PROM:	·····	DATE OF DOCU	MENT:	DATE	ERECEIVE	j.	אס.:	27
The Anacond	a Company	7-31-6			-5-68			₩. E 1
· _/·· *		LTR.	MEMO:		R	EPORT:	07 H	IFR:
<u></u>	······	X						
10:		ORIG.:	CC:		С	THER:		
1	EMEL .	1		·				
		ACTION NECES	L'		CURRENCE	L	DATE ANSW	ERED:
CLASSIF .:	POST OFFICE	NO ACTION NE		COM	MENT	C	BY:	
2.57 	REG. NO:			NYT.	40-66	ب ر		
DESCRIPTION: (Must Be Unclos			FERRED TO		DATE		ECEIVED BY	
Ltr. req. that Items No. 4 and 11 of their sppl. for remewal of SUA-647 be amended			Buesbaus w/file (8/5			
ENCLOSURES:	4 cys. each)	FILE CH	ARCED TO)	UISS	ANDER			
Drawing No. 122 Two memoranda d	-22							
					De	15 para		
					- 4		AME	
and the second s							~ 4 <u>4</u> ,	
REMARKS: 1-pdr cy.	1-compliance cy. (Region)						275	
1-par cy.	nce cy. (Region)				C 11 7 2 1			

.

THE ANACONDA COMPANY Regulatory Suppl File Cy

New Mexico Operations

DOCAL NO. 40 665

P. O. Box 638, Grants, New Mexico

A. J. FITCH MANAGER

July 31, 1968

United States Atomic Energy Commission Washington, D.C. 20545

Attention: Director, Division of Materials Licensing

Gentlemen:

Under cover of my letter of July 2, 1968, I submitted to you our application for renewal of our Source Material License No. SUA-647.

We now wish to amend that application to include an additional address under Item No. 4 and an additional date to the references under Item No. 11. I em, therefore, enclosing Form No. AEC-2 which includes these additions.

This amended application is made as a result of an inspection of our operations on July 10 and 11, 1968, by the AEC Division of Compliance.

Enclosed, in quadruplicate and in support of this amended application, are the following:

- 1. Our General Drawing No. 122-22, Jackpile Mine Crushing Plant.
- 2. A memorandum dated July 30, 1968 showing the results of air sampling survey at the Jackpile Mine Crushing Plant.
- A memorandum dated July 30, 1968, showing the results of air 3. sampling survey during changing of scraper blade in yellow cake dryer.

Yours very truly, A. J. FITCH

AJF: hw

cc: Mr. Donald I. Walker, Director (w/enclosures) Division of Compliance, Region IV U. S. Atomic Energy Commission

1 54

FORM APPROVED BUREAU OF BUDGET NO. 38-R0002. Römilatory Sund File Cy.

UNITED STATES ATOMIC ENERGY COMMISSION

APPLICATION FOR SOURCE MATERIAL LIGENSE Supplifile Cy,

ant to the regulations in Title 10, Code of Federal Regulations, Chapter 1, Part 40, application is hereby for a license to receive, possess, use, transfer, deliver or import into the United States, source material e activity or activities described.

2 NAME OF APPLICANT

one)	
) New license	The Anaconda Coupeny
) Amendment to License No.	- 3. PRINCIPAL BUSINESS ADDRESS
) Renewal of License No. 504-647	~ ·
) Previous License No	P.G. Box 636, Grants, How Munico 87020
THE ADDRESS(ES) AT WHICH SOURCE MATERIA	AL WILL BE POSSESSED OR USED
Anaconda Company, Jackpile Mine	, neer Faguato, Rev Maxico, addressed as above.
Asseconds Company, Bluesster Pla	mt, near Bluewater, New Mexico, addressed as above
ISS OR OCCUPATION	6. (a) IF APPLICANT IS AN INDIVIDUAL, STATE (b) AGE
as and Milling Demnium Ore.	CITIZENSHIP
IBE PURPOSE FOR WHICH SOURCE MATERIAL W	VILL BE USED
	pical milling processes for the recovery and ato a precipitated and dried concentrate
THE TYPE OF TYPES CHEMICAL FORM OF F	ODME AND QUANTIFIES OF COURCE MATERIAL YOU DROBOSE TO DESENVE

) TYPE	(b) CHEMICAL FORM	(c) PHYSICAL FORM (Including % U or Th.)	(d) MAXIMUM AMOUNT AT ANY ONE TIME (in pounds)
· · ·	Realize Croc minerela	Crude Ore 0.111 U	130.000 Lbs. U
L URANIUM	Dranyl Bulphate or Hydr	ate Gencentrate 75% U	485,000 Lbs. U
DEPLETED IN ISOTOPE			
M (ISOTOPE)			

rentery, in-process pulps and solutions, and concentrate, equiv. to 635,000 Lbs. 5.

BE THE CHEMICAL, PHYSICAL, METALLURGICAL, OR NUCLEAR PROCESS OR PROCESSES IN WHICH THE SOURCE MATERIAL WILL D, INDICATING THE MAXIMUM AMOUNT OF SOURCE MATERIAL INVOLVED IN EACH PROCESS AT ANY ONE TIME, AND PROVIDING ROUGH EVALUATION OF THE POTENTIAL RADIATION HAZARDS ASSOCIATED WITH EACH STEP OF THOSE PROCESSES.

ng, griading, subpurit said leaching, and classification for RIP ion-embange ry of natural unsaion and subsequent clutics and concentration by procipitation nyl hydrate with drying and drum-packaging of this concentrate commonly known llow cake". Up to 10,200 Lb. U at one step in process.

RIBE THE MINIMUM TECHNICAL QUALIFICATIONS INCLUDING TRAINING AND EXPERIENCE THAT WILL BE REQUIRED OF AP-NT'S SUPERVISORY PERSONNEL INCLUDING PERSON RESPONSIBLE FOR RADIATION SAFETY PROGRAM (OR OF APPLICANT IF CANT IS AN INDIVIDUAL).

to letter and ettechments submitted January 30, 1951 giving organization and leations of supervisory group and technical personnel responsible for rediction program.

HE THE EQUIPMENT AND FACILITIES WHICH WILL BE USED TO PROTECT HEALTH AND MINIMIZE DANGER TO LIFE OR PROPERTY ELATE THE USE OF THE EQUIPMENT AND FACILITIES TO THE OPERATIONS LISTED IN ITEM 9; INCLUDE: (a) RADIATION DETECTION ELATED INSTRUMENTS (including film badges, disimeters, counters, air sampling, and other survey equipment as appropriate. The description of m detection instruments should include the instrument characteristics such as type of radiation detected, window thickness, and the range(s) of each inth.

to lotture and attached reports and details for this item as well as items 10 submitted on January 20, 1961; April 19, 1961; August 17, 1961; Setabor 14, 1961; , 1962; July 11, 1962; July 31, 1962.

THOD, FREQUENCY, AND STANDARDS USED IN CALIBRATING INSTRUMENTS LISTED IN (a) ABOVE, INCLUDING AIR SAMPLING UIPMENT (for film badges, specify method of calibrating and processing, or name supplier).

we references for this part.

	Page 2
NTILATION EQUIPMENT WHICH WILL E IN VIEW SHOWING TYPE AND LOCATION DURES FOR TESTING SUCH EQUIPMENT	RE USED IN OPERATIONS WHICH PRODUCT DUST, FUMES, METS, OR GASES, INCL OF HOOD AND FILTERS, MINIMUM VELOCITIES MAINTAINED AT HOOD OPENINGS AN IS
above references for thi	s part.
	TECT HEALTH AND MINIMIZE DANGER TO LIFE AND PROPERTY AND RELATE THES
RES TO THE OPERATIONS LISTED IN IT	TEM 9: INCLUDE: (#) SAFETY FEATURES AND PROCEDURES TO AVOID NONNUCLEAR SOURCE MATERIAL STORAGE AND PROCESSING AREAS.
above references for thi	s pert and parts (b) and (c) below.
AERGENCY PROCEDURES IN THE EVENT	OF ACCIDENT'S WHICH MIGHT INVOLVE SOURCE MATERIAL
TAILED DESCRIPTION OF RADIATION S	URVEY PROGRAM AND PROCEDURES.
CFR 40 ARE TO BE MANUFA SCRIPTION OF THE PRODUCT PERCENT SOURCE MATERIAN PHYSICAL DESCRIPTION OF PREVENT INHALATION OR FROM THE PRODUCT. BETA AND BETA PLUS GAMM calibration technique used) AT	TO THE GENERAL PUBLIC UNDER AN EXEMPTION CONTAINED CTURED, USE A SUPPLEMENTAL SHEET TO FURNISH A DETAIL INCLUDING: IN THE PRODUCT AND ITS LOCATION IN THE PRODUCT. THE PRODUCT INCLUDING CHARACTERISTICS, IF ANY, THAT WINGESTION OF SOURCE MATERIAL THAT MIGHT BE SEPARA AN RADIATION LEVELS (Specify instrument used, date of colibration THE SURFACE OF THE PRODUCT AND AT 12 INCHES. F SOURCE MATERIAL CANNOT BE DISASSOCIATED FROM THE M
(Тh	is item must be completed by applicant)
applicant, and any official ex ify that this application is p 40, and that all information	ecuting this certificate on behalf of the applicant named in Ite repared in conformity with Title 10, Code of Federal Regulat n contained herein, including any supplements attached here ur knowledge and belief.
and correct to the best of o	
	THE AMACONDA COMPANY
July 31, 1960	(Applicant named in Item 2)
	THE ANACONDA COMPANY
	BY:(Print or type name under signature)

12 U.S. GOVERNMENT PRINTING OFFICE : 1908-0-295-054

Conditiony Suppl File GV1

40-665

July 30, 1968

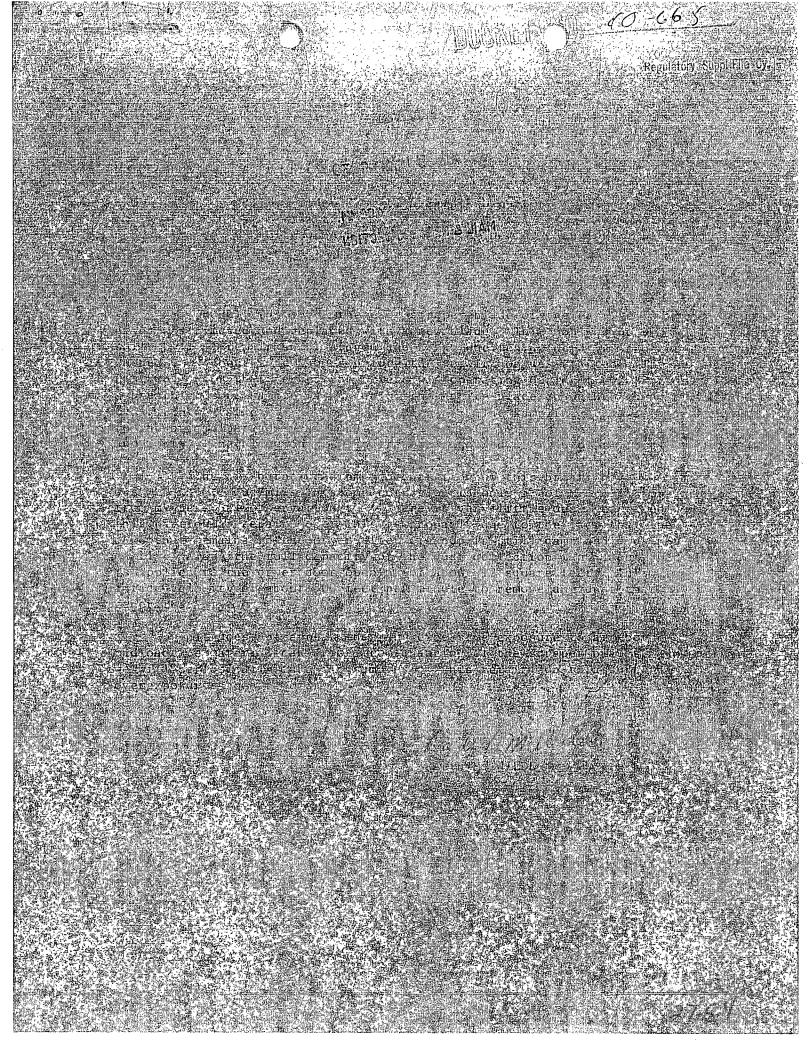
MEMORANDUM TO:	A. J. Fitch, Manager	4
FROM :	R. M. Wilde, Radiation Safety Direct	or
SUBJECT :	Results of Air Sampling Survey at th Crushing Plant.	e Jackpile Mine

On July 19, 1968, an air sampling survey was made at the Jackpile Mine Crushing Plant. The crusher was in normal operation during the survey with truckloads of one being dumped every 3 to 4 minutes. The one was damp with an apparent molsture content of 8 to 10 percent. During the survey the wind was light and variable from the southwest at 5 to 8 miles per hour.

The results obtained in this air sampling survey are as follows:

Sample No.	Description of Locarion	Air Concentration <u>Uranium -uc/ml x 10^m</u>	Percent of MPC
8192	Conveyor Floor, South Side	0.31	0.12
8193	Conveyor Floor, Nerth Side	0.23	0.09
S194	Crusher Floor, South Side	0.25	0.10
8195	Crusher Floor, North Side	0.25	0.10
8196	Feeder Floor, South Side	0.35	0.14
8197	Feeder Floor, North Side	.0.32	0.13
8198	Poking Floor, South Side Walkwa	y 0.21	0.08
8199	Poking Floor, South Side of Bin	0.08	0.03
8200	Poking Floor, North Side Walkwa	y 0.13	0.05
8201	Poking Floor, North Side of Bin	0.15	0.06
8202	Operator's Station	0.10	0.04

The air-borne utanium concentrations of all of the general area samples that were taken in this survey were well below MPC. We will include the Jackpile Mine Crushing Plant as one of the areas that will be sampled in our routine quarterly air sampling surveys.


Included with this memorandum is a print of drawing No. 122-22, Jackpile Mine Crushing Plant General Drawing, that shows the layout and location of the equipment in the crushing plant.

Kaleh M. Wildr

RMW:hw

Attachment

cc: E. C. Peterson J. F. Herndon AEC-DL1 File (2)

HQ-9401 (9-66) REEERENCE N					<u> </u>	NTE	RMED	IATE	E ACTI	ON FO	ORM			¢.	ource	8 SN	M I :-	-00	505
61. FROG, CODE	03. DOCKI	ET NO			TASK 4 NO	42	FURP		F TASK				NTROL 2428	15	LICEN		ALE R		
18. APPLICANT The Anaconda Company											l		54	AM, NO FROM		UL TIN	13		
21. STREET & BUI	LDING P.O. BC	5 x 6;	38							45. CL	ASSIFI	CATION	1	63.	ASG. 10:				
24. CITY				27.	STATE	30. Z	ZIP			33. RE YR.	CEIVEI MO.	1	36 YR		DAY		9. EXP MO.		DV 7. D
57 APFLICANT'S		ATIO	N DATI	1	<u>NM</u>			DAY 62	59 EN	68 CLOSUI		<u>. α</u> ε.		}]				
58. DESCRIPTION		UNCL								OTM /		1-	PDR c compl	-	e cy.	, (Re	gior	.)	
	INTER		ATE A	÷					OTHE	RREFI	ERRAL	5		<u></u>			ACI I	· · · · · · · ·	
TYPE ADDL. INFO. REGUESTED FROM APPLICANT	91	ON MO.	DAY	h	<u>1</u>	RI YR. 93	1 1	DAY				IF	Na Nus	ink ba Isbau	emain Nett	YF)7	DA 90
REFLARED 10:	94			95	2	96	Ţ	0	NOT	REI	NUN, NO,	n FN	w/ fi RFN	lie c	y • 1	file			
REFERRED To:										Aun	iare el	i Ll-14	- CA 100 MG						

•

.

DOCKE: NO. 40-665

Regulatory Suppl File Cv.

ł

368 JUL

00

NH 8 2

RECEIVED

ATOMIC ENERGY COMM Requestion A records section

12 No 489836 1022

THE ANACONDA COMPANY

New Mexico Operations

P.O. Box 638, Grants, New Mexico

A. J. FITCH MANAGER

July 2, 1968

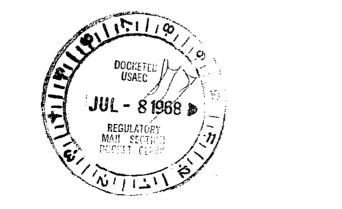
United States Atomic Energy Commission Washington, D.C. 20545

i.

Attention: Director, Division of Materials Licensing

Gentlemen:

Herewith is our application, in quadruplicate on Form AEC-2, for renewal of our Source Material License No. SUA-647, which is due to expire August 31, 1968.


Yours very truly,

Ü

A. J. FITCH

AJF: hw

Enclosure

WEBGED

C-2

GUREAU OF BUDGET NO. 38-R0002.

UNITED STATES ATOMIC ENERGY COMMISSION

IN

APPLICATION FOR SOURCE MATERIAL LICENSE

ant to the regulations in Title 10, Code of Federal Regulations, Chapter 1, Part 40, application is hereby for a license to receive, possess, use, transfer, deliver or import into the United States, source material e activity or activities described.

one)		2. 1	IAME OF APPLICANT					
1 New license	e		The Anaconda Company					
	t to License No.	3. F	RINCIPAL BUSINESS ADDRESS					
Renewal of License No. <u>SUA-647</u>								
) Previous L	Previous License No P.O. Box 638, Grants, New Mexico 87020							
THE ADDRESS	ES) AT WHICH SOURCE MATERIA	LWI	LL BE POSSESSED OR USED					
inaconda C	ompany, Bluewater Plan	nt,	near Bluewater, New Mex	ico, addr	essed as above.			
		6. (4	a) IF APPLICANT IS AN INDIVIDUAL, ST CITIZENSHIP	ATE .	(b) AGE			
ng and Mil	ling Uranium Ore							
			1 milling processes for					
entration	of natural uranium in	to	a precipitated and dried	concentr	ate commonly			
ı as "yell	.ow cake".							
THE TYPE OR	TYPES, CHEMICAL FORM OR FO	RMS	. AND QUANTITIES OF SOURCE MAT	ERIAL YOU PI	ROPOSE TO RECEIVE,			
	ANSFER UNDER THE LICENSE			/ • ` • • • • • • •				
I TYPE	(b) CHEMICAL FORM		(c) PHYSICAL FORM (Including % U or Th.)		MUM AMOUNT AT TIME (in pounds)			
· · · ·	Uraninite type minera	1s	Crude Ore 0.31% U	150.00	O Lbs. U			
LURANIUM	Uranyl Sulphate or Hy	dra	te Concentrate 75% U		0 Lbs. U			
DEPLETED IN	······································							
ISOTOPE								
M (ISOTOPE)								
			WILL HAVE ON HAND AT ANY TIME	• •				
inventory,	in-process pulps and	80	lutions, and concentrate	, equiv.	to 635,000 Lbs. U			
			NUCLEAR PROCESS OR PROCESSES IN V MATERIAL INVOLVED IN EACH PROCESS AZARDS ASSOCIATED WITH EACH STEP					
			ching, and classificatio					
very of na	tural wrantum and sub	seq	uent elution and concent	ration by	precipitation			
			-packaging of this conce	ntrate co	mmonly known			
ellow cake	up to 10,200 Lb. U	at	one step in process.					
IBE THE MINIMUM TECHNICAL QUALIFICATIONS INCLUDING TRAINING AND EXPERIENCE THAT WILL BE REQUIRED OF AP- NT'S SUBERVISORY PERSONNEL INCLUDING PERSON RESPONSIBLE FOR RADIATION SAFETY PROGRAM (OR OF APPLICANT IF ANT IS AN INDIVIDUAL)								
r to letter and stachments submitted January 30, 1961 giving organization and ifications of supervisory group and technical personnel responsible for radiation								
ifications	s of supervisory group	an	d technical personnel re	sponsible	for radiation			
ty program.								
IBE THE EQUIPMENT AND FACILITIES WHICH WILL BE USED TO PROTECT HEALTH AND MINIMIZE DANGER TO LIFE OR PROPERTY ELATE THE USE OF THE EQUIPMENT AND FACILITIES TO THE OPERATIONS LISTED IN ITEM 9: INCLUDE: (a) RADIATION DETECTION ELATED INSTRUMENTS (including film badges, dosimeters, counters, air sampling, and other survey equipment as appropriate. The description of a detection instruments should include the instrument characteristics such as type of radiation detected, window thickness, and the range(s) of each in- t).								
r to lette	ers and attached repor	ts	and details for this ite	m as well	as items 10			
12 submitt	12 submitted on January 30, 1961; April 19, 1961; August 17, 1961; October 14,							
	1962; July 11, 1962.	-						
THOD, FREQUE		CALII and p	BRATING INSTRUMENTS LISTED IN (a) rocessing, or name supplier).	ABOVE. INCL	UDING AIR SAMPLING			
above references for this part.								

Page 2

NTILATION EQUIPMENT WHICH WILL BE USED IN OPERATIONS WHICH PRODUCE DUET, FUMES, MISTS, OR GASES, INCLUDING IN VIEW SHOWING TYPE AND LOCATION OF HOOD AND FILTERS, MINIMUM VELOCITIES MAINTAINED AT HOOD OPENINGS AND PRO-DURES FOR TESTING SUCH EQUIPMENT.

e above references for this part.

RIBE PROPOSED PROCEDURES TO PROTECT HEALTH AND MINIMIZE DANGER TO LIFE AND PROPERTY AND RELATE THESE PRO-RES TO THE OPERATIONS LISTED IN ITEM 9; INCLUDE: (#) SAFETY FEATURES AND PROCEDURES TO AVOID NONNUCLEAR ACCI-S, SUCH AS FIRE, EXPLOSION, ETC., IN SOURCE MATERIAL STORAGE AND PROCESSING AREAS.

e above references for this part and parts (b) and (c) below.

ARGENCY PROCEDURES IN THE EVENT OF ACCIDENT'S WHICH MIGHT INVOLVE SOURCE MATERIAL.

	· 6	<i>े दे</i> ं ह		:: ·		· · · · ·		· · · · · · ·	· · · · · ·
	80	C C	st prot	1. 1. 11. 1. 1. 1. 1. 1. 1.				: · ·	• *
VED	AN.	RGY DS SE			_				
TAILED DESCR	O NOLTRIS	F RADIAD	ION SURVEY PR	OGRAM AND	PROCEDURES.				
	ŝ	5	÷	•		• •			
a:		E .		11 N 1	12 J.	1	2 - 1 - MA	5 (C) (C)	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	5		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	· · · · ·	1 1 1 1 1 1	a prove e es	ng gan		$= 1 + 10^{-1}$
	8	All	· · ·	<u>.</u>	<u> </u>	<u></u>	•	· · ·	(1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1

TE PRODUCTS: If none will be generated, state "None" opposite (a), below. If waste products will be generd, check here [3] and explain on a supplemental sheet:

) Quantity and type of radioactive waste that will be generated. Mill tailing effluent.

) Detailed procedures for waste disposal. Refer to reports submitted July 5, 1960 and July 11, 1962. RODUCTS FOR DISTRIBUTION TO THE GENERAL PUBLIC UNDER AN EXEMPTION CONTAINED IN

RODUCTS FOR DISTRIBUTION TO THE GENERAL PUBLIC UNDER AN EXEMPTION CONTAINED IN CFR 40 ARE TO BE MANUFACTURED, USE A SUPPLEMENTAL SHEET TO FURNISH A DETAILED SCRIPTION OF THE PRODUCT, INCLUDING:

PERCENT SOURCE MATERIAL IN THE PRODUCT AND ITS LOCATION IN THE PRODUCT. PHYSICAL DESCRIPTION OF THE PRODUCT INCLUDING CHARACTERISTICS, IF ANY, THAT WILL PREVENT INHALATION OR INGESTION OF SOURCE MATERIAL THAT MIGHT BE SEPARATED FROM THE PRODUCT. BETA AND BETA PLUS GAMMA RADIATION LEVELS (Specify instrument used, date of calibration end calibration technique used) AT THE SURFACE OF THE PRODUCT AND AT 12 INCHES. METHOD OF ASSURING THAT SOURCE MATERIAL CANNOT BE DISASSOCIATED FROM THE MAN-

UFACTURED PRODUCT.

CERTIFICATE

(This item must be completed by applicant)

applicant, and any official-executing this certificate on behalf of the applicant named in Item 2, by that this application is prepared in conformity with Title 10, Code of Federal Regulations, 40, and that all information contained herein; including any supplements attached hereto, is and correct to the best of our knowledge and belief.

		·····	THE ANACON	
July 2.	1968 S		alt	tile
·		8/968 > BY:	(Print of Jypo num A. J. F:	
		terra Latter pr	Manager	
		Tille	of certifying official authorized	d to act on behalf of the applicant)

ment or representation to any department or agency of the United States as to any matter within its jurisdiction.

☆ U.S. GOVERNMENT PRINTING OFFICE : 1968-0-295-054

FORM APPROVED BUREAU OF BUDGET NO. 38-R0002.

UNITED STATES ATOMIC ENERGY COMMISSION

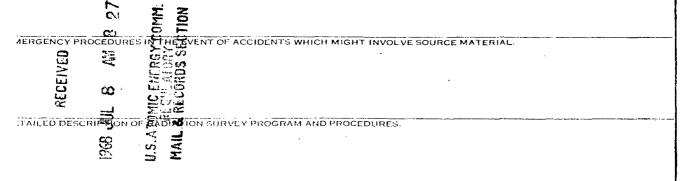
APPLICATION FOR SOURCE MATERIAL LICENSE

int to the regulations in Title 10, Code of Federal Regulations, Chapter 1, Part 40, application is hereby or a license to receive, possess, use, transfer, deliver or import into the United States, source material activity or activities described.

"% U or Th.) ANY ONE TIME (in pounds) URANIUM Immisiate come planes is Come Ore C.111 F 150,000 Lbs. U Immisiate come planes is Come Ore C.111 F 405,000 Lbs. U Immisiate come planes is Come Ore C.111 F 405,000 Lbs. U PRETED IN ISOTOPE Immisiate come planes is Come Ore C.111 F 405,000 Lbs. U IMUM TOTAL QUANTITY OF SOURCE MATERIAL YOU WILL HAVE ON HAND AT ANY TIME (in pounds) 405,000 Lbs. U Immission of the process paint and solutions, and come antrate, equiv. to 635,000 Lbs. Come Ore C.111 F Come Ore C.111 F Indicating the maximum amount of source material involved in Each PROCESS at Any ONE TIME (AND PROVIDING DUGH EVALUATION OF THE POTENTIAL RADIATION HAZARDS ASSOCIATED WITH EACH PROCESSES. Come Or Hill Come On the Process of the potential radiation hazards associated with Each Step of THOSE PROCESSES. Ing, griading, subjective and come plane and come of concentration for HIP too - suchange ery of instants and come planes and come of concentration for HIP too - suchange ery of instants and come planes and come planes and come of the potential radiation hazards associated with each step of THOSE PROCEsses. Ing, griading, subjective and come planes and come of concentration for HIP too - suchange ery of instant with drying and come planes and come of concentration for HIP too - suchange ery of instant of the come of come of the potential containes and come of concentration for HIP too - suchange of this come of come of the come of the potential c	one)	2. NAME OF APPLICANT	
Amendment to License No		The Anaconda Company	
Previous License No. P.O. Box 638, Grants, New Mexico 87020 HE ADDRESS(ES) AT WHICH SOURCE MATERIAL WILL BE POSSESSED OR USED acconds Company, Elusvater Fisut, mear Bluewater, New Mexico, addressed as above. S OR OCCUPATION C. (a) Frequencies and the second of the sec			· · · · · · · · · · · · · · · · · · ·
The addresses of the second se			
BACORDA COMPANY, BLUEWEDER Flast, mear Bluemater, New Moxico, addressed as above. Is on OCCUPATION and Milling Branium Or (a) if APPLICANT IS AN INDIVIDUAL, STATE (b) AGE (c) PURPOSE FOR WHICH SOURCE MATERIAL WILL BE USED Sed material to bydromestalikingical addition processes for the recovery and astration of adveral wranium into a precipitated and dried concentrate commonly as "yellow cake". (b) AGE (c) PHYSICAL FORM (ALL FORM OR FORMS, AND QUANTITIES OF SOURCE MATERIAL, YOU PROPOSE TO RECLIVE. (b) CHARNER UNDER THE LICENSE (c) PHYSICAL FORM (Including (C) MAXIMUM AMOUNT AT (c) PHYSICAL FORM (Including (C) MAXIMUM AMOUNT AT (b) CHARNER UNDER THE LICENSE (c) PHYSICAL FORM (Including (C) MAXIMUM AMOUNT AT (c) PHYSICAL FORM (Including (C) MAXIMUM AMOUNT AT (c) PHYSICAL FORM (C) ONE THE LICENSE (c) OTAL. (c) MAXIMUM AMOUNT AT (c) PHYSICAL FORM (Including (C) MAXIMUM AMOUNT AT (c) MAXIMUM AMOUNT AT (c) OTAL. (c) PHYSICAL FORM (Including (C) MAXIMUM AMOUNT AT (c) MAXIMUM AMOUNT AT (c) OTAL. (c) PHYSICAL FORM (Including (C) MAXIMUM AMOUNT AT (c) MAXIMUM AMOUNT AT (c) OTAL. (c) PHYSICAL FORM (Including (C) MAXIMUM AMOUNT AT (c) MAXIMUM AMOUNT AT (c) OTAL. (c) MAXIMUM AMOUNT OF SOURCE MATERIAL YOU WILL HAVE ON HAND AT ANY TIME (In pounds) (c) MAXIMUM AMOUNT OF SOURCE MATERIAL YOU WILL HAVE ON HAND AT ANY TIME (In pounds) (c) MAXIMUM AMOUNT OF SOURCE MATERIAL YOU WILL HAVE ON HAND AT ANY TIME (IN pounds) (c) CONTACT ON BURGEMATERIAL OU WILL HAVE ON HAND AT ANY TIME (IN pounds) (c) MAXIMUM AMOUNT OF SOURCE MATERIAL YOU WILL HAVE ON HAND AT ANY TIME (IN pounds) (c) CONTACT ON SUBJECT MATERIAL YOU WILL HAVE ON HAND AT ANY TIME (IN pounds) (c) CONTACT ON SUBJECT MATERIAL YOU WILL HAVE ON HAND AT ANY TIME (IN pounds) (c) CONTACT ON SUBJECT MATERIAL YOU WILL HAVE ON HAND AT ANY TIME (IN pounds) (c) CONTACT ON SUBJECT MATERIAL YOU WILL HAVE ON HAND AT ANY TIME (I			Nexico 87020
S OR OCCUPATION	THE ADDRESS(ES) AT WHICH SOUR	CE MATERIAL WILL BE POSSESSED OR USED	
S OR OCCUPATION	maconde Country, Blanks	now Finst, mor Riverstor, New Mards	en. addressed as shows.
e and Milling Branium Ore EF PURPOSE FOR WHICH SOURCE MATERIAL WILL BE USED sed material to bydrometailungical milling processes for the recovery and material of adurat uranium into a precipitated and dried concentrate commonly as "yellow cake". THE TYPE (b) CHEMICAL FORM OF FORMS, AND QUANTITIES OF SOURCE MATERIAL YOU PROPOSE TO RECEIVE the type on Transfer Chemical FORM of FORMS, AND QUANTITIES OF SOURCE MATERIAL YOU PROPOSE TO RECEIVE the type on Transfer Chemical FORM of FORMS, AND QUANTITIES OF SOURCE MATERIAL YOU PROPOSE TO RECEIVE the type of Transfer Chemical FORM of FORMS, AND QUANTITIES OF SOURCE MATERIAL YOU PROPOSE TO RECEIVE the type of Transfer Chemical FORM of FORMS, AND QUANTITIES OF SOURCE MATERIAL YOU PROPOSE TO RECEIVE the type of the type of type of the type of type of the type of type of the type of type of the type			-
The PURPOSE FOR WHICH SOURCE MATERIAL WILL BE USED and material to bydrometalinizgical milling processes for the recovery end stration of natural uranium into a procipitated and dried concentrate commonly as "yellow cake". THE TWPE ON TYPES CHEMICAL FORM ON FORMS, AND QUANTITIES OF SOURCE MATERIAL YOU PROPOSE TO RECEIVE. SUE: ON TRANSFE UNDER THE LICENSE TYPE (b) CHEMICAL FORM ON FORMS, AND QUANTITIES OF SOURCE MATERIAL YOU PROPOSE TO RECEIVE. SUE: ON TRANSFE UNDER THE LICENSE TYPE (b) CHEMICAL FORM ON FORMS, AND QUANTITIES OF SOURCE MATERIAL YOU PROPOSE TO RECEIVE. SUE: ON TRANSFE UNDER THE LICENSE TYPE (c) CHEMICAL FORM (c) PHYSICAL FORM (nctuding (d) MAXIMUM AMOUNT AT ANY ONE TIME (n pounds) HEADING TO THE DIFFERENCE (iSOTOPE) MUM TOTAL QUANTITY OF SOURCE MATERIAL YOU WILL HAVE ON HAND AT ANY TIME (n pounds) RECEIVED IN SOTOPE (ISOTOPE) MUM TOTAL QUANTITY OF SOURCE MATERIAL YOU WILL HAVE ON HAND AT ANY TIME (n pounds) RECEIVED IN MUM TOTAL QUANTITY OF SOURCE MATERIAL YOU WILL HAVE ON HAND AT ANY TIME (n pounds) RECEIVED IN MUM TOTAL QUANTITY OF SOURCE MATERIAL YOU WILL HAVE ON HAND AT ANY TIME (IN pounds) RECEIVED IN MUM TOTAL QUANTITY OF SOURCE MATERIAL YOU WILL HAVE ON HAND AT ANY TIME (IN pounds) RECEIVED IN MUM TOTAL QUANTITY OF SOURCE MATERIAL YOU WILL HAVE ON HAND AT ANY TIME (IN pounds) RECEIVED IN SOURCE MATERIAL YOU WILL HAVE ON HAND AT ANY TIME (IN POUND IN AND PROVIDING UNDER VALUES, STRAINED AND FRANCHAR AND FRANCHAR AND FRANCHAR AND FRANCHAR AND FRANCHAR IN THE CONTROL PROVIDE INCLUDING TRAINING AND EXPERIMENTS IN WHICH THE SOURCE MATERIAL WILL HOUCH AND THE MILL BE RECEIVED IN AND FRANCHAR AND FRANCHAR AND FRANCHAR AND FRANCHAR AND FRANCHAR AND FRANCHAR IN THE AND MOUNT OF THE POUNDANT OF SOURCE MATERIAL INVOLVED IN ELECTION THE SUNCE AND FRANCHAR AND FRANCHA		CITIZENSHIP	
Beed material to bydrometalikityjcal milling processes for the recovery and attraction of natural uranium into a precipitated and dried concentrate commonly as "yellow cake". Interve on TYPES, CHEMICAL FORM OR FORMS, AND QUANTITIES OF SOURCE MATERIAL YOU PROPOSE TO RECEIVE. S. USE, ON TRANSFER UNDER THE LIGENSE (d) PHYSICAL FORM (Including (d) MAXIMUM AMOUNT AT ANY ONE TIME (in pounds) UPANIUM Hendialts Cyne Bilancials (c) PHYSICAL FORM (Including (d) MAXIMUM AMOUNT AT ANY ONE TIME (in pounds) (d) MAXIMUM AMOUNT AT ANY ONE TIME (in pounds) UPANIUM Hendialts Cyne Bilancials (c) PHYSICAL FORM (Including (d) MAXIMUM AMOUNT AT ANY ONE TIME (in pounds) (d) MAXIMUM AMOUNT AT ANY ONE TIME (in pounds) UPANIUM Hendialts Cyne Bilancials (c) PHYSICAL FORM (Including (d) MAXIMUM AMOUNT AT ANY ONE TIME (in pounds) (d) MAXIMUM AMOUNT AT ANY ONE TIME (in pounds) UPANIUM Hendialts Cyne Bilancials (c) PHYSICAL FORM (Including (d) MAXIMUM AMOUNT AT ANY ONE TIME (in pounds) (d) MAXIMUM AMOUNT AT ANY ONE TIME (in pounds) Wight of the Commental Bilancials (c) Physical Content at State (c) Hendials (c) Physical Content at State (c) Hendials (c) C) (d) MAXIMUM AMOUNT AT ANY ONE TIME (c) Physical Material VIII (c) MAXIMUM AMOUNT AT (USO TOPE) MUM TOTAL COUNTIES (c) Examples of the Commentation of the Commentation of the Physical Material VIII (c) Physical Content at State (c) Physical Content at Anthron (C) Hendials (c) C) (d) COMMENTAL UNDER (c) Physical Content at Commentation (c) C) MUM TOTAL COUNTIES (c) HENDIAL COLLEAR PROCESS OR PROCESSES (c) WINE CARA TO C)		I	I
Attraction of astural unamine into a precipitated and dried concentrate commonly as "yellow cake". THE TYPE (b) CHEMICAL FORM ON FORMS, AND QUANTITIES OF SOURCE MATERIAL YOU PROPOSE TO RECEIVE. SUE, ON TRANSFER UNDER THE LICENSE. TYPE (b) CHEMICAL FORM (c) PHYSICAL FORM (Including) (c) MAXIMUM AMOUNT AT ANY ONE TIME (in pounds) Transista to the single and the second of the single and the			he management
TYPE ON TYPES CHEMICAL FORM ON FORMS, AND QUANTITIES OF SOURCE MATERIAL YOU PROPOSE TO RECEIVE. U. USE, ON TRANSPER UNDER LICENSE TYPE (B) CHEMICAL FORM (C) PHYSICAL FORM (Including % U or Th.) (d) MAXIMUM AMOUNT AT ANY ONE TIME (in pounds) - URANIUM Institute State simerals (d) PHYSICAL FORM (Including % U or Th.) (d) MAXIMUM AMOUNT AT ANY ONE TIME (in pounds) - URANIUM Institute State simerals Croade Orse 0.31L U 150,000 Lbs. U - URANIUM Institute State at Physical A Physical A Physical Concentrate 753. U 485,000 Lbs. U INCOMTOR LOUNTITY OF SOURCE MATERIAL YOU WILL HAVE ON HAND AT ANY TIME (in pounds) Environmental Physical A Physical B Physical A Physical Physical A Physical Physical A Physical A Physical Physical A Phy	stration of natural un		
LUES, OR TRANSFER UNDER THE LICENSE TYPE (b) CHEMICAL FORM (c) PHYSICAL FORM (Including (d) MAXIMUM AMOUNT AT ANY ORE TIME (in pounds) LURANIUM Institute Comparison (Including (d) MAXIMUM AMOUNT AT ANY ORE TIME (in pounds) LURANIUM Institute Comparison (Including (d) MAXIMUM AMOUNT AT ANY ORE TIME (in pounds) LURANIUM Institute Comparison (Including (d) MAXIMUM AMOUNT AT ANY ORE TIME (in pounds) LURANIUM Institute Comparison (Including (d) MAXIMUM AMOUNT AT ANY ORE TIME (in pounds) Prefere IN Institute Comparison (Including (d) MAXIMUM AMOUNT AT ANY ORE TIME (In pounds) Prefere IN Institute Comparison (Including (d) MAXIMUM AMOUNT AT ANY ORE TIME (In pounds) Institute Comparison (Including (d) MAXIMUM AMOUNT AT ANY ORE TIME (In pounds) Institute Comparison (Including (d) MAXIMUM AMOUNT AT ANY ORE TIME (In pounds) Institute Comparison (Including (d) MAXIMUM AMOUNT AT ANY ORE TIME (In pounds) Institute (In pounds) Institute Comparison (Including (d) MAXIMUM AMOUNT AT ANY ORE TIME (In pounds) Institute (In pounds) Institute Comparison (Including (d) MAXIMUM AMOUNT AT ANY ORE TIME (In pounds) Institute (In pounds) INSTITUTE (Including (d) MAXIMUM AMOUNT AT ANY ASSOCIATED WITH EACH STEP OF HOSE PROCESS AT ANY ONE TIME (IN POUND AND ANY ORE TIME (IN POUND AND AND AND AND AND AND AND AND AND A	as "yellow cake".		
TYPE (b) CHEMICAL FORM (c) PHYSICAL FORM (Including % U or Th.) (d) MAXIMUM AMOUNT AT ANY ONE TIME (in pounds) LURANIUM Franklik Cross sinesis Crode Ors C.311 U Stanyl Sciphete or Bydrate Concentrato 751 0 435,000 Lbs. U LURANIUM Franklik Cross sinesis Crode Ors C.311 U Stanyl Sciphete or Bydrate Concentrato 751 0 435,000 Lbs. U PRETED N SCOTOPE Interview Crode Ors C.311 U Sciphete 435,000 Lbs. U MUM TOTAL QUANTITY OF SOURCE MATERIAL YOU WILL HAVE ON HAND AT ANY TIME (in pounds) Aveatory, In-process points and concentrato, equiv. to 635,000 Lbs. D MUM TOTAL QUANTITY OF SOURCE MATERIAL YOU WILL HAVE ON HAND AT ANY TIME (in pounds) Aveatory, In-process points and concentrato, equiv. to 635,000 Lbs. D MUM TOTAL QUANTITY OF SOURCE MATERIAL YOU WILL HAVE ON HAND AT ANY TIME (in pounds) Aveatory, In-process points and concentrator. Source MATERIAL WILL BE THE CHEMICAL PHYSICAL, METALURGICAL, OR NUCLEAR PROCESS OR PROCESSES IN WHICH THE SOURCE MATERIAL WILL MUM TOTAL QUANTITY OF SOURCE MATERIAL YOU WILL HAVE ON HAND AT ANY TIME (in pounds) Aveatory, In-process and power of the source material will any crimical source of the concentrator on THE SOURCE MATERIAL WILL MUM TOTAL QUANTITY OF SOURCE MATERIAL YOU WILL HAVE ON HAND AT ANY TIME (in pounds) Aveatory, In-process and power of the source of the concentrator on the source of the concentrating the source of the conc	THE TYPE OR TYPES, CHEMICAL F	FORM OR FORMS, AND QUANTITIES OF SOURCE MATE	RIAL YOU PROPOSE TO RECEIVE.
URANIUM ENANGES SELENCE OF Bydra & Concentrate 751 U 483,000 Lbs. U EPLETED IN SOTOPE A (ISOTOPE) MUM TOTAL QUANTITY OF SOURCE MATERIAL YOU WILL HAVE ON HAND AT ANY TIME (in pounds) EXVENTED, in-process pairs and eplutions, and concentrate, equiv. to 635,000 Lbs. The chemical physical methods and eplutions, and concentrates, equiv. to 635,000 Lbs. The chemical physical methods and eplutions, and concentrates, equiv. to 635,000 Lbs. The chemical physical methods and eplutions, and concentrates, equiv. to 635,000 Lbs. The chemical physical methods and eplutions, and concentrates equiv. The Source and Environment and equipment and the source and the source of the set processes. The chemical physical methods and equipment alution and concentrations by precipications any i hydrate with dysing and equipment alutions and concentrations by precipication any i hydrate with dysing and consequence of the set processes. The chemical physical dysing and equipment alution and concentrations by precipication any i hydrate with dysing and consequence of the set processes. The chemical physical dysing and equipment alution and concentrations by precipication any i hydrate with dysing and consequence of an processes. The chemical guildent constructions including training and experience that will be required or ap- ant is an individual. The instrument conservation of personset responses is processe. The chemical person person decomposed and the array processes and intermediation spectry program and the set of addition decide of addition decide of addition of the personset including the set of addition of the person person decomposed and the array of addition decide of the deciding of the deciding of addition decide of addition deci		AL FORM (c) PHYSICAL FORM (Including	
PLETED IN EPLETED IN SOTOPE ((ISOTOPE) A (ISOTOPE)		e planetale Grade Ora C. MR P	150.000 160. 0
ISOTOPE (ISOTOPE) (ISOTOPE) MUM TOTAL QUANTITY OF SOURCE MATERIAL YOU WILL HAVE ON HAND AT ANY TIME (<i>in pounds</i>) EXAMPLOY, IN-PROCESS IN SUPPORTS, ISO (ISO ID) ETHE CHEMICAL PHYSICAL, METALLURGICAL OR NUCLEAR PROCESS OR PROCESSES IN WHICH THE SOURCE MATERIAL WILL INDICATING THE MAXIMUM AMOUNT OF SOURCE MATERIAL INVOLVED IN EACH PROCESSES IN WHICH THE SOURCE MATERIAL WILL INDICATING THE MAXIMUM AMOUNT OF SOURCE MATERIAL INVOLVED IN EACH PROCESS AT NAY ONE TIME, AND PROVIDING SUGH EVALUATION OF THE POTENTIAL RADIATION HAZARDS ASSOCIATED WITH EACH STEP OF THOSE PROCESSES. INDICATING THE MAXIMUM AMOUNT OF SOURCE MATERIAL INVOLVED IN EACH PROCESS AT NAY ONE TIME, AND PROVIDING SUGH EVALUATION OF THE POTENTIAL RADIATION HAZARDS ASSOCIATED WITH EACH STEP OF THOSE PROCESSES. INDICATING THE MAXIMUM AMOUNT OF SOURCE MATERIAL INVOLVED IN EACH PROCESS AT ANY ONE TIME, AND PROCESSES. INDICATING THE POTENTIAL RADIATION HAZARDS ASSOCIATED WITH EACH STEP OF THOSE PROCESSES. INDICATING THE PROVIDE AND EXAMPLE AND EXPERIENCE THAT WILL BE REQUIRED OF APENING INDICATION OF THE POTENTIAL RADIATIONS INCLUOING TRAINING AND EXPERIENCE THAT WILL BE REQUIRED OF APENING INDICATION TO PROVIDE THE DUALIFICATIONS INCLUOING TRAINING AND EXPERIENCE THAT WILL BE REQUIRED OF APENIN INT ISA'N INDIVIDUAL. TO EXTERN AND FEADAUTING PERSON RESPONSIBLE FOR RADIATION SAFETY PROGRAM (OR OF APPLICANT IF ANT ISA'N INDIVIDUAL. TO EXTERN AND FACILITIES WHICH WILL BE USED TO PROTECT HEALTH AND MINIMIZE DANGER TO LIFE OR PROPERTY LATE THE USE OF THE EOSIDMENT AND FACILITIES TO THE OPERATIONS LISTED IN ITEM SILVICUES (OF ADDIATION DETECTION INTERN INDIVIDUAL. DEETHE EOUIPMENT AND FACILITIES WHICH WILL BE USED TO PROTECT HEALTH AND MINIMIZE DANGER TO LIFE OR PROPERTY LATE THE USE OF THE EOSIDMENT AND FACILITIES TO THE OPERATIONS LISTED IN ITEM SILVE AND AND AND THE THE THE OPERATION OF THE DOTION OF THE DATION DETECTION INTERN INTERVIDENT AND FACILITIES WHICH WILL BE USED TO PROTECT HEALTH AND MINIMIZE DANGER TO LIFE OR PROPERTY L	URANIUM DELPOR	te er Nyárste Concentrate 751. U	435,000 Lbs. U
A (ISOTOPE) MUM TOTAL QUANTITY OF SOURCE MATERIAL YOU WILL HAVE ON HAND AT ANY TIME (<i>in pounds</i>) aveatery, in-process palse and solutions, and concentrates, aguiv. to 033,000 ibs. THE CHEMICAL, PHYSICAL, METALLURGICAL, OR NUCLEAR PROCESS ON PROCESSES IN WHICH THE SOURCE MATERIAL WILL INDICATING THE MAXIMUM AMOUNT OF SOURCE MATERIAL INVOLVED IN EACH PROCESS AT ANY ONE TIME. AND PROVIDING INDICATING THE MAXIMUM AMOUNT OF SOURCE MATERIAL INVOLVED IN EACH PROCESS AT ANY ONE TIME. AND PROVIDING INDICATING THE MAXIMUM AMOUNT OF SOURCE MATERIAL INVOLVED IN EACH PROCESSES. Ing, grindlug, subjects and solvery and classification for RIP ios-succhange ary if ustural uranius and endoscipuent clutions and concentrations by presipitation may by the solver and any of the process. BE THE MINIMUM TECHNICAL GUALIFICATIONS INCLUDING TRAINING AND EXPERIENCE THAT WILL BE REQUIRED OF AP- T'S SUPERVISORY PERSONNEENDLUDING PERSON RESPONSIBLE FOR RADIATION SAFETY PROGRAM (OR OF APPLICANT IF TO SUPERVISORY PERSONNEENDLUDING PERSON RESPONSIBLE FOR RADIATION SAFETY PROGRAM (OR OF APPLICANT IF ANT IS AN INDIVIDUAL). To fitter and differences output to the operations LISTED IN ITEM 9: INCLUDE: (0) RADIATION DETECTION LATED INSTRUMENTS AND FACILITIES TO THE OPERATIONS LISTED IN ITEM 9: INCLUDE: (0) RADIATION DETECTION LATED INSTRUMENTS AND FACILITIES WHICH WILL BE USED TO PROTECT HEALTH AND MINIMIZE DANGER TO LIFE OF PROPERTY AT IS SUPERVISED OF THE EQUIPMENT AND FACILITIES TO THE OPERATIONS LISTED IN ITEM 9: INCLUDE: (0) RADIATION DETECTION LATED INSTRUMENTS (INCLUDING PERSON RESPONSIBLE FOR THEALTH AND MINIMIZE DANGER TO LIFE OF PROPERTY AT IS AN INDIVIDUAL). TO LATE THE LOUIPMENT AND FACILITIES TO THE OPERATIONS LISTED IN ITEM 9: INCLUDE: (0) RADIATION DETECTION LATED INSTRUMENTS (INCLUDING HERE AND HERE OF THE OPERATIONS LISTED IN THE 9: INCLUDE: (0) RADIATION DETECTION LATED INSTRUMENTS (INCLUDING HERE AND HERE OF THE OPERATIONS LISTED IN (#) ABOVE. INCLUDING AIR SAMPLING (CONTINUES AND AND FACILITIES TO THE OPER			
<pre>wwatery, in-process pairs and solutions, and concentrate, equiv. to 635,000 ibs. E THE CHEMICAL PHYSICAL, METALLURGICAL, OR NUCLEAR PROCESS OR PROCESSES IN WHICH THE SOURCE MATERIAL WILL INDICATING THE MAXIMUM AMOUNT OF SOURCE MATERIAL INVOLVED IN EACH PROCESSES. Int, criming the maximum and experiment of source material involved by the each processes. Int, criming, subjects with drama and experiment of the concentration by presiduation and involved by the potential random of concentration of concentration by presiduation and involved by the drama and experiment of the concentration by presiduation and involved by the drama and experiment of the concentration by presiduation and by the source of the concentration of the concentration of a source of the concentration of the concentration is a source of the concentration of the concentration of the concentration of the concentration is a source of the concentration of the concentration of the concentration of the concentration is an ison individual. The supervisory personnet including person responsible for radiation safety program (or of applicant if and is an individual). The fitter and differences expected devices and contrations including the process.</pre>	(ISOTOPE)		
E THE CHEMICAL PHYSICAL, METALLURGICAL, OR NUCLEAR PROCESS OR PROCESSES IN WHICH THE SOURCE MATERIAL WILL INDICATING THE MAXIMUM AMOUNT OF SOURCE MATERIAL INVOLVED IN EACH PROCESS AT ANY ONE TIME, AND PROVIDING UGH EVALUATION OF THE POTENTIAL RADIATION MAZARDS ASSOCIATED WITH EACH STEP OF THOSE PROCESSES. Ing, grinding, support in and enhancement of the concentration for RIP ion-suchange ery of instants uration and enhancement electron and concentration by procipitation and the potential and enhancement electron and concentration by procipitation and the process. Is the minimum technical outal Fications including TRAINING and EXPERIENCE THAT WILL BE REQUIRED OF AP- try supervisions personnee-including person RESPONSIBLE FOR RADIATION SAFETY PROGRAM (OR OF APPLICANT IF ANT IS AN INDIVIDUAL). The entry second electron and enhancement of the operations including personality is for an and fications of constrainments and tradements including personsible for Radiation Safety Program (or of APPLICANT IF ANT IS AN INDIVIDUAL). The entry second electron and factures on the operations listed in intervention of the approximation of applicant if and is an individual. The equipment and factures on the operations listed in any second is approximation of constrained and fications of constraineers of the operations listed in item still cludes (or and ation detection intervention of constraineers on the operations listed in item still cludes (or addiction intervention of the potential cluding film budges, desincters, sounders, and other survey equipment is appropriate. The desciption of the operation of the potential cluding film budges, desincters, sounders, and there are support is appropriate. The desciption of the operation of the potential cluding film budges, desincters, sounders, and there are support is appropriate. The desciption is appropriate in the support of the operations listed in interver (or addiction of the support is and other survey equipment is appropriate. The desciption is appropriate of intervers in the			-
INDICATING THE MAXIMUM AMOUNT OF SOURCE MATERIAL INVOLVED IN EACH PROCESS AT ANY ONE TIME, AND PROVIDING UGH EVALUATION OF THE FOREINTIAL RADIATION MAZARDS ASSOCIATED WITH EACH STEP OF THOSE PROCESSES. Lay, grinding, subjection and expression and expression and concentration by precipitation may inverse with even and expression and expression and concentrate company by the lise char. By the source of the potential and the even and concentrate company by the lise char. By the source of the potential and the even and concentrate company by the lise char. By the source of the potential and the even and concentrate company by the lise char. By the source of the potential and the even and the concentrate company by the lise char. By the source of the potential and the event of the concentrate company by the lise char. By the source of the potential and the source of t	avertery, to process p	slyt and estutions, and concentrate,	equiv. to 633,000 the.
THE EQUIPMENT AND FACINITIES WHICH WILL BE USED TO PROTECT HEALTH AND MINIMIZE DANGER TO LIFE OF PROPERTY AT IS AN INDIVIDUAL. BE THE EQUIPMENT AND FACINITIES WHICH WILL BE USED TO PROTECT HEALTH AND MINIMIZE DANGER TO LIFE OF PROPERTY AT IS THE EQUIPMENT AND FACINITIES WHICH WILL BE USED TO PROTECT HEALTH AND MINIMIZE DANGER TO LIFE OF PROPERTY AT IS THE EQUIPMENT AND FACINITIES WHICH WILL BE USED TO PROTECT HEALTH AND MINIMIZE DANGER TO LIFE OF PROPERTY AT IS THE EQUIPMENT AND FACINITIES WHICH WILL BE USED TO PROTECT HEALTH AND MINIMIZE DANGER TO LIFE OF PROPERTY AT IS THE USED OF THE EOSIPMENT AND FACINITIES TO THE OPERATIONS LISTED IN ITEM 9: INCLUDE: (a) RADIATION DETECTION AT IS THE USED OF THE EOSIPMENT AND FACINITIES TO THE OPERATIONS LISTED IN ITEM 9: INCLUDE: (a) RADIATION OF A CONTROL OF THE DESTRONGED OF AND FACINITIES TO THE OPERATIONS LISTED IN ITEM 9: INCLUDE: (b) EOSIPHINE AND FACINITIES TO THE OPERATIONS LISTED IN ITEM 9: INCLUDE: (b) FOR THE EOSIPHING OF A AT IS THE DISCONT OF THE EOSIPHING AND FACINITIES TO THE OPERATIONS LISTED IN ITEM 9: INCLUDE: (c) RADIATION OF A CONTROL OF THE EOSIPHING AND FACINITIES TO THE OPERATIONS LISTED IN ITEM 9: INCLUDE: (c) RADIATION OF A AT IS THE DISCONT OF A DATE OF THE OPERATIONS INSTRUMENTS LISTED IN ITEM 9: INCLUDE: (c) RADIATION OF A CONTROL OF THE EOSIPHIC OF A DATE	NDICATING THE MAXIMUM AMOL DUGH EVALUATION OF THE POTENTI	JNT OF SOURCE MATERIAL INVOLVED IN EACH PROCESS / IAL RADIATION HAZARDS ASSOCIATED WITH EACH STEP C IN MALL LANDING, AND CLASS CLOCKING,	AT ANY ONE TIME, AND PROVIDING OF THOSE PROCESSES.
BE THE MINIMUM TECHNICAE QUALIFICATIONS INCLUDING TRAINING AND EXPERIENCE THAT WILL BE REQUIRED OF AP- TYS SUPERVISORY PERSONNEE-INCLUDING PERSON RESPONSIBLE FOR RADIATION SAFETY PROGRAM (OR OF APPLICANT IF ANT IS AN INDIVIDUAL).			
T'S SUPERVISORY PERSONNED INCLUDING PERSON RESPONSIBLE FOR RADIATION SAFETY PROGRAM (OR OF APPLICANT IF ANT IS AN INDIVIDUAL).	Lieu calus Up to 10,2	66 15. U at one step in process.	
T'S SUPERVISORY PERSONNED INCLUDING PERSON RESPONSIBLE FOR RADIATION SAFETY PROGRAM (OR OF APPLICANT IF ANT IS AN INDIVIDUAL).			
ANT IS AN INDIVIDUAL). 10 URLEAST THE OUTPOINTS AND STANDARDS USED IN CALIBRATING INSTRUMENTS LISTED IN (a) ABOVE, INCLUDING AIR SAMPLING 10 URLEAST AND STANDARDS USED IN CALIBRATING INSTRUMENTS LISTED IN (a) ABOVE, INCLUDING AIR SAMPLING 10 URLEAST AND STANDARDS USED IN CALIBRATING INSTRUMENTS LISTED IN (a) ABOVE, INCLUDING AIR SAMPLING 10 URLEAST AND STANDARDS USED IN CALIBRATING INSTRUMENTS LISTED IN (a) ABOVE, INCLUDING AIR SAMPLING 10 URLEAST AND STANDARDS USED IN CALIBRATING INSTRUMENTS LISTED IN (a) ABOVE, INCLUDING AIR SAMPLING 10 URLEAST AND STANDARDS USED IN CALIBRATING INSTRUMENTS LISTED IN (a) ABOVE, INCLUDING AIR SAMPLING 10 URLEAST AND STANDARDS USED IN CALIBRATING INSTRUMENTS LISTED IN (a) ABOVE, INCLUDING AIR SAMPLING 10 URLEAST AND STANDARDS USED IN CALIBRATING INSTRUMENTS LISTED IN (a) ABOVE, INCLUDING AIR SAMPLING 10 URLEAST AND STANDARDS USED IN CALIBRATING INSTRUMENTS LISTED IN (a) ABOVE, INCLUDING AIR SAMPLING 10 URLEAST AND STANDARDS USED IN CALIBRATING INSTRUMENTS LISTED IN (a) ABOVE, INCLUDING AIR SAMPLING 10 URLEAST AND STANDARDS USED IN CALIBRATING INSTRUMENTS LISTED IN (b) ABOVE, INCLUDING AIR SAMPLING 10 URLEAST AND ARDS USED IN CALIBRATING INSTRUMENTS LISTED IN (b) ABOVE, INCLUDING AIR SAMPLING 10 URLEAST AND ARDS USED IN CALIBRATING INSTRUMENTS LISTED IN (b) ABOVE, INCLUDING AIR SAMPLING 10 URLEAST AND ARDS USED IN CALIBRATING INSTRUMENTS LISTED IN (b) ABOVE, INCLUDING AIR SAMPLING 10 ABOVE, AND STANDARDS USED IN CALIBRATING INSTRUMENTS LISTED IN (b) ABOVE, INCLUDING AIR SAMPLING 10 ABOVE, AND STANDARDS USED IN CALIBRATING INSTRUMENTS LISTED IN (c) ABOVE, INCLUDING AIR SAMPLING 10 ABOVE, AND STANDARDS USED IN CALIBRATING INSTRUMENTS LISTED IN (c) ABOVE, INCLUDING AIR SAMPLING 10 ABOVE, AND STANDARDS USED IN CALIBRATING INSTRUMENTS LISTED IN (c) ABOVE, INCLUDING AIR SAMPLING 10 ABOVE,	BE THE MINIMUM TECHNICAL QUA	ALIFICATIONS INCLUDING TRAINING AND EXPERIENCE T	PROGRAM OR OF APPLICANT IF
Signation of constrained and the second second states of the second second states of the second seco	ANT IS AN INDIVIDUAL)		-
BE THE EQUIPMENT AND EAGLETTIES WHICH WILL BE USED TO PROTECT HEALTH AND MINIMIZE DANGER TO LIFE OR PROPERTY LATE THE USE OF THE EQUIPMENT AND FACILITIES TO THE OPERATIONS LISTED IN ITEM 9: INCLUDE: (a) RADIATION DETECTION LATED INSTRUMENTS (including film budges, dosinators, counters, nir sampling, and other survey equipment as appropriate. The description of detection instruments should include the instrument characteristics such as type of radiation detected, window thickness, and the range(s) of each in-). To lettest as established property and details for this item as well as items if the strument of the structure of the			
THE EQUIPMENT AND FACILITIES WHICH WILL BE USED TO PROTECT HEALTH AND MINIMIZE DANGER TO LIFE OR PROPERTY LATE THE USE OF THE COUPMENT AND FACILITIES TO THE OPERATIONS LISTED IN ITEM 9: INCLUDE: (a) RADIATION DETECTION LATED INSTRUMENTS (including film badges, downeters, counters, air sampling, and other survey equipment as appropriate. The description of detection instruments should include the instrument characteristics such as type of radiation detected, window thickness, and the range(s) of cach in-). Control of the strument characteristics such as type of radiation detected, window thickness, and the range(s) of cach in-). Control of the strument characteristics such as type of radiation detected, window thickness, and the range(s) of cach in-). Control of the strument of the strument characteristics such as type of radiation detected, window thickness, and the range(s) of cach in-). Control of the strument of the strum	and the second state of the second state	ry groep and consister percenter rate	
BE THE EQUIPMENT AND FACILITIES WHICH WILL BE USED TO PROTECT HEALTH AND MINIMIZE DANGER TO LIFE OR PROPERTY LATE THE USE OF THE EOSIMMENT AND FACILITIES TO THE OPERATIONS LISTED IN ITEM 9; INCLUDE: (a) RADIATION DETECTION LATED INSTRUMENTS (including film badges, docincters, or sampling, and other survey equipment as appropriate. The description of detection instruments should include the instrument characteristics such as type of radiation detected, window (bickness, and the range(s) of each in-). To letters and etables property and detection detected, window (bickness, and the range(s) of each in-). To letters and etables property and detection for this strument in the survey equipment as appropriate. The description of letters and etables property and detection detected, window (bickness, and the range(s) of each in-). To letters and etables property and detection for this is the survey of the survey o			
LATED INSTRUMENTS (including film badges, dosineters, sounters, air sampling, and other survey equipment as appropriate. The description of detection instruments should include the instrument characteristics such as type of radiation detected, window thickness, and the range(s) of each in- to lotters and estimate the instrument characteristics such as type of radiation detected, window thickness, and the range(s) of each in- to lotters and estimate the instrument characteristics such as type of radiation detected, window thickness, and the range(s) of each in- to lotters and estimate the instrument characteristics such as type of radiation detected, window thickness, and the range(s) of each in- to lotters and estimate the instrument characteristics such as type of radiation detected, window thickness, and the range(s) of each in- to lotters and estimate the instrument characteristics such as type of radiation detected, window thickness, and the range(s) of each in- to lotters and estimate the instrument characteristics such as type of radiation detected, window thickness, and the range(s) of each in- lotters and estimate the instrument characteristics such as type of radiation detected, window thickness, and the range(s) of each in- lotters and estimate the instrument characteristics and the range of the superior of the superio		S WHICH WILL BE USED TO PROTECT HEALTH AND MINIM	IZE DANGER TO LIFE OR PROPERTY
derection instruments should include the instrument characteristics such as type of radiation detected, window thickness, and the range(s) of each in- to Lotters and etheched reports and details for this item as uplication detected, window thickness, and the range(s) of each in- to Lotters and etheched reports and details for this item as uplication detected, window thickness, and the range(s) of each in- to Lotters and etheched reports and details for this item as uplication detected, window thickness, and the range(s) of each in- to Lotters and etheched reports and details for this item as uplication detected, window the set of the set	LATE THE USE OF THE EQUIPMENT /	AND FACILITIES TO THE OPERATIONS LISTED IN ITEM 9; IN	NCLUDE: (a) RADIATION DETECTION
2 onbuilted on August M, 1961; April 19, 1961; August M, 1961; Onbober 14, Augus 6, 1962; July 11, 1962. HOD. FREQUENCY, AND STANDARDS USED IN CALIBRATING INSTRUMENTS LISTED IN (a) ABOVE. INCLUDING AIR SAMPLING IPMENT (for film badges, specify method of calibrating and processing, or name supplier).	detection instruments should include the i	instrument characteristics such as type of radiation detected, window	w thickness, and the range(s) of each in-
HOD. FREQUENCY, AND STANDARDS USED IN CALIBRATING INSTRUMENTS LISTED IN (a) ABOVE. INCLUDING AIR SAMPLING IPMENT (for film badges, specify method of calibrating and processing, or name supplier).	the second se		
HOD. FREQUENCY, AND STANDARDS USED IN CALIBRATING INSTRUMENTS LISTED IN (a) ABOVE. INCLUDING AIR SAMPLING IPMENT (for film badges, specify method of calibrating and processing, or name supplier).	z ontraition on Johnsoy		, 1961; Cousser 1A,
IPMENT (for film badges, specify method of calibrating and processing, or name supplier).	June 6, 2762; July 11,	, refer	
base coferences for the east.			ABOVE. INCLUDING AIR SAMPLING
		A	
	dala colecument col u n		24 ₈

1

Page 2


E .

NTILATION EQUIPMENT WHICH WILL BE USED IN OPERATIONS WHICH PRODUCT DUST, FUMES, MISTS, OR CASES, INCLUDING AN VIEW SHOWING TYPE AND LOCATION OF HOOD AND FILTERS, MINIMUM VELOCITIES MAINTAINED AT HOOD OPENINGS AND PRO-DURES FOR TESTING SUCH EQUIPMENT.

: above references for this part.

RIBE PROPOSED PROCEDURES TO PROTECT HEALTH AND MINIMIZE DANGER TO LIFE AND PROPERTY AND RELATE THESE PRO-RES TO THE OPERATIONS LISTED IN ITEM 9; INCLUDE: (#) SAFETY FEATURE: AND PROCEDURES TO AVOID NONNUCLEAR ACCI-S. SUCH AS FIRE, EXPLOSION, ETC., IN SOURCE MATERIAL STORAGE AND PROCESSING AREAS

above references for this part and parts (b) and (c) below.

TE PRODUCTS: If none will be generated, state "None" opposite (a), below. If waste products will be generid, check here and explain on a supplemental sheet:

) Quantity and type of radioactive waste that will be generated. Hill tailing officient.

) Detailed procedures for waste disposal. **After to reporte submitted July 5, 1950 and** RODUCTS FOR DISTRIBUTION TO THE GENERAL PUBLIC UNDER AN EXEMPTION CONTAINED IN

CFR 40 ARE TO BE MANUFACTURED, USE A SUPPLEMENTAL SHEET TO FURNISH A DETAILED SCRIPTION OF THE PRODUCT, INCLUDING:

PERCENT SOURCE MATERIAL IN THE PRODUCT AND ITS LOCATION IN THE PRODUCT. PHYSICAL DESCRIPTION OF THE PRODUCT INCLUDING CHARACTERISTICS, IF ANY, THAT WILL PREVENT INHALATION OR INGESTION OF SOURCE MATERIAL THAT MIGHT BE SEPARATED FROM THE PRODUCT.

BETA AND BETA PLUS GAMMA RADIATION LEVELS (Specify instrument used, date of calibration and calibration technique used) AT THE SURFACE OF THE PRODUCT AND AT 12 INCHES. METHOD OF ASSURING THAT SOURCE MATERIAL CANNOT BE DISASSOCIATED FROM THE MAN-UFACTURED PRODUCT.

CERTIFICATE

(This item must be completed by applicant)

applicant, and any official executing this certificate on behalf of the applicant named in Item 2, fy that this application is prepared in conformity with Title 10, Code of Federal Regulations, 40, and that all information contained herein, including any supplements attached hereto, is and correct to the best of our knowledge and belief.

	THE ARACLIEDA COMPANY
SAECT Y LE	(Applicant named in Item 2)
Autor, 2. 1964 JUL - 61988 A 197	(Print of type name under signature)
AIL SECTION DOCKET OLERK	Nin sale gane
	ertifying official authorized to act on behalf of the applicant)

NG: 18 U.S.C. Section 1001; Act of June 25, 1948; 62 Stat. 749; makes it a criminal offense to make a willfully false statement or representation to any department or agency of the United States as to any matter within its jurisdiction.

合 U.S. GOVERNMENT PRINTING OFFICE: 1968--O-295-054

SEP 8 1965

. S.

:DFH 665 -647, as renewed

> The Anaconda Company P. O. Box 638 Grants, New Mexico 87020

Attention: Mr. A. J. Fitch Monager

Gentlemen:

Enclosed is AEC Source Material License No. SUA-647, as

renewed.

Very truly yours,

Donald A. Nussbaumer, Chief Source and Special Nuclear Materials Branch Division of Materials Licensing

Enclosure: SUA-647, as renewed DISTRIBUTION: Doc. Rm. Br. & Div. rfs Compliance IV Suppl. State Health N. Doulos (3) ML E. C. VanBlarcom, RM (2)

FICE	ML	ML			
	P	IN		-	
NAME 🕨	DHarmonfic	DNussbaumer	 		
NAME 🕨	DHarmon/ic 8/1/3/65	DNucchaumer	 		

			* 		
Form AEC		ED STATES			
	SOURCE MA	TERIAL LICI	ENSE Page 1 of 2 Pages		
Part 40, "Licens made by the lice the source mate designated belo accordance with specified in Sec regulations, and Code of Federal	ing of Source Material," and in ensee, a license is hereby issued erial designated below; to use w; and to deliver or transfer the regulations in said Part. ction 183 of the Atomic Energy orders of the Atomic Energy Co	reliance on sto authorizing th such material such materia This license sh y Act of 1954 mmission, now	Code of Federal Regulations, Chapter 1, atements and representations heretofore be licensee to receive, possess and import for the purpose(s) and at the place(s) l to persons authorized to receive it in call be deemed to contain the conditions and is subject to all applicable rules, or hereafter in effect, including Title 10, s for Protection Against Radiation," and		
	Licensee		3. License No.		
1. Name The .	Anaconda Company		SUA-647, as renewed		
3)			4. Expiration Date		
2. Address P.	ants, New Mexico		August 31, 1968		
			5. Docket No.		
			40~665		
6. Source Mater Uranium		licensee this lice			
			Unlimited		
	CO	NDITIONS			
8. Authorized us stated in Ite	æ (Unless otherwise specified, t m 2 αbove.)	he authorized	place of use is the licensee's address		
For proces the licens July 5 and October 14		ebruary 3, ary 30, Apr			
9. Authorized	Authorized Place of Use: The licensee's uranium processing facility located near Grants, New Mexico.				
and 20.203 vided all Section 20	(f)(2), 10 CFR 20, for entrances to the mill ar	areas and c e conspicuo words, "Any	rements of Section 20.302(e)(2) containers within the mill pro- susly posted in accordance with r area or container within		

All the state of the second se

٠

•

- 401/410A

U. S. ATOMIC ENERGY COMMISSION

Page__2_of_2_Pages

SOURCE MATERIAL LICENSE Supplementary Sheet

License Number_SUA-647

- . The licensee shall immediately notify the Director, Region IV, Division of Compliance, USAEC, Denver Colorado, by telephone and telegraph of any failure in an earth dam retention system which results in a release of radioactive material into unrestricted areas. This requirement is in addition to the requirements of 10 CFR 20.
- . The licensee is hereby authorized to incinerate discarded wooden equipment containing source material and return the ashes to process for recovery of the contained uranium in accordance with the procedures described in his application dated October 14, 1961.
- . The licensee is hereby authorized to dispose of radioactive liquid waste resulting from uranium processing operations into a subterranean disposal well according to the procedures described in his application dated July 5, 1960, and subject to the following conditions:
 - (a) Records shall be maintained of the volume of waste disposed, the average concentration of the radioactive constituents and the natural water head pressures and injection rates.
 - (b) Increases in injection pressure above that produced by the natural water head of the waste effluent stream is not authorized.
 - (c) A yearly summary report shall be submitted to the Division of Materials Licensing, USAEC, Washington, D. C., describing the status of the injection program, including average monthly liquid injection rates, the concentration of radioactive constituents, average concentrations of uranium, radium-226, and thorium-230 in monitored well and surface waters, and the level of the water table. Reports shall be submitted no later than August 31 of each year.

For the U.S. Atomic Energy Commission

SEP 8 1965

- Nivisian of Metallin ticania-

FROM	DATE OF DOCUMENT,			DATE RECEIVED		NO. 2522	
Crimes, New Merico				REPOR1:		OTHER:	
10,	ORIG.:	CC:		OTHER	:		
DML.	ACTION NEC NO ACTION	ريب				DATE ANSWERED. BY:	
CLASSIF., POST OFFICE Cert. 051394	FILE CODE:	40-665					
DESCRIPTION: (Must Be Unclassified)		REFERRED 10		DATE	RE	CEIVED BY	DAT
tr. trans:		Nussbau w/file 1-com					
(L CYS.)							
ppl. for renewal of SUA-6472							
REMARKS: Mail Room Distribution; 1-FDR Copy					AGKH)
						<i>:</i>	

DOCKET. NO. 40-665

THE ANACONDA COMPANY

New Mexico Operations

AGNNOWLEDGED

2522

P. O. Box 638, Grants, New Mexico

A. J. FITCH MANAGER

July 21, 1965

United States Atomic Energy Commission Washington, D. C. 20545

Attention: Director, Division of Materials Licensing

Gentlemen:

Herewith is our application, in quadruplicate on Form AEC-2, for renewal of our Source Material License No. SUA-647, which is due to expire September 30, 1965.

Yours very truly,

A. J. FITCH

AJF:MA Encl. DOCKETED USAEC 26 1965 -REGULATORY 0 MAIL SECTION NON DOCT 1004 DOGKET CLERK VROTA BALL WHOD ADJENS DRUID SY Copy Provided 1/22 Compliance (12) EE E MI SE TOP STOL GENED

FORM APPROVED BUREAU OF BUDGET NO. 38-R002.

UNITED STATES ATOMIC ENERGY COMMISSION

File Copy

APPLICATION FOR SOURCE MATERIAL LICENSE

Pursuant to the regulations in Title 10, Code of Federal Regulations, Chapter 1, Part 40, application is hereby made for a license to receive, possess, use, transfer, deliver or import into the United States, source material for the activity or activities described.

1. (Check one)	2. NAME OF APPLICANT	
(a) New license	2. NAME OF APPLICANT	
(b) Amendment to License No.	The Anaconda Company	<u>.</u>
x (c) Renewal of License No. SUA-647	3. FRINCIPAL BUSINESS ADDRESS	
(d) Previous License No.	P. O. Box 638, Grants, New Mex:	Ico 87020
4. STATE THE ADDRESS(ES) AT WHICH SOURCE MATERIA		
	AL WILL BE POSSESSED OR USED	
The Anaconda Company, Bluewater Plan	nt, near Bluewater, New Mexico, addre	essed as above.
5. BUSINESS OR OCCUPATION	6. (a) IF APPLICANT IS AN INDIVIDUAL, STATE	(b) AGE
Mining and Milling Uranium Ore	CITIZENSHIP	
7. DESCRIBE PURPOSE FOR WHICH SOURCE MATERIAL W	I /ILL BE USED	<u> </u>
For feed material to hydrometallurgi	ical milling processes for the recover	erv and
	to a precipitated and dried concentrated	
known as "yellow cake."		
· · ·		
8. STATE THE TYPE OR TYPES, CHEMICAL FORM OR FO POSSESS, USE, OR TRANSFER UNDER THE LICENSE	ORMS, AND QUANTITIES OF SOURCE MATERIAL YOU P	ROPOSE TO RECEIVE,
(a) TYPE (b) CHEMICAL FORM	(c) PHYSICAL FORM (Including (d) MAXI	MUM AMOUNT AT
	% U or Th.) ANY ONE	TIME (in pounds)
NATURAL URANIUM Uraninite type minera		000 lbs. U
Uranyl Sulphate or Hy	ydrate Concentrate 75% U 485,0	000 Lbs. U
URANIUM DEPLETED IN THE U-235 ISOTOPE		
THORIUM (ISOTOPE)		
(e) MAXIMUM TOTAL QUANTITY OF SOURCE MATERIAL	L YOU WILL HAVE ON HAND AT ANY TIME (in pounds)	
	solutions, and concentrate, equiv.	
9. DESCRIBE ¹ THE CHEMICAL, PHYSICAL, METALLURGICAL, BE USED, INDICATING THE MAXIMUM AMOUNT OF SOUF A THOROUGH EVALUATION OF THE POTENTIAL RADIATI	. OR NUCLEAR PROCESS OR PROCESSES IN WHICH THE SC RCE MATERIAL INVOLVED IN EACH PROCESS AT ANY ONE ON HAZARDS ASSOCIATED WITH EACH STEP OF THOSE PR	URCE MATERIAL WILL TIME, AND PROVIDING OCESSES.
	leaching, and classification for RIP	
	sequent elution and concentration by	
	cum-packaging of this concentrate con	
as yellow cake. Up to 10,200 Lhs. 1		
 DESCRIBE THE MINIMUM TECHNICAL QUALIFICATION PLICANT'S SUPERVISORY PERSONNEL INCLUDING PER APPLICANT IS AN INDIVIDUAL). 	S INCLUDING TRAINING AND EXPERIENCE THAT WILL I SON RESPONSIBLE FOR RADIATION SAFETY PROGRAM (SE REQUIRED OF AF- OR OF APPLICANT IF
Pofer to letter and struchments subm	nitted January 30, 1961 giving organi	rution and
qualifications of supervisory group		
safety program.	and teeninger personner responsible	ION RADIALION
Bares program.		
11. DESCRIBE THE EQUIPMENT AND FACILITIES WHICH WIL	L BE USED TO PROTECT HEALTH AND MINIMIZE DANGER	TO LIFE OR PROPERTY
	IESTOTHE OPERATIONS LISTED IN ITEM 9: INCLUDE: (a) F leters, counters, air sampling, and other survey equipment as appro- urecteristics such as type of radiation detected, window thickness, ar	
Refer to letters and attached report	ts and details for this item as well	as items 10 and
	pril 19, 1961; August 17, 1961; Octob	
	cy 11, 1963; February 11, 1964; Febru	
(b) METHOD, FREQUENCY, AND STANDARDS USED IN (CALIBRATING INSTRUMENTS LISTED IN (4) ABOVE INCL	
EQUIPMENT (for film badges, specify method of calibrating	and processing, or name supplier).	
See above.		
		CT LU
		2511

FORM AEC-2 (3-64) Previous editions are obsolete.

4

.

ALL CONTRACTOR STATE

•

!

NTILATION EQUIPMENT WHICH WILL AN VIEW SHOWING TYPE AND LOCATI DURES FOR TESTING SUCH EQUIPME	ON OF HOOD AND FI	ATIONS WHICH F	RODUCE DUST VELOCITIES MA	FUMES, MIS	TS, OR GASES, HOOD OPENING	INCLUDING 5 AND PRO-
above.						
·	·			· .	•••••	•
RIBE PROPOSED PROCEDURES TO PI IRES TO THE OPERATIONS LISTED IN 'S, SUCH AS FIRE, EXPLOSION, ETC	N ITEM 9; INCLUDE:	(a) SAFETY FEAT	URES AND PRO	CEDURES TO	Y AND RELATE 1 AVOID NONNUC	HESE PRO- LEAR ACCI-
above references for th	is part and p	parts (b) ar	nd (c).			
MERGENCY PROCEDURES IN THE EVE	NT OF ACCIDENT'S M	HICH MIGHT INVO	DLVE SOURCE M	ATERIAL.		
					1	
	·, .			. · · ·	. • .	
TAILED DESCRIPTION OF RADIATION	SURVEY PROGRAM	AND PROCEDURE				
	•••		•	. :		
			. ·	•		· · ·
TE PRODUCTS: If none will be ed, check here E and explain or) Quantity and type of radioa) Detailed procedures for was	n a supplemental active waste that to disposal	sheet:	ted. Mil rts submit	_		5
PERCENT SOURCE MATERI PHYSICAL DESCRIPTION OF PREVENT INHALATION OF FROM THE PRODUCT. BETA AND BETA PLUS GAM calibration technique used) A' METHOD OF ASSURING TH UFACTURED PRODUCT.	F THE PRODUC R INGESTION (MMA RADIATIO T THE SURFAC	T INCLUDING OF SOURCE M N LEVELS (Sp E OF THE PRO	CHARACTE ATERIAL T ecify instrum DDUCT AND	ERISTICS, I HAT MIG ent used, d AT 12 INC	F ANY, THA HT BE SEP ate of celibre CHES.	ARATED
	(17) Y			u <u>-</u> · -		
`		TIFICATE				
applicant, and any official of	prepared in co on contained l	certificate on onformity with herein, includ	behalf of th h Title 10,	Code of F	ederal Regu	lations,
ana ang ang ang ang ang ang ang ang ang	. ,	<u> </u>		ONDA COM		
July 21, 1965	есней V1087 Energy Comm.	SHOLY 'S T	Ma	J. Fitch nager		plicant)
ING: 18 U.S.C. Section 1001; Act of ment or representation to an	of June 25, 1948; 62	Stat. 749; makes gency of the Unit	∶it a criminal o ed States as to	flense to ma any matter v	ke a willfully fa within its jurise	aise state- liction.

U.S. GOVERNMENT PRINTING OFFICE: 1964-0-706-977

Page 2

. . .

EC-2) ditions lete.

.

.

A

 \cap

FORM APPROVED BUREAU OF BUDGET NO. 38-R002.

UNITED STATES ATOMIC ENERGY COMMISSION

APPLICATION FOR SOURCE MATERIAL LICENSE

iant to the regulations in Title 10, Code of Federal Regulations, Chapter 1, Part 40, application is hereby for a license to receive, possess, use, transfer, deliver or import into the United States, source material he activity or activities described.

k onc)	2. NAME OF APPLICANT
1) New license	The Anaconda Coupeay
 Amendment to License No. Renewal of License No. 	3. PRINCIPAL BUSINESS ADDRESS
 Renewal of License No Previous License No 	P. C. Box 638, Grants, New Maxico 67020
THE ADDRESS(ES) AT WHICH SOURCE MAT	
incomés Coopany, Diversiter S	Mant, mar Bluesater, New Hoxico, addressed as above.
ESS OR OCCUPATION	6. (a) IF APPLICANT IS AN INDIVIDUAL, STATE (b) AGE
e and Milling Domnion Ore	
RIBE PURPOSE FOR WHICH SOURCE MATERIA	
	ngloal miling processes for the recovery and
	into a procipitated and dried concentrate comonly
as "yollow cake."	
THE TYPE OR TYPES, CHEMICAL FORM C SS, USE, OR TRANSFER UNDER THE LICENS	OR FORMS, AND QUANTITIES OF SOURCE MATERIAL YOU PROPOSE TO RECEIVE.
i) TYPE (b) CHEMICAL FOR	
	$\frac{\% U \text{ or } Th.)}{\% U \text{ or } Th.)}$ ANY ONE TIME (in pounds)
AL URANIUM	apple Crude Gre 4.711 B 156.000 Hea. 5
Rengel Belphyte or	Rydenbo Generalceste 735 D 465,000 Line. B
DEPLETED IN 5 ISOTOPE	
JM (ISOTOPE)	
XIMUM TOTAL QUANTITY OF SOURCE MATE	ERIAL YOU WILL HAVE ON HAND AT ANY TIME (in pounds)
leventery, te-presses pulps a	ad adiations, and economicute, equiv. to 625,000 lbs.
IBE THE CHEMICAL, PHYSICAL, METALLURGI	ICAL, OR NUCLEAR PROCESS OR PROCESSES IN WHICH THE SOURCE MATERIAL WILL SOURCE MATERIAL INVOLVED IN EACH PROCESS AT ANY ONE TIME, AND PROVIDING
ROUGH EVALUATION OF THE POTENTIAL RAD	NATION HAZARDS ASSOCIATED WITH EACH STEP OF THOSE PROCESSES.
ung, grinding, subjuric est	
	abonyant cistics and concentration by precipitation - demo-packaging of this concentrate openably bases
	. I at one stop to process.
	na an ann ann an ann an ann ann an ann an a
RIBE THE MINIMUM TECHNICAL QUALIFICAT	TIONS INCLUDING TRAINING AND EXPERIENCE THAT WILL BE REQUIRED OF AP-
ICANT IS AN INDIVIDUAL).	PERSON RESPONSIBLE FOR RADIATION SAFETY PROGRAM (OR OF APPLICANT IF
t to letter and attackments a	abattad January 30, 1961 siving organization and
Clearloss of supervisory geo	up and taximized parameter responsible for rediction
RIBE THE FOURPMENT AND FACILITIES WHICH	WILL BE USED TO PROTECT HEALTH AND MINIMIZE DANGER TO LIFE OR PROPERTY
RELATED INSTRUMENTS (including film badges, d	CILITIES TO THE OPERATIONS LISTED IN ITEM 9; INCLUDE: (a) RADIATION DETECTION dosimeters, counters, air sampling, and other survey equipment as appropriate. The description of
on detection instruments should include the instrumer	at characteristics such as type of radiation detected, window thickness, and the range(s) of each in-
to letters and attached sup	wets and details for this item as well as items 10 and
Antibud on James 31, 1961;	April 19, 1961; Angust 17, 1961; Outsber 14, 1961;
6, 1982; July 11, 1962; Pake	wary 11, 1963; Peteromy 11, 1964; Peteroney 5, 1965.
ETHOD, FREQUENCY, AND STANDARDS USED	D IN CALIBRATING INSTRUMENTS LISTED IN (a) ABOVE, INCLUDING AIR SAMPLING
DUPMENT (for film badges, specify method of calibration	sting and processing, or name supplier).
1.	

,)	(in the second s	Page 2		; ;
INTILATION EQUIPMENT WHICH AN VIEW SHOWING TYPE AND LO DURES FOR TESTING SUCH EQ	DCATION OF HOOD /	OPERATIONS WHICH	PRODUCE DUST, FUI M VELOCITIES MAINTA	MES, MISTS, OR GASES, INCLUDING AINED AT HOOD OPENINGS AND PRO-
Bbove.				
RIBE PROPOSED PROCEDURES RES TO THE OPERATIONS LIS" S. SUCH AS FIRE, EXPLOSION,	FED IN ITEM 9; INC	LUDE: (a) SAFETY FE	ATURES AND PROCEDI	ROPERTY AND RELATE THESE PRO- URES TO AVOID NONNUCLEAR ACCI- S.
above references for	this part a	nd parts (b) :	and (c).	
MERGENCY PROCEDURES IN TH	E EVENT OF ACCIDE	NTS WHICH MIGHT IN	IVOLVE SOURCE MATE	RIAL DOCKETED USAEC JUL 2 6 1965
ETAILED DESCRIPTION OF RADI	ATION SURVEY PRO	OGRAM AND PROCEDU	RES.	AEUOLATUNY MAIL SECTION QA DOCKET CLEAK
TE PRODUCTS: If none weed, check here and expla) Quantity and type of re-) Detailed procedures for	<i>in on a supplem</i> adioactive wa <mark>s</mark> te	ental sheet: that will be gene	rated.	waste products will be gener-
CFR 40 ARE TO BE M. ISCRIPTION OF THE PR PERCENT SOURCE MA PHYSICAL DESCRIPTION	ANUFACTURED ODUCT, INCLU FERIAL IN THE ON OF THE PRO	GENERAL PUBL , USE A SUPPLE DING: 5 PRODUCT AND DDUCT INCLUDI	IC UNDER AN EX MENTAL SHEET ITS LOCATION I	XEMPTION CONTAINED IN TO FURNISH A DETAILED N THE PRODUCT. STICS, IF ANY, THAT WILL T MIGHT BE SEPARATED
calibration technique use	d) AT THE SUP THAT SOURCE	RFACE OF THE P	RODUCT AND AT	used, date of calibration and 12 INCHES. DCIATED FROM THE MAN-
ſ	(This item m	CERTIFICATI		
ify that this applicatio	cial executing n is prepared nation contai	this certificate c in conformity v ned herein, inclu	n behalf of the a vith Title 10, Coo uding any supple	pplicant named in Item 2, de of Federal Regulations, oments attached hereto, is
	•		Applicant nen	DA COMPANY ned in Item 2)
July 21, 1965	110 0 1110 1110 1110 1110 1110 1110 111	IV N BY!	(Print of type name	under signature)
	22 2 Wd	17 - Tillerofreert	fying official authorized	to act on behalf of the zpplicant)

-5

ING: 18 U.S.C. Section 1001; Act of June 25, 1948; 62 Stat. 749; makes it a criminal offense to make a willfully false statement or representation to any department on agency of the United States as to any matter within its jurisdiction.

U.S. GOVERNMENT PRINTING OFFICE : 1964-0-706-977

40-64 Received w/Ltr Lated_

December 26, 1968

Regulatory

File Cy.

Beginning on January 1, 1969 film badges will be assigned to 45 persons in various departments of the plant in our continuing program of radiation surveillance and control.

The purpose of this notice is to inform you that you will be wearing a film badge during the coming year and to provide you with instructions concerning the proper use of the film badge so that accurate and reliable results will be obtained from our film badge survey.

The film badges are to be worn whenever you are on shift. The film badge should be worn completely uncovered and facing outward. The badges are supplied with a clip so that they may be conveniently attached to a breast pocket.

The film badge must be protected against excessive heat, pressure and moisture. The film badge will be enclosed in a polyethylene sack to prevent moisture damage.

It is most important that you do not remove the film packet from the film badge or take the film badge apart. There are filters contained in the film badge that must be accurately positioned with relation to the film packet. Any movement of the film packet might result in an incorrect evaluation of radiation exposure.

The film badges will be distributed by the guards at the main gate. It will be necessary for you to stop at the gate and pick up your film badge from the guards at the start of the shift. The film badge is to be worn during the shift and returned to the guards at the gate at the end of the shift. A record will be kept by the guards of the issues and returns.

The film badge program is being conducted to evaluate the external radiation to which employees may be exposed and thereby to prevent any possible overexposure. Therefore, if you are wearing a film badge, it is in your own best interest to protect the film badge from damage or loss and to follow the instructions that have been given for the use and wearing of film badges.

Kalph M. Wilde

RALPH M. WILDE Radiation Safety Director

RMW:hw

c: A. J. Fitch E. C. Peterson

HQ 9401 (9-66)					. ti	NTE	RME	PIAT	E-ACT	ON-F	GRM-	1.						
REFERENCE NL																& SN		cens
61. PROGUCODE C)3. ⊓oCk /:	сьт по О 60 ;	-		TASK NO	4.		enew.	DF TASK			1.00	NTROL		⊔ice⊧ ∐a⊷62	ISE NUN	A B E R	
18 APPLICANT					10 <i>k</i>		1	CIICWA	<u> </u>		··		1562			O. RES		
The macon	da Cor	opan	y													UTASK	UL HN	(;
P. O. Box								~- <u></u>	<u> </u>	45. CL	ASSIF	CATION	1	63,	ASG. TO:			
24. CITY				27.	STATE	30, z	1P		/	33 RE	CEIVE	<u>p</u>	36	. <u>155 U E</u>	D	3	EXF	IRE
Grants				NM	IEX	87	020			YR. 69	мо. 05	DAY 12	YR.	мо.	DAY	Y·R,	MO.	
58. DESCRIPTION (M	OMMUNI		ASSIF	ED)		69	05	06	Ì.				cys	rec ¹) (f			
58. DESCRIPTION (M	UST BE	UNCL			-647			4	w/t	en er		ures -PDR	су					
	NUST BE	ONCL		ទី ប្រឹក				4	60 DIS	en en	1 1	ures -PDR -Comp	су			·)	AG	 ΤΕ
		ONCL	Lic.	SU		RE	3 tr		60 DIS	en er	1 1	ures -PDR -Comp	су			2) 		r
Ltr. reg re	NUST BE	ONCL	lic.	SU	15	an	1 tr	ans:	OTHE	en er Tribut R REFI	ICLOS	ures -PDR -Comp s	cy llan			·	L- M	<u>>.</u>
Ltr. reg rep Type ADDL/INFO. Requested		ONCL	Lic.		ЧS ТТV.	EII:	3 tr		OTHE	en er Tribut R REFI	ICLOS	ures -PDR -Comp	cy llan			YF	L- M	5.
Ltr. reg res	INTER YR.	ONCL	Lic.		ЧS ТТV.	RE 78. 93	3 tr		OTHE	en en TRIBUT R RETT Sbaum ile c	IION 1 1 ERKAL ST 2 Y &	ures -PDR -Comp s	cy Jlian r	c≘(R	agior	6	L- M	<u>).</u>

•

THE ANACONDA COMPANY

New Mexico Operations

P. O. Box 638, Grants, New Mexico

DOCKET N(O)

File Cy

Regulatory

A. J. FITCH MANAGER

May 6, 1969

Mr. Donald A. Nussbaumer, Chief Source & Special Nuclear Materials Branch Division of Materials Licensing United States Atomic Energy Commission Washington, D.C. 20545

Dear Mr. Nussbaumer:

Herewith we are resubmitting our application for renewal of Source Material License No. SUA-647, which is due to expire on July 31, 1969. In accordance with the instructions contained in your letter of December 20, 1968 and the discussions we had with Mr. Don F. Harmon during his visit to our mill on November 20, 1968, we have completed Items 1 through 8 of Form AEC-2. In lieu of the information requested in Items 9 through 14 of Form AEC-2 we have provided the information requested in the "Supplemental Sheet", where applicable. As you have suggested, we have attempted to avoid including exact engineering and construction details.

We have attempted to eliminate, insofar as possible, references to previous applications. However, we feel that the information contained in our application of July 5, 1960, concerning the disposal of radioactive liquid waste into a subterranean disposal well is essential to the evaluation of this project and should be considered as a part of our present application for license renewal.

With reference to our present license, we would like to retain the exemptions and authorizations contained in Items 10, 11, 12 and 13 of the License Conditions.

We have not replied to your request for our plans for controlling exposures to all sources of airborne radioactivity in those areas of the mill where chemical processing is being done. We have not as yet received from you a definitive statement as to how the concentration limits should be applied in these areas. We believe the guidelines that have been followed by the Division

ACKNOWLEBGED

Mr. Donald A. Nussbaumer United States Atomic Energy Commission

May 6, 1969

of Compliance for the past eight years have provided adequate protection for uranium mill workers and should continue to be applied as they have in the past.

-2-

If you require any additional information in support of our license application please let me know.

Yours very truly,

a & Fitef -----

A. J. FITCH

AJF:hw

•

Attachment

:C-2

litions etc.

JM (ISOTOPE)

UNITED STATES ATOMIC ENERGY COMMISSION

APPLICATION FOR SOURCE MATERIAL LICENSE

ant to the regulations in Title 10, Code of Federal Regulations, Chapter 1, Part 40, application is hereby for a license to receive, possess, use, transfer, deliver or import into the United States, source material le activity or activities described.

: one)		2. NAME OF APPLICANT		60
) New license	;	THE ANACONDA COMPANY	Received w/Liv Detel 5-6	0-69
) Amendmen	t to License No	PRINCIPAL BUSINESS ADDRESS		
) Renewal of	License No. SUA-647		Regulatory	File Cy
!) Previous L	icense No.	P.O. Box 638, Grants,	New Mexico 87020	
Anaconda C		will be possessed or used near Paguate, N.M., add t, near Bluewater, New N		above.
ESS OR OCCUPA	TION	(a) IF APPLICANT IS AN INDIVIDUAL CITIZENSHIP	., STATE (b) AGE	
ing and Mil	ling Uranium Ore			
IBE PURPOSE FO	DR WHICH SOURCE MATERIAL WIL	BE USED	· · · · · · · · · · · · · · · · · · ·	
feed mater	ial to hydrometallurgi	cal milling processes for	or the recovery and	
	•	o a precipitated and dri	÷	
	as "yellow cake".	o a precipitatea ana ar		
nonzy known	up yerror cane .			
	TYPES, CHEMICAL FORM OR FOR ANSFER UNDER THE LICENSE	MS, AND QUANTITIES OF SOURCE N	MATERIAL YOU PROPOSE TO R	ECEIVE,
I) TYPE	(δ) CHEMICAL FORM	(c) PHYSICAL FORM (Includit % U or Th.)	ng (d) MAXIMUM AMOUN ANY ONE TIME (in po	
AL URANIUM	Uraninite type minera	ls Crude Ore 0.31% U	150,000 lb. U	
AL OWNEROW		arate Concentrate 75% I	<u>485,000 lb.</u> U	1.380.07000 -13819
DEPLETED IN 5 ISOTOPE				

XIMUM TOTAL QUANTITY OF SOURCE MATERIAL YOU WILL HAVE ON HAND AT ANY TIME (in pounds)

inventory, in-process pulps and solutions, and concentrate, equiv. to 635,000 lb. U. BE'THE CHEMICAL, PHYSICAL, METALLURGICAL, OR NUCLEAR PROCESS OF PROCESSES IN WHICH THE SOURCE MATERIAL WILL ED, INDICATING THE MAXIMUM AMOUNT OF SOURCE MATERIAL INVOLVED IN EACH PROCESS AT ANY ONE TIME. AND PROVIDING ROUGH EVALUATION OF THE POTENTIAL RADIATION HAZARDS ASSOCIATED WITH EACH STEP OF THOSE PROCESSES.

RIBE THE MINIMUM TECHNICAL QUALIFICATIONS INCLUDING TRAINING AND EXPERIENCE THAT WILL BE REQUIRED OF AP-INT'S SUPERVISORY PERSONNEL INCLUDING PERSON RESPONSIBLE FOR RADIATION SAFETY PROGRAM FOR OF APPLICANT IF ICANT IS AN INDIVIDUAL).

RIBE THE EQUIPMENT AND FACILITIES WHICH WILL BE USED TO PROTECT HEALTH AND MINIMIZE DANGER TO LIFE OR PROPERTY RELATE THE USE OF THE EQUIPMENT AND FACILITIES TO THE OPERATIONS LISTED IN ITEM 9: INCLUDE: (a) RADIATION DETECTION RELATED INSTRUMENTS (including film badges, dosimeters, counters, air sampling, and other survey equipment as appropriate. The description of on detection instruments should include the instrument characteristics such as type of radiation detected, window thickness, and the range(s) of each inmt).

ETHOD. FREQUENCY, AND STANDARDS USED IN CALIBRATING INSTRUMENTS LISTED IN (a) ABOVE. INCLUDING AIR SAMPLING QUIPMENT (for film backges, specify method of calibrating and processing, or name supplier).

INTILATION EQUIPMENT WHICH WILL BE USED IN OPERATIONS WHICH PRODUCE DUST, FUMES, MISTS, OR GASES, INCLUDIN AN VIEW SHOWING TYPE AND LOCATION OF HOOD AND FILTERS, MINIMUM VELOCITIES MAINTAINED AT HOOD OPENINGS AND PRO DURES FOR TESTING SUCH EQUIPMENT.
RIBE PROPOSED PROCEDURES TO PROTECT HEALTH AND MINIMIZE DANGER TO LIFE AND PROPERTY AND RELATE THESE PRO IRES TO THE OPERATIONS LISTED IN ITEM 9; INCLUDE: (#) SAFETY FEATURES AND PROCEDURES TO AVOID NONNUCLEAR ACC 'S, SUCH AS FIRE, EXPLOSION, ETC., IN SOURCE MATERIAL STORAGE AND PROCESSING AREAS.
MERGENCY PROCEDURES IN THE EVENT OF ACCIDENTS WHICH MIGHT INVOLVE SOURCE MATERIAL.
ETAILED DESCRIPTION OF RADIATION SURVEY PROGRAM AND PROCEDURES.
 TE PRODUCTS: If none will be generated, state "None" opposite (ε), below. If waste products will be genered, check here [] and explain on a supplemental sheet:) Quantity and type of radioactive waste that will be generated. i) Detailed procedures for waste disposal.
RODUCTS FOR DISTRIBUTION TO THE GENERAL PUBLIC UNDER AN EXEMPTION CONTAINED IN CFR 40 ARE TO BE MANUFACTURED, USE A SUPPLEMENTAL SHEET TO FURNISH A DETAILED ESCRIPTION OF THE PRODUCT, INCLUDING: PERCENT SOURCE MATERIAL IN THE PRODUCT AND ITS LOCATION IN THE PRODUCT. PHYSICAL DESCRIPTION OF THE PRODUCT INCLUDING CHARACTERISTICS, IF ANY, THAT WILL PREVENT INHALATION OR INGESTION OF SOURCE MATERIAL THAT MIGHT BE SEPARATED FROM THE PRODUCT.
FROM THE PRODUCT. BETA AND BETA PLUS GAMMA RADIATION LEVELS (Specify instrument used, date of calibration and calibration technique used) AT THE SURFACE OF THE PRODUCT AND AT 12 INCHES. METHOD OF ASSURING THAT SOURCE MATERIAL CANNOT BE DISASSOCIATED FROM THE MAN- UFACTURED PRODUCT.
CERTIFICATE
(This item must be completed by applicant)
applicant, and any official executing this certificate on behalf of the applicant named in Item 2 ity that this application is prepared in conformity with Title 10, Code of Federal Regulations (40, and that all information contained herein, including any supplements attached hereto, is ; and correct to the best of our knowledge and belief.
THE ANACONDA COMPANY
(Applicant named in Item 2)
()

Page 2

U.S. GOVERNMENT PRINTING OFFICE: 1964-0-706-977

ING: 18 U.S.C. Section 1001; Act of June 25, 1948; 62 Stat. 749; makes it a criminal offense to make a willfully false statement or representation to any department or agency of the United States as to any matter within its jurisdiction.

BY:

.

(Print or type name under signature) A. J. Fitch

Manger: (Title of certifying official authorized to act on behalf of the applicant)

DOCKET NO. 40-665

DESCRIPTION OF OUR ORGANIZATION

Received w/Ltr Dated 5-6-69

A current organization chart of line management in Anaconda's New Mexico Operations is attached. This presents the line and level divisions of authority for the respective descriptive titles of position and indicated areas of responsibility. These are believed to be self-evident.

×/₀

Regulatory File Cy.

QUALIFICATIONS AND EXPERIENCE OF PERSONNEL RESPONSIBLE FOR ADMINISTRATION OF THE RADIATION SAFETY PROGRAM

The Radiation Safety Director is responsible for the administration of the radiation safety program for the mill. The education and experience requirements for this position are four years of college, two years general experience, one year of technical experience and one year of directed training.

DESCRIPTION OF THE AREA IN WHICH THE MILL IS LOCATED

The Bluewater Mill of The Anaconda Company is located in Section 24, Township 12 North, Range 11 West, New Mexico Principal Meridian. The millsite is just north of Route US-66, approximately nine and one-half miles northwest of Grants, New Mexico. Surface ownership in the immediate vicinity of the mill rests with The Anaconda Company. The centers of population in the area include (1) the town of Grants, population 11,000, nine and one-half miles southeast of the mill; (2) the village of Milan, population 2,400, seven miles southeast of the mill; (3) the village of Bluewater, population 550, two miles west of the mill; and (4) The Anaconda Company housing area, population 250, one-half mile south of the mill. Outside of the above mentioned communities the area is only sparsely populated.

There are no continuously flowing streams in the immediate area of the will. The nearest drainage system, the San Jose River and its tributaries, is intermittent with surface flow occurring only after thundershowers.

The water for mill use is pumped from underground sources. The bulk of all water for industrial, agricultural and domestic uses in the area is appropriated from underground supplies.

The location of the mill, the surface drainage in the area, and the location of many of the wells in the area are shown on the attached map. (Drawing No. 5-D-51).

METHOD OF RESTRICTING MILL AND TAILINGS AREA FROM UNAUTHORIZED ENTRY

The Mill and tailings pond areas are fenced and posted with radiation caution signs as a restricted area. All access gates are either locked or guarded. A supervised guard detail, working under contract from a nationally recognized plant security agency, controls entry to the mill area at all times. Periodic patrols are made by the guards to make certain that the unguarded access gates are locked and that no unauthorized persons enter or remain in the restricted area.

DESCRIPTION OF WASTE DISPOSAL SYSTEM

The tailing disposal at the Bluewater Mill of The Anaconda Company is into a natural basin to the north of the plant area.

This basin was formed by a high lava flow escarpment across the west and south boundaries of a limited catchment area and by higher mesa formations on the north and east. Before being utilized for tailings disposal, two small lakes formed seasonally in the depression from runoff accumulations. Overflow drainage from this natural basin was to the southeast through a very narrow draw that in the beginning of tailings disposal was dammed off and backfilled with the deposit of sand tailing and of such extent as now to preclude any possible outflow or overflow.

The capability and integrity of retention of tailings within this basin are extremely high if not impregnable. Retaining dams on the southwest, south, east, and north sides of the tailings area are used for the purpose of restriction within the basin, to form a more impermeable slime-sealed bottom and periphery, and to control the collection of drained supernatant water for removal and deep-well disposal. These retaining dams were built using accepted engineering and construction methods.

Our greater concern in the retention of tailings has been that of tailings water seepage into the underlying alluvium and rock formations. The objective of our decantation and deep-well disposal system for tailings water has been to present a minimal seepage area by regulation of the level and areal extent of the water collection pond within the retention area. It is believed that seepage will be somewhere between 7% to nil of the total water discarded to tailings. This is indicated by water balances to be less than 50 gpm.

The tailings disposal area is only a small part of a greater containment basin and all within an even larger surrounding restricted area of the plant site. We cannot visualize any condition that might lead to accidental release of waste. Any breach of the confinement area would still have retention within the basin. Even outside and beyond the basin, there are no continually flowing streams in the water courses of this arid region.

Attached is a sketch (Drawing No. 15 TS-53A) of the tailing disposal area showing by contours the general geomorphic features; the containment dam and dikes; the classified and segregated areas of sands, slime, and pond; and the breakwater, decanter, and filter building for the removal, treatment, and deep-well disposal of water. The pre-pond and present drainages are indicated.

Also attached is a sketch (Drawing No. 5-D-48a) showing the restricted area boundaries at the plant site and, within this boundary, the relationship of the mill and the general tailing area.

Description of Waste Disposal System (continued)

We would like to obtain continued authorization to dispose of radioactive diquid waste resulting from our uranium processing operations into a subterranean disposal well according to the procedures described in our application dated July 5, 1960, and subject to the same conditions as are contained in Item No. 13 of our present source material license. The data submitted in our application of July 5, 1960 describes in detail the geology and hydrology in the area of the mill and disposal well, the method of disposal and the procedures to be observed to minimize the risk of contamination to the underground water supplies of the area.

The disposal well reservoir was originally calculated to have a life expectancy of from 10 to 20 years at a continuous injection rate of 400 gallons per minute. The indicated volume of injected fluid that the reservoir would accept was from 2 x 10^9 gallons to 4 x 10^9 gallons. In the last 9 years, from January 20, 1960 to December 31, 1968, we have injected only 6 x 10^8 gallons. Using the more conservative estimate of reservoir capacity, it appears that we have used only about 30 percent of the available volume and that the reservoir will accept at least an additional 1.4×10^9 gallons. In the year 1968 the total volume of solution injected was 5×10^7 gallons. If we continue to inject at this rate, 5×10^7 gallons per year, the disposal well has a calculated life expectancy of another 28 years.

The disposal system is continuously monitored to ensure that it does not become a threat to public health by contamination of the local fresh water supplies. The monitor program consists of three phases: (1) direct observation of the behavior of the disposal well; (2) samples taken from the major fresh water aquifer in the vicinity of the disposal well; and (3) routine sampling of regional fresh water sources.

Daily measurements are made of the operating water level in the disposal well, and occasional recovery measurements are made when the well is shut down. Analyses of these pressure data to date have revealed no cause to suspect significant transformational leakage of the injected fluid from the disposal reservoir.

The analysis of samples from Monitor Well No. 1 and from the other wells in our monitoring program have not shown any evidence of contamination, either chemical or radiological of the fresh water aquifers by the injected fluid.

All of the evidence available to date indicates that the disposal well has proven to be a satisfactory method of waste disposal and that the well has a useful life expectancy greatly in excess of an additional five years.

DESIGN OF LIQUID EFFLUENT SURVEY PROGRAM

The Anaconda Company began a regional monitoring program of fresh water sources in 1956. The original monitoring program has been expanded and revised and now serves as our liquid effluent survey program. Some 40 to 50 water sources are sampled and analyzed for their chemical contents at monthly, bimonthly or semiannual intervals and for radioactive contents at semiannual intervals. The water sources that are sampled include 3 springs, 2 ponds, and domestic, industrial, agricultural, and municipal wells that withdraw water from one or more of all of the known fresh-water aquifers within an area of about 200 square miles. The location of the wells, springs and ponds that are currently being monitored are shown on the attached map (Drawing No. 5-D-51).

Included in the water monitoring program is one well that was drilled to monitor the fresh-water aquifer in the immediate vicinity of the disposal well. This well is referred to as Monitor Well No. I and was completed at a depth of 628 feet in the San Andres fresh-water aquifer, 300 feet southeast of the disposal well, in the direction of the hydraulic gradient in that formation. Water samples from this well are analyzed weekly for their chemical content and semiannually for their radioactive content to detect any leakage that might occur in or near the immediate vicinity of the disposal well where reservoir pressures are the greatest.

Most of the wells that are sampled in our water monitoring program are not owned or controlled by The Anaconda Company. The routine sampling of these wells is therefore dependent on the cooperation of the well owners and the availability of the wells for sampling. It may be necessary to make periodic revisions of the sampling locations. We will, however, make every effort to maintain an adequate monitoring program.

Standard methods of chemical analysis are used for determining the chemical constituents of the water samples. The methods for determination of natural uranium, radium and thorium are essentially those developed by Claude W. Sill, Health and Safety Division, U.S.A.E.C., Idaho Falls, Idaho.

AREAS OF DUST GENERATION, DESCRIPTION OF DUST COLLECTION AND VENTILATION EQUIPMENT AND DESCRIPTION OF MILL DISCHARGE STACK EFFLUENTS

Attached are a flow diagram of the mill production operation and a drawing (Dwg. No. 20 MS-5) of the plant layout. Dust generation is generally limited to areas of the crushing plant, ore sample tower, fine ore bins, Yellow Cake Section and the Bucking Room. Local exhaust ventilation is provided at points of major dust generation and for dust producing operations and equipment. Capture and transport velocities are maintained sufficiently high to provide effective contamination control. Adequate dust collection and ventilation equipment will be provided and maintained for all areas of the mill.

The effluents from the dust collection systems for the crushing plant, ore sample tower and fine ore bins pass through wet orifice-type dust collectors. These collectors are more than 90% efficient in removing dust particles from the effluent stream. The effluent from the bucking room passes through a plenum "settling chamber before discharge. This plenum chamber is designed to remove only the larger particles of dust. The effluents from the Yellow Cake Section pass through wet impact-type collectors. These collectors are more than 95% refficient in removing dust particles.

The concentrations of radioactive material in the stack effluents from the dust collection system are given in the following table.

Stack Location	Effluent Concentration uc_U-nat/ml	R.		
Crushing Plant	5 x 10-12 Pro	•2		
Ore Sample Tower	5×10^{-13}			
Fine Ore Bins	5×10^{-13}			
Bucking Room	5×10^{-12}			
Yellow Cake Dryers	1×10^{-9}			
Yellow Cake Packaging & Sampling	1×10^{-11}			

The above concentrations are approximately typical of the effluents that are discharged during normal operation. The actual concentrations may vary from these values depending on the dust load in the collection system.

Our environmental air sampling survey program is conducted in accordance with the U.S. AEC document entitled "An Acceptable Basis for Surveying to Determine Concentrations of Radioactive Material Discharged as Air Effluents from Uranium Mills". Air samples are taken periodically of the six stack effluents to determine the concentrations of radioactive material that are being discharged. The results of these surveys have shown that the air effluents from the Yellow Cake Section stacks are the most likely source of environmental contamination. For this reason the environmental air samples are taken mainly in a downwind direction from the Yellow Cake Section stacks. Air effluents containing ore dust are usually also being discharged from the other four stacks during the sampling periods and the sampling locations are also generally downwind from these stacks. Samples are also taken under calm conditions at the perimeter of the restricted area.

DESCRIPTION OF AIR SAMPLING SURVEY PROGRAM

In the sections of the mill where the air-borne radioactivity is more or less uniformly distributed, general area samples are taken in the areas frequented by the operating personnel. Where personnel are working at operations or in locations where dust generation is possible, breathing zone samples are taken to determine the air-borne concentration for the specific operation or location. Air samples are also taken to investigate any operations which might be suspected of producing air-borne radioactivity.

The results of past air sampling surveys will be used to determine the frequency of sampling in the various areas of the mill. In those areas where the concentrations of air-borne radioactive material are less than 25% of MPC, surveys will be made at 9-month intervals. In those areas where concentrations are greater than 25% but less than 50% of MPC, surveys will be made at 3-month intervals. In those areas where concentrations exceed 50% but are less than 100% of MPC, surveys will be made monthly. In the event that concentrations exceed MPC, sufficient samples will be taken to determine the average exposure of the employees who may occupy this area.

A sufficient number of samples will be taken in each area to insure that an adequate evaluation can be made of potential exposures within the area.

The sampling devices that will be used in the survey program will include a high volume sampler that is capable of sampling at a rate of approximately 500 liters per minute, a smaller portable sampler that is capable of sampling at a rate of approximately 15 liters per minute, and a battery-powered personal type sampler that can be worn by an employee.

, The air-dust samples will be analyzed for uranium by the fluorometric method of Claude W. Sill.

PROCEDURE FOR DETERMINING AVERAGE EXPOSURES OF EMPLOYEES -WHO ARE EXPOSED TO AIR CONTAMINATION GREATER THAN MPC

Working-place time-distribution studies have been made for the employees who, in the performance of their jobs, are required to occupy areas where they may be exposed to concentrations of air-borne radioactivity in excess of the MPC. Air sampling surveys are made periodically in these areas to determine the concentrations of air-borne radioactivity. These surveys include both general area and breathing zone samples. If any of these samples exceed MPC the average exposure of the employee is calculated from the concentrations as determined in the air sampling surveys and the time studies.

USE OF RESPIRATORS TO CONTROL EXPOSURES

Respirators are not routinely used in our operation to control exposures of personnel. Respirators are available for emergency use in all areas of the mill.

DESCRIPTION OF THE METHOD FOR DETERMINING EXPOSURES OF EMPLOYEES TO EXTERNAL RADIATION

Film badges are used for determining the exposure of employees to external radiation. Beta-gamma type film badges are used. The film packets are changed and read at monthly intervals. The film badges are reported by our supplier to be sensitive enough to be read to a minimum of 10 mr of gamma or 10 mrem of beta radiation.

Previous film badge surveys have indicated that no employee in any area of our mill is likely to receive a dose of external radiation in excess of 25 percent of the applicable values specified in 10 CFR Part 20. The areas of highest potential exposure in our mill are the Yellow Cake Section and the clarification press area. Film badges are also worn by at least one person in each area or job-classification in the mill.

In addition to the film badge surveys, periodic surveys of radiation levels in all plant areas are made with a beta-gamma survey meter. These surveys are made to detect any significant changes which may occur in radiation levels in the various areas of the mill and to delineate any areas of potentially high exposure to external radiation.

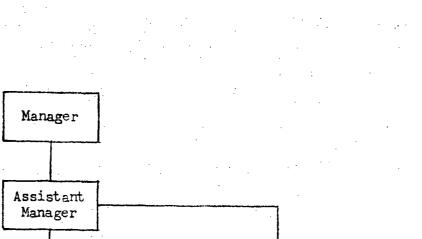
RADIOLOGICAL SAFETY INSTRUCTIONS

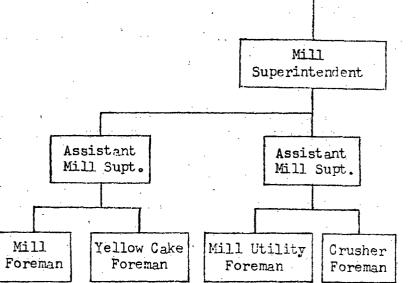
A copy of the Safety Manual of the New Mexico Operations of The Anaconda Company is attached. This manual contains instructions for personal hygiene and instructions for dust control and clean up of spills within the plant. Please refer to pages 15, 17, 21, 23, 25, 37, 38, 41, 42, 43, 44, 53, 83, 85 and 89 for specific radiological safety instructions. A copy of this Safety Manual is given to each employee in our mill.

Also enclosed is a copy of a letter of instructions for wearing film badges. These instructions are given to each person who wears a film badge.

In addition to the above items, specific instructions are recorded in the supervisor's log books concerning other operating procedures dealing with radiological health and safety. These instructions are given verbally during job training and whenever necessary during routine operations.

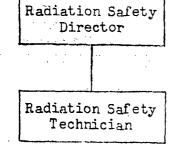
DOGIKET NO. 40-665

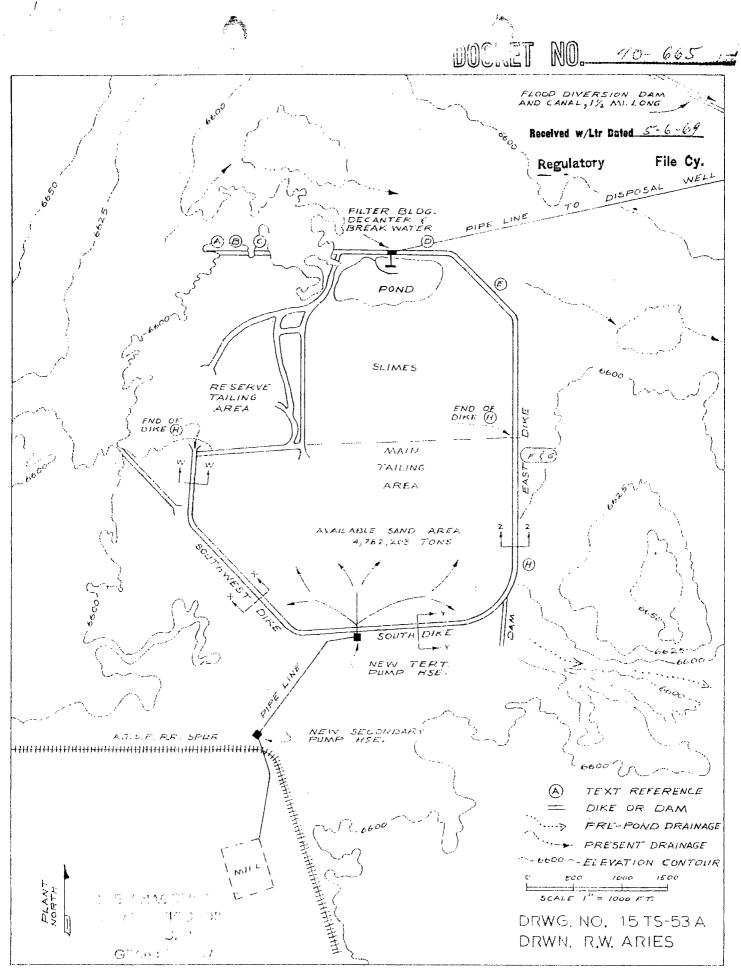

THE ANACONDA COMPANY New Mexico Operations


Organization Chart

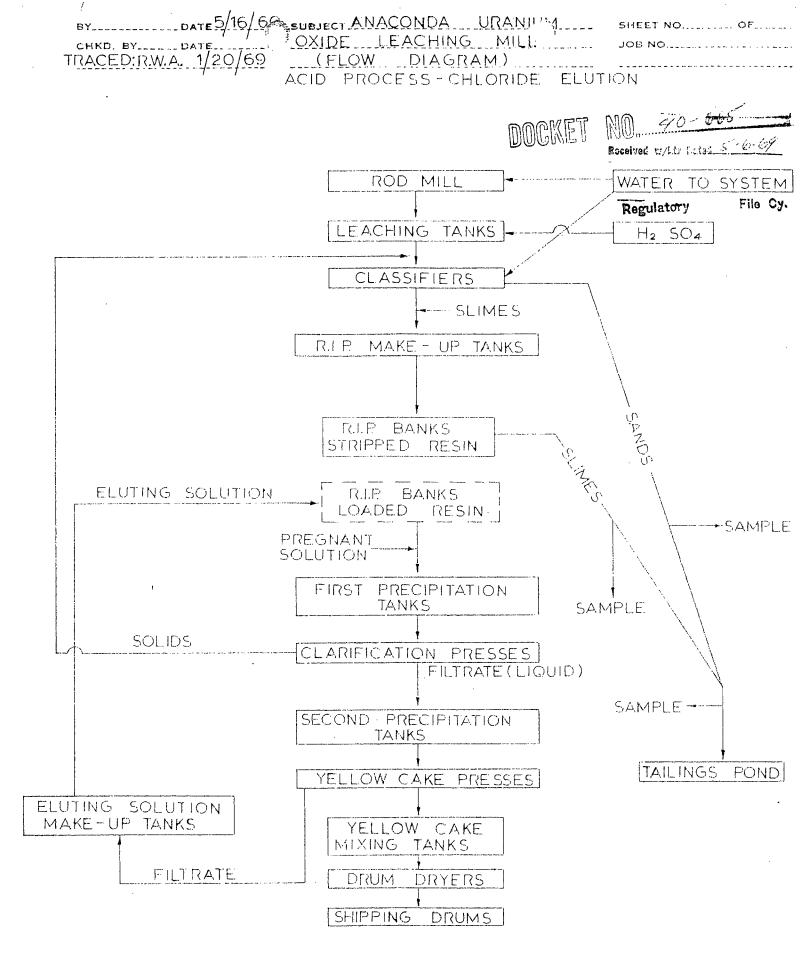
Roceived W/Lir Balos 5-6-69

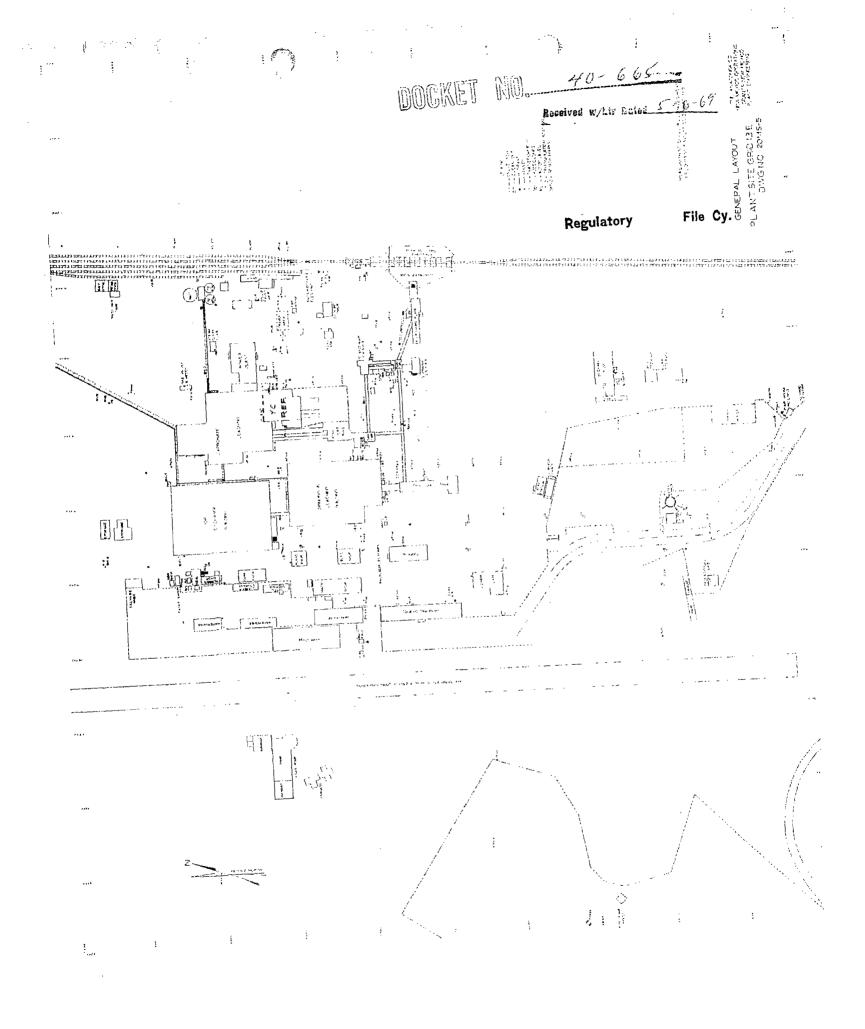
File Cy.


Regulatory



<u>.</u>


٠.4


•

REFERECCS: 1575-53 B, C, D, E

.

FOL	AEC410 (1-61)		NITED STATE ENERGY COM	
		SOURC	e Material L	ICENSE
Pa: ma the des acc spe reg Co	tt 40, ''Lice de by the l source m ignated b cordance w cified in S ulations, a de cf Feder	ensing of Source Material," a licensee, a license is hereby i aterial designated below; to elow; and to deliver or tra with the regulations in said Po Section 183 of the Atomic F nd orders of the Atomic Energy	nd in reliance on esued authorizing use such mater nsfer such mater irt. This license mergy Act of 19 by Commission, n	b), Code of Federal Regulations, Chapter statements and representations heretor the licensee to receive, possess and im- ial for the purpose(s) and at the plac- rial to persons authorized to receive shall be deemed to contain the condi- 254 and is subject to all applicable r ow or hereafter in effect, including Title rds for Protection Against Radiation,"
 	• - • - •	Licensee		3. License No.
ġ,	Name	The Anaconda Comp	9 7 I W	SUA647
1.	acide	TITE THE COLUMN CONTRACTOR CONTRACTOR		4. Expiration Date
2.	Address			February 29, 1976
	Grants, New Mexico 8		o 87020	5. Docket No.
				40=665
Ŭ:	cenium		this li	ee may possess at any one time un cense mited
			CONDITIONS	
		use (Unless otherwise specif Item 2 above.)	ied, the authorize	ed place of use is the licensee's add
	ranium thousan Jackpil	milling facility d (4000) tons per	canium ore at a nomina day and ore ce with the tion dated	processing at the license 1 throughput of four crushing at the licensee procedures described May 6, 1969. ee's uranium milling ocated near Grants, New the Licensee's Jackpile ed near Paguate, New Mex:
9	\uthor i	zed Place of Use:	The licens facility 1 Mexico and	ee's uranium milling ocated near Grants, New the Licensee's Jackpile

Sefiguen. · ·

SUA= 647 License Number____

MATERIAL LICENSE

Supplementary Sheet

- 10. The licensee is hereby exempt from the requirements of Section 20.302(e)(2), 10 CFR 20, for areas within the mill provided all entrances to the mill are conspicuously posted in accordance with Section 20.203(e)(2) of Part 20 and with the words, "Any area within this mill may contain radioactive material."
- 11. The licensee shall immediately notify the Director, Region IV, Division of Compliance, USAEC, Denver, Colorado, by telephone and telegraph of any failure in an earth dam retention system which results in a release of radioactive material into unrestricted areas. The requirement is in addition to the requirements of 10 CFR 20.
- 12. The licensee is hereby authorized to incinerate discarded wooden equipment containing source material and return the ashes to process for recovery of the contained uranium in accordance with the procedures described in his application dated October 14, 1961.
- 13. The licensee is hereby authorized to dispose of radioactive liquid waste resulting from uranium processing operations into a subterranean disposal well according to procedures described in his application dated July 25, 1960, and subject to the following conditions;
 - (a) Records shall be maintained of the volume of waste disposal, the average concentration of the radioactive constituents, the natural water head pressures and injection rates.
 - (b) Increases in injection pressure above that produced by the natural water head of the waste effluent stream is not authorized.
 - (c) A yearly summary report shall be submitted to the Division of Materials Licensing, USAEC, Washington, D. C., describing the status of the injection program, including average monthly liquid injection rates, the concentration of radioactive constituents, average concentrations of uranium, radium-226, and thorium-230 in monitored well and surface waters, and the level of the water table. Reports shall be submitted no later than August 31 of each year.

Page 3 of 3 Pages

MATERIAL LICENSE

License Number______SUA=647

Supplementary Sheet

- 14. The licensee shall determine that employees leaving work are not contaminated with radioactive materials. When an employee has showered and changed clothes prior to leaving work, he may be assumed to be free of contamination.
- 15. Changes in the mill circuit or equipment, including maintenance activities, shall be approved in writing by the Manager or Assistant Manager. During such changes and activities, radiation safety surveys shall be conducted to determine employee exposures to radioactive materials.

For the U. S. Atomic Energy Commission ORIGINAL CONTRACTOR JAMES C. ACTAGO

by Materials Branch

Division of Materials Licensing Washington, D. C. 20545

Date____

	MEMO ROUTE SLI	D	See me about this.	For concu	For action.			
	MEMU ROULE SLI Term AEC-93 (Rev. May 1		Note and return.	For signature.	For information.			
	TO (Name and unit)	INITIALS	REMARKS					
	110		RE: THE ANACONDA COMPANY					
1-	J. A. Morthe	DATE	GRANTS, NEW MEXICO					
MA	DA Mussbernant		LICENSE NO.	SUA-647	······································			
····	TO (Name and unit)	INITIALS	REMARKS					
2-	R. F. Barkey		Attached for your					
	Lat the Lu -		from J. J. Ward,					
-	TSS E Ersport	DATE	us of the radioac					
1	3-Dr. puber	mare	car involved in a	t transportation	accident.			
Y	TO (Name and unit)	INITIALS	REMARKS					
4.	Files							
ſ		DATE						
	FROM (Name and unit)	REMARKS	I					
		Attachmer	it:					
	R. Handler		ешо					
	SLR:EB							
	Рноме но. 7422 10-26-65							

.

USE OTHER SIDE FOR ADDITIONAL REMARKS

U. S. GOVERNMENT PRINTING OFFICE : 1957---O-422007

File

October 19, 1965

John J. Ward, Investigation Specialist Object Sound By Region IV, Division of Compliance, Denver John L. Wand

COMPLIANCE INQUIRY MEMORANDUM - THE ANACONDA COMPANY GRAMTS, NEW MEXICO, LICENSE NO. SUA-647 - TRANSPORTATION OCCURRENCE

At 3:40 PM MDT, October 18, 1965, R. J. Gidney, Director, Construction and Supply Division, GJO, telephoned D. I. Walker, Region IV, to report an incident just brought to his attention by the Anaconda Company, as follows:

On Friday, October 15, 1965, at 7:00 AM, local time, a railroad car containing 109 drums of yellow cake being shipped from Anaconda to Mellinckrodt, Weldon Springs, Missouri, by the MKT Bailroad, was derailed one and one half miles east of Portland, Missouri. Anaconda was notified by the railroad on October 16, and two Anaconda employees, Ralph Wilde and Fred Mills, both went to the scene of the accident. They reported there was no spillage from the car, but the lids of two drums were popped and yellow cake was spilled in the car.

Walker telephonedR. C. Hageman and J. Allan of Region III at 3:50 PM to pass this information on for their contact with Mallinckrodt and St. Louis Area Office. At 4:10 PM, Allan called Region IV to report that his contact with M. G. Mason of Mallinckrodt had developed that they and AEC were on top of the situation. There will be a meeting October 19, with railroad personnel to arrange removal and decontamination of the car and contents. Either the car will be placed on new trucks for transport to Weldon Springs or the drums will be off-loaded to a trailer for truck transport to Weldon Springs. In either case the car will be decontaminated by Mallinckrodt prior to its being released to the railroad. Mason advised Allan that only about 20 to 30 pounds of yellow cake was spilled. No exposures are involved, and no publicity has occurred. The car was dented at both ends and apparently had its trucks damaged. The door seals were not broken is proved.

cc: R.G. Page, DS&LR J.R. Roeder, CO-HQ J. Allan, CO:III R.J. Gidney, GJO J.F. Morgan, STL REGULATORY

95 H 1.7 112 Parts

ê me

October 19, 1965

Although the incident is not considered a reportable incident, Walker suggested to Gidney that Anaconda be told to advise the Director of Regulation of the incident as a matter of information. Region III and Region IV both notified Compliance Headquarters of the incident by telephone on October 19.

Action is being taken by Mallinckrodt and St. Louis Area Office. No action contemplated by Region IV.

-2-

File

OPTIONAL FORM NO. 10 May 1002 Edition GSA GEN. REG. NO. 27 5010-106 UNITED STATES GOVERNMENT

Memorandum

JUN 2 2 1964

Lyall E. Johnson, Acting Director TO: Division of Materials Licensing

DATE:

- Leo Dubinski, Assistant Director for Materials FROM Division of Compliance
- RADIOACTIVITY IN WATER IN GRANTS, NEW MEXICO AREA SUBJECT:

40-665 CO:RCP

Attached for your information is a copy of a memorandum dated June 12, 1964, to the Files from Donald I. Walker, Region IV, Division of Compliance, which presents information relative to the above subject. The memorandum also contains information on the Kermac Nuclear Fuels lignite operation and the ion exchange treatment of uranium mine water by Kermac and Homestake-Sapin.

Attachment: Cpy memo to Files fm Walker, CO:IV, dtd 6/12/64

E. R. Price, SLR, w/att cc: E. C. Van Blarcom, RM, w/att D. I. Walker, CO:IV, w/o att

No entre

Files-40.665

Donald I. Warker, Director, Region IV Donald L Walker Division of Compliance, Denver

TALK WITH R. C. PAULUE, CO: He - JUNE 11, 1964

Ralph Wilde, Anaconda, reported that radioactivity in potable water supplies in the Grants area is increasing wis Van Blarcom). Thought possibly to be due to waste mine waters rather than to seepage from tailings areas or from Anaconda's deep disposal well.

Pickwick, GJ, reported, August 1963, that Homestake-Sapin's operations at Section 22 and 25 mines include an IX circuit to recover U from mine waters. No information on where the IX effluent goes. The process is not licensed.

Fickwick, same report, stated that Kermac also has an IX circuit but effluent goes to mill process. Their's is not licensed, either.

Pickwick, GJ, reported, January (1, 1964, that Kermac has or will start burning lignites in North Dakota for U recovery.

I talked to Elton Youngberg on June 11, 1964. He had no information on the Grants wells. 1 will keep him informed on developments.

He stated that he knew HS-S had an IX circuit but didn't know where the effluents went.

He knew that Kermac also had IX but didn't believe that the mili could possibly consume all the mine veter.

He stated that Kerman had started burning (roasting) lignites near Bowman, North Dakota but supposed that they had applied for and received a license for the operation.

He said that all pertinent information on Items 2, 3, and 4 in GJ will be forwarded to Region IV as soon as possible.

R. Wilde, Anaconda, will be contacted on June 12 or the earliest date possible.

1 03:0

1 1 -

123

JUNE 12, 1964

Taiked with Wilde today. He stated that he had mentioned to Van Blarcom a steady, but slow, rise in uranium concentrations in well waters in the Grants area. The uranium increase has been noted in the sampling of wells required by the license for their deep disposal well and has been included in the results forwarded to DML periodically. He stated that, while the increase in uranium concentration is perceptible, the bighest level noted is less than 0.01 of MPC, insignificant at present, V but worth continued surveillance.

According to Wilde, all mining operations in the Ambrosia Lake area pump water from the mines in order to maintain working levels. The water is pumped to the surface and released into the San Mateo Creek drainage system. Frior to the start of mine pumping, San Mateo Creek has never had any flows past the foot of the Kermac tailings pond and also receives source of the effluent from Kermac's IX circuit which recovers U from the mine. Homestake-Sapin also has IX recovery from mine water.

The flow in the San Mateo system has never continued beyond a point about 10 miles north of Grants. All disappears through percolation. Wilds believes that underground flows in the creek bed from mine pumping may account for the U concentration increase. Carl Jensen, New Mexico State Health Department, has also been sampling routinely with Anaconda, but analyzing only for U whereas Anaconda has been checking gross slpha, Th-230 and Ra-226 as well. No Th-230 or Ra-226 above their detection limits has been noted.

I talked to R. C. Paulus again today to state that, upon receiving more information from GJ, we would look into the IX operations and also obtain samples from some of the wells where U increases have been noted. Paulus stated that there is some question whether the IX operations are licenseable since their material before beneficiation is less than 0.05% uranium. I forgot to mention to Paulus the precedent has already been established that, even though initial material is less than 0.05%, where resultant product is greater than 0.05%, the operation must be under an AEC license.

Later, I talked to Bill Hutchinson and Frank McGinley, who stated that United Nuclear (Homestake-Sapin) has, in addition to their IX circuit at Section 22 and 25 mines, an IX circuit operating on mine water at the former Phillips Petroleum mill. Also, Kermac's IX circuit is located at the Kermac mill and all its effluent is used in the mill process. However, not all the water pumped from their mines does not go through the IX circuit.

GJ will forward correspondence on these IX circuits and Kermac's lignite reasting.

cc: L. Dubinski

OPTIONAL FORM NO. 10 MAY 1962 EDITION GSA GEN. REG. NO. 27

UNITED STATES GOVERNMENT

- TO : Those Listed Below
- FROM : E. C. Van Blarcom Annual Division of Raw Materials
- SUBJECT: RADIOACTIVITY IN UNDERGROUND WATER GRANTS AREA

5010-107

DRM:ECVB 40-665

Mr. Ralph Wilde of Anaconda Company, Grants, New Mexico, told me recently of certain observations showing that a front of increased radioactivity in underground waters is moving in a direction from the Grants mill area toward the town of Grants. He said that New Mexico State health officials are aware of the situation. He also said that he would be willing to show the information he has to a Compliance representative. I said that I would call the matter to your attention.

Addressees:

Leo Dubinski, CO

Buy U.S. Savings Bonds Regularly on the Payroll Savings Plan

14.1 and the support of the Station to state of Alexander a Same سام ڈرکی

DATE: June 5, 1964

DEC 2 0 1968

DML:DFH 40-665 SUA-647, Amendment No. 2

> The Anaconds Company P. O. Box 638 Grants, New Mexico 87020

Attention: Mr. A. J. Fitch Manager

Gentleman:

This is to express my appreciation for the courteous cooperation extended to Mr. Don F. Harmon of my staff during his visit to your uranium mill on November 22, 1968. This will also confirm Mr. Harmon's discussions with you concerning the renewal of your AEC Source Material License No. SUA-647.

As discussed during the visit, your initial application for this licensed was filed over ten years ago and since that time several amendments and renewals have been made to the license. Therefore, we are requesting that a new renewal application complete in itself and, insofar as possible, without reference to previous applications be submitted. We believe the submission of such a consolidated renewal application will enable the Commission staff to evaluate it and subsequent amendments to it more expeditiously. Also, we believe a consolidated application will facilitate an understanding of the terms and conditions of the license.

The application should be filed using the enclosed Earm AEC-2. In lieu of the information requested in Items 9 thru 14 of Form AEC-2, the information requested in the enclosed "Supplemental Sheet" should be provided. We believe it would be to your

The Anaconda Company

1.

advantage to submit the information in such a manner so as to provide flexibility in your activities and to minimize the need for license amendments. As Mr. Harmon discussed during his visit this can be accomplished by providing the requested information in the form of performance criteria and/or technical specifications whereby changes in equipment, procedures and activities can be made without the need for a license amendment. The application should also justify the continued use for an additional five years (the term of present licenses) of your deep well disposal system since the approval of this system in 1960 was based on a 10 year capacity.

The application should also deal with your plans for controlling employee exposures to all sources of airborne radioactivity in the grind and leach building, particularly during winter months, in accordance with the requirements of paragraph 1 of the note to Appendix B, 10 CFR 20.

In view of the scope of the information requested, particularly in regard to the continued use of the deep well disposal system, we believe your renewal application should be filed no later than June 30, 1969. Accordingly, in order to permit the continuation of your present activities, the expiration date of AEC Source Material License No. SUA-647 is hereby extended until July 31, 1969.

Please let me know if you have any questions concerning the above.

FOR THE ATOMIC ENERGY COMMISSION

Status Fignal by fer sid 4. Busebannter

Donald A. Nussbaumer, Chief Source & Special Nuclear Materials Branch Division of Materials Licensing

Enclosures: 1. Form AEC-2

Supplemental Sheet

DML "Ja:

1 Anothe

2.

DISTRIBUTION:

Supplement Document Room State Health Compliance Region N. Doulos Dml - 3 E.VanBlarcom RM Branch Reading File Division Reading File

DANussbaumer DFHarmon

AUG 2 9 1973

FFR: JER -665

> The Anaconda Company ATTN: Mr. Colin C. Howard Counsel P. O. Box 11309 Tucson, Arizona 85734

Gentlemen:

This is in response to your letter of August 9, 1973 requesting that we confirm the information conveyed to you by Mr. Rothfleisch in a telephone discussion on July 26, 1973.

Pursuant to 10 CFR Part 40, paragraph 40.13(b), the transfer of unrefined and unprocessed uranium ore is exempt from the regulations so no authorization for this operation is required. In addition, pursuant to 10 CFR Part 40, paragraph 40.51(b)(2), any licensee may transfer source material to a specific or general licensee whose license authorizes him to receive such material. The Anaconda Company Source Material License No. SUA-647 authorizing the receipt of uranium source material covers the transfer of the yellowcake produced from the ore back to Anaconda. It should be pointed out that in compliance with 10 CFR Part 40, paragraph 40.61, "Each person who receives source material pursuant to a license issued pursuant to the regulations in this part shall keep records showing the receipt, transfer, export and disposel of such source material."

Sincerely,

Distibu

Disttribution: Fublic Docimment Room Docket File Branch R/F L:FM R/F RO, HQ (2) LCRouse JERothfleisch Original Signed by Leiand C. Rouse

L. C. Rouse, Chief Fuel Fabrication and Reprocessing Branch Directorate of Licensing

OFFICE 🕨	L:FFRB	L:FFRB		
	JERothfleish:p	WLCRouse		
RNAME 🕨		8/28/73	 	

JUN 7 1973

40-665

The Anaconda Company ATTN: Mr. A. J. Fitch Manager, New Mexico Operations P. O. Box 638 Grants, New Mexico 87020

Gentlemen:

This refers to your letters of January 26 and May 14, regarding your plans to install and operate additional processing equipment in the Blue Water Uranium Ore Processing Plant in order to increase the capacity of the plant.

Under the National Environmental Folicy Act of 1969 (NEPA), a copy of which is enclosed, each Federal Agency is required to consult with appropriate Federal, State, and local agencies concerning major Federal Actions which may significantly affect the quality of the human environment and to prepare a detailed statement concerning the environmental impact of the proposed action. Enclosed is a published statement of general policy, 10 CFR Part 50, Appendix D, which specifies the manner in which the Commission exercises its regulatory responsibilities under the Act. As the policy statement indicates, the Commission has identified the licensing of uranium mills as an action which requires the preparation of a detailed environmental statement.

It has been determined that amendment of the Anaconda Company's license to authorize use of the additional processing equipment constitutes a major Federal action which will require preparation of an Environmental Statement. To assist us in preparing such a statement the Anaconda Company should submit a detailed Environmental Report. The Environmental Report should address in detail those subjects described by 10 CFE Fart 50, Appendix D, Section A. To assist you in the preparation of the report, enclosed is a copy of the AEC Licensing Guide, "Guide to the Preparation of Environmental Reports for Uranium Mills."

You will note that paragraph 14 of Section A requires you to submit 200 copies of the report. Section 40.31 of 10 CFR Part 40, copy enclosed, requires that an environmental report be submitted 9 months prior to the construction. The Anaconda Company

:? -

An amendment to SUA-647 is not required to increase production capacity up to 4000 tons of ore per day utilizing presently installed facilities. Thus steps taken such as initiating three work shifts do not require an environmental report.

~ 2 -

Sincerely,

الارابي بيوانيد بالتعريفة ويهمونهم فللتك بوريا فستتود دده

Original Signed by Leland C. Rouse

L. C. Rouse, Chief Fuel Fabrication and Reprocessing Branch Directorate of Licensing

Enclosure:

- 1. National Environmental Policy Act of 1969
- 2. 10 CFR Part 50
- Guide to the Preparation of Uranium Mill Environmental Reports
 10 CFR Part 40

Distribution: L:FM R/F L:FFRB R/F OGC DMCollins, L:MB JCMAlaro, L:MB RECunningham SHSmiley LCRouse JFKendig RBChitwood XX XX PDR Docket File RO, HQ

Letter retyped in its entirety - See previous yellow for concurrences								
FICE 🕨	L:MB	L:MB	QGC	L:MB	L:FFRB			
	DMCollins:pw			İ	4 A			

Υ.

The Anaconda Company ATTN: Mr. A. J. Fitch Manager, New Mexico Operations P.O. Box 638 Grants, New Mexico 87020

Gentlemen:

Thank you for your letter of January 26, 1973, providing details of your proposal to install and operate additional processing equipment in the Blue Water Uranium Ore Processing Plant in order to increase capacity to the currently authorized maximum of 4,000 tons of ore per day.

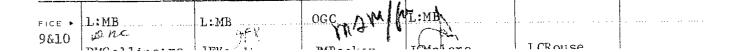
Under the National Environmental Policy Act of 1969 (NEPA), a copy of which is enclosed, each Federal Agency is required to consult with the appropriate Federal, State, and local agencies concerning major Federal Actions significantly affecting the quality of the human environment and to prepare a detailed statement concerning the environmental impact of the proposed action. Enclosed is a published statement of general policy, 10 CFR Part 50, Appendix D, which indicates the manner in which the Commission exercises its regulatory responsibilities under that Act. As the policy statement indicates, the Commission has identified the licensing of uranium mills as an action which requires the preparation of a detailed environmental statement.

It has been determined that amendment of the Anaconda Company's license to authorize construction and use of the additional processing equipment constitutes a major Federal action which will require preparation of an Environmental Statement. To assist us in preparing such a statement the Anaconda Company should submit a detailed Environmental Report.

To assist you in the preparation of the report, copies of 10 CFR Fart 50, a copy of informal guidelines for the preparation of environmental reports for uranism wills, are enclosed. A copy of the AEC Licensing Guide, "Guide to the Preparation of Environmental Reports for Uranium Mills" should be available within 6 weeks and will be forwarded to you when available. The Environmental Report should address in detail these subjects described by 10 CFR Part 50, Appendix D, Section A. The Anaconda Company

You will note that paragraph 14 of Section A requires you to submit 200 oppies of the report. Section 40.31 of 10 CFR Part 40, copy enclosed, requires that an environmental report be submitted 9 months prior to the construction.

An amendment to SUA-647 is not required to increase production capacity up to 4000 tons of ore per day utilizing presently installed facilities. Thus steps taken such as initiating three work shifts do not require an environmental report.


Sincerely,

James C. Malaro, Chief Materials Branch Directorate of Licensing

Enclosure:

- 1. National Environmental Policy
- Act of 1969
- 2. 10 CFR Part 50
- 3. Informal Guide to the Preparation of Uranium Mill Environmental Reports

DISTRIBUTION: L:FM R/F L:MB R/F OGC D MCollins, L:MB JCMalaro, L:MB RECunningham SHSmiley

- 2 -

The Anaconda Company ATTN: Mr. A. J. Pitch Manager P.O. Box 638 Grants, New Maxico 87620 DISTRIBL IN: RECunningham, L:M JCMalaro, L:MB JFKendig, L:MB AEC PDR Local PDR L:FM R/F L:MB R/F Docket File R IV New Mexico Dept. of Public Health

Gent Leves:

This is to inform you that your license will have to be asended to authorize the increase in capacity of the Binewater utanium processing plant as described in your leaser of June 12, 1972.

Accordingly, you should submit a formal request for emendment of your license and provide the Completion with a detailed description of the following topics:

- 1. Proposed processing facilities.
- 2. Changes is procedures which result from this operation.
- 3. Changes to the personnel radiation safety program or additional radiation safety procedures to be established.

For the purpose of determining whether a complete environmental review is required is accordance with the National Environmental Fully Act, please provide as with the following information:

- 1. An estimate of the impact of the air effluents from the propesed actics on the surrounding environe.
- 2. The life aspectancy of the well used for dispessi of wastes as a result of the proposed action, and the relationship of the life expectancy to the life of the aims and will.
- An estimate of the impact on the subterraneae environment surrounding the well resulting from the proposed action.

Sincerely,

ORIGINAL SIGNED BY JOHN F. KENDIG

> John F. Kendig Materiels Brauch Birectorate of Licensing

			 	······································	······································
FEICE D	L:MB	L:MB			
)4 ?:jc	JFKendig:jc	JCMalaro			
		10/ j3/72	 		

Docket File

MAR 2 9 1972

LaMB : DFH 40-665

> The Anaconda Company ATTN: Mr. A. J. Fitch Manager F. C. Box 638 Grantz. New Mexico 87020

strent y

Gentlesen:

Thank you for your letter of February 25, 1972, which provided the results of surveys required by Condition 13 of your AEC Source Material License No. SUA-647. Your cooperation is appreciated.

Sincerely,

ORIGINAL SIGNED BY

James C. Malaro Assistant Chief Materials Branch Division of Materials Licensing

Distribution: Docket file Document room State Health CO:IV Harmon's Reading File Branch Reading File Division Reading File

"CE ►	DML	DML		/
,	DHarmon: en	JCMalaro		 /

MB: DFH 1-665 < -647, Amendment No. 1

JUL 28 NT

The Anaconda Company ATTN: Mr. A. J. Fitch Manager P. O. Box 638 Grants, New Mexico 87020

Gentlemen:

As requested in your letter of June 22, 1971, Item 15 of AEC Source Material License No. SUA-647 is hereby amended to read as follows:

15. Changes in the mill circuit or equipment shall be approved in writing by the Mill Manager or Assistant Mill Manager. Maintenance activities shall be approved in writing by the Mill Manager, Assistant Mill Manager or the Mill Shift Foreman.

All other conditions of this license shall remain the same.

FOR THE ATOMIC ENERGY COMPLISSION

DISTRIBUTION: Docket File AEC FDR State Health CO: IV Harmon's Reading File Branch Reading File Division Reading File E. C. Van Elarcom, RM (2) C. Buchanan, DML (2)

OBIGINAL SIGNED BY

James C. Malaro Assistant Chief Materials Branch Division of Materials Licensing

	DML:MB	DML:ME		
	DF Harmon	JC Malare		
-	7122171	7/26/71		

18:DFH -665

WEB18 (11)

Anaconda Company ATTN: Mr. A. J. Fitch Manager P. O. Box 638 Grants, New Mexico 87020

n.,.

Gentlemen:

Thank you for your letter of February 3, 1971, which provided the results of surveys required by Condition 13 of your AEC Source Material License No. SUA-647.

Your cooperation is appreciated.

Sincerely,

Grand and a second grad

James C. Malaro Assistant Chief Materials Branch Division of Materials Licensing ł

÷

DISTRIBUTION: Docket File Document Room St. Health OD:IV Harmon's R/F Branch R/F Division R/F

_			 	
OFFICE	IMI.:MB	DML:MB	 	
RAME 🕨	DFlamon:jjh-	JCMalaro	 	

MAR 5 1970

 r^{n-1}

:DFH 665

> The Anaconda Company F. O. BOH 638 Grants, New Mexico 87020

Attention: Mr. A. J. Fitch Manager

Gentlemen:

Thenk you for your letter of February 16, 1970, which provided results of surveys required by Condition 13 of your AEC Source Material License No. SUA-647.

Your cooperation is appreciated.

Sincerely,

Original Signed by Benald A. I's ... umer

Bonald A. Nussbaumer, Chief Source & Special Nuclear Materials Branch Division of Materials Licensing

÷

Distribution: Docket File Document Room State Health Compliance, Region IV D. F. Harmon, DML M. A. Dean, DML Branch Reading File **Division Reading File**

	DML A	DML		a de la transmission de la constantion
	DFHarmon/vjh	DANGEsbaumen		
RNAME 🕨	21 - 170	31 4 170	 	

MAR 4 1969

DFH 165

> The Anaconda Company P. O. Box 638 Grants, New Mexico 87020

'n,

Attention: Mr. A. J. Fitch Manager

Gentlemen:

Thank you for your letter of February 21, 1969, which provided results of surveys required by Condition 13 of ABC Source Material License No. SUA-647.

Your cooperation with us is appreciated.

Sincerely,

Original Signed by The Ald A. Russbaumer

Donald A. Nussbaumer, Chief Source & Special Muclear Materials Branch Division of Materials Licensing

DISTRIBUTION: Docket File Document Room Compliance, Region IV N. Doulos, DML Branch Reading File Division Reading File

OFFICE 🕨	DML	DML			
URNAME •	DFHarmon:sr	DANussbaumer	 	· · · · · · · · · · · · · · · · · · ·	
	ancho	242469	 		

UNITED STATES ATOMIC ENERGY COMMISSION

WASHINGTON, D.C. 20545

JUN 2 0 1968

the Anaconda Company 2. 0. Box 638 trants, New Mexico 87020

SUBJECT: NOTICE OF LICENSE EXPIRATION

lentlemen: Attention: Mr. A. J. Fitch

Notice is given that Source Material License Number SUA-647 expires on August 31, 1968.

If you desire to continue your program using source material(s), an appliation for renewal of the license should be filed with this office. It is to your advantage to file such an application at least thirty (30) days before the expiration date of your existing license. The application should be submitted using Form AEC-2, enclosed, in accordance with the instructions provided with the form. Your program will then be covered by your existing license until action is taken on your application for license renewal. [Title 10, Code of Federal Regulations, Part 40, Section 40.43(b)]. If an upplication is received less than 30 days prior to the expiration date of your license and cannot be processed before your existing license expires, this could result in your possessing source material without a valid license.

If you do not wish to renew your license, please complete the enclosed form 'Certification of Status of Source Material Activities under United States atomic Energy Commission Source Material License Number 50A-647 ", and reurn it to this office.

f you have obtained an amendment which has extended the expiration date of the above license or if a new license has been issued which supersedes the above license, please disregard this notice.

his notice of your license expiration is sent for your convenience and it hould not be interpreted that similar notices will be sent in the future. The responsibility for timely submission of an application for license reeval remains with the licensee.

Very truly yours,

nclosures: 10 CFR, 20 & 40 Form AEC-2 "Certification Donald A. Nussbaumer, Chief Source & Special Nuclear Materials Branch Division of Materials Licensing HAR () & THE

:DFH 665

> The Anaconda Company P. O. Box 638 Grants, New Mexico 87020

· .

Attention: Mr. A. J. Fitch Manager

Gentlemen:

Thank you for your letter of January 29, 1968, which provided results of surveys required by Condition 13 of AEC Source Material License No. SUA-647.

Your cooperation with us is appreciated.

Very truly yours,

Bonald A. Nussbaumer, Chief Source & Special Nuclear Materials Branch Division of Materials Licensing

DISTRIBUTION: Document Room Compliance IV Subject File Br. Reading File Div. Reading File N. Doulos, DML

				1	
				J	
	13861	20141			1 J
FFICE 🕨	1 1 IVI . A	DML			
		مسموم ومرجع فالكل أنشر ومحمد والمسا			
	المستعمر ا		 		
		A. (
		.///			
ALABET .	DELLONGRAM				
NAME 🕨		110 MILLO C C D DISSING SO I			
1					
	VI/160	- <i>"</i>			

.1DPH 665

FEB 231967

The Anacoada Company P. C. Box 638 Grants, New Mexice 87020

5

Attention: Mr. A. J. Fitch Manager

Gentlemen:

X.

Thank you for your letter of February 2, 1967, which provided results of surveys required by Condition 13 of AEC Source Naterial License No. 50A-647.

Your cooperation with us is appreciated.

Very truly yours,

Donald A. Mussbaumor, Chief Source & Special Nuclear Natorial Branch Division of Materials Licensing

DISTRIBUTION: Document Room Subject File Branch Reading File Division Reading File Compliance IV D. Harmon, DML

TFICE 🕨	DML	DML	,		
	NA	De			
VAME 🕨	DHarmon/jc	DNussbaumer			
. 1		AA 1		 	

L:DFH -665 A-647, Amondment No. 1

NOV 4 - 1966

¢.

The Anaconds Company P. D. Box 638 Grants, New Mexico 67020

Attention: Mr. A. J. Fitch Manager

Contlemen:

In accordance with your application dated October 3, 1966, Item 10 of ANC Source Material License No. SUA-647 is hereby amended as follows:

"16. The licensee is hereby exampt from the requiresents of Section 20.203(c)(2) of 10 CMR 20 for areas within the sill provided all entrances to the sill are conspicuously posted in accordance with Section 20.203(c)(2) and with the words, "Any area within this sill may contain radioactive scientisl."

FOR THE ATUMIC ENERGY COMMISSION

Don F. Harmon Source & Special Muclear Natorials Branch Division of Materials Licensing

DISTRIBUTION:	
Document Room	
Branch & Division Readin	g Files
Compliance Region IV	
Suppl.	
N. Doulos, DML (3)	
Van Blarcom, RM (2)	
State Health	

and a sime set

FFICE ►	DML	4	 	 	
	DHarmon/	jc		 	
NAME N.	11121	66			

FEB : 0 1966

L:DFH -665

> The Anaconda Company P. O. Box 638 Grants, New Mexico 87020

Attention: Mr. A. J. Fitch Manager

Gentlemen:

Thank you for your letter of January 27, 1966, which provided results of surveys required by Condition 13 of AEC Source Material License No. SUA-647.

Your cooperation with us is appreciated.

Very truly yours,

Donald A. Nussbaumer, Chief Source & Special Nuclear Materials Branch Division of Materials Licensing

DISTRIBUTION: Suppl. Doc. Room Compliance, Region IV Br. & D**iv**. RF.

FFICE	DML N	DML			
IFFICE	SK	Bre	_	 	
NAME •	DFHarmon:sr	DNussbaumer			
:NAME 🕨	0/11	4. 7.		 	

FEB 1 7 1965

L:DFH -665

> The Anaconda Company P. O. Box 638 Grants, New Mexico

يور مربعة من ينترين من عن من من من المراجع

Attention: Mr. A. J. Fitch Manager

Gentleven:

Thank you for your letter of February 5, 1965, which furnished results of surveys as required by Condition 13 of AEC Source Material License No. SUA-647. We will contact you should additional information be required.

Your cooperation with us in this matter is appreciated.

Very truly yours,

Boneld A. Nussbauer, Chief Source & Special Nuclear Materiels Branch Division of Materials Licensing

DISTRIBUTION: Suppl. Doc. Room Compliance, Region IV Br. & Div. RFs

	i di	ł	1		
TIOPA	TMT di	- TINT			
FICE 🕨				 	
		7) N			1
				1	
	DHarmon : 58	Dhussbeumer			
VAME 🕨	CALLER MENTER & STAT	LINE DI DURANNA		 	
1		0/11/5	l		

FER 2 0 1964

1:DFH -665

> The Anaconda Company New Mexico Operations F. C. Box 638 Grants, New Mexico

Attention: Mr. A. J. Fitch Manager

Gentlemen:

Thank you for your letter of February 11, 1964, which furnished results of surveys required by Condition 13 of ASC Source Material License No. SUA-647.

Your cooperation with us is appreciated.

Very truly yours,

DISTRIBUTION: Doc. Rm. Br. & Div. rfs Compliance Suppl. D. Harmon

Donald A. Mussbanner, Chief Source and Special Nuclear Material Branch Division of Licensing and Regulation

.....

والمراجع بالمحمو والمحمو

where we come and the local field	A REAL PROPERTY AND A REAL	and the second se	1	
	LRA LR		 	
INAME 🕨	Harmon Arc DNussbaumer		 	

UNITED STATES ATOMIC ENERGY COMMISSION

WASHINGTON 25, D.C.

IN REPLY REFER TO. IR:DH 40-665

NOV 14 1963

The Anaconda Company P. O. Box 638 Grants, New Mexico

Attention: Mr. A. J. Fitch Manager

Gentlemen:

Fee Line 1

The milling of uranium ore by AEC licensees has resulted in the production of large quantities of solid waste tailings.

These wastes (ore residues) normally contain by weight, about 0.02 percent uranium. They also contain small quantities of naturally occurring radioisotopes which were present in the initial ore as uranium daughter products and waste chemicals such as acids, alkalies, salts, and organics. From a radiological standpoint, the principal radioisctope presently appears to be radium-226.

These slightly radioactive tailings are located on milling properties owned or controlled by licensees. As you know, licensees are required to maintain control of the tailings in accordance with their licenses and applicable AEC regulations. particularly 10 CFR, Part 20, "Standards for Protection Against Radiation."

Recent changes in the Commission's procurement program and the depletion of ore bodies in some areas have resulted in the sbutting down of a number of mills and upgraders. Other mills which are presently operating may close after present Commission contracts expire.

In response to inquiries of mill licensees, we have previously furnished such licensees with the attached contamination limits, which should be met prior to the transfer of buildings and equipment to individuals who do not hold appropriate AEC source material licenses. We have not yet, however, determined whether control of solid tailings at closed uranium mills for radiological safety purposes is within the Commission's regulatory jurisdiction; or if so, whether there is a need for the adoption of requirements for the control of these tailings. We have initiated survey programs to obtain data which will assist in the determination of these questions.

Accordingly, we do not plan to terminate uranium milling licenses until we have concluded our review of the tailings problem and reached a decision as to what control measures, if any, are appropriate under the circumstances.

Your cooperation with us in this matter is appreciated.

Sincerely yours,

Eber R. Price Acting Director

> Director Division of Licensing and Regulation

Enclosure: Contamination Limits

ļ

٠.

RADIOACTIVITY CONTAMINATION LIMITS FOR

ABANDONMENT OF URANIUM MILLS

- 1. The maximum amount of fixed alpha radioactivity in disintegrations per minute per 100 square centimeters on buildings or equipment is 25,000.
- 2. The average amount of fixed alpha radioactivity in disintegrations per minute per 100 square centimeters on buildings or equipment is 5,000.
- 3. The maximum amount of removable (capable of being removed by wiping the surface with a filter paper or soft absorbent paper) alpha radioactivity in disintegrations per minute per 100 square centimeters on buildings or equipment is 1,000.
- 4. (a) The maximum level at one centimeter from the most highly contaminated surface of a building or piece of equipment measured with an open-window beta-gamma survey meter through a tissue equivalent absorber of not more than seven milligrams per square centimeter does not exceed one millirad per hour.

(b) The average radiation level at one centimeter from the contaminated surface of the building or equipment measured in the same manner does not exceed 0.2 millirad per hour.

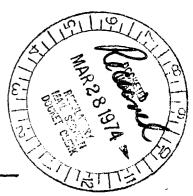
The Anaconda Company	• • *	March 1	1974	March	5 1974	0787	
Grants, NM		LTR.	MEMO	, R	Τ.	OTHER:	
	÷.	x					
r0;		ORIG.: 1	CCI	OTHE	R:		
Division of Materials Licens	sing	ACTION NECESSARY NO ACTION NECESSAR		CONCURRENCE	P	DATE ANSWERED	
LASSIF: POST OFFI	CE	FILE CODE:					
U REG. NO:		Docketb N	o. 40-6f	5			
DESCRIPTION: (Must Be Unclassified)			RED TO	DATE	RE	CEIVED BY	DATE
Ltr. trans:		Rouse		4-4			
		2 extras					
			_				
NCLOBURES		Distributi	lon				
Yearly Summary Report of the	Dispass	reg file o	-12				
Well Injection Program for 1		PDR					
wert injection righten for a		RO					
						TIAN	↓]
			5	ONOT		NAO 🗤	
					p		
	3 сув		•				
EMARKS:							
					0787	eeb	
♦ U.S. GOVERNMENT PRINTING OFFICE, 1973 - 50		ATOMIC ENERGY C	OMMISSION	MAII		DL FORM FORM	AEC-3261 8-603

 ϕ U.S. GOVERNMENT PRINTING OFFICE: 1973 - 503-135

. . . . 13

÷.,

The Anaconda Company


P.O. BOX 638, GRANTS, NEW MEXICO 87020

NEW MEXICO OPERATIONS A. J. FITCH MANAGER

March 25, 1974

Source and Special Materials Branch Division of Materials Licensing United States Atomic Energy Commission Washington, D.C. 20545

Re: Docket No. 40-665

Gentlemen:

In accordance with condition 13(c) of our Source Material License No. SUA-647, I am sending you three copies of the Yearly Summary Report of the Disposal Well Injection Program for 1973.

Yours very truly,

A. J. FITCH

Enclosures

SECUSIN CLER

0787

March 21, 1974

MEMORANDUM FOR RECORD

<u>SUBJECT</u>: Yearly Summary Report of the Disposal Well Injection Program for 1973.

Presented in this report are the following tabulations of data pertaining to the operation of the disposal well program during the period from January 1, 1973 to January 1, 1974.

- I. Average Monthly Injection Rates.
- II. Concentrations of Radioactive Constituents in Injection Liquid.
- III. Radiological Analyses of Monitored Well and Surface Waters.
- IV. Static Water Levels of Wells in the San Andres-Glorieta Aquifer in the Vicinity of the Anaconda Mill and Disposal Well.

Respectfully submitted,

E hord bleand

ELROD C. LEANY Radiation Safety Engineer

ECL:hr

c: A. J. Fitch (4) T. R. Beck E. A. Lucero

G. A. Swanquist

ATTACHMENT I

AVERAGE MONTHLY LIQUID INJECTION RATES

.

	Gallons Injected
January 1973	13,275,400
February 1973	10,271,100
March 1973	8,352,540
April 1973	7,516,140
May 1973	7,174,200
June 1973	9,902,640
July 1973	9,243,800
August 1973	9,729,750
September 1973	6,284,325
October 1973	7,807,200
November 1973	2,189,550
December 1973	8,883,470
Total 1-1-73 to 1-1-74	100,630,115
Average Injection Rate	8,385,843

ATTACHMENT II

۰.

•

CONCENTRATION OF RADIOACTIVE CONSTITUENTS IN INJECTION LIQUID

	Ra -226 <u>uc/ml x 10⁸</u>	Th -230 uc/ml x 10 ⁸	U Natural uc/ml x 10 ⁶
January 1973	4.41	1.51	12.0
February 1973	7.38	1.51	11.6
March 1973	8.03	1.44	13.4
April 1973	7.48	1.48	16.3
May 1973	30.50	1.65	19.4
June 1973	13.26	2.06	19.6
July 1973	7.32	2.44	18.0
August 1973	24.4	1.60	12.4
September 1973	12.6	2.27	11.4
October 1973	6.94	1.45	14.7
November 1973	4.84	1.92	16.8
December 1973	8.56	2.00	13.6

ATTACHMENT III

RADIOLOGICAL ANALYSES OF MONITORED WELL AND SURFACE WATERS FOR THE MONTHS OF MAY AND NOVEMBER 1973

.

THE ANACONDA COMPANY

RADIOLOGICAL WATER ANALYSIS FOR MONTH OF May 1973

:

· · · · · · · · · · · · · · · · · · ·		·	Y	T		
DESCRIPTIVE LOC	ATION	Gross uCi/ml	Alpha x 10 ⁸	Ra-226 uCi/ml x 10 ⁸	Th-230 uCi/ml x 10 ⁶	U-nat. uCi/ml x 10 ⁵
Suburban Gas	11.10.27.433	3.1	± 0.60	less than 0,2	less than 0.004	0.0011
Serryhill Section 5	12.10. 5.341a	No Sa	mple			
North Well	12.10. 7.143	1.4	± 0.40	less than 0.2	less than 0.004	0.00094
Monitor Well #1	12,10. 8.332	7.3	± 0.94	less than 0.2	less than 0.004	0.00495
Roundy Windmill	12.10.12.433a	5.8	± 0.82	less than 0.2	less than 0.004	0.00325
Murray	12.10.27.431	No Sai	mple	· · ·		
Mexican Camp	12.10.30.112	0.40	± 0.11	less than 0.2	less than 0.004	0.00019
Jack Freas	12.10.30.242	0.47'.	± 0.13	less than 0.2	less than 0.004	0.00012
Joy Manufacturing	12.10.35.322	0.68	± 0.26	less than 0.2	less than 0.004	0.00038
Berryhill House	12.11.11.334	0.51	± 0.19	less than 0.2	less than 0.004	0.00026
Anaconda #2	12.11.24.233	17.6	± 1.3	less than 0.2	less than 0.004	0.0082
Anaconda #4	12.11.25.214	0.90	± 0.22	less than 0.2	less than 0.004	0.00030
Wilcoxson (P.Harris)	13. 9.16.411	6.5	± 0.87	0.36 ± 0.07	less than 0.004	0.0044
				· ;	-	
		• •				
					• • •	e
				· · ·		
		······································				
· ·						
	·					

RADIOLOGICAL WATER ANALYSIS FOR MONTH OF _____ May 1973

DESCRIPTIVE	LOCATION	Gross uCi/ml			Ra uCi/ml	-226 x	L0 ⁸	uCi/	Th-230 ml x 10 ⁶	U-nat. uCi/ml x	
Sabre-Pinon	12,10,20,333a_	0.77	±	0.18	·	<u></u>	······			0.00025	
Card Electric	12.10.29.434a	No Sa	amp.	le					•		<u></u> .
Harding Irrigation	12.10.30.421	No Sa	mp	le							<u></u>
Fred Freas	12.10.30.433	0.62	±	0.15						0.00024	. <u></u>
Chapman	12.10.32.211a	0.38	±	0.11						0.00008	
Thunderbird Post	12.11.10.411a	0.90	#	0.22	less	than	0.2	less	than 0.004	0.00040	
Tailing Pond	12.11.13.Pond	Not d	etei	rmined	21.7			165.		1.94	
Engineers Well	12.11.14.213	2.5	±	0.37	less	than	0.2	less	than 0.004	0.00065	
L.D.S. Bluewater		0.48	±	0.19	•					0.00014	
Roundy Harmon	12.11.23.231	0.66	±	0.18					•	0.00016	
Auros Motel		0.93	±	0.26	less	than	0.2	less	than.0.004	0.00032	
Power House Pond		144.	±	0.9	0.32	±٠	0.07	less	than 0.004	0.17	
Webb Windmill	12.11.25.122a	No Sa	amp	le	<u></u>	•					
Anaconda #3	12.11.25.213	0.51	±	0.14	less	than	0.2	less	than 0.004	0.00015)
Mt. Taylor Corp.	13. 9.29.343	No Sa									
		· · · · ·			·····						
	1. <i>.</i>										
					<u> </u>						
								,			

3

RADIOLOGICAL WATER ANALYSIS FOR MONTH OF May 1973

DESCRIPTIVE LOCA	TION	Gros uCi/ml		1pha 10 ⁸	Ra-226 UCi/ml10 ⁸	Th-230 	U-nat. _uCi/mlx_10 ⁵
Cottonwood_Spring	10. 9. 6.442	1.2		0.46	less than 0.2	less than 0.004	0.00031
Del_Padre_Spring	_1097.222	2.4	±	0.92	less than 0.2	less than 0.004	0.00071
Gottlieb_Poison_#2	<u>10, 9,17,113a</u>	0.59	±	0.36	· · · · · · · · · · · · · · · · · · ·		0.00016
Gottlieb_Butane	_10,_9.23.134_	0.16		0.07	· · · · · · · · · · · · · · · · · · ·		0.00011
Horace_Springs	10. 9.26.222	0.27	±	0.15			0.00008
San_Rafael	_10.103.433a	0.54	±	0.18			0.00019
Heath Well	_10.10.15.233_	No 8	Sam	ple	·····		
Republic	_11.10. 2.111	1.53	±	0.33	less than 0.2	less than 0.004	0.00064
Vidal	_11.105.213_	0.36	±	0.12			0.00022
Milan Chinle	_11.10.21.211_	0.33	±	0.10			0.00020
Grants-San Andres	_11.10.26.Tap_	0.35		0.13			0.00020
Schneemann	_11.11.23.333_	0.33	±	0.06			0.00028
Greater_Grants_Airport_	_12,10,26,322a	No S	Sam	ple			
Card Gas	_12.10.27.333	No Sa	mp	le	;		
Card Commissary	12.10.33.444	1.9	±	0.34	less than 0.2	less than 0.004	0.00046
Murray #1	12.10.34.224	1.1	±	0.29	less than 0.2	less than 0.004	0.00028
Sandoval	13. 9.22.212	0.97	±	0.21	less than 0.2	less than 0.004	0.00054

THE ANACONDA COMPANY

RADIOLOGICAL WATER ANALYSIS FOR MONTH OF

November 1973

DESCRIPTIVE LO	CATION	Gross Alpha uCi/ml x 10 ⁸	Ra-226 uCi/ml x 10 ⁸	Th-230 uCi/ml x 10 ⁶	U-rat. uCi/ml x 10^5
Suburban Gas	11.10.27.433	2.09 ± 0.50	less than 0.2	less than 0.004	0.00089
Berryhill Section 5	12.10. 5.341a	No Sample			
North Well	12.10. 7.143	2.51 ± 0.52	less than 0.2	less than 0.004	0.0010
Monitor Well #1	12.10. 8.332	6.91 ± 0.96	less than 0.2	less than 0.004	0.0057
Roundy Windmill	12.10.12.433a	5.58 ± 0.82	less than 0.2	less than 0.004	0.0038
Murray	12.10.27.431	No Sample			
Mexican Camp	12.10.30.112	0.37 ± 0.11	less than 0.2	less than 0.004	0.00023
Jack Freas	12.10.30.242	0.35 ± 0.11			0.00010
Joy Manufacturing	12.10.35.322	0.55 ± 0.23	less than 0.2	less than 0.004	0.00031
Berryhill House	12.11.11.334	0.69 ± 0.22	less than 0.2	less than 0.004	0.00031
Anaconda #2	12.11.24.233	17.2 ± 1.4	less than 0.2	less than 0.004	0.015
Anaconda #4	12.11.25.214	0.51 ± 0.20	less than 0.2	less than 0.004	0.00028
Wilcoxson (P.Harris)	13. 9.16.411	1.39 ± 0.40	less than 0.2	less than 0.004	0.0011
	······································		i	~	·
· ·		i			
-	· · · · · · · · · · · · · · · · · · ·		•		
		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	

RADIOLOGICAL WATER ANALYSIS FOR MONTH OF ____ November, 1973

DESCRIPTIVE	LOCATION	Gross Alpha uCi/ml x 10 ⁸	Ra-226 uCi/m1 x 10 ⁸	Th-230 uCi/ml x 10 ⁶	U-nat. uCi/ml x 10 ⁵
Sabre-Pinon	12.10.20.333a_	0.26 ± 0.09			0.00006
Card Electric	12.10.29.434a	No Sample			
Harding Irrigation	12.10.30.421	No Sample			
Fred Freas	12.10.30.433	0.39 ± 0.12			0.00016
Chapman	12.10.32.211a	0.44 ± 0.13			0.00014
Thunderbird Post	12.11.10.411a	No Sample			
Tailing Pond	12.11.13.Pond	Not Determined	4.84	192.	1.68
Engineers Well	12.11.14.213	0.80 ± 0.21	less than 0.2	less than 0.004	0.00045
L.D.S. Bluewater	12.11.22.234	0.43 ± 0.17			0.00025
Roundy Harmon	12.11.23.231	0.56 ± 0.21			0.00020
Auros Motel	12.11.24.334a	0.41 ± 0.12	·		0.00012
Power House Pond	12.11.24.PHP	111. ± 4.2	0.18 ± 0.005	less than 0.004	0.14
Webb Windmill	12,11,25,122a	No Sample			
Anaconda #3	12,11,25,213	0.58 ± 0.18	less than 0.2	less than 0.004	0.00019
Mt. Taylor Corp.	13. 9.29.343	No Sample			

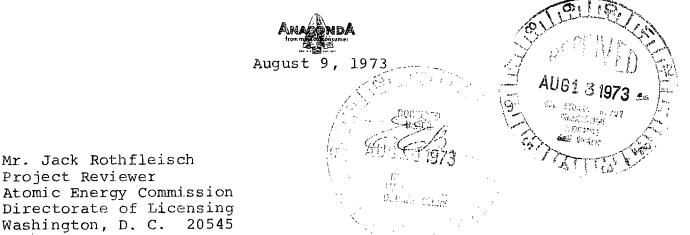
•

ATTACHMENT IV

4., I

STATIC WATER LEVELS OF WELLS IN THE SAN ANDRES-GLORIETA AQUIFER IN THE VICINITY OF THE ANACONDA MILL AND DISPOSAL AREA

		Static Water Level
Well Description	<u>Date of Measurement</u>	Feet above mean sea level
Anaconda #1	1-1-73	6444.0
12.11.24.411	1-6-74	6645.5
Ann ann da HO	70	6443.8
Anaconda #2	1-1-73	
12.11.24.233	1-6-74	6445.3
Anaconda #3	1-1-73	6443.9
12.11.25.213	1-6-74	6446.3
Anaconda #4	1-1-73	6443.7
	12-24-73	6446.7
12.11.25.214	12-24-73	0440./
Monitor Well #1	12-26-72	6446.6
12.10.8.332	1-3-74	6449.8
North Well	12-26-72	6451.8
12.10.7.143	1-3-74	6455.2


FROM:	DATE OF DOCUMENT:	DA	TE RECEIVED	-	New at the state	
The Anaconity Comp.	America 9, 1	975 A	PC	3. 1973	5210	
7.0. Box 11 109	LTR,	MEMO:	ΥPC	RT:	OTHER:	
Tueson, Arlans 25734	X					
TO:	ORIG.I C	20:	OTHE	iR:		
	1	· ····································				
Jack Bothfleisch	ACTION NECESSARY		NCURRENCE		DATE ANSWERED:	
	NO ACTION NECESSARY	co	MMENT		BY:	
CLASSIF: POST OFFICE	FILE CODE:					
U REG. NOI	Docker No.	40-665				
DESCRIPTION: (Must Be Unclassified)	REFERRED	ro	DATE	RE	CEIVED BY	DA
Ltr. pertaining to telecon dis-						1
C1888 1008	Rouse		\$-14			
	2 ortras					
ENCLOSURES;	Distribution					<u> </u>
	reg file cy					
	FDR	·			~	
	RO					
			,		······	-
		10-10-10 		·		
REMARKE:					······································	
			· -			-
						1
	· ·			6	216 eet	
U.S.	ATOMIC ENERGY COMM	ISSION			L FORM FORM A	!

1 U.S. GOVERNMENT PRINTING OFFICE: 1973 - 488-465

AL CONTROL FORM FORM AKC-2265-(8-60)

The Anaconda Company

PRIMARY METALS DIVISION P.O. BOX 11309, TUCSON, ARIZONA 88708 85734

40-665

6210

He ty.

Project Reviewer Atomic Energy Commission Directorate of Licensing Washington, D. C.

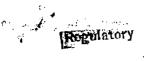
SOURCE MATERIAL LICENSE SUA-647 Re:

Dear Mr. Rothfleisch:

Pursuant to our earlier telephone discussions, it is my understanding that Anaconda, under its existing Source Material License, may enter into an agreement with another source material licensee, holding an appropriate license, whereby Anaconda's Uranium ores would be processed under a tolling arrangement and the resulting yellow-cake return to Anaconda.

I would appreciate your confirmation if the foregoing is correct. Thank you for your assistance.

Very truly yours,


Colin C. Howard Counsel

CCH:bb

FROM:	DATE OF DOCUMENT	DATE R	D į	NO.:	
The Anaconda Company	Ney 14, 1973	Hay 17, 1	973	3225	i
Grants, NH87020	LTR. MEMO:	REPOR	۲ .	OTHE	R
A.J. Fitch	X				
TO:	ORIG.: CC:	OTHE	R:		
J.F. Lendin	X	•			
	ACTION NECESSARY	CONCURRENCE		DATE ANSWE	RED:
	NO ACTION NECESSARY	COMMENT		BY:	
CLASSIF: POST OFFICE	FILE CODE:				
UDCLAS REG. NO:	DINGKLET 40-665				
DESCRIPTION: (Must Be Unclassified)	REFERRED TO	DATE	RECEI	IVED BY	D
Ltr., requesting statue of theirplane to increase the copacity of their uranics ore processing slant	Rouse: 11/2 extras				
to increase the conscity of their uranium ore processing plant enclosures:	NOUGE: W/2 extras FIFTRIEFTON. A Reg. file cy 1-PDR 1-RO				
to increase the conscity of their uranium ore processing plant enclosures:	NOUGE: W/2 extras FIFTRIEFTON. A Reg. file cy 1-PDR 1-RO	ED			
to increase the conscity of their uranium ore processing plant enclosures:	NOUGE: W/2 extras FIFTHIEFTON: A Reg. file cy 1-PDE	ED E			

.

•

P.O. BOX 638, GRANTS, NEW MEXICO 87020

NEW MEXICO OPERATIONS A. J. FITCH MANAGER

May 14, 1973

Materials Branch Directorate of Licensing United States Atomic Energy Commission Washington, D.C. 20545

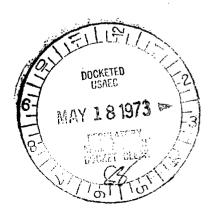
Attention: Mr. John F. Kendig

File Cy

Re: Docket No. 40-665

Gentlemen:

In my letter of January 26, 1973, I submitted information you requested concerning our plans to increase the capacity of our uranium ore processing plant.


We would appreciate very much hearing from you in this matter and would be pleased to submit any additional information that might be necessary.

Yours very truly,

ag Bidd

A. J. FITCH

AJF:hr

3225

FROM: THE ABOODAL Company		DATE OF DOC	UMENT	DATE REC.	*	NO.:	
Granta, New Mexico 8	7020	March 23		March 2			·
		LTR.	MEMO:	RE	PORT:	ОТН	ER:
<u>Å. J. Fitch</u>		X					
10:		ÖRIĞ.:	CC:		THER:		
De41.		1			dixy.		
		ACTION NECESS	·····	CONCURRE		DATE ANSWE	ERED:
CLASSIF: POS	TOFFICE	NU ACTION NECE	SSARY .	COMMENT		Вү:	
1			40.4CE				
DESCRIPTION: (Must Be Unclassified)	3. NO:	DOCKET :	RRED TO	DATE	1	ECEIVED BY	DA
				DATE	к 		
tr. trans. the following i	n accordance	Male		3/28			
Ath Condition 607	A 4 15			3/60		····	
ach condition lists of SUA							
with Condition 13(c) of SUA	-04/	W/II	le cy.				
ENCLOSURES:		w/I1	118 CJ				
ENCLOSURES: (3 CYS. KOC*d.	>			COLUMN			
enclosures: (3 cys. rec*d. Yearly Summery Report of t) he Disposal		iarged to	COLUES.			
ENCLOSURES: (3 CYS. KOC*d.) he Disposal			COLUES.			
enclosures: (3 cys. rec*d. Yearly Summery Report of t) he Disposal			COLLINS.			
enclosures: (3 cys. rec*d. Yearly Summery Report of t) he Disposal			COLLENS.			
enclosures: (3 cys. rec*d. Yearly Summery Report of t) he Disposal			COLLERS.			
ENCLOSURES: (3 Cys. rec'd. Yearly Summery Report of E Will Injection Program for) he Disposal			COLLINS.			
enclosures: (3 cys. rec*d. Yearly Summery Report of t) he Disposal			COLLINS.			
ENCLOSURES: (3 Cys. roc*d. Yearly Summery Report of E Will Injection Program for REMARKS:) he Disposal			COLLENS.			
ENCLOSURES: (3 Cys. rec'd. Yearly Summery Report of E Will Injection Program for) he Disposal			coelers.			
ENCLOSURES: (3 Cys. rec'd. Yearly Summery Report of t Will Injection Program for REMARKS: Distribution: 1-208 cy.) he Disposal			coelers.			

:

THE ANACONDA COMPANY

P.O. BOX 638, GRANTS, NEW MEXICO 87020

March 23, 1973

Source and Special Materials Branch Division of Materials Licensing United States Atomic Energy Commission Washington, D.C. 20545

and a second

REGULATORY FILE CY

Re: Docket Nd. 40-665

Gentlemen:

In accordance with condition 13(c) of our Source Material License No. SUA-647, I am sending you three copies of the Yearly Summary Report of the Disposal Well Injection Program for 1972.

Complete records of all phases of the disposal well injection program are being maintained and are available for your inspection at any time.

Yours very truly, a & states A. J. FITCH MAIL' SECTION DOCKET CLERF

AJF:hr

Enclosures

ACKNOWLEDGED

NEW MEXICO OPERATIONS A. J. FITCH MANAGER

March 23, 1973

MEMORANDUM FOR RECORD

<u>SUBJECT</u>: Yearly Summary Report of the Disposal Well Injection Program for 1972.

Presented in this report are the following tabulations of data pertaining to the operation of the disposal well program during the period from January 1, 1972 to January 1, 1973.

- 1. Average Monthly Injection Rates.
- II. Concentrations of Radioactive Constituents in Injection Liquid.
- III. Radiological Analyses of Monitored Well and Surface Waters.
- IV. Static Water Levels of Wells in the San Andres-Glorieta Aquifer in the Vicinity of the Anaconda Mill and Disposal Well.

Respectfully submitted,

falled & bearing

ELROD C. LEANY Radiation Safety Technician

ECL:hr

- c: A. J. Fitch (4)
 - J. P. Herndon
 - T. R. Beck
 - G. A. Swanquist

ATTACHMENT I

AVERAGE MONTHLY LIQUID INJECTION RATES

	Gallons Injected
January 1972	10,683,300
February 1972	10,024,920
March 1972	8,261,000
April 1972	4,740,900
May 1972	3,688,400
June 1972	4,525,400
July 1972	780,975
August 1972	54,000
September 1972	0
October 1972	4,644,000
November 1972	8,134,200
December 1972	11,736,720
TOTAL 1-1-72 to 1-1-73	67,273,815
Average Injection Rate	5,606,151

ATTACHMENT II

1 (

CONCENTRATION OF RADIOACTIVE CONSTITUENTS IN INJECTION LIQUID

	Ra-226 uc/ml x 10 ⁸	Th≓230 uc/ml x 10 ⁴	U-natural uc/ml x 10 ⁶
January 1972	3.58	2.02	14.8
February 1972	3.66	1.92	14.1
March 1972	3.71	2.00	13.4
April 1972	3.82	2.16	16.4
May 1972	10.15	3.16	20.2
June 1972	7.66	4.52	29.7
July 1972	0.95	10.10	75.0
August 1972	No Sample		
September 1972	No Injectic	'n	
October 1972	2.74	1.18	12.6
November 1972	2.13	1.05	11.2
December 1972	2.70	1.28	11.2

ATTACHMENT III

e 1

RADIOLOGICAL ANALYSES OF MONITORED WELL AND SURFACE WATERS FOR THE MONTHS OF MAY AND NOVEMBER 1972

2

RADIOLOGICAL WATER ANALYSIS FOR MONTH OF May 1972

DESCRIPTIVE L	DCATION	Gross Alpha uCi/ml x 10 ⁸	Ra-226 uCi/ml x 10 ⁸	Th-230 uCi/ml x 10 ⁶	U-nat. uCi/ml x 10 ⁵
Suburban Gas	11.10.27.443.	1.5 ± 0.40	less than 0.2	less than 0.004	0.00070
Berryhill Section 5	12.10. 5.341a	0.51 ± 0.28	0.21 ± 0.05	less than 0.004	0.00006
North Well	12.10. 7.143	1.5 ± 0.42	less than 0.2	less than 0.004	0.0011
Monitor Well #1	12,10, 8,332	6.8 ± 0.93	0.20 <u>+</u> 0.05	less than 0.004	0.0055
Roundy Windmill	12.10.12.433a	4.9 ± 0.76	less than 0.2	less than 0.004	0.0033
Murray	12.10.27.431	0.72 ± 0.25			0.00035
Mexican Camp	12.10.30.112	0.37 ± 0.10	less than 0.2	less than 0.004	0.00022
Jack Freas	12.10.30.242	0.20 ± 0.10			0.00010
Joy Manufacturing	12.10.35.322	0.65 ± 0.25	less than 0.2	less then 0.004	0.00039
Eerryhill House	12.11.11.334	0.42 <u>±</u> 0.17	less than 0.2	less than 0.004	0.00026
Anaconda #2	12.11.24.233	17.5 ± 1.3	less than 0.2	less than 0.004	0.013
Anaconda #4	12.11.25.214	0.61 ± 0.18	less than 0.2	less than 0.004	0.00020
Wilcoxson (P. Harris)	13. 9.16.411	1.4 ± 0.42	less than 0.2	less than 0.004	0.00019
	ĺ				
			-		
**************************************	······································				
		****	· · · ·		

RADIOLOGICAL WATER ANALYSIS FOR MONTH OF _____ May 1972

DESCRIPTIVE	LOCATION	Gross Alpha uCi/ml x 10 ⁸	Ra-226 uCi/ml x 10 ⁸	Th-230 uCi/ml x 10 ⁶	U-nat. uCi/ml x 10 ⁵
Sabre~Pinon	12,10,20,333a_	No Sample			
Card Electric	12.10.29.434a	No Sample			
Harding Irrigation	12.10.30.421	No Sample			
Fred Freas	12.10.30.433	0.40 ± 0.12			0.00021
Chapman	12.10.32.211a	0.30 ± 0.10			0.00021
Thunderbird Post	12.11.10.411a	1.2 ± 0.31	less than 0.2	less than 0.004	0.00060
	12.11.13.Pond	Not determined	10.1	316.	2.02
Engineers Well	12.11.14.213	1.4 ± 0.28	less than 0.2	less than 0.004	0.00058
L.D.S. Bluewater	12.11.22.234	0.66 ± 0.22			0.00021
Roundy Harmon	12.11.23.231	0.63 ± 0.22		•	0.00019
Auros Motel	12.11.24.334a	0.58 ± 0.21		•	0.00014
Power House Pond	12.11.24.PHP	60.6 <u>+</u> 6.8	2.0 ± 0.17	less than 0.004	0.28
Webb Windmill	12.11.25.122a	No Sample			
Anaconda #3	12.11.25.213	0.74 <u>+</u> 0.19	less than 0.2	less than 0.004	0.00025
Mt. Taylor Corp.	13. 9.29.343	8.4 ± 0.92	less than 0.2	less than 0.004	0.0052
-					•
· ·					

DESCRIPTIVE LOCA	TION			Alpha x 10 ⁸	Ra-226 uCi/ml x 10 ⁸	Th-2 uCi/ml		U-nat.
Cottonwood Spring	10. 9. 6.442	0.59	<u>±</u>	0.33			···	0.00022
Del Padre Spring	1097.222	1.4	<u>±</u>	0.97	less than 0.2	less that	n 0.004	0.00065
Gottlieb Poison #2	10 <u>9</u> 17,113a	0.59	<u>±</u>	0.36	·			0.00034
Gottlieb_Butane	10.9.23.134	0.28	<u>+</u>	0.09				0.00022
Horace_Springs	10.9.26.222	0.38	<u>±</u>	0.15				0.00011
San_Rafael	_10.103.433a	0.46	<u>±</u>	0.17				0.00029
Heath_Well	10.10.15.233	0.82	<u>±</u>	0.32	less than 0.2	less that	n 0.004	0.00081
Republic	_11.10_2.111	1.1	<u>±</u>	0.30	less than 0.2	less that	n 0.004	0.00061
Vidal	11.10. 5.213	0.33	<u>±</u>	0.11		· · · · · · · · · · · · · · · · · · ·		0.00011
	11.10.21.211	0.32	<u>±</u>	0.10		•	•	0.00014
Grants-San Andres	_11.10.26.Tap_	0.61	<u>±</u>	0.17			•	0.00020
Schneemann	11,11,23,333	0.14	±	0.05				0.00011
Greater Grants Airport	12.10.26.322a	0.73	±	0.27				0.00034
Card_Gas	12.10.27.333	0.54	Ţ	0.21		, , ,		0.00021
Card Commissary	12.10.33.444	1.1	±.	0.23	less than 0.2	less that	n 0.004	0.00060
Murray #1	12.10.34.224	0.74	±	0.24	less than 0.2	less that	n 0.004	0.00052
Sandoval.	13. 9.22.212	No Sa	mpl	.e "				
· · · · · · · · · · · · · · · · · · ·					-			
						•		
	-							
·····								

RADIOLOGICAL WATER ANALYSIS FOR MONTH OF November 1972

DESCRIPTIVE LO	CATION	Gross Alph uCi/ml x	a 10 ⁸	Ra-226 uCi/ml x	108	Th-23 uCi/ml x	⁰ 10 ⁶	U-nat. uCi/ml x	10 ⁵
Suburban Gas	11.10.27.433	3.1 ± 0	.60	less than (0.2	less than	0.004	0.0022	
Berryhill Section 5	12.10. 5.341a	No Sample							
North Well	12.10. 7.143	1.4 ± 0	.39	less than (0.2	less than	0.004	0.0012	
Konitor Well #1	12,10. 8.332	6.6 ± 0	.90	0.21 ± 0	0.05	less than	0.004	0,0047	
Roundy Windmill	12.10.12.433a	No Sample							
Murray	12.10.27.431	No Sample	:						
Mexican Camp	12.10.30.112	0.25 ± 0	.09	less than (0.2	less than	0.004	0.00018	3
Jack Freas	12.10.30.242	0.18 ± 0	.08					0.00012	2
Joy Manufacturing	12.10.35.322	0.55 ± 0	.23	less than (0.2	less than	0.004	0.00045	5
Eerryhill House	12.11.11.334	0.36 ± 0	.16	less than (0.2	less than	0.004	0.00029)
Anaconda #2	12.11.24.233	14.2 ± 1	.2	less than (0.2	less than	0.004	0.012	
Anaconda #4	12.11.25.214	0.52 ± 0	.17	less than (0.2	less than	-0.004	0.00024	1
Wilcoxson (P.Harris)	13. 9.16.411	4.0 ± 0	.68	0.38 ± 0	.08	less than	0.004	0.0029	
				· · · ·		•	•		. **
		••		······					
				· · · ·					
								·····	
		· · · · · · · · · · · · · · · · · · ·		<u></u>		•			
								· · ·	

1. 11

RADIOLOGICAL WATER ANALYSIS FOR MONTH OF November 1972

DESCRIPTIVE	LOCATION	Gross uCi/ml	Alpha x 108	Ra-226 uCi/ml x 10 ⁸	Th-230 uCi/ml x 10 ⁶	U-nat. uCi/ml x 10 ⁵
Sabre-Pinon	12.10.20.333a	0.04 ±	0.04			0.00006
Card Electric	12.10.29.434a	No Sam	ple	:		
Harding Irrigation	12.10.30.421	No Sam	ple			
Fred Freas	12.10.30.433	0.22 ±	0.09			0.00014
Chapman	12.10.32.211a	0.27 ±	0.10			0.00015
Thunderbird Post	12.11.10.411a	0.94 ±	0.24	less than 0.2	less than 0.004	0.00084
Tailing Pond	12.11.13.Pond	Not dete	rmined	2.1	105.	1.12
Engineers Well	12.11.14.213	0.81 ±	0.20	less than 0.2	less than 0.004	0.00079
L.D.S. Bluewater	12.11.22.234	0.65 ±	0.21			0.00036
Roundy Harmon	12.11.23.231	0.26 ±	0.05	-		0.00020
Auros Motel	12.11.24.334a	0.54 ±	0.20			0.00028
Power House Pond	12.11.24.PHP	154. ±	5.0	1.2 ± 0.13	less than 0.004	0.35
Webb Windmill	12.11.25.122a	No Samp	ole			
Anaconda #3	12.11.25.213	0.40 ±	0.13	less than 0.2	less than 0.004	0.00028
Mt. Taylor Corp.	13. 9.29.343	8.2 ±	0.90	less than 0.2	less than 0.004	0.0068
			-			
		·	·			

ATTACHMENT IV

. . . .

.

STATIC WATER LEVELS OF WELLS IN THE SAN ANDRES-GLORIETA AQUIFER IN THE VICINITY OF THE ANACONDA MILL AND DISPOSAL AREA

Well Description	Date of Measurement	Static Water Level
Well Description	Date of Measurement	<u>Feet above mean sea level</u>
Anaconda #1	1-2-72	6446.7
12.11.24.411	1-1-73	6440.0
Anaconda #2	1-2-72	6446.4
12.11.24.233	1-1-73	6443.8
Anaconda #3	1-2-72	6448.0
12.11.25.213] -] - 73	6443.9
Anaconda #4	1-2-72	6447.9
12.11.25.214	1-1-73	6443.7
Monitor Well #1	12-31-71	6449.0
12.10.8.332	12-26-72	6446.6
North Well	12-31-71	6454.1
12.10.7.143	12-26-72	6451.8

040-00665		L CONTROL NO.	DATE REQUE		1 = Le			MAM LUD	E (PRIMARY)
ECONDARY PROGRAM	CODES:		1/3			11 4			# 5	
NAME				NAM	E					
NAME	······································			NAM	E	<u> </u>				
NAME					E					
						· ·				
ORGANIZATION NAME							T V D	- 05 05	GANIZATI	<u></u>
DEPARTMENT OR BUREAU					ŀ		ERNMENT /	GENCY	EDUCATI	ONAL INSTI
BUILDING, STREET		····			CITI	- L	INSTITUTIO	STATE	INDUST	ZIP CODE
S APPLICANT'S COMMUNIC		CLASSIFICAT		1.0010	NED TO	ants		· t		8702
01/26/73	TION DATED.	U		A5516	NEDIC					RESOLITING
UNCLASSIFIED DESC Ltr. req to processing p	emend SUA	-647 to 1 o the max	ncrease	the ca 4,000	paci	ty of of or	their 1 e per	Bluew day.	ater u	anium
UNCLASSIFIED DESC	emend SUA	-647 to 1 o the max	ncrease imum of	the ca 4,000	pacitons	ty of of or	their) e per	Bluewa day. () J	ater ui	ani,um
UNCLASSIFIED DESC Ltr. req to processing p	amend SUA lant up t	-647 to 1 o the max	ncrease imum of	the ca 4,000	paci	ty of of or	their l e per	Bluewa day. () J	ater ui	ani,um
UNCLASSIFIED DESC L.t.r. req to processing p	amend SUA lant up t	-647 to 1 o the max	ncrease imum of	the ca 4,000	paci	ty of of or	their) e per	Bluewa day. ()]	ater ui	anium
UNCLASSIFIED DESC L.t.r. req to processing p	amend SUA lant up t	-647 to 1 o the max	ncrease	the ca 4,000	pacitons	ty of of or	their l e per	Bluewa day.	ater u	ani.um
UNCLASSIFIED DESC L.t.r. req to processing p	amend SUA lant up t	-647 to 1 o the max	ncrease	the ca 4,000	pacitons	ty of of or	their l e per	Bluew day.	ater u	ani.um
UNCLASSIFIED DESC L.t.r. req to processing p	amend SUA lant up t	-647 to 1 o the max	ncrease	the ca 4,000	pacitons	ty of of or	their 1 e per 1	Bluewa day. () J	ater u	ani.um
UNCLASSIFIED DESC L.t.r. req to processing p	amend SUA lant up t	-647 to 1 o the max	ncrease imum of	the ca 4,000	pacitons	ty of of or	their l e per	Bluewa day. () J	ater un	ani,um
UNCLASSIFIED DESC L.t.r. req to processing p	amend SUA lant up t	-647 to j	ncrease	the ca 4,000	pacitons	ty of of or	their l	Bluewa day. ()	ater ui	ani,um
UNCLASSIFIED DESC L.t.r. req to processing p	amend SUA lant up t	647 to 1	ncrease	the ca 4,000	paci	ty of of or	their l	Bluewa day. () J	ater ui	ani,um
UNCLASSIFIED DESC L.t.r. req to processing p	amend SUA lant up t	647 to 1	ncrease imum of	the ca 4,000	pacitons	ty of of or	their l	Bluewa day.	ater ui	ani.um
UNCLASSIFIED DESC L.t.r. req to processing p DISTRIBUTION: R P OTHER REFERRALS Malaro:	amend SUA lant up t D DR	o the max	DATE	the ca 4,000	pacitons	ty of of or		Bluew day.	ater un	
UNCLASSIFIED DESC L.t.r. req to processing p DISTRIBUTION: R P	amend SUA lant up t D DR	o the max	Linum Of	the ca 4,000	pacitons	ty of of or		Bluew day. () J	ater u	
UNCLASSIFIED DESC L.t.r. req to processing p DISTRIBUTION: R P OTHER REFERRALS Malaro:	amend SUA lant up t D DR	o the max	DATE	the ca 4,000	pacitons	ty of of or		Bluewa day. () J	ater un	DA

Ţ.

Service and Interior

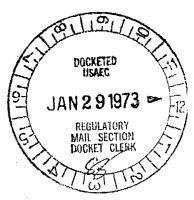
I

Ree. Atory

Flie Cy.

THE ANACONDA COMPANY

P.O. BOX 638, GRANTS, NEW MEXICO 87020



NEW MEXICO OPERATIONS A. J. FITCH MANAGER

January 26, 1973

Mr. John F. Kendig Materials Branch Directorate of Licensing United States Atomic Energy Commission Washington, D.C. 20545

Re: Docket No. 40-665

Dear Mr. Kendig:

Reference is made to my letter of June 12, 1972 and to your reply of October 16, 1972, concerning our desire to increase the capacity of our Bluewater uranium ore processing plant up to the maximum of 4,000 tons of ore per day currently authorized by our Source Material License No. SUA-647.

As you may recall, we wish to increase the capacity of the plant in order to process the low-grade ores which occur in the ore deposits at our mines. This will require additional processing equipment, most of which will be of the same general types as we are presently operating.

In accordance with your instructions, request is hereby respectfully made for an amendment to our Source Material License, No. SUA-647, to authorize us to install and operate the additional facilities necessary to increase the capacity of our Bluewater plant up to a maximum of 4,000 tons of ore per day.

Following is the information you requested concerning our proposed plant expansion:

1. Proposed processing facilities.

The proposed additional facilities would consist of the following:

a. Two additional ore grinding mills and related equipment, of the same general types which presently exist. At

668

present, there are two 5' x 12' grinding mills. The two additional mills would provide greater grinding capacity and would be located in the existing building, adjacent to the existing mills.

- b. A maximum of twelve additional leach tanks of the same general type that presently exists, including associated piping, pumps and accessory equipment. The plant presently has two acid leaching circuits of eighteen (18) tanks each. The additional tanks will be installed in the same building, adjacent to the existing tanks.
- c. One (1) additional ion exchange (RIP) circuit of the same general type as the two existing circuits, including associated piping and equipment. The existing ion exchange building will be extended to accommodate the additional circuit.
- d. Additional precipitation tankage with pumps, piping and related equipment, of the same general type that presently exists. This equipment will be installed in the proposed extension of the ion exchange building, near the existing precipitation facilities.
- e. A multiple-hearth furnace for drying yellowcake, with dust collection and other related equipment. This installation will replace existing facilities, will be more efficient and will be located in the existing building.

2. Changes in procedures which result from this operation.

No significant changes in operating procedures will result from the addition of this processing equipment. However, the increased tonnage throughput will require that the crushing plant be operated 3 shifts per day instead of the present schedule of 2 shifts per day. No significant changes in operating procedures will result from this change in schedule, although some additional operating and maintenance personnel will be required as a result of the increase in milling capacity.

- 1

3. <u>Changes to the personnel radiation safety program or additional</u> radiation safety procedures to be established.

The additional processing facilities that will be required to increase the milling capacity will not require any significant changes in the radiation safety program or the establishment of new radiation safety procedures. Our existing air sampling, external radiation surveys and other radiation safety programs will merely be expanded to include the additional processing equipment.

You also asked us to provide you with the following information for the purpose of determining whether a complete environmental review is required in accordance with the National Environmental Policy Act:

1. An estimate of the impact of the air effluents from the proposed action on the surrounding environs.

Any additional air effluents that might result from the increase in milling capacity would be generated either in the crushing plant and dry ore handling areas or in the yellowcake section.

With regard to the crushing plant and dry ore handling areas, data from stack sampling of the air effluents from the dust collection systems that serve these areas indicate that we are currently discharging into the restricted area each day approximately 2 microcuries of natural uranium, together with its daughters. The volume of these radioactive constituents will not increase significantly, in view of the lower average grade of ore which will be crushed. Moreover, our dust collection systems have adequate capacity for the greater tonnage of ore.

Stack samplings of the air effluents from the yellowcake drying section indicate that we are currently discharging approximately 400 microcuries of natural uranium per operating day into the restricted area. In view of the lower grade of the ore being processed, the quantity of yellowcake to be dried and the volume of uranium in the stack emissions would not increase substantially. Also, inasmuch as the average uranium content of the yellowcake would not change, the concentration in the stack emissions would not increase. Environmental samplings have shown that atmospheric dilution and dispersion effectively reduce the concentration of airborne uranium to near-background levels at the perimeter of the restricted area. Therefore, we would not expect the air effluents from the yellowcake section to have any significant effects on the surrounding environs.

2. The life expectancy of the well used for disposal of wastes as a result of the proposed action, and the relationship of the life expectancy to the life of the mine and mill.

The life expectancy of the disposal well was originally estimated to be between 10 and 20 years at a continuous injection rate of 400 gallons per minute. This is equivalent to an injected volume capacity of between 2.1 x 10^9 and 4.2 x 10^9 gallons. The estimated volume that will have been injected into the disposal well through June 1974, the target date for completion of the plant expansion, is approximately 1.0 x 10^9 gallons. The remaining capacity of the injection well as of July 1, 1974 will be between 1.1 x 10^9 and 3.2 x 10^9 gallons. We estimate that the amount of fluid to be injected at the increased milling capacity will be about 0.1 x 10^9 gallons per year. Thus, the disposal well has a projected lifetime of 11 to 32 years from July 1, 1974, or until mid-1985 for the minimum estimate.

The life expectancy of the mine and mill is currently estimated to be slightly more than 12 years, or until early 1985. Therefore, using the more conservative estimate of disposal well life, the remaining capacity of the disposal well should be sufficient to handle the amount of waste that will be injected during the lifetime of the mine and mill.

3. <u>An estimate of the impact on the subterranean environment</u> <u>surrounding the well resulting from the proposed action.</u>

We estimate that the impact of the disposal of the additional waste water will be minimal. This contention is based largely on the very thorough investigation which was conducted in the development of the disposal well. A comprehensive report on this investigation, entitled "Appraisal of Proposed Liquid Waste Disposal by Underground Injection", accompanied our request of July 5, 1960,

104

to the AEC Division of Licensing and Regulation, for a license amendment to permit the use of the well. The investigation indicated the following points which we feel are still valid:

- 1. The subterranean disposal zone has adequate capacity to accommodate the estimated total volume of waste water that will be injected during the expected life of the mining and milling operations.
- 2. It is unlikely that the injected waste water will enter potable water zones. The disposal zone is isolated by extensive, impermeable rock formations and by a carefully constructed disposal well.
- 3. A comparatively small area will be invaded by the injected waste water. Based on the size and porosity of the disposal zone, the maximum radius of the penetration of the waste water is estimated to be less than 2,000 feet from the well during the life of the operations.
- 4. The rock formations in the disposal zone will reduce the concentrations of chemical and radioactive constituents in the waste water through neutralization and ion exchange.
- 5. The water which exists naturally in the disposal zone is certainly unsuitable for domestic use and it is extremely doubtful that it is even suitable for agricultural or industrial use.

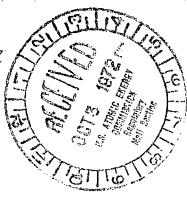
We hope that the foregoing is the type of information you need and that it will enable you to amend our Source Material License as we requested. We are now prepared to proceed with the construction of the additional plant facilities and would appreciate hearing from you at your earliest convenience.

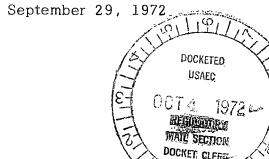
Yours very truly,

а 9 дія — А. J. FITCH

AJF:hr

FROM	en de la mais de la companya de la c	DATE OF DOCUMENT:	DATE RECEIVED	NO.:	
The Anapenda C		Sept 29, 1972	Oct 4, 15	72	5423
Grants, New Me A.J. Fitch	XICO OJUZU		O: REPOR	דו:	OTHE
J.C. Malaro		ORIG.: CC:	OTHEI	र:	
		ACTION NECESSARY	CONCURRENCE COMMENT	DATE 4 BY:	ANSWERI
CLASSIF:	POST OFFICE	FILE CODE:	I		
UNCLAS	REG. NO:	DOCKET FILE			
DESCRIPTION: (Must Be Unclass	silied)	REFERRED TO	DATE	RECEIVED B	Y
Ltr., concerning t expanding their ut mill	he possibility (of J. Nelaro: saing W/Reg. File cy	10/3		
Ltr., concerning t expanding their ut	he possibility (of J. Malaro:	10/3		
Ltr., concerning t expanding their ut mill	he possibility (of Saing W/Reg. File cy <u>Distribution</u> : RO	10/3		
Ltr., concerning t expanding their ut mill	he possibility (of Saing W/Reg. File cy <u>Distribution</u> : RO	10/3	*	
Ltr., concerning t expanding their ut mill ENCLOSURES:	he possibility (of Saing W/Reg. File cy <u>Distribution</u> : RO	10/3		


A U.S. GOVERNMENT PRINTING OFFICE: 1971-446-158


THE ANACONDA COMPANY

P.O. BOX 638, GRANTS, NEW MEXICO 87020

NEW MEXICO OPERATIONS A. J. FITCH MANAGER

Re: Docket No. 40-665

Dear Mr. Malaro:

Materials Branch

Mr. James C. Malaro, Chief

United States Atomic Energy Commission

Directorate of Licensing

Washington, D.C. 20545

On June 12, 1972, I wrote to you concerning the possibility of expanding our uranium ore processing mill and I asked you as to whether an amendment to our Source Material License No. SUA-647 would be required.

It now appears quite likely that we will go ahead with this expansion in the near future, subject to the licensing requirements. I would, therefore, appreciate very much hearing from you in this matter at the earliest possible date.

Yours very truly,

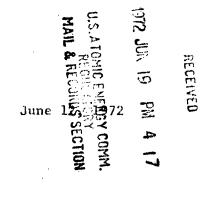
a & d'atel A. J. FITCH

AJF:hr

The Anaconda C Grante, New Ne	Gaptny	DATE OF DOCUMEN 6-18-72	4T;	DATE RECEIVE		NO.: 3354	
Mr. A. J. Fitc		LTR.	MEMO	RFF	ORT:	OTHE	.R:
TO: J. C. Malaro			CC:		IER:		
		ACTION NECESSARY NO ACTION NECESSA	[_] .RY []		.E. ()	DATE ANSWER	ED:
CLASSIF:	POST OFFICE REG. NO:		cket No.	40-665			
the capacity o plant and req.	Assilied) Of plans to increa f the Bluowater Un Our concurrence.	ranius 1 Reg. 4 fi	. File c lder	6-20 y-			
the c epacity o plant and req.	f the Bluewater Up	ranius <u>1 Reg.</u> 4 fi <u>Distribu</u> 1 Fir	lder			jb	
the capacity o	f the Bluewater Up	DONOT	ilder Ition	y. IQVF		jb	

☆ U.S. GOVERNMENT PRINTING OFFICE: 1971-424-082

:


REGULATORY FILE CY

DOUKET NO. <u>40-665</u> HE ANACONDA COMPANY

P.O. BOX 638, GRANTS, NEW MEXICO 87020

NEW MEXICO OPERATIONS A. J. FITCH MANAGER

Mr. James C. Malaro, Chief Materials Branch Directorate of Licensing United States Atomic Energy Commission Washington, D.C. 20545

Re: SUA-647

Dear Mr. Malaro:

We are presently considering the possibility of increasing the capacity of our Bluewater uranium processing plant. We believe we could do this in so far as our AEC Source Material License, SUA-647, is concerned, but we feel that we should first like to have your concurrence.

Our license authorizes us to process 4,000 tons of ore per day, but changes in the physical and metallurgical characteristics of our ore now limit the capacity of the plant to about 2,000 tons per day. The result has been that we have had to increase the grade of the ore to the plant and we are accumulating large tonnages of lower-grade material at the mine, which we fear could be wasted and lost. We feel that to increase the capacity of the mill would enable us to recover much of this material and, at the same time, might enable us to furnish greater quantities of uranium concentrate to the market during the future years.

We are considering an increase in the capacity of the mill not to exceed the 4,000 tons of ore per day authorized by our license. In order to do this, it would be necessary for us to install additional equipment of the same type we presently have. The additional equipment would consist of additional leach tanks, additional ion exchange banks, additional first-stage precipitation tank and associated piping, pumps and other accessory equipment. The additional leach tanks would be installed in the existing grind and leach building. An addition of about 20,000 square feet to the existing ion exchange building would be needed to house the new ion exchange banks and precipitation tank.

United States Atomic Energy Commission

No additional equipment or changes in operating procedures are being considered for the crushing or yellowcake sections of the mill. It would be necessary, however, for us to increase operation of these sections from two shifts per day to three shifts per day and a proportionate number of personnel would have to be added.

The amount of tailings, both liquid and solid, generated in the willing process is nearly directly proportional to the tons of one that would be processed. We anticipate that the increased volume of liquid and solid tailings could easily be handled by our existing retention and disposal facilities and would be within the authorized volumes.

It would be appreciated if you would consider our proposal for increasing the capacity of our plant and would give us your opinion as to whether or not you feel a license amendment would be required. If you decide that an amendment would be required, please let us know what information we would need to submit in order to obtain such au amendment. Thank you very much.

Very truly yours,

a & File --

A. J. FITCH

AJF:hr

Charles Haw Mariles 87020	TATE OF DOCUMENT:	DATE RECEIVED Feb. 28, 1972	995
ning and the second	LTR. MEMO:	REPORT:	OTHER
A. J. Fitch	X		
10:	ORIG.: CC:	OTHER:	
Nussbaumer	ACTION NECESSARY	CONCURRENCE	
CLASSIF: POST OFFICE	FILE CODE:	· ····································	
U REG, NO:	DOCKET: 40-665		
DESCRIPTION: (Must Be Unclassified)	REFERRED TO	DATE	ECEIVED BY DA
Ltr. trans:	Hermon	2/28	
	w/file cy. &	211e	······
ENCLOSURES: (3 CYS. ZOC'd.)	11.655	2/29	
Yearly Summary Report of the Dispose Well Injection Pregram for 1971		1 4/3	
-		2 2 Veranne	12 2/24
REMARKS: Bistribution: 1-PDK cy.			
1-compliance cy.			
			DJ

.

& U.S. GOVERNMENT PRINTING OFFICE: 1971-404-062

•

,

Regulatory File Cv. THE ANACONDA COMPAN P.O. BOX 638, GRANTS, NEW MEXICO 87020 NEW MEXICO OPERATIONS A. J. FITCH MANAGER

February 25, 1972

United States Atomic Energy Commission Washington, D.C. 20545

Attention: Mr. Donald A. Nusshaumer, Chief Source and Special Materials Branch Division of Materials Licensing

> DLR-DFH 40-665

Gentlemen:

In accordance with condition 13(c) of our Source Material License No. SUA-647, 1 am sending you three copies of the Yearly Summary Report of the Disposal Well Injection Program for 1971.

Complete records of all phases of the disposal well injection program are being maintained and are available for your inspection at any time.

Yours very truly,

U.g. Bilet A. J. FITCH DOCKETED USAEC FEB 28 197 REGULATORY MAIL SECTION DOCKET CLERK

AJF:hw

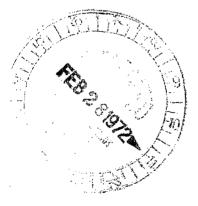
Enclosures

February 24, 1972

MEMORANDUM FOR RECORD

SUBJECT: Yearly Summary Report of the Disposal Well Injection Program for 1971.

Presented in this report are the following tabulations of data pertaining to the operation of the disposal well program during the period from January 1, 1971 to January 1, 1972:


I. Average Monthly Injection Rates.

- II. Concentrations of Radioactive Constituents in Injection Liquid.
- III. Radiological Analyses of Monitored Well and Surface Waters.
- IV. Static Water Levels of Wells in the San Andres-Glorieta Aquifer in the Vicinity of the Anaconda Mill and Disposal Well.

Respectfully submitted,

Kalph m. Wilde

RALPH M. WILDE Radiation Safety Director

RMW:hw

c: A. J. Fitch (4) J. P. Herndon T. R. Beck

ATTACHMENT I

-

AVERAGE MONTHLY LIQUID INJECTION RATES

	Gallons Injected
January 1971	12,928,500
February 1971	7,488,300
March 1971	8,039,750
April 1971	5,637,600
May 1971	4,585,100
June 1971	373,800
July 1971	0
August 1971	4,740,000
September 1971	8,167,800
October 1971	4,154,400
November 1971	7,401,440
December 1971	12,405,900
Total 1-1-71 to 1-1-72	75,922,590
Average Injection Rate	6,326,900

ATTACHMENT II

CONCENTRATION OF RADIOACTIVE CONSTITUENTS IN INJECTION LIQUID

Ra-226 uc/m1 x 10 ⁸	$\frac{\text{Th-230}}{\text{uc/m1} \times 10^4}$	U-natural uc/ml x 10 ⁶
↓ <i>_</i> 5 1 .38	1.48	6.25
1.71	1.51	5.62
2.26	1.82	6.97
2.45	2.15	9.04
1.98	2.35	12.8
2.19	2.87	21.4
No Injectio	on -	
4.06	2.84	25.8
6.61	2.76	20.2
1.50	1.88	19.2
2.71	2.06	17.2
3.09	2.04	20,4
and a get all a	e f e	
	<u>uc/m1 x 10⁸</u> 1.38 1.71 2.26 2.45 1.98 2.19 No Injection 4.06 6.61 1.50 2.71 3.09	uc/ml x 10 ⁸ uc/ml x 10 ⁴ 1.38 1.48 1.71 1.51 2.26 1.82 2.45 2.15 1.98 2.35 2.19 2.87 No Injection 4.06 4.06 2.84 6.61 2.76 1.50 1.88 2.71 2.06 3.09 2.04

)9s

1

2.22

94

a second a s	
23,76	164,88
11	11
and the second	14,95

ATTACHMENT III

RADIOLOGICAL ANALYSES OF MONITORED WELL AND SURFACE WATERS FOR THE MONTHS OF MAY AND NOVEMBER 1971

RADIOLOGICAL WATER ANALYSIS FOR MONTH OF _____ May 1971

DESCRIPTIVE	LOCATION	Gross uCi/ml			Ra uCi/m]	-226 x			h-230 1 x 10 ⁶	U-nat. uCi/ml x 10 ⁵
Sabre-Pinon	12,10,20,333a	0.41	+	0.15						0.00009
Card Electric	12.10.29.434a	0.87	<u>+</u>	0.26						0.00014
Harding Irrigation	12.10.30.421	0.61	<u>+</u>	0.18						0.00016
Fred Freas	12.10.30.433	0.35	<u>+</u>	0.11						0.00008
Chapman	12.10.32.211a	0.47	<u>±</u>	0.12						0.00009
Thunderbird Post	12.11.10.411a	0.97	<u>+</u>	0.25	less	than	0.2	less	than 0.004	0.00046
Tailing Pond	12.11.13.Pond	Not d	lete	rmined	2	.0			235	1.28
Engineers Well	12.11.14.213	1,5	<u>+</u>	0.28	less	than	0.2	less	than 0.004	0.00055
L.D.S. Bluewater	12.11.22.234	0.63	<u>±</u>	0.21						0.00016
Roundy Harmon	12.11.23.231	0.63	±	0.23	less	than	0.2	less	than 0.004	0.00011
Auros Motel	12.11.24.334a	0.64	±	0.21					•	0.00009
Power House Pond	12.11.24.PHP	54.2	±	2.3	less	than	0.2	less	than 0.004	0.048
Webb Windmill	12.11.25.122a	0,79	±	0.15	less	than	0.2	less	than 0.004	0.00039
Anaconda #3	12.11.25.213	0.67	±	0,18	less	than	0.2	less	than 0.004	0.00011
Mt. Taylor Corp.	13. 9.29.343	9.6	±	0.99	less	than	0.2	less	than 0.004	0.0050
						·.				
· · · · · · · · · · · · · · · · · · ·		······································								
				· · ·						· · · · · · · · · · · · · · · · · · ·
										······································
					······					

RADIOLOGICAL WATER ANALYSIS FOR MONTH OF _____ May 1971

DESCRIPTIVE L	DCATION	Gross Alpha uCi/ml x 10 ⁸	Ra-226 uCi/ml x 10 ⁸	Th-230 uCi/m1 x 10 ⁶	U-nat. uCi/ml x 10 ⁵
Suburban Gas	11.10.27.443	2.4 <u>+</u> 0.49	less than 0.2	less than 0.004	0.00076
Berryhill Section 5	12.10. 5.341a	0.77 <u>+</u> 0.34	less than 0.2	less than 0.004	0.00011
North Well	12.10. 7.143	1.4 ± 0.40	less than 0.2	less than 0.004	0.00081
Monitor Well #1	12.10. 8.332	6.8 <u>+</u> 0.91	0.24 <u>+</u> 0.06	less than 0.004	0.0058
Roundy Windmill	12.10.12.433a	4.1 <u>+</u> 0.69	less than 0.2	less than 0.004	0.0033
Murray	12.10.27.431	0.82 ± 0.26			0,00018
Mexican Camp	12.10.30.112	0.42 <u>+</u> 0.11	less than 0.2	less than 0.004	0.00016
Jack Freas	12.10.30.242	0.33 ± 0.13			0.00010
Joy Manufacturing	12.10.35.322	0.76 <u>+</u> 0.26			0,00032
Berryhill House	12.11.11.334	0.59 <u>+</u> 0.20	less than 0.2	less than 0.004	0.00021
Anaconda #2	12.11.24.233	14.6 <u>+</u> 1.2	less than 0.2	less than 0.004	0.011
Anaconda #4	12.11.25.214	0.67 ± 0.18	less than 0.2	less than 0.004	0.00030
Wilcoxson (P. Harris)	13. 9.16.411	2.3 <u>+</u> 0.53	0.32 ± 0.07	less than 0.004	0.00016
······································			1	·	
	·		·····		
			<u> </u>		

RADIOLOGICAL WATER ANALYSIS FOR MONTH OF _____ May 1971

DESCRIPTIVE LOCA	TION	Gross Alpha uCi/ml x 10 ⁸	Ra-226 uCi/m1 x 10 ⁸	Th-230 uCi/ml x 10 ⁶	U-nat.
Cottonwood Spring	10, 9, 6,442	0.46 <u>+</u> 0.31	· · · · · · · · · · · · · · · · · · ·		0.00042
Del Padre Spring	10. 9, 7.222	1.26 <u>+</u> 0.77	less than 0.2	less than 0.004	0.00062
Gottlieb Poison #2	10. 9.17,113a	0.59 <u>+</u> 0.36			0.00031
Gottlieb Butane	10, 9,23,134	0.51 <u>+</u> 0.12	· · · · · · · · · · · · · · · · · · ·		0.00025
Horace_Springs	10, 9,26,222	0.44 <u>+</u> 0.17			0.00009
San Rafael	10,10, 3,433a	0.51 <u>+</u> 0.18	·		0.00012
Heath Well	10,10,15,233	0.99 <u>+</u> 0.35	less than 0.2	less than 0.004	0.00055
Republic	_11.10. 2.111	1.3 <u>+</u> 0.32	less than 0.2	less than 0.004	0.00048
Vidal	11.10. 5,213	0.35 <u>+</u> 0.12			0.00009
Milan_Chinle	_11.10.21.211	0.44 <u>+</u> 0.11		•	0.00011
Grants-San Andres	11,10,26.Tap	0.49 <u>+</u> 0.15		•	0.00015
	11,11,23,333	0.23 <u>+</u> 0.06			0.00009
Greater Grants Airport	12,10,26,322a	0.76 <u>+</u> 0.28			0.00024
Card Gas	12.10.27.333	0.51 <u>+</u> 0.20	a		0.00019
Card Commissary	12.10.33.444	0.72 <u>+</u> 0.19	less than 0.2	less than 0.004	0:00045
Murray #1	12.10.34.224	0.91 <u>+</u> 0.25	less then 0.2	less than 0.004	0.00041
Sandoval.	13. 9.22.212	0.41 <u>+</u> 0.12	1		0.00025

×

RADIOLOGICAL WATER ANALYSIS FOR MONTH OF _____ November 1971

DESCRIPTIVE	LOCATION	Gross Alpha uCi/ml x 10 ⁸	Ra-226 uCi/ml x 10 ⁸	Th-230 uCi/ml x 10 ⁶	U-nat. uCi/ml x 10 ⁵
Sabre-Pinon	12,10,20,333a	0.47 + 0.14			0.00010
Card Electric	12.10.29.434a	No Sample			
Harding Irrigation	12.10.30.421	No Sample			
Fred Freas	12.10.30.433	0.35 <u>+</u> 0.11			0.00030
Chapman	12.10.32.211a	0.40 ± 0.12			0.00042
Thunderbird Post	12.11.10.411a	1.1 <u>+</u> 0.28	less than 0.2	less than 0.004	0.00089
Tailing Pond	12.11.13.Pond	Not determined	2.7	206	1.72
Engineers Well	12.11.14.213	0.75 ± 0.21	less than 0.2	less than 0.004	0.00066
L.D.S. Bluewater	12.11.22.234	0.52 <u>+</u> 0.19			0.00028
Roundy Harmon	12,11,23,231	0.60 <u>+</u> 0.23		•	0.00028
Auros Motel	12.11.24.334a	0.52 <u>+</u> 0.21			0.00025
Power House Pond	12.11.24.PHP	51.4 <u>+</u> 2.6	less than 0.2	less than 0.004	0.075
Webb Windmill	12.11.25.122a	No Sample			
Anaconda #3	12.11.25.213	0.81 <u>+</u> 0.20	less than 0.2	less than 0.004	0.00029
Mt. Taylor Corp.	13. 9.29.343	8.1 <u>*</u> 0.91	less than 0.2	less than 0.004	0.0066
					·
	/				
· · · · · · · · · · · · · · · · · · ·					

L

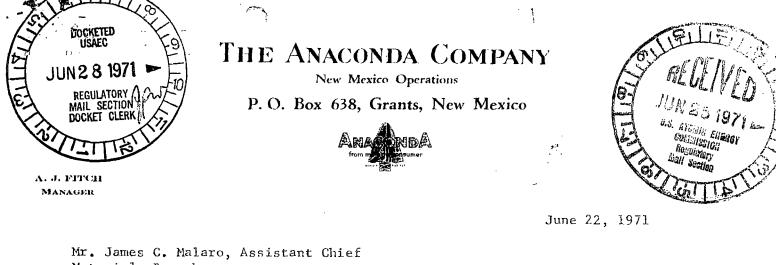
.*

RADIOLOGICAL WATER ANALYSIS FOR MONTH OF _____ November 1971

DESCRIPTIVE LC	CATION	Gross Alpha uCi/ml x 108	Ra-226 'uCi/ml x 10 ⁸	Th-230 uCi/ml x 10 ⁶	U-nat. uCi/ml x 10 ⁵
Suburban Gas	11.10.27.443	1.4 ± 0.37	less than 0.2	less than 0.004	0.00061
Berryhill Section 5	12.10. 5.341a	No Sample			
North Well	12.10. 7.143	2.0 <u>+</u> 0.46	less than 0.2	less than 0.004	0.0011
Monitor Well #1	12.10. 8.332	6.0 <u>+</u> 0.87	less than 0.2	less than 0.004	0.0051
Roundy Windmill	12.10.12.433a	No Sample			
Murray	12.10.27.431	No Sample			
Mexican Camp	12.10.30.112	0.50 ± 0.12	less than 0.2	less than 0.004	0.00036
Jack Freas	12.10.30.242	0.22 ± 0.09			0.00008
Joy Manufacturing	12.10.35.322	0.82 <u>+</u> 0.27	less than 0.2	less than 0.004	0.00045
Eerryhill House	12.11.11.334	0.53 ± 0.19	less than 0.2	less than 0.004	0.00029
Anaconda #2	12.11.24.233	15.1 ± 1.3	less than 0.2	less than 0.004	0.013
Anaconda #4	12.11.25.214	0.52 ± 0.16	less than 0.2	less than 0.004	0.00026
Wilcoxson (P. Harris)	13. 9.16.411	2.8 <u>+</u> 0.59	0.28 <u>+</u> 0.06	less than 0.004	0.00026
			i		
					· · · ·
		-			
		· ·			••••••••••••••••••••••••••••••••••••••
					<u> </u>

ATTACHMENT IV

STATIC WATER LEVELS OF WELLS IN THE SAN ANDRES-GLORIETA AQUIFER IN THE VICINITY OF THE ANACONDA MILL AND DISPOSAL WELL


		Static Water Level
Well Description	Date of Measurement	Feet above mean sea level
Anaconda #1	12-25-70	6450 3
		6450.3
12.11.24.411	1- 2-72	6446.7
	10.07.70	<i>(17</i> 0.0
Anaconda #2	12-26-70	6450.0
12.11.24.233	1- 2-72	6446.4
Anaconda #3	12-26-70	
		6449.9
12.11.25.213	1- 2-72	6448.0
Anaconda #4	12-26-70	6449.7
12.11.25.214	1- 2-72	6447.9
Monitor Well #1	1- 5-71	6451.9
12.10. 8.332	12-31-71	6449.0
North Well	1- 4-71	6457.0
12.10. 7.143	12-31-71	6454.1

٠.

HQ-9401 (9-66) REFERENCE NU										~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~									
NA FROG. CODE 0	з, роске	T NO			TASK	4::.	FURP	05E 0	F TASK				ONTROL	15,	LICEN				
62	40-0	565		2!	928		Ame	ndme	nt				2928	÷	su	1-64	7		
18. APPLICANT				<u> </u>		_	~		\					54.	AM. NO		ULTU	NG	
The Anac	onda U	CIMPA	iny	(NE	w Me	XICC	o upe	Tati	ons)										
21. STREET & BUILI F.O. Box										45 CL	ASSIFI D	σάτιο	N	63,	ASG. TO:				
24. CITY				27. S	TATE	30. Z	IP			33, RE	CEIVE	1		<u>issu</u> e T	1			PIREI	
										Υ.Π.	MO.	DAY	YR.	MO.	DAY	YR.	мо	. D	γ Α (
Grants				N	MEX	87	7020			71	06	25							
57 APPLICANT'S C	OMMUNIC	ATION	1 DVIE	£Ω		YR.	MO 1	DAY											
58, DESCRIPTION (M						71	06	22	59.EN	CLOSUI	ΥES								
58, DESCRIPTION (M			¥-64	7, 1		litic	06	22 5		TRIBUT		1-Ca 1-Pi	-	snce	(R egi	on)(<u>D</u>)
		o SU	⊭-64 (1	7, 1 Icy	of 1	litic	06 20 #1	22 5	60 DIS		10N	1-P	-	snce	(Regi			ATE -	·····
	nndt ti	D SU MEDIA) -64 (1)	7, 1	of 1	itic tr r	06 on #1 cect d	22 5	60 DIS	TRIBUT	10N	1-P	-	ance	(R egi	cyn) (ATE -	·····
Ltr req a	INTER	o SU	⊭-64 (1	7, 1	of 1	iitic tr r	06 >n #1 rec'd	22 5	60 DIS	TRIBUT	10N	1-P	-	sncel	(R egi			ATE -	·····
Ltr req a	nndt ti	D SU MEDIA) -64 (1)	7, 1		itic tr r RE	06 on #1 cect d	22 5	60 DIS	TRIBUT	10N	1-P	-	Hern	NOTI I	YF 7	رتا ع. اد 1	ATE MO.	·····
Ltr req a TYPE ADDL. INFO.	INTER	D SU MEDIA) -64 (1)	CTION	of 1	RE YR. 93	06 on #1 cect d	22 5	60 DIS	TRIBUT	10N	1-P	-	Hern		YF 7	رتا ع. اد 1	ATE MO.	<u>UA</u>
TYPE ADDL. INFO. REQUESTED	INTER	D SU MEDIA) -64 (1)	7, 1	of 1	itic tr r RE	06 on #1 cect d	22 5	60 DIS	TRIBUT	10N	1-P	DR	Herr W/Fi	NODI 1e c	YF 7	رتا ع. اد 1	ATE MO.	<u>UA</u>
TYPE ADD. INFO. REQUESTED FROM APPLICANT	INTER	D SU MEDIA) -64 (1)	CTION		RE YR. 93	06 on #1 cect d	22 5	60 DIS	TRIBUT	TON	1-P	DR	Herr W/Fi	NOTA: Lie c	YF 7	رتا ع. اد 1	ATE MO. D6	28
TYPE ADD. INFO. REQUESTED FROM APPLICANT REFERRED	INTER	D SU MEDIA) -64 (1)	CTION	of 1	RE YR. 93	06 on #1 cect d	22 5	60 DIS	TRIBUT	TON	1-P	DR	Herr W/Fi	NOTA: Lie c	YF 7	رتا ع. اد 1	ATE MO. D6	28
TYPE ADD. INFO. REQUESTED FROM APPLICANT REFERRED	INTER	D SU MEDIA) -64 (1)	CTION	of 1	RE YR. 93	06 on #1 cect d	22 5	60 DIS	TRIBUT	TON	1-P	DR	Herr W/Fi	NOTA: Lie c	YF 7	رتا ع. اد 1	ATE MO. D6	

.

.

Materials Branch Division of Licensing United States Atomic Energy Commission Washington, D.C. 20545

Regulatory

File Cy.

DML:MB:DFH Re: DOCKET NO. 40-665

Dear Mr. Malaro:

On February 11, 1971, we were issued a renewal for our AEC Source Material License No. SUA-647. The new license was essentially identical to our previous license with the addition of two new conditions. On May 6, 1971, we discussed the application of these new license conditions with Mr. Donald Harmon of your office. At that time it was suggested that we might try various administrative procedures which would permit us to achieve the objectives of the license conditions in the most practical way and that if a change in wording were needed we could subsequently apply for an amendment to our license.

It now appears that license Condition No. 14 is acceptable in its present form.

We would, however, like to apply for an amendment to Condition No. 15 which now reads as follows:

15. Changes in the mill circuit or equipment, including maintenance activities, shall be approved in writing by the Manager or Assistant Manager. During such changes and activities, radiation safety surveys shall be conducted to determine employee exposures to radioactive material.

We certainly agree that major changes in the mill circuit or equipment should be approved by management. However, we would like to request that the wording of this condition be changed to place the responsibility for written approval of routine maintenance activities upon the Mill Shift Foreman. These men are on duty at all times in the various milling departments and now have the responsibility for operation and maintenance of the mill equipment. During changes of the mill circuit or equipment and during maintenance activities, radiation sefety surveys would be conducted as required.

្ងខ

Mr. James C. Malaro U.S. Atomic Energy Commission June 22, 1971 Page 2 of 2

.

We feel that this suggested change in Condition No. 15 would greatly improve its practical application in our mill and, at the same time, would not materially diminish the effectiveness of our radiation protection program.

Very truly yours,

a z

A. J. FITCH

2928

AJF:hw

P.O. BOX 638, GRANTS, NEW MEXICO 87020

NEW MEXICO OPERATIONS

Regulatory

File Cy.

February 3, 1971

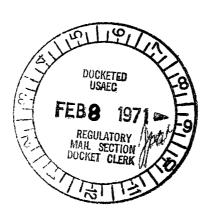
United States Atomic Energy Commission Washington, D.C. 20545

Attention: Mr. Donald A. Nussbaumer, Chief Source and Special Nuclear Materials Branch Division of Materials Licensing

> Re: DLR-DFH 40-665

Gentlemen:

In accordance with condition 13(c) of our Source Material License No. SUA-647, I am sending you three copies of the Yearly Summary Report of the Disposal Well Injection Program for 1969.


Complete records of all phases of the disposal well injection program are being maintained and are available for your inspection at any time.

Yours very truly,

a J. Titet


AJF:hw

Enclosures

521

Regulatory File Cy. February 2, 1971

MEMORANDUM FOR RECORD

SUBJECT: Yearly Summary Report of the Disposal Well Injection Program for 1970.

Presented in this report are the following tabulations of data pertaining to the operation of the disposal well program during the period from January 1, 1970 to January 1, 1971:

- I. Average Monthly Liquid Injection Rates.
- Concentrations of Radioactive Constituents In Injection Liquid.
- 111. Radiological Analyses of Monitored Well and Surface Waters.
- IV. Static Water Levels of Wells in the San Andres -Glorieta Aquifer in the Vicinity of the Ansconda Mill and Disposal Well.

Respectfully submitted,

Kalph M. Wille

RALPH M. WILDE

RMW:hw

c: A. J. Fitch (4) J. P. Herndon T. R. Beck

February 2, 1971

ATTACHMENT I

Average Monthly Liquid Injection Rates

Gallons Injected

January 1970	3,135,000
February 1970	6,803,400
March 1970	5,467,900
April 1970	3,363,550
May 1970	3,642,900
June 1970	3,496,500
July 1970	8,363,340
August 1970	11,038,500
September 1970	4,013,600
October 1970	3,174,150
November 1970	3,416,100
December 1970	4,609,500
Total 1-1-70 to 1-1-71	60,524,440
Average Injection Rate	5,043,700

ATTACHMENT 11

•

٩.

;

.

Concentration of Radioactive Constituents in Injection Liquid

	<u>Ra -226</u> uc/m1 x 10 ⁸	$\frac{\text{Th} -230}{\text{uc/ml} \times 10^4}$	<u> </u>
January 1970	7 4 2.91	÷ ج 1.33	6.78
February 1970	4.94	1.45	5.94
March 1970	1.89	1.67	7.04
April 1970	2.42	1.85	12.1
May 1970	3.28	3.05	19.7
June 1970	6.90	3.56	20.1
July 1970	; 1.,45	2.69	18.1
August 1970	1.68	1.50	11.8
September 1970	3.11	1.92	11.8
October 1970	2.50	2.22	11.9
November 1970	2.32	1.74	10.8
December 1970	3.76	1.58	7.64
	37.16	24.56	143.70
	12	12	12
	. !!	11	1
	3.1 ×10	2.04	12.0

February 2, 1971

ATTACHMENT 111

.

Radiological Analyses of Monitored Well and

Surface Waters for the Months of May and September 1970

THE MULCOACH CONTAINT

RADIOLOGICAM WATER AWAL/SIS FOR NOUTH OF May 1970

			Ra-226	16-230	ىرى يىدە ئەمىيە ئېيەمىيەسىيەت (يەرىۋەيدە - يەيۋەيرە - يەرىۋەيرە يېرىغانى مەرى يەر
DESCRIPTIVE LA	DCATIOX	Orobo Alpha uc/mix 10 ⁸	$\frac{10^{1220}}{10^{12} \times 10^8}$		U- yyt ye/ri x 10 ⁵
Berryhill Section 5	12.10. 5.341a	1.1 + 0.39	0.21 + 0.05	less than 0.004	0.00014
North Well	12.10. 7.143	1.5 + 0.39	less than 0.2	less than 0.004	0.00088
Monitor Well # 1	12.10, 8.332	6.9 <u>+</u> 0.94	0.23 + 0.06	less than 0.004	0.0060
Subre-Pinon	12,10,20,333a	0.51 ± 0.17	_		0.00010
Card Gas *	12.10.27.333	0.85 ÷ 0.24			0.00030
Card Electric *	12.10.29.434a	No Sample			
Mexican Camp	12.10.30,112	0.35 <u>+</u> 0.11	less than 0.2	less than 0.004	0.00020
Jack Freas	12.10.30.242	0.27 ± 0.12			0.00006
Harding Irrigation	12.10,30.421	No Sample			
Fred Freas	12.10.30.433	0.35 <u>+</u> 0.11			0.00008
<u>Ohapzsan</u>	12.10.32.2114	0.23 + 0.09			0.00015
Thunderbird Post	12,11,10,411a	0.75 <u>+</u> 0.17	less than 0.2	less than 0.004	0.00058
Borryhill House	12.11.11.334	0.48 + 0.17	less than 0.2	less_than_0.004	0.00028
Tailing Pond	12.11.13.Poni	Not determined	3.3	305	1.97
Engineers Well	12.11.14.213	1.4 ± 0.29	less than 0.2	less than 0.004	0.00049
Roundy (Marmon)	12,11,23,231	0.83 <u>+</u> 0.26	less than 0.2	less than 0.004	0.00019
Power House Pord	· 12.11.24.PHP	97 . <u>+</u> 2 . 9	1.14 ± 0.13	less than 0.004	0.097
Laboratory Pond	12.11.24.LABP	No Sample	•		
Aurois Bar	12.11.24.334				
Aurois Motel	12.11.24.334a	0.53 ± 0.17			0.00009
Anaconda //1	12,11,24,411	No Sample	1		
Wabb Windmill	12.11.25.122a	0.88 + 0.17	less than 0.2	less than 0.004	0.00048
Anneonda "3	12.11,25.213	0.59 + 0.17	less than 0.2	less than 0.004	0.00032
Anaconda #4	. 12.11.25.214	0.43 <u>+</u> 0.14	less than 0.2	less than 0.004	0.00016
					بېرىنى بېرى د 1000 يىلىد بېرىدىنىكىرىزى بېر كېرىكى بىر بىرى بىر بىر
•					
·					
		······································			

* Monthly during irrigation

THE ANDORES COUPLIN

RADIOLOGICAL WATER ANALYSIS FOR MONTH OF May 1970

DESCRIPTIVE LOCATION		Gross Lopia un/ci x 108	Ra-226 uc/ml x 10 ⁸	Th-230 us/ml x 106	0-n2t nc/1 x 10
Cottonwood Springs	10. 9. 6.442	0.47 - 0.32			0.00035
Del Padro Springs	10. 9. 7.222	0.89 + 0.55	less than 0.2	less than 0.004	0.00045
Cottliet Poison #2	10. 9.17.113a	0.97 + 0.44	less than 0.2	less than 0.004	0.00035
Cottlieb Butana	10. 9.23.134	0.52 ± 0.12			0.00019
Horace Springs	10. 9.26.222	0.37 + 0.16		· · · · · · · · · · · · · · · · · · ·	0.00010
San Rafael	10.10. 3.433a	$0.31 \div 0.14$			0.00018
Heath Well	10.10.15.233	1.1 ± 0.38	less than 0.2	less than 0.004	0.00081
Worthen Well	10,10,22,213	No Sample			
Hawkinson (Grants)	11. 9.30.122a	No Sample			
Republie	11.10. 2.111	1.1 <u>+</u> 0.30	less than 0.2	less than 0.004	0.00065
Evens Windmill	11.10. 5.222	No Sample			alayanan dari se Mang 19 - 2 ka yan pagta ya kara nan sakinyanya da tapananga
Vidal	11.10. 5.213	0.42 + 0.12			0.00018
Milan Chinle	11.10.21.211	0.25 + 0.09			
Grants-San Andres	11.10.26.Tap	0.35 + 0.11			0.00012
Suburban Gaz	11.10.27.443	5.4 <u>+</u> 0.85	less than 0.2	less than 0.004	0.0028
Schneemann	11.11.23.333	0.38 ± 0.08		n rando a marine a' an fanta ak kanan marine fan fannen ar in a	0.00016
Roundy Windmill	-12.10,12.433a	4.9 + 0.76	less than 0.2	less than 0.004	0.0042
Murray	12.10.27.431	0.59 ± 0.23			0.00025
Card Commissary	12.10.33.4.44	No Sample			
larray #1	12,10.34.224	1.1 + 0.27	less than 0.2	less than 0.004	0.00056
Joy Manufacturing	12.10.35.322	$0.69 \div 0.25$	less than 0.2	less than 0.004	0.00041
L.D.S. Bluewater	12.11.22,234	0.66 ± 0.21			0.00021
Wilcoxson (P. Harris)	13. 9.16.411	1.3 + 0.41	0.37 + 0.07	less than 0.004	0.00061
Sandoval	13. 9.22.212	0.27 + 0.09			0.00026
Mt. Taylor Corp.	13. 9.29.343	9 .5 <u>+</u> 0.96	less than 0.2	less than 0.004	0.0061
Greater Grants Airport	12.10.26,322a	0.94 + 0.30	less than 0.2	less than 0.004	0.00042
Anaconda #2	12.11.24.233	<u>14. + 1.2</u>	less than 0.2	less than 0.004	0.014

THE AMAGENER COLPANY

RADIOLOGICAL WATER AMALYSIS FOR MONTH OF SEPTEMBER 1970

DESCRIPTIVE LA	DCATION	Groen Alpha uc/al x 10 ⁸	R2-225 uc/ml x 10 ⁸	Th-230 ac/ml x 10 ⁶	0-arit uo (m) x 10 ⁵
Serryhill Section 5	12.10. 5.341a	0.80 ± 0.38	less than 0.2	less than 0.004	0,00012
North Mell	12.10. 7.143	1.5 ± 0.43	less than 0.2	less than 0.004	0,0012
Monitor Well # 1	12,10, 8,332	6.8 ± 0.92	0.21 ± 0.05	less than 0.004	0,0053
Sabro-Pinon	12.10.20.333a	0.5 + 0.18			0.00020
Card Gas *	12.10.27.333	0.50 + 0.20			0.00032
Card Electric *	12.10.29.434a	No Sample			
Monican Camp	12.10.30,112	0.27 ± 0.09	less than 0.2	less than 0.004	0.00021
Jack Freas	12.10.30.242	0.34 ± 0.13			0.00012
Harding Irrigation	12.10.30.421	No Sample			
Fred Preas	12.10.30.433	0.31 ± 0.11			0.00015
Chapman	12.10.32.211a	0.30 ± 0.11			0.00017
Thunderbird Post	12.11.10.411a	1.6 ± 0.42	less than 0.2	less than 0.004	0.0013
Borryhill House	12.11.11.334	0.61 ± 0.21	less than 0.2	less_than_0.004	0.00029
Tailing Pond	12.11.13.Pond	Not determined	3.1	192	1.18
Engineers Well	12.11.14.213	1.77 ± 0.30	less than 0.2	less than 0.004	0.0011
Roundy (Harmon)	12.11.23.231	0.77 + 0.25	less than 0,2	less than 0.004	0.00021
Power House Pond	12.11.24.PHP	164. <u> </u>	less than 0.2	less than 0.004	0,13
Laboratory Pond	12.11.24.I/BP	No Sample			•
Auro's Bar	12.11.24.334	No Sample			
Auro's Motel	12.11.24.334a	0.43 [±] 0.11			0.00015
Anaconda #1	12,11,24,411	No Sample	i		
Webb Windmill	12.11.25.122a	$0.62 \stackrel{+}{-} 0.14$	less than 0.2	less than 0.004	0.00042
Anaconda #3	12.11.25.213	0.46 ± 0.16	less than 0.2	less than 0.004	0.00032
Anaconda #4	12.11.25.214	0.50 ± 0.16	less than 0.2	less than 0.004	0.00024
			· · · · · · · · · · · · · · · · · · ·	ļ	
		·····		 	
·					

* Monthly during irrigation

THE ANACONES COMPANY

RADIOLOGICAL WATER ANALYSIS FOR MONTH OF SEPTEMBER 1970

DESCRIPTIVE LO	CATION	Gross Alpha uc/mlx 10 ⁸	Ra-226 up/mlx 10 ⁸	Th-230 uc/ml x 10 ⁶	$\frac{\text{U-nat}}{\text{nc/m}} \ge 10^5$
Cottonwood Springs	10. 9. 6.442	0.45 ± 0.31	⁴⁴⁴ 영양 영상, 가' 원리 ⁴ 위의 테이드, 소설에서, 가지 가' '가' 아주 (가드, '가장 프라이트' 가'가는 것이 아주지 않지 않는 가지 않는 것	ander gevondung menderen versta solden versen gevonder den versikter ". Sond ist - Gond	0.00032
Del Padre Springs	10. 9. 7.222	2.2 ± 1.0	less than 0.2	less than 0.004	0.00036
Gottlieb Poison #2	10. 9.17.113a	No Sample			
Gottlieb Butane	10. 9.23.134	$0.3.9 \pm 0.11$			0,00028
Horace Springs	10. 9.26.222	0.38 ± 0.14			
San Rafael	10.10. 3.433a	0.57			
Heath Well	10.10.15.233	1.7 ± 0.47	less than 0.2	less than 0,004	0.00085
Worthen Well	10,10,22,213	No Sample	, and a state of the second		
Hawkinson (Grants)	11. 9.30.122a	No Sample			
Republic	11.10, 2.111	0.89 ± 0.27	less than 0.2	less than 0,004	0.00061
Evans Windmill	11.10. 5.222	No Sample			
Vidal	11.10. 5.213	0.35 ± 0.11			0.00015
Milan Chinle	11.10.21.211	$0.42 \stackrel{+}{-} 0.11$			0.00018
Grants-San Andres	11.10.26.Tap	0.48 ± 0.15			0.00022
Suburban Gas	11.10.27.443	2.9 <u>+</u> 0.56	less than 0.2	less than 0,004	0.0018
Schneemann	11.11.23.333	0.31 ± 0.08			0.00019
Roundy Windmill	12.10.12.433a	<u>5.7 ± 0.80</u>	less than 0.2	less than 0,004	0.0038
Kurray	12.10.27.431	0.55 ± 0.22			0.00035
Card Commissary	12.10.33.444	0.65 ± 0.18	less than 0.2	less than 0.004	0.00058
Murrey #1	12,10.34,224	0.95 ± 0.29	less than 0.2	less than 0.004	0.00044
Joy Manufacturing	12.10.35.322	0.50 ± 0.21	I .		0.00044
L.D.S. Bluewater	12,11,22,234	0.54 ± 0.20			0.00028
Wilcoxson (P. Harris)	13. 9.16.411	1.0 ± 0.37	0.27 ± 0.06	Less than 0.004	0.00030
Sandoval	13. 9.22.212	0.36 ± 0.12			0.00029
Mt. Taylor Corp.	13. 9.29.343	8.6 ± 0.93	less than 0.2	less than 0.004	0.0056
Greater Grants Airport	12.10.26.322a	0.55 ± 0.25			0.00032
Anseonda #2	12.11.24.233	19. ± 1.4	less than 0.2	less_than_0.004	
			•	<u> </u>	

•

February 2, 1971

ATTACHMENT IV

• *

1 / T 5

. . .

Static Water Levels of Wells in the San Andres - Glorieta


Aquifer in the Vicinity of the Anaconda Mill and Disposal Well

Well Description	Date of Measurement	Static Water Level Feet Above Mean Sea Level
Anaconds Well #1	1- 4-70	6453.3
12.11.24.411	12-26-70	6450.3
Anaconda Well #2	1- 4-70	6453.1
12.11.24.233	12-26-70	6450.0
Anaconda Well #3	1- 4-70	6453.3
12.11.25.213	12-26-70	6449.9
Anaconda Well #4	1- 4-70	6453.4
12.11.25.214	12-26-70	6449.7
Monitor Well #1	1- 6-70	6456.5
12.10.8.332	1- 4-71	6451.9
North Well	1- 6-70	6461.0
12.10.7.143	1- 4-71	6457.0

The Ansconds Cospery	DATE OF DOCL	MENT	DATE RECEI	Ved	NO.1	
Grants, New Mexico 87020	Feb. 16,	1970	Feb. 19	, 1970	503	
A. J. Fitch	LTR. X	MEMO:	RE	PONT:	OTHER	۶.
TO: Nussbaumer	ORIG.; 1	CC:	CT	HER:		
	ACTION NECESSA	استعاد المحمد	CONCURREN		DATE ANSWE	RED
CLASSIF: POST OFFICE D BEG, NO;	FILE CODE: DOCKET :	40-665				
DESCRIPTION: (Must Be Unclassified)	REFE	RRED TO	DATE	RECI	EIVED BY	DAT
Ltr. trans:	Nuss	beuner	2/20			
	w/fi	le cy. 🗱	/\$\$\$4/			
ENCLOSURES: (3 cys. rec'd.) Yearly Summary Report of the Disposal Well Injection Program for 1969.	FILE CHA	rced to 1	HARMON.	·		
		n no-				
REMARKS: Distribution: 1-POR cy.		WU NUT	REMOVE			
1-compliance cy.	ACKNO	WLEDGE	: <u>N</u>	-		

P.O. BOX 638, GRANTS, NEW MEXICO 87020

February 16, 1970

`} • • •

United States Atomic Energy Commission Washington, D.C. 20545

()

Attention: Mr. Donald A. Nussbaumer, Chief Source and Special Nuclear Materials Branch Division of Materials Licensing

Regulatory

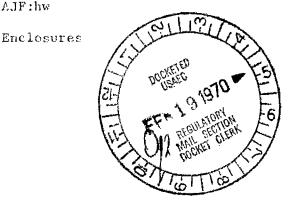
File Cy.

Gentlemen:

NEW MEXICO OPERATIONS

In compliance with condition 13 (c) of our Source Material License No. SUA-647, I am sending you three copies of the Yearly Summary Report of the Disposal Well Injection Program for 1969.

Complete records of all phases of the disposal well injection program are being maintained and are available for your inspection at any time.


Yours very truly,

RE: DLR-DFH

40-665

A. J. FITCH

AJF:hw

ACKNOWLEDGED

DOUKET NO. 40-665

February 3, 1970

MEMORANDUM FOR RECORD

SUBJECT: Yearly Summary Report of the Disposal Well Injection Program for 1969.

Presented in this report are the following tabulations of data pertaining to the operation of the **disposal** well program during the period from January 1, 1969 to January 1, 1970:

- 1. Average Monthly Liquid Injection Rates.
- II. Concentrations of Radioactive Constituents in Injection Liquid.
- TIL. Radiological Analyses of Monitored Well and Surface Waters.
- IV. Static Water Levels of Wells in the San Andres-Glorieta Aquifer in the Vicinity of the Anaconda Mill and Disposal Well.

Respectfully submitted,

Kalph M. Wilke

RALPH M. WILDE Radiation Safety Director

RMW:hw

c: A. J. Fitch (4) E. C. Peterson

ATTACHMENT I

1

AVERAGE MONTHLY LIQUID INJECTION RATES

·	Gallons Injected
January 1969	9,579,000
February 1969	4,237,200
March 1969	3,564,000
April 1969	4,436,000
May 1969	1,942,500
June 1969	0
July 1969	2,812,875
August 1969	5,751,000
September 1969	9,862,200
October 1969	4,231,500
November 1969	9,547,500
December 1969	7,495,500
Total 1-1-69 to 1-1-70	63,459,275
Average Injection Rate	5,288,300

ATTACHMENT II

CONCENTRATION OF RADIOACTIVE CONSTITUENTS IN INJECTION LIQUID

	<u>Ra -226</u> uc/ml x 107	<u>Th -230</u> uc/ml x 104	<u>U-natural</u> uc/ml x 106
January 1969	4 A 2.70	4 <u>4</u> 1.69	⁶ 3.92
February 1969	3.18	1.72	3.92
March 1969	1.70	1.72	3.57
April 1969	2,46	3.06	5,30
May 1969	2.17	2.00	3.91
June 1969	No Injecti	on	
July 196 9	1.17	2,55	6.21
August 1969	3.70	2.38	5.48
September 1969	2,31	2.21	4.42
October 1969	1.19	1.42	4.32
November 1969	0,32	1.67	5.79
December 1969	1.67	1.40	7.72
	22.57	21.82	54.56
	n 1)	11	
	2,05	1-99	A.96

February 3, 1970

ATTACHMENT 111

.

• •

4

ł

RADIOLOGICAL ANALYSES OF MONITORED WELL AND SURFACE WATERS

FOR THE MONTHS OF MAY AND SEPTEMBER 1969

÷

:		Sec. and Sec. 1			:	
	RADIOLOGICA	G. WATER	ANALYSIS	FOR MONTH	I OF	MAY 1969
	10.00 -00 -00	চন চন্দ্ৰ প্ৰদান ব	ਇਸ ਸਾਵੇ ਹੋ ਕਿਹਾ			
_	start a f					
	· · · · · · · · · · · · · · · · · · ·			and the second second	001	

DESCRIPTIVÉ L	OCATION	Gross Alpha uc/ml x 10 ⁸	Ra-226 uc/ml _{x-10} 8	Th-230 uc/ml x 106	U-nat uc/ml
Berryhill Section 5	12.10. 5.341a	1.4 ± 0.43	0.52 0.09	less than 0.004	0.00014
North fell	12.10. 7.143	1.9 ± 0.48	less than 0.2	less than 0.004	0,0010
Monitor Well # 1	12,10, 8,332	5.6 ± 0.83	0.25 0.06	less than 0,004	0,0049
Sabre-Pinon	12.10.20.333a	No Sample			
Card Gas *	12,10,27,333	No Sample			
Card Electric *	12,10,29,434a	No Sample			
Mexican Camp	12,10,30,112	0.28 ± 0.08	less than 0.2	less than 0,004	0.00016
Jack Freas	12.10.30.242	0.23 ± 0.11			0.00005
Harding Irrigation	12.10.30.421	No Sample			
Fred Freas	12.10.30.433	0.35 ± 0.12			0,00011
Chapman	- 12.10.32,211a	0.35 ± 0.12			0.00006
Thunderbird Post	12,11,10,411a	0.52 ± 0.17	less than 0.2	less than 0.004	0,00035
Berryhill House	12,11,11,334	0.71 ± 0.23	less than 0.2	less than 0,004	0.00020
Tailing Pond	12.11.13.Pond	Not Determined	21.7	200.	0.39
Engineers Well	12,11.14.213	1.0 ± 0.24	less than 0.2	less than 0.004	0.00052
Roundy (Harmon)	12.11.23.231	0.51 ± 0.21	less than 0.2	less than 0.004	0.00018
Power House Pond	12,11,24,PHP	84. ± 2.6	0.98 0.12	less than 0.004	0.049
Laboratory Pond	12.11.24.LABP	No Sample			
Auro's Bar	12.11.24.334		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
Auro's Motel	12.11.24.334a	0.62 ± 0.23			0.00016
Anaconda #1	12.11.24.411	No Sample			
Webb Windmill	12.11.25.122a	No Sample			
Anaconda #3	12,11,25,213	0.62 ± 0.18	less than 0.2	less than 0.004	0.00022
Anaconda #4	12,11,25,214	0.54 ± 0.17	less than 0.2	less than 0.004	0.00021

RADIOLOGICAL WATER ANALYSIS FOR MONTH OF MAY 1969

DESCRIPTIVE LOC	ATION	Gross Alpha uc/ml _x 10 ⁸	Ra-226 uc/mlx 10 ⁸	Th-230 uc/mlx 10 ⁶	U-nat uc/ml x 10 ⁵
Cottonwood Springs	10. 9. 6.442	0.52 + 0.31			0,00024
Del Padre Springs	10. 9. 7.222	0.81 [±] 0.54	less than 0.2	less than 0.004	0.00046
Gottlieb Poison #2	10. 9.17.113a	1.2 ± 0.47	less than 0.2	less than 0.004	0.00031
Gottlieb Butane	10. 9.23.134	0.46 ± 0.11			0,00017
Horace Springs	10. 9.26.222	0.33 ± 0.15			0.00011
San Rafael	10.10. 3.433a	0.43 + 0.17			0.00023
Heath Well	10.10.15.233	0.69 ± 0.29			0.00072
Worthen Well	10.10.22.213	No Sample			
Hawkinson (Grants)	11. 9.30.122a	No Sample			
kepublic	11.10. 2.111	0.88 ± 0.27	less than 0.2	less than 0.004	0.00052
Evans Windmill	11,10, 5,222	No Sample			
Vidal	11.10. 5.213	0.36 ± 0.12			0.00009
Milan Chinle	11.10.21.211	0.24 ± 0.09			0.00008
Grants-San Andres	11.10.26.Tap	0.43 ± 0.14			0.00013
Suburban Gas	11.10.27.443	4.1 ± 0.72	less than 0.2	less than 0,004	0.0021
Schneemann	11.11.23.333	0.22 ± 0.06	The contraction in the second of products of the transmission of t		0.00006
Roundy Windmill	12.10.12.433a	3.3 ± 0.61	less than 0.2	less than 0.004	0.0025
Murray	12,10,27,431	0.73 ± 0.25	-	-	0.00022
Card Commissary	12,10,33,444	No Sample		· .	
Murray #1	12.10.34.224	1.1 ± 0.29	less than 0.2	less than-0.004	0.00050
Joy Manufacturing	12.10.35.322	0,95 ± 0.28	less than 0.2	less than 0,004	0,00050
L.D.S. Bluewater	12.11.22.234	0.67 ± 0.22		· · · · · · · · · · · · · · · · · · ·	0,00026
Wilcoxson (P. Harris)	13, 9.16.411	1.6 ± 0.44	0,20 0,05	less_than_0,004_	0,00055
Sandoval	13. 9.22.212	0.36 ± 0.12			0.00019
Mt. Taylor Corp.	13. 9.29.345	6.9 ± 0.85	less than 0.2	less than 0.004	0.0055
Greater Grants Airport	12.10.26.322a	0.80 ± 0.28			0,00030
Anaconda #2	12.11.24.233	13. ± 1.2	less than 0.2	less than 0,004	0,011

RADIOLOGICAL WATER ANALYSIS FOR MONTH OF SEPTEMBER 1969

DESCRIPTIVE LOCATION		Gross Alpha uc/ml x 10 ⁸	Ra=226 uc/ml x 10 ⁸	Th=230 uc/ml x 10 ⁶	U-nat uc/ml x 10 ⁵
Berryhill Section 5	12.10.5.341a	1.0 + 0.39	0.44 ± 0.07	less than 0.004	0,00018
North Mell	12.10. 7.143	1.7 ± 0.44	less than 0,2	less than 0,004	0.0012
Monitor Well # 1	12.10, 8,332	8.3 ± 1.0	0.21 ± 0.06	less than 0.004	0.0059
Sapre-Pinon	12,10,20,333a	No Sample		and the second first in the second	an a
Gard Gas *	-12 .10.27.33 3	No Sample			
Caro Electric *	-12.10.29.494a	No Sample			
Mexican Camp	12.10.30.112	0.33°± 0.10	less than 0.2	less than 0.004	0.00015
Jack Freas	12,10,30,242	0.25 ± 0.12+			0.00010
Harding Innigation	12.10.30.421	No Sample			
Fred Freas	12.10.30.433	0.35 ± 0.12			0.00016
Chapman	12.10.32.211a	0.34 ± 0.11			0,00009
Thunderbird Post	-12.11.10.411a	<0.96 ± 0.22	less than 0.2	less than 0.004	0.00081
Berryhill House	12,11.11.334	0.48 ± 0.19	less than 0.2	less than 0.004	0.00023
Tailing Pond	12,11,13,Rond	No Determined	23.1	221.	0.44
Engineers well		-0.98 ⁺ - 0.23	less than 0.2	less than 0.004	0.00041
Roundy (Harmon)	12.11.23.231	···0.61 *··0.23	less than 0.2	less than 0.004	0.00013
Power House Pand	-412.11.24.RHP	<u>5</u> 2. ± 2.0	1.06 ± 0.12	less than 0.004	0,035
Laconatory Pend	12.11.24.1ABP	No Sample			
Aurole Bar	<u>1271) - 4, 334</u>				
Auro's Mötel	12.11.24.334a	0.25 ± 10.09			0.00014
Anaconda #1.	12.11.24.411	No Sample			
Webb Windmill	(+1≥.1±,25.122a	0.94 ± 0.19	less than 0.2	less than 0.004	0.00031
Anaconda #3	12,11.25,213	1.0 ± 0.25	less than 0.2	less than 0.004	0.00040
Anaconda- ii 4	12,11.25.214	0.64 ± 0.22	less than 0.2	less than 0.004	0.00021

RADIOLOGICAL WATER ANALYSIS FOR MONTH OF SEPTEMBER 1969

DESCRIPTIVE LOC	ATION	Gross Alpha uc/ml x 10 ⁸	Ra-226 uc/ml x 10 ⁸	Th-230 uc/ml x 10 ⁶	U-nat uc/mlx 10 ⁵
Cottonwood Springs	10, 9, 6,442	0.36 ± 0.27			0,00028
Del Padre Springs	10. 9. 7.222	0.25 ± 0.08	less than 0.2	less than 0.004	0,00005
Cottlieb Poison #2	10. 9.17.113a	0.81 ± 0.39	less than 0.2	less than 0,004	0,00042
Gottlieb Butane	10, 9,23,134	0.35 ± 0.09			0.00020
Horace Springs	10. 9.26.222	0.25 ± 0.13			0.00006
San Rafael	10.10, 3.433a	0.40 ± 0.15			0,00014
Heath Well	10.10.15.233	0.82 ± 0.30			0.00076
Worthen Well	10,10.22,213	No Sample			
Hawkinson (Grants)	11, 9.30.122a	No Sample			
Republic	11.10, 2.111	1.0 ± 0.28	less than 0.2	less than 0.004	0.00070
Evans Windmill	11,10, 5,222	No Sample			· · · · · · · · · · · · · · · · · · ·
Vidal	11,10,5,213	0.31 ± 0.10	· · · · · · · · · · · · · · · · · · ·		0.00015
Milan Chinle	11,10,21,211	0.24 ± 0.08			0.00012
Grants-San Andres	11.10.26.Tap	0.48 ± 0.14			0.00011
Suburban Gas	11.10.27.443	5.5 ± 0.79	less than 0.2	less than 0.004	0.0025
Schneemann	11,11,23,333	0.23 ± 0.06			0.00009
Roundy Windmill	12.10.12.433a	3.7 ± 0.64	less than 0.2	less than 0,004	0,0025
Милгау	12.10.27.431	No Sample			·
Card Commissary	12.10.33.444	No Sample			
Murray #1	12.10.34.224	1.1 ± 0.29	less than 0.2	less than 0.004	0.00042
Joy Manufacturing	12.10.35.322	0.56 ± 0.22	less than 0.2	less than 0.004	0.00031
L.D.S. Bluewater	12.11.22.234	0.50 ± 0.18			0.00022
Wilcoxson (P. Harris)	13., 9.16.411	1.7 ± 0.46	0.28 ± 0.06	less than 0.004	0,00059
Sandoval.	13, 9,22,212	0.17 ± 0.08			0.00010
Mt. Taylor Corp.	13. 9.29.343	10, ± 1,0	less than 0.2	less than 0.004	0,0069
Greater Grants Airport	12.10.26.322a	0.96 ± 0.30	less than 0.2	less than 0.004	0.00032
Anaconda #2	12.11.24.233	<u>17. +</u> 1.4	less than 0.2	less than 0.004	0,016

ATTACHMENT IV

ţ,

STATIC WATER LEVELS OF WELLS IN THE SAN ANDRES-GLORIETA AQUIFER

IN THE VICINITY OF THE ANACONDA MILL AND DISPOSAL WELL

		Static Water Level
Well Description	Date of Measurement	Feet Above Mean Sea Level
Anaconda Well #1	12-28-68	6452.3
12.11.24.411	1- 4-70	6453.3
Anaconda Well #2	12-28-68	6452.2
12.11.24.233	1- 4-70	6453.1
Anaconda Well #3	12-28-68	6451.9
12.11.25.213	1- 4-70	6453.3
Anaconda Well #4	12-28-68	6452.1
12.11.25.214	1- 4-70	6453.4
12.11.20.214	1- 4-70	0433.4
Monitor Well #1	12-31-68	6456.1
12,10,8,332	1- 6-70	6456.5
North Well	12-31-68	6459.8
12.10.7.143	1- 6-70	6461.0

Contractor Barriso 87820	DATE OF POCUMENT:	DATE RECE		NO.: 636	
A. J. Fitch	LTR. MEMO:	REPOR	т :	OTHER:	
TO:	ORIG.: CC:	OTHER	:		
Nusabauser	ACTION NECESSARY	CONCURRENCE COMMENT		DATE ANSWERED: BY:	
CLASSIF.: POST OFFICE	FILE CODE: DOCKET: 40+663			<u></u>	
DESCRIPTION: (Must Be Unclossified)	REFERRED TO	DATE	RECI	EIVED BY	DATE
Ltr. trans, the following in com-	Nussbaumer	2/27			
S0A-6471	w/file cy.				
ENCLOSURES: (3 cys. rec'd.)					•
"Yearly Summary Report of the Disposal Well Injection Program for 1968"					
REMARKS:	DO NOT				
Dist: 1-PDR cy.	UNOT R	Man			
1-compliance cy.	ACKNOWLED	ED			buq

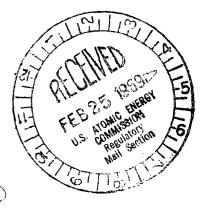
HARMON

THE ANACONDA COMPANY

New Mexico Operations

P. O. Box 638, Grants, New Mexico

A. J. FITCH MANAGER


February 21, 1969

Regulatory

File Cy,

United States Atomic Energy Commission Washington, D.C. 20545

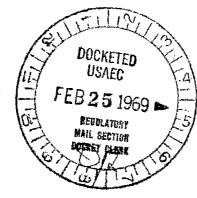
Attention: Mr. Donald A. Nussbaumer, Chief Source and Special Nuclear Materials Branch Division of Materials Licensing

Re. DLR-DFH-40-665

Gentlemen:

In compliance with condition 13(c) of our Source Material License No. SUA-647, I am sending you three copies of the Yearly Summary Report of the Disposal Well Injection Program for 1968.

Complete records of all phases of the disposal well injection program are being maintained and are available for your inspection at any time.


Yours very truly,

ax.

A. J. FITCH

AJF:hw

Enclosures

MEMORANDUM FOR RECORD

<u>SUBJECT</u>: Yearly Summary Report of the Disposal Well Injection Program for 1968.

Presented in this report are the following tabulations of data pertaining to the operation of the disposal well program during the period from January 1, 1968 to January 1, 1969:

- I. Average Monthly Liquid Injection Rates. (Note Attachment 1)
- II. Concentration of Radioactive Constituents in Injection Liquid. (Note Attachment II)
- III. Radiological Analyses of Monitored Well and Surface Waters. (Note Attachment III)
- IV. Static Water Levels of Wells in the San Andres-Glorieta Aquifer in the Vicinity of the Anaconda Mill and Disposal Well. (Note Attachment IV)

Respectfully submitted,

Kalph M. Wille

RALPH M. WILDE Radiation Safety Director

RMW: hw

c: A. J. Fitch (4) E. C. Peterson

ATTACHMENT I

۰.

ı.

AVERAGE MONTHLY LIQUID INJECTION RATES

	<u>Gallons Injected</u>
January 1968	8,616,850
February 1968	8,639,250
March 1968	6,853,700
April 1968	2,158,500
May 1968	1,508,750
June 1968	0
July 1968	0
August 1968	4,565,600
September 1968	0
October 1968	3,295,900
November 1968	6,634,300
December 1968	8,072,700
Total 1-1-68 to 1-1-69	50,345,550
Average Injection Rate	4,195,460

February 12, 1969

÷

ATTACHMENT II

4

5

CONCENTRATION OF RADIOACTIVE CONSTITUENTS IN INJECTION LIQUID

	<u>Ra -226</u> uc/m1 x 10 ⁷	<u>Th -230</u> uc/ml x 10 ⁴	<u>U -natural</u> uc/m1 x 10 ⁶
January 1968	4. 0.61	3 q 1.27	↔ 4. 2.95
February 1968	1.42	1.19	3.52
March 1968	0.60	1.62	3.48
April 1968	0.28	2.09	5.38
May 1968	0.31	2.44	5.09
June 1968	No Injectio	n	
July 1968	No Injectio	n	
August 1968	1.07	2.25	7.15
September 1968	No Injectio	n	
October 1968	0.50	2.47	5.94
November 1968	0.84	2.01	4.02
December 1968	0.50	1.99	3.94
	6.13	1.99 17.24	41.47
	4	9	9
	0.68	1.9 4	q. (-

February 12, 1969

ATTACHMENT III

RADIOLOGICAL ANALYSES OF MONITORED WELL AND SURFACE WATERS FOR THE MONTHS OF MAY AND SEPTEMBER 1968

κ.

2

RADIOLOGICAL WATER ANALYSIS FOR MONTH OF MAY 1968

DESCRIPTIVE LO	CATION	Gross Alpha uc/ml x 10 ⁸	Ra-226 uc/ml x 10 ⁸	Th-230 uc/ml x 10 ⁶	U-nat uc/ml x 10 ⁵
Berryhill Section 5	12.10. 5.341a	1.3 ± 0.42	0.37 ± 0.07	less than 0.004	0.00008
North Mell	12.10, 7.143	1.7 ± 0.42	less than 0.2	less than 0.004	0.00079
Monitor Well # 1	12.10. 8.332	6.3 ± 0.84	0.20 ± 0.05	less than 0.004	0.0042
Sabre-Pinon	12.10.20.333a	0.26± 0.12			0.00009
Card Gas *	12.10.27.333	No Sample			
Card Electric *	12,10.29.434a	No Sample			
Mexican Camp	12,10,30,112	0.48 ± 0.12	less than 0.2	less than 0.004	0.00018
Jack Freas	12,10,30,242	0.24 ± 0.11			0.00004
Harding Irrigation	12,10,30,421	No Sample			
Fred Freas	12.10.30.433	0.18 ± 0.08	a		0.00007
Chapman	12,10.32,211a	0.36 ± 0.11			0.00012
Thunderbird Post	12.11.10.411a	0.68 ± 0.19	less than 0.2	less than 0.004	0.00044
Berryhill House	12.11.11.334	0.48 ± 0.18	less than 0.2	less than 0.004	0.00016
Tailing Pond	12.11.13.Pond	Not determine	i <u>3.13</u>	244.	0.51
Engineers Well	12,11,14,213	1.2 ± 0.26	less than 0.2	less than 0.004	0.00049
Roundy (Harmon)	12.11.23.231	0.35 ± 0.17	less than 0.2	less than 0.004	0.00014
Power House Pond	12.11.24.PHP	$36. \pm 2.7$	0.29 ± 0.07	less than 0.004	0.016
Laboratory Pond	12,11,24.LABP	No Sample	-	·	
Auro's Bar	12.11.24.334	No Sample			·
Auro's Motel	12.11.24,334a	0.34 ± 0.15			0.00016
Anaconda #1	12.11.24.411	<u>No Sample</u>	l		
Webb Windmill	12,11,25,122a	No Sample			
Anaconda #3	12,11,25,213	0.79 ± 0.21	less than 0.2	less than 0.004	0.00032
Anaconda #4	12.11.25.214	0.60 ± 0.18	less than 0.2	less than 0.004	0.00018
					
	ن 	<u> </u>		· · · · · · · · · · · · · · · · · · ·	· ·
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
			·····		

* Monthly during irrigation

RADIOLOGICAL WATER ANALYSIS FOR MONTH OF MAY 1968

DESCRIPTIVE LOC	ATION	Gross Alpha uc/ml _{x 10} 8	Ra-226 uc/m1 x 10 ⁸	$\frac{1h-230}{uc/m1 \times 10^6}$	U-nat uc/ml _{x 10} 5
Cottonwood Springs	10. 9. 6.142	0.50 ± 0.32			0.00015
Del Padre Springs	10. 9. 7.222	<u>1.2</u> ± 0.55	less than 0.2	less than 0.004	0.00046
Gottlieb Poison #2	10, 9.17.113a	1.1 ± 0.46	less than 0.2	less than 0.004	0.00016
Cottlieb Butane	10, 9.23.134	0.53 ± 0.12			0.00018
Horace Springs	10, 9,26,222	0.31 ± 0.13			0.00009
San Rafael	10,10, 3,433a	0.44 ± 0.17			0.00012
Heath Well	10,10;15,233	No Sample	· · ·		
Worthen Well	10,10.22,213	No Sample			
Hawkinson (Crants)	11. 9.30.122a	No Sample			
Republic	11.10. 2.111	1.2 ± 0.31	less than 0.2	less than 0.004	0.00068
Evans Windmill	11.10. 5.222	No Sample	· · · · · · · · · · · · · · · · · · ·		
Vidal.	11,10. 5,213	0.41 ± 0.13	· · · · · · · · · · · · · · · · · · ·		0.00006
Milan Chinle	11,10,21,211	0.23 ± 0.08			0.00011
Grants-San Andres	11.10.26.Tap	0.42 ± 0.14			0.00012
Suburban Gas	11.10.27.443	5.8 ± 0.87	less than 0.2	less than 0.004	0.0023
Schneemann	11.11.23.333	0.40 ± 0.08		·····	0.00016
Roundy Windmill	12.10.12.433a	3.9 ± 0.66	less than 0.2	less than 0.004	0.0026
Murray	12,10,27,431	0.35 ± 0.18		· · · · · · · · · · · · · · · · · · ·	0.00012
Card Commissary	12,10.33,444	No Sample			
Murray #1	12,10.34.224	0.76 ± 0.23	less than 0.2	less than 0.004	0.00044
Joy Manufacturing	12.10.35.322	0.53 ± 0.22			0.00015
L.D.S. Bluewater	12.11.22.234	0.58 ± 0.20	· ·		0.00021
Wilcoxson (P. Harris)	13. 9.16.411	3.6 ± 0.66	0.40 ± 0.07	less than 0.004	0.00060
Sandoval	13. 9.22.212	No Sample			
Mt. Taylor Corp.	13. 9.29.343		less than 0.2	less than 0.004	0.0040
Greater Grants Airport	12,10,26,322a	0.51 ± 0.23			0.00020
Anaconda #2	12.11.24.233	15. ± 1.2	less than 0.2	less than 0.004	0.0087
	사망, 요소 동안 것을 위한 편이 해외가 동안 사망, 이 가지 않는 것은 것을 동안 동일				

RADIOLOGICAL WATER ANALYSIS FOR MONTH OF SEPTEMBER 1968

DESCRIPTIVE LC	CATION	Gross Alpha uc/ml x 10 ⁸	Ra-226 uc/mlx 108	Th-230 uc/ml x 10 ⁶	U-nat uc/ml x 10
Berryhill Section 5	12.10. 5.34la	1.1 ± 0.35	0.25 ± 0.06	less than 0.004	0.00015
North ^el l	12.10. 7.143	1.6 ± 0.42	less than 0.2	less than 0.004	0.00079
Monitor Well # 1	12,10. 8,332	5.3 ± 0.80	0.20 ± 0.05	less than 0.004	0.0044
Sabre-Pinon	12.10.20.333a	No Sample			
Card Gas *	12.10.27.333	No Sample			
Card Electric *	12.10.29.434a	No Sample			
Hexican Camp	12.10.30,112	0.40 ± 0.11	less than 0.2	less than 0.004	_0.00020
Jack Freas	12.10,30.242	C.38 ± .C.12			0.00012
Harding Irrigation	12,10,30,421	0≲₀4 ± 0.19			0.00021
Fred Freas	12.10.30.433	_0.48±_0_13			0.00018
Chapman	12.10.32.211a	0.39 ± 0.12			0.00012
Thunderbird/Post	12.11.10.411a	0.83 ± 0.21	less than 0.2	less than 0.004	0.00050
Berryhill House	12.11.11.334	0.63 ± 0.19	less than 0.2	less than 0.004	0.00031
Tailing Pona	12.11.13.Pond	No Sample	······		
Engineers Well	12.11.14.213	<u>1.7</u> ± 0.31	less than 0.2	less than 0.004	0.00066
Roundy (Harmon)	12,11,23,231	0.50 ± 0.20	less than 0.2	less than 0.004	0.00021
Power House Pond	12,11,24,PHP	54. ± 3.3	_5,8_ ⁺ 0,29	les: than 0.004	0.023
Laboratory Pond	12.11.24.LABP	No Sample	-		
Auro's Bar	12.1.24.334	No Sample			
Auro's Motel	12.11.24.334a	0.39 ± 0.17			0.00024
Anaconda #1	12,11.24.411	No Sample			
Webb Windmill	12.11.25.122a	0.64 ± 0.16			0.00026
Anaconda #3	12.11.25.213	0.72 ± 0.22	less than 0.2	less than 0.004	0.00039
Anaconda #4	12.11.25.214	0.67 ± 0.18	less than 0.2	less than 0.004	0.00014
					-
* Montaly during irrig	ation				

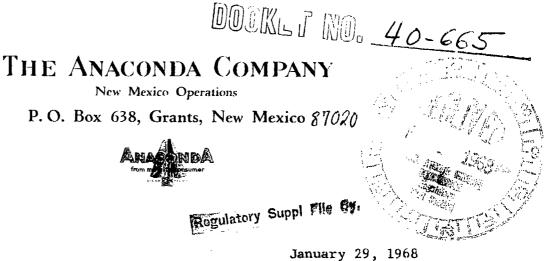
THE ANACONDA COMPANY RADIOLOGICAL WATER ANALYSIS FOR MONTH OF SEPTEMBER 1968

DESCRIPTIVE LOC	CATION	Gross Alpha uc/ml x 10 ⁸	Ra-226 uc/ml x 108	Th-230 uc/ml x 10 ⁶	U-nat uc/ml _{x 10} 5
Cottonwood Springs	10, 9, 6,44,2	0.59 ± 0.34	· 이상 · · · · · · · · · · · · · · · · · ·		0.00031
Del Padre Springs	10, 9, 7,222	0.67 ± 0.50	less than 0.2	less_than_0.004	0.00029
Gottlieb Poison #2	10. 9.17.113a	0.91 ± 0.42	less than 0.2	less than 0.004	0.00019
Gottlieb Butane	10, 9,23,134	0.34 ± 0.10			0.00019
Horace Springs	10. 9.26.222	0.32 ± 0.13		·	0.00009
San Rafael	10,10, 3,433a	0.30 ± 0.14		- 11/1/27/2 - 2	0.00021
Heath Well	.10.10.15.233	No Sample		·	·
Worthen Well	10,10,22,213	No Sample			
Hawkinson (Grants)	11. 9.30.122a	No Sample			
Republic	11.10, 2.111	0.93 ± 0.27	less than 0.2	less than 0.004	0.00049
Evans Windmill	11.10. 5.222	No Sample			
Vidal	11.10. 5.213	0.25 ± 0.11			0.00018
Milan Chinle	11,10,21,211	0.31 ± 0.10		·	0.00018
Grants-San Andres	11.10.26.Tap	0:45 ± 0.15			0.00021
Suburban Gas	11.10.27.443	5.1 ± 0.75	less than 0.2	less than 0.004	0.0020
Schneemann	11.11.23.333	0.32 ± 0.07			0.00019
Roundy Windmill	12.10.12.433a	3.5 ± 0.64	less than 0.2	less than 0.004	0.0026
Murray	12.10.27.431	No Sample			
Card Commissary	12.10.33.444	No Sample			
Murray #1	12,10.34.224	0.94 ± 0.26	less than 0.2	less than 0.004	0.00050
Joy Manufacturing	12,10,35,322	0.34 ± 0.29		less than 0.004	0.00036
L.D.S. Bluewater	12.11.22,234	0.58 ± 0.20			0.00026
Wilcoxson (P. Harris)	13. 9.16.411	2.3 ± 0.51	0.35 ± 0.07	less than 0.004	0.00049
Sandoval	13. 9.22.212	No Sample			and a second provide secondary and the second provide second second second second second second second second s
Mt. Taylor Corp.	13. 9.29.343	7,4 ± 0;86	less than 0.2	less than 0.004	0.0046
Greater Grants Airport	12.10.26.322a	0.76 ± 0:26			0.00029
Anaconda #2	12.11.24.233	14.	less than 0.2	less than 0.004	0.0097

February 12, 1969

)

ATTACHMENT IV


, · · -, · · · ft

STATIC WATER LEVELS OF WELLS IN THE SAN-ANDRES - GLORIETA AQUIFER IN THE VICINITY OF THE ANACONDA MILL AND DISPOSAL WELL

Well Description	Date of Measurement	Static Water Level <u>Feet Above Mean Sea Level</u>
An acond a We l 1 <i>排</i> 1	1-14-68	6455.3
12.11.24.411	12-28-68	6452.3
Anaconda Well #2	1-14-68	6454.9
12.11.24.233	12-28-68	6452.2
Anaconda Well #3	1-14-68	6454.5
12.11.25.213	12-28-68	6451.9
Anaconda Well #4	1-7-68	6452.8
12.11.25.214	12-28-68	6452.1
Moñitor Well #1	12-6-67	6460.3
12.10.8.332	12-31-68	6456.1
North Well	12-5-67	6462.9
12.10.7.143	12-31-68	6459.8

FROM THO MANGAE I LEAD	DATE OF DOCUMENT.	DATE RE-CIVED		NO.	322
	LTQ.	REPO	11 , 20, 42, 42, 43	OTHER	
A. J. Fitch	ORIG.I CC:	ÓTHE	P.		
	1	01112		reproduced	
Hussbaumer	ACTION NECESSARY	CONCURRENCE COMMENT	<u> </u>	DATE ANSWERED: BY:	
CLASSIF,: POST OFFICE	FILE CODE:		(
U REG. NO:	LC-665				
DESCRIPTION: (Must Be Unclossified)	REFERRED TO	DATE	RECE	IVED BY	DATE
Ltr. trans the following in compliance with Condition No. 13(c) of SUA-647:	Nussbaumer	2/2	,		
ENCLOSURES:	W/file cy. & fil <u>l-compliance cy</u> .				
enclosures: (3 cys. rec'd.)					
Tearly Summary Report of the Disposal Well Injection Program	······································			-	
for 1967.		REMO	VE		
REMARKS:				*** ··· · · · · · · · · · · · · · · · ·	L_,
Distribution: 1-PIE cy.					
DECALABISANOUS AND AGE UP C	ACKNOWLESSEE			EI 122	ыq
U. S. A ث U. S. GOVERNMENT PRINTING OFFICE: 1967279-085	TOMIC ENERGY COMMISSION	MAIL CO	NTROL		AEC-3265 0-60)

· .

United States Atomic Energy Commission Washington, D. C. 20545

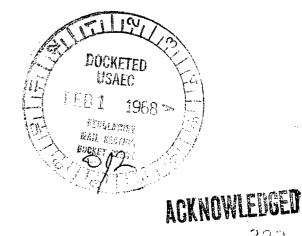
Attention: Mr. Donald A. Nussbaumer, Chief Source and Special Nuclear Materials Branch Division of Materials Licensing

DTR-DFH 40-665

322

Gentlemen:

A. J. FITCH MANAGER


> In compliance with condition No. 13(c) of our Source Material License No. SUA-647, I am sending you three copies of the Yearly Summary Report of the Disposal Well Injection Program for 1967.

> Complete records of all phases of the disposal well injection program are being maintained and are available for your inspection at any time.

> > Yours very truly,

a & dite

A. J. FITCH

hw

Enclosures

DOCKET NO. 40-665

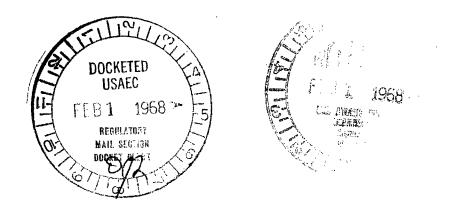
Regulatory Suppl File Cy. January 29, 1968

MEMORANDUM FOR RECORD

<u>SUBJECT</u>: Yearly Summary Report of the Disposal Well Injection Program for 1967.

Presented in this Report are the following tabulations of data pertaining to the operation of the disposal well program during the period from January 1, 1967 to January 1, 1968:

- Average Monthly Liquid Injection Rates. (Note Attachment I)
- II. Concentration of Radioactive Constituents In Injection Liquid. (Note Attachment II)
- III. Radiological Analyses of Monitored Well and Surface Waters. (Note Attachment III)
- IV. Static Water Levels of Wells in the San Andres-Glorieta Aquifer in the Vicinity of the Anaconda Mill and Disposal Well. (Note Attachment IV)


Respectfully submitted,

Kalph M. Wille

Ralph M. Wilde Radiation Safety Director

RMW:hw

c: A. J. Fitch (4) E. C. Peterson

ATTACHMENT I

•

1

1

AVERAGE MONTHLY LIQUID INJECTION RATES

	Gallons Injected
January 1967	2,718,300
February 1967	7,164,420
March 1967	2,534,890
April 1967	172,800
May 1967	0
June 1967	502,960
July 1967	1,785,500
August 1967	3,749,600
September 1967	3,036,600
October 1967	2,414,150
November 1967	0
December 1967	0
Total 1-1-67 to 1-1-68	24,079,220
Average Trigetion Bate	

Average Injection Rate

2,006,600 gallons/month

,

ATTACHMENT II

1

ţ

CONCENTRATION OF RADIOACTIVE CONSTITUENTS IN INJECTION LIQUID

	<u>Ra-226</u> uc/ml X 10 ⁷	<u>Th-230</u> uc/ml X 10 ⁴	U-natural uc/ml X 10 ⁶
January 1967	1.25	2.02	2.76
February 1967	1.04	1.80	2.98
March 1967	0.41	2.08	3.84
April 1967	0.77	3.27	6.09
May 1967	No Injectio	n	
June 1967	0.24	3.23	6.40
July 1967	1.34	3,01	4.78
August 1967	3.26	2.60	3.78
September 1967	0.96	1.87	3.02
October 1967	0.50	2.23	3.00
November 1967	No Injectio	n	3
December 1967	No Injectio	n staty	· · ·
	777	·	
•			

11107

2,45

1.CP

January 29, 1968

ATTACHMENT III

· · ι.

1

RADIOLOGICAL ANALYSES OF MONITORED WELL AND SURFACE WATERS FOR THE MONTHS OF MAY AND SEPTEMBER 1967

الورية المحافظة المحتجمة محتور العاد الرائية. الأخط الماد الماد العالية المحتور المح

.

CHARLESS DEPENDENTIAL STRATE OF MAY 1967

	and the second sec		موسوره در وارو ادراد در ادروم این در مربق ایم ادارا در بیرو در اسال هدیستان اگر ادر در		
	المحير وحيات بالرمين التناب بالراوي والراب والمرج	' or 10 ⁸	د بیند میں (۱۵) x 10 ⁸	01-130 20/51 X 10	U-star Ney X 10
and Mala 1988. S	12,12, 9, 94	0.57 ± 0.33	0.27 ± 0.06	less than 0.004	0.00014
dana Addi	12.10. 7.343	0.46 ± 0.28	less than 0.2	less than 0.004	0.0011
Pathor Latt <u>P</u> A	12.0. 3.332	<u> 3.4. ±0.66 </u>	0.20_±_0.05	less_than_0_004	0.0042
Sthe Phila	12.10.20.303a	0.20 <u>± 0.13</u>			0.00026
	12,10,27,333	0.29 ± 0.17			0.00036
Contra Marca de M	12.10,29.4343	No Sample			
Nextern Cop	12,10,30,112	0.17 ± 0.08	less than 0.2	less than 0.004	0.00019
F. M. Course	12,10,30,242	0.20 ± 0.11			0.00006
Portion and galles	12,10,30,421	No Sample			
3	12.30,90.333	0.12 ± 0.09			0.00009
	32,30,32,205	0.21 ± 0.10			0.00011
	(A_10_4016]	2.5 ± 0.66	less than 0.2	Less than 0.004	0.0010
an i shekara	12.10.11.326	0.26 ± 0.16	less than 0.2	less than 0.004	0.00021
Parliment of	New 19, 11, 12, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14	No sample			
	12.11.15.213	0.82 ± 0.22	less than 0.2	less than 0.004	0.00059
Deg (Frida de)	EX,11,22,201	0.25 ± 0.16	less than 0.2	less than 0.004	0.00012
	12,11,25,FMP	49. ± 2.5	0.43 ± 0.08	0.78 ± 0.17	0.053
Constant States and States	12,01,04,1432	$24. \pm 1.5$	less than 0.2	less than 0.004	0.028
Anzolation	12,11,24,3242	0.29 ± 0.14			0.00011
Analogia (A	12.11.24.411	2.1 ± 0.41	less than 0.2	less than 0.004	0.0019
USS Classical L	12.11.25.1223	No_Sample			
Tantazés, 😕	12,11,25,233	0.58 ± 0.21	less than 0.2	less than 0.004	0.00040
Anaconda #4	12.11.25.214	0.44 ± 0.17	less than 0.2	less than 0.004	0.00019
		-			
				· · · · · · · · · · · · · · · · · · ·	
······································				······································	
				· · · · · · · · · · · · · · · · · · ·	
and the second			an an an ann an Anna a	L	

4 Monchey during invigation

•

•

÷

Presentation where the first state of the set of $M_{
m MY}=1967$

				, , ,		
	 Jan Jan Sangara, and a sangarang sangarang sangarang sangarang sangarang sangarang sangarang sanga Sangarang sangarang sa Sangarang sangarang sa Sangarang sangarang s Sangarang sangarang sa Sangarang sangarang sangar	x 10 ⁸	и 10 ⁸	73-230 x 10 ⁶		x 10 ⁵
Calquistal services	10, 9, <u>5, 49</u> 2	0.11 ± 0.25			0,00026	
	20. 9. 7.192	0.72 ± 0.77	less than 0.2	less chan 0.004	0.00070	المحافر المراجع المحاد
Critits rater /2	10, 9,17,1105	0.51 ± 0.41			0.00034	
C DEAL & Excerce	10, 9,23,134	0.17 ± 0.08			0.00019	
(lisever species)	30, 9,25,922	0.16 ± 0.12			0.00006	
Eva Rezel	<u>10.30.3.63a</u>	0.15 ± 0.12	· · · · · · · · · · · · · · · · · · ·	·	0.00020	ويرور بيور بسور وارو
11 attar (143)	10,10,15,233	0.29 ± 0.24	less_than_0.2	less than 0,004	0.00086	
	10,705,822,213	No Sample.				
(*	11, 9,00,1225	No Sample				
	31,20, 3.111	0.39 ± 0.28	less than 0.2	less than 0.004	0.00056	
- 1. 1. 1. 1. 1 . 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	10.30. 5 . 222	Ho Sample		· · · · · · · · · · · · · · · · · · ·		
THE REAL	11,19, 5,273	0.15 ± 0.10			0.00011	
na ka wante	11.16-21,211	0.23 ± 0.09	· · · · · · · · · · · · · · · · · · ·		0.00019	
1 A. George & Antres	<u>)) 20,26,555</u>	0.18 ± 0.10			0.00014	
Dipolica (tra	11,10,27,443	3.4 ± 0.70	less than 0.2	less than 0.004	0.0033	
	11.32.32.33	0.20 ± 0.06			0.00014	
	12.10,12Fph	2.6 ± 0.57	less than 0.2	less than 0.004	0.0028	
the execution of the second	12,10127.401	0.44 ± 0.20	-		0.00030	
Card Coastanary	12,10,33,464	0.40 ± 0.15	less than 0.2	less than 0.004	0.00088	
thereasy git	12,10.34,224	0.62 ± 0.23			0.00050	
Joy Monaractaning	12.20.35,322	0.23 ± 0.18	less than 0.2	less than 0.004	0.00021	
L.D.S. Maraltar	12.11.122.234	0.28 ± 0.16			0.00020	
Vileovice (P. Parrie)	13, 9,16,431	1.24 + 0.39	0.29. ± 0.06	less than 0.004_		
Electorial.	13, 9,22,212	0.16 ± 0.08			0.00009	
Ht. Taylor Corp.	13. 9.29.343		less than 0.2	less_than 0.004		•
Crister Groce Miseri	10.10,26,372	0.33 ± 0.21			0.00022	
the second s	12,22,22,235		less than 0.2	less than 0.004		
	, ,					
	a strategie and the strategies where a strategies and the strategies a			a and a second of the second		· · · ·

A second sec second sec

PARAMATIN TERMINAL MASARATIN RATING CONSEPTEMBER 1967

			SETEMBER 1907			
	2002	x 10 ⁸	x 10 ⁸	10-230 xe/-lx 10 ⁶	()-c) / x/// x 10 ⁵	
l beating	12.10. j.201a	0.70 ± 0.35	less than 0.2	less than 0.004	0.00010	
Meridian (Meridian)	12,10, 7,143	1.2 [±] 0.40	less than 0.2	less than 0.004	0.0010	
lisetine Had <u># 1</u>	12,10, 8,332	4.9 ± 0.82	less than 0.2	less than 0.004	0.0041	
Stilling-Altern	12,10,00.3335	0.10 ± 0.11			0.00005	
Cat 1 278 4	12.10.27.933	No Sample				
Frid Elizabela d	12,10).451a					
Pestean Calp	12,10,00,112	0.35 ± 0.10	less than 0.2	less than 0.004	0.00018	
in Ar Prose	12,10,10,292	0.23 ± 0.12			0.00014	
Ha. Hing Tradyction	12,10,30,421	0.36 ± 0.16			0,00019	
ita di ginera	12,00,00,4,00	0.27 ± 0.12			0.00014	
	12,13,13,13,114	10.24 ±0.11	·			
	12,11,30,4315	1,1. [±] .0,45	less than 0.2	- less than 0.004	0.00081	
	12,33,33,33,334	0.41 ± 0.19	less than 0.2	<u>less than 0.004</u>	0.00024	
<u>ralle, Fal</u>	12.32,12 . %e4	Not determined	9.56	187.	0.302	
	12,21,14,24)	No Sample			• 1 	
(alariy) (alariya)	- 12/11/02/201	0.51 ± 0.22	less than 0.2	less than 0.004	0.00029	
Protest Carrie Band	12,11,24,202	70. ± 3.3	1.5 0.12	less than 0.004	0.049	
Internetry Pued	12.11.24.LGP	34. ± 0.91	less than 0.2	less than 0.004	0.022	
Aurola Ber	12,11,24,334	No Sample				
Augoro Potot	12.01.24.3344	0.22 ± 0.12			0.00016	
Andennda Al	12,11,24.411	1.9 ± 0.38	less chan 0.2	less than 0.004	0.0016	
Mebb Mineriki	12.10.25.122a	No Sample				
Anteria (3	12,01,25,203	0.70 ± 0.23	less than 0.2	less than 0.004	0.00040	
Anaconda #4	12.11.25.214	0.48 ± 0.17	less than 0.2	less than 0.004	0.00021	
			· · · · · · · · · · · · · · · · · · ·			
			· · · · · · · · · · · · · · · · · · ·			

· Monthly during irrigation

. .

4

· · •

. .

Second and the second state of th

RED GOTHERAL COMPLEX SED WER LODGE OF SEPTEMBER 1967

-

4

 \sim

	an na shinan an	× 10 ⁸	22.025 22/11 x 10 ⁸	2h-270 05/01 x 10 ⁶	U-spat 11/ x 10 ⁵
i taatta la <u>x</u> taaja	10. S, 1272	0.55 ± 0.37			0.00020
la lectric pie p	.0. 9. 7,322	0.40 ± 0.24	less than 0.2	less_than_0.004	0.00025
Collective Pollow /2	10. 9.37.11ja	No Sample			
GALIZE BANYA	10. 9.23,134	0.25 ± 0.07			0.00024
Ing des Spickings	10, 9,25,222	0.11 ± 0.08			0.00011
(Second Constant) Second Constant	10.10. 3.433%	0.39 ± 0.17			0.00016
1973 197 0	10,10,15,233	No Sample			
	10,10,22,213	No Sample			
	<u>11. 9,30,1205</u>	No Sample			
	11,70, 2,111	0.83 ± 0.27	less than 0.2	less than 0.004	0.00056
11. Anno 12 (m. 1911)	11,10, 5,222	No Sample			
	1.0.343	0.31 ± 0.13			0.00016
	11,22,31,211	(0.29 ± 0.10)			0.00012
	33.00.06.259	0.29 ± 0.13			0.00015
Reference Oraș	10.10.77240	6.0 ± 0.95	less than 0.2	less than 0.004	0.0044
la de la companya de La companya de la comp	0.0.2020	0.37 ± 0.09	· · · · · · · · · · · · · · · · · · ·		0.00020
<u>18.851171372</u>	32,20,12,3025	3.0 ± 0.62	less than 0.2	less than 0.004	0.0025
Retry (12, 10, 27, 73).	No Sample	-		
C. ad Green Last ay	10,10,33,644				
	12,10,31,224	0.62 ± 0.22	less than 0.2	less than 0,004	0.00053
Jap 11 La Dablach og	12.10.35.322	0.28 ± 0.17	، است		0.00026
L.D.S. GAMI MARY	12,11,22,234	0.51 ± 0.20			0.00026
(P. Carte)	5.3. 9.16.491		less than 0.2	less_than_0.004	
Maria Maria a Santa Santa Santa Santa	13, 9,22,212	No Sample			
ht. Taylor Orga	13. 9.22.343		less than 0.2	less than 0.004	0.0046
Constar Greate Choose	02,00,25,322	0.53 [±] 0.24		· · · · · · · · · · · · · · · · · · ·	0.00025
21. 27462.015	12.01.24,233	· ·		less.than.0.004	

.

January 29, 1968

ATTACHMENT IV

;·

1.5

STATIC WATER LEVELS OF WELLS IN THE SAN ANDRES - GLORIETA AQUIFER IN THE VICINITY OF THE ANACONDA MILL AND DISPOSAL WELL

		Static Water Level		
Well Description	Date of Measurement	Feet Above Mean Sea Level		
Anaconda Well #1	1- 6-67	6455.6		
12.11.24.411	1-14-68	6455.3		
Anaconda Well #2	1- 6-67	6455.2		
12.11.24.233	1-14-68	6454.9		
Anaconda Well #3	1- 6-67	6454.7		
12.11.25.213	1-14-68	6454.5		
Anaconda Well #4				
12.11.25.214	1- 7-68	6452.8		
Monitor Well #1	1-31-67	6459.0		
12.10.8.332	12- 6-67	6460.3		
North Well	1-31-67	6463.8		
12.10.7.143	12- 5-67	6462.9		

The Anace	nda Compeny Sew Mexico 27020	DATE OF DOCUMENT:			RECEIVED		NO., 397	
on duron b		1.1R	MEMO:		REPO	DRT:	OTHER:	
A. J. Fitch		x						
10:		ORIG.:	cc		отн			
		1				//	producad	
Hussbaum	3 7	ACTION NE			URRENCE		DATE ANSWERED	:
	POST OFFICE	FILE CODE:		СОМА	AEN1		BY:	
UDESCRIPTION: (Must Be Un	REG. NO.		REFERRED 10		DATE		CEIVED BY	D
Ltr. trans. the following pursuant to Condition 13(c) of SUA-647:		0	Nussbaumer w/file cy.	8 m	2/7 S			
NCLOSURES:	(3 cys.) Report of the Disposal		1-coaplianc	е су.				
11 Injection 1 -31-67	Progrems for 1966," dtd.							
		60 N	OT REMO	VE				
REMARKS								
	1 L-PLR CV.							
Distribution								

-

• 1

The Anaconda Company

P.O. BOX 638, GRANTS, NEW MEXICO 87020

NEW MEXICO OPERATIONS A. J. FITCH MANAGER

File Copy

February 2, 1967

United States Atomic Energy Commission Washington, D. C. 20545

Attention: Mr. Donald A. Nussbaumer, Chief Source and Special Nuclear Materials Branch Division of Materials Licensing

> Re: <u>DLR-DFH</u> 40-665

Gentlemen:

In compliance with Condition No. 13 (c) of our Source Material License No. SUA-647, I am sending you three copies of the Yearly Summary Report of the Disposal Well Injection Program for 1966.

Complete records of all phases of the disposal well injection program are being maintained and are available for your inspection at any time.

Yours very truly,

A. J. FITCH

AJF:hw

Copy Provided Compliance W

218

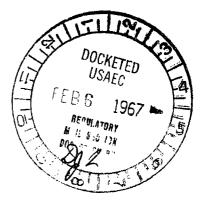
Enclosures

397

January 31, 1967

File Copy

MEMORANDUM FOR RECORD


Yearly Summary Report of the Disposal Well Injection SUBJECT: Program for 1966.

Presented in this report are the following tabulations of data pertaining to the operation of the disposal well program during the period from January 1, 1966 to January 1, 1967:

- Average Monthly Liquid Injection Rates. ĩ (Note Attachment 1)
- Concentration of Radioactive Constituents II in Injection Liquid. (Note Attachment II)
- Radiological Analyses of Monitored Well and III Surface Waters. (Note Attachment III)
- IV Static Water Levels of Wells in the San Andres-Glorieta Aquifer in the Vicinity of the Anaconda Mill and Disposal Well. (Note Attachment IV)

Respectfully submitted,

Ralph M. Wilde Radiation Safety Director

hw

c: A. J. Fitch (4) E. C. Peterson

ATTACHMENT I

ì

• • •

,

AVERAGE MONTHLY LIQUID INJECTION RATES

		Gallons Injecto	ed
January	1966	4,014,400	
February	1966	4,149,600	
March	1966	1,448,400	
April	1966	336,900	
May	1966	37,800	
June	1966	582,600	
July	1966	1,275,900	
August	1966	3,923,980	
September	1966	3,671,700	
October	1966	1,634,400	
November	1966	2,422,980	
December	1966	5,617,110	
Total 1-1	-66 to 1-1-67	29,115,770	
Average I	njection Rate	2,426,314	Gallons/month

ATTACHMENT 11

1

!

CONCENTRATION OF RADIOACTIVE CONSTITUENTS IN INJECTION LIQUID

		<u>Ra -226</u> uc/ml X 10 ⁷	<u>Th -230</u> uc/ml X 10 ⁴	<u>U-natural</u> uc/ml X 10 ⁶
January	1966	0.54	1.84	4.12
February	1966	0.63	1.62	2.61
March	1966	1.40	2.00	2.86
April	1966	0.63	5.63	7.93
May	1966	Insuffic	ient sample f	or analysis
June	1966	0.39	2.35	4.50
July	1966	0.46	3.33	5.47
August	1966	0.85	1.97	3.86
September	1966	0.76	1.73	3.36
October	1966	0.86	2.54	4.68
November	1966	1.22	2.48	3.75
December	1966	0.90	1.86	3.25

January 31, 1967

ATTACHMENT III

•

· . ·

.

ì

.

RADIOLOGICAL ANALYSES OF MONITOREDWELL AND SURFACE WATERS FOR THEMONTHS OF MAY AND SEPTEMBER 1966

RADIOLOGICAC WATER ANALYSIS FOR MONTH OF MAY 1966

DESCRIPTIVE LOCATION		Gross Alpha uc/ml x 10 ⁸	Ra-226 uc/ml x 10 ⁸	Th-230 uc/ml × 10 ⁶	U-nat uc/ml x 10 ⁵	
Berryhill Section 5	12.10, 5.341a	0.58 ± 0.33	0.38 ± 0.07	< 0,004	0.00006	
North Well	12.10. 7.143	2.2 ± 0.52	< 0.2	< 0.004	0.00076	
Monitor Well # 1	12.10. 8.332	4.4 ± 0.76	≤0.2	<0.004	0.0041	
Sabre-Pinon	12,10,20,333a	0.29 ± 0.15			0.00018	
Card Gas ¥	12,10,27,333	No Sample			3	
Card Electric *	12,10,29,434a	No Sample				
Mexican Camp	12,10,30,112	0.34 ± 0.10	<0.2	<0.004	0.00819	
Jack Freas	12.10.30.242	0.27 ± 0.12			0.00005	
Harding Irrigation	12,10,30,421	No Sample				
Fred Freas	12.10.30.433	0.26 ± 0.11			0.00009	
Chapman	12.10.32.211a	0.26 ± 0.12			0.00009	
Thunderbird Post	12,11,10,411a	3.3 ± 0.75	< 0.2	<0.004	0.0011	
Berryhill House	12.11.11.334	0.57 ± 0.22			0.00021	
Tailing Pond	12.11.13.Pond	Not determined	No Sample			
Engineers Well	12,11,14,213	1.2 ± 0.27	< 0.2	< 0.004	0.00055	
Roundy (Harmon)	12,11,23,231	0.48 ± 0.18			0.00014	
Power House Pond	12.11.24.PHP	44 + 2.3	0.46 ± 0.09	< 0.004	0.035	
Laboratory Pond	12,11,24,LABP	No Sample				
Aurols Bar						
Auro's Motel	12.11.24.334a	0.34 ± 0.15			0.00011	
Anaconda #1	12.11.24.411	2.5 ± 0.45	< 0.2	<0.004	0.0019	
Webb Windmill	12.11,25.122a	No Sample				
Anaconda #3	12,11,25,213	0.89 ± 0.25	< 0.2	<0.004	0.00049	
_Anaconda #4	12 11 25 214	0,59 ± 0.20	< 0.2	< 0.004	0.00022	
an an an tha br>Tha an tha an Tha an tha an	anna an an tha ann an tha a Tha an tha an					
* Monthly during irri	gation					

DESCRIPTIVE LOC	LATION	Gross Alpha uc/ml × 10 ⁸	Ra-226 8 uc/ml x 10	Th-230 uc/ml x 10 ⁶	U-nat uc/ml x 10
Cottonwood Springs	10. 9. 6.442	0.21 ± 0.28	< 0.2	< 0.004	0.00006
Del Padre Springs	10. 9. 7.222	0.61 ± 0.72	<0.2	< 0.004	0,00052
Gottlieb Poison #2	10. 9.17.113a	0.37 ± 0.35			0.00029
Gottlieb Butane	10. 9.23.134	0.32 ± 0.10			0.00025
Horace Springs	10, 9,26,222	0.23 ± 0.13			0.00011
San Rafael	10.10. 3.433a	0.30 ± 0.15			0.00012
Heath Well	10.10.15.233	0.60 ± 0.31	< 0.2	< 0.004	0.00061
Worthen Well	10.10.22.213	No Sample			
Hawkinson (Grants)	11. 9.30.122a	No Sample			
Republic	11.10. 2.111	1 🖌 ± 0.31	< 0.2	< 0.004	0.00050
Evans Windmill	11.10. 5.222	No Sample			
Vidal	11.10. 5.213	0.27 ± 0.12			0.00014
Milan Chinle	11.10,21,211	0.22 ± 0.10			0.00012
Grants-San Andres	11.10.26.Tap	0.22 ± 0.12		· ·	0.00015
Suburban Ga s	11.10.27.443	2.4 ± 0.54	< 0.2	<0.004	0.0014
Schneemann	11.11.23.333	No Sample			
Roundy Windmill	12.10.12.433a	<u>4.4 ± 0.77</u>	< 0.2	< 0.004	0.0023
Murray	12.10.27.431	0.49 ± 0.22			0.0021
Card Commissary	12.10.33.444	0.91 ± 0.19	<0.2	<0.004	0.00055
Murray #1	12,10,34,224	0.78 ± 0.32	< 0.2	< 0.004	0.00040
Joy Manufacturing	12,10.35.322	0.33 ± 0.20	1		0.00019
L.D.S. Bluewater	12.11.22.234	0.65 ± 0.23			0.00019
Wilcoxson (P. Harris)	13. 9.16.411	1.9 ± 0.48	0.43 ± 0.08	< 0.004	0.00061
Sandoval	13. 9.22.212	No Sample			
Mt. Taylor Corp.	13. 9.29,345	5.9 ± 0.80	< 0.2	<0.004	0.0035
Greater Grants Airport	12,10,26,322a	0.58 ± 0.26			0.00020
Anaconda #2	12.11.24.233	16. ± 1.3	< 0.2	< 0.004	0.014

RADIOLOGICAL WATER ANALYSIS FOR MONTH OF MAY 1966

Gross Alpha Th-230 Ra-226 U-nat DESCRIPTIVE LOCATION $uc/ml \times 10^8$ $uc/ml \times 10^5$ $uc/ml \times 10^8$ $uc/ml \times 10^{\circ}$ Berryhill Section 5 12,10, 5.341a 0.46 ± 0.31 0.22 ± 0.06 < 0.004 0.00012 North Mell 12.10. 7.143 1.2 ± 0.40 < 0.004 $\leq 0.2^{\circ}$ 0.00081 Monitor Well # 1 12.10, 8.332 4.8 + 0.80 0.19 ± 0.05 < 0.004 0.0038 Sabre-Pinon 12.10.20.333a No Sample Card Cas * 12.10.27.333 No Sample Card Electric * 12.10.29.434a No Sample Mexican Camp 12.10.30.112 0.31 ± 0.10 < 0.004 < 0.20.00019 0.22 ± 0.11 12.10.30.242 Jack Freas 0.00010 Harding Irrigation 12,10.30,421 No Sample Fred Freas 12.10.30.433 0.17 ± 0.10 0.00014 12.10.32.211a Chapman 0.36 ± 0.13 0.00012 Thunderbird Post 12.11.10.411a 1.1 + 0.290.00070 < 0.2 < 0.004 Berryhill House 12.11.11.334 0.36 ± 0.18 0.00020 Tailing Pond 12.11.13.Pond Not Determined 7.56 194. 0.336 Engineers Well 12.11.14.213 1.2 ± 0.27 < 0.2< 0.0040.00034 Roundy (Harmon) 12.11.23.231 0.42 ± 0.20 0.00015 Power House Pond 12.11.24.PHP 25. ± 1.5 0.37 ± 0.07 < 0.004 0.014 Laboratory Pond 12.11.24 LABP 37. ± 1.6 0.38 ± 0.08 < 0.004 0.029 Auro s-Barssere -12-1--24-334 12.11.24.334a Auro's Motel 0.26 ± 0.12 0.00014 Anaconda #1 12.11.24.411 2.3 ± 0.43 < 0.2 < 0.0040.0017 Webb Windmill 12.11.25.122a No Sample Anaconda #3 12.11.25.213 0.82 ± 0.24 < 0.2 < 0.0040.00048 12.11.25.214 < 0.2 Anaconda #4 0.58 ± 0.19 < 0.0040.00026

RADIOLOGICAL WATER ANALYSIS FOR MONTH OF SEPTEMBER 1966

* Monthly during irrigation

RADIOLOGICAL WATER ANALYSIS FOR MONTH OF SEPTEMBER 1966

DESCRIPTIVE LOC	ATION	Gross Alpha uc/ml X 10 ⁸	Ra-226 uc/ml <u>x</u> _10 ⁸	Th-230 uc/ml X 10 ⁶	U=nat uc/ml X 10 ⁵
Cottonwood Springs	10, 9, 6,442	<u>0.0 ± 0.21</u>	< 0,2	<0.004	0.00026
Del Padre Springs	10. 9. 7.222	0.60 t 0.70	< 0.2	<u>_<0,004</u>	0,00026
Cottlien Poison #2	10, 9,17,113a	No Sample			
Gottlieb Butane	10. 9.23.134	0.44 ± 0,12			0.00025
Horace Springs	10. 9.26.222	0.14 ± 0.06			0.00015
San Rafael	10.10. 3.433a	0.23 ± 0.14			0.00020
Heath Well	10.10.15.233	0.68 ± 0.31	< 0.2	< 0.004	0.00034
Worthen Well	10.10.22.213	No Sample			
Hawkinson (Grants)	11. 9.30.122a	No Sample			
Republic	11.10. 2.111	0.84 ± 0.27	< 0.2	<0.004	0.00052
Evans Windmill	11.10. 5.222	No Sample			
Vidal	11.10. 5.213	0.26 ± 0.12			0.00016
Milan Chinle	11,10,21,211	0.18 ± 0.09			0.00014
Grants-San Andres	11.10.26.Tap	0.37 ± 0.14			0.00014
Suburban Ga s	11.10.27.443	4.1. ± 0.70	< 0.2	<0.004	0.0024
Schneemann	11.11.23.333	0.22 ± 0.07			0.00014
Roundy Windmill	12,10,12,433a	No Sample			
Murray	12.10.27.431	No Sample			
Card Commissary	بل،لبا،39،12.10	0.35 ± 0.13	< 0.2	< 0.004	0.00051
Murray #1	12.10.34.224	0.76 [±] 0.25	< 0.2	< 0.004	0.00050
Joy Manufacturing	12,10,35,322	0.19 ± 0.17		· · · · · · · · · · · · · · · · · · ·	0.00022
L.D.S. Bluewater	12.11.22.234	0.50 ± 0.21			0.00025
Wilcoxson (P. Hanris)	<u>1</u> 5. 9 . 16.411	1.8 ± 0.46	0.30 ± 0.07	<0.004	0.00062
Sandoval	13. 9,22,212	0.19 ± 0.09			0.00015
Mt. Taylor Corp.	13. 9.29.343	5.8 ± 0.79	< 0.2	<0.004	0.0038
Greater Grants Airport	12.10.26.322a	0.39 ± 0.22			0.00028
Anaconda #2	12.11.24.233	14. ± 1.1		<0.004	0.012
					n te shaqayatta shara ta sa

January 31, 1967

ATTACHMENT IV

STATIC WATER LEVELS OF WELLS IN THE SAN ANDRES - GLORIETA AQUIFER IN THE VICINITY OF THE ANACONDA MILL AND DISPOSAL WELL

		Static Water Level
Well Description	Date of Measurement	Feet Above Mean Sea Level
Anaconda Well #1	1- 2 -6 6	6454.7
· · ·		
12.11.24.411	1- 6-67	6455.6
Anaconda Well #2	1- 2-66	6454.2
12.11.24.233	1- 6-67	6455.2
Anaconda Well #3	1- 2-66	6452.2
12.11.25.213	1- 6-67	6454.7
Anaconda Well #4 12.11.25.214	Not Available for	Measurement
Monitor Well #1	1- 4-66	6457.1
12.10.8.332	1-31-67	6459.0
North Well	1- 4-66	6461.7
12.10.7.143	1-31-67	6463.8
14:1V:1:1:14J	1-01-01	0402.0

FROM: The Anaconda Co.	DATE OF DOCUMENT:		RECEIVED:	NO.:	. 7.)	
Grants, New Jexico 87020	10-3-66				2737	
A. J. Fitch	LTR.: MEMO: REPORT: OTHER:					
TO:	ORIG.: CC;		OTHER:			
	1 3 cys. reproduced					
Nussbaumer	ACTION NECESSARY	CONC		DATE ANSWE	RED:	
	NO ACTION NECESSARY	СОМ	MENT []	BY:		
CLASSIFICATION: POST OFFICE	FILE CODE:					
REG. NO.: DESCRIPTION: (MUST BE UNCLASSIFIED)	10-665					
		DATE	1		DAT	
	REFERRED TO	UATE	RECL	IVED BY		
tr. adv. they do not consider necessary	NHSSISSISSEP	10/5		IVED BY		
tr. adv. they do not consider necessary ne exemption to 20.203(f)(2) which is no contained in 304-667and req.	Nussbaumer v/file cy.	10/5				
tr. adv. they do not consider necessary a exemption to 20.203(f)(2) which is a contained in SUA-647and req.	Nussbaumer v/file cy. 1-compliance cy	10/5				
tr. adv. they do not consider necessary ne exemption to 20.203(f)(2) which is no contained in 304-667and req.	Nussbaumer v/file cy.	10/5				
tr. adv. they do not consider necessary ne exemption to 20.203(f)(2) which is no contained in 304-667and req.	Nussbaumer v/file cy. 1-compliance cy	10/5				
tr. and. they do not consider necessary he exemption to 20.203(f)(2) which is ow contained in SUA-6h7and req.	Nussbaumer v/file cy. 1-compliance cy	10/5				
tr. adv. they do not consider necessary he exemption to 20.203(f)(2) which is ov contained in SUA-6h7and req. errection of type in lic.	Nussbaumer v/file cy. l-compliance cy l-extre cy.	10/5				
REMARKS:	Nussbaumer v/file cy. l-compliance cy l-extre cy.	10/5		REMON		

The Anaconda Company

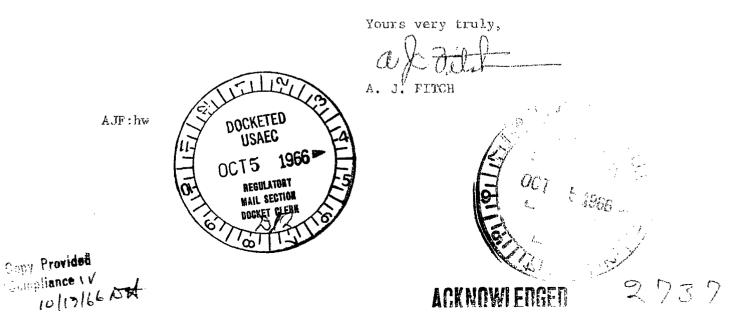
New Mexico Operations

P.O. Box 638, Grants, New Mexico

A. J. FITCH Manager

October 3, 1966

United States Atomic Energy Commission Washington, D.C. 20545


Attention: Mr. Donald A. Nussbaumer, Chief Source & Special Nuclear Materials Branch Division of Materials Licensing

> Re: DML:ND SUA-647, 40-665

Gentlemen:

In reply to your recent letter, this is to advise that, in view of the recent amendment to Section 20.203(f) of 10 CFR 20, we do not consider necessary the exemption to 20.203(f)(2) which is now contained in our Source Material License No. SUA-647.

Would you please note that our Source Material License also contains an exemption from the requirements of "Section 20.302(e)(2)". We feel that "Section 20.302(e)(2)" in this case is a typographical error and should have read "Section 20.203(e)(2)", as contained in our previous Source Material License No. SUA-647 which expired on September 30, 1965. Assuming that you will issue an amended condition to our current license, removing the exemption to Section 20.203(f)(2), we would appreciate it if you would, at the same time, rectify the typographical error referred to above. We would like to retain the exemption to Section 20.203(e)(2).

File Copy

АŦ

٤.

THE ANACONDA COMPANY NEW MEXICO OPERATIONS P. O. BOX 638 GRANTS, NEW MEXICO 87020

VIA AIR MAIL

United States Atomic Energy Commission Washington, D.C. 20545

Attn: Mr. Bonald A. Nussbaumer, Chief Source & Special Nuclear Materials Branch Division of Materials Licensing.

State State State State	OVERNMENT PRIMIN	en 196	• — ७ • १३१२२			9. 7
TROM FOR A CAR BY A THIN IS A STATE	DATE OF DOC	· 案例:14 中心 - 4	DATE REGEIVE	D.	NO.	
The Appared Company	1-27		2-1-	And the second sec	340	
Grents, Men Hexico	LTR.	MEMO:	RÊI	ORI:	OTHER:	
(A. J. Fitch)	X					
IO:	ORIG.:	CC:	OT	HER:		
	1					
D. Nuesbeuser	ACTION NECE	SSARY	CONCURRENC	:E 🗌	DATE ANSWERED	
	NO ACTION N	ECESSARY	COMMENT		BY:	
CLASSIF.: POST OFFICE	FILE CODE:					
U REG. NO.		IOCKET:	ko=665			
DESCRIPTION: (Must Be Unclassified)	I	REFERRED TO	DATE		RECEIVED BY	DATE
ENCLOSURES, (3 CYS.)			e cy. & fi mplimce			
"Yearly Summary Report of the Dispu- Well Injection Program for 1965," o 1-24-66						
REMARKS. Keil Room Distribution: 1-PRR Copy				AGKA	INWLEDGED	
U	S. ATOMIC ENERGY	COMMISSION	MAIL C	ONTRO		AEC-320

New Mexico Operations

P.O. Box 638, Grants, New Mexico

A. J. FITCH MANAGER

January 27, 1966

United States Atomic Energy Commission Washington, D. C. 20545

Attention: Mr. Donald A. Nussbaumer, Chief Source and Special Nuclear Materials Branch Division of Materials Licensing

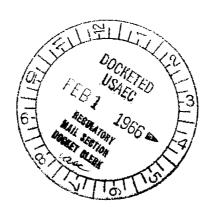
> Re: DLR-DFH 40-665

Eile Copy

ACKNOWLEDGEN

50

Gentlemen:


In compliance with Condition No. 13 (c) of our Source Material License No. SUA-647, I am sending you three copies of the Yearly Summary Report of the Disposal Well Injection Program for 1965.

Complete records of all phases of the disposal well injection program are being maintained and are available for your inspection at any time.

Yours very truly, A. J. FITCH

AJF:MA Enc.

2/31

Copy Provided Compliance W

DUCKET Nu 40-665

Tile Copy

January 24, 1966

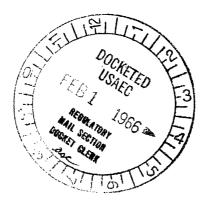
MEMORANDUM FOR RECORD

SUBJECT: Yearly Summary Report of the Disposal Well Injection Program for 1965.

Presented in this report are the following tabulations of data pertaining to the operation of the disposal well program during the period from January 1, 1965 to January 1, 1966:

- I Average Monthly Liquid Injection Rates. (Note Attachment 1)
- II Concentration of Radioactive Constituents in Injection Liquid. (Note Attachment II)
- III Radiological Analyses of Monitored Well and Surface Waters. (Note Attachment III)
- IV Static Water Levels of Wells in the San Andres-Glorieta Aquifer in the Vicinity of the Anaconda Mill and Disposal Well. (Note Attachment IV)

Respectfully submitted,


1 . ..

31.0

Ralph M. Wilde Radiation Safety Director

RMW:cig

c: A. J. Fitch (4) E. C. Peterson

January 24, 1966

ATTACHMENT 1

)

AVERAGE MONTHLY LIQUID INJECTION RATES

		Gallons Injected
January	19 65	11,277,200
February	1965	2,812,800
March	1965	0
April	1965	0
May	1965	0
June	1965	48,400
July	19 65	695,100
August	1965	1,387,200
September	1965	1,495,142
October	1965	0
November	1965	1,629,300
December	1965	4,929,200
Total 1-1	1-65 to 1-1-66	24,274,342

Average Injection Rate

۰.

2,022,862 gallons/month

--

ATTACHMENT II

CONCENTRATION OF RADIOACTIVE CONSTITUENTS IN INJECTION LIQUID

.

	7	$\frac{Re-226}{1c/m1 \times 10^7}$	$\frac{\text{Th-230}}{\text{uc/m1 x 10^4}}$	<u>U-natural</u> uc/m1 x 10 ⁵
January	1965	1.21	1.40	5.64
February	1965	0.53	1.56	6.37
March	1965	No Injection		
April	19 65	No Injection		
May	1965	No Injection		
June	196 5	1.56	2,91	10.2
July	1965	0.91	2.30	8.02
August	1965	2.35	1 .0 4	4.22
September	1965	1.13	1.13	5.98
October	1965	No Injection		
November	196 5	0.55	2.06	6.28
December	1965	2.02	1.64	3.83

January 24, 1966

ATTACHMENT III

Ľ

.

• • • • •

· '

RADIOLOGICAL ANALYSES OF MONITOREDWELL AND SURFACE WATERS FOR THEMONTHS OF MAY AND SEPTEMBER 1965

RADIOLOGICAL WATER ANALYSIS FOR MONTH OF MAY, 1965

DESCRIPTIVE	QÇATION	Gross Alpha uc/ml x 10 ⁸	Ra-226 uc/mlx 108	Th-230 uc/ml x 10 ⁶	U-nat uc/mlx 10 ⁵
Berrynill Section 5	12,10, 5.341a	0.82 ± 0.37	less than 0.2	Less than 0.004	0.00005
- North Well	12.10. 7.143	1.1 ± 0.38	Less than 0.2	Less than 0.004	0.00066
Sonitor Well # 1 - 1	12,10, 3,332	7.0 ± 0.91	Less than 0.2	Less than 0.004	0.0042
Sabre-Pinon	12.10.20.333a	0.11 ± 0.05	· · · · · · · · · · · · · · · · · · ·		0.00001
Card Gas *	12,10,27,333	No Sample			
Card Electric *	12.10.29.434a	No Sample			
Mexican Camp	12.10.30.112	0.38 ± 0.11	Less than 0.2	Less than 0.004	0.00019
Jack Freas	12,10,30,242	0.21 ± 0.10			0.00005
Harding Irrigation	12,10,30,421	No Sample		· · · · · · · · · · · · · · · · · · ·	
Fred Freas	12.10.30.433	0.34 ± 0.12			0.00016
Chapman	12,10,32,211a	0.26 ± 0.11			0.00008
Thunderbird Post	12.11.10.411a	1 <u>6 ± 0</u> .46	Less than 0.2	Less_than_0.004_	0.00049
Berryhill House	12.11.11.334	0.41 ± 0.19	·		0.00026
Tailing Pond	12.11.13.Pond	Not Determined	23.6	303.	0.690
Engineers Well	12.11.14.213	1.3 ± 0.29	Less than 0.2	Less than 0.004	0.00046
Roundy (Harmon)	12.11,23.231	0.36 ± 0.17			0.00019
Fower House Pond	12.11.24.PHP	13.7 ± 1.1	Less than 0.2	less than 0.004	0,013
Laboratory Pond	12.11.24.LABP	15.7 ± 1.1	Less than 0.2	Less than 0.004	0.017
Auro's Bar	12.11.24.334				·
Auro's Motel	12.11.24.334a	0.41 ± 0.19			0.00016
Anaconda #1	12,11.24.411	3.2 ± 0.50	Less than 0.2	Less than 0.004	0.0022
Webb Windmill	12.11.25.122a	0.86 ± 0.18	Less than 0.2	Less than 0.004	0.00036
Anaconda #3	12.11.25.213	<u>1.2 ± 0.28</u>	Less than 0.2	Less than 0.004	0.00068
Anaconda #4	12.11.25.214	0.57 ± 0.19	Less than 0.2	Less than 0.004	0.00025
			·		
	and the second				
			· · · ·		
			· · · · · · · · · · · · · · · · · · ·	<u> </u>	

* Monthly during irrigation

ing irrigation

RADIOLOGICAL WATER ANALYSIS FOR MONTH OF MAY, 1965

DESCRIPTIVE LO	CATION	Gross Alpha uc/mlx 10 ⁸	Ra-226 uc/mlx 10 ⁸	Th-230 uc/ml × 10 ⁶	U-nat uc/ml × 10 ⁵
Cottonwood Springs	10, 9, 6,442	0.22 ± 0.31	n na general de la composition de la co		0.00006
Del Padre Springs	10. 9. 7.222	1.0 ± 0.73	Less than 0.2	Less than 0.004	0.00041
Gottlieb Poison #2	10. 9.17.11 3 a	0.65 ± 0.43			0.00029
Gottlieb Butane	10. 9.23.134	0.61 ± 0.14			0.00023
Horace Springs	10, 9,26,222	0.23 ± 0.14	· · · · · · · · · · · · · · · · · · ·		0.00008
San Rafael	10.10. 3.433a	0.36 ± 0.16			0.00019
Heath Well	10,10,15,233	1.2 ± 0.39	Less than 0.2	Less than 0.004	0.00060
Worthen Well	10.10.22.213	No Sample			
Hawkinson (Grants)	11. 9.30.122a	No Sample	an a		
Republic	11.10. 2.111	1.2 ± 0.31	Less than 0.2	Less than 0.004	0.00055
Evans Windmill	11.10. 5.222	No Sample			
Vidal	11.10. 5.213	0.21 ± 0.11			0.00012
Milan Chinle	11.10.21.211	0.36 ± 0.11			0.00014
Grants-San Andres	11.10.26.Tap	0.46 ± 0.16			Ø.00024
Suburban Gas	11.10,27.443	<u>5.1 ± 0.84</u>	less than 0.2	Less than 0.004	0.0027
Schneemann	11.11.23.333	0.31 ± 0.07			0.00011
Roundy Windmill	12.10.12.433a	4.2 ± 0.76	Less than 0.2	Less than 0.004	0.0030
Murray	12,10,27,431	0.64 ± 0.24			0.00019
Card Commissary	12.10.33.444	1.0 ± 0,22	Less than 0,2	Less than 0.004	0.00060
Murray #1	12.10.34.224	0.83 ± 0.26	Less than 0.2	Less than 0.004	0.00046
Joy Manufacturing	12.10.35.322	.0.35 ± 0.21			0.00018
L.D.S. Bluewater	12,11,22,234	0.66 ± 0.23			0.00020
Wilcoxson (F. Harris).	13. 9.16.411	1.9 ± 0.47	0.38 ± 0.07	Less than 0.004	0.00060
Sandova1	13. 9.22.212	No Sample			
Mt. Taylor Corp.	13. 9.29.343	6.4 ± 0.85	Less than 0.2	Less than 0.004	0.0040
				4	
Greater Grants Airport	12.10.26.322a	0.75 ± 0.28			0.00024
Anaconda #2	12.11.24.233	12.6 ± 1.1	Less than 0.2	Less than 0.004	0.0068

	÷													-
Rΰ	À L	IOL	0Ġ3	IĊAÍ	L WI	ATER	ANAL	YSIS	FOR	MONTH	OF SE	PT FMB FF	1965-	. 3
	141					- 19-19-19-19-19-19-19-19-19-19-19-19-19-1						5	 . .	÷.

	DESCRIPTIVE L	NOLTADO	Gross Alpha uc/ml x 10 ⁸	Ra-226 uc/ml x 10 ⁸	Th-230 uc/ml x 10 ⁶	U-nat uc/ml x 10 ⁵
	Berryhill Section 5	12,10; 5.34la	0.86 ± 0.35	Less than 0.2	Less than 0.004	0,00005
	North Mell-	12.10. 7.143	0.96 ± 0.35	Less than 0.2	Less than 0.004	0.00074
	Monitor Well # 1	12.10. 8.332	6.2 ± 0.88	0.22 ± 0.06	Less than 0.004	0.0038
- [Sabre-Pinon		0.06 ± 0.04			0.00006
	Card Gas *	12,10:27,333	0.46 ± 0.22			0.00022
	Card Electric *	12,10,29,434a	No Sample			
	Mexican Camp	12,10,30,112	0.34 ± 0.10	Less than 0.2	Less than 0.004	0.00020
	Jack Freas	12.10.30.242	0.18 ± 0.09			0.00012
, n	Harding Irrigation	12,10,30,421	So Sample			·
	Fred Freas	12.10.30.433	0.34 ± 0.12	· · · · · · · · · · · · · · · · · · ·		0.00012
	Chapman	12.10.32.211a	0.29 ± 0.11			0.00012
	Thunderbird Post	12.11.10.411a	1.3 ± 0.44	Less than 0.2	Less than 0.004	0.00090
. [Berryhill House	12,11,11,334	0.62 ± 0.21			0.00022
	Tailing Pond	12.11.13.Pond	Not Determined	11.3	113	0.598
	Enginéers Well	12,11,14,213	No Sample			
	Roundy (Harmon)	12,11,23,231	0.42 ± 0.18	· · · · · · · · · · · · · · · · · · ·		0.00011
·	Power House Pond	12,11,24,PHP	31.7 ± 1.7	0.76 ± 0.10	Less than 0.004	0.025
	Laboratory Pond	11,14,1ABP	9.5 ± 0.52	Less than 0.2	Less than 0.004	0.0067
· [Aurolo Ban	<u></u>				· · · · · · · · · · · · · · · · · · ·
	Aurols Motel	12.11.24.334a	0.26 ± 0.11			0.00008
	Ariaconda #1	12.1 .24.41	2.9 ± 0.15	Less than 0.2	Less than 0.004	0.0015
147. J	Webb Windmill	15.1 25.122a	0.74 ± 0.16	Less than 0.2	Less than 0.004	0.00038
	Anaconda #3	12, 10, 25, 213	0.81 ± 0.23	Less than 0.2	Less than 0.004	0.00048
	Anaconda #4	12.11.25.214	0.57 ± 0.18	less than 0.2	Less than 0.004	0.00032

.

_____ _____

THE ANACONDA COMPANY RADIOLOGICAL WATER ANALYSIS FOR MONTH OF SEPTEMBER, 1965.

DESCRIPTIVE LO	CATION	Gross Alpha uc/ml × 10 ⁸	Na-226 uc/ml x 10 ⁸	Th-230 uc/ml x 10 ⁶	U-nat uc/ml x 10 ⁵
Cottonwood Springs	10. 9. 6.442	0.97 ± 0.42	Less than 0.2	Less than 0.004	0.00025
Del Padre Springs	10. 9. 7.222	0.90 ± 0.66	Less than 0.2	Less than 0.004	0.00025
Gottlieb Poison #2	10. 9.17.113a	0.53 ± 0.37			0.00034
Gottliet Butane	10. 9.23.134	0.41 ± 0.11			0,00024
Horace Springs	10, 9,26,222	0.19 ± 0.11		مەربىيە مەربىيە بىر	0.00011
San Rafael	10.10, 3.433a	0.37 ± 0.16		a servers in the company of the servers	0.00019
Heath Well	10,10,15,233	0.94 ± 0.32	Less than 0.2	Less than 0.004	0.00066
Worthen Well	10,10,22,213	No Sample			
Hawkinson (Grants)	11. 9.30.122a	No Sample "	· · · · · · · · ·] 	
Republic	11.10. 2.111	0.86 ± 0.27	Less than 0.2	Less than 0.004	0.00052
Evans Windmill	11.10. 5.222	No Sample	•••		
Vidal	11.10. 5.213	0.24 ± 0.11			0,00020
Milan Chinle	11.10.21.211	0.31 ± 0.10			0.00011
Granus-San Andres	11.10.26.Tap	0.25 ± 0.12		· · ·····	0.00012
Suburban Gas	11.10.27.443	1.7 ± 0.42	Less than 0.2	Less than 0.004	0.00080
Schneemann	11,11,23,333	0.16 ± 0.05		 	0.00006
Roundy Windmill	-12.10.12.433a	4.1 ± 0.76	Less than 0.2	Less than 0.004	0.0028
Murray	12.10.27.431	No Sample	-		
Card Commissary	12,10.33.444	0.87 ± 0.20	Less than 0.2	Less than 0.004	0.00066
Murray #1	12.10.34.224	0.88 ± 0.26	Less than 0.2	Less than 0.004	0.00044
Joy Manufacturing	12.10.35.322	0.29 ± 0.18	· · · · · · · · ·		0.00018
L.D.S. Bluewater	1,11,2.,234	0.54 ± 0.20	· · · · · · · · · · · ·		0.00024
Wilcoxson (P. Harris)	15. 9.16.411	1.7 ± 0.45	Less than 0.2	Less chan 0.004	0.00060
Sandoyal	13, 9.22,212	0.09 ± 0.06			0.00012
Mt. Taylor Corp.	13, 9,29,345	5.9 ± 0.79	Less than 0.2	Less than 0.004	0.0037
Greater Grants Airport	12,10,16,322a	0.43 ± 0.20			0.00025
Anaconda #2	12,11,24,222	26.2 ± 1.7	Less than 0.2	Less than 0.004	0.015

.

٠. Ζ. .

.

÷,

ATTACHMENT IV

...

•

T.

STATIC WATER LEVELS OF WELLS IN THE SAN ANDRES-GLORIETA AQUIFER IN THE VICINITY OF THE ANACONDA MILL AND DISPOSAL WELL

		Static Water Level
Well Description	Date of Measurement	Feet Above Mean Sea Level
Anaconda Well #1	1-10-65	6452.6
12.11.24.411	1- 2-66	6454.7
	.	
Anaconda Well #2	1-10-65	6452.2
12.11.24.233	1- 2-66	6454.2
	-	
Anaconda Well #3	1-10-65	6451 .3
12.11.25.213	1- 2-66	6452.2
	<u> </u>	
Anaconda Well #4	1-14-65	6450.8
12.11.25.214	Not Available for	r Measurement
Monitor Well #1	1=5-65	6456.0
12.10.8.332	1-4-66	6457.1
`		:
North Well	1-5-65	6459.8
12.10.7.143	1-4-66	6461.7

ROM		DATE OF DOCUMENT		DATE RECEIVED	5	INC.	
Grapts	, New Mexico			KEPUKI:	A	OTHER	
(A ,	J. Fitch'	ORIG.: C	C :	OTHER:			
D. Nust	sbaumer	X & encl.		CONCURRENCE		DATE ANSWERED.	
		NO ACTION NECESSARY		COMMENT		BY;	
LASSIF.:	POST OFFICE		665				
SCRIPTION: (Must Be U	REG. NO.	REFERRED		DATE		CEIVED BY	DAT
Condition 1	9 (c) of SUA-647:			mer: 2-8 cy. & file			
CONCILION 1	(C) of SUA-OUT (3 cys.)	W	/1110	mer: 2-8 cy. & file pliance cy.			
closures:		W	/1110	cy. & file			
early Summary Bli Injection	(3 cys.) The Report of the Disposal	W	/1110	cy. & file		GKHOWLEI	

The Anaconda Company

New Mexico Operations

P.O. Box 638, Grants, New Mexico

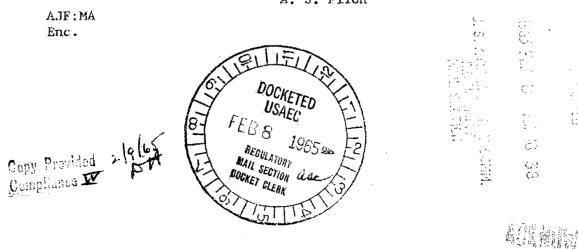
A. J. FITCH Manager

February 5, 1965

United States Atomic Energy Commission Washington 25, D. C.

1

Attention: Mr. Donald A. Nussbaumer, Chief Source and Special Nuclear Material Branch Division of Licensing and Regulation


> Re: DLR-DFH 40-665 File COPY

Gentlemen:

In compliance with Condition No. 13 (c) of our Source Material License No. SUA-647, 1 am sending you three copies of the Yearly Summary Report of the Disposal Well Injection Program for 1964.

Complete records of all phases of the disposal well injection program are being maintained and are available for your inspection at any time.

Yours very truly, A. J. FITCH

į. (* <u>1.</u>

 $\mathbb{W} \mathbb{W} \mathbb{W} = \frac{40 - 665}{100}$

TILE CODY

DI TUMED

February 5, 1965

10月12日(11月33)

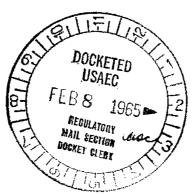
4.5 A.6 (2017) - 1014. 1017 - 1017 1017 - 1017

MEMORANDUM FOR RECORD

SUBJECT: Yearly Summary Report of the Disposal Well Injection Program for 1964

Presented in this report are the following tabulations of data pertaining to the operation of the disposal well program during the period from January 1, 1964 to January 1, 1965:

- I. Average Monthly Liquid Injection Rates. (Note Attachment I)
- II. Concentration of Radioactive Constituents in Injection Liquid. (Note Attachment II)
- III. Radiological Analyses of Monitored Well and Surface Waters. (Note Attachment III)
- IV. Static Water Levels of Wells in the San Andres-Glorieta Aquifer in the Vicinity of the Anaconda Mill and Disposal Well. (Note Attachment IV)


Respectfully submitted,

m. Wilde

Ralph M. Wilde Radiation Safety Director

RMW:cig

c: A. J. Fitch (4) E. C. Peterson

ATTACHMENT I

AVERAGE MONTHLY LIQUID INJECTION RATES

ì

	GALLONS INJECTED
January, 1964	8,332,800
February, 1964	11,951,400
March, 1964	8,717,200
April, 1964	3,403,200
May, 1964	80,700
June, 1964	0
July, 1964	437,400
August, 1964	3,692,400
September, 1964	3,951,900
October, 1964	2,618,350
November, 1964	5,902,200
December, 1964	8,726,700
Total 1-1-64 to 1-1-65	57,814,250
Avertee Injection Pote	4 917 954 3 6611 6

Average Injection Rate

4,817,854.2 gallons/month

.

ATTACHMENT II

..

}

i.

•

t .

CONCENTRATION OF RADIOACTIVE CONSTITUENTS IN INJECTED LIQUID

	$\frac{Ra-226}{uc/m1 \times 10^7}$	$\frac{\text{Th-230}}{\text{uc/ml x 10}^4}$	$\frac{\text{U-natural}}{\text{uc/ml} \times 10^6}$
Janu a ry, 1964	1.07	1.20	5.02
February, 1964	0.66	1.22	5 .3 7
March, 1964	2.00	1.,04	6.33
April, 1964	3.02	1.34	6.58
May, 1964	0.71	1.69	8,95
June, 1964	No Injection		
July, 1964	1.11	1.50	6.48
August, 1964	1.48	1.65	6.59
September, 1964	2.00	1.69	8.28
October, 1964 _	2.04	1.93	9.12
November, 1964	4.01	1.95	5.78
December, 1964	1.84	1.50	4.61

February 5, 1965

ATTACHMENT III

)

:

••

ţ,

RADIOLOGICAL ANALYSES OF MONITORED WELL AND SURFACE WATERS FOR THE MONTHS OF MAY AND SEPTEMBER, 1964

RADIOLOGICAO WATER ANALYSIS FOR MONTH OF MAY, 1964

DESCRIPTIVE LA	DCATION	Gross Alpha uc/ml×10 ⁸	Ra-226 uc/ml x 10 ⁸	Th-230 uc/ml x 10 ⁶	$\frac{\text{U-nat}}{\text{uc/ml} \times 10^5}$
Berryhill Section 5	12.10. 5.34la	0.87 ± 0.38	Less than 0.2	Less than 0.004	0.00008
North "ell	12.10. 7.143	1.25 ± 0.41	Less than 0.2	Less than 0.004	0.00072
Monitor Well # 1	12.10, 8.332	5.5 ± 0.83	Less than 0.2	Less than 0.004	0.0030
Sabre-Pinon	12.10.20.333a	0.09 ± 0.05			0.00001
Card Gas *	12.10.27.333	0.62 ± 0.22			0.00016
Card Electric *	12.10.29.4348	0.85 ± 0.29		····	0.00032
Mexican Camp	12.10.30.112	0.52 ± 0.12	Less than 0.2 ·		0.00021
Jack Freas	12.10.30.242	0.16 ± 0.09			0,00009
Harding Irrigation	12.10.30.421	0.46 ± 0.16			0.00016
Fred Freas	12.10.30.433	0.22 ± 0.10			0.00010
Chapman	12.10.32.211a	0.27 ± 0.11			0.00012
Thunderbird Post	12.11.10.411a	2.1 ± 0.60	Less than 0.2	Less than 0.004	0.00082
Berryhill House	12.11.11.334	0.65 ± 0.21			0.00019
Tailing Pond	12.11.13.Pond	Not Determined	7.10	169.	0.895
Engineers Well	12.11.14.213	1.3 ± 0.29	Less than 0.2	Less than 0.004	0.00055
Roundy (Harmon)	12.11.23.231	0.41 ± 0.19		4	
Power House Pond	12.11.24.PHP	12.8 ± 1.0	Less than 0.2	Less than 0.004	0.0084
Laboratory Pond	12,11,24,LABP	13.5 ± 1.3	Less than 0.2	Less than 0.004	0.0081
Auro's Motel	12.11.24.334a	0.48 ± 0.21			0.00020
Anaconda #1	12.11.24.411	3.7 ± 0.54	Less than 0.2	Less than 0.004	0.0020
webb Windmill	12.11,25.122a	0.81 ± 0.17	Less than 0.2	Less than 0.004	0.00039
Anaconda #3	12.11.25.213	1.1 ± 0.26	Less than 0.2	Less than 0.004	0.00040
Anaconda #4	12.11.25.214	0.63 ± 0.20	Less than 0.2	Less than 0.004	0.00029
		-			
· · · · · · · · · · · · · · · · · · ·					
······································					
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			
	19. (19. and 19. and 1				

·-

RADIOLOGICAL WATER ANALYSIS FOR MONTH OF MAY, 1964

DESCRIPTIVE LO	CATION	Gross Alpha uc/mlx 10 ⁸	Ra-226 uc/mlx 10 ⁸	Th-230 uc/ml x 10 ⁶	U-nat uc/ml × 10 ⁶
Cottonwood Springs	10, 9, 6,442	0.24 ± 0.30			0.00024
Del Padre Springs	10. 9. 7.222	0.68 ± 0.52			0.00030
Gottlieb Poison #2	10, 9.17.113a	0.84 ± 0.46		and the second secon	0.00026
Cottlieb Butane	10. 9.23.134	0.44 ± 0.11			0,00022
Horace Springs	10. 9.26.222	0.35 ± 0.15			0.00018
San Rafael	10.10. 3.433a	0.36 ± 0.16	Roman (1997) An Anna (1997) The Anna (1997)		0.00016
Heath Well	10,10,15,233	1.7 ± 0.48	Less than 0.2	Less than 0.004	0.00086
Worthen Well	10,10,22,213	No Sample			· · · · · · · · · · · · · · · · · · ·
Hawkinson (Grants)	11. 9.30.122a	No Sample			
Republic	11.10, 2,111	0.91 ± 0.29	Less than 0.2	Less than 0.004	0.00062
Evans Windmill	11.10, 5,222	0.71 ± 0.26			0.00024
Vidal	11.10. 5.213	$\sim 0.37 \pm 0.14$			0.00011
Milan Chinle	11.10.21.211	0.32 ± 0.11			0.00012
Grants-San Andres	11.10.26.Tap	0.33 ± 0.14			0.00014
Suburban Cas	11.10.27.443	4.6 ± 0.74	Less than 0.2	Less than 0.004	0.0019
Schneemann	11.11.23.333	0.42 ± 0.10	· · · · · · · · · · · · · · · · · · ·		0.00018
Roundy Windmill	-12.10.12.433a	4.8 ± 0.79	Less than 0.2	Less than 0.004	0.0025
Murray	12.10.27.431	0.60 ± 0.23			0.00022
Card Commissary	12.10.33.444	0.86 ± 0.21			0.00059
Murray #1	12.10.34.224	0.84 ± 0.26			0.00045
Joy Manufacturing	12.10.35.322	0.46 ± 0.23	l		0.00028
L.D.S. Bluewater	12.11.22.234	0.44 ± 0.20			0.00020
Wilcoxson (P. Harris)	13. 9.16.411	2.4 ± 0.52	Less than 0.2	Less than 0.004	0.00046
Sandoval	13. 9.22.212	No Sample			
Mt. Taylor Corp.	13. 9.29.343	10.5 ± 1.1	Less than 0.2	Less than 0.004	0.0066
			n		
Greater Grants Airport		0.80 ± 0.29			
Anaconda #2	12.11.24.233	25.3 ± 1.8	Less than 0.2	Less than 0.004	0.016
					₩
	ers en Brigge i trans i la la			<u> </u>	

RADIOLOGICAD WATER ANALYSIS FOR MONTH OF SEPTEMBER, 1964

	OCATION	Gross Alpha uc/ml x 10 ⁸	Ra-226 uc/ml × 10 ⁸	Th-230 uc/ml x 10 ⁶	U-nat uc/ml x 10 ⁵
Berryhill Section 5	12.10. 5.341a	0.73 ± 0.36	Less than 0.2	Less than 0.004	0.00008
North Well	12.10. 7.143	1.2 ± 0.41	¹¹ ¹¹ 0,2	" " 0,004	0,00076
Monitor Well # 1	12.10. 8.332	5.2 ± 0.82	¹¹ ¹¹ 0.2	" " 0 . 004	0.0034
Sabre-Pinon	12,10,20,333a	0.14 ± 0.05	r		0.00006
Card Cas *	12,10,27,333	0.43 ± 0.20			0.00020
Card Electric *	12.10.29.4348	No Sample			
Mexican Camp	12.10.30.112	0.36 ± 0.10	Less than 0.2	Less than 0.004	0.00020
Jack Freas	12,10,30.242	0.23 ± 0.09			0.00011
Harding Irrigation	12.10.30.421	No Sample			
Fred Freas	12,10,30,433	0.37 ± 0.13			0.00015
Chapman	12,10,32,211a	0.36 ± 0.11			0,00012
Thunderbird Post	12,11,10,411a	2.4 ± 0.66	Less than 0.2	Less than 0.004	0.0013
Berryhill House	12.11.11.334	0.40 ± 0.18			0.00024
Tailing Pond	12.11.13.Pond	Not Determined	20.0	169.	0,828
Engineers Well	12,11,14,213	1.2 ± 0.28	Less than 0.2	Less than 0.004	0.00056
Roundy (Harmon)	12,11,23,231	0.59 ± 0.21			0.00019
Power House Pond	12,11,24,PHP	13.9 ± 1.1	Less than 0.2	Less than 0.004	0.0086
Laboratory Pond	12.11.24.LABP	33.0 ± 1.6	0.47 ± 0.08	" " 0.004	0.024
Aurols Bar	12,11,24,334				
Auro's Motel	12,11.24.334a	0.37 ± 0.14			0.00014
Anaconda #1	12,11,24,411	4.8 ± 0.62	Less than 0.2	Less than 0.004	0.0026
Webb Windmill	12,11,25,122a	0.60 ± 0.17	" " 0 . 2	" 0.004	0.00028
Anaconda #3	12.11.25.213	1.0 ± 0.26	" " 0.2	" 0.004	0,00042
Anaconda #4	12,11,25,214	0.56 ± 0.19	и и 0 . 2	" " 0.004	0.00028
				_	
			· · · · · · · · · · · · · · · · · · ·		

Montiny during irr igation

RADIOLOGICAL WATER ANALYSIS FOR MONTH OF SEPTEMBER, 1964

DESCRIPTIVE LOC	ATION	Gross Alpha uc/mlx108	Ra-226 uc/mlx10 ⁸	Th-230 uc/mlx106	U-nat uc/mlx10 ⁵
Cottonwood Springs	10. 9. 6.442	0.37 ± 0.22		10.5 - 10.5 - 10.5 - 10.5 - 10.5 - 10.5 - 10.5 - 10.5 - 10.5 - 10.5 - 10.5 - 10.5 - 10.5 - 10.5 - 10.5 - 10.5 -	0,00020
Del Padre Springs	10. 9. 7.222	0.47 ± 0.59			0,00021
Gottlieb Poison #2	10. 9.17.113a	0.83 ± 0.45			0.00034
Gottlieb Butane	10, 9,23,134	0.64 ± 0.13			0.00024
Horace Springs	10, 9,26,222	0.26 ± 0.13			0.00011
San Rafael	10.10. 3.433a	0.41 ± 0.17			0.00015
Heath Well	10.10.15.233	1.3 ± 0.39	Less than 0.2	Less than 0.004	0.00075
Worthen Well	10,10.22,213	No Sample	· · · · · · · · · · · · · · · · · · ·		
Hawkinson (Grants)	11. 9.30.122a	No Sample			
Republic	11.10. 2.111	1.2 ± 0.32	Less than 0.2	Less than 0.004	0.00056
Evans Windmill	11.10. 5.222	No Sample			
Vidal	11.10. 5,213	0.28 ± 0.12			0.00018
Milan Chinle	11.10.21.211	0.27 ± 0.10			0.00014
Grants-San Andres	11.10.26.Tap	0.41.± 0.15			0.00020
Suburban Gas	11.10.27.443	1.5 ± 0.41	Less than 0.2	Less than 0.004	0,00082
Schneemann	11.11.23.333	0.37 ± 0.09			0.00021
Roundy Windmill	12.10.12.433a	4.9 ± 0.78	Less than 0.2	Less than 0.004	0.0027
Murray	12.10.27.431	0.56 ± 0.23			0.00030
Card Commissary	12.10.33.444	1.0 ± 0.23	Less than 0.2	Less than 0.004	0.00066
Murray #1	12.10.34.224	0.91 ± 0.28	" 0.2	" " 0.004	0.00042
Joy Manufacturing	12.10.35.322	0.41 ± 0.22			0.00020
L.D.S. Bluewater	12.11.22.234	0.48 ± 0.20			0.00025
Wilcoxson (P. Harris)	13. 9.16.411	1.4 ± 0.42	0.26 ± 0.04	Less than 0.004	0.00056
Sandoval	13. 9.22.212	No Sample			
Mt. Taylor Corp.	13, 9.29.343	6.1 ± 0.85-	Less than 0.2	Less than 0.004	0,0042
					· · · · · · · · · · · · · · · · · · ·
Greater Grants Airport	12.10.26.322a	0.54 ± 0.25			0.00026
Anaconda #2	12.11.24.233	16.8 ± 1.4	Less than 0.2	Less than 0.004	0.014
					· · ·
			www.communications.com/communications/		

February 5, 1965

ATTACHMENT IV

i

1. 1. 4 1

STATIC WATER LEVELS OF WELLS IN THE SAN ANDRES-GLORIETA AQUIFER IN THE VICINITY OF THE ANACONDA MILL AND DISPOSAL WELL

Well Description	Date of Measurement	<u>Static Water Level</u> Feet Above Mean Sea Level
Anaconda Well #1	1=11-64	6449.2
12.11.24.411	1-10-65	6452.6
Anaconda Well #2	1-11-64	6449.9
12.11.24.233	1-10-65	6452.2
Anaconda Well #3	1-11-64	6448.8
12.11.25.213	1-10-65	6451.3
Anaconda Well #4	1-11-64	6448.9
12.11.25.214	1-14-65	6450.8
Monitor Well #1	1- 7-64	6455.0
12.10.8.332	1- 5-65	6456.0
North Well	1- 7-64	6457.8
12.10.7.143	1- 5-65	6459.8

		DATE OF DOCUMENT:	DATE RECEIVED	NO.:	
Grants, Bow Mexico		LTR. MEMO:	REPORT:	OTHER:	
ro: R. Lovenste	ln	ORIG.; CC:	OTHER:		
· · · · · · · · · · · · · · · · · · ·		ACTION NECESSARY	CONGURRENCE	BY:	ED:
CLASEIF.:	POST OFFICE REG, NO:	FILE CODE:		<u> </u>	
DESCRIPTION: (Mus Be Unclassified) Ltr. rol. Condition 13(c) of 11c. SUA-Ge7 and trans:		REFERRED TO	DATE	RECEIVED BY	0
			er: 2-13		
ENCLOSURES	· · · · · · · · · · · · · · · · · · ·	v/file ey. 1-compliance ey	.		-
CO GT	rec*d)				
"Jearly Sumary Re; Noll Injochics Free	urt of the Dispess gram for 1963" dtd.	1			
		·······			
3-33-64.					
REMARKE	· - · · · · · · · · · · · · · · · · · ·				
REMARKE	n Distribution: Gopy	· · · · · · · · · · · · · · · · · · ·	ACK	MULLIGEL	

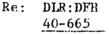
DOCKET NO 40-665

LAR File Copy

The Anaconda Company

College Contract Co

New Mexico Operations


P.O. Box 638, Grants, New Mexico

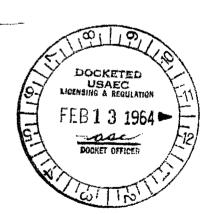
February 11, 1964

United States Atomic Energy Commission Washington 25, D. C.

Attention: Mr. R. Lowenstein, Director Division of Licensing and Regulation

Gentlemen:

A.JF: MA

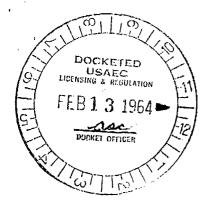

Enc.

In compliance with condition No. 13(c) of our Source Material License No. SUA-647, I am sending you three copies of the Yearly Summary Report of the Disposal Well Injection Program for 1963.

Complete records of all phases of the disposal well injection program are being maintained and are available for your inspection at any time.

Yours very truly,

A. J. FITCH



Copy Provided 2/14/64 Compliance 2/14/64

A. J. FITCH MANAGER

ī

ACKNOWLEDGED

0-665

L&R File Copy

MEMORANDUM FOR RECORD

SUBJECT: Yearly Summary Report of the Disposal Well Injection Program for 1963.

Presented in this report are the following tabulations of data concerning the operation of the disposal well program during the period from January 1, 1963 to January 1, 1964:

- I. Average Monthly Liquid Injection Rates. (Note Attachment I)
- II. Concentrations of Radioactive Constituents in Injected Liquid. (Note Attachment II)
- III. Radiological Analyses of Monitored Well and Surface Waters for the Months of May and September 1963. (Note Attachment III)
- IV. Static Water Levels of Wells in the San Andres Glorieta Aquifer in the Vicinity of the Anaconda Mill and Disposal Well. (Note Attachment (IV)

Respectfully submitted,

1. W. Ralph M. Wilde

Radiation Safety Director

RMW:cig

c: A. J. Fitch (4) E. C. Peterson

February 11, 1964

ATTACHMENT I

AVERAGE MONTHLY	LIQUID	INJECTION	RATES

GALLONS INJECTED

January	1963	9,979,850
February	1963	14,699,620
March	1963	9,781,400
April	1963	4,722,700
May	1963	1,562,560
June	1963	105,900
July	1963	0
August	1963	0
September	1963	8,474,700
October	1963	4,482,600
November	1963	8,817,900
December	1963	5,789,400

Total 1-1-63 to 1-1-64

68,416,630

Average Injection Rate

5,701,385.8 gallons/month

ATTACHMENT II

• •• •• •

Ň

CONCENTRATION OF RADIOACTIVE CONSTITUENTS IN

INJECTED LIQUID

	111	<u>Ra-226</u> c/ml x 10 ⁷ uc	$\frac{\text{Th}-230}{/\text{m1} \times 10}4$	<u>U-natural</u> uc/m1 x 10 ⁶
January	1963	2.16	1.22	4.64
February	1963	1.76	1.04	5,09
March	1963	1,82	1.04	4.99
April	1963	2.16	2.01	7,59
May	1963	3.10	1.82	8.79
June	1963	4.15	2,87	11.8
July	1963	No Injection		
August	1963	No Injection	2	
September	1963	3 . 28	1.58	8,06
October	1963	2,94	1,50	5,75
November	1963	3.63	1.08	4.21
December	1963	2.24	1,44	4,34

!

ATTACHMENT 111

1

RADIOLOGICAL ANALYSES OF MONITORED

WELL AND SURFACE WATERS FOR THE

MONTHS OF MAY AND SEPTEMBER 1963

۰.

DESCRIPTIVE L	CATION	Gross Alpha uc/ml x 10 ⁸	Ra-226 uc/ml x 10 ⁹	Th-230 uc/ml x 10 ⁰	U-nat uc/ml x 10 ⁵
Bernyhill Section 5	12.10. 5.341a	0.54 - 0.30	less than 0,2	less than 0.004	80000.0
North fell	12,10, 7,14,3	1.07 20.43	less than 0.2	less than 0.004	0.00071
Monitor Well #	12,10. 8.332	3.85 2 0.68	less than 0.2	less than 0.004	0.0028
Sabre-Pinon	12.10.20.333a	0.13 2 0.03			0.00001
Card Cas *	12,10,27,333	0,60 10.26			0.00018
Card Electric *	12.10.29.434a	No Samnle			
Mexican Camp	12.10.30.112	0.41 2 0.12	less than 0.2	less than 0.004	0.00019
Jack Freas	12.10.30.242	0.25 - 0.11			0.00006
Harding Irrigation	12.10.30.421	0.51 J 0.20			0.00012
Fred Freas	12,10.30,433	0.21 - 0.12			0.00009
Chapman	12.10.32.211a	0.45 2 0.15			80000.0
Thunderbird Post	12.11.10.411a	1.73 - 0.59	less than 0.2	less than 0.004	0.00089
Berryhill House	12,11,11,334	0.53 7 0.23			0.00016
Tailing Pond	12.11.13.Pond	Not Determined	31.0	182.	0.879
Engineers Well	12,11,14,213	1,58 = 0.32	less than 0.2	less than 0.004	0.00062
Roundy (Harmon)	12,11,23,231	0.64 0.24			0.00011
Power House Pond	12.11.24.PHP	11.9 1.1	less than 0.2	less than 0.004	0.010
Laboratory Pond	12,11,24,LABP	11.6 ‡ 1.2	0.22 - 0.06	less than 0.004	_0.0087
Auro's Bar	12,11,24,334	No Sample			
Auro's Motel	12.11.24.334a	0.58 - 0.27			0.00016
Anaconda #1	12,11,24,411	5.92 0.73	less than 0.2	less than 0.004	0.0040
Webb Windmill	12.11.25.122a	1.11 - 0.20	less than 0.2	less than 0.004	0.00029
Anaconda #3	12.11.25.213	0.72 - 0.24	less than 0.2	less than 0.004	0.00037
Anaconda #4	12.11.25.214	0.53 = 0.21	less than 0.2	less than 0.004	0.00029
	n an				
とうかく おんがた かった かくしゃ あいしょう	and the second				

RADIOLOGICAD WATER ANALYSIS FOR MONTH OF MAY 1963

* Monthly during irrigation

RADIOLOGICAL WATER ANALYSIS FOR MONTH OF MAY 1963

Cottonwood Springs10, 9, 6,442 $0.59 \ddagger 0.41$ 0.00021 Del Padre Springs10, 9, 7,2221.50 \ddagger 1.03less than 0.2less than 0.004 0.00072 Gottlieb Dison #210, 9,17,113a $0.83 \ddagger 0.51$ 0.00022 0.00030 0.00030 Gottlieb Bitane10, 9,23,134 $0.48 \ddagger 0.13$ 0.20022 0.00022 Horace Springs10, 9,26,222 $0.36 \ddagger 0.16$ 0.00022 Horace Springs10, 9,26,222 $0.36 \ddagger 0.16$ 0.000092 Henth Well10,10,15,233 $1.90 \ddagger 0.50$ less than 0.2less than 0.004Morthen Well10,10,22,213No Sample 0.00092 Hawkinson (Grants)11, 9,30,122aNo Sample 0.000092 Kepublic11,10, 2,111 $1.05 \ddagger 0.73$ less than 0.2less than 0.004Evans Windmill11,10, 5,222 $0.54 \ddagger 0.21$ 0.000092 Milan Chinle11,10,21,211 $0.31 \ddagger 0.12$ 0.00011 Granta-San Andres11,10,24,743 $2.49 \ddagger 0.56$ less than 0.2less than 0.004Schneeman11,11,23,333 $0.25 \ddagger 0.09$ 0.000020 Miray #112,10,27,443 $2.49 \ddagger 0.56$ less than 0.2less than 0.004Schneeman11,11,23,334 $0.35 \ddagger 0.23$ 0.000024 Reurs12,10,27,431 $0.52 \ddagger 0.25$ 0.00024 Card Commissary12,10,34,424 $0.69 \ddagger 0.23$ 0.00024 Card Commissary12,10,35,322 $0.48 \ddagger 0.25$ 0.00035 Joy Manufacturing12,10,26,322 $0.29 \ddagger 0.116$ 0	DESCRIPTIVE L	OCATION	Gross Alpha uc/ml × 10 ⁸	Ra-226 uc/ml x 10 ⁸	Th-230 uc/ml x 10 ⁶	U-nat uc/ml x 10 ⁵
Cottlieb Poison #2 10, 9.17,113a 0.88 ± 0.51 0.00030 Cottlieb Butane 10, 9.23,134 0.48 ± 0.13 0.00022 Horace Springs 10, 9, 26,222 0.36 ± 0.16 0.00009 San Rafael 10, 10, 3, 4334 0.49 ± 0.18 0.00092 Worthen Well 10, 10, 15, 233 1.90 ± 0.50 less than 0.2 less than 0.004 0.00092 Worthen Well 10, 10, 22, 213 No Sample 0.00009 0.00092 HawKinson (Grants) 11, 9, 30, 122a No Sample 0.00009 HawKinson (Grants) 11, 0, 3, 2131 1.05 ± 0.33 less than 0.2 less than 0.004 0.00092 Widtal 11, 10, 5, 222 0.54 ± 0.21 0.100 0.00029 0.00029 Widal 11, 10, 21, 211 0.31 ± 0.12 0.00011 0.000011 0.000011 Grants-San Andres 11, 10, 27, 443 2.49 ± 0.56 less than 0.2 less than 0.004 0.00024 Schneemann 11, 11, 23, 333 0.36 ± 0.09 0.00024 0.00024 Card Commissary 12, 10, 27, 443 <td>Cottonwood Springs</td> <td>10. 9. 6.442</td> <td>0.59 ‡ 0.41</td> <td></td> <td></td> <td>0.00021</td>	Cottonwood Springs	10. 9. 6.442	0.59 ‡ 0.41			0.00021
Ootlieb Butane 10, 9,23,134 0.48 ± 0.13 0.00022 Horace Springs 10, 9,26,222 0.36 ± 0.16 0.00009 San Rafael 10,10, 3,4334 0.49 ± 0.18 0.00009 Worthen Well 10,10,22,213 No Sample 0.00009 Worthen Well 10,10,22,213 No Sample 0.00009 Hawkinson (Grants) 11, 9, 30,122a No Sample 0.00009 Republic 11.10, 2,111 1.05 ± 0.33 less than 0.2 less than 0.004 0.00020 Vidal 11.10, 5,222 0.54 ± 0.21 0.00009 0.00009 Milan Chinle 11,10,26,743 0.25 ± 0.13 0.00001 0.00009 Milan Chinle 11,10,27,443 2.49 ± 0.56 less than 0.2 less than 0.004 0.00014 Schneemann 11,11,23,333 0.36 ± 0.09 0.00020 0.00020 Murray 12,10,27,431 0.52 ± 0.25 0.00024 0.00024 Card Commissary 12,10,34,424 0.36 ± 0.25 0.00024 0.00064 Murray #1 12,10.35,322	Del Padre Springs	10, 9, 7,222	1.50 ± 1.08	less than 0.2	less than 0.004	0.00072
Horace Springs 10, 9,26,222 0,36 ‡ 0,16 0,0009 San Rafael 10,10, 3,433a 0,49 ‡ 0,18 0,0009 Heath Well 10,10,15,233 1.90 ‡ 0.50 less than 0.2 less than 0.004 0,00092 Worthen Well 10,10,22,213 No Sample 0 0 0,00092 Worthen Well 10,10,22,213 No Sample 0 0 0,00092 HawKinson (Grante) 11,9,30,122a No Sample 0 0 0,00020 Kepublic 11,10,5,122 0,54 ± 0,21 0,00020 0.00009 0.00009 Milan Chinle 11,10,5,213 0,25 ± 0,13 0.00009 0.00009 Milan Chinle 11,0,26,744 2,49 ± 0,56 less than 0,2 less than 0,004 0.00011 Grants-San Andres 11,0,27,443 2,49 ± 0,56 less than 0,2 less than 0,004 0.00008 Roundy Windmill 12,10,27,433 0,52 ± 0,25 0.00004 0.00008 0.00008 Roundy Windmill 12,10,27,431 0,52 ± 0,25 0.00024 0.00064 Murray 12,10,27,431 0,52 ± 0,25 0.000024	Gottlieb Poison #2	10. 9.17.113a	0.88 - 0.51			0.00030
San Rafael 10,10, 3,4334 0,49 ± 0,18 0,00009 Heath Well 10,10,15,233 1.90 ± 0.50 less than 0.2 less than 0.004 0,00092 Worthen Well 10,10,22,213 No Sample 1 0,00092 Hawkinson (Grants) 11,9,30,122a No Sample 0.00048 Evenblic 11,10, 2,111 1,05 ± 0,33 less than 0.2 less than 0.004 0.00048 Evans Windmill 11,10, 5,222 0.54 ± 0,21 0.2020 0.00020 0.00009 Widal 11,10, 5,213 0.25 ± 0,13 0.00001 0.00009 Milan Chinle 11,10,24,743 2,49 ± 0.56 less than 0.2 less than 0.004 0.0014 Schneemann 11,11,23,333 0.36 ± 0.09 0.00020 0.00020 Murray 12,10,27,443 2,49 ± 0.56 less than 0.2 less than 0.004 0.0020 Murray 12,10,27,443 0.52 ± 0.25 0.00024 0.00024 Card Commissary 12,10,33,444 0,69 ± 0.28 0.00035 0.00064 Murray #1 12,10,35,322 0.48 ± 0.25 0.00016 0.00024 0.00035	Gottlieb Butane	10, 9,23,134	0.48 ‡ 0.13			0.00022
Heath Well 10,10,15,233 1.90 ‡ 0.50 less than 0.2 less than 0.004 0.00092 Worthen Well 10,10,22,213 No Sample	Horace Springs	10, 9,26,222				0.00009
Worthen Well 10,10,22,213 No Sample Image: Constraint of the state of the	San Rafael	10.10. 3.433a	0.49 ± 0.18			0.00009
Hawkinson (Grants) 11. 9,30,122a No Sample Image: Stress of the st	Heath Well	10.10.15.233	1.90 ± 0.50	less than 0.2	less than 0.004	0.00092
Republic 11.10, 2.111 1.05 ± 0.33 less than 0.2 less than 0.004 0.00048 Evans Windmill 11.10, 5.222 0.54 ± 0.21 0.00020 0.00020 Vidal 11.10, 5.213 0.25 ± 0.13 0.00029 Milan Chinle 11.10, 21.211 0.31 ± 0.12 0.00011 Grants-San Andres 11.10, 26, Tap 0.26 ± 0.13 0.00015 Suburban Gas 11.10, 27, 443 2.49 ± 0.56 less than 0.2 less than 0.004 0.00014 Schneemann 11.11, 23, 333 0.36 ± 0.09 0.00008 0.00020 Murray 12.10, 27, 431 0.52 ± 0.25 0.00024 0.00024 Card Commissary 12.10, 27, 431 0.52 ± 0.25 0.00024 0.00064 Murray 12.10, 27, 431 0.52 ± 0.25 0.00024 0.00064 Murray 12.10, 23, 444 0.69 ± 0.20 0.00025 0.00024 Card Commissary 12.10, 34, 224 0.35 ± 0.28 0.000035 0.000016 L, D, S. Bluewater 12.11, 22.34 0.29 ± 0.14 0.22 ± 0.05 less than 0.004 0.00024 Sandoya1 13. 9.22, 212	Worthen Well	10,10,22,213	No Sample			
Evans Windmill 11.10. 5,222 0.54 ± 0.21 0.00020 Vidal 11.10. 5,213 0.25 ± 0.13 0.00009 Milan Chinle 11.10.21.211 0.31 ± 0.12 0.00011 Grants-San Andres 11.10.27.443 2.49 ± 0.56 less than 0.2 less than 0.004 0.00015 Suburban Gas 11.10.27.443 2.49 ± 0.56 less than 0.2 less than 0.004 0.00020 Schneemann 11.11.23.333 0.36 ± 0.09 0.00028 0.00008 Roundy Windmill 12.10.12.433a 2.70 ± 0.64 less than 0.2 less than 0.004 0.00020 Murray 12.10.27.431 0.52 ± 0.25 0.00024 0.00024 Card Commissary 12.10.33.444 0.69 ± 0.20 0.00064 Murray #1 12.10.34.224 0.85 ± 0.28 0.00035 Joy Manufacturing 12.10.35.322 0.48 ± 0.25 0.00016 L.D.S. Bluewater 12.11.22.234 0.29 ± 0.14 0.22 ± 0.05 less than 0.004 0.00040 Sandoval 13. 9.22.212 No Sample 0.0004 0.00024 0.00022 Greater Grants Airport 12.10.26.322a	Hawkinson (Grants)	11. 9.30.122a	No Sample			
Vidal11.10. 5.213 0.25 ± 0.13 0.00009Milan Chinle11.10.21.211 0.31 ± 0.12 0.00011Grants-San Andres11.10.26.7ap 0.26 ± 0.13 0.00015Suburban Gas11.10.27.443 2.49 ± 0.56 less than 0.2less than 0.0040.00014Schneemann11.11.23.333 0.36 ± 0.09 0.00080.00024Roundy Windmill12.10.12.433a 2.70 ± 0.64 less than 0.2less than 0.0040.0020Murray12.10.27.431 0.52 ± 0.25 0.00040.00024Murray12.10.33.444 0.69 ± 0.20 0.000640.00035Joy Manufacturing12.10.34.224 0.85 ± 0.28 0.00016L.p.S. Bluewater12.11.22.234 0.29 ± 0.14 0.00014Wilcoxson (P. Harris)13. 9.16.411 1.31 ± 0.41 0.22 ± 0.05 less than 0.0040.00024Mt. Taylor Corp.13. 9.29.343 3.94 ± 0.39 less than 0.2less than 0.0040.00024Greater Grants Airport12.10.26.322a 0.60 ± 0.29 less than 0.2less than 0.0040.00021	Republic	11.10, 2.111	1.05 ± 0.33	less than 0.2	less than 0.004	0.00048
Milan Chinle 11.10.21.211 0.31 ± 0.12 0.00011 Grants-San Andres 11.10.26.Tap 0.26 ± 0.13 0.00015 Suburban Gas 11.10.27.443 2.49 ± 0.56 less than 0.2 less than 0.004 0.0014 Schneemann 11.11.23.333 0.36 ± 0.09 0.0008 0.00008 Roundy Windmill 12.10.12.433a 2.70 ± 0.64 less than 0.2 less than 0.004 0.0020 Murray 12.10.27.431 0.52 ± 0.25 0.00024 0.00026 Murray 12.10.33.444 0.69 ± 0.20 0.00064 Murray #1 12.10.34.224 0.85 ± 0.28 0.00035 Joy Manufacturing 12.10.35.322 0.48 ± 0.25 0.00016 L.p.S. Bluewater 12.11.22.234 0.29 ± 0.14 0.22 ± 0.05 less than 0.004 0.00040 Sandoval 13. 9.22.212 No Sample 0.00040 0.0022 Greater Grants Airport 12.10.26.322a 0.60 ± 0.29 0.39 less than 0.2 less than 0.004 0.0022	Evans Windmill	11,10, 5,222	0.54 ± 0.21			0.00020
Grants-San Andres 11,10,26,Tap 0.26 ± 0.13 0.00015 Suburban Gas 11,10,27,443 2.49 ± 0.56 less than 0.2 less than 0.004 0.0014 Schneemann 11,11,23,333 0.36 ± 0.09 0.36 ± 0.09 0.00008 Roundy Windmill 12,10,12,433a 2,70 ± 0.64 less than 0.2 less than 0.004 0.0020 Murray 12,10,27,431 0.52 ± 0.25 0.00024 0.00024 Card Commissary 12,10,33,444 0.69 ± 0.20 0.000064 0.00035 Joy Manufacturing 12,10.34,224 0.85 ± 0.28 0.00035 0.000016 L,D,S. Bluewater 12,11,22,234 0.29 ± 0.14 0.22 ± 0.05 less than 0.004 0.00040 Sandoval 13, 9,22,212 No Sample 0.394 ± 0.39 less than 0.2 less than 0.004 0.0022 Greater Grants. Airport 12,10.26,322a 0,60 ± 0.29 less than 0.2 less than 0.004 0.0022	Vidal	11.10. 5.213	0.25 = 0.13			0.00009
Grants-San Andres 11,10,26,Tap 0.26 ± 0.13 0.00015 Suburban Gas 11,10,27,443 2.49 ± 0.56 less than 0.2 less than 0.004 0.0014 Schneemann 11,11,23,333 0.36 ± 0.09 0.0008 0.00008 Roundy Windmill 12,10,12,433a 2,70 ± 0.64 less than 0.2 less than 0.004 0.0020 Murray 12,10,27,431 0.52 ± 0.25 0.00024 0.00024 Murray 12,10,33,444 0.69 ± 0.20 0.00064 0.00035 Murray #1 12,10,34,424 0.35 ± 0.28 0.00035 0.00035 Joy Manufacturing 12,10,35,322 0.48 ± 0.25 0.00014 0.00014 Wilcoxson (P. Harris) 13, 9,26,411 1,31 ± 0,41 0,22 ± 0,05 less than 0.004 0.00040 Sandoval 13, 9,22,212 No Sample 0.00022 0.00022 0.00022 Greater Grants Airport 12,10,26,322a 0,60 ± 0.29 less than 0.2 less than 0.004 0.00022	Milan Chinle	11.10.21.211	0.31 ± 0.12			0.00011
Schneemann 11.11.23.333 0.36 ± 0.09 0.00008 Roundy Windmill 12.10.12.433a 2.70 ± 0.64 less than 0.2 less than 0.004 0.0020 Murray 12.10.27.431 0.52 ± 0.25 0.00024 0.00024 Card Commissary 12.10.33.444 0.69 ± 0.20 0.00064 Murray #1 12.10.34.224 0.85 ± 0.28 0.00035 Joy Manufacturing 12.10.35.322 0.48 ± 0.25 0.00016 L.D.S. Bluewater 12.11.22.234 0.29 ± 0.14 0.00014 Wilcoxson (P. Harris) 13. 9.16.411 1.31 ± 0.41 0.22 ± 0.05 less than 0.004 0.00020 Mt. Taylor Corp. 13. 9.29.343 3.94 ± 0.39 less than 0.2 less than 0.004 0.0022 Greater Grants Airport 12.10.26.322a 0.60 ± 0.29 0.29 0.00021	Grants-San Andres	11.10.26.Tap	0.26 ± 0.13			0.00015
Roundy Windmill 12,10,12,433a 2,70 ± 0.64 less than 0.2 less than 0.004 0.0020 Murray 12,10,27,431 0.52 ± 0.25 0.00024 0.00024 Card Commissary 12,10,33,444 0.69 ± 0.20 0.00064 Murray #1 12,10,34,224 0.85 ± 0.28 0.00035 Joy Manufacturing 12,10,35,322 0.48 ± 0.25 0.00016 L,D,S. Bluewater 12,11,22,234 0.29 ± 0.14 0.002 Wilcoxson (P. Harris) 13, 9,16,411 1,31 ± 0,41 0,22 ± 0,05 less than 0.004 0.00040 Sandoval 13, 9,22,212 No Sample 0.39 less than 0.2 less than 0.004 0.0022 Greater Grants Airport 12,10,26,322a 0,60 ± 0.29 0.29 0.00021	Suburban Ga s	11,10,27,443	2.49 ± 0.56	less than 0.2	less than 0.004	0.0014
Murray 12,10.27,431 0.52 ± 0.25 0.00024 Card Commissary 12,10,33,444 0.69 ± 0.20 0.00064 Murray #1 12,10,34,224 0.35 ± 0.28 0.00035 Joy Manufacturing 12,10,35,322 0.48 ± 0.25 0.00016 L.D.S. Bluewater 12,11,22,234 0.29 ± 0.14 0.00014 Wilcoxson (P. Harris) 13, 9:16,411 1.31 ± 0.41 0.22 ± 0.05 less than 0.004 0.00020 Sandoval 13, 9,22,212 No Sample 0.39 less than 0.2 less than 0.004 0.0022 Greater Grants Airport 12,10,26,322a 0.60 ± 0.29 0.60 ± 0.29 0.00021	Schneemann	11,11,23,333	0.36 ± 0.09			0.00008
Card Commissary 12,10,33,444 0.69 ± 0.20 0.00064 Murray #1 12,10,34,224 0.85 ± 0.28 0.00035 Joy Manufacturing 12,10,35,322 0.48 ± 0.25 0.00016 L.D.S. Bluewater 12,11,22,234 0.29 ± 0,14 0.0021 Wilcoxson (P. Harris) 13, 9,16,411 1.31 ± 0,41 0.22 ± 0,05 less than 0.004 Sandoval 13, 9,22,212 No Sample 0.0022 0.0022 Greater Grants Airport 12,10,26,322a 0.60 ± 0,29 0.60 ± 0,29 0.00021	Roundy Windmill	12.10.12.433a	2.70 ± 0.64	less than 0.2	less than 0.004	0.0020
Murray #1 12.10.34.224 0.85 ± 0.28 0.00035 Joy Manufacturing 12.10.35.322 0.48 ± 0.25 0.00016 L.D.S. Bluewater 12.11.22.234 0.29 ± 0.14 0.00014 Wilcoxson (P. Harris) 13.9.16.411 1.31 ± 0.41 0.22 ± 0.05 less than 0.004 Sandoval 13.9.22.212 No Sample 0.0022 Mt. Taylor Corp. 13.9.29.343 3.94 ± 0.39 less than 0.2 less than 0.004 0.0022 Greater Grants Airport 12.10.26.322a 0.60 ± 0.29 0.00021 0.00021	Murray	12.10.27.431	0.52 ± 0.25			0.00024
Joy Manufacturing 12.10.35.322 0.48 ± 0.25 0.00016 L.D.S. Bluewater 12.11.22.234 0.29 ± 0.14 0.00014 Wilcoxson (P. Harris) 13. 9.16.411 1.31 ± 0.41 0.22 ± 0.05 less than 0.004 0.00040 Sandoval 13. 9.22.212 No Sample 0.39 ± 0.39 less than 0.2 less than 0.004 0.0022 Greater Grants Airport 12.10.26.322a 0.60 ± 0.29 0.60 ± 0.29 0.00021	Card Commissary	12.10.33.444	0.69 ± 0.20			0.00064
L.D.S. Bluewater 12.11.22.234 0.29 ± 0.14 0.00014 Wilcoxson (P. Harris) 13. 9.16.411 1.31 ± 0.41 0.22 ± 0.05 less than 0.004 0.00040 Sandoval 13. 9.22.212 No Sample 0.0022 0.0022 Mt. Taylor Corp. 13. 9.29.343 3.94 ± 0.39 less than 0.2 less than 0.004 0.0022 Greater Grants Airport 12.10.26.322a 0.60 ± 0.29 0.00021 0.00021	Murray #1	12.10.34.224	0.85 ± 0.28			0.00035
Wilcoxson (P. Harris) 13, 9.16.411 1.31 ± 0.41 0.22 ± 0.05 less than 0.004 0.00040 Sandoval 13, 9.22.212 No Sample 0.39 less than 0.2 less than 0.004 0.0022 Mt. Taylor Corp. 13, 9.29.343 3.94 ± 0.39 less than 0.2 less than 0.004 0.0022 Greater Grants Airport 12.10.26.322a 0.60 ± 0.29 0.00021	Joy Manufacturing	12,10,35,322	0.48 ± 0.25			0.00016
Sandoval 13. 9.22.212 No Sample Mt. Taylor Corp. 13. 9.29.343 3.94 ± 0.39 less than 0.2 less than 0.004 0.0022 Greater Grants Airport 12.10.26.322a 0.60 ± 0.29 0.00021	L.D.S. Bluewater	12.11.22.234	0.29 ± 0.14			0.00014
Mt. Taylor Corp. 13. 9.29.343 3.94 ± 0.39 less than 0.2 less than 0.004 0.0022 Greater Grants Airport 12.10.26.322a 0.60 ± 0.29 0.00021	Wilcoxson (P. Harris)	13, 9.16.411	1.31 2 0.41	0,22 ‡ 0.05	less than 0.004	0.00040
Greater Grants Airport 12.10.26.322a 0.60 ± 0.29 0.00021	Sandoval	13. 9.22.212	No Sample			
	Mt. Taylor Corp.	13. 9.29.343	3.94 ± 0.39	less than 0.2	less than 0.004	0.0022
Anaconda #2 12.11.24.233 25.2 ± 1.8 less than 0.2 less than 0.004 0.017	Greater Grants Airpor	t 12.10.26.322a	0.60 ± 0.29	-		0.00021
	Anaconda #2	12.11.24.233	25.2 ± 1.8	less than 0.2	less than 0.004	0.017

.

. .

RADIOLOGICAL WATER ANALYSIS FOR MONTH OF SEPTEMBER 1963

DESCRIPTIVE L	OCATION	Gross Alpha uc/ml x 10 ⁸	Ra-226 uc/ml x 10 ⁸	Th-230 uc/ml x 10 ⁶	U-nat uc/ml x 10 ⁵
Berryhill Section 5	12.10. 5.341a	No Sample			
North "ell	12.10, 7.143	1.1 - 0.42	Less than 0.2	Less than 0.004	0.00071
Monitor Well # 1	12,10, 8,332	4:9 [±] 0.79	"""0,2	" " 0,004	0.0033
Sabre-Pinon	12.10.20.333a	$0.10 \div 0.06$	•		0,0
Card Gas *	12,10,27,333	No Sample			
Card Electric *	12.10.29.434a	No Sample			
Mexican Camp	12.10.30.112	0.40 ± 0.12	Less than 0.2	Less than 0.004	0.00016
Jack Freas	12,10,30,242	$0.1^{\circ} \pm 0.09$	·		0,00006
Harding Irrigation	12.10.30.421	No Sample			
Fred Freas	12,10,30,433	$0.33 \stackrel{+}{-} 0.14$			0.00011
Chapman	12,10,32,211a	0.26 [±] 0.11			0.00016
Thunderbird Post	12.11.10.411a	2.3 ± 0.65	Less than 0,2	Less than 0.004	0,00084
Berryhill House	12.11.11.334	0.56 ± 0.23			<u>0.00016</u>
Tailing Pond	12.11.13.Pond	Not Determined	32.8	158.	0.806
Engineers Well	12.11.14.213	1.0 - 0.26	Less than 0.2	Less than 0.004	0.00059
Roundy (Harmon)	12.11.23.231	0,51±0.22			0.00010
Power House Pond	12.11.24.PHP	9.0 ± 0.93	Less than 0.2	Less than 0.004	0,0088
Laboratory Pond	12.11.24,LABP	9.4 ± 0.86	0.23 ± 0.06	" " 0.004	0,0077
	12,11,24,334				
Auro's Motel	12.11.24.334a	0.30 ± 0.15			0.00010
Anaconda #1	12.11.24.411	4.1 ± 0.59	Less than 0.2	Less than 0.004	0.0025
Webb Windmill	12.11.25.122a	0.63 ± 0.18	" " 0,2	Less than 0.004	0.00031
Anaconda #3	12.11.25.213	0.78 ± 0.24	" " 0.2	" " 0.004	0.00051
Anaconda #4	12.11.25.214	0.65 ± 0.22	" " 0.2	" " 0,004	0.00030

* Monthly during irrigation

Ę

- · ·

an an An an an an

ţ٢

RADIOLOGICAL WATER ANALYSIS FOR MONTH OF SEPTEMBER 1963

DESCRIPTIVE LOC	CATION	Gross Alpha uc/ml x 10 ⁸	Ra-226 uc/mlx 10 ⁸	Th-230 uc/ml x 10 ⁶	U-nat uc/mlx 10 ⁵
Cottonwood Springs	10. 9. 6.442	0.31 ± 0.29			0,00018
Del Padre Springs	10, 9, 7,222	0.46 ± 0.43			0.00014
Gottlieb Poison #2	10. 9.17.113a	0.74 + 0.49			0,00032
Gottlieb Butane	10, 9.23.134	0.38 ± 0.12			0,00024
Horace Springs	10, 9,26,222	0.40 ± 0.18			0.00022
San Rafael	10.10. 3.433a	0.35 ± 0.16			0.00014
Heath Well	10.10.15.233	0.95 ± 0.39	Less than 0.2	Less than 0.004	0.00062
Worthen Well	10.10.22.213	No Sample			
Hawkinson (Grants)	11. 9.30,122a	No Sample			
Republic	11.10, 2.111	0.95 ± 0.34	Less than 0.2	Less than 0.004	0.00051
Evans Windmill	11.10. 5.222	No Sample	· · · · · · · · · · · · · · · · · · ·		
Vidal	11.10. 5.213	0.33 ± 0.14			0,00007
Milan Chinle	11.10.21.211	0.31 ± 0.12			0,00011
Grants-San Andres	11.10.26.Tap	0.36 ± 0.16			0.00012
Suburban Gas	11.10.27.443	2.1 ± 0.50	Less than 0.2	Less than 0.004	0.00070
Schneemann	11.11.23.333	0.30 ± 0.08			0.00010
Roundy Windmill	12.10.12.433a	4.0 ± 0.73	Less than 0.2	Less than 0.004	0.0024
Murray	12.10.27.431	No Sample	-		
Card Commissary	12.10.33.444	0.63 ± 0.20			0.00056
Murray #1	12.10.34.224	0.81 - 0.28			0.00042
Joy Manufacturing	12.10.35.322	0.48 - 0.26	ا مربق میں مربق المربق میں مربق		0,00016
L.D.S. Bluewater	12.11.22.234	0.35 + 0.22			0.00020
Wilcoxson (P. Harris)	13. 9.16.411	2.3 ± 0.53	$0.22 \stackrel{+}{-} 0.05$	Less than 0.004	0,00054
Sandoval	13. 9.22.212	No Sample			
Mt. Taylor Corp.	13. 9.29.343	2.3 ± 0.34 -	Less than 0.2	Less than 0.004	0.0021
Greater Grants Airport	12.10.26.322a	0.69 ± 0.30			0.00024
Anaconda #2	12.11.24.233	18.5 ± 1.5	Less than 0.2	Less than 0.004	0.014

: E

ATTACHMENT IV

Ð

 $(\cdot$

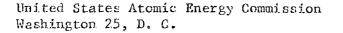
STATIC WATER LEVELS OF WELLS IN THE SAN ANDRES-GLORIETA AQUIFER IN THE VICINITY OF THE ANACONDA MILL AND DISPOSAL WELL

		STATIC WATER LEVEL
WELL DESCRIPTION	DATE OF MEASUREMENT	FEET ABOVE MEAN SEA LEVEL
	1.2-30-62	6146 7
Anaconda Well #1	1-11-64	6446.7
12.11.24.411	1=11=04	6449,2
Anaconda Well #2	12-30-62	6446.6
12.11.24.233	1-11-64	6449,9
Anaconda Well #3	12-30-62	6443.8
12.11.25.213	1-11-64	6448.8
Anaconda Well #4	12-30-62	, 6443.3
12.11.25.214	1-11-64	6448,9
Monitor Well #1	12-13-62	6451.0
12.10.8.332	1- 7-64	6455.0
North Well	12-12-62	6456,3
	1- 7-64	
12.10.7.143	1- /-04	6457.8

FROMI 102 A.C.C. MIR Grants, 194 M 4. C. Filten	Cimpany Enico		TE BECEIVED -U63 REPORT. OTHER
To:		OBIG.	OTHEB:
			DATE ANSWERED.
CLASSIF.: U	POST OFFICE BEG. NO:	FILE CODE:	
DESCRIPTION: (Must Be Unclus	silled)	REFERRED TO	DATE BECRIVED BY
Manakaton Ko, 13(e	Sain in compliance		245 C
		⇒/cue e	(Clie net le)
RNCLOSUREB: A.J. CTT.	erid) eport of the Disposed		-//8
Welt Intertilop In	area for 1967		
EMARES A R RANGE CO	tten a - AN ASE		

.+

.


New Mexico Operations

P. O. Box 638, Grants, New Mexico

A. J. FITCH MANAGER

February 11, 1963

Attention: Mr. R. Lowenstein, Director Division of Licensing and Regulation

> Re: DLR:DFH 40-665

Gentlemen:

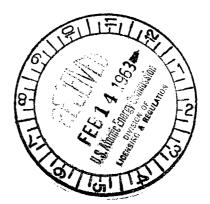
LAR Bile Copy

USAEC Division of Licensing & Regulation

Docket Officer

· · ·

In compliance with condition No. 13(c) of our Source Material License No. SUA-647, I am sending you three copies of the Yearly Summary Report of the Disposal Well Injection Program for 1962.


Complete records of all phases of the disposal well injection program are being maintained and are available for your inspection at any time.

Yours very truly,

ay

A. J. FITCH

AJF:MA Enc.

ACKNOWLEDGED

Copy Provided Compliance 2/18/63

11-66

L&B File Copy

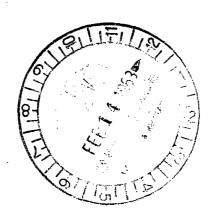
UNITER REPUBLIC

1963

MEMORANDUM F'OR RECORD

SUBJECT: Yearly Summary Report of the Disposal Well Injection Program for 1962.

Presented in this report are the following tabulations of data concerning the operation of the disposal well program during the period of January 1, 1962 to January 1, 1963:


- I. Average Monthly Liquid Injection Rates. (Note Attachment I)
- Concentrations of Radioactive Constituents in II. Injected Liquid. (Note Attachment II)
- Radiological Analyses of Monitored Well and Surface III. Waters for the Months of May and September 1962. (Note Attachment III)
- Static Water Levels of Wells in the San Andres-1V. Clorieta Aquifer in the Vicinity of the Anaconda Mill and Disposal Well. (Note Attachment IV)

Respectfully submitted,

Ralph M. Wilde Radiation Safety Director

RMW:cig

c: A.J.F. (4) E.C.P.

ATTACHMENT I

Average Monthly Liquid Injection Rates

		Gallons Injected
ina mang	1962	12,6 04,300
February	1962	11,031,900
March	1962	14,856,525
Apr11	1962	10,614,638
May	1962	5,039,475
June	1962	7,675,540
July	1962	2,405,300
August	1962	9,694,230
September	1962	3,155,200
October	1962	8,634,500
November	1962	6,142,800
Iscember	1962	12,033,900
Íotal 1-3	1-62 to 1-1-63	103,890,858

Average Injection Rate

8,657,571.5 gallon / month

ATTACHMENT II

		Ra-226 uc/ml X 107	$\frac{\text{Th}-230}{\text{uc/ml} \times 10^{\text{h}}}$	U-natural uc/ml X 106
January	1962	3,50	1.04	8.20
February	1962	2.51	1.01	5.43
March	1962	2.70	1.26	5.31
April	1962	6.46	J., 60	6,48
May	1962	2,06	2.03	7.18
June	1962	1.18	3.40	11.6
J.Ly	1962	6.58	3.63	14.5
August	1962	1,.79	2.31	9.17
September	1962	2.96	1,25	5.27
October	1962	2.74	i.ti	ت _ا ، در از
November	1962	2.04	3.23	5.54
December	1962	2.06	1.02	5,34

7

Concentration of Endioactive Constituents in Injected Liquid

ATTACHMENT III

, p

Radiological Analyses of Monitored Well and Surface Waters for the Months of May and September 1962.

RADIOLOGICAL WATER ANALYSIS FOR MONTH OF MAY, 1962

DESCRIPTIVE L	OCATION	Gross Alpha uc/ml x 10 ⁸	Ra-226 uc/ml x 10 ⁸	Th-230 uc/ml x 10 ⁶	U-nat uc/ml x 10 ⁵
Berryhill Section 5	12.10. 5.341a	0.33 10.43	Less than 0.2	Less then 0.004	0.00006
North "ell	12,10, 7,143	1.8 ± 0.49	0.2	0.004	0.00038
Monitor Well #1	12,10. 8.332	5.9 0.27	0.2	0,004	0.0028
Sabre-Pinon	12.10.20.333a	0.07 ± 0.07			0.0
Card Gas *	12.10.27.333	0.60 1 0.25			0.00018
Card Electric *	12.10.29.434a	No Sample			۰
Mexican Camp	12.10.30.112	0.65 ± 0.04	less then 0.2	Less than 0.004	0.00022
Jack Freas	12,10,30,242	0.19 2 0.10			0.00004
Harding Irrigation	12.10.30.421	0.40 2 0.17			0,00012
Fred Freas	12.10.30.433	0.38 ± 0.13			0.00014
Chapnan	12.10.32.211a	0.23 2 0.11		h = h + h + h	0.00004
Thunderbird Rost	12.11.10.411a	2.4 ± 0.67	Less than 0.2	Less than 0.004	0.0010
Berryhill House	12.11.11.334	0.51 ± 0.21			0.00022
Tailing Pond	12.11.13.Pond	Not Determined	20,6	203	0,718
Engineers Well	12.11.14.213	1.8 ± 0.33	Less than 0.2	Less than 0.004	0.0011
Roundy (Harmon)	12.11.23.231	0.40 ± 0.19			0.00012
Power House Pond	12.11.24.PHP	22. 1.9	0.41	less than 0,004	0.0149
Laboratory Pond	12.11.24.LABP	8.0 + 0.87	Iess than 0.2	less than 0.004	0.0056
Auro's Bar	12,11,24,334	No Sample			
Aurols Motel	12.11.24.334a	0.97 ± 0.33	Less than 0.2	Less than 0.004	0.00021
Anaconda #1	12.11.24.411	5.5 ± 0.70	" " 0.2	Less than 0.004	0.0027
Webb Windmill	12.11.25.1228	0.76 - 0.17	" " 0.2	¹¹ 0.004	0.00039
Anaconda #3	12.11.25.213	5.9 ± 0.55	" 0.2	" " 0,004	0.0034
					· · · · · · · · · · · · · · · · · · ·
	5				
			· · · · · · · · · · · · · · · · · · ·		

* Monthly during irrigation

RADIOLOGICAL V	ATER ANALYSIS FOR	MONTH OF MAY, 1962
	이 나는 것은 것이 가지 않는 아프랑 것 같아. 영어는 것은 것 같아요.	이 지수 않는 것 같은 것 같은 것 같이 있는 것 같이 없는 것 같이 없 않는 것 같이 없는 것 않이 않이 않는 않이

DESCRIPTIVE LOC	ATION	Gross Alpha uc/ml x 108	Ra-226 uc/ml x 10 ⁸	Th-230 uc/ml x 10 ⁶	U-nat uc/ml x 10 ⁵
Cottonwood Springs	10. 9. 6.442	0.43 = 0.43			0.00020
Del Padre Springs	10, 9, 7,222	0.61 ± 0.86			0.00052
Gottlieb Poison #2	10. 9.17.113a	0.72 ± 0.46			0.00035
Cottlieb Butane	10. 9,23,134	0.55 ± 0.15			0.00020
Horace Springs	10. 9.26.222	0.40 - 0.17			0.00015
San Rafael	10.10. 3.433a	0.44 ± 0.16			0.00030
Heath Well	10.10.15.233	1.8 ± 0.54	Less than 0.2	less than 0.004	0.00089
Worthen Well	10,10,22,213	No Sample			······································
Hawkinson (Grants)	11. 9.30.122a	2.2 ± 0.70	Less than 0.2	less than 0.004	0.0012
Republic	11.10. 2.111	0.91 - 0.31			0.00042
Evans Windmill	11.10. 5.222	0,53 ± 0.24			0.00021
Vidal	11,10. 5,213	0.62 ± 0.14			0.00010
Milan Chinle	11,10,21,211	0.22 ± 0.10		·	0.00016
Grants-San Andres	11.10.26.¶ap	0.56 ± 0.18			0.00016
Suburban Cas	11.10.27.443	0.65 ± 0.31			0.00030
Schneemann	11.11.23.333	0.27 [±] 0.08			0.00010
Roundy Windmill	12.10.12.433a	3.7 \$ 0.69	Less than 0.2	Less than 0.004	0.0018
Murray	12.10.27.431	0.59 ± 0.25			0.00020
Card Commissary	12.10.33.444	0.90 ± 0.25			0.00070
Murray #1	12.10.34.224	1.3 10.35	Less than 0.2	Less than 0.004	0.00048
Joy Manufacturing	12.10.35.322	1.0 ± 0.32	" 0.2		0.00030
L.D.S. Bluewater	12.11.22.234	0.68 ± 0.26			0.00022
Wilcoxson (P. Harris)	13. 9.16.411	2.1 ± 0.50	Less than 0.2	Less than 0.004	0.00041
Sandoval	13. 9.22,212	No Sample			aan ah
Mt. Taylor Corp.	13. 9,29.34	4.0 ± 0.40 -	Tess than 0.2	Less than 0.004	0.0018
Greater Grants Airport	12,10,26,322a	0,89 ± 0.33			0.00022
Anaconda #2	12.11.24.233	22.7 ± 1.7	Less than 0.2	Less than 0,004	0.0013
		•			

`••;

Ŧ

RADIOLOGICAL WATER ANALYSIS FOR MONTH OF September 1962

DESCRIPTIVE LO	CATION	., Gross Alpha uc∕ml x 10 ³	Ra-226 uc/mlx 10 ⁸	Th-230 uc/ml × 10 ⁶	U-nat uc/ml X 10 ⁵
Berryhill Section 5	12.10. 5.341a	• 0.87 ± 0.37	less than 0.2	less than 0.004	* 0.00011
North Well	12.10, 7.143	° 0.93 [≠] 0.35	less than 0.2	less then 0.004	* 0.00050
Monitor Well #1	12,10. 8,332	° 5.70 [‡] 0.83	less than 0.2	less than 0.004	* 0.0031
Sabre-Pinon.	12.10.20.333a	* 0.13 - 0.07			0.0
Card Gas *	12.10.27.333	No Sample			
Card Electric *	12.10.29.434a	No Sample			
Mexican Camp	12,10,30,112	0.40 - 0.09	less than 0.2	less than 0.004	<u>ິ 0.00013</u>
Jack Freas	12.10.30.242	* 0.23== 0.10			0.0002
Harding Inrigation	12.10.30.421	No Sample *			
Fred Freas	12.10.30.433	* 0.10 - 0:13			* 0.00021
Chapman	12,10,32,211a	0.19 7 0.10			° 0.00002
Thunderbird Post	12.11.10.411a	5.28 - 0.93	less than 0.2	less than 0.004	* 0.0017
Berryhill House	12.11.11.334	* 0.60 0.14			° 0.00014
Tailing Pond	12.11.13.Pond	Not Determined	* 29.6	° 125	0.527
Engineers Well	12.11.14.213		less than 0.2	less than 0.004	0.0011
Roundy (Harmon)	12,11,23,231	* 0.41 = 0.17			0.00009
Power House Pond	12,11,24,PHP	36.0 2.5	<u>0.33 ± 0.07</u>	<u>less than 0.004</u>	0.026
Laboratory Pond	12,11,24,IABP	8.15 ± 0.99	less than 0.2	less than 0.004	0.0049
Auro's Bar	12,11,24,334	No Sample			
Auro's Motel	12.11.24.334a	• 2.50 € 0.16			0.00016
Anaconda #1	12.11.24.411	4.37 2 0.61	less than 0.2	less than 0.004	* 0.0028
Webb Windmill	12.11.25.122a	هجو و محمد معتبور جونه ما و در مدرج کار	less than 0.2	less than 0,004	0.00039
Anaconda #3	12.11.25.213	° 3.93 ± 0.56	less than 0.2	less than 0.004	0,0025
			······		
* Monthly during irrig	ation	leven			

RADIOLOGICAL WATER ANALYSIS FOR MONTH OF SEPTEMBER 1962

DESCRIPTIVE LOC	ATION	Gross Alpha uc/ml X 108	Ra-226 uc/ml X 10 ⁸	Th-230 uc/ml X 10 ⁶	U-nat uc/ml X 10 ⁵
Cottonwood Springs	10, 9, 6,442	*0.76 ± 0.38			0.00014
Del Padre Springs	10. 9. 7.222	0.67 ± 0.67		·	0.00025
Gottlieb Poison #2	10. 9.17.113a	*0.98 ± 0.44	less than 0.2	less than 0.004	0.00026
	10. 9.23.134	0.42 - 0.11			° 0.00016
Horace Springs	10, 9,26,222	0.32 ± 0.14			° 0.00008
San Rafael	10.10. 3.433a	°0.36 ± 0.13			0.00010
Heath Well	10,10,15,233	1.23 ± 0.39	less than 0.2	less than 0.004	0.00082
Worthen Well	10.10.22.213	No Sample			
Hawkinson (Grants)	11. 9.30.122a	2.19 ± 0.63	less than 0.2	less than 0.004	0.0012
Republic	11.10. 2.111	°0.88 ± 0.27			0.00042
Evans Windmill	11.10, 5.222	0.35 ± 0.12			° 0.00008
Vidal	11.10. 5.213	0.37 - 0.11		·	0.00010
Milan Chinle	11.10.21.211	*0.33 ± 0.10			0.00010
Grants-San Andres	11.10.26.Tap	0.27 - 0.09			0.00011
Suburban Gas	11.10.27.443	0.81 ± 0.31			0.00046
	11.11.23.333	0.38 ± 0.08			* 0.00015
Roundy Windmill	12.10.12.433a	3.27 ± 0.64	less than 0.2	less than 0.004	* 0.0025
Murray	12.10.27.431	*1.00 ± 0.23	less than 0.2	less than 0.004	0.00019
Card Commissary	12,10,33,444	0.97 ± 0.23	less than 0.2	less than 0.004	*0.00071
Murray #1	12.10.34.224	1.05 - 0.28	less than 0.2	less than 0.004	*0.00041
Jcy Manufacturing	12.10.35.322	0.62 ± 0.24	l		0.00028
L.D.S. Bluewater	12.11.22.234	0.52 = 0.20	- 		0.00016
Wilcoxson (P. Harris)	13. 9.16.411	1.33 ± 0.43	0.21 ± 0.06	less than 0.004_	0.00026
Sandoval	13. 9.22.212	0.19 = 0.09	·		0.00009
Mt. Taylor Corp.	13. 9.29.343	2.30 - 0.30 -	less than 0.2	less than 0.004	0.0014
Greater Grants Airport	12.10.26,322a	0.75 = 0.27			0.00022
Anaconda #2	12.11.24.233	23.2 + 1.6	less then 0.2	less than 0.004	0.013

÷

ATTACHMENT IV

. ه. گر ۱۱ م. ۱۱

> Static Water levels of Wells in the San Andres-Glorieta Aquifer in the Vicinity of the Anacouda Millsite and Disposal Well

Well Rescription	Drie of Measurement	Static Water Level Feet Above Mean Sea Level
Anaconda Well #1	1- 8-62	6444 - 3
12.11.24.411	12-30-62	6446 - 7
Anaconda Well #2	1- 8-62	6443.7
12.11.24.233	12-30-62	6446.6
Anacomãa Well #3	1- 2-62	6440.8
12.11.25.213	12-30-62	6443.8
Anaconda Well #4	1- 2-62	6441.0
12.11.25.214	12-30-62	6443.3
Monitor Well #1	2-15-62	6447.5
12.10.8.332	12-13-62	6451.0
North Well	2-15-62	6453.1
12.10.7.143	12-12-62	6456.3

..