43.e - 7 3 0	REGUL	ATOR	NEOR	ATION	DISTRIBUTION SY	TEM (RIDS)	· · ·
ACCESSION FACIL:50 Auth:n/ MCGAUGY Recip.n Denton,n	D=331 Duane A AME AL R.W. Iov NAME RE	Annold JTHOR Vá: Ele ECIPIE	AFFILIA Ctric L INT AFFI	Cent TION Sont Light	& Powers Co.	c Light & Pow 05	CKET # 000331
DISTRIB	Actions Bas Activities Integrated SEE JTION CODE: A	nay b plan Repts	Generi Secresci Tor mod	d Imp nedule is. B RECE	se to Generic Lt lication of Sale d during next up IVED:LTR <u>IENCL</u> ATWS Events GL-8	40 SIZE: 25	5+6
NOTES	JK/ L1 CENSING.	SUDMI	6 4 9 4 - C	a ten	Alwo Events de-o.	3-20	· · ·
•	RECIPIENT ID CODE/NAM NRR ORB2 BC	1 E a	COPIES LTTR E 3		RECIPIENT: ID CODE/NAME	COPIES LTTR ENCL	
INTERNAL	ELD/HDS2 NRR/DE/EQB NRR/DHFS/HFE NRR/DHFS/PSF NRR/DL/ORAB NRR/DSI/ASB NRR/DSI/ASB NRR/DSI/PSB	RB		0 1 1 1 1 1 1 1	IE/DQASIP NRR/DE/MEB NRR/DHFS/LQB NRR/DL DIR NRR/DL/SSPB NRR/DSI/ICSB NRR/DSI/ICSB RGN3		
EXTERNAL	AČRSª .NRC⇔PDR .NT≇S	02:	- 6 1 1	6 1 1	LPDR 0 NSIC 0	3« 11» 1« 5: 11 11» 11»	•
		•					•

TOTAL NUMBER OF COPIES REQUIRED: LTTR 30 ENCL 29

29

Iowa Electric Light and Power Company February 29, 1984 NG-84-0825

Mr. Harold Denton, Director Office of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission Washington, DC 20555

- Subject: Duane Arnold Energy Center Docket No: 50-331 Op. License No: DPR-49 Generic Letter 83-28: "Required Actions Based on Generic Implications of Salem ATWS Events"
- References: 1) Letter, D. Eisenhut to All Licensees of Operating Reactors, et. al., "Required Actions Based on Generic Implications of Salem ATWS Events, (Generic Letter 83-28), July 9, 1983.
 - Letter, R. McGaughy to H. Denton, "Generic Letter 83-28 "Required Actions Based on Generic Implications of Salem ATWS Event", NG-83-3824, November 7, 1983.

Dear Mr. Denton

This letter is in response to the referenced 10 CFR 50.54(f) letter from Mr. Eisenhut (see Reference 1), which requested that Iowa Electric submit the information requested in Generic Letter 83-28 to the NRC. The attachment to this letter provides our responses to each of the items in the Generic Letter. These responses supercede those submitted in our November 7 1983 letter, (see Reference 2). Where the information is available, it has been provided. Where programs have been developed to implement the NRC positions in the Generic Letter, plans and schedules have been included in our responses; however, we may find it necessary to reschedule some of these activities during the next update of our integrated plan for modifications to DAEC. For convenience, the information is provided in a position and response format in which the NRC position is repeated followed by our response.

Please contact this office if you require further information as to our responses.

	8403090262 840229 PDR ADDCK 05000331 P PDR	IOWA ELECTRIC LIGHT AND POWER COMPANY BY Richard W MDANKE
,	RWM/RAB/dmb* Attachment: Generic Letter 83-28 Response	Richard W. McGaughy Manager, Nuclear Division Subscribed and sworn to Before Melon
¥0	cc: R. Browning L. Liu S. Tuthill M. Thadani NRC Resident Office Commitment Control No. 83-0203	this 29th day of <u>Abuary</u> 1984. <u>Attleen</u> M. Juman Notary Public in and for the State of Iowa
	Ceneral Office • PO Box 351 • Ceo	lar Banids, Iowa 52406 • 319/398-4411

· 50-331 "REQUIRED ACTIONS BASED **ON** GENERIC IMPLICATIONS OF SALEM ATWS EVENTS" Docket # 50-35/ Control # 8403090262 Date 02.29.84 of Document REGULATORY DOCKET FILE NOTICE THE ATTACHED FILES ARE OFFICIAL RECORDS OF THE DIVISION OF DOCUMENT CONTROL. THEY HAVE BEEN CHARGED TO YOU FOR A LIMITED TIME PERIOD AND MUST BE RETURNED TO THE RECORDS FACILITY BRANCH 016. PLEASE DO NOT SEND DOCUMENTS CHARGED OUT THROUGH THE MAIL. REMOVAL OF ANY PAGE(S) FROM DOCUMENT FOR REPRODUCTION MUST BE REFERRED TO FILE PERSONNEL. DEADLINE RETURN DATE RECORDS FACILITY BRANCH REGULATORY DUCKET FILE CUPY

Appendix B

NSSS & BOP Post-Trip Logs Variable List

NSSS POST-TRIP LOG VARIABLE LIST

	Variable Description	Computer Address	Engineering Units
1)	Core Thermal Power (APRM Channel A)	B000	% of Rated Power
2)	Core Thermal Power (APRM Channel C)	B002	% of Rated Power
3)	Total Core Flow	B012	10 ⁶ 1bm/hr
4)	Core Pressure Drop	B103	Psid
5)	Feedwater Flow - Loop "A"	B015	10 ⁶ 1bm/hr
6)	Feedwater Flow - Loop "B"	B016	10 ⁶ 1bm/hr
7)	Reactor Water Level	B021	in. above TAF*
8)	Total Steam Flow	B022	10 ⁶ 1bm/hr
9)	Reactor Dome Pressure	B025	Psig
10)) Feedwater Temperature (Channel A	1) BO30	Deg-°F

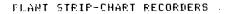
*TAF = Top of Active Fuel

BOP POST-TRIP LOG VARIABLE LIST

Variable Description	Computer Address	Engineering Units
1) Off-Gas System, Steam Jet Air Ejector Flow - Loop "A"	F003	ft ³ /min
2) Off-Gas System, Steam Jet Air Ejector Flow - Loop "B"	F093	ft ³ /min
3) Condensate Pump Discharge Pressure - Loop "A & B"	F004	Psig
4) Low Pressure Condensor Differential Pressure - Loop "A"	F011	Psid
5) Low Pressure Condensor Differential Pressure - Loop "B"	F012	Psid
6) High Pressure Condensor Differential Pressure - Loop "B"	F013	Psid
7) High Pressure Condensor Differential Pressure - Loop "A"	F014	Psid
8) Circulating Water Pump Discharge Pressure - Loop "A & B"	F015	Psig
9) Reactor Feedwater Pump Suction Pressure - Loop "A"	F040	Psig
10) Reactor Feedwater Pump Suction Pressure - Loop "B"	F041	Psig
11) Reactor Feedwater Pump Discharge Pressure - Loop "A"	F042	Psig
12) Reactor Feedwater Pump Discharge Pressure - Loop "B"	F043	Psig
13) Final Feedwater Heater Temperature Loop "A"	e- F067	Deg-F
14) Final Feedwater Heater Temperature Loop "B"	e- F068	. Deg-F
15) Turbine Steam Reheater Intercept Valve (CIV-1)	T022	Psig
16) Turbine Steam Reheater Intercept Valve (CIV-2)	T023	Psig

.

BOP POST-TRIP LOG VARIABLE LIST (Continued)


Variable Description	Computer Address	Engineering Units
17) Turbine First Stage Inlet Pressur	e T016	Psig
18) Generator Output Voltage	G000	ΚV
19) Generator Output - Gross	G001	MW
20) Generator Vars - Gross	G002	MVar
21) Generator Stator Current	G003	KAmp
22) Generator Field Voltage	G006	Volts
23) Generator Field Current	G007	Amp s
24) Alterex Cooler Inlet Air Temperat	cure GO16	Deg-C
25) Generator Stator Liquid Hydrogen Outlet Temperature	G050	Deq-C
26) Generator Cooling Water Inlet Conductivity	6051	mMho
27) Reactor Recirculation Pump Motor Vibration - Loop "A"	B079	mils
28) Reactor Recirculation Pump Motor Vibration - Loop "B"	B080	mils
29) Low Pressure Condensor Vacuum	T039	in-Hg
30) High Pressure Condensor Vacuum	Т040	in-Hg

Appendix C

Strip Chart Recorder List

RECORDER NO	NAME	LOCATION	SPEED	POINTS	RANGE	P7\$ →
NEUTRON MONITO	RING SYSTEM			· · ·	· .	
NMR 9253	Source Ranse Monitor	1005	1"/hr	Source Range B or D Source Range A or C	10-1 to 10-6 cps 10-1 to 10-6 cps	1¥23
NKR 9254A	IRM - APRM	1005	1°/hr	IRN "C" or APRM "C" IRM "A" or APRM "A"	0 to 40/125 0 to 40/125	1123
NMR 9254B	IRM - APRM / RBM	1005	1"/hr	RBM "B" IRM "B" or¦APRM "B"	0 to 125 % 0 to 40/125	1Y23
NMR 9254C	IRM - APRM / RBM	1005	1*/hr	RBM "A" IRN "E" or APRM "E"	0 to 125 % 0 to 40/125	1Y23
NMR 9254D	IRM - APRM	1005	1º/hr	IRM "D" or APRM "D" IRM "F" or APRM "F"	0 to 40/125 0 to 40/125	1123
RÆ 4574	J600 X−Y Recorder	1C13	N/A	. N/A	N/A	1711

RECIRC SYSTEM

1"/hr Recirc Fump A 0 to 40k spm 1711 1004 Recirc Pump Discharge Flow FR 4635 Recirc Pump B 0 to 40k spm 1Y11 Total Jet Pmum Flow 0 to 60k 1bm/hr 1005 1"/hr FR 4528 Reactor Flow D/F Core Pres Drop 0 to 30 psis DFR 4528 1Y21 24rts 0 to 300 F 1021 All pts in 2 min TR 4659 Recirc Drive Temp . 1Y21 0 to 300 F 24rts 1021 All pts in 2 min TR 4600 Recirc Fume Teme 1Y21 0 to 300 F 1021 All ets in 1 min 12ets TR 4661 Drive Motor Gen Temp 1 1 1 0 to 600 F 1"/hr Pump A TR 4603 A/B Recirc Fump Suct Temp 1004 0 to 600 F Pump B

•

						,
RECORDER NO	NAME	LOCATION	SPEED	FOINTS	. RANGE	₽/S
ECCS						
(VR 2283	HPCI Turbine Vibration	1003	1/2*/hr	N/A	0 to 3 mils	1 Y
FR 1971	RHR Pump Discharse Flow	1003	1º/hr	Pump A Pump B	0 to 15k s⊳m 0 to 15k ⊴⊳m	1)
FR 1945	RHR Water Temp & HFCl Turb & Fump Temp	1C21 All pts	in 2 min	24 pts	0 to 600 F	1)
R 1997	RHR & Emers Service Water Radiation	1002	1*/hr	N/A	10-1 to 10+6 cps	1)
TR 4400A	ADS Safety Valve Temperature	1021	3/4*/hr	FSV 4400 FSV 4401	0 to 600 F 0 to 600 F	1`
FR 4400B	ADS Safety Valve Temperature	1C21	3/4*/hr	P SV 4402 PSV 4403	0 to 600 F 0 to 600 F	1
FR 4400C	ADS Safety Valve Temperature	1021	3/4"/hr	PSV 4404 PSV 4405	0 to 600 F 0 to 600 F •	1
FR 4400D	ADS Safety Valve Temperature	1021	3/4"/hr	PSV 4406 PSV 4407	0 to 600 F 0 to 600 F	1
REACTOR VESSEL	INSTRUMENTATION					
TR 4569	Vessel Flang Shell Temp	1004	1*/hr -	Vessel Wall Vessel Top Head	0 to 600 F • 0 to 600 F	1
PR 4563/4564 LR 4559/4560	Reactor	1005	1 /hr	Reactor Fressure Reactor Water Level	0 to 1200 psis 158 to 218 in	1
PR 4542 FR 1003	Reactor & Turbine Steam	1005	1•/hr	Reactor Pressure Turbine Steam Flow	800 to 1100 psis 0 to 8x10+6 lbm/hr	1
FR 4579A	Reactor Pressure	1009	3/4"/hr	N/A	0 to 1500 psig	1
PR 45998	Reactor Pressure	1009	3/4"/hr	N/A	0 to 1500 psis	2
LR 4566	Reactor Vessel Level	1003	1º/hr	N/A	-100 to 200 in	1
TR 4570	Reactor Vessel Temperatures	1C59 All pts	s in 1,2 min	12 pts	0 to 600 F	1
TR 1889	CRD Temperatures	1C59 All pt	s in 20 min	100 Pts	0 to 500 F	1

.

.

.

٢

\$

١.

•

2

•

3

Э.

7

3

 \mathbf{T}

0

ĵ,

 (\cdot)

j,

Э

....

ر

₽

i

RECORDER NO	NAME	LOCATION		SPEED	POINTS	RANGE	F/S
SETAM AND TURI	BINE SYSTEMS						
FR 4450A FR 4450B	Feedwater and Steam	1005		1*/hr	Steam Flow Feedwater Flow	0 to 8×10+6 1bm/hr 0 to 8×10+6 1bm/hr	1123
°R 1000	Primary Steam Pres	1007		3/4"/hr	N/A	0 to 1200 psis	1 Y 1 1
VR 9019	Turbine Vibration	1007	All pts	in 1 min	10 pts	0 to 15 mils	1 Y 1 1
TR 9000	Turbine Temperature and Rotor Expansion	1007	All pts	in 2.5 min	10 pts 3 pts	0 to 600 F 0 to 750 mils	1711
TR 3127	Turbine Rearing & Rearing Drain Temp	1020	All pts	in 80 sec	16 Pts	0 to 300 F	1 Y 1 1
VFR 9304	Speed Control and Bypass Position	1007		3*/hr	Control Valve Posit. Bypass Valve Posit.	0 to 100 % 0 to 100 %	1 ¥ 1 1
RÆ 4448	Main Steam Radiation	1002		3/4°/hr	Ch A, C Ch B, D	1 to 10+6 mr/hr 1 to 10+6 mr/hr	1 Y 1 1
FEED AND COND	ENSATE SYSTEMS						
TR 1587	Final Feedwater Temperature	1006		1.5°/hr	A B	0 to 500 F 0 to 500 F	111
PR 1637	Final Feedwater Pressure	1006		3/4°/hr ·	N/A	0 to 2000 psig	1 Y 1
LR 1496	Hotwell Level	1005		3/4"/hr	N/A	-7 to +7 in	1Y1
CR 1514	Condensate Tube Conductivity	1006	All pts	in 1 min	12 pts	0 to 10 umhos	1Y1
FR 1479	Condenser Vacuum	1007		1*/hr	Hi Pres Condenser Low Pres Condenser	0 to 30 in Hs 0 to 30 in Hs	1 Y 1
TR 1511	Condensate and Feed Pump Bearing Temp	1020	All pts	in 2 min	24 pts	0 to 300 F	1 Y 1
TR 1200A	Feed and Condensate Temp "A"	1020	All pts	in 2.3 min -	20 pts	0 to 400 F	1 Y 1
TR 1200B	Feed and Condensate Temp "B"	1C20	All pts	in 2,3 min	20 Pts	0 to 400 F	1 Y 1
CR 1702	Condensate Conductivity	1080	All pts	in 30 sec	8 pts	0 to 10 umhos	184
FRCS 2810A	Cleanue Filter Deminerlizer •A•	1087		3/4"/hr	N/A	0 to 85 spm	1Y1
FRCS 2810B	Cleanup Filter Deminerlizer •B•	1CB7		3/4*/hr	N/A	0 to 85 spm	1 Y 1
CIRS 3509	Effluent Conductivity A & B	10136		1/2"/hr	A B	0 to 10 umhos 0 to 10 umhos	1 Y 1
FRCS 3511A	Filter Deminerlizer "A" Flow	10136		3/4*/hr	N/A	0 to 65 gem	1 Y I
FRCS 3511B	Filter Deminerlizer 'B' Flow	10136		3/4*/hr	NZA	0 to 65 gpm	111

٦

)

3

1

Ľ.

Ľ

C

b

0

D

D

D

0

D

 \mathbf{O}

RECORDER NO	NAME	LOCATION	SPEED	POINTS	RANGE	P/S
DRYWELL AND TO	ORUS					
RÆ 9184A	Hi Level Radiation	1009	1°/hr	North Drywell North Torus	1 to 10+7 rem/hr 1 to 10+7 rem/hr	1 Y 3 0
RR 9184B	Hi Level Radiation	1009	1"/hr	South Drywell South Torus	1 to 10+7 rem/br 1 to 10+7 rem/br	2130
LR 4397A LR 4396A	Water Level	1009	3/4°/hr	Torus Drywell	0 to 30 ft -20 to 80 ft	1Y30
LR 4397B LR 4396B	Water Level	1009	3/4"/hr	Torus Dryweil	0 to 30 ft ` -20 to 80 ft	2430
PR 4398A PR 4 3 99A	Drywell Fressure	1009	3/4°/hr	Low Pressure Hi Pressure	-5 to 5 psi O to 250 psi	1730
FR 43988 FR 43998	Drywell Pressure	1009	3/4°/hr	Low Pressure Hi Pressure	-5 to 5 psi 0 to 250 psi	2Y30
AR 4381	Containment Hydrogen, Oxygen	1009	3/4"/hr	0xaqeu	0 to 10, 0 to 25 % 0 to 10, 0 to 20 %	1Y30
AR 4382	Containment Hydrogen, Oxygen	1009	3/4°/hr	Haqiqoqeu Oxaqeu	0 to 10, 0 to 25 % 0 to 10, 0 to 20 %	2¥30
AR 4162	Off Gas hydrogen Annalyzer	1C34	1*/hr	A F	0 to 5 % 0 to 5 %	1 Y 1 1
AR 1705 .	Disolved Oxygen Annalyzer	10213	2*/hr	N/A	0 to 100 ppb	1L2(
RR 4379A	Containment Atmos Post LOCA Radiation	1629	3/4°/hr	Farticulate Gas Iodine	10 to 10+6 срм 10 to 10+6 срм 10 to 10+6 срм	1 Y 1 1
RR 4379B	Containment Atmos Post LOCA	1029	3/4°/hr	Particulate Gas Iodine	10 to 10+6 cpm 10 to 10+6 cpm 10 to 10+6 cpm	1Y21
TR 4383A	Drywell Air Temperature	1C29	3/4°/hr	; TE 4386G ; TE 4386J ; TE 4386L	0 to 350 F 0 to 350 F 0 to 350 F	1 Y 1 1
TR 43838	Dryewll Air Temperature	1029	3/4°/hr	TE 4386E TE 4386H TE 4386K	0 to 350 F 0 to 350 F 0 to 350 F	1 Y 24
TR 4383C	Drywell Air Temperature	1029	3/4°/hr	TE 4386F TE 4386M	0 to 350 F 0 to 350 F	1 Y 2
TR 4386A	Torus Water and Air Temperatures	1029	3/4°/br	Water TE 4325 Air TE 4386A Air TE 4386C	0 to 230 F 0 to 230 F 0 to 230 F	1 Y 1
TR 4386B	Torus Water and Air	1029	3/4"/hr	Water TE 4324	0 to 230 F	1Y2

RECORD	NAME	LOCATION		PEED	۴O	Ints	RANGE	P/S
PR/LR 4384	Containment and Nitrosen Fressure and Torus Water Level	1C29		3/4"/hr		Cont Pres Nitrogen Pres Water Level	-10 to 90 psig 0 to 150 psig -10 to 10 in	1 Y 1 1
PR/LR 4385	Containment Pressure and Torus Water Level	1029		3/4"/hr		Contain Pres Water Level	-10 to 90 psis -10 to 10 in	1 Y 2 1
TR 5713A	Drywell Cooling Loop A	1025 /	All pts	in 1.5 min	•	24 pts	0 to 200 F	1111
TR 5713B	Drywell Cooling Loop B	1025 4	All pts	in 1.5 min		24 pts	0 to 200 F	1Y21
FR 4339	Nitrosen Purse and Makeup Flow	1C142		1"/hr		Nitrosen Purse Makeup Flow	0 to 3k SCFH 0 to 300k SCFH	1 Y 2 1
OFF GAS SYSTEM							. •	
FR 1374	Off Gas Flow	1007		1*/hr			0 to 150 SCFM 0 to 150 SCFM	1111 -
TR 4137	Absorber Valt Temp	1C34		1"/hr .		NZA	0 to 100 F	1 Y 1 1
TRS 4141	Gyclol Storage Tank Temp	1034		1"/hr		N/A	0 to 100 F	1 Y 1 1
FR 4132	Inlet Flow to Holdup Line	1034		1"/hr		Hi Flow Lo /flow	0 to 200 SCFM 0 to 20 SCFM	1 Y 1 1
TRS 4112 MSR 4113	Gas Reheat Temp	1034	,	1 */h r		Inlet Temp Outlet Temp	0 to 100 F 0 to 100 F	1 Y 1 1
TRS 4154	Recombiner Temp	1034 4	All pts	in 30 sec		TE4154A-F	0 to 1000 F	1 Y 1 1
TRS 4136	Absorber Vessel Temp	1034 4	All pts	in 45 sec	-	TE4136A-G	50 to 150 F	1 Y 1 1
RR 4104	Off Gas Pretreatment Rad	1002		1º/hr		N/A	1 to 10+6 cps	1 Y 1 1
FR 4133	Off Gas Stack Flow	1002		3/4"/hr	•	NZA	0 to 10k SCFM	1123
RR 4116	Stack Gas Rad Mon	1002		1*/hr		Ch A Ch B	1 to 10+6 cps 1 to 10+6 cps	1723
RR 4105	Off Gas Rad Mon	1002		1"/hr		N/A	0 to 40/125	1 Y 1 1
RR 4101	Off Gas Post Treatment Radiation	1002				Ch A Ch B	.1 to 10+6 c₽s .1 to 10+6 c₽s	1111
RADWASTE								
FK 3707	Drywell Floor Drain Sump Flow	1004		1•/hr			0 to 120 gpm 0 to 120 gpm	1111
RR 3972	Radwaste Effluent to Canal	1C84		1"/hr		NZA	.1 to 10+6 cps	1711
FR 3943 HC-3942	Floor Drain Sample Dicharse	1C84		1*/hr		Hi Flow Low Flow	0 to 100 spm 0 to 10 spm	1 Y 1 1
	<pre>FR/LR 4384 FR/LR 4385 FR/LR 4385 TR 5713A TR 5713B FR 4339 OFF GAS SYSTEM FR 1374 TR 4137 TRS 4141 FR 4132 TRS 4141 FR 4132 TRS 4141 FR 4132 TRS 4141 FR 4132 TRS 4154 TRS 4154 TRS 4136 RR 4104 FR 4133 RR 4116 RR 4105 RR 4101 RADWASTE FR 3707 RR 3972 FR 3943</pre>	PR/LR 4384Containment and Nitrosen Pressure and Torus Water LevelFR/LR 4385Containment Pressure and Torus Water LevelFR 4385Containment Pressure and Torus Water LevelTR 5713ADrywell Coolins Loop ATR 5713BDrywell Coolins Loop BFR 4339Nitrosen Purse and Makeup FlowOFF GAS SYSTEMFR 1374Off Gas FlowTR 4137Absorber Valt TempTRS 4141Gyclol Storase Tank TempFR 4132Inlet Flow to Holdup LineTRS 4112Gas Reheat TempMSR 4113Tas Absorber Vessel TempFR 4134Off Gas Pretreatment RadFR 4135Off Gas Stack FlowRR 4104Off Gas Stack FlowRR 4105Off Gas Rad MonRR 4101Off Gas Post Treatment RadiationRADWASTEFrFR 3707Drywell Floor Drain Sump FlowFR 3972Radwaste Effluent to CanalFR 3943Floor Drain Sample Dicharse	PR/LR 4384Containment and Nitrosen Pressure and Torus Water Level1C29FR/LR 4385Containment Pressure and Torus Water Level1C29FR/LR 4385Containment Pressure and Torus Water Level1C25TR 5713ADrywell Coolins Loop A1C25TR 5713BDrywell Coolins Loop A1C25FR 4339Nitrosen Purse and Makeup Flow1C142OFF GAS SYSTEMFR1007FR 4137Absorber Valt Temp1C34TRS 4141Gyclol Storase Tank Temp1C34FR 4132Inlet Flow to Holdup Line1C34TRS 4112Gas Reheat Temp1C34MSR 4113Tecombiner Temp1C34TRS 4136Absorber Vessel Temp1C34FR 4133Off Gas Stack Flow1C02FR 4104Off Gas Rad Mon1C02FR 4105Off Gas Rad Mon1C02RR 4101Off Gas Pretreatment Radiation1C02RR 4101Off Gas Post Treatment Radiation1C04RR 3707Drywell Floor Drain Sump Flow1C04FR 3792Radwaste Effluent to Canal1C84FR 3743Floor Drain Sample Dicharge1C84	FR/LR 4384Containment and Nitrogen Pressure and Torus Water Level1C29FR/LR 4385Containment Pressure and Torus Water Level1C25FR/LR 4385Containment Pressure and Torus Water Level1C25TR 5713ADrywell Coolins Loop A1C25All ptsTR 5713BDrywell Coolins Loop B1C25FR 4339Nitrosen Purse and Makeup Flow1C142OFF GAS SYSTEMFR 1374Off Gas Flow1C07TR 4137Absorber Valt Temp1C34FR 4132Inlet Flow to Holdup Line1C34FR 4132Gas Reheat Temp1C34All pts1KS 4114Ger Bereitent RadSR 4113Gas Stack Flow1C02FR 4133Off Gas Stack Flow1C02FR 4133Off Gas Stack Flow1C02FR 4104Off Gas Rad Mon1C02FR 4105Off Gas Rad Mon1C02FR 4101Off Gas Post Treatment Radiation1C04FR 3707Drywell Floor Drain Sump Flow1C04FR 3792Radwaste Effluent to Canal1C84FR 3793Floor Drain Sample Dicharse1C84	PR/LR 4384Containment and Nitrogen Pressure and Torus Water Level1C293/4*/hrPR/LR 4385Containment Pressure and Torus Water Level1C293/4*/hrTR 5713ADruwell Coolins Loop A1C25All pts in 1.5 minTR 5713BDruwell Coolins Loop A1C25All pts in 1.5 minFR 4339Nitrosen Purse and Makeup Flow1C1421*/hrOFF GAS SYSTEM1C071*/hrFR 1374Off Gas Flow1C071*/hrTR 4137Absorber Valt Temp1C341*/hrTRS 4141Guclol Storase Tank Temp1C341*/hrFR 4132Inlet Fluw to Holdup Line1C341*/hrTRS 4112Gas Reheat Temp1C34All pts in 30 secTRS 4136Absorber Vessel Temp1C34All pts in 45 secRR 4104Off Gas Flow1C021*/hrFR 4133Off Gas Stack Flow1C021*/hrFR 4134Recombiner Temp1C34All pts in 45 secRR 4104Off Gas Rad Mon1C021*/hrRR 4105Off Gas Rad Mon1C021*/hrRR 4101Off Gas Rad Mon1C021*/hrRABUABTEFlow1C041*/hrFR 3707Druwell Floor Brain Sump Flow1C041*/hrFR 3743Floor Brain Sample Bicharge1C841*/hr	PR/LRContainment and Nitrogen Pressure and Torus Water Level1C293/4*/hrPR/LR4385Containment Pressure and Torus Water Level1C293/4*/hrPR/LR4385Containment Pressure and Torus Water Level1C293/4*/hrTR5713ADruwell Coolins Loop A1C25All ets in 1.5 minTR5713BDruwell Coolins Loop A1C25All ets in 1.5 minFR5713BDruwell Coolins Loop A1C25All ets in 1.5 minFR5713BDruwell Coolins Loop A1C1421*/hrOFF GAS SYSTEMF1C071*/hr*A* Air *B* AirFR1374Off Gas Flow1C071*/hrTR 4137Absorber Valt Temp1C341*/hrTRS 4112Gas Reheat Temp1C341*/hrFR 4132Inlet Flow to Holdup Line1C3411*/hrTRS 4112Gas Reheat Temp1C34All ets in 30 secTRS 4134Recombiner Temp1C34All ets in 30 secTRS 4136Absorber Vessel Temp1C34All ets in 45 secR 4104Off Gas Stack Flow1C021*/hrFR 4133Off Gas Rad Mon1C021*/hrR 4104Off Gas Rad Mon1C021*/hrR 4105Off Gas Rad Mon1C021*/hrR 4101Off Gas Rad Mon1C021*/hrR 4101Off Gas Rad Mon1C021*/hrR 4101Off Gas Rad Mon1C021*/hrR 4101Off Gas Rad Mon<	FR/LR 4384Containment and Nitrosen Pressure and Torus Water Level1C293/4*/hrCont Free Water LevelFR/LR 4385Containment Pressure and Torus Water Level1C293/4*/hrContain Press Water LevelTR 5713ADruwell Cooling Loop A1C25All rts in 1.5 min 1.5 min24 rtsTR 5713BDruwell Cooling Loop A1C25All rts in 1.5 min 1.5 min24 rtsFR 4339Nitrosen Purse and Hakeup Flow1C1421*/hrNitrosen Purse Mater LevelOFF 6AS SYSTEHF1C071*/hr*A' Air Elector *B' Air Elector *B' Air ElectorFR 4137Absorber Valt Temp1C341*/hrN/AFR 4132Inlet flow to Holdup Line1C341*/hrN/AFR 4133Gas Reheat Temp1C341*/hrN/AFR 4133Gas Stack Flow1C021*/hrN/AFR 4133Off Gas Stack Flow1C021*/hrN/AFR 4134Recombiner Temp1C34All rts in 30 secTE413A-FFR 4133Off Gas Stack Flow1C021*/hrN/AFR 4133Off Gas Stack Flow1C021*/hrN/AFR 4105Off Gas Rad Mon1C021*/hrN/AFR 4105Off Gas Rad Mon1C021*/hrN/AFR 4105Off Gas Rad Mon1C021*/hrN/AFR 4105Off Gas Rad Mon1C021*/hrN/AFR 4105Off Gas Rad Mon1C021*/hrN/AFloor Brain Sump Flow </td <td>PR/LR 4384 Containent and Nitroien Pressure and Torus Water Lovel 1/27 3/4*/hr Cont Pres Nitroien Pressure Water Lovel -10 to 90 esig to 10 to 90 esig Nitroien Pressure Water Lovel -10 to 90 esig 10 to 10 in FR/LR 4385 Containent Pressure and Torus Water Lovel 1029 3/4*/hr Contain Pres Water Lovel -10 to 90 esig 10 to 10 in FR/LR 4385 Containert Pressure and Torus Water Lovel 1023 All ets in 1.5 min 24 ets 0 to 200 F FR 5713A Druvell Coolins Loor A 1025 All ets in 1.5 min 24 ets 0 to 200 F FR 4337 Nitrosen Purse and Hakeup Flow 10107 1'/hr Nitrosen Purse Makeur Flow 0 to 150 SCFH FR 1374 Off Gas Flow 1007 1'/hr N/A 0 to 100 F FR 4137 Absorber Vall Tear 1034 1'/hr N/A 0 to 100 F FR 4138 Guclol Storses Tank Teap 1034 1'/hr N/A 0 to 20 SCFH FR 4137 Absorber Vessel Teap 1034 1'/hr N/A 0 to 100 F FR 4138 Guclo Starses Tank Teap 1034 1'/hr N/A</td>	PR/LR 4384 Containent and Nitroien Pressure and Torus Water Lovel 1/27 3/4*/hr Cont Pres Nitroien Pressure Water Lovel -10 to 90 esig to 10 to 90 esig Nitroien Pressure Water Lovel -10 to 90 esig 10 to 10 in FR/LR 4385 Containent Pressure and Torus Water Lovel 1029 3/4*/hr Contain Pres Water Lovel -10 to 90 esig 10 to 10 in FR/LR 4385 Containert Pressure and Torus Water Lovel 1023 All ets in 1.5 min 24 ets 0 to 200 F FR 5713A Druvell Coolins Loor A 1025 All ets in 1.5 min 24 ets 0 to 200 F FR 4337 Nitrosen Purse and Hakeup Flow 10107 1'/hr Nitrosen Purse Makeur Flow 0 to 150 SCFH FR 1374 Off Gas Flow 1007 1'/hr N/A 0 to 100 F FR 4137 Absorber Vall Tear 1034 1'/hr N/A 0 to 100 F FR 4138 Guclol Storses Tank Teap 1034 1'/hr N/A 0 to 20 SCFH FR 4137 Absorber Vessel Teap 1034 1'/hr N/A 0 to 100 F FR 4138 Guclo Starses Tank Teap 1034 1'/hr N/A

 \mathbf{x} :

,

RECORDER NO	NAME	LOCATION	SPEED	FOINTS	RANGE	F/S
SERVICE WATE	R SYSTEMS					
FR 4917	River Water Makeup Flow *A*	1006	3/4°/hr	N/A	0 to 14k gpm	1 Y 1 1
FR 4916	River Water Makeup Flow "B"	1006	3/4*/hr	N/A	0 to 14k spm	1 ¥ 1 1
LR 4935A	ESW / RHRSW Fit Level	1029	3/4"/hr	N/A	0 to 33 ft	1 Y 1 1
LR 4935B	ESW / RHRSW Pit Level	1029	3/4"/hr	N/A	0 to 33 ft	1 Y 2 1
RR 4820	Service Water / CWW Rad	1002	1º/hr	Closed Cooling Water Service Water	.1 to 10+6 cps .1 to 10+6 cps	1 Y 1 1
FR 4414	. Well Pum⊳ Flow	1023	3/4"/hr	P1-58A F1-58B F1-58C	0 to 1000 gpm	1 Y 2 1
FR 4247	Circ Water Rlow Down to Canal	1C225	1"/hr	N/A	∘O to 7k spm	1L50
TR 4200	Circulating Water Temperatures	1C20 A11	ets in 40 sec	8 pts	0 to 200 F	1711
GENERATOR					Ň	
WR 1000	Generator Gross Megawatts	1C31	1.5°/hr	N/A	0 to 600 mw	1111
VR 1001	Generator Gross Megavars	1C31	1.5*/hr	N/A	-300 to 300 mv	1711
WVR 2000	Aux Transformer Watts-Vars	1031	1.5"/hr	N/A	0 to 50 mw	1111
WVR 3000	Startup Xfmer X-windins Watt-Vars	1031	1.5°/hr	N/A	0 to 25 mw	1711
WVR 3001	Startup Xfmer Y-winding	1031	1.5"/hr	N/A	0 to 25 mw	1 Y 1 1
WVR 4000 /	Watt-Vars Stby Xfmer Watts-Vars	1031	1.5°/hr	N/A	0 to 7.5 mw	. 1711
WR 1100	Net Plant Mesawatts	1C31	3"/hr	N/A	0 to 600 mw	1 Y 1 1
CR 3609	Generator Machine Gas Humidity	1C83	1rev/das	N/A	0 to 80 %	1921

في 2

•

•

•

>

>

3

Э

7

2

-

N...*

_

•

•

•

·

4

RECORDER NO	NAME	LOCATION	SPEED	FOINTS	RANGE	₽/S
VENTILATION SY	STEMS					
RR 7606A	Reactor Building Exaust Radiation	1C183	2"/hr	NZA	.05 to 50 mr/hr	1111
RR 7606B	Reactor Building Exaust Radiation	1C184	2"/hr	N/A	.05 to 50 mr∕hr	1Y21
RR 5946	Turbine Buildins Vent Rad	1C367	1"/hr	Vent Rad Hi Range Vent Rad Lo Range	10-3 to 10+5 uc/ce 10-8 to 1 uc/ce	1Y34
FR 5945	Turbine Vent Flow	IC367	1*/hr	N/A	0 to 72k SCFM	1 ¥ 3 4
RF 4131	Reactor Building Vent Rad	1002	1"/hr	Ch A Ch B	.01 to 100 CPM .01 to 100 CPM	1123
RR 7613	Reactor Building Exaust Gas	10336	1"/hr	N/A	10-3 to 10+5 uc/ce 10-8 to 1 uc/ml	1Y34
RR 7614	Reactor Building Exaust Gas	10336	1º/hr	N/A	10-3 to 10+5 uc/cc 10-8 to 1 uc/cc	1 Y 3 4
RR 7615	Reactor Building Exaust Gas	10336	1"/hr	N/A	10-3 to 10+5 uc/cc 10-8 to 1 uc/cc	1142
	Off Gas Stack Gas	Control Room	(1	o be installed)	10-3 to 10+5 uc/cc 10-8 to 1 uc/cc	
MISCELLANEOUS						
XR 1234	Computer Trend	1007	3/4"/hr	Ft 1 · Pt 2	0 to 100 % 0 to 100 %	1 Y 1 1
XR 1235	Computer Trend	1007	3/4*/hr	Ft 3 Ft 4	0 to 100 % 0 to 100 %	1 Y 1 1
CR 2737	Cleanup Outlet Conductivity	1004	1º/hr	Ch A Ch B	0 to 1 umho 0 to 1 umho	1 ¥ 1 1
CR 2738	Cleaunp Inlet Conductivity	1004	1"/hr	Ch A Ch B	0 to 10 umhos 0 to 10 umhos	1 ¥ 1 1
FR 9150	Area Rad Monitors	1CO2 All Pte	s in 1 min	12 Pts	.01 to 100 mr/hr	160

.

.

C

0

-

Appendix D

Control Room Panel Annunciator List

REACTOR AND CONTAINNENT COOLING AND ISOLATION

Panel 1003-A

м	AIN STEAM LINE HI RADIATION	PRETHEATMENT OFF GAS SYSTE WILL ISOLATE	OFF GAS VERT PIPE SM4PLE NI/LO FLOW	PCST TREATMENT OFF-CAS III RADIATION	FUEL POOL EXHAUST DOWNSCALE/INOP	ADS In test Status	ADS CORE SPRAY OR RIIR PUHP RUNNING		CORE SPRAY SYSTEM I HEADER TO TOP OF CORE PLATE HI &P
F	OST TREATMENT OFF GAS HIGH-HIGK RADIATION	PRETREATMENT OFF-GAS DOWNSCALE OR INOPERATIVE	OFF-GAS VENT PIPE NI RADIATION	LIQUID RADIATIO MONITORS DOWNSCALE OR INOPERATIVE	H ADS BAFETY VALVE LEAKING	ADS TEST PROCEDURE FAULTY BOTH TEST JACES INSTALLE	SYSTEM I VALVE NI DISCHARGE	POST TREATMENT OFF-GAS DOWNSCALE	RIIR IX E11-BOOIA TUBE-TO-SHELL LO PRESSURE
- U	LOWISCALE	POST TRRATHERT OFF-GAS IIJ-III-III RADIATION OR INOPERATIVE	OFF-GAS VENT PIPE HI-HI RADIATION	FUEL POOL EXHAUST HI RADIATION	ADS HI DRYWELL PRESS SIGNAL SEALED-IN	ADS CONTROL POWER FAILURE UNDER VOLTS		CORE SPRAY SYSTFM 1 & 2 LOGIC POWER FAILURE UNDER VOLTS	POST TREATMENT OFF-GAS SAMPLE HI/LO FLOW
1	PRETREATMENT WERAGE ANNUAL RELEASE LIMIT VILL EE EXCEEDED	PREIREATHENT OFF-GAS SAUPLE FLOW TROUBLE	OFF-GAS VENT PIPE DOWNSCALE INOPERATIVE	FUEL POOL EXHAUST HI-HI RADIATION	ADS TIMERS INITLATED	ADS RELAYS ENERGIZED	CORE SPRAY SYSTEM 1 PUMP 1P211A MOTOR OVERLOAD	CORE SPRAY SYSTEM 1 ACTUATED	REACTOR BLDG CLOSED COOLING WATER HIGH RADIATION

11

37

Rev. 1 May 9, 1983

1

REACTOR AND CONTAINMENT COOLING AND ISOLATION

Panel 1003-B

			t				Ĩ	
ADS LO WATER LEV	RIFR SERVICE WATER IUSIP 1P-22C OVERLOAD	RIIR PUMP 1P-2290 OVERLOAD	RHR REACTOR LOOP SECTION LO LEVEL	RIIR DRYWELL HI TRESSURE	RIR HX A/B INLET WATER HI TEMPERATURE	CORE SPRAY SYSTEM 1 LOOP LO DISCHARGE PRESSURE	RIIR SERVICE WATET PUMP 1P-22B OVERLOAD	RIFR PUMP 1P-229B OVERLOAD
RHR SFRVICE WATER PUMP 1P-22A TRIP	RIIR PUMP IP-229/ TRIP	RIIR Bystim I Actuated	RIIR In test status	RIIR REACTOR LO PRESSURE	NHR HX A/B DISCH COOLING WATER HI TEMPERATURE	TORUS VACUUM BREAKER LOOP A HI AP	RHR SERVICE WATER PUMP 1P-22D OVERLOAD	RIIR PUMP 1P-229D OVERLOAD
RIIR SERVICE WATER PUMP 1P-22C TRIP	RIM PUMP 1P-229C TRIP	RHR BUS A/B LOGIC POWER FAILURE	RIR CONTAIN SPRAY SENVICE WATER PUMP SELECT OVERHIDE	RIUR SYSTEM 1/2 DISCH. HEADER HI/LO PRESSURE	RIIR IX 1E-201B TUBE-TO-SHELL LO TRESSURE	RIIR SERVICE WATER PUMP 1P-22B TRIP	RIIR PUMP 1P-229B TRIP	RIER SYSTEM 2 ACTUATED
RIR SFRVICE WATER FUMP 1?-22A OVERLOAD	RIIR PUMP 1P-229A GVERLOAD	AIR SERV WIR EMERG SERV WIR STRAINERS ≏P HI	RIFR REACTOR INITIATION LO LEVEL	RER EX 12-201A/B OUTLET II CONDUCTIVITY	SUCTION NEADE	RIIR SERVICE WATER D PUMP 1P-22D TRIP	RIIR PUMP 1P-229D TRIP	OFF CAS TROUBLE

[]

38 8

Panel 1003-0

. .

REACTOR AND CONTAINMENT COOLING AND ISOLATION

CORE BPRAY SYSTE4 2 VALVE HI DISCHARCE PRESSURE	CORE ÉPRAY SYSTEM 2 Loop Low Discharge Pressure	HPCI Lo Flow	HPCI OIL TAUK HI/LO LEVEL	HPCI , PUMP, SUCTION , LO PRESSURE 1 \	NPCI TURBINE BEARING OIL LO PRESSURE	HPCI TURDINE INLET STEAN LINE WATER DRAIN PO HI LEVEL	HPCI TURBINE/LOGIC TEST SW IN TEST	HPCI LOGIC BUS POWER FAILURE UNDER VOLTS
CORE SPRAY SYSTEM 2 PUMP 1P211b TRIPPED	TORUS VAC BKR. LOOP B III AP	NUCLEAR INSTRUMENTS SYSTEM A EXCESS FLOW	HPCI AUX OIL PUMP MOTOR OVERLOAD	NPCI PUMP SUCTION HI PRESSURE	HPCI VACUUM TANK HI PRESSURE	HPCI TURB OIL COOL DISCHARGE OIL HI TEMPERATURE	HPCI TURBINE EXHAUS DIAPHRAGM HI PRESSURE	HPCI STEAM LINE HI <u>A</u> P
CORE SPRAY SYSTEM 2 PUMP 1P211B MOTOR OVERLOAD	CORE SPRAY System 2 Actuated FMP Start	NUCLEAR INSTRUMENTS SYSTEM B EXCESS FLOW	NPCI Inverter Circuit Failure	HPCI VACUUM BREAKER V-F069/F070 NOT FULLY OPEN	HPCI Vacuum tank HI Level	HPCI TURBINE TRIP SOLENOID ENERGIZED	HPCI TURBINE EXHAUST LINE DISCHARGE HI PRESSURE	HPCI CNDS STORAGE TANK A/B LO WATER LEVEL
CORE SPRAY SYSTEM 2 HEADER TO TOP OF CORE PLATE HI AP	CCRE SPRAY In test	HPCI LOGIC A ISOLATION FRIP SIGNAL INITIATED	NPCI LOGIC B ISOLATION TRIP SIGNAL INITIATED	HPCI OIL FILTER HI AP	NPCI VACUUM TANK LO LEVEL		HPCI TURBINE EXHAUST LINE DRAIN POT HI LEVEL	HPCI SUPPR POOL HI LEVEL

39

Π

Rev. 0 April 11, 1983

Panel 1CO4-A

REACTOR WATER CLEANUP AND RECIRCULATION

RECIRC SYST A GENERATOR LOCKOUT	A STARTUP	RECIRC SYST A GENERATOR FIELD GROUND	RECÍRC SYST A DRIVE MOTOR TRIP	RECIRC SYST A PUMP SEAL STAGING HI/LO FLOW	RECIRC SYST A ONLY IN SERVICE	RECIRC SYST B GENERATOR LOCKOUT		RECIRC SYST B GENERATOR FIELD GROUND
RECIRC SYST A DC CONTROL POWER TRANSFER	RECIRC SYST A DRIVE MOTOR OVERLOAD	A FLUID	A PUMP Motor Hi	A PUMP SEAL CLOSED COOL ING WATER	A/B GENERA- TOR AND DR	B DC Control Power	RECIRC SYST B DRIVE MOTOR OVERLOAD	RECIRC SYST B FLUID DRIVE OIL HI TEMPERATURE
RECIRC SYST A AUX GENERATOR LOCKOUT	A DC AUX LUBE OIL PUMP LOSS	RECIRC SYST A FLUID DRIVE OIL LO TEMP	RECIRC SYST A PUMP MOTOR OIL LEVEL	A FLUID DRIVE	A/B MG SET BEARING AND	B AUX GENERATOR	B, DC AUX LUBE OIL PUMP LOSS	RECIRC SYST B, FLUID DRIVE OIL LO TEMP
	RECIRC SYST A FLOW LIMIT	A FLUID DRIVE LUBE OIL LO	A OUTER SEAL LEAK	A OIL MIST	A/B PUMP MOTOR HI TEMPERATURE		B FLOW LIMIT	RECIRC SYST B FLUID DRIVE LUBE OIL LO PRESSURE

11

₿

Rev. 0 April 11, 1983

Panel 1CO4-B

REACTOR WATER CLEANUP AND RECIRCULATION

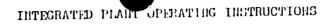
II 41

Rev. 0 April 11, 1983

RECIRC SYST B DRIVE MOTOR TRIP	RECIRC SYST B PUMP SEAL STAGING HI/ LO FLOW	RECIRC SYST B ONLY IN SERVICE	RADWASTE TROUBLE	CONTROL VLV. ISO. BYPASS	REACTOR BLDG HI RADIATION	RADWASTE BLDG HI RADIATION		CLEANUP SYS PUMP LO FLOW
B PUMP	RECIRC SYST B PUMP SEAL CLOSED COOL ING WATER LO FLOW	DETECTION	STEAM LEAK DETECTION SYS AM- BIENT HI TEMPERATURE	DETECTION SYS LOGIC B IN TEST	NEW FUEL STORAGE AREA HI RADIATION	ADMIN. BLDG HI RADIATION	CLEANUP SYS HI/LO DISCH PRESSURE	CLEANUP SYS FILTER DEMIN TROUBLE
RECIRC SYST B PUMP MOTOR OIL LEVEL	RECIRC SYST B FLUID DRIVE SCOOP TUBE LOCK	BYPASS VALVE 4309/		STEAM LEAK DETECTION SYS HPIC LOGIC POWER FAILURE	SPENT FUEL STORAGE AREA HI RADIATION	AREA MONITORS DOWNSCALE INOP	CLEANUP SYS PUMP COOL- WATER HI TEMPERATURE	FILTER INLET HI TEMPERATURE
RECIRC SYST B OUTER SEAL LEAK DETECTION HI FLOW•	RECIRC SYST B OIL MIST ELIMINATOR HI DIFFER- ENTIAL P.		STEAM LEAK DETECTION SYS HI DIFFEREN- TIAL TEMP.	VESSEL FLANGE SEAL LEAK	TURBINE BLDG HI RADIATION	RHR OR EMERG SERV WATER RADIATION HIGH	CLEANUP SYS HI DIFFEREN- TIAL FLOW	CLEANUP SYS FILTER INLET HI- HI TEMP.

Panel 1004-C

REACTOR WATER CLEANUP AND RECIRCULATION


Π

	RADWASTE EFFLUENT HIGH RADIATION	Fuel Pool Cooling Trouble	TORUS AREA Leakage	and a market in the second sec	RCIC PUMP SUCTION VALVE MO-2516 FROM TORUS FULL I OPEN	RCIC PUMP DISCHARGE LO FLOW SENSOR	RCIC TURBINE HI PRESSURE BEARING HI TEMPERATURE	RCIC TURBINE BEARING OIL LO PRESSURE	RCIC . STEAM LINE HI &P
	SERVICE WATER EFFLUE: T HIGH RADIATION	TORUS LEVEL High Rise	DRYWELL EQUIP DRAIN SUMP HI-HI LEVEL	REACTOR BLDG EQUIP DRAIN SUMP HI LEAK	RCIC ISOLATION TRIP SIGNAL LOGIC A	LO LEVEL	RCIC TURBINE LO PRESSURE BEARING HI TEMPERATURE	RCIC TURBINE EXHAUST NI PRESSURE	RCIC LOGIC BUS A/B POWER FAILURE
•	CARBON BED VAULT DOWNSCALE/INOP	DRYWELL FLOOR DRAIN SUMP NI-NI LEVEL	DRYWELL EQUIP DRAIN SUMP NI LEAK	REACTOR BLDG FLOOR DRAIN SUMP HI LEAK	RCIC PUMP SUCTION HI PRESSURE	RCIC BAROMETRIC Cond Vacuum Tank HI LEVEL	RCIC TURBINE TRIP/RCIC TRIP ON HI REAC VSL LVL	RCIC IURBINE EXHAUST DIAPHRAGM HI PRESSURE	RCIC INVERTER POWER FAILURE
	CAREON BED Vault High Radiation	DRYWELL FLOOR DRAIN 5UMP HI LEAK	DRYWELL EQUIP DRAIN SUMP NI TEMPERATURE	RCIC OIL FILTER DIFFERENTIAL KI PRESSURE	RCIC PUMP SUCTION LO PRESSURE	RCIC VACUUM TANK NI PRESSURE	RCIC IN TEST STATUS	RCIC TURBINE INLET STEAM LINE DRAIN PCT HI LEVEL	RCIC ISOLATION TRIP SIGNAL LOGIC B

42

Rev. 0 April 11, 1983

REACTOR CONTROL

Panel 1C05-A

							·	
	+ 24 V-DC SYSTEM A TROUBLE	RPT SYS A OR B TRIP	CRD CHARGING WATER HI PRESSURE	IRM A UPSCALE TRIP OR INOPERATIVE	IRM B. UPSCALE TRIP OR INOPERATIVI	APRM BUS A UPSCALE TRIP INOP	APRM BUS B UPSCALE TRIP INOP	REACTOR VESSEL WATER LO-LO LEVEL
4 4	+ 24V-DC TROUBLE	CONTINUITY LOSS TO SQUIB VALVE	CRD WATER FILTER HI AP	IRM UPSCALE	SRM PFRIOD	LPRM UPSCALE		CHANNEL A LO CONDENSER VACUUM BYPASS
5	REACTOR HI/LO LEVEL	STANDBY LIQUID TANK HI/LO TEMP	CRD PUMP 1P-209A SUCTION LO PRESSURE	SRM UPSCALE OR INOPERATIVE	SRM DETECTOR RETRACTED WHEN NOT PERMITTED	RBM UPSCALE INOP	FLOW REF OFF NORMAL	CHANNEL A 4AIN S'FM TUHNEL HI TEMPERATURE
	REACTOR HI PRESSURE	STANDBY LIQUID TANK HI/LO LEVEL	CRD PUMP 1P-209B SUCTION LO PRESSURE	IRM DOWNSCALE	RPT SYS A OR B OUT OF SVC	LPRM DOWNSCALE	TORUS/DRYWELL VENT VALVE 4300/4302 PERMISSIVE	CHANNEL A MAIN STEAM LINE HI FLOW
•	FEEDWATER VALVE A AIR LO PRESSURE	CRD FUMP 1P-209A NI VIBRATION	CRD PUMP 1P-209 A OVERLOAD	SRM DOWNSCALE	CRD PUMP 1P-209A TRIPPED	APRM DOWNSCALE	CHANNEL A COND LO VAC OR T.B. BLDG HI TEMP	CHANNEL A MAIN STEAM LINE LO PRESSURE
•	FEEDWATER VALVE, BAIR LO PRESSURE	CRD FUMP 1P-209B HI VIBRATION	CRD PUMP 1P-209B OVERLOAD	RPT LOGIC A OR B POWER LOSS	CRD PUMP 1E-209B THTPPED	RBM DOWNSCALE	TRIP SYST A REACTOR AUTO SCRAM	TRIP SYST A REACTOR MAHUAL SCRAM

II 43

Rev. 1 May 9, 1983

Panel 1005-B

REACTOR CONTROL

	r <u> </u>						
REACTOR VESSEI WATER LO-LO-LO LEVEL	DISCH. VOLUME HI WATER LEVE CRD TRIP	NEUTRON MONITORING SYS TRIP	MAIN STEAM LINE HI RADIATION TRIP	SCRAM DISCHARGE VOLUME NOT DRAINED	MAIN STEAM ISOLATION VALVE CLOSURE TRIP BYPASS	ROD OU T BLOCK	ROD SEQUENCI CONTROL SYSTEM À RODS BYPASSED
LO CONDENSER	MAIN STEAM LINI ISOLATION VLV NOT FULLY OPEN TRIP		TURBINE CONTROL VALVE FAST CLOSURE TRIP	CRD ACCUMULATOR LO PRESSURE HI LEVEL	MODE SWITCH SHUTDOWN SCRAM BYPASS	ROD OVERTRAVEL	ALL A/B SEQUENCE RODS NOT FULL OUT
CHANNEL B STEAM TUNNEL HI TEMPERATURE	REACTOR VESSEI HI PRESSURE TRIP	TRIP SYSTEM B REACTOR AUTO SCRAM	TURBINE STOP VALVE CLOSURE TRIP	PRIMARY CONTAINMENT HI/LO PRESSURE	REACTOR VESSEL HI PRESSURE	ROD DRIFT	ROD SEQUENCE CONTROL SYSTEM MALFUNCTION
CHANNEL B MARN STEAM LINE HI FLOW	PRIMARY CONTAINMENT HIGH PRESSURI TRIP	TRIP SYSTEM B MANUAL SCRAM	PANEL 1C-208 TROUBLE	CONTROL VALVE FAST CLOSHRE THRB STOP VALVE SCRAM AND RPT BYPASS		CRD HYD HI TEMPERATURE	CONTAINMENT HI OXYGEN CONTENT A
AIN STEAM LINE	RECIRC PUMP A HIGH PRESSURE LOW LEVEL TEST	HIGH PRESS.	ROD SEQUENCE CONTROL SYSTEM B RODS BYPASSED	DISCH. VOLUME WATER HI LEVEL TRIP BYPASS	NPCI AUTO INITIATE	RCIC AUTO INITIATE	CONTAINMENT HI OXYGEN CONTENT B
	RECIRC.PUMP A HIGH PRESSURE LOW LEVEL TRIP	RECIRC.PUMP B HI PRESSURE LOW LEVEL TRIN	GROUP I ISOLATION	GROUP II, III, IV ISOLATION	GROUP V ISOLATION	RW4 ROD BLOCK	TIP SHEAR VALVE CLOSED CKT ABNORMAL

i

..

Π

44

Rev. 1 May 9, 1983

• •

FERDVATER AND CONDENSATE

Panel 1006-A

												·······	
1	NATER GUPPEY PLXP PI3 "A" LLVEL LOW	WATER GUPPLY PURP PIT "B" LEVEL LOW	ETR. SUPPLY P 19117B AUTO TE.IP OR DIGADLED	WATER GUPPLY PP 1P117D AUTO THIP OR DISABLED	COOLING TOWE 1E-69A FANS TROUBLE	COOLING TOWER 1E-698 FANS TROUBLE	CONDELISIA HOT WELD LEVEL DIGH	I Cohd Btohage Tank 17-5a Level High	COND STORAGE 1T-58 Level High	CIRC. WATER PUMP 1P-4A 3RIP	CIRC. WTA. PUMP 1P-48 TRIP	COLD. PURP 1P-8A AUTO-TRIP	соло. рокр 19-98 Лито-татр
	VIR. DIPPLY PP 19:17A AUTO 18:19 CB DIEABLED	TR. SUPPLY PP 19117C AUTO CATP CR DICASLED	GERV. WTR. PUID'S DIGCH. PRESS LOV	SERV WIR. AUTO FILTER DIFF. PREUS UIDH	COOL. TOVER 18-654 BABIN LEVEL HIGH-LOV	COOL, TOWER 18-698 NABIN LEVIL HIGH-LOU	COIDENSER · BOT WILL LLVIL . LOV	COND. STORAGE TANK 1T-5A LEVEL LOW	COND. STORAGE TANK 17-58 LEVEL LÓW		CIRC. WTR. PUNP 1P-48 VIBRATION HIGH	сонд. ринр 1р-8А Ујвлатјон Нјон	COID. MRP 17-88 VIERATION HISE
	E:123G. 5.4. FUDP 1:P-93A	ETERG. 8.V. P.DOP 1P-99B TRIP-LO PRESB	SERV. WTR. PUNP 1P-89A AUTO-TRIP	SERV. WTA. PUNP 1P-89B AUTO - TRIP	SERV. WIR. PURP 1P-89C AUTO-TRIP	GERVICE WATER PUMP8 OVERLOAD	CONDENSER HOT WELL LEVEL, HIGH-HIGH	COND. STORAGE TANK 1T-5A LEVEL LOW-LOW	COHD. STORAGE TAUK 1T-5B LEVEL LOW-LOW	CIRC. WTR. PUNP 1P-VA OVERLOAD	CIRC. WIR. PUMP 1P-48 OVERLOAD	COID. PUHP 1P-8A OVERLOAD	Coid). Putp 1P-83 Overidad
	INESJ. S.W. PIT "A" LEVEL LOW	EIERG. G.W. PIT "B" LEVEL LCW	BIVEN WTR. INLET C.U.' AIR SUPPLY LOW	SERV. WTR. FURPS CONTROL SWITCH HOT IN AUTO	CONDENSERS CIAC. WTR. CONDUCTIVITY NICH	COND. GTORAGE OVERFLOW THK-1T-107LVL NICH	COND. STORAGI TANK 17-5A WTR. OUTL.TEN LOW	TANK 1T-5A	COND. ETORAGE TANK 17-58 WATER TEAP. LOW-LOW	COND. STORAGE TANK 17-58 WTR. OUTL.TEMP LOW	PIT	Coud. Plaps Disch. Press Low	Cond. Pomps Seal vater Press Lou

\$

Π

Rev. 0 April 11, 1983

1

Panel 1006-B

PEEDWATER AND CONDENSATE

•				' e	· · · · · · · · · · · · · · · · · · ·	·		r	
COND. DEMINER PAIEL 1C-80 TROUBLE	MAKE-UP DEMIN. PAHEL 1C-81 TROUBLE	DEMIN. WATER TANK TEMP LOW	DEMIN. WATER TANK LEVEL LOW-LOW	MAIN COND.	LPFW HTR. 1E-1A & 1E-2A LEVEL HI-HI	LPFW LITR. 1E-3A LEVEL HI-HI	lpfw IITR. 1e-la Level HI-HI	LPFW HTR. 1E-5A LEVEL HI-HI	HPFW HTR. 1E-6A LEVEL HI-HI
COND. DEMIN. Inl/Outl DIFF PRESS HIGH	REACT. FW PUNP 1P-1A VIBRATION HIGN	REACT FU PUNP 1P-1B VIBRATION HIGH	RIVER WATER INTAKE SYSTEM IC-102 TROUBLE	LPFW HTR 1E-1A LEVEL HIGH	LPFW HTR. 1E-2A LEVEL HIGH	LPFW HTR. 1E-3A Level High	LPFV HTR. 15-4A LEVEL HIGH	LPFV HTR. 1E-5A LEVEL HIGH	HPTW HTR. 1E-6A LEVEL HIGH
DEAIN. WATER TRANSF. PURPS DISCH PRESS LOW	COND. BERVICE JOCKEY PAP 1P-11 DISCH. PRESS LOW	REACT FW PMP 1A HTR OVERLOAD & AUTO TRIP	REACT FW PMP 1B MTR OVIRLOAD & AUTO TRIP	LPFW HTR 1E-1B LEVEL HIGH	LPFW HTR 1E-2B LEVEL HIGH	LPFW HTR 1E-3B LEVEL HIGH	LPFW HTR. 1E-4B LEVEL HIGH	LPFW NTR. 1E-5B LEVEL NIGH	HPFW HTR 1E-6B LEVEL HICH
RS COOL WTR HT EXCHR OUTLET TEAP HIGH	RB COOL WIR GURGE TANK LEVEL HI-LOW	RB C.C.W PUMPS DIECH PRESS LOW	VANTE SUMP/OIL SUMP LEVEL HIGH	TURB. INSTR PANEL 1C-20 TROUBLE	LPFW HTR 1E-1B & 1E-2: LEVEL HI-HI	LPFW HTR 1E-3B LEVEL HI-HI	LPFW HTR. 1E-4B LEVEL HI-HI	LPPW HTR 1E-5H LEVEL HI-HI	HPFW HTR 1E-6B LEVEL HI-HI

•

46

H

Rev. 0 April 11, 1983

TURBINE BENCHBOARD

Ĵ.

الانتاب

•	<u> </u>	<u>, </u>	1	· · · ·	T	· · ·	1		r	•
EHC DC POWFR FAILURE	MAIN TURBING TRIP	HYDR. FLUID PUMPS NOT IN AUTO START	HYDR. FLUID PUMPS MOTORS OVERLOAD	HYDR. FLUID FILTER' FUMP TRIP'A	F.O. CONDITIONING VUNITA TROUBLE	TURB. BRG. OIL HEADER PRESS LOW	Mechanical Trip Lockout	TURH GEAR OIL PUMPS NOT IN AUTO START	LIFT PUMPS NOT IN AUTO START	PANEL 1C-23 TROUBLE
TURB. M.G.P. NOT IN AUTO START	TURN GEAR Moton Not In Auto Start	HYDR. FLUID RESERVOIR LEVEL HIGH	HYDR FLUID RESERVOIR LEVEL LOW	BYPASS VALVE //1 OPEN	TURB. L.O. TANK 1T-1 LEVEL HIGH	EMERG. BRG OIL PUMP RUNNING	EMERG. BRO OIL PUMP NOT IN AUTO START	TURN GEAR OIL FUMP RUNNING	LIVT PUMPS OVERLOAD TRIP	PANEL 1C-24 TROUBLE
TURB. M.S.P. Runbing	FMP PU:1P STUFFI:1G BOX SEAL WATER . DRAIH TANK LEVEL HI/LOW	liydr. Fluid Temperature High – Low	HYDR FLUID PUMPS 1P-97A/B RUNNING	L.O. TANK VAPOR EXTRACTOR TRIP	TURB. L.O. TANK 1T-1 EMERGENCY OVERPLOY	CLEAN L.O. TANK LEVEL HIGH	C.W. VALVE HO-4201 or 420 Hydraulic oil Pressure Low	TURN GEAR 2 OIL PUNP MOTOR OVERLOAD	TURB. THRUST BEAR ING WEAR	PANEL 1C-25 TROUBLE
TURB. N.S.P. NGTCR OVERLOAD	TURN GEAR ENGAOED	Hydr Fluid Pressure Low	ENERG HYDR FLUID LEVEL HIGH		TURB. L.O. TANK 1T-1 LEVEL LOW	DIRTY L.O. TANK LEVEL HIGH	EMERG. BRG. OIL FUMP MOTOR OVERLOAD	CONDENSER VACUUM PUMP AUTO TRIP 52-205	NITROGEN SUPPLY PRESS LOW	PANEL 1C-26 TROUBLE

Panel 1007-A

4 T

Π

47

Rev. 0 April 11, 1983

. .

÷

• • ·

•

Panel 1007-B

INTEGRATED PLANT OPERATING INSTRUCTIONS

TURBINE BENCHBOARD

۰.

.

•

. · ·

48

H

Rev. 0 April 11, 1983 S. S. . .

1.

NFP 1914,1918 SEAL WATER FILTER DIFF PRESEURE HIGH	DIFF EXPANSION	lat STAOB DRN. TK. 1T-91/ LEVEL HIGH	2nd STAGE DRN. TK. 1T-92A LEVEL HIGH	N.S.R. Drh. TK. 1T-93A Level High	M.8.R. 18-18A/1E-18B Level High	8TN. PACKINO EXHAUSTER 18-9 LEVEL HIGH		AIR COMPRESSOR 1K-1A AIR DIBCH. TEMP HIGH	INSTR. AIR DRYER 1T-53 TROUBLE	BREATHING AIR UNDER RPV LOW
TUR9. 1G-1B VACULH LOW	TSI Vibration Hich	lat STAGE DRN. TK. 1T-91A LEVEL LOW	2nd STAGE DRN. TK. 1T-92A LEVEL LOW	M.8.R. DRN. TK. 1T-93A LEVEL LOW	lst STAGE DRN. TKS. 1T-91A/B PHESS DIFP H1GH	AIR Compressor 1kic Air Disch Temp High		AIR COMPRESSOR 1K-1B AIR DISCH TEMP HIGH	INST. AIR DRYER 1T-53 AIR DISCH. PRESS LOW	BREATHING AIR IN AIRLOCK LOW
TURB. 16-10 Vacuum Low	TSI Instrumentation No Voltage	lat STAGE DRH. TK. 17-918 Level High	2nd STAGE DRN. TK. 1T-928 Level High	H.S.R. DRN. TK. 1T-93B LEVEL HIGR	ACID/ CHLORIHATION SYSTEN TROUBLE	BTM. PACKING EXHAUSTER VACUUH LOW	EXHAUST HOOD SPRAY WATER ON	GERVICE AIR HDR. PRESS LOW	INSTR. AIR DHYER 1T-53 PR. DIFF. ACROSS HIOH	DOMESTIC WATER STORAGE TANK 1T-125 LEVEL HIGH
VACUIDA P.S. BELLOWS FAILURE	TSI INSTRUMENTATION MALFUNCTION	lat STAGE DRN. TK. 1T-91B LEVEL LOW	2nd STAGE DRN. TK. 1T-92H LEVEL LOW	M.S.R. DRN. TK. 1T-93B LEVEL LOW	2nd STAOE DRN. TK3. 1T-92A/B PRESS DIVF. HIGH	SĽAL STEAM PRESS LOW-LOW	AIR EJECTOR OFF GAS ISOLATION	Condenser Vacuum Low	DOMESTIC WATER HYPO TANK 1T-120 LEVEL LOW	DOMENTIC WATER STORAGE TANK 1T-125 LEVEL LOW

• •

.

Panel 1008-A

GENERATOR AND AUXILIANY POWER

Π

49

i

AUX TRANS TO BUS IAI 4KV FRF IAIOI TRIP	4K BUS 1A1 Lockout IRIP	STARTUP TRANS TO BUS 1A1 4KV BKR 1A102 THIP	STANDBY TRANS TO BUS 1A3 4KV BKR 1A301 TRIP	¹ KV BUS 1A3 LOCKOUT TRIP	STARIUP IRAN3 TO BUS 1A3 4KV BKR 1A302 TRIP	TROUBLE	UNINTEXRUPTIBLE AC SYSTEM THOUBLE	125V DC SYSTEM I TROUBLE	DIESEL GEN 1031 RUNNING	DIESEI, GEN 1631 4KV BKN 14311 TR1P	DIESEL GEN 1031 LOCKOUT TRIP
LC TRAUS 1X11	COOLING TOWER LC TRANS 1X71 4XV 5KR 1A108 TRIP			CB EL 757-5 LC TRANS 1X31 4KV BKR 1A303 TRIP	LOAD CENTER TRANS 1X91 152-312 TRIP OR 480V MCC 1B91 BKH TRIP	MAIN GENERATOR NEGATIVE SEQUENCE	UNINTERRUPTABLE M-G SET DC MOTOR RUNNING	125V DC CHARGEN 1D12 TROUBLE OR OUT OF SERVICE	DIESEL OIL DAY TANK A LO-LO LEVEL	DIESEL GEN 1031 PHASE OR GND OVERCURRENT	DIESEL GEN 1G31 OVERSPEED TRIP
TB EL 757-6 LC TRANS 1X11 480V BKR 18101 TR1P		TB EL 757-6 LC TRANS 1X51 480V BKR 18501 TRIP		LOAD CENTER 113 MCC FEEDER 480V BREAKERS TRIP		STARTUP TRANS LOCKOUT TRIP	UNINTERRUPTABLI M-G SET LOSS OF DC POWER	E 125V DC CHARGER D12 TROUBLE GR OUT OF SERVICE	LOW LEVEL	DTL:SEL GEN LG31 PATALE IC-93 TROUBLE	DIESEL GEN 1631 ENGINE CRANKING
LOAD CENTER 1E MCC FREDER 450V EREAKERD TRIP	1 B5-1 B5	LOAD CENTER 185 MCC FELDER 480V BREAKERS TRIP		RB EL 786 MCC 1834A 480V BKR 18340 TRIP	480V MCC BKHS 183402 184402 TRIP	4KV BUS AUTO TRANSFER INOP	DIESEL OIL STORAGE TANK LO-LO LEVEL		DIESEL GEN 1G31 AUTO START OR AUTO SWITCHES LOCKOUT	DIESEL GEN 1031 ENGINE SINTDOWN	DIESEL GEI 1G31 START FAILURE

:

Rev. 1 Naramhar	
2	
1983	

	DIECEL GRM 1931 1931 1942 Franz 1819	DIREEL GEN 1321 FUNEE CR CND CVERCUPAEENT	DIESEL OIL DRY TANK B LO-LO LEVEL	125V DD CHAROLR 1022 TROUBLE: GR OUT OF DIEWICE	STARTUP TRAIS PRI EER J CONTROL PATIURE	LOAD CENTER . TRANS 1X20	LIN BER 1ALO3 TRIP		COOLING TOWER LC TRANS 1X81 4KV EUR 1A208 THIP	TB EL 734 IC TRANS 1X21 4KV EFR 1A207 TR1P	s:
	n 1931 Ruging Cranking	DIESEL GEN IG21 PANEL IC-94 TROUBLE	DIESEL GEN 1621 CONTROL POWIN FAILURE		AJX TRANS TROUBLE	4 KV BUS 1A4 LOCS CP VOLTAGE	LOAD CENTER 114 NCC FEEDIR 480V BREAKERS TRIP	тв ег. 734 LC тилис 1861 4967 нек 19601 Титр		TB EL 734 LC TRANS 1X21 430V BIR 1B201 TRIP	sī
	DIECUL GRU 1031 DINI 2 FAILURE	DIESEL GEN 1021 ENDINE SEUTDOWN	DIESEL GEN 1021 AUDD START OR AUDD CMITCHES LOCKOUT	SYCTEM	250V DC CHAPJER 1D43 TROJELE OR OUT JF SERVICE	ESSENTIAL LKV BUSES LOAD SHED CKT LOSS OF DC	MCC 1B44A	LOAD CENTER 136 MCC FEEDER 480V HREAMERS TRIP	PRI EKR M	LGAD CENTER 1B2 MCC FEEDER 480V BREAKERS TRIP	
Rev						•				:	

11			,					1	F
50	DIFEXL GAR 1391 138227 138227	DIESEL GEN 1021 4:N EFR 14411 THIP	DIESEL GEN 1621 RUNNING	. 125V DC SYSTET 2 TROUBLE	STARTUP TRANS TO BUS 1A4 4KV B:R 1A402 TRIP	4KV BUS 1A4 Lockout Thip	TO BUS 1A4 4KV EKR 1A401 TRIP	TRIP	
	DIIVEL GEN 1331 WE STAD 181P	DIREEL CEN 1721 FRINEZ LA CAD CVIRCUPALIT	Ì	125V DC CHARGER 1022 TROUGHE GR OUT OF DIEVICE	STARTUP TRAIS PRI FER J CONTROL PATIURE	LOAD CENTER TRANS 1X20 152-412 TRIP CR 430V MCC 1B21 B-3 TRIP	CP EL 757-6 LC THANS 1XJ-1 L:XV BKR 1AL03 TRIP	18 18 233 LC 18458 1871 152-209 1871 08 801 1004 18488 1897 152-211 1819	

Panel 1008-B

GENERATOR AND AUXILIARY POWER

INTEGRATED PLANT OPERATING INSTRUCTIONS

4KV EUS 1A2

LOCKOUT

THIP

MAIN TRANS

TROUBLE

SUBCTATICS

48V 4 125V

GEN EKR H

CONTROL

FAILURE

GEN BER H

IN LOCAL

CONTROL.

D.C. TROUBLE

STAILERY THANS

STARLAY THANS

1.000007

STADDAY TRANS

PRODUCE

GEN BER I

CONTROL

FAILOSE

781P

GRODED

FAULT

STARTUP TRANS

FEED TO BUS 142

152-202 TR1P

Panel 1008-C

GENERATOR & AUXILIARY POWER

الد المانية

MAIN GEN 161 PRIMARY LOCKOUT TRIP	MAIN GEN 1G1 REVERSE POWER	MAIN GEN 1G1 LOCKOUT RELAY CIRCUIT LOSS OF DC	MAIN GEN 1G1 BACKUP LOCKOUT TRIP	MAIN GEN 1G1 POTENTIAL TRANSFORMER FAILURE	MAIN GEN 131 FREQUENCY LOW
MAIN GEN 1G1 EXCITER FIELD OVERLOAD OR OVERCURRENT	MAIN GEN 1G1 FIELD GROUND	MAIN GEN 1G1 AUTO REGULATION TRIP TO MANUAL	MAIN GEN 1G1 FIELD MAX EXCITATION	MAIN GEN 1G1 VOLTS/HERTZ HIGH	MAIN GEN 1G1 H2 & STATOR COOLING PANEL LOSS OF DC
GEN ISOLATED PHASE BUS COOLING AIR LOW FLOW	GEN ISOLATED PHASE BUS AIR FILTER AP HIGH	GEN STATOR COOLING WATER PUMP A OR B OL TRIP	MAIN GEN 1G1 FIELD MAX.EXCIT. TRIP	MAIN GEN 1G21 SUPPLEMENTARY CONTROL OFF LIMIT	MAIN GEN 1G1 EMERGENCY SEAL OIL PUMP NOT IN AUTO
GEN ISOLATED PHASE BUS COOLING WATER LOW FLOW	GEN ISOLATED PHASE BUS TEMP HIGH	GEN STATOR COOLING WATER PUMP A OR B NOT IN AUTO	MAIN GEN 1G1 H2 & STATOR COOLING SYS TROUBLE	GEN SEAL OIL VACUUM PUMP 1P-94 AUTO TRIP	GEN MAIN SEAL OIL PUMP 1P-92 AUTO TRIP

II

51

Rev. 0 April 11, 1983

Panel 1C23-A

HVAC REACTOR BLDG & MAIN PLANT AIR

]
REACT BLDG SUPPLY FAN IV-SF-IOA NO FLOW	TURBINE BLDG SUPPLY FAN IV-SF-22A NO FLOW	MAIN PLANT EXHAUST FAN 1V-EF-1 FLOW HIGH	MAIN PLANT EXHAUST FAN IV-EF-1 FLOW LOW	MAIN PLANT EXHAUST FAN RADIATION 1V-EF-1 TROUBLE
RHR CORE SPRAY COOLING SUPPLY AIR 1V-AC-12 TEMP HIGH	RHR CORE SPRAY COOLING IV-AC-12 TEMP HIGH	CRD PUMP ROOM COOLING SUPPLY AIR 1V-AC-13A TEMP HIGH	CRD PUMP ROOM TEMP HIGH	TURBINE BLDG AUX HTG FEED PUMP 1V-HP-20A or B FLOW LOW
H.P.I.C. ROOM COOLING SUPPLY AIR 1V-AC-14A TEMP HIGH	H.P.I.C. ROOM TEMP HIGH	R.C.I.C. ROOM COOLING SUPPLY AIR 1V-AC-15A TEMP HIGH	R.C.I.C. ROOM TEMP. HIGH	PLANT HTG. SYSTEM SHELL/TUBE 1E-17 ΔP LOW
DEAERATOR 1S-62 HIGH WATER	DIESEL GEN. ROOM TEMP HIGH	DIESEL GEN ROOM TEMP LOW	REACTOR BLDG EXHAUST FAN 1V-EF-11A NO FLOW	PLANT AIR MAIN LOOP IV-HP-12A or B TEMP LOW
CONDENSER AREA SUPPLY AIR 1V-AC-21 TEMP HIGH	MAIN PLANT AIR INTAKE TEMP LOW	CIRC PUMP MAIN LOOP 1P52 A & B NO FLOW	TURBINE LUBE OIL HEATER 1E-61 TEMP LOW	BOILER FEED LEAD PUMP 1P-54 A or B OUT OF SERVICE
ADMIN. BLDG LAB EXHAUST NO FLOW 1V-EF-19A		REACTOR BLDG VENT SHAFT RADIATION TROUBLE RIM-7606		

Π

52

Rev. 0

Panel 1023-B

HVAC REACTOR BLDG & MAIN PLANT AIR

		·		1
REACT BLDG SUPPLY FAN 1V-SF-10B NO FLOW	TURBINE BLDG SUPPLY FAN 1V-SF-22B NO FLOW	MAIN PLANT EXHAUST FAN IV-EF-2 FLOW HIGH	MAIN PLANT EXHAUST TV-EF-2 FLOW LOW	MAIN PLANT EXHAUST FAN RADIATION 1V-EF- TROUBLE
RHR CORE SPRAY COOLING SUPPLY AIR 1V-AC-11 TEMP HIGH	RHR CORE SPRAY COOLING IV-AC-11 TEMP HIGH	CRD PUMP ROOM COOLING SUPPLY AIR 1V-AC 13B TEMP HIGH	CRD PUMP ROOM TEMP HIGH	REACT BLDG AUX HTR. FEED PUMP 1V-HP-10A or 10H LO FLOW
H.P.I.C. ROOM COOLING SUPPLY AIR 1V-AC-14B TEMP HIGH	H .P.I.C. ROOM TEMP HIGH	R.C.I.C. COOLING AIR IV-AC-15B	R.C.I.C. ROOM TEMP 1V-AC-15B	PLAT HTG. SYSTEM SHELL/TUBE 1E-17 Δ P LOW
DE-AERATOR LOW WATER	DIESEL GEN ROOM TEMP HIGH	DIESEL GEN ROOM TEMP LOW	REACT BLDG EXHAUST FAN IV-EF-11B NO FLOW	PLANT AIR MAIN LOOP LEAD PUMP 1V-HP-12A or 12B OUT OF SERVICE
CONDENSER AREA SUPPLY AIR 1V-AC-22 TEMP HIGH	CONDENSER AREA TEMP HIGH	MG SET ROOM TEMP LOW	MG SET ROOM TEMP HIGH	PLANT AIR HTG LEAD PUMP 1V-HP-13A OR 13 OUT OF SERVICE
ADMIN. BLDG LAB EXHAUST NO FLOW 1V-EF-19B	REFUELING POOL EXHAUST FAN IV-EF-10 NO FLOW	REACTOR BLDG VENT SHAFT RADIATION TROUBLE RIM-7606E		

53 J

Π

Rev. 0 April 11, 1983

Panel 1C23-C

HVAC REACTOR BLDG. & MAIN AIR PLANT

		Line of the second s			
REACT BLDG SUPPLY FAN IV-SF-10C NO FLOW	TURBINE BLDG SUPPLY FAN 1V-SF-22C NO FLOW	MAIN EXH.FAN 1V-EF-3 FLOW HIGH	MAIN PLANT EXH. FAN IV-EF-3 FLOW LOW	MAIN PLANT EXH. FAN IV-EF-3 RAD. TROUBLE	MAIN PLANT EXH. FAN PLENUM PRESS. HIGH
HEAT EXCH. AREA COOLING SUPPLY AIR 1V-AC-10 TEMP. HIGH	HEAT EXCH. AREA COOLING 1V-AC-10 TEMP HIGH	SWGR. ROOM SUPPLY AIR 1V-AC-20 TEMP HIGH	SWGR. ROOM 1V-AC-20 TEMP HIGH	BOILER ROOM TEMP LOW	AUX. BOILER TROUBLE
REACTOR BLDG AUX. HEATING INJ. PUMP LOW TEMP 1V-HP-11	TURBINE BLDG AUX. HEATING INJ. PUMP LOW TEMP 1V-HP-21	AIR' EJE', 'ROOM EXHAUST FANS IV-EF-13A & B NO FLOW	DEMIN WATER EXCHANGER 1E-14 TEMP LOW	CONDENSATE STORAGE TANK EXCHGR. 1E-15 TEMP LOW	REACT BLDG VENT SHAFT RADIATION TROUBLE
DEAERATOR • 15-62 PRESSURE LOW		AIR EJE. ROOM EXHAUST FAN IV-EF-11A-B NO FLOW			
ADMIN. BLDG HVAC TROUBLE	PUMP HOUSE HVAC TROUBLE	INTAKE STRUCT. HVAC TROUBLE	RAD. BLDG. HVAC TROUBLE	MACHINE SHOP HVAC TROUBLE	OFF GAS BLDG HVAC TROUBLE
		1	WELL 1P-58A HI/LO FLOW	WELL 1P-58B HI/LO FLOW	WELL 1P-58C HI/LO FLOW

54

Π

Rev. 0 April 11, 1983 Panel 1C24-A

STANDBY GAS TREATMENT

.

	· ·			
COMPRESSOR TROUBLE 1K-15A	TRAIN "A" RUNNING	TRAIN "A" STANDBY	TRAIN "A" LOW FLOW	TRAIN "A" LOSS OF CONTROL POWER
STACK FAN A LOW FLOW	TRAIN "A" NO AT	CHARCOAL BED OVERHEAT	TRAIN "A" OVERHEAT	COMPRESSOR TROUBLE 1K-3
STACK FAN "A" OUT OF SERVICE	TRAIN "A" HIGH ДР	CHARCOAL BED EMER. OVERHEAT	TRAIN "A" MANUAL MODE	

ភភ

Rev. 0 April 11. 1983

۴.

INTEGRATED PLANT OPERATING INSTRUCTIONS

Panel 1C24-B

STANDBY GAS TREATMENT

	COMPRESSOR TROUBLE 1K-15B	TRAIN "B" RUNNING	TRAIN "B" STANDBY	TRAIN "B" LOW FLOW	TRAIN "B" LOSS OF CONTROL POWER
•	STACK FAN B LOW FLOW	TRAIN "B" NO & T	CHARCOAL BED OVERHEAT	TRAIN "B" OVERHEAT	COMPRESSOR TROUBLE 1K-4
	STACK FAN "B" OUT OF SERVICE	TRAIN "B" HIGH ムP	CHARCOAL BED EMER. OVERHEAT	TRAIN "B" MANUAL MODE	

Π

Panel 1025-A

DRYWELL VENTILATION & N 2 INERTING

•

DRYWELL COOLING LOOP A OPERATIONAL	DRYWELL COOLING LOOP A STANDBY SYSTEM	SYSTEM LOOP A BAÇKWASH CRD AREA	SYSTEM LOOP A OVER TEMPERATURE SYSTEM
N	LOOP A INOPERATIVE	LOOP A OVER TEMPERATURE	LOOP A HIGH PRESSURE

Rev. 0 April 11, 1983

II 57

.

DRYWELL COOLING LOOP B OPERATIONAL	DRYWELL \ COOLING LOOP B STANDBY	SYSTEM LOOP "B" BACKWASH	SYSTEM LOOP B OVER TEMPERATURE
· ``	SYSTEM · LOOP B INOPERATIVE	CRD AREA LOOP B OVER TEMPERATURE	SYSTEM LOOP B HIGH PRESSURE
·			

Panel 1C25-B

INTEGRATED PLANT OPERATING INSTRUCTIONS

1983

I

sfu A Running	SFU A STANDBY	SFU A NO HEAT	SFU A high ∆p	SFU A High Temp.	SFU A NO FLOW	EFU A LOSE OF CONTROL POWER
SFU A CARBON BED OVERTEMP.	SFU A CARBON BED EMER. OVENTEMP CONTROL BUILDING AREA RADIATION TROUBLE	SFU A MANUAL MODE HOT WATER SEC. LOOP NO FLOW	TRAIN "A" FILTER HIGH ΔP HOT WATER SEC. LOOP RETURN LOW TEMP.	CIIILLER "A" TROUBLE	BATTERY ROOMS EXHAUST TROUBLE	EUIIDING SUPPLY AIR NO FLOW

HVAC CONTROL BUILDING 1.10

INTEGRATED PLANT OPERATING INSTRUCTIONS

Panel 1026-A

E

59

Rev. 0

こうい

HVAC CONTROL BUILDING

Panel 1026-B

EFU B RUNNING	BFU B Standby	SFU B ' NO HEAT	BFU BI HIGN AP	SFU B High Temp.	SFU B No Flow	SFU B LOSS OF CONTROL POWER
SFU B CARBON BED OVERTEMP.	SFU B CARBON BED EMER. OVERTEMP.	SFU B MANUAL MODE	TRAIN "B" FILTER HIGH ∆P	CNILLER "B" TROUBLE	BATTERY ROOMS EXHAUST TROUBLE	MAIN INLET AIR LOW TEMP.
•	CONTROL BUILDING AREA RADIATION TROUBLE	HUM ID IF IER HIGH PRESSURE	HUMIDIFIER LOW PRESSURE			

II 60

Apri 1983

Rev. 0 April 11, 1983

					1. A.	۰۰ . ا					
RECORDER A	CONDENSER A LEVEL HI/LO	RECOMBINER B INLET LO TEIP	COMDENSER B LEVEL III/LO	H ₁ AHALYZER A HI H ₂	H _z ANALYZER B HI H ₂	LOW RANGE INLET FLOW TO HOLDUP LINE HI/LO	INLET FLOW	REFRICERATION MACHINES TROUBLE		GLYCOL STRG TANK HI TE4P	GLYCOL STRG TAILK LOU TEMP
LOW TEP GAS RHTR LICEN HI TEMP	CAS BITTR	PREFILTER HI DIFF PRE6S	AFTER FILTER HI DIFF PRFSS	Adsorber Vessel XI Temp	ADSORBER VAULT HI TEMP				STBY CLG WATER PUMP B ON	COLD COOLING SURGE TANK LEVEL LOW	STEY CLG WATER PUMP & OM
ALCOMBINER SER BI/LO	COIDEISER OUTLET HI TEIP	Jet Confressor Stn Flow Low	JET COMPRESSOR STM PRESS HI		GLYCOL STRG TANK LOW LEVEL	OAB RHTR OUTLE DEW POINT HI TEAP	ADSORBER HI DIFF PRESS	ADSORBER VAULT LO TEMP	OFF CAS CARBON BED BYPASSED		
			1	I		•					

Π ស្ន Panel 1034

OFF-GAS SYSTEM BOARD

الا تناب

.

INTEGRATED PLANT OPENATING INSTRUCTIONS

Panel 1035-A

CONTAINMENT ATMOSPHERE CONTROL AND DILUTION VERTICAL BOARD

			ð
REFUELING FLOOR NORTH END HI RADIATION	REFUELING FLOOR SOUTH END HI RADIATION	Rx. BLDG. EXH. HI GASEOUS RAD. 1V-EF-1,2,3	RECIRC 2C RISER LEAK ALARM
MSIV-LCS LOGIC POWER FAIL '	MSIV '' LEAKAGE FLQW HIGH	ł	TORUS OR DRYWELL RADIATION HIGH CHANNEL -A-
			DRYWELL HIGH RADIATION OR INSTRUMENT FAILURE
	LOW/HIGH PRESSURE PI 4390 N ₂ HEADER	N ₂ SUPPLY SYST. PRESSURE LOW PI 4338A	N ₂ CONTMT SPRAY PRESSURE HIGH

197° O

Panel 1C35-B

ß

Rev. 0

1083

CONTAINMENT ATMOSPHERE CONTROL AND DILUTION VERTICAL BOARD

			and the second secon
N ₂ PRES LOW PI-4339	INTRUSION ALARM SYSTEM POWER	STANDBY AP AIR COMPRESSOR RUNNING	DRYWELL TORUS LOW AP
PLEASANT CREEK PUMP STATION TROUBLE	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		TORUS OR DRYWELL RADIATION HIGH CHANNEL -B-
	CONDENSATE RETURN TANK 1T136 HIGH LEVEL		DRYWELL HIGH RADIATION OR INSTRUMENT FAILURE
N ₂ CONTMT SPRAY PRESSURE HIGH	NITROGEN COMPRESSOR TROUBLE	S.S.E. OFFICE B.S. Hi LEVEL	UNION TROUBLE
1	1		. <u> </u>

.

FIRE FROTECTION

Panel 1C-40

CLEAN AND DIRTY LUBE OIL TANKS FIRE	DIESEL GEN DAY TANK LT-37A FIRE	DIESEL GEN DAY TANK 1T-375 FIRE	Condenser Area Fire	PLANT HEATING BOILER FIRE	RADWASTE BALER FIRE
DIESEL FIRE PUMP ROOM FIRE	1G31/1G21 Pre-act Sys.Press	Railroad Bay Turb .Area Pre-actSy	Airlock Fire		
RCIC ROCM FIRE	HPCI ROOM FIRE	REACTOR FEED PUMP 1P-1A FIRE	REACTOR FEED PUAP 1P-13 FIRE	H ₂ SEAL OIL UNIT FIRE	TURBINE LUBE OIL RESERVOIR FIRE
M-G SET 1G-1A FIRE	n-g Set 1g-13 Fire	MAIN TRANSFORMER FIRE	STARTUP TRANSFORMER FIRE	AUXILIARY TRANSFORMER FIRE	STANDBY TRANSFORMER FIRE
		MAIN TRAISFORMER DETECTOR TROUBLE		AUXILIARY TRANSFORMER DETECTOR TROUBLE	TRAISFORMER
COOLING TOWER 1E-69A FIRE	COOLING TOWER 1E-693 FIRE				CABLE SPREADING ROOM FIRE PRE-ALARM
COOLING TOWER 1E-69A • DETECTOR TROUBLE	COOLLEG TOWER 1E-69B DETECTOR TROUBLE				CABLE SPREADING ROOM FIRE
					CABLE SPREAD LING ROOM DETECTOR TROUBLE
				-	
DIESEL FIRE FUMP RUN	DIESEL FIRE PUNP TROUBLZ	DIESEL FIRE PP SW NOT IN AUTO	DIESEL FIRE PP DAY TANK LEV LOW	ELECTRIC FIRE PP RUI	ELEC. FIRE PP POWER FALLIRE

•

FILTER DEMINERALIZER 1T-13E HIGH DP	FILTER DEMINERALIZER 1T-13D HIGH DP	FILTER DEMINERALIZER 1T-13C HIGH DP	FILTER DEMINERALIZER 1T-13B HIGH DP	FILTER DEMINERALIZER 1T-13A HIGH DP	Influent High Conductivity	PRECOAT TANK HIGH LEVEL
FILTER DEMINERALIZER 1T-13E HIGH CONDUCTIVITY	FILTER DEMINERALIZER 1T-13D HIGH CONDUCTIVITY	FILTER DEMINERALIZER 1T-13C HIGH CONDUCTIVITY	FILTER DEMINERALIZER 1T-13B HIGH CONDUCTIVITY	FILTER DEMINERALIZER IT-134 HIGH_CONDUCTIVITY	EFFLUENT HIGH CONDUCTIVITY	PRECOAT TANK LOW LEVEL
FILTER DEMINERALIZER 1T-13E LOW FLOW	FILTER DEMINERALIZER 1T-13D LOW FLOW	FILTER DEMINERALIZER 1T-13C LOW FLOW	FILTER DEMINERALIZER 1T-13B LOW FLOW	FILTER DEMINERALIZER 1T-13A LOW FLOW	INFLUENT HIGH TEMPERATURE	POWER FAILURE
 FILTER, Demineralizer 1T-13e Resin Trap High Dp	FILTER DEMINERALIZER 1T-13D RESIN TRAP HIGH DP	FILTER DEMINERALIZER 1T-13C RESIN TRAP HIGH DP	FILTER DEMINERALIZER 1T-13B RESIN TRAP HIGH DP	FILTER DEMINERALIZER 1T-13A RESIN TRAP HIGH DP	•	RECIRC. PRECOAT & BACKWASH HEADER HIGH PRESSURE

Panel 1080

CONDENSATE DEMINERALIZER CONTROL PANEL

T

INTEGRATED PLANT OPERATING INSTRUCTIONS

ه تحد

65

H

110 1983

Rev. April

		Panel 1081						
		,						
1	r	I		 	ANION "A" (I	CATION ""A" I	ANION "B"	TRAIN "B"
	CATION "A" REDECERATION COMPLETE	ANION "A" RECENERATION COMPLETS	TRAIN "A" THROUGHPUT NIC	. CATION "A" RESIU TRAP DIFFERENTIAL HIGH	BINGE 1 1 OVERTINE			TUROUGHIUT BIGH

HIXED BED "A" HIXED BID "A" CONDUCTIVITY BILICA HIGH

LOW

HIGH .

BECCILIARY ACID CAUSTIC CONCENTRATED CONCENTRATED DILUTE CAUSTIC L'ILITION VATER DILUTION VATER ACID PRESSURE CAUSTIC PRESSURE TEMPERATURE

B2CIRC TANK

LEVEL LOW

LON

MAKE-UP DEMINERALIZER PAREL

INTEGRATED PLANT OPERATING INSTRUCTIONS

HIXED BED "A"

RESIN TRAP

DIFFERENTIAL

BIGH ·

HIGH OR LOW

DENTH WATER

TANK LEVEL NION

CATION "B"

RESIN TRAP

HICH

NIXED BED "B" PADWAY ACTD

DIFFERENTIAL

DILUTION VATER

FLOW LOW

ACID TAIK

LEVEL LOW

ANION "B"

CONDUCTIVITY

RICH

RIUSE

CAUSTIC TEED

PULIP #2

OVERLOAD

HIXED BED "B"

BILICA HIGH

ACID FEED

OVERLOAD

CHEN WASTE

SUMP

LEVEL HIGH

PUMP #2

MIXED BED "B"

DIFFFRENTIAL

ЯICH

RESIL TRAP

CAUSTIC

FEED .

PURP 11

OVERLOAD

HAXE-UP

PRESS LOW

HIXED BED "B"

CONDUCTIVITY

HIGH

ACID FEED

OVERLOAD

NORMAL WASTE

LEVEL HIGH

SUMP

PUHP #1

MIXED BED "A" MIXED BED "B"

B1583

OVERTINE

ACID

INTRODUCTION OVERTINE

BEUTBAL TARK

LEVEL HICH

REGENERATION

COMPLETE

CAUSTIC

INTRODUCTION

ACID CAUGTIC

BUMP

LEVEL HIGH

OVERTINE

HINED BED "A"

REJE: ERATION

CUIPLETS

FLCH LOW

DEGASIFIER

BOOSTER PUNCES

PRESSURE LOW

AUTON "B"

AISSZ

OVERTELE

FLOW LOW

.

CAUSTIC TAIK

LEVEL LOW

Rev. 10

2001

Π

. . .

INTEGRATED PLANT OPERATING INSTRUCTIONS

Panel 1082

REACTOR WATER CLEANUP FILTER-DEMIN PANEL

1, 8, 1 1 \	н с 14	
----------------	-----------	--

ور المحالية

	HIGH F/D A .:	HIGH STRAINER A	PRECOAT TANK	HIGH F/D B	HIGH STRAINER B
	DIFF. PRESS.	DIFF. PRESS.	HIGH LEVEL	DIFF. PRESS.	DIFF. PRESS.
•	LOW F/D A FLOW		PRECOAT TANK LOW LEVEL	LOW F/D B . FLOW	

Rev. 0 April 11, 1983

II

INLET FLOW LOW	INLEP PRESS LOW	INLET TEMP. HIGU	OUTLET TEMP HIGH	WATER TANK LEVEL HIGH	WATER TANK LEVEL LOW	GENERATOR PROTECTION CIRCUIT ENERGIZED
CONDUCTIVITY Above 0.5 Micromhos	CONDUCTIVITY ABOVE 0.5 MICROMHOS	RESERVE PUMP RUNNING	RECTIFIER HIGH TEMP	RECTIFIER COOLANT LOW FLOW	·	

W ANT W

Panel 1083-A

GENERATOR H: AND COOLING WATER PANEL

1.0

1082 4

INTEGRATED PLANT OPERATING INSTRUCTIONS

Panel 1C83-B

GENERATOR H2 AND COOLING WATER PANEL

MACH GAS PRESSURE HIGH-LOW	MACH GAS PURITY LOW	MACH GAS TEMP HIGH
DIFF'L SEAL	W EMERG SEAL OIL PUMP RUNNING	VAC TANK OIL LEVEL HIGH-LOW
GENERATOR CASING LIQUID DETECTOR FULL	SEAL DRAIN ENLARGEMENT LIQUID DETECTOR FULL	ALTERNATOR LIQUID DETECTOR FULL
ALTERNATOR AIR TEMP HIGH		

				•		
REACTOR BLDG. EQUIP DRAIN SUMP HI LEVEL	WASTE SAMPLE TANK A BLACK PEN HI LEVEL	RADWASTE BLDG FLOOR DRAIN SUMP HI LEVEL'	FLOOR DRAIN COLLECTOR TANK HI LEVEL	FLOOR DRAIN SAMPLE TANK LO LEVEL	DETERGENT DRAIN TANK A BLACK PEN LO LEVEL	WASTE COLLECTOR TANK BLACK PEN HI LEVEL
REACTOR BLDG FLOOR DRAIN SUMP HI LEVEL	WASTE SAMPLE TANK B RED PEN LO LEVEL	RADWASTE BLDG EQUIP DRAIN SUMP HI LEVEL	FLOOR DRAIN COLLECTOR. TANK LO LEVEL	CHEM WASTE SAMPLE TANK HI LEVEL	DETERGENT DRAIN TANK A BLACK PEN HI LEVEL	WASTE SURGE TANK RED PEN LO LEVEL
WASTE DEMINERALIZER TANK HI △P	WASTE SAMPLE TANK B RED PEN HI LEVEL	DETERGENT DRAIN FILTER HI & P	FLOOR DRAIN FILTER HI & P	CHEM WASTE SAMPLE TANK LO LEVEL	DETERGENT DRAIN TANK B RED PEN LO LEVEL	WASTE SURGE TANK RED PEN HI LEVEL
WASTE DEMINERALIZER TANK HI CONDUCTIVITY	TURBINE BLDG FLOOR DRAIN SUMP HI LEVEL	FILTER AID TANK LO LEVEL	FLOOR DRAIN FILTER LO DISCH FLOW	FLOOR DRAIN SAMPLE TANK HI LEVEL	DETERGENT DRAIN TANK B RED PEN HI LEVEL	WASTE COLLECTOR FILTER HI AP
WASTE SAMPLE TANK A BLACK PEN LO LEVEL	TURBINE BLDG EQUIP DRAIN SUMP HI LEVEL	WASTE PRECOAT TANK HI LEVEL	FLOOR DRAIN DEMINERALIZER CONDUCTIVITY HI	DETERGENT DRAIN HOLDING TANK HI LEVEL	WASTE COLLECTOR TANK BLACK PEN LO LEVEL	WASTE COLLECTOR FILM LOW DISCH FLOW

Panel 1084-A

RADWASTE

1.0

INTEGRATED PLANT OPERATING INSTRUCTIONS

II 70

Rev. 0 Anril 11 1983

					· ·	1
OFF GAS BLDG. EQUIP. DRAIN SUMP HI LEVEL	REACTOR BLDG. FLOOR DRAIN 1C-47 TROUBLE	CONDENSATE BACKWASH REC. TANK LO LEVEL	CLEANUP PHASE SEP TANK A HI LEVEL	CENTRIFUGE A BEARING HI TEMP	CENTRIFUGE A HI TORQUE	CONVEYOR FLOOR DRAIN SUMP HI LEVEL
OFF GAS BLDG FLOOR DRAIN SUMP HI LEVEL	FUEL POOL FILTER-DEMIN 1C-136 TROUBLE	CONDENSATE BACKWASH REC. TANK HI LEVEL	I CLEANUP PHASE SEP. TANK B HI LEVEL	CENTRIFUGE B BEARING HI TEMP	CENTRIFUGE B HI TORQUE	
СНЕМ WASTE Filter HI Др	OFF GAS Stack Sump HI Level	CONDENSATE PHASE SEP. TANK A HI LEVEL	WASTE SLUDGE TANK A HI LEVEL	SPENT RESIN TANK HI LEVEL	HOPPER A HI LEVEL	1
FLOOR DRAIN DEMINERALIZER HI ΔΡ		CONDENSATE PHASE SEP. TANK B HI LEVEL	WASTE SLUDGE TANK B HI LEVEL		HOPPER B HI LEVEL	· · · · · · · · · · · · · · · · · · ·
CHEMWASTE TANK HI LEVEL	CHEMWASTE TANK LO LEVEL	LOW DILUTION FLOW	RADWASTE EFFIJENT HI RADIATION			

• .• •

INTEGRATED PLANT OPERATING INSTRUCTIONS

RADWASTE

• .

٠.

II 71

Rev. 0

h

Panel 1084-B

.

Panel 1C93

DIESEL GENERATOR 1G31

.....

ENGINE OVER BPEED	DIESEL ENGINE START FAILURE	JACKET COOLANT LEVEL-LOW	JACKET COOLANT TEMPERATURE HIGH OR LOW	JACKET COOLANT PRESSURE-LOW	DIESEL OIL BTORAGE TANK LO-LO LEVEL	COMBUSTION AIR TEMPERATURE HIGH
LUBE OIL MAKE UP TANK LEVEL LOW-LOW	LUBE OIL MAKE UP TANK LEVEL HIGH	LUBE OIL TEMPERATURE HIGH OR LOW	I PRESSURE ALOW	FUEL OIL LEVEL-I.OW	FUEL OIL LEVEL-HIGH	FUEL OIL PRESSURE-LOW
CRANKCASE PRESSURE	STARTING AIR PRESSURE -LOW	SERVICE WATER PRESSURE-LOW	BACKUP FUEL PUMP RUNNING	HIGH PRESSURE DROP ACROSS AIR FILTER	AIR PRESSURE MOSITURE LEVEL-HIGH	
•	ANY SWITCH NOT IN AUTO OR REMOTE POSITION	GENERATOR STATOR WINDING HIGH TEMPERATURE	GENERATOR UNDERVOLTAGE OR SINGLE PHASING	GENERATOR FIELD GROUND	GENERATOR LOSS OF FIELD	GENERATOR FIELD OVEREXCITATION

II 72

r.

Rev. 0

Ĵ,

DIESEL GENERATOR 1G21

ہ ک

Panel 1094

Engine Over speed	DIESEL ENGINE START FAILURE	JACKET COOLANT LEVEL-LOW	JACKET COOLANT TEMPERATURE HIGH OR LOW	JACKET COOLANT PRESSURE-LOW	DIESEL OIL STORAGE TANK LO-LO LEVEL	COMBUSTION AIR TEMPERATURE HIGH
LUBE OIL MAKE UP TANK LEVEL LOW-LOW	LUBE OIL Make up tank Level High	LUBE OIL TEMPERATURE HIGH OR LOW	1, 1 LUBE OIL PRESSURE-LOW	FUEL OIL LEVEL-LOW	FUEL OIL LEVEL- HIGH	FUEL OIL PRESSURE-LOW
CRANKCASE PRESSURE	STARTING AIR PRESSURE-LOW	SERVICE WATER PRESSURE-LOW	BACKUP FUEL PUMP RUNNING	HIGH PRESSURE DROP ACROSS AIR FILTER	AIR PRESSURE MOISTURE LEVEL-HIGH	
•	ANY SWITCH NOT IN AUTO OR REMOTE POSITION	GENERATOR STATOR WINDING HIGH TEMPERATURE	GENERATOR UNDERVOLTAGE OR SINGLE PHAGING	GENERATOR FIELD GROUND	GENERATOR LOSS OF FIELD	GENERATOR FIELD OVEREXCITATION

73

Π

Rev.

INTAKE STRUCTURE INSTRUMENTATION PANEL

SCREEN
WASH PUMP 1P-112A
DISCH PRESS
LOWTRAVEL SCREEN
"A"
DIFF. PRESS
HIGHSCREEN
WASH PUMP 1P-112B
DISCH PRESS
LOWTRAVEL SCREEN
"B"
DIFF. PRESS
HIGH

Panel 1C102

Rev 1007

	•	ر آمان الم الم		
	. •		14.	· .
			'a '	
			· · · · · · · · · · · · · · · · · · ·	
CHLORINECHLORINECHLORINECHLORINEDISPENSEREVAPORATORGASEVAPORATORVACUUMWATER TEMP.LEAKWATER LEVELLOSSHIGHLOW	R E	WAPORATOR ATER TEMP.	GAS	EVAPORATOR WATER LEVEL

CHLORINE EVAPORATOR WATER TEMP. LOW

CHLORINE

EVAPORATOR

LOW

SUPPLY PRESS.

.

EJECTOR

WATER SUPPLY

PRESSURE

rom

CHLORINE

DETECTOR

INSTRUMENT

FAULT

II 75

Rev.

CHLORINATION AND ACID INJECTION PANEL

. Panel 1C103-B

SULFURIC ACID TANK LEVEL HIGH		CIRC. WATER BLOWDOWN PH HIGH	CIRC. WATER BLOWDOWN CONDUCTIVITY HIGH
SULFURIC ACID TANK LEVEL LOW	SULFURIC ACID PUMP FAILURE	CIRC. WATER BLOWDOWN PH LOW	CIRC. WATER BLOWDOWN CONDUCTIVITY LOW

Rev. 0

1023

FUEL POOL FILTER-DEMIN CONTROL PANEL

فوتبتها

Panel 10136

	14** \${ 5 1	· · · · · · · · · · · · · · · · · · ·	•	
LOW FLOW "A"	HIGH STRAINER"A" Δ P	HIGH F/D "A" CONDUCTIVITY	PRECOAT TANK HIGH LEVEL	
LOW FLOW "B"	HIGH STRAINER"B" A P	HIGH F/D "B" CONDUCTIVITY	PRECOAT TANK LOW LEVEL	· ·
-		LOW FLOW "A" HIGH STRAINER"A" LOW FLOW "B" HIGH STRAINER"B"	LOW FLOW "A" HIGH STRAINER"A" HIGH F/D "A" Δ P CONDUCTIVITY LOW FLOW "B" HIGH STRAINER"B" HIGH F/D "B"	LOW FLOW "A" HIGH STRAINER"A" HIGH F/D "A" PRECOAT TANK A P CONDUCTIVITY HIGH LEVEL LOW FLOW "B" HIGH STRAINER"B" HIGH F/D "B" PRECOAT TANK

H

Rev. 10

REACTOR BUILDING FLOOR DRAIN

الد سالية

Panel .10147

· · · · ·

SOUTH WEST AREA	REACTOR BLDG SOUTH EAST AREA FLOOR DRAIN LEVEL HIGH	SUPP. POOL NORTH EAST AREA FLOOR DRAIN LEVE HIGH	H.P.C.I. AREA FLOOR DRAIN L LEVEL HIGH	RCIC AREA FLOOR DRAIN HIGH LEVEL
REACTOR BLDG NORTH WEST AREA FLOOR DRAIN LEVEL HIGH	REACTOR BLDG NORTH EAST AREA FLOOR DRAIN LEVEL HIGH	SUPP. POOL SOUTH WEST AREA FLOOR DRAIN LEVE HIGH		

II 78

Rev. 0

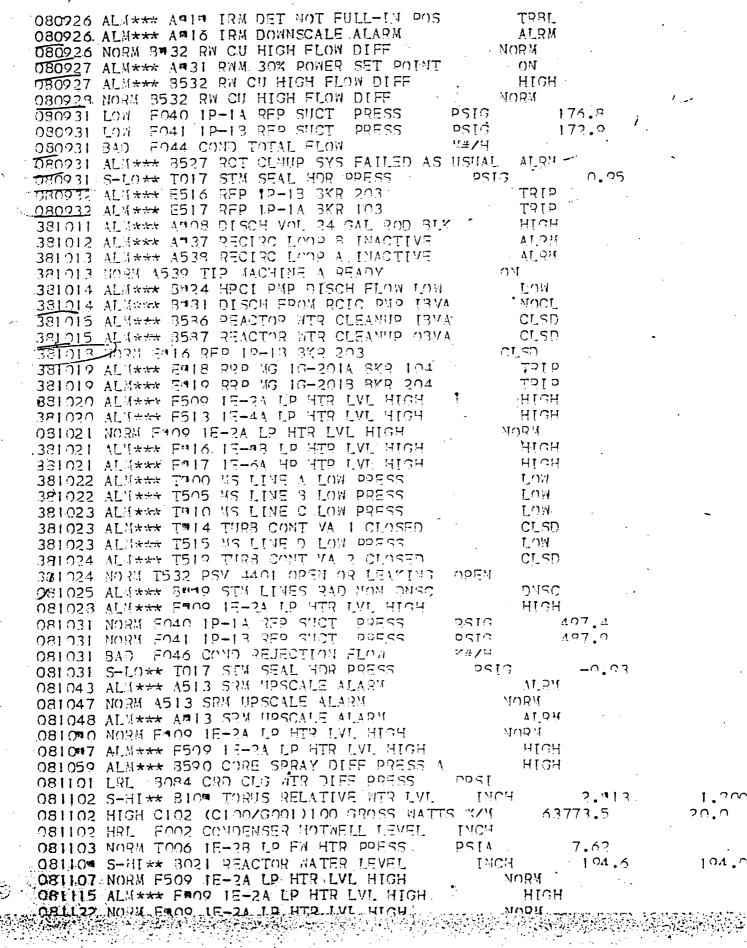
Panel 10175

RADWASTE EVAPORATOR CONTROL PANEL

 •			· · ·
	OPERATE	DISCHARGE	
BATCH DENSITY HIGH DT 8200	DISTILLATE COND. HIGH CITS 8207	DISTILLATE TK. HI LEVEL LIS 8214	BOTTOMS TK. HI LEVEL LIS 8215
MOTOR VOLTAGE FAILURE	AIR SUPPLY LOW PRESSURE PS 8200	· · · · ·	
			HORN OFF

1I 79

Rev.


Appendix E

Sample Alarm Printer Output

01	-07-	34
----	------	----

01-07-	84		
e de la companya de la	e e e e e e e e e e e e e e e e e e e	en en en la stran de la seconda de la se En esta de la seconda de la	
··· · · · · · · · · · · · · · · · · ·	080923 36	SEO D#43 SCRAM DISCH VOL DRN CV18678 INTD	
•	03092* 14	SEQ DM42 SCRAM DISCH VOL DRN CV1867B CLSD	
•	080925 51	SEO D541 SCRAM DISCH VOL VENT CV1800B INTD	
	030926 1	SEO DA40 SCRAM DISCH VOL VENT CV18003 CLSD	
	030927 15	SEO D536 MANUAL SCRAM CHANNEL A TRID	
	080927 16	SEO DH37 MANUAL SCRAM CHANNEL B TRIP	
•	020929 13	SEO D535 SCRAM DISCH VOL DRN CVIR67A INTO	
	030923	SEO D620 TSV&TCV FAST CLOS BYP AI LOW	
	030923 5	SEO D620 TSV&TCV FAST CLOS BYP AT MODM	
	080928 5	SEO D620 TSV&TCV FAST CLOS SYP 41 LOW	
	030928 13	SED D623 TSVATCY FAST CLOS BYD 32 LOW	
·	080923 18	SEO D623 TSVATCY FAST CLOS BYP 32 MOR'	
	080928 18	SEO DO23 TSVATCY FAST CLOS BYD B2 LOW	•
	080928 24	SEO D622 TSV&TCV FAST CLOS BYP 42 LOW	í
	02023 27	SEO DOZI ISVATOV FAST CLOS BYP BI LOW	
2	030931 47	SEO D596 REP A LOW SHOT PRESS TRP TRIP	
	030035 50	SEO DA96 REP A LOW SUCT PRESS TYP MOBY	
• .	080932 21	SEO DA97 REP B LOW SUCT PRESS TRP TRIP	
	030032 23	SEO D597 REP B LOW SUCT PRESS TRP MORY	
	080236 46	SED D680 SCRAM DISCH VOL HI WTR LEVEL HIGH	
	080932 38	SEQ D656 HPCI. RCIC SYS INIT B INTD	
	020939 57	SEO D679 HPCI, RCIC SYS INIT D INTO	
•	030944 • 4	SEO D 660 DISCH VOL LVL CHANNEL 31 TOTO	
	080945 18	SEO D656 HPCI. RCIC SYS INIT B RSET	
	080944 32	SEO D671 DISCH VOL LVL CHANNEL B2 TOTO	
•	020245 35	SEO D668 DISCH VOL LVL CHANNEL AT TOTO	
	080946 26	SEO DO79 HPCI, RCIC SYS INIT D DAFT	
•	020946 28	SEO DOTO DISCH VOL LVL CHANNEL 42 TOTO	
	0309#1 29	SEO D677 MS RCIC TURB STOP VA CLSD	
	0309.32 21	SEO D533 SCRAM DISCH VOL VENT CV1859A _ INTD	
· · ·	080939 18	SEO 0534 SCRAM DISCH VOL DAN CVIR67A CLSD	
	030944 19	SED D532 SCRAM DISCH VOL VENT CV1850A CISD	
	0309#3 40	SEO D'AOO DISCH VOL IVI. CHANNEL AI TDID.	
	080955 19	SEO DOOL DISCH VOL LVI CHANMEL 31 TOID	
•	030976 21	SEO DHOS DISCH VOL LVL CHANNEL B2 TRID	
•	0809**9 9	SEO DAO2 DISCH VOL LVI CHANNEL A2 TRID	
	030954 17	SEO DOTO MS HPCI TURE CONT VA. OPEN	
	020094 17	SEO DOTO NS HPCI TIPS CONT VA MOOD	
	030274 17	SEO D676 MS HPCI TURB CONT VA ODEN	
	080955 53	SEO DOTA MS HPCI TURB PRE STOP VA MOCI	
	031002 38	SEO D67 MS HPCI TURB STOP VA OPEN	
	081004 29	SEO D676 MS HPCI TURB CONT VA	
•	031001 1	SEO DA22 REACTOR LO ATR LVI, CH A2 MODM	
	081001 5 081001 29	SEO D523 REACTOR LO ATR LVL CH 32 MODY	
	•	SEO D520 REACTOR LO ATR LVI. CH AI MORM	
020000		SEO DA21 REACTOP LO HTR LVI CH BI MORA	
080024	ALAS (本 近代11) (CO PUMP 1P-209B 3KR 410 TREP	
080924	AT (444 AE10	DATA AT LEAST 1 NOTCH	
0800723	AT 1 + - A ADIY	APRM DOWNSCALE ALARM ALRM ALRM ON ON	
	081014 42		
•••		SEQ D677 MS HPCI TURB STOP VA NOOP	
	081015 32	SEQ D520 REACTOR LO WTR LVL CH AI TRIP	
		SEG DA20 REACTOR LO WIR LVL CH AL NORY P IP-1B BKR 203 CLSD	
	10 AN ETIO REI 10 AN ETIO REI	CED DATE HE HEAT THEN ATTACK	
080024	001019 23	SEQ D675 MS HPCI TURB STOP VA OPEN	
000024		W CU_HIGH FLOW DIFF HIGH	•••
		ANA BOIL BLOCK IN THE STATE OF A DATA STATE AND A S	

01-07-84

Appendix F

Sample NSSS & BOP Post-Trip Log Output

	133955	NSS DE	MAND TRI	[P LOG								
	TIME	B000	B002	B012	8013	BO 15	B016	BO 2 1	8 02 2	B025	B030	
	133459	13.9	73.8	31.2	10.4	2.4	2.3	192.1	5.0	996.	385.6	
	133504	73.7	73.7	31.1	10.3	2.4	2.3.	1.92.0	4.9	996.	385.6	
	133509	73.6	73.6	31.1	10.3	2.4	2.3	191.9	5.0	996.	385.6	
	133514	74.0	74.0	31.1	10.4	2.4	2.3	192.0	5.0	996.	385.6	
	133519	73.8	73.8	31.1	10.4	2.4	2.3	191.9	5.0	996.	385.6	
· 、	133524	73.3	73.2	31.0	10.3	2.4	2.3	191.9	5.0	996.	385.6	
	133529	73.8	73.7	31.1	10.3	2.4	2.3	191.9	5.0	996.	385.6	
	1 335 34	13.8	73.1	31.1	10.3	2.4	2.3	191.9	5.0	996.	385.6	
	133539	/3.7	73.7	31.1	10.3	2.4	2.3	191.8	5.0	996.	385.6	
	133544	73.4	73.3	31.0	10.3	2.4	2.3	191.7	4.9	996.	385.6	
	133549	73.7	73.7	31.1	10.3	2.4	2.3	191.8	4.9	996.	385.6	
	133554	/3.5	73.5	31.1	10.3	2.4	2.3	191.7	5.0	996.	385.6	
	133559	73.5	73.5	31.0	10.3	2.4	2.3	191.8	5.0	996.	385.6	
	133604	/3.3	73.7	31.1	10.3	2.4	2.3	191.7	5.0	996.	385.6	
	133609	/4.1	14.0	31.2	10.4	2.4	2.3	191.7	5.0	996.	385.6	
	1336.14	/3.7	73.7	31.2	10.4	2.4	2.3	191.7	5.1	. 996.	385.6	
	133619	73.9	/3.9	31.1	10.3	2.4	2.3	191.8	5.0	996.	385.6	
	J9-21-83	5										
	133624	13.8	73.8	31.1	10.3	2.4	2.3	191.7	5.0 ₁	996.	385.6	
	133629	/4.0	13.9	31.2	10.4	2.4	2.3	191.6	5.0	996.	385.6	
	133634	/3.7	13.6	ا.اك	10.3	2.4	2.3	191.7	. 5.0	99 6 _°	385.6	
	133639	/3.4	73.3	31.0	10.3	2.4	2.3	191.6	4.9	996.	385.6	
	133644	73.6	73.5	31.0	10.3	2.4	2.3	191.6	5.0	996.	385.6	
	133549	. 13.8	73.7	31.0	10.3	2.4	2.3	191.6	5.0	996.	385.6	
	133054	د. 14	74.2	31.2	10.4	2.4	2.3	191.6	5.0	996.	385.6	
	133654	73.1	/3./	31.1	10.3	2.4	2.3	191.6	5.0	996.	385.6	
	133/04	13.5	. 73.4	31.1	10.3	2.4	2.3	191.7	į 5.0	996.	385.6	
	133/09	/4 .	/4.0	31.1-	- 10.3	2.4	- 2.3	191.6	4.0	996.	385.6	-
	133/14	/3.5	73.4	31.1	10.3	2.4	2.3	191.6	5.0	996.	385.6	
	133/19	13.4	13.3	31.0	10.3	2.4	2.3	191.8	4.9	996.	385.6	
	24 / دد :	73.8	13.7	31.1	10.3	2.4	2.3	191.7	5.0	006.	385 .6	
	133/29	73.7	13.0	.31.1	10.3	2.4	2.3	8 191.8	5.0	996.	385.6	
	133/34		/3.8	31.1	10.3	2.4	2.3	8 191.8	4.9	996.	385.5	
	135/34	73.7		31.1	10.3	2.4	2.3	3 191.8	5.0	. 996.	385.5	
	133744	/3.7		.31.0	10.3	2.4	2.3	3 191.9	5.0	996.	335.5	
	133749	73.9		31.1	10.3	2.4	2.3	3 191.7	. 5.0	996.	385.5	
	133/54	74.2		31.2	10.4	2.4	2.3	3 191.8	5.0	<u>096</u>	385.5	
								•				

	135340	BOP DEMA	ND TR	NP LOG		,											
	TIME		093 016	F004 G000	F011 G001	F012 G002	F013 G003	F014 G006	F015 G007	F0 40 , G0 16	F04 1 G05 0	F042 G051	F043 B079	F067 B0 3 0	F068 T039	TO 22 TO 40	
•	134619			497.2 21.80	3.61 309.4	3.11 49.6	3.45 10.	2.96 246.4	25.7 1157.	423.4 32.7	418.9 53.7	1702.	1657. 0.33	387.6 0.41	384.5 2.34	95.6 2.69	
	134649			497.2 21.80	3.62 398.9	3.18 49.6		2.97 242.3	25.7 1154.	423.7 32.7	419.2 53.7	1701.	1659. 0.33	387.6 0.41	384 .5 2 . 34	95.6 2.69	
	34 / 19			496.9 21.80	3.56 399.8	3.18 47.9		2.97 245.1	25.7 1154.	423.7 32.7	419 .1 53 . 7	1701.	1657. 0.33	387.6 0.41	384.5 2.35	95.5 2.69	
	134749			497.1 21.80	3.52 398.9	3.29 47.9		2.95 245.4	25.6 1162.	423.7 32.7	419.1 53.7	1697.	1660. 0.33	387.6 0.41	384.5 2.35	95.5 2.69	
	134819			497.4 21+8-	3.54 399.8	3.13 21.0	3.50 10.	2.97 249.0	25.7 1159.	424.1 32.7	419.6 53.7	1701.	1657. 0.33	387.6 0.41	334.9 2.35	95.5 2.70	
	134849	28.3 -24 95.0 4			3.57 399.4	3.16 51.0		2.97 244.7	25.7 1159.	423.0 32.7	418.3 53.7	1701.	1659. 0.33	387.6 0.42	334.8 2.35	95.5 2.70	
	134919	43.4 10 95.1 4			3.58 399.4	3.13 ` 50.0		2.98 246.4	25.7 1157.	423.2 32.8	418.5 53.7	1699.	1657. 0.33	387.6 0.42	384.5 2.35	95.6 2.70	
	134949			496.7 21.80	3.55 398.9	່ 3.18 53.0		2.98 243.7	25.7 1151.	421.7 32.8	417 .2 .53 .7	1702.	1657. 0.33	387.6 0.41	334 . 5 2.35	95.6 2.70	
	135019			496.7 21.81	3.57 399.4	3.25 49.0	3.56 10.	3.01 246.0	25.7 1154.	422.2 32.8	417.7	1699.	. 1657. 0.33	387.6 0.11	3 84 .5 2 . 35	95.4 2.70	
	135049			495.7 21.81	3.66 399.4	3.13 49.0	3.47 10	3.05 247.7	25.6 1159.	423.0 32.8	418.5 53.7	1701.	1657. 0.33	387.6 0.41	334.5 2.35	95.4 2.70	
	135119			497.6 21.80	3.66 398.4	3.23 49.9	3.39 10.	3.07 247.3	25.6 1155.	424.5 32.8	420.0 53.7	1702.		387.6 0.42	384.5 2.35	95.4 2.70	

•

• •

-

-09-21-83

135149	45.6 94.9		497.8 21.80	3.44 398.4 -	3.06 	3.54 - 19		25.7 1155.	425.1 - 32.8	420.7 53.7	1702.	1662. 0.33		384.5 2.35	95.4 2.70	
135219	41 .9 94 .9		4.96.7 21.80	3,53 398,9	3.10 50.9	3.42 10.	.3.04 247.9	25.7 1158.	422.4 32.8	417.9 53.6	1699.	1654. 0.34	387.ó 0.42	334.5 2.35	95.2 2.70	
135249	46 .5 94 .9	18.4 .456.	496.5 21+8-	3.57 399.4	3.02 20.9	3.44 10.	3.06 243.4		423.0	418.1 53.6	1700 .	.1652. 0.33	387.6 0.41	334.5 2.35	95.2 2.70	
135319		-21.4 456.	496.7 21.81	3.51 399.8	3.23 50.4		3.08 2.44.1	25.7 1157.	423.0 32.8	418.3 53.7	1699.	1653. 0. 3 3	387.6 0.41	384.5 2.35	95.6 2.70	
135349	35.8 95.1	-21.4 456.		3.55 399.4	3.23 50.4	3.52 10.	3.07 242.1	25.7 1147.	423.4 32.8		1701.	.1655. 0.33	387.6 0.41	384.5 2.35	95. 6 2.70	
1354 19	40.4 94.9		496.9 21.80	3.62 398.9	2.77 50.5		3.05 247.5	25.7 1158.	42 3. 4 32.8	4.18.9 53.7	1700.	.1660. 0.33	387.6 0.42	334.5 2.35	95.3 2.69	
130449	30 .9 94 .9		496.9 21.80	3.62 398.9	3 .23 50 . 5		3.04 246.0	25.7	423.4 32.8	418.9 53.7	1699.	1659. 0.33	387.6 0.42	384.5 2.35	95.3 2.69	
1300 19	⊃2.0 У4.У		496.9 21.02	اد. د ۷.8 ود	3.11 51.0		3.02 247.1		423.6 32.8			1659. 0.33	387.6 0.42	384.5 2.34	95.4 2.69	,
135549	34 • i 94 • 9		49/.1 21.82	3.56 398.9	3.19 51.0	3.48 .10.	3.02 243.0	25.7 1151.	•423.4 32.8	418.9 53.7	1704.	1661. 0.33	387.6 0.42	334.5 2.34	95.4 2.69	,
91 oct 1	⊃2.0 94.9		497.2 21.80	3.57 398.9	3.17 47.0	3.49 10.	3.05 244./	25.7 1151.	42 3.7 32.8	419.2 53.7	1 7 01.	1659. 0.32	337.6 0.41	384.5 2.34	95.4 2.68	1
135649	41 .5 94 .9		497.1 21.80	3.60 398.9	3.24 47.0		3.06 243.9	25.7 1153.	423.6 32.8	418.9 53.7	1703.	1657. 0.33	387.5 0.41	384.5	95.4 2.58	1
135719		23.7 450.		3.6 0 39 9. ช	3.26 5 3. 9 -	3.51 .10.	3.05 249.2	25.7 1164.	423.6 32.9	418.9 53.7	1701.	1655. 0.32	387.6 0.41	394.5 2.34	95.5 2.68	(
135/49	50.2 95.1		497.1 21.80	3.56 399.4	3.10 53.9	3.42 10.	3.03 244.3	25.7 1159.	423.2 32.9	418.7 53.7	1699.	1653. 0.33	387.6 0.42	384.5 2.34	95 .5 2.68	(
135819 -	45.9 94.9		497.1 21.80	3.53 3°9.8	3.24 43.9	3.59 10.	3.02 245.3	25.7 1147.	423.0 32.9		1701.		387.6 0.42	384.5 2.34	95.4 2.69	
135849	38.3 94.9		497.1 21.80	3.53 399.4	3.23 43.9	3.50 10.	3.01 244.1	25.7 1153.	423.2 32.9	418.7 53.7	1699.		387.6 0.42	384.5 2.34	95.4 2.69	(
1359 19 I	43.4 95.1		497.2 21.80	3.62 399.4	3.27 47.4	3.47 10.	3.01 246.4	25.7 1153.	424 . 3 32 . 9	419 .4 53 . 7	1698.	1657. 0.34	3 87. 6 0.41	384.5 2.34	95.5 2.68	(

θ

٢

Appendix G

Selected Control Room Indicated Meter and Valve Position Indicating Light List

۲.

SELECTED SYSTEM METER INDICATIONS AND VALVE POSITION INDICATIONS

RCIC System
 Flow
 Main Steam Pressure to the Turbine
 Turbine Speed
 Turbine Exhaust Pressure
 Pump Discharge Pressure
 RCIC Controller

HPCI System

 Pump Suction Pressure
 Pump Discharge Pressure
 Pump Flow
 Selected Valve Positions
 Main Steam Pressure to HPCI Turbine
 Turbine Speed
 Turbine Exhaust
 HPCI Controller

Recirculation System

 A/B Recirculation Pump Differential Pressure
 A/B Loop Flow
 A/B Pump Speed
 A/B Pump Motor Amperage
 Recirculation Flow Controllers
 Recirculation Pump Voltage
 Recirculation Pump Wattage
 Recirculation Pump Seal Pressure
 M/G Set Drive Motor Amperage

Feedwater System
 RPF Flow
 RPF Suction Pressure
 RPF Discharge Pressure
 Feedwater System Controllers
 Feedwater Pump Amperage

RHR/LPCI System

 RHR Pump A, B, C, and D Amps
 Service Water Flow to RHR Heat Exchangers
 RHR Pump A, B, C, and D Flow
 RHR Hx A, B Level
 RHR Hx's to RCIC Pressure
 RHR A Head Spray Flow
 Selected Valve Positions
 RHR Controllers (manual control only)
 RHR Loop Flow

LPCS System LPCS Pump Amps LPCS Pump Flow LPCS Pump Discharge Pressure Selected Valve Positions

SELECTED SYSTEM METER INDICATIONS AND VALVE POSITION INDICATIONS (Continued)

• ADS SRV Tailpipe Temperature Recorder

0

DG (1, and 2) Service Water to DG Flow (alarm only) DG Vars DG Watts DG Frequency DG 3 Φ Volts Div Battery Volts (alarm only) Emergency Bus Volts Incoming Bus Volts Running Bus Volts Synchroscope

4

Appendix H

NUTAC VETIP Report

· .

Lettoro TULS

ON GENERIC LETTER 83-28, SECTION 2.2.2

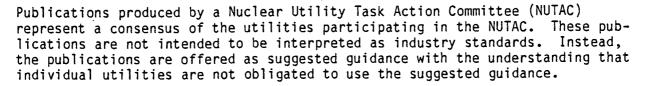
Vendor Equipment Technical Information Program

February, 1984

GENERIC LETTER 83-28 SECTION 2.2.2

Draft Report

Developed By


Nuclear Utility Task Action Committee

for

Generic Letter 83-28, Section 2.2.2

February 9, 1984

DRAFT

This publication has been produced by the NUTAC on Generic Letter 83-28, Section 2.2.2., with the support of the Institute of Nuclear Power Operations (INPO). The officers of this NUTAC were Chairman Edward P. Griffing and Vice Chairman Walter E. Andrews.

Utilities that participated in this NUTAC include the following:

Alabama Power Company American Electric Power Service Corporation Arizona Public Service Company Arkansas Power & Light Company Baltimore Gas and Electric Company Boston Edison Company Carolina Power & Light Company Cincinnati Gas & Electric Company Cleveland Electric Illuminating Company Commonwealth Edison Company Consolidated Edison Company of New York, Inc. Public Service Company of Colorado Consumers Power Company Detroit Edison Company Duke Power Company Duquesne Light Company Florida Power Corporation Florida Power & Light Company GPU Nuclear Corporation Georgia Power Company Gulf States Utilities Company Houston Lighting & Power Company Illinois Power Company Iowa Electric Light and Power Company. Kansas Gas and Electric Company Long Island Lighting Company Louisiana Power & Light Company Maine Yankee Atomic Power Company Mississippi Power & Light Company

Nebraska Public Power District New York Power Authority Niagara Mohawk Power Corporation Northeast Utilities Northern States Power Company Omaha Public Power District Pacific Gas and Electric Company Pennsylvania Power & Light Company Philadelphia Electric Company Portland General Electric Company Public Service Company of Indiana, Inc. Public Service Company of New Hampshire Public Service Electric and Gas Company Rochester Gas and Electric Corporation Sacramento Municipal Utility District South Carolina Electric & Gas Company Southern California Edison Company Tennessee Valley Authority Texas Utilities Generating Company The Toledo Edison Company Union Electric Company Vermont Yankee Nuclear Power Corporation Virginia Electric and Power Company Washington Public Power Supply System Wisconsin Electric Power Company Wisconsin Public Service Corporation Yankee Atomic Electric Company

1984 Institute of Nuclear Power Operations. Limited reproduction by INPO members and participants for internal company use is permitted.

NOTICE: This document was prepared by a Nuclear Utility Task Action Committee (NUTAC) with the staff support of the Institute of Nuclear Power Operations (INPO). Neither this NUTAC, INPO, members of INPO, other persons contributing to or assisting in the preparation of the document, nor any person acting on behalf of these parties (a) makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this document, or that the use of any information, apparatus, method or process disclosed in this document may not infringe on privately owned rights, or (b) assumes any liabilities with respect to the use of any information, apparatus, method, or process disclosed in this document.

EXECUTIVE SUMMARY

This report was prepared by the Nuclear Utility Task Action Committee (NUTAC) on Generic Letter 83-28 "Required Actions Based on Generic Implications of Salem ATWS Events," Section 2.2.2. It describes the Vendor Equipment Technical Information Program (VETIP) developed by the NUTAC in response to the concerns on vendor information and interface addressed in Section 2.2.2 of the generic letter. VETIP is a program that enhances information exchange and evaluation among utilities constructing or operating nuclear power plants and provides for more effective vendor interface.

The NUTAC was comprised of representatives of 56 utilities that are members of the Institute of Nuclear Power Operations (INPO). Staff support for the NUTAC was provided by INPO. This report unanimously presents the final conclusions of the NUTAC and is provided to assist individual utilities in developing specific programs to meet the intent of the generic letter.

Generic Letter 83-28 was developed following investigations by the NRC on the Salem events. As a result of these investigations, the NRC determined that better control and utilization of information regarding safety related components might have helped to prevent these events. The NUTAC identified a program to better ensure that plant personnel have timely access to such information.

The NUTAC efforts were guided by the recognition that individual utilities have the greatest experience with and are most cognizant of the application of safety-related equipment. Vendor involvement with such equipment is generally greatest during construction and initial operation of the plant. Vendors are not familiar with the surveillance or maintenance histories, nor with the application of the equipment or its environment. This type of information is most readily available at the plant level within individual utilities.

Based on this recognition, the NUTAC investigated the mechanisms currently available to facilitate information exchange among utilities. The NUTAC identified four activities that currently address information about

i

DRAFT

2/84

safety-related components. These are routine utility/vendor and utility/ regulator interchange, and the SEE-IN and NPRDS programs managed by INPO.

It was the assessment of the NUTAC that these existing activities, if properly integrated and implemented, would provide a framework for an overall program to ensure effective communication of safety related information among all utilities. Accordingly, the program developed to accomplish this goal (VETIP) utilizes the existing efforts as elements of a more comprehensive program.

The VETIP combines these existing programs, incorporating enhancements, with a coordinated program within each utility. A key element of the VETIP is the development by each utility of an active internal program to contribute information to the NPRDS and SEE-IN programs and to utilize the results of these programs.

The effectiveness of the VETIP will be determined by the level of utility participation in these programs. To implement the VETIP, each utility should assess the type of information currently being provided to NPRDS and SEE-IN and expand the scope of reporting if appropriate. Additionally, each utility should evaluate current administrative controls for reporting information and for disseminating the results of the NPRDS and SEE-IN programs to the plant level. These administrative controls may require modification to ensure that effective coordination is established. Concurrent with these efforts, enhancements will be made to both NPRDS and SEE-IN by INPO within its present institutional objectives.

The VETIP has been developed to ensure that nuclear utilities have prompt access to and effective handling of safety-related equipment technical information. In addition, it is responsive to the intent of Generic Letter 83-28 Section 2.2.2. Further details are provided in the body of this report.

ii

FOREWORD

On February 22 and 25, 1983, during startups of the Salem Unit 1 plant, both reactor trip breakers (Westinghouse model DB-50) failed to open on an automatic trip signal. As a consequence, the Nuclear Regulatory Commission (NRC) formed an investigating task force to determine the factual information pertinent to the management and administrative controls that should have ensured proper operation of the trip breakers. The findings and conclusions of the task force are documented in NUREG-0977, "NRC Fact Finding Task Force Report on the ATWS Events at the Salem Nuclear Generating Station, Unit 1, on February 22 and 25, 1983". A second task force determined the extent to which these investigative findings were generic in nature. The NRC subsequently issued NUREG-1000, "Generic Implications of ATWS Events at the Salem Nuclear Power Plant" and Generic Letter 83-28, "Required Actions Based on Generic Implications of Salem ATWS Events."

On September 1, 1983, a group of utility representatives met at the offices of the Institute of Nuclear Power Operations (INPO) to discuss the establishment of an ad hoc utility group to address issues relative to the NRC Generic Letter 83-28, Section 2.2.2. The representatives decided that such a group could provide direction that would be of generic benefit to the utilities and consequently formed the Nuclear Utility Task Action Committee (NUTAC) on Generic Letter 83-28, Section 2.2.2. The specific charter for the NUTAC (Appendix A) was adopted, and the target date for completion of activities was established as February 1984.

DRAFT

TABLE OF CONTENTS

Sec	ction	Page			
1.	INTRODUCTION	1			
2.	ACRONYMS AND DEFINITIONS				
	2.1 Acronyms				
	2.2 Definitions	3			
3.	Vendor Equipment Technical Information Program (VETIP)				
	3.1 Existing Programs	6			
	3.1.1 Nuclear Plant Reliability Data System (NPRDS)	7			
	3.1.2 Significant Event Evaluation and Information Network				
	(SEE-IN)	9			
	3.1.3 Interaction with Vendors	12			
	3.1.4 Regulatory Reporting Requirements	14			
	3.2 Recommended Enhancements to Existing Programs	15			
	3.2.1 Enhancements to NPRDS	15			
	3.2.2 Enhancements to SEE-IN	17			
	3.3 Summary Example				
4.	IMPLEMENTATION OF VETIP 19				
	4.1 Responsibilities for Implementation				
	4.1.1 Utility Implementation Responsibilities				
	4.1.1.A Existing Programs				
	4.1.1.B Enhanced Programs				
	4.1.2 INPO Implementation Responsibilities				
	4.2 Schedule for Implementation				
	4.2.1 Existing Programs				
	4.2.2 Enhancements to Existing Programs	23			
	FIGURES				
	Figure 1 - VETIP Block Diagram 2				
	Figure 2 - Operating Experience Review Process	26			
	APPENDIXES				
	APPENDIX A SPECIFIC CHARTER FOR NUCLEAR UTILITY TASK ACTION COMMITTEE				
	ON GENERIC LETTER 83-28, SECTION 2.2.2				
	APPENDIX B LIST OF REFERENCES				
	APPENDIX C SEE-IN FUNCTIONS				
	APPENDIX D GENERIC LETTER 83-28, SECTION 2.2.2				

iv

1. INTRODUCTION

The objective of Generic Letter 83-28, Section 2.2.2 (Appendix D), is to improve the safety and reliability of nuclear power generating stations by ensuring that the utilities are provided with significant and timely technical information concerning reliability of safety-related components. In a typical nuclear station, hundreds of vendors supply the thousands of components that perform safety-related functions. The variations in vintage and design of plants ensure that although common applications of specific components may exist, there are an equal or greater number of unique applications. To attain the objective in a cost-effective and efficient manner, this NUTAC has developed the program outlined in this document. This positive program has been found to be the most realistic approach to attain the objective.

The Vendor Equipment Technical Information Program (VETIP) described in this document establishes a more formal interaction among the major organizations involved with commercial nuclear power generation. The goal of the interaction is to improve the quality and availability of equipment technical information for use by the utilities. The major components of the VETIP are an information transfer system and a centralized evaluation of industry experiences.

This document provides the unanimous NUTAC position on the guidelines for an effective technical information program. The determination of each individual utility to support and utilize these guidelines is the key to the effectiveness of this program for the industry as a whole. The program does not require the use of nor prescribe standard administrative procedures, but it allows the use of plant-specific procedures compatible with the utility's internal organization and needs. However, the recommendations in this document provide the basis for a uniform industry response to NRC questions and requirements relative to a technical information program. This program will be beneficial to the utilities and, at the same time, it will be responsive to Section 2.2.2 of the NRC Generic Letter 83-28.

2/84

DRAFT

- 2/84

2. ACRONYMS AND DEFINITIONS

2.1	Acronyms		
	A/E	-	Architect-Engineer
	AEOD	-	Office of the Analysis and Evaluation of
			Operational Data
	ATWS	-	Anticipated Transient Without Scram
	CFR	-	Code of Federal Regulations
	EPRI	-	Electric Power Research Institute
	ETI	-	Equipment Technical Information
	IEB, IEN	-	Inspection and Enforcement Bulletins and
			Notices, issued by the NRC
	IEEE	-	Institute of Electrical and Electronics
			Engineering
	INPO	-	Institute of Nuclear Power Operations
	LER	-	Licensee Event Report, issued by a utility
	MOR		Monthly Operating Report
	NPRDS	-	Nuclear Plant Reliability Data System
	NRC	-	Nuclear Regulatory Commission
	NSAC	-	Nuclear Safety Analysis Center
	NSSS	`-	Nuclear Steam Supply System
	NUTAC	-	Nuclear Utility Task Action Committee
	O&MR	-	Operations and Maintenance Reminder
	PRA	-	Probabilistic Risk Assessment
	QA .	-	Quality Assurance
	SEE-IN		Significant Event Evaluation and Information
	:		Network
	SER	-	Significant Event Report
	SOER	-	Significant Operating Experience Report
	VETIP	-	Vendor Equipment Technical Information
			Program

2.2 Definitions

Component

- A component is a mechanical or electrical assembly (including instruments) of interconnected parts that constitute an identifiable device or piece of equipment. Examples of electrical components include a drawout circuit breaker, a circuit card, instruments, or other subassemblies of a larger device that meet this definition. Examples of mechanical components include valves, piping, pumps and pressure vessels, and associated prime movers and/or operators.

Equipment Technical Information (ETI)

- For the purposes of this report, this term includes, as a minimum, the following documentation:
 - vendor-supplied engineering and technical information (drawings, manuals, etc.) and changes thereto
 - equipment qualification data (provided by the equipment vendor or qualification lab)
 - o industry-developed information, including utility and NRC-originated information (NPRDS, SER, IEB, IEN, etc.)

NUCLEAR NETWORK - An information service provided through INPO. (NUCLEAR NETWORK replaced NUCLEAR NOTEPAD.)

- Guidance documents issued by the NRC.

-3-

NUREG

-4-

2/84

Safety-Related

Safety-related structures, systems, and components are those relied upon to remain functional during and following design basis events to ensure (1) the integrity of the reactor coolant pressure boundary, (2) the capability to shut down the reactor and maintain it in a safe shutdown condition, and (3) the capability to prevent or mitigate the consequences of accidents that could result in potential off-site exposures comparable to the guidelines of 10 CFR Part 100.

Vendor

For the purposes of this report, this term is used to identify the manufacturer of the component concerned and/or those who provide the related equipment technical information.

3. VENDOR EQUIPMENT TECHNICAL INFORMATION PROGRAM (VETIP) DESCRIPTION

The VETIP includes interactions among the major organizations involved with commercial nuclear power generation. As illustrated in Figure 1, a utility exchanges safety-related equipment information with vendors, NRC, INPO and other utilities via reports, bulletins, notices, newsletters, and meetings. The purpose of these information exchanges is to share equipment technical information to improve the safety and reliability of nuclear power generating stations. The NUTAC concluded that the lack of information is not a problem, but that the various information systems available are not integrated properly. The purpose of VETIP is to ensure that current information and data will be available to those personnel responsible for developing and maintaining plant instructions and procedures. These information systems and programs currently exist and are capable of identifying to the industry precursors that could lead to a Salem-type event. VETIP is an industry-controlled and mainly hardwareoriented program that does not rely on vendor action, other than the NSSS supplier, to provide information to utilities. Instead, VETIP provides information developed by industry experience through SERs and SOERs to the vendor for comment before it is circulated to the utilities concerned.

The majority of information provided by vendors is commercial in nature. This usually is provided voluntarily by the vendor, but does little to improve the safety or reliability of existing equipment.

A vendor-oriented program to provide information that would improve the safety and reliability of existing equipment relies on the vendor having an internal program to develop the information. Such programs typically are not in existence. Following design and qualification testing, vendors normally do not continue extensive testing or engineering programs in anticipation of equipment problems. Subsequent failures discovered during operations require several steps to complete the information feedback loop. For example, when a problem occurs and a local vendor representative provides a solution, he would have to provide that information to the vendor headquarters. Then, the headquarters would need a tracking program to identify a trend and subsequently a program to provide the information to the industry. In addition, the vendor often is not in the best position to analyze the failure. The vendor is not always aware of the component's application and environment nor its maintenance and surveillance history.

The VETIP recognizes that the utility user is in a unique position. The utility user alone has immediate access to the maintenance and surveillance history of the equipment. The utility, not the manufacturer, knows the component's actual application and environment. The utility is the primary source of information on the failure, and the utility has the greatest need for the solution. As such, the utility is the central organizer in any approach to the solution, whether or not the manufacturer gets involved. The utility is in the position to know of the failure analysis and its solution at the earliest possible time. The utility can then disseminate the information to other utilities, with an indication of its significance and urgency.

By sharing the operating history, problems, and solutions within the nuclear industry, independent of any normal vendor contacts, the other users will be informed in a much more timely and uniform way. In this way, the distribution of information is controlled entirely by the nuclear utility industry. The programs which comprise the VETIP are currently in existence. The recommended enhancements contained within this report are suggested ways to improve the current use and application of these existing programs.

3.1 Existing Programs

The existing systems and programs included in the VETIP are the Nuclear Plant Reliability Data System (NPRDS) and the Significant Event Evaluation and Information Network (SEE-IN), both managed by INPO. Also, the VETIP includes existing programs that the utilities now conduct with vendors and other sources of ETI, particularly the NSSS vendor interaction programs and the NRC reporting programs that disseminate significant failure information. Utility-vendor interaction is further enhanced by the INPO supplier participant practices. Through participation in this program, NSSS vendors and A/E firms are working toward greater participation in the NPRDS and SEE-IN programs.

2/84

3.1.1 Nuclear Plant Reliability Data System (NPRDS)

NPRDS is an industrywide system managed by INPO for monitoring the performance of selected systems and components at nuclear power plants. INPO member utilities have agreed to participate in the program. U.S. plants in commercial operation (except for six atypical, early vintage units) supply basic engineering information and subsequent failure data on the selected systems and components (typically six to seven thousand components from some 30 systems per unit). The value of NPRDS lies in the ready availability of this data base to operation and engineering groups for a broad range of applications. The criteria used to determine the scope of NPRDS reports are as follows:

- o systems and components that provide functions necessary for accident mitigation
- o systems and components for which loss of function can initiate a significant plant transient

Uniform scoping and reporting criteria are set forth in the Nuclear Plant Reliability Data System (NPRDS) Reportable System and Component Scope Manual (INPO 83-020) and in the Reporting Procedures Manual for the Nuclear Plant Reliability Data System.

To support the benefits that can be obtained from NPRDS usage, utilities submit three kinds of information to the NPRDS data base: engineering/test information, failure reports, and operating history. The engineering/test record on a component contains information necessary to identify the component and its application, such as manufacturer, model number, operating environment, size, horsepower, and test frequencies. The information is submitted when the component is placed in service and is stored in the data base. If that component fails to perform as intended, a report is submitted containing a description of the failure mode and cause, the failure's effect on plant operations, corrective actions taken, and other

-7-

information necessary to assess the failure. On a quarterly basis, utilities submit information on the number of hours the plant is in different modes of operation. This information is used in conjunction with the engineering and failure reports to generate failure statistics for systems and components.

The data is retrievable from a computer, and the engineering and failure information can be combined in various ways. A search of the failure records can identify problems experienced with components in other plants and the corrective actions taken. There are several hundred searches of the data base in a typical month. Following are some example uses of the data base:

Utility and Plant Staffs

- o accessing comprehensive equipment history files to support maintenance planning and repair
- o avoidance of forced or prolonged outages by identifying other plants with similar or identical equipment that may have spares for a possible loan
- o determination of spare parts stocking, based on industry mean time between failures
- o comparison of component failure rates at a given plant with the industry average failure rates

Design Groups

- o identification of common failure modes and causes
- o selection of vendors based on component application and performance
- o identification of component wearout and aging patterns
- o studies of component performance as a function of operating characteristics, such as test frequency and operating environment
- o input to plant availability improvement programs

2/84

Operating Experience Reviewers

- o identification of significant failure modes affecting safety or availability
- o trending of component failure rates
- development of failure probability estimates for use in fault tree analyses (reliability or PRA studies)

NPRDS data is available to users through various quarterly and annual summary reports and through on-line access of the data from a computer terminal.

3.1.2 Significant Event Evaluation and Information Network (SEE-IN) Since the early days of nuclear power plant operations, utilities and manufacturers have attempted to share what has been learned from plant operating experience. As nuclear technology becomes more complex and more demanding, the need for sharing operating experience continues to grow and becomes more important. The safety benefits of avoiding problems already encountered and resolved more than justifies the costs and extra effort required for utilities to keep each other informed. The Nuclear Safety Analysis Center (NSAC), with the support of its utility advisory group, began developing a program to share information learned from analyzing nuclear plant experiences. Shortly after its formation in late 1979, the Institute of Nuclear Power Operations (INPO) joined NSAC in the development and implementation of the program. The program has been named "Significant Event Evaluation and Information Network" (SEE-IN). In 1981, the management of the SEE-IN program became the sole responsibility of INPO.

Objective

The objective of SEE-IN is to ensure that the cumulative learning process from operating and maintenance experience is effective and that the lessons learned are reported in a timely manner to improve plant safety, reliability, and availability. This objective is met by screening available nuclear

-9-

2/84

plant event information systematically, identifying and evaluating the important or significant events, and communicating the results to the utilities and appropriate designers and manufacturers.

Scope

The functional approach to SEE-IN is an eight-step process outlined in Appendix C. While INPO has the program management function, no single organization is responsible for performing all of these functions; rather, the responsibility is spread among key participants in the network. The principle organizations involved in the initial screening of plant event data are the utilities and INPO. Each nuclear utility has an in-house program to screen events that occur in its nuclear plant(s). INPO has a broader charter to screen all nuclear plant events. The sources of input to the screening process include NPRDS, NUCLEAR NETWORK, NRC-mandated reports, IEBs, IENs, etc. The provision to control the data normally is governed by agreements between INPO and the supplying organization (e.g., utilities, NRC, NSSS vendors, international participants, etc.). When a significant event or trend has been identified from the screening process, a Significant Event Report (SER) is prepared by INPO and transmitted to the utilities and other participants on NUCLEAR NETWORK. This event then undergoes an action analysis by INPO. The purpose of the action analysis is to investigate the event or trend in more detail and to develop and evaluate practical remedies. For events requiring utility action, the results of the action analysis are communicated to the utilities, normally in the form of a Significant Operating Experience Report (SOER). In these instances, recommendations are made to resolve the underlying problems. The implementation of applicable recommended remedial actions is the responsibility of the individual utility. Implementation may include changes in plant procedures, equipment design, and/or operator training programs. The two final steps in the SEE-IN process are (1)

-10-

2/84

feedback and evaluation of actions taken by the utilities as a result of information provided through SEE-IN and (2) periodic assessment of the process effectiveness by INPO.

The SEE-IN program provides copies of draft SERs and SOERs to the affected vendors for review. Vendor comments are considered in preparation of final SEE-IN reports. Once finalized, the reports are sent to the utilities.

The SEE-IN program includes a cross-reference capability to identify SERs, SOERs, LERs, etc. which report component problems that could cause a significant event. This crossreference facilitates utility review of the component's prior history before using that component in a safety-related application.

Program Operation

Plant operating experience data is reviewed from several perspectives including design, component and system performance, plant procedures, human factors, personnel training, maintenance and testing practices, and management systems to identify significant events and trends.

Formal Review Sources

A formal review is conducted on NRC information notices, bulletins, AEOD reports, event-related generic letters, etc. A formal review also is conducted on industry-prepared information (including those required by NRC) such as LERs, monthly operating reports, NRC event-related reports, NSSS technical bulletins, NPRDS data, NUCLEAR NETWORK operating experience entries, international operating experience reports, construction deficiency reports, safety defect reports, and trends identified as significant in the INPO NPRDS and LER data bases. The formal review includes a dual, independent screening process. The review status is documented and tracked by computer.

Other sources of operating experience information are used by the SEE-IN program on an ad hoc basis as reference or supplemental material but do not receive a formal review. The sources include such items as NRC NUREG documents, EPRI and NSAC reports, and other industry reports or data concerned with plant operating experience. The INPO process for screening is shown in Figure 2.

Utility Contact (SEE-IN)

In addition to the formal and reference information sources, another vital information source is direct contact with power plant technical personnel on an ad hoc basis. Each utility designates a SEE-IN contact to respond to questions from INPO on plant events. The majority of such communications is handled over the telephone or via NUCLEAR NETWORK. Files are maintained by INPO on nuclear utilities and contain names and telephone numbers of designated contacts, telecopier numbers, status of nuclear units (i.e., operating, under construction or planned) and NSSS vendor(s).

3.1.3 Interaction With Vendors

In the interest of operating the plant safely and efficiently, the utility-vendor contact is essential. To accomplish this goal, utilities already interact with various vendors.

The contractual obligations for furnishing equipment and software (manuals, drawings, etc.) are fulfilled upon acceptance at the plant site. Interaction between utilities and vendors due to deficiencies may be brought about by the reporting requirements of 10CFR21 and 10CFR50.55(e). The continuing contract with vendors for warranty obligations or maintenance work are two examples of active interaction after an initial purchase. In addition, much of the interaction with the vendors during plant life is initiated in response to significant failures, to failure trends experienced at the plant, to spare parts procurement, or to subsequent purchase orders of new equipment.

The interaction with the NSSS vendor, who typically supplies a large portion of the safety-related plant equipment, is generally more active than with the other vendors. There are existing channels through which the NSSS suppliers disseminate information of interest to their client utilities. These include the following:

- o In regular meetings, NSSS representatives outline recent developments and maintenance/design recommendations. Any special concerns of the utility can be addressed in followup correspondence with the NSSS supplier's service department.
- o Bulletins or advisories from the NSSS supplier's service department alert client utilities to special problems experienced by similar plants. Typically included in this correspondence are a description of the problem and the corrective actions taken to resolve it. Recommendations for preventive actions or for particular cautions to be considered by the utility usually are included.
- o Owners groups provide an additional forum for the exchange of information that may be of generic interest to member utilities. For example, problems in the design or operation of a system or component may be shared with the group and potential resolutions identified. The owners groups' efforts often are directed at seeking improvements or anticipating problems rather than being only reactive in nature. Improvements in availability or testing and maintenance procedures are examples of positive results that have come about through owners groups activities. The NSSS supplier makes his broadly-based knowledge available to the group for the specialized evaluations that may be required.

-13-

3.1.4 Regulatory Reporting Requirements

Other existing sources of information are the documents that result from the NRC's reporting requirements. These documents include 10CFR21 reports, 10CFR50.55(e) reports, Licensee Event Reports, and NRC Inspection & Enforcement (IE) Bulletins and Information Notices. 1DCFR21 specifies reporting requirements relating to component or system deficiencies that may create a substantial safety hazard. This reporting provides the nuclear utility industry notification of significant noncompliances and defects identified by other utilities, architectengineers, constructors, vendors, and manufacturers associated with nuclear facilities.

10CFR50.55(e) requires that the holder of a construction permit notify the NRC of each deficiency found in design and construction, which were it to remain uncorrected, could affect the safe operation of the nuclear power plant adversely.

10CFR50.73 requires the holder of an operating license for a nuclear power plant to submit a Licensee Event Report (LER) for events described in 50.73(a)(2). These LERs are incorporated into the INPO LER data base which provides information to identify and isolate precursor events and identify emerging trends or patterns of potential safety significance.

The NRC Office of Inspection and Enforcement (IE) issues various documents, including bulletins and information notices, to inform licensees and construction permit holders of significant concerns that may result from the NRC evaluation of reports, as required by 10CFR21.21, 50.55(e), and 50.73. These documents provide the nuclear utilities with information on events and concerns that are considered significant by the NRC.

3.2 Recommended Enhancements to Existing Programs

The following are recommended enhancements to the existing programs. INPO and the NPRDS Users Group should investigate the feasibility of these recommendations. If found feasible, an implementation program should be developed.

3.2.1 Enhancements to NPRDS

- The present definition of component in NPRDS (extracted from IEEE 603-1980) is more applicable to electrical components. The definition should be improved to describe mechanical components better.
- o The present failure reporting guidance needs improvement in the following areas:
 - -- Guidance is needed to provide better information for analyzing the role of piece parts as a factor in causing component failures.
 - -- The guidance should be revised to indicate that utilities should supply information when inadequate vendor information is identified as a causal or contributing factor in a failure. The guidance should provide users of the data base the ability to readily retrieve those failures involving inadequate vendor information (example, key word sorting, coding).
 - -- Present failure reports are often sketchy in providing details of the failure analysis conducted by utilities. The guidance should emphasize the importance of providing more complete results of failure analysis when one is conducted. Although detailed failure analyses are not always conducted for every failure,

-15-

2/84

when they are conducted they should be provided in NPRDS failure reports. In this way, the SEE-IN program and other utilities can derive more benefit from the work of each utility.

- Utilities should develop internal methods to ensure that their NPRDS reports are clear and complete and that the program guidance is followed appropriately.
- o For some failures it may not be possible for utilities to provide a complete failure description within the time frames for reporting to NPRDS. Utilities should still submit preliminary failure reports within the established time frame. Utilities should revise these reports when the necessary information is available. However, the present system does not provide methods for utilities to indicate that reports will be revised later. NPRDS should be modified to permit each utility to readily identify which of their reports still requires follow-up information. Utilities should report a failure event promptly and include an initial analysis. Detailed and complete information should be provided in a timely manner once final analysis has been completed.
- o The present scope of NPRDS reporting may not meet all the needs of individual utilities for monitoring the reliability of their own safety-related components. Each utility that decides that additional systems and components should be added to their basic scope of NPRDS systems and components should request that INPO accept these systems. INPO will consider these requests, identify the additional resource requirements needed to handle these requests, and notify utilities when it is able to accept additional information.

2/84

- 3.2.2 Enhancements to SEE-IN
 - o Reports should be generated for potential failures caused by faulty or missing vendor-supplied information or other ETI. The VETIP recognizes that the utility will uncover errors in ETI (e.g., during review of the information, writing of instructions, testing, etc.) before anyone else. It is recommended that ETI faults be reported over NUCLEAR NETWORK for review by INPO under the SEE-IN program.
 - o The SEE-IN program should be broadened by INPO to improve the ability to trend NPRDS data. Present methods of trending are largely qualitative and subjective in nature. They depend largely on the ability of analysts to recognize the need to look for degrading or unacceptable system and component reliability. INPO should develop methods to use NPRDS in a more quantitative fashion to detect trend problems. This enhancement is presently under development by INPO.

3.3 Summary Example

One problem that led to the Salem event was that the information contained in the NSSS vendor technical bulletin (issued in 1974) was not processed appropriately and therefore not incorporated into plant procedures. If the systems which comprise the VETIP were functional in the early 1970s, this oversight probably would not have occurred or would have been rectified. Westinghouse had prepared the technical bulletin based on a precursor event that occurred at another nuclear unit. This type of precursor event would have required that an LER be written and submitted to the NRC. At the same time, an NPRDS failure report would have been submitted to the INPO data base. INPO also would have reviewed the Westinghouse technical bulletin and the LER. The current criteria for significance screening used by INPO personnel identify this type event as a significant single failure. It is highly likely that an SER would have been generated by INPO and disseminated to utilities via NUCLEAR NETWORK.

2/84

-17-

Utilities would have reviewed the SER through their Operating Experience Report review programs.

In addition, utilities would have had an ongoing program with their NSSS vendors to obtain ETI. Utilities would have had systems in place to track and process this information. Therefore, there are two pathways which would have ensured this type of information was received and evaluated by the utility:

o NPRDS/SEE-IN (SERs, SOERs)

o NSSS vendor technical bulletins

The utility's VETIP procedures would have assessed this information and effected positive action to correct the failed component. DRAFT

4. IMPLEMENTATION OF VETIP

4.1 Responsibilities For Implementation

- 4.1.1 Utility Implementation Responsibilities
 - 4.1.1.A Existing Programs
 - o NSSS Vendor Contact

Each utility should have with its NSSS supplier, a program in place to obtain technical information. This program consists of a technical bulletin system and necessary direct contact with the NSSS supplier.

o NPRDS/SEE-IN

Each utility should indicate or reaffirm its active participation in the NPRDS and SEE-IN programs. The utility should supply the necessary basic information and should report failures and problems on a timely basis. Adequate internal controls should be in place to ensure that this activity is timely, consistent, and controlled and should include incorporation of future revisions to these programs.

o Other Vendors

Each utility should continue to seek assistance and ETI from other safety-related equipment vendors when the utility's evaluation of an equipment or ETI problem concludes that such direct interaction is necessary or would be beneficial. These problems and those of lesser significance will continue to be reported by means of the NPRDS and/or the SEE-IN programs.

-19-

o Internal Handling of Equipment Technical Information

The utility should process incoming ETI so the objectives noted below are achieved.

- -- Administrative procedures should provide control of incoming ETI whether it arrives directly from the vendor or from other industry or regulatory sources (i.e., NUCLEAR NETWORK, NPRDS, SEE-IN, NRC bulletins, etc.), so it receives the appropriate engineering/technical review, evaluation, and distribution for the following:
 - prompt warnings to key personnel
 - timely incorporation into maintenance or operating procedures, equipment data/purchasing records, and training programs
 - future procedure review and revision cycles
 - notification on NUCLEAR NETWORK of significant ETI

The incorporation of such safety-related information (or changes) remains within the scope of the utility's review and approval requirements.

-- The administrative program should require that maintenance or operating procedures cite appropriate ETI in the reference section of the procedure.

2/84

-- Within the performance section of the procedure, appropriate ETI should be incorporated and approved in the engineering, technical and quality review of the safetyrelated procedure.

o Internal Handling of Vendor Services The vendor, contractor or technical representative who will perform safety-related services should be an approved/qualified supplier of such nuclear safety-related services. Furthermore, the services should be specified in the procurement documentation so that, depending on the circumstances, a combination of the following controls are established:

The service is performed using utility procedures that have been approved after a technical and quality review cycle typical for other utility service, maintenance, repair, or operating procedures.

-0R-

The service is performed using the vendor, contractor or technical representative procedures that have been reviewed and approved in accordance with utility procurement program, QA program, and administrative review program so that their documents are processed and approved in a manner equivalent to the utility procedures concerning similar activities.

-AND-

-21-

2/84

The activity will be performed under the cognizance of the utility QA/QC program.

-0R-

The activity will be performed under the cognizance of the vendor, contractor or technical representative QA/QC program that has been reviewed separately and approved in accordance with the utility QA program. In addition, during the performance of the service, the utility QA program will monitor the effectiveness of their performance and compliance with its approved program by suitable surveillance, inspection and audit.

In addition to the above, ETI provided in conjunction with performance of vendor services should be handled as described above.

4.1.1.B Enhanced Programs

o NPRDS

Each utility should incorporate the enhancements to the NPRDS recommended in Section 3.2. This could involve revisions to existing administrative programs or procedures. It also could require revised training or other actions needed to ensure a meaningful and effective implementation of the NPRDS program enhancements.

o SEE-IN

Each utility should incorporate the enhancements to the SEE-IN program recommended in Section 3.2. As in the NPRDS program, this could involve revisions to existing administrative programs or procedures or to training or other activities so

-22-

the data reported to the SEE-IN program is complete and detailed enough to support the system enhancements being undertaken by INPO.

4.1.2 INPO Implementation Responsibilities

o Existing Programs

The NUTAC determined that present NPRDS/SEE-IN programs, properly used, currently provide an adequate framework for the effective exchange of information.

o Enhanced Programs

INPO should implement the enhancements of the NPRDS and SEE-IN programs (noted in Section 3.2) to augment this VETIP.

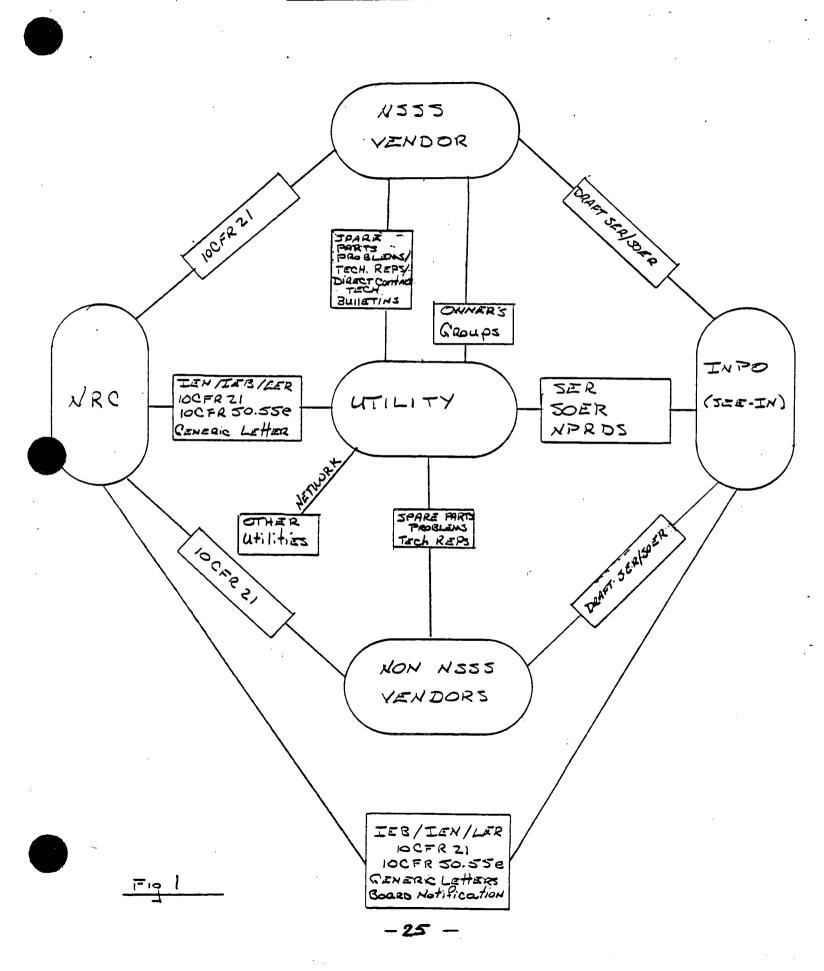
4.2 Schedule for Implementation

4.2.1 Existing Programs

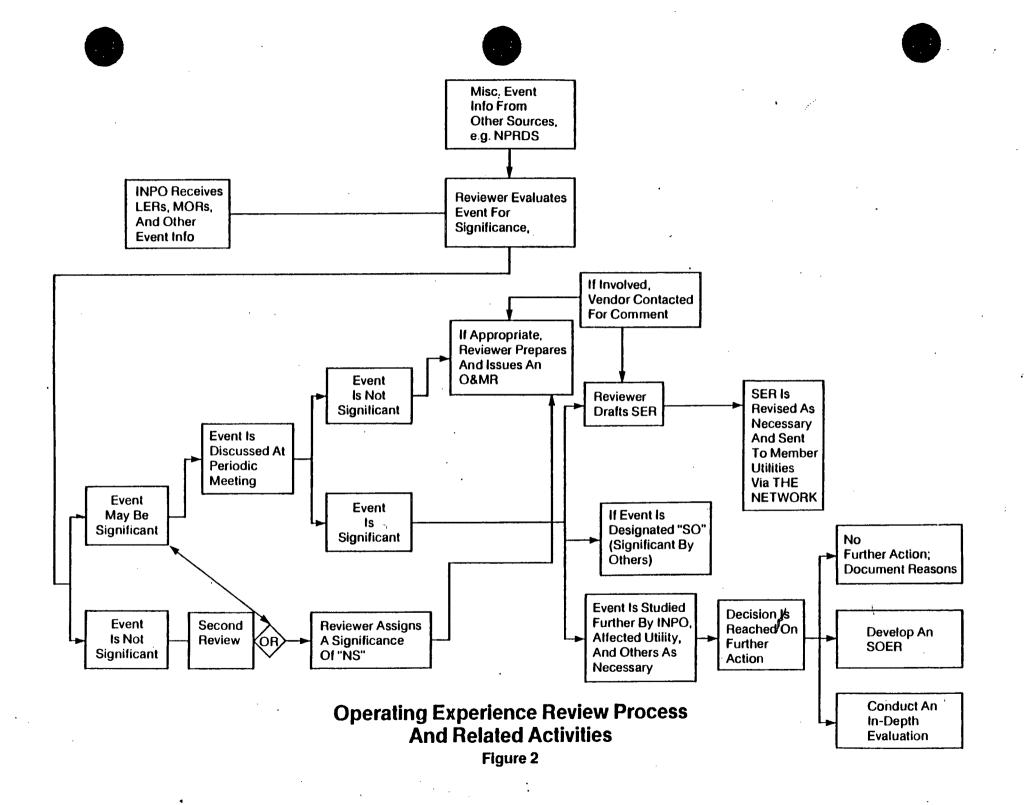
Utilities that find that their existing internal program and procedures do not support those outlined in Sections 3.1 and 4.1.1.A above should make the necessary timely revisions as part of the established review and updating cycle for such documentation. A specific schedule should be established by the individual utility with a target date for full implementation by 1/1/85.

4.2.2 Enhancements to Existing Programs

- 4.2.2.A INPO should work with the NPRDS users group with the goal of establishing schedules by July 1, 1984, for implementation of the enhancements of the NPRDS program.
- 4.2.2.B Utilities should incorporate the enhancements to the NPRDS and SEE-IN programs, recommended in Section 3.2 and 4.1.1.B above into their internal program and procedures on a timely basis.


2/84

-23-


4.2.2.C Schedules should be established which are consistent with an overall goal to implement the recommended enhancements to both programs by January 1, 1986.

-24-

VETIP BLOCK DIAGRAM

2/9/84

2/84

APPENDIX A

SPECIFIC CHARTER FOR NUCLEAR UTILITY TASK ACTION COMMITTEE ON GENERIC LETTER 83-28, SECTION 2.2.2

APPENDIX A

SPECIFIC CHARTER FOR NUCLEAR UTILITY TASK ACTION COMMITTEE ON GENERIC LETTER 83-28, SECTION 2.2.2

This Nuclear Utility Task Action Committee (NUTAC) has been established by a group of utility representatives who have recognized a need for nuclear industry guidance on Generic Letter 83-28, Section 2.2.2. The establishment of this NUTAC has been in accordance with the general charter governing the organization and operation of a NUTAC, as approved by the Institute of Nuclear Power Operations (INPO) Board of Directors. This NUTAC is committed to compliance with this specific charter, its bylaws, and the general charter. This charter has been reviewed and approved by the chairman of the Analysis and Engineering Division Industry Review Group and the president of INPO, and the president of INPO authorizes staff support for this NUTAC.

This committee has adopted the following objective to ensure fulfillment of the goal of achieving industry consensus and guidance on Generic Letter 83-28, Section 2.2.2.

o development of guidance for use by utilities in response to Generic Letter 83-28, Section 2.2.2

To ensure that this objective results in products that are of generic benefit to the <u>utilities</u>, voting membership on this committee is limited to permanent employees of U.S. nuclear utilities. The chairman and vice chairman of this committee will be permanent employees of U.S. nuclear utilities and will be elected by the NUTAC from a list of candidates approved by the chairman of the sponsoring IRG. To further ensure that this NUTAC provides products that are of generic benefit to utilities, the NUTAC chairman will maintain close liaison with the sponsoring INPO Industry Review Group.

Additionally, this NUTAC should establish liaison with other recognized industry groups, such as AIF, ANS, EEI, EPRI, and NSSS owners groups and will maintain communication on this industry initiative with the NRC, as appropriate.

na 9/1/83 Approved: Date Chairman,

 Σ U4 President, INPO Chairman, NUTAC

A-1

۰,

-

APPENDIX B

. LIST OF REFERENCES

٠.

APPENDIX B

List of References

- NRC Generic Letter 83-28 dated July 8, 1983 Required Actions Based on Generic Implications of Salem ATWS Events
- 2. NUREG 0977 NRC Fact-Finding Task Force Report on the ATWS Events at Salem Nuclear Generating Station Unit 1 on February 22 and 25, 1983
- NUREG 1000 Generic Implications of ATWS Events at the Salem Nuclear Power Plant
- Significant Event Evaluation and Information Network (SEE-IN) Program Description (INPO 83-001)
- 5. Nuclear Plant Reliability Data System (NPRDS) Reportable System and Component Scope Manual (INPO 83-020)
- 6. Reporting Procedures Manual for the Nuclear Plant Reliability Data System
- 7. 10CFR21 Reporting of Defects and Noncompliance
- 8. 10CFR50 Domestic Licensing of Production and Utilization Facilities
- 9. IEEE 603-1980 Standard Criteria for Safety Systems for Nuclear Generating Stations

APPENDIX C

SEE-IN FUNCTIONS

-

.

.

r

. .

.

APPENDIX C

SEE-IN Functions

- 1. Provide basic report of plant event. (utilities)
- Screen events for significance and transmit Significant Event Reports (SERs) via NUCLEAR NETWORK. (utilities and INPO with vendor input solicited when specific product is identified)
- 3. Provide backup data on contributing factors and probable causes and consequences. (utilities and vendors)
- Perform action analysis on significant events to evaluate possible options for short-term remedies and feasible long-term solutions that might be implemented. (utilities, INPO, and vendors)
- 5. Disseminate information, along with an alert of potential implication, to the utilities. (INPO)
- 6. Evaluate the information and implement remedies as appropriate. (utilities)
- 7. Provide feedback on implementation actions. (utilities and INPO)
- Evaluate periodically the effectiveness of the process, including steps
 1-7 above. (INPO)

C-1

2/84

APPENDIX D

NRC GENERIC LETTER 83-28 SECTION 2.2

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, D. C. 20555

July 8, 1983

TO ALL LICENSEES OF OPERATING REACTORS, APPLICANTS FOR OPERATING LICENSE, AND HOLDERS OF CONSTRUCTION PERMITS

Gentlemen:

SUBJECT: REQUIRED ACTIONS BASED ON GENERIC IMPLICATIONS OF SALEM ATWS EVENTS (Generic Letter 83-28)

The Commission has recently reviewed intermediate-term actions to be taken by . licensees and applicants as a result of the Salem anticipated transient without scram (ATWS) events. These actions have been developed by the staff based on information contained in NUREG-1000, "Generic Implications of ATWS Events at the Salem Nuclear Power Plant." These actions address issues related to reactor trip system reliability and general management capability.

The actions covered by this letter fall into the following four areas:

- 1. Post-Trip Review This action addresses the program, procedures and data collection capability to assure that the causes for unscheduled reactor shutdowns, as well as the response of safety-related equipment, are fully understood prior to plant restart.
- 2. Equipment Classification and Vendor Interface This action addresses the programs for assuring that all components necessary for accomplishing required safety-related functions are properly identified in documents, procedures, and information handling systems that are used to control safety-related plant activities. In addition, this action addresses the establishment and maintenance of a program to ensure that vendor information for safety-related components is complete.
- 3. Post-Maintenance Testing This action addresses post-maintenance operability testing of safety-related components.
- 4. Reactor Trip System Reliablity Improvements This action is aimed at assuring that vendor-recommended reactor trip breaker modifications and associated reactor protection system changes are completed in PWRs, that a comprehensive program of preventive maintenance and surveillance testing is implemented for the reactor trip breakers in PWRs, that the shunt trip attachment activates automatically in all PWRs that use circuit breakers in their reactor trip system, and to ensure that on-line functional testing of the reactor trip system is performed on all LWRs.

5

D-1

The enclosure to this letter breaks down these actions into several components. You will find that all actions, except four (Action 1.2, 4.1, 4.3, and 4.5), require software (procedures, training, etc.) changes and/or modifications and do not affect equipment changes or require reactor shutdown to complete. Action 1.2 may result in some changes to the sequence of events recorder or existing plant computers, but will not result in a plant shutdown to implement. Actions 4.1, 4.3 and 4.5.2, if applicable, would require the plant to be

- 2 -

The reactor trip system is fundamental to reactor safety for all nuclear power plant designs. All transient and accident analyses are predicated on its successful operation to assure acceptable consequences. Therefore, the actions listed below, which relate directly to the reactor trip system, are of the highest priority and should be integrated into existing plant schedules first.

- 1.1 Post-Trip Review (Program Description and Procedure)
- 2.1 Equipment Classification and Vendor Interface (Reactor Trip System Components)
- 3.1 Post-Maintenance Testing (Reactor Trip System Components)
- 4.1 Reactor Trip System Reliability (Vendor-Related Modifications)
- 4.2.1 and 4.2.2 Reactor Trip System Reliability (Preventive Maintenance and Surveillance Program for Reactor Trip Breakers)
- 4.3 Reactor Trip System Reliability (Automatic Actuation of Shunt-trip Attachment for Westinghouse and B&W plants)

Most of the remaining intermediate-term actions concern all other safetyrelated systems. These systems, while not sharing the same relative importance to safety as the reactor trip system, are essential in mitigating the consequences of transients and accidents. Therefore, these actions should be integrated into existing plant schedules over the longer-term on a medium priority basis. Some of the actions discussed in the enclosure will best be served by Owners' Group participation, and this is encouraged to the extent

Accordingly, pursuant to 10 CFR 50.54(f), operating reactor licensees and applicants for an operating license (this letter is for information only for those utilities that have not applied for an operating license) are requested to furnish, under oath and affirmation, no later than 120 days from the date of this letter, the status of current conformance with the positions contained herein, and plans and schedules for any needed improvements for conformance with the positions. The schedule for the implementation of these improvements is to be negotiated with the Project Manager.

Licensees and applicants may request an extension of time for submittals of the required information. Such a request must set forth a proposed schedule and justification for the delay. Such a request shall be directed to the Director, Division of Licensing, NRR. Any such request must be submitted no later than 60 days from the date of this letter. If a licensee or applicant does not intend to implement any of the enclosed items, the response should so indicate and a safety basis should be provided for each item not intended to be implemented. Value-impact analysis can be used to support such responses or to argue in favor of alternative positions that licensees might propose.

For Operating Reactors, the schedules for implementation of these actions shall be developed consistent with the staff's goal of integrating new requirements, considering the unique status of each plant and the relative safety importance of the improvements, combined with all other existing plant programs. Therefore, schedules for implementation of these actions will be negotiated between the NRC Project Manager and licensees.

For plants undergoing operating license review at this time, plant-specific schedules for the implementation of these requirements shall be developed in a manner similar to that being used for operating reactors, taking into consideration the degree of completion of the power plant. For construction permit holders not under OL review and for construction permit applicants, the requirements of this letter shall be implemented prior to the issuance of an operating license.

This request for information was approved by the Office of Management and Budget under clearance number 3150-0011 which expires April 30, 1985. Comments on burden and duplication may be directed to the Office of Management and Budget, Reports Management Room 3208, New Executive Office Building, Washington, D. C. 20503.

Sincerely, 🖉 Darrell G. Eisenhut. Director

Division of Licensing

Enclosure: Required Actions Based on Generic Implications of Salem ATWS Events

2.2 EQUIPMENT CLASSIFICATION AND VENDOR INTERFACE (PROGRAMS FOR ALL SAFETY-RELATED COMPONENTS)

Position

Licensees and applicants shall submit, for staff review, a description of their programs for safety-related* equipment classification and vendor interface as described below:

- 7 -

- 1. For equipment classification, licensees and applicants shall describe their program for ensuring that all components of safety-related systems necessary for accomplishing required safety functions are identified as safety-related on documents, procedures, and information handling systems used in the plant to control safety-related activities, including maintenance, work orders and replacement parts. This description shall include:
 - The criteria for identifying components as safety-related within systems currently classified as safety-related. This shall not be interpreted to require changes in safety classification at the systems level.
 - A description of the information handling system used to identify safety-related components (e.g., computerized equipment list) and the methods used for its development and validation.
 - 3. A description of the process by which station personnel use this information handling system to determine that an activity is safety-related and what procedures for maintenance, surveillance, parts replacement and other activities defined in the introduction to 10 CFR 50, Appendix 8, apply to safety-related components.
 - 4. A description of the management controls utilized to verify that the procedures for preparation, validation and routine utilization of the information handling system have been followed.
 - 5. A demonstration that appropriate design verification and qualification testing is specified for procurement of safetyrelated components. The specifications shall include qualification testing for expected safety service conditions and provide support for the licensees' receipt of testing documentation to support the limits of life recommended by the supplier.

*Safety-related structures, systems, and components are those that are relied upon to remain functional during and following design basis events to ensure: (1) the integrity of the reactor coolant boundary, (2) the capability to shut down the reactor and maintain it in a safe shutdown condition, and (3) the capability to prevent or mitigate the consequences of accidents that could result in potential offsite exposures comparable to the guidelines of 10 CFR Part 100.

- 6. Licensees and applicants need only to submit for staff review the equipment classification program for safety-related components. Although not required to be submitted for staff review, your equipment classification program should also include the broader class of structures, systems, and components important to safety required by GDC-1 (defined in 10 CFR Part 50, Appendix A, "General Design Criteria, Introduction").
- 2. For vendor interface, licensees and applicants shall establish, implement and maintain a continuing program to ensure that vendor information for safety-related components is complete, current and controlled throughout the life of their plants, and appropriately referenced or incorporated in plant instructions and procedures. Vendors of safety-related equipment should be contacted and an interface established. Where vendors cannot be identified, have gone out of business, or will not supply information, the licensee or applicant shall assure that sufficient attention is paid to equipment maintenance, replacement, and repair, to compensate for the lack of vendor backup, to assure reliability commensurate with its safety function (GDC-1). The program shall be closely coupled with action 2.2.1 above (equipment qualification). The program shall include periodic communication with vendors to assure that all applicable information has been received. The program should use a system of positive feedback with vendors for mailings containing technical information. This could be accomplished by licensee acknowledgment for receipt of technical mailings. It shall also define the interface and division of responsibilities among the licensee and the nuclear and nonnuclear divisions of their vendors that provide service on safety-related equipment to assure that requisite control of and applicable instructions for maintenance work on safety-related equipment are provided.

Applicability

This action applies to all licensees and OL applicants.

Type of Review

For licensees, a post-implementation review will be conducted. NRR will perform the review and issue a Safety Evaluation.

For OL applicants, the NRR review will be performed consistent with the licensing schedule.

Documentation Required

Licensees and applicants should submit a report that describes the equipment classification and vendor interface programs outlined the position above.