

December 2, 2010

Mr. Charles Garlow, Attorney-Advisor OECA, Air Enforcement Division U.S. Environmental Protection Agency 1200 Pennsylvania Ave., NW-MC 2242A Washington D.C. 20460

CERTIFIED MAIL: RETURN RECEIPT REQUESTED

RE: Final Cameco Resources submission in Response to EPA letter dated May 1, 2009, Request to Test and Provide Information Pursuant to the Clean Air Act

Dear Mr. Garlow:

By letter dated January 15, 2010, Crow Butte Resources d/b/a Cameco Resources responded to the above EPA request. Since this submittal, Cameco Resources Senior Management directed a review of the technical merits, the administrative process and the completion of the administrative record. Cameco Resources retained Dr. Janet Johnson of TetraTech to perform a review of the data collected and attempt to use the radon flux calculations that EPA staff recommended to determine emanations from the evaporation ponds. The TetraTech analysis and a summary of the initially supplied data are enclosed.

Conclusions:

A. The flux from the Crow Butte commercial evaporation ponds cannot be accurately calculated using the equations provided by EPA and the results of the data provides no basis for a determination that there is any radon flux emanating from the evaporation ponds at all.

B. The radon flux emanating from the Crow Butte evaporation ponds is not relevant to the public dose estimates. Total radiation dose to members of the public is calculated from all plant sources. Also, members of the public are not permitted in restricted areas of the operations. Any exposure of a member of the public will be negligible based on these measurements at the perimeter of the ponds and are more likely influenced by background radon.

C. Quantifying radon flux is of no usefulness in estimating the dose to workers or members of the public since actual radon monitoring data is available which represents a defensible basis for exposure calculations. Based on historic monitoring of worker exposures, the negligible radon emanation from the sources as a result of the operating facilities is measured and reported to the NRC regularly. The results of which indicate there is no increased risk for worker exposure outside of those areas clearly identified in the process areas of the plant.

In this circumstance, the highly specific EPA request for information, under section 114 of the Clean Air Act, led to a process that yielded data that remains unsuitable to answering the question at hand. In the future, Cameco Resources requests prior deliberation with EPA prior to requests of this type.

CAMECO RESOURCES Corporate Office 2020 Carey Avenue Suite 600 Cheyenne, WY 82001 USA

Tel: (307) 316-7600 Fax: (307) 635-9949 www.cameco.com This way, appropriate experts can be consulted to frame the date quality objectives in accordance with the 2001 Data Quality Act and the EPA data quality objectives policy.

The attached memorandum will summarize the original data that was submitted to EPA and will show that radon flux emanating from the evaporation ponds will not impact members of the public or significantly increase worker exposure. We have included the memorandum and the original data that was submitted on January 15, 2010 as a single, complete package for purposes of completing the administrative record.

If you have any questions or comments please do not hesitate to call me at (307) 316-7600.

Sincerely,

Josh Leftwich Director, Radiation Safety and Licensing

Enclosure

CC: NRC- Ron Burrows- Project Manager for Crow Butte NMA- Katie Sweeney

Report and Data on EPA Requests to Test and Provide Information Pursuant to the Clean Air Act at the Crow Butte Facility, Crawford, NE

December 2, 2010

3801 Automation Way, Ste. 100 Fort Collins, CO 80525 Tel 970.223.9600 Fax 970.223.7171 www.tetratech.com

Technical Memorandum

TETRA TECH

		From:	Jan Johnson, PhD, CHP,
То:	Mr. Joe Brister, Cameco Resources		CIH
Company:	Cameco Resources	Date:	September 23, 2010
Re:	Evaporation Pond Radon Flux Determination	Project #:1	14-182083

In response to Environmental Protection Agency (EPA) concerns regarding the flux from evaporation ponds at in situ recovery (ISR) facilities, Cameco measured radon gas and Pb-210 concentrations at the perimeter and specified distances from the edge of the Commercial Evaporation Pond area during the third quarter of 2009. The intent of the exercise was to provide a basis for calculating the flux from the commercial evaporation ponds according to equations derived by Mr. Robert Duraski, EPA Region 8 (Attachment 1). The locations of the detectors as well as the Rn-222 and Pb-210 measurements are provided in Attachment 2.

The radon gas concentrations were measured using alpha track detectors, i.e., model DRNM, supplied by Landauer Inc. Naturally occurring environmental radon gas consists primarily of two isotopes, Rn-222 and Rn-220. Radon-222 is a decay product in the U-238 decay series. Radon-220 is a decay product in the Th-232 decay series. Landauer Inc. Model DRNM detectors include a filter to retard the diffusion of Rn-220 (half-life = 54 seconds) into the sensitive volume resulting in measurement of only Rn-222 concentration, the radon isotope of concern at uranium recovery facilities.¹

The Pb-210 concentrations in airborne particulates were measured using a RAS air pump with a flow rate of approximately 40 L/m. The filters were exchanged bi-weekly, composited and submitted to Energy Laboratories Inc. (ELI) for analysis. Lead-210 is a decay product of Rn-222.

¹ In contrast to the special measurements conducted for the radon flux project, routine environmental radon measurements at the Crow Butte site perimeter and nearest residences use Landauer Model DRNF detectors that measure both Rn-222 and Rn-220. The use of detectors with Rn-220 filters was specified by the EPA for the special project. Data from routine semi-annual radon measurements are not comparable to the measurements made for the special project because of the different types of detectors used and because the routine environmental measurements encompassed two quarters rather than just the third quarter of 2009.

Pb-210 Concentrations

Lead-210 concentrations are monitored guarterly at eight locations around the site perimeter and nearest residences as part of the Crow Butte routine environmental monitoring program conducted in accordance with NRC License SUA 1534. Four additional air monitoring locations were established for the Evaporation Pond Radon Flux project. The data are shown in the attached Excel spreadsheets (Attachment 2). The spreadsheets show that the Pb-210 concentration at the center of the ponds measured during the third quarter 2009, 1.94E-14 µCi/mL, is lower than the site background concentration for the third guarter 2009, 2.84E-14 The measured Pb-210 concentration at the north (downwind) edge of the of the uCi/mL. evaporation ponds was 8.77E-15 µCi/mL. Measured Pb-210 concentrations at 100 meters and 500 meters north of the evaporation ponds were 8.78 E-15 µCi/mL and 8.79 E-15 µCi/mL, respectively. Annual average Pb-210 background concentrations in the United States range from 5.4E-15 µCi/mL (Hawaii) to 4.1E-14 µCi/mL (Illinois) (NCRP, 1992). There are no average background Pb-210 data published for Nebraska. Lead-210 concentrations in the vicinity of the evaporation ponds are consistent with local and national background values thus have no usefulness in estimating flux from the evaporation ponds

Rn-222 Concentrations

As noted above, Rn-222 concentrations were measured at 19 locations north, east, south, and west of the pond area perimeter (See Attachment 2.) Measurements were made at three different heights, 1 meter, 3 meters, and 5 meters, at the pond area perimeter. Duplicate alpha track detectors were deployed at 1 meter and 5 meter heights at the pond perimeter locations. The eight duplicate detectors were exposed for 45 days. All other detectors were exposed for 93 days. The concentration data are shown in the attached Excel spreadsheets (Attachment 2).

Nearly half of the measurements were below the reporting limit for the laboratory. Therefore, the raw data were used to estimate the actual radon concentrations given in Attachment 2. Two of the three measurements at the east perimeter location were below the method noise, i.e., the numbers of tracks on the exposed detectors were less than the number on the unexposed control. The Rn-222 concentrations, therefore, were determined to be 0 pCi/L.

There is no discernable decreasing gradient in Rn-222 concentrations with distance from the pond perimeter. In fact, the concentration at a distance of 500 meters from the eastern perimeter is the highest measured concentration and there is an increasing gradient with distance from the pond in that direction. That is as expected since the detectors deployed east of the pond area were the closest to the Central Processing Plant (CPP). The highest concentration, 1.3 pCi/L, was measured at a location approximately 100 meters directly downwind of the CPP. Several of the other locations were in well fields or close to well houses.

There is no discernable gradient with height except at the western perimeter of the ponds which is in the least prevalent wind direction. It should also be noted that the ponds are situated at different elevations. Pond 1 is at a higher elevation than Ponds 3 and 4.

The radon concentration data collected during the third quarter of 2009 for the special project are not appropriate for use in determining the flux from the ponds. The influence of the CPP emissions and potential well field emissions make it impossible to determine the concentration attributable to radon flux from the ponds. The background in the vicinity of the ponds is likely to be highly variable, spacially and temporally. It cannot be inferred from measurements at the site background location due the proximity of the ponds to other sources of radon emissions. In addition, there are no comparable site background measurements since the environmental radon measurements are averaged over six months, including winter months when snow cover is likely to reduce background radon levels.

Calculation of Maximum Dose to a Worker in the Vicinity of the Pond

The maximum measured Rn-222 concentration at the pond boundaries, averaged over the 1, 3, and 5 meter high detectors, was 0.46 pCi/L (south perimeter of the ponds). Assuming that the concentration measured during the third quarter of 2009 is representative of the annual average concentration, the estimated dose to a worker spending 100% of his or her working year at that location would be as follows:

Derived Air Concentration (DAC) for Rn-222 with daughters removed = 4E-6 uCi/mL (10CFR20, Appendix B)

Annual dose to a worker at the south perimeter of the ponds:

Dose = (0.46 pCi/L)(1E-3 L/mL)(1E-6 uCi/pCi)(5 rem/y)/(4E-6 uCi/mL)Dose = 0.6 mrem/year

The DAC for Rn-222 with daughters removed is appropriate for use in this calculation since the exposure point is very close to the point at which the Rn-222 is released to the air. Therefore, few Rn-222 decay products would have built in. Even if the equilibrium factor for radon attributable to pond emissions is assumed to be 0.1, the annual dose under these extreme conditions would be approximately 6 mrem.

Radon decay product concentrations were measured weekly at the pond perimeter from July 16 through October 8, 2009. The highest average measured radon decay product concentration at the edge of the pond was 0.0024 Working Level (WL) (south perimeter). The average background radon decay product concentration during that period was 0.0015 WL. The measured radon decay product concentration results primarily from background and radon emissions from other areas of the plant; however, even if all of the radon decay product concentration from the pond, the maximum dose to a worker from pond radon emissions at the south perimeter would be as follows:

Dose = Working Level Month (WLM) x 1000 mrem/WLM (NCRP, 2009) WLM = Working Level x hours of exposure/170 hours per month Dose = (0.0024 WL x 2000 h/y/170 h/month)(1000 mrem/WLM) = 28 mrem/y

Radon flux from the pond would not contribute significantly to the radiation dose to workers.

Calculation of Dose to Members of the Public

Total radiation doses to members of the public are calculated annually based on the results of routine environmental monitoring. The doses are reported in the second half Semiannual Radiological Effluent and Environmental Monitoring Report. The radon measurements on which the dose calculations are based include all sources from the plant. Therefore, the flux from the pond is not relevant to public dose estimates.

Other Influencing Factors

As noted above, there are several factors that influence the radon concentrations at the pond perimeters other than radon flux from the water in the ponds including the following:

- The ponds are used for evaporation of waste water. Spray evaporation was employed during the time the measurements were taken. This would enhance and perhaps even dominate the perimeter radon concentrations attributable to the pond particularly in the downwind direction.
- The operations of the ISR plant itself result in radon emissions that are measured and have a greater influence on the concentrations at the pond perimeter than flux from the pond itself as demonstrated by the fact that radon concentrations to the east increase with distance from the ponds.
- The ponds are at different elevations, with Pond 1 elevated above the level of Ponds 3 and 4. Therefore flux calculations based on the measurements at the perimeter of the ponds would not be representative of flux from the ponds in general.

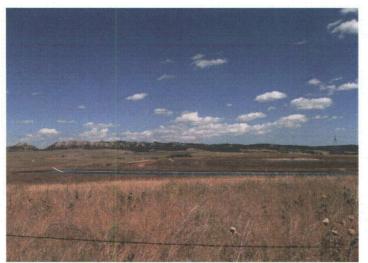


Figure 1: Pond 3 with Pond 1 in the Distance

4

Figure 2: Northeast Corner of Pond 3

Pond Flux Calculations (EPA Equations)

TETRA TECH

The EPA flux equations cannot be adequately reviewed without further information regarding their derivation. Several of the parameters used in the derivation are not defined and the definitions confuse flux (pCi/m²-s) with source term (pCi/s). Had the draft EPA equation memo included an example, the equations would have been easier to follow.

The EPA describes three methods for calculating the flux from the pond based on the distance from the center of the ponds, average wind speed, pond area, detector height, and net measured Rn-222 concentration. Attempts to use the equations to calculate flux based on Crow Butte data showed that the result is extremely sensitive to the assumption with regard to "background" which in this case would include the contributions from the CPP and the well fields. The regional background established during routine environmental monitoring is not relevant since the type of detector used for that purpose is different from the type used for the special project (DRNF vs. DRNM) and the monitoring period included 3rd and 4th quarters rather than just the 3rd quarter. With snow cover, the radon concentrations during the 4th quarter may have been lower than 3rd quarter concentrations. In addition, the established background location is located about 3.5 miles from the site, most likely outside of the naturally mineralized area.

The EPA equations assume a simple laminar flow for the radon, i.e., vertical dispersion is very small compared to horizontal movement of radon, and a circular pond with uniform elevation. These are not reasonable assumptions for the Crow Butte Commercial Evaporation Ponds. The vertical dispersion coefficient at the pond north perimeter for atmospheric stability class D, the most prevalent for the area, is six meters assuming the source is in the center of the ponds. That is greater than the height of the uppermost detector. Atmospheric stability Class D is the most prevalent for the area. Even greater mixing would take place under the less stable Class A, B, and C atmospheric stability conditions. Therefore, it would be expected that just

considering dispersion, the concept of calculating flux based on Rn-222 concentration at heights up to 5 meters would not be applicable. It also appears that the EPA draft equations "double count" the measured concentrations at 1 meter and 3 meters. That is, the equations use the total height of each detector in the summation of the flux estimates, rather than the incremental distance between the detectors.

The Crow Butte ponds are rectangular not circular as the equations assume and, as noted above, at different elevations. The equations could be modified to calculate flux from just one rectangular pond but, given the other problems with the assumptions, this would not generate a credible result.

The major flaw in applying the EPA flux equations to the data from the Crow Butte commercial evaporation ponds is the uncertainty in "background" concentrations in the pond area and the fact that nearly half of all of the measurements were below the reporting limit. Therefore, no further site investigations related to estimating radon flux from the ponds based on perimeter radon concentration measurements is warranted.

Conclusions

The flux from the Crow Butte commercial evaporation ponds cannot be accurately calculated using the EPA's equations since the assumptions that underlie the equations are incorrect. In addition, the "background" radon concentration assumption drives the calculation. Due to the contribution of other Crow Butte ISR sources, the radon concentration attributable to the ponds cannot be adequately distinguished from "background".

Quantifying the flux is of no usefulness in estimating the dose to workers or members of the general public since actual radon concentration measurements are available and form a defensible basis for dose calculations. The radon concentrations measured at the pond perimeter demonstrate that the radiation dose to a Crow Butte worker from that source even under the most extreme exposure assumptions would be very small and well within the occupational dose limits. The radon doses to members of the public are influenced to a much greater extent by natural background. The contribution of the radon flux from the pond to the radon concentration at the plant boundaries to which a member of the public might be exposed is likely to be negligible based on the radon measurements made at the pond perimeter.

References

- National Council on Radiation Protection and Measurements (NCRP). 1992. Exposure of the Population in the United States and Canada from Natural Background Radiation, NCRP Report No. 94. National Council on Radiation Protection and Measurements. Bethesda, MD 20814. p, 101.
- National Council on Radiation Protection and Measurements (NCRP). 2009. Ionizing Radiation Exposure of the Population in the United States. NCRP Report No. 160. National Council on Radiation Protection and Measurements. Bethesda, MD 20814. p, 60.

ATTACHMENT 1

.

Diaz Angelique@epamail.epa .gov 06/03/2009 02:44 PM To Scott_Bakken@cameco.com

cc Duraski.Robert@epamail.epa.gov, Garlow.Charlie@epamail.epa.gov, Rosnick.Reid@epamail.epa.gov,

bcc

Subject Radon Flux Calculations

母 This message has been forwarded.

Scott,

Please find attached the calculations for determining the radon-222 flux from ISL tailings ponds. The calculations are still considered DRAFT; please forward them on as necessary and provide any corrections, comments, or questions you have to Robert Duraski (303-312-6728) or me.

(See attached file: Radon Flux Calculations, 060109.pdf) (See attached file: Radon Flux Calculation Figures.pdf)

Thank you, Angelique

Angelique D. Diaz, Ph.D. Environmental Engineer Air Program, USEPA/Region 8 1595 Wynkoop Street (8P-AR) Denver, CO 80202-1129 Office: 303.312.6344 Fax: 303.312.6064 diaz.angelique@epa.gov[attachment "Radon Flux Calculations, 060109.pdf" deleted by Scott Bakken/Cameco] [attachment "Radon Flux Calculation Figures.pdf" deleted by Scott Bakken/Cameco]

Calculating the Radon-222 Flux from an ISL Pond (DRAFT) By R. Duraski June 2, 2009

The following assumes a cylindrical geometry as defined in Figure 1, and five monitors placed at 1, 2, 3, 4, and 5 meters above the pond.

Definitions

$$\begin{split} \varphi &= \text{flux defined as nv (pCi/m²-s)} \\ n_i - \frac{222}{\text{Rn activity at height } i \, \underline{\text{less background}} \, (pCi/m^3)} \\ v_T &= \frac{222}{\text{Rn velocity (m/s)}} \\ v_R &= \frac{222}{\text{Rn velocity in the } R \, \text{direction (m/s)}} \\ v_z &= \frac{222}{\text{Rn velocity in the } z \, \text{direction (m/s)}} \\ \theta &= \text{angle between } v_R \gg v_z \, (\text{radians}) \\ v_{WR} &= \text{windrose velocity (m/s)} \\ \Psi_R &= \text{total } \frac{222}{\text{Rn flux along } R \, \text{direction (pCi/s)}} \\ \Psi_z &= \text{total } \frac{222}{\text{Rn flux along } z \, \text{direction (pCi/s)}} \\ \Psi_z &= \int n v_R dA_R \\ \Psi_z &= \text{total } \frac{222}{\text{Rn flux along } z \, \text{direction (pCi/s)}} \\ \Psi_z &= \int n v_z dA_z \\ R &= \text{radius of the pond (m)} \\ z_i &= \text{height of sample (m)} \end{split}$$

 z_i = height of sample (m) A_b = area of the pond (m²) Δz = extrapolated height (m)

Assumptions

$$\frac{v_z}{v_R} << 1, \Rightarrow v_R \approx v_{WR}, \ \frac{z_{max}}{R} << 1$$

For Method 3 we assume $v_z \approx v_{WR} \sin \theta \approx v_{WR} (\frac{z_{\text{max}}}{R})$. This is the vertical velocity a particle leaving the center of the pond must have to "hit" the top detector.

Method 1

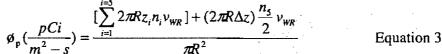
In this case the top detector value is at background so we are confident that we have detected the entire plume. The flux from the pond (ϕ_p) is calculated as follows:

$$\varphi_{p}(\frac{pCi}{m^{2}s}) = \frac{\sum_{i=1}^{i=5} 2\pi R z_{i} n_{i} v_{WR}}{\pi R^{2}}$$

Equation 1

Method 2

In this case the top of the detector (n_5) value is greater than background but the gradient is steep enough that we can extrapolate (Figure 2). In this case we calculate the flux from n_1 to n_5 the same as Method 1 and estimate the total flux above n_5 as follows:


$$\Delta \Psi_{R} = (2\pi R \Delta z) (\frac{n_{5}}{2}) v_{WR}$$

Equation 2

 Δz can be determined mathematically or by graph. For example, in Figure 2, if we extrapolate from n₅ to n=0, the n=0 intercept is at 7 meters, so $\Delta z = 7-5 = 2$ m. The $\frac{n_5}{2}$ term is the average activity for Δz , this is:

$$n_{ave} = \frac{n_5 + n_{\infty}}{2}$$
, $n_{\infty} = 0$, so $n_{ave} = \frac{n_5}{2}$

So, the flux from the pond, using Method 2 is:

Method 3

In this case the top detector (n_5) value is still greater than background and the gradient is relatively flat indicating high turbulence (Figure 3). If Method 2 were used to extrapolate we could greatly overestimate the radon-222 flux.

In Method 3, the flux along R is calculated using Method 1 and the flux along z as follows:

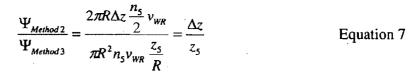
 $\Psi_z\left(\frac{pCi}{s}\right) = \pi R^2 n_5 v_z$

Equation 4

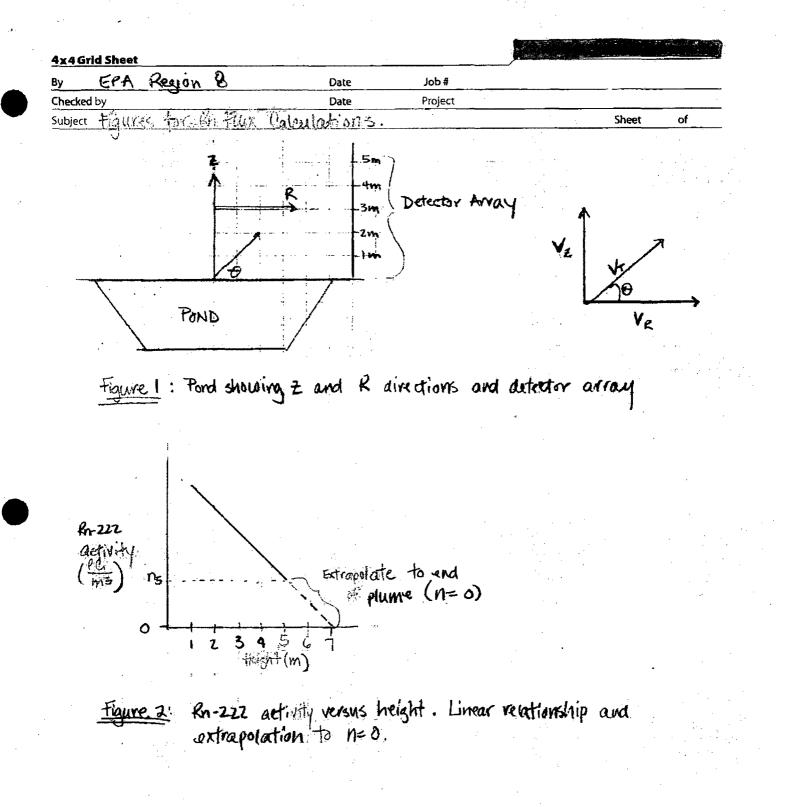
 V_z at $n_5 = v_{WR} \sin \theta_5$ (see Figure 4)

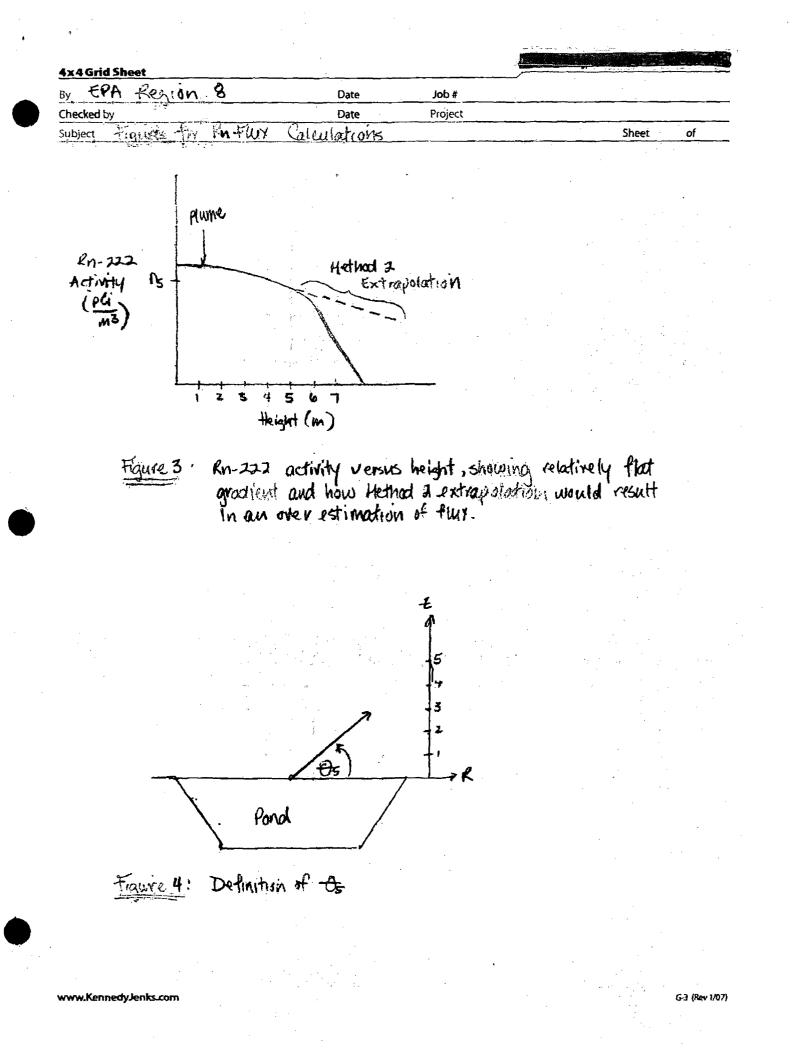
 $\sin\theta_5 \approx \frac{z_5}{R}$ if $z_5 << R$, therefore,

$$\Psi_z = \pi R^2 n_5 v_{WR} \left(\frac{z_5}{R} \right)$$


Equation 5

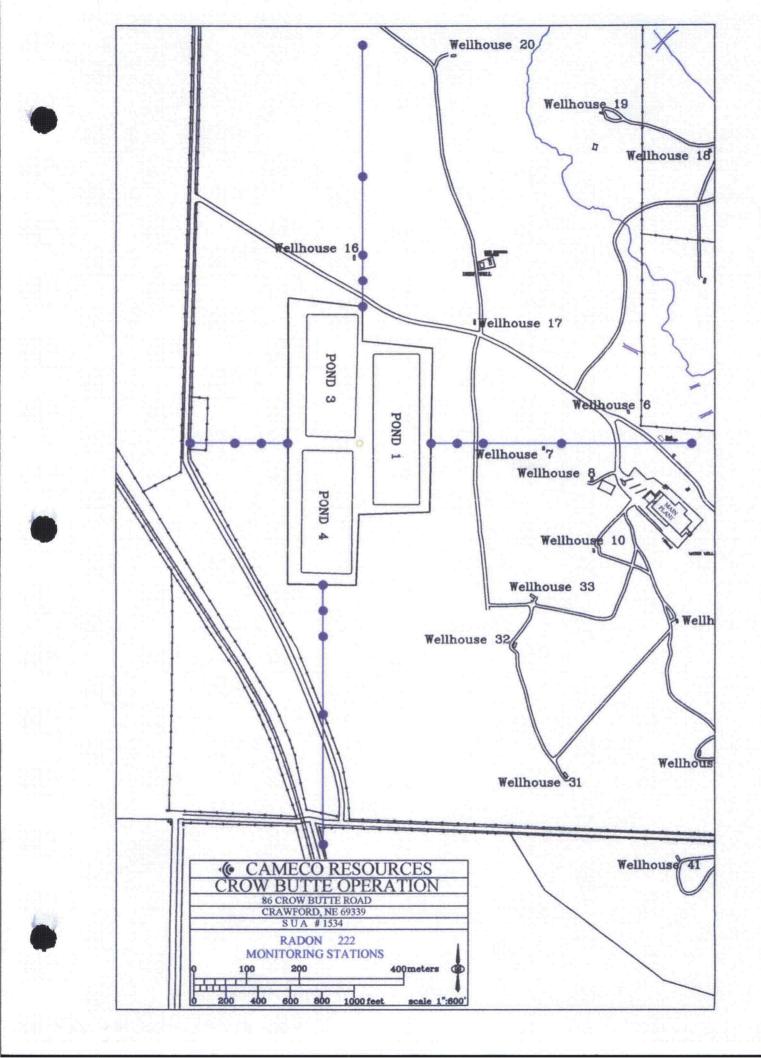
The radon flux from the pond using Method 3 is:


Page 2 of 3


$$\phi_{p}(\frac{pCi}{m^{2}s}) = \frac{\left[\sum_{i=1}^{i=5} 2\pi R z_{i} n_{i} v_{WR}\right] + \left[\pi R^{2} n_{5} v_{WR} \frac{z_{5}}{R}\right]}{\pi R^{2}}$$
 Equation 6

To decide when to use Method 3, compare the second terms in Methods 2 and 3 as follows:

If $\Delta z = z = 5$ meters, both Methods predict the same flux. If Δz , using Method 2 is greater than z_5 , the turbulence is probably high and Method 3 should be used. To verify that Method 3 works, a higher sample or samples over the pond must be collected.



ATTACHMENT 2

Attachme	nt 2: Cameco	Radon - Pond Flux S	Special P	roject				···· · · · · · · · · · · · · · · · · ·	1		
Table 2-1	: All Landauer	r Data	[1							
	RNM Detectors										
90-day test	results									Calculated	Landauer
Det. ID	Location	Cal. Fac.	Days	Tracks	Bkg	Area	tracks/mm2	Exposure	Reported Exp.	Conc.	Reported Conc.
		pCi/L-d/tracks/mm ²		total	tks/mm ²	mm ²		pCi/L-d	pCi/L-d	pCi/L	pCi/L
				1				!			······································
4643584	E-1M-A	na	93	62	2.23	37.2	1.61	<0	<30	0.00	<0.3
4643586	E-3M-A	na	93	80	2.23	37.2	2.09	<0	<30	0.00	<0.3
4643587	E-5M-A	44.5	93	95	2.23	37.2	2.49	11.74	<30	0.13	<0.3
4643603	N-1M-A	44.5	93	99	2.23	37.2	2.60	16.52	<30	0.18	<0.3
4643604	N-3M-A	44.5	93	103	2.23	37.2	2.71	21.31	<30	0.23	<0.3
4643605	N-5M-A	44.5	93	89	2.23	37.2	2.33	4.56	<30	0.05	<0.3
4760593	S-1M-A	37.9	93	76	0.87	37.2	2.02	43.57	44.5	0.47	0.5
4760594	S-3M-A	37.9	93	71	0.87	37.2	1.89	38.48	39.4	0.41	0.4
4760595	S-5M-A	37.9	93	79	0.87	37.2	2.10	46.63	47.6	0.50	0.5
4769372	W-1M-A	37.1	· 93	82	0.66	37.2	2.19	56.64	57.3	0.61	0.6
4769373	W-3M-A	37.1	93	55	0.66	37.2	1.46	29.71	30.3	0.32	0.3
4769374	W-5M-A	37.1	93	47	0.66	37.2	1.25	21.73	<30	0.23	<0.3
4769405	N-50	37.1	93	75	0.66	37.2	2.00	49.65	50.3	0.53	0.5
4769406	N-100	37.2	93	93	0.66	37.2	2.48	67.79	68.3	0.73	0.7
4769407	N-250	37.2	93	96	0.66	37.2	2.56	70.79	71.3	0.76	0.8
4784856	S-50	37.1	93	55	0.8	37.2	1.46	24.37	<30	0.26	<0.3
4784857	S-100	37.1	93	62	0.8	37.2	1.65	31.36	32.1	0.34	0.3
4784860	N-500	37.1	93	74	0.8	37.2	1.97	43.32	44.1	0.47	0.5
4784861	W-50	37.1	93	39	0.8	37.2	1.03	8.42	<30	0.09	<0.3
4784868	N-500D	37.1	93	74	0.8	37.2	1.97	43.32	44.1	0.47	0.5
4784869	AM-6-EPA	37.1	93	41	0.8	37.2	1.08	10.41	<30	0.11	<0.3
4784870	W-100	37.1	93	90	0.8	37.2	2.40	59.28	60.1	0.64	0.6
4784871	W-185	37.1	93	87	0.8	37.2	2.32	56.29	57.1	0.61	0.6
4784872	E-500	37.1	93 93	155 59	0.8	37.2 37.2	4.15 1.56	124.11	125.2	1.33 0.30	1.2
4784873	S-500	37.1		39		37.2		28.36	<30		<0.3
4784876	S-250	<u>37.1</u> 37.1	93 93	70	0.8	37.2	1.03 1.86	8.42 39.33	<30 40.1	0.09	<0.3 0.4
4784877 4784878	E-50 E-100	37.1	93	70	0.8	37.2	2.10	48.31	40.1	0.42	0.4
4784878	E-250	37.1	93	84	0.8	37.2	2.10	53.30	54.1	0.52	0.5
4/040/9	E-200	37.1	93	04	0.0	31.2	2.24	55.50	04.1	0.57	0.0
45-day test	roculte							· · · · · ·			
43-uay 1851	1630163						· · · · · · · · · · · · · · · · · · ·				
4769378	S-5	37.1	45	37	0.66	37.2	0.98	11.76	<30	0.26	<0.7
4769379	<u>0-5</u>	37.1	45	51	0.66	37.2	1.35	25.72	<30	0.20	<0.7
4769380	W-5	37.1	45	26	0.66	37.2	0.68	0.79	<30	0.02	<0.7
4769384	E-1	37.1	45	55	0.66	37.2	1.46	29.71	30.3	0.66	0.7
4769385	E-5	37.1	45	57	0.66	37.2	1.51	31.70	32.3	0.70	0.7
4769386	<u>S-1</u>	37.1	45	75	0.66	37.2	2.00	49.65	50.2	1.10	1.1
4784848	N-1	37.1	45	48	0.65	37.2	1.27	23.11	<30	0.51	<0.7
4784849	N-5	37.1	45	78	0.65	37.2	2.08	53.03	53.6	1.18	1.2
		••••							1 00.0		

DRNM De	ectors at t	he Pond Pe	rimeter										
Det. ID	Location	Cal. Fac.	Days	Tracks	Bkg	Area	tracks/mm2	Exposure	Conc.	Ave by Dir.	Std. Dev.	Std Err.	
	pCi	/L-d/tracks/m	nm²	total	tks/mm ²	mm ²		pCi/L-d	pCi/L				
4643584	E-1M-A	na	93	62	2.23	37.2	1.61	0.00	0.00	-			
4769384	E-1	37.1	45	55	0.66	37.2	1.46	29.71	0.66				
4643586	E-3M-A	na	93	80	2.23	37.2	2.09	0.00	0.00				
4643587	E-5M-A	44.5	93	95	2.23	37.2	2.49	11.74	0.13				
4769385	E-5	37.1	45	57	0.66	37.2	1.51	31.70	0.70	0.30	0.35	0.16	
4643603	N-1M-A	44.5	93	99	2.23	37.2	2.60	16.52	0.18				
4784848	N-1	37.1	45	48	0.65	37.2	1.27	23.11	0.51				
4643604	N-3M-A	44.5	93	103	2.23	37.2	2.71	21.31	0.23				
4643605	N-5M-A	44.5	93	89	2.23	37.2	2.33	4.56	0.05				
4784849	N-5	37.1	45	78	0.65	37.2	2.08	53.03	1.18	0.43	0.45	0.20	
4760593	S-1M-A	37.9	93	76	0.87	37.2	2.02	43.57	0.47				
4769386	S-1	37.1	45	75	0.66	37.2	2.00	49.65	1.10				
4760594	S-3M-A	37.9	93	71	0.87	37.2	1.89	38.48	0.41				
4760595	S-5M-A	37.9	93	79	0.87	37.2	2.10	46.63	0.50				
4769378	S-5	37.1	45	37	0.66	37.2	0.98	11.76	0.26	0.55	0.32	0.14	
4769372	W-1M-A	37.1	93	82	0.66	37.2	2.19	56.64	0.61				
4769379	W-1	37.1	45	51	0.66	37.2	1.35	25.72	0.57				
4769373	W-3M-A	37.1	93	55	0.66	37.2	1.46	29.71	0.32				
4769374	W-5M-A	37.1	93	47	0.66	37.2	1.25	21.73	0.23				
4769380	W-5	37.1	45	26	0.66	37.2	0.68	0.79	0.02	0.35	0.25	0.11	
Observatio	ns:						-						
		able pattern	with regar	d to height a	above pond	level in a	ny direction e	xcept W whe	ere conce	entration decre	eased with h	neight.	
							nd W are at 1						v
		enced by the	A DESCRIPTION OF THE OWNER OWNER OF THE OWNER OWNER OF THE OWNER OWNE									I	

amero 🗖	adon - 90 d	av toet								
RNM Del		ay test							·	
Det. ID	Location	Cal. Fac.	Days	Tracks	Bkg	Area	tracks/mm2	Exposure	Conc.	Average
		L-d/tracks/r		total	tks/mm ²	mm²		pCi/L-d	pCi/L	(pCi/L)
4643584	E-1M-A	na	93	62	2.23	37.2	1.61	0.00	0.00	
4643586	E-3M-A	na	93	80	2.23	37.2	2.09	0.00	0.00	
4643587	E-5M-A	44.5	93	95	2.23	37.2	2.49	11.74	0.13	0.04
40.40000					0.00		0.00	40.50	0.40	
4643603 4643604	N-1M-A N-3M-A	44.5 44.5	93 93	99 103	2.23 2.23	<u> </u>	2.60 2.71	16.52 21.31	0.18	
4643605	N-5M-A	44.5	93	89	2.23	37.2	2.71	4.56	0.25	0.15
4040000				00	2.20	07.E	2.00	4.00	0.00	0.10
4760593	S-1M-A	37.9	93	76	0.87	37.2	2.02	43.57	0.47	
4760594	S-3M-A	37.9	93	71	0.87	37.2	1.89	38.48	0.41	
4760595	S-5M-A	37.9	93	79	0.87	37.2	2.10	46.63	0.50	0.46
1700070		07.4	~~~		0.00		0.10	50.04	0.04	
4769372	W-1M-A	37.1	93	82	0.66	37.2	2.19	56.64	0.61	
4769373 4769374	W-3M-A W-5M-A	37.1 37.1	93 93	55 47	0.66	37.2 37.2	1.46 1.25	29.71 21.73	0.32	0.39
4/093/4	A-MC-A	37.1	93	4/	0.00	31.2	1.25	21.73	0.23	0.58
4643603	N-1M-A	44.5	93	99	2.23	37.2	2.60	16.52	0.18	
4769405	N-50	37.1	93	75	0.66	37.2	2.00	49.65	0.53	
4769406	N-100	37.2	93	93	0.66	37.2	2.48	67.79	0.73	
4769407	N-250	37.2	93	96	0.66	37.2	2.56	70.79	0.76	
4784860	N-500 N-500D	37.1 37.1	93 93	74 74	0.8	<u> </u>	1.97	43.32 43.32	0.47	
4784868	UD0C-N	37.1	93	/4	0.0	31.2	1.97	43.32	0.47	-
4760593	S-1M-A	37.9	93	76	0.87	37.2	2.02	43.57	0.47	
4784856	S-50	37.1	93	55	0.8	37.2	1.46	24.37	0.26	
4784857	S-100	37.1	93	62	0.8	37.2	1.65	31.36	0.34	
4784876	S-250	37.1	93	39	0.8	37.2	1.03	8.42	0.09	
4784873	S-500	37.1	93	59	0.8	37.2	1.56	28.36	0.30	
4700070	10/ 414 A	07.4	00	00	0.00	07.0	2.40	50.04	0.04	
4769372 4784861	W-1M-A	37.1	93 93	82 39	0.66	<u> </u>	2.19 1.03	56.64 8.42	0.61	
4784870	W-50 W-100	37.1 37.1	93	90	0.8 0.8	37.2	2.40	0.42 59.28	0.09	
4784871	W-185	37.1	93	87	0.0	37.2	2.32	56.29	0.61	
4643584	E-1M-A	na	93	62	2.23	37.2	1.61	0.00	0.00	
4784877	E-50	37.1	93	70	0.8	37.2	1.86	39.33	0.42	
4784878	E-100	37.1	93	79	0.8	37.2	2.10	48.31	0.52	
4784879	E-250	37.1	93	84	0.8	37.2	2.24	53.30	0.57	<u> </u>
4784872	E-500	37.1	93	155	0.8	37.2	4.15	124.11	1.33	
4784860	AM-6-EPA	37.1	93	41	0.8	37.2	1.08	10.41	0.11	
						07.2	1.00		0.11	
5-Day Ra	don Conce	ntration Re	esults							
17000		07 4				<u></u>	0.00	44 70		
4769378	S-5	37.1	45	37	0.66	37.2	0.98	11.76	0.26	ļ
4769379	W-1	37.1	45	51	0.66	37.2	1.35	25.72	0.57	
4769380	W-5	37.1	45	26	0.66	37.2	0.68	0.79	0.02	
4769384 4769385	E-1 E-5	37.1 37.1	45 45	55 57	0.66	<u> </u>	1.46 1.51	29.71 31.70	0.66	
4769386	S-1	37.1	45	75	0.66	37.2	2.00	49.65	1.10	
4784848	N-1	37.1	45	48	0.65	37.2	1.27	23.11	0.51	
4784849	N-5	37.1	45	78	0.65	37.2	2.08	53.03	1.18	
										-
	ns - No grad									
`onoontro	tione highoe	t to the eac	t which wo	uld he unlike	alv since the	ner of time	e the wind h	lows from th	ne west is l	ess than

,

.

,

Location	Distance	Pb-210 Conc.	precision
	m	uCi/mL	uCi/mL
Center	na	1.94E-14	3.02E-15
EP North Fence	na	8.77E-15	3.02E-15
EP North	100	8.78E-15	3.02E-15
EP North	500	8.79E-15	3.02E-15
Routine Pb-210 Concer			
			Precision
Location		Q3 2009 Pb-210 Conc. uCi/mL	Precision uCi/mL
Location		Pb-210 Conc.	
Location AM-1 (resident)		Pb-210 Conc. uCi/mL	uCi/mL
Location AM-1 (resident) AM-2		Pb-210 Conc. uCi/mL 1.78E-14	uCi/mL 2.66E-15
Location AM-1 (resident) AM-2 AM-3		Pb-210 Conc. uCi/mL 1.78E-14 1.25E-14	uCi/mL 2.66E-15 2.66E-15
Location AM-1 (resident) AM-2 AM-3 AM-4		Pb-210 Conc. uCi/mL 1.78E-14 1.25E-14 1.97E-14	uCi/mL 2.66E-15 2.66E-15 2.68E-15
		Pb-210 Conc. uCi/mL 1.78E-14 1.25E-14 1.97E-14 1.84E-14	uCi/mL 2.66E-15 2.66E-15 2.68E-15 2.56E-15

•

•

÷

ORNF det	ectors									
Det. ID	Location	Description	Calibration Factor	Days	Tracks	Area	Background	net tracks	exposure	Conc.
						mm ²	trks/mm ²	per mm ²	pCi/L-d	pCi/L
8005	AM-2		37	189	125	37.2	2.51	0.85	31.46	0.1
8006	AB-2		37.1	189	159	37.2	2.51	1.76	65.45	0.3
8008	AM-8	Site Boundary	37	189	131	37.2	2.51	1.01	37.43	0.2
8009	AM-1	Nearest Residence	37	189	116	37.2	2.51	0.61	22.51	0.1
8010	AB-1	Nearest Residence	37.1	189	138	37.2	2.51	1.20	44.51	0.24
8027	AM-3	Permit area boundary	37	189	109	37.2	2.51	0.42	15.54	0.0
8029	AM-4	Permit area boundary	37	189	119	37.2	2.51	0.69	25.49	0.1
8030	AM-6	Control	37	189	124	37.2	2.51	0.82	30.46	0.1
8031	AB-6	Control	37	189	104	37.2	2.51	0.29	10.57	0.0
8032	AM-5	Residence or site boundary	37.1	189	168	37.2	2.51	2.01	74.43	0.3

CROW BUTTE RESOURCES, INC.

86 Crow Butte Road P.O. Box 169 Crawford, Nebraska 69339-0169

(308) 665-2215 - Office (308) 665-2341 - FAX

Response to EPA Request to Test and Provide Information Pursuant to the Clean Air Act

Appendix B Test Procedures and Data Collection Requirements (Revised June 26, 2009)

Items #1 through #8 below provide a summary of the test procedures and data collection requirements consistent with Appendix B of the U.S. Environmental Protection Agency's (EPA's) Request to Test and Provide Information Pursuant to the Clean Air Act (Test Request) dated May 1, 2009, as amended by Cameco Resources Suggested Alternatives to Appendix B Test Procedures and Data Collection Requirements dated June 12, 2009, and the EPA's Final Modification to the ISL Evaporation Pond Monitoring Requirements, in Response to Cameco Resources' Suggested Alternatives to Appendix B Test Procedures and Data Collection Requirements, and Pond Monitoring Requirements, and Data Collection Requirements, June 12, 2009, dated June 26, 2009.

The number and location of radionuclide monitoring stations deployed during the testing program were consistent with Items #1 and #2 below. Additional information on data collected during the testing program and a description of where information can be found in the attached appendices is provided under Items #3 through #8 below.

- 1. Place Radtrak® cups with thoron filters along the fenced-area boundary (pond perimeter) in the four cardinal directions and the prevailing wind rose direction. At each sample point, radon cups will be placed at 1, 3, and 5 meters above the ground surface and will remain for 90 days. At the 1 meter and 5 meter sample heights, an additional cup will be placed for analysis of Radon-222 after 45 days. Since the prevailing wind rose direction is also a cardinal direction (south to north), a total of 20 radon cups will be placed at the pond perimeter.
- 2. Place Radtrak® etch cups with thoron filters in the four cardinal directions and the prevailing wind rose direction at distances 50, 100, 250, and 500 meters from the pond, with the exception of the discussed 500 meter sample to the West, which would require placement on private property. These cups will remain in place for 90 days and be placed approximately 1 meter above the ground surface. Since the prevailing wind rose direction is also a cardinal direction (south to north), this will result in a total of 15 radon cups for analysis of Radon-222 at distances away from the pond.

For Lead-210 sampling, sample continuously for 90 days at the center of the pond complex, along the pond perimeter in the prevailing wind direction, and at 100 and 500 meters only in the direction of the prevailing wind during July, August, and September at a sampling height of approximately 2 meters. This will result in 4 air stations for analysis of Lead-210.

Radon daughter monitoring, using the Modified Kusnetz Method, shall be conducted once per week during the 90 day Radon-222 analysis. During the weekly monitoring, working levels (WL) should be measured at the pond center (if practicable) and pond perimeter in the four cardinal directions as well as in the direction of the prevailing wind, at the time of sampling, at 50, 100, 250, and 500 meters from the pond, and at the location of the Lead-210 monitors, if the prevailing wind during WL monitoring is different than the placement of Lead-210 monitors. A WL background measurement shall be taken upwind of the pond during the weekly WL monitoring in the prevailing wind direction. All weekly WL monitoring should be conducted at approximately the same time (\pm 2 hours) of the day to minimize effects of diurnal changes. If at any time during the collection of radon daughter monitoring data EPA determines that sufficient data has been collected from one or more locations to meet the objectives of the testing program, EPA will modify the above-referenced radon daughter monitoring program to reduce and/or eliminate the number and/or frequency of sample points as appropriate.

3. Cameco Resources will attempt to collect Radon-222 and Lead-210 samples continuously at each location for 90 days during the months of July, August, and September 2009.

Radon-222 samples were collected continuously during a 90-day period starting July 7, 2009, and ending October 8, 2009. Lead-210 samples were also collected over an approximate 90-day period starting July 10, 2009, and ending October 15, 2009. The lead-210 sampling period was extended slightly in an attempt to meet the lower limit of detection (LLD) specified in NRC Reg Guide 4.14.

4. During sample collection and analysis, CR will attempt to meet the lower limits of detection (LLD's) and precision/accuracy specified in NRC Reg Guide 4.14.

All attempts were made to meet the LLD and precision/accuracy specified in NRC Reg Guide 4.14.

- 5. For each sample location, Cameco Resources will report the following to EPA:
 - a. Sample location

The locations of radon-222, lead-210 and WL monitoring stations are depicted in the maps provided in Appendices A-1, A-2 and A-3, respectively, under Tab A.

b. Sample collection date(s)

Collection dates for the 45-day and 90-day radon-222 samples are included on the Radon Test Detector Log sheets and Landauer Radon Monitoring Reports in Appendix A-1. Collection dates for lead-210 monitoring are provided on

A description of the procedures used for lead-210 sampling are provided in Section 4.2 of the Crow Butte Uranium Project Environmental Manual, included in Appendix B-2. Specific information on sample times, flow rates, and air volumes associated with lead-210 monitoring are provided on the Pond Test Particulate Sampling summary sheets in Appendix A-2.

d. Description of analytical methods

Radtrak[®] etch cups are analyzed using procedures and methods established by Landauer. Lead-210 samples were analyzed by Energy Laboratories, Inc. using Method E909.0M. Samples collected during WL monitoring were analyzed using Modified Kusnetz method included in Appendix B-2.

e. Description of calibration procedures, as needed

Calibration procedures for the SKC pumps used during lead-210 sampling are described in Section 10.6.2 of the Crow Butte Uranium Project Health Physics Manual included in Appendix B-3. Pump calibration records are also included in Appendix B-3.

Calibration procedures for the pump and alpha scintillation detector and scaler/ratemeter used during sampling and analysis of (Modified Kusnetz) WL measurements are also included in Section 10 of the Health Physics Manual included in Appendix B-3.

f. Description of any unusual releases, including any available data on quantities of radionuclides released, during the testing program

No unusual releases of radionuclides occurred during the testing program.

g. Sampling procedures associated with radon-222 and WL monitoring

Radon-222 sampling procedures are described in Section 4.3 of the Environmental Manual included in Appendix B-2. Procedures for WL monitoring using the Modified Kusnetz method are also provided in Appendix B-2.

h. Radon-222, WL, and lead-210 background values during the monitoring period

Radon-222 background values measured during the monitoring period are identified as Air Monitoring Station No. AM-6 on the 90-day Track Etch Cup Ambient Radon Concentrations summary sheet in Appendix A-1. This station is also identified as AM-6-EPA on the 90-day Landauer Radon Monitoring Report in Appendix A-1.

CROW BUTTE RESOURCES, INC.

f. Radium-226 concentrations in the water in the pond complex based on five (5) samples collected over the 90-day sampling period

See Appendix C-3

h. Radon-222 and Lead-210 data collected under the NRC operating license over the 90-day sampling period

Lead-210 data collected during the 90-day sampling period under NRC License #SUA-1534 are provided in Appendix C-4. Radtrak[®] etch cups used for the purpose of collecting radon-222 data under the NRC license are deployed on a semi-annual (6-month) basis. The radon-222 data from the second half of 2009 are not yet available but will be forwarded to the EPA upon receipt.

g. Historical wind rose data

See Appendix C-5

8. With the exception of Radon-222 data collected and analyzed after 45 days, CBR will attempt to provide a report to the EPA within 30 days following receipt of analytical data after the 90-day sampling program. Radon-222 data obtained after the 45-day period will be forwarded to EPA upon receipt from the analytical laboratory.

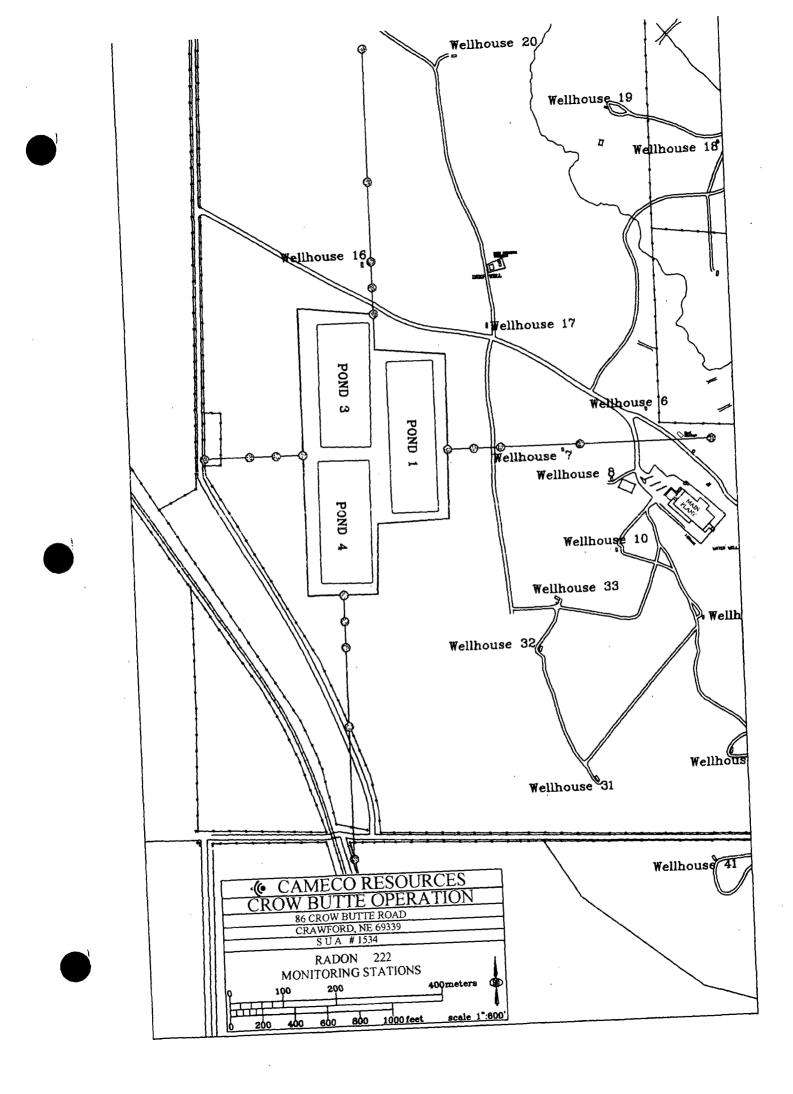
As previously communicated to the EPA, the final analytical results of lead-210 monitoring were not received until December 31, 2009. This report is being submitted within the requested 30-day period. Radon-222 data obtained after the 45-day period were forwarded to the EPA on September 16, 2009.

APPENDIX A

A-1 Radon-222 Monitoring Data

- Map of Radon-222 Monitoring Stations
- 45-Day Track Etch Cup Ambient Radon Concentrations Summary Sheet (1 meter / 5 meter)
- 45-Day Radon Test Detector Log
- 45-Day Landauer Radon Monitoring Report
- 90-Day Track Etch Cup Ambient Radon Concentrations Summary Sheet (1 meter / 3 meter / 5 meter)
- 90-Day Radon Test Detector Log
- 90-Day Landauer Radon Monitoring Report

A-2 Lead-210 Monitoring Data


- Map of Lead-210 Monitoring Stations
- Pond Test Particulate Sampling Summary Sheets (Air Volumes Passed through the Sampling Pumps)
- High Volume Air Sampling (Lead-210) Report from Energy Laboratories, Inc.

A-3 Radon Daughter (WL) Monitoring Data

- Map of Working Level Monitoring Stations
- Summary of Weekly Working Level (WL) Data
- Weekly WL Data Sheets

Appendix A-1 Radon-222 Monitoring Data

- Map of Radon-222 Monitoring Stations
- 45-Day Track Etch Cup Ambient Radon Concentrations Summary Sheet (1 meter / 5 meter)
- 45-Day Radon Test Detector Log
- 45-Day Landauer Radon Monitoring Report
- 90-Day Track Etch Cup Ambient Radon Concentrations Summary Sheet (1 meter / 3 meter / 5 meter)
- 90-Day Radon Test Detector Log
- 90-Day Landauer Radon Monitoring Report

Crow Butte Resources, Inc.

EPA Evaporation Pond Montoring Test

Track Etch Cup Ambient Radon Concentrations

Air Monitoring Station No.

Period: July 7, 2009 to August 21, 2009

	Gross Count		Average Radon Concentration (pCi/L)	Accuracy (pCi/L)	Percent Effluent Concentration
N-1M-B	48.0	*	0.7	0.10	7.0%
N-5M-B	78.0		1.2	0.14	12.0%
E-1MB	55.0	*	0.7	0.09	7.0%
E-5M-B	57.0	*	0.7	0.09	7.0%
S-1M-B	75.0		1.1	0.13	11.0%
S-5M-B	37.0	*	0.7	0.12	7.0%
W-1M-B	51.0	*	0.7	0.10	7.0%
W-5M-B	26.0	*	0.7	0.14	7.0%

* Concentration is less than indicated value

LLD (pCi/L)

Effluent Concentration Limit, 10 CFR 20 App B Column 2:

0.2 10

RADON TEST DETECTOR LOG

Landauer, Inc. 2 Science Road Glenwood, IL 60425-1586

Company_	<u>GROW BUTTE RESOURCES</u>	
	CROW_BUTTE_PLANT	
	86 Crow Butte Road P.O. Box	169
	Crawford, NE 69339	
Phone	(308) 665-2215	
Contact	Rhonda Grantham	
	(1000)	

Account # _ 410293

Detector Number		Starting Date			Ending Date		Detector Location/Comments
}	Mo	Day	Yr	Mo	Day	Yr	
4784848	7	7	09	8	21	09	N-IM-B
4784849	7	7	09	8	21	09	N-5M-B
4769384	7	7	09	8	21	09	E-IM-B
4769385	7	7	09	8	21	09	E-5M-B
4769386	7	7	09	8	21	69	5-1M-B
4769378	7	7	09	8	al	09	5.5 m-B
4769379	7	7	09	8	21	09	W-IM-B
4769380	7	7	09	8	21		W-SM-B
							· · · · · · · · · · · · · · · · · · ·
		-					
	1	-		-		-	
	1		-				PLEASE READ ALL CUPS DURING THE
	1		-				SAME RUN. Thanks.
	-						
	- 		-				

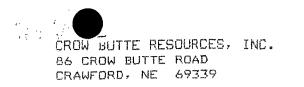
Return original copy with detectors. Retain copy for your records.

Page____ of___

Radon Monitoring Report

CROW BUTTE RESOURCES, INC. 86 CROW BUTTE ROAD CRAWFORD, NE 69339

Acct. No. 0410293


Landauer, Inc. 2 Science Road Glenwood, Illinois 60425-1586 Telephone: (800) 528-8327 Facsimile: (708) 755-7048

LANDAUER

	0	0	2009	;
0 E D	- 9 %	- 55	70019	
5FF	v	0	2005	:

\$ 2

Detector Number	Detector. Type	Starting Date	Ending Date	Field Data / Com	ments	Exposure pCi/l-days	Avg. Radon Conc. pCi/l		AREA COUNTED (SQ MM)	 LOT NO.
4769378	DRNM	07-JUL-07	21-AUG-09	* - LESS THAN INDI S-5 M-B CALIB FACT= 37.1 DAYS EXPOSED: 45	· · ·	* 30.0	* 0.7 ±0.11	37	37.2 A	134237
4769379	DRNM	07-JUL-09	21-AUG-09	<pre># - LESS THAN INDI W-1 M-B CALIB FACT= 37.1 DAYS EXPOSED: 45</pre>	• •	* 30.0	* 0.7 ±0.09	51	37.2 A	13423
4769380	DRNM	07-JUL-09	21-AUG-09	LESS THAN INDI W-SM-B ω -5 ∞ -C CALIB FACT= 37.1 DAYS EXPOSED: 45		* 30.0	* 0.7 ±0.13	26	37.2 A (13423
4769384	DRNM	07-JUL-09 `	21-AUG-07	E-1 M-B CALIB FACT= 37.1 DAYS EXPOSED: 45		30.3 5 ±4.08	0.7 ±0.09	55	37.2 A	134230
4769385	DRNM	07-JUL-09	21-AUG-09	E-5 M-B CALIB FACT= 37.1 DAYS EXPOSED: 45		32.3 2 ±4.27	0.7 ±0.09	57	37.2 A	13423
4769386	DRNM	07-JUL-09	21-AUG-09	5-1 M-B S-100-6 CALIË FACT= 37.1 DAYS EXPOSED: 45		50.2 5 ±5.80	1.1 ±0.13	75	37.2 A	134237
1	2	3	4	5		6	7		8	
ESULTS REL S RECEIVED		NLY TO MON NDAUER.	ITORS	Q.C. Release Process No. DRB A21722	Report Date	Date Received	PAGE	1 OF	r 2	·

0410293 Acct. No.

Landauer, Inc. 2 Science Road Glenwood, Illinois 60425-1586 Telephone: (800) 528-8327 Facsimile: (708) 755-7048

Detector Number	Detector Type	Starting Date	Ending Date	Field Data / Comments	Exposure pCi/l-days	Avg. Radon Conc. pCi/l	AREA GROSS COUNTED BACK LOT COUNT (SQ MM) GRND NO.
4784848	DRNM	07-JUL-09	21-AUG-09	* - LESS THAN INDICATED VALUE N-1 M-B CALIB FACT= 37.1 DAYS EXPOSED: 45	* 30.0	* 0.7 ±0.10	48 37.2 A 0.65 T3487
4784849	DRNM	07-JUL-09	21-AUG-09	N-5 M-B CALIB FACT= 37.1 STD DEV= 11.3 DAYS EXPOSED: 45	53.6 ±6.07		78 37.2 A 0.65 T3487
	-						
							· · ·
() RESULTS REL AS RECEIVED		3 DNLY TO MON ANDAUER.	(4) ITORS		6 Date Received 25-AUG-09	⑦ PAGE	8 2 OF 2

Crow Butte Resources, Inc.

EPA Evaporation Pond Montoring Test

Track Etch Cup Ambient Radon Concentrations

Air Monitoring Station No.

Period: July 7, 2009 to October 8, 2009

	Gross Count		Average Radon Concentration (pCi/L)	Accuracy (pCi/L)	Percent Effluent Concentration
N-1M-A	99.0	*	0.3	0.03	3.0%
N-3M-A	103.0	*	0.3	0.03	3.0%
N-5M-A	89.0	*	0.3	0.03	3.0%
E-1MA	62.0	*	0.3	0.04	3.0%
E-3MA	80.0	*	0.3	0.03	3.0%
E-5M-A	95.0	*	0.3	0.03	3.0%
S-1M-A	76.0		0.5	0.06	5.0%
S-3M-A	71.0		0.4	0.05	4.0%
S-5M-A	79.0		0.5	0.06	5.0%
W-1M-A	· 82.0		0.6	0.07	6.0%
W-3M-A	55.0		0.3	0.04	3.0%
W-5M-A	47.0	*	0.3	0.04	3.0%
N-50	75.0		0.5	0.06	5.0%
N-100	93.0		0.7	0.07	7.0%
N-250	96.0		0.8	0.08	8.0%
N-500	74.0		0.5	0.06	5.0%
E-50	70.0		0.4	0.05	4.0%
E-100	79.0		0.5	0.06	5.0%
E-250	84.0		0.6	0.07	6.0%
E-500	155.0		1.3	0.10	13.0%
S-50	55.0	*	0.3	0.04	3.0%
S-100	62.0		0.3	0.04	3.0%
S-250	39.0	*.	0.3	0.05	3.0%
S-500	59.0	*	0.3	0.04	3.0%
W-50	39.0	*	0.3	0.05	3.0%
W-100	90.0		0.6	0.06	6.0%
W-185	87.0		0.6	0.06	6.0%
AM-6	41.0	*	0.3	0.05	3.0%

* Concentration is less than indicated value

LLD (pCi/L)

Effluent Concentration Limit, 10 CFR 20 App B Column 2:

0.2 10

RADON TEST DETECTOR LOG

Landauer, Inc. 2 Science Road Glenwood, IL 60425-1586

Company GROW BUTTE RESOURCES

Address	CROW_BUTTE_PLANT						
	86 Crow Butte Road P.O. Box 169						
	Crawford, NE 69339						
Phone	(308) 665-2215						
Contact	Rhonda Grantham						
	410293						

ſ	Detector Number	Starting Date			Ending Date			Detector Location/Comments	
$\left \right $		Mo	Day	Yr	Mo	Day	Yr		
4	169405	-/	7	<u>þ9</u>	10	8	09	N-50	
	4769406	2	7	09	10	8	09	N-100	
	4769407	7	2	09	10	8	09	N-250	
-	4784860	7	7	09	10	8	09	N-500	
	1784861	7	7	09	10	8	09	W-50	
ľ	4784870	7	7	09	10	8	09	W-100	
	4784871	7	7	09	(0	8	09	W-185	
4	4784856	7	1	69	10	8	09	5-50	
4	1784857	<u>_</u>].	1	09	10	8	09	5-100	
	4784876	7	7	09	10	G	09	5-250	
	1784877	7	7	69	10	8	09	E-50	
	1784878	7	7	09	10	8	09	E-100	
. [1784879	7	7	09	10	8	09	E-250	
	4784872	7	2	09	D	8	09	E-500	
	4784873	7	7	09	10	8	09	5-500	
	4784868	7	2	09	10	8	09	N-500-D	
- L	4184869		7	09	10	8	09	AM-6-EPA	
	4643603	2	7	09	10	8	09	N-IM-A	
	4643604	7	7.	09	10	8	09	N-3M-A	
	4643603 4643604 4643605	7	7	09	10	8	1	N-5m-A	
								PLEASE READ ALL CUPS DURING THE	
								SAME RUN. Thanks.	
1									
)									

Return original copy with detectors.

Retain copy for your records.

Page____ of <u>A</u>

RADUN LEST DETECTOR LOG

Landauer, inc. 2 Science Road

GROW BUTTE RESOURCES Company___

Address	CROW BULLE PLANT	
	86 Crow Butte Road P.O. Box 169)
	Crawford, NE 69339	
Phone	(308) 665-2215	
	Rhonda Grantham	
Account #		

Glenwood, IL 60425-1586

Detector Number		Starting Date			Ending Date		Detector Location/Comments
	Mo	Day	Yr	Mo	Day	Yr	
4643584	7	7	09	10	8	09	E-IM-A
4643586	7	7	09	10	8	09	E-3M-A
4643587	7	7	09	10	8	09	E-5M-A
4760593	7	7	09	10	\$	09	5-1M-A
4760594	7	7	09	10	g	09	5-3M-A
4760595	7	2	09	10	\$	09	5-5M-A
4769372	フ	7	09	0]	8	09	$\omega - im - A$
4769373	7	2	09	10	8	09	W-3m-A
4769374	7	7	09	10	8	09	W-SM-A
							· · · · · ·
						1	
		1	1		1	1	
	<u>†</u>	<u>†</u>	-			1	
	+	+		<u> </u>	+	+	·
		+	+				
	+			+			PLEASE READ ALL CUPS DURING THE
· · · · · · · · · · · · · · · · · · ·							SAME RUN. Thanks.
				 		- 	;
	_						
Return original	сору w						our records. Yellow - CUSTOMER COPY Page A of D

Yellow - CUSTOMER COPY

By

.

Acct. No.

0410293

Landauer, Inc. 2 Science Road Glenwood, Illinois 60425-1586 Telephone: (800) 528-8327 Facsimile: (708) 755-7048

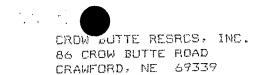
Detector Number	Detector Type	Starting Date	Ending [•] Date	Field Data / Comments	Exposure pCi/l-days	Avg. Radon Conc. pCi/l	AREA GROSS COUNTED BACK LOT COUNT (SQ MM) GRND NO.
4643584	DRNM	07-JUL-09	08-0CT-09	* - LESS THAN INDICATED VALUE E-1M-A CALIB FACT= N/A DAYS EXPOSED: 93	* 30.0	* 0.3 ±0.04	62 37.2 A 2.23 T2718
4643586	DRNM	07-JUL-09	08-8CT-09	* - LESS THAN INDICATED VALUE E-3M-A CALIB FACT= N/A DAYS EXPOSED: 93	* 30.0	* 0.3 ±0.04	80 37.2 A 2.23 T2718
4643587	DRNM	07-JUL-09	08-0CT-09	* - LESS THAN INDICATED VALUE E-5M-A CALIB FACT= 44.5 DAYS EXPOSED: 93	* 30.0	* 0.3 ±0.03	95 37.2 A 2.23 T2718
4643603	DRNM	07-JUL-09 -	08-OCT-09	* - LESS THAN INDICATED VALUE N-1M-A CALIB FACT= 44.5 DAYS EXPOSED: 93	* 30.0	* 0.3 ±0.03	99 37.2 A 2.23 T2718
4643604	DRNM	07-JUL-09	08-OCT-09	* - LESS THAN INDICATED VALUE. N-3M-A CALIB FACT= 44.5 DAYS EXPOSED: 93	* 30.0	* 0.3 ±0.03	103 37.2 A 2.23 T2718
4643605	DRNM	07-JUL-09		* - LESS THAN INDICATED VALUE N-5M-A CALIB FACT= 44.5 DAYS EXPOSED: 93	* 30.0	* 0.3 ±0.03	89 37.2 A 2.23 T2718
1	2	• ③	(4)	5	6	7	8
RESULTS REL AS RECEIVEI		ONLY TO MON ANDAUER.	VITORS EL		Date Received	PAGE	1 OF 5

.

-

Radon Mor Dring Report

LANDAULK


CROW BUTTE RESRCS, INC. 86 CROW BUTTE ROAD CRAWFORD, NE 69339

Acct. No.

0410293

Landauer, Inc. 2 Science Road Glenwood, Illinois 60425-1586 Telephone: (800) 528-8327 Facsimile: (708) 755-7048

·····	· · · · · ·	1	· · · · · · · · · · · · · · · · · · ·	T			
Detector Number	Detector Type	Starting Date	Ending Date	Field Data / Comments	Exposure pCi/l-days	Avg. Radon Conc. pCi/l	AREA GROSS COUNTED BACK LOT COUNT (SQ MM) GRND NO.
4760593	DRNM	07-JUL-07	08-0CT-09	S-1M-A CALIB FACT= 37.9 STD DEV= 11.5 DAYS EXPOSED: 93	44.5 ±5.10	0.5 ±0.05	76 37.2 A 0.87 T3421
4760594	DRNM	07-JUL-09	08-8CT-09	S-3M-A CALIB FACT= 37.9 STD DEV= 11.9 DAYS EXPOSED: 93	39.4 ±4.68	0.4 ±0.05	71 37.2 A 0.87 T3421:
4760595	DRNM	07-JUL-09	08-007-09	S-5M-A CALIB FACT= 37.9 STD DEV= 11.3 DAYS EXPOSED: 93	47.6 ±5.35	0.5 ±0.04	79 37.2 A 0.87 T3421:
4769372	DRNM	07-JUL-09	08-0CT-09-	W-1M-A CALIB FACT= 37.1 STD DEV= 11.0 DAYS EXPOSED: 93	57.3 ±6.32	0.6 ±0.07	82 37.2 A 0.66 T3423
4769373	DRNM	07-JUL-09	08-007-09	W-3M-A CALIB FACT= 37.1 STD DEV= 13.5 DAYS EXPOSED: 93	30.3 ±4.09	0.3 ±0.04	55 37.2 A 0.66 T3423
4769374	DRNM	90-JUL-09	08-007-09	* - LESS THAN INDICATED VALUE W-5M-A CALIB FACT= 37.1 DAYS EXPOSED: 93	* 30.0	* 0.3 ±0.05	47 37.2 A 0.66 T3423
4769405	DRNM	07-JUL-09	08-0CT-07	N-50 CALIB FACT= 37.1 STD DEV= 11.5 DAYS EXPOSED: 93	50.3 ±5.81	0.5 ±0.06	75 37.2 A 0.66 T3423
1	2	3	4	<u>_</u>	6	(7)	(8)
-		DNLY TO MON	Γ	Q.C. Release Process No. Report Date D	ate Received	PAGE	2 OF 5

Acct. No.

0410293

Landauer, Inc. 2 Science Road Glenwood, Illinois 60425-1586 Telephone: (800) 528-8327 Facsimile: (708) 755-7048

						L		
Detector Number	Detector Type	Starting Date	Ending Date	Field Data / Comments	Exposure pCi/I-days	Avg. Radon Conc. pCi/l		LOT NO,
4759406	DRNM	07-JUL-09	08-0CT-09	N-100 CALIB FACT= 37.2 STD DEV= 10.4 DAYS EXPOSED: 93	68.3 ±7.08	0.7 ±0.08	93 37.2 A 0.66 T34	4237
4769407	DRNM	07-JUL-09	08-007-09	N-250 CALIB FACT= 37.2 STD DEV= 10.2 DAYS EXPOSED: 93	71.3 ±7.27	0.8 ±0.08	96 37.2 A 0.66 T34	4237
4784856	DRNM	07-JUL-09	08-007-09	* - LESS THAN INDICATED VALUE S-50 CALIB FACT= 37.1 DAYS EXPOSED: 93	* 30.0	* 0.3 ±0.04	. 55 37.2 A 0.80 T34	4871
4784857	DRNM	07-JUL-09	08-001-09	S-100 CALIB FACT= 37.1 STD DEV= 12.7 DAYS EXPOSED: 93	32.1 ±4.08	0.3 ±0.04	62 37.2 A 0.80 T34	4871
4784860	DRNM	07-JUL-09	08-0CT-09	N-500 CALIB FACT= 37.1 STD DEV= 11.6 DAYS EXPOSED: 93	44.1 ±5.12	0.5 . ±0.06	74 37.2 A 0.80 ⁻ T34	4871
4784861	DRNM	07-JUL-09	08-007-09	* - LESS THAN INDICATED VALUE W-50 CALIB FACT= 37.1 DAYS EXPOSED: 93	* 30.0	* 0,3 ±0.05	39 37.2 A 0.80 T34	4871
4784868	DRNM	07-JUL-09	08-0CT-07	N-500-D CALIB FACT= 37.1 STD DEV= 11.6 DAYS EXPOSED: 93	44.1 ±5.12	0.5 ±0.06	74 37.2 A 0.80 T34	4871
1	2	3	(4)	(5)	6	7	8	
RESULTS REI AS RECEIVED		ONLY TO MON ANDAUER.	ITORS		Date Received	PAGE	3 OF 5	

,

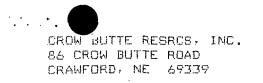
.

.

.

Radon Mor ``oring Report

LANDAUER


CROW BUTTE RESRCS, INC. 86 CROW BUTTE ROAD CRAWFORD, NE 69339

Acct. No.

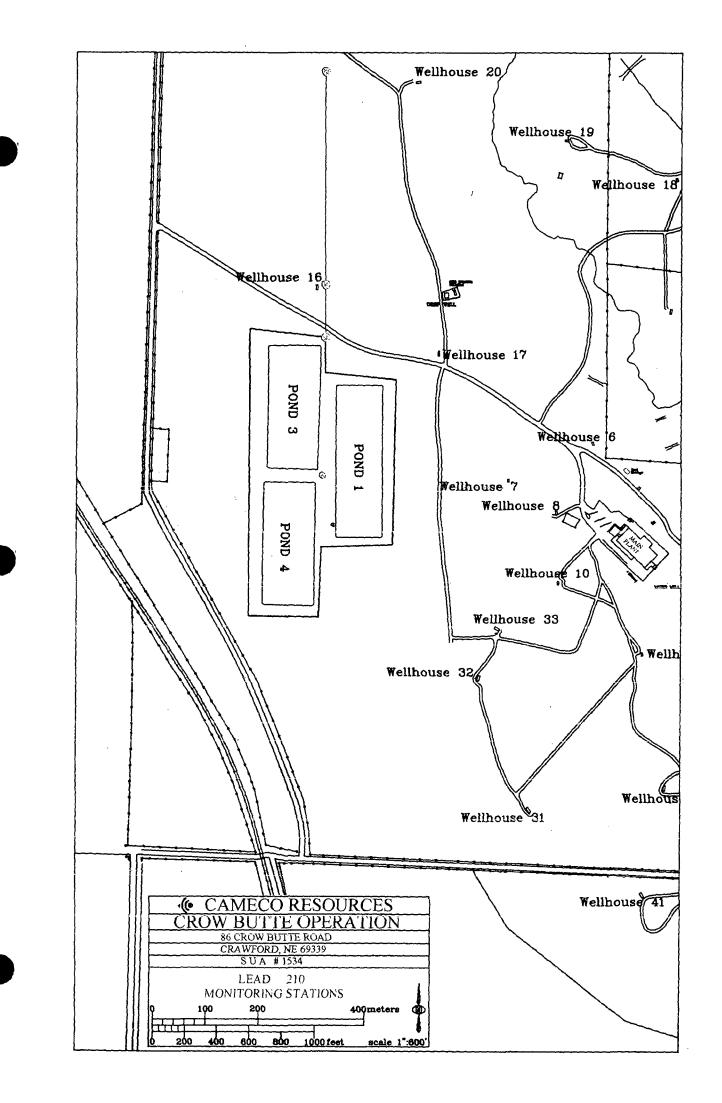
. 0410293

Landauer, Inc. 2 Science Road Glenwood, Illinois 60425-1586 Telephone: (800) 528-8327 Facsimile: (708) 755-7048

Detector Number	Detector Type	Starting Date	Ending Date	Field Data / Comments	Exposure pCi/l-days	Avg. Radon Conc. pCi/!	AREA GROSS COUNTED BACK LOT COUNT (SQ MM) GRND NO.
4784869	DRNM	07-JUL-09	08-0CT-09	★ - LESS THAN INDICATED VALUE AM-6-EPA CALIB FACT≈ 37.1 DAYS EXPOSED; 93	* 30.0	* 0.3 ±0.05	41 37.2 A 0.80 T34871
4784870	DRNM	07-JUL-09	08-0CT-09	W-100 CALIB FACT= 37.1 STD DEV= 10.5 DAYS EXPOSED: 93	60.1 ±6.33	0.6 ±0.07	90 37.2 A 0.30 T34871
4784871	<u> </u> PRNM	07-JUL-07	08-0CT-09	W-185 CALIB FACT≈ 37.1 STD DEV= 10.7 DAYS EXPOSED: 93	57.1 ±6.12	0.6 ±0.07	87 37.2 A 0.80 T34871
4784872	DRNM	07-JUL-09	08-007-09	E-500 CALIB FACT≈ 37.2 STD DEV= 8.0 DAYS EXPOSED: 93	125.2 ±10.1	1.3 ±0:11	155 37.2 A 0.80 T34871
4784873	DRNM	07-JUL-09	08-007-09	<pre>* - LESS THAN INDICATED VALUE S-500 CALIB FACT= 37.1 DAYS EXPOSED: 93</pre>	* 30.0	* 0.3 ±0.04	59 37.2 A 0.80 T34871
4784876	DRNM	07-JUL-09	08-0CT-09	* - LESS THAN INDICATED VALUE S-250 CALIB FACT= 37.1 DAYS EXPOSED: 93	* 30.0	* 0.3 ±0.05	39 37.2 A 0.80 T34871
							· · ·
1	2	3	4	5	6	7	8
RESULTS REL AS RECEIVED			ITORS		Date Received	PAGE	4 OF 5

Acct. No.

0410293


Landauer, Inc. 2 Science Road Glenwood, Illinois 60425-1586 Telephone: (800) 528-8327 Facsimile: (708) 755-7048

Detector Number	Detector Type	Starting Date	Ending Date	Field Data / Comments	Exposure pCi/l-days	Avg. Radon Conc. pCi/l	AREA GROSS COUNTED BACK LOT COUNT (SQ MM) GRND NO.
4784877	DRNM	07-JUL-09	08-8CT-09	E-50 CALIB FACT= 37.1 STD DEV= 12.0 DAYS EXPOSED: 93	40.1 ±4.79		-∕70 37.2 A 0.80 T3487)
4784878	DRNM	07-JUL-07	08-0CT-09	E-100 CALIB FACT= 37.1 STD DEV= 11.3 DAYS EXPOSED: 93	47.1 ±5.52		∠79 37.2 A 0.80 T34871
4784879	DRNM	07-JUL-09	08-007-09	E-250 CALIB FACT= 37.1 STD DEV= 10.9 DAYS EXPOSED: 93	54.1 ±5.90		✓ 84 37.2 A 0.80 T34871
				· · · ·			
					L		
1	2	3	(4)	O.C. Release Process No. Report Date	6 Date Received	$\overline{\mathcal{I}}$	(8)
RESULTS REL AS RECEIVED			ITORS		14-DCT-09	PAGE	5 OF 5

.

Appendix A-2 Lead-210 Monitoring Data

- Map of Lead-210 Monitoring Stations
- Pond Test Particulate Sampling Summary Sheets (Air Volumes Passed through the Sampling Pumps)
- High Volume Air Sampling (Lead-210) Report from Energy Laboratories, Inc.

Pond Test Particulate Sampling

Pond 100m. North

Pump #	Date Time Start	Date Time End	Total Time	Flow Rate	Total Volume
6	7/10/2009 10:13:00 AM	7/16/2009 1:36:00 PM	8843 min.	5.025 <i>LPM</i>	44436.1 Liters
6	7/16/2009 2:50:00 PM	7/23/2009 10:56:00 AM	9846 <i>min</i> .	5.021 <i>LPM</i>	49436.8 Liters
6	7/23/2009 12:58:00 PM	7/30/2009 10:39:00 AM	9941 <i>min</i> .	5.007 <i>LPM</i>	49774.6 Liters
6	7/30/2009 12:19:00 PM	8/6/2009 1:03:00 PM	10124 <i>min</i> .	5.011 <i>LPM</i>	50731.4 Liters
6	8/6/2009 3:23:00 PM	8/13/2009 12:50:00 PM	9927 min.	5 LPM	49635.0 <i>Liters</i>
6	8/13/2009 2:38:00 PM	8/20/2009 12:27:00 PM	9949 <i>min</i> .	4.985 <i>LPM</i>	49595.8 Liters
, 6	8/20/2009 1:54:00 PM	8/27/2009 12:58:00 PM	10024 <i>min</i> .	4.993 <i>LPM</i>	50049.8 <i>Liters</i>
6	8/27/2009 1:49:00 PM	9/3/2009 1:24:00 PM	10055 min.	5.013 <i>LPM</i>	50405.7 Liters

Tuesday, October 27, 2009

Page 1 of 8

Pond Test Particulate Sampling

		· · · · · · · · · · · · · · · · · · ·				
6	9/3/2009 3:03:00 PM	9/10/2009 10:56:00 AM	9833 min.	5.035 <i>LPM</i>	49509.2	Liters
6	9/10/2009 2:10:00 PM	9/17/2009 9:54:00 AM	9824 min.	4.999 <i>LPM</i>	49110.2	Liters
6	9/17/2009 11:02:00 AM	9/24/2009 9:38:00 AM	9996 min.	4.992 <i>LPM</i>	49900.0	Liters
6	9/24/2009 10:53:00 AM	10/1/2009 8:21:00 AM	9928 min.	5.002 <i>LPM</i>	49659.9	Liters
2	10/1/2009 11:09:00 AM	10/8/2009 9:19:00 AM	9970 min.	4.997 <i>LPM</i>	49820.1	Liters
2	10/8/2009 11:16:00 AM	10/15/2009 9:56:00 AM	10000 min.	5.011 <i>LPM</i>	50110.0	Liters

Total Volume 692174.4 Liters

Tuesday, October 27, 2009

.

Page 2 of 8

Pond Test Particulate Sampling

Pond 500m. North

Pump #	Date Time Start	Date Time End	Total Time	Flow Rate	Total Volume
7	7/10/2009 10:03:00 AM	7/16/2009 1:42:00 PM	8859 <i>min</i> .	5.038 LPM	44631.6 Liters
7	7/16/2009 2:56:00 PM	7/23/2009 11:00:00 AM	9844 min.	4.993 <i>LPM</i>	49151.1 Liters
7	7/23/2009 1:05:00 PM	7/30/2009 10:44:00 AM	9939 min.	5.009 <i>LPM</i>	49784.5 Liters
7	7/30/2009 12:11:00 PM	8/6/2009 1:07:00 PM	10136 <i>min</i> .	5.006 <i>LPM</i>	50740.8 Liters
7	8/6/2009 3:27:00 PM	8/13/2009 12:55:00 PM	9928 min.	5.002 <i>LPM</i>	49659.9 Liters
7	8/13/2009 2:44:00 PM	8/20/2009 12:31:00 PM	9947 min.	5.001 <i>LPM</i>	49744.9 Liters
7	8/20/2009 1:59:00 PM	8/27/2009 1:01:00 PM	10022 min.	4.998 <i>LPM</i>	50090.0 Liters
7	8/27/2009 1:54:00 PM	9/3/2009 1:30:00 PM	10056 <i>min</i> .	5.005 <i>LPM</i>	50330.3 Liters

Tuesday, October 27, 2009

Page 3 of 8

Pond Test Particulate Sampling

7	9/3/2009 3:07:00 PM	9/10/2009 10:59:00 AM	9832 min.	5.013 <i>LPM</i>	49287.8 Liters
7	9/10/2009 2:20:00 PM	9/17/2009 9:58:00 AM	9818 <i>min</i> .	5 LPM	49090.0 Liters
7	9/17/2009 10:59:00 AM	9/24/2009 9:43:00 AM	10004 <i>min</i> .	4.999 <i>LPM</i>	50010.0 Liters
7	9/24/2009 10:59:00 AM	10/1/2009 8:25:00 AM	9926 min.	4.998 <i>LPM</i>	49610.1 Liters
7	10/1/2009 11:13:00 AM	10/8/2009 9:23:00 AM	9970 min.	5.002 <i>LPM</i>	49869.9 Liters
7	10/8/2009 11:21:00 AM	10/15/2009 10:02:00 AM	10001 <i>min</i> .	5.001 <i>LPM</i>	50015.0 Liters

Total Volume 692015.9 Liters

,

Tuesday, October 27, 2009

Pond Test Particulate Sampling

Pond Center

Pump #	Date Time Start	Date Time End	Total Time	Flow Rate	Total Volume
4	7/10/2009 10:26:00 AM	7/16/2009 1:25:00 PM	8819 <i>min</i> .	4.997 <i>LPM</i>	44068.5 <i>Liters</i>
4	7/16/2009 2:40:00 PM	7/23/2009 10:25:00 AM	9825 min.	4.996 <i>LPM</i>	49085.7 Liters
4	7/23/2009 12:48:00 PM	7/30/2009 10:30:00 AM	9942 min.	4.996 <i>LPM</i>	49670.2 Liters
4	7/30/2009 12:27:00 PM	8/6/2009 12:56:00 PM	10109 <i>min</i> .	5.009 <i>LPM</i>	50636.0 <i>Liters</i>
4	8/6/2009 3:16:00 PM	8/13/2009 12:41:00 PM	9925 min.	4.998 <i>LPM</i>	49605.1 <i>Liters</i>
4	8/13/2009 2:30:00 PM	8/20/2009 12:17:00 PM	9947 min.	4.998 <i>LPM</i>	49715.1 Liters
4	8/20/2009 1:45:00 PM	8/27/2009 12:55:00 PM	10030 <i>min</i> .	4.995 <i>LPM</i>	50099.9 <i>Liters</i>
4	8/27/2009 1:47:00 PM	9/3/2009 1:16:00 PM	10049 <i>min</i> .	5.019 <i>LPM</i>	50435.9 Liters

Tuesday, October 27, 2009

Page 5 of 8

Pond Test Particulate Sampling

4	9/3/2009 2:37:00 PM	9/10/2009 10:47:00 AM	9850 min.	5.024 <i>LPM</i>	49486.4	Liters
1	9/10/2009 1:23:00 PM	9/17/2009 9:46:00 A M	9863 min.	5.016 <i>LPM</i>	49472.8	Liters
1	9/17/2009 11:10:00 AM	9/24/2009 9:30:00 AM	9980 min.	4.999 <i>LPM</i>	49890.0	Liters
· 1	9/24/2009 10:45:00 AM	10/1/2009 8:15:00 AM	9930 min.	5.007 <i>LPM</i>	49719.5	Liters
1	10/1/2009 11:03:00 AM	10/8/2009 9:09:00 AM	9966 min.	5.003 <i>LPM</i>	49859.9	Liters
1	10/8/2009 11:08:00 AM	10/15/2009 9:45:00 AM	9997 min.	4.991 <i>LPM</i>	49895.0	Liters

Total Volume 691640.2 Liters

Tuesday, October 27, 2009

Page 6 of 8

Pond Test Particulate Sampling

Pond N. Fence

Pump #	Date Time Start	Date Time End	Total Time	Flow Rate	Total Volume
5	7/10/2009 10:18:00 AM	7/16/2009 1:29:00 PM	8831 <i>min</i> .	4.994 <i>LPM</i>	44102.0 <i>Liters</i>
5	7/16/2009 2:46:00 PM	7/23/2009 10:52:00 AM	9846 min.	5.009 <i>LPM</i>	49318.6 Liters
5	7/23/2009 12:55:00 PM	7/30/2009 10:36:00 AM	9941 <i>min</i> .	5.012 <i>LPM</i>	49824.3 Liters
5	7/30/2009 12:22:00 PM	8/6/2009 1:01:00 PM	10119 <i>min</i> .	5.001 <i>LPM</i>	50605.1 <i>Liters</i>
5	8/6/2009 3:20:00 PM	8/13/2009 12:48:00 PM	9928 min.	5 LPM	49640.0 <i>Liters</i>
5	8/13/2009 2:35:00 PM	8/20/2009 12:21:00 PM	9946 min.	4.998 <i>LPM</i>	49710.1 <i>Liters</i>
5	8/20/2009 1:51:00 PM	8/27/2009 12:56:00 PM	10025 <i>min</i> .	5 LPM	50125.0 <i>Liters</i>
5	8/27/2009 1:48:00 PM	9/3/2009 1:20:00 PM	10052 min.	5.015 <i>LPM</i>	50410.8 <i>Liters</i>

Tuesday, October 27, 2009

Page 7 of 8

found not

Pond Test Particulate Sampling (UMULING

5	9/3/2009 3:00:00 PM)	Liters	
4	9/10/2009 1:31:00 PM	9/17/2009 9:52:00 AM	9861 <i>min</i> .	5.016 <i>LPM</i>	49462.8 Liters	
4	9/17/2009 11:04:00 AM	9/24/2009 9:36:00 AM	9992 min.	4.98 <i>LPM</i>	49760.2 Liters	
.3	9/24/2009 10:50:00 AM	10/1/2009 8:18:00 AM	9928 min.	5 LPM	49640.0 Liters	
3	10/1/2009 11:06:00 AM	10/8/2009 9:13:00 AM	9967 min.	5.006 LPM	49894.8 Liters	
3	10/8/2009 11:14:00 AM	10/15/2009 9:54:00 AM	10000 <i>min</i> .	4.994 <i>LPM</i>	49940.0 Liters	
3	10/15/2009 10:48:00 AM	10/22/2009 10:42:00 AM	10074 <i>min</i> .	5.017 <i>LPM</i>	50541.3 Liters	

Total Volume 692974.9 Liters

Tuesday, October 27, 2009

ENERGY LABORATORIES, INC. • 2393 Salt Creek Highway (82601) • P.O. Box 3258 • Casper, WY 82602 Toll Free 888.235.0515 • 307.235.0515 • Fax 307.234.1639 • casper@energylab.com • www.energylab.com

ANALYTICAL SUMMARY REPORT

December 28, 2009

Crow Butte Resources 86 Crow Butte Rd

Crawford, NE 69339

Workorder No.: C09110129

Quote ID: C1125 - Crow Butte Uranium Project

Project Name: EPA Evap Pond Radon Test Environmental Air

Energy Laboratories, Inc. received the following 4 samples for Crow Butte Resources on 11/4/2009 for analysis.

Sample ID	Client Sample ID	Collect Date	Receive Date	Matrix	Test
C09110129-00 ⁻	Evap Pond Center		11/04/09	Filter	Digestion, Total Metals Lead 210
C09110129-002	2 Evap Pond-North Fence		11/04/09	Filter	Same As Above
C09110129-003	3 Evap Pond-100 Meters North		11/04/09	Filter	Same As Above
C09110129-004	Evap Pond-500 Meters North		11/04/09	Filter	Same As Above

As appropriate, any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

If you have any questions regarding these tests results, please call.

Report Approved By:«

Steven E. Carlston **Technical Director**

HIGH VOLUME AIR SAMPLING REPORT

CLIENT: Crow Butte Resources PROJECT: EPA Evap Pond Radon Test Environmental Air REVISED DATE: December 28, 2009 REPORT DATE: December 8, 2009 SAMPLE ID: Evap Pond Center

Quarter/Date Sampled Air Volume	Radionuclide	Concentration µCi/mL	Counting Precision μCi/mL	MDC µCi/mL	L.L.D. µCi/mL	Effluent Conc.* µCi/mL	% Effluent Concentration
C09110129-001	²¹⁰ Pb	1.94E-14	3.02E-15	4.94E-15	2.00E-15	6.00E-13	3.23E+00
Air Volume in mLs		1	L			4,	4_******

6.92E+08

LLD's are from Reg. Guide 4.14 *Effluent Concentration from the NEW 10 CFR Part 20 - Appendix B - Table 2 Year for Natural Uranium Year for Thorium-230 Week for Radium-226 Day for Lead-210

LABORATORY ANALYTICAL REPORT

Client:Crow Butte ResourcesProject:EPA Evap Pond Radon Test Environmental AirLab ID:C09110129-001Client Sample ID:Evap Pond Center

Revised Date: 12/28/09 Report Date: 12/08/09 Collection Date: Not Provided DateReceived: 11/04/09 Matrix: Filter

Analyses	Resul	t Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
RADIONUCLIDES - TOTAL							
Lead 210	13	pCi/Filter		3.4		E909.0M	12/06/09 09:34 / dm
Lead 210 precision (±)	2.1	pCi/Filter				E909.0M	12/06/09 09:34 / dm
Lead 210 MDC	3.4	pCi/Filter				E909.0M	12/06/09 09:34 / dm

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

HIGH VOLUME AIR SAMPLING REPORT

CLIENT: Crow Butte Resources PROJECT: EPA Evap Pond Radon Test Environmental Air REVISED DATE: December 28, 2009 REPORT DATE: December 8, 2009 SAMPLE ID: Evap Pond-North Fence

Quarter/Date Sampled Air Volume	Radionuclide	Concentration µCi/mL	Counting Precision µCi/mL	MDC µCi/mL	L.L.D. µCi/mL	Effluent Conc.* µCi/mL	% Effluent Concentration
C09110129-002	²¹⁰ Pb	8.77E-15	3.02E-15	4.94E-15	2.00E-15	6.00E-13	1.46E+00
Air Volume in mLs							

6.93E+08

LLD's are from Reg. Guide 4.14 *Effluent Concentration from the NEW 10 CFR Part 20 - Appendix B - Table 2 Year for Natural Uranium Year for Thorium-230 Week for Radium-226 Day for Lead-210

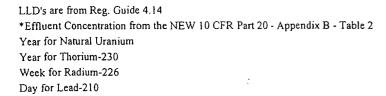
LABORATORY ANALYTICAL REPORT

Client:	Crow Butte Resources
Project:	EPA Evap Pond Radon Test Environmental Air
Lab ID:	C09110129-002
Client Sample ID:	Evap Pond-North Fence

Revised Date: 12/28/09 Report Date: 12/08/09 Collection Date: Not Provided DateReceived: 11/04/09 Matrix: Filter

Analyses	Resul	t Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
RADIONUCLIDES - TOTAL							
Lead 210	6.1	pCi/Filter		3.4		E909.0M	12/06/09 09:34 / dm
Lead 210 precision (±)	2.1	pCi/Filter				E909.0M	12/06/09 09:34 / dm
Lead 210 MDC	3.4	pCi/Filter				E909.0M	12/06/09 09:34 / dm

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level. ND - Not detected at the reporting limit.



HIGH VOLUME AIR SAMPLING REPORT

CLIENT: Crow Butte Resources PROJECT: EPA Evap Pond Radon Test Environmental Air REVISED DATE: December 28, 2009 REPORT DATE: December 8, 2009 SAMPLE ID: Evap Pond-100 Meters North

Quarter/Date Sampled Air Volume	Radionuclide	Concentration µCi/mL	Counting Precision µCi/mL	MDC µCi/mL	L.L.D. µCi/mL	Effluent Conc.* µCi/mL	% Effluent Concentration
C09110129-003	²¹⁰ Pb	8.78E-15	3.02E-15	4.94E-15	2.00E-15	6.00E-13	1.46E+00

Air Volume in mLs 6.92E+08

LABORATORY ANALYTICAL REPORT

Client:	Crow Butte Resources
Project:	EPA Evap Pond Radon Test Environmental Air
Lab ID:	C09110129-003
Client Sample ID:	Evap Pond-100 Meters North

Revised Date: 12/28/09 Report Date: 12/08/09 Collection Date: Not Provided DateReceived: 11/04/09 Matrix: Filter

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
RADIONUCLIDES - TOTAL							
Lead 210	6.1	pCi/Filter		3.4		E909.0M	12/06/09 09:34 / dm
Lead 210 precision (±)	2.1	pCi/Filter				E909.0M	12/06/09 09:34 / dm
Lead 210 MDC	3.4	pCi/Filter				E909.0M	12/06/09 09:34 / dm

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

HIGH VOLUME AIR SAMPLING REPORT

CLIENT: Crow Butte Resources PROJECT: EPA Evap Pond Radon Test Environmental Air REVISED DATE: December 28, 2009 REPORT DATE: December 8, 2009 SAMPLE ID: Evap Pond-500 Meters North

Quarter/Date Sampled Air Volume	Radionuclide	Concentration µCi/mL	Counting Precision µCi/mL	MDC μCi/mL	L.L.D. µCi/mL	Effluent Conc.* µCi/mL	% Effluent Concentration
C09110129-004	²¹⁰ Pb	8.79E-15	3.02E-15	4.94E-15	2.00E-15	6.00E-13	1.46E+00
Air Volume in mLs							

6.92E+08

LLD's are from Reg. Guide 4.14 *Effluent Concentration from the NEW 10 CFR Part 20 - Appendix B - Table 2 Year for Natural Uranium Year for Thorium-230 Week for Radium-226 Day for Lead-210

LABORATORY ANALYTICAL REPORT

100100

		Revised Date:	12/28/09
Client:	Crow Butte Resources	Report Date:	12/08/09
Project:	EPA Evap Pond Radon Test Environmental Air	Collection Date:	Not Provided
Lab ID:	C09110129-004	DateReceived:	11/04/09
Client Sample ID	Evap Pond-500 Meters North	Matrix:	Filter

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
RADIONUCLIDES - TOTAL							
Lead 210	6.1	pCi/Filter		3.4		E909.0M	12/06/09 09:34 / dm
Lead 210 precision (±)	2.1	pCi/Filter				E909.0M	12/06/09 09:34 / dm
Lead 210 MDC	3.4	pCi/Filter				E909.0M	12/06/09 09:34 / dm

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

QA/QC Summary Report

lient: Crow Butte Resources

Project: EPA Evap Pond Radon Test Environmental Air

Report Date: 12/28/09

Work Order: C09110129

Analyte	Result	Units	RL %REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E909.0M		······································					Bat	ch: 24351
Sample ID: C09110129-001AMS	Sample Matri	x Spike		Run: PACH	ARD 3100TR	_091206A	12/06	5/09 09:34
Lead 210	316	pCi/Filter	85	70	130			
Sample ID: C09110129-001AMSD	Sample Matri	x Spike Duplicate		Run: PACł	KARD 3100TR	_091206A	12/06	5/09 09:34
Lead 210	338	pCi/Filter	91	70	130	6.7	30	
Sample ID: MB-24351	Method Blank	<		Run: PACI	KARD 3100TR	_091206A	12/06	5/09 09:34
Lead 210	1	pCi/Filter						U
Lead 210 precision (±)	20	pCi/Filter						
Lead 210 MDC	30	pCi/Filter						
Sample ID: LCS-24351	Laboratory C	ontrol Sample		Run: PACI	KARD 3100TR	_091206A	12/06	5/09 09:34
Lead 210	515	pCi/Filter	96	70	130			

Qualifiers:

RL - Analyte reporting limit. MDC - Minimum detectable concentration ND - Not detected at the reporting limit.

U - Not detected at minimum detectable concentration

ENERGY LABORATORIES, INC. • 2393 Salt Creek Highway (82601) • P.O. Box 3258 • Casper, WY 82602 Toll Free 888.235.0515 • 307.235.0515 • Fax 307.234.1639 • casper@energylab.com • www.energylab.com

CLIENT: Crow Butte Resources

Project: EPA Evap Pond Radon Test Environmental Air

Sample Delivery Group: C09110129

Date: 28-Dec-09

CASE NARRATIVE

REVISED REPORT

This report was revised due to a request by Rhonda Grantham for our best attempt to reach the LLDs specified in USNRC RG 4.14. This report reflects the best data possible with regards to count times and volumes provided and used for the analyses.

PB210 ANALYSIS

The MDC for Pb-210 per RG 4.14 is 1 pCi/L. The current technique can achieve an MDC of about 2 pCi/L to 5 pCi/L if we have sufficient sample to process 1.0 L, and this is reported on a sample specific basis. Please consult with your local regulatory agency prior to using these results for compliance purposes.

RADIOCHEMISTRY ANALYSIS

Per client request, results less than MDC (or precision if no MDC), are reported as <MDC (or <precision). Actual instrument results are available by request.

ORIGINAL SAMPLE SUBMITTAL(S)

All original sample submittals have been returned with the data package.

SAMPLE TEMPERATURE COMPLIANCE: 4°C (±2°C)

Temperature of samples received may not be considered properly preserved by accepted standards. Samples that are hand delivered immediately after collection shall be considered acceptable if there is evidence that the chilling process has begun.

GROSS ALPHA ANALYSIS

Method 900.0 for gross alpha and gross beta is intended as a drinking water method for low TDS waters. Data provided by this method for non potable waters should be viewed as inconsistent.

SUBCONTRACTING ANALYSIS

Subcontracting of sample analyses to an outside laboratory may be required. If so, ENERGY LABORATORIES will utilize its branch laboratories or qualified contract laboratories for this service. Any such laboratories will be indicated within the Laboratory Analytical Report.

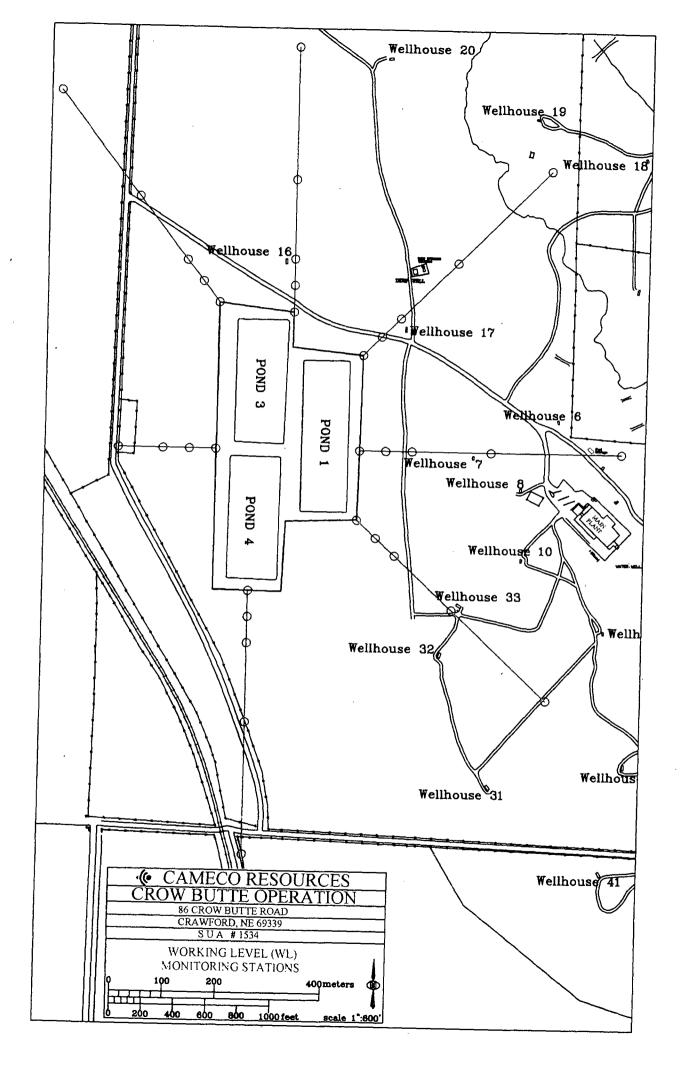
BRANCH LABORATORY LOCATIONS

eli-b - Energy Laboratories, Inc. - Billings, MT eli-g - Energy Laboratories, Inc. - Gillette, WY eli-h - Energy Laboratories, Inc. - Helena, MT eli-r - Energy Laboratories, Inc. - Rapid City, SD eli-t - Energy Laboratories, Inc. - College Station, TX

CERTFICATIONS: USEPA: WY00002; FL-DOH NELAC: E87641; California: 02118CA Oregon: WY200001; Utah: 3072350515; Virginia: 00057; Washington: C1903

ISO 17025 DISCLAIMER:

The results of this Analytical Report relate only to the items submitted for analysis.


ENERGY LABORATORIES, INC. - CASPER, WY certifies that certain method selections contained in this report meet requirements as set forth by the above accrediting authorities. Some results requested by the client may not be covered under these certifications. All analysis data to be submitted for regulatory enforcement should be certified in the sample state of origin. Please verify ELI's certification coverage by visiting www.energylab.com

ELI appreciates the opportunity to provide you with this analytical service. For additional information and services visit our web page www.energylab.com.

THIS IS THE FINAL PAGE OF THE LABORATORY ANALYTICAL REPORT

Appendix A-3 Radon Daughter (WL) Monitoring Data

- Map of Working Level Monitoring Stations
- Summary of Weekly Working Level (WL) Data
- Weekly WL Data Sheets

CAMECO RESOURCES CROW BUTTE OPERATION

				Sun	mary of We	ekly Working	g Level (WL)	Monitoring					
		23-Jul-09		06-Aug-09									
Perimeter-N	0.001	0.003	0.001	0.002	0.006	0.002	0.002	0.003	0.001	0.001	0.002	0.001	0.001
Perimeter-S	0.002	0.001	0.001	0.002	0.009	0.002	0.004	0.004	0.001	0.001	0.001	0.002	0.001
Perimeter-W	0.0002	0.002	0.001	0.002	0.004	0.002	0.001	0.005	0.001	0.001	0.001	0.001	0.002
Perimeter-E	0.0002	0.001	0.001	0.002	0.003	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.002
N-50	0.0004	0.002	0.002		0.004	0.002	0.001		0.001	0.002			
N-100	0.002	0.002	0.001		0.002	0.002	0.001		0.001	0.001			
N-250	0.0002	0.001	0.002		0.005	0.001	0.001		0.001	0.001			
N-500	0.002	0.002	0.001		0.001	0.001	0.001		0.001	0.001			
Air Sta-Center	0.001	0.001	0.001	0.001	0.007	0.003	0.002	0.002	0.001	0.002	0.001	0.003	0.001
Air Sta-Fence	0.001	0.003	0.001	0.002	0.006	0.002	0.002	0.003	0.001	0.001	0.002	0.001	0.001
Air Sta-100M	0.002	0.002	0.001	0.002	0.002	0.002	0.001	0.007	0.001	0.001	0.002	0.001	0.001
Air Sta-500M	0.002	0.002	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
W-Fence				0.001									
W-50				0.002									
W-100				0.002									
IW-250 IW-500				0.003 0.001									
-Fence								0.004			0.001		
-50								0.003			0.001		
-100								0.003			0.001		
5-250								0.003			0.003		
-500								0.002			0.001		
-Fence												0.001	0.002
C-50												0.001	0.001
-100												0.001	0.001
2-250												0.001	0.001
-500												0.001	0.001
Background	0.004	0.002	0.002	0.001	0.003	0.001	0.001	0.001	0.001	0.001	0.001	N/M	0.002

		EPA Monit Sites Working Level (WL) measurements	
Date:	7/16/2009	- +	Wind direction
Time:	7:30 a.m.	N	Calm
ampler:	Тугее	- 500M 0.002	
Pres.:	30.12	-	
eather:	Calm, clear skies		
		100M 0.002	
		50M 0.0004	
· · ·		Pond #3 Pond #4 Pond #4	
North:	0.001		
South:	0.002	_	Center: 0.001
West :	0.0002	_ · ·	100M: 0.002
East :	0.0002	_	500M: 0.002
	rs were operating during the	Background: 0.004	(500M South)

Pond Radon Test- Week One

Radon Daughters

5 min.

3 min.

7/16/2009

Sampler: Tyree

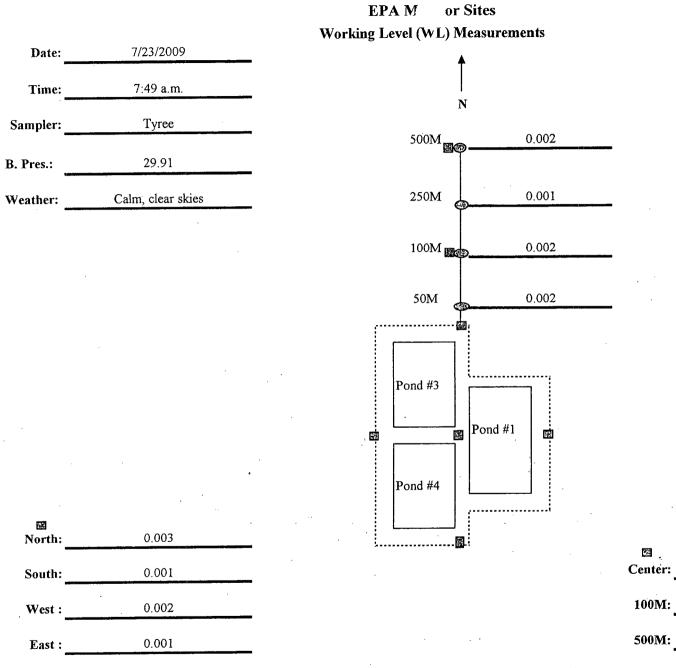
Sample Time Count Time SKC# A Calibration 4.7

. .7 LPM Background Counter EF (DPM/CPM) 1.33 CPM 1.97

Location	Time On	Time Off	Count Start	Count Stop	Total Count	3 min. BKG	СРМ	Elapsed Time	Time Factor	Air Volume	Working Level Concentration
Background	7:53	7:58	9:07	9:10	16	4	4.00	70	90	23.5	0.004
(South 500 Meters)		•									
Center of pond	8:06	8:11	9:12	9:15	6	4	0.67	62	106	23.5	0.0005
North pond fence	8:16	8:21	9:19	9:22	8	4	1.33	59	112	23.5	0.001
West pond fence	8:24	8:29	9:26	9:29	5	4	0.33	58	114	23.5	0.0002
South pond fence	8:32	8:37	9:30	9:33	11	4	2.33	54	122	23.5	0.002
East pond fence	8:40	8:45	9:35	9:38	5	4	0.33	51	128	23.5	0.0002
50 meters north	8:48	8:53	9:39	9:42	6	4	0.67	47	136	23.5	0.0004
100 meters north	8:55	9:00	9:46	9:49	12	4	2.67	47	136	23.5	0.002
250 meters north	9:03	9:08	9:55	9:58	5	4	0.33	48	134	23.5	0.0002
500 meters north	9:19	9:24	10:11	10:14	11	4	2.33	48	134	23.5	0.002
! 											

Working Level Concentration=(CPM X EF)/(Vol X TF)

Instrument: 2000 (136919) Detector: SAC R5 (RN012488) Calibration Date: 5/4/2009
 Source:
 5261-04


 Source DPM:
 7550

 CPM:
 3836

 Efficiency:
 51%

 CPM/DPM:
 1.97

Barometric Pressure: 30.12 Wind: calm Wind direction: calm Weather Conditions: clear Plant Operations: N/A

Background:

Pond sprayers were operating during the testing.

Center: 0.001 100M: 0.002 500M: 0.002 (500M South)

Wind direction

Calm

.

0.002

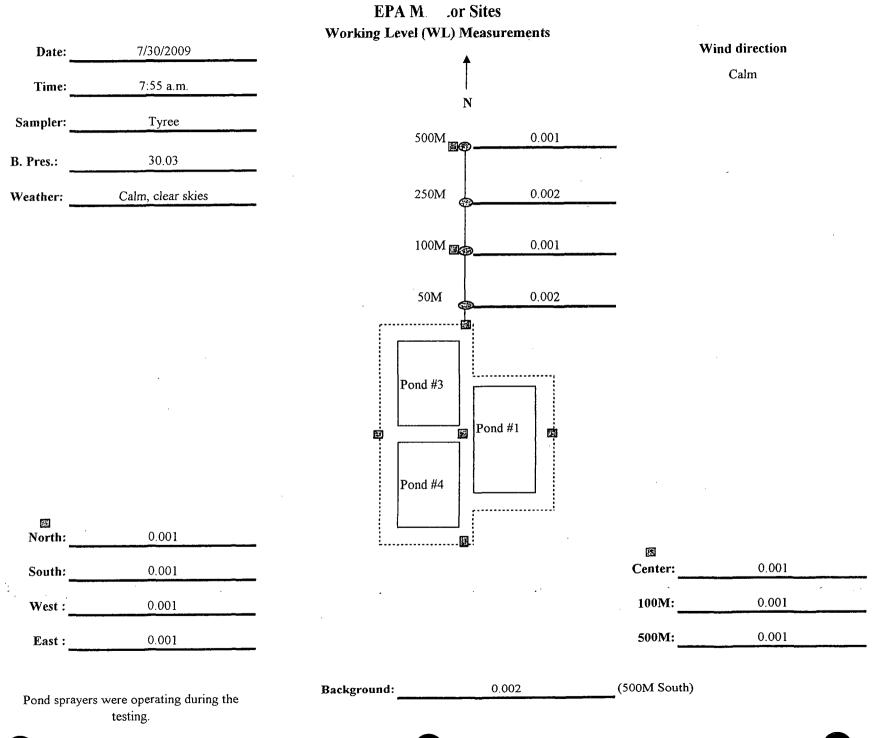
Pond Radon Test- Week Two

Radon	Daughters	7/23/2009			Sampler	: Tyree				
Time	5 min.	SKC#	A				В	ackground	0.33	СРМ
Time	3 min.	Calibration	4.7	LPM		Cοι	inter EF ([OPM/CPM)	1.94	
ation	Time On	Time Off	Count	Count	Total	3 min.	CPM	Elapsed	Time Factor	Air

Location	Time On	Time Off	Count Start	Count Stop	Total Count	3 min. BKG	СРМ	Elapsed Time	Time Factor	Air Volume	Working Level Concentration
Background	7:50	7:55	9:15	9:18	5	1	1.33	81	74	23.5	0.002
(South 500 Meters)											
Center of pond	8:03	8:08	9:20	9:23	4	1	1.00	73	85	23.5	0.001
North pond fence	8:12	8:17	9:24	9:27	10	1	3.00	68	94	23.5	0.003
West pond fence	8:20	8:25	9:29	9:32	9	1	2.67	65	100	23.5	0.002
South pond fence	8:28	8:33	9:33	9:36	5	1	1.33	61	108	23.5	0.001
East pond fence	8:36	8:41	9:38	9:41	7	1	2.00	58	114	23.5	0.001
50 meters north	8:44	8:49	9:42	9:45	8	. 1	2.33	54	122	23.5	0.002
100 meters north	8:51	8:56	9:46	9:49	12	1	3.67	51	128	23.5	0.002
250 meters north	8:58	9:03	9:50	9:53	6	1	1.67	48	134	23.5	0.001
500 meters north	9:05	9:10	9:57	10:00	10	1	3.00	48	134	23.5	0.002
·											

Working Level Concentration=(CPM X EF)/(Vol X TF)

Instrument: 2000 (131009) Detector: SAC R5 (601536) Calibration Date: 8/13/2008


Source: 5261-04 Source DPM: 7550 CPM: 3890 Efficiency: 52% CPM/DPM: 1.94

Barometric Pressure: 29.91 Wind: calm Wind direction: calm Weather Conditions: clear Plant Operations: N/A

2000 1

Sample Time

Count Time

.

Pond Radon Test- Week Three

Radon Daughters

5 min.

3 min.

7/30/2009

Sampler: Tyree

Sample Time

SKC# A Calibration 4.7

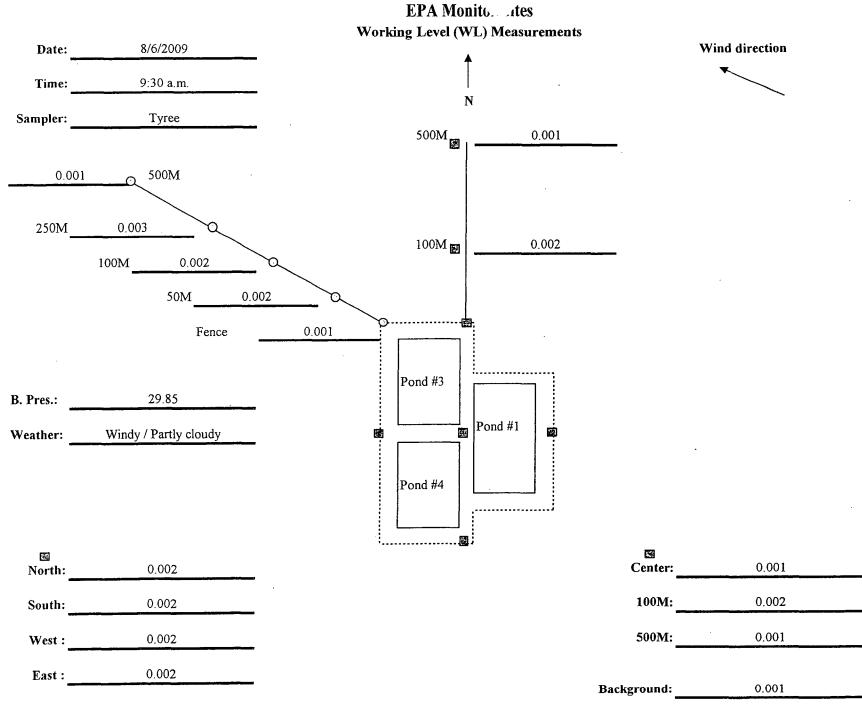
7 LPM

Background Counter EF (DPM/CPM) 0.33 CPM 1.93

			Count	Count	Total	3 min.		Elapsed	Time	Air	Working Level
Location	Time On	Time Off	Start	Stop	Count	BKG	СРМ	Time	Factor	Volume	Concentration
Background	7:57	8:02	9:03	9:06	7	1	2	62	106	23.5	0.002
(South 500 Meters)											
Center of pond	8:10	8:15	9:08	9:11	7	1	2	54	122	23.5	0.001
North pond fence	8:22	8:27	9:14	9:17	5	1	1	48	134	23.5	0.001
West pond fence	8:31	8:36	9:19	9:22	6	1	2	44	142	23.5	0.001
South pond fence	8:39	8:44	9:26	9:29	6	1	2	43	144	23.5	0.001
East pond fence	8:48	8:53	9:36	9:39	8	1	2	44	142	23.5	0.001
50 meters north	9:09	9:14	10:15	10:18	7	1	2	62	106_	23.5	0.002
100 meters north	9:16	9:21	10:19	10:22	5	1	1	59	112	23.5	0.001
250 meters north	9:24	9:29	10:23	10:26	8	1	2	55	120	23.5	0.002
500 meters north	9:32	9:37	10:27	10:30	7	1	2	51	128	23.5	0.001
500 meters east	9:44	9:49	10:33	10:36	8	1	2	45	140	23.5	0.001
										·	
					·		<u></u>				

Working Level Concentration=(CPM X EF)/(Vol X TF)

Instrument: 2000 (136919) Detector: SAC R5 (RN012488) Calibration Date: 5/4/2009
 Source:
 5261-04


 Source DPM:
 7550

 CPM:
 3913

 Efficiency:
 52%

 CPM/DPM:
 1.93

Barometric Pressure: 30.03 Wind: calm Wind direction: calm Weather Conditions: clear Plant Operations: N/A

(500M Southeast)

Pond Radon Test-Week Four

Radon Daughters

5 min.

3 min.

8/6/2009

Sampler: Tyree

Sample	Time
Count	Time

AC# 2 Calibration 5.0

LPM

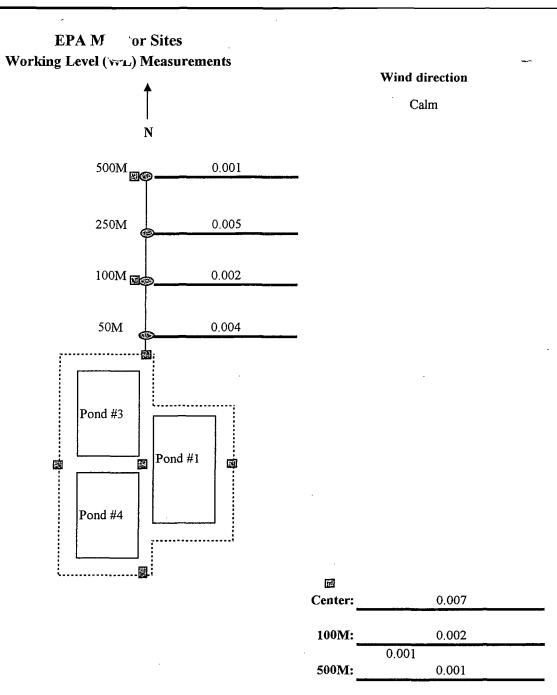
Background Counter EF (DPM/CPM) 0.67 CPM 1.98

Location	Time On	Time Off	Count Start	Count Stop	Total Count	3 min. BKG	СРМ	Elapsed Time	Time Factor	Air Volume	Working Level Concentration
Background	9:43	9:48	11:07	11:10	5	2	1	80	75	25	0.001
(South-East)											
Center of pond	9:57	10:02	11:11	11:14	5	2	1	70	90	25	0.001
North pond fence	10:08	10:13	11:15	11:18	9	2	2	63	104	25	0.002
West pond fence	10:16	10:21	11:23	11:26	9	2	2	63	104	25	0.002
South pond fence	10:24	10:29	11:27	11:30	10	2	3	59	112	25	0.002
East pond fence	10:32	10:37	11:31	11:34	10	2	3	55	120	25	0.002
100 meters north	10:41	10:46	11:35	11:38	13	2	4	50	130	25	0.002
500 meters north	10:51	10:56	11:40	11:43	7	2	2	45	140	25	0.001
North/West Fence	11:55	12:00	13:20	13:23	6	2	1	81	74	25	0.001
North/West 50 meters	12:02	12:07	13:24	13:27	9	2	2	78	78	25	0.002
North/West 100 meters	12:09	12:14	13:28	<u>13:</u> 31	8	2	2	75	83	25	0.002
North/West 250 meters	12:17	12:22	13:32	13:35	12	2	3	71	89	25	0.003
North/West 500 meters	12:26	12:31	13:36	13:39	4	2	1	66	98	25	0.001
East 500 meters	12:37	12:42	13:39	13:42	9	2	2	58	114	25	0.002

Working Level Concentration=(CPM X EF)/(Vol X TF)

Instrument: 2000 (136919) Detector: SAC R5 (RN012488) Calibration Date: 5/4/2009
 Source:
 5261-04

 Source DPM:
 7550


 CPM:
 3818

 Efficiency:
 51%

 CPM/DPM:
 1.98

Barometric Pressure: 29.85 Wind: Strong Wind direction: South-East Weather Conditions: Partly cloudy Plant Operations: N/A

Date:	8/13/2009
Time:	7:45 a.m.
Sampler:	Tyree
B. Pres.:	29.85
Weather:	Calm, clear skies

🖼 North:	0.006	
South:	0.009	
West :	0.004	_
East :	0.003	

Pond sprayers were operating during the testing.

Background:

.034 / .003

(500M South)

Pond Radon Test- Week Five

Radon Daughters

5 min.

3 min.

8/13/2009

Sampler: Tyree

Sample Time Count Time AC# 2 Calibration 5.0

0 LPM

Background Counter EF (DPM/CPM) 0.67 CPM 1.96

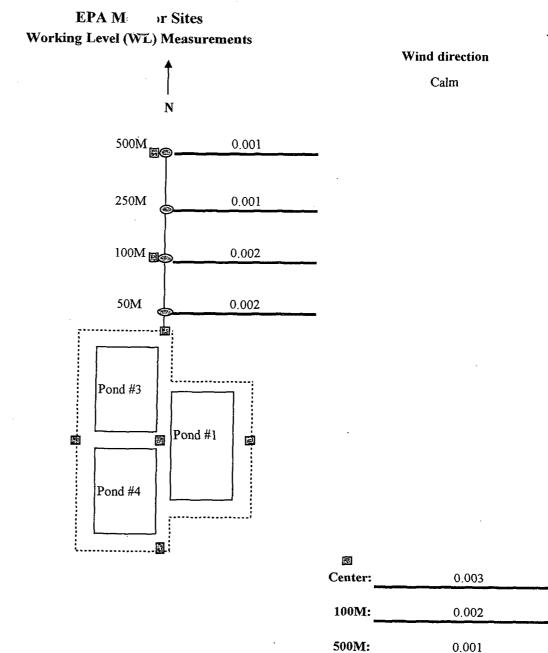
Location	Time On	Time Off	Count Start	Count Stop	Total Count	3 min. BKG	СРМ	Elapsed Time	Time Factor	Air Volume	Working Level Concentration
Background	7:49	7:54	9:13	9:16	99	2	32	80	75	25	0.034
(South 500 Meters)											
Center of pond	8:07	8:12	9:17	9:20	28	2	9	66	98	25	0.007
North pond fence	8:18	8:23	9: <u>2</u> 1	9:24	29	2	9	59	112	25	0.006
West pond fence	8:26	8:31	9:25	9:28	22	2	7	55	120	25	0.004
South pond fence	8:34	8:39	9: <u>2</u> 9	9:32	46	2	15	51	128	25	0.009
East pond fence	8:43	8:48	9:34	9:37	17_	2	5	47	136	25	0.003
50 meters north	8:52	8:57	9:41	9:44	21	2	6	45	140	25	0.004
100 meters north	8:59	9:04	9:49	9:52	14	2	4	46	138	25	0.002
250 meters north	10:10	10:15	11:24	11:27	20	2	6	70	90	25	0.005
500 meters north	10:20	10:25	11:29	11:32	7	2	2	65	100	25	0.001
500 meters east	10:32	10:37	11:33	11:36	15	2	4	57	116	25	0.003
South 500 Meters	10:43	10:48	11:37	11:40	15	2	4	50	130	25	0.003

Working Level Concentration=(CPM X EF)/(Vol X TF)

.

Instrument: 2000 (136919) Detector: SAC R5 (RN012488) Calibration Date: 5/4/2009
 Source:
 5261-04

 Source DPM:
 7550


 CPM:
 3853

 Efficiency:
 51%

 CPM/DPM:
 1.96

Barometric Pressure: 29.85 Wind: calm Wind direction: calm Weather Conditions: clear Plant Operations: N/A Pond Sprayers: on

**		
Date:	8/20/2009	
Time:	8:21 a.m.	
Sampler:	Tyree	
B. Pres.:	30.00	
Weather:	Calm, clear skies	

III North:	0.002	•
South:	0.002	
West :	0.002	
East :	0.001	

Pond sprayers were off during the testing.

Background: 0.001

(500M South)

0.001

Pond Radon Test- Week Six

Radon Daughters

5 min.

3 min.

8/20/2009

Sampler: Tyree

Sample Time Count Time AC# 2 Calibration 5.0

0 LPM

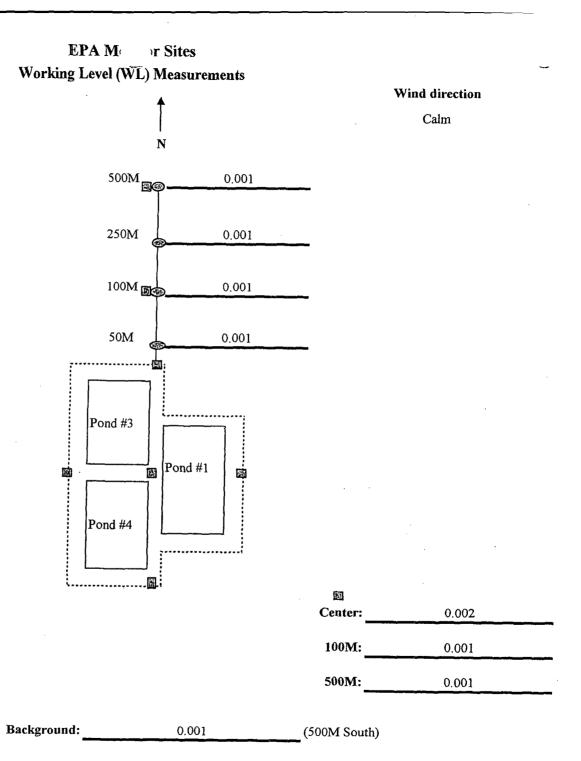
Background Counter EF (DPM/CPM) 1.00 CPM 1.99

Location	Time On	Time Off	Count Start	Count Stop	Total Count	3 min. BKG	СРМ	Elapsed Time	Time Factor	Air Volume	Working Level Concentration
Background	8:21	8:26	9:48	9:51	6	3	1	83	71	25	0.001
(South 500 Meters)											
Center of pond	8:37	8:42	9:52	9:55	13	3	3	71	89	25	0.003
North pond fence	8:49	8:54	9:56	9:59	10	3	2	63	104	25	0.002
West pond fence	8:58	9:03	10:00	10:03	13	3	3	58	114	25	0.002
South pond fence	9:06	9:11	10:04	10:07	10	3	2	54	122	25	0.002
East pond fence	9:15	9:20	10:08	10:11	6	3	1	49	132	25	0.001
50 meters north	9:24	9:29	10:12	10:15	11	3	3	44	142	25	0.002
100 meters north	9:32	9:37	10:19	10:22	11	3	3	43	144	25	0.002
250 meters north	9:58	10:03	11:08	11:11	7	3	1	66	98	25	0.001
500 meters north	10:06	10:11	11:12	11:15	6	3	1	62	106	25	0.001
500 meters east	10:15	10:20	11:17	11:20	10	3	2	58	114	25	0.002

Working Level Concentration=(CPM X EF)/(Vol X TF)

Instrument: 2000 (136919) Detector: SAC R5 (RN012488) Calibration Date: 5/4/2009
 Source:
 5261-04

 Source DPM:
 7550


 CPM:
 3787

 Efficiency:
 50%

 CPM/DPM:
 1.99

Barometric Pressure: 30.00 Wind: calm Wind direction: calm Weather Conditions: clear Plant Operations: N/A Pond Sprayers: on

Date:	8/27/2009
Time:	10:30 a.m.
Sampler:	Dyer
B. Pres.:	30.09
Weather:	Calm and Sunny

0.002	
0.004	
0.001	
0.001	
	0.004

Pond sprayers were on during the testing.

Pond Radon Test- Week Seven

Sample Time 5 min.

Count Time

Radon Daughters

3 min.

8/27/2009

Sampler: Dyer

SKC A

Calibration 4.6 LPM

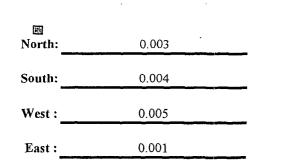
Background Counter EF (DPM/CPM) 1.00 CPM 1.94

Location	Time On	Time Off	Count Start	Count Stop	Total Count	3 min. BKG	СРМ	Elapsed Time	Time Factor	Air Volume	Working Level Concentration
Background	8:02	8:07	8:59	9:02	7	3	1	53	124	23	0.001
(South 500 Meters)											
Center of pond	8:44	8:49	9:58	10:01	8.	3	2	70	90	23	0.002
North pond fence	8:12	8:17	9:03	9:06	11	3	3	47	136	23	0.002
West pond fence	8:20	8:25	9:07	9:10	8	3	2	-43	144	23	0.001
South pond fence	8:27	8:32	9:50	9:53	13	3	3	79	76	23	0.004
East pond fence	8:34	8:39	9:54	9:57	6	3	1	76	82	23	0.001
50 meters north	9:12	9:17	10:02	10:05	7	3	1	46	138	23	0.001
100 meters north	9:18	9:23	10:10	10:13	6	3	1	48	134	23	0.001
250 meters north	9:25	9:30	10:14	10:17	6	3	1	45	140	23	0.001
500 meters north	9:32	9:37	10:19	10:22	7	3	1	43	144	23	0.001
500 meters east	9:41	9:46	10:28	10:31	32	3	10	43	144	23	0.006

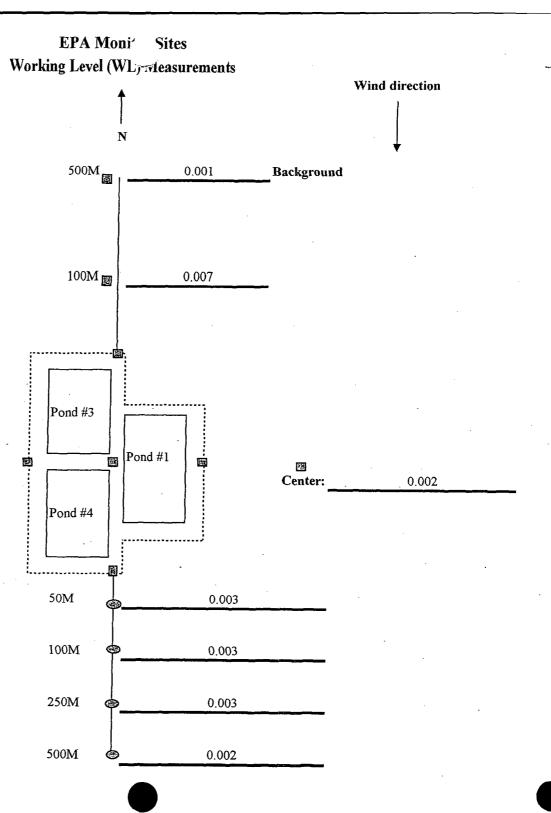
Working Level Concentration=(CPM X EF)/(Vol X TF)

Instrument: 2000 (136919) Detector: SAC R5 (RN012488) Calibration Date: 5/4/2009
 Source:
 5261-04

 Source DPM:
 7550


 CPM:
 3888

 Efficiency:
 51%


 CPM/DPM:
 1.94

Barometric Pressure: 30.09 Wind: calm Wind direction: calm Weather Conditions: clear Plant Operations: N/A Pond Sprayers: on

Date:	9/3/2009
Time:	1230
Sampler:	Тугее
B. Pres.:	30
Weather:	Clear

The pond sprayers were on during the sampling.

Pond Radon Test- Week Eight

Radon Daughters

5 min.

3 min.

9/3/2009

Sampler: Tyree

Sample Time Count Time AC 2 Calibration 5.0

LPM

.

Background 1.33 CPM Counter EF (DPM/CPM) 2.05

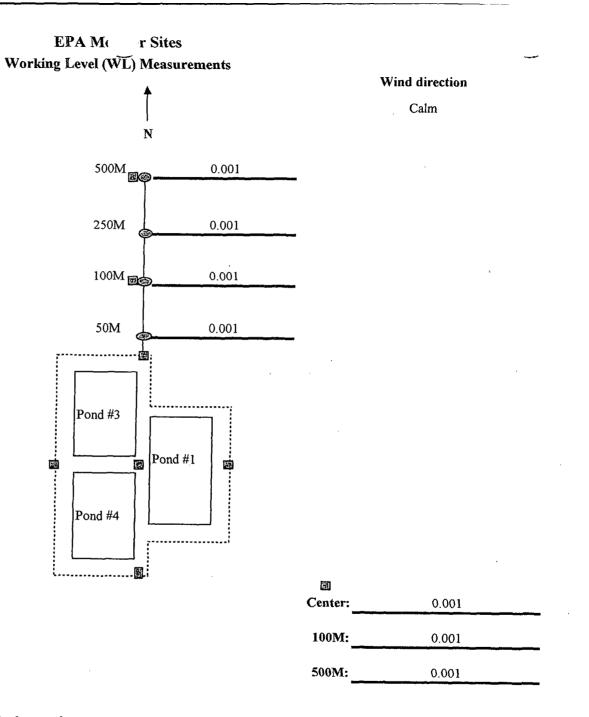
Location	Time On	Time Off	Count Start	Count Stop	Total Count	3 min. BKG	СРМ	Elapsed Time	Time Factor	Air Volume	Working Level Concentration
Background	12:57	13:02	14:19	14:22	8	4	1	78	78	25	0.001
(North 500 Meters)											
100 meters north	13:06	13:11	14:23	14:26	25	4	7	73	85	25	0.007
Center of pond	14:35	14:40	15:29	15:32	12	4	3	50	130	25	0.002
North pond fence	13:13	13:18	14:29	14:32	13	4	3	72	87	25	0.003
West pond fence	13:23	13:28	14:33	14:36	23	4	6	66	98	25	0.005
South pond fence	13:31	13:36	14:37	14:40	21	4	6	62	106	25	0.004
East pond fence	14:24	14:29	15:25	15:28	10	4	2	57	116	25	0.001
50 meters south	13:37	13:42	14:41	14:44	17	4	4	60	110	25	0.003
100 meters south	13:44	13:49	14:51	14:54	17	4	4	63	104	25	0.003
250 meters south	13:52	13:57	14:55	14:58	16	4	4	59	112	25	0.003
500 meters south	14:03	14:08	14:59	15:02	12	4	. 3	52	130	25	0.002
500 meters east	14:45	14:50	15:34	15:37	14	4	3	45	140	25	0.002
									i		

Working Level Concentration=(CPM X EF)/(Vol X TF)

 Instrument: 2000 (136919)
 Source:
 5261-04

 Detector: SAC R5 (RN012488)
 Source DPM:
 7550

 Calibration Date: 5/4/2009
 CPM:
 3674


 Efficiency:
 49%

 CPM/DPM:
 2.05

Barometric Pressure: 30.00 Wind: Breezy Wind direction: North Weather Conditions: Clear Plant Operations: N/A Pond Sprayers: on

ÉHS 4-6

-	
Date:	9/10/2009
Time:	1:00 p.m.
Sampler:	Тугее
B. Pres.:	30.09
Weather:	Calm and Sunny
	· ·

Morth:	0.001
South:	0.001
West :	0.001
East :	0.001

0.001

(500M South)

Pond sprayers were on during the testing.

Pond Radon Test- Week Nine

Radon Daughters

5 min.

3 min.

9/10/2009

Sampler: Tyree

Sample Time Count Time AC# 2 Calibration 5.0

LPM

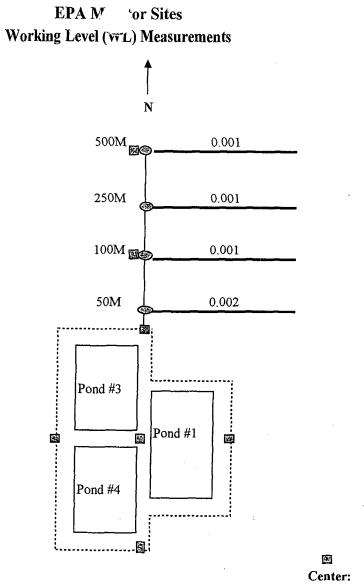
Background Counter EF (DPM/CPM) 1.33 CPM 1.96

Location	Time On	Time Off	Count Start	Count Stop	Total Count	3 min. BKG	СРМ	Elapsed Time	Time Factor	Air Volume	Working Level Concentration
Background	13:11	13:16	14:35	14:38	8	4	1	80	· 75	25	0.001
(South 500 Meters)											
Center of pond	13:21	13:26	14:39	14:42	8	4	1	74	84	25	0.001
North pond fenc e	13:29	13:34	14:43	14:46	6	4	1	70	90	25	0.001
West pond fence	13:37	13:42	14:47	14:50	7	4	1	66	98	25	0.001
South pond fence	13:45	13:50	14:51	14:54	6	• 4	1	62	106	25	0.001
East pond fence	13:52	13:57	14:55	14:58	6	4	1	59	112	25	0.001
50 meters north	14:00	14:05	14:59	15:02	7	4	1	55	120	25	0.001
100 meters north	14:07	14:12	15:03	15:06	9	4	2	52	128	25	0.001
250 meters north	14:16	14:21	15:07	15:10	7	4	1	47	136	25	0.001
500 meters north	14:24	14:29	15:13	15:16	8	4	1	45	140	25	0.001
500 meters east	14:33	14:38	15:22	15:25	17	4	4	45	140	25	0.002

Working Level Concentration=(CPM X EF)/(Vol X TF)

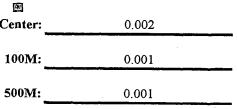
Instrument: 2000 (136919) Detector: SAC R5 (RN012488) Calibration Date: 5/4/2009
 Source:
 5261-04

 Source DPM:
 7550


 CPM:
 3853

 Efficiency:
 51%

 DPM/CPM
 1.96


Barometric Pressure: 30.03 Wind: calm Wind direction: calm Weather Conditions: clear Plant Operations: N/A Pond Sprayers: on

Date:	9/17/2009
Time:	1230
Sampler:	Тугее
B. Pres.:	30.06
Weather:	Slight breeze / Clear

Morth:	0.001	
South:	0.001	
West :	0.001	
East :	0.001	

٠.

Wind direction

Background:

0.001

(500M South)

.

Pond Radon Test- Week Ten

. 4

Sampler: Tyree

Sample Time Count Time

Radon Daughters

5 min. 3 min. Ca

9/17/2009

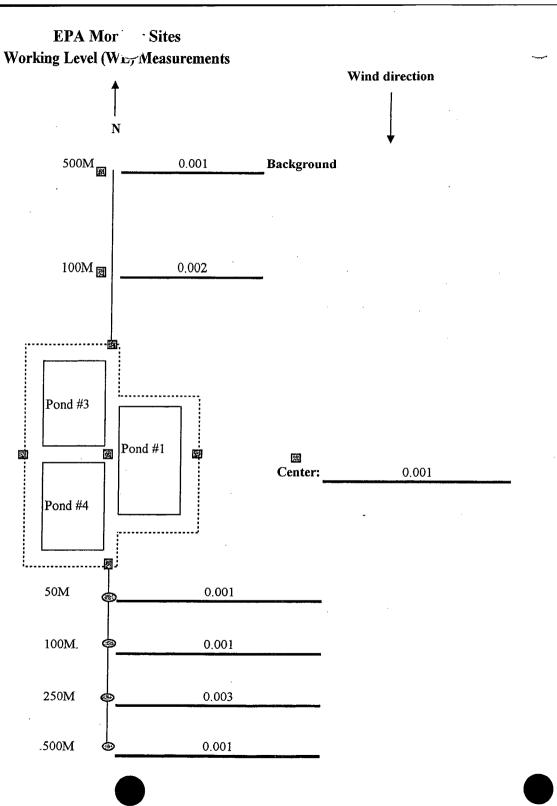
AC# 2

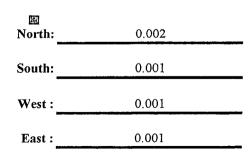
Calibration 5.0 LPM

Background Counter EF (DPM/CPM)

1.33 CPM 1.98

Location	Time On	Time Off	Count Start	Count Stop	Total Count	3 min. BKG	СРМ	Elapsed Time	Time Factor	Air Volume	Working Level Concentration
Background	12:32	12:37	13:57	14:00	8	4	1	81	74	25	0.001
(South 500 Meters)											
Center of pond	12:42	12:47	14:01	14:04	10	4	2	75	83	25	0.002
North pond fence	12:54	12:59	14:05	14:08	6	4	1	67	96	25	0.001
West pond fence	13:02	13:07	14:11	14:14	8	4	1	65	100	25	0.001
South pond fence	13:09	13:14	14:16	14:19	8	4	1	63	104	25	0.001
East pond fence	13:16	13:21	14:20	14:23	7	4	1	60	110	25	0.001
50 meters north	13:24	13:29	14:25	14:28	11	4	2	57	116	25	0.002
100 meters north	13:30	13:35	14:29	14:32	7	4	1	55	120	25	0.001
250 meters north	13:37	13:42	14:33	14:36	9	4	2	52	128	25	0.001
500 meters north	13:44	13:49	14:37	14:40	7	4	1	49	132	25	0.001
500 meters east	13:54	13:59	14:44	14:47	41	4	12	46	138	25	0.007
Commenter Deek has die			<u></u>								


Comments: Back hoe digging going on in the area of the 500 meters east sample.


	Working Level Concent	ration=(CPM X EF)/(Vol X TF	;)
Instrument: 2000) (136919)	Source:	616-88
Detector: SAC	R5 (RN012488)	Source DPM:	7350
Calibration Date: 5/4/2	2009	CPM:	3713
		Efficiency:	51%
·		DPM/CPM	1.98

Barometric Pressure: 30.06 Wind: calm Wind direction: South Weather Conditions: clear Plant Operations: N/A Pond Sprayers: off

EHS 4-6

Date:	9/24/2009	
Time:	1220	
Sampler:	Тугее	
B. Pres.:	30.09	
Weather:	Partly cloudy and windy	

Pond sprays were off.

Pond Radon Test- Week Eleven

Radon Daughters

5 min.

3 min.

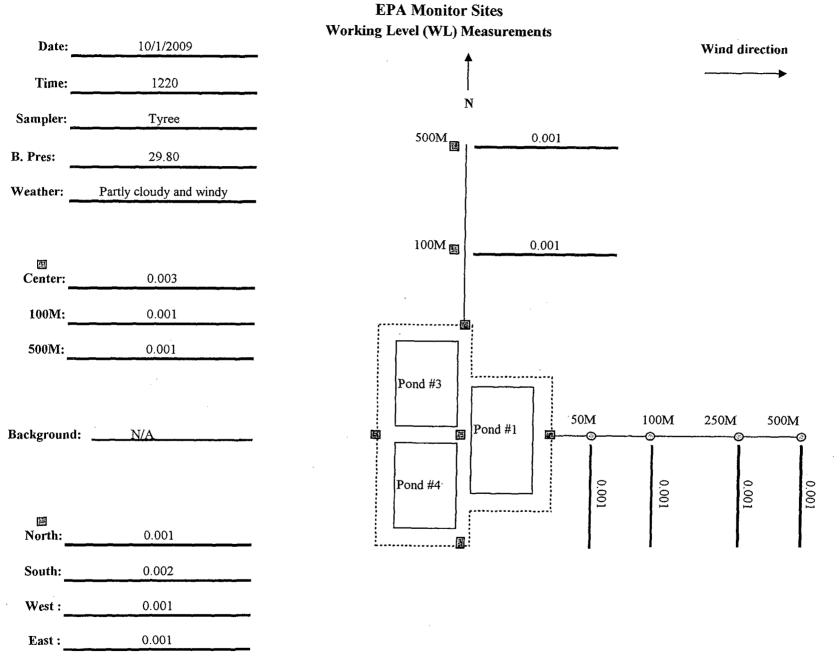
9/24/2009

Sampler: Tyree

Sample Time Count Time

AC# 2 Galibration 5.0

AC# 2 ation 5.0 LPM Background Counter EF (DPM/CPM)


1.33 CPM 1.96

Location	Time On	Time Off	Count Start	Count Stop	Total Count	3 min. BKG	СРМ	Elapsed Time	Time Factor	Air Volume	Working Level Concentration
Background	12:22	12:27	13:43	13:46	8	4	1	77	81	25	0.001
(North 500 Meters)		··									
North 100 meters	12:30	12:35	13:47	13:50	11	4	2	73	85	25	0.002
South 500 meters	12:38	12:43	13:51	13:54	8	4	1	69	92	25	0.001
South 250 meters	12:47	12:52	13:55	13:58	17	4	4	64	102	25	0.003
South 100 meters	12:54	12:59	13:59	14:02	9	4	2	61	108	25	0.001
South 50 meters	13:00	13:05	14:22	14:25	8	4	1	78	78	25	0.001
Pond-South fence	13:06	13:11	14:26	14:29	6	4	1	76	82	25	0.001
Pond-West fence	13:13	13:18	14:30	14:33	7	4	1	73	85	25	0.001
Pond-North fence	13:21	13:26	14:34	14:37	12	4	3	69	92	25	0.002
Pond-Center	13:30	13:35	14:38	14:41	9	4	2	64	102	25	0.001
Pond-East fence	14:03	14:08	14:54	14:57	10	4	2	47	136	25	0.001
East 500 meters	14:12	. 14:17	15:01	15:04	12	4	3	45	140	2'5	0.002

Comments:

	Working Level	Concentration=(CPM	X EF)/(Vol X TF	;)
Instrument:	2000 (136919)		Source:	616-88
Detector:	SAC R5 (RN012488)		Source DPM:	7350
Calibration Date:	5/4/2009		CPM:	3742
			Efficiency:	51%
			DPM/CPM	1.96

Barometric Pressure: 30.09 Wind: Breezy Wind direction: North Weather Conditions: Partly Cloudy Plant Operations: N/A Pond Sprayers: off

هم سد

Pond Radon Test- Week Twelve

Radon Daughters

10/1/2009

5 min.

3 min.

Sampler: Tyree

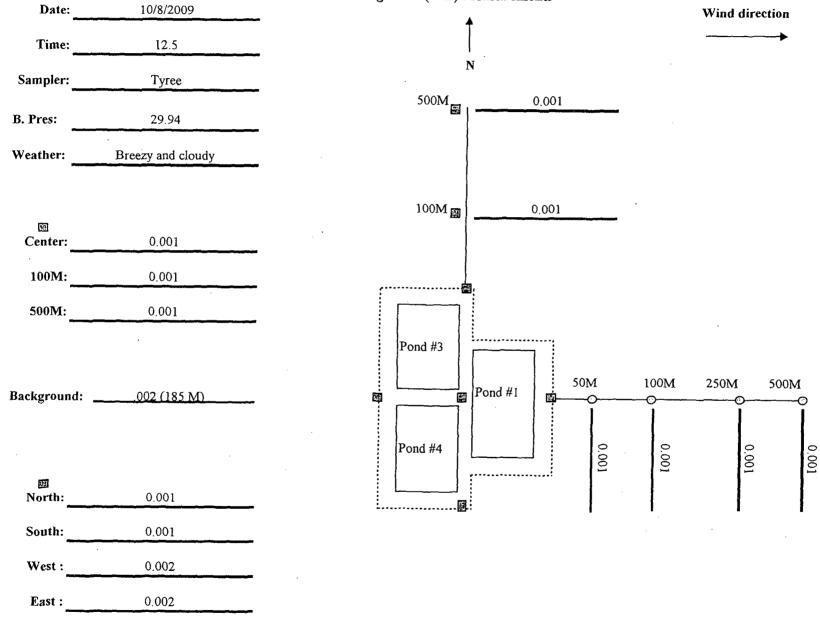
Sample Time Count Time

SKC A Calibration 4.6

LPM

Background Counter EF (DPM/CPM)

0.67 CPM 1.98


Location	Time On	Time Off	Count Start	Count Stop	Total Count	3 min. BKG	СРМ	Elapsed Time	Time Factor	Air Volume	Working Level Concentration
Center of Pond	12:19	12:24	13:46	13:49	10	2	3	83	71	23	0.003
Pond North fence	12:28	12:33	13:50	13:53	5	2	1	78	78	23	0.001
Pond West fence	12:35	12:40	13:54	13:57	4	2	1	75	83	23	0.001
Pond South fence	12:42	12:47	13:58	14:01	9	2	2	72	87	23	0.002
Pond East fence	12:49	12:54	14:02	14:05	5	2	1	69	92	23	0.001
East 50 meters	12:57	13:02	14:06	14:09	5	2	1	65	100	23	0.001
East 100 meters	13:04	13:09	14:14	14:17	5	2	1	66	98	23	0.001
East 250 meters	13:12	13:17	14:18	14:21	4	2	1	62	106	23	0.001
East 500 meters	13:21	13:26	14:22	14:25	5	2	1	57	116	23	0.001
North 100 meters	13:29	13:34	14:26	14:29	5	2	1	53	124	23	0.001
North 500 meters	13:37	13:42	14:30	14:33	6	2	1	49	132	23	0.001

Comments:

Working Level Concentration	on=(CPM X EF)/(Vol X TF	·)
Instrument: 2000 (136919)	Source:	616-88
Detector: SAC R5 (RN012488)	Source DPM:	7350
Calibration Date: 5/4/2009	CPM:	3703
	Efficiency:	50%
	DPM/CPM	1.98

Barometric Pressure: 29.77 Wind: Windy Wind direction: West Weather Conditions: Partly Cloudy Plant Operations: Transferring DF-6 to eluation tank Pond Sprayers: off

EPA Monitor Sites Working Level (WL) Measurements

Pond Radon Test- Week Thirteen

Radon Daughters

5 min.

3 min.

10/8/2009

SKC A

Sampler: Tyree

Sample Time Count Time

Calibration 4.6

LPM

Background Counter EF (DPM/CPM)

1.00 CPM 1.99

			Count	Count	Total	3 min.		Elapsed	Time	Air	Working Level
Location	Time On	Time Off	Start	Stop	Count	BKG	СРМ	Time	Factor	Volume	Concentration
Background (185 m. west)	12:42	12:47	14:11	14:14	7	3	1	85	68	23	0.002
Center of Pond	12:55	13:00	14:16	14:19	7	3	1	77	81	23	0.001
Pond North fence	13:04	13:09	14:20	14:23	7	3	1	72	87	23	0.001
Pond West fence	13:13	13:18	14:24	14:27	9	3	2	67	96	23	0.002
Pond South fence	13:25	13:30	14:28	14:31	5	3	1	59	112	23	0.001
Pond East Fence	13:35	13:40	14:32	14:35	11	3	3	53	124	23	0.002
North 100 meters	13:46	13:51	14:36	14:39	6	3	1	46	138	23	0.001
North 500 meters	13:58	14:03	14:47	14:50	7	3	1	45	140	23	0.001
East 50 meters	14:23	14:28	15:13	15:16	6	3	. 1	46	138	23	0.001
East 100 meters	14:32	14:37	15:21	15:24	7	3	1	45	140	23	0.001
East 250 meters	14:40	14:45	15:29	15:32	8	3	2	45	140	23	0.001
East 500 meters	14:49	14:54	15:38	15:41	6	3	1	45	140	23	0.001
											. .

Comments:

	Working Level Concentrati	on=(CPM X EF)/(Vol X TF)
Instrument:	2000 (136919)	Source:	616-88
Detector:	SAC R5 (RN012488)	Source DPM:	7350
Calibration Date:	5/4/2009	CPM:	3697
		Efficiency:	50%
		DPM/CPM	1.99

Barometric Pressure: 29.94 Wind: Breezy Wind direction: West Weather Conditions: Cloudy Plant Operations: Belt filter running Stripping IX-8 Pond Sprayers Off

APPENDIX B

B-1 Description of Monitoring Equipment

- SKC Universal Sampling Pump Operating Instructions
- Landauer Radtrak® Long-Term Monitoring Specifications Sheet

B-2 Description of Sampling Procedures

- Section 4, Air Monitoring Program, Crow Butte Uranium Project Environmental Manual
- Radon Daughter (Modified Kusnetz) Sampling and Analysis Procedure

B-3 Description of Calibration Methods and Calibration Sheets

- Section 10, Radiological Laboratory Programs, Crow Butte Uranium Project Health Physics Manual
- SKC Pump Calibration Records

Appendix B-1 Description of Monitoring Equipment

- SKC Universal Sampling Pump Operating Instructions
- Landauer Radtrak® Long-Term Monitoring Specifications Sheet

Operating Instructions Universal Sample Pump Catalog No. 224-PCXR8

SKC Inc. 863 Valley View Road Eighty Four, PA 15330

Form #37713 Rev 0804

Performance Profile

Flow Range:	. 1000 to 5000 ml/min (UL Listed model) (5 to 500 ml/min requires adjustable low flow holder)
Weight:	. 33 oz (936 gm)
Dimensions:	. 5.1 x 4.7 x 1.9 in (13 x 11.9 x 4.8 cm)
Compensation Range:	. 1000 to 2500 ml/min at 40 inches water back pressure 3000 ml/min at 35 inches water back pressure

4000 ml/min at 20 inches water back pressure 5000 ml/min at 10 inches water back pressure

Typical Back Pressure of Sampling Media (inches water)

Flow Rate (L/min)	1.0	1.5	2.0	2.5	3.0
Filter/Pore Size (µm)		公 第二世代			18 No. 19
25-mm MCE, 0.8	6	9	12	15	18
25-mm MCE, 0.45	14	22	28	35	40
37-mm MCE, 0.8	2	3	4	5	6
37-mm PVC, 5.0	1	1	2	2	2.5

Compare the information in this table to pump compensation range to determine appropriate applications.

Flow Control:	Holds constant flow to \pm 5% of the set point
Run Time:	Battery: 8 hrs minimum at 4000 ml/min and 20 inches water back pressure Dependent on media used. See Table 1. Mains Adapter: 9999 minutes (6.8 days). Pump will shut off as run time cannot exceed timer range (see Time Display on page 3).
Flow Indicator:	Built-in rotameter with 250-ml division; scale marked at 1, 2, 3, 4, and 5 L/min
Power Supply:	6.0-V plug-in NiCad battery pack, rechargeable, 2.0-Ah capacity
Charging Time:	\leq 6 hrs with PowerFlex charger
Intrinsically Sate:	UL Listed for: Class I, Division 1 and 2, Groups A, B, C, D; Class II, Divi- sion 1 and 2, Groups E, F, G; and Class III. Temperature Code T3C. MSHA-approved models available. Contact SKC. ATEX-approved models available. Contact SKC.
Temperature:	.Operating:4 F to 113 F (-20 C to 45 C)
	Storage:
	Charging: 41 F to 113 F (5 C to 45 C)
() Protec	t sample pump from weather when in use outdoors.
Operating Humidity:	0 to 95% Relative
Multiple-tube Sampling:	Built-in constant pressure regulator allows user to take up to four simultaneous tube samples at different flow rates up to 500 ml/min each using optional adjustable low flow holder.
RFI/EMI Shielding:	Complies with requirements of EN 55022, FCC Part 15 Ctass B, EN 50082-1; frequency range of the radiated susceptibility test was 27 MHz to 1000 MHz.
Flow and Low Battery Fault:	If the pump is unable to compensate due to excessive back pressure or if a low battery condition exists, the pump enters fault. During fault, the pump shuts down, the LCD indicates a flow or low battery fault, timing functions pause, and time display is retained.

)

2

Battery Test:	LCD shows battery condition prior to sampling.
Time Display:	LCD shows sampler run time in minutes for sampling period elapsed time, pump run time, or total elapsed time including delayed start time. 1 to 9999 minutes (6.8 days). Pump will shut off at 9999 minutes. To reset, restart the pump.
Timing Accuracy:	. ± 0.05% (± 45 seconds per day)
Timed Shutdown:	Allows user to select minutes of operation before automatic shutdown. Timed shutdown maximum is 9999 minutes (6.8 days).
Delay On:	. Allows user to select minutes to delay test up to 9999 minutes (6.8 days).
Intermittent Sampling:	. Programmable to allow user to extend short-term samples over an extended period of time to meet Time-Weighted Average (TWA) requirements with a reduced number of samples. Elapsed time maximum is 9999 minutes (6.8 days), at which time the sample pump shuts down.

(CE marked

UL Listed See UL Certificate on page 30

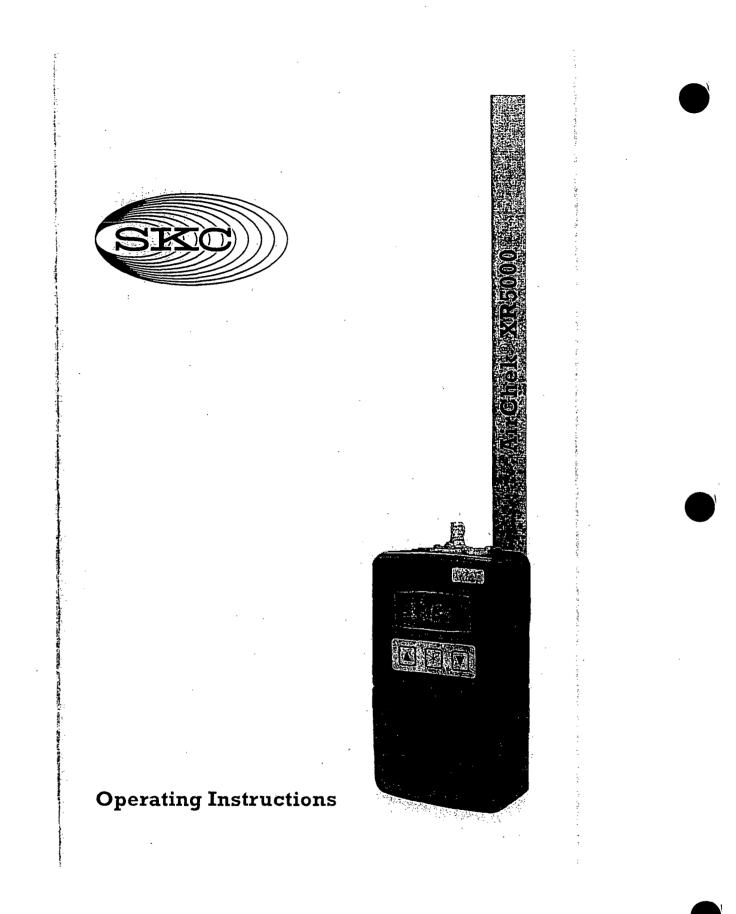
自) ATEX-approved models available

(B) MSHA-approved models available

Table 1. Pump Run Time in Hours with NiCad Battery Following are typical run times achieved when using a fully charged Nickel-Cadmium (NiCad) battery pack. Data is sorted by type of sample media. All run times are listed in hours. Results obtained using a new pump and new fully charged battery. Pump performance may vary.

Mixed Cellulose (MCE) filter, 0.8-µm pore size

	Filter Diameter				
Flow Rate (L/min)	37 mm	25 mm			
2.0	24.1	16.3			
2.5	21.4	14.5			
3.0	19.1	11.0			
3.5	17.8	10.7			
4.0	15.4	**			
4.5	14.6	**			


Polyvinyl Chloride (PVC) filter, 5.0-um pore size

	Filter Dlameter				
Flow Rate (L/min)	37 mm	25 mm			
2.0	31.6	21.7			
2.5	27.7	24.0			
3.0	27.0	18.6			
3.5	22.8	16.4			
4.0	19.4	16.2			
4.5	19.0	14.6			

** Filter back pressure exceeded pump capability during testing.

Note

Increases in back pressure during sampling due to build up of sample on the filter can decrease battery life.

Flow Range:	1000 to 5000 ml/min (5 to 500 ml/min requires optional low flow adapter kit)
Compensation Range:	5000 ml/min at 10 inches water back pressure 4000 ml/min at 20 inches water back pressure
	2000 ml/min at 50 inches water back pressure

Typical Back Pressure of Sampling Media (inches water)

Flow Rate (L/min)	1:0	1.5	2.0	2.5	3.0	3.5	4.0	5.0
Filter/Pore Size (µm)	1. X	1972 A	T					
25-mm MCE/0.8	6	9	12	15	18	21	25	31
25-mm MCE/0.45	14	22	28	35	40	44	50	63
37-mm MCE/0.8	2	3	4	5	6	7	9	11
37-mm PVC/5.0	1	1	2	2	2.5	3	3	4
37-mm, polycarbonate/0.45	4	6	8	10	12	15	17	21
25-mm MCE/0.45 microvacuum	21	.31	40	48	59	69	79	100
37-mm Teflon/1.0	7.5	11	14.5	19	22	26	30	40

Compare the information in this table to pump compensation range to determine appropriate applications.

Flow Compensation

System:	Patented* isothermal closed loop flow sensor				
Accuracies:	Timing: Flow Rate:	1 min/mo at 25 C ± 5% of set-point after calibration to desired flow			
Battery Charge Level Indicator:	Icon displays on LCD at full, mid, low charge, imminent low battery fault, and low battery fault.				
Temperature Range:	Operating: Charging: Storage:	32 to 113 F (0 to 45 C) 32 to 113 F (0 to 45 C) -4 to 95 F (-20 to 35 C)			
Typical Run Time [†] :					

XR5000 Madel	2 L/min	5 L/min
High-power Li-lon	40 hrs	22 hrs
Standard Li-lon	20 hrs	11 hrs
Alkaline	18 hrs	8 hrs

† Using a 37-mm 0.8-µm MCE liller

For extended run times, the pump may be operated while attached to the charger.

 Timer Display Range:
 1 to 9999 minutes (6.8 days). If run time exceeds 6.8 days, timer display rolls over.

 Flow Fault:
 If pump is unable to compensate for > 15 seconds due to

excessive back pressure, the pump stops and holds run time display. Auto-restart is attempted every 15 seconds up to 5 times.

Low Battery Fault:	15 seconds to sleep		
Auto-off:	5 minutes of inactivity		
Battery Pack: (model dependent)	High-power Li-Ion (4 cell), rechargeable, 7.4 V, 4.4-Ah capacity, 32.6 Wh (Cat. No. P85004 for UL Listed pump) or Standard Li-Ion (2 cell), rechargeable, 7.4 V, 2.2-Ah capacity, 16.3 Wh (Cat. No. P85002 for UL Listed pump)		
	or Alkaline (6 cell), disposable, size AA, 1,5 V (nominal), Cat, No. P75715 - not UL Listed for intrinsic safety		
Battery Recharge Time: with SKC-approved chargers	Standard Li-Ion (2 cell): approximately 4 hrs High-power Li-Ion (4 cell): approximately 8 hrs		
Size:	High-power Li-Ion and alkaline models: 5.5 x 3 x 2.3 in (14 x 7.6 x 5.8 cm) Standard Li-Ion model: 4.3 x 3 x 2.3 in (10.9 x 7.6 x 5.8 cm)		
Weight:	High-power Li-lon: 21 oz (0.6 kg) Standard Li-lon model: 16 oz (0.45 kg) Alkaline model: 17 oz (0.48 kg)		
Case:	Anti-static plastic		
RFI/EMI Shielding:	CE marked for RFI/EMI protection		
Approvals:	«Ֆուտոս for use in hazardous locations. Models that are UL Listed for intrinsic safety contain the «Յուտոս logo on the label. These models must be used with battery pack Cat. No. P85004 or P85002 to maintain the UL intrinsic safety listing.		

Performance Profile

) Cautions:

- For safe operation in hazardous locations, ensure the pump label contains the (0) ware logo and the battery pack label contains Cat.
 No. P85004 or P85002. Use of any other battery pack (including alkaline) or device to power the pump voids the UL Listing for intrinsic safety.
 - Use only the charger and battery packs designed for the AirChek XR5000 pump to ensure reliable performance. Failure to do so voids any warranty.
 - Use only SKC-approved parts to ensure reliable performance and to maintain the UL Listing for intrinsic safety. Failure to do so voids any warranty.

* U.S. Patent No. 5.892,160

[·] Failure to follow warnings and cautions voids any warranty.

LANDAUER®

Radtrak[®] Long-Term Radon Monitoring

Radtrak is an alpha-track radon gas detector designed to monitor radon exposure for three months to one year to obtain a long-term average concentration over time. Landauer service includes the Radtrak detector, comprehensive analysis, and a confidential report of the findings. Radtrak can be packaged for indoor or outdoor area monitoring or personnel monitoring.

Landauer is the leader and pioneer in radon gas detection and monitoring service. Since 1954, our scientists have been involved with the development of radiation monitoring services for nuclear research centers and laboratories, hospitals, medical and dental offices, universities, and other industries where radiation might be present. This experience and technology have been incorporated into Landauer's highly accurate Radtrak radon detector using our exclusive Track-Etch[®] process. Radtrak radon detectors are used by the Environmental Protection Agency, the National Institutes of Health, the American Lung Association, and many other government and professional organizations.

Radtrak measures the average radon concentration at the location of the detector during the monitoring period. The alpha-track detector has, inside the plastic housing, a radiosensitive element that records alpha particle emissions (alpha tracks) from the natural radioactive decay of radon.

When the detector is returned to Landauer's laboratory, the alpha tracks are counted using computer-assisted image analysis equipment. The number of alpha tracks along with the deployment time period provides the basis for calculating the average radon concentration. The report with the radon gas measurement, reported in picocuries per liter of air (pCi/l), is mailed within seven to ten days after receipt of detector.

Thoron Proof Filter

Upon request, a detector can be fitted with a thoron proof filter that provides measurement of Rn 222 only.

Technical Specifications

- The radiosensitive element is a CR-39 (allyl diglycol carbonate) based, passive alpha-track detector.
- The CR-39 is enclosed in a plastic housing composed of electrically conducting material with filtered openings to permit diffusion of radon gas only.
- Minimum level of detection is 30 pCi/l days i.e., 0.33 pCi/l based on 90 days.
- Detectors, before, during or after exposure, should not be in locations that exceed a temperature of 160°F (70°C).
- Radtrak detectors are packaged in film-foil bags that meet Military specification MIL-B-131, Class 1 to prevent exposure prior to use.
- A metallic label is provided for each detector to seal the filtered openings following the exposure period to minimize subsequent exposure to radon during the return shipment to Landauer's laboratory.
- Each detector is identified by a unique serial number laser engraved on the CR-39, printed and bar coded on the outside of Radtrak, and the film-foil bag.

Indoor Use

Monitoring indoors requires placing the detector in an upright position on a flat surface, or it may be hung from a joist or ceiling with the detector's hanger strip included with the shipment. The U.S. Environmental Protection Agency recommends the detector be placed in the lowest lived-in level of the home. It should be placed in a room that is used regularly but not a kitchen or bathroom. States or other organizations may have differing recommendations. Contact your state agency if you have a question regarding placement.

Outdoor Use

For monitoring outdoors, the detector is fastened to the bottom of a clear plastic cup. The cup is then installed inside a protective canister that has been attached to a post or other location. The protective canisters are sold separately.

Personnel Monitoring

The personnel monitor comes with a clip that easily attaches to the detector and securely fastens to clothing.

For more information on radon, refer to the U.S. Environmental Protection Agency's publication "A Citizen's Guide to Radon" at http://www.epa.gov/iaq/ radon/pubs/citguide.html or contact your state department of health.

Appendix B-2 Description of Sampling Procedures

- Section 4, Air Monitoring Program, Crow Butte Uranium Project Environmental Manual
- Radon Daughter (Modified Kusnetz) Sampling and Analysis Procedure

4 AIR MONITORING PROGRAM

4.1 Introduction and Purpose

The environmental surveillance program includes routine monitoring and analysis of air samples within the permitted areas and surrounding environs to ensure compliance with federal, state, and company rules, regulations, policies and permits. The air monitoring programs are designed to provide maximum surveillance for environmental control and are based on many years of monitoring experience in conjunction with guidance and suggested practices from regulatory agencies. The following sections present a discussion of the environmental air monitoring programs including monitoring methodology and the types of sampling to be performed.

The environmental air monitoring program is based on the guidance provided in NRC Regulatory Guide 4.14, *Radiological Effluent and Environmental Monitoring at Uranium Mills*. There are two distinct phases of the environmental air monitoring programs.

4.1.1 Preoperational Air Monitoring

Preoperational monitoring is performed as a part of the site characterization process. Preoperational sampling establishes baseline air quality in the license area and the immediate vicinity, which provides the basis for comparing operational monitoring data. NRC recommends that at least 12 months of preoperational data be collected before operations begin. Operational monitoring must then be performed at the same locations as preoperational monitoring. Sampling locations are selected during site characterization based on a number of considerations including:

- Average meteorological conditions (e.g., wind speed, wind direction, atmospheric stability);
- Prevailing wind direction;
- Site boundaries nearest to sources of radioactive materials; Direction of the nearest occupiable structure; and
- Location of the estimated maximum concentrations of radioactive materials.

NRC guidance recommends preoperational air particulate and radon samples at a minimum of three locations at the site boundary. In addition, if there are any residences or occupiable structures within 10 km of the site, sampling is recommended at the

Document Title: Air Monitoring	Issue Date: 31 Jul 03	Page: 4-1	Revision Date: 17 Aug 09	Document #: Volume VI Chapter 4	
Program	<u>31 Jul 03</u>		17 Aug 09	Chapter 4	Ĺ

structure with the highest predicted airborne concentration. Sampling is also recommended at or near at least one structure where the predicted dose exceeds 5 percent of the standard contained in 40 CFR Part 190 (i.e., greater than 1.25 mrem per year to the whole body from all sources with exposure to radon gas and its daughters excepted). Finally, the guide recommends sampling at a remote location that represents background conditions.

Note that preoperational monitoring is performed as part of site licensing activities and is coordinated with NRC during these efforts. The monitoring recommended in Regulatory Guide 4.14 may be modified to meet site-specific requirements in consultation with the NRC staff.

4.1.2 Operational Air Monitoring

Operational monitoring is performed to ensure that the facility is being constructed and operated correctly. This is accomplished by comparing the operational monitoring data with preoperational data to determine whether operations are having an impact on air quality. During operational monitoring, operational data is analyzed and compared with preoperational data. NRC guidance recommends continuous air particulate and radon samples at the locations selected for preoperational monitoring.

In addition to air particulate and radon gas monitoring during operations, NRC also recommends that facilities perform stack sampling if yellowcake dryers are so equipped. The vacuum dryers installed at Crow Butte are zero emission dryers with no stack and therefore do not require this type of sampling.

In order to ensure reliable data, the air monitoring program specifies the following procedures that must be followed:

- Air particulate sampling is performed according to the instructions contained in Section 4.2. This air sampling determines the activity in ambient air of particulate radioactive material that could potentially be released by a uranium recovery facility during operations. Specifically, monitoring may be performed for natural uranium, thorium-230, radium-226, and lead-210. The specific list of analytes is determined during licensing by the NRC and is selected based on site-specific background characteristics.
- Monitoring for radon-222 is performed according to the instructions contained in Section 4.3. Radon gas is typically released by solution uranium mines at various

Document Title: Air MonitoringIssue Date:Program31 Jul 03	Revision Date: 17 Aug 09	Document #: Volume VI Chapter 4
---	-----------------------------	------------------------------------

CROW BUTTE URANIUM PROJECT ENVIRONMENTAL MANUAL Volume VI

stages in the process. Radon gas is ubiquitous in nature at varying concentrations, so accurate monitoring must be performed to determine any environmental impacts from operations.

4.1.3 Quality of Measurements

The accuracy of monitoring data is critical to ensure that the air monitoring program precisely reflects air quality in each phase of the program. Regulatory Guide 4.14 specifies the following lower limits of detection (LLD):

Radionuclides	LLD (μCi/ml) 1 x 10 ⁻¹⁶
Natural Uranium	1×10^{-16}
Thorium-230	1 x 10 ⁻¹⁶
Radium-226	1 x 10 ⁻¹⁶
Radon-222	2 x 10 ⁻¹⁰
Lead-210	2 x 10 ⁻¹⁵

4.2 Air Particulate Monitoring

Airborne particulate sampling is performed at the locations specified in the NRC License. The CBO License requires monitoring for at least 2 weeks of every month that the yellowcake dryer is in operation. However, CBO has instituted continuous monitoring at these sites as a best management practice.

The airborne particulates are collected on the inlet filter of a regulated vacuum pump on a Type A/E 47 mm glass fiber filter paper. The low volume air samplers employed are the Eberline RAS-1 system or equivalent that consists of a vacuum pump, an airflow regulator, a rotameter-type airflow indicator, and filter paper holder. The samplers are placed in protective enclosures that provide protection from the elements while allowing unimpeded sampling of the ambient air.

Clean filters are installed in the filter holder at the beginning of the sampling period. The pump flow rate is adjusted, if necessary and the required information (i.e., start time and date, flow rate, sampler name) are recorded on the Sampling Record. The filter replacement schedule is determined based on the dust loading at a particular location. In general, samplers can run for one to two weeks without a significant reduction in the flow rate due to dust loading. If sampling records indicate that dust loading at a particular

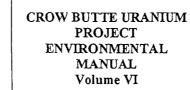
Document Title: Air Monitoring	Issue Date:	Page: 4-3	Revision Date:	Document #: Volume VI
Program	31 Jul 03	1450.10	17 Aug 09	Chapter 4

sampling location is affecting the flow rate, the filter replacement frequency may need to be increased.

As each filter is removed at the end of the sampling period, the filter should be folded in half with the exposed surface to the inside to retain the solid material deposited on the filter. It is important to ensure that the filter is not damaged during removal in order that particulate matter retained on the filter is not lost. The exposed filter is placed in a sample envelope that is stored in an appropriate container by sample location. The necessary information (i.e., stop time and date, flow rate, sampler name, comments) is recorded on the Sampling Record.

At the end of the calendar quarter, the composite filter samples are submitted to the contract laboratory for radiometric analysis using standard Chain of Custody Procedures. The filters are composited according to location. The composite samples are analyzed for the concentrations of natural uranium, radium-226, and lead-210. The actual volume of air filtered at each station for the quarter is also forwarded to the contract laboratory with the filters.

The flow rate on the RAS-1 pumps is calibrated at six-month intervals in order to ensure the accuracy of the volume of air sampled. The calibration is accomplished following the instructions contained in Volume IV, *Health Physics Manual*.


The results of air particulate monitoring are recorded in the environmental record system for use by the EHS Department staff to determine trends at particular locations and to analyze potential impacts from site operations. These results are also included in the Semiannual Radiological Effluent and Environmental Monitoring Report submitted to the NRC. The analytical results should be reviewed to ensure that NRC quality requirements discussed in Section 3.1.5 are met.

4.3 Radon Gas Monitoring

Radon-222 is monitored continuously at the environmental monitoring locations. Monitoring is performed using Landauer RadTrak detectors. These detectors are an alpha-track radon gas detector using Landauer's Track-Etch[®] process and are designed to monitor radon exposure for three months to one year. Landauer service includes the RadTrak detector and a comprehensive analysis.

The RadTrak radon detectors are supplied in aluminum bags to prevent radon exposure before deployment. The detectors should not be stored or deployed in any area in which the temperature may exceed 160°F. There is no low temperature limit.

Document Title: Air MonitoringIssue Date:Program31 Jul 03	Revision Date: 17 Aug 09	Document #: Volume VI Chapter 4
---	-----------------------------	------------------------------------

After opening the aluminum bag to remove and deploy the detector, the Data Sheet provided with the detectors must be filled in with the serial number, date installed and the location information. Remove the top of the detector field canister, located at the air monitor station, and place the detector in the canister facing down. The canister may be placed at any desired height, but is typically 3 to 6 feet from the ground to prevent undue influence from radon emanation from the soil at the sample location. It is advisable to place the canister in a location that is safe from tampering or animal damage. When the detector is in place, replace the canister top.

At the end of the monitoring period, fill in the removal date on the Data Sheet for each detector as it is removed from the detector canister. Place a gold adhesive seal, which is provided with the shipment, over all of the holes on the top of the detector. This will effectively stop the monitoring period. Any unusual conditions encountered should also be noted on the Data Sheet. Replace the detector that has been removed with a new detector.

Stack the exposed detectors and return them to the aluminum bag for shipment back to Landauer. Fold the open end of the aluminum bag several times and seal with tape or staples. If the aluminum bag is misplaced, the cups may be wrapped in aluminum foil for shipment. Include a copy of the Data Sheet with the detectors when they are returned to Landauer for analysis.

The results of radon monitoring are recorded in the environmental record system for use by the EHS Department staff to determine trends at particular locations and to analyze potential impacts from site operations. These results are also included in the Semiannual Radiological Effluent and Environmental Monitoring Report submitted to the NRC. The analytical results should be reviewed to ensure that NRC quality requirements are met.

Note that Landauer does not provide the LLD on the analytical result report. The LLD for Track-Etch® detectors is a function of the exposure time and the area of the cup that is analyzed by Landauer. The LLD should be determined in consultation with Landauer before monitoring is performed. If the LLD is above the NRC requirements from Regulatory Guide 4.14, it may be reduced by either employing a longer sampling time or requesting that Landauer analyze a larger portion of the Track-Etch[®] cup.

Document Title: Air Monitoring	Issue Date:	5 45	Revision Date:	Document #: Volume VI
Program	31 Jul 03	Page: 4-5	17 Aug 09	Chapter 4

Sampling and Analysis Procedure

1.1 Background

Radon (222 Rn) is a noble gas. As such, it is not effectively trapped or retained by filters. However, as radon decays, several of its radioactive daughters are alpha-emitting particles. These radioactive particles may be filtered using normal particulate filtering techniques and counted for alpha activity. When counting for radon daughters, the airborne concentration is referred to as a working level (WL). A working level is defined as any combination of shortlived radon daughters (218 Po, 214 Pb, 214 Bi and 214 Po), without regard to equilibrium, which will result in the emission of 1.3 x 10⁵ MeV of alpha energy per liter of air. One WL is also defined as the potential alpha energy present in a liter of air containing 100 pCi each of the short-lived radon daughters.

1.2 Modified Kusnetz Method

The Modified Kusnetz Method involves obtaining a sample with a low flow sampler (such as a breathing zone sampler) and analyzing the gross alpha contamination deposited on the filter after a specified decay time. A correction factor is applied based upon the decay time that allows accurate determination of the radon daughter concentration based on the radon decay scheme. The Modified Kusnetz method requires the following equipment:

- A battery powered pump with an airflow rate meter (i.e., rotometer) calibrated for a flow rate of 2 liters per minute (LPM). A breathing zone (lapel) sampler (0 to 5 lpm) such as a GilAir or equivalent is typically used;
- Filter holder with cap cover to protect filter before and after sampling. If caps are not available, a zip lock plastic bag or other suitable container may be used.

NOTE: Do not place more than one filter holder in a bag.

• Gelman Type A/E glass fiber filter rated at 99.98% efficient, or 0.45-micron membrane filter.

NOTE: The pump must be calibrated to the type of filter used.

- Sample holding envelopes, when applicable;
- Alpha scintillation detector and scaler/ratemeter, or equivalent.
- Check Source: Thorium-230 with a known activity to be used as an alpha source for instrument reliability check.

1

• Data Recording Form.

1.3 <u>Modified Kusnetz Prerequisites</u>

Pump Operability: Inspect the sampling pump for operability i.e., the battery is fully charged, the sampler has a current calibration, and there are no tubing-to-filter holder connection or tubing-to-pump leaks.

Leak Test: Assemble the pump tubing and filter holder. Turn on the pump and observe the flow rate on the flow rate meter. The air flow rate with the filter in place should be the same as the flow rate indicated on the calibration tag. If it is not, adjust the flow rate until the correct rate is obtained. A leak test may be performed by placing the palm of the hand over the filter holder (*MAKE SURE the hand or glove is clean*) for about 5 seconds and observe the flowrate. It should drop to zero. If it doesn't, leakage is indicated. Check the pump to tubing connection, the tubing, and the tubing to filter holder connection. Repeat the leak test. If leakage is still indicated use a different piece of tubing and repeat the test.

Filters: Make sure the filter holders have filters in them and are capped or placed in individual containers. Use a marking pen to note sample location on the container.

Data Recording Forms: Make sure you have an appropriate radon daughter sampling form.

1.4 Modified Kusnetz Sampling Procedure

Place filter holder with clean filter installed onto the end of the plastic tubing.

Turn the pump on and record the start time and the sample location on the sampling form.

Collect a 5 minute air sample. Turn the pump off and record the end time and any unusual conditions on the sampling form.

Remove the filter holder with the sample from the tubing, record cap number on sampling form or place sample in a suitable container marked with the sample location.

Proceed to the next sample location and repeat sampling procedure.

1.5.1 Modified Kusnetz Sample Analysis

Radon daughter samples are analyzed using the Modified Kusnetz method. Samples are collected on fiberglass or membrane filters using a lapel sampler or equivalent pump pulling a minimum of 2 liters per minute. Samples are collected for exactly five minutes, resulting in a 10 liter sample.

The sample filter is allowed to decay between 40 and 90 minutes after the end of collection before counting. After 40 minutes, only alpha particles from the decay of Po-214 are counted because virtually all of the Po-218 (3.05 minute half-life) has decayed.

The sample is counted with a scaler rate meter and an alpha scintillation detector at a count time determined by the RSO as adequate to meet the LLD requirements of 0.03 WL. The resulting gross counts are divided by the count time to arrive at a count rate (cpm).

Working levels are derived by dividing the count rate, minus background, by the product of the counter efficiency, the volume of air sampled, and the time factor. Calculation is according to the following formula:

Working Level (WL) =		=	Sample cpm - background cpm			
			(Eff) (Vol) (TF)			
where:	cpm	=	Counts per minute (Sample – background)			
	Eff		Instrument counting efficiency			
	Vol	=	Total air volume pumped through filter			
		. •	(flow rate in liters x sample time in minutes)			
	TF	==	Time factor			

The time factor (TF) is dependent on the time elapsed between end of sampling and the beginning of counting. These time factors are determined as shown in Table 1 and should be based on the midpoint of the elapsed time between sample collection and the time in counting. The time factor is based on the assumption that equilibrium existed between Po-218, Pb-214, and Bi-214 at the time of sampling. The time factor relates dpm per liter of air from 40 to 90 minutes after sampling to the decay activity that would be present from an initial concentration of 1 WL.

3

Table 1

Modified Kusnetz Time Factors

Minutes	Factor	Minutes	Factor	Minutes	Factor
40	150	57	116	74	84
41	148	58	114	75	83
42	146	59	112	76	82
43	144	60	110	77	81
44	142	61	108	78	78
45	140	62	106	79	76
46	138	63	104	80	75
47	136	64	102	81	74
48	134	65	100	82	73
49	132	66	98	83	71
50	130	67	96	84	69
51	128	68	94	85	68
52	126	69	92	86	66
53	124	70	90	87	65
54	122	71	89	88	63
55	120 ,	72	87	89	61
56	118	73	85	90	60

4

Appendix B-3 Description of Calibration Methods and Calibration Sheets

- Section 10, Radiological Laboratory Programs, Crow Butte Uranium Project Health Physics Manual
- SKC Pump Calibration Records

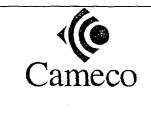
10 RADIOLOGICAL LABORATORY PROGRAMS

10.1 Purpose

Crow Butte Operation (CBO) uses various types of field survey and laboratory counting instruments to determine concentrations of radioactive material and radiation levels. These surveys are conducted in order to meet the requirements contained in 10 CFR Part 20. This chapter sets forth the requirements and instructions for operating these survey and counting systems and for performing routine radiological instrument checks and calibrations to ensure that instrument indications are accurate. This chapter also contains instructions for ensuring that samplers used to determine concentrations of radioactive material in air are functioning properly.

10.2 Definitions

Definitions of terms used in this section are found in the Glossary contained in Appendix A.


10.3 Instrument Calibration

10.3.1 Vendor Calibration

The manufacturer or a qualified accredited vendor shall calibrate portable survey instruments, counter/scalers, mass flow meters and/or dry cell calibrators, and calibration sources. Calibration will be performed as recommended in ANSI N323 and ANSI N323A. The ANSI standard requires that radiation detection instruments be performance tested on an annual basis to verify that they continue to meet operational and design requirements. Instruments must be tested for range, sensitivity, linearity, detection limit, and response to overload. The specific calibration requirements for various types of instrument are given in the following sections.

10.3.1.1 Linear and Digital Readout Instruments

	·····	·····	· · · · · · · · · · · · · · · · · · ·	······································
Document Title: Radiological	Issue Date: -	D 101	Revision Date:	Document # Volume IV
Laboratory Programs	19 May 03	Page: 10-1	22 Sep 09	Chapter 10

Linear readout instruments with a single calibration control for all scales shall be adjusted at the point recommended by the manufacturer. Instruments with calibration controls for each scale must be adjusted on all scales. After adjustment, the instrument must be checked near the end points (approximately 20% and 80% of full scale).

10.3.1.2 Logarithmic Readout Instruments

Logarithmic readout instruments normally have two or more adjustments. The instrument must be adjusted for each scale as recommended by the manufacturer. After adjustment, the instrument must be checked at a minimum of one point on each decade.

10.3.1.3 Surface Contamination Measurement Instruments

Alpha and beta-gamma detection instruments usually consist of a count rate meter and a separate detector. The electronics and the detector may be calibrated together or separately. The detector should be calibrated with the radionuclide to be detected, if possible, or with radionuclides of similar energies. When the instrument is calibrated as an integral unit, a minimum of one point on each scale is calibrated up to approximately 6×10^4 dpm/100 cm². When calibrated separately, the count rate meter is calibrated with an electronic pulser. Exchange of detectors is allowed if the response to a calibrated check source is within the range of acceptable counts for the original probe and check source as discussed in Section 10.4.1.2.

10.3.1.4 Radioactive Calibration Sources

Calibration sources that are used to determine instrument operating parameters such as high voltage setting, reliability factor, and efficiency must be calibrated annually by the manufacturer. Depending on the half-life of the radionuclide used for the source, decay correction may also be necessary during use to ensure accuracy. Decay correction of sources is discussed in further detail in Section 10.4.2.6.

10.3.1.5 Calibration Records

The calibration vendor shall provide a record of all calibration, maintenance, repair, or modification. Calibration records will be filed with all previous records for the same instrument. In addition, each instrument will be labeled with the following information:

Document Title: Radiological	Issue Date:	D 100	Revision Date:	Document # Volume IV
Laboratory Programs	19 May 03	Page: 10-2	22 Sep 09	Chapter 10

CROW BUTTE URANIUM PROJECT HEALTH PHYSICS MANUAL Volume IV

- Date of most recent calibration;
- Initials of calibrator;
- Date that primary calibration is again required;
- Special use or limitations (if applicable);
- Serial number of the instrument.

10.3.1.6 Calibration Frequency

Calibration frequency is annual or at the frequency recommended by the manufacturer, whichever is more frequent. Where instruments are subjected to extreme operational conditions, hard usage, multi-shift use, or corrosive environments, the RSO should consider increasing the calibration frequency. The calibration vendor should provide the as-found calibration condition for each instrument. If greater than 10% of the instruments are out of calibration when received by the calibration vendor, consideration should be given to increasing the calibration frequency.

10.3.2 On-Site Calibration

On site calibration of air samplers is performed using procedures found in Section 10.6. Regulated air samplers (Eberline RAS-1 or equivalent) and high volume air samplers are calibrated semiannually or at the manufacturer's recommended frequency, whichever is more frequent. Breathing zone samplers are calibrated daily during use. With the exception of breathing zone samplers, air samplers should be labeled with the date of calibration, correction factors (if applicable), and initials of the calibrator. This information is recorded on the daily calibration sheet for the breathing zone samplers.

10.4 Functional Tests

Functional tests are performed at the mine site to ensure that an instrument is acceptable for use. The functional tests are checks that are often qualitative and consider the physical condition of the instrument (e.g., battery condition) and response of the instrument to a radioactive source. These checks are compared to the known response of the instrument after the most recent calibration to ensure instrument accuracy.

10.4.1 Initial Instrument Checks

Document Title: Radiological	Issue Date:	Page: 10-3	Revision Date:	Document # Volume IV
Laboratory Programs	19 May 03		22 Sep 09	Chapter 10

CROW BUTTE URANIUM PROJECT HEALTH PHYSICS MANUAL Volume IV

Initial instrument checks are performed initially after receipt of the instrument from the calibration vendor. The results of these initial instrument checks are recorded and are used to ensure that a system continues to operate in as-received condition until the next scheduled calibration. These functional tests are also performed after any repair or if the response of the instrument to a known source is questioned.

10.4.1.1 Instrument Reliability Factor

The instrument reliability factor (RF) will indicate whether an instrument is operating properly within the statistical limits of counter reliability. The reliability factor is determined initially after receiving the appropriate type of instrument from the calibration vendor. The reliability factor should also be determined for an instrument that has not been in service for an extended period or for an instrument that has a daily source check count that falls outside the acceptable range. Determine the reliability factor as follows:

- Perform ten 1-minute counts of a source of known activity. Record the total counts for each measurement (C₁ through C₁₀).
- Determine the average (C_{ave}) of the ten 1-minute counts:

$$C_{ave} = \frac{(C_1 + C_2 + \dots C_{10})}{10} \left[\begin{array}{c} \text{or } \underline{\Sigma C} \\ n \end{array} \right]$$

• Calculate the sum of the squares (SS) as follows:

Subtract the average counts (C_{ave}) from each of the ten measurements and square each difference. Add together the ten results (each will be a positive number).

SS =
$$(C_1 - C_{ave})^2 + (C_2 - C_{ave})^2 + ... (C_{10} - C_{ave})^2$$

Document Title: Radiological	Issue Date:	D 10 4	Revision Date:	Document # Volume IV
Laboratory Programs	19 May 03	Page: 10-4	22 Sep 09	Chapter 10

• Calculate the observed standard deviation (S_n):

$$Sn = \sqrt{\frac{SS}{n-1}}$$

Where: SS = Sum of the Squaresn = Number of Observations (10)

• Calculate the theoretical standard deviation (σ_n) :

$$\sigma_n = \sqrt{C_{ave}}$$

Where: $C_{ave} = Average source count rate$

• Calculate the resulting reliability factor (RF):

$$RF = \frac{\text{observed standard deviation}}{\text{theoretical standard deviation}} = \frac{S_n}{\sigma_n}$$

• The reliability factor should be between 0.64 and 1.22. This implies that the instrument is operating reliably. A reliability factor between 0.50 and 0.64 or 1.22 and 1.40 will be investigated by the RSO. A reliability factor less than 0.50 or greater than 1.40 is unsatisfactory and the instrument will be removed from service.

10.4.1.2 Acceptable Range

The acceptable range should be determined for an instrument each time that the reliability factor is determined as discussed in Section 10.4.1.1. The acceptable range will allow a quick determination that the daily source count performed in accordance with Section 10.4.2.6 for a specific instrument is within satisfactory limits. Note that the daily source count must be performed using the same calibrated source that was used to determine the reliability factor. Determine the acceptable range as follows:

Document Title: Radiological	Issue Date:	Page: 10-5	Revision Date:	Document # Volume IV
Laboratory Programs	19 May 03		22 Sep 09	Chapter 10
Educidity Trograms	12 11149 05		1 EE 000 05	onapter re

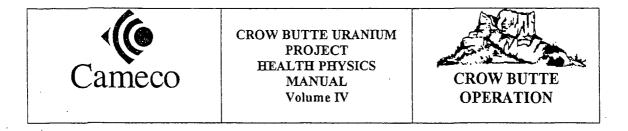
- Determine the average source counts (C_{ave}) for the source (see Section 10.4.1.1).
- Determine the lower limit of the acceptable range by multiplying the average source counts (C_{ave}) by 0.80.

Lower acceptable counts = $C_{ave} \times 0.80$

• Determine the upper limit of the acceptable range by multiplying the average source counts (C_{ave}) by 1.20.

Upper acceptable counts = $C_{ave} \times 1.20$

• Record the upper and lower limits of the acceptable range for the instrument on the appropriate instrument daily check form.


10.4.1.3 High Voltage Plateau

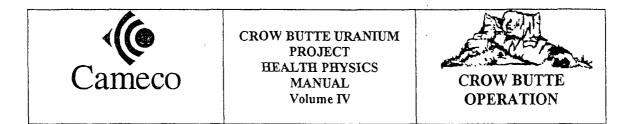
The instrument high voltage plateau will indicate whether or not the high voltage applied to the instrument detector is set at the appropriate point for maximum sensitivity with minimal influence from background radiation levels. The high voltage plateau is performed initially after receiving the appropriate type of instrument from the calibration vendor. The purpose of this high voltage plateau is to confirm the high voltage selected by the calibration vendor is appropriate. A secondary purpose is to ensure that the setting was not affected by shipment of the instrument. A high voltage plateau should also be performed on an instrument when a new detector is installed or when there is a noticeable degradation in instrument performance as indicated by the daily functional tests. Performance problems would include a decrease in the instrument efficiency over time or erratic results indicated by a daily source check count that falls outside the acceptable range determined in Section 10.4.1.2. Perform the high voltage plateau as follows:

NOTE: This section contains general instructions for performing a high voltage plateau. Consult the appropriate instrument technical manual for specific instructions.

- Check that the power is OFF and that the high voltage setting is set at 0 or a setting where no counts are detected. Ensure that the detector is connected to the instrument with the proper cable.
- Insert an appropriate calibrated radiation source in the sample counting position.
- Turn the power switch and the HV switch (if appropriate) to ON.

Document Title: Radiological	Issue Date:	Deers 10 6	Revision Date:	Document # Volume IV
Laboratory Programs	19 May 03	Page: 10-6	22 Sep 09	Chapter 10

- Slowly increase the high voltage until counts begin to register on the instrument. This is the counting threshold.
- Starting at the nearest even volt increment above the counting threshold, take one to two minute counts for every 0.5 HV increment until the counts start to increase. For each data point, plot the total counts (or count rate) versus the high voltage setting. (Smaller HV increments may be used if necessary to produce a smoother curve).
- Draw a smooth curve through the data points. A region should be indicated where very little change in count rate occurs with successive changes in the high voltage. This region is the high voltage plateau.
- Repeat the previous steps without a source in the counting position. Plot the data on the same graph that the source data was plotted on.
- The operating high voltage should be chosen to be in the middle of the high voltage plateau but not in the area of the background curve where source counts are increasing exponentially. The operating high voltage is chosen to optimize sensitivity and efficiency.
- The chosen high voltage should be compared with the high voltage setting selected by the calibration vendor. Any significant differences between these two high voltage settings should be investigated by the RSO.


10.4.1.4 Lower Limit of Detection (LLD)

The instrument lower limit of detection (LLD) is the smallest concentration of radioactive material that has a 95 percent probability of being detected. The LLD will determine whether the instrument and counting procedures are capable of detecting the presence of radioactive material below the allowable regulatory limits (i.e., allowable air concentrations or removable activity concentrations). The LLD is a determination of sensitivity for a measurement system and is not intended to be calculated for individual samples.

If the LLD is at or above the allowable limit, adjustments will be made to reduce it to an acceptable level. Typically, the counting system LLD should be 10 percent of the allowable limit. In no case should the LLD be above 50% of the allowable limit. Increasing the sample count time, increasing the sample volume, or reducing background levels will lower the LLD.

The LLD is determined initially after receiving the instrument from the calibration vendor. LLD should also be determined for an instrument that has not been in service for an extended period or for an instrument that has required repairs or a high voltage plateau.

Document Title: Radiological	Issue Date:	Dece: 10.7	Revision Date:	Document # Volume IV
Laboratory Programs	19 May 03	Page: 10-7	22 Sep 09	Chapter 10

Determine the LLD for air, liquid, or solid samples as follows:

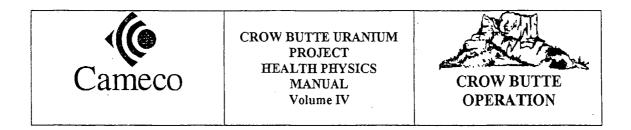
LLD

 $\frac{3 + (4.65 \text{ S}_{b})}{(3.7 \text{ x } 10^{4}) \text{ EVYe}^{-\lambda t}}$

Where:

LLD		Lower Limit of Detection (μ Ci/ml or μ Ci/g)
Sb	=	the standard deviation of the background count rate (cps)
S _b 3.7 х 10 ⁴	=	the number of disintegrations per second per μ Ci (dps/ μ Ci)
E	=	the counting efficiency (counts per disintegration)
V		sample volume (milliliters or gram)
Y	=	the fractional chemical yield (if applicable)
λ	=	Decay constant for the particular radioisotope
t	=	Time elapsed between sample collection and counting

For determining the LLD for radon daughters, do not use the factor to change units from dps to μ Ci (3.7 x 10⁴). Determine the LLD in dpm/liter. Then, use the correction factor discussed in NRC Regulatory Guide 8.30 to correct from dpm/liter to Working Levels (WL).


Determine the LLD for surface contamination samples as follows:

LLD = $\frac{3 + (4.65S_b)}{(3.7 \times 10^4) \text{ EAYe}^{-\lambda t}}$

Where:

LLD	=	Lower Limit of Detection (μ Ci per unit area)
S _b		the standard deviation of the background count rate (cpm)
S _b 3.7 x 10 ⁴	=	the number of disintegrations per second per μ Ci (dps/ μ Ci)
E	=	the counting efficiency (counts per disintegration)
А	=	area sampled, usually 100 cm ²
Y	æ	the fractional chemical yield (if applicable)
λ	=	Decay constant for the particular radioisotope
t	=	Time elapsed between sample collection and counting

Document Title: RadiologicalIssue DaLaboratory Programs19 May		Revision Date: 22 Sep 09	Document # Volume IV Chapter 10
---	--	-----------------------------	------------------------------------

The result in μ Ci/area may be converted to dpm using the conversion of 2.22 x 10⁶ dpm/ μ Ci. This equation may also be used to determine the LLD for direct measurements with a portable instrument (i.e., total surface contamination). If a rate meter is used, t = instrument response time (i.e., 1 to 10 seconds).

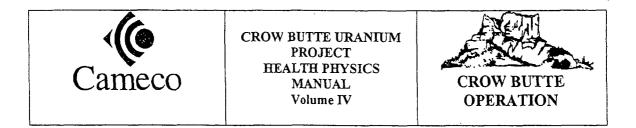
10.4.1.5 Minimum Detectable Concentration (MDC)

As noted in section 10.4.1.4, LLD is the determination of sensitivity for a measurement system and is not intended to be calculated for individual samples. Minimum detectable concentration (MDC) is a measurement of the detection sensitivity for a single sample based on sampling and counting parameters and should be calculated to ensure adequate sensitivity is achieved for each sample.

MDC is calculated using the following formula:

MDC =
$$2.71 + 3.29 (R_b \times T_g (1 + T_g/T_b))^{\frac{1}{2}}$$

E F K $T_s T_b$


Where:

MDC	=	Minimum Detectable Concentration (µCi/ml)
Rb	=	background count rate (counts per minute)
T _g T _b	=	sample count time (minutes)
Tb	=	background count time (minutes)
Е	=	the filter efficiency
F		sample flow rate (milliliters per minute)
K	=	calibration factor to convert counts per minute into activity,
		(cpm/dpm) X 2.22 E+6 dpm/µCi
Ts	=	duration of sample collection (minutes)

10.4.2 Instrument Checks

Regulatory Guide 8.30 specifies requirements for routine maintenance and calibration of radiological surveys instruments. Regulatory Guide 8.30 also references the standards

Document Title: Radiological	Issue Date: 19 May 03	Page: 10-9	Revision Date: 22 Sep 09	Document # Volume IV Chapter 10
Laboratory Programs	19 Way 05		22 Sep 09	

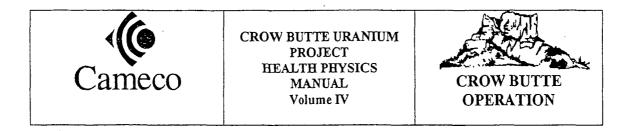
contained in ANSI N323-1978, Radiation Protection Instrumentation Test and Calibration. ANSI is in the process of a major revision of this Standard that will result in three separate Standards that apply to radiological instrumentation. The first revision, ANSI-N323A-1997, Radiation Protection Instrumentation Test and Calibration, Portable Survey Instruments, was incorporated in this Chapter. Where conflicts arise between Regulatory Guide 8.30 and the ANSI Standard, the Regulatory Guide recommendations have been followed.

10.4.2.1 Calibration Verification

Any survey or counting equipment in use shall have a current calibration sticker in place. Calibration stickers shall be checked as scheduled in Section 10.4.3 before use of these instruments. Calibration date and due date will be recorded on the appropriate form.

Air samplers shall have a current calibration sticker in place. Calibration stickers shall be checked each day before use of these regulated air samplers. Breathing zone samplers do not require calibration stickers if they are calibrated before each use. Calibration results will be recorded on the appropriate form.

10.4.2.2 Physical Check


Before each use, all instruments and samplers shall be inspected for physical condition. The inspection should include determining whether there are any loose or damaged knobs, buttons, cables, or connectors. Meter movements or displays should be inspected for damage. Instrument cases should be inspected for dents or corrosion. Probes should be inspected for damage such as punctured or deformed probes or probe windows.

An instrument that has any physical damage should not be placed in service. Repairs shall be made and documented.

10.4.2.3 Battery/High Voltage Check

The battery check is performed to determine the condition of the instrument's batteries. This check is important to ensure that there is sufficient voltage being supplied to the detector and the instrument circuitry. The battery check will be performed in accordance with the instructions contained in the appropriate instrument technical manual. If the battery check is unsatisfactory, refer to the technical manual for instruction for replacement of batteries and repeat the check. If results are still not satisfactory, remove

Document Title: Radiological	Issue Date:	Deco: 10.10	Revision Date:	Document # Volume IV
Laboratory Programs	19 May 03	Page: 10-10	22 Sep 09	Chapter 10

the instrument from service until repairs can be made. Repairs shall be made and documented.

High voltage checks shall be performed in accordance with the appropriate instrument technical manual. The purpose of the high voltage check is to ensure that the proper voltage is being applied to the detector. The high voltage setting is provided by the instrument calibration vendor on the calibration certificate or is determined by performing a high voltage plateau.

10.4.2.4 Response Source Check

The response source check is made to ensure that the instrument in use will respond to a known source of radiation. The response check does not result in determination of efficiency or the instrument correction factor. The response check is typically performed before each use and indicates that the instrument has not sustained damage that would prevent it from detecting radiation. An example of a response check would be checking an alpha contamination survey meter at a restricted area access point with a check source.

Perform a response source check as follows:

- Determine background radiation level. Background must be low enough to allow a measurable response to the source being used.
- Ensure that the instrument is on the appropriate scale for the activity of the source in use.
- Ensure that the instrument audible device is on (if applicable).
- Slowly move the instrument detector towards the source and observe for an increase in the audible response and/or visual indicator reading.
- If the instrument has a large area probe (e.g., Ludlum 43-5 alpha detector with 50 cm² surface area), ensure that the detector responds to the check source through its entire active surface area.

10.4.2.5 Background Measurement

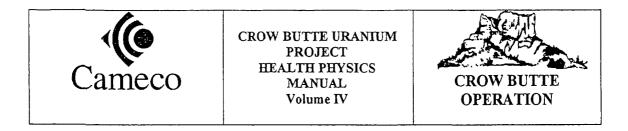
Background measurements for radiation survey instruments are performed as scheduled in Section 10.4.3. Local background may need to be determined before a particular use, such as performing a gamma radiation survey for characterization of potential contamination. Perform this type of background measurement as follows:

Document Title: Radiological	Issue Date:	Bees: 10.11	Revision Date:	Document # Volume IV
Laboratory Programs	19 May 03	Page: 10-11	22 Sep 09	Chapter 10

CROW BUTTE URANIUM PROJECT HEALTH PHYSICS MANUAL Volume IV

- Place the instrument in the lowest scale and press the reset button (if applicable).
- Allow adequate time for the instrument reading to stabilize.
- Record the instrument reading and compare it to previous background readings.

Background measurements for scaler type instruments are used to evaluate the radiation level in the area where the instrument is located. High background radiation levels will affect the sensitivity of scaler type instruments and will adversely affect the lower limit of detection (LLD). Perform a background determination on a scaler type instrument as follows:


- Ensure that the sample tray or holder is clean (if applicable). The detector and sample holder geometry should be in the same configuration as that which will be used when counting samples.
- Select the desired counting time. The selected time must be consistently used thereafter to perform the source count and the sample and/or smear counting operations. Since the counting time directly affects the instrument's LLD, it must be long enough to obtain the desired LLD, but should be short enough to be practical.
- Count the background for the selected time period and record the total counts measured.
- Repeat the background measurement a number of times. A guideline is the count time x the number of measurements should equal 20 minutes or ten measurements, whichever is less.
- Calculate the average background reading (C_b) in counts per minute (cpm):

$$\overline{C_b} = \underbrace{\frac{C_1 + C_2 + \dots + C_{10}}{t t t}}_{n}$$
Where:

$$C_1 \text{ through } C_{10} = \text{ Total counts for each background measurement;}}_{t = Counting time;}_{n = Number of measurements made.}$$

• Record the average background reading, the count time, and the number of counts.

Document Title: Radiological	Issue Date:	Peres 10.12	Revision Date:	Document # Volume IV
Laboratory Programs	19 May 03	Page: 10-12	22 Sep 09	Chapter 10

10.4.2.6 Determination of Efficiency and Correction Factor

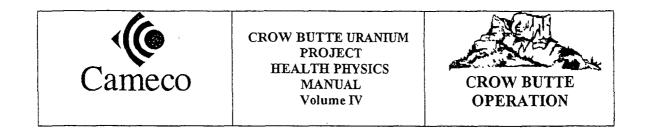
Instrument efficiency (E) is determined to check instrument performance when measured with a source of known activity of a particular radioisotope. A correction factor (CF) is determined that allows conversion of instrument cpm to disintegrations per minute (dpm) and is the inverse of the known efficiency (i.e., 1/E).

Determine the instrument efficiency as follows using a source of known activity:

• Correct the source activity for decay (if necessary) as follows:

$$A = A_{o} e^{-\lambda t} ; \quad \lambda = \underline{\ln (2)} \\ T_{1/2}$$

Where:


А		Present source activity in dpm;
Ao	=	Initial source activity at time of assay;
λ	=	Decay constant for source radioisotope;
t	=	Time elapsed since initial source assay (hours);
$T_{1/2}$	=	Source radioisotope half life (in hours);
ln (2)	=	Natural logarithm of 2 (approximately 0.693).

- Count the source for the same period of time as used in the background measurement (see Section 10.4.2.5).
- For surface contamination survey probes, place the probe face down against the active side of the source. For an Eberline AC-3 or Ludlum 43-5 alpha probe, perform three counts, one on each third of the probe face (i.e., toe, center, and heel). Determine the average of the three counts to use in determining efficiency and correction factor. For smaller probes such as the Ludlum 43-65, perform one source count in the center of the probe.
- Record the total counts, divide by the counting time period, and subtract the background cpm to calculate the efficiency (E) using the following formula:

Е	==	Net cpm Measured	-	<u>cpm</u>
		Actual Source Activity (decay corrected)		dpm

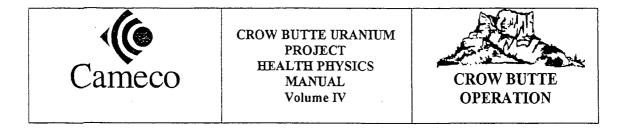
Where: Net cpm = Total measure source cpm – Background $(\overline{C_b})$

Document Title: Radiological	Issue Date:	Page: 10-13	Revision Date:	Document # Volume IV
Laboratory Programs	19 May 03		22 Sep 09	Chapter 10

• Calculate the corresponding correction factor (CF):

$$CF = \frac{1}{Efficiency(E)} = \frac{dpm}{cpm}$$

- Record the calculated efficiency and correction factor on the appropriate form.
- Compare the source counts with the acceptable range for the specific instrument and source as discussed in Section 10.4.1.2. If the source counts do not fall within the acceptable range, do not place the instrument in service and notify the RSO.


The instrument dpm Factor may be determined for contamination survey instruments to correct the indicated cpm to dpm per 100 cm^2 . This factor is typically determined for instruments that are used for performing total surface contamination surveys since the action levels and regulatory limits are expressed in units of dpm/100 cm². Determine the dpm factor as follows:

• Divide 100 by the effective surface area of the probe face to obtain the multiplier that will convert the results into dpm/100 cm². The effective surface area of the probe will always be listed in the instrument technical manual. For example, the effective surface area of the Eberline AC-3 alpha scintillation probe is 59 cm² so the multiplier for the AC-3 is 1.7. The effective surface area for the Ludlum 43-5 and the 43-65 probes is 50 cm² so the multiplier for both probes is 2.0. Multiplying this number by the correction factor will obtain the dpm factor. The dpm factor will correct indicated cpm to dpm/100 cm².

10.4.3 Instrument Check Schedules

Routine checks of radiation survey and counting instruments are made to ensure that the instrument is responding accurately and is in proper condition for field use. This section provides the check schedule for each type of instrument based on the guidance contained in Regulatory Guide 8.30. General instructions for performing these checks are contained in Sections 10.4 and 10.4.2. Specific instructions for performing these checks on each instrument are contained in the appropriate instrument technical manual.

Document Title: Radiological	Issue Date:	Page: 10-14	Revision Date:	Document # Volume IV
Laboratory Programs	19 May 03	Page: 10-14	22 Sep 09	Chapter 10

10.4.3.1 Radiation Survey Instruments

Radiation survey type instruments include the Ludlum Model 3 Gamma Survey Meter and the Ludlum Model 19 microR Meter or equivalent. These instruments require the following checks at the noted frequency:

- Physical check Daily when in use (Section 10.4.2.2);
- Battery Check (if applicable) Daily when in use (Section 10.4.2.3);
- Response source check Daily when in use (Section 10.4.2.4);
- Calibration verification Daily when in use (Section 10.4.2.1);
- Background measurement Daily when in use, as required (Section 10.4.2.5).

10.4.3.2 Surface Contamination Instruments

Surface contamination instruments are used to measure alpha and beta-gamma surface contamination levels and include the Ludlum Model 2241 Ratemeter/Scaler Survey Meter. These instruments require the following checks at the noted frequency:

- Response source check Before each use (Section 10.4.2.4)
- Battery Check (if applicable) Daily when in use (Section 10.4.2.3)
- High Voltage Check (if applicable) Daily when in use (Section 10.4.2.3);
- Calibration verification check Daily when in use (Section 10.4.2.1);
- Background measurement Daily when in use, as required (Section 10.4.2.5);
- Determination of efficiency/correction factor Daily when in use (Section 10.4.2.6).
- Determination of instrument reliability factor Initially after calibration (Section 10.4.1.1).

10.4.3.3 Scaler Type Instruments

Scaler type instruments are used to analyze the alpha contamination on air filters and loose surface contamination ("smear") samples. These instruments consist of a detector and a scaler and include the Ludlum Model 2000 Scaler or equivalent. These instruments require the following checks at the noted frequency:

- Physical check Daily when in use (Section 10.4.2.2);
- Battery Check (if applicable) Daily when in use (Section 10.4.2.3);
- High Voltage Check (if applicable) Daily when in use (Section 10.4.2.3);

Document Title: Radiological	Issue Date:	Deces 10.15	Revision Date:	Document # Volume IV
Laboratory Programs	19 May 03	Page: 10-15	22 Sep 09	Chapter 10

CROW BUTTE URANIUM PROJECT HEALTH PHYSICS MANUAL Volume IV

- Calibration verification check Daily when in use (Section 10.4.2.1);
- Background measurement Daily when in use (Section 10.4.2.5);
- Determination of efficiency/correction factor Daily when in use (Section 10.4.2.6);
- Determination of instrument reliability factor Initially after calibration, after repair or if instrument response is questionable (Section 10.4.1.1);
- Determination of lower limit of detection Initially after calibration, after repair or if instrument response is questionable (Section 10.4.1.4);
- High voltage plateau Initially after calibration, after repair or if instrument response is questionable (Section 10.4.1.3).

10.4.3.4 Alpha Survey Meters

Alpha survey meters are used to measure alpha surface contamination levels on skin and equipment and include a ratemeter such as the Eberline RM-19 and the Ludlum Model 12 or 177 Frisker or equivalent. These instruments require the following checks at the noted frequency:

- Response source check Before each use (Section 10.4.2.4)
- Battery Check (if applicable) Weekly (Section 10.4.2.3)
- High Voltage Check (if applicable) Weekly (Section 10.4.2.3);
- Calibration verification check Weekly (Section 10.4.2.1);
- Background measurement Weekly (Section 10.4.2.5);
- Determination of efficiency/correction factor Weekly (Section 10.4.2.6).
- Determination of instrument reliability factor Initially after calibration (Section 10.4.1.1).

10.4.4 Beta Calibration

Periodic beta detector calibration checks should be performed using aged yellowcake (i.e., at least 4 months old). The calibration should be performed at the surface and at 2 cm (approximately one inch) from the surface of the yellowcake source.

Surface measurement (used if contacting yellowcake):

- Place the axis of the detector on the surface of the aged yellowcake source.
- Perform closed shield and open shield measurements and obtain the difference between the two measurements (this is the observed dose rate)

Document Title: Radiological	Issue Date:		Revision Date:	Document # Volume IV	
Laboratory Programs	19 May 03	Page: 10-16	22 Sep 09	Chapter 10	

• Calculate the CF_{sur} using an actual surface dose rate of 150 mrem/hr (from NRC Regulatory Guide 8.30, Appendix C).

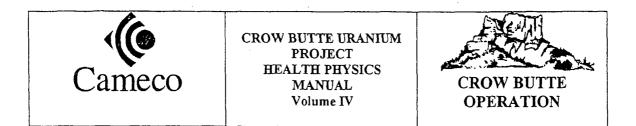
 $CF_{sur} = \frac{150 \text{ mrem/hr}}{Observed dose rate (mR/hr)}$

• Multiply all surface beta survey responses by CF_{sur} to obtain actual dose rate

Two-centimeter measurement (used if yellowcake will not be directly contacted):

- Place the axis of the detector at 2 cm (approximately one inch) from the surface of the yellowcake
- Perform closed and open shield measurements and obtain the difference
- Calculate the CF_{2cm} using an actual dose rate at 2 cm of 75 mrem/hr (from NRC Regulatory Guide 8.30, Appendix C).
 - $CF_{2cm} =$

75 mrem/hr Observed dose rate (mR/hr)


• Multiply all survey responses measured at 2 cm or greater from the source by this CF_{2cm} to obtain the actual dose rate.

10.5 Potential Detection Problems

In the course of performing instrument checks and reviewing records, the RSO or designee will be aware of the following observations that may indicate a detection problem:

- Background drift in a continuous direction, either up or down;
- Alpha background rates greater than 1.0 cpm;
- A calculated LLD that is greater than 50 percent of the appropriate regulatory limit;
- A ratemeter instrument that does not zero;
- A battery check that does not respond;
- Reliability factors greater than 1.40 or less than 0.50;
- A daily response source check that does not fall within ± 20 percent of the calculated mean.

Document Title: Radiological	Issue Date:		Revision Date:	Document # Volume IV
Laboratory Programs	19 May 03	Page: 10-17	22 Sep 09	Chapter 10

If any of the potential problems listed above are noted, the RSO or designee will remove the instrument from service and investigate until the source of the problem can be determined and corrected.

10.6 Air Sampler Calibration

Calibration of field flow rate measurement instruments (typically rotameters) is performed by comparing the flow rate measured by the field instrument with the flow rate measured by a primary standard instrument or a properly calibrated secondary standard instrument. Primary measurements generally involve a direct measurement of the volume based on the physical dimensions of an enclosed space, such as a "frictionless" piston meter (i.e., soap film flowmeter or dry cell calibrator). Secondary standards are reference instruments or meters that trace their calibration to a primary standard, such as a mass flow meter.

Calibration should be performed semiannually as recommended in Regulatory Guide 8.30 or at the manufacturer's recommended frequency, whichever is shorter. Calibration should be performed with air filters in place to properly account for the reduction in flow due to solid material deposited on the filter.

The following instructions apply to the use of the specified calibration technique for any type of sampler. Volumes and flow rates will vary depending on the type of sampler, ranging from low flow rates for lapel samplers to high flow rates for high volume area samplers.

10.6.1 Calibration Using the Soap Film Technique

The soap film technique involves using a graduated buret and a soap solution to measure the volume of air drawn through the buret during a measured time. The pump is started and connected to the buret, which is then dipped into a soap solution to form a bubble. The bubble will move along the buret. The time that it takes the bubble to move between volume graduations is measured, resulting in an indicated flow rate that is corrected to liters per minute (LPM). This measurement is then compared to the volume indicated by the air meter on the sampler. The comparison results in a correction between the indicated and the actual flow rate.

• Turn the pump to be calibrated on and run it for at least five minutes before calibration.

Document Title: Radiological	Issue Date:	Dece: 10.19	Revision Date:	Document # Volume IV
Laboratory Programs	19 May 03	Page: 10-18	22 Sep 09	Chapter 10

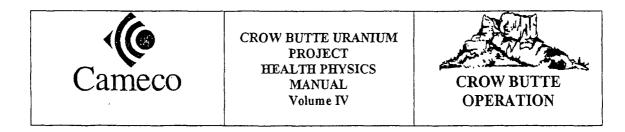
- Materials required: Appropriate size graduated buret (bubble tube), soap solution, filter holder, filters, and stopwatch.
- Rinse the buret with soap solution to wet the surfaces.
- Install an in-line filter holder between the buret and the pump.
- Use an appropriate filter for the type of sampler to be calibrated.
- With the pump on and attached to the filter and buret, dip the base of the buret into the soap solution until a bubble forms in the buret. Allow several individual bubbles to reach the top of the bubble tube before beginning the calibration to assure that the glass is sufficiently lubricated.
- Using a stopwatch, measure and record the time it takes the bubble to travel a specified volume in the buret. Lapel samplers are generally calibrated based on the time it takes the bubble to move 1 L. Perform this operation at least three times.
- Adjust the pump to move the desired volume of air per minute Do not adjust the rotometer after calibration. Adjustment of the rotometer during normal use will require the pump to be re-calibrated.
- Document each calibration on the bubble tube calibration log including the flow setting, date the calibration was performed and initials of the person performing the calibration.

10.6.2 Calibration Using a Dry Cell Calibrator

A dry cell calibrator is a primary air flow calibrator that is a variation on the wet cell technique. The calibrator consists of a flow cell using a near-frictionless piston to measure the volume of air pumped. The flow cell is made of dimensionally stable borosilicate glass with a sensing encoder. The cell dimensions and crystal timing device are NIST traceable which allows use of the unit as a primary standard. Depending on the design flow rates, these units may be used for low and high flow samplers.

• Turn the pump to be calibrated on and run it for at least five minutes before calibration.

Document Title: Radiological	Issue Date:	Page: 10-19	Revision Date:	Document # Volume IV
Laboratory Programs	19 May 03	Page: 10-19	22 Sep 09	Chapter 10


- Connect the calibrator to the sampling pump with the provided hose and a filter holder containing the correct filter.
- Turn the dry cell calibrator on and complete the startup sequence specified in the operating manual.
- After the sampler flow rate has stabilized, begin recording flow readings. The dry cell calibrator is programmed to take ten consecutive readings to determine an average flow rate.
- Adjust the pump to move the desired volume of air per minute (e.g., 2 LPM for lapel samplers and 55 LPM for RAS samplers). Do not adjust the rotometer after calibration. Adjustment of the rotometer during the survey will require the pump to be re-calibrated.
- Document each calibration and label the RAS air pumps with volume setting, date the calibration was performed and initials of the person performing the calibration. Since the lapel samplers are calibrated daily a calibration label is not applied to the pump.

10.6.3 Calibration Using a Linear Mass Flow Meter

Linear mass flow meters may be used to calibrate sampling pumps. The linear mass flow meter measures the differential temperature of a gas drawn through a heated capillary tube and is considered a secondary standard.

- Assemble the mass transducer in-line downstream of the filter element.
- Connect the vacuum gauge and install a clean filter in the filter holder.
- Connect the transducer to the flow meter with the patch cord supplied.
- Check the wiring, then plug the meter into a 110 VAC outlet and turn the meter ON. Allow 20 to 30 minutes to warm up to operating temperature.
- Zero the flow meter readout.
- Turn the sampler pump on and allow five minutes to warm up.

Document Title: Radiological	Issue Date:	Dec. 10.20	Revision Date:	Document # Volume IV
Laboratory Programs	19 May 03	Page: 10-20	22 Sep 09	Chapter 10

- Adjust the flow as indicated by the rotometer to the values given on the air sampling pump calibration data sheet. At each flow setting, record the flow indicated by the digital mass flow meter and the reading on the vacuum gauge.
- Complete the information and calculations on the calibration data sheet.
- Remove the Mass Transducer and vacuum gauge and reconnect the filter.
- Set the rotometer to the appropriate setting for normal use. The mass flow meter reading is the value of the actual flow rate in standard liters per minute (SLPM) with the rotometer set at the appropriate setting. Enter this value on the air sampling pump calibration data sheet.
- Remove the vacuum gauge.

10.6.4 Adjustment for Pressure and Temperature

Many variables affect the accuracy of air sampling measurements. Two of these are temperature and pressure variations. USNRC Regulatory Guide 8.25 states that corrections to the measured flow rate should be made if there are differences exceeding five percent in either the absolute pressure or absolute temperature between the calibration situation and the sampling situation.

Differences in the absolute pressure are common when calibration is performed at a different altitude (and thus a different air pressure) than that at which the instrument will be used. An example of this would be the calibration of a secondary standard at sea level and then use to calibrate rotameters at a higher elevation. Differences in pressure may be evaluated by comparing the barometric pressure readings at the calibration location with those at the sampling location.

Similarly, differences in temperature between the calibration location and the sample location will adversely affect accuracy of flow meters. Since calibrations are generally made at room temperature (i.e., approximately $72^{\circ}F$), corrections should be made to account for sampling conditions if the ambient temperature is expected to exceed the five percent limit. Based on absolute temperature, five percent of a calibration temperature of $72^{\circ}F$ would correspond to an ambient temperature less than $45^{\circ}F$ and greater than $98^{\circ}F$.

The following equation should be used to adjust sample volume to calibration conditions:

Document Title: Radiological	Issue Date:	Dec. 10 21	Revision Date:	Document # Volume IV
Laboratory Programs	19 May 03	Page: 10-21	22 Sep 09	Chapter 10

$$V_{\rm c} = V_{\rm s} \left(\frac{P_{\rm s}}{P_{\rm c}}\right) \left(\frac{T_{\rm c}}{T_{\rm s}}\right)$$

Where:

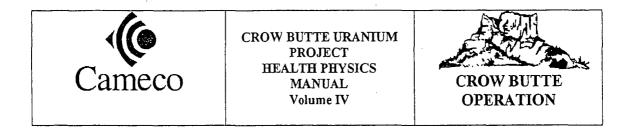
Vc = Volume under calibration conditions (m^3) Vs = Volume under field sampling conditions (m^3) Pc = Absolute pressure during calibration (mm Hg) Ps = Absolute pressure during sampling (mm Hg) Tc = Absolute temperature during calibration (°K) Ts = Absolute temperature during sampling (°K)

and

 $^{\circ}K = ^{\circ}C + 273 \text{ or}$ $^{\circ}K = [(^{\circ}F - 32)/1.8] + 273$

mm Hg = in. of water x 1.87

10.7 Sample Analysis Procedures


10.7.1 Analyzing Area Airborne Uranium Samples

Uranium airborne particulate samples are determined by counting alpha emissions using a scaler ratemeter or equivalent. The scaler is used with an alpha detector such as a Ludlum 43-10, Ludlum 218, Eberline SAC-R5, or equivalent. Some detectors, such as the Eberline SAC-R5, require the use of scintillation paper to detect alpha activity. The following general instructions apply regardless of the type of detector used. The analyst should review the specific manufacturer's instruction manual to ensure familiarity with the detector operating requirements.

NOTE: Samples must age for 24 to 48 hours after sampling to allow decay of short-lived radionuclides.

- Ensure the counting instrument is properly calibrated and checked.
- Before counting filter sample, make sure zinc sulfide paper (if necessary) is clean.
- Count the background for the sample count time determined by the RSO as necessary to meet LLD requirements.

Document Title: Radiological	Issue Date:	Deces 10.22	Revision Date:	Document # Volume IV
Laboratory Programs	19 May 03	Page: 10-22	22 Sep 09	Chapter 10

- Divide the net background counts by the count time and record background cpm on the sampling form.
- Place the sample filter in the detector.
- Count the sample for the sample count time determined by the RSO as necessary to meet LLD requirements. Record the net counts on the sampling form.
- Divide the net counts by the count time and record the sample cpm on the sampling form.
- Subtract the background cpm from the sample cpm and record the result on the sampling form.
- Calculate uranium activity in µCi/ml as follows:

 $\mu \text{Ci/ml Uranium} = (\underline{\text{cpm}_{\text{S}} - \text{cpm}_{\text{B}}})(4.5\text{E}^{-7} \mu \text{Ci/dpm})$ (E)(V)

Where:	cpm _s	=	Sample count rate
	cpm _B	=	Background count rate
	Ē	=	Instrument efficiency (cpm/dpm)
	V	=	Sample volume (ml)

• Record the calculated activity on the sampling form.

NOTE: If glass fiber filters are used, filter self-absorption must be considered (see Section 10.7.5.

10.7.2 Analyzing Breathing Zone Samples

Because breathing zone samples are typically collected over relatively short durations (i.e., less than a full work shift) it is necessary to utilize longer count times for both background and the sample in order to achieve the desired LLD. It should be noted that Regulatory Guide 8.25 recognizes that breathing zone samples may not be able to detect 10% of the appropriate DAC but that such samples are still acceptable for measuring potential uranium exposure to workers. Breathing zone samples are counted in accordance with Section 10.7.1 above, with the following additions:

• Ensure that the instrument background is as low as possible by cleaning the instrument before counting the sample.

Document Title: Radiological	Issue Date:	Page: 10-23	Revision Date:	Document # Volume IV
Laboratory Programs	19 May 03		22 Sep 09	Chapter 10

• Both background and sample count times should of an adequate duration to achieve the LLD. Count times for breathing zone samples may be one hour instead of the typical shorter durations for higher volume samples.

10.7.3 Radon Daughter Counting Procedure (Modified Kusnetz)

Radon daughter samples are analyzed using the modified Kusnetz method. Samples are collected on fiberglass or membrane filters using a lapel sampler or equivalent pump pulling a minimum of 2 liters per minute. Samples are collected for exactly five minutes, resulting in a 10 liter sample.

The sample filter is allowed to decay between 40 and 90 minutes after the end of collection before counting. After 40 minutes, only alpha particles from the decay of Po-214 are counted because virtually all of the Po-218 (3.05 minute half-life) has decayed.

The sample is counted with a scaler rate meter and an alpha scintillation detector at a count time determined by the RSO as adequate to meet the LLD requirements of 0.03 WL. The resulting gross counts are divided by the count time to arrive at a count rate (cpm).

Working levels are derived by dividing the count rate, minus background, by the product of the counter efficiency, the volume of air sampled, and the time factor. Calculation is according to the following formula:

Working Lev	vel (WL)) =	Sample cpm - background cpm (Eff) (Vol) (TF)
where:	cpm Eff Vol	=	Counts per minute (Sample – background) Instrument counting efficiency Total air volume pumped through filter
	TF	Ξ	(flow rate in liters x sample time in minutes) Time factor

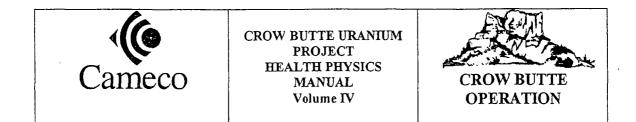
The time factor (TF) is dependent on the time elapsed between end of sampling and the beginning of counting. These time factors are determined as shown in the following table and should be based on the midpoint of the elapsed time between sample collection and the time in counting. The time factor is based on the assumption that equilibrium existed

Document Title: Radiological	Issue Date:	Page: 10-24	Revision Date:	Document # Volume IV
Laboratory Programs	19 May 03		22 Sep 09	Chapter 10
Laboratory riograms	17 May 05	L	122 500 07	

CROW BUTTE URANIUM PROJECT HEALTH PHYSICS MANUAL Volume IV

between Po-218, Pb-214, and Bi-214 at the time of sampling. The time factor relates dpm per liter of air from 40 to 90 minutes after sampling to the decay activity that would be present from an initial concentration of 1 WL.

Document Title: Radiological	Issue Date:		Revision Date:	Document # Volume IV
Laboratory Programs	19 May 03	Page: 10-25	22 Sep 09	Chapter 10



Modified Kusnetz Time Factors

Minutes	Factor	Minutes	Factor	Minutes	Factor
40	150	57	116	74	84
41	148	58	114	75	83
42	146	59	112	76	82
43	144	60	110	77	81
44	142	61	108	78	78
45	140	62	106	79	76
46	138	63	104	80	75
47	136	64	102	81	74
48	134	65	100	82	73
49	132	66	98	83	71
50	130	67	96	84	69
51	128	68	94	85	68
52	126	69	92	86	66
53	124	70	.90	87	65
54	122	71	89	88	63
55	120	72	87	89	61
56	118	73	85	90	60

Laboratory Programs 19 May 03 14 get 10-20 22 Sep 09 Chapter 10		Issue Date: 19 May 03	Page: 10-26	Revision Date: 22 Sep 09	Document # Volume IV Chapter 10
---	--	--------------------------	-------------	-----------------------------	------------------------------------

10.7.4 Analyzing Smear Samples

Smear samples are taken to quantify the amount of removable contamination present on a surface or object as described in Chapter 5. Following sample collection, smears are analyzed using a scaler rate meter and an alpha scintillation detector as follows.

- Ensure the counting instrument is properly calibrated and checked.
- Count for at least 1 minute on a laboratory scaler and alpha scintillation detector. Record the average counts per minute (cpm).
- Subtract the background count rate from the smear count rate (cpm). Convert the result from cpm to dpm (disintegrations per minute) by multiplying the net cpm of the smear results by the correction factor (1/Efficiency of the counting system).
- Properly record the survey results.

10.7.5 Filter Self Absorption Calculation

Regulatory Guide 8.25 requires that counting results be corrected for self-absorption of radiation by the filter collection media would reduce the count rate by more than 5 percent. The following comparison should be made as necessary as determined by the RSO. The self-absorption is determined using the following formula:

% Self Abso	orption	=	$\frac{C_2 - C_3}{2C_1 + C_2 - C_3} \times 100$
where:	$\begin{array}{c} C_1 \\ C_2 \\ C_3 \end{array}$	=	cpm on front of filter cpm on back of filter cpm on front of filter covered by new filter of the same type

The three counts should be performed as quickly as possible at a count time of one minute. The calculated uranium activity must be adjusted if the filter self-absorption is determined to be greater than 5 percent. For example, if the calculated activity is $5.0 \text{ E}^{-11} \mu \text{Ci/ml}$ and the filter self-absorption is 15 percent, the actual activity is $(5.0 \text{ E}^{-11})(1.15) = 5.75\text{E}^{-11} \mu \text{Ci/ml}$.

			······	
Document Title: Radiological	Issue Date:	D 10.07	Revision Date:	Document # Volume IV
Laboratory Programs	19 May 03	Page: 10-27	22 Sep 09	Chapter 10

10.8 Records

10.8.1 Calibration Records

The calibration vendor will provide a certificate of calibration for all instruments. These calibration certificates will be maintained by the RSO on file for that instrument. Records of repairs completed by the calibration vendor will also be maintained in the instrument file.

Documentation of calibration of air samplers performed on site will be maintained. This documentation will be maintained by the RSO in the sampler file.

10.8.2 Instrument Check Records

Records of instrument checks including all daily checks and initial checks will be maintained in a format determined by the RSO. These records will be readily available and in a format that will allow the RSO to review the records for the types of potential problems discussed in Section 10.5.

10.8.3 Record Retention

All records of instrument calibration and checks will be retained until NRC License termination. The RSO will be responsible for record retention.

Document Title: Radiological	Issue Date:	Dese: 10.00	Revision Date:	Document # Volume IV
Laboratory Programs	19 May 03	Page: 10-28	22 Sep 09	Chapter 10

07/10/09 25.5C 662			-	
Vol. Flow	Vol. Average		Std. Flow	Std. Average
07/10/09 5C 662	07:08 AM			
	Vol. Average	# Samples	Std. Flow	Std. Average
4.993 4.994 4.995 5:004 4.999 4.994 4.992 4.997 4.997 4.999 5.000 07/10/09	4.993 4.994 4.994 4.997 4.997 4.997 4.996 4.996 4.996 4.996 4.997 07:08 AM	01 02 03 04 05 06 07 08 09 10	4.341 4.345 4.345 4.352 4.348 4.348 4.345 4.341 4.345 4.348 4.348	
25.5C 662 Vol. Flow	Vol. Average	# Samples	Std. Flow	Std. Average
===============	=======================================			

NAME GRAnthon/Teahon

DATE 2/10/09

PUMP # AC-4

TASK Pond Pb-210 - Initial Deployment

07/10/09	07:13 AM			
	nmHg			
Vol. Flow	Vol. Average	# Samples	Std. Flow	Std. Average
_ 002	5.002	01	4.341	4.341
997	5.000	02	4.337	4.339
4.990	4.996	03	4.333	4.337
4.995	4.996	04	4.337	4.337
4.994	4.996	05	4.337	4.337
4.992	4.995	06	4.333	4.336
4.994	4.995	07	4.337	4.336
4.989	4.994	08	4.333	4.336
4.998	4.995	09	4.341	4.337
4.993	4.994	10	4.333	4.336
07/10/09	07:14 AM			
26.0C 6621	nmHg			
Vol. Flow	Vol. Average	# Samples	Std. Flow	Std. Average
=================		=======================================	=======================================	

NAME Rhouda Grantham/ LArry Teahon

DATE 7/10/09

,

SUMP AC-5

TASK Pond Pb-210 - Initial Deployment

26.5C 662m				
	Vol. Average			
07/ 1 0/09	07·18 AM			
26.5C 662m				
. Flow	Vol. Average		Std. Flow	Std. Average
07/10/09	07:18 AM			
26.5C 662m	-			
	Vol. Average			
5.024				4.352
5.026				4.354
		03		4.353
5.028	5.025	04		4.354
5.023	5.025	05		4.354
5.028	5.025	06	4.356	4.354
5.026	5.025	07	4.356	4.354
5.028	5.026	08	4.356	4.355
5.016	5.025	09	4.348	4.354
5.024	5.025	10	4.360	4.354
07/10/09				
26.5C 662m				
Vol. Flow	Vol. Average			

NAME GRAntham/Teahon

DATE 2/00/09

AL AC-6

TASK fond Pb-210 - Initial Deployment

26.5C 662m				
	Vol. Average			Std. Average
======================================	=====================================	:======================================	=======================================	=============
26.5C 662m				
	Vol. Average	# Samples	Std Rlow	Std Average
	**************************************			Stu. Average
	5.036		4. 364	4.364
5.048	5.042	02	4.376	4.370
5.039	5.041	03	4.368	4.369
5.041	5.041	04	4.368	4.369
5.038	5.040	05	4.368	4.369
5.033	5.039	06	4.360	4.367
5.035	5.039	07	4.364	4.367
5.037	5.038	08	4.364	4.367
5.037	5.038	09	4.364	4.366
5.031	5.038	10	4.360	4.366
07/10/09	07:22 AM			
26.5C 662m	nmHg			
Vol. Flow	Vol. Average	# Samples	Std. Flow	Std. Average
========================	=======================================	-======================================	==================	==================

. У

NAME <u>GRAnthan</u>/Tenhon

DATE 2/10/09

PUMP + AC-7

TASK fund Pb-210 - Initial Deployment

24.5C 665mmHg Vol. Flow Vol. Average # Samples Std. Flow Std. Average 07/16/09 07:35 AM 24.5C 665mmHg . Flow Std. Flow Vol. Average # Samples Std. Average _____ _____ 4.713 4.713 01 4.1294.129 4.711 4.712 02 4.129 4.129 4.708 4.711 03 4.125 4.128 4.704 4.709 4.121 4.126 04 4.701 4.707 05 4.121 4.125 4.699 4.706 06 4.117 4.124 4,698 4.705 4.117 4.123 07 4.696 4.704 80 4.117 4.122 4.698 4.703 09 4.117 4.122 4.693 4.702 10 4.121 4.113 07/16/09 07:35 AM 24.5C 665mmHg # Samples Vol. Flow Vol. Average Std. Flow Std. Average

NAME TYREE

DATE 7-16-09

SKO RADON DAughter SAmples PUMP #___ RAdon Test weak #1 TASK Pond

25.5C 664m	mHg			
	Vol. Average		Std. Flow	Std. Average
)7/16/09	======================================			
25.5C 664m				
J. Flow	Vol. Average		Std. Flow	Std. Average
2:1000000000000000000000000000000000000	======================================	.222222222222	=============	=========
25.5C 664m				
Vol. Flow	Vol. Average	# Samples	Std. Flow	Std. Average
	4.963	01		4.329
		,	4.329	
4.963	4.963	02		
	4.962		4.325	
4.964	4.963	04	4.329	4.330
4.986	4.967	05	4.348	
4.996	4.972	06	4.356	4.337
5.008	4.977	07	4.368	4.342
5.021	4.983	08	4.380	4.347
5.046	4.990	09	4.399	4.352
5.049	4.996	10	4.411	4.358
)7/16/09	02:19 PM			
25.5C 664mmHg				
	Vol. Average	<pre># Samples</pre>	Std. Flow	Std. Average
	=======================================	=================	==================	=============

NAME TYRU

DATE 7-16-09

PUMP # AC-4

TASK Pond zadon test. Work #1

23.5C 665mmHg Vol. Flow Vol. Average # Samples Std. Flow Std. Average 07/16/09 02:09 PM 2^A OC 665mmHg 1 . Flow Vol. Average # Samples Std. Flow Std. Average 07/16/09 02:09 PM 24.0C 665mmHg Vol. Flow Vol. Average # Samples Std. Flow Std. Average 4.983 4.983 01 4.376 4.376 4.985 4.984 02 4.376 4.376 4.986 4.985 03 4.376 4.376 4.985 4.985 04 4.376 4.376 4.984 4.985 05 4.376 4.376 4.988 4.985 06 4.380 4.377 5.028 4.991 07 4.415 4.382 5.055 4.999 80 4.439 4.389 5.054 5.005 09 4.439 4.395 5.040 5.009 10 4.423 4.398 07/16/09 02:09 PM 24.0C 665mmHg Vol. Flow Vol. Average # Samples Std. Flow Std. Average

NAME LYREE

DATE 7-16-09

PUMP # AC-S

TASK POND ZADON PUMP WELK #1

25.5C 664m	mHg			
Vol. Flow	Vol. Average	# Samples	Std. Flow	Std. Average
)7/16/09	02:21 PM			
25 5C 664m	mHg			
' Flow	Vol. Average		Std. Flow	Std. Average
37/16/09	···	• • • • • • • • • • • • • • •		
25.5C 665m	mHg			
Vol. Flow	Vol. Average		Std. Flow	Std. Average
5.024	5.024			
			4.384	
5.021	5.023	02		
5.022	5.022	03		
5.020	5.022	04	4.384	4.382
5.023	5.022	05	4.380	4.382
5.019	5.022	06	4.376	4.381
5.019	5.021	07	4.376	4.380
5.028	5.022	08	4.392	4.382
5.018	5.022	09	4.376	4.381
5.016	5.021	10	4.376	4.380
07/16/09				
25.5C 664mmHg				
	Vol. Average	# Samples	Std. Flow	Std. Average
===================			=======================================	============

NAME Tyrau

DATE 7-16-09

PUMP # AC-C

TASK Pond RAdor test wir #1

25.OC 665mmHq Vol. Flow Vol. Average # Samples Std. Flow Std. Average 07/16/09 02:13 PM 25.0C 664mmHg Ţ . Flow Vol. Average # Samples Std. Flow Std. Average 5.039 5.039 01 4.407 4.407 5.037 5.038 4.399 02 4.403 5.041 5.039 03 4.411 4.406 5.037 5.039 04 4.399 4.404 4.992 5.029 05 4.360 4.395 4.970 5.019 06 4.341 4.386 4.951 5.010 07 4.325 4.377 4.950 5.002 80 4.325 4.371 4.943 4.996 09 4.317 4.365 4.972 4.993 10 4.345 4.363 07/16/09 02:13 PM 25.OC 664mmHg Vol. Flow Vol. Average # Samples Std. Flow Std. Average

NAME TYREE

DATE 7-16-09

PUMP # AC-7

TASK POND IZADON TEST WLOK #1

24,5C 660m	mHg			
	Vol. Average	# Samples	Std. Flow	Std. Average
07/23/09 24.5C 660m	mHg			
	Vol. Average		Std. Flow	Std. Average
24.5C 660m	07:06 AM mHg	===========		
	Vol. Average		Std. Flow	Std. Average
4.693 4.690 4.681 4.674 4.679 4.679 4.672 4.671 4.673 4.674 07/23/09	4.693 4.692 4.688 4.685 4.683 4.682 4.681 4.681 4.680 4.679 4.678 07:06 AM	01 02 03 04 05 06 07 08 09 10	4.082 4.078 4.070 4.066 4.070 4.066 4.062 4.062 4.066 4.066	$\begin{array}{c} 4.082\\ 4.080\\ 4.077\\ 4.074\\ 4.073\\ 4.072\\ 4.071\\ 4.071\\ 4.070\\ 4.069\\ 4.069\\ 4.069\end{array}$
24.5C 660m Vol. Flow	mHg Vol. Average	# Samples	Std. Flow	Std. Average
=================	=======================================	=========================	=======================================	==========

NAME Damon Tyraca

DATE 7-23.09

PUMP # SKC-A RADON DAYS Liter SANDles test wark 2 TASK POND RAdow

	Vol. Average	# Samples	Std. Flow	Std. Average
07/23/09	11:28 AM			
25.0C 660m	nmHg			
I Flow	Vol. Average	# Samples	Std. Flow	Std. Average
		=======================================		
4.961	4.961	01		
4.971	4.966	02	4.317	4.313
4.983	4.972	03	4.329	4.318
5.007	4.981	04	4.348	4.326
5.002	4.985	05	4.345	4.330
5.001	4.988	06	4.345	4.332
4.997	4.989	07	4.341	4.333
4.999	4.990	08	4.341	4.334
5.012	4.993	09	4.345	4.336
5.030	4.996	10	4.360	4.338
J7/23/09	11:28 AM			
25.0C 6601	nmHg			
Vol. Flow	Vol. Average	# Samples	Std. Flow	Std. Average
=======================================	=======================================	=======================================	=======================================	=======================================

NAME Damod TYREE

DATE 7-23-09

PUMP # AC-U

TASK Poul Rodow test welk #2

	mHg Vol. Average	-	Std. Flow	Std. Average
07/23/09	11:45 [°] AM			
25.5C 660m	-			
	Vol. Average	-		
.035	5.035	======================================	4. 364	4.364
5.012	5.024	02	4.345	
5.016	5.021	03	4.348	4.352
4.989	5.013	04	4.325	4.346
5.001	5.011	05	4.323	4.344
5.008	5.010	06	4.341	4.343
5.008	5.010	07	4.341	4.343
5.018	5.010	08	4.352	4.344
5.013	5.011	09	4.345	4.344
5.018	5.012	10	4.343	4.345
07/23/09	11:45 AM	10	1.004	1.010
25.5C 660m				
	Vol. Average	# Samples	Std. Flow	Std. Average

NAME Damos Tyrad

DATE 7-23-09

PUMP # AC-5

TASK Pond Ridded test Wark #2

	nmHg Vol. Average			
07/23/09 23.5C 660m	11:13 AM nmHg			
	Vol. Average	-		
5.010 5.014 5.009 5.000 5.003 4.999 5.003 5.010	5.010 5.012 5.011 5.008 5.007 5.006 5.005 5.006		4.372 4.376 4.372 4.364	4.372
5.010 5.009	5.007 5.007	09 10	4.372 4.372	4.370 4.370
Vol. Flow	11:14 AM amHg Vol. Average	-		

NAME DAMON TYPOL

DATE 7-23-09

PUMP # AC-6

TASKPOND RADON test WOOK #2

40.00 DOUM	mнg			
Vol. Flow	Vol. Average	# Samples	Std. Flow	Std. Average
2222222222222		**********	===============================	
07/23/09	11:40 AM			
26.0C 660m		•		
· Flow	Vol. Average	# Samples	Std. Flow	Std. Average
* =====================================	=======================================			==================
024	5.024	01	4.356	4.356
5.030	5.027	02	4.352	4.354
5.011	5.022	03	4.337	4.348
5.010	5.019	04	4.337	4.346
4.989	5.013	05	4.317	4.340
5.003	5.011	06	4.329	4.338
5.001	5.010	07	4.329	4.337
5.007	5.009	08	4.333	4.336
5.008	5.009	09	4.333	4.336
5.004	5.009	10	4.333	4.336
)7/23 /09	11:40 AM			
25.5C 660m	mHg			
Vol. Flow	Vol. Average	# Samples	Std. Flow	Std. Average
:22222222222	=======================================			============

NAME Damon TYPE

.

DATE 7-23-09

PUMP # AC-7

TASK POND RADON test Weak 2

24.0C 663mmHg Vol. Flow Vol. Average # Samples Std. Flow Std. Average 07/30/09 07:02 AM 24.5C 663mmHg . Flow # Samples Std. Flow Std. Average Vol. Average 07/30/09 07:03 AM 24.5C 663mmHq Vol. Flow Vol. Average # Samples Std. Flow Std. Average 4.713 4.71301 4.117 4.117 4.708 4.711 02 4.113 4.115 4.701 4.707 03 4.109 4.113 4.696 4.705 04 4.105 4.111 4.698 4.703 05 4.105 4.110 4.693 4.702 06 4.101 4.108 4.691 4.700 07 4.098 4.107 4.696 4.700 80 4.105 4.107 4.689 09 4.698 4.098 4.106 4.684 4.697 10 4.094 4.105 07/30/09 07:03 AM 24.5C 663mmHg Vol. Flow Vol. Average # Samples Std. Flow Std. Average

NAME DATE 7-30-09

IRCO

 $1 \propto$

PUMP # SKC-

TASKWH9 / POND RADON test.

	mHg Vol. Average	-		-
)7/30/09				
26 5C 662m	mHg			
	Vol. Average	_		Std. Average
5.035	======================================	 01	4. 372	4.372
5.043	5.039	02		
-			4.376	4.374
5.019	5.032	03	4.356	4.368
5.018	5.029	04	4.356	4.365
4.994	5.022	05	4.337	4.359
5.009	5.020	06	4.348	4.358
4.995	5.016	07	4.337	4.355
4.994	5.013	08	4.337	4.352
4.992	5.011	09	4.325	4.349
4.992	5.009	10	4.323	4.348
	11:22 AM	10	H .000	4.540
26.5C 663m	-			
Vol. Flow	Vol. Average	# Samples	Std. Flow	Std. Average
:================	================================	=======================================	=======================================	===================

NAME TYREE DATE <u>7-30-09</u> PUMP#AC-Y TASKPOND RADON test weak #3

26.0C 663mmHg Vol. Flow Vol. Average # Samples Std. Flow Std. Average 07/30/09 11:25 AM 2- OC 663mmHg . Flow Std. Flow Vol. Average # Samples Std. Average 5.011 5.011 01 4.348 4.348 5.011 5.011 02 4.348 4.348 5.009 5.010 1 03 4.348 4.348 5.010 5.010 04 4.348 4.348 5.018 5.012 05 4.356 4.350 5.009 5.011 06 4.348 4.349 4.981 07 4.329 5.007 4.346 4.983 5.004 08 4.325 4.344 09 4.989 4.329 5.002 4.342 5.001 4.989 10 4.329 4.341 11:25 AM 07/30/09 26.5C 663mmHg # Samples Std. Flow Std. Average Vol. Flow Vol. Average

NAME TYREE

7-30-09

PUMP # AC-S

TASK Poud RAdou test week#3

25.0C 662m Vol. Flow	mHg Vol. Average	# Samples	Std. Flow	Std. Average
	=======================================		2222222222222	
07/30/09	11:19 AM			
26.0C 662m				
	Vol. Average	# Samples	Std. Flow	Std. Average
		_		
07730/09	11:19 AM			
26.0C 663m	mHg			
Vol. Flow	Vol. Average	# Samples	Std. Flow	Std. Average
3222222222222		=======================================	=======================================	223222222222
5.041	5.041	01	4.384	4.384
5.037	5.039	02	4.380	4.382
5.011	5.030	03	4.356	4.373
5.006	5.024	04	4.352	4.368
5.013	5.022	05	4.360	4.366
4.988	5.016	06	4.329	4.360
4.989	5.012	07	4.337	4.357
	5.010		4.337	
	5.010	09	4.348	4.354
5.019	5.011	10	4.364	4.355
07/30/09				
26.5C 663m	-			
Vol. Flow	Vol. Average	# Samples	Std. Flow	Std. Average
========================	.==================		=========================	========

NAME_TYPEC

DATE 7-30-09

PUMP # AC-6

TASKPOND RADON test WERE#3

, _ _ , -26.0C 662mmHg Vol. Flow Vol. Average # Samples Std. Flow Std. Average 07/30/09 11:12 AM 21 OC 663mmHg . Flow # Samples Std. Flow Std. Average Vol. Average 5.039 5.039 01 4.376 4.376 5.045 5.042 02 4.388 4.382 5.021 03 4.364 4.376 5.035 5.023 04 4.368 4.374 5.032 5.007 5.027 05 4.352 4.370 5.000 4.348 4.366 5.023 06 5.002 07 4.348 4.363 5.020 4.975 80 4.325 4.359 5.014 4.970 5.009 09 4.321 4.355 - 4.979 5.006 4.321 4.351 10 07/30/09 11:12 AM 26.0C 663mmHg Vol. Flow Vol. Average # Samples Std. Flow Std. Average

NAME IVICO

7-30-09 DATE

PUMP # AC-

test weak #3 TASKPOND RADON

24.0C 658m	mHg			
Vol. Flow	Vol. Average	# Samples	Std. Flow	Std. Average
	=======================================	===================	=======================================	=============
4.957	4.957	01	35.569	35.57
08/06/09	09:27 AM			
OC 659m	mHg			Υ.
Flow	Vol. Average	# Samples	Std. Flow	Std. Average
4.999	4.999	01	35.860	35.86
5.004	5.002	02	35.892	35.88
4.998	5.002	03		
			35.795	35.85
5.002	5.001	04	35.828	35.84
4.996	5.000	05	35.795	35.83
5.002	5.000	06	35.892	35.84
4.995	4.999	07	35.795	35.84
5.010	5.001	08	35.892	35.84
5.005	5.001	09	35.925	35.85
4.998	5.001	10	35.795	35.85
0 8/06 /09	09:28 AM			
24.0C 659m	mHg			
Vol. Flow	Vol. Average	<pre># Samples</pre>	Std. Flow	Std. Average
===================	.=========================		=======================================	=================

NAME TYRU

DATE 8-6-09

,

、

PUMP # AC-2

TASK Pond RAdon test WOUK 4

25.0C 65	-	# Commlog	Ctd Elou	Std Average
	Vol. Average	-		
4.995	4.995	01		
	01:48 PM	UI	27.000	55.07
. OC 65				
	—	# Complog	Ctd Ploy	Std Average
	Vol. Average	# pambies		
4.992		01		
5.012	5.002	02		
5.015	5.002	.03		
4.990	5.002	04	35.569	
4.992	5.002	04	35.601	35.65
4.992	4.999	06	35.601	35.64
5.006	5.000	07	35.698	
5.014	5.002	08	35.795	
4.985	5.000	09	35.601	35.66
4.985	4.998	10	35.601	35.66
• •	01:49 PM			
25.0C 65	-			
Vol. Flow	Vol. Average	# Samples	Std. Flow	Std. Average
=============			===============	===============

NAME TYREE

DATE 8-6-09 مروعه المروعة ا

PUMP # AC---

TASK Posd Rondon test week #4

25.5C 657m Vol. Flow	mHg Vol. Average	# Samples	Std. Flow	Std. Average
4.972 08 ^6/09	4.972 01:54 PM	01	35.375	35.38
5C 657m				
	Vol. Average	# Samples	Std. Flow	Std. Average
4.970		01		
4.989	4.970	01	35.440	35.44
-	4.980	02	35.504	35.47
5.001	4.987	03	35.601	35.52
5.010	4.993	04	35.666	35.55
5.017	4.997	05	35.698	35.58
5.015	5.000	06	35.698	35.60
5.011	5.002	07	35.666	35.61
4.986	5.000	08	35.472	35.59
4.987	4.999	09	35.537	35.59
5.017	5.000	10	35.698	35.60
08/06/09	01:54 PM			
25.5C 657mmHg				
Vol. Flow	Vol. Average	# Samples	Std. Flow	Std. Average

NAME TYREE

DATE 8-6-09

PUMP # AC-S

TASK POND RADON test WUK #4

25.0C 657	mmHq			
Vol. Flow	Vol. Average		Std. Flow	Std. Average
3.901 02'76/09	======================================	01	27 .809	
•	mmHg			
Vol. Flow	Vol. Average	# Samples	Std. Flow	Std. Average
4.964		·=====================================	======================================	-======================================
4.980	4.972	02	35.504	35.44
5.006	4.983	03	35.698	35.53
5.005	4.989	04	35.666	35.56
5.010	4.993	05	35.731	35.59
5.007	4.995	06	35.763	35.62
5.027	5.000	07	35.828	35.65
5.033	5.004	08	35.925	35.69
5.004	5.004	09	35.666	35.68
4.979	5.002	10	35.537	35.67
08/06/09	01:52 PM			
	nnHg			
Vol. Flow	Vol. Average	<pre># Samples</pre>	Std. Flow	Std. Average
==================	=======================================	=======================================		==============

NAME TYRER

DATE 8-6-09

PUMP# AC-7

TASK POND RADON Lest WLEE #4

24.0C 657	mmHg	,		
Vol. Flow	Vol. Average	# Samples	Std. Flow	Std. Average
5.009	5.009	01	35.828	35.83
8 106/09	01:46 PM			
2 5C 658	mmHg			
V Flow	Vol. Average	<pre># Samples</pre>	Std. Flow	Std. Average
=============			=================	=============
5.004	5.004	01		35.80
5.015	5.010	02	35.860	35.83
5.012	5.010	03	35.860	35.84
4.990	5.005	04	35.698	35.80
4.991	5.002	05	35.698	35.78
4.980	4.999	06	35.569	35.75
4.987	4.997	07	35.601	35.73
5.009	4.999	08	35.763	35.73
5.011	5.000	09	35.828	35.74
5.005	5.000	10	35.731	35.74
08/06/09	01:47 PM			
24.5C 657	mmHg			
Vol. Flow	Vol. Average	# Samples	Std. Flow	Std. Average
	========================	========================	=======================================	========================

. .

•

NAME TYREE

DATE 8-6-2009

PUMP # AC-6

TASK Poul test RAdon work #4

24.0C 659 Vol. Flow	mmHg Vol. Average	# Samples	Std. Flow	Std. Average
4.951 08/13/09 0C 659		01	35.537	35.54
Vul. Flow	Vol. Average			-
	======================================			35.60
4.956	4.960	02	35.569	
4.950	4.956	03	35.504	35.56
4.947	4.954	04	35.504	35.54
4.947	4.953	05	35.504	35.54
4.947	4.952	06	35.504	35.53
4.959	4.953	07	35.569	35.54
4.952	4.953	08	35.472	35.53
4.946	4.952	09	35.440	35.52
4.948	4.952	10	35.440	35.51
08/13/09	07:21 AM			
24.5C 659	mmHg			
Vol. Flow	Vol. Average	# Samples	Std. Flow	Std. Average

NAME TYREE

DATE 8-13-2009

PUMP # AC-Z

TASK POND RADON Lest WOCK #5

25.0C 658m	mHg Vol. Average	# Samples	Std. Flow	
======================================	======================================	01	35.763	35.76
OC 658n	nmHg Vol. Average	# Samples	Std. Flow	Std. Average
5.012 4.983 4.985 5.001 5.007 5.003 5.012 5.012 5.012 4.979 4.983	======================================	01 02 03 04 05 06 07 08 09 10	35.795 35.569 35.601 35.698 35.763 35.731 35.795 35.795 35.537 35.569	35.80 35.68 35.66 35.67 35.69 35.69 35.71 35.72 35.70 35.69
08/13/09 25.0C 658 Vol. Flow	3mmHg Vol. Average	# Samples	Std. Flow	Std. Average

NAME TYReil

DATE 8-13-09

PUMP # AC-4

TASK POLA RADON test WLLK S

25.5C 658	-			
	Vol. Average			-
5.014	5,014	01		35.73
08/13/09		V 1	00.701	55.75
5 <u>C</u> 658r				
	Vol. Average	-		-
	5.016			
4.989	5.003		35.569	35.67
4.997	5.001	03		
4.989	4.998	04	35.569	
5.016	5.001	05	35.698	35.65
5.013	5.003	06	35.731	35.66
4.987	5.001	07		
4.989	5.000	08		35.63
4.989	4.998	09		
	4.998	10	35.569	35.62
08/13/09				
25.5C 658	-			
	Vol. Average	-		-
	================================	=======================================	========================	=============

NAME TYREE

B-13-09

FUNPHAC-S

TASIRPOND RAdon fest weak # 5

24.5C 658m				
Vol. Flow	Vol. Average	# Samples	Std. Flow	Std. Average
3.632 08/13/09	3.632	01	25.965	25.97
OC 658m				
	Vol. Average	# Samples	Std Flow	Std Average
-				_
	4.963	01		
4.960	4.962	02	35.407	35.42
4.962	4.962	03	35.472	35.44
4.976	4.965	04	35.537	35.46
4.975	4.967	05	35.537	35.48
5.002	4.973	06	35.698	35.52
5.002	4.977	07	35.698	35.54
4.998	4.980	08	35.698	35.56
5.001	4.982	09	35.698	35.58
5.006	4.985	10	35.731	35.59
08/13/09	01:14 PM			
25.0C 658m	nmHg			
Vol. Flow	Vol. Average	# Samples	Std. Flow	Std. Average
=================	=======================================		=======================================	=================

NAME TYCLL DATE 8-13-09 PUMP#<u>AC-6</u> TASK Pord RAden test wear

25.0C 658	nmHg			
	Vol. Average			
	======================================			35.50
08/13/09		01	33.304	55.50
0C 658r				
V Flow	Vol. Average			-
	•=====================================	·=====================================		
5.001	4.989	02		_
4.999	4.992	03	35.634	35.62
5.000	4.994	04	35.634	35.63
4.995	4.994	05	35.601	35.62
4.995	4.995	06	35.666	35.63
4.993	4.994	07	35.601	35.62
5.030	4.999	08	35.860	35.65
	5.002	09	35.860	35.68
	5.001	10	35.634	35.67
08/13/09				
25.5C 658	mmHg			
Vol. Flow	Vol. Average	<pre># Samples</pre>	Std. Flow	Std. Average
=================	=======================================		=======================================	

NAME TYREE

DATE 8-13-09

PUMP # AC-7

TASK Poud Roton test WEEK#5

25.50 662r Vol. Flow	nmHg Vol. Average	# Samples	Std. Flow	Std. Average
4.981 08/20/09 5C 662r		01	35.731	35.73
	Vol. Average	# Samples	Std. Flow	Std. Average
4.976	4.976	01	35.634	35.63
4.995	4.986	02	35.828	
4.990	4.987	03	35.731	35.73
4.986	4.987	04	35.763	35.74
4.987	4.987	05	35.763	35.74
5.010	4.991	06	35.925	35.77
5.017	4.994	07	35.989	35.80
5.012	4.997	08	35.957	35.82
5.012	4.998	09	35.892	35.83
5.010	5.000	10	35.860	35.83
08/20/09	07:12 AM			
25.5C 6621	nmHg			
Vol. Flow	Vol. Average	# Samples	Std. Flow	Std. Average
*============	=======================================	========================	=======================================	============

NAME TYREE

· · ·

DATE 8-20-09

PUMP # AC-2

TASK Pond Raden test weak #6

26.5C 651mmHg Vol. Flow Vol. Average # Samples Std. Flow Std. Average 5.048 5.048 01 36.086 36.09 08/20/09 01:26 PM 5C 662mmHg V.I. Flow Vol. Average # Samples Std. Flow Std. Average 5.040 5.040 01 35.957 35.96 5.022 5.031 02 35.828 35.89 4.991 5.018 03 35.666 35.82 4.998 5.013 04 35.731 35.80 4.990 5.008 05 35.601 35.76 4.971 06 5.002 35.537 35.72 4.965 4.997 07 35.440 35.68 4.995 4.997 08 35.698 35.68 4.989 09 4.996 35.666 35.68 4.986 4.995 10 35.569 35.67 08/20/09 01:26 PM 26.5C 662mmHg Vol. Flow Vol. Average # Samples Std. Flow Std. Average

NAME. amos) IVRIL

8-20-09 DATE

AC-L PUMP #

TASK Pond Radon test week #6

25.0C 662	mmHg			
Vol. Flow	Vol. Average	# Samples	Std. Flow	Std. Average
5.016	5.016	01	36.022	36.02
08/20/09				
0C 662	mmHg			
L. Flow	Vol. Average	# Samples	Std. Flow	Std. Average
	=======================================			============
5.012	5.012		35.989	
5.010	5.011	02	35.989	35.99
4.986	5.003	03	35.828	35.94
4.984	4.998	04	35.795	35.90
5.006	5.000	05	35.957	35.91
5.011	5,002	06	35.925	35.91
4.984	4.999		35.731	
4.997	4.999	08	35.828	
5.009	5.000	09	35.989	
	5.000	10	35.828	
08/20/09		10	001020	00.00
25.5C 662				
	Vol. Average	# Samples	Std Flow	Std Average
VUL. 110W		" Dumpres		

NAME Damon TYREE

.

DATE 8-20-09

PUMP #_AC-5_____

TASK Pord Roden test weak #6

26.0C 6621	nmHg			
	Vol. Average			
5.037	=======================================	======================================		36.05
08/20/09		01	30.004	50.05
0C 662r				
	Vol. Average	# Samples	Std. Flow	Std. Average
		========================		=================
5.034	5.034	01	36.054	36.05
5.015	5.025	02	35.892	35.97
5.014	5.021	03	35.892	35.95
4.984	5.012	04	35.666	35.88
4.996	5.009	05	35.698	35.84
4.993	5.006	06	35.731	35.82
4.993	5.004	07	35.698	
4.968	5.000	08	35.504	
4.965	4.996	09	35.472	35.73
4.971	4.993	10	35.537	35.71
08/20/09				00112
26.5C 662r				
	Vol. Average	# Samples	Std. Flow	Std. Average
\$================	=======================================	===============	==================	============

NAME Daman TYRELL

DATE 8-20-09

PUMP # AC- 6

TASK POND RADON test WOOK#6

24.5C 664m	mHa			
	Vol. Average	# Samples	Std. Flow	Std. Average
4.434 08'27/09 5C 664m		01	32.012	32.01
	Vol. Average	# Samples	Std. Flow	Std. Average
4.655 4.652 4.647 4.644 4.643 4.643 4.642 4.641 4.638 4.634 4.634 4.632 08/27/09 24.5C 664m	======================================	01 02 03 04 05 06 07 08 09 10	33.597 33.564 33.532 33.532 33.500 33.500 33.500 33.500 33.467 33.435 33.435	33.60 33.58 33.56 33.56 33.55 33.55 33.54 33.53 33.52 33.51 33.51
	Vol. Average	# Samples	Std. Flow	Std. Average

NAME TOper

DATE 8/27/09

PUMP # SKC-A

TASK purd Rodon PHUL

08/27/09 25.0C 663 Vol. Flow	01:23 PM mmHg Vol. Average	# Samples	Std. Flow	
5.003 5./09	5.003 01:23 PM	01	35.989	35.99
2JC 664 Vol. Flow	MMHg Vol. Average	# Samples	Std. Flow	Std. Average
======================================	5.005 5.000 5.002 5.001 5.011 5.018 5.023 5.024 5.024 5.022 5.019 01:24 PM	01 02 03 04 05 06 07 08 09 10	35.989 35.925 35.957 35.892 36.345 36.313 36.313 36.183 36.022 35.925	35.99 35.96 35.94 36.02 36.07 36.10 36.11 36.10 36.09

25.5C 664mmHg

NAME T. Duer

DATE <u>2127109</u>

PUMP # PC-H

TASK Port radion test #7

Vol. Flow	Vol. Average	# Samples	Std. Flow	Std. Average
	4.948 01:26 PM	01	35.666	35.67
	Vol. Average	# Samples	Std. Flow	Std. Average
4.950	4.950	01	35.601	35.60
	4.983		36.022	
5.056	5.007	03	36.377	36.00
5.050	5.018	04	36.313	36.08
5.045	5.023	05	36.248	36.11
5.028	5.024	06	36.151	36.12
5.002	5.021	07	35.989	
5.003	5.019	08	35.989	36.09
5.001	5.017	09	35.957	36.07
4.996	5.015	10	35.925	36.06
08/27/09	01:27 PM			
25.5C 664	mmHg			
Vol. Flow	Vol. Average	<pre># Samples</pre>	Std. Flow	Std. Average

•

NAME T. Dyer

DATE 5/27/09

PUMP # AC-5

TASK Pond vadon test #7

B8/27/09 01:28 PM 25.5C 664mmHq Vol. Flow Vol. Average # Samples Std. Flow Std. Average 4.950 4.950 35.537 01 35.54 `7/09 30 01:28 PM 2 ,5C 663mmHg Vol. Flow Vol. Average # Samples Std. Flow Std. Average 4.990 4.990 01 35.892 35.89 5.011 5.001 02 36.054 35.97 5.018 5.006 36.022 35.99 03 5.012 36.01 5.008 04 36.054 5.018 36.02 5.010 05 36.054 5.017 5.011 06 36.022 36.02 5.010 5.011 07 35.989 36.01 5.015 5.011 08 36.022 36.01 5.014 36.022 36.01 5.012 09 5.022 5.013 10 36.119 36.03 38/27/09 01:28 PM 25.5C 664mmHg Std. Average Vol. Flow # Samples Std. Flow Vol. Average

NAME___

DATE 8/27/09

PUMP # AC-6

TASK Pond radon test #7

10161107 U1:34 PM 26.5C 664mmHg Vol. Flow Vol. Average # Samples Std. Flow Std. Average 4.955 4.955 01 35.569 35.57 3(7/09 01:35 PM ρC 663mmHg . Flow Vol. Average # Samples Std. Flow Std. Average 4.962 4.962 01 35.569 35.57 4.978 4.970 02 35.634 35.60 5.021 4.987 03 35.925 35.71 5.023 4.996 04 35.957 35.77 5.028 5.002 05 35.989 35.81 4.994 5.001 06 35.795 35.81 4.972 4.997 07 35.634 35.79 5.024 5.000 80 36.086 35.82 5.026 5.003 09 35.989 35.84 5.026 5.005 10 35.989 35.86)8/27/09 01:35 PM 26.5C 663mmHg Vol. Flow Vol. Average # Samples Std. Flow Std. Average

NAME DATE 8/27 NG PUMP#_

TASK pord radon test #7

24.0C 6631			,				
Vol. Flow	Vol. Average	# Samples	Std. Flow	Std. Average			
======================================	======================================	01	36.022	36.02			
0,0,03/09							
.OC 663mmHg							
Vol. Flow	Vol. Average	# Samples	Std. Flow	Std. Average			
=======================================	=======================================	01	36.022	36.02			
4.992	4.992	02	35.989	36.01			
4.987	4.990			36.04			
5.005	4.995	03	36.119				
5.007	4.998	04	36.151	36.07			
5.015	5.001	05	36.216	36.10			
4.992	5.000	06	35.989	36.08			
4.992	4.999	07	36.022	36.07			
4.989	4.997	08	35.957	36.06			
5.002	4.998	09	36.054	36.06			
	5.000	10	36.151	36.07			
5.015		10	20.121				
09/03/09	11:45 AM						
24.5C 663	-			Of J Marcas			
Vol. Flow	Vol. Average	# Samples	Std. Flow	Std. Average			

NAME Damen Tyrac

DATE 9-3-09

PUMP # AC-2

TASK Poud radou test.

26.0C 662mmHg Vol. Flow Vol. Average # Samples Std. Flow Std. Average 5.024 5.024 01 35.957 35.96 00.13/09 01:54 PM 0C 663mmHg . Flow Vol. Average # Samples Std. Flow Std. Average 5.027 5.027 01 35.989 35.99 5.026 5.027 02 35.989 35.99 5.023 5.025 03 35.957 35.98 5.025 04 5.025 35.989 35.98 5.025 5.025 05 35.989 35.98 5.031 36.022 5.026 06 35.99 5.022 5.026 07 35.957 35.98 5.023 5.025 80 35.957 35.98 5.021 5.025 09 35.957 35.98 5.021 5.024 10 35.957 35.98 09/03/09 01:55 PM 26.5C 662mmHg Vol. Flow Vol. Average # Samples Std. Flow Std. Average

NAME____

DATE 9/2/09

TASK Pond Radon test # 8

26.0C 662mmHg Vol. Flow Vol. Average # Samples Std. Flow Std. Average 5.029 5.029 01 35.989 35.99 02 13/09 C 0C 662mmHg 01:53 PM Vol. Flow Vol. Average # Samples Std. Flow Std. Average _____ 09/03/09 01:53 PM 26.0C 662mmHg Vol. Flow Vol. Average # Samples Std. Flow Std. Average 5.030 5.030 01 36.022 36.02 5.028 5.029 02 35.989 36.01 5.032 5.030 03 36.022 36.01 5.029 5.030 04 35.989 36.01 5.031 5.030 05 36.022 36.01 5.022 5.029 06 35.957 36.00 5.028 5.029 07 35.989 36.00 5.028 5.029 80 35.989 36.00 5.022 5.028 09 35.957 35.99 5.030 5.028 10 36.022 36.00 09/03/09 01:53 PM 26.0C 662mmHg Vol. Flow Vol. Average # Samples Std. Flow Std. Average _____

NAME T. Duer

93/09

PUMP# PC-5

TASK Pord Rucks test # 8

25.5C 662 Vol. Flow	mmHg Vol. Average	# Samples	Std. Flow	Std. Average
5.043 0°'03/09		01	36.151	36.15
5C 662	mmHg Vol. Average	# Samples	Std. Flow	Std. Average
5.050 5.050 5.051 5.023 5.024 5.024 5.024 5.024 5.022 0.022	5.050 5.050 5.050 5.049 5.044 5.041 5.038 5.037 5.036 5.035	01 02 03 04 05 06 07 08 09 10	$\begin{array}{r} 36.216\\ 36.216\\ 36.280\\ 36.183\\ 36.022\\ 36.054\\ 36.022\\ 36.022\\ 36.086\\ 36.086\\ 36.086\\ 36.022\end{array}$	36.22
09/03/09 25.5C 662 Vol. Flow		# Samples	Std. Flow	Std. Average

NAME T. Die

DATE 913/09

PUMP# 466

TASK Pond radon test # 8

	mmHg Vol. Average				
5.021 09/03/09	5.021 01:44 PM				
	Vol. Average	-			
5.017				35.99	
5.021	5.019	02	36.022	36.01	•
5.005	5.014	03	35.892	35.97	
5.012	5.014	04	35.957	35.97	
5.016	5.014	05	35.957	35.96	
5.010	5.014	06	35.925	35.96	
5.012	5.013	07	35.989	35.96	
5.012	5.013	08	35.957	35.96	
5.008	5.013	09	35.925	35.96	. '
5.013	5.013	10	35.957	35.96	
)9/03/09	01:44 PM				
25.5C 662	lmmHg		•		
Vol. Flow	Vol. Average	# Samples	Std. Flow	Std. Average	
:=============	=======================================	=======================================	=======================================	=======================================	
			,		

NAME T. Dyer

DATE 913/09

PUMP<u># AC-T</u>

TASK Pond Radon test # 8

25.9C 662	mmHg			
Vol. Flow	Vol. Average	# Samples	Std. Flow	Std. Average
	5.075	01	36.507	36.51
	12:54 PM			
0C 662	-	# Complea		Ctd Marrage
. Flow	Vol. Average	# Sampres	Stu. Flow	Stu. Average
5.069	5.069	01	36.410	36.41
5.074	5.072	02	36.442	
5.053	5.065	03		
5.026	5.056	04	36.119	
5.005	5.045	05		
4.999	5.038	06	35,925	
4.986	5.030	07	35.828	36.14
4,978	5.024	08	35.763	
4.987	5.020	09	35.828	36.07
4.986	5.016	10	35.828	36.04
09/10/09	12:55 PM			
25.0C 662	mmHg			
	Vol. Average	# Samples	Std. Flow	Std. Average

NAME TYRER

DATE 9/10/89

PUMP # AC /

TASK Poud Raden WE #9

24,0C 663mmHg Vol. Flow Vol. Average # Samples Std. Flow Std. Average 09/10/09 11:37 AM OC 663mmHg Vol. Flow Vol. Average # Samples Std. Flow Std. Average 5.009 5.009 01 36.151 36.15 11:37 AM 09/10/09 24.0C 663mmHg Vol. Flow Vol. Average # Samples Std. Flow Std. Average 11:37 AM 09/10/09 24.0C 663mmHg Vol. Flow Vol. Average # Samples Std. Flow Std. Average 4.997 4.997 01 36.022 36.02 5.004 5.001 36.119 02 36.07 5.001 5.001 03 36.086 36.08 36.05 4.984 4.997 04 35.989 36.07 5.006 4.998 05 36.151 4.995 4.998 36.054 36.07 06 4.990 4.997 07 35.957 36.05 5.001 4.997 80 36.054 36.05 4.995 36.05 4.997 09 35.989 36.04 4.990 4.996 10 35.957 09/10/09 11:37 AM 24.5C 663mmHg Vol. Flow Vol. Average # Samples Std. Flow Std. Average

NAME TYREE

DATE 9/10/09

PUMP # AC#2

TASK POND RAde) w/E#9

25.0C 662m	mHg			
Vol. Flow	Vol. Average	# Samples	Std. Flow	Std. Average
5.065	5.065	01	36.377	36.38
09/10/09			••••	
)C 662m	mHg			
Flow	Vol. Average	# Samples	s Std. Flow	Std. Average
=======================================	=======================================	=============	=======================================	===========
5.067	5.067	01	36.410	36.41
5.070	5.069	02	36.410	36.41
5.017	5.051	03	35.989	36.27
5.020	5.044	04	35.989	36.20
5.001	5.035	05	35.860	36.13
4.992	5.028	06	35.795	36.08
5.004	5.024	07	35.892	36.05
4.995	5.021	08	35.828	36.02
5.000	5.019	09	35,860	36.00
4.992	5.016	10	35.795	35.98
09/10/09	12:57 PM			
25.5C 662m	mHg			
Vol. Flow	Vol. Average	# Sample	s Std. Flow	Std. Average
		==============	=================	

NAME TYPE

DATE 9/10/07

PARAC 4

TARPOND RAD WE#9

25.OC 662mmHg Vol. Flow Vol. Average # Samples Std. Flow Std. Average 5.021 5.021 01 36.119 36.12 0/09 11:42 AM 2 JC 662mmHg Vol. Average # Samples Std. Flow Vol. Flow Std. Average 36.05 5.011 5.011 01 36.054 5.019 02 36.119 36.09 5.015 35.925 36.03 4.994 5.008 03 4.991 35.892 36.00 5.004 04 4.989 35.96 5.001 05 35.828 4.983 4.998 06 35.860 35.95 5.013 5.000 07 36.022 35.96 5.012 5.002 80 36.054 35.97 4.991 5.000 09 35.892 35.96 4.986 4.999 10 35.828 35.95 09/10/09 11:43 AM 25.OC 662mmHg Vol. Flow Vol. Average # Samples Std. Flow Std. Average

NAME_ TYREF

DATE

OUMP # AC#

TASK POND RADON WE#9

24.5C 662m	mHg			
Vol. Flow	Vol. Average	# Samples	Std. Flow	Std. Average
4.852	4.852	01	34.955	34.96
-	11:40 AM			
;;C 663m				
	Vol. Average	# Samples	Std. Flow	Std. Average
5.004	5.004	=======================================	======================================	35.99
5.008	5.004	02	36.086	36.04
5.002	5.005	03	36.054	36.04
5.008	5.006	04	36.086	36.05
5.003	5.005	05	36.054	36.05
4.982	5.001	06	35.892	36.03
4.983	4.999	07	35.892	36.01
5.004	4.999	08	36.054	36.01
5.001	5.000	09	36.054	36.02
5.000	5.000	10	36.022	36.02
)9/10/09	11:41 AM			
24.5C 663m	•			
Vol. Flow	Vol. Average	# Samples	Std. Flow	Std. Average
:=============	=======================================	===================	===================	===============

NAME TYREE _____.

,

DATE 9/10/09

PUMP # AC # 7

TASKPOND RADON WE#9

24.5C 664 Vol. Flow	nmHg Vol. Average	# Samples	Std. Flow	Std. Average
3.655	3.655 10:21 AM	01	26.418	26.42
5C 664	mmHa	# Samples	Std. Flow	=================
4.963	4.963	01	35.828	35.83 35.81
4.958 4.984	4.961 4.968	02 03	35.957	35.86
4.995	4.975	04	36.119 36.183	35.92 35.98
5.008 5.003	4.982 4.985	05 06	36.103	36.00
5.002	4.988	07	36.151 36.280	36.02 36.05
5.029 5.027	4.993 4.997	08 09	36.345	36.09
5.020	4.999	10	36.216	36.10
09/17/09 24.5C 665	10:21 AM SmmHg			
	Vol. Average	# Samples	Std. Flow	Std. Average
=======================================	=============================	================		

NAME Damon TYREE

DATE 9-17-09

PUMP # AC-1

TASK POND RADON WOOK #10

24. JU 0041	2			
Vol. Flow	Vol. Average	# Samples	Std. Flow	Std. Average
=======================================	=======================================	========================	=============	==========
4.968	4.968	01	35.860	35.86
09/17/09	12:19 PM			
5C 664n	-			
. Flow	Vol. Average	# Samples	Std. Flow	Std. Average
22222222222	=======================================	==========================	=======================================	
4.962	4.962	01	35.795	35.80
4.971	4.967	. 02	35.860	35.83
5.006	4.980	03	36.119	35.92
5.007	4.987	04	36.151	35.98
5.008	4.991	05	36.151	36.02
5.028	4.997	06	36.280	36.06
5.030	5.002	07	36.248	36.09
5.006	5.002	08	36.119	36.09
5.005	5.003	09	36.119	36.09
4.989	5.001	10	36.022	36.09
09/17/09	12:19 PM	<i>i</i>		
24.5C 664r				
	Vol. Average	# Samples	Std. Flow	Std. Average
================	=======================================			

NAME TYREE

DATE 9-17-09

PUMP # AC-2

TASK Pond RAden WINK #10

20.00 ocomming Vol. Flow Vol. Average # Samples Std. Flow Std. Average 3.633 3.633 01 26.192 26.1909/17/09 10:24 AM OC 665mmHq V___. Flow Vol. Average # Samples Std. Flow Std. Average 4.900 4.900 01 35.343 35.34 4.903 4.902 02 35.310 35.33 4.937 4.913 03 35.634 35.43 4.962 4.926 04 35.763 35.51 4.966 35.795 4.934 05 35.57 4.989 4.943 06 35.989 35.64 5.027 4.955 07 36.216 35.72 5.037 4.965 80 36.345 35.80 5.041 4.974 09 36.313 35.86 5.039 4.980 10 36.313 35.90 09/17/09 10:24 AM 25.5C 664mmHg Vol. Average # Samples Std. Flow Vol. Flow Std. Average

NAME TYPEE

9-17-0 DATE

PUMP #_AC

TASK POJE RACE WLOK#10

	սարդ			
Vol. Flow	Vol. Average	# Samples	Std. Flow	Std. Average
2222222222222	==========================	========================		
4.883	4.883	01	35.116	35.12
09/17/09	10:28 AM			,
.5C 664m	mHg			
Flow	Vol. Average	# Samples	Std. Flow	Std. Average
=============	=======================================	=========================	==================	=============
4.990	4.990	01	35.957	35.96
4.605	4.798	02	33.176	34.57
5.014	4.870	03	36.119	35.08
5.079	4.922	04	36.604	35.46
5.010	4.940	05	36.022	35.58
5.014	4.952	06	36.119	35.67
5.036	4.964	07	36.216	35.74
5.058	4.976	08	36.377	35.82
5.055	4.985	09	36.345	35.88
5.061	4.992	10	36.442	35.94
09/17/09	10:28 AM	~ ~ ,		00.71
25.5C 664m	nmHg			
Vol. Flow	Vol. Average	# Samples	Std. Flow	Std. Average
=========================		=======================================	=======================================	=======================================

NAME TYREE

DATE 9-17-09

PUMP # AC-6

TASK Poud RAdon WOR #10

20.UC 664	mmHg			
	Vol. Average	-	Std. Flow	Std. Average
	=======================================		200 100	
	3.649	UL	26.192	26.19
09/17/09				
く 9C 664	_	# Complea	Ctd Flore	Std Average
· V FIOW	Vol. Average	# Sampies	Sta. Flow	Stu. Average
5.033	5.033	01	36.151	36.15
5.010	5.022	02		36.07
5.006	5.016	03	35.957	36.03
4.983	5.008	04	35.795	35.97
4.985	5.003	05	35.860	35.95
5.009	5.004	06	35.957	35.95
4.982	5.001	07	35.828	35.93
4.987	4.999	08	35.795	35.92
4.988	4.998	09	35.860	35.91
5.010	4.999	10	35.989	35.92
09/17/09	10:30 AM			
26.0C 665	mmHg			
Vol. Flow	Vol. Average	# Samples	Std. Flow	Std. Average
=============	=======================================	====== = ================	-==================	================

NAME TYREE

DATE 9-17-09

PUMP # AC-7

TASK POND RAdow WROK #10

24.5C 663 Vol. Flow	mmHg Vol. Average	# Samples	Std. Flow	Std. Average
szes========		-======================================	=======================================	
4.982 09/24/09	4.982	01	35.828	35.83
0C 663				
. Flow	Vol. Average			
4.982				
4.982	4.982 4.981	01 02	35.828 35.828	
4.996	4.986	03	35.957	
5.007	4.991	04	36.022	
4.999	4,993	05	35.957	
5.002	4,994	06	35.989	
5.002	4,995	07	35,989	
5.002	4.996	08	35,989	
5.002	4.997	09	35.989	35.95
5.004	4.998	10	36.054	35.96
09/24/09	12:12 PM			
25.0C 663	SmmHg			
Vol. Flow	Vol. Average	# Samples	Std. Flow	Std. Average

NAME TYRUC

DATE 9.24-09

PLIMP # AC-2 (Scupla Punp) TASK Pond Rotdon Weak#11 Punp)

25.5C 664	mmHg			
	Vol. Average			Std. Average
	======================================			35.83
09/24/09		01	55.020	55.05
.5C 664				
l. Flow	Vol. Average			
	=======================================			
	4.969	01	35.731	35.73
4.993	4.981	02		35.83
5.021	4.994	03	36.119	35.93
5.008	4.998	04	36.022	35.95
4.995	4.997	05	35.925	35.94
5.001	4.998	06	35.957	35.95
4.994	4.997	07	35.925	35.94
4.990	4.996	08	35.892	35.94
5.024	5.000	09	36.151	35.96
5.005	5.000	10	35.989	35.96
09/24/09	10:28 AM			
• •	mmHg			
	Vol. Average	# Samples	Std. Flow	Std. Average
22202222222	=======================================	=======================================	=======================================	===========

NAME TYREE

DATE 9-24-09

PLIMP # AC-3

TASK POND RADON WEEK#11

25.5C 664	mmHg				
Vol. Flow	Vol. Average	# Samples	Std. Flow	Std. Average	
4.989	4.989	01	35.892	35.89	
09/24/09	10:23 AM				
5C 664mmHg					
	Vol. Average			Std. Average	
4.994	4.994			35.86	
4.990	4.992	02	35.800		
4.994	4.993	02			
4.986	4.991	04	35.860		
5.016	4.996	05			
5.018	5.000	06	36.086		
5.021	5.003	07	36.119		
5.018	5.005	08	36.086	35.99	
5.020	5.006	09	36.119	36.00	
5.016	5.007	10	36.086	36.01	
	10:23 AM				
	mmHg				
Vol. Flow	Vol. Average	# Samples	Std. Flow	Std. Average	
	===============================		=======================================	======================	

NAME TYPEY

DATE 9-24-09

PLIMP # AC-1

TASK POND Roton WL(K#1)

25.UC 6641	2			
Vol. Flow	Vol. Average	# Samples	Std. Flow	Std. Average
***********	=======================================	=======================================	=================	===============
	4.059	01	29.231	29.23
09/24/09	10:20 AM			
0C 664n	nmHg			
. Flow	Vol. Average	# Samples	Std. Flow	Std. Average
===================	================================	=======================================	=======================================	=============
5.010	5.010	01	36.086	36.09
4.991	5.001	02	35.957	36.02
4.981	4.994	03	35.892	35.98
4.986	4.992	04	35.925	35.97
4.990	4.992	05	35.957	35.96
5.005	4.994	06	36.054	35.98
5.002	4.995	07	36.054	35.99
5.006	4.996	08	36.054	·
5.007	4.998	09	36.086	36.01
5.006		10	36.054	36.01
09/24/09				
25.0C 664r				
	Vol. Average	# Samples	Std. Flow	Std. Average
	=======================================		=======================================	===============

NAME TYREE

•

DATE 9-24-09

PLIMP # AC-7

TASK POND RADON WEEK #11

25.UC 6641	nmHg			
Vol. Flow	Vol. Average	# Samples	Std. Flow	Std. Average
SERSERSERE:		========================	=======================================	=================
5.002	5.002	01	36.086	36.09
09/24/09	10:18 AM			
OC 6641	-			
. Flow	Vol. Average	# Samples	Std. Flow	Std. Average
	========================		=======================================	************
4.992	4.992	01	35.957	35.96
5.002	4.997	02	36.054	36.01
5.000	4.998	03	36.022	36.01
5.000	4.999	04	36.022	36.01
4.999	4.999	05	36.022	36.02
4.999	4.999	06	36.022	36.02
5.003	4.999	07	36.054	36.02
5.009	5.001	08	36.086	36.03
5.003	5.001	09	36.054	36.03
5.008	5.002	10	36.086	36.04
09/24/09	10:19 AM			
25.0C 664	mmHg			
	Vol. Average	<pre># Samples</pre>	Std. Flow	Std. Average

Vol. Flow Vol. Average # Samples Std. Flow Std. Average

NAME TYREE

DATE 9-24-09

PLIMP # AC-6

TASK POND RADON WEEK #11

24.5C 657mmHg Vol. Flow Vol. Average # Samples Std. Flow Std. Average 4.625 4.625 01 33.015 33.02 10/01/09 11:03 AM 5C 657mmHg VUL. Flow # Samples Vol. Average Std. Flow Std. Average 4.609 4.609 01 32.918 32.92 4.610 4.610 02 32.918 32.92 4.608 4.609 03 32.918 32.92 4.609 4.609 04 32.918 32.92 4.603 4.608 05 32.885 32.91 4.605 4.607 06 32.885 32.91 4.605 4.607 07 32.885 32.90 4.601 4.606 80 32.853 32.90 4.603 09 32.885 32.90 4.606 4.601 4.605 10 32.853 32.89 10/01/09 11:04 AM 24.5C 657mmHg Vol. Flow # Samples Std. Flow Std. Average Vol. Average REE NAME 10/1 PUMP#<u>SEC-A</u> 3- Suply weak the TASK Pond

	-			
	Vol. Average			Std. Average
	=======================================			
	3.706	01	26.644	26.64
10/01/09	10: 49 AM			
.0C 658n	nmHg			
	Vol. Average		Std. Flow	Std. Average
			=========================	
4.995	4.995	01	35.892	35.89
5.045	5.020	02	36.248	36.07
5.015	5.018	03	36.054	36.06
5.019	5.019	04	36.086	36.07
4.997	5.014	05	35.925	36.04
4.992	5.011	06	35.763	35.99
4.992	5.008	07	35.892	35.98
4.986	5.005	08	35.828	35.96
4.989	5.003	09	35.795	35.94
4.997	5.003	10	35.860	35.93
10/01/09	10:50 AM			
23.5C 658r				
	Vol. Average	# Samples	Std. Flow	Std. Average
2222222222222		=======================================	*==================	

NAME TYPE

DATE 10/1/09

PUMP # AC-1

TASK Pond Rodon Weak #12

24.30 05/MMHg Vol. Average # Samples Std. Flow Std. Average Vol. Flow 4.986 4.986 01 35.601 35.60 10/01/09 10:59 AM 5C 658mmHg \ _. Flow Vol. Average # Samples Std. Flow Std. Average 5.005 5.005 35.73 01 35.731 4.994 5.000 02 35.666 35.70 4.991 4.997 03 35.634 35.68 5.026 5.004 04 35.892 35.73 4.997 5.003 05 35.698 35.72 4.992 5.001 06 35.634 35.71 4.994 5.000 07 35.666 35.70 4.990 4.999 80 35.69 35.634 4.994 4.998 09 35.731 35.70 4.991 4.997 10 35.634 35.69 10/01/09 10:59 AM 24.5C 657mmHg Vol. Flow Vol. Average # Samples Std. Flow Std. Average

YNER NAME

10/1/09

AC-2

TASK POND RACEN WOOK#12

001	munia			
Vol. Flow	Vol. Average	# Samples	Std. Flow	Std. Average
4.998	4.998	01	35.860	35.86
0/01/09	10:54 AM			
	mmHg			
Flow	Vol. Average	# Samples	Std. Flow	Std. Average
4.996	4.996	01	35.860	35.86
4.987	4.992	02	35.731	35.80
4.988	4.990	03	35.795	35.80
5.009	4.995	04	35.957	35.84
5.016	4.999	05	35.925	35.85
5.009	5.001	06	35.957	35.87
5.016	5.003	07	35.989	35.89
5.011	5.004	08	35.957	35.90
5.009	5.005	09	35.892	35.90
5.016	5.006	10	35.925	35.90
10/01/09	10:54 AM			
	SmmHg			
Vol. Flow	Vol. Average	# Samples	Std. Flow	Std. Average
;============	=======================================		=========================	**********

NAME TYREE

,

DATE 10/1/09

PUMP # AC-3

TASK Dowd RAdow Weak #12

20.00 USOMMING Vol. Flow Vol. Average # Samples Std. Flow Std. Average 5.013 5.013 01 35.957 35.96 10/01/09 10:51 AM r 5C 658mmHq V _. Flow Vol. Average # Samples Std. Flow Std. Average 5.025 5.025 01 36.054 36.05 5.022 5.024 02 36.086 36.07 5.000 5.016 03 35.925 36.02 4.999 5.012 04 35.860 35.98 4.999 5.009 05 35.860 35.96 5.003 5.008 06 35.892 35.95 4.988 5.005 07 35.795 35.92 4.997 5.004 80 35.795 35.91 4.994 35.795 5.003 09 35.90 4.995 5.002 10 35.860 35.89 10/01/09 10:52 AM 23.5C 658mmHg Vol. Flow Vol. Average # Samples Std. Flow Std. Average

NAME TYREE

DATE 10/1/09

PUMP # AC-7

TASKPOND RACON WORK# 12

20.00 002111	шng						
Vol. Flow	Vol. Average	# Sa	mples	Std.	Flow	Std.	Average
=================	=========================	=====	=======	=======	=======	======	======
4.627	4.627		01	33	3.403		33.40
10/08/09	11:50 AM						
.5C 662m	mHg						
1. Flow	Vol. Average	# Sa	Imples	Std.	Flow	Std.	Average
=======================================	========================	=====	=======================================	=======	=======	======	======
4.607	4.607		01	33	3.273		33.27
4.611	4.609		02	33	3.306		33.29
4.602	4.607		03	33	3.209		33.26
4.602	4.606		04	33	3.209		33.25
4.597	4.604		05	33	3.176		33.23
4.594	4.602		06	33	3.112		33.21
4.594	4.601		07	33	3.176		33.21
4.594	4.600		08	33	3.176		33.20
4.598	4.600		09	33	3.209		33.21
4.591	4.599		10	33	3.144		33.20
10/08/09	11:50 AM						
23.5C 662m	mHg						
Vol. Flow	Vol. Average	# Sa	amples	Std.	Flow	Std.	Average
=================		=====	========	=======	======	======	======

x i NAME TYREE

DATE 10-8-2007

DEMP + SEC-A Sample pump TASKPOND Radod Lesting weak 13

24.00 UOZIIIIIIII Vol. Flow Vol. Average # Samples Std. Flow Std. Average 4.957 4.957 01 35.731 35.73 10/08/09 10:19 AM OC 662mmHg . Flow Vol. Average # Samples Std. Flow Std. Average 4.962 4.962 35.763 35.76 01 4.981 4.972 02 35.892 35.83 5.000 03 4.981 36.022 35.89 5.016 4.990 36.151 35.96 04 5.005 4.993 36.086 05 35.98 4.982 4.991 06 35.957 35.98 4.990 4.991 07 36.022 35.98 4.995 4.991 35.989 35.99 80 4.992 4.992 09 35.989 35.99 4.988 4.991 10 35.957 35.98 10/08/09 10:19 AM 24.OC 662mmHg Vol. Flow Vol. Average # Samples Std. Flow Std. Average

TYREE NAME___

MATE 10-8-2009

a mar # AC-1

TASK Poud RAdou WELK #13

Vol. Flow	Vol. Average	# Samples	Std. Flow	Std. Average
4.966	======================================	======================================	35.989	======================================
10/08/09	10:13 AM	01	55.969	
0C 663	mmHg			
	Vol. Average	_	Std. Flow	Std. Average
4.959	4.959	======================================	35.860	35.86
4.976	4.968	02	36.054	35.96
4.989	4.975	,03	36.119	36.01
5.008	4.983	04	36.280	36.08
5.048	4.996	05	36.507	36.16
5.060	5.007	06	36.636	36.24
5.053	5.013	07	36.604	36.29
5.024	5.015	08	36.345	36.30
5.007	5.014	09	36.216	36.29
4.981	5.011	10	36.086	36.27
10/08/09	10:13 AM			
23.0C 663	mmHg			
Vol. Flow	Vol. Average	# Samples	Std. Flow	Std. Average

NAME TYREE

.

DATE 10-8-2009

AC-2

TASK Pond Ruden Week 13

20.00 00200079 Vol. Flow Vol. Average # Samples Std. Flow Std. Average 4.976 4.976 01 35.925 35.93 10/08/09 10:15 AM 5C 662mmHg L. Flow Vol. Average # Samples Std. Flow Std. Average 4.988 4.988 01 36.022 36.02 4.992 4.990 02 36.04 36.054 5.036 5.005 03 36.345 36.14 5.013 5.007 04 36.183 36.15 5.008 5.007 36.151 36.15 05 5.005 5.007 36.119 36.15 06 4.969 35.860 36.10 5.002 07 4.976 4.998 80 35.925 36.08 4.973 4.996 09 35.957 36.07 4.994 4.981 10 35.957 36.06 10/08/09 10:15 AM 23.5C 662mmHg Vol. Flow Vol. Average # Samples Std. Flow Std. Average

NAME____

DATE 10-8-2009

PUMP # AC-3

TASK Pord RAdon Week #13

	Vol. Average			Std. Average
		01		35.86
	Vol. Average			
4.977 4.986 4.983 5.007 5.014 5.007 5.010 5.008 5.004 5.016	4.977 4.982 4.982 4.988 4.993 4.996 4.998 4.999 5.000 5.001 10:18 AM	01 02 03 04 05 06 07 08 09 10	35.860 35.925 35.925 36.086 36.151 36.086 36.151 36.086 36.054 36.151	35.86 35.89 35.90 35.95 35.99 36.01 36.03
	Vol. Average	# Samples	Std. Flow	Std. Average

NAME TYREE

DATE 10-8-2009

TASKPOND MAD WEEK 13

.... UU LIMMING Vol. Flow Vol. Average # Samples Std. Flow Std. Average 5.060 5.060 01 36.410 36.41 10/15/09 10:39 AM OC 661mmHg . Flow Vol. Average # Samples Std. Flow Std. Average 5.052 01 36.345 36.35 5.052 5.046 5.049 02 36.313 36.33 5.039 5.046 03 36.248 36.30 36.151 5.023 04 5.040 36.26 05 5.002 5.032 35.989 36.21 4.998 5.027 06 35.957 36.17 4.998 5.023 07 35.957 36.14 5.020 35.989 5.002 80 36.12 5.003 5.018 09 35.989 36.10 5.003 5.017 - 10 35.989 36.09 10/15/09 10:39 AM 24.0C 661mmHg Vol. Flow Vol. Average # Samples Std. Flow Std. Average

NAME_

10-15

PUMP #_A

TASK Pond RAG fast

APPENDIX C

C-1 Summary of Data Collected at the Chadron Municipal Airport Weather Station

- Daily High, Low and Average Air Temperature
- Dew Point
- Humidity (%)
- Daily Wind Direction and High, Low and Maximum Wind Gust

C-2 Summary of the Data Collected from Pond Complex

- Weekly temperature of the discharge water to the pond complex
- Weekly surface water temperature from each pond
- Weekly freeboard data on each pond
- Weekly average discharge rate (gpm) to the pond complex
- Weekly average volume in acre feet (AF) of water in each pond
- Weekly Pond Inspection Sheets

C-3 Summary of Water Chemistry of Pond Complex

- Summary sheet of the ten samples collected
- Analytical Reports for five Pond Composite Samples from Energy Laboratories, Inc.
- Analytical Reports for five Pond Discharge Samples from Energy Laboratories, Inc.

C-4 Environmental Air Samples Collected Under NRC Operating License During the 90-day Sampling Period

- Map of Air Monitoring Station Locations
- High Volume Air Sampling Report from Energy Laboratories, Inc.

C-5 Historical Wind Rose Data

 Section 2.5.6 Local Meteorological Station, Crow Butte Uranium Project, Application and Supporting Environmental Report for USNRC Commercial Source Material License, September 1987

Appendix C-1 Summary of Data Collected at the Chadron Municipal Airport Weather Station

- Daily High, Low and Average Air Temperature
- Dew Point
- Humidity (%)
- Daily Wind Direction and High, Low and Maximum Wind Gust

Weather Station Chadron Municipal Airport (KCDR)

42.7°N 103.1°W Chadron, Nebraska 69337

ſ	TEN	IPERTURE	(°F)	DEW POINT (°F)	H	IUMIDITY (%)	1	WIND) (mph)	
DATE	AVE.	MAX.	MIN.	AVE.	AVE.	MAX.	MIN.	DIRECTION	MIN.	MAX.	MAX. GUST
7/1/2009	71	85	56	56	67	90	43	WNW	5	24	32
7/2/2009	73	86	60	57	73	97	48	E	7	22	28
7/3/2009	67	75	58	60	81	97	64	NNE	4	18	22
7/4/2009	67	77	57	57	72	93	50	NNE	6	12	17
7/5/2009	66	82	50	53	68	100	36 /	SSE	3	12	16
7/6/2009	70	86	53	56	64	93	34	S	6	26	33
7/7/2009	72	88	55	54	59	86	31	NNE	7	29	39
7/8/2009	74	93	54	56	66	100	31	SSW	11	26	33
7/9/2009	68	83	52	49	57	89	25	ESE	5	15	18
7/10/2009	74	88	59	52	65	93	36	NE	5	47	66
7/11/2009	74	85	62	61	74	93	55	E	12	30	38
7/12/2009	.77	90	64	55	55	73	36	ESE	7	18	23
7/13/2009	78	94	62	62	59	87	30	S	11	33	45
7/14/2009	70	87	53	54	58	97	18	WNW	10	21	33
7/15/2009	66	83	48	47	59	86	31	SSW	4	13	20
7/16/2009	70	84	56	53	56	80	31	NE	7	25	36
7/17/2009	68	85	50	50	60	89	30	ENE	6	18	30
7/18/2009	67	88	45	48	57	93	21	SE	4	13	17
7/19/2009	79	98	59	51	44	73	14	SW	5	22	32
7/20/2009	69	87	51	52	53	75	30	NNE	11	32	39
7/21/2009	65	86	44	44	56	93	18	W	5	15	22
7/22/2009	72	92	52	48	48	77	18	SE	5	20	25
7/23/2009	77	97	57	51	48	80	16	SSE	6	17	22
7/24/2009	72	89	55	50	56	80	31	ENE	9	22	28
7/25/2009	75	93	56	50	52	83	20	E	5	17	21
7/26/2009	75	92	57	49	48	77	19	W	5	29	39
7/27/2009	73	86	60	54	66	97	34	W	7	28	36
7/28/2009	68	77	59	58	67	97	36	NW	3	10	15
7/29/2009	58	68	48	55	71	93	48	WNW	8	18	25
7/30/2009	60	77	43	41	57	93	21	WSW	6	16	23
7/31/2009	67	88	46	46	55	93	16	WNW	7	26	35

Weather Station Chadron Municipal Airport (KCDR) 42.7°N 103.1°W Chadron, Nebraska 69337

ſ	TEN	IPERTURE	(°F)	DEW POINT (°F)	H	IUMIDITY (%)	·	WIND) (mph)	
DATE	AVE.	MAX.	MIN.	AVE.	AVE.	MAX.	MIN.	DIRECTION	MIN.	MAX.	MAX. GUST
8/1/2009	64	86	42	40	55	96	14	W	7	21	30
8/2/2009	74	98	50	42	41	71	11	W	8	23	31
8/3/2009	75	96	53	50	51	84	17	WSW	6	43	61
8/4/2009	70	86	53	54	66	97	35	E	6	48	62
8/5/2009	71	85	57	57	69	93	44	SE	6	20	26
8/6/2009	70	82	70	62	65	78	51	SSW	13	28	38
8/7/2009									6	9	51
8/8/2009								N	6	14	38
8/9/2009				Data Not Available				WNW	6	17	32
8/10/2009								WSW	4	7	N/A
8/11/2009								SSW	4	8	N/A
8/12/2009	79	96	62	46	42	72	12	WSW	3	8	N/A
8/13/2009	77	101	52	49	50	89	11	SSW	8	21	29
8/14/2009	72	84	60	56	58	84	32	SE	8	33	43
8/15/2009	70	86	53	54	61	93	29	NW	5	36	47
8/16/2009	63	76	50	44	58	93	23	WSW	7	15	26
8/17/2009	62	77	47	45	54	83	25	WNW	6	17	22
8/18/2009	65	85	45	48	59	86	31	S	7	23	29
8/19/2009	66	78	53	50	59	89	28	NNW	10	30	43
8/20/2009	63	78	48	46	53	80	25	NW	11	24	35
8/21/2009	61	79	42	42	56	89	23	SE	4	10	18
8/22/2009	76	97	55	50	46	67	24	S	12	22	36
8/23/2009	78	91	64	59	59	81	37	S	12	26	33
8/24/2009	76	88	64	57	55	81	29	NW	10	22	28
8/25/2009	70	80	60	58	71	97	45	SSE	3	10	13
8/26/2009	69	82	56	56	66	93	39	SE	4	18	22
8/27/2009	72	91	52	54	62	· 100	23	S	4	10	18
8/28/2009	66	80	51	46	56	83	28	N	7	20	25
8/29/2009	62	77	46	48	63	93	33	ENE	6	15	21
8/30/2009	68	78	57	47	58	72	43	SSE	13	21	28
8/31/2009	69	80	58	48	53	67	39	S	17	24	33

Weather Station Chadron Municipal Airport (KCDR)

42.7°N 103.1°W Chadron, Nebraska 69337

Г	TEN	IPERTURE	(°F)	DEW POINT (°F)	ł	IUMIDITY (%)		WINE	D (mph)	
DATE	AVE.	MAX.	MIN.	AVE.	AVE.	MAX.	MIN.	DIRECTION	MIN.	MAX.	MAX. GUST
9/1/2009	74	93	55	49	51	83	18	SSW	8	21	28
9/2/2009	70	87 -	53	51	57	86	27	NW	6	17	25
9/3/2009	66	82	50	49	61	86	35	NE	5	16	21
9/4/2009	65	84	45	49	67	100	34	·S	7	18	22
9/5/2009	71	85	57	53 ·	60	86	34	S	13	26	35
9/6/2009	75	89	60	54	58	84	31	S	13	25	32
9/7/2009	78	93	62	54	52	84	20	S	7	18	24
9/8/2009	69	87	50	53	57	84	29	N	9	24	29
9/9/2009	63	79	57	46	66	93	39	S	7	24	30
9/10/2009	73	92	53	54	54	86	21	S	7	25	31
9/11/2009	66	78	53	40	44	68	19	NNE	8	28	38
9/12/2009	59	66	51	48	67	89	44	WSW	5	18	21
9/13/2009	65	77	53	50	68	89	46	SSE	19	33	44
9/14/2009	75	90	60	51	49	78	19	S	14	33	43
9/15/2009	72	91	52	52	55	89	21	SE	4	15	20
9/16/2009	67	86	47	48	57	93	20	SE	3	13	18
9/17/2009	65	85	44	45	55	89	20	S	7	20	29
9/18/2009	67	84	49	44	49	77	20	S	11	23	30
9/19/2009	67	83	51	41	41	59	22	S	13	31	38
9/20/2009	68	85	51	43	57	93	20	W	12	39	53
9/21/2009	53	59	47	• 44	60	80	40	NW	12	24	35
9/22/2009	55	63	47	39	55	77	33	NNW	8	23	30
9/23/2009	56	65	46	36	61	86	_36	NNE	7	16	22
9/24/2009	58	70	45	42	<u>• 64</u>	86	42	ENE	66	20	24
9/25/2009	53	68	37	41	62	92	31	SSW	3	8	10
9/26/2009	63	88	38	37	49	85	12	WSW	6	17	22
9/27/2009	54	70	38	30	43	66	20	NW	11	26	36
9/28/2009	48	66	30	20	41	69	13	SE	5	15	20
9/29/2009	63	79	47	30	32	42	22	S	18	37	47
9/30/2009	63	82	44	41	58	93	23	SW	13	36	49
10/1/2009	47	54	39	33	54	76	32	WNW	24	39	54

Weather Station Chadron Municipal Airport (KCDR) 42.7°N 103.1°W Chadron, Nebraska 69337

ſ	TEN	IPERTURE	(°F)	DEW POINT (°F)	Н	UMIDITY (9	%)	WIND (mph)			
DATE	AVE.	MAX.	MIN.	AVE.	AVE.	MAX.	MIN.	DIRECTION	MIN.	MAX.	MAX. GUST
10/2/2009	43	58	27	24	46	69	23	WNW	15	37	48
10/3/2009	40	59	21	20	52	84	20	N	6	14	21
10/4/2009	42	48	36	32	74	86	62	E	9	18	23
10/5/2009	43	51	35	39	76	96	56	N	9	20	26
10/6/2009	44	58	30	29	59	89	28	WNW	13	28	37
10/7/2009	46	63	28	28	62	89	34	NNW	11	26	33
10/8/2009	37	41	33	30	74	89	59	NE	4	13	16
10/9/2009	30	40	20	28	78	92	64	NNE	9	24	31
10/10/2009	21	31	11	10	62	76	47	W ·	6	16	21
10/11/2009	25	28	22	17	78	88	68	ESE	8	18	22
10/12/2009	29	33	24	21	76	88	63	NE	6	12	20
10/13/2009	37	41	32	28	76	82	70	SSE	12	23	29
10/14/2009	50	67	33	35	70	96	44	SSW	8	23	28
10/15/2009	47	64	29	31	65	96	34	W	5	24	32
10/16/2009	46	64	28	36	63	96	30	WNW	8	26	33
10/17/2009	48	72	23	27	56	92	19	SW	6	15	20
10/18/2009	60	83	37	31	43	73	13	WSW	8	26	32
10/19/2009	46	56	35	34	74	92	55	NE	5	16	21
10/20/2009	40	44	36	36	92	100	83	NNE	9	17	22
10/21/2009	40	44	35	34	86	92	79	NNE	9	16	21
10/22/2009	37	46	27	33	73	92	53	ENE	2	9	12
10/23/2009	44	58	30	32	61	92	30	W	5	18	24
10/24/2009	47	60	34	37	68	92	43	WNW	11	23	29
10/25/2009	36	42	- 30	34	83	92	73	NW	9	25	32
10/26/2009	42	58	26	25	60	92	27	SW 1	10	21	25
10/27/2009	45	57	32	27	59	86	32	W	8	17	25
10/28/2009	33	34	32		87	92	82	N	12	23	30
10/29/2009	30	33	26	30	84	92	75	N	12	22	26
10/30/2009	28	41	15	22	74	85	63	W	16	32	38
10/31/2009	44	55	33	32	70	85	54	WSW	8	18	22

Appendix C-2 Summary of the Data Collected from Pond Complex

- Weekly temperature of the discharge water to the pond complex
- Weekly surface water temperature from each pond
- Weekly freeboard data on each pond
- Weekly average discharge rate (gpm) to the pond complex
- Weekly average volume in acre feet (AF) of water in each pond
- Weekly Pond Inspection Sheets

CROW BUTTE RESOURCES, INC.

(308) 665-2215

(308) 665-2341 - FAX

86 Crow Butte Road P.O. Box 169 Crawford, Nebraska 69339-0169

Date	Temperatures ⁰ C				Fr	eeboard (fe	et)	,	Volume (AF	⁽)	Ave Flow
Sampled	Pond #1	Pond #3	Pond #4	Discharge	Pond #1	Pond #3	Pond #4	Pond #1	Pond #3	Pond #4	GPM
07/09/09	28.3	27.7	26.8	24.7	7.6	7.5	12.9	35.42	37.66	13.66	13.9
07/16/09	27.1	28.4	26.3	25.5	7.7	7.7	13.0	34.96	36.72	13.24	18.9
07/23/09	29.4	30.0	28.7	22.0	7.7	7.8	13.1	34.96	36.26	12.82	19.1
07/30/09	25.0	23.4	23.0	22.0	7.5	7.9	13.0	35.88	35.79	13.24	21.8
08/06/09	23.8	21.8	24.5	26.0	7.6	8.1	12.9	35.42	34.86	13.66	35.7
08/13/09	27.1	24.4	29.9	24.0	7.8	8.3	12.7	34.50	33.90	14.50	15.4
08/20/09	20.1	19.8	20.2	25.0	7.9	8.5	12.5	34.04	33.01	15.33	15.5
08/27/09	26.7	29.3	25.6	28.0	7.9	8.6	12.3	34.04	32.55	16.17	15.7
09/03/09	24.1	21.9	22.7	26.0	8.0	9.0	12.6	33.58	30.72	14.91	15.4
09/10/09	23.8	22.3	24.7	25.0	8.2	8.9	12.1	32.67	31.18	17.04	18.1
09/17/09	21.4	19.9	_ 21.0	26.0	8.3	9.4	11.9	32.67	28.91	17.90	19.7
09/24/09	16.4	16.8	15.6	24.0	8.4	9.5	12.0	31.77	28.46	17.47	17.8
10/01/09	20.6	18.3	19.8	25.0	8.4	9.5	12.0	31.77	28.46	17.47	20.1 ·
10/08/09	9.4	7.0	8.4	19.5	8.3	9.5	12.0	32.21	28.46	17.47	19.4
10/15/09	9.2	6.1	6.6	26.0	8.2	9.6	12.0	32.67	27.97	17.47	19.6

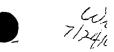
CROW BU RESOURCES, INC. WEEKLY EVAPORATION POND UNDERDRAIN ANALYSIS

C	OMMERCIAL PONDS	UNDERDRAIN WATER DEPTH / INCHES	METER READING	TEMP °C	CONDUCTIVITY µmhos/cm	LAB RESULTS µmhos/cm
	POND LEVEL	9,4'		. 28.3°°		
	*FREEBOARD	7.6'				······································
Depth	NE UNDERDRAIN	D				· · · · · · · · · · · · · · · · · · ·
ronu	NM UNDERDRAIN	0				
1 7 #	NW UNDERDRAIN	7	72,3 ms)4.7		
1 feet	SE UNDERDRAIN	0				· ·
	SM UNDERDRAIN	Ð				
ľ	SW UNDERDRAIN	9	90,9 ms	16.7		
	POND LEVEL	10.0'		27.7 °°		
U	*FREEBOARD	7,5'				
PO Depth	NE UNDERDRAIN	4				
	NM UNDERDRAIN		20.1 ms	12.6		
12 #	NW UNDERDRAIN	5				
3 5 fee	SE UNDERDRAIN	0			,	
1¥	SM UNDERDRAIN	4	· · ·			
L	SW UNDERDRAIN	7	510 us	13.8		
	POND LEVEL	4.la'		268°C		
b	*FREEBOARD	12.9'				
PON Depth =	NE UNDERDRAIN	16	98.9 ms	19.5		
POND pth = 17	NM UNDERDRAIN	19	103 .1. ms	15.0		
D # 4 17.5 feet	NW UNDERDRAIN	20	110.8 ms	20.4		
4 fee	SE UNDERDRAIN	21	95.8 ms	21.0		
Η.	SM UNDERDRAIN	30	968 ms	15,4		
]	SW UNDERDRAIN	<u>58</u>	122,3 ms	19.8	<u> </u>	
[R & D POND LEV	ELS (Depth = 15 ft)	. •	REMARKS: Plan	>+ Waste 24,7	76 °c
	EAST LEVEL:	8,2'		1 100	T Wasie atil	
	**EAST FREEBOARD:	6.8'		l		
	EAST UNDERDRAIN: O" WEST LEVEL: 8,4'			*COMMEDCIAL PO	ND FREEBOARD = 5 F	r Max
				[]	BOARD = 3 FT MAX	
	**WEST FREEBOARD:	6.6	•	SAMPLER: Bass		
lt	WEST UNDERDRAIN:			DATE: $7/9/09$	/ [C170M	
Ľ		العصيصي مستعمل المستعمل المستعمل				

WEEKLY POND INSPECTION

7/9

CROW BUTTE RESOURCES, INC. WEEKLY EVAPORATI. POND UNDERDRAIN ANALYSIS


CO	OMMERCIAL PONDS	UNDERDRAIN WATER DEPTH / INCHES	METER READING	TEMP °C	CONDUCTIVITY µmhos/cm	LAB RESULTS µmhos/cm
	POND LEVEL	9,31		27.1		
1	*FREEBOARD	7.7'				·····
PONI Depth =	NE UNDEDDDADI	0		·{		
POND	NM UNDERDRAIN	0				
D #		4	69.7ms	14.8		· · · · · · · · · · · · · · · · · · ·
feet	SE UNDERDRAIN	0				
	SM UNDERDRAIN	0				
	SW UNDERDRAIN	1	64.4ms	16.8		
	POND LEVEL	9.8'	· · · · · · · · · · · · · · · · · · ·	28.4		
5	*FREEBOARD	7. 7'				
PO Depth	NE UNDERDRAIN	4				
Z	NM UNDERDRAIN	<u>ل</u>	19.6ms	12.4		
# 1	NW UNDERDRAIN	5				
3 5 fe	SE UNDERDRAIN	0				
et	SM UNDERDRAIN	4				
L	SW UNDERDRAIN	le l	517 US	13.7		
	POND LEVEL	4.5'		26.3		
b	*FREEBOARD	13.0'				
PO Depth	NE UNDERDRAIN	17	99.5 MS	21.6	· · ·	
	NM UNDERDRAIN	20	102.6 ms	1.7.5		·
D # 4 17.5 feet	NW UNDERDRAIN	17	121.6 ms	239	<u> </u>	
4 fee	SE UNDERDRAIN	20	94.2 ms	21.6		
et	SM UNDERDRAIN	_31	103.9 MS	15.6		
	SW UNDERDRAIN	43	123.6 MS	20.9		
		ELS (Depth = 15 ft)		REMARKS: P	last Wase 25.	.5 ~ .
	EAST LEVEL: 8 **EAST FREEBOARD: 7-0 EAST UNDERDRAIN: 2.5 WEST LEVEL: 8.4 for the second se					
				Done Mo		
					OND FREEBOARD = 5 F	T MAX
					$\underbrace{\text{EBOARD} = 3 \text{ FT MAX}}_{1}$	
				SAMPLER: Baso-Petton		
				DATE: 7-16-09		

12, 7/2,

107 revised

CROW B WEEKLY EVAPORATE. POND UNDERDRAIN ANALYSIS

C	OMMERCIAL PONDS	UNDERDRAIN WATER DEPTH / INCHES	METER READING	TEMP °C	CONDUCTIVITY µmhos/cm	LAB RESULTS µmhos/cm	
	POND LEVEL	9.3'		28.4			
	*FREEBOARD	7.7'					
POP	NE UNDERDRAIN	0					
POND	NM UNDERDRAIN	0					
1 1 #	NW UNDERDRAIN	2					
1 feet	SE UNDERDRAIN	0					
	SM UNDERDRAIN	0					
	SW UNDERDRAIN		<u></u>				
 -	POND LEVEL	9.7		30			
9	*FREEBOARD	78					
PON Depth =	NE UNDERDRAIN	4					
POND #	NM UNDERDRAIN	7	20 26 ms	12.6			
ID # 3 17.5 feet	NW UNDERDRAIN	<u>ح</u>					
3 fee	SE UNDERDRAIN	0			· · · · · · · · · · · · · · · · · · ·		
	SM UNDERDRAIN	ц					
ÍL	SW UNDERDRAIN	7	544 45	i 4.8			
[[POND LEVEL	4.4		28.7			
U	*FREEBOARD	13.1				·····	
PO Depth	NE UNDERDRAIN	17	115.9 m.S	227			
1 2	NM UNDERDRAIN	19	105.1 M-S	18:2			
	NW UNDERDRAIN		123.1 ms	31.4			
4 fee	SE UNDERDRAIN	22	976 M5	24.3			
Ħ	SM UNDERDRAIN	31	101.4 ms	17.1			
	SW UNDERDRAIN	14	121.8 ms	22			
		ELS (Depth = 15 ft)		REMARKS: 7	2.C PLANT DIS	charge	
	EAST LEVEL: 7.9'						
	**EAST FREEBOARD: 2						
	EAST UNDERDRAIN:				POND FREEBOARD = 5 F	<u>T MAX</u>	
	WEST LEVEL: 8,4 '			** R&D POND FREEBOARD = 3 FT MAX			

SAMPLER: RULIN

DATE: 7-23-09

WEEKLY POND INSPECTION

*WEST FREEBOARD: 6.6

WEST UNDERDRAIN:

CROW BUTTE RESOURCES, INC. WEEKLY EVAPORATI POND UNDERDRAIN ANALYSIS

С	OMMERCIAL PONDS	UNDERDRAIN WATER DEPTH / INCHES	METER READING	TEMP °C	CONDUCTIVITY µmhos/cm	LAB RESULTS µmhos/cm
	POND LEVEL	9.5	8	1.25		
	*FREEBOARD	7.5				
POP	NE UNDERDRAIN	0				
$\frac{POND}{POND}$	NM UNDERDRAIN	0				
= 17		2	· · · · · · · · · · · · · · · · · · ·			
D # 1 17 feet	SE UNDERDRAIN	0				
	SM UNDERDRAIN	\bigcirc				
	SW UNDERDRAIN	2				
	POND LEVEL	9.6		23.4		
	*FREEBOARD	7.9'				
PON Depth =	NE UNDERDRAIN	4		1	1	
POND #	NM UNDERDRAIN	7	20.8 ms	12.9		
D # 3 17.5 feet	NW UNDERDRAIN	5				
5 fe	SE UNDERDRAIN	0				
E.	SM UNDERDRAIN	4				
	SW UNDERDRAIN	7 . 1	60445	14.8		
	POND LEVEL	4.5		23		
Ð	*FREEBOARD	13.0				
epti	NE UNDERDRAIN	17	116.04 MS	22,9		
POND # 4 Depth = 17.5 feet	NM UNDERDRAIN	14	105.7 ms	18.4		· · ·
D #	NW UNDERDRAIN	18	123.9 ms	22		
fee 4	SE UNDERDRAIN	22	97.1ms	23.1	· · · · · · · · · · · · · · · · · · ·	
l ^u	SM UNDERDRAIN	27	113.9 ms	18.5		
	SW UNDERDRAIN	14	10.7 ms	21.2		
		TELS (Depth = 15 ft)		REMARKS: P	ont wasto 27	
	EAST LEVEL: 7,9' **EAST FREEBOARD: 7,1' EAST UNDERDRAIN: 2,5			ļ		
					$\frac{\text{OND FREEBOARD} = 5 \text{ F}}{1000 \text{ F}}$	T MAX
		.5			$\frac{\text{EBOARD} = 3 \text{ FT MAX}}{2}$	
	**WEST FREEBOARD: 6.5			SAMPLER: BOS	a second a second s	
	WEST UNDERDRAIN	: ()		DATE: 7-30-0	9	

/ POND INSPECTION

107 -evised

>/=

CROW E RESOURCES, INC. WEEKLY EVAPORATION POND UNDERDRAIN ANALYSIS

C	OMMERCIAL PONDS	UNDERDRAIN WATER DEPTH / INCHES	METER READING	TEMP °C	CONDUCTIVITY µmhos/cm	LAB RESULTS µmhos/cm
	POND LEVEL	9.41		23.8		
∦	*FREEBOARD	2.1.1				· · · · · · · · · · · · · · · · · · ·
Depth	NE UNDERDRAIN	0				· · · · · · · · · · · · · · · · · · ·
ronu	NM UNDERDRAIN	0				
11 #	NW UNDERDRAIN	2				
feet	SE UNDERDRAIN	0				
	SM UNDERDRAIN	0				
	SW UNDERDRAIN	2				
	POND LEVEL	9.4'		21.8		
U	*FREEBOARD	8.11				
PO Depth	NE UNDERDRAIN	4				
1 Z	NM UNDERDRAIN	7	21.3 ms	127	· · · · · · · · · · · · · · · · · · ·	
#	INW UNDERDRAM	5			· · · · · · · · · · · · · · · · · · ·	
3 5 feet	SE UNDERDRAIN	0				
e	SM UNDERDRAIN	4				
	SW UNDERDRAIN	7	610 45	14.7		
	POND LEVEL	4.6		24.5		1
Ð	*FREEBOARD	12.9'				
Po	NE UNDERDRAIN	17	116.7 ms	22.7	·	
POND pth = 17	NM UNDERDRAIN	19	106.1 ms	1.84		
D #	NW UNDERDRAIN	18	124.3 ms	21.9		
POND # 4 Depth = 17.5 feet	SE UNDERDRAIN	22	97.7 ms	/8.5		
et .	SM UNDERDRAIN	31	122.0 ms	20./		
	SW UNDERDRAIN	14	125.8 ms	22,3		
	R & D POND LEV	ELS (Depth = 15 ft)		REMARKS: 2	6° Wasto Tr	emp
	EAST LEVEL: 7.8			Veri	Windy	
	**EAST FREEBOARD:	7.2'		· J		
Í	EAST UNDERDRAIN:	25		*COMMERCIAL PO	ND FREEBOARD = 5 F	ГМАХ
	WEST LEVEL: 8.4			** R&D POND FREE	BOARD = 3 FT MAX	
	**WEST FREEBOARD: 6.6			SAMPLER: BOOS		
1	WEST UNDERDRAIN:	0		DATE: 8-6-09		

WEEKLY POND INSPECTION

OHOTO

CROW BUTTE RESOURCES, INC. WEEKLY EVAPORATA.... POND UNDERDRAIN ANALYSIS

C	OMMERCIAL PONDS	UNDERDRAIN WATER DEPTH / INCHES	METER READING	TEMP °C	CONDUCTIVITY µmhos/cm	LAB RESULTS µmhos/cm
	POND LEVEL	9.2'		27.1		
	*FREEBOARD	7.8				· · <u>· · · · · · · · · · · · · · · · · </u>
$\frac{POND}{Depth} = 1$		0				· · · · · · · · · · · · · · · · · · ·
	NM UNDERDRAIN	0				······································
= 17		2				·····
1 feet	SE UNDERDRAIN	0				······································
-	SM UNDERDRAIN	0				
	SW UNDERDRAIN					
	POND LEVEL	9.2'		24.4		
.	*FREEBOARD	\$ 9.3				
PO Depth	NE UNDERDRAIN	4				
Z	NM UNDERDRAIN	6	19.4 ms	14.6		
		5				
3 5 feet	SE UNDERDRAIN	0				
et	SM UNDERDRAIN	3				
	SW UNDERDRAIN	6	600.05	16,1		
[POND LEVEL	4,81		29.9		
ы	*FREEBOARD	12.7'				
PO Depth	NE UNDERDRAIN	16	112,3 ms	16.2		
	NM UNDERDRAIN	19	101.7 ms	,25,5		
D#4 17.5	NW UNDERDRAIN	17	118:6 ms	24.0		
4 5 feet	SE UNDERDRAIN	22	91.8 ms	23.3		
et	SM UNDERDRAIN	21	114,7 ms	19,7		
	SW UNDERDRAIN	16	121,4 ms	21,9		
					~	
		TELS (Depth = 15 ft)		REMARKS:	Pond Waste Temp.	a4°c
	EAST LEVEL:	7.7		ļ		
	**EAST FREEBOARD: 7,3			L		
	EAST UNDERDRAIN:			//	L POND FREEBOARD = 5 F	T MAX
	WEST LEVEL: 8.5		•	** R&D POND FREEBOARD = 3 FT MAX		
	**WEST FREEBOARD:	6-5		1)	ass /Pelten	
	WEST UNDERDRAIN	0		DATE: $S/13/0$	<u></u>	
				• •]

Y POND INSPECTION

107 Revised Un 8/13/2

CROW TE RESOURCES, INC. WEEKLY EVAPORATION POND UNDERDRAIN ANALYSIS

ł	ALYSIS		Alth
	CONDUCTIVITY µmhos/cm	LAB RESULTS µmhos/cm	
1			11

C	OMMERCIAL PONDS	UNDERDRAIN WATER DEPTH / INCHES	METER READING	TEMP °C	CONDUCTIVITY µmhos/cm	LAB RESULTS µmhos/cm
	POND LEVEL	9.1		20.1	1	
	*FREEBOARD	7.9				
Depth	NE UNDERDRAIN	0				
ronu	NM UNDERDRAIN	0				
ש # 17	NW UNDERDRAIN	2				
1 feet	SE UNDERDRAIN	0				
	SM UNDERDRAIN	0				
	SW UNDERDRAIN					
	POND LEVEL	9:		19.8		
5	*FREEBOARD	8.5				
PO Depth	NE UNDERDRAIN	4				
$\frac{POND}{pth = 1}$	NM UNDERDRAIN	6	18.7 ms	14.3		
D#3	NW UNDERDRAIN	5				
3 5 feet	SE UNDERDRAIN	0				
et	SM UNDERDRAIN	3				
	SW UNDERDRAIN	6	600 00	15.7		
	POND LEVEL	5;		20.2		
Ð	*FREEBOARD	12.5				
PON Depth =	NE UNDERDRAIN	15	112.0 ms	15.8		
POND pth = 1'	NM UNDERDRAIN	19	100.6 ms	24.1		·
D # 4 17.5 feet	NW UNDERDRAIN	17	118.1 ms	22.9	· · · · · · · · · · · · · · · · · · ·	
fee 4	SE UNDERDRAIN	2:2	91.2 ms	22.4	·	
et	SM UNDERDRAIN	21	113.4 ms	19'		
	SW UNDERDRAIN	<u>15</u>	119.7 ms	20.6		
				DEMARKS.		
		ELS (Depth = 15 ft)		REMARKS: Pla	NT WULL C	Soc
}	EAST LEVEL: $7.7'$ **EAST FREEBOARD: $7.3'$ EAST UNDERDRAIN: 2 WEST LEVEL: $8.4'$ **WEST FREEBOARD: $6.6'$ WEST UNDERDRAIN: \bigcirc				uindu	
				And in case of the local division of the loc	$\frac{1}{1} \frac{1}{1} \frac{1}$	TMAX
)}	EBOARD = 3 FT MAX	
				SAMPLER: BOLD		
				DATE: 8 - 20 - 0		
Į						

CROW BU⁺⁻⁻ ⁵ RESOURCES, INC. WEEKLY EVAPORATI

C	OMMERCIAL PONDS	UNDERDRAIN WATER DEPTH / INCHES	METER READING	TEMP °C	CONDUCTIVITY µmhos/cm	LAB RESULTS µmhos/cm
	POND LEVEL	9.1		ale, T		
	*FREEBOARD	7.9-				
POP	NE UNDERDRAIN	0				
POND	NM UNDERDRAIN	0				
D #		2	· · · · · · · · · · · · · · · · · · ·			
1 feet	SE UNDERDRAIN	0			· ·	
	SM UNDERDRAIN	0				
Í	SW UNDERDRAIN					
	POND LEVEL	8,9		29,3		
U	*FREEBOARD	8.6				
PO Depth	NE UNDERDRAIN	6	748 us	16.4		
Z	NM UNDERDRAIN	4				
#	NW UNDERDRAIN	0				
3 5 feet	SE UNDERDRAIN	0				
8	SM UNDERDRAIN	3				
	SW UNDERDRAIN	6	630 us	16,9		
	POND LEVEL	5,2		25,6		
U	*FREEBOARD	12.3				
PO Depth	NE UNDERDRAIN	7	31.75 ms	22.4		
POND $pth = 1'$	NM UNDERDRAIN	13	99,2 ms	20.3		
ND # 4 = 17.5 feet	NW UNDERDRAIN)4	117.8 mg	22.2		
4 5 fee	SE UNDERDRAIN	<u> </u>	47,2 mg	23,9		
ст Г	SM UNDERDRAIN	22	116.8 ms	20.0		
	SW UNDERDRAIN	14	121.9 ms	21.9		
ل <u>یہ۔۔۔۔</u> ا						
		$\frac{\text{ELS (Depth = 15 ft)}}{\sigma 2^{\prime}}$		REMARKS: Po	ed maste in	Vont 28°C
	EAST LEVEL: 7.8' **EAST FREEBOARD: 7.2' EAST UNDERDRAIN: 2"			 		
				<pre>//</pre>	$\frac{\text{OND FREEBOARD} = 5 \text{ F}}{\text{FREEBOARD} = 2 \text{ FT} MAX}$	
	WEST LEVEL:	8.5			$\frac{\text{CEBOARD} = 3 \text{ FT MAX}}{70}$	
	**WEST FREEBOARD:	6.5'		SAMPLER:		
	WEST UNDERDRAIN:	<u>0"</u>		DATE: 8/27/	29	
					·	

8%

107 Revised

CROW E RESOURCES, INC. WEEKLY EVAPORATION POND UNDERDRAIN ANALYSIS

С	OMMERCIAL PONDS	UNDERDRAIN WATER DEPTH / INCHES	METER READING	TEMP °C	CONDUCTIVITY µmhos/cm	LAB RESULTS µmhos/cm
	POND LEVEL	9'		24.1		
	*FREEBOARD	8.0				
Depth	NE UNDERDRAIN	0				
row	NM UNDERDRAIN	0				
`J #	NW UNDERDRAIN	2				
feet	SE UNDERDRAIN	0			· · · · · · · · · · · · · · · · · · ·	
	SM UNDERDRAIN	.0				·····
	SW UNDERDRAIN					
	POND LEVEL	8.5'		21,9		
U	*FREEBOARD	9.0'				
Po	NE UNDERDRAIN	6	740 05	16.0		
Ż	NM UNDERDRAIN	3	· · · · · · · · · · · · · · · · · · ·			
#	NW UNDERDRAM	0				
3 5 fee	SE UNDERDRAIN	0	······································			
ļ,	SM UNDERDRAIN	4	·		L	
	SWUNDERDRAIN	10	632 US	16.2		
1	POND LEVEL	4.9'		22.7	· · ·	
D	*FREEBOARD	12.6				
PO Depth	NE UNDERDRAIN	10	51.2 ms	223		
	NM UNDERDRAIN	13	111,4 ms	19,8		·····
D#4 17.5	NW UNDERDRAIN	14	118,7 ms	212		
4 feet	SE UNDERDRAIN	9	45.3 ms	22,4		
, if	SM UNDERDRAIN	21	117.2 ms	19.1		
	SW UNDERDRAIN	14	119,9 ms	2015		
	,)]
	R & D POND LEV				Nt Waste 26"	
	EAST LEVEL:	7.6	• •	Dove month	ly + Pond con	tents
	**EAST FREEBOARD: 7.4					
	EAST UNDERDRAIN:	2"			$\frac{1}{2} \frac{1}{2} \frac{1}$	I MAX
	WEST LEVEL:	8.5'			EBOARD = 3 FT MAX	
	**WEST FREEBOARD:	6.5		SAMPLER: Da		
	WEST UNDERDRAIN:			DATE: 9/3/0	9	
						I

Ě.

Jul 07 n

CROW BY "E RESOURCES, INC. WEEKLY EVAPORATION POND UNDERDRAIN ANALYSIS

СС	OMMERCIAL PONDS	UNDERDRAIN WATER DEPTH / INCHES	METER	TEMP °C	CONDUCTIVITY	LAB RESULTS
L			READING		µmhos/cm	µmhos/cm
	POND LEVEL	8.8'		23.8		
Ð	*FREEBOARD	8.2'				······································
PO) Depth	NE UNDERDRAIN	0				
1 3	NM UNDERDRAIN	0				
0 # 1 17 feet	INW UNDERDRAIN	2	·			
eet	SE UNDERDRAIN	0			· · · · · · · · · · · · · · · · · · ·	<u> </u>
	SM UNDERDRAIN					· · · · · · · · · · · · · · · · · · ·
	SW UNDERDRAIN	1/				
	POND LEVEL	8.6'		22.3		·
De	*FREEBOARD	8.9'				······································
PO Depth	NE UNDERDRAIN	6	731us	16.8		
١Ž	NM UNDERDRAIN	3	·		<u> </u>	
#	NW UNDERDRAIN	0				
3 Sfeet	SE UNDERDRAIN	0				
¥.	SM UNDERDRAIN	4				<u></u>
	SW UNDERDRAIN	6	<u>62545</u>	17.6	<u> </u>	
	POND LEVEL	5.4'		24.7	ļ	
D D	*FREEBOARD	12.1				
entl P	NE UNDERDRAIN	10	67. 2ms	23.1		
POND # 4 Denth = 17 5 feet	NM UNDERDRAIN	14	104.4 ms	20.4	<u> </u>	
15 #	NW UNDERDRAIN	10	120.6 mg	7.17		
f 4	SE UNDERDRAIN	8	48.78 ms	25.2	· · · · · · · · · · · · · · · · · · ·	
¥	SM UNDERDRAIN	15	116.4 ms	21.8	· · · ·	
	SW UNDERDRAIN	14	61.9 mg	21.)		
 17						
		TELS (Depth = 15 ft)		REMARKS: PI	ont waste tem	p 25
	EAST LEVEL: 7.4' **EAST FREEBOARD: 7.6' EAST UNDERDRAIN: 2'' WEST LEVEL: 8,5'					
			·	<u> </u>		
				the second se	$\mathbf{OND} \mathbf{FREEBOARD} = 5 \mathbf{F}$	T MAX
					EBOARD = 3 FT MAX	
	**WEST FREEBOARD:			SAMPLER: Bass		
l l	WEST UNDERDRAIN	:0		DATE: 9-10-0	9	

e. E

Jul 07 Revised

91 IC

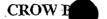
CROW [°]E RESOURCES, INC.

WEEKLY EVAPORATION POND UNDERDRAIN ANALYSIS

C	OMMERCIAL PONDS	UNDERDRAIN WATER DEPTH / INCHES	METER READING	TEMP °C	CONDUCTIVITY µmhos/cm	LAB RESULTS µmhos/cm
	POND LEVEL	8.7'		. 21.4		
	*FREEBOARD	4.3'				
PONI Depth =	NE UNDERDRAIN	0				
POND epth = 1	NM UNDERDRAIN	0				
15 #	NW UNDERDRAIN	2_	· · ·			
feet	SE UNDERDRAIN	0			· · · · · · · · · · · · · · · · · · ·	
	SM UNDERDRAIN	1				
<u> </u>	SW UNDERDRAIN	<u> </u>				
	POND LEVEL	8.11		19.9		
5	*FREEBOARD	9.4				
PON Depth =	NE UNDERDRAIN	6	72600	16.3		
POND pth = 1	NM UNDERDRAIN	3	-			
D#3	NW UNDERDRAIN	0				
3 5 feet	SE UNDERDRAIN	0				
et	SM UNDERDRAIN	4				
<u> </u>	SW UNDERDRAIN	6	630 UD	17.2		
	POND LEVEL	5.6'		21.0		
Ð	*FREEBOARD	11.9'				
P	NE UNDERDRAIN	12	65.1 ms	22.8		
POND # 4 Depth = 17.5 feet	NM UNDERDRAIN	10	103.7 MS	20.		· ·
D# 17.:	NW UNDERDRAIN	14	119.0 ms	21,4		
fe 4	SE UNDERDRAIN	13	47.8 ms	22	·	
et	SM UNDERDRAIN	8	115.3 MS	21.2		
]	SW UNDERDRAIN	15	60 bms	20.3		
[ELS (Depth = 15 ft)		REMARKS: Pla	nt waste 21	ρ°
	EAST LEVEL: 7,3			J		
	**EAST FREEBOARD: 7.7'					
ļ	EAST UNDERDRAIN: 2				$\mathbf{DND} \mathbf{FREEBOARD} \approx 5 \mathbf{F}$	T MAX
	WEST LEVEL: 8,5				EBOARD = 3 FT MAX	
	**WEST FREEBOARD: 6.5			SAMPLER: Bass		
	WEST UNDERDRAIN:			DATE: 9-17-0	g	

WEEKLY POND INSPECTION

Jul 07 Revised 1


CROW BU" "E RESOURCES, INC. WEEKLY EVAPORATION POND UNDERDRAIN ANALYSIS

POND LEVEL B_{LC} L_{LC} <	C	OMMERCIAL PONDS	UNDERDRAIN WATER DEPTH / INCHES	METER READING	TEMP °C	CONDUCTIVITY µmhos/cm	LAB RESULTS µmhos/cm		
Upper *FREEBOARD \hat{g}_{g}' NE UNDERDRAIN Q Q NW UNDERDRAIN Q SE UNDERDRAIN Q SW UNDERDRAIN Q SW UNDERDRAIN Q YOU SUNDERDRAIN SW UNDERDRAIN Q YOU SW UNDERDRAIN SW UNDERDRAIN Q SW U		POND LEVEL							
Open To NE UNDERDRAIN O NW UNDERDRAIN O NW UNDERDRAIN O NW UNDERDRAIN O SW SW SW UNDERDRAIN I I I NW UNDERDRAIN I I I SW UNDERDRAIN I I I SW UNDERDRAIN I I I SW UNDERDRAIN I I I I SW UNDERDRAIN I I I I I SW UNDERDRAIN I I I I I I I I I I I I I I							······································		
$ \begin{array}{c} \begin{array}{c} & \\ & \\ & \\ & \\ \hline \\ & \\ &$	Dep								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	is g	NM UNDERDRAIN	المسيدية المساجرة المساجر والمستحد المستحد الم	<u></u>					
Image: Set UNDERDRAIN Image: Set UNDERDRAIN <thimage: set="" th="" underdrain<=""> Image: Set UNDERD</thimage:>	= 17	NW UNDERDRAIN	2	· · · · · · · · · · · · · · · · · · ·		·			
SM UNDERDRAIN / SW UNDERDRAIN / POND LEVEL β' **REEBOARD $7.5'$ NE UNDERDRAIN ϕ NW UNDERDRAIN ϕ NW UNDERDRAIN ϕ NW UNDERDRAIN ϕ NW UNDERDRAIN ϕ SE UNDERDRAIN ϕ SW UNDERDRAIN ϕ NW UNDERDRAIN ϕ NW UNDERDRAIN ϕ NW UNDERDRAIN ϕ NW UNDERDRAIN ϕ SW UNDERDRAIN ϕ SW UNDERDRAIN ϕ SW UNDERDRAIN ϕ ϕ ϕ SW UNDERDRAIN									
POND LEVEL g_1' $I_{0,1}G_1'$ *FREEBOARD $9.5'$ $16_{10}G_1'$ NE UNDERDRAIN ϕ 71445 NW UNDERDRAIN g_1 NW UNDERDRAIN 0 SE UNDERDRAIN 0 SW UNDERDRAIN ϕ 0 0 SW UNDERDRAIN 10 <	~	SM UNDERDRAIN							
$^{\bullet}$ FREEBOARD $9.5'$ 1.4 $^{\bullet}$ NE UNDERDRAIN ϕ 71445 16 NM UNDERDRAIN 3 16 NW UNDERDRAIN 0 SE UNDERDRAIN 0 SW UNDERDRAIN ϕ SW UNDERDRAIN ϕ ϕ $12.0'$ NE UNDERDRAIN $12.0'$ NE UNDERDRAIN $12.0'$ NE UNDERDRAIN $12.0'$ NE UNDERDRAIN 10 $12.0'$ $15.6'$ NE UNDERDRAIN 10 $12.0'$ $15.6'$ NE UNDERDRAIN 10 $12.0'$ $10.2.8$ NE UNDERDRAIN 10 $12.0'$ 19.7 NE UNDERDRAIN 14 $12.0'$ 19.7 SE UNDERDRAIN $12.0'$ NW UNDERDRAIN $12.0'$ SK UNDERDRAIN $12.0'$ $12.5 \pm 20.4'$ 19.7 SE UNDERDRAIN $12.0'$ $12.5 \pm 20.4'$ 19.7 SE UNDERDRAIN $12.0'$ $12.5 \pm 20.4'$ 19.7 SE UNDERDRAIN 10 $12.4 \pm 20.4'$ $19.4'$ SW UNDERDRAIN $2.4''$ <tr< td=""><td></td><td>SW UNDERDRAIN</td><td>/</td><td></td><td></td><td></td><td></td></tr<>		SW UNDERDRAIN	/						
$^{\circ}$ FREEBOARD $9.5'$ $1/4$ $1/4$ NE UNDERDRAIN 6 7.14 0.5 $1/6$ NM UNDERDRAIN 3 $1/4$ 0.5 $1/6$ NW UNDERDRAIN 0 $1/6$ $1/6$ SE UNDERDRAIN 0 $1/6$ $1/6$ SW UNDERDRAIN 0 $1/6$ $1/6$ SW UNDERDRAIN 0 $1/6$ $1/6$ SW UNDERDRAIN $1/6$ $1/6$ $1/6$ POND LEVEL $5.4'$ $1/6$ $1/6$ NE UNDERDRAIN $1/0$ 63.2 m_5 20.6 NE UNDERDRAIN $1/0$ 63.2 m_5 $1/8.8$ NW UNDERDRAIN $1/1$ $1/02.8$ m_5 $1/8.8$ NW UNDERDRAIN $1/2$ 38.95 m_5 $1/8.5$ SE UNDERDRAIN $1/2$ 38.95 m_5 $1/8.4$ SW UNDERDRAIN $1/2$ $1/6.4'$ m_5 $1/9.4'$ WEST LEVEL: $2.5'$ $1/6.4'$ $1/9.4''$ WEST LEVEL: $2.5''$ $1/6.4''$ $1/9.4'''$ WEST FREEBOARD $2.5''$ $1/6.4'''$ $1/9.4''''$ WEST FREEBOARD $2.5''''''''''''''''''''''''''''''''''''$		POND LEVEL	8'	· · · · · · · · · · · · · · · · · · ·	16.81	1			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	6	*FREEBOARD	9.5						
$\frac{1}{2} \underbrace{\sum_{i=1}^{NM} UNDERDRAIN}_{i=1} \underbrace{\sum_{i=1}^{NM} UNDERDRAIN}_{i=1} \underbrace{O}_{i=1} \underbrace$	ept. P	NE UNDERDRAIN	4	71445	16				
$ \begin{array}{c} \begin{array}{c} & & \\ \hline \\ \hline$	II Ż	NM UNDERDRAIN	.3						
FerSE UNDERDRAIN \bigcirc SM UNDERDRAIN \checkmark \checkmark SW UNDERDRAIN \checkmark \checkmark SW UNDERDRAIN \checkmark \checkmark \checkmark SW UNDERDRAIN \checkmark \checkmark \checkmark \checkmark \checkmark SE UNDERDRAIN \checkmark \checkmark SE UNDERDRAIN \checkmark \checkmark SE UNDERDRAIN \checkmark \checkmark SE UNDERDRAIN \checkmark \checkmark SW UNDERDRAIN \checkmark \checkmark SW UNDERDRAIN \checkmark \checkmark SW UNDERDRAIN \land \checkmark \checkmark \land \checkmark \land \checkmark \checkmark \land \land \land \checkmark \land	12 #	NW UNDERDRAIN	0						
SM UNDERDRAIN 7 SW UNDERDRAIN 6 $6244s$ 16.3 POND LEVEL $5\pi^{4}$ 12.0° 15.6° * FREEBOARD 12.0° 15.6° 15.6° * FREEBOARD 12.0° 12.0° 15.6° * FREEBOARD 12.0° 12.0° 15.6° NE UNDERDRAIN 10° $63.2 ms$ 20.4° NW UNDERDRAIN 10° 120.4° $75.18.8$ NW UNDERDRAIN $1/2$ $38.95 ms$ 19.7 SE UNDERDRAIN 12.5° 18.5 19.7 SM UNDERDRAIN 12.5° 18.5 18.5 SM UNDERDRAIN 10° 115.1° 19.4° 19.4° SW UNDERDRAIN 10° 115.1° 19.4° 19.4° SW UNDERDRAIN 10° 115.1° 19.4° 10° R & D POND LEVELS (Depth = 15 ft) Remarks: Plant waste tamp 24^{\circ} *Commercial pond freeBoard = 5 FT Max **EAST FREEBOARD: 7.7° *Commercial pond freeBoard = 3 FT Max *Red PONd FreeBoard = 3 F	3 5 fee	SE UNDERDRAIN	0						
POND LEVEL $5_{0}c_{1}^{\prime}$ $15_{0}c_{1}^{\prime}$ *FREEBOARD $i2.0^{\prime}$ *NE UNDERDRAIN $i0$ $63.2 m_{s}$ NM UNDERDRAIN $i0$ $63.2 m_{s}$ NW UNDERDRAIN $i0$ $63.2 m_{s}$ NW UNDERDRAIN $i1/2$ $8m_{s}$ SE UNDERDRAIN $i2$ $38.95 m_{s}$ SW UNDERDRAIN $i2$ $i38.4$ SW UNDERDRAIN $i2$ SW UNDERDR	1 ^{c4}	SM UNDERDRAIN	4	·					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	L	SW UNDERDRAIN	<u>k</u>	624US	16.3				
$\frac{1}{2} \frac{1}{2} \frac{1}$		POND LEVEL	5.5'		15.6				
SM UNDERDRAIN B <	b	*FREEBOARD	12.0						
SM UNDERDRAIN B <	P	NE UNDERDRAIN	10	63.2 ms	204				
SM UNDERDRAIN B <		NM UNDERDRAIN	10	102.8 ms	/8.8				
SM UNDERDRAIN B <	D #	NW UNDERDRAIN	14		19.7				
SM UNDERDRAIN B <	4 fee	SE UNDERDRAIN	وبالأحصاب والمراجع والمستعديات والمتكاف ويهوهم والمتعادي والمتعاد والمراجع والمتعاد والمتعاد والمتعاد	_38.95 ms_					
R&D POND LEVELS (Depth = 15 ft) EAST LEVEL: 7.3' **EAST FREEBOARD: 7.7' EAST UNDERDRAIN: Z WEST LEVEL: 8.5' **WEST FREEBOARD: 6.5'	¥.		8	604 ms_					
EAST LEVEL: 7.3 ' **EAST FREEBOARD: 7.7' EAST UNDERDRAIN: Z *COMMERCIAL POND FREEBOARD = 5 FT MAX *EAST LEVEL: 8.5' **WEST FREEBOARD: 6.5'		SW UNDERDRAIN	10	115.1 MS	<u> </u>				
EAST LEVEL: 7.3' **EAST FREEBOARD: 7.7' EAST UNDERDRAIN: Z WEST LEVEL: 8.5' **WEST FREEBOARD: 6.5' SAMPLER: Badd - Petton	ſ								
**EAST FREEBOARD: 7.7' EAST UNDERDRAIN: Z WEST LEVEL: 8.5' **WEST FREEBOARD: 6.5' SAMPLER: Badd - Petton					REMARKS: 2	ant waste ter	$p 24^{\circ}$		
EAST UNDERDRAIN: Z *COMMERCIAL POND FREEBOARD = 5 FT MAX WEST LEVEL: 25' ** R&D POND FREEBOARD = 3 FT MAX **WEST FREEBOARD: 6.5' SAMPLER: Badd - Petton									
WEST LEVEL: 8.5' ** R&D POND FREEBOARD = 3 FT MAX SAMPLER: Badd - Petton									
**WEST FREEBOARD: 6.5' SAMPLER: Bado-Petton		······································					T MAX		
WEST UNDERDRAIN: () DATE: 9-24-09									
		WEST UNDERDRAIN:	: (¹		DATE: 9 -24-	09			

LY POND INSPECTION

Jul 07 Revised 9/2

ری ۲۰۰۰ ۲۰۰۰ رو ۲ wi RATE = 20. M 10/26

RESOURCES, INC. WEEKLY EVAPORATION POND UNDERDRAIN ANALYSIS

C	OMMERCIAL PONDS	1	AIN WATER INCHES	MET		TEMP °C		CONDUCTIVITY µmhos/cm	LAB RESULTS µmhos/cm	
	POND LEVEL	8,6	31.77	AF		1. 204	<u> </u>			
	*FREEBOARD	8.4		1						
Depth =	NE UNDERDRAIN	0								
r or r	NM UNDERDRAIN	0								
	NW UNDERDRAIN	2"		•						
feet	SE UNDERDRAIN	0								
	SM UNDERDRAIN	. 1 "								
	SW UNDERDRAIN				· · · ·					
	POND LEVEL	र्थ'	28.46	R F		/8.3				
6	*FREEBOARD	9.5'								
POND # 3 Depth = 17.5 feet	NE UNDERDRAIN	(e"		730	us	16.1				
$\frac{\text{POND}}{\text{pth}} = 1$	NM UNDERDRAIN	3		-						
D #	NW UNDERDRAIN	0"								
5 fe	SE UNDERDRAIN	<u>O</u> " ·								
EF .	SM UNDERDRAIN	4*								
<u> </u>	SW UNDERDRAIN	<u> </u>	<u> </u>	6246	1 <u>5</u>	1				
	POND LEVEL	5.51	17.47	¥F		19.8				
U	*FREEBOARD	12.0'			. <u></u>	l				
POND #4 Depth = 17.5 feet	NE UNDERDRAIN	12"		6.59	ms	22.7				
POND	NM UNDERDRAIN	10"		105.7.	ms	20				
D#	NW UNDERDRAIN	14"		119.4	ms	21.2				
5 fee	SE UNDERDRAIN	14"		483	ms	21.9				
¥	SM UNDERDRAIN	9"		116.1	ms	21.				
	SW UNDERDRAIN			<u> </u>	<u>ms</u>	20.1				
	R & D POND LEV		(5 ft)			REMARKS:	Plant	waste te	mp_{25}	
	EAST LEVEL: $7.3'$ **EAST FREEBOARD: $5.5'$ $7.7' - WAU$ EAST UNDERDRAIN: 7					Viery	wind	4 for le	velo.	
			N		(0		<u> </u>		
					*COMMERCIAL POND FREEBOARD = 5 FT MAX					
	WEST LEVEL: 8,5			,	12	** R&D POND FREEBOARD = 3 FT MAX				
	**WEST FREEBOARD: `		<i>JU</i>	SAMPLER: Briss-Rilton						
	WEST UNDERDRAIN:	0				DATE: 10-1-	-09		- <u></u>	

WEEKLY POND INSPECTION

Jul 07

.

CROW BI E RESOURCES, INC. WEEKLY EVAPORATION POND UNDERDRAIN ANALYSIS

С	OMMERCIAL PONDS	UNDERDRAIN WATER DEPTH / INCHES	METER READING	TEMP °C	CONDUCTIVITY µmhos/cm	LAB RESULTS µmhos/cm			
	POND LEVEL	87		9.4		· · · · · · · · · · · · · · · · · · ·			
	*FREEBOARD	8.3							
PONI Depth =	NE UNDERDRAIN	0	······································			· · · · · · · · · · · · · · · · · · ·			
$\frac{\text{POND } \#}{\text{pth} = 17}$	NM UNDERDRAIN	0							
= 17	NW UNDERDRAIN	2	· · · · · · · · · · · · · · · · · · ·						
) # 1 17 feet	SE UNDERDRAIN	0			·				
-	SM UNDERDRAIN	1							
	SW UNDERDRAIN	1							
	POND LEVEL	8.0		7.0					
6	*FREEBOARD	9.5		1					
PO Depth	NE UNDERDRAIN	6	721 US	11.1					
POND # oth = 17.	NM UNDERDRAIN	3	· · · · · · · · · · · · · · · · · · ·			· ·			
D #	NW UNDERDRAIN	0							
D#3 17.5 feet	SE UNDERDRAIN	0	**************************************						
et	SM UNDERDRAIN	4	· · · · · · · · · · · · · · · · · · ·						
	SW UNDERDRAIN	6	609 us	11.3					
	POND LEVEL	5.5		8.4					
5	*FREEBOARD	17.0							
P ept	NE UNDERDRAIN	14	6.32 ms	17,1					
POND pth = 17	NM UNDERDRAIN	13	101.0 ms	13.2					
POND # 4 Depth = 17.5 feet	NW UNDERDRAIN	13	1.10. 8 ms	14.1					
4 S fe	SE UNDERDRAIN	18	79.6 ms	11.1					
et	SM UNDERDRAIN	10	565 ms	14.2					
	SW UNDERDRAIN	14	87.7 ms	11.8					
				·					
		ELS (Depth = 15 ft)		REMARKS: 10	7.5 plants waste t	iemp			
[EAST LEVEL: 7.4				·				
	**EAST FREEBOARD:								
	EAST UNDERDRAIN: 2"				POND FREEBOARD = 5 F	T MAX			
(WEST LEVEL: 8.4'				REEBOARD = 3 FT MAX				
	**WEST FREEBOARD:			SAMPLER: Basp- Petton					
	WEST UNDERDRAIN	:0		DATE: 10-8-	99				

Jul 07

4 10%

CROW P 7 RESOURCES, INC. WEEKLY EVAPORATION POND UNDERDRAIN ANALYSIS

(e. 10/15,
 •

СС	OMMERCIAL PONDS	UNDERDRAIN WATER DEPTH / INCHES	METER READING	TEMP °C	CONDUCTIVITY µmhos/cm	LAB RESULTS µmhos/cm			
	POND LEVEL	8.8 /		9.2					
	*FREEBOARD	8.7							
PO] Depth	NE UNDERDRAIN	Ø	· ·			· · · · · · · · · · · · · · · · · · ·			
POND epth = 1	NM UNDERDRAIN	0							
D#		2				<u></u>			
1 feet	SE UNDERDRAIN	0							
~	SM UNDERDRAIN	1							
	SW UNDERDRAIN	1							
	POND LEVEL	7,9,		6.1					
۵	*FREEBOARD	9.6							
PO Depth	NE UNDERDRAIN	φ	_728 US	10.6					
I Ż	NM UNDERDRAIN	3		·		`			
17.5	NW UNDERDRAIN	0							
D # 3 17.5 feet	SE UNDERDRAIN	0							
÷	SM UNDERDRAIN	4	·····						
	SW UNDERDRAIN	· [613 40	10.7	<u> </u>	<u> </u>			
	POND LEVEL	5.51		(n.6					
	*FREEBOARD	12.0'							
PO	NE UNDERDRAIN	13	6.38ms	16.8		·			
∥ Ż	NM UNDERDRAIN	13	101.3 ms	12.6					
17 ¢	NW UNDERDRAIN	16	99.3 ms	14.2					
4	SE UNDERDRAIN	18	102.3 ms	10.6		·			
•	SM UNDERDRAIN	11	So.8 M5	14.6					
]	SW UNDERDRAIN	_//	90.1 ms	11.1	<u> </u>				
ſ	R & D POND LEV	ELS (Depth = 15 ft)	, ,	REMARKS: D	lant wasto 21	0			
			•		they	ρ			
	EAST LEVEL: 7,5' **EAST FREEBOARD: 7.5'		· .	Lone MON					
lt	EAST UNDERDRAIN:			*COMMERCIAL POND FREEBOARD = 5 FT MAX					
lt	WEST LEVEL: 8.5'			** R&D POND FREEBOARD = 3 FT MAX					
lt	**WEST FREEBOARD:			SAMPLER: Bass					
lł	WEST UNDERDRAIN			DATE: 10-15-0					

CROW BUTTE MINE

Commercial Ponds - Stage Volume Analysis

Elevation from Pond Bottom (ft)	Pond 1 Volume (AF)	Pond 3 Volume (AF)	Pond 4 Volume (AF)	Description
0.0	0.00	0.00	0.00	
0.5	0.24	0.20	0.20	•
1.0	0.98	0.80	0.80	
1.5	2.20	1.81	1.81	
2.0	3.90	3.21	3.21	
2.5	5.86	5.02	5.02	
3.0	7.85	7.04	7.04	
3.5	9.86	9.08	9.08	
4.0	11.90	11.15	11.15	
4.5	13.96	13.24	13.24	
5.0	16.05	15.33	15.33	
5.5	18.15	17.47	17.47	
6.0	20.28	19.62	19.62	
6.5	22.43	21.80	21.80	
7.0	24.61	23.99	23.99	
7.5	26.82	26.01	26.01	
8.0	29.05	28.46	28.46	
8.5	31.30	30.72	30.72	· ·
9.0	33.58	33.01	33.01	
9.5	35.88	35.32	35.32	
10.0	38.21	37.66	37.66	•
10.5	40.56	40.02	40.02	
11.0	42.93	42.40	42.40	
11.5	45.33	44.80	44.80	
12.0	47.75	47.23	47.23	Max. operating level Pond 1
12.5	50.19	49.68	49.68	Max. operating level Pond 3 & 4
13.0	52.66	52.15	52.15	
13.5	55.16	54.65	54.65	
14.0	57.67	57.18	57.18	Max. emergency level Pond 1
14.5	60.26	59.72	59.72	Max. emergency level Pond 3 & 4
15.0	62.78	62.29	62.29	
15.5	65.37	64.89	64.89	
16.0	67.99	67.51	67.51	•
16.5	70.62	70.15	70.15	
17.0	73.29	72.81	72.81	Crest of Pond 1
17.5		75.51	75.51	Crest of Pond 3 & 4

Notes: 1- The maximum storage capacity of the pond system is 117.39 acre feet (AF)

2- Normal operating freeboard level is 5.0 feet, emergency freeboard level is 3.0 feet.

`

Appendix C-3 Summary of Water Chemistry of Pond Complex

- Summary sheet of the ten samples collected
- Analytical Reports for five Pond Composite Samples from Energy Laboratories, Inc.
- Analytical Reports for five Pond Discharge Samples from Energy Laboratories, Inc.

CROW BL -- FE RESOURCES, INC.

86 Crow Butte Road

P.O. Box 169 Crawford, Nebraska 69339-0169

(308) 665-2215

(308) 665-2341 - FAX

Analyte			<u>7/22/09</u>	<u>8/06/09</u>	<u>8/20/09</u>	<u>9/08/09</u>	<u>9/24/09</u>		<u>8/06/09</u>	<u>8/20/09</u>	<u>9/08/09</u>	<u>9/24/</u>
	Units	Limit	<u>Composite</u>	Composite	<u>Composite</u>	<u>Composite</u>	<u>Composite</u>	<u>Discharge</u>	Discharge	<u>Discharge</u>	Discharge	<u>Dischar</u>
Alkalinity, Total Carbonate	mg/1	1	3130	3260	3490	3610	3520	1230	630	348	219	1
Carbonate as CO3	mg/l	1	821	885	971	991	972	ND	ND	ND	ND	<u> </u>
Bicarbonate as HCO3	mg/1	1	2150	2170	2290	2390	2320	1500	769	424	267	2
Ca	mg/l	50	ND	ND	ND	16	ND	103	170	184	79	
Cl	mg/l	30	60900	. 61600	61600	67100	<u>65</u> 100	21400	37200	37500	9870	218
F	mg/l	0.1	1.0	0.9	1.0	1.0	1.0	0.2	0.1	ND	0.3	(
Mg	mg/l	9	54	60	63	65	63	22	20	18	10	
Nitrogen, Ammonia as N	mg/l	0.1	ND	0.3	ND	1.53	7.0	0.20	0.50	0.50	0.40	<u> </u>
Nitrogen, Nitrate+Nitrite as N	mg/l	0.2	0.62	1.5	0.42	1.1	1.0	4.48	6.7	3.76	2.5	
K	mg/l	20	274	287	298	260	294	39	426	276	33	1
Silica	mg/l	6	64.7	62.0	63.8	63.2	76.0	39.5	47.0	41.0	50.7	52
Na	mg/l	50	45700	48500	49000	48300	48800	15800	24600	28700	7780	146
SO4	mg/l	100	5250	5460	6090	7030	6370	1690	2250	2960	1320	11
Conductivity	µohms/cm	1	140000	139000	141000	205000	142000	58600	78800	93800	35600	567
pН	s.u.	0.01	9.11	9.09	9.03	9.58	9.00	8.01	7.45	7.33	7.17	6.
TDS	mg/l	10	102000	96700	119000	112000	110000	36600	40400	69200	21700	353
Al	mg/l	3	ND	ND	1.3	ND	ND	ND	ND	ND	ND	1
As	mg/l	0.005	0.082	0.115	0.091	0.092	0.088	0.060	0.086	0.046	0.033	0.0
Ba	mg/l	0.1	ND	ND	ND	ND	ND	ND	0.4	0.4	0.1	1
Во	mg/1	0.1	ND	5.9	4.1	3.9	ND	ND	1.7	1.5	0.5	1
Cd	mg/l	0.005	0.006	0.010	0.007	0.008	0.009	ND	0.010	0.008	ND	1
Cr	mg/l	0.05	ND	0.17	0.05	0.07	ND	ND	0.12	ND	ND	N
Cu	mg/l	0.01	0.18	0.16	0.25	0.38	0.51	0.17	0.35	0.23	0.09	0.
Fe	mg/l	0.06	ND	0.08	0.20	0.15	ND	0.04	0.06	0.06	ND	1
РЬ	mg/l	0.002	ND	0.015	0.015	0.001	0.016	0.001	0.030	0.018	ND	0.0
Mn	mg/l	0.01	0.04	0.04	0.05	0.04	0.07	0.06	0.16	0.22	0.15	0.
Hg	mg/l	0.004	0.009	0.033	0.010	0.014	0.009	0.013	0.040	0.018	0.006	1
Mo		0.1	10.8	12.2	10.9	11.4	14.8	5.9	10.5	13.6	4.2	2
Ni		0.05	. ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Se	mg/l	0.003	0.155	0.153	0.112	0.118	ND		0.476	0.433	0.203	0.0
U	0	0.003	164	322	378	332			25.9	14.3	4.72	1:
V	mg/l	0.1	96.1	145	125	121	94.3	90.4	300	163	48.5	1
Zn	mg/l	0.02	0.18	1.02	0.48	0.41	0.29	the second s	0.56	0.15	0.13	0.
Ra-226	pCi/L	0.19	596	475	· · · · · · · · · · · · · · · · · · ·	977	805	753	2870	7680	.060	7

Client:	Crow Butte Resources
Project:	Commercial Evaporation Pond G-8 Samples
Lab ID:	C09071122-001
Client Sample ID:	Pond Composite Samples

Report Date: 08/19/09 Collection Date: 07/22/09 DateReceived: 07/29/09 Matrix: Aqueous

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS							
Alkalinity, Total as CaCO3	3130	mg/L		1		A2320 B	08/02/09 01:10 / iji
Carbonate as CO3	821	mg/L		1		A2320 B	08/02/09 01:10 / ljl
Bicarbonate as HCO3	2150	mg/L		1	•	A2320 B	08/02/09 01:10 / ljl
Calcium	ND	mg/L	D	50		E200.7	08/14/09 16:13 / cp
Chloride	60900	mg/L	D	30		E300.0	08/11/09 14:22 / ljl
Fluoride	1.0	mg/L	5	0.1		A4500-F C	08/03/09 11:45 / ljl
Magnesium	54	mg/L	D	20		E200.7	08/14/09 16:13 / cp
Nitrogen, Ammonia as N	ND	mg/L	U	0.05		E350.1	07/30/09 13:56 / eli-
Nitrogen, Nitrate+Nitrite as N	0.62	mg/L	D	0.03		E353.2	07/31/09 13:59 / eli-
Potassium	274	mg/L	D	20		E200.7	08/14/09 16:13 / cp
Silica	64.7	mg/L	D	0.2		E200.8	07/30/09 15:18 / sm
Sodium	45700	mg/L	D	50		E200.7	08/14/09 16:13 / cp
	5250	mg/L	D	100		E300.0	08/11/09 14:22 / j
Sulfate	5250	thg/L	U	100		L300.0	00/11/03 14.227 9
PHYSICAL PROPERTIES							
Conductivity	140000	umhos/cm		1		A2510 B	07/29/09 14:20 / tib
pH	9.11	s.u.		0.01		A4500-H B	07/29/09 14:20 / tlb
Solids, Total Dissolved TDS @ 180 C	102000	mg/L		10		A2540 C	07/29/09 15:57 / tlb
METALS - DISSOLVED							
Aluminum	ND	mg/L		0.1	<i>'</i>	E200.8	07/30/09 15:18 / sn
Arsenic	0.082	mg/L		0.001		E200.8	07/30/09 15:18 / sn
Barium	ND	mg/L		0.1		E200.8	07/30/09 15:18 / sr
Boron	ND	mg/L	D	6		E200.7	08/14/09 16:13 / cp
Cadmium	0.006	mg/L		0.005		E200.8	07/30/09 15:18 / sr
Chromium *	ND	mg/L		0.05		E200.8	07/30/09 15:18 / sr
Copper	0.18	mg/L		0.01		E200.8	07/30/09 15:18 / sr
Iron	ND	mg/L		0.03		E200.8	07/30/09 15:18 / sr
Lead	ND	mg/L		0.001		E200.8	07/30/09 15:18 / sr
Manganese	0.04	mg/L		0.01		E200.8	07/30/09 15:18 / sr
Mercury	0.009	mg/L		0.001		E200.8	07/30/09 15:18 / sr
Molybdenum	10.8	mg/L		0.1		E200.8	07/30/09 15:18 / si
Nickel	ND	mg/L		0.05		E200.8	07/30/09 15:18 / si
Selenium	0.155	mg/L		0.001		E200.8	07/30/09 15:18 / si
Uranium	164	mg/L		0.0003		E200.8	08/03/09 21:08 / s
Vanadium	96.1	mg/L		0.1		E200.8	07/30/09 15:18 / s
Zinc	0.18	mg/L		0.01		E200.8	07/30/09 15:18 / s
RADIONUCLIDES - DISSOLVED	506	nCi/l		0.19		E903.0	08/10/09 15:06 / tr
Radium 226	596	pCi/L		0.19		E903.0 E903.0	08/10/09 15:06 / tr
Radium 226 precision (±)	4.9	pCi/L					08/10/09 15:06 / tr
Radium 226 MDC	0.19	pCi/L				E903.0	0010103 15:001 [

ReportRL - Analyte reporting limit.Definitions:QCL - Quality control limit.

QCL - Quality control limit. MDC - Minimum detectable concentration MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix interference.

Client:Crow Butte ResourcesProject:Commercial Evaporation Pond G-8 SamplesLab ID:C09071122-001Client Sample ID:Pond Composite Samples

Report Date: 08/19/09 Collection Date: 07/22/09 DateReceived: 07/29/09 Matrix: Aqueous

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
DATA QUALITY							
A/C Balance (± 5)	2.80	%				Calculation	08/17/09 08:57 / kbh
Anions	1890	meq/L				Calculation	08/17/09 08:57 / kbh
Cations	2000	meq/L				Calculation	08/17/09 08:57 / kbh
Solids, Total Dissolved Calculated	114000	mg/L				Calculation	08/17/09 08:57 / kbh
TDS Balance (0.80 - 1.20)	0.890		,			Calculation	08/17/09 08:57 / kbh

Report Definitions:

Client:Crow Butte ResourcesProject:Commercial Evaporation Pond G-8 SamplesLab ID:C09071122-002Client Sample ID:Pond Discharge Sample

Report Date: 08/19/09 Collection Date: 07/23/09 DateReceived: 07/29/09 Matrix: Aqueous

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS	<u> </u>						
Alkalinity, Total as CaCO3	1230	mg/L		1		A2320 B	08/02/09 01:20 / ljl
Carbonate as CO3	ND	mg/L		1		A2320 B	08/02/09 01:20 / 1
Bicarbonate as HCO3	1500	mg/L		1		A2320 B	08/02/09 01:20 / 1)1
Calcium	103	mg/L	D	20		E200.7	08/14/09 16:17 / cp
Chloride	21400	mg/L	D	10		E300.0	08/11/09 14:38 / Iji
Fluoride	0.2	mg/L		0.1		A4500-F C	08/03/09 11:49 / Iji
Magnesium	22	mg/L	D	9		E200.7	08/14/09 16:17 / cp
Nitrogen, Ammonia as N	0.20	mg/L		0.05		E350.1	07/30/09 13:57 / eli-b
Nitrogen, Nitrate+Nitrite as N	4.48	mg/L	D	0.02		E353.2	07/31/09 14:00 / eli-b
Potassium	39	mg/L	D	10		E200.7	08/14/09 16:17 / cp
Silica	39.5	mg/L		0.2		E200.8	07/30/09 15:43 / sml
Sodium	15800	mg/L	D	20		E200.7	08/14/09 16:17 / cp
Sulfate	1690	mg/L	D	60		E300.0	08/11/09 14:38 / ljl
PHYSICAL PROPERTIES							
Conductivity	58600	umhos/cm		1		A2510 B	07/29/09 14:22 / tib
pH	8.01	s.u.		0.01		A4500-H B	07/29/09 14:22 / tlb
Solids, Total Dissolved TDS @ 180 C	36600	mg/L		10		A2540 C	07/29/09 15:57 / tlb
METALS - DISSOLVED							
Aluminum	ND	mg/L		0.1		E200.8	07/30/09 15:43 / sml
Arsenic	0.060	mg/L		0.001		E200.8	07/30/09 15:43 / sml
Barium	ND	mg/L		0.1		E200.8	07/30/09 15:43 / smi
Boron	ND	mg/L	D	3		E200.7	08/14/09 16:17 / cp
Cadmium	ND	mg/L		0.005		E200.8	07/30/09 15:43 / sml
Chromium	ND	mg/L		0.05		E200.8	07/30/09 15:43 / sml
Copper	0.17	mg/L		0.01		E200.8	07/30/09 15:43 / sml
Iron	0.04	mg/L		0.03		E200.8	07/30/09 15:43 / sml
Lead	0.001	mg/L		0.001		E200.8	07/30/09 15:43 / smi
Manganese	0.06	mg/L		0.01		E200.8	07/30/09 15:43 / smł
Mercury	0.013	mg/L		0.001		E200.8	. 07/30/09 15:43 / sml
Molybdenum	5.9	mg/L		0.1	•	E200.8	07/30/09 15:43 / sml
Nickel	ND	mg/L		0.05		E200.8	07/30/09 15:43 / sml
Selenium	0.258	mg/L		0.001		E200.8	07/30/09 15:43 / sml
Uranium	11.7	mg/L		0.0003		E200.8	07/30/09 15:43 / sml
Vanadium	90.4	mg/L		0.1		E200.8	07/30/09 15:43 / sml
Zinc	0.06	mg/L		0.01		E200.8	07/30/09 15:43 / sml
RADIONUCLIDES - DISSOLVED							
Radium 226	753	pCi/L		0.18		E903.0	08/10/09 15:06 / trs
Radium 226 precision (±)	5.4	pCi/L				E903.0	08/10/09 15:06 / trs
Radium 226 MDC	0.18	pCi/L				E903.0	08/10/09 15:06 / trs

Report Definitions: RL - Analyte reporting limit.

QCL - Quality control limit.

MDC - Minimum detectable concentration

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix interference.

Client:Crow Butte ResourcesProject:Commercial Evaporation Pond G-8 SamplesLab ID:C09071122-002Client Sample ID:Pond Discharge Sample

Report Date: 08/19/09 Collection Date: 07/23/09 DateReceived: 07/29/09 Matrix: Aqueous

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
DATA QUALITY							, , , , , , , , , , , , , , , , , , ,
A/C Balance (± 5)	2.33	%				Calculation	08/17/09 08:58 / kbh
Anions	663	meq/L				Calculation	08/17/09 08:58 / kbh
Cations	695	meq/L				Calculation	08/17/09 08:58 / kbh
Solids, Total Dissolved Calculated	39900	mg/L				Calculation	08/17/09 08:58 / kbh
TDS Balance (0.80 - 1.20)	0.920					Calculation	08/17/09 08:58 / kbh

Report Definitions:

ENERGY LABURAI URIES, INC. • 2393 Sall Creek Highway (82601) • P.O. Box 3258 • Casper, WY 82602 Toll Free 888.235.0515 • 307.235.0515 • Fax 307.234.1639 • casper@energylab.com • www.energylab.com

QA/QC Summary Report

lient: Crow Butte Resources

roject: Commercial Evaporation Pond G-8 Samples

Report Date: 08/17/09 Work Order: C09071122

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: A2320 B									Batcl	h: R121763
ample ID: MBLK	<u>3</u> M	ethod Blank				Run: MANT	ECH_090801A		08/0	1/09 22:03
Alkalinity, Total as CaCO3		2	mg/L	0.2						
Carbonate as CO3		ND	mg/L	1						
Bicarbonate as HCO3		3	mg/L	1						
Sample ID: LCS1	La	aboratory Co	ntrol Sample			Run: MANT	ECH_090801A		08/0	1/09 22:18
Alkalinity, Total as CaCO3		200	mg/L	5.0	99	90	110			
Sample ID: LCS	La	aboratory Co	ntrol Sample			Run: MANT	ECH_090801A		08/0	1/09 22:25
Alkalinity, Total as CaCO3		50.8	mg/L	5.0	97	90	110			
Sample ID: C09071096-013AMS	S	ample Matrix	Spike			Run: MANT	ECH_090801A		08/0	2/09 00:46
Alkalinity, Total as CaCO3		263	mg/L	5.0	100	80	120			
Sample ID: C09071096-013AMSD	s s	ample Matrix	Spike Duplicate			Run: MANT	ECH_090801A		08/0	2/09 00:53
Alkalinity, Total as CaCO3		258	mg/L	5.0	97	80	120	1.6	20	
Method: A2510 B			· · · · · · ·				Analytical	Run: Of	RION555A-	2_090729E
Sample ID: ICV2_090729_2	In	itial Calibrati	on Verification Sta	Indard					07/2	9/09 14:18
Conductivity		1440	umhos/cm	1.0	102	90	110			
Method: A2510 B							Ba	itch: 090	0729_2_PH	-W_555A-2
ample ID: MBLK1_090729_2	N	lethod Blank				Run: ORIO	N555A-2_09072	9B	07/2	29/09 14:13
Conductivity		1	umhos/cm	0.2						
Sample ID: C09071142-001ADUP	' S	ample Duplic	cate			Run: ORIO	N555A-2_09072	9B	07/2	29/09 14:41
Conductivity		2020	umhos/cm	1.0				0.6	10	
Method: A2540 C						· .			Bato	h: R12167
Sample ID: MBLK1_	N	lethod Blank				Run: BAL-	1_090729C		07/2	29/09 12:47
Solids, Total Dissolved TDS @ 18	0 C	ND	mg/L	6						
Sample ID: LCS1_	L	aboratory Co	ontrol Sample			Run: BAL-	1_090729C		07/2	29/09 12:47
Solids, Total Dissolved TDS @ 18	0 C	1020	mg/L	10	102	90	110			
Sample ID: C09071094-001AMS	S	Sample Matri	x Spike			Run: BAL-	1_090729C		07/2	29/09 12:57
Solids, Total Dissolved TDS @ 18		20200	mg/L	10	103		- 110			
Sample ID: C09071094-001AMSI	5 5	Sample Matri	x Spike Duplicate			Run: BAL-	1_090729C		07/:	29/09 12:57
Solids, Total Dissolved TDS @ 18		20200	mg/L	10	103		110	0	10	

Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

QA/QC Summary Report

`lient: Crow Butte Resources

Project: Commercial Evaporation Pond G-8 Samples

Report Date: 08/17/09 Work Order: C09071122

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit C	Qual
Method:	A4500-F C		÷							Batch: R1	121817
Sample ID: 1	MBLK	1	Method Blank				Run: MANT	ECH_090803A		08/03/09	10:34
Fluoride			ND	mg/L	0.05						
Sample ID: I	LCS	l	aboratory Cor	ntrol Sample			Run: MANT	ECH_090803A		08/03/09	10:37
Fluoride			1.02	mg/L	0.10	102	90	110			
Sample ID: (C09071200-001AMS	5	Sample Matrix	Spike			Run: MANT	FECH_090803A		08/03/09	11:58
Fluoride			1.44	mg/L	0.10	106	80	120			
Sample ID:	C09071200-001AMSE) :	Sample Matrix	Spike Duplicat	9		Run: MANT	TECH_090803A		08/03/09	12:02
Fluoride			1.44	mg/L	0.10	106	80	120	0	10	
Method:	А4500-Н В			<u></u>			<u> </u>	Analytical	Run: Ol	RION555A-2_09	90729E
Sample ID:	ICV1_090729_2	1	Initial Calibratio	on Verification S	Standard					07/29/09	14:16
рН			6.85	s.u.	0.010	10 0	98	102			
Method:	A4500-H B				•			Ba	tch: 090	0729_2_PH-W_	555A-2
Sample ID:	C09071142-001ADUP	>	Sample Duplic	ate			Run: ORIO	N555A-2_090729	9B	07/29/09	14:41
рH			8.20	s.u.	0.010				0	10	
Method:	E300.0									Batch: R1	12222'
ample ID:	LCS	2	Laboratory Co	ntrol Sample			Run: IC1-C	_090810A		08/10/09) 19:22
Chloride			9.79	mg/L	1.0	97	90	110			
Sulfate			38.9	mg/L	1.0	97	90	110			
Sample ID:	MBLK	2	Method Blank				Run: IC1-C	_090810A		08/10/09) 19:37
Chloride			0.08	mg/L	0.01						
Sulfate			ND	mg/L	0.06						
Sample ID:	C09080251-001AMS	2	Sample Matrix	Spike			Run: IC1-C	_090810A		08/11/09	15:24
Chloride			51.2	mg/L	1.0	100	90	110			
Sulfate			392	mg/L	1.0	101	90	. 110			
Sample ID:	C09080251-001AMSI	D <u>2</u>	Sample Matrix	Spike Duplicat	e		. Run: IC1-C	C_090810A		08/11/09	9 15:39
Chloride			51.7	mg/L	1.0	101	90	110	0.8	20	

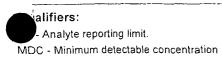
Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ENERGY LABURAI ORIES, INC. • 2393 Salt Creek Highway (82601) • P.O. Box 3258 • Casper, WY 82602 Toll Free 888.235.0515 • 307.235.0515 • Fax 307.234.1639 • casper@energylab.com • www.energylab.com

QA/QC Summary Report


ent:

t: Crow Butte Resources

ject: Commercial Evaporation Pond G-8 Samples

Report Date: 08/17/09 Work Order: C09071122

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E200.7									Batch:	R122391
Sample ID: LFB-090814A	<u>5</u> Lat	poratory For	tified Blank			Run: ICP2-	C_090814A		08/14	/09 12:21
Boron		0.985	mg/L	0.10	96	85	115			
Calcium		49.5	mg/L	0.50	99	85	115			
Magnesium		49.0	mg/L	0.50	98	85	115			
Potassium		45.4	mg/L	0.50	91	85	115			
Sodium		50.2	mg/L	0.50	100	85	115			
Sample ID: MB-090814A	<u>5</u> Me	thod Blank				Run: ICP2-	C_090814A		08/14	/09 12:32
Boron		0.03	mg/L	0.03						
Calcium		ND	mg/L	0.2						
Magnesium		ND	mg/L	0.09						
Potassium		ND	mg/L	0.1						
Sodium		0.4	mg/L	0.2						
Sample ID: C09080007-001CMS	2 <u>5</u> Sa	mple Matrix	Spike			Run: ICP2-	C_090814A		08/14	/09 16:37
Boron		5.23	mg/L	0.14	103	70	130			
Calcium		674	mg/L	1.3	96	70	130			
Magnesium		305	mg/L	1.0	97	. 70	130			
Potassium		236	mg/L	1.0	90	70	130			
Sodium		367	mg/L	1.2	101	70	130			
nple ID: C09080007-001CMS	D <u>5</u> Sa	imple Matrix	Spike Duplicate			Run: ICP2-	C_090814A		08/14	/09 16:41
oron		5.32	mg/L	0.14	104	70	130	1.7	20	
Calcium		671	mg/L	1.3	95	70	130	0.4	20	
Magnesium		309	mg/L	1.0	98	70	130	1.2	20	
Potassium		233	mg/L	1.0	89	70	130	1.2	20	
Sodium		370	mg/L	1.2	102	70	130	0.7	20	

ENERGY LABORATORIES, INC. • 2393 Salt Creek Highway (82601) • P.O. Box 3258 • Casper, WY 82602 Toll Free 888.235.0515 • 307.235.0515 • Fax 307.234.1639 • casper@energylab.com • www.energylab.com

QA/QC Summary Report

ent: Crow Butte Resources

...oject: Commercial Evaporation Pond G-8 Samples

Report Date: 08/17/09 Work Order: C09071122

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E200.8	······								Batch:	R121712
Sample ID: LRB	<u>17</u> Me	thod Blank				Run: ICPM	S4-C_090730A		07/30	/09 11:26
Aluminum		ND	mg/L	0.0004			_			
Arsenic		ND	mg/L	5E-05						
Barium		ND	mg/L	4E-05					•	
Cadmium		ND	mg/L	4E-05						
Chromium		ND	mg/L	4E-05						
Copper		ND	mg/L	7E-05						
Iron		ND	mg/L	0.0006						
Lead		ND	mg/L	2E-05						
Manganese		ND	mg/L	3E-05						
Mercury		5E-05	mg/L	4E-05						
Molybdenum		ND	mg/L	0.0001						
Nickel		ND	mg/L	6E-05						
Selenium		5E-05	mg/L	3E-05						
Silicon		ND	mg/L	0.0003						
Uranium		ND	mg/L	3E-05						
Vanadium		ND	mg/L	4E-05						
Zinc		ND	mg/L	0.0002						
Sample ID: LFB	<u>17</u> Lal	poratory For	tified Blank			Run: ICPM	S4-C_090730A		07/30	/09 11:31
uninum	•	0.0566	mg/L	0.0010	111	85	115			
Arsenic		0.0556	mg/L	0.0010	109	85	115			
Barium		0.0557	mg/L	0.0010	109	85	115			
Cadmium		0.0560	mg/L	0.0010	110	85	115			
Chromium		0.0553	mg/L	0.0010	108	85	115			
Copper		0.0562	mg/L	0.0010	110	85	115			
Iron		1.29	mg/L	0.0010	101	85	115			
Lead		0.0548	mg/L	0.0010	107	85	115			
Manganese		0.0568	mg/L	0.0010	111	85	115			
Mercury		0.00550	mg/L	0.0010	107	85	115			
Molybdenum		0.0553	mg/L	0.0010	108	85	115			
Nickel		0.0555	mg/L	0.0010	109	85	115			
Selenium		0.0557	mg/L	0.0010	109	85	115			
Silicon		0.582	mg/L	0.0010	109	85	115			
Uranium		0.0560	mg/L	0.00030	110	85	115			
Vanadium		0.0551	mg/L	0.0010	108	85	115			
Zinc		0.0581	mg/L	0.0010	114	85	115			
Sample ID: C09071122-002CMS4	4 <u>17</u> Sa	mple Matrix	Spike			Run: ICPM	S4-C_090730A		07/30)/09 15:48
Aluminum		0.587	mg/L	0.10	106	70	130			
Arsenic		0.582	mg/L	0.0010	104	70	130			
Barium		0.636	mg/L	0.10	112	70	130			
Cadmium		0.501	mg/L	0.010	100	70	130			
Chromium		0.568	·mg/L	0.050	110	70	130			
Copper		0.678	mg/L	0.010	102		130			

Jalifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

EIVERGI LADORAIORIES, IIVC. • 2393 Sall Greek Highway (82601) • P.O. Box 3258 • Gasper, VV 82602 Toll Free 888.235.0515 • 307.235.0515 • Fax 307.234.1639 • casper@energylab.com • www.energylab.com

QA/QC Summary Report

'ent: Crow Butte Resources

ject: Commercial Evaporation Pond G-8 Samples

Report Date: 08/17/09 **Work Order:** C09071122

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E200.8					<u> </u>			<u> </u>	Batch:	R121712
Sample ID: C09071122-002CMS4	4 <u>17</u> San	nple Matrix	Spike			Run: ICPM	S4-C_090730A		07/30	/09 15:48
Iron		12.3	mg/L	0.030	98	70	130			
Lead		0.566	mg/L	0.050	113	70	130			
Manganese		0.637	mg/L	0.010	115	70	130	•		
Mercury		0.0662	mg/L	0.0010	106	70	130			
Molybdenum		6.17	mg/L	0.10		70	130			А
Nickel		0.532	mg/L	0.050	101	70	130			
Selenium		0.729	mg/L	0.0010	94	70	130			
Silicon		26.2	mg/L	0.10	<u>155</u>	70	130			S
Uranium		11.8	mg/L	0.00030		70	130			А
Vanadium		89.4	mg/L	0.10		70	130			А
Zinc		0.533	mg/L	0.010	95	70	130			
Sample ID: C09071122-002CMS	D <u>17</u> Sar	nple Matrix	Spike Duplicate	9		Run: ICPM	S4-C_090730A		07/30	/09 15:52
Aluminum		0.580	mg/L	0.10	104	70	130	1.1	20	
Arsenic		0.588	mg/L	0.0010	106	70	130	1.1	20	
Barium		0.650	mg/L	0.10	115	70	130	2.3	20	
Cadmium		0.505	mg/L	0.010	100	70	130	0.8	20	
Chromium		0.574	mg/L	0.050	112	70	130	1	20	
Copper		0.688	mg/L	0.010	104	70	130	1.4	20	
3		13.3	mg/L	0.030	106	70	130	7.5	20	
ad		0.572	mg/L	0.050	114	70	130	1.1	20 <i>·</i>	
Manganese		0.632	mg/L	0.010	114	70	130	0.7	20	
Mercury		0.0678	mg/L	0.0010	110	70	130	2.4	20	
Molybdenum		6.24	mg/L	0.10		70	130	1.2	20	А
Nickel		0.541	mg/L	0.050	103	70	130	1.7	20	
Selenium		0.783	mg/L	0.0010	105	70	130	7.2	20	
Silicon		28.2	mg/L	0.10	<u>195</u>	70	130	7.4	20	S
Uranium		11.7	mg/L	0.00030		70	130	0.6	20	А
Vanadium		92.0	mg/L	0.10		70	130	2.9	20	А
Zinc		0.532	mg/L	0.010	94	70	130	0.2	20	
Method: E200.8		<u> </u>							Batch	: R12183
Sample ID: LRB	Ме	thod Blank				Run: ICPN	IS4-C_090803A		08/03	3/09 17:34
Uranium		ND	mg/L	3E-05			_			
Sample ID: C09071202-009CMS	54 Sa	mple Matrix	Spike			Run: ICPN	IS4-C_090803A		08/03	3/09 20:53
Uranium		0.106	mg/L	0.00030	119					
Sample ID: C09071202-009CMS	SD Sa	mple Matrix	Spike Duplicat	e		Run: ICPN	1S4-C_090803A		08/03	3/09 20:58
Uranium		0.111	mg/L	0.00030	129		130	4.5	20	
Sample ID: LFB	La	boratory Fo	rtified Blank			Run: ICPN	1S4-C_090803A		08/04	4/09 08:20
Uranium		0.0536	mg/L	0.00030	107					

alifiers:

- Analyte reporting limit.

ND - Not detected at the reporting limit.

S - Spike recovery outside of advisory limits.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated. MDC - Minimum detectable concentration

ENERGY LABORATORIES, INC. • 2393 Salt Creek Highway (82601) • P.O. Box 3258 • Casper, WY 82602 Toll Free 888.235.0515 • 307.235.0515 • Fax 307.234.1639 • casper@energylab.com • www.energylab.com

QA/QC Summary Report

lient: Crow Butte Resources

Project: Commercial Evaporation Pond G-8 Samples

Report Date: 08/17/09 Work Order: C09071122

Analyte	Count Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E350.1							Analytic	al Run: SUE	3-B133555
Sample ID: ICV	Initial Calibration	on Verification S	tandard					07/30)/09 10:05
Nitrogen, Ammonia as N	5.62	mg/L	0.11	103	90	110			
Method: E350.1								Batch: B	_R133555
Sample ID: MBLK	Method Blank				Run: SUB-	3133555		07/30)/09 10:06
Nitrogen, Ammonia as N	ND	mg/L	0.02						
Sample ID: LFB	Laboratory For	tified Blank			Run: SUB-I	B133555		07/30)/09 10:07
Nitrogen, Ammonia as N	1.08	mg/L	0.050	109	90	110			
Sample ID: B09072608-003BMS	Sample Matrix	Spike			Run: SUB-I	B133555		07/30)/09 13:21
Nitrogen, Ammonia as N	1.09	mg/L	0.050	<u>111</u>	90	110			S
Sample ID: B09072608-003BMS	D Sample Matrix	Spike Duplicate	е		Run: SUB-	B133555		07/30	0/09 13:22
Nitrogen, Ammonia as N	1.09	mg/L	0.050	<u>111</u>	90	110	0.6	10	S
Sample ID: B09072688-002BMS	Sample Matrix	Spike			Run: SUB-	B133555		07/3	0/09 13:37
Nitrogen, Ammonia as N	2.92	mg/L	0.050	<u>116</u>	90	110			S
Sample ID: B09072688-002BMS	D Sample Matrix	Spike Duplicati	е		Run: SUB-	B133555		07/3	0/09 13:38
Nitrogen, Ammonia as N	2.80	mg/L	0.050	103	90	110	4.3	10	
ample ID: B09072693-002CMs	Sample Matrix	Spike			Run: SUB-	B133555		07/3	0/09 13:54
Nitrogen, Ammonia as N	4.38	mg/L	0.050	<u>117</u>	90	110			S
Sample ID: B09072693-002CMS	D Sample Matrix	Spike Duplicat	е		Run: SUB-	B133555		07/3	0/09 13:55
Nitrogen, Ammonia as N	4.78	mg/L	0.050	<u>158</u>	90	110	8.9	10	S
Method: E353.2							Analyti	cal Run: SU	- B-B13363
Sample ID: ICV	Initial Calibrat	ion Verification	Standard					07/3	1/09 10:32
Nitrogen, Nitrate+Nitrite as N	37.3	mg/L	0.032	105	5 90	110			
Method: E353.2		<u></u>						Batch: I	3_R13363
Sample ID: MBLK	Method Blank				Run: SUB-	B133633		07/3	1/09 10:3
Nitrogen, Nitrate+Nitrite as N	0.002	mg/L	0.002						
Sample ID: LFB	Laboratory Fo	ortified Blank			Run: SUB-	B133633		07/3	1/09 10:3
Nitrogen, Nitrate+Nitrite as N	0.994	mg/L	0.010	101	90	110			
Sample ID: B09072710-011DMS	S Sample Matri	x Spike			Run: SUB	-B133633		07/3	31/09 13:4
Nitrogen, Nitrate+Nitrite as N	0.999	mg/L	0.010	99) 90	110			
Sample ID: B09072710-011DMS	SD Sample Matri	x Spike Duplica	le		Run: SUB	-B133633		07/3	31/09 13:4
Nitrogen, Nitrate+Nitrite as N	1.00	mg/L	0.010	99	9 90	110	0.2	10	

Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

S - Spike recovery outside of advisory limits.

ENERGY LABORATORIES, INC. • 2393 Salt Creek Highway (82601) • P.O. Box 3258 • Casper, WY 82602 Toll Free 888.235.0515 • 307.235.0515 • Fax 307.234.1639 • casper@energylab.com • www.energylab.com

QA/QC Summary Report

ient: Crow Butte Resources

oject: Commercial Evaporation Pond G-8 Samples

Report Date: 08/17/09 Work Order: C09071122

Analyte	Count	t Result	Units	RL	%REC	Low	Limit	High	Limit	RPD	RPDLimit	Qual
Method: E903.0											Batch: RA	226-388
Sample ID: TAP_WATER-MS		Sample Matrix	Spike			Run:	BERT	HOLD	770-2_	090803B	08/10	/09 16:40
Radium 226		8.5	pCi/L		106		70		130			
Sample ID: TAP_WATER-MSD		Sample Matrix	Spike Duplicate			Run:	BERT	HOLD	770-2_	090803B	08/10	/09 16:40
Radium 226		8.6	pCi/L		108		70		130	1.5	23.9	
Sample ID: MB-RA226-3882	<u>3</u>	Method Blank				Run:	BERT	HOLD	770-2_	090803B	08/10	/09 16:40
Radium 226		-0.1	pCi/L									U
Radium 226 precision (±)		0.08	pCi/L									
Radium 226 MDC		0.2	pCi/L									
Sample ID: LCS-RA226-3882		Laboratory Co	ntrol Sample			Run:	BERT	HOLD	770-2_	_090803B	08/10	/09 16:40
Radium 226		7.6	pCi/L		99		70		130			

Qualifiers:

RL - Analyte reporting limit. MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

U - Not detected at minimum detectable concentration

ANALYTICAL SUMMARY REPORT

August 19, 2009

Crow Butte Resources

86 Crow Butte Rd

Crawford, NE 69339

Workorder No.: C09071122 Quote ID: C1125 - Crow Butte Uranium Project

Project Name: Commercial Evaporation Pond G-8 Samples

Energy Laboratories, Inc. received the following 2 samples for Crow Butte Resources on 7/29/2009 for analysis.

Sample ID	Client Sample ID	Collect Date	Receive Date	Matrix	Test
C09071122-001	Pond Composite Samples	07/22/09 00:00	07/29/09	Aqueous	Metals by ICP/ICPMS, Dissolved Alkalinity QA Calculations Conductivity Fluoride E300.0 Anions Nitrogen, Ammonia Nitrogen, Nitrate + Nitrite pH Radium 226, Dissolved Solids, Total Dissolved
C09071122-002	Pond Discharge Sample	07/23/09 00:00	07/29/09	Aqueous	Same As Above

As appropriate, any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

If you have any questions regarding these tests results, please call.

Report Approved By:

Stephanie D. Waldrop Stephanie D. Waldrop Reporting Supervisor

LENEKGY DABORATORIES

Toll Free 888.235.0515 • 307.235.0515 • Fax 307.234.1639 • casper@energylab.com • www.energylab.com

CLIENT:

NT: Crow Butte Resources

Project: Commercial Evaporation Pond G-8 Samples

Sample Delivery Group: C09071122

CASE NARRATIVE

Date: 19-Aug-09

BRANCH LABORATORY SUBCONTRACT ANALYSIS

Tests Associated with Analyst identified as ELI-B were subcontracted to Energy Laboratories Billings Branch, EPA Number MT00005.

RADIOCHEMISTRY ANALYSIS

Per client request, results less than MDC (or precision if no MDC), are reported as <MDC (or <precision). Actual instrument results are available by request.

ORIGINAL SAMPLE SUBMITTAL(S)

All original sample submittals have been returned with the data package.

SAMPLE TEMPERATURE COMPLIANCE: 4°C (±2°C)

Temperature of samples received may not be considered properly preserved by accepted standards. Samples that are hand delivered immediately after collection shall be considered acceptable if there is evidence that the chilling process has begun.

GROSS ALPHA ANALYSIS

Method 900.0 for gross alpha and gross beta is intended as a drinking water method for low TDS waters. Data provided by this method for non potable waters should be viewed as inconsistent.

SOIL/SOLID SAMPLES

All samples reported on an as received basis unless otherwise indicated.

ATRAZINE, SIMAZINE AND PCB ANALYSIS USING EPA 505

Data for Atrazine and Simazine are reported from EPA 525.2, not from EPA 505. Data reported by ELI using EPA method 505 reflects the results for seven individual Aroclors. When the results for all seven are ND (not detected), the sample meets EPA compliance criteria for PCB monitoring.

SUBCONTRACTING ANALYSIS

Subcontracting of sample analyses to an outside laboratory may be required. If so, ENERGY LABORATORIES will utilize its branch laboratories or qualified contract laboratories for this service. Any such laboratories will be indicated within the Laboratory Analytical Report.

BRANCH LABORATORY LOCATIONS

eli-b - Energy Laboratories, Inc. - Billings, MT eli-g - Energy Laboratories, Inc. - Gillette, WY eli-h - Energy Laboratories, Inc. - Helena, MT eli-r - Energy Laboratories, Inc. - Rapid City, SD

eli-t - Energy Laboratories, Inc. - College Station, TX

CERTFICATIONS: USEPA: WY00002; FL-DOH NELAC: E87641; California: 02118CA Oregon: WY200001; Utah: 3072350515; Virginia: 00057; Washington: C1903

ISO 17025 DISCLAIMER:

The results of this Analytical Report relate only to the items submitted for analysis.

ENERGY LABORATORIES, INC. - CASPER, WY certifies that certain method selections contained in this report meet requirements as set forth by the above accrediting authorities. Some results requested by the client may not be covered under these certifications. All analysis data to be submitted for regulatory enforcement should be certified in the sample state of origin. Please verify ELI's certification coverage by visiting www.energylab.com

ELI appreciates the opportunity to provide you with this analytical service. For additional information and services visit our web page www.energylab.com.

THIS IS THE FINAL PAGE OF THE LABORATORY ANALYTICAL REPORT

Energy Laboratories Inc Workorder Receipt Checklist

Crow Butte Resources

C09071122

	Login completed by: Corinne Wagner		Date and Time	Received: 7/29/2009 9:15 AM
	Reviewed by:		Re	ceived by: ckw
aporatories "I'vica" and "' aporatoria anamis' and "'	Reviewed Date:		Car	rier name: Ground
your a	vipping container/cooler in good condition?	Yes 🗸	No 🔲	Not Present
inot up to the	کې کې کې vy seals intact on shipping container/cooler?	Yes 🗌	No 🗌	Not Present
. ⊂ 3 \ /	<pre>seals intact on sample bottles? seals intact on sample bottles? stody present? stody p</pre>	Yes 🔲	No 🗂	Not Present 🔽
iton of	by Figure tody present?	Yes 🗹	No 🗌	
in the	1y signed when relinquished and received?	Yes 🗹	No 📋	
The set of the set	a grees with sample labels?	Yes 🗹	No 📋	
Think the second	til of the ntainer/bottle?	Yes 🗸	No 🗌	
Ý Ì		Yes 🗹	No 🔲	
		Yes 🗹	No 🗌	
	All sai.	Yes 🗸	No 🗌	
	All san, Container. Water - VOA vials have zero headspace?	19°C		
	Water - VOA vials have zero headspace?	Yes 🗌	No 🛄	No VOA vials submitted
	Water - pH acceptable upon receipt?	Yes 🗌	No 🗹	Not Applicable

Contact and Corrective Action Comments:

The nitric acidified bottles for Pond Discharge was received at a pH of 6. 2mLs of HNO3 was added to bring down to a pH of 2.

Client:Crow Butte ResourcesProject:Commercial Evaporation Pond G-8 SamplesLab ID:C09080355-001Client Sample ID:Pond Composite Sample

Report Date: 09/11/09 Collection Date: 08/06/09 DateReceived: 08/11/09 Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL QC		Analysis Date / By
			Quaimers			
MAJOR IONS						
Alkalinity, Total as CaCO3	3260	mg/L		1	A2320 B	08/17/09 11:36 / dvg
Carbonate as CO3	885	mg/L		1	A2320 B	08/17/09 11:36 / dvg
Bicarbonate as HCO3	2170	mg/L		1	A2320 B	08/17/09 11:36 / dvg
Calcium	ND	mg/L	D	50	E200.7	08/24/09 17:24 / cp
Chloride	61600	mg/L	Ð	30	E300.0	08/13/09 02:34 / Ijl
Fluoride	0.9	mg/L		0.1	A4500-F C	08/13/09 12:05 / dvg
Magnesium	60	mg/L	D	20	E200.7	08/24/09 17:24 / cp
Nitrogen, Ammonia as N	0.3	mg/L	D	0.1	E350.1	08/12/09 16:02 / eli-t
Nitrogen, Nitrate+Nitrite as N	1.5	mg/L	D	0.2	E353.2	08/13/09 12:04 / eli-b
Potassium	287	mg/L	D	20	E200.7	08/24/09 17:24 / cp
Silica	62	mg/L	D	6	E200.7	08/31/09 14:58 / cp
Sodium	48500	mg/L	D	50	E200.7	08/24/09 17:24 / cp
Sulfate	5460	mg/L	D	100	E300.0	08/13/09 02:34 / Ijl
PHYSICAL PROPERTIES						
Conductivity	139000	umhos/cm		1	A2510 B	08/12/09 12:56 / th
pH	9.09	s.u.		0.01	A4500-H B	08/12/09 12:56 / th
Solids, Total Dissolved TDS @ 180 C	96700	mg/L	н	10	A2540 C	08/19/09 13:12 / dd
		-				
METALS - DISSOLVED						
Aluminum	ND	mg/L	D	3	E200.7	08/31/09 14:58 / cp
Arsenic	0.115	mg/L	D	0.005	E200.8	08/14/09 15:08 / sml
Barium	ND	mg/L		0.1	E200.8	08/14/09 15:08 / sml
Boron	5.9	mg/L		0.1	E200.8	08/14/09 15:08 / sml
Cadmium	0.010	mg/L		0.005	E200.8	08/14/09 15:08 / sml
Chromium	0.17	mg/L		0.05	E200.8	08/14/09 15:08 / sml
Copper	0.16	mg/L		0.01	E200.8	08/14/09 15:08 / sml
Iron	0.08	mg/L	D	0.06	E200.8	08/14/09 15:08 / sml
Lead	0.015	mg/L	D	0.002	E200.8	08/14/09 15:08 / sml
Manganese	0.04	mg/L		0.01	E200.8	08/14/09 15:08 / sml
Mercury	0.033	mg/L	Ð	0.004	E200.8	08/14/09 15:08 / sml
Molybdenum	12.2	mg/L		0.1	E200.8	08/14/09 15:08 / sm
Nickel	ND	mg/L		0.05	E200.8	08/14/09 15:08 / sm
Selenium	0.153	mg/L	D	0.003	E200.8	08/14/09 15:08 / sm
Uranium	322	mg/L -	D	0.003	E200.8	08/14/09 15:08 / sm
Vanadium	145	mg/L		0.1	E200.8	08/14/09 15:08 / sm
Zinc	1.02	mg/L	D	0.02	E200.8	08/14/09 15:08 / sm
RADIONUCLIDES - DISSOLVED						
Radium 226	475	pCi/L		0.18	E903.0	08/25/09 22:31 / trs
Radium 226 precision (±)	4.4	pCi/L		0.10	E903.0	08/25/09 22:31 / trs
		P0"L			L000.0	

Report

RL - Analyte reporting limit.

MCL - Maximum contaminant level.

Definitions:

QCL - Quality control limit. MDC - Minimum detectable concentration ND - Not detected at the reporting limit.

H - Analysis performed past recommended holding time.

D - RL increased due to sample matrix interference.

Client:Crow Butte ResourcesProject:Commercial Evaporation Pond G-8 SamplesLab ID:C09080355-001Client Sample ID:Pond Composite Sample

Report Date: 09/11/09 Collection Date: 08/06/09 DateReceived: 08/11/09 Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
DATA QUALITY							
A/C Balance (± 5)	5.12	%				Calculation	08/25/09 10:03 / kbh
Anions	1920	meg/L				Calculation	08/25/09 10:03 / kbh
Cations	2120	meq/L				Calculation	08/25/09 10:03 / kbh
Solids, Total Dissolved Calculated	118000	mg/L				Calculation	08/25/09 10:03 / kbh
TDS Balance (0.80 - 1.20)	0.820				~	Calculation	08/25/09 10:03 / kbh

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

Client: **Crow Butte Resources Project:** Commercial Evaporation Pond G-8 Samples Lab ID: C09080355-002 Client Sample ID: Pond Discharge Sample

Report Date: 09/11/09 Collection Date: 08/06/09 DateReceived: 08/11/09 Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	Method	Analysis Date / By
MAJOR IONS						
Alkalinity, Total as CaCO3	630	mg/L		1	A2320 B	08/17/09 11:44 / dvg
Carbonate as CO3	ND	mg/L		1	A2320 B	08/17/09 11:44 / dvg
Bicarbonate as HCO3	769	mg/L		1	A2320 B	08/17/09 11:44 / dvg
Calcium	170	mg/L	D	50	E200.7	08/24/09 17:28 / cp
Chloride	37200	mg/L	D	10	E300.0	08/13/09 02:50 /ˈljl
Fluoride	0.1	mg/L		0.1	A4500-F C	08/13/09 12:09 / dvg
Magnesium	20	mg/L	D	20	E200.7	08/24/09 17:28 / cp
Nitrogen, Ammonia as N	0.5	mg/L	D	0.1	E350.1	08/12/09 16:04 / eli-b
Nitrogen, Nitrate+Nitrite as N	6.7	mg/L	D	0.2	E353.2	08/13/09 12:06 / eli-b
Potassium	426	mg/L	D	20	E200.7	08/24/09 17:28 / cp
Silica	47	mg/L	D	3	E200.7	08/31/09 15:02 / cp
Sodium	24600	mg/L	D	50	E200.7	08/24/09 17:28 / cp
Sulfate	2250	mg/L	D	60	E300.0	08/13/09 02:50 / ljl
PHYSICAL PROPERTIES						
Conductivity	78800	umhos/cm		1	A2510 B	08/12/09 12:57 / th
pH	7.45	s.u.		0.01	A4500-H B	08/12/09 12:57 / th
Solids, Total Dissolved TDS @ 180 C	40400	mg/L	н	10	A2540 C	08/19/09 13:13 / dd
METALS - DISSOLVED			_			
Aluminum	ND	mg/L	D	1	E200.7	08/31/09 15:02 / cp
Arsenic	0.086	mg/L	D	0.005	E200.8	08/14/09 15:13 / sml
Barium	0.4	mg/L		0.1	E200.8	08/14/09 15:13 / sml
Boron	1.7	mg/L		0.1	E200.8	08/14/09 15:13 / sml
Cadmium	0.010	mg/L		0.005	E200.8	08/14/09 15:13 / sml
Chromium	0.12	mg/L		0.05	E200.8	08/14/09 15:13 / sml
Copper	0.35	mg/L		0.01	E200.8	08/14/09 15:13 / sml
Iron	0.06	mg/L	D	0.06	E200.8	08/14/09 15:13 / sml
Lead	0.030	mg/L	D	0.002	E200.8	08/14/09 15:13 / sml
Manganese	0.16	mg/L		0.01	E200.8	08/14/09 15:13 / sml
Mercury	0.040	mg/L	D	0.004	E200.8	08/14/09 15:13 / sml
Molybdenum	10.5	mg/L		0.1	E200.8	08/14/09 15:13 / sml
Nickel	ND	mg/L		0.05	E200.8	08/14/09 15:13 / sml
Selenium	0.476	mg/L	D	0.003	E200.8	08/14/09 15:13 / sml
Uranium	25.9	mg/L	D	0.003	E200.8	08/14/09 15:13 / sml
Vanadium	300	mg/L		0.1	E200.8	08/14/09 15:13 / sml
Zinc	0.56	mg/L	D	0.02	E200.8	08/14/09 15:13 / sml
RADIONUCLIDES - DISSOLVED						
Radium 226	2870	pCi/L		0.16	E903.0	08/25/09 22:31 / trs
Radium 226 precision (±)	9.9	pCi/L			E903.0	08/25/09 22:31 / trs
Radium 226 MDC	0.16	pCi/L			E903.0	08/25/09 22:31 / trs

Report Definitions:

RL - Analyte reporting limit.

MCL - Maximum contaminant level.

QCL - Quality control limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

H - Analysis performed past recommended holding time.

D - RL increased due to sample matrix interference.

Client:Crow Butte ResourcesProject:Commercial Evaporation Pond G-8 SamplesLab ID:C09080355-002Client Sample ID:Pond Discharge Sample

Report Date: 09/11/09 Collection Date: 08/06/09 DateReceived: 08/11/09 Matrix: Aqueous

Analyses		Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
	Result						
DATA QUALITY							
A/C Balance (± 5)	-0.704	%				Calculation	08/25/09 10:04 / kbh
Anions	1110	meq/L				Calculation	08/25/09 10:04 / kbh
Cations	1090	meg/L				Calculation	08/25/09 10:04 / kbh
Solids, Total Dissolved Calculated	65100	mg/L				Calculation	08/25/09 10:04 / kbh
TDS Balance (0.80 - 1.20)	0.620	-				Calculation	08/25/09 10:04 / kbh

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

lient: Crow Butte Resources

oject: Commercial Evaporation Pond G-8 Samples

Report Date: 09/11/09 Work Order: C09080355

unt Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
			······	<u> </u>			Batch	: R12245
3 Method Blank				Run: MANT	ECH_090817A		08/17	7/09 10:55
3	mg/L	0.2						
ND	mg/L	- 1						
4	mg/L	1						
Laboratory Col	ntrol Sample			Run: MANT	ECH_090817A		08/17	7/09 11:10
200	mg/L	5.0	98	90	110			
Laboratory Co	ntrol Sample			Run: MANT	ECH_090817A		08/1	7/09 11:17
51.3	mg/L	5.0	96	90	110			
Sample Matrix	Spike			Run: MAN1	ECH_090817A		08/1	7/09 12:28
245	mg/L	5.0	103	80	120	•		
Sample Matrix	Spike Duplicate			Run: MAN1	TECH_090817A		08/1	7/09 12:35
240	mg/L	5.0	99	80	120	2.1	20	
					Analytical	Run: O	RION555A-2	2_090812/
Initial Calibrati	on Verification Sta	andard					08/1	2/09 12:36
		1.0	101	90	110			
						Bat		1555A-
Method Blank				Run: ORIO	N555A-2_090812	2A	08/1	2/09 12:31
0.9	umhos/cm	0.2						
Sample Duplic	cate			Run: ORIC	N555A-2 090812	2A	08/1	2/09 12:59
		1.0			-		10	
					Ba	atch: 09		DS-TDS-V
Method Blank				Run: BAL-				9/09 10:1
ND	mg/L	6			-			
Laboratory Co	ontrol Sample			Run: BAL-	1 090819A		08/1	9/09 10:1
	mg/L	10	100	90	110			
Sample Matri	x Spike			Run: BAL-	1 090819A		08/1	19/09 13:1
•	mg/L	10	99		- 110			
Sample Matri	x Spike Duplicate			Run: BAL-	1 090819A		08/1	19/09 13:1
	mg/L	10	96		-	1.9		
Sample Matri	x Spike			Run: BAL-	1 090819A		08/*	19/09 13:1
•	•	40	100					
2 4020	mg/L	10	102		110			
	x Spike Duplicate	10	102		1_090819A		08/*	19/09 13:1
	 Method Blank ND A Laboratory Colligion Laboratory Colligion Laboratory Colligion Laboratory Colligion Sample Matrix 245 Sample Matrix 245 Sample Matrix 240 Initial Calibrati 1430 Method Blank 0.9 Sample Duplic 79300 Method Blank ND Laboratory Colligion Method Blank ND Laboratory Colligion Sample Duplic 79300 Sample Matrix 3540 Sample Matrix 3540 Sample Matrix 3470 	 Method Blank 3 mg/L ND mg/L 4 mg/L Laboratory Control Sample 200 mg/L Laboratory Control Sample 51.3 mg/L Sample Matrix Spike 245 mg/L Sample Matrix Spike Duplicate 240 mg/L Initial Calibration Verification Sta 1430 umhos/cm Method Blank 0.9 umhos/cm Sample Duplicate 79300 umhos/cm Method Blank ND mg/L Laboratory Control Sample 1000 mg/L Sample Matrix Spike 3540 mg/L Sample Matrix Spike Duplicate 	3 Method Blank 0.2 ND mg/L 1 4 mg/L 1 Laboratory Control Sample 5.0 Laboratory Control Sample 5.0 Laboratory Control Sample 5.0 Sample Matrix Spike 245 245 mg/L 5.0 Sample Matrix Spike 245 240 mg/L 5.0 Sample Matrix Spike Duplicate 240 240 mg/L 5.0 Sample Matrix Spike Duplicate 240 240 mg/L 5.0 Sample Duplicate 240 0.9 umhos/cm 1.0 Method Blank 0.9 0.2 Sample Duplicate 79300 1.0 Method Blank 0.2 1.0 Method Blank 6 1.0 Sample Matrix Spike 10 10 Sample Matrix Spike 10 Sample Matrix Spike Duplicate 10 Sample Matrix Spike Duplicate 10 Sample Matrix Spike Duplicate 10 Sample Matrix Spike Dupli	3 Method Blank 0.2 ND mg/L 1 4 mg/L 1 Laboratory Control Sample 200 mg/L 5.0 98 Laboratory Control Sample 5.0 96 Sample Matrix Spike 245 mg/L 5.0 103 Sample Matrix Spike 240 mg/L 5.0 199 Initial Calibration Verification Standard 1.0 101 Method Blank 0.9 umhos/cm 1.0 101 Method Blank 0.9 umhos/cm 1.0 101 Method Blank 0.9 umhos/cm 1.0 101 Method Blank ND mg/L 6 Laboratory Control Sample 2 1000 mg/L 10 100 Sample Matrix Spike 3540 mg/L 10 99 Sample Matrix Spike 3540 mg/L 10 99 Sample Matrix Spike 3470 mg/L 10 96	3 Method Blank Run: MANT 3 mg/L 0.2 ND mg/L 1 4 mg/L 1 Laboratory Control Sample Run: MANT 200 mg/L 5.0 98 90 Laboratory Control Sample Run: MANT 51.3 mg/L 5.0 96 90 Sample Matrix Spike Run: MANT 245 mg/L 5.0 96 90 Sample Matrix Spike Run: MANT 245 mg/L 5.0 96 90 Sample Matrix Spike Run: MANT 245 mg/L 5.0 99 80 Initial Calibration Verification Standard 103 80 80 Sample Dublicate Run: ORIC 0.9 90 Method Blank Run: ORIC 0.9 90 Method Blank Run: ORIC 0.9 90 Year 1.0 101 90 90 Method Blank Run: BAL- ND mg/L 6 Laboratory Control Sample Run: BAL- 10 100 90	3 Method Blank Run: MANTECH_090817A 3 mg/L 1 4 mg/L 1 Laboratory Control Sample Run: MANTECH_090817A 200 mg/L 5.0 Sample Matrix Spike Run: MANTECH_090817A 245 mg/L 5.0 3 mg/L 5.0 3 mg/L 5.0 3 mg/L 5.0 240 mg/L 5.0 240 mg/L 5.0 3 80 120 Analytical Initial Calibration Verification Standard 1430 umhos/cm 1.0 Method Blank Run: ORION555A-2_090812 0.9 umhos/cm <td< td=""><td>3 Method Blank Run: MANTECH_090817A 3 mg/L 0.2 ND mg/L 1 4 mg/L 1 Laboratory Control Sample Run: MANTECH_090817A 200 mg/L 5.0 98 90 110 Laboratory Control Sample Run: MANTECH_090817A 51.3 mg/L 5.0 96 90 110 Sample Matrix Spike Run: MANTECH_090817A 245 mg/L 5.0 103 80 120 Sample Matrix Spike Duplicate Run: MANTECH_090817A 240 mg/L 5.0 99 80 120 2.1 Analytical Run: O 103 80 120 2.1 Analytical Run: O Initial Calibration Verification Standard 1.0 101 90 110 Bate Method Blank Run: ORION555A-2_090812A 0.6 Bate 0.6 79300 umhos/cm 1.0 101 90 110 10 Sample Duplicate Run: BAL-1_090819A 0.6</td><td>Batch Run: MANTECH_090817A Batch 3 mg/L 0.2 ND mg/L 1 4 mg/L 1 1 08/17 08/17 200 mg/L 1 1 08/17 08/17 200 mg/L 5.0 98 90 110 Laboratory Control Sample Run: MANTECH_090817A 08/17 08/17 51.3 mg/L 5.0 96 90 110 Sample Matrix Spike Run: MANTECH_090817A 08/17 245 245 mg/L 5.0 103 80 120 2.1 20 Sample Matrix Spike Duplicate Run: MANTECH_090817A 08/17 08/17 240 08/17 240 mg/L 5.0 99 80 120 2.1 20 Method Blank Run: ORION555A-2_090817A 08/17 08/17 08/17 08/17 0.9 umhos/cm 0.2 Sample Duplicate Run: ORION555A-2_090812A 08/17</td></td<>	3 Method Blank Run: MANTECH_090817A 3 mg/L 0.2 ND mg/L 1 4 mg/L 1 Laboratory Control Sample Run: MANTECH_090817A 200 mg/L 5.0 98 90 110 Laboratory Control Sample Run: MANTECH_090817A 51.3 mg/L 5.0 96 90 110 Sample Matrix Spike Run: MANTECH_090817A 245 mg/L 5.0 103 80 120 Sample Matrix Spike Duplicate Run: MANTECH_090817A 240 mg/L 5.0 99 80 120 2.1 Analytical Run: O 103 80 120 2.1 Analytical Run: O Initial Calibration Verification Standard 1.0 101 90 110 Bate Method Blank Run: ORION555A-2_090812A 0.6 Bate 0.6 79300 umhos/cm 1.0 101 90 110 10 Sample Duplicate Run: BAL-1_090819A 0.6	Batch Run: MANTECH_090817A Batch 3 mg/L 0.2 ND mg/L 1 4 mg/L 1 1 08/17 08/17 200 mg/L 1 1 08/17 08/17 200 mg/L 5.0 98 90 110 Laboratory Control Sample Run: MANTECH_090817A 08/17 08/17 51.3 mg/L 5.0 96 90 110 Sample Matrix Spike Run: MANTECH_090817A 08/17 245 245 mg/L 5.0 103 80 120 2.1 20 Sample Matrix Spike Duplicate Run: MANTECH_090817A 08/17 08/17 240 08/17 240 mg/L 5.0 99 80 120 2.1 20 Method Blank Run: ORION555A-2_090817A 08/17 08/17 08/17 08/17 0.9 umhos/cm 0.2 Sample Duplicate Run: ORION555A-2_090812A 08/17

Qualifiers:

RL - Analyte reporting limit. MDC - Minimum detectable concentration

Client: Crow Butte Resources

Project: Commercial Evaporation Pond G-8 Samples

Report Date: 09/11/09 Work Order: C09080355

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	A4500-F C							·		Batch	: R12230
Sample ID: I	MBLK-1	M	ethod Blank				Run: MAN1	TECH_090813A		08/13	3/09 11:26
Fluoride			ND	mg/L	0.05						
Sample ID: I	LCS-1	La	boratory Cor	trol Sample			Run: MAN	FECH_090813A		08/13	3/09 11:28
Fluoride			0.980	mg/L	0.10	98	90	110			
Sample ID: (C09080344-003BMS	Sa	ample Matrix	Spike			Run: MAN	FECH_090813A		08/13	3/09 11:51
Fluoride			1.32	mg/L	0.10	99	80	120			
Sample ID: (C09080344-003BMSI) Sa	ample Matrix	Spike Duplicate			Run: MAN	FECH_090813A		08/13	3/09 11:53
Fluoride			1.30	mg/L	0.10	97	80	120	1.5	10	
Method:	A4500-H B							Analytical	Run: Ol	RION555A-2	2_090812/
Sample ID:	ICV1_090812_1	In	itial Calibratio	on Verification St	andard					08/12	2/09 12:34
рН			6.96	\$.U.	0.010	101	98	102			
Method:	A4500-H B		· · · ·	<u> </u>					Bate	ch: 090812_	1555A-
Sample ID:	C09080355-002BDUF	> Sa	ample Duplic	ate			Run: ORIC	N555A-2_090812	2A	08/12	2/09 12:59
pН			7.44	s.u.	0.010				0.1	10	
Method:	E200.7									Batch	n: R12279
Sample ID:	MB-090821A	<u>4</u> M	ethod Blank				Run: ICP2-	-C_090824A		08/24	4/09 13:42
Calcium			ND	mg/L	0.2						
Magnesium			ND	mg/L	0.09						
Potassium			ND	mg/L	0.1						
Sodium			ND	mg/L	0.2						
Sample ID:	LFB-090821A	<u>4</u> La	aboratory For	tified Blank			Run: ICP2	-C_090824A		08/2	4/09 13:46
Calcium			50.9	mg/L	0.50	102	85	115			
Magnesium			50.4	mg/L	0.50	101	85	115			
Potassium			46.9	mg/L	0.50	94	85	115			
Sodium			50.5	mg/L	0.50,	. 101	85	115			
Sample ID:	C09080620-001BMS	2 <u>4</u> S	ample Matrix	Spike			Run: ICP2	-C_090824A		08/2	4/09 17:4
Calcium			150	mg/L	0.51	99	70	130			
Magnesium			120	mg/L	0.50	101	70	130			
Potassium			99	mg/L	0.50	94	70	130			
Sodium			150	mg/L	0.50	104	70	130			
Sample ID:	C09080620-001BMS	D <u>4</u> S	ample Matrix	Spike Duplicate			Run: ICP2	-C_090824A		08/2	4/09 17:4
Calcium			150	mg/L	0.51	101	70	130	1.4	20	
Magnesium	i		120	mg/L	0.50	101	70	130	0.2	20	
Potassium			97	mg/L	0.50	92	. 70	130	2.2	20	
Sodium			150	mg/L	0.50	107	· 70	130	1.8	20	

Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

MDC - Minimum detectable concentration

EINERGY LABURAI URIES, INC. • 2393 Salt Creek Highway (82601) • P.O. Box 3258 • Casper, WY 82602 Toll Free 888.235.0515 • 307.235.0515 • Fax 307.234.1639 • casper@energylab.com • www.energylab.com

QA/QC Summary Report

Client: Crow Butte Resources

Project: Commercial Evaporation Pond G-8 Samples

Report Date: 09/11/09 **Work Order:** C09080355

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E200.7									Batch:	R123143
Sample ID: MB-090831A	<u>2</u> 1	Method Blank				Run: ICP2-	C_090831A		08/31	/09 13:42
Aluminum		ND	mg/L	0.03						
Silicon		0.02	mg/L	0.01						
Sample ID: LFB-090831A	<u>2</u> l	_aboratory For	ified Blank			Run: ICP2-	C_090831A		08/31	/09 13:46
Aluminum		0.933	mg/L	0.10	93	85	115			
Silicon		0.460	mg/L	0.015	97	85	115			
Sample ID: C09080777-003AMS2	2 2 3	Sample Matrix	Spike			Run: ICP2-	C_090831A		08/31	/09 15:34
Aluminum		2.5	mg/L	0.10	101	70	130			
Silicon		2.2	mg/L	0.10	105	70	130			
Sample ID: C09080777-003AMSI	D <u>2</u> :	Sample Matrix	Spike Duplicate			Run: ICP2-	C_090831A		08/31	/09 15:38
Aluminum		2.7	mg/L	0.10	108	70	130	5.5	20	
Silicon		2.2	mg/L	0.10	105	70	130	0.1	20	

Qualifiers: RL - Analyte reporting limit. MDC - Minimum detectable concentration

Slient: Crow Butte Resources

Project: Commercial Evaporation Pond G-8 Samples

Report Date: 09/11/09 Work Order: C09080355

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E200.8			•••••						Batch	R122400
Sample ID: LRB	<u>16</u> Me	thod Blank				Run: ICPM	S4-C_090814A		08/14	/09 12:56
Arsenic		ND	mg/L	5E-05						
Barium		ND	mg/L	4E-05						
Boron		ND	mg/L	0.0004						
Cadmium		ND	mg/L	4E-05						
Chromium		ND	mg/L	4E-05						
Copper		ND	mg/L	7E-05						
Iron		ND	mg/L	0.0006						
Lead		ND	mg/L	2E-05						
Manganese		ND	mg/L	3E-05						
Mercury		ND	mg/L	4E-05						
Molybdenum		ND	mg/L	0.0001						
Nickel		ND	mg/L	6E-05						
Selenium		5E-05	mg/L	3E-05						
Uranium		ND	mg/L	3E-05						
Vanadium		ND	mg/L	4E-05			•			
Zinc		ND	mg/L	0.0002						
Sample ID: LFB	<u>16</u> Lat	poratory For	tified Blank			Run: ICPM	S4-C_090814A		08/14	/09 13:01
Arsenic		0.0533	mg/L	0.0010	107	85	115			
Barium		0.0527	mg/L	0.0010	105	85	115			
Boron		0.0531	mg/L	0.0010	106	85	115			
Cadmium		0.0530	mg/L	0.0010	106	85	115			
Chromium		0.0527	mg/L	0.0010	105	85	115			
Copper		0.0535	mg/L	0.0010	107	85	115			
Iron		1.36	mg/L	0.0010	109	85	115			
Lead		0.0536	mg/L	0.0010	107	85	115			
Manganese		0.0516	mg/L	0.0010	103	85	115			
Mercury		0.00519	mg/L	0.0010	104	85	115			
Molybdenum		0.0527	mg/L	0.0010	105	85	115			
Nickel		0.0535	mg/L	0.0010	107	. 85	115			
Selenium		0.0538	mg/L	0.0010	107	85	115			
Uranium		0.0501	mg/L	0.00030	100	85	115			
Vanadium		0.0527	mg/L	· 0.0010	105	85	115			
Zinc		0.0542	mg/L	0.0010	108	85	115			
Sample ID: C09080487-003BMS4	4 <u>16</u> Sa	mple Matrix	Spike			Run: ICPM	S4-C_090814A		08/14	/09 15:49
Arsenic		0.0537	mg/L	0.0010	105	70	130			
Barium		0.0609	mg/L	0.0010	101	70	130			
Boron		0.105	mg/L	0.10	117	70	130			
Cadmium		0.0520	mg/L	0.010	104	70	130			
Chromium		0.0536	mg/L	0.050	107	70	130			
Copper	·	0.0526	mg/L	0.010	105	70	130			
Iron		1.35	mg/L	0.030	107	70	130			
Lead		0.0530	mg/L	0.050	106	70	130			

Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ENERGY LABORATORIES, INC. • 2393 Salt Creek Highway (82601) • P.O. Box 3258 • Casper, WY 82602 Toll Free 888.235.0515 • 307.235.0515 • Fax 307.234.1639 • casper@energylab.com • www.energylab.com

QA/QC Summary Report

Client: Crow Butte Resources

Project: Commercial Evaporation Pond G-8 Samples

Report Date: 09/11/09 Work Order: C09080355

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E200.8							·····		Batch	: R12240
Sample ID: C09080487-003BMS4	4 <u>16</u> Sa	ample Matrix	Spike			Run: ICPM	S4-C_090814A		08/14	/09 15:49
Manganese		0.0616	mg/L	0.010	112	70	130			
Mercury		0.00520	mg/L	0.0010	103	70	130			
Molybdenum		0.0550	mg/L	0.0010	107	70	130			
Nickel		0.0524	mg/L	0.050	104	70	130			
Selenium		0.0543	mg/L	0.0010	108	70	130			
Uranium		0.0541	mg/L	0.0010	102	70	130			
Vanadium		0.0559	mg/L	0.010	110	70	130			
Zinc		0.0563	mg/L	0.0010	107	70	130			
Sample ID: C09080487-003BMSI	D <u>15</u> Sa	ample Matrix	Spike Duplicate			Run: ICPM	S4-C_090814A		08/14	1/09 16:15
Arsenic		0.0542	mg/L	0.0010	106	70	130	0.8	20	
Barium		0.0622	mg/L	0.0010	104	. 70	130	2.1	20	
Boron ,		0.103	mg/L	0.10	114	70	130	1.7	20	
Cadmium		0.0526	mg/L	0.010	105	70	130	1.1	20	
Chromium		0.0545	mg/L	0.050	109	70	130	1.7	20	
Copper		0.0523	mg/L	0.010	104	70	130	0.5	20	
Iron		1.38	mg/L	0.030	110	70	130	2.1	-20	
Lead		0.0542	mg/L	0.050	108	70	130	2.2	20	
Manganese		0.0625	mg/L	0.010	114	70	130	1.4	20	
Mercury		0.00538	mg/L	0.0010	106	70	130	3.3	20	
Molybdenum		0.0557	mg/L	0.0010	109	70	130	1.2	20	
Nickel		0.0524	mg/L	0.050	104	70	130	0	20	
Selenium		0.0559	mg/L	0.0010	111	70	130	2.9	20	
Vanadium		0.0553	mg/L	0.0010	109	70	130	0.9	20	
Zinc		0.0563	mg/L	0.010	107	70	130	0.1	20	
Method: E300.0			×						Batc	n: R12230
Sample ID: LCS	<u>2</u> L	aboratory Co	ntrol Sample			Run: IC1-C	C_090812A		08/1	2/09 19:3
Chloride		9.86	mg/L	1.0	99	90	110			
Sulfate		39.7	mg/L	1.0	99	90	110			
Sample ID: MBLK	<u>2</u> N	lethod Blank				Run: IC1-0	C_090812A		08/1	2/09 19:5
Chloride		ND	mg/L	0.01						
Sulfate		ND	mg/L	0.06						
Sample ID: C09080382-001AMS	<u>2</u> S	Sample Matri	x Spike			Run: IC1-0	C_090812A		08/1	3/09 04:2
Chloride		101	mg/L	1.0						
Sulfate		285	mg/L	1.0	104	. 90	110			
Sample ID: C09080382-001AMS	5D <u>2</u> 5		x Spike Duplicate			Run: IC1-0			. 08/1	3/09 04:3
Chloride		103	mg/L	1.0	106	90	110	2	20	
Sulfate		291	mg/L	1.0	107	90	110	2.1	20	

Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

Client: Crow Butte Resources

Project: Commercial Evaporation Pond G-8 Samples

Report Date: 09/11/09 Work Order: C09080355

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E350.1		<u></u>		·····		<u> </u>			Batch: B	R134186
ample ID: MBLK	Me	ethod Blank		,		Run: SUB-	B134186		08/12	/09 10:04
Nitrogen, Ammonia as N		ND	mg/L	0.02						
ample ID: LFB	La	boratory For	lified Blank			Run: SUB-	B134186		08/12	/09 10:06
Nitrogen, Ammonia as N		1.03	mg/L	0.050	104	90	110			
Sample ID: B09080903-002CMS	Sa	mple Matrix	Spike			Run: SUB-	B134186		08/12	/09 10:28
Nitrogen, Ammonia as N		0.991	_ mg/L	0.050	101	90	110			
Sample ID: B09080903-002CMSI) Sa	mple Matrix	Spike Duplicate			Run: SUB-	B134186		08/12	2/09 10:29
Nitrogen, Ammonia as N		1.00	mg/L	0.050	102	90	110	0.9	10	
Method: E353.2		<u> </u>							Batch: B	_R134288
Sample ID: MBLK	Me	ethod Blank				Run: SUB-	B134288		08/13	8/09 09:53
Nitrogen, Nitrate+Nitrite as N		0.006	mg/L	0.002				•		
Sample ID: LFB	La	boratory For	tified Blank			Run: SUB-	B134288		08/13	3/09 09:54
Nitrogen, Nitrate+Nitrite as N		1.06	mg/L	0.010	107	90	110			
Sample ID: B09081061-001EMS	Sa	mple Matrix	Spike			Run: SUB-	B134288		08/13	8/09 10:50
Nitrogen, Nitrate+Nitrite as N		1.14	mg/L	0.010	103	. 90	110			
Sample ID: B09081061-001EMSI) Sa	mple Matrix	Spike Duplicate			Run: SUB-	B134288		08/13	3/09 10:51
Nitrogen, Nitrate+Nitrite as N		1.13	mg/L	0.010	102	90	110	0.6	10	
Sample ID: B09081082-002AMS	Sa	ample Matrix	Spike			Run: SUB-	B134288		08/13	8/09 11:49
Nitrogen, Nitrate+Nitrite as N		1.06	mg/L	0.010	106	90	110			
Sample ID: B09081082-002AMS	D Sa	ample Matrix	Spike Duplicate			Run: SUB-	B134288		08/13	3/09 11:50
Nitrogen, Nitrate+Nitrite as N		1.05	mg/L	0.010	105	90	· 110	0.8	10	
Method: E903.0								-	Batch: R	A226-391
Sample ID: C09080528-001DMS	Sa	ample Matrix	Spike			Run: BER	THOLD 770-1_0	90819B	08/2	5/09 22:31
Radium 226		11.0	pCi/L		97	70	130			
Sample ID: C09080528-001DMS	D Sa	ample Matrix	Spike Duplicate			Run: BER	THOLD 770-1_0)90819B	08/2	5/09 22:31
Radium 226		10.5	pCi/L		93	70	130	4.9	23.8	
Sample ID: MB-RA226-3913	<u>3</u> M	ethod Blank				Run: BER	THOLD 770-1_()90819B	08/2	6/09 02:05
Radium 226		-0.1	pCi/L				-			U
Radium 226 precision (±)		0.06	pCi/L							
Radium 226 MDC		0.2	pCi/L							
Sample ID: LCS-RA226-3913	La	aboratory Co	ntrol Sample			Run: BER	THOLD 770-1_()90819B	08/2	6/09 02:05
		6.8	pCi/L		88	70	130			

Qualifiers:

RL - Analyte reporting limit. MDC - Minimum detectable concentration ND - Not detected at the reporting limit.

U - Not detected at minimum detectable concentration

ENERGY LABORATORIES, INC. • 2393 Salt Creek Highway (82601) • P.O. Box 3258 • Casper, WY 82602 Toll Free 888.235.0515 • 307.235.0515 • Fax 307.234.1639 • casper@energylab.com • www.energylab.com

ANALYTICAL SUMMARY REPORT

3

September 11, 2009

Crow Butte Resources 86 Crow Butte Rd Crawford, NE 69339

Workorder No.: C09080355 Quote ID: C1125 - Crow Butte Uranium Project

Project Name: Commercial Evaporation Pond G-8 Samples

Energy Laboratories, Inc. received the following 2 samples for Crow Butte Resources on 8/11/2009 for analysis.

Sample ID	Client Sample ID	Collect Date	Receive Date	Matrix	Test
C09080355-001	Pond Composite Sample	08/06/09 00:00	08/11/09	Aqueous	Metals by ICP/ICPMS, Dissolved Alkalinity QA Calculations Conductivity Fluoride E300.0 Anions Nitrogen, Ammonia Nitrogen, Nitrate + Nitrite pH Radium 226, Dissolved Solids, Total Dissolved
C09080355-002	Pond Discharge Sample	08/06/09 00:00	08/11/09	Aqueous	Same As Above

As appropriate, any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

If you have any questions regarding these tests results, please call.

Report Approved By:

Stephanie D. Waldrop

Reporting Supervisor

ENERGY LABORATORIES, INC. • 2393 Salt Creek Highway (82601) • P.O. Box 3258 • Casper, WY 82602 Toll Free 888.235.0515 • 307.235.0515 • Fax 307.234.1639 • casper@energylab.com • www.energylab.com

CLIENT: Crow Butte Resources

Project: Commercial Evaporation Pond G-8 Samples

Sample Delivery Group: C09080355

amples CASE NARRATIVE

Date: 11-Sep-09

BRANCH LABORATORY SUBCONTRACT ANALYSIS

Tests Associated with Analyst identified as ELI-B were subcontracted to Energy Laboratories Billings Branch, EPA Number MT00005.

RADIOCHEMISTRY ANALYSIS

Per client request, results less than MDC (or precision if no MDC), are reported as <MDC (or <precision). Actual instrument results are available by request.

ORIGINAL SAMPLE SUBMITTAL(S)

All original sample submittals have been returned with the data package.

SAMPLE TEMPERATURE COMPLIANCE: 4°C (±2°C)

Temperature of samples received may not be considered properly preserved by accepted standards. Samples that are hand delivered immediately after collection shall be considered acceptable if there is evidence that the chilling process has begun.

GROSS ALPHA ANALYSIS

Method 900.0 for gross alpha and gross beta is intended as a drinking water method for low TDS waters. Data provided by this method for non potable waters should be viewed as inconsistent.

SOIL/SOLID SAMPLES

All samples reported on an as received basis unless otherwise indicated.

ATRAZINE, SIMAZINE AND PCB ANALYSIS USING EPA 505

Data for Atrazine and Simazine are reported from EPA 525.2, not from EPA 505. Data reported by ELI using EPA method 505 reflects the results for seven individual Aroclors. When the results for all seven are ND (not detected), the sample meets EPA compliance criteria for PCB monitoring.

SUBCONTRACTING ANALYSIS

Subcontracting of sample analyses to an outside laboratory may be required. If so, ENERGY LABORATORIES will utilize its branch laboratories or qualified contract laboratories for this service. Any such laboratories will be indicated within the Laboratory Analytical Report.

BRANCH LABORATORY LOCATIONS

eli-b - Energy Laboratories, Inc. - Billings, MT eli-g - Energy Laboratories, Inc. - Gillette, WY eli-h - Energy Laboratories, Inc. - Helena, MT eli-r - Energy Laboratories, Inc. - Rapid City, SD eli-t - Energy Laboratories, Inc. - College Station, TX

CERTFICATIONS: USEPA: WY00002; FL-DOH NELAC: E87641; California: 02118CA Oregon: WY200001; Utah: 3072350515; Virginia: 00057; Washington: C1903

ISO 17025 DISCLAIMER:

The results of this Analytical Report relate only to the items submitted for analysis.

ENERGY LABORATORIES, INC. - CASPER, WY certifies that certain method selections contained in this report meet requirements as set forth by the above accrediting authorities. Some results requested by the client may not be covered under these certifications. All analysis data to be submitted for regulatory enforcement should be certified in the sample state of origin. Please verify ELI's certification coverage by visiting www.energylab.com

ELI appreciates the opportunity to provide you with this analytical service. For additional information and services visit our web page www.energylab.com.

THIS IS THE FINAL PAGE OF THE LABORATORY ANALYTICAL REPORT

Energy Laboratories Inc Workorder Receipt Checklist

Crow Butte Resources

C09080355

Login completed by: Corinne Wagner		Date and Time F	Received: 8/11/2009 9:15 AM					
Reviewed by:		Received by: al						
Reviewed Date:		Carrier name: Ground						
Shipping container/cooler in good condition?	Yes 🗸	No 📋	Not Present					
Custody seals intact on shipping container/cooler?	Yes 🗌	No 🗌	Not Present					
Custody seals intact on sample bottles?	Yes 🗌	No 📋	Not Present					
Chain of custody present?	Yes 🗹	No 🗍						
Chain of custody signed when relinquished and received?	Yes 🗹	No 🗌						
Chain of custody agrees with sample labels?	Yes 🗹	No 🗌						
Samples in proper container/bottle?	Yes 🔽	No 🗌						
Sample containers intact?	Yes 🗹	No 🗌						
Sufficient sample volume for indicated test?	Yes 🗹	No 🗌						
All samples received within holding time?	Yes 🗸	No 📋						
Container/Temp Blank temperature:	21°C							
Water - VOA vials have zero headspace?	Yes 🗌	No 📋	No VOA vials submitted 🛛					
Water - pH acceptable upon receipt?	Yes 🗸	No 🗌	Not Applicable					

Contact and Corrective Action Comments:

2mLs of HNO3 was added to all radiochem bottles and 1mL of H2SO4 was added to the nitrate/ammonia bottle for the Pond Composite sample to bring them down to a pH of 2.

Client:	Crow Butte Resources
Project:	Commercial Evaporation Pond G-8 Samples
Lab ID:	C09080916-001
Client Sample ID:	Pond Composite

Report Date: 09/16/09 Collection Date: 08/20/09 DateReceived: 08/25/09 Matrix: Aqueous

Analyses	Result	Units	Qualifiers		MCL/ QCL	Method	Analysis Date / By
MAJORIONS							
Alkalinity, Total as CaCO3	3490	mg/L		1		A2320 B	08/28/09 20:38 / dvg
Carbonate as CO3	971	mg/L		1		A2320 B	08/28/09 20:38 / dvg
Bicarbonate as HCO3	2290	mg/L		1		A2320 B	08/28/09 20:38 / dvg
Calcium	ND	mg/L	D	50		E200.7	09/14/09 14:08 / cp
Chloride	61600	mg/L	D	80		E300.0	08/28/09 03:01 / 1)1
Fluoride	1.0	mg/L		0.1		A4500-F C	09/03/09 14:30 / dvg
Magnesium	63	mg/L	D	20		E200.7	09/14/09 14:08 / cp
Nitrogen, Ammonia as N	ND	mg/L	D	0.1		E350.1	08/26/09 15:04 / eli-b
Nitrogen, Nitrate+Nitrite as N	0.42	mg/L	Ð	0.03		E353.2	08/28/09 13:44 / eli-b
Potassium	298	mg/L	D	20		E200.7	09/14/09 14:08 / cp
Silica	63.8	mg/L		0.2		E200.8	08/27/09 15:18 / sml
Sodium	49000	mg/L	D	50		E200.7	09/14/09 14:08 / cp
Sulfate	6090	mg/L	D	200		E300.0	08/28/09 03:01 / ljl
PHYSICAL PROPERTIES							
Conductivity	141000	umhos/cm		1		A2510 B	08/26/09 14:25 / dd
pH	9.03	s.u.		0.01		A4500-H B	08/26/09 14:25 / dd
Solids, Total Dissolved TDS @ 180 C	119000	mg/L		10		A2540 C	08/26/09 20:40 / dnp
METALS - DISSOLVED							
Aluminum	1.3	mg/L		0.1		E200.8	08/27/09 15:18 / sml
Arsenic	0.091	mg/L		0.001		E200.8	08/27/09 15:18 / sml
Barium	ND	mg/L		0.1		E200.8	08/27/09 15:18 / sml
Boron	4.1	mg/L		0.1		E200.8	08/27/09 15:18 / sml
Cadmium	0.007	mg/L		0.005		E200.8	08/27/09 15:18 / sml
Chromium	0.05	mg/L		0.05		E200.8	08/27/09 15:18 / sml
Copper	0.25	mg/L		0.01		E200.8	08/27/09 15:18 / sml
Iron	0.20	mg/L		0.03		E200.8	08/27/09 15:18 / sml
Lead	0.015	mg/L	D	0.002		E200.8	08/28/09 18:26 / sml
Manganese	0.05	mg/L		0.01		E200.8	08/27/09 15:18 / sml
Mercury	0.010	mg/L	D	0.004		E200.8	08/28/09 18:26 / sml
Molybdenum	10.9	mg/L		0.1		E200.8	08/27/09 15:18 / smì
Nickel	• ND	mg/L		0.05		E200.8	08/27/09 15:18 / sml
Selenium	0.112	mg/L		0.001		E200.8	08/27/09 15:18 / sml
Uranium	378	mg/L	D	0.003		E200.8	08/28/09 18:26 / sml
Vanadium	125	mg/L		0.1		E200.8	08/27/09 15:18 / sml
Zinc	0.48	mg/L		0.01		E200.8	08/27/09 15:18 / sml
RADIONUCLIDES - DISSOLVED							
Radium 226	948	pCi/L		0.19		E903.0	09/08/09 18:20 / jah
Radium 226 precision (±)	6.0	pCi/L				E903.0	09/08/09 18:20 / jah
Radium 226 MDC	0.19	pCi/L				E903.0	09/08/09 18:20 / jah

Report RL - Analyte reporting limit. Definitions:

QCL - Quality control limit.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

MDC - Minimum detectable concentration

D - RL increased due to sample matrix interference.

Client:	Crow Butte Resources
Project:	Commercial Evaporation Pond G-8 Samples
Lab ID:	C09080916-001
Client Sample ID:	Pond Composite

Report Date: 09/16/09 Collection Date: 08/20/09 DateReceived: 08/25/09 Matrix: Aqueous

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
DATA QUALITY							
A/C Balance (± 5)	5.12	%				Calculation	09/15/09 09:48 / kbh
Anions	1930	meq/L				Calculation	09/15/09 09:48 / kbh
Cations	2140	meq/L				Calculation	09/15/09 09:48 / kbh
Solids, Total Dissolved Calculated	119000	mg/L				Calculation	09/15/09 09:48 / kbh
TDS Balance (0.80 - 1.20)	1.00					Calculation	09/15/09 09:48 / kbh

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit.

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

Client:Crow Butte ResourcesProject:Commercial Evaporation Pond G-8 SamplesLab ID:C09080916-002Client Sample ID:Pond Discharge

Report Date: 09/16/09 Collection Date: 08/20/09 DateReceived: 08/25/09 Matrix: Aqueous

Angluss	Result	1114	0	-	MCL/ QCL	Mathad	Anchaic Data / Du
Analyses		Units	Qualifiers	RL		Method	Analysis Date / By
MAJOR IONS							
Alkalinity, Total as CaCO3	348	mg/L		1		A2320 B	08/28/09 20:45 / dvg
Carbonate as CO3	ND	mg/L		1		A2320 B	08/28/09 20:45 / dvg
Bicarbonate as HCO3	424	mg/L		1		A2320 B	08/28/09 20:45 / dvg
Calcium	184	mg/L	D	20		E200.7	09/14/09 14:25 / cp
Chloride	37500	mg/L	D	40		E300.0	08/28/09 03:16 / Iji
Fluoride	ND	mg/L		0.1		A4500-F C	09/03/09 14:34 / dvg
Magnesium	18	mg/L	D	9		E200.7	09/14/09 14:25 / cp
Nitrogen, Ammonia as N	0.5	mg/L	D	0.1		E350.1	08/26/09 15:14 / eli-b
Nitrogen, Nitrate+Nitrite as N	3.76	mg/L	D	0.03		E353.2	08/28/09 13:45 / eli-b
Potassium	276	mg/L	D	10		E200.7	09/14/09 14:25 / cp
Silica	41.0	mg/L		0.2		E200.8	08/27/09 15:23 / sml
Sodium	28700	mg/L	D	20		E200.7	09/14/09 14:25 / cp
Sulfate	2960	mg/L	D	100		E300.0	08/28/09 03:16 / Ijl
PHYSICAL PROPERTIES							
Conductivity	93800	umhos/cm		1		A2510 B	08/26/09 14:26 / dd
pH	7.33	S.U.		0.01		A4500-H B	08/26/09 14:26 / dd
Solids, Total Dissolved TDS @ 180 C	69200	mg/L		10		A2540 C	08/26/09 20:41 / dnp
METALS - DISSOLVED							
Aluminum	ND	mg/L		0.1		E200.8	08/27/09 15:23 / sml
Arsenic	0.046	mg/L		0.001		E200.8	08/27/09 15:23 / sml
Barium	0,4	mg/L		0.1		E200.8	08/27/09 15:23 / sml
Boron	1.5	mg/L		0.1		E200.8	08/27/09 15:23 / sml
Cadmium	0.008	mg/L		0.005		E200.8	08/27/09 15:23 / sml
Chromium	ND	mg/L	•	0.05		E200.8	08/27/09 15:23 / sml
Copper	0.23	mg/L		0.01		E200.8	08/27/09 15:23 / sml
Iron	0.06	mg/L		0.03		E200.8	08/27/09 15:23 / sml
Lead	0.018	mg/L		0.001		E200.8	08/27/09 15:23 / sml
Manganese	0.22	mg/L		0.01		E200.8	08/27/09 15:23 / sml
Mercury	0.018	mg/L		0.001		E200.8	08/27/09 15:23 / sml
Molybdenum	13.6	mg/L		0.1		E200.8	08/27/09 15:23 / sml
Nickel	ND	mg/L		0.05		E200.8	08/27/09 15:23 / sml
Selenium	0.433	mg/L		0.001		E200.8	08/27/09 15:23 / sml
Uranium	14.3	mg/L	D	0.0006		E200.8	08/27/09 15:23 / sml
Vanadium	163	mg/L	-	0.1		E200.8	08/27/09 15:23 / sml
Zinc	0.15	mg/L		0.01		E200.8	08/27/09 15:23 / sml
RADIONUCLIDES - DISSOLVED							
Radium 226	7680	pCi/L		0.20		E903.0	09/08/09 18:20 / jah
Radium 226 precision (±)	18	pCi/L		0.20		E903.0	09/08/09 18:20 / jah
Radium 226 MDC	0.20	pCi/L				E903.0	09/08/09 18:20 / jah
	0.20	pone				E903.0	oalooloa 10:201 Jan

Report Definitions: RL - Analyte reporting limit.

MCL - Maximum contaminant level.

QCL - Quality control limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix interference.

Client:	Crow Butte Resources	,	
Project:	Commercial Evaporation Pond G-8 Samples		C
Lab ID:	C09080916-002		
Client Sample ID:	Pond Discharge		

Report Date: 09/16/09 Collection Date: 08/20/09 DateReceived: 08/25/09 Matrix: Aqueous

					MCL/		
Analyses	Result	Units	Qualifiers	RL .	QCL	Method	Analysis Date / By
DATA QUALITY							
A/C Balance (± 5)	5.83	%				Calculation	09/15/09 09:54 / kbh
Anions	1130	meq/L				Calculation	09/15/09 09:54 / kbh
Cations	1270	meq/L				Calculation	09/15/09 09:54 / kbh
Solids, Total Dissolved Calculated	69900	mg/L				Calculation	09/15/09 09:54 / kbh
TDS Balance (0.80 - 1.20)	0.990					Calculation	09/15/09 09:54 / kbh
- The Anion / Cation balance was confirmed	hy re-analysis						

The Anion / Cation balance was confirmed by re-analysis.

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

Client: Crow Butte Resources

Project: Commercial Evaporation Pond G-8 Samples

Report Date: 09/16/09 **Work Order:** C09080916

Method: A2320 B Sample ID: MBLK Alkalinity, Total as CaCO3 Carbonate as CO3 Bicarbonate as HCO3 Sample ID: LCS1 Alkalinity, Total as CaCO3 Sample ID: LCS Alkalinity, Total as CaCO3 Sample ID: C09080914-001AMS Alkalinity, Total as CaCO3 Sample ID: C09080914-001AMSD Alkalinity, Total as CaCO3	 <u>3</u> Method Blank 2 ND 3 Laboratory Cor 200 Laboratory Cor 54.7 Sample Matrix 329 	mg/L ntrol Sample mg/L	0.2 1 1 5.0	99	Run: MANT 90	ECH_090828A ECH_090828A 110		Batch: R123058 08/28/09 14:36 08/28/09 14:51
Alkalinity, Total as CaCO3 Carbonate as CO3 Bicarbonate as HCO3 Sample ID: LCS1 Alkalinity, Total as CaCO3 Sample ID: LCS Alkalinity, Total as CaCO3 Sample ID: C09080914-001AMS Alkalinity, Total as CaCO3 Sample ID: C09080914-001AMSD	2 ND 3 Laboratory Cor 200 Laboratory Cor 54.7 Sample Matrix	mg/L mg/L htrol Sample mg/L htrol Sample mg/L	1 1 5.0	99	Run: MANT 90	ECH_090828A		
Carbonate as CO3 Bicarbonate as HCO3 Sample ID: LCS1 Alkalinity, Total as CaCO3 Sample ID: LCS Alkalinity, Total as CaCO3 Sample ID: C09080914-001AMS Alkalinity, Total as CaCO3 Sample ID: C09080914-001AMSD	ND 3 Laboratory Cor 200 Laboratory Cor 54.7 Sample Matrix	mg/L mg/L htrol Sample mg/L htrol Sample mg/L	1 1 5.0	99	90			08/28/09 14:51
Bicarbonate as HCO3 Sample ID: LCS1 Alkalinity, Total as CaCO3 Sample ID: LCS Alkalinity, Total as CaCO3 Sample ID: C09080914-001AMS Alkalinity, Total as CaCO3 Sample ID: C09080914-001AMSD	3 Laboratory Cor 200 Laboratory Cor 54.7 Sample Matrix	mg/L htrol Sample mg/L htrol Sample mg/L	1 5.0	99	90			08/28/09 14:51
Sample ID: LCS1 Alkalinity, Total as CaCO3 Sample ID: LCS Alkalinity, Total as CaCO3 Sample ID: C09080914-001AMS Alkalinity, Total as CaCO3 Sample ID: C09080914-001AMSD	Laboratory Cor 200 Laboratory Cor 54.7 Sample Matrix	ntrol Sample mg/L ntrol Sample mg/L	5.0	99	90			08/28/09 14:51
Alkalinity, Total as CaCO3 Sample ID: LCS Alkalinity, Total as CaCO3 Sample ID: C09080914-001AMS Alkalinity, Total as CaCO3 Sample ID: C09080914-001AMSD	200 Laboratory Cor 54.7 Sample Matrix	mg/L ntrol Sample mg/L		99	90			08/28/09 14:51
Sample ID: LCS Alkalinity, Total as CaCO3 Sample ID: C09080914-001AMS Alkalinity, Total as CaCO3 Sample ID: C09080914-001AMSD	Laboratory Cor 54.7 Sample Matrix	ntrol Sample mg/L		99	-	110		
Alkalinity, Total as CaCO3 Sample ID: C09080914-001AMS Alkalinity, Total as CaCO3 Sample ID: C09080914-001AMSD	54.7 Sample Matrix	mg/L	5.0					
Sample ID: C09080914-001AMS Alkalinity, Total as CaCO3 Sample ID: C09080914-001AMSD	Sample Matrix	U U	5.0		Run: MANT	ECH_090828A		08/28/09 14:59
Alkalinity, Total as CaCO3 Sample ID: C09080914-001AMSD	•			105	90	110		
Sample ID: C09080914-001AMSD	329	Spike		÷	Run: MANT	ECH_090828A		08/28/09 19:56
•		mg/L	5.0	101	80	120		
Alkalinity, Total as CaCO3	Sample Matrix	Spike Duplicate			Run: MANT	ECH_090828A		08/28/09 20:04
	337	mg/L	5.0	107	80	120	2.3	20
Method: A2510 B						Analytical	Run: OR	RION555A-2_090826E
Sample ID: ICV2_090826_2	Initial Calibratio	on Verification Star	ndarđ					08/26/09 13:32
Conductivity	1380	umhos/cm	1.0	98	90	110		
Method: A2510 B	<u></u>					Ba	tch: 090	826_2_PH-W_555A-2
Sample ID: MBLK1_090826_2	Method Blank				Run: ORIO	N555A-2_09082	6B	08/26/09 13:28
Conductivity	2	umhos/cm	0.2					
Sample ID: C09080911-006ADUP	Sample Duplic	ate			Run: ORIO	N555A-2_09082	6B	08/26/09 13:53
Conductivity	1930	umhos/cm	1.0				0.1	10
Method: A2540 C						Ba	atch: 090	0826_4_SLDS-TDS-W
Sample ID: MBLK1_090826	Method Blank				Run: BAL-	1_090826D		08/26/09 17:13
Solids, Total Dissolved TDS @ 180 0	C ND	mg/L	6					
Sample ID: LCS1_090826	Laboratory Co	ntrol Sample			Run: BAL-	1_090826D		08/26/09 17:13
Solids, Total Dissolved TDS @ 180 (C 994	mg/L	10	99	90	110		
Sample ID: C09080917-004AMS	Sample Matrix	Spike			Run: BAL-	1_090826D		08/26/09 20:41
Solids, Total Dissolved TDS @ 180 (C 2730	mg/L	10	104	90	110		
Sample ID: C09080917-004AMSD	Sample Matrix	Spike Duplicate			Run: BAL-	1_090826D		08/26/09 20:42
Solids, Total Dissolved TDS @ 180 (mg/L	10					

Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

Client: Crow Butte Resources

Project: Commercial Evaporation Pond G-8 Samples

Report Date: 09/16/09 Work Order: C09080916

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: A4500-F C	<u> </u>								Batch	: R12331
Sample ID: MBLK	M	ethod Blank				Run: MANT	FECH_090903B		09/03	3/09 13:32
Fluoride		ND	mg/L	0.05						
Sample ID: LCS	La	boratory Cor	ntrol Sample			Run: MANT	rech_090903B		09/03	3/09 13:34
Fluoride		1.02	mg/L	0.10	102	90	110			
Sample ID: C09080922-005AMS	S Sa	ample Matrix	Spike			Run: MANI	rech_090903B		09/03	3/09 14:57
Fluoride		2.12	mg/L	0.10	106	80	120			,
Sample ID: C09080922-005AMS	SD Sa	ample Matrix	Spike Duplicate			Run: MAN	TECH_090903B		09/0	3/09 15:02
Fluoride		2.12	mg/L	0.10	106	80	120	0	10	
Method: A4500-H B				·		<u> </u>	Analytical	Run: O	RION555A-	2_090826
Sample ID: ICV1_090826_2	In	itial Calibratio	on Verification St	andard					08/2	6/09 13:30
рН		6.94	s.u.	0.010	101	98	102			
Method: A4500-H B			·····				Ba	atch: 090	0826_2_PH	-W_555A-
Sample ID: C09080914-002ADL	JP S	ample Duplic	ate			Run: ORIO	N555A-2_09082	6B	08/2	6/09 14:1:
pH		8.20	s.u.	0.010				0.4	10	
Method: E200.7									Batcl	h: R12368
Sample ID: MB-090914A	<u>4</u> M	lethod Blank				Run: ICP2-	-C_090914A		09/1	4/09 13:1
Calcium		ND	mg/L	0.2						
Magnesium		ND	mg/L	0.09						
Potassium		ND	mg/L	0.1						
Sodium		0.3	mg/L	0.2						
Sample ID: LFB-090914A	<u>4</u> L	aboratory Fo	rtified Blank			Run: ICP2	-C_090914A		09/1	4/09 13:1
Calcium		51.0	mg/L	0.50	102		115			
Magnesium		50.1	mg/L	0.50	100					
Potassium		46.0	mg/L	0.50	92					
Sodium		47.4	mg/L	0.50	94	85	115			
Sample ID: C09080916-001CM	S2 <u>4</u> S	ample Matrix	Spike			Run: ICP2	-C_090914A		. 09/1	4/09 14:1
Calcium		9800	mg/L	51	96	70	130			
Magnesium		10000	mg/L	. 18	97					
Potassium		9630	mg/L	21	91					
Sodium		58200	mg/L	47		70	130			A
Sample ID: C09080916-001CM	SD <u>4</u> S	Sample Matrix	Spike Duplicate				2-C_090914A		09/1	14/09 14:2
Calcium		9930	mg/L	51				1.3		
Magnesium		10200	mg/L	18				1.9		
Potassium		9850	mg/L	21				2.2		
Sodium		59200	mg/L	47		70	130	1.7	20) A

Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated. MDC - Minimum detectable concentration

Client: Crow Butte Resources

Project: Commercial Evaporation Pond G-8 Samples

Report Date: 09/16/09 **Work Order:** C09080916

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLim	it Qual
Method: E200.8									Bate	ch: R12295
Sample ID: LRB	<u>18</u> Mei	thod Blank				Run: ICPM	S4-C_090826B		08/	26/09 21:18
Aluminum		0.001	mg/L	0.0004			-			
Arsenic		ND	mg/L	5E-05 -						
Barium		ND	mg/L	4E-05						
Boron		ND	mg/L	0.0004						
Cadmium		ND	mg/L	4E-05						
Chromium		ND	mg/L	4E-05						
Copper		ND	mg/L	7E-05						
Iron		ND	mg/L	0.0006						
Lead		ND	mg/L	2E-05						
Manganese		ND	mg/L	3E-05						
Mercury		6E-05	mg/L	4E-05						
Molybdenum		ND	mg/L	0.0001						
Nickel		ND	mg/L	6E-05						
Selenium		5E-05	mg/L	3E-05						
Silicon		0.003	mg/L	0.0003						·
Uranium		ND	mg/L	3E-05						
Vanadium		ND	mg/L	4E-05						
Zinc		0.0009	mg/L	0.0002						
Jample ID: LFB	<u>18</u> Lai	coratory For	tified Blank			Run: ICPM	S4-C_090826B		08	/26/09 21:2
Aluminum		0.0574	mg/L	0.0010	112	85	115			
Arsenic		0.0538	mg/L	0.0010	108	85	115			
Barium		0.0538	mg/L	0.0010	108	85	115			
Boron		0.0535	mg/L	0.0010	107	85	115			
Cadmium		0.0537	mg/L	0.0010	107	85	115			
Chromium		0.0536	mg/L	0.0010	107	85	115			
Copper		0.0549	mg/L	0.0010	110	85	115			
Iron		1.32	mg/L	0.0010	105	85	115			
Lead		0.0529	mg/L	0.0010	106	85	115			
Manganese		0.0538	mg/L	0.0010	108	85	115			
Mercury		0.00532	mg/L	0.0010	105	85	115			
Molybdenum		0.0526	mg/L	0.0010	105	85	115			
Nickel		0.0543	mg/L	0.0010	109	85	115			
Selenium		0.0541	mg/L	0.0010	108	85	115			
Silicon		0.572	mg/L	0.0010	109	85	115			
Uranium		0.0529	mg/L	0.00030	106	6 85	115			
Vanadium		0.0535	mg/L	0.0010	107	85	115			
Zinc		0.0564	mg/L	0.0010	111	85	115			
Sample ID: C09080954-005BMS	4 <u>18</u> Sa	imple Matrix	k Spike			Run: ICPN	1S4-C_090826B		08	3/27/09 16:
Aluminum		0.0668	mg/L	0.0010	113	3 70	130			
Arsenic		0.0561	mg/L	0.0010	109	70	130			
Barium		0.155	mg/L	0.10	113	3 70	130			
Boron		0.116	mg/L	0.10	106	3 70	130			

Jualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

Client: Crow Butte Resources

Project: Commercial Evaporation Pond G-8 Samples

Report Date: 09/16/09 **Work Order:** C09080916

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E200.8							· · · · · · · · · · · · · · · · · · ·		Batch:	R12295
Sample ID: C09080954-005BM	1 S 4 <u>18</u> Sa	mple Matrix	Spike			Run: ICPM	S4-C_090826B		08/27	/09 16:42
Cadmium		0.0538	mg/L	0.010	108	70	130			
Chromium		0.0541	mg/L	0.050	107	70	130			
Copper		0.0534	mg/L	.0.010	106	70	130			
Iron		1.29	mg/L	0.030	103	70	130			
Lead		0.0534	mg/L	0.050	106	70	130			
Manganese		0.0550	mg/L	0.010	109	70	130			
Mercury		0.00512	mg/L	0.0010	102	70	130			
Molybdenum		0.0553	mg/L	0.0010	107	70	130			
Nickel		0.0536	mg/L	0.050	107	70	130			
Selenium		0.0567	mg/L	0.0010	109	70	130			
Silicon		9.81	mg/L	0.10		70	130			А
Uranium		0.0569	mg/L	0.00030	106	70	130			
Vanadium		0.0638	mg/L	0.0010	108	70	130			
Zinc		0.0545	mg/L	0.010	106	70	130			
Sample ID: C09080954-005BN	//SD <u>18</u> Sa	ample Matrix	Spike Dup	licate		Run: ICPM	S4-C_090826B			/09 16:4
Aluminum		0.0683	mg/L	0.0010	116	70-	130	2.2	20	
Arsenic		0.0557	mg/L	0.0010	108	70	130	0.7	20	-
Barium		0.155	mg/L	0.10	112	70	130	0.4	20	
Boron		0.117	mg/L	0.10	108	70	130	0.9	20	
Cadmium		0.0538	mg/L	0.010	108	70	130	0	20	
Chromium		0.0539	mg/L	0.050	107	70	130	0.4	20	
Copper		0.0529	mg/L	0.010	105	70	130	1	20	
Iron		1.31	mg/L	0.030	104	70	130	1.1	20	
Lead		0.0545	mg/L	0.050	109	70	130	2,1	20	
Manganese	•	0.0553	mg/L	0.010	110	70	130	0.6	20	
Mercury		0.00518	mg/L	0.0010	104	70	130	1.2	20	
Molybdenum		0.0562	mg/L	0.0010	109	70	130	1.5	20	
Nickel		0.0527	mg/L	0.050	105	70	130	1.6	20	
Selenium		0.0568	mg/L	0.0010	109	70	130	0.1	20	
Silicon		9.81	mg/L	0.10		70	130	0.1	20	А
Uranium		0.0579	mg/L	0.00030	108	· 70	130	1.6	20	
Vanadium		0.0629	mg/L	0.0010	106	70	130	1.4	20	
Zinc		0.0535	mg/L	0.010	104	70	130	1.9	20	

Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated. MDC - Minimum detectable concentration

Client: Crow Butte Resources

Project: Commercial Evaporation Pond G-8 Samples

Report Date: 09/16/09 Work Order: C09080916

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E200.8									Batch	: R123080
Sample ID:	LRB	<u>3</u> M	ethod Blank				Run: ICPM	S4-C_090828A		08/28	/09 11:18
Lead			ND .	mg/L	2E-05						
Mercury			6E-05	mg/L	4E-05						
Uranium			ND	mg/L	3E-05						
Sample ID:	LFB	<u>3</u> La	aboratory For	tified Blank			Run: ICPM	S4-C_090828A		08/28	8/09 11:23
Lead			0.0549	mg/L	0.0010	110	85	115			
Mercury			0.00545	mg/L	0.0010	108	85	115			
Uranium			0.0536	mg/L	0.00030	107	85	115			
Sample ID:	C09081021-005BMS	4 <u>3</u> S	ample Matrix	Spike			Run: ICPM	S4-C_090828A		08/28	8/09 19:37
Lead			0.0545	mg/L	0.050	109	70	130			
Mercury			0.00530	mg/L	0.0010	106	70	130			
Uranium			0.0561	mg/L	0.00030	106	70	130			
Sample ID:	C09081021-005BMS	D <u>3</u> S	ample Matrix	Spike Duplic	ate		Run: ICPM	S4-C_090828A		08/28	3/09 19:42
Lead		•	0.0548	mg/L	0.050	110	70	130	0.7	20	
Mercury			0.00550	mg/L	0.0010	110	70	130	3.7	20	
Uranium			0.0567	mg/L	0.00030	107	70	130	1.2	20	
Method:	E300.0		· · · · · · · · · · · · · · · · · · ·							Batch	: R12305
Sample ID:	LCS	<u>2</u> L	aboratory Co	ntrol Sample			Run: IC2-C	_090826A		08/27	7/09 01:36
Chloride			9.42	mg/L	1.0	94	90	110			
Sulfate			37.8	mg/L	1.0	95	90	110			
Sample ID:	MBLK	<u>2</u> N	lethod Blank				Run: 1C2-C	C_090826A		08/23	7/09 01:52
Chloride			ND	mg/L	0.04						
Sulfate			, ND	mg/L	0.1						
Sample ID:	C09080914-003AMS	<u>2</u> S	ample Matrix	Spike			Run: 1C2-0	C_090826A		08/2	8/09 02:30
Chloride			305	mg/L	1.0		90	110			Α.
Sulfate			658	mg/L	1.0	97	90	110			
Sample ID:	C09080914-003AMS	SD <u>2</u> S	ample Matrix	Spike Dupli	cate			C_090826A		08/2	8/09 02:45
Chloride			303	mg/L	1.0		90	110	0.7	20	А
Sulfate			656	mg/L	1.0	96	90	110	0.3	20	

Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated. MDC - Minimum detectable concentration

Client: Crow Butte Resources

Project: Commercial Evaporation Pond G-8 Samples

Report Date: 09/16/09 **Work Order:** C09080916

Analyte	Count Result	Units	RL	%REC	Low Limit	High Limit	RPD R	PDLimit	Qual
Method: E350.1	********				···· ··· ·····························		Analytical	Run: SUB	-B134986
Sample ID: ICV	Initial Calibration	on Verification Sta	ndard					08/26/	/09 14:05
Nitrogen, Ammonia as N	5.60	mg/L	0.11	102	90	110			
Method: E350.1		· · · · · · · · · · · · · · · · · · ·	<u></u>			<u> </u>		Batch: B	R134986
Sample ID: MBLK	Method Blank				Run: SUB-	3134986		08/26	/09 14:06
Nitrogen, Ammonia as N	ND	mg/L	0.02						
Sample ID: LFB	Laboratory For	tified Blank			Run: SUB-	B134986		08/26	/09 14:07
Nitrogen, Ammonia as N	1.00	mg/L	0.050	101	90	110			
ample ID: B09082243-002DMS	Sample Matrix	Spike			Run: SUB-I	B134986		08/26	/09 14:57
Nitrogen, Ammonia as N	1.10	mg/L	0.050	100	. 90	110			
ample ID: B09082243-002DMSD	Sample Matrix	Spike Duplicate		i	Run: SUB-	B134986		08/26	/09 14:58
Nitrogen, Ammonia as N	1.09	mg/L	0.050	99	90	110	1.1	10	
ample ID: B09082362-001EMS	Sample Matrix	Spike			Run: SUB-	B134986		08/26	/09 15:11
Nitrogen, Ammonia as N	0.979	mg/L	0.050	98	90	110			
Sample ID: B09082362-001EMSD	Sample Matrix	Spike Duplicate			Run: SUB-	B134986		08/26	09 15:12
Nitrogen, Ammonía as N	0.970	mg/L	0.050	97	90	110	0.9	10	
Method: E353.2							Analytica	Run: SUE	3-B13509
Sample ID: ICV	Initial Calibrati	on Verification Sta	indard					08/28	8/09 10:28
Nitrogen, Nitrate+Nitrite as N	36.7	mg/L	0.032	104	90	110			
Method: E353.2								Batch: B	_R13509
Sample ID: MBLK	Method Blank				Run: SUB-	B135099		08/28	3/09 10:30
Nitrogen, Nitrate+Nitrite as N	0.003	mg/L	0.002						
Sample ID: LFB	Laboratory Fo	rtified Blank			Run: SUB-	B135099		08/28	3/09 10:3 ⁻
Nitrogen, Nitrate+Nitrite as N	1.00	mg/L	0.010	102	90	110			
Sample ID: B09082404-004CMS	Sample Matrix	Spike			Run: SUB-	B135099		08/28	3/09 13:4
Nitrogen, Nitrate+Nitrite as N	1.05	mg/L	0.010	103	90	110			
Sample ID: B09082404-004CMS0	D Sample Matrix	Spike Duplicate			Run: SUB-	B135099		08/21	B/09 13:4
Nitrogen, Nitrate+Nitrite as N	1.05	mg/L	0.010	103	90	110	0.2	10	

Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

Client: Crow Butte Resources

Project: Commercial Evaporation Pond G-8 Samples

Report Date: 09/16/09 **Work Order:** C09080916

Analyte .	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E903.0			······						Batch: R/	226-3935
Sample ID: C09080908-001CMS	Sa	ample Matrix	Spike			Run: BERT	HOLD 770-2	090831A	09/08	/09 16:31
Radium 226		19	pCi/L		120	70	130			
Sample ID: C09080908-001CMSD) Sa	ample Matrix	Spike Duplicate			Run: BERT	HOLD 770-2	_090831A	09/08	/09 16:31
Radium 226		19	pCi/L		121	70	130	0.9	23.7	
Sample ID: MB-RA226-3935	<u>3</u> M	ethod Blank				Run: BERT	HOLD 770-2	_090831A	09/08	3/09 22:51
Radium 226		0.04	pCi/L							U
Radium 226 precision (±)		0.1	pCi/L							
Radium 226 MDC		0.2	pCi/L							
Sample ID: LCS-RA226-3935	La	aboratory Cor	ntrol Sample			Run: BERT	HOLD 770-2	_090831A	09/08	8/09 22:51
Radium 226		9.7	pCi/L		123	70	130			

Jualifiers:

RL - Analyte reporting limit. MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

U - Not detected at minimum detectable concentration

ANALYTICAL SUMMARY REPORT

September 16, 2009

Crow Butte Resources 86 Crow Butte Rd Crawford, NE 69339

Workorder No.: C09080916

Quote ID: C1125 - Crow Butte Uranium Project

Project Name: Commercial Evaporation Pond G-8 Samples

Energy Laboratories, Inc. received the following 2 samples for Crow Butte Resources on 8/25/2009 for analysis.

Sample ID	Client Sample ID	Collect Date	Receive Date	Matrix	Test
209080916-00	1 Pond Composite	08/20/09 00:00	0 08/25/09	Aqueous	Metals by ICP/ICPMS, Dissolved Alkalinity QA Calculations Conductivity Fluoride E300.0 Anions Nitrogen, Ammonia Nitrogen, Nitrate + Nitrite pH Radium 226, Dissolved Solids, Total Dissolved
C09080916-00	2 Pond Discharge	08/20/09 00:0	0 08/25/09	Aqueous	Same As Above

As appropriate, any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

If you have any questions regarding these tests results, please call.

Report Approved By:

Stephanie D. Waldrop

Reporting Supervisor

Toll Free 888.235.0515 • 307.235.0515 • Fax 307.234.1639 • casper@energylab.com • www.energylab.com

CLIENT: Crow Butte Resources

Project: Commercial Evaporation Pond G-8 Samples

Sample Delivery Group: C09080916

Date: 16-Sep-09

CASE NARRATIVE

BRANCH LABORATORY SUBCONTRACT ANALYSIS

Tests Associated with Analyst identified as ELI-B were subcontracted to Energy Laboratories Billings Branch, EPA Number MT00005.

RADIOCHEMISTRY ANALYSIS

Per client request, results less than MDC (or precision if no MDC), are reported as <MDC (or <precision). Actual instrument results are available by request.

ORIGINAL SAMPLE SUBMITTAL(S)

All original sample submittals have been returned with the data package.

SAMPLE TEMPERATURE COMPLIANCE: 4°C (±2°C)

Temperature of samples received may not be considered properly preserved by accepted standards. Samples that are hand delivered immediately after collection shall be considered acceptable if there is evidence that the chilling process has begun.

GROSS ALPHA ANALYSIS

Method 900.0 for gross alpha and gross beta is intended as a drinking water method for low TDS waters. Data provided by this method for non potable waters should be viewed as inconsistent.

SOIL/SOLID SAMPLES

All samples reported on an as received basis unless otherwise indicated.

ATRAZINE, SIMAZINE AND PCB ANALYSIS USING EPA 505

Data for Atrazine and Simazine are reported from EPA 525.2, not from EPA 505. Data reported by ELI using EPA method 505 reflects the results for seven individual Aroclors. When the results for all seven are ND (not detected), the sample meets EPA compliance criteria for PCB monitoring.

SUBCONTRACTING ANALYSIS

Subcontracting of sample analyses to an outside laboratory may be required. If so, ENERGY LABORATORIES will utilize its branch laboratories or qualified contract laboratories for this service. Any such laboratories will be indicated within the Laboratory Analytical Report.

BRANCH LABORATORY LOCATIONS

eli-b - Energy Laboratories, Inc. - Billings, MT eli-g - Energy Laboratories, Inc. - Gillette, WY eli-h - Energy Laboratories, Inc. - Helena, MT eli-r - Energy Laboratories, Inc. - Rapid City, SD eli-t - Energy Laboratories, Inc. - College Station, TX

CERTFICATIONS:

USEPA: WY00002; FL-DOH NELAC: E87641; California: 02118CA Oregon: WY200001; Utah: 3072350515; Virginia: 00057; Washington: C1903

ISO 17025 DISCLAIMER: The results of this Analytical Report relate only to the items submitted for analysis.

ENERGY LABORATORIES, INC. - CASPER, WY certifies that certain method selections contained in this report meet requirements as set forth by the above accrediting authorities. Some results requested by the client may not be covered under these certifications. All analysis data to be submitted for regulatory enforcement should be certified in the sample state of origin. Please verify ELI's certification coverage by visiting www.energylab.com

ELI appreciates the opportunity to provide you with this analytical service. For additional information and services visit our web page www.energylab.com.

THIS IS THE FINAL PAGE OF THE LABORATORY ANALYTICAL REPORT

Energy Laboratories Inc Workorder Receipt Checklist

Crow Butte Resources

Login completed by: Kimberly Humiston Reviewed by:

Reviewed Date:

C09080916

Date and Time Received: 8/25/2009 9:15 AM

Received by: al

Carrier name: Ground

Shipping container/cooler in good condition?	Yes 🗹	No 🗌	Not Present
Custody seals intact on shipping container/cooler?	Yes 🗌	No 🔲	Not Present
Custody seals intact on sample bottles?	Yes 📋	No 📋	Not Present 🗹
Chain of custody present?	Yes 🗹	No 📋	
Chain of custody signed when relinquished and received?	Yes 🗹	No 🗌	
Chain of custody agrees with sample labels?	Yes 🗹	No 🗌	
Samples in proper container/bottle?	Yes 🗹	No 🗌	
Sample containers intact?	Yes 🗹	No 📋	
Sufficient sample volume for indicated test?	Yes 🗹	No 🗌	
All samples received within holding time?	Yes 🗸	No 🗌	
Container/Temp Blank temperature:	22°C On Ice		
Water - VOA vials have zero headspace?	Yes	No 🗌	No VOA vials submitted
Water - pH acceptable upon receipt?	Yes 🗸	No 📋	Not Applicable

Contact and Corrective Action Comments:

4mL HNO3 was added to sample Pond Composite.

BORATORIES

Client:	Crow Butte Resources
Project:	Commercial Evaporation Pond G-8
Lab ID:	C09090469-001
Client Sample ID:	Pond Composite Sample

Report Date: 10/05/09 Collection Date: 09/08/09 DateReceived: 09/11/09 Matrix: Aqueous

MCL/ QCL Analyses Result Units Qualifier RL Method Analysis Date / By **MAJOR IONS** Alkalinity, Total as CaCO3 3610 A2320 B 09/14/09 17:46 / dvg mg/L 1 991 A2320 B 09/14/09 17:46 / dvg Carbonate as CO3 mg/L 1 2390 A2320 B 09/14/09 17:46 / dvg Bicarbonate as HCO3 mg/L 1 Calcium 16 D 5 E200.7 09/22/09 14:07 / cp mg/L Chloride 67100 mg/L D 80 E300.0 09/24/09 23:49 / ljl Fluoride 0.1 A4500-F C 09/15/09 15:13 / dvg 1.0 mg/L Magnesium 65 mg/L D 2 E200.7 09/22/09 14:07 / cp Nitrogen, Ammonia as N 1.53 mg/L 0.05 A4500-NH3 G 09/17/09 11:47 / jal E353.2 09/18/09 09:02 / jal Nitrogen, Nitrate+Nitrite as N 1.1 mg/L 0.1 260 D 2 E200.7 09/22/09 14:07 / cp Potassium mg/L 63.2 0.2 E200.8 09/15/09 06:25 / sml Silica mg/L D E200.7 09/23/09 15:18 / cp Sodium 48300 mg/L 50 Sulfate 7030 mg/L D 10 E300.0 09/16/09 20:41 / ljl PHYSICAL PROPERTIES 205000 D 2 A2510 B 10/01/09 15:59 / dd Conductivity umhos/cm 9.58 0.01 A4500-H B 09/14/09 11:00 / dd pН s.u 09/14/09 15:06 / th Solids, Total Dissolved TDS @ 180 C 112000 mg/L 10 A2540 C **METALS - DISSOLVED** ND mg/L 0.1 E200.8 09/15/09 06:25 / sml Aluminum 0.092 E200.8 09/15/09 06:25 / sml Arsenic mg/L 0.001 E200.8 09/15/09 06:25 / sml Barium ND mg/L 0.1 09/15/09 06:25 / sml Boron 3.9 mg/L 0.1 E200.8 0.008 0.005 E200.8 09/15/09 06:25 / sml Cadmium mg/L 0.05 E200.8 09/15/09 06:25 / sml 0.07 mg/L Chromium 0.38 0.01 E200.8 09/15/09 06:25 / sml mg/L Copper 0.03 09/15/09 06:25 / sml 0.15 E200.8 Iron mg/L 09/15/09 06:25 / sml 0.001 mg/L 0.001 E200.8 Lead 0.04 0.01 E200.8 09/15/09 06:25 / sml mg/L Manganese 0.014 mg/L 0.001 E200.8 09/15/09 06:25 / sml Mercury 11.4 0.1 E200.8 09/15/09 06:25 / sml Molybdenum mg/L 09/15/09 06:25 / sml Nickel ND mg/L 0.05 E200.8 0.118 0.001 E200.8 09/15/09 06:25 / sml Selenium mg/L 0.0006 E200.8 09/15/09 14:56 / sml 332 mg/L D Uranium 0.1 E200.8 09/15/09 06:25 / sml 121 Vanadium mg/L E200.8 09/15/09 06:25 / sml 0.01 Zinc 0.41 mg/L **RADIONUCLIDES - DISSOLVED** E903.0 09/22/09 16:38 / trs 977 pCi/L 0.23 Radium 226 E903.0 09/22/09 16:38 / trs 6.5 pCi/L Radium 226 precision (±) E903.0 09/22/09 16:38 / trs Radium 226 MDC 0.23 pCi/L

RL - Analyte reporting limit. Report

Definitions:

MCL - Maximum contaminant level.

QCL - Quality control limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

D - RL increased due to sample matrix interference.

Client:	Crow Butte Resources
Project:	Commercial Evaporation Pond G-8
Lab ID:	C09090469-001
Client Sample ID:	Pond Composite Sample

Report Date: 10/05/09 Collection Date: 09/08/09 DateReceived: 09/11/09 Matrix: Aqueous

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
DATA QUALITY							
A/C Balance (± 5)	0.0482	%				Calculation	10/02/09 10:00 / kbh
Anions	2110	meq/L				Calculation	10/02/09 10:00 / kbh
Cations	2110	meq/L				Calculation	10/02/09 10:00 / kbh
Solids, Total Dissolved Calculated	125000	mg/L				Calculation	10/02/09 10:00 / kbh
TDS Balance (0.80 - 1.20)	0.900					Calculation	10/02/09 10:00 / kbh

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

Client:	Crow Butte Resources
Project:	Commercial Evaporation Pond G-8
Lab ID:	C09090469-002
Client Sample ID:	Pond Discharge Sample

Report Date: 10/05/09 Collection Date: 09/08/09 DateReceived: 09/11/09 Matrix: Aqueous

MCL/ QCL Analyses Result Units Qualifier RL Method Analysis Date / By MAJOR IONS Alkalinity, Total as CaCO3 219 mg/L 1 A2320 B 09/14/09 17:54 / dvg ND A2320 B Carbonate as CO3 mg/L 09/14/09 17:54 / dvg 1 267 Bicarbonate as HCO3 A2320 B mg/L 1 09/14/09 17:54 / dvg Calcium 79 mg/L 1 E200.7 09/22/09 15:07 / cp Chloride 9870 mg/L D 8 E300.0 09/21/09 20:38 / ljl Fluoride 0.3 0.1 mg/L A4500-F C 09/15/09 15:33 / dvg Magnesium 10 mg/L 1 E200.7 09/22/09 15:07 / cp Nitrogen, Ammonia as N 0.40 mg/L 0.05 A4500-NH3 G 09/17/09 11:49 / jal Nitrogen, Nitrate+Nitrite as N 2.5 mg/L 0.1 E353.2 09/18/09 09:12 / jal 33 E200.7 09/22/09 15:07 / cp Potassium mg/L 1 50.7 0.2 Silica mg/L E200.8 09/15/09 06:30 / sml Sodium 7780 mg/L D 50 E200.7 09/23/09 15:22 / cp Sulfate 1320 1 E300.0 09/16/09 20:56 / ljl mg/L PHYSICAL PROPERTIES 2 Conductivity 35600 D A2510 B 10/01/09 16:01 / dd umhos/cm 7.17 0.01 A4500-H B 09/14/09 11:23 / dd pН S.U. Solids, Total Dissolved TDS @ 180 C 21700 mg/L 10 A2540 C 09/14/09 15:06 / th **METALS - DISSOLVED** Aluminum ND mg/L 0.1 E200.8 09/15/09 06:30 / sml 0.033 0.001 E200.8 09/15/09 06:30 / sml Arsenic mg/L 0.1 0.1 E200.8 09/15/09 06:30 / sml Barium mg/L 0.1 E200.8 09/15/09 06:30 / sml Boron 0.5 mg/L ND mg/L 0.005 E200.8 09/15/09 06:30 / sml Cadmium 0.05 E200.8 09/15/09 06:30 / sml ND mg/L Chromium 0.09 0.01 E200.8 09/15/09 06:30 / sml mg/L Copper 0.03 ND E200.8 09/15/09 06:30 / sml mg/L Iron ND 0.001 E200.8 mg/L 09/15/09 06:30 / sml Lead 0.15 0.01 E200.8 09/15/09 06:30 / sml mg/L Manganese 0.006 mg/L 0.001 E200.8 09/15/09 06:30 / sml Mercury 4.2 mg/L 0.1 E200.8 09/15/09 06:30 / sml Molybdenum ND 0.05 E200.8 09/15/09 06:30 / sml Nickel mg/L 0.203 mg/L 0.001 E200.8 09/15/09 06:30 / sml Selenium 0.0003 E200.8 09/15/09 15:39 / sml 4.72 mg/L Uranium 0.1 E200.8 09/15/09 06:30 / sml 48.5 Vanadium mg/L 0.01 E200.8 09/15/09 06:30 / sml Zinc 0.13 mg/L **RADIONUCLIDES - DISSOLVED** 0.24 E903.0 09/22/09 21:42 / trs 1060 pCi/L Radium 226 pCi/L E903.0 09/22/09 21:42 / trs 6.9 Radium 226 precision (±) E903.0 09/22/09 21:42 / trs Radium 226 MDC 0.24 pCi/L

Report RL - Analyte reporting limit.

Definitions:

QCL - Quality control limit.

MCL - Maximum contaminant level.

ND - Not detected at the reporting limit.

MDC - Minimum detectable concentration

D - RL increased due to sample matrix interference.

Client:	Crow Butte Resources
Project:	Commercial Evaporation Pond G-8
Lab ID:	C09090469-002
Client Sample ID:	Pond Discharge Sample

Report Date: 10/05/09 Collection Date: 09/08/09 DateReceived: 09/11/09 Matrix: Aqueous

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
DATA QUALITY							
A/C Balance (± 5)	5.13	%				Calculation	10/02/09 10:01 / kbh
Anions	310	meq/L				Calculation	10/02/09 10:01 / kbh
Cations	344	meq/L				Calculation	10/02/09 10:01 / kbh
Solids, Total Dissolved Calculated	19300	mg/L				Calculation	10/02/09 10:01 / kbh
TDS Balance (0.80 - 1.20)	1.12					Calculation	10/02/09 10:01 / kbh
- The Anion / Cation balance was confirmed	by re-analysis.						

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

Crow Butte Resources

Project: Commercial Evaporation Pond G-8

Report Date: 10/05/09

Work Order: C09090469

Analyte 0	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: A2320 B						<u></u>	<u></u>		Batch	: R12369
Sample ID: MBLK	<u>3</u> Me	thod Blank				Run: MANT	ECH_090914A		09/14	/09 10:24
Alkalinity, Total as CaCO3		3	mg/L	0.2						
Carbonate as CO3		ND	mg/L	1						
Bicarbonate as HCO3		4	mg/L	1						
Sample ID: LCS1	La	boratory Co	ntrol Sample			Run: MANT	FECH_090914A		09/14	/09 10:39
Alkalinity, Total as CaCO3		203	mg/L	5.0	100	90	110			
Sample ID: LCS	La	boratory Co	ontrol Sample			Run: MANT	FECH_090914A		09/14	/09 10:46
Alkalinity, Total as CaCO3		54.8	mg/L	5.0	103	90	110			
Sample ID: C09090466-008AMS	Sa	mple Matrix	< Spike			Run: MANT	FECH_090914A		09/14	/09 17:06
Alkalinity, Total as CaCO3		131	mg/L	5.0	104	80	120			
Sample ID: C09090466-008AMSD	Sa	mple Matrix	Spike Duplicate			Run: MAN1	FECH_090914A		09/14	/09 17:13
Alkalinity, Total as CaCO3		132	mg/L	5.0	105	80	120	0.8	20	
Method: A2510 B							Analytical	Run: OF	RION555A-2	_0910010
Sample ID: ICV2_091001_3	Ini	tial Calibrati	ion Verification St	andard					10/01	/09 15:57
Conductivity		1360	umhos/cm	1.0	96	90	110			
Method: A2510 B				<u> </u>			Ba	tch: 091	1001_3_PH-	N_555A-2
Sample ID: MBLK1_091001_3	Me	ethod Blank				Run: ORIO	N555A-2_09100 ⁻	С	10/01	/09 15:53
Conductivity		2	umhos/cm	0.2						•
Sample ID: C09100033-004ADUP	Sa	mple Dupli	cate			Run: ORIO	N555A-2_09100 ⁻	С	10/01	/09 16:16
Conductivity		292	umhos/cm	1.0				0.4	10	
Method: A2540 C				-			Ba	tch: 09	0914_1_SLE	S-TDS-W
Sample ID: MBLK1_090914	M	ethod Blank				Run: BAL-1	I_090914B		09/14	/09 14:59
Solids, Total Dissolved TDS @ 180	0 C	ND	mg/L	6						
Sample ID: LCS1_090914	La	boratory Co	ontroi Sample			Run: BAL-1	1_090914B		09/14	1/09 15:00
Solids, Total Dissolved TDS @ 18	0 C	987	mg/L	10	99	90	110			
Sample ID: C09090482-015AMS	Sa	ample Matri:	x Spike			Run: BAL-1	1_090914B		09/14	1/09 15:07
Solids, Total Dissolved TDS @ 18	0 C	3020	mg/L	10	104	90	110			
Sample ID: C09090482-015AMSD) Sa	ample Matri	x Spike Duplicate			Run: BÁL-'	1_090914B		09/14	1/09 15:08
Solids, Total Dissolved TDS @ 18		. 3060	· ·			90	-			

Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

lient: Crow Butte Resources

roject: Commercial Evaporation Pond G-8

Report Date: 10/05/09 Work Order: C09090469

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: A4500-F C					-	<u> </u>			Batch	R12375
Sample ID: MBLK	M	ethod Blank				Run: MAN1	ECH_090915A		09/15	/09 11:53
Fluoride		ND	mg/L	0.05						
Sample ID: LCS	La	aboratory Co	ntrol Sample			Run: MAN	TECH_090915A		09/15	/09 11:56
Fluoride		1.02	mg/L	0.10	102	90	110			
Sample ID: C09090456-009A	MS S	ample Matrix	Spike			Run: MAN	TECH_090915A		09/15	/09 14:56
Fluoride		1.18	mg/L	0.10	102	80	120			
Sample ID: C09090456-009A	MSD S	ample Matrix	Spike Duplicate			Run: MAN	FECH_090915A		09/15	/09 14:59
Fluoride		1.21	mg/L	0.10	105	80	120	2.5	10	
Sample ID: C09090486-001A	MS S	ample Matrix	Spike			Run: MAN	FECH_090915A		09/15	/09 15:44
Fluoride		1.45	mg/L	0.10	103	80	120			
Sample ID: C09090486-001A	MSD S	ample Matrix	Spike Duplicate			Run: MAN	rech_090915A		09/15	/09 15:48
Fluoride		1.48	mg/L	0.10	106	80	120	2	10	
Method: A4500-H B							Analytical I	Run: O	RION555A-2	_090914/
Sample ID: ICV1_090914_1	In	itial Calibrati	on Verification St	andard					09/14	/09 09:50
pН		6.94	S.U.	0.010	101	98	102		,	
Method: A4500-H B						•	Ba	tch: 09	0914_1_PH-	W_555A-
Sample ID: C09090466-001A	DUP S	ample Duplic	ate	•		Run: ORIC	N555A-2_090914	A	09/14	4/09 10:17
рН		6.72	s.u.	0.010				0.1	10	
Method: A4500-NH3 G		·····							Batch	i: R12385
Sample ID: MBLK-1	N	lethod Blank				Run: TECH	INICON_090917/	\ .	09/17	7/09 10:03
Nitrogen, Ammonia as N		ND	mg/L	0.02						
Sample ID: LCS-2	L	aboratory Co	ntrol Sample			Run: TECH	INICON_090917/	٩	09/1	7/09 10:0
Nitrogen, Ammonia as N		1.93	mg/L	0.050	96	80	120			
Sample ID: C09090566-008	oms s	ample Matrix	Spike			Run: TECH	HNICON_090917/	4	09/17	7/09 11:1
Nitrogen, Ammonia as N		2.02	mg/L	0.050	· 101	80	120			
Sample ID: C09090566-008[OMSD S	ample Matrix	Spike Duplicate			Run: TECł	HNICON_090917/	٩	09/1	7/09 11:1
Nitrogen, Ammonia as N		2.02	mg/L	0.050	101	80	120	0	20	

Qualifiers:

RL - Analyte reporting limit. MDC - Minimum detectable concentration

Crow Butte Resources

Project: Commercial Evaporation Pond G-8

Report Date: 10/05/09 Work Order: C09090469

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E200.7									Batch	R124081
Sample ID: MB-090922A	<u>3</u> Me	thod Blank				Run: ICP2-	C_090922A		09/22	/09 11:49
Calcium		ND	mg/L	0.2		÷				
Magnesium		ND	mg/L	0.09						
Potassium		ND	mg/L	0.1						
Sample ID: LFB-090922A	<u>3</u> Lat	oratory For	tified Blank			Run: ICP2-	C_090922A		09/22	/09 11:54
Calcium		48.0	mg/L	0.50	96	85	115			
Magnesium		50.2	mg/L	0.50	100	85	115			
Potassium		47.0	mg/L	0.50	94	85	115			
Sample ID: C09090469-001CM	52 <u>3</u> Sai	mple Matrix	Spike			Run: ICP2-	C_090922A		09/22	/09 14:11
Calcium		1010	mg/L	5.1	98	70	130			
Magnesium		1090	mg/L	1.8	100	70	130			
Potassium		1040	mg/L	2.1	77	70	130			
Sample ID: C09090469-001CM	SD <u>3</u> Sa	mple Matrix	Spike Duplicate		,	Run: ICP2-	C_090922A		09/22	/09 14:15
Calcium		1010	mg/L	5.1	97	70	130	0.4	20	
Magnesium		1080	mg/L	1.8	100	70	130	0.4	20	
Potassium		1040	mg/L	2.1	77	70	130	0	20	
Method: E200.7									Batch	: R124138
ample ID: MB-090923A	Me	thod Blank				Run: ICP2-	C_090923A		09/23	/09 14:05
Sodium		ND	mg/L	0.2						
Sample ID: LFB-090923A	Lal	poratory For	tified Blank			Run: ICP2-	C_090923A		09/23	/09 14:09
Sodium		47.5	mg/L	0.50	95	85	115			
Sample ID: C09090558-006BM	S2 Sa	mple Matrix	Spike			Run: ICP2-	C_090923A		09/23	8/09 16:18
Sodium		8030	mg/L	23	103	70	130	•		
Sample ID: C09090558-006BM	SD Sa	mple Matrix	Spike Duplicate			Run: ICP2-	C_090923A		09/23	3/09 16:22
Sodium		8050	mg/L	23	103	70	130	0.3	20	

Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

'lient: Crow Butte Resources

roject: Commercial Evaporation Pond G-8

Report Date: 10/05/09 Work Order: C09090469

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E200.8			<u></u>						Batch	: R12370
Sample ID: LRB	17 Me	hod Blank				Run: ICPM	S4-C_090914A		09/14	/09 11:39
Aluminum		0.001	mg/L	0.0004						
Arsenic		ND	mg/L	5E-05						
Barium		ND	mg/L	4E-05						
Boron		ND	mg/L	0.0004						
Cadmium		ND	mg/L	4E-05						
Chromium		ND	mg/L	4E-05						
Copper		ND	mg/L	7E-05						
Iron		ND	mg/L	0.0006						
Lead		ND	mg/L	2E-05						
Manganese		ND	mg/L	3E-05						
Mercury		ND	mg/L	4E-05						
Molybdenum		ND	mg/L	0.0001						
Nickel		ND	mg/L	6E-05						
Selenium		5E-05	mg/L	3E-05						
Silicon		ND	mg/L	0.0003						
Vanadium		ND	mg/L	4E-05						
Zinc		0.0003	mg/L	0.0002						
Sample ID: LFB	<u>17</u> Lat	poratory For	tified Blank			Run: ICPM	S4-C_090914A		09/1-	4/09 11:4
Aluminum		0.0515	mg/L	0.0010	100	85	115			
Arsenic		0.0520	mg/L	0.0010	104	85	115			
Barium		0.0514	mg/L	0.0010	103	85	115			
Boron		0.0505	mg/L	0.0010	101	85	115			
Cadmium		0.0512	mg/L	0.0010	102	85	115			
Chromium		0.0521	mg/L	0.0010	104	85	115			
Copper		0.0528	mg/L	0.0010	106	85	115			
iron		1.27	mg/L	0.0010	101	85	115			
Lead		0.0508	mg/L	0.0010	102	85	115			
Manganese		0.0520	mg/L	0.0010	104	85	115			
Mercury		0.00523	mg/L	0.0010	105	85	115			
Molybdenum		0.0513	mg/L	0.0010	103		115			
Nickel		0.0526	mg/L	0.0010	105		115			
Selenium		0.0515	mg/L	0.0010	103		115			
Silicon		0.561	mg/L	0.0010	112	85	115			
Vanadium		0.0520	mg/L	0.0010	104					
Zinc		0.0541	mg/L	0.0010	108	85	115			
Sample ID: C09090486-001BMS4	4 <u>17</u> Sa	imple Matrix	Spike			Run: ICPN	/S4-C_090914A		09/1	5/09 06:4
Aluminum		0.0510	mg/L	0.0010	96	i 70	130			
Arsenic		0.0764	mg/L	0.0010	103	70	130			
Barium		0.0908	mg/L	0.0010	101	70	130			
Boron		0.743	mg/L	0.10		70	130			А
Cadmium		0.0498	mg/L	0.010	100) 70	130			
Chromium		0.0518	mg/L	0.050	103	3 70	130			

Qualifiers:

L - Analyte reporting limit.

ND - Not detected at the reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated. MDC - Minimum detectable concentration

ilient: Crow Butte Resources

Project: Commercial Evaporation Pond G-8

Report Date: 10/05/09 Work Order: C09090469

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E200.8									Batch	R123704
Sample ID: C09090486-001BMS4	4 <u>17</u> Sam	nple Matrix	Spike			Run: ICPM	S4-C_090914A		09/15	/09 06:40
Copper		0.0515	mg/L	0.010	101	70	130			
Iron		1.35	mg/L	0.030	100	70	130			
Lead		0.0514	mg/L	0.050	103	70	130			
Manganese		0.0599	mg/L	0.010	100	70	130			
Mercury		0.00498	mg/L	0.0010	99	70	130			
Molybdenum		0.0544	mg/L	0.0010	103	70	130			
Nickel		0.0502	mg/L	0.050	100	70	130			
Selenium		0.0498	mg/L	0.0010	99	70	130			
Silicon		4.26	mg/L	0.10		70	130			А
Vanadium		0.0522	mg/L	0.0010	103	70	130			
Zinc		0.0518	mg/L	0.010	100	70	130			
Sample ID: C09090486-001BMS	D <u>17</u> San	nple Matrix	Spike Duplicat	е		Run: ICPM	S4-C_090914A		09/15	6/09 06:45
Aluminum	*	0.0507	mg/L	0.0010	96	70	130	0.5	20	
Arsenic		0.0771	mg/L	0.0010	104	70	130	1	20	
Barium		0.0922	mg/L	0.0010	103	70	130	1.6	20	
Boron		0.733	mg/L	0.10		70	130	1.3	20	А
Cadmium		0.0508	mg/L	0.010	102	70	130	2	20	
Chromium		0.0524	mg/L	0.050	105	70	130	1.3	20	
Copper		0.0529	mg/L	0.010	104	70	130	2.6	20	
Iron	*	1.39	mg/L	0.030	103	70	130	3.1	20	
Lead		0.0525	mg/L	0.050	105	70	130	2.1	20	
Manganese		0.0608	mg/L	0.010	102	70	130	1.4	20	
Mercury		0.00531	mg/L	0.0010	105	70	130	6.4	20	
Molybdenum		0.0554	mg/L	0.0010	105	70	130	1.8	20	
Nickel		0.0514	mg/L	0.050	102	70	130	2.3	20	
Selenium		0.0522	mg/L	0.0010	103	70	130	4.6	20	
Silicon		4.33	mg/L	0.10		70	130	1.6	20	А
Vanadium		0.0529	mg/L	0.0010	104	70	130	1.3	20	
Zinc		0.0523	mg/L	0.010	101	70	130	0.9	20	
Method: E200.8									Batch	n: R12378
Sample ID: LRB	Me	thod Blank				Run: ICPM	IS4-C_090915A		09/1	5/09 12:03
Uranium		ND	mg/L	3E-05						
Sample ID: LFB	Lat	poratory Fo	rtified Blank			Run: ICPN	IS4-C_090915A		09/1	5/09 12:08
Uranium		0.0496	mg/L	0.00030	99	85	115			
Sample ID: C09090469-001CMS	54 Sar	mple Matrix	Spike			Run: ICPN	1S4-C_090915A		09/1	5/09 15:2
Uranium		283	mg/L	0.00064		70	130			А
Sample ID: C09090469-001CMS	SD Sai	mple Matrix	Spike Duplica	te		Run: ICPN	1S4-C_090915A		09/1	5/09 15:2
Uranium		276	mg/L	0.00064		70		2.5	20	А

Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated. MDC - Minimum detectable concentration

Toll Free 888.235.0515 • 307.235.0515 • Fax 307.234.1639 • casper@energylab.com • www.energylab.com

QA/QC Summary Report

lient: Crow Butte Resources

oject: Commercial Evaporation Pond G-8

Report Date: 10/05/09 Work Order: C09090469

Analyte	Count Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E300.0						·		Batch	R12398
ample ID: LCS	Laboratory Co	ntrol Sample			Run: IC2-C	_090916A		09/16	/09 18:07
Sulfate	37.8	mg/L	1.0	95	90	110			
ample ID: MBLK	Method Blank				Run: IC2-C	_090916A		09/16	/09 18:22
Sulfate	ND	mg/L	0.1						
ample ID: C09081087-015AMS	Sample Matrix	Spike			Run: IC2-C	_090916A		09/16	/09 19:24
Sulfate	85.6	mg/L	1.0	93	80	120			
ample ID: C09081087-015AMS	D Sample Matrix	Spike Duplicate			Run: IC2-C	_090916A		09/16	5/09 19:39
Sulfate	88.2	mg/L	1.0	96	80	120	3	20	
Method: E300.0	· · · · · · · · · · · · · · · · · · ·	•						Batch	: R124094
Sample ID: LCS	Laboratory Co	ntrol Sample			Run: 1C2-C	_090921A		09/21	/09 17:18
Chloride	9.37	mg/L	1.0	94	90	110			
Sample ID: MBLK	Method Blank				Run: IC2-C	_090921A		09/21	1/09 17:33
Chloride	ND	mg/L	0.04						
Sample ID: C09090476-001AMS	Sample Matrix	Spike		· ,	Run: IC2-C	_090921A		09/21	1/09 21:55
Chloride	21.8	mg/L	1.0	95	80	120			
ample ID: C09090476-001AMS	D Sample Matrix	Spike Duplicate			Run: IC2-C	_090921A		09/2	1/09 22:11
Chloride	22.0	mg/L	1.0	97	80	120	1.1	20	
Method: E300.0								Batch	: R12422
Sample ID: LCS	Laboratory Co	ntrol Sample			Run: IC2-C	_090923A		09/23	3/09 23:39
Chloride	9.79	mg/L	1.0	98	90	110			
Sample ID: MBLK	Method Blank				Run: IC2-C	_090923A		09/2	3/09 23:55
Chloride	ND	mg/L	0.04						
Sample ID: C09090492-001AMS	Sample Matrix	Spike			Run: IC2-C	_090923A		09/2	4/09 00:56
Chloride	33.9	mg/L	1.0	101	80	120			
Sample ID: C09090492-001AMS	D Sample Matrix	<pre>Spike Duplicate</pre>			Run: IC2-C	_090923A		09/2	4/09 01:12
Chloride	34.0	mg/L	1.0	101	80	120	0.2	20	
Sample ID: C09090636-001AMS	Sample Matrix	< Spike			Run: IC2-C	_090923A		09/2	4/09 23:0:
Chloride	52.5	mg/L	1.0	98	80	120			
Sample ID: C09090636-001AMS	D Sample Matri	x Spike Duplicate			Run: IC2-C	C_090923A		09/2	4/09 23:1
Chloride	53.3	mg/L	1.0	100	80	120	1.6	20	

Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

lient: Crow Butte Resources

Project: Commercial Evaporation Pond G-8

Report Date: 10/05/09 Work Order: C09090469

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E353.2		·						•	Batch:	R12393*
Sample ID: MBLK-1	Me	ethod Blank				Run: TECI	HNICON_090918A		09/18/	/09.07:44
Nitrogen, Nitrate+Nitrite as N		ND	mg/L	0.03						
Sample ID: LCS-2	La	boratory Cor	ntrol Sample			Run: TEC	HNICON_090918A		09/18/	/09 07:47
Nitrogen, Nitrate+Nitrite as N		2.57	mg/L	0.10	101	90	110			
Sample ID: C09090455-001DMS	Sa	mple Matrix	Spike			Run: TEC	HNICON_090918A	\	09/18/	/09 08:44
Nitrogen, Nitrate+Nitrite as N		2.22	mg/L	0.10	109	90	110			
Sample ID: C09090455-001DMS) Sa	imple Matrix	Spike Duplicate		·	Run: TEC	HNICON_090918A		09/18	/09 08:47
Nitrogen, Nitrate+Nitrite as N		2.21	mg/L	0.10	108	90	110	0.5	10	
Sample ID: C09090504-003CMS	Sa	imple Matrix	Spike			Run: TEC	HNICON_090918A	`	09/18/	/09 09:58
Nitrogen, Nitrate+Nitrite as N		1.92	mg/L	0.10	91	90	110			
Sample ID: C09090504-003CMS	D Sa	mple Matrix	Spike Duplicate			Run: TEC	HNICON_090918A	`	09/18/	/09 10:00
Nitrogen, Nitrate+Nitrite as N		1.82	mg/L	0.10	<u>87</u>	90	110	5.3	10	S
Method: E903.0	· · · · · · · ·								Batch: RA	226-397
Sample ID: TAP-WATER-MS	Sa	mple Matrix	Spike			Run: BER	THOLD 770-1_090)916A	09/22	/09 21:42
Radium 226		8.6	pCi/L		107	70	130			
ample ID: TAP-WATER-MSD	Sa	ample Matrix	Spike Duplicate			Run: BER	THOLD 770-1_090	916A	09/22	/09 21:42
Radium 226		9.3	pCi/L		117	70	130	8.4	24.1	
Sample ID: MB-RA226-3974	<u>3</u> Me	ethod Blank				Run: BER	THOLD 770-1_090	916A	09/22	/09 21:42
Radium 226		-0.2	pCi/L							U
Radium 226 precision (±)		0.09	pCi/L							
Radium 226 MDC		0.2	pCi/L							
Sample ID: LCS-RA226-3974	La	aboratory Co	ntrol Sample			Run: BER	THOLD 770-1_090	0916A	09/22	/09 21:42
Radium 226		9.8	pCi/L		127	70	130			

Qualifiers:

j-

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

U - Not detected at minimum detectable concentration

ND - Not detected at the reporting limit.

S - Spike recovery outside of advisory limits.

ANALYTICAL SUMMARY REPORT

October 05, 2009

Crow Butte Resources 86 Crow Butte Rd Crawford, NE 69339

Workorder No.: C09090469 Quote ID: C1125 - Crow Butte Uranium Project

Project Name: Commercial Evaporation Pond G-8

Energy Laboratories, Inc. received the following 2 samples for Crow Butte Resources on 9/11/2009 for analysis.

Sample ID	Client Sample ID	Collect Date	Receive Date	Matrix	Test
C09090469-001	Pond Composite Sample	09/08/09 00:00	09/11/09	Aqueous	Metals by ICP/ICPMS, Dissolved Alkalinity QA Calculations Conductivity Fluoride E300.0 Anions Nitrogen, Ammonia Nitrogen, Nitrate + Nitrite pH Radium 226, Dissolved Solids, Total Dissolved
C09090469-002 Pond Discharge Sample		09/08/09 00:00	0 09/11/09	Aqueous	Same As Above

As appropriate, any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

If you have any questions regarding these tests results, please call.

Report Approved By:

Stephanie D. Waldrop

Reporting Supervisor

EIVENGI LADUNAIUNIES, IIVU. * 2000 Salt Cleek nigiliway (02001) * P.O. DUX 0200 * Caspet, VVI 02002 Toll Free 888.235.0515 * 307.235.0515 * Fax 307.234.1639 * casper@energylab.com * www.energylab.com

CLIENT: Crow Butte Resources

Project: Commercial Evaporation Pond G-8

Date: 05-Oct-09

CASE NARRATIVE

Sample Delivery Group: C09090469

RADIOCHEMISTRY ANALYSIS

Per client request, results less than MDC (or precision if no MDC), are reported as <MDC (or <precision). Actual instrument results are available by request.

ORIGINAL SAMPLE SUBMITTAL(S)

All original sample submittals have been returned with the data package.

SAMPLE TEMPERATURE COMPLIANCE: 4°C (±2°C)

Temperature of samples received may not be considered properly preserved by accepted standards. Samples that are hand delivered immediately after collection shall be considered acceptable if there is evidence that the chilling process has begun.

GROSS ALPHA ANALYSIS

Method 900.0 for gross alpha and gross beta is intended as a drinking water method for low TDS waters. Data provided by this method for non potable waters should be viewed as inconsistent.

SOIL/SOLID SAMPLES

All samples reported on an as received basis unless otherwise indicated.

ATRAZINE, SIMAZINE AND PCB ANALYSIS USING EPA 505

Data for Atrazine and Simazine are reported from EPA 525.2, not from EPA 505. Data reported by ELI using EPA method 505 reflects the results for seven individual Aroclors. When the results for all seven are ND (not detected), the sample meets EPA compliance criteria for PCB monitoring.

SUBCONTRACTING ANALYSIS

Subcontracting of sample analyses to an outside laboratory may be required. If so, ENERGY LABORATORIES will utilize its branch laboratories or qualified contract laboratories for this service. Any such laboratories will be indicated within the Laboratory Analytical Report.

BRANCH LABORATORY LOCATIONS

eli-b - Energy Laboratories, Inc. - Billings, MT eli-g - Energy Laboratories, Inc. - Gillette, WY eli-h - Energy Laboratories, Inc. - Helena, MT eli-r - Energy Laboratories, Inc. - Rapid City, SD eli-t - Energy Laboratories, Inc. - College Station, TX

CERTFICATIONS:

USEPA: WY00002; FL-DOH NELAC: E87641; California: 02118CA Oregon: WY200001; Utah: 3072350515; Virginia: 00057; Washington: C1903

ISO 17025 DISCLAIMER:

The results of this Analytical Report relate only to the items submitted for analysis.

ENERGY LABORATORIES, INC. - CASPER, WY certifies that certain method selections contained in this report meet requirements as set forth by the above accrediting authorities. Some results requested by the client may not be covered under these certifications. All analysis data to be submitted for regulatory enforcement should be certified in the sample state of origin. Please verify ELI's certification coverage by visiting www.energylab.com

ELI appreciates the opportunity to provide you with this analytical service. For additional information and services visit our web page www.energylab.com.

THIS IS THE FINAL PAGE OF THE LABORATORY ANALYTICAL REPORT

Energy Laboratories Inc Workorder Receipt Checklist

Crow Butte Resources

Reviewed	Date
----------	------

C0	909	904	69	

Login completed by: Kimberly Humiston		Date and Time I	Received: 9/11/2009 9	:15 AM
Reviewed by:		Red	ceived by: ha	
Reviewed Date:		Carr	ier name: Ground	
			·	
Shipping container/cooler in good condition?	Yes 🗸	No 📋	Not Present	
Custody seals intact on shipping container/cooler?	Yes 🗌	No 🗍	Not Present 🔽	
Custody seals intact on sample bottles?	Yes 🗌	No 🗌	Not Present 🗹	
Chain of custody present?	Yes 🗹	No 📋		
Chain of custody signed when relinquished and received?	Yes 🗹	No 🗌		
Chain of custody agrees with sample labels?	Yes 🗹	No 📋		
Samples in proper container/bottle?	Yes 🗹	No 🗌		
Sample containers intact?	Yes 🗹	No 🗌	,	
Sufficient sample volume for indicated test?	Yes 🗸	No 📋		
All samples received within holding time?	Yes 🗸	No 📋		
Container/Temp Blank temperature:	14°C On ice			
Water - VOA vials have zero headspace?	Yes 🗌	No 🗌	No VOA vials submitted	\square
Water - pH acceptable upon receipt?	Yes 🗸	No 🗌	Not Applicable	

Contact and Corrective Action Comments:

None

Client:	Crow Butte Resources
Project:	Commercial Evaporation Pond G-8 Samples
Lab ID:	C09091126-001
Client Sample ID:	Pond Composite Sample

Report Date: 10/28/09 Collection Date: 09/24/09 DateReceived: 09/29/09 Matrix: Aqueous

					MCL/		
Analyses	Result	Units	Qualifier	RL	QCL	Method	Analysis Date / By
MAJOR IONS							
Alkalinity, Total as CaCO3	3520	mg/L		5		A2320 B	10/02/09 22:37 / dvg
Carbonate as CO3	972	mg/L		1		A2320 B	10/02/09 22:37 / dvg
Bicarbonate as HCO3	2320	mg/L		1		A2320 B	10/02/09 22:37 / dvg
Calcium	ND	mg/L	D	50		E200.7	10/12/09 13:53 / cp
Chloride	65100	mg/L	D	80		E300.0	10/02/09 04:52 / Ijl
Fluoride	1.0	mg/L		0.1		A4500-F C	10/06/09 12:01 / dvg
Magnesium	63	mg/L	D	20		E200.7	10/12/09 13:53 / cp
Nitrogen, Ammonia as N	7	mg/L	D	1		E350.1	10/01/09 16:21 / eli-b
Nitrogen, Nitrate+Nitrite as N	1	mg/L	D	1		E353.2	10/02/09 13:50 / eli-b
Potassium	294	mg/L	D	20		E200.7	10/12/09 13:53 / cp
Silica	76	mg/L	D	6		E200.7	10/12/09 13:53 / cp
Sodium	48800	mg/L	D	50		E200.7	10/12/09 13:53 / cp
Sulfate	6370	mg/L	D	200		E300.0	10/02/09 04:52 / ljl
PHYSICAL PROPERTIES							
Conductivity	142000	umhos/cm		1		A2510 B	09/30/09 11:27 / dd
pH	9.00	s.u.		0.01		A4500-H B	09/30/09 11:27 / dd
Solids, Total Dissolved TDS @ 180 C	110000	mg/L		10		A2540 C	09/30/09 12:52 / th
METALS - DISSOLVED							
Aluminum	ND	mg/L		0.1		E200.8	10/01/09 05:48 / sml
Arsenic	0.088	mg/L		0.001		E200.8	10/01/09 05:48 / sml
Barium	ND	mg/L		0.1		E200.8	10/01/09 05:48 / sml
Boron	ND	mg/L	D	6		E200.7	10/12/09 13:53 / cp
Cadmium	0.009	mg/L	D	0.005		E200.8	10/01/09 05:48 / sml
Chromium	0.003 ND	mg/L		0.05		E200.8	10/01/09 05:48 / sml
Copper	0.51	mg/L		0.01		E200.8	10/01/09 05:48 / sml
Iron	ND	mg/L	D	1		E200.7	10/12/09 13:53 / cp
Lead	0.016	mg/L	D	0.003		E200.8	10/01/09 14:49 / ts
Manganese	0.07	mg/L	U U	0.01		E200.8	10/01/09 05:48 / sml
Manganese Mercury	0.009	mg/L mg/L	D	0.008		E200.8	10/01/09 14:49 / ts
Molybdenum	14.8	mg/L	2	0.1		E200.8	10/01/09 05:48 / sml
Nickel	ND	mg/L		0.05		E200.8	10/01/09 05:48 / sml
Selenium	ND	mg/L	Ð	0.03		E200.8	10/01/09 05:48 / sml
	91.8	mg/L	D	0.001		E200.8	10/01/09 14:49 / ts
Uranium	94.3	mg/L		0.1		E200.8	10/01/09 05:48 / sml
Vanadium Zinc	0.29	mg/L		0.01		E200.8	10/01/09 05:48 / sml
RADIONUCLIDES - DISSOLVED							
	805	pCi/L		0.23		E903.0	10/13/09 17:37 / trs
Radium 226				0.20		E903.0 E903.0	10/13/09 17:37 / trs
Radium 226 precision (±)	5.9	pCi/L					
Radium 226 MDC	0.23	pCi/L				E903.0	10/13/09 17:37 / trs

Report Definitions:

RL - Analyte reporting limit.

MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

QCL - Quality control limit.

MDC - Minimum detectable concentration

D - RL increased due to sample matrix interference.

Client:Crow Butte ResourcesProject:Commercial Evaporation Pond G-8 SamplesLab ID:C09091126-001Client Sample ID:Pond Composite Sample

Report Date: 10/28/09 Collection Date: 09/24/09 DateReceived: 09/29/09 Matrix: Aqueous

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
DATA QUALITY							
A/C Balance (± 5)	2.27	%				Calculation	10/14/09 12:50 / kbh
Anions	2040	meq/L				Calculation	10/14/09 12:50 / kbh
Cations	2130	meq/L				Calculation	10/14/09 12:50 / kbh
Solids, Total Dissolved Calculated	123000	mg/L				Calculation	10/14/09 12:50 / kbh
TDS Balance (0.80 - 1.20)	0.890					Calculation	10/14/09 12:50 / kbh

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

Client:Crow Butte ResourcesProject:Commercial Evaporation Pond G-8 SamplesLab ID:C09091126-002Client Sample ID:Pond Discharge Sample

Report Date: 10/28/09 Collection Date: 09/24/09 DateReceived: 09/29/09 Matrix: Aqueous

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
MAJOR IONS							
Alkalinity, Total as CaCO3	168	mg/L		5		A2320 B	10/02/09 22:44 / dvg
Carbonate as CO3	ND	mg/L		1		A2320 B	10/02/09 22:44 / dvg
Bicarbonate as HCO3	206	mg/L		1		A2320 B	10/02/09 22:44 / dvg
Calcium	74	mg/L	D	20		E200.7	10/12/09 13:57 / cp
Chloride	21800	mg/L	D	20		E300.0	10/02/09 05:10 / ljl
Fluoride	0.1	mg/L		0.1		A4500-F C	10/06/09 12:05 / dvg
Magnesium	12	mg/L	D	9		E200.7	10/12/09 13:57 / cp
Nitrogen, Ammonia as N	ND	mg/L	D	1		E350.1	10/01/09 16:22 / eli-b
Nitrogen, Nitrate+Nitrite as N	5	mg/L	D	1		E353.2	10/02/09 13:51 / eli-b
Potassium	176	mg/L	D	10		E200.7	10/12/09 13:57 / cp
Silica	52	mg/L	D	3		E200.7	10/12/09 13:57 / cp
Sodium	14600	mg/L	D	20		E200.7	10/12/09 13:57 / cp
Sulfate	1140	mg/L	D	60		E300.0	10/02/09 05:10 / lji
PHYSICAL PROPERTIES							
Conductivity	56700	umhos/cm		1		A2510 B	09/30/09 11:28 / dd
рН	6.82	s.u.		0.01		A4500-H B	09/30/09 11:28 / dd
Solids, Total Dissolved TDS @ 180 C	35300	mg/L		10		A2540 C	09/30/09 12:53 / th
METALS - DISSOLVED							
Aluminum	ND	mg/L		0.1		E200.8	10/01/09 05:53 / sml
Arsenic	0.043	mg/L		0.001		E200.8	10/01/09 05:53 / sml
Barium	ND	mg/L		0.1		E200.8	10/01/09 14:56 / ts
Boron	ND	mg/L	D	3		E200.7	10/12/09 13:57 / cp
Cadmium	ND	mg/L		0.005		E200.8	10/01/09 14:56 / ts
Chromium	ND	mg/L		0.05		E200.8	10/01/09 05:53 / sml
Copper	0.09	mg/L		0.01		E200.8	10/01/09 05:53 / sml
Iron	. ND	mg/L	D	0.5		E200.7	10/12/09 13:57 / cp
Lead	0.002	mg/L		0.001		E200.8	10/01/09 14:56 / ts
Manganese	0.04	mg/L		0.01		E200.8	10/01/09 05:53 / sml
Mercury	ND	mg/L	Ð	0.004		E200.8	10/01/09 14:56 / ts
Molybdenum	4.5	mg/L		0.1		E200.8	10/01/09 14:56 / ts
Nickel	ND	mg/L		0.05		E200.8	10/01/09 05:53 / sml
Selenium	0.019	mg/L	D	0.005		E200.8	10/01/09 05:53 / sml
Uranium	18.0	mg/L	D	0.0007		E200.8	10/01/09 14:56 / ts
Vanadium	114	mg/L		0.1		E200.8	10/01/09 14:56 / ts
Zinc	0.07	mg/L		0.01		E200.8	10/01/09 05:53 / sml
RADIONUCLIDES - DISSOLVED							
Radium 226	742	pCi/L		0.23		E903.0	10/13/09 17:37 / trs
Radium 226 precision (±)	5.6	pCi/L '				E903.0	10/13/09 17:37 / trs
Radium 226 MDC	0.23	pCi/L				E903.0	10/13/09 17:37 / trs

Report RL - Analyte re

Definitions:

RL - Analyte reporting limit.

MCL - Maximum contaminant level.

QCL - Quality control limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit. D - RL increased due to sample matrix interference.

ł	Client:	Crow Butte Resources
)	Project:	Commercial Evaporation Pond G-8 Samples
	Lab ID:	C09091126-002
	Client Sample ID:	Pond Discharge Sample

Report Date: 10/28/09 Collection Date: 09/24/09 DateReceived: 09/29/09 Matrix: Aqueous

Analyses	Result	Units	Qualifier	RL	MCL/ QCL	Method	Analysis Date / By
DATA QUALITY							
A/C Balance (± 5)	0.0842	%				Calculation	10/14/09 12:50 / kbh
Anions	643	meq/L				Calculation	10/14/09 12:50 / kbh
Cations	644	meq/L				Calculation	10/14/09 12:50 / kbh
Solids, Total Dissolved Calculated	38000	mg/L				Calculation	10/14/09 12:50 / kbh
TDS Balance (0.80 - 1.20)	0.930					Calculation	10/14/09 12:50 / kbh

Report Definitions: RL - Analyte reporting limit. QCL - Quality control limit. MCL - Maximum contaminant level. ND - Not detected at the reporting limit.

lient: Crow Butte Resources

Project: Commercial Evaporation Pond G-8 Samples

Report Date: 10/28/09 Work Order: C09091126

Analyte C	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: A2320 B								······································	Batch	R124562
Sample ID: MBLK	<u>3</u> M	ethod Blank				Run: MANT	ECH_091002B		10/02	/09 16:13
Alkalinity, Total as CaCO3		ND	mg/L	0.2					•	
Carbonate as CO3		ND	mg/L	1						
Bicarbonate as HCO3		ND	mg/L	1						
Sample ID: LCS1	La	boratory Co	ontrol Sample			Run: MANT	ECH_091002B		10/02	/09 16:28
Alkalinity, Total as CaCO3		201	mg/L	5.0	100	90	110			
Sample ID: LCS	La	boratory Co	ontrol Sample			Run: MANT	ECH_091002B		10/02	/09 16:35
Alkalinity, Total as CaCO3		54.2	mg/L	5.0	108	90	110			
Sample ID: C09091129-001AMS	Sa	ample Matrix	<pre>K Spike</pre>			Run: MANT	ECH_091002B		10/02	/09 22:59
Alkalinity, Total as CaCO3		307	mg/L	5.0	102	80	120			
Sample ID: C09091129-001AMSD	Sa	ample Matrix	x Spike Duplicate			Run: MAN1	ECH_091002B		10/02	/09 23:08
Alkalinity, Total as CaCO3		315	mg/L	5.0	108	80	120	2.5	20	
Method: A2510 B							Analytical	Run: Ol	RION555A-2	_0909304
Sample ID: ICV2_090930_1	In	itial Calibrat	ion Verification Sta	Indard					09/30	/09 11:15
Conductivity		1400	umhos/cm	1.0	99	90	110			
Method: A2510 B			· · · · · · · · · · · · · · · · · · ·				Ba	tch: 090	930_1_PH-\	N_555A-2
ടample ID: MBLK1_090930_1	М	ethod Blank				Run: ORIO	N555A-2_090930	DA	09/30	/09 11:11
Conductivity		1	umhos/cm	0.2						
Sample ID: C09091151-004ADUP	Sa	ample Dupli	cate			Run: ORIO	N555A-2_090930	A	09/30	/09 11:59
Conductivity		1850	umhos/cm	1.0				0.1	10	
Method: A2540 C		`				· · · · · · · · · · · · · · · · · · ·	Ba	atch: 09	0930_1_SLE	S-TDS-V
Sample ID: MBLK1_090930	М	ethod Blank	:			Run: BAL-1	_090930B		09/30	/09 12:41
Solids, Total Dissolved TDS @ 180) C	ND	mg/L	6						
Sample ID: LCS1_090930	La	aboratory Co	ontrol Sample			Run: BAL-1	_090930B		09/30	/09 12:41
Solids, Total Dissolved TDS @ 180	C (1010	mg/L	10	101	90	110			
Sample ID: C09091101-002AMS	S	ample Matri	x Spike			Run: BAL-1	L_090930B		09/30	/09 12:50
Solids, Total Dissolved TDS @ 180) C	2440	mg/L	10	104	90	110			
	~								00100	100 40 E
Sample ID: C09091101-002AMSD	5	ample Matri	x Spike Duplicate			Run: BAL-1	I_090930B		09/30)/09 12:50

Qualifiers:

RL - Analyte reporting limit. MDC - Minimum detectable concentration

ilient: Crow Butte Resources

roject: Commercial Evaporation Pond G-8 Samples

Report Date: 10/28/09 Work Order: C09091126

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: A4	500-F C									Batch	R12469
Sample ID: MB	ĹΚ	Me	thod Blank				Run: MANT	ECH_091006A		10/06	/09 11:28
Fluoride			ND	mg/L	0.05						
Sample ID: LCS	s	La	boratory Cor	ntrol Sample	9		Run: MANT	ECH_091006A		10/06	/09 11:32
Fluoride			1.04	mg/L	0.10	104	90	110			
Sample ID: C09	9091129-001AMS	Sa	mple Matrix	Spike			Run: MANT	ECH_091006A		10/06	/09 12:11
Fluoride			1.48	mg/L	0.10	105	80	120			
Sample ID: C09	9091129-001AMSD	Sa	mple Matrix	Spike Dupl	icate		Run: MANT	ECH_091006A		10/06	/09 12:13
Fluoride			1.48	mg/L	0.10	105	80	120	0	10	
Method: A4	500-H B					. <u></u>		Analytical	Run: O	RION555A-2	_090930
Sample ID: ICV	/1_090930_1	Ini	tial Calibratio	on Verificati	on Standard					09/30	/09 11:13
рН			6.89	s.u.	0.010	100	98	102			
Method: A4	1500-H B		<u>_,</u> <u>.</u>	<u> </u>	<u> </u>			Ba	atch: 090	0930_1_PH-\	N_555A-
Sample ID: C0	9091151-004ADUP	Sa	Imple Duplic	ate			Run: ORIO	N555A-2_09093	0A	09/30	/09 11:59
рН			7.62	s.u.	0.010				0.4	10	

Qualifiers:

RL - Analyte reporting limit.

lient: Crow Butte Resources

Project: Commercial Evaporation Pond G-8 Samples

Report Date: 10/28/09 Work Order: C09091126

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E200.7									Batch:	R124979
Sample ID: MB-091012A	<u>7</u> Me	thod Blank				Run: ICP2-	C_091012A		10/12/	09 12:12
Boron		ND	mg/L	0.03						
Calcium		ND	mg/L	0.2						
Iron		ND	mg/L	0.005						
Magnesium		ND	mg/L	0.09						
Potassium		ND	mg/L	0.1						
Silicon		0.04	mg/L	0.01						
Sodium		ND	mg/L	0.10						
Sample ID: LFB-091012A	<u>7</u> La	boratory For	tified Blank			Run: ICP2-	C_091012A		10/12/	09 12:27
Boron		1.04	mg/L	0.10	104	85	115			
Calcium		47.7	mg/L	0.50	95	85	115			
Iron		0.978	mg/L	0.030	98	85	115			
Magnesium		49.2	mg/L	0.50	98	85	115			
Potassium		43.5	mg/L	0.50	87	85	115			
Silicon		0.515	mg/L	0.015	105	85	115			
Sodium		44.7	mg/L	0.50	89	85	115			
Sample ID: C09091057-001CMS	2 <u>7</u> Sa	mple Matrix	Spike			Run: ICP2-	C_091012A		10/12/	09 13:32
Boron		2.25	mg/L	0.10	104	70	130			
Calcium		109	mg/L	0.51	106	70	130			
Iron		6.10	mg/L	0.030	94	70	130			
Magnesium		107	mg/L	0.50	105	70	130			
Potassium		100	mg/L	0.50	98	70	130			
Silicon		1.30	mg/L	0.030	111	70	130			
Sodium		108	mg/L	0.50	103	70	130			
Sample ID: C09091057-001CMS	D <u>7</u> Sa	mple Matrix	Spike Duplicate			Run: ICP2-	C_091012A		10/12/	09 13:36
Boron		2.24	mg/L	0.10	103	70	130	0.6	20	
Calcium		101	mg/L	0.51	98	70	130	7.6	20	
Iron		6.09	mg/L	0.030	94	70	130	0.2	20	
Magnesium		103	mg/L	0.50	100	70	130	4.1	20	
Potassium		96.3	mg/L	0.50	94	70	130	3.8	20	
Silicon		1.31	mg/L	0.030	112	70	130	0.8	20	
Sodium		101	mg/L	0.50	96	70	130	6.3	20	

Qualifiers:

RL - Analyte reporting limit. MDC - Minimum detectable concentration

lient: Crow Butte Resources

oject: Commercial Evaporation Pond G-8 Samples

Report Date: 10/28/09 Work Order: C09091126

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E200.8				c* .c					Batch	: R12445
Sample ID: LRB	<u>12</u> Me	thod Blank				Run: ICPM	S4-C_090930A		09/30	/09 13:25
Aluminum		ND	mg/L	0.0004			-			
Arsenic		ND	mg/L	5E-05						
Barium		ND	mg/L	4E-05						
Cadmium		ND	mg/L	4E-05					•	
Chromium		ND	mg/L	4E-05						
Copper		ND	mg/L	7E-05						
Manganese		ND	mg/L	- 3E-05						
Molybdenum		ND	mg/L	0.0001						
Nickel		ND	mg/L	6E-05						
Selenium		ND	mg/L	3E-05						
Vanadium		ND	mg/L	4E-05						
Zinc		ND	mg/L	0.0002						
Sample ID: LFB	<u>12</u> La	boratory For	tified Blank			Run: ICPM	S4-C_090930A		09/30)/09 13:30
Aluminum		0.0557	mg/L	0.0010	111	85	115			
Arsenic		0.0541	mg/L	0.0010	108	85	115			
Barium		0.0535	mg/L	0.0010	107	85	115			
Cadmium		0.0539	mg/L	0.0010	108	、 85	115			
Chromium		0.0526	mg/L	0.0010	105	85	115			
Copper		0.0540	mg/L	0.0010	108	85	115			
Aanganese		0.0544	mg/L	0.0010	109	85	115			
Molybdenum		0.0512	mg/L	0.0010	102	85	115			
Nickel		0.0543	mg/L	0.0010	109	. 85	115			
Selenium		0.0536	mg/L	0.0010	107	85	115			
Vanadium		0.0524	mg/L	0.0010	105	85	115			
Zinc		0.0554	mg/L	0.0010	111	85	115			
Sample ID: C09091126-002CMS	54 <u>12</u> Sa	imple Matrix	Spike			Run: ICPM	IS4-C_090930A		10/0 <i>1</i>	1/09 05:58
Aluminum		0.268	mg/L	0.10	106	70	130			
Arsenic		0.310	mg/L	0.0010	107	70	130			
Barium		0.366	mg/L	0.10	114	70	130			
Cadmium		0.245	mg/L	0.010	97	70	130			
Chromium		0.309	mg/L	0.050	115	70	130			
Copper		0.358	mg/L	0.010	107	. 70	130			
Manganese		0.322	mg/L	0.010	112	70	130			
Molybdenum		5.12	mg/L	0.10		70	130			А
Nickel		0.278	mg/L	0.050	106	70	130			
Selenium		0.292	mg/L	0.0010	109	70	130			
Vanadium		123	mg/L	0.10		70	130			А
Zinc	•	0.298	mg/L	0.010	92	70	130			

Qualifiers:

RL - Analyte reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated. MDC - Minimum detectable concentration

Toll Free 888.235.0515 • 307.235.0515 • Fax 307.234.1639 • casper@energylab.com • www.energylab.com

QA/QC Summary Report

lient: Crow Butte Resources

Project: Commercial Evaporation Pond G-8 Samples

Report Date: 10/28/09 Work Order: C09091126

Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method:	E200.8							·····		Batch:	R12445
Sample ID:	C09091126-002CMSE) <u>12</u> Sa	mple Matrix	Spike Duplicate			Run: ICPM	S4-C_090930A		10/01	/09 06:03
Aluminum			0.259	mg/L	0.10	102	· 70	130	3.7	20	
Arsenic			0.304	mg/L	0.0010	105	70	130	1.9	20	
Barium			0.360	mg/L	0.10	111	70	130	1.7	20	
Cadmium			0.241	mg/L	0.010	95	70	130	1.8	20	
Chromium			0.308	mg/L	0.050	114	70	130	0.4	20	
Copper			0.352	mg/L	0.010	105	70	130	1.5	20	
Manganese)		0.313	mg/L	0.010	108	70	130	3	20	
Molybdenu	m		5.07	mg/L	0.10		70	130	1.1	20	А
Nickel			0.276	mg/L	0.050	106	70	130	0.7	20	
Selenium			0.278	mg/L	0.0010	104	70	130	4.9	20	
Vanadium			121	mg/L	0.10		70	130	1.5	20	А
Zinc			0.296	mg/L	0.010	91	70	130	. 0.7	20	

Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated. MDC - Minimum detectable concentration

'lient: Crow Butte Resources

roject: Commercial Evaporation Pond G-8 Samples

Report Date: 10/28/09 Work Order: C09091126

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E200.8				•		·			Batch:	R12451
Sample ID: LRB	<u>7</u> Me	thod Blank				Run: ICPM	S2-C_091001A		10/01/	/09,13:21
Barium		ND	mg/L	3E-05						
Cadmium		ND	mg/L	6E-05						
Lead		ND	mg/L	2E-05						
Mercury		ND	mg/L	4E-05						
Molybdenum		6E-05	mg/L	· 4E-05						
Uranium		ND	mg/L	8E-06						
Vanadium		ND	mg/L	9E-05						
Sample ID: LFB	<u>7</u> La	boratory For	tified Blank			Run: ICPM	S2-C_091001A		10/01	/09 13:28
Barium		0.0510	mg/L	0.0010	102	85	115			
Cadmium		0.0510	mg/L	0.0010	102	85	115			
Lead		0.0513	mg/L	0.0010	103	85	115			
Mercury		0.00513	mg/L	0.0010	103	85	115			
Molybdenum		0.0511	mg/L	0.0010	102	85	115			
Uranium		0.0491	mg/L	0.00030	98	85	115			
Vanadium		0.0500	mg/L	0.0010	100	85	115			
Sample ID: C09091173-003BMS	4 <u>7</u> Sa	mple Matrix	Spike			Run: ICPM	S2-C_091001A		10/01	/09 15:4ė́
Barium		0.281	mg/L	0.10	103	70	130			
Jadmium		0.252	mg/L	0.010	101	70	130			
Lead		0.261	mg/L	0.050	104	70	130			
Mercury		0.0265	mg/L	0.0010	106	70	130			
Molybdenum		0.351	mg/L	0.10	107	70	130			
Uranium		2.03	mg/L	0.00030		70	130			Α.,
Vanadium		0.259	mg/L	0.10	102	70	130			
Sample ID: C09091173-003BMS	D <u>7</u> Sa	mple Matrix	Spike Duplic	cate		Run: ICPM	S2-C_091001A		10/01	/09 15:53
Barium		0.281	mg/L	0.10	103	70	130	0.2	20	
Cadmium		0.253	mg/L	0.010	101	70	130	0.4	20	
Lead		0.262	mg/L	0.050	105	70	130	0.3	20	
Mercury		0.0266	mg/L	0.0010	106	70	130	0.5	20	
Molybdenum		0.353	mg/L	0.10	108	70	130	0.6	20	
Uranium		2.04	mg/L	0.00030		70	130	0.5	20	А
Vanadium		0.258	mg/L	0.10	102	70	130	0.2	20	

Qualifiers:

RL - Analyte reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated. MDC - Minimum detectable concentration

<pre>lient: Crow Butte Resource Project: Commercial Evapora</pre>		d G-8 Sam	ples				•		: 10/28/09 : C0909112	26
Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E300.0		· · · · <u>—</u> · · ·				v			Batch:	R12455
Sample ID: LCS	<u>2</u> Lat	poratory Cor	ntrol Sample			Run: IC2-C	_091001A		10/01/	/09 14:39
Chloride		9.72	mg/L	1.0	97	90	110			
Sulfate		38.6	mg/L	1.0	96	90	110			
Sample ID: MBLK	<u>2</u> Me	thod Blank				Run: IC2-C	_091001A		10/01	/09 14:56
Chloride		ND	mg/L	0.04						
Sulfate		ND	mg/L	0.1						
Sample ID: C09091122-002AMS	<u>2</u> Sa	mple Matrix	Spike			Run: IC2-C	091001A		10/02	/09 04:18
Chloride		482	mg/L	1.0		80	120			А
Sulfate		977	mg/L	1.0		80	120			А
Sample ID: C09091122-002AMS	D <u>2</u> Sa	mple Matrix	Spike Duplicate			Run: IC2-C	_091001A		10/02	/09 04:35
Chloride	_	480	mg/L	1.0		80	120	0.4	20	А
Sulfate		975	mg/L	1.0		80	120	0.1	20	А
Method: E350.1								Analytic	al Run: SUB	-B13688
Sample ID: ICV	Ini	tial Calibratio	on Verification S	tandard					10/01	/09 13:44
Nitrogen, Ammonia as N		5.53	mg/L	0.30	101	90	110			
Method: E350.1									Batch: B	_R13688
ample ID: MBLK	Me	thod Blank				Run: SUB-I	B136889		10/01	/09 13:4
Nitrogen, Ammonia as N		ND	mg/L	0.05						
Sample ID: LFB	La	boratory Fo	tified Blank			Run: SUB-I	B136889		10/01	/09 13:4
Nitrogen, Ammonia as N		1.01	mg/L	0.050	102	90	• 110			
Sample ID: B09100060-002BMS	Sa	mple Matrix	Spike			Run: SUB-	B136889		10/01	/09 15:0
Nitrogen, Ammonia as N		0.966	mg/L	0.050	99	90	110			
Sample ID: B09100060-002BMS	D Sa	imple Matrix	Spike Duplicate	1		Run: SUB-	B136889		10/01	/09 15:0
Nitrogen, Ammonia as N		0.966	mg/L	0.050	99	90	110	0	10	
Sample ID: C09091173-007D	Sa	ample Matrix	Spike			Run: SUB-	B136889		10/01	/09 15:3
		1.02	mg/L	0.050	102	90	110			
Nitrogen, Ammonia as N		1.02								
Nitrogen, Ammonia as N Sample ID: C09091173-007D	Sa		Spike Duplicate			Run: SUB-	B136889		10/01	/09 15:3

Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

A - The analyte level was greater than four times the spike level. In accordance with the method % recovery is not calculated. MDC - Minimum detectable concentration

ient: Crow Butte Resources

roject: Commercial Evaporation Pond G-8 Samples

Report Date: 10/28/09

Work Order: C09091126

Analyte	Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Method: E353.2			· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	Analytic	al Run: SUB	-B13693
Sample ID: ICV	Ini	itial Calibratio	on Verificati	on Standard					10/02	/09 10:26
Nitrogen, Nitrate+Nitrite as N		37.5	mg/L	0.20	106	90	110			
Method: E353.2			· ··· <u>·</u> ··········						Batch: B	_R13693
Sample ID: MBLK	M	ethod Blank				Run: SUB-I	B136930		10/02	/09 10:27
Nitrogen, Nitrate+Nitrite as N		ND	mg/L	0.01						
Sample ID: LFB	La	aboratory For	tified Blank			Run: SUB-I	B136930		10/02	/09 10:28
Nitrogen, Nitrate+Nitrite as N		0.997	mg/L	0.010	102	90	110			
Sample ID: B09100141-001CMS	S	ample Matrix	Spike			Run: SUB-	B136930		10/02	2/09 15:26
Nitrogen, Nitrate+Nitrite as N		1.06	mg/L	0.010	96	90	110			
Sample ID: B09100141-001CMSI	o s	ample Matrix	Spike Dupl	icate		Run: SUB-	B136930		10/02	2/09 15:27
Nitrogen, Nitrate+Nitrite as N		1.08	mg/L	0.010	98	90	110	2.2	10	
Sample ID: C09091173-020D	S	ample Matrix	Spike			Run: SUB-	B136930		10/02	2/09 13:47
Nitrogen, Nitrate+Nitrite as N		2.54	mg/L	0.010	107	90	110			
Sample ID: C09091173-020D	S	ample Matrix	Spike Dupl	icate		Run: SUB-	B136930	•	10/02	2/09 13:48
Nitrogen, Nitrate+Nitrite as N		2.54	mg/L	0.010	107	90	110	0.1	10	
Aethod: E903.0						<u> </u>			Batch: R/	A226-405
ample ID: C09091122-001DMS	S	ample Matrix	Spike			Run: BERT	THOLD 770-1_	091005C	10/13	3/09 17:3
Radium 226		18	pCi/L		108	70	. 130			
Sample ID: C09091122-001DMSI	o s	ample Matrix	Spike Dup	licate		Run: BERT	THOLD 770-1_	091005C	10/13	3/09 17:3
Radium 226		19	pCi/L		113	70	130	3.8	25.4	
Sample ID: MB-RA226-4051	<u>3</u> N	lethod Blank				Run: BERT	[HOLD 770-1_	091005C	10/13	3/09 22:2
Radium 226		-0.3	pCi/L							U
Radium 226 precision (±)		0:1	pCi/L							
Radium 226 MDC		0.3	pCi/L							
Sample ID: LCS-RA226-4051	L	aboratory Co	ontrol Sampl	e		Run: BER	THOLD 770-1_	_091005C	10/1:	3/09 22:2
Radium 226		7.6	pCi/L		100	70	130			

Qualifiers:

RL - Analyte reporting limit.

ND - Not detected at the reporting limit.

U - Not detected at minimum detectable concentration

ANALYTICAL SUMMARY REPORT

October 28, 2009

Crow Butte Resources 86 Crow Butte Rd

Crawford, NE 69339

Workorder No.: C09091126 Quote ID: C1125 - Crow Butte Uranium Project

Project Name: Commercial Evaporation Pond G-8 Samples

Energy Laboratories, Inc. received the following 2 samples for Crow Butte Resources on 9/29/2009 for analysis.

Sample ID	Client Sample ID	Collect Date	Receive Date	Matrix	Test
C09091126-001	Pond Composite Sample	09/24/09 00:00	09/29/09	Aqueous	Metals by ICP/ICPMS, Dissolved Alkalinity QA Calculations Conductivity Fluoride E300.0 Anions Nitrogen, Ammonia Nitrogen, Nitrate + Nitrite pH Radium 226, Dissolved Solids, Total Dissolved
C09091126-002	2 Pond Discharge Sample	09/24/09 00:00	09/29/09	Aqueous	Same As Above

As appropriate, any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

If you have any questions regarding these tests results, please call.

Report Approved By:

Stephanie D. Waldrop **Reporting Supervisor**

Toll Free 888.235.0515 • 307.235.0515 • Fax 307.234.1639 • casper@energylab.com • www.energylab.com

CLIENT: Crow Butte Resources

Project: Commercial Evaporation Pond G-8 Samples

Date: 28-Oct-09

CASE NARRATIVE

Sample Delivery Group: C09091126

BRANCH LABORATORY SUBCONTRACT ANALYSIS

Tests Associated with Analyst identified as ELI-B were subcontracted to Energy Laboratories Billings Branch, EPA Number MT00005.

RADIOCHEMISTRY ANALYSIS

BORATO

Per client request, results less than MDC (or precision if no MDC), are reported as <MDC (or <precision). Actual instrument results are available by request.

ORIGINAL SAMPLE SUBMITTAL(S)

All original sample submittals have been returned with the data package.

SAMPLE TEMPERATURE COMPLIANCE: 4°C (±2°C)

Temperature of samples received may not be considered properly preserved by accepted standards. Samples that are hand delivered immediately after collection shall be considered acceptable if there is evidence that the chilling process has begun.

GROSS ALPHA ANALYSIS

Method 900.0 for gross alpha and gross beta is intended as a drinking water method for low TDS waters. Data provided by this method for non potable waters should be viewed as inconsistent.

SOIL/SOLID SAMPLES

All samples reported on an as received basis unless otherwise indicated.

ATRAZINE, SIMAZINE AND PCB ANALYSIS USING EPA 505

Data for Atrazine and Simazine are reported from EPA 525.2, not from EPA 505. Data reported by ELI using EPA method 505 reflects the results for seven individual Aroclors. When the results for all seven are ND (not detected), the sample meets EPA compliance criteria for PCB monitoring.

SUBCONTRACTING ANALYSIS

Subcontracting of sample analyses to an outside laboratory may be required. If so, ENERGY LABORATORIES will utilize its branch laboratories or qualified contract laboratories for this service. Any such laboratories will be indicated within the Laboratory Analytical Report.

BRANCH LABORATORY LOCATIONS

eli-b - Energy Laboratories, Inc. - Billings, MT eli-g - Energy Laboratories, Inc. - Gillette, WY eli-h - Energy Laboratories, Inc. - Helena, MT eli-r - Energy Laboratories, Inc. - Rapid City, SD eli-t - Energy Laboratories, Inc. - College Station, TX

CERTFICATIONS: USEPA: WY00002; FL-DOH NELAC: E87641; California: 02118CA Oregon: WY200001; Utah: 3072350515; Virginia: 00057; Washington: C1903

ISO 17025 DISCLAIMER:

The results of this Analytical Report relate only to the items submitted for analysis.

ENERGY LABORATORIES, INC. - CASPER, WY certifies that certain method selections contained in this report meet requirements as set forth by the above accrediting authorities. Some results requested by the client may not be covered under these certifications. All analysis data to be submitted for regulatory enforcement should be certified in the sample state of origin. Please verify ELI's certification coverage by visiting www.energylab.com

ELI appreciates the opportunity to provide you with this analytical service. For additional information and services visit our web page www.energylab.com.

THIS IS THE FINAL PAGE OF THE LABORATORY ANALYTICAL REPORT

Energy Laboratories Inc Workorder Receipt Checklist

Crow Butte Resources

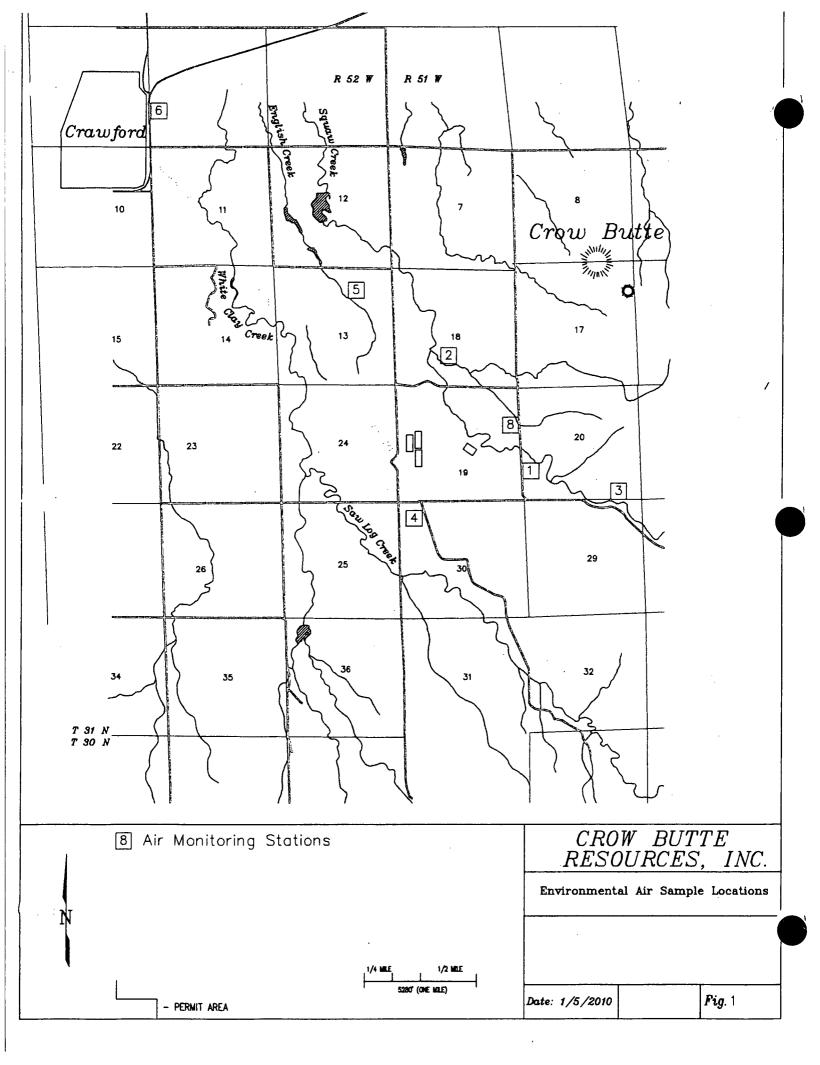
Login completed by: Edith McPike		Date and Time I	Received: 9/29/2009	9:30 AM
Reviewed by: BL2000\tedwards		Re	ceived by: al	
Reviewed Date: 9/30/2009 3:00:20 PM		Car	rier name: Ground	
Shipping container/cooler in good condition?	Yes 🗸	No 🗍	Not Present	
Custody seals intact on shipping container/cooler?	Yes 📋	No 🗌	Not Present 🗹	·
Custody seals intact on sample bottles?	Yes 📋	No	Not Present 🗹	
Chain of custody present?	Yes 🔽	No 🗌		
Chain of custody signed when relinquished and received?	Yes 🗹	No 🗌		
Chain of custody agrees with sample labels?	Yes 🗹	No 🗌		
Samples in proper container/bottle?	Yes 🗸	No 📋		
Sample containers intact?	Yes 🔽	No 🗌		
Sufficient sample volume for indicated test?	Yes 🗸	No 🔲		
All samples received within holding time?	Yes 🗸	No 📋		
Container/Temp Blank temperature:	14°C On Ice		• .	
Water - VOA vials have zero headspace?	Yes 🗌	No 🗌	No VOA vials submitted	

C09091126

Yes 📋

Contact and Corrective Action Comments:

Water - pH acceptable upon receipt?


Pond Composite sample received at a pH of 6. After adding 4 mls of HNO3 pH was still at 6. Did not try to adjust further. Sample contained strong buffering capacity.

No 🗸

Not Applicable

Appendix C-4 Environmental Air Samples Collected Under NRC Operating License During the 90-day Sampling Period

- Map of Air Monitoring Station Locations
- High Volume Air Sampling Report from Energy Laboratories, Inc.

ANALYTICAL SUMMARY REPORT

ecember 09, 2009

Crow Butte Resources 86 Crow Butte Rd Crawford, NE 69339

Workorder No.: C09100086

Project Name: 3rd Quarter 2009 Environmental Air Composites

Energy Laboratories, Inc. received the following 7 samples for Crow Butte Resources on 10/2/2009 for analysis.

Sample ID	Client Sample ID	Collect Date	Receive Date	Matrix	Test
C09100086-001	AM-1		10/02/09	Filter	Metals, Total Digestion, Total Metals Lead 210 Radium 226
C09100086-002	AM-2		10/02/09	Filter	Same As Above
C09100086-003	AM-3		10/02/09	Filter	Same As Above
C09100086-004	AM-4		10/02/09	Filter	Same As Above
C09100086-005	AM-5		10/02/09	Filter	Same As Above
C09100086-006	6 AM-6	· · · · · · · · · · · · · · · · · · ·	10/02/09	Filter	Same As Above
09100086-007	' AM-8		10/02/09	Filter	Same As Above

As appropriate, any exceptions or problems with the analyses are noted in the Laboratory Analytical Report, the QA/QC Summary Report, or the Case Narrative.

If you have any questions regarding these tests results, please call.

Report Approved By:

Steven E. Cariston Technical Director

ENERGY LABORATORIES, INC. • 2393 Salt Creek Highway (82601) • P.O. Box 3258 • Casper, WY 82602 Toll Free 888.235.0515 • 307.235.0515 • Fax 307.234.1639 • casper@energylab.com • www.energylab.com

HIGH VOLUME AIR SAMPLING REPORT

CLIENT: Crow Butte Resources PROJECT: 3rd Quarter 2009 Environmental Air Composites REPORT DATE: December 9, 2009

SAMPLE ID: AM-1

Quarter/Date Sampled Air Volume	Radionuclide	Concentration µCi/mL	Counting Precision µCi/mL	MDC µCi/mL	L.L.D. µCi/mL	Effluent Conc.* µCi/mL	% Effluent Concentration
C09040202-001	natU	< 1.00E-16	N/A	N/A	1.00E-16	9.00E-14	< 1.11E-01
First Quarter 2009	226Ra	< 1.00E-16	1.44E-17	3.44E-17	1.00E-16	9.00E-13	< 1.11E-02
Air Volume in mLs	210Pb	1.51E-14	3.40E-15	5.41E-15	2.00E-15	6.00E-13	2.51E+00
5.18E+09							
Quarter/Date Sampled Air Volume	Radionuclide	Concentration µCi/mL	Counting Precision µCi/mL	MDC μCi/mL	L.L.D. µCi/mL	Effluent Conc.* µCi/mL	% Effluent Concentration
C09070028-001	^{nat} U	2.26E-16	N/A	N/A	1.00E-16	9.00E-14	2.51E-01
Second Quarter 2009	²²⁶ Ra	< 1.00E-16	1.78E-17	3.11E-17	1.00E-16	9.00E-13	< 1.11E-02
Air Volume in mLs	²¹⁰ Pb	5.64E-15	1.68E-15	2.64E-15	2.00E-15	6.00E-13	9.40E-01
5.14E+09	· · · · · · · · · · · · · · · · · · ·					······································	·

Quarter/Date Sampled Air Volume	Radionuclide	Concentration µCi/mL	Counting Precision µCi/mL	MDC µCi/mL	L.L.D. µCi/mL	Effluent Conc.* µCi/mL	% Effluent Concentration
C09100086-001	nat U	8.27E-15	N/A	N/A	1.00E-16	9.00E-14	9.19E+00
Third Quarter 2009	²²⁶ Ra	< 1.00E-16	4.70E-17	8.61E-17	1.00E-16	9.00E-13	< 1.11E-02
Air Volume in mLs	²¹⁰ Pb	1.78E-14	2.66E-15	4.13E-15	2.00E-15	6.00E-13	2.97E+00
5.54E+09			<u>I</u>			_ L	

HIGH VOLUME AIR SAMPLING REPORT

CLIENT: Crow Butte Resources PROJECT: 3rd Quarter 2009 Environmental Air Composites REPORT DATE: December 9, 2009

SAMPLE ID: AM-2

Quarter/Date Sampled Air Volume	Radionuclide	Concentration µCi/mL	Counting Precision µCi/mL	MDC μCi/mL	L.L.D. µCi/mL	Effluent Conc.* µCi/mL	% Effluent Concentration
C09040202-002	U ^{ica}	< 1.00E-16	N/A	N/A	1.00E-16	9.00E-14	< 1.11E-01
First Quarter 2009	226Ra	< 1.00E-16	2.95E-17	5.15E-17	1.00E-16	9.00E-13	< 1.11E-02
Air Volume in mLs	²¹⁰ Pb	1.36E-14	3.45E-15	5.54E-15	2.00E-15	6.00E-13	2.27E+00
5.06E+09			·	·!		.	·

Quarter/Date Sampled Air Volume	Radionuclide	Concentration µCi/mL	Counting Precision µCi/mL	MDC µCi/mL	L.L.D. µCi/mL	Effluent Conc.* µCi/mL	% Effluent Concentration
C09070028-002	^{na} U	6.21E-16	N/A	N/A	1.00E-16	9.00E-14	6.90E-01
Second Quarter 2009	²²⁶ Ra	< 1.00E-16	1.81E-17	3.07E-17	1.00E-16	9.00E-13	< 1.11E-02
Air Volume in mLs	210Pb	1.07E-14	1.77E-15	2.66E-15	2.00E-15	6.00E-13	1.78E+00
5.11E+09		· · · · · · · · · · · · · · · · · · ·	L	· · · · · · · · · · · · · · · · · · ·		·	ل

Quarter/Date Sampled Air Volume	Radionuclide	Concentration µCi/mL	Counting Precision µCi/mL	MDC µCi/mL	L.L.D. µCi/mL	Effluent Conc.* µCi/mL	% Effluent Concentration
C09100086-002	^{nat} U	8.12E-16	N/A	N/A	1.00E-16	9.00E-14	9.02E-01
Third Quarter 2009	²²⁶ Ra	< 1.00E-16	5.04E-17	9.81E-17	1.00E-16	9.00E-13	< 1.11E-02
Air Volume in mLs	²¹⁰ Pb	1.25E-14	2.66E-15	4.26E-15	2.00E-15	6.00E-13	2.08E+00
5.42E+09				<i></i> /			· · · · · ·

ENERGY LABORATORIES, INC. • 2393 Salt Creek Highway (82601) • P.O. Box 3258 • Casper, WY 82602 Toll Free 888.235.0515 • 307.235.0515 • Fax 307.234.1639 • casper@energylab.com • www.energylab.com

HIGH VOLUME AIR SAMPLING REPORT

CLIENT: Crow Butte Resources PROJECT: 3rd Quarter 2009 Environmental Air Composites REPORT DATE: December 9, 2009

SAMPLE ID: AM-3

Quarter/Date Sampled Air Volume	Radionuclide	Concentration µCi/mL	Counting Precision µCi/mL	MDC μCi/mL	L.L.D. µCi/mL	Effluent Conc.* µCi/mL	% Effluent Concentration
C09040202-003	nai U	< 1.00E-16	N/A	N/A	1.00E-16	9.00E-14	< 1.11E-01
First Quarter 2009	²²⁶ Ra	1.07E-16	3.48E-17	4.76E-17	1.00E-16	9.00E-13	1.19E-02
Air Volume in mLs	²¹⁰ Pb	1.65E-14	3.92E-15	6.29E-15	2.00E-15	6.00E-13	2.75E+00
4.45E+09	• • • •	· · · · · · · · · · · · · · · · · · ·					

Quarter/Date Sampled Air Volume	Radionuclide	Concentration µCi/mL	Counting Precision µCi/mL	MDC µCi/mL	L.L.D. µCi/mL	Effluent Conc.* µCi/mL	% Effluent Concentration
C09070028-003	^{nat} U	< 1.00E-16	N/A	N/A	1.00E-16	9.00E-14	< 1.11E-01
Second Quarter 2009	226Ra	< 1.00E-16	1.97E-17	2.88E-17	1.00E-16	9.00E-13	< 1.11E-02
Air Volume in mLs	²¹⁰ Pb	8.95E-15	1.72E-15	2.62E-15	2.00E-15	6.00E-13	1.49E+00
5.19E+09		•	·	- -		A	,

Quarter/Date Sampled Air Volume	Radionuclide	Concentration µCi/mL	Counting Precision µCi/mL	MDC µCi/mL	L.L.D. µCi/mL	Effluent Conc.* µCi/mL	% Effluent Concentration
C09100086-003	natU	2.79E-16	N/A	N/A	1.00E-16	9.00E-14	3.10E-01
Third Quarter 2009	²²⁶ Ra	< 1.04E-16	5.67E-17	1.04E-16	1.00E-16	9.00E-13	< 1.16E-02
Air Volume in mLs	²¹⁰ Pb	1.97E-14	2.68E-15	4.13E-15	2.00E-15	6.00E-13	3.29E+00
5.54E+09		· · · · · · · · · · · · · · · · · · ·				_!	L

HIGH VOLUME AIR SAMPLING REPORT

CLIENT: Crow Butte Resources PROJECT: 3rd Quarter 2009 Environmental Air Composites REPORT DATE: December 9, 2009

SAMPLE ID: AM-4

Quarter/Date Sampled Air Volume	Radionuclide	Concentration µCi/mL	Counting Precision µCi/mL	MDC μCi/mL	L.L.D. µCi/mŁ	Effluent Conc.* µCi/mL	% Effluent Concentration
C09040202-004	natU	< 1.00E-16	N/A	N/A	1.00E-16	9.00E-14	< 1.11E-01
First Quarter 2009	²²⁶ Ra	< 1.00E-16	2.22E-17	3.95E-17	1.00E-16	9.00E-13	< 1.11E-02
Air Volume in mLs	210Pb	1.46E-14	3.26E-15	5.20E-15	2.00E-15	6.00E-13	2.44E+00
5.39E+09		-	·	- 1		- 1	

Quarter/Date Sampled Air Volume	Radionuclide	Concentration µCi/mL	Counting Precision µCi/mL	MDC µCi/mL	L.L.D. µCi/mL	Effluent Conc.* µCi/mL	% Effluent Concentration
209070028-004	^{nat} U	2.73E-16	N/A	N/A	1.00E-16	9.00E-14	3.03E-01
Second Quarter 2009	226Ra	< 1.00E-16	1.91E-17	2.70E-17	1.00E-16	9.00E-13	< 1.11E-02
Air Volume in mLs	²¹⁰ Pb	1.11E-14	1.68E-15	2.51E-15	2.00E-15	6.00E-13	1.85E+00
5.42E+09		• • • • • • • • • • • • • • • • • • • •		<u> </u>		•	1

Quarter/Date Sampled Air Volume	Radionuclide	Concentration µCi/mL	Counting Precision µCi/mL	MDC µCi/mL	L.L.D. µCi/mL	Effluent Conc.* µCi/mL	% Effluent Concentration
C09100086-004	^{nat} U	7.13E-16	N/A	N/A	1.00E-16	9.00E-14	7.92E-01
Third Quarter 2009	226Ra	< 1.05E-16	6.03E-17	1.05E-16	1.00E-16	9.00E-13	< 1.17E-02
Air Volume in mLs	²¹⁰ Pb	1.84E-14	2.56E-15	3.98E-15	2.00E-15	6.00E-13	3.07E+00
5.78E+09	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • •	1. <u></u>			1	

HIGH VOLUME AIR SAMPLING REPORT

CLIENT: Crow Butte Resources PROJECT: 3rd Quarter 2009 Environmental Air Composites REPORT DATE: December 9, 2009

SAMPLE ID: AM-5

Quarter/Date Sampled Air Volume	Radionuclide	Concentration µCi/mL	Counting Precision µCi/mL	MDC µCi/mL	L.L.D. µCi/mL	Effluent Conc.* µCi/mL	% Effluent Concentration
C09040202-005	^{nat} U	1.10E-16	N/A	N/A	1.00E-16	9.00E-14	1.23E-01
First Quarter 2009	²²⁶ Ra	< 1.00E-16	2.51E-17	3.70E-17	1.00E-16	9.00E-13	< 1.11E-02
Air Volume in mLs	²¹⁰ Pb	1.43E-14	3.51E-15	5.63E-15	2.00E-15	6.00E-13	2.39E+00
4.98E+09			· · · · · · · · · · · · · · · · · · ·			- J	

Quarter/Date Sampled Air Volume	Radionuclide	Concentration µCi/mL	Counting Precision µCi/mL	MDC μCi/mL	L.L.D. µCi/mL	Effluent Conc.* µCi/mL	% Effluent Concentration
C09070028-005	^{nat} U	2.52E-16	N/A	N/A	1.00E-16	9.00E-14	2.80E-01
Second Quarter 2009	²²⁶ Ra	< 1.00E-16	2.59E-17	3.01E-17	1.00E-16	9.00E-13	< 1.11E-02
Air Volume in mLs	210Pb	7.82E-15	1.87E-15	2.91E-15	2.00E-15	6.00E-13	1.30E+00
4.68E+09		······				<u> </u>	L

Quarter/Date Sampled Air Volume	Radionuclide	Concentration µCi/mL	Counting Precision µCi/mL	MDC μCi/mL	L.L.D. µCi/mL	Effluent Conc.* µCi/mL	% Effluent Concentration
C09100086-005	natU	5.74E-16	N/A	N/A	1.00E-16	9.00E-14	6.38E-01
Third Quaiter 2009	226Ra	1.23E-16	6.98E-17	9.00E-17	1.00E-16	9.00E-13	1.37E-02
Air Volume in mLs	²¹⁰ Pb	2.14E-14	2.86E-15	4.43E-15	2.00E-15	6.00E-13	3.57E+00
5.21E+09			•	- · · · · · · · · · · · ·			·

.

HIGH VOLUME AIR SAMPLING REPORT

CLIENT: Crow Butte Resources PROJECT: 3rd Quarter 2009 Environmental Air Composites REPORT DATE: December 9, 2009

SAMPLE ID: AM-6

Quarter/Date Sampled Air Volume	Radionuclide	Concentration µCi/mL	Counting Precision µCi/mL	MDC µCi/mL	L.L.D. µCi/mL	Effluent Conc.* µCi/mL	% Effluent Concentration
C09040202-006	nalU .	< 1.00E-16	N/A	N/A	1.00E-16	9.00E-14	< 1.11E-01
First Quarter 2009	²²⁶ Ra	< 1.00E-16	2.06E-17	3.56E-17	1.00E-16	9.00E-13	< 1.11E-02
Air Volume in mLs	210Pb	1.66E-14	3.23E-15	5.12E-15	2.00E-15	6.00E-13	2.77E+00
5.48E+09		<u></u>	L	1,		l	·

Quarter/Date Sampled Air Volume	Radionuclide	Concentration µCi/mL	Counting Precision µCi/mL	MDC μCi/mL	L.L.D. µCi/mL	Effluent Conc.* µCi/mL	% Effluent Concentration
C09070028-006	U ^{ian}	< 1.00E-16	N/A	N/A	1.00E-16	9.00E-14	< 1.11E-01
Second Quarter 2009	²²⁶ Ra	< 1.00E-16	1.97E-17	2.50E-17	1.00E-16	9.00E-13	< 1.11E-02
Air Volume in mLs	²¹⁰ Pb	6.90E-15	1.59E-15	2.47E-15	2.00E-15	6.00E-13	1.15E+00

5.51E+09

Quarter/Date Sampled Air Volume	Radionuclide	Concentration µCi/mL	Counting Precision µCi/mL	MDC µCi/mL	L.L.D. µCi/mL	Effluent Conc.* μCi/mL	% Effluent Concentration
C09100086-006	^{nat} U	1.52E-16	N/A	N/A	1.00E-16	9.00E-14	1.69E-01
Third Quarter 2009	²²⁶ Ra	< 1.00E-16	4.45E-17	9.47E-17	1.00E-16	9.00E-13	< 1.11E-02
Air Volume in mLs	210Pb	2.48E-14	2.60E-15	3.95E-15	2.00E-15	6.00E-13	4.13E+00
5.80E+09	· · · · · · · · · · · · · · · · · · ·		·	-1			· · · · · · · · · · · · · · · · · · ·

HIGH VOLUME AIR SAMPLING REPORT

CLIENT: Crow Butte Resources PROJECT: 3rd Quarter 2009 Environmental Air Composites REPORT DATE: December 9, 2009

SAMPLE ID: AM-8

Quarter/Date Sampled Air Volume	Radionuclide	Concentration µCi/mL	Counting Precision µCi/mL	MDC μCi/mL	L.L.D. µCi/mL	Effluent Conc.* µCi/mL	% Effluent Concentration
C09040202-007	nat U	1.30E-16	N/A	N/A	1.00E-16	9.00E-14	1.45E-01
First Quarter 2009	²²⁶ Ra	< 1.00E-16	2.40E-17	4.36E-17	1.00E-16	9.00E-13	< 1.11E-02
Air Volume in mLs	²¹⁰ Pb	1.87E-14	3.72E-15	5.89E-15	2.00E-15	6.00E-13	3.12E+00
4.76E+09			L	- I J			1

Quarter/Date Sampled Air Volume	Radionuclide	Concentration µCi/mL	Counting Precision µCi/mL	MDC µCi/mL	L.L.D. µCi/mL	Effluent Conc.* µCi/mL	% Effluent Concentration
C09070028-007	^{nat} U	2.86E-16	N/A	N/A	1.00E-16	9.00E-14	3.17E-01
Second Quarter 2009	²²⁶ Ra	< 1.00E-16	2.48E-17	2.99E-17	1.00E-16	9.00E-13	< 1.11E-02
Air Volume in mLs	²¹⁰ Pb	1.51E-14	2.01E-15	2.94E-15	2.00E-15	6.00E-13	2.51E+00
4.62E+09						A .=	· · · · · · · · · · · · · · · · · · ·

Quarter/Date Sampled Air Volume	Radionuclide	Concentration µCi/mL	Counting Precision µCi/mL	MDC µCi/mL	L.L.D. µCi/mL	Effluent Conc.* μCi/mL	% Effluent Concentration
C09100086-007	^{nat} U	2.02E-16	N/A	N/A	1.00E-16	9.00E-14	2.24E-01
Third Quarter 2009	²²⁶ Ra	< 1.00E-16	3.70E-17	5.37E-17	1.00E-16	9.00E-13	< 1.11E-02
Air Volume in mLs	²¹⁰ Pb	1.96E-14	3.55E-15	5.61E-15	2.00E-15	6.00E-13	3.26E+00
4.10E+09	<u></u>			•	· · · · ·		•

ient: Crow Butte Resources oject: 3rd Quarter 2009 Environ	mental Air Composites		Report Date: Work Order:	
nalyte	Result Units	RL %REC	Low Limit, High Limit RPD I	RPDLimit Qual
lethod: È903.0		· ·	······································	Batch: 12737
ample ID: C09100973-017AMS	Sample Matrix Spike		Run: BERTHOLD 770-1_091201A	12/07/09 15:5
adium 226	15 pCi/g-dry	109	70 130	
ample ID: C09100973-017AMSD	Sample Matrix Spike Duplicate		Run: BERTHOLD 770-1_091201A	12/07/09 15:
Radium 226	16 pCi/g-dry	. 111	70 130 2.9	18
ample ID: MB-RA226-4221	Method Blank		Run: BERTHOLD 770-1_091201A	12/07/09 15:
Radium 226	-0.3 pCi/L			U
Radium 226 precision (±)	0.1 pCi/L			
Radium 226 MDC	0.2 pCi/L			
Sample ID: LCS-RA226-4221	Laboratory Control Sample		Run: BERTHOLD 770-1_091201A	12/07/09 15:
Radium 226	17∙ pCi/L	111	70 130	
Method: E903.0			· · · · · · · · · · · · · · · · · · ·	Batch: 239
Sample ID: C09100086-001AMS	Sample Matrix Spike		Run: BERTHOLD 770-1_091013A	10/21/09 18:
Radium 226	45.1 pCi/Filter	120		
Sample ID: C09100086-001AMSD	Sample Matrix Spike Duplicate		Run: BERTHOLD 770-1_091013A	10/21/09 18
Radium 226	46.9 pCi/Filter	126	70 130 4	23.5
Sample ID: LCS-23958	Laboratory Control Sample		Run: BERTHOLD 770-1_091013A	10/21/09 23
Radium 226	16.3 pCi/Filter	110	70 130	
Sample ID: MB-23958	Method Blank		Run: BERTHOLD 770-1_091013A	10/21/09 23
Radium 226	-0.1 pCi/Filter			U
Radium 226 precision (±)	0.07 pCi/Filter			
Radium 226 MDC	0.2 pCi/Filter	·		
Method: E909.0M				Batch: 23
Sample ID: C09100086-003AMS	Sample Matrix Spike		Run: BECKMAN 6100TA_091109A	11/09/09 15
Lead 210	1320 pCi/Filter	. 113	70 130	
Sample ID: C09100086-003AMSD	Sample Matrix Spike Duplicate)	Run: BECKMAN 6100TA_091109A	11/09/09 15
Lead 210	1180 pCi/Filter	101	70 130 11	30
Sample ID: MB-R127232	Method Blank		Run: BECKMAN 6100TA_091109A	11/09/09 15
Lead 210	-2 pCi/Filter			. U
Lead 210 precision (±)	3 pCi/Filter			
Lead 210 MDC	5 pCi/Filter			
Sample ID: LCS-R127232	Laboratory Control Sample		Run: BECKMAN 6100TA_091109A	11/09/09 1
Lead 210	555 pCi/Filter	98	3 70 130	

Qualifiers:

RL - Analyte reporting limit.

MDC - Minimum detectable concentration

ND - Not detected at the reporting limit.

U - Not detected at minimum detectable concentration

ient: Crow Butte Resources **Project:** 3rd Quarter 2009 Environmental Air Composites

Report Date: 12/09/09 Work Order: C09100086

Analyte	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit Qual
Method: SW6020			<u> </u>		······································			Batch: 23958
Sample ID: MB-23958	Method Blank				Run: ICPM	S2-C_091012A		10/12/09 13:55
Uranium	0.0002 m	ng/filter	6E-05					
Sample ID: LCS2-23958	Laboratory Control Sample			Run: ICPMS2-C_091012A				10/12/09 14:00
Uranium	0.105 m	ng/filter	0.00030	105	85	115		
Sample ID: C09100086-006AMS	Sample Matrix S	Spike			Run: ICPM	S2-C_091012A		10/12/09 15:29
Uranium	0.0539 m	ng/filter	0.00030	105	75	125		
Sample ID: C09100086-006AMSD	Sample Matrix Spike Duplicate			Run: ICPMS2-C_091012A				10/12/09 15:34
Uranium	0.0534 m	ng/filter	0.00030	104	75	. 125	0.8	20

Qualifiers: RL - Analyte reporting limit. MDC - Minimum detectable concentration

CLIENT: Crow Butte Resources

Project: 3rd Quarter 2009 Environmental Air Composites

Date: 09-Dec-09

CASE NARRATIVE

Sample Delivery Group: C09100086

RADIOCHEMISTRY ANALYSIS

Per client request, results less than MDC (or precision if no MDC), are reported as <MDC (or <precision). Actual instrument results are available by request.

ORIGINAL SAMPLE SUBMITTAL(S)

All original sample submittals have been returned with the data package.

SAMPLE TEMPERATURE COMPLIANCE: 4°C (±2°C)

Temperature of samples received may not be considered properly preserved by accepted standards. Samples that are hand delivered immediately after collection shall be considered acceptable if there is evidence that the chilling process has begun.

GROSS ALPHA ANALYSIS

Method 900.0 for gross alpha and gross beta is intended as a drinking water method for low TDS waters. Data provided by this method for non potable waters should be viewed as inconsistent.

SOIL/SOLID SAMPLES

All samples reported on an as received basis unless otherwise indicated.

ATRAZINE, SIMAZINE AND PCB ANALYSIS USING EPA 505

Data for Atrazine and Simazine are reported from EPA 525.2, not from EPA 505. Data reported by ELI using EPA method 505 reflects the results for seven individual Aroclors. When the results for all seven are ND (not detected), the sample meets EPA compliance criteria for PCB monitoring.

SUBCONTRACTING ANALYSIS

Subcontracting of sample analyses to an outside laboratory may be required. If so, ENERGY LABORATORIES will utilize its branch laboratories or qualified contract laboratories for this service. Any such laboratories will be indicated within the Laboratory Analytical Report.

BRANCH LABORATORY LOCATIONS

eli-b - Energy Laboratories, Inc. - Billings, MT eli-g - Energy Laboratories, Inc. - Gillette, WY eli-h - Energy Laboratories, Inc. - Helena, MT eli-r - Energy Laboratories, Inc. - Rapid City, SD eli-t - Energy Laboratories, Inc. - College Station, TX

CERTFICATIONS: USEPA: WY00002; FL-DOH NELAC: E87641; California: 02118CA Oregon: WY200001; Utah: 3072350515; Virginia: 00057; Washington: C1903

ISO 17025 DISCLAIMER: The results of this Analytical Report relate only to the items submitted for analysis.

ENERGY LABORATORIES, INC. - CASPER,WY certifies that certain method selections contained in this report meet requirements as set forth by the above accrediting authorities. Some results requested by the client may not be covered under these certifications. All analysis data to be submitted for regulatory enforcement should be certified in the sample state of origin. Please verify ELI's certification coverage by visiting www.energylab.com

ELI appreciates the opportunity to provide you with this analytical service. For additional information and services visit our web page www.energylab.com.

THIS IS THE FINAL PAGE OF THE LABORATORY ANALYTICAL REPORT

Appendix C-5 Historical Wind Rose Data

• Section 2.5.6 Local Meteorological Station, Crow Butte Uranium Project, Application and Supporting Environmental Report for USNRC Commercial Source Material License, September 1987

TABLE OF CONTENTS

ŗ

.

2.5 METEOROLOGY

2.5.1	Introduction	- 1
2.5.2	Temperature	3
2.5.3	Precipitation	7
2.5.4	Humidity	10
2.5.5	Winds	10
2.5.6	Local Meteorological Station	15

LIST OF TABLES

TABLE	2.5-1	Mean Temperatures	4
TABLE	2.5-2	Temperature Extremes	5
TABLE	2.5-3	Temperature Occurrences	6
TABLE	2.5-4	Precipitation Totals Water Equivalent	8
TABLE	2.5-5	Mean and Extreme Snow Falls	9
TABLE	2.5-6	Precipitation Events	11
TABLE	2.5-7	Percent Relative Humidity	12
TABLE	2.5-8	Frequency of Wind by Direction and	17
		Speed by Stability Classes	
TABLE	2.5-9	Joint Frequency Distribution	24

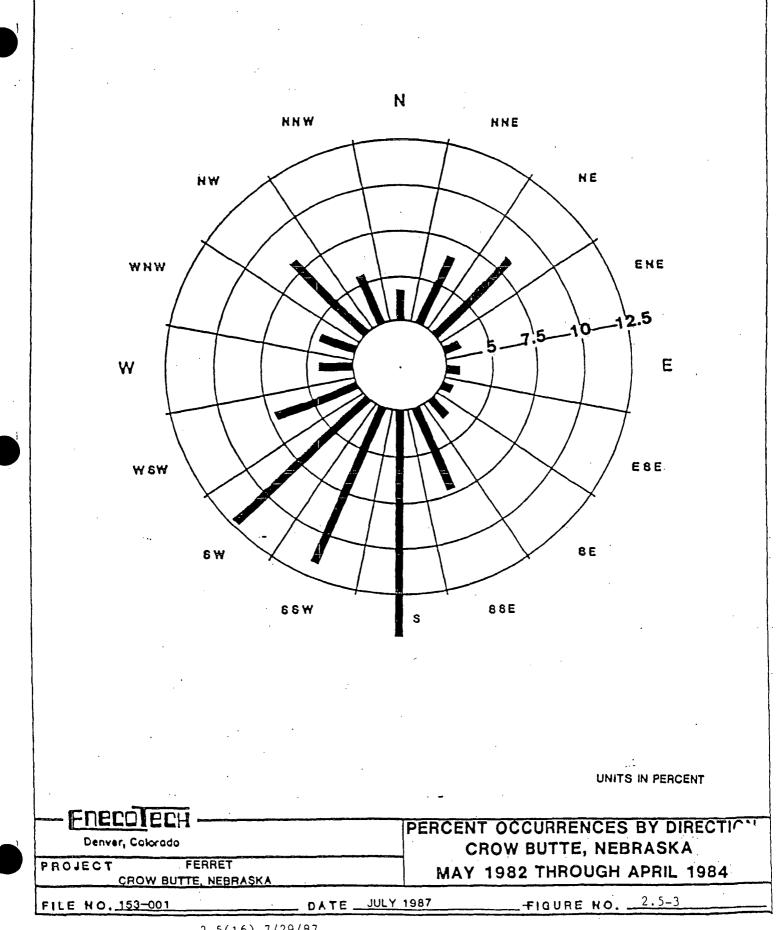
LIST OF FIGURES

•

REFERENCES

2.5(ii) 07/29/87

PAGE


2.5.6 Local Meteorological Station

Local terrain will have a significant influence on the wind patterns in a given area. Because of this, a meteorological station has been installed on the project site. This station is capable of measuring wind speed, direction, and the standard deviation of the wind direction. From this information joint frequency data has been compiled. Figure 2.5-3 exhibits the windrose that were identified for the site and Table 2.5-8 shows the frequency of winds by direction and speed for the six stability classes. Table 2.5-9 shows the annual relative joint frequency distribution. The windrose from the local meteorological station shows the prevailing swinds to be from the south-southwest.

Precipitation was also recorded at the station with a heated tipping bucket rain gauge. Evaporation is measured using a 48" evaporation pan and an evaporation gauge with analog output. The air temperature was also recorded using a precision linear thermistor and fan aspirated radiation shield. All the information was recorded on strip chart recorders. In addition the information was run through a microprocessor and recorded on magnetic tape. The information from the tape was transferred to a computer and then verified by comparison from the strip charts and from visual observation records.

The data obtained at the local meteorological station for precipitation, evaporation and temperature were in good agreement with the results from the National Weather Service Stations located at Scottsbluff, Nebraska and Rapid City, South Dakota.

2.5(15) 07/29/87

FREQUENCY OF WINDS BY DIRECTION AND SPRED FOR STABILITY CLASS A DATA RECORDED FROM MAY 1982 THROUGH APRIL 1984 CROW BUTTE - NEBRASKA

		مواسم ما الإسمان موجد الاستان مرباد المعاملين الأستان والمسترين والمتحدين والمتحدين والمتحد والمتحد والالارامي								
DIRECTION	1,<3	3,<6	6,<10	10,<16	16,<21	>21	ALL	MEAN SPEED		
N	0.98	8.63	2.62	0.11	0.00	0.00	12.35	4.9		
NNE	2.51	8.74	2.95	0.11	0.00	0.00	14.32	4.6		
NE	1.54	8.52	1.31	0.00	0.00	0,00	11.48	4.5		
ENE	Ò.66	4.37	0.55	0.00	0.00	0.00	5.57	4.4		
E	1.20	1.97	0.77	0.00	0.00	0,00	3.93	4.4		
ESE	0.33	0.87	0,22	0.00	0.00	0.00	1.42	4.0		
SE	0,98	1.75	1.64	0.00	0.00	0.00	4.37	5.1		
SSE	0.44	2.51	1.64	0.11	0.00	0.00	4.70	5.3		
S	0.98	Э.72	1.53	0.00	0.00	0.00	6.23	5.0		
SSW	0.55	1.97	2.08	0.22	0.00	0.00	4.81	6.0		
SW	0.77	3.72	1.53	0.00	0.00	0.00	6.01	5.0		
wsw	0.66	2.08	1.53	0.00	0.00	0.00	4.26	5.3		
W	0.66	1.75	1.75	0.11	0.00	0.00	4.26	5.5		
WNW	0.77	1.42	0.98	0.44	0.00	0.00	3,61	5.7		
NW	0,66	2,30	1.53	0.11	0.00	0.00	4.59	5.5		
NNW	1,53	3.93	1.86	0.44	0.00	0.00	7.76	5.3		
ALL	15.30	58.25	24.48	1.64	0.00	0.00	99.67	5.0		

SPEED CLASS INTERVALS(KNOTS)

Calm (less than one knot) = 0.3% Period mean wind speed = 5.0 knots Percent occurrence for A stability class 5.6%

> ENECOTECH INC. SEWIND(3.2) 1/ 5/84

> > FREEDERH

2.5(17) 7/29/87

(cont'd)

FREQUENCY OF WINDS BY DIRECTION AND SPEED FOR STABILITY CLASS B DATA RECORDED FROM MAY 1982 THROUGH APRIL 1984 CROW BUTTE - NEBRASKA

SPEED CLASS INTERVALS(KNOTS)

	<u></u>	بدن پر به محمد میں برای ان است ب نا شرق خبرہ مدین ہے خاکہ است بنیار گاہ محمد بنیان کا است ان برای کر محمد است م								
DIRECTION	1,<3	3,<6	6,<10	10,<15	16,<21	>21	ALL	MEAN SPEED		
N	1.01	2.68	5.53	0.67	0.00	0.00	9.89	6.4		
NNE	1.34	3.52	3.77	0.34	0.00	0.00	8.97	5.7		
NE	0.92	5.28	5.45	0.50	0.00	0.00	12.15	6.0		
ENE	0.84	1.76	2.85	0.25	0.00	0.00	5.70	6.0		
E	0.17	0.84	0.75	0.08	0,00	0.00	1.84	6.0		
ESE	0.59	0.59	1.09	0.00	0.00	0.00	2,26	5.8		
SE	0.08	1.26	2.26	0.25	0.00	0.00	3.86	6.9		
SSE	0.67	1.17	2.43	0.50	0.00	0.00	4.78	6.5		
S	1.09	1.01	4.02	0.92	0.00	0,00	7.04	7.0		
SSW	1.01	2.01	2.25	0.75	0.00	0,00	6.04	6,3		
SW	0.92	3.19	2.51	0.59	0.00	0.00	7.21	6.1		
WSW	0.59	2.01	2.60	0.84	0.08	0.00	6.12	6.9		
W	0.42	1.34	2.35	0.42	0.08	0.00	4.61	7.2		
WNW	Q.67	1.09	2.10	0.34	0.00	0.00	4.19	6.6		
NW	0.25	1.09	4.02	1.09	0.08	0.00	6.54	7.8		
NNW	0.42	1.51	4.95	1.68	0.08	0.00	8.63	7.8		
ALL.	10.98	30.34	48.95	9.22	0.34	0.00	99,83	6.6		

Calm (less than one knot) = 0.2% Period mean wind speed = 6.5 knots Percent occurrence for B stability class 7.4%

> ENECOTECH INC. SEWIND(3.2) 1/ 5/84

2/5(18) 7/29/87

FNECOLECH

TABLE 2.5-8 (cont'd)

FREQUENCY OF WINDS BY DIRECTION AND SPEED FOR STABILITY CLASS C DATA RECORDED FROM MAY 1982 THROUGH APRIL 1984 CROM BUTTE - NEERASKA

	و معالم ما ما ما ما معالم معالم معالم المحالي م								
DIRECTION	1,<3	3,<6	6,<10	10,<16	16,<21	>21	ALL	MEAN SPEED	
N	0.74	1.54	2.68	0.74	0.00	0.00	5,69	6,7	
NNE	0.63	2.62	2.90	0.85	0.00	0.00	7.00	6.6	
NE	0.91	2.28	5.69	1.20	0.00	0.00	10.08	7.0	
ENE	0.46	1.03	2.96	0.97	0.00	0.00	5.41	7.3	
E	0.00	0.57	0.74	0.28	0.00	0.00	1.59	7.6	
ESE	0.23	0.34	0.91	0.23	0.00	0.00	1.71	7.0	
SE	0.17	0.68	1.82	0.74	0.00	0.00	3.42	7.7	
SSE	0.46	0.74	2.22	1.48	0.00	0.00	4.90	8.0	
S	0.97	1.65	5.30	2.28	0.00	0.00	10.19	7.7	
SSW	1.14	3.02	3.93	0.97	0.00	0.00	9.05	6.6	
SW	.1.03	Э.36	4.67	1.14	0.11	0.00	10.31	6.8	
WSW	0.97	3.02	3.59	1.14	0.06	0.06	8.83	6.8	
W	0.11	0.91	1.99	1.03	0.11	0.00	4.16	8.4	
WNW	0.17	0.51	1.03	1.25	0.06	0.00	3.02	9.1	
NW	0.40	0.74	3,70	2.22	0.06	0.00	7.12	8.7	
NNW	0.40	1.42	3.42	2.11	0.00	0.00	7.35	8.2	
ALL	8.77	24.43	47.55	18.62	0.40	0.06	99.83	7.4	

SPEED CLASS INTERVALS (KNOTS)

Calm (less than one knot) = 0.2% Period mean wind speed = 7.4 knots Percent occurrence for C stability class 10.8%

> ENECOTECH INC. SEMIND(3.2) 1/ 5/84

2.5(19) 7/29/87

ENECOLECH

(cont'd)

FREQUENCY OF WINDS BY DIRECTION AND SPEED FOR STABILITY CLASS D DATA RECORDED FROM MAY 1982 THROUGH APRIL 1984 CROCK BUTTE - NEBRASKA

						د 10- مالىكىمان مى مەرىپىرىغىن، 10- مالىمان مى مۇراپا مىرىچە قالىمىن بىزار (19- 19- 19- 19- 19- 19- 19- 19- 19- 19-			
DIRECTION	1,<3	3,<6	6,<10	10,<16	16,<21	>21	ALL	MEAN SPEED	
N	0.17	0.52	1.14	0.83	0.20	0.02	2,88	<u> </u>	
								9.2	
NNE	Q.16	1.12	2.34	2,90	0.89	0.19	7.59	10.7	
NE	0.13	1.53	2.55	2.72	0.46	0,08	7.46	9.8	
ENE	0.04	0.47	0.79	0.50	0.06	0.00	1.86	8.3	
E	0.02	0.06	0.28	0.22	0.04	0.00	0.51	9.5	
ESE	0.01	0.25	0.35	0.13	0.00	0.00	0.74	7.4	
SE	0.06	0.42	0.71	0.52	0.18	0.01	1.90	9.5	
SSE	0.13	1.78	1.50	2.60	1.21	0.34	7.56	11.1	
S	0.34	1.67	3.58	7.77	3.57	0.58	17.51	12.4	
SSW	0.22	1.37	3.82	3.60	0.76	0.12	9,89	10.0	
SW	0.17	2.11	5,80	3.80	0.29	0.02	12.20	8.8	
wsw	0.17	0.61	2.28	2.74	0.54	0.16	6,50	10.7	
W	0.10	0.20	0.64	1.03	0.47	0.19	2.63	12.5	
WNW	0.05	0.17	0.91	1.39	0,66	0.28	3.46	13.2	
NW	0.05	0.31	1.60	5.13	2.68	1.55	11.32	15.0	
NNW	0.04	0.49	1.80	2.34	0.90	0.20	5.78	11.9	
ALL	1.84	13.08	30.10	38.22	12.90	3.75	99.89	11.2	

SPEED CLASS INTERVALS(KNOTS)

Calm (less than one knot) = 0.1% Period mean wind speed = 11.2 knots Percent occurrence for D stability class 51.3%

> ENECOTECH INC. SEWIND(3.2) 1/ 5/84

FRECELECH

(cont'd)

FREQUENCY OF WINDS BY DIRECTION AND SPEED FOR STABILITY CLASS E DATA RECORDED FROM MAY 1982 THROUGH APRIL 1984 CROW BUTTE - NEBRASKA

SPEED CLASS INTERVALS (KNOTS)

	م مرد بینده می با میدند بر این می از است کرنی می از این می از م								
DIRECTION	1,<3	3,<6	6,<10	10,<16	16,<21	>21	ALL	MEAN SPEED	
<u></u> N	0.85	2.92	0.65	0.04	0.00	0.00	4.46	4.6	
NNE	0,97	2.80	1.82	0.00	0.00	0.00	5.59	5.2	
NE	0.97	3.32	1,90	0.08	0.00	0.00	6.28	5.1	
ENE	0.45	1.26	0.73	0.00	0.00	0.00	2.43	5.1	
E	0,16	0.73	0.20	0.00	0.00	0.00	1.09	4.7	
ESE	0.28	0.65	0.45	0,00	0.00	0.00	1.38	4.8	
SE	0.49	1.82	0.85	0.12	0.00	0.00	3.28	5.1	
SSE	1.70	7.62	1.05	0.08	0.00	0.00	10,45	4.4	
S	2.23	11.06	4.34	0,16	0.00	0.00	17.79	5.0	
SSW	2,11	10.53	2.80	0.04	0.00	0.00	15.48	4.7	
SW	1.78	8.18	5,67	0.12	0.04	0.00	15.80	5.5	
WSW	1.05	2,88	2.47	0.04	0.00	0.00	6.44	5.4	
W	0.65	0.97	0.36	0.04	0.00	0.00	2.03	4.3	
WNW	0.36	0.97	0.81	0.00	0.00	0.00	2.15	5.5	
NW	0.45	1.18	0.85	0.20	0.00	0.00	2.67	5.7	
NNW	0.61	1.34	0.49	0.00	0.00	0.00	2.43	4,5	
ALL	15.11	58.23	25.45	0.93	0.04	0.00	99.76	5.0	

Calm (less than one knot) = 0.2% Period mean wind speed = 5.0 knots Percent occurrence for E stability class 15.2%

> ENECOTECH INC. SEWIND(3.2) 1/ 5/84

2.5(21) 7/29/87

ENECOLECH

(cont'd)

FREQUENCY OF WINDS BY DIRECTION AND SPEED FOR STABILITY CLASS F DATA RECORDED FROM MAY 1982 THROUGH APRIL 1984 CRUK BUTTE - NEBRASKA

	***	متلاون ومعردية الكميرين والاكمامين والمتسوي والمسورية كمسر والكمسموي كمسالة الروميس شار								
DIRECTION	1,<3	3,<6	6,<10	10,<16	16,<21	>21	ALL	SPEED		
N	3.30	1.65	0.00	0.00	0.00	0.00	4.96	2.8		
NNE	1.65	1.33	0.00	0.00	0.00	0.00	2,99	3.0		
NE	0.95	1.40	0.00	0.00	0.00	0.00	2.35	3.1		
ENE	1.40	0.76	0.00	0.00	0.00	0.00	2.16	2.8		
E	1.27	0.44	0,00	0.00	0.00	0.00	1.72	2.8		
ESE	1.78	1.02	0.00	0.00	0,00	0.00	2.80	2.6		
SE	1.72	1.78	0.00	0.00	0.00	0.00	3.49	3.0		
SSE	3.75	4.76	0.00	0.00	0.00	0.00	8.51	3.1		
S	7.50	12.07	0.00	0.00	0.00	0.00	19,57	3.3		
SSW	7.24	13.15	0.00	0,00	0.00	0.00	20.39	3.3		
SW	6.48	8.01	0.00	0.00	0.00	0.00	14.49	3.2		
WSW	2.73	2.60	0.00	0.00	0.00	0.00	5.34	3,0		
W S	1.78	1.46	0,00	0.00	0.00	0.00	3.24	2.9		
winw	0,83	0.95	0.00	0.00	0.00	0.00	1.78	3.0		
NW	1.33	1.21	0.00	0.00	0.00	0.00	2.54	3.0		
NNW	1.33	0.51	0.00	0.00	0.00	0.00	1.84	2.5		
ALL	45.04	53.11	0.00	0,00	0.00	0,00	98.16	3.1		

SPEED CLASS INTERVALS (KNOTS)

Calm (less than one knot) = 1.8% Period mean wind speed = 3.1 knots Percent occurrence for F stability class 9.7%

> ENECOTECH INC. SEWIND(3.2) 1/ 5/84

2,5(22) 7/29/87

FRECOLECH

(cont'd)

FREQUENCY OF WINDS BY DIRECTION AND SPEED FOR STABILITY CLASS ALL DATA RECORDED FROM MAY 1982 THROUGH APRIL 1984 ORD: BUTTE - NEBRASKA

		ى مى مەنىدىن زورانىيە مىچىرىيىشىنىڭ ھىغ يىرىن ۋراغاندىن بىر مەنبارالىكىتىچە يوپى چىدىمىي زۇرۇقىيە يوپىرى راياشى ھىگرار بالىت								
DIRECTION	1,<3	3,<6	6,<10	10,<16	16,<21	>21	ALL	MEAN SPEED		
N	0.75	1.72	1.53	0.57	0.10	0.01	4.68	6,5		
NNE	0.70	2.16	2.24	1.61	0.46	0.10	7.26	8.2		
NE	0.57	2.54	2.69	1.57	0.23	0.04	7.64	7.7		
ENE	0.37	0.99	1.08	0.38	0.03	0.00	2.85	6.5		
E	0.24	0.42	0.35	0.15	0.02	0.00	1.18	6.2		
ESE	0.31	Q.46	0.44	0.09	0.00	0.00	1.29	5.5		
SE	0.35	0.93	0.95	0.38	0.09	0.01	2.71	7.0		
SSE	0.81	2.84	1.44	1.55	0.62	0.17	7.44	8.2		
S	1.48	4.17	3.45	4.33	1.83	0.30	15.55	9.3		
SSW	1.36	4.17	3.09	2.03	0.39	0.06	11.10	7.2		
SW	1.21	3.91	4.62	2.13	0.17	0.01	12.05	7.1		
WSW	0.70	1.60	2.21	1,60	0.29	0.09	6.48	8.2		
W	0.40	0.69	0.87	0.68	0.25	0.10	3.00	8.9		
WINW	0.27	0.54	0.91	0.90	0.35	0,14	3.11	10.2		
NW	0.32	0.75	1.73	2.99	1.39	0.79	7.97	12.8		
NNW	0.40	0.99	1.84	1.58	0.47	0.10	5.38	9.5		
ALL	10.23	28.87	29.43	22.53	6.69	1.93	99.68	8.4		

SPEED CLASS INTERVALS(KNOTS)

Calm (less than one knot) = 0.3% Period mean wind speed = 8.4 knots Percent occurrence for ALL stability classes 100.0%

> ENECOTECH INC. SEMIND(3.2) 1/ 5/84

2.5(23) 7/29/87

ENECOIECH

JOINT FREQUENCY DISTRIBUTION CROW BUTTE

.00056	.00488	,00148	.00006	,00000	.00000	JFD FOR CROW BUTTE
.00142	.00495	,00167	.00006	,00000	.00000	DATE(SBWIND3.2) 1/ 6/84
.00093	.00482	.00074	.00000	,00000	,00000	
.00037	.00247	.00031	.00000	.00000	,00000	
	.00111	.00043	.00000	.00000	.00000	
	.00049		.00000	.00000	.00000	
	.00099			.00000	,00000	
	.00142		.00006		.00000	
	.00210			,00000	.00000	
	.00111			.00000		
	.00210			,00000		
	.00117			,00000		
	.00099			.00000		
	.00080			,00000		
				.00000		
				,00000		
	.00198			.00000		
				.00000		
	.00389		.00037			
		.00210				
	,00062			.00000		
	.00043		.00000			
	.00093		.00019			
		.00179				
				,00000		
		.00167				
	.00235		.00043			
	.00148		.00062			
	.00099		.00031	.00006		
		.00155				
	.00080		.00080		.00000	
	.00111			.00006	.00000	
	.00167		.00080		.00000	
	.00284		.00093		.00000	
		.00618			,00000	
	.00111		.00105			
	.00062	.00080	.00031	.00000	.00000	
.00025	.00037	.00099		.00000	.00000	
.00019	.00074		.00080	.00000	.00000	
.00049	.00080	.00241	.00161	.00000	.00000	· ·
.00105	.00179	.00575	.00247	.00000	.00000	
.00124	.00328	.00427	.00105	.000000	.00000	
.00111	.00365	.00507	,00124	.00012	.00000	
.00105	.00328	.00389	,00124	,00006	.00006	
.00012	.00099	.00216	.00111	.00012	.00000	
.00019	.00056	.00111	.00136	.00006	.00000	
.00043	.00080	.00402	.00241	.00006	.00000	
.00043	.00155	.00371	.00229	,00000	.00000	

2.5(24) 7/29/87

Enecolech

TABLE 2.5-9 (cont'd)

.00087 .00266 .	00587	.00427	.00105	.00012	D START
.00080 .00575 .	01205	,01490	.00457	,00099	
	01311	.01397	.00235	.00043	
.00019 .00241 .	00408	,00260	.00031	.00000	
.00012 .00031 .	.00142	.00111	.00019	.00000	
	00179	,00068	.00000	.00000	
	00365	.00266	.00093	.00006	
	00773	.01335	.00624	.00173	
	01842	.04000	.01836	.00297	
	01966	.01854	.00389	.00062	
	02986	.01953	.00148	.00012	
	01175	,01409	.00278	.00080	
	.00328	.00532	.00241	.00099	
	00470	.00717	.00340	,00142	
	00822	.02640	.01379	.00797	
	00927	.01205	,00464	.00105	
	,00099	.00006	,000000	.00000	E START
	.00278	.00000	.00000	.00000	E OTULI
	.00291	,00012	.00000	.00000	
	00111	.000000	.000000	,00000,	
	00031	.000000	.00000	.00000	
	00051	.00000	.00000	.00000	
	00130	.00019	.00000	,00000	
	00150	.00012	.00000	.00000	
	00661	.00025	.000000	.00000	
	00427	,00005	.00000	.000000	
	00865	,00019	.00006	.000000	
	00377	.00006	,00000	,00000	
	00056	.00006	.00000	.000000	
	00124	.00000	.00000	.000000	
	00130	,00031	.00000	.000000	
	00074	.00000	.00000	.00000	
	00000	,000000	.000000	.000000	F START
	00000	.00000	.00000	,00000	
	00000	.00000	.00000	.00000	
	00000	,000000,	.000000	.00000	
	00000	.00000.	.000000	.00000	•
	00000	.000000	.000000	.00000	
					-
	00000	.00000	.00000	.00000	
	00000	.00000	.00000	.00000	
	00000	.000000		.00000	•
	00000	.000000	.00000	.00000	
	00000	.00000	.00000.	.00000	
			.00000	.00000	
	00000	,00000,	.00000	.00000	
				.00000	
	00000	.00000	,00000	.00000	
.00130 .00049 .	00000	.00000	.00000	.00000	

2.5(25) 7/29/87

Enecoleck

1