $\mathrm{Sr}-90$								
Zr-95	1.30E-0	1.6E-3	$2.08 \mathrm{E}-23$	2.10E+01	$9.48 \mathrm{E}-25$	0.002	1E-5	0.1	0.1	$1.90 \mathrm{E}-33$
Nb-95	$2.86 \mathrm{E}-20$	1.6E-3	$4.59 \mathrm{E}-23$	2.20E+01	$1.70 \mathrm{E}-24$	0.002	1E-5	0.1	0.1	3.40E-33
Nb95m	$1.49 \mathrm{E}-22$	included with $\mathrm{Zr}-95$								
Tc-99	$2.01 \mathrm{E}-03$	1.6E-3	3.22E-06	$2.40 E+01$	$1.34 \mathrm{E}-07$	0.002	1E-5	0.1	0.1	2.69E-16
Cs-137	$5.42 \mathrm{E}+2$	$1.6 \mathrm{E}-3$	8.69E-01	$1.60 \mathrm{E}+01$	5.43E-02	0.002	1E-5	0.1	0.1	$1.09 \mathrm{E}-10$
Ba-137m	$5.12 \mathrm{E}+2$	included with Cs-137								
Eu-154	8.12E-02	$1.6 \mathrm{E}-3$	$1.30 \mathrm{E}-04$	$1.60 \mathrm{E}+01$	$8.14 \mathrm{E}-06$	0.002	1E-5	0.1	0.1	$1.63 \mathrm{E}-14$
Hg-206	9.79E-16	$1.6 \mathrm{E}-3$	$1.57 \mathrm{E}-18$	5.40E-01	$2.91 \mathrm{E}-18$	0.002	1E-5	0.1	0.1	$5.81 \mathrm{E}-27$
T1-206	6.88E-14	included with $\mathrm{Bi}-210 \mathrm{~m}$								
T1-207	2.56E-09	$1.6 \mathrm{E}-3$	$4.11 \mathrm{E}-12$	5.40E-01	7.60E-12	0.002	1E-5	0.1	0.1	$1.52 \mathrm{E}-20$
T1-208	2.72E-03	included with U-238 included with Th-229								
T1-209	8.09E-08									
T1-210	6.54E-11	$1.6 \mathrm{E}-3$	1.05E-13	5.40E-01	$1.94 \mathrm{E}-13$	0.002	1E-5	0.1	0.1	$3.88 \mathrm{E}-22$
$\mathrm{Pb}-210 \mathrm{~m}$	3.75E-06	Included with Th-229								
Pb-210	5.16E-08	$1.6 \mathrm{E}-3$	8.27E-11	$1.40 \mathrm{E}+00$	$5.91 \mathrm{E}-11$	0.002	1E-5	0.1	0.1	$1.18 \mathrm{E}-19$
Pb-211	2.57E-09	$1.6 \mathrm{E}-3$	$4.12 \mathrm{E}-12$	5.40E-01	$7.63 \mathrm{E}-12$	0.002	1E-5	0.1	0.1	$1.53 \mathrm{E}-20$
Pb-212	$7.56 \mathrm{E}-03$	included with U-232								
Pb-214	3.11E-07	included with Rn-222								
Bi-209	8.10E-25	included with $\mathrm{Pb}-210$								
Bi-210	$5.14 \mathrm{E}-08$	included with $\mathrm{Bi}-212$								
Bi-211	$2.57 \mathrm{E}-09$	included with Ra-223								
Bi-212	$7.56 \mathrm{E}-03$	included with U-232								
Bi-213	3.75E-06	included with Th-229								
Bi-214	3.11E-07	included with Rn-222								
Bi-215	2.10E-15	$1.6 \mathrm{E}-3$	3.37E-18	5.40E-01	$6.24 \mathrm{E}-18$	0.002	$1 \mathrm{E}-5$	0.1	0.1	$1.25 \mathrm{E}-26$
Po-210	$4.71 \mathrm{E}-08$	included with $\mathrm{Pb}-210$								
Po-211	$7.01 \mathrm{E}-12$	$1.6 \mathrm{E}-3$	1.12E-14	2.40E-03	$4.68 \mathrm{E}-12$	0.002	1E-5	0.1	0.1	$9.37 \mathrm{E}-21$

Continued on next page

Calculation Continuation Sheet

| Calculation No.
 X-CLC-G-00121 | Sheet No. | Rev. | 0 |
| :---: | :--- | :---: | :---: | :---: |

Table 7. NCT-ST from LDCC Internal to Melter (continuation)

Continued on next page

Calculation Continuation Sheet

| Calculation No.
 X-CLC-G-00121 | Sheet No. 28 of 96 | Rev. | 0 |
| :---: | :--- | :---: | :--- | :---: |

Table 7. NCT-ST from LDCC Internal to Melter (continuation)

Isotope	Content (Ci)	Leach Ratio	Leached (Ci)	$\begin{gathered} A 2 \\ \left(\mathrm{Ci} / \mathrm{A}_{2}\right) \end{gathered}$	$\begin{aligned} & \text { MAR } \\ & \left(A_{2}\right) \end{aligned}$	DR	ARF	LPF melter	LPF WVMP	Release $\left(A_{2}\right)$
	$\begin{aligned} & \text { From } \\ & \text { Table } 1 \end{aligned}$	Leach Ratio for glass from Table 2	Calculated for LDCC internal to the melter	From Table 1	Calculated for LDCC internal to the melter	From Table 2. LDCC internal to melter				Calculated for inhalation from LDCC internal to the melter
a	b	c	$\mathrm{d}=\mathrm{b}^{*} \mathrm{c}$	e	$f=\mathrm{d} / \mathrm{e}$	g	h	1	j	
Pa-231	$1.55 \mathrm{E}-08$	1.6E-3	$2.49 \mathrm{E}-11$	$1.10 \mathrm{E}-02$	$2.27 \mathrm{E}-09$	0.002	1E-5	0.1	0.1	$4.53 \mathrm{E}-18$
Pa-233	1.05E-03	included with Np-237								
Pa-234	5.61E-07	1.6E-3	$9.00 \mathrm{E}-10$	$5.40 \mathrm{E}-01$	1.67E-09	0.002	1E-5	0.1	0.1	$3.33 \mathrm{E}-18$
Pa-234m	3.74E-04	Including U-238								
U-232	$7.31 \mathrm{E}-03$	1.6E-3	$1.17 \mathrm{E}-05$	$2.70 \mathrm{E}-02$	$4.34 \mathrm{E}-04$	0.002	1E-5	0.1	0.1	8.68E-13
U-233	3.35E-03	1.6E-3	5.37E-06	1.60E-01	$3.36 \mathrm{E}-05$	0.002	1E-5	0.1	0.1	6.71E-14
U-234	1.60E-03	$1.6 \mathrm{E}-3$	$2.57 \mathrm{E}-06$	1.60E-01	$1.61 \mathrm{E}-05$	0.002	1E-5	0.1	0.1	$3.22 \mathrm{E}-14$
U-235	6.15E-05	unlimited unlimited								
U-235m	$2.61 \mathrm{E}-02$									
U-236	1.84E-04	1.6E-3	2.95E-07	$1.60 \mathrm{E}-01$	$1.84 \mathrm{E}-06$	0.002	1E-5	0.1	0.1	3.69E-15
U-237	7.37E-06	included with Pu-241 unlimited								
U-238	$3.74 \mathrm{E}-04$									
Np-237	1.05E-03	1.6E-3	1.69E-06	$5.40 \mathrm{E}-02$	$3.12 \mathrm{E}-05$	0.002	1E-5	0.1	0.1	6.25E-14
Np-239	5.97E-03	included with Am-243								
Pu-238	$1.04 \mathrm{E}-01$	$1.6 \mathrm{E}-3$	$1.67 \mathrm{E}-04$	2.70E-02	6.17E-03	0.002	1E-5	0.1	0.1	1.23E-11
Pu-239	2.61E-02	1.6E-3	$4.18 \mathrm{E}-05$	2.70E-02	$1.55 \mathrm{E}-03$	0.002	1E-5	0.1	0.1	$3.10 \mathrm{E}-12$
Pu-240	2.01E-02	$1.6 \mathrm{E}-3$	$3.22 \mathrm{E}-05$	2.70E-02	$1.19 \mathrm{E}-03$	0.002	1E-5	0.1	0.1	$2.38 \mathrm{E}-12$
Pu-241	2.99E-01	1.6E-3	$4.79 \mathrm{E}-04$	$1.60 \mathrm{E}+00$	$3.00 \mathrm{E}-04$	0.002	1E-5	0.1	0.1	5.99E-13
Am-241	$4.95 \mathrm{E}-01$	$1.6 \mathrm{E}-3$	$7.94 \mathrm{E}-04$	2.70E-02	$2.94 \mathrm{E}-02$	0.002	1E-5	0.1	0.1	5.88E-11
Am-243	5.97E-03	$1.6 \mathrm{E}-3$	$9.58 \mathrm{E}-06$	2.70E-02	3.55E-04	0.002	1E-5	0.1	0.1	$7.09 \mathrm{E}-13$
Cm-242	3.08E-10	1.6E-3	$4.95 \mathrm{E}-13$	2.70E-01	$1.83 \mathrm{E}-12$	0.002	1E-5	0.1	0.1	$3.66 \mathrm{E}-21$
Cm-243	2.16E-03	1.6E-3	$3.47 \mathrm{E}-06$	2.70E-02	$1.28 \mathrm{E}-04$	0.002	1E-5	0.1	0.1	$2.57 \mathrm{E}-13$
Cm-244	4.70E-02	1.6E-3	$7.53 \mathrm{E}-05$	5.40E-02	$1.39 \mathrm{E}-03$	0.002	1E-5	0.1	0.1	$2.79 \mathrm{E}-12$
								subtotal		$1.08 \mathrm{E}-8$

Calculation Continuation Sheet

Calculation No. X-CLC-G-00121	Sheet No.	Rev.	0

Table 8. NCT-ST from Increased Pressure (i.e., < 25 Psig) on LDCC Internal to Melter

Isotope	Content (Ci)	Leach Ratio	Leached (Ci)	$\begin{gathered} A_{2} \\ \left(\mathrm{Ci} / \mathrm{A}_{2}\right) \end{gathered}$	MAR (A_{2})	DR	ARF	RF	LPF melter	LPF wvmp	Release $\left(A_{2}\right)$
	From Table 1	Leach Ratio for glass from Table 2	Calculated for LDCC internal to the melter	From Table 1	Calculated for LDCC internal to the melter	From	e 2. LDCC pressu	$\begin{aligned} & \text { ntern } \\ & \text { nincr } \end{aligned}$	al to melter ease	with	Calculated for inhalation from LDCC internal to the melter
a	b	c	d=b*c	e	$\mathrm{f}=\mathrm{d} / \mathrm{e}$	g	h	,	1	k	1-ftg*h*****
C-14	3.47E-03	$1.6 \mathrm{E}-3$	5.56E-06	8.10E+01	6.87E-08	0.002	5E-3	0.4	0.1	0.1	$2.75 \mathrm{E}-15$
K-40	1.50E-02	1.6E-3	$2.41 \mathrm{E}-05$	$2.40 \mathrm{E}+01$	$1.00 \mathrm{E}-06$	0.002	5E-3	0.4	0.1	0.1	$4.01 \mathrm{E}-14$
Mn-54	$1.44 \mathrm{E}-06$	$1.6 \mathrm{E}-3$	$2.31 \mathrm{E}-09$	$2.70 \mathrm{E}+01$	8.55E-11	0.002	5E-3	0.4	0.1	0.1	$3.42 \mathrm{E}-18$
Co-60	3.16E-03	$1.6 \mathrm{E}-3$	$5.07 \mathrm{E}-06$	1.10E+01	4.61E-07	0.002	5E-3	0.4	0.1	0.1	$1.84 \mathrm{E}-14$
Ni-63	$1.52 \mathrm{E}-01$	1.6E-3	$2.44 \mathrm{E}-04$	$8.10 \mathrm{E}+02$	3.01E-07	0.002	5E-3	0.4	0.1	0.1	1.20E-14
Sr-90	$3.12 \mathrm{E}+01$	1.6E-3	5.00E-02	$8.10 \mathrm{E}+00$	6.18E-03	0.002	5E-3	0.4	0.1	0.1	2.47E-10
Y-90	$3.12 \mathrm{E}+01$	included with Sr-90									
Zr-95	$1.30 \mathrm{E}-20$	$1.6 \mathrm{E}-3$	2.08E-23	$2.20 E+01$	9.48E-25	0.002	5E-3	0.4	0.1	0.1	3.79E-32
Nb-95	$2.86 \mathrm{E}-20$	1.6E-3	$4.59 \mathrm{E}-23$	$2.70 \mathrm{E}+01$	$1.70 \mathrm{E}-24$	0.002	5E-3	0.4	0.1	0.1	$6.79 \mathrm{E}-32$
Nb95m	1.49E-22	included with Zr -95									
Tc-99	2.01E-03	$1.6 \mathrm{E}-3$	3.22E-06	$2.40 \mathrm{E}+01$	$1.34 \mathrm{E}-07$	0.002	5E-3	0.4	0.1	0.1	5.37E-15
Cs-137	$5.42 \mathrm{E}+02$	1.6E-3	$8.69 \mathrm{E}-01$	$1.60 \mathrm{E}+01$	5.43E-02	0.002	5E-3	0.4	0.1	0.1	2.17E-09
Ba-137m	$5.12 \mathrm{E}+2$	included with Cs -137									
Eu-154	$8.12 \mathrm{E}-02$	$1.6 \mathrm{E}-3$	$1.30 \mathrm{E}-04$	$1.60 \mathrm{E}+01$	8.14E-06	0.002	5E-3	0.4	0.1	0.1	$3.26 \mathrm{E}-13$
Hg-206	$9.79 \mathrm{E}-16$	1.6E-3	$1.57 \mathrm{E}-18$	5.40E-01	$2.91 \mathrm{E}-18$	0.002	5E-3	0.4	0.1	0.1	$1.16 \mathrm{E}-25$
T1-206	6.88E-14	included with $\mathrm{Bi}-210 \mathrm{~m}$									
T1-207	$2.56 \mathrm{E}-09$	1.6E-3	$4.11 \mathrm{E}-12$	$5.40 \mathrm{E}-01$	7.60E-12	0.002	5E-3	0.4	0.1	0.1	$3.04 \mathrm{E}-19$
TI-208	2.72E-03	included with U-238 included with Th-229									
T1-209	8.09E-08										
T1-210	$6.54 \mathrm{E}-11$	1.6E-3	$1.05 \mathrm{E}-13$	$5.40 \mathrm{E}-01$	$1.94 \mathrm{E}-13$	0.002	5E-3	0.4	0.1	0.1	$7.77 \mathrm{E}-21$
$\mathrm{Pb}-210 \mathrm{~m}$	3.75E-06	Included with Th-229									
Pb-210	5.16E-08	1.6E-3	$8.27 \mathrm{E}-11$	$1.40 \mathrm{E}+00$	5.91E-11	0.002	5E-3	0.4	0.1	0.1	$2.36 \mathrm{E}-18$
Pb-211	2.57E-09	1.6E-3	$4.12 \mathrm{E}-12$	5.40E-01	$7.63 \mathrm{E}-12$	0.002	5E-3	0.4	0.1	0.1	3.05E-19
Pb-212	$7.56 \mathrm{E}-03$	included with U-232									
Pb-214	$3.11 \mathrm{E}-07$	included with Rn-222									
Bi-209	8.10E-25	included with $\mathrm{Pb}-210$									
Bi-210	$5.14 \mathrm{E}-08$	included with $\mathrm{Bi}-212$									
Bi-211	$2.57 \mathrm{E}-09$	included with Ra-223									
Bi-212	$7.56 \mathrm{E}-03$	included with U-232									
Bi-213	3.75E-06	included with Th-229									
Bi-214	$3.11 \mathrm{E}-07$	included with Rn-222									
Bi-215	2.10E-15	1.6E-3	3.37E-18	5.40E-01	$6.24 \mathrm{E}-18$	0.002	5E-3	0.4	0.1	0.1	$2.49 \mathrm{E}-25$
Po-210	$4.71 \mathrm{E}-08$	included with $\mathrm{Pb}-210$									
Po-211	$7.01 \mathrm{E}-12$	$1.6 \mathrm{E}-3$	$1.12 \mathrm{E}-14$	$2.40 \mathrm{E}-03$	$4.68 \mathrm{E}-12$	0.002	5E-3	0.4	0.1	0.1	$1.87 \mathrm{E}-19$

Continued on next page

Calculation Continuation Sheet

Calculation No. X-CLC-G-00121	Sheet No.	30 of 96	Rev.	0

Table 8. NCT-ST from Increased Pressure (i.e., < 25 Psig) on LDCC Internal to Melter (continuation)

Isotope	Content (Ci)	Leached ratio	Leached (Ci)	$\begin{gathered} A_{2} \\ \left(\mathrm{Ci} / \mathrm{A}_{2}\right) \end{gathered}$	MAR $\left(A_{2}\right)$	DR	ARF	RF	LPF melter	LPF wvmp	Release $\left(A_{2}\right)$
	From Table 1	Leach Ratio for glass from Table 2	Calculated for LDCC internal to the melter	From Table 2	Calculated for internal LDCC		Table 2.	SCC int	nal to me rease	er with	$\begin{gathered} \text { Calculated } \\ \text { for internal LDCC } \end{gathered}$
a	b	c	$\mathrm{d}=\mathrm{b}^{*} \mathrm{c}$	e	frde	8	h	I	i	k	
Po-212	4.84E-3	included $\mathrm{Pb}-212$ included with Th-229 included with U-230 included with Ra-223 included with U-232 included with $\mathrm{Rn}-222$									
Po-213	3.67E-6										
Po-214	3.11E-7										
Po-215	2.57E-9										
Po-216	7.56E-3										
Po-218	3.11E-7										
At-215	1.03E-14	$1.6 \mathrm{E}-3$	$1.65 \mathrm{E}-17$	2.40E-03	$6.88 \mathrm{E}-15$	0.002	5E-3	0.4	0.1	0.1	$2.75 \mathrm{E}-22$
At-217	3.75E-06	included with Th-229									
At-218	5.92E-11	1.6E-3	$9.49 \mathrm{E}-14$	$2.40 \mathrm{E}-03$	3.96E-11	0.002	5E-3	0.4	0.1	0.1	$1.58 \mathrm{E}-18$
At-219	2.17E-15	$1.6 \mathrm{E}-3$	$3.48 \mathrm{E}-18$	$2.40 \mathrm{E}-03$	$1.45 \mathrm{E}-15$	0.002	5E-3	0.4	0.1	0.1	5.80E-23
Rn-217	4.50E-10	1.6E-3	$7.22 \mathrm{E}-13$	$2.40 \mathrm{E}-03$	3.01E-10	0.002	5E-3	0.4	0.1	0.1	$1.20 \mathrm{E}-17$
Rn-218	5.92E-14	included with U-230									
Rn-219	2.57E-09	1.6E-3	$4.12 \mathrm{E}-12$	2.40E-03	$1.72 \mathrm{E}-09$	0.002	5E-3	0.4	0.1	0.1	$6.87 \mathrm{E}-17$
Rn-220	7.56E-03	included with U-232									
Rn-222	3.11E-07	1.6E-3	$4.99 \mathrm{E}-10$	1.10E-01	4.53E-09	0.002	5E-3	0.4	0.1	0.1	$1.81 \mathrm{E}-16$
Fr-221	3.75E-06	included with Th-229									
Fr-223	$3.61 \mathrm{E}-11$	$1.6 \mathrm{E}-3$	$5.79 \mathrm{E}-14$	5.40E-01	$1.07 \mathrm{E}-13$	0.002	5E-3	0.4	0.1	0.1	$4.29 \mathrm{E}-21$
Ra-223	3.61E-11	1.6E-3	$5.79 \mathrm{E}-14$	$1.90 \mathrm{E}-01$	3.05E-13	0.002	5E-3	0.4	0.1	0.1	$1.22 \mathrm{E}-20$
Ra-224	$7.56 \mathrm{E}-03$	included with U-232 included with Th-229									
Ra-225	3.76E-06										
Ra-226	3.12E-07	$1.6 \mathrm{E}-3$	$5.00 \mathrm{E}-10$	8.10E-02	6.17E-09	0.002	5E-3	0.4	0.1	0.1	$2.47 \mathrm{E}-16$
Ra-228	5.14E-05	1.6E-3	8.25E-08	5.40E-01	$1.53 \mathrm{E}-07$	0.002	5E-3	0.4	0.1	0.1	$6.11 \mathrm{E}-15$
Ac-225	3.75E-06	included with Th-229									
Ac-227	2.61E-09	1.6E-3	$4.19 \mathrm{E}-12$	2.40 E-03	$1.75 \mathrm{E}-09$	0.002	5E-3	0.4	0.1	0.1	6.99E-17
Ac-228	$5.14 \mathrm{E}-05$	included with Ra-228									
Th-227	$2.55 \mathrm{E}-09$	1.6E-3	$4.09 \mathrm{E}-12$	1.40E-01	$2.92 \mathrm{E}-11$	0.002	5E-3]	0.4	0.1	0.1	$1.17 \mathrm{E}-18$
Th-228	$7.56 \mathrm{E}-03$	included with U-232									
Th-229	3.78E-06	1.6E-3	6.06E-09	1.40E-02	4.33E-07	0.002	5E-3	0.4	0.1	0.1	1.73E-14
Th-230	$6.05 \mathrm{E}-05$	$1.6 \mathrm{E}-3$	9.70E-08	2.70E-02	$3.59 \mathrm{E}-06$	0.002	5E-3	0.4	0.1	0.1	$1.44 \mathrm{E}-13$
Th-231	$6.15 \mathrm{E}-05$	included with U-235 unlimited included with U-238									
Th-232	6.74E-05										
Th-234	3.74E-04										

Continued on next page

Calculation Continuation Sheet

Calculation No.		
X-CLC-G-00121	Sheet No. 31 of 96	Rev. 0

Table 8. NCT-ST from Increased Pressure (i.e., < 25 Psig) on LDCC Internal to Melter (continuation)

Isotope	Content (Ci)	Leach Ratio	Leached (Ci)	$\begin{gathered} A_{2} \\ \left(\mathrm{Ci} / \mathrm{A}_{2}\right) \end{gathered}$	MAR $\left(A_{2}\right)$	DR	ARF	RF	LPF melter	LPF WVMP	Release $\left(A_{2}\right)$
	From Table 1	Leach Ratio for glass from Table 2	Calculated for LDCC internal to the melter	From Table 1	Calculated for LDCC internal to the melter	From Table 2. LDCC internal to melter					
a	b	c	$\mathrm{d}=\mathrm{b}^{*} \mathrm{c}$	e	$\mathrm{f}=\mathrm{d} / \mathrm{e}$	g	h	1	1	k	$1-\mathrm{f}^{*} \mathrm{~g}^{*}{ }^{*}{ }^{*}{ }^{*}{ }^{*}{ }^{\text {a }}$
Pa-231	$1.55 \mathrm{E}-08$	1.6E-3	$2.49 \mathrm{E}-11$	$1.10 \mathrm{E}-02$	$2.27 \mathrm{E}-09$	0.002	5E-3	0.4	0.1	0.1	9.06E-17
Pa-233	$1.05 \mathrm{E}-03$	included with Np-237									
Pa-234	$5.61 \mathrm{E}-07$	1.6E-3	9.00E-10	$5.40 \mathrm{E}-01$	$1.67 \mathrm{E}-09$	0.002	5E-3	0.4	0.1	0.1	6.66E-17
Pa-234m	3.74E-04	Including U-238									
U-232	$7.31 \mathrm{E}-03$	1.6E-3	1.17E-05	2.70E-02	$4.34 \mathrm{E}-04$	0.002	5E-3	0.4	0.1	0.1	$1.74 \mathrm{E}-11$
U-233	3.35E-03	1.6E-3	5.37E-06	1.60E-01	$3.36 \mathrm{E}-05$	0.002	5E-3	0.4	0.1	0.1	$1.34 \mathrm{E}-12$
U-234	1.60E-03	$1.6 \mathrm{E}-3$	$2.57 \mathrm{E}-06$	$1.60 \mathrm{E}-01$	$1.61 \mathrm{E}-05$	0.002	5E-3	0.4	0.1	0.1	$6.43 \mathrm{E}-13$
U-235	6.15E-05	unlimited unlimited									
U-235m	$2.61 \mathrm{E}-02$										
U-236	1.84E-04	$1.6 \mathrm{E}-3$	2.95E-07	1.60E-01	$1.84 \mathrm{E}-06$	0.002	5E-3	0.4	0.1	0.1	$7.38 \mathrm{E}-14$
U-237	7.37E-06	included with Pu-241 unlimited									
U-238	$3.74 \mathrm{E}-04$										
Np-237	$1.05 \mathrm{E}-03$	$1.6 \mathrm{E}-3$	$1.69 \mathrm{E}-06$	5.40E-02	$3.12 \mathrm{E}-05$	0.002	5E-3	0.4	0.1	0.1	$1.25 \mathrm{E}-12$
Np-239	5.97E-03	included with Am-243									
Pu-238	$1.04 \mathrm{E}-01$	1.6E-3	$1.67 \mathrm{E}-04$	2.70E-02	$6.17 \mathrm{E}-03$	0.002	5E-3	0.4	0.1	0.1	$2.47 \mathrm{E}-10$
Pu-239	2.61E-02	1.6E-3	$4.18 \mathrm{E}-05$	2.70E-02	$1.55 \mathrm{E}-03$	0.002	5E-3	0.4	0.1	0.1	$6.20 \mathrm{E}-11$
Pu-240	$2.01 \mathrm{E}-02$	1.6E-3	$3.22 \mathrm{E}-05$	$2.70 \mathrm{E}-02$	$1.19 \mathrm{E}-03$	0.002	5E-3	0.4	0.1	0.1	$4.76 \mathrm{E}-11$
Pu-241	2.99E-01	1.6E-3	$4.79 \mathrm{E}-04$	$1.60 \mathrm{E}+00$	$3.00 \mathrm{E}-04$	0.002	5E-3	0.4	0.1	0.1	$1.20 \mathrm{E}-11$
Am-241	$4.95 \mathrm{E}-01$	1.6E-3	$7.94 \mathrm{E}-04$	2.70E-02	$2.94 \mathrm{E}-02$	0.002	5E-3	0.4	0.1	0.1	$1.18 \mathrm{E}-09$
Am-243	5.97E-03	1.6E-3	$9.58 \mathrm{E}-06$	2.70E-02	$3.55 \mathrm{E}-04$	0.002	5E-3	0.4	0.1	0.1	$1.42 \mathrm{E}-11$
Cm-242	3.08E-10	1.6E-3	$4.95 \mathrm{E}-13$	2.70E-01	$1.83 \mathrm{E}-12$	0.002	5E-3	0.4	0.1	0.1	7.33E-20
Cm-243	2.16E-03	1.6E-3	$3.47 \mathrm{E}-06$	2.70E-02	$1.28 \mathrm{E}-04$	0.002	5E-3	0.4	0.1	0.1	$5.14 \mathrm{E}-12$
Cm-244	4.70E-02	$1.6 \mathrm{E}-3$	$7.53 \mathrm{E}-05$	$5.40 \mathrm{E}-02$	$1.39 \mathrm{E}-03$	0.002	5E-3	0.4	0.1	0.1	$5.58 \mathrm{E}-11$
									subtotal		4.06E-09

Calculation Continuation Sheet

Calculation No. X-CLC-G-00121	Sheet No.	Rev. 92 of 96	0

Table 9. NCT-ST from LDCC External to Melter

Isotope	Content (Ci)	Leach Ratio	Leached (Ci)	$\begin{gathered} \mathrm{A}_{2} \\ \left(\mathrm{Ci} / \mathrm{A}_{2}\right) \end{gathered}$	MAR (A_{2})	DR	ARF	LPF wVMP	Release $\left(A_{2}\right)$
	Input from Table 1	$\left\|\begin{array}{c} \text { From Table 2 } \\ \text { for Bartlett's } \\ \text { PBS } \end{array}\right\|$	Calculated for LDCC external to melter	Input from Table 1	Calculated for LDCC external to melter	From T melter credit	2. For L Note LPF as part o	CC external to MP already ARF number	Calculated for inhalation from LDCC external to the melter
a	b	c	d	e	fode	8	h		ftgh\%
Cs-137	$6.43 \mathrm{E}+00$	1E-2	6.43E-02	$1.60 \mathrm{E}+01$	4.02E-03	0.01	1E-5	0.1	$4.02 \mathrm{E}-11$
Ba-137m	$6.07 \mathrm{E}+00$	1E-2	6.07E-02	included with Cs-137					
Sr-90	$2.84 \mathrm{E}+00$	1E-2	$2.84 \mathrm{E}-02$	$8.10 \mathrm{E}+00$	$3.51 \mathrm{E}-03$	0.01	1E-5	0.1	$3.51 \mathrm{E}-11$
Y-90	$2.84 \mathrm{E}+00$	1E-2	$2.84 \mathrm{E}-02$	included with $\mathrm{Sr}-90$					
Pm-147	6.88E-02	1E-2	6.88E-04	$5.40 \mathrm{E}+01$	$1.27 \mathrm{E}-05$	0.01	1E-5	0.1	$1.27 \mathrm{E}-13$
Am-241	3.43E-02	1E-2	3.43E-04	$2.70 \mathrm{E}-02$	$1.27 \mathrm{E}-02$	0.01	1E-5	0.1	$1.27 \mathrm{E}-10$
Eu-154	2.94E-02	1E-2	$2.94 \mathrm{E}-04$	$1.60 \mathrm{E}+01$	$1.84 \mathrm{E}-05$	0.01	1E-5	0.1	$1.84 \mathrm{E}-13$
Ni-63	$1.55 \mathrm{E}-02$	1E-2	$1.55 \mathrm{E}-04$	$8.10 \mathrm{E}+02$	$1.91 \mathrm{E}-07$	0.01	1E-5	0.1	$1.91 \mathrm{E}-15$
Fe-55	1.58E-02	1E-2	$1.58 \mathrm{E}-04$	$1.10 \mathrm{E}+03$	$1.43 \mathrm{E}-07$	0.01	1E-5	0.1	$1.43 \mathrm{E}-15$
Pu-238	3.79E-03	1E-2	3.79E-05	$2.70 \mathrm{E}-02$	$1.40 \mathrm{E}-03$	0.01	1E-5	0.1	$1.40 \mathrm{E}-11$
C-14	3.78E-03	1E-2	$3.78 \mathrm{E}-05$	$8.10 \mathrm{E}+01$	$4.67 \mathrm{E}-07$	0.01	1E-5	0.1	$4.67 \mathrm{E}-15$
Co-60	$1.31 \mathrm{E}-03$	1E-2	$1.31 \mathrm{E}-05$	$1.10 \mathrm{E}+01$	$1.19 \mathrm{E}-06$	0.01	1E-5	0.1	$1.19 \mathrm{E}-14$
U-232	$1.03 \mathrm{E}-03$	1E-2	$1.03 \mathrm{E}-05$	$2.70 \mathrm{E}-02$	$3.80 \mathrm{E}-04$	0.01	1E-5	0.1	$3.80 \mathrm{E}-12$
Pu-239	9.84E-04	1E-2	$9.84 \mathrm{E}-06$	$2.70 \mathrm{E}-02$	$3.64 \mathrm{E}-04$	0.01	1E-5	0.1	$3.64 \mathrm{E}-12$
Pu-240	6.82E-04	1E-2	6.82E-06	$2.70 \mathrm{E}-02$	$2.52 \mathrm{E}-04$	0.01	$1 \mathrm{E}-5$	0.1	$2.52 \mathrm{E}-12$
Ni-59	5.07E-04	1E-2	5.07E-06	unlimited unlimited					
1-129	3.85E-04	1E-2	3.85E-06						
U-233	2.35E-05	1E-2	$2.35 \mathrm{E}-07$	1.60E-01	$1.47 \mathrm{E}-06$	0.01	1E-5	0.1	$1.47 \mathrm{E}-14$
TC-99	$1.04 \mathrm{E}-03$	1E-2	$1.04 \mathrm{E}-05$	$2.40 \mathrm{E}+01$	$4.34 \mathrm{E}-07$	0.01	1E-5	0.1	$4.34 \mathrm{E}-15$
H-3	$1.92 \mathrm{E}-05$	1E-2	$1.92 \mathrm{E}-07$	$1.10 \mathrm{E}+03$	$1.75 \mathrm{E}-10$	0.01	1E-5	0.1	$1.75 \mathrm{E}-18$
U-234	8.30E-06	1E-2	8.30E-08	$1.60 \mathrm{E}-01$	$5.18 \mathrm{E}-07$	0.01	1E-5	0.1	$5.18 \mathrm{E}-15$
U-238	6.10E-06	1E-2	$6.10 \mathrm{E}-08$	unlimited					
U-236	$4.15 \mathrm{E}-06$	1E-2	$1.60 \mathrm{E}-01$	$1.60 \mathrm{E}-01$	$2.60 \mathrm{E}-07$	0.01	1E-5	0.1	2.60E-15
U-235	1.38E-06	1E-2	$1.38 \mathrm{E}-08$	unlimited					
Cm-242	1.37E-04	1E-2	$2.70 \mathrm{E}-01$	2.70E-01	5.07E-06	0.01	1E-5	0.1	5.07E-14
Am-243	$1.34 \mathrm{E}-04$	1E-2	$2.70 \mathrm{E}-02$	$2.70 \mathrm{E}-02$	$4.98 \mathrm{E}-05$	0.01	1E-5	0.1	$4.98 \mathrm{E}-13$
Cm-243	8.04E-05	1E-2	$2.70 \mathrm{E}-02$	2.70E-02	$2.98 \mathrm{E}-05$	0.01	1E-5	0.1	$2.98 \mathrm{E}-13$
Th-228	$4.56 \mathrm{E}-05$	1E-2	$4.56 \mathrm{E}-07$	included with U-232					
Np-237	$1.69 \mathrm{E}-05$	1E-2	$1.69 \mathrm{E}-07$	5.40E-02	3.13E-06	0.01	1E-5	0.1	3.13E-14
U-232	$1.03 \mathrm{E}-03$	1E-2	$1.03 \mathrm{E}-05$	$2.70 \mathrm{E}-02$	$3.80 \mathrm{E}-04$	0.01	1E-5	0.1	3.80E-12
Th-232	8.35E-07	1E-2	8.35E-09	unlimited					
Th-230	3.04E-07	1E-2	3.04E-09	2.70E-02	$1.13 \mathrm{E}-07$	0.01	1E-5	0.1	$1.13 \mathrm{E}-15$
Pu-241	7.42E-03	1E-2	$7.42 \mathrm{E}-05$	$1.60 \mathrm{E}+00$	$4.64 \mathrm{E}-05$	0.01	1E-5	0.1	$4.64 \mathrm{E}-13$
Cm-244	2.15E-03	1E-2	2.15E-05	$5.40 \mathrm{E}-02$	$3.98 \mathrm{E}-04$	0.01	1E-5	0.1	$3.98 \mathrm{E}-12$
				subtotal					$2.36 \mathrm{E}-10$

Calculation Continuation Sheet

| Calculation No.
 X-CLC-G-00121 | Sheet No. | Rev. | 0 |
| :---: | :--- | :---: | :--- | :--- |

Table 10. NCT-ST from Increased Pressure (i.e., < 25 Psig) on LDCC External to Melter

Isotope	Content (Ci)	Leach Ratio	Leached (Ci)	$\begin{gathered} A_{2} \\ \left(\mathrm{Ci} / \mathrm{A}_{2}\right) \end{gathered}$	MAR $\left(A_{2}\right)$	DR	ARF	RF	LPF wvMP	Release (A_{2})
	From Table 1	$\begin{array}{\|l} \text { From Table } 2 \\ \text { for Bartlett's } \\ \text { PBS } \end{array}$	Calculated for LDCC external to melter	From Table 1	Calculated for LDCC external to melter	From Table 2. For LDCC external to melter. Note LPF WVMP already credited as part of ARF number				Calculated for inhalation from LDCC external to the melter
a	¢	c	d=b*c	e	$t={ }^{*}{ }^{\text {e }}$	8	h		j	
Cs-137	$6.43 \mathrm{E}+00$	1E-2	6.43E-02	$1.60 \mathrm{E}+01$	$4.02 \mathrm{E}-03$	0.01	5E-3	4E-1	0.1	$8.04 \mathrm{E}-09$
Ba-137m	$6.07 \mathrm{E}+00$	1E-2	$6.07 \mathrm{E}-02$	included with $\mathrm{Cs}-137$						
Sr-90	$2.84 \mathrm{E}+00$	1E-2	$2.84 \mathrm{E}-02$	8.10E+00	3.51E-03	0.01	5E-3	4E-1	0.1	7.02E-09
Y-90	$2.84 \mathrm{E}+00$	1E-2	$2.84 \mathrm{E}-02$	included with $\mathrm{Sr}-90$						
Pm-147	6.88E-02	1E-2	6.88E-04	$5.40 \mathrm{E}+01$	$1.27 \mathrm{E}-05$	0.01	5E-3	4E-1	0.1	$2.55 \mathrm{E}-11$
Am-241	3.43E-02	1E-2	$3.43 \mathrm{E}-04$	2.70E-02	$1.27 \mathrm{E}-02$	0.01	5E-3	4E-1	0.1	$2.54 \mathrm{E}-08$
Eu-154	2.94E-02	$1 \mathrm{E}-2$	$2.94 \mathrm{E}-04$	$1.60 \mathrm{E}+01$	$1.84 \mathrm{E}-05$	0.01	5E-3	$4 \mathrm{E}-1$	0.1	$3.67 \mathrm{E}-11$
Ni-63	$1.55 \mathrm{E}-02$	1E-2	$1.55 \mathrm{E}-04$	8.10E+02	$1.91 \mathrm{E}-07$	0.01	5E-3	4E-1	0.1	$3.83 \mathrm{E}-13$
Fe-55	1.58E-02	1E-2	$1.58 \mathrm{E}-04$	$1.10 \mathrm{E}+03$	$1.43 \mathrm{E}-07$	0.01	5E-3	4E-1	0.1	$2.86 \mathrm{E}-13$
Pu-238	3.79E-03	1E-2	$3.79 \mathrm{E}-05$	$2.70 \mathrm{E}-02$	$1.40 \mathrm{E}-03$	0.01	5E-3	4E-1	0.1	$2.81 \mathrm{E}-09$
C-14	3.78E-03	1E-2	$3.78 \mathrm{E}-05$	8.10E+01	$4.67 \mathrm{E}-07$	0.01	5E-3	4E-1	0.1	$9.34 \mathrm{E}-13$
Co-60	$1.31 \mathrm{E}-03$	1E-2	$1.31 \mathrm{E}-05$	$1.10 \mathrm{E}+01$	$1.19 \mathrm{E}-06$	0.01	5E-3	4E-1	0.1	$2.39 \mathrm{E}-12$
U-232	$1.02 \mathrm{E}-03$	$1 \mathrm{E}-2$	$1.03 \mathrm{E}-05$	$2.70 \mathrm{E}-02$	3.80E-04	0.01	5E-3	4E-1	0.1	$7.60 \mathrm{E}-10$
Pu-239	$9.84 \mathrm{E}-04$	1E-2	$9.84 \mathrm{E}-06$	$2.70 \mathrm{E}-02$	$3.64 \mathrm{E}-04$	0.01	5E-3	4E-1	0.1	$7.29 \mathrm{E}-10$
Pu-240	6.82E-04	1E-2	$6.82 \mathrm{E}-06$	$2.70 \mathrm{E}-02$	$2.52 \mathrm{E}-04$	0.01	5E-3	4E-1	0.1	$5.05 \mathrm{E}-10$
Ni-59	5.07E-04	1E-2	$5.07 \mathrm{E}-06$	unlimited unlimited						
1-129	3.85E-04	1E-2	$3.85 \mathrm{E}-06$							
U-233	2.35E-05	1E-2	$2.35 \mathrm{E}-07$	$2.70 \mathrm{E}-02$	$8.72 \mathrm{E}-06$	0.01	5E-3	4E-1	0.1	$1.74 \mathrm{E}-11$
TC-99	$1.04 \mathrm{E}-03$	1E-2	$1.04 \mathrm{E}-05$	$2.40 \mathrm{E}+01$	$4.34 \mathrm{E}-07$	0.01	5E-3	4E-1	0.1	$8.68 \mathrm{E}-13$
H-3	1.92E-05	1E-2	$1.92 \mathrm{E}-07$	$1.10 \mathrm{E}+03$	$1.75 \mathrm{E}-10$	0.01	5E-3	4E-1	0.1	3.50E-16
U-234	8.30E-06	1E-2	8.30E-08	$1.60 \mathrm{E}-01$	$5.18 \mathrm{E}-07$	0.01	5E-3	4E-1	0.1	$1.04 \mathrm{E}-12$
U-238	6.10E-06	1E-2	$6.10 \mathrm{E}-08$	unlimited						
U-236	4.15E-06	1E-2	$4.15 \mathrm{E}-08$	1.60E-01	$2.60 \mathrm{E}-07$	0.01	5E-3	4E-1	0.1	5.19E-13
U-235	1.38E-06	1E-2	$1.38 \mathrm{E}-08$	unlimited						
Cm-242	1.37E-04	1E-2	$1.37 \mathrm{E}-06$	2.70E-01	5.07E-06	0.01	5E-3	4E-1	0.1	$1.01 \mathrm{E}-11$
Am-243	$1.34 \mathrm{E}-04$	1E-2	$1.34 \mathrm{E}-06$	2.70E-02	$4.98 \mathrm{E}-05$	0.01	5E-3	4E-1	0.1	$9.96 \mathrm{E}-11$
Cm-243	8.04E-05	1E-2	$8.04 \mathrm{E}-07$	$2.70 \mathrm{E}-02$	$2.98 \mathrm{E}-05$	0.01	5E-3	4E-1	0.1	5.95E-11
Th-228	$4.56 \mathrm{E}-05$	1E-2	$4.56 \mathrm{E}-07$	included with U-232						
Np-237	$1.69 \mathrm{E}-05$	1E-2	$1.69 \mathrm{E}-07$	$5.40 \mathrm{E}-02$	3.13E-06	0.01	5E-3	4E-1	0.1	$6.27 \mathrm{E}-12$
U-232	9.94E-06	1E-2	$1.03 \mathrm{E}-05$	$2.70 \mathrm{E}-02$	3.80E-04	0.01	5E-3	4E-1	0.1	7.60E-10
Th-232	8.35E-07	1E-2	$8.35 \mathrm{E}-09$	unlimited						
Th-230	$3.04 \mathrm{E}-07$	1E-2	$3.04 \mathrm{E}-09$	$2.70 \mathrm{E}-02$	$1.13 \mathrm{E}-07$	0.01	5E-3	4E-1	0.1	$2.25 \mathrm{E}-13$
Pu-241	7.42E-03	1E-2	7.42E-05	$1.60 \mathrm{E}+00$	$4.64 \mathrm{E}-05$	0.01	5E-3	4E-1	0.1	$9.28 \mathrm{E}-11$
Cm-244	2.15E-03	1E-2	$2.15 \mathrm{E}-05$	$5.40 \mathrm{E}-02$	$3.98 \mathrm{E}-04$	0.01	5E-3	4E-1	0.1	$7.96 \mathrm{E}-10$
								Subtotal		$4.72 \mathrm{E}-8$

Calculation Continuation Sheet

| Calculation No. | | |
| :---: | :--- | :--- | :--- |
| X-CLC-G-00121 | Sheet No. 34 of 96 | Rev. 0 |

Table 11. Total NCT Release in Terms of \mathbf{A}_{2}

from Glass	
	Spout Glass
	Melter Heel Glass
Refractory Glass	$8.30 \mathrm{E}-10$
	$6.33 \mathrm{E}-10$
from LDCC	$6.73 \mathrm{E}-10$
	LDCC inside the Melter
Increased Pressure	$2.03 \mathrm{E}-10$
	LDCC outside the Melter
Increased Pressure	$4.06 \mathrm{E}-09$
	$2.36 \mathrm{E}-10$
	TOTAL

Based on Table 11, the NCT release is less than $1 \mathrm{E}-7 \mathrm{~A}_{2}$.

6.2. Methods and Calculations for Hypothetical Accident Conditions

Using the modified five factors formula shown in Section 2 for ST and using the input and assumptions from Section 5 , the corresponding source terms are calculated:

- Table 12 calculates HAC-ST from spout glass
- Table 13 calculates HAC-ST from heel glass
- Table 14 calculates HAC-ST from refractory glass
- Table 15 calculates HAC-ST from LDCC internal to melter
- Table 16 calculates HAC-ST from pressure increase (i.e., > 25 Psig) on LDCC internal to melter
- Table 17 calculates HAC-ST from LDCC external to melter
- Table 18 calculates HAC-ST from pressure increase (i.e., >25 Psig) on LDCC external to melter
- Table 19 calculates HAC-ST for non-inhalation from LDCC external to melter
- Table 20 calculates the total HAC release in terms of A_{2}

Calculation Continuation Sheet

Calculation No. X-CLC-G-00121	Sheet No.	Rev.

Table 12. HAC -ST from Spout Glass

Isotope	Content (Ci)	$\begin{gathered} A_{2} \\ \left(\mathrm{Ci} / A_{2}\right) \end{gathered}$	MAR $\left(A_{2}\right)$	DR	ARF	LPF WVMP	LPF melter	Release $\left(A_{2}\right)$
	Input from Table 1		Calculated for spout glass	Glass damage ratios and LPFs for melter and WVMP from Table 3				Calculated for spout glass
a	b	c	d=b/c	e	1	8	,	
C-14	2.22E-03	$8.10 \mathrm{E}+01$	$2.74 \mathrm{E}-05$	0.01	3E-4	1	0.1	$8.22 \mathrm{E}-12$
K-40	8.60E-03	$2.40 \mathrm{E}+01$	$3.58 \mathrm{E}-04$	0.01	3E-4	1	0.1	$1.08 \mathrm{E}-10$
Mn-54	5.00E-07	$2.70 \mathrm{E}+01$	$1.85 \mathrm{E}-08$	0.01	3E-4	1	0.1	$5.56 \mathrm{E}-15$
Co-60	5.47E-03	1.10E+01	4.97E-04	0.01	3E-4	1	0.1	$1.49 \mathrm{E}-10$
Ni-63	9.80E-02	$8.10 \mathrm{E}+02$	$1.21 \mathrm{E}-04$	0.01	3E-4	1	0.1	3.63E-11
Sr-90	$6.33 \mathrm{E}+01$	$8.10 \mathrm{E}+00$	$7.81 \mathrm{E}+00$	0.01	3E-4	1	0.1	$2.34 \mathrm{E}-06$
Y-90	$6.33 \mathrm{E}+01$	included with Sr-90						
Zr-95	3.17E-22	2.20E+01	$1.44 \mathrm{E}-23$	0.01	3E-4	1	0.1	$4.32 \mathrm{E}-30$
Nb-95	6.99E-22	$2.70 \mathrm{E}+01$	$2.59 \mathrm{E}-23$	0.01	3E-4	1	0.1	$7.77 \mathrm{E}-30$
Nb -95m	3.63E-24	included with Zr -95						
Tc-99	$1.57 \mathrm{E}-02$	$2.40 \mathrm{E}+01$	$6.54 \mathrm{E}-04$	0.01	3E-4	1	0.1	$1.96 \mathrm{E}-10$
Cs-137	$8.57 \mathrm{E}+02$	$1.60 \mathrm{E}+01$	$5.36 \mathrm{E}+01$	0.01	3E-4	1	0.1	$1.61 \mathrm{E}-05$
Ba-137m	$8.09 \mathrm{E}+02$	included with $\mathrm{Cs}-137$						
Eu-154	$1.04 \mathrm{E}-01$	$1.60 \mathrm{E}+01$	$6.50 \mathrm{E}-03$	0.01	3E-4	1	0.1	$1.95 \mathrm{E}-09$
Hg-206	$7.14 \mathrm{E}-16$	5.40E-01	$1.32 \mathrm{E}-15$	0.01	3E-4	1	0.1	$3.97 \mathrm{E}-22$
Tl-206	$5.01 \mathrm{E}-14$	included with $\mathrm{Bi}-210 \mathrm{~m}$						
Tl-207	1.86E-09	5.40E-01	3.44E-09	0.01	3E-4	1	0.1	$1.03 \mathrm{E}-15$
TI-208	$1.73 \mathrm{E}-03$	included with U-232						
TI-209	5.58E-08	5.40E-01	$1.03 \mathrm{E}-07$	0.01	3E-4	1	0.1	3.10E-14
Tl-210	$4.50 \mathrm{E}-11$	$5.40 \mathrm{E}-01$	8.33E-11	0.01	3E-4	1	0.1	$2.50 \mathrm{E}-17$
Pb-209	2.58E-06	included with Th-229						
Pb-210	3.76E-08	$1.40 \mathrm{E}+00$	$2.69 \mathrm{E}-08$	0.01	3E-4	1	0.1	8.06E-15
Pb-211	1.87E-09	$5.40 \mathrm{E}-01$	$3.46 \mathrm{E}-09$	0.01	3E-4	1	0.1	$1.04 \mathrm{E}-15$
Pb-212	$4.82 \mathrm{E}-03$	included with U-232 included with Rn-222 included with $\mathrm{Pb}-210$ included with $\mathrm{Bi}-212$ included with $\mathrm{Pb}-211$ included with U-232 included with Th-229 included with $\mathrm{Rn}-222$						
Pb-214	$2.14 \mathrm{E}-07$							
Bi-209	$5.97 \mathrm{E}-25$							
Bi-210	3.75E-08							
Bi-211	1.87E-09							
Bi-212	$4.82 \mathrm{E}-03$							
$\mathrm{Bi}-213$	2.58E-06							
Bi-214	$2.14 \mathrm{E}-07$							
Bi-215	$1.53 \mathrm{E}-15$	5.40E-01	$2.83 \mathrm{E}-15$	0.01	3E-4	1	0.1	8.50E-22
Po-210	3.45E-08	included with $\mathrm{Pb}-210$						

Continued on next page

Calculation Continuation Sheet

Calculation No. X-CLC-G-00121	Sheet No. 36 of 96	Rev. 0

Table 12. HAC-ST from Spout Glass (continuation)

Isotope	Content (Ci)	$\begin{gathered} A_{2} \\ \left(\mathrm{Ci} / A_{2}\right) \end{gathered}$	MAR $\left(A_{2}\right)$	DR	ARF	LPF WVMP	LPF melter	Release $\left(A_{2}\right)$
	Input from Table 1		Calculated for spout glass	Glass damage ratios and LPFs for melter and WVMP from Table 3				Calculated for spout glass
a	b	c	d=b/c	¢	1	$\underline{8}$	h	lidererfg h
Po-211	5.10E-12	2.40E-03	2.13E-09	0.01	3E-4	1	0.1	$6.38 \mathrm{E}-16$
Po-212	3.09E-03	included with U-232 included with Th-229 included with U-230						
Po-213	2.53E-06							
Po-214	$2.14 \mathrm{E}-07$							
Po-215	1.87E-09	2.40E-03	$7.79 \mathrm{E}-07$	0.01	3E-4	1	0.1	$2.34 \mathrm{E}-13$
Po-216	$4.82 \mathrm{E}-03$	included with U-232 included with Rn-222						
Po-218	2.14E-07							
At-215	$7.47 \mathrm{E}-15$	2.40E-03	3.11E-12	0.01	3E-4	1	0.1	$9.34 \mathrm{E}-19$
At-217	2.58E-06	included with Th-229						
At-218	$4.07 \mathrm{E}-11$	2.40E-03	$1.70 \mathrm{E}-08$	0.01	3E-4	1	0.1	5.09E-15
At-219	$1.57 \mathrm{E}-15$	$2.40 \mathrm{E}-03$	$6.54 \mathrm{E}-13$	0.01	3E-4	1	0.1	1.96E-19
Rn-217	3.10E-10	$2.40 \mathrm{E}-03$	$1.29 \mathrm{E}-07$	0.01	3E-4	1	0.1	3.88E-14
Rn-218	$4.07 \mathrm{E}-14$	included with U-230						
Rn-219	1.87E-09	2.40E-03	7.79E-07	0.01	3E-4	1	0.1	$2.34 \mathrm{E}-13$
Rn-220	4.82E-03	included with U-232						
Rn-222	$2.14 \mathrm{E}-07$	1.10E-01	$1.95 \mathrm{E}-06$	0.01	3E-4	1	0.1	$5.84 \mathrm{E}-13$
Fr-221	2.58E-06	included with Th-229						
Fr-223	$2.62 \mathrm{E}-11$	5.40E-01	$4.86 \mathrm{E}-11$	0.01	3E-4	1	0.1	$1.46 \mathrm{E}-17$
Ra-223	1.87E-09	$1.90 \mathrm{E}-01$	$9.83 \mathrm{E}-09$	0.01	3E-4	1	0.1	$2.95 \mathrm{E}-15$
Ra-224	$4.82 \mathrm{E}-03$	included with U-232 included with Th-229						
Ra-225	2.59E-06							
Ra-226	2.14E-07	8.10E-02	$2.65 \mathrm{E}-06$	0.01	3E-4	1	0.1	7.94E-13
Ra-228	$3.41 \mathrm{E}-05$	5.40E-01	$6.31 \mathrm{E}-05$	0.01	3E-4	1	0.1	1.89E-11
Ac-225	2.58E-06	included with Th-229						
Ac-227	1.90E-09	2.40E-03	7.92E-07	0.01	3E-4	1	0.1	$2.38 \mathrm{E}-13$
Ac-228	$3.41 \mathrm{E}-05$	included with Ra-228						
Th-227	1.85E-09	1.40E-01	$1.32 \mathrm{E}-08$	0.01	3E-4	1	0.1	$3.97 \mathrm{E}-15$
Th-228	4.82E-03	included with U-232						
Th-229	2.60E-06	$1.40 \mathrm{E}-02$	$1.86 \mathrm{E}-04$	0.01	3E-4	1	0.1	5.58E-11
Th-230	3.89E-05	2.70E-02	$1.44 \mathrm{E}-03$	0.01	3E-4	1	0.1	$4.32 \mathrm{E}-10$
Th-231	3.95E-05	included with U-235 unlimited included with U-238						
Th-232	4.34E-05							
Th-234	2.41E-04							
Pa-231	1.07E-08	$1.10 \mathrm{E}-02$	$9.69 \mathrm{E}-07$	0.01	3E-4	1	0.1	$2.91 \mathrm{E}-13$
Pa-233	7.09E-04	included with Np -237						
Pa-234	3.62E-07	5.40E-01	$6.69 \mathrm{E}-07$	0.01	3E-4	1	0.1	$2.01 \mathrm{E}-13$
Pa-234m	2.41E-04	included with U-238						

[^2]
Calculation Continuation Sheet

Calculation No.
X-CLC-G-00121

Rev.
37 of 96

0

Table 12. HAC-ST from Spout Glass (continuation)

Isotope	Content (Ci)	$\begin{gathered} \mathrm{A}_{2} \\ \left(\mathrm{Ci} / \mathrm{A}_{2}\right) \end{gathered}$	MAR (A_{2})	DR	ARF	LPF WVMP	LPF melter	Release (A_{2})
	input from Table		Calculated for spout glass	Glass damage ratios and LPFs for melter and WVMP from Table 3				Calculated for spout glass
a	b	c	d=b/c	e	f	8	h	
U-232	4.66E-03	$2.70 \mathrm{E}-02$	$1.73 \mathrm{E}-01$	0.01	3E-4	1	0.1	5.18E-08
U-233	2.16E-03	$1.60 \mathrm{E}-01$	$1.35 \mathrm{E}-02$	0.01	3E-4	1	0.1	$4.05 \mathrm{E}-09$
U-234	1.03E-03	$1.60 \mathrm{E}-01$	$6.46 \mathrm{E}-03$	0.01	3E-4	1	0.1	1.94E-09
U-235	3.95E-05	unlimited						
U-235m	3.01E-02							
U-236	1.19E-04	1.60E-01	7.44E-04	0.01	3E-4	1	0.1	2.23E-10
U-237	4.56E-06	2.40E-03	$1.90 \mathrm{E}-03$	0.01	3E-4	1	0.1	$5.70 \mathrm{E}-10$
U-238	$2.41 \mathrm{E}-04$	unlimited						
Np-237	7.09E-04	5.40E-02	1.31E-02	0.01	3E-4	1	0.1	3.94E-09
Np-239	$4.55 \mathrm{E}-03$	included with Am-243						
Pu-238	$1.14 \mathrm{E}-01$	2.70E-02	$4.22 \mathrm{E}+00$	0.01	3E-4	1	0.1	$1.27 \mathrm{E}-06$
Pu-239	3.01E-02	2.70E-02	$1.11 \mathrm{E}+00$	0.01	3E-4	1	0.1	$3.34 \mathrm{E}-07$
Pu-240	$2.29 \mathrm{E}-02$	$2.70 \mathrm{E}-02$	$8.50 \mathrm{E}-01$	0.01	3E-4	1	0.1	$2.55 \mathrm{E}-07$
Pu-241	$1.85 \mathrm{E}-01$	$1.60 \mathrm{E}+00$	$1.16 \mathrm{E}-01$	0.01	3E-4	1	0.1	$3.47 \mathrm{E}-08$
Am-241	3.80E-01	2.70E-02	$1.41 \mathrm{E}+01$	0.01	3E-4	1	0.1	$4.23 \mathrm{E}-06$
Am-243	4.55E-03	$2.70 \mathrm{E}-02$	$1.68 \mathrm{E}-01$	0.01	3E-4	1	0.1	$5.05 \mathrm{E}-08$
Cm-242	1.05E-11	2.70E-01	3.88E-11	0.01	3E-4	1	0.1	$1.16 \mathrm{E}-17$
Cm-243	$1.85 \mathrm{E}-03$	$2.70 \mathrm{E}-02$	$6.87 \mathrm{E}-02$	0.01	3E-4	1	0.1	$2.06 \mathrm{E}-08$
Cm-244	4.07E-02	$5.40 \mathrm{E}-02$	7.53E-01	0.01	3E-4	1	0.1	$2.26 \mathrm{E}-07$
							subtotal	$2.49 \mathrm{E}-5$

Table 13. HAC-ST from Heel Glass

Isotope	Content (Ci)	$\begin{gathered} A_{2} \\ \left(\mathrm{Ci} / A_{2}\right) \end{gathered}$	MAR $\left(A_{2}\right)$	DR	ARF	LPF WVMP	LPF melter	Release $\left(A_{2}\right)$
	input from Table 1		Calculated for heel glass	Glass damage ratios and LPFs for melter and WVMP from Table 3				Calculated for heel glass
a	b	c	d=b/c	e	f	B	h	
C-14	3.47E-03	$8.10 \mathrm{E}+01$	$4.28 \mathrm{E}-05$	0.01	3E-4	1	0.1	$1.29 \mathrm{E}-11$
K-40	1.50E-02	$2.40 \mathrm{E}+01$	$6.25 \mathrm{E}-04$	0.01	3E-4	1	0.1	$1.88 \mathrm{E}-10$
Mn-54	$1.44 \mathrm{E}-06$	$2.70 \mathrm{E}+01$	$5.33 \mathrm{E}-08$	0.01	3E-4	1	0.1	$1.60 \mathrm{E}-14$
Co-60	3.16E-03	1.10E+01	$2.87 \mathrm{E}-04$	0.01	3E-4	1	0.1	$8.62 \mathrm{E}-11$
Ni-63	1.52E-01	$8.10 \mathrm{E}+02$	$1.88 \mathrm{E}-04$	0.01	3E-4	1	0.1	$5.63 \mathrm{E}-11$
Sr-90	$3.12 \mathrm{E}+01$	$8.10 \mathrm{E}+00$	$3.85 \mathrm{E}+00$	0.01	3E-4	1	0.1	$1.16 \mathrm{E}-06$
Y-90	$3.12 \mathrm{E}+01$	included with Sr-90						
Zr-95	$1.30 \mathrm{E}-20$	$2.10 \mathrm{E}+01$	6.19E-22	0.01	3E-4	1	0.1	1.86E-28
Nb-95	2.86E-20	$2.20 \mathrm{E}+01$	$1.30 \mathrm{E}-21$	0.01	3E-4	1	0.1	$3.90 \mathrm{E}-28$
Nb-95m	$1.49 \mathrm{E}-22$	included with Zr-95						
Tc-99	$2.01 \mathrm{E}-03$	$2.40 \mathrm{E}+01$	$8.38 \mathrm{E}-05$	0.01	3E-4	1	0.1	$2.51 \mathrm{E}-11$
Cs-137	$5.42 \mathrm{E}+02$	$1.60 \mathrm{E}+01$	$3.39 \mathrm{E}+01$	0.01	3E-4	1	0.1	$1.02 \mathrm{E}-05$
Ba-137m	$5.12 \mathrm{E}+02$	included with Cs-137						

Continued on next page

Calculation Continuation Sheet

Calculation No. X-CLC-G-00121	Sheet No.	Rev.	0

Table 13. HAC-ST from Heel Glass (continuation)

Isotope	Content (Ci)	$\begin{gathered} A_{2} \\ \left(C i / A_{2}\right) \end{gathered}$	MAR $\left(A_{2}\right)$	DR	ARF	LPF WVMP	$\begin{aligned} & \text { LPF } \\ & \text { melter } \end{aligned}$	Release $\left(A_{2}\right)$
	input from Table 1		Calculated for heel glass	Glass damage ratios and LPFs for melter and WVMP from Table 3				Calculated for heel glass
a	b	c	d=b/c	e	f	8	h	
Hg-206	9.79E-16	5.40E-01	$1.81 \mathrm{E}-15$	0.01	3E-4	1	0.1	$5.44 \mathrm{E}-22$
TI-206	$6.88 \mathrm{E}-14$	included with $\mathrm{Bi}-210 \mathrm{~m}$						
Tl-207	2.56E-09	5.40E-01	$4.74 \mathrm{E}-09$	0.01	3E-4	1	0.1	$1.42 \mathrm{E}-15$
TI-208	2.72E-03	included with U-232						
Tl-209	8.09E-08	$5.40 \mathrm{E}-01$	$1.50 \mathrm{E}-07$	0.01	3E-4	1	0.1	$4.49 \mathrm{E}-14$
T1-210	$6.54 \mathrm{E}-11$	5.40E-01	$1.21 \mathrm{E}-10$	0.01	3E-4	1	0.1	3.63E-17
Pb-209	3.75E-06	included with Th-229						
Pb-210	$5.16 \mathrm{E}-08$	$1.40 \mathrm{E}+00$	3.69E-08	0.01	3E-4	1	0.1	1.11E-14
Pb-211	2.57E-09	5.40E-01	$4.76 \mathrm{E}-09$	0.01	3E-4	1	0.1	$1.43 \mathrm{E}-15$
Pb-212	7.56E-03	included with U-232 included with Rn-222 included with $\mathrm{Pb}-210$ included with $\mathrm{Bi}-212$ included with $\mathrm{Pb}-211$ included with U-232 included with Th-229 included with Rn-222						
Pb-214	$3.11 \mathrm{E}-07$							
Bi-209	8.10E-25							
Bi-210	$5.14 \mathrm{E}-08$							
Bi-211	2.57E-09							
Bi-212	$7.56 \mathrm{E}-03$							
Bi-213	3.75E-06							
Bi-214	$3.11 \mathrm{E}-07$							
Bi-215	2.10E-15	5.40E-01	3.89E-15	0.01	3E-4	1	0.1	1.17E-21
Po-210	$4.71 \mathrm{E}-08$	included with $\mathrm{Pb}-210$						
Po-211	$7.01 \mathrm{E}-12$	2.40E-03	2.92E-09	0.01	3E-4	1	0.1	8.76E-16
Po-212	$4.84 \mathrm{E}-03$	included with U-232included with Th-229included with U-230						
Po-213	3.67E-06							
Po-214	$3.11 \mathrm{E}-07$							
Po-215	2.57E-09	2.40E-03	$1.07 \mathrm{E}-06$	0.01	3E-4	1	0.1	3.2125E-13
Po-216	7.56E-03	included with U-232						
Po-218	$3.11 \mathrm{E}-07$	included with Rn-222						
At-215	1.03E-14	2.40E-03	$4.29 \mathrm{E}-12$	0.01	3E-4	1	0.1	1.29E-18
At-217	3.75E-06	included with Th-229						
At-218	5.92E-11	2.40E-03	$2.47 \mathrm{E}-08$	0.01	3E-4	1	0.1	7.40E-15
At-219	2.17E-15	2.40E-03	$9.04 \mathrm{E}-13$	0.01	3E-4	1	0.1	$2.71 \mathrm{E}-19$
Rn-217	4.50E-10	2.40E-03	$1.88 \mathrm{E}-07$	0.01	3E-4	1	0.1	5.63E-14
Rn-218	5.92E-14	included with U-230						
Rn-219	2.57E-09	2.40E-03	$1.07 \mathrm{E}-06$	0.01	3E-4	1	0.1	3.21E-13
Rn-220	7.56E-03	included with U-232						
Rn-222	$3.11 \mathrm{E}-07$	1.10E-01	2.83E-06	0.01	3E-4	1	0.1	$8.48 \mathrm{E}-13$
Fr-221	$3.75 \mathrm{E}-06$	included with Th-229						
Fr-223	$3.61 \mathrm{E}-11$	5.40E-01	$6.68 \mathrm{E}-11$	0.01	3E-4	1	0.1	2.00E-17
Ra-223	2.57E-09	1.90E-01	$1.35 \mathrm{E}-08$	0.01	3E-4	1	0.1	$4.05 \mathrm{E}-15$
Ra-224	$7.56 \mathrm{E}-03$	included with U-232 included with Th-229						
Ra-225	3.76E-06							

Continued on next page

Calculation Continuation Sheet

| Calculation No.
 X-CLC-G-00121 | Sheet No. | Rev. | 0 |
| :---: | :--- | :---: | :--- | :--- |

Table 13. HAC-ST from Heel Glass (continuation)

Calculation Continuation Sheet

Calculation No. X-CLC-G-00121	Sheet No.		Rev.	0

Table 14. HAC-ST from Refractory Glass

Isotope	Content (Ci)	$\begin{gathered} A_{2} \\ \left(\mathrm{Ci} / \mathrm{A}_{2}\right) \end{gathered}$	MAR $\left(A_{2}\right)$	DR	ARF	LPF WVMP	LPF melter	Release $\left(A_{2}\right)$
	Input from Table 1		Calculated for refractory glass	From Table 3. Same for all HAC glass				Calculated for inhalation from refractory glass
a	。	c	d=b/c	e	f	8	h	lifderfth
Co-60	$1.33 \mathrm{E}-02$	1.10E+01	$1.21 \mathrm{E}-03$	0.01	3E-4	1	0.1	3.63E-10
Sr-90	$1.07 \mathrm{E}+02$	$8.10 \mathrm{E}+00$	$1.32 \mathrm{E}+01$	0.01	3E-4	1	0.1	$3.96 \mathrm{E}-06$
Y-90	$1.07 \mathrm{E}+02$	included with Sr-90						
Tc-99	$5.22 \mathrm{E}-02$	$2.40 \mathrm{E}+01$	2.18E-03	0.01	3E-4	1	0.1	6.53E-10
Cs-137	2.13E+02	$1.60 \mathrm{E}+01$	$1.33 \mathrm{E}+01$	0.01	3E-4	1	0.1	$4.00 \mathrm{E}-06$
Ba-137m	$2.01 \mathrm{E}+02$	included with Cs-137						
Eu-154	5.53E-01	$1.60 \mathrm{E}+01$	3.45E-02	0.01	3E-4	1	0.1	$1.04 \mathrm{E}-08$
Hg-206	2.54E-16	5.40E-01	$4.70 \mathrm{E}-16$	0.01	3E-4	1	0.1	$1.41 \mathrm{E}-22$
Tl-206	$1.78 \mathrm{E}-14$	included with $\mathrm{Bi}-210 \mathrm{~m}$						
T1-207	2.96E-09	5.40E-01	5.48E-09	0.01	3E-4	1	0.1	$1.64 \mathrm{E}-15$
Tl-208	$1.81 \mathrm{E}-04$	included with U-232						
TI-209	1.43E-08	5.40E-01	$2.66 \mathrm{E}-08$	0.01	3E-4	1	0.1	7.97E-15
Tl-210	$1.67 \mathrm{E}-11$	5.40E-01	$3.10 \mathrm{E}-11$	0.01	3E-4	1	0.1	$9.29 \mathrm{E}-18$
Pb-209	6.64E-07	included with Th-229						
Pb-210	$1.34 \mathrm{E}-08$	$1.40 \mathrm{E}+00$	9.54E-09	0.01	3E-4	1	0.1	2.86E-15
Pb-211	2.97E-09	$5.400 \mathrm{E}-01$	5.50E-09	0.01	3E-4	1	0.1	$1.65 \mathrm{E}-15$
Pb-212	5.03E-04	included with U-232 included with Rn-222 included with $\mathrm{Pb}-210$ included with $\mathrm{Bi}-212$ included with $\mathrm{Pb}-211$ included with U-232 included with Th-229 included with Rn-222						
Pb-214	7.96E-08							
Bi-209	$1.46 \mathrm{E}-25$							
Bi-210	1.33E-08							
Bi-211	2.97E-09							
Bi-212	5.03E-04							
Bi-213	6.64E-07							
Bi-214	7.96E-08							
Bi-215	$2.43 \mathrm{E}-15$	2.40E-03	$1.01 \mathrm{E}-12$	0.01	3E-4	1	0.1	3.04E-19
Po-210	1.22E-08	included with $\mathrm{Pb}-210$						
Po-211	8.10E-12	2.40E-03	3.38E-09	0.01	3E-4	1	0.1	$1.01 \mathrm{E}-15$
Po-212	3.22E-04	included with U-232 included with Th-229 included with U-230						
Po-213	6.50E-07							
Po-214	$7.96 \mathrm{E}-08$							
Po-215	2.97E-09	2.40E-03	$1.24 \mathrm{E}-06$	0.01	3E-4	1	0.1	$3.71 \mathrm{E}-13$
Po-216	5.03E-04	included with U-232 included with Rn-222						
Po-218	7.96E-08							
At-215	1.19E-14	2.40E-03	4.95E-12	0.01	3E-4	1	0.1	$1.48 \mathrm{E}-18$
At-217	6.64E-07	included with Th-229						
At-218	$1.51 \mathrm{E}-11$	2.40E-03	6.30E-09	0.01	3E-4	1	0.1	1.89E-15
Rn-217	7.97E-11	2.40E-03	$3.32 \mathrm{E}-08$	0.01	3E-4	1	0.1	9.96E-15
At-219	$2.50 \mathrm{E}-15$	2.40E-03	$1.04 \mathrm{E}-12$	0.01	3E-4	1	0.1	3.13E-19
Rn-218	$1.51 \mathrm{E}-14$	included with U-230						
Rn-219	2.97E-09	2.40E-03	1.24E-06	0.01	3E-4	1	0.1	$3.71 \mathrm{E}-13$
Rn-220	5.03E-04	included with U-232						

[^3]Rev. 0

Calculation Continuation Sheet

Calculation No.
X-CLC-G-00121

Sheet No.
41 of 96

Table 14. HAC-ST from Refractory Glass (continuation)

Isotope	Content (Ci)	$\begin{gathered} A_{2} \\ \left(C i / A_{2}\right) \end{gathered}$	MAR $\left(A_{2}\right)$	DR	ARF	LPF WVMP	LPF melter	Release (A_{2})
	Input from Table 1		Calculated for refractory glass	Glass damage ratios and LPFs for melter and WVMP from Table 3				Calculated for refractory glass
a	b	c	$\mathrm{d}=\mathrm{b} / \mathrm{c}$	e	f	g	h	
Rn-217	7.97E-11	2.40E-03	$3.32 \mathrm{E}-08$	0.01	3E-4	1	0.1	$9.96 \mathrm{E}-15$
Rn-218	$1.51 \mathrm{E}-14$	included with U-230						
Rn-219	2.97E-09	2.40E-03	$1.24 \mathrm{E}-06$	0.01	3E-4	1	0.1	$3.71 \mathrm{E}-13$
Rn-220	5.03E-04	included with U-232						
Rn-222	7.96E-08	1.10E-01	7.24E-07	0.01	3E-4	1	0.1	2.17E-13
Fr-221	6.64E-07	included with Th-229						
Fr-223	4.17E-11	5.40E-01	$7.73 \mathrm{E}-11$	0.01	3E-4	1	0.1	$2.32 \mathrm{E}-17$
Ra-223	2.97E-09	1.90E-01	1.56E-08	0.01	3E-4	1	0.1	$4.69 \mathrm{E}-15$
Ra-224	5.03E-04	included with U-232 included with Th-229						
Ra-225	6.66E-07							
Ra-226	7.97E-08	8.10E-02	$9.84 \mathrm{E}-07$	0.01	3E-4	1	0.1	$2.95 \mathrm{E}-13$
Ra-228	3.21E-05	5.40E-01	5.95E-05	0.01	3E-4	1	0.1	$1.78 \mathrm{E}-11$
Ac-225	6.64E-07	included with Th-229						
Ac-227	3.02E-09	2.40E-03	$1.26 \mathrm{E}-06$	0.01	3E-4	1	0.1	$3.78 \mathrm{E}-13$
Ac-228	$3.21 \mathrm{E}-05$	included with Ra-228						
Th-227	2.95E-09	1.40E-01	$2.11 \mathrm{E}-08$	0.01	3E-4	1	0.1	$6.32 \mathrm{E}-15$
Th-228	5.02E-04	included with U-232						
Th-229	6.70E-07	1.40E-02	$4.79 \mathrm{E}-05$	0.01	3E-4	1	0.1	$1.44 \mathrm{E}-11$
Th-230	$1.52 \mathrm{E}-05$	2.70E-02	5.63E-04	0.01	3E-4	1	0.1	$1.69 \mathrm{E}-10$
Th-231	$6.92 \mathrm{E}-05$	included with U-235 unlimited included with U-238						
Th-232	$4.18 \mathrm{E}-05$							
Th-234	1.16E-04							
Pa-231	$1.78 \mathrm{E}-08$	1.10E-02	$1.62 \mathrm{E}-06$	0.01	3E-4	1	0.1	$4.85 \mathrm{E}-13$
Pa-233	8.49E-04	included with Np-237						
Pa-234	$1.74 \mathrm{E}-07$	5.40E-01	3.22E-07	0.01	3E-4	1	0.1	9.67E-14
Pa-234m	$1.16 \mathrm{E}-04$	included with U-238						
U-232	4.41E-04	2.70E-02	$1.63 \mathrm{E}-02$	0.01	3E-4	1	0.1	$4.90 \mathrm{E}-09$
U-233	5.85E-04	1.60E-01	$3.66 \mathrm{E}-03$	0.01	3E-4	1	0.1	$1.10 \mathrm{E}-09$
U-234	2.84E-04	1.60E-01	$1.78 \mathrm{E}-03$	0.01	3E-4	1	0.1	5.33E-10
U-235	6.92E-05	unlimited unlimited						
U-235m	3.72E-02							
U-236	2.08E-04	1.60E-01	1.30E-03	0.01	3E-4	1	0.1	3.90E-10
U-237	$5.08 \mathrm{E}-06$	$2.40 \mathrm{E}-03$	$2.12 \mathrm{E}-03$	0.01	3E-4	1	0.1	$6.35 \mathrm{E}-10$
U-238	1.16E-04	unlimited						
Np-237	8.49E-04	5.40E-02	$1.57 \mathrm{E}-02$	0.01	3E-4	1	0.1	$4.72 \mathrm{E}-09$
Np-239	$6.72 \mathrm{E}-03$	included with Am-243						
Pu-238	$1.41 \mathrm{E}-01$	2.70E-02	$5.22 \mathrm{E}+00$	0.01	3E-4	1	0.1	$1.57 \mathrm{E}-06$
Pu-239	3.72E-02	2.70E-02	$1.38 \mathrm{E}+00$	0.01	3E-4	1	0.1	$4.13 \mathrm{E}-07$
Pu-240	$2.85 \mathrm{E}-02$	2.70E-02	$1.06 \mathrm{E}+00$	0.01	3E-4	1	0.1	$3.17 \mathrm{E}-07$
Pu-241	$2.06 \mathrm{E}-01$	$1.60 \mathrm{E}+00$	$1.29 \mathrm{E}-01$	0.01	3E-4	1	0.1	$3.86 \mathrm{E}-08$

Continued on next page

Calculation Continuation Sheet

Calculation No. X-CLC-G-00121	Sheet No. 42 of 96	Rev. 0

Table 14. HAC-ST from Refractory Glass (continuation)

Isotope	Content (Ci)	$\begin{gathered} A_{2} \\ \left(C i / A_{2}\right) \end{gathered}$	MAR $\left(A_{2}\right)$	DR	ARF	LPF WVMP	LPF melter	Release $\left(A_{2}\right)$
	Input from Table 1		Calculated for refractory glass	Glass damage ratios and LPFs for melter and WVMP from Table 3				Calculated for refractory glass
a	b	c	deb/c	e	f	g	h	i=d*exf*g ${ }^{\text {h }}$
Am-241	8.45E-01	2.70E-02	$3.13 E+01$	0.01	3E-4	1	0.1	9.39E-06
Am-243	6.72E-03	2.70E-02	2.49E-01	0.01	3E-4	1	0.1	$7.47 \mathrm{E}-08$
Cm-242	$4.49 \mathrm{E}-11$	2.70E-01	$1.66 \mathrm{E}-10$	0.01	3E-4	1	0.1	$4.99 \mathrm{E}-17$
Cm-243	3.04E-03	2.70E-02	1.13E-01	0.01	3E-4	1	0.1	$3.38 \mathrm{E}-08$
Cm-244	$6.77 \mathrm{E}-02$	5.40E-02	$1.25 \mathrm{E}+00$	0.01	3E-4	1	0.1	$3.76 \mathrm{E}-07$
subtotal								$2.02 \mathrm{E}-5$

Table 15. HAC-ST from LDCC Internal to Melter

Isotope	Content (Ci)	Leach Ratio	Leached (Ci)	A_{2} (Ci/A A_{2})	MAR $\left(A_{2}\right)$	DR	ARF	LPF WVMP	Release (A_{2})
	From Table 1	From Table 3 for glass to LDCC	Calculated for LDCC internal to the melter	From Table 1	Calculated for LDCC internal to the melter	From T	for LDCC in melter	nal to the	Calculated for inhalation from LDCC internal to the melter
a	b	c	d=b*c	e	frde	8	h	1	
C-14	$3.47 \mathrm{E}-03$	1.6E-3	5.56E-06	8.10E+01	6.87E-08	0.1	5E-5	1	$3.43 \mathrm{E}-13$
K-40	$1.50 \mathrm{E}-02$	$1.6 \mathrm{E}-3$	$2.41 \mathrm{E}-05$	$2.40 \mathrm{E}+01$	$1.00 \mathrm{E}-06$	0.1	5E-5	1	$5.01 \mathrm{E}-12$
Mn-54	$1.44 \mathrm{E}-06$	$1.6 \mathrm{E}-3$	$2.31 \mathrm{E}-09$	$2.70 \mathrm{E}+01$	$8.55 \mathrm{E}-11$	0.1	5E-5	1	$4.28 \mathrm{E}-16$
Co-60	3.16E-03	1.6E-3	$5.07 \mathrm{E}-06$	$1.10 \mathrm{E}+01$	$4.61 \mathrm{E}-07$	0.1	5E-5	1	$2.30 \mathrm{E}-12$
Ni-63	$1.52 \mathrm{E}-01$	$1.6 \mathrm{E}-3$	$2.44 \mathrm{E}-04$	$8.10 \mathrm{E}+02$	$3.01 \mathrm{E}-07$	0.1	5E-5	1	$1.50 \mathrm{E}-12$
Sr-90	$3.12 \mathrm{E}+01$	$1.6 \mathrm{E}-3$	$5.00 \mathrm{E}-02$	$8.10 \mathrm{E}+00$	$6.18 \mathrm{E}-03$	0.1	5E-5	1	$3.09 \mathrm{E}-08$
Y-90	$3.12 \mathrm{E}+01$	included with Sr-90							
Zr-95	1.30E-20	$1.6 \mathrm{E}-3$	$2.08 \mathrm{E}-23$	$2.20 \mathrm{E}+01$	$9.48 \mathrm{E}-25$	0.1	5E-5	1	$4.74 \mathrm{E}-30$
Nb-95	$2.86 \mathrm{E}-20$	$1.6 \mathrm{E}-3$	$4.59 \mathrm{E}-23$	$2.70 \mathrm{E}+01$	$1.70 \mathrm{E}-24$	0.1	5E-5	1	$8.49 \mathrm{E}-30$
Nb-95m	$1.49 \mathrm{E}-22$	included with Zr -95							
TC-99	$2.01 \mathrm{E}-03$	1.6E-3	3.22E-06	$2.40 \mathrm{E}+01$	$1.34 \mathrm{E}-07$	0.1	5E-5	1	$6.71 \mathrm{E}-13$
Cs-137	$5.42 \mathrm{E}+02$	1.6E-3	$8.69 \mathrm{E}-01$	$1.60 \mathrm{E}+01$	$5.43 \mathrm{E}-02$	0.1	5E-5	1	$2.72 \mathrm{E}-07$
Ba-137m	$5.12 \mathrm{E}+02$	included with Cs-137							
Eu-154	8.12E-02	$1.6 \mathrm{E}-3$	$1.30 \mathrm{E}-04$	$1.60 \mathrm{E}+01$	8.14E-06	0.1	5E-5	1	$4.07 \mathrm{E}-11$
Hg-206	9.79E-16	$1.6 \mathrm{E}-3$	$1.57 \mathrm{E}-18$	$5.40 \mathrm{E}-01$	$2.91 \mathrm{E}-18$	0.1	5E-5	1	$1.45 \mathrm{E}-23$
T1-206	6.88E-14	Include with Bi-210m							
Tl-207	2.56E-09	$1.6 \mathrm{E}-3$	$4.11 \mathrm{E}-12$	$5.40 \mathrm{E}-01$	7.60E-12	0.1	5E-5	1	3.80E-17
T1-208	2.72E-03	included with U-232 included with Th-229							
T1-209	8.09E-08								
Tl-210	$6.54 \mathrm{E}-11$	$1.6 \mathrm{E}-3$	1.05E-13	$5.40 \mathrm{E}-01$	$1.94 \mathrm{E}-13$	0.1	5E-5	1	$9.71 \mathrm{E}-19$
$\mathrm{Pb}-210 \mathrm{~m}$	3.75E-06	included with Th-229							
$\mathrm{Pb}-210$	5.16E-08	$1.6 \mathrm{E}-3$	8.27E-11	$1.40 \mathrm{E}+00$	$5.91 \mathrm{E}-11$	0.1	5E-5	1	$2.96 \mathrm{E}-16$

Calculation Continuation Sheet

| Calculation No.
 X-CLC-G-00121 | Sheet No. 43 of 96 | Rev. 0 |
| :---: | :--- | :---: | :--- |

Table 15. HAC-ST from LDCC Internal to Melter (continuation)

Isotope	Content (Ci)	Leach Ratio	Leached (Ci)	$\begin{gathered} A_{2} \\ \left(\mathrm{Ci} / \mathrm{A}_{2}\right) \end{gathered}$	MAR $\left(A_{2}\right)$	DR	ARF	LPF WVMP	Release $\left(A_{2}\right)$
	From Table 1	From Table 3 for glass to LDCC	Calculated for LDCC internal to the melter	From Table 1	Calculated for LDCC internal to the melter	From Ta	for LDCC melter	rnal to the	Calculated for inhalation from LDCC internal to the melter
a	b	c	$\mathrm{d}_{\mathrm{b}}{ }^{\text {* }} \mathrm{c}$	e	fade	g	h	i	
Pb-211	2.57E-09	$1.6 \mathrm{E}-3$	$4.12 \mathrm{E}-12$	5.40E-01	$7.63 \mathrm{E}-12$	0.1	5E-5	1	3.82E-17
Pb-212	7.56E-03	included with U-232							
Pb-214	$3.11 \mathrm{E}-07$	included with $\mathrm{Rn}-222$							
Bi-209	8.10E-25	included with $\mathrm{Pb}-210$							
Bi-210	$5.14 \mathrm{E}-08$	included with $\mathrm{Bi}-212$							
Bi-211	$2.57 \mathrm{E}-09$	included with Ra-223							
Bi-212	$7.56 \mathrm{E}-03$	included with U-232							
Bi-213	3.75E-06	included with Th-229							
Bi-214	$3.11 \mathrm{E}-07$								
Bi-215	2.10E-15	$1.6 \mathrm{E}-3$	3.37E-18	5.40E-01	$6.24 \mathrm{E}-18$	0.1	5E-5	1	$3.12 \mathrm{E}-23$
Po-210	$4.71 \mathrm{E}-08$	included with $\mathrm{Pb}-210$							
Po-211	$7.01 \mathrm{E}-12$	$1.6 \mathrm{E}-3$	$1.12 \mathrm{E}-14$	2.40E-03	$4.68 \mathrm{E}-12$	0.1	5E-5	1	$2.34 \mathrm{E}-17$
Po-212	$4.84 \mathrm{E}-03$	included with $\mathrm{Pb}-212$ included with Th-229 included with U-230 included with Ra-223 included with U-232 included with Rn-222							
Po-213	3.67E-06								
Po-214	$3.11 \mathrm{E}-07$								
Po-215	2.57E-09								
Po-216	$7.56 \mathrm{E}-03$								
Po-218	$3.11 \mathrm{E}-07$								
At-215	1.03E-14	1.6E-3	$1.65 \mathrm{E}-17$	$2.40 \mathrm{E}-03$	$6.88 \mathrm{E}-15$	0.1	5E-5	1	$3.44 \mathrm{E}-20$
At-217	3.75E-06	included with Th-229							
At-218	5.92E-11	$1.6 \mathrm{E}-3$	$9.49 \mathrm{E}-14$	2.40E-03	$3.96 \mathrm{E}-11$	0.1	5E-5	1	$1.98 \mathrm{E}-16$
At-219	$2.17 \mathrm{E}-15$	1.6E-3	$3.48 \mathrm{E}-18$	$2.40 \mathrm{E}-03$	$1.45 \mathrm{E}-15$	0.1	5E-5	1	$7.25 \mathrm{E}-21$
Rn-217	4.50E-10	$1.6 \mathrm{E}-3$	$7.22 \mathrm{E}-13$	2.40E-03	$3.01 \mathrm{E}-10$	0.1	5E-5	1	$1.50 \mathrm{E}-15$
Rn-218	$5.92 \mathrm{E}-14$	included with U-230							
Rn-219	2.57E-09	$1.6 \mathrm{E}-3$	$4.12 \mathrm{E}-12$	$2.40 \mathrm{E}-03$	$1.72 \mathrm{E}-09$	0.1	5E-5	1	$8.59 \mathrm{E}-15$
Rn-220	7.56E-03	included with U-232							
Rn-222	3.11E-07	$1.6 \mathrm{E}-3$	$4.99 \mathrm{E}-10$	1.10E-01	$4.53 \mathrm{E}-09$	0.1	5E-5	1	$2.27 \mathrm{E}-14$
Fr-221	3.75E-06	included with Th-229							
Fr-223	3.61E-11	$1.6 \mathrm{E}-3$	$5.79 \mathrm{E}-14$	5.40E-01	1.07E-13	0.1	5E-5	1	5.36E-19
Ra-223	2.57E-09	1.6E-3	$4.11 \mathrm{E}-12$	1.90E-01	$2.17 \mathrm{E}-11$	0.1	5E-5	1	1.08E-16
Ra-224	7.56E-03	included with U-232 included with Th-229							
Ra-225	3.76E-06								
Ra-226	3.12E-07	1.6E-3	$5.00 \mathrm{E}-10$	8.10E-02	6.17E-09	0.1	5E-5	1	3.09E-14
Ra-228	$5.14 \mathrm{E}-05$	1.6E-3	$8.25 \mathrm{E}-08$	5.40E-01	$1.53 \mathrm{E}-07$	0.1	5E-5	1	$7.64 \mathrm{E}-13$
Ac-225	3.75E-06	included with Th-229							
Ac-227	2.61E-09	1.6E-3	$4.19 \mathrm{E}-12$	$2.40 \mathrm{E}-03$	$1.75 \mathrm{E}-09$	0.1	5E-5	1	8.73E-15
Ac-228	$5.14 \mathrm{E}-05$	included with Ra-228							
Th-227	2.55E-09	1.6E-3	$4.09 \mathrm{E}-12$	1.40E-01	$2.92 \mathrm{E}-11$	0.1	5E-5	1	$1.46 \mathrm{E}-16$
Th-228	7.56E-03	included with U-232							
Th-229	3.78E-06	1.6E-3	6.06E-09	1.40E-02	$4.33 \mathrm{E}-07$	0.1	5E-5	1	$2.16 \mathrm{E}-12$

Continued on next page

Calculation Continuation Sheet

| Calculation No.
 X-CLC-G-00121 | Sheet No. | Rev. | 0 |
| :---: | :--- | :---: | :--- | :---: |

Table 15. HAC-ST from LDCC Internal to Melter (continuation)

Calculation Continuation Sheet

Calculation No. X-CLC-G-00121	Sheet No. 45 of 96	Rev. 0

Table 16. HAC-ST from Increased Pressure (i.e., > 25 Psig) on LDCC Internal to Melter

Isotope	Content (Ci)	Leach Ratio	Leached (Ci)	$\begin{gathered} A_{2} \\ \left(C i / A_{2}\right) \end{gathered}$	$\begin{aligned} & \text { MAR } \\ & \left(A_{2}\right) \end{aligned}$	DR	ARF	LPF Melter	Release $\left(A_{2}\right)$
	$\begin{gathered} \text { From Table } \\ 1 \end{gathered}$	From Table 3 for glass to LDCC	Calculated for LDCC internal to the melter	From Table 1	Calculated for LDCC internal to the melter		3 or elter fro press	internal crease in	Calculated for inhalation from LDCC internal to the melter from increase in pressure
a	b	c	d=b*	e	f=d/e	E	h	i	j $\mathrm{f}^{*} \mathrm{~g}^{*} h^{*} \mathrm{i}$
C-14	3.47E-03	$1.6 \mathrm{E}-3$	$5.56 \mathrm{E}-06$	$8.10 \mathrm{E}+01$	$6.87 \mathrm{E}-08$	0.1	5E-3	0.1	$3.43 \mathrm{E}-14$
K-40	1.50E-02	1.6E-3	$2.41 \mathrm{E}-05$	$2.40 \mathrm{E}+01$	$1.00 \mathrm{E}-06$	0.1	5E-3	0.1	$5.01 \mathrm{E}-13$
Mn-54	1.44E-06	1.6E-3	$2.31 \mathrm{E}-09$	2.70E+01	$8.55 \mathrm{E}-11$	0.1	5E-3	0.1	$4.28 \mathrm{E}-17$
Co-60	3.16E-03	1.6E-3	$5.07 \mathrm{E}-06$	1.10E+01	$4.61 \mathrm{E}-07$	0.1	5E-3	0.1	$2.30 \mathrm{E}-13$
Ni -63	1.52E-01	1.6E-3	$2.44 \mathrm{E}-04$	8.10E+02	$3.01 \mathrm{E}-07$	0.1	5E-3	0.1	$1.50 \mathrm{E}-13$
Sr-90	$3.12 \mathrm{E}+01$	1.6E-3	5.00E-02	$8.10 \mathrm{E}+00$	$6.18 \mathrm{E}-03$	0.1	5E-3	0.1	3.09E-09
Y-90	$3.12 \mathrm{E}+01$	included with Sr-90							
Zr-95	1.30E-20	1.6E-3	$2.08 \mathrm{E}-23$	$2.20 \mathrm{E}+01$	9.48E-25	0.1	5E-3	0.1	4.74E-31
Nb-95	2.86E-20	1.6E-3	$4.59 \mathrm{E}-23$	$2.70 \mathrm{E}+01$	$1.70 \mathrm{E}-24$	0.1	5E-3	0.1	$8.49 \mathrm{E}-31$
Nb-95m	1.49E-22	included with Zr -95							
Tc-99	2.01E-03	1.6E-3	$3.22 \mathrm{E}-06$	$2.40 \mathrm{E}+01$	$1.34 \mathrm{E}-07$	0.1	5E-3	0.1	$6.71 \mathrm{E}-14$
Cs-137	$5.42 \mathrm{E}+02$	1.6E-3	$8.69 \mathrm{E}-01$	$1.60 \mathrm{E}+01$	$5.43 \mathrm{E}-02$	0.1	5E-3	0.1	$2.72 \mathrm{E}-08$
Ba-137m	$5.12 \mathrm{E}+02$	included with $\mathrm{Cs}-137$							
Eu-154	8.12E-02	$1.6 \mathrm{E}-3$	1.30E-04	$5.40 \mathrm{E}+01$	2.41E-06	0.1	5E-3	0.1	1.21E-12
Hg-206	9.79E-16	1.6E-3	$1.57 \mathrm{E}-18$	$1.60 \mathrm{E}+01$	$9.81 \mathrm{E}-20$	0.1	5E-3	0.1	$4.91 \mathrm{E}-26$
TI-206	$6.88 \mathrm{E}-14$	Include with $\mathrm{Bi}-210 \mathrm{~m}$							
T1-207	2.56E-09	1.6E-3	$4.11 \mathrm{E}-12$	5.40E-01	7.60E-12	0.1	5E-3	0.1	$3.80 \mathrm{E}-18$
TI-208	2.72E-03	included with U-232							
Tl-209	8.09E-08	included with Th-229							
TI-210	$6.54 \mathrm{E}-11$	1.6E-3	$1.05 \mathrm{E}-13$	5.40E-01	$1.94 \mathrm{E}-13$	0.1	5E-3	0.1	$9.71 \mathrm{E}-20$
$\mathrm{Pb}-210 \mathrm{~m}$	3.75E-06	included with Th-229							
Pb-210	5.16E-08	1.6E-3	8.27E-11	$1.40 \mathrm{E}+00$	5.91E-11	0.1	5E-3	0.1	$2.96 \mathrm{E}-17$
Pb-211	2.57E-09	1.6E-3	$4.12 \mathrm{E}-12$	5.40E-01	7.63E-12	0.1	5E-3	0.1	3.82E-18
Pb-212	$7.56 \mathrm{E}-03$	included with U-232 included with Rn-222 included with $\mathrm{Pb}-210$ included with $\mathrm{Bi}-212$ included with Ra-223 included with U-232 included with Th-229 included with $\mathrm{Rn}-222$							
Pb-214	3.11E-07								
Bi-209	8.10E-25								
Bi-210	5.14E-08								
Bi-211	2.57E-09								
Bi-212	$7.56 \mathrm{E}-03$								
Bi-213	3.75E-06								
Bi-214	3.11E-07								
Bi-215	2.10E-15	1.6E-3	3.37E-18	5.40E-01	$6.24 \mathrm{E}-18$	0.1	5E-3	0.1	$3.12 \mathrm{E}-24$
Po-210	$4.71 \mathrm{E}-08$	included with $\mathrm{Pb}-210$							

Continued on next page

Calculation Continuation Sheet

Calculation No. X-CLC-G-00121	Sheet No.	Rev.	0

Table 16. HAC-ST from Increased Pressure (i.e., > 25 Psig) on LDCC Internal to Melter (continuation)

	Content (Ci)	Leach Ratio	Leached (Ci)	$\begin{gathered} A_{2} \\ \left(C i / A_{2}\right) \end{gathered}$	$\begin{aligned} & \text { MAR } \\ & \left(A_{2}\right) \end{aligned}$	DR	ARF	LPF Melter	Release $\left(A_{2}\right)$
Isotope	From Table 1	From Table 3 for glass to LDCC	Calculated for LDCC internal to the melter	From Table 1	Calculated for LDCC internal to the melter	From to the	3 or Iter fro pressu	internal crease in	Calculated for inhalation from LDCC internal to the melter from increase in pressure
a	b	c	d=b*c	e	ffd/e	g	h	1	
Po-211	7.01E-12	1.6E-3	$1.12 \mathrm{E}-14$	$2.40 \mathrm{E}-03$	$4.68 \mathrm{E}-12$	0.1	5E-3	0.1	$2.34 \mathrm{E}-18$
Po-212	$4.84 \mathrm{E}-03$	included with $\mathrm{Pb}-212$ included with Th-229 included with U-230 included with Ra-223 included with U-232 included with Rn-222							
Po-213	3.67E-06								
Po-214	3.11E-07								
Po-215	2.57E-09								
Po-216	7.56E-03								
Po-218	3.11E-07								
At-215	1.03E-14	1.6E-3	$1.65 \mathrm{E}-17$	2.40E-03	$6.88 \mathrm{E}-15$	0.1	5E-3	0.1	$3.44 \mathrm{E}-21$
At-217	3.75E-06	included with Th-229							
At-218	5.92E-11	1.6E-3	$9.49 \mathrm{E}-14$	2.40E-03	$3.96 \mathrm{E}-11$	0.1	5E-3	0.1	1.98E-17
At-219	2.17E-15	$1.6 \mathrm{E}-3$	$3.48 \mathrm{E}-18$	2.40E-03	$1.45 \mathrm{E}-15$	0.1	5E-3	0.1	$7.25 \mathrm{E}-22$
Rn-217	4.50E-10	1.6E-3	$7.22 \mathrm{E}-13$	$2.40 \mathrm{E}-03$	3.01E-10	0.1	5E-3	0.1	$1.50 \mathrm{E}-16$
Rn-218	5.92E-14	included with U-230							
Rn-219	2.57E-09	1.6E-3	4.12E-12	$2.40 \mathrm{E}-03$	$1.72 \mathrm{E}-09$	0.1	5E-3	0.1	$8.59 \mathrm{E}-16$
Rn-220	7.56E-03	included with U-232							
Rn-222	3.11E-07	1.6E-3	4.99E-10	1.10E-01	$4.53 \mathrm{E}-09$	0.1	5E-3	0.1	$2.27 \mathrm{E}-15$
Fr-221	3.75E-06	included with Th-229							
Fr-223	3.61E-11	1.6E-3	$5.79 \mathrm{E}-14$	5.40E-01	1.07E-13	0.1	5E-3	0.1	5.36E-20
Ra-223	2.57E-09	$1.6 \mathrm{E}-3$	$4.11 \mathrm{E}-12$	1.90E-01	2.17E-11	0.1	5E-3	0.1	$1.08 \mathrm{E}-17$
Ra-224	$7.56 \mathrm{E}-03$	included with U-232 included with Th-229							
Ra-225	3.76E-06								
Ra-226	3.12E-07	1.6E-3	$5.00 \mathrm{E}-10$	8.10E-02	6.17E-09	0.1	5E-3	0.1	3.09E-15
Ra-228	$5.14 \mathrm{E}-05$	1.6E-3	$8.25 \mathrm{E}-08$	5.40E-01	$1.53 \mathrm{E}-07$	0.1	5E-3	0.1	$7.64 \mathrm{E}-14$
Ac-225	3.75E-06	included with Th-229							
Ac-227	2.61E-09	1.6E-3	$4.19 \mathrm{E}-12$	$2.40 \mathrm{E}-03$	$1.75 \mathrm{E}-09$	0.1	5E-3	0.1	8.73E-16
Ac-228	$5.14 \mathrm{E}-05$	included with Ra-228							
Th-227	$2.55 \mathrm{E}-09$	1.6E-3	$4.09 \mathrm{E}-12$	1.40E-01	$2.92 \mathrm{E}-11$	0.1	5E-3	0.1	$1.46 \mathrm{E}-17$
Th-228	$7.56 \mathrm{E}-03$	included with U-232							
Th-229	3.78E-06	$1.6 \mathrm{E}-3$	$6.06 \mathrm{E}-09$	1.40E-02	4.33E-07	0.1	5E-3	0.1	2.16E-13
Th-230	$6.05 \mathrm{E}-05$	$1.6 \mathrm{E}-3$	9.70E-08	2.70E-02	$3.59 \mathrm{E}-06$	0.1	5E-3	0.1	1.80E-12
Th-231	$6.15 \mathrm{E}-05$	included with U-235 unlimited included with U-238							
Th-232	$6.74 \mathrm{E}-05$								
Th-234	$3.74 \mathrm{E}-04$								
Pa-231	$1.55 \mathrm{E}-08$	1.6E-3	$2.49 \mathrm{E}-11$	$1.10 \mathrm{E}-02$	2.27E-09	0.1	5E-3	0.1	$1.13 \mathrm{E}-15$
Pa-233	$1.05 \mathrm{E}-03$	included with $\mathrm{Np}-237$							

Continued on next page

Calculation Continuation Sheet

Calculation No. X-CLC-G-00121	Sheet No.	Rev.	0

Table 16. HAC-ST from Increased Pressure (i.e., > 25 Psig) on LDCC Internal to Melter (continuation)

Calculation Continuation Sheet

| Calculation No.
 X-CLC-G-00121 | Sheet No. 48 of 96 | Rev. 0 |
| :---: | :--- | :---: | :--- |

Table 17. HAC-ST from Increased Pressure (i.e., > 25 Psig) on LDCC External to Melter

	Content (Ci)	Leach Ratio	Leached (Ci)	A_{2} (Ci/A $\left.A_{2}\right)$	MAR $\left(A_{2}\right)$	DR	ARF	LPF WVMP	Release $\left(A_{2}\right)$
Isotope	From Table	From Table 3 for PBS to LDCC	Calculated for LDCC external to melter	From Table 1	Calculated for LDCC external to melter	From Table 3 for LDCC external to the melter from increase in pressure			Calculated for inhalation from LDCC external to the melter from increase in pressure
a	b	c	d= ${ }^{*}{ }^{\text {c }}$	e	$\mathrm{f}=\mathrm{d} / \mathrm{e}$	8	h	1	
Cs-137	$6.43 \mathrm{E}+00$	1E-2	$6.43 \mathrm{E}-02$	$1.60 \mathrm{E}+01$	$4.02 \mathrm{E}-03$	0.35	5E-3	1	7.03E-06
Ba-137m	$6.07 \mathrm{E}+00$	1E-2	$6.07 \mathrm{E}-02$	included with Cs -137					
Sr-90	$2.84 \mathrm{E}+00$	1E-2	$2.84 \mathrm{E}-02$	8.10E+00	$3.51 \mathrm{E}-03$	0.35	5E-3	1	$6.14 \mathrm{E}-06$
Y-90	$2.84 \mathrm{E}+00$	1E-2	$2.84 \mathrm{E}-02$	included with Sr-90					
Pm-147	$6.88 \mathrm{E}-02$	1E-2	$6.88 \mathrm{E}-04$	$5.40 \mathrm{E}+01$	$1.27 \mathrm{E}-05$	0.35	5E-3	1	2.23E-08
Am-241	3.43E-02	1E-2	$3.43 \mathrm{E}-04$	$1.60 \mathrm{E}+00$	2.14E-04	0.35	5E-3	1	$3.75 \mathrm{E}-07$
Eu-154	$2.94 \mathrm{E}-02$	1E-2	$2.94 \mathrm{E}-04$	$1.60 \mathrm{E}+01$	$1.84 \mathrm{E}-05$	0.35	5E-3	1	$3.21 \mathrm{E}-08$
Ni -63	$1.55 \mathrm{E}-02$	1E-2	$1.55 \mathrm{E}-04$	$8.10 \mathrm{E}+02$	$1.91 \mathrm{E}-07$	0.35	5E-3	1	$3.35 \mathrm{E}-10$
Fe-55	$1.58 \mathrm{E}-02$	1E-2	$1.58 \mathrm{E}-04$	$1.10 \mathrm{E}+03$	$1.43 \mathrm{E}-07$	0.35	5E-3	1	$2.51 \mathrm{E}-10$
Pu-238	3.79E-03	1E-2	$3.79 \mathrm{E}-05$	$2.70 \mathrm{E}-02$	$1.40 \mathrm{E}-03$	0.35	5E-3	1	$2.45 \mathrm{E}-06$
C-14	3.78E-03	1E-2	$3.78 \mathrm{E}-05$	$8.10 \mathrm{E}+01$	$4.67 \mathrm{E}-07$	0.35	5E-3	1	$8.17 \mathrm{E}-10$
Co-60	$1.31 \mathrm{E}-03$	1E-2	$1.31 \mathrm{E}-05$	$1.10 \mathrm{E}+01$	1.19E-06	0.35	5E-3	1	$2.09 \mathrm{E}-09$
U-232	1.03E-03	1E-2	$1.03 \mathrm{E}-05$	$2.70 \mathrm{E}-02$	3.80E-04	0.35	5E-3	1	$6.65 \mathrm{E}-07$
Pu-239	9.84E-04	1E-2	$9.84 \mathrm{E}-06$	$2.70 \mathrm{E}-02$	3.64E-04	0.35	5E-3	1	$6.38 \mathrm{E}-07$
Pu-240	6.82E-04	1E-2	$6.82 \mathrm{E}-06$	$2.70 \mathrm{E}-02$	$2.52 \mathrm{E}-04$	0.35	5E-3	1	$4.42 \mathrm{E}-07$
Ni-59	5.07E-04	1E-2	5.07E-06	unlimited					
I-129	3.85E-04	1E-2	3.85E-06						
U-233	2.35E-05	1E-2	$2.35 \mathrm{E}-07$	1.60E-01	1.47E-06	0.35	5E-3	1	$2.57 \mathrm{E}-09$
TC-99	$1.04 \mathrm{E}-03$	1E-2	$1.04 \mathrm{E}-05$	$2.40 \mathrm{E}+01$	$4.34 \mathrm{E}-07$	0.35	5E-3	1	$7.60 \mathrm{E}-10$
H-3	$1.92 \mathrm{E}-05$	1E-2	$1.92 \mathrm{E}-07$	$1.10 \mathrm{E}+03$	$1.75 \mathrm{E}-10$	0.35	5E-3	1	$3.06 \mathrm{E}-13$
U-234	8.30E-06	1E-2	8.30E-08	$1.60 \mathrm{E}-01$	5.18E-07	0.35	5E-3	1	$9.07 \mathrm{E}-10$
U-238	6.10E-06	1E-2	$6.10 \mathrm{E}-08$	unlimited					
U-236	4.15E-06	1E-2	$4.15 \mathrm{E}-08$	1.60E-01	$2.60 \mathrm{E}-07$	0.35	5E-3	1	$4.54 \mathrm{E}-10$
U-235	1.38E-06	1E-2	$1.38 \mathrm{E}-08$	unlimited					
Cm-242	1.37E-04	1E-2	$1.37 \mathrm{E}-06$	2.70E-01	5.07E-06	0.35	5E-3	1	8.87E-09
Am-243	$1.34 \mathrm{E}-04$	1E-2	$1.34 \mathrm{E}-06$	2.70E-02	$4.98 \mathrm{E}-05$	0.35	5E-3	1	$8.72 \mathrm{E}-08$
Cm-243	$8.04 \mathrm{E}-05$	1E-2	$8.04 \mathrm{E}-07$	$2.70 \mathrm{E}-02$	$2.98 \mathrm{E}-05$	0.35	5E-3	1	$5.21 \mathrm{E}-08$
Th-228	4.56E-05	1E-2	$4.56 \mathrm{E}-07$	included with U-232					
Np-237	1.69E-05	1E-2	$1.69 \mathrm{E}-07$	$5.40 \mathrm{E}-02$	3.13E-06	0.35	5E-3	1	5.48E-09
U-232	1.03E-03	1E-2	$1.03 \mathrm{E}-05$	$2.70 \mathrm{E}-02$	3.80E-04	0.35	5E-3	1	$6.65 \mathrm{E}-07$
Th-232	8.35E-07	1E-2	8.35E-09	unlimited					
Th-230	3.04E-07	1E-2	$3.04 \mathrm{E}-09$	$2.70 \mathrm{E}-02$	$1.13 \mathrm{E}-07$	0.35	5E-3	1	$1.97 \mathrm{E}-10$
Pu-241	$7.42 \mathrm{E}-03$	1E-2	$7.42 \mathrm{E}-05$	$1.60 \mathrm{E}+00$	$4.64 \mathrm{E}-05$	0.35	5E-3	1	$8.12 \mathrm{E}-08$
Cm-244	2.15E-03	1E-2	$2.15 \mathrm{E}-05$	$5.40 \mathrm{E}-02$	3.98E-04	0.35	5E-3	1	$6.97 \mathrm{E}-07$
				subtotal					1.94E-5

Calculation Continuation Sheet

Calculation No. X-CLC-G-00121	Sheet No. 49 of 96	Rev.	0

Table 18. HAC-ST from LDCC External to Melter

Isotope	Content (Ci)	Leach Ratio	Leached (Ci)	$\begin{gathered} A_{2} \\ \left(\mathrm{Ci} / A_{2}\right) \end{gathered}$	MAR (A_{2})	DR	ARF	LPF WV MP	Release (A_{2})
	From Table 1	From Table 3 for PBS to LDCC	Calculated for LDCC external to melter	From Table 1	Calculated for LDCC external to melter	From Table 3 for LDCC external to the melter			Calculated for inhalation from LDCC external to the melter
a	b	c	d=b* ${ }^{\text {c }}$	c	$\mathrm{f}=\mathrm{d}^{*} \mathrm{e}$	g	h	i	j= ${ }^{*} \mathrm{~g}^{*} \mathrm{~h}^{*} \mathrm{i}$
Cs-137	$6.43 \mathrm{E}+00$	1E-2	$6.43 \mathrm{E}-02$	$1.60 \mathrm{E}+01$	$4.02 \mathrm{E}-03$	0.35	5E-3	1	7.03E-06
Ba-137m	$6.07 \mathrm{E}+00$	1E-2	$6.07 \mathrm{E}-02$	included with Cs-137					
Sr-90	$2.84 \mathrm{E}+00$	1E-2	$2.84 \mathrm{E}-02$	$8.10 \mathrm{E}+00$	3.51E-03	0.35	5E-3	1	6.14E-06
Y-90	$2.84 \mathrm{E}+00$	1E-2	$2.84 \mathrm{E}-02$	included with Sr-90					
Pm-147	6.88E-02	1E-2	$6.88 \mathrm{E}-04$	$5.40 \mathrm{E}+01$	$1.27 \mathrm{E}-05$	0.35	5E-3	1	2.23E-08
Am-241	3.43E-02	1E-2	$3.43 \mathrm{E}-04$	$1.60 \mathrm{E}+00$	$2.14 \mathrm{E}-04$	0.35	5E-3	1	3.75E-07
Eu-154	$2.94 \mathrm{E}-02$	1E-2	$2.94 \mathrm{E}-04$	$1.60 \mathrm{E}+01$	$1.84 \mathrm{E}-05$	0.35	5E-3	1	$3.21 \mathrm{E}-08$
Ni-63	$1.55 \mathrm{E}-02$	1E-2	$1.55 \mathrm{E}-04$	$8.10 \mathrm{E}+02$	$1.91 \mathrm{E}-07$	0.35	5E-3	1	$3.35 \mathrm{E}-10$
Fe-55	1.58E-02	1E-2	$1.58 \mathrm{E}-04$	$1.10 \mathrm{E}+03$	$1.43 \mathrm{E}-07$	0.35	5E-3	1	$2.51 \mathrm{E}-10$
Pu-238	3.79E-03	1E-2	3.79E-05	2.70E-02	$1.40 \mathrm{E}-03$	0.35	5E-3	1	2.45E-06
C-14	3.78E-03	1E-2	$3.78 \mathrm{E}-05$	$8.10 \mathrm{E}+01$	$4.67 \mathrm{E}-07$	0.35	5E-3	1	8.17E-10
Co-60	$1.31 \mathrm{E}-03$	1E-2	$1.31 \mathrm{E}-05$	$1.10 \mathrm{E}+01$	$1.19 \mathrm{E}-06$	0.35	5E-3	1	2.09E-09
U-232	1.03E-03	1E-2	$1.03 \mathrm{E}-05$	2.70E-02	$3.80 \mathrm{E}-04$	0.35	5E-3	1	$6.65 \mathrm{E}-07$
Pu-239	$9.84 \mathrm{E}-04$	1E-2	9.84E-06	2.70E-02	$3.64 \mathrm{E}-04$	0.35	5E-3	1	$6.38 \mathrm{E}-07$
Pu-240	6.82E-04	1E-2	6.82E-06	$2.70 \mathrm{E}-02$	$2.52 \mathrm{E}-04$	0.35	5E-3	1	$4.42 \mathrm{E}-07$
Ni-59	5.07E-04	1E-2	5.07E-06	unlimited					
I-129	3.85E-04	1E-2	3.85E-06						
U-233	2.35E-05	1E-2	$2.35 \mathrm{E}-07$	1.60E-01	$1.47 \mathrm{E}-06$	0.35	5E-3	1	2.57E-09
Tc-99	1.04E-03	1E-2	$1.04 \mathrm{E}-05$	$2.40 \mathrm{E}+01$	$4.34 \mathrm{E}-07$	0.35	5E-3	1	$7.60 \mathrm{E}-10$
H-3	$1.92 \mathrm{E}-05$	1E-2	$1.92 \mathrm{E}-07$	$1.10 \mathrm{E}+03$	$1.75 \mathrm{E}-10$	0.35	5E-3	1	$3.06 \mathrm{E}-13$
U-234	8.30E-06	1E-2	8.30E-08	1.60E-01	$5.18 \mathrm{E}-07$	0.35	5E-3	1	$9.07 \mathrm{E}-10$
U-238	6.10E-06	1E-2	$6.10 \mathrm{E}-08$	unlimited					
U-236	4.15E-06	1E-2	$4.15 \mathrm{E}-08$	1.60E-01	$2.60 \mathrm{E}-07$	0.35	5E-3	1	$4.54 \mathrm{E}-10$
U-235	1.38E-06	1E-2	$1.38 \mathrm{E}-08$	unlimited					
Cm-242	1.37E-04	1E-2	$1.37 \mathrm{E}-06$	2.70E-01	5.07E-06	0.35	5E-3	1	8.87E-09
Am-243	$1.34 \mathrm{E}-04$	1E-2	$1.34 \mathrm{E}-06$	2.70E-02	$4.98 \mathrm{E}-05$	0.35	5E-3	1	8.72E-08
Cm-243	8.04E-05	1E-2	8.04E-07	2.70E-02	$2.98 \mathrm{E}-05$	0.35	5E-3	1	$5.21 \mathrm{E}-08$
Th-228	$4.56 \mathrm{E}-05$	1E-2	4.56E-07	included with U-232					
Np-237	1.69E-05	1E-2	$1.69 \mathrm{E}-07$	$5.40 \mathrm{E}-02$	3.13E-06	0.35	5E-3	1	5.48E-09
U-232	1.03E-03	1E-2	$1.03 \mathrm{E}-05$	2.70E-02	$3.80 \mathrm{E}-04$	0.35	5E-3	1	$6.65 \mathrm{E}-07$
Th-232	8.35E-07	1E-2	8.35E-09	unlimited					
Th-230	3.04E-07	1E-2	3.04E-09	$2.70 \mathrm{E}-02$	1.13E-07	0.35	5E-3	1	$1.97 \mathrm{E}-10$
Pu-241	$7.42 \mathrm{E}-03$	1E-2	$7.42 \mathrm{E}-05$	$1.60 \mathrm{E}+00$	$4.64 \mathrm{E}-05$	0.35	5E-3	1	$8.12 \mathrm{E}-08$
Cm-244	2.15E-03	1E-2	2.15E-05	$5.40 \mathrm{E}-02$	$3.98 \mathrm{E}-04$	0.35	5E-3	1	6.97E-07
				subtotal					$1.94 \mathrm{E}-5$

Calculation Continuation Sheet

| Calculation No.
 X-CLC-G-00121 | Sheet No. | Rev. | 0 |
| :---: | :--- | :---: | :--- | :--- |

Table 19. HAC-ST from Non-Inhalation LDCC External to Melter

Isotope	Content (Ci)	Leach Fraction	Leached (Ci)	$\begin{gathered} A_{2} \\ \left(\mathrm{Ci} / \mathrm{A}_{2}\right) \end{gathered}$	MAR $\left(A_{2}\right)$	DR	LPF WVMP	Release $\left(A_{2}\right)$
	From Table 1	From Table 3	Calculated for LDCC external to melter	From Table 1	Calculated for LDCC external to melter	From Table 3 for LDCC external to the melter		Calculated for noninhalation from LDCC external to the melter
a	b	c	$\mathrm{d}=\mathrm{b} * \mathrm{c}$	e	$f=\mathrm{d}^{*} / \mathrm{e}$	8	h	iff* ${ }^{*}{ }^{\text {¢ }}$ h
Cs-137	$6.43 \mathrm{E}+00$	1E-2	$6.43 \mathrm{E}-02$	1.60E+01	$4.02 \mathrm{E}-03$	0.35	1	$1.41 \mathrm{E}-03$
Ba-137m	$6.07 \mathrm{E}+00$	1E-2	$6.07 \mathrm{E}-02$	included with Cs-137				
Sr-90	$2.84 \mathrm{E}+00$	1E-2	$2.84 \mathrm{E}-02$	$8.10 \mathrm{E}+00$	$3.51 \mathrm{E}-03$	0.35	1	$1.23 \mathrm{E}-03$
Y-90	$2.84 \mathrm{E}+00$	1E-2	$2.84 \mathrm{E}-02$	included with $\mathrm{Sr}-90$				
Pm-147	6.88E-02	1E-2	$6.88 \mathrm{E}-04$	$5.40 \mathrm{E}+01$	$1.27 \mathrm{E}-05$	0.35	1	$4.46 \mathrm{E}-06$
Am-241	3.43E-02	1E-2	$3.43 \mathrm{E}-04$	$1.60 \mathrm{E}+00$	$2.14 \mathrm{E}-04$	0.35	1	$7.50 \mathrm{E}-05$
Eu-154	$2.94 \mathrm{E}-02$	1E-2	$2.94 \mathrm{E}-04$	$1.60 \mathrm{E}+01$	$1.84 \mathrm{E}-05$	0.35	1	6.43E-06
Ni -63	$1.55 \mathrm{E}-02$	1E-2	$1.55 \mathrm{E}-04$	8.10E+02	$1.91 \mathrm{E}-07$	0.35	1	6.70E-08
Fe-55	$1.58 \mathrm{E}-02$	1E-2	$1.58 \mathrm{E}-04$	$1.10 \mathrm{E}+03$	$1.43 \mathrm{E}-07$	0.35	1	5.01E-08
Pu-238	3.79E-03	1E-2	$3.79 \mathrm{E}-05$	$2.70 \mathrm{E}-02$	$1.40 \mathrm{E}-03$	0.35	1	$4.91 \mathrm{E}-04$
C-14	$3.78 \mathrm{E}-03$	1E-2	$3.78 \mathrm{E}-05$	$8.10 \mathrm{E}+01$	$4.67 \mathrm{E}-07$	0.35	1	$1.63 \mathrm{E}-07$
Co-60	$1.31 \mathrm{E}-03$	1E-2	$1.31 \mathrm{E}-05$	1.10E+01	$1.19 \mathrm{E}-06$	0.35	1	4.17E-07
U-232	$1.03 \mathrm{E}-03$	1E-2	$1.03 \mathrm{E}-05$	2.70E-02	$3.80 \mathrm{E}-04$	0.35	1	$1.33 \mathrm{E}-04$
Pu-239	$9.84 \mathrm{E}-04$	1E-2	$9.84 \mathrm{E}-06$	$2.70 \mathrm{E}-02$	$3.64 \mathrm{E}-04$	0.35	1	$1.28 \mathrm{E}-04$
Pu-240	6.82E-04	1E-2	$6.82 \mathrm{E}-06$	$2.70 \mathrm{E}-02$	$2.52 \mathrm{E}-04$	0.35	1	$8.84 \mathrm{E}-05$
Ni-59	5.07E-04	1E-2	5.07E-06	unlimited				
1-129	3.85E-04	1E-2	$3.85 \mathrm{E}-06$					
U-233	$2.35 \mathrm{E}-05$	1E-2	$2.35 \mathrm{E}-07$	$1.60 \mathrm{E}-01$	$1.47 \mathrm{E}-06$	0.35	1	5.15E-07
TC-99	1.04E-03	1E-2	$1.04 \mathrm{E}-05$	$2.40 \mathrm{E}+01$	$4.34 \mathrm{E}-07$	0.35	1	$1.52 \mathrm{E}-07$
H-3	$1.92 \mathrm{E}-05$	1E-2	$1.92 \mathrm{E}-07$	$1.10 \mathrm{E}+03$	$1.75 \mathrm{E}-10$	0.35	1	$6.12 \mathrm{E}-11$
U-234	8.30E-06	1E-2	$8.30 \mathrm{E}-08$	$1.60 \mathrm{E}-01$	$5.18 \mathrm{E}-07$	0.35	1	$1.81 \mathrm{E}-07$
U-238	6.10E-06	1E-2	$6.10 \mathrm{E}-08$	unlimited				
U-236	4.15E-06	1E-2	$4.15 \mathrm{E}-08$	$1.60 \mathrm{E}-01$	$2.60 \mathrm{E}-07$	0.35	1	9.09E-08
U-235	1.38E-06	1E-2	$1.38 \mathrm{E}-08$	unlimited				
Cm-242	$1.37 \mathrm{E}-04$	1E-2	$1.37 \mathrm{E}-06$	2.70E-01	$5.07 \mathrm{E}-06$	0.35	1	$1.77 \mathrm{E}-06$
Am-243	$1.34 \mathrm{E}-04$	1E-2	$1.34 \mathrm{E}-06$	2.70E-02	$4.98 \mathrm{E}-05$	0.35	1	$1.74 \mathrm{E}-05$
Cm-243	8.04E-05	1E-2	$8.04 \mathrm{E}-07$	2.70E-02	$2.98 \mathrm{E}-05$	0.35	1	$1.04 \mathrm{E}-05$
Th-228	4.56E-05	1E-2	$4.56 \mathrm{E}-07$	included with U-232				
Np-237	1.69E-05	1E-2	$1.69 \mathrm{E}-07$	5.40E-02	$3.13 \mathrm{E}-06$	0.35	1	1.10E-06
U-232	1.03E-03	1E-2	$1.03 \mathrm{E}-05$	2.70E-02	$3.80 \mathrm{E}-04$	0.35	1	$1.33 \mathrm{E}-04$
Th-232	8.35E-07	1E-2	$8.35 \mathrm{E}-09$	unlimited				
Th-230	3.04E-07	1E-2	$3.04 \mathrm{E}-09$	2.70E-02	1.13E-07	0.35	1	$3.94 \mathrm{E}-08$
Pu-241	7.42E-03	1E-2	$7.42 \mathrm{E}-05$	$1.60 \mathrm{E}+00$	$4.64 \mathrm{E}-05$	0.35	1	$1.62 \mathrm{E}-05$
Cm-244	2.15E-03	1E-2	$2.15 \mathrm{E}-05$	$5.40 \mathrm{E}-02$	$3.98 \mathrm{E}-04$	0.35	1	$1.39 \mathrm{E}-04$
				subtotal				$3.88 \mathrm{E}-3$

Calculation Continuation Sheet

Calculation No.			
X-CLC-G-00121	Sheet No.	51 of 96	Rev.

Table 20 summarizes the individual contributions and provides the maximum HAC release in terms of A_{2} values.

Table 20. Total HAC Release in Terms of \mathbf{A}_{2}

from Glass	$\mathbf{A}_{\mathbf{2}}$
Spout Glass	$2.49 \mathrm{E}-05$
Melter Heel Glass	$1.90 \mathrm{E}-05$
Refractory Glass	$2.02 \mathrm{E}-05$
from LDCC	
LDCC inside the Melter	$5.08 \mathrm{E}-07$
pressure increase	$5.08 \mathrm{E}-06$
LDCC external to melter	$1.94 \mathrm{E}-05$
pressure increase	$1.94 \mathrm{E}-05$
Non-inhalation Release	$3.88 \mathrm{E}-03$
Total	$3.99 \mathrm{E}-03$

Based on Table 20, the HAC release is conservatively less than $1 \mathrm{E}-1$.

7. RESULTS

The calculated potential A_{2} release under NCT is $<1 E-7 A_{2}$, while the A_{2} release under $H A C$ is $<1 E-1$.

Calculation Continuation Sheet

Calculation No. X-CLC-G-00121	Sheet No.	52 of 96	Rev.

8. CONCLUSIONS

The 10 CFR 71.51 requirements for HAC are that the release will be less than one A_{2} in one week. Conservatively assuming the limit as an instantaneous release, with the HAC results concluding a release to be $<1 \mathrm{E}-1 \mathrm{~A}_{2}$, demonstrates that the limit will not be exceeded.

The 10 CFR 71.51 requirements for NCT are that the release under NCT conditions will be less than 1E-6 A_{2} in one hour. Conservatively assuming the limit as an instantaneous release, with the NCT analysis concluding a release to be $<1 \mathrm{E}-7 \mathrm{~A}_{2}$, demonstrates that the NCT limit will not be exceeded.

9. ATTACHMENTS

	A	B	C	D	E	F
$\underline{1}$	Isotope	A_{2}	Spout glass content (Ci)	Heel Glass content (Ci)	Refractory glass content (C)	Surface contaminatrion (C)
4	H-3	1100				0.0000192270792596751
5	C-14	81	0.00222	0.00347		0.00378111123902642
6	Co-60	11	0.00547	0.00316	0.01332	0.0013118141033357
7	K-40	24	0.0086	0.015		
8	Mn-54	27	0.0000005	0.00000144		
9	Fe-55	1100				0.0157546301626101
10	Ni-59	unlimited				0.000506720349719867
11	Ni-63	810	0.098	0.152		0.0154974117109756
12	5r-90	8.1	63.3	31.2	106.8	2.84226389056067
13	V-90	included with Sr-90	63.3	31.2	106.8	2.84
14	zr-95	22	3.17e-22	1.3E-20		
15	Nb -95	27	6.99E-22	2.86E-20		
16	N695m	included with Zr -95	3.63E-24	1.49E-22		
17	TC-99	24	0.0157	0.00201	0.0522	0.00104173472911952
18	1-129	unlimited				0.000385184631322589
19	CS-137	16	857	542	213.2	6.43046129086125
20	Ba-137m	included with Cs-137	809	512	201.2	6.07
21	Pm-147	54				0.0688059358122154
22	Eu-154	16	0.104	0.0812	0.5527	0.0293872080992359
23	Hg-206	0.54	0.000000000000000714	0.000000000000000979	0.0000000000000002537	
24	T-206	Include with Bi-210m	0.0000000000000501	0.0000000000000688	0.00000000000001782	
25	T1-207	0.54	0.00000000186	0.00000000256	0.00000000296	
26	T1-208	included with U-232	0.00173	0.00272	0.0001806	
27	7-209	included with Th-229	0.0000000558	0.0000000809	0.00000001434	
28	T1-210	0.54	0.000000000045	0.0000000000654	0.00000000001672	
29	$\mathrm{Pb}-210 \mathrm{~m}$	included with Th-229	0.00000258	0.00000375	0.0000006641	
30	$\mathrm{Pb}-210$	1.4	0.0000000376	0.0000000516	0.00000001335	
31	Pb-211	0.54	0.00000000187	0.00000000257	0.000000002968	
32	Pb-212	included with U-232	0.00482	0.00756	0.0005026	
33	Pb-214	included with Rn-222	0.000000214	0.000000311	0.0000000796	
34	Bi-209	included with Pb-210	5.97e-25	8.1E-25	1.457E-25	
35	Bi-210	included with Bi-212	0.0000000375	0.0000000514	0.00000001331	
36	81-211	included with Ra-223	0.00000000187	0.00000000257	0.000000002968	
37	81-212	included with U-232	0.00482	0.00756	0.0005026	
38	8i-213	included with Th-229	0.00000258	0.00000375	0.000000664	
39	Bi-214	included with Rn-222	0.000000214	0.000000311	0.00000007962	
40	Bi-215	0.54	0.00000000000000153	0.0000000000000021	0.000000000000002428	
41	PO-210	included with Pb-210	0.0000000345	0.0000000471	0.00000001222	

Formulas for Table 1

	A	B	C	D	E	F
42	Po-211	0.0024	0.0000000000051	0.00000000000701	0.000000000008103	
43	Po-212	included with Pb-212	0.00309	0.00484	0.0003219	
44	Po-213	included with Th-229	0.00000253	0.00000367	0.0000006498	
45	Po-214	included with U-230	0.000000214	0.000000311	0.0000000796	
46	Po-215	inluded with Ra-223	0.00000000187	0.00000000257	0.000000002968	
47	Po-216	included with U-232	0.00482	0.00756	0.0005026	
48	Po-218	included with Rn-222	0.000000214	0.000000311	0.00000007962	
49	At-215	0.0024	0.00000000000000747	0.0000000000000103	0.00000000000001187	
50	At-217	included with Th-229	0.00000258	0.00000375	0.0000006641	
51	At-218	0.0024	0.0000000000407	0.0000000000592	0.00000000001513	
52	At-219	0.0024	0.00000000000000157	0.00000000000000217	0.000000000000002503	
53	Rn-217	0.0024	0.00000000031	0.00000000045	0.00000000007969	
54	Rn-218	included with U-230	0.0000000000000407	0.0000000000000592	0.00000000000001513	
55	Rn-219	0.0024	0.00000000187	0.00000000257	0.000000002968	
56	Rn-220	included with U-232	0.00482	0.00756	0.0005026	
57	Rn-222	0.11	0.000000214	0.000000311	0.00000007962	
58	Fr-221	included with Th-229	0.000002583	0.000003748	0.0000006641	
59	Fr-223	0.54	0.00000000002623	0.00000000003608	0.00000000004172	
60	Ra-223	0.19	0.000000001868	0.000000002566	0.000000002968	
61	Ra-224	included with U-232	0.004823	0.007563	0.0005026	
62	Ra-225	included with Th-229	0.000002591	0.00000376	0.0000006663	
63	Ra-226	0.081	0.0000002143	0.0000003118	0.00000007972	
64	Ra-228	0.54	0.00003409	0.00005144	0.00003211	
65	Ac-225	included with Th-229	0.000002583	0.000003748	0.0000006641	
66	Ac-227	0.0024	0.000000001901	0.000000002614	0.000000003023	
67	Ac-228	included with Ra-228	0.00003409	0.00005144	0.00003211	
68	Th-227	0.14	0.000000001854	0.000000002548	0.00000000295	
69	Th-228	included with U-232	0.004822	0.007562	0.000502	0.0000455507276345423
70	Th-229	0.014	0.000002602	0.000003778	0.00000067	
71	Th-230	0.027	0.00003892	0.00006047	0.0000152	
72	Th-231	included with U-235	0.0000395	0.0000615	0.0000692	
73	Th-232	unlimited	0.0000434	0.0000674	0.0000418	$8.34853736085892 \mathrm{E}-07$
74	Th-234	included with U-238	0.000241	0.000374	0.000116	3.04278860598743E-07
75	Pa-231	0.011	0.00000001066	0.00000001554	0.0000000178	
76	Pa-233	included with Np-237	0.0007086	0.001052	0.000849	
77	Pa-234	0.54	0.0000003615	0.000000561	0.000000174	
78	Pa-234m	included with U-238	0.000241	0.000374	0.000116	
79	U-232	0.027	0.00466	0.007309	0.000441	$=0.00101601288395608+9.943652688$
80	U-233	0.16	0.00216	0.00335	0.000585	0.0000235354883245522
81	U-234	0.16	0.001034	0.001604	0.000284	8.29529506521102E-06
82	U-235	unlimited	0.0000395	0.0000615	0.0000692	$6.09607730373647 \mathrm{E}-06$

	A	B	C	D	E	F
83	U-235m	unlimited	0.03007	0.02608	0.0372	$4.15407799389637 \mathrm{E}-06$
84	U-236	0.16	0.000119	0.000184	0.000208	$1.38254917753517 \mathrm{E}-06$
85	U-237	included with Pu-241	0.000004556	0.000007365	0.00000508	
86	U-238	unlimited	0.000241	0.000374	0.000116	
87	Np-237	0.054	0.0007086	0.001052	0.000849	0.000016918294211786
88	Np-239	included with Am-243	0.004545	0.005973	0.00672	
89	Pu-238	0.027	0.1139	0.1039	0.141	0.00378754170031728
90	Pu-239	0.027	0.03009	0.02609	0.0372	0.000983860577501772
91	Pu-240	0.027	0.02294	0.02005	0.0285	0.000681628896831293
92	Pu-241	1.6	0.185	0.299	0.206	0.00742164859034811
93	Am-241	0.027	0.3804	0.4952	0.845	0.0342743586802905
94	Am-243	0.027	0.004545	0.005973	0.00672	0.000134481633831818
95	Cm-242	0.27	0.00000000001047	0.0000000003084	0.0000000000449	0.000136852889825064
96	Cm-243	0.027	0.001854	0.002162	0.00304	0.0000803761986794305
97	Cm-244	0.054	0.04067	0.04696	0.0677	0.00215006331467477
98			=SuM(C4:C97)	=SUM(D4:D97)	=SUM(E4:E97)	=SUM(F4:F97)

	A ${ }^{\text {B }}$	C	D ${ }^{\text {E }}$	F	G	H	I	J	K	L	M	N	0	P	Q	R	S
	Leach Rate	LDCC Days to Hard	Surface Ares	Glass Leached Mass (E)	Leached Fraction		$\begin{array}{r} \text { HAC } \\ \text { Impact } \end{array}$	Fraction ed/Broken			HAC	Fraction Ae	arosolized		Leak Path	th Factors	Non-Anhaiation Escape Fraction
	Glass into LDCC (\quad / $/ \mathrm{cm}^{2}$ day)	Leach Duration (doys)	Glass LOCC Interface $\left(\mathrm{cm}^{2}\right)$	Leach Mass (E)	Lemat Ratio Glass	$\begin{aligned} & \text { Leach } \\ & \text { Rusto } \\ & \text { Pas } \end{aligned}$	DR Glass	$\begin{array}{\|c\|} \text { OR } \\ \text { Locc } \\ \text { extema } \\ 1 \end{array}$	$\begin{array}{\|c} \text { OR } \\ \text { LOCC } \\ \text { Inter } \end{array}$	ARF Glass	$\begin{aligned} & \text { Cont } \\ & \text { ARF LDCC } \end{aligned}$	Uncont ARF ucc	$\begin{gathered} \text { ARF } \\ \text { Prencor } \end{gathered}$	$\begin{gathered} \text { RF } \\ \text { Premus. } \end{gathered}$	LPF	LPF mant	$\boldsymbol{E F}^{\text {nemom }}$
3	0.00001	28	267560.755		=F3/46720	0.01	0.01	0.35	0.1	-0.03/10	0,00005	0.0075	0.005	1	1	0.1	1
4	Based on the macimum leach rate for glass (Ref.8, Summary).	For glass oldCC. Based on glass requiring 28 days to rach destred stength.	Conservatively assumed to be the footprint of the mether of the box mutiplied by 2 Ref. 9 page $A-5=12 \mathrm{fP}^{1} 2 \mathrm{~m}^{2} 2$ expressed in cm^{2}).	Calculated pached fraction of rads from glass to LOCC. Used - calculate A2s contained within the LDCC inside the metter.	Fraction of glass leached based on using $1 / 10$ of 467.2 ikg for total glass (Ref. 15)	Conserv ativety assume α based on effort required ∞ remove the resultant imperme able covering from Barbetts PBS (Ref. 9810).	Broken Glass Fraction for HAC glass. Conservative based on using G values from BNWL-1903, which are much higher than actuad (see stuctural analysis) with values taken from Ref 12, Figure 33 at 60 A/sec.	Extemat to the mettor LDCC impacto d from HAC. Based on stuctura anaysis.		For HAC glass based on assuming ala Sub 20 Micron glass is disperse d faka Sub 20 Mcron Glass (raction) V atues taken thon Ref 12. Figure 38 at 60 fisec.	For contained LDCC with single LPF aiready appliled (aka Contained Concrete (ayast) Althome Fraction). Ref. IAEANIS RN:37121627 (Nots: LPF implict in vajue. For internal to metter LDCC, the final release when calculated will have only 1 (additional) LPF appled to it 1 H value used for external to the meltor LDCC no additional LPF should be applied when calculating release).		Based on Ref 4, an ARF of 5E-3 can be used when the pressure increases to less than 25 psi.	Also Based on Ref 4, an RF of 1 should be epplied.	For dispersible rads when escaping trough 1 structure, assumed equal to 1.	For dispersible rads when escaping through extarnal LDCC and out lof WMMP. Assumed based on Ref. 12. For HAC onty used tor metter	For non-inhalation LDCC canservadively assumed to be 1.

	A	B	C	D	E	F	G	H	I	
1	tsotope	Cortent (C)	$\begin{gathered} A_{1} \\ \left(\alpha / a_{1}\right) \end{gathered}$	$\begin{aligned} & \text { mar } \\ & \left(A_{2}\right) \end{aligned}$	DR	arf	$\begin{aligned} & \text { IPF } \\ & \text { Mether } \end{aligned}$	LF wVimp	Reltas: $\left(A_{2}\right)$	
2		From Table 1		Catculated for spout gless	From Table 2. Some or all NCT glass				Calculated for inhalation from spaur glass	
3	a	b	c	${ }^{\text {d }}$ b $/$ c	-	f	8	*		
4	C. 14	s'icontentics	E'Coantentiliss	-84/CA	='2NCTInputs'\|153	-'2NeTmpurs'153	-'2nctinnutilass	-'2NCTInputsias:	=04*E4*F4*G6**4	
5	K-40	z'contentic	-1content187	-as/cs	F'2NCMnputsils	-'2NCTInpusis'lis	-'2nctinputisiass	-H5S		
6	Mr-54	-1/contentica	-'1constentiss	-85/C6	-'2Nectipute'Is3	-'2MCTnouts'lss	-'2NCTInputs'Ias3	=H54		
7	cosa	-'contentics	E'contentis6	-87/77	='2NCTnputsisis3	-'2NCTnputi'ls3	-2MCTInputs 1053	-HS4	-07077*F*G7*H7	
8	${ }^{\text {Nr } 63}$	F'Lcontenticil	-'Lcontent'\|811	s ${ }^{\text {a/ca }}$	-2NCTnputs'IS3	='2NCTInpute'lis	-'2mectimutrios 3	-HSA		
9	Sros	S'contenticiz	-1comtent1812	=89/c9	-2werlnpurs 153	-2NCTInput' 1153	-2nctinputs'as3	- -154	=D9*E9*F9'G9\%H9	
10	r-90	P'Icontentic13	-'icontentiвis							
11	2-95	-'Icontenticis	-'Lcontentisu	-811/C11	='2NCTInputs'tis	-2NCTInpursils	E'24CCIInaus'IOS3	- HSA	- $011+$ E11*F11*G11* ${ }^{\text {H }}$	
12	Nb-95	-'icontenticis	-'1content1815	=812/c12	-'2NCTInputsills	r'2MCTnputs'lis	E'2NCTInputs'ICS3	Hisa	-012*E12*F12*G12*H12	
13	Nb-93m	-icontentic16	Thcontentiba6							
14	T -9	Ficontentici	-'Econtent1817	-814/c14	:'2NCTnpura'is3		-'2nctinputilas	= HS 4		
15	C-137	E'Commemicis	F'1content'\|1819	-B15/C15	:'2ucrimputulis	-'zNCTnpusis'ls	:'2MCTInputs'ICS3	- HSA	-015*E15*F15*G15*H15	
16	8-137m	'Lcontenticzo	-'1comtent'1320							
17	Eu-159	='censenticz	0^{\prime} comitenr1822	-817/[17	r'2NCTnsputs'l153	-'2nCTMnputills	r'zNCTInputs'oss	-2MS4		
18	$\mathrm{H}_{4} 200$	Ficomemici	-'1content1823	-818/C18	F'2NCTnnute'\|l53	-'zheTnputilis	-'2NCTInputi'los	=nsa	-D18*E18*F18*G18*H28	
19	1-206	F'icontenticz4	-'ceantenrili82							
20	7-207	F'Icontentic25	-1 Content1825	-820/C20	F'2NCTnput'ILIs	-2NCTnputs'lLs	-'2NCTInputs'IOS3	- HS 4		
21	T-208	F'contentic26	-'1content'1326							
22	-1-209	z'cantenticz7	-'coontent1827							
23	1-210	= 'Icontenticas	='1content 1 I2as	=823/c23	E2NCTInputstils		-2mCTInputsios	- HSA	=023 ${ }^{\circ} \mathrm{E} 23^{\circ} \mathrm{F} 23^{\circ} \mathrm{G} 23^{\circ} \mathrm{H} 23$	
24	Pb-210m	-'1contenticze	='1content'1829							
25	Pb-210	-'coontentic30	-'1comtent'1330	-825/C25	-2NCTnputs'ils	='2NCTInpustilisa	='2NCTInpustios 3	-H54		
26	Pb-211	-1contentical	-2contentris31	-826/226	-'2NCTInputs'Ils	-2NCTImputsilsa	-'2NCTInpus'IOS3	Hhse		
27	p6-212	-'contentic32	F'cosntent!1332							
28	Pb-214	F'1contentic33	-'icontenrla33							
29	8 8209	-'contentica	P'1content1334							
30	-1820	''LContentic3s	-'1ontentigas							
31	81-211	F'dententicas	-'100ntenrt1336							
32	81212	-1contentic37	-'1content1837							
33	8+213	='1contentic3s	F'Coontentilis3							
34	8+214	-'Icontenticas	-1contentil339							
35	8-215	F'contenticla	-1cententlise	-835/c35	F'2MCTnpuvi\|f3	Fr2Nennputsils	-'2nctinputisilis	- HSS	=035*E35*F35*G35*H35	
36	Po-210	-icontentical	P'Coontentisal							
37	Po-211	='icontenticat	-1 content 1842	2837/c97	E'2NCTnputsils	E'2wCTnoutils	-2NCTInpuss'loss	- $\mathrm{HSS}^{\text {a }}$	-037*E37*F37* $637 \times \mathrm{H} 37$	
38	P0-212	-'Lententicas	-1content\|	33						

	A	B	C	D	E	F	G	H	I
39	Po-213	Ficomentica	Ficonemeriga						
40	P0.24	dicententicas	R'Contemitus						
41	po-215	-'Leonten+14a6	Ficomentisa						
42	P0-26	F'IContentica7	=1cantentisa7						
43	P0-218	-Icentemi'cas	Ficontentilas						
44	A-215	Ficenteritas	Etconteritas	-8u4/cos	-2RCCInpuw	-2\%*Tnputrils	-2mernputricis	Helsa	-04 ${ }^{\text {¢ }}$
45	At:217	-İententicso	-tiontentiliso						
46	A.21a	r'teontentics	-tcontentiles	-вия/са6	F2nctinuusiliss	-2MCThnutsils	-'zmerinututios	EHSA	
47	A.219	-'IContentics	-1conterri\|las2	-897/ca7	-2NCTInpuwilisa		=2wCInpursios	- HS 4	
48	${ }_{\text {an-27 }}$	-1'tontenilcs3	Ftcontentiliss	- =ne\%cas	-2NCTMputsils	EzNCTInput'ILS3		=ns ${ }^{\text {a }}$	
49	Rn-218	-'zeontent154	Fticontentias						
50	Rn-29	-12ententicss	-17entent'13s	-BSo/so	-2ncenputulis	-2wcrnput'sils	-2ectuputs'lass	-H54	
51	Ran20	-icomentics	Ficomentilss						
52	Ra-22	-120nemitics	-200nenrlias	-Bas/CS2	-2kertinputilis	-2NCTImpussilis	--2xcInputstas	HHSA	
53	fre2s	=2eontentics	-I'contentiass						
54	tr-23	-'tcontent1cs9	-120ntertilis9	-BS/Cs	-2MCTmputisiss	F'zelinutills	-2MCInputricas	-H54	
55	ne-23	-'Econterticso	- Itentemelisso	-855/[S5	-2ecrinputuls3	-2wechnout'liss	T'2NCTInputsicas	Lensa	-055-555-F55655-H55
56	Re-24	- 'romitentic61	-tcontent1362						
57	R-25	-1'contentica	FItoment'1862						
58	2-226	- 'rententich	-Icontent1863	Easkecsa	-2werlnputsils	-2McTnputsils	-2xcrinputsicsa	HSA	
59	Ra-28	S'Eontentics	-Icontenrisa 4	-859/cs	=2verinputrils		-2MCTInputsios	EHSA	
60	A-235	-'Lcontentics	F'Leonten'\|1365						
61	Ac-23	Ficomemicss	Ficonemenilab	-882/C61	-2wcrnputsils	-2xchnputsils		HHS4	
62	Ac.23s	-Licontentic6	C'1centent1367						
63	${ }_{\text {min27 }}$	-2eonteniccs	-IContent1868	P663/63	F2kethaputills	F2NCTnoutills	-2xcrnaputios	= HS 4	
64	The2s	-'Leontentica	-1200nentilas						
65	mr-2s	-1'contentico	-IContentiaro	-885/C65	-2xernmputrils	z'ectiputrilis	=2xClinputrios	- HS S	
66	mer20	-Tomitentich	Ftentent1071	P865/ces	-2xcrinuusuls	-2MCTInputilus	-2NCTmputsios	CHSA	
67	n-231	-1Comtenticiz	-icontentiar						
68	Tm-23	- 'Licontenticz	-1200ntent1933						
69	The24	- Lecontenicica	F'Contentiliz						
70	Pa-231	-120nemiricrs	-1comentilis	$1-87 / 770$	-2wclnoustils	-'zechnouts'lss	-2NTTnputictas	HHS	
71	P4233	-180ntenticis	Ficonennt\|185						
72	Pr-24	Elicontenticr	-2eoment1877	-072/C2	-2kTmputrils	-2NCTnputsilcs	-2mClimputrios	HHS4	
73	Par 2 zam		-L20nten+1078						
74	4.232	-1icontentic9	-120mentiag9	18874724	-22MCInpustiss	'2MCTInoutils	-2NCTmputicass	- HS 4	
75	4.23	- Licomenticea	-120nterntise	2875/c75	-2\%CIInpusulss	-2enchapurilis	P2NCTInuustios ${ }^{\text {a }}$	=ns 4	${ }^{-175} \cdot 673 \cdot 775 \cdot 675 \cdot 475$
76	4.2n	-1Lcontentics	-IContent1891	-876/C76	-2wClnputills	-2NCThputils	Fixctinuturias	- HS S	$10766^{\circ} 76 \cdot \mathrm{~F} 76 \cdot 675 \cdot 476$
77	4.23s	E'Econtentices							
78	4.235 m	- ${ }^{\text {contentica3 }}$	-'contentisa2						
79	0.336	Eicontenticas	E'conterilise	1-87\% 7 ¢7	=2RCInpuss	Fzewcinpurilisa	Ezerchaustlos3	OHSA	

Formulas for Table 4

	A	B	C	D	E	F	G	H	I
80	(1-23)	= 'teontenticas	e'comtantisas						
81	1-238	-'1content1086	-'IContent'1856						
82	Np-237	- 2 contem 1 ces 7	-'LContent'1987	-882 /cas	-'2NCTMnputs'IS3	-'2NCTInputsilis	*'2NCTInputa'losa	OHSA	
83	Np-239	-'ceontenticss	=1contentises						
84	Pu-238	-'Icomtent\|ces	''IContent11889	-884/c84	-2NCTmputeils	r'2NCTnputiliss	-'2NCThnputs'las3	-H5A	
85	Pu-239	F'countenticso	r'LContent'IBSO	- Bas/cas	-2NCTInputsils	-'2NCTnputrils	=2NETMputs\%OS3	- HSA	
86	A -240	z'100ntemric91	-'1comtent1891	=886/c86	E'2NCTInputa'IIS	-'2ncTinputrills	-'2NCTInputilucs	-HSA	
87	pu-2u1	-'1contenticas	-'Coontent 1 g92	1887/[87	a'2NCTInputs'lls	-2NCTnputrilis	-2NCTInputsias3	- HSA A	
88	Am-24]	'HContentic93	F'LContent'tB93	- Bsa/cse	-'2NCMmputs'ils	=2NCTInputrill 3	E'2NETInputs'las3	-HSA	
89	amm 24.	-'LContemtic94	F'contentibsa	-839/c89	\%2NCTInputer 153	-'2NCTInputrils	-2NCTInputsilasi	-H54	
90	$\mathrm{Cm}_{\mathrm{m}-242}$	arcontentic95	''coontenr1995	=890/590	-'2NCTInputrills	z'2NCHnputrills	-2NCTMputrios 3	- HS 4	
91	$\mathrm{c}_{\mathrm{n}-243}$	z'lcontemilics	-'1contentligs	-89y/c91	-2Nectimputills	fienctinputails	-'2NCThnputs'los	HSS4	
92	Cm-24	F'contenricat	F'comtent1897	- 892 [c92	E'2MeTImputs'IS3	F'2NCTinputsilis		- HSA	
93									-Sum(10:192)

	A	B	C	D	E	F	G	H	I
1	Isotope	Content (a)	$\begin{gathered} A_{2} \\ \left(C / A_{2}\right) \end{gathered}$	MAR (A_{1})	DR	ARF	LPF Melter	$\begin{aligned} & \text { LPF } \\ & \text { wvMP } \end{aligned}$	Release (A_{2})
2		From Table 1		Cakculated for heel glass	From Table 2. Same or all NCT glass				Calculated for Inhalation from heal glass
3	a	b	c	$d=b / e$	-	f	g	b	$i=d * * * 0^{*} g^{*} h$
4	C-14	='2content'ID5	='1content'IB5	= $84 / \mathrm{CA}$	='2NCTInputs'lis 3	='2NCTInputr'tLS3	='3HACInputs'IK\$3	='3HACInputs'Ik 3	-D4*E4*F4* ${ }^{\text {c }}$ 4*H4
5	K-40	='1content'107	='1content'li87	-8S/CS	='2NCTInpurs'lls ${ }^{\text {a }}$	='2NCTinputs'iLS3	='3HACImputs'IK\$3	='3HACinputs'IK\$3	-D5*E5*F5*G5*H5
6	Mn-54	$=$ 'coontent'1D8	F'1content'liss	-86/C6	='2NCTInputs'1153	='2NCTInputs'1LS3	E'3HACInputs'IK53	='3HACinpurs'IK\$3	$=06^{*} E 6^{\circ} \mathrm{F} 6^{\circ} \mathrm{G} 6^{*} \mathrm{H6}$
7	Co-60	='Leontent'ID6	E'1content'lisg	=87/C7	a'2NCTInputs'lls ${ }^{\text {a }}$	='2NCTInputs'lls3	='3HACImputs'IK\$3	-'3HACinputs'IK53	
8	N163	='1content'ID11	='1content'lB11	=88/C8	='2ncTinputs'lis 3	='2NCTImputs'ILS3	='3HACinputs'lK\$3	='3HACInputs'IK\$3	$=08^{*} E 88^{\circ} \mathrm{F8} 8^{*} 68^{*} \mathrm{H8}$
9	Sr-90	='1content'ID12	-'1content'lB12	-89/C9	='2NCTİnputs'lls 3	='2NCTInputs'lLS3	e'3HACImputs'IK\$3	='3HACinputs'IK\$3	=09*E9*F9*G9* ${ }^{\text {c }}$
10	r-90	e'Leontent'IO13	='1content'IB13						
11	2-95	='2content'1014	z'1content'IB14	=812/C11	='2NCTInputs'lls ${ }^{\text {a }}$	='2NCTinputs'lLS3	='3HACInputs'IK\$3	='3HACInputs'IK\$3	$=\mathrm{D} 11^{*} \mathrm{E} 11^{*} \mathrm{~F} 11^{*} \mathrm{G} 11{ }^{*} \mathrm{H} 11$
12	${ }^{\mathrm{Nb}-95}$	='1content'ID15	='1content'IB15	=812/C12	='2NCTImputs'IIS3	z'2NCTinputs'lıs3	z'3HACImputs'1K53	z'SHACInputs'IK\$3	$=\mathrm{D} 12{ }^{*} \mathrm{E} 12^{*} \mathrm{~F} 12^{*} \mathrm{G} 12^{*} \mathrm{H} 12$
13	Nb-95m	z'Leontent'ID16	='1content'1816						
14	Te-99	z'Icontent'1017	x'1content'\|B17	= $814 / \mathrm{Cl} 4$	='2NCTinputs'IIS3	='2NCTinputs'lLS 3	='3HACInputs'IK53	='3HACInputs'1K\$3	=D14*E14*F14*G24*H14
15	C-137	F'Leontent'ID19	E'1content'1819	2815/C15	''2NCTinputs'\|IS3	a'2NCTinputs'iLS3	z'3HACInputs'IK\$3	='3HACInputs'IKS3	=D15 ${ }^{\circ} \mathrm{E} 15{ }^{*} \mathrm{~F} 15^{*} \mathrm{G} 15^{*} \mathrm{H} 15$
16	B-137m	z'1content'ID20	F'1content'IB20						
17	Eu-154	z'1content'ID22	E'1content'1B22	=817/C17	E'2NCTinputs'lis	='2NCTInputs'lis 3	='3HACInputs'IK53	='3HACinputs'IKS3	
18	Hg-206	z'Content'lo23	E'coontent'IB23	[818/C18	='2NCTInputs'lls 3	='2NCTInputs'lls3	='3HACInputs'1K\$3	E'3HACinputs'IK\$3	$=018{ }^{\circ} \mathrm{E} 18^{\circ} \mathrm{F} 18^{*} \mathrm{G18} 8^{\circ} \mathrm{H} 18$
19	T-206	z'1comtent'ID24	z'1content'1824						
20	7-207	='1content'ID25	E'180ntent'1825	=820/C20	-'2NCTInputs'IIS3	='2NCTinputs'153	='3HACinputs'\|K\$3	z'3HACinputs'IKS3	$=020^{\circ} \mathrm{E} 20^{*} \mathrm{~F} 20^{*} \mathrm{G} 20^{\circ} \mathrm{H} 20$
21	7-208	F'1content'ID25	='1content'IB26						
22	7-209	='1tontent'ID27	='1content'IB27						
23	7-210	z'1content'ID28	-'1content'1328	=823/C23	='2NCTImputs'lis ${ }^{\text {a }}$	='2NCTInputs'ILS3	z'3HACinputs'IK\$3	E'3HACInputs'IK\$3	=D23*E23*F23*G23* 23
24	P6-210m	z'Lcontent'1029	='1content'1329						
25	Pb-210	='1content'ID30	='1contem'1830	=825/C25	='2NCTInputs'lis ${ }^{\text {a }}$	='2NCTinputs'lls 3	='3HACinputs'1K\$3	='3HACinputs'IKS3	-D25 ${ }^{\text {E } 225 * F 25 * G 25 * H 2 S ~}$
26	Pb-211	='2content'ID31	F'1content'IB31	=826/C26	a'2NCTinpuns'lls	z'2NCTInputs'lLs3	E'3HACInputs'1K\$3	='3HACinputs'IK\$3	$=\mathrm{D} 26^{\circ} \mathrm{E} 26^{\circ} \mathrm{F} 26^{\circ} \mathrm{G} 26^{*} \mathrm{H} 26$
27	Pb-212	='1content'ID32	='1content'l832						
28	Pb-214	='1content'ID33	='Lcontent'IB33						
29	B+209	E'1eontent'ID34	F'1contant'1834						
30	B+210	='icontent'1035	='1content'IB35						
31	8+211	z'Lcontent'ID36	='1content'IB36						
32	8-212	='1content'1037	='1eontent'l837						
33	B-213	='1content'ID38	='1content'lB38						
34	${ }^{81-214}$	$=$ '1content'ID39	='1content'IB39						
35	${ }^{8+215}$	='2content'ID40	a'content'leato	2835/C35	E'2NCTInputs'lis ${ }^{\text {a }}$	F'2NCTInputs'lis 3	E'3HACinputs'1K\$3	='3HACInputs'IK 53	=035*E35*F35*G35*H35
36	Po-210	='1content'ID41	='1eontent'IB41						
37	Po-211	='Leontant'ID42	E'1content'1842	=837/C37	='2NCTinputs'lls	='2NCTInputs'ILS3	z'3HACInputs'IK\$3	-'3HACInputs'IK\$3	=037*E37*F37*G37*H37
38	Po-212	='Leontent'tD43	F'1content'IBA3						

Formulas for Table 5

	A	B	C	D	E	F	G	H	1
39	Po-213	='1content'1044	='1content'1844						
40	Po-214	='1tantent'ID45	='1content'IB45						
41	Po-215	='1content'ID46	='1content'\|346						
42	PO-216	='1content'1047	='1content'1847						
43	Po-218	='1content'ID48	='1comtent'1848						
44	At-215	='1content'ID49	='1content'IB49	=844/C44	-'2NCTinputs'lis3	='2NCTInputs'1LS3	E'3HACinputs'lks	s'3HACinputs'\|K53	$1=$ D44*E44*F44*G44*H44
45	At-217	='1content'ID50	='1content'IB50						
46	At-218	='1content'IDS1	E'1content'1851	=846/CA6	='2NCTinputs'lis 3	='2NCTInputs'lls3	E'3HACinputs'ikS3	='3HACinputs'IKS3	=D46*E45*F46*G46*H46
47	Af-219	='1content'ID52	='1content'!852	=847/C47	='2NCTInputs'lis3	z'2NCTinputs'lLLS	='3HACImputs'IK\$3	='3HACinputs'1K\$3	$=047{ }^{* E 47 * F 47 * ~} 647^{*} \mathrm{H} 47$
48	Rr-217	v'1content'ID53	E'1content'1853	2848/C48	z'2NCTinputs'IIS3	E'2NCTMnputs'llis 3	E'3HACinputs'IK\$3	z'3HACInputs'\|k\$3	$=048{ }^{*} \mathrm{E} 48^{\circ} \mathrm{F} 48^{*} 648^{*} \mathrm{H} 48$
49	$\mathrm{Rn}_{\mathrm{n}-218}$	='1content'IDS4	='1contem''1354						
50	Rr-219	z'1content'l055	z'1content'\|1355	-850/C50	a'2nCTinputs'lis ${ }^{\text {a }}$	='2NCTImputs'lL53	E'3HACInputs'IK53	='3HACInputs'1KS3	$1=050^{\circ} \mathrm{E} 50^{\circ} \mathrm{F} 50^{\circ} \mathrm{G} 50^{\circ} \mathrm{H} 50$
51	Rr-220	='1content'1056	z'1content'\|356						
52	Rn-223	9 '1content'l057	='Icontent'\|857	-852/C52	='2NCTInputs'Ils3	='2NCTInputs'lLs 3	='3HACinputs'IK\$3	e'3HACinputs'\|K\$3	$1=052^{\bullet} \mathrm{E} 52^{\circ} \mathrm{FS} 2^{*} 652^{*} \mathrm{H} 52$
53	Fr-223	a'1content'1058	='1content'1858						
54	Fr-223	E'Leontent'1059	E'1content'1859	=854/C54	='2NCTInputs'ills	='2NCTInputs'lıs 3	z'3HACInputs'IK\$3	='3HACinputs'lk\$3	$=D 54 * E 54 * F 54 * G 54 * H 54$
55	R $\square_{\text {- } 223}$	='1content'IDS0	z'1content'1B60	-855/C55	E'2NCTInputs'IS 3	='2NCTInputs'1L\$ ${ }^{\text {a }}$	a'3HACInputs'IKS3	='3HACInputs'\|K53	=DS5*ES5*F55*G55*H55
56	R-224	='1content'ID61	='1content'1361						
57	R-225	E'1content'1062	-'1content'1862						
58	R-226	E'Lcontent'ID63	='1content'IB63	-858/C58	='2NCTInputs'lls 3	='2NCTInputs'lL53	='3HACInputs'IK\$3	-'3HACinputs'lK\$3	$=D 58{ }^{\circ} \mathrm{E} 58^{\circ} \mathrm{FS} 8^{*} \mathrm{G} 58^{*} \mathrm{H} 58$
59	R-278	z'Leontent'IO64	-'1content'1854	-859/C59	-'2NCTInputs'IIS3	='2NCTinputs'lL\$3	a'3HACInputs'IK\$3	z'3HACinputs'1k\$3	=D59*E59*F59*659*H59
60	Ac-225	z'Lcontent'1065	z'1content'\|665						
61	AC-227	='1content'ID66	a'1content'\|B66	-861/C61	E'2NCTInputs'lis ${ }^{\text {a }}$	='2NCTinputs'lis3	E'3HACinputs'IK\$3	E'3HACinputs'1K\$3	=D61*E61*F61*G62*H61
62	Ac-223	='2content'1067	='1content'1867						
63	Th-227	s'1content'1068	='1contenn'\|B68	-863/C63	E'2NCTInputs'lis 3	='2NCTinpurs'lL53	='3HACInputs'1K53	='3HACInputs'1K\$3	
64	Th-228	z'1content'ID69	='1content'\|369						
65	Th-229	='1content'ID70	='1content''1870	-365/C65	='2NCTInputs'l\|\$3	='2NCTInputs'll 53	='3HACinputs'1K\$3	='3HAClinputs'IK\$3	=065*E65*F65*G65*H65
66	${ }^{\text {Th-230 }}$	z'Lcontent'ID71	z'1content' 8771	-866/C66	-'2NCTInputs'\|ls		='3HACinputs'1K\$3	z'3HAClinputs'\|k ${ }^{\text {S }}$	$=056{ }^{\circ} \mathrm{E} 56^{\circ} \mathrm{F} 66^{*} \mathrm{G} 66^{*} \mathrm{H} 66$
67	Tr-231	='1content'ID72	='1content'1872						
68	7h-232	='1content'1073	-'1content'1873						
69	7-234	z'1content'1074	E'1content'1874						
70	Ps-231	z'1content'1075	a'1content'1875	=870/C70	''2NCTInputs'\|IS3	E'2NCTinputs'lL¢3	z'3HACinputs'IK\$3	E'3HACinputs'\|k\$3	$1=D 70^{*} E 70^{*} \mathrm{F70}{ }^{\circ} \mathrm{G70}{ }^{\circ} \mathrm{H} 70$
71	Pa-233	='1content'1076	v'1content'\|876						
72	Pp-234	E'Leontent'ID77	-'1content'1877	*872/C72	E'2NCTInputs'IIS3	='2NCTİnputs'1L\$3	n'3KACInputs'IK\$3	-'SHACInputs'1K\$3	*0072*E72*F72*G72*H72
73	P2.23mm	='1contant'1078	E'1content'1878						
74	U-232	$=$ '1content'1079	z'1content'\|B79	=874/C74	-'2NCTInputs'lis ${ }^{\text {a }}$	='2NCTInputs'lls 3	E'3HAClnputs'IK\$3	z'3HACInputs'kS3	$=D 74 * E 74^{*} 74^{*} \mathrm{G74} 4^{*} \mathrm{H} 74$
75	U-233	='1content'1080	z'1content'IB80	=875/C75	='2NCTInputsilis 3	='2NCTInputs'1153	='3HACinputs'1K\$3	='3HACinputs'\|K\$3	=D75*E75*F75*G75* 775
76	U-234	='1content'1081	='1content'\|1881	=876/C76	='2NCTInputs'\|ls 3	='2NCTinputs'LLS3	E'3HACImputs'ikS	='3HACInputs'! 1 S 3	=076*E76*F76*G76* H 76
77	U-235	='1content'ID82							
78	U-235m	='1eontent'I083	:'1content'1882						
79	U-236	-'1content'ID84	E'1content'1884	=879/C79	E'2NCTInputs'\|ls3	E'2NCTInputs'lLS3	r'3HACInpurs'IK\$3	-'3HACInputs'\|K\$3	=D79*E79*F79*G79*H79

	A	B	C	D	E	F	G	H	I
80	-237	='100ntent'ID85	-'coment'1885						
81	${ }^{0.238}$	='1content1086	''content'1886						
82	${ }^{\text {Np-237 }}$	='150ntent1087	E'content'1887	=882/C82	F'2NCTInputs'IIS	E'2NCTInputs'LLS ${ }^{\text {a }}$	='3HACInputs'1K\$3	='3HACInputs'KS5	=082**882*F82*682* 882
83	${ }^{\text {Np-239 }}$	='1content 1 D88	='content'l888						
84	P4-238	='17content1089	F'Content'lisg	=884/c84	z'2NCTinputs'IIS ${ }^{\text {a }}$	='2NCTInputs'lls	a'3HACİnputs'K\$3	='ЗHACMputs'KS ${ }^{\text {S }}$	$=0844^{+884}{ }^{\circ} \mathrm{F} 84 \cdot 684 * \mathrm{H} 84$
85	P4-239	$=1200 n t e n+11990$	F'Lcontent'1890	=885/[85	E'2NCTİputs'lls	='2NCTInputs'lis ${ }^{\text {a }}$	='3нACInputs'1Ks3	-'ЗHACinputs'IK\$3	
86	P_{4-240}	='1contant'ID91	-'Icontent'\|1991	=886/[866	='2nctinputs'IIS3	='2NCTInputs'lis ${ }^{\text {a }}$	a'3HACInputs'IK¢		
87	P¢-241	='1content'log2	-'Lconten'IB92	=887/[87	='2NCTInpus'lls 3	='2NCTInputs'lis	''3HACInputs'IKs3	='ЗHACInpuns'IK\$3	
88	${ }^{\text {AmP241 }}$	='1content'IDP3	E'Icontent'IE93	-888/688	='2NCTInputs'lis	'2NCTInpust'ILS ${ }^{\text {a }}$	='3HACInputs'Ks3	='ЗHACInputs'K53	
89	Am-243	E'1content'ID94	''IContent'1994	=889/C89	z'2NCTInputs'IS3	E'2NCTInputs'lls	='3HACInputs'IKs3	='3HACInputs'\|ks	
90	$\mathrm{c}^{\text {c-242 }}$	2'2conement1095	F'Icomentiligs	=890/c30	z'2NCTInputs'IIS3	=2NCTInputs'lis	='3HACInputs'IK\$3	='3HACinputs'K53	
91	$\mathrm{cm}^{\text {2 } 243}$	='1content1096	='IContent'lies	2891/c91	='2NCTInpustil\| ${ }^{\text {a }}$	='2NCTinpust'LS3	a'3HACinputs'K'K3	='ЗHACInputs'IK\$3	=091*E91*F91*G91*H91
92	$\mathrm{cm}^{2} 244$	='1content'ID97	E'120nten't1997	=892/C92	E'2NCTInputs'IIS	E'2NCTnputs'lla	E'3HACImpus'IK¢ ${ }^{\text {a }}$	E'SHACInputs'K\$ ${ }^{\text {a }}$	-092**92*F92*G92*H92
93									\|SSUM(14:192)

Formulas for Table 6

	A	B	C	D	E	F	G	H	I	
1	Isotope	Content (C)	$\begin{gathered} A_{2} \\ \left\{C / A_{2}\right\rangle \end{gathered}$	$\begin{aligned} & \text { MAR } \\ & \left(A_{2}\right) \end{aligned}$	OR	ARF	$\begin{aligned} & \text { LPF } \\ & \text { Melter } \end{aligned}$	LPF WVMP	Release (A_{2})	
2		from Table 1		Calculated for refractory glass	From Table 2. Seme or all NCT glass				Calculated for inhalation from refractory glass	
3	a	b	c	$\mathrm{d}=\mathrm{b} / \mathrm{c}$	-	1	8	h		
4	co-60	z'1content'IE6	='1content'IB6	-84/C4	='2NCTInputs'l1s3	='2NCTnputs'l\$5	='2NCTinputs'las 3	' ${ }^{\text {2NCTInputs'IQ3 }}$	=O4*E4*F4*G4* ${ }^{\text {a }}$	
5	Sr-90	z'1content'IE12	='1content'1812	= $85 / \mathrm{Cs}$	z'2NCTinputs'1153	='2NCTInputs'\|LS 3	-'2NCTInputs'Ias3	-HS4	=DS*ES*F5*G5* ${ }^{\text {H }}$	
6	r-90	='Icontent'lE13	-'1content'1313							
7	T-99	='1content'IE17	='1contant'IB17	=87/C7	='2NCTinputs'\|153	-'2NCTinputs'l153	='2NCTInputs'lQS3	-H\$4	*D7*E**F7*G7* ${ }^{\text {\% }}$	
8	C-137	='1content'1E19	='1content'\|l19	-88/C8	='2NCTinputs'l\|l3	='2NCTnputs'll53	='2NCTInputs'IQS3	-H54	=D8*E8*F8*G8*H8	
9	8*-137m	='1content'IE20	='1content'1320							
10	Eu-154	z'1content'IE22	- '1content'\|B22	=810/C10	='2NCTInputs'l\|s 3	E'2NCTInputs'lLS3	='2NCTInputs'lQS3	=H\$4	$=010^{*} \mathrm{E} 10^{*} \mathrm{~F} 10^{*} \mathrm{G} 10^{*} \mathrm{H} 10$	
11	H8-206	E'1content'lE23	='1content'1B23	- B11/C11	$\underline{\prime 2} \mathbf{2 N C T I n p u t s ' \| \| \$ 3}$	E'2NCTInputs'LLS3	E'2NCTinputs'los3	= H \$4	-011*E11*F11*G11*H11	
12	7-206	='120ntant'IE24	F'Icontent'IB24							
13	T-207	='1contant'1E25	='1content'IB25	=813/C13	='2NCTInputs'\|l	s3	='2NCTInputs'ILS3	E'2NCTInputs'las3	= HS 4	$=\mathrm{D} 13 * E 13^{*} \mathrm{~F} 13^{*} \mathrm{G} 13^{*} \mathrm{H} 13$
14	7-208	='1content'IE26	E'1content'1826							
15	7-209	-'1content'le 27	='1content'1827							
16	T-210	E'1content'IE28	='1contant'1328		='2NCTInputs'IIS3	='2NCTInputs'lis	E'2NCTinputs'lQ53	=H54	$=016^{* E 16 * F} 16^{*} 616^{*} \mathrm{H} 16$	
17	Pb-210m	-'1content'le29	-'1content'1829							
18	Pb-210	r'1contont'le30	='1content'IB30	=818/C18	='2NCTInputs'\|ls 3	-'2NCTInputs'lLs ${ }^{\text {a }}$	z'2NCTInputs'los ${ }^{\text {a }}$	2H\$4	=018*E18*F18*G18*H18	
19	Pb-211	z'1content'lE31	E'1content'IB31	=819/C19	z'2NCTInputs'IIS3	-'2NCTinputs'LLS3	='2NCTInputs'las3	- H54	= $=19^{*} \mathrm{E} 19^{*} \mathrm{~F} 19^{*} \mathrm{G} 19^{*} \mathrm{H} 19$	
20	$\mathrm{Pb}-212$	a'1content'le32	='1content'1832							
21	Pb-214	E'Icontent'IE33	='1content'lı33							
22	88-209	z'Icontent'IE34	z'1content'l\| 134							
23	B-210	='1content'IE35	='1content'IB35							
24	8-211	-'1content'\|E36	='1content'1B36							
25	8-212	='1content'1E37	='Lcontent'1837							
26	84-213	='1content'E38	='1content'IE38							
27	- $8+214$	F'1Content'lE39	='120ntant'1839							
28	88-215	='Icontent'IE40	-'1content'1840	=828/C28	-'2NCTInputs'lls ${ }^{\text {a }}$	E'2NCTinputs'lL\$3	='2NCTInputs'lass	- HS 4	=D28*E28*F28*G28* ${ }^{\text {\% }}$ 28	
29	Po-210	F'Icontent'IE41	F'Leontent'IB41							
30	Po-211	='1content'1E42	='1content'1842	=830/c30	='2NCTInputs'lis	='2NCTinputs'lls 3	='2NCTinputs'las3	DHSA	=D30*E30*F30*G30*H30	
31	Po-212	='1eontent'IE43	='1content'1843							
32	Po-213	='Icontent'lea4	F'1content'\|E44							
33	Po-214	='1content'IE45	='1content'IB4s							
34	Po-215	='1content'1E46	-'1content'tB46							
35	Po-216	r'1content'1E47	-'Icontent'1847							
36	Po-218	E'Icontent'IE48	E'Icontent'\|848							

	A	B	C	D	E	F	G	H	I	
37	At-215	='1content'IE49	-'1content'1049	=837/C37	z'2NCTInputs'lis 3	='zNCTInputs'1LS3	='2NCTInputs'IOS3	=HS4	=037*E37*F37*G37*H37	
38	AS-217	-'1content'IE50	a'1contem'tB50							
39	At-218	='1content'IE51	='1content'1851	=839/c39	='2NCTInputr'lis 3	z'2NCTinputs'lı 53	-'2NCTinpurs'IQS3	-HS4	-D39*E39*F39*G39*H39	
40	Ab-219	='1comtent'IE52	-'1content'1352	= B40/C40	='2NCTInputs'lis 3	='2NCTIinputs'lis3	='2NCTInputs'las 3	- $\mathrm{HS4}$	$=\mathrm{D} 40^{\circ} \mathrm{E} 40^{\circ} \mathrm{F} 40^{\circ} \mathrm{G40} 0^{\circ} \mathrm{H} 40$	
41	Rn-217	='Icontent'IE53	-'1content'1853	=841/C41	F'2NCTInputs'1153	='2NCTnputs'1153	='2NCTInputs'1053	=hS4	$=041{ }^{* E} 41^{*} \mathrm{~F} 41{ }^{*} \mathrm{G41}{ }^{*} \mathrm{H} 41$	
42	Rn-218	z'Icontent'IE54	='1content'1854							
43	R n -219	-'1content'IE5s	-'1content'la55	=843/C43	='2NCTinputs'lis ${ }^{\text {a }}$	z'2NCTInputs'lı53	='2NCTnputs'las3	-HSA	= $043{ }^{*} \mathrm{E} 43^{*} \mathrm{~F} 43^{*} \mathrm{G43} 3^{*} \mathrm{H} 43$	
44	Rn-220	='Icontent'IE56	='1content'1656							
45	Rn-223	='1content'IE5 7	='1content'1357	-845/C45	F'2NCTInputs'lis	z'2NCTInputs'1L53	E'2NCTInputs'las 3	= HSA	-045*E45*F45*G45* H 45	
46	Fr-221	='1content'IE58	E'1content'1858							
47	Fr-223	='1content'IE59	='1content'1859	=847/C47	='2NCTInputs'lis3	='2NCTInputs'll\$3	E'2NCTİputs'las3	2H54	=047*E47*F47* ${ }^{\text {G47* }}$ H47	
48	Ra-223	='1content'IE60	z'1content'1860	=848/C48	z '2NCTInputs'1153	a'2NCTInputs'lıS3	='2NCTİnputs'las3	- H \$4	=048*E48*F48*G48*H48	
49	R2-224	='1content'IE61	='1content'1B61							
50	Re-225	='1content'IE62	='1content'1662							
51	1Ra-226	='1contant'1E63	-'1content'\|863	2854/C51	='2NCTInputs'1153	='2NCTInputs'lLs3	='2NCTInputs'las3	=H54	=D51*E51*F51*G51*H51	
52	Ra-228	='1contant'IE64	F'Icontent'\|1654	=852/C52	='2NCTInputs'\|153	z'2NCTInputs'lLS3	='2NCTInputs'\|as3	=H54	-D52*E52*F52*G52*H52	
53	Ac-225	='1contant'E65	E'1content'1865							
54	Ac-227	='1content'IE66	-'1content'IP66	=854/C54	I'2NCTInputs'\|l	3	$=$ '2NCTinputs'lıs3	E'2NCTInputs'\|as3	=HS4	= D54*E54*F54*654* ${ }^{\text {a }}$
55	Ac-228	='1content'IE67	='1content'1367							
56	Tr-227	='1.content'IE68	='1content'IB68	=856/C56	z'2NCTInputs'\|	S3	E'2NCTInputs'lıs3	E'2NCTinputs'las3	=MSA	=056*E56*F56*G56*H56
57	Th-228	='1content'IE69	='1content'IB69							
58	Th-229	='1content'IE70	='1content'1970	=858/C58	='2NCTInputs'!153	='2NCTInputs'1LS3	='2NCTInputs'las3	=H\$4	=D58*E58*F58*G58*H58	
59	Th-230	='1content'\|E71	E'1content'l871	=859/C59	='2NCTInputs'l\|\$3	='2NCTinputs'1L53	-'2NCTinputs'las3	eHS4	=D59*E59*F59*G59*H59	
60	Th-231	='1content'IE72	='1cantent'1372							
61	Th-232	='1content'liz3	='1content'1873							
62	Th-234	='1content'IE74	2'1content'1874							
63	Pa-231	='1content'IE75	='1content'1875	[863/C63	='2NCTInputs'1153	z'2NCTinputs'lls ${ }^{\text {a }}$	='2NCTInputs'las ${ }^{\text {a }}$	=r 54	=D63*E63*F63*G63*H63	
64	Pa-233	='1comtent'lE76	='1content'\|B76							
65	Pa-234	a'1content'1E77	z'1content'1877	=865/C65	='2NCTInputs'\|IS3	z'2NCTInputs'lls 3	='2NCTInputs'las ${ }^{\text {a }}$	= $\mathrm{H} \$ 4$	-065*E65*F65*G65*H65	
66	Pa-234m	-'1content'\|E78	E'1content'1878							
67	U-232	a'1content'IE79	='1content'1879	=867/C67	='2NCTInputs'l1s 3	='2NCTInputs'1L53	='2NCTinputs'1053	-h54	$=067 * E 67^{* F 67 * G 67 * H 67 ~}$	
68	U-233	='1comtent'IE80	='1content'1880	=858/c68	='2NCTInputs'lis 3	z'2NCTInputs'1L53	a'2NCTInputs'las3	= HS S 4	-D68*E68*F68*G68*H68	
69	U-234	='1content'IE81	s'1content'1881	=869/C59	='2NCTInputs'lis	='2NCTinputs'lis 3	='2NCTInputs'las 3	=-HS4	=D69*E69*F69*G69* H 69	
70	1-235	='1contant'1E82	E'1content'\|882							
71	U-235m	-'1content'1E83	='1content'li83							
72	U-236	='Lcontent'IE84	-'1content'1884	1872/C72	='2NCTInputs'l153	-'2Nectinputs'lis3	='2NCTInputs'las3	=HS4	=D72*E72*F72*G72*H72	
73	U-237	='1content'IE85	='1content'\|885							
74	U-238	E'1comtant'IE86	='1content'1886							
75	Np-237	='1content'IE87	='1content'1887	-875/C75	F'2NCTInputs'\|ls 3	='2NCTInputs'lLS3	='2NCTInputs'las3	= HS 4	=075*E75*F75*G75* $\mathrm{H75}$	
76	Np-239	='1content'IE88	='1content'\|B88							
77	Pu-238	='1eontent'1E89	-'1content'\|B89	1:877/C7	z'2NCTInputs'\|	53	z'2NCTInputs'lLs3	z'2NCTinputs'las ${ }^{\text {a }}$	- HS^{4}	

Formulas for Table 6

	A	B	C	D	E	F	G	H	I
78	P4-239	F'Icontent'IE90	F'Contant'1890	2878/778	E'2NCTInputs'lis	F'2NCTInputs'lLS3	='2NCTInputs'las 3	-H54	=078* $888^{\circ} \mathrm{F} 8^{\circ} 678{ }^{\circ} \mathrm{H78}$
79	Pu-240	E'content'le91	z'centent'1891	-879/C79	z'2NCTinputs'IIS ${ }^{\text {a }}$	E'2NCTInputs'ls ${ }^{\text {a }}$	='2NcTInputs'Ias3	- H 4 4	=079*E79*F79*G79* 779
80	P4-241	-'Content'1992	='content'1892	=880/c80	E'2NCTinputs'lis 3	-2NCTInputsill ${ }^{\text {a }}$	='2NETTnputs'las3	- H 54	
81	Am-241	E'ContentIE93	='ceontent'1893	=881/C81	z'2nctinpurs'lis	a'2NCTInputs'ls	='2nctinputs'lass	2HS4	
82	Am-243	S'Content'IE94	='comantiligh	-882/C82	E'2NCTInpuns'lis 3	-'2NeTInputs'lis	='2NcTimputs'las 3	- H S 4	
83	$\mathrm{Cm}_{\mathrm{m}-242}$:'contem'IE95	E'1eontent'1895	=883/[83	='2NCTInputs'IIS3	='2NCTInputs'LIS	='2Nctinputs'las3	- H 54	
84	$\mathrm{c}_{\text {cm-243 }}$	E'content1E96	='1eontent'lig9	=884/c84	E'2NCTInputs'IIS3	='2NeTInputs'll	=2NcTInputs'las3	-H54	= $884 \times \mathrm{E} 4 \times \mathrm{F} 84 \cdot \mathrm{G84} \cdot \mathrm{H84}$
85	$\mathrm{C}_{\mathrm{Cl}-244}$	E'content'IE97	F'100ntent'lig	=885/C85	E'2NCTInpusillis	='2NCTInputs'lı3	E'2Nectinput'llas3	=H54	
86									SSUM(14:185)

	A	B	C	D	E	F	G	H	I	J	K
1	1sotope	Content (a)	Leach Ratio	Lenched (C)	$\left(A_{1} A_{1}\right)$	mar (A_{2})	DR	ARF	$\begin{gathered} \text { LPf } \\ \text { Merter } \end{gathered}$	$\stackrel{\text { LPF }}{\text { WVMP }}$	Release (A)
2		From Table 1	Leach Ratio for glass from Table 2	Calculated for LDCC interna to the mether	From Table 1	Calculated for LDCC Intermal to the melter	From Table 2. Loccinemal to mettor				Calculated for inhalation from LDCC intornal to the melter
3	\%	b	c	$d=b^{*} \mathrm{c}$	-	f fode	8	n	I	1	
4	c-14	-'1Content'l05	-'2NCTInpusis'Gs	=84*C4	E'Cocontent'lis	=04/E4	='2NcTlinputs'IKS3	='2NCTInputs'M ${ }^{\text {5 }}$ 3	z'2NCTinputs'las 3	=2NCTInputs'10:3	
5	k-0	E'180ntemt'107	-'2NCTInpusis'G53	${ }_{\text {ela }}{ }^{\circ} \mathrm{C} 5$	E'Comentilib	-DS/ES	=2NCTInputs'1K53	z'2NCTInputs'M53	='2NCTInputs'las3	=2NCTInputs'10:3	
6	Mn-54	E'1content'108	-'2NCTnputs'GG3	$=86^{\circ} \mathrm{C} 6$	F'icoment'l88	=06/E6	='2NCTinputs'IKS3	='2NCTInputs'M M ${ }^{\text {3 }}$	='2NCTInputs'las3	=2NCTImputsilics	=F6* $\mathbf{H 6}^{6} 66^{\circ} 16$
7	coso	-'Contentilo	-'2NCTInpus'lGs	$=87^{\circ} \mathrm{C} 7$	F'LComentilibs	=07/67	-'2NCTImputs'KS ${ }^{\text {S }}$	$=$ '2NCTInpuss'M ${ }^{\text {a }}$ 3	='2NCTInputs'las ${ }^{\text {a }}$	-'2NCTInputs'las3	
8	N163	''content'\|011	-'2NCTinpustilics	${ }^{188}{ }^{\circ} \mathrm{C8}$	='1content'\|B11	= $\mathrm{D} / \mathrm{/E8}$	='2NCTInputs'IKS3	='2NCTInputs'M ${ }^{\text {S }} 3$	E'2NCTInputs'las3	='2NCTInpurs'10:53	=F8* ${ }^{\circ}{ }^{\circ} 68^{\circ} 18$
9	Sr-90	='content'1012		-89*c9	E'2content'1312	=09/E9	r'2NCTInputs'KS3	E'2NCTInputs'MMS3	='2NCTinputs'las ${ }^{\text {a }}$	='2NCTInputs'las3	=F9**9*69*9
10	r.90	''Icontent'\|013	-'1content'1813								
11	2r-95	''1content'1024	-'2NCTİputs'llis	-811 ${ }^{\circ} \mathrm{C} 12$	='1content'l1314	=012/E11	z'2NCTInputs'K53	='2NCTInputs'IM53	='2NCTInputs'10s3	E'2NCTInputs'lics ${ }^{\text {a }}$	3F11*H11*G11*11
12	Nb-9s	E'Cententipis	='2NCTInputs'lgs ${ }^{\text {a }}$	=8120 ${ }^{\circ} \mathrm{C} 12$	='1coment'1B15	=012/E12	E'2NCTnputs'IKS3	r'2NCTInputs'IM ${ }^{\text {a }}$ 3	z'2NCTİputs'lass	r'2NCTInputs'los 3	
13	Nb-95m	'1conten'\|1016	-'IContent\|1826								
14	T-.99	'IContem'\|1017	='2NCTInputs'16:53	-B14*C14	-'100nten'1817	=014/14	z'2NCTInputs'1K53	='2NCTInputs'M ${ }^{\text {S }}$	''2NCTInputs'las3	='2NCTInputsitos ${ }^{\text {a }}$	=F14* $114 *$ G14* 114
15	C-137	''lcontent'\|019	='2NCTInputs'l6:3	-815*C15	='1content'1819	=015/E15	a'2NCTInputs'KS53	='2NCTInputs'M ${ }^{\text {S }}$ S	='2NCTInputs'los ${ }^{\text {a }}$	E'2NCTInputs'los 3	-F15*H15*G15*115
16	8-137m	-'content'1020	='1content'1820								
17	Eu-154	I'content'1022	-'2NCTInputs'lics	$=817 *{ }^{\circ} 17$	E'content'1822	=017/E17	='2NCTInputs'KS3	='2NCTInputs'IM ${ }^{\text {S }}$ 3	a'2nCTInputs'los ${ }^{\text {a }}$	F'2NCTInputs'0053	=F17*H17*G17*17
18	H8-206	''1content'1023	='2NCTInputs'Gş3	${ }^{8118 *}{ }^{\text {c } 18}$	F'1content	=018/E18	E'2NETInputs'\|KS3	F'2NCTInputs'MS3	='2NCTInputs'lass	E'2NCTInputs'los3	$\mathrm{FFF}^{18^{\circ} \mathrm{H} 18^{\circ} \mathrm{G} 18^{\circ} \mathrm{P}}$
19	T-206	-'centent'I024	-'3content'1824								
20	T-207	-'content'1025	='2NCTinputs'G53	=820 ${ }^{\circ} \mathrm{C} 20$	='2content'1825	I=020/E20	F'2NCTInputs'1KS3	='2NCTInputs'M53	='2NCTInputs'las3	S'2NCTinputs'las3	$\underline{=F 20^{*} \mathrm{H} 20^{*} G 204120}$
21	7-208	E'2.entent'1026	='1content'\|B26								
22	Tr-209	E'content'1027	''lcontent'1827								
23	T-210	S'Contant'1028	-'2NCTInputs'G69	2823*C23	E'1comentili28	=023/E23	E'2NCTmputs'K\$3	='2NCTInputs'M ${ }^{\text {S }}$ 3	E'2NCTInputs'1053	E'2NCTInputs'las3	$]_{\text {FF23* }}$
24	pb-210m	-'Clcontent'1029	''1Content'1829								
25	Pb-210		E'2NCTInputs'GS 3	-825*C25	=1content'1630	=025/E25	z'2NCTInpute'\|K53	E'2NCTInputs'M ${ }^{\text {S }}$	='2NCTInputs'IOs 3	='2NCTInputs'las3	=F25*H25*G25*125
26	Pb-2n1	'IContent'\|031	E'2NCTInputs'lics		F'1content'l1331	=026/E26	E'2NCTInputs'IKS3	='2NCTInputs'MS3	E'2NCTİnputs'las3	F'2NCTInputs'las3	FF25*H26*G22*
27	Pb-212	''1content'1032	''Coontent'1B32								
28	pb_{6} 22A	''Centent'1033	-'1content'1833								
29	8-209	''ceontent'1034	='1entent'1834								
30	0-210	-'Content'1035	='Centent'1835								
31	- $8+212$	'1content'\|036	='1content'i836								
32	8-212	'Icontent'1037	-'1content1837								
33	8-213	''content'\|038	='1content'1838								
34	B-214	E'contem'IDS9	='100ntentilizs								
35	8-215	I'Content'1040	=2NCTInputs'lics	2835*C35	='1content'1840	1=035/E35	E'2NETnputs'IK53	E'2NCTInputsiM ${ }^{\text {S }}$	F'2NCTInputs'las3	E'2NCTInputs'lasi	=F53**35*G35**35
36	Po-210	P'content'1041	='Icontent'EA1								
37	Po-211	='1content'1042	-'2NCTInputs'lG53	=837*C37	= 1 Ceontent	\|=037/E37	='2NCTInputs'IKs3	F'2NCTInputs'M53	E'2NCTnputs'lass	F'2NCTInputs'los3	- $537 * \mathbf{H 3 7 6 6 3 7 * 1 3 7 ~}$
38	Po-212	R'İontent'\|043	='Content'1843								
39	$\mathrm{P}_{0}-213$	P'icontent'1044	-'IContent'1844								
40	P0-214	E'icontent'\|045	F'1content'1845								

	A	B	C	D	E	F	G	H	I	J	K
41	Po-215	E'120ntent'IDA6	='1content'1846								
42	Po-216	E'1Content 1D47	='1content'1847								
43	Po-218	='1content'ID48	='1content'1348								
44	At-215	-'1coment'ID49	='2NCTInputs'IGS3	=844*C44	-'1content'1849	=044/E44	r'2NCTInputs'1K\$3	='2NCTInputs'IMS3	-'2NCTnputs'las3	='2NCTInputs'IQS3	EF44*H44*G44*144
45	At-217	E'1content'ID50	='1content''350								
46	At-218	='2eontent'IDS1	='2NCTinputs'1GS3	=846*C46	='1content'l1351	=046/E46	a'2NCTInputs'IK\$3	a'2NCTInputs'IM\$3	='2NCTInputs'los3	='2NCTInputs'las3	FF46*H46*G46*146
47	At-219	E'1.content'ID52	-'2NCTinputs'lG53	$=347 *{ }^{*} 47$	='1content'IB52	2047/E47	-'2NCTInputs'11253	='2NCTinputs'IM53	E'2NCTInputs'las3	='2NCTinputs'las 3	=F47*H47*G47*147
48	Rn-217	E'120ntent'ID53	-'2NCTInputs'16\$3	$=848^{\circ} \mathrm{CAB}$	z'1content'1853	=048/E48	='2NCTInputs'1K\$3	='2NCTİPputs'lMS3	='2NCTinputs'los3	a'2NCTInputs'IOS3	FF48*H48*G48*\|48
49	Rn-218	='1content'IDS4	='1cantent'1854								
50	Rn-219	'IContent'IDS5	-'2NCTinputs'\|GS3	E850*Cso	='1content'IBS5	=050/E50	='2NCTInputs'IK\$3	='2NCTInputs'IM\$3	='2NCTInputs'IOS3	='2NCTIInputs'IQ\$3	=F50*H50*G50*150
51	Rn-220	='1.antent'1D56	E'1content'\|B56								
52	Rn-222	='1content'1057	='2NCTinputs'1G\$3	=852*C52	E'1.contant'1857	=052/E52	='2NCTInputs'\|K\$3	='2NCTinputs'lM $\$ 3$	='2NCTInputs'las3	-'2NCTInputs'las 3	-F52*H52*G52*152
53	Fr-221	-'1content'ID58	='1content'185B								
54	Fr-223	E'2content'1059	='2NCTInputs'\|G53	-854*CS4	='1content'1859	=D54/E54	E'2NCTInputs'K\$\$3	='2NCTInputs'IM\$3	='2NCTInputs'los3	='2NCTinputs'las3	=F54*H54*G54*154
55	Ra-223	-'1contant'ID59	-'2NCTInputs'\|G53	=855*CS5	='1content'IB60	-D55/E55	E'2NCTinputs'\|K\$3	='2NCTIInputs'IM\$3	E'2NCTInputs'las3	E'2NCTInputs'los3	=F55*H55*G55*\|55
56	Ra-224	-'1.conten'ID61	-'1content'1661								
57	R-225	'13content'ID62	-'1content'1862								
58	Ra-226	'IIcontent'1063	-'2NCTinputs'\|G53	-858*C58	E'1content1863	=058/E58	e'2NCTInputs'IK\$3	='2NCTInputs'IMS3	='2NCTinputs'las3	='2ncTlinputs'las 3	
59	Re-228	z'1content'ID64	='2NCTİputs'IG53	=859 ${ }^{\circ} \mathrm{C} 61$	='1contenr'1864	=059/E59	='2NCTInputs'1K\$3	='2NCTInputs'IM\$3	='2NCTİputs'las3	='2NCTInputs'loss	=F59*H59*659*159
60	Ac-225	''1content'ID65	='1content'IB65								
61	Ac-227	='Icontent'1066	='2NCTInputs'1653	8861*C51	''1content'IB66	=061/661	E'2NCTInputs'IK53	='2NCTInputs'IM ${ }^{\text {a }}$ 3	E'2NCTInputs'lQ\$3	='2NCTInputs'lQ53	FF61*H61*G61*161
62	Ac-228	E'1content'ID67	='1comtent'1867								
63	Th-227	-'1content'lid68	E'2NCTInputs'IG\$3	-863*C63	='1content'1868	=D63/E63	E'2NCTInputs'IK\$3	='2NCTInputs'lm ${ }^{\text {a }}$	E'2NCTInputs'las3	z'2NCTInputs'l053	=F63* H63*$^{\circ} 663^{*} 163$
64	Th-228	='1content'1069	='1contant'1369								
65	Th-229	='content'ID70	='2NCTInputs'lG53	=865*C65	='1content'1870	=065/E65	-'2NCTInputs'IK\$3	-'2NCTInputs'lM $\$ 3$	='2NCTİnputs'las3	='2NCTInputs'1053	=F65**65*G65*165
66	Th-230	='1content'1D71	='2NCTIInputs'\|G53	=866 ${ }^{\circ} \mathrm{C} 65$	E'1content'1871	=066/E66	a'2NCTInputs'IK\$3	='2NCTInputs'IM\$3	E'2NCTInputs'las ${ }^{\text {a }}$	='2NCTInputs'I動3	
67	Th-231	E'1content'!D72	='1content'1872								
68	Th-232	z'1content'1073	''1content'1873								
69	Th-234	E'1content'\|074	E'1content'I日74								
70	Pa-232	='1content'1075	='2NCTinputs'lG53	=870*C70	E'Leomtent'1875	=070/E70	-'2NCTİnputs'IK\$3	='2NCTİputs'IM\$3	E'2NCTImputs'las3	s'2NCTImputs'lass	=F70* $\mathrm{H} 70^{\circ} \mathrm{G70*} 170$
71	Pa-233	-'1content'!D76	='1content'1876								
72	Pa-234	='3content'1077	-'2NCTinputs'lGS3	=872* ${ }^{\circ} 72$	E'1content'1877	=072/E72	E'2NCTInputs'IK\$3	F'2NCTInputs'IM 53	='2NCTInputs'las3	E'2NCTInputs'10\$3	CF72* $\mathrm{H} 72^{*} \mathrm{G72} 2^{\circ} 172$
73	Pa-238m	='1content'\|078	E'1content'1678								
74	U-232	='1content'1079	='2NCTinputs'1G53	$=874{ }^{\circ} \mathrm{C} 74$	-'1content'1879	ED74/E74	E'2NCTInputs'IK\$3	S'2NCTInputs'lM ${ }^{\text {a }}$ 3	='2NCTInputs'las3	F'2NCTInputs'lQis	
75	U-233	z'Coontent' 1080	='2NCTinputs'1653	$=875^{\circ} \mathrm{C} 75$	-'1coment'l8s0	ED75/E75	m'2NCTInputs'IK\$3	='2NCTİputs'lms3	='2NCTInputs'las3	='2NCTInputs'los ${ }^{\text {a }}$	-775*H75*G75*175
76	U-234	E'1content'ID81	='2NCTInputs'lGS3	$=876^{\circ} \mathrm{C} 76$	='1content'IB81	=076/E76	='2nCTInputs'IK\$3	E'2NCTİinputs'IM\$3	E'2NCTInputs'las 3	='2NCTInputs'tas ${ }^{\text {a }}$	-F76*H76* ${ }^{\text {G76* }} 176$
77	U-235	-'1content'ID82									
78	$\mathrm{U}-235 \mathrm{~m}$	='1content'1083	='Icontent'l382								
79	1-236.	E'1content'ID84	='2NCTinputs'\|G53	-879*C79	E'Icontent'\|B34	=079/E79	='2NCTİnputs'IK53	='2NCTİputs'IM\$3	='2NCTInputs'las 3	='2NCTInputs'las3	
80	U-237	='1content' 1085	='1content'IB85								
81	U-238	E'Lcontent'I086	a'1content'IB86								
82	Np-237	E'1content'1087	z'2NCTinputs'1653	=882**82	E'3content'IB87	=082/E82	E'2NCTInputs'IK\$3	='2NCTIinputs'IM $\$ 3$	='2NCTInputs'10:3	F'2NCTInputs'l0:3	=F82* ${ }^{\text {H82 }}$ * ${ }^{\text {G82 }}$ - 182
83	Np-239	r'1content'1088	F'1content'IB8s								
84	Pu-238	='1content'1089	z'2NCTInputs'16\$3	=884* ${ }^{\circ} \mathrm{CA4}$	='2content'IB89	=084/E84	='2NCTInputs'IK 53	='2NCTİputs'IM\$3	='2NCTInputs'las 3	E'2NCTInputs'lass	FF84* $\mathrm{H} 84^{\circ} \mathrm{G} 84^{*} 184$

	A	B	C	D	E	F	G	H	I	J	K
85	P4-239	F'1content'ID90	='2NCTInputs'lGs	=885 ${ }^{\text {cas }}$	='1contem'1390	=085/E85	E'2NCTInpust'IKs	='2NCTInpuns'M ${ }^{\text {a }}$	='2NCTInputs'las ${ }^{\text {a }}$	E'2NCTImputs'los3	-F88 ${ }^{\circ} \mathrm{H} 85^{\circ} \mathrm{CB} 5^{\prime} 185$
86	Pu-240	''1content1091	='2NCTİinuts'lGs3	=886\% ${ }^{\text {c }}$	='1content'1892	=086/885	E'2NCTInputs'KS ${ }^{\text {a }}$	E'2NCTInputs'M\$3	='2NCTInputs'las 3	E'2NCTInputs'las3	
87	Pu-241	='Leontent'1092	='2NCTIInputs'IGS3	=887\% ${ }^{\text {c }}$ (87	r'ceontent'1892	=087/E87	='2NCTnnputs'IKS3	='2NCTInputs'MM53	='2NcTinputs'IOS3	='2NCTInputs'los	
88	An-241	='1content'1093	='2NCTInputs'lGs3	=888* ${ }^{\circ} 88$	-'1content'1693	=088/E8B	E'2NCTInputs'IKs 3	='2nctinputsims3	=2NCTInput'Ilas3	-'2NCTInpustilos	FF88* ${ }^{*} 88{ }^{\circ} \mathrm{G88} 8^{188}$
89	Am-243	''Content'IIO94	''2NCTIIputs'lGs3	=889*C89	z'1content'1994	=089/E89	E'2NCTInputs'K53		='2Nectinputs'las3	='2NCTInputs'lass	=F89**89 ${ }^{\circ} \mathrm{CB9} 9^{189}$
90	$\mathrm{Cm}_{\mathrm{m}-242}$	'reontent'1095	='2NCTInputs'G653	=890*Cs0	E'centent'1895	=D90/EEO	d'2NCTInpust'K\$3	E'2NCTnputs'MS ${ }^{\text {a }}$	='2NCTInputs'1953	='2NCTInputs'los3	=F90*H90'G900/90
91	$\mathrm{C}_{\mathrm{m}-243}$	='2content'\|D96	$=$ '2NCTInputs'GS3	-891**91	''Icontent'l1996	=091/E91	='2NCTInputs'KS3	='2NCTInputs'MS3	='2NCTImputs'lQ53	='2NCTnputs'lass	
92	$\mathrm{Cm}-244$	F'LContent'1097	='2NCTInputs'lGs ${ }^{\text {a }}$	-892*C92	E'1content't 1897	=092/E92	-'2NCTmputs'K\$3	='2NCTInputs'M M 53	E'2NCTImputs'las3	E'2NCTinputs'lass	
93											ESUM(K4.K92)

	A	B	C	D	E	F	G	H	I	J	K	L
1	lsotope	Content (C)	Leach Rotio	Leached (a)	$\begin{gathered} A_{2} \\ \left(C / A_{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{A} \mathrm{~A}_{2} \mathrm{~A} \end{gathered}$	DR	ARF Pressura	$\begin{gathered} \text { Rf } \\ \text { Pressure } \end{gathered}$	LPF Melter	LPF WNMP	Release (A_{2})
2		From Table 1	Leach Ratio from glass from Table 2	Caleulated for LDCC Internal to the melter	From Table 1	$\begin{aligned} & \text { calculated } \\ & \text { for LCec } \\ & \text { interal to } \\ & \text { the mether } \end{aligned}$	From Table 2. LDCC internal to meher with prassure incriose					Calculated for inhalation from LDCC internal to the meltar
3	-	b	c	$d=b^{\circ} \mathrm{c}$	e	$t=d / 2$	8	h	i	1	k	Efen*h*****
4	c.24	z'1content'IDS	F'2NCTinputs' $16 \$ 3$	=84*CA	='1content'l 185	$=04 / 4$	='2NCTInputs'\|K\$3	='2NCTinputs'IN53	='2NCTInputs'1OS3	='2NCTInputs'l0\$3	=2NCTInputs'lass	
5	K-0	='1contant'ID7	='2NCTInputs'\|G\$3	$=85^{*} \mathrm{C} 5$	s'1content'187	=05/E5	='2NCTInputs'IKS3	E'2NCTInputs'INS3	-'2NCTInpuls'IO\$3	='2NCTInputs'Ias	=K 54	
6	Mm-SA	z'1contont'ID8	-'2NCTInputs'1G53	${ }^{285}{ }^{\circ} \mathrm{C} 6$	-'1content'188	=06/E6	='2NCTInputs'IK\$3	E'2NCTInputs'IN\$3	='2NCTInputs'1053	='2NCTInputs'los3	-K 54	=F6* $6^{*}{ }^{4} 6^{6} 16^{\circ} 16^{*} \mathrm{~K} 6$
7	Co-60	E'lcontent'105	='2NCTImputs'1653	$=87^{\circ} \mathrm{C} 7$	E'1content'186	-07/E7	='2NCTinputs'IK\$3	='2NCTInputs' N ¢ 3	='2NCTInputs'1053	a'2NCTInputs'IQS3	-K\$4	$=\mathrm{F7}{ }^{*} 67^{*} \mathrm{H} 7{ }^{*} 17^{*} 97^{*} \mathrm{~K} 7$
8	${ }^{\text {N1-63 }}$	-'1content'ID11	='2NCTmpurs'16\$3	= $88{ }^{+} \mathrm{CB}$	='1contenn'lB11	-D8/E8	a'2NCTinpurs'IK 53	E'2NCTInputs'INS3	='2NCTImputs'10\$3	E'2NCTImputs'laS3	=K 54	=F8* $68^{\circ} \mathrm{H} 8^{*} 18^{*} 188^{\circ} \mathrm{K} 8$
9	8r-90	z'1content'ID12	='2NCTInputs'1G\$3	-890. ${ }^{\text {c }}$	E'2contenn'\|1912	=09/E9	E'2NCTnputs'1KS3	='2NCTinputsins3	E'2NCTInputs'1053	='2NCTInputs'los3	=K\$4	
10	r -30	s'2xontent'ID13	='12 content'\|813									
11	2 2.95	='12content'ID14	='2NCTinputs'lG\$3	-811*C11	-'1content'IB14	-012/E11	='2NCTInputs'IK 53	='2NCTinpurs'lns ${ }^{\text {a }}$	='2NCTİnuts'1053	='2NCTİnpuss'1053	=KSA	FF11*611*H11*\|11*J11*K11
12	nt-95	E'Icontent'lD15	E'2NCTInputs''GS3	${ }^{1} 1212^{\circ} \mathrm{C} 12$	a'1contant'l315	-012/E12	='2NCTinputs'IKS3	='2NCTinputs'INS3	E'2NCTIInputs'10s3	E'2NCTİnputs'los3	-K<4	$\underline{F} 12^{*} G 12^{*} H 12^{*} 112^{*}$ J12*K12
13	Nb -95m $^{\text {a }}$	F'Lcontent'ID16	-'1content'l816									
14	T-.99	F'1Content'ID17	z'zNCTinputs'16\$3	=814*C14	='1eontent'1817	-014/E14	E'2NCTInputs'IK\$3	='2NCTInputs'INS3	='2NCTInputs'10\$3	-'2NCTInputs'lQ53	-K\$4	FF14* ${ }^{*} 14^{*} \mathrm{H} 14^{*}$ [14* ${ }^{*} 14^{*} \mathrm{~K} 14$
15	C-137	='Leontent'ID19	='2NCTInputs'\|G53	-815 ${ }^{\circ} \mathrm{C} 15$	='2content'1619	=015/EL	E'2NCTnputs'15\$3	='2NCTInputs'INS3	E'2NCTİinputs'los3	-'2NCTInpust'IOS3	=K\$4	FF15*G15*H15*115*J125*K15
16	Bu137m	='1content'ID20	='1content'1820									
17	Eu-154	='1content'ID22	='2NCTInputs'1G\$3	-817*C17	='1content'\|B22	-017/E17	F'2NCTInputs'IK\$3	='2NCTInputs'IN53	E'2NCTInputs'los3	='2NCTinputs'las3	=K 54	
18	H5-206	-'1content'ID23	='2NCTInputs'1G\$3	2818* ${ }^{\text {c }}$ (88	='1contenn'1823	=018/E18	='2NCTInputs'IK ${ }^{\text {a }}$ 3	='2NCTInputs'INS3	E'2NCTInputs'l0\$3	='2NCTInputs'las3	- \times S 4	${ }^{\text {FF } 18^{*} 6188^{*} \mathrm{H} 18^{*} 118^{\circ} / 128^{*} \mathrm{~K} 18}$
19	Tr-206	-'1content'ID24	-'1contert'li32									
20	T-207	-'2contant'ID25	='2NCTinputs'1G53	=820*C20	z'2content'1825	18020/E20	E'2NCTinputs'IK\$3	='2NCTInputs'IN\$3	E'2NCTInputs'los ${ }^{\text {a }}$	-'2NCTinputs'las 3	-K54	$\pm F 20^{*} \mathrm{G} 20^{*} \mathrm{H} 20^{*} 120^{\circ} \mathrm{J} 20^{*} \mathrm{~K} 20$
21	Tr-200	-'1eontent'!D26	included with U-232									
22	T-209	z'1content'1027	='1content'1827									
23	T-210	='1contant'ID28	z'2NCTİnputs'lG\$3	=823*C23	='1content'1328	1-023/233	='2NCTinputs'1k\$3	-'2NCTInputs'INS3	z'2NCTinputs'10¢3	z'2NCTInputs'las3	-k 54	FF23*G23* $\mathrm{H} 23^{*} 123^{*} \mathrm{~J} 23^{*} \mathrm{~K} 23$
24	pheram	='1content'ID29	='1content'l829									
25	pb-210	-'1content'ID30	='2NCTImputs' $16 \$ 3$	- $8255^{\circ} \mathrm{C} 25$	='1contenr'1830	=025/E25	z'2NCTInputs'1K\$3	='2NCTInputs'IN\$3	='2NCTInputs'IOS3	='2NCTInputs'IOS3	=KS4	=F25*G25*H25*125*125**25
26	pb-211	='1content'ID31	='2NCTinputs'IG\$3	-826 ${ }^{\circ} \mathrm{C} 26$	='1content'l331	1-D26/E25	='2NCTInputs'\|K\$3	a'2NCTinputsin ${ }^{\text {a }}$	E'2NCTInputs'1053	a'2NCTInputs'lass	-KS4	FF26* $626^{*} \mathrm{H} 26^{*} 126^{\circ} 126^{*} \mathrm{~K} 26$
27	Pb-212	='1content'ID32	='1content'1832									
28	Pbt-214	-1content'lD33	-'1content' 1833									
29	P+209	='1content'ID34	='1content'1834									
30	8-210	='1content'ID35	='1content'1835									
31	Br+281	a'1content'ID36	='1content'l836									
32	81212	E'1200ntent'ID37	='1content'1837									
33	81213	r'1content'l038	='1content'1838									
34	8-214	:'1content'ID39	='1content'l 1839									
35	85-215	='1coment'ID40	='2NCTIinputs'l653	=835*C35	='1content'IB40	20035/[35	='2NCTInputs'IK 53	='2NCThnputs'INS 3	E'2NCTInputs'1053	='2NCTInputs'las3	- 5 \$4	
36	Po-210	='1content'1041	='1content'IB41									
37	Pa-211	-'1content'ID42	='2NCTinputs'lGS 3	-837*C37	E'1content'\|B42	=037/E37	z'2NCTInputs'\|K\$3	='2NCTİputs'INS3	='2NCTInputs'1053	$z^{\prime 2} 2 \times C T n p u t s ' 1053$	=K $\$ 4$	

	A	B	C	D	E	F	G	H	I	J		K	L
38	1021	'ICententi104	=1'comemil'43										
39	1023	2'IContentioas	='comentilea										
40	-224	z'Econtentiloas	=2content1205										
41	024	F'IContent'1096	-'İconemileas										
42	\%216	='120ntart'1047	=1content1347										
43	-228	='LContent'IDas	=2conteri'148										
44	\%23	r'content'Ioas	E'2NCInputstics	Seas ${ }^{\text {cas }}$	F'Icomemertas	-ourca	=2wernputs'liss	E'2NCTInputi'M ${ }^{\text {S }}$	T2xCTraputios	E'2NCTInutis'los	-594		$\int_{\text {F44 }}$
45	- 27	E'Leontant'10so	=2Content11850										
46	-28	='Cemtent'1051	E2NCTInoutsiçs	E86\%C46	-'comenteriss	-oas/es	E2NGTinuus'IK¢3	r2NCTInous'ins ${ }^{\text {a }}$	=22ctinutstios		KK4		
47	\%20	2'Icontent'1052	=2NCTInoutsilas	E887\% ${ }^{\text {ca }}$	='icoment1052	-avreat	=2NCThnutsilks	EzNcrnputisims	-'2crinutus'0s3	=2NCTInputicios	E54		
48	${ }^{\text {mar }}$	z'LContent'1053	=2NCTInouticsa	=888 ${ }^{\circ} \mathrm{Ca8}$	- 2 contentiles3	-oustas	E'2xctimutikiks		=2NCTnnuts'loss	E2NCTImpustios	2Ks 6		
49	and	E'IComent'1054	=1content'135 4										
50	${ }^{\text {a } 219}$	='1aconent'loss	=2NCTInouts'Gs3	= $=50 \times$ c 50	E'Comentiliss	lesorso	E=2NGImons'IKs3	=2nctinutsins3	E2NCTInputios	E2NCTInutisios	E554		
51	$0{ }^{0} 20$	='1antan'tios6	-'İontentilis6										
52	m22	-'LContent'1057	'2NCTInputs'l6s3			-0527 52	E'2NCImouts'IS3	F2nccinoutsins	E'2NCTInouts'los	I=2NCTImputsilas	1 -xs		
53	m	F'IEontem'loss	E'conteriliss										
54	23	S'Leontentilios	F'2NTInouts'lics	=8540.54	=1comentilisy	-osa/se	=2NCTInputs'IKs		=2NCTInuts'10:3	I'2NCTInutut'OS3	- 5 S4		
55	-23	s'Leontent'1059	-2NCThputsicsa	E8550c5	E'1comentiliso	. $1.55 / 53$	E'2NCThputs'KK3		E'2NCTInpus'1053	E'2NCTImususics	-x c_{4}		
56	-24	='LContentilio61	$=1$ content1852										
57	-23	${ }^{2} 12$ contentilio62	E'comement1862										
58	226	R1conten'1063	$=2 \mathrm{NCTIT}$	E8580.css	F'Iconteri'1863	-oseviss	=2NCTinpusilks	2'2MCTnpusi'Ms ${ }^{\text {a }}$	E'2xCrnputi'ios ${ }^{\text {a }}$		ES54		
59	-2n	s'IContent'1064	=2NCTInouts'lics	18590cs9	E'Icontent1864	-0s9\%59	=2NCTinputsiscs	=2nctinuts'1Ns	E'2NCTImouts'los	E'2NCTInputs'los 3	EKS4		
60	cexs	r'Icomem'ILO65	'I'content'1865										
61	k 217	a'content'1065	-2xctinutisics	I=612.c61	E'1comentilics	-0<eyrea	=2NCTInoustilus	S'2xctinutsilics	E'2NCTInoutsios	F'2NCTInouts'osi	1-xs ${ }^{\text {a }}$		
62	cent	'LContenti\|1067	=2180nteritib7										
63	+27	-'Cention'106s	=2NCThnotut'6s3	1863966	IT'content1068	1-083163		E'2NCInputilw	E'2NCThputs'los3	I=2NCTmutstas3	$1-\times 54$		
64	ma	'1Content'1069	F'teontert1869										
65	2ra	S'Leontent'1070	=2NCTInouts'G63	E655 ${ }^{\text {cos }}$	E'12conemiliz70	-065/[65	E'2NCTInousilks	=2NCTRoustiNs ${ }^{\text {a }}$	=2NCThnut'1093	Pe2NCTInputi'sas	-xst		
66	- 20	E'Leonterit1071	=22CTInouticics	=865\%66	=1comeneriliz1	Losefes	E2NCTInpusisks	=2NCCInutsiNs3		-2xCTInutisios	ESS 4		
67	men	E'100nten'1072	='conten'1872										
68	2022	EIContent1073	-1'conent'1873										
69	me24	E'120ntenti1074	E2content1874										
70	-212	L'Leontent'1075	E2NCThnousticss	$18870 \cdot 70$	E'1conenen'1875	Lorover	=2NCTInpusilks		Ez2NCTnputsios	-2NCTmputioss	1-x 54		1 $=170 \cdot 670 \times 470 \times 170 \cdot 770 \times 10$
71	* 23	S'Eontent1076	E1coneneniliz										
72	-24	-1content'1077	=2NCThputs'693	$1=872^{\circ} \mathrm{C7}$	E'icontent137	-02072	='2NCTnousisks	Ez2NCTrupusiNs	-'2NCTnputsios	E'2NCTInututioss	IES4		
73	anm	-1'content1078	E'comentiliz7										
74	23	-1'contenetilig	=2NCTInuus'G953	1884*C74	F'Icontentiliz9		=2NCTnoutilics	EzNCThputs'ins	=2NCThputsios	E2NCTInutsilas	= 54		-744*674*774 $174+774 \times 874$
75	23	-1'Contentilioso	=2NCTInoutsics ${ }^{\text {cos }}$	${ }^{-875}$	F'1contentibso		:'2NCTInututiks			'2NCTInpusisios	Ex4		
76	24	E'IContentilios	=22CThnouticics	$1-876^{\circ} 77$	E'iconeant1881	-006/76	E'2NCTInputiks	EzeNCTrouts'iNs	r2\%CTmputios	E'2NCTInpustilas	2xs		
77	2s5	-'teontent1082											
78	2sm	E'Lententilios	Sontent1882										

Formulas for Table 8

	A	B	C	D	E	F	G	H	I	J	K	L
79	${ }_{1} 235$	='1content'1084	${ }^{2} 2 \mathrm{NCT}$ Tinputs'1653	=879*${ }^{\circ} 79$	E'IContent'1894	-099/779	F'2NCTInputs'1K53	r'2NCTInputs'INs3	E'2NCTInputs'los3	E'2NCTInputs'las ${ }^{\text {a }}$	=< ${ }^{\text {a }}$	
80	-237	-'1content'1085	'Cicontent'1885									
81	U-24	='1content'1086	-'Centent'IP86									
82	${ }_{p} 237$	='1content'1087	='2NCTInputs'GS3	=882 ${ }^{\circ} \mathrm{C} 82$	E'Icontent'1887	-092/882	E'2NCTInputs'IKS3	F'2NCTInputs'INS3	E'2NCTinputs'los 3	a'2NCTInputs'las3	=xsa	
83	${ }^{\text {pr } 239}$	'1ccontent'1088	''Icontent'lis8									
84	P-230	E'1content'1089	='2NCTImputsilcs	=884.c84	E'Leontent'1889	-ba/fea	=2NCTInpus'IKS 3	S'2NCTInpusi'NS3	='2NCTInputs'10s 3	E'2NCTnputs'ICS3	=rs ${ }_{\text {a }}$	
85	Pu-239	E'1content'ligo	='2ncTinputs'IGS ${ }^{\text {a }}$	${ }^{1885}{ }^{\circ} \mathrm{C} 85$	''Contant'1690	-0as/eas	='2nCTİnputs'K\$3	-'2NCTInputsilns ${ }^{\text {a }}$	='2nctinputs'1053	E'2NeTInputs'las3	=Ks 4	
86	20.200	='1content'1091	='2NCTIInputs'IGS3	=886.C86	-'content1891	086/E86	=2NCTInputs'IKS3	-'2NCTInputs'INs ${ }^{\text {a }}$	=2NCTInputs'10s3	='2NCTInputs'los3	=rs4	${ }^{5886}{ }^{\circ} \mathrm{GB} 5^{*} \mathrm{H} 86^{\circ} 185^{\circ} 186^{\circ} \mathrm{K} 86$
87	P-201	-'1content'1092	='2nctinputs'Gs3	-8870c87	E'Coontent'l892	-087/E87	E'2NCTİRpus'IKs3	-'2NCTInpust'IN53	-'2NCTImputs'1053	-'2NCTInputs 10.53	=ks 4	
88	Am-211	z'lconten'l093	='2NCTInputs'GGs	-888*C88	E'Icoment'l193	-084/88	='2NCTİputs'1K53	=2NCTInputs'INs3	='2NCTInputs'10S3	-'2NCTInputs'los 3	=rs4	F888*688\% $888^{\circ} 188^{\circ} 188{ }^{\circ} \mathrm{K} 88$
89	am-243	='content'1094	='2nctinputs'Gs3	=899$\cdot 889$	F'Contant'liga	-089/689	='2NCTInputs'IKss	-'2NCTImputs'INS3	a'2nctimputs'1053	-'2NCTInputs'las3	=Ks 4	
90	$\mathrm{c}_{\mathrm{m} 224}$	E'coontent'l095	='2NCTInputs'lcs	-890'c90	E'Icontent'l895	=080/590	=2NCTInputs'lks 3	='2NCTInputs'IN53	-'2NCTİnuts'los 3	-'2NCTInputs'lios	arsa	
91	¢m-23	''lcontent'l096	='2nctinputs'IGS3	=891•C91	E'LContentl'1896	-094/691	='2NCTInputs'IXS3	='2NCTInputs'INs 3	='2nctinputs'1053	-2NCTInputs'las 3	=K 54	FF91* $691{ }^{*}$ H91* $191 * 991 *$ K91
92	am-24	E'1content'I097	E'2NCTInputs'las3	-8920.c92	E'IContent'le97	-092/692	F'2NCTImputs'IK\$3	E'2NCTInputs'INS3	E'2NCTInputs'IOS3	E'2NCTInputs'las	-Ksa	
93												SUMM(L4:192)

	A	B	C	D	E	F	G	H	I	J	
	lsotope	Content (a)	Leach Ratio	Leached (c)	$\left(A_{1} \mid A_{2}\right)$	$\underset{\text { MAR }}{\left(A_{2}\right)}$	OR	arf	$\begin{gathered} \text { LPF } \\ \text { WVMP } \end{gathered}$	Release (A_{2})	
2		From Table 1	From Table 2 for Bartiott's PBS	Calkulated for LDCC external to meker	From Table 1	Calculated for LDCC external to melter	From Table 2. For LDCC extemal to melter . Note LPF WVMP already credited as part of ARF number			Cakulated for inhalation from LDCC external to the metter	
3	-	b	c	d	-	$t=d / 0$	E	h	i	$\mathrm{J}=\mathrm{f}^{*} \mathrm{~B}^{*}{ }^{\text {a }}$	
4	C-237	''lcontent'\|F19	='2NCTInputs'HS3	=84*C4	='1content'\|819	ID4/E4	E'2NCTmputs'US3	='2NCTInputs'IM53	z'2NCTInputs'la3	=F4* $64 * 44 * 14$	
5	8+137m	='coantent'F20	E'2NCTInputs'lits	=85*C5	r'content'\|120						
6	5r-90	='Icontent\|'12	='2NCTinpus'th53	${ }^{8186}{ }^{\circ} \mathrm{C} 6$	='1content'\|B12	=06/E6	E'2NCTInputs'US3	'2NCTInputs'M ${ }^{\text {S3 }}$	=154	FF6* $66^{*}+16 \%$	
7	r-s0	e'coontent\|F13	='2NCTinputs'IH\$3	=87*C7	-'content'\|1313						
8	Pm-247	F'1content'f21	='2NCTInputs'IHS3	=89\% ${ }^{\text {c }}$	='1content\|1821	=08/E8	F'2NCTinputs'US3	-'2NCTInpus'IMS3	E154	FF8* $688^{\circ} \mathrm{H} 8^{\circ} 18$	
9	am-261	E'1content'f93	='2NCTInputs'lf53	${ }^{889}{ }^{\circ} \mathrm{C} 9$	='Ccontent\|1993	=09/E9	=2NCTInputs'US3	='2NCTTnputs'IM53	154	=F9*69*H9*9	
10	Ew-154	2'1content\|f22	='2ncTinputs'IH53	=810*C10	''130ntent'1822	=010/E10	z'2NCTInputs'IS3	F'2NCTInputs'MS3	1154	FF10*G10*H10\%110	
11	${ }^{\text {N1.63 }}$	='1eontent\|F11	='2NCTInputs'ils ${ }^{\text {a }}$	=811*C11	F'İconten'\|B11	=011/E11	-'2Nctinputs'U53	-'2NCTInpus'IMS3	I154	=F11*G11**1* ${ }^{111}$	
12	fes5	E'1content'fif	E'2NCTImputs'lis ${ }^{\text {a }}$	$=812^{\circ} \mathrm{C} 12$	r'1content'189	=012/E12	='2NCTinputs'us3	-'2NCTİputs'IMS3	154	=F12*G12*H12*112	
13	Pu-238	''Coontent'\|F89	='2NCTInputs'IH¢3	$=813 \cdot{ }^{\circ} 13$	''3content'1889	=013/E13	='2NCTInputs'Us3	-'2NCTInputs'IMs3	IIS4	-F13*613* H13 $^{1 / 13}$	
14	C-14	z'1content'IFS	='2NCTnputs'IHss	${ }^{8114 * C 14}$	r'Cocontenn'iBs	=014/E14	='2NCTnputs'uss	-'2NCTInpus'Im ${ }^{\text {a }}$	154	-F14*614* 144114	
15	coso	E'LContent'IF6	'2NCTInputs'H53	=815*C15	''Contem'libe	2015/515	=2NCTInputs'IS3	E'2NCTInputs'MM3	1154	FF15*G15*H15* 115	
16	U-232	='1comentif79	='2NCTInputs'lis ${ }^{\text {a }}$	-816*C16	E'content'1879	-016/E16	='2NCTInputs'Us3	='2NCTInputs'IM53	1154	FF16*G16*H16*116	
17	P4-239	='1content\|F50	='2NETInputs'IHS3	$=817 \times{ }^{\text {c }} 17$	F'IContent'IB90	-017/E17	='2NcTinputs'U53	''2NCTInputs'IM53	I 154	=F17*G17\% $117{ }^{1 / 17}$	
18	Pu-240	='1content1F91	='2NCTInputs'IHS3	$=818{ }^{\circ} \mathrm{C} 18$	E'1200ntent'1891	=018/E18	E'2NCThnputs'us ${ }^{\text {a }}$	E'2NCTİRuts'IM53	154	=F18* ${ }^{\circ} 18^{*}+18{ }^{18118}$	
19	N+59	a'1contont\|F10	-'2NCTInputs'IHS3	=819*C19	-'Icontent'lib10						
20	1-129	='1content\|	18	-'2NCTImputs'IIfs	$=820^{\circ} \mathrm{C} 20$						
21	${ }^{\text {U-233 }}$	E'1content\|'F80	='2NCTInputs'IHS3	$=821^{\circ} \mathrm{C} 21$	-'centent'1380	=021/E21	='2NcTinputs'IS3	E'2NCTInputs'IMS3	=154	=F21*G21* H21 $^{1} 121$	
22	T099	a'coonten'\|F17	2'2NCTInputs'IH53	-822*C22	''content'\|1817	-D22/E22	=2NCTInputs'Us3	E'2NCTInpus'IM ${ }^{\text {3 }}$	1154	=F22*G22* 22* $^{+122}$	
23	${ }^{\text {H-3 }}$	a'1content'IF4	-'2NCTInputs'IHS3	-823*C23	r'2content'134	=023/E23	-'2NCTInputs'Us ${ }^{\text {a }}$	E'2NCTInputs'IMs3	E154	=F23*G23* $23{ }^{\circ} 123$	
24	-1.234	E'Comtentifs	='2NCTInputs'IHS3	=824*C24	='coontan'\|B81	=024/E24	E'2NCTinputs'us3	='2NCTInputs'IMS3	154	=F24*624* $\mathrm{H} 24 * 124$	
25	U-238	z'1content\|F82	F'2NCTImputs'liss	-825* 225	E'coontent'1886						
26	0-236	='coontent\|f83	='2NCTInputs'1H53	$=826^{*} \mathrm{C} 26$	''content'18S4	=026/E26	F'2NCTInputs'Us3	E'2NCTInputs'IM 53		=F26* ${ }^{\circ} 26^{*}+25^{\circ}+126$	
27	${ }^{\text {U-235 }}$	F'1coontent\|F84	='2NCTInputs'IHS3	$=8227^{\circ} \mathrm{C} 27$	''Icontent'lis2						
28	${ }^{\text {cme242 }}$	a'1content\|f995	='2ncTInputs'H53	-828*C28	''comtent'1895	=028/E28		='2NCTInputs'IMS3	I 154	-F22* $628^{*}+28^{128}$	
29	${ }^{\text {Am } 243}$	F'Leontentify	''2NCTTinputs'H53	28299^{+29}	E'Icontent\|1994	-029/E29	E'2NCTInputs'153	2'2NCTInputs'M ${ }^{\text {S }}$	I 154	FF29*629*H29*129	
30	${ }^{\text {cme2al3 }}$	='1200ntent'\|F96	='2NCTInputs'\|h53	$=830^{\circ} \mathrm{C} 30$	F'content'lige	=030/E30	E'2NCTInpurs'Us3	-'2NCTInpus'IMS3	E154	= $F 30^{\circ} \mathrm{G} 30^{\circ} \mathrm{H} 30^{\circ} 130$	
31	7n-228	E'100ntent'IF69	='2NCTImputi'IHs	=831*C31	''Icontent'1669						
32	Np-237	a'100ntentif87	='2NCTInputs'\|hs3	$=832^{\circ} \mathrm{C} 32$	a'content'1887	-033/E32	z'2NCTInputs'US3	'2NCTInputs'IMS3	=154	=F32*G32* $33{ }^{\circ}+132$	
33	${ }^{0-232}$	F'Coontent\|F79	='2NCTInputs'IH53	=833*C33	r'coontent'1879	-2033/E33	F'2NCTInpus'Us3	z'2NCTInputs'IMS3	1154	FF33*G33*H33*133	
34	Th-232	z'1content\|F73	ع'2NCTInputs'\|hs3	2834*C34	='1300ntent'1873						
35	Th-230	F'1200ntent\|'74	='2nctinputs'IHS3	=1335 ${ }^{\circ} \times 3$	E'content'1871	=035/E35	E'2NCTInputs'Us3	='2NCTinputs'M\$3	1154	FF35 ${ }^{\circ} \mathrm{G} 35^{\circ}+135^{\circ} \cdot 135$	

Formulas for Table 9

	A	B	C	D	E	F	G	H	I	J
36	PW241	=2comtertif92	'2VCTInputilits	${ }^{\text {E36 }}$	-1'comentileg	${ }^{\text {2036/336 }}$		E'2NCThuputiM ${ }^{\text {S }}$	=15	
37	$\mathrm{cm}^{\mathrm{cm} 24}$	F'icontent\|1F97	E'2NCITputs'IM ${ }^{\text {S }}$	-837* ${ }^{\circ}$	E'Econtent11997	2037/[37	E2NCTnnutsus	E2NCTInutsisims	$\underline{154}$	$\underline{=57 \times 637 \times}$
38										Esum(24.37)

	A	B	C	D	E	F	G	H	I	J	K
1	Isotope	Content (C)	Leach Ratio	Leached (C)	$\begin{gathered} A_{2} \\ \left(\alpha / A_{2}\right) \end{gathered}$	$\begin{gathered} \text { MAR } \\ \left\langle A_{1}\right\| \end{gathered}$	DR	ARF	RF	$\begin{gathered} \text { LPF } \\ \text { WVMP } \end{gathered}$	Release (A_{2})
2		From Table 1	From Table 2 for Bartlett's PBS	Calculated for LDCC external to melter	From Table 1	Calculated for LDCC external to melter	From Table 2. For LCC extermal to melter. Note LPF WVMP already credited as part of ARF number				Calculated for inhalation from LDCC external to the metter
3	-	b	-	c	c	$f=d^{\circ} \mathrm{e}$	8	h	1	j	
4	C-137	E'1content'If19	E'2NCTInputs'IH53	=84*C4	-'1eontent'\|B19	= $=04 / \mathrm{E} 4$	E'2NCTInputs'U\$3	F'2NCTInputs'IN3	z'2NCTinputs'los3	a'2NCTInputs'IQ3	=F4*G4* $4^{*} 14{ }^{*} \mathrm{H}$
5	B-137m	a'1content'IF20	='2NCTInputs'IH53	-85*CS	E'1content'\|820						
6	5r-90	='1content'IF12	='2NCTinputs'H\$3	-86 ${ }^{\circ} \mathrm{C} 6$	='1content'\|812	=06/E6	F'2NCTinputs'US3	-'2NCTInpurs'IN3	='2NCTInputs'l0\$3	± 14	$=F 6{ }^{*} 66^{*} \mathrm{H} 6^{*} 16^{*} / 6$
7	$\mathrm{r}-90$	z'1content'IF13	-'2NCTInputs'\|H53	- $87{ }^{\circ} \mathrm{C} 7$	='1content'\|B13						
8	Pm-147	='1content'IF21	='2NCTInputs'IH53	=88*C8	F'1content'IB21	=D8/E8	='2NCTinputs'US3	='2NCTInputs'\|NS3	='2NCTInputs'los3	= 14	
9	Am-241	='1conten'If93	='2NCTInputs'IH\$3	=89*C9	='1content'1893	=09/E9	-'2NCTInputs'US3	='2NCTInputs'IN53	='2NCTIinputs'los3	EJ4	-F9*G9* ${ }^{\text {H }}$
10	E-154	='1content'1F22	='2NCTinputs'IH53	${ }^{-810^{\circ} \mathrm{C} 10}$	='1content'l822	=D10/E10	-'2NCTinputs'US3	='2NCTinputs'INS3	='2NCTinputs'los3	$=14$	FF10*G10* $\mathrm{H} 10^{*} 110^{\circ} \mathrm{J} 10$
11	N1-63	s'1content'IF11	='2NCTİputs'IH53	=811 ${ }^{\circ} \mathrm{C} 11$	s'1content'l811	= D11/E11	z'2NCTInputs'US3	='2NCTInputs'IN\$3	='2NCTİnputs'lOS3	$=14$	FF11*G11*H11*\|11*111
12	Fe-55	-'1content'IF9	z'2NCTInputs'l\| 53	$=812^{\circ} \mathrm{C} 12$	='1content'l89	-012/E12	-'2NCTİRputs'U\$3	z'2NCTInputs'INS3	='2NCTInputs'1053	234	=F12*G12* $112^{*} 112^{*} 112$
13	Pし-238	s'1content'\|F89		${ }^{2813} 3^{\circ} \mathrm{C} 13$	='1content'1889	=013/E13	-'2NCTİnputs'US3	-'2NCTInputs'INS3	='2NCTinputs'los3	$=34$	${ }^{\text {FF } 13}{ }^{\circ} \mathrm{G} 13^{\circ} \mathrm{H} 13^{*} 113^{*} \mathrm{J13}$
14	C-14	E'Leontent'IF5	z'2NCTinputs'IH\$3	=814*C14	='1contant'185	-D14/E14	E'2NCTinputs'JS3	='2NCTInputs'INS3	='2NCTInputs'los3	= 44	[F14*G14*H14*154*114
15	Co-60	='lcontant'IF6	='2NCTInputs'lH53	${ }^{2815}{ }^{\circ} \mathrm{C} 15$	-'1content'186	=D15/E15	-'2NCTinputs'U53	='2NCTInputs'INS3	='2NCTnputs'10\$3	- 14	FF15 ${ }^{\circ} \mathrm{G} 15^{*} \mathrm{H} 15^{*} 125^{\circ} \mathrm{J} 15$
16	U-232	a'1contant'IF79	-'2NCTinputs'IH\$3	=816* ${ }^{\circ} 16$	='1content'l379	-0.16/E16	-'2NCTInputs'U\$3	z'2NCTInputs'INS3	r'2NCTInputs'los 3		=F16 ${ }^{\circ} \mathrm{G} 16^{*} \mathrm{H} 16^{*} 116^{\circ} 116$
17	P1-239	='1content'IF90	='2NCTInputs'IH53	-817 ${ }^{\circ} \mathrm{C} 17$	E'1content'1890	=D17/E17	='2NCTInputs'U53	='2NCTInputs'ln53	-'2NCTInputs'los3	-14	=F17* ${ }^{\text {G17 }}{ }^{\circ} \mathrm{H} 17^{*} 117^{\circ} 117$
18	Pu-240	z'1comtent'IF91	='2NCTInputs'\|H\$3	$=818^{\circ} \mathrm{C} 18$	='1content'\| 891	=D18/E18	F'2NCTinputs'U53	='2NCTinputs'\|N\$3	='2NCTInputs'los3	= 4	=F18 ${ }^{\circ} \mathrm{G} 18^{\circ} \mathrm{H} 18^{*} 118{ }^{\circ} 118$
19	N-59	-'1content'IF10	='2NCTinputs'lH53	-819*C19	='1content'\|B10						
20	1-129	='1content'IF18	E'2NCTinputs'IH53	-820 ${ }^{\circ} \mathrm{C} 20$	='1content'\|818						
21	U-233	='1content'IF80	E'2NCTInputs'IH53	=821* ${ }^{\text {C } 21}$	s'1content'1879	=D21/E21	-'2NCTInputs'US3	='2NCTInputr'INS3	='2NCTInputs'los3	$=14$	FF21*G21*H21**21*J21
22	Tc-99	='1content'IF17	='2NCTInputs'IH\$3	-822 ${ }^{\circ} \mathrm{C} 22$	E'1content'IB17	-022/E22	-'2NCTInpuns'US3	='2NCTInputs'! ${ }^{\text {S } 53}$	E'2NCTinputs'l053	$=14$	FF22* ${\mathrm{G} 22^{*} \mathrm{H} 22^{*} 122^{\circ} \mathrm{J} 22}$
23	H-3	='1content'IF4	E'2NCTInputsililis	${ }^{-823}{ }^{\circ} \mathrm{C} 23$	='Icontant'les	=023/E23	-'2NCTinputs'US3	E'2NCTInputs'IN\$3	='2NCTInputs'lo\$3	814	=F23'G23* ${ }^{\text {H23** }} 123 \cdot 123$
24	U-234	='1content'\|F81	='2NCTinputs'IH53	=824* ${ }^{\circ} 24$	='1content'1381	=024/E24	E'2NCTInputs'U53	='2NCTInputs'IN53	='2NCTInputs'10\$3	-14	
25	U-238	='1content'\|F82	='2NCTinputs'iH53	${ }^{-825}{ }^{\circ} \mathrm{C} 25$	='1cantent'1886						
26	U-236	z'Lcontent'IF83	-'2NCTinputs'liss	-825* 226	-'1content'IB84	=026/E26	E'2NCTInputs'US 3	='2NCTInputs'IN\$3	='2NCTInputs'los3	$=34$	
27	U-235	z'1content'IF84	='2NCTinputs'IH53	-827* 27	-'1content'1382						
28	$\mathrm{Cm}_{\mathrm{c}-242}$	E'1content'IF95	='2NCTInputs'\|H53	- $\mathrm{B28}^{\circ} \mathrm{C} 28$	-'Icontent'IB95	=028/E28	E'2NCTInputs'US3	='2NCTInputs'1NS ${ }^{\text {a }}$	='2NCTInpuns'los 3	24	
29	Am-243	a'Icontent'IF94	='2NCTInputs'lH\$3	-829 ${ }^{\circ} \mathrm{C} 29$	='1content'IB94	=D29/E29	='2NCTInputs'US3	='2NCTInputs'IN53	='2NCTInputs'los 3	$=14$	=F29*G29* $29^{\circ} 129^{\circ} 129$
30	$\mathrm{C}_{\text {m-243 }}$	a'1content'IF96	='2NCTInputs'\|H\$3	=830* 330	-'1content'1896	=030/E30	E'2NCTInputs'U53	E'2NCTInputs'\|N5	-'2NCTInputs'lo\$3	= 34	FF30*G30* $330 \times 130^{\circ} 130$
31	Th-228	-'1content'IF69	='2NCTInputs'lh53	-831* ${ }^{\circ} 31$	-'1content'1869						
32	Np-237	='1comtent'IF87	ב'2NCTinputs'H5\$3	=832*C32	z'1content'1887	=D32/E32	E'2NCTInputs'LIS3	='2NCTInputs'1N\$3	='2NCTinputs'lo\$3	$=14$	FF32*G32* ${ }^{\text {H }} 32^{*} 132^{\circ} 132$
33	1-232	='Icontent'If79	='2NCTInputs'\|H's	=833*C33	='1content'1879	=033/E33	I'2NCTInputs'U53	='2NCTInputs'in\$3	='2NCTInputs'los3	2J4	
34	Th-232	s'1content'1F73	='2NCTnputs'\|H53	${ }^{\text {¢8334*C34 }}$	='1content'1873						
35	Th-230	e'1content'\|F74	='2NCTinputs'\|1/53	-835*C35	E'1content'1871	= $335 /$ /E35	F'2NCTİnputs'us3	E'2NCTİnputs'IN\$3	E'2NCTInputs'l0\$3	$=14$	FF35*G35*H35**35*135
36	Pu-242	E'1content'IF92	='2NCTInputs'H53	=836* ${ }^{\text {c }}$ 36	='Icontent'l892	=036/E36	='2NCTinputs'U\$3	='2NCTInputs'1N53	-'2NCTInputs'lo\$3	$=14$	
37	$\mathrm{Cm}_{\mathrm{m}-244}$	E'1content'IF97	='2NCTInputs'\|H53	$=837 \times$ C37	a'1content'1897	=D37/E37	='2NCTinputs'\|S 3	z'2NCTInputs'1N\$3	-'2NCTİnputs'los 3	=14	

Formulas for Table 10

	A	B	C	D	E	F	G	H	I	J	K
38											SUUM(K4:337)

Formulas for Table 12

	A	B	C	D	E	F	G	H	I
1	Isotope	Content (C)	$\begin{gathered} A_{2} \\ \|C\| A_{2} \mid \end{gathered}$	MAR $\left(A_{2}\right)$	OR	ARF	$\begin{gathered} \text { LPF } \\ \text { WVMP } \end{gathered}$	LPF Meher	Refense (A_{2})
2		From Table 1		Calculated for spout glass	From Table 3. Same for all HAC glass				Calculated for inhalation from spout glass
3	3	b	c	$\mathrm{d}=\mathrm{b} / \mathrm{c}$	-	f	g	b	
4	c-14	='lcontent'IC5	z'1content'l185	-84/CA	='3HACInputs'IIS3	='3HACinputs'lls 3	='3HACInputs'las3	='3HACInputs'IRS3	-D4*E4*F4*G4* ${ }^{\text {d }}$
5	$x-0$	='1content'167	='1content'187	=85/C5	='3HACInputs'lls 3	='3HACinputs'1IS3	='3HACInputs'las3	z'3HACInputs'IR\$3	=D5*E5*F5*G5*H5
6	Mn-54	a'Icontent'IC8	-'1content'lls	z86/C6	z'3HACInputs'IIS3	z'3HACinputs'lLS3	='3HACinputs'las 3	='3HACinputs'IRS3	$=D 6{ }^{* E 6} 6^{\circ} 6^{*} \mathrm{G} 6^{\circ} \mathrm{H} 6$
7	Co-60	='Icontent'IC6	='1content'lig	-B7/C7	='3HACinputs'IIS3	='3HACInputs'LLS 3	='3HACinputs'lQS3	-'3HACinputs'IRS3	-D7*E7*F7*G7* ${ }^{\text {\% }}$
8	N1-63	='1content'IC11	'LIContent'\|B11	zB8/C8	='3HACInputs'IIS3	='3HACInputs'ilss	='3HACinputs'las3	='3HACInputs'IR\$3	
9	Sr-90	='1content'IC12	z'1content'\|B12	-89/C9	='3HaCinputs'IIS3	a'3HACinputs'ILS3	='3HACInputs'las3	E'3HACInputs'IRS3	=D9*E9*F9*69* ${ }^{\text {a }}$
10	r-90	a'1content'\|C13	='1content'\|B13						
11	2r-95	E'1content'IC14	E'120ntent'1B14	*811/C11	='3HACInputs'IIS3	='3HACInputs'lLS3	='3HACinputs'lQS3	='3HACInputs'IR\$3	$=$ D11*E11*F11*G11*H11
12	Nb-95	='1content'IC15	-'1content'1815	=812/C12	='3HACinputs'IIS3	='3HACInputs'ILS3	='3HACInputs'las3	z'3HACinputs'IRS3	$=012{ }^{*} E 12^{*} \mathrm{~F} 12^{*} \mathrm{G} 12^{*} \mathrm{H} 12$
13	Nb-95m	a'1content'iC16	''1content'IB16						
14	Tc.99	='1content'1C17	\%'1content'\|817	=814/C14	='3HACInputs'I\|IS	='3HACInputs'lL53	='3HACInputs'1053	='3HACInputs'IRS3	-D14*E14*F14*G14*H14
15	C- 137	='1content'IC19	E'1content'1819	=815/C15	E'3HACInputs'Ils3	-'3MACInputs'ILS 3	='3HACInputs'las 3	='3HACInputs'IRS3	-D15*E15*F15*G15*H15
16	8*-137m	s'1content'IC20	-'1content'1820						
17	Eu-154	-'1content'1C22	R'1content'1822	* $817 /{ }^{\text {c }}$ 17	-'3HACInputs'Ils 3	-'3HACinputs'lLS3	='3HACinputs'las3	2'3HACIInputs'1R53	-D17*E17*F17*G17* ${ }^{\text {d }}$ (7
18	Hg_{6}^{206}	='1content'IC23	='120ntent'1823	=818/C18	='3HACInputs'lls ${ }^{\text {a }}$	='3HACinputs'LLS3	-'3HACInputs'Ias3	='3HACInputs'IRS3	$=\mathrm{D} 18^{* E 18 * F 18 * G 18 * H 18}$
19	7-206	-'1content'1C24	='1content'\|824						
20	71-207	='1content'\|c25	E'2content'li825	=820/C20	='3HACInputs'IS3	E'3HACInputs'LLS	='3HACInputs'las3	='3HACInputs'IRS3	*D20*E20*F20*G20*H2O
21	7-208	='1content' C 26	=''content'1326						
22	7-209	='1content'IC27	='1content'1827						
23	Tb-210	='1content'lc28	-'1contant'1828	=823/C23	='3HACCinputs'IIS3	-'3HACInputs'lLS 3	E'SHACInputs'IQS3	='3HACInputs'IRS3	=D23*E23*F23*G23*H23
24	Pb-210m	='1content'lcz9	='1content'1829						
25	Pb-210	='1content'IC30	-'1content'1830	=825/C25	='3HACInputs'l\|\$3	e'3HACInputs'll\$3	z'3HACinputs'las3	='3HACIMputs'IRS3	=025*E25*F25*G25* H 25
26	Pb-211	='1content'1c31	F'1content'1831	=826/C26	E'3HACInputs'lis 3	='3HACinputs'lLS	='3HACInputs'las3	='3HACInputs'IRS3	=026*E26*F26* ${ }^{\circ} 26^{\circ} \mathrm{H} 26$
27	Pb-212	='1content'lc32	z'Icontent'1832						
28	Pb-214	='1content'IC33	z'1content'IB33						
29	8-209	='1content'IC34	= 1 content'IB34						
30	84-210	='1content'IC35	z'1content'IB35						
31	B+211	='1content'IC36	='1content'1836						
32	84212	='Icontent'IC37	$=1$ content'1837						
33	8t-213	='1content'Ic3s	-'Icontent'la38						
34	8-214	-'1contant'IC39	-'1content'1839						
35	Br-215	-'Icomtent'lC40	E'1content'IE40	-835/C35	E'3HACinputs'lis3	F'3HACInputs'lls 3	E'3HACInputs'laS3	='3HACinputre'\|RS3	
36	Po-210	='1content' 1 C41	z'1contont'IB41						
37	Po-211	='Icontent'C42	F'1content'IB42	=837/C37	E'3HACnputs'lis3	E'3HACInputs'lLS ${ }^{\text {a }}$	E'3HACInputs'las3	E'3HACinputs'IRS3	=037*E37*F37*G37* 337
38	Po-212	='1content'IC43	-'1content'IEA3						
39	Po-213	E'1 content' 1 C44	''2content'1944						

	A	B	C	D	E	F	G	H	I	
40	Po-214	='1comtent'IC45	='1content'lB45							
41	Po-215	='1content'IC46	s'1content'1346							
42	Po-216	='1content'IC47	='1content'1847							
43	Po-218	='1content'IC48	z'Icontent'IB48							
44	At-215	='1content'ICA9	='1comtent'IB49	=844/C44	-'3HAClmputs'IIs3	E'3HACinputs'lL53	='3HACInputs'lQS3	I'SHACinputs'IRS3		
45	At-217	='1content'IC50	='1content'1850							
46	At-218	z'1content'\|C51	='1content'1851	E846/C46	='3HACinputs'lis3	='3HACinputs'lls3	('3HaCinputs'las 3	E'3HACinpust'1RS3	-D46*E46*F46*646*H46	
47	At-219	z'1content'IC52	='1content'1852	* $847 / \mathrm{Ca7}$	E'3HACinputs'IIS3	='3HACinputs'ILS3	='3HACInputs'ICS3	a'3HACInputs'1RS3		
48	Rn-217	z'1content'IC53	='1content'1853	=848/C48	E'3HACInputs'lls	='3HACinputs'ILS3	='3HACInputs'!QS3	='3HACInputs'IRS3	= $248{ }^{*} \mathrm{E} 48^{\circ} \mathrm{F} 48^{*} \mathrm{G48} 8^{\circ} \mathrm{H} 48$	
49	An-218	E'Icontent'IC54	='1content'IB54							
50	Rn-219	='1content'IC55	='1content'1855	*B50/C50	E'3HACinputs'\|l\$3	E'3HACInputs'LLS3	='3HACInputs'las3	F'3HACInputs'IRS3	= D50*E50*F50*G50*M50	
51	Rn-220	='1content'ICS6	='1content'1856							
52	Rn-222	s'1content'IC57	z'1content'1857	=852/C52	a'3HACinputs'\|l	53	F'3HACinputs'ILS	-'3HACinputs'IOS3	z'3HACinputs'IRS3	=D52*E52*F52*G52*H52
53	Fr-221	='1content'IC5s	z'Icontent'1858							
54	Fr-223	='1content'IC59	='1content'1859	8854/C54	='3HACInputs'\|153	='3HACInputs'lL53	z'3HACInputs'las3	a'3HACInputs' R S3	=054*E54*F54*G54*H54	
55	Ro-223	-'1content'IC60	='1content'1860	=855/C55	-'3HACInputs'\|ls 3	z'3HACinputs'LL53	F'3HACinputs'las3	z'3HACinputs'IR53	=055*E55*F55*G55*H5S	
56	Ro-224	E'1content'IC61	z'1content'IE61							
57	Ro-225	E'1content' 1662	='1content'IB62							
58	R -2226	E'1content'1663	='1content'\|B63	2858/C58	='3HACInputs'\|	53	E'3HACInputs'lLS3	='3HACInputs'\|Q53	F'3HACInpurs'IR\$3	=058*E58*F58*G58*H58
59	Re-228	-'1content'ICEA	='1content'lB64	-859/C59	z'3HACCinputs'lis 3	E'3HACInputs'lLs	='3HACInputs'IQS3	='3HACInputs'IRS3	=059*E59*F59*G59*H59	
60	Ac-225	='1content'I665	='1content'IB65							
61	Ac-227	s'1content'Ic66	='1content'IB66	=861/C61	F'3HACOnputs'Ils3	E'3HACInputs'ILS3	F'3HACinputs'las3	z'3HACInputs'IRS3	=061*E61*F61*G61*H61	
62	Ac-228	E'1content'IC67	='1content'1867							
63	Th-227	='1content'IC68	='1content'1368	=863/C63	-'3HACInputs'Ils 3	='3HACinputs'lLs	='3HACInputs'las3	E'SHACInputs'IRS3	=D63*E63*F63*G63*H63	
64	Th-228	E'1content' 669	-'1content'1869							
65	7h-229	-'1content'IC70	-'1content'1870	-865/C65	='3HACinpuss'lls 3	a'3HACinputs'ILS3	z'3HACInputs'IQ53	='3HACInputs'IRS3	=D65*E65*F65*G65*H65	
66	Th-230	E'Icontent'IC71	='1content'1871	=866/C66	-'3HACinputs'\|l53	-'3HACInputs'ILS3	='3HACInputs'IQS3	E'3HACinputs'IRS3	=D66*E66*F66*G66* H 66	
67	Th-231	='1content'1C72	='1content'1872							
68	Th-232	E'1content'IC73	a'Icontent'\|873							
69	Th-234	='1content' 1674	='1content'1874							
70	Pa-231	F'1content'1C75	='1contant'1875	-870/C70	E'3HACInputs'IIS3	='3HACInputs'lLS3	F'3HACInputs'las 3	z'3HACInputs'IRS3	$=070^{*} E 70^{*} \mathrm{F70}{ }^{\circ} \mathrm{G70*} \mathrm{H70}$	
71	Pa-233	='1content'1C76	-'1contant'1876							
72	Pa-234	-'1content'IC77	='1content'1877	=872/C72	='3HACInputs'l153	='3HACInputs'LLS3	='3HACInputs'laş	='3HACInputs'IRS3	=D72*E72*F72*G72* 772	
73	Pa-234m	E'1content'IC78	z'1content'1878							
74	U-232	E'1content'1C79	='1content'\|1879	=874/C74	E'3HACInputs'IIS3	-'3HACinputs'lLS3	='3HACinputs'loss	='3HACInputs'IRS3	$=\mathrm{D74*E74*F74*G74*} 774$	
75	U-233	='1content'lcso	='1content'\| 880	=875/C75	='ЗHACInputs'IIS3	a'3HACinputs'lLs	-'3HACinputs'los3	z'3HACinputs'IRS3	=D75*E75*F75*G75*H75	
76	U-234	='1content'1681	='Icontent'1881	=876/C76	E'3HACInputs'lis 3	='3HACinputs'll\$3	='3HACInputs'las	='3HACInputs'IRS3	=D76*E76* $76^{*} \mathrm{G76}{ }^{\circ} \mathrm{H} 76$	
77	U-235	E'1content' 1682								
78	U-235m	-'1content'1c83	z'1content'1882							
79	U-236	a'1content'1c84	a'Icontent'1884	-879/C79	E'3HACInputs'lls	E'3HACinputs'ILS3	z'3HACinputs'las	['3HACinputs'IRS3	=079*E79*F79*G79*H79	
80	U-237	E'1content'IC85	='1content'\|1885							

Formulas for Table 12

	A	B	C	D	E	F	G	H	I
81	U-238	z'Lcontent'1C86	='1content'le86						
82	Np -237	-'1content'1C87	z'1content'1887	2882/C82	r'3HACInputs'lls 3	z'3HACInputs'1153	['3HACInputs'las3	E'3HACInputs'IRS3	$=\mathrm{D} 82^{*} \mathrm{E} 82^{*} \mathrm{~F} 82^{*} \mathrm{G8} 2^{*} \mathrm{H} 82$
83	Mp-239	='1content'lcss	='1content'1888						
84	Pu-238	='1content'1089	='1eontent'1389	2884/c84	='3HACinputs'lls ${ }^{\text {a }}$	-'3HACInputs'lı53	a'3HACInputs'los3	='3HACinputs'IRS3	
85	Pu-239	F'1eontent' 1690	-'1content'1890	=885/C85	='3HACInputs'IIS 3	='3HACInputs'\|LS3	='3HACInputs'lQS3	z'3HACInputs'lR53	=D85**885*F85*G85*H85
86	P 4 -240	-'1content'1C91	='1content'1891	-886/C86	a'3HACinputs'lis 3	z'3HACInputs'LLS3	='3HACinputs'laS3	='3HACinputs'lRS3	
87	Pu-241	='1contenn'1c92	='1content'\|B92	=887/087	z'3HACinputs'ils ${ }^{\text {a }}$	z'3HACInputs'lls 3	a'3HACImputs'los3	='3HACinputs'IRS3	$=$ D87*E87*F87**87*H87
88	Am-241	='1content'IC93	F'1content'\|893	=888/C88	z'3HACInputs'l\|s3	='3HACinputs'ILS3	='3HACinputs'las3	='3HACInputs'!RS3	
89	Am-243	='Icontent'1c94	E'Icontent'1893	=889/C89	='3HACInputs'IIS3	= 3 HACInputs'ILS3	='3HACinputs'las3	-'3HACInputs'\|R53	=D89*E89*F89*G89*H89
90	$\mathrm{Cm}_{\mathrm{m}-242}$	='1contant'c95	I'1content'1895	$=\mathrm{B90} / \mathrm{C90}$	='3HACInputs'l\|s3	='3HACInputs'\|LS 3	='3HACInputs'lQ53	='3HACInputs'lRS3	-D90*E90*F90*G90*H90
91	$\mathrm{CrO}_{\mathrm{C}}^{243}$	='1content'LC96	='1content'1896	=891/c91	='3HACInputs'lis3	='3HACInputs'ILS3	='3HACInpurs'IGS3	-'3HACInputs'lR\$3	$=\mathrm{D} 91{ }^{*} \mathrm{E} 91^{*} \mathrm{F91}{ }^{\circ} \mathrm{G} 91{ }^{*} \mathrm{H} 91$
92	$\mathrm{Cm}-244$	='1content'c97	F'Icontent'1897	=892/C92	='3HACinputs'1IS3	E'JHACInputs'lLS	-'3HACInputs'las3	='3HACInputs'iRS3	
93									ESUM(14:192)

	A	B	C	D	E	F	G	H	I	
1	Isotope	Content (c)	$\begin{gathered} A_{2} \\ \left(a\left\|A_{2}\right\|\right. \end{gathered}$	$\begin{gathered} \text { MAR } \\ \left(A_{2}\right) \end{gathered}$	OR	ARF	$\begin{gathered} \text { LPF } \\ \text { Metter } \end{gathered}$	$\begin{gathered} \text { wvF } \\ \text { LVP } \end{gathered}$	$\begin{aligned} & \text { Release } \\ & \left(A_{2}\right) \end{aligned}$	
2		From Table 1		Cakulated for heel glass	From Table 3. Sume for all HAC closs				Cakulated for inhalation from heol glass	
3	:	b	c	$d=b / 6$	e	f	g	h	$l=d^{*} e^{*} p^{\prime}{ }^{*} h$	
4	c-24	='icontent'105	='1content'135	284/C4	='3HACinputs'IIT3	='3нACinputis'IS3	='3HACinputs'los 3	='3HACImput'IRS3	=D4*E4*F4*G4* ${ }^{\text {P }}$	
5	k-40	='content'107	E'Icontent'187	=85/C5	r'3HACinputs'IIss	'3HACImputs'lLS	='3HACinputs'los 3	='3HACInputs'tirs		
6	${ }^{\text {Mn-54 }}$	='conntent 108	='1content'188	=86/C6	='ЗHACInputs''IS3	'3HACinputs'ILS3	='3HACImput' $10 \leq 5$	='3HACInputs'IRS3	$=D 5^{* E 6} 5^{\circ} 6^{\circ} 66^{\circ} \mathrm{HE}$	
7	Coso	-'1content'ID6	='1content'186	=87/C7	='3HACIInput'IIS3	z'3HACInputs'ILS ${ }^{\text {a }}$	='3HACInputs'loss	='ЗHACinputs'Rs3		
8	N163	-'centantion1	='content'l\|11	-88/cs	='3HACinputs'IIS3	z'3HACInputs'lis3	='3HACinputs'las ${ }^{\text {a }}$	='3HACInputs'RS3	$=088^{6} 8^{\circ} \mathrm{F} 8^{\circ} \mathrm{G} 8^{\circ} \mathrm{H8}$	
9	Sr-90	='content'\|012	''1content'11912	=89/cs	='ЗнaCinputs'l\|s3	='3HACInputs'ILS3	='3HACInputs'las	口'3HACMnputs'RS3	=D9*E9*F9099*H9	
10	${ }^{1-90}$	='coontant'ID13	E'1conten'tlis							
11	${ }^{2 r-95}$	E'conntent'1014	='1conten'li13	=81/C11	a'3HACimputs'lis ${ }^{\text {a }}$	='3HACMputs'LLS3	='3HACInputs'las ${ }^{\text {a }}$	='3HACInputs'IRS3	$=\mathrm{D} 11^{*} \times 11^{*} \mathrm{~F} 11^{\circ} \mathrm{G} 11^{*} \mathrm{H} 11$	
12	Nb-9	''content'1015	S'Icontent'1815	=B12/C12	='3HACImputs'153	E'HHACInputs'LLS3	E'3HACInputs'las	='3HACInputs'IRS ${ }^{\text {a }}$	$=D 122^{*} 12^{*}+12^{*} G 12^{*}+12$	
13	Nb-95m	'Icontent\|D16	='1conten'\|B16							
14	T-.99	-'crontent'\|017	='Econtant'1197	=814/C14	:'3HACInputs'ILS3	='ЗHaCinpus'ils	='3HACImputs'lass	-'3HACInputs'IRS ${ }^{\text {a }}$		
15	C-13	F'Icontent'\|019	''Icontent'1819	=815/C25	E'ЗHACImputs'l\|s3	E'HHACInpust'LLS	E'3HACImputs 10 S 3	='3HACInputs'IRS3		
16	85-137m	'IConntent'1020	F'LContent'1820							
17	${ }^{\text {Ew-154 }}$	='1content'1022	='Coontent'l1222	-817/C17	E'3HACInputs'\|IS3	E'3HACMputs'liss	='3HACIMput'tos ${ }^{\text {a }}$:'3HACInputs'RS3		
18	${ }^{\mathbf{H 8}-206}$	''coment'ID23	''Icontent'1823	=818/C18	E'JHACInputs'\|	\$3	E'ЗHACInpurs'LLS	E'YHACInputs'lass	='ЗHaCmputs'RS3	=018 ${ }^{\circ} \mathrm{E} 18^{\circ} \mathrm{F} 18^{\circ} \mathrm{G} 18^{\circ} \mathrm{H} 18$
19	7-206	I'content'IO24	= '1conten'1824							
20	${ }^{7-207}$	''content'1025	-'contant'1825	=820/c20	-'3HACinputs'IIS3	F'3HACimputs'ILS3	I=3HACInputs'los3	F'3HACinputs'RS3	=020*E20* $220^{\circ} \mathrm{G} 22^{\circ} \mathrm{H} 20$	
21	${ }^{7-208}$	''Content'\|026	='Content'IB24							
22	7-209	='1content'\|027	='1content'\|127							
23	${ }^{\text {T-210 }}$	='content'1028	-'Icontent'li828	=823/C23	='3HACInputs'IIS3	='3HACInputs'\|LS3	='3HACImputs'loss	='3HACCnputs'IRS3	=023* $223^{\circ} \mathrm{F} 23^{\circ} 623{ }^{\circ} \mathrm{H} 23$	
24	$\mathrm{Pb-210m}^{\text {a }}$	-11content'1029	F'1content'1829							
25	Pb-210	z'content'lib30	-'icontent'liso	-825/[25	2'3HACInputs'IIS	''3HACInputs'lıs	='3naCinputs'lass	='3hacinputs'Rss	$=025{ }^{\circ} \mathrm{E} 25^{\circ} \mathrm{F} 25^{\circ} \mathrm{C} 25^{\circ} \mathrm{H} 25$	
26	Pb-211	='Comtent'\|D31	''1contant'\|B31	=826/c26	-'3HAClinputs'l\|s3	-'ЗHACInputs'lss	='3HACInputs'las3	-'ЗHACInputs'IR ${ }^{\text {S }}$		
27	${ }^{\text {Pb-212 }}$	'ICentent'\|032	''IContent'\|B32							
28	${ }^{\text {Pb-214 }}$	='centent'1033	='100ntent'le33							
29	${ }^{\text {8+209 }}$	F'ceontent'1034	r'jeontent'1334							
30	81-220	''content'1035	='1content'li3s							
31	0+211	E'17entent'1036	2'Icontent'lB36							
32	8-212	-'ceontent'1037	-'contant'\|1337							
33	${ }^{\text {8-213 }}$	E'ceontent'1038	-'1content'li38							
34	8+214	='cantent 1039	-'1content'1339							
35	b+215	''coontent'\|040	''LContent'\|1840	[835/c35	='3HACinputs'IIS	E'SHACIIPutr'ILS3	E'3HACInputs'loss	='ЗHACImputs'Rss	=D335*E35*F35*G35* 33	
36	Po-210	F'centent'IDA1	='1content'1841							
37	Po-211	E'1200ntent'1042	F'Content'\|E42	18837/[37	E'3HACInputs'IS3	='3HACInputs'ILS3	I='3HACinputs'0:5	E'3HACInputs'RS3		
38	Po-212	F'IContent'1043	F'Cocontent'lia3							

	A	B	C	D	E	F	G	H	I
39	P0-213	='1content'ID44	F'1content'IB44						
40	P0-214	='1content'ID45	='Leontont'1345						
41	Po-215	='1content'ID46	='1content'1846						
42	Po-216	E'1content'ID47	='1content'!347						
43	Po-218	z'1content'ID48	='1content'1848						
44	At-215	='icontent'1049	='1content'1849	=844/C44	='3HACInputs'IIS3	='3HACImputs'lLS 3	='3HaCimputs'las3	='3HACInputs'IRS3	$=$ D44*E44*F44*G44*H44
45	A 1 -217	='1content'ID50	='1.content'llaso						
46	A-218	E'1content'ID51	E'1contant'IB51	- B46/C46	a'3HACinputs'IIS3	a'3HACInputs'lis3	='3HACInputs'IQ53	F'3HACinputs'IRS3	-D46*E46*F46*G46* 446
47	At-219	='1content'ID52	='1content'1852	=847/C47	='3HACinputs'\|ls3	='3HACinputs'lLS3	='3HACInputs'las3	-'3HACInputs'IR\$3	
48	$\mathrm{Rn}^{\text {R217 }}$	='1content'1053	='1content'1853	=848/C48	E'3HACInputs'IIS3	='3HACImputs'lL 53	='3HACInputs'IQS3	='3HACImputs'IRS3	$=\mathrm{D} 48^{*} \mathrm{E} 48^{*} \mathrm{~F} 48{ }^{\circ} \mathrm{G48}{ }^{*} \mathrm{H} 48$
49	Rn-218	-'1content'1054	E'1content'1B54						
50	Rn-219	F'icontent'1055	E'1content'l1855	-850/C50	z'3HACInputs'IIS3	='3HACinputs'lLS3	='3HACinputs'los3	E'3HACinputs'IRS3	=D50*E50*F50*G50*H50
51	Rn-220	a'1content'ID56	z'1eontent'l855						
52	Rr-222	='1content'ID57	='1content'1857	-852/C52	='3HaCInputs'\|ls3	='3HACinputs'lLLS	='3HACimputs'las3	='JHACinputs'IRS3	=052*ES2*F52*G52*H52
53	Fr-211	F'1content'ID58	F'Lcontentiliss						
54	Fr-223	z'1content'1059	z'1content'1359	=854/C54	='3HACInputs'IIS3	='3HACInputs'lLS3	='3HACInputs'las3	='3HACInputs'IRS3	-D54*E54*F54*G54*H54
55	R-223	='1content'ID60	='1content 1860	2855/C55	='3HACInputs'\|ls 3	s'3HACinputs'lls ${ }^{\text {a }}$	-'3HACInputs'las3	='3HACInputs'IRS3	=055*E55*F55*G55* 555
56	Ra-224	z'Licontent'ID61	='1content'1361						
57	Re-225	='120ntent'ID62	='1content'1862						
58	Ro-226	='1content'ID63	z'Leontent'IB63	=858/C58	-'3HACImputs'lls 3	='3HACInputs'll\$3	='3HACInputs'las	='3HACinputs'\|RS3	-D58*E58*F58*G58* 558
59	Ra-228	a'icontent'ID64	E'1content'1854	=859/C59	='3HACInputs'lis 3	z'3HACinputs'll: 3	='3HACInputs'las 3	E'3HACInputs'IRS3	-D59*E590F59*G59* 59
60	Ac-225	='1content'ID65	='1content'1865						
61	Ac-227	='1content'ID66	='1contem'1865	=851/C61	z'3HACInputs'Ils3	='3HACInputs'lLs3	='3HACinputs'las3	F'3HACInputs'IRS3	=D61*E61*F61* $661^{*} \mathrm{H} 61$
62	Ac-228	='1contentID67	='1content'1867						
63	Th-217	='1content'ID68	z'1content'1868	-863/C63	E'3HACinputs'IIS3	='3HACInputs'lLS3	='3HAClinputs'laS 3	ב'3HACInputs'IR\$3	=063* $663^{*} \times 63^{\circ} \mathrm{G63}{ }^{*} \mathrm{H} 63$
64	Th-228	='1content'ID69	-'1content'IE69						
65	Th-229	='1content'1070	='1content'1870	=865/C65	='3HACInputs'l\|53	E'3HACInputs'lLLS	='SHACImputs'1as 3	='3HACinputs'1RS3	=065*E65*F65*G65* H 65
66	Tr-230	='1content'ID71	E'1content'1871	-866/C66	='3HACInputs'Ils 3	='3HACInputs'ilss	z'3HACInputs'los 3	E'3HACinputs'IRS3	-D66*E66*F65*G66* $\mathrm{HE6}$
67	${ }^{\text {Th-231 }}$	-'1content'1072	='1content'1872						
68	Ti-232	='1content'1073	F'1content'1873						
69	75-234	='1content'ID74	z'1content'1874						
70	Pa-231	='1contem'1075	E'1content'1875	=870/C70	='3HACinputs'\|ls 3	E'3HACInputs'1L53	='3HACInputs'las 3	F'3HACinputs'R RS3	$=070^{\circ} \mathrm{E70}{ }^{\circ} 770^{*} 670^{\circ} \mathrm{H} 70$
71	Pa-233	='1content'1076	='1content'1876						
72	P-234	='1content'ID77	='1content'1377	=872/C72	E'3HACİRputs'1153	='3HACInputs'lı\$3	a'SHACInputs'los 3	='3HACInputs'IR53	=D72*E72* $772^{*} \mathrm{G72}{ }^{\text {a }} \mathrm{H} 72$
73	P\%-234m	='1content'1078	='1content'1878						
74	U-232	E'Icontent'ID79	='1contem'1879	=874/C74	E'3HACInputs'\|153	='3HACimputsills	E'JHACInputs'lQS3	F'SHACInputs'IRS3	=074*E74*F74*674* ${ }^{\text {P74 }}$
75	U-233	z'1content'1080	='1content'\|B80	=875/775	='3HACImputs'llIS3	='3HACinputs'lLs3	='3HACinputs'los 3	-'3HACInputs'IR53	
76	U-234	-'1contem'IO81	='1content'\|B81	=876/C76	='3HAClinputs'l\|53	='3HACInputs'lLS3	a'3HACInputs'los	='3HACInputs'R1R3	=076*E76* $76^{*} 676^{*} \mathrm{H} 76$
77	U-235	='1content'ID82							
78	U-235m	='1eontent'ID83	n'1content'1882						
79	U-236	E'Icontent'\|084	a'lcontent'\|1884	=879/C79	Е'3HACInputs'l\|\$3	='3HACinputs'll\$ ${ }^{\text {a }}$	e'3HACImputs'los 3	R'3HACInputs'IRS3	=D79*E79*F79*G79*H79

	A	B	C	D	E	F	G	H	I
80	${ }^{\text {U-237 }}$	E'160ntentIID85	='1content'1885						
81	${ }^{\text {U-238 }}$	-'1200ntentID86	E'Leontent1886						
82	${ }^{\text {Np-237 }}$	E'IContent'1087	'1200ntent'1887	=882/c82	-'3HACInputs'\|ls	E'3HACinputs'ILS3	='3HACinputs'loss	='3HACInputs'RS ${ }^{\text {a }}$	= $0822^{+882}{ }^{+682}{ }^{+682}{ }^{*} \mathrm{HB} 2$
83	${ }^{\text {Np}-239}$	-'1comtent'loss	='100ntent'IB89						
84	Pu-238	='1coment'1089	E'120ntent11889	=884/084	='ЗHACinputs'lls ${ }^{\text {a }}$	z:3HACInputs'LLL5	='3HACinputs'las 3	='3HACInputs'IRS 3	=D84*E84*F84*G84* ${ }^{\text {P }}$
85	P4-239	='1content'1090	E'1content'l1990	-885 $/ 285$	='3HACInputs'l\|s3	='3HACInputs'LLS3	='3HACInput'IOS3	-'3HACinputs'RIS3	
86	P+240	R'120ntent'l091	E'1content'la91	=886/c86	='ЗHACInpust'\|s3	-'3HACInputs'lL53	-'3HaCinputs'las		$=$ D86 ${ }^{+886}{ }^{+886}{ }^{\circ} \mathrm{GB6}{ }^{*} \mathrm{HB6}$
87	P4-241	F'1contan'ID92	E'1rontenn'1892	=887/C87	='ЗHACImputs'\|ls	='3HACInputs'ILLS	='3HACInputs'las3	='3HACinputs'RS 3	$=$ D87*E87*F87*687* 887
88	Am-241	- '1content1093	='IContent'11993	=888/C88	='ЗHACImputs'ISS	='3HACInputs'lLLS	='3HACInputs'las	='3HACInputs'IRS 3	
89	${ }^{\text {Amm243 }}$	='1200ntent'1094	-'1content'1994	=889/c89		-'3HACnpurs'lLS ${ }^{\text {a }}$	='3HACInputs'las3	='ЗHaCinputs'RS3	=889*E89*F89*689*H89
90	${ }^{\text {Cm-242 }}$	S'1conten'ID95		=890/C90	='3HACImputs'lls	='3HACinputs'ILS3	='3HACnputs'las3	='3HACInputs'RS3	
91	${ }^{\text {cm }}$ 243	='Icontent1096	z'1content'1996	=891/c91	='3HACCinput''l\|s ${ }^{\text {a }}$	='3HACInputs'lls	='3HACInputs'las3	='ЗHaCinputs'IRS3	=D91*E91*F91*G91*H91
92	$\mathrm{Cl}^{2} 24$	='LContent'1097	='Contont'\|197	=892/c92	='3HACinputs'lls	E'3HACInputs'lLs ${ }^{\text {a }}$	='3HACInputs'los3	='3HACInputs'RS3	=092*E92*F92*G92*H92
93									SUUM(44:192)

	B	C	D	E	F	G	H	I	
1	Content (ㅁ)	$\begin{gathered} A_{2} \\ \left(a / A_{2}\right) \end{gathered}$	$\begin{gathered} \text { MAR } \\ \left(A_{2}\right) \end{gathered}$	OR	ARF	LPF WVMP	LPF Melter	Release (A_{2})	
2	From Table 1		$\begin{array}{\|c\|} \begin{array}{c} \text { Cakculated } \\ \text { for refractory } \\ \text { glass } \end{array} \\ \hline \end{array}$	From Table 3. Same for all HAC glass				Calculated for inhalation from refrectory glass	
3	b	c	deb/c	-	1	8	h		
4	$x^{\prime} 1$ contant 1 E6	r'1conten'l86	: $34 / \mathrm{CA}$	='3HACInputs'IIS3	='3HACInputs'lLS3	='3HACinputs'lias3	='3HACImputs'IR53	$=D 4 * E 4 * F 4 * G 4 * H 4$	
5	='1content'\|E12	='1content'1812	=85/CS	='3HACInputs'\|	\$3	='3HACinputs'ILS 3	='3HACImputs'los3	='3HACimputs'IRS3	=D5*E5*F5*65* ${ }^{\text {5 }}$
6	='Icontent'IE13	='1content'1813							
7	='1content'IE17	='1content'1817	-87/C7	='3HACinputs'\|	s3	z'3HACInputs'ILS3	='3HACinputs'lQS3	='3HACInputs'lis 3	$=D 7 * E 7^{*}$ F7*G7* ${ }^{\text {\% }}$
8	='1content'IE19	='1content'la19	=88/c8	='3HACInputs'lls 3	='3HACinputs'ILS3	z'3HACInputs'las3	='3HACInputs'IRS3	=D8*E8*FB*G8*H8	
9	-'1content'IE20	z'Icontent'1820							
10	='1content'IE22	='1content'1622	2010/C10	='3HACInputs'\|	\$3	z'3HACinpurs'lls ${ }^{\text {a }}$	='3HACinputs'1953	='3HACInputs'IRS3	=010*E10*F10*610*H10
11	='icontent'IE23	='1content'1823	= $811 / \mathrm{Cl1}$	['3HACinputs'\|	\$3	='3HACinputs'lis3	E'3HACinputs'las3	E'3HACInputs'IR53	$=$ D11*E11*F11*G11*H21
12	='1content'IE24	z'1content'lib24							
13	='icontent'E25	='1content'Il25	=813/C13	='3HACInputs'l\|\$3	='3HACinputs'lLS	='3HACInputs'las 3	-'3HACInputs'IR\$3	=013*E13*F13*G13*H13	
14	='1content'IE26	F'1content'IB26							
15	E'1content'1E27	z'1content'1827							
16	='1content'IE28	-'Leontens'1828	=816/C15	='3HACInputs'\|l\$3	='ЗHACinputs'\|LS	z'3HACinputs'las ${ }^{\text {a }}$	='3HACinputs'lR\$3	=D16*E16*F16* ${ }^{\text {G }} 16^{*} \mathrm{H} 16$	
17	='1content'IE29	= '1content'l829							
18	'12content'IE30	-'LContent'I830	=818/C18	='3HACinputs'lis 3	='3HACinputs'ILS	2'3HACInputs'las3	='3HACInputs'RS3		
19	='1content'Ie31	-'1content'1831	=819/C19	='3HACInputs'lls 3	='3HACInputs'ILS3	='ЗHACinputs'10\$3	='3HACInputs'IRS3	=D19*E19*F19*G19*H19	
20	='1content'IE92	z'1content't832							
21	='1comtent'IE33	2'1content'lig3							
22	z'Icontent'IE34	='1eontent'1834							
23	z'Icontent'IE35	='1comtent'1835							
24	-'1content'IE36	='1content'1836							
25	='1content'le37	-'1content'11337							
26	='1comtent'IE38	='1content'1838							
27	z'1content1E39	-'2content'1839							
28	F'1content'IE40	='2content'IB40	=828/C28	-'3HaCinputs'lis3	='3HACInputs'ILS3	='3HACInputs'las 3	E'3HACinputs'IRS3	=D28*E28*F28*G28*H28	
29	='1content'IE41	g'1content'IBA1							
30	='1content'\|E42	-'1eontent'IEA2	=830/C30	z'3HACInputs'\|ls	='3HACinputs'ILS3	-'3HACInputs'lass	E'SHACInputs'1R53	$=030^{*} E 30^{\circ} \mathrm{F} 30^{*} \mathrm{G} 30^{*} \mathrm{H} 30$	
31	='1content'IE43	='1contant'1843							
32	E'1content'IE44	='1content'1344							
33	$=$ '1content'E45	E'1eontant'IB45							
34	='icontant'IE46	E'1content'1846							
35	='1content'\|E47	='1content'11847							
36	='1content'IE48	S'1content'1848							
37	='1content'IE49	P'1content'1849	-837/C37	='3HACInputs'IIS3	='3HACinputs'ILS3	='3HACinputs'las 3	z'3HACinputs'IR\$3		

	B	C	D	E	F	G	H	I	
38	-'1eontent'IE50	z'1content'\|350							
39	='1content'IES1	='1content'1351	=839/c39	-'3HACInputs'IIS3	-'3HACinputs'lLS	='3HACInputs'lQS3	='3HACinputs'RS 3	=D39*E39*F39*G39*H39	
40	I'1content'IE52	F'1content'1852	=840/C40	='3HACInputs'lis?	F'3HACinputs'll\$3	a'3HACinputs'los3	='3HACinputs'IRS3	$=D 40^{\circ} \mathrm{E} 40^{\circ} \mathrm{F} 40^{\circ} \mathrm{G40} 0^{\circ} \mathrm{H} 40$	
41	E'1content'IE53	-'Icontent'1853	=841/C41	-'3HACInputs'lis3	E'3HACInputs'ILS3	='3HACInputs'IQS3	='3HACinputs'RS\$	$=041{ }^{\circ} \mathrm{E} 41^{\circ} \mathrm{F} 41^{\circ} \mathrm{GA} 11^{*} \mathrm{HA1}$	
42	J'3content'IE54	='Icontant'1854							
43	='1content'IE55	='1content'lB55	=843/C43	E'3HACInputs'IIS3	E'3HACinputs'lLS3	E'3HACInputs'IQS3	='3HACinputs'IR\$3	$=$ D43*E43*F43*G43* 443	
44	='1content'IE56	-'1content'IB56							
45	='1content'IE57	-'Icontent'1357	=845/C45	E'3HACinputs'Ils3	='3HACInputs'll\$3	E'3HACinputs'IQS3	E'3HACInputs'R'R 3	=D45*E45*F45*G45*H45	
46	-'1content'IEss	='1content'\|358							
47	='icontent'IE59	='3content'1859	=847/C47	='3HACinputs'lls 3	='3HACinputs'lls 3	='3HACInputs'las3	='3HACInputs'IRS3	$=\mathrm{D} 47^{*} \mathrm{E47}{ }^{*} \mathrm{~F} 47^{*} \mathrm{G47}{ }^{\text {H }} \mathrm{H47}$	
48	='1content'IE60	='1content'1360	=848/C48	E'3HACinputs'lls3	='3HACInputs'1LS3	s'3HACInputs'las3	z'3HACInputs'IR\$3	-D48*E48* ${ }^{\text {F } 48^{\circ} \mathrm{G} 48^{*} \mathrm{H} 48}$	
49	F'1content'IE61	='1content'\|861							
50	-'1content'1E62	='1content'1362							
51	F'1content'1E63	='1content'\|863	=851/C51	='3HACImputs'IIS3	E'3MACInputs'lLs ${ }^{\text {a }}$	-'3HACInputs'IQS3	='3HACInputs'IRS3	$=051{ }^{*}$ E51 ${ }^{*}$ F51* ${ }^{\text {G51 }}$ * HS1	
52	='1contant'IE54	='1content'l864	=852/C52	='3HACinputs'lis3	F'3HACinputs'lLs 3	='3HACInputs'las3	='3HACinputs'li\$ 3		
53	F'1content'IE65	='1content'less							
54	z'1content'IE66	='1content'1366	=854/C54	-'3HACinputs'1153	E'3HACInputs'ILS3	='3HACInputs'\|QS3	='3HACinputs'IRS3	=D54*E54*F54*G54*H54	
55	-'1content'IE67	z'1content'IB67							
56	='1content'IE68	='1content'IB68	=856/C56	E'3HACInputs'\|l\$3	='3HACInputs'lLS3	='3HACInputs'\|aS3	F'3HACInputs'IRS3	=056 ${ }^{* E 56}{ }^{\circ} \mathrm{F5} 6^{\circ} \mathrm{G56}{ }^{\circ} \mathrm{H} 56$	
57	F'icontent'IE6s	a'licontent'IB69							
58	z'1content'1E70	='1content'1870	=858/C58	-'3HACinputs'\|ls ${ }^{\text {a }}$	='3HACInputs'lLS3	='3HACinpurs'las 3	='3MACInputs'IR\$3	$=D 58^{*} E 58^{\circ} \mathrm{F} 58^{\circ} 6588^{\circ} \mathrm{H} 58$	
59	E'1content'1E71	''Icontent'1871	=859/C59	r'3HACInputs'il\|s	='3HACInputs'lLs3	='3HACInputs'Ias3	='3HACinputs'IRS3	=D59*E59*F59*G59*H59	
60	='1content'IE72	='1content'1872							
61	='1content'1E73	='1content'1873							
62	='1content'IE74	r'1content'1874							
63	E'1content'IE75	='1content'\|B75	=863/C63	-'3HACInputs'lls	E'3HACInputs'lıs3	-'3HACInputs'la\$3	='3HACInputs'IRS3	$=\mathrm{D} 63{ }^{*} 663^{*} \mathrm{~F} 63^{*}$ 663* H 63	
64	E'Icontent'IE76	='1content'1876							
65	='1content'\|E77	='1content'IB77	18865/C65	='3HACinputs'\|	53	='3HACinputs'1LS 3	-'3HACInputs'IQS3	a'3HACInputs'1RS3	=D65*E65*F65*G65*H65
66	S'1content'1178	='1content'1878							
67	F'1content'1679	a'1content'1879	2867/C67	='3HACinputs'ils	-'3HACInputs'lLS3	='3HACInputs'lQS3	r'3HACInputs'IRs 3		
68	='3content' IE80	='1content'1B80	-868/C68	='3HACinputs'lls	:'3HACinputs'lls3	:'3HACInputs'laS3	-'3HACinputs'IRS3	=D68*E68*F68*G68*H68	
69	='1content'1E81	z'1content'1881	=869/C69	a'3HACinputs'lls ${ }^{\text {a }}$	a'3HACinputs'lLS3	='3HACInputs'las 3	='3HACinputs'R ${ }^{\text {S }} 3$		
70	-'1content'\|E82	='1content'1882							
71	F'1content'IE83	='1comtent'lig3							
72	E'1content'IE84	='1content'IB84	=872/C72	E'3HACIInputs'lls	F'3HACInputs'ILS3	='3HACinputs'las3	='3HACinputs'IR\$3	$=072^{* E 72 *} \times 72^{*} \mathrm{G} 72^{*} \mathrm{H} 72$	
73	E'1content'IE85	='Icontent'l885							
74	a'1contant'IE86	='1content'\|886							
75	='1content'1E87	r'1content'1887	=875/C75	E'3HACinputs'lls3	E'3HACinputs'lLs3	='3HACInputs'IQS3	='3HACinputs'IRS3		
76	='1content'IE88	='1contam'IB88							
77	E'1content'1E89	='1content'1889	=877/C7	E'3HACInputs'\|ls	='3HACInputs'ILS3	x'3HACinputs'IQS 3	='3HACInputs'IRS3	=D77*ET1*F7*G77*H77	
78	z'13content'IE90	F'1eontent'1890	=878/C78	-'3HACInputs'IIs ${ }^{\text {a }}$	='3HACinputs'lLs	-'3HACInputs'lQs3	='3HACInputs'IRS3	=078*E78*F8* ${ }^{\text {G78* }} \mathrm{H78}$	

Formulas for Table 14

	B	C	D	E	F	G	H	I
79	''coontent\|E91	F'1content'1891	=879/79	E'3HACInputs'1\|S3	e'3HACinputs'lls	z'3HACInputs'lass	='3HACInpute'IRS3	
80	z'Content'IE92	-'content'l1992	=880//880	='ЗHACInputs'sIIS3	='3HACInputs'lls	2'3HACInputs'los3	='3HACInpute'RSS	
81	F'Icontent'1E93	F'Icontent'IP93	=881/C81	='3HACInpurs'IS 3	='3HACInpust'LS3	a'3HACInputs'lass	='3HACInputs'IRS3	=081*E81**81*G81* ${ }^{\text {H81 }}$
82	E'Content'IE94	F'cooment'ligs	=882/C82	='3HACinputs'IS ${ }^{\text {a }}$	='3HACinputs'LLS	='JHACMnputs'loss	E'3HACInputs'RS3	
83	''contentIE95	-'tcontent'1895	=883//83	='ЗHacinpurs'Ils	z'3HACInputs'ls3	= '3HACInputs'los3	='3HACInputs'RS3	
84	E'content'\|E96	-'LComtent'IB96	=884/1884	='3HACInputs'IS3	='3HACInputs'l\|s3	= '3HACInputs'las3	='3HACInputs'R53	
8	F'IContontIE97	E'1contant 1397	FB85/c85	E'ЗHACInpurs'\|IS	F Зhacinputitis3	E 'riAcinputs'ass	F'rhAanputs'RS3	
86								[5UM(14:185)

	A	B	C	D	E	F	G	H	I	J
	Isotope	Content (a)	$\begin{aligned} & \text { Leach } \\ & \text { Ratio } \end{aligned}$	Learched (d)	$\begin{gathered} A_{2} \\ \left(a / A_{2}\right) \end{gathered}$	$\begin{aligned} & \text { MAR } \\ & \left(A_{2}\right) \end{aligned}$	DR	ARF	LPF WVMP	Release (A)
2		From Table 1	From Table 3 for glass to LDCC	Calculated for LDCC intarmal to the melter	From Table 1	Calculated for LDCC intemal to the melter	From Table 3 for LDCC internal to the meher			Calculatad for inhalation from LDCC Internal to the matter
3	a	b	c	$d=b^{*} c$	*	$t=d / 6$	E	h	1	$j=\mathrm{f}^{*} \mathrm{~g}^{*} \mathrm{~h}^{*} \mathrm{i}$
4	C-14	='12onten'lDS	='3HACInputs'IG\$3	-84*CA	='Icontent'lBS	=04/E4	='JHACinputs'IKS3	='3HACInputs'IMS3	='3HACInputs'1Q53	=F4* ${ }^{\text {H4 }}$ "G4*14
5	K-40	a'1content'107	z'3HACInputs'lG\$3	=85 ${ }^{\circ} \mathrm{C}$ c	='1content'187	= D5/E5	E'3HACinputs'IKS3	='3HACInputs'IM\$3	='3HACInputs'1053	=F5*H5*G5*15
6	Mn-54	a'leontent'ID8	r'3HACInputs'lGS3	= $\mathrm{BL}^{\circ} \mathrm{C} 6$	='Icontent'IB8	=06/E6	='3HACInputs'IKS3	='3HACinputs'lM\$3	='3HACInputs'1as3	=F6* ${ }^{6} 6^{*} 66^{*} 16$
7	Co-60	E'LContant'IDE	r'3HACinputs'IG53	$=87{ }^{\circ} \mathrm{C} 7$	='Icontont'136	ED7/E7	='3HACInputs'IK53	='3HACinpurs'Im\$3	='3HACInputs'lQ 53	-570 $\mathrm{H7}^{\circ} \mathrm{G} 7^{19}$
8	Nr-63	-'1contant'ID11	r'3HACInputs'1653	=88 ${ }^{\circ} \mathrm{CB}$	='1content'\|B11	=08/E8	='3HACmputs'1k53	='3HACinpurs'IM\$3	a'3HACinputs'las	
9	5n-90	e'1content'1012	E'3HACImputs'1653	=89*C9	I'Jcontent'1B12	=09/E9	-'3HACImputs'1k53	='3HACinputs'IM\$3	='3HACimputs'las3	=F9*H5*G9*19
10	r. 90	='1content'1013	z'1content'\|B13							
11	2r-95	='1content'ID14	='3HACImputs'\|G\$3	-811* ${ }^{\circ} 11$	E'1content']B14	$=011 /{ }^{\text {E }} 11$	='3HACInputs'\|K\$3	='3HACInputs'\|M\$3	='3HACIInputs'IQS3	=F11* ${ }^{\text {H11 }}{ }^{*} \mathrm{G11}{ }^{*} \mid 11$
12	Nb-95	E'1content'ID15	-'3HACinputs'\|G53	$=812^{*} \mathrm{C} 12$	z'Icontent'l315	=012/E12	='3HACInputs'\|K\$3	E'3HACInputs'IMS3	='3HACInputs'las3	
13	Nb-95m	='1content'I016	-'1cantent'\|816							
14	Tc-99	z'1content'IO17	n'3HACInputs'IG\$3	=814* ${ }^{\circ} \mathrm{C} 14$	='1content'\|817	=014/E14	-'3HACInputs'\|K\$3	='3HACinputs'IM\$3	a'3HACImputs'las 3	-F14*H14*G14*14
15	C-137	='1content'1019	-'JHACinputs'\|G53	- $815{ }^{\circ} \mathrm{C} 15$	='2content'\|B19	=D15/E15	E'3HACImputs'\|K\$3	='3HACInputs'lm $\$ 3$	='3HACinputs'IQS3	=F15*H15*G15*\|L5
16	B-137m	='1content'ID20	='1content'1820							
17	Eu-154	='1content'ID22	='3HACInputs'IG53	${ }^{81717}{ }^{\circ} \mathrm{C} 17$	F'icontent'\|B22	=017/E17	-'3HACInputs'\|K\$3	='3HACInputs'lms ${ }^{\text {a }}$	='3HACInputs'ILS3	FF17* ${ }^{1177^{6} 617^{+117}}$
18	Hz-206	a'1content'1023	='3HaCinputs'\|G53	-818 ${ }^{\circ} \mathrm{C} 18$	E'1content'1823	=D18/E18	E'3HACInputs'IK\$3	='3HACInputs'IM\$3	='3HACInputs'IQ53	FF18 ${ }^{\circ} 118^{\circ} \mathrm{G} 18^{\circ} 118$
19	7-206	='1content'1024	='1content'IB24							
20	7-207	E'Icontent'ID25	-'3HACinputs'IG\$3	= $820^{\circ} \mathrm{C} 20$	='1content'\|325	=020/E20	-'3HACInputs'IK53	-'3HACinputs'IMS3	='3HACInputs'IQS3	$=F 20^{\circ} \mathrm{H} 20^{\circ} \mathrm{G} 20^{\circ} 120$
21	n-208	E'Leontent'IO26	='1content'1326							
22	T-209	='1content'ID27	='1content'1327							
23	T-210	E'1content'l028	='3HACinputs'lG\$3	-823 ${ }^{\circ} \mathrm{C} 23$	='1content'lib28	=023/E23	E'3HACimputs'\|KS3	E'3HACInputs'IMş	='3HACinputs'las ${ }^{\text {a }}$	=F23* ${ }^{\text {2 }} 23^{\circ} \mathrm{G} 23^{*} 123$
24	Pb-210m	F'1content'lD29	='Icontent'\|B29							
25	$\mathrm{Pb}-210$	E'1contant'1030	='3HACinputs'lG53	=825*C25	='1content'1830	$=025 / E 25$	E'3HACinputs'\|K\$3	a'3HACinputs'IMS3	a'3HACinputs'l0:53	=F25*H25*G25*125
26	Pb-211	='1content'1031	e'3HACinputs'lg\$3	=826 ${ }^{\circ} \mathrm{C} 26$	='1contant'IB31	=026/E26	I'3HAClnputs'\|KS3	='3HACInputs'IM $\$ 3$	E'3HACInputs'las 3	-F26* $\mathrm{H} 26^{\circ} \mathrm{G} 26^{\circ} 125$
27	Pb-212	F'lcontent'ID32	='1content'1832							
28	Pb-214	='1content'ID33	='1content'1833							
29	B+209	='1content'ID34	F'1content'1334							
30	81-210	E'LContem'ID35	-'1content'IB35							
31	B-211	='Lcontent'l036	-'1content'l836							
32	时212	E'LContent'IO37	='2content'1837							
33	阯-213	='1content'ID38	='1content'1838							
34	80-214	E'1content'ID39	='1content'1839							

Formulas for Table 15

	A	B	C	D	E	F	G	H	I	J
35	B+215	F'icontent'ID40	='3HaCinputs'\|Gs3	=1835*035	-'1content'1840	=035/E35	コ'3HACInputs'\|K53	E'3HACInputs'IM\$3	-'3HACInputs'las3	=F35* $\mathrm{H} 35^{\circ} \mathrm{G} 35^{*} 135$
36	Po-210	='1content'ID41	='1content'l341							
37	P0-211	='1content'ID42	-'3HACInputs'lG\$3	=837* ${ }^{\circ}$ C37	='1conten'1842	=037/E37	z'HACinputs'IK\$3	E'3HACInputs'IMS3	='3HACInputs'las3	=F37*H37*G37* 37
38	Po-212	E'1content'IDA3	='1content'\|Ba3							
39	Po-213	z'Content'iD44	='1content'IB44							
40	Po-214	E'1contant'1045	='1content'1B45							
41	Po-215	E'1content'ID46	a'1content'liba							
42	Po-216	= 'Lcontent'ID47	-'1content'1347							
43	Po-218	='1content'ID48	a'Lcontant'IB48							
44	At-225	E'1content'1049	='3HACInputs'\|G\$3	$=844 * \mathrm{C} 44$	='1content! ${ }^{\text {a }}$ 49	=044/E44	E'3HACinputs'IKS3	E'3HACInputs'IMS3	='3HACinouts'las3	=F44*H44*G44*144
45	At-217	z'1content'IDSO	='1contant'IB50							
46	At-218	='1content'ID51	a'3HACInputs'1G\$3	$=846{ }^{\circ} \mathrm{CAS}$	$=1$ content'\|B51	=046/E46	='3HACInputs'IK\$3	=3HACInputs'IM\$3	='3HACInputs'1953	
47	At-219	='1content'l052	='3HACinputs'\|Gs3	$=847{ }^{\circ} \mathrm{C} 47$	='3content'\|BS2	=047/E47	z'3HACInputs'IK\$3	-'3HACInputs'IMS3	='3HACImputs'las 3	
48	Pn-217	z'1content'ID53	='3HACInputs'1G53	$=848^{\circ} \mathrm{CAB}$	='1content'1353	-D48/E48	='3HACInputs'IK\$3	E'3HACInputs'IMS3	-'3HACInputs'las	FF48*H48* ${ }^{\text {c } 488^{\circ} 148}$
49	Rn-218	='1content'IDS4	='1content'IB54							
50	Rn-219	F'1content'ID55	='3HACInputs'16\$3	2B50'C50	F'1content'lB55	=050/E50	='3HACInputs'IK\$3	='3HACInpurs'lM 53	-'3HACInputs'las 3	=F50*H50*G50*150
51	$\mathrm{Rn}-220$	='1contant'IDS5	z'1content'1356							
52	Rn-222	E'1content'ID57	='3HACInputs'16\$3	= ${ }^{\circ} 52^{*} \mathrm{C} 52$	='1content'1857	=052/E52	z'3HACinputs'IK\$3	='3HACInputs'IM\$3	E'3HACInputs'los 3	=F52* $552^{*} \mathrm{C} 52^{\circ} 152$
53	Fr-221	E'1content'ID58	a'1contem'l 1858							
54	Fr-223	z'1content'ID59	='3HACInputs'\|G'9	2854*C54	a'1content'1859	[054/E54	='3HACInputs'1X ${ }^{\text {a }}$	-3HACInputs'lm $\$ 3$	e'3HACInputs'lQS3	=F54*H54*654*154
55	R P 223	F'1content'ID50	='3HACInputs'lG53	=855*C55	='1contant'licio	=055/E55	E'HHACImputs'IK\$3	-'3HACInputs'M ${ }^{\text {a }}$	-'3HaCinputs'las 3	-F55*HS5*G55*155
56	R-224	='1content'ID61	E'1content'\|B61							
57	Ra-225	a'1content'ID62	a'1content'\|B62							
58	R-236	='1content'ID63	-'3HACInputs'\|G\$3	=858*C58	='1content'\|1863	=D58/E58	='3HACInputs'1KS3	-'3HACInputs'IM $\$ 3$	a'3HACInputs'las 3	=F58* ${ }^{\text {H } 58 * 6588158 ~}$
59	Ro-228	='1content'ID64	='3HACInputs'1G53	=8590.C59	E'1contant'1864	=059/E59	z'3HACinputs'tK\$3	a'3HACInputs'IMS3	='3HACinputs'las 3	=F59*H59*G59*159
60	Ac-225	z'lcontent'ID65	='1content'1865							
61	Ac-227	='1content'ID66	='3HACInputs'IG53	=861* ${ }^{\circ} \mathrm{C} 61$	='1content'IB66	=D61/E61	='3HACImputs'IK\$3	='3HACinpurs'IM\$3	='3HACinputs'las3	=F61*H61*G61*\|61
62	Ac-228	E'1content'ID67	='1content'1867							
63	Th-227	='Lcontent'ID68	='3HACinputs'\|G\$3	-863*C63	E'1content'1368	=063/E63	r'3HACInputs'IK\$3	='3HACinputs'lms3	E'3HACInputs'las3	$=F 63^{*} \mathrm{H} 63^{\circ} \mathrm{G} 63^{\circ} 163$
64	Th-228	='Leontent'1069	='1cantent'1869							
65	Th-229	='1content'1070	='3HACInputs'! $6 \$ 3$	=865*C65	='100ntant'1870	-D65/E65	e'3HACInputs'IK\$3	='3HACInputs'/M53	a'3HACInputs'IaS3	EF65*H65*G65*165
66	Th-230	='1comtent'1071	='3HACImputs'l6\$3	${ }^{1866 *}{ }^{\circ} \mathrm{C} 66$	E'1content'1871	=D66/E66	='3HACInputs'IK $\$ 3$	'3HACInputs'IM 53	='3HACInputs'las3	=F66* $\mathrm{H} 66^{*} \mathbf{6} 66^{\circ} 166$
67	Th-231	='1content'ID72	x'1contant'1872							
68	Th-232	='1content'ID73	='1content'1873							
69	7h-234	-'1content'ID74	='1content'1974							
70	Pa-231	='1content'1075	='3HACInputs'\|6\$3	=870* ${ }^{\circ} 70$	='1content'1875	1=070/E70	='3HACInputs'1K53	-'3HACinputs'M ${ }^{\text {S }}$ 3	-'3HACInputs'laS 3	=F70* $770{ }^{\circ} \mathrm{G70}{ }^{\circ} 170$
71	Pa-233	E'icontent'1076	s'1content'1B76							
72	Pa-234	\%'1content'1077	='3HAClinputs'1653	=672* ${ }^{\circ} 72$	E'1content'1877	=072/E72	E'3HACInputs'IK\$3	='3HACInputs'lMs3	='3HACImputs'IOS3	=F72*472*672*172
73	Pg-234m	-'1content'1078	='Icontent'1878							
74	U-232	-'1contenr'l079	='3HACImputs'16\$3	=874*C74	F'1eontent'1879	=074/E74	a'3HACInputs'IK\$3	='3HACİputs'IM53	='3HACInputs'l0:3	=F74*H74*G74*174
75	U-233	='1content'ID80	-'3HACinputs'liss	$=875 * C 75$	E'1content'IBso	=075/E75	='3HACinputs'KS3	-'3HACinputs'IM $\$ 3$	E'3HACInpurs'\|O53	هF75*H75*G759175

	A.	B	C	D	E	F	G	H	I	J
76	U.234	F'comem'ID81	-'3HACInputs'16:53	18876 ${ }^{\circ} \mathrm{C76}$	''Content'IE81	ED76/E76	='3HACInputs'IK¢3	='3HACinputs'M53	e'3HACLnputs'las3	-776*H76*G769176
77	U-235	='1content'1082								
78	U-235m	F'Content'1083	='100ntant1882							
79	U-236	F'Icontent'1084	='3HACInputs'1653	=879*C79	E'Icontent'1884	=079/E79	-'3HACInputs'KS3	-'3HACInputs'IM ${ }^{\text {a }}$	='3HACInputs'lOS3	\|FF9*H79*G79*179
80	U-237	S'IContent'1085	='contant 1885							
81	U-238	='1content'IID8	='coontent'1886							
82	${ }^{\text {N }}$-237	F'contem'1087	z'SHACInputs'1653	=882*C82	E'Icontent'1887	=082/E82	='3HACInputs'1K53	='3HACinputs'M ${ }^{\text {a }}$ S	='3HACinputs'1053	
83	Np-239	''IContent'1088	='content'l1888							
84	P1-238	''IContent'IDA9	:'3HaCinpute'1653	=884*084	''content'IB89	=084/E84	-'3HACinputs'1K¢3	='3HACImputs'M ${ }^{\text {S }}$ 3	-'3HACInputs'tas3	-584*H84*G84*184
85	Pu-239	' ${ }^{\prime}$ 'content'logo	:'Зhacinputs'GGS3	${ }^{2885}+685$	''contant'İ90	2085/E85	= 'HaCInputs'IKs3	='3HACinpus''M53	='3HACInputs'las3	=F85*H85*G85\%185
86	Pu-240	''Contant'1091	E'ЗHACinputs'tcs ${ }^{\text {a }}$	${ }^{8885}{ }^{\circ} \mathrm{C} 86$	-'Content'lig	-D86/E86	='3HACInputs'11¢\$3	='ЗHACInpurs'\|M 53	='3HACinputs'las 3	
87	Pu-241	''lcontent'1092	='3HACInpute'lls 3	=887*C87	z'Loontent'1892	=D87/E87	='3HACInputs'K¢3	-'3HACinputs'IM ${ }^{\text {a }}$	2'3HACInputs'las3	- $887 *$ H87* 687 P187
88	Amm241	F'Lentent'ID93	2'3HACInputs'1653	=888 ${ }^{\text {cos }}$	''Icontent'l1993	=D88/E88	:'3HACInputs'K\$5	='3HACInputs'M $\$ 3$	= 3 HACInputs'los 3	=F88*H88*GE8 ${ }^{188}$
89	Am-213	F'Lsoment'lD94	='3HACinputs'l653	-889*C99	E'Leontent'\|094	=089/E89	='ЗHACimputs'KS ${ }^{\text {a }}$	='ЗHACinpust'IM ${ }^{\text {a }}$	='3HACInputs'IOS 3	
90	Cm-242	F'content'1095	-'ЗHACImputs'GS3	=890*C90	''content'1095	=090/F90	''3HACInputs'KS3	='3HACInputs'IMS3	='3HACChputs'las 3	FF90*H90*G90\%190
91	$\mathrm{c}_{\mathrm{m}-243}$	E'content'l096	='3HACInputs'l6S 3	=891* ${ }^{\circ} 91$	z'Comtent'les6	=091/E91	='3HACInputs'IKs	:'3HACInputs'MS3	='3HAChnpust'las ${ }^{\text {a }}$	-F91*H91*G91*91
92	$\mathrm{Clm}^{\text {che }}$	E'Icoment'1097	I'JHACinputs'les3	=892*C92	F'Contont'1897	=092/E92	-3HACInputs'IKS	-'ЗHACInpute'MM ${ }^{\text {a }}$	-'3HACMputs'las3	-f92*H92*G92*192
93										SUM(44.92]

Formulas for Table 16

	B	C	D	E	F	G	H	I	J
	Content (Ci)	teach Ratio	Leached (Ci)	$\begin{gathered} A_{2} \\ \left(C_{1} / A_{2}\right) \end{gathered}$	$\begin{aligned} & \text { MAR } \\ & \left(A_{2}\right) \end{aligned}$	DR	ARF	$\begin{aligned} & \text { LPF } \\ & \text { Melter } \end{aligned}$	Release (A_{2})
	From Table 1	From Table 3 for glass to LDCC	Calculated for LDCC internal to the melter	From Table 1	Calculated for LDCC internal to the melter	From Table 3	internal to the melt	increase in pressure	Calculated for inhalation from LDCC internal to the melter from increase in pressure
3	b	c	d=b* ${ }^{\text {c }}$	e	$\mathrm{f}=\mathrm{d} / \mathrm{e}$	g	h	i	$j=f{ }^{*} \mathrm{~g}^{*}{ }^{\text {\% }}$ i
4	='1content' 1.15	='3HACinputs'!G\$3	=84*C4	='1content'l35	=D4/E4	='3HACinputs'!K\$3	='3HACinputs'!O\$3	='3HACIInputs'IR\$3	FF4*H4*G4*14
5	='1content'! 107	='3HACinputs'!G\$3	=B5*C5	='1content'! 17	=D5/E5	='3HACinputs'!K53	='3HACinputs'!O\$3	='3HACinputs'!R53	FF5*H5*G5*15
6	='Icontent'! 08	='3HACinputs'! ${ }^{\text {a }}$ \$3	-B6*C6	='1content'\|B8	=06/E6	='3HACinputs'IK\$3	='3HACinputs' $10 \$ 3$	='3HACinputs'!R53	=F6*H6* $6^{*}{ }^{*} 16$
7	-'1content'. 06	='3HACinputs'! $6 \$ 3$	$=87{ }^{+} \mathrm{C} 7$	$=$ '1content'\|B6	=07/E7	='3HACinputs'IK\$3	='3HACinputs'10\$3	='3HACinputs'lR\$3	=F7* H^{*} G77*17
8	='Itontent! 1011	='3HACinputs'!G53	=88*C8	='1content'! Bl^{11}	=D8/E8	='3HACinputs'!K\$3	='3HACinputs'! 0 S3	='3HACinputs'IR\$3	$=\mathrm{F8}{ }^{*} \mathrm{H}^{*} \mathrm{G} 8{ }^{*} 18$
9	='1content ! ID12	='3HACinputs'GG53	-B9*C9	='1content'! ${ }^{\text {P12 }}$	-D9/E9	='3HACinputs'!K\$3	='3HACinputs'!O\$3	='3HACinputs'!R\$3	-F9*H9*G9*19
10	='1content'l013	='1content'! ${ }^{\text {a }} 13$							
11	='1content'ID14	='3HACinputs'! $6 \$ 3$	$=811 *{ }^{\text {c }} 11$	- ${ }^{1}$ content'l 1814	=011/E11	-'3HACinputs'! $\$ 3$	='3HACinputs'! $\$^{3} 3$	='3HACinputs'!R\$3	=F11*H11*G11*111
12	='1content'ID15	='3HACinputs'!G\$3	$=812{ }^{\text {c }}$ C12	='icontent'! 615	=D12/E12	='3HACinputs'!K\$3	-'3HACinputs'! $\$ 3$	E'3HACinputs'IR\$3	=F12* $\mathrm{H} 12{ }^{*} \mathrm{G} 12{ }^{*} 112$
13	='1content!!D16	='1content'! 816							
14	$=$ '1content'!017	='3HACinputs'! $6 \$ 3$	=814*C14	='1content'! 317	=D14/E14	='3HACinputs'IK\$3	='3HACinputs'!0\$3	='3HACinputs'!R\$3	=F14*H14*G14*\|14
15	='1content'ID19	='3HACinputs' $16 \$ 3$	=815*C15	='1content'! ${ }^{\text {P19 }}$	=015/E15	E'3HACinputs'K\$3	='3HACinputs'! $\$ 3$	$=$ '3HACinputs'IR\$3	=F15*H15*G15*115
16	='1content!'020	='1content'! 320							
17	$=$ '1content'! 022	$=$ '3HACinputs'! G\$ 3	-817* ${ }^{\text {C17 }}$	='1content'\| 821	=D17/E17	='3HACinputs'! ${ }^{\text {S }}$ S ${ }^{\text {a }}$	-'3HACinputs'10\$3	='3HACinputs'!RS3	=F17*H17*G17*117
18	='1content'! ${ }^{\text {a } 23}$	='3HACinputs'! ${ }^{\text {S }}$ 3	$=\mathrm{B} 18^{\circ} \mathrm{C} 18$	='1content'!322	=018/E18	$=$ '3HACinputs'! $\$$	='3HACinputs'!	='3HACInputs'! ${ }^{\text {S }}$ S 3	=F18* ${ }^{\text {H } 18{ }^{*} \mathrm{G} 18^{*}+118}$
19	='1 content'!024	='1content'\|B24							
20	$=1$ content'! 025	='3HACinputs'!G53	$=820 * \mathrm{C} 20$	='1content'! 825	=D20/E20	='3HACinputs'!k\$3	='3HACinputs'!0\$3	-'3HACInputs'lR\$3	=F20* $\mathrm{H} 20^{*} \mathbf{G 2 0 *} 120$
21	='1content'! D26	='1content'! ${ }^{\text {2 }}$ 26							
22	='1content'ID27	='1content'!B27							
23	='1content'ld28	='3HACinputs'! $6 \$ 3$	=823* ${ }^{\text {c } 23}$	='1content'! 828	=023/E23	='3HACinputs':K\$3	='3HACinputs'! $0 \$ 3$	='3HACinputs'lR\$3	=F23* $223^{*} \mathrm{G} 23^{*} 123$
24	$=$ '1content! D 29	='1content'\|B29							
25	='1content'!030	='3HACinputs'!G\$3	- $825 *$ C25	='1content'! $\mathrm{B}^{\text {30 }}$	=025/E25	='3HACinputs'! $\$$ \$	='3HACinputs'!0\$3	='3HACinputs'!R\$3	=F25* $225^{*} \mathrm{G} 25^{*} 125$
26	='1content'!031	='3HACinputs'!G\$3	=826*C26	E'1content'! ${ }^{\text {P31 }}$	=D26/E26	='3HACinputs'K\$3	='3HACinputs'0 ${ }^{\text {S }}$ 3	='3HACinputs'!R\$3	=F26* $226^{*} \mathrm{G} 26^{*} 126$
27	='1content'!032	='1content'l832							
28	='1content'!033	='1content'! ${ }^{\text {P3 }}$ 3							
29	='1content'!034	='1content'!B34							
30	='1 Content'!035	='1content'!B35							
31	='1content! 036	='1content' IB36							
32	='1content! ! 037	='1content'!B37							
33	='1content'!038	='1content'! 3 38							

	B	C	D	E	F	G	H	1	J
34	E'1.ontent'039	=1content1339							
35	-1'conten'ILa		$\underline{1235 *}$	F'1contentB40	\|=035/335			='HACCinput'RS53	
36	E'Iconement\|0a1	=1conten'tB41							
37	E'1conemit:042	=3HACCinput'1693	$\underline{1-37 \%}$	F-1conten:1842	-0377/E3	= $=$ HACCinput's'K3		[=3HACCinous':RS3	$1=33 \geqslant+37 * 637+13$
38	-1/conent!2043								
39	E'1content1044	=1conteri'184							
40	E'1conement\|045	=16ontent\|1445							
41	=1content!046	Elconter:1346							
42	E'1conent1047	=1contert'1897							
43	E'Comentilio48	-1content!1988							
44	=1content1049	-3HACCinput'6593	$\underline{1}=844 \times 4$	E'Liconeritilas	\| $=044 /$ /54	= $=$ Heacinputs'K\$3		=3HACCinput'RS建	
45	E1contentiloso	EIContentileso							
46	E'Icontent'1051	-3HaCinput'693	-846\%C46	-1'contenilisi	O46/F/46	-3HACinout:'K3		-3HACInput'R'R33	$\mathrm{F}_{-46^{\circ} \mathrm{H} 46^{*} \cdot 646^{\circ} 146}$
47	E1anerent1052	=3HACinpus'6S3	=887+C47	E'1content:1852	-047/E47		=3hacinuus'0:93	-3HACInutu'RSS3	${ }_{-647}$
48	=1'contentios	- $=$ HaCCinous'6S63	=888*C48	E'1content11853	-048/E48	=3HACinouts'K3	İ3HACMmuts 1053	I-3HACCinuts'RS3	
49	=1content'1054	=1content11854							
50		=3HACCinuts':GS3	$\underline{1-850}$	E'1contentilis	IOS0/F50	= $=$ HACCinouts'KK3		E'3HACCinut'RSS3	$1-550^{*}+55^{*} 650 \% 150$
51	=1'conemen'1056	EIConten'1956							
52	E'1conement1057		$1=852^{*} \times 52$	=1conteriti857	IO-52/[52	= $=$ HACCinouts:K53	[-3HACinputs		
53	z'icoment'058	=1content1858							
54	E1/content10s9	-3HACCinutu'693	$\underline{1854+54}$	=1'content1059	Sosa/f54			'3HACinout'RS3	${ }_{-54}+454 \times 654 \times 54$
55	E'1contentIIG60	=3HACinput'6: 63	- $=855^{\circ} \mathrm{C} 5$	Elicontent1860	IOS5//55	=3HACinpus:'K¢3	=3HACinput' 0 OS		
56	E'1anament1061	=1content11861							
57	=1content1062	=1/6ontent1662							
58	=1conem ${ }^{\text {a }}$ I06 3	=3HACInout'6S53		=1content1163	-OS8//58	=3HACinput':Ks3			-588* $588^{*} 658{ }^{\circ} 58$
59	E1conem ${ }^{\text {a }}$ (1064	=3hacinutus'653	-859*c59	E'content1664	-059/599	=3HACinouts:K53	=3HACinputis 1083		FF59+459+699+159
60	=11content1065	-Icontent11865							
61	=1'conement1066	-3HaCinputici6s	IE61* 66	=1'content'1666	$\left.\right\|_{\text {O061/E51 }}$		I=3HaCinuusios	=3HACCinout'RS3	$\left.\right\|_{\text {FF61 }}+611^{+614} 161$
62	E'1content'1067	=1conten't1867							
63	E'1content1068		I-863>63	E1content1668	I=063/63	= $=$ HACCinous:'K53	= $=$ HHACinpus	=3HAG:	
64	E-1conement1069	=1/conten! 1 B69							
65	E'1contentilozo	-3HACinpus'6593	$\underline{8655} \times 65$	=1conentil170	-065/65	\#3HaCinuus:KS3	=3HaCinpus'1053	E'HACinout'RS3	
66	E'Liconentior	-3HACinpus'6953	$1=866^{\circ}$ c66	E'1contentiliz7	-086//66	EYHACinouts:K5	= $=$ BHACinnut	=3HACMmus'RS33	$=F 66^{*}+66^{\circ} 666^{\prime} 166$
67	E'1conement1072	E1conten!1872							
68	=11conementip	=160nten'1873							
69	E'1conient1074	E160ntent1874							
70	E'comentiloz	=3HACinout51653	$1-870 \cdot \mathrm{C} 70$	E1conterit:75	$1=070$ ¢ 70	=3HACinputs'K53	1 $=3$ BHACinoutsios	=3HACinpus'RS3	$1=770^{+470}+670 \times 170$
71									
72	=1icontention	E3HCCinputs'653	- $=872 \times$ c72	F-1/content187	10072/722	E=3HACinput'MS3	[$=3$ HaCinpust'053	=3HACinpus'RSS3	
73	E'IConemitiliz	=16ontent\|1878							
74	E'10anent!079	-3HACCinutut'693	$1=874 \times 74$	-1'tontent1079	1 $=0741674$	-3HACinputs:\$ ${ }^{\text {S }}$	-'3HACinput'1093	=3HACingut'siRS	$\underline{=724+474 \times 674+77}$

Formulas for Table 16

	B	C	D	E	F	G	H	I	J
75	='1content'! ${ }^{\text {d }}$ (${ }^{\text {a }}$	='3HACinputs'! $6 \$ 3$	$=875{ }^{\circ} \mathrm{C} 75$	$=$ '1content'\|380	=075/E75	='3HACImputs'! $\$$ \$ 3	='3HACinputs'!O\$3	='3HACinputs'! R \$3	=F75*H75*G75*175
76	='1content'!D81	='3HACinputs'!G\$3	$\underline{-876 *}{ }^{\circ} 76$	='1content'! 881	=076/E76	='3HACinputs'!K\$3	='3HACinputs'!OS3	='3HACinputs'! ${ }^{\text {a }}$ S 3	=F76*H76*G76*176
77	='1content'!082								
78	='1content'1083	-'1content'l882							
79	E'1content'! 084	='3HACinputs'!G\$3	-879*C79	='1content'l884	-079/E79	='3HACinputs'!K\$3	='3HACinputs'! 0 \$ 3	='3HACinputs'!R\$3	FF79*H79*679*179
80	='1content'1085	='1content'1885							
81	='1content'!086	='1content'! 386							
82	$=$ '1content'!087	='3HACinputs'!G\$3	=882*C82	='1content'! 188	-082/E82	I''3HACinputs'! $\$$ \$ 3	='3HACinputs'!O\$3	='3HACinputs'! R \$3	$=F 82^{*}+882^{*} G 82{ }^{*} 182$
83	='1content! 1088								
84	='1content! 1089	='3HACinputs'GS3	=884*C84	-'1content'! 889	=084/E84	='3HACinputs'! $\$ 3$	='3HACinputs'!0\$3	='3HACinputs'!R53	$=\mathrm{F} 84^{*} \mathrm{H} 84^{*} \mathrm{G} 84^{*} 184$
85	='1content'!090	='3HACinputs'!G\$3	=885*C85	='1content'!B90	$=085 / E 85$	='3HACinputs'!K\$3	='3HACInputs'! 0 \$3	='3HACinputs'!R\$3	=F85*H85*G85*185
86	='1content'! 091	-'3HACinputs'!6\$3	$=886{ }^{*} \mathrm{C86}$	='1content'l891	=086/E86	='3HACinputs'!K\$3	='3HACinputs'!0\$3	='3HACinputs'! R \$3	$=F 86 *$ H86* ${ }^{\text {G }}$ 6**186
87	E'1content ! 092	='3HACinputs'!G53	=887*C87	-'1content'! 692	=087/E87	='3HACinputs'!K53	='3HACinputs'!OS3	='3HACinputs'IR\$3	- F87*H87*G87*187
88	z'icontent'!D93	='3HACinputs'!G\$3	=888* ${ }^{\text {c }} 88$	='1content'! 893	=088/E88	='3HACinputs'!K\$3	='3HACinputs'!OS3	='3HACinputs'!R\$3	$=\mathrm{F} 88^{*} \mathrm{H} 88^{*} \mathrm{G} 88^{*} 188$
89	='1content ! 1.094	='3HACinputs'!G\$3	-889*C89	$=$ '1content'!394	=089/E89	='3HACinputs'!K\$3	='3HACinputs'!053	='3HACinputs'!R\$3	=F89*H89*G89*189
90	='1content'!095	='3HACinputs'!G\$3	=890* ${ }^{\circ} 90$	='1content'\|895	=D90/E90	='3HACinputs'IK\$3	='3HACinputs'IO\$ ${ }^{\text {a }}$	='3HACinputs'! ${ }^{\text {S }}$ S 3	=F90* $\mathrm{H} 90 \times \mathrm{G90}{ }^{\text {+ }} 190$
91	E'1content'!096	='3HACinputs'!G\$3	-891*C91	='1content'! ${ }^{\text {P96 }}$	=091/E91	='3HACinputs'!K\$3	='3HACinputs'10\$3	='3HACinputs'! R \$3	=F91* ${ }^{\text {H91*G91*191 }}$
92	E'1content! 097	='3HACinputs! ${ }^{\text {a }}$ \$ 3	$\underline{892}{ }^{+C 92}$	='1content'1697	1=092/E92	='3HACinputs'!K\$3	E'3HACinputs! OS 3	='3HACinputs'IRS ${ }^{\text {a }}$	=F92*H92*G92*192
93									=SUM(14:992)

	A	B	C	D	E	F	G	H	I	J	
1	Isotope	Content (c)	Leach Resto	Leached (C)	$\begin{gathered} A_{2} \\ \left(a / A_{2}\right) \end{gathered}$	MAR (A_{2})	OR	ARF	$\stackrel{\text { LPF }}{\text { WNMP }}$	Release $\left\|A_{2}\right\|$	
2		From tabla 1	From Table 3 for PBS to LDCC	Calculated for LDCC external to mether	From Table 1	Cakubted for LDCC external to metter	From Table 3 for LDCC external to the metar from increse in pressure			Calculated for Inhalation from LDCC external to the melter from increase in pressure	
3	\square	b	c	$\mathrm{d}=\mathrm{b}^{\circ} \mathrm{c}$	-	$t=d / \mathrm{e}$	E	h	1		
4	C-137	='1content\|	19	-'3HACImputs'H53	$=84 \cdot \mathrm{C4}$	='coontent'1819	204/E4	E'SHACInputs'US3	='3HACinputs'IOS3	- $=$ HAACinputs'las3	=F4* $64 *+44^{*} 14$
5	Br-137m	='1content\|'F20	='3HACInputs'IH53	=85*CS	='content'1820						
6	${ }^{5 r}-90$	='1content'\|F12	='3HACInputs'\|H53	=860 ${ }^{\circ} 6$	E'Ceontent'lB12	[-D6/E6	E'HHACinputs'LS3	2'3HACInputs'OS3	-'3HACinputs'las3		
7	r.90	='1content\|	13	-'3HACinputs'H53	-87*C7	r'1content'lit ${ }^{\text {a }}$					
8	${ }^{\text {Pmm-147 }}$	='1content'\|F21	='ЗHACImputs'IIH3	=88*8	''coontant'1821	=08/E8	='3HACInputs'U53	E'3HACInputs'los 3	P'3HACinputs'las3	=F8* $8^{8} 8^{*} 8^{*} 18$	
9	Am-241	z'coontent'lf93	='ЗHaCinputs'tifs	-89* ${ }^{\text {c }}$	F'comtent'1892	=09/E9	z'3HACinputs'U53	='SHACInputs'los3	='3HACInputs'los3	LF9*G9*H9*9	
10	Eur-154	='Leontent'IF22	='3HACInputs'ITSS	$=810^{*} \mathrm{C} 10$	''content'l122	=010/E10	D'3HACInputs'Us3	e'3HACinput'ilos	e'3HACinputs'las3	FF10*G10*H10*10	
11	${ }^{\text {N1. } 63}$	='1content'IF11	='3HACInputs'ILS3	$=814 *$ C11	E'Contant'l811	=011/E11	='3HACInuts'Us3	='3HACInputs'IOS3	=3HACnputs'las 3	=F11*G11*H11*11	
12	Fe-55	='1content'IF9	='ЗHACInputs'\|'IS3	$=812^{*} \mathrm{C} 12$	='1contant'llas	=012/E12	='3HACInput'ISS3	='3HACInputs'los 3	='3HACInputs'Las3	FF12*G12*H2**12	
13	Pu-238	='100ntent'tfag	='ЭHACInputs'IHS3	=813*C13	S'Lontent'1889	=013/E13	='3HACInputs'ISS	='3HACInputs'losa	E'3HACInputs'los3	FF13*G13*H13*13	
14	c. 14	F'Icontent'IF5	='3HACInputs'ILS3	$=814^{+C 14}$	='1contont'185	=014/E14	'JHaClnputs'LS3	='3HaCInputs'los ${ }^{\text {a }}$	-'3HACInputs'lis 3	=F14*G14*H14*14	
15	$\cos 0$	='1content'IF6	F'SHACInputs'IH53	=815*C15	='1content'136	=015/E15	='3HACInpus'LLS 3	='3HACinputs'IOS3	='3HACInputs'las 3	=FL5*G15*H15*15	
16	U-232	='1content\|I79	='3HACInputs'IHS3	$=816^{*} \mathrm{C} 16$	='100ntent'1879	=D16/E16	='3HACInputs'US3	''3HACInputs'0s3	='3HACinputs'los 3	FF16*G16* $116 \cdot 116$	
17	Pu-239	z'12content'IF90	-'ЗHACInputs'IH\$3	$=817{ }^{\circ} \mathrm{C} 17$	F'Content'\|1890	=017/E17	-'3HACinputs'LS 3	='3HACinputs'0:3	=3HACInputs'las3		
18	P P -240	='1eontent1If92		${ }^{2818}{ }^{\circ} \mathrm{C} 18$	E'Ceontent'1891	-D18/E18	r'zHACIInpus'US3	-'3HaCinpus'IOS3	E'3HACInputs'las3	=F18*618* ${ }^{\text {+28* }}$	
19	N+59	-'Leontentilfe	='ЗнACInputs'IISs	$=819 \times \mathrm{C} 19$	E'content tialo						
20	1-129	E'1eontentIF18	-'ЗHACInputs'IISS	-820 ${ }^{\circ} \mathrm{C2O}$							
21	0-233	z'coontenti'IF80	-'ЗHACInputs'IH53	$=821{ }^{\circ} \mathrm{C} 21$	''1content'liseo	=021/E21	D'3HACinputs'US3	:'3HACImputs'loss	E'SHACInputs'lass		
22	T0.99	='1content'\|1F27	-'ЗHACInputs'ILS3	=822*C22	E'Contant'1817	=022/E22	'HMACInputs'\|	S3	2'3HACInputs'IOŞ	e'3HACInpust'lass	-F22*G22* H22* 122
23	${ }^{1+3}$	-'1content'1F4	-'ЗHACInputs'IIS	=823'C23	='1content'139	=023/E23	-'3HACInputs'US3	='3HACInputs'los3	-'3HACInputs'lLS 3	F23*623*+23*123	
24	0-236	='1eontent\|f81	='ЗHACInputs'IIS3	2824*C24	''leontent'1881	=024/E24	E'SHACIIPputs'US3	z'3HACInputs'099	r'3HACInputs'las3	=F24*G24* $\mathrm{H} 24 \cdot 1124$	
25	U-238	='coontent\|f82	-'ЗHACInputs'HEs	$=8225^{*} \mathrm{C} 25$	='Lcontent'1886						
26	U-236	='1contemt\|Ife3	='3HACInputs'I\|IS3	${ }^{2826^{\circ} \mathrm{C} 26}$	''IContent'ligs	[D26/E26	['3HACIInput'Us3	['JHACinputs'loss	I'3HACInputs'LO\$3	=F26*G26*H26*126	
27	0-235	-'1content'IFP4	r'3HACinputs'\|	S ${ }^{\text {a }}$	=827*C27	='centent'1B82					
28	${ }^{\text {cm } 242}$	='1content'IF95	-'ЗHACInpute'IIIS3	=828* ${ }^{\circ} 28$	-'ceontent'ligs	=028/E28	='3HACImputs'Us3	='3HACInputs'loss	=3HACInputs'losa		
29	${ }^{\text {Am-243 }}$	='1contentifr94	='3HACInpuss'\|H53	=829*C29	='Icontent'1994	=029/E29	='3HACInputs'IS3	='3HACInputs'0¢3	-'3HACInputs'las3		
30	${ }^{\text {cm-243 }}$	'1Contentilif96	E'ЗHACInputs'IISS	$=830^{\circ} \mathrm{C} 30$	''Content'l1996	=030/E30	E'SHACinputs'Us3	D'3HACInputs'los3	=3HACinputs'los3	=F30\% $630 \times 430{ }^{\circ}$	
31	7-228	='1content'l\|f69	='3HACInputs'IIS3	=831*C31	='1content'1869						
32	Np-237	='100ntent 1787	-'3HACInputs'H53	=832*C32	-'IContent'1887	=032/E32	E'SHACInputs'U53	a'3HACInputs'O\$3	='3HACInputs'las3	FF32*G32*H32*132	
33	0.232	F'1content'IF9	='3HACInputs'IH53	$=833{ }^{\circ} \mathrm{C33}$	E'Lcontent'1879	=D33/E33	n'SHACInputs'US3	E'3HACInputs'IOS	='3HACInputs'los	=F33*G33*н3з* 13	
34	70-232	'1content\|'F3	='3HACCInputs'IHS3	$=8344^{\circ} \mathrm{C34}$	F'1eontent'lig3						
35	71-230	z'1eontent'IF4	2'3HACinputs'IT\$3	=835*C35	='IContrant'1871	=035/E35	='JHACinutus'US3	E'3HACinputs'los3	=3HACinputs'las 3	FF35*G35*H35**35	
36	PU-241	''IContent'tF92	r'3HACInputs'IH\$3	-833** ${ }^{\circ}$	F'Icontent'1992	-0036/E36	E'3HACInpus'I/S3	I'3HACImputs'1053	= 3 HACinputs'los3	=F36*G36* $336{ }^{\circ} 136$	

Formulas for Table 17

	A	B	C	D	E	F	G	H	I	J
37	cm-24	-'Contant'\|F97	='3HACInputs'IHS3	=837*C37	E'IContont'l1897	=037/E37	E'SHACInputs'US3	r'3HACInput'tios	E'3HACImpus'ILass	=F37*G37* H37
38										\|esum(4.337)

	A	B	C	D	E	F	G	H	I	J
1	Isotope	Content (C)	Leach Ratio	Leached (c)	$\begin{gathered} A_{2} \\ \left(C / A_{2}\right) \end{gathered}$	$\begin{aligned} & \text { MAR } \\ & \left(A_{2}\right) \end{aligned}$	DR	ARF	LPF WVMP	Release (A)
2		From Table 1	From Table 3 for PBS to LDCC	Calculated for LDCC external to mether	From Table 1	Calculated for LDCC external to maker	From Table 3 for LDCC exemal to the melter			Calculated for inhalation from LDCC external to the melter
3	a	b	c	dab* ${ }^{\text {c }}$	c	$f=d^{*} 0$	ε	h	1	[0f* $\mathrm{B}^{*} \mathrm{H}^{+1}$
4	C-137	E'1content'lF19	='3HACInputs'IH\$3	$=84{ }^{\circ} \mathrm{C} 4$	='1content'1819	=D4/E4	2'3HACInputs'US3	-'3HACInputs'10S3	='3HACInputs'IOS3	=F4*G4* ${ }^{4 * 14}$
5	Ba-137m	F'1content'IF20	z'3HACInputs'lH\$3	=85 ${ }^{\circ} \mathrm{C} 5$						
6	5r-90	E'1contem'IF12	='3HACInputs'IH\$3	186* ${ }^{\text {c }}$	='1content'1812	=06/E6	-'3HACInputs'US3	='3HACInputs'lo\$3	F'3HACInputs'IQS3	=F6*66**5*16
7	Y-90	='1content'IF13	n'3HACInputs'IH\$3	=87* ${ }^{\circ} 7$	='1content'\|B13					
8	Pm-147	='1content'\|F21	s'3HACInputs'IH\$3	-889 ${ }^{\circ} \mathrm{Cs}$	E'1content'1821	=08/EB	z'3HACInputs'US3	z'3HACInputs'lo\$3	='3HACInputs'las3	FF8* $8^{*}{ }^{4} \mathrm{HB}{ }^{*} 18$
9	Am-241	='1content'\|F93	-'3HACInputs'IH\$3	-89*C9	='Lcontent'1892	=D9/E9	='3HACInputs'US3	='3HACInputs'IOS3	='3HACInputs'\|OS3	=F9*G9* ${ }^{\text {¢ }}$ * 19
10	Eu-154	='1conten'! \mid 22	F'3HACInputs'IH\$3	$=810^{*} \mathrm{C} 10$	='1content'\|B22	=D10/E10	='3HACinputs'US3	='3HACInputs'IOS3	-'3HACInputs'IOS3	=F10*610*H10*110
11	N1-63	F'1content'[F11	z'3HACinputs'IH\$3	$=811^{\circ} \mathrm{C} 11$	='1content'\|B11	=D11/E11	n'3HACinputs'US3	='3HACInputs'los3	='3HACInputs'l053	-F11*G11*H11*111
12	Fe-55	='1content'\|f9	='3HACInputs'IHS3	$=812{ }^{*} \mathrm{C} 12$	='1content'189	= D12/E12	='3HACinpust'US3	='3HACInputs'los 3	='3HACInputs'1053	=F12*G12*H12*112
13	Pu-238	='1content'\|F89	z'3HACinputs'IHS3	=813 ${ }^{\circ} \mathrm{C} 13$	z'1content'1889	=013/E13	='3HaCinputs'US3	='3HACinputs'los3	='3HACInputs'IOS3	=F13*G13*H13*123
14	C-14	E'1content'\|F5	z'3HACInputs'IHS3	= $114{ }^{\circ} \mathrm{C} 14$	z'1content'l85	= D14/E14	='3HACImputs'US3	='3HACInputs'IO\$3	='3HACinputs' 1 S3	-F14*G14* $114{ }^{\text {® }} 114$
15	Co-60	-'1content'\|F6	z'3HACInputs'\|HS3	$=815{ }^{\circ} \mathrm{C} 15$	='1content'186	-015/E15	-'3HACInputs'US3	a'3HACInputs'lo\$3	a'3HACInputs'IQS3	=F15*G15*H15*115
16	U-232	='1content'IF79	-'3HACImpurs'IH\$3	$=816^{\circ} \mathrm{C} 16$	='1content'1879	=D16/E16	='3HACinputs'US3	='3HACInputs'lo\$3	='3HACInputs'IOS3	=F16*G16*H16*116
17	Pu-239	='1content'IF90	='3HACInputs'H53	$=817{ }^{\circ} \mathrm{C} 17$	='1content'1890	$=017 / E 17$	r'3HACinputs'US3	='3HACInputs'l0\$3	='3HACinputs'IaS3	$\mathrm{af17}^{+617}{ }^{*} \mathrm{H} 17^{*} 117$
18	Pu-240	='1content'\|F91	='3HACInputs'IHS3	= $818{ }^{\circ} \mathrm{C} 18$	='1content'\|891	=D18/E18	='3HACinputs'US3	='3HACInputs'lo\$3	z'3HACInputs'Ias3	=F18 ${ }^{\circ} \mathrm{G18}{ }^{\circ} \mathrm{H} 18^{\circ} 118$
19	N-59	E'1eontent'IF10	-'3HACInputs'\|H53	$=819^{\circ} \mathrm{C} 19$	='icontent'l810					
20	-129	='1contemt'IF18	='3HACInputs'IHS3	- $820^{\circ} \mathrm{C} 20$						
21	U-233	='1content'IF80	='3HACInputs'IH53	$=\mathrm{B21}{ }^{\circ} \mathrm{C} 21$	F'1content'1380	=D21/E21	='3HACinputs'US3	='3HACInputs'los3	='3HACInputs'1053	=F21*G21*H21* 121
22	T-99	='1content'\|F17	='3HACImputs'\|H\$3	=8220 ${ }^{\circ} 22$	='1content'\|B17	=022/E22	-'3HACInputs'US ${ }^{\text {a }}$	='3HACinputs'los3	='3HACInputs'Ias3	$=F 22^{\circ} \mathrm{G} 22^{\circ} \mathrm{H} 22^{*} 122$
23	${ }^{1+3}$	='1content'\|F4	-'3HACinputs'lifs	=823* ${ }^{\circ} 23$	='1content'134	=023/E23	='3HACInputs'US3	='3HACinputs'1053	a'3HaCinputs'IQS3	=F23* ${ }^{623}{ }^{*} \mathrm{H} 23^{*} 123$
24	U-234	='1content'IF81	='3HACInputs'lihs	=824*C24	='1content'1881	=024/E24	z'3HACInputs'U\$3	='3HACInputs'los3	F'3HACInputs'las3	=F24*G24*H24*\|24
25	U-239	='1content'\|f82	='3HACInputs'lihs3	= $825{ }^{\circ} \mathrm{C} 25$	='1content'IB86					
26	U-236	='1content'\|F83	='3HACInputs'IH53	= $826{ }^{*} \mathrm{C} 26$	E'1content'IB84	=026/E26	='3HACInputs'us 3	='3HACInputs'lo\$3	='3HACInputs'las3	=F26*G26* $226^{*} 126$
27	U-235	r'2contemt'IF84	-'3HACInputs'IH\$3	${ }^{\square} 827{ }^{\circ} \mathrm{C} 27$	z'Icontent'\|B82					
28		$=$ 'leantent'l\|F95	='3HACIInputs'1 H \$3	=828 ${ }^{\circ} \mathrm{C} 28$	E'1content'\|895	=028/E28	='3HACImputs'US 3	-'3HACInputs'los3	F'3HACInputs'1053	
29	Am-243	='1content'\|F94	='3HACImputs'\|H53	= $\mathrm{B29}^{\circ} \mathrm{C} 29$	='1content'l894	=D29/E29	='3HACinputs'US3	-'3HACinputs'los 3	a'3HACInputs'las 3	=F29*G29* $29^{\circ} 129$
30	Cm-243	='1content'\|F96	E'3HACinputs'\|H\$3	-830*C30	I'1content'l896	=D30/E30	z'3HACInputs'US3	a'3HACinputs'los3	='3HACInputs'Ias 3	=F30*G30*H30*130
31	Th-228	a'1eontent'IF69	\#'3HACImputs'\|l/3	-831* ${ }^{\text {C31 }}$	='1content'\|869					
32	Np-237	-'1contentilfe7	s'3HACInputs'IH53		='1content'1387	-0.32/E32	-'3HACInputs'Us3	='3HACinputs'los3	F'SHACInputs'IOS3	-f32*G32*H32*132
33	U-232	2 '1content'IF79	='3HACImputs'IH\$3	=833* ${ }^{\text {C33 }}$	='1content1879	-033/E33	-'3HACInputs'U\$3	='3HACinputs'los3	E'BHACInputs'!QS3	[F33*G33*H33*133
34	Th-232	='1content'IF73	='3HACInputs'lH53	-834*C34	='Icontent'1873					
35	Th-230	='Leontent\|f4	='3HACInputs'IH53	= $835{ }^{\circ} \mathrm{C} 35$	='1content'1871	=035/E35	='3HACinputs'US3	='3HACinputs'los3	='3HACInputs'1QS3	=F35*G35*H35*135
36	Pu-241	E'Lcontent'IF92	='3HACInputs'\|H53	=836*C35	='1content'\|892	- $136 /$ /36	-'3HACInputs'IIS3	:'3HACInputs'lO53	='3HACInputs'1053	=F36*G36*H36*136

Formulas for Table 18

	A	B	C	D	E	F	G	H	I	J
37	$\mathrm{cm}^{\text {m-24 }}$	''1enntent\|F97	='3HACInputs'H53	=837*C37	E'Icoment'lig97	=037/E37	='3HACInputs'Us3	''3HACinputs'los3	='3HACImputa'las	=F37*637* $\mathrm{H} 37 \times 137$
38										-SUM(44-337)

	A	B	C	D	E	F	G	H	I	
1	tsotope	Content (C)	Leach fraction	Leached (C)	$\begin{gathered} A_{2} \\ \left(C \mid A_{1}\right) \end{gathered}$	$\begin{aligned} & \text { MAR } \\ & \left(A_{2}\right) \end{aligned}$	DR	LPF WVMP	Release (A_{2})	
2		From Table 1	From Table 3	Calculated for LDCC external to metter	From rable 1	$\begin{array}{\|c\|} \hline \text { Calculated } \\ \text { for LDCC external } \\ \text { to malter } \end{array}$	From Tatie 3 for LDCC exemal to the melter		Calculated for noninhalation from LDCC extemal to the melter	
3	a	b	c	$d=b^{\circ} \mathrm{c}$	\bullet	$t=d^{*} / 6$	E	h	${ }^{1} f^{*} 8^{*} h$	
4	C-137	='1content'\|F19	='3HACInputs'IHS3	=84*C4	E'1content'l819	= D4/E4	E'3HACInputs'US3	-'3HACinputs'Is\$3	=F4*G4*H4	
5	B8-137m	a'1conten' 1 F20	='3HACInputs'IH53	=85*C5	-'18HACexLDCC'les					
6	5r-90	z'1content'\|F12	E'3HACInputs'IIS ${ }^{\text {a }}$	-86**6	z'1content'1812	-D6/E6	='3HACinputs'U\$3	='3HACinputs'IS53	=F6*G6*H6	
7	$\mathrm{r}-90$	='1conten'IF13	-'3HACInputs'IH\$3	$187{ }^{\circ} \mathrm{C} 7$	='1content'1313					
8	Pmo-147	a'1content'IF21	='ЗMACInputs'\| $\mathrm{HS3}$	-88*C8	z'1content'1821	= $08 /$ E8	='3HACinputs'US3	a'3HACInputs'IS53	FF8*G8* ${ }^{\text {c }}$	
9	Am-241	='1content'IF93	='3HACInputs'IH53	=89*C9	F'1content'1892	=09/E9	-'3HACInputs'US3	z'HHACInputs'IS53	-F9069*H9	
10	Eu-154	e'1content'\|F22	='3HACInputs'\|	H3	$=810^{\circ} \mathrm{C} 10$	='Icontent'l822	2D10/E10	='3HACInputs'LL\$3	='3HACInputs'1553	- F $10^{\circ} \mathrm{G} 10^{*} \mathrm{H} 10$
11	N163	a'1tontent'\|F11	='3HACinputs'\|H53	$=\mathrm{B} 11{ }^{\circ} \mathrm{C} 11$	='1content'liblı	=012/E11	='3HACInputs'L			
$3	='3HACinputs'IS\$3	FF11*G11*H11								
12	Fe-55	='1content'\|F9	='3HACInputs'! H S3	-812*C12	='1content'189	=D12/E12	='JHACInputs'us3	='3HACInputs'1553	FF12*G12*H12	
13	Pu-238	='1content'iF89	='3HACInputs'! ${ }^{\text {S }}$ 3	${ }^{2 B 13 *}{ }^{\text {C }} 13$	-'1content'1889	= D13/E13	-'3HACinputs'US3	='3HACInputs'15S3	${ }^{-123 * G 13 *} 13$	
14	C. 14	='1content'\|F5	-'ЗHACInputs'\|H\$3	2814*C14	s'1content'185	= D14/E14	='3HACInputs'US3	E'3HACInputs'1553	FF14*G14* 14	
15	Co-60	='1content'IF6	='3HACinputs'lH\$3	=815*C15	='1contant'185	$=015 / \mathrm{E} 15$	2'3HACInputs'us3	='3HACinputs'1553	-F15*G15* ${ }^{\text {15 }}$	
16	U-232	-'1content'\|F79	z'3HACInputs'\|H\$3	=816 ${ }^{\circ} \mathrm{C} 16$	s'1content'lB79	=D16/E16	='3HACInputs'U\$3	z'3HACInputs'15\$3	=F16*G16* ${ }^{\text {c }} 16$	
17	Pu-239	='1content'\|F90	='3HACInputs'IM\$3	$=817{ }^{\circ} \mathrm{C} 17$	='1content'1890	=017/E17	='3HACInputs'us3	='3HACInputs'1553	FF17* ${ }^{\text {G }} 17^{*} \mathrm{H} 17$	
18	Pu-240	-'1content'\|F91	='3HACImputs'IH\$3	=818 ${ }^{\circ} \mathrm{C} 18$	='1content'1691	=D18/E18	-'3HACCInputs'us3	='3HACInputs'15S3	-F18* ${ }^{4} 18^{4} \mathrm{H} 18$	
19	N+59	='1content'IF10	='3HACinputs'IHS3	=819*C19	-'1content'lB18					
20	-129	='Lcontent'IF18	F'3HACInputs'liH53	$=820^{\circ} \mathrm{C} 20$						
21	-273	$=1$ content'IF80	='3HACInputs'\|H'3	= $821^{*} \mathrm{C} 21$	E'1content'lbso	=D21/E21	E'3HACInputs'US3	='3HACinputs'IS\$3	-F21*G21* H 21	
22	Tc-99	E'1content'IF17	z'3HACinputs'IHS3	= $822{ }^{*} \mathrm{C} 22$	-'Icontent'1817	=022/E22	-'3HACinputs'us3	='3HACinputs'ISS3	FF22* ${ }^{\text {22 }}$ 2 ${ }^{\text {H22 }}$	
23	H-3	E'1content'IF4	='3HACInputs'IH\$3	$=823{ }^{*} \mathrm{C} 23$	E'1content'l84	=D23/E23	-'3HACinputs'US 3	-'3HACCinputs'lş3	-F23*623* ${ }^{\text {2 }}$	
24	U-234	='1content'IF81	='3HACInputs'lH\$3	-824* ${ }^{\circ} \mathrm{C} 24$	E'1content'lbs1	=D24/E24	-'3HACInputs'US 3	F'SHACInputs'15S3	=F24*G24* 24	
25	U-238	E'Icantent'\|F82	='ЗHACInputs'l@S3	$=825^{*} \mathrm{C} 25$	F'Icontent'Il886					
26	U-236	E'1content'IF83	z'3HaCinputs'IH53	${ }^{2} 826^{\circ} \mathrm{C} 26$	z'Leontent'IB84	=026/E26	='3HACInputs'US3	='3HACInputs'1553	FF26*G26* 26	
27	U-235	F'1content'IFEA	='3HACinputs'l\|\% ${ }^{\text {a }}$	= $827{ }^{\circ} \mathrm{C} 27$	e'1content'lles2					
28	${ }^{C_{m-242}}$	e'1contenrilfgs	z'3HACInputs'l\|H5	$=828^{\circ} \mathrm{C} 28$	J'1content'1895	-D28/E28	-'3HACInputs'US3	z'3HACInputs'IS\$3	${ }^{* F 28 *}{ }^{*}{ }^{\text {2 }}$ * H 28	
29	Am-243	E'1content'IF94	='3HACInputs'lH\$3	$\sim 829^{\circ} \mathrm{C} 29$	='1contant'la94	= D29/E29	-'ЗHACInputs'LS 3	='3HACinputs'ISS3	$=F 29^{*} 629^{*} \mathrm{H} 29$	
30	$\mathrm{Cm}_{\mathrm{n}-243}$	-'Icontent'\|F96	='3HACInputs'IH\$3	=830*C30	z'1contont'lB96	=030/E30	-'3HaCinputs'US3	F'3HACinputs'15\$3	-F30*630* 330	
31	Th-228	='Icontent'IF69	-'3HACInputs'li\$\$	=831* ${ }^{\text {c }}$ (31	-'1comtant'IB69					
32	Np-237	='icontent'IF87	-'3HACInpus'IH\$3	${ }_{2} 833{ }^{*} \mathrm{C} 32$	='1content'1887	=D32/E32	='3HACInputs'U\$3	2'3HACInputs'ISS3	=F32*G32* 332	
33	U-232	a'1coment'If79	-'3HACInputs'H\$3	-833* ${ }^{\text {c }}$ c3	E'1content'1879	=033/E33	='3HACInputs'US3	='З3ACinputs'15\$3	=F33*G33*H33	

Formulas for Table 19

	A	B	C	D	E	F	G	H	I
34	Th-232	='1content\|173	-'3HACinputs'IHS3	$=834 \cdot \mathrm{C} 34$	F'IContent'1873				
35	Th-230	='1content'\|177	-'3HACInputs'IHS3	$=835 \cdot \mathrm{c} 35$	r'content'1971	=035/835	-'ЗHACInputs'us3	-'3HACInputs'ss	=F35*G35*H35
36	Pu-241	='1content IIF92	-'Зhacinputs'ILS3	=836*C36	='coontent'\|B92	=036/E36	z'ЗнаСпnputs'Us3	-'3HACInputs'ş3	=F36*G36* ${ }^{\text {\% }}$
37	cm-244	='1content'IF97		=837*C37	z'coontent'1897	=037/ต9	z'ЗнасInputs'Us3	-'כHaCinputs'sss	=F37*G37* 37
38									Sum(1a:137)

		A	B	
10		SOURCE	RELEASE	
11	from Glass			A_{2}
12		Spout Glass	='12HACspoutglass'\|193	
13		Melter Heel Glass	='13HACheelglass'!193	
14		Refractory Glass	$=$ '14HACrefrglass '\|186	
15				
16	from LDCC			
17		LOCC inside the Melter	='15HACintLDCC'! 193	
18		pressure increase	='16HAC>25intLDCC 'I. 93	
19		LDCC external to melter	$=18 \mathrm{HACexLDCC}$ ' 1 I38	
20		pressure increase	='17HAC>25exLDCC 'IJ38	
21		Non-Aerosol Release	$=$ '19HACnon-areoLDCC '!138	
23				
24		Total	=SUM(B12:B21)	

WVMP SAR Reference 5-5

> West Valley Nuclear Services Company Processing Equipment Characterization Results, WMG Report 4005-RE024, Revision 4, WMG, Inc., Peekskill, NY, August 2013

Page 3-4

3.0 WASTE CHARACTERIZATION

The Processing Equipment was characterized using dose to curie conversion techniques. Representative isotopic sample data is used in conjunction with gross radioactivity measurements and point kernel shielding models to estimate activity by nuclide. As a practical matter all the measured gamma radiation can be attributed to Cs-137. Geometry models along with measured dose rates can be used to calculate Cs-137 activity. Representative samples are used to determine Cs-137 based scaling factors to calculate the hard to detect nuclides.

The radioactivity in the Processing Equipment is contained in two separate sources. One source is contained in the Processing Equipment cavity and the other is in the plugged discharge port. The sources are treated separately because a thick layer of refractory material separates them. The refractory material that separates the sources consists mainly of Monofrax Z, which is the best shield material in the refractory assembly, and varies in thickness from approximately 18 to 35 inches.

Due to the relatively complex geometries involved in the Processing Equipment cavity source, a detailed dose to curie model was employed to reduce conservatism in the calculations. Typically, complex geometries can be modeled using simple shapes and conservative assumptions to bound the results. Since excessive conservatism limits disposition options, the best available information was used in conjunction with advanced modeling techniques to provide the most accurate results available. Therefore, the QAD-CGGP-A ${ }^{(2)}$ code was used for point kernel modeling. The QAD-CGGP-A code provides for combinatorial geometry input, which allows the user to model complex shapes using unions or intersections of relatively simple shapes. This code is used routinely in the commercial sector to support reactor decommissioning activities. There have been published guidelines regarding integration parameters for point kernel applications ${ }^{(3)}$ and these were adhered to in the analysis. Due to relatively simple geometry involved in the discharge port, a less detailed dose to curie model was employed using the Megashield ${ }^{(4)}$ computer code.

The Processing Equipment cavity model accounted for the inverted pyramidal shape of the residual glass in the cavity as well as a $1 / 8^{\prime \prime}$ internal wall coating up to a fill height of 28 ". The compounds totaling over 99% of the weight fraction were used to create a custom material type in the QAD-CGGP-A and Megashield models. Table 1 shows the weight fraction by chemical compound and Table 2 shows density by nuclide assuming a density of $2.6 \mathrm{~g} / \mathrm{cc}$ for the borosilicate glass.

Table 1
Borosilicate Glass Composition

Material	Weight Fraction	Material	Weight Fraction
$\mathrm{Li}_{2} \mathrm{O}$	0.039	SiO_{2}	0.434
$\mathrm{~B}_{2} \mathrm{O}_{3}$	0.137	$\mathrm{~K}_{2} \mathrm{O}$	0.053
$\mathrm{Na}_{2} \mathrm{O}$	0.085	$\mathrm{Fe}_{2} \mathrm{O}_{3}$	0.127
MgO^{2}	0.009	ZrO_{2}	0.014
$\mathrm{Al}_{2} \mathrm{O}_{3}$	0.064	ThO	0.038

Table 2
Borosilicate Glass Density by Element

Element	Partial Density	Element	Partial Density
$\mathrm{Li}(3)$	0.047	$\mathrm{Si}(14)$	0.528
$\mathrm{~B}(5)$	0.110	$\mathrm{~K}(19)$	0.114
$\mathrm{O}(8)$	1.184	$\mathrm{Fe}(26)$	0.232
$\mathrm{Na}(11)$	0.164	$\mathrm{Zr}(40)^{*}$	0.027
$\mathrm{Mg}(12)^{*}$	0.015	$\mathrm{Th}(90)$	0.092
$\mathrm{Al}(13)$	0.087		

*Not used in shielding model due to their low partial densities / attenuation percents

A total of ten (10) source regions were required in the QAD-CGGP-A model to accurately duplicate the remaining glass inside the Processing Equipment cavity. Four (4) sources were used to simulate the inverted pyramid shape while six (6) were used for the wall coating. The wall surface coating contributed about 15% to the measured dose rate. Dose locations reported in the RIR ${ }^{(5)}$ as well as an external dose point recorded on 2/5/04 were used to estimate the Cs-137 activity. A detector was lowered into Nozzles A and BB and recorded dose rates of $749 \mathrm{R} / \mathrm{hr}$ and $700 \mathrm{R} / \mathrm{hr}$ respectively. A duplicate measurement was taken in Nozzle A of $748 \mathrm{R} / \mathrm{hr}$. A reading of 2.1 R/hr was taken at a 1-foot offset from the lid of the Processing Equipment assembly about midway between nozzles R1 and R2. These points were selected because they provide a profile starting at the center of the cavity and proceed north along the cavity centerline. It is conservatively assumed that the source in the discharge port does not contribute to the dose rates used to characterize the Processing Equipment cavity. See Appendix A for WNSCO supplied survey data.

WVMP SAR Reference 5-6

Savannah River Nuclear Solutions Criticality Safety Methods Manual, Chapter 5, Standard Material Compositions for Nuclear Criticality Safety Calculations, SRNS-IM-200900035, Revision 3, Savannah River Nuclear Solutions, Aiken, South Carolina, January 2014.

Page 7 of 18.

CRITICALITY SAFETY METHODS MANUAL

Reviewed and determined to be UNCLASSIFIED.
This review does not constifute clearance for public release. Nancy S. Bryant
Derivative Classifier: EngtTéhsupport Spelst (Name/personal identifier end position tille)

Date: $1 / 7 \mid 14$
IG-SRS-COMP-1,5lı2, DDE-OC

DISCLAIMER

This document was prepared by Savannah River Nuclear Solutions LLC (SRNS), under contract with the United States Department of Energy (DOE).
Release to and Use by Third Parties. As it pertains to releases of this document to third parties, and the use of or reference to this document by such third parties in whole or in part, neither SRNS, DOE, nor their respective officers, directors, employees, agents, consultants or personal services contractors (i) make any warranty, expressed or implied, (ii) assume any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product or process disclosed herein or (iii) represent that use of the same will not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trademark, name, manufacture or otherwise, does not necessarily constitute or imply endorsement, recommendation, or favoring of the same by SRNS, DOE or their respective officers, directors, employees, agents, consultants or personal services contractors. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Table 1.Specifications of Materials Commonly Associated with Criticality Analysis (cont.)

\% Material/Formula	Density, g/cc	Element / Isotope:	Weight Percent	Atom PPercent	Atom Density, At/b-cm
Concrete, Magnuson ${ }^{8}$	2.147	H	0.3319	5.97	$4.25748 \mathrm{E}-03$
		C	10.532	15.91	$1.13374 \mathrm{E}-02$
		0	49.943	56.63	$4.03600 \mathrm{E}-02$
		Na	0.1411	0.11	$7.93547 \mathrm{E}-05$
		Mg	9.4200	7.03	$5.01113 \mathrm{E}-03$
		Al	0.7859	0.53	$3.76600 \mathrm{E}-04$
		Si	4.2100	2.72	$1.93812 \mathrm{E}-03$
		S	0.2483	0.14	$1.00118 \mathrm{E}-04$
		Cl	0.0523	0.03	$1.90736 \mathrm{E}-05$
		K	0.9445	0.44	$3.12337 \mathrm{E}-04$
		Ca	22.631	10.24	$7.30092 \mathrm{E}-03$
		Ti	0.1488	0.06	$4.01927 \mathrm{E}-05$
		Mn	0.0512	0.02	$1.20497 \mathrm{E}-05$
		Fe	0.5595	0.18	$1.29538 \mathrm{E}-04$
Concrete, Oak Ridge ${ }^{8}$	2.2995	H	0.6186	10.67	$8.49878 \mathrm{E}-03$
		C	17.519	25.35	$2.01981 \mathrm{E}-02$
		O	41.018	44.56	$3.55019 \mathrm{E}-02$
		Na	0.02706	0.02	1.62995E-05
		Mg	3.265	2.34	$1.86024 \mathrm{E}-03$
		Al	1.083	0.70	$5.55831 \mathrm{E}-04$
		Si	3.448	2.13	$1.70007 \mathrm{E}-03$
		K	0.1138	0.05	$4.03056 \mathrm{E}-05$
		Ca	32.129	13.93	$1.11013 \mathrm{E}-02$
		Fe	0.7784	0.24	$1.93019 \mathrm{E}-04$
Concrete, Regular ${ }^{6.8}$ (Recommended for use in RBOF/L-Basin analysis. ${ }^{7}$)	2.30	H	1.0	16.80	$1.37417 \mathrm{E}-02$
		0	53.2	56.32	$4.60557 \mathrm{E}-02$
		Na	2.9	2.14	$1.74719 \mathrm{E}-03$
		Al	3.4	2.13	$1.74537 \mathrm{E}-03$
		Si	33.7	20.32	$1.66197 \mathrm{E}-02$
		Ca	4.4	1.86	$1.52063 \mathrm{E}-03$
		Fe	1.4	0.42	3.47232E-04
Concrete, Rocky Flats ${ }^{8}$	2.321	H	0.75	13.33	$1.04004 \mathrm{E}-02$
		C	5.52	8.23	$6.42367 \mathrm{E}-03$
		N	0.02	0.03	$1.99580 \mathrm{E}-05$
		0	48.49	54.29	$4.23615 \mathrm{E}-02$
		Na	0.63	0.49	$3.83027 \mathrm{E}-04$
		Mg	1.25	0.92	$7.18849 \mathrm{E}-04$
		Al	2.17	1.44	$1.12413 \mathrm{E}-03$
		Si	15.50	9.89	$7.71388 \mathrm{E}-03$
		S	0.19	0.11	$8.28194 \mathrm{E}-05$
		K	1.37	0.63	$4.89763 \mathrm{E}-04$
		Ca	23.00	10.28	$8.02130 \mathrm{E}-03$
		Ti	0.10	0.04	$2.92003 \mathrm{E}-05$
		Fe	1.01	0.32	$2.52790 \mathrm{E}-04$

[^4]
WVMP SAR Reference 6-1

Characterization of DWPF Melter One Glasses, WSRC-TR-2003-00477, Rev 0, A.D. Cozzi and J.M. Pareizs, Westinghouse Savannah River Company, Aiken, South Carolina, October 2003.

Characterization of DWPF Melter One Glasses

by
A. D. Cozzi

Westinghouse Savannah River Company
Savannah River Site
Aiken, South Carolina 29808
J. M. Pareizs

This paper was prepared in connection with work done under the above contract number with the U.S. Department of Energy. By acceptance of this paper, the publisher and/or recipient acknowledges the U. S. Government's right to retain a nonexclusive, royalty-free license in and to any copyright covering this paper, along with the right to reproduce and to authorize others to reproduce all or part of the copyrighted paper.

Characterization of DWPF Melter One Glasses

A.D. Cozzi
J.M. Pareizs

Westinghouse Savannah River Company
Savannah River Technology Center
Aiken, SC 29808

PREPARED FOR THE U.S. DEPARTMENT OF ENERGY UNDER CONTRACT NO. DE-AC09-96SR18500

Immobilization Technology Section
Savannah River Technology Center
Westinghouse Savannah River Company

WSRC-TR-2003-00477
Rev. 0

DISCLAIMER
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Govemment nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulaess of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process or service by trado name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Govemment or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report has been reproduced directly from the best available copy.
Available for sale to the public, in paper, from: U.S. Department of Commerce, National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161
phoue: (800) 553-6847
fax: (703) 605-6900
email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/help/index.asp
Available electronically at http://www.osti.govbridge
Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy, Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062 phone: (865) 576-8401
fax: (865) 576-5728
cmail: reports@adonis.osti.gov

Characterization of DWPF Melter One Glasses

A.D. Cozzi
J.M. Pareizs

Westinghouse Savannah River Company
Savannah River Technology Center Aiken, SC 29808

Immobilization Technology Section
WSRC-TR-2003-00477
Savannah River Technology Center
Rev. 0
Westinghouse Savannah River Company
Immobilization Technology Section

Table of Contents

Executive Summary 1
Introduction 1
Objective 1
Discussion 2
Sample Collection 2
Interface Layer 2
Core Samples 2
Sample Analysis. 3
Visual Observations 3
Chemical Compositions 4
Contained Scanning Electron Microscopy 5
Contained X-ray Diffraction Analysis 9
Conclusions 10
Visual Observations 10
Chemical Compositions 10
Contained Scanning Electron Microscopy 11
Contained X-ray Diffraction 11
References 11

Savannah River Technology Center
Rev. 0
Westinghouse Savannah River Company

This page intentionally left blank.

Executive Summary

The Defense Waste Processing Facility's (DWPF) first melter operated continuously for more than eight years. In November 2002 it was decided to replace the melter. As part of the decommissioning and replacement of the first DWPF melter, three samples were collected from the melter, one from the melter surface and two from the core sampler. The melter samples were analyzed for chemical composition and crystal content.

The interface layer glass appeared as a typical pour stream. The surface was dark and reflective with no obvious inclusions. Little information could be obtained from visual observation of the core glasses. The surfaces were coarse from the sample sectioning.

The materials and methods used to sample to melter core influenced the analytical results. The stainless steel sampler contributed measurable amounts of chromium to the samples. The retrieval of the samples after the melter had cooled permitted the core glasses to crystallize extensively. The crystalline species were consistent with long slow cooling.

The consistency of the compositions throughout the melter, from the interface layer to the two meit pool samples to a previously collected pour stream sample, indicate that there is no measurable stratification of actinides or noble metals.

CSEM/EDS analysis of the core samples suggest that the smooth areas are glass, the inclusions are predominantly iron/silicon compounds and that some of the debris on the surface is alumina from the sectioning blade. CRXD analysis identified the inclusions as aegirine (acmite). CSEM analysis of the interface layer did not reveal any appearance other than glass. CXRD analysis confirmed the amorphous state of the interface layer.

Introduction

The Defense Waste Processing Facility's (DWPF) first melter operated continuously for more than eight years, including six years of radioactive operations - more than three times its design life. It produced more than 1,300 waste glass canisters, about 27 percent of the projected total canisters for DWPF. In November 2002 it was decided to replace the melter. Prior to melter shutdown, one sample was taken and a sampler was put in place to retrieve additional samples from the melt pool.

SRTC delivered four samplers to DWPF to collect samples. Two samplers were designed to remove a surface sample from the melt pool while the other two samplers were designed to remove core samples to provide a cross section of the melt pool.

As part of the decommissioning and replacement of the first DWPF melter, three samples were collected from the melter, one from the melter surface and two from the core sampler. The melter samples were analyzed for chemical composition and crystal content.

Objective

The objective of this task is to inspect, characterize and evaluate glass samples from the melter surface and the melt pool. The interface layer was sampled to provide data to aid in the identification and cause of the layer ${ }^{1}$. Two samples of the melt pool were obtained from two depths in the melter. Two depths were chosen to compare relative concentrations of noble metal and actinides to evaluate
concerns regarding settling of denser species. It should be recognized as the melt pool samples cooled in the melter, no definite conclusions could be drawn from the amount of crystalline species present.

Discussion

Sample Collection

Interface Layer

A platinum boat sampler was used to sample of the interface layer from the surface of the glass pool that remained after the cold cap was burned uIf (prior to melter shutdown). The interface layer sample was taken through the north feed tube nozzle, approximately two feet north of melter center. The sampler was lowered into the melter by the crane until it just broke the surface and filled with glass. It was then lifted out and allowed to cool. The interface sample was removed from the boat using the extractor provided by DWPF Engineering. Slightly more than 45 grams of sample were retrieved from the platinum boat. It is believed that a representative sample of the surface layer was obtained during the sampling.

Core Samples

Two samples from the core of the melt pool were obtained from different heights in the melter. The core samples were also obtained through the north feed tube. After glass draw-down via the pour spout was completed, leaving approximately 16 inches of glass in the melter, the stainless steel corc sample tube was slowly lowered into the pool till it hit bottom. It was then left in place during melter cooldown. Figure 1 shows the average cooling schedule of the upper and lower thermocouples. It is assumed that the core samples experienced a cooling curve bounded by the two curves in Figure 1. The melter cooled over several days ${ }^{2}$, Figure 1. Upon retrieval, the bottom of the sampler broke off and remained in the melter, discontinuing the attempt to sample the very bottom of the glass pool. The remaining sampler was sectioned with a predominantly aluminum oxide saw to retrieve the "upper" and "lower" core samples. DWPF-Engineering estimated that the lower sample was four to six inches above the melter bottom and the upper sample was ten" to fifteen inches above the bottom. An effort was made to retrieve glass from the interior of the core samples. The extractor used for platinum boat samples was used to punch out glass near the center of the core samples. This was done to minimize the influence of the stainless steel sampling tube on the composition and crystallization products of the glass.

Figure 1. Measured Cooldown Rate of melter one.

Sample Analysis

Visual Observations

The three (one interface layer and two core) samples were placed in the Savannah River Technology Center (SRTC) Shielded Cells, removed from their primary containers, and photographed. Figure 2 is A) the interface layer sample and B) the lower core sample (The upper core sample appeared comparable to the lower core sample). The interface sample was contained in a platinum sampling boat and appeared black and shiny similar to previous pour stream samples ${ }^{3}$. The surfaces of both of the core samples were coarse and low luster from the sectioning procedure. It also appeared that the cutting process smeared the stainless steel sampler across some of the glass surface.

Figure 2. A) Interface layer in platinum sampler, and B) lower core sample in stainless steel sampler (within black circle).

Chemical Compositions

Samples were prepared for dissolution by pulverizing a portion of the sample using agate balls and vial. Four replicates of each of the glass samples were dissolved by two methods* to account for all of the elements of interest. The resulting solutions from the dissolutions were analyzed by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) by the SRTC Analytical Development Section (SRTC-ADS). Table 1 is the average composition of four replicates of the three samples. Boron and silicon values are determined from the sodium peroxide/sodium hydroxide dissolution. The use of boron in the acid dissolution method precludes the use of boron values reported in acid dissolution samples. Sodium and zirconium values are determined solely from the acid dissolution method. The use of sodium peroxide and sodium hydroxide to perform the fusion in zirconium crucibles excludes the use of reported sodium and zirconium values obtained by this method. In the upper core sample, two of the acid dissolutions were incomplete (oxides did not total $>95 \%$) and were discarded. In the lower core sample, one of the acid dissolutions was incomplete (oxides did not total $>95 \%$) and was discarded. The composition of the interface layer is similar to both core samples as well as a pour stream sample taken in FY02 ${ }^{3}$.

Table 1. Composition of the Interface Layer Glass and the Core Glasses with Previously Reported Composition from a Pour Stream Glass (Wt.\%) (NM-Not Measured).

	Interface Layer	Upper Core	Lower Core	Pour Stream*
$\mathrm{Al}_{2} \mathrm{O}_{3}$	4.13	4.08	4.02	4.22
$\mathrm{B}_{2} \mathrm{O}_{3}$	7.63	7.54	7.54	7.31
CaO	1.33	1.42	1.35	1.39
$\mathrm{Cr}_{2} \mathrm{O}_{3}$	0.19	0.37	0.36	0.06
CuO	0.02	0.02	0.02	0.07
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	13.09	13.38	12.93	12.29
$\mathrm{La}_{2} \mathrm{O}_{3}$	0.02	0.04	0.04	0.02
$\mathrm{Li}_{2} \mathrm{O}$	3.20	3.11	3.05	3.29
$\mathbf{M g O}$	2.37	2.35	2.27	2.35
MnO	1.54	1.51	1.47	2.14
$\mathrm{Na}_{2} \mathrm{O}$	11.12	10.52	10.07	11.38
NiO	0.73	0.80	0.78	0.54
SO_{3}	0.94	1.21	'1.19	NM
SiO_{2}	48.96	52.36	52.36	48.73
TiO_{2}	0.04	0.04	0.04	0.05
$\mathrm{U}_{3} \mathrm{O}_{8}$	3.21	3.19	3.14	3.57
ZnO	0.07	0.07	0.06	0.09
ZrO_{2}	0.08	0.07	0.07	0.09
Sum	98.67	102.08	100.76	52.53

* Sampled during filling of canister S01753.

The solutions that resulted from acid dissolution of the three samples also were analyzed to gain more detailed information about the composition of the samples not available by ICP-AES. Noble metals resulting from neutron fission of $\mathrm{U}-235$ and a sampling of other $\mathrm{U}-235$ fission products as well as other select actinides were analyzed by Inductively Coupled Mass Spectroscopy (ICP-MS) and other radioactive species were analyzed by counting. ., Concentrations in weight percent along with the

[^5]respective concentrations measured in the pour stream sample are given in Table 2. The isotopes Co$60, \mathrm{Cs}-137$, Eu-154, Eu-155, and Am-241 were measured by gamma counting. All others were measured by ICP-MS. Results were consistent among the three current (one interface and two core samples) glasses and the previous pour stream glass for the gamma emitters and actinides. Although the core samples were similar in noble metal content, both of the core samples were depleted in noble metals with respect to the interface layer and the pour stream glass. As mentioned in the previous section, incomplete dissolution of the core samples could skew the noble metal concentrations. It is most likely that the undissolved portions of the core glasses consisted primarily of crystals that formed during melter cooldown and that a disproportionate amount of the noble metals would contained in these undissolved crystals and would therefore not be available for measurement via ICP-MS.

Table 2. Isotopic Concentrations (wt.\%) of the Three Melter One Glasses and the Pour Stream Glass. (NR - nor reported)

	Isotope	Interface Layer	Upper Core	Lower Core	Pour Stream ${ }^{3}$
	Co-60	1.46E-07	1.37E-07	$1.39 \mathrm{E}-07$	$1.54 \mathrm{E}-07$
	Tc-99	$2.96 \mathrm{E}-04$	$1.52 \mathrm{E}-04$	$1.34 \mathrm{E}-04$	$2.75 \mathrm{E}-04$
	Ru-101	$4.03 \mathrm{E}-03$	2.92E-04	$2.72 \mathrm{E}-04$	$2.97 \mathrm{E}-03$
	Ru-102	3.78E-03	$2.60 \mathrm{E}-04$	$2.73 \mathrm{E}-04$	$2.89 \mathrm{E}-03$
	Rh-103	3.90E-03	3.19E-04	3.33E-04	$6.22 \mathrm{E}-04$
	Ru-104	$2.38 \mathrm{E}-03$	NR	NR	$1.91 \mathrm{E}-03$
	Pd-105	$1.92 \mathrm{E}-04$	$2.07 \mathrm{E}-04$	$1.53 \mathrm{E}-04$	2.07E-04
	Cd-112	$1.06 \mathrm{E}-02$	$8.95 \mathrm{E}-03$	$6.43 \mathrm{E}-03$	1.06E-02
	Cs-137	$1.00 \mathrm{E}-04$	$9.65 \mathrm{E}-05$	$9.76 \mathrm{E}-05$	$1.03 \mathrm{E}-04$
	La-139	$7.14 \mathrm{E}-03$	$3.91 \mathrm{E}-02$	$1.07 \mathrm{E}-02$	6.54E-03
	Nd-143	3.77E-03	$6.39 \mathrm{E}-03$	$3.38 \mathrm{E}-03$	6.10E-03
	Eu-154	$9.02 \mathrm{E}-07$	$9.08 \mathrm{E}-07$	$9.30 \mathrm{E}-07$	8.45E-07
	Eu-155	$2.26 \mathrm{E}-07$	$2.65 \mathrm{E}-07$	$2.56 \mathrm{E}-07$	2.52E-07
	Th-232	$5.94 \mathrm{E}-03$	$8.14 \mathrm{E}-03$	$1.13 \mathrm{E}-02$	NR
	U-235	$1.28 \mathrm{E}-02$	$1.21 \mathrm{E}-02$	$1.27 \mathrm{E}-02$	NR
	U-238	$2.93 \mathrm{E}+00$	$2.81 \mathrm{E}+00$	$2.95 \mathrm{E}+00$	NR
	Pu-239	$4.09 \mathrm{E}-03$	$4.22 \mathrm{E}-03$	$4.97 \mathrm{E}-03$	NR
	Am-241	$3.20 \mathrm{E}-04$	3.09E-04	$3.05 \mathrm{E}-04$	2.85E-04

Contained Scanning Electron Microscopy

For contained scanning electron microscopy with energy dispersive spectroscopy (CSEM/EDS), the samples ranged from eight to twelve milligrams to minimize the interference of radiation with the detector and personnel exposure. The small size of the sample limits the representative nature of the analysis. That is, there is an assumption that the eight to twelve milligram sample is representative of the larger sample from which it was collected. This is fair in homogeneous samples, however, in partially crystallized or otherwise heterogeneous samples the representative character of the sample could be questioned.

The interface layer is uniform across the sample, Figure 3. The debris on the surface is from sample preparation and, when the image is viewed using the backscatter electron imaging (BSI) mode, Figure 4 , the debris is of similar overall composition as the main sample (i.e., the "shaded" or color is similar).

Figure 3. Interface layer glass, 500 x .

Figure 4. Interface layer glass from Figure 3, viewed using BSI.
The upper and lower core samples exhibited similar features under microscopic examination. Figure 5 is the upper core secondary electron image (SEI) of a typical core particle. The texture of the core samples is indicative of a heavily crystallized glass. The mirror and hackle marks in Figure 5 are confined to areas devoid of inclusions. In addition to the debris seen in the image of the interface layer the glass contains a significant quantity of inclusions. The circled features in the figure are typical of the inclusions noted.

Figure 5. Upper core glass, 500x.
Figure 6 is the BSI image of the sample. Energy dispersive spectroscopy (EDS) evaluations were performed on the spots labeled " A " and " B ".

Figure 6. BSI image of upper core glass in Figure 5.
The radioactivity associated with the core glasses limited the ability of the EDS analysis to identify any but the major components of the areas being investigated. The radioactive components can "flood" the EDS detector, limiting the amount of time a spot can be counted. Therefore only sample components with strong signals (from high concentrations) can be easily identified. The interference was such that the EDS analysis was not possible for the interface layer glass. Figure 7 is the associated EDS spectrum of spot " A " in Figure 6 and the corresponding area in Figure 5 and most closely resembles a typical glass sample. Silicon is identified as a major component and iron as a secondary component. The other glass components present in quantities that would be expected to be identified are sodium and boron. In this spectrum, the sodium peak is masked by the leading edge of
the silicon peak. Boron is too light an element to be detected with this method. The gold (Au) and palladium (Pd) present in all of the spectra is the conductive coating used to prepare the samples. Figure 8 is spot " 8 " from Figure 6, which corresponds to the inclusion in Figure 5, identifies iron, in addition to silicon, as a major component of the feature. Aluminum is also identified as part of the area.

Figure 7. EDS spectrum of Figure 6 spot " A ". Au-Pd alloy is used to provide a conductive coating on the sample.

Figure 8. EDS spectrum of Figure 6 spot " B ". Au-Pd alloy is used to provide a conductive coating on the sample.

Contained X-ray Diffraction Analysis

For contained x-ray diffraction analysis (CXRD), sample masses were between 15 and 35 milligrams. As with the CSEM samples, the small size of the CXRD samples could limit the representative nature of the samples. Although large samples are preferred for improved signal to noise ratios, the ALARA program encourages the minimization of personnel exposure to radioactive samples. The XRD pattern of the interface layer sample was typical of a borosilicate glass and free of any indicators of crystalline matter, Figure 9. As opposed to the interface layer sample that was collected from the melter prior to shut down of the power (and rapidly cooled to room temperature), the core samples were collected after the melter had cooled significantly as shown in Figure 1. The CXRD analyses of the core samples were similar to each other and indicated the presence of three distinct phases. Along with the amorphous hump associated with a glassy phase, a spinel phase and a clinopyroxene phase were identified. The clinopyroxene phase is the major phase and was identified as aegirine (acmite) ${ }^{\dagger}$. The spinel phase most likely resembles trevorite ${ }^{\mathfrak{t}}$ as identified in prior DWPF samples ${ }^{3}$. Figure 10 is the CXRD pattern for the lower core sample.

Figure 9. CXRD pattern of the interface layer sample.

[^6]

Figure 10. CXRD patter of the lower core sample.

Conclusions

Visual Observations

The interface layer glass appeared as a typical pour stream sample as described in Reference 3. It is therefore possible that a sample of the actual interface layer was not obtained. The surface was dark and reflective with no obvious inclusions. Little information could be obtained from visual observation of the core glasses. The surfaces were coarse from the sample sectioning.

Chemical Compositions

All three of the melter samples, the interface layer, the upper core and the lower core samples, were similar in composition to each other and the pour stream glass sampled in Reference 3 for the elements measured using ICP-AES. Both of the core samples were enriched in chromium. This can be attributed to.chromium contribution from the stainless steel sampler. It is evident that the attempt to reduce the influence of the materials of construction of the sampler (stainless steel) on the chemical analysis was not completely successful.

For the elements analyzed by gamma counting (Co-60, Cs-137, Eu-154, Eu-155, and Am-241), the results were consistent among the three melter samples as well as the pour stream sample analyzed previously.

Elements associated with the fission of U-235 were consistent among the three melter samples as well as the pour stream sample analyzed previously with the exception of noble metals in the two core samples. Both the upper and lower core samples were depleted in the noble metals analyzed (Ru-101, $\mathrm{Ru}-102, \mathrm{Rh}-103$, and Pd-105). This can be attributed to the sole use of the mixed acid dissolutions for ICP-MS analyses. The core samples both contained significant quantities of crystallized material.

The mixed acid dissolution is not as aggressive as the fusion dissolution and, based on ICP-AES results, did not fully dissolve the core samples. It is probable that the apparent noble metal depletion in the core samples results from the noble metals participating in the formation of the crystalline phases.

The consistency of the compositions throughout the melter, from the interface layer to the two melt pool samples to a previously collected pour stream sample, indicate that there is no measurable stratification of the more massive actinides or noble metals. These are of interest because increased levels of these elements could coniribute to either a criticality concern (actinide segregation) or a reduction in metter life (settling of noble metals).

Contained Scanning Electron Microscopy

The interface layer glass was uniform in appearance. EDS analysis of the sample was not possible due to the radiation emitted flooding the detector. The core samples were similar to each other in appearance. Both samples had a heavily textured surface with inclusions. EDS analysis suggests that the smooth areas are glass, the inclusions are rich in iron and silicon and that some of the debris on the surface is alumina from the sectioning blade.

Contained X-ray Diffraction

X-ray diffraction analysis of the interface layer glass indicated that the sample was amorphous. Analysis of the core samples identified aegirine (acmite) and trevorite (spinel) as the two crystalline phases. These results are consistent with results reported during waste glass compositional region development work ${ }^{45}$. An amorphous hump in the spectra suggests that significant quantities of amorphous material remain in the sample.

References

1 D.F. Bickford, D.K. Peeler, M.E. Smith, and D.C. Witt, "DWPF Melter Interface Layer Possible Causes/Solutions Matrix (U), SRT-GPD-2002-00069, July 2002.
2 H.N. Guerrero, "Final Comparison of Predicted vs. Actual DWPF Melter Cool Down Rate," SRT-ETF-2003-00003, January 2003.
3 A.D. Cozzi and N.E. Bibler, "Characterization of DWPF Macrobatch 3 (Mb3) Glass Samples Received 08/13/2002," SRT-GPD-2002-00147, December 2002.
4 C.M. Jantzen, D.F. Bickford, and D.G. Karraker, "Time-Temperature Transformation Kinetics in SRL Waste Glass," in Advances in Ceramics, 8, American Ceramic Society, Westerville, OH pp. 30-38 (1984).
${ }^{5}$ C.A. Cicero, S.L. Marra and M.K. Andrews, "Phase Stability Determinations of DWPF Waste Glasses," WSRC-TR-93-227, Rev. 0, May 1993.

Distribution:
C. J. Bannochie, 773-A
A. B. Barnes, 704-30S
N. E. Bibler, 773-A
T. B. Calloway, 999-W
C. L. Crawford, 773-42A
D. C. Crowley, 999-W
T. L. Fellinger, 773-A
C. C. Herman, 773-42A
E. W. Holtzscheiter, 773-A
J. F. Iakeau, 704-30S
D. C. Iverson, 704-30S
C. M. Jantzen, 773-A
S. L. Marra, 999-W
M. S. Miller, 704-S
J. E. Occhipinti, 704-S
J. F. Ortaldo, 704-S
J. M. Pareizs, 773-A
D. K. Peeler, 999-W
L. M. Papouchado, 773-A
M. E. Smith, 773-42A

STI, 703-43A (3)

W'estinghouse Savannah River Company Document Approval Sheet

Robert Shankle

To: STI@SRS
cc:
Subject: Fw: WSRC-TR-2003-00477

11/17/03 08:08 AM

This document has no Classification, OPSEC, nor Export Control concerns.
R. L. Shankle - Derivative Classifier, OPSEC Reviewer, Export Control Officer Lead, WSRC Information Security Group
---- Forwarded by Robert Shankle/WSRC/Srs on 11/17/03 08:08 AM -----

STI Sent by: Wileva Dunbar
 To: Robert Shankle/WSRC/Srs@srs
 cc:
 Subject: WSRC-TR-2003-00477

11/13/03 11:23 AM
Please review the above referenced document for Information Security concerns and reply to STI@SRS. The document is located in the STI Review folder.

Wileva Dunbar
Scientific and Technical Information 703-43A
5-2898

Gregg Layne

To: STI@SRS
cc:
Subject: Fw: WSRC-TR-2003-00477

11/18/03 11:30 AM

CI Approved.
Gregg Layne
CI Officer
OCI-SRS
.---- Forwarded by Gregg Layne/DOE/Srs on 11/18/2003 11:30 AM -...-

STI Sent by: Wileva Dunbar
 To: Office of Counterintelligence@Srs
 cC:
 Subject: WSRC-TR-2003-00477

11/17/2003 12:17 PM
For STI review. Click here to review document 圔 and then FORWARD back to STI @ Srs:
Thank you.
Wileva Dunbar
Scientific and Technical Information
703-43A
5-2898

Westinghouse

Savannah River Company
Nkon, st zsade

C:
WSRETA-2003-004TI
D815-2003-02753
Novamber 77,2003
Ma. W. F. Perrin, Technizal Information Officer
U. S. Dapartmont of Enargy - Egvannah River Opprations Office

Dosap Ms. Pernh
REOUEST FOR APPROVAL TO RELEASE BCIENTIFICTECHNIGAL ONFOAMATION
The attroched rocument in sutmbead for olasaifioation and technitea! approvals tor the purpose of excermal raleasa. Flesse complettr Part il of the lemer and refum the laitar to the undersigned by 12N1/2003. The dociment nas been reviewed for olassification and export comkol ty a WSRC Classitioation suiff mamber and hos teon detarminod to ba Unclassified.

I. OETARS OF REGUEST FOR PMEASE

Doeumenil Number: WSRC-TA-2003-004T7
Author's Name: A D. Cozll
Locaton: g9aw.
Phona 819-9414

Documant Titb: Charactertation of DWPF Meher One Glacees

Presentation/Pubibeator:
Mesting/Jonmal!

$$
\text { Location: } N A \quad \text { OSTI taportaple }
$$

II. DDE.SA ACTION

Daye Received by TiO $11 / 18 / 2003$

OiAptoves for Felocese $\quad \mathrm{Nol}$ Appranec
 Hi Approved with Ramalios

Femerk: So 1opmes release is not pracluded by the latest

运

facrery Chsimia

RECORD STATUS (select one):
X..NewRevised Data Zevised STI Product

```
Part I: STI PRODUCT DESCRIPTION
A. STI PRODUCT TYPE (select one)
X.. 1. Technical Report
```

\square Semiannual
\square AnnualFinalthru \qquad

```
X.. 1. Technical Report
a. Type: \(\mathbb{T}\) Topical Other (specify)
Part I: STI PRODUCT DESCRIPTION
A. STI PRODUCT TYPE (select one)
```


..... 2. Conference

```
a. Product Type: ...... Conference Proceedings ..... Conference Paper or Other (abstracts, excerpts, etc.)
b. Conference Information (fitle, location, dates)
3. Software Manual ( The actual software package should be made available simultaneously. Follow instructions provided with ESTSC F 1 and ESTSC F 2.)
...... 4. Journal Article
```



```
...... 5. S\&T Accomplishment Report
.. 6. Book
7. Patent Application
a. Date Filed ( \(\mathrm{mm} / \mathrm{d} d / \mathrm{syy}\) ) __1_1_
b. Date Priority ( \(\mathrm{mm} / \mathrm{d} d / \mathrm{hy} \mathrm{y} y\) ) ___
c. Patent Assignee
``` \(\qquad\)
..... 8. Thesis/Dissertation

C. AUTHOR(s) A.D.. Comzi

E-mail Address(\(\theta s\)):
D. STI PRODUCT IDENTIFIER
__ 1. Report Number(s) W.SRC-TR-2003-00477.
2. DOE Contract Number(s) DE-AC09.96SB18500
3. R\&D Project ID(s)
4. Other Identifying Number(s)
e. originating research organization Savannah River Site
F. DATE OF PUBLICATION (mm/ddyyyy) 12/15/2003.
G. LANGUAGE (if non-English) English
(Grantees and Awardees: Skip to Description/Abstract section at the end of Part)
H. SPONSORING ORGANIZATION
I. PUBLISHER NAME AND LOCATION (if other than research organization)

Availability (refer requests to [if applicable])
J. SUBJECT CATEGORIES (list primary one first) 1.1

Keywords DW.P.F.melter, glass.
K. DESCRIPTION/ABSTRACT

The Defense Waste Processing Facility's first melter operated continuously for more thaneight years. In November 2002 it was decided to replace the melter. As part of the decommissioning and replacement of the first DWPF melter, three samples were collected from the melter, one from the melter surface and two from the core sampler. The melter samples were analyzed for chemical composition and crystal content.

Part II: STI PRODUCT MEDIA/FORMAT and LOCATION/TRANSMISSION
A. MEDIA/FORMAT INFORMATION
1. Medium of STI product is: Paper Electronic document :..... Computer medium Audiovisual material
2. Size of STI product
3. File format:
a. If electronic document is posted at site, indicate: \(\square\) html 区 pdfn \(\square\) sgml \(\square \times m l\)
b. If electronic document is transmitted to OSTI, indicate: \(\square\) htmi \(\square\) pdfn \(\square\) pdfi \(\square]\) msword __ TIFFG4 __ WP-indicate Version (5.0 or greater) \(\qquad\) platform/operating system __MS Word-indicate Version (5.0 or greater) ___ platform/operating system __ Postscript
4. If computer medium or audiovisual material:
a. Quantity/lype (specify)
b. Machine compatibility (specity)____ c. Sound: __ (yes) d. Color__ (yes) e. Tables/Graphics __ (yes)
f. Other information about product format a user needs to know: \(\qquad\)
B. LOCATIONTRANSMISSION INFORMATION

2. STI Product is being transmitted to OSTI:
a._ Electronically via FTP
b._ Via Mail or shipment (e.g., Federal Express) (Paper products, electronic documents on CD-ROM, diskettes, videocassettes, elc.)
3. Information Product Filename (of transmitted electronic formal)
C. ADDITIONAL INFORMATION (concerning media/format or location/transmission; for OSTI internal use only):
(Grantees and Awardees: Skip to Contact section at the end of Part III)
Part III: STI PRODUCT REVIEW? RELEASE INFORMATION
A. ACCESS LIMITATION
X..... 1. Unlimited Announcement (available to U.S. and non-U.S. public)
2. OpenNet (use OpenNet guidance for below):
a. If additional source other than making it available through NTIS:
e. OpenNet Document Type
(1) Accession Number
—_____
f. OpenNet Document Keywords
(2) Document Location \(\qquad\)
b. Field Office Acronym \(\qquad\)
g. OpenNet Addressee
c. Declassification date (mm/dd/yyyy) \(\qquad\) 1
d. Declassitication Status: Declassified - Sanitized __ Never classified
3. U.S. Dissemination Only
4. Copyrighted material; Are there any restrictions based on copyright? ___ yes ___ no. If yes, list the restrictions
5. Small Business innovation Research (SBIR) Release date (mm/dd/yyyy) \(\qquad\)
6. Small Business Technology Transfer (STTR) Release date (\(\mathrm{mm} / \mathrm{dd} / \mathrm{y} y \mathrm{yy}\))
7. Proprietary/Trade Secret
8. Patent Pending
9. Protected data _ CRADA __Other (specify) \(\qquad\) Release date (\(\mathrm{mm} / \mathrm{dd} / \mathrm{yyy}\)) \(\qquad\)
10. Official Use Only (OUO)
11. Program-Directed Special Handling (specify)
12. Export Control/TARJEAR
13. Unclassified Controlled Nuclear Information (UCN)
14. Classifled Classification Level/Category of:
a. This form U .
b. The STI Product Unclassitied.
15. Other information relevant to access (specify; for OST/ internal use oniy))
B. OTHER (information useful to include in published announcement record which is not suited for any other field on this form)

\section*{C. CONTACT AND RELEASING OFFICIAL}
1. Contact (if appropriate, the organization or site contact to include in published citations who would receive any extemal questions about the content of the STI Product or the research information contained therein)
Name and/or Position Jeanelte Brooks, Manager, WSRC Management Information Programs
E-mail
Organization Westinghouse Savannah River Company
2. Releasing Official \(X \quad 1\) verify that all necessary reviews have been completed (e.g. Patent, Copyright, ECI, UCNI, etc.)

Released by (name) Jeanette Brooks
Date \((\mathrm{mm} / \mathrm{dd} / \mathrm{yyy}) .12 / 15 / 2003\)
- (803) 725-2500
E-Mail Phone

\section*{WVMP SAR Reference 7-5}

Remove Melter from Vitrification Facility, WVNSCO work instruction package VFS-112008-WIP, West Valley Nuclear Services Company, West Valley, December 2004.

Pages 3-5

\section*{\(W_{W} G_{\text {ic }}\)}

\subsection*{5.0 PROCEDURE DETAILS}

\subsection*{5.1 Special Tools and Equipment}

The following special tools and equipment, provided by WVNSCO, need to be staged for installation of the container cover plates:
- Rigging and lifting attachments (i.e., slings, hoist rings, shackles, etc.), inspected, tagged, and ready for use
- Torque wrench and adapters for installation of \(5 / 16^{\prime \prime}\) SHCS's (i.e., 0 to 50 \(\mathrm{ft}-\mathrm{lb}\) range)
- Torque wrench, adapters, and torque multiplier capable of applying 500 ft lb , inspected and ready for use
- Two (2) \(2-3 / 8^{\prime \prime}\) sockets (i.e., for the \(1-1 / 2^{\prime \prime}\) bolts and nuts)
- Two (2) 2-3/8" open wrenches
- Two (2) 1-5/8" sockets (i.e., for the \(1^{\prime \prime}\) bolts and nuts)
- Two (2) 1-5/8" open wrenches
- Two (2) \(1 / 4^{\prime \prime}\) hex bit sockets (i.e., for the \(5 / 16^{\prime \prime}\) SHCS's)
- Four (4) spud wrenches
- Anti-galling lubricant (nickel antiseize, or equivalent)
- Silicone rubber sealant (Dow 732 - clear, or equivalent)
- Caulk guns
- WVNSCO approved gasket adhesive

\subsection*{5.2 Installation of the Melter Container Cover Plate}
5.2.1 Perform an ALARA pre-job.
5.2.2 Stage the Melter container cover plate horizontally on wood cribbing under the Load Out crane, in a low dose area, and as close as possible to the loaded container, in preparation for installation.
5.2.3 Clean the container cover plate gasket seating area, if necessary, with isopropyl alcohol, or equivalent approved cleaning solution.
5.2.4 Align the cover plate to the container by aligning the cover lift tabs to the slots in the container top skirt to guide it into position. Use pry bars and the pry bar slots, if necessary, to complete the final cover alignment of the cover to the container.
5.2.5 WVDP RP shall verify dose rates and revise the radiation protection controls, as necessary, prior to continuing work.

INSP HOLD Witness the installation of "anti-galling lubricant" and the torquing of the cover plate attachment bolts to 500 ft -lbs (450 ft -lbs to 550 ft -lbs).

Actual torque applied: \(\qquad\) 526 \(f t-1 b\)

Tool No. \(35 \times 14.5\) Cal Due Date: \(9 / 13 / 15\)

NOTE: A minimum of 30 bolts and washers are required to be installed for installation of grout or installation of securement devices, prior to movement of Melter package at the West Valley site. All 32 bolts and washers are required to be installed prior to transport of the package from the West Valley site. Step 5.2 .6 b can be performed at any time after receipt of the remaining two (2) bolts, but must be performed prior to transport of the package from West Valley.
5.2.6a Apply "anti-galling lubricant" to the threads of each of the \(1-1 / 2\) " diameter bolts, then tighten thirty (30) of the bolts and washers to "snug tight" attach the cover plate to the Melter container (Note that a minimum of four (4) bolts are required to hold the cover plate to the container). Torque the bolts to 500 ft -lbs (450 ft -lbs to \(550 \mathrm{ft}-\mathrm{lbs}\)) using a calibrated torque wrench. Use a crisscross tightening sequence that alternately tightens the bolts located 180 degrees apart. Perform the crisscross torquing sequence for three (3) torque increments starting at 200 ft -lbs, then 400 ft -lbs, and finally 500 ft -lbs. The tightening to the final torque value of 500 ft -lbs shall be performed by tightening the bolts sequentially clockwise.
Container Closure Procedure for the
WVDP Melter Shipping Package
4005E-P-002, Rev. 2
-4.
112008
\(F C+5\)

\section*{Which}

INSP HOLD Witness the installation of "anti-galling lubricant" and the torquing of the cover plate attachment bolts to 500 ft -lbs (450
 ft -lbs to \(550 \mathrm{ft}-\mathrm{lbs}\)).

Apply "anti-galling lubricant" to the threads of each of the remaining two (2) \(1-1 / 2^{\prime \prime}\) diameter bolts, then tighten the bolts and washers to 500 ft -bs (450 ft -lbs to 550 ft -lbs) using a calibrated torque wrench.
5.2.7 Disconnect the rigging from the hoist rings, then remove the hoist rings from the cover plate tabs.
5.2.8 WVDP RP shall perform the "loaded package" survey and again revise the radiation protection controls, as necessary, prior to continuing work. Surveys shall be provided to the WMG representative.

\subsection*{5.3 Installation of the Melter Securement Devices}

NOTE: The Melter securement devices shall be installed if the low density cellular concrete is not placed in the Melter container prior to movement of the packaged Melter on site.
5.3.1 Install Melter securement devices in accordance with Reference 3.1.5 (drawing 4005-DW-007, (current revision) "West Valley Melter Securement Device.")

\subsection*{5.4 Installation of the Melter Container Grout Port Plugs}

This section is included to provide the user with instructions for installation of the grout port plugs following the placement of low density cellular concrete (not covered by this procedure) into the Melter container. It assumes that the threaded holes in the container, into which the \(5 / 16^{\prime \prime}\) socket head cap screws (SHCS's) will be attached, and the associated gasket seating surfaces, have been cleaned (or verified clean) prior to beginning this work.
\[
\text { 4005E-P-002, Rev. } 2
\] 11/04
\(-5\).

\section*{WVMP SAR Reference 7-6}

Weigh and Prepare Melter Container TC 474 for Grouting at the Rail Packaging and Staging Area, CHBWV work instruction package W1303663, CH2M Hill-B\&W West Valley, LLC, West Valley, New York, completed October 2013.

Pages 8-11
5.6.7 Use hand tools in the glove bag to pry the device and slightly separate it from the container allowing the container to vent into the glove bag.
5.6.8 Allow the container to vent into the glove bag and the PVU to take up vented air.
5.6.9 After the container is vented THEN unscrew and remove the four bolts.
5.6.10 Carefully pull the securement device completely out of the melter container and into the glove bag.
5.6.11 Remove scrape and clean any gasket material (neoprene) and or RTV from the recessed area of port.
5.6.12 If required wipe down the inside of the glove bag and recessed area of port using Wypalls and Windex.
5.6.13 Twist the glove bag at the port and tape.
5.6.14 Allow the ventilation to suck air out of the bag and allow the bag to collapse.
5.6.15 Peel bag away from container and j-seal the bag.
5.6.16 RC perform survey around port area.
A. IF removable contamination levels are \(>20 \mathrm{dpm} / 100 \mathrm{~cm}^{2}\) alpha and \(>200 \mathrm{dpm} / 100 \mathrm{~cm}^{2}\) beta/gamma.

THEN DDWO decontaminate surfaces to \(<20 \mathrm{dpm} / 100 \mathrm{~cm}^{2}\) alpha and \(<200 \mathrm{dpm} / 100 \mathrm{~cm}^{2}\) beta/gamma.
B. Waste created during decontamination shall be disposed with profile VGAS.001. Windex cans shall be emptied and punctured.
5.6.17 Bag glove bag containing the securement device as rad waste using waste profile VGAS. 001 and remove 4 "duct from bag.
5.7 Install Container Plug into port left by removal of securement Device. (See Photo on Attachment A Page 2 and "Melter Container Plug Details" SKJHS052913)
5.7.1 RTV new gasket onto new 6 " Deep plug.
5.7.2 Lubricate \(5 / 16^{\prime \prime} \times 3 \% 4^{\prime \prime}\) long Cap Screws with a small amount of never seez (or equal)
5.7.3 Position plug into recessed area of container port.
5.7.4 Install Cap Screws and tighten (hand tight).

FCl> A. Torque each to 35 ft lbs. (+or- 4 ft lbs) QA to witness torqueing.

B. Apply RTV in the gap around the top of the port cover.
C. RC perform survey around port area.
1. IF removable contamination levels are \(>20 \mathrm{dpm} / 100 \mathrm{~cm}^{2}\) alpha and \(>200 \mathrm{dpm} / 100 \mathrm{~cm}^{2}\) beta/gamma.

THEN DDWO decontaminate surfaces to \(<20 \mathrm{dpm} / 100 \mathrm{~cm}^{2}\) alpha and \(<200 \mathrm{dpm} / 100 \mathrm{~cm}^{2}\) beta/gamma.
2. Waste created during decontamination shall be disposed with profile VGAS.001. Windex cans shall be emptied and punctured.

OR
5.7.5 If Cap screws cannot be made, remove screws and plug, secure penetration with temp cover, position shield blanket, and nolify WGS and cog engineer
A.

RC perform survey around port area.
1. IF removable contamination levels are \(>20 \mathrm{dpm} / 100 \mathrm{~cm}^{2}\) alpha and \(>200 \mathrm{dpm} / 100 \mathrm{~cm}^{2}\) beta/gamma.

THEN DDWO decontaminate surfaces to \(<20 \mathrm{dpm} / 100 \mathrm{~cm}^{2}\) alpha and \(<200 \mathrm{dpm} / 100 \mathrm{~cm}^{2}\) beta/gamma.
2. Waste created during decontamination shall be disposed with profile VGAS.001. Windex cans shall be emptied and punctured.
5.8 Remove port cover. (Top of container on West Side). (See Photo on Attachment A Page 2, and SK-NJA071613 Sheet 10 of 18 (Step 10 for reference)
5.8.1 DDWO field install herculite or equivalent around port.
5.8.2 Run a \(4^{\prime \prime}\) duct from the PVU for ventilation. Alternately, an environmentally sampled HEPA vacuum may be used.
5.8.3 Loosen and remove the three \(5 / 16^{\prime \prime}\) SHCS cap screws securing the port cover.
5.8.4 Use \(1 / 2^{\prime \prime}\) lift eye or T-handle, and lift the port cover and separate it from the container.
A. Remove the port cover and bag as waste using waste profile VGAS.001 .
5.8.5 RC perform survey around port area.
A. IF removable contamination levels are \(>20 \mathrm{dpm} / 100 \mathrm{~cm}^{2}\) alpha and \(>200 \mathrm{dpm} / 100 \mathrm{~cm}^{2}\) beta/gamma.
1. THEN DDWO decontaminate surfaces to \(<20 \mathrm{dpm} / 100 \mathrm{~cm}^{2}\) alpha and \(<200 \mathrm{dpm} / 100 \mathrm{~cm}^{2}\) beta/gamma.
2. Waste created during decontamination shall be disposed with profile VGAS.001. Windex cans shall be emptied and punctured.
5.8.6 Remove scrape and clean any gasket material (neoprene) and or RTV from the recessed area of port recessed area drop into waste container.
5.8.7 Remove herculite or equivalent from the port area.
5.8.8 RC perform survey around port area.
A. IF removable contamination levels are \(>20 \mathrm{dpm} / 100 \mathrm{~cm}^{2}\) alpha and \(>200 \mathrm{dpm} / 100 \mathrm{~cm}^{2}\) beta/gamma.
1. THEN DDWO decontaminate surfaces to \(<20 \mathrm{dpm} / 100 \mathrm{~cm}^{2}\) alpha and \(<200 \mathrm{dpm} / 100 \mathrm{~cm}^{2}\) beta/gamma.
2. Waste created during decontamination shall be disposed with profile VGAS.001. Windex cans shall be emptied and punctured.
5.9 Install Grouting Support Assembly. (See Sketch SKJHSO52813 Melter Vessel Grouting Support Assembly and SK-NJA-071613 Sheet 10 of 18 (Step 10 for reference))
5.9.1 Ensure to CLOSE all valves on the Grouting Support Assembly and instalhall caps.

WGS or Designee Print/Sign/Date ofnis)(elv RU00 OMduludu/f 9-10-2013
5.9.2 Place the Grouting Support Assembly. (with gasket) inside of the port.
5.9.3 Install three \(5 / 16^{\prime \prime} \times 21 / 4^{\prime \prime}\) Hex Head Bolts with washers through the hole pattern securing the assembly to the container.
5.9.4 Tighten all bolts wrench tight.
5.9.5 If bolts cannot be made, remove screws and Grouting Support Assembly, secure penetration with temp cover, position shield blanket, and notify WGS and cog engineer
5.9.6 RC perform sunvey around port area.
A. IF removable contamination levels are \(>20 \mathrm{dpm} / 100 \mathrm{~cm}^{2}\) alpha and \(>200 \mathrm{dpm} / 100 \mathrm{~cm}^{2}\) beta/gamma.
1. THEN DDWO decontaminate surfaces to \(<20 \mathrm{dpm} / 100 \mathrm{~cm}^{2}\) alpha and \(<200 \mathrm{dpm} / 100 \mathrm{~cm}^{2}\) beta/gamma.
2. Waste created during decontamination shall be disposed with profile VGAS.001. Windex cans shall be emptied and punctured.
5.10 Remove Vertical securement Device \#1. (top of container North Side) (See Photo on Altachment A Page 3, WMG Sketch "Securement Device 4OO5-DWOO7" and SK-NJA-071613 Sheet 11 of 18 (Step 11 for reference)

NOTE: Either of 5.10 .1 or 5.10 .2 may be performed to remove the vertical securement device form the North Port. (if device will not fit out the port using 5.10 .1 then 5.10 .2 may be used instead to cut the rod)
5.10.1 Pull the whole device from the container
A. Place herculite or equal around Jack Screw Port cover prior to removing port cover.

C. Himstatt the securement device cap (SKJHS062513), for installation of \(3 / 8^{\prime \prime} \sim 16\) UNC thread.
D. Remove the four screws holding flange in place.

AR 9-11-13 AK 9-11-13
E. Place sleeving approximately 6 feet long around the diameter of the securement device and seal to contalner.
F. Secure the sleeving to the flange.
[+] G. Complete WV-2180,ifneeded AR 9-11-13 ok 9-1t-13
H. If a rigging sketch is needed then obtain one from Engineering.
1. \(\quad\) ig to the securement device, if needed \(A R\) 5-11.13 ok9-11.13
J. Lift the device up and out of the container.
K. Tape sleeving and perform and umbilical cut.
L. Remove sleeving from port area.
M. RC perform survey around port area.
1. IF removable contamination levels are \(>20 \mathrm{dpm} / 100 \mathrm{~cm}^{2}\) alpha and \(>200 \mathrm{dpm} / 100 \mathrm{~cm}^{2}\) beta/gamma.
a. THEN DDWO decontaminate surfaces to \(<20 \mathrm{dpm} / 100 \mathrm{~cm}^{2}\) alpha and \(<200 \mathrm{dpm} / 100 \mathrm{~cm}^{2}\) beta/gamma.
b. Waste created during decontamination shall be disposed with profile VGAS.001. Windex cans shall be emptied and punctured.

OR

\subsection*{5.10.2 Cut the threaded rod}
A. Place herculite or equal around Jack Screw Port cover prior to removing port cover.

AR 9-11-13
DR \(4-16\)

C. Hastaifthe securement device cap (SKJHSO62513), for in stallation 3/8"-16 UNC
D. Remove the four screws holding flange in place threaci
E. Place sleeving approximately 12 feet long around the diameter of the securement device and seal to container.
F. Secure the sleeving to the flange.
[+] G. Complete WV-2180; if needed.
H. Rig to the top of the Securement Device, if needed.
1. Lift the Securement Device flange section up approximately 1 ft above the container and hold.
J. Install cribbing under flange to safely prop it up at approximately 1 ft high.
K. Disconnect rigging from fork lift.
L. Tape sleeving tight to threaded rod for contamination control during cutting.
M. Drape a sheet of herculite over the securement device and tape on three sides to create a small tent.
N. Run a \(4^{\prime \prime}\) duct from the PVU for ventilation. Alternately, an environmentally sampled HEPA vacuum may be used.
O. Use a reciprocating saw or equivalent to cut the threaded rod. (Allow the lower section of rod to fall into the waste container)
P. Tape to and secure open edges (on threaded rod)
Q. Remove sleeving from port area.
R. RC perform survey around port area.
1. IF removable contamination levels are \(>20 \mathrm{dpm} / 100 \mathrm{~cm}^{2}\) alpha and \(>200 \mathrm{dpm} / 100 \mathrm{~cm}^{2}\) beta/gamma.
a. THEN DDWO decontaminate surfaces to \(<20 \mathrm{dpm} / 100 \mathrm{~cm}^{2}\) alpha and <200dpm/100 \(\mathrm{cm}^{2}\) beta/gamma.
b. Waste created during decontamination shall be disposed with profile VGAS.001. Windex cans shall be emptied and punctured.
S. Remove herculite tent.
5.10.3 Bag the securement device and herculite.
5.10.4 Remove the securement device from the top of container.
5.10.5 Package and remove waste using waste profile VGAS.001.
5.11 Plug port on North Side (See Photo on Attachment A Page 2)

NOTE: The Plug (\(4^{\prime \prime}\)) and Cap Screws (\(5 / 16 \times 2{ }^{3 / 4}\) SHCS) required by this section are different sizes than those items required by Section 5.7.
5.11.1 RTV new gasket onto new 4" Deep plug.
5.11.2 Lubricate (\(5 / 16 \times 23 / 4\) " SHCS) long Cap Screws with a small amount of never seez (or equal)
5.11.3 Position plug into recessed area of container port.
5.11.4 install Cap Screws and tighten (hand tight).

FC1> A. Torque each to 35 ft lbs. (\(+\mathrm{or}-4 \mathrm{ft} \mathrm{lbs}\)) QA to witness torqueing.

Calibrated Torque Wrench ID\# 4 \(1-\) TUU-18
Calibration Due Date_ \(12 \mid 31 / 13\)
B. Apply RTV in the gap around the top of the port cover.
C. RC perform survey around port area.
1. IF removable contamination levels are \(>20 \mathrm{dpm} / 100 \mathrm{~cm}^{2}\) alpha and \(>200 \mathrm{dpm} / 100 \mathrm{~cm}^{2}\) beta/gamma.

\section*{WVMP SAR Reference 7-7}

Melter Waste Package Grouting Implementation/QA Plan, Revision 2, CH2M Hill-B\&W West Valley, LLC, West Valley, New York, October 23, 2013.

\title{
MELTER WASTE PACKAGE GROUTING IMPLEMENTATION/QA PLAN (SUBJECT TO CHANGE BASED ON ENCOUNTERED CONDITIONS)
}
(Rev 2, October 23, 2013)

\section*{\(1.0 \quad\) BACKGROUND}

The current Certificate of Conformance for the melter waste package, as designed and provided by WMG, Inc., indicates:

> "Packaging requirements, prior to shipment, include the addition of Low Density Cellular Concrete (LDCC) at a density that yields a minimum compressive strength of 1,000 PSI. The maximum gross weight of the completed package shall not exceed 390,000 pounds."

GeoScience Group was awarded a contract to develop a LDCC recipe that meets these criteria and provide such material to the WVDP for placement into the melter waste package.

\subsection*{1.1 1,000 Pounds Per Square Inch (PSI) Specification}

As indicated in Section 2.2 of the Statement of Work (SOW) (Mix Design), GeoScience is required to:
"... submit a mix design for the proposed grout, to meet the above specification requirements. The mix design shall be proven by laboratory testing (e.g., compressive strength tests) with the results submitted to CHBWV for approval prior to grout placement. If the schedule does not permit sufficient time to perform a 28 day compressive strength test, then the compressive strength test results for 3,5,7, etc. day tests shall meet or exceed the expected strength results plotted on the strength cure for the designated mix design."

As of October 23, 2013, the 70 pounds per cubic foot (PCF) wet-density LDCC recipe mocked up at Wayne Concrete by GeoScience on September 30, 2013 has resulted in four (4) day cylinder breaks ranging from 520 to 900 PSI with the latest 22 day breaks at \(>1,000 \mathrm{PSI}\) for all the 3 "x6" cylinders (Attachment D). It is anticipated that the PSI results will continue to graph upward as the curing cycle continues through the ASTM spec-required 28th day break on October 28, 2014. It appears worst case is that the PSI results do not continue to graph upward but remain at the 22 day PSI results (i.e., results would not trend downward).

\subsection*{1.1.1 Lifts}

As also required in Section 2.2 of the SOW (Mix Design), to be conservative and for risk management purposes, GeoScience's has determined that the grout should be added to the melter waste package in two lifts (i.e., ~three (3) to six (6) cement trucks per day for two (2) days). The two (2) lift approach:
- Further insures the integrity of the cellular structure of the grout is maintained
- Reduces time-limit stresses associated with emptying six (6) cement trucks into the package in one day versus all 12 in one (1) day, and
- If deployment issues require abandonment of first day grouting activities (e.g., unexpected rad concerns), then only six (6) truckloads of grout would be wasted versus 12.

\section*{\(1.2390,000\) Pound Maximum Gross Weight Capacity}

The melter waste package has an approximate height, length, and width of 13 feet and currently weighs 160 tons. The annular void space that is required to be filled is approximately 910 cubic feet. However, passive migration of the LDCC in spent equipment cavities may occur which would increase the volume to 1025 cubic feet. [See Attachment A how void space volume was calculated]. [The maximum void space calculation was validated by WMG in June 2013 (see Attachment B)]. Upon completion of grouting, the package must weigh less than 390,000 pounds as measured by CHBWV.

The 2004 SOP 300-07 Appendix D for the melter waste package (TC-474) states that the pre-grout weight of the melter waste package, that was determined using a crane, was \(318,200 \mathrm{lbs}\) (with lift lugs). The only crane on site at the time that was capable of performing the lift was the 500 ton gantry; the gantry would have been lifting eight 55 ton shackles and other assorted rigging.

In September 2013, the melter waste package was re-weighed using WIP\# 1303663 with \(310,672.1\) pounds or 155.34 tons being recorded. The 2013 weighing method used (as explained in the WIP) would result in a more accurate weight than the 2004500 ton gantry method by its very nature and allow cost effective weighing of the container while grouting. The more accurate weight is reflected in a new SOP 300-07 Appendix D data sheet for the waste package (TC-474) (supporting documentation is also in container file) [See Attachment C]

The annular void space in the melter waste package needs to be grouted to meet the package's Certificate of Conformance. If only the annular void space was grouted, the final gross weight of the grouted package would be far less than its currently stated 390,000 capacity. However, there are open penetrations in the melter inside the package which may allow grout to enter the melter cavity, which is not required. Using a grout with a PCF of 70 (see above) and assuming as a worst case the entire melter cavity if passively filled with grout, the entire package may weigh between 377,710 to 387,477 pounds (as compared to the current package maximum gross weight capacity of 390,000 pounds) [The conclusion that the grouted package, assuming all voids were filled with grout, would weigh below the package's gross weight capacity was validated by WMG in June 2013 (see Attachment B)]. (Although the Certificate of Conformance does not state that the annular void space needs to be "filled" nor a requirement as to how such is qualified, the above reflects a scenario where the final level of grout comes to approximately six to twelve inches from the inside top of the melter package to insure that grout is not allowed to come out of the penetrations on top of the waste package and the melter is encased in grout.)

RISK MANAGEMENT

\section*{2.1 \(1,000 \mathrm{PSI}\) Specification}

28-day PSI data will be generated, by its nature, after the grout is placed into the melter waste package. (Note: although the ASTM C495 spec for LDCC recognizes the 28 -day cure period for LDCC, if required, but not anticipated, the use of 56 -day break data to confirm achievement of the \(1,000 \mathrm{PSI}\) requirements is an option.) As such, a high degree of confidence is needed to insure such results will be obtained. In other words, once the melter package is filled with grout and if subsequent associated grout cylinder breaks do not meet \(1,000 \mathrm{PSI}\) (or the package weights more than \(390,000 \mathrm{lbs}\), as discussed below), since we will not be able to remove the grout easily, the entire grouted waste package we will have to repackaged which will cost millions of dollars and may not even be feasible (size and weight restrictions will not allow rail/road transport of such a package).

Recipe mockups at 70 PCF indicate 22 day breaks exceeding the \(1,000 \mathrm{PSI}\) specification. As an additional risk management option, in discussions with WMG, it appears the \(1,000 \mathrm{PSI}\) may be very conservative and that models could be re-run at a lower PSI (e.g., 750 PSI) to determine if a less stringent PSI grout could be used and still meet regulatory requirements for the package (for an \(\sim \$ 45,000\)). If the less conservative PSI meets regulatory requirements, WMG would modify the Certificate of Conformance appropriately to reflect the new PSI requirement. Given the 22 -day cylinder data [\(>1,000 \mathrm{PSI}\) for all \(3^{\prime \prime} x 6^{\prime \prime}\) cubes, worst case potential that the PSI through 28 days (October 28, 2013) would stay at 22-day levels and not decrease (would expect it to increase)], the re-modeling by WMG and their Russian subcontractor will not be performed unless needed after the waste package is grouted and 28 -day cylinder break data is received.

\subsection*{2.2 390,000 Pound Maximum Gross Weight Capacity Specification}

Assuming a 70 PCF grout is realized and the entire package void space and the entire melter cavity becomes filled with grout due to open penetrations on one (1) side (a unplugged discharge chute/pour spout approximately half way down the side of the melter) and on top of the melter [R1, R2 (\(\sim 5^{\prime \prime}\) open plenum / glass thermowell ports)], it is anticipated that there will be an approximately 2,500 to 12,300 pound cushion
before the package's rated weight capacity of 390,000 pounds is reached.
Risk management actions to be taken in the field include, as discussed more below, include re-weighing the waste package as it is being filled and using optics to determine height of grout as the package is being filled.

As an additional risk management option, in discussions with WMG, it appears, like the package PSI spec, the weight capacity spec may also be very conservative and that models could be re-run to determine a higher weight capacity that would still meet regulatory requirements (for \(\sim \$ 45,000\)).

If the worst case scenario is realized (entire melter cavity if passively filled with grout in addition to the required annular void space), a calculated cushion of between 2,500 and 12,300 pounds is expected before the maximum gross weight capacity of the package is reached. Field activities, as discussed in more detail below will be utilized to insure the package weight does not exceed 390,000 pounds. As such, the remodeling by WMG and their Russian subcontractor will not be performed unless needed.

IMPLEMENTATION/QUALITY ASSURANCE WORK PLAN

\subsection*{3.1 Meeting PSI Spec}

As indicated in Section 2.5 of the SOW (Testing and Laboratory Services) GeoScience's is required to:
"2.5.1 The subcontractor shall provide testing and laboratory services from a third party. independent testing laboratory. The independent testing laboratory shall have a qualified quality control field representative present each day of grout placement, including the batch plant testing operation.
2.5.1.2 The quality control field representative shall test each load of grout for wet density, to assure that it falls within the specified range, in accordance with ASTM C-138.
2.5.1.3 The quality control field representative shall cast a minimum of 8 test cylinders per day, for each container placement, to be taken at a point in the discharge line that has been subjected to a maximum head pressures developed in the discharge line. Test specimens shall be prepared, handled, cured and tested for compressive strength in accordance with the requirements of ASTM C495."

\subsection*{3.1.1 Wet Density Range (corresponding to SOW Section 2.5.1.2)}

One sample from each concrete truck load (after the addition of the foam additive) will be taken. The PCF will be required to be between 68 and 72 PCF (with a goal of 70 to 72) for each truck (or an average of all the day's trucks) to reflect a nominal PCF of between 70 and 72 PCF inside the melter waste package. The 70 to 72 PCF range inside the melter was calculated as indicated in Table A.

\subsection*{3.1.2 PSI Test Cylinders (corresponding to SOW Section 2.5.1.3)}

For additional risk management purposes, for each cement truck load that passes wet density testing, test cylinders will be cast (not just one truck per day as indicated in SOW Section 2.5.1.3). Grout volume to fill the cylinders will be taken at a sample station located post-grout at a location that has been subjected to the maximum head pressures developed in the discharge line. Cylinders may be stored in cure box. For one of the trucks on each day of grouting, a full sequence of test cylinders will be generated and tested, at a minimum, as follows:
- 2 cylinders for 8 -day breaks
- 4 cylinders for 28 day breaks
- 4 cylinders for 56-day breaks (if needed)
- Contingency: 2 cylinders

For the remainder of the trucks to be used in a particular day, the following sequence of test cylinders may also be generated, at a minimum. For each day of grouting, these remaining truck cylinders will be broken only if the full sequence of cylinders for that day fails to display \(1,000 \mathrm{PSI}\) at 28 days. If these cylinders are broken, the 28 day (or 56 day) results from all broken cylinders will be averaged together, with the data generated from the other days of grouting, to document the final PSI of the grout inside the waste package.
- 4 cylinders for potential 28 -day breaks
- 4 cylinders for potential 56 -day breaks (if needed)

\subsection*{3.2 Meeting Gross Weight Capacity Spec}

The largest unknown factor relative to staying below the melter waste package's stated gross weight capacity of 390,000 pounds is to what degree grout is going to enter the melter's cavity via open penetrations R1 and R2 located on top of the melter (approximately \(20^{\prime \prime}\) from underside of top of waste container) and the one non-plugged discharge chute located approximately half way down the melter's side. As such, the tentative plan to monitor the weight of the package is being filled is as follows. Although subject to change, while pouring the lifts, the melter is anticipated to be weighed before the level of the open penetrations in the side and top of the melter are approached. As the grout level approaches the penetrations and after the penetrations are immersed in grout, more frequent weighing may occur. Visual and dose rate readings will be collected to determine the approximate height of the grout within the package. Once the waste package weighs approximately 387,000 pounds, no further grout will most likely be added to maintain a 3,000 pound cushion.

\section*{WVMP SAR Reference 7-8}

Grout Melter Container TC-474 at the Rail Packaging and Staging Area, CHBWV work instruction package W1303694, CH2M Hill-B\&W West Valley, LLC, West Valley, New York, completed November 2013.

\section*{Pages 9-10}
5.10.4 Inspect port for grout clean and remove grout from port if needed.
5.10.5 Perform Section 5.11 to install container plug.
5.11 Install Container Plug into port left by removal of Grout Support Assembly. (See "Melter Container

5.11.1 RTV new-gàsket onto now- \(4^{" D}\) Deep plug.
5.11.2 Lubricate (\(5 / 16 \times 23 / 4^{\prime \prime}\) SHCS) long Cap Screws with a small amount of never seez (or equal)
5.11.3 Position plug into recessed area of container port.
5.11.4 Install Cap Screws and tighten (hand tight).
A. Torque each to 35 ft lbs . (+or- 4 lbs) QA to witness torqueing.
[+]
[+]

[+]
Calibration Due Date__ \(12-3 \mid-13\)
B. Apply RTV in the gap around the top of the port cover.
C. RC perform survey around port area.
```

AR 10.17.13
DCN10-17-13

```
1. If removable contamination levels are \(>20 \mathrm{dpm} / 100 \mathrm{~cm}^{2}\) alpha and / or \(>200 \mathrm{dpm} / 100 \mathrm{~cm}^{2}\) beta/gamma THEN.
a.DDWO decontaminate surfaces to \(<20 \mathrm{dpm} / 100 \mathrm{~cm}^{2}\) alpha and \(<200 \mathrm{dpm} / 100 \mathrm{~cm}^{2}\) beta/gamma.
b. Waste created during decontamination shall be disposed with profile VGAS.001. Windex cans shall be emptied and punctured.

OR
5.11.5 If Cap screws cannot be made, remove screws and plug, secure penetration with temp cover, position shield blanket, and notify WGS and cog engineer
A. RC perform survey around port area.

AR 10.17-13
becoñ)
1. IF removable contamination levels are \(>20 \mathrm{dpm} / 100 \mathrm{~cm}^{2}\) alpha and /or \(>200 \mathrm{dpm} / 100 \mathrm{~cm}^{2}\) beta/gamma THEN.
a. DDWO decontaminate surfaces to \(<20 \mathrm{dpm} / 100 \mathrm{~cm}^{2}\) alpha and <200dpm/100 \(\mathrm{cm}^{2}\) beta/gamma.
b. Waste created during decontamination shall be disposed with profile VGAS.001. Windex cans shall be emptied and punclured.
5.12 Remove vent ducting, box filter and knock out pot.

NOTE: Keep PVU running during vent line breakdown. The PVU will remain running until directed to be secured by the Cognizant Engineer.
5.12.1 Close the 4" Ball Valve on the Grouting Support Assembly on the (vent side) of the container. (vent assembly)
5.12.2 Disconnect the \(4^{\prime \prime}\) vent duct from the vent assembly and bag open ends.
5.12.3 Disconnect vent duct from the Knock Out Pot and bag open ends on each.
5.12.4 Disconnect duct (bag open ends) from the filter box. Bag filter box as waste using waste protile VGAS.001.
5.12.5 Dispose of the ventilation duct as waste using waste profile VGAS.001.
5.12.6 Check knock-out drum for liquids.
A. If \(\geq 2\) gallons of liquid is collected THEN Sample for interceptor acceptance Per Attachment A "Liquid Sampling Instructions".
B. IF < 2 gallons of liquid is collected THEN obtain field pH of the liquid and check for visible oil sheen and provide results to WPD. If pH is \(\leq 2\) or \(\geq 12.5\), See Attachment A, Step 1.1.4.
5.12.7 Set-up contamination area with herculite on container around the port.
5.12.8 Disconnect grout inlet valve assembly.

WARNING:

\section*{EXCESS GROUT MAY OVERFLOW FROM PORT WHEN DISCONNECTING VALVE ASSEMBLY. GROUT IS POTENTIALLY CONTAMINATED.}
5.12.9 Tape \& cut sleeving between valve assembly \& port to maintain seal on container.
5.12.10 Remove sleeving and inspect port for grout.
5.12.11 RC survey prior to cleaning port.
A. RC perform survey around port area.

AR \(10-17.13\) 1. IF removable contamination levels are \(>20 \mathrm{dpm} / 100 \mathrm{~cm}^{2}\) alpha and/or \(D C 10-17-13\)
2. THEN DDWO decontaminate surfaces to \(<20\) dpm \(/ 100 \mathrm{~cm}^{2}\) alpha and \(<200 \mathrm{dpm} / 100 \mathrm{~cm}^{2}\) beta/gamma.
3. Waste created during decontamination shall be disposed with profile VGAS.001. Windex cans shall be emptied and punctured
5.12.12 inspect port for grout clean and remove grout from port if needed.
5.12.13 Perform Section 5.13 to install container plug.
5.13 Install Container Plug into port left by removal of Grout Support Assembly. (See "Melter Container

5.13.1 RTV new gasket onto now 4" Deep plug.
5.13.2 Lubricate (\(5 / 16 \times 23 / z^{\prime \prime}\) SHCS) long Cap Screws with a small amount of never geez (or equal)
5.13.3 Position plug into recessed area of container port.
5.13.4 Install Cap Screws and tighten (hand tight).
A. Torque each to 35 ft lbs . (+or- 4 lbs) QA to witness torquing.

QA Print/Sign/Date

Calibrated Torque Wrench ID\# 41-Tw-18
Calibration Due Date_ \(12 \cdot 31-13\)
B. Apply RTV in the gap around the top of the port cover.
C. RC perform survey around port area.
1. IF removable contamination levels are \(>20 \mathrm{dpm} / 100 \mathrm{~cm}^{2}\) alpha and \(>200 \mathrm{dpm} / 100 \mathrm{~cm}^{2}\) beta/gamma THEN.

\section*{WVMP SAR Reference 7-9}

Administration of Work Instruction Packages, EP-5-002, Revision 37, CH2M Hill-B\&W West Valley, LLC, West Valley, New York, March 19, 2014.

CH2MHILL • B\&W West Valley, LLC
ENGINEERING PROCEDURES
TITLE: ADMINISTRATION OF WORK INSTRUCTION PACKAGES

\subsection*{1.0 PURPOSE}

This engineering procedure provides instructions for the administration of Work Instruction Packages (WIPs) including development, revision, cancellation, closeout, and periodic review/recall of issued WIPs.

The administration of WIPs is a Worker Safety and Health Administrative Control program as identified in Addendum 1, "WVDP Worker Safety and Health Plan" (WVDPMSHP) to WVDP-310, "WVDP Integrated Safety Management System (ISMS) Description." The WVDPMSHP includes a program statement associated with each Worker Safety and Health Administrative Control program. In accordance with 10 CFR \(851.11(\mathrm{c})(1)\), any proposed change (i.e., modification, addition, or deletion) to EP-5-002 that would invalidate the program statement in the WVDPNSHP requires prior DOE approval.

\subsection*{2.0 GENERAL}
2.1 Terms used in this procedure are defined in Attachment A, "Definitions."
2.2 Attachment B, "Writing Guidelines and Document Structure," assists originators with WIP formatting and writing guidelines.
2.3 Attachment C, "Reviewer/Planning Team Selection Checklist," is provided to assist in identifying the required reviewer/planning team members for WIP development.
2.4 When necessary, approval signatures may be obtained via telecon or the use of emails. Attachment D, "Telecon/Email Approvals," provides the method for obtaining approvals via telecon or email.

\subsection*{3.0 WIP DEVELOPMENT PROCESS}

This section may be performed in the order that best suits the efficiency of time and effort to develop and issue WIPs.
3.1 Originator: Defines the scope of the WIP, identifies the hazards associated with the work, and develops the work instructions. To accomplish this task:
3.1.1 Perform a scoping assessment of the assigned task with the work group(s) that will use the final instruction as well as applicable support groups, including hazard control specialists (HCS), as deemed appropriate. The scoping assessment should include a walkdown of the proposed tasks to assess actual field conditions.
3.1.2 Refer to historical files (e.g., completed work instructions, related operating procedures, lessons learned documents) for guidance and experience that can be incorporated into the work instructions.
3.1.3 Refer to available resources (CHBWV Intranet Lessons Learned, WVDP Operating Experience Program Coordinator, Occurrence Reports [ORPS], and/or DOE lessons learned system) for lessons learned information on activities similar to those being proposed. Incorporate applicable lessons learned information into the work process and/or identify the information for inclusion into training or briefing material, if applicable.
3.1.4 Identify hazards using form WV-3909, "Activity Hazards Analysis" (AHA).

NOTE The originator may obtain a Work Control Number (WIP number) from Work Control at any time.
3.1.5 Develop WIP using form WV-2571, "WVDP Work Instruction Package (WIP Form)" and guidelines in Attachment B, "Writing Guidelines and Document Structure."
3.1.6 Include hazard controls in the WIP in accordance with WV-921, Hazards Identification and Analysis. Ensure that hazard controls not specifically discussed in the WIP are captured in other permits (e.g., RWP, IWP) or are identified on the Pre-Job Briefing form (WV-3745) as required by WV-921.

NOTE When the risks to the planning team outweigh the potential benefits of the walkdown, a tabletop review using photographs and drawings with group discussion may be performed in-lieu of the walkdown, as approved by the Work Review Group Coordinator (WRGC).
3.2 Work Group Supervisor and/or Originator lead Planning Team Walkdowns in accordance with SOP 00-46, Work Instruction Walkdowns, Pre-Job and Daily Briefings and Post-Job Feedback/Lessons Learned, as needed during the development and review of the work package.
3.3 The originator sends an electronic copy of the WIP draft and supporting documents to the planning team participants and any other required reviewers identified on Attachment \(C\) for review and approval.
3.3.1 Discuss and ensure applicable HCSs concur with hazard mitigations addressed in the WIP.
3.3.2 Regulatory Strategy shall evaluate and approve all WIPs to determine whether or not each WIP is a RCRA Operating Record and determine whether all applicable environmental and regulatory requirements are addressed in the WIP.
3.4 Work Review Group Coordinator (WRGC) performs a Work Control Management review of the WIP and ensures the following:
3.4.1 The WIP was developed following the processes in this procedure.
3.4.2 Hazards and controls identified by the hazard analysis process are incorporated into the WIP and supporting documents (e.g., RWP, IWP, GDP).
3.5 A USQD Evaluator determines the applicability of WV-914, Unreviewed Safety Question Process (USQP), to the proposed activity and indicates if Form WV-3306 is required.
3.6 The Responsible Manager (RM) and Operations Manager approves the WIP and ensures the following:
A. Referenced permits do not provide conflicting directions, PPE, or other mitigations and controls.
B. Post maintenance tests are specific, have acceptance criteria, and are approved by the appropriate Cognizant Systems Engineer and Operations authorization.

\subsection*{3.7 Additional Management Review Processes}
3.7.1 Final Interactive Meeting for High Hazard or Complex Work (see def.)
A. Held when deemed necessary by the Responsible Manager.
B. The Final Interactive WIP review meeting is a face-to-face review of the draft work order with planning team members, which allows the reviewers to improve the final product based on the shared discussions.
C. During the interactive WIP review meeting, the following contingency planning techniques will be discussed and documented in the meeting minutes:
1. What is the critical work scope
2. What can go wrong when performing the work scope
3. What Error likely situations/Error precursors are applicable to performing the work scope
4. What are the Defenses in depth barriers to improve safety when performing the work scope
3.7.2 Hazard Review Board (HRB)
A. Convened at senior management discretion for particularly complex/high hazard tasks (e.g., work in High Radiation Area; work with high electrical hazards or fire hazards, work requiring fall protection, work involving cranes, work affecting facility design).
B. The HRB focuses on the implementation of Integrated Safety Management principles, best practices, lessons learned and key elements of the Voluntary Protection Program. (Refer to EMD-002).
C. Upon satisfactory completion of the HRB, the Hazard Review Board Chairman will document with signature on WV-2571 indicating approval to perform work.
3.8 The originator forwards WIP to Work Control for issuance when WIP is approved.
3.9 Work Control reviews the WIP for completeness, makes data entry, and issues the WIP with all supporting documents (e.g., RWP, IWP, GDP).
3.10 If Work Control is not available, (e.g., off-shift, weekends, and holidays) originator performs the following:
3.10.1 Obtains the Work Control Number, if not already assigned, from the Daily Log Book located in the PSO Supervisor's office and enters the number on WV-2571.
3.10.2 Writes "Issued" and the date and time on the cover page.
3.10.3 Ensures a copy of the cover page is placed under the cover of the logbook.
3.10.4 Ensures that Work Control is notified the next working day.

\subsection*{4.0 WORK INSTRUCTION PACKAGE REVISION PROCESS}

\subsection*{4.1 Type of Change Determination}

The originator and WGS determine the type of change to be used by utilizing the following guidelines as approved by the RM or Work Review Group Coordinator (WRGC):
4.1.1 A direct document change (DDC) may be used when:
A. Change does NOT exceed the boundaries of the original scope.
B. Hazards originally reviewed are NOT increased, no new additional hazards are identified, and no hazard mitigations are added or modified.
C. Change does NOT modify the process that generated a previously identified hazard.
D. Change does NOT affect technical identification (e.g., valve designation).
E. Hazard is identified and mitigated in the work instructions but unintentionally left unchecked in the AHA or requires additional clarification.
F. Limiting conditions or acceptance criteria are NOT changed.
G. The change DOES NOT affect QA activities, requirements, or functions.
H. The change DOES NOT affect Regulatory Strategy activities or requirements.
I. The change DOES NOT affect a critical step, hold or verification point step.
J. Hazardous energy boundaries are NOT changed or added.
4.1.2 Examples of changes that may be performed as a DDC are:
A. Corrections of typographical errors, misspellings, worker designations, correcting a cross-reference to another step, updating the reference number to a permit or JSA or other administrative corrections.
B. Addition or deletion of steps, if the above requirements are met.
C. Sequence of steps is changed that DOES NOT affect the intent or any critical steps.
4.1.3 A Field Change (FC) shall be used when:
A. Change is outside the boundaries of the original scope.
B. Hazards originally reviewed are increased, additional hazards are identified, or hazard mitigations are added or modified.
C. Limiting conditions or acceptance criteria are changed.
D. The change affects QA activities, requirements, or functions.
E. The change affects Regulatory Strategy activities or requirements.
F. The change affects a critical step, hold or verification point step.
G. Hazardous energy boundaries are changed or added.
H. A partially worked WIP is cancelled (see Section 5.3).

\subsection*{4.2 Direct Document Changes (DDC)}

NOTE When the originator of the WIP is not available (e.g., off-shift) and the work needs to be performed, another person having the qualifications of an originator may act as the originator to write the DDC.
4.2.1 The originator reviews the Activity Hazards Analysis (WV-3909) to confirm that the modifications do not increase or add to the hazards originally reviewed.
4.2.2 If a hazard is identified and mitigated in the work instructions but unintentionally left unchecked in the AHA checklist, then update AHA checklist and annotate or provide additional clarification in the hazard control/mitigation section.
4.2.3 The originator performs a DDC as follows:
A. Annotates the changed step(s) or information in the work instruction and lines out/deletes step(s) or information no longer applicable
B. The originator and WGS reviews and approves each DDC by initialing and dating.
C. The originator provides a copy of DDC to Work Control.

\subsection*{4.3 Field Changes (FC)}

NOTE1 When the originator of the WIP is not available (e.g., off-shift) and the work needs to be performed, another person having the equal qualifications of an originator (see Attachment A for qualifications) may act as the originator to perform the FC.

NOTE2 For field changes that are required immediately in the field, it is acceptable to obtain Form WV-1085 and hand write the change, then obtain signatures per telecon.

\subsection*{4.3.1 If performing an electronic field change, the originator checks for and incorporates all previous DDCs in the electronic FC.}
4.3.2 The originator determines the FC number by reviewing the entire document for previous FCs. The next sequential number following the last FC is used.
4.3.3 The originator completes form WV-1085, "Work Instruction Package (WIP) Field Change Form."
4.3.4 Include change lines for each revision change - indicate changes, additions, and deletions in the DRAFT review copies using the Track Changes feature.
4.3.5 The originator annotates the changes with the symbol FC\# (where \# represents the number of the FC, e.g.,FC1, FC2, FC3) in the left margin of the items changed.
4.3.6 The originator reviews the original Activity Hazards Analysis (WV-3909), if not done already, to determine if the FC imposes additional hazards, hazardous situations or increases hazards/consequences which have not been evaluated and updates WV-3909 in accordance with WV-921, as needed.

Rev. 37
Page 6 of 25

NOTE HCSs should work with the WGS to determine applicable permit requirements and hazard mitigations prior to and/or during the walkdown.
4.3.7 The WGS or designee performs a walkdown in accordance with SOP 00-46, Work Instruction Walkdowns, Pre-Job and Daily Briefings and Post-Job Feedback/Lessons Learned. This includes coordination with applicable support groups (e.g., RS, Safety) and work groups (e.g., Maintenance) if applicable.
4.3.8 The originator provides the description of the FC including additional hazards and controls required and pages affected that are required to be replaced.
4.3.9 The originator provides the reason(s) the FC was necessary.
4.3.10 The originator obtains signatures from all other departments and work groups affected by the change. See Attachment D for assistance in determining affected groups.
4.3.11 If Regulatory Strategy requires change to the status of the document as an RCRA Operating Record, change the designation on the original cover page and initial and date.
4.3.12 USQD Evaluator determines the applicability of WV-914, Unreviewed Safety Question Process (USQP), to the proposed activity and indicates if Form WV-3306 is required.
4.3.13 The Responsible Manager (or designee) and the Operations Manager approves the FC.

NOTE FC pages supersede existing pages of the WIP. All sign-offs are made on the latest FC page unless the steps were already performed.
4.3.14 Work Control reviews WV-1085 for completeness and issues the FC.
4.3.15 If Work Control is not available (e.g., off-shift, weekends, holidays), the WGS or originator performs the following:
A. Writes "Issued" and the date and time on the Field Change form.
B. Ensures a copy of the Field Change is placed under the cover of the Daily Log Book located in the PSO Shift Supervisor's office.
C. Ensures that Work Control is notified the next working day.

\subsection*{5.0 WORK INSTRUCTION PACKAGE CANCELLATION PROCESS}

\subsection*{5.1 Voiding Work Instruction Packages}

NOTE Only WIPs given a number, but NOT issued, may be voided.
Voided WIP's shall be recorded as such in the CMMS database
5.2 Canceling Work Instruction Packages (Work NOT started)
5.2.1 The originator and WGS complete WV-2571.
5.2.2 The originator forwards WV-2571 to Work Control.

NOTE A partially worked WIP may be canceled if a task is no longer required to be completed or is replaced by another work instruction.

\subsection*{5.3 Canceling Partially Worked Work Instruction Packages}
5.3.1 The originator forwards the entire WIP (including permits [e.g., ALARA PRE/Post Job briefings, IWP, GDP] that were used) to Work Control.
5.3.2 Work Control will determine if DDC, Field Change or Cancellation per 5.2 is required.
6.0 WORK INSTRUCTION PACKAGE COMPLETION, REVIEW, AND DOCUMENTATION
6.1 The WGS conducts a post-job review in accordance with SOP 00-46. Where lessons learned/problems encountered or input from the workers indicate that there is a benefit for the review, the WGS documents feedback on form WV-2573, "Work Package Status Log and Post-Job Feedback/ Lessons Learned." The WGS also indicates if lessons learned apply on WV-2571.
6.2 When required, the WGS conducts a post-job of ALARA jobs in accordance with WV-984, ALARA Program. The WGS attaches a copy of Form WV-3118, "West Valley Demonstration Project, ALARA Post-Job Review," to the WIP.
6.3 The WGS verifies documents (e.g., IWP, HWP, Pre-Job Briefing) associated with the WIP are in the WIP folder.
6.4 The originator and WGS verify completion of the work and sign on WV-2571.
6.5 For WIPs used to perform maintenance on site equipment, the originator shall provide a brief description of the work performed and the cause of the problem if known on form WV-2573 and Work Control will enter this information into the CMMS database.
6.6 Originator forwards the WIP to Work Control.
6.7 Work Control reviews the completed WIP to ensure package is properly prepared for storage and transfers the closed out WIP to Records in accordance with WVDP-262, WVDP Records Management Program Plan.

\subsection*{7.0 PERIODIC REVIEW AND RECALL OF WORK INSTRUCTION PACKAGES}
7.1 Work Control performs a periodic review and 90 day recall on all work instructions for:
7.1.1 Any WIP in which work has not commenced and notifies the applicable WGS.
7.1.2 Any WIP that has been authorized and work performed but not worked in 90 days.
7.1.3 Any WIP that has significant multiple revisions (more than 5 or content is no longer clearly defined)
7.2 The WGS and originator determine if the work still needs to be performed and if the WIP is in compliance with current requirements.
7.3 If it is determined that the work instruction is no longer needed, the WGS or originator closes out the WIP by canceling it per step 5.0.

Rev. 37
Page 8 of 25
7.4 If it is determined that the work needs to be performed but the work instruction does not meet current requirements, the originator should field change the WIP or cancel the WIP and issue a new one.

\subsection*{8.0 RECORDS}

The following forms, data sheets, logs, reports, or any other form of documentation are considered records and when created are to be prepared, maintained, and transferred to Records in accordance with WVDP-262 and WVDP-529. Refer to the CHBWV Master File Plan for further information.
8.1 Work Instruction Package (WV-2571, attachments, and associated documents).
8.2 Work Instruction Package (WIP) Field Change (WV-1085and associated documents0

\subsection*{9.0 REFERENCES}

NOTE Refer to E-docs for the latest version of WVDP Controlled Documents. Refer to the S:/WPFORMS folder for the latest revision of WVDP forms used in this procedure.

EP-3-007 Engineering Change Notice
SHIP-108 Job Safety Analysis (and form WV-3043)
SHIP-201 Industrial Work Permits (and form WV-1107)
SOP 00-04 Lock, Tag, and Confirm Procedure
SOP 00-11 Troubleshooting and Maintenance of Electrical Equipment
SOP 00-30 System and Component Labeling
SOP 00-38 Administration of Hoisting and Rigging Activities
SOP 00-46 Work Instruction Walkdowns, Pre-Job and Daily Briefings and Post-Job Feedback/Lessons Learned (and forms WV-2573 and WV-3745)
SOP 00-49 Control of Temporary Modifications (and form WV-3811)
SOP 00-52 Conduct of Operations
SOP 00-54 Minor Work Request
SOP 300-07 Waste Generation, Packaging, and On-Site Transportation
WV-370 Underground Utility Review Policy (and forms WV-3521 and WV-3522)
WV-914 Unreviewed Safety Question Process (USQP) (and form WV-3306)
WV-921 Hazards Identification and Analysis (and form WV-3909)
WV-984 ALARA Program (and forms WV-2404, WV-4281 and WV-3118)
WVDP-010 WVDP Radiological Controls Manual
WVDP-106 WVDP Conduct of Operations Applicability Matrix
WVDP-111 CH2M HILL • B\&W West Valley, LLC Quality Assurance Program
WVDP-200 West Valley Demonstration Project (WVDP) Waste Acceptance Manual
WVDP-227 WVDP Facility Identification and Categorization Matrix
WVDP-204 WVDP Quality List Q-List
WVDP-262 WVDP Records Management Plan
WVDP-274 Maintenance Implementation Plan (MIP)
WVDP-352 WVDP Site Welding Manual (and form WV-1888)
WVDP-357 WVDP Issues Reporting Program
WVDP-485 Work Control
WVDP-529 WVDP Records Disposition Plan
10.0 ATTACHMENTS

Attachment A, "Definitions"
Attachment B, "Writing Guidelines and Document Structure"
Attachment C, "Reviewer/Planning Team Selection Checklist"
Attachment D, "Telecon/Email Approvals"

\section*{ATTACHMENT A DEFINITIONS (Page 1 of 5)}
1. Activity Hazard Analysis (AHA) - an activity hazard analysis that documents:
1) Hazards Controls Specialists (HCSs) included in the work planning process; 2) identification of specific task activities where hazards are present; 3) identification of hazards applicable to the specific tasks; and 4) incorporation of the mitigation of the hazards into the work document/associated documents using a hierarchy of controls whenever elimination is not possible.
2. Bench Top - a small scale mockup used when the size of the modeling is restrictive.
3. Cognizant Manager - the manager, or designee, with the technical cognizance over the work to be performed.
4. Cognizant System Engineer (SE) - the individual with design cognizance over the system or the work to be performed, who is officially recognized as responsible for a specific system. See the Cognizant Responsibility List for an up-to-date listing of all SEs.
5. Criticality Safety Engineer (CSE) - an individual that is responsible for providing support to the Nuclear Criticality Safety Program, including the preparation of Nuclear Criticality Safety Evaluations (NCSEs) and for providing recommendations to the Engineering Manager with respect to Criticality Control Zones (CCZs). See the Technical Specialist List for an up-to-date listing of CSEs.
6. Critical Work Steps - steps which have significant importance to safety, the safety basis, or are regulatory in nature and require the continuous presence of supervision during completion.
7. Facility Manager - an individual, or designee, that authorizes work in their assigned facility. The Cognizant Responsibility List maintains the list of currently identified Facility Managers.
8. High Hazard or Complex Work - Work that meets any of the following criteria:
- Performed at or above ALARA trigger levels;
- First-of-a-type complex work evolution;
- Critical lifts;
- Certain types of elevated work (per ESH\&Q direction);
- Facility demolitions;
- Electrical work with the potential of encountering live conductors;
- Confined Space entry (per ESH\&Q direction);
- Non-routine hazardous, radiological, or mixed waste packaging or transportation;
- Certain types of Hot work activities;
- Non-routine electrical troubleshooting or repair work;
- Any other activity as prescribed by senior management.

\section*{ATTACHMENT A DEFINITIONS \\ (Page 2 of 5)}
9. Independent Verification - verification performed INDEPENDENTLY of the initial application to verify the isolation point has been correctly identified:
- NOT performed by the person who performed the original activity;
- NOT done at the same time as the original activity. There must be enough time and distance between the original activity and verification to ensure that they are independent of each other.
10. Mockup - performance of a proposed work activity or portion of a work activity in a low risk, low hazard environment using actual, exact, or nearly exact replica models of the equipment, system, or area. The purpose of the mockup is to evaluate and/or develop the hazard controls, sequencing, tooling and/or ability to perform the actual work activity.
11. Operating Experience Program Coordinator - an individual that interfaces with functional organizations to assist in accessing information systems for identification of potential lessons learned for incorporation into work documents.
12. Operations Manager - for purposes of this procedure, the Operations Manager or designee responsibilities are:
- Provide prerequisites and facility initial conditions requirements to Originators/Planners during the development of Work Control document (WCD).
- Authorize, release and coordinate work activities;
- Ensure facility conditions are established, (including LOTO), to support performance of scheduled maintenance activities;
- Ensure that the appropriate Unreviewed Safety Questions (USQ) actions are completed per WV-914, Unreviewed Safety Question Process (USQP) prior to the modification of a Hazard Category 1, 2, or 3 facilities;
- Ensure post maintenance testing or functional testing is incorporated into the WCD;
- Ensure prescribed post maintenance testing is performed and properly documented;
13. Originator- an individual assigned to prepare a WIP/WCD that has completed Q071 Work Planning TRVC TR1486Q and is responsible for the following:
- Leads the Planning Team in work site walkdowns, work scope definition, job hazard identification, analysis and control selection, and WCD development;
- Reviews Lessons Learned database and feedback for entries with applicability to the work to be performed;
- Develops the WCD incorporating input from the Planning Team, the RM, and appropriate task related requirements;
- Coordinates WCD comment resolution and submits the package for concurrence by Work Group Supervisor and relevant Subject Matter Experts (SME/HCSs) and approval by the RM;
- Confirms the WCD is ready to issue and forwards to Work Control for issuance.

\section*{ATTACHMENT A} DEFINITIONS
(Page 3 of 5)
14. Permits - written documents specifying hazard controls for identified hazards, such as an Industrial Work Permit (IWP), Radiation Work Permit (RWP), Ground Disturbance Permit (GDP), Confined Space Entry Permit, Hot Work Permit (HWP).
15. Planning Team - the Planning Team consists of personnel/departments identified as applicable in Attachment C, "Reviewer/Planning Team Selection Checklist," (e.g., Hazard Control Specialists (HCSs)/SMEs identified on the AHA, Work Review Group Coordinator, applicable system engineers and other support groups). The Planning Team provides an integrated approach to the review and issuance of work documents by participating in the walkdown, development, review and approval process.
16. Planning Team Walkdown -HCSs/SMEs identified on the AHA and other support groups from the Planning Team as deemed necessary by the Originator or Work Group Supervisor perform Planning Team walkdowns in accordance with SOP 00-46. Planning Team walkdowns may be performed at various times during the work package generation process and may consist of multiple walkdowns, meetings, and individual or smaller group settings based upon resource availability and need.
17. Planner - an individual that has completed Q071 Work Planning TRVC TR1486Q and is responsible for the following:
- May act as the Originator to prepare and issue a WIP/WCD.
-
- Ensures work is ready to commence as scheduled (e.g., obtains required tooling and parts, coordinates the integration of controls and preparation of the required permits (e.g., industrial work permits (IWP), radiological work permits (RWP), hot work permits, confined space permits)).
18. Responsible Manager - for purposes of this procedure, the Responsible Manager (RM) or designee, is the individual responsible for organizing, scheduling, and approving expenditures for individual, specific projects in progress at the WVDP
- Reviews and approves all WCDs;
- Reviews and approves changes to WCDs;
19. Routine Work - work performed that is well understood, repeated regularly, and is within recognized skill-of-the-craft attributes.
20. Source Requirements - requirements that are directly implemented by a controlled document. The following are some examples of source requirements: DOE, Federal, State, or Local laws or regulatory requirements; Process Safety Requirements (PSRs); Waste Qualification Reports (WQRs); Documented Safety Analysis (DSA); Industry Codes and Standards; and other requirements and contractual commitments.

\section*{ATTACHMENT A}

DEFINITIONS
(Page 4 of 5)
21. Subject Matter Expert (SME/HCSs) - are drawn from various site functions (e.g., Radiological Controls, Safety, Industrial Hygiene, Engineering, etc. - See Technical Specialists List in Web Publishing):
- Participates in the work site job/task walkdowns, job hazard analysis and control selection, and WCD development as part of the Planning Team when assigned;
- Ensures Planning Team decisions are consistent with programmatic requirements;
- Reviews WCDs to ensure that the hazard controls have been incorporated consistent with programmatic requirements;
- Participates in development of WCD instructions ensuring that the steps with safety basis or other regulatory permit requirements are properly incorporated;
- Specifies inspections and acceptance criteria, identifies hold and witness points;
- Reviews subcontractor prepared documents for suitability;
- Reviews completed WCDs to ensure that required data is properly recorded in accordance with programmatic requirements;
- Concurs with the WCD as part of the approval process.
22. Use Classification - determines the manner in which a work instruction must be used in the field. The Use Classification for WIPs is as follows:
- Critical Use - WIPs are classified as Critical Use and require the worker(s) to have the work instruction present and open with each step performed exactly as written. Initials and/or signoffs shall be made, where required, at the time the step is performed or as directed in the WIP.
- Reference Use - Sections and steps considered as Reference Use may be performed out of sequence and/or in parallel. Sections and steps must be specified as such.
23. WIP - Work Instruction Package that is used for more complex and infrequently performed work, with moderate to high consequences of improper performance:
- Contain detailed step-by-step instructions with a suggested or required sequence of performance;
- Require the highest level of review and approval;
- Require activity level work instructions in the body which include work steps, special requirements, hazards, and controls.
24. Work Group Supervisor - for purposes of this procedure, the Work Group Supervisor (WGS) is the individual responsible for the supervision of workers safely performing work activities, assuring work is performed continuously within scope, and in compliance with written instructions. In addition:
- Participates as a Planning Team member in the WCD walkdown
- Concurs with the WCD, confirming workability, as part of the approval process;
- Ensures the WCD is approved and work is released;
- Conducts Pre-Job Briefings to review scope of work, hazards and controls with assigned workers;
- Ensures that the prerequisites for work have been performed;
- Ensures hazard controls are implemented;
- Ensures that personnel executing the work have attended the Pre-Job Briefing or are briefed separately;

\section*{ATTACHMENT A}

DEFINITIONS
(Page 5 of 5)
- Ensures a pre-issuance and workability walkdown is conducted
- Ensures referenced documents are current prior to start of work;
- Ensures workers are aware of their responsibility to stop work and notify supervision whenever changing conditions or unidentified hazards are encountered or work practices compromise quality or safety;
- Reviews training requirements and ensures workers are qualified to perform their duties;
- Supervises work activities to meet WCD requirements;
- Ensures the safety and health of workers during the conduct of work activities including proper wearing of PPE;
- Ensures a proper turnover of work status when transferring WGS responsibilities and documents in Work Package Status log (WV-2573);
- Ensures that good housekeeping practices are followed during performance of work, and that work areas are cleaned and restored after completion of work.
- Conducts a post-job review and documents feedback / lessons learned on (WV-2573).
25. Work Package Status Log and Post-Job Feedback / Lessons Learned (WV-2573) - a log that SHALL be added to a WIP that provides the WGS or designee a place to record information pertinent to the performance of the WIP. This includes information such as the status of field work, changes in conditions, issues and events which have influenced or may influence work performance or schedule, notifications made or concurrences obtained on operational decisions, or any other information relevant to the job task, personnel, equipment, or planning. A section of this log is for documentation of post-job feedback / lessons learned.
26. Work Review Group - for the purpose of this instruction, the Work Review Group (WRG) is part of the iterative Planning Team process that participates in the work site job/task walkdowns, activity hazard analysis (AHA) and hazard control/mitigation selection, WCD development, and review and approval. This process is also applicable to procedures developed in accordance with DCIP-100, "Controlled Document Preparation".
27. Work Review Group Coordinator - for the purpose of this instruction, the WRGC is the Work Control Management responsible for:
- Screens requests for work ensuring work scope and associated boundaries are clearly defined;
- Ensures Planning Team is comprised of the appropriate personnel (e.g., planner/originator, workers, operations, safety and health Subject Matter Experts (SME), other SMEs/HCSs, etc.);
- Working with the Planning Team, determines the type of work document to be used for each work task based upon the criteria established for work types which takes into account the degree of hazards, and complexity of the work activity;
- Ensures the WIP was developed following the processes in this procedure;
- Ensures hazards and controls identified by the HIM process are incorporated into the WIP;
- Conducts periodic assessments of the work control process in accordance with Contractor Assurance System guidance.

NOTE This attachment is a guideline for proper writing style. There may be exceptions wherein the authors and work groups may use a different style or method.

The following is a list of sections that are used when writing a Work Instruction Package. Included is a description of each section. ALL section headings are required. If there is no information or need for a section, the originator shall enter "NONE," or equivalent, under the section heading (the reason for requiring all section headings is to maintain numbering consistency for all sections, e.g., Section 5.0 PERFORMANCE will always be Section 5.0).

Microsoft WORD shall be used for preparing all WIPs.

\subsection*{1.0 Scope}
1.1 This section provides supplemental information the originator believes will help users understand the purpose of and reason for the task to be completed including:
1.1.1 A clear definition of the work scope, major tasks, and associated boundaries required.
1.1:2 Critical steps (see def.).
1.2 DO NOT include action statements, warnings, cautions, or other statements that are critical to the completion of the task.

\subsection*{2.0 Precautions and Limitations}

NOTE Any precaution or limitation that applies to an individual action step should be written as a warning or caution and placed just before the affected section or step.
2.1 This section delineates precautions and limits that must be considered for multiple steps, sections, or throughout the procedure.
2.2 Precautions alert users to actions and conditions that represent actual and potential hazards to personnel or possible damage to equipment or establish abnormal conditions.
2.3 General hazards and controls may be listed in this section.
2.4 Limitations define the boundaries that must not be exceeded to ensure the work is performed safely.
2.5 In general, do no put actions steps in this section. If action is required in response to the precaution or limitation, provide action steps at the appropriate location in the procedure. There may be exceptions where a required response best fits with the precaution.

\subsection*{3.0 Material/Special Tools and Equipment}
3.1 This section lists all material, special tools, measuring and test equipment, parts and supplies necessary to perform the procedure that must be staged prior to commencing the procedure. Do not specify ordinary craft tools such as standard pliers and wrenches or materials/tools and equipment normally found in the area.

\section*{ATTACHMENT B}

\section*{WRITING GUIDELINES AND DOCUMENT STRUCTURE} (Page 2 of 10)

NOTE If using foam containing isocyanates (e.g., Handi-Foam), see Attachment B, step 5.1.24.
3.2 If using a chemical, list the chemical name and product number and include an MSDS with the product number used.
4.0 Prerequisites

This section identifies actions that must be completed and the requirements and conditions that must be met before the user commences the Performance Section. The following information may also be included in 5.0 Performance Section:
4.1 Field Preparations - provide instructions for any field activities that must be completed before continuing with the procedure. This includes:
4.1.1 Initial Conditions - specify the physical parameters associated with an area, facility, system, component operation, or job, which are the conditions required prior to the initiation of work.

NOTE See SOP 00-04, "Lock, Tag, and Confirm Procedure," for LOTO requirements.

\subsection*{4.1.2 Lockout/Tagout of Equipment}
A. Specify all equipment and components which require LOTO for the safe performance of the work. DO NOT specify any LOTO requirements in the performance section that can be performed prior to the commencement of the work.
B. Specify the type of LOTO required (e.g., Operations, Single Point, Multi-Point)
C. If the work instruction includes lockout/tagout instructions where an operations lock is not required per SOP 00-04, identify all LOTO points and include required independent verifications in the work instruction.
D. If the work instruction includes the use of a Multi-Point LOTO, include a step to obtain/verify the NOS Manager's approval to use a Multi-Point LOTO as required by SOP 00-04.

\subsection*{4.1.3 Performance of Valve Lineups - specify the valve(s) position and description with independent verification required.}
4.2 Required Permits - include those not listed on WV-2571 or WV-1085.
4.3 Completion of Mockup - If a mockup or bench top is used, a prerequisite should be included requiring verification of the completion of the mockup or bench top and satisfactory incorporation of all changes resulting from the mockup or bench top.
4.4 Training Requirements- include required Health and Safety Training and any other additional training required.
4.5 Approvals and Notifications - provide instructions to ensure that all necessary notifications are made and approvals are obtained before initiating the procedure.

\section*{ATTACHMENT B \\ WRITING GUIDELINES AND DOCUMENT STRUCTURE}
(Page 3 of 10)
5.0 Performance

\subsection*{5.1 General Guidelines}
5.1.1 Organize activities in the logical order they will be performed.
5.1.2 Specify sections and steps that are Reference Use. This may be written as a note stating something similar to the following: "The steps in the following section may be performed out of sequence and/or in parallel with concurrence from the WGS."
5.1.3 DO NOT write steps that state "Perform activities to verbal instructions,' or "at the direction of....," etc. Originators, or other personnel authorized by the originator, may make decisions and provide field instructions for clarification of work steps that are within the scope of the work and hazard controls. Steps that allow decision making within specific parts of the procedure are permitted.
5.1.4 Do not write action steps containing multiple actions unless necessary to ensure proper performance of the work.
5.1.5 Avoid action steps that require workers to convert numbers from one unit of measure to another. If conversions are required, provide an aid. Specify numbers at the same precision and the same units of measure as those marked on, or indicated by the instrument. Specify appropriate limits and tolerances for parameters. Be consistent with the readable accuracy of the instrument.
5.1.6 If someone other than the primary user of the procedure is responsible for performing an action step, identify the department or group to perform the task.
5.1.7 Steps within WIPs may direct actions to be performed in other supporting documents (e.g., IWP's, RWP's, Confined space permits, Hot Work permits, SOPs).
5.1.8 At the originator's discretion, if only a few steps of an SOP are to be performed in the work instruction, or a deviation from an SOP is needed, the originator should add excerpted steps to the WIP and not mention the SOP. If specific section(s) of an SOP is specified to be performed as part of the work instruction, specify the SOP number, revision to be used, applicable section(s) number, and section(s) description. If the SOP is referenced in its entirety, the revision and FC number are not needed.
5.1.9 Use of Conditional action steps. Steps to direct the performer to NOT perform or bypass the applicable step. Conditional action steps are used when a decision is based upon the occurrence of a condition or a combination of conditions.

Conditional action steps use the following terms:
- IF or WHEN to present the condition
- THEN to present the action
- OR, AND, OTHERWISE, or OR ELSE to present more complex conditions
5.1.10 If a task or step cannot be performed and provisions have not been made to allow the step to NOT be performed or bypassed, then a revision to the WIP is required.

\section*{ATTACHMENT B \\ WRITING GUIDELINES AND DOCUMENT STRUCTURE}
(Page 4 of 10)
5.1.11 All references to equipment or components must match label plate identifiers. Where a drawing and label plate is not consistent, an ECN or an Issue Documentation Form (IR) is to be initiated and issued. Temporary tags may be used as an interim measure in accordance with SOP 00-30, System and Component Labeling.
5.1.12 Write work instructions to the level of detail consistent with the qualifications and training of the expected users as well as commensurate to the level of detail necessary to perform the work.
5.1.13 The chosen method of implementing the hazard control from the hazard analysis into the work documents is appropriate. The stated hazard control in the hazard analysis may have several ways to implement the control, but the intent of the control is maintained.
5.1.14 Control selection is based upon the following hierarchy: (1) hazard elimination or reduction; (2) engineered controls; (3) administrative controls; (4) personal protective equipment.
5.1.15 The level of control established for a hazard is maintained throughout the activity or until the hazard has been eliminated or reduced (controls can be graded to level of hazard reduction).
5.1.16 Provisions are also included to assure evaluation of the possibility of creating additional hazards due to selected controls (e.g., excessive PPE causing heat exhaustion) and also evaluate the possibility of negative synergistic effects of selected controls.
5.1.17 If the WIP performs sampling for data collection, the sampling shall comply with the applicable planning procedure (e.g., Sampling and Analysis Plan [SAP] or Data Quality Objectives [DQOs].
5.1.18 If the WIP installs/removes a Temporary Modification (TM), include instructions to complete WV-3811, "Temporary Modification Control," in the WIP. See SOP 00-49, Control of Temporary Modifications, for instructions concerning TMs.
5.1.19 If the WIP involves underground or utilities work, or penetrating the surface of a floor, wall or ceiling; at a minimum perform the following:
A. Complete a Ground Disturbance Permit (GDP).
B. Conduct a thorough review of drawings (including as-built) to determine the presence of electrical conduit, mechanical piping (e.g., air, water, steam, chemical), and structural steel in the ground, floor, wall, or ceiling.
C. Conduct interviews with Cognizant System Engineer and/or facility personnel that are familiar with the area where the work will be performed.
D. Conduct non-destructive techniques, when practical, to verify the presence or absence or electrical conduit or mechanical piping.
E. Consider the potential for cooling water from cutting/drilling/core boring to create radiological or electrical issues (conduit or piping may become a flow path to energized circuits or adjacent areas).
5.1.20 If the WIP involves physical isolation of piping or electrical conduit by cutting or mechanical means:
A. Include step(s) in the WIP requiring independent verification of isolation points prior to cutting. Independent verification shall be performed as defined in Attachment A.

NOTE Once physical isolation is complete and piping/conduit being removed is properly labeled per SOP 00-30, remaining cut points are no longer required to be marked in the field.
B. Indicate that isolation points shall be clearly marked in the field.
C. Reference SOP 00-30, Section 5.6, for labeling instructions and requirements applicable to D\&D work.
D. Attach a photo, drawing, or sketch that indicates all isolation points.
5.1.21 Identify steps in the procedure which implement specific source requirements (refer to Attachment D of DCIP-100) per one of the following:
A. Reference the source document in the left margin adjacent to the step:

Example:
PSR-3 [3] Make sure Blower 15K-20 is operating.
B. Place the text and source requirement in a box format prior to the step that it applies:

Example:

Radiological control records SHALL be maintained as necessary to document compliance with the requirements of 10 CFR 835. 10 CFR 835.704(c)
C. List the source requirement after the text in bold or as a reference statement.

\section*{Example:}

Radiological control records SHALL be maintained as necessary to document compliance with the requirements of 10 CFR 835.
10 CFR 835.704(c).
OR
Radiological control records SHALL be maintained as necessary to document compliance with the requirements of 10 CFR 835. (Refer to 10 CFR 835.704(c).)

\section*{ATTACHMENT B}

\section*{WRITING GUIDELINES AND DOCUMENT STRUCTURE}
(Page 6 of 10)
5.1.22 If the WIP has embedded within it a mechanism allowing additional work without requiring a field change, the following must be met:
A. The change or addition does NOT alter the original scope of the work and is still within the risks, hazards and location(s) that were originally analyzed and documented on WV-3909 and USQP.
B. The change mechanism is authorized by the WRGC.
C. Examples of acceptable use of this approach are:
1. Taking additional samples at different locations within the same project area.
2. Adding tasks to a work instruction package for Maintenance to perform shop work.
3. Packaging and handling multiple waste components within the same project area when component-specific instructions are required.
4. Introducing the use of different remotely operated tools within the same project area to perform the same task (e.g., mechanical size reduction, using different types of saws or shears).
5. Providing additional guidance in performance of existing task activities where limiting conditions or acceptance criteria are NOT changed, or does NOT affect a critical step, hold or verification point step.
6. Using work travelers for repetitious tasks such as logging the contents of waste containers.
D. Signatures are obtained from departments that are directly affected by the added work instructions.
1. If the addition will involve any changes to facilities as described in the documented safety analysis, involve tests or experiments, or differ from assumptions or limitations in the USQD for the WIP, a USQD Evaluator must review and determine if USQP Form WV-3306 is required.
2. Include QA for the following:
a. The work is Quality Level ' \(C\) ' or ' \(B\) ' as defined by WVDP-204 (QList) or WVDP-111, section 1.4.2 (QA Program).
b. The work will involve QA acceptance testing or verification
c. The work involves a Critical Lift activity.
d. The work will involve RCRA or Regulatory Closure Plans.
e. The work involves the use of any Measuring and Test Equipment (calibration).
f. The work involves Load Testing of H\&R equipment.
g. The work will involve Welding, or Nondestructive Examination.
h. The work will involve pressure testing to ensure process line/system integrity (e.g. Hydro, or Pneumatic) or any In-Service Leak testing.
i. The work will involve the utilization of LOKRING's.
j. The work will utilize concrete expansion anchors or adhesive anchors (excluding core boring machine anchors).
5.1.23 If the WIP involves application of fixatives for radiological purposes, specify the approved fixatives and method of application. Radiological Controls (RC) must approve and/or specify the type of fixatives used and the methods of application.

\section*{WRITING GUIDELINES AND DOCUMENT STRUCTURE}
\[
\text { (Page } 7 \text { of } 10 \text {) }
\]
5.1.24 If the WIP involves the use of foam containing isocyanates (e.g., Handi-Foam), include instructions to track the amount used and the location used.
5.1.25 If the WIP includes the use of a LOTO in the Performance Section,
A. Specify the type of LOTO required (e.g., Operations, Single Point, Multi-Point)
B. If a non-operations LOTO is specified, identify all LOTO points and include required independent verifications in the work instruction.
C. If the use of a Multi-Point LOTO is specified, include a step to obtain/verify the NOS Manager's approval to use a Multi-Point LOTO as required by SOP 00-04.

\subsection*{5.2 Critical Steps, Verifications, Notifications, Data Recording, and Hold Points}
5.2.1 Critical Steps are steps with significant importance to safety, safety basis, or are regulatory in nature and require the continuous presence of supervision during completion.
5.2.2 Verifications confirm that an action, including filling out paperwork, was performed accurately.
5.2.3 Hold Points are where an action or condition is required to be satisfied and signed off before proceeding with the activity.
5.2.4 Notifications inform another person or department of the starting or stopping of an activity.
5.2.5 For steps requiring signoff or data recording:
A. Place a " \([+]\) " in the left margin.
B. Indicate who is to sign and where the individual is to sign.
C. Indicate where data recording is to be made if it is not immediately at the action step to be performed.
D. Specify the expected method of verification to be used (e.g., personal observation, direct report of a worker, review of official records).

\section*{ATTACHMENT B}

\section*{WRITING GUIDELINES AND DOCUMENT STRUCTURE} (Page 8 of 10)

\subsection*{5.3 Warnings, Cautions, and Notes}

Warnings, Cautions, and Notes are information that is NOT action steps. They are essential to the safe and effective completion of work step(s) which follow. Use Warnings to alert workers of actual or potential hazards that may harm personnel.

\section*{Example}

\section*{WARNING}

ELECTRICAL HAZARD: Unmarked electrical systems or systems that penetrate walls, ceilings, and floors shall be identified / verified or considered as energized. No electrical activities shall be performed without positive confirmation / zero energy verification to protect personnel from arc, shock, blast, electrocution hazards.
5.3.1 Use Cautions to alert workers of actual or potential hazards that may damage equipment or facilities, or harm the environment.

\section*{Example}

\section*{CAUTION}

To prevent a potential release to the environment or spread of contamination: Anticipate the probability of abandoned tanks, vessels and piping containing residual liquids.
5.3.2 Use Notes to assist in making decisions or to improve performance of action steps.

\section*{Example}

NOTE The following steps 5.0.1 through 5.0.7 may be performed out of sequence and throughout the work instruction to support work activities.
5.3.3 Place Warnings, Cautions, and Notes immediately before and on the same page as the step to which they apply.
5.3.4 Warnings and Cautions shall include the hazard(s), consequence of the hazard(s), and any critical time constraints, when applicable.
5.3.5 Do NOT include actions in Warnings, Cautions, or Notes.

\section*{ATTACHMENT B}

WRITING GUIDELINES AND DOCUMENT STRUCTURE
(Page 9 of 10)

\subsection*{6.0 Post Maintenance Testing}

When operability of equipment has been affected while performing a procedure and operability has to be verified before returning the equipment to service, include action steps that specify these tests.
6.1 Unless otherwise specified in the work instruction, the Post Maintenance Testing Section is considered "Critical Use."
6.2 Include testing acceptance criteria and tolerances.
6.3 Specify testing requirements, including documenting data sheet and verification that the results meet acceptance criteria.

\subsection*{7.0 Post Completion Configuration}

Ensure steps are written in the Performance and/or Post Maintenance Testing Sections to perform the necessary actions to achieve the conditions stated in this section. Performance steps (except WGS verification) are not to be placed in this section.
7.1 List intended final conditions of the area, equipment, systems, etc. that were affected by the performance of the WIP and have been verified by the WGS.
7.2 Include a step for signoff by the WGS to document verification of the following (examples):
7.2.1 All personnel locks/tags are removed.
7.2.2 The work area has been cleaned up (e.g., disposal of waste generated, all temporary utilities used for the job such as extension cords and hoses have been removed).
7.2.3 System(s) and/or equipment are/is ready for turnover to the applicable operations group.

\subsection*{8.0 References}
8.1 List the documents used to create the work instructions and those used for the performance of work associated with the work instruction.
8.2 List applicable drawings, P\&IDs, and electrical one-line drawings.
8.3 Include a list of required design, process, and instrument drawings with the work instruction, if applicable. Include the revision number, sheet number(s), and Engineering Change Notice (ECN) numbers, if pending.

\subsection*{8.4 List SOPs where WIP users must perform actions contained within the referenced SOP (e.g., "Perform hoisting and rigging activities in accordance with SOP 00-38.")}
9.0 Source Requirements
9.1 List source requirements documents and the specific sections of those documents which are implemented by the procedure.

\section*{ATTACHMENT B}

\section*{WRITING GUIDELINES AND DOCUMENT STRUCTURE} (Page 10 of 10)
10.0 Attachments
10.1 When the work instruction includes opening, modifying, or removing part of a system containing radioactive or hazardous materials or energy sources such that personnel or the environment are potentially exposed to the hazard, the system boundaries shall be identified on a marked up P\&ID or isometric drawing, sketch, diagram, or a photograph accompanying the work instruction indicating the isolations/engineering barriers surrounding the work area. The system status (e.g., active, abandoned, pressurized, vacuum) is to be verified and considered in the hazard analysis and controls.
10.2 Include information in an attachment/appendix when it is more convenient to locate the information outside the main body of the procedure.
10.3 Attachments should be numbered independently.
10.4 Reference all attachments in the WIP.

ATTACHMENT C REVIEWER/PLANNING TEAM SELECTION CHECKLIST
(Page 1 of 1)
\begin{tabular}{|c|c|}
\hline Situation & Required Reviewers \\
\hline All work packages & Work Group Supervisor Facility Manager Work Review Group Coordinator \\
\hline Hazard present in area of expertise (i.e., hazard identified as "Yes" on WV-3909) & HCS specified on WV-3909 \\
\hline Work steps performed by personnel other than the work group. & Department performing work step \\
\hline Work activities performed by subcontractors under the direction of a Subcontractor Technical Representative (STR) & STR \\
\hline \begin{tabular}{l}
Any work activity performed by Maintenance \\
NOTE: NA if the Work Group Supervisor is the Maintenance Supervisor.
\end{tabular} & Maintenance \\
\hline Work activities performed on equipment, or in an area, under PSO's cognizance. & PSO \\
\hline Work activities performed on equipment, or in an area, under an Operations Supervisor's cognizance other than PSO. & Applicable Operations Supervisor \\
\hline Work activities affect a system or involve work on a system. & Applicable System Engineers \\
\hline Work activities under the cognizance of an engineer other than the System Engineer or the Originator. & Cognizant Engineer \\
\hline \begin{tabular}{l}
Work activities involve QA review, inspection, verification, or oversight activities: \\
\(>\) The work is Quality Level ' C ' or ' B ' as defined by WVDP-204 (QList) or WVDP-111, section 1.4.2 (QA Program) \\
\(>\) The work will involve QA acceptance testing or verification \\
\(\Rightarrow\) The work involves a Critical Lift activity \\
> The work will involve RCRA or Regulatory Closure Plans \\
> The work involves the use of any Calibrated Measuring and Test Equipment \\
> The work involves Load Testing of H\&R equipment \\
\(>\) The work will involve Welding, or Nondestructive Examination \\
> Will the work involve any pressure testing to ensure process line/system integrity (e.g. Hydro, or Pneumatic) or any InService Leak testing \\
The work will involve the utilization of LOKRING's \\
\(>\) The work will utilize concrete expansion anchors or adhesive anchors (excluding core boring machine anchors)
\end{tabular} & QA \\
\hline Work identified as High Level Waste (See WVDP-200). & HLW Process and WQR Compliance Engineer \\
\hline Any other department affected by the work activities. & Applicable departments \\
\hline
\end{tabular}

\title{
ATTACHMENT D TELECON/EMAIL APPROVALS
}
(Page 1 of 1)
The following may be used to obtain and document telecon or email approvals when the person required to sign (signatory) is not physically present.

To obtain the signatory's approval, the originator or his designee should perform the following:
A. Contact the signatory via telephone, email, or other means of communication.
B. Provide the signatory with a description of the purpose and scope of the work instruction and read verbatim the part of the work instruction explaining what the signatory is being asked to approve.
C. Provide the signatory with any additional information needed to fully explain what is to be approved.
D. Answer any questions the signatory may have.

NOTE The signatory shall NOT grant approval until satisfied and fully understands what is to be approved.
E. Once the signatory has approved, the originator or designee documents approvals as follows:
1. Telecon approval - as shown in the following example:

Jim Jones for Bob Brown per telecon 12/17/99
2. E-mail approval - as shown in the following example:

\section*{See attached e-mail approval \\ 12/17/99}
a. Print the e-mail message and attachments (if applicable) and retain with the record copy of the work control document (Ref.: WVDP-262).

\section*{WVDP RECORD OF REVISION CONTINUATION FORM}

\section*{WVMP SAR Reference 8-1}

\section*{Receipt Inspection, Quality Assurance Procedure QP 10-2, Revision 15, CH2M Hill-B\&W West Valley, LLC, West Valley, New York, October 22, 2013}

VERIFY HARD COPY AGAINST WEB SITE IMMEDIATELY PRIOR TO EACH USE
QP 10-2
Rev. 15
Page 1 of 7
Date 10/22/13

CH2MHILL • B\&W West Valley, LLC

\section*{QUALITY PROCEDURES}

TITLE: Receiving Inspection

\section*{GENERAL REVISION}
1.0 PURPOSE

This procedure establishes the method to be followed for planning and performance of material receipt inspection by Quality Assurance personnel.

This procedure details the method to conduct inspection of items when receiving inspection is required for Quality Levels A, B, C, and selected N items.
2.0 REQUIREMENTS, REFERENCES, AND FORMS

Refer to E-DOCS for the latest version of WVDP Controlled Documents. Refer to the S:IWPFORMS directory and/or site standards word processing templates for the latest revision of WVDP forms used in this procedure.

\subsection*{2.1 Requirements}
2.1.1 WVDP-111 "CH2M HILL • B\&W West Valley, LLC Quality Assurance Program"

\subsection*{2.2 References}
2.2.1 QP 4-1, "Procurement Document Review"
2.2.2 QP 10-1, "Inspection"
2.2.3 QP 15-2, "QA Hold Tag Procedure"
2.2.4 WVDP-204, "WVDP Quality List Q-List"
2.2.5 WVDP-310, "WVDP Safety Management System (SMS) Description"
2.2.6 WVDP-357, "WVDP Issues Reporting Program Manual"
2.2.7 WV-620, "Purchase Requisitions and Supplements"
2.2.8 WV-695, "Procurement Card Purchases"
2.2.9 PROP- 11, "Warehouse Receiving, Storage, Inventory, and Withdrawal "
2.3 Forms
2.3.1 WV-3245-Material Receiving Inspection and Release (MRIR)
2.3.2 WV-0172 - CHBWV Procurement Card Requisition Checklist, for QA signature and inspection criteria.

\subsection*{3.0 GENERAL INFORMATION}
3.1 Quality Assurance Receiving Inspector - performs inspections and tests per the acceptance criteria provided on the Material Receiving Inspection and Release (MRIR) and approved procurement document.

\subsection*{3.2 Quality Assurance Representative (QAR)}
3.2.1 Reviews procurement documents such as: Purchase Requisitions (PR), Procurement Technical Specifications or attachments to Purchase Requisitions, Purchase Requisition Change Orders, and Credit Card Orders (CCO) per QP 4-1.
3.2.2 Plans inspections, concurs with inspection acceptance criteria and ensures a MRIR is prepared with the requisitioner based on information contained in the purchase requisition, or credit card order.
3.2.3 The inspection criteria should include consideration for verifying completeness, markings, calibrations, adjustments, protection from damage or other characteristics as required to verify the quality and conformance of the item(s) to specified requirements. Quality records are required to be examined for adequacy and completeness.
3.2.4 Items may be added to procurement documents as desirable quality attributes, such as painted surfaces being smooth and free of visible imperfections in waste boxes, even though these attributes do not affect the integrity or DOT rating of the box. Quality will inspect for such attributes if they are listed in the applicable procurement documentation.
3.2.5 Provisions shall be made for prohibiting delivery or acceptance of suspect/counterfeit items.
3.3 Receipt Inspection is required for items identified as Quality Level A, B or C per WVDP-111and WVDP-204, including credit card orders, unless other inspection provisions have been approved by QA.
3.4 Personnel shall always be cognizant of Integrated Safety Management System (ISMS) policies/objectives when planning and performing inspections.

\subsection*{4.0 PROCEDURE}

\subsection*{4.1 Inspection Criteria}
4.1.1 The QAR reviews the procurement document per QP 4-1 and concurs with the receipt inspection acceptance criteria established by the requisitioner per WV-620 and/or WV-695.
4.1.2 The QAR establishes a MRIR in the \(W\) :IMRIR drive if required. If the \(W\) :IMRIR file does not contain a procurement specific MRIR a standard receipt inspection MRIR can be used (W:IMRIRISTNDMRIR) as denoted on the copy of the procurement document. The QAR shall designate the applicable standard MRIR which is to be used.
4.1.3 The QAR shall ensure that the procurement document and MRIR acceptance criteria is adequate for the procurement and that a Material Receiving Inspection and Release (MRIR) is prepared for Receiving Inspection that includes the inspection acceptance criteria. As a minimum, basic acceptance criteria shall include:

Item(s) ordered is the item(s) received;
There is no shipping damage;
Item(s) is not suspect/counterfeit (ref: form WV-0141);
MSDS is received or is on file, and is item specific if a chemical containing material is ordered.

\subsection*{4.2 Inspection Performance}
4.2.1 The QAR enters the procurement information into the QA reports database and creates an informational file.
4.2.2 Inspector is notified that items requiring receipt inspection have arrived. Inspector obtains approved procurement document and MRIR.

NOTE Typically, items are delivered to the warehouse, tagged "Hold for QA Inspection" by warehouse personnel and placed in the QA hold cage. Some items that are too large for the cage or are delivered to another location (e.g., hard stand, Vit Test Facility) are staged for receipt inspection at their drop location.
4.2.3 Inspect the item(s) per the MRIR and the approved procurement document as reference.
4.2.4 If item(s) is/are acceptable:

Obtain an MRIR number from QA reports.
Complete and issue MRIR. Original certificates must also be retained with the MRIR. For credit card receipts, attach a copy of the CHBWV Procurement Card Requisition (WV0172) as part of the MRIR. The requisitioner receives copies of the MRIR, certifications and the original packing slip.
Apply Accept Tag or QA release stamp to the item(s), as appropriate.
Release the item from QA Receiving Inspection area.
NOTE Some items are received as multiples within a single or several containers. For example, small bolts packaged within a single plastic bag. If determined to be acceptable by receipt inspection, the package may be released for use if stored within a controlled, secure area that tracks usage. The MRIR for such items will be specific in detail to describe the multiple items.
4.2.5 If Item(s) is/are unacceptable, discuss the discrepancy with the requisitioner and proceed as follows:
A. Documentation Inadequacy

If documentation is insufficient (e.g. missing, incorrect documents, or insufficient data) and requisitioner agrees to obtain corrected documentation, keep item(s) in QA hold cage area or ensure the "Hold for QA Inspection" tag is on the item.

When acceptable documentation is received, follow 4 .2.4.
If acceptable documentation is not received in 30 days, implement WVDP-357.
B. Substitutions, minor changes and damage

If unacceptability was caused by substitution of material, wrong quantity, minor change etc. and the discrepancy is considered acceptable by requisitioner, complete the MRIR with documented written requisitioner approval on the MRIR, or attach email authorization.

If unacceptability is caused by substitution of material or shipping damage, which makes the material unacceptable, the material or item(s) may be returned. Issue a MRIR marking the Requirements Met column with an X in the NO column opposite the criteria not met and note that the item is to be returned to the vendor in the Comments section.

NOTE Coordination of the decision to return must be with the concurrence of the requisitioner and the Purchasing agent.

Inform warehouse personnel that the material must be returned to the vendor and request that they prepare the \(L\) Order to allow the material to be shipped off site. A QAR will verify that the material has been shipped off site by signing the L-Order for QA.
C. Quality Requirements Not Met If quality requirements are not met and the item(s) or material requires disposition or further justification for acceptance, implement WVDP-357 and process per 5.2.6.
4.2.6 Processing Nonconforming Item(s)

Place Hold Tag(s) on the item(s) per QP 15-2.
Maintain the item(s) in QA Hold Area or segregate.
Note the Issue Report (IR) number on the MRIR, retain the MRIR and a copy of the IR with the PO file until disposition has been received.
Follow the requirement of the dispositioned Issue Action Documentation Form, document the disposition and IR closure date in the comment section of the MRIR:
1) If disposition is "Use-as-is," complete the Material Release section of the MRIR, remove the Hold Tag per QP 15-2, place Accept Tag, and release the item(s) from the QA Hold Area.
2) If disposition is "Rework" remove the Hold Tag per QP 15-2 when item(s) is/are acceptable and complete MRIR. Use of a Conditional Release tag may be required.
3) If disposition is "Repair" use acceptance criteria as defined in the Issue Action Documentation Form, if applicable. Upon completion of the repairs(s) and a successful re-inspection, remove the Hold Tag per QP 15-2 and complete MRIR. Use of a conditional release tag may be required.
4) If disposition is "Scrap," ensure that the material is scrapped by destroying the item or by placing the item in an on-site scrap receptacle for the proper type of material.
5) If the disposition is "Return to Vendor" secure a copy of the completed L Order. This will show the item shipped off site.

NOTE Conditional Release Tags may be attached to material to allow further testing, repair, rework, or mock-up work. See Attachment B.

\subsection*{5.0 RECORDS}
5.1 The following forms, data sheets, logs, reports, or any other form of documentation are considered records and when created are to be prepared, maintained, and transferred to Records in accordance with WVDP-262 and WVDP-529. Refer to the CHBWV Master File Plan for further information

QP 10-2
Rev. 15
Page 5 of 7

NOTE Original MRIR reports for Purchase Orders and QA documentation (eg. certifications, test reports) are sent to purchasing. For Credit Card orders, the original MRIR reports and QA documentation (e.g. certifications, test reports) are sent to the Purchase Card Holder.
5.1.1 WV-3245, Material Receiving Inspection and Release (MRIR)
5.1.2 WV-0172, WVES Procurement Card Requisition and Certifications received with Credit Card Orders.

\subsection*{6.0 ATTACHMENTS}

Attachment A Accept Tag \& "Q.A. RELEASE" Stamp
Attachment B Conditional Release Tag

\section*{ACCEPT TAG}

\section*{ACCEPT TAG}
```

P.O.

```
\(\qquad\)
```

Insp. By
Piece

```
\(\qquad\)
\(\qquad\)
``` MRIR
``` \(\qquad\)
``` Date
``` \(\qquad\)
``` Piece Of
``` \(\qquad\)

Accept Tag will contain the following information:
1. Purchase Order number
2. Material Inspection and Release (MRIR) number
3. Initials of the Inspector who determined that the item(s) were acceptable
4. Date material was accepted.
5. If multiple pieces or parts are received at one time, multiple tags will be issued for the same MRIR number. This avoids loss of control. Tags might read "Piece 1 of 6 ," "Piece 2 of 6 "; this increased piece count is continued until all pieces/parts have been tagged or a "QA Released" stamp may be utilized when quantities are high. The "QA Released" stamp may be used on boxes within which the procured items are not suitable for stamping or tagging. For example, PPE filters contained within boxes may have just the boxes stamped since it is impractical and unsafe to tag or stamp each individual filter.

\section*{Example of Q.A. Release Stamp}

\section*{QA RELEASED}

QP 10-2
Rev. 15
Page 7 of 7

ATTACHMENT B
CONDITIONAL RELEASE TAG

\section*{CONDITIONAL RELEASE TAG}

\section*{(Yellow)}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ CONDITIONAL RELEASE } \\
Limiting Condition \\
\hline \\
PO/WIP/etc. \\
Inspector: \\
Print Name_ IR \\
Sign__ DO NOT REMOVE THIS TAG \\
\hline
\end{tabular}

This tag may be used to allow further testing, repair, rework, fit-up or mock-up prior to full release. The item shall not be allowed to be used for its intended use until the condition is met. After the testing, repair, rework or mock-up is complete, the item may be released or a red Hold Tag may be required to continue control of the item.
\begin{tabular}{|c|c|c|c|}
\hline Rev. No. & Description of Changes & \begin{tabular}{l}
Revision On \\
Page(s)
\end{tabular} & Dated \\
\hline \multirow[t]{3}{*}{6} & Added 7.2.5.1 to clarify how items that are unacceptable are handled. & 3 & \multirow[t]{2}{*}{04/14/03} \\
\hline & Procedure also updated to the requirements of DCIP-100 (e.g., modified section 8, "Records Maintenance," added titles and pagination to attachments, changed font throughout) & All & \\
\hline & This change affects QA. & & \\
\hline 7 & This change is made to add a reference to location of receipt inspection MRIR, add a note concerning items delivered to the warehouse, change QA receiving area references to QA hold cage, update step to place a red hold tag on the item received, delete step 6.2.5.1, and update procedure per DCIP-100. This change affects QA. & 1-3 & 04/13/04 \\
\hline \multirow[t]{5}{*}{8} & Adds explanation for Drawing/Specification & & \multirow[t]{5}{*}{01/24/05} \\
\hline & block on MRIR and change numbers accordingly on example form & \multirow[t]{2}{*}{10-11} & \\
\hline & Changed days to implement WVDP-357 & & \\
\hline & from 90 to 30 days. & \multirow[t]{2}{*}{3} & \\
\hline & This change affects QA & & \\
\hline \multirow[t]{5}{*}{9} & \multicolumn{3}{|l|}{Added a note for clarification} \\
\hline & Revised wording; added P-Card statement & 3 & \multirow[t]{4}{*}{12/27/05} \\
\hline & Added to item 5 to address other items & 6 & \\
\hline & Updated "Conditional Release Tag" as shown. & 7 & \\
\hline & This change affects QA & & \\
\hline \multirow[t]{4}{*}{10} & General Revision & \multirow[t]{4}{*}{All} & \multirow[t]{4}{*}{10/10/06} \\
\hline & Clarified and added information to general instructions. & & \\
\hline & Deleted form WV-3245 from procedure. & & \\
\hline & This change affects QA & & \\
\hline \multirow[t]{4}{*}{11} & General Revision & \multirow[t]{4}{*}{1, 5} & \multirow[t]{4}{*}{04/15/09} \\
\hline & Update to WVES template & & \\
\hline & Update sections to reflect current department activities & & \\
\hline & This change affects QA & & \\
\hline \multirow[t]{4}{*}{12} & 'Periodic Review - Revision & & \multirow[t]{4}{*}{12/03/09} \\
\hline & Clarified inspection criteria. & 2 & \\
\hline & Update Records responsibilities. & \multirow[t]{2}{*}{5} & \\
\hline & Minor editorial changes throughout. & & \\
\hline
\end{tabular}
\begin{tabular}{lll}
\hline & & Revision On \\
Rev. No. & & Page(s)
\end{tabular}\(\quad\) Dated

\section*{WVMP SAR Reference 8-3}

Material Receiving Inspection and Release (MRIR) report \#04-1152, West Valley Nuclear Services Company, West Valley, New York, October 15, 2004.

Comments Nit

\section*{WVMP SAR Reference 8-5}

Nondestructive Test Reports MT-110-04, VT-35-04, X-R-I Testing Division of X-Ray Industries, Inc., Troy, Michigan, October 13, 2004.

XRI TESTING Division of X-Ray Industries, Inc.

XRI TESTING Division of X-Ray Industries, Inc.

\section*{WVMP SAR Reference 8-7}

WVDP Site Welding Manual, WVDP-352, Revision 5, CH2M Hill-B\&W West Valley, LLC, West Valley, New York, July 11, 2012.

\title{
West Valley Demonstration Project
}

Doc. ID Number WVDP-352

Revision Number \(\qquad\)

\section*{SECTION 1 - WELDING MANUAL GENERAL REQUIREMENTS}
1.0 PURPOSE 3
1.2 Responsibilities 3
1.3 Definitions 3
1.4 Welding Symbols 4
1.5 Filler Metal, Issuance and Control 4
1.6 Other Joining Processes 5
1.7 Welding by Subcontractor/Supplier/Others 5
1.8 Records 5
1.9 Forms 6
1.10 References 6
SECTION 2 - QUALIFICATION OF CHBWV WELDERS, WELDING OPERATORS AND BRAZERS (WELDERS)
2.1 General 6
2.2 General Performance Qualification Testing 6
2.3 Specific Performance Qualification Testing 7
2.4 Maintenance of Qualification - Period of Effectiveness 7
SECTION 3 - CHBWV WELDING AND BRAZING PROCEDURE QUALIFICATION
3.1 Requirements for WPS/BPS Development 8
3.2 Identification System 8
SECTION 4 - TECHNIQUE AND WORKMANSHIP
4.1 Technique 9
4.2 Workmanship 10
4.3 Tool Control 13
4.4 Weld Repairs 13
4.5 Acceptance Criteria 14
4.6 In-Process Documentation 14
ATTACHMENT A - CHBWV WELDING PROCEDURE SPECIFICATIONS 15

WVDP-352
Rev. 5
Page 3 of 50
WVDP SITE WELDING MANUAL

\section*{SECTION 1 - WELDING MANUAL GENERAL REQUIREMENTS}

\subsection*{1.0 PURPOSE}
1.1 This manual presents CHM2HILL B\&W West Valley, LLC Company (CHBWV) policy and requirements for welding and brazing at West Valley Demonstration Project (WVDP). Policies set forth in this manual apply to all welding performed on site.

The manual provides direction for welding activities performed by CHBWV personnel, the administrative direction for development and issuance of new or revised welding procedures, CHBWV welder performance certification, weld filler control, and responsibility for control of this manual.

When welding is to be accomplished on site or off site by a subcontractor/vendor, welding shall be in accordance with the provisions of Section 1.7, "Welding by Subcontractor/Supplier/Others."
1.2 Responsibilities
1.2.1 The Site Engineering Manager shall be responsible for implementation and revision as necessary of this manual; development and revision of Weld Procedure Specifications (WPS) and their Procedure Qualification Records (PQR); and support for welder performance qualification testing. The Site Engineering Manager may delegate this responsibility to a designated welding Subject Matter Expert (SME) in the Technical Specialist List.
1.2.2 The Quality Assurance Manager (QAM) is responsible for assuring compliance to this manual.
1.2.3 The Nuclear Operations and Storage Facility Manager or designee shall be responsible for personnel training, welder qualifications, filler metal control, assigning qualified personnel to specific tasks, and implementing written procedures.
1.2.4 CHBWV Welders, Welding Operators, and Brazers (Welders) are responsible for knowing the extent of their certifications and performing assigned tasks in accordance with this manual and written procedures.
1.2.5 Where responsibilities are assigned by position title, it shall be understood that the person holding that position may delegate the responsibilities to other(s) who are qualified to perform the task with that person's manager's concurrence.
1.2.6 Cognizant Engineers who generate CHBWV work instructions requiring welding per EP-5-002 shall complete form WV-1888.
1.2.7 Performance of Nondestructive Examination (NDE) as described in this manual shall be performed by current ASNT-TC-1A certified NDE Level II or III personnel.

\subsection*{1.3 Definitions}

> 1.3.1 Welders/Welding Operators Performance Qualification Record (WPQ): A document with basic criteria established for welder/welding operator qualification used to determine the welders ability to produce welds meeting prescribed standards.
1.3.2 Welding Procedure Specification (WPS): A written qualified welding procedure prepared to provide direction for making production welds.
1.3.3 Procedure Qualification Record (PQR): A record of the welding data used to weld a test coupon to qualify the WPS. The PQR is a record of variables recorded during the welding of the test coupons and contains the test results of the tested specimens. Recorded variables normally fall within a small range of the actual variables that will be used in production welding.

NOTE Other terms and definitions shall be in accordance with AWS A3.0-Terms and Definitions.

\subsection*{1.4 Welding Symbols}
1.4.1 All drawings and sketches that require welding shall use welding symbols as shown in AWS A2.4 (latest revision). Symbols for Welding and Nondestructive Examination.
1.5 Filler Metal, Issuance and Control
1.5.1 Filler metal and electrodes shall be procured, controlled, stored, and issued in accordance with approved CHBWV procedures.
1.5.2 Low hydrogen covered electrodes shall be stored at a minimum temperature of \(250^{\circ} \mathrm{F}\). Recording charts will be used to verify temperatures. Temperature monitoring devices for weld rod ovens shall be calibrated in accordance with approved CHBWV procedures.
1.5.3 Traceability of filler material shall be to the point of issuance (CHBWV Warehouse) unless otherwise specified by the SME on form WV-1888 within the work document.
1.5.4 A Senior Specialist DDWO/Craft (Mechanic) or Maintenance Supenvisor will authorize warehouse requisition/withdrawal for obtaining filler material containers. Only undamaged containers will be transferred.
1.5.5 Once filler material is requisitioned/withdrawn from Warehouse stock, all electrodes shall then be placed in locked storage locker(s) within its original container indicating the type, size, heat and/or lot number.
1.5.6 Upon opening each low hydrogen electrode container, the Senior Specialist DDWO/Craft (Mechanic) will store the entire contents in a locked weld rod holding oven. A tag containing type, size, and heat and/or lot number will be affixed to the container.
1.5.7 A Senior Specialist DDWO/Craft (Mechanic) or Maintenance Supervisor will issue weld filler material to qualified welders by entering the following information into the Weld Filler Issuance Log:
A. Employee badge number
B. Process as applicable: e.g. SMAW or GTAW
C. Filler material description: e.g. E7018, 1/8"; ER70S-2, 1/8"
D. Date of issuance
E. Time of issuance
F. Quantity issued in pounds
G. Applicable work document or task number
1.5.8 Low hydrogen covered electrodes shall either be issued in quantities that can be used within four (4) hours, or shall be contained in heated portable rod caddies. Portable rod caddies do not require calibration.
1.5.9 Welders are responsible for discarding used stubs, damaged electrodes as well as low hydrogen electrodes which have been exposed to air (removed from the holding oven) for a period greater than four (4) hours.
1.5.10 Upon completion of work, each welder shall place their unique ID on form WV-1888 of the work document (if applicable) and when required, enter the heatlot number(s).
1.5.11 A Senior Specialist DDWO/Craft (Mechanic) or Maintenance Supervisor shall monitor and initial/date the rod oven chart recorder daily (for days worked). As part of this monitoring, the temperatures since the last verification shall also be reviewed for potential temperature deficiency.
1.5.12 The Senior Specialist DDWO/Craft (Mechanic) or Maintenance Supervisor shall immediately report any temperature discrepancy which is outside the prescribed limits to the supervisor, and QA..

\subsection*{1.6 Other Joining Processes}
1.6.1 Welding processes other than fusion welding and torch brazing of metallic components are not controlled by this manual.
1.6.2 Processes such as resistance spot welding, soldering, non code-related torch brazing or bonding/fusion of non-metallic components are a DDWO/Craft specific skill which may be employed by CHBWV without qualified procedures or specific qualification tests.
1.6.3 Situations may arise where special training and/or qualification on processes or techniques are warranted. The responsible cognizant engineer may then coordinate with the SME to develop joining processes per manufacturer's installation instructions and/or applicable codes.
1.6.4 Stud welding procedures for special projects may be developed by the cognizant engineer and the SME and documented on the work document.

\subsection*{1.7 Welding by Subcontractor/Supplier/Others}
1.7.1 When welding is to be accomplished on site by a subcontractor/supplier/other (e.g. fixed price purchase order), welding program(s) and welding activities shall be in accordance with the contract documents. The welding program shall be approved by CHBWV per contract requirements prior to commencement of welding activities.
1.7.2 Equipment solely owned by a supplier under current CHBWV rental/lease agreement (e.g. Liquid Nitrogen tank manifold), may be installed/serviced on site by the supplier or authorized representative. WPS, PQR and welder qualification are the responsibility of the supplier. Control of filler material shall be at the discretion of the SME and Cog Eng.
1.7.3 Equipment (e.g. excavator, dozer) solely owned by suppliers, or CHBWV protegee for D\&D activities may be serviced on site by the owner or authorized representative. WPS, PQR and welder qualification are the responsibility of the equipment owner. Control of filler material shall be at the discretion of the SME and Cog. Eng. Any modification or repair and any related testing/inspection shall be the owners responsibility.

Records
1.8.1 The following forms, data sheets, logs, reports, or any other form of documentation are considered records and when generated are to be prepared, maintained, and transferred to Records in accordance with WVDP-262 and WVDP-529. Refer to the CHBWV Master File Plan for further information.
A. Weld Rod Oven Temperature Data
B. Welding Procedure Specification
C. Procedure Qualification Record
D. Welder Performance Qualification
E. Brazing Procedure Specification
F. Brazer Performance Qualification
G. CHBWV Weld Data Sheet

\subsection*{1.9 Forms / Templates}

Template - "Welding Procedure Specification"
WV-2524, "Procedure Qualification Record"
WV-2525, "Welder Performance Qualification"
Template - "Brazing Procedure Specification"
WV-2527, "Procedure Qualification Record (Brazing)"
WV-2528, "Brazer Performance Qualification"
WV-2529, "CHBWV Weld Data Sheet"
WV-1888, "Procedures, Inspections and Controls Checklist"
1.10 References

AWS Codes "American Welding Society"
ASME Codes "American Society of Mechanical Engineers"
EP-5-002, "Administration of Work Instruction Packages"
WVDP-111, "Quality Assurance Program"
WVDP-204, "WVDP Quality List Q-List"
WVDP-262, "WVDP Records Management Plan"
WVDP-485, "Work Control"
WVDP-529, "WVDP Records Disposition Plan"
ANSI Z49.1, "Safety in Welding, Cutting and Allied Processes"
ASNT-TC-1A, "Recommended Practice for Nondestructive Testing Personnel Qualification and Certification"
CHBWV Technical Specialist List
SECTION 2 - QUALIFICATION OF CHBWV WELDERS, WELDING OPERATORS AND BRAZERS (WELDERS)
2.1 General
2.1.1 Performance qualification tests shall be conducted by SME using qualified procedures in accordance with ASME Section IX or applicable AWS code. Successful completion of performance qualification shall be documented on form WV-2525 or WV-2528 as applicable.
2.1.2 Quality Assurance shall be notified prior to performance qualification testing. The Quality Assurance representative reserves the right to witness all performance qualification tests.
2.2 General Performance Qualification Testing
2.2.1 A welder may take performance qualification tests with individual processes on separate test coupons or a combination of welding processes in a single test coupon at the direction of the appropriate SME.
2.2.2 Welders and Welding Operators shall typically demonstrate ability on full penetration groove welds, unless the procedure to be used during production is limited to fillet welds.
2.2.3 Base metals used for welder qualification may be substituted for the base metal specified in the WPS in accordance with the applicable code.

\subsection*{2.3 Specific Performance Qualification Testing}
2.3.1 The SME shall coordinate the performance test to ensure all essential variables for each process of the selected WPS/BPS are satisfied.
2.3.2 The SME shall document acceptable performance testing information by completing form WV-2525 or WV-2528.
2.3.3 Quality Assurance shall perform in-process surveillance(s) during Welder performance testing. If performed, the surveillance shall assure the following:
- Materials appropriate to the WPS/BPS are used.
- Filler metal used is as specified on the WPS/BPS.
- Test position is as specified by the SME, coupon orientation is marked.
- Fit up and internal alignment are as specified by the SME.
- Tack welds are tapered as required.
- Root pass is visually acceptable in accordance with paragraph 2.3.4 below.
- Random examination of intermediate pass cleaning and condition.
2.3.4 After making a qualification test weld and prior to preparing the test specimens, the test coupon shall be visually inspected and accepted by Quality Assurance in accordance with the applicable code.
2.3.5 Appropriate tests shall be used to determine the degree of soundness and ductility of weld joints as determined by the SME.
2.3.6 Final signature of welder's or welding operator's test form shall be the responsibility of the SME. The test may be terminated at any time if, in the opinion of the SME, the welder fails to exhibit the required skill needed to satisfactorily complete the test.
2.3.7 At the discretion of the SME, test specimens may be discarded after evaluation.
2.3.8 Upon successful qualification, the welder shall be issued an identification symbol that shall be recorded on the Form WV-2525/WV-2528. The welder shall record this symbol or name when required on the appropriate work documents.
2.3.9 In the event a welder fails to meet the test acceptance criteria, a retest may be allowed at the discretion of the SME in accordance with applicable code.
2.4 Maintenance of Qualification - Period of Effectiveness
2.4.1 Certification for Welders qualified in any one process shall remain in effect for 180 days from the date the Welder last successfully used that process.
A. Successful use of a process is accomplished by a fabrication or repair weld made by a certified welder and documented through a work document or task.
B. The Period of Effectiveness (welder qualification maintenance) for each welder is maintained through MM262Q-SMAW and MM265Q-GTAW.
2.4.2 When there is a specific reason to question the ability of a welder by a qualified weld inspector, the welder may be retested with concurrence of the SME. If the first retest fails, the qualifications shall be revoked.
2.5 The SME shall maintain a list of all certified CHBWV welders under his/her cognizance that indicates the WPSs each person is qualified to use.

\section*{SECTION 3 - CHBWV WELDING AND BRAZING PROCEDURE QUALIFICATION}

\subsection*{3.1 Requirements for WPS/BPS Development}
3.1.1 Welding and Brazing Procedure Specifications and, if required, their associated Procedure Qualification Record(s) (PQR) shall be developed in accordance with ASME Section IX or applicable AWS code.
3.1.2 When a new or revised WPS/BPS is required, the SME or designee will develop it.
3.1.3 The SME may elect to adopt a WPS/BPS qualified by other corporate divisions in lieu of performing additional PQR testing. The SME may also utilize a procedure qualification from another division, in accordance with the ASME or AWS Code. The WPS/BPS shall be identified in accordance with requirements of this manual.
3.1.4 If qualification is required, the SME shall prepare an informational preliminary procedure specification for use during procedure qualification. The preliminary procedure specification shall contain the necessary information (essential and non-essential variables) required for the particular process to be used. This information may include but is not limited to:
3.1 .5
- Coupon size (thickness/diameter)
- Filler metals/electrodes to be used
- Welding process(es) and techniques to be used
- Base metal specification(s)
- Shielding/Backing gas and flow rates
- Electrical characteristics (Amps, Volts, Polarity, etc.)
- Joint configuration
- Method of cleaning and back gouging
- Pre- or Post-weld heat treating
3.1.6 The SME shall coordinate test coupon preparation and notify Quality Assurance prior to the test initiation.
3.1.7 The actual values of all essential variables and supplementary essential variables (when required) shall be recorded during welding of the test coupon.
3.1.8 The preliminary WPS may be altered by the SME as needed to produce a satisfactory weldment. Changes shall be appropriately documented.
3.1.9 The SME shall direct the preparation and testing of the test specimens from the test coupon. If required, services for mechanical tests or non-destructive examinations shall be procured from qualified agencies in accordance with approved CHBWV procedures.
3.1.10 Test results shall be discussed with the welder, the applicable supervisor, and the QA representative by the SME.
3.1.11 Tests that meet the requirements of the applicable code will result in the preparation and issuance of a new or revised WPS/BPS and PQR by the SME.
A. The WPS/BPS and the PQR shall be recorded on the appropriate CHBWV forms.

\subsection*{3.2 Identification System}
3.2.1 Each WPS/BPS and PQR shall be uniquely identified using the alpha numeric system described in this section.
3.2.2 The first character shall identify the process or combination of processes. Table 1 lists the applicable processes and their identifying characters.

TABLE 1
\begin{tabular}{cl}
\hline \begin{tabular}{l}
IDENTIFYING \\
CHARACTER
\end{tabular} & PROCESS \\
\hline S & SMAW (Shielded Metal Arc Welding) \\
T & GTAW (Gas Tungsten Arc Welding) \\
M & GMAW (Gas Metal Arc Welding) \\
F & FCAW (Flux Cored Arc Welding) \\
B & BRAZING \\
\hline
\end{tabular}
3.2.3 The second and third characters shall be separated by a hyphen, which identifies the base materials to be joined (e.g., ASME Section IXP number 8 for stainless steel). The fourth character, when present, shall be a two digit number assigned sequentially for a given process/base metal as needed.
3.2.4 The revision level of the WPS shall be numerically assigned at the time of preparation by the SME.
3.2.5 As an example of this system, T 43-8 01, Revision 1, would be interpreted as follows:
\begin{tabular}{lllll}
1st Char & 2nd Char & 3rd Char & 4th Char & Rev. \\
\hline T & 43 & 8 & 01 & Rev. 1 \\
GTAW & P-43 (NICKEL) & P-8 (STAINLESS) & \begin{tabular}{l}
2ND P-43/P8 GTAW \\
PROCEDURE ISSUED
\end{tabular} & first revision \\
\hline
\end{tabular}
3.2.6 An existing WPS/BPS may contain a ' \(W\) ' prefix which coincide with the applicable PQR(s).

\section*{SECTION 4 - TECHNIQUE AND WORKMANSHIP}

\subsection*{4.1 Technique}
4.1.1 All CHBWV welding shall be performed in accordance with site safety requirements. Appropriate protective equipment shall be worn during welding and burning operations. Refer to ANSI Z49.1 and Safety for selection criteria and options.
4.1.2 All welding requires an Industrial Work Permit (IWP) and a Hot Work Permit (HWP) prior to start of work. A task specific Job Safety Analysis (JSA) may also be utilized as necessary. Hazard analysis and screening will be performed by the Cognizant Engineer and/or Maintenance Supervisor prior to start of work.
4.1.3 All welding equipment shall be maintained in good operating condition.
4.1.4 The size and length of welds shall be designated through design requirements, detail drawings, or work instructions.
4.1.5 Welding shall not be done when the base metal temperature is lower than 50 degrees \(F\), when surfaces are wet or exposed to rain, snow, or high wind velocities. Preheating shall be performed to bring the weld joint area above \(50^{\circ} \mathrm{F}\) or the minimum preheat temperature specified on the WPS.
4.1.6 The following minimum preheat temperatures shall be utilized for preheating carbon steel materials. When joining materials of varying thicknesses, the preheat temperature shall correspond to the thicker material being joined. Preheats shall be maintained during welding.

\section*{Thickness: \(\quad\) Minimum Preheat Temperature}
```

>1-1/2" thru 2-1/2" incl. }150\mathrm{ degrees F
> 2-1/2" 225 degrees F

```
4.1.7 Generally, post-weld heat treatments do not apply to WVDP work. If needed for specific application, a welding procedure that specifies the stress relief heat treatment to be used will be developed by the SME.
4.1.8 Interpass temperature for nonferrous materials shall not exceed 350 degrees \(F\) when measured \(3^{\prime \prime}\) from either side of the weld.
4.1.9 Weld deposited overlay or buttering shall use an appropriate WPS for the selected process and base material.
4.1.10 Backing rings or consumable inserts may be used when required through work documents and approved by the SME and Cognizant System Engineer prior to work. Specific systems may restrict their use due to contamination control purposes.
4.1.11 For full penetration joints welded from both sides, the root shall be back gouged or ground to sound metal prior to welding the second side.
4.1.12 Intermediate weld passes shall be sufficiently cleaned prior to welding subsequent passes.
4.1.13 If required, the SME or cognizant engineer will prepare additional welding information in conjunction with the welding procedure and denoted on the work document. The direction of progression, sequencing, size considerations, heating, distortion control, etc. may be addressed to enable the welder to satisfactorily complete the required weld.
4.1.14 Welding may be performed by CHBWV certified welders at the direction of the Maintenance Supervisor in accordance with WVDP-485, "Work Control" provided it is Low Risk Routine Work and all the following criteria are met:
- Scope of work is non-process,
- Scope of work is non-code,
- Work is non-safety related,
- Work is non-environmentally impacting, and
- Work is Quality Level N per WVDP-111 and Q-List (WVDP-204)
4.2 Workmanship
4.2.1 Weld-o-lets, thread-o-lets, and soc-o-lets shall be prepared with a root opening of 3/32" minimum and tack welded to maintain alignment and gap. The root pass shall consist of a full penetration groove weld and finished with a cover fillet weld.

> 4.2.2 Fit-up and alignment of socket welds shall be accomplished as follows: fit the pipe entirely into fitting; lightly scribe a line on the pipe 1 inch above the fitting shoulder; withdraw the pipe \(1 / 16^{\prime \prime}\) to \(1 / 8^{\prime \prime}\) using the scribed line as a reference point; tack weld a minimum of three (3) places. The welder shall check for pullback prior to welding.
4.2.3 Butt weld end preparation shall be specified on the design drawings, or sketches.
A. For pipe, when the joint is fit up concentrically, a uniform mismatch of \(1 / 16^{\prime \prime}\) is allowable.
B. For circumferential butt welds the maximum root gap shall be maximum of \(5 / 32^{\prime \prime}\).
C. Should tolerances on diameter, wall thickness, out-of-roundness, or other mismatch result in inside diameter variations that do not meet these limits, the inside diameter can be counterbored or taper-ground to produce a bore within these limits.
D. Counterboring/taper-grinding shall not infringe on the minimum wall thickness of the pipe.
E. The counterbore length shall be a minimum of twice the wall thickness of the thinner member. In parts of unequal thickness, the thicker wall shall be tapered to at least a \(3: 1\) transition or as required on the design drawing.
F. For joining pipe and components with unequal wall thickness, the joint fit-up and permitted off-set (OD) shall be per the applicable code.
4.2.4 Cold spring shall not be used to align joints. Care shall be taken at tie-ins to equipment, to preclude any undue stresses at these joints.

\subsection*{4.2.5 \(\quad\) Purging and Shielding Gases}
A. Backing, shielding and trailing gases if used, shall be specified on the applicable WPS.
B. Welding grade gases shall be used.
C. Where purging is required, the purge envelope shall not exceed \(2 \%\) oxygen content.
D. This percentage can be verified with a oxygen meter, or by purging at least 6 volume changes of the volume needed to be purged. Caution shall be used if high flow rate is used for purging as gasses may mix or entrain air instead of creating an inert envelope.
E. Purge envelopes shall be as small as reasonably possible.

NOTE Soluble paper purge dams can only be used if the line is subsequently flushed with water.
F. Where purging requires the use of purge dams, such as water soluble paper, they shall be approved by the cognizant system engineer and SME prior to use.
G. Purge dams shall be located outside the heat affected area to prevent damage to the purge device and contamination of the components being welded.
H. Purge gas shall be maintained until \(3 / 16^{\prime \prime}\) of weld metal thickness is deposited.
I. Internal purge is not required for fillet welds, joints with internal backing rings, double welded joints, or socket welds.
4.2.6 Appropriate cleaning shall be accomplished prior to proceeding with welding.
A. Surfaces and edges to be welded shall be smooth, uniform, and free from fins, tears, cracks, foreign material including scale and other discontinuities.
B. An area extending at least one inch on each side of the weld joint shall be free from foreign material (i.e. - paint, oil, galvanizing) that might prevent proper welding or produce objectionable fumes. When used, cleaning solvents shall be allowed to completely evaporate prior to welding.

\section*{CAUTION}

Solvents are flammable and require careful planning for proper ventilation. Refer to IWP and/or JSA.
C. Slag and spatter shall be removed from existing weld deposits and brushed clean before successive weld beads are applied.
D. Slag shall be removed from all completed welds. The weld and adjacent base metal shall be cleaned by appropriate methods. Tightly adherent spatter remaining after the cleaning operation is acceptable unless its removal is required for non-destructive testing. Welded joints shall not be painted until after acceptance of inspections/testing.
E. Non-ferrous parts to be joined or repaired by welding shall be degreased by cleaning the weld area with an approved solvent or by mechanical methods.
F. Surfaces that have been thermally cut or gouged shall be ground or machined to sound metal prior to welding.
4.2.7 Pre-heat and interpass temperature shall be monitored by the welder by use of temperature indicating crayons (e.g. Tempilstik) or by contact pyrometers or thermometers. Preheat temperature shall be in accordance with the WPS.
4.2.8 Caulking or slugging of welds is not permitted.
4.2.9 Peening is not allowed unless specifically directed by the SME and the work document.
A. When directed, peening shall be witnessed by the SME or designee per the following criteria.
- The first and last layer of weld shall not be peened.
- Prior to peening, the weld pass shall be carefully cleaned and visually examined. If defects are present, they shall be removed.
- Reference marks may be employed to prevent peening from causing more distortion than caused by welding.
- The peening tool shall have a round nose no less than \(1 / 8^{\prime \prime}\) diameter.
4.2.10 Arc strikes are not allowed on process piping or equipment. Inadvertent arc strikes shall be removed per weld repair section 4.4.1.F.
4.2.11 Weld reinforcement shall have a gradual transition to the plane of the base metal. Surfaces of butt welds which are to be ground or machined flush shall be finished so as not to reduce the thickness of the base material more than \(1 / 32\) ".
4.2.12 Undercut shall not exceed \(1 / 32\) " and shall not encroach on minimum wall thickness. When undercut exceeds these limits, the area shall be reworked.
4.2.13 Final weld contour shall be sufficiently free from coarse ripples, grooves, overlaps, abrupt edges, and valleys to allow clear interpretation of applicable Non-Destructive Examination (NDE) methods.

\subsection*{4.3 Tool Control}
4.3.1 To prevent free-iron contamination of non-ferrous base materials, mechanical metal removal shall be performed using new non-ferrous tools or tools previously used only on non-ferrous materials. A tool identification scheme using: blue paint/segregation and/or stainless steel marking/segregation will be utilized.
A. Stainless steel wire brushes shall be used on non ferrous alloys.
B. Jaws of vises used for stainless steel and nickel based alloy work shall be "isolated" to prevent carbon steel contamination.
C. In the material storage area and fabrication area, stainless steel and nickel alloys shall be separated from carbon steel.

\subsection*{4.4 Weld Repairs}
4.4.1 When a repair is required for a welded joint that has been rejected because of radiography or ultrasonic testing, the documentation for that repair shall indicate an R-1 for the first repair and R-2 for the second. More than two repairs requires the SME's approval.
A. The types, extent and method of repair examination shall be the same as for the original weld.
B. Weld end prep repairs required because of physical damage due to handling, etc. may require a combination of welding and mechanical methods to be restored.
C. Welded repairs may be made using the same WPS as the original weld or compatible WPS and process.
D. Areas to be repaired shall be excavated to eliminate the defect and prepared as necessary to provide for proper electrode manipulation.
E. The excavated area shall be examined with an appropriate NDE method (PT, MT, or \(V T\)) to assure complete defect removal prior to proceeding with repair.
F. Arc strikes on pressure retaining components shall be removed by grinding or blending to the bottom of the depression. The blended area shall be visually free of crater cracks. If the remaining thickness is less than minimum wall, the area shall be repaired by welding.
4.4.2 If a repair (or alteration) is required on an ASME-Stamped vessel, work will be performed in accordance with the National Board Inspection Code, by an authorized repair organization. No work on ASME stamped vessels shall be initiated without the Engineering Manager and SME approval on the work document.
4.4.3 To ensure internal components are not damaged, planning for welding of items such as valves or pumps may provide for disassembly and reassembly of the components to manufacturer's instructions or methods of reducing the amount of heat input to the item.
4.4.4 Temporary Attachments to Pressure Boundaries
A. Attachments which are welded onto the component during the process of manufacturing or installation are permitted, provided the following requirements are met.
- Attachment material is compatible with base material
- The immediate area around the attachment is marked in a suitable manner to identify the area for examination after attachment removal.
- Attachments are not to be removed by hammer blows.
- The area is examined and documented after attachment removal by an appropriate NDE method (PT or MT).

\subsection*{4.5 Acceptance Criteria}

\begin{abstract}
4.5.1 Structural steel, pipe supports, hangers, and miscellaneous metals shall be visually examined to meet the acceptance criteria in AWS D1.1 (static), unless otherwise specified.
\end{abstract}
4.5.2 Piping welding and all attachments welded to the pipe shall be visually examined to the criteria required in ASME B31.3 (normal service) unless otherwise specified.
4.5.3 Lifting devices designated as 'Below the Hook Lift Devices' per DOE-STD-1090, 'Hoisting and Rigging Manual' shall be inspected per AWS D14.1 unless otherwise noted.
4.5.4 Stainless steel structural welding shall be inspected to AWS D1.6 unless otherwise noted.

\subsection*{4.6 In-Process Documentation}

The CHBWV Weld Data Sheet (WV-2529) will be used for documenting welding information when such information is required by the governing work document. Weld maps and weld data sheets are generated by the Cognizant Engineer and Quality Assurance. Completed weld maps and form WV-2529 shall be retained within the work document.
4.6.1 After welding on a particular weld joint, the welder will be responsible for applying his/her symbol and the electrode heat number in the blocks provided next to the applicable weld number.
4.6.2 The Quality Assurance Inspector will document their inspections/examinations by initialing and dating the applicable block(s).

ATTACHMENT A
CHBWV WELDING PROCEDURE SPECIFICATIONS (w/ MAX. BASE METAL GROOVE THICKNESSES)
\begin{tabular}{|c|c|c|}
\hline 1. & W TS 1-1 & - C.S. GTAW/SMAW, \(13 / 4\) " MAX. \\
\hline 2. & W S 1-1 & - C.S. SMAW, 1 ½" Max. (E6010 \& E7018) \\
\hline 3. & S1-1-01 & - C.S. SMAW 2½ Max. \\
\hline 4. & W TS 8-1 & - S.S./C.S. GTAW/SMAW, 1 1/2" MAX. \\
\hline 5. & W TS 8-8 & -S.S. GTAW/SMAW, \(11 / 2^{\prime \prime}\) MAX. \\
\hline 6. & W T 10H-8 & - S.S. GTAW, 3/4" MAX. \\
\hline 7. & W T 23-23 & - Aluminum GTAW, ½ MAX. \\
\hline 8. & W T 43-8 & - Inconel/S.S. GTAW, 1" MAX. \\
\hline 9. & W T 43-43 & - Inconel GTAW, 1" MAX. \\
\hline 10. & W T 51-51 & - Titanium GTAW, .560" MAX. \\
\hline 11. & F 1-1 & - C.S. FCAW, Unlimited \\
\hline 12. & W F 8-1 & -S.S./C.S. FCAW, 1/2" MAX. \\
\hline 13. & W F 8-8 & -S.S. FCAW, \(1 / 2^{\prime \prime}\) MAX. \\
\hline 14. & W M 8-1 & - S.S./C.S. GMAW, .275" MAX. \\
\hline 15. & W M 8-8 & - S.S. GMAW, .275" MAX. \\
\hline 16. & W B 107-107 & - Brazing, 100 MAX \\
\hline 17. & TS 43-8 & - Inconel/S.S. GTAW/SMAW, 1" MAX. \\
\hline 18. & TS 43-43 & - Inconel GTAW/SMAW, 1" MAX. \\
\hline
\end{tabular}

\section*{WELDING PROCEDURE SPECIFICATION (WPS)}

WVDP-352
Rev. 5
Page 17 of 50

WVDP-352
Rev. 5
Page 18 of 50

WELDING PROCEDURE SPECIFICATION (WPS)

WVDP-352
Rev. 5
Page 19 of 50

WVDP-352
Rev. 5
Page 21 of 50
(BACK)
WPS No. S1-1-01 Rev. 1
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{POSITION (QW-405} & \multicolumn{5}{|c|}{POSTWELD HEAT TREATMENT (OW-407)} \\
\hline \multicolumn{4}{|l|}{Position of Groove: All} & \multicolumn{5}{|l|}{Temperature Range: \(\mathrm{n} / \mathrm{a}\)} \\
\hline \multicolumn{4}{|l|}{Weld Progression (Uphil, Downhill): Uphill} & \multicolumn{5}{|l|}{Time Range: n/a} \\
\hline \multicolumn{4}{|l|}{Position of Fillet: All} & \multicolumn{5}{|l|}{Gas (OW-408): n/a} \\
\hline \multicolumn{4}{|l|}{Other: n/a} & \multicolumn{5}{|c|}{Percent Composition} \\
\hline \multicolumn{4}{|l|}{PREHEAT (QW-406)} & \multicolumn{3}{|r|}{Gas(es) (Mixture)} & \multicolumn{2}{|r|}{Flow Rate} \\
\hline \multicolumn{4}{|l|}{Preheat Temp. Min.: \(50^{\circ} \mathrm{F}\left(5 / 16^{\prime \prime}\right.\) to \(\left.1-1 / 2^{\prime \prime}\right) / 150^{\circ} \mathrm{F}\left(>1-1 / 2^{\prime \prime} \text { to } 2-1 / 2^{\prime \prime}\right)^{\prime}\)} & \multicolumn{5}{|l|}{Shielding: n/a} \\
\hline \multicolumn{4}{|l|}{Interoass Temp. Min.: See Preheat above Max: \(500^{\circ} \mathrm{F}\)} & \multicolumn{5}{|l|}{Trailing: n/a} \\
\hline \multicolumn{4}{|l|}{Preheat Maintenance: Continuous} & \multicolumn{5}{|l|}{Backing: n/a} \\
\hline \multicolumn{9}{|c|}{Oher: n/a} \\
\hline \multicolumn{9}{|l|}{ELECTRICAL CHARACTERISTICS (OW-409)} \\
\hline \multicolumn{4}{|l|}{Current (\(A C\) or \(D C\)): \(D C\)} & \multicolumn{5}{|c|}{Polarity: Reverse} \\
\hline \multicolumn{4}{|l|}{Amps (Range): See below} & \multicolumn{5}{|l|}{Voils (Range): See below} \\
\hline \multicolumn{9}{|l|}{\begin{tabular}{l}
(Amps \& volts should be recorded for each electrode size, position, and lickness. etc.... This information may be listed in a tabular form similar to that shown below.) \\
Tungsten Electrode Size and Type: n/a
\end{tabular}} \\
\hline \multicolumn{9}{|l|}{Mode of Metal Transfer for GMAW and FCAW: n/a} \\
\hline \multicolumn{9}{|l|}{Electrode Wire Feed Speed Range: n/a} \\
\hline \multicolumn{9}{|l|}{TECHNIQUE (QW-410)} \\
\hline \multicolumn{9}{|l|}{String or Weave Bead: Bath} \\
\hline \multicolumn{9}{|l|}{Orifice or Gas Cup Size: n/a} \\
\hline \multicolumn{9}{|l|}{(Initial and Interpass Cleaning (Brushing, Grinding, etc...): Brushing. Grinding} \\
\hline \multicolumn{9}{|l|}{Method of Back Gouging: Grinding} \\
\hline \multicolumn{9}{|l|}{Oscillation: \(\mathrm{n} / \mathrm{a}\)} \\
\hline \multicolumn{9}{|l|}{Contact Tube to Work Distance: n/a} \\
\hline \multicolumn{9}{|l|}{Multiple or Single Pass (Per Side): Multiple} \\
\hline \multicolumn{9}{|l|}{Multiple or Single Electrodes: Single} \\
\hline \multicolumn{9}{|l|}{Travel Speed (Range): See below} \\
\hline \multicolumn{9}{|l|}{Peening: Not allowed on rool pass or surface layer passes} \\
\hline \multicolumn{9}{|l|}{Other: No pass shall be greater than \(3 / 8{ }^{\text {a }}\) in thickness} \\
\hline & & & Metar & & ent & & & \\
\hline Welc Layer(s) & Process & Class & Diameter & Type Polar. & Amp. Range & Volt Range & rravel Soeed Range & Addition. Technique. Torch Angle, Etc.) \\
\hline \begin{tabular}{l}
Roor. \(2^{\text {no }}\) pass \\
Subsequent layers
\end{tabular} & \begin{tabular}{l}
SMAW \\
SMAW SMAW
\end{tabular} & \begin{tabular}{l}
E7018 \\
E7018 \\
E7018
\end{tabular} & \[
\begin{aligned}
& 1 / 8^{\circ} \\
& 5 / 32^{\circ} \\
& 3 / 16^{\circ}
\end{aligned}
\] & REVERSE (Typ.) & \[
\begin{aligned}
& 90-160 \\
& 140-210 \\
& 200-290
\end{aligned}
\] & \begin{tabular}{l}
19.28 \\
19-28 \\
23-32
\end{tabular} & \[
\begin{aligned}
& 1.12 \mathrm{IPM} \\
& 1.12 \mathrm{IPM} \\
& 1.15 \mathrm{IPM}
\end{aligned}
\] & NONE (Typ.) \\
\hline
\end{tabular}

Rev. 5
Page 22 of 50

\section*{WELDING PROCEDURE SPECIFICATION (WPS)}

WVDP-352
Rev. 5
Page 23 of 50

WVDP-352
Rev. 5
Page 24 of 50

WELDING PROCEDURE SPECIFICATION (WPS)

WVDP-352
Rev. 5
Page 25 of 50

WVDP-352

\section*{Rev. 5}

Page 27 of 50
(BACK) NPS No. W T1OH-8 Rev. 2

WELDING PROCEDURE SPECRIFICATION (WPS).

WVDP-352
Rev. 5
Page 29 of 50

WVDP-352
Rev. 5
Page 30 of 50

WELDING PROCEDURE SPECIFICATION (WPS)

Company Name:

WVDP-352
Rev. 5
Page 31 of 50
(BACK)
WPS No. W T43-8 Rev.

WVDP-352
Rev. 5
Page 32 of 50

WELDING PROCEDURE SPECIFICATION (WPS)

WVDP-352
Rev. 5
Page 33 of 50

\section*{WELDING PROCEDURE SPECIFICATION (WPS)}

Rev. 5
Page 35 of 50

WELDING PROCEDURE SPECIFICATION (WPS)

WVDP-352
Rev. 5
Page 37 of 50

WVDP-352
Rev. 5
Page 39 of 50

WELDING PROCEDURE SPECIFICATION (WPS)

WVDP-352
Rev. 5
Page 41 of 50
(BACK)
WPS No. W F 8-8 Rev. 2

WVDP-352
Rev. 5
Page 42 of 50

WELDING PROCEDURE SPECIFICATION (WPS)

WVDP-352
Rev. 5
Page 43 of 50
(BACK)
WPS No. W M 8-1 Rev. 2

Rev. 5
Page 44 of 50

WELDING PROCEDURE SPECIFICATION (WPS)

WVDP-352
Rev. 5
Page 46 of 50

BRAZING PROCEDURE SPECIFICATIONS (BPS)
Company Name CHM2HTLL B\&W West valley, LLC

JOINTS (QB-408)
Detaila
Type of Joint(s) L_ Lap/Socket

Joint Clearance Range . .002" - . \(005^{n}\)

Lap Length Range . \(250^{n}-1.170^{n}\)

WVDP-352
Rev. 5
Page 47 of 50

WELDING PROCEDURE SPECIEICATION (WPS)

WVDP-352
Rev. 5
Page 48 of 50

WVDP-352
Rev. 5
Page 49 of 50
WELDING PROCEDURE SPECIFICATION (WPS)

WVDP-352
Rev. 5
Page 50 of 50

\section*{WVDP RECORD OF REVISION}
\begin{tabular}{|c|c|c|c|}
\hline Rev. No. & Description of Changes & \[
\begin{gathered}
\text { Revision On } \\
\text { Page(s) }
\end{gathered}
\] & Dated \\
\hline 0 & Original Issue & All & 08/23/99 \\
\hline FC1 & \begin{tabular}{l}
Section A - added TS43-8 and TS43-43 to Form WV-1888; \\
Attachment A - added TS43-8 and TS43-43; \\
Added WPS TS43-8 (front)(Form WV-4161); \\
Added WPS TS43-8 (back) \\
Added WPS TS43-43 (front) \\
Added WPS TS43-43 (back)
\end{tabular} & \[
\begin{aligned}
& 32 \\
& \\
& 34 \\
& 69 \\
& 70 \\
& 71 \\
& 72
\end{aligned}
\] & 11/17/99 \\
\hline FC2 & \begin{tabular}{l}
Note deleted after 4.1.1; \\
4.2.11 - changed reference section to 4.4.1[F]; \\
4.6 - added wording from deleted Note (p. 11); \\
Updated Form WV-1888
\end{tabular} & \[
\begin{aligned}
& 11 \\
& 15 \\
& 17 \\
& 32
\end{aligned}
\] & 01/21/00 \\
\hline FC3 & 1.2.7, 1.2.8, 1.9 - Deleted reference to WV-119. & 3,5 & 08/09/00 \\
\hline FC4 & \begin{tabular}{l}
Added Weld Filler Material Control Sections from SOP 00-32 \\
No departments are affected by this change
\end{tabular} & \[
\begin{gathered}
3-7,27,28,29 \\
31,33,38,39
\end{gathered}
\] & 10/19/01 \\
\hline FC5 & Update Form WV-1888 to new revision number 4 & 31 & 11/06/01 \\
\hline 1 & NEW-TYPE REVISION INCORPORATION OF FIELD CHANGES & ALL & 11/19/01 \\
\hline 2 & \begin{tabular}{l}
General Revision. \\
This change was made to update the procedure per a periodic review. Changes include removing forms, updating personnel and department titles, removing unnecessary information, updating forms WV-1888, \(W V-4161\) and \(W V-2526\) and reformatting the procedure per DCIP-100. \\
Qualified welders and engineering are affected by this change.
\end{tabular} & ALL & 10/06/03 \\
\hline 3 & \begin{tabular}{l}
Updated cognizant manager \\
Corrected typo in 1.5.5 \\
Added reference to ANSI Z49.1 in 1.9, 4.1.1 \\
Changed WONWR to Work document on WV-1888 \\
Safety and certified welders are affected by this change
\end{tabular} & \[
\begin{gathered}
\text { Cover } \\
4 \\
6,9 \\
15
\end{gathered}
\] & 02/06/07 \\
\hline
\end{tabular}

Rev. 5
WVDP RECORD OF REVISION CONTINUATION FORM
\begin{tabular}{|c|c|c|c|}
\hline Rev. No. & Description of Changes & Revision On Page(s) & Dated \\
\hline \multirow[t]{10}{*}{4} & Major revision. & \multirow[t]{10}{*}{All} & \multirow[t]{10}{*}{06/29/11} \\
\hline & Changed WVNSCO to WVES. & & \\
\hline & Added W as prefix to WPS's to match existing PQR's. & & \\
\hline & Clarified WPS weld progression to Uphill. & & \\
\hline & Deleted CSWE. Added warehouse 'stock' & & \\
\hline & requirements for filler material. & & \\
\hline & Removed form WV-1888 from manual. Deleted & & \\
\hline & WPS T17/4-8 and T17/4-17/4. & & \\
\hline & Added JSA and hazard analysis requirements. & & \\
\hline & Engineering, Infrastructure, QA and Safety are affected by this change. & & \\
\hline \multirow[t]{10}{*}{5} & General Revision - document revision to address & \multirow[t]{10}{*}{All} & \multirow[t]{10}{*}{07/11/12} \\
\hline & CHBWV Transition Team Blue Sheet \& Terminology & & \\
\hline & Replacement Matrix comments. Updated company & & \\
\hline & logo \& name, department names, etc., throughout. & & \\
\hline & All Weld Procedures were revised (3-15-12) due to company name change. & & \\
\hline & Changed WE to SME throughout and added DDWO/Craft (mechanic) to filler material control. & & \\
\hline & Updated forms and templates utilized to meet current & & \\
\hline & ASME IX.(2011a). Forms WV-2526 and WV-4161 changed to templates. & & \\
\hline & Added sect 1.7 . & & \\
\hline & Engineering, QA, and Infrastructure are affected by this change & & \\
\hline
\end{tabular}

\section*{WVMP SAR Reference 8-9}

Certified Test Reports, 2004:
Receiving Inspection and Material Validation - Steel Plate Steel Warehouse, Certificate of Analysis and Tests United States Steel Corporation, Metallurgical Test Reports
Bethlehem Steel Test Certificates; Report of Tests and Analysis
Fastenal Certificate of Compliance
Cardinal Fastener Test Certification
Wrought Washer Mfg. Certificate of Compliance
Steel Dynamics Chemical/Physical Certification
Nova Machine Products Corporation Material Test Report
Dyson Corp. Certified Test Report
Technical Stamping Material Certification
Sabre Steel Inc. Certificate of Conformance

1．Tiem Taformation：
wige Seriai \＃
AT\＆F Job No． \(\qquad\) DWG．／Item \(\qquad\) Revino． 2 Permaneut Stamping Infomation：（Center of Plate edge \(6^{\prime \prime}\) from weld or as req＇d．）
\(\qquad\) Plate Manufacturer
\(\qquad\) MGterial Spec and Type or Grade
（ \(G, \mathrm{MT}, \mathrm{LIV}\) if applicable） Plats Hea？No．
\(\qquad\) Plate STat No．
IUT Number（if applicable）
Mis．Ser No \(\qquad\) Manufacturers Serial Number Dlate vented to be same as receipt inspected，plate edges visually inspected for laninations and pentuane siamping inspected per aitached AT\＆F yalidated Material Test Repor（s）

Verituagy： \(\qquad\) Daic \(\qquad\) Q／C Revich： \(\qquad\) Date \(\qquad\)
\(A\) Reが品 \(\qquad\) Date \(\qquad\)
```

\#\#\#%%

```


MELT NO

חatE: OG/H6/0A

GT1. 7 Ti:

EKNT TV:
TEST RFFORT WTTH OHAFHENT

\section*{MEETS THE REQUREMENTS}

Asme \(2025-16-30 \quad 2001\) Ediofo
of O

\&TE BMO!

\footnotetext{
WE HEREEY GERTGY THAT THE ABOUE

BiAt AT AGGURAMOE LABORATORY COATEOUGLIE, PA 19290

GUPERUTSOR … TEST EEFGPTIMG ELCNORE zAPITTNY
}

MEETS THE REQUIREMENTS
\begin{tabular}{|c|c|c|}
\hline AjmE & \(30516 \rightarrow 0\) & 2001 culduri \\
\hline & 27.904 & \(\mathrm{Pj} 20 \mathrm{r}_{2}\) \\
\hline
\end{tabular}

\footnotetext{

 TA T！E MAMLFACTURE OF TBE PRWDUCTS．
}

3. Macina rarang or Stampia.

Eecorife olloring iformationfrom Plate Stamping: . (exanple:
…

156
Plate Manufacturer
SASLL-70 MT Masierial Seo anul Tpe or Grate
(BLP)
\(\qquad\) (\(\mathrm{G}, \mathrm{MrT}, \mathrm{IT}\), if applicable)
42395 Piate Ereat Notuter
(S\&5]6-70 GMiTLTV)

3
Plate Slab Number

\(\qquad\)
(402T6511)

UT Nunber (if applicable)
(UTSA435)
Rematis: (e.g. shippiag darnage, other stamping or noled woncowfornance)

1. Itca Information:

Mig. Semin \(\qquad\) aTer Job No \(\qquad\) DWG/Etem \(\qquad\) Rev.No. \(\qquad\) 2. Pergengent Samoing Infomition: (Center of Plate edge 6 " from weld or as req̧'i.)
\(\qquad\) Plate Mannfacturer
\(\qquad\) Material Spec ind Type or Grade
(\(\mathrm{G}, \mathrm{MT}, \mathrm{LTY}\) if applicable) Plate Criai No.
\(\qquad\) Plate Slab No.
\(\qquad\) UT Number (if applicable)
7ize Ser. No. \(\qquad\) Manufacturets Serial Furuber ctrte weized to be same as receipt inspected, plate edges visually inspected for laninetions and parmanenl stanping inspected per aitached \&T\&F validated Material Test Repoti (s)

Vering : \(\qquad\) Dice \(\qquad\) Q/CRerien \(\qquad\) Date \(\qquad\)
4Rever \(\qquad\) Date \(\qquad\)

\section*{MTP TO:}

12ST4 FIMTMO FUE,
bone 非 y

PABE NO: OL OF O2
FInE NO: gesE-0t-05
MTLI. WREER NO: 10201..002

BLAB NO: \(\%\)
円ितE: 06/16\%O4

9010 100
AMEBTCAB TADE A FAB. DD.

SEATM
TEST REPGRT WTTH EHTFAENT
FOE BOL.. \# 44027
 TGTA.. PrECE

\[
\therefore \quad 1 \mathrm{G} \quad \mathrm{G} \quad \mathrm{GE} \quad \text { REGTMWIE } \quad \text { AOSGS\# }
\]

MEETS THE REQUIREMENTS ASME SASTl.70 zool Elition

PQ. 53634
Mit.
Qe HEAT TREAT BGit
TEET DESGETFTIÖ TEFP

MOL 5
MJS
at

Coin
आTHIM
ATE GOT.

WE HEREBY GEBTAFY THAT THE ABTUE

 OOTESUTLE: FA 1532 O

\section*{SUPERUTSOR - TEST REFORTTNE ELANOE ZAPLITNY}
\(40945-0000\)
meets the requirements
 If \(R=\% \times 4 \%\) N \(\because \% \alpha_{2}\)

PABE.NO: O2 OF OZ
FJLE NO: 032S-6J-06

HELT NO: U"5\%
GI..aB NO: 3
DATE: OAMAOA名

GTGYLYGTMSECTOM ENLTERLL FAIWATION-STIELELATE

1. Iter Information:

MEg. Seati \(\qquad\) ATEE Joo No. \(\qquad\) DTTG. / Item Rep.No. 1. Pemparat Stamping Iufonmation: (Center ci Plaie edge 6' from weld or as req'd)
\(\qquad\) Plate Mfanufactarier
\(\qquad\) Moterial Spec and Type or Grade (\(G\), MTP, LIV if applicable) Plaie Heat No.

Plate Slab No.

NG Ser. INo \(\qquad\) Manuaciurers Serial Munaber
Phite rariasi to be same as receipt inspected, plate edges visually inspected for laninations aud poriuanert stanpiag inspected per aitached AT\&F validated Materiai Test Repori (s)

Yerine \(\qquad\) Dite \(\qquad\) Q/C Revieni: \(\qquad\) Date \(\qquad\)
AlRerine: \(\qquad\) Date \(\qquad\)
\＃以苗 TO：
AREREGM TAEK A FABR，OO

PAGE NO：OH OF OE

PIELTNO：U2\＆6に
ELAB NO：
DATE：06／jef04

कOLI TM：

EENGTO：
TEST FEFQET WTH EHSFHENT
FOR BOI．4402\％
 TOTAL ：FTEGE GTY GADGE WTOTH LEBTH DEDERJPTDE UETBHT

OUSOMER PQ：53634

जिTi AST\＆Yた 90 QR 90

ME1 T 1 U24 6

的 \(A\) U

\footnotetext{

}

HE HERESY QETTEY THAT THE ABOUE: JABRAATTOM TE EOREEOT:
 COATESUTinE: एA 19320

GUPERUTBUR - TEST BEPORTMNG ELTMEEE ZAPGATYY
\[
40945-0000
\]

\section*{MEETS THE REQUIREMENTS}

\(40945-0.00\)

PGGE MO: OF OF OQ

MTLI. GROER NO: \(16 \mathrm{OH}-00 \mathrm{O}\)
MELT NO: U2A6E
Glab NO:
DATE: 06AG\%A

HE: HEEBY GETTEY THAT ThF ABGUE

MuAL TGY ABGURADGE ABOBATGPY GOATESUTLIE: FA IT35O

SUFERUREGR - TEST BEDORTMG ELJMOEE ZAPL CTUT

\section*{40945-0000}

\section*{MEETS THE REQuIREMENTS}

\(40945-00^{0}\)

HYPTO:

[öre 非1
CLEVELANO OH A 411 A

PBAE NO: O1 UF O2
FTAE WO: oges-0I-0\%

MELT NO: UEAGE
SLAE NO:
DATE: O6/21/04

 123 A a E Cioloun AUE.

GEND TG:
TEST REFORT WATH SHEFMENT
For Bol. \(\because 4432\)

THTE MATERTAL HAS EEES GANDFAGTURED AND TESTED TA AGGORDANE UTTH PURGHASE

ISO GOQt ABS-GE EERT , NO. उOJSO

ME1.7:1524

1 ET

■OM ITTTON

MEETS THE REQUIREMENTS \(v\)
 f COTL BTHE

ATR MOOL
\(\rho_{0}{ }^{\#} 53634\)

WE HEREBY DEFTTFY THAT THE BBOVE TAWGRATTON JS OQRREDT:
 חATEGणग!LE, PA : 9 BQ

SUPERUTEOR - TEST REPDRTMNO ELTMDE ZAPLTTMY

MEETS THE REQUIREMENTS
A.me sat5cizo 2001 Edita:

 MERWUR BE MERCURY GOMPOURDE AEE NOT USEG

\[
40945.0000
\]
```

SHIP TO:
AMERICAN TANK \& FABR.,CD.
I23I4 ELMWOOD AVE.
DOOR \#11
CLEVELAND OH 44111

```
 FILE NO: 01 OF Ó́
 FILE NO: 0325-01-
MILL
RDER NO: 10291
MELT NO: U2395
SLAB NO: \(1 A\)
 DATE: 07/16
SOLD TO:

SEND TO:
AMERICAN TANK \& FABR. CO. 12314 ELMWOOD AVENUE ATTN: WAREHOUSE DEPT. CLEVELAND, OH 44111

 TOTAL PIECE
 QTY GAUGE WIDTH LENGTH DESCRIPTION WEIGHT
 1 4" \(151^{\prime \prime}\)

RECTANGLE
27750 \#

CUSTOMER I NFORMATION
CUSTOMER PO: 53634

SPECI.FICATION(S)
THIS MATERIAL HAS BEEN MANUFACTURED AND TESTED IN ACCORDANCE WITH PURCHA! ORDER REQUIREMENTS AND SPECIFICATION(S).

ASTM A516 YR 90 GR 70
ASME SAS 162001 EDITION GRADE 70
MATERIAL PRODUCED UNDER A CERTIFIED QUALITY MGMT SYSTEM COMPLYING WITH ISO 900I ABS-QE CERT. NO. 30130

CHEMICALCDMPOSITIDN

MELT:U2395 \(\begin{array}{llllllll}C & M N & P & S & C U & S I & N I & C R \\ .24 & .93 & .008 & .009 & .25 & .19 & .12 & .07\end{array}\)

MELT:U2395
\begin{tabular}{cccc}
\(V\) & \(T I\) & \(A L\) & \(C B\) \\
.002 & .002 & .022 & .001
\end{tabular}

MANUFACTURE
MCQUAID-EHN GRAIN SIZE PER EII2-7-B

HEAT TREAT CONDITIDN
\begin{tabular}{lllll}
MATL & & & \\
OR & HEAT TREAT & NOM & HOLD & COOL \\
TEST & DESCRIPTION & TEMP & MINS & MTHD
\end{tabular}

PL/TEST NORMALIZE 1650 F 134 AIR COOL

TENSILE PRDPERTIES
\begin{tabular}{ccccccc}
& & & YIELD & TENSILE & ELQNGATION \\
SLAB & & & STRENGTH & STRENGTH & GAGE \\
NO. & LOC & DIR & PSIX 100 & PSIXXIOO & LGTH & \(\%\) \\
IA & BOT. & TRANS. & 443 & 790 & \(2.00 "\) & 26.0
\end{tabular}

WE HEREBY CERTIFY THE ABOVE INFORMATION IS CORRECT:

ALL STEEL HAS BEEN MELTED AND MANUFACTURED IN THE U.S.A. MERCURY OR MERCURY COMPDUNDS ARE NOT USED IN THE MANUFACTURE OF ISG PRODUCTS.

B/L \#46938 CUSTOMER'S TRUCK

WE HEREBY CERTIFY THE ABDVE INFORMATION IS CORRECT:
```

SHIP TO:
AMERICAN TANK \& FABR. CO.
12314 ELMWOOD AVE.
DOOR \#11
CLEVELAND OH 44111

```
SOLD TO:
 AMERICAN TANK \& FAB. CO.
 12314 ELMWOOD AVE.
PLATE DIMENSIUNS
\begin{tabular}{cccccc}
TQTAL \\
QTY & GAUGE & WIDTH & LENGTH & DESCRIPTION & WECEE \\
1 & \(4^{\prime \prime}\) & \(151^{\prime \prime}\) & \(162^{\prime \prime}\) & RECTANGLE & \(27750 \#\)
\end{tabular}
CUSTGMER INFORMATIGN
 CUSTOMER PO: 53634
SPECIFICATIGN(S)
 THIS MATERIAL HAS BEEN MANUFACTURED AND TESTED IN ACCORDANCE WITH PURCHASE
 ORDER REQUIREMENTS AND SPECIFICATION(S).
 ASTM A516 YR 90 GR \(70^{\circ}\)
 ASME SASI6 2001 EDITION GRADE 70
 MATERIAL PRODUCED UNDER A CERTIFIED QUALITY MGMT SYSTEM COMPLYING WITH
 ISO 9001 ABS-QE CERT. NO. 30130
CHEMICALCOMPDSITIDN
 \(\begin{array}{llllllllll} & \text { C } & \text { MN } & \text { P } & \text { S } & \text { CU } & \text { SI } & \text { NI } & \text { CR } & \text { MO } \\ \text { MELT } & \text { U2395 } & .24 & .93 & .008 & .009 & .25 & .19 & .12 & .07 \\ & .05\end{array}\)
 MELT: U2395
 \(\begin{array}{cccc}V & T I & A L & C B \\ .002 & .002 & .022 & .001\end{array}\)
MANUFACTURE
 MCQUAID-EHN GRAIN STZE PER EIL2 - 7-8
HEATTTREATCDNDITIDN
\begin{tabular}{lclll}
MATL & & & & \\
OR & HEAT TREAT & NOM & HOLD & COQL \\
TEST & DESCRIPTION & TEMP & MINS & MTHD \\
PL/TEST & NORMALIZE & \(1650 F\) & 133 & AIR COOL
\end{tabular}

WE HEREBY CERTIFY THE ABDVE INFORMATION IS CORRECT:

QUALITY ASSURANCE LABORATORY
COATESVILLE, PA 19320

\title{
ALL STEEL HAS BEEN MELTED AND MANUFACTURED \\ IN THE U.S.A.
} MERCURY OR MERCURY COMPQUNDS ARE NOT USED IN THE MANUFACTURE OF ISG PRODUCTS.

B/L \#47375 CUSTOMER'S TRUCK

WE HEREBY CERTIFY THE ABQVE INFORMATION IS CORRECT:

2722 West Tucker Drive South Bend, In 46624-1377
P.O. Box 1377
(574) 236-5100

CERTIFICATE OF ANALYSIS AND TESTS

FOR:
AM. TANK \& FAB CO.
12314 ELMWOOD AVE.
\(\frac{\text { CLEVELAND }}{\text { DOOR } 6}\)
DATE: \(\frac{09 / 15 / 04}{\text { YOUR PRO NUMBER } \frac{54275}{}}\)\begin{tabular}{l}
SHIPPER NUMBER \(\frac{00652848}{}\) \\
OUR INVOICE NUMBER \\
OUR SALES ORDER
\end{tabular}\(.\)\begin{tabular}{l}
OO 646710
\end{tabular}.

DESCRIPTION OF MATERIAL AND SPECIFICATIONS
1. HRTPHS \(0001 \quad 11 \quad 0.1120\) \(55.0000 \times 372.0000\) TCGXL

HEAT \# 60515 NAFTA \(Y\) BUNDLE \# 004035352B

```

ORDER: UES1304-01
LOAD: T02438
SOLD TO:

```
 LOAD: TO243B
 PAPT:
INVOICT: 154-198163 SHIP DATE: 01/30/02
 TGD AMERICAN TANK\&FABRTCATHAG CO THE AMERICAN TANKEFABRICATING CO
 12314 ELMWOOD \(4 V E\)
 CIEVELAND OH 14111-5991
 12314 ELMWOOD AVE NW
 DOOR \#5
 CLEVELAND OH A4111-5991
 SPEC: PLATE HIGH STRENGTH LQW ALLOY USS EEXTY-IA ASTM AG33 REV A OI-JAN-2000 GRE APPROVED STRUCTURBL QUALITY NORMALIZED PLATE

INSP: 01 MILL INSPECTION PRELIMTNARY \(P / R\) TO ACCOMPRNY SHIPPING RAPERS ALSO T/R TO INDICATE NO HERCURY CONTENT UPON SHIDMENT EAX \(\mathrm{H}^{1} / \mathrm{R}\) TO ATTN: GREG MAZUR AT 216-253-4871 RA/SN ALSO RA/LT CERTIEY TYAT ALL MELTING AND MZNUEACITIRIMO TOOK PLACE IN THE USA. .
```

HEAT M27525 MELTED AND MANUEACTURED IN THE USA. EINE GRAIN

```

```

    TRANSVERSE YIELD: 63.0 YSI TENGILE: 84.0 KSI 2" ERONGATION: 50.0
    63000 PSI B4000 PSI E" & ELONGATION: 25.0
    ```

PRODUCT AND TEST SPECIMENS WERE NORMALIZED AT 1.660 DEG F. FOR 00 HR \(5 G\) MIN. COOLING COMPLENED IN STILE AIR.
** END OF TEST REGUUT DATA **
TEST RESULTS WERE CONDUCTED RHD RECORDED LN XCCORDANGE WITF TEET METHODS ACCREDITED EY ARLA, THIS REPORT SHALL NOT BE TEPRODUCED OR ALTERED NJTHOUT THE PRIOR WRITTEN APPROVAL OF UNITEI STATES STEEL,
THIS PRODUCT WAS MANUFRCTURED IN RCCORDALICE WITH THE QUALITY MANAGEMENT EYGTEM WHICH COMPLIES WITK ISO 9002:1994.

THIS IS TO CERTIFY THAT THE PRODUCT DESCPIBED KEREIN WAS MANUFACTURED, TESTED AND/OR INSPECTED IN ACCORDANCE WITH THE SPECIFICATION AND FULEILIS REQUIREMENTS IN SUCH RESPECT,

*0900
C \(F\)
3000277450007 A
BNH
310
PAGE 1 OF 1

Per_Controller-Gary Works USS Corp - Shipper
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Per} \\
\hline
\end{tabular}

ETHLEHEM LUKENS PLATE OIVISION AFMETTTO.

BDA.YZ

\footnotetext{
1 CERTIFY THAT THE AGOVE RESULTS LAE A TRUE AND COARECT COPY OF AGTUAL
RESUTTS CONTAITED W RECOADS HANHTAINED EY RETHLEHEH NHO NAE IN FULL
COMPINHCE WTH THE REQUIREMENTS OF THE SPECIFKCHTIOH CTTED AGOVE. THS
TEST REPORT CANHOT BE ALTEAED AHO MUST BE TAWSMITTED INTSCT WITH AHY
}

SUBSEOUENT THIMD PAATY TEST REPOFTS. IF RECNIPED.

RDER: UE55784-06
LOAD: T13642
NBA: 52060
SOLD TO:

THE AMERICAN TANK\&FABRICATIIGG CO 12314 ELMWOOD AVE CLEVELAND OH 44111-5991

CONFIRIIIGG TEST REPORT WILT BE MAILED PART:
INVOICE: 154241121 SEIP DATE: 12/05/02 VEG ID: 130A OH 38097

SERIAL HEAT: Y49461 INC: 54 W 2 SpIEL TYPE \(=\) CAST REDUCTION RATIO \(=4.0\) TO 1 X9108A00 \(3.0 " \times 93.0^{\prime \prime} \times 330.0^{\prime \prime} 1 \mathrm{PC} 2611 \mathrm{~J} .00 \mathrm{LBS}\)

SPEC: PLATE HIGH STRENGTH LOW ALLOY USS SIXTY-N ASTM A633 01-JAN-2001 GR E APPROVED STRUCTURAL, QUALITY NORMALIZED PLATE LCVN IMPACT TEST HEAT LOT FREQ. K LVN 20 FTT-LBS AVG e +0 F LVN 15 FT-LBS MIN @ +0 F

INSP: 01 MILL INSPECTION TEST REPORT TO INDICATE NO -MERCURY CONTENT AND REPORT CB RA/SN ALSO RA/LT CERTIFY THAT ALT, MELTING AND MANUEACIURING TOOK PLACE IN THE USA. ,

HEAT Y49461 MELTED AND MANUFACTURED IN THE USA. FINE GRAIN \(\mathrm{C}=.18 \mathrm{MN}=1.33 \mathrm{P}=.015 \mathrm{~S}=.007 \mathrm{SI}=.22 \mathrm{CU}=.28 \mathrm{NI}=.13 \mathrm{CR}=.12 \mathrm{MO}=.05 \mathrm{AL}=.027 \mathrm{~N}=.010 \mathrm{~V}=.11 \mathrm{CB}=.00 \mathrm{I}\)

TRRANSVERSE YIELD: 61.0 KSI TENSILE: 85.0 KS \(2 " \%\) ELONGATION: ? 3.0
TRANSVERSE YIELD: 63.0 KSI TENSILE: 87.0 KSI \(2 "\) 各 BLONGATION: \(32 . G\) 63000 PSI 87000 PSI

LONGITUDINAL FL SIZE CHARPY IMPACT V-NOTCH +ODO0 DEG F FT LBS, 067-074-074 -18 DEG \(C\) AVG IMPACT STRENGTH +72 FT LBS
LOONGITUDINAL F'L SIZE CHARPY IMPACT V-NOTCH +000 DEG F FI LBS/ 098-074-088
-18 DEG C AVG IMPACT STRENGTH +87 FTH JABS

PRODUCT AND TEST SPECIMENS WERE NORMALIZED AT \(16 G 0\) DEG F. FOR 02 HR 48 MIN. COOLING COMPLETED IN STILL AIR.

MERCURY OR MERCURY BEARING COMPOUNDS ARR NOM USED IN THE MANUFACTURE OF THIS MATERIAL. ** END OF TEST RESULT DATA.**

TEST RESULTS WERE CONDUCTED AND RECORDED IN ACCORDANCE WITH TEST METHODS ACCREDITED BY ALA. THIS REPORT SHALL NOT BE REPRODUCED OR ALTERED WITHOUt' THE PRIOR WRITTEN APPROVAL OF UNITED STATES STEEL.
THIS PRODUCT WAS MANUFACTURED IN ACCORDANCE WITE THE QUALITY MANAGEMENT SYSTEM WHICH COMPLIES WITH ISO 9002:I994.

The American Tank er Fafriatiteg Co. MEETS THE REQUIREMENTS OF ASti GGJ3 Ged E doapo AEVIEWEDEY \(-12-2\)

SERIAL FRAT: M47470 J/C: \(55 \% 1\) STEEL TYPE \(=\) CAST REDUCTION RATIO \(=4.0\) TO 1 9917QAOO \(3.0^{\prime \prime} \mathrm{X} \mathrm{96.0"X} \mathrm{360.0"} 1\) PC 29404.00 LBS
;PEC: PLATE CARBON ASHE SA \(51601-J U L-20012001\) EDITION 2002 ADDENDA GR 70 APPROVED ASTM AS LG

INSP: 01 MILL INSPECTION RA/SN ALSO RA/JT CERTIFY TULAT ALE MELTING AND MANUFACIURTNG TOOK PLACE IN THE USA. ,

TEAT K47470 MELTED AND MANUFACTURED II Y THE USA.
FINE GRAIN
\(\because=26 \mathrm{MN}=0.99 \quad \mathrm{P}=.017 \mathrm{~S}=.01 .0 \mathrm{SI}=.22 \quad \mathrm{CU}=.02 \mathrm{MI}=.02 \quad \mathrm{CR}=.04 \mathrm{MO}=.01 \quad \mathrm{AL}=.025 \quad \mathrm{~V}=.001 \mathrm{TI}=.001 \mathrm{CB}=.001\) TRANSVERSE *YIELD: \(\begin{array}{lllllll}44.0 & K S I \\ 44000 & \text { PSI TEIFSILE: } 77.0 & K S I & 2 " \% \text { ELONGATION: } 29.0 \\ 77000 & \text { PSI }\end{array}\)
. LiNSILE TEST WAS TAKEN ON INGOT/CUT: 55W \(\perp\)

PRODUCT AND TEST SPECIMENS WERE NORMALIZED AT 1660 DEG F. FOR 02 HR 48 MIN. COOLING COMPLETED :N STILL AIR.

1 -YIELD STRENGTE @ 0.5 多 B.U.L.
** END OF TEST RESULT DATA **

VEST RESULTS WERE CONDUCTED AND RECORDED IN ACCORDANCE WITH TEST METHODS ACCREDITED BY ALA. THIS REPORT SHALL NOT BE REPRODUCED OR ALTERED WITHOUT THE PRIOR WRITTEN APPROVAL OF UNITED ITPTES STEEL.
PHIS PRODUCT WAS MANUFACTURED IN ACCORDANCE WITH THE QUALITY MANAGEMENT SYSTEM WHICH COMPLIES IITH ISO 9002:1994.

「 The americas Tank e Fabric mg io. MEETS THE REQUIREMENTS OF Asti \(\operatorname{By} 16-70,033\)

THIS IS TO CERTIFY THAT THE PRODUCT DESCRIBED HEREIN WAS MANUFACTURED, TESTED AND/OR INSPECTED W ACCORDANCE WITH THE SPECIFICATION AND FULFILLS REQUIREMENTS IN SUCH RESPECT.
PREP. BY THE OFFICE OF DO, BORMET, MGR, PLATE TECH BY:

\section*{Certificate of Compliance}

\section*{Sold To:}

Purchase Order: 54318
AMERICAN TANK AND FABRICATING CO
Job:
Invoice Date; \(\quad 9 / 20 / 04\)

THIS IS TO CERTIFY THAT WEHA VE SUPPLIED YOU WITH THE FOIJLOWING PARTS. THESE PARTS WERE PURCHASED TO THE FOLLOWING SPECIFICATIONS.

10 PCS \(2^{\prime \prime}-4.5 \times 6.25\) SHCS A193 B7 SUPPLIED UNDER OUR TRACE NUMBER mdoh2184 AND UNDER PART NUMBER 10971-01550

38 PCS_l"-8X2 ASTM A193 B7 HEAVY MEX BOLT, DOMESTIC SUPPLIED UNDER OUR TRACE NUMBER iç02 1254 AND UNDER PART NUMBER. 0155550

38 PCS I" A325 Plain F436 Dom Stutural Flat Washer SUPPLIED UNDER OUR TRACE NUMBER, sy031642 AND ISNDER PART NUMBER 013354.8
c

This is to certify that the above documont is true and accurate to the best of nyy knowledge.

This dncument was printed on 9/20/04 and was current at that time. Please check current revision date of 12-15-03 to avoid using obsolete copies.

Fastonal Account Representativo
\begin{tabular}{|c|c|c|c|}
\hline Conlificallon \(\mathrm{Ma}_{\text {a }}\) & 20429 & Shop Ordo.fit & 225206 \\
\hline Order Na,' & 106880 1 & Hagit Na: & HT\# 110107e0 \\
\hline Cuntamesp PO: & P600H2194 & Craste: & 37 SHCS \\
\hline & & Thrmad Dlass: & 24 \\
\hline Custamer Ma,i & 000000032108 & Shlppod aty; & 10 \\
\hline Customer; & FASTENAL AIORLEAUFG HTTG, OH & Henm Trgat Spgo: & \\
\hline Addrems: & 170S 1 ENGLSERORD & Suppilor: & \\
\hline & & Finam 㐌pac.: & \\
\hline Manufakturer. Addruas: & 51 gs fictimond Fond & \begin{tabular}{l}
Euppllar; \\
Itam desoription:
\end{tabular} & \(2 \mathrm{n} 4.5 \times 8-1 / 4 \mathrm{B7SHCS}\) \\
\hline & Eedford Holighto, Ohlo 44746 & Headmark: & Sockef Head Capacrew \\
\hline Laboratary: & & & Afinf \\
\hline Addrass: & 5105 Fichmond Foad & & \% M \\
\hline & Eedford Hisights, Ohlo Artio & & 2 \\
\hline \multicolumn{4}{|l|}{Notar:} \\
\hline & & - & . . \\
\hline
\end{tabular}

Cert No：20\＄2a
all Mandfacturing and material procegseg im mis product have oocurrp within the us a in COMPLIANCE WTH THE BUY AMETNGA PROUIGIONS OF THE SUPFACE TFANSPORTATIDN AOT OF 1982
 prooessed lat ldentithed in the descripiton．
 guarantard and na reaponstbilly is assumad，

All temu furnishod on the above referanced Purchage Ordar arb in full conformance with all Purchase Order sied Specifocatlon Requiramente．Teet
 represent ractual atributes of the lems furnshad aryathe test resulta ara in full compllance whth all applicutble spaeffection and ordor requirements．All manufeturint，testing，sampling and insperticne have been parfomide in secordanca wilth Candinalra Quality Assuranca Program，All appliogale testa
 produof wiss manuforturad and suppllad frue from marthory contamination， This document may oniy be reproducad unalkered and only far tha purpase of corthying the same of haserer qually of the proturt eperified haraln． Repreduction or alleration of inid dotument for any othor purpase is prolubiled．

 ， （tita）

8／22／200）
（Data Approved）

 WROUGHT WASHER MFG., NC.

Certification ar Compliance

J18553
JESSUP WAREHOUSE
1225 MID-VALLEY DRIVE
JESSIJP, PA 13434

Wrought Washer Ordrfot Number 432774

\section*{Heat Numalaer 40313120}

We herctry certify that the subject parts conibutn to the requirernents of the applicable spenificarion indicated for the subject parts and are in complete conformance to \(5436-93\). We hereby certify that the subject pasts were hardened wa RC \(38-45\).

We hereby certify that all statutory requinemanizay to American Production and Labor Standards and all conditions of purchase applicable to the transaction have been complied with and that the subject parts were melted and manufactured in the U.S.A.

Truly yours,
Wrought Washer Mfg., inc.

David Zupaneic
Q.C. Manager

\section*{Sudarindacuat}

Sworn and subscribed before me on September 8,2003 My commission expires June 3, 2005

Sfot Dytumics，Int． AGPL Gomity rirad 6

Ruf
 Fix
？

CHEAICALIPHYSICAL CERTIFICATION
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Custongmat & & & Po & Ondatir & Liata lian & & Heat \({ }^{\text {P }}\) & \\
\hline St & & 95498 & A \({ }^{\text {d }}\) & E724E & 1 & 857857\％ & & 488850 \\
\hline & Gquga ditit & & \multicolumn{3}{|c|}{} & & \multicolumn{2}{|l|}{［5rock} \\
\hline & 0.5185 & 202F & \multicolumn{3}{|c|}{} & \multicolumn{3}{|r|}{Prime Prat} \\
\hline
\end{tabular}
i．

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 6 & & P & S & \％ & A & Gre & 限 & Gr & 踊 & St & 等 & 葠 & 留复 & T & E & Era \\
\hline & 6．\(\overline{6}\) & 6． \(0^{2}\) & & Fedt & 8.05 & \％ 3 ，罱 & 区， & 0.4 & 区． 0.0 & 色弱家 & Fray & & \％n9 & E50 & & 16．485 \\
\hline
\end{tabular}

コате：11／02／02．
FASTENAT COMPANY 5851, CUION ROAD TNDIGNAPOLIS，IN A625A

工苗．／STOCK ：0155550

IATERTAI SPECTMTCATTONM：AGTM A－193（101）G工 27
f
Quanched \＆temperad per Ehe material sperifiadaion，minimum
APPLTCZRTE SPMCIFTCATTONF：
ANST／ASMD BI．I 典NSTADME B1B．2．1

ZUATTMY SPACLEICATIONS：

THEMICAI TEST：

TECIANTCAT TEST：
TENSII I3AOOOPSI YIELD 21540OPSI ETOMG 21．4．RWDUCT 61．7
MARD RC 29.2
MACKO ETCH：ACCEPTABLI
JROGRAM STATEMENT：
Nova Machine producta Corporation certifies，that the material，parta， components or services supplied on this purchase order hava pear procepsed in acoordance，with and therefore meet ox exceed the quality order．Maintained mercuxy frea by foferances of apecificatione jn Ehís
I certify that these reaulta are a true and coxyent copy of rgoords compliance with the requirementa of the productr dorporation－n compedijcatioms cited．requirementa of the purchose order and
 productis received from Nova are FQA corminant．

Ypur salejperson js meau Iaglo
Please ani day on might if foid have any ghestions or commerte．

53 Freedom Road
440-946-3500
Painesville, OH 44077

440-352-2700 fax

CUSTOMER
Fastenal Company
1785] Englowood Drive
Middleburg Heights, OH 44130
USA

PRODUCT DESCRIPTION
1.50" (bolt diameter) flat washer, Plain

SPECIFICATIONS
ASTM-F436 Type 1 -

DRAWING

\begin{tabular}{rrrrrrr}
STARTING MATERIAL IA & GRADE & QTY & LOT CODE HEATNO. & ORIGINAL MILL \\
Flat Washer & 1.500 & F436 & 32 & JET & 22469001 & Sabre Steel
\end{tabular}

The product listed above was manufactured, tested, sampled, and inspected in accordance with the specification, purchase order, and any supplementary requirements and was found to meet those requirements unless otherwise noted.
1. The steel was inelted and manufactured in the USA and the product was manufactured and tested in the USA.

Attachments:
Mill/Supplier Test Reports

32969 GLENDAIE AVENUE
I:IVONA, ivilcillgail 4yi50-1613 PHONE (734) 52.3-1030
FAX (734) 523-1039

CODE JEI

POHOS42t ITEM \#1 Pि 3004

armatore arma may
HEDAEP WFE \(\qquad\) DFAM WF: 249
MEETS RECTう rit:
MECHALILCAL PROPERTIES OF ASTAI F \(436 \cdots 04\), TYPE: PC \(9 / 24104\)
STAGING/OADING INSPECTION: FURNACE OPERATOR :i
114
202
\[
\text { FUUNACE OPERATOA :II. } 220
\]

BARALE:

16. Gni \(1 \mathrm{FE} \quad 16505\)

BMOMGL FHALYEA

\section*{FHVGJCAL FROFERTIES}

At+n: greg mazur.
Cardinal Fastener Test Certification (216) -252-4871

Cert No：20468
ALL MANUFACYUAING AND MATEFLAL PROCESGES IN YHIG PRODUCT HAVE OCCURED WITHIN THE U．S．A．IN COMPLIANCE WITH THE EUY AMERICA PROVISIONS OF THE SURFACE TRANSPORTATION ACT OF 1982

All data represented on this report relates only to the lem（t）tested，which have besn sampled in ordar to raprasent the procesesed lot identifled In the dercilption．

Informatlon and data in the report is correct and reliable to the best of our knowledge；however，reaulta aro not guarantood and no rosponabilily ls assumed．

All item：furnithed on the sbove ratoionced Purchuse Order are in full conformancs will all Purchese Ordor and Spoclicatlon Requlteménts．Test values，aither provided by our supplier or generated in Cardinali Labortory， rapreserin aciual aufbutes of the ltemes furnbetied and the test resulta are in full complianco wilh all appllcallbla spachication and ordar requlremante，All manuffaciuring，tasiling，asmplling end inapections have beon porformed in gocordanipe with Candinal＇s Qually Assuranco Progiam．All applicabls tosts are in accordance with the Qually Conerol Manual datad 4／24／9B．Tha produot was mantrafiurid and aupplied tree form mercury contmminallon． This documom may only bo reproducged unatisted and only for the purpoze of cartitying the same of Sassar quality of the produot spocintod herelh． Reproduction or alteravion of thea deculment for any olher purpose is prohilbllad．

Q．A．
（TATE）

9／27／2004
（Date Approved）
\[
\begin{aligned}
& \text { MEETS REAITS OF: PO \#054625 } \\
& \text { ASTM A.143-D16, GRADE B7 } \\
& \text { pe q/2.8104 } \\
& \text { ITEM \#Z } \\
& \text { P: ZOF } 2
\end{aligned}
\]

Pg 2

Antn: Wally Danko

\section*{Cardinal Fastener Test Corfification Reportod:1020/2004}

Cert No： 2084
ALL MANUFACTURING AND MATERIAL PROCESEES IN THIS PRODUCT HAVE OCCURED WITHIN THE U．S．A．IN COKUPLIANCE WITH THE BUY AMERICA PROVSIONS OF THE SURFACE TRANSPORTATION ACT OF 1982

All date rapresented on this report relatios only to the ltom（o）tested，which hava beon samplod in order to reprazent the procas aed lat identified in the daractalion．
information and data in the repart is corract and rellable to the beat of out knowledgal however，resultu ara not guaranterd und no reapponatilly it nitsumed．

All lams fumbahed on the above ratananced Puichase Order are in full conformence with mill Pyechpor Ondoridnd Specification Roquiromients．Ta3s yalued，other proutdod by our supplier or genaraied in Candinal＇s Labortiony．
 full complation whit aill appliesillilo specification and ordar requitaments．All manuha curling，tosthig，spminoling and inspections have boin pardamed in accordanore with Caralnat＇s Qualty Axsuraneo Program．All ppplicable touto ana in sconodencice with tho qualliy Control Manual dalud 4／2498．Tha produy wis manufardured and suppfitd freo fiom morayry contaminstion． This documant may orty be rimprotured unaitered wid only for the purpose of cartifyifig the seme or lesaer quallify of the product speeifind heralm． Regrodudion or atlaration of this document for any other purpose is

．．．．QA． prohibilind．

18001 Sheldon Road Middleбurg Heights, OH 44130

Date: 10/20/04
FASTENAL COMPANY
5851 GUION ROAD
INDIANAPOLIS, IN 46254
CL./STOCK: 0155558

PO \#: ICO21254
Rel:
SO \#: 0000080927
Line \#: 42
Qty: 00100150 EA
Heat \#: US Y06420
Drwg: (50/BOX)

DESC: 1"-8 UNC 2A \(x\) 4" HEAVY HEX SCREW
MATERIAL SPECIFICATIONS: ASTM A-193('01) Gr.B7
HEAT SPECIFICATIONS:
Quenched \& tempered per the material specification, minimum Eempering temperature: 1100 F
APRLICABLE SPECIFICATIONS:
ANSI/ASME B1.1 ANSI/ASME B18.2.1

QUALITY SPECIFICATIONS:
Domestic manufactured; This is a commercial grade item;

CHEMICAL TEST
\(\underset{\mathrm{MO}}{\mathrm{C}} .40 \mathrm{MN} .92 \mathrm{P} .92 \mathrm{P} .012 \mathrm{~S} .005 \mathrm{SI} .21 \mathrm{CU} .02 \mathrm{NI} .03 \mathrm{CR} 1.01\)
MECHANICAI TEST:
TENSII 135800PSI YIELD 116600PSI ELONG 21.4 REDUCT 59.1
HARD RC 30.5
"MACRO ETCH: ACCEPTABLE
PROGRAM STATEMENT:
Nova Machine Products Corporation certifies that the material, parts, components or services supplied on this purchase order have been processed in accordance with, and therefore meet or exceed the quality requirements established by the feferences or specifications in this order: Maintained mercury Eree by Nova.
I certify that these results are a true and correct copy of records prepared and maintained by Nova Machine Products Corporation in compliance with the requirements of the purchase order and specifications cited.

Processed per ISO-9001 ('94)/ISO-9002, Certificate GOC 211. Fastener products received from Nova are FQA compliant.

Your salesperson is Beau Laslo
please call day or night if you have any questions ayments.
sneila Galaday \(G\), पuality contyol

DESC: 1"-8 UNC 2A X 4" HEAVY HEX SCREW
MATERTAL SPECIEICATIONS: ASTM A-193(101) Gr.B7
HEAT SPECIFICATIONS:
Quenched \& tempered per the material specification, minimum tempering temperature: 1100 F
APPLICABLE SPECIFICATIONS: ANSI/ASME BI.1 ANSI/ASME B18.2.1.

QUALITY SPECIFICATIONS:
Domestic manufactured; This is a commercial grade item;

PROGRAM STATEMENT:
Nova Machine Products Corporation certifies that the material, parts, component or services supplied on this purchase order have been processed in accordance with, and therefore meet or exceed the quality requirements established by the references or specifications in this prier. Maintained mercury free by Nova.
I certify that these results are a true and correct copy of records prepared and maintained by Nova Machine Products corporation in compliance with the requirements of the purchase order and specifications cited.
Processed per ISO-9001 (194)/ISO-9002, Certificate GQC 211. Fastener products received from Nova are FQA compliant.

Your salesperson is Beau Laslo
please call day or night if you have any questions or comments.

STElla Galaday G, Quality Control


```

09/15/2004 Erom: AMERICAN ALIOY STEEL
TO:AMERICAN TANK \& FABRICATING
P.O.\# :054337-00
S.O.\# :37811-NY

## ISG PLATE INC.

SHIP TQ: ABCAN ALLOY STEEL INC
C/OB \& R HARINE SVS
PORT OF GREATER BATON RQUGE
TRACK 791
PORT ALLEN LA 70767

SQLD TO:
AHERICAN ALLOY STEEL, INC
SEND TO:
AMERICAN ALLDY
P. O. BOX 40469

HOUSTON TX 77240-0469
P. D. BOX 40469

ATTM: HOMER GARZA
HOUSTON, TX .77240-0469
PLATEDIMMENSIDN
ESCRRIPTIION

| TOTAL |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| QTY | GAUGE |  |  |  |
| 1 | $3{ }^{\circ}$ | WIDTH | LENGTH | DESCRIPTIDN |
|  |  | $6^{\circ}$ | $480^{\circ}$ | RECTANGLE |

CUSTOHER I I N F ORMA TIION
CUSTOMER PO: 570B2-LA

SPECIFICATIXN(S)
THIS HATERIAL HAS BEEN MANUFACTURED AND TESTED IN ACCORDANCE HITH PURCHASE ORDER REQUIREMENTS AND SPECIFICATION(S).
 95 GR C AND MIL-S-22698C GR DH36
MATERIAL PRODUCED UNDER A CERTIFIED QUALITY MGMT SYSTEM COMPLYING WITH ISO 9001 ABS-QE CERT. NO. 30130

CHEMICALCOMPOSITIDN

MELT:U0624


CARBON EQUIVALENT FORMULA (CEF)

MANUFACTURE
FINELINE - VACUUM DEGASSED - FINE GRAIN PRACTICE

HEAT T R E A T
CONDITIOM

MATL
OR
TEST
PL/TEST

HEAT TREAT
DESCRIPTION
NORHALIZE


PA514374 SUPERVISOR - TEST REPORTINE
COATESVILLE, PA 19320
poil $5433 \%$
$\mathrm{SC}^{\#} 4094500$

## ISG PLATE INC.

TEST
CERTIFICATE PAGE NO: O2 OF O2
FILE NO: 0284-01220
MILL
ORDER NO: 85476-001
MELT NO: 00624
SLAB NO: 4

TENSILE PROPERTIES

| $\begin{aligned} & \text { SLAB } \\ & \text { HO. } \end{aligned}$ | LOC | DIR | $\begin{aligned} & \text { YIELD } \\ & \text { STRENGTH } \\ & \text { PSIXXIOO } \end{aligned}$ | TENSILE STRENGTH PSI X 100 | $\begin{aligned} & \text { ELONGA } \\ & \text { GAGE } \\ & \text { LGTH } \end{aligned}$ |  | \%R.A. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 4 \\ & 4 \\ & 4 \end{aligned}$ | $\begin{aligned} & \text { BOT. } \\ & \text { TOP } \end{aligned}$ BOT | THRU GA. <br> THRU GA. <br> TRANS. | 559 | 807 | 2.000 | 30.0 | $\begin{aligned} & 71.0 \\ & 69.0 \end{aligned}$ |

CHARPY V-NOTCH IMPACT RESULTS

| $S L A B$ | LOC | DIR. | TEMP | SIZE | FT. LBS. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | BOT. | TRANS. | $-40 F$ | FULL | 90133135 |

DROPWEIGHT TESTING

| LOC | DIR | SIZE | DEPTH | TEMP | RSLT | TEMP | RSLT |
| :--- | :---: | :---: | :--- | :---: | :---: | :---: | :---: |
| BOT. LONG. | P3 | SURF | $-3 O F$ | NB | $-30 F$ | NB |  |

GENERALINFORHATION
ALL STEEL HAS BEEN MELTED AND MANUFACTURED IN THE U.S.A.
 FOR SULFIDE SHAPE CONTROL. FINELINE MOD FOR SULPHUR
TEST CERTS ARE PREPARED IN ACCORD. WITH PROCEDURES
OUTLINED IN DIN 50049 3.1.B/EN 10204.3.1.B.
$\mathrm{B} / \mathrm{L}=36809$ UP 262082
$\mathrm{PCM}=.25$
Certillad a true copy of the
origlnal, retained In our tile. AMEXICAM ALLOY STEEL, TMC.

MEETS THE REQUIREMENTS

$$
\frac{657 m A 6 j 3}{10} 6
$$

WE HEREBY CERTIFY THE ABOVE
INFORHATION IS CORRECT:
QUALITY ASSURANCE LABORATORY COATESVILLE, PA 19320

$$
p_{0+1 /} 5(133)
$$

$$
\text { Seth } 40945.60
$$



## WVMP SAR Reference 8-10

Supplier Surveillance Reports SR-13-078 (10/31/2013) and SR-13-085 (11/06/2013).




```
m-4300, Rev. 4 @こ %-4)
```



Photo 1 - excess foamed cement and water runoff was collected in labeled catch basins


Photo 2 - casting cylinders


Photo 3 - due to inclement weather, cylinders were placed in cure boxes

# AMERICAN CONCRETE INSTITUTE 

This is to certion that

## MASON P SMETH

has demonstrated knowiedge and ahilita: in: successfully completing the ACl © © Criman an requirements and is hereby rcoognized as an

## ACI Concrede Field Testing Tecennician-Grade I

[^7]
## Melter Container TC-474 Weight

Melter package was weighed using four Enerpac RSC-1002 hydraulic cylinders.
Each cylinder has an effective area of 19.63 square inches.
Individual cylinder pressures (per calibrated gauges) as follow:
Cylinder $1=5000 \mathrm{psi}$
Cylinder $2=4850 \mathrm{psi}$
Cylinder $3=4800 \mathrm{psi}$
Cylinder $4=4950 \mathrm{psi}$
Total $=19600 \mathrm{psi}$
Mult. by effective area of cylinder $=19.63$ in sq
Therefore $=384.748$ lbs current weight
Calculated weight of lift lug $=790.98$ lbs., mult four lugs $=3163.92 \mathrm{lbs}$
Weight of $1 "-8 U N C \times 4$ " Bolt with washer $=1.25 \mathrm{lbs}$ mult 36 botts $=45 \mathrm{lbs}$
Therefore $=384,748 \mathrm{lbs}$

- 3,163.92 lbs
- 45 lbs

Total for package $=381.539 \mathrm{lbs}$

## WVMP SAR Reference 8-11

Grout Compressive Strength Test Reports, ASTM C-1019, Ticket Numbers 522, 523,524,526,544, 546, and 547, Quality Inspection Services, Inc., Buffalo, New York, December 9, 2013.

## Quality Inspection Services, Inc. <br> GROUT COMPRESSIVE STRENGTH TEST REPORT (ASTM C-1019)

Project: West Valley Cellular Grout
Client: Geo Science
Contractor: N/A
Project No.: 1101-13-CIV-0073 Set No.: WVWP-8
Supplier: N/A

Remarks: Stable Air Foam added prior to pumping

Cylinder Compression Machine Q \#: 3964
Mix Data: Grout
Date Molded: 10/31/13
Condition Received: Good
Cubic Yards Placed: 6
Placement Location: First lift in Meiter Box
Spedimens Cast By: E. Kilhl
Batch Time: 9:31 AM
Concrete Temperature (C-1064): $65^{\circ} \mathrm{F}$
Slump (C-143): N/A
Strength Specific. @ 28 Days: 1000 PSI

Cal. due date: 01/21/14
Ticket No.: 522
Date Received: 11/04/13
\# of Cylinders in Set: 22
Truck No: M24

Unit Wt. (ASTM C138): 71.6
Cylinder Cast Time: 10:45 AM
Air Temperature: $\quad 56^{\circ} \mathrm{F}$
Air Content ( $\mathrm{C}-173 / \mathrm{C}-231$ ): N/A
Water Added On Site: N/A

COMPRESSIVE STRENGTH DATA

| Laboratory \# | Date <br> Tested | Age <br> (Days) | Cross Sectional <br> Area (in $)$ | Maximum Load <br> ((bs) | Compressive Strength <br> (PSI) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 193 | $11-07-13$ | 7 | 7.16 | 7850 | 1100 |
| 194 | $11-07-13$ | 7 | 7.21 | 12400 | 1720 |
| 195 | $11-07-13$ | 7 | 7.16 | 11750 | 1640 |
| 196 | $11-07-13$ | 7 | 7.21 | 9400 | 1300 |
| 197 | $11-14-13$ | 14 | 7.16 | 9120 | 1270 |
| 198 | $11-14-13$ | 14 | 7.16 | 8890 | 1240 |
| 199 | $11-14-13$ | 14 | 7.16 | 9630 | 1340 |
| 200 | $11-14-13$ | 14 | 7.12 | 8990 | 1260 |
| 201 | $11-21-13$ | 21 | 7.07 | 7740 | 1090 |
| 202 | $11-21-13$ | 21 | 7.07 | 7940 | 1120 |
| 203 | $11-21-13$ | 21 | 7.07 | 9350 | 1320 |
| 204 | $11-21-13$ | 21 | 7.12 | 8960 | 1260 |
| 205 | $11-28-13$ | 28 | 7.12 | 9970 | 1400 |
| 206 | $11-28-13$ | 28 | 7.07 | 9860 | 1390 |
| 207 | $11-28-13$ | 28 | 7.07 | 9910 | 1400 |
| 208 | $11-28-13$ | 28 | 7.12 | 10030 | 1410 |

Afplus ${ }^{\oplus}$ RTD

## Quality Inspection Services, Inc.

GROUT COMPRESSIVE STRENGTH TEST REPORT
(ASTM C-1019)

| Laboratory \# | Date <br> Tested | Age <br> (Days) | Cross Sectlonal <br> Area (in ${ }^{2}$ ) | Maximum Load <br> (Ibs) | Compressive Strenglh <br> (PSI) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 209 | $1-23-14$ | 56 |  |  |  |
| 210 | $1-23-14$ | 56 |  |  |  |
| 211 | $1-23-14$ | 56 |  |  |  |
| 212 | $1-23-14$ | 56 |  |  |  |
|  |  |  |  |  |  |
| 213 | UW | 28 |  |  |  |
| 214 | UW | 28 |  |  | 63.8 |



For Job Satisfactlon - Think Quality

## Quality Inspection Services, Inc.

## GROUT COMPRESSIVE STRENGTH TEST REPORT (ASTM C-1019)

| Project: West Valley Cellular Grout |  |
| :---: | :---: |
| Client: Geo Science |  |
| Contractor: N/A |  |
| Project No.: 1101-13-CIV-0073 | Set No.: WWWP-9 |
| Supplier: Wayne Concrete |  |
| Cylinder Compresslon Machine Q \#: 3964 | Cal. due date: $01 / 21 / 14$ |
| Mix Data: Grout | Ticket No.: 523 |
| Date Molded: 10/31/13 | Date Recelved: 11/04/13 |
| Condition Received: Good | \# of Cylinders in Set: 8 |
| Cubic Yards Placed: $\sigma$ $\qquad$ | Truck No: M56 |
| Placement Location: First lift in Melter Box $\qquad$ |  |
| Specimens Cast By: E. Kihl | Unit Wt. (ASTM C138): 71.2 |
| Batch Time: 10:58 AM | Cylinder Cast Time: 12:10 PM |
| Concrete Temperature (C-1064): $67^{\circ} \mathrm{F}$ | Air Temperature: $56^{\circ} \mathrm{F}$ |
| Slump (C-143): N/A | Air Content ( $\mathrm{C}-173 / \mathrm{C}-231$ ): N/A |
| Strength Specific. @ 28 Days: 1000 PSI | Water Added On Site: N/A |
| Remarks: Stable Alr Foam added prior to pumping |  |

COMPRESSIVE STRENGTH DATA

| Laboratory \# | Date <br> Tested | Age <br> (Days) | Cross Sectional <br> Area (in ${ }^{2}$ ) | Maximum Load <br> (Ibs) | Compressive Strength <br> (PSI) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 215 | $11-14-13$ | 14 | 7.16 | 6870 | 960 |
| 216 | $11-14-13$ | 14 | 7.12 | 6710 | 940 |
| 217 | $11-14-13$ | 14 | 7.12 | 6690 | 940 |
| 218 | $11-14-13$ | 14 | 7.16 | 6760 | 940 |
| 219 | $11-28-13$ | 28 | 7.12 | 7180 | 1010 |
| 220 | $11-28-13$ | 28 | 7.12 | 7230 | 1020 |
| 221 | $11-28-13$ | 28 | 7.07 | 7610 | 1080 |
| 222 | $11-28-13$ | 28 | 7.12 | 8060 | 1130 |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

For Job Satisfaction - Think Quality

Project: West Valley Cellular Grout

| Client: $\quad$ Geo Science |  |
| :--- | :--- | :--- |
| Contractor: $N / \mathrm{A}$ |  |
| Project No.: $1101-13-\mathrm{CIV}-0073$ | Set No.: WVWP-10 |
| Supplier: Wayne Concrete |  |

Cylinder Compression Machine Q \#; 3964
Mix Data: Grout
Date Molded: 10/31/13
Condition Recelved: Good
Cubic Yards Placed:
Placement Location: First lift in Melter Box

Specimens Cast By: E. Kihl
Batch Time: 11:51 AM
Concrete Temperature ( $\mathrm{C}-1064$ ): $64^{\circ} \mathrm{F}$
Slump (C-143): N/A
Strength Specific. @ 28 Days: 1000 PSI
Remarks: Stable Air Foam added prior to pumping

Cal. due date: 01/21/14
Ticket No.: 524
Date Received: 11/04/13
\# of Cylinders in Set: 8
Truck No: M44

Unit Wt. (ASTM C138): 70.4
Cylinder Cast Time: 1:00 PM
Air Temperature: $\quad 56^{\circ} \mathrm{F}$
Air Content (C-173 / C-231): N/A
Water Added On Site: N/A

COMPRESSIVE STRENGTH DATA

| Laboratory \# | Date <br> Tested | Age <br> (Days) | Cross Sectional <br> Area $\left(\mathrm{in}^{2}\right)$ | Maximum Load <br> (lbs) | Compressive Strength <br> (PSI) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 223 | $11-14-13$ | 14 | 7.16 | 19010 | 2660 |
| 224 | $11-14-13$ | 14 | 7.12 | 16900 | 2370 |
| 225 | $11-14-13$ | 14 | 7.21 | 24370 | 3380 |
| 226 | $11-14-13$ | 14 | 7.16 | 20960 | 2930 |
| 227 | $11-28-13$ | 28 | 7.12 | 26420 | 3710 |
| 228 | $11-28-13$ | 28 | 7.12 | 23800 | 3340 |
| 229 | $11-28-13$ | 28 | 7.07 | 24120 | 3410 |
| 230 | $11-28-13$ | 28 | 7.06 | 30380 | 4240 |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

For Job Satisfaction ~ Think Quality

## Quality Inspection Services, Inc.

## GROUT COMPRESSIVE STRENGTH TEST REPORT (ASTM C-1019)

Project: West Valley Cellular Grout
Client: Geo Sclence
Contractor: N/A
Project No.: 1101-13-CIV-0073
Supplier: Wayne Concrete

Cyllinder Compression Machine Q \#: 3964
Mix Data: Grout
Date Molded: $\quad 10 / 31 / 13$
Condition Received: Good
Cublc Yards Placed:
6
First lift In Melter Box
Specimens Cast By: E. Kihl
Batch Time: 12:55 PM
Concrete Temperature ( $\mathrm{C}-1064$ ): $67^{\circ} \mathrm{F}$
Slump (C-143): N/A
Strength Specific. @ 28 Days: 1000 PSI
Remarks: Stable Air Foam added prior to pumping

Cal. due date: 01/21/14
Ticket No.: 526
Date Received: 11/04/13
\# of Cylinders in Set: 8
Truck No: M24

Unit Wt. (ASTM C138): 68.0
Cylinder Cast Time: 1:50 PM
Alr Temperature: $\quad 56^{\circ} \mathrm{F}$
Alr Content (C-173 / C-231): N/A
Water Added On Site: N/A

COMPRESSIVE STRENGTH DATA

| Laboratory \# | Date Tested | $\begin{aligned} & \text { Age } \\ & \text { (Days) } \end{aligned}$ | Cross Sectional Area ( $\mathrm{in}^{2}$ ) | $\underset{\text { (Ibs) }}{\substack{\text { Maximum Load }}}$ | Compressive Strength (PSI) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 231 | 11-14-13 | 14 | 7.12 | 18240 | 2560 |
| 232 | 11-14-13 | 14 | 7.12 | 26570 | 3730 |
| 233 | 11-14-13 | 14 | 7.16 | 31980 | 4470 |
| 234 | 11-14-13 | 14 | 7.16 | 29980 | 4190 |
| 235 | 11-28-13 | 28 | 7.12 | 29680 | 4170 |
| 236 | 11-28-13 | 28 | 7.07 | 29780 | 4210 |
| 237 | 11-28-13 | 28 | 7.02 | 24750 | 3530 |
| 238 | 11-28-13 | 28 | 7.07 | 29580 | 4180 |
|  |  |  |  |  |  |
|  |  |  | चि |  |  |
| Respectively sur mitted, Quality Inspedtion Services, Inc. |  |  |  |  |  |

For Job Satisfaction - Think Quality

## Quality Inspection Services, Inc.

GROUT COMPRESSIVE STRENGTH TEST REPORT (ASTM C-1019)

| Project: West Valley Cellular Grout |  |
| :---: | :---: |
| Client: Geo Science |  |
| Contractor: N/A |  |
| Project No.: 1101-13-ClV-0073 | Set No.: WWWP-12 |
| Supplier: Wayne Concrete |  |
| Cylinder Compression Machine Q \#: 3964 | Cal. due date: $01 / 21 / 14$ |
| Mix Data: Grout | Ticket No.: 544 |
| Date Molded: 11/04/13 | Date Received: 11/07/13 |
| Condition Recelved: Good | \# of Cylinders in Set: 22 |
| Cubic Yards Placed: 6 | Truck No: M53 |
| Placement Location: Second lift in Melter Box |  |
| Specimens Cast By: M. Smith | Unit Wt. (ASTM C138): 68.8 |
| Batch Time: 12:49 PM | Cylinder Cast Time: 1:15 PM |
| Concrete Temperature (C-1064): 64% | Air Temperature: $31{ }^{\circ} \mathrm{F}$ |
| Slump (C-143): N/A | Air Content (C-173 / C-231): N/A |
| Strength Specific. @ 28 Days: 1000 PSI | Water Added On Site: N/A |
| Remarks: Stable Alr Foam added prior to pumping |  |

COMPRESSIVE STRENGTH DATA

| Laboratory \# | Date <br> Tested | Age <br> (Days) | Cross Sectional <br> Area $\left(\mathrm{in}^{2}\right)$ | Maximum Load <br> $(\mathrm{Ibs})$ | Compressive Strength <br> $($ PSI) $)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 239 | $11-11-13$ | 7 | 7.16 | 8000 | 1120 |
| 240 | $11-11-13$ | 7 | 7.12 | 7100 | 1000 |
| 241 | $11-11-13$ | 7 | 7.12 | 7850 | 1100 |
| 242 | $11-11-13$ | 7 | 7.16 | 7400 | 1030 |
| 243 | $11-18-13$ | 14 | 7.07 | 8650 | 1220 |
| 244 | $11-18-13$ | 14 | 7.12 | 7680 | 1080 |
| 245 | $11-18-13$ | 14 | 7.12 | 9300 | 1310 |
| 246 | $11-18-13$ | 14 | 7.12 | 7700 | 1080 |
| 247 | $11-25-13$ | 21 | 7.07 | 7990 | 1130 |
| 248 | $11-25-13$ | 21 | 7.07 | 8800 | 1240 |
| 249 | $11-25-13$ | 21 | 7.12 | 9100 | 1280 |
| 250 | $11-25-13$ | 21 | 7.12 | 9350 | 1310 |
| 251 | $12-02-13$ | 28 | 7.16 | 10790 | 1510 |
| 252 | $12-02-13$ | 28 | 7.21 | 10250 | 1420 |
| 253 | $12 \cdot 02-13$ | 28 | 7.21 | 12370 | 1720 |
| 254 | $12-02-13$ | 28 | 7.21 | 11240 | 1560 |

Afplus ${ }^{\text {© }}$ RTD

## Quality Inspection Services, Inc.

 GROUT COMPRESSIVE STRENGTH TEST REPORT (ASTM C-1019)| Laboratory \# | Date <br> Tested | Age <br> (Days) | Cross Sectional <br> Area (in ${ }^{2}$ ) | Maximum Load <br> (Ibs) | Compressive Strength <br> (PSI) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 255 | $12-30-13$ | 56 |  |  |  |
| 256 | $12-30-13$ | 56 |  |  |  |
| 257 | $12-30-13$ | 56 |  |  |  |
| 258 | $12-30-13$ | 56 |  |  |  |
|  |  |  |  |  |  |
| 259 | UW | 28 |  |  |  |
| 260 | UW | 28 |  |  |  |



For Job Satisfaction - Think Quality

Arplus ${ }^{\oplus}$ ( ${ }^{\text {BTD }}$

## Quality Inspection Services, Inc.

## GROUT COMPRESSIVE STRENGTH TEST REPORT (ASTM C-1019)

Project: West Valley Cellular Grout
Client: Geo Sclence
Contractor: N/A
Project No.: 1101-13-CIV-0073
Set No.: WWWP-13
Supplier: Wayne Concrete

| Cylinder Compression Machine Q \#: 3964 | Cal. due date: $\quad 01 / 21 / 14$ |
| :---: | :---: |
| Mix Data: Grout | Ticket No.: 546 |
| Date Molded: 11/04/13 | Date Received: 11/07/13 |
| Condition Received: Good | \# of Cylinders in Set: 8 |
| Cublc Yards Placed: 6 | Truck No: M24 |
| Placement Locatlon: Second lift in Melter Box |  |
| Specimens Cast By: M. Smith | Unit Wt. (ASTM C138): 69.3 |
| Batch Time: 1:25 PM | Cylinder Cast TIme: 2:00 PM |
| Concrete Temperature ( $\mathrm{C}-1064$ ): $65^{\circ} \mathrm{F}$ | Air Temperature: $\quad 31^{\circ} \mathrm{F}$ |
| Slump (C-143): N/A | Air Content (C-173 / C-231): N/A |
| Strength Specific. @ 28 Days: 1000 PSI | Water Added On SIte: N/A |
| Remarks: Stable Air Foam added prior to pumping. |  |

COMPRESSIVE STRENGTH DATA

| Laboratory \# | Date <br> Tested | Age <br> (Days) | Cross Sectlonal <br> Area (in |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 261 | $11-18-13$ | 14 | 7.12 | Maximum Load <br> (lbs) | Compressive Strength <br> (PSI) |
| 262 | $11-18-13$ | 14 | 7.12 | 1050 | 2300 |
| 263 | $11-18-13$ | 14 | 7.12 | 13400 | 1480 |
| 264 | $11-18-13$ | 14 | 7.12 | 12850 | 1880 |
| 265 | $12-02-13$ | 28 | 7.16 | 13290 | 1800 |
| 266 | $12-02-13$ | 28 | 7.12 | 14160 | 1860 |
| 267 | $12-02-13$ | 28 | 7.16 | 11090 | 1990 |
| 268 | $12-02-13$ | 28 | 7.21 | 1710 | 1550 |
|  |  |  |  | 2370 |  |
|  |  |  |  |  |  |

For Job Satisfaction - Think Quality

Arplus ${ }^{\text {© }}$
四

## Quality Inspection Services, Inc.

## GROUT COMPRESSIVE STRENGTH TEST REPORT (ASTM C-1019)

| West Valley Cellular Grout |  |
| :---: | :---: |
| Client: Geo Sclence |  |
| Contractor: N/A |  |
| Project No.: 1101-13-CIV-0073 | Set No.: WWWP-14 |
| Supplier: Wayne Concrete |  |
| Cylinder Compression Machine Q \#: 3964 | Cal. due date: $01 / 21 / 14$ |
| Mix Data: Grout | Ticket No.: 547 |
| Date Molded: 11/04/13 | Date Received: 11/07/13 |
| Condition Received: Good | \# of Cylinders in Set: 8 |
| Cubic Yards Placed: 6 | Truck No: M44 |
| Placement Location: Second lift in Melter Box |  |
| Specimens Cast By: M. Smith | Unit Wt. (ASTM C138): 70.1 |
| Batch Time: 3:14 PM | Cylinder Cast Time: 3:40 PM |
| Concrete Temperature ( $\mathrm{C}-1064$ ): $6 \underline{3^{\circ} \mathrm{F}}$ | Air Temperature: $\quad 31^{\circ} \mathrm{F}$ |
| Slump (C-143): . N/A | Air Content (C-173 / C-231): N/A |
| Strength Specific. @ 28 Days: 1000 PSI | Water Added On Site: N/A |
| Remarks: Stable Alr Foam added prlor to pumping |  |

COMPRESSIVE STRENGTH DATA

| Laboratory \# | Date <br> Tested | Age <br> (Days) | Cross Sectional <br> Area (in ${ }^{2}$ ) | Maximum Load <br> (Ibs) | Compressive Strenglh <br> (PSI) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 269 | $11-18-13$ | 14 | 7.16 | 9850 | 1380 |
| 270 | $11-18-13$ | 14 | 7.12 | 9750 | 1370 |
| 271 | $11-18-13$ | 14 | 7.16 | 10150 | 1420 |
| 272 | $11-18-13$ | 14 | 7.07 | 13900 | 1970 |
| 273 | $12-02-13$ | 28 | 7.12 | 11210 | 1570 |
| 274 | $12-02-13$ | 28 | 7.16 | 10030 | 1400 |
| 275 | $12-02-13$ | 28 | 7.16 | 12690 | 1770 |
| 276 | $12-02-13$ | 28 | 7.21 | 13360 | 1850 |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

For Job Satisfaction - Think Quality


[^0]:    Continued on next page

[^1]:    Continued on next page

[^2]:    Continued on next page

[^3]:    Continued on next page

[^4]:    ${ }^{8}$ NUREG/CR-0200, Revision 6, Standard Composition Library.

[^5]:    * ADS-2502 - Sodium Peroxide/Sodium Hydroxide Dissolutions of Sludge and Glass for Elemental and Ion Analysis. ADS-2227 - Acid Dissolution of Glass and Sludge for Elemental Analysis.

[^6]:    ${ }^{\dagger}$ Aegirine ICDD card $71-1066 \mathrm{NaFe}\left(\mathrm{Si}_{2} \mathrm{O}_{6}\right)$
    ${ }^{\ddagger}$ Trevorite ICDD card $10-0325 \mathrm{NiFe}_{2} \mathrm{O}_{4}$

[^7]:    

