NUREG/CP-0194 Volume 2 of 3 EPRI 1020621 Final Report

<u>Methods for Applying Risk</u> <u>Analysis to Fire Scenarios</u> (MARIAFIRES)-2008

NRC-RES/EPRI Fire PRA Workshop

Volume 2

Module 2: Electrical Analysis

Based on the Joint NRC-RES/EPRI Training Workshops Conducted in 2008

September 28 – October 2, 2008, and November 17-20, 2008, Bethesda, MD

David Stroup Felix Gonzalez Hugh Woods

U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research Washington, DC 20555-0001 Electric Power Research Institute 3420 Hillview Avenue Palo Alto, CA 94303

AVAILABILITY OF REFERENCE MATERIALS IN NRC PUBLICATIONS

NRC Reference Material

As of November 1999, you may electronically access NUREG-series publications and other NRC records at NRC's Public Electronic Reading Room at <u>http://www.nrc.gov/reading-rm.html.</u> Publicly released records include, to name a few, NUREG-series publications; *Federal Register* notices; applicant, licensee, and vendor documents and correspondence; NRC correspondence and internal memoranda; bulletins and information notices; inspection and investigative reports; licensee event reports; and Commission papers and their attachments.

NRC publications in the NUREG series, NRC regulations, and *Title 10, Energy*, in the Code of *Federal Regulations* may also be purchased from one of these two sources.

- 1. The Superintendent of Documents U.S. Government Printing Office Mail Stop SSOP Washington, DC 20402–0001 Internet: bookstore.gpo.gov Telephone: 202-512-1800 Fax: 202-512-2250
- 2. The National Technical Information Service Springfield, VA 22161–0002 www.ntis.gov 1–800–553–6847 or, locally, 703–605–6000

A single copy of each NRC draft report for comment is available free, to the extent of supply, upon written request as follows:

Address: U.S. Nuclear Regulatory Commission Office of Administration Mail, Distribution and Messenger Team Washington, DC 20555-0001 E-mail: DISTRIBUTION@nrc.gov Facsimile: 301–415–2289

Some publications in the NUREG series that are posted at NRC's Web site address

http://www.nrc.gov/reading-rm/doc-collections/nuregs are updated periodically and may differ from the last printed version. Although references to material found on a Web site bear the date the material was accessed, the material available on the date cited may subsequently be removed from the site.

Non-NRC Reference Material

Documents available from public and special technical libraries include all open literature items, such as books, journal articles, and transactions, *Federal Register* notices, Federal and State legislation, and congressional reports. Such documents as theses, dissertations, foreign reports and translations, and non-NRC conference proceedings may be purchased from their sponsoring organization.

Copies of industry codes and standards used in a substantive manner in the NRC regulatory process are maintained at—

The NRC Technical Library Two White Flint North 11545 Rockville Pike Rockville, MD 20852–2738

These standards are available in the library for reference use by the public. Codes and standards are usually copyrighted and may be purchased from the originating organization or, if they are American National Standards, from—

American National Standards Institute 11 West 42nd Street New York, NY 10036–8002 www.ansi.org 212–642–4900

Legally binding regulatory requirements are stated only in laws; NRC regulations; licenses, including technical specifications; or orders, not in NUREG-series publications. The views expressed in contractor-prepared publications in this series are not necessarily those of the NRC.

The NUREG series comprises (1) technical and administrative reports and books prepared by the staff (NUREG-XXXX) or agency contractors (NUREG/CR-XXXX), (2) proceedings of conferences (NUREG/CP-XXXX), (3) reports resulting from international agreements (NUREG/IA-XXXX), (4) brochures (NUREG/BR-XXXX), and (5) compilations of legal decisions and orders of the Commission and Atomic and Safety Licensing Boards and of Directors' decisions under Section 2.206 of NRC's regulations (NUREG-0750).

DISCLAIMER: Where the papers in these proceedings have been authored by contractors of the U. S. Government, neither the U.S. Government nor any agency thereof, nor any U.S. employee makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use or the results of such use, of any information, apparatus, product, or process disclosed in these proceedings, or represents that its use by such third party would not infringe privately owned rights. The views expressed in these proceedings are not necessarily those of the U.S. Regulatory Commission.

Methods for Applying Risk Analysis to Fire Scenarios (MARIAFIRES)-2008

NRC-RES/EPRI Fire PRA Workshop

Volume 2 - Module 2: Electrical Analysis

NUREG/CP-0194

EPRI 1020621

Final Report

July 2010

U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research (RES) Washington, DC 20555-0001

U.S. NRC-RES Project Manager M. H. Salley Electric Power Research Institute (EPRI) 3420 Hillview Avenue Palo Alto, CA 94303

EPRI Project Manager R. P. Kassawara

COURSE TRAINING INSTRUCTORS AND PROJECT MANAGERS

Sandia National Laboratories (SNL) 1515 Eubank SE Albuquerque, NM 87185

Steven Nowlen

Mardy Kazarians (Kazarians & Associates)

Frank Wyant

Jeff LaChance

J.S. Hyslop/ Kendra Hill U.S. NRC-RES Project Managers Science Applications International Corp. (SAIC) 1671 Dell Ave, Suite 100 Campbell, CA 95008

Bijan Najafi

Francisco Joglar-Biloch

Dan Funk (EDAN Engineering)

Richard Anoba (Anoba Consulting Services)

R.P. Kassawara

EPRI Project Manager

CITATIONS

This report was prepared by:

U.S. Nuclear Regulatory Commission Office of Nuclear Regulatory Research (RES) Washington, DC 20555-0001

Principal Investigators: D. Stroup F. Gonzales Electric Power Research Institute (EPRI) 3420 Hillview Avenue Palo Alto, CA 94303

Principal Investigator: R. Kassawara

This report describes research sponsored jointly by the U.S. Nuclear Regulatory Commission, RES, and EPRI.

The report is a corporate document that should be cited in the literature in the following manner:

Methods for Applying Risk Analysis to Fire Scenarios (MARIAFIRES), NRC-RES/EPRI Fire PRA Workshop, Volume 2 – Module 2: Electrical Analysis, U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, Washington, DC 20555-0001, and Electric Power Research Institute, Palo Alto, CA, NUREG/CP-0194 and EPRI 1020621.

NUREG/CP-0194 and EPRI 1020621, Volume 2,

has been reproduced from the best available copy

DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES

THIS DOCUMENT WAS PREPARED BY THE ORGANIZATION(S) NAMED BELOW AS AN ACCOUNT OF WORK SPONSORED OR COSPONSORED BY THE ELECTRIC POWER RESEARCH INSTITUTE, INC. (EPRI). NEITHER EPRI NOR ANY MEMBER OF EPRI, ANY COSPONSOR, THE ORGANIZATION(S) BELOW, OR ANY PERSON ACTING ON BEHALF OF ANY OF THEM:

(A) MAKES ANY WARRANTY OR REPRESENTATION WHATSOEVER, EXPRESS OR IMPLIED, (I) WITH RESPECT TO THE USE OF ANY INFORMATION, APPARATUS, METHOD, PROCESS, OR SIMILAR ITEM DISCLOSED IN THIS DOCUMENT, INCLUDING MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, OR (II) THAT SUCH USE DOES NOT INFRINGE ON OR INTERFERE WITH PRIVATELY OWNED RIGHTS, INCLUDING ANY PARTY'S INTELLECTUAL PROPERTY, OR (III) THAT THIS DOCUMENT IS SUITABLE TO ANY PARTICULAR USER'S CIRCUMSTANCE; OR

(B) ASSUMES RESPONSIBILITY FOR ANY DAMAGES OR OTHER LIABILITY WHATSOEVER (INCLUDING ANY CONSEQUENTIAL DAMAGES, EVEN IF EPRI OR ANY EPRI REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES) RESULTING FROM YOUR SELECTION OR USE OF THIS DOCUMENT OR ANY INFORMATION, APPARATUS, METHOD, PROCESS, OR SIMILAR ITEM DISCLOSED IN THIS DOCUMENT.

ORGANIZATION THAT PREPARED THIS DOCUMENT:

U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research

NOTE

For further information about EPRI, call the EPRI Customer Assistance Center at 800.313.3774 or e-mail askepri@epri.com.

Electric Power Research Institute, EPRI, and TOGETHER···SHAPING THE FUTURE OF ELECTRICITY are registered service marks of the Electric Power Research Institute, Inc.

. سر :

ABSTRACT

The U.S. Nuclear Regulatory Commission (NRC) approved the risk-informed and performance-based alternative regulation 10 CFR 50.48(c) in July 2004, which allows licensees the option of using fire protection requirements contained in the National Fire Protection Association (NFPA) Standard 805, "Performance Based Standard for Fire Protection for Light-Water Reactor Electric Generating Plants, 2001 Edition," with certain exceptions. To support licensees's use of that option, NRC and the Electric Power Research Institute (EPRI) jointly issued NUREG/CR-6850 (EPRI 1011989) "Fire PRA Methodology for Nuclear Power Facilities" in September 2005. That report documents the state-of-the art methods, tools, and data for conducting a fire probabilistic risk assessment (PRA) in a commercial nuclear power plant (NPP) application. The report is intended to serve the needs of a fire risk analysis team by providing a general framework for conduct of the overall analysis as well as specific recommended practices to address each key aspect of the analysis. Participants from the U.S. nuclear power industry supported demonstration analyses and provided peer review of the program. Methodological issues raised in past fire risk analyses, including the Individual Plant Examination of External Events fire analyses, are addressed to the extent allowed by the current state-of-the-art and the overall project scope. Although the primary objective of the report is to consolidate existing state-of-the-art methods, in many areas, the newly documented methods represent a significant advance over previous methods.

NUREG/CR-6850 does not constitute regulatory requirements, and NRC participation in this study neither constitutes nor implies regulatory approval of applications based on the analysis contained in this document. The analyses/methods documented in this report represent the combined efforts of individuals from RES and EPRI. Both organizations provided specialists in the use of fire PRA to support this work. The results from this combined effort do not constitute either a regulatory position or regulatory guidance.

In addition, NUREG/CR-6850 can be used for risk-informed, performance-based approaches and insights to support fire protection regulatory decision-making in general.

On 14–16 June 2005, NRC's Office of Nuclear Regulatory Research (RES) and EPRI conducted a joint public workshop for about 80 attendees at the EPRI NDE Center in Charlotte, NC. A second workshop was held the following year, on 24-26 May 2006, in NRC's Two White Flint North Auditorium in Rockville, MD. About 130 people attended the second workshop. Based on the positive public response to these two workshops, a more detailed training class was developed by the authors of NUREG/CR-6850. Two detailed training workshops were conducted in 2007: on 23-27 July, and again on 27-30 August, both at EPRI in Palo Alto, CA. About 100 people attended each of these workshops. In 2008, two more workshops were held from 29 September through 2 October, and again from 17-20 November, in Bethesda, MD near NRC Headquarters. The two workshops attracted about 170 participants including domestic representatives from NRC Headquarters and all four regional offices, U.S. Department of Energy, National Aeronautics and Space Administration, EPRI, NPP licensees/utilities, Nuclear Steam Supply System vendors, consulting engineering firms, and universities. Also in

attendance were international representatives from Belgium, Canada, France, Japan, South Korea, Spain, and Sweden.

The material in this NUREG/CP was recorded at the workshops in 2008, and adapted by RES Fire Research Branch members for use as an alternative training method for those who were unable to physically attend the training sessions. This report can also serve as a refresher for those who attended one or more training sessions and would be useful preparatory material for those planning to attend a session.

<u>NRC Disclaimer</u>: This document's text and video content are intended solely for use as training tools. No portions of their content are intended to represent NRC conclusions or Regulatory Positions, and they should not be interpreted as such.

ABSTRACT ACKNOWLEDGEMENTS	
LIST OF ACRONYMS	ix
1 INTRODUCTION - ELECTRICAL ANALYSIS OVERVIEW	1-1
1.1 EPRI Perspective	1-1
2 ELECTRICAL ANALYSIS SLIDES	2-1
SESSION 1: Fire PRA Circuit Analysis Overview	2-1
SESSION 2: Task 3, Fire PRA Cable Selection	2-10
SESSION 3: Task 9, Detailed Circuit Failure Analysis	2-22
SESSION 4: Task 10, Circuit Failure Likelihood Analysis	2-30
SESSION 5: Support Task B, Fire PRA Database	2-44
SESSION 6: Electrical Exercises Overview	2-54
3 EXAMPLE EXERCISES	3-1
APPENDICES	A-1
Appendix A: Questions Asked in Module 2 Sessions	A-1
Appendix B: Exercise Problems and Solutions	B-1
Exercises with Reference Figures	B-2
Instructors Exercise Solutions	B-54
Drawings Needed with the Exercises	B-107
Drawing Pack 1 - Electrical Schematic Diagrams	B-108
Drawing Pack 2 - AOV and MOV Block Diagrams	B-121
Drawing Pack 3 - More Detailed Electrical Schematics	B-130

CONTENTS OF VOLUME 2

Acknowledgements

The authors of this report greatly appreciate the efforts and contributions made by Carli Follett, David Yates, and Thomas DeBold, summer interns from the University of Maryland's Fire Protection Engineering Department, during development of this NUREG/Conference Proceedings report. As part of their summer internship, they were tasked to analyze, evaluate, organize, and edit information in the videos of this report and to develop its first draft under direct supervision of the authors. They compiled all the video files and presentation materials used during the training sessions and used their knowledge to create, organize, edit, and deliver a user-friendly report of the highest quality possible.

We also acknowledge the other Fire Research Branch members Kendra Hill, Aixa Belen-Ojeda, Jason Dreisbach, Jessica Kratchman, Gabriel Taylor, J. S. Hyslop, and Mark Henry Salley for their support and contributions during its development. Their input and encouragement facilitated its timely completion and greatly benefited the final product.

In addition, we want to extend our gratitude to Nathan White and Thomas Kardaras of the Information Technology and Infrastructure Branch for their quick responses addressing all our computer needs and issues during development of the report. We greatly appreciate the support of Linda Stevenson (the agency publication specialist) and Guy Beltz (the agency printing specialist) whose invaluable support and expertise were critical to ensuring the published report's quality.

Also, several other 2009 Office of Nuclear Regulatory Research summer interns, specifically Minh Dang, Daniel Breedlove, Ashley Carnes, and Anders Gilbertson, made valuable contributions to this project, both technical and editorial, that contributed to its overall quality.

LIST OF ACRONYMS

ACB	Air-cooled Circuit Breaker
ACRS	Advisory Committee on Reactor Safeguards
AEP	Abnormal Event Procedure
AFW	Auxiliary Feedwater
AGS	Assistance General Supervisor
AOP	Abnormal Operating Procedure
AOV	Air Operated Valve
ATHEANA	A Technique for Human Event Analysis
ATS	Automatic Transfer Switch
ATWS	Anticipated Transient Without Scram
BAT	Boric Acid Tank
BNL	Brookhaven National Laboratory
BWR	Boiling-Water Reactor
CBDT	Causal Based Decision Tree
CCDP	Conditional Core Damage Probability
CF	Cable (Configuration) Factors
CCPS	Center for Chemical Process Safety
CCW	Component Cooling Water
CDF	Core Damage Frequency
CFD	Computational Fluid Dynamics
CFR	Code of Federal Regulations
CLERP	Conditional Large Early Release Probability
CM	Corrective Maintenance
CR	Control Room
CRS	Cable and Raceway (Database) System
CST	Condensate Storage Tank
CVCS	Chemical and Volume Control System
CWP	Circulating Water Pump
DC	Direct Current
EDG	Emergency Diesel Generator
EDS	Electrical Distribution System
EF	Error Factor
EI	Erroneous Status Indicator
EOP	Emergency Operating Procedure
EPR	Ethylene-Propylene Rubber
EPRI	Electric Power Research Institute

ix

FEDB	Fire Events Database	
FEP	Fire Emergency Procedure	
FHA	Fire Hazards Analysis	
FIVE	Fire-Induced Vulnerability Evaluation (EPRI TR 100370)	
FMRC	Factory Mutual Research Corporation	
FPRAIG	Fire PRA Implementation Guide (EPRI TR 105928)	
FRSS	Fire Risk Scoping Study (NUREG/CR-5088)	
FSAR	Final Safety Analysis Report	
HEAF	High Energy Arcing Fault	
HEP	Human Error Probability	
/ HFE	Human Failure Event	
HPI	High-Pressure Injection	
HPCI	High-Pressure Coolant Injection	
HRA	Human Reliability Analysis	
HRR	Heat Release Rate	
HTGR	High Temperature Gas-cooled Reactor	
HVAC	Heating, Ventilation, and Air Conditioning	
ICDP	Incremental Core Damage Probability	
ILERP	Incremental Large Early Release Probability	
INPO	Institute for Nuclear Power Operations	
IPE	Individual Plant Examination	
IPEEE	Individual Plant Examination of External Events	
IS	Ignition Source	
ISLOCA	Interfacing Systems Loss of Coolant Accident	
KS	Key Switch	
LCO	Limiting Condition of Operation	
	· · ·	
LERF	Large Early Release Frequency	
LFL	Lower Flammability Limit Loss of Control	
LOC		
LOCA	Loss-of-Coolant Accident	
LPG	Liquefied Petroleum Gas	
LWGR	Light-Water-cooled Graphite Reactors (Russian design)	
MCB	Main Control Board	
MCC	Motor Control Center	
MCR	Main Control Room	
MG	Motor-Generator	
MFW	Main Feedwater	
MOV	Motor-Operated Valve	
MQH	McCaffrey, Quintiere and Harkleroad's Method	
MS	Main Steam	
MSIV	Main Steam Isolation Valve	
NC	No Consequence	
NEI	Nuclear Energy Institute	
NEIL	Nuclear Electric Insurance Limited	
NFPA	National Fire Protection Association	
NPP	Nuclear Power Plant	

X

NPSH	Net Positive Suction Head
NQ cable	Non-Qualified (IEEE-383) cable
NRC	U.S. Nuclear Regulatory Commission
P&ID	Piping and Instrumentation Diagram
PE	Polyethylene
PM	Preventive Maintenance
PMMA	Polymethyl Methacrylate
PORV	Power-Operated Relief Valve
PRA	Probabilistic Risk Assessment
PSF	Performance Shaping Factor
PTS	Pressurized Thermal Shock
PVC	Polyvinyl Chloride
PWR	Pressurized-Water Reactor
Q cable	Qualified (IEEE-383) cable
RBMK	Reactor Bolshoy Moshchnosty Kanalny (high-power channel reactor)
RCIC	Reactor Core Isolation Cooling
RCP	Reactor Coolant Pump
RCS	Reactor Coolant System
RDAT	Computer program for Bayesian analysis
RES	Office of Nuclear Regulatory Research (at NRC)
RHR	Residual Heat Removal
RI/PB	Risk-Informed / Performance-Based
RPS	Reactor Protection System
RWST	Refueling Water Storage Tank
SCBA	Self-Contained Breathing Apparatus
SDP	Significance Determination Process
SGTR	Steam Generator Tube Rupture
SI	Safety Injection
SMA	Seismic Margin Assessment
SNPP	Simplified Nuclear Power Plant
SO	Spurious Operation
SOV	Solenoid Operated Valve
SRV	Safety Relief Valve
SSD	Safe Shutdown
SSEL	Safe Shutdown Equipment List
SST	Station Service Transformer
SUT	Start-up Transformer
SW	Service Water
SWGR	Switchgear
T/G	Turbine/Generator
THERP	Technique for Human Error Rate Prediction
TGB	Turbine-Generator Building
TSP	Transfer Switch Panel
UAT	Unit Auxiliary Transformer
VCT	Volume Control Tank
VTT	Valtion Teknillinen Tutkimuskeskus (Technical Research Centre of Finland)

xi

VVER The Soviet (and now, Russian Federation) designation for light-water pressurized reactor
 XLPE Cross-Linked Polyethylene
 ZOI Zone of Influence

1 INTRODUCTION - ELECTRICAL ANALYSIS OVERVIEW

The components that constitute the fire probabilistic risk assessment (PRA) model each have cables associated with them. These cables must be identified, traced, and analyzed. An electrical analysis is performed to determine the positions that a component could take given fire-induced cable failures. Because positions of components are critical to fire PRA to credit a train to mitigate core damage, the electrical analysis is critical to the PRA evaluation. These elements of the fire PRA are the topic of the Electrical Analysis module.

The first task of the Electrical Analysis module is to identify all cables associated with the components selected in fire PRA task 2. A PRA analyst can always assume the worst-case failure mode but must also consider the Appendix R failure mode for those components addressed by Appendix R. The worst-case failure mode may be dependent on the risk sequence entered, and care must be taken to ensure that the component failure modes are treated accordingly. Should a more realistic analysis be beneficial to the PRA sequence in question, then more detailed failure analysis can be done.

The Electrical Analysis module is divided into five sessions. Session 1 presents an overview of circuits relevant to nuclear power plants (NPPs) and a discussion of the importance of the electrical analysis within a fire PRA. Relevant technical specifications and requirements are discussed as well as an overall strategy for implementation of the electrical analysis within the fire PRA. Session 2 covers task 3 that addresses cable selection. This provides a method for choosing electrical cables and a guide for using the location of cables determined in plant walkdowns to generate reasonable outcomes of postulated fire scenarios. This deterministic process produces a list of basic events or electrical components and their associated functions and failure modes within a fire scenario.

Sessions 3 and 4 concern the failure modes of the electrical components as developed in Task 3. The first part of the failure mode analysis is a deterministic screening process to identify those cables with no critical effect on system elements. Only those cables that directly affect the ability of the system elements selected for PRA are further considered in the fourth session, which quantitatively establishes the likelihood of certain failure modes, including spurious actuations.

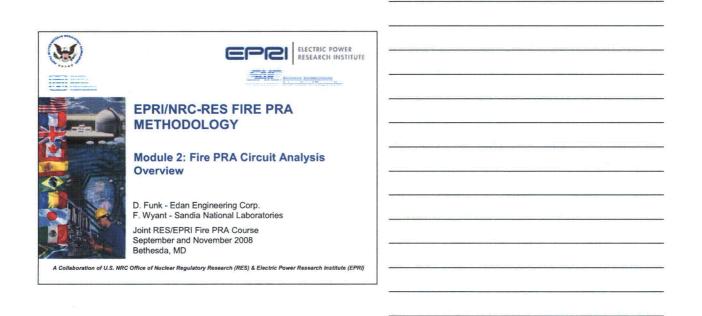
Session 5 of the Electrical Analysis module is actually not unique to the electrical segment of this course. The generation of a fire PRA database is a complex task that involves the compilation of all of the data and results collected in a fire PRA. Distinct from the rest of the electrical tasks, this is actually a database management task that occurs as a supporting function throughout the process of the assessment. Although elements from all three training modules are included, the fire PRA database tool is not repeated in either the Fire Analysis or the Systems Analysis modules, and so trainees in those modules may benefit from this section of the Electrical Analysis module.

1.1 EPRI Perspective

"Methods for Applying Risk Analysis to Fire Scenarios (MARIAFIRES)" is a collection of the materials that are presented at the Fire PRA course provided by EPRI and the U.S. Nuclear

1-1

Regulatory Commission's (NRC's) Office of Nuclear Regulatory Research (RES). The training and resulting presentation material is detailed and represents in excess of 60 hours of classroom instruction. The training focuses on the Fire PRA methods documented in the joint Electric Power Research Institute (EPRI)/RES publication 1011989 and NUREG/CR-6850 along with clarifications, enhancements, and additions provided via the Frequently Asked Question (FAQ) process for NFPA 805.


The intent of the publication is to provide to the public the training material used at the Fire PRA training. This material is not intended to be a substitute for direct interaction that is provided in the periodically offered fire PRA courses; rather, it is meant to augment that training and serve as a reference. Enthusiastic future students can use the material to become familiar with the general principles of fire PRA prior to arrival at the course. Students who have already taken the course can use the material for reference. The material consists of a series of reports that document the presentations including some speakers' notes and text. In addition, an edited version of a recorded training session is also available via a separate product number. This video version can be used in a similar manner to the documentation (e.g., for reference or in preparation for the course) and includes the actual recorded and edited course.

In providing this material, it is hoped that those who plan to attend the course can arrive more informed, those who have already attended can have a reference, and those who have been unable to attend have a resource to gain a more complete understanding of the intent and goals of EPRI 1011989 and NUREG/CR-6850.

2 ELECTRICAL ANALYSIS SLIDES

SESSION 1: Fire PRA Circuit Analysis Overview

Notes:

Slide 2

Notes:

CIRCUIT ANALYSIS Presentation Road Map

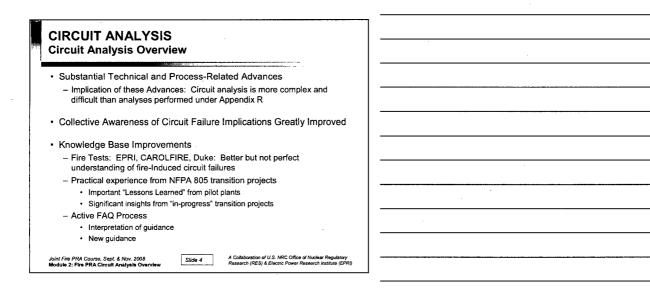
- Circuit Analysis "Big Picture" Overview
- Circuit Analysis Strategy & Implementation
- · Introduction to Key Considerations & Factors
- Review and Discussion of Tasks
- Relationship to Appendix R & NFPA 805
- Discussion of Relevant FAQs
- · Examples

Joint Fire PRA Course, Sept. & Nov. 2008 Module 2: Fire PRA Circuit Analysis Overview Slide 2 A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

Notes:

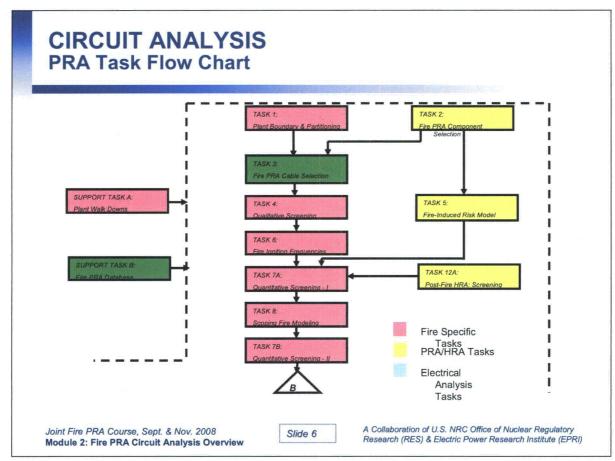
 CIRCUIT ANALYSIS

 Circuit Analysis Tasks

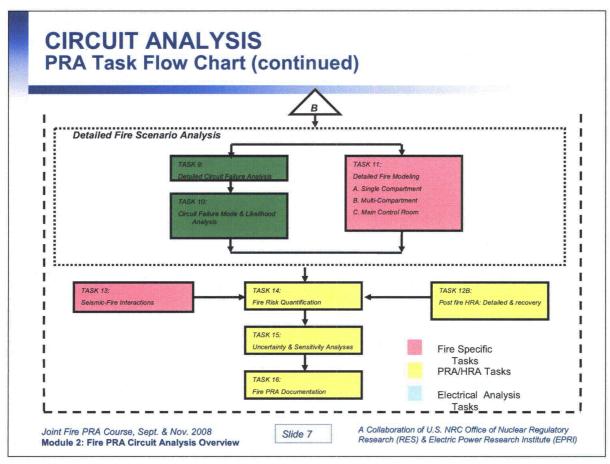

 • Task 3 – Fire PRA Cable Selection

 • Task 9 – Detailed Circuit Analysis

 • Task 10 – Circuit Failure Mode Likelihood Analysis


 • Support Task B – Fire PRA Database

Slide 4



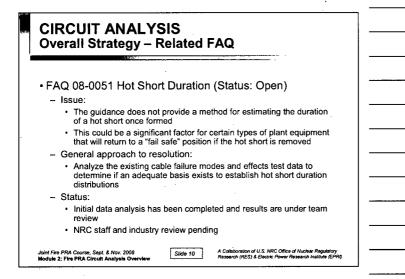
IRCUIT ANALYSIS ircuit Analysis Overview	
Circuit Analysis is Now an Integral and Formal Part of the Fire PRA Process	
 Rigorous and formal process for correlating cables-to-equipment- to-affected locations 	
 Definitive data and criteria has replaced estimations and judgment 	
 Essential that Fire PRA and NFPA-805 data be fully integrated 	
Note: The subtleties of aligning Fire PRA and traditional Appendix R/NFPA-805 data is more complex than originally anticipated. This primarily shows up in Component Selection (Task 2), but has major ramifications to the circuit analysis	
 Further Refinements to "State-of-the-Art" Techniques Realistic 	
 Practical aspects of dealing with an integrated data set 	
 Practical approach for dealing with MSOs 	

N	0	te	c	
	0	10	3	•

CIRCUIT ANALYSIS Overall Strategy & Implementation	
 Each Electrical Analysis Task Represents a Refined Level of Detail, i.e., Graded Approach 	
 Level-of-Effort for the Electrical Work is a Key Driver for Project Scope, Schedule, and Resources High Programmatic Risk if Not Carefully Controlled Analysis and Routing of all Cables can be a Large Resource Sink with Minimal Overall Benefit Concerns Validated by Numerous Projects Detailed Analysis Driven by Quantitative Screening Results Intelligence-Based Circuit Analysis Iterative Process Important to screen out obvious "Not Required" cables during the initial cable selection process, with refinement driven by quantitative screening 	
Joint Fire PRA Course, Sept. & Nov. 2008 Slide 8 A Collaboration of U.S. NRC Office of Muclear Regulatory Module 2: Fire PRA Circuit Analysis Overview Research (RES) & Electric Power Research Institute (EPR)	
Slide 9	Notes:

CIRCUIT ANALYSIS Overall Strategy & Implementation, cont...

- Recommended Methods are Consistent with Industry Best Practices
- Use Risk Perspectives to Streamline and Focus Analysis
- Remains a Technically and Logistically Challenging Area
- Limitations to the State-of-the-Art:
 - Number of Multiple Hot Shorts/Spurious Actuations
 - Spurious Actuation Probabilities
 - Timing Considerations (being addressed by FAQ process)
- Existing Appendix R Circuit Analysis is NOT as Useful as Originally Envisioned


Joint Fire PRA Course, Sept. & Nov. 2008 Module 2: Fire PRA Circuit Analysis Overview

.

Slide 9 A Calaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

2-7

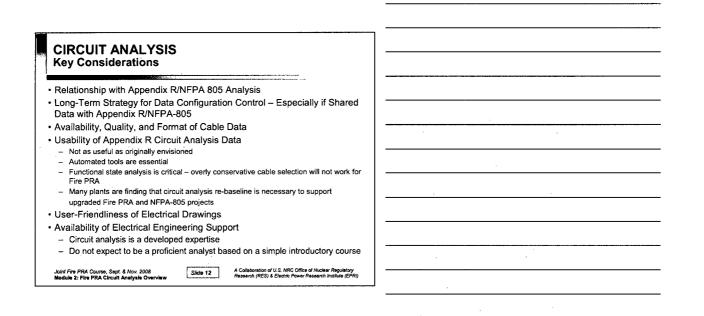
N	oto	e *	
	ote	э.	

Slide 11

Notes:

CIRCUIT ANALYSIS Overall Strategy & Implementation, cont...

• Circuit Analysis (including cable tracing) Can Consume 40%-70% of Overall Budget


A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

- <u>Circuit Analysis Scope MUST be a Primary Consideration</u>
 <u>During Project Scoping</u>
- Qualified and Experienced Electrical Analysts Must be Integral Member of PRA Team
- Coordination and Integration with Appendix R Must Occur Early and Must be Rigorous
- <u>Coordination with Task 2 (Component Section) is</u> <u>Essential – MUST Understand the EXACT Functionality</u> <u>Credited for Each Component</u>

Joint Fire PRA Course, Sept. & Nov. 2008 Module 2: Fire PRA Circuit Analysis Overview

Slide 11

Notes:

Slide 13

.

RCUIT ANALYSIS Immary
Do Not Underestimate Scope
 Ensure Proper Resources are Committed to Project
Doable but MUST Work Smart
 Do Not "Broad Brush" Interface with Appendix R – Have a Detailed Plan Before Starting
Constant Interaction with Systems Analysts is Critical
Develop Project Procedures – But Don't Get Carried Away
 Compilation and Management of Large Volume of Data
 Automated Tools Imperative for Efficient Process
 Be Mindful of Long-Term Configuration Management
Joint Fire PRA Course, Sept. & Nov. 2008 Skide 13 A Collaboration of U.S. NRC Office of Nuchar Regulatory Research (RES) & Electric Power Research Institute (EPR)

SESSION 2: Task 3, Fire PRA Cable Selection

Notes:

U.S.N	<u>RC</u> EP2	ELECTRIC POWER ¹ RESEARCH INSTITUTE —	· .	
Senda Hational Laboratories	SAU	m - Bolance Accilcutions - International Corporation	· · ·	
	EPRI/NRC-RES FIRE PRA METHODOLOGY	-		
	Module 2: Task 3 - Fire PRA Cable Selection	e -	```````	
	D. Funk - Edan Engineering Corp F. Wyant - Sandia National Laboratories	-	· · · · · · · · · · · · · · · · · · ·	
	Joint RES/EPRI Fire PRA Course September and November 2008 Bethesda, MD	-		
A Collaboration of U.S. NR	C Office of Nuclear Regulatory Research (RES) & Electric Power Rese	arch Institute (EPRI) —		
	• •	-		
		-		

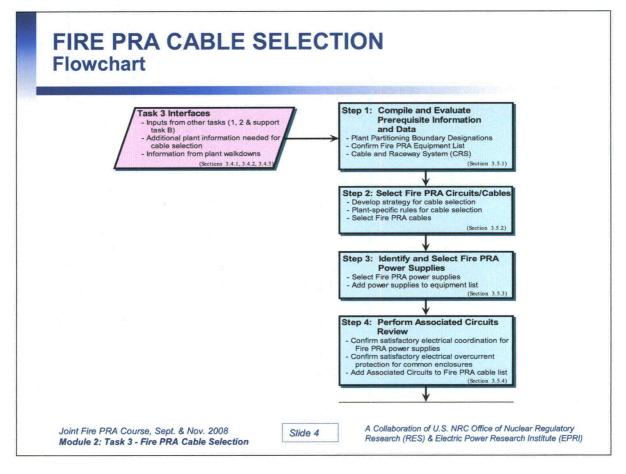
Notes:

FIRE PRA CABLE SELECTION Purpose & Scope

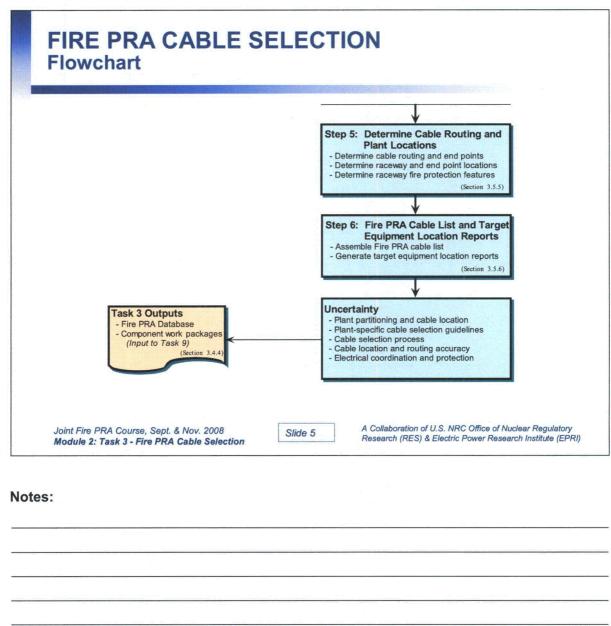
- Identify Circuits/Cables Associated with Fire PRA Components
- Determine Routing/Location of the Identified Cables

Slide 2

- Use Component-to-Cable-to-Location Relationships to Determine What Components Could be Affected for Postulated Fire Scenarios
 - Note: Scenario can be Fire Area, Room, Raceway, or Other Specific Location
- Identify Fire PRA Power Supplies


Joint Fire PRA Course, Sept. & Nov. 2008 Module 2: Task 3 - Fire PRA Cable Selection Slide 2 A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

2-11


NI	2	ŧc	2S	
	v	ιc	53	۰

Conducted for all Fire PRA Components Note: Exceptions do exist	
Deterministic Process	
Cables Associated to Components Based on Specified Functionality	
 Basic circuit analysis (Task 9) incorporated into Task 3 work to prevent overwhelming the PRA model with inconsequential cable failures 	
 Final product is a listing of defined Basic Events (component and credited function) that could be impacted by a fire for a given location (Fire Area, Fire Compartment, Fire Scenario) 	
Procedure subdivided into six (6) distinct steps	

7

`

FIRE PRA CABLE SELECTION Task Interfaces - Input		
Plant Boundary Partitions (Task 1)		
Fire PRA Component List (Task 2)		
Fire PRA Database (Support Task B)		
·		
Appendix R Circuit Analysis		
Plant Cable & Raceway Database		
Plant Drawings	• •	
	IRC Office of Nuclear Regulatory ric Power Research Institute (EPRI)	·
		· · · · · ·
Slide 7		Notes:
Slide 7		Notes:
Slide 7 FIRE PRA CABLE SELECTION Task Interfaces - Output		Notes:
FIRE PRA CABLE SELECTION		Notes:
FIRE PRA CABLE SELECTION Task Interfaces - Output		Notes:
FIRE PRA CABLE SELECTION Task Interfaces - Output • Fire PRA Cable List		Notes:
FIRE PRA CABLE SELECTION Task Interfaces - Output • Fire PRA Cable List • Fire PRA Power Supply List		Notes:
FIRE PRA CABLE SELECTION Task Interfaces - Output • Fire PRA Cable List • Fire PRA Power Supply List • Associated Circuits review	quipment or Scenario)	Notes:
FIRE PRA CABLE SELECTION Task Interfaces - Output • Fire PRA Cable List • Fire PRA Power Supply List • Associated Circuits review • Component Analysis Packages • Target Equipment Loss Reports (Potential Equipme	quipment or Scenario)	Notes:

N	0	te	c	۰
	v	ιc	Э	

FIRE PRA CABLE SELECTION Step 1 – Prerequisite Information	
 Confirm Plant Partitioning is Compatible Do partitions align with cable location data? What data is available and what is missing? Confirm PRA Equipment List is Final Input into a formal and controlled database 	
 For NFPA-805 transition projects a joint "consistency" review of NSP task and PRA component selection task is highly recommended Critical that electrical analysts understand what the Basic Events really mean Evaluate Database Requirements 	
 What currently exists? What is needed to support work? How is data to be managed and controlled? This is a "Biggy" 	
Joint Fire PRA Course, Sept. & Nov. 2008 Slide 8 A Collaboration of U.S. NRC Office of Nuclear Regulatory Module 2: Task 3 - Fire PRA Cable Selection Slide 8 Research (RES) & Electric Power Research Institute (EPR)	

Slide 9

Notes:

FIRE PRA CABLE SELECTION Step 2 – Select Fire PRA Cables

Analysis Cases

- Appendix R Component with Same Functional Requirements
 Must consider which (if any) automatic features are included in the
 - existing analysis
 Aligning existing analyses to Fire PRA Basic Events is not straightforward
- Appendix R Component with Different Functional Requirements
- Non-Appendix R Component with Cable Location Data
- Non-Appendix R Component without Cable Location Data

Slide 9

Analysis Sub-Steps

- Step 2.1 Analysis Strategy
- Step 2.2 Plant Specific Rules
- Step 2.3 Select Cables

Joint Fire PRA Course, Sept. & Nov. 2008 Module 2: Task 3 - Fire PRA Cable Selection

A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

Notes:

FIRE PRA CABLE SELECTION Step 2.1 – Analysis Strategy • Coordinate with Systems Analysts to Establish Functional Requirements and General Rules • Equipment functional states, basic events, initiators • Initial conditions and equipment lines (i.e., normal state) • Consistent conventions for equipment functions/state/position • Equipment-level dependencies and primary components • Multiple function components

- Super components
- Evaluate Appendix R Component & Circuit Data
 - Ensure equipment list comparison conducted during Task 2
 - Review in detail the comparison list ask questions!!!
 - Essential that comparison includes detailed review/comparison of "desired functional state(s)"

Slide 10

Slide 11

Joint Fire PRA Course, Sept. & Nov. 2008 Module 2: Task 3 - Fire PRA Cable Selection

A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

Notes:

FIRE PRA CABLE SELECTION Step 2.1 – Analysis Strategy (continued)

- Goal Efficient and Accurate Process to Obtain Required Information
- Revisit Past Assumptions, Conventions, Approach
- Potential Trouble Areas
 - How is off-site power going to be handled?
 - Instrument circuits understand exactly what is credited
 - ESAFA, Load-Shed, EDG Sequencer, other automatic functions
 Medium-voltage switchgear control power
- · Extent of Detailed Analysis to be Conducted Concurrently

Slide 11

Determine How Analysis Will be Documented

Joint Fire PRA Course, Sept. & Nov. 2008 Module 2: Task 3 - Fire PRA Cable Selection A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

Notes:

FIRE PRA CABLE SELECTION Step 2.2 – Plant Specific Cable Selection Rules	
Objective is Consistency	
 Approach for Groups of Components 	
 Approach for Spurious Actuation Equipment 	
 Auxiliary Contacts – Critical Area for Completeness 	
System-Wide Actuation Signals	
Bus or Breaker?	
Subcomponents & Primary Components	
 Identification of Permanent Damage Scenarios 	
Procedure - Develop Circuit Analysis Procedure/Guidelines	
Joint Fire PRA Course, Sept. & Nov. 2008 Module 2: Task 3 - Fire PRA Cable Selection Slide 12 A Calaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPR)	

Slide 13

Notes:

_____ ____

IRE PRA CABLE SELECTION tep 2.2 – Ready to Start?	
Develop Written Project Procedure/Guidelines	
 Consistency, Consistency 	
- Checking Process?	
– Data Entry	
- Problem Resolution	
Tanisian for Archive	
 Training for Analysts 	
 Prior circuit analysis experience is a prerequisite for key team members 	
 Familiarity with plant drawings and circuits is highly beneficial 	· · ·
 A junior engineer with no prior circuit analysis experience will not be able to work independently 	
Joint Fire DDB Course Sand Mou 2008	
Jaint Fire PRA Caurse, Sept. & Nov. 2008 Slide 13 A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)	

FIRE PRA CABLE SELECTION Step 2.3 – Select Cables	
Case 1: Incorporate Existing Appendix R Analysis Confirm adequacy of existing analyses IAW plan Careful consideration of automatic functions Exact alignment for credited functionality	
 Cases 2 & 3: New Functional State/Component: w/ Cable Routing Data Collect drawings and/or past analysis information Identify/select cables IAW plant specific procedure/guidelines Conduct detailed analysis to the extent decided upon Formally document cable selection IAW established procedures/guidelines 	
Joint Fire PRA Course, Sept. & Nov. 2008 Side 14 A Collaboration of U.S. NRC Office of Nuclear Regulatory Module 2: Task 3 - Fire PRA Cable Selection Research (RES) & Electric Power Research Institute (EPR)	
	· · · ·
Slide 15	Notes:
FIRE PRA CABLE SELECTION	Notes:
FIRE PRA CABLE SELECTION Step 2.3 – Select Cables (continued)	Notes:
FIRE PRA CABLE SELECTION Step 2.3 – Select Cables (continued) • Case 3: New Component: w/o Cable Routing Data Available – Same as Case 2 & 3, plus – Determine cable routing and associate with plant locations,	Notes:

Notes:

FIRE PRA CABLE SELECTION Step 3 - Select Fire PRA Power Supplies • Identify Power Supplies as Integral Part of Cable Selection • Make sure to differentiate between "Required" and "Not Required" power supplies • Switchgear and Instrument power supplies can be tricky • Useful to identify the applicable breaker/fuse • Add Power Supplies to Fire PRA Component List • Make sure Fire PRA model, equipment list, and electrical analysis are consistent • Does Fire PRA model consider spurious circuit breaker operations? • Must understand how this is modeled to correctly select cables

Slide 17

Notes:

FIRE PRA CABLE SELECTION Step 4 – Associated Circuits Review

- · Objective is to Confirm Existing Studies Adequate
- · View the Process as a "Gap Analysis"
- Common Power Supply Circuits Assess Plant Coordination Studies
- Common Enclosure Circuits Assess Plant Electrical Protection
- Roll Up Results to Circuit Analysis or Model as Appropriate
 - Note: Ensure Switchgear Internal Fusing Supports Analysis Assumptions

Joint Fire PRA Course, Sept. & Nov. 2008 Module 2: Task 3 - Fire PRA Cable Selection Slide 17 A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

Notes:

FIRE PRA CABLE SELECTION	
Step 5 – Determine Cable Routing and Locations	
Correlate Cables-to-Raceways-to-Locations	
Conceptually Straightforward	
 Logistically Challenging Labor intensive Manual review of layout drawings Plant walkdowns often required 	
Determine Cable Protective Features – Fire wraps – Embedded conduit	
Joint Fire PRA Course, Sept. & Nov. 2008 Module 2: Task 3 - Fire PRA Cable Selection Slide 18 A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPR)	· · · · · · · · · · · · · · · · · · ·
Slide 19	Notes:
FIRE PRA CABLE SELECTION Step 6 – Target Equipment Loss Reports]
Data Entered into Fire PRA Database	
 Sorts and Queries to Generate Target Equipment Loss 	
Reports	

Joint Fire PRA Course, Sept. & Nov. 2008 Module 2: Task 3 - Fire PRA Cable Selection

scenario.

Slide 19 A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

SESSION 3: Task 9, Detailed Circuit Failure Analysis

•--

.

,

,

Slide 1 Notes: U.S.NRC SAIC National **EPRI/NRC-RES FIRE PRA** METHODOLOGY Module 2: Task 9 - Detailed Circuit Failure Analysis F. Wyant - Sandia National Laboratories D. Funk - Edan Engineering Corp. Joint RES/EPRI Fire PRA Course September and November 2008 Bethesda, MD A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

Slide 2

Notes:

.

DETAILED CIRCUIT FAILURE ANALYSIS Purpose & Scope

The Detailed Circuit Failure Analysis Task is intended to:

 Identify the potential response of circuits and components to specific cable failure modes associated with fireinduced cable damage

Slide 2

Screen out cables that do not impact the ability of a component to complete its credited function

Joint Fire PRA Course, Sept. & Nov. 2008 Module 2: Task 9 - Detailed Circuit Failure Analysis A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research institute (EPRI)

NOt	00'	
1101	63.	

DETAILED CIRCUIT FAILURE ANALYSIS Introduction (1)	
Fundamentally a deterministic analysis	
Perform coincident with cable selection (Task 3) to the extent feasible and cost effective	
Difficult cases generally reserved for situations in which Quantitative Screening indicates a clear need and advantage for further analysis	
Detailed Failure Modes Analysis	
 Requires knowledge about desired functionality and component failure modes 	
 Conductor-by-conductor evaluation (Hot Probe method recommended) 	·
Objective is to screen out all cables that CANNOT impact the ability of a component to fulfill the specific function of interest	
toint Fire PRA Course, Sept. & Nov. 2008 Slide 3 A Colaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)	· · · · · · · · · · · · · · · · · · ·

Slide 4

	DETAILED CIRCUIT FAILURE ANALYSIS
130	Introduction (2)
	Failure Modes Considered
	 Single Shorts-to-Ground (Reference Ground)
	Grounded System Ungrounded System
	Resistance Grounded System
	 Single Hot Shorts
	 Compatible Polarity Multiple Hot Shorts for Ungrounded AC and DC Circuits
	 Coincident Independent Hot Shorts On Separate Cables
	 Multiple Intra-cable Hot Shorts
	 Cables Associated Through Common Power Supply
	Joint Fire PRA Course, Sept. & Nov. 2008
	• · ·

Notes:

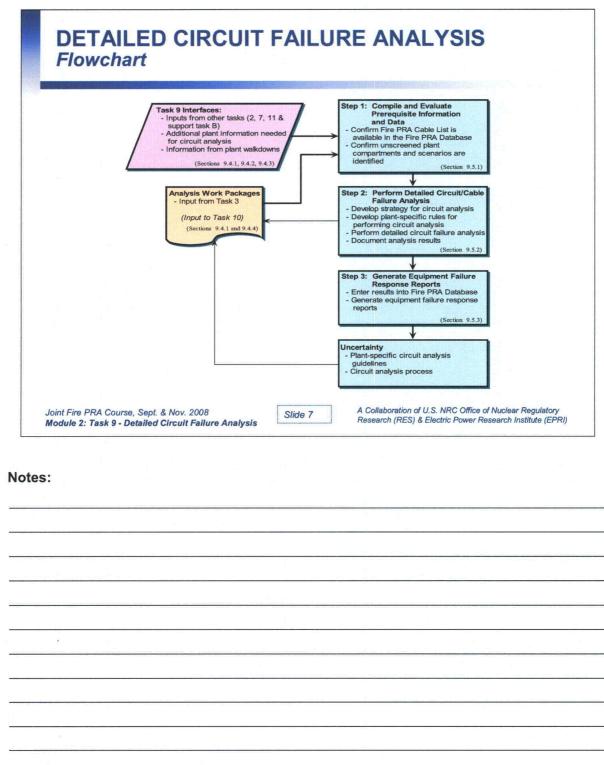
DETAILED CIRCUIT FAILURE ANALYSIS Introduction (3)	······································
Failure Modes NOT Considered	
 3-phase proper sequence hot shorts (except high consequence equipment with thermoplastic insulated conductor or ungrounded configuration) 	
 Inter-cable hot shorts for armored cable and cable in dedicated conduit 	
 Open circuit conductor failures 	
 Multiple high-impedance faults 	·
Note: if conducting a combined NFPA-805 and Fire PRA circuit analysis, NEI 00-01 suggests that open circuits be considered	
Joint Fire PRA Course, Sept. & Nov. 2008 Module 2: Task 9 - DeBilled Circuit Failure Analysis Sidge 5 A Calaboration of U.S. NRC Office of Nucleer Regulatory Research (RES) & Electric Power Research Institute (EPR)	

Slide 6

Notes:

DETAILED CIRCUIT FAILURE ANALYSIS Assumptions

The Following Assumptions Form the Basis for Task 9:


- An Appendix R analysis for the plant has been completed and is available for identifying equipment failure responses to specific cable failure modes
- Component **Work Packages** have been assembled as part of the Task 3 activities or previous Appendix R analyses
- Equipment is assumed to be in its normal position or operating condition at the onset of the fire the equipment state might be variable
- Users of this procedure are knowledgeable on and have experience with circuit design and analysis methods

Joint Fire PRA Course, Sept. & Nov. 2008 Module 2: Task 9 - Detailed Circuit Failure Analysis

A Colleboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

2-25

Notes:

DETAILED CIRCUIT FAILURE ANALYSIS Task Interfaces - Inputs	
Fire PRA Components List (Task 2)	· · · · · · · · · · · · · · · · · · ·
• Fire PRA Cable List (Task 3)	
Fire PRA Database (Support Task B)	
 Results of Quantitative Screenings (Task 7) 	·
Results of Detailed Fire Modeling (Task 11)	
Appendix R Circuit Analysis	
Plant Drawings	
CRS Database	
Joint Fire PRA Course, Sept. & Nov. 2008 Module 2: Task 9 - Detailed Circuit Failure Analysis Slide 8 Research (RES) & Electric Power Research Institute (SPRI)	

Slide 9

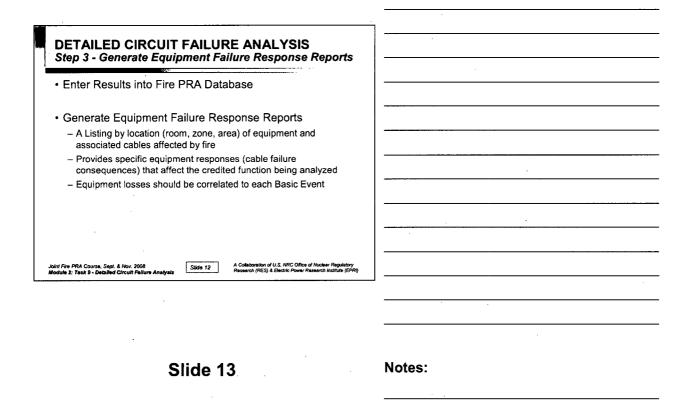
Notes:

.

Equipment Failure Response Reports	
Component Analysis Packages (Updated)	
Revised Cable List	
Fire PRA Database & Model Updates	
int Fire PRA Course, Sept. 6. Nov. 2008 Silde 9 A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Detailed Circuit Failure Analysia	

Notes:

DETAILED CIRCUIT FAILURE ANALYSIS Step 1 - Compile Prerequisite Information	· · · · · · · · · · · · · · · · · · ·
 Ensure that prerequisite information and data is available and usable before beginning the analyses (ideally the necessary drawings are already in the Work Packages). 	
Step 1.1: Confirm Fire PRA Cable List is Available in the Fire PRA Database	
– Component \Rightarrow Cable \Rightarrow Raceway \Rightarrow Compartment	
 Step 1.2: Confirm Unscreened Plant Compartments and Scenarios are Identified 	· · · · · · · · · · · · · · · · · · ·
 Target Equipment Loss Reports Equipment ID, Normal Status, Functional Requirements, etc. 	
Joint Fire PRA Course, Sepl. & Nov. 2008 Module 2: Test 9 - Detailed Circuit Failure Anelysis	
Slide 11	Notes:
Slide 11	 Notes:
	Notes:
Slide 11 DETAILED CIRCUIT FAILURE ANALYSIS Step 2 - Perform Circuit Failure Analysis	Notes:
DETAILED CIRCUIT FAILURE ANALYSIS	Notes:


Step 2.3: Perform Detailed Circuit Failure Analysis

• Document Analysis Results \Rightarrow Component Work Packages

Joint Fire PRA Course, Sept. & Nov. 2008 Module 2: Task 9 - Detailed Circuit Falture Analysis Stide 11
A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

Detailed Circuit Analysis

Notes:

DETAILED CIRCUIT FAILURE ANALYSIS Caveats & Recommendations

• This Detailed Circuit Failure Analysis Methodology is a Static Analysis (No Timing Issues are Considered)

• Be Aware of Possible Cable Logic Relationships

- Work Packages (Highly Recommended!)
- "Hot Probe" (Conductor-to-Conductor) Analysis Must be Rolled-Up to Cable/Component Level
- Outputs Need to Be Compatible with Fire PRA Database
 Format and Field Structure
- Coordinate with the Fire PRA Modelers/Analysts Early-On to Define the Fire PRA Component Failure Modes of Concern

Joint Fire PRA Course, Sept. & Nov. 2008 Module 2: Task 9 - Detailed Circuit Failure Analysis

A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

SESSION 4: Task 10, Circuit Failure Likelihood Analysis

Slide 1 Notes: <u>USNRC</u> \mathbf{C} SAIE REAL Sendle National **EPRI/NRC-RES FIRE PRA** METHODOLOGY Module 2: Task 10 - Circuit Failure Mode Likelihood Analysis F. Wyant - Sandia National Laboratories D. Funk - Edan Engineering Corp. Joint RES/EPRI Fire PRA Course September and November 2008 Bethesda, MD n of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

Slide 2

5

CIRCUIT FAILURE MODE LIKELIHOOD ANALYSIS Purpose & Scope	
The Circuit Failure Mode Likelihood Analysis Task is Intended to:	· · · · · · · · · · · · · · · · · · ·
 Establish First-Order Probability Estimates for the Circuit Failure Modes of Interest 	
AND	
Correlate Those Failure Mode Probabilities to Specific Components	
Joint Fire FRA Course, Sept. & Nov. 2008 Module 2: Task 10 - Circuit Failure Mode Likelihood Silde 2 Analysis	

unau u	
	·
CIRCUIT FAILURE MODE LIKELIHOOD ANALYSIS Introduction (1)	
Probabilistic Based Analysis	
 Two Methods Presented Expert Panel Results (Look-Up Tables) Computation-Based Analysis (Formulas) 	
 Requires Knowledge About Circuit Design, Cable Type and Construction, Installed Configuration, and Component Attributes 	
 Generally Reserved for Only Those Cases that Cannot be Resolved Through Other Means 	
Abint Fire PRA Course, Sept. & Nov. 2008 Module 3: Task 10 - Circuit Pallure Mode Likelihood Analysia Analysia	

Slide 4

Notes:

Notes:

CIRCUIT FAILURE MODE LIKELIHOOD ANALYSIS Introduction (2)

· Caveats:

- Our Knowledge is Greatly Improved but Uncertainties are Still High Very limited data for many issues
- For This Reason, Implementing Guidance is Conservative
- Practical Implementation is Challenging
- Further Analysis of Existing Test Data and Follow-On Tests Would be Beneficial:
 - Reduce Uncertainties, including conservatisms as appropriate

 - Solidify Key Influence Factors
 Incorporate Time as a Factor (FAQ 007-051)
 - · Incorporate "End-Device" Functional Attributes and States (e.g., latching circuits vs. drop-out design)
- Computation-based method (formula) is an extrapolation of existing data; validation remains to be done. Conservatism has not been established.
- · Probabilities of sufficient quality to move ahead

Joint Fire PRA Course, Sept. & Nov. 2008 Madule 2: Task 10 - Circuit Fellure Mode Likelihood Side 4 A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

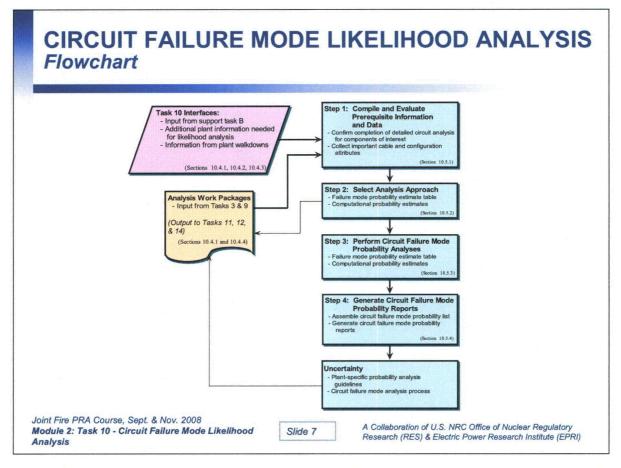
CIRCUIT FAILURE MODE LIKELIHOOD ANALYSIS]
Introduction (3) Public and Peer Review Comments	
 Public and Peer Review Comments Several Questions Involving Interpretation of the EPRI Test Data Lead to Extensive Discussions Regarding the Most Appropriate Way to Tally Spurious Actuation Probabilities (Many Subtleties for Implementation) 	
 Team's Consensus is that Expert Panel Values are, in General, somewhat Conservative 	
 Additional Independent Review of the Computational Method was Solicited as a Result of Peer and Public Comments 	· · · · · · · · · · · · · · · · · · ·
Review was Favorable, However the Team Acknowledges the Inevitable Limitations of the Methodology	· · · · · · · · · · · · · · · · · · ·
Joint Fire PRA Course, Sepl. & Nov. 2008 Module 2: Task 10 - Circuit Failure Mode Likelihood Slide 5 Analysis Electric Power Research Institute (EPRI)	

Slide 6

Notes:

Notes:

CIRCUIT FAILURE MODE LIKELIHOOD ANALYSIS Assumptions


A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

The Following Assumptions Form the Basis for Task 10:

- Specific Cable/Circuit Configuration Attributes are Available or Can Be
 Determined
- The Equipment is in Its Normal Position or Operating Condition at the Onset of the Fire
- Users of This Procedure are Knowledgeable and Have Experience with Circuit Design and Analysis Methods and Probability Estimating Techniques
- This Analysis Method is Applied to Cables with No More than 15
 Conductors

Joint Fire PRA Course, Sept. & Nov. 2008 Module 2: Task 10 - Circuit Fallure Mode Likelihood Slide 6 Analysis

Notes:

CIRCUIT FAILURE MODE LIKELIHOOD ANALYSIS Task Interfaces - Inputs	
• Fire PRA Cable List (Task 3)	· · · · · · · · · · · · · · · · · · ·
 Fire PRA Database (Support Task B) 	
 Results of Detailed Circuit Failure Analysis (Task 9) 	· · · · · · · · · · · · · · · · · · ·
 Specific Scenarios Identifying Affected Cables (Tasks 11 & 14) 	
Cable & Circuit Configuration Attributes	
Plant Drawings	
aint Fire PRA Course, Sept. & Nov. 2008 Iodule 2: Task 10 - Circuit Feilure Mode Likelihood Stide 8 A Calaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Becric Power Research Institute (EPRI)	
Slide 9	Notes:
CIRCUIT FAILURE MODE LIKELIHOOD ANALYSIS Task Interfaces - Outputs	

• Quantification of Fire Risk (Task 14)

- Post-Fire HRA (Task 12)
- Detailed Fire Scenario Quantification (Task 11)
- Circuit Failure Mode Probability Reports
- Component Work Packages (Finalized)
- Fire PRA Database & Model

Joint Fire PRA Course, Sept. & Nov. 2008 Module 2: Task 10 - Circuit Failure Mode Likelihood Slide 9 Analysis

hood Slide 9 A Collaboration of U.S. NRC Office Research (RES) & Electric Power

Notes:

	1. 1.
CIRCUIT FAILURE MODE LIKELIHOOD ANALYSIS	
Ensure that Prerequisite Information and Data is Available and Usable before Beginning the Analyses.	
Confirm Completion of Detailed Circuit Analysis for Components of Interest	
Collect Important Cable and Configuration Attributes	
– Insulation	
- Number of Conductors	
 Raceway Types 	
- Power Source(s)	
 Number of Source & Target Conductors (for Option #2 Only) 	
Joint Fire PRA Course, Sept. & Nov. 2008 Module 2: Tesk 10 - Circuit Fellure Mode Likelihood Silde 10 Research (RES) & Einclic Power Research Institute (EPR) Analysis	

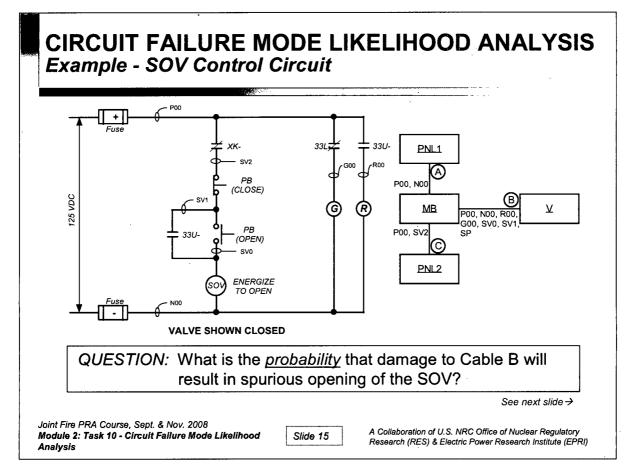
Slide 11

Notes:

CIRCUIT FAILURE MODE LIKELIHOOD ANALYSIS Step 2 - Select Analysis Approach

Decide Which Analysis Option is Best Suited for Conducting the Evaluation.

- 1. Failure Mode Probability Estimate Tables
 - Grounded Circuit Design
 - Non-Complex Control Circuit
 - Single Component Service
 - Cable Configuration Matches Table Categories
 - Principal Failure Mode of Concern is Spurious Actuation
- 2. Computational Probability Estimate Formulas
 - Ungrounded or Resistance-Grounded Circuit Design
 - Complex Circuit or Component
 - Failure Potentially Affects Multiple Components
 - Cable Configuration Not Easily Categorized in Tables


Joint Fire PRA Course, Sept. & Nov. 2008 Module 2: Task 10 - Circuit Fellure Mode Likelihood Rahyda Rahyda

•

	A CONTRACTOR OF THE CONTRACTOR
	·
· · ··································	
CIRCUIT FAILURE MODE LIKELIHOOD ANALYSIS	
Step 3 - Estimate Circuit Failure Mode Probabilities	
5005000 P.	
Estimate Circuit Failure Mode Probabilities Employing the	
Selected Method	,
Option #1: Failure Mode Probability Estimate Tables	
•Table 10-1, Thermoset Cables with CPTs	
Table 10-2, Thermoset Cables without CPTs Table 40-2, Thermoseleatic Cables with CPTs	
•Table 10-3, Thermoplastic Cables with CPTs	
•Table 10-4, Thermoplastic Cables without CPTs	
•Table 10-5, Armored or Shielded Cables	
Option #2: Computational Probability Estimate Formulas	·
$P_{CC} = (C_{Tot} - C_G) / [(C_{Tot} - C_G) + (2 \times C_G) + n]$ $CF = \{C_T \times [C_S + (0.5 / C_{Tot})]\} / C_{Tot}$	
$P_{FM} = CF \times P_{CC}$	
Joint Fire PRA Course, Sept. & Nov. 2008 Module 2: Teask 10 - Circuit FeBure Made Likelihood Slide 12 Research (RES) & Electric Power Research institute (EPR)	
Slide 13	Notes:
	Notes:
CIRCUIT FAILURE MODE LIKELIHOOD ANALYSIS	Notes:
	Notes:
CIRCUIT FAILURE MODE LIKELIHOOD ANALYSIS Step 3 – Related FAQ	Notes:
CIRCUIT FAILURE MODE LIKELIHOOD ANALYSIS Step 3 – Related FAQ • FAQ 08-0047 Cable Dependency (Status: Open)	Notes:
CIRCUIT FAILURE MODE LIKELIHOOD ANALYSIS Step 3 – Related FAQ • FAQ 08-0047 Cable Dependency (Status: Open) – Issue:	Notes:
CIRCUIT FAILURE MODE LIKELIHOOD ANALYSIS Step 3 – Related FAQ • FAQ 08-0047 Cable Dependency (Status: Open) – Issue: • Guidance (Vol. 2, Page 10-7, Bullet 3) states that when more than one	Notes:
CIRCUIT FAILURE MODE LIKELIHOOD ANALYSIS Step 3 – Related FAQ • FAQ 08-0047 Cable Dependency (Status: Open) – Issue:	Notes:
 CIRCUIT FAILURE MODE LIKELIHOOD ANALYSIS Step 3 – Related FAQ FAQ 08-0047 Cable Dependency (Status: Open) Issue: Guidance (Vol. 2, Page 10-7, Bullet 3) states that when more than one cable can cause the same spurious actuation you combine probabilities 	Notes:
 CIRCUIT FAILURE MODE LIKELIHOOD ANALYSIS Step 3 – Related FAQ FAQ 08-0047 Cable Dependency (Status: Open) Issue: Guidance (Vol. 2, Page 10-7, Bullet 3) states that when more than one cable can cause the same spurious actuation you combine probabilities using "exclusive or" This assumes faults/effects are independent General approach to resolution: 	Notes:
 CIRCUIT FAILURE MODE LIKELIHOOD ANALYSIS Step 3 – Related FAQ FAQ 08-0047 Cable Dependency (Status: Open) Issue: Guidance (Vol. 2, Page 10-7, Bullet 3) states that when more than one cable can cause the same spurious actuation you combine probabilities using "exclusive or" This assumes faults/effects are independent General approach to resolution: Consensus reached that "exclusive or" is not appropriate if faults are 	Notes:
 CIRCUIT FAILURE MODE LIKELIHOOD ANALYSIS Step 3 – Related FAQ FAQ 08-0047 Cable Dependency (Status: Open) Issue: Guidance (Vol. 2, Page 10-7, Bullet 3) states that when more than one cable can cause the same spurious actuation you combine probabilities using "exclusive or" This assumes faults/effects are independent General approach to resolution: Consensus reached that "exclusive or" is not appropriate if faults are dependent (e.g., a common power supply for both cables) 	Notes:
 CIRCUIT FAILURE MODE LIKELIHOOD ANALYSIS Step 3 – Related FAQ FAQ 08-0047 Cable Dependency (Status: Open) Issue: Guidance (Vol. 2, Page 10-7, Bullet 3) states that when more than one cable can cause the same spurious actuation you combine probabilities using "exclusive or" This assumes faults/effects are independent General approach to resolution: Consensus reached that "exclusive or" is not appropriate if faults are dependent (e.g., a common power supply for both cables) Clarify treatment to determine and address dependency 	
 CIRCUIT FAILURE MODE LIKELIHOOD ANALYSIS Step 3 – Related FAQ FAQ 08-0047 Cable Dependency (Status: Open) Issue: Guidance (Vol. 2, Page 10-7, Bullet 3) states that when more than one cable can cause the same spurious actuation you combine probabilities using *exclusive or* This assumes faults/effects are independent General approach to resolution: Consensus reached that *exclusive or* is not appropriate if faults are dependent (e.g., a common power supply for both cables) Clarify treatment to determine and address dependency Status: 	Notes:
 CIRCUIT FAILURE MODE LIKELIHOOD ANALYSIS Step 3 - Related FAQ FAQ 08-0047 Cable Dependency (Status: Open) Issue: Guidance (Vol. 2, Page 10-7, Bullet 3) states that when more than one cable can cause the same spurious actuation you combine probabilities using "exclusive or" This assumes faults/effects are independent General approach to resolution: Consensus reached that "exclusive or" is not appropriate if faults are dependent (e.g., a common power supply for both cables) Clarify treatment to determine and address dependency Status: Team draft has been completed 	
 CIRCUIT FAILURE MODE LIKELIHOOD ANALYSIS Step 3 – Related FAQ FAQ 08-0047 Cable Dependency (Status: Open) Issue: Guidance (Vol. 2, Page 10-7, Bullet 3) states that when more than one cable can cause the same spurious actuation you combine probabilities using *exclusive or* This assumes faults/effects are independent General approach to resolution: Consensus reached that *exclusive or* is not appropriate if faults are dependent (e.g., a common power supply for both cables) Clarify treatment to determine and address dependency Status: 	
 CIRCUIT FAILURE MODE LIKELIHOOD ANALYSIS Step 3 - Related FAQ FAQ 08-0047 Cable Dependency (Status: Open) Issue: Guidance (Vol. 2, Page 10-7, Bullet 3) states that when more than one cable can cause the same spurious actuation you combine probabilities using "exclusive or" This assumes faults/effects are independent General approach to resolution: Consensus reached that "exclusive or" is not appropriate if faults are dependent (e.g., a common power supply for both cables) Clarify treatment to determine and address dependency Status: Team draft has been completed Statif and final industry review pending 	
 CIRCUIT FAILURE MODE LIKELIHOOD ANALYSIS Step 3 - Related FAQ FAQ 08-0047 Cable Dependency (Status: Open) Issue: Guidance (Vol. 2, Page 10-7, Bullet 3) states that when more than one cable can cause the same spurious actuation you combine probabilities using *exclusive or" This assumes faults/effects are independent General approach to resolution: Consensus reached that *exclusive or" is not appropriate if faults are dependent (e.g., a common power supply for both cables) Clarify treatment to determine and address dependency Status: Team draft has been completed Statif and final industry review pending 	

CIRCUIT FAILURE MODE LIKELIHOOD ANALYSIS Step 4 - Generate Failure Mode Probability Reports	
Enter Results into Fire PRA Database	
 Generate Circuit Failure Mode Probability Reports Listing the Probability Estimates for the Circuit Failure Modes of Concern for Each Component of Interest by Plant Area (Compartment, Fire Area, Fire Zone, etc.) 	
Joint Fire PRA Course, Sept. & Nov. 2008 Module 2: Task 10 - Circuit Feiture Mode Likelihood Slide 14 Analysis	

SI	id	e '	1	5
----	----	-----	---	---

Notes:

=xample – S	tep 1: <u>P</u>	Prerequisite l	nformation	* A 1= 1		· · ·	
Detailed circu	uit analys	sis completed &	& documented?	Yes			
	Cable	+125 VDC Hot Probe	-125 VDC Hot Probe				
	A	LOC	LOC				
	В	LOC, EI, SO - Open	LOC				
	с	NC	LOC				
 Cable insu 	lation?	le and configur Thermos					
 Number of 	f conducto	ors? Seven					
 Raceway f 	type?	Tray					
	irce?	Ungroun	ded DC bus (no	CPT)			
 Power sou 	f source 8	target conducto	ors? 3 sources,	1 target			
		-		See next slide →			

Slide 17

Notes:

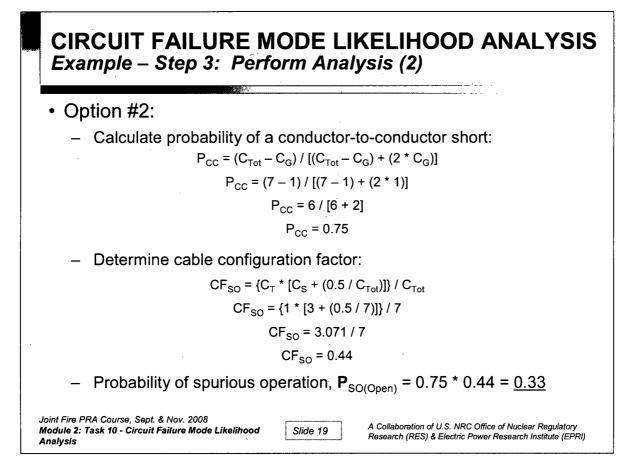
Optio	n #1: Failure Mode Probabilit	y Tables	
-	– Grounded circuit design?	No	
	– Control circuit cable?	Yes	
	– Single component circuit?	Yes	
	– Known cable configuration?	Yes	
	– Spurious operation concern?	Yes	
Option	n #2: Computational Probabi	lity Estimate	
	– Ungrounded circuit?	Yes	
	 Complex circuit/component? 	No	
	– Multiple component circuit?	No	
	 Cable configuration not categorize 	d? No	

CIRCUIT FAILURE MODE LIKELIHOOD ANALYSIS Example – Step 3: Perform Analysis (1)

• Option #1:

- Which Table to Use? Table 10-2, Thermoset Cable without CPT

Raceway Type	Description of Hot Short	Best Estimate	High Confidence Range
Тгау	M/C Intra-cable 1/C Inter-cable M/C \rightarrow 1/C Inter-cable M/C \rightarrow M/C Inter-cable	0.60 0.40 0.20 0.02 - 0.1	0.20 - 1.0 0.1 - 0.60 0.1 - 0.40
Conduit	M/C Intra-cable 1/C Inter-cable $M/C \rightarrow 1/C$ Inter-cable $M/C \rightarrow M/C$ Inter-cable	0.15 0.1 0.05 0.01 – 0.02	0.05 0.25 0.025 0.15 0.025 0.1


- SO_{Open} Probability Estimate, $\mathbf{P} = 0.62$ (0.60 + 0.06 - 0.60*0.06)

See next slide →

Joint Fire PRA Course, Sept. & Nov. 2008 Module 2: Task 10 - Circuit Failure Mode Likelihood Analysis

Slide 18

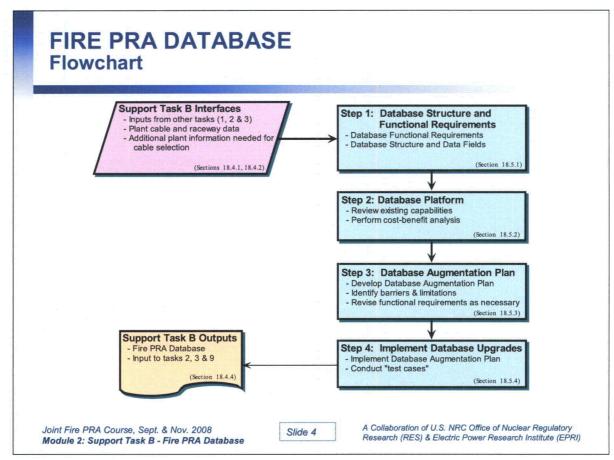
A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

	AILURE MODE LIKI tep 4: Failure Mode Pr	ELIHOOD ANALYSI	
Failure Code	Estimated Probability (Calculated)	Estimated Probability (From Table 10-2)	· · · · · · · · · · · · · · · · · · ·
SO (Open)	0.33	0.62	
Fire PRA Course, Sept. & i le 2: Tesk 10 - Circuit Fai	llura Mada Likalibaad Stida 20 A	Collaboration of U.S. NRC Office of Nucleer Regulatory search (RES) & Electric Power Research Institute (EPRI)	· · · · · ·

SESSION 5: Support Task B, Fire PRA Database

Slide 1 Notes: USNRC EPRI ELECTRIC POWER RESEARCH INSTITUTE $\mathbf{\nabla}$ SAIC **EPRI/NRC-RES FIRE PRA** METHODOLOGY Module 2: Support Task B - Fire PRA Database D. Funk - Edan Engineering Corp. F. Wyant - Sandia National Laboratories Joint RES/EPRI Fire PRA Course July and August 2007 Palo Alto, CA oration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI) Slide 2 Notes: . **FIRE PRA DATABASE** Purpose & Scope · Identify Required Database Functionality Assess Capability of Existing Systems

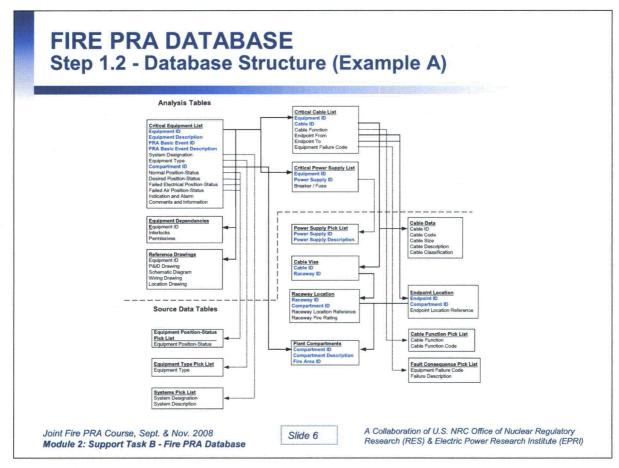
- Implement Structured Process to Obtain the Required
 Database Capability
- New Software and Data Management Tools are Finding Their Way Into the Market


Joint Fire PRA Course, Sept. & Nov. 2008 Module 2: Support Task B - Fire PRA Detabase Slide 2 A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

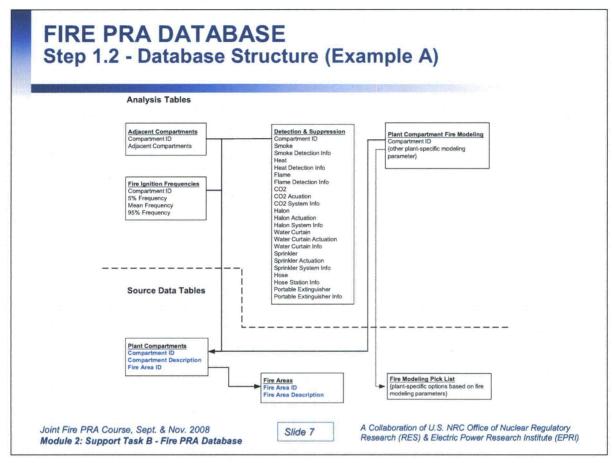
Notes:

5

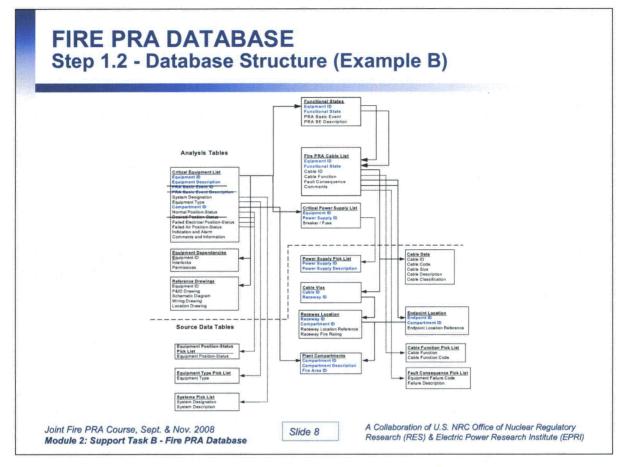
FIRE PRA DATABASE	
Task is Distinctly Different from Other Tasks	
Essential Element of PRA	
 Proposed Methods Require Manipulation and Correla Amounts of Data 	Ition of Large
- Must be Efficient and User Friendly for Effective Impl	ementation
 Manual Analysis Not Practical 	

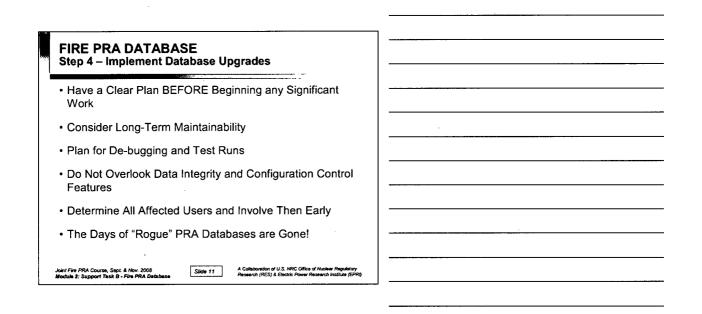


	٦
FIRE PRA DATABASE Step 1.1 - Database Functional Criteria	
Data Input Criteria	
– In what shape and format is existing data?	
– How and who will entered and control data?	
– Will data be shared by separate groups? If so, who can change data?	
Data Output Criteria	
Define Required Output Reports	· · · · · · · · · · · · · · · · · · ·
- Define Sort and Query Options	
	· ·
Joint Fire PRA Course, Sepl. & Nov. 2008 Module 2: Support Task 9 - Fire PRA Database Module 2: Support Task 9 - Fire PRA Database	
	· · · · · · · · · · · · · · · · · · ·


Notes:

2-48




Notes:

FIRE PRA DATABASE Step 2 - Database Platform	
Decide on Platform for Database Existing System New Stand Alone System Upgrade Existing System Combination of Existing and New	
 Vendors are Responding to the Call for New and Improved Software Functionality Highly Integrated Solutions are Emerging as the Standard for NFPA 805 Plants Seamless Link to Fire PRA Software is in the Works But Not Yet Available as Production Software 	· · · · · · · · · · · · · · · · · · ·
Joint Fire PRA Course, Sept. & Nov. 2008 Module 2: Support Task B - Fire PRA Database Skide 9 A Collaboration of U.S. NRC Office of Nucleer Regulatory Research (RES) & Decric Power Research institute (EPR)	

Slide 10

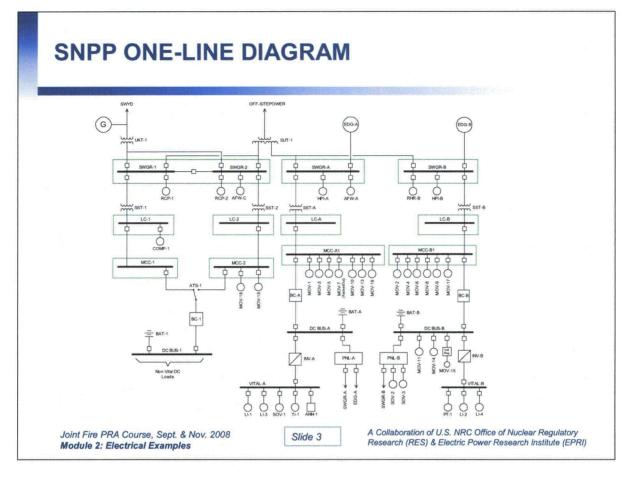
Notes:

_	
100	FIRE PRA DATABASE Step 3 - Database Augmentation Plan
1	Augmentation Plan is Based on the Results of Step 2
	 Formalize Process for Upgrades/Changes
	 Determine Necessary Resources This Effort Can Innocently Affect Many Plant Organizations The Cost, Resources, Schedule, Training, Procedural Changes and Overall Impact of Major Software Changes ALWAYS Seems to be Underestimated
	 Involve IS/IT Department from the Beginning
	Joint Fire PRA Course, Sept. & Nov. 2008 Side 10 A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

SESSION 6: Electrical Exercises Overview

	Slide 1	Notes:
USN	RC EPRI ELECTRIC POWE	18
Sendia National Laboratories	SAIC annu Automa	n
	EPRI/NRC-RES FIRE PRA METHODOLOGY	
	Module 2: Electrical Examples	
	D. Funk - Edan Engineering Corp. F. Wyant - Sandia National Laboratories	
	Joint RES/EPRI Fire PRA Course September and November 2008 Bethesda, MD	
A Collaboration of U.S. NR	C Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EP	R() ,
.		

Slide 2


Notes:

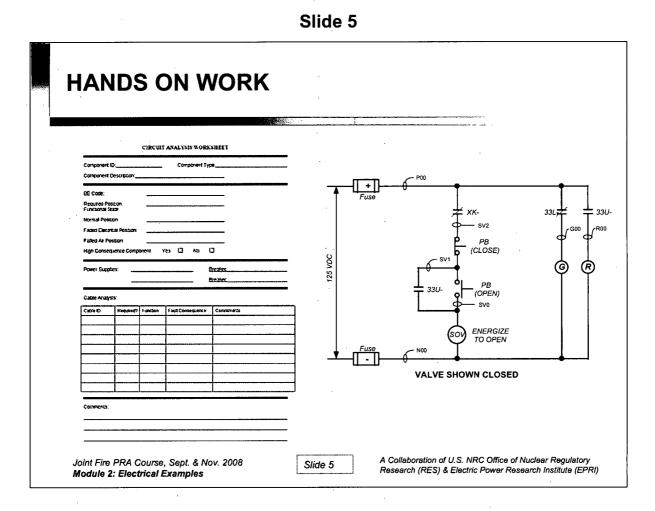
OVERVIEW OF EXAMPLES

- Provide Hands-On Practical Experience
- Cover Many (But Not All) Typical Cases
- Exposure to Typical Problems and Decisions
- Appreciation for Challenges and Trade-Offs
- A Worn Out Expression, Yes...But for Circuit Analysis the "Devil <u>is</u> in the Details"

Joint Fire PRA Course, Sept. & Nov. 2008 Module 2: Electrical Examples Slide 2 A Collaboration of U.S. NRC Office of Nuclear Regulatory Research (RES) & Electric Power Research Institute (EPRI)

SI	id	е	3

Notes:


SI	ide	4
----	-----	---

· 、

			1	
Example No.	Component	Description of Analysis	NUREG/CR-6850	Comments
1	AOV-1 (SOV-1)	Std AC Solenoid Control Circuit	No	Multi-function component - analyzed for open and close
2	AOV-3 (SOV-3)	Std DC Solenoid Control Circuit	Yes - Figure I-2	Spurious only analysis
3	MOV-9	Typical MOV Control Circuit	Yes - Figure I-4	Functional analysis - change of position required
4	MOV-15	Double Pole DC Motor Control Circuit	Yes - Figure I-6	Functional analysis - change of position required
5	MOV-13	Ungnd AC, Inverted MOV Control Circuit	Yes - Figure I-8	Functional analysis - change of position required
6	MOV-10	Ungnd AC MOV Control Circuit	Yes - Figure I-10	Functional analysis - change of position required
7	MOV-8	MOV Control Circuit w/ Dual Controls	Yes - Figure I-12	Spurious only, classified as high consequence component
8	MOV-11	Typical DC MOV Control Circuit	No	Functional analysis - change of position required
9	MOV-16	Typical MOV Control Circuit	Yes - Figure I-4	Spurious Only
10	PI-1	Instrument Circuit	No	Indication only
11	ANN-1	Annunciator Circuit	No	No false indication
12	HPI-B	4.16 kV Motor	No	Functional analysis
13 .	COMP-1	480 V Motor	No	Functional analysis
14	SWGR-B ·	4.16 kV Bus	No	Multiple source options
15	LC-B	480V LC	No	Functional analysis
16	MCC-1B	480V MCC	No	Functional analysis

Notes:

2-57

Notes:

3 EXAMPLE EXERCISES

CIRCUIT ANALYSIS WORKSHEET xercise 1 (first part)					
Component ID: AOV-1 (SC	OV-1)		Component Type:	AOV	
Component Description: Po	wer-Operated	d Relief \	Valve		
BE Code:	AOV-1_T	О (РС	DRV AOV-1 TRANSFERS	OPEN)	
Required Position: Functional State	CLOSED				
Normal Position:	CLOSED				
Failed Electrical Position:	CLOSED				
Failed Air Position:	CLOSED				
High Consequence Component	Yes 🗌] No			
Power Supplies:	<u>B</u>	reaker:			
	<u>B</u>	reaker:			

Cable ID	Required?	Function	Fault Consequences	Comments

Comments:

CIRCUIT ANALYSIS WORKSHEET Exercise 1 (second part)					
Component ID: AOV-1 ((SOV-1)		Comp	onent Type:	AOV
Component Description:	Power-Oper	ated Re	lief Val	ve	
BE Code:	AOV	-1_FTO	(POR)	AOV-1 FAILS TO (OPEN)
Required Position: Functional State	OPE	N			
Normal Position:	CLO	SED			
Failed Electrical Position:	CLO	SED			
Failed Air Position:	CLO	SED			
High Consequence Componer	nt Yes		No		
Power Supplies:		Break	er:		
		Break	er:		

.

Cable Analysis

Cable ID	Required?	Function	Fault Consequences	Comments
	· · · · · · · · · · · · · · · · · · ·			

Comments:

Exercise 2	
Component ID: AOV-3 (SOV	7-3) Component Type: AOV
Component Description: Char	ging Pump Injection Valve
BE Code:	AOV-3_FTC (AOV-3 FAILS TO CLOSE)
Required Position: Functional State	CLOSED
Normal Position:	OPEN
Failed Electrical Position:	CLOSED
Failed Air Position:	CLOSED
High Consequence Component	Yes 🗌 No 🖾
Power Supplies:	Breaker:
	Breaker:

Cable ID	Required?	Function	Fault Consequences	Comments

Comments:

CIF Exercise 3	RCUIT AN	IALYSI	S WOF	RKSHEET	
Component ID: MOV-9			Com	ponent Type:	MOV
Component Description: Hig	gh- Press	ure Inje	ection	Valve	
BE Code:	MOV	-9_FTO		(MOV-9 FAILS	TO OPEN)
Required Position: Functional State	OPE	N			
Normal Position:	CLOS	SED			
Failed Electrical Position:	AS-IS	6			
Failed Air Position:	N/A				
High Consequence Component	Yes		No	\boxtimes	
Power Supplies:		Brea	ıker:		
		Brea	iker:		

ļ

Cable Analysis

Cable ID	Required?	Function	Fault Consequences	Comments
			······································	
			• • • • • • • • • • • • • • • • • • •	

Comments:

CIRCUIT ANALYSIS WORKSHEET Exercise 4								
Componer	nt ID: N	10V-15	oonent Type:	MOV				
Componer	nt Descriptior	: AFW	Steam	Inlet T	hrottle	Valve		
BE Code:			MOV	-15_FT	0	(MOV-15 F	AILS TO OPEN)	
Required Position: Functional State			THR	THROTTLED				
Normal Pc	sition:		CLO	CLOSED				
Failed Elec	ctrical Positic	n:	AS-IS					
Failed Air	Position:		N/A	N/A				
High Cons	equence Co	mponent	Yes		No			
Power Sup	oplies:			Brea	ker:			
				Breaker:				
Cable Ana	llysis							
Cable ID	Required?	Function	Fault	Consec	luences	s C	Comments]
				· · · ·				1

Comments:

Exercise 5	CIRCUIT ANALYSIS WORKSHEET Exercise 5							
Componer	nt ID: N	10V-13		Comp	onent Type: MOV			
Componer	nt Description	: POR\	/ Block Valve	1				
BE Code: MOV-13_FTC (MOV-13 FAILS TO CLOSE)								
Required Position: Functional State			OPEN / CLC	OPEN / CLOSED				
Normal Po	sition:		OPEN		•			
Failed Elec	ctrical Positio	n:	AS-IS					
Failed Air	Position:		N/A					
High Cons	equence Cor	mponent	Yes	No	\boxtimes			
Power Sup	oplies:		Brea	aker:				
			Brea	aker:				
Cable Ana	lysis							
Cable ID	Required?	Function	Fault Conse	quences	Comments			

Comments:

Exercise 6		
Component ID: MOV-10 Component Description: AFW	·	onent Type: MOV /alve
BE Code:	MOV-10_FTO	(MOV-10 FAILS TO OPEN)
Required Position: Functional State	OPEN	
Normal Position:	CLOSED	
Failed Electrical Position:	AS-IS	
Failed Air Position:	N/A	
High Consequence Component	Yes 🗌 No	
Power Supplies:	Breaker:	
	Breaker:	<u></u>

CIRCUIT ANALYSIS WORKSHEET

Cable Analysis

Cable ID	Required?	Function	Fault Consequences	Comments

Comments:

CIRCUIT ANALYSIS WORKSHEET Exercise 7						
Component ID: MOV-8	Component Type: MC	V				
Component Description: RHR	Outboard Suction Valve					
BE Code:	MOV-8_TO (MOV-8 TRANSF	ERS OPEN)				
Required Position: Functional State	CLOSED					
Normal Position:	CLOSED					
Failed Electrical Position:	AS-IS					
Failed Air Position:	N/A					
High Consequence Component	Yes 🖾 No 🗌					
Power Supplies:	Breaker:	· · · · · · · · · · · · · · · · · · ·				
	Breaker:					

Cable ID	Required?	Function	Fault Consequences	Comments
		<u></u>		
		· · · · · · · · · · · · · · · · · · ·		

Comments:

·

Exercise 8			•		
Component ID: MOV-11 Component Description: AFW	Discha	arge Iso		ponent Type: Valve	MOV
BE Code:	MOV	-11_FT	o	(MOV-11 FAILS	TO OPEN)
Required Position: Functional State	OPEI	N			
Normal Position:	CLO	SED			
Failed Electrical Position:	AS-IS	6			
Failed Air Position:	N/A				
High Consequence Component	Yes		No	\boxtimes	
Power Supplies:		Brea	aker:		
<u></u>		Brea	aker:		

CIRCUIT ANALYSIS WORKSHEET

Cable Analysis

Cable ID	Required?	Function	Fault Consequences	Comments
	-			
				· · · · · · · · · · · · · · · · · · ·

Comments:

CIRC Exercise 9		S WORK	SHEET
Component ID: MOV-16	Comp	onent Ty	vpe: MOV
Component Description: AFW	Test Line Isol	ation Va	lve
BE Code:	MOV-16_TO	<u> </u>	(MOV-16 TRANSFERS OPEN)
Required Position: Functional State	CLOSED		
Normal Position:	CLOSED		
Failed Electrical Position:	AS-IS		
Failed Air Position:	N/A		
High Consequence Component	Yes 🗌	No	
Power Supplies:	Brea	ker:	······
	Breat	ker:	

Cable ID	Required?	Function	Fault Consequences	Comments
ad fac (10) -				
· · · · · · · · · · · · · · · · · · ·				

Comments:

Exercise 10				
Component ID: PI-1		Compon	ent Type:	Instrument
Component Description:	RCS Pressur	e	н	
BE Code:	PI-1_FL	(1	RCS Pressu	re Indication Fails High)
Required Position: Functional State	AVAILABLE			
Normal Position:	AVAILABLE			
Failed Electrical Position:	LOW			
Failed Air Position:	N/A			
High Consequence Compon	ent Yes		o 🛛	
Power Supplies:		Breaker	•	
,		Breaker		

CIRCUIT ANALYSIS WORKSHEET

Cable Analysis

Cable ID	Required?	Function	Fault Consequences	Comments
			enser	

Comments:

.

Exercise 11	CIRC	UIT AN	IALYSI	S WOR	KSHEE	ET	
Component ID:	NN-1		Com	oonent ⁻	Туре:	Annunciator	-
Component Description	n: AFW	Motor	High To	empera	ature		
BE Code:		ANN-	·1_FH	(AFV	V Pump	Motor Spurious High An	 n)
Required Position: Functional State		NON	-SPURI	OUS			
Normal Position:		AVAI	LABLE				
Failed Electrical Position	on:	UNA	VAILAE	BLE		х	
Failed Air Position:		N/A					
High Consequence Co	mponent	Yes		No	\boxtimes		
Power Supplies:	, , , , , , , , , , , , , , , , , , ,		<u>Brea</u>	ker:			
	· · · · · · · · · · · · · · · · · · ·		Brea	ker:		· · · · · · · · · · · · · · · · · · ·	
Cable Analysis							
Cable ID Demuired?	Lunation	E ou lt	Canada		<u> </u>	Commonto	

Cable ID	Required?	Function	Fault Consequences	Comments

Comments:

CIRCUIT ANALYSIS WORKSHEET Exercise 12							
Componer	nt ID: H nt Descriptior	łPI-B	Componer Pressure Injection	•••	Pump		
BE Code:	HPIA_F	TS (HPI-A	Fails to Start)	HPIA_	FTR	(HPI-A Fails to I	Run)
Required I Functional		ON					
Normal Po	sition:	STAN	IDBY / ON				
Failed Ele	ctrical Positio	n: Off					
Failed Air	Position:	N/A					
High Cons	equence Cor	mponent	Yes 🗌 No				
Power Sup	oplies:		Breaker:				
			Breaker:				
Cable Ana	llysis						
Cable ID	Required?	Function	Fault Consequence	es	Com	ments	
	·						
						1	
		1. 1.1.10 /					

Comments:

.

.

Exercise 13						
Component ID: COMF Component Description:	P-1 Component Type: Compre Instrument Air Compressor	essor				
BE Code:	COMP-1_FTR (COMP-1 Fails to Run))				
Required Position: Functional State	CYCLE					
Normal Position:	CYCLE					
Failed Electrical Position:	Off					
Failed Air Position:	N/A					
High Consequence Component Yes 🗌 No 🔀						
Power Supplies:	Breaker:					
<u> </u>	Breaker:					

CIRCUIT ANALYSIS WORKSHEET

Cable Analysis

~

Cable ID	Required?	Function	Fault Consequences	Comments

.

Comments:

CIRCUIT ANALYSIS WORKSHEET

Not a numbered exercise – Exercise 14 is similar, but its BE Code is PNL-B EPS-4VBUSBF-2 (not BF-1) and its Required Position: Functional State is Energized from EDG-B (not SUT-1)

Component ID: SWGR-B		Component Type: Switchgear						
Component Description	n: Train	B 4160	V Swit	chgeai	٢			
BE Code:		PNL-I	B EPS-	4VBUS	SBF-1	(4KV E	BUS B FAUL	T)
Required Position: Functional State		ENER	RGIZED	FRON	I SUT-1			
Normal Position:		ENER	RGIZED	FROM	I SUT-1			
Failed Electrical Position	on:	Off						
Failed Air Position:		N/A						
High Consequence Co	omponent	Yes		No	\boxtimes			
Power Supplies:		<u> </u>	Brea	ker:				
			Brea	ker:				

Cable Analysis

Cable ID	Required?	Function	Fault Consequences	Comments

Comments:

Exercise 14	CIRCUIT ANALYSIS	WORKSHEET	-
Component ID: SWGI	R-B	Component Typ	e: Switchgear
Component Description:	Train B 4160V Swite	hgear	
BE Code:	PNL-B EPS-4VBUSE	3F-2 (4	4KV BUS B FAULT)
Required Position: Functional State	ENERGIZED FROM	EDG-B	
Normal Position:	ENERGIZED FROM	SUT-1	
Failed Electrical Position:	Off		
Failed Air Position:	N/A		
High Consequence Compor	ient Yes 🗌	No 🛛	
Power Supplies:	Break	er:	
	Break	er:	

Cable ID	Required?	Function	Fault Consequences	Comments

Comments:

(

,

Exercise 15		CIRCUIT ANALYSIS WORKSHEET
Component ID: LC Component Description:	С-В	Component Type: Load Center Train B 480 V Load Center
BE Code:		EPS-480VLCBF (480V LOAD CENTER B FAULT)
Required Position: Functional State		ENERGIZED
Normal Position:		ENERGIZED
Failed Electrical Position	I:	Off
Failed Air Position:		N/A
High Consequence Com	ipone	ent Yes 🗌 No 🛛
Power Supplies:		Breaker:
		Breaker:

,

Required?	Function	Fault Consequences	Comments
			· · ·
	Required?	Required? Function	

Comments:

Exercise 16						
Component ID: MCC-1B		Component Type:			МСС	
Component Description:	Trair	Train B 480 V Motor Control Center				
BE Code:		EPS-480MCCB1F			(480V MCC B1 FAULT)	
Required Position: Functional State	ENE	ENERGIZED				
Normal Position:	ENE	ENERGIZED				
Failed Electrical Position:	Off					
Failed Air Position:	N/A					
High Consequence Component	Yes		No	\boxtimes		
Power Supplies:		Brea	aker:			
		Brea	aker:	<u>_</u>		

Cable ID	Required?	Function	Fault Consequences	Comments
				······································
	<u> </u>			· · · · ·

Comments:

.

CIRCUIT ANALYSIS WORKSHEET

ſ

•

•

Circuit Analysis Example Summary

Example No.	Component	mponent Description of NUREG/CR- Analysis 6850		Comments	
1	AOV-1 (SOV-1)	Std AC Solenoid Control Circuit	No	Multi-function component - analyzed for open and close	
2	AOV-3 (SOV-3)	Std DC Solenoid Control Circuit	Yes - Figure I-2	Spurious only analysis	
3	MOV-9	Typical MOV Control Circuit	Yes - Figure I-4	Functional analysis - change of position required	
4	MOV-15	Double Pole DC Motor Control Circuit	Yes - Figure I-6	Functional analysis - change of position required	
5 .	MOV-13	Ungnd AC, Inverted MOV Control Circuit	Yes - Figure I-8	Functional analysis - change of position required	
6	MOV-10	Ungnd AC MOV Control Circuit	Yes - Figure I-10	Functional analysis - change of position required	
7	MOV-8	MOV Control Circuit w/ Dual Controls	Yes - Figure I-12	Spurious only, classified as high- consequence component	
8	MOV-11	Typical DC MOV Control Circuit	No	Functional analysis - change of position required	
9	MOV-16	Typical MOV Control Circuit	Yes - Figure I-4	Spurious only	
10	PI-1	Instrument Circuit	No	Indication only	
11	ANN-1	Annunciator Circuit	No	No false indication	
12	НРІ-В	4.16 kV Motor	No	Functional analysis	
13	COMP-1	480 V Motor	No	Functional analysis	
14	SWGR-B	4.16 kV Bus	No	Multiple source options	
15	LC-B	480V LC	No	Functional analysis	
16	MCC-1B	480V MCC	No	Functional analysis	

CIRCUIT ANALYSIS WORKSHEET

Component ID:			onent T	Гуре:
Component Description:				,,,,,,,,,,,
BE Code:				
Required Position:				
Normal Position:				
Failed Electrical Position:				
Failed Air Position:				
High Consequence Componer	nt Yes		No	
Power Supplies:				Breaker:
				Breaker:

Cable Analysis:

Cable ID	Required?	Function	Fault Consequence	Commments

Comments:

CIRCUIT ANALYSIS WORKSHEET

Component ID:_____

Continuation Sheet (____ of ____)

Cable Analysis:

Cable ID	Required?	Function	Fault Consequence	Comments

Appendices

Appendix A: Questions Asked in Module 2 Sessions

<u>NRC Disclaimer</u>: Appendix A is intended solely for use as part of a training tool. No portion represents NRC Conclusions or Regulatory Positions, and should not be interpreted as such.

Session 1:

QUESTION

How do the probability values assigned to certain events differ between Appendix R standpoints and probabilistic risk assessment (PRA)?

RESPONSE

If I had a motor-operated valve and Appendix R did an analysis in which it picked up a certain set of cables that were related to the desired function of that valve, which would generate a cable list. Historically, the guidelines there have been as such: if a valve was closed and an operator could open it and he could walk over and put the valve in the desired position, that was how we went for it. That's how the analysis was made. Of course, if there were contacts or portions of the circuit that could prevent you from doing that, by the rules of Appendix R, those were identified. The difference in PRA is that if a valve is normally closed and you wanted it open, there may be three or four ways that that valve could be opened. For example, an operator could go to a control switch or a safeguard signal could actuate, and each of these might have a contact within the circuit that could cause the valve to open. In addition, even regular interlocks could cause that valve to open. A PRA analysis would go in and determine that any type of operation that could open those valves, even by way of contacts, also affects the operation of this circuit. The failure of any of these mechanisms would not prevent the operator from opening the valve. Now, however, all of these other circuits must be evaluated to determine their effects on this component. The integrated nature of these circuits makes this evaluation quite a challenge.

QUESTION

The Appendix R analysis didn't account for necessary operator action; we were concerned mostly with the successful operation of warning signs. Is this similar for the PRA?

RESPONSE

From a PRA point of view, though, if the SI came on and they wanted that valve to reposition, they count on the SI actually repositioning that valve. They don't rely on the operator. Every time you have to rely on an operator, they have to credit the operator with diagnosing the problem, in the midst of all the commotion, and then going over and taking that action. A probability number, discussed in the Human Factors Analysis portion of this presentation, must be applied. Even though no circuit capacity has been lost, and the valve can still be opened, in the PRA world, it's very different. On-demand, that valve needs to be opened when given the signal by SI. So the key to this analysis is that if a valid SI signal is realized, then the valve must be opened on demand.

QUESTION

Are the analysts for task 3 and task 9 the same people?

RESPONSE

The people who do task 3 and task 9 are the same people.

QUESTION

Could we screen out certain aspects based on our knowledge of their importance in PRA?

RESPONSE

No. The ways tasks 3 and 9 are set up are meant to be deterministic. No screening is allowed based on importance at that stage. When we get into how important a cable is to the PRA model, a different group does that. What we did not want was for the electrical analysts to make a decision on what is important in the PRA model. No screening other than what can be screened deterministically by the actual circuit design.

Session 2:

QUESTION

Slide 3: Does fire PRA use alternate power supplies to switch power sources when analyzing events?

RESPONSE

Yes, they do. In fact, even more so than in Appendix R. If you take your appendix R analysis and multiply it by 5, you'll get the number of cross-ties in PRA. PRA solves the problem by having lots of different ways to accomplish the same thing. Where they have diverse options (like a bus that has multiple power supplies), that's a big win for them, whereas in Appendix R it may mean nothing. Diversity really works in their favor for reducing the core damage frequency numbers or conditional core damage probabilities. That same windfall doesn't exist in Appendix R.

QUESTION

Slide 5: But what if you take too many cables for a given component? How does this affect the conservatism of your answer?

RESPONSE

There would be no uncertainty with that. The cables you picked don't provide an uncertainty; in this case, the analysis would simply be too conservative for what you needed.

This is also a good question from a different angle. If I do a very conservative analysis from an electrical perspective and I pick all these cables and I do that for every component out there, I

have this highly conservative electrical analysis. You may think, "Well, that'll make your overall answer conservative, right?" Wrong. This is because if by the nature that you picked cables too conservatively and for expediency associated particular cables with equipment rather than dispositioning them and therefore need them, it's a "required" cable. If I do that for all my components, as I mentioned, you'll have a very conservative analysis. Keep in mind that this circuit analysis feeds into the model. The problem is that if you're too conservative in a systematic point of view, you could skew the results of the PRA to suggest that one particular area is highly risk-significant in comparison to another. Being too conservative in the circuit analysis could mislead the results of the PRA.

QUESTION

Slide 6: Is there a systematic framework for establishing the task 1 boundaries?

RESPONSE

The first task in the PRA, Task 3, is already available and done. When you do Task 1, setting up the boundaries for the fire PRA, ensure that what you're doing aligns with the preexisting data in the PRA database. If the electrical analysts establish partitions that do not align with the data in the database, it is too expensive to try to retroactively develop the database to align with the electrical analysts.

QUESTION

Slide 8: How do you deal with PRA analysts and electrical analysts viewing the same components different ways?

RESPONSE

This is a typical case for plants that are trying to establish a correlation up-front. Plants that fail to do this will find out on the back end of Task 9 that they'll have to pay for their indolence. One thing that we've started doing, which has proven to be extremely effective, is to arrange a meeting between the PRA analysts, the fire modelers, and the electrical analysts after the PRA equipment list is done. They must sit together and process every system component and every functional state. It sounds horribly detailed, but you would be amazed at how much comes out in those meetings. When you try to reconcile Appendix R and PRA and you see the same valve and both groups are trying to demonstrate that the plant runs safely and one group wants the valve open and the other wants it closed, it begs the question: "How can you both be right here?" The answer is that sometimes they are both right and you figure out what the reason for that was. In most cases, however, one group will admit that they had it wrong. One recommendation is that when completing task 2, build into your schedule time to have face-to-face interactions where you process every component and every functional state in great detail.

QUESTION

Slide 9: How should auxiliary components be included?

RESPONSE

Deterministically decide if the components can affect the desired functional state of the component in question.

QUESTION

Slide 10: What is a supercomponent and how is it employed in this context?

RESPONSE

Some components aren't actually components. Instead, they're systems of subcomponents that are better defined as a component. A perfect example is the load sequencer. One does not simply walk and touch the load sequencer. Instead, the sequencer is made of sundry subcomponents. Even though it's not a component proper, everyone thinks of it as a component.

Session 3:

QUESTION

Slide 5: what's the difference between thermoset and thermoplastic cables?

RESPONSE

The difference is largely in the insulation that protects the conductor, not necessarily the cable jacket.

QUESTION

Slide 5: When specifying a fire-resistant cable, does this imply a certain configuration?

RESPONSE

In a sense, it does imply the thermoset—only because those are the types of cable that are survivable under those conditions. However, it does not *a priori* define them as one particular type or another. Another very rugged material is a silicon rubber insulation. We tried several times to fail those during the CAROLFIRE tests and were not successful until we hit it with water.

QUESTION

Slide 5: When you talked about the cable, you spoke little about the jacket. Is that because the jackets on most of these cables are the same materials?

RESPONSE

The jacket's intent is not an electrical insulation. Instead, its purpose is to provide physical protection for the electrical insulators that surround the individual conductors. When you're pulling it through a conduit, sometimes that conduit has burrs or sticky things that will score the jacket and hopefully protect the insulation. It's a sacrificial material. It also binds the conductors together, making it easier to deal with a multi-conductor cable. Usually a binding tape will be

inside the jacket, just a plastic wrap to bind the strands together. Filler is also used to help maintain the roundness of the cable.

QUESTION

Slide 5: Is the shielding considered part of the jacket?

RESPONSE

This can be both ways. There are a few insulators where people will have a shield around the inside of the jacket, surrounding the thing. This is rare. Most cables, especially for instrumentation wire, shield twisted wire pairs with an aluminized mylar. This has minimal structural strength and is actually intended to provide protection against radio frequencies and other electromagnetic interference.

Just as an aside, if your cables are stacked in a tray, the uppermost cables will generally be the power cables, the next lower group would be control cables, and finally near the bottom are your instrumentation cables. The whole idea there is that the power cables tend to give off much more heat, and would likely be more prone to spontaneous combustion if a fault occurs.

QUESTION

Slide 5: Are cables generally given any sort of systematic designation on cables to specify their function?

RESPONSE

When doing a plant walkdown, generally your cable tray identifiers will have a letter or number within the identifier that indicates its service function, whether it's power, control, or instrumentation. Sometimes they use a variety of letters, not necessarily P, but maybe AB or M for power. C generally is used to designate control. Instrumentation is designated X or I or some other designator.

QUESTION

Slide 5: I'm told there are few spurious actuations in power cables.

RESPONSE

This is true. We will elaborate more as we cover the three-phase proper sequence hot short. The only other possibility would be for DC-powered circuits; since they're ungrounded, the possibility exists for a polarity conflict that would result in a short.

QUESTION

Slide 5: When do you have to consider inter-cable shorts?

RESPONSE

It doesn't matter what insulation type is in either cable, we don't consider it credible that an external short will be observed through the robust armor to interact with another protected

cable. The same is true for a cable in dedicated conduit sitting by itself. An interaction through the conduit by an outside source is, again, not credible. However, for both cases, you must still consider the intra-cable events.

QUESTION

But is inter-cable shorting still possible with thermoset cables?

RESPONSE

This is still credible. We did find one or two cases during CAROLFIRE where this happened.

QUESTION

But you said that thermoset cables only have issues with conductors and not with the jacket.

RESPONSE

The issue is with a cable-to-cable interaction between two thermoset cables.

QUESTION

And does it matter whether it's thermoplastic or thermoset?

RESPONSE

The existing guidelines indicate no difference between the two. However, we hope that with additional research we will show that the probability for interaction between the two cables is much less for thermoset than it is for thermoplastic.

QUESTION

What causes high-impedance faults?

RESPONSE

Fire damage. Again, it's somewhat of an artificial assumption that the cable will sit and short with long arcs. The arcing tends to suppress the current. It is actually a resistance to flow pathway.

QUESTION

Do we normally ground power cables?

RESPONSE

Yes. Through the equipment, it does see a ground. But these aren't normally grounded; instead, they run with the ground. This is a grounded electrical *system* because the alternative (ungrounded) cases are about the same.

Yes. I have a compressor motor here, and it needs to have the proper sequence (A-A, B-B, C-C) in order to operate. If it's an MOV, then in order to reverse direction, you have to reverse two of the phases.

QUESTION -

Slide 9: Earlier you talked about using tasks 3 and 9 together, thus removing a lot of cables from the appendix R safe shutdown list. On your first pass, about how much of the cables are you able to get rid of by looking at functional states?

RESPONSE

It depends on the failure mode of interest to the fire modelers who generated the component list, or what functional state is important, and then the circuit design plays a major role in which cables can be thrown out.

QUESTION

Slide 10: What does a screened compartment look like?

RESPONSE

That's where your interaction with the fire modelers comes from. They will break down the plant into a variety of compartments and affirm that certain ones are devoid of combustible materials or ignition sources where others are not. A screened compartment is one where the fire modelers have decided that there is no way a fire can occur in that compartment.

QUESTION

Slide 10: How do you define the "normal" state of the plant?

RESPONSE

One of the underlying assumptions of the whole PRA is that all events take place at-power.

QUESTION

Slide 11: We know that the analysis has to be done on a conductor basis. You've only identified the cable as far as the documentation goes, though.

RESPONSE

It will take different conductor actions to cause each of these possible events within the cables. However, for a particular cable, multiple events are listed as possible outcomes.

QUESTION

Slide 11: When looking at a particular consequence, can you work backwards to determine the possible initiating events?

RESPONSE

Fire damage to the cable can cause some event. For a particular cable, we want to diagnose it by looking at the overall list of events and discerning what the cable can cause a component to do. If it gives an erroneous indication by misleading the operator, is that important from a human factors standpoint? Perhaps. Therefore, it must be identified as a possible failure mode of this cable. If not, and if the operators plan to use procedures to verify the operating status of a particular component, then you'll probably only be looking for the spurious operation case, if that's a possibility. This will be determined by inspecting individual cables.

QUESTION

11: If you're done with the fire analysis on a cable and know which ones cause spurious operation, how do you make the final determination of what is risk-significant?

RESPONSE

It's not the decision of the electrical analysts, it's the systems analysts who make the determination about what should finally be included in the PRA and decide how risky a fire can be to their plant. They will have made a set of component selections that they believe are key to successfully operating their plant. All the electrical engineers do is identify those cables which could be affected by the fire in such a way as to result in unsuccessful operation of the plant.

QUESTION

So do the PRA analysts simply disregard the Appendix R analysis and form their component lists independently?

RESPONSE

When they form their component lists, they too go through the Appendix R components. If they fail to include an Appendix R component, they justify why. They, too, depend on previous analyses. However, they have a completely different rationale for their component selection.

QUESTION

How are inter-cable shorts affected by using the raceway system as the ground path?

RESPONSE

Based on experience, there may be intra-cable shorting long before one element shorts to ground, but by the time you have cables shorting across one another, we have generally seen a short to ground occur prior to that. So even if there isn't a ground conductor within the cable itself, and you're using your raceway as the ground path, it still applies.

Session 4:

QUESTION

What do you mean by a 50-percent margin of safety for the CPT?

RESPONSE

If this CPT is rated for no more than 150 percent of the normal power requirements for the circuit, including surge current, and the CPT is not overly sized, then you can credit the reduction in the probability of a spurious actuation. You'll see that reduction when we get to the tables. However, if you start getting a number of leakage current paths because the fire damages the cable, you'll start drawing down on the CPT to the point where it won't support a spurious actuation.

QUESTION

What happens when the CPT margin is greater than 150 percent? Do we analyze it without further consideration?

RESPONSE

Yeah, we don't formalize that as part of our process, but that's really the right way to do it. For example, if your normal power requirement is on the order of 100 V-A, and you've got a 300 V-A CPT out there, that violates the 150-percent rule. You really shouldn't take credit for the CPT. However, we don't deal with that in the decisionmaking process.

QUESTION

When are you able to allow the internal event risk contribution to be zero?

RESPONSE

If you can justify it by saying that there is no possibility of an internal shorting event and there is no way to get an intra-cable portion of that event, note it and use your external event (one only). But it is incumbent upon you to justify why you didn't use the primary shorting event.

QUESTION

What source do you use for the fire scenario when you have multiple neighboring compartments?

RESPONSE

If, in your plant, you have four neighboring compartments and only have fire concerns in two compartments; if you have a cable in a tray running through one fire hazard compartment into the other, but only the conduit exists in the second; then you would have had to do the Task 9 circuit analysis for that particular cable no matter where it ran, now the neighboring compartment issue does become important. Now, in the tray compartment, you would use the tray case. If, on the other hand, they wanted you to analyze the fire impact from the conduit compartment on spurious operation, then you go to the conduit.

QUESTION

What if you have a cable in a tray that extends partway into the room and the rest of the cable remains in conduit?

RESPONSE

You must then ask the modelers about their postulated fire scenario. Is the fire scenario more likely to affect the conduit, or is it more likely to affect the cable tray portion of it? If they say "both," then my suggestion would be to only investigate the one with the higher probability value.

QUESTION

Why would you use the table method at all to get probability values if it is so inaccurate?

RESPONSE

It changes the approach so that when you use the table method, you just go with the numbers that you have. Again, the differences in number of targets and sources and grounds play a role in the formula there. The table method has one nice aspect in that it is quick and dirty. We think it is overly conservative. However, it gives you a number, and you don't spend days working it out. You instead just go to the cable, write it down, and go to the next cable.

QUESTION

Where do you get the inputs for the PRA model (probability of ignition, severity, duration)?

RESPONSE

The basic probability number is used in the PRA model as whether or not a certain component will experience an operation and what impact that will have on the plant. There is no means right now of determining the duration, other than what the fire modelers predict for how long it will take to damage the cable. This turns around, then, and becomes an HRA issue, which is something rather alien to me.

QUESTION

What type of cable should we assume for PRA applications if we can't get in to look at them?

RESPONSE

For Appendix R and safety-related applications, my best guess would be that the great majority of cables are thermoset. But, because this fire PRA will also bring in balance-of-plant-type components and systems, the ratio for the fire PRA may bring the number of thermoplastic cables a little closer to the number of thermoset. Again, you need to consider whether or not you're talking about an older plant, where a lot of thermoplastic cables were used (i.e., pre Browns Ferry), or are you talking about a later version, like a Watts-Barr—something that uses almost exclusively thermoset. In any case, it's still a plant-specific issue.

Session 5:

QUESTION

Are the functional states of the cables in question described in the PRA database?

RESPONSE

We'd say that the answer to that is "yes" in the sense that it is clearly the intent of the database where the functional requirements of the database are defined to include the functional requirements of the critical cable elements that are required. It is the intent of the database to house the information developed through the circuit analysis project. The cable raceway information does not typically have that.

My experience to date is that some of the traditional stuff would always be in there—you know, the worksheet stuff. If you noticed, the worksheet didn't really cover that. I think what you'll see is that when Frank gets into the Task 10, as far as inter-cable, intra-cable, and all the subtleties and mechanistic things that go into Task 10, those tend to be more of a "here's a comment field, write down what you did" rather than one or the other. I think that part could be matured a little bit, certainly, but to this point, my experience or exposure hasn't been in instances where it was as rigorous as the task-end type of data that you're discussing, that I've seen for the other circuit analysis data. But, your point's still very valid that when all is said and done, you want to have some way to capture that in a fairly automated sense. We're trying to avoid going back and having volumes and volumes of paperwork that don't work with the database.

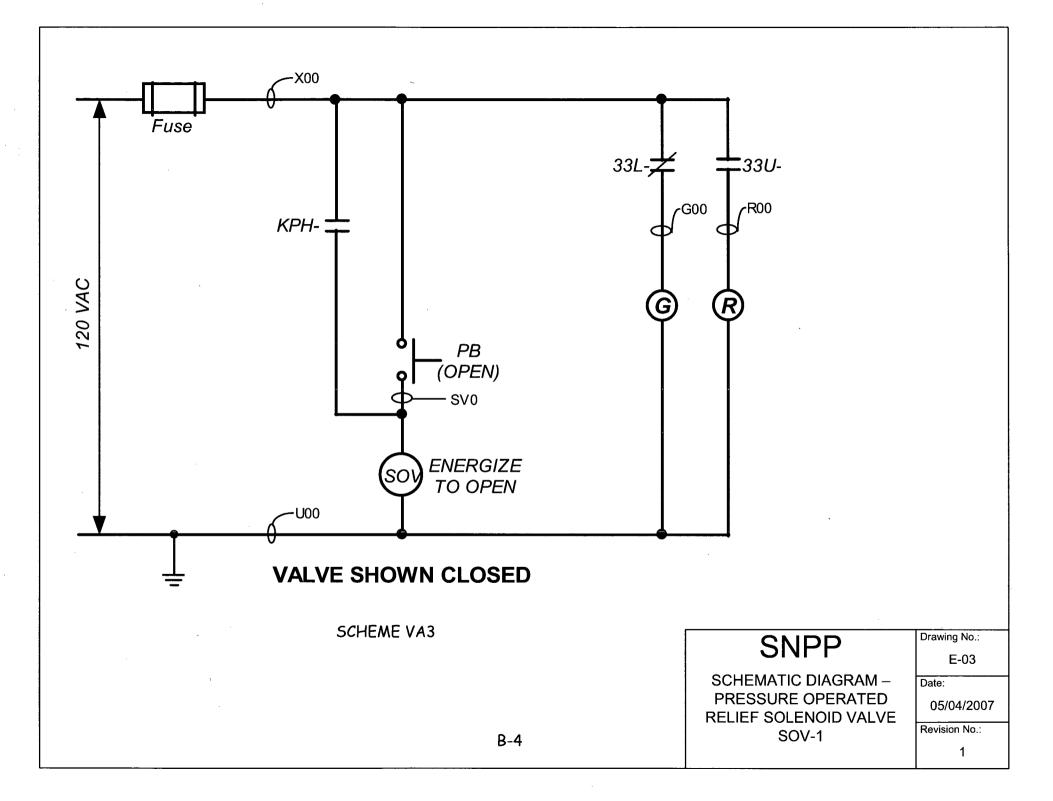
QUESTION

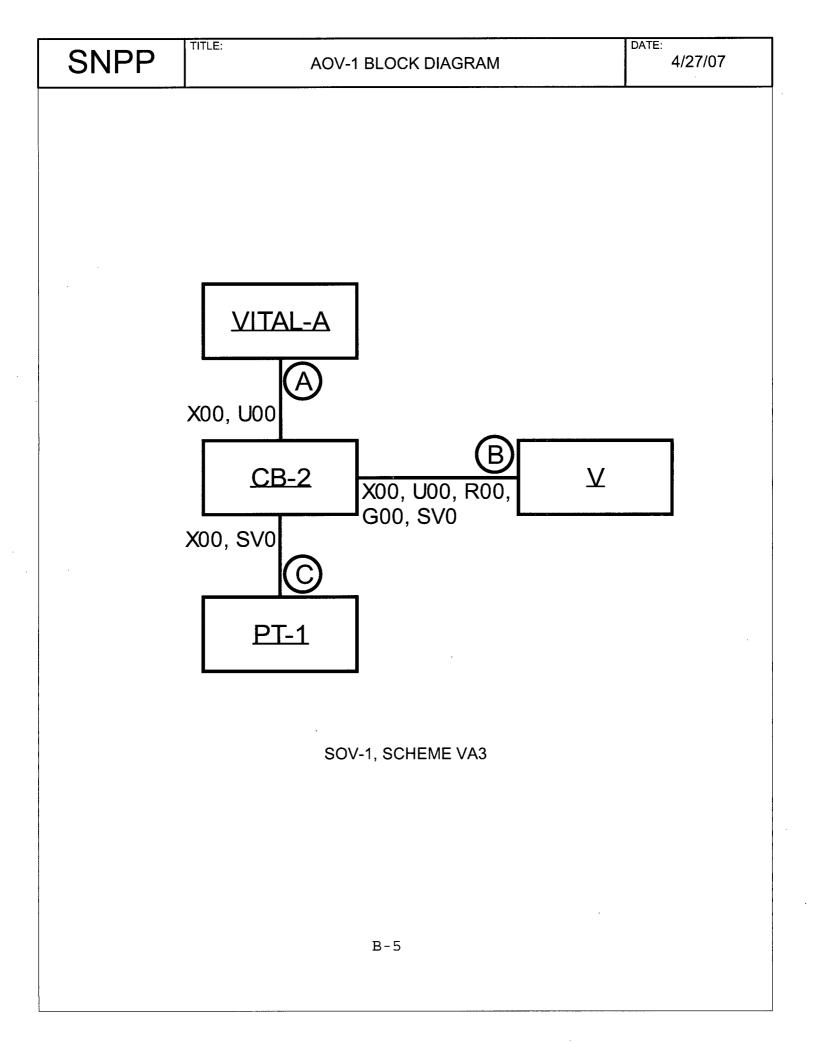
Rather than using the default position of all valves as "open, full power" because this results in inadequate results, could you use three conditions in your PRA: open, closed, and operating?

RESPONSE

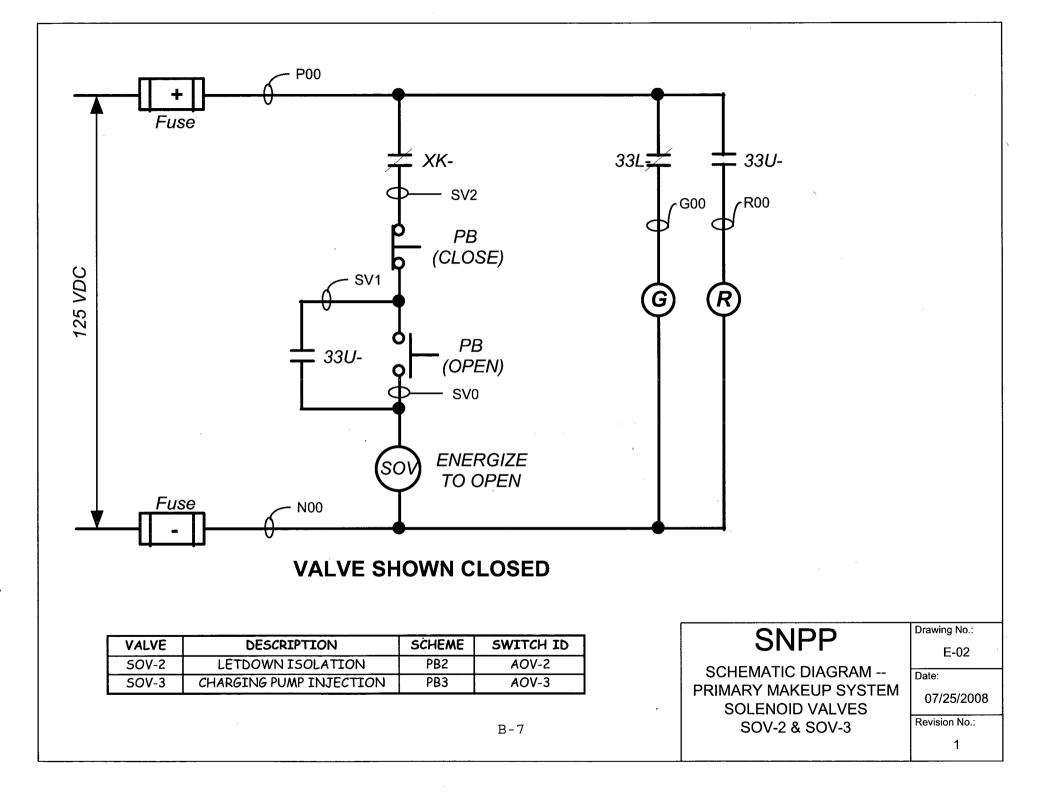
You could. You could define your operating conditions to cover all cases. That's where, when you sit down to develop your strategy, you'll sit down with these guys and know how their basic events are done. It can become amazingly complicated, based upon how basic events are captured. At the onset, the way basic events were first presented in the model just seemed silly. I didn't get it. After a while, though, when I got really familiar with what the PRA is trying to do, it makes more sense. Let me give you an example. If the initial state of a motor-operated valve is closed and the desired position is open, there may be two basic events for this event. I can't change their model every time I don't like the way it works for me electrically. If they have a basic event, called BE-1, where the valve fails to close, and BE-2, where the valve transfers open, then they split into two events the functioning of the valve. This becomes an embedded spurious actuation concern of a functional state. You may have to do two separate analyses for this valve every time you see that. If BE-2 is mapped under a different gate in the model, you may want to, because it will encompass a smaller subset of cables than BE-1. But when you consider 400 or 500 valves, it would cost a great deal of money to do this. Is that money well spent? It depends. If both events are mapped under the same gate in the electrical model, the dominant basic event will dominate and the other one will become meaningless. If you didn't

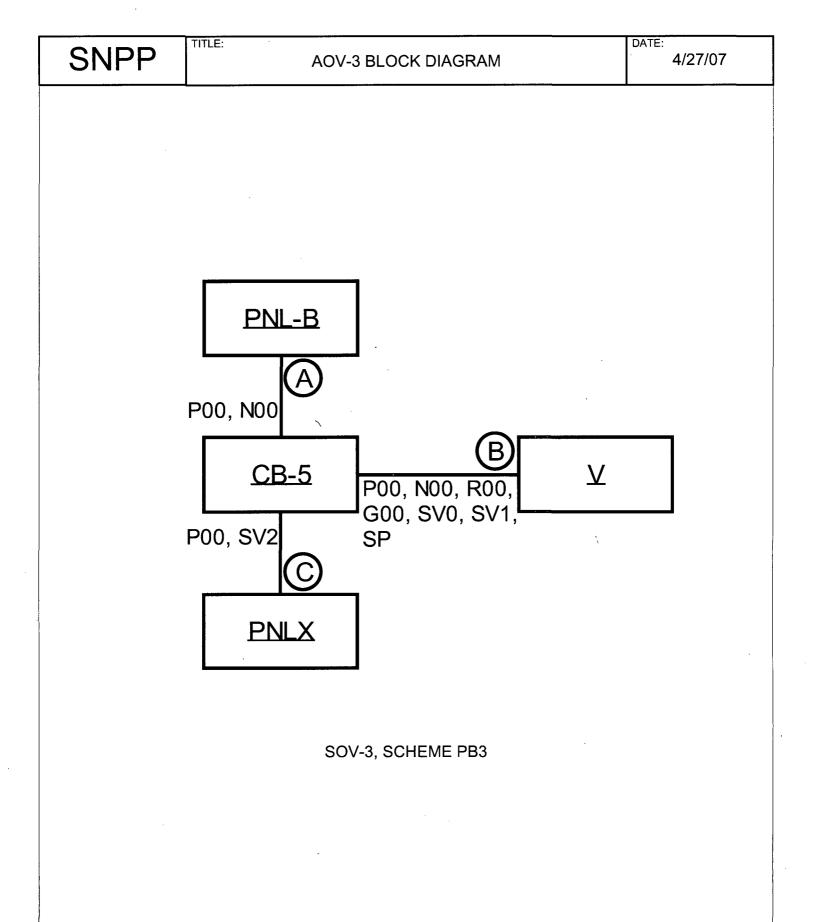
understand that you could do circuit analysis for 300-400 valves, it would be a lot of money and time for absolutely zero value. You really need to understand how the basic events line up. It's okay to map BE-2 to the circuit analysis for BE-1 for one functional state because the functional state encompasses the second one. You have case after case where it's just necessary to drive it down to a detailed level when doing the circuit analysis and making sure it gets mapped into the PRA and basic events. What seems to be simple is not. If you do your database correctly, it should be able to accommodate all the different iterations of the functional state. If you can't come to terms in an 805 project on the issue of what a functional state means, you just create another one, which checks 805, not PRA.


Appendix B: Exercise Problems and Solutions

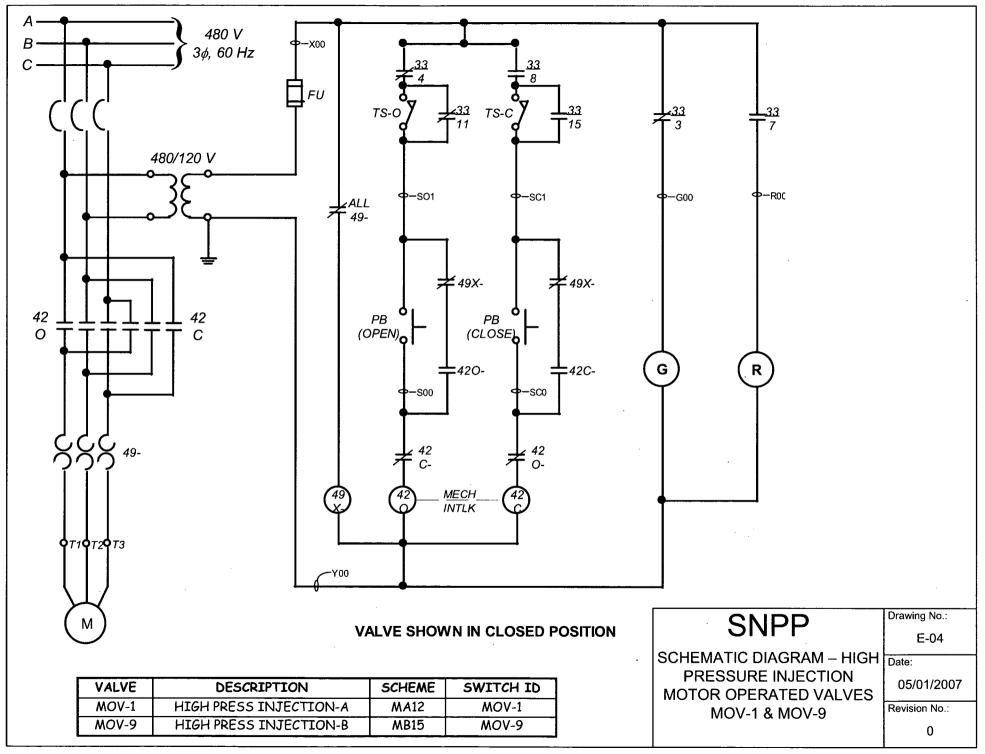

Exercises with Reference Figures

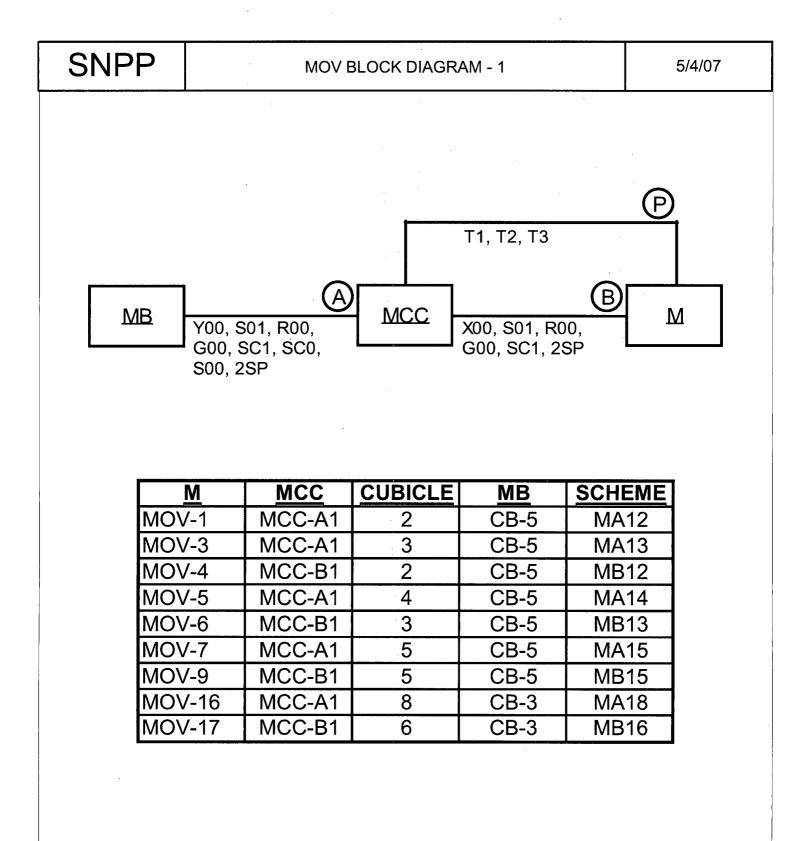
Component ID: AOV-1 (Se	OV-1)	Component Type:	AOV
Component Description: Po	wer Operated	Relief Valve	
BE Code:	AOV-1_TO	(PORV AOV-1 TRANSF	ERS OPEN)
Required Position: Functional State	CLOSED		
Normal Position:	CLOSED		
Failed Electrical Position:	CLOSED		
Failed Air Position:	CLOSED		
High Consequence Component	Yes 🗌 No		
Power Supplies:	· .	Breaker:	
		Breaker:	
Cable Analysis:		: :	


Cable ID	Required?	Function	Fault Consequence	Comments
				
			· · · · · · · · · · · · · · · · · · ·	


.

Component ID:	AOV	AOV-3 (SOV-3)		Component 7	Гуре:	AOV
Component Descrip	otion:	Charging	g Pump	Injection Valv	/e	
BE Code:		AOV-	3_FTC	(AOV-3 FAIL	S TO CLOS	SE)
Required Position: Functional State		CLOS	SED			
Normal Position:		OPEN	J			
Failed Electrical Po	sition:	CLOS	SED			
Failed Air Position:		CLOS	SED			
High Consequence	Compo	nent Yes	🗌 No			
Power Supplies: _		· · · ·		Break	ker:	
-	Breaker:					
Cable Analysis:						
Cable ID Rec	juired?	Function	Fault Co	onsequence	Comments	

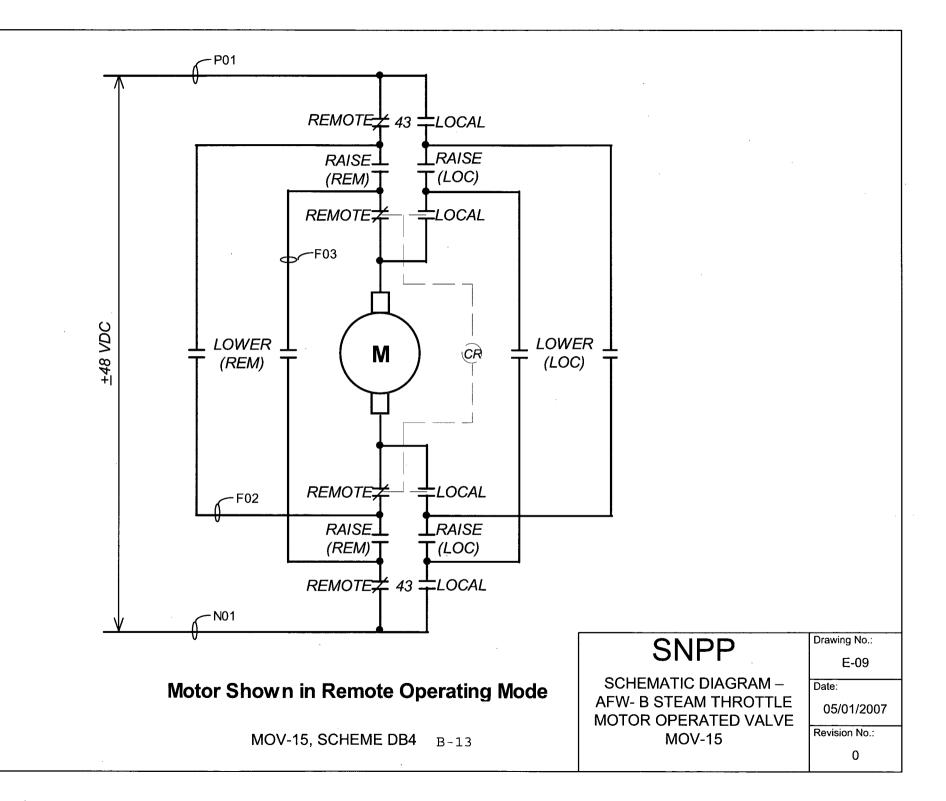

Component ID: MOV-9	C	omponent Type:	MOV
Component Description: Hig	gh Pressure Injec	ction Valve	
BE Code:	MOV-9_FTO	(MOV-9 FAILS TO O	PEN)
Required Position: Functional State	OPEN		
Normal Position:	CLOSED		
Failed Electrical Position:	AS-IS		
Failed Air Position:	N/A		
High Consequence Component	Yes 🗌 No 🛛]	
Power Supplies:		Breaker:	
		Breaker:	

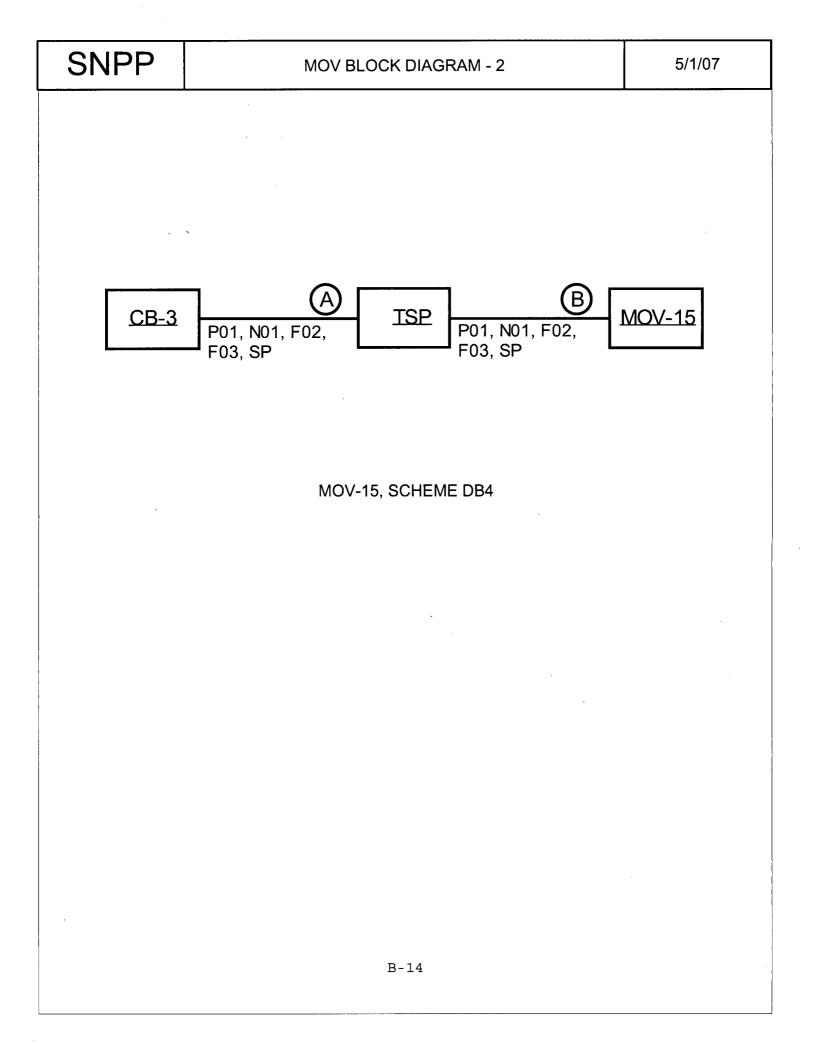

Cable Analysis:

Cable ID	Required?	Function	Fault Consequence	Comments

Comments:

-



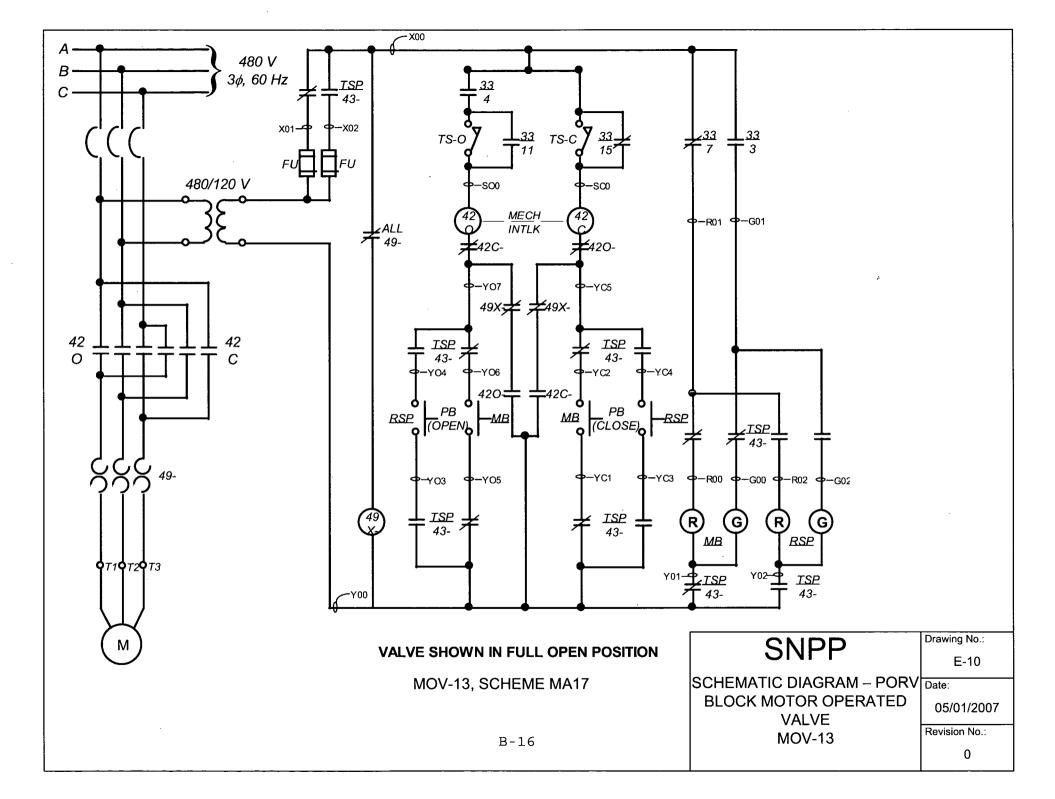


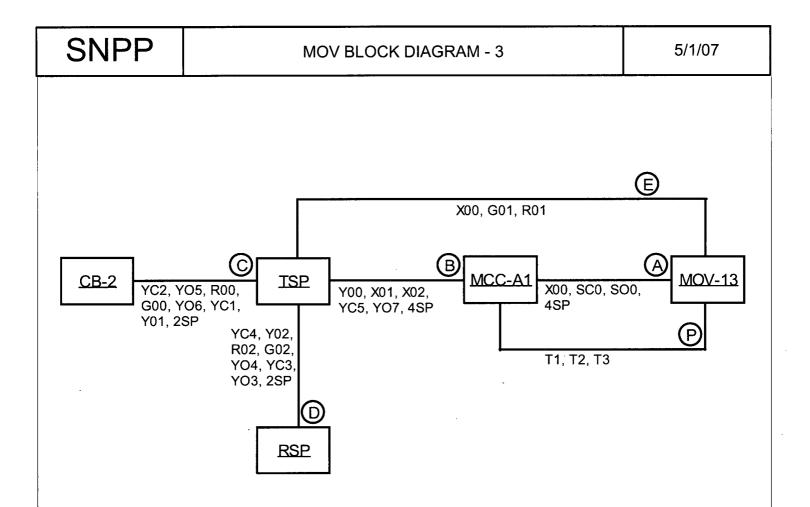
Component ID: MOV-15	Component Type: MOV
Component Description: AF	W Steam Inlet Throttle Valve
BE Code:	MOV-15_FTO (MOV-15 FAILS TO OPEN)
Required Position: Functional State	THROTTLED
Normal Position:	CLOSED
Failed Electrical Position:	AS-IS
Failed Air Position:	N/A
High Consequence Component	Yes 🗌 No 🖾
Power Supplies:	Breaker:
	Breaker:

Cable Analysis:

Required?	Function	Fault Consequence	Comments
		· ·	
	· · · · · · · · · · · · · · · · · · ·		
		· · · · · · · · · · · · · · · · · · ·	

Component ID: MOV-13	Component Type: MOV
Component Description: PC	ORV Block Valve
BE Code:	MOV-13_FTC (MOV-13 FAILS TO CLOSE)
Required Position: Functional State	OPEN / CLOSED
Normal Position:	OPEN
Failed Electrical Position:	AS-IS
Failed Air Position:	N/A
High Consequence Component	Yes 🗌 No 🖾
Power Supplies:	Breaker:
	Breaker:

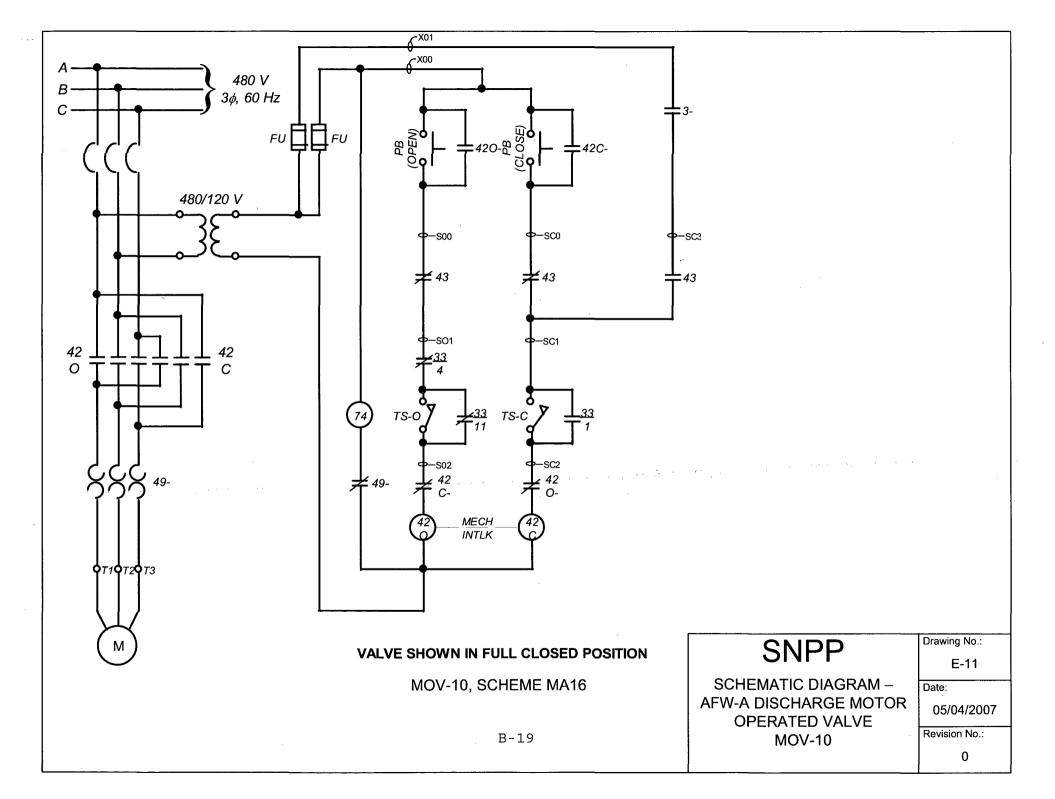

Cable Analysis:

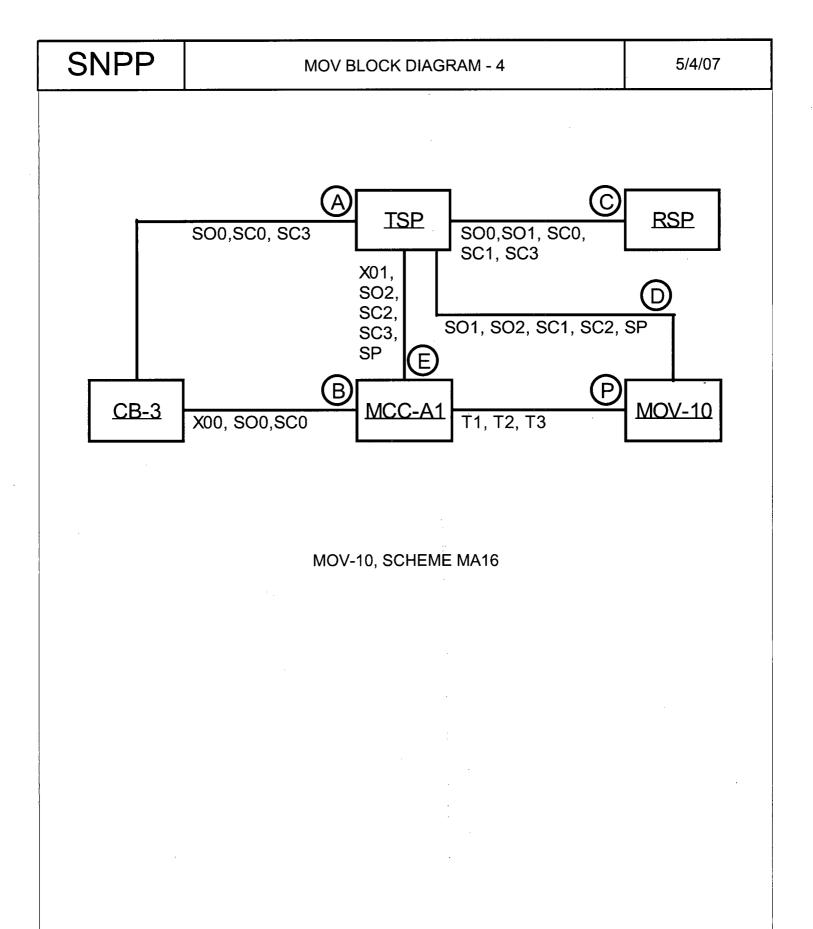

Required?	Function	Fault Consequence	Comments
		· · · · · · · · · · · · · · · · · · ·	
	Required?	Required? Function	

Comments:

.

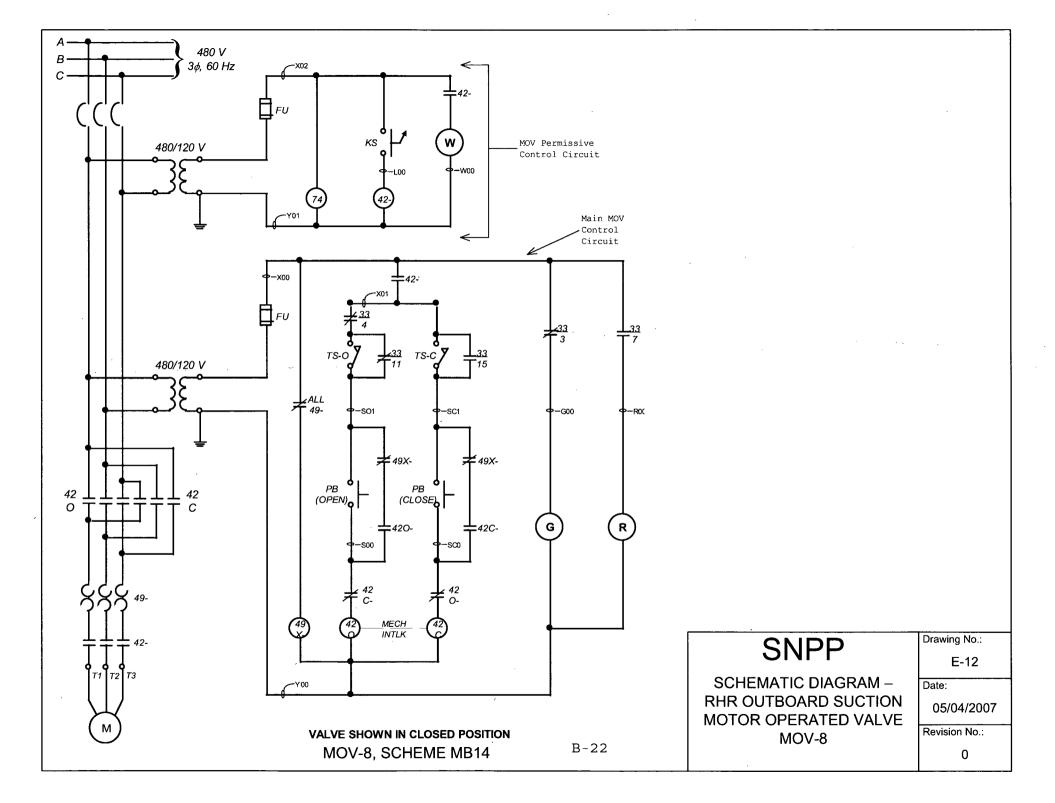
.

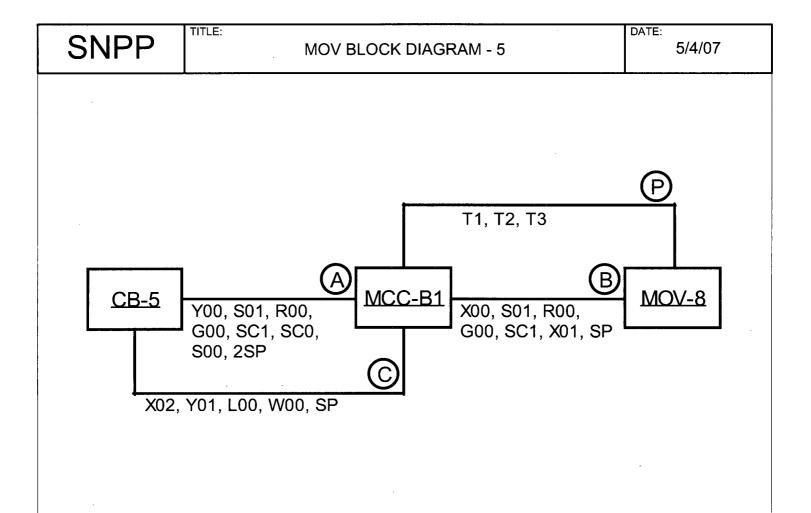



Component ID: MOV-10		Component Type:	MOV
Component Description: AF	W Discharge Isol	ation Valve	
BE Code:	MOV-10_FTO	(MOV-10 FAILS TO OPE	IN)
Required Position: Functional State	OPEN		
Normal Position:	CLOSED		
Failed Electrical Position:	AS-IS		
Failed Air Position:	N/A		
High Consequence Component	Yes 🗌 No 🛛		
Power Supplies:		Breaker:	
		Breaker:	

Cable Analysis:

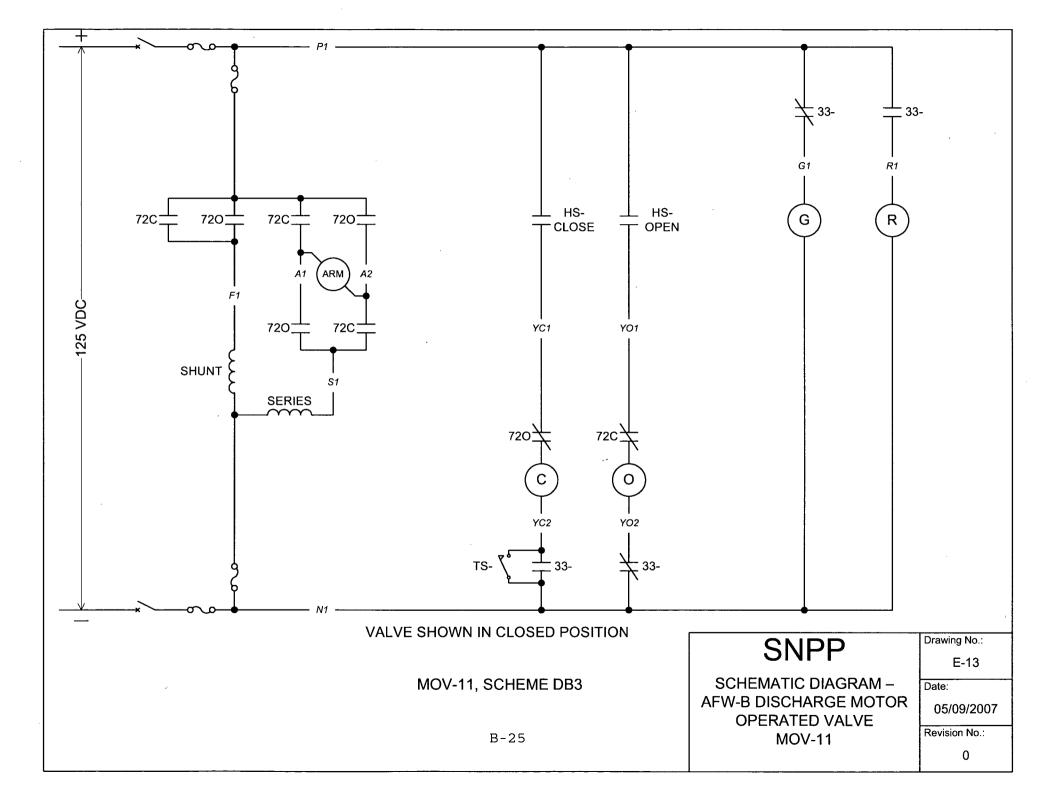
Cable ID	Required?	Function	Fault Consequence	Comments

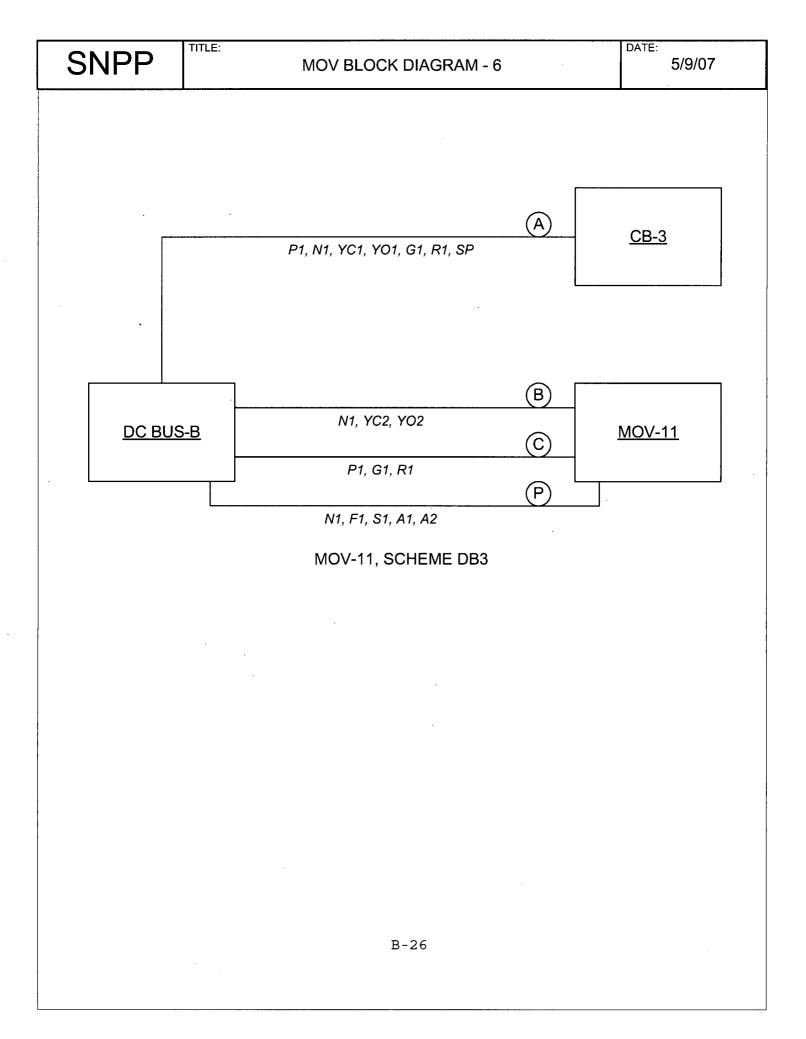

Comments:



Component ID	: MO \	/-8	Component	t Type:	MOV
Component De	escription:	RHR Out	board Suction Valv	e	
BE Code:		MOV	-8_TO (MOV-8		S OPEN)
Required Posit Functional Stat		CLOS	SED		·
Normal Positio	n:	CLOS	SED		
Failed Electrica	al Position:	AS-IS	3		
Failed Air Posit	tion:	N/A			
High Conseque	ence Compo	onent Yes	🛛 No 🗌		
<u></u>					
Power Supplies	s:		Brea	aker:	
			Brea	aker:	
Cable Analysis	:				
Cable ID	Required?	Function	Fault Consequence	Comments	

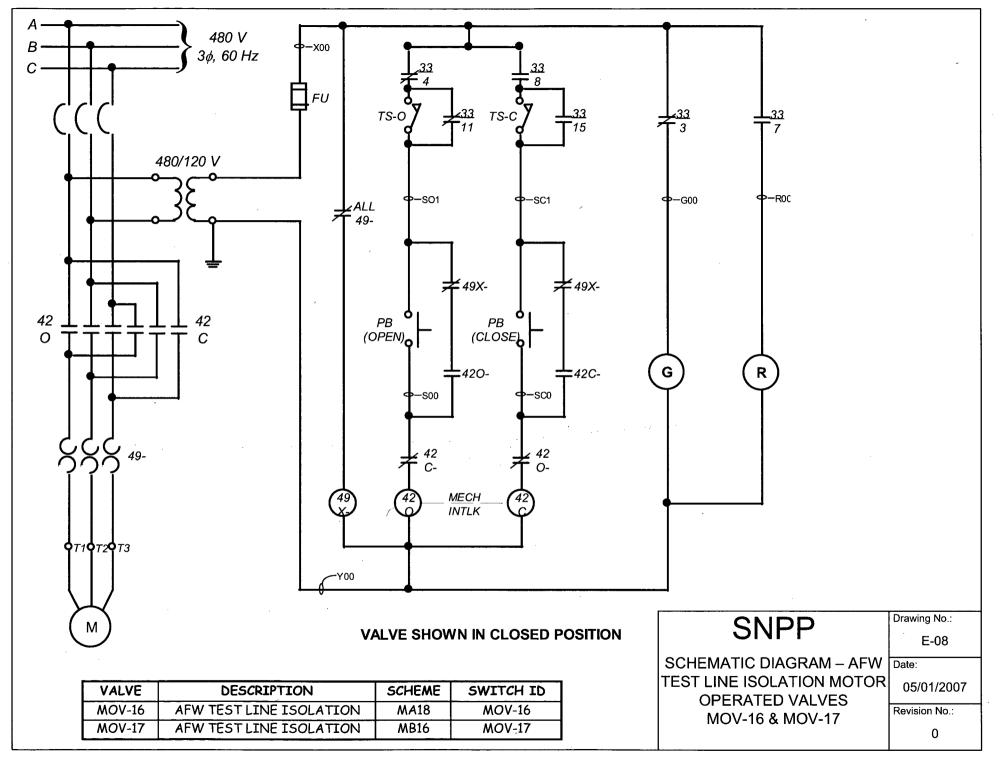
ŝ

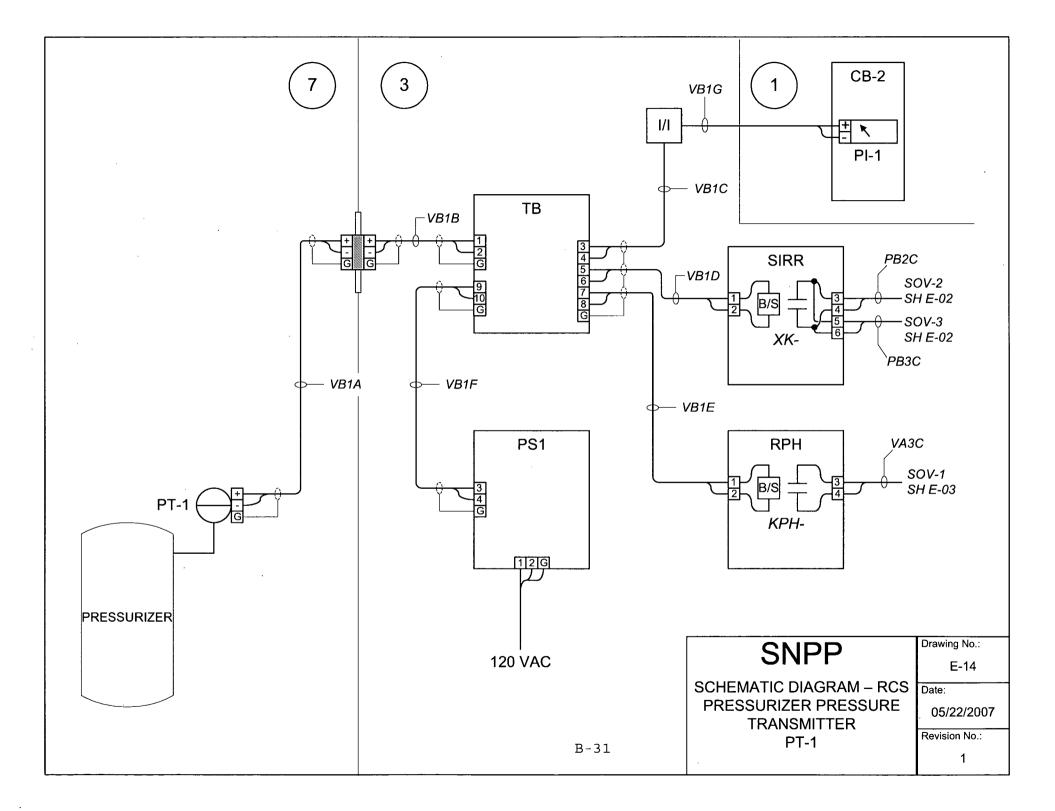

MOV-8, SCHEME MB14


Component ID: MOV-11		Component Type:	MOV	
Component Description: AF	W Discharge Isola	ation Valve		
BE Code:	MOV-11_FTO	(MOV-11 FAILS TO OPE	IN)	
Required Position: Functional State	OPEN			
Normal Position:	CLOSED			
Failed Electrical Position:	AS-IS			
Failed Air Position:	N/A			
High Consequence Component	Yes 🗌 No 🕅			
Power Supplies:		Breaker:		
		Breaker:		

Cable Analysis:

•

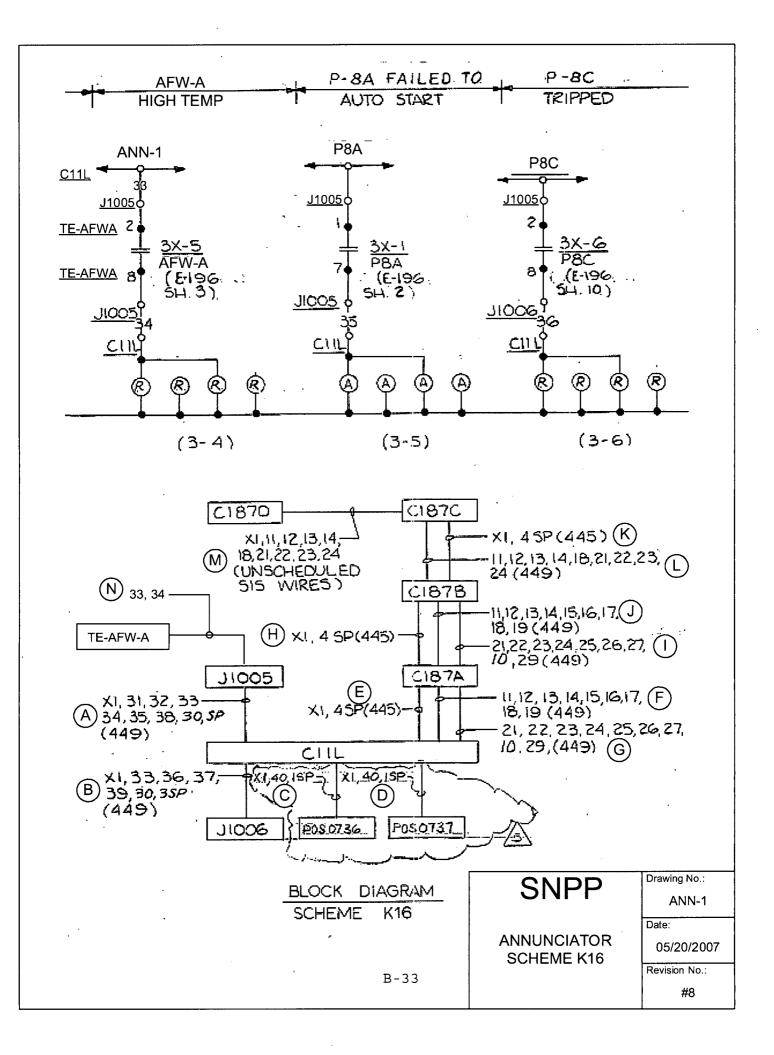

Cable ID	Required?	Function	Fault Consequence	Comments


Component ID: MOV-16			Compone	ent Type:	MOV		
Component De	escription:	AFW Te	st Line Isola	tion Valv	8		
BE Code:		MOV	′-16_TO	(MOV-16	MOV-16 TRANSFERS OPEN)		
Required Position: Functional State			CLOSED				
Normal Position:			CLOSED				
Failed Electrica	al Position:	AS-I	AS-IS				
Failed Air Posit	tion:	N/A					
High Conseque	ence Compo	onent Yes	🗌 No 🛛				
Power Supplies	s:			<u>Breal</u>	(er:		
				Break	ker:		
Cable Analysis:							
Cable ID	Required?	Function	Fault Conse	equence	Comments		

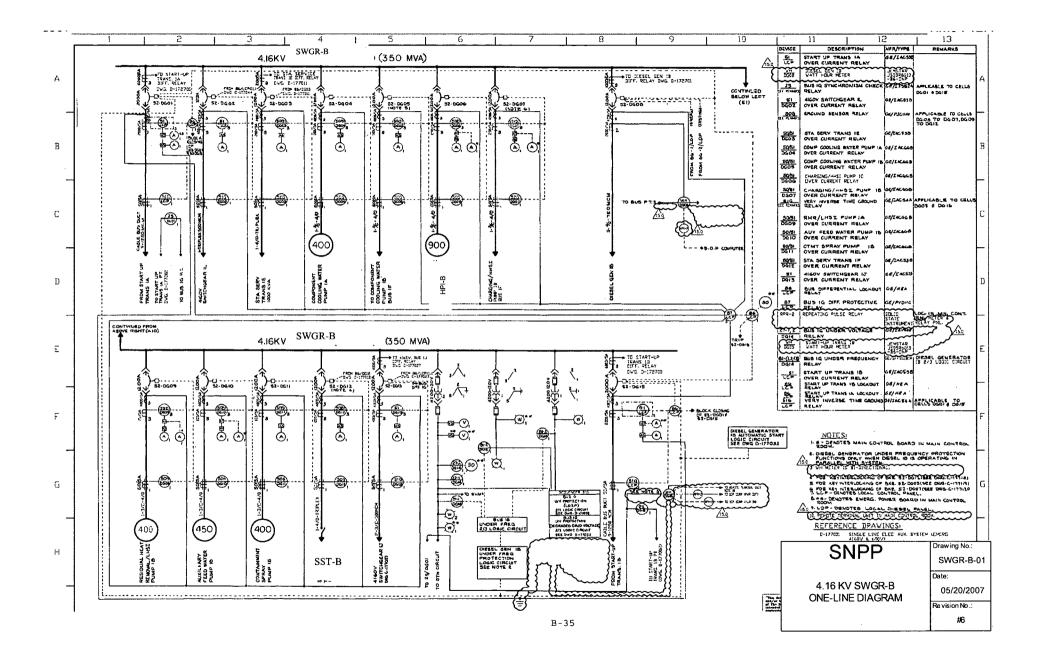
Comments:

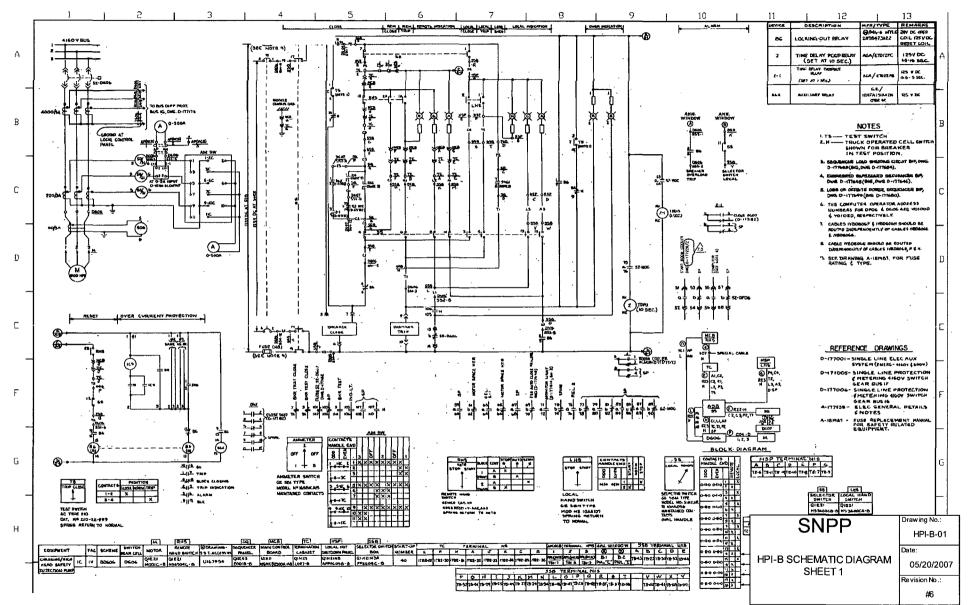
SNPP		MOV BLOCK DIAGRAM - 1								
MB Y00, S01, R00, G00, SC1, SC0, S00, 2SP MCC X00, S01, R00, G00, SC1, 2SP M										
	M	MCC	CUBICLE	MB	SCHEME					
MOV	/-1	MCC-A1	2	CB-5	MA12					
MOV		MCC-A1	3	CB-5	MA13					
MOV		MCC-B1	2	CB-5	MB12					
MOV		MCC-A1	4	CB-5	MA14					
MOV-6 MCC-B1 3 CB-5 MB13										
IMOV	/-0]									
		MCC-A1	5	CB-5	MA15					
	/-7		-							
MOV	/-7 /-9	MCC-A1	5	CB-5	MA15					

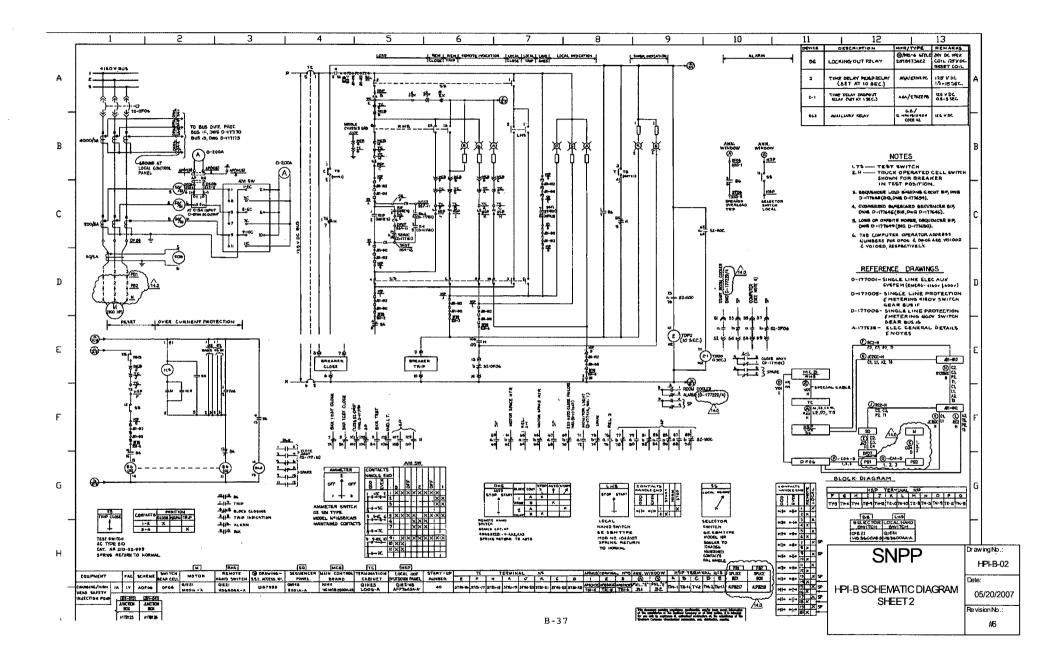
Component ID:	: PI-1		Compon	ent Type:	Instrument		
Component De	scription:	RCS Pres	ssure				
BE Code:		PI-1_	PI-1_FL (RCS Pressure Indication Fails High)				
Required Posit Functional Stat		AVAI	AVAILABLE				
Normal Position	n:	AVAI	AVAILABLE				
Failed Electrica	al Position:	ĹOW	LOW				
Failed Air Posit	tion:	N/A	N/A				
High Conseque	ence Compo						
Power Supplies			<u>Breal</u>	ker:			
			Breal	ker:			
Cable Analysis	:						
Cable ID	Required?	Function	Fault Consequence	Comments			
				1			


Component ID: ANN-1 Component Type: Annunciator Component Description: **AFW Motor High Temperature** (AFW Pump Motor Spurious High Ann) BE Code: ANN-1_FH **NON-SPURIOUS Required Position: Functional State** Normal Position: **AVAILABLE** Failed Electrical Position: UNAVAILABLE Failed Air Position: N/A High Consequence Component Yes 🗌 No 🖂 Power Supplies: Breaker: Breaker:

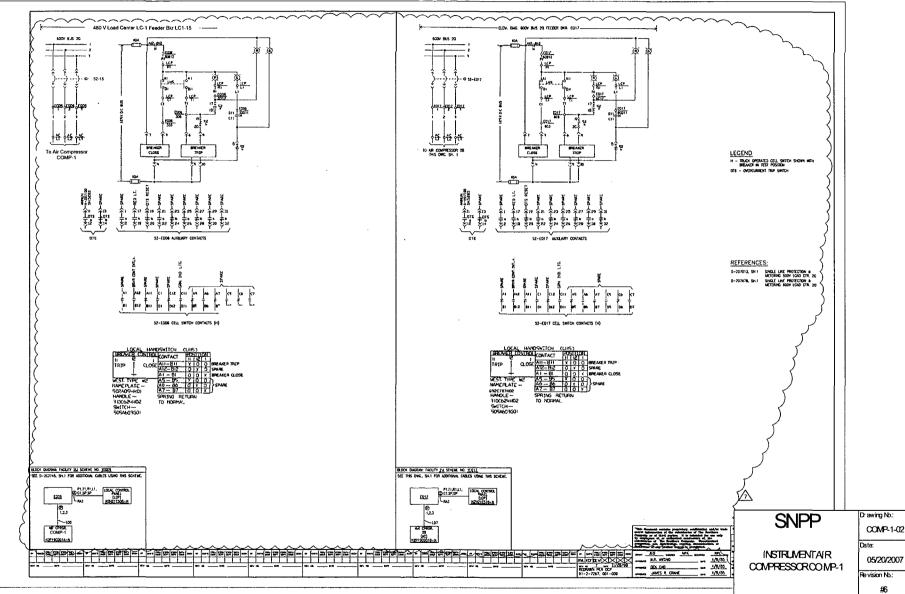
Cable Analysis:

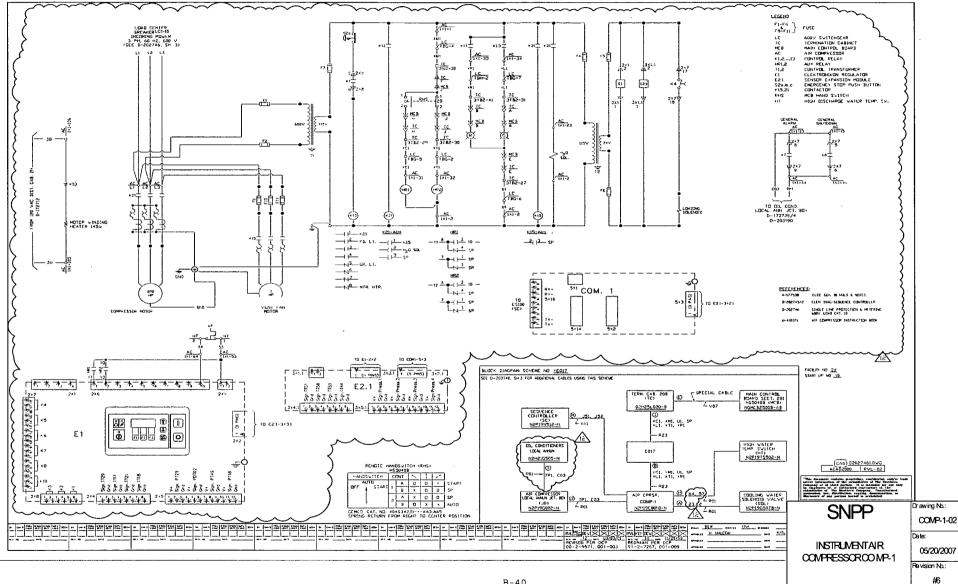

Cable ID	Required?	Function	Fault Consequence	Comments
. *				


Comments:


CIRCUIT ANALYSIS WORKSHEET

Component ID:	HPI-	В		Compon	ent Type:	Pump		
Component Description: High Pressure Injection Pump B								
BE Code:			_FTS _FTR	(HPI-A Fails (HPI-A Fails				
Required Posit Functional Stat		ON			ſ			
Normal Positio	n:	STAN	NDBY / (ON	•			
Failed Electrica	al Position:	Off						
Failed Air Posit	tion:	N/A						
High Conseque	ence Compo	onent Yes		\sim				
Power Supplies	s:			Brea	ker:			
				<u>Brea</u>	ker:			
Cable Analysis	•							
Cable ID	Required?	Function	Fault C	onsequence	Comments			





Component ID	: CON	/IP-1		Com	ponent Type:	Compressor
Component De	escription:	Instrume	ent Air Com	pressor		
BÈ Code:		СОМ	P-1_FTR	(COMP-1	I Fails to Run)	
Required Posit Functional Stat						
Normal Positio	nal Position: CYCLE					
Failed Electrical Position: Off						
Failed Air Position: N/A						
High Consequence Component Yes 🗌 No 🛛						
Power Supplie	s:			Break	ker:	
				_ <u>Breal</u>	ker:	
Cable Analysis	:					
Cable ID	Required?	Function	Fault Conse	equence	Comments	
	¢.					

Comments:

.

B-40

Component ID: MOV-15 Component Description: AF	Component Type: MOV
BE Code:	MOV-15_FTO (MOV-15 FAILS TO OPEN)
Required Position: Functional State	THROTTLED
Normal Position:	ĊLOSED
Failed Electrical Position:	AS-IS
Failed Air Position:	Ν/Α
High Consequence Component	Yes 🗌 No 🖾
Power Supplies:	Breaker:
	Breaker:

Cable Analysis:

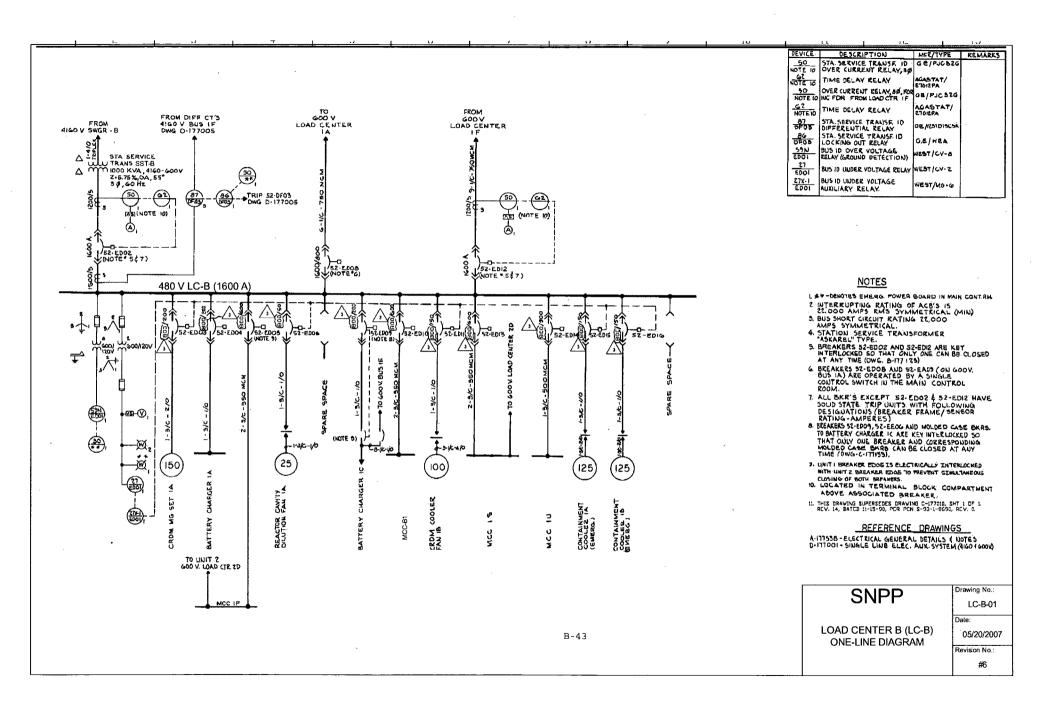
Cable ID	Required?	Function	Fault Consequence	Comments
				· ·

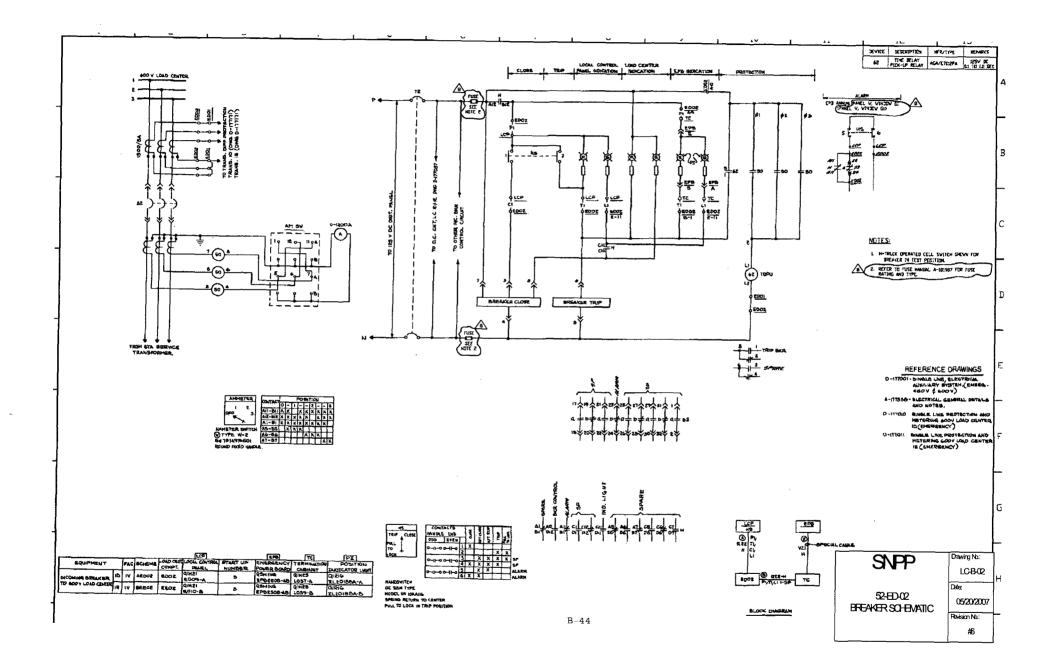
Comments:

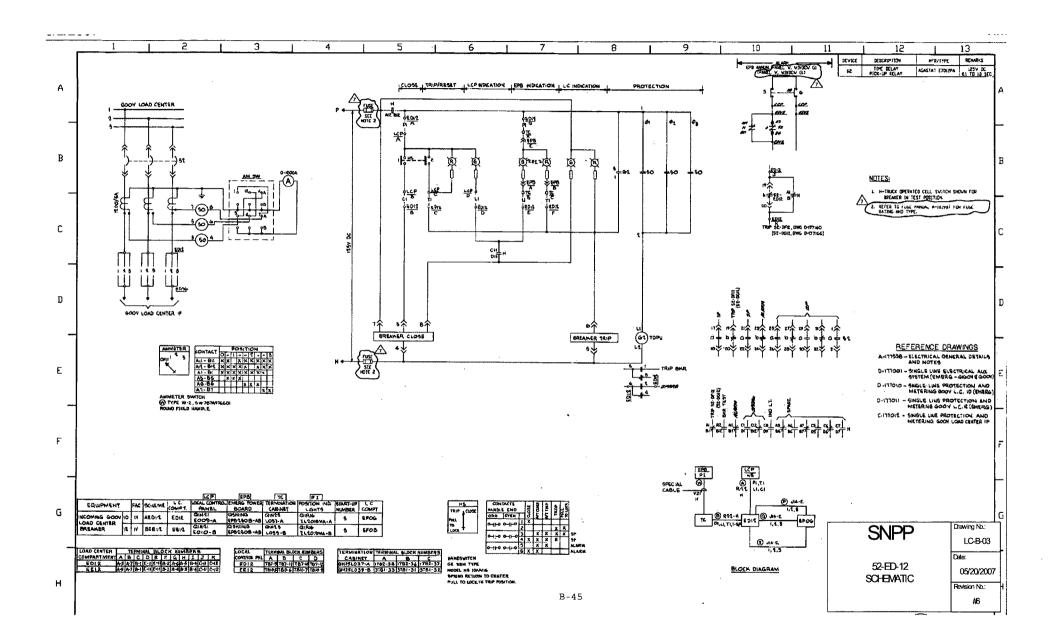
Note: This page was erroneously included in the available set of exercises in the proper location

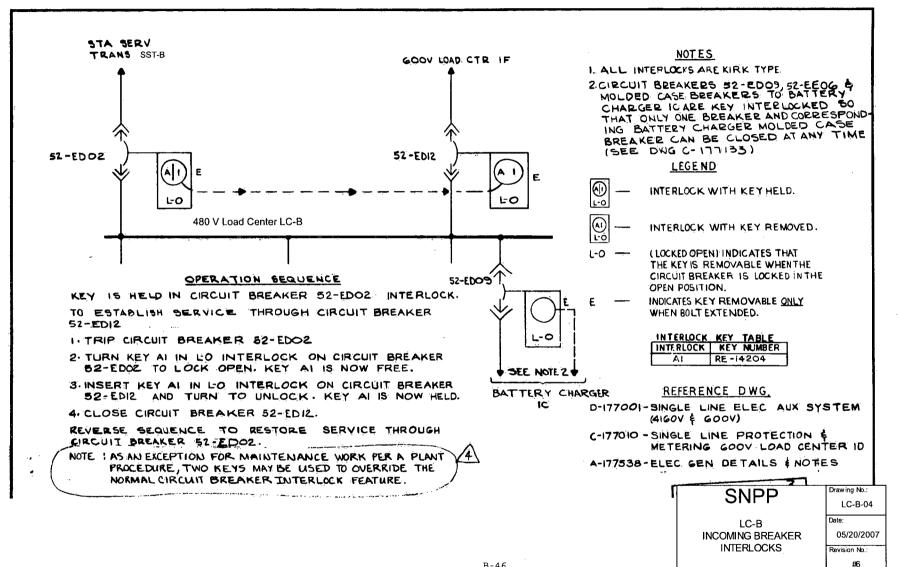
for Exercise 14, but is instead a duplicate of Exercise 4. A later section of this Volume 2 has

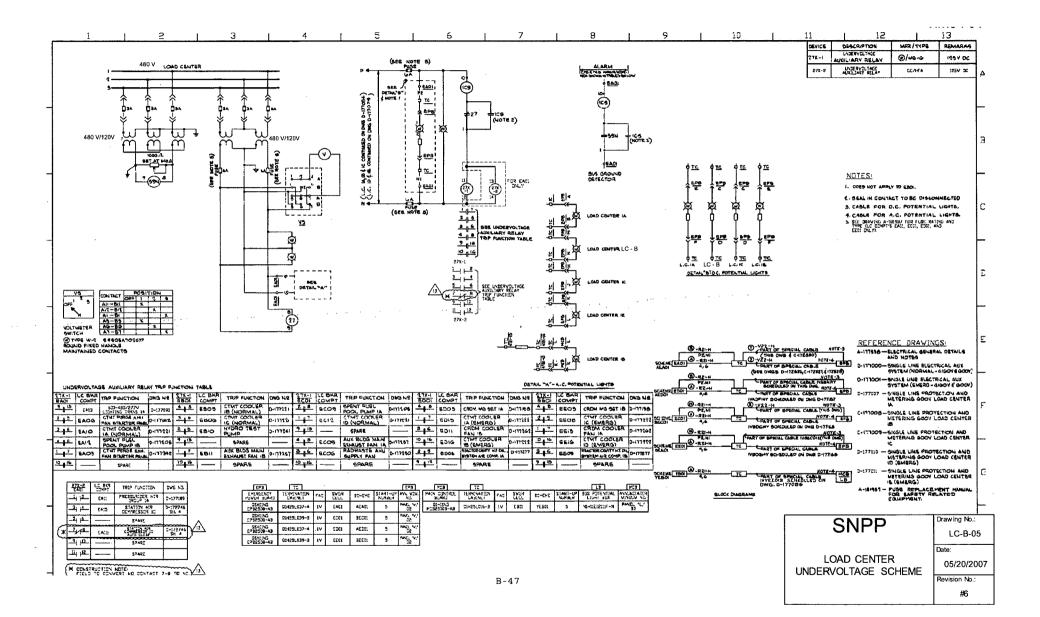
a solution for Exercise 4, but not for Exercise 14.


Component ID: LC-B		Component Type:	Load Center
Component Description: Tra	ain B 480 V Load (Center	
BE Code:	EPS-480VLCBF	(480V LOAD CENTE	R B FAULT)
Required Position: Functional State	ENERGIZED		
Normal Position:	ENERGIZED		
Failed Electrical Position:	Off		
Failed Air Position:	N/A		
High Consequence Component	Yes 🗌 No 🛛		
Power Supplies:		Breaker:	
		Breaker:	

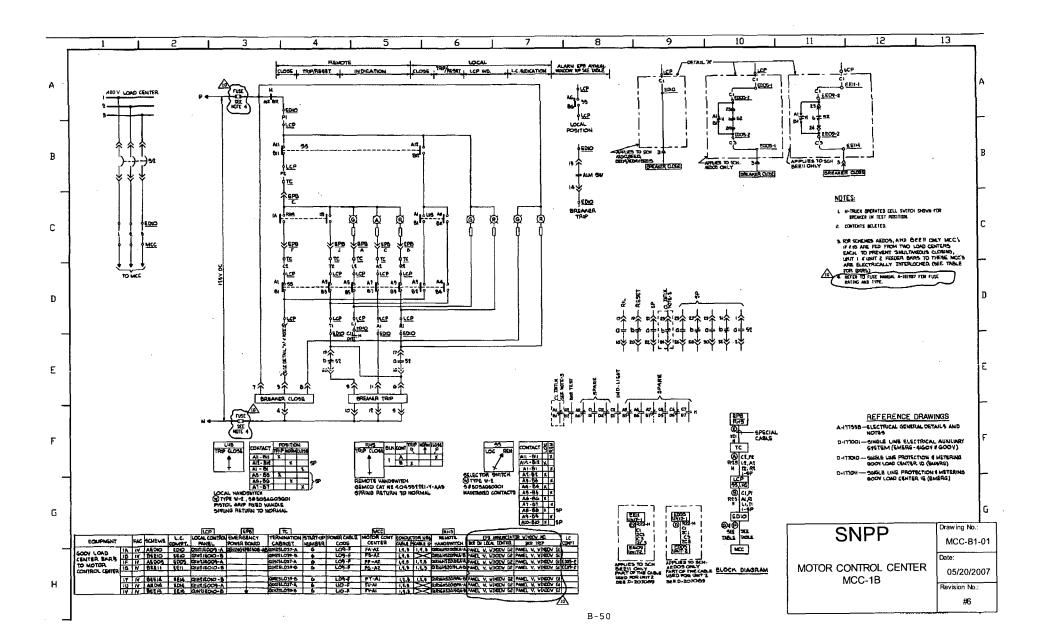

Cable Analysis:


Cable ID	Required?	Function	Fault Consequence	Comments


Comments:






Component ID: MCC-1B		Component Type:	мсс
Component Description: Tra	ain B 480 V Motor Co	ntrol Center	
BE Code:	EPS-480MCCB1F	(480V MCC B1 FAULT)	
Required Position: Functional State	ENERGIZED		
Normal Position:	ENERGIZED		
Failed Electrical Position:	Off		
Failed Air Position:	N/A		
High Consequence Component	Yes 🗌 No 🛛		
Power Supplies:		Breaker:	
		Breaker:	

Cable Analysis:

Cable ID	Required?	Function	Fault Consequence	Comments

Comments:

Equipment ID	Equipment Description	Equipment Type	Location	Desired Position/ Status	Target Loss Locations
HPI-A High pressure safety injection pump A		D		On	1, 2, 3, 10
		Pump	Aux Bldg. El. 0 Ft	On	1, 2, 3, 10
HPI-B High pressure safety injection		-		On	1, 2, 3, 11
HPI-B	pump B	Pump	Aux Bldg. El. 0 Ft	On	1, 2, 3, 11
RHR-B	Residual heat removal pump B	Pump	Aux Bldg. El20 Ft	Off	1, 2, 3, 4A, 9, 11
AFW-A	Motor driven AFW pump A	Pump	Aux Bldg. EL. 0 Ft	On	1, 3, 4B, 9, 10
AFW-B	Steam driven AFW pump B	Pump	Aux Bldg. EL. 0 Ft	On	1, 3, 4B, 9, 11
AFW-C	Motor driven AFW pump C	Pump	Turbine Bldg. El. 0 Ft	On	1, 3, 12
RCP-1	Reactor coolant pump 1	Pump	Containment	Off	1, 2, 3, 7, 12
RCP-2	Reactor coolant pump 2	Pump	Containment	Off	1, 2, 3, 7, 12
COMP-1	Instrument air compressor	Compressor	Turbine Bldg. El. 0 Ft	Cycle	12
AOV-1				Closed	1, 3, 7, 9
(SOV-1) Power operated relief valve	AOV	Containment	Open	1, 3, 7, 9, 10	
AOV-2 (SOV-2)	Letdown isolation valve	AOV	Aux Bldg. El. 0 Ft	Closed	1, 2, 3, 9
AOV-3 (SOV-3)	Charging pump injection valve	AOV	Aux Bldg. El. 0 Ft	Closed	1, 2, 3, 9
MOV-1	HPI discharge valve	MOV	Aux Bldg. El. 0 Ft	Open	1, 2, 3, 9, 10
MOV-2	VCT isolation valve	MOV	Aux Bldg. El. 0 Ft	Closed	1, 2, 3, 9, 11
MOV-3	Cont. sump recirc valve	MOV	Aux Bldg. El20 Ft	Open/ Closed ²	1, 2, 3, 4A, 9, 10
MOV-4	Cont. sump recirc valve	MOV	Aux Bldg. El20 Ft	Open/ Closed	1, 2, 3, 4A, 9, 11
MOV-5	RWST isolation valve	MOV	Aux Bldg. El. 0 Ft	Open	1, 2, 3, 12
MOV-6	RWST isolation valve	MOV	Aux Bldg. El. 0 Ft	Open	1, 2, 3, 12
MOV-7	RHR inboard suction valve	MOV	Containment	Closed	4A,7,9,12
MOV-8	RHR outboard suction valve	MOV	Aux Bldg. El20 Ft	Closed	4A,9,12
MOV-9	HPI discharge valve	MOV	Aux Bldg. El. 0 Ft	Open	1,2,3,,9
MOV-10	AFW pump A discharge valve	MOV	Aux Bldg. EL. 0 Ft	Open	1,3,4B,9,12
MOV-11	AFW pump B discharge valve	MOV	Aux Bldg. EL. 0 Ft	Open	1,3,4B,9,11,12
MOV-13	PORV block valve	MOV	Containment	Open/ Closed ¹	1, 3, 7, 9
MOV-14	AFW pump B turbine steam line isolation valve	MOV	Turbine Bldg. El. 0 Ft	Open	1, 3, 4B, 12

Table 1: Target Equipment Loss Report

Equipment ID	Equipment Description	Equipment Type	Location	Desired Position/ Status	Target Loss Locations
MOV-15	AFW pump B steam inlet throttle valve	MOV	Turbine Bldg. El. 0 Ft	Throttled	1, 3, 4B, 12
MOV-16	AFW pump A test line isolation valve	MOV	Turbine Bldg. El. 0 Ft	Closed	2, 4B, 9
MOV-17	AFW pump B test line isolation valve	MOV	Turbine Bldg. El. 0 Ft	Closed	2, 4B, 9
MOV-18	AFW pump C discharge valve	MOV	Turbine Bldg. El. 0 Ft	Open	1, 3, 12
MOV-19	AFW pump C test line isolation valve	MOV	Turbine Bldg. El. 0 Ft	Closed	1, 3, 12
V-12	CST isolation valve	MOV	Turbine Bldg. El. 0 Ft	Open	12
LI-1	RWST level	Instrument	Yard	Available	1, 3, 12, 13
LI-2	RWST level	Instrument	Yard	Available	1, 3, 12, 13
LI-3	Cont. sump level	Instrument	Containment	Available	1, 3, 7, 12
LI-4	Cont. sump level	Instrument	Containment	Available	1, 3, 7, 12
TI-1	Letdown heat exchanger outlet temperature	Instrument	Aux Bldg El. 0 Ft	Available	1, 2, 3, 9
PT-1	RCS pressure	Instrument	Containment	Available	1, 3, 7
ANN-1	AFW motor high temperature	Annunciator	SWG Access Room	Non spurious	1, 2, 3, 9, 4B
SWGR-A	Train A 4160 V switchgear	Switchgear	Switchgear Room A	Energized from SUT-1	1, 3, 10, 12, 13
SWORA	Thain A 4100 V Switchgear			Energized from EDG-A	1, 3, 8A, 10, 12
SWGR-B	Train B 4160 V switchgear	Switchgear	Switchgear Room B	Energized from SUT-1	1, 3, 9, 11, 12, 13
SWOIL-D				Energized from EDG-A	1, 3, 8B, 9, 11, 12
SWGR-1	Non-safety 4160 V switchgear	Switchgear	Turbine Bldg. El. 0ft	Energized	1, 3, 12, 13
SWGR-2	Non-safety 4160 V switchgear	Switchgear	Turbine Bldg. El. Oft	Energized	1, 3, 12, 13
SUT-1	Startup transformer	Transformer	Yard	Energized	1, 3, 12, 13
EDG-A	Train A emergency diesel generator	Diesel Generator	DG Bldg.	On	1, 3, 8A, 10, 12
EDG-B	Train B emergency diesel generator	Diesel Generator	DG Bldg.	On	1, 3, 8B, 10, 12
LC-1	Non-safety 480 V load center	Load Center	Turbine Bldg. El. 0 ft	Energized	1, 3, 12
LC-2	Non-safety 480 V load center	Load Center	Turbine Bldg. El. 0 ft	Energized	1, 3, 12
LC-A	Train A 480 V load center	Load Center	Switchgear Room A	Energized	1, 3,10
LC-B	Train B 480 V load center	Load Center	Switchgear Room B	Energized	1, 3, 11
SST-1	Non-safety station service transformer	Transformer	Turbine Bldg. El. 0 F	Energized	12

Equipment ID	Equipment Description	Equipment Type	Location	Desired Position/ Status	Target Loss Locations
SST-2	Non-safety station service transformer	Transformer	Turbine Bldg. El. 0 F	Energized	12
SST-A	Train A station service transformer	Transformer	Switchgear Room A	Energized	10
SST-B	Train B station service transformer	Transformer	Switchgear Room B	Energized	11
MCC-1	Non-safety 480 V motor control center	Motor Control Center	Turbine Bldg El. 0 Ft	Energized	12
MCC-2	Non-safety 480 V motor control center	Motor Control Center	Turbine Bldg El. 0 Ft	Energized	12
MCC-A1	Train A 480 V motor control center	Motor Control Center	SWG Access Room	Energized	9, 10
MCC-B1	Train B 480 V motor control center	Motor Control Center	SWG Access Room	Energized	9, 11
ATS-1	Automatic transfer switch	ATS	SWG Access Room	Energized from MCC-1	12
BC-1	Non-safety swing battery charger	Battery Charger	Turbine Bldg El. 0 Ft	Energized	12
BC-A	Train A battery charger	Battery Charger	Switchgear Room A	Energized	9, 10
BC-B	Train B battery charger	Battery Charger	Switchgear Room B	Energized	9, 11
BAT-1	Non-safety battery	Battery	Turbine Bldg El. 0 Ft	Available	12, 15
BAT-A	Train A battery	Battery	Battery Room A	Available	5, 10
BAT-B	Train B battery	Battery	Battery Room B	Available	6, 11
DC BUS-1	Non-safety 250 VDC bus	DC Bus	Turbine Bldg El. 0 Ft	Energized	12
DC BUS-A	Train A 125 VDC bus	DC Bus	Switchgear Room A	Energized	10
DC BUS-B	Train B 125 VDC bus	DC Bus	Switchgear Room B	Energized	11
PNL-A	Train A 125 VDC panel	Panelboard	Switchgear Room A	Energized	10
PNL-B	Train B 125 VDC panel	Panelboard	Switchgear Room B	Energized	11
INV-A	Train A inverter	Inverter	Switchgear Room A	Energized	3, 9, 10
INV-B	Train B inverter	Inverter	Switchgear Room B	Energized	3, 9, 11
VITAL-A	Train A 120 VAC vital bus	120VAC Bus	SWG Access Room	Energized	9, 10
VITAL-B	Train B 120 VAC vital bus	120VAC Bus	SWG Access Room	Energized	9, 11

B-53

Instructors' Exercise Solutions

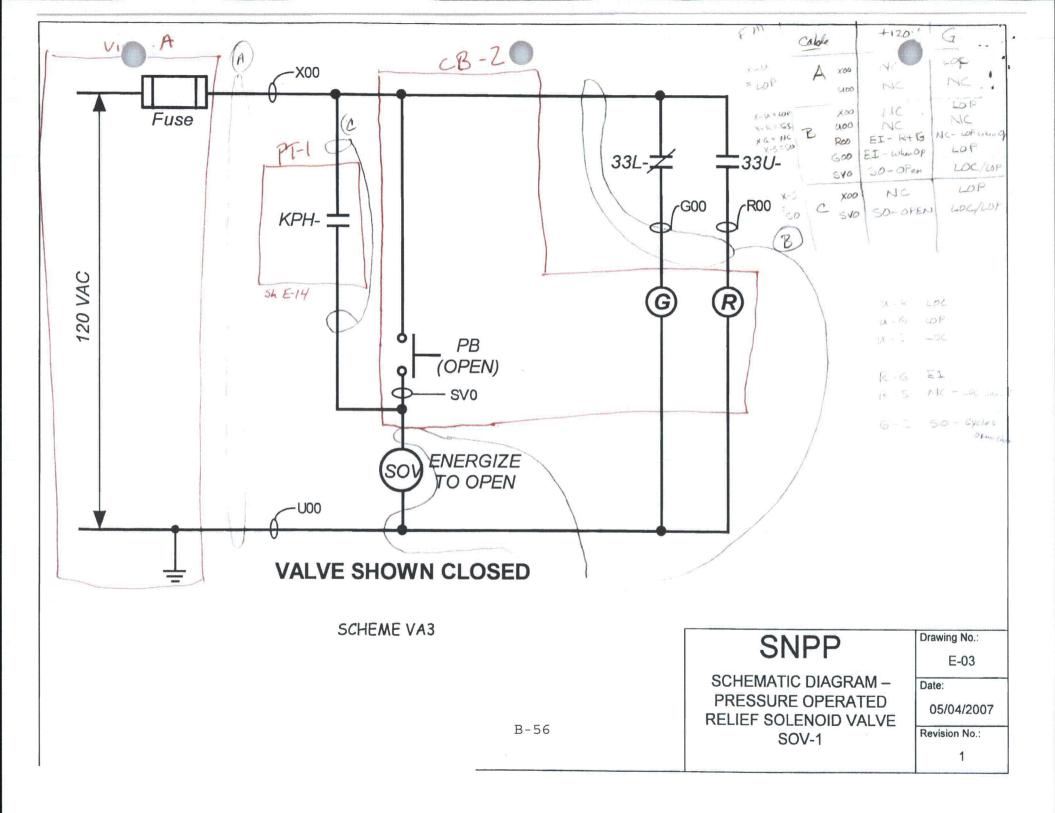
B-54

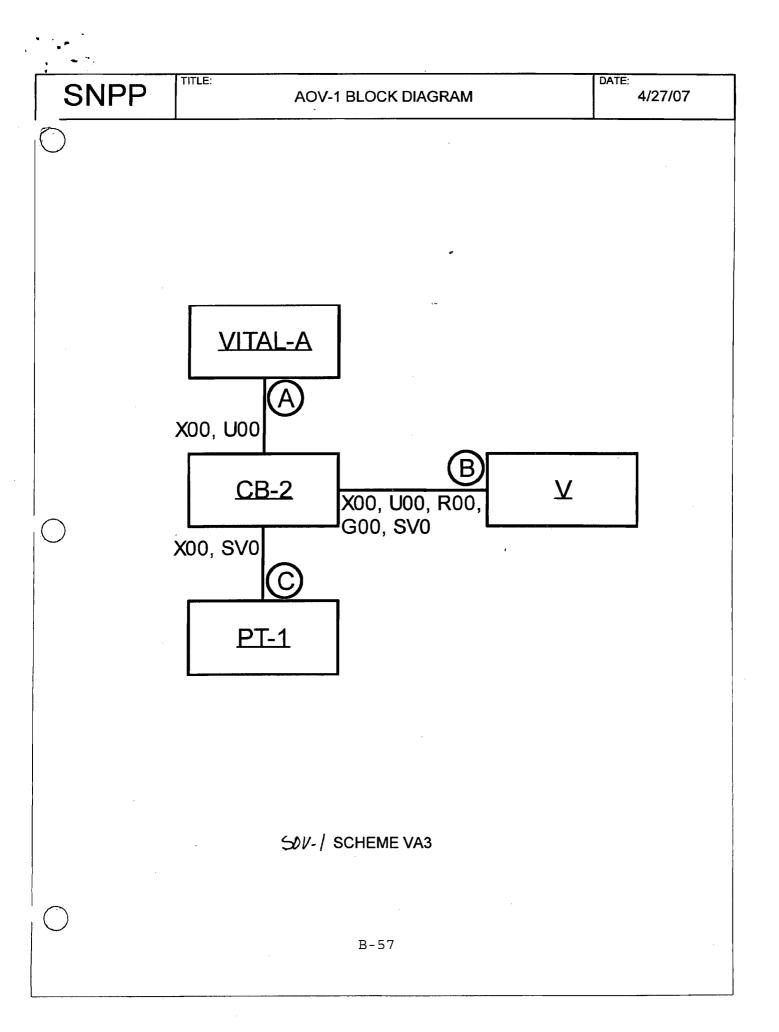
CUIT ANALY	SIS WORKSHEET	
OV-1)	Component Type:	AOV
ower Operated	Relief Valve	
AOV-1_TO	(PORV AOV-1 TRANSF	ERS OPEN)
CLOSED		
Yes 🗌 No		
	Breaker:	
	Breaker:	
	OV-1) ower Operated AOV-1_TO CLOSED CLOSED CLOSED CLOSED	ower Operated Relief Valve AOV-1_TO (PORV AOV-1 TRANSF CLOSED CLOSED CLOSED Yes □ No ⊠ Breaker:

Cable ID	Required?	Function	Fault Consequence	Comments
VA3A	No	Power	LOP	
VA3B	Yes	Control	SO-Open	Hot Short between conductors G00 and SVC can cause valve to cycle open-shut repeatedly
VA3C	Yes	Control	SO-Open	
				·

Comments:

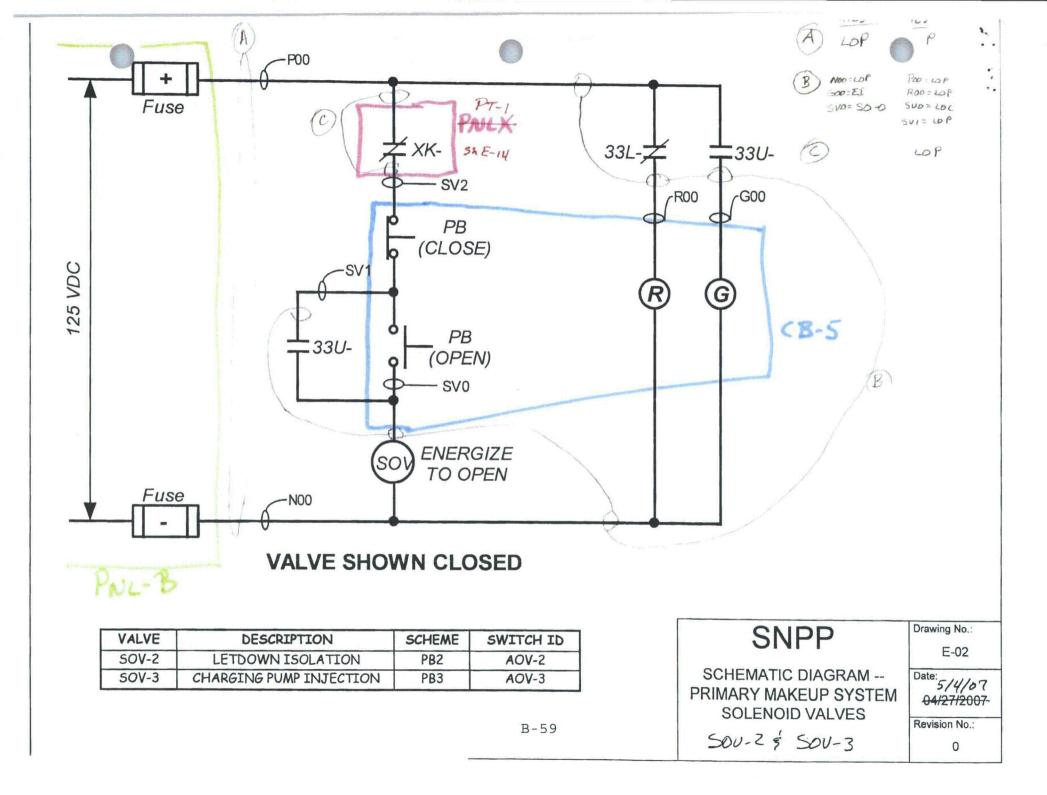
Table

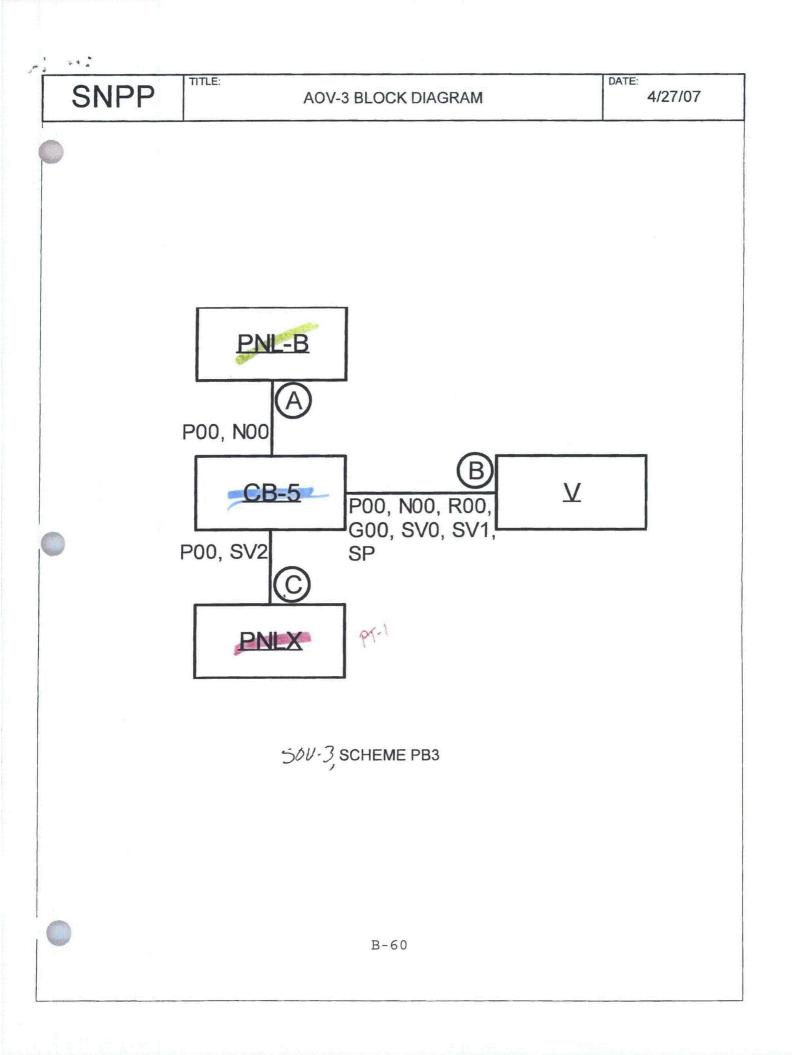

Formula


P(SO, B) = 0.60 + 0.06 - (0.6*0.06) = 0.62

P(SO, B)= 0.57*0.42= 0.24

P(SO, C) = 0.60 + 0.06 - (.6*0.06) = 0.62

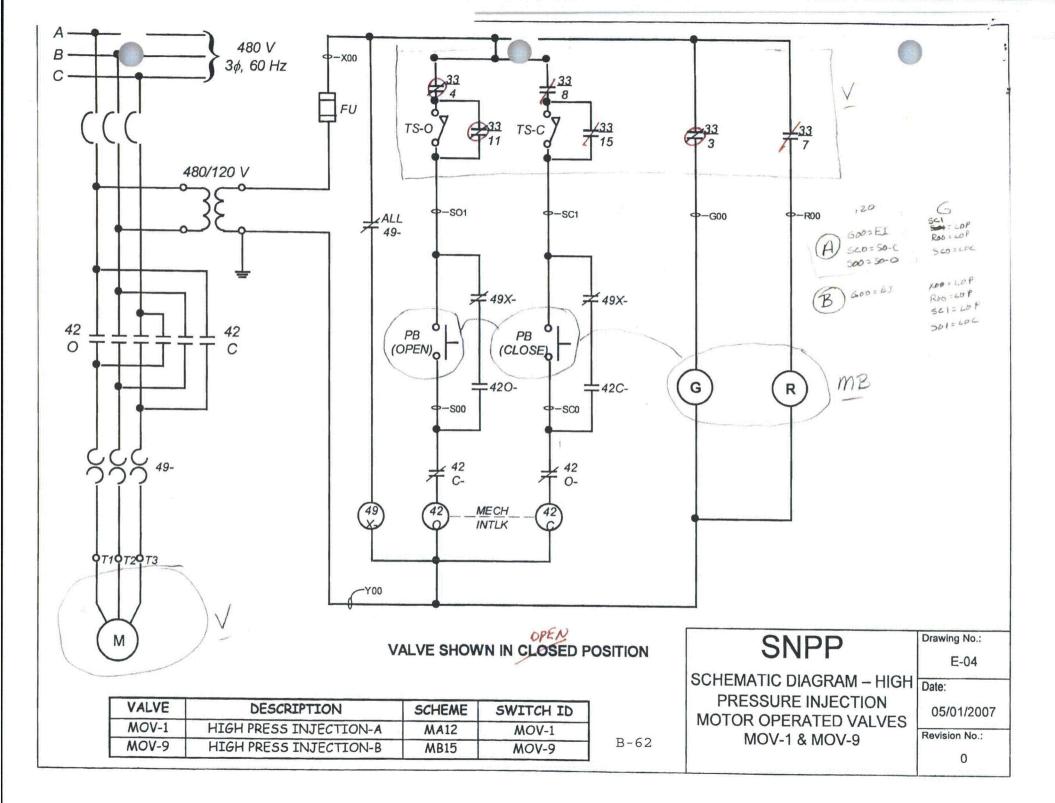

P(SO, C)= 0.67*0.63= 0.42

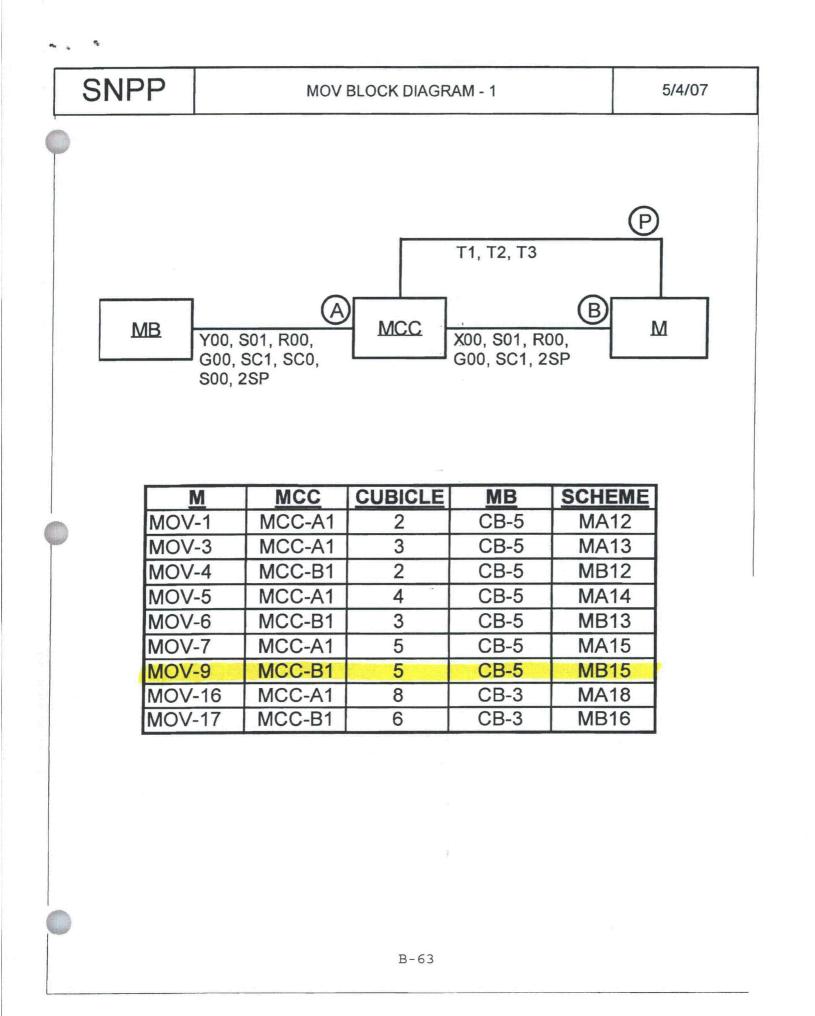


Exercise 2							
Component ID: AOV-3 (SOV-3) Component Type: AOV							
Component Description: Charging Pump Injection Valve							
BE Code:		AOV	-3_FTC (AOV-3 FAI	LS TO CLOSE)			
Required Posit Functional Sta		CLO	SED				
Normal Positio	in:	OPE	N				
Failed Electrica	al Position:	CLO	SED				
Failed Air Posi	tion:	CLO	SED				
High Consequ	ence Compo	onent Yes	□ No 🛛				
Power Supplie	s:	Panel B	Brea	iker: 3			
			Brea	ker:			
Cable Analysis	5:						
Cable ID	Required?	Function	Fault Consequence	Comments			
PB3A	No	Power	LOP				
PB3B	Yes	Control	SO-Open	Energize SVO (Also EI, LOP, LOC)			
PB3C	No	Control	LOP	×			
		:					
				<u></u>			
Comments:	Table			Formula			
P(SO, B)= 0.60	0 + 0.06 – ((0.60*0.06)= (0.62 P _{cc} =	$\frac{(7-1)}{(-1)+(2^*1)} = \frac{6}{6+2} = \frac{6}{8} = 0.75$			
			,	, , , ,			
CF= {1*[3+(0.5/7)]}/7= 3.07/7= 0.44							

P(SO, B)= 0.75* 0.44= 0.33

CIRCUIT ANALYSIS WORKSHEET Exercise 3					
Component ID: MOV-9 Component Description: His	Co gh Pressure Injec	omponent Type: tion Valve	MOV		
BE Code:	MOV-9_FTO	(MOV-9 FAILS TO C	PEN)		
Required Position: Functional State	OPEN				
Normal Position:	CLOSED				
Failed Electrical Position:	AS-IS				
Failed Air Position:	N/A				
High Consequence Component	Yes 🗌 No 🛛]			
Power Supplies: <u>MCC</u> _	B1	Breaker: 5			
· · ·	the same of the Astronomy	Breaker:			


Cable ID	Required?	Function	Fault Consequence	Comments
MB15A	Yes	Control	EI, SO-C, SO-O, LOP., LOC	9-C, 1 ground, 1 target, 2 sources
MB15B	Yes	Control	EI, LOP, LOC	
MB15P	Yes	Power	LOP	
				,


Comments:

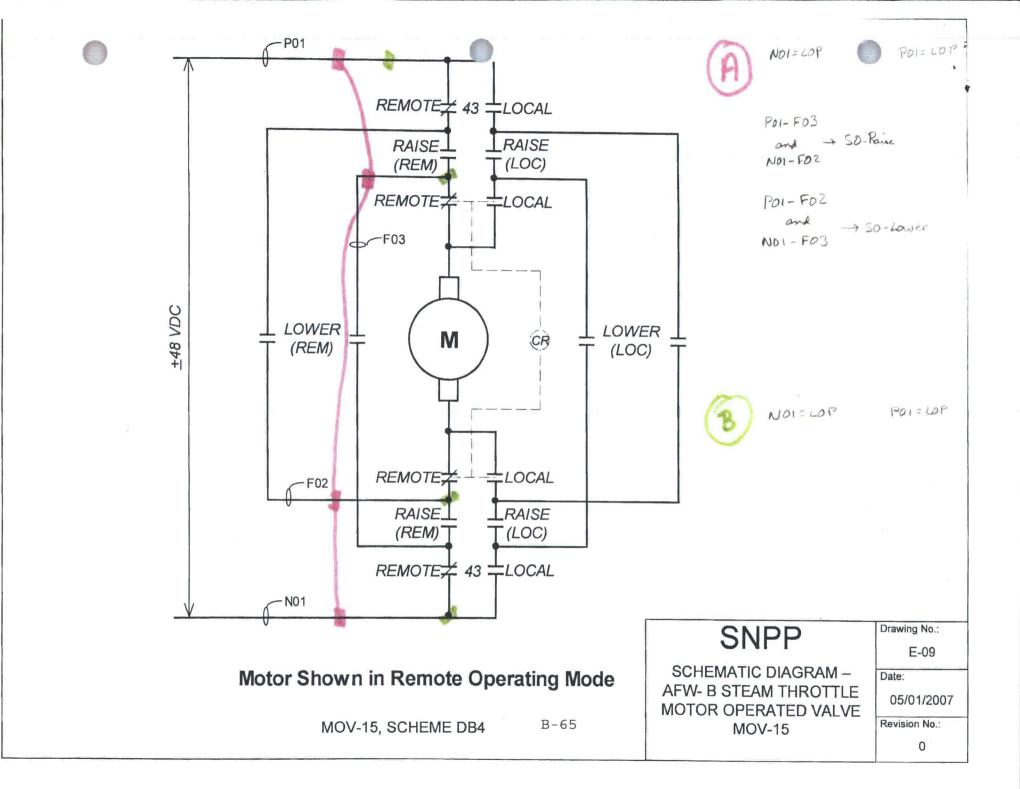
.

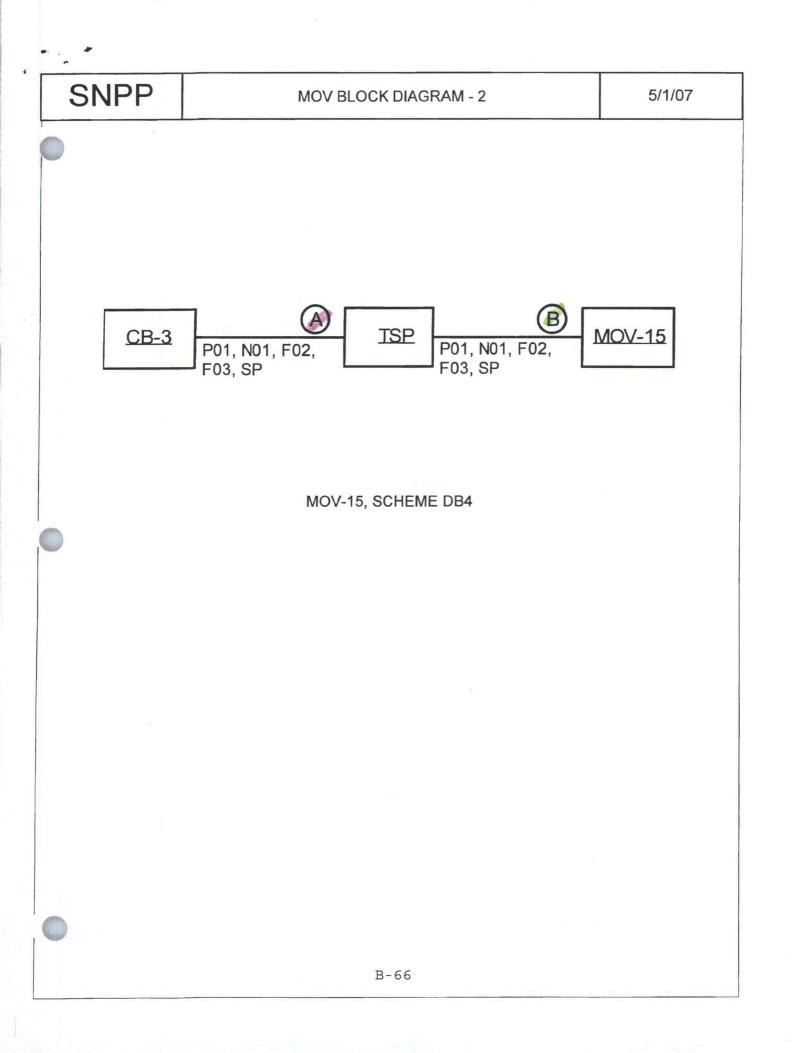
P Table 10-1= 0.3+0.03= 0.33	P _{cc} =	(9 - 1)	=	0.727
	<u>00</u>	(9-1) + (2*1) + 1		

Pcalc= 0.727*0.228= 0.17 CF= 1x[2+ (0.5/9)]/9= 0.228

CIRCUIT ANALYSIS WORKSHEET Exercise 4						
Component ID: MOV-15 Component Description: AF	W Steam Inlei	Component Type: MOV				
BE Code:	MOV-15_FTO	(MOV-15 FAILS TO OPEN)				
Required Position: Functional State	THROTTLED					
Normal Position:	CLOSED					
Failed Electrical Position:	AS-IS					
Failed Air Position:	N/A					
High Consequence Component	Yes 🗌 No					
Power Supplies: DC Bu	is-B	Breaker: 4				
		Breaker:				

Cable ID	Required?	Function	Fault Consequence	Comments
DB4A	Yes	Control	LOP	SO possible only with dual hot shorts P01-F03 (F02) and N01-F02 (F03)
DB4B	Yes	Control	LOP	
		2	······································	· · · · · · · · · · · · · · · · · · ·
			:	
			· · ·	
		· ·		

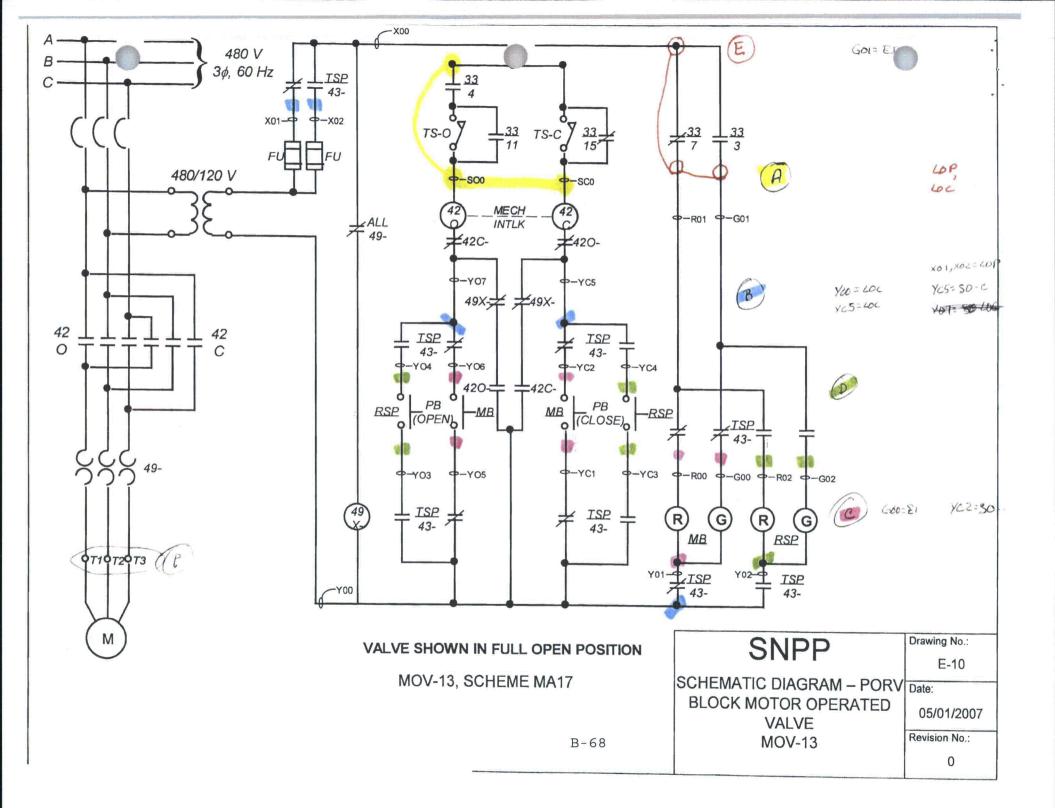

Comments:

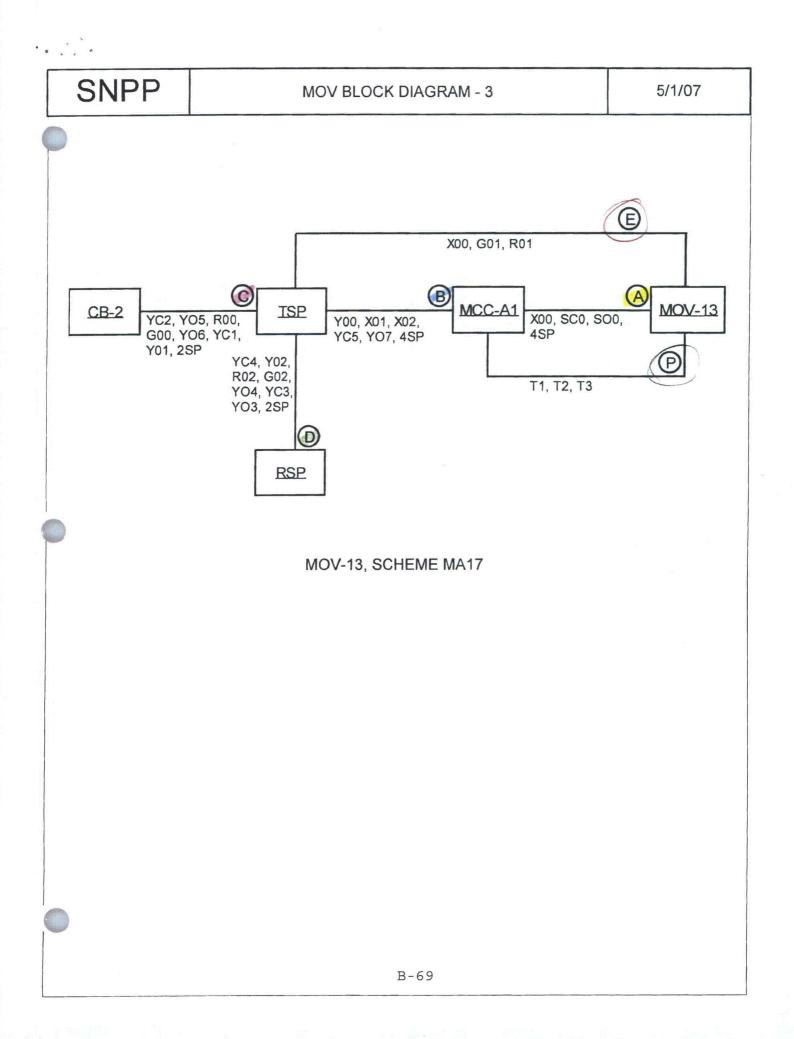

 $\underline{P(SO) = 0.60 + 0.06 - (0.60 \times 0.06) = 0.62} \qquad \underline{P_{cc}} = \underline{5} - \underline{5}$

 $\frac{5 - 0}{(5 - 0) + 0} = 1$

 $CF_1 = (1^{*}(1+(0.5/5)))/5 = .22 \quad CF_2 = (1^{*}(1+(0.05/3)))/3 = 0.39$

P(SO)= P_{CC}*CF₁*CF₂= 1*.22*.39= 0.09




CIRCUIT ANALYSIS WORKSHEET Exercise 5					
Component ID: MOV-13	Component Type: MOV				
Component Description: PC	RV Block Valve				
BE Code:	MOV-13_FTC (MOV-13 FAILS TO CLOSE)				
Required Position: Functional State	OPEN / CLOSED				
Normal Position:	OPEN				
Failed Electrical Position:	AS-IS				
Failed Air Position:	N/A				
High Consequence Component	Yes 🗌 No 🖾				
Power Supplies: MCC-/	A1 Breaker: 7				
	Breaker:				

Cable ID	Required?	Function	Fault Consequence	Comments
MA17A	Yes	Control	LOP, LOC	
MA17B	Yes	Control	SO-C, LOP, LOC	
MA17C	Yes	Control	SO-C, EI, LOC	
MA17D	Yes	Control	EI, LOP	RSP
MA17P	Yes	Power	LOP	
	and the second sec			

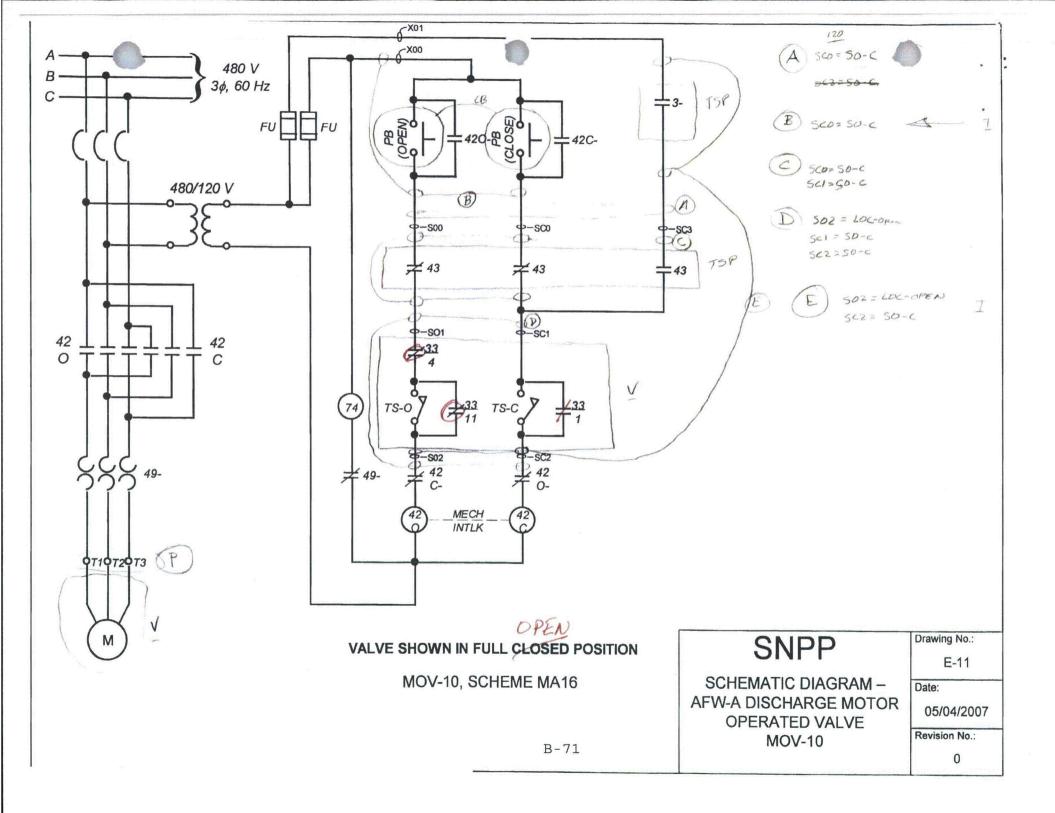
Comments:

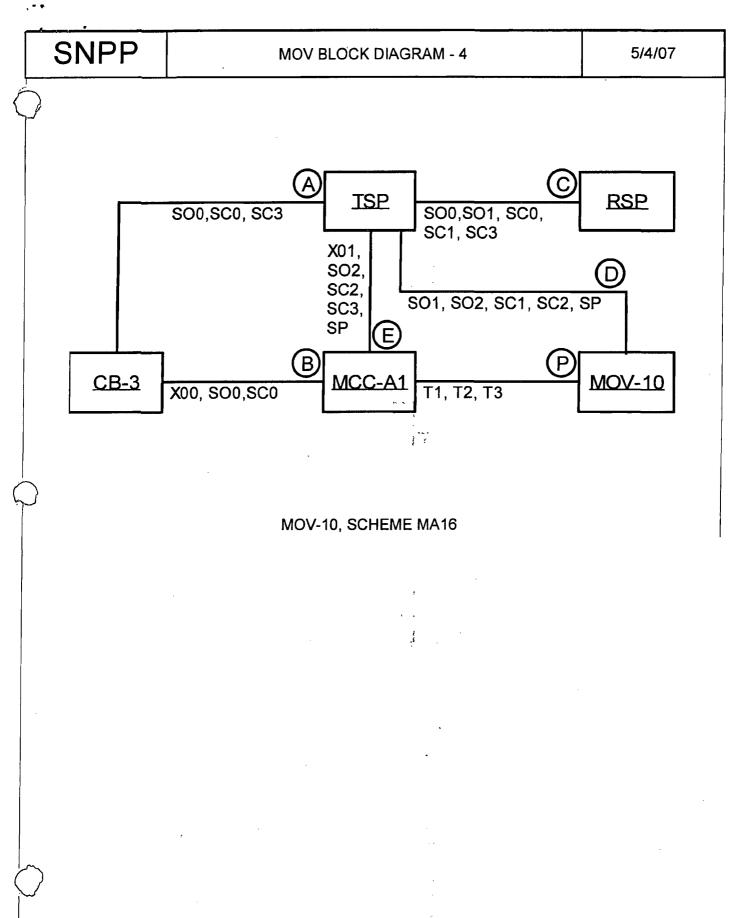
Case for both B/C P(SO)= 0.30+0.03	-(.3*.03)= 0.32
<u>B: $P_{cc} = (9-1) = 0.8$</u>	CF= {1*[1+5/9]}/9= 0.12 P(SO)= 0.8*0.12= 0.10
$\frac{(9-1) + (2*1)}{(9-3)} = 0.5$	CF= {1*[3+5/9]}/9= 0.34 P(SO)= 0.5*0.34= 0.17
(9-3) + (2*3)	

Exercise 6			
Component ID: MOV-10 Component Description: AF	W Discharge Isol	Component Type: ation Valve	MOV
BE Code: Required Position: Functional State	MOV-10_FTO OPEN	(MOV-10 FAILS TO OP	EN)
Normal Position:	CLOSED		
Failed Electrical Position:	AS-IS		
Failed Air Position:	N/A		
High Consequence Component	Yes 🗌 No 🛛		
Power Supplies: <u>MCC-A1</u>		Breaker: 6	
		Breaker:	
Cable Analysis:			

Cable ID Required? Function Fault Consequence Comments MA16A SO-Close Yes Control SO-Close 3-C, 0 ground, 1 target, 1 source MA16B Yes Control MA16C SO-Close RSP Yes Control SO-Close, LOC-MA16D Yes Control Open SO-Close, LOC-MA16E Yes Control Open LOP MA16P Yes Power

Comments: Note- MOV-10 is an ungrounded control circuit

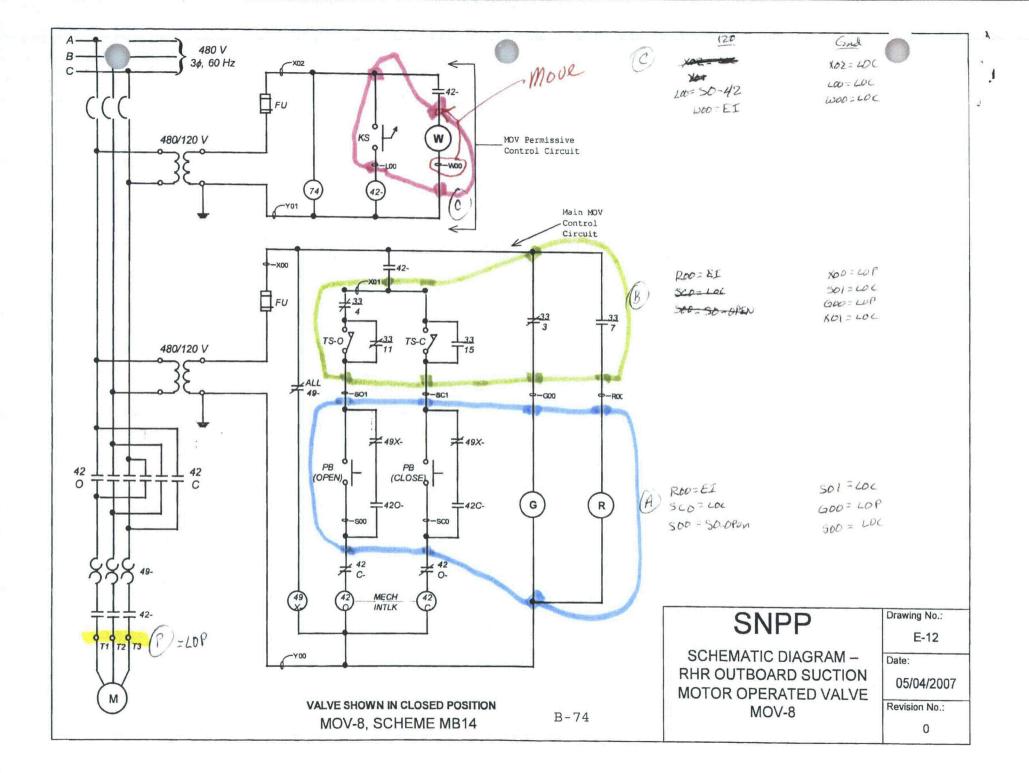

Ptable= 0.3+0.03= 0.33

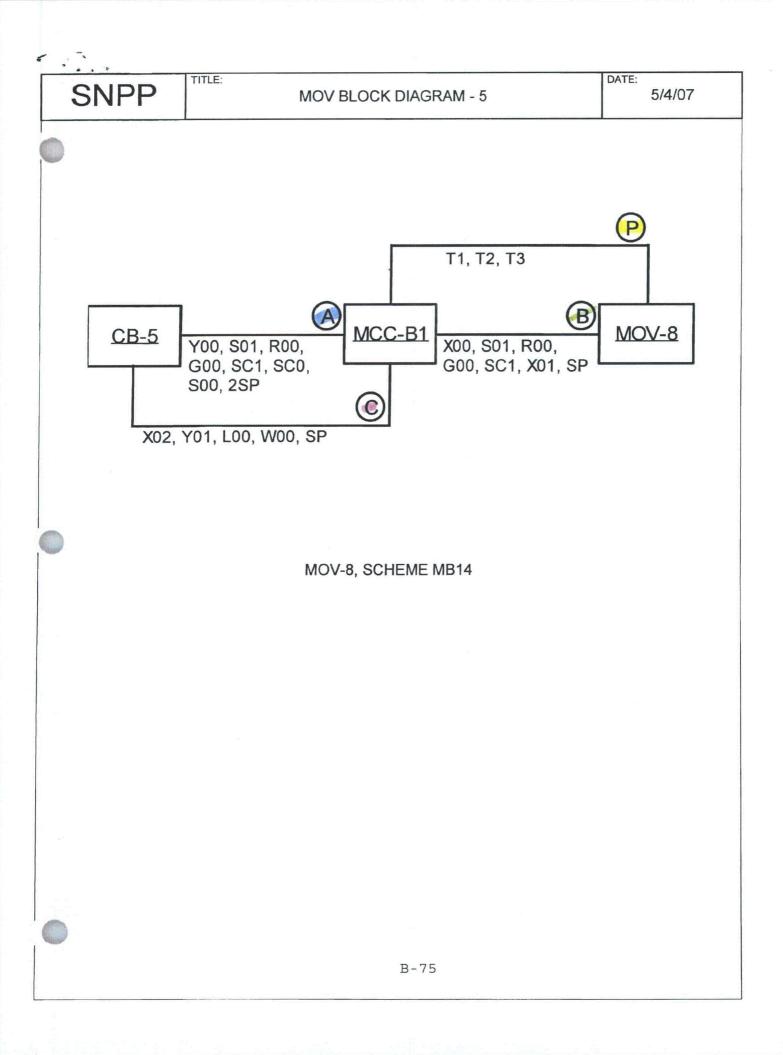

 $\frac{P_{CC}}{(3-0)} = \frac{(3-0)}{(3-0) + (2 * 0)} = 1$

Pcalc= 1.0*0.39= 0.39

CF= 1*[1+(.5/3)]/3= 0.39

Note: only cables B and E have energized conductors


CIRCUIT ANALYSIS WORKSHEET Exercise 7						
Component ID	: MO V	/-8	Component	Туре: МОУ		
Component De	escription:	RHR Out	board Suction Valve	·		
BE Code:		MOV	-8_TO (MOV-8	TRANSFERS OPEN)		
Required Position: CLOSED Functional State						
Normal Positio	n:	CLOS	SED			
Failed Electrica	al Position:	AS-IS	5			
Failed Air Posi	tion:	N/A				
High Conseque	ence Compo	onent Yes	🖾 No 🗌			
Power Supplie	s: <u>MCC</u>	С-В1	Brea	ker: 4		
			Brea	ker:		
Cable Analysis	:					
Cable ID	Required?	Function	Fault Consequence	Comments		
MB14A	Yes	Control	SO-Open	Energize S00 (Also EI, LOC, LOP)		
MB14B	No	Control	EI, LOC, LOP			
MB14C	Yes	Control	SO-42	Energize L00 (Also EI, LOC)		
MB14P	Yes	Power	SO-Open	3Ф "smart short"		
			, ,			


Comments:

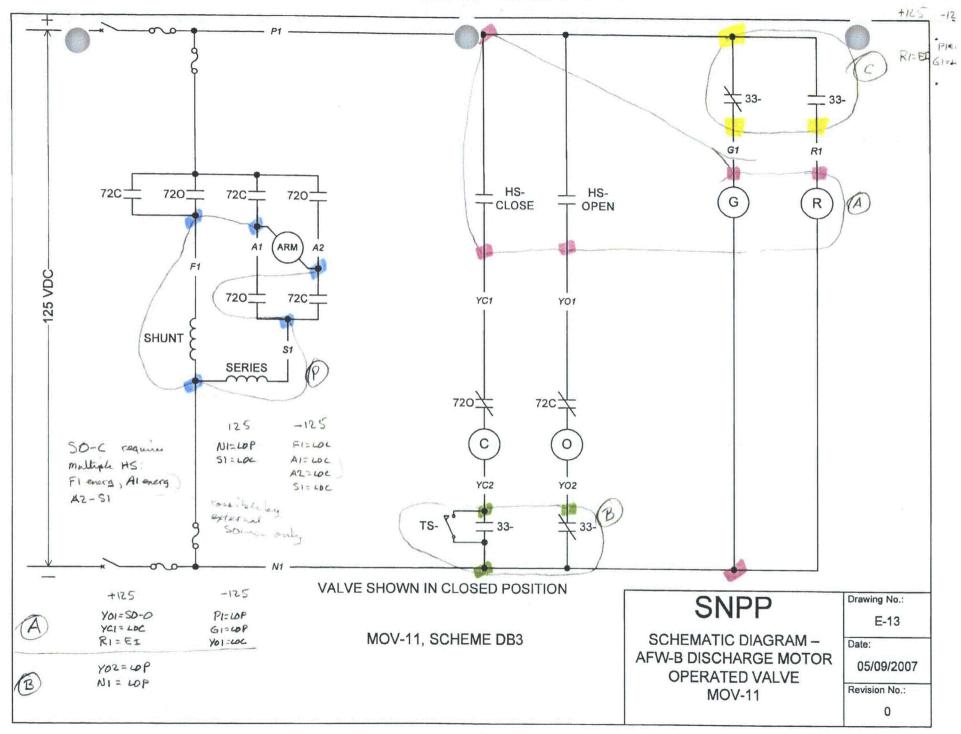
P(SO, A)= 0.3+ 0.03= 0.33

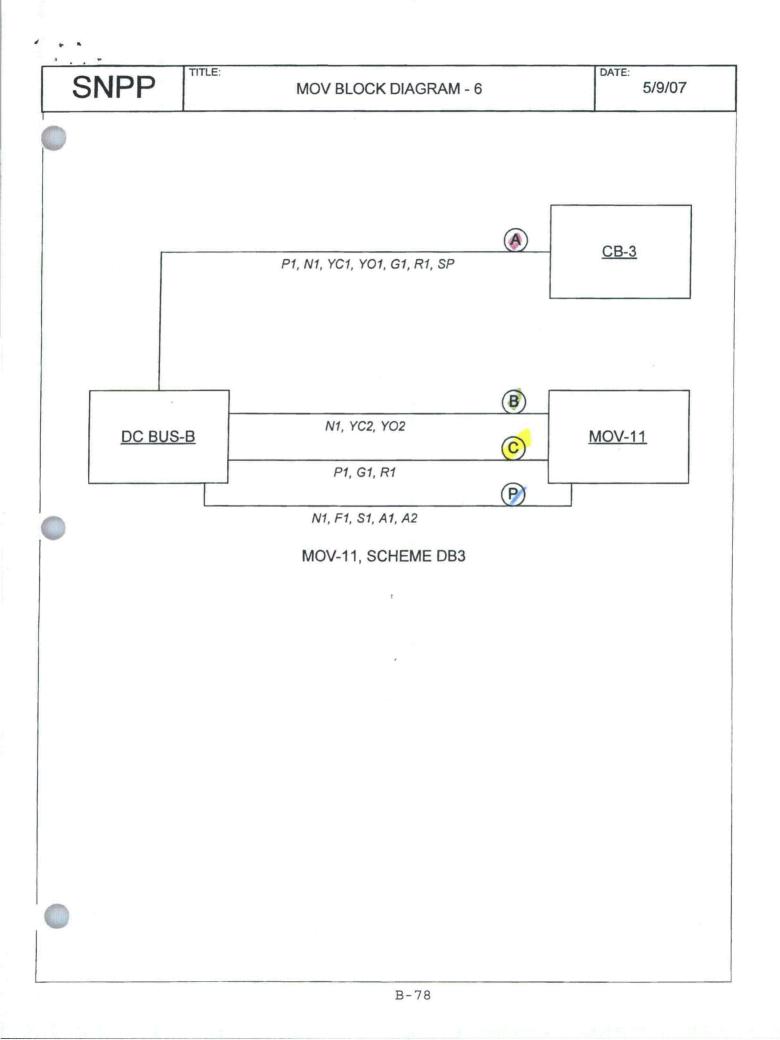
CF={1*[1+5/9]}/9= 0.12

 $\frac{P_{CC}}{P_{CC}} = \frac{(9-1)}{(9-1) + (2 + 1) + 1} = 0.73$ $P(SO, A) = 0.73 \times 0.12 = 0.09$

CIRCUIT ANALYSIS WORKSHEET Exercise 8							
Component ID: MOV-11		Component Type:	MOV				
Component Description: AFW Discharge Isolation Valve							
BE Code:	MOV-11_FTO	(MOV-11 FAILS TO OP	EN)				
Required Position: Functional State	OPEN						
Normal Position:	CLOSED						
Failed Electrical Position:	AS-IS						
Failed Air Position:	N/A						
High Consequence Component	Yes 🗌 No 🖾						
Power Supplies: DC Bu	ıs-B	Breaker: 3					
		Breaker:	,				

Cable ID	Required?	Function	Fault Consequence	Comments
DB3A	Yes	Control	SO-C, EI, LOC, LOP	
DB3B	Yes	Control	LOP	
DB3C	Yes	Control	EI, LOP	
DB3P	Yes	Power	LOC, LOP	
		•		


.

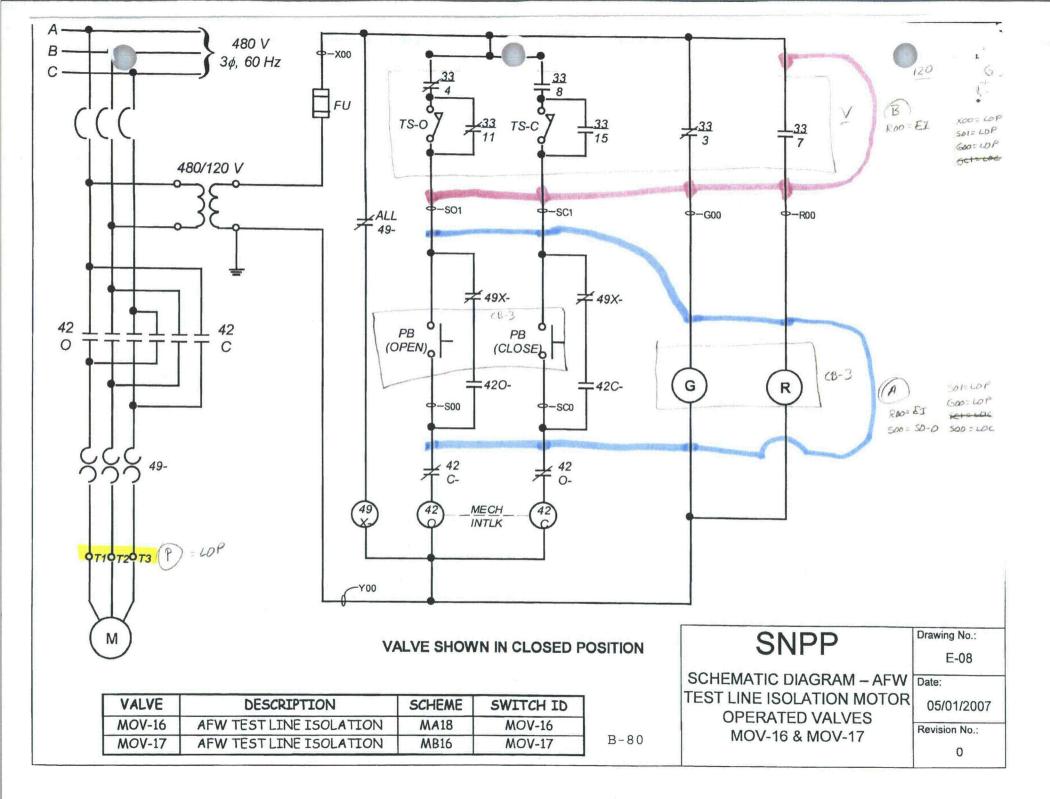

.

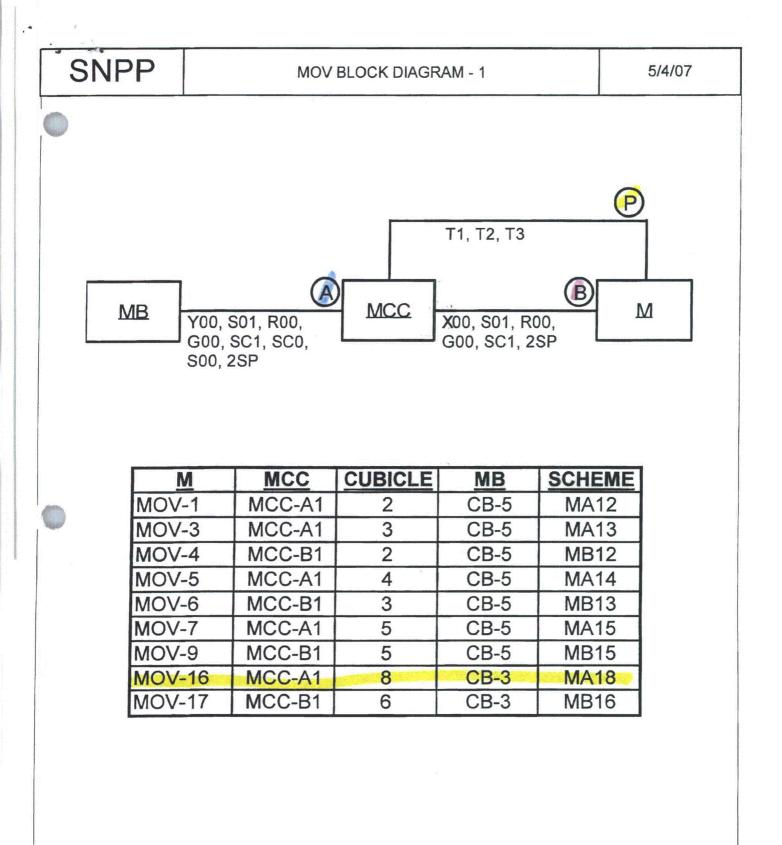
Comments:

P(SO, A)= 0.60+0.06 - (0.6*0.06)= 0.62

<u> P_{cc}=</u>	7 – 1	= 0.75	CF= {1*[2+5/7]}/7= 0.30
(7	- 1) + (2 *	1)	
<u>P(SO, A)</u>	= 0.75*0.30	= 0.23	

CIRCUIT ANALYSIS WORKSHEET Exercise 9						
Component ID: MOV-16 Component Description: AF	W Test Line Isola	Component Type: tion Valve	MOV			
BE Code:	MOV-16_TO	(MOV-16 TRANSFER	S OPEN)			
Required Position: Functional State	CLOSED					
Normal Position:	CLOSED					
Failed Electrical Position:	AS-IS					
Failed Air Position:	N/A	、				
High Consequence Component	Yes 🗌 No 🛛					
Power Supplies: MCC-A	A1	Breaker:	3			
		Breaker:				


Cable ID	Required?	Function	Fault Consequence	Comments
MA18A	Yes	Control	SO-Open	Energize S00 (Also EI, LOP, LOC)
MA18B	No	Control	EI, LOP	
MA18P	No	Power	LOP	
			,	


Comments:

P(SO, A)= 0.30+0.03= 0.33

P _{cc} =	9 - 1	= 0.73	CF= {1*[2+5/9]}/9= 0.23
(9 - 1) + (2 * 1) + 1	
<u>P(SO, A)=</u>	0.73*0.	23= 0.17	

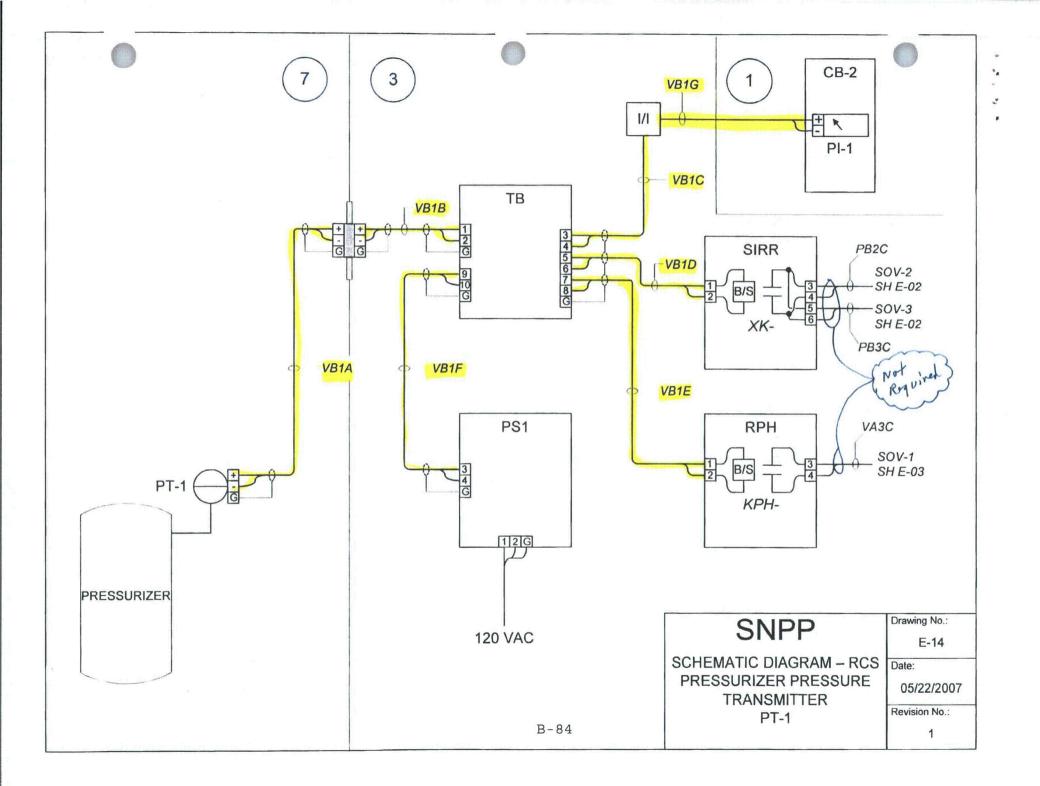
5

CIRCUIT	ANALYSIS	WORKSHEET
---------	----------	-----------

Exercise 10			
Component ID: PI-1		Component Type:	Instrument
Component Description: RC	S Pressure		
BE Code:	PI-1_FL (I	RCS Pressure Indicatio	n Fails High)
Required Position: Functional State	AVAILABLE		
Normal Position:	AVAILABLE		
Failed Electrical Position:	LOW		
Failed Air Position:	N/A		
High Consequence Component	Yes 🗌 No 🛛	3	
Power Supplies: Vital-B		Breaker: 8	
	Marina 11 -	Breaker:	

Cable ID	Required?	Function	Fault Consequence	Comments
VB1A	Yes	Indication	FH, Error-H	
VB1B	Yes	Indication	FH, Error-H	
VB1C	Yes	Indication	FL, Error-L	
VB1D	Yes	Indication	FL, Error-L	
VB1E	Yes	Indication	FL, Error-L	
VB1F	Yes	Indication	FL, Error-L	
VB1G	Yes	Indication	FL, Error-L	
VA3C	No	Indication	None	Cannot affect indication

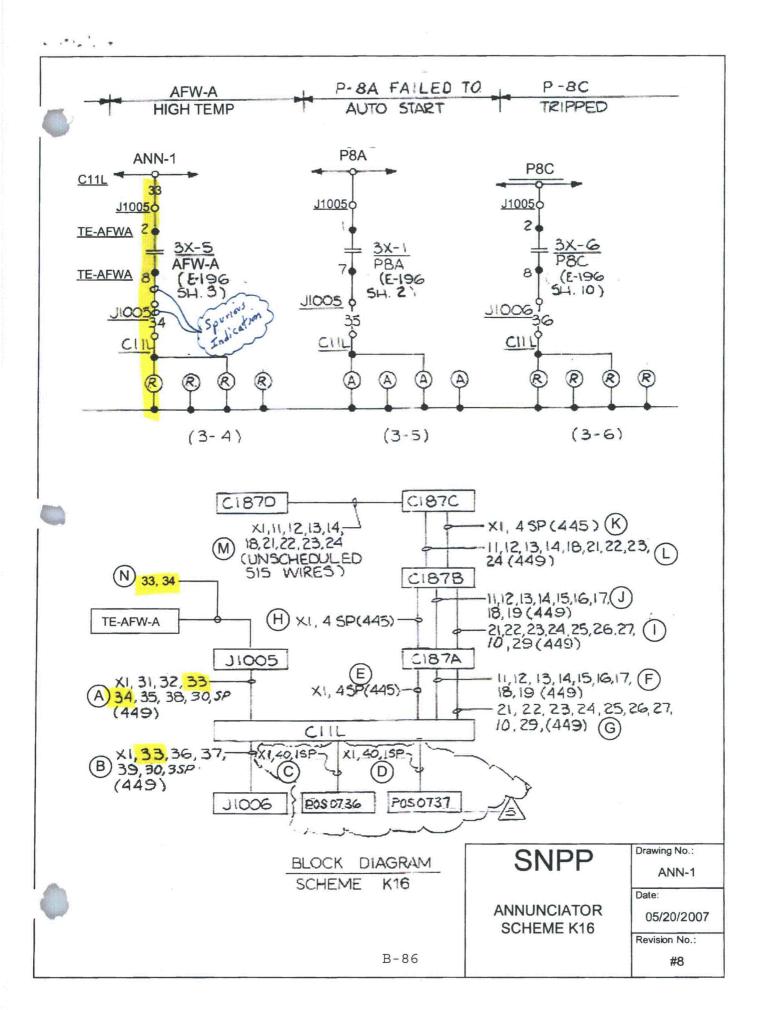
Comments:


1. Shielded Instrument Cable- External hot shorts not considered credible.

Component ID: <u>PI-</u>

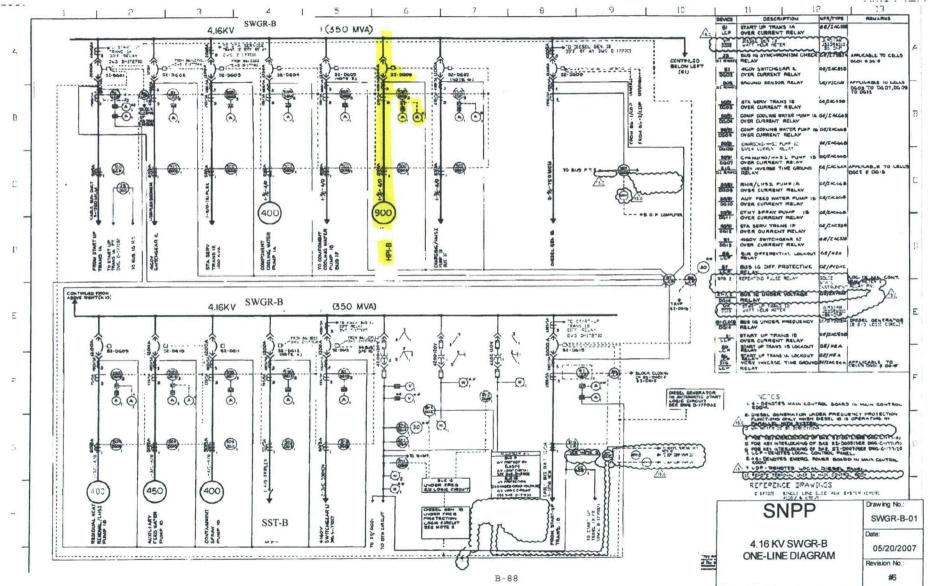
Continuation Sheet $(\underline{2} \text{ of } \underline{2})$

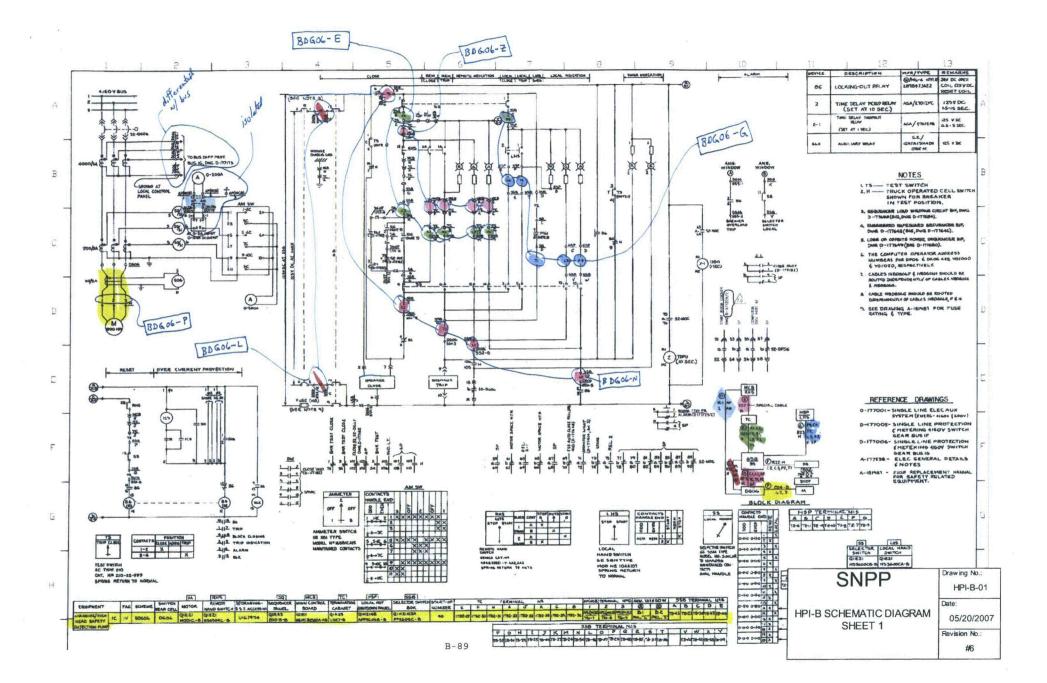
Cable Analysis:

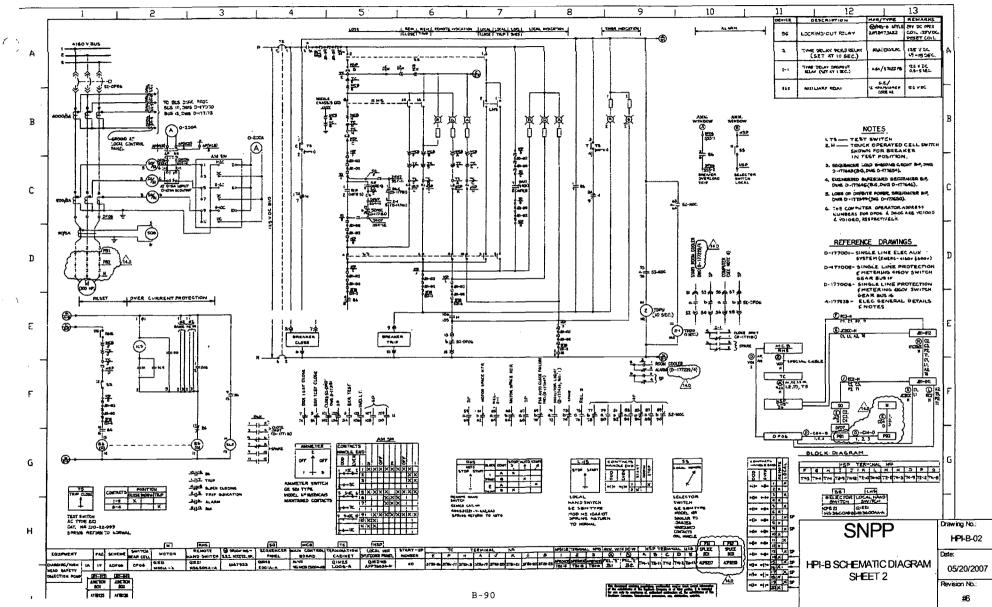

	Cable ID	Required?	Function	Fault Consequence	Comments
	PBZC	N	I	None	CANNOT AFEECT INDICATION
	PB3C	N	I	NONE	CANNOT AFFECT INDICATION
			, , , , , , , , , , , , , , , , , , ,		
					·
			·		
\bigcirc			·	· ·	
0					
				1	
\bigcirc					
\smile					

CIR Exercise 11	CUIT ANALY	SIS WORKSHEET	•
Component ID: ANN-1		Component Typ	e: Annunciator
Component Description: AF	W Motor High	Temperature	
BE Code:	ANN-1_FH	(AFW Pump Motor	Spurious High Ann)
Required Position: Functional State	NON-SPURIC	DUS	
Normal Position:	AVAILABLE		
Failed Electrical Position:	UNAVAILABI	E	
Failed Air Position:	N/A		
High Consequence Component	Yes 🗌 No		
Power Supplies: <u>Vital-A</u>		Breaker:	4
		Breaker:	

Cable ID	Required?	Function	Fault Consequence	Comments
K16A	Yes	Indication	LOI, SP-ALM	
K16N	Yes	Indication	LOI, SP-ALM	
K16B-K16M	No	Indication	LOI	
			-	


Comments:


Exercise 12							
Component ID	: HPI-	в	Compon	ent Type: Pump			
Component Description: High Pressure Injection Pump B							
BE Code:	Code: HPIA_FTS (HPI-A Fails to Start) HPIA_FTR (HPI-A Fails to Run)						
Required Posit Functional Stat		ON					
Normal Positio	n:	STAN	IDBY / ON				
Failed Electrica	al Position:	Off					
Failed Air Posit	tion:	N/A					
High Conseque	ence Compo	onent Yes	🗔 No 🛛				
Power Supplies	s:	· · · ·	Brea				
			<u>Brea</u>	ker:			
Cable Analysis	:		i				
Cable ID	Required?	Function	Fault Consequence	Comments			
BDG06-P	Yes	Power	LOP				
BDG06-N	Yes	Control					
BDG06-D	No	Indication	None	Isolated by I/I			
BDG06-G	No	Control	None	Isolated by SCB/SS			
BDG06-E	Yes	Control					
BDG06-Z	Yes	Control					
BDG06-L	Yes			DC Control Power			


Comments:

.

. . .

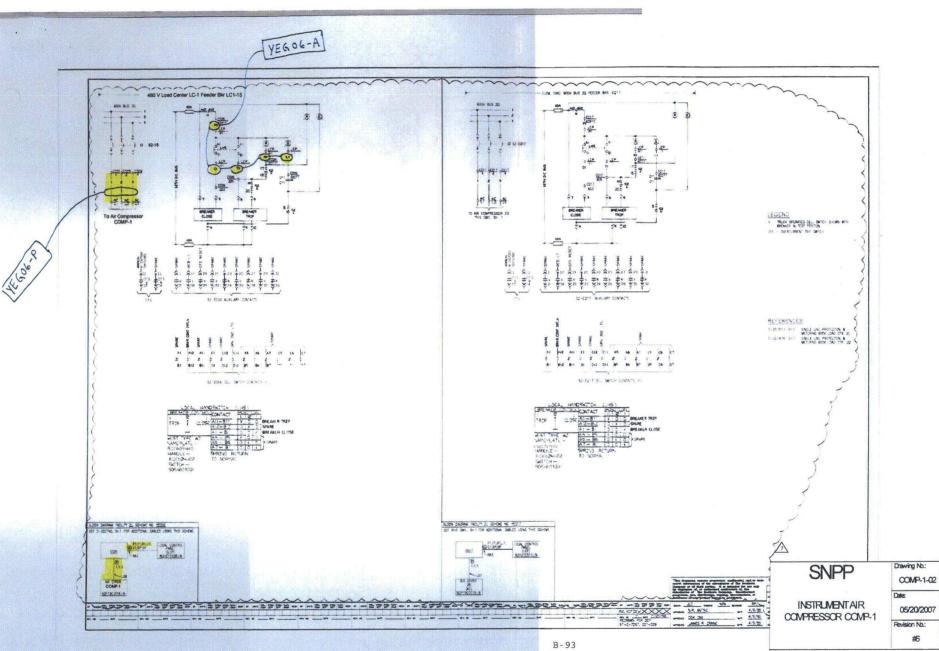
٤.

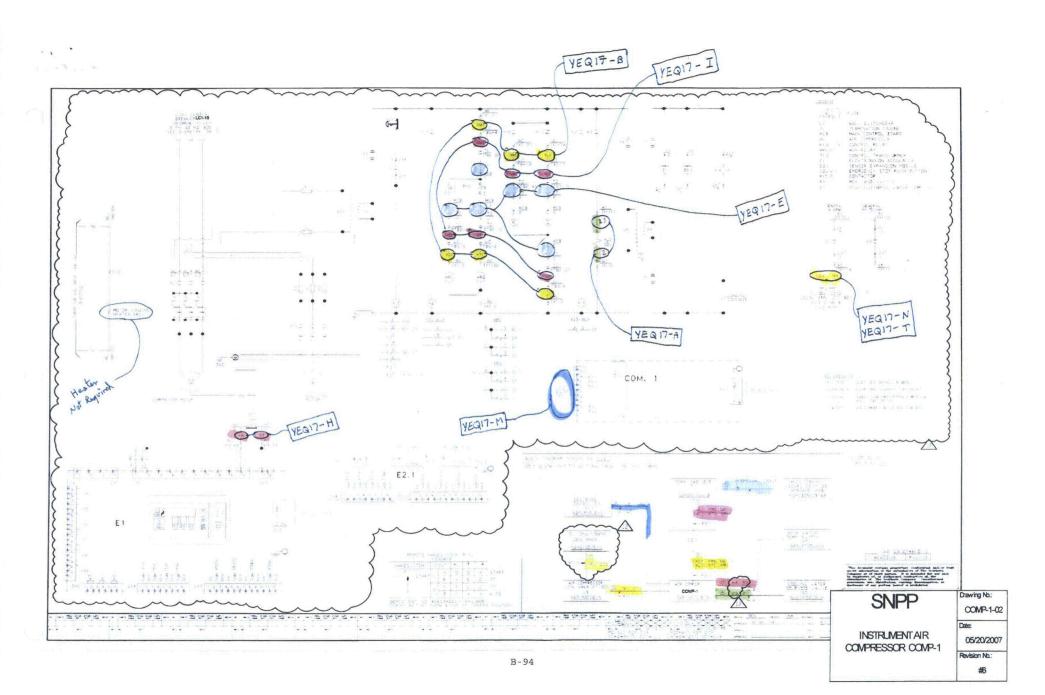
CIRCUIT ANALYSIS WORKSHEET Exercise 13						
Component ID: COMP-1	Component Type: Compressor					
Component Description: Ins	strument Air Compressor					
BE Code:	COMP-1_FTR (COMP-1 Fails to Run)					
Required Position: Functional State	CYCLE					
Normal Position:	CYCLE					
Failed Electrical Position:	Off					
Failed Air Position:	N/A					
High Consequence Component	Yes 🗌 No 🛛					
Power Supplies: <u>LC-1</u>	Breaker: LC1-15					
	Breaker:					

Cable ID	Required?	Function	Fault Consequence	Comments
YEG06-P	Yes	Power	LOP	
YEG06-A	Yes	Control	LOP	Faults could cause LOP to Air Compressor Skid
YEQ17-A	Yes	Control	Loss of Cooling H_2O , LOC	
YEQ17-B	Yes	Control	LOC	
YEQ17-E	Yes	Control	LOC	
YEQ17-I	Yes	Control	LOC	
YEQ17-H	Yes	Control	Fail off	
YEQ17-M	Yes	Control	LOC, fail off	

Comments:

1. Air Compressor Sequence Control Mounted on COMP-1 skid


2. Motor winding heater not required


Component ID: <u>CoMP-1</u>

Continuation Sheet ($\frac{2}{2}$ of $\frac{2}{2}$)

Cable Analysis:

Cable ID	Required?	Function	Fault Consequence	Comments
YEA17-N	N	IND	NONE	ANNONCIATION ONLY
YEQ 17- T	N	IND	Noné	ANNUNCIATION ONLY
		·		
<u>.</u>				
·····				
		•		

Component	<u></u>	GR-B	Corr	ponent Type:	Switchgea
			4160V Switchgear	iponent i ype.	Gwitchgea
BE Code:		PNL	B EPS-4VBUSBF-2	(4KV BUS B F	AULT)
Required Po Functional S		ENE	RGIZED FROM EDG-	В	
Normal Position: ENERGIZED FROM SUT-1					
Failed Elect	rical Position:	Off			
Failed Air P	osition:	N/A			
High Conse	quence Comp	onent Yes			
Power Supp	olies:		Brea	ke <u>r:</u>	
			<u>Brea</u>	ker:	
Cable Analy	vsis:				
	Required?	Function	Fault Consequence	Comments	
Cable ID					
Cable ID					
Cable ID					
Cable ID					
Cable ID					
Cable ID					
Cable ID					

Comments:

 \cup

x

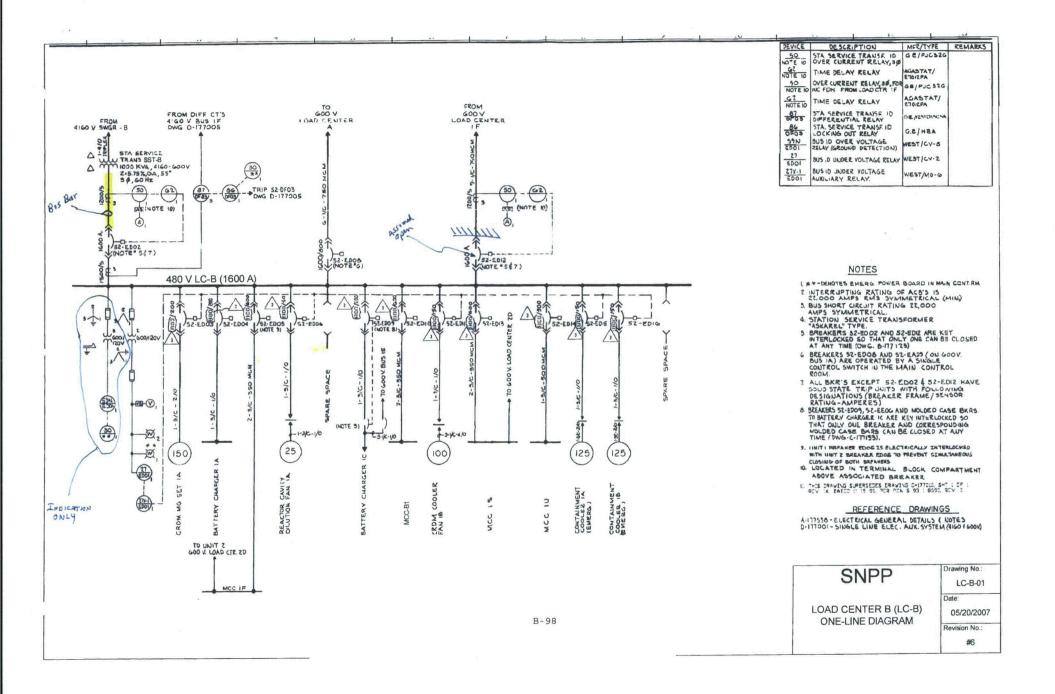
Exercise 15 (Note: No detailed of	description, nor solu	tion, of Exercise 14 on	prev. pg. is available.)
Component ID: LC-B Component Description: Tr		Component Type: Center	Load Center
BE Code:	EPS-480VLCBF	(480V LOAD CEN	TER B FAULT)
Required Position: Functional State	ENERGIZED		
Normal Position:	ENERGIZED		
Failed Electrical Position:	Off		
Failed Air Position:	N/A		
High Consequence Component	Yes 🗌 No 🖾	.*	
Power Supplies:SST-E	3	Breaker: N/A	L
PNL-E	3	Breaker: 11	

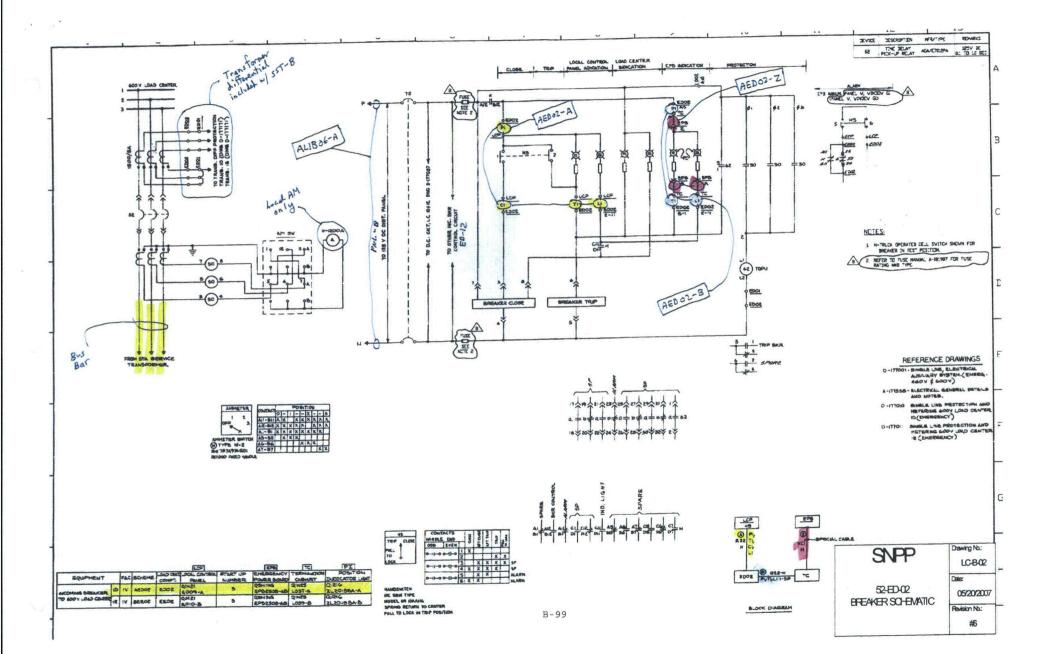
Cable Analysis:

Cable ID	Required?	Function	Fault Consequence	Comments
AED02-A	Yes	Control	LOC, Loss-Protection	
AED02-B	Yes	Control	LOC, Loss-Protection	
AED02-Z	Yes	Control	LOC, Loss-Protection	
AED12-A	No	Control	None	Kirk-Key Interlock
AED12-B	No	Control	None	Kirk-Key Interlock
AED12-P	No	Power	None	LOP from LC-1F
AED12-Q	No	Power	None	LOP from LC-1F
AED12-R	No	Power	None	LOP from LC-1F

Comments:

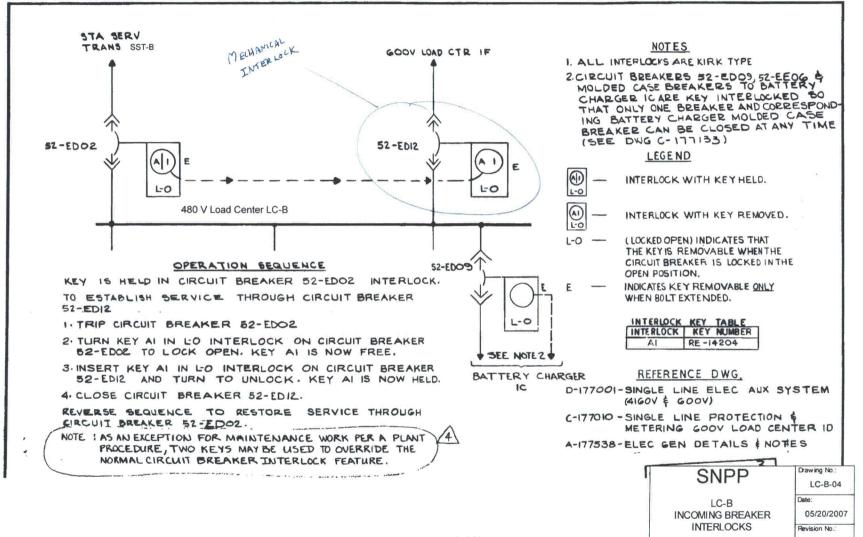
Component ID: LC-B

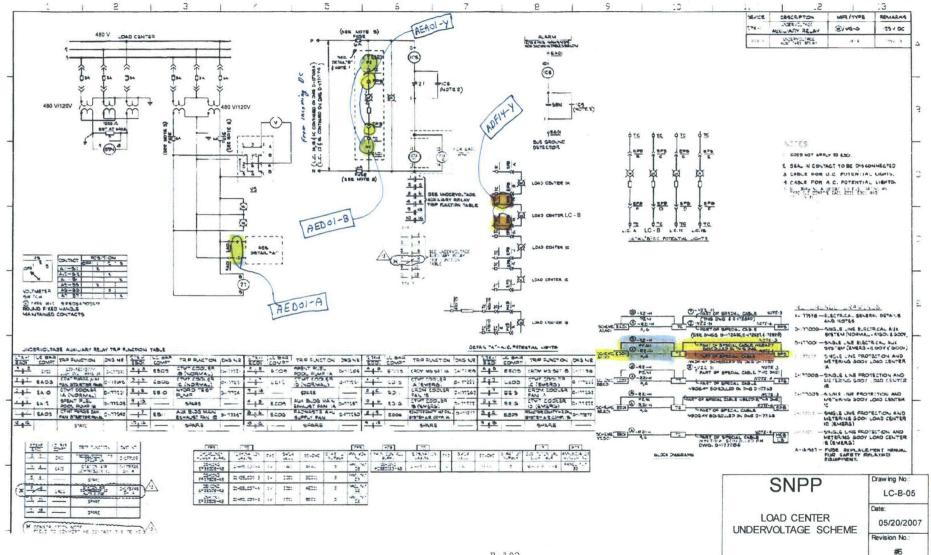

Continuation Sheet (2 of 2)

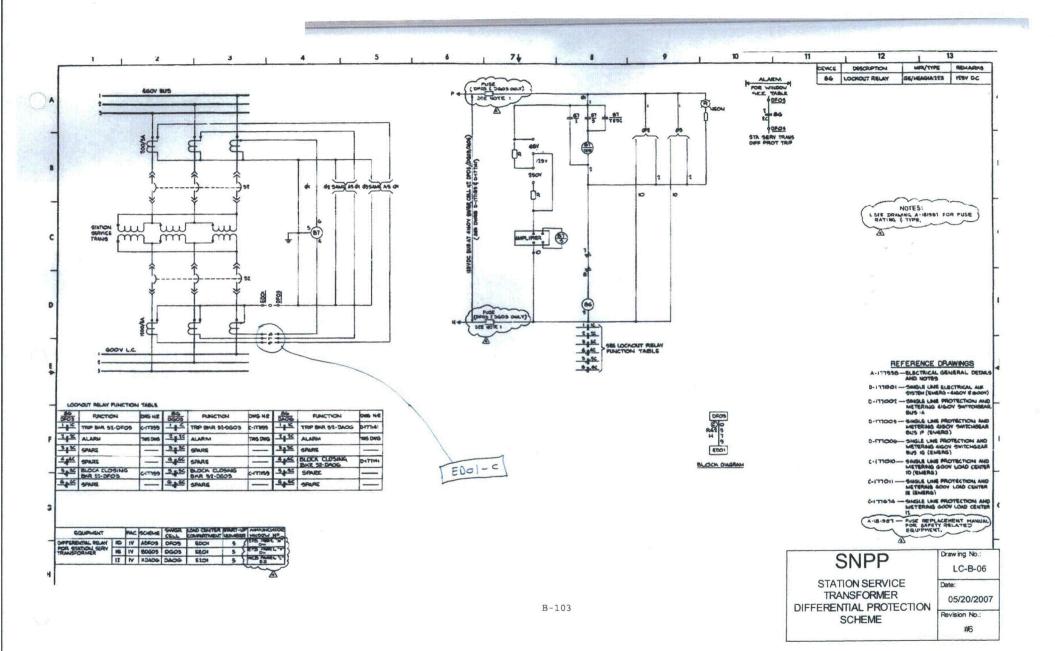

Cable Analysis:


• • •

 \bigcirc


Cable ID	Required?	Function	Fault Consequence	Comments
AED12-W	N	С	NONE	KIRK-KEY INTERLOCK
ALIBOG-A	У	Ý	Loss of Control Pur	Supply Breakons
ALIBO6-B	У	P	Loss of Control Pri	Supply Breakers r Feeher Breakers
AD F14-Y	У	Ĺ	Fail Look Sheh	
AEAOI-Y	У	3	Fail Load Shed	· · · · · · · · · · · · · · · · · · ·
AEDOI-A	у	C	Fail Lood Shek	
AEDO1-B	У	C	Fail Look Shet	
		· · · ·	æ.,	
		•• •	· · ·	
			· · · · · · · · · · · · · · · · · · ·	· ·
		-		



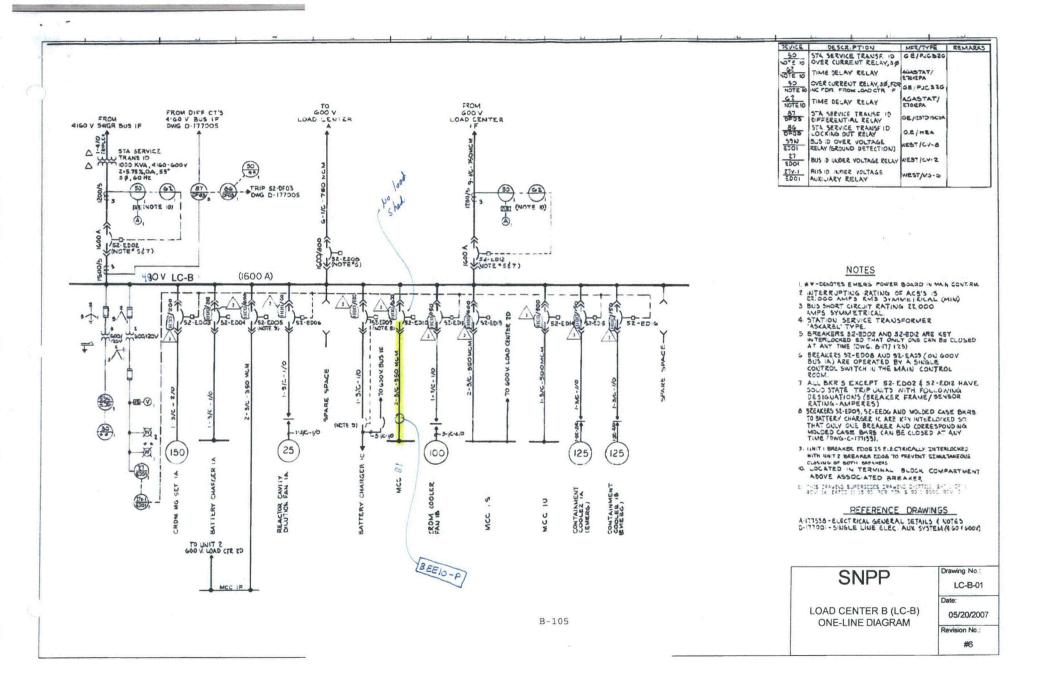


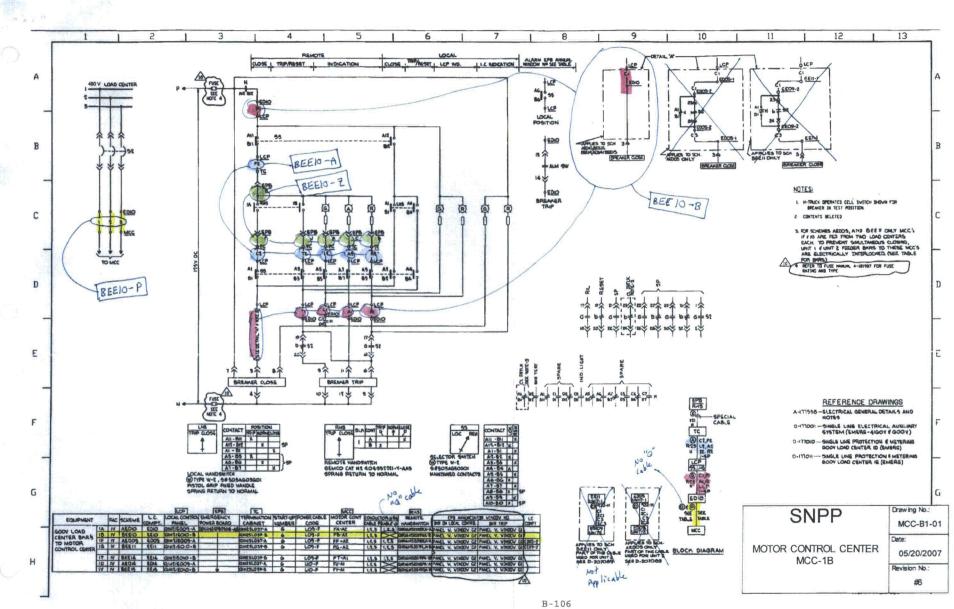
1.21

#6

CIRCUIT ANALYSIS WORKSHEET Exercise 16							
Component ID: MCC-1B		Component Type:	MCC				
Component Description: Tra	ain B 480 V Motor Co	ntrol Center					
BE Code:	EPS-480MCCB1F	(480V MCC B1 FAULT)					
Required Position: Functional State	ENERGIZED						
Normal Position:	ENERGIZED						
Failed Electrical Position:	Off						
Failed Air Position:	N/A						
High Consequence Component	Yes 🗌 No 🛛						
Power Supplies: <u>LC-B</u>		Breaker: ED-10					
	· · · · · · · · · · · · · · · · · · ·	Breaker:					

Cable ID	Required?	Function	Fault Consequence	Comments
BEE10-P	Yes	Power	LOP	
BEE10-A	Yes	Control	LOC, SO	
BEE10-B	Yes	Control	LOC, SO	
BEE10-Z	Yes	Control	LOC, SO	

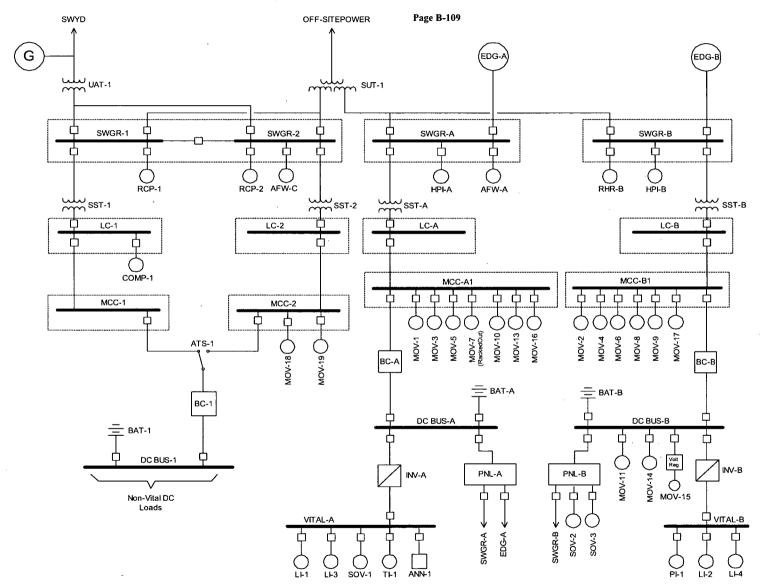

.

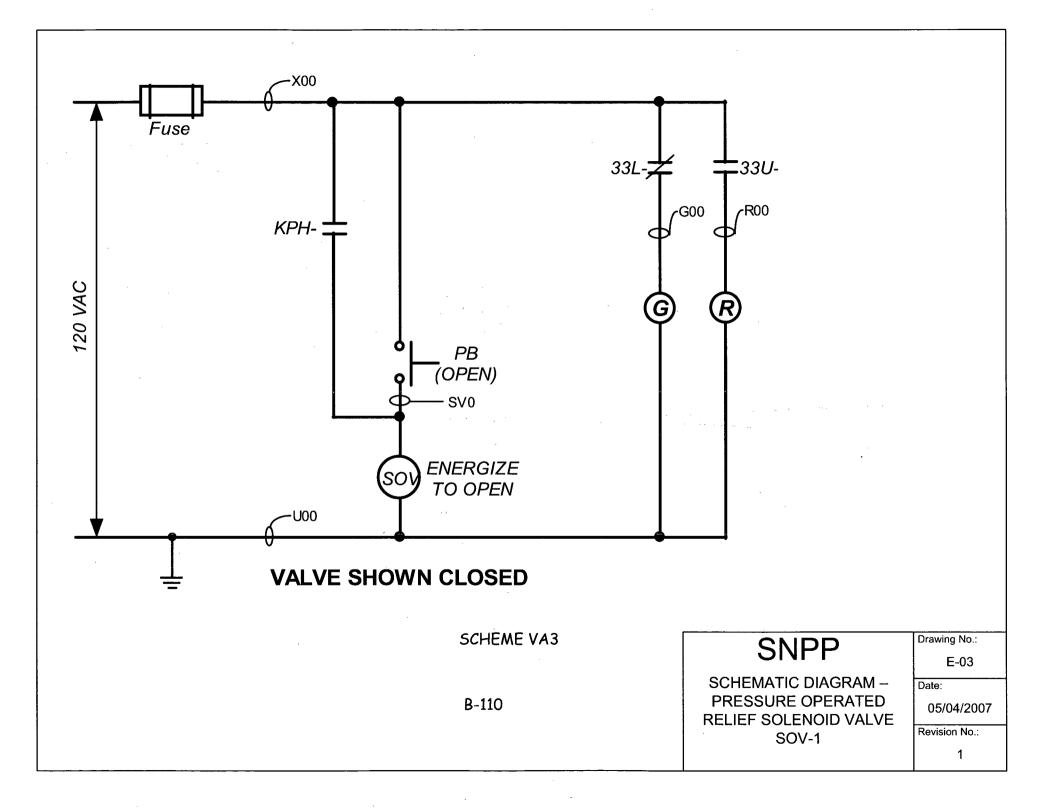

Comments:

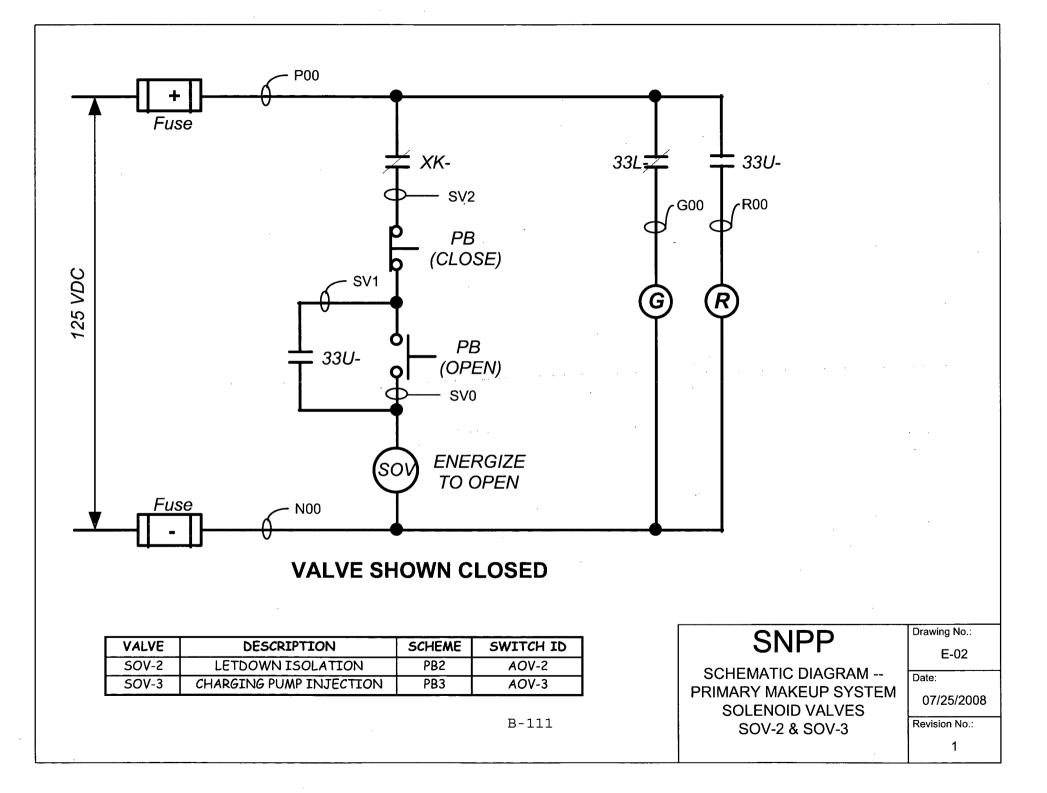
1. Breaker control power included in analysis for LC-B.

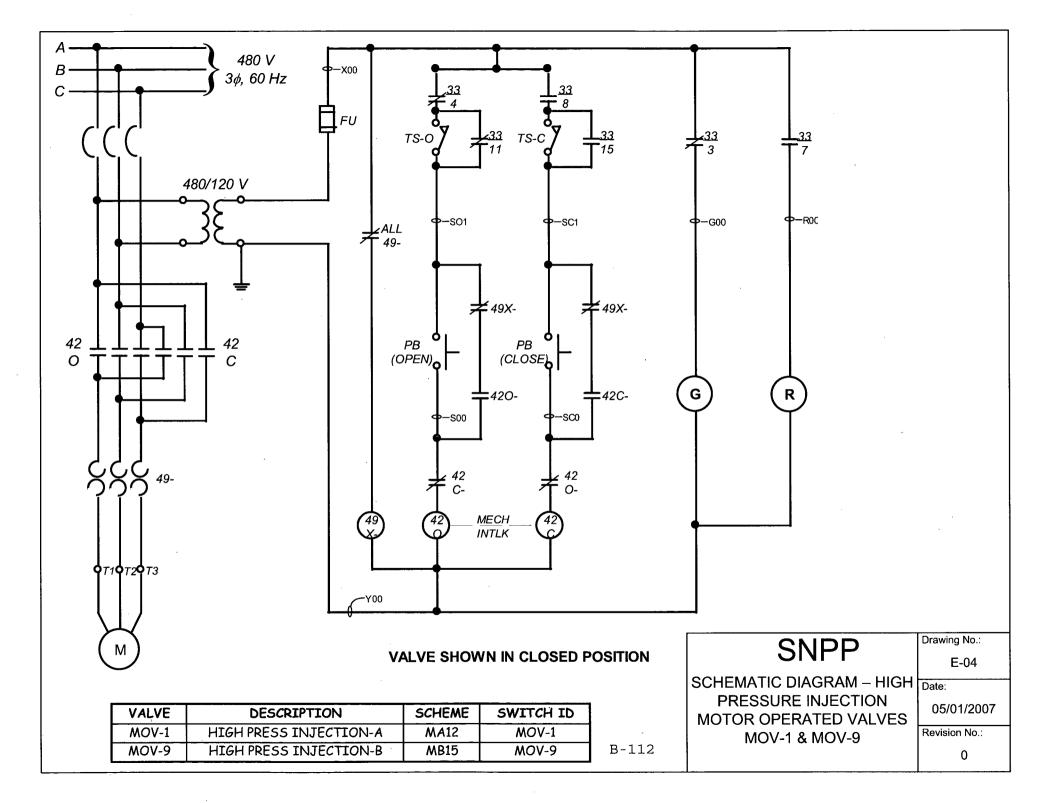
2. MCC-1B has no main breaker. Power cables connected directly to bus.

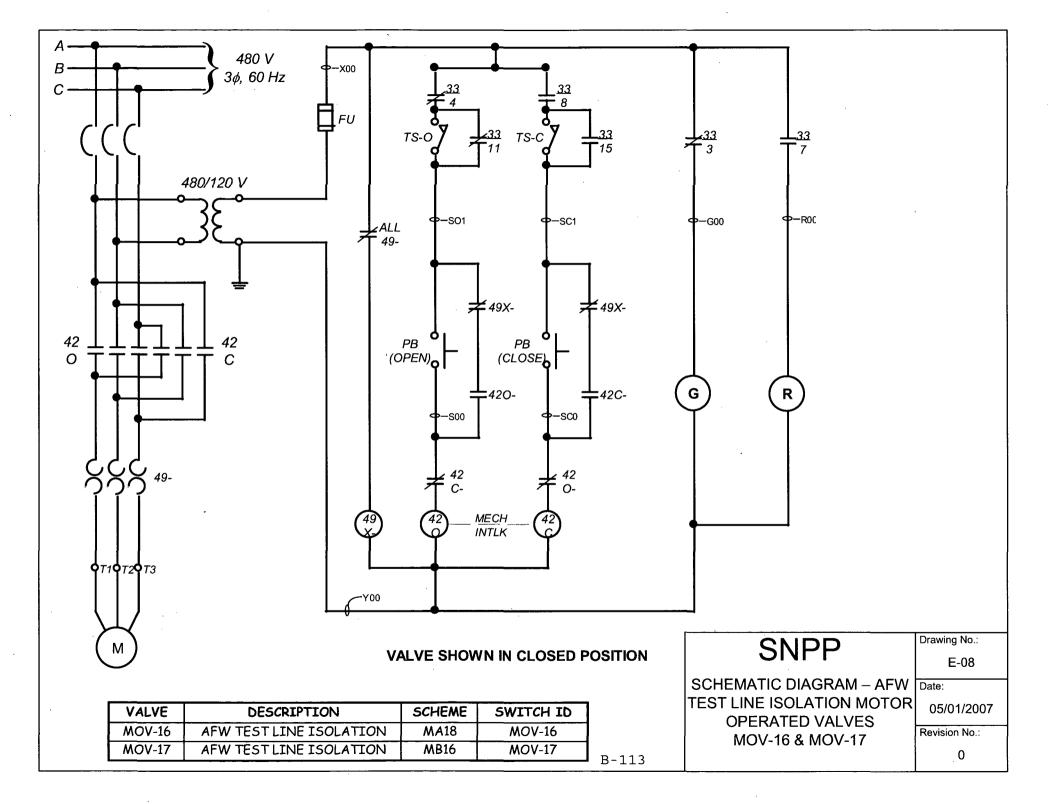
3. Annunciation circuits not required for functionality.

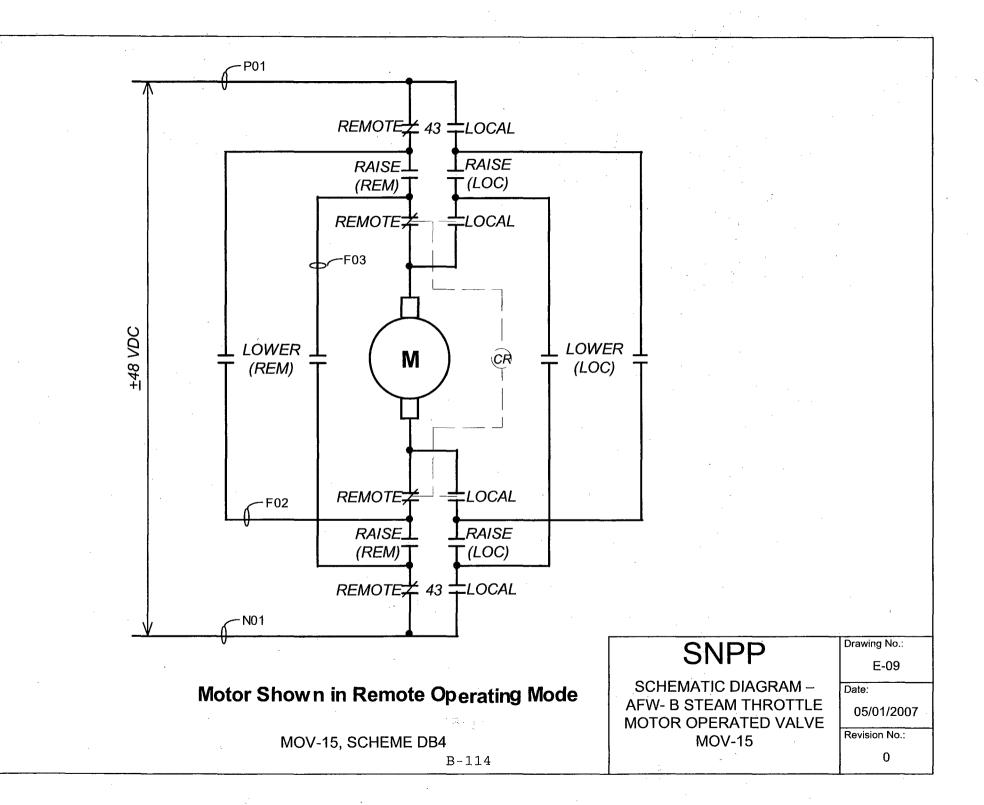



Drawings Needed in the Exercises

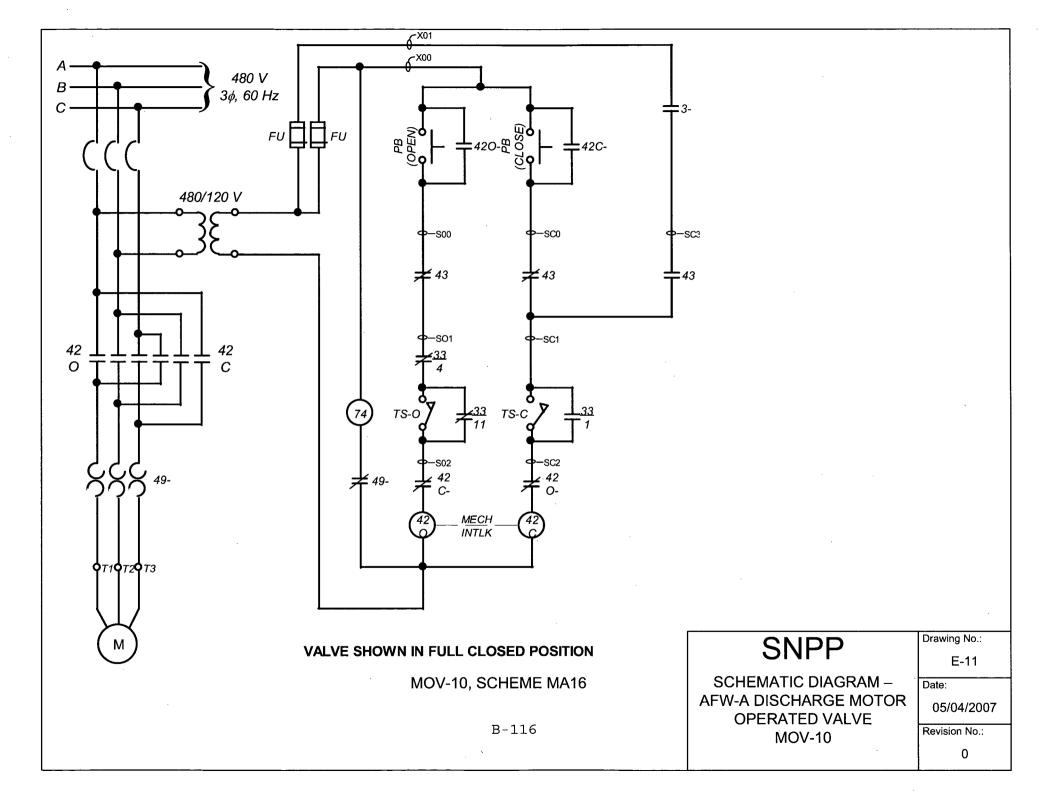

Drawing Pack 1 - Electrical Schematic Diagrams

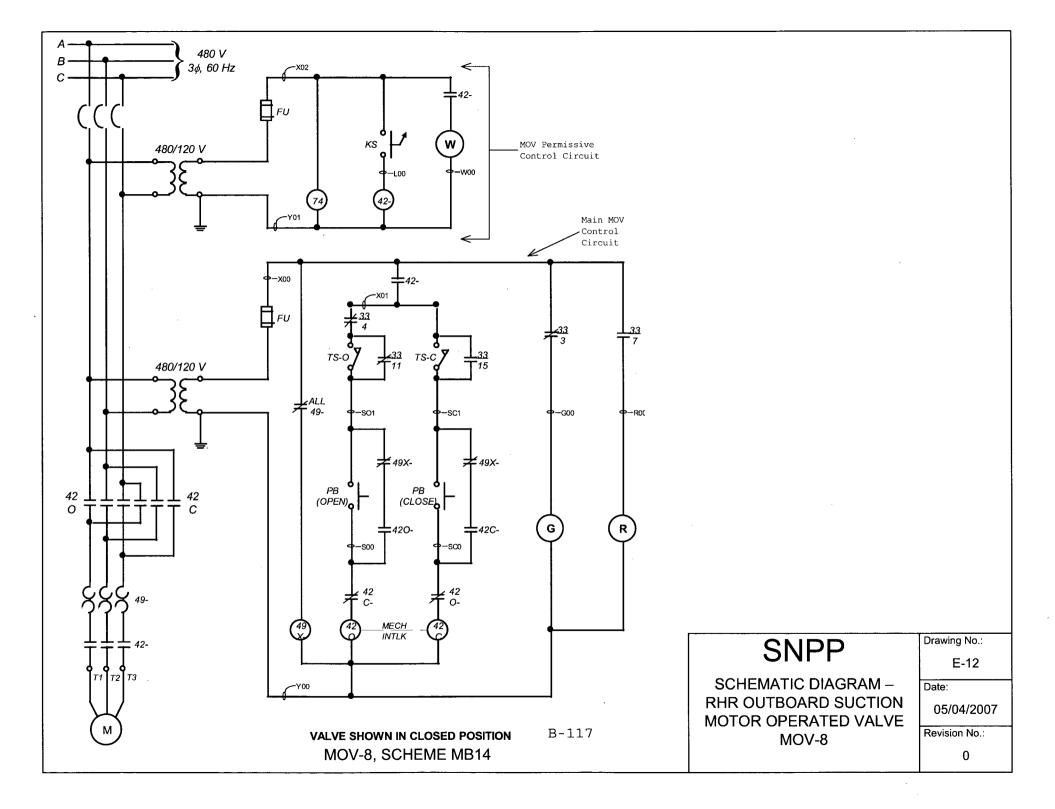


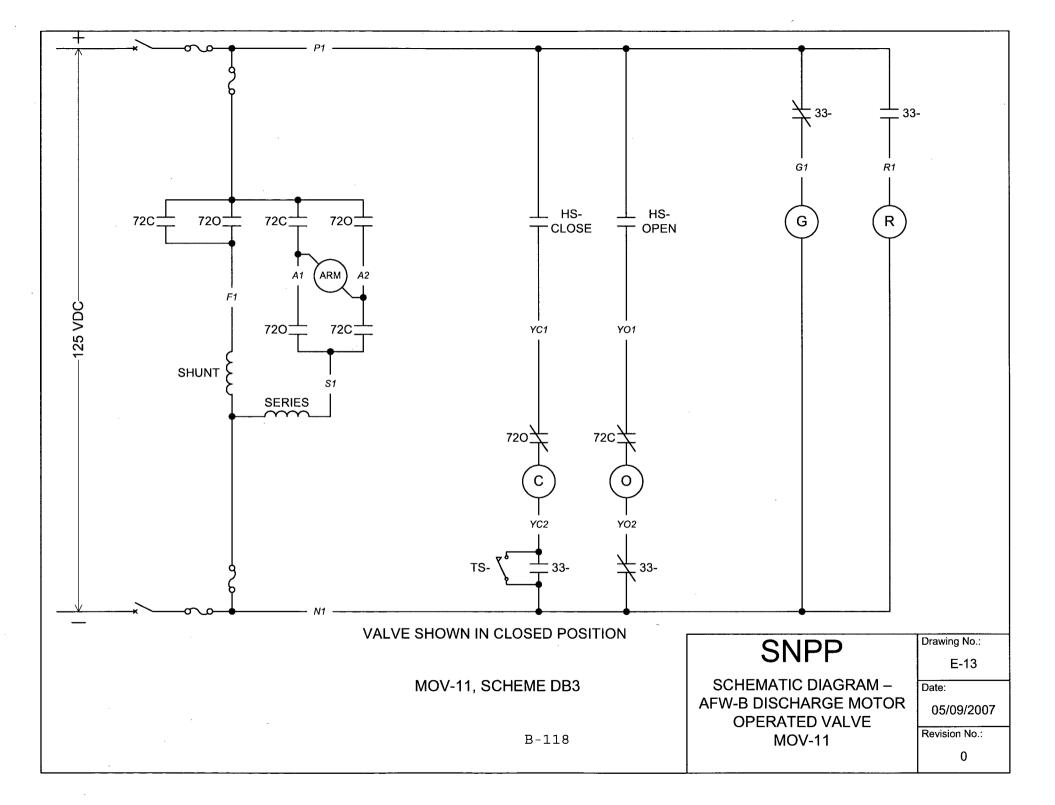


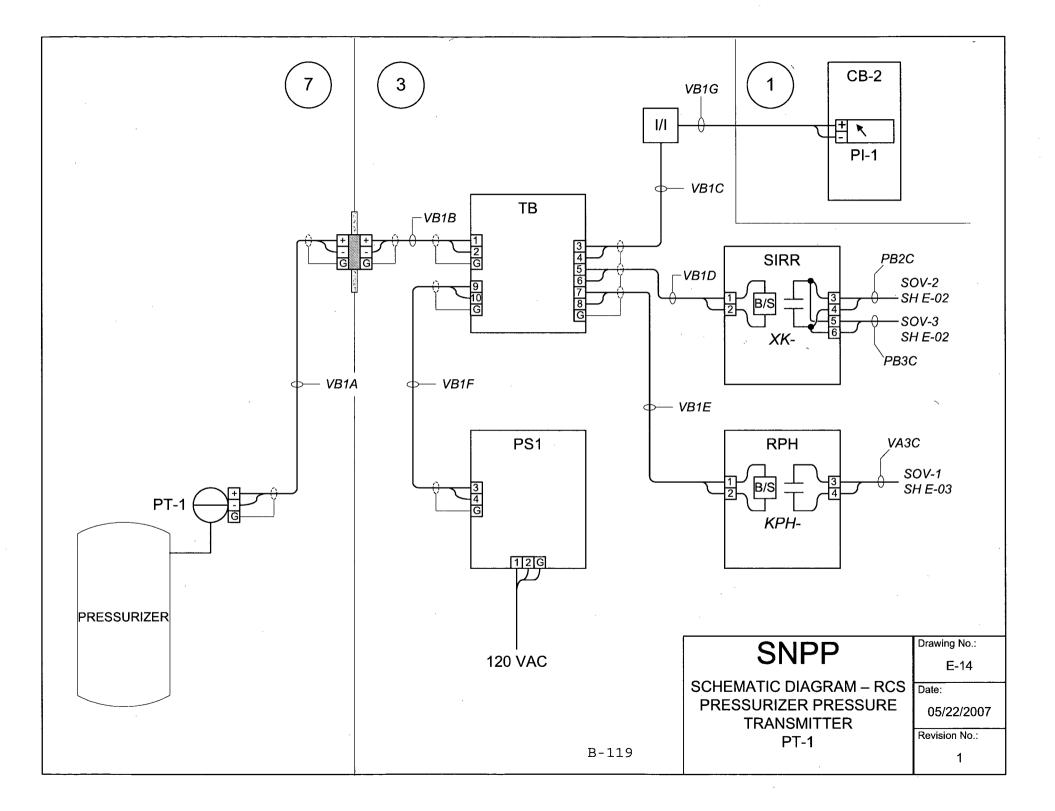


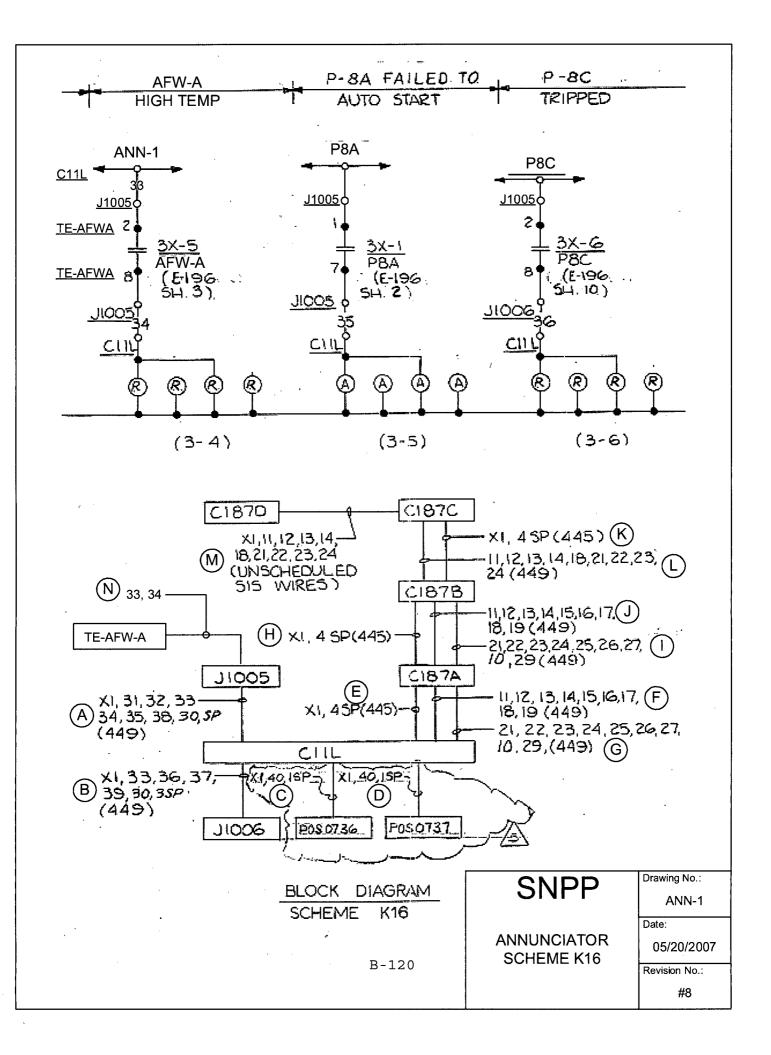


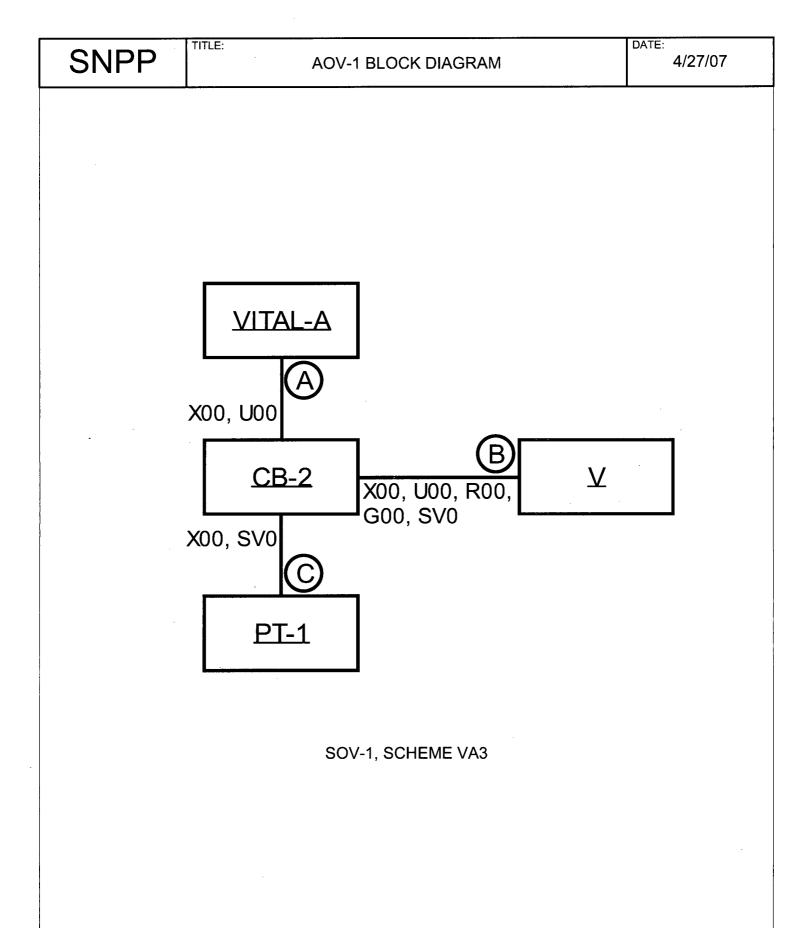


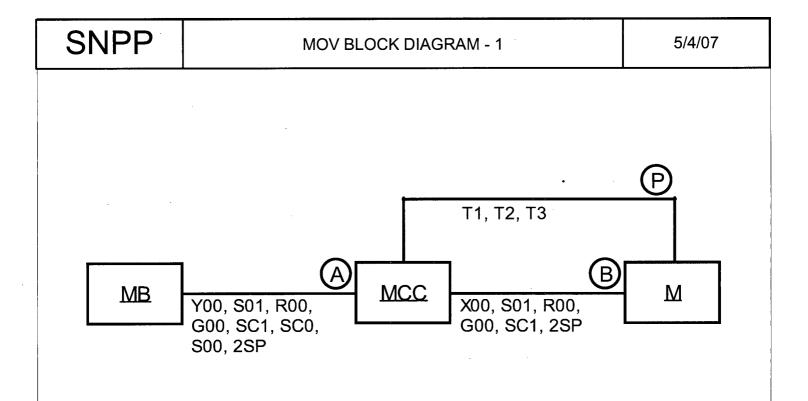




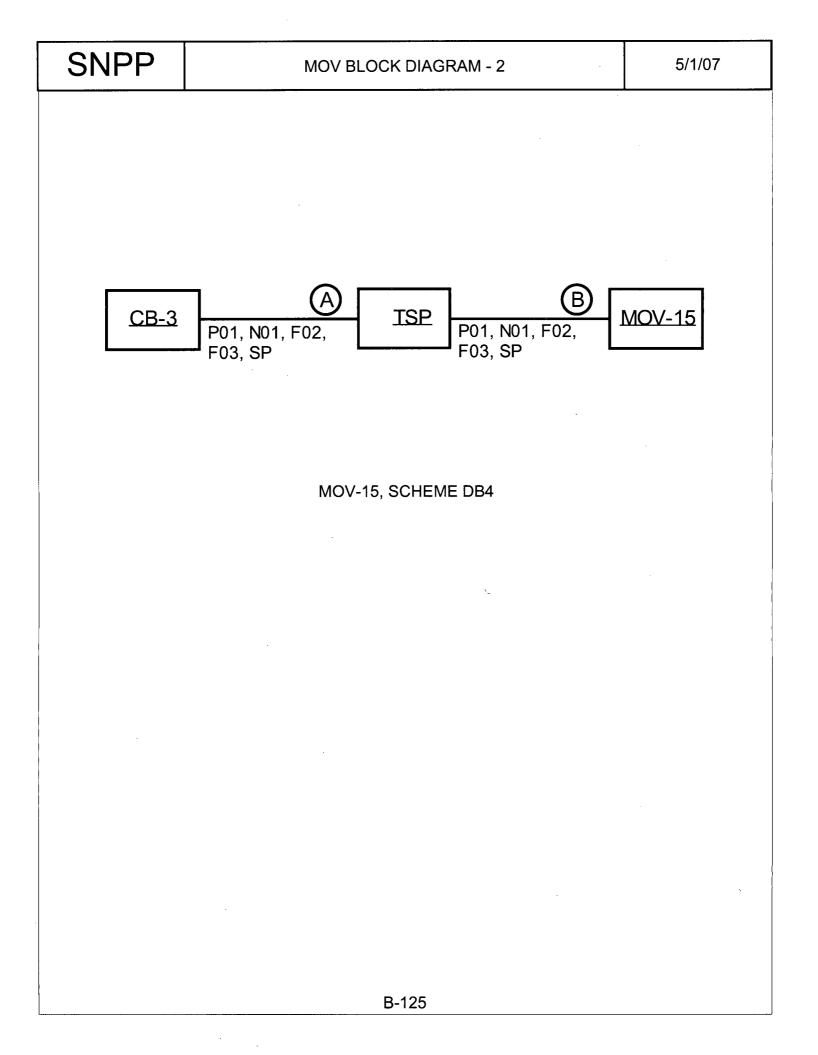




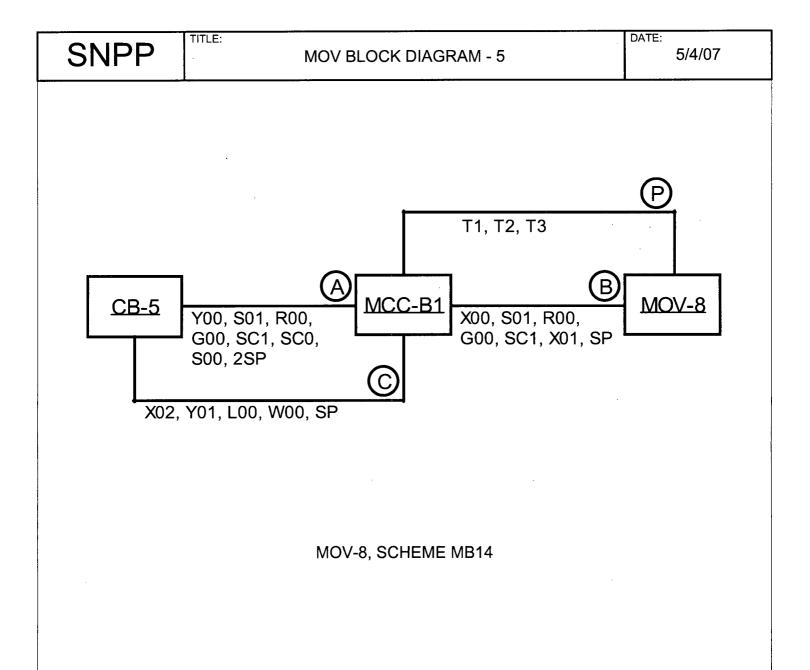


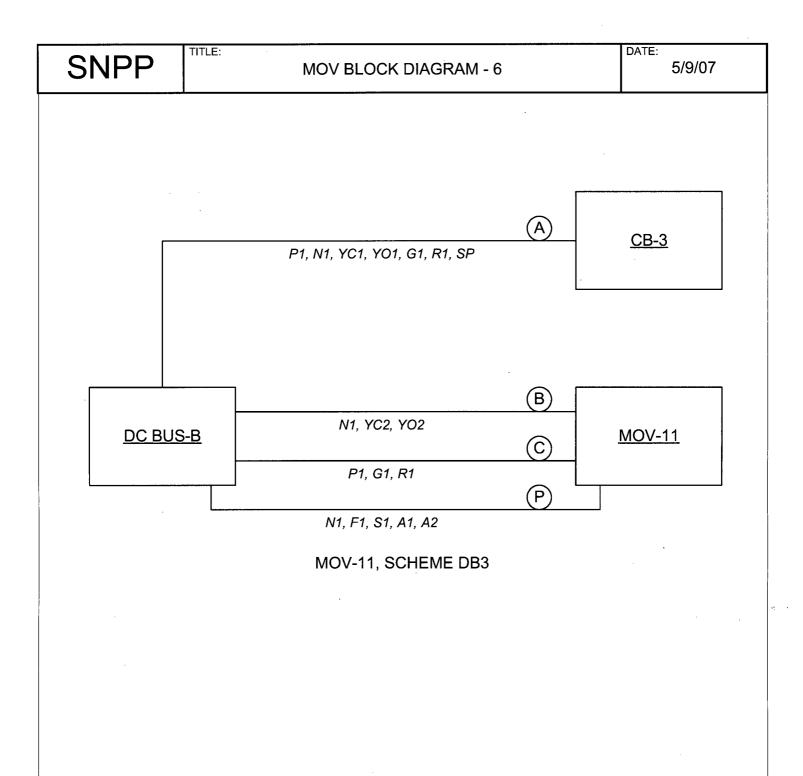


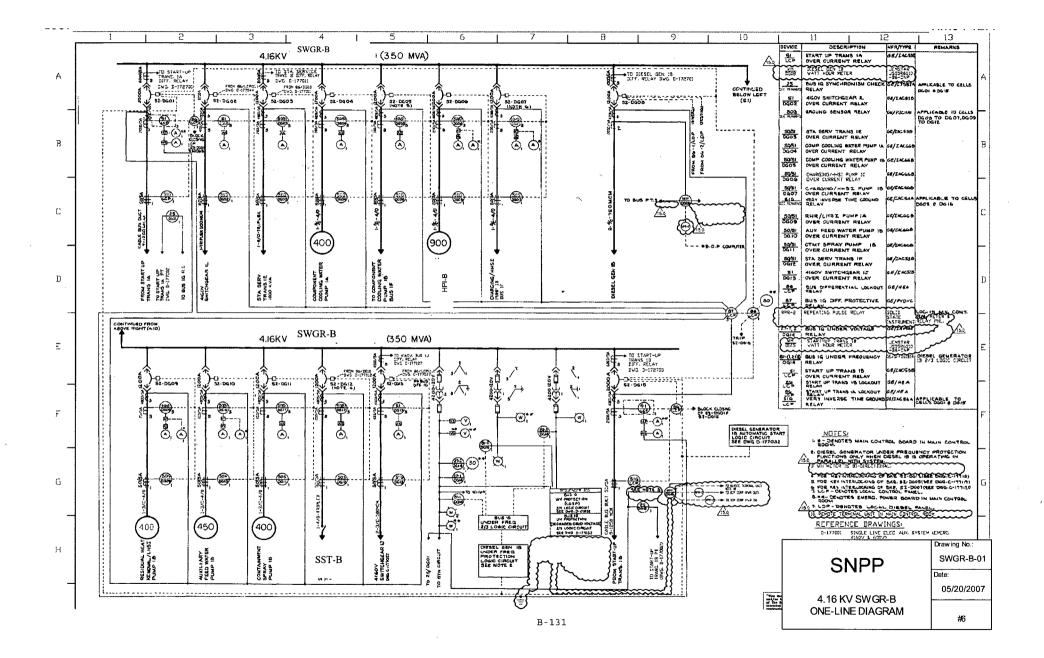
Drawing Pack 2 - AOV and MOV Block Diagrams

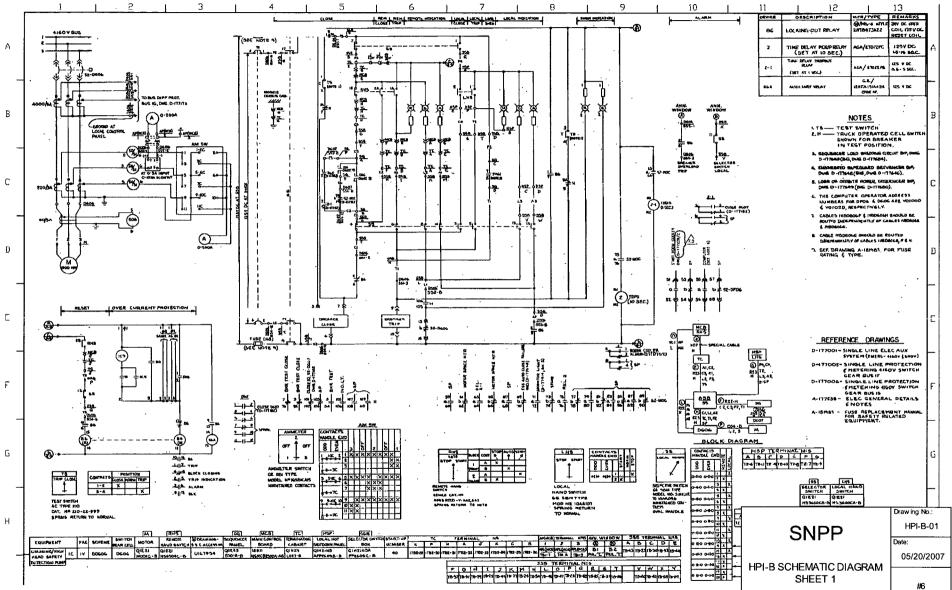

١

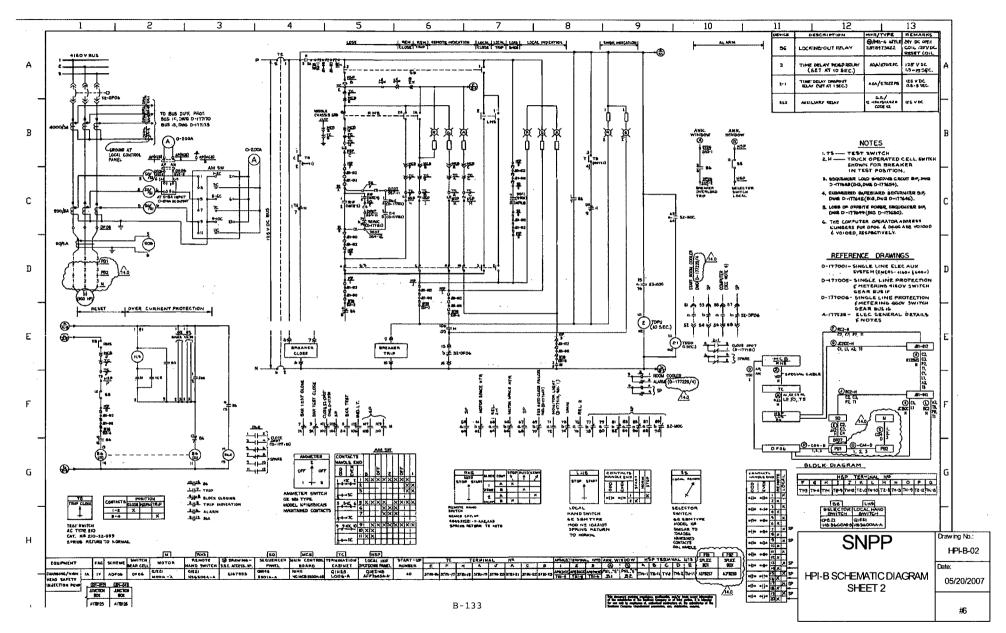


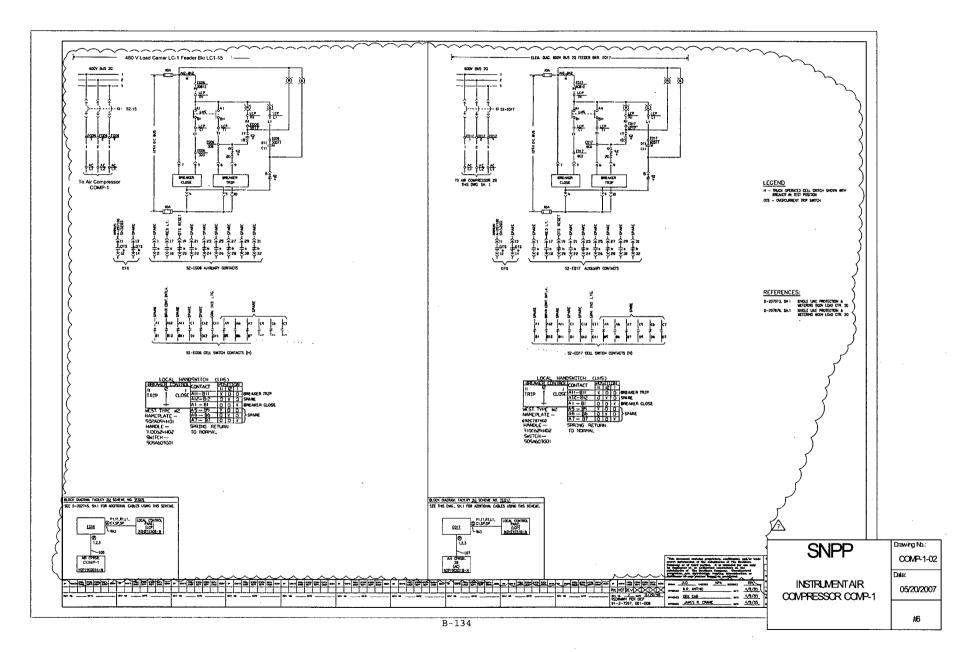

M	MCC	CUBICLE	MB	SCHEME
MOV-1	MCC-A1	2	CB-5	MA12
MOV-3	MCC-A1	3	CB-5	MA13
MOV-4	MCC-B1	.2	CB-5	MB12
MOV-5	MCC-A1	4	CB-5	MA14
MOV-6	MCC-B1	3	CB-5	MB13
MOV-7	MCC-A1	5	CB-5	MA15
MOV-9	MCC-B1	5	CB-5	MB15
MOV-16	MCC-A1	8	CB-3	MA18
MOV-17	MCC-B1	6	CB-3	MB16



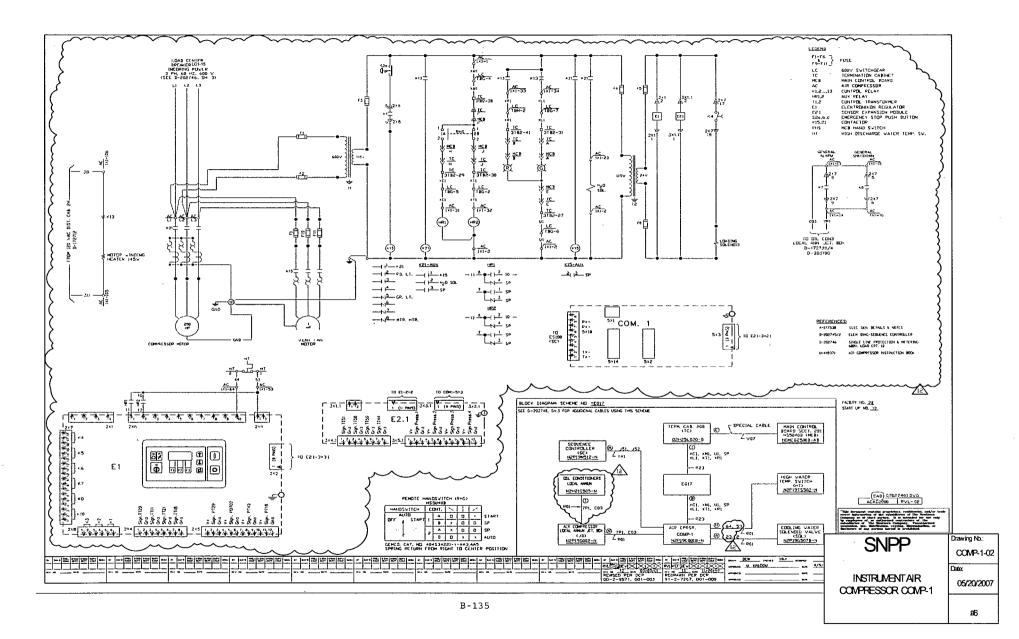

SNPP 5/4/07 **MOV BLOCK DIAGRAM - 4** . <u>TSP</u> RSP SO0,SO1, SC0, SC1, SC3 SO0,SC0, SC3 X01, SO2, SC2, SO1, SO2, SC1, SC2, SP SC3, SP F В Ρ <u>CB-3</u> MCC-A1 MOV-10 X00, SO0,SC0 T1, T2, T3

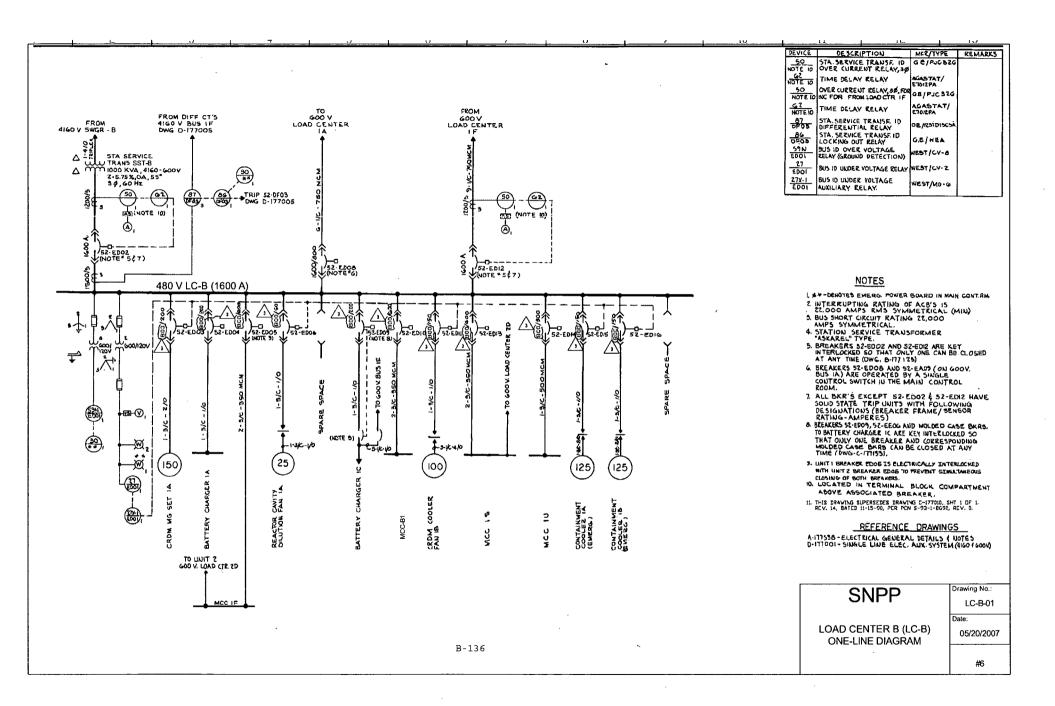

MOV-10, SCHEME MA16

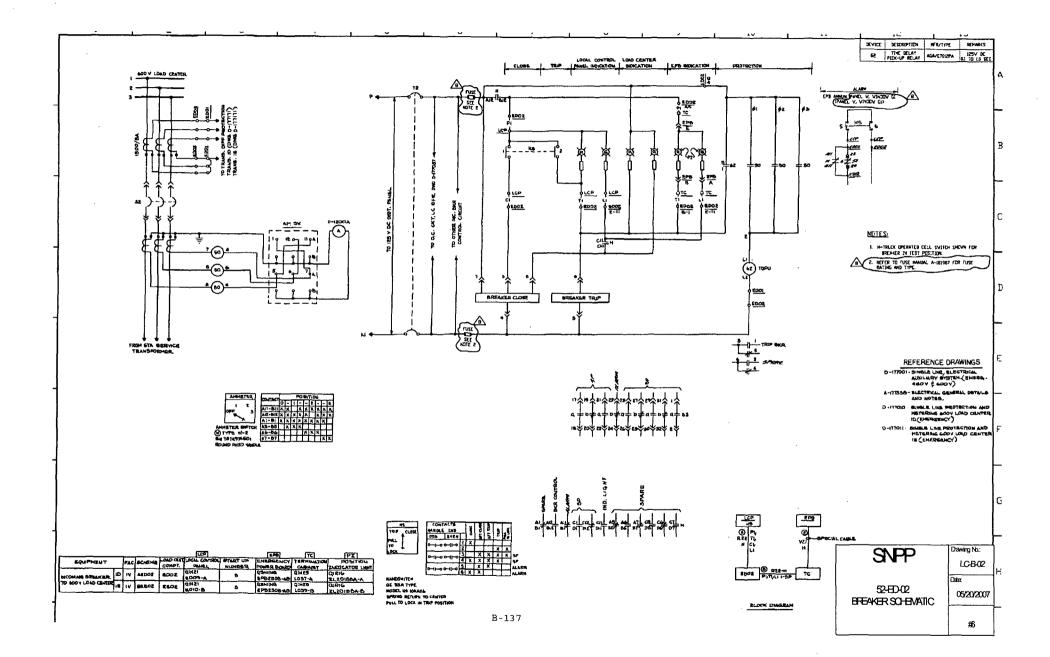


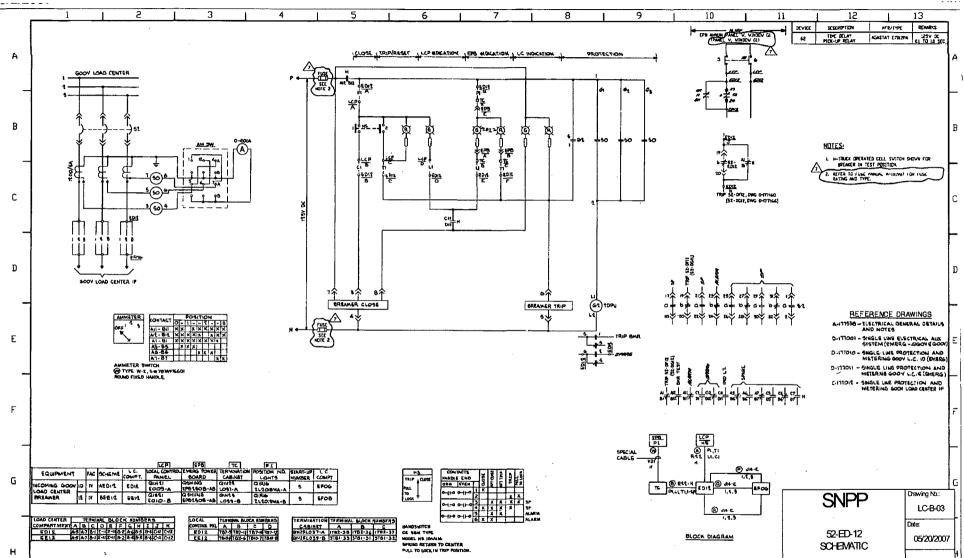


Drawing Pack 3 - More Detailed Electrical Schematics

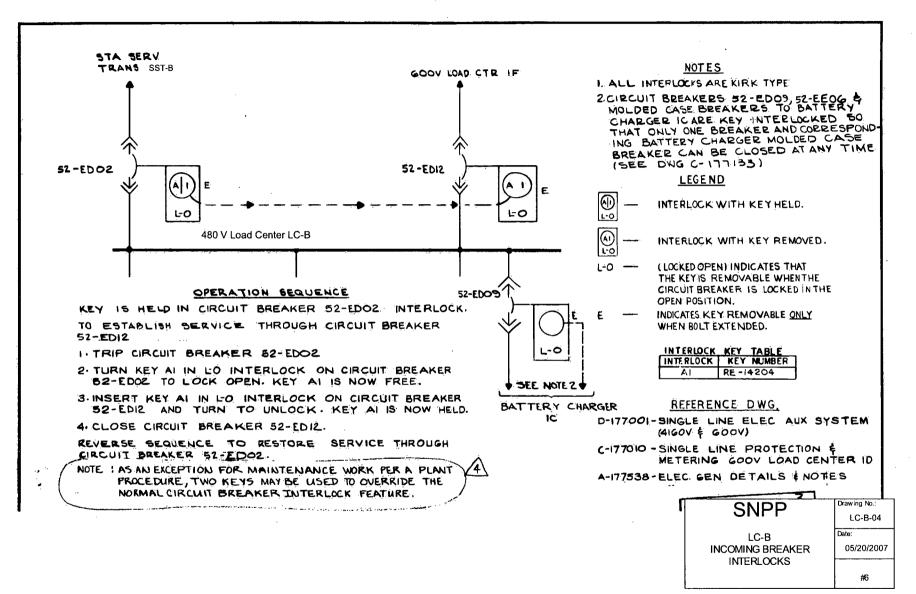


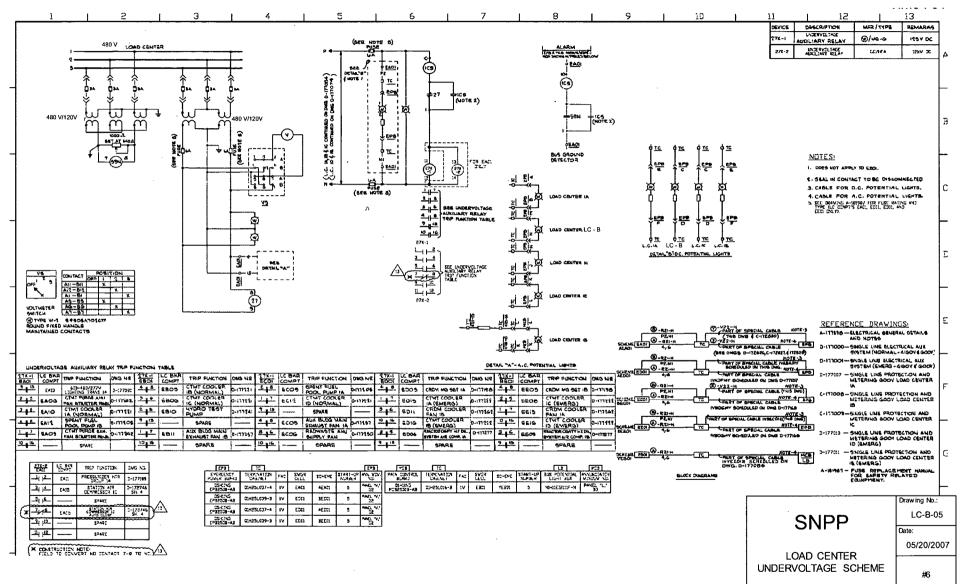


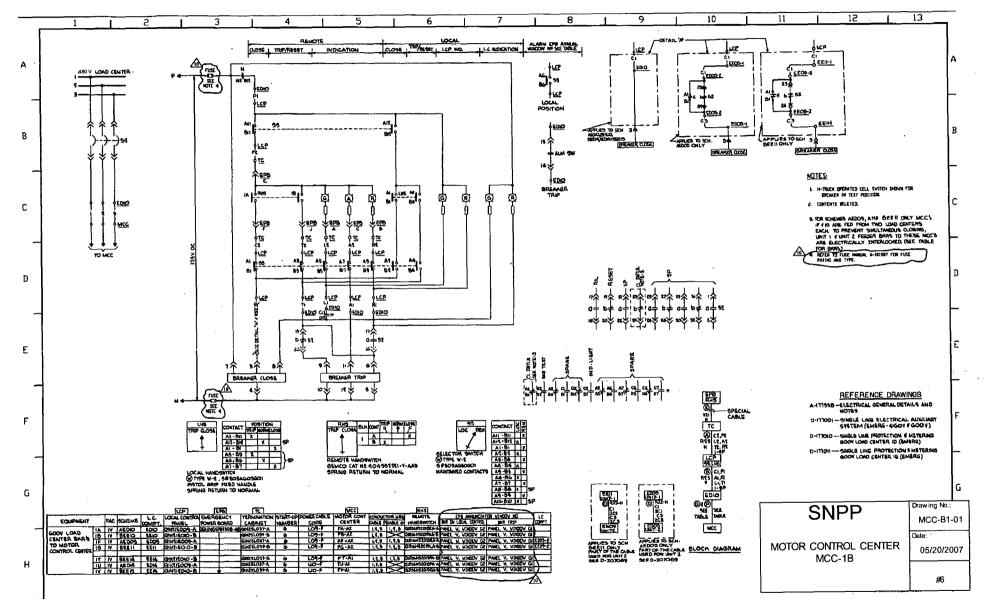



·

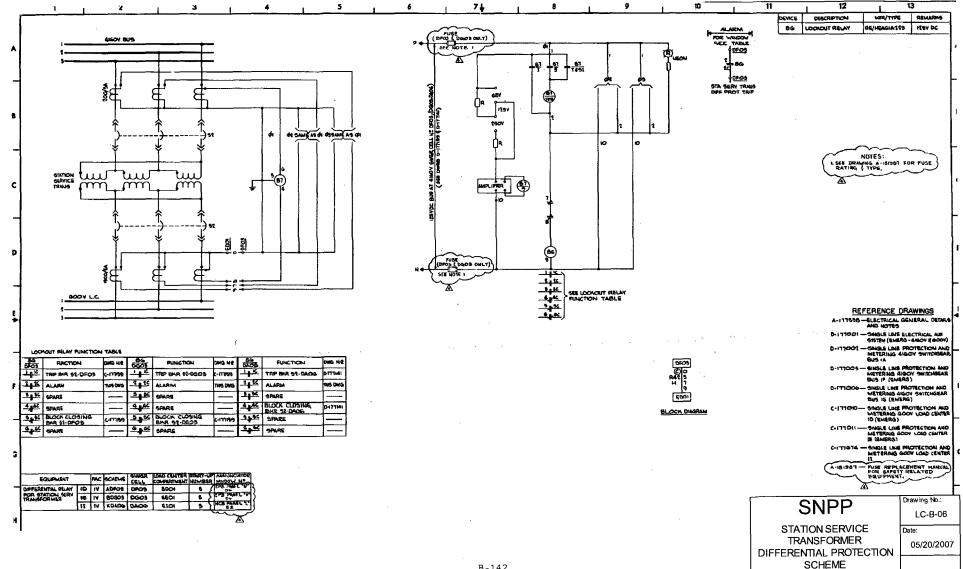
· .






B-138

#6



B-140

B-141

.

#6

NRC FORM 335 U.S. NUCLEAR REGULATORY COMMISSION (9-2004) NRCMD 3.7	1. REPORT NUMBER (Assigned by NRC, Add Vol., Supp., Rev., and Addendum Numbers, if any.)				
BIBLIOGRAPHIC DATA SHEET					
(See instructions on the reverse)	NUREG/CP-0194 Volume 2				
2. TITLE AND SUBTITLE	3. DATE REPORT PUBLISHED				
Methods for Applying Risk Analysis to Fire Scenarios (MARIAFIRES) - 2008, NRC-RES/EPRI Fire PRA Workshop, Volume 2 - Module 2: Electrical Analysis		YEAR 2010			
		4. FIN OR GRANT NUMBER			
5. AUTHOR(S)	6. TYPE OF REPORT				
Compiled and edited by D. Stroup, F. Gonzalez, and H. Woods (NRC)	Conference Proceedings				
		7. PERIOD COVERED (Inclusive Dates)			
 PERFORMING ORGANIZATION - NAME AND ADDRESS (If NRC, provide Division, Office or Region, U.S. Nuclear Regulatory Commission, and mailing address; if contractor, provide name and mailing address.) U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research (RES), Washington, DC 20555-0001 Electric Power Research Institute (EPRI), 3420 Hillview Avenue, Palo Alto, CA 94303 					
 SPONSORING ORGANIZATION - NAME AND ADDRESS (If NRC, type "Same as above"; if contractor, provide NRC Division, Office or Region, U.S. Nuclear Regulatory Commission, and mailing address.) U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research (RES), Washington, DC 20555-0001 Electric Power Research Institute (EPRI), 3420 Hillview Avenue, Palo Alto, CA 94303 					
10. SUPPLEMENTARY NOTES NRC-RES/EPRI Fire PRA Workshops conducted Sept. 28 - Oct. 2, 2008 and Nov. 17-	-20, 2008 in B	ethesda, MD			
11. ABSTRACT (200 words or less) The U.S. Nuclear Regulatory Commission (NRC) approved the risk-informed and performance-based alternative regulation 10 CFR 50.48(c) in July 2004, which allows licensees the option of using fire protection requirements contained in the National Fire Protection Association (NFPA) Standard 805, "Performance Based Standard for Fire protection for Light-Water Reactor Electric Generating Plants, 2001 Edition," with certain exceptions. To support licensees' use of that option, the NRC and the Electric Power Research Institute (EPRI) jointly issued NUREG/CR-6850 (EPRI 1011989) "Fire PRA Methodology for Nuclear Power Facilities," in September 2005. That report documents the state-of-the-art methods, tools, and data for conducting a fire Probabilistic Risk Assessment (PRA) in a commercial nuclear power plant (NPP) application. Since the release of NUREG/CR-6850 in 2005, the NRC-RES and EPRI have conducted a number of joint public workshops to provide training in the use of the methodologies and tools contained in the document. The workshops have attracted both domestic and international. The material in this NUREG/CP was recorded during two workshops conducted in 2008. It was adapted by NRC-RES Fire Research Branch (FRB) members for use as an alternative training method for those who were unable to physically attend the training sessions. This report can also serve as a refresher for those who attended one or more training sessions, and would be useful preparatory material for those planning to attend a session.					
12. KEY WORDS/DESCRIPTORS (List words or phrases that will assist researchers in locating the report.) fire, performance-based, risk-Informed regulation, fire hazard analysis (FHA), fire safety, fire protection, nuclear power plant, probabilistic risk assessment (PRA), fire modeling, cir analysis		BILITY STATEMENT			
		nity classification sified n) sified			
		BER OF PAGES			
	16. PRIC	=			
NRC FORM 335 (9-2004)	PRIN	ED ON RECYCLED PAPER			

-

,

Export Control Restrictions

Access to and use of this report is granted with the specific understanding and requirement that responsibility for ensuring full compliance with all applicable U.S. and foreign export laws and regulations is being undertaken by you and your company. This includes an obligation to ensure that any individual receiving access hereunder who is not a U.S. citizen or permanent U.S. resident is permitted access under applicable U.S. and foreign export laws and regulations. In the event you are uncertain whether you or your company may lawfully obtain access to this report, you acknowledge that it is your obligation to consult with your company's legal counsel to determine whether this access is lawful. Although EPRI may make available on a case-by-case basis an informal assessment of the applicable U.S. export classification for specific report, you and your company acknowledge that this assessment is solely for informational purposes and not for reliance purposes. You and your company acknowledge that it is still the obligation of you and your company to make your own assessment of the applicable U.S. export classification and ensure compliance accordingly. You and your company understand and acknowledge your obligations to make a prompt report to EPRI and the appropriate authorities regarding any access to or use of this report hereunder that may be in violation of applicable U.S. or foreign export laws or regulations.

The Electric Power Research Institute (EPRI)

The Electric Power Research Institute (EPRI), with major locations in Palo Alto, California, and Charlotte, North Carolina, was established in 1973 as an independent, nonprofit center for public interest energy and environmental research. EPRI brings together members, participants, the Institute's scientists and engineers, and other leading experts to work collaboratively on solutions to the challenges of electric power. These solutions span nearly every area of electricity generation, delivery, and use, including health, safety, and environment. EPRI's members represent over 90% of the electricity generated in the United States. International participation represents nearly 15% of EPRI's total research, development, and demonstration program.

Together...Shaping the Future of Electricity

Electric Power Research Institute and EPRI are registered service marks of the Electric Power Research Institute, Inc.

Printed on recycled paper in the United States of America

EPRI 1020621

United States Nuclear Regulatory Commission Washington, D.C.

NUREG/CP-0194

ELECTRIC POWER RESEARCH INSTITUTE

UNITED STATES NUCLEAR REGULATORY COMMISSION WASHINGTON, DC 20555-0001

OFFICIAL BUSINESS