DAEC

SAFETY PARAMETER DISPLAY SYSTEM

SAFETY ANALYSIS REPORT

IOWA ELECTRIC LIGHT & POWER COMPANY December 30, 1983

8401090280 840103 PDR ADUCK 05000331 F PDR

TABLE OF CONTENTS

NG-83-4379 December 30, 1983 SPDS SAR

		- · · · · · · · · · · · · · · · · · · ·	Page
1.0	INTRODUCTION		1-1
	1.1	Purpose and Scope	1-1
	1.2	Terminology	1-2
	1.3	EOP/SPDS Compatibility	1-4
2.0	SPDS	DESIGN AND OPERATION	2-1
	2.1	System Description	2-1
	2.2	Levels of Display	2-3
	2.3	Human Factors Design Considerations	2-5
	2.4	Verification and Validation Program	2-7
3.0	SELECTION AND EVALUATION OF SPDS INPUT VARIABLES		3-1
	AND PARAMETERS		
	3.1	Selection Methods and Evaluation Criteria	3-1
	3.2	Type and Number of Variables Required to Assess Each Safety Parameter	3-4
	3.3	Variable Ranges	3-11
	3.4	Selection of SPDS Alarm Limits	3-13
	3.5	Reactor Mode Switch Indication	3-13
	3.6	Provisions for Validation of SPDS Data	3-13
4.0	PRELI	IMINARY 10 CFR 50.59 SAFETY EVALUATION	4-1
	4.1	Function and Design of SPDS	4-1
	4.2	SPDS Installation	4-3
	4.3	SPDS Operation	4-3
	4.4	Conclusion	4-4
5.0	SUMMARY AND CONCLUSION		5-1
6.0	REFERENCES		6-1

1 1

- i -

ATTACHMENT 1 SPDS Parameters and Associated Monitored Variables

ATTACHMENT 2 Variable Ranges

1.0 INTRODUCTION

1.1 Purpose and Scope

This report describes the basis on which the plant safety parameters and associated variables selected for monitoring on the Duane Arnold Energy Center (DAEC) Safety Parameter Display System (SPDS) have been determined to be sufficient to assess the overall safety status of the plant. This safety analysis has been prepared in response to Section 4 of Supplement 1 to NUREG-0737 and demonstrates that the DAEC SPDS adequately assesses plant safety in terms of the five critical safety functions identified in ANSI/ANS 4.5-1980. The analysis encompasses a wide range of events including the symptoms of severe accidents and all modes of reactor operation.

The principal basis for determining adequacy of the SPDS parameter/variable set is compatibility with the DAEC function-oriented Emergency Operating Procedures (EOPs). Because the DAEC EOPs were incomplete prior to the formulation of this safety analysis, direct determination of the compatibility of the EOPs and the SPDS was not possible. The DAEC EOPs are being written to conform to the DAEC Procedure Generation Package (PGP) (Reference 1). The PGP is used to translate the BWR Owners Group Emergency Procedure Guidelines (EPGs) (Reference 2) into DAEC-specific EOPs. Thus, all EOP compatibility considerations in this analysis are based on the EPGs referenced in the PGP.

Further discussion of SPDS/EOP compatibility and definitions of SPDS terminology used in this report are given in Sections 1.2 and 1.3. An overview of the DAEC SPDS design and installation is presented in Section 2.0. Selection and evaluation of SPDS input variables and safety parameters are discussed in Section 3.0. A preliminary 10 CFR 50.59 safety evaluation is presented in Section 4.0. Overall summary and conclusions are presented in Section 5.0, and references are listed in section 6.0.

1.2 Terminology

This section defines key SPDS terminology used in this report.

1.2.1 Critical Safety Functions

Critical safety functions are those safety functions that are essential to prevent a direct and immediate threat to the health and safety of the public. These functions are:

- Reactivity control,
- Reactor core cooling,
- Reactor coolant system integrity,
- Primary reactor containment integrity, and
- Radioactive effluent control.

1.2.2 Safety Parameters

Safety parameters are the quantitative and qualitative measures displayed by the SPDS to indicate the accomplishment or maintenance of each critical safety function. Information needed to assess the status of the plant safety parameters is obtained by the measurement of key plant variables. The safety parameters utilized by the SPDS to assess the maintenance or accomplishment of the critical safety functions as required by NUREG-0737, Supplement 1, are:

- Reactivity control,
- Reactor core cooling and heat removal from the primary system,
- Reactor coolant system integrity,
- Containment conditions, and
- Radiation control.

In the remainder of this analysis, safety parameters and critical safety functions are considered analogous. Also, subsequent references to the function of reactor core cooling and heat removal from the primary system will be shortened to "reactor core cooling".

1.2.3 Variables

Variables are those measures of system or safety parameter status or performance which are obtained directly from or derived or calculated from plant signals. Plant signals are obtained from monitoring and control sensors installed in the plant systems. Each variable is measured by one or more sensors, each of which produces a signal corresponding to the value of the variable being measured.

1.2.4 Plant Signals

Plant signals are the electronic or electrical outputs of the monitoring and control sensing devices installed in the plant systems. These devices are calibrated so that the signals produced correspond to actual values of the variables being measured.

1.2.5 Basis for Safety Functions

The five safety parameters are analogous to the safety functions used in ANSI/ANS 4.5-1980 and Section 4 of Supplement 1 to NUREG-0737. The above definitions of safety parameters and corresponding SPDS plant variables are based on the activities required to assess the integrity of and the potential for breach of the radioactive material barriers. The assessment of the reactor core cooling and reactivity control functions provides the information required to assess the potential for breach of fuel cladding integrity. The assessment of the coolant system integrity function provides the information required to assess the integrity of the nuclear system process barrier. The assessment of containment conditions provides the information required to assess the integrity and the potential for breach of the primary containment barrier. The assessment of the radiation control function provides the information required to assess radioactive releases to the environment resulting from breaches of one or more of the radioactive material barriers.

1.3 EOP/SPDS Compatibility

The BWROG Emergency Procedure Guidelines referenced in the DAEC Procedure Generation Package (PGP) provide specific direction regarding the maintenance or accomplishment of plant safety functions. There are four function-oriented Emergency Procedure Guidelines (EPGs):

- RPV control guideline
- Primary containment control guideline
- Secondary containment control guideline
- Radioactivity release control guideline

The RPV control guideline addresses the maintenance or accomplishment of the reactor core cooling, reactivity control and coolant system integrity functions. The primary containment control guideline addresses the maintenance or accomplishment of the primary containment integrity and radiation control functions. The secondary containment control and radioactivity release control guidelines further address the maintenance or accomplishment of the radiation.

As previously stated, the principal basis for determining adequacy of the SPDS parameter/variable set is compatibility with the EPGs. The EPGs referenced by the DAEC PGP were developed by the BWR Owners Group (BWROG) based on transient and accident reanalyses made in response to NUREG 0737 Item I.C.1 (Reference 3). The EPGs are designed to cover all emergency situations, and thus, the selection of an SPDS parameter and variable set which is compatible with the EPGs will provide coverage of a wide range of events, including severe accidents.

Details of the selection and evaluation process for the DAEC SPDS variables, including additional bases, are provided in Section 3.0.

2.0 SPDS DESIGN AND OPERATION

2.1 System Description

The SPDS will provide a concise display of critical plant information to the control room operators to aid them in rapidly and reliably determining the safety status of the plant. This information will consist of the status of safety parameters and the associated plant variables. The variables are derived from plant instrumentation systems.

The SPDS consists of three subsystems, each performing a major function:

- A data acquisition subsystem data acquisition
- A host processor subsystem data processing
- A colorgraphic user terminal data display and user communication.

2.1.1 Data Acquisition Subsystem (DAS)

The DAS encompasses signal acquisition, analog-to-digital conversion (ADC), digital input/output (I/O), and communication with the host processing subsystem. The DAS will interface with safety-related and nonsafety-related signals and will provide the required Class 1E electrical isolation and physical separation.

Three cabinets (division I, division II, and nondivisional) mounted at remote and separate locations will be configured to handle field input signals. The division I and division II portions of the DAS will be Class 1E-qualified hardware. The nondivisional cabinet will be made up of commercial grade equipment which is compatible with the 1E-qualified product line. The DAS will transmit data obtained from existing plant sensors and instrumentation to the host processor subsystem.

2.1.2 Host Processor Subsystem

The host processor subsystem will encompass program load facilities, a host processor, sufficient resident memory to support the processing needs of the SPDS, input/output device controllers, data storage facilities, and a programmer's console. Communication controllers and fiber optic modems required for communication and data transmission to and from the host processor subsystem will be provided. Adequate communication protocol and error-checking software will be provided. In addition, this subsystem will encompass the operating system, user and programmer software development capability, report generation capability, and task scheduling.

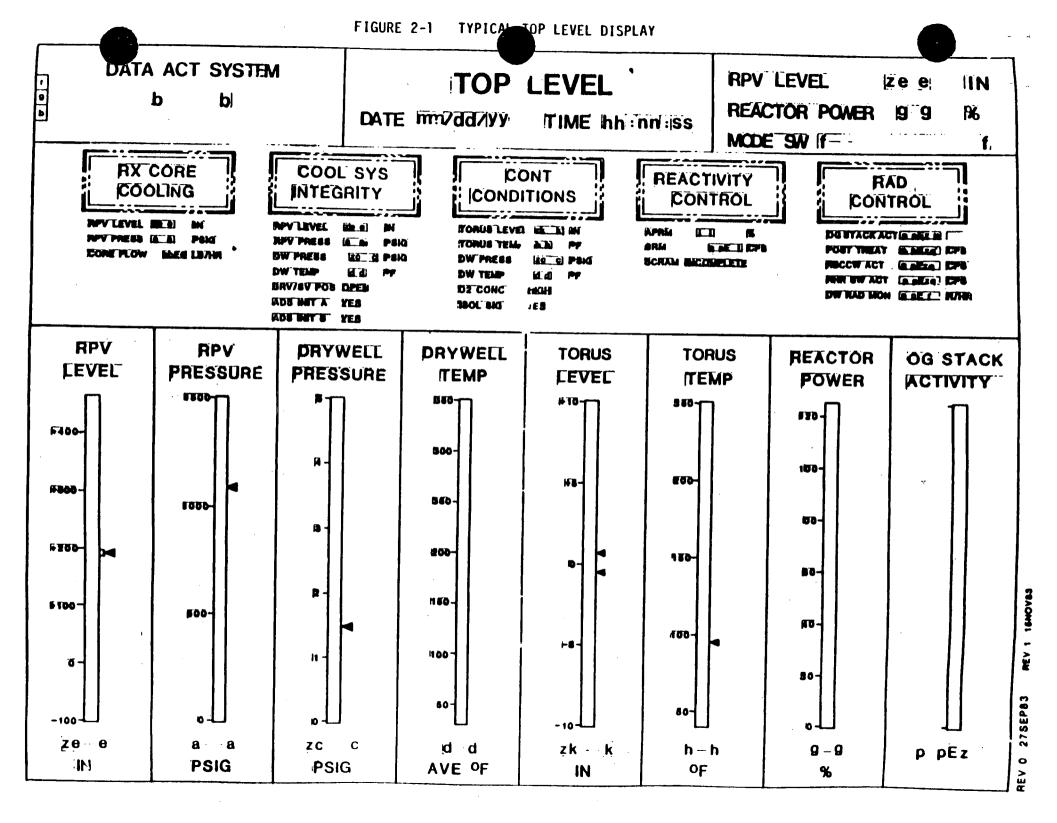
The host processor subsystem will be a commercially available computer, not qualified to any nuclear regulatory requirements. The processor will consist of Digital Equipment Corporation VAX family architecture, and will be software-compatible with all other VAX systems. The SPDS software package will provide services for data acquisition, calculation, alarms, historical data retention, user interaction, and display.

2.1.3 Colorgraphic User Terminal (CUT)

The CUT will encompass the hardware and software necessary for accepting, formatting, and generating displays. The design of the CUT will incorporate man-machine interface criteria and human factors engineering principles.

The system will provide function buttons and software to facilitate user interaction. Function buttons for display requests, alarm acknowledgements, and setpoint changes will be supported. A separate programmer's console will be provided for display generation and/or modification, updating software, and display formatting.

The high-resolution display of the CUT will contain its own microprocessor and user memory to store operational background displays. This CUT will be a commercially available intelligent display unit, not qualified to any nuclear regulatory requirements.


2.2 Levels of Display

The display set will consist of three levels of display. A single top level (level 1) display will provide an overview of plant safety status and contain five (5) safety parameter blocks along with analog (vertical bar graph) and digital values for critical variables (see figure 2-1 for a typical top level display). The five safety parameter blocks will also be included on each of the level 2 displays.

There will be five level 2 displays, one for each of the five safety parameters, which provide detailed information regarding the status of each parameter. These displays will contain thirty-minute trend information for selected variables and status information (real-time digital values) for all variables associated with each safety parameter. The current values of trended variables will also be displayed as vertical bar graphs along with digital values.

The level 3 displays will be X-Y plots of two variables, for example: 1) RPV SATURATION LIMIT (Reactor Coolant Temperature vs RPV Pressure), 2) TORUS LOAD LIMIT (Torus Level vs RPV Pressure), and 3) HEAT CAPACITY TEMPERATURE LIMIT (Torus Temperature vs RPV Pressure).

The analysis of the variable selection and evaluation process presented in Section 3.0 addresses all variables which contribute to the assessment of the status of each safety parameter using the level 1 and 2 displays. The level 3 displays present additional combinations of the individual level 1 and 2 display variables. The level 3 displays provide supplemental information for supporting the emergency operating procedures and are not considered essential for assessing safety parameter status. Therefore, the level 3 displays are not discussed further in this analysis.

2.3 Human Factors Design Considerations

This section describes the human factors design considerations followed to provide an effective user-oriented SPDS for DAEC. An interdisciplinary team of operations, control and instrumentation, and human factors engineers are involved in defining, creating, and reviewing the display devices and formats to provide a set of user-oriented displays consistent with the requirements of Supplement 1 to NUREG-0737 and the general guidance of NUREG-0696 and NUREG-0700.

2.3.1 Features

The display formats will be designed to have low information densities and to include that information required to support the task activities of the user. Further, the color saturation of certain colors will be modulated to reduce the visual dominance of the static background information. Extensive use of demarcation lines will be employed to separate classes of data or parameters. Four different colors will be used on the trend graphs for differentiation of information.

Simple display formats will be provided to reinforce user recognition of plant status. Vertical bar indicators are easy to associate with parameter values or magnitudes of a parameter since most control room boards contain vertical meters. A red (off-normal)/green (normal) outline will be used around the safety parameter blocks to continuously inform the operator of plant safety status. Additionally, a red (off-normal)/green (normal) color will be used to fill each of the vertical bars on the top level display.

Arrangement consistency will be maintained on the SPDS displays to the maximum extent practical. Certain groups of data common to more than one display (display titles, date/time, data acquisition system alerts, key variables, etc.) will appear in the same area on the displays. Additionally, the data in "system status" areas of the safety parameter displays will be ordered by importance. The areas will be ordered in a top-to-bottom ranking, with the most important data at the top.

The user will also be continuously informed of the validity of the data being displayed. Should the validity of the data be in doubt, a yellow "V" will be displayed following the numeric value.

If all sensors providing data fail or are taken out of scan, the numeric value for the variable will be replaced by asterisks (*). In no case will a display be void; an indication will always be presented to the user as an indication of system operation.

2.3.2 Graphic Coding

Pattern and color coding techniques will be used extensively to portray safety status in a graphic form for rapid recognition.

2.3.3 Pattern Coding

. . . .

As previously mentioned, vertical bar graphs have been selected as the means of presenting primary variable status indication. SPDS setpoint limits will be highlighted by prominent arrows on the bars of the top level display. This technique will allow for a range-of-value indication in a form easily comprehended by the user.

Colored outlines will be used to provide instantaneous plant function and key variable status indication. To aid green/red-color impaired users, the line width for red outlines will be greater than for green outlines, thus providing a redundant coding technique.

Trend graphs will be provided on level 2 displays for historical information over the previous 30-minute period. These magnitude-versus-time trend graphs allow for comparison of functionally related sets of variables. Up to four (4) variables will be presented on a single graph. Each variable on a graph will be assigned a specific line width and a related color. This too is to aid color-impaired users and to provide a redundant coding dimension.

2.3.4 Display Access

The top-level and the five safety parameter displays will be accessed or called up by dedicated pushbuttons. These buttons (bezel keys) will be located on a touch panel located directly below the CRT. Additionally, by using the keyboard function keys, the entire set can be accessed in forward or reverse order with the page plus or minus (PGP/M) buttons.

2.3.5 Control Room Location

The SPDS Colorgraphic User Terminal (CUT) will be readily accessible and visible to the control room personnel at their emergency work stations. The CUT will not interfere with the normal movement of the control room operations crew, and will not interfere with full visual access to other control room operating systems and displays. The SPDS terminal in the DAEC control room will be located at the emergency workstation of the shift supervisor.

2.4 Verification and Validation Program

The Verification and Validation (V&V) program for the Safety Parameter Display System (SPDS) for the Duane Arnold Energy Center (DAEC) is in accordance with the guidance of NSAC 39. In addition, verification of the safety-related aspects of the SPDS design will satisfy the requirements of ANSI N45.2.11-1974.

All V&V activities will be performed by individuals who are independent from the design effort and have sufficient experience and expertise to properly evaluate the various activities which affect the final design and installation of the SPDS.

Specific areas which will be covered by V&V activities are:

- Design requirements verification,
- Safety analysis report verification,
- Design and procurement specification verification,

- Hardware and software specification verification,
- Software development verification,
- System validation testing, and
- Post-installation field verification testing.

For each of the above V&V activities, qualified personnel will be assigned to perform the activities required to assure that all applicable design basis requirements are factored into the design and that the design is complete, correct, and unambiguous. An interim report will be issued at each phase of the V&V process wherein all discrepancies will be identified and resolved. A final V&V report will summarize the results of each activity, and document the completion of any corrective actions which may have been required.

3.0 SELECTION AND EVALUATION OF SPDS INPUT VARIABLES AND PARAMETERS

Selection and evaluation of the variable set for the DAEC SPDS began with a compilation of a preliminary variable set based on a detailed review of the function-oriented emergency procedure guidelines (EPGs) (Reference 2). Other SPDS designs were also examined to provide a second source of preliminary input to the DAEC variable selection process. Direct interviews of DAEC supervisory operations personnel were then conducted to provide valuable input from the future users' perspective coupled with DAEC-specific operations experience. The preliminary variable set was then further evaluated for adequacy in order to yield a variable set specifically addressing the DAEC plant design and the needs of DAEC operations personnel. Selection methods and evaluation criteria are discussed in the following subsection.

3.1 Selection Methods and Evaluation Criteria

The objective of this safety analysis report is to describe the basis upon which the set of input variables and parameters to be monitored by the DAEC SPDS has been determined to be sufficient to assess the safety status of each of the five critical safety functions over the spectrum of normal, abnormal, and accident or emergency plant conditions.

In order to provide an adequate assessment of safety status, both the type and number of variables monitored and the range monitored for each displayed variable must be sufficient to determine the maintenance or accomplishment status of each critical safety function for a wide range of events, including severe accidents and all modes of reactor operation.

3.1.1 Basis for Determining Adequacy

The principal basis for determining adequacy of the SPDS parameter/variable set is compatibility with the Emergency Procedure Guidelines (EPGs) (Reference 2). The EPGs are based on the reanalysis of transients and accidents required by NUREG 0737, Item I.C.1 (Reference 3) and are designed to cover all emergency situations including small-break LOCA, large-break

LOCA, transients with multiple failures or no failures, inadequate core cooling and reactivity events. The EPGs address operator errors by checking the effects of directed operator actions and providing guidance when operator actions are unsuccessful. The EPGs are organized to provide guidance for operator response to transients and accidents for the entire range of available systems (Reference 5). The DAEC Updated Final Safety Analysis Report (UFSAR) (Reference 6), the Technical Specifications (Reference 7), and the results of the BWR Graphic Display System Dynamic Screening Program (Reference 4), were also used to establish adequacy of the SPDS parameter/variable set.

The principal basis for determining adequacy of the ranges of the monitored variables is compatibility with the ranges and alarm setpoints provided by existing control room instrumentation for all modes of reactor operation.

The process of variable selection and evaluation, including additional bases for assessment of adequacy, are discussed in the balance of this section.

3.1.2 Selection and Evaluation Process

3.1.2.1 Review of EPGs

A preliminary set of SPDS variables was selected through a review of the current revision of the BWR Owners Group Emergency Procedure Guidelines (EPGs) (Reference 2) from which the DAEC EOPs are being prepared (Reference 1). The objective of the review was to determine those variables which the operators should monitor in order to assess the maintenance and accomplishment of the safety functions, and the effectiveness of contingency actions taken to restore or maintain the functions.

The variables selected from this review included those which define the EPG entry conditions associated with critical safety function assessment and all other variables from the EPGs directly related to safety function assessment. This preliminary variable set was then reviewed for consistency with DAEC UFSAR and Technical Specifications.

3.1.2.2 Review of DAEC UFSAR and Technical Specifications

The DAEC UFSAR and Technical Specifications were reviewed for information regarding the maintenance and accomplishment of each safety function during all modes of reactor operation. This review included the following, as applicable:

- system design bases and performance characteristics,
- transient and accident analyses,
- characteristics of various modes of operations,
- alarm limits, and
- Technical Specification bases.

The results of this review were factored into the preliminary variable set.

3.1.2.3 Comparison with BWROG Variable Set

The resulting variable set was then compared with the SPDS variable set developed by an ad-hoc working group of the BWR Owners Group (BWROG) Committee on Control Room Improvements as part of the Dynamic Screening Program (Reference 4). The BWROG variable set was initially selected based on Revision 1 of the EPGs. The initial BWROG variable set and corresponding displays were then tested for response to a wide range of transient malfunctions on a BWR simulator. Based on an evaluation of the results of the simulator transient tests, the initial variable set and displays were refined to produce a final recommended set of variables and displays.

The DAEC variable set included all of the BWROG variables except for the intermediate range power monitors (IRMs). The IRMs were considered for inclusion in the DAEC variable set; however, it was concluded that reactor power could be adequately monitored using the source range and the average power range monitors.

The results of the comparison of the DAEC variable set with the BWROG variable set helped to confirm the adequacy of the DAEC set.

3.1.2.4 Final Review and Verification

The variable list determined by the above process was then reviewed by DAEC supervisory operations personnel and verified for adequacy by an independent review team in accordance with the SPDS V&V plan.

3.1.2.5 Presentation of Results

The DAEC variables selected for monitoring each of the five critical safety functions are listed in Attachment 1. Section 3.2 provides a discussion of these variables by critical safety function. Each variable set is discussed in terms of:

- The variables which provide primary status indication for safety function;
- The plant systems which may be used to restore or maintain the safety parameters within safe limits, and the variables associated with monitoring the capability of these systems to perform their safety function; and
- The variables associated with monitoring the status or result of operator emergency actions to restore the safety parameters to within safe limits.

The analog ranges of displayed variables are listed in Attachment 2. Section 3.3 provides a discussion of the ranges monitored and displayed on the DAEC SPDS. Variable ranges are discussed in terms of compatibility with existing control room instrumentation and adequacy for monitoring and responding to a wide range of events, including symptoms of severe accidents and all modes of reactor operation.

3.2. Type and Number of Variables Required to Assess Each Safety Parameter

3.2.1 Reactivity Control

Reactor power provides the primary and the most directly interpretable measure of core reactivity. Therefore, in order to adequately assess the

reactivity control function, the operators must be cognizant of reactor power level, the status of preferred manual and automatic actions taken to reduce reactor power level when required, and the status of contingency actions to reduce reactor power level in the event the preferred methods are unsuccessful.

The neutron monitoring system (NMS), reactor protection system (RPS), control rod drive system (CRDS), and standby liquid control system (SLCS) are used to accomplish or monitor reactivity control. The SPDS provides neutron flux information via the source range monitors (SRMs) and the average power range monitors (APRMs). The SPDS also monitors SRM position to indicate whether the SRM probes are fully retracted or are fully inserted in the core. Scram signal initiation is monitored to indicate that a need exists to scram the reactor. The RPS scram signal for the SPDS is provided using RPS trip logic A1, A2, B1, and B2. The SPDS monitors control rod full-in position and displays an all-rods-in signal to indicate that the CRDS has accomplished the scram. The SPDS monitors standby liquid control tank (SLCT) level to confirm that an adequate supply of borated water is available in the event the SLCS is called upon. Indication of boron injection is provided by monitoring the SLCS pressure at the discharge header and confirming decreasing tank level.

Additional variables are monitored by the SPDS to reflect the result of operator action during a reactivity event. Following a reactivity event in which reactor isolation and boron injection are required, primary coolant may be discharged through the safety relief valves (SRVs) to the suppression pool at a rate that would depend upon the reactor power level. Depending upon the discharge rate, the operator may need to reduce reactor power to control suppression pool heat up during the boron injection. Tripping the recirculation pumps would reduce power to natural circulation levels, and the operator may further decrease power by lowering the RPV water level to reduce the natural circulation driving head. Boron injection could then continue until reactor power is reduced to shutdown levels. In addition to reactor power, SLCS pump operation and SLCT level, the following are displayed for monitoring operator actions in response to a reactivity event:

SPDS SAR RPV water level, SRV position, RPV pressure, total core flow, and torus water temperature.

NG-83-4379

December 30, 1983

The type and number of variables monitored by the SPDS for reactivity control enable the operators to monitor reactivity level, monitor the success of preferred manual and automatic actions to reduce reactivity level, and monitor the status of contingency actions to reduce reactivity level. These variables, therefore, provide for adequate assessment of the maintenance and accomplishment of the reactivity control function. A listing of the variables discussed above is provided in Attachment 1. The adequacy of the SPDS ranges of these variables for monitoring all normal, abnormal, and emergency plant conditions including the symptoms of severe accidents is discussed in Section 3.3.

3.2.2 Reactor Core Cooling

In order to adequately assess the reactor core cooling function, the operator must be cognizant of the reactor pressure vessel (RPV) water level and of the status of manual and automatic actions to increase or maintain RPV water level in a safe range.

Adequacy of core cooling is monitored by reactor pressure vessel water level indication. For events in which a scram occurs at reactor power above 3%, either automatically or manually, the operator must verify scram and proceed to control RPV water level and pressure with one or more of the following coolant injection systems: Feedwater (FW), Reactor Core Isolation Cooling (RCIC), High Pressure Coolant Injection, (HPCI), Core Spray (CS), Low Pressure Coolant Injection (LPCI) and Control Rod Drive (CRD)¹. Reactor power indication is obtained from the APRMs and is monitored to indicate successful scram initiation. Total core flow provides additional indication of core cooling. Performance of the feedwater system is indicated by monitoring total feedwater flow. Performance of the RCIC and HPCI systems

¹Reference 2, Level Control Guideline

is indicated by monitoring respective system flows in conjunction with injection valve open indication to ensure that the indicated flow is actually going to the core. Core spray and LPCI performance is indicated for each loop separately by monitoring each loop flow in conjunction with the respective injection valve open indication.

For small breaks in the primary coolant system, when the high pressure systems are not available, the automatic depressurization system (ADS) may be required to depressurize the reactor vessel so that the LPCI and core spray can operate to protect the fuel barrier¹. Performance of this system is indicated by monitoring ADS timer initiation and time to activation, safety relief valve (SRV) position, and reactor vessel pressure.

Adequacy of the water supply for the RCIC, HPCI, core spray and LPCI systems is indicated by monitoring torus and condensate storage tank levels.

The type and number of variables monitored by the SPDS for reactor core cooling enable the operators to monitor RPV level and monitor the status of manual and automatic actions to increase or maintain coolant level above the top of active fuel. These variables therefore, provide for adequate assessment of the core cooling function. A listing of the monitored variables discussed above is provided in Attachment 1. The adequacy of the SPDS ranges of these variables for monitoring all normal, abnormal, and emergency plant conditions, including the symptoms of severe accidents, is discussed in Section 3.3.

3.2.3 Reactor Coolant System Integrity

In order to assess the reactor coolant system integrity function, the operator must be cognizant of the potential for breach of integrity, indication that a breach may have occurred and status of actions taken to mitigate the potential for breach of integrity.

¹ Reference 7, Bases, Section 3.5(F)

Variables for monitoring potential or actual breach of reactor coolant system (RCS) integrity are reactor pressure, reactor pressure vessel level, drywell temperature, drywell pressure, and leakage flows to the drywell floor drain and/or equipment drain sumps. Reactor pressure provides indication of the potential breach of RCS integrity due to overpressurization. RCS depressurization may indicate that a breach of RCS integrity has occurred. Falling vessel level may also provide an indication that coolant system integrity breach has occurred. Increasing drywell temperature and pressure, and increasing leakage flow to the sumps all provide indication that integrity breach may have occurred and also provide information as to the magnitude of the breach. The SPDS monitors the leakage to the drywell floor sump and the equipment drain sump for determining both the unidentified leakage flow rate (drywell floor drain) and the total integrated leakage flow rate (drywell floor drain plus equipment drain sump)¹. Main steam isolation, safety relief and safety valves, when shut, are essential to maintain reactor coolant system integrity and are major paths for potential integrity loss. Main steam isolation, safety relief, and safety valves are monitored to indicate integrity breach through these paths. Automatic depressurization system timer initiation and time elapsed are also monitored to indicate the potential for SRV opening.

The type and number of variables monitored by the SPDS for reactor coolant system integrity enable the operators to monitor the potential for and magnitude of breach of integrity. These variables, therefore, provide for adequate assessment of integrity or isolation conditions in determining the status of this safety function. A listing of the monitored variables discussed above is provided in Attachment 1. The adequacy of the SPDS ranges of these variables for monitoring all normal, abnormal, and emergency plant conditions, including the symptoms of severe accidents involving reactor coolant system integrity breach, is discussed in Section 3.3.

¹ As defined in UFSAR Section 5.2.5

Ξ.

3.2.4 Containment Conditions

In order to assess the status of containment integrity, the operators must be cognizant of the potential for breach of integrity, the status of integrity, and the status of actions taken to mitigate the potential for breach of integrity.

Systems required to maintain primary containment integrity are the primary containment isolation system, containment atmosphere dilution (CAD) system and the suppression pool cooling mode of the RHR system. Variables required to monitor the potential for breach of the primary containment are drywell pressure, drywell temperature, torus water level, torus water temperature, and containment isolation valve status. The main steam isolation valves (MSIVs) close on containment isolation (Group 1) actuation and are monitored by valve position status. The status of containment isolation valves other than the MSIVs is monitored by indication of which valve groups, by number, have been called upon to isolate. The display identifies if isolation has been initiated and which valve groups are required to close. Actual valve position indication for verification purposes is adequately displayed in the control room by the containment isolation valve mimic and is not included in the SPDS. The CAD System prevents an $H_2^2 - O_2^2$ concentration buildup to a combustible level which, if ignited, could cause the loss of containment integrity. The SPDS monitors containment atmosphere status via inputs from the torus and drywell H_2 and O_2 concentration monitors. Torus water temperature provides adequate indication of suppression pool cooling. Safety valves, if open, will discharge into the drywell. Safety valves are

monitored by the SPDS for indication of this discharge. SRVs are monitored for indication of failure to close.

The type and number of variables monitored by the SPDS for containment conditions enable the operators to monitor the potential for breach of containment integrity, the status of integrity, and the status of actions to mitigate the potential for breach of integrity. These variables, therefore, provide for adequate assessment of containment conditions in determining the status of this safety function. A listing of the monitored variables discussed above is provided in Attachment 1. The adequacy of the SPDS

ranges of these variables for monitoring all normal, abnormal, and emergency plant conditions, including the symptoms of severe accidents is discussed in Section 3.3.

3.2.5 Radioactivity Control

In order to assess the status of the radioactivity control function, the operators must be able to monitor all identified release points.

The principal radioactive release point during normal, abnormal, and emergency plant conditions is the offgas stack. The SPDS monitors offgas stack radioactivity level. Containment radiation level is also monitored by the SPDS to enable the operators to assess the potential for releases resulting from accidents.

As discussed in Section 11.5 of the UFSAR, radiation monitors are provided on process liquid and gas lines to monitor potential discharge routes for radioactive material. These monitors include the post-treatment offgas, pre-treatment offgas, reactor building closed cooling water, general service water, RHR heat exchanger service water outlet, reactor building exhaust ventilation, and turbine building exhaust ventilation monitors. All of these variables are monitored by the SPDS.

The type and number of variables monitored by the SPDS for radioactivity control enables the operators to monitor all identified release points and to monitor the potential for releases as a result of accidents. These variables, therefore, are adequate to assess the status of the radioactivity control function. A listing of the monitored variables discussed above is provided in Attachment 1. The adequacy of the SPDS ranges of these variables for monitoring all normal, abnormal, and emergency plant conditions, including the symptoms of severe accidents, is discussed in Section 3.3.

3.3 Variable Ranges

The results of the variable range evaluation are presented in Attachment 2. Analog signals which provide input to the SPDS are identified with their corresponding ranges and applicable reference documents which identify the basis for the range. In general, the ranges monitored by the SPDS are identical to those ranges monitored by existing control room instrumentation. As stated in the UFSAR Section 7.5.1.1, an analysis of abnormal operational transients and postulated accidents presented in Chapter 15 of the UFSAR shows that the existing instrumentation provides appropriate wide-range information for conditions within the primary containment resulting from these transients and accidents. Extended range instrumentation, such as the drywell temperature and radiation monitors, was installed at DAEC in response to NUREG-0737. Where applicable, these extended ranges are displayed on the SPDS. All ranges displayed by the SPDS are adequate to cover the plant responses analyzed in Chaper 15 of the UFSAR and the reanalysis of transients performed in accordance with item I.C.1 of NUREG-0737.

Neutron flux information is provided in the range of 2×10^{-7} % to 125% of reactor power. The SRMs are utilized to monitor reactor power to an equivalent of 3% power, which sufficiently overlaps the lower end of the APRM range. Reactor scram is signaled by the APRMs at 120% power.

Existing DAEC safety-related instrumentation and their ranges are identified in Section 7.5.1.2 of the UFSAR. These include reactor water level from -100 to 218 inches referenced to the top of active fuel, reactor pressure from 0 to 1500 psig, drywell pressure from -5 psig to 3 times design pressure, drywell temperature from 0 to 350°F, drywell and torus oxygen concentration from 0 to 25%, drywell and torus hydrogen concentration from 0 to 10%, torus temperature from 40 to 2F, and torus water level over a range of 30 feet, referenced to the bottom of the torus. In all cases, except for oxygen concentration, the variable range monitored and indicated on the SPDS either meets or exceeds the required range as specified above. For drywell and torus oxygen concentration the monitored range is from 0 to 20% which is adequate for monitoring containment oxygen concentrations.

3-11

7 1

Since the threshold for flammability is at 5% oxygen concentration, no useful information would be obtained by monitoring above 20%.

Injection system flow rates are monitored for RCIC from 0 to 500 gpm, HPCI from 0 to 3,500 gpm, LPCI (each loop) from 0 to 15,000 gpm, and core spray from 0 to 5,000 gpm. In each case, the flow rate range monitored by the SPDS exceeds the design flow rate as identified in the UFSAR.

The feedwater system flow rate range monitored is 0 to 8 x 10^6 lbm/hr. Steam flow at design power is approximately 7.1 x 10^6 lbm/hr, as shown in UFSAR Table 10.2-1 and the maximum capability of the feedwater pumps is 115% of design rated flow. The monitored flow range encompasses the maximum feedwater flow rate.

Total core flow is monitored and indicated from 0 to 60 x 10^{6} lbm/hr which exceeds rated total core flow of 49×10^{6} lbm/hr, as specified in Section 2.1.a.1 of the Technical Specifications. Standby liquid control system pressure is indicated and monitored from 0 to 1800 psig which exceeds the system design pressure of 1400 psig as identified in Section 9.3.4.2 of the UFSAR.

The condensate storage and standby liquid control tanks are monitored from Q to 100% capacity. The standby liquid control tank level is displayed from O to 100% full, and the condensate storage tank (CST) level is displayed fro O to 24 ft. The range monitored for the CST covers the full 200,000-gallon capacity of each of the two condensate storage tanks, as identified in UFSAR Section 9.2.6.2.

The SPDS monitors leakage to both the drywell floor and equipment drain sumps over a range of 0 to 120 gpm. This range is sufficient to monitor the maximum allowable unidentified and total integrated leakage rates which are 5 gpm and 25 gpm, respectively, as specified in the Technical Specifications, Section 3.6.

The Automatic Depressurization System (ADS) valves are automatically opened two minutes after the receipt of an ADS initiation signal. The two-minute delay allows the operator to cancel the ADS initiation signal if conditions do not warrant ADS valve actuation. The SPDS monitors the time to safety/relief valve opening after receipt of an ADS initiation signal.

Containment radiation level is monitored from 1 to 10^7 rads/hr. This range is adequate for monitoring an accident environment as discussed in Section 12.3.3.4 of the UFSAR.

Ranges for the various radiation monitors are presented in Attachment 2. As discussed in Section 11.5 of the UFSAR, these ranges are adequate to monitor all values for normal system operations. Systems designed for post-accident use have extended ranges which envelope the values identified from the UFSAR Chapter 15 accident analysis.

3.4 Selection of SPDS Alarm Limits

Alarm limits for SPDS variables will be determined by reviewing the Technical Specifications and emergency procedure documentation for limiting safety system settings and other limiting values of the variables, as appropriate. The setpoint for each SPDS variable will be selected to provide indications consistent with existing plant alarm limits.

3.5 Reactor Mode Switch Indication

The SPDS will be designed to operate during all reactor operating modes, i.e. (1) startup/hot standby, (2) run, (3) shutdown, and (4) refuel. Reactor mode switch position is indicated on all SPDS displays.

3.6 Provisions for Validation of SPDS Data

The displayed value of each SPDS variable is determined by processing one or more plant signals. Valid/invalid indications are provided for all SPDS variables and are determined through systematic consideration of the type and number of signals available for each variable, the number of channels

available for each signal and system performance characteristics. As a minimum, all analog signals are checked for reasonableness against a validation table containing high and low limits for each signal. A signal that falls outside the validation range is flagged as invalid input data which prevents it from being used to determine the value of the displayed variable. A displayed variable which consists of a single analog input signal is generally determined to be valid or invalid based only upon the validation table comparison. However, in some cases, an analog signal from a single sensor is validated in conjunction with a digital signal from a different sensor depending upon system performance characteristics. For instance, a signal corresponding to an injection system flow rate may be determined to be valid negative signal corresponding to the injection valve being in the open position is present.

Displayed variables which are determined from two or more analog input signals are checked for validity against each other in addition to the validation table. With three or more signals, each signal is further compared against the average of valid signals. If input signals agree within a predetermined bandwidth, a variable will be displayed in its appropriate data field. Signals that do not agree flag a "unvalidated" condition. Thus, a displayed variable which consists of two or more input signals may be "valid", "unvalidated", or "invalid".

A "valid" variable is displayed in its appropriate data field. A "unvalidated" variable is also displayed in its appropriate data field, but is followed by a yellow "V" indicating that the variable is unvalidated and needs to be verified by the operator using information displayed elsewhere in the control room. An "invalid" variable is displayed as a series of asterisks in the appropriate data field.

4.0 PRELIMINARY 10 CFR 50.59 SAFETY EVALUATION

This evaluation analyzes the proposed function, design, installation, and operation of the Safety Parameter Display System (SPDS) to ensure that SPDS implementation does not involve an unreviewed safety question. The objective of the evaluation is to justify that: 1) the probability of occurrence or the magnitude of the consequences of an accident or malfunction as previously evaluated in the UFSAR will not be increased, 2) the possibility of an accident or malfunction of a different type than those previously evaluated in the UFSAR has not been created, and 3) the margin of safety as defined in the bases of any technical specification will not be decreased by the addition of the SPDS.

4.1 Function and Design of SPDS

The SPDS will provide a concise display of critical plant variables to the control room personnel to aid them in rapidly and reliably determining the safety status of the plant. The SPDS will be operated during normal operations, as well as during abnormal conditions. The principal purpose and function of the SPDS is to aid the control room personnel during abnormal and emergency conditions in determining the safety status of the plant. The SPDS will continuously display real-time information in the control room from which the plant safety status can be readily and reliably assessed by control room personnel.

The SPDS, however, is not a safety system and it will perform no active safety function. The existing control room instrumentation, as required by General Design Criteria 13 and 19 of Appendix A to 10 CFR 50, provides the operators with the information necessary for safe reactor operation under normal, transient, and accident conditions. The SPDS will be used in addition to the existing instrumentation and will serve to aid and augment it. For these reasons, Supplement 1 to NUREG-0737 directs that the requirements applicable to control room instrumentation are not needed for this augmentation (e.g., GDC 2, 3, and 4 in Appendix A; 10 CFR 100; single-failure requirements). The SPDS need not meet requirements of the single-failure criteria and it need not be qualified to meet Class 1E requirements.

The SPDS need not be seismically qualified, and additional seismically qualified_indication is not required for the sole purpose of being a backup for the SPDS.

Ç

The operation of the SPDS will require plant signals to be input from existing instrumentation and control circuitry; therefore, the SPDS is required to be suitably isolated from electrical or electronic interference with equipment and sensors that are in use for safety systems. The electrical isolation and seismic and environmental qualification provisions in the SPDS design will ensure that neither the normal operation (including testing and calibration) nor the periodic failure of any SPDS components will prevent existing instrumentation and control equipment from performing its safety-related function.

The graphic design of the displays and the location of the SPDS terminal in the control room will be human-factor engineered in accordance with the criteria of NUREG 0696 and NUREG 0700. Validation provisions will be designed into the SPDS software for each input signal. The human factors and signal validation provisions in the SPDS design will ensure that the monitoring and presentation of plant safety status information will not be misleading to the operators. Display conventions such as ranges, units, and color coding will be consistent with existing DAEC instrumentation. Indications of unvalidated or invalid data will be provided.

The SPDS implementation is subject to an extensive verification and validation (V&V) program which follows the guidance of NSAC 39. The verification portion of the V&V program will provide an independent review to verify that:

- All interfaces with existing safety-related and non-safety related equipment have been properly identified,
- The proper design standards have been invoked,
- The applicable design requirements have been properly implemented in the design, functional, and procurement specifications, and

The requirements of ANSI N45.2.11-1974 are followed for design verification of the safety-related interfaces of the SPDS.

4.2 SPDS Installation

The SPDS installation process does not involve an unreviewed safety question for the following reasons:

- The installation will be accomplished during a scheduled outage with the reactor in a cold shutdown condition, and strict administrative controls will be in force to ensure that none of the safety systems required to maintain the plant in a cold shutdown condition will be compromised.
- All work interfacing with existing safety-related equipment will be performed and documented in accordance with approved IELP installation procedures and quality control procedures for DAEC.
- SPDS calibration and thru-channel checks will be designed such that they cannot degrade Class 1E systems.
- Prior to startup, the operators will be trained on the modified Class 1E systems, existing system documentation will be updated, and "Postinstallation/modification testing" will be performed to ensure that the SPDS will not affect any safety-related functions. The acceptance tests will include all safety-related systems interfacing with the SPDS to show that their performance is not degraded.

4.3 SPDS Operation

The validation and field verification portions of the V&V program provide for comprehensive testing and documentation of test results to ensure the proper functioning of the SPDS in accordance with the design, functional and procurement specifications.

The SPDS will be designed and tested to comply with DAEC Class 1E isolation and separation criteria to assure that the performance of safety system functions will not be adversely affected. No technical specification changes are expected to be required for the operation of the SPDS.

The operation of the SPDS will not degrade operators' performance because, in addition to the human factors considerations included in the design, the operators will be trained in procedures which describe the timely and correct safety status assessment when the SPDS is and is not available. Operating procedures will be written to preclude the operator from taking actions based solely on SPDS display information. The operating procedures will require that all operator actions affecting the safety of the plant be based on information which has been confirmed using the existing control room indicators. The operators will also be trained to respond to accident conditions both with and without the SPDS available. Therefore, no transient or accident analytical results in the UFSAR will be affected by either the operation or the failure of the SPDS, nor will the potential be increased for a malfunction or accident of a different type than those previously described in the UFSAR.

4.4 Conclusion

·. -

The probability of occurrence or the magnitude of the consequences of an accident or malfunction as previously evaluated in the UFSAR will not be increased. The possibility of an accident or malfunction of a different type than those previously evaluated in the UFSAR has not been created. The margin of safety as defined in the basis of any technical specification will not be decreased by the implementation of the SPDS. The following is provided as justification for the above:

• The SPDS will perform no active safety function, and the provisions described in this section will be in force to ensure that the installation, operation, or failure of the SPDS will not degrade the performance of existing safety systems.

The potential for operator error will not be increased because the presentation of SPDS data will be consistent with existing control room indication, thorough training will be provided with and without the SPDS available, and no emergency action can be taken based on SPDS data alone.

Based on the above evaluation of the function, design, installation, and operation of the Safety Parameter Display System (SPDS), it is concluded that no unreviewed safety question is involved with the SPDS implementation.

5.0 SUMMARY AND CONCLUSION

4 1 1

This safety analysis report was prepared in response to Section 4 of Supplement 1 to NUREG 0737. This SAR describes the methodology and basis on which the plant safety parameters and associated variables selected for monitoring on the DAEC SPDS have been determined to be sufficient to assess the overall safety status of the plant in terms of the following five critical safety functions:

- Reactivity control,
- Reactor core cooling,
- Reactor coolant system integrity,
- Containment conditions, and
- Radioactivity control.

A preliminary variable set was first determined based on a review of the Emergency Procedure Guidelines (EPGs), consideration of SPDS designs for other BWR plants, and direct input from DAEC supervisory operations and engineering personnel. The preliminary variable set was then evaluated against the DAEC UFSAR, Technical Specifications, and ad-hoc BWR Owners Group (BWROG) simulator-tested variable set for sufficiency in terms of the type and number of variables monitored to assess each safety function, and the range of plant conditions covered by the variables. The final variable set covers all EPG entry conditions associated with critical safety function assessments, and includes essentially all variables recommended by the adhoc BWROG to monitor each critical safety function. The final DAEC variable set was then verified for adequacy by an independent review team in accordance with the SPDS V&V plan. On the basis of this selection and evaluation process, the DAEC safety parameters and associated variables are considered to be compatible with the DAEC EOPs and sufficient to assess plant safety over a wide range of conditions including the symptoms of severe accidents and all modes of reactor operation. The function, design, installation, and operation of the DAEC SPDS were also analyzed in accordance with the provisions of 10 CFR 50.59, and it was concluded that no unreviewed safety question is involved with the SPDS implementation at DAEC.

6.0 REFERENCES

. . .

- Iowa Electric Light and Power Company, "Procedures Generation Package for Duane Arnold Energy Center," NG-83-3565, October, 1983.
- Letter from T. J. Dente, BWR Owners' Group, to D. G. Eisenhut, NRC, subject: BWR Emergency Procedure Guidelines, Revision 3, December 22, 1982.
- General Electric Company, "Additional Information Required for NRC Staff Generic Report on Boiling Water Reactors, Volume 1, " NEDO-24708A, Revision 1, December 1980.
- 4. D. W. Buckley, et al., "BWR Graphics Display System Dynamic Screening Program," Vol. 1, Science Applications, Incorporated , February 1982.
- 5. Letter from D. G. Eisenhut, NRC, to Boiling Water Reactor Licensees of Operating Reactors, Applicants for an Operating License and Holders of Construction Permits, Subject: Safety Evaluation of "Emergency Procedure Guidelines, Revision 2", February, 1983.
- 6. Iowa Electric Light and Power Company, "Updated Final Safety Analysis Report for Duane Arnold Energy Center," Docket no. 50-331, June, 1983.
- Appendix A to Operating License DPR-49, "Technical Specifications and Bases for Duane Arnold Energy Center," Docket no. 50-331, February, 1974.

ATTACHMENT 1

SPDS SAFETY PARAMETERS AND ASSOCIATED MONITORED VARIABLES

SAFETY PARAMETER

Reactivity Control

VARIABLES

SRM Power APRM Power SRM position

Scram Signal

All-Rods-In Indication

Standby Liquid Control Tank Level

Standby Liquid Control System Discharge Header Pressure

ADS Train A Timer Initiation ADS Train A Time to Activation ADS Train B Timer Initiation ADS Train B Time to Activation

SRV Position

Reactor Vessel Water Level

Reactor Vessel Pressure

Total Core Flow

Torus Water Temperature

Reactor Core Cooling

Reactor Vessel Water Level

SAFETY PARAMETER

NG-83-4379 December 30, 1983 SPDS SAR

VARIABLES

APRM Power

Total Core Flow

SRV Position

RCIC Flow RCIC Injection Valve Position

HPCI Flow HPCI Injection Valve Position

Core Spray Loop A Flow Core Spray Loop B Flow Core Spray Loop A Injection Valve Position Core Spray Loop B Injection Valve Position

LPCI Loop A Flow LPCI Loop B Flow LPCI Loop A Injection Valve Position LPCI Loop B Injection Valve Position

Feedwater Flow

Reactor Vessel Pressure

Condensate Storage Tanks Level Torus Water Level

SAFETY PARAMETER

VARIABLES

Reactor Coolant System Integrity

Drywell Pressure

Drywell Temperature

Reactor Vessel Pressure

Reactor Vessel Water Level

Main Steam Isolation Valves Position

SRV and SV Valves Position

ADS Train A Timer Initiated ADS Train A Time to Activation ADS Train B Timer Initiated ADS Train B Time to Activation

Leakage Rate to Drywell Floor Sump

Leakage Rate to Equipment Drain Sump

Drywell Pressure

Drywell Temperature

Torus Water Level

Torus Water Temperature

Main Steam Isolation Valves Position

Containment Conditions

نۍ بر کا

SAFETY PARAMETER

NG-83-4379 December 30, 1983 SPDS SAR

VARIABLES

SRV Position

SV Position

Drywell O₂ Concentration Torus O₂ Concentration Drywell H₂ Concentration Torus H₂ Concentration

Isolation Valve Group Initation and Isolation Valve Group Number

Offgas Stack Activity

Reactor Building Exhaust Ventilation Activity

Turbine Building Exhaust Ventilation Activity

Containment High-Range Radiation Level

Reactor Building Closed Cooling Water Activity

RHR Heat Exchanger Service Water Outlet Activity

General Service Water Activity

Post-Treatment Offgas Activity

Pre-Treatment Offgas Activity

Radioactivity Control

ATTACHMENT 2

VARIABLE RANGES

DISPLAYED DISPLAYED VARIABLE RANGE BASIS FOR RANGE (1) Reactor Power (APRMs) 0% to 125% UFSAR sections 7.6.1.4, 7.6.1.7.6, and 7.6.2.7.2.1 Reactor Power (SRMs) 0 to 10^6 CPS Figure; 7.6-6 (counts per Technical Specifications, second) Limiting Condition of Operations section 3.9.B.2 -100" to 218" Reactor Vessel UFSAR, section 7.5.1.2.1 Water Level⁽²⁾ Reactor Vessel Pressure 0 to 1500 psig UFSAR, section 7.5.1.2.2 Drywell Pressure -5 to 250 psig UFSAR, section 7.5.1.2.3 0 to 350°F Drywell Temperature UFSAR, Section 7.5.1.3 Drywell 0, Concentration 0 to 20% UFSAR, Section 7.5.1.4.2 and Figure 6.2.-64 Drywell H₂ Concentration 0 to 10% UFSAR, Section 7.5.1.4.3 Torus 0, Concentration 0 to 20% UFSAR, Section 7.5.1.4.2 and Figure 6.2-64 Torus H_2 Concentration 0 to 10% UFSAR, Section 7.5.1.4.3

وت ريد رو قار

.

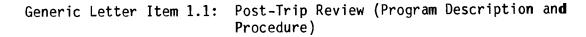
DISPLAYED	DISPLAYED	SAD2 28K
VARIABLE	RANGE	BASIS FOR RANGE (1)
Torus Water Temperature	40 to 250°F	UFSAR, Section 7.5.1.5
Torus Water Level ⁽³⁾	-15'to +15'	UFSAR Section 7.5.1.6
RCIC Flow	0 to 500 gpm	UFSAR Table 5.4-4
HPCI Flow	0 to 3500 gpm	UFSAR Table 6.3-1
RHR Flow (LPCI)	0 to 15,000 gpm	UFSAR Table 6.3-1
Core Spray Flow	0 to 5,000 gpm	UFSAR Table 6.3-1
(loops A and B)	(for each loop)	
Feedwater Flow (Loops A and B)	0 to 4x10 ⁶ lbm/hr (for each loop)	UFSAR, Table 10.2-1 and Sections 15.1.1. and 10.4.7.1
Total Core Flow	0 to 60 x 10 ⁶ 1bm/hr	Technical Specifications, Section 2.1.a.1
Condensate Storage Tanks Level	0 to 24 ft.	UFSAR, Section 9.2.6.2
Standby Liquid Control Tank Level	0 to 100% (82.5")	Technical Specifications, Section 3.4
Standby Liquid Control System Pressure	0 to 1800 psig	USFAR Section 9.3.4.2 Technical Specifications, Surveillance Requirements, Section 4.4.A

ية. الأجار الم

.

. .

DISPLAYED VARIABLE	DISPLAYED RANGE	SPDS SAR BASIS FOR RANGE (1)
Leakage Rate to Drywell Floor Sump	0 to 120 gpm	UFSAR, Section 5.2.5.2.2 Technical Specifications, Sections 3.6.C and 4.6.C, Bases; Reference 4
Leakage Rate to Equipment Drain Sump	0 to 120 gpm	UFSAR Section 5.2.5.2.2 Technical Specifications, Sections 3.6.C and 4.6.C Bases; Reference 4
ADS Train A Time	0 to 120 sec.	UFSAR, Sections 6.3.2.2.2 and 7.5.2
ADS Train B Time	0 to 120 sec.	UFSAR, Sections 6.3.2.2.2 and 7.5.2
Containment Radiation Monitor	1 to 10 ⁷ Rads/hr	UFSAR, Section 12.3.3.3.4
Reactor Building Exhaust Ventilation Activity	10 ⁻⁷ to 10 ⁵ u Ci/cc	UFSAR, Section 11.5.5.2, 11.5.5.4, and 11.3.3
Station Offgas Stack Activity	10 ⁻⁷ to 10 ⁵ u Ci/cc	UFSAR, Section 11.5.3
Reactor Building Closed Cooling Water Activity	.1 to 10 ⁶ cps ⁽⁴⁾	UFSAR, Section 11.5.4
RHR Heat Exchanger Service Water Outlet Activity	.1 to 10 ⁶ cps	UFSAR, Section 11.5.4


DISPLAYED	DISPLAYED	
VARIABLE	RANGE	BASIS FOR RANGE (1)
Turbine Building Exhaust Ventilation Activity	10 ⁻⁷ to 10 ⁵ uCi/cc	UFSAR, Section 11.3.3
Offgas System Pre- Treatment Activity	.1 to 10 ⁶ mr/hr	UFSAR, Section 11.5.3
Offgas System Post- Treatment Activity	.1 to 10 ⁶ cps	UFSAR, Section 11.5.3
General Service Water Activity	.1 to 10 ⁶ cps	UFSAR, Section 11.5.4

2. 2 1/2

TABLE FOOTNOTES:

- (1) Basis for range includes referenced documents presented and section 3.3 discussion.
- (2) Zero is referenced to top of active level.
- (3) Zero is referenced to center of torus.
- (4) CPS represents counts per second.

NRC Position

"Licensees and applicants shall describe their program for ensuring that unscheduled reactor shutdowns are analyzed and that a determination is made that the plant can be restarted safely. A report describing the program for review and analysis of such unscheduled reactor shutdowns should include, as a minimum."

Sub-Item 1: "The criteria for determining the acceptability of restart."

Iowa Electric Response

The following criteria are intended to show that there is a sound rationale, based on technical judgement, for the decision on the part of senior experienced operating plant personnel to exercise and justify a restart of the plant predicated upon: (1) operator knowledge of the plant; (2) control room indicators; and (3) existing plant procedures. This technical judgement shall ensure the following restart criteria are met:

- a. The plant is shown to be in a safe condition.
- b. The cause of the event is either understood or, after a detailed investigation, is considered to have been a spurious trip with a reasonably low potential for recurrence.
- c. The need for corrective action has been determined and appropriately implemented.
- d. The expected on-off automatic operation of plant safety-related systems has been observed.
- e. The approval of responsible plant management has been obtained.

Criterion (a)

The determination of the safe condition of the plant is assumed for the purpose of this discussion. Therefore, for the remainder of this discussion, it will be assumed that the safety limits have not been violated or exceeded and the issue at hand is one of justifying restart from a normal shutdown condition. If safety limits have not been violated and the plant is in a stable and safe mode, then the plant personnel may begin evaluation of the advisability of restart

Criterion (b)

The plant staff has many sources of information available to them which can be used both as a diagnostic tool in evaluating the cause of an unanticipated scram and in the identification of other than expected

REGULATORY DOCKET FILE COPY

performance of plant systems and equipment. The readout of both safety related and non-safety related indicators (including, as applicable, such sources as the process computer, alarm typer, strip chart recorders, and control room panel indicators) provide a basis upon which a technically defensible action can be initiated to determine the cause of the event, and assure that the cause of the scram no longer exists. (See 1.1.4 and 1.2). While no decision should be left solely to the information provided by a non-safety related device, actions can be taken or decisions made based on the status of such indicators, as long as agreement is demonstrated from the status of safety related indicators.

It is important to understand the cause of an unscheduled trip so that a recurrence can be avoided after restart. However, it is not realistic to ignore the possibility for spurious trips whose cause cannot be identified. In the event that the cause of the unscheduled reactor shutdown cannot be determined, and the safety systems have indicated a proper response, the Plant Superintendent-Nuclear, or his designee, may concur or approve a restart decision based on the following conditions:

- a. Any further reasonable actions to determine cause is considered.
- b. No physical damage was done by the event and a determination was made that the plant had not operated beyond the boundaries established by approved plant safety and transient analyses.
- c. Any reasonable action to gain additional information has been considered.

The discussion of the qualifications and responsibilities of the personnel making the restart recommendation is included in sections 1.1.2, 1.1.3, and 1.1.6.

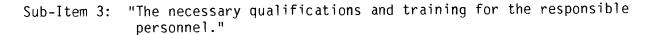
Criterion (c)

Once the preliminary cause of the event is determined, using control room supplied information, the plant personnel then needs to determine what, if any, corrective action(s) needs to be implemented. Such a decision can fall into these categories: (a) no corrective action is required: (b) corrective action is required but does not need to be performed before restart (i.e., Technical Specifications does not require action as a condition of restart): and (c) corrective action is required before restart.

Criterion (d)

If the operator determined that a particular system should have been initiated for a particular event, we need only establish that the system did indeed initiate and in the proper sequence. A detailed analysis of the actual performance of that system following an unscheduled shutdown is not a criterion for restart. Such a detailed analysis is accomplished through the normal surveillance testing procedure done at regular intervals. Confidence in the accuracy of control room readout is provided by the routine maintenance and surveillance activities associated with engineered safety features. and normally scheduled and performed calibration activities associated with such devices. Adherence to these efforts mitigates against the need to enter into a complete recalibration (i.e pressure, flow. operating times, etc.) or performance reevaluation of the adequacy of system operation.

Criterion (e)


The final approval for restart is the responsibility of the Plant Superintendent-Nuclear or his designee. His decision is based upon the recommendations of the various plant departments such as Operations. Maintenance Plant Performance, Health Physics etc.

Sub-Item 2: "The responsibilities and authorities of personnel who will perform the review and analysis of these events "

Iowa Electric Response

The Operations Shift Supervisor has the responsibility and authority to complete and file the scram report, which includes a preliminary determination of the cause of the event, as well as approve any necessary Maintenance Action Requests (MAR) prior to commencement of the repair activities. The Maintenance Superintendent (or designee) has the responsibility to insure that all necessary maintenance activities required for restart have been satisfactorily performed in accordance with the applicable maintenance practices and procedures The Plant Performance Supervisor (or designee) has the responsibility to evaluate the performance of the Reactor Protection Neutron Monitoring and Control Rod Drive Systems. The Shift Technical Advisor (STA) has the responsibility to provide technical assistance to the operating staff and to evaluate plant conditions during and following plant transients or accidents. The STA also files a report which describes the event and makes a preliminary determination of the root cause. The Operations Supervisor and Operations Shift Supervisor have the responsibility to assure that the cause of the reactor scram has been satisfactorily determined and that all the maintenance items required for restart have been completed. The Technical Support Supervisor has the responsibility to review the reports of the various departments for completeness and consistency and prepares a summary report for the Plant Superintendent The Plant Superintendent-Nuclear or his designee, the Assistant Plant Superintendent-Operations. has the responsibility to grant approval for plant restart based upon the recommendations in the Technical Support Supervisor's summary report

Iowa Electric Response

DAEC Technical Specification 6.3.1 requires that the gualification of individual members on the plant staff meet or exceed the qualifications referenced in ANSI N.18.1-1971 for comparable positions. These are described in detail in Section 13.1.3 of the DAEC UFSAR, except for the Maintenance Superintendent, who meets the qualifications of the Maintenance Manager described in ANSI N.18.1-1971. The STA shall have a bachelor degree or equivalent in a scientific or engineering discipline, with specific training in plant design and system response and analysis of plant transients and accidents, as required by Section 6.3.3 of the Technical Specifications. These requirements are based upon the NUREG-0737, Item I.A.1 quidelines.

Sub-Item 4: "The sources of plant information necessary to conduct the review and analysis. The sources of information should include the measures and equipment that provide the necessary detail and type of information to reconstruct the event accurately and in sufficient detail for proper understanding. (See Action 1.2)"

Iowa Electric Response

The following sources of information are available to aid in reconstructing the event and conducting the post-trip review:

- Panel Instruments: are used to verify status of various systems

 meters: indicate system parameters such as pump speeds, system
 flow rates, system pressures, etc.
 - valve position lights: indicate isolation of systems or
 - establishment of system flow path.
 - annunciators: indicate receipt of various system trip and alarm signals.
- Strip Chart Recorders: record the time history of various NSSS and BOP process variables, such as Reactor Pressure, Neutron Flux, Feedwater Temperature, etc.
- Process Computer Sequence-of-Events Recorder: indicates time signature at which various system trip setpoints were reached, such as, Reactor High Pressure, HPCI/RCIC Initiation, Turbine Stop Valve Closure, etc.
- Process Computer Post-Data Recall: provides a time history of selected NSSS analog variables for the time window beginning 5 minutes before until 5 minutes after the reactor trip and for 7 minutes before until 7 minutes after the trip for selected BOP variables.

• Operator Recall: provides verification of the above information. particularly for the panel instrumentation.

The above sources of information are sufficient for isolating the system which initiated the transient, identifying the primary trip signal which caused the reactor scram, determining the on/off indication of engineered safety systems, and giving time history of various NSSS and BOP system process variables. All of these are used to help reconstruct the event and help to indicate the root cause. The final determination of the root cause requires inspection and testing of systems and/or components identified by the above information sources.

Sub-Item 5: "The methods and criteria for comparing the event information with known or expected plant behavior (e g that safetyrelated equipment operates as required by the Technical Specifications or other performance specifications related to the safety function)."

Iowa Electric Response

The DAEC operators are trained to recognize and respond to operating transients and accidents. Their training includes transient and accident analysis, as well as computer simulator training on transient and accident mitigation. Procedures are written to direct operator action in these situations and form the bases for the above training The training and experience of plant operators and their proven ability to recognize and deal with abnormal events serves as the primary method by which actual plant behavior is compared to expected plant behavior.

The Technical Support Group, in preparing their report of the event, as necessary, compares plant response to the limiting transients described in Chapter 15 of the UFSAR, DAEC Reload Analysis, and GE Standard Application for Reload Fuel (GESTAR-NEDE 24011-P) to determine that plant behaviour was bounded by these events and that no Technical Specification Safety Limits were exceeded In the course of this review, they verify that safety-related equipment performed as expected, i.e., that systems and equipment tripped or initiated upon reaching the required instrument setpoints and that the reactor responded as expected. Actual system performance is inferred from the required by Technical Specifications (flowrates, discharge pressure response times, etc).

Sub-Item 6: "The criteria for determining the need for independent assessment of an event (e.g. a case in which the cause of the event cannot be positively identified, a competent group such as the Plant Operations Review Committee will be consulted prior to authorizing restart) and guidelines on the preservation of physical evidence (both hardware and software) to support independent analysis of the event."

Iowa Electric Response

If the cause of the reactor trip cannot be satisfactorily determined by the plant personnel, then additional Nuclear Generation Division support is requested. For complex equipment problems which cannot be successfully diagnosed or repaired by the plant maintenance staff, the equipment manufacturer's service organization is contacted If a Technical Specification Safety Limit is determined to be exceeded during the event then the Plant Operations Committee and the Iowa Electric Safety Committee will perform independent assessments of the event prior to plant restart. In such cases, the NRC must authorize restart as required by Technical Specification Section 6.7.

Pertinent documentation, such as the scram report, NSSS and BOP Logs, Strip Chart Recorder records, MARs. etc. are maintained by Plant Support Services in accordance with Administrative Control Procedure (ACP) 1402.1. "Records Management," and can be retrieved at a later date. The Technical Support group in addition to preparing a summary report for plant management describing the event its determined cause and restart recommendation, must also prepare a Licensee Event Report (LER), as required by 10 CFR 50.73, for submission to the NRC Both of these documents are maintained and can be used to reconstruct the event at a later date. The STA also prepares a report after the event which can be used to reconstruct the event later. This report includes such information as the initial plant conditions, a description of the event, a preliminary cause of the event, the operator actions taken maintenance recommendations and recommendations for future actions

Sub-Item 7: "Items 1 through 6 above are considered to be the basis for the establishment of a systematic method to assess unscheduled reactor shutdowns. The systematic safety assessment procedures compiled from the above items which are to be used in conducting the evaluation, should be in the report."

Iowa Electric Response

The process used at Iowa Electric for analyzing unscheduled reactor shutdowns is described in DAEC procedure 1410.8. "Post-Scram Review " (see Appendix I). The following is a brief summary of the procedure.

This procedure outlines the review program to analyze unscheduled reactor shutdowns and determine if the plant can be restarted safely Use of this procedure applies to automatic and manually initiated scrams that result in control rod movement.

The Operations Shift Supervisor. Shift Technical Advisor, Plant Performance Supervisor, Maintenance Superintendent and Radiation Protection Supervisor, or designees in their absence, will evaluate the scram relative to their areas of expertise and make recommendations for action and restart to the Technical Support Supervisor. The

Technical Support Supervisor will review the event and the information provided to him by the aforementioned plant sections The Technical Support Supervisor will summarize the conclusions, open items and recommendations for restart to the Plant Superintendent, or his designee in his absence. The Plant Superintendent is then responsible for reviewing the summarized information initiating action to resolve open items, and authorizing the Operations Department to begin restart activities.

The format of each department's evaluation or report is determined by The general content of each evaluation or the individual department report is as follows. The Scram Report prepared by the Operations Shift Supervisor includes a description of the pre-event conditions and the event itself, the plant response, plant data, the preliminary determination of the cause, any observed anomalies or problems, and recommendations for action. The Shift Technical Advisor Incident Report describes the event, the plant response a preliminary determination of the cause, any observed anomalies or problems and The Plant Performance Supervisor makes an recommendations for action evaluation of the key reactor parameters in relation to the scram identifies any observed anomalies or problems. and makes recommendations for restart. The Maintenance Superintendent describes the equipment failures and repair activities for the equipment relevant to the scram, evaluates the potential for similar future failures. identifies any observed anomalies or problems and makes recommendations for restart.

The Technical Support Supervisor reviews the provided information for consistency, compatability, and completeness He ensures a satisfactory resolution is obtained for any discrepancies noted among the various plant sections. His primary focus is to ensure equipment and systems important to safety performed as designed, to ensure adequate consideration has been given to determine the root cause. to minimize the potential for future recurrence, to address generic implications and to determine the effect on safe operation of the plant.

NRC Position

"Licensees and applicants shall have or have planned a capability to record, recall and display data and information to permit diagnosing the causes of unscheduled reactor shutdowns prior to restart and for ascertaining the proper functioning of safetyrelated equipment.

0

A report shall be prepared which describes and justifies the adequacy of equipment for diagnosing an unscheduled reactor shutdown."

Iowa Electric Response

The information display and recording instrumentation systems installed at the DAEC are described in Chapter 7 of the Updated FSAR. These instrumentation systems were designed for the licensing requirements that existed at the time the original operating license was granted for the DAEC. This instrumentation has been expanded since the original licensing reviews as needed to meet the necessary licensing requirements, for example, NUREG-0737.

As the information requested in the NRC position is beyond the original licensing requirements, Iowa Electric has initiated a review to specifically identify information capability that assists in assessing the causes of unscheduled reactor shutdowns and the proper functioning of safety-related equipment. The result of this review is that current data and information capability is adequate for performing these tasks.

The following discussion describes the data and information capability for diagnosing unscheduled reactor shutdowns and verifying the proper functioning of safety-related equipment.

An unscheduled reactor shutdown is a shutdown that is automatically initiated by the Reactor Protection System, or manually by the operators in response to an abnormal event. The parameters that initiate an automatic scram are specified in Table 3.1-1 of the DAEC Technical Specifications.

In reconstruction of the event, the first step is to identify the parameter or circuitry that initiated the scram. This is determined from three primary sources of information:

- i) Control Room Annunciators and Operator Observation
- ii) Process and Alarm Computer Outputs and Strip Chart Recorder Records
- iii) Circuitry Status Review (such as identifying de-energized relays in the Reactor Protection System)

....

These do not, however, provide the final identification of the root cause of the scram, as there are many scenarios by which each of the primary RPS trips given in Appendix A can be initiated. Review of mechanical and electrical drawings and system logic, coupled with component inspection and testing will continue to be the primary means by which the root cause of a scram is diagnosed. However, installed instrumentation will usually provide a preliminary indication of the root cause by isolating the system or component which initiated the event.

In addition to determining the root cause of the event, one must also verify that engineered safety systems performed as required prior to any restart activity. This involves determining that systems tripped or activated as required upon reaching the proper setpoints and that such actions were carried through to their logical conclusion, i.e., that systems isolated or flow paths were established by the proper functioning of valves, that pumps started, etc.

These are verified by the following sources of information:

- a) Establishment of Initiation/Trip setpoint is verified by control room annunciator alarms and process computer alarm printer output.
- b) Proper functioning of valves is verified by panel valve position indicating lights and process computer alarm printer output.
- c) Proper functioning of pumps, turbines, heat exchangers, etc., are verified by panel indicating meters and strip chart recorders.

Expected system performance, such as flow rates, discharge pressures, start-up times, etc., is not directly demonstrated and must be inferred from the regularly scheduled surveillance testing of the equipment as required by Technical Specifications.

The following is an item by item response to the requests for information in Generic Letter Item 1.2.

Sub-Item 1.2.1: "Capability for assessing sequence of events (on-off indication)"

Iowa Electric Response

1) Brief Description of Equipment (e.g., plant computer, dedicated computer, strip chart)

Plant Strip Chart Recorders and the Process Computer support reconstructing the sequence of events. The Process Computer has approximately 1100 analog and digital inputs that are time sequenced on the alarm output printer. The alarm printer provides time signatures for these data points to the nearest second or cycle (1/60 of a sec.), depending on the alarm point priority, sequencing and computer scan class. Low priority computer inputs are stored in the computer during

periods of maximum printer demand and are subsequently printed out at a later time. A special routine on the Process Computer, known as the NSSS Post-Trip Log, provided digital values for several key parameters for the time window beginning 5 minutes before the reactor scram until 5 minutes after the scram. These parameters include Core Thermal Power, Total Core Flow, Reactor Water Level, Reactor Pressure, etc. The scan rate for each of these digital inputs is once every 5 seconds. A similar post-trip log of BOP variables is also provided by the computer, for the time window beginning 7 minutes before to 7 minutes after the scram at a scan rate of every 30 seconds. The selected variables include Turbine/Generator parameters. Feedwater System parameters and Condenser parameters. The Strip Chart Recorders provide such information as Neutron Flux, Recirculation Pump Flow, ECCS parameters, Feedwater and Condensate System parameters, Containment parameters, Radiation Monitoring, Ventilation System parameters and Turbine-Generator variables.

1.2.1.2 Parameters Monitored

A complete listing of computer points is given in Appendix A. The key NSSS and BOP parameters which receive the highest priority on the Alarm Printer are designated in the Appendix A list by scan addresses D500 and D600 respectively and by Scan Class (SC) of "S". The NSSS Post-Trip log variables are given in Appendix B. The BOP Post-Trip log variable list can also be found in Appendix B. The parameters monitored by the plant strip chart recorders are identified in Appendix C. The control room annunciators are depicted in Appendix D, by individual panel array.

1.2.1.3 Time Discrimination Between Events

The plant computer sequences events and identifies the time signatures of NSSS & BOP parameters, designated by the D500 or D600 series scan address in Appendix A, to the nearest cycle (1/60 of a second). The remaining computer parameters are displayed with time signatures to the nearest second. The discrimination of events on strip chart records is dependent on recorder speed (see Appendix C) and the time duration of the individual transient. The scan rate for the NSSS Post-Trip Log is once every 5 seconds, while the BOP Post-Trip Log scan rate is once every 30 seconds.

1.2.1.4 Format for Displaying Data and Information

A sample printout from the Process Computer Alarm Printer is included in Appendix E. The following is a brief description of the format. The date is given at the top of the page and beginning in the left-most column is the time signature in hours, minutes and seconds, followed by the cycle (if applicable), type of alarm point (e.g., SEQ = sequential, ALM = Alarm, NORM = normal), computer scan address, instrument description, and instrument status. Note that the primary variables are indented slightly to distinguish them from the remaining computer points. Also, a time signature beginning with the number "3"

indicates that the information was stored in the print buffer and is not real-time. (low priority computer points only).

Example printouts of the NSSS and BOP Post-Trip Logs are also provided in Appendix F. The time of the reactor trip is identified in the Title Banner, followed by a tabular listing of the parameters listed in Appendix B, identified by scan address, for the applicable time window and scan rate.

Plant Strip Chart Recorders are similar to those utilized elsewhere in the industry, consisting of pen and ink traces of analog variables on gridded paper.

1.2.1.5 Capability for Retention of Data and Information

Strip Chart records are retained in hard copy form. Computer Alarm printer records are retained on microfilm. Control Room Panel Annunciators require Operator recollection, the most important of which are logged in the operator logs and in the post-scram report

1.2.1.6 Power Source(s) (e.g., Class 1E, non-Class 1E, non-interruptable)

The Process Computer is powered by the un-interruptable Motor-Generator set, which is non-Class 1E The Strip Chart Recorders and Panel Annunciators receive power from various power sources.

- Sub-Item 1.2.2: "Capability for assessing the time history of analog variables needed to determine the cause of reactor shutdowns, and the functioning of safety-related equipment."
- 1.2.2.1 Brief Description of Equipment (e.g., plant computer, dedicated computer, strip charts)

In addition to the sources described in Item 1.2.1.1 above, Control Room Indicating Meters and Valve Position Indicating Lights are used to verify the proper functioning of safety-related equipment.

1.2.2.2 Parameters Monitored, Sampling Rate, and Basis for Selecting Parameters and Sampling Rate

> See Appendices C and A for the parameters monitored by Strip Chart Recorders and the Process Computer respectively A listing of Selected Control Room Indicating Meters and Valve Position Indicating Lights can be found in Appendix G.

The Analog and Post Scram Log Computer sampling rate depends on the Scan Class (SC) of the particular variable The scan class of each computer point is given in Appendix A and is translated as follows

SC 2 = 15 seconds SC 3 = 30 seconds SC 4 = 60 seconds

Certain analog alarms have an immediate priority and are provided time signatures coinciding with the occurrence of the event. These are designated by Scan Class "S".

These parameters and sampling rate were chosen based upon the original recommendation of the NSSS and Turbine-Generator supplier and have been modified as the need for additional data points, information sources and changes in printer priority have been identified.

1.2.2.3 Duration of Time History (minutes before trip and minutes after trip)

Strip Chart Recorders and Control Room Indicating Meters and Valve Position Indicating Lights provide continous output. As discussed in Item 1.2.1.1, key parameters are stored by the NSSS Post-Trip Log and provided in 5 second intervals for 5 minutes before until 5 minutes after the scram. The BOP Post-Trip Log time window is 7 minutes before until 7 minutes after the scram and are provided in 30 second intervals.

1.2.2.4 Format for Displaying Data Including Scale (Readability) of Time Histories

See Item 1.2.1.4 for the description of computer printouts. See Appendix C for the scale of the various Strip Chart Recorders.

1.2.2.5 Capabililty for Retention of Data, Information and Physical Evidence (Both Hardware and Software)

Strip Chart records are retained in hard copy form, while Computer printouts are retained on microfilm. As with Panel Annunciators, Indicating Meters and Valve Position Indicating Lights require operator recollection and logging in the post-scram report for permanent retention.

1.2.2.6 Power Source(s) (e.g., Class 1E, non-Class 1E, non-interruptable)

See Item 1.2.1.6 above. Control Panel Meters and Valve Position Indicating Lights are powered from various sources.

Sub-Item 1.2.3: "Other Data and Information Provided to Assess the Cause of Unscheduled Reactor Shutdowns."

Operator observation of plant response and panel instrumentation, review of design documents, maintenance inspection and testing play vital roles in determining the root cause of reactor scrams.

Sub-Item 1.2.4: Schedule for Any Planned Changes to Existing Data and Information Capability."

Planned upgrades have been described in various licensing submittals and are included in the Iowa Electric Integrated Plan and Schedule. These improvements are beyond the scope of this Generic Letter and no credit will be taken for these changes with regard to the Salem ATWS concerns. Generic Letter Item 2.1: Equipment Classification and Vendor Interface (Reactor Trip System Components)

NRC Position

Sub-Item 1: "Licensees and applicants shall confirm that all components whose functioning is required to trip the reactor are identified as safety-related on documents procedures, and information handling systems used in the plant to control safety-related activities, including maintenance, work orders and parts replacement."

Iowa Electric Response:

NUREG-1000 notes that the Reactor Trip System is the system that initiates a scram, including sensors, power supplies etc. as described in Section 3.1.2.5 of NUREG-1000. The GE Boiling Water Reactor (BWR) Trip System design differs from the design of Pressurized Water Reactors. The GE Reactor Trip System consists of redundant plant process instrumentation that feeds a one out of two taken twice logic that initiates a reactor trip. The trip of the scram logic relays deenergize solenoid-operated scram pilot valves which in turn vent the air from the scram valve diaphragms causing insertion of the control rods. These components which carry out this process are contained within several systems of a BWR rather than a single system called a reactor trip system. Instead GE has identified those systems which perform the reactor trip function (RTF) for the DAEC

- (a) The Neutron Monitoring System, Process Radiation Monitoring System, Control Rod Drive System and Nuclear Boiler System provide the sensor inputs to the Reactor Protection System. Also, several sensors are contained within the Reactor Protection System itself.
- (b) The Reactor Protection System contains the relay logic, power supplies, etc. for de-energizing the scram pilot valve solenoids
- (c) The Control Rod Drive System contains the scram pilot valves which insert the control rods completing the initiation of a scram.

Since creation of a Reactor Trip System (RTS) would cause confusion with existing plant system definitions. Iowa Electric has decided to respond to this item in the Generic Letter by using the RTF approach. The specific components that form the RTS will not be separately identified.

Iowa Electric maintains a single document. Q-200 Quality List to define the safety classification of components installed at the Duane Arnold Energy Center. All documents and procedures, including those related to maintenance, work orders and parts replacement activities rely on the Q-200 Quality List for safety classification of components. Therefore. Iowa Electric will only need to review the Q-200 Quality List to respond to this item. The NRC's concern, based upon the incident at the Salem Nuclear Station. is that components required to trip the reactor are incorrectly designated as non-safety related on equipment classification lists. The NSSS supplier (General Electric) has supplied Iowa Electric with a list of systems which are part of the RTF. Therefore, Iowa Electric will verify that all RTF components that are designated as non-safety on the 0-200 Quality List are, indeed, non-safety related. This review is scheduled to be completed by July of this year. Any corrections to the Q-200 Quality List, which are required as a result of this review. will be made in accordance with Iowa Electric's Quality Assurance Procedures on, or before, December 31, 1984.

Sub-Item 2: "In addition, for these components, licensees and applicants shall establish implement and maintain a continuing program to ensure that vendor information is complete, current and controlled throughout the life of the plant, and appropriately referenced or incorporated in plant instructions and procedures "

Iowa Electric Response:

Iowa Electric primarily relies upon the GE Customer Services Organization to obtain vendor information on the RTF components. as well as the remaining systems within the GE scope of supply. For GE supplied RTF components GE has, in addition to urgent utility communication procedures and the reporting requirements of 10 CFR 21 various service information systems which convey special information to BWR owner-operators to help them service, maintain or operate their BWRs in a more effective way so as to result in improved performance lessening of outage time or prevention of possible operating problems. Service Information Letters, (SILs) in particular are generic in nature, may address both equipment and/or procedures, and may even recommend action on equipment not originally furnished by General These systems therefore, provide channels for formal Electric. communication on all recognized safety problems/concerns and channels for special, generic concerns, problems and recommendations.

The process by which this information is made available to utility personnel for review is described in Nuclear Generation Division (NGD) procedure 102.1, "Review of Industry-Related Documents." This also covers the handling of technical information from other key sources as well, such as INPO/NSAC Significant Operating Experience Reports (SOER) and NRC IE Bulletins Circulars, and Information Notices

The above program ensures that vendor information on RTF components is current, complete and controlled throughout the life of the plant The The following paragraphs describe various GE communication channels

Safety Concerns

Safety concerns are dealt with in the following manner:

 $10 \ \text{CFR} \ 21 \ \text{Reporting}$ - The General Electric Company has established a reporting system to handle safety concerns that complies with the requirements of 10 CFR 21.

<u>Urgent Communications</u> - In addition to the 10 CFR 21 reports, a procedure for handling urgent communications to BWR owner/operators has been established for use in providing fast notification of safety concerns. These communications are usually in the form of a short letter which provides a brief explanation and advice or precautionary measures to be observed to avoid a potential operational hazards. Due to their urgent nature, these communications are processed to operating plants by the most effective method (i.e., telex, telecopy, cable, special mail handling, etc.). Verification of receipt is usually handled by telephone confirmation.

Other GE Information Systems

Several other information systems exist to provide channels of communication for various types of information:

Service Information Letters (SILs) - These documents usually provide recommendations for equipment modification, plant design improvements or changes to procedures to improve plant performance. They have a positive feedback mechanism for guaranteeing receipt of the information by the utility. The utility returns the cover letter, indicating receipt and proposed resolution of the SIL. The status of SILs is also discussed at the quarterly customer service meeting between GE and the utility.

<u>Service Advice Letters</u> - These documents are issued by GE Product Departments other than the San Jose based Nuclear Energy Product Departments and are used to provide notification of product problems and/or service information on a broad range of GE consumer and industrial products. Those Service Advice Letters that are recognized by the issuing product department as applying to devices used in nuclear plants are specially identified and are flagged for distribution to all nuclear plants. Utilities can verify that they have received any applicable SALs by contacting their local GE district office and obtaining the most current index.

Turbine Information Letters (TILs) - TILs are issued by GE's Large Steam Turbine Generator Department to provide descriptions that will mitigate problems or improve product performance. As with SILs, TILs have a positive feedback mechanism of returning the cover letter indicating utility receipt and proposed resolution of the TIL. <u>Operation and Maintenance Manuals</u> - These documents are issued by all GE product departments to provide instructions for installation, operation and maintenance of GE designed repairable equipment and systems. Final revisions to the manuals provided for the NSSS scope of supply are delivered as contractually required, but usually are shipped at about the time of plant commercial operation.

Application Information Documents (AID's) - are white papers that describe potential operating problems and provide design changes or operating recommendations to avoid them. These documents are primarily aimed at requisition plants, but are also forwarded to operating plants when they have any applicability to those plants.

Field Disposition Instructions (FDIs) - This system is used to communicate engineering instructions to the field that implement approved design modifications of GE supplied NSSS equipment or procedures, authorize field work, and confirm that the tasks have been completed on requisition plants.

Field Deviation Disposition Requests (FDDR's) - This system is used to communicate requests for nonconformance dispositions on GE supplied NSSS equipment or service on requisition plants.

Generic Letter Item 2.2.1: Equipment Classification (Programs for All Safety-Related Components)

NRC Position

"For equipment classification, licensees and applicants shall describe their program for ensuring that all components of safetyrelated systems necessary for accomplishing required safety functions are identified as safety-related on documents, procedures, and information handling systems used in the plant to control safety-related activities, including maintenance, work orders and replacement parts."

Sub-Item 1: "The criteria for identifying components as safety-related within systems currently classified as safety-related."

Iowa Electric Response

The current criteria used for identifying components as safety-related are defined in the Iowa Electric Corporate Quality Assurance Manual, Chapter 2, Section 2.2.1, "Quality Level I."

Equipment purchased as part of the original plant were procured and classified in accordance with the Updated FSAR criteria.

Sub-Item 2: "A description of the information handling system used to identify safety-related components (e.g., computerized equipment list) and the methods used for its development and validation."

Iowa Electric Response

The Iowa Electric information handling system used to identify safetyrelated components is a computerized equipment list known as the "Q-200" list. The Design Engineering Department has the responsibility for developing and maintaining this list. Administrative Control Procedure (ACP) 1202.6 Section 6.2 "Safety Evaluations" describes the process for making modifications to the Q-200 List, while ACP 1202.8 "Safety-Related Classification List" details the process for making changes to the information handling system.

Iowa Electric has recently implemented a new Quality Assurance Program. As part of this program a new set of equipment classifications has been developed. We are developing a procedure, NGD 102.4, "Quality Level Designation", which provides guidelines to be used by all organizations which support the DAEC in determining the Quality Level of systems, structures and components. We currently expect to have this procedure issued by the end of April of this year. This will necessitate that the Q-200 List be updated to correspond to these new Quality Level definitions. As part of this update process, the current Q-200 List of safety-related components will undergo reverification. This update program is currently scheduled to begin May 1984 and tentatively scheduled to be completed by the end of 1985. As part of the BWROG effort previously described, the committee has contracted GE to help develop quidelines for classifying equipment as safety-related. These quidelines can be used as an educational tool for instructing utility personnel in the classification of components. The BWROG committee has made these quidelines available to utilities in its final report. Iowa Electric will review this information and incorporate it into the above procedures, as deemed appropriate.

Sub-Item 3: "A description of the process by which station personnel use this information handling system to determine that an activity is safety-related and what procedures for maintenance, surveillance, parts replacement and other activities defined in the introduction to 10 CFR 50, Appendix B, apply to safety-related components."

Iowa Electric Response

Determination of safety-related activities is based upon the component's classification on the Q-200 List. If a component is classified as safety-related, then testing and maintenance activities on that component, if the activity is determined to affect the safetyrelated function of the component, are classified as safety-related.

The control of plant work on safety-related components is described by DAEC procedure 1408.1, "Corrective Maintenance." This procedure addresses the controls for the use of maintenance instructions, parts replacement, quality control, testing, and return to service for safety-related corrective maintenance. Preventative maintenance activities are controlled by ACP 1406.1, "Preventative Maintenance Program."

The Q-200 update program described previously is part of a larger program for installing an equipment database management system called the Computerized History and Maintenance Planning System (CHAMPS) at the DAEC. CHAMPS will use the updated Q-200 List as part of its engineering database for scheduling the maintenance and surveillance testing of safety-related components. CHAMPS will be an improvement in the current information handling system for safety-related activities, in that all the required information for performing maintenance and surveillance testing of safety-related components will be included in the centralized CHAMPS database and thus more readily available to plant personnel.

Sub-Item 4: "A description of the management controls utilized to verify that the procedures for preparation, validation and routine utilization of the information handling system have been followed."

Iowa Electric Response

DAEC procedure 1408.1 and ACP 1406.1, described above, contain the management controls for "the routine utilization of the information

handling system." The Quality Control group has the responsibility independently reviewing all safety-related requests for corrective maintenance, as well as the assigned maintenance and post-maintenance test prior to performance of the work.

A Supervising Engineer, Nuclear Projects has the responsibility for reviewing and approving all changes to the Q-200 List as described in ACP 1202.8, (see Sub-Item 2).

The overall management control for verifying that all procedures dealing with safety-related activities have been followed correctly is performed by the Quality Assurance Department's Audit program, as described in Section 17.2.18 of the Updated FSAR (UFSAR).

The CHAMPS program described earlier will augment management control over the routine utilization of the information handling system.

Sub-Item 5: "A demonstration that appropriate design verification and qualification testing is specified for procurement of safety-related components. The specifications shall include qualification testing for expected safety service conditions and provide support for the licensees' receipt of testing documentation to support the limits of life recommended by the supplier."

Iowa Electric Response

Nuclear Generation Division procedure 104.1, "Preparation, Review and Approval of Purchase Requisitions" requires that the appropriate vendor documentation be specified when procuring safety-related equipment. The Design Engineering Department, through procedure 1204.1, "Preparation and Approval of Engineering Procurement Specification" is responsible for requesting the necessary quality verification and test results documents from the equipment vendor. Once these documents are received from the vendor they are reviewed by Design Engineering for adequacy, prior to their inclusion in the Master Document List; per Nuclear Generation Division procedure 104.3, "Review of Supplier Technical Documents."

Generic Letter Item 2.2.2: Vendor Interface (Programs for All Safety-Related Components)

NRC Position

"For vendor interface, licensees and applicants shall establish, implement and maintain a continuing program to ensure that vendor information for safety-related components is complete, current and controlled throughout the life of their plants, and appropriately referenced or incorporated in plant instructions and procedures, etc."

Iowa Electric Response

In response to this item in the Generic Letter, Iowa Electric joined with 55 other nuclear utilities and formed an INPO Nuclear Utility Task Action Committee (NUTAC). This committee has developed and approved an industry-wide Vendor Equipment Technical Information Program (VETIP), which is described in detail in Appendix H. This program promotes interaction among the major organizations involved in the generation of commercial nuclear power. As illustrated in Figure 1 to Appendix H, individual utilities exchange and disemminate information on safetyrelated systems and components with equipment vendors, INPO, NRC and other utilities. The primary purpose of the VETIP is to ensure that current information and data will be made available to those plant personnel responsible for developing and maintaining plant instructions and procedures. These information systems and programs currently exist and are capable of identifying to the industry precursors that could lead to a Salem-type event.

In order to effectively control vendor information in-house, Iowa Electric is developing an on-site vendor library based upon the INPO "Good Practice," (MA-304), "Control of Vendor Manuals." The vendor library will ensure proper and timely review and control of vendor technical information, through Nuclear Generation Division (NGD) procedure 106.9, "Control of Vendor Technical Information", currently being written. The library, upon receipt of the information, shall ensure proper review for the following: plant, procedure and CHAMPS Engineering Data Base applicability, as well as maintain control of the document review process. The review process is controlled by NGD procedure 104.3, "Review of Supplier Technical Documents", prior to the information being incorporated into the plant Master Document List, CHAMPS Engineer Data Base, or maintenance and testing procedures. Upon completion of the review process, the necessary modifications in the plant information systems will be promulgated and implemented in a timely manner. All applicable plant maintenance procedures will be modified per DAEC 1406.3 "Revision of Procedures and Instructions."

As described in our response to Generic Letter Item 2.1.2, certain industry information, such as GE SILs and TILs, NRC Bulletins and Information Notices, INPO Significant Event Reports (SERs), and Significant Operating Experience Reports (SOERs) are controlled and reviewed for applicability per NGD procedure 102.1, "Review of Industry-Related Documents", prior to their incorporation into plant operating, maintenance, or testing procedures.

As the in-house vendor manuals are collected and catalogued, we will make a good faith effort to determine that vendor information is current and complete: a form letter will be issued to the equipment supplier requesting that any updated information, such as manual revisions, errata and addendum sheets, or service bulletin letters, be provided to the library. Upon receipt of such information, it will be catalogued and routed for review per NGD 106.9, described above.

In order to insure that this vendor information is properly referenced in plant procedures, an index will be included in the CHAMPS Engineering Data Base cross-referencing the manuals to the applicable testing and maintenance procedures.

The schedule for establishing the vendor information library is closely coupled with the CHAMPS program described earlier, as vendor manual identification will be included in the CHAMPS Engineering Data Base. This data collection for CHAMPS is currently scheduled to begin in May 1984 and tentatively scheduled to be completed in 1986. The building which will house the library is currently under construction and is scheduled to be completed by September. We expect the library to be functional by the end of this year. Generic Letter Item 3.1: Post-Maintenance Testing (Reactor Trip System Components)

NRC Position

"The following actions are applicable to post-maintenance testing:"

Sub-Item 1: "Licensees and applicants shall submit the results of their review of test and maintenance procedures and Technical Specifications to assure that post-maintenance operability testing of safety-related components in the reactor trip system is required to be conducted and that the testing demonstrates that the equipment is capable of performing its safety functions before being returned to service "

Iowa Electric Response

Iowa Electric's shares the staff's concern that safety-related RTF components be tested after maintenance to verify proper operation To ensure this, Iowa Electric has taken the alternate position that each maintenance activity should be uniquely analyzed to determine the correct post-maintenance testing. DAEC procedure 1408.1. "Corrective Maintenance," requires appropriate post-maintenance testing be assigned during the initial review and acceptance of a maintenance request on all safety-related components. The Operations Shift Supervisor determines the necessary post-maintenance test from Technical Specifications, previous maintenance experience and other applicable documentation, based on the nature of the maintenance and its effect on the equipment's operability. The assigned test is reviewed and approved for applicability by the Operations Supervisor prior to the performance of the maintenance activity. Sometimes post-maintenance testing is not required to be performed based upon the nature of the maintenance activity. It is required that the approved test be satisfactorily performed, and the results approved by the Maintenance Supervisor (or designee) and a Senior Licensed Operator prior to the system or component being declared operable. Where applicable, the post-maintenance test often consists of performing the regular Surveillance Test Procedure (STP) for that system or component. The Plant Performance Department performs an independent review of completed STPs to verify completeness, validity and proper results The review of STP's for adequacy is a continual effort at Iowa Electric as part of our plant surveillance program, as described in ACP 1408.3. "Surveillance Program."

This position is justified by the complexity of post-maintenance testing. It is not feasible to foresee every possible maintenance activity and, therefore, any effort to incorporate post-maintenance testing requirements into maintenance procedures would have to be generic. Generic requirements have several, major problems first, the generic post-maintenance testing requirements may not adequately address the maintenance activity actually performed: second, the generic requirement may be much more extensive than is actually required which could lead to component "wear-out" due to overtesting lastly, revisions to generic requirements would lag any updated information such as previous testing experience, vendor recommendation or other applicable industry sources (INPO, NSAC, etc.), due to the time delay incurred by the administrative process for revising procedures. The inescapable conclusion is that only unique analysis of each maintenance activity can ensure every component is adequately tested, using the latest information, to determine that it is capable of performing its safety function prior to being returned to service.

Sub-Item 2: "Licensees and applicants shall submit the results of their check of vendor and engineering recommendations to ensure that any appropriate test guidance is included in the test and maintenance procedures or the Technical Specifications, where required."

Iowa Electric Response

The components that perform the Reactor Trip Function (RTF) are within the GE scope of supply. All pertinent testing guidance was included in the Operations and Maintenance Manuals (GEKs) provided by GE at plant startup. The GEKs were used to write the maintenance and test procedures on the RTF components. In order to ensure that these procedures have been updated to reflect recommendations made since that time, Iowa Electric will review industry recommendations on RTF components received through the communication channels described in Item 2.1, as well as other applicable sources (INPO reports, IE Bulletins and Information Notices. etc.) for post-maintenance testing applicability. We currently anticipate this effort to be completed by the first guarter of 1985.

Sub-Item 3: "Licensees and applicants shall identify. if applicable any post-maintenance test requirements in existing Technical Specifications which can be demonstrated to degrade rather than enhance safety Appropriate changes to these test requirements, with supporting justification, shall be submitted for staff approval. (Note that action 4.5 discusses on-line system functional testing.)"

Iowa Electric Response

Iowa Electric has completed its review of the existing post-maintenance test requirements in the Technical Specifications and have found none which we believe degrade plant safety. Generic Letter Item 3.2: Post-Maintenance Testing (All Other Safety-Related Components)

NRC Position

"The following actions are applicable to post-maintenance testing."

Sub-Item 1: "Licensees and applicants shall submit a report documenting the extending of test and maintenance procedures and Technical Specifications review to assure that post-maintenance operability testing of all safetyrelated equipment is required to be conducted and that the testing demonstrates that the equipment is capable of performing its safety functions before being returned to service."

Iowa Electric Response

As previously described in our response to Generic Letter Item 3.1, appropriate post-maintenance testing of all safety-related equipment is conducted and such tests are reviewed for adequacy. In addition, Section 4.6.G.2 of the DAEC Technical Specifications requires that appropriate inservice testing of certain, specified pumps and valves be conducted in accordance with Section XI of the ASME Boiler and Pressure Vessel Code (except where NRC relief has been granted). This requirement is administered by procedure DAEC 1407.3. "ASME Pump and Valve Testing," assures that the equipment is capable of performing its safety function prior to being returned to service.

Sub-Item 2: "Licensees and applicants shall submit the results of their check of vendor and engineering recommendations to ensure that any appropriate test guidance is included in the test and maintenance procedures or the Technical Specifications where reguired."

Iowa Electric Response

As part of the review described in Item 3.1.2, we will review industry information GE as well as INPO & NRC sources relating to the remaining safety-related components within the GE scope of supply. For other vendor supplied safety-related components we will review applicable vendor recommendations, as well as other industry sources (e.g., NRC IE Bulletins and Information Notices and INPO NPRDS. SEE-IN, SOER reports) for post-maintenance testing applicability. Our present schedule for completing this review is the end of 1985.

Sub-Item 3: "Licensees and applicants shall identify. if applicable any post-maintenance test requirements in existing Technical Specifications which are perceived to degrade rather than enhance safety. Appropriate changes to these test requirements, with supporting justification, shall be submitted for staff approval."

Iowa Electric Response

Iowa Electric has completed its review of the existing post-maintenance test requirements in the Technical Specifications and have found none which are perceived to degrade plant safety.

-26-

Generic Letter Item 4.1: Reactor Trip System Reliability (Vendor-Related Modifications)

NRC Position

"All vendor-recommended reactor trip breaker modifications shall be reviewed to verify that either: (1) each modification has, in fact, been implemented; or (2) a written evaluation of the technical reasons for not implementing a modification exists.

For example, the modifications recommended by Westinghouse in NCD-Elec-18 for the DB-50 breakers and a March 31, 1983, letter for the DS-416 breakers shall be implemented or a justification for not implementing shall be made available. Modifications not previously made shall be incorporated or a written evaluation shall be provided."

Iowa Electric Response

This Generic Letter Item applies only to PWR licensees and OL applicants. The Duane Arnold Energy Center is a boiling water type reactor and, thus, the above position is not applicable to Iowa Electric.

Generic Letter Item 4.2: Reactor Trip System Reliability (Preventative Maintenance and Surveillance Program for Reactor Trip Breakers)

NRC Position

"Licensees and applicants shall describe their preventative maintenance and surveillance program to ensure reliable reactor trip breaker operation. The program shall include the following:

- 1. A planned program of periodic maintenance, including lubrication, housekeeping, and other items recommended by the equipment supplier.
- 2. Trending of parameters affecting operation and measured during testing to forecast degradation of operability.
- 3. Life testing of the breakers (including the trip attachments) on an acceptable sample size.
- 4. Periodic replacement of breakers or components consistent with demonstrated life cycles."

Iowa Electric Response

.

As with Generic Letter Item 4.1, this position applies only to PWR licensees and OL applicants and, therefore, is not applicable to Iowa Electric.

Generic Letter Item 4.3: Reactor Trip System Reliability (Automatic Actuation of Shunt Trip Attachment for Westinghouse and B&W Plants)

NRC Position

"Westinghouse and B&W reactors shall be modified by providing automatic reactor trip system actuation of the breaker shunt trip attachments. The shunt trip attachment shall be considered safety-related (Class IE)."

Iowa Electric Response

The Duame Arnold Energy Center is a Boiling Water Reactor manufactured by the General Electric Company and, therefore, the above position is not applicable to Iowa Electric.

Generic Letter Item 4.4: Reactor Trip System Reliability (Improvements in Maintenance and Test Procedures for B&W Plants)

NRC Position

"Licensees and applicants with B&W reactors shall apply safetyrelated maintenance and test procedures to the diverse reactor trip feature provided by interrupting power to control rods through the silicon controlled rectifiers."

Iowa Electric Response

As stated in our response to Generic Letter Item 4.3, the Duane Arnold Energy Center was manufactured by the General Electric Company and, therefore, the above position does not apply to Iowa Electric. Generic Letter Item 4.5: Reactor Trip System Reliability (System Functional Testing)

NRC Position

"On-line functional testing of the reactor trip system, including independent testing of the diverse trip features, shall be performed on all plants."

Sub-Item 1: "The diverse trip features to be tested include the breaker undervoltage and shunt trip features on Westinghouse, B&W (see Action 4.3 above) and CE plants; the circuitry used for power interruption with the silicon controlled rectifiers on B&W plants (see Action 4.4 above); and the scram pilot valve and backup scram valves (including all initiating circuitry) on GE plants."

Iowa Electric Response:

The DAEC Reactor Protection System (RPS) design complies with all applicable regulatory requirements for the reactor trip system.

A review of the DAEC RPS on-line functional testing and testing intervals was performed and found to be consistent with achieving a high scram system reliability. The following is a summary of the online functional testing and testing intervals performed on the RPS.

On-line channel functional testing of multiple and diverse reactor transient trip sensors are performed monthly. Average Power Range Monitor and Intermediate Range Monitor reactor trip signal channels are functionally tested prior to reactor start-up and weekly thereafter. The multiple and diverse Scram Discharge Volume High Water Level trips are functionally tested quarterly. Based on the required trip sensor channel tests discussed above, each scram contactor which actuates the scram pilot solenoid valves is tested at least 11 times per month. The simple operation of the scram contactors minimizes concerns of wear and frequent testing assures that any failures are detected early. The Scram Pilot Solenoid Valves which are actuated by the scram contactors are all tested after core alterations and are tested following maintenance. Redundant Electrical Protection Assemblies (EPAs) protect the Scram Pilot Solenoid Valves from low voltage chattering (and the associated potential consequence of accelerated wear). The EPAs are functionally tested every 6 months and calibrated once per cycle. These surveillance testing requirements related to the Scram Pilot Solenoid Valves assure that the probability of undetected failures of these independently acting solenoid valves is small. In summary, the current Reactor Protection System on-line surveillance testing requirement, in conjunction with multiple and diverse scram sensors, assure that the probability of failure of enough control rods to prevent reactor shutdown is negligible.

Sub-Item 2: "Plants not currently designed to permit periodic on-line testing shall justify not making modifications to permit such testing. Alternatives to on-line testing proposed by licensees will be considered where special circumstances exist and where the objective of high reliability can be met in another way."

Iowa Electric Response

On-line functional testing of back-up scram valves in GE designed plants is not possible without major system modifications.

Therefore, Iowa Electric proposed the following alternative:

Independent testing of each Back-up Pilot scram solenoid valve will be added to the plant operating procedures and will be performed during each refueling outage.

The acceptability of this level of testing was confirmed by the NRC in NUREG-0979, "Safety Evaluation Report Related to the Fuel Design Approval of the GESSAR II, BWR/6 Nuclear Island Design."

The following is a justification for why modifications to permit such testing need not be made.

The back-up scram valves have been added as an additional improvement in response to an already extremely remote event and are not required by applicable regulatory requirements. Also no credit is taken for the functioning of the back-up scram valves in any safety analysis. The back-up scram function has been designed to be highly reliable by the use of redundant valves and actuating logic, thus frequent testing, i.e., on-line testing, is not required. The primary scram pilot valve solenoids which are normally energized and tested frequently are diverse to the back-up scram solenoids which are normally de-energized and cycled infrequently. Thus a lower testing frequency of the back-up scram valves is warranted as the potential for a common cause or human error affecting the primary and back-up RPS is reduced.

In the Generic Letter the back-up scram valves in BWR's are implied to be comparable to the shunt trip device in PWR designs, and as such require the same on-line testing capability. On the contrary, the reliability of the back-up scram valves is not as critical as that of the shunt trip device, due to the higher reliability of the primary scram mechanism in the BWR design over that of the PWR. This is demonstrated by the fact that each control rod drive in the BWR has 2 scram pilot valves, only one of which need function to insert the control rod. In addition, it has been shown that only 69% of the control rods need to be inserted to shutdown the reactor, (see reference 2). Thus, in order to prevent a reactor shutdown, multiple failures of scram pilot valves (well over 100) must occur: whereas only 2 undervoltage trip devices need fail in the PWR design. Therefore, the reliability of the diverse trip feature, i.e., the back-up scram valve, in the BWR is not as critical as that of the shunt trip device in PWR's, and extension of on-line testing requirements to the BWR, based upon a similar requirement for PWR's is not warranted.

- Sub-Item 3: "Existing intervals for on-line functional testing required by Technical Specifications shall be reviewed to determine that the intervals are consistent with achieving high reactor trip system availability when accounting for considerations such as:
 - 1. uncertainties in component failure rates
 - 2. uncertainty in common mode failure rates
 - 3. reduced redundancy during testing
 - 4. operator errors during testing
 - 5. component "wear-out" caused by the testing

Iowa Electric Response

Reactor Protection System and Control Rod Drive System test intervals have been developed in the DAEC Technical Specifications to provide early identification of component failures during stand-by operation and to ensure that any indication of systematic problems will be identified and corrective action initiated on a timely basis. By identifying component failures and any systematic problems early in reactor operation, corrective actions can be taken to ensure that systems achieve and maintain high scram system reliability. The purpose of this evaluation is to review the current DAEC on-line functional testing for the RPS and CRD systems required by Technical Specifications to verify that testing intervals are consistent with achieving high scram system reliability. It is concluded from this evaluation that the current DAEC on-line functional testing intervals for the RPS and CRD system are consistent with achieving a high scram system are consistent with achieving a high scram

CHANNEL FUNCTIONAL TEST

Channel functional tests are performed monthly for the following sensor trips:

- Reactor Vessel Dome Pressure-High
- Reactor Vessel Water Level-Low
- Main Steam Line Isolation Valve-Closure
- Main Steam Line Radiation-High
- Drywell Pressure-High
- Turbine Control Valve Fast Closure, Control Oil Pressure-Low
- Turbine Stop Valve-Closure

Channel functional tests are also performed for Average Power Range Monitors weekly as well as prior to startup. Intermediate Range Monitors are functionally tested weekly in all Reactor modes, except "Run", as well as prior to startup. In References 1 and 2, it is shown that each of the above plant variables used to initiate a protective function is backed up by a completely different plant variable. In fact, it can be seen from Table 1 that for the most frequent transients, scram is initiated by three diverse sensors in all but one case (regulator failure-primary pressure increase which is initiated by two diverse sensors). This indicates that adequate redundancy exists in the design to provide protection against multiple independent sensor failures. Also, diversity among sensor types reduces the potential for common cause failures, failures due to human error, and increases in failure rate due to wearout. A pictorial representation of the RPS logic configuration with the frequency of channel functional tests is provided in Figure 1.

Each sensor channel functional test includes full actuation of the associated logic, the two output scram contactors in each channel, and the individual CRD scram air pilot valve solenoids for the associated logic division (solenoids from both logic Division A and B are required for scram initiation). Based on the sensor channel tests, the scram contactor is tested at least 11 times per month and thus the pilot valve solenoid actuation (de-energized) is tested at least 22 times per month once for each of the two scram pilot valves associated with each CRD.

The most credible failures within the RPS logic will de-energize a set of scram solenoids which causes a half scram, i.e., one of the two scram solenoids required for scram initiation is de-energized at some or all hydraulic control units. These failures would be "SAFE" failures that would increase the probability of plant shutdown.

The less credible logic failures which prevent a channel from deenergizing will be detected during channel functional test in compliance with Technical Specification requirements. The frequency of tests described above ensures that an increase in failure rate due to a wearout condition or a common cause failure potential could be detected early and corrective action taken before the failure condition becomes systematic.

BACKUP SCRAM LOGIC

In addition to the primary RPS scram logic, a backup scram logic is provided in the RPS. The backup scram function is accomplished by two air operated solenoid valves which isolate the main air supply and vent the air supply header which connects to the individual Hydraulic Control Units. The backup scram valves are redundant valves with redundant trip signals from both RPS logic A and B. The logic is diverse from the primary RPS since the backup scram valve solenoids are energized and D.C. power to trip versus the primary scram pilot valves which are de-energized to trip and A.C. powered. Although one-half of the backup scram logic is actuated for each valve during channel functional tests, the only time the backup scram solenoids are actuated is when a complete scram signal is initiated. Plant procedures will be modified to require an independent test of each backup scram solenoid valve during refueling outages.

- 1. The backup scram function is incorporated as an additional improvement in response to an already extremely remote event and is not required by applicable regulatory requirements.
- 2. The backup scram function has been designed to be highly reliable by use of redundant valves and actuating logic.
- 3. Testing during operation would require either a plant scram or test procedures that have a potential for human error caused failures to the primary RPS.
- 4. The primary scram pilot valve solenoids which are normally energized and tested frequently are diverse to the backup scram solenoids which are normally de-energized and not cycled frequently Due to the lower testing frequency of the backup scram valves, the potential for a common cause or human error affecting the primary and backup RPS is reduced.

OTHER CHANNEL FUNCTIONAL TESTS

Other channel functional tests include quarterly testing of the Scram Discharge Volume (SDV) Water Level-High trip and manual scram trip and test of the reactor mode switch in the shutdown position every refueling (at least once every operating cycle). The first two trips involve on-line testing and the latter mode switch test can only be conducted during reactor shutdown. The manual scram trip can be tested on-line without creating a scram. The testing frequency for this trip is considered adequate based on the automatic trips and alternate means of manually scramming the reactor.

The quarterly testing of the SDV Water Level-High trip is considered adequate based on the current designed redundancy and diversity incorporated into the system. There are two diverse and redundant sets of level sensors which scram the reactor in the unlikely event of high water level in the SDV during power operation. These trips are designed to allow sufficient scram water discharge volume given the scram trip point is reached.

SCRAM INSERTION TESTS

The following tests of the scram insertion times are required by the DAEC Technical Specifications:

Num	ber of Control Rods	Frequency
	100%	After core alterations
2)	Specific Rods	After maintenance or modifications affecting scram insertion times

Reference 2 concluded that reactor shutdown can be achieved if at least 50% of the control rods in checkerboard pattern and 69% in a random pattern are inserted in the core. The probability of independent

failure of enough rods to prevent shutdown is negligible. The most unlikely type of failure would be some common cause mechanism that if undetected over a long period of time could cause unsafe shutdown. The surveillance requirements given above adequately ensures that a failure mechanism affecting several individual drives (considered to be very remote) would not go undetected. One of the major features that ensures that several drives do not fail at one time due to wearout or a common cause is the staggered maintenance and overhaul of selected CRDs or Hydraulic Control Units (HCUs) at refueling outages. This ensures a mix of drives by age, component lot, maintenance time and servicing personnel, and testing.

The scram insertion time tests include, in addition to drive timing and insertion capability, a test of operability of the HCU scram insert and discharge valves including associated scram air pilot valves. As stated in the previous paragraph, the required frequency of testing given in the Technical Specification ensures that a systematic failure mechanism in the HCUs would be detected early enough and corrective action taken before the condition becomes a critical failure preventing scram.

REFERENCES

- NEDO-1-189, "An Analysis of Functional Common-Mode Failures in GE BWR Protection and Control Instrumentation," L.G. Frederick, et al, July 1970.
- "BWR Scram System Reliability Analysis," W. P. Sullivan, et al, September 30, 1976 (Transmitted in letter from E. A. Hughes (GE) to D. F. Ross (NRC), "General Electric Company ATWS Reliability Report," September 30, 1976).
- Required Actions Based on Generic Implications of Salem ATWS Events, D. G. Eisenhut to Operating Reactor Licensees, July 8, 1983, NRC Generic Letter 83-28.

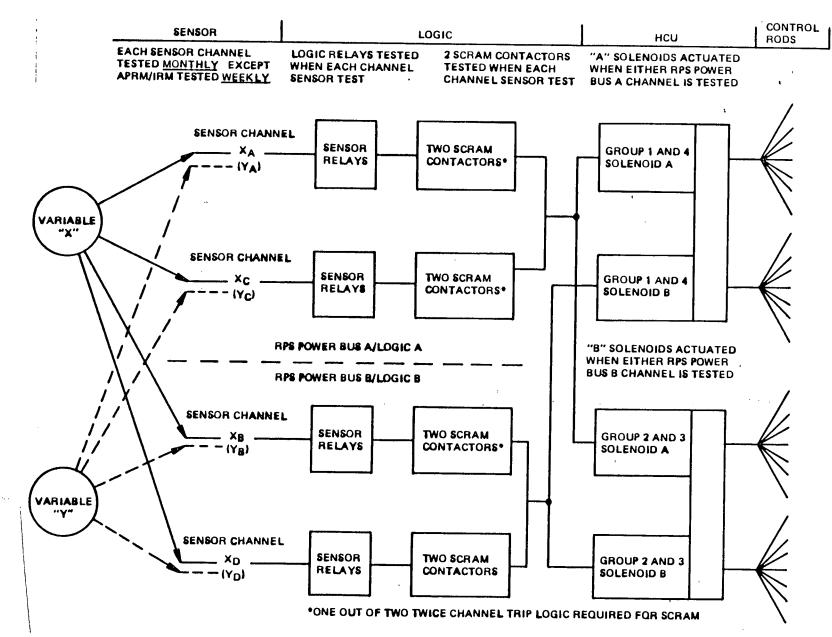


Figure 1. RPS Relay Logic Configuration

 \bigcirc

Table 1 SENSOR DIVERSITY FOR MAJOR TRANSIENTS

		Scram S	Signals -	Order c	of Occurre	ence	
	Inputs F Pressure Differer Pressure Transmit and Trip	e or itial e ters	Positic	From Pre on or Mic Contact	ro		n Flux liation
Transient	Reactor Pressure > 1035 PSIG	Reactor Level < Level 3	Turb Cont. Valve Oil Pres. Set Pt.	Turb Stop Valve Pos <90% Full Open	MSIV Pos. < 90% Full Open	APRM > 120%	MSIV Hi Rad. > 3 x Background
MSIV Closure	3	4			1	2	
Turb Trip (with bypass)	3			1		2	
Generator Trip (with bypass)	3		1			2	
Pres. Regulator Failure (primary pressure decrease)	3	4			1	2	
Pres. Regulator Failure (primary pressure increase)	2					1	
F.W. Flow Control, Failure (reactor water inventory increase	3			1		2	
F.W. Flow Control, Failure (reactor water inventory decrease)	3	1			2		4
Loss of Condenser Vacuum	3		4	1	5	2	
Loss of Normal AC Power	4	5	2	1	6	3	

,

LIST OF APPENDICES

- Appendix A Computer I/O List
- Appendix B NSSS & BOP Post-Trip Logs Variable List
- Appendix C Strip Chart Recorder List
- Appendix D Control Room Panel Annunciator List
- Appendix E Sample Alarm Printer Output
- Appendix F Sample NSSS & BOP Post-Trip Log Output
- Appendix G Selected Control Room Indicated Meter and Valve Position Indicating Light List

.

- Appendix H NUTAC VETIP Report
- Appendix I Iowa Electric Post-Scram Review Procedure

Appendix A

Computer I/O List

•

I.	<u>Tab</u> Analog		Conte	<u>nts</u>		•		
1	Axxx	Page	Ι					
	Bxxx		8					
	Сххх		17					
	Exxx		33					
	Fxxx		34					
	Gxxx		43					
	Mxxx		48					
	Qxxx		51					
	Šxxx		52	•				
	Txxx		53					
	Wxxx		57					

II. Digital (Contact)

Axxx	67	
Bxxx	72	
Dxxx	80	
Exxx	95	
Fxxx	99	
Gxxx	101	
Mxxx	102	
Qxxx	104	
Rxxx	113	
Тххх	115	
Yxxx	122	
Zxxx	123	

AO. 9/28/15 ISSUED K Gw DATE REVISIONS BY CHK D. A**PP** 8 IOWA ELECTRIC LIGHT & POWER CO.

CEDAR RAPIDS, IOWA

COMPUTER I/O LIST

	X	DRAWING NO.	REV.
		M-402	ž
.	1 U -		

VOA/75	PAG			T NIS TRU	MENT RGE	SIGNAL	RGE	8D TYPE	MPL N	O INSTRUMENT	NO. REV
TYPE	NID NO.	PRINTED DESCRIPTION	E.UNITS	 TS				REFERENC	E		
SCAN A DRS		TERMINAL NO CABLE NO WP	LOW	HIGH DB	SCCA	AVG CAL GN	I SA ALARM/ST	DRAWING	н	D M ERT	NUTE REV
000	A1.500	LPRM 08-09 FLUX LEVEL A 07-000-03	% PWR	0.0	125.0 ¥2	0	160	NM IED	C 5 1	08-098	A D
۲00 T	ALSOL	LPRM 08-09 FLUX LEVEL 8 07-000-10	¥ PWR	0.0	125.0 ¥2	٥	160	NM IED	C 5 1	08-098	A D
5004	AJ202	LPRM 08-09 FLUX LEVEL C 07-000-11	* PWR	0.0	125.0 ¥2	٥	160	NM IED	C51	08-09C	, A D
ΕΠΠΑ	A 1 50 3	LPRM 08-09 FLUX LEVEL D 07-000-12	% PWR	0.0	¥2	۵	160	JC NM IED	C51	08-090	A D
A004	A1504	LPRM 16-09 FLUX LEVEL A 07-000-13	& PWR	0.0	125.0 X2	0	160	NM IED	C51	16-09A	A D
, 4005	A] 50 5	,LPRM 16-09 FLUX LEVEL B '07-000-20	8 PWR	0.0	¥25.0	0	720	NM JED	C 5 1	16-098	A D
A006	A 1 506	LPRM 16-09 FLUX LEVEL 0 07-000-21	₿ PWR	0.0	¥2.	۵	160	NM IED	C51	% P09C	A D
A007	A1,507	LPRM 16-09 FLUX LEVEL (07-000-22) % PWR	0.0	¥2	٥	190	NM IED	C53]6- 09D	A D
۸0 0 8	A1508	LPRM 24-09 FLUX LEVEL / 07-000-23	A % PWR	0.0	125.0 X2	٥	180	NM IED	C 5 1	24-09A	D
A009	A1509	LPRM 24-09 FLUX LEVEL 1 07-000-30	3 % PWR	0.0	, 125.0 ° ≸2	0	160	NM IED	C 5 1	24-098	A D
VU 10	41510	LPRM 24-09 FLUX LEVEL (07-000-31	C % PWR	0.0	¥2	۵	720	SC NM ∙I ED	C 5 1	2409C	A D
AUTT	ALSLL	LPRM 24-09 FLUX LEVEL 0 07-000-32	D % PWR	0.0	125.0 M2	· 0	720	NM IED	C21	24-090	A D
STDA	A ÎSIS	LPRM 32-09 FLUX LEVEL . 07-000-33	A % PWR	0.0	H25.0	0	7P0	NM IED	C 5 1	AP0-56	A D
6.1											

ı			,										
• • :								· · · · · · · · · · · · · · · · · · ·				10 .	
						•		• • • •					
07/08/75	PAG						STONA	L RGE			DINSTRUMENT	NO. REV	
TYPE	NID NO.		DESCRIPTION	E.UNITS		UMENT RGE			REFERENC				
S C AN A DR S		COMPUTER TERMINAL N	O CABLE NO W	P LOW	HIGH D	B SC CA	AVG CAL G	N SA ALARM/ST	DRAWING	5 H	D M ER T	NOTE REV	
VUT3	41513	LPRM 32-0° 07-001-00	FLUX LEVEL	B % PWR	0.0	125.0 X2	۵	160	NM IED	C 5 1	32-098	A D	
<u>ለበኒዛ</u>	A1514	LPRM 32-0° 07-01-01	I FLUX LEVEL	C % PWR	0.0	125.0 72	0	160	NM IED	C 5 1	32-09C	A D	
۵ ۵ ۵	41515	LPRM 32-09 07-001-02	1 FLUX LEVEL	D % PWR	0.0	125.0 X2	٥	720	NM IED	C 5 1	. d PD-5E	A D	
۷ÜJP	A1516	LPRM 08-1 07-001-03	7 FLUX LEVEL	A % PWR	0.0	125.0 ¥2	0	160	NM IED	C 51	08-17A	A D	
A017	ALSL7	LPRM 08-1 07-001-10	7 FLUX LEVEL	B % PWR	0.0	¥2 2	0	160	NM LED	C 5 1	0 8-17 8	A D	
AN 18	A 1 5 1 8	LPRM 08-1 07-001-11	7 FLUX LEVEL	C % PWR	0.0	125.0 V2	D	360	JC NM IED	C 5 1	08-17C	A D	
ይ ቢ በል	ል፲ይ፲ዓ	LPRM 08-1 07-001-12	7 FLUX LE ve l	D % PWR	0.0	125.0 N2	Ó	360	NM IED	C 5 1	Ŭ å−17 D	. D	
V J 20	41520	LPRM 16-1 07-001-13	7 FLUX LEVEL	A %.PWR	0.0	125.0 ¥2	0	160	NM LED	C27	16-17A	A D	
VU51	A1251	LPRM 16-1 07-001-20	7 FLUX LEVEL	8 8 PWR	0.0	125.0 X2	٥	160	NM LED	C21	16-178	A D	
25UA	A12522	LPRM 16-1 07-001-21	7 FLUX LEVEL	C % PWR	0.0	125.0 Y2	0	720	NM IED	C 5 1	36-376	8 D	
55UV	A 7 2 5 3	LPRM 16-1 07-001-22	7 FLUX LEVEL	D % PWR	0.0	125.0 X2	. 0	790	NM IED	C 5 1	16-170	A D	
, 4504	A1224	LPRM 24-1 07-001-23	7 FLUX LEVEL	A % PWR	0.0	125.0 ¥c	· 0	160	NM LED	C51	24 -17 4.	A D	
VU52	41525	LPRM 24-1 07-001-30	7 FLUX LEVEL	B % PWR	0.0	125.0	۵	160	NM IED	C 5 1	24-178	A D	,
					•								
							.*						

96775 ТҮРЕ	NID NO.		DESCRIPTIO	l 	E.UNITS	INST	RUMENT RGE	SIGNA	LRGE			INSTRUMENT	NO.	<u>R EV</u>
SCAN ADRS		COMPUTER TERMINAL NO	CABLE NO	WP	LIMI LOW	TS HIGH	DB SC CA	AVG CAL G	N SA ALARM/ST	REFERENCE DRAWING	н	LOGGING D M ER T	NOTE	REV
4504	A) SSP	LPRM 24-17 07-001-31	FLUX LEVE	. C	% PWR	0.0	125.0 72	٥	160	NM IED	C 5 1	24-170		A D
A027	A1527	LPRM 24-17 07-001-32	FLUX LEVE	LD	% PWR	0.0	125.0 ¥2	٥	160	NM IED	C 5 1	24-17D		A D
8504	A1528	LPRM 32-17 07-001-33	FLUX LEVE	LA	¥ PWR	0.0	,125.0 M 2	۵	160	NM IED	C51.	32-174		D
P504	A72558	LPRM 32-17 07-002-00	FLUX LEVE	LB	% PWR	0.0	125.0 X2	۵	1 FO	NM IED	C27	32-178		A D
ne na	A1530	LPRM 32-17 07-002-01	FLUX LEVE	LC	% PWR	0.0	125.0 X2	٥	160	AN LED	C51	32-170		A D
1E NA	ALSIL	LPRM 32-17 D7-002-02	FLUX LE ve	LD	76 P₩R -	0.0	125.0 M2	0	720	NM LED	C 5 1	32-170		A D
SE04	A1535	LPRM 40-17 07-002-03	FLUX LEVE	LA	¥ PWR	0.0	125.0 ¥2	0	160	NM IED	C27	40-17Å		A D
66 DA	A1533	LPRM 40-17 07-002-10	FLUX LEVE	LΒ	% PWR	0.0	¥2 2	Ó	770	NM LED	C51	. 40 -178		A D
AU 34	A1534	LPRM 40-17 07-002-11	7 FLUX LEVE	LC	% PWR	0.0	125.0 N2	٥	190	NM LED	CSL	40-170		D
AN 35	A1535	LPRM 40-17 07-002-12				0.0	ЯZ	0	160	NM IED	C 5 1	40-170		Ď
40 3 6	A1536	LPRM 08-29 07-002-13	5 FLUX LEVI	LA	% PWR	0.0	¥2		160	NM IED	C 51	A25-80		Ď
AD 37	41537	12-40 MA41 02-200-70	5 FLUX LEVI	EL B	% PWR	0.0	X 1	0	160	NM IED	C 5 1	08-25B	. <i></i>	Ď
86 D A	A1538	LPRM 08-21 07-002-21	S FLUX LEV	EL C	% PWR	0.0	125.0 Az	0	160	NM IED	C 5 1	08-25C		A D

	-	

TYPF	NID NO.	PRINTED DESCRIPTION	E.UNITS	INST	RUMENT RGE	SIGNA	LRGE			O INSTRUMENT	NO. 1
SCAN ADRS		COMPUTER TERMINAL NO CABLE NO WP	LIMITS LOW HI	GH	DB SC CA	AVG CAL G	N SA ALARM/ST	REFERENC	ЕН	LOGGING D M ER T	NOTE
PEON	A1539	LPRM OB-25 FLUX LEVEL D 07-002-22	8 PWR	0.0	125.0 X2	Û	JPO	NM IED	C 5 1	08-25D	
A040	A 1 S 4 D	LPRM 16-25 FLUX LEVEL A 07-002-23	% PWR	0.0	125.0 X2	٥	160	DEI MN	C 5 1	38-52A	
∆ባዟኔ	A 1 5 4 1	LPRM 16-25 FLUX LEVEL 8 07-002-30	% PWR	0.0	152.0 17	0	160	AC NM IED	C 5 1	JP-529	
A042	41542	LPRM 16-25 FLUX LEVEL C 07-002-31	% PWR	0.0	125.0 X2	0	160	NM IED	C 5 1	16-250	
EPRA	A1543	LPRM 16-25 FLUX LEVEL D 07-002-32	36 PWR	0.0	125.0 Xv	0	160	NM LED	CSL	16-250	
A()44	4 1 5 4 4	LPRM 24-25 FLUX LEVEL A 07-002-33	% PWR	0.0	125.0 Xl	٥	720	NM IED	C51	24-254	
A () 4 5	A1545	LPRM 24-25 FLUX LEVEL B 07-003-00	% PWR −	0.0	125.0 Xi	0	760	NM 1ED	C27	24-258	
` АП4Ь	A1546	LPRM 24-25 FLUX LEVEL C 07-003-01	ቼ PWR ·	0.0	125.0 X <i>V</i>	۵	160	NM ^{3C} IED	C27	24-25C	
A047	A 1 5 4 7	LPRM 24-25 FLUX LEVEL N 07-003-02	* PWR	0.0	125.0 Xl	٥	160	NM IED	627	24-250	
A () 4 8	A1548	LPRM 32-25 FLUX LEVEL A 07-003-03	% PWR	0.0	125.0 X ₂	٥	160	DEI MA	С5Ъ	32-25A	
A049	A 1,549	LPRM 32-25 FLUX LEVEL B 07-003-10	8 PWR	0.0	125.0 Yz	٥	Ĵ60	NM IED	CSL	32-25B	
A () 5 ()	A1.550	LPRM 32-25 FLUX LEVEL C 07-003-11	37 PWR	0.0	125.0 M2	0	160	NM TED	C51	32-250	÷
∆05 <u>1</u>	A1551	LPRM 32-25 FLUX LEVEL 0 07-003-12) % PWR	0.0	125.0 Nr	. 0	720	NM IED	C 51	32-25 0	
										·	

		۱.							
Q7/08/75	PAGE						_		
TYPE	NID NO.	PRINTED	DESCRIPTION	E.UNITS	INSTRUMEN	T RGE	<u>S</u>	IGNAL	PGE
SCAN A DR S		COMPUTER TERMINAL	NO CABLE NO WP	LIMI LOW	TS HIGH DB SC	CA	AVG C	AL GN	SA AL

	түрг	NID NO.	PRINTED DESCRIPTION	E.UNITS	INSTR	UMENT RGE	SIGNA	LRGE	BD TYPE	MPL NO) INSTRUMENT	NO. REV
	SCAN A DR S		COMPUTER TERMINAL NO CABLE NO WP	LIMI	TS HIGH D	B SC CA	AVG CAL G	N SA ALARM/ST	REFERENC	Е Н	LOGGING D M ER T	NOTE REV
	AD 52	A1552	LPRM 40-25 FLUX LEVEL A 07-003-13	% PWR	0.0	152.0 Mr	٥	720	NM IED	CŞl	40-254	A D
	AO 53	41553	LPRM 40-25 FLUX LEVEL B 07-003-20	¥ PWR	0.0	125.0 M2	. 0	160	NM BED	C51	40-25B	A D
	A () 5 4	A 1 5 5 4	LPRM 40-25 FLUX LFVEL C 07-003-21	% PWR	0.0	125.0. M2	٥	160	NM IED	CSL	40-25C	A D
	A O S S	A 1 5 5 5	LPRM 40-25 FLUX LEVEL D 07-003-22	% PWR	0.0	125.0 Y	0	160	NM IED	C 5 1	40-25D	A D
	AN 56	A 1 5 5 6	LPRM 08-33 FLUX LEVEL A 07-003-23	% PWR	0.0	125.0 X2	٥	160	NM IED	C27	AEE-80	A D
	A057	41557	LPRM 08-33 FLUX LEVEL B 07-003-30	% PWR	0.0	125.0 Xy	.0	.160	NM IED	C 5 1	08-338	A D
	A() 58	A 1 5 5 8	LPRM 08-33 FLUX LEVEL C 07-003-31	¥ PWR,	0.0	125.0 42	0	160	NM IED	C51	366-80	A D
	ለባ 5ግ	41.559	LPRM 08-33 FLUX LEVEL D 07-003-32	%r P₩R	0.0	125.0 #2	0	160	NM LED	CSI	08-330	A D
	AD20	A 1560	LPRM 16-33 FLUX LEVEL A 07-003-33	% PWR	0.0	125.0 W2	_ O	77 D ⁷	SC NM IED	C 5 L	78-33V	A D
Þ	ልግይጌ	41561	LPRM 16-33 FLUX LEVEL 8 07-010-00	X PWR	0.0	×125.0	0	160	NM IED	C 5 L	16-338	A D
	A065	472PS	LPRM 16-33 FLUX LEVEL C 07-010-01	¥ PWR	0.0	125.0	0	720	NM 1ED	C 5 1	16-33C	A D
	4063	A 1 5 6 3	LPRM 16-33 FLUX LEVEL D 07-010-02	% PWR	0.0	125.0 MV	0	720	NM LED	C 5 1	JP-330	A D
	AJP4	A 1 5 6 4	LPRM 24-33 FLUX LEVEL A .07-010-03	¥ PWR	0.0	125.0 M	. D	160	NM IED	C27	24-33A	A D

BD TYPE MPL NO INSTRUMENT NO. REV

.

07/08/75	P A G					C T C N AL	DCE			O INSTRUMENT	NO. REV
TYPE	NID NO.	PRINTED DESCRIP				S I GN AL					
SCAN ADRS		COMPUTER TERMINAL NO CABLE	NO WP LOW		SC CA AV	/G CAL GN	SA ALARM/ST	DRAWING	б ^с н	D M ER T	NOTE REV
۸D65	41565	LPRM 24-33 FLUX L 07-010-10	EVEL B % PWR	0.0	125.0 #1	0	790	NM IED	C27	24-338	A D
VUPP	AISEE	LPRM 24-33 FLUX L 07-010-11	EVEL C % PWR	0.0	125.0 *1	٥	7PO ⁻	NM IED	C21	24-33C	A D
. <u>ло</u> ь7	A1567	LPRM 24-33 FLUX L 07-010-12	EVEL D % PWR	0.0	125.0 ¥2	0	760	NM IED	C51	24-33D	A D
A068	41568	LPRM 32-33 FLUX L 07-010-13	LEVEL A % PWR	0.0	125.0 4 ₂	0	720	NM IED	C 5 1	AEE-SE	A D
۸ <u>0</u> 69	ልኔ 56ዓ	LPRM 32-33 FLUX L 07-010-20	LEVEL B & PWR	0.0	125.0 #2	0	720	NM IED	C 5 J	32-3 38	A D
A070	41570	LPRM 32-33 FLUX 1 07-010-21	LEVEL C % PWR	0.0	125.0 H _l	٥	720	NM IED	C27	35-330	A D
A071	4]57]	LPRM 32-33 FLUX 1	LEVEL D % PWR	0.0	125.0 #v	0	720	NM IED	C51	32-33 D	A D
, , , , , ,	41572	LPRM 16-41 FLUX 4		0.0	152.0	0	JP 0	NM ^{3C} ED	C 5 1	16-41A	D
ΔΠ73	A1573	LPRM 16-41 FLUX	LEVEL B & PWR	0.0	152.0	0	160	NM IED	C 5 1	<u> ኔ</u> ե-4 ኔይ	A D
A0.74	A1574	LPRM 16-41 FLUX 07-010-31	LEVEL C % PWR	0.0	125.0 ¥l	· 0	720	NM IED	C21	16-41C	A D
A075	A1575	LPRM 16-41 FLUX 07-010-32	,	0.0	125.0 ¥L	0	160	NM IED	C 5 1	16-41D	A D
A071	A1576	LPRM 24-41 FLUX 07-010-33		0.0	152.0 Ч	0	7PO	NM IED	C 51	24-414	A D
AU 78	A 1 5 7 7	LPRM 24-41 FLUX D7-011-00	LEVEL B & PWR		125.0 4 ₀	Ō	JP0	NM TED	C 5 1	24-41B	A D

.

.

.

5ADA

D

07/08/75	PAG	E 7									
TYPF	NID NO.	PRINTED DESCRIPT			UMENT RGE	SIGNAL R	GE	BD TYPE	MPL N	D INSTRUMENT	NO. REV
SCAN ADRS		COMPUTER TERMINAL NO CABLE I	NO WP LOW	MITS HIGH D	OB SC CA	AVG CAL GN S	A ALARM/ST	REFERENC	Е Н	LOGGING D M ER T	NOTE REV
A078	A1578	LPRM 24-4] FLUX LE' 07-011-01	VELC % PWR	0.0	125.0 Jrz	0 7P	0	NM IED	C51	24-43C	A D
∆0 79	A1579	LPRM 24-4% FLUX LE 07-0%-02	VEL D % PWR	0.0	125.0 #2	0 78	0	NN IED	C 5 1	24-41D	A D
∧ ∩AD .	A1310	NSS SPARE 07-011-32			4	0 16	.0	ЭС			D
ላባል ፤	V7375	NSS SPARE 07-011-33			ц	0 JP	.0	30			D

 AL7L2
 NSS SPARE
 4
 D
 LO
 LO

 AL7L5
 NSS SPARE
 0
 LO
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30
 30

	•	,		
-	_			

07/08/75	PAG	E 8							. 3	н ^с .	
түре	NID NO.	PRINTED DESCRIPTION	E.UNITS	I NS TI	RUMENT RGE	SIGNA	RGE	BD TYPE	MPL N	D INSTRUMENT	NO. REV
S C AN A DR S		COMPUTER TERMINAL NO CABLE NO WP	LIMI	TS HIGH	DB SC CA	AVG CAL G	N SA ALARM/ST	REFERENC	Е ,	LOGGING D M ER T	NOTE REV
влол	A1677	APRM & FLUX LEVEL 07-011-03	% PWR '	0.0	152.0 1	٥	JPO .	NM IED	CSL	L	, A D
8001	A 16 78	APRM 8 FLUX LEVEL 07-011-10	\$ PWR	0.0	2. 25.0 مهر 2	٥	7P0	NM TED	C51		A D
8002	41679·	APRM C FLUX LEVEL 07-011-11	% PWR	0.0	r 752.0	0	720	NM IED	C 5 1	ľ	A D
8003	A 1680	APRM D FLUX LFVFL 07-011-12	\$ PWR	0.0	2,4,125.0	0	160	NM IED	C51	· ·	A D
6004	А 168 L	APRM E FLUX LEVEL 07-011-13	% PWR	0.0	2,40,52.0	0	720	NM JED	C 5 1		A D
B005	4 7 685	APRM F FLUX LEVEL 07-011-20	\$ PWR	0•0	24125.0	0] 6 0	NM IED	C 5 1		A D
валь	A1683	NSS SPARE 07-011-21			4	• 0	720	JE			D
вло 7	4 J B 8 4	NSS SPARE 07-011-22			ų	0	720	ĴE			D
B098	ልፓዮዓዓ	TIP A FLUX LEVEL 07-012-31	\$ PWR	0.0	475.0	0	720	NM IED	C 5 1		A D
8009	A1689	TIP B FLUX LEVEL 07-012-32	8 PWR	0.0	415.0	0	160	NM IED	C 5 1		, A D
8010	ልንዮሐዕ	TIP C FLUX LEVEL 07-012-33	% PWR	0.0	4 ^{125.0}	0	, 7 PO	NM IED	C 5 1		A D
8077	4124J	NSS SPARE 07-013-00			ч	0	7 PO	AE		• •	D
VFL0 8012	A1709	REACTOR TOTAL CORE FLOW 07-011-31	M M H	0.0	r PO`O	35	JP 0	NB PID	85 J	FY-4527 L	. C D

ч. Т

i ∖ B

			•							ъ	
07/08/75	PAG NID NO.	E 4 PRINTED DESCRIPTION	E.UNITS	I NS TR	UMENT RGE	SIGNAL	R GE	BD TYPE M		INSTRUMENT NO.	REV
SCAN ADRS		COMPUTER TERMINAL NO CABLE NO WP	LIMI	TS HIGH D	B SC CA A	VG CAL GN	SA ALARM/ST	REFERENCE DRAWING	H D	DGGING MERTNOTE	EREV.
PRES	<u>ል </u>	REACTOR CORE PRESS-DIFF	DPSI	0.0	7 30•0	32	7PO	NB PID	851 [.]	PD T-4528	D D
VFLO ROIJ4	41211	CRD SYSTEM FLOW	MK/H	0+0	0.025 ہلرچ	35	1,60	CRD PID	C77 _	FY-1814	с. D.
CFL0 8915	A1713	REACTOR FW LOOP A FLOW	MH /	0.0	<u>ч.</u> О х	35.	160	FW IED	C37	FT-1581	D D
607P	A1714	REACTOR FW LOOP B FLOW	M	0.0	4.0 "х	35	7P0	FW IED	CJŢ	FT-1626 1	D D
C FL D 8017	AL7L8	CLEAN-UP SYSTEM FLOW	MATH	0.0	40.0625 4 X	35	7P 0	CU PID	G31	FT-2747	C D
8018	A1717	NSS SPARE 07-013-11			4	0	7P0	ЗВ			D
B019	A1755	RECIRC PUMP MTR A POWER 07-013-31	MW	0.0	2×4.0 x	0	7PO -	3B RECRC PI	931 D	JT-4662A	D D
8020	A1726	RECIRC PUMP MTR B POWER 07-013-32	MW	0.0	2,¥•0 X	0	, л ев	BECRC PI	831 D	JT-46658	D
6051	A1727	REACTOR WATER LEVEL 07-012-02	28-0	0.0 37.0	<_13 ►_60.0 ₽	35	720	FW IED	C37	LT4559/60	E
8026	A1735	TOTAL STEAM FLOW 07-013-33	м∦7н	0.0	۲. ۲	35	780	FW IED	C37	FY-445D	C D
0100 100	A1741	CLEANUP SYSTEM INLT TEM	IPDEGF	0.0	2x 600.0 ×			CUPID	G 3 7	TE-2713A	C D
0100 508	C A1742	CLEANUP SYSTEM OULT TEN 17-132-12	1PDEGF	0.0	2 A 600.0 x	:		CU PID	637	TE-2713D	, D
PRE BD2	с азьяз	REACTOR PRESSURE D7-D13-02	PSIG	0.0	r x		720	FW IED	C37	РТЧ5Ь3/64 ј	D

07/08/75	PAG		E.UNITS	INSTRUMENT RGE	SIGNAL RGE	BD TYPE MPL N	O INSTRUMENT NO.	REV
TYPE SCAN	N10 NO.	PPINTED DESCRIPTION COMPUTER TERMINAL NO CABLE NO WP	LIMITS		AVG CAL GN SA ALARM/ST	REFERENCE DRAWING H	LOGGING D M ER T NOT	EREV
ADRS VELO 8025	A1731	RECIRC LOOP AL ORV FLOW	м у (7 Н	0.0 15.1 2×	32 % 160	BC B21 NB PID	FY-463%A	D D
	A 1732	RECIRC LOOP A2 DRV FLOW	MAT H	0.0 15.1 2A	32 8 160	LC 821 DI9 BN	FY-4632D	F D
VFLO BOZA	₹£5 1∨	RECIRC LOOP 81 DRV FLOW 07-012-20	MAFTH	0.0 15. 1 L	32 K 160	BÉL BÉL	FY-4632A	FD
VELO	A1734	RECIRC LOOP B2 DRV FLOW D7-012-21	MAE/H	0.0 24 15.1	322 160	AC 3C 821	FX-4P35D	E D
8030	A 1 744	REACTOR FW CHNL AL TEMP	DEGF	280.0 430.0 J	0 150 x	38 821 NBPID	TT-4452A L	C D
8031	A1745	REACTOR FW CHNL 42 TEMP 07-020-01	DEGE	280.0 ¥30.0	0 150 X	36 821 DI 9 80	TT-4452C	C D
8032	ል ጔ 7 ዛ ዜ	REACTOR FW CHNL BL TEMP	DEGE	280.0 430.0 L	0 1,50	38 821 Diq 87	TT-44528	. C D
	A 1747	PEACTOR FW CHNL 82 TEMP 07-020-03	DEGF	280.0 430.0 1	0 150	B B B B B B B B B B B B B B B B B B B	TT-4452D	C D
6033 8034	∆Ն795	RECIRC LOAP AL INLT TEM	P DEGF	260.0 2A 580.0	-720720	158 8E 019-8И	TT-4603A	D D
8035	A 1 7 96	RECIRC LOOP 42 INLT TEM	P DEGF	260.0 2, 580.0	-120120	3B B23 NB PID	L TT-46038	D D
	A1347	RECIRC LOOP 81 INLT TEN 07-020-13		260.0 2 ₇ 580.0	-780780	38 .82. NB P.1D	L TT-4604A	D D
B036	a 1798	RECIRC LOOP B2 INLT TEN 07-020-20	IP DEGF	580.0 2 Sao.0	-7-07-0	82 NB PID	1. TT-46048	D D
B037 2.31 803A		RECIRC A WIDE RANGE TEN		50.4 789.6 4	-160160	36	ттчьоза	8 D
0.1.10								

•	•• ·									
108/75	PAG			E.UNITS IN	ISTRUMENT RGE	S IGNAL	RGE	BO TYPE M	PL NO INSTRUME	NT NO. REV
	NID NO.	PRINTED DE		LIMITS			N SA ALARY/	REFERENCE ST DRAWING	LOGGING H D M ER	T NOTE REV
SCAN A DR S		COMPUTER TERMINAL NO	CABLE NO WP	LOW HIGH	DB SC CA				TT 4604	
2.31 6039	A1686	RECIRC B WID	DE RANGE TEMP	DEGF SC].4 789.6 4	~ .)} F0	3G	11166	D D
8040	A1687	NSS SPARE 07-012-30			4	0	JP0 ·	AE		. D
804 1	A7P45	NSS SPARE 07-013-01			ч	0	160 ·	AE		D
8042 ·	A1695	NSS SPARE 07-011-30	DCR	693	. 4	0	720	• 3 E		· D
8043	A]7]P	NSS SPARE 07-013-10	Roger	0++0	ų	0	7PO	38		C D
8044	8151d	NSS SPARE		x Bldg	ų	0	720	38		D,
8045	A 7450	NSS SPARE 07-013-20	Vent S	itack 70n <u>M</u> onit	or "	0	720	.38		D
8045	41351 V	NSS SPARE		of 9 lhpu		0	FP 0	38		D
	V7 1 55	NSS SPARE	7-26	-77	ч	0	160	ЭВ		. D
. e047	6571A	NSS SPARE 07-013-23	This M	great ay not con	ne 1981 4	٥	720	38		D
8048 5048	A1724	NSS SPARE 07-013-30	Ry Aress	YARROW RANGE	FEEG y2	0	720	ЭB		ſ
К ВО4 9	A7559	NSS SPARE 07-012-03	ſ,	J	ų	O	7P0	C	•	. (
8050	A 1729	NSS SPARE 07-012-10			ц	. 0	1 60	30	· ·	Ĩ

`

.

`

			· .			
07/08/75 TYPF	PAG NIÐ NO.	RETURN FUNITS INSTRUMENT RGE	SIGNAL RGE		PL NO INSTRUME	
SCAN ADPS		COMPUTER TERMINAL NO CABLE NO WP LOW HIGH DB SC CA AVG C	CAL GN SA ALARM /S t	REFERENCE DRAWING	LOGGING H D M ER	T NOTE REV
B0 52	A1730	NSS SPARE 4 D7-D12-11	0 7PO [.]	C		D
CHTC 8953	a 7 3 3 P	NSS SPARE SPANE 4		10 IA	TE-440	
OK GUTC	A1437	PSV 4401 S/R AIR PLT TEMP DEGF 17-132-01 . DCR	407	M-114	1 5.470	
CUTC 8055	A1738	NSS SPARE SPARE Y relien	f Valves	. LA 111)		D
CUTC 8056	A1739	NSS SPARE SPARE 4 16	dry well	ЪА.,	$ au_{\mathrm{T}}$	D
CUTC 8057	A1740	NSS SPARE SPARE 4 Terra	y Guccia	rdo		D .
OK BOSA	A1743	PSV 4407 S/R AIR PLT TEMP DEGF 10-	28-76 9/05t	М-ЙЧ эв	T E -44	U A
B 0 59	A1748	NSS SPARE 07-020-10 CHangel	\$ 3-31-77	90		D
CUTC BUPU	A1397	CRO PMP A&B DISCH TEMP DEGF 0.0 200.0 17-113-00 3 X		14 M-117	M155 TE-14	U
VFLO BOLI	8 PE L A	RCT JET PMPS 9-16 FLOW A MATH 0.0 36.7 07-020-21 J X	35 JPO	38 M-11 5	APED FY-4	U
VELO VELO	PPELA	RCT JET PMPS 1-3 FLOW В М∰ИН 0-0 36-7 07-020-22 J X	35 720	М-115 М-115	APED BY-4	D
8063	A] 4 0 0	RCT OUTLET STM FLOW A MOTH 0.0 2.000 X	35 <i>7</i> PO	38 M-114	APED FC-4	
8064	A1401	RCT OUTLET STM FLOW B MARTH 0.0 2.000 2 X 07-020-30	35 <i>7</i> PO	<u>ЗВ</u> М- 11 ч	APED FC-4	409 C D

.

.

	•			•	• •	· · ·					1
				• •							
07/08/75 TYPE	PAGE NID ND.	E 13 PRINTED DESCRIPTION	E.UNITS	I I NS TR	NUMENT RGE	SIGNAL	RGE	BD TYPE M	IPL NO I	NSTRUMENT NO	. REV
SC AN ADRS		COMPUTER TERMINAL NO CABLE NO W	LIMI P LOW	HIGH C	DB SC CA AVG	CAL GN	SA ALARM/ST	REFERENCE	H D	GGING M ER T NO	TE REV
ዮጋե 5	A1402	RCT DUTLET STM FLOW C 07-N20-31	MIFTH	0.0	5•000 x	35 J	60	3B M-114	APED	FC-4410	C D
8066	A1403	RCT DUTLET STM FLOW D 07-020-32	METH	0.0	5.000 X	35 J	60	38 M-114	APED	FC-4411	C D
CUTC 8067	A 1404	RRP A MIR STATOR TEMP 17-113-01	P 1DEGF	240.0.0	300.0 4	٦		та М-ТГР	APED	TE-4600D	A D
CUTC BOLS	A1405	RRP & MTR STATOR TEMP 17-113-02	PZDEGF	240.0.0	300.0 5 4	7		14 M-116	APED	TE-4600E	D
CUTC BDL9	A1406	RRP & MIR STATOR TEMP 17-113-03	P3DEGF	240.0.0	300.0 6 4	7		14 M-116	APED	TE-4600F	A D
С ЦТС В070	A1407	RRP B MIR STATOR TEMP 17-113-10	PLDEGF	240.0.0	300.0 Б Ч	7	,	14 M-116	APED	TE-4600Q	A D
CUTC 8071	A 1408	RRP B MTR STATOR TEMP 17-113-11	P 2DEGF	240.0	300.0 6 4	· 7	, [\]	M-17P	AP ED	TE-4600R	A D
CUTC 8072	A 1 4 0 9	RRP B MTR STATOR TEMP 17-113-12	PBDEGF	240.0	300.0 6 4	. 7	,	14 М-11ь	APED	TE-4600S	A D
CUTC 8073	A]4]0	RRP MG SET A STR TEMP 17-113-13	₽ĴDEGF	240.0°	300.0 6 4	7	,	14 M-116	APED	TE-4651A	A D
CUTC 8074	A 1 4 1 1	RRP MG SET A STR TEMP 17-111-20	P 2DE GF	240.0.0	300.0 ь ч	7	?	м-116	APED	TE-46518	A D
CUTC 8075	47475	RRP MG SET A STR TEMP 17-113-21	PBDEGF	240.0 240.0	300.0 5 4	-	7	м-11ь	APED	TE-4651C	A D
CUTC 8076	A1413	RRP MG SET B STR TEMP 17-113-22	PLDEGF	0.0 240.0	300+0 6 4	-	7	1А М-116	APED	TE-4652A	A D
CUTC 8077	A1414	RRP MG SET B STR TEMP 17-113-23	P2DEGF	240.0	.300.0 6 4	-	7	14 M-116	APED	TE-46528	A D

١

.

.

	_			•	_						
			· .						•		
07/08/75	PAG	ie 14				:					
түре	NID NO.	PRINTED DESCRIPTION	E.UNITS	S INSTRU	MENT RGE	SIGNA	LRGE	BD TYPE	MPL NO	INSTRUMENT NO	O. REV
SCAN A DR S		COMPUTER TERMINAL NO CABLE NO WP	LIMI LOW		SC CA	AVG CAL G	N SA ALARM/ST	REFERENC DRAWIN	СЕ L G H D	DGGING M ER T NO	DTE REV
CUTC 8078	A L 4 L 5	RRP MG SET B STR TEMP P3 17-113-30	IDEGF	240.0°G	4300.0		7	14 M-116	AP ED	TE-4652C	A D
6079	43436	RRP A MTR VIBRATION 07-021-01	MILS	4.00 ^{0.0} 6	4.50 3	35	360 7	м- 11 г 38	MLBL	ХVЙ— 464 S Р	D D
8 0 8 0	A1417	RRP B MTR VIBRATION 07-021-02	MILS	4.00 ^{0.0} 6	4•50 3	35	160 7	M-77P 38	MLAL	ХV М-4 646 Р	D D
80 .4).	A1418	SPARE 07-021-03			3			38			. D E
8082	A],4],9	SPARE 07-021-10			3	. '		38			D E
PRES BDA3	А7450	CRD DRIVE WTR DIFF PRESS 07-021-11	SDP S I	0.0	4 ^{350.0}	32	JPO	M-117	APED	PD T-1825	D D
PRES BD84	A 1421	CRD CLG WTR DIFF PRESS N7-021-12	DPSI	0.0	4 ⁶⁰ .0	35	160	3B M-117	AP ED	90 1-183 2	D D
RTD5 BDA5	A1422	TORUS AIR TEMP ♣1 17-100-03 R4	DEGF	100.0 L			7	48 M-143	FLŅ	TE-4328A	F
РТD 5 ВП АБ	41423	TORUS AIR TEMP ∰2 17-100-10 R4	DEGF	100.0°0 P	4 ^{350.0}		7	48 M-143	FLD	TE-43288	E F
P T O S 8087	A 1424	TORUS AIR TEMP #3 17-100-11 R4	DEGF	700°0.0 P	-	·	?	48 M-143	FLD	TE-4328C	E F
PT 05 8088	A1425	TORUS AIR TEMP 14 17-100-12 R4	DEGF	100.0°G	ч Ч		7	48 M-143	FLD	TE-4328D	E F
PTD5 8089	A1426	DRYWELL TEMP AZ55 EL750 17-100-19 R4	DEGF	90.0 ^{0.0} 6	350.0 4		7	4B M-143	FLD	TE-4328E	E F
R T D 5 80 90	A1457	DRYWELL TEMP AZ245 EL750 17-100-20 R4	DEGF	95.0 6.0 6	4 ^{350.0}		7	48 M-143	FLD	TE-4328F	Ë,

•

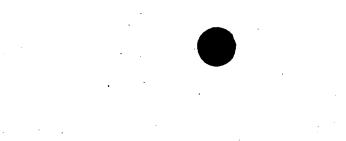
.

			-					•)
		·						-		
07/08/75	PAG				IENT RGE	SIGNAL RGE	BD TYPE	MPL NO	INSTRUMENT NO	. REV
TYPE	NID NO.		E.UNITS				REFERENC		DGGING M ER T NO	
SCAN ADRS		COMPUTER TERMINAL NO CABLE NO WP	LIMI LOW	HIGH DB	SC CA A	VG CAL GN SA ALARM/ST	DRAWING	но	MERINU	HE KEV
8105 PD91	V7458	DRYWELL TEMP AZ93 EL765 17-100-21 R4	DEGF	0.0 110.0 L	4350.0	7	48 М-143	FLD	TE-4328G .	E F
810S 8018	A 1 4 2 9	DRYWELL TEMP AZ270 EL765 17-100-22 R4	DEGF	110.0 L	350.0 4	7	48 M-143	FLD	TE-4328H	Ę
RTD5 8093	A 1 4 3 0	DRYWELL TEMP AZD EL780 17-100-23 R4	DEGF	0.0 145.0 6	4 ³⁵⁰ •0	7	4В М-143	FLD	TE-4328J	E F
PTD5 8074	Aluil	DRYWELL TEMP AZ180 EL780 17-100-30 R4	DEGF	0.0 145.0 6	,350.0 4	7	48 M-143	FLD	TE-4328K	F
RTDŠ RD95	A1432	DRYWELL TEMP AZ270 ELA30 17-100-31 R4	DEGF	265.0 6	4 ^{350.0}	7	48 M-143	FLD	TE-4328L	E F
R T D S B () 96	A1433	DRYWELL TEMP CNTR EL750 37-300-32 R4	DEGF	90.0 b	4 ^{350.0}	7	48 M-143	FLD	TE-4328M	F
8102 8097	A 1:4 3 4	SP ARE 17-100-33			4		ЧB			E
RTD2 8098	A1435	SPARE TOPUS WI	Timp	TE- 13990	bb Dig F	, .	4B .			Ē
5019 6009	·A]436	17-101-01 Torus Wtr	Terr	TE - 1 = "8.		:	4B			Ē
8708- 8100	A1437	17-101-02 Nz PRESSURE	PSIG	0	y 165 PSA		4 8			E
8101	A 1 4 3 8	DRYWELL DEWPOINT TEMP af 1 17-101-03 R4	OEGF	90.0 L	100.0 4	7	48 M-143	M155	ME-4347A	E
8705 `	ልኔዓንብ	DRYWELL DEWPOINT TEMP	DEGF	90.0 b	100.0 4	7	48 M-143	M1 5 5	ME-43478	E D
8703 2014	41440	DRYWELL ABSOLUTE PRESS 17-101-11 R4	PSIA 13.2	78°5 P	3 418-000	3.3652.4	48 M- 143	M155	PI-4368A	E

.

,

				· · · ·	· · · ·	
17/08/75 TYPE	PAG NID NO.		UNITS INSTRUMENT	RGE SIGNAL RGE	BD TYPE MPL	O INSTRUMENT NO. REV
SCAN ADPS			LIMITS OW HIGH DB SC	CA AVG CAL GN SA A	REFERENCE LARM/ST DRAWING H	LDGGING D M ER T NOTE REV
6104 6105	<u>ለነዛዛኒ</u>	TORUS ABSOLUTE PRESS PSI 17-101-12 R4 13	ve 12.000 65	.000 5.7 75.7	48 M15 M-143	5 PI-4368B E E
8105	A1442	TORUS RELATIVE WTR LVL I 17-101-13 -1		8-Al Hagemak 80 10 5-9-77	48 ML 53 M- 14 3	5 LT-4363 E F
BTD5 BTD5	A1443	SPARE 70811 WTR 77011		Larry G Tony O	DCR 619 48	D E
8102 8107	∆ 	ייאד יילט איאסל SPARE - 17-101-21	0 .E = 4395 F 4		48	D E
RTD2 8108	A1445	SPARE 7019 (2016 764) 17-101-22 R4	P 71 43986 4		ЧВ	D
8103 8103	ላጊዛዛ ቴ	SPARE 70845 WT6 11"	19 71 1.9811 4		ЧВ	D
ម រ រ ព	41447	SPARE 07-020-33	ų		38	. A
Blll	ልጊчч 8	SP AR E 07-021-00	ч	•	38	A D
CUTC B115	. A1449	SPARE 17-113-31 Rasanned	Ч		٦A	D
CUIC	A1450	SP AR E 17-113-32	ų		٦A	D



• • • •

.

. **⊬∰**

07/08/75	PAG	GE 17										·
TYPE	NID NO.	PRINTED	DESCRIPTION	E.UNITS	I NS	TRUMENT RGE		SIGNAL RGE	BD TYPE	MPL NO INS		D. REV
SCAN ADRS			NO CABLE NO WP	LIMII LOW		DB SC CA	AVG	CAL GN SA ALARM.	REFEREN /ST DRAWIN	CE LOGGI G H D M	ING ERTNI	DTE REV
cono	81000	AVG B860 C	CT CORE FLOW	MATH-DEGE	EZ					3 X3X		E C
C001	8 10 0 1	AVG DBb3-R	GE-OUT STH FLW	INHS MAL	63					66		D C
002	81005	AVG BBL4-R	HP COND PRESS CT-OUT STM-FLW-I		Eð			a Alexandre		. 6 6		D C
CDD3	B1003	AVGBBBS R	WRA PISCH TEMI	DEGF	E3-	•				եե		D C
6004	B1004		WR B DISCH TEM	р <i>De</i> gf D-14{711	EZ					66		D C
C005	81005	AVGEOD7 A	UX XFMR LOAD	MW				•		222		D C
COOL	8100L	AVGEOD a S	TARTUP XEMR LOA	D MW			·			2 121		D C
C007	B1007	AVGE009 S	TANDBY XEMR LOA	D MW			· ·			2121		D C
CDD8	81008	AVGF000 S	TM FLW TO MSR A	Ka F /H					°K	3 3		D C
, ,	81009	AVGFDOl S	TM FLW TO MSR B	K#7/H		L			01	E E 📝	• .	D C
C 0 7 0	B 10 1 0	AVGF004 (OND PMP DISCH P	RPSIG			, s ,			4 2 42		E C
COLF	81011	AVGF005 L	P CON CW IN T A	DEGF		•			σ	K 77		E C
cors	87075	AVGFOOL I	.P CON CW IN T B	DEGF						uk 77		E C
		C										
					•							

98775	PAGE	E 18	- 	- TAU	STRUMENT RGE	SIGNAL	RGE	BD TYPE MP	LNO	INSTRUMENT	NO. R
TYPE	NID NO.	PRINTED DESCRIPTION	E.UNITS					REFERENCE		LOGGING D M ER T	
SCAN ADR S		COMPUTER TERMINAL NO CABLE NO WP	LOW	TS HIGH	DB SC CA	AVG CAL GN	SA ALARM/ST	ÖRAWING	н		
CU13	81013	AVGEOD7 LP CON CW OUT T	8 DEGF					o k	7	?	
COLH	81014	AVGFOOA LP CON CW OUT T	A DEGF					014	. 7	7	
ር ባ ኔ 5	87072	AVGFO26 LE-la fw HTR DR	T DEGF		·						
слте	81016	AVGFO27 1E-18 FW HTR DR	T DEGF								
CO17	81017	AVGF030 LE-24 FW HTR DR	T DEGF								
018	81018	AVGFOBL LE-28 FW HTR DF	RT DEGF	·		• •					
сила	81019	AVGF032 LE-34 FW HTR DF	RT DEGF								
C050	B1050	AVGF033 LE-38 FW HTR DI	RT DEGF			₩ • •					
C057	87057	AVGF034 JE-4A FW HTR D	RT DEGF								
CÜ55	87055	AVGF035 LE-48 FW HTR D	RT DEGE								
C053	81053	AVGFOJL LE-SA FW HTR D	RT DEGF		•						
C024	B1054	AVGF037 LE-58 FW HTR D	RT DEGF								
0.025	81025	AVGEDB8 LE-64 FW HTR D	RT DEGF			:					

•

					,			
).
i								
			·					
07/ 0		PAGE	PRINTED DESCRIPTION	E.UNITS	INSTRUMENT RGE	SIGNAL RGE	BD TYPE MPL NO INSTRUMENT	NO. REV
	SCAN ADRS	NID NO.	COMPUTER TERMINAL NO CABLE NO WP			AVG CAL GN SA ALARM/ST	REFERENCE LDGGING DRAWING H D M ER T	NOTE REV
	COSP	B105P	AVGED39 LE-68 FW HTR DRT	DEGF				D C
	C027	81055	AVGFD46 COND REJCT FLOW	KJE/H			43.43	C D
	0028	81059	TO22 INT VA CIU					E C
	CU54	8 1 05J	TO23 INT VA CI	/-1 OUT F DEGF	r PSIQ			E C
	C 11 30	670 30	AVGF053 10A DR CLR FW O	T DEGF	`		5452	D C
	CUBL	81031	AVGF054 10B DR CLR FW O	T DEGF			6 1 61	D C
	CU 35	B1035	AVGF055 FW T FROM HTR L	A DEGF	· •		ધું ઘ	D C
	CO 33	B 10 3 3	AVGF056 FW T FROM HTR 1	B DEGF			55	, D
. •	CD 34	81034	AVGFD57 FW T FROM HTR 2	A DEGF	,		. ų ų	D C
	C 0 3 5	B1035	AVGFOS& FW T FROM HTR 2	B DEGF			55	D C
	C0 36	81 <u>0</u> 36	AVGF059 FW T FROM HTR 3	A DEGF			ų ų	D C
	0.037	B1037	AVGFOLD FW T FROM HTR 3	B DEGF	• .		55	D C
	CU38	81038	AVGFOLI FW T FROM HTR 4	IA DEGF			44	D C

SIGNAL RGE

BD TYPE MPL NO INSTRUMENT NO. REV

D

Ē.

D C

D

č

D C

n

С

D

С

D

C

Ð

Ē

DC

LOGGING REFERENCE LIMITS LOW HIGH DB SC CA COMPUTER H D M ER T NOTE REV DRAWING SCAN AVG CAL GN SA ALARM/ST TERMINAL NO CABLE NO WP ADRS D C AVGEULZ FW T FROM HTR 4B DEGF 81039 55 C039 D C AVGEOLE FW T FROM HTR 5A DEGF B1040 4 4 C040 D C AVGFOL4 FW T FROM HTR 5B DEGF 81041 5 5 0041 D C DEGF AVGEDLS FW T TO HTR LA 81042 4 4 5400 DEGF AVGEOLL FW T TO HTR LB 81043 5 5 CD43 AVGEDL7 FW T FROM HTR LA DEGF 1 7 1 1 81044 CD 44 AVGEDLA FW T FROM HTR LB DEGE 1515 B1045 C045 MW 81046 AVGGOOL GEN GROSS WATTS 01 1 1 C046 INHG AVGMODO BAROMETRIC PRESS 1%1% B1047 C047 AVGTODO LA LP FW HTR PR PSIA 81048 4 4 C048 AVGTOD 24 LP FW HTR PR PSIA 81049 4 4 0049 AVGTOO2 JA LP FW HTR PR PSIA 81020 ų C050 AVGTODE 44 LP FW HTR PR PSIA 81051 4

INSTRUMENT RGE

E.UNITS

CO 51.

07708775

TYPE

PAUE

NID NO.

C14

PRINTED DESCRIPTION

•

		·	÷.,									
					· · · ·				• •			
07708775	PAG											0.5.4
SCAN ADRS	NID NO.	PRINTED DESCRIPTION COMPUTER TERMINAL NO CABLE NO WP	E.UNITS LIMI LOW	TS	DB SC CA		GN SA	ALARM/ST	REFERENCE		STRUMENT NO. GING M ER T NOTE	
0.052	81025	AVGTOON SA LP FW HTR PR	PSIA			•		ì		44		D C
C 1 5 3	B 1 O S 3	AVGTODS LB LP FW HTR PR	PSIA							55		D C
C0.54	81054	AVGTOOL 28 LP FW HTR PR	PSIA							55		D C
C155	B 1.0 5 5	AVGTOD7 3B LP FW HTR PR	PSIA							55		D C
C M S L	81056	AVGTOO& 4B LP FW HTR PR	PSIA		÷.,					55		D C
C N 5 7	81057	AVGTOO9 58 LP FW HTR PR	PSIA				,			55		D C
C0 58	81058	AVGTOLL LA LP FW HTR PR	PSIÅ							44		D C
C (1) 5 9	81059	AVGTOL2 LB LP FW HTR PR	PSIA				·			55		D C
сига	B70P0	AVGTO24 EXH HOOD LB TEMP	DEGF		• \ •	\				33		D C
COPT	810P1	AVGTO25 EXH HOOD LC TEMP	DEGF							33		D C
COPS	870P5	AVGFO94 FW FINAL PRESS	PSIG							1 2 1 2		, D C
C0P3	B1063	AVGBO25 REACTOR PRESS	PSIG					·		11	:	D C
СОБЧ	81064	AVGBOLS RCT FW LOOP A FL	м мусли		•							D C

.

:.

. .

.

07/08/75	ΡAG	55	•
TYPE	NID NO.	PRINTED DESCRIPTION E.UNITS INSTRUMENT RGE SIG	GNAL RGE BD TYPE MPL NO INSTRUMENT NO. REV
SCAN ADRS		COMPUTER TERMINAL NO CABLE NO WP LOW HIGH DB SC CA AVG CAU	RÉFERENCE LOGGING L GN SA ALARM/ST DRAWING H D M ER T NOTE REV
0065	81065	AVGBOLL RCT FW LOOP B FLW METH	· DC
совь	81066	AVGBOLT CLEANUP SYS FLOW MANH	4 4 C
C067	в 106 7	FOILLP CONDR DP A DPSI AVG BOLG RRP MTR- A PWR MW	Ŭ C
сльа	81088	FOIZ LP CONDIR DPB DPS1 AVGBB2B-RRP-MTR-B-PWR MW	D C
COLA	8 70P J	AVGBOZE CU SYS INLT TEMP DEGF	4 H C
C D 70	81070	AVGBOZA CU SYS OULT TEMP DEGF	4 4 C
C0 37	81071	FOIS CWP A&B DIS PRESS PSIG AVGFBBE GONDR-HOTHELL-LVE TNEH-	D C
0072	B1075	AVGFODE STM EJECT FLOW A CFM	2 121
C073	B1073	AVGENON HP CON CW OT T B DEGE	<i>⇔k</i> , 7 7 €
0074	B1074	AVGEDLO HP CON CW OT TA DEGE	۵ ۲ , ۲, ۲, ۲, E C
, co75	B1075 .	FOIS HP CONDR DP B DPSI AVGBBLIJET PHPT-IL FLOW A MACH	b , b , C
C076	B1076	FOIL HP CONDR DP A DPSI AVGDBLE JET PHP3-8 FLOW B MICH	k k C
C 0 77	81077	AVGGODE GEN STATOR AMP PL KAMP	Z 121 E

•

. .

•

					<i>.</i>		
77 UC/75 TYPE	HAG NID NO.	PRINTED DESCRIPTION	E.UNITS	INSTRUMENT RGE	SIGNAL RGE	BD TYPE MPL NO INSTRUMENT	NO. REV
SC AN ADR S		COMPUTER TERMINAL NO CABLE NO WP	LIMITS LOW HI		AVG CAL GN SA ALARM/ST	REFERENCE LOGGING DRAWING H D M ER T	NOTE REV
C078	B1078	AVGGOD2 GEN GROSS VARS	MVAR			2 22	D C
C.0 79	810 7 9	AVGMODA BLOWDOWN FLOW	KGPM	THAN		5×5X	D C
C 0 8 0	8 7 0 8 0	FOOZ CONDR HOTW	ELL LVL - DEGC	INCH Ez	•	01 2 2	D C
CDAL	81081	AVGGOSI STR WTR CONDUCT	ммно			0 K 2 2	C C
C085	87085	AVGMOOL RVR WTR MU FLOW	в кбрм	`,		4 % 4%	ĔČ
C083	87083	AVGMOD7 RVR WTR MU FLOW	А КСРМ			4 242	Ĕ
· CO84	81084	AVGEO4O LA REP SUCT PR	PSIG	,		6×64	D C
C (185	81085	AVGFO41 18 RFP SUCT PR	PSIG			6 % 6%	D C
C086	81086	AVGF042 14 RFP DISCH PR	PSIG			64.64	D C
C087	B1087) AVGFO43 18 RFP DISCH PR	PSIG			6 % 6%	0 C
COAA	B1088	AVGF044 COND TOTAL FLOW	MUTTH			4 242	D C
COAR	81089	AVGFO45 COND MAKEUP FLOW	кирн			4344	D C
C090	B 1 1 9 0	AVGED47 COND PMP A SUCT	T DEGF			43.43	D C
			•				

		•	•		۰.
07/08/75	PAG	24			
TYPE	NID NO.	PRINTED DESCRIPTION E.UNITS INSTRUMENT RGE	SIGNAL RGE	BD TYPE MPL NO INSTRUMENT	NO. REV
SC AN A DR S		COMPUTER TERMINAL NO CABLE NO WP LOW HIGH OB SC CA AVG	CAL GN SA ALARM/ST	REFERENCE LOGGING DRAWING H D M ER T	NOTE REV
ርበዓኔ	9704F	AVGFO48 COND PMP B SUCT T DEGF		4 २ ४ २	D C
0.0.45	81045	AVGFOL9 LOOP A FW PRESS PSIG		014, 5 5	D C
C093	81093	AVGEN70 LOOP B FW PRESS PSIG		6 1 63	. D C
C094 -	81094	AVGF084 COND DEM DIFF PR DPSI		4 2 42	, D C
C095	B1095	AVGG052 GEN HYDRO GAS PR PSIG		0 K 2 2	D C
ርባዳይ	8109P	AVGNDET OUTSIDE T 15 FT DEGF 2		K , K	D C
0097	B1097	AVGMNOS OTSD DEW PT 35FT DÊGF	•	Ta. Ya.	D C
C098	81098	AVGED93 STM EJECT FLOW B CEM		2121	D C
C099	81099	AVGMOOT RADWASTE DIL FLOW KGPM		5151	D C
C100	81100	ROCGODI GEN GROSS WATTS MW/M			D C
C 7 O 7	BIICI	ROCTOBELST STG TEMP DEGF/M 3.333			D C
C 7 05	81105 >	-+e100/6001_#_ROC=GROSS WATTS 7 - 20.0 (C100/G001) /	00 GROSS WATTS	%/m	D C
стоэ	07703	DRYWELL AIR AVG TEMP DEGF			D C

· .

•

•

,

,

. .

· · ·

.

1

							i			
, N () NAV 75	PAG					SIGNAL	PCF	AN TYPE MPI	NO INSTRUMENT	NO. REV
TYPE	NID NO.	PRINTED DESCRIPTION	E.UNITS	INSTRUMENT				REFERENCE	LOGGING	
SC AN ADR S		COMPUTER TERMINAL NO CABLE NO WP	LOW	TS HIGH _ DB SC C	A AVG	CAL GN	SA ALARM/ST	DRAWING	H D M ERT	NOTE REV
C 1 0 4	B1104	DRYWELL ATMOSPHERIC WT	KLBS							D C
C105	81105	TORUS AIR AVG TEMP	DEGF							D C
CJOP	81106	TORUS ATMOSPHERIC WEIGHT	KLBS						•	D C
(107	81107	CONTAINMENT ATMOS WEIGHT	KEBS							D C
C108	B1108	WATER IN TORUS	KGAL						· ·	· D C
C109	87704	BYPASS HYDRAULIC FACTOR				۱.			·	(C
C 7 70	BIJJO	ROCODES RECIRC A TEMP D	EGF/HR	· · ·						e (
СТГГ	BIIII	ROCBO39 RECIRC A TEMP D	DEGF/HR							L (
CT15	81115		DEGF/HR	VCDM S	Levet to		tar.			
C 7 7 3	81113	SPARE CO79 CONDR			<i>.</i> .					
C114	81114	SPARE CONDR Flow	IALITY						mAT	
CIIS	B1115		TU/KWHR		C154	NET H	eat Rate B			
стте	81116	F(F015, F092) A CIRC WTR TOTAL FLOW	KGPM	Cδ					· •	

PAGE

NID NO.

81117

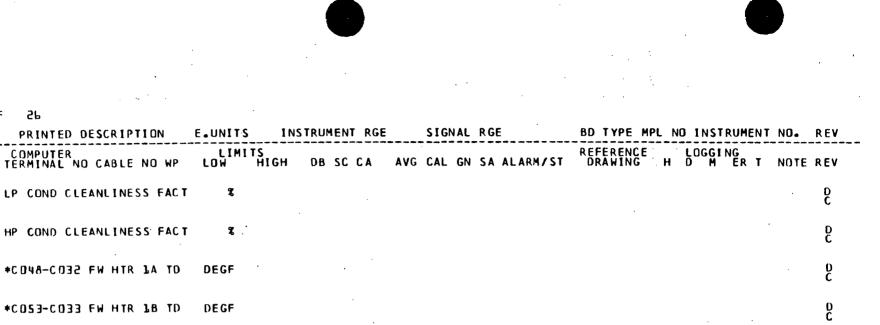
81118

81119

81150

56

07/08/75


TYPE

SC AN ADR S

C117

C 1 1 A

C119

DC

D C

C 7 50 81151 *C049-C034 FW HTR 2A TD DEGF C151 *C054-C035 FW HTR 28 TD DEGF 87755 C755

D 81153 *COSO-CO36 FW HTR 3A TD DEGF C153 *C055-C037 FW HTR 38 TD D. C DEGF 81154 C124 DEGF

D C 81152 *C051-C038 FW HTR 4A TD C152 DEGF D C 8175P *COSL-CO39 FW HTR 48 TD C15P DC 81152 *C052-C040 FW HTR 5A TD DEGF C155

DEGF D C 87758 *COS7-CO41 FW HTR 5B TD 0159

D C 67754 *COS8-CO44 FW HTR 6A TD DEGF C154

07/08/75

TYPE

SCAN

C130

C 7 3 7

C735

C 1 42

,

27

PRINTED DESCRIPTION

COMPUTER TERMINAL NO CABLE NO WP

*COS9-CO45 FW HTR LB TD

B014+C200+C201 STM FLOW

*C179 % OF RATED CMWT

AVG APRM FLUX LEVEL

PAGE

NID NO.

81130

81131

81135

81133

INSTRUMENT RGE

E.UNITS

roň

DEGF

%PWR

MM/HR

8PWR

LIMITS W HIGH

TRUMENT RGE SIGNAL RGE	BD TYPE MPL NO INSTRUMENT NO. RE	: v
DB SC CA AVG CAL GN SA ALARM/ST	REFERENCE LOGGING DRAWING H D M ER T NOTE RE	EV
•	Ľ)
	(D C
		D C
		C C

Č

0

C

C C

С č

č

C C

C133 BL03-*MODD DRYWELL PRESS PSIG 81134 C1.34 B104-*M000 TORUS PRESS PSIG 81135 C135

F&C179,80124 RX LOAD LINE 8 81136 01.36

SOMAE Rain fall SINCE 24Mars YNCH B1137 C137 DEGF SPARE TSATT TEMP LP CONDR 81138 C138 SPARE TSATT TEMP HP CONDR DEGF 81139 C134 SPARE % FULL POWER EQUIL IODINE % 81140 C 1, 4 N XENON % 1C H. 81141 SPARE P 11 C141 % SPARE-II CURRENT II 21 H 81142

(
TYPE	NID NO.	PRINTED DESCRIPTION E.UNITS INSTRUMENT RGE SIGNAL RGE BD. TYPE MPL NO INSTRUMENT N	
SCAN ADRS		COMPUTER LIMITS TERMINAL NO CABLE NO WP LOW HIGH DB SC CA AVG CAL GN SA ALARM/ST DRAWING H D M ER T N	OTE RFV
C 143	81143	SPARE FOLAN END PITE DE PITE CONDR DP	DPG
C144	81144	SPARE COOOL. 49 % OF RATED CORE FLOW %	C C
C 1 4 5		SPARE CO46/5.657 % OFRATED GROSS MWE %	C C
С 1 4 Б		SPARE CO46/C179 GROSS THERMAL EFF %	C C
Ç147	81147	SPARE (CO90+CO91)/2 COND PMP SUCT T DES F	· C C
C 1 48	B1148	SPARE HEAT BALANCE FLOWIALITY	C C
ርጌዛዓ	81149	SPARE CIRC WTR FLOW FROM HEAT BALANCE KGPM SPARE	č
C 1 50			ັ ນ
C727	81151	MAX EDD4 AUX XFMR XTEMP DEGC SPARE 1073+00744/2-00 OUT-TEMP DEGF-	Č E
C 7 25	877255	COOS+COOL+COO? TOT STA PWR MW	č Č
C153	81154	ע ג	
C L S 4		SPARE 	E C

29 PAGE INSTRUMENT RGE SIGNAL RGE BD TYPE MPL NO INSTRUMENT NO. REV E.UNITS PRINTED DESCRIPTION NID NO. LIMITS REFERENCE LOGGING COMPUTER

	SCAN ADRS		COMPUTER TERMINAL NO CABLE NO WP	LIM LOW	ITS HIGH	DB	SC C	A AVG	CAL	GN SA	A ALARI	4/ST	REFERENCE	нĎ	OGGING M ER	NOTE REV.
	C L 5 L	81156	COLS-COBO FW HTR LA APPR	DEGF		١										. D C
	C 1 57	81157	COIL-COIL FW HTR IB APPR	DEGF		•	•								•	D C
	CLSB	81158	RANA WE ALM WE REDO-LOO	DEGF				ï								D C
	C1,5A	81159	COJA-COJA FW HTR 28 APPR	DEGF			•	• •								D C
	с ле о	81160	CO194 AE 5142ED3+4ED3	DEGF	91 <u>2</u>	• • • ; •										D C
	նյել	B 1 1 6 1	994 8E 5162E00+4E00505050	DEGF		•										D C
	C 7 P S	81165	CO21-CO36 FW HTR 4A APPR	DEGF						•						D C
	C 7 P 3	811P3	CO22-CO37 FW HTR 48 APPR	DEGF			·									D C
•	ርኔሬዛ	81164	CO23-CO38 EW HTR 5A APPR	DEGF												D C
	C 1.6 5	81165	CO24-CO39 FW HTR 5B APPR	DEGF												D C
	ՇՆեե	87766	CO25-CO42 FW HTR 6A APPR	DEGF												. D
,	C167	81167	CO26-CO43 FW HTR 68 APPR		0.1		· · · · ·	4 12	×	FGF						D C
	ርጌቴቆ	81168	SPARE MUG	- DEGF-	p(1) = 1	UT 1	\ }	rt f	1.3	101			· .			E C

07/08/75

TYPE

_ _ _ -

07/08/75	PAG	E 30 PRINTED DESCRIPTION	E.UNITS INS	TRUMENT RGE	SIGNAL RGE	BD TYPE MPL N	D INSTRUMENT ND.	REV
SCAN ADRS	NID NO.	COMPUTER TERMINAL NO CABLE NO WP SPARE	LIMITS LOW HIGH		G CAL GN SA ALARM/ST	REFERENCE DRAWING H	LOGGING D M ER T NOTE	REV
ርጊዜዓ	81169	SPARC \$C013+6014472 LP CON IN	-T-DEG F					E C
) / 11 C170	81170	APIY504 GEN GROSS ENERG	Y MWH	•		ľ	1	D C
°¥4 ^ C171	81171	APIYSOS AUX XFMR ENERGY	ММН		· ·	ľ	ľ	D C
^ C175	81172	APIY507 STBY XFMR ENERG	ү мин			ľ	L .	D C
: · · · · C173	81173	APTYSOL STARTUP XEMR EN	MWH			ľ	Ŀ.	D C
C174	B1174	C171+C172+C173 TOT STA	EN MWH	•		ŗ	ľ	D C
C175	B1175	C17D-C174 UNIT NET ENER	GY MWH			ľ	1	D C
ርጌንዜ	81176	\$PARE - C001+C002+C003+C0045TH -	FL-105/H-					D C
C177	B1177	SPARE \$ 044+6 0459/2 FH TEMP	DE GF				. :	ĔĊ
Съ78	81178	SPARE -C175-C158 CALC CRD FLOW	₩ ₩2++					D C
C174	B1179	P4 CORE THERMAL POWER	MWT					D C
C LAI	81180	MAXEDOS AUX XFMR-Y-TEM	J <u></u>					D C
CIA	81181	MAXEDOL STANDBY XEMP T	STM FLOW TO	MSRB				D C

• •

Ň

.

.

CISI

/08/75	PAG	5E 31	· :					·	- ***		
TYPE	NID NO.		ESCRIPTION	E.UNITS	INSTRUMENT RG	E	SIGNAL RGE	BD TYPE M	PL NO IN	ISTRUMENT	NO. f
SCAN ADRS		100 F095	CABLE NO WP MSRA RI	LIMIT LOW EHEAT	s high db sc ca ST STAGE DPSI	AVG	CAL GN SA ALARM	RÉFERENCE I/ST DRAWING	H D	GING MERT	NOTE F
() 95	87195	SNO FO96		0-0-51-	IST STAGE DAS						
C183	81183	MAXEDIZ-LP	CON PR DIFF	8∼ DPST ∖	N N					•	
C 1 8 4	81184	#4XF 0} 3-LP	68N-PR-81FF	B-DPSI-	· ·			t .			
C185	81185	SPARE -MAXFOLY-LP-	CON-PR- DIFF-	ADPSI							
C]8P	BIJAL	HAXFOLS CWP	ACB=DISCH-P	R-PSIG							
C 187	81187	-MAXPOLS CLG	TWR A DISCH	BEGF		3					
C188	81188		;THRB-DISG H	BEO F		. •					
C 1 89	81189	~MA X6858 ≈GEA	HDR_OUTLET	TDEGC	783						
C 1 90	81190	-HAXG85L-MAI	IN-XFHR-A _TEM	PDEGG-	1 - 0						
C 7 J F	81141	- MAX6857-MA	I N-S FMR∓B™TEM	P~-DE6 G~-							
C 7 45	81145	-MAXG058-MA	IN-XFMR-C- TEN	P-DEGC							
C743	81143	-MAXG059-HA	IN XEMR-D TEM	₽ ≈ ₽ EGG ≁							
ርኔዓዛ	81194 -	MAXGUED SU	XFMR-X TEMP)						

07/0A/75	PAGE	32

•

TYPE	NID NO.	PRINTED DESCRIPTION	E.UNITS	1 NS	TRUMENT RGE	S IGN	AL RGE	BD TYPE MPL NO	INSTRUMENT	ND. REV
SCAN ADRS		COMPUTER TERMINAL NO CABLE NO WP	LIMI LOW	TS HTGH	DB SC CA	AVG CAL	GN SA ALARM/ST	REFERENCE DRAWING H	LOGGING D M ER T	NOTE REV
(195	81195	HAXGOLL SU XPMR-Y TEMP	~~ 0 E6C							C
С19Ь	81196	MAXMD22 RVR WTR INLET T	DEGF	•					· ·	ç
C197	B1197	MAXMO23 CANAL DISCH WTR	DEGF							D C
Clas	81198	MAXTREL TURB OIL CLR OUT	- DEGF						-	C C
C1.99	81144	MAXIO27-TURB-OIL-CLR-IN-	T-DEGE							C C
C500	87500	SMO Avgbols RX FW Loop A	MATH						· .	A
C 50 F	81501	SAND -Avgboll RX FW Loop B	MEETH							A

•

.

••

i

. . .

ADDS TERMINAL NO CABLE NO WP LOW HIGH DB SC CA AVO ONE OF OT OF												
TYPE NID PRINTED DESCRIPTION E-UNITS INSTRUMENT RGE SIGNAL RGE BD TYPE MPL NO INSTRUMENT NO. R SGAN TERMINAL NO CABLE NO HP LUMITS INSTRUMENT RGE SIGNAL RGE BD TYPE HPL NO INSTRUMENT NO. R SGAN TERMINAL NO CABLE NO HP LUMITS INSTRUMENT RGE AVG CAL CN SA ALARYST REFRAINCE H DOG NIER T NOTE RI FOND ALOOD YERMINAL NO CABLE NO HP LUMITS INSTRUMENT RGE SIGNAL RGE BD TYPE HPL NO INSTRUMENT NO. R FOND ALOOD YERMINAL NO CABLE NO HP LUMITS INSTRUMENT RGE SIGNAL RGE BD TYPE HPL NO INSTRUMENT NO. R FOND ALOOD YERMINAL NO CABLE NO HP LUMITS HIGH DESCRIPTION FOND FOND HIGH STOTE FOND							•				<i>.</i>	
TYPE NID PRINTED DESCRIPTION E-UNITS INSTRUMENT RGE SIGNAL RGE BD TYPE MPL NO INSTRUMENT NO. R SGAN TERMINAL NO CABLE NO HP LUMITS INSTRUMENT RGE SIGNAL RGE BD TYPE HPL NO INSTRUMENT NO. R SGAN TERMINAL NO CABLE NO HP LUMITS INSTRUMENT RGE AVG CAL CN SA ALARYST REFRAINCE H DOG NIER T NOTE RI FOND ALOOD YERMINAL NO CABLE NO HP LUMITS INSTRUMENT RGE SIGNAL RGE BD TYPE HPL NO INSTRUMENT NO. R FOND ALOOD YERMINAL NO CABLE NO HP LUMITS INSTRUMENT RGE SIGNAL RGE BD TYPE HPL NO INSTRUMENT NO. R FOND ALOOD YERMINAL NO CABLE NO HP LUMITS HIGH DESCRIPTION FOND FOND HIGH STOTE FOND			در		ι.							
SAME LONPUTER NO CABLE NO WP LUMITATION DB SC CA AVG CAL GN SA ALARY/ST REFERENCE H DOGENEER T NOTE RI IOD ALODD $LLMTTAL_MO$ CABLE NO WP LOW MTHHIGH DB SC CA AVG CAL GN SA ALARY/ST REFERENCE H DOGENEER T NOTE RI IOD ALODD $LLMTTAL_MO$ CABLE NO WP LOW MTHHIGH DB SC CA AVG CAL GN SA ALARY/ST REFERENCE H DOGENEER T NOTE RI IOD ALODD $LLMTTAL_MO$ CABLE NO WP LOW MTHHING BSC CA AVG CAL GN SA ALARY/ST REFERENCE H DOGENEER T NOTE RI IOD ALODD $LLMTTAL B.AGO O.D L S-250 D 100 E-4 B $				E.UNITS	I NS TRUM	ENT RGE	SIGNAL	RGE				NO. RE
FOOD A 1000 1 A 2002 0 C C C C C C C C C C C C C C C C C C C	SCAN		COMPLITER		TS HIGH DB	SC CA	AVG CAL GN	SA ALARM/ST	REFEREN DRAWIN	CE LO G H D	GGING M ER T	NOTE RE
Endl ALOOL VILLO V. SWCR BUS 1A2 A-B 3.800 $0.0 \ L$ 4.200 L <th< td=""><td>FOOO</td><td>A 1000</td><td>4160 V SWGR BUS 1A1 A-B 18-202-00</td><td>кV Э.800</td><td>0.0 L</td><td>4^{5.250}</td><td>0.</td><td>100 7</td><td>3D E-4</td><td>M1 55</td><td>VT-AL</td><td>B C</td></th<>	FOOO	A 1000	4160 V SWGR BUS 1A1 A-B 18-202-00	к V Э.800	0.0 L	4 ^{5.250}	0.	100 7	3D E-4	M1 55	VT-AL	B C
FOND ALDOL 1 A = 202 - 63 = 00 = 00 = 3. 800 B = 4 7 C = 3 FOND ALOO3 1 A = 202 - 63 = 00 = 00 = 3. 800 0 = 0 = 4 = 5.200 0 = 100 0 = 0 = 0.000 <	E001	4 J N O J	4160 V SWGR BUS 142 A-B 18-202-01	к v 3.800			0	100 7				
EDD3 IARCUE G3 IAGE RTD1 A LOO4 ALX XEME_X HOT SPOT TEMP DEGC LOSA $200 \cdot 0$ 7 4A E3 2 4PH RTD1 A LOO4 ALX XEME_ST HOT SPOT TEMP DEGC LOSA $200 \cdot 0$ 7 4A E3 2 4PH RTD1 A LOO5 ALX XEME_ST HOT SPOT TEMP DEGC LOSA $0 \cdot 0 \cdot 0 \cdot 0$ 7 4A E3 2 4PH RTD1 A LOO5 ALX XEME_ST HOT SPOT TEMP DEGC LOSA $0 \cdot 0 \cdot 0 \cdot 0$ 7 4A E3 2 4^{100} RTD1 ALOO5 StanDBS TARR HOT SPOT TEMP DEGC LOSA $0 \cdot 0 \cdot 0 \cdot 0$ 7 4A E3 2 4^{100} FOD5 ALOO5 StanDBS TARR HOT SPOT RE DEGC LOSA $0^{200 \cdot 0}$ 7 $4A$ E3 2 4^{100} FOD6 ALOO7 ALOOS TARR HOT SPOT RE DEGC LOSA $0^{200 \cdot 0}$ 7 $4A$ E3 E^{10} A^{10} A^{10} A^{10} A^{10} A^{10}	E005	¥7005	4160 V SWGR BUS 1A3 A-B 18-202-02	кV 3.800				•				
RTDL A LOO 4 AUX 2 XEM B2 X HOT SPOT TEMP DEEC Los. 0.0 L 4 EOD 4 7 2 2 RTDL A LOO 5 AUX 2 XEM B2 Y HOT SPOT TEMP DEEC Los. 0.0 L $4^{200 \cdot 0}$ 7 4A E3 2 2 4^{9H} FODL A LOO 5 STANDBY 1 XEMR HOT SPOT TEMP DEEC Los. 0.0 L $4^{200 \cdot 0}$ 7 4A E3 2 2 4^{9H} FODL A LOO 5 STANDBY 1 XEMR HOT SPOT TEMP DEEC Los. 0.0 L $4^{200 \cdot 0}$ 7 4A E3 2 2 4^{9H} FODL A LOO 5 STANDBY 1 XEMR HOT SPOT TEMP DEEC Los. 0.0 L $4^{200 \cdot 0}$ 7 4A E3 2 2 4^{9H} FOO 5 A LOO 5 STANDBY 1 XEMR HOT SPOT R DEEC Los. 0.0 L $4^{200 \cdot 0}$ 7 4A E7 2 2 4^{9H} FOO 7 A LOO 7 AUX 2 XEM 2 XEM ALOAD MH $v_{4000}^{200 \cdot 0}$ -35 35 $E - \frac{30}{49}$ MLSS MT / AT FOO 8 A LOO 8 STANDBY 1 XEMR LOAD MH $-42 \cdot 0$ $2^{9 \cdot 00}$ $-40 \cdot 40$ $E - \frac{30}{38}$ MLSS MT / ST FOO 9 ALOO 9 STAN	E003	A1003	ЧЪЬО V SWGR BUS ЪАЧ А-В ЪА-202-03	к у 3.800			0	3 00				
RTD1 FOD5 A 1005 AUX XFMR-Y HOT SPOTTER DEGC 105.0°5 L 4 0000 7 2 2 FOD6 A 1006 STANDBY XFMR HOT SPOTRE DEGC 105.0°5 L 4 200.0 7 4A $E7_2$ 49W FOD6 A 1007 Standby XFMR HOT SPOTRE DEGC 105.0°5 L $4^{200.0}$ 7 4A $E7_2$ 49W E007 A 1007 Standby XFMR HOT SPOTRE DEGC 105.0°5 L $4^{200.0}$ 7 4A $E7_2$ 49W E007 A 1007 Standby XFMR HOT SPOTRE DEGC 105.0°5 L $4^{200.0}$ 7 4A $E7_2$ 49W E007 A 1007 Standby XFMR LOAD MW $v_{4600012}^{-10}$ $2^{42.00}$ -35 35 $E-38$ M155 WT/AT F008 A 1008 STANDBY XFMR LOAD MW -42.00 $2^{42.00}$ -40.40 $E-38$ M155 WT/ST F009 A 1009 STANDBY XFMR LOAD MW $-7-0$ $2^{7.00}$ -40.40 $E-38$ M155 WT-SB E010 A 1000 SP	8101 F004	A 1004	AUX XFMR-X HOT SPOT TEMP 18-200-02 R2	P DEGC				7		,		
FODL A LOOD STANDBY XFMR HOT SPOTRE DECC LOS. 0.0 L 4 E00.0 L 7 2 2 FODA A LOO7 AUX X XFMR HOT SPOTRE DECC LOS. 0.0 L 4 E00.0 L 7 2 2 FOOR A LOO7 AUX X XFMR LOAD MW V4G0012.0 2 $2^{42.00}$ x -35 $\frac{3}{7}5$ $E - \frac{38}{48}$ MLSS WT / AT FOOA A LOO3 STARTUP XFMR LOAD MW -42.0 $2^{42.00}$ x -100100 $E - \frac{38}{48}$ MLSS WT / ST FOO9 A LOO3 STARTUP XFMR LOAD MW -42.0 $2^{42.00}$ x -100100 $E - \frac{38}{48}$ MLSS WT / ST FOO9 A LOO3 STARTUP XFMR LOAD MW -72.0 $2^{7.00}$ x -40.40 $E - \frac{38}{38}$ MLSS WT - SB FOO4 A LOO3 SPARE 4 4 38 4	RTD1 F005	ALOOS	AUX XEMR-Y HOT SPOT TEM 18-200-03 R2	P DEGC				7				
E007 A 1007 A W X X X FMR LOAD MW V4 G 0 0 1 2 4 2 0 0 x - 1 3 7 3 E - 4 E008 A 1008 STARTUP XFMR LOAD MW - 42 0 2 4 2 0 0 x - 1 00 100 E - 4 M 1 5 5 WT / ST F008 A 1009 STARTUP XFMR LOAD MW - 42 0 2 4 2 0 0 x - 1 00 100 E - 4 M 1 5 5 WT / ST F009 A 1009 STANDBY XFMR LOAD MW - 7 0 2 7 0 0 x - 40 40 E - 5 M 1 5 5 WT - SB E010 A 1010 SPARE 10 AD MW - 7 0 2 7 0 0 x - 40 40 E - 5 M 1 5 5 WT - SB E010 A 1010 SPARE 10 AD MW - 7 0 2 7 0 0 x - 40 40 E - 5 M 1 5 5 WT - SB E010 A 1010 SPARE 10 - 10 3 Y Y Y Y E010 A 1010 SPARE 10 - 10 3 Y Y Y Y H Y Y Y Y Y Y Y H Y Y Y Y Y Y Y Y H <td>FOOL</td> <td>A1006</td> <td>STANDBY XFMR HOT SPOT T 18-200-10 R2</td> <td>DEGC</td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td>	FOOL	A1006	STANDBY XFMR HOT SPOT T 18-200-10 R2	DEGC				•				
FOO8 Aloos STARTUP XFMR LOAD MW -42.0 242.00 MU 100000 E-4 FOO8 Aloo9 STANDBY XFMR LOAD MW -7.0 2 ^{7.00} -40.40 38 MLSS WT-SB FOO9 Aloo9 STANDBY XFMR LOAD MW -7.0 2 ^{7.00} -40.40 38 MLSS WT-SB FOO9 Aloo9 STANDBY XFMR LOAD MW -7.0 2 ^{7.00} -40.40 38 FO09 Aloo202-12 4 38 38 FO10 Aloo2 SPARE 4 38	E007	A 1007	AUX XEMR LOAD 18-202-10	MW	-42.0 V4GOOl 6		^	•				
ALOO9 STANDBY XFMR LOAD HW 2700 2 100 X E-5 FOO9 L8-202-L2 3B ALOLO SPARE EOLO L8-202-L3 4 4 4	F008	a 1 008					X					
A1010 SPARE E010 18-202-13 4 4	F009		19-905-15	MW	-7.0	2,•00	X -40	40		ل کی افراد ہ		
RIDL ALOLL SPARE FOLL L8-200-LL 4						4				•		
	RTD1 F011	A 70 F F	SPARE 18-200-11			4						

L E

07/08/75	PAG	E 34	·					:			
TYPE	NID NO.		E.UNITS	INŠTRUM	MENT RGE	SIGNAL	. RGE	BD TYPE	MPL NO IN	STRUMENT N	0. REV
S C A N A DR S		COMPUTER TERMINAL NO CABLE NO WP	LIMI	TS HIGH DB	SC CA AVG	G CAL GI	SA ALARM/ST	REFERENC DRAWING	Е LO(Н.D	GGING MERTN	OTE REV
, CFLO FOOD	V 70,75	REHEAT STM FLOW TO MSR A	Ку¥Р́Н	0.0 V97016 6	1 70.0 ч х	35	160 7	м 10 3	MLSS	FT-1081	D D
C F L O F D O J	V T O T 3	REHEAT STM FLOW TO MSR B 07-021-20	КТИН	V107016 6	4 ^{170.0} X	35	160 7	38 M-103	M155	FT-1080	D D
£003	A1014	CONDENSER HOTWELL LEVEL	INCH	0.0	4°-00 x	35	7PO	M-10P 38	M144	LT-1490	C D
F1.0W F003	a 10 1 2	STM EJECT OFF GAS FLOW A	CFM	75.0 ^{0.0} L	3 150.0 x	35	160 7	98 м-105	EM	FT1374A P	C D
PRES FD04	ATOTP	COND PMP 46B DISCH PRESS 07-021-23	PSIG	575.0 ^{.0} ь	а - 00•0 х	35	160 7	38 M-106	M1 78	PT-1433 P	D D
R T D 4 F N D 5	A1017	LP CONDR CW IN TEMP A C 17-111-00 R4	DEGF	0.d	4 ^{100.0} x			48 M-142	M155	TE 4219A-D	D D
R T D 4 F D D b	A1018	LP CONDR CW IN TEMP B 17-111-01 R4	DEGF	0.0	4 ^{100.0} x			48 M-142	M155	D-A05543T	, Đ
PTD4 F007	ALOIA	LP CONDR CW OUT TEMP B 17-111-02 R4	DEGF	0.0	4 ²⁰⁰⁻⁰ x			48 M-142	M155	7E4217A-D	D
RT 04 F008	V 7050	LP CONDR CW OUT TEMP A 17-111-03 R4	DEGF	0.0	4 ^{200.0} x	·		48 M-142	M155	TE 4218A-D	D 0
8 T D 4 F D D 9	A7057	HP CONDR CW OUT TEMP B 17-111-10 R4	DEGF	0.0	4 ^{200.0} x			48 M-142	MISS	TE 4236A-D	D D
R T D 4 F D 1 D	¥7055	HP CONDR CW OUT TEMP A 17-111-11 R4	DEGF	0.0	4 00 ° 0 X			48 M-142	MISS	TÉ4215A-D	D D
PRES	V7053	LP CONDR PRESS DIFF A 07-021-30	DP S I	6.0 L	. 10•00 Э	35	1 60 .	M-745	M155 777	PDT-4222 P	E D
PRES F012	A 1054	LP CONDR PRESS DIFF B 07-021-31	DPSI	6,0 Б	30.00	35	160 7	M-145	H155 7	4257 – 1 DJ 9	F D
		, F					j		, ,		

. **k**

`

									· .		· .
			·			• •		•		•	
108/75 TYPE	PAG NID NO.	E 35 PRINTED DESCRIPTION	E.UNIT:	S INST	RUMENT RGE	SIGNAL	RGE			NSTRUMENT NO	. REV
SCAN ADRS		COMPUTER TERMINAL NO CABLE NO WP	LIM	HIGH (DB SC CA	AVG CAL GN	I SA ALARM/ST	REFERENC	Е LOC ; н D	GGING MERTNO	ITE REV
PRES	A 10 2 5	HP CONDR PRESS DIFF B 07-021-32	. DPSI	6.0 ^{0.0} I	r 3 10∙00	35	160 2	85 M-145	M1255 - 7 7	PDT-4214 P	E D
PRES	V 205P	HP CONDR PRESS DIFF A	DPSI	6.0 ^{0.0} (10.00 5 3	35	160 7	м-142	M155 77	PD T- 421 3 P	E D
PRFS FD15	A 1027	CWP ACB DISCH PRESS	PSIG	0.0	3100.0	35	J F O	- 38 M-142	M155 77	PT-4205 P	E D
F016	82028	CLG TWR A BASIN LEVEL	INCH 52.0	0.0 58.0	₽ 3 P 3	35	160 7	38 M-142	M1 55	LT-4231	D E
F017	A1054	CLG TWR B BASIN LEVEL	INCH 52.0	0.0 58.0	60.0 6 3	35	160 7	98 M-142	MLSS	LT-4232	DE
PTD2	A 10 30	CLG TWR & DISCH WTR TEM		0.0			7	48 M-142	M155 777	TE-4240	, D
6105 6105 6105	41031	CLC THE & DISCH WIR TEM		0.0	200.0 ۲		7	48 M-142	M1 55 7 7	TE-4241	D D
BIDI	A 10 3 5	CWP A MTR STATOR TEMP P 18-200-12 R2			- 200.0		7 '	4A M-142	E2 S	AEE94-31	A D
FÓZŐ RTOL FOZI	A 1033	CWP A MTR STATOR TEMP P 14-200-13 R2			200.0		7	44 M-142	E2 S	TE-42338	A D
6057 6101 6055	A 1034	CWP A MTR STATOR TEMP P 18-200-20 R2			с , ₄ 200.0		7	4A M-142	E2 S	JEE-4233C	A D
	A 10 3 5	CWP B MTR STATOR TEMP			200.0		7	44 541-M	625	TE-4234A	A D
EU53 EU57	ATOBP	CWP B MTR STATOR TEMP_F			еч 200-0		7	4A M-142	E2.5	TE-42348	р С
F024	A 1037	18-200-22 Ra	•		ьч 200.0 ьч		' 7	44 442	E2 S	TE-4234C	· /

PAGE JL

651 - S**BYB**A

5 - ar 10 - 11

07708775	PAG	E de								
түре	NID NO.	PRINTED DESCRIPTION	E.UNITS		MENT RGE	SIGNAL RGE			RUMENT NO.	
SCAN ADRS		COMPUTER TERMINAL NO CABLE NO WP	LIMI1 LOW	IS HIGH DB		CAL GN SA ALARM/ST	REFERENCE DRAWING	H D M	ERT NOTE	REV
6105 6056	A 10 3 8	LE-1A LP FW HTR DR TEMP L7-L0L-32 R4	DEGF	0.0	4 ^{200.0} X		48 1 M 10 4	1155 TE	-1101	D D
RTD2 FD27	A LO 39	LE-18 LP FW HTR DR TEMP 17-101-33 R4	DEGF	0.0	200•0 4 X		48 M- 10 5	M1.55 TE	-1311	D D
5079 8507	A1040	15-104 LP DR CLR DR TEMP 17-102-00 R4	DEGF	0.0	200.0 4		48 M 104	M155 TI	E-1105	D D
RTD2 FD29	A 1 D 4 1	LE-LOB LP DR CLR DR TEMP L7-LO2-DL R4	DEGF	0.0	4 4		48 M-105	M155 T	E-1315	D D
RTD2 FD3D	A1042	LE-ZA LP FW HTR DR TEMP L7-LO2-D2 R4	DEGF	Ó•0	4 ^{200.0} X		48 M-104	M155 T	E-1110	D D
PTD2 FD31	a 104 j	16-28 LP FW HTR DR TEMP 17-102-03 R4	DEGF	0+0	4200.0 X		48 M-105	M155 T	E-1304	D
RTD2 F032	A1044	LE-34 LP FW HTR DR TEMP L7-102-10 R4	DEGF	0.0	4 ³⁰⁰⁺⁰ X		48 M 10 4	M155 T	E-1119	D D
6019 6019	A1045	12-38 LP FW HTR DR TEMP 17-102-11 R4	DEGF	0.0	4 ^{300.0} X		48 M-105	M155 T	05EV-3	D
RTD2 F034	A 1046	16-44 LP FW HTR DR TEMP 17-102-12 R4	DEGF	0.0	4 ^{300.0} x		48 M-104	M155 T	E-1137	D D.
RTD2 F035	A1047	1E-48 LP FW HTR DR TEMP 17-102-13 R4	DEGF	0.0	ч ^{300.0} х		48 M-105	M155 T	E-1395	D D
RTD2 F036	A1048	12-54 LP FW HTR DR TEMP 17-102-20 R4	DEGF	0.0	400+0 4 X		48 M 1.0 4	M155 T	E-1145	D D
RTD2 F037	A 1049	16-58 LP FW HTR DR TEMP 17-102-21 R4	DEGF	0.0	400-0 4 X		48 M-105	M155 T	E-1341	D D
RTD2 F038	A 10 50	16-60 HP FW HTR DR TEMP 17-102-22 R4	DEGF	0.0	400.0 4 X		48 M 10 4	M155 Ť	E-1152	D .
	í		. •		·					

07/08/75	PAGE			INSTRU	ACNT DOP		S 1 GN AL	RGE	BD TYPE	MPL NO 1	INSTRUMENT	NO. REV
TYPE	NID NO.	PRINTED DESCRIPTION	E.UNITS						REFERENC		DGGING M ER T	NOTE REV
SCAN ADRS		COMPUTER TERMINAL NO CABLE NO WP	LIMI LOW	HIGH DB	SC CA	AVG	CAL GN	I SA ALARM/ST	DRAWING	, n v		
8003 8079 8039	A 10 5 1	17-102-23 R4	DEGF	0.0	400.0 4	x			48 M- 10 5	M155	TE-1349	D
PRES	A 10 52	1P-1A RFP SUCT PRESS 07-022-03	PSIG 200.0	0.0 L	600.0 3	x	35	у ьо	м-107	M155	PT-1575 P	DD
PRES FJ41	A 10 5 3	10-18 RFP SUCT PRESS 07-022-10	PS1G 200.0		9-00-0	x	ΞĒ	160 7	98 м-10 7	M155	PT-1617 P	D
PRES F042	A 1054	ነቦ-ነል RFP DISCH PRESS 07-022-ነኔ	PSIG	D	2000 E	x	35	720	<u>38</u> м-107	ML 5 5	PT-1577 P	ED
PRES	A 1 0 5 5	1P-1B RFP DISCH PRESS 07-022-12	PSIG	D	з 5000	x	35] 60	98 м-107	M1 55	PT-1619 P	E D
CFLO FN44	A 10 5 L	COND TOTAL FLOW	MATH	0.0	0-8 E	x	35	7P 0	<u>м-10</u> г	M1 55	FT-1426	, D
CFLO F045	A 1057	COND MAKEUP FLOW 07-022-20	к∯С∕н	0.0	3700°Q	x	32	160	38 M-106	M1 55	FŤ-1493	U
C.FLO 6043	A1058	CUND REJECTION FLOW	кулн	0.0	50. 00 3	x	35	720	₩~106	M155	FT-1500	C D
PTD2 F047	ALOSA	COND PMP A SUCT TEMP 17-102-30	DEGF 4	0.0	200.0 4) x		•	4в М- 10 б	M1 5 5	TE-1403	E D
PTD2 FO4A	AJOLO	COND PMP B SUCT TEMP	DEGF 4	0.0	,200.(4	י א ^נ			48 M-106	ML 5 5	TE-1413	E D
87D2 8049	A TOP T	STM PKG EXHTR SUCT TEM	P DEGF	0.0	، 200 • ا	0			4В М~10ь	M1 55	TE-1420	D
PU43 PTD2 F050		COND TEMP TO COND DEMI	N DEGF	0.0	4200•	0			48 M-108	M155 3	TE-1430	D
EUSU RTD2 FOSI	_	17-103-00		0.0	4 ²⁰⁰ •	0			48 . м-10ь	MI 5 1	TE-1439	D D

,

i

n 🗰

117	/08/75	- 		E.UNITS	TNSTRU	MENT RGE		S I GN AL	RGE			NSTRUMENT NU		-
	TYPE	NID NO.	PRINTED DESCRIPTION						SA ALARM/ST	REFERENC DRAWING	E LO H D	GGING M ER T NO	DTE REV	
	SCAN ADRS		COMPUTER TERMINAL NO CABLE NO WP					0		чB	M1 55	TE-1445	D	
	PT 02 F0 52	А 1064	16-108 DR CLR FW IN TEMP 17-103-01 R4	DEGF	0.0	200•0 4				M-10F	5	*C-1443	D	
		A1065	15-104 DR CLR FW OT TEMP 17-103-02 R4		0.0	4 200.0	x			48 M-106	M155	TE-1443	Ď	
	FOR FOR		17-103-02 1E-108 DR CLR FW OT TEMP 17-103-03		0.0	,200.0	x			48 м- 10 б	M] 55	TE-1449	D D	
	PTD2 FD54	A707P			0.0	300.0				48 М-106	M155	TE-1453	D D	
	RT02	A1067	FW TEMP FROM HTR LE-LA L7-L03-L0 R4	DEGF	0.0	300.0 4	X	•			M] 55	TE-1459	D D	-
	RTD2 FD56	A LOL 8	FW TEMP FROM HTR 16-18 17-103-11 R4	DEGF	0.0	,300.0 4	x			48 M-106				
		43.04 B			0.0	300.0	X			48 м-106	M122	TE-1463	D D	
•	RTD2. F057	A 1,069	FW TEMP FROM HTR LE-2A 17-103-12 R4		0.0	•			·	4В М-10ь	MJ 55	TE-1469	D	
	PTD2 F058	A 1070	FW TEMP FROM HTR 1E-28 17-103-13 R4	DEGF	U e U	300.0 4	X			4B	M155	TE-1555	D	
	RTD2 FD59	A 1071	FW TEMP FROM HTR LE-3A L7-L03-20 R4	DEGF	0.0	300+0 4	x			M-107			_	
					0.0	300 . 0) _x	·	,	48 M-107	M155	TE-1 59 7	D	
	РТD2 F060	A 7035	FW TEMP FROM HTR 1E-38 17-103-21 RL			•			Ĵ.	48	M155	TE-1563	D	
	RTD2 F061	A 10 7 3	FW TEMP FROM HTR LE-44 17-103-22	DEGF 4	0.0	400. 4	X	~		M-107	M1 55	TE-1605	D	
	8105	A1074	FW TEMP FROM HTR 1E-48 17-103-23 R	DEGF	0.0	400+1 4	x			48 M-107	- C L M		D.	
	FORS				0.0	400 • I	o j			48 M-107	M155	TE-1568	D D	
	87.02 F063	A1075	· 71-703-30			•			•		M155	TE-1610	D	
	PTD FNG	A 1075	FW TEMP FROM HTR LE-50 17-103-31	DEGF	. 0.0	400• 4	^U X			48 M-107				
									•					

								. • •				
1 100/15		PRINTED DESCRIPTION	E.UNITS	INSTRU	MENT RGE	S I GN AL	RGE		BD TYPE	MPL NO	INSTRUMENT NO	. REV
SCAN ADRS	NID NO.	COMPUTER TERMINAL NO CABLE NO WP	LIMI	TS		/G CAL GN	I SA 4	LARM/ST	REFERENC	E I	LOGGING D M ER T NO	TE REV
8 T D 2 F O 6 S	A 1077	FW TEMP TO HTR DE-6A D7-103-32 R4	DEGF	0.0	400.0 4 x				48 M-107	M], 55	TE-1583	D D
PTD2 FOLL	A1078	FW TEMP TO HTR LE-68 17-103-33 R4	DEGF	0.0	400.0 4 X				48 M-107	ML 5 5	TE-1627	D D
RTD2 FN67	A1079	FW TEMP FROM HTR 18-64 17-110-00 R4	DEGF	0.0	4 ^{500•0} x		•	•	48 M-107	M], 55	TE-1587A P T	D D
RTD2 FO68	NADEA	FW TEMP FROM HTR LE-LB 17-110-01 R4	DEGF	0.0	4 ^{500.0} X				48 M-107	M155	TE-15878 P T	D
PRES FOL9	VICUI	LOOP A FW CONTROL PRESS	PSIG	0.0	,1 x 5000•0	35	jp 0		3B M-107	M155	PT-1582	C D
PRES F070	A1085	LOOP B FW CONTROL PRESS 07-022-23	PSIG	0.0	1 X 5000°0	35	1 60		38 M-107	M155	PT-1653	C D
PTD1 F071	A1083	CP A MTR STATOR TEMP PL	DEGC	750°0°0 P	4 200. 0		7		4д м-10ь	· M7	TE-1512A	A D
RTD1 F072	A1084	CP & MTR STATDR TEMP P2 07-032-10 R2	DEGC	150°0°0 P	4200.0		7		48 M-106	M7	TE-1515B	A D
PTD1 F073	A1085	CP & MTR STATOR TEMP P3 07-032-11 R2	DEGC	150°0°0 P	4 200 •0		7		4д М-10ь	M7	1E-7275C	Ď
РТО1 F074	ALOSE	CP B MTR STATOR TEMP P1 07-032-12 R2	DEGC	150°0°0 P	4200+0		7		4д М-10ь	M7	TE-1513A	, A D
8101 F075	A-1087	CP B MTR STATOR TEMP P2 07-032-13	DE GC	750°0°0 P	4200 . 0		7		4А м-10ь	M7	TE-15138	A D
RTD1 F076	a 1088	CP B MTR STATOR TEMP P3 07-032-20 R2	DEGC	150°0°0 P	4 200 •0		7	•	44 м-10ь	M7	TE-1513C	A D
RTD1 F077	A1089	RFP A MTR STATOR TEMP P 07+032-21 R2	LDEGC	150°0 P	,200.0 4		7		44 M-107	E52	TE-1645A	A D

07/08/75	PAG									SIGNAL	PCF	BD TYPE		DINS	TRUMENT	NO.	REV
TYPE	NID NO.		DESCRIPTION			1 NS I		ENT RGE		SIGNAL		REFERENC	F	1066			
SCAN ADPS		COMPUTER TERMINAL NO	CABLE NO	WP LOW		GH I	DB	SC CA	AVG	CAL GN	SA ALARM/ST	DRAWING	Б ^{-'} Н	D M	ERT	NOTE	REV
РТD1 F178	A1090.	8 ATM A 448 07-032-22	STATOR TEM	P P 2DE GC R2	150		6 1	200+0 4			7	44 M-107	E2 5	T	E-16458		A D
PTD] F079	A 1091	RFP A MTR 5 07-032-23	STATOR TEM	P P 3DEGC R2	150		6	4200.0			7	4A M-107	ES 2	T	E-1645C		A D
РТЛ1 F080	A 1045	RFP 8 MTR 9 07-032-30	STATOR TEM	P P LDE GC	r50	0.0	6	4200+0			7	4A M- 107	E 2 S	· T	E-1646A	i	A D
et di Fobi	A 1093	RFP 8 MTR 3 07-032-31	STATOR TEM	P P 2 DE GC	150	0.0 .0	6	4 200 .0			7	44 M-107	E2 \$	1	E-16466	.	A D
RTDL F082	A 1094	ATM 8 938	STATOR TEM	P P 3DEGC	151	0.0	Ь	4 200 •0			7	4A M-107	E25	1	'E-1646(A · D
FN83	ALD95	DEMIN WTR 17-111-20	TANK EFFL	CONDMMHO		0.00	Ì	3 0 •00		16	ÅD.	9F M-109	M2 0		IT-520'	1	D D
PRES FOA4	A 1096	0 M30 GN03 06-550-70	IFF PRESS	DP S 1		0.0		40.00 4	x	35	160	м- 10 8	M20	ł	PDT- 17 0	7	C D
FOAS	A 1097	COND DEM 1 17-111-51	NFL CONDUC	т ммно		0.0		э г. 000		D	10	ЭF м-147	M50	(217-170	ŧ	C D
FJ86	A/1098	DEM TK A E	FFL CONDUC	CT MMHO		0.0		з ^{1.000}		0	F0	3F M-147	05M	(: 1 - 1 7 2	LA ·	A D
F087	A1099	DEM TK 8 E	FFL CONDUC	СТ ММНО		0.0		31.000		0	70	3F M-147	05M		CIT-172	68	. A D
FOAA	Altoo	DEM TK C E	EFFL CONDUC	CT MMHO		0.0		3.000		٥	10	3F M-147	0 5M		CIT-172	PC .	A D
FOAS	ATTOF	DEM TK D E 17-111-31	EFFL CONDU	ст ммно		0.0		3. 7.000	·	0	7 0	3F M-147	M50		CIT-172	60	A D
F090	V1105	DEM TK E E 17-111-32	EFFL CONDU	СТ ММНО		0.0		3 . 000		0	10	м-147	05M		C I T-172	66	A D

.

TYPE	NID NO.	PRINTED DESCRIPTION	E.UNITS	INSTRU	MENT RGE	<u>SIG</u>	NAL RGE				D INSTRUMEN	T NO. F
SCAN ADRS		COMPUTER TERMINAL NO CABLE NO WP	LIMI Low	TS HIGH DB	SCCA	AVG CAL	GN SA	AL ARM/ST	REFERENCE	н	LOGGING D M ER T	NOTE F
FO91	A1103	COND DEM EFFL CONDUCT ' 17-111-33	ммно	0.000	1.000 3	0	70		3F M-147	0 SM	C1 T-1 70	5
5092	A1104	CIRC WTR PMP PIT LEVEL 07-022-31	FT	0 •0	4 35. 0	3	5 JPO		38 M-142	M158	LT-4212	
FLOW FO93	A1105	STM EJECT OFF GAS FLOW 07-022-32	B CFM	0.0 75.0 6	4 ^{150.0} x	3	2 160 7		38 M- 10 5	ЕМ	FT-1374 P	B
PRES FD94	ATTOP	FW FINAL PRESS	PSIG	0	4 ²⁰⁰⁰ X	Ξ	5 JPO		38 M-107	M1 5 5	PT-1637	,
PRES FN95	A1107	MSR A REHEAT 1ST STAGE 17-112-00	DPSI	V7TO16 6	15.0 4	1	6 80 7		м-103 ЭЕ	LSTG	FT-1049	j A
PRES FD96	ALLOA	MSR B REHEAT IST STAGE 17-112-01	DPSI	VATOLĖ L	415.0	1	6 80 7		3E M-103	LSTG	FT-1049	iB
RT01 F097	ALLOS	SPARE 07-032-33 R2			4				48			
FT 71 FN 98	ATTO	GEN COLLECTOR INLET TEM 14-200-30 R2	PDE GC	75. 0	100.0 4				4A M-145	LSTG	TE-368	4F
R T D 1 F D 9 9	AFFF	GEN COLLECTOR OUT TEMP 13-200-31 R2		75•0 ^{0•0}	4 ^{100.0}				4А м 14 5	LSTO	5 TE-368	1 B
6105 6100	A7775	SPARE TOFUS WIR	TEMP JE	- 439 A A	4				48 .			
RTD2 F101	AILIJ	SPARE 108-03 . 2718 17-110-03 . R4	TEMP TI	1-1323B	4				4B			
RTD2 F102	A1114	SPARE 17-110-10 R4	1.		4				4B .			
PTD2 F103	A1115	SPARE 17-110-11 RU	4		4				48		•	

•

,

.

. .

•

.

•

A / 75 PAGE 42

. j •

- 2* **989** -

.

.

07/08/75	PAG	F 42							NO 1	
TYPF	NID NO.	PRINTED DESCRIPTION	1	E.UNITS IN	STRUMENT RGE	SIGNAL RGE		NO INSTRUMENT		
SCAN ADRS		COMPUTER TERMINAL NO CABLE NO	ŴP	LIMITS LOW HIGH	DB SC CA	AVG CAL ĠN SA ALARM/ST	REFERENCE DRAWING H	LOGGING D m er t	NOTE F	REN -
RT02 F]04	ATTP	SP AP É 17-110-12	RH	Reserved	4	•	48			D .

.

.

,

				,							
	-				-		-				
7788775	₽AG			, ,		6 1 6 1 4					
SCAN ADPS	NID NO.	PRINTED DESCRIPTION COMPUTER TERMINAL NO CABLE NO WP	E.UNIT LIM LOW	 I T S	SC CA AVO	SIGNA G CAL G	N SA ALARM/ST	REFEREN DRAWIN	CE L	DGGING M ER T M	
6000	A1154	79-505-50 Cen AJT1 55ka b 715	50.40 KV	53°70 P 0°0	427 . 50	0	100	30 E-4	M1 55	vt/g	B D
6001	A1125	CEN GROSS WATTS 18-202-21	MW	V11039 B	20.0 x	0	60 7	3D E-4	M1 55	₩T:/G P T	C D
6005	4775P	GEN GROSS VARS	MVAR	-300.0	ч ^{300.0} х	-25	25	E-4	M155 ·	VART/G	D D
6003	A1153	GEN STATOR KILOAMPS PL 18-202-23	КАМР	0.00	x 00.05	0	100	3D E-4	M], 55	AT/G P	, D
, G004	V7759	GEN STATOR KILOAMPS, P2 10-202-30	КАМР	0.00	, 50°00 2	٥	100	3D E-4	M1 55	AT/G	D
. GND 5	A7754	GEN STATOR KILOAMPS P3	КАМР	0.00	з 50° 00	0	100	3D E-4	MLSŚ	AT/G	D
GOUP	VIJO	GEN FIELD VOLTAGE	VOLTS 100.0	450.0°L	ь00.0. Э	35	160 7	3B E-4	LSTG	DCPT P	Í A E
6007	VITAT	GEN FIELD CURRENT	AMPS	0.0 6	3000•0 3	SE	1 L Ú	38 E-4	rste	DCCT	C D
6101 6008	A1135	GEN HYDRO BEFORE CLR L 07-033-00 R2	DEGC	80.0 ^{0.0} 6			7	4A M-145	LSTG	TE-3683A	C D
6003 6003	ALLEE	GEN HYDRO BEFORE CLR 2 07-033-01 R2	DEGC	80.0 ^{0.0} 6	4 100 • Ú		7	4A M-145	LSTG	TE-36838	A D
RIDI GDID	A1134	GEN HYDRO BEFORE CLR 3 07-033-02 R2	DEGC	0.0 80.0 b	, 100.0 4		7	4A M-145	LSTG	TE-3683C	A D
etol Goll	A1135	GEN HYDRO BEFORE CLR 4 D7-D33-03 R2	DEGC	0.0 80.0 L	4 4		7	4A M-145	LSTG	TE-36830	A D
6015 6101	4 J J 3 P	GEN HYDRO AFTER CLR 1 07-033-10 R2	DE GC	0.0 51.0 6	75.0 4		7	4A M 14 5	LSTG	ТЕ-Э 6 84А	A D
			I° ⊨								

•

07/08/75	P A G								SIGNAL	0.05	BD TYPE		INSTRUMENT	NQ.	REV	
түре	NID NO.	PRINTED	DESCRIPTION	E.UNITS			NT RGF									
SCAN ADRS		COMPUTER TERMINAL N	O CABLE NO WP	LÍMITS LOW H	IGH I	DB S	SC CA	AVG	CAL GN	I SA ALARM/ST	DRAWING	5 ні	DĂ ĔRT	NOTE	REV	
RTOL GOL3	ALL37	GEN HYDRO 07-033-11	AFTER CLR 2 R2	DEGC 51	1	64	,75.0 4			7	4A M-145	LSTG	TE-36848		A D	•
ето <u>і</u> GA14	· ALL38	GEN HYDRO GEN HYDRO	AFTER CLR 3 R2	DEGC 51		6 1	4			7	4A M-145	LSTG	TE-3684C		A D	
ртр1 6015	4773J	GEN HYDRN 07-033-13	AFTER CLR 4 R2	DEGC 51	0.0	6	4 ^{75.0}			7	4A M-145	LSTG	TE-3684D		A D	
RTD1 G016	A1140	AL TEREX CL 07-033-20	R INLET AIR T R2	DEGC	0.0		3 ^{50.0}		•		44 M-145	LSTĠ	TE-3685A P		A D	
ртој 60ј?	<u>A</u> LL4L	AL TEREX CL 07-033-21	R OUTLET AIR	TDEGC	0.0		75•0 ∃				40 M-145	LSTG	TE-3685B	•	A D	
6018 Cu16	A1142	GEN STR CI 17-120-00	_G COIL OUT TL	DEGC	0.00	6	100.0 4			7	14 M-145	LSTG	TE-3686A		∖ D	
CUTC 6014	ALL43	GFN STR CI 17-120-01	LG COIL OUT T2	DEGC 9	0.00	L	4 ^{100.0}	• .		7	1A M-145	LSTG	TE-36868		A D	
0100 0100	ALL44	GEN STR CI 17-120-02	LG COIL OUT T3	DEGC 9	0.00	ե	4 ^{700.0}			7	1A M-145	LSTG	TE-36860		A D	
5110 5110	All45	GFN STR C 17-120-03	LG COIL OUT TH	DEGC	0.00 0.00	6	4 4			7	1A M-145	LSTG	TE-36860)	A D	
2102 5152	A1146	GEN STR C 17-120-10	LG COIL OUT TS	DEGC 9	0.00	ե	4 ^{100.0}			7	14 M-145	LSTG	TE-36861		A D	
21U2 6500	A 1 1 4 7	GEN STR C 17-120-11	LG COIL OUT TH	DEGC	0.0	L	4100.0			7	14 M 14 5	LSTG	TE-3686	F	A D	
CUTC 6024	ALL48	GEN STR C 17-120-12	LG COIL OUT T7	DEGC	0.0 10.00	Ь	4 ^{100.0}			7	14 M-145	LSTG	TE-3686	G	A D	,
CUTC 6025	A1149	GEN STR C 17-120-13	LG COIL OUT TE	DEGC	0.0 10.00	ե	4100.0			7	M-145	LSTG	TE-3686	н	A D	

•

												. •		
	-				•			-			,			
				•	• . •	-					•	e de la composición de		
07708775	PAG		۰.				7010			SIGNAL RGE		MPL NO	INSTRUMENT N	NO. REV
TYPE	NID NO.	PRINTED D	ESCRIP		E.UNIT			MENT RGE			REFERENC	·		
SCAN ADRS		COMPUTER TERMINAL NO	CABLE	NO Y	NP LOW	йісн	DB	SC CA	AVG	CAL GN SA ALARM/ST	DRAWING	, н	D M ERT M	NUIE KEV
0110 6026	A1120	GEN STR CLG 17-120-20	COIL	OUT	T9 DEGC	90.00	Ь	100.0 4		7	14 M-145	LSTG	TE-3686J	A D
CUTC 6027	A]] 5]	GEN STR CLG 17-120-21	COLL	OUT	T 1 ODE GC	90 .0 0	 6	4 ¹⁰⁰⁺⁰	ı	7	14 M-145	LSTG	TE-3686K	A D
CUTC 6028	- A11 52	GEN STR CLG 17-120-22	COTL	out	TLLDEGC	90.00) 6	4100+0 4		7	1A M 14 5	LSTG	TE-3686L	A D
21U3 6029	A1153	GEN STR CLG 17-120-23	G COIL	out	T12DEGC	90.00) L	، ۵۵۰۵ ۲		7	1A M-145	LSTG	TE-3686M	A D
етрі 6030	A1154	GEN STATOR 18-201-00	TEMP 1	•	DEGC R2	65.00	ן נ	100.0 4		7	4A M-145	LSTG	TE-36874	A D
6031 6031	A1155	GEN STATOR 18-201-01	TEMP 2	•	DEGC R2	85.00°) ⊾	100.0 4		. 7	40 M-145	LSTG	TE-36878	A D
60.35 60.35	A 11 56	GEN STATOR 13-201-02	темр З)	DEGC R2	85.00	⁰ L	4 100.0	• .	7	ЦА M-145	, LSTG	TE-3687C	A D
8101 6033	All57	GEN STATOR 18-201-03	TEMP 4	ł	DEGC R2	85.00	0 L	4100.0		7	4A M-145	LSTG	TE-3687D	A D
Р.Т. D 1. G0 34	A1158	GEN STATOR 18-201-10	TEMP S	5	DEGC R2	0. 85.00	0 6	4 ^{100.0}		7	44 M 14 5	LSTG	<u>,</u> 1E-3687E	A D
ето) 6035	A1159	GEN STATOR	TEMP	6	DEGC R2	.0. 85.00	0 L	4100.0		7	4A M-145	LSTG	TE-3687F	A D
60.3P	AIIPO	GEN STATOR 18-201-12	TEMP	7	DE GC R2	85.00°	0 6	4100.0		7	4A M-145	LSTG	TE-3687G	A D
РТО 1 6037	AJJ61	GEN STATOR 18-201-13	TEMP	8	DEGC R2	85.00°	0 L	4100.0		7	4Å M-1145	LSTG	TE-3687H	A D
8101 8603	V77P5	GEN STATOR 18-201-20	TEMP	9	DEGC R2	85.00	0 6	, 100.0 4		7	4A M-145	LSTO	; TE-Э687ј	A D

• •				·							
					· · . · .			,	•		
					· •	·					·
07/08/75 TYPE	PAG NID NO•	E 46 PRINTED DESCRIPTION	E.UNITS IN	ISTRU	MENT RGE	SIGNAL R	GE	BD TYPE I	APL NO IN	STRUMENT	NO. REV
SCAN ADRS		COMPUTER TERMINAL NO CABLE NO WP	LIMITS LOW HIGH	DB	SC CA	AVG CAL GN S	A ALARM/ST	REFERENCI	H D	GING M ER T	NOTE REV
6035 6035	A77P3	GEN STATOR TEMP LO LA-201-21 R2	DEGC 0. 85.00	.0 6	4 ¹⁰⁰ .0	7	·	4A M-145	ĹSTG	TE-3687K	A D
вто) 6040	A1164	GEN STATOR TEMP LL La-201-22 R2	DEGC 85.00	.0 6	4100.0	7)	4A M-145	LSTG	TE-3687L	A D
8101 6041	A 1 1 6 5	GEN STATOR TEMP 12 18-201-23 R2	DEGC 85.00	.0 6	4100.0	, 7		4A M-145	LSTG	TE-3687M	A D
РТОЈ 6042	A1166	ALTEREX STR COIL TEMP 1 18-201-30 RZ	DEGC 100.0	•0 •	4. 4.	7		4A M-145	LSTG	TE-3688A	A D
РТОЪ СП4Э	41167	ALTEPEX STR COIL TEMP 2 18-201-31 R2	DEGC	G	, 100 . 0 4	7		4A M-145	LSTG	TE-3688	A D
РТ <u>р</u> СОЧЧ	ALLES	ALTEREX STR COIL TEMP 3 14-201-32 R2	DEGC	•0 •	4100.0	7		4A M-145	LSTG	ТЕ-ЭЬ88С	· D
RTD1 6045	877Pd	ALTEREX STR COIL TEMP 4 18-201-33 R2	0EGC 108.0	•0 •	4 ^{700.0}	. 7		4A M-145	LŜŤG	TE-3688D	A D
РТО1 СПЧБ	A1170	ALTEREX STR COIL TEMP 5	DEGC 100.0	•0 6	4 700 ° Ó	7		40. M-145	LSTG	TE-3688E	A D
	A1171	ALTEREX STR COIL TEMP 5	DEGC 100.0	•0 ⊾	4 ^{100.0}	ŕ	.*	44 M-145	LSTG	TE-3688F	A D
CUTC 6048	A1172	SP AR E 17-113-33			4			là .			A D
6049	A1173	GEN STR LIQ HDR INLET T 17-111-12 R4	DEGC 48.0	•0 6	,50.0 €	x 7		44 м-145	LSTG	TE-3614	A E
RTD1 6050	A1174	GEN STR LIQ HDR DUTLET 17-111-13 R4	TDEGC 90.0	•0 6	4 100.0	7		4A M-145	LSIG	1E-3P50	A D
60 5 1	A1175	STR CLG WTR IN CONDUCT D7-023-02	MMHO _ D9.90	•0	3,0°00	x 35 JP	.0	38 M-145	LSTG	CIT-3615	C D

07708775	PAG		NITS INSTRUMENT RGE	SIGNAL RGE	BD TYPE	MPL NO INSTRUMENT	NO. REV
	NID NO.			G CAL GN SA ALARM/ST	REFERENC	E LOGGING H D M ER T	NOTE REV
SCAN ADRS PPES GDS2	A1176	TERMINAL NO CABLE NU WE LO		32 160 7	38 M-145	LSTG PT-3647	B E
5200 2103 6053	A1177	07-023-03 7.0	ч	•	ŢŸ		A D
CUTC 6054	A1178	50 48 E 17-120-31	ч		1A D		A D C
G N 55	A1134	SE -202- 32	ų		3B 4A	E2 49W	Č C D
ВТОЪ 6056	A 1180	MAIN XFMR-A HOT SPOT T DEG 97-033-22 R2		7	4Å	22 F2 49W	C D
ртр) GN 57	A1181	MAIN XFMR-B HOT SPOT T DEG 97-033-23 R2		7	ЧA	E2 2 49W	C D
PTN1 6058	A7785	MAIN XFMR-C HOT SPOT T DEG 07-033-30 R2	105.0 6 4	7	44	E2 2 49W	C D
RTD1 G059	A1193	MAIN XEMR-D HOT SPOT T DEC 07-033-31 R2		7	44	E4 49W 22	C D
В Т D 1 С П Б O	A1184	50 - FRE - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	105.0° L 4	7	ЧÅ	E4 49W 2 2	D
COPT COPT	A1185	SU XFMR-Y HOT SPOT TEMP 07-033-33 R2	DEGC 0.0 200.0 105.0 6 4				

. · ·

•

· ·

MASS Allel Units and the rate pression of the pr							•		· .		
TYPE NID PAIL POLICITION Pail Policy Pai				C 11017		INENT DEE	STONAL ROF	8D TYPE	MPL NO	INSTRUMENT	ND. REV
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		NID NO.	COMPLITER	LIM	 I T S			REFERENC	E 1		
MOD1 Allag OUT LIDE TERP JULIET DEGF Subility Allag Mailing Mailing </td <td>PRFS</td> <td>A1191</td> <td>OUTSIDE BARDMETRIC PRESS 18-203-00</td> <td>INHG</td> <td></td> <td>• •</td> <td></td> <td></td> <td>M1 55</td> <td>PT-4364</td> <td>EF</td>	PRFS	A1191	OUTSIDE BARDMETRIC PRESS 18-203-00	INHG		• •			M1 55	PT-4364	EF
LIT Allag RT CLG WTR HX TENP OUT DEGF LIS. 0-0 200-0 H-Li2 HLSS TE-4812 CIOG Allag SERV MTR PMPS DISCH TENP DEGF 0.0 0.0 400-0 7 H-Li2 HLSS TE-4901 WIGS Allag SERV MTR OULLET TEMP RU DEGF 0.0 200-0 H-Li2 HLSS TE-4901 MIOS Allag SERV MTR OULLET TEMP RU DEGF 0.0 200-0 H-Li2 HLSS TE-4773 MIOS Allag SERV MTR OULLET TEMP RU DEGF -20.0 40.0 0 H-Li2 HLSS TE-4773 MIOS Allag DUTSIDE ZEH POINT 3S FT DEGF -20.0 40.0 0 H-Li2 HLSS TE-4773 HONG Allag RIVER MAKEUP FLW B KGPM 0.0 Li4.0 X 32 Lb0 H-Li2 HLSS FT-4912 FLOW Allag RIVER MAKEUP FLW A KGPM 0.0 Li4.0 X 32 Lb0 H-30 HLSS FT-4912 FLOW Allag BLAZOBANGER	∾00l	Å 1145	OUTSIDE TEMP -165-FT-	-35 DEGF		120.0	12-7-76	3B M-143	IELP	·	E
M_{000}^{2} Allas $S_{17}^{2}F_{110}^{1}E_{2}$ OUTLET TEMP RU DEGF 0.0 $u^{200.0}$ $H - \frac{19}{14}$ M_{15}^{25} $TE - 4773$ M005 Allas $QUT_{110}^{2}E_{20}^{2}E^{1}H$ POINT 35 FT DEGF -20.0 $a0.0$ 0 $M - \frac{19}{14}$ $H - \frac{19}{14}$ $IELP$ M005 Allas $QUT_{110}^{2}E_{20}^{2}E^{1}H$ POINT 35 FT DEGF -20.0 $a0.0$ 0 $M - \frac{19}{14}$ $H - \frac{19}{14}$ $IELP$ H005 Allas $QUT_{10}^{2}E_{0}B + MALER MAKEUP FLW & KGPM 0.0 u^{14.0} 32 160 H - \frac{39}{14} M155 FT - 4916 H005 Allas B_{10}^{1}E^{2}B_{0}^{1}A_{0}^{1}ER KGPM 0.0 u^{14.0} 32 160 H - \frac{39}{14} M155 FT - 4916 H005 Allas B_{10}^{1}E^{2}B_{0}^{1}A_{0}^{1}ER KGPM 0.0 q^{7.0} 32 160 H - \frac{39}{14} M155 FT - 4917 H006 Allas B_{10}^{1}E^{2}B_{0}^{1}B_{0}^{1}E^{1}HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH$	CUIC MUNS	A1143	RCT CLG WTR HX TEMP OUT	DEGF	0.0 115.0	200.0 4	Pave Hampigton	м-1 1 5	M1 55	TE-4815	· B E
MIDS Ablab OUTSIDE DEW POINT 35 FT DEGF -20.0 80.0 D $M^{-1}M^{-3}$ IELP MIDS Ablab OUTSIDE DEW POINT 35 FT DEGF -20.0 80.0 D $M^{-1}M^{-3}$ IELP FLOW Ablab Control of the state makeup flow B Control of the state makeup flow D 0.0 14.0 x 32 160 $M^{-1}M^{-3}$ $M^{-1}M^{-1}M^{-1}$ FLOW Ablab River water makeup flow KGPM D.0 $u^{14.0}$ x 32 160 $M^{-1}M^{-1}M^{-1}$ $M^{-1}M^{-1}M^{-1}$ FLOW Ablab River water makeup flow KGPM 0.0 $u^{14.0}$ x 32 160 $M^{-1}M^{-1$	5019 600M	A1194	SERV WTR PMPS DISCH TEMP 17-110-20 R4	DEGF	90.0 ^{0.0} 6	100.0 4	7		M155 6	TE-4901	DE
MIDS ALLIS $13^{-1} - 110^{-2} - 20^{-1}$ Month Description $4^{-1} - 4^{-1}$	PT02 M004	ALL95	SERV WTR OUTLET TEMP 17-110-21 R4	DEGF	0.0	200.0		48 M-111	M155 6	TE-4773	B O
FLOW All97 RIVER WATER MAKEUP FLW B KGPM D.O 14.0 32 LO -38 MLSS FT-49L FLOW Ab198 RIVER WATER MAKEUP FLW A KGPM D.O 14.0 x 32 LO -38 MLSS FT-49L FLOW Ab198 RIVER WATER MAKEUP FLW A KGPM D.O 14.0 x 32 LO $M-38$ MLSS FT-49L FLOW Ab198 BLOWDOWN FLOW KGPM D.O $4^{14.0}$ x 32 LO $M-38$ MLSS FT-49L FLOW Ab199 BLOWDOWN FLOW KGPM D.O $4^{7.0}$ x 32 LO $M-38$ MLSS FT-49L FLOW Ab200 RADWASTE DILUTION FLOW KGPM D.O $q^{7.0}$ x 32 LO $M-38$ MLSS FT-49D MOLO Ab201 RIVER WATER INTAKE LEVEL FT 724.0 $q^{7.0}$ 32 LO $M-38$ MLSS LT-290L MOLO Ab201 RIVER WATER INTAKE LEVEL FT 724.0	M005	A1196	OUTSIDE DEW POINT 35 FT 17-110-22	DEGF	-20.0	480•0	o 19	38 M-143	IELP		Ē
FLOW ALL98 RIVER WATER MAKEUP FLW A KGPM D.0 $u^{14.0}$ 32 160 $\frac{38}{M-146}$ MLS5 FT-4917 FLOW ALL99 BLOWDWN FLOW KGPM D.0 $u^{7.0}$ 32 160 M^{-142} MLS5 FT-4917 FLOW AL200 RADWASTE DILUTION FLOW KGPM D.0 $u^{7.0}$ 32 160 M^{-38}_{-142} MLS5 FT-4917 FLOW AL200 RADWASTE DILUTION FLOW KGPM D.0 $u^{20.0}$ 32 160 M^{-38}_{-146} MLS5 FT-4917 MOL0 AL201 RIVER WATER INTAKE LEVEL FT 724.0 $v^{20.0}$ 32 160 M^{-38}_{-146} MLS5 FT-4909 MOL0 AL201 RIVER WATER INTAKE LEVEL FT 724.0 $v^{20.0}$ 32 160 M^{-38}_{-142} MLS5 LT-290L MOL0 AL202 DUTSIOE IEMP 35 FT DEGF -30.0 120.0 3.56 160 M^{-38}_{-143} IELP MOL0 AL202 DUTSIOE IEMP 35 FT DEGF -30.0 120.0 <td>FLOW</td> <td>A1197</td> <td></td> <td>в карм</td> <td>0.0</td> <td>14.0 4 X</td> <td>35 7P0</td> <td>ЭВ м— 146</td> <td>M155</td> <td>FT-4916</td> <td>FD</td>	FLOW	A1197		в карм	0.0	14.0 4 X	35 7P0	ЭВ м— 146	M155	FT-4916	FD
FLOW MOD8All99BLOWDWN FLOW LA-203-03KGPM0.0 $\sqrt{7.0}$ 32L60 $M-142$ ML55FT-4247FLOW MOD9Al200RADWASTE DILUTION FLOWKGPM0.0 $\sqrt{20.0}$ 32L60 $M-142$ ML55FT-4909MOL0Al201RIVER WATER INTAKE LEVELFT724.0 764.0 32L60 $M-142$ ML55LT-2901MOL0Al202DUTSIDE TEMP 35FTDEGF-30.0 120.0 3.56 1660 $M-143$ IELPMOL0Al202DUTSIDE TEMP 35FTDEGF-30.0 14.0 3.66 $M-143$ IELPMOL0Al203CIRC WATER PHPH0.0014.0 3.6 $M-143$ IELP		41148			0.0	14.0 4 X	35 JPO	38 M-146	M1 55	FT-4917	F D
FLOW MODA A1200 RADWASTE DILUTION FLOW LB-203-L0 KGPM 0.0 20.0 32 L0 $M-146$ ML55 FT-4909 MODA A1201 RIVER WATER INTAKE LEVEL FT 724.0 764.0 32 L0 $M-142$ ML55 LT-2901 MOLO A1202 DUTSIDE TEMP 35 FT DEGF -30.0 120.0 3.56 160 $M-143$ IELP MOLD A1202 DUTSIDE TEMP 35 FT DEGF -30.0 120.0 3.56 160 $M-143$ IELP MOLD A1203 CIRC WATER PH PH 0.0 14.0 38 PHIT-8004/5		81199	BLOWDOWN FLOW	•	0.0	, ч. х.	35 <i>)</i> /0	38 M-142	M155	FT-4247	E D
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	FLOW	V 7500	RADWASTE DILUTION FLOW 18-203-10	KGPM	0.0	4 ^{20•0} x	35 TPO		M155	FT-4909	D D
AL202 OUTSIDE TEMP 35 FT DEGF -30.0 L20.0 J.2-7-76 M-143 L3-203-12 CIRC WATER PH PH 0.0 14.0 Dave Hennington CIRC WATER PH PH 0.0 14.0 38 PHIT-8004/S		v 750 7	RIVER WATER INTAKE LEVE	L FT	724.0	764.0 4	35 JPO	3B M-142	MLSS	LT-2901	FD
CIRC WATER PH PH 0.0 14.0 Dave Mennington 38 PHIT-8004/S		81505		DEGF	-30.0	4150.0	12-7-76	38 M-143	IELP		D E
18-203-13 -180 Dave Harrington	ND 75	47503		PH	270	8-77	52 160	M-180		PHIT-	8004/5 E

· · · · ·

07/08/75	PΔG	SE 49				• •						
type	NID NO.	PRINTED	DESCRIPTION	E.UNITS	INSTRU	IMENT RGE	SIGNA	LRGE			NSTRUMENT NO.	REV
SCAN A DP S		COMPUTER TERMINAL	NO CABLE NO WP	LIMITS LOW H		SC CA		N SA ALARM/ST	REFERENC DRAWING	E LOC H D	GGING M ER T NOTE	EREV
M013	A750A	12-2012100 12-202-20	TEMP ETFF 165-5	EET DE GF	-30 ti -10.0	0+120°F 10.0 4	3,77 R 12-7-76	160 mv BANY Dave Harring	M-143 TOX	IELP		D E
MA 14	41205	CANAL DI 10-023-10	SCH CONDUCTIVIT	YMMHO 0+0	0	1000 4	35	7PO	ав М-142	M180	CIT-4261	E D
M (1), 5	V750P	RW SUP PI 07-023-1	UMPS A&C CONDUC	тммно	0	4 1 000 (35	160	98 129 - M	M1 80	CIT-2914	E D
M016	A7503	RW SUP PI 07-023-1	UMPS BED CONDUC	тммно	0	1000 4	SE	760	м- 15 а	M1 80	CI T-2915	E D
M017	A 1508	WIND DIR 07-023-1	ECTION 165 FT 3	DEG	0	540 4	٥	80	38 M-143	IELP		E E
MOLA	P054A	10 JANAD 1-805-81	SCН РН 1	PH_*	2.0	ղ 1 ՈւՕ Կ	35	160.	38 M-142	M180	PHIT-4262	D D
MOLA	V7570	RM SUP P 18-203-3	UMPS AGC PH	РН	0•5 J	4 ^{10.0}	35	720	н- 12 ч Р 51 - м	MLAO	PHIT-2914	E D
020M	47577	RM SUP P 18-203-2	UMPS A&C TEMP L	DEGF	20,0 48+0	120,0 300-0	SE -	160	м- 1 2 л	ML 55	41-54JP	Р D
м0'5 Г	77575	RW SUP P 18-203-2	UMPS B&D TEMP	DEGF .	20,0 48.0	120,0 300.20 4		160	м- 12 я	M155	TT-2917	F D
850M	ATST3	AIVER WA 18-203-2	TER INLET TEMP	DEGF	0.0	100.0 4	35	JPO	3B M-129	M155 77	TT-2900	Ē
ESOM	A 757A	I O JANAJ 10-203-81	SCH WATER TEMP	DEGF	20•0	4750 . 0	35	JP0	38 M-142	M155 77	TT-4263	D
M024	A1512	WIND SPE 18-210-0	ED 165 FT	мрн	0	4 4	۵	160	38 M 14 3	IELP		B E
MD 2 5	V 757P	WIND DIR 07-023-2	ECTION 35 FT	DEG	0	4 4 540	0	160 74	3B M-143	IELP		E :

PAGE 50 07/08/75 INSTRUMENT RGE SIGNAL RGE BD TYPE MPL NO INSTRUMENT NO. REV E.UNITS' TYPE NID NO. PRINTED DESCRIPTION _____ LIMITS LOW HIGH REFERENCE DRAWING LOGGING H D M ER T NOTE REV COMPUTER TERMINAL NO CABLE NO WP SCAN ADPS AVG CAL GN SA ALARM/ST DB SC CA 35 JEO RW SUP PUMPS B&D PH 18-202-33 5.0 4₇₀.0 M-129 . M1 80 PHIT-2915 **E** D РН V7575 45.0M 160 100 WIND SPEED 35 FT 18-203-33 ٥ Ē MPH 0 3B M-143 IELP 81218 4 4827

,

• • •

. i				· · · ·					
		: 							•
07/08/75 TYPE	PAGE NID NO.	51 PRINTED DESCRI		E.UNITS I	NSTRUMENT RGE	SIGNAL	RGE	BO TYPE MPL NO INSTRUMEN	T NO. REV
SCAN ADRS		COMPUTER TERMINAL NO CABL		LIMITS LOW HIGH	DB SC CA	AVG CAL GN	N SA ALARM/ST	REFERENCE LOGGING DRAWING H D M ER T	NOTE REV
0UT 0000		ANALOG RECORDER 1047-0102				 	20		C C
0001 001		ANALOG RECORDER 10AT-0304	I PEN 2			4	50		C C
0002 001	45002	ANALOG RECORDER 10AT-05NL	S DEN J			4	20		C C
ти <u>р</u> 0003	A 500 B	ANALOG RECORDER 10AT-0708	2 PEN 2			ų	20		C C
					1			. .	

I Q

PAGE 52 BD TYPE MPL NO INSTRUMENT NO. REV 07/08/75 STGNAL RGE INSTRUMENT RGE E.UNITS PRINTED DESCRIPTION LOGGING H D M ER T NOTE REV NID NO. TYPE REFERENCE LIMITS LOW HIGH COMPUTER TERMINAL NO CABLE NO WP AVG CAL GN SA ALARM/ST DRAHING DB SC CA SCAN ADRS C D ЭB 10 0 410.0 ΜV 9.0 SHORT CIRCUIT CH 0 07-000-00 A1850 \$000 C D ЗB 10 0 10.0 4 0.0 IN MV REFERENCE CH O N7-000-01 MV A1851 S001 CD ,10.0 4 **3**B 10 0 0.0 SHORT CIRCUIT CH 1 17-100-00 MV A1852 2002 C D 4^{10.0} ЗB 10 0 0.0 10 MV REFERENCE CH 1 17-100-01 MV A1853 SNDE C D 48 T/C REFERENCE JUNCTION DEGF PTD3 5004 A1854 4 ٠. ۰Ç D 38 10 ۵ **,10.**0 SHORT CIRCUIT CH 2 0.0 MV A1855 \$905 C D 4^{10.0} ЗB 10 0 10 MV REFERENCE CH 2 10-200-01 MV , 0.0 A1856 SUDP

. .

· . .

07/08/75	PAG	E 53							0. C			INSTRUMENT M	AD. REV
TYPE	NID NO.	PRINTED DESCRIPTION	E.UNITS	<u>INST</u>	RUM	ENT RGE	:	SIGNAL		DECEDENC	E I	OCGING	
SCAN ADPS		COMPUTER TERMINAL NO CABLE NO WP	LIMI LOW	TS HIGH	DB	SC CA	AVG	CAL GN	I SA ALARM/ST	DRAWING	ែអេរី	M ERT M	IOTE REV
PPES TODD	A1552	1E-1A LP FW HTR PRESS 07-023-21	PSIA	7.4	Ŀ	4 ^{30.00}	x	35	1F0 2	38 M-104	M155	PT-1188	D D
PRES TOOL	V755P	LE-2A LP FW HTR PRESS 07-023-22	PSIA	78.00	6	4 30.00	x	35	160	38 M-104	M155	PT-1115	D D
PRES TODZ	A 7553	LE-34 LP FW HTR PRESS 07-023-23	PSIA	0.0 58.40	Ь	4 ^{100.0}	x	35	160 7	38 M-104	MLSŚ	PT-1752	D
PRES TOD3	A1559	16-44 LP FW HTR PRESS 07-023-30	PSIA	99.0 ^{0.0}	Ь	4 ^{100.0}	x	32	160 7	3в м—10ч	M1 55	PT-1135	D E
PRES TOO4	A7558	1E-5A LP FW HTR PRESS 07-023-31	PSIA	140.2.0	6	4200.0	x	35	160	M-104	M1 55	PT-1147	D D
PRES TODS	06 S.I.A	LE-18 LP FW HTR PRESS 07-023-32	PSTA	0.0 7.400	6	30.00 4	x	35	7 7	38 м-105	MLSS	80E 1-1 908	D D
PRES TAAL	AT53T	1E-2B LP FW HTR PRESS 07-023-33	PSIA	78.00 0.0	P	4 ^{30.00}	x .	32	<u>1</u> 60	38 M-105	M155	PT-1300	D D
PRES TOO7	SESLA	1E-3B LP EW HTR PRESS 07-030-00	PSIA	0.0 58.40	6	4100.0	x	35	160 7	ЭВ м- 10 5	_ M155	PT-1318	D D
PRES TODA	V7533	LE-48 LP FW HTR PRESS 07-030-01	PSTA	99.0 99.0	6	100.0 4	x	32	je 0	3B M-105	M1 55	PT-1330	D E
	A1534	15-58 LP FW HTR PRESS 07-030-02	PSIA	140•5.0	6	200.0 4	x	35	160 7	38 M-105	MLSS	PT-1337	D O
PRES 1010	A1532	HP TURB REHEAT STM PRES 07-030-03	SS PSIG	V5G001	ן נ	300 • C)	35	160 7	86 M- 10 3	ML 55	PT-1009A T	D D
Р В Е S Т О Ц Ъ	4153P	1E-6A HP FW HTR PRESS 07-030-10	PSIA	366.9.) 6	400. 4	x	35	160	38 M-104	M1 5 5	рт -1159 Т	D D
PRES TO12	A 1537	ነር LB HP FW HTR PRESS 07-030-ነኔ	PSIA	ана. Зыр. у) 6	400.(4	x	32	160 7	M- 10 5	M155	PT-1357 T	D
								+					

					· · ·		•	· · · ·			•
07/08/75	PAG	E 54 PRINTED DESCRIPTION	E.UNIT:	S INSTRU	MENT RBE	SIGNAL	RGE	BD TYPE	MPL NO	INSTRUMENT	NO. REV
SCAN ADRS	NID NO.	COMPUTER TERMINAL NO CABLE NO WP	LIM		SCCA	AVG CAL G	N SA ALARM/ST	REFERENC DRAWING	се LC 5 н D)GGING MERT	NOTE REV
PRES TA13	86 51 A	MS PRESS WIDE RANGE	PSTG	0.0	5 7500°0	35	160	3B M-103	M155	PT-1000 T	D D
PRES	PESTV	MS PRESS NARROW RANGE 07-030-13	PSIG	7000° P	, 1500•0	35	160 7	38 M-103	M1 55	РТ -1 001 Т	D
1015	A754U	SP AR E 07-030-20			2	D					C E
PRES	A1547	TURB LST STAGE PRESS	PSIG	0.0	3 1500°0	35	700	3B M 10 3	M1 55	PT-1004 P T	C D
PRES	81242	STM SEAL HDR PRESS	PSIG 2•5	ч.5 ^{0.0} ь	10.00 3	35	160 7	M-104	LSIG	РТ-1167 Т	Ē
6105 1071	A1543	STM TEMP MSR A TO TURB 17-110-23 R4	C DEGF	0.0	4600.0	•		48 M-103	M1 55	TE-1075 T	B D
2018	A75AA	STM TEMP MSR B TO TURB 17-110-30 R4		0.0	4 4			48 M-103	MISS	TE-1071	B D
פֿעַמָּד פַּעַדַיַק	A]245	STM TEMP MSR A TO TURB		0.0	4600.0			4B M-103	M155 3	TE-1067 T	B D
0501			•	0.0	600.0			4B M-103	MLSS	TE-1079	B D
1017 1501	A154P	STM TEMP MSR B TO TURB 17-110-32			4				-	6 1-707 5	r
PRES	×1247	INTERCEPT VA CIV-2 OUT 07-030-23	PSIG	vьсооі ь	200.0 4	35	160 7	ЭВ м-103	Mlşs	Р	C D
PRES	A 1248	INTERCEPT VA CIV-1 OUT 07-030-30	PSIG	инсорії н	4200•0	35	160 7	м- 10 Э Эв	MISS	PT-1013 P	C D
0140 1140 1154	A 757 a	EXH HOOD GEN END 18, TEP	4P DEGF	175.0 b	, 300.0	x	7	м- Т ОР	LSTG	TE-1510 T	A D
	A 75 2U	EXH HOOD GEN END 1C TEN 17-132-21	MP DEGF			X	7	₩-10P	LSTG	TE-1509 T	A D

			· .		-							
:												
		· · ·	•	,								
U (71107 75 TYPE	NID NO.	PRINTED DESCRIPTION	E.UNITS	INSTRUM	ENT RGE	SIGNAL RGE					D. REV	
SCAN ADRS		COMPUTER TERMINAL NO CABLE NO WP	LIMITS LOW HI	GH DB	SC CA	AVG CAL GN SA ALAI	RM/ST	REFERENC			DTE REV	
0110 1026	A 752 T	TURE OIL CLR OUTLET TEMP 17-120-32	DEGE 90.00 150	.0.0 .0 b	4500°0	7		14 191 191	LSTG 3 3	1E-375P	C C	
, <u>çutç</u>	A 1525	TURB DIL CLR·INLET TEMP 17-120-33	DEGF	0.0	200.0 4			, VI 191	LSTG 3 3	TE-3152	C D	
1028	87 5 3	TURB SHAFT DIFF EXP 18-210-02	MILS	0.0	?50.0 3	8 4D		ЭЕ м-145	LSTG	DXD T	A D	
1 029	A1254	TURB SHAFT ECCENTRICITY	MILS	0.0	15.00 ` 3	8 4D		3E M-145	LSTG	ED T	A D	
6119 0607	A 1255	SPARE 17-110-33 R4	Recervail		ч			4B _			A D	
3143 1601	A 1 5 5 F	VLV CHEST INN SURF TEMP 17-132-22	DEGF	0.0	,600.0 4			1С м-145	LSTG	TE-9000C T	C D	
0140 560 t	A 12 57	VLV CHEST OUT SURF TEMP 17-132-23	DEGF	0.0	ч 600.0			1C M-145	LSTG	TE-90000 T	, C	
3783 5607	A 1258	LST SIG INN SURF TEMP 17-132-30	DEGF [.]	0.0	.600.0 ∃	·		1C M-145	LSTG	TE-90004 T	C D	
CATC Vert		LST STG OUT SURF TEMP L7-L32-3L	DE gf	.0.0	ь00•0 З			1C M-145	LSTG	TE-9000B T	C D	
T N 35	A15P0	TURB ROTOR EXPANSION	MILS	0.0	1500.0 3	8, 40 [°]		3E M-145	LSTG	RXD T	B D	
JECT	7927A	SHELL EXP DIFF TEMP 13-210-11	DEGF	0.0	.200•0 4	· 6 40		3E M 14 5	LSTĞ	SXDT T	A D	
т037	A1525	TUPBINE SPEED 18-210-01	RPM		2500 1	32 160		38 M-145	LSTG	TSI T	E D	
5.01 T038	E JSLA	GENEPATOR FREQUENCY 17-112-11	HZ	55.00	հ5.00 Ն	-817 -8271		B-4 E-4	M155	FT	C D	
		· · · ·										

· · ·

•

•

						· .		
07/08/75 TYPE	PAG NID NO•	E 56 PRINTED DESCRIPTION	E.UNITS	INSTRUMENT RGE	SIGNAL RGE	BD TYPE MPL N	10 INSTRUMENT	NO. REV
SCAN ADPS		COMPUTER TERMINAL NO CABLE NO WP	LIMITS LOW HIG	GH DB SC CA	AVG CAL GN SA ALARM/ST	REFERENCE DRAWING H	LOGGING D M ER T	NOTE REV
PRES TUBA	A 1 2 6 4	LP CONDENSER PRESS 07-030-31	INHG VƏGC	0.0 30.00 301 6 4	32 160 . 7	38 МІ́З! М-10ь	5 PT-1476	D
PRES - 1940	A 15P 2	HP CONDENSER PRESS 07-030-32	1 NHG ע 2GC	0.0 30.00 301 6 4	32 <u>1</u> 60 . 7	Эв м15: М-10ь	S PT-1477	. D
T () 4].	475PP	SPARF 17-112-02 Re-	served	ч		ЭЕ		. A D
CATC T042	A75P5	SPARE 17-132-32		ч	· · ·	JC		A D
C≬TC TD43	A75P8	SPAPF 17-132-33		ч		ГС		A D
<u>CUTC</u> T044	875PJ	19-251-00 Roser	jal	· iş		ĴÅ .		A D
CUTC TU4S	A1270	SPARE 17-121-01		ų		LÀ		A D
				· ·				

PAGE

07/08/75

57

BD TYPE MPL NO INSTRUMENT NO. REV SIGNAL RGE INSTRUMENT RGE E.UNITS PRINTED DESCRIPTION NID NO. TYPE LOGGING H D M ER T NOTE REV REFERENCE LIMITS W HIGH DB SC CA AVG CAL GN SA ALARM/ST DRAWING COMPUTER SC AN LOŇ TERMINAL NO CABLE NO WP С р TE-1511G МЬ 14 M-107 0.0 300.0 180.0 6 4 DEGE REP A MTE DE BRG TEMP 7 A1275 CUTC 17-112-12 Wādā. 0 TE-1511M МЬ 1A M-107 140.0 L 4 REP B MTR DE BRG TEMP 17-112-13 DEGF 7 A1276 CUTC ŇÖÖľ. TE-1511H С MĽ 1A M-107 140.0 6 4 300.0 REP A MIR ODE BRG TEMP 17-112-20 ŏ DEGF A1277 7 CUTC йŏóž CD TE-1511N МЬ 1A M-107 140.0 6 4 300.0 RFP B MTR ODE BRG TEMP 17-112-21 DEGF OTUS EDCW A1278 7 С · ML TE-1511L 1A M-107 140.0 6 4 300.0 Ď RFP A TRST SLV BRG TEMP DEGF 7 CUTC WDD4 A1279 ç TE-1511S мь 1A M-107 0.0 300.0 140.0 6 4 REP B TRST SLV BRG TEMP DEGE 7 CUTC 085£A ŴŨÔŜ ç TE-1511K МЬ 140.0 6 4 300.0 M-107 RFP A RADL SLV BRG TEMP DEGF 7 CUIC 1851 4 TE-1511R ç МЬ 140.0 L 4300.0 M-107 REP B RADL SLV BRG TEMP DEGE 285£A 7 CUTC WUD7 D TE-1511V ML RFP A INBD TRST BRG TEMPDEGF M-107 190.0 6 4 300.0 ñ 2 CUTC E851A WOOA D TE-1511Y МЬ M-107 0.0 300.0 190.0 6 4 RFP B INBD TRST BRG TEMPDEGF Đ 7 CUTC 41584 ŇÓŊĂ **TT-4233D** A 38 M-142 M8 0.0 300.0 180.0 6 4 35 *i*ro CWP A MTR GUIDE BRG TEMPDEGF D A1285 MUJU 160 7 TT-4234D • A MÅ 98 M-142 0.0 300.0 140.0 6 4 32 CWP B MTR GUIDE BRG TEMPDEGF D 4851A MUIT 3EE54-TT AD MA <u>,</u>60 ... 38 M-142 140.0 L 4 300.0 32 CWP A GUIDE BRG TEMP DEGF A7585 MOJS

W

97/08/75	PAG	E 58										
TYPF	NID NO.	PRINTED DESCRIPTION	E.UNITS	I'NS TRUN	IENT RGE	SIGNAL	RGE			NSTRUMENT	NO. REV	
SCAN ADPS		COMPUTER TERMINAL NO CABLE NO WP	LIMIT LOW	S HIGH DB	SC CA	AVG CAL GN	SA ALARM/ST	REFERENC DRAWING	E LO H D	GGING M ER'T	NOTE REV	
MUTB	A7588	CWP B GUIDE BPG TEMP 07-031-32	DEGF	0.0 40.0 b	4300•0	35	160 7	98 M-145	MB	TT-4234E	A D	
· WO14	A 1594	CWP A MTR TRST BRG TEMP	DEGF	0.0 40.0 b	, 300+0 . Ч	. SE	160 7	38 M-142	Mð	7T-4233F	A D	
WO 1.5	A7540	CWP B MTR TRST BRG TEMP N7-030-33	DEGF	· 0.0 180.0 b	4 ^{300.0}	35	160 7	ае 142	MB	TT-4234F	A D	
607P 607P	V1541	CP & MTR TRST BRG TEMP 17-121-02	DEGF 1	6.0 60.0 6	4300.0		7	1А М-10ь	M7_	TE-1511A	D	
CUTU WC17	81292	CP A MTR UPPER BRG TEMP 17-121-03	DEGF 1	0.0 140.0 L	4 ^{300.0}		7 .	10 M-106	M7.	TE-15118	D D	,
CUTC WILS	A1543	SPARE 17-121-10						14			C D	
	A1544	CP B MTR TRST BRG TEMP 17-121-11	DEGF	180.0° L	, 300•0 4		7	14 M-101	M7	TE-1511D	D D	
UTU Maso	A1542	CP B MTR UPPER BRG TEMP	DEGF	140.0 L	4300∙0 4		7	1A M-106	M7	TE-1511E	D D	
MU57 CO1C	475JP	SP AR E 17-121-13						1A			C D	
STUS SSCW	A1582	REP A BRG OIL TEMP	DEGF	150.0°5	4200.0		7	M-107	ML	TE-1501A	D D	
STUS ESDW	8 P S L A	RFP B BRG OIL TEMP 17-121-21	DEGF	150.0° 6	4200 . 0		7	1A M-107	мь	TE-1502A	D D	
CUTC WORK	81299	TURB TRST BRG T FRT PL	DEGF	175.0°G	,300.0 4		7	M-104	LSTG	LE-757PV	, A E	
CUTC	006 <i>1</i> A	TURB TRST BRG T FRT PLC 17-121-23	RDEGF	0.0 185.0 6	4 900 • 0		7	10 M-104	LSTG	TE-151PB	C D	

					1.1		•			
07/08/75	PAG	E 59 PRINTED DESCRIPTION	E.UNITS	INSTR	UMENT RGE	SIGNAL RGE	BD TYPE	MPL NO	INSTRUMENT NO	. REV
SCAN ADRS	NID NO.		LIMI	TS	B SC CA	AVG CAL GN SA ALARM/ST	REFERENC DRAWING	E L H D	OGGING M ER T NO	DTE REV
CUTC MD26	A1301	TURB TRST BRG T RER PL 17-121-30	DEGF	175.0°, 6	300.0 4	7	14 M-104	LSTG	16 -757PC	C D
CUTC WD27	A P 905	TURB TRST BRG T RER PLDF 17-121-31	RDEGF	185.0 6	300.0	7	10 M-104	LSTG	1E-757PD	· C D
21U3 650W	41303	RRP MG A MTR BRG T FWD 17-121-32	DEGF	194.0 E	, 300.0	7	14 М-116	APED	TE-4653A	A D
0100 9500	A1-304	RRP MG B MTR BRG T FWD 17-121-33	DEGF	194.0°E	, 300.0 4	7	M-IIP	APED	TE-4654A	Å D
01U0 0100	A], 30 5	RRP MG A NTR BRG T RER 17-122-00	DEGF	194.0 i	300.0	7	M17P	APED	TE-46538	A D
CUTC	A1306	RRP MG B MTR BRG T RER 17-122-01		194.0 I	300.0	7	1Å M-116	APED	TE-46548	A D
210) 210) 250W	A1307	RRP MG A GEN BRG T FWD 17-122-D2		0.0 194.0 - 1	300.0 4	7	M-116	APED	TE-4655A	A D
OTUO EEOW	A 1 308	RRP MG 8 GEN 8RG T FWD			300.0 6 4	7	M-116	APED	TE-4656A	A D
CUTC WD34	A1309	RRP MG A GEN BRG T RER			300.0 6 4	· 7	1A M-116	APED	TE-46558	A D
CUTC	VIJIU	RRP MG B GEN BRG.T RER	DEGF		, 300∙0	7	LA M-llb	APED	T E - 4 6 56 8	A D
W735 CUTC	VTJTT	RRP MG A IMP OTBD BRG T	DEGF		300.0		іа M-ііь	APED	TE-4657A	D
AF NA CUTC	81315	17-122-12 RRP MG B IMP OTBD BRG 1 17-122-13	DEGF	14.0 194.0			1A M-116	APED	TE-4658A	D
W137		17-122-13 					14 M-116	APED	TE-46578	∆ D
CUTC W935	4 7 3 7 3	13-755-50 KKA WC V IMP IMP0 0K0 1		194.0	300.0 6 4	7	м -тр Р			-

•

: .

•

-+ 980

and a space standard

		•						
n.	7/08/75	PAG		S INSTRUMENT RGE	SIGNAL RGE	BD TYPE MPL NO	INSTRUMENT NO.	REV
	SCAN ADRS	NID NO.	PRINTED DESCRIPTION E.UNIT		AVG CAL GN SA ALARM/ST	REFERENCE	LOGGING D M ER T NOTE	
	CUTC WD39	A 13 1 4	RRP MG B IMP INBD BRG T DEGF	0.0 300.0 194.0 6 4	7	LA APED M-116	TE-4658B	A D
. e	CUTC 8040	41315	RRP MG & RUN OTBD BRG T DEGF 17-122-22	0.0 300.0 194.0 Б Ч	7	M-11P VALUE	TE-4657C	D D
	CUTC W041	ATSTP	RRP MG B RUN OTBO BRG T DEGF	0.0 300.0 194.0 ь 4	7	LA APED M-LLL	TE-4658C	D
	CUTC W042	AJ317	RRP MG A RUN INBD BRG T DEGF 17-122-30	0.0 300.0 194.0 6 4	7	LA APED M-LLL	TE-4657D	A D
	CUTC W143	A 1318	RRP MG B RUN INBD BRG T DEGF 17-122-31	194.0°C 300.0	~ 7	la APED M∼llL	TE-4658D	A D
	CUTU W044	A 7 3 7 4	R3P & MTR UPPER BRG TEMPDEGF 17-122-32	200.0 6 4 300.0	7	LA APED M-LLL	TE-4600A	D D
	CUTU W045	05E1A	RRP A MTR LOWER BRG TEMPDEGF	200.0°0 4300.0	7	LA APED M-LLL	TE-46008	0
	CUTC W046	A 7 3 5 7 V	TURB HP BRG OIL DR TEMP 1 DEGF 17-123-00	185.0 6 Ч Эрого 18 К	7	LA LSTG M-LO4	TE-1217A	C D
	CUTC W047	81355	TURB HP BRG DIL DR TEMP 2 DEGF 17-123-01	185.0 Ь Ч Эрого в Ч	7	LA LSTG M-104	TE-1575B	C D
	CUTC W745	41353	TURB LP BRG OIL DR TEMP 3 DEGF 17-123-02	0.0 300.0 185.0 в ч	7	1A LSŤĠ M-104	TE-1512C	C D
	<u> </u>	A1324	TURB LP BRG OIL DR TEMP 4 DEGF 17-123-03	185.0 в ч 185.0 в ч	7	1A LSTG M-104	TE-1217D	С р
	(บ⊺) เช่า 50	A}325	TURB LP BRG DIL DR TEMP S DEGF 17-123-10	185.0.0 300.0 185.0 ь ч	7	1A LSTG M-104	TE-15715	C D
	CUTC W051	V 735P	TURB LP BRG OIL DR TEMP 6 DEGF 17-123-11	145.0 - 6 - 4 145.0 - 6 - 4	7	LA LSTG M-104	16-1511F	C D
4								

		·		
				÷.,

TYPE	NID NO.	PRINTED DESCRIPTION	E.UNITS	INSTRUMENT RGE	SIGNA	RGE	BD TYPE	MPL NO	INSTRUMENT NO.	REV
SCAN ADRS		COMPUTER TERMINAL NO CABLE NO WP	LIMI	TS HIGH DB SC CA	AVG CAL G	N SA ALARMÍST	REFERENC	е I Н	DGGING MERTNO1	ÈE REV
CUTC W0.52	A1337	GEN BRG OIL DR TEMP 17-123-12	7 DEGF	0.0 300.0 185.0 Б.ч		7	M-104	LSTG	TE-15720	C D
CUTC	8261 A	GEN BRG OIL DR TEMP 17-123-13	8 DEGF	185.0 Б 4 ЭОО.0		7.).A M-104	LSTG	TE-1217H	C D
CUTC WD 54	PSELA	EXCT BRG OIL DR TEMP 17-123-20	9 DEGF	185.0 Б. 4 185.0 Б. 4		7	1a M-104	LSTG	TE-1517J	Ċ
CUTC W055	DEELA	EXCT BRG DIL DR TEMP 17-123-21	10 DÈGF	185.0 6 4 300.0		7	M-104	LSTG	1E-7573K	C D
W0.56	TEETV	TURB HP BRG VIBRATION 1	MILS	7.00 ^{0.0} 6 2 ^{15.00}	8	40 7	M-104	LSTG	XAE-7578V	D E
W0 57	SEELA	TURB HP BRG VIBRATION 2 18-210-13	MILS	7.00 ^{0.0} 6 2 ^{15.00}	Å	40 7	н-104	LSTG	XAE-75798	D E
W0 58	EEELA	TURB LP BRG VIBRATION 3 18-210-20	MILS	7.00 ^{0.0} 6 2 ^{15.00}	Ś	40 7	ЭЕ М-104	LSTG	XVE-1518C	D E
WD 59	A 7334	TURB LP BRG VIBRATION 4 18-210-21	MILS	7.00 ^{0.0} 6 2 ^{15.00}	8	40 7	М-104	LSTG	XAE-7579D	D E
woea	A7332	TURB LP BRG VIBRATION 5 18-210-22	MILS	7.00 ^{0.0} 6 2 ^{15.00}	8	40 7	3Е М-104	LSTG	XVE-1519E	• D E
MOPT	A733P	TURB LP BRG VIBRATION L 18-210-23	MILS	7.00 ^{0.0} 6 2 ^{15.00}	8	40 7	ЭЕ M-104	LSTG	XVE-7579t	D E
MOP5	A1337	GEN BRG VIBRATION 7 18-210-30	MILS	7.00 ^{0.0} 6 2 ^{15.00}	8	40 7	ЭЕ М-104	LSTG	XVE-1218G	Đ
WO 6 3	ALBEA	GEN BRG VIBRATION &	MILS	7.00 6 2 15.00	8	40 7	3E M-104	LSTG	XVE-1519H	· D E
พฦธ๚	A 1339	EXCT BRG VIBRATION 9		7.00 ^{0.0} 6 2 ^{15.00}	8	40 7	3E M-104	LSTG	XVE-15181	D E

.

PAGE 61

07/08/75

inur

NID NO.

A1340

A1341

A] 342

A1343

177407 25 түре

-----SC AN ADR S

WOL5

CUT C WOLL

CUTC WDL7

CUTC WOLS

.

- 44

.

	- bc		· · · ·	a far a far a cana a	• •
		E.UNITS INSTRUMENT RGE	SIGNAL RGE	BD TYPE MPL NO INSTRUMENT NO	REV
	COMPUTER TERMINAL NO CABLE NO WP	LINITS LOW HIGH DB SC CA	AVG CAL GN SA ALARM/ST	REFERENCE LOGGING DRAWING H D M ER T NO	ITE REV
	EXCT BRG VIBRATION 10 18-210-33	MILS 7.00 6.0 15.00	8 40 7	3E LSTG XVE-1218K M-1∩4 T	D E
i.	TURB HP BRG METAL TEMP 1 17-129-22	L DEGF 0.0 300.0 185.0 ь ч	7	1A LSTG TE-1219A M-104	A D
	TURB HP BRG METAL TEMP 2 17-123-23	2 DEGF 0.0 300.0 185.0 ь ч	7	1A LSTG TE-1219B M-104	A D
	TURB LP BRG METAL TEMP 3 17-123-30	З DEGF 0.0 300.0 185.0 6 4	7	1A LSTG TE-1219C M-104	A D
I	TUPB LP BRG METAL TEMP 4 17-123-31	ч DEGF 0.0 300.0 185.0 ь ч	7	LA LSTG TE-12190 M-104	A D

	CUTC WDL9	A 1,344	TUPB LP BRG METAL TEMP 4 DEGF 17-123-31	145.0 L	4300•0	7	14 M-104	LŠTG	1E-15140	A D
	CUTC W370	A1345	TURB LP BRG METAL TEMP 5 DEGF 17-123-32	185.0 L	, 300•0 Ч	7	14 M-104	LSTG	TE-1519E	A D
•		A1346	TURB LP BRG METAL TEMP 6 DEGF 17-123-33	185.0 L	4 4	7	14 M-104	LSTG	1E-1578E	A D
	CUTC WD72	A1347	GEN BRG METAL TEMP 7 DEGF 17-130-00	185.0°6	4 300 • 0 4	7	M-104	LSTG	TE-1219G	A D
	CUIC W073	A 1 3 4 8	GEN BRG METAL TEMP & DEGF	0.0 185.0 L	300.0 4	7	1A M-104	LSTG	TE-1219H	A D
	CUTC W074	A1349	EXCT BRG METAL TEMP 9 DEGF 17-130-02	0.0 185.0 6	,300.0 4	7	1A M-104	LSTG [.]	TE-75781	A D
	CUTC WD75	A1350	EXCT BRG METAL TEMP 10 DEGF 17-130-03	145.0 L	, 300•0 4	7	1a M-104	LSTG	TE-1574K	A D
	CUTC W175	A1351	RRP B MTR UPPER BRG TEMP DEGF 17-130-10	200.0 L	, 300 • 0 Ч	7.	TV M-IIP	APED	TE-4600M	B D
	CUTC WD77	81352	RRP 8 MTR LOWER BRG TEMP DEGF 17-130-11	200.0°0 F	300.0 4	7	14 M-116	APED	TE-4600N	B D

									•				
		·							· ·				
										•			
07/04/75	PAG	E 63	· · · · · ·		•				• • • •		• •		· ·.
ТҮРЕ 	NID NO.	PRINTED COMPUTER	DESCRIPTION	E.UNITS	TS	RUMENT RGE		LRGE	REFERENC	E LI	INSTRUMENT OGGING		
S C AN A DP S		TERMINAL	NO CABLE NO WP	LOW	HIGH	DB SC CA	AVG CAL G	N SA ALARM/ST	DRAWING	· H D	M ER T	NOTE REV	•
CUTC M078	A1353	RHR PMP A	UPPER BRG TEMP	DEGF	0.0 195.0	300.0 6 4		7	M-120	APED	TE-2074A	B D	
(UIC WC74	A1354	RHR PMP A 17-130-13	LOWER BRG TEM	P DEGF	195.0	ь 4 ^{300.0}		7	W-750 77	APED	TE-20748	8 D	
CUTC WOAD	A 1 3 5 5	RHR PMP B 17-130-20	UPPER BRG TEMP	P DEGF	195.0	6 4 ^{300.0}		7	M-119	APED .	TE-1995A	B D	
CUTC	A 1 3 5 6	RHR PMP B 17-130-21	LOWER BRG TEM	P DEGF	0.0 195.0	ы 4 ^{300.0}		7	14 M-119 -	APED	TE-19958	B D	
CUTC SACW	41357	RHR PMP C 17-130-22	UPPER BRG TEMI	P DEGF	0.0 195.0	, 300.0 6 4		7	M-150 1V	APED	TE-2075A	B D	
STUD	A 1 3 5 8	RHR PMP C	LOWER BRG TEMI	P DEGF	0.0 195.0	. 300.0 Б. Ч.	•	7	14 120 121-M	APED	TE-20758	B D	:
CUTC WD84	A 7 3 2 4	RHR PMP D 17-130-30	UPPER BRG TEM	PDEGF	195.0 195.0	900.0 6 4		7	M-119	APED	TE-1996A	B D	
CUTC WOAS	A13P0	RHR PMP D 17-130-31	LOWER BRG TEM	P DEGF	0.0 195.0	а 4 ³⁰⁰ •0		7	1A M-119	APED	TE-U996B	B D	
С <u>итс</u> МПВБ	V13P1	CSP A MTR 17-190-92	UPPER BRG TEM	P DEGF	195.0	а 3 00.0		7	M-757 19	APÈD	TE-2149A	B D	. •
CUTC W187	A7365	CSP A MTR 17-190-99	LOWER BRG TEM	P DEGF	195.0	, 300.0 6 4		7	M-151	APED	TE-21498	B D	
CUTC 8380	A 7 3 P 3	CSP 8 MTR 17-131-00	UPPER BRG TEM	P DEGF	0.0	6 4 ^{200.0}		7	N-757 18	APED	TE-2150A	, D D	
CUTC WOB9	41364	CSP 8 MTR 17-131-01	LOWER BRG TEM	P DEGF	0.0 195.0	200.0 6 4		7	M-151 17	APED	TE-21508	D D	
CUTC WD90	A 1 3 6 5	CRD & PMP 17-131-02	INB BRG TEMP	DEGF	150. 200.0	0 250.0 6 4		7	1A M-117	APED	TE-1890A	C D	

07/0A/75

TYPE

SCAN

ADRS

CUTC W091

STUS WU93

WN 94

W1195

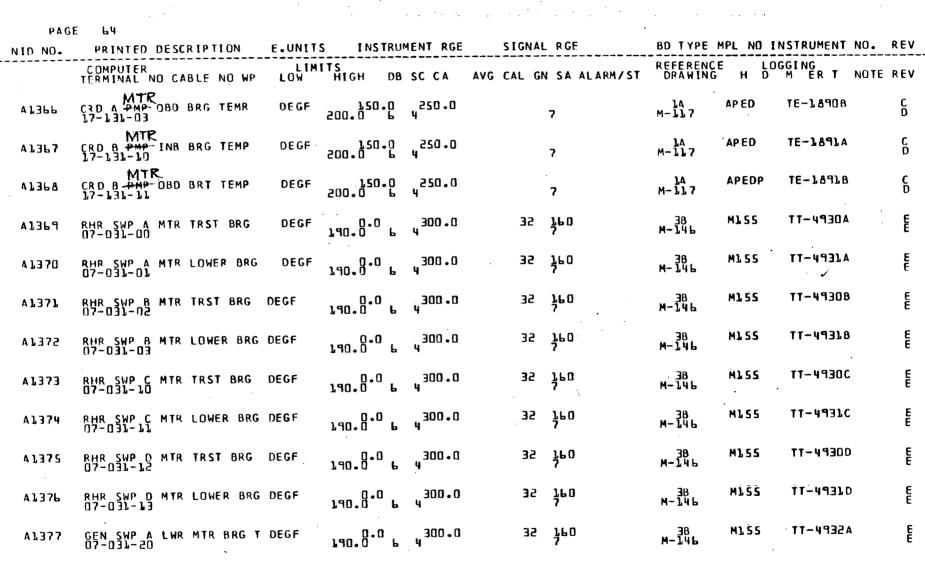
WUAP

W097

W098

W099

W100


WIDI

W102

MJU3

A1378

GEN SWP A UPR MTR BRG T DEGE 07-031-21

្មរេច

35

190.0 L 4^{300.0}

AEEP4-TT

M1 55

38 M-146 E

					· · · · · ·		. <i>.</i>				•. •		
N7/0A/75	PAG							S T CN A	L RGE	BD TYDE	א א א א	INSTRUMENT N	ID. REV
TYPE	NID NO.	PRINTED DES	CRIPTION	E.UNITS	1 N 5	KUP	IENT RGE				_~~~~~		
SCAN ADRS		COMPUTER TERMINAL NO C	ABLE NO WP	LINIT	S HIGH	08	SC CA	AVG CAL G	GN SA ALARM/ST	REFERENC DRAWING	H D	DGGING M ER T N	NOTE REV
W104	A1379	GEN SWP B LWR 07-031-22	MTR BRG T	DEGF	0.0 90.0	ե	4300.0	35	<u>т</u> е 0 7	38 M-146	M1 5 5	TT-49328	E E
W105	OBELA	GEN SWP B UPR 07-032-00	MTR BRG T	DEGF 1	0.0 190.0	6	4 ^{300.0}	35	160 7	<u>Эв</u> м-146	M155	TT-4933 B	. E
WIOF	A1381	GEN SWP C LWR 07-032-01	MTR BRG T	DEGF 1	0.0	ь	4 ^{300.0}	35	160 7	38 M-146	M1 55	J56P4-TT	E
KJUZ	A7395	GEN SWP C UPR 07-032-02	MTR BRG T	DEGF	190.0°	b	4 ^{300.0}	35	160 7	38 M-146	MLSS	TT-4933C	E
RTD	EBELA	SPARE 17-112-03	Reserve	ad			4			ЭЕ			, B D
RTD	A1384	SP AR E 17-112-10					4			ЭЕ		. ·	8 D
MJ70 CAIC	AJ385	SP AR E 17-131-12					4			Ţ			A D
CUTC W111	A1386	SP AR E 17 - 131 - 13					, . Ч			Â.			. D

4

4

SP AR E 17-131-20

12-131-51 74-131-51

MJ75 CO1C

çu î ș

CUTC W114

CUTC W115

MJJP COIC

A1387

8861A

88E.CA

A1390 .

41391

1Å SP AR E 17-131-22 4 LA SPARE 17-131-23 4 . <u>1</u>4 SPARE 17-131-30 4

lΑ

lΑ

D,

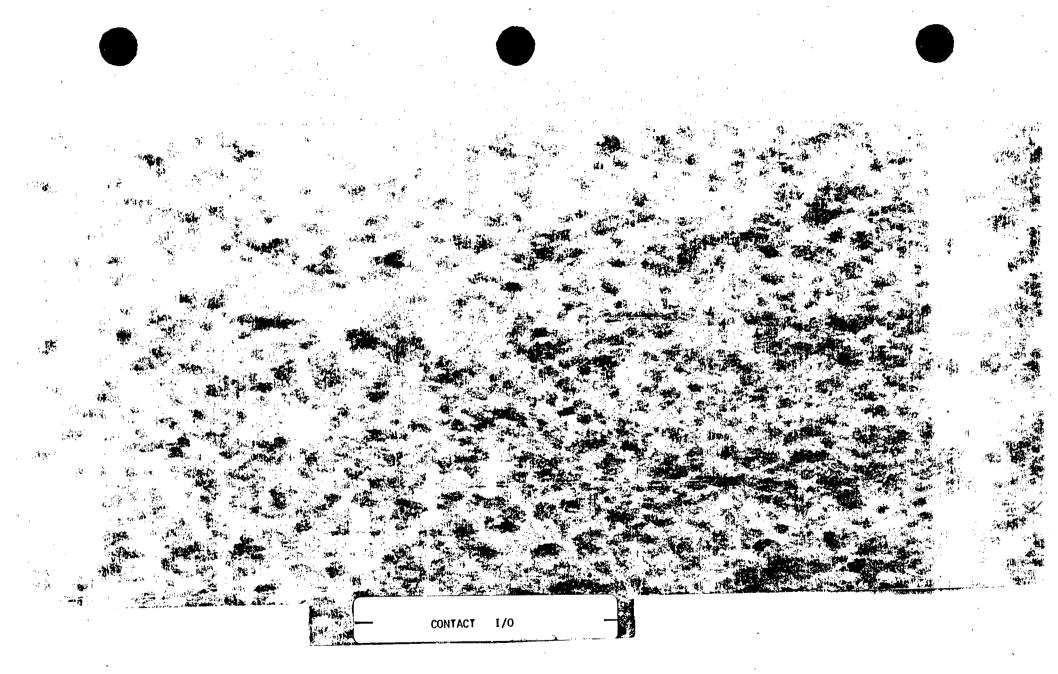
D

D

D

D

D



and a second second

07/08/75 Type	PAG NID NO.	E 66 . PRINTED DESCRIPTION	E.UNITS INSTRUMENT RGE SIGNAL RGE	BD TYPE MPL NO INSTRUMENT NO. REV	
SCAN ADRS		COMPUTER TERMINAL NO CABLE NO WP	LIMITS LOW HIGH DB SC CA AVG CAL GN SA ALARM/ST	REFERENCE LOGGING DRAWING H D M ER T NOTE REV	
CUIC W117	87345	SP AR E 17-131-31	ч	LA D	
MTT9 CALC	EPELA	SP 4R E 17-131-32	ч	LA D	

a.

.

									• .		:	•			
		н. С. С. С			•			•				• .			· · ·
					,	• .	•	·	. <u>.</u>						
U7/08/75 Type	PAG NID NO.	E 67 PRINTED DESCRIPTION	NORMAL PRINT	NT	AL ARM PR INT	AT	ALARM STATUS	CS	SA	AL	PL TL	BD TYPE	MPL NO) INSTRUMENT	NO. REV
SCAN ADR S		COMPUTER TERMINAL NO CABLE NO WP	SCAN CLASS	RE	FERENCE	S	LOG	NO TE	NO.						REV
C I N A 5 0 0	C1541	MAIN STM LINE A HI FLOW DAL405-00	NORM D	02 NB	HIGH FCD	01	CLSD	0		l		Dľ	85 I		A B
C I N A 5 1 1	C1542	MAIN STM LINE B HI FLOW DAL405-DL	NORM D	OZ NB	HIGH FCD	01.	CLSD	0		l		Dľ	851		A B
CIN 4502	C 1, 5 4 3	MAIN STM LINE C HI FLOW 081405-02	NORM [·] D	OZ NB	HIGH FCD	01	CLSD	0		l		OF	85 F		А В
С I N А 50 Э	C 1,544	MAIN STM LINE D HI FLOW D&1405-03	NORM D	O2 NB	HIGH FCD	01	CLSD	٥		l		DL	821		A B
C T N 4 5 7 4	C3545	MSL A LEAK DETECTION 081405-04	NORM D	02 84	HIGH FCD	Ċ1,	CLSD	0		L 3		D L	821		B B
΄ CΙΝ Δ595	С1546	MSL B LEAK DETECTION	NORM D	OZ NB	HIGH FCD	01 ·	CLSD	٥		L .		D),	82 L		B B
СТМ Абль	C1547	MSL C LEAK DETECTION DAL405-06	NORM	O2 NB	HIGH FCD	01	CLSD	٥		Ĺ		01.	821.		B B
C I N 4 507	C1548	MSL D LEAK DETECTION D&1405-07	NORM D	02 NB	HIGH FCD	01	CLSD	0		l		Oľ	851		B B
CIN ASDA	CIPUI	24 CAL ROD BLK DISCH VOL HIGH WATER LVL D& 1405-08	NORM · D	02 07	HIGH D FCD	OL	CLSD	0		l		01	CII	.	А В
C I N A 5 0 9	строз	REFUEL INTLK ROD BLOCK ወልኔ405-ወዓ	NORM	D2 CR	ON D FCD	25	CLSD	0		r		01	C11		В
C I N A 5 10	C 16 0 4	CRD ROD TIMER MALFUNC .	NORM D,	D2 CRI	TRBL D FCD	08	CLSD	Ŋ		Ĺ		0 I	CII		A B
C 1 N A 5 1 1	с т РО 2	RWM ROD BLOCK 081495-11	OFF D	22 CRI	ON D FCD	25	CLSD	٥		ľ		01	CII		B B
CIN A512	С1606	SRM DET NOT START-UP POS D&1405-12	NORM	02 MM	TRBL FCD	08	CLSD	, O		l		01	CSL		D B
l 1															

•

A

	·													
17/08/75 TYPE	PAG NID ND.	E 68 PRINTED DESCRIPTION	NORMAL PRINT	NT	ALARM PRINT	AT	ALARM STATUS		<u>SA</u>	AL_	PL TI	L BD TYPE	MPL NO INSTRUMENT	NC. REV
SCAN ADRS		COMPUTER TERMINAL NO CABLE NO WP	SC AN CLASS	RE	FERENCE RAWING	S	LOG	NOTE	NO.					REV
C I N 4513	C 1607	SPM UPSCALE ALAPM Nal495-13	NORM D	02 NM	ALRM FCD	07	CL S D	0		ľ		Dľ	C 5 1	A B
C I N A 5 1 4	стров	SRM INOPERATIVE ALARM D81405-14	NDRM D	02 M <i>n</i>	ALRM FCD	07	CLSD	0		L		01	CSL	A B
C I N A 51 5	ር ፓደሀ ብ	IRM DET NOT FULL-IN POS DAl405-ls	NORM		TRBL FCD	80	CLSD	0		l		Dr	C27	• A B
С I N А 5 1 Б	стето	IRM NOWNSCALE ALARM Noluo5-le	NORM	02 MM	ALRM FCD	07	CL S D	0		l		07	C51	A B
C I N 4 5 1 7	C 1 P I J	IRM INOPERATIVE ALARM D81405-17	NORM	02 MM	ALRM FCD	07	CLSD	0		ľ		01	C51	A B
C I N A 5 1 8	C7P75	IRM UPSCALE ALARM Dal405-la	NORM	02 MM	ALRM FCD	07	CLSD	0		1		Dl	C51	• A B
(I N (5] 9	C1273	APRM DOWNSCALE ALARM DAL405-19	NORM D	SO МЙ	AL RM FCD	07	CLSD	· 0		1		01	C 5 1	A 8
C [N 4 5 2 0	C 16 1 4	APRM UPSCALE ALARM N&1405-20		02 MM	ALRM FCD	07	ĊLSD	• 0		. L		Dľ	C51	A B
8251 819	стетг	APRM INOPERATIVE ALARM 08 1405-21	NORM D	02 MM	ALRM FCD	07	CL S D	0		ľ		Dl	C51	А В
N10 8522	Стете	NSS SPARE D81405-22	D									Dl	•	c
CTN 4523	съ847	RWM PRINT NOTCH ERROR Delyog-od	OFF D	25 10	ND FCD	25	CLSD	0		ľ		DI	CFF	B B
C [N 4524	C 1848	RWM GROUP OUT OF SERVICE Oblyog-ol	OFF D	22 10	ON FCD	25	CLSD	٥		L		DL	CTT	B B
010 2524	ርኔቆዛዓ	RMW ONE ROD PERMISSIVE DA1406-02	OFF	22 13	ND FCD	25	CLSD	0		ľ		DL	Cll	8 8

4

		•				·		. 6								•
							•									
Π (Λ ΠΛΛ 7.5 ΤΥΡΕ	PAGE NID ND.	PRINTED DESCRIPTION	NORMAL PRINT	NT	AL ARM PR INT	AT	ALARM STATUS	CS SA	AL	PL	TL	BD TYPE	MPL NO	D INSTRUME	NT NO. REV	
SCAN ADRS		COMPUTER TERMINAL NO CABLE NO WP	SCAN CLASS	RED	FERENCE	 S	LOG	NOTE NO.				****			REV	~ ~
CTN 8526	C 18 50	RWM OPERABLE OAl406-03	ON D	55	OFF	25	OPEN	l	l			01	CII		B	
C I N 4527	C 1851	NSS SPARE 081406-04	D ·									Dl			B C	
C T N A 528	C1825	RWM ROD WITHDRAW BLOCK D81405-05	OFF D	22 Cr	D FCD	25	OPEN	0	ľ			Dľ	Cll		B B	
C I N 8 5 2 9	CLASE	RWM ROD INSERT BLOCK DAl406-06	OFF	22 C R	ON FCD	25	OPEN	0	l			01	CFF		B B	
C I N A 5 20	C 1854	RWM 35% PWR AUTO BYPASS D&1406-07	OFF D	22 RJ	ON LD FCD	25	OPEN	0	r			DI	CII		. B	
C I M 4531	C 1855	RWM 30% POWER SET POINT D81405-08	OFF	22 C R	ON FCD	25	OPEN	0	ì	. •		Dl	C11		B B	
SE 2 4	C1867	ROD DRIFT ALARM Nålyds-og	OFF	22 NM	ON FCD	25	CLSD	0	ŗ			01	CII		≜ B	
	C1856	RPIS MALFUNCTION DAL406-10	0 FF 0	22 CR	ON FCD	25	CLSD	0	l			01	Cll		A B	<i>.</i> ````````````````````````````````````
1:11 90 1534	C1868	ROD SELECTED AND DRIVING D&L406-L1	OFF	'22 NM	ON 1 FCD	25	CLSD	0	ľ			Dl	CII		A B	~
C I N 4535	C 18 59	RWM SYSTEM DIAGNOSTIC D&1406-12	OFF D	55	ON	25	CLSD	0	ŗ			DL	CII		8 8	
ined GIN	С1846	CONTROL ROD WITHDRAW D81406-13	OFF D	22 07	ON P.D.FCD	25	CLSD	Ö	ľ			Dľ	CJJ		A B	
C I N A 5 37	ርንዮያየ	RECIRC LOOP B INACTIVE OB1406-14	NORM D	50 80	ALRM B FCD	07	CLSD	0.	L			Dľ	851		E	
C I N 4538	C 16 5 7	RECIRC LOOP & INACTIVE DS1406-15	NORM	02 NB	ALRM FCD	0 7	CLSD	0	ľ			Dl	851		Ē	
												•		-		·

i		· · · ·	•										•		
			<i>.</i> .		• .		· · ·			. ·	•				
/08/75 TYPE	PAGI NID NO•	E 70 PRINTED DESCRIPTION	NORMAL PRINT	NT	AL ARM PRINT	AT	ALARM STATUS	<u></u>	SA A	L PL	TL	BD TYPE	MPL NO	INSTRUMENT	NO. REV
SCAN ADRS		COMPUTER TERMINAL NO CABLE NO W	SCAN P CLASS	REF	ERENCE	s	LOG A I	NDTEN	10.						REV
A 5 39	старо	ТТР МАСНІЧЕ А READY О81405-16	ON D	22 MM	OFF	25	OPEN	0	ľ			D L	C 5 1		B B
A 5 4 17	C 7 9 P 7	TIP MACHINE B READY D81406-17	ON D	22 MM	OFF FCD	25	OPEN	0	l			Dl	C 5 1		B B
∆54 l	C 78P 5	TIP MACHINE C READY DAL406-18	ON D	22 NM	OFF FCD	25	OPEN	0	1	•		D L	C51		B 8
C I N 4 542	C 16 17	RBM DOWNSCALE BLOCK D51406-19	NORM D	50 MM	ALRM FCD	07	CLSD	0	1			01	C 51		B B
C I N 4543	C 7 P 7 9	RBM UPSCALE BLOCK D81406-20	NORM	50 MA	ALRM FCD	07	CLSD	0	1			D L	C 5 1		, B B
C 1 N A 5 4 4	стега	RBM INDPERATIVE BLOCK DS1406-21	NORM D	02 M <i>N</i>	ÁL RM FCD	07	CLSD	0]	6		D L	C 5 L	•	8 8
C I N A 545	C 7P 50	FLOW UNIT UPSCALE/INOP DA1406-22	NORM D	02 NM	TR I P FCD	19	CLSD	Ö	1	L .		01	CSL		D B
С I N Д 546	C 164 1	SRM BYPASSED 081407-00	NORM	02 NM	ALRM FCD	07	CLSD	0		L		01	C 5 1		A B
CTN 4547	C1642	IRM BYPASSED በ8 ነ407-0ነ	OF F D	02 NM	ON FCD	25	CLSD	0		L		Dl	C51		, B
CTN 4548	C1643	APRM CH A BYPASSED D81407-02		02 MA	DN FCD	25	CLSD	O		l		D J	C 5 1		B B
С I N Д 5 4 9	C	APRM CH ይ BYPASSED 04ኔ407-03	OFF D	50 40	ON 1 FCD	25	CLS D	0.		L		D1.	C 5 1		B B
C I N A 5 5 1	С1645	APRM CH C BYPASSED በ8ኔ407-04	OFF D	02 10	ON 1 FCD	25	CLSD	0		l		D L	C 2 J		B B
CIN 4551	СЪБЧБ	APRM CH D BYPASSED 031407-05	OFF D	0 2 . NI	ON 1 FCD	25	CL S D	0		L .		D L	C51		B B
				•											

	NORMAL	ALARM	ALARM			
	•			· .		
i fa t						
· .		· · ·			•	
	•					
				1		

	TYPE	NID NO.	PRINTED DESCRIPTION	PRINT	NT	PRINT	AT	STATUS	CS	SA	AL	PL	TL	BD TYPE	MPL NO	INSTRUMENT NO. REV
	S C A N A DR S		COMPUTER TERMINAL NO CABLE NO WP	SCAN CLASS		FERENCE			NOTE	ND.						REV
	CTN 4552	СЪ647	APRM CH E BYPASSED Oblud7-d6	OFF D	02 NM	ON FCD	25	CLSD	0		l		٠	D].	C 51	B B
	C1N A 553	ርጌይዛል	APRM CH F BYPASSED D81407-07	OFF D	D2 NM	ON FCD	25	CLSD	0		ľ			Dl	C 5 1	B B
	C I N 4 5 5 4	ርኔይዛዓ	RBM BYPASSED DAL407-DA	OFF D	02 NM	ON FCD	25	CLSD	. D .		P (Dľ	CSL	A B
ı	C I N A 5 5 5	C 1 6 5 0	ROD DUT BLOCK D&1407-19	DFF D	02 MM	ON FCD	25	CLSD	0		r			DL.	CSL	A B
	С I N А 5 56	C	ALARM ON FLOW COMPARATOR D&1407-10	NORM D	02 MM	ALRM FCD	07	CLSD	0		l			Dl	C 5 }	A B

× .

ников¹¹ н. Ш

6.7007.00

•

											. X.,			
)		,					
ł				· · ·					• •	:	· · · ·			
07/	TYPE	PAGE NID NO.	E 72 PRINTED DESCRIPTION	NORMAL PRINT	ALARM NT PRINT	AT	ALARM STATUS	CS SA	AL PL	TL.	BD TYPE	MPL NO	INSTRUMENT NO.	REV
	SCAN ADR S		COMPUTER TERMINAL NO CABLE NO WP	SCAN CLASS	PEFERENCE DRAWING	;	LOG SA M	NOTE NO.	*****					₽EV
	C I N 8500	c 1 000	RHR HX A DIFF PRESS Daly07-ll	NORM D	W-750 05 TOM	01	CLSD	0	ŗ		01	APED	BIEAEDNNA	E A
	C T N 8571	C 700 T	RHR HX B DIFF PRESS D81407-12	NORM D	02 LOW M-114	01	CLS D	0	r		DL	APED	455AEDNNA	E A
	C T N 8502	C7005	SP 4R E D& 1407-13	D							0 l			D B
	CIN 8503	C7003	SP AR F 08 1 407- 1 4	D	· .						DL			D B
	C I N 8504	C 1004	RHR PMP AGC DISCH FLOW 081407-15	NORM	M-150 M-150	06	CLSD	0	ì		DL	APED	PDIS- 1971A	E A
	C I N 8 5 0 5	C 1.00 5	RHR PMP BED DISCH FLOW Na1407-16	NORM	M+774 W+774	OÌ	CLSD	0	Ŀ		0 L	APED	PD15-1971B	E A
1-1	С I N 8 5ПЬ	C 1006	DRYWELL PRESS ADS ON AA OB1407+17	NORM D	02 H1GH M-143	01	CLSD	0	r		01	APED	PS-4310A	D C
1.1	C I N 8 5 7 7	C 7003	DRYWELL PRESS ECCS ON AA Daly07-la	NDRM D	02 HIGH M- 14 3	01	CLSD	Ö	P.		DL	APED	PS-4310B	D C
	C I N 8508	C 700 8	SLC HI/LO TEMP/LEVEL D31407-19	NORM	02 TRBL M-126	08	CL S D	0	L		Dl	AP ED	ANN 05 A 8 1 B ANNO 5 A 8 2 B	D A
	C I N 3 5 7 9	C 100 9	SI C SYS FIRING CKT CNTY D&1407-20	OK D	05 BAD M-126	04	CLSD	0	l		01	APED	ANN0 5481 0	D A
	C I N 8510	стого	SP 4P E በ8	D							Dl			E B
	C I N 8 5 1 1	C 70 7 F	RCIC TURB EXH PRESS HI 031407-22	NORM	02 HIGH M-124	01	CLSD	0	l		DF	APED	ANN04A417	D A
ľ,	C 1 N P 5 1 2	C1015	DRYWELL PRESS RHR ON AA O&l4l0-00	NORM D	02 HIGH M-143	0 1	CLSD	0	l		D F	APED	PS-4310C	C
		B												•
		D												

٠.,

07/	TYPE	PAGE NID NO.	PRINTED DESCRIPTION	NORMAL PRINT	NT -	AL ARM PRINT	AT	ALARM STATUS	C S	SA	AL	PL	TL	BD TYPE	MPL NO	INSTRUMENT NO.	REV
	SCAN ADRS		COMPUTER TERMINAL NO CABLE NO WP	SCAN CLASS	REI	FERENCE RAWING	 9		NOTE	N0.							REV
	C I N 8513	C7U73	RCIC STM SUPLY FLOW HI D&1410-91	NORM	-M ⁰	H1GH 124	01	CLSD	0		ľ			DL	APED	ANN04A409	D B
1	C I N 8 5 1 4	стога	DRYWELL PRESS ADS ON BA DAL410-02	NORM D		НІ GH 143	01	CLSD	0		ľ			DL	APED	PS-4311A	D C
	C I N 8515	C 1015	RCIC PMP SUCT PRESS HILD DAL410-03	NORM D	02 M-	PS2	06	CLSD	0		P			Dl	APED	654440000 5644400000	E A
	С Т N В 5 1 Б	С Т ОТР	RCIC AUTO ISOLATION A/B D&L410-04	NORM	02 M-	ALRM 124	01	CLSD	0		l		•	Dľ	APED	ANNO4A414 Anno4A436	E A
	C I N 8517	C 70 7 3	RCIC PUMP DISCH FLOW DA1410-05	NORM	50 M-	152 198	OL	CLSD	0		l			D]	APED	ANNO4A4OL	D A
	C I N 8518	C1018	HPCI TURB EXH PRESS HI Dalylo-ol	NORM	02 M-	155 H[CH	01	CLSD	0		ì			0 L	APED	41 AE ONMA	D A
	C I N 8519	C7074	HPCI TURB DIAPH PRESS HI D&L410-07		02 M~	155 HICH	Ő L	CLSD	0		Ĺ			01	APED	PS2215A/D	,C A
,	C [N 8520	c r o 50	COND STORAGE TK A LO LVL DA1410-DA	NORM D	S M-	10M 104	0L	CLSD	0		l			01	M1 77	LS-5218	D A
11	CIN 8521	C 7 057	DRYWELL PRESS ECCS ON BA DA1410-09	NORM D	02 M-	HIGH 143	01	CLSD	0		l			0 <i>Г</i>	APED	PS-4311B	D C
	CTN 8522	C 70 55	HPCI PMP SUCT PRESS LO DAlglo-10	NORM	S M-	-753 FOM	06	CLSD	0		ľ			D 1	APED	ANNO3A105	D
	C1N 8523	C7053	SUPPRESSION POOL LVL HI OB1410-11	NORM	og M-	-753 HICH	01	CLSD	0		l			DL	APED	LS2319/20	A
	C 1 N 8524	C1024	HPCI PMP DISCH FLOW LOW D81410-12	NDRM D	02 M-	-753 FOM	OF	S CLSD	0		ľ			· D1	APED	EOLAEONNA	Ă
	C I N 0525	C1052	CS PMP A DISCH PRESS HI Dal410-lj	NORM D	50 M-	-151 HICH	01	L CLSD	0		l			01	AP ED	АЛЕРЕОИИА	E C

			-	

1

•																
07/08/75	ΡΑΟ		NORMAL		ALARM		ALARM									
TYPE	NID NO.	PRINTED DESCRIPTION	PRINT		PRINT			<u>cs</u>	_ <u>SA</u>	AL	PL		BD TYPE	MPL NO	D INSTRUMENT N	D. REV
SCAN ADRS		COMPUTER TERMINAL NO CABLE NO WP	SCAN CLASS	RED	FERENCE RAWING	S	LOG S A	NOTE	ND.							REV
(1 N 8526	C705P	CS PMP B DISCH PRESS HI Dalyd-ly	NORM D	02 M-	757 HICH	01	CLSD	0		l			DL	APED	ANNOJALOL	D A
C I N 8527	C 7055	RCT CLEANUP SYS FAILURE Dalylo-15	NORM D	02 M-	ALRM 127	07	CLSD	0		l			DL	ML34	MO-2740	A A
C I N 8 5 2 8	C 7059	RCT CU N-REGEN HX OUT T Dal410-lb	NORM D	50 M-	нісн 127	01	CLSD	0		l			Dl	APED	TI S-2722	A A
C I N 8529	C705a	ВОР ANN DC LOSS 081410-17	NDRM D	50	TRBL	08	CLSD	0		r			01	M155		D C
C I N 8 5 30	C 1 0 3 0	NSS ANN DC LOSS D81410-18	NDRM D	95	TRBL	0Å	, CLSD	0		1			DL	M155		D C
C1N 8531	CTOBF	FUEL POOL CLG SYS ALARM 081410-19	NORM D	02 M-	TRBL 134	08	CLSD	0		r		•	01	APED	ANN04A402	. C
C 1N 8532	C 70 35	RW CU HIGH FLOW DIFF 081410-20	NORM D	02 M-	НІ GH 127	01	CLSD	0		r			Dl	APED	FD 5-2749	E ` C
C 1 N 8 5 3 3	C 70 3 3	RW CLN UP ISOL SIGNAL DB1410-21	NORM D	02 M~-	ALRM 127	07	ĊLSĎ	Ó		r			D I	APED	A71-K64	ç
C 1 N 8 5 3 4	С1034	SP AR E 08 1410-22	D										DL			D C
C 1 N 8 5 3 5	C 10 3 5	SPARE 081411-00	D										0 L .	· .		D C
С I N 8536	стозе	OFFGAS RAD HIHIHI/INOP Oblyll-Ol	NORM D	50 M~	TRBL 141	01	CLSD	0	ľ				01	APED	LSEVEDNUY.	FA
C I N 8537	C1037	PRETRT OFFGAS SAMPLE FLW 051411-02	NORM D	02 M-	HILO 141	08	CLSD	0		ŗ			01	M1 73	PSEAEONNA	F
C I N 8578	C 10 38	RCT LOLDLO WTR LVL CH A Dal4ll-de	RSET.	13 M-	INTD 115	J.T	CLSD	0		l			Dl	APED	LI S-4531	D A

.

.

,						Ċ										
					· .		· · · .									
077	08/75	PAGE		NORMAL	ALARM		ALARM	C'S			01 <i>i</i>	.			Instrument no	DEV
,-	SCAN ADRS	NID NO.	COMPUTER TERMINAL NO CABLE NO WP	PRINT SCAN CLASS	NT PRINT REFERENCE DRAWING		STATUS LOG S A	NOTE		AL						REV
	C 1 N P 5 3 9	C1039	RCT LOLOLO WTR LVL CH B	RSET	12 INTO M-115	11		0		ŀ			D L	APED	LI S-4532	D A
	C I N B 5 4 D	C 1.0 4 0	RCT LOLOLO WTR LVL CH C Dålyll-05	RSET	12 INTO M-115	7 I	CLSD	0		ŗ		•	O L	APED	L I S-453 3	D A
	C 1 N P 5 4 L	C 104 1	RCT LOLOLO WTR LVL CH D Daluil-og	RSET	12 [NTD M-115	ĿĹ	CLSD	٥		ľ			0 F	APED	LI S-4534	D A
	C I N 8542	C7045	CRD PMPS AGB SUCT PRESS	NORM D	02 LOW M-117	OĠ	CLSD	0		ŀ			Dľ	APED	CII-K2A/B PS-I802A/B	E ' B
	C I N 8543	СТОНЭ	CRD PMPS AGB VIBR Dalull-Da	NORM - D	02 HIGH M-117	01	CLSD	0		ŗ			0 1	APED	XVSLADLAB	E A
	СТN 8544	C1044	CRD DIFF PRESS AND PRESS DB1411-09	NORM	02 HILO M-117	03	CLSD	, O	•	1			Dľ	APED	PSIAL	EA
,	C I N H 54 5	C 1045	SP AR E ዐለ ኔ ዛ ኔ ኔ - ኔዐ	D	ι								D L			D C
1.	С 1 N 8 5 4 Б	СЪОЧЬ	DRYWELL PRESS RHR ON DA	NDRM D	02 HİGH M-143	01	L CLSD	0		ŗ			0 L	APED	PS-4311C	D C
•	C I N B 5 4 7	C1047	SCR V PILT AIR HOR PRESS	NORM D	02 HILO M-117	03	CLSD	0		ŀ			DÌ	ÁP ED	ANN05A730 PS-1842	E A
	C I N 8548	C1048	CONTROL ROD OVERTRAVEL	NORM	02 OVIL M-119	1	B ČLSD	0		ľ			01	APED	СТТ-КЭ	C C
	C T N 8 5 4 9	C 1049	COND STORAGE TH B LO LVL DALIL-14	NORM	02 LOW M-109	04	L CLSD	0		ľ			01	M177	LS-5219	D C
<u>/L</u>	C 1 N 8 5 5 0	C 10 50	DRYWELL PRESS ADS ON AB DA1411-15	NORM D	02 HIGH M-143	01	L CLSD	0		ľ			01	APED	PS-43754	D C
	C I N 8551	C 1 O 5 1	RRP A MTR VIBR D81411-15	NDRM D	02 HIGH M-llb	0)	L CLSD	0		1			በጌ	APED	АИНОЧАЬ ЪЭ	D A

7/18/75	PAGE		NORMAL		ALARM		ALARM		C A		DI	ті	8D	TYPE		INSTRUMENT	NO. REV	
TYPE	NID NO.	PRINTED DESCRIPTION	PRINT		PRINT	A I	STATU			AL								
SCAN ADRS		COMPUTER TERMINAL NO CABLE NO WP	SCAN CLASS	RE D	FERENCE RAWING		LOG S A	NOTE	NO.								REV	
C I N P 552	C7025	RPP B MTR VIBR DAL411-17	NORM D		HIGH LIG	01	CLSD	٥		ľ				01	APED	ANNO 4A 510	D A	
C I N 8553	C 10 5 3	RRP MG A MTR VIBR DAlyll-la	NORM D	02 M-	HIGH	01	CLSD	0		ľ				DĿ	M181	XVS-4649	D A	
C I N 8 5 5 4	C1054	RRP MG B MTR VIBR Dalyll-lg	NORM D	02 M-	HIGH BIG	01	CLSD	0		ŀ				01	MIBI	XV S-4650	D A	
C I N R 5 5 5	C 10 5 5	POST TREAT OFF GAS RADHI DAL411-20	NORM D	02	HÌGH	01	, CLSD			J .				01.	APED	ANNOBABOM	E A	
CIN PSSL	C ՆՕ 5 ե	LIO PROC RAD MON DNSC D&lull-21	NORM D	σż	DNSC	34	I CLŠO	0		ľ				01	APED	ELEAEDNNA	, A	
C I N 8557	C 1057	RB VENT EXH PLEN RAD HI NS1411-22	NORM D	02	HÌ GH	01	CLSD	0	•	ľ				01	APED	SSEAEDNNA	D A	
C I N 9558	C 10 5 8	RB EXH PLEN RAD MON DNSC D31412-00	NORM D	02	DNSC	յւ	I CLSI	0	1					01	APED	ANND3A305	D A	
C I N P 5 5 9	C1059	STM LINES RAD MON DNSC D&1412-01	NDRM D	02	DNSC	ያ፣	H CLSC	0	. L				1	01	APED	ANNO3A319	C A	
С I N 8560	с 70РО	STM LINES RAD HIGH Dal412-02	NDRM D	02	HIGH	0)		0 0		ľ		•		01	APED	ANNOJAJOL	D A	
(IN Ե 5 եՆ	C TOP P	ADMIN-HOT LAB, SCP RAD H D31412-D3	NORM	02	HÌGH	0	L CLSI	D 0		ľ				01	APED	ÂNNO 4A5 16	A	
CIN 8562	C70P5	PPETREAT AVE ANNL LIMIT D&1412-04	NORM D	50 M	EXCD	Э	5 CLS	D O		ľ				01	ĂPĒĎ	85EAÈOÑNA	FA	
C I N 8 563	C 70 P 3	PRETREAT OFF GAS RAD MON በልኔዛኔረ-በ5	NDRM D	02 M	DNSC - 141	ľ	4 CLS	0 0		ľ				DÌ	Å P E D	ANNO3A311	D A	
.СТN 8564	С 1064	NFF GAS VT PIPE SMPL FLW Dalwl2-NL	NORM D	50 M	HILO -141	0	3 CLS	D 0		ľ				0 1	APED	EDEAEDNNA	C A	

έ.,

07

07/08/75	рдб		NORMAL PRINT	N1 T	ALARM	A T	ALARM	ćs	۰ SA	AL	PL	TL	BD TYPE	MPL NO) INSTRUMENT NO.	REV	•
SCAN	NID NO.	PPINTED DESCRIPTION COMPUTER TERMINAL NO CABLE NO WP	SCAN - CLASS		FERENCE		1 06	 ND T E								REV	•
ለሳዮ S ር 1 ላ ዓ 5 ዜ 5	С 70 Р 2	OFF GAS VT PIPE RAD HIHI 051412-07	NORM	S M-	HIHI - 141	` 1 .\$	CLSD	٥		ľ			DL	APED	LSEAE DNNA	C A	
CIN 9566	слове	NFF GAS VT PIPE RAD HIGH NS1412-08	NORM D	SD M-	HIGH -lyl	01	CLSD	0		ľ	•		ΟΓ	APED	SIEVE DUNY	D A	
C I N 8567	C 1067	OFF GAS VI RAD MON DNSC	NORM	02 M	ND SC + 1 4 1	34	CLSD	0		ľ			D L	APED	DEEAEDNNA	A C	
C I N 8568	C 70 P 8.	REFUEL FLOOR AREA RAD HI D81412-10	NORM	ġS	HIGH	ΟÌ	CLSD	0	l				01	APED	ANN04 85 24	Å	
C I N 8569	С1.069	RADWASTE BLDG AREA RAD H Dalul-ll	NORM	02	HIGH	01	CLSD	0		ľ			01	APED	ANNO4A507	E A	
CIN PS70	C 110 70	NEW FUEL STG AREA RAD HI Dalul2-12	NORM	02	HIGH	01	CLSD	0		ľ			01	APED	ANNO 44535	A	
	с 10 71	RCT BLOG RAD HIGH D81412-13	NORM	02	HIĞH	01	, CLSD	Ó		ľ			. 01	ÅPED	ANNO 4450L	Ē	
C I N 8572	51075	TURB BLOG RADIATION HIGH	NDRM	02	HIGH	01	CLSD	0		ľ			DT	ÁP ÉD	ANNO4A533	E A	
CIN BS73	C 1073	AREA MONITOR DOWNSCALE	NORM	02	DNSC	յս	CLSD	0		ľ			D L	APED	ANN04A525	C A	
C IN 8574	C1074	MS TO HPCI TURB IBVA DAl412-16	OPEN D	17 M	CL SD	36	CLSD	0		ľ			01	EĒĽM	8E55-0M	B A	
C 1 N 8575		MS TO HPCI TURB OBVA 031412-17	OPEN D	17 P	CL SD	1	L CLSD	0		ľ			D L	M152	PESS-OM	B A	
CIN BS76		DRYWELL PRESS ECCS ON AB D81412-18	NORM	02	р нісн 1-143	03	L CLSD	Ď		ľ			D L	APED	PS-4312B	E C	•
C I N 8 577		COND STG TK TO RCIC PMP . 031412-19	OPEN D	17	7 CL SD 1-125	L	L CLSD	0		ŗ			01	M137	MO-2500	C A	

٠

.

											а т — а	. ·	he a co		
07/08/75	PAG			NORMAL	ALARM	A T	ALARM	C S	ς Δ Δ	I PI	TI	BD TYPE	MPL NO	INSTRUMENT	NO. REV
TYPE	NID NO.	PRINTED	DESCRIPTION	PRINT	NT PRINT										
SCAN ADRS		COMPUTER TERMINAL	NO CABLE NO WP	SCAN CLASS	REFERENCE	S		NDTE N	0.					•	REV
C I N 8578	C1078	DI SCH FRO DA 1412-20	м нрсі рмр івуд	CLSD	16 NOCL M-153	18	CLSD	0	1	I		DL	M152	MO-5375	ĔĊ
C I N 8 57 9	C 10 7 9	DISCH FRO 081412-21	M HPCI PMP OBVA	NOCL D	18 CLSD M-123	Լե	CLSD	0	1	I		Dľ	M137	WO-5377	D C
C T N 8 5 8 0	C 10 80	DISCH FRO D81412-22	M RCIC PMP OBVA.	NOCL D.	18 CLSD M-125	1 6	CLSD	0	1	•		DŢ	MJ33	MO-2511	D A
CIN BSB1	C 70 8 7	DISCH FRO 081417-00	M RCIC PMP IBVA	CLSD.	16 NOCL M-152	l8	CLSD	0]			DL	MI33	WO-5275	A D
C I N 8382	C 1085	COND STG 081413-01	ТК ТО НРСІ РМР	NOCL. D	LA CLSD M-123	зP	CLSD	0	3	L		01	M1 37	00ES-0M	C C
C I N 9583	C 10 A 3	SP AR E 08 14 13-02	!	D				•				01			D B
C I N 8 5 8 4	СТОРА	STEAM TO 081413-0	RCIC TURB IBVA	NDCL	10 CLSD M-124	36	CLSD	0.		l		DÌ	EELM	MO-2400	D A
C 1 N B 5 5 5	C1085	STEAM TO 081413-04	RCIC TURB OBVA	NDCL	18 CLSD M-124			0 8-31-7		l		ΟŢ	EE (M	MO-2401	D A
C.I.N 8556	стояр	REACTOR	WTR CLEANUP 1 C-SYS_HOR_IBVA_	51A	ERNIE ZA 18 CLSD M-127		ر بې CLSD	0	•	l	·	ΟŢ	мізч	0075-0М	D A
C 1 N 8 5 8 7	C1087	REACTOR DET RECTOR DAL413-0	WTR CLEANUP OF	BVA NOCL	18 CLSD M-127	JF	LSD	٥		l		01	M1.34	MO-5407	D A
C I N 8538	C 1088	HPC1 STM 081413-0	SUPPLY FLOW HI	NORM D	02 HIGH M-114	01	L CLSD	0		l		01	APED	ANNO 3A L	8 E A
C 1 N 8 5 8 9	C 1089	CORE SPR 081413-0	AY DIEF PRESS B	NORM	M-157 M-157 HICH	01	L CLSD	0		ŗ		01	APED	STAEONNA	B .
C I N 8590	C1090	CORE SPR 081413-0	AY DIFF PRESS A 9	NORM D	M-157 M-157	. 01	L CLSD	0		ľ	•	DŢ	AP ED	DEAEONNA	9 F B
													•		

····

ч.

•

									·				. · · · ·		
• .								·· · .							•
97/	198775 TYPE	PAG NID NO.	F 79 PRINTED DESCRIPTION	NOR MÁL PRINT	ALARM NT PRINT	AT	ALARM STATUS	s cs	SA AL	PL	TL	BD TYPE	MPL NO	INSTRUMENT	NC. REV
	SCAN ADRS		COMPUTER TERMINAL NO CABLE NO WP	SCAN CLASS	REFERENCE		LOG	NOTE	10.	* *** -** ***	* *	.	• • • • • • • • • • • • • •		REV
	C 1 N 8 5 9 1	C 704 F	DRYWELL PRESS RHP ON AB, DAL413-10	NORM	02 HIGH M-143	נס	CLSD	۵	ŀ			D].	APED	PS-4312C	D C
,	C T N 8 5 9 2	C 7045	DPYWELL PRESS ADS ON BB D&1413-11	NORM D	02 HIGH M-143	01	CLSD	0	ŀ			01.	APED	PS-4313A	D D
	CIN 8593	стояэ	DRYWELL PRESS ECCS ON BB D31413-12	NORM D	02 HIGH M-143	01	CLSD	0	ľ			O L	APED	PS-4313B	0 D
	C I N 8 5 9 4	C1094	DRYWELL PRESS RHR ON BB D81413-13	NORM	02 HIGH M-143	01	CLSD	0	ľ			01	APED	PS-4313C	0
	C I N 8 5 7 5	C 1095	HPCI EQUIP AREA A L eak Dal4l3-l4	RSET	75 HICH W-755	Oì	CLSD	° O	ľ			Dľ	APED	кс-25664	с с
	C I N 8596	С 1096	HPCI EQUIP AREA B LEAK Dal413-15	RSET	15 HIGH M-155	01	CÌSD	۵	ľ			Dl	APED	KS-2266B	C C
	C I N 8 5 9 7	C1097	RCIC EQUIP AREA A LEAK Dal413-16	RSET	12 HIGH M-124	01	CLSD	0	l			D 1	APEÓ	KS-2448A	ç
	CIN B54A	Cloas	RCIC EQUIP AREA B LEAK Dal413-17	R S E T D	12 HIGH M-124	ΟÌ	CLSD	0	ľ			0 J	APED	KS-2448B	C
	C I N 8 5 9 9	C 1099	SUPPRES POOL AREA A LEAK Dalylj-lb	RSET	12 HIGH M-122	01	CLSD	0	ľ			DÌ	APED	24Å+25A	C C
	С I N 8600	C1100	SUPPRES POOL AREA B LEAK Dal413-19	RSET	15 HIGH M-152	01	CLSD	0	1			Dľ	APED	248,258	C C
	CIN 8601	CIIUI	SPARE 081413-20 Recirc Pump	Trip		В	ev s	3-19-	80)			Dľ			D
	61N 8605	с т то5	99 94 13-21 1 1	чD	Sys A Sys B Don	D Ve	2 CR 2 ST	700	c			DÌ	•		D A
							·							÷	

euds.

								•					•				•
					• •											•	,
	•	·		•		• •			· .	1 T.			• • • • • •		5 1 1		
7/08/75 TYPF	PAGI NID NO.	E AO PRINTED DE:	SCRIPTION	NDRMAL PRINT	NT P	LARM RINT	AT	ALARM STATUS	CS	SA	AL PL	TL	BD TYPE	MPL N	O INSTRUMENT	NC. REV	
SCAN ADRS		COMPUTER TERMINAL NO	CABLE NO WP	SCAN CLASS	REFE	RENCE	S	LOG A	NOTE	ND.						REV	
C S ▲ 0 5 0 0	C 120 1	DTSCH VOL LV D81424-00	L CHANNEL AL	R SET S	LZ 1 RPS	R I P I ED	19	CLSD	0	ľ			. 50	C71	LS-1861A X1	C B	
C S A D 50 1	C1502	DISCH VOL LV D81424-D1	L CHANNEL BL	RSET	12 1 RPS	R I P I ED	14	CLSD	0	ľ			50	C71	LS-18618 X1	C B	
C S A 12502	СЪ 5 03	DISCH VOL LV DISCH VOL LV	L CHANNEL A2	RSET	LZ I RPS	RIP IED	19	CLSD	0	ľ			50	C71 -	LS-1861C X1	С В	
CSA CSDB	C 1504	DISCH VOL LV DISCH VOL LV	L CHANNEL B2	RSET	1,2 1 RPS	R I P I ED	19	CLSD	٥	ŀ			50	C71	LS-18610 X1.	C B	
C S A D 50 4	C 1 S 0 5	REACTOR HI	Reserved	_ CHAI s	N A	NORM	T	RIP					02		XJ	ß	
CSA DSOS	ClSOL	NSI 424-85	For PX Hi	S						·			. 50	•	ΧĴ	В	
<u>с 5 А</u> 9 5 П Б	C1507.	NSS SPARE	With Level 12-1-77 73 DY	S	•						·		02		X.F	В	
C S A D 507	C1508	NSS SPARE DBL424-07	V ·	S									50		׾	B	
C S A 0 5 0 8	C1509	MS ISOL VLV 081424-08	A Ъ€ ¶0% OPEN	NORM	DZ RPS	IED	19	CLSD	0	ľ			50	C71	XI	B B	
C S A D 50 9	C 72 70	MS ISOL VLV 081424-09	81 (90% OPEN	NORM S		I ED	14	CLSD	٥	ľ			0 Z	ር7ኔ	ХL	B B	
65A 0510	C 1 5 1 1	MS I SOL VLV D81424-10	42490% OPEN	NORM	02 RPS	TRIP TED	19	CLSD	-0	ľ			50	C71	X1 `	B B	
С 5 А 9 5 1 1	C 72 75	MS 150L VLV 041424-11	82 4 90% OPEN	NORM	DZ RPS	TR I P I ED	19	CLSD	0	ŗ			50	C71	×r	B B	
CSA DS12	с тег э	CONTMT HIGH 081424-12	PRESS CH AL	NORM S	02 Rps	TRIP IED	19	CLSD	O	ľ			50	C71	PS-4315A X1	D B	
														•	·		

•			and the second					. . .						· ·				
07/08/75	PAG NID NO.		DESCRIPTION	NORMAL PRINT		AL ARM PRINT	AT	ALARM STATUS	CS	<u>sa</u>	^L	PL	TL	BD TYPE	MPL NO	INSTRUMENT	NO. REV	
TYPE SCAN			D CABLE NO WP	SCAN CLASS	REF	ERENCE AWING	s /	LOG A I	NDTE	N0.						•	REV	,
ADR S C S A D 5 1 3	C1514		H PRESS CH BL	NORM		TRIP IED	19	CLSD	٥	ŀ				02	C71	PS-4315B X1	0 8	
CSA DSI4	C1515	CONTMT HIG 081424-14	H PRESS CH 42	NORM S	02 8 P S	TRIP 5 IED	14	CLSD	. 0	ľ				02	C71	PS-4315C X1	D B	
۷ ۵.5 ۸ ۵.5 ۱.5	C1516	CUNTWL HIG D97457-72	H PRESS CH B2	NORM	02 / RPS	TRIP S IED	19	CLSD	0	ľ				02	C71	PS-43150 X1	DB	
CSA DS16	C1213	REACTOR CH	INL AL HI PRESS	NORM	02 R P 1	TRIP S IED	71	CLSD	0	ľ				02	С71 ,	PS-4549 X1	A B	
CSA 0517	C 1518	RFACIOR CH D81424-17	INL B1 HI PRESS	NORM	02 RP	TRIP S IED]³d	CLSD	0	7				D2	C71	PS-4551 X1	A B	
C S A D 5 1 8	C1519	REACTOR CH DA1424-18	INL A2 HI PRESS	NORM	02 R P	TRIP S IED	19	CLSD	٥	ľ			,	50	C71	PS-4550 X1	B	
CSA CS19	C1250	REACTOR CI D31424-19	HNL B2 HI PRESS	NORM	02 8 9	TRIP S IED	19	CLSD	0	Ĺ	-			50	C71	PS-4552 X1	A B	
CSA DS20	C 72 57	Л ЯОТОА Н О8Ъ424-20	O WTR LVL CH AL	NORM	02 R P	TRIP S IED	78	CLSD	٥	J	•			02	C71	LIS-4535 X1	C B	
CSA D521	C7255	REACTOR L D81424-21	O WTR LVL CH BL	NORM	1 02 RP	TRIP S IED	19	CLSD	0	1	•	·		50	C7 Å	LIS-4537 X1	C B	
A22			O WTR LVL CH AZ		1 OZ RF	TRIP PS IED	19	CLSD	0	1	L			50	C71	LÍS-4536 X1	C	
A20 ES20			O WTR LVL CH BE		1 02 RI	TRIP PS IED	19	CLSC	0	1	L			50	C71	LIS-4538 X1	-	G.
420 420 4520			GH RADIATION	RSET	1 12 Ri	TRIP PS IED	J.a	CLST) (]	l			02	C73	R S S 444 8/ X J		E B
CSA DS25			GH RADIATION	R SE ¹ S	T 12 R	TRIP PS IED	ŗ	1 CLSI	D 0)	1			50	C71	R S S-4448 X1	B .	£ 8

....

,

•

07/08/75 TYPE	PAG NID NO.	E 82 PRINTED DESCRIPTION	NORMAL	ALARM NT PRINT	AT	ALARM STATUS	cs	SA	AL	PL	TL BD TYPE	MPL N	D INSTRUMENT NO	D. REV
SCAN ADRS		COMPUTER TERMINAL NO CABLE NO WP	SCAN CLASS	REFERENCE		LOG S A	NOTE	NO.						REV
С 5 А П 5 2 Б	C1527	MSL A2 HIGH RADIATION NAL426-03	RSET	L2 TRIP RPS IED	19	CLSD	0	l		•	05	C71	RSS-4448C XL	E B
C S A D 5 2 7	C 1258	MSL B2 HIGH RADIATION D81426-04	R SET S	12 TRIP RPS IED	រ។	CLSD	0	ľ			50	C71	RSS-44480 Xኔ	E
CSA D528	C1254	NEUT MON SYSTEM CHNL AL D&1425-05	RSET	12 TRIP NM FCD	74	CLSD	0	l			50	851	Хŀ	A B
C S A 0529	C1530	NEUT MON SYSTEM CHNL BL DAL425-05	RSET	12 TRIP NM FCD	ับๆ	CLSD	۵	ľ			50	851	XT	A B
C S A D 5 3 0	CISƏL	NEUT MON SYSTEM CHNL A2 D&3425-07	RSET	12 TRIP NM FCD	្ឋា	CLSD	٥	,			50	821	XI	A B
CSA DSEL	C1235	NEUT MON SYSTEM CHNL B2 D81426-08	RSET	NM FCD		CLSD	0	Ĺ			50	851	XI	A B
A 2.0	C1533	HES-SPARE SCRAM DISC					PEI	V			02		XI	в
	С1534	NES-SPARE SORAM DISCI					HU	Г			02		XÌ	В
С 5 А D 5 Э Ч	C 15 35	NSS SPARE SCRAM DIS	CH YOL	DRN VENTCV DRN	'18 5	,7A 7 9B (o,PE				50		×Ъ	B
C S A 0 5 3 5	C 1 S 3 L	NSS-SPARE SCRAM DÍS	sch vo	L VENT C	VIE	3 59B .	SHU	T			DZ .		XI	6
С 5 А D 5 ЭЬ	C1537	MANUAL SCRAM CHANNEL A D81426-13	RSET	12 TRIP RPS IED	74	I CLSD	Ø	ŀ			DŞ	Č71	XT	A B
C S A D 5 3 7	C1538	MANUAL SCRAM CHANNEL B D81426-14	RSET	LZ TRIP RPS IED	ይዓ	1 CLSD	O	ľ			50	C71	Xľ	A B

RSET 12 TRIP S RPS IED

0

1

.

ľ

ነዓ CLSD

٠,

៤រទរុទ

CSA DSBA

REACTOR SCRAM CHANNEL A NB1426-15

C71

Хľ

50

A B

		· .		·										
					ć									
07/08/75 TYPE	PAG NID NO.	E 83 PRINTED DESCRIPTION	NORMAL PRINT	ALARM NT PRINT	AT	ALARM STATUS	<u>cs</u>	SA A	L PL	TL	BD TYPE	MPL N	O INSTRUMENT NO	. REV
SCAN ADRS		COMPUTER TERMINAL NO CABLE NO WP	SCAN CLASS	REFERENCE DRAWING	S		NOTE	N0.						REV
CSA 0539	C1540	REACTOR SCRAM CHANNEL B D&1426-16	RSET S	12 TRIP RPS IED	19 7 6	CLSD	0	ŀ	Ŀ		02	C71	XI	A B
С <u></u> СА D540	ርኔ54ግ	NSS SPARE SCRAM DISCH N D&1426-17	OLDR	N CV 1867	? ₽~ (PEN					D2		׾	В
C S A D 5 4 1	C 1 5 5 D	NSS-SPARF SCRAM DISCH	VOL DI	RN CNIB6	7 A .	SHUT					02		X.	8
A22 P242	C 15 5 1	NSS SPARE SCRAM DISCH	NOL D	RN CVIB	67 B	OPEN	1				D5		Xľ	в
C S A D 5 4 3	C 15 5 2	DA LASE SCRAM DISCH									02		XT	B
С 5 А О 5 4 4	C1553	TSV FAST CLOSURE CHNL AL DAL426-21	RSET	12 TRIP RPS IED	19	CLSD	Ó	ì			50	C71	SA-1/SA-5	A B
CSA 0545	C 1554	TSV FAST CLOSURE CHNL BL DAL426-22	RSET	12 TRIP RPS IED	19	CLSD	0	J			02	C71	SV-1/SV-3	A B
C S A N 5 4 L	C 1 5 5 5	TSV FAST CLOSURE CHNL A2 D81430-00	RSET	12 TRIP RPS IED	19	CLS D	0	Ŀ			DŻ	C71	SV-∃/SV-4 X1	A B
CSA 0547	С1556.	TSV FAST CLOSURE CHNL B2 DA1430-D1	RSET	12 TRIP RPS IED	19	CLSD	ò	L			50	C7 Ì	SV-2/SV-4 Xl	A B
C 5 A D 5 4 8	C 1 5 5 7	TCV FAST CLOSURE CHNL AL DALAJO-02	RSET	12 TRIP RPS LED	19	CLSD	٥	ľ			02	C71	ZS-9185A X1	B
CS4 D549	C 1 5 5 8	TCV FAST CLOSURE CHNL BL D&1430-D3	R SET S	12 TRIP RPS IED	19	CLSD	0	1			50	C71	25-9185B X1	8 8
C S A D S S D	C 15 59	TCV FAST CLOSURE CHNL A2 DA1430-04	RSET	LZ TRIP RPS IED	19	CLSD	Ö	ľ			D5	ር7ኔ	ZS-9185C X1	B B
CSA 0551	с1560	TCV FAST CLOSURE CHNL B2 051430-05	R S E T S	LZ TRIP RPS IED	19	CLSD	0	Ŀ			50	C71	25-9185D X1	8 8

-

07/08/75	PAG		NORMAL	ALARM NT PRINT		20 2	ς Δ.	Δi	PI	TL BD TYPE	MPL NO	INSTRUMENT NO.	REV
TYPE	NID NO.	PRINTED DESCRIPTION		REFERENCE									
SCAN		COMPUTER TERMINAL NO CABLE NO WP	SCAN CLASS	DRAWING	SĂ	NOTE	N0.						REV
C S A P S S 2	С 15 Б Г	APRM CHANNEL & UPSCALE T 051430-06	RSET	12 TRIP NM FCD	19 CLSD	0	ľ			02	C51	×Ъ	8 8
(SA 553	C 72P5	APRM CHANNEL B UPSCALE T D&1430-07	RSET	12 TRTP NM FCD	ያብ CLSD	D	ľ			02	C 5 1	XI	8 8
C S A 17 5 5 4	стера	APRM CHANNEL C UPSCALE T U81430-08	RSET	12 TRIP NM FCD	19 CLSD	۵	ľ			50	C51	XT	8 8
. <u>CSA</u> D555	C1564	APRM CHANNEL D UPSCALE T DB1430-09	R S E T S	12 TRIP NM FCD	19 CLDS	. 0	ľ	·		50	C 5 1	Xl	BB
C S A N 5 5 6	C 72P2	APRM CHANNEL E UPSCALE T 081430-10	R SET S	12 TRIP NM FCD	19 CLSD	0	1			50	C51	XI	8 8
C S A D 5 5 7	CISEE	APRM CHANNEL F UPSCALE T D&1439-11	RSET	12 TRIP NM FCD	19 CLSC	0	7			50	C27	XI	8 8
C S A D S 5 8	C1567	NSS SPARE 081430-12	S		• •					D5		XJ	В
C S A D 5 5 9	C1568	NSS SPARE Dal439-13	S							02		Хľ	B
С 5 А Г 5 Ь О	ር ጌ5 ዜ ዓ	TRM CHNL & UPSCALE TRIP DA1430-14	R SET	12 TRIP NM FCD	J9 CLS	0	1			50	C 5 1	XI	A B
С 5 А О 5 Ь 1	C11570	IRM CHNL B UPSCALE TRIP 081430-15	RSET	12 TRIP NM FCD	19 CLS	0	ľ			05	C51	ХЪ	A B
CS 4 DS 62	ՇՆՏ ՇՆ	IRM CHNL C UPSCALE TRIP DA1430-16	R SET S	12 TRIP NM FCD	19 CLS	0 0	ľ			50	C27	XI	A B
СSА 0563	C1572	IPM CHNL D UPSCALE TRIP N81430-17	R S E T S	12 TRIP NM FCD	ንብ CLS	D ()	, 1			50	C 5 1	XT	A B
С 5 А С 5 Б Ч	C 1573	IRM CHNL'E UPSCALE TRIP NA1430-18	R SE1	12 TRIP NM FCD	19 CLS	D []	l			50	C27	XJ	A B

							•			•		
U7/08/75 TYPE	PAG NID NO.		NORMAL PRINT NT	ALARM	ALARM AT STATUS	<u>cs</u>	A AL	PL TL	BD TYPE	MPL NO	INSTRUMENT	NO. REV
SCAN ADRS		COMPUTER TERMINAL NO CABLE NO WP	SCAN R CLASS	EFERENCE DRAWING	LOG S A	NOTE NO).					REV
(S A 17565	C 1574	IPM CHNL F UPSCALE TRIP D81430-19	RSET LA S N	TRIP	19 CLSD	0			50	C 51	XJ	A B
(5 A 1 5 6 6	C 1 5 7 5	NSS SPARE 125 40C B	ATT IDI	DISCON	NN .	193			50		X L	B
(54 0567	С 1576	NSS SPARE 125 VOC	BATT 102	DISC	LONN 7	CRI	13		02		XL	В
ርያል ኮኔቴሪ	C1577	NSS SPARE 250 VDC	BATT ID	4 DI50					SQ		XJ	В
CSA DSL9	C1578	ROD L SCRAM TIME DD-561480	RSET	TRIP	CLSD				D 2	•	XJ	A B
CSA 0570	C 1 5 7 9	RDD 2 SCRAM TIME D81432-01	RSET	TRIP	CLSD				D 5		ХЪ	A B
CSA 0571	C1580	ROD 3 SCRAM TIME	RSET	TRIP	CLSD				D 2		XL	A B
CSA 0572	C 1581	RDD 4 SCRAM TIME D61432-D3	R SE T S	TRIP	CLSD				05		ХЪ	A B
CSA 0573	C 1582	ROD 5 SCRAM TIME	RSET	TRIP	CLSD				50		XL	A B
CSA D574	C7283	ROD & SCRAM TIME	R SET S	TR I P	CLSD				ŠO		Xl	B
CSA N575	C 1584	ROD 7 SCRAM TIME D&1432-06	RSET	TRIP	CLSD				. 50		XJ	A B
гъль С.S.A П.5.7Б		ROD & SCRAM TIME 081432-07	RSET	TRIP	CLSD)			50		XI	C B
0.576 0.54 0.577		ROD 9 SCRAM TIME D&1432-08	RSET	TRIP	CLSD)			02		XT	C B

.

						*		
CSA 0578	C1287	ROD 10 SCRAM TIME 081432-09	RSET	TRIP	CLSD	50	׾	C B
C S A 0 5 7 9	C 1588	ROD 11 SCRAM TIME Daly32-10	RSET	TRIP	CLSD	50	XJ	C B
C S A D 5 8 0	C 7 2 9 a	ROD 12 SCRAM TIME Daly32-11	RSET	TRIP	CLSD	. 50	۲ĩ	C B
C S A D 5 8 L	C1590	ROD 13 SCRAM TIME D81432-12	RSET	TRIP	CLSD	50	X٦	C B
	C 1591	ROD 14 SCRAM TIME D51432-13	RSET	TRIP	CLSD	02	XL	C B
C S A D 5 A B	C 12 92	ROD 15 SCRAM TIME D81432-14	RSET	TRIP	CLSD	02	׾	С В
C S A D 5 8 4	C1593	ROD LE SCRAM TIME Naly32-15	RSET	TRIP	CLSD	D 2	Хľ	C B
C 54 0 54 5	C 1594	ROD 17 SCRAM TIME 081432-16	RSET .	TRIP	CLSD	02	XL	C B
С 5 А С 5 8 Б	C1595	ROD LA SCRAM TIME Daly32-l7	RSET	TRIP	CLSD	02	X٦	C B
C S A D 5 8 7	C Լ Տ ၅ե	ROD 19 SCRAM TIME D&1432-18	RSET	TRIP	CLSD	50	XL	C B
C S A P 5 4 8	C 1597	ROD 20 SCRAM TIME Daly32-l9	R SET S	TRIP	CLSD	50	X1	C B
C S A D 5 8 9	C 1 5 9 8	ROD SPARE SCRAM TIME D81432-20	RSET	TR IP	CLSD		Xì	C B
C S A D S 9 D	C 1599	INDIVIDUAL ROD SCRAM D81432-21	OFF	ON	CLSD	50	XL	C B
				• •				

L OG S Å

NOTE NO.

NORMAL ALARM ALARM PRINT NT PRINT AT STATUS CS SA AL PL TL BD TYPE MPL NO INSTRUMENT NO. REV PRINTED DESCRIPTION

REFERENCE DRAWING

SCAN CLASS

97/08/75

TYPE

SCAN ADRS

PAGE

NID NO.

8ь

COMPUTER TERMINAL NO CABLE NO WP

REV

07/08/75 PAGE 87 AL ARM PRINT NORMAL ALARM AT STATUS CS SA AL PL TL BD TYPE MPL NO INSTRUMENT NO. REV PRINT NT PRINTED DESCRIPTION TYPE NID NO. REFERENCE DRAWING LOG S A SCAN CLASS COMPUTER REV SCAN ADR S NOTE NO. TERMINAL NO CABLE NO WP C B 20 ofŁ ON CLSD FULL ROD SCRAM CIPOU Хľ CSA 2591 ED D 5 ΕЬ 797\7 RSET 12 TRIP 0 1 19 CLSD 4160V 1A1 1-0 RELAY TRP 081434-00 A20 5920 C1115 ED 79P\5 **D 2** EЬ 19 CLSD 0 1 4160V 1A2 L-O RELAY TRP 081434-01 RSET 12 TRIP CITTP CSA 0593 E 79P\3 ΕЬ 20 0 1 RSET 12 TRIP 19 CLSD 4160V 143 L-0 RELAY TRP 061434-02 C1117 05A 0594 79777 7977 Ε E۲ 20 RSET 12 TRIP 19 CLSD 0 l 4160V 1A4 L-0 RELAY TRP 081434-03 Đ C S A D S 9 S C1118 KY-1574 C A 2 Q N1 55 REP & LOW SUCT PRESS TRP 02 TRIP M-107 ۵ 1 NORM 19 CLSD C 5 4 0 5 9 6 C777d кү−<u>ј</u>еје C A M155 20 REP B LOW SUCT PRESS TRP DB1494-05 19 CLSD 0 1 02 TRIP M-107 NQRM 07750 CSA 597 E 19P\D0J EЬ D 5 16-31 LOCKOUT RELAY TRP 081434-06 RSET 12 TRIP 19 CLSD 0 1 C1151 CSA 598 E J9P2D05 2 Q EЬ 16-21 LOCKOUT RELAY TRP 081434-07 12 TRIP E-106 19 CLSD 0 1 RSET CSA 1599 **C1155** 50 NL 55 SVPSb Δ ľ 19 RSET 12 TRIP CLSD 0 3. GEN PRI L-O RELAY TRP D&1434-08 A C7753 SAPLe С M1 5 5 L 2 Q RSET 12 TRIP 19 CLSD 0 L GEN BACKUP L-O RELAY TRP CSA DLD1 C1154 Α 081434-09 JAP/24 N155 Α 2 Q RSET 12 TRIP 1 19 CLSD 0 STARTUP XFMR L-O RELAY Α C 5 A 1 C1152 081434-10 M1 55 186/SB A 5 Q RSET 12 TRIP 19 CLSD 0 l STANDBY XFMR L-D RELAY D81434-11 65A 1503 CIJSP Ä X2

•

.

•

077	08/75	PAGE		NORMAL	ALARM NT PRINT	۸T	ALARM STATUS		SA	AL	PL	τL	BD TYPE	MPL NO	INSTRUMENT	NC. REV	_
	TYPF	NID NO.	PRINTED DESCRIPTION	PRINT SCAN	REFERENCE		LOG									REV	
	SCAN ADRS		COMPUTER TERMINAL NO CABLE NO WP	CLASS	DRAWING	S	5 Ā	NOTE	NU.					•			
	ር ና ል ኮዜጧ ዛ	C1153	TURB MSR 4 HI LVI. TRIP D81434-12	NORM S	DZ TRIP M-103	19	CLSD	0	ŗ				02	LSTG	LS-JOPPC X5	C A	•
	0.5A P605	C7759	LOSS OF EHC DC POWER D&1434-13	NORM	02 TRBL N32-10	0	CLSD	0	1		•		50	LSTG	· ХК 64-1 Х2	, C D	•
	C 5 4 0606	C7758	FHC PRESS LOSS EM TRIP D81434-14	NORM S	9191 50 02-10	74	CLSD	0	ľ				50	LSTG	XKJU5-J	C D	
	ԸՏ <u>ֆ</u> Դե Ո7	C7730	TURB VIBRATION TRIP DA1434-15	NORM	02 TRIP 02-10	1 9	CLSD	0	ľ				50	LSTG	XK100-1	A D	
	С \$ А РБДВ	C	HT EXH HOOD TEMP TRIP	NORM	02 TRIP N32-10	19	CLSD	0	ľ				02	LSTG	EHT 1234 X2	A D	
		C 11 35	LOSS STATOR COOLANT TRIP DB1434-17	NORM	9187 50 02-560	19	CLSD	0	ľ				02	LSTG	X5 P5-C7/C5	A D	•
	CSA កម្មរា	C1133	SHAFT PMP DISCH LP TRIP 051434-18	NORM	02 TRIP N32-10	14	CLSD	· D	1				D 5	LSŤG	PS-109 X2	A D	
		C1134	TURB TRST BRG WEAR TRIP	NORM S	02 TRIP 02-10	19	CLSD	0	1				50	LSTG	PS-11/12 X2	B D	
		C1135	TURB LOW HYD PRESS TRIP DA1434-20	NORM S	02 TRIP 02-10	្វា	I CLSO	0	, l				2 C	LSTG	PS-101 X2	. D	
·	0673 0725	с1136	CU STOMER	NORM	41 AT 50	39		0	1				20	LSTG	246/P 2		Feed leve v Pc
	UPJ3		081434-21	-													

19 CLSD

19 CLSD

19 CLSD

9197 50 02-10

91 AT 50

02 TRIP M-103

.

NORM S

NORM

NORM S

TURB B-U OVERSPED TRIP

TURB SPEED SIG LOSS TRIP

TURB VAC TRIP 081436-01

C1137

CILIA

C1139

С S A DL ЪЧ

С 5 А ПБ **1** Б

ርናለ በቤኔዜ.

۵

0

0

Ì,

L

ľ

Ĵ.

A D

A D

AA

VC S- 840 X2

КМ405/40L X2

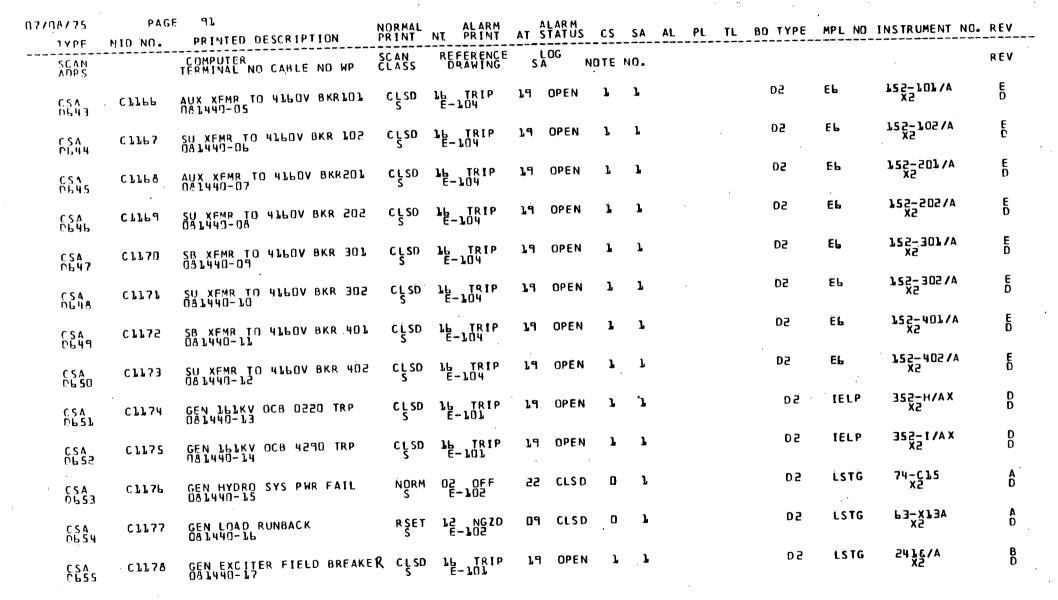
PS104/105

LSTG

LSTG

LSTG

ΰ2


2 Q

							• .	•••			:				
108/75	PAGF		NORMAL	ALARM NT PRINT	ΔΤ	ALARM	C S	SA	AL	PL	TL	BD TYPE	MPL NO	INSTRUMENT N	O. REV
SCAN ADRS	NID NO.	PPINTED DESCRIPTION COMPUTER TERMINAL NO CABLE NO WP	PRINT SCAN CLASS	REFERENC	E		<u></u> NO TE								REV
ለበጽՏ ርያል ካዚጌን	C1140	TURB MSR 8 HI LVL TRTP - 081436-02	NORM	02 TRIP M-103	្រំខ		0	l				D2	LSTG	LS-1078C X2	C C
ር S A ቦቴ ኔቆ	C1141	TURB MASTER TRIP D81436-D3	NORM S	919T 50 01-5E0	19	CLSD	. 0	ľ		1	7	50	LSTG	XK89-1MRB X2	C D
CSA DE19	C7745	OVRSPD MAN. MASTER TURB AVER SPEED TATE DE 1436-04	TRIP RSET S	12 TRIP N32-10	19	CLSD	0	ſ			•	50	LSTG	XK51-IMTV	A D
C S A D 6 2 0	C1143	TSVETCV FAST CLOS BYP AL	NORM	02 LOW M-103	DL	CLSD	0	ľ				D 5	APED	PS-1005A X2	D A
(SA 0621	Съъчч	TSV&TCV FAST CLOS BYP BL OB1436-06	NORM	02 LOW M-103	06	CLSD	0	L				02	APED	PS-10058 X2	D A
65 4 655	C1145	TSVGTCV FAST CLOS BYP A2 D81436-07	NORM	02 LOW 601-M	06	CLS D	0.	Ĺ				D5	APED	PS-1005C X2	D A
CSA ES40	СТТАР	TSV&TCV FAST CLOS BYP B2 081436-08	NORM S	02 LOW M-103	OĿ	CLSD	0	r				D 2	APED	PS-1005D x2	. D
CSA 0624	C1147	5P 4R F D8 1 4 3 6 - 09	S	,								02			E B
C S A D 6 2 5	Cll48	SPARE 081436-10	S									50			EB
С 5 А Г 5 А	C 11 49	GEN & XEMR DIFF TRIP Daly36-ll	NORM	02 TRIP E-101	19	CLSD	0	ĺ				50	N155	347M76572	C D
C S A 0627	CJ150	PLANT UNITEXFMR DIF TRIP D81436-12	NORM S	02 TRIP E-101	19	CLSD	0	ľ				05	M155	187/UEST1 187X/SB1	C D
05A 0628	C1151	59 HERTZ ALARM 081436-13		02 ALRM E-101	1 07	CLSD	0	ŗ				D 2	M1 5 5	287-1X	E D
6230 P529	C1725	58 HERTZ INSTANT TRIP 051436-14	NORM	DZ TRI E-101	ין רא געריין	CLS O	0	1				0 2	M1 55	587-5X	D D
1		,													

		,	· ·		*		•							•	· · · · · · · · ·	• • • •			
770	18/75 TYPE	PAGI NID ND.	E 90 PRINTED DE	SCRIPTION	NORMAL PRINT	NT	AL ARM PR INT	AT	ALARM STATUS	<u></u>	SA_	AL	PL	TL	BD TYPE	MPL NO	INSTRUMENT	O. REV	
	SCAN ADR S		COMPUTER TERMINAL NO	CABLE NO WP	SCAN CLASS	RE	FERENCE RAWING		LOG S A	NDTE	N0.							REV	
,	C S 4 D 6 30	C 11 5 3	58.5 HERTZ T D81436-15	IME DEL TRIP	NORM S	02 E-	TRIP LOL	14	CLSD	0	l				02	M1 55	287-37 52	D D	
	C S A D 6 3 1	C 1 1 5 4	LOW VOLT STA D&1436-16	NDBY XFMR	NORM S	02 E-	LOW 104	06	CLSD	0	1					M1 5 5	75 X5	C D	
	C S A P 6 32	C4155	LOW VOLT STA D&1435-17	RTUP XEMR	NORM	02 - 3	LOW 104	06	CLSD	0	1				D 5	N155	152/2177 X5	C D	
	CSA DL33	C1156	LOW VOL TAGE 081436-18	BUS LAB	NDRM S	02 E-	LOW -104	06	CLSD	0	Ĵ		-		50	M155	75-37X 75	C D	
	С S A РЬ Э 4	C1157	LOW VOLTAGE 081436-19	BUS LA4	NORĂ S	02 8-	LOW -104	06	CLSD	0.	i				5 0	M1 5 5	127-41X X2	C D	
	C S A D 6 3 5	CLLSS	(*************************************	CLVL CH AL	RSET	15 M-	TRIP -115	11	CLSD	0	i				50	APED	LI S-4535 X2	ĔČ	
	C S A D 6 3 6	C1159	ל 112 ביל ל TW <mark>040 ביל 1</mark> 15-15,41 80	1	C) RSET	15 M-	TRIP -115	, 1 1	CLSD	0	j.				DŽ	ĂPED .	LIS-4537 X2	E C	
	C S A 0637	стгро	0 / 0 / 0 / 0 NTF 0 10 NTF 08 1436-22	R LVL CH A2	R S E T S	N- 15	TRIP -115	11	CLSD	0	Ĺ				DZ	APED	LI S-4536 X2	E C	
	С 5 А П Б Э А	сттег	(من بن) RCT LOLO WTF D& L440-00		RSET S	75 15	TRIP -115	11	CLSD	D	l				DĘ	APED	LI S- 4538 X2	E C	
	С 5 А D 6 3 Я	CJ7P5	DIESEL 1G-31 DA1440-01	L CRANKING	NORM S	02 5	1NTD -Эь	11	CLSD	0	ľ				50	MÍ S	74-DG1 X2	D B	
	С 5 4 0 6 4 0	C77P3	DIESEL 1G-2 08 1440-02	L CRANKING	NORM	02 E	INTD -36	11	CLSD	0	1				02	M1 5	74-DG2 X2	D . 8	
	С 5 А 0 Б 4 Ј	ՙՇՆՆեԿ	DIFSEL 16-3 081440-03	1 BKR 311	C L SD S	រគ្	TRIP -105	74	OPEN	ľ	1				50	EP	725-377\V	E D	
	C S A D 6 1 2	C11P2	DIESEL 16-2 081440-04	1 BKR 411	CLSD	յր Բ	TRIP - LOL	ን	A OPEN	1	r				2 Q	EP	72 755-477/V 75	E D	

.

4	

ï																		
		,																
			·				•	* .	. · ·					·			·	
10770	U&775 TYPE	PAG NID NO.	PRINTED DESCRIPTION	NORMAL PRINT	NT	ALARM PRINT	A T	ALARM	<u>cs</u>	SA	AL	PL	TL	BD TYPE	MPL NO	INSTRUMENT NO.	, REV	
	SCAN ADRS		COMPUTER TERMINAL NO CABLE NO WP	SCAN CLASS	R E D	FERENCE RAWING		LOG S A	NOTE	NO.							ŔEV	
	(5 4 06 56	C174	HPCI, RCIC SYS INIT B DAly40-18	R SET S	M 15	1NT0 115	1 1	CLSD	0	ľ				5 C	APED	LT S- 4532 X2	D C	
	C S A NG 57	C L L 8 ()	TURB BYPASS VA L OPEN D&L440-l9	NOOP S	23 -M	0PEN 103	. 1.7	CLSD	0	1				02	LSTG	ANNO70A 16 X2	Å	
	с SA РБ 58	CIIAL	TURB BYPASS VA & CLOSED D&&440-20	NOCL	LA M	CLSD 103	7 e	CLSD	۵	L				50	LSTG	ZS-9117 X2	A A	
	ር S A ካዜ 5 ዓ	C7785	TURB BYPASS VA 2 OPEN DA 1440-21	NOOP	23 M-	0PEN 103	17	CLSD	0	7				1 02	LSTG	ZS-9118 X2	Å	
	Ը Տ ձ Ի ե ե Ո	C7793	TURB BYPASS VA 2 CLOSED	NOCL	18 M-	CLSD CLSD	7 6	CLSD	0	ľ				DS	LSTG	22-9119 X2	۵ ۵	
	ርያለ ቦይይኔ	C 1 1 8 4	RCIC TURBINE TRIP D&1442-00	RSET	15 M-	TR I P 124	78	CLŚD	0	ľ			•	50	APED	ANNO4A425 X2	C C	
	C 5 A D 6 6 2	C1185	SUBSTATION TIME SYNCRO	NORM	02	TEST	ЭР	CLSD	0	1				D 2	IELP	X2	D C	
	С 5 А С 6 Б В Э	CIISP	GENERATOR NEUT OV TRIP D81442-02	NORM S	50	TRIP	19	CLSD	Ó	ŗſ				50	N1 55	259X/NL	C A	
	С 5 А РББ 4	C 1187	VOLTS PER HERTZ ACTUATE D&1442-D3	NORM S	50	TRIP	19	CLSD	0	ľ				50	M1.55	ANND BOC 11	. D A	
	CSA 1765	C1188	GEN NEGATIVE SEQ TRIP D&1442-04	NORM S	50	TRIP	14	CLSD	D	1			•	50	M1 55	24FX	C A	
	ԸՏՃ Իենե	Cllag	GEN LOSS OF FIELD TRIP 051442-05	NORM S	02	TRIP	ัวจ	I CLSD	0	i				02	M1 55	240X	C A	
	(S A 1667	C 1 1 90	GEN REVERSE POWER ALARM D&1442-06	NORM S	02	ALRM	07	CLSD	0	ľ		i.		D 5	ML 55	20 008 DNNA	D A	
	ርያል በይቴይ	CFFAF	DEL442-07	E HANN	ELA	¥/	•										DA	

#**11**

07/08/75

8/75	PAG		NORMAL	ALARM		ALARM STATUS		6 A	A'1	01	ті	۹Ŋ	TYDE		INSTRUMENT	NO. RE	v
TYPE	NID NO.	PRINTED DESCRIPTION	PRINT							PL							
SCAN ADP S		COMPUTER TERMINAL NO CABLE NO WP	SCAN CLASS	REFERENCE DRAWING	S	LDG A	NOTE	NO.								RE	V
С 5 4 РБ Б Я	C1745	DISCH VOL	LVL CH	ANNIEL BI								•	02	,		D 4	
С S A D 5 7 0	C1143	DISCH VOL	LVL CHI	ANNEL A	2			·				·	0 2			D ▲	۰.
С 5 А 06 7 Ъ	C 7 7 8 4	DAL442-10 PISCH VOL	LVL CH	ANNEL E	32								50			D A	
0675 C240	C1103	HPCI, RCIC SYS INIT C O&1442-11	RSET	12 INTO M-115	11	CLSD	0	J.				1	D 5	APED	LI S-4533 X2	D C	
C S A DL 7 3	C1104	HPCI TURBINE TRIP DAl442-12	RSET	12 TRIP M-122	ያ	CLSD	0	l					50	APED	ANNDA7522	. C	
C S A D6 74	C1105	MS HPCI TURB PRE STOP V NA1442-13	A CLSD	M-155 JP NOCF	J 8	CLSD	Ó	ľ		·			50	NJ 33	2025–0M	(,	
(S A 0675	сттог	MS HPCT TURB STOP VA D81442-14	NOOP S	M-755 W-755	17	CLSD	0	ľ	·				5 0	APED	ЕЧ1А-К/З Х2	ţ	E A
С 5 А 06 7 Б	C1107	MS HPCI TURB CONT VA D81442-15	NOOP S	63 09 EN	17	CLS D	Ó	ľ					. 50	APED	E41A-K/55 X2		E A
CSA 0677	C1108	MS PCIC TURB STOP VA D&1442-16	NOCL	16 CLSD M-124	18	CLSD	0	Ĺ					02	EELM	M0-2404 X2		D A
C S A 0 5 7 8	C1704	HPCI, RCIC SYS INIT A D&1442-17	RSET	12 INTD M-115		CLSD	0	1					D 2	APED	LI S-4531 X2		D A
(SA D679	C F F F D	HPCI, RCIC SYS INIT D 051442-18	R SET	LZ INTO M-LLS	11	CLSD	0	ľ	•				02	APED	LIS-4534 X2		D A
С 5 А Р 6 8 0	CITI	SPARE DISCH YOL HI	WTR LVL	<u>-</u>	·	·		•					50		xs		D C
С 5 А рьа 1	C1115	SP AR E 08 1442-20	S										50		xa		D C

ALARM ALARM PRINT AT STATUS CS SA AL PL TL BD TYPE MPL NO INSTRUMENT NO. REV 07708775 PAGE 714 NORMÁL PRINT NT PRINTED DESCRIPTION NID NO. TYPF _ _ _ _ _ LOG S A REFERENCE COMPUTER TERMINAL NO CABLE NO WP SCAN CLASS REV SCAN ADR S NOTE NO. D C 5 Q 5P AR E 08 1442-21 ΣŻ C 5 A D 6 8 2 C1113 S D C 2 Q X2 C S A 6683 C1114 SPARF 081442-22 S

۰ ۲

•

											 ·, ·					
17796775 TYPE	PAG NID NO.		DESCRIPTION	NOR MAL PRINT	ALAR NT PRIN	M T AT	ALARM STATUS	CS ·	SA	AL		BD TY	PE MI		INSTRUMENT NO	. REV
SCAN ADRS		COMPUTER	CABLE NO WP	SCAN CLASS	REFEREN	C E G		NOTE	NO.							REV
C 1 N E 500	C1188	CONO PUMP 55-614140	LP-BA BKR LOL	C L SD D	LL TRIP E-LLO	1.9	OPEN	1		1		01	E	L	125-10P\V	E
CIN ESOL	C 7500	CW PUMP 1P- DA1414-00	-44 BKR 105	C L SD D	E-110	19	OPEN	1		1		01	. Е	6	125-102/A	E D
C T N E 502	C7507	COND PUMP 081414-01	16-98 BKB 50P	CLSD	LL TRIP E-108) 1 4	OPEN	ľ		ŗ		01	. E	6	725-50P\V	F D
CIN E503	C 7505	СМ РОМР ЪР Овј4ј4-02	-48 BKR 205	CLSD	LL TRIF E-LLO	> 1a	OPEN	1		ľ		D 1	L E	Ь	125-202/4	E D
C T N E 504	C1503	RHR PUMP 1 081414-03	P-229D BKR 406	CLSD	16 TRI9 E-151	> 1 9	OPEN	Ĺ		ŗ		D.	LE	6	152-406/A	Ē
C 1 N E 50 5	C 1504	- RHR PUMP 1 081414-04	P-2298 BKR 405	CLSD	16 TRI	ףנ _ַ פ	OPEN	ŗ		ľ		D	L E	6	152-405/A	E D
CIN ESTE	C 150 2	RHR PUMP 1 081414-05	P-229C BKR 306	c L SD	16 IRII E-121	р ј я	OPEN	ì		ŗ		D	Ĵ, E	6	125-30F1V	E D
CIN E 507	C 750P	848 PUM P 1 081414-06	P-229A BKR 305	CLSD	16 TRI E-121	P 19	I OPEN	7		ן		D	1 6	56	125-302/A	E D
C I N E 508	C7503	CS PUMP 1P 081414-07	-2118 BKR 404	CLSD	16 TRI E-121	P J.	1 OPEN	1		Ĵ		D	1 6	Eb	152-404/A	D D
C I N F 5 7 7	C 750 9	CS PUMP 1P 981414-08	-511V BKK 304	CLSD	LL TRI E-121	6 J.	A OPEN	ŗ		1		D	7 ł	ЕL	152-304/A	E D
CIN 510	C1504	CRD PUMP 1 031414-09	LP-2098 BKR 410	CLSD	16 TR1 E-120	ዮ ጌ	A OPEN	ľ		ľ		Ď	7 I	EL	152-410/A	E D
(I N F 5 1 1	C7570	RHR SWP 16 081414-10	-220 BKR 408	C L SD • D	16 TR I E-121	የ ፲	9 OPEN	Ţ		ľ		D	ן ד	EL	152-408/A	Ë
C I N 512	C1511	RHR SW P 11 081414-11	P-228 BKR 407	CLSD	16 TRI E-121	e ፓ	9 OPEN	l I		1		D	J	EP	152-407/A	E D

H.

1

E

,																•	
											· .		•	. · · ·			
<u>.</u>	•										•	· . 		 	• • •		
07/08/7			NOPMAL			T I	ALARM STATUS		SA		01	TI	AD TYPE		ID INSTRUMENT	NO. REV	
SCAI	 N	PRINTED DESCRIPTION	PRINT SCAN	REFE	RENCE			 NO TE								REV	
A DP CIN F51	-	TËRMINAL NO CABLE NO WP CRD PUMP 1P-209A BKR 310 DA1414-12		JP 15	WING RIP 1	19	OPEN	·]	10.	l			Dl .	EP	125-3101A	Ē	
CIN ESL	4 C7573	RHR SWP 1P-22C BKP 308 081414-13	CLSD	16-15 16-15	RIP 1 L	19	OPEN	רַ		1			01	EL	125-308/4	E D	
C 1 N F 5 1	C1214 5	RHR SWP 1P-22A BKR 307 081414-14	CLSD	16-15		19	OPEN	ľ		1			Dľ	EL	125-307/A	E D	
CIN FS1	C1512	RFP 1P-18 BKR 203 081414-15	CLSD	16 T E-10	RIP J 9	14	OPEN	ľ		ŗ			01	86	122-203/A	E D	
С I N F 5 1	с 151 Р	RFP 1P-1A ВКК 103 Патата В		16-10 E-10	R I P] 9	19	OPEN	ľ		1			01	EЬ	725-703\V	E D	
CIN ESI	A C1513	RRP MG 16-2014 BKR 104 081414-17	CLSD	רא ^ד דריין	RIP 1	19	OPEN	Ĵ.	•	1			. D T	EP	15Ž-104/A	E D	
CIN ESI	61519 9	RRP MG-1G-2018 BKP 204 OAl414-18	CLSD	16 T E-12	Ř IP D	19	ÖPEN	ľ		1			Ŭ.	Ë۵	152-204/A	E D	
C I N F S Z	0 C7578	SW YO LC BKR 110 081414-19	CLSD	דר דר דר דר	14 I P	19	OPEN	ľ		1			01	EĹ	125-110/A	E D	
CIN ESZ	57 C7550	4407 LC 181 BKR 107 081414-20	CLSD	ן אר ב-זע ב-זע	TRIP 14	19	OPEN	ľ		L			Ö L	ΕĿ	152-107/A	E D	
C 1 M E 52	55 1 C7557	COOL TWR A 187 BKR 108 Daly 14-21	CLSD	16 1 E-10	[R I P]4	19	OPEN	1		ľ			DÌ	ËЬ	125-108\V	E D	
C 1 N E 5 a	23 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	480V LC 185 BKR 109 081414-22	CLSD	16-1(FR I P 34	74	OPEN	ľ		l			Dľ	EP	125-109/A	E D	
C I N F Sa	54 C7553	480V LC 182 BKR 207 081415-00	C L SD D	16 E-1(FR T P 34	19	OPEN	ľ		1			Ď1.	EL	J2-207/A	E D	
• • (1) 532	25 C1554	COOL TWR B LC 188 BKR208 DA1415-D1	CLSD	16 E-10		19	DPEN	ľ		ŗ			D T	EL	77 802-25 1	E D	

a conservation

i.

07/08/75 Type	PAG NID NO.	F 97 PRINTED DESCRIPTION	NORMAL PRINT	ALARM NT PRINT	AT	ALARM STATUS	<u>cs</u>	SA AL	PL.	TL BD TYPE	MPL	NO INSTRUMENT NO	. REV
SCAN ADRS		COMPUTER TERMINAL NO CABLE NO WP	SCAN CLASS	REFERENCE DRAWING	5		NOTE	N O •					REV
C I N F 526	C1552	430V LC 186 8KR 209 N&1415-02	CLSD	16 TRIP E-104	19	OPEN	1	r		01	EP	1252-209/A	Ē
CTN F527	C755P	ESSENTIAL LC 183 BKR 303 NA1415-03	CLSD	16 TRIP E-104	19	OPEN	ľ	1		01	EP	A\E0E~524	E D
C I N F 5 2 8	C 7552	GEN SWP 1P-89C BKR 210 D81415-04	CLSD D	LL TRIP E-LLL	74	OPEN	_ 1	ľ		0 L	EP	125-210/A	E D
CIN ES29	CT558	GEN SWP 1P-894 BKR 309 D81415-05	CLSD	LL TRIP E-111	19	OPEN	ľ	Ĺ		01	EP	125-309/A	E D
C I N F 5 30	C 1 558	ESSENTIAL LC 184 BKR 403 O81415-06	C L SD	LL TRIP E-104	Гą	OPEN	ľ	ŗ		Dl	EP	152-403/4	E D
	C FS 3 0	GEN SWP 1P-898 BKR 409 081415-07	с L S D D	LL TRIP E-111	19	, OPEN	l	1		Dľ	EP	125-409/8	Ē
E I N	C1531	ANY BKR TRIP OF LC 181 081415-08	CLSD	LL TRIP E-LO4	j,9	ĊLSD	C	ľ		Dľ	Eå		E D
C I N F 5 3 3	C1535	ANY BER TRIP OF LC 182 Daly15-D9	CLSD	16 TRIP E-104	19	ĊLSD	0	1		. 01	Eå		E D
C IN 534	C7533	ANY BKP TRIP ESS LC 183 DA1415-10	CLSD	16 TRIP E-104	19	I CLSD	0	1		DŢ	Eð		E D
CIN ESAS	C 1 5 3 4	ANY BKR TRIP ESS LC 184 Daluls-ll	C L SD	LL TRIP E-104	19	CLSD	0	1		DL	EÅ		E D v
СТМ 6536	C7532	ANY BER TRIP OF LC 185 DB1415-12	C L SD D	LL TRIP E-LO4	ን	CLSD	D	ľ		Q T	Έð		E D
C I N F 5 3 7	C753P	ANY BKR TRIP OF LC 186 DA1415-13	CLSD	16 TRIP E-104	Ţ.	A CLSD	0	l		DÌ	Eð		E D
C I N E 5 3 3	C1535	MAIN XEMR TROUBLE Dal415-14	NORM D	D2 TRBL	08	B CLSD	0	ľ		D L	E2	ANN0 808 12	A A

			:													
			· · · ·	• • * . •				•						· · · ·	• • • • • • •	
- 07/08/75 TYPE	PAGE NID NO.	PRINTED DESCRIPTION	NORMAL PRINT	NT	ALARM PRINT	AT	ALARM STATUS	<u>cs</u>	SA	AL	PL TL	80	TYPE	MPL NO	INSTRUMENT NO	. REV
SCAN ADRS	, , , , , , , , , , , , , , ,	COMPUTER TERMINAL NO CABLE NO WP	SCAN CLASS		FERENCE	S		NDTE	NO.							REV
C I N F 5 3 9	C 75 39	AUX XEMR TROUBLE D&l4l5-l5	NORM D	02	TRBL	OA	CLSD	0		ŗ			01	EB	ANND&DB29	D A
C 1 N E 5 4 A	C1534	STARTUP XFMR TROUBLE D81415-16	NORM D	50	TRBL	08	CLSD	0		ŗ			D 1	E4	ANN080A07	D A
CIN F541	C 75 A D	STANDBY XFMR TROUBLE 081415-17	NORM D	50	TRBL	08	CLSD	0		l			DT '	E7	ANNDÅDB35	D A
C 1 N F 542	C 75 A 7	GEN XEMR DISCONNECT SW Dâl415-18	C L SD D	រ <u>េ</u> ខ្មី-	0PEN 101	17.	OPEN			ľ			Dľ	IELP	389471	D
CIN F543	C7545	INTAKE FSS LC 189 BKR 312 081415-19	с L SO D	۱Ŀ E-	TRÌP 101	19	OPEN	ľ		1			D I	EL	725-375\V	E D
CIN F544	C1543	INTAKE ESS LC 18200KR412 081415-20	CLSD	16 E-	TRÎP Lol	19	OPEN	ľ		ľ			D]	EL	152-412/A	E D
CIN FS4S	C 1344	125V DC SYSTEM 1 TRBL N81415-21	NORM D	02 E-	-27	۵D	CLSD	D		Ĺ			D1	M155	ANND80AD9 74/27	E C
СТN Е.54Б	C 1245	LLSV AC UNINTER TRBL 081415-22	NORM D	50 6-3	-29	Da	CLSD	0		ן ג			Dľ	M155	E21/23	Ę.
C 1 N F 5 4 7	C754P	250V DC SYSTEM TRBL 081416-00	NORM	02 - 30	-28 -28	08	CLSD	۵		r			DL	M155	ANNDADB40 74/27	F C
` CIN F548	. C1247	+,- 24V DC SYSTEM A/B TR D&1416-01	NORM D	02 6	-28 -58	08	CLSD	۵		1			Ďĺ	M155	ANNO SA 8 01 ANNO SA 8 09	C
C 1 N F 5 4 9	C1248	250V DC CHGR 1043 TRBL 081416-02	NORM D	0 2	TRBL	08	b CLSD	0		1			Dl		ÁNND 808 41	E A
C 1 N E 5 5 0	C1249	250V DC CHGR 1044 TRBL 081416-03	NORM D	02	TROL	08	B CLSD	0		1			Dl		ANN080828	E A
CIN FSSI	C7520	125V DC SYSTEM 2 TRBL D81416-04	NORM D	02	TRBL	08	b else	0		1			01		ANND80804	E

· •

. i

• •

Ξ.

a second	1 K.	in an in the second					•							
TYPF	NID NO.	PRINTED DESCRIPTION	NORMAL PRINT	ALARM NT PRINT	AT	ALARM STATUS	CS SA	AL	PL TL	BD TYPE	MPL NO	INSTRUMENT I	NO. REV	
S C AN A DR S		COMPUTER TERMINAL NO CABLE NO WP	SCAN CLASS	REFERENCE DRAWING		LOG S A	NDTE NO.					**********	REV	
С I N F 50П	C7527	10-14 ዓርፕ FD PMP VIBR DAJ416-D5	NORM	02 HIGH M-107	01	CLSD	0	ľ		Dľ	M1 59	VNUPOB 75	E	
CIN FSOL	C1525	LP-LB RCT FD PMP VIBR D51416-D6	NORM D	02 HIGH M-107	01	CLSD	C	r		0 L	M159	ANNOPOB 73	E A	
C I N F 502	C 75 2 3	12-84 COND PMP VIBR በ51416-በ7	NORM D	02 HIGH M-LOL	07	CLSD	0	ŗ		ΟL	M1 59	ANNOLDA 25	E A	,
CIN F503	C1524	10-88 COND PMP VIBR 081416-08	NORM D	02 HIGH M-106	0)	CLSD	0	ſ		D I	M1 59	ANNOPOSP	Ę	
C T N F 504	01522	COND DEM SYS TROUBLE NSI416-09	ОК Ф	05 TRBL M-108	08	CLSD	. 0	ľ		01	M20	ANNOLOBOL	C A	
C I N F 50 5	C 75 2P	MAKE UP DEM SYS ALARM DAlylg-lo	OK D	DS TRBL M-110	OÅ	CLSD	0	ŗ		Οľ	MBA	ANN	C A	
С IN F 50 Б	C1522	CONDENSER 468 CONDUCT HI D&l416-11	NORM D	DZ HIGH M-106	01,	ĊĹSD	0	l		DI	MLSŠ	CR-1514	F	
C 1 N F 507	C7529	LE-LA LP HTR LVL HIGH D81416-12	NORM D	02 HIGH M-104	01	CLSD	0	ľ		DL	M1 72	ÁNNO 608 15	E A	
CIN F 508	C752J	16-18 LP HTR LVL H[GH 081416-13	NORM D	02 HIGH M-105	01	CLSD	0	r		01	M172	ANNOLOB25	E A	
C IN F 50 9	C75P0	ነር-24 LP HTR LVL HIGH በልኔዛኔይ-ኔዛ	NORM	02 HIGH M-104	0 <i>1</i>	CLSD	۵	J -		D L	MT45	ANNOLOBIL	E	
C I N F 5 10	стерт	15-28 LP HTR LVL HIGH Nglylb-15	NORM D	02 HIGH M-105	01	CLSD	٥	ľ		D L	M172	АЛИОРОВ 5Р	' E A	
CIN FS11	C15P5	LF-34 LP HTR LVL HIGH DA1416-16	NORM D	02 HIGH M-104	01	CL'S D	0	ľ		DI	M172	ANNOLOB17	E A	
CIN F512	ст5РЭ	15-38 LP HTR LVL HIGH D81416-17	NORM	02 HIGH M-105	01	CLSD	0	l		Dľ	M1 72	ANNOLO827	EA	

F

. • •

.

.,

٠

.

•

••

.

• ,

		and a second	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	· · · ·									• •		•
07/08/75 Type	PAG NTD ND.	E 100 PRINTED DESCRIPTION	NOR MAL PRINT	NT PRINT	AT	ALARM	<u>cs</u>	SA	AL_	PL	TL	BD TYPE	MPL NO	INSTRUMENT NO	. REV
SCAN ADR S		COMPUTER TERMINAL NO CABLE NO WP	SCAN	REFERENCE DRAWING	S	LOG	NOTE	N0.							REV
CIN FS13	C1264	ኒሮ-44 LP HTR LVL HIGH በፊኔፋኔ-ኔሪ	NORM D	02 HIGH M-104	01	CLSD	. 0		1 .			DŢ	MJ 72	ANNOLOB 18	E A
ር [N F 5 ጊ ዛ	C 75P 2	ኔE-48 LP HTR LVL HIGH ዐለኔዛኔኤ-ነዓ	NORM D	02 HIGH M-105	01	CLSD	0		J			01	M175	ANNOLOB28	E A
(1 N F 5 L 5	СТ5РР	LE-SA LE HTR LVL HIGH DAL416-20	NORM	02 HIGH M-104	0 1	CLSD	٥		ľ			נס	M172	ANNOPOB 78	E A
ር I N ፑናጊዜ	C75P1	1E-58 LP HTR LVL HIGH Dål416-21	NORM	02 HIGH M-105	01	CLSD	0		1			DL	M175	ANNOLOB29	Ĕ
(1N F517	C 75P 9	LE-LA LP HTR LVL HIGH Dål416-22	NORM D	02 HIGH M-104	01	CLSD	0		ŗ			ΟL	MJ 75	0580J0NNA	E /
C I N F 518	C 75P J	LE-68 LP HTR LVL HIGH 031417-00	NÖRM D	02 HIGH M-105	01	CLSD	0		l			01	M172	ANNO60830	E A
CIN F519	C7540	FEEDWIR ACTIVE BRANCH A D51417-01	NDRM D	02 CL SD M-107	16	CLSD	Ö.		L			01		MO-1292	С В
CIN F520	C1577	FEEDWIR ACTIVE BRANCH B Dalyl7-d2	NORM D	02 CLSD M-107	16	CLSD	- 0		ŗ			0 I		MO-7 P 3P	G B
Ç İN FSƏL	C7545	SP AR E 081417-03	D									Dl			D A
, F 522	C 1273	SP AR E DA 1417-04	D									DT			D A

+ 98

07/98/75	PAG	E LOL															
TYPE	NID NO.	PRINTED DESCRIPTION	NOR MAL PRINT	NT	AL APM PR INT	AT	ALARM STATUS	CS	SA	AL	PL	TL	BD	TYPE	MPL NO	INSTRUMENT NO	J. REV
SCAN ADRS		COMPUTER TERMINAL NO CABLE NO WP	SCAN CLASS	R F [FERENCE		LOG SA	NOTE	N0.								REV
C 1 N G 5 0 0	C1274	16-31 TROUBLE 081417-05	NORM D	99	TRBL	OA	CLSD	. 0		ľ				DF	M15		B A
CIN GSD1	C 1275	16-21 TROUBLE 081417-06	NORM D	02	TRBL	08	CLSD	Ċ		ľ				Dl	M1 5		B A
C 1 N G 50 2	с 197 Р	GEN EXCITATION AT MAX 081417-07	NORM D	02	, H1 GH	01	OPEN	ľ		ľ				Dľ	M1 5 5	ANNDAOC10 74/J2KX	C A
C 1 N G 5 D 3	C 1533	STAT COOL WATER FLOW LO	NORM D	02 E-	- LOZ	88	CLSD	0		ľ				Dl	LSTG	ANNO80C22 74/X14	D
C I N G 50 4	C1549	MAIN GEN 1G1 POT XEMR FA 081417-09	NORM	02 E-	TRBL 101	80	· OPEN	1		L				D I	M] 55	ANNO 80005 260-1	D
CIN GSDS	C 1279	MAIN GEN 1G1 FIELD GRND D31417-10	NORM D	50	TRBL	08	CLSD	0		Ĵ				DÌ	ML 55	ANNÖ 800 08 74 x / 264	· A
СТN 6506	C 7590	SP AR E 08 1 4 1 7 - 1 1	D										0) T			· Æ `

CIN C1597 SDARE C207 D81417-15

.

G

.

D

D

A

D **1**

· · · ·

07/08/75	PAG		NORMAL		ALARM		ALARM								NO	D E V
TYPF	NID NO.	PRINTED DESCRIPTION	PRINT		PR INT		LOG	<u>cs</u>	<u>- SA</u>		PL	 BD TYPE	MPL NU	INSTRUMENT		*****
SCAN ADRS		COMPUTER TERMINAL NO CABLE NO WP	SC AN C L A S S	Ő	RAWING	S	A N	ID TE	N0.							REV
C I N M500	C7595	CIRC WIR PMP A VIBR Dalyl7-ly	NORM D		HIGH 142	0 <i>7</i>	CLSD	٥		1		סיר		ANNOPO953		D A
CIN M501	C1593	CIRC WTR PMP B VIBR DAl4l7-l4	NORM D	02 M-	H1GH 142	01	CLSD	0		ŗ		DT		ANNOP0454		D A
CIN MSO2	C 758 A	SERV WTR HDR PRESS	NORM D	OZ M-	LOW 146	06	CLSD	0		L		Dl		ANNOLOA 16 PS-49030		D ▲
CIN MSD3	C1592	CLG TWR A FAN TROUBLE Dalyl7-lg	NORM D	02 M-	TRBL 142	08	CLSD	0		ľ		0 J		ANNO60405		DA,
C I N M 5 0 4	C758P	CLG TWR B FAN TROUBLE Dalyl?-l?	NORM D	02 M-	TR BL - 142	80	CLSD	0		J.		Dl		ANNOLOA ()6		D A
C I N M 5 0 5	C1595	INST AIR HOR PRESS LOW OAlyl7-la	NORM D	50 M	130 -130	OL	, CLSD	0		J		 D J		PS-3030		В. А.
CIN MSDL	C 759 9	125V DC CHGR 1012 TRBL 081417-19	NORM	02	LOW	06	CLSD	0		Ĺ		Dľ		ANNO60A21		D C
C I N M507	C 759J	125V DC CHGR 1022 TRBL 081417-20	NORM D	02	ĻOW	06	CLSD	Ò		ľ		DŢ		ANNO80816		D C
С 1 N М 5 П А	C1540	RB CLG WTR HDR PRESS O81417-21	NORM D	02 M	-775 FOM	OP	CLSD	Ó		ľ		D L	MLSS	ANNOLOB 33	l .	D A
CIN M509	C1541	SERV AIR HDR PRESS DB1417-22	NORM D	02 M	LOW -130	06	CLSD	0		ľ		. DT	M174	PS-3033		D A
C 1 M M 5 1 D	C 75 85	EMERG SW PIT A LEVEL Dalyzo-no	NORM	50 M	LOM -146	06	CLSD	Ũ		1		Dl		ANNOLDA 40	1	۲ ۸
CIN #511	C 754 3	EMERG SW PIT B LEVEL Obly20-01	NORM D	50 M	LÓW -146	06	CLSD	0		r		D 1.		ANNO lo a 41	•	F A
C I N M5 12	с 15 ан	ALTERNATE SOURCE TIMER DB1420-02	ON D	м	0FF -160		OPEN	0	ľ			DÌ				G A
			N N													

, .

. -

•

	· ,								
		·	×.					• •	•
•	· · · · · · · · · · · · · · · · · · ·					-	•		
PAGE NID NO.	E 103 PRINTED DESCRIPTION	NORMAL PRINT	ALARM NT PRINT		CS SA	AL PL TL	BD TYPE MPL NO	INSTRUMENT NO	. REV
	COMPUTER TERMINAL NO CABLE NO WP	SCAN CLASS	REFERENCE DRAWING	S A	NDTE NO.				REV
C 158 2	PUMP HOUSE DRN SUM P LVL D&1427-D3	NORM D	02 HIGH M-146	D1 CLSD	٥	L.	D1 M177	L S Ч Я З Ь А / В	E B
C1296	125V DC CHGR 10120 TRBL N81420-04	D.					DI	ANND&OA 33	E A
C1545	SPARE 081420-05	ел - р					01	m = 7	D A
	NID NO. C1295 C1295	NID NO. PRINTED DESCRIPTION COMPUTER TERMINAL NO CABLE NO WP C1295 PUMP HOUSE DRN SUMP LVL 081423-03 C1296 125V OC CHGR 10120 TRBL 081423-04	NID NO. PRINTED DESCRIPTION NORMAL COMPUTER SCAN TERMINAL NO CABLE NO WP CLASS C1295 PUMP HOUSE DRN SUMP LVL NORM D81420-03 D C1296 125V OC CHGR 10120 TRBL D81420-04 D	NID NO. PRINTED DESCRIPTION NORMAL NT PRINT COMPUTER TERMINAL NO CABLE NO WP CLASS DRAWING C1295 PUMP HOUSE DRN SUMP LVL NORM D2 HIGH D81420-D3 D M-146 C1296 125V OC CHGR 10120 TRBL D81420-D4 D D	NID NO. PRINTED DESCRIPTION NORMAL ALARM COMPUTER TERMINAL NO CABLE NO WP CLASS DRAWING SA C1295 PUMP HOUSE DRN SUMP LVL NORM D2 HIGH D1 CLSD D81420-D3 D M-145 C1296 125V DC CHGR 1D120 TRBL D81420-D4 D C1296 125V DC CHGR 1D120 TRBL D0 M-145	NID NO. PRINTED DESCRIPTION PRINT NT PRINT AT STATUS CS SA COMPUTER TERMINAL NO CABLE NO WP CLASS DRAWING SA NOTE NO. C1295 PUMP HOUSE DRN SUMP LVL NORM D2 HIGH D1 CLSD D D81420-D3 D M-145 C1294 125V DC CHGR 10120 TRBL D0 M-145 D1 CLSD D	NID NO. PRINTED DESCRIPTION PRINT NT PRINT AT STATUS CS SA AL PL TL COMPUTER TERMINAL NO CABLE NO WP CLASS DRAWING SA NOTE NO. C1295 PUMP HOUSE DRN SUMP LVL NORM D2 HIGH D1 CLSD D 1 D81420-D3 D M-145 C1294 125V OC CHGR 10120 TRBL D0 M-145 D1 M-145	NID NO. PRINTED DESCRIPTION PRINT NT PRINT AT STATUS CS SA AL PL TL BD TYPE MPL NO COMPUTER TERMINAL NO CABLE NO WP CLASS DRAWING SA NOTE NO. CL295 PUMP HOUSE DRN SUMP LVL NORM D2 HIGH D1 CLSD D 1 D1 M177 D81420-D3 D1 M177 CL296 125V DC CHGR 1D120 TRBL D UCL 1/2 FL2/2 DFL CPL	NID NO. PRINTED DESCRIPTION NORMAL NT PRINT AT STATUS CS SA AL PL TL BD TYPE MPL NO INSTRUMENT NO. COMPUTER TERMINAL NO CABLE NO WP SCAN REFERENCE LOG CL295 PUMP HOUSE DRN SUMP LVL NORM D2 HIGH D1 CLSD D D1 M177 LS4936A/B CL295 PUMP HOUSE DRN SUMP LVL NORM D2 HIGH D1 CLSD D L D1 M177 LS4936A/B CL295 PUMP HOUSE DRN SUMP LVL NORM D2 HIGH D1 CLSD D L D1 M177 LS4936A/B CL295 PUMP HOUSE DRN SUMP LVL NORM D2 HIGH D1 CLSD D L D1 M177 LS4936A/B CL295 D250 DC CHGR LD120 TRBL D ANND80A33 UCLE/U FUMAL FUMAL FUMAL FUMAL D1 ANND80A33

· .

•

:

07/08/75	PAG	E 104 PRINTED DESCRIPTION			ALARM PRINT	AT	ALARM STATU	s cs	SA	AL	PL	TL	BD TYPE	MPL NO I	NSTRUMENT	ND. RI	EV
SCAN ADRS	NID NO.	COMPUTER TERMINAL NO CABLE NO WP	SCAN CLASS		FERENCE		LOG	NOTE	N O •								EV
0 9 T 0500	L1500	TIP POSITION ENABLE CH A D94205-08		N۲	I FCD			·					01	C51			A B
0 P T 0 5 O J	L1,501	TIP POSITION ENABLE CH B 094205-09		N	1. FCD								01	C51			A B
091 0502	L1502	TIP POSITION ENABLE CH C 094205-10		N	4 FCD								01	C27			A B C
001 0503	L1503	NSS SPARE 094205-11			M FCD		•						01	· ·			С В В
<u></u> 05ПЧ	L1504	NSS SPARE			•								01				8
0505	L1505	NSS SPARE D94205-13											07				8 8 8
0PT 0506	L1506	NSS SPARE 094205-14	•.														B B B
0 P T 0 5 0 7	L1507	NSS SPARE 094205-15											01				в
СРТ Q508	L1508	NSS SPARE D94205-15											01				B
0509	L1509	RWM OUT OF SEQUENCE 094205-17		ţ	RWM ÈLEM	١							01				ē A B
0PT Q510	L1510	RWM SELECT ERROR 094205-18	•		RWM ELEM	1							01			·	В., А., В.
0511	— L1511	RWM PROGRAM OPERATING 094205-19		1	RWM ELEM	4							01				B B B
CP1 0512	L1515	SP 4 8 E 09 4 2 0 5 - 2 0			RWM ELEM	м							10	·			B
					ļQ,												
																•	

,

						· . ·		•	•			
								•				· ·
" 07/08/75 TYPE	PAGE NID NO.	LUS PRINTED DESCRIPTION	NORMAL PRINT	ALARM NT PRINT	ALAR AT STAT	M US CS	SA A	L PL	ΤΙ ΒΟ ΤΥΡΕ	MPL ND	INSTRUMENT	NO. REV
SCAN ADPS		COMPUTER TERMINAL NO CABLE NO WP	SCAN CLASS	REFERENCE DRAWING	LOG S A	NDTE	NO.				·	REV
0 P T 0 5 L 3	1 1 5 1 3	RWM INSERT BLOCK A 094205-21	۰	RWM ELEM					01			A B
0514	L1514	RWM WITHDRAW BLOCK A D94205-22		RWM ELEM					01			A D
0PT 0515	L 1 5 1 5	RWM NOTCH ERROR 094205-23		RWM ELEM	1				01			B, D
СРТ Q516	ԼԼՏՆե	TIP CORE TOP ENABLE CH A 094206-08		NM ELEM					01	C 5 1		B
0517	L1517	TIP CORE TOP ENABLE CH B 094206-09		NM ELEM					01	CSL		A B
ር P T 0.5 ጊይ	เ นรนถ _ั	TIP CORE TOP ENABLE CH C 094206-10		NM ELEM	·				01	C51		A B
លុខ។ ជំនាំ។	L1519	NSS SPARE 044206-11							01			BC
0PT Q520	L16550	NSS_SPARE 094206-12							O P			B
052 7	L 1 2 2 1	NSS SPARE 094204-13	<i>.</i> .						.			B
091 0522	L 7255	NSS SPARE 094206-14						•	01			8 8
0PT 0523	L1233	NS S_SPARE 09 4206- 15		• •					07			BB
<u>∩</u> РТ 0,524	L1524	NSS SPARE 094206-16							0 j			B B
0525	L1,525	NSS SPARE 094206-17							0 F		• •	8 8

1 										•		
07/08/75 TYPE	PAG NID NO.	F 106 PRINTED DESCRIPTION	NORMAL Print	ALARM NT PRINT	ALARM AT STATU	s cs	SA /	AL PL	TL BD TYPE	MPL NO	INSTRUMENT NO.	REV
S C A N A DP S		COMPUTER TERMINAL NO CABLE NO WP	SCAN CLASS	REFERENCE DRAWING	L D G S A	NDTE N	0.					REV
0655P	L 122P	RPIS SCAN MODE ENABLE 094206-18		RPIS ELEM					01			A B
097 0527	L14527	RPIS NEXT ROD ENABLE 094206-19		RPIS ELEM					01			A B
, 097 0528	L1528	RWM INSERT BLOCK B 094206-20		RWM ELEM		i .			01			A B
091 0529	L1529	RWM WITHDRAW BLOCK B 094206-21		RWM ELEM					01			A B
0 P T 0 5 30	L1530	NSS SPARE		RWM ELEM					01		•	B B
0531	L1531	RWM GROUP OUT OF SERVICE 094206-23		RWM ELEM					0Ì.			B B
0PT Q532	L7235	TIP SCAN LIGHT CHAN A 094207-08		NM ELEN				·	01	C51		A B
0533 0533	L 1533	TIP SCAN LIGHT CHAN B 094207-09	•	NMELEM					01	C 5 1		A B
<u>∩</u> РТ Q534	L 1534	TIP SCAN LIGHT CHAN C 094207-10		NM ELEM					01	C 5 1		A B
0 P T Q 5 3 5	L1535	NSS SPARE Reserve	•						01			B C
ОРТ 0536	L1,536	NSS SPARE 094207-12 Dechu	•, •						01			8 8
0PT 0537	L1537	NSS SPARE 094207-13							01			B B
0 P T Q S 38	L 1538	NSS SPARE							01			8 8

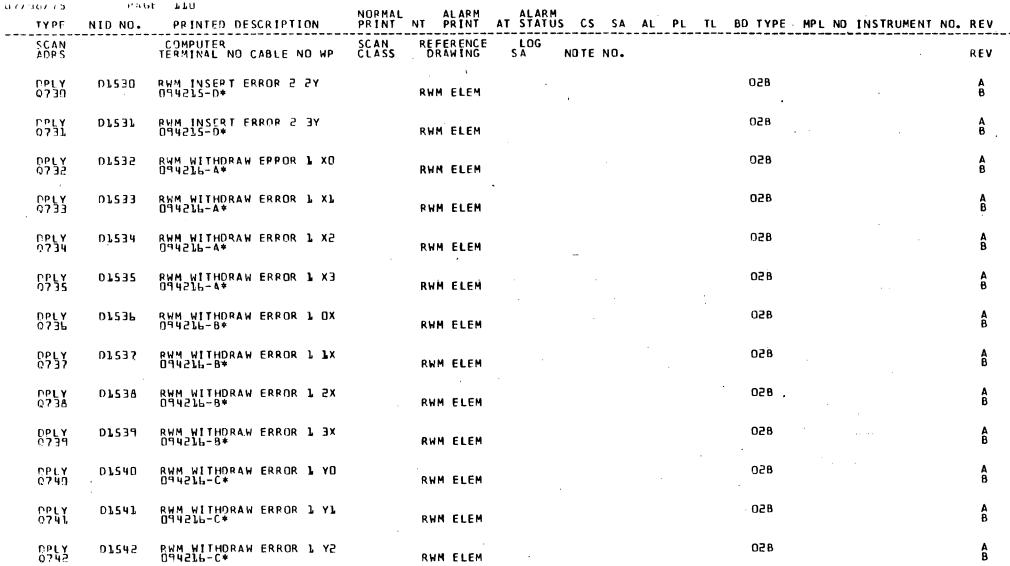
• *

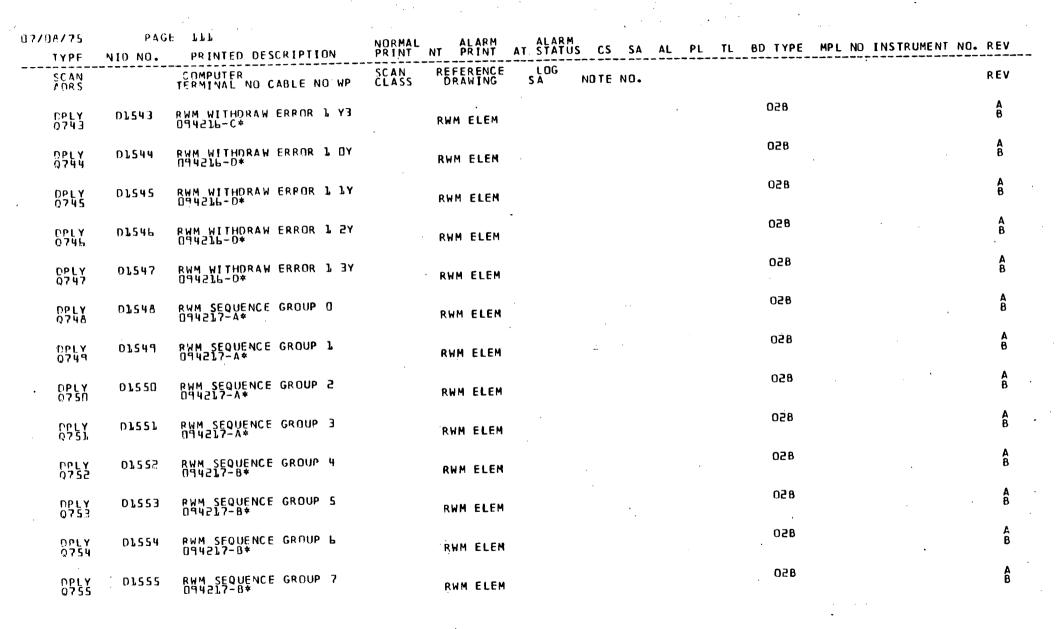

.

						-				
	4		· · ·		•		· ·	, ·		
07/08/75	PAC	SE 107					4		· .	
түрг	NID NO.	PRINTED DESCRIPTION	NORMAL PRINT	ALARM NT PRINT	ALARM	S CS SA	AL PL	TL BD TYPE	MPL NO INSTRUMENT	NO. REV
SCAN ADRS		COMPUTER TERMINAL NO CABLE NO WP	SCAN CLASS	REFERENCE DRAWING	LOG S A	NOTE NO.				REV
CPT 0539	L1539	NSS SPARE						01		8 8
∩РТ 0540	L 1,54D	NSS SPARE Reserved 094207-36 SCEAM						01		8 8
() Р Т () 5 4 Ъ	L1541	NSS289-RE DISC VOL						, O T		8 8
0PT 0542	L1542	NSS SPARE						01		B B
0PT Q543	L1543	NSS SPARE 094207-19				۰	· ,	01		B B
0PT Q544	L1544	RWM WITHDRÁW BLOCK C 094207-20		NM ELEM				01		A B
0 P T Q 5 4 S	L1545	NSS SPARE 094207-21		NN ELEM				נס		B
СРТ 0546	L1546	RWM INSERT BLOCK C		RWM ELEM				01		A B
<u>р</u> рт Q547	L1547	ROD TEST SEQUENCE SELECT	•	RWM ELEM				01		B B
DPLY Q700	01500	RWM INSERT ERROR 1 XD D94214-A*		RWM ELEM				028	• •	. A B
CPLY Q701	07207	RWM INSERT ERROR 1 X1 094214-A*		RWM ELEM				850		A B
DPLY 0702	01205	RWM INSERT ERROR 1 X2 094214-4*	•.	RWM ELEM				028		A B
NPLY 0703	01503	RWM INSERT ERROR 1 X3 044214-A*		RWM ELEM				028		A B

a and any or a name of the second second second second second second second second second second second second

•




07708775	PAG	6E 109	ΝΩΡΜΔΙ	AL ARM	Δ1 AR M							
TYPE	NID NO.	PRINTED DESCRIPTION	PRINT			S CS S	A AL	PL TL	BD TYPE	MPL NO IN	ISTRUMENT NO	REV
SCAN ADR S		COMPUTER TERMINAL NO CABLE NO WP	SC AN C L A SS	REFERENCE	L DG S A	NOTE NO	•					REV
0717	01517	RWM INSERT ERROR 2 X1 094215-A*		RWN ELEN					058			A B
0217 0718	DISIA	RWM INSERT ERROR 2 X2 N94215-4*		RWM ELEM					028			A B
0.000 0.713 9.000	D1219 ,	RWM INSERT ERROR 2 X3 N94215-4*		RWM ELEM	• .				028			A B
0.720	07250	RWM INSERT ERROR 2 DX D94215-8*		RWM ELEM					028			A B
0721 0721	01251	RWM INSERT ERROR 2 1X 094215-8*		RWM ELEM	•				0 28 .			A B
0722 0722	D7255	RWM INSERT ERROR 2 2X D94215-8*	·	RWM ELEM					· 02B		• •	A B
0PLY Q723	012533	RWM INSERT ERROR 2 3X 094215-8*		RWM ELEM					028	•		A B
0724	D1524	RWM INSERT ERROR 2 YO 094215-C*		RWN ELEM					028			A B
0725	01255	RWM INSERT ERPOR 2 Y1 094215-C*		RWM ELEM					028			A B
0726	012558	RWM INSERT ERROP 2 Y2 D942b5-C*	·	RWM ELEM					028	·		A B
DPLY 0727	01257	RWM INSERT ERROR 2 Y3 094215-C*		RWM ELEM					028			- B
0914 0728	012528	RWM INSERT ERROR 2 DY D94235-0*		RWM ELEM					028			A B
0PLY Q729	01258	RWM INSERT ERROR 2 JY 0942J5-D*		RWM ELEM					650	<u>ى</u>		A B

,

ана. Алага

•

, ,

		· ,						•	
								· · · · · · · · ·	
U7/116/75 TYPE	PAG	RINTED DESCRIPTION	NORMAL PRINT	ALARM NT PRINT	ALARM AT STATUS	CS SA	AL PL	TL BD TYPE MPL NO	INSTRUMENT NO. REV
SCAN ADRS		COMPUTER TERMINAL NO CABLE NO WP	SCAN CLASS	REFERENCE DRAWING	LOG S A	NOTE NO.			. REV
№РЦҮ 0756	01556	NSS_SPARE 094237-0*	·					02B	B B
57 57	D1557	NSS SPARE 094217-C*						850	B B
NPLY Q758	01558	NSS SPARE 094217-C*						028	B
0759	D1224	NSS SPARE 094217-C*				·		028	B B
DPLY 9760	01560	NSS SPARE 094217-0*						028	8 8
ՌԲԼ Y Q75 Ն	01261	NS S SPARE (194217-0*	•					850	8 8
0PLY 0762	D12562	NSS SPARE . 094217-0*						028	B B
DPLY Q763	01563	NSS SPARE 094217-0*						028	B B

07/08/75	PΔQ	SE 113	NORMAL	ALARM	ALARM				· · · ·		· · · ·
TYPE	NID NO.	PRINTED DESCRIPTION	PRINT	NT PRINT	AT STATUS	CS SA	AL	PL TL	BD TYPE	MPL NO	INSTRUMENT NO. REV
SCAN ADPS		COMPUTER TERMINAL NO CABLE NO WP	SCAN CLASS	REFERENCE	LOG S A	NOTE NO.					REV
R 500	CLADO	CONT ROD SELECT DATA SO D81444-00	С	CRD FCD	CLSD	0			50	CII	A B
R 201	C 180 1	CONT ROD SELECT DATA SL D81444-01	С.	CRD FCD	CLSD	0			02	CII	A B
P 502	C7905	CONT ROD SELECT DATA S2 D81444-D2	c	CRD FCD	CLSD	0			D 2	C77	A B
R 503	C 790 3	CONT ROD SELECT DATA S3 D&1444-D3	C ·	CRD FCD	CLSD	0			05	CII	A B
′ P5(14	C1804	CONT ROD SELECT DATA S4 D81444-04	C	CRD FCD	CLSD	0			02	C11	A B
• R 505	C 140 S	CONT ROD SELECT DATA S5 D81444-05	с	CRD FCD	CLSD	0			50	Cll	A B
P 5 0 6	С180ь	CONT ROD SELECT DATA SE DB1444-05	С	CRD FCD	CLSD	0			D5	C11	B
P 507	C1807	CONT ROD SELECT DATA S7 D81444-07	с	CRD FCD	CLSD	0			50	CPŢ	A B
P 508	C 1808	CONTROL ROD POSITION XD D81444-D8	С	CRD FCD	CLSD	0			02	C1 1	A B
R 509	с1809.	CONTROL ROD POSITION X2 D81444-D9	с	CRD FCD	CLSD	0			DS .	CII	A B
P 5 10	C1810	CONTROL ROD POSITION X4 Dalu44-lo	С	CRO FCD	CLSD	0		•	D5	C11	A B
P 511	CIBII	CONTROL ROD POSITION XL Nal444-ll	с	CRD FCD	CLSD	0			DS	CJI	A B
R 512	C1915	CONTROL ROD POSITION X8 D81444-12	с	CRD FCD	CLSD	0			50	C11	A B
				· • • ·	R					* 14	
					/ \ /						

.

.

• .												
						• •			· .			/ .
Ч.					· • ·							
U7798775 TYPE	PAĞ NID NO+	E 114 PRINTED DESCRIPTION	NORMAL PRINT	ALARM NT PRINT	ALARM	cs	SA AL	PL TL	BD TYPE		INSTRUMENT	NO. REV
SCAN ADPS		COMPUTER TERMINAL NO CABLE NO WP	SCAN CLASS	REFERENCE DRAWING	LOG S Å	NOTE	10.					REV
P513	CLAIS	CONTROL ROD POSITION DX D&1444-13	с	CRD FCD	CLSD	0.			50	CII		A B
P514	C1814	CONTROL ROD POSITION 1X DA1444-14	C .	CRD FCD	CLSD	0			D2	CII		A B
P 5 <u>1</u> 5	C1912	CONTROL ROD POSITION 2X DA1444-15	C	CRD FCD	CLSD	0			50	C77		A B
P516	CIBIP	CONTROL ROD POSITION 3X DB1444-16	С	Crd FCD	CLSD	0			50	C11		A B
P 5 ኔ 7	C1817	CONTROL ROD POSITION 4X D81444-17	C	CRD FCD	CLSD	0			D2	C l 1		A B
R 518	C 79 7 9	CONTPOL ROD SPARE D&1444-18	С				•		50	·		B B
P 5 1 9	C1874	CONTROL ROD SPARE D&1444-19	С						D5			B B
P 520	C 1950	CONTROL ROD SPARE	С						50		· .	8 8
P 521	C7957	CONTROL ROD SPARE 081444-21	Ċ						02			8 8
P 522	C7855	CONTROL ROD SPARE D&1444-22	Ċ						50			B B

											•			
						••••	· ·	. :						
07/08/75	PAGE	LLS PRINTED DESCRIPTION	NORMAL PRINT	ALARM NT PRINT		AL ARM STATUS	CS	SA	AL I	<u>PL TL</u>	BD TYPE	MPL NO	INSTRUMENT	NO. REV
SCAN	NID NO.	COMPUTER TERMINAL NO CABLE NO WP	SCAN CLASS	REFERENCE	 S	LOG	NDTE	NO.	ĵ					REV
8085 CIN 7500	C7548	MS LINE & LOW PRESS	NORM	02 LOW 03 - MO	06	CLSD	0		l		D L	APED	PS-1014	C A
	C7544	TURB STOP VA 3 OPEN 081420-07	OPEN D	4000 E2	17	OPEN	0	ľ			01	LSTG	22-9115	Â
C IN TSD2	C 7300	TURB STOP VA 3 CLOSED DA1420-04	NDCL D	18 CLSD M-103	1 6	CLSD	0		l		01	LSTG	25-9113	A A
CIN 1503	C7307	TURB CONT VA 3 OPEN D&1420-09	OPEN D	4000 E2 M-103	17	OPEN	0	1			DI	LSTG	ZS-9104	BA
- C1N T594	C1305	TURB CONT VA 3 CLOSED Dal420-10	NOCL	18 CLSD M-103	J P.	CLSD	0		1		D]	LSTG	ZS-9105A	B A
C I N T 505	C1303	MS LINE B LOW PRESS	NORM	02 LOW M-103	ÖĿ	CLSD	Ó		ì		DÌ	APED	PS-1015	· C A
сім т50ь	C 1 304	TURB STOP VA 4 OPEN D&1420-12	OPEN D	23 NOOP M-103	17	OPEN	Ó	ľ			DÌ	LSTG	25-9114 25-9115	A A A
C. I N T 507	C1305	TURB STOP VA 4 CLOSED ዐልኔዛ2በ-ኔጋ	NOCL	18 CLSD M-103	16	CLSO) Ö		ĩ		DÌ	LSTG	ZS-9106	A A B
. C I N T S D 8	C730P	TURB CONT VA 4 OPEN 081420-14	OPEN D	23 NOOP M-103	17	OPEN	1 0	L			DJ ·	ĹŚŦĠ	25-9107	B A A
CIN T509	C 1307	TURB CONT VA 4 CLOSED 081420-15	NOCL	18 CLSD M-103	16	LS CLS	0		1		D]	LSTG	PS-1016	Â
CIN TSLC	C 7 308	MS LINE C LOW PRESS	NORM D	02 LOW M-103	01	LSI	00	1	Ĺ		Dl	ÁPED	ZS-9108	C A A
CIN TSL	C 7 3 0 8	TURB STOP VA L OPEN Dalu20-l?	OP EN D	9000 ES 801-M	Γ.). L			DÌ	LŠTG	25-9109	A
CIN TSL	5 C1370	TURB STOP VA 1 CLOSED Da1420-18	NOCL	. 18 CLSD M−103	P	L CLS	D. (1		01	LSTG	72-17 01	Δ .

ĥ,

•,					, ·									·				
			· · · · · ·		• • •			•	:									
	туре	N10 N0.	PR INTED	DESCRIPTION	NORMAL PRINT	NT	AL ARM PRINT	<u>AT</u>	ALARM STATUS	CS	<u>_ SA</u>	AL	PL	TL	BD TYPE	MPL NO	INSTRUMENT NO	REV
	SCAN ADRS	 .	COMPUTER TERMINAL	NO CABLE NO WP	SCAN CLASS	RE D	FERENCE	S	LOG A	NOTE	N0.						, ,	REV
	C I N T 5 1 3	C1371	TURB CONT 081420-19	VA 1 OPEN	OPEN - D	23 M-	N006 103	17	OPEN	0	ľ		, 1 .		01	LSTG	25-9100	E A
	CIN TS14	C7375		VA L CLOSED	NOCL	18 M-	703 CI 2D	յե	CLSD	0		l			D 1	LSTG	ZS-9101A	D A
		C7373		LOW PRESS	NORM D	02 - M	103 103	0Ŀ	CLS D	0		ľ			D L	APED	PS-1017	C A
		C1314	TURB STOP	VA 2 OPEN	OPEN D	ES M-	NOOP	17	OPEN	0	l				D T	LSTG	25-9110	A A
	CIN 1517	C 1312		VA 2 CLOSED	NOCL	18 M-	CLSD 103	յե	CLSD	0		1		•	DL	LSTG	25-9111	A A
	CIN 7518	стэге		VA 2 OPEN	OPEN D	23 _M~	NOOP - 103	17	OPEN	0	ľ				01	LSTG	22-9705	B
	CIN TSL9	C7373		VA 2 CLOSED	NDCL	18 M-	CL SD 103	16	CLSD	0		7			0.L	LSTG	ZS-9103A	B
2	Ç IN	C1318		FAR FNGAGED	ON D	25 E-	0FF -102	22	CLSD	۵	ŀ	1			01	LSTG	TDR-TSS	F
	ÇIN T591	C 7 3 7 8		A IB ISOLA VA CL	NOCL	18 M-	CL SD - 114	36	CLSD	0	×	l			οj	APED	25-4422	0
	010 1522	C 7 3 5 0		A OB ISOLA VA CL	NOCL	18 M-	CL SD -114	ւր	CLSD	0		ľ	•		Dl	APED	ZS-4413	C
		C7357		B IB ISOLA VA CL	NOCL	LA	CL SD -114	ւե	CLSD	0		1			Ó L	APED	ZS-4415	[(
		C 7355		B OB ISOLA VA CL 7		18 M-	CLSD ~114	16	CLSD	0		ŗ			Dl	APED	25-4416	L (
	CIN TS25	C7353		C IB ISOLA VA CL		18 M	CL SD -114	16	CLSD	0		l			01	APED	ZS-4418	· C

												•			
								•				•			
				•			 		• • •						
עאני <i>דר</i> נו די	/75 /PE	PAG	PRINTED DESCR	IPTION	NORMAL PRINT	AL ARM NT PRINT	ΔT	ALARM STATU	s cs	SA AL	PL T	L BO TYPE	MPL NO	INSTRUMENT	NO. REV
	CAN OR S		COMPUTER TERMINAL NO CAB		SC AN CLASS	REFERENCE DRAWING	S	LOG	NOTE	NO.		· · ·		, . ,	R E V
ç j	1N 526	C1324	MS LINE C OB IS 981421-09	OLA VA CL	NOCL	18 CLSD M→114	յե	CLSD	Ō	ľ	·	D 1	APED	25-4419	D C
ĘĮ	IN 527	C7352	MS LINE D IB IS Daly21-10	OLA VA CL	NOCL	18 CLSD M-114	16	CLSD	0	1		Dľ	APED	ZS-4420	, C
ĘĮ	I N 528	C735P	MS LINE O OB IS	OLA VA CL	NOCL	18 CLSD M-114	16	CL S D	0	1		. D J	APED	25-4421	D C
ç	IN 529	C7353	MS DRN IB ISOLA DB1421-12	VA CLSD	CLSD	18 NOCL M-114	. 16	CLSD	0	ľ		D 🕽	мтээ	25-4423	E C
ç	I N 5 30	C1359	MS DRN OB ISOLA Daluzi-la		-	18 NOCL M-114		CLS D		J		01	MT33	25-4424	· E C
Ç	ξN ₁	C 7354	SPARE PSV 440	DO OPE	A OR	LEAKIN	9	OPE	N			D J			Č
Ç	IN 532	C 1330	97488 PSV 44 081421-15	01	/.	(· .				D J			Ç
ç	IN 523	C1331	SPARE PSY 44	402 ···	D							D L	•		C C
ç	IN 534	C1335	SPARE PSV 44	105	D	i i						01	•		Ċ
ç	IN 535	C7333	SPARE PSN 44 OALUEL-LA	406	D		/					0 l			C C
C. T	IN 536	C 1, 3 3 4	081421-19	407	j o		Y					DT			Ç
ç	1 N 5 37	C 1 3 3 5	68 1421-20	403								Dl			Ċ C
	IN 538	C133P	50 1421-20 08 1421-20 50 1421-21 08 1421-21	404	D	Ŭ						D L		• .	C C

07/08/75 TYPE	PAG NID NO.	E LLA PRINTED DESCRIPTION	NUR MAL Print			ALARM			41	PI			· INSTRUMENT	
SCAN ADES		COMPUTER TERMINAL NO CABLE NO WP	SCAN CLASS	REFERENCE DRAWING		LOG	NOTE	•			 		- INDIKONENT	REV
(I N T 5 3 9	C1337	SP AR E 03 1 421-22	D								D J		-	C C
С Т N Т 5 40	C1338	SP AR E 08 1422- 00	D								, DT			C C
C I N 7 5 4 1	C1334	TURB INTERMED SV2 OPEN D&1422-01	OP EN D	23 NOOP 601-M	17	OPEN	0	1			01	LSTG	25-9124	C A
CIN 7542	C 1 3 4 0	TURB INTERMED SV2 CLSD 081422-02	NOCL	18 CLSD M-103	JP	CL S D	• 0	ľ		·	01	LSTG	25-9125	C A
C I N 7 5 4 3	C1341	TURB INTERCEPT VA 2 OPEN DAl422-03	OPEN	4000 E2 M-103	17	OPEN	0	1			Dl	ĹSTG	25-9126	C A
C [N T 544	C 7 3 4 5	TURB INTERCEPT VA 2 CLSD 041422-04	NOCL	LA CLSD M-LOJ	36	CLSD	0		l		Oľ	LSTG	25-9127	C A
C I N T S 4 5	C1343	TURB INTERMED SV4 OPEN D&1422-05	OPEN D	4000 53 - MOOP	17	OPEN	0	. 1			DL	LSTG	22-9735	C A
С Т N Т 5 4 Б	C 1 3 4 4	TURB INTERMED SV4 CLSD DA1422-06	NOCL	LA CLSD M-103	16	CLSD	0		ŗ		D1	LSTG	25-9133	C A
C 1 N T 5 4 7	C 1 3 4 5	TURB INTERCEPT VA 4 OPEN D81422-07	OPEN D	23 NOOP M-103	17	OPEN	0	ľ		•	Dl	LSTG	ZS-9134	C A
С I N Т 5 4 8	СЪЗЧЬ	TURB INTERCEPT VA 4 CLSD D&1422-D&	NOCL	LA CLSD M-103	16	DL S D	0	ŀ			ŊГ	LSŤG	28-9135	C A
(C1347	TURB INTERMED SV3 OPEN D&1422-D9	DPEN	23 NOOP 601-M	17	OPEN	0	1			DĨ	LSTG	ZS-9128	C A
C I N T 5 50	C 1 3 4 8	TURB INTERMED SV3 CLSD DA1422-10	NOCL	18 CL SD M-103	JP	CLSD	0		1		D 1	LSTG	22-9159	C
C I N T 5 5 1	C1,349	TURB INTERCEPT VA 3 OPEN D&1422-11	OPEN D	23 NOOP E01-M	17	OPEN	0	ľ			Dl	LSŤG	25-9130	B A

.

. . .

			• .		·									
				· ·		• ·	•							
са миса Т ҮРЕ	NID NO.	PRINTED DESCRIPTION	NORMAL PRINT	ALARM NT PRINT	AT	ALARM STATUS	CS.	<u></u>	AL	PL	TL BD TYPE	MPL NO	INSTRUMENT NO	REV
SCAN ADRS		COMPUTER TERMINAL NO CABLE NO WP	SCAN CLASS	REFERENCI DRAWING	E		NOTE	N0.					, ,	REV
C1N T552	C1350	TURB INTERCEPT VA 3 CLSD D31422-12	NDCL	18 CLSD M-103	16	CLSO	0		ľ		D 1	LSTG	22-9131	C A
C 1 N T 5 5 3	C 1 3 5 1	TURB INTERMED SV 1 OPEN DA1422-13	OPEN D	4000 E01-M	17	OPEN	0	l			, DT	LSTG	28-9150	C A
<u>C I N</u> T 5 5 4	C1325	TURB INTERMED SV 1 CLSD D&1422-14	NOCL	18 CLSD M-103	7P	CLSD	0		ľ		0 L	LSTG	22-9757	C A
C I N T 5 5 5	C1353	TURB INTERCEPT VA 1 OPEN 081422-15	OP EN D	4000 ES M-103	17	OPEŃ	٥	1			.' D 1	LSTG	25-9122	C A
СІN Т55Ь	C 1354	TURB INTERCEPT VA 1 CLSD D81422-16	NDCL	18 CLSD M-103	16	CLSD	0		ľ		DL	LSTG	25-9123	C A
C I N T 5 5 7	C1355	TURB STM PKG EXH LVL HI 031422-17	NORM. D	02 HIGH M-104	01	OPEN	L -	l			01	LSTG	ANN070807	E A
C I N 7 5 5 8	С 1 3 5 6	TURB STM PKG EXH VAC LOW D81422-18	NORM D	02 LOW M-104	06	CLŠD	Ó	l			DÌ	LSTG	ANN070829	E A
C 1 N T 5 5 9	C1357	CONDR 1E-74 PRESS LOW D81422-19	NORM	02 LOW M-106	06	Ċ lš d	0		ľ		Dl	M155	PS-1476	Ď A
C I N T 560	C1358	CONDR 16-78 PRESS LOW D81422-20	NORM D	W-JOP 05 FOM	06	CLSD	0		1		DÌ	M1 5 5	PS-1477	0 A
C I N T 561	C1359	SP ARE DA 1422-21	D	•							DL			A A
C I N T 562	с 73PD	SP AR E DA 1422-22	D								Οl	·		A A
C I N T 56 3	Стзрг	EXH HOOD 18 TEMP HIGH 081423-00	NORM	02 HIGH M-106	01	CLSD	0		ľ		Dl	LSTG	ANN070808 74/EHT12	D C
С I N Т 56 4	стэгс	EXH HOOD 1C TEMP HIGH D81423-01	NORM	02 HIGH M-104	01	CLSD	0	J			Dl	LSTG	ANN070819 74/eht34	D C

07/08/75 Type		E 120 PRINTED DESCRIPTION	NORMAL PRINT	NT	AL ARM PRINT	AT	ALARM STATUS	cs	SA	AL	PL	TL	BD TYPE	MPL NO	INSTRUMENT NO.	REV	
SCAN ADRS		COMPUTER TERMINAL NO CABLE NO WP	SCAN CLASS	RE	FERENCE RAWING		LOG	NOTE	NO.						•	REV	
(1 N T 5 L 5		TURB EXH HOOD SPRAY ON DAL423-D2	OFF D	-M-	0N 1.06	25	OPEN	L		ľ			D 1	LSTG	PS-1488	Å	
с I N Т 5 6 6	C1364	TURB LOW SPEED SW D91423-03	NORM · D	65	NGZD	09	CLSD	0		1			D 1	LSTG	TSS .	A A	
(1N) 1567	с 1365	TURNING GEAR OIL PMP RUN D&1423-04	S TOP D	24	RUN	56	CLSD	0		ľ			D 1	M155	ANN070A20 74/xps8	A	
. CIN 1568	с тэрр	TURB EMERG DIL PMP RUN	STOP.	24	RUN	56	CLSD	0		l			D L	M155	ANN070A18 74/XPS9	A A	
2 19 1565	C1367	50 A R E 0 A L 4 2 3 - 0 L	D				•						D1		· ·	B B	
÷ŝ≯a	СТЭР9	TURB LUBE OIL TK LVL LO 031423-07	NORM	0Z M-	LOW - 131	0 L	CLSD	0		1		·	Dľ	LSTG	LS-3100B	A A	
çış	C 1369	TURB LUBE OIL TK LVL HI D&1423-DA	NORM. D	OZ M-	HIGH -1,31	01	CLSD	0		l			D L	LSTG	LS-3100A	Â	
<u>ÇIN</u> TS7	C1370	SP AR E 031423-09	Đ						·				D I			D A	
C 1 N T 5 7	3 C1371	SP AR E 08 1423-10	D	-									D J			D A	
C 1 N T 57	C1372	SP AR E D8 1423-11	D										DŢ			D A	
51 N 57	C1373	SP AR E በል 1 4 2 3 - ነ 2	D										Dl	·		D A	
<u>C 1 N</u> T 57	С1374 Б	SP AR E DA 1423-13	D										ם ז			D A	
C 1 N T 5 7	C1375	SP AR E DA 1423-14	D										DÌ			D A	

·.

· • •

. .

i

i.

.

1

.

1

.

,

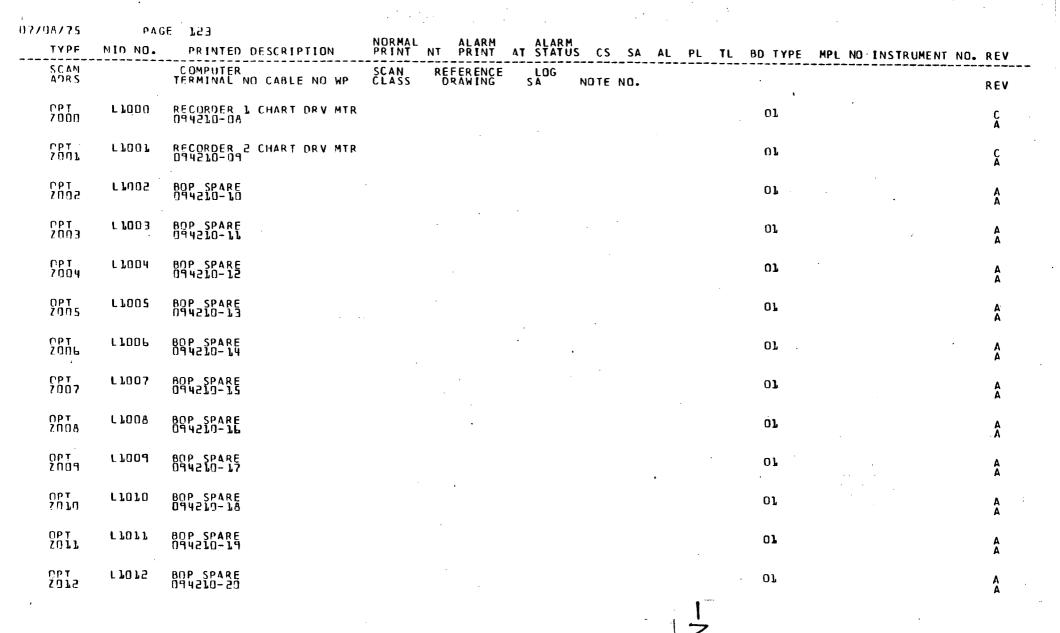
•

. .

۰.

					. •
	•	•			
	· · · · · · · · · · · · · · · · · · ·		•		
· · · · · · ·	· · · · · · · · · · ·			and the second second second second second second second second second second second second second second second	
		•			

							e en tran			
TYPE	PAG NID NO.	E 121 PRINTED DESCRIPTION	NORMAL PRINT	ALARM NT PRINT	ALARM	S CS SA	AL PL TL	BD TYPE	MPL NO INSTRUMENT	NO. REV
SCAN ADRS		COMPUTER TERMINAL NO CABLE NO WP	SCAN CLASS	REFERENCE DRAWING	LOG S A	NOTE NO.			•	REV
C I N T 578	СТЭЛР	SP AR E DA 1423-15	D					DЪ		D A
C I N T 579	C1377	SP AR E DA 1423-16	D					Dl		D A
C 1N 7580	C1378	SP AR E 0A 1423-17	D					Ol		D A
CIN TSAL	C1379	SP 4R E DA 1 42 3- 18	D		•			DT		Q A
017 1582	C7390	SP AR E Na 1423-19	D					01		D A
CIN TSAB	C 7387	29 A R E 08 J 42 3- 20	D			. ·		Dl	•	D A
C [N T 584	C 7 3 8 5	SP AR E DA 1 423-21	D				•	, DT		D A
C 1 N 7 5 8 5	C 7383	SPARE DA1423-22	D					D1		D A
1.000									· ·	


. • • . · ·

مو يېستې د چې د مېږي. د او د د د د

.

Α

640E 755 07798775 NORMAL ALARM ALARM AT STATUS CS SA AL PL TL BD TYPE MPL NO INSTRUMENT NO. REV PRINT PRINT NT NID NO. PRINTED DESCRIPTION TYPE REFERENCE DRAWING SCAN CLASS L 0 G COMPUTER TERMINAL NO CABLE NO WP SCAN REV NOTE NO. · S A ADRS D C AP I C51 -TIP PROBE AT TOP DE CORE LO-ND-ELL V D I P1500 **55 2** NM FCD Α ŶSÔÐ D AP I C51 TIP PROBE POSITION ለቦ፤ የ5ባኔ P1501 575 С NM FCD Α 10-ND-E11 AP I Â NSS SPARE P1202 AP I 214 A Y 502 B C API ROD SCRAM TIMING PULSE API Y503 P1503 512 A D C API WH/G GEN GROSS ENERGY AP 1 Y 504 P1504 576 A DC AP I WH/AT AUX XFMR ENERGY AP1 Y505 P1505 217 A WH/ST D C AP I STARTUP XFMR ENERGY АРТ У 506 P1506 **5**50 Α AP I WH/SB DC STANDBY XFMR ENERGY AP1 Y 507 P1,507 152 Α D AP I RAIN GAUGE AP1 Y508 P1508 573 С 10-ND-E02 À С С API AP I Y 509 NSS SPARE 10-ND-E12 P1509 270

والمرواد المراجع والمراجع المراجع والمراجع والمراجع والمراجع

• . •						· · ·						
							:.	· . · ·			:	•
" U // 118// 75 ТҮРЕ	PAC NID NO.		DESCRIPTION	• •	NORMAL PRINT	ALARM NT PRINT	ALARM	S CS SA	AL PL TI	. BD TYPE	MPL NO	INSTRUMENT NO. REV
SCAN ADRS		COMPUTER TERMINAL N	O CABLE NO		SCAN CLASS	REFERENCE		NOTE NO.				REV
001 2013	r 1013	80P SPARE 194210-21					· .			01	,	A A
- (፡₽ፕ ረባኔዓ	L1014	BOP SPARE								01		A
	L 1 O I S	80P SPARE 094210-23				· .				01		Å
C IN 2 5 0 0	C1953	TIP MACH A 081404-00	GUIDE DIGI	τl	D	NM FCD	CLSD	0		Dl	C51	. А В
C 1 N 7 50 1	C 1854	TIP MACH A D81404-01	GUIDE DIGI	5 1	D	NM FCD	CLSD	0		ÐL	C51	A B
2 502	C1952	TIP MACH A No 1404-02	GUIDE DIGI	ЕТ	D	NM FCD	CLSD	0		DJ	C21	A B
C I N 2 50 3	C195P	TIP MACH A 081404-03	GUIDE DIGI	т ч	Ð	NM FCD	CLSD	0		DJ	C51	. B
C I N Z 504	C1857	TTP MACH B D81404-04	GUIDE DIGI	ŢŢ	D	NM FCD	CLSD	Ŏ		DI	C 5 1	A B
C I N Z 505	C7959	ТІР МАСН В 081404-05	GUIDE DIGI	5 7	D	NM FCD	CLSD	' 0	~	Dl	C51	A B
С I N 7 50ь	C795J	TIP MACH B 081404-06	GUIDE DIGI	ЕТ	D	NM FCD	CLSD	0		OT	C 5 1	A B
C 1 N 7 5 9 7	C1830	ТІР МАСН В П31404-07	GUIDE DIGI	T 4	D	NM FCD	CLSD	0		01	C 5 1	A B

CLSD

CLSD

0

Ó

5

TIP MACH C GUIDE DIGIT 1 DA1404-DA

TIP MACH C GUIDE DIGIT 2 081404-09 D

D

NM FCD

NM FCD

j

.

CIN 7508

C 1 N Z 509

.

C 7 9 3 7

C1935

A B

A. B

Dl

.

Dl

C51

C 5 1

• ·

- 6486

			,											
					•		•							
							·.							۰.
147.087 T	'75 'PF	PAGE NID NO.	PRINTED DESCRIPTION	NORMAL PRINT	ALARM NT PRINT	ALARM AT STATUS	5 CS	SA	AL F	L TL	BD TYPE	MPL	NO INSTRUME	NT NO. REV
	AN DRS		COMPUTER TERMINAL NO CABLE NO WP	SCAN CLASS	REFERENCE DRAWING	LOG S A	NOTE	NO.						REV
	[N] 510	C1833	TIP MACH C GUIDE DIGIT 3 DA1404-10	D	NM FCD	CLSD	0				01	C51		A B
	IN 511	C 1834	TIP MACH C GUIDE DIGIT 4 DA1404-11	D	NM FCD	CLSD	0				07	CSL		B
	1N 1N	C1835	TIP SPARE 081404-12	D	· .						DI			B B
	1 N 5 b 3	C193P .	TIP SPARE DA 1404-13	D						•	01			8 8
	513 IN 514	C1837	TIP SPARE 081404-14	D	. •						01			8 B
	1N 515	C 1838	TIP SPARE 081404-15	Đ				•			01			8 8
		стеја									DJ			B B
Ż	IN 516		T1P SPARE 081404-15	D							, DJ			B B
	1 N 5 J 7	C1840	TIP SPARE 081404-17	D							Dl			B
	518 518	C1841	TIP SPARE OBL404-LB	D										
()	1N 519	C 1845	TIP SPARE 031404-19	D							DF			B B
	C 1 N 7 5 2 0	C 1843	TIP SPARE 081404-20	D			•				DJ			8 8
	CIN 2521	C1844	TIP SPARE 081404-21	· D							DL			8 8
		C1845	TIP SPARE D&1404-22	D							DŢ			8 B
	2 5 2 2		081404-CC	U										