Tennessee Valley Authority

.

. .

· · ·

.

Υ.

GROUNDWATER

WATTS BAR NUCLEAR PLANT SPRING CITY, TENNESSEE

AUGUST 2004

Infrastructure, buildings, environment, communications

R04078.doc - TVA - TN000607.0001

Eric M. Panborst, PE Project Engineer

Scott T. Potter, PhD, PE Principal Engineer

Berny D. Ilgner, PG Associate Vice President

Groundwater Investigation Report

Watts Bar Nuclear Plant Spring City, Tennessee

Prepared for: Tennessee Valley Authority

Prepared by: ARCADIS G&M, Inc. 97 Midway Lane Oak Ridge Tennessee 37830 Tel 865 481 3000 Fax 865 482 5075

Our Ref.: TN000607.0001

Date: August 12, 2004

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential, and exempt from disclosure under applicable law. Any dissemination, distribution, or copying of this document is strictly prohibited.

- 31

ł

47

ں Groundwater Investigation Report

i.

Table of Contents

Exe	cutive Summary Overview/Background Summary of Groundwater Investigation Data Source Assessment Recommendations	ES-1 ES-1 ES-2 ES-3 ES-6
1.0	Introduction	1-1
2.0	Background 2.1 Rad Waste Line 2.2 Fuel Transfer Canal 2.3 Fuel Transfer Tube 2.4 Unit 1 Refueling Water Storage Tank 2.5 Spent Fuel Pool and Cask Loading Pit 2.6 Reactor Cavity	2-1 2-2 2-3 2-3 2-3 2-4 2-5
3.0	Summary of Groundwater Investigation Data 3.1 Site Infrastructure 3.2 Geology/Hydrogeology 3.3 Well Installation 3.4 Hydrology 3.5 Tritium Distribution 3.6 French Drain/Groundwater Sump 3.7 Fate and Transport 3.7.1 Advective Water Movement 3.7.2 Sorptive Processes and Degradation 3.7.3 Dispersion	3-1 3-1 3-3 3-4 3-5 3-6 3-7 3-7 3-9 3-9 3-9
4.0	Source Assessment 4.1 Source #1 – Rad Waste Line 4.2 Source #2 – Unit 2 Fuel Transfer Tube Seismic Gap	4-1 4-1 4-2
5.0	Risk Summary 5.1 Site Conceptual Exposure Model 5.2 Human Health 5.3 Ecological 5.4 Risk Conclusions	5-1 5-1 5-1 5-2 5-4
6.0	Remediation Planning Summary	6-1
7.0	Recommendations	7-1
8.0	References	8-1

Groundwater Investigation Report

Table of Contents

Tables

- 2-1 Chronology of Events
- 2-2 Well Summary and Water Levels
- 3-1 Groundwater Tritium Concentrations (September 2003 March 2004)
- 5-1. Water-Only Biota Concentration Guides for Tritium

Figures

- ES-1 Distribution of Tritium in Groundwater, March 2004
- ES-2 Source #1 Rad Waste Line Leak
- ES-3 Source #2 Unit 2 Fuel Transfer Tube Sleeve
- ES-4 Source #2 Schematic Cross-Section
- 1-1 Regional Location Map
- 1-2 Site Map
- 1-3 Power Block Site Map
- 3-1 East/West Geologic Cross-Section North Power Block
- 3-2 Water Table, March 2004
- 3-3 Water Table in Power Block, March 2004
- 3-4 Distribution of Tritium Concentrations in Groundwater, March 2004
- 3-5 Distribution of Tritium Concentrations in Groundwater at Power Block, March 2004
- 3-6 Three-Dimensional Representation of Tritium Plume
- 3-7 Tritium Concentrations in Sump Groundwater
- 3-8 Tritium Loading in Sump Groundwater
- 4-1 Source #1 Rad Waste Line Leak
- 4-2 Source #2 Unit 2 Fuel Transfer Tube Sleeve
- 4-3 Source #2 Schematic Cross-Section
- 5-1 Site Conceptual Exposure Model

Groundwater Investigation Report

Table of Contents

Appendices

- A. Site Photographs
- B. Historical Tritium Data

Attachments

- A Site Map
- B Power Block Site Map
- C Bedrock Contours
- D Hydrogeologic Cross-Section A-A'
- E Hydrogeologic Cross-Section B-B'
- F Hydrogeologic Cross-Section C-C'
- G Hydrogeologic Cross-Section D-D'
- H Water Table, March 2004
- I Water Table at Power Block, March 2004
- J Distribution of Tritium Concentrations in Groundwater, March 2004

K – Distribution of Tritium Concentrations in Groundwater at Power Block, March 2004

Groundwater Investigation Report

Table of Contents

Abbreviation/Acronym Listing

BCGs	Biota Concentration Guides
CB	Catch Basin
CCW	Condenser Cooling Water
cfs	cubic feet per second
CLP	Cask Loading Pit
DCN	Design Change Notice
fps	feet per second
ft	feet
FTC	Fuel Transfer Canal
FTT	Fuel Transfer Tube
gpd	gallons per day
gpm	gallons per minute
MCL	Maximum Contaminant Level
msl	mean sea level
pCi/L	picocuries per liter
PER	Problem Evaluation Report
psig	pounds per square inch gauge
Rad Waste Line	Liquid Radioactive Effluent Line
RAOs	Remedial Action Objectives
REMP	Radiological Environmental Monitoring Program
RWST	Refueling Water Storage Tank
SFP	Spent Fuel Pool
Site	Watts Bar Nuclear Plant
TVA	Tennessee Valley Authority
USDOE	U.S. Department of Energy
WBN	Watts Bar Nuclear
YHP	Yard Holding Pond

Groundwater Investigation Report

Executive Summary

Executive Summary

ARCADIS

ARCADIS has prepared this report to document the findings of the groundwater investigation at the Tennessee Valley Authority (TVA) Watts Bar Nuclear Plant (WBN) (Site) located near Spring City, Tennessee (Figure ES-1). TVA personnel initiated the investigation in March 2003 following the detection of tritium in newly-installed groundwater monitor wells associated with the Department of Energy tritium production program site preparation activity. A number of corrective measures were completed by TVA (described below) during 2003, prior to retaining ARCADIS to support their efforts. The primary objectives of the investigation were to:

- Identify the potential source(s) of tritium releases;
- Characterize groundwater movement; and
- Determine the nature and extent of tritium in the subsurface environment.

Two tritium sources have been identified:

- Liquid Radioactive Effluent Line (Rad Waste Line) which appears to have resulted in a dual branch tritium plume that extends from the Rad Waste Line toward the river and to the Turbine Building; and
- Fuel transfer canal leak into the Unit 2 fuel transfer tube (FTT), which appears to
 have resulted in a tritium plume that is localized in the vicinity of the Unit 2 Shield
 Building.

Overview/Background

As part of planned plant modifications to produce tritium for the U.S. Department of Energy (USDOE), TVA expanded the Radiological Environmental Monitoring Program by installing four additional monitor wells adjacent to the Rad Waste and Cooling Tower Blowdown Lines in December 2002. Initial samples in January 2003 indicated the presence of tritium in three of the four new monitor wells.

The Nuclear Regulatory Commission Site Resident at WBN and the Tennessee Department of Environment and Conservation - Department of Radiological Health were notified and are being kept informed as investigations continue. No tritium or other radionuclides have been detected at levels exceeding background in water samples from off-site wells, public drinking water supplies, or the Tennessee River. In March 2003, a team consisting of both site and corporate TVA personnel was established to locate the

Groundwater Investigation Report

Executive Summary

source(s) of the tritium and eliminate the path(s) to groundwater. Potential sources were identified based on tritium concentrations in the component or system, location within the plant, and relative tritium concentrations and distribution in groundwater. The following components were considered as possible sources of tritium in groundwater:

- Rad Waste and Cooling Tower Blowdown Lines;
- Fuel Transfer Canal (FTC), Fuel Transfer Tube (FTT), Spent Fuel Pool (SFP), and Cask Loading Pit (CLP);
- Refueling Water Storage Tank (RWST);
- Auxiliary Building Passive Sump;
- Various Auxiliary Building tanks; and
- Reactor Refueling Cavity.

Work began immediately on source identification. This work included leak testing of lines and storage components, evaporation calculations of the SFP and RWST, installation and sampling of groundwater wells, inspection of drain lines, and boroscopic investigation of SFP, CLP, and FTC leak collection system channels and drains.

After the most recent refueling outage during the fall of last year, ARCADIS was retained in January 2004 to aid TVA in identifying the source(s) of tritium, define groundwater movement and tritium extent, and support remedial planning.

Summary of Groundwater Investigation Data

The primary types of new environmental data collection included hydraulic and groundwater quality information from strategically placed monitor wells. Groundwater levels were measured over the course of the investigation to determine the direction of groundwater flow and potential preferential pathways of movement. In general, regional groundwater movement is southerly across the Site toward the river, with the exception of groundwater captured by a French drain system surrounding the Unit 1 and Unit 2 Shield Building, Auxiliary Building, Control Building, and Turbine Building. Groundwater dewatering provided by the French drain, described below, has resulted in a groundwater capture zone surrounding the Power Block.

The French drain surrounding the Power Block consists of an 8-inch porous concrete pipe bedded in a horizontal blanket of gravel. A sump collects groundwater from the French drain on the east side of the Auxiliary Building. This sump continuously receives flow from both the north and south French drain lines and periodically is

Groundwater Investigation Report

Executive Summary

pumped based on the level in the sump. The north leg of the French drain routinely exhibits a higher flow rate than the south leg.

As part of a systematic program to determine the tritium source(s), 34 additional monitor wells were installed during 2003 and early 2004 to further delineate the extent of tritium. These wells have been periodically sampled since their installation, with a maximum tritium concentration [353,700 picocuries per liter (pCi/L) in October 2003] occurring at groundwater Monitor Well K near the Rad Waste Line, east of the Power Block. Tritium extends from this general area near the Unit 1 Cooling Tower, south toward the Tennessee River, and westward toward the Power Block. Based on the monitoring network and collected data, detectable concentrations of tritium have not yet reached the river. Relatively low concentrations of tritium were also detected around the Unit 2 Shield Building.

Recently, concentrations of tritium in the groundwater sump have been declining, which seems to have resulted from tritium abatement activities described below. The south leg of the sump continues to exhibit approximately twice the tritium concentration of the north leg. However, the total activity of tritium entering the sump is greater in the north leg (although a lower concentration) due to its higher flow rate. The presence of tritium in these two legs entering the sump suggests that two sources are likely.

Based on solute migration transport parameters and limited available information, it is estimated that the tritium plume movement is approximately 300 feet/year. Tritium is a radioactive form of hydrogen and decays with a half-life of 12.33 years, but is not susceptible to either biological or chemical degradation enhancement. Other natural attenuation parameters do not have a substantial impact on tritium retardation. That is, groundwater velocity and tritium migration are similar.

Source Assessment

Based on the distribution of tritium in groundwater and refined understanding of groundwater flow conditions, the tritium plumes observed at the Site are likely associated with two separate sources; the Rad Waste Line and the Unit 2 FTT seismic gap.

Source #1 - Rad Waste Line

Documented leaks from the Rad Waste Line appear to have resulted in tritium extending in a dual branch fashion west from the Well K vicinity to the southeast edge of the Turbine Building, and south from the Well K vicinity toward the Tennessee River

ES-3

Groundwater Investigation Report

Executive Summary

(Figure ES-2). The Rad Waste Line, extending past Well K, was pressure tested, acoustically monitored, and excavated at several locations to identify potential leak locations. A leak was identified east of the Power Block (Figure ES-2) after overburden was excavated on May 1, 2003. The leak appeared to be caused by accelerated corrosion from the pipeline exterior due to a tear in the protective pipe wrap. The line was cut, inspected, and repaired. Through the fall of 2003, possible additional leaks in the line were investigated, but no additional leaks have been found.

The Rad Waste Line leak, identified and repaired in May 2003, is suspected of being the primary source of tritium. A portion of the tritium originating from the leak location has migrated toward the south leg of the French drain system along preferential pathways associated with the assumed relatively permeable bedding material surrounding the subsurface infrastructure piping. Another portion of the tritium plume originating from the leak appears to follow major subsurface lines toward the Tennessee River. Again, this directional behavior is likely associated with preferential groundwater movement associated with the higher permeability bedding material surrounding subsurface piping.

When WBN was constructed, engineered fill was placed over a majority of the Site. The tighter hydraulic properties make the fill more difficult for groundwater to flow through than the gravel packs surrounding the numerous pipe systems associated with facility infrastructure. Tritium migration toward the Turbine Building appears to be influenced by the south Condenser Cooling Water (CCW) discharge line running from the Turbine Building to the Unit 1 Cooling Tower. Tritium migration toward the river is strongly influenced by the Cooling Tower Blowdown Line, Waste Heat Park Lines, and other piping infrastructure, as their position within the subsurface is coincident with the groundwater table along portions of their length. Based on calculations of tritium in the south leg of the French drain, it is likely that a majority of the activity resides within the more permeable gravel packs of the discharge CCW Line and Raw Cooling Water Lines, because it cannot be fully accounted for with tritium observed in groundwater monitor wells. A majority of the groundwater monitor wells have shown decreasing concentrations of tritium, indicating that the primary source has been eliminated.

Source #2 - Unit 2 Fuel Transfer Tube Seismic Gap

In February 2003, it was identified that water was leaking into the Unit 2 Shield Building annulus, through the Unit 2 FTT sleeve connection between the Auxiliary Building and Unit 2 Shield Building. All of these units (SFP, CLP, and FTC) have the potential to be inter-connected behind the stainless-steel liner since the liner is not continuously bound in the concrete. A 1-inch seismic gap exists between the Auxiliary

ES-4

Groundwater Investigation Report

Executive Summary

Building and Unit 2 Shield Building where the FTT passes through these buildings (Figures ES-3 and ES-4). Tritiated water, between the steel tube (20-inch diameter) and the concrete building, was observed flowing into the Unit 2 Shield Building annulus in February 2003. This water must flow across the seismic gap to get from the Auxiliary Building to the Unit 2 Shield Building, which provides a pathway to groundwater. This gap is filled with fiberglass and is glued on one side to the Unit 2 Shield Building. Potentially, water from the SFP, CLP, or FTC that has leaked behind the stainless-steel liner could migrate to the Unit 2 FTT sleeve.

Occasional FTC leakage has been identified over the past 5 to 6 years and attempted repairs were made. The individual "tell-tale" drain systems of the SFP and adjacent CLP, along with the FTC, are designed to detect leakage through the liner welds. Inspection of the "tell-tale" drain system is complicated due to its piping configuration. Neither of these drain systems have exhibited recent leakage, although investigations indicate that the drain system for the SFP and FTC is clogged, making leak detection by this method problematic. Subsequent efforts to clear these drain systems have resulted in a functioning drain system for the FTC. The SFP system still does not drain efficiently, and additional efforts are being developed. The Cask Loading Area drain system appears to be functioning as designed.

Leaks through the FTT sleeve and seismic gap have resulted in groundwater impact surrounding the Unit 2 Shield Building (Figure ES-3). The difference in potential head between the bottom of the FTT sleeve and the French drain directly north of the seismic gap is approximately 1.25 feet, indicating that water would flow toward the French drain from this point (either to the north or to the east). Calculations using the tritium concentrations in these areas of nearly 100 million pCi/L indicate it would take only a small volume of tritiated water to result in the concentrations being observed in the north leg of the French drain, and in groundwater monitoring points around the Unit 2 Shield Building.

Risk analysis is the process of organizing and systematically evaluating information pertaining to the likelihood and magnitude of adverse effects. In the context of environmental contamination, this typically includes separate analyses of the risks to human health and risks to ecological receptors. Actual risks to human and ecological receptors posed by tritium that has entered the environment at WBN are likely to be acceptable based on available environmental data and existing radiological screening criteria. However, risks may be perceived by the public to be higher than actual because the constituent of concern is a radionuclide. Therefore, it is important to

Groundwater Investigation Report

Executive Summary

demonstrate that measures are being taken to ensure protection of human health and the environment.

Based on the groundwater investigation findings and risk screening, remedial planning can be conducted to evaluate the need for and corrective action options. This process initially must identify remedial action objectives (RAOs) to establish and guide remedial planning. RAOs for the Site include:

- Protect ecological receptors in the Tennessee River from impacted groundwater;
- Prevent groundwater plume growth to ensure it does not migrate off site;
- Protect human health of plant workers from exposure to impacted groundwater; and
- Remove tritium mass in plume core to assist in natural attenuation of remaining plume.

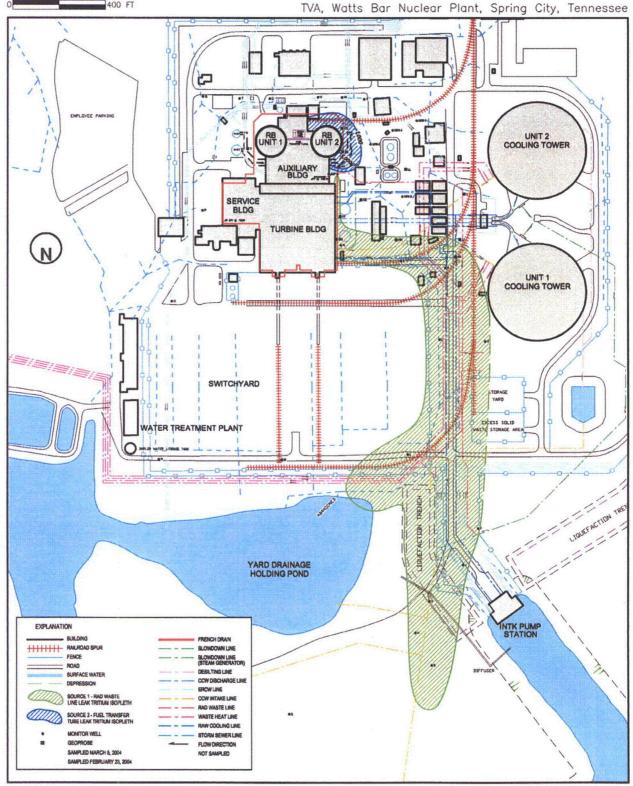
The primarily remedial technology for tritium corrective action is hydraulic control (pumping). A hydraulic control system positioned at the leading edge of the tritium plume, could be used to intercept tritiated groundwater before it reaches the Tennessee River. Prior to designing a hydraulic control system, refinement of the plume extent, and a better understanding of the engineered fill along the utility corridor would be required. Once this is completed, hydraulic testing could be conducted to develop the necessary data to design the recovery wells and size the system.

Recommendations

Based on these initial findings, the following observations/recommendations are made to correct the tritium releases.

- Unit 2 FTT Sleeve Repair: Tritiated water must be prevented from crossing the seismic gap in the Unit 2 FTT sleeve, or prevent water from entering the FTT sleeve. WBN is currently investigating the application of a coating/sealing system for the transfer canal liner to preclude leakage into this area. This is documented in the site Problem Evaluation Report (PER) number 12430.
- Replacement of Rad Waste Line Sections: Because the existing Steam Generator Blowdown/Rad Waste Lines likely have minor existing leaks, continuing releases could be occurring from this line system. In order to prevent these possible current or future leaks, WBN is replacing this line under Design Change Notice (DCN) number 51690.

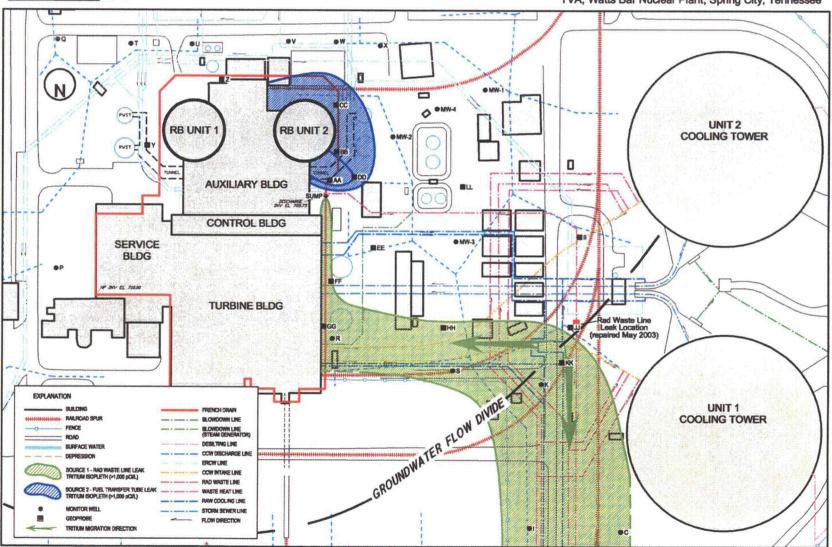
Groundwater Investigation Report


Executive Summary

- Monitoring Program Development: Groundwater sampling procedures have been refined over time to make improvements when necessary. These should be further revised to examine the sequence of well sampling and use of dedicated sampling equipment. A monitoring program should be designed to continue to collect those data that will provide information on current site conditions, and what is necessary to evaluate a remedial solution/progress. Once the monitoring program has met these needs, it should be reduced or eliminated.
- *Refinement of Plume Extent*: Additional groundwater monitor wells are needed to better define the tritium plume and to monitor its movement at the distal end near the Tennessee River.
- Source #1 Remedial Measures: Source #1 is somewhat controlled by inducing groundwater flow to the plant buildings by the French drain and actively pumping the groundwater sump. A hydraulic control system may be used to capture the entire plume by installing recovery wells in the downgradient leading edge of the plume, south of the plant. Aquifer testing and a fate and transport model may be used to design the hydraulic control system.
- Source #2 Remedial Measures: Source #2 is completely contained by the French drain and actively pumping the groundwater sump. The extent of tritium in groundwater at Source #2 has likely been influenced by moderate to large storm events and underground infrastructure (i.e., RWST tunnel). Nevertheless, the plume around the Unit 2 Shield Building remains focused and contained, and no additional remedial actions are needed.

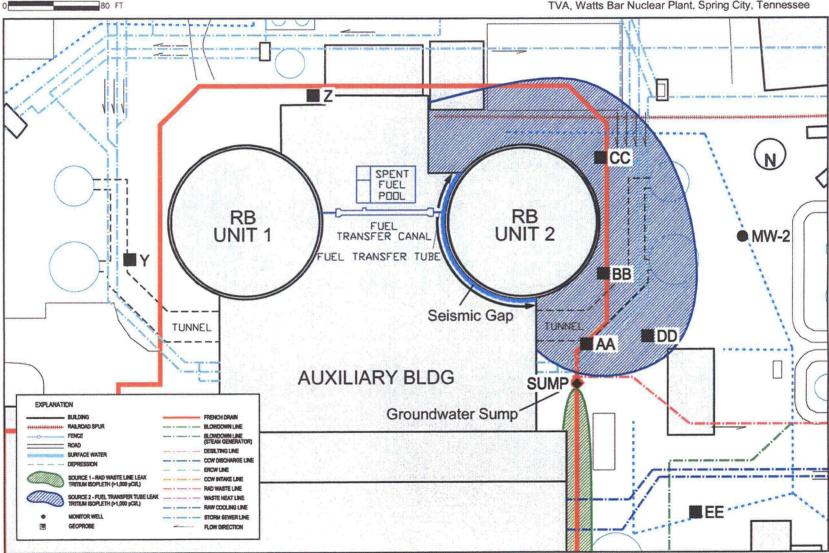
400 FT

Figure ES-1 **Distribution of Tritium Concentrations** in Groundwater, March 2004


TN000607.0001 / GW INV

E40032.DWG-1 / 17JUN2004 Ba

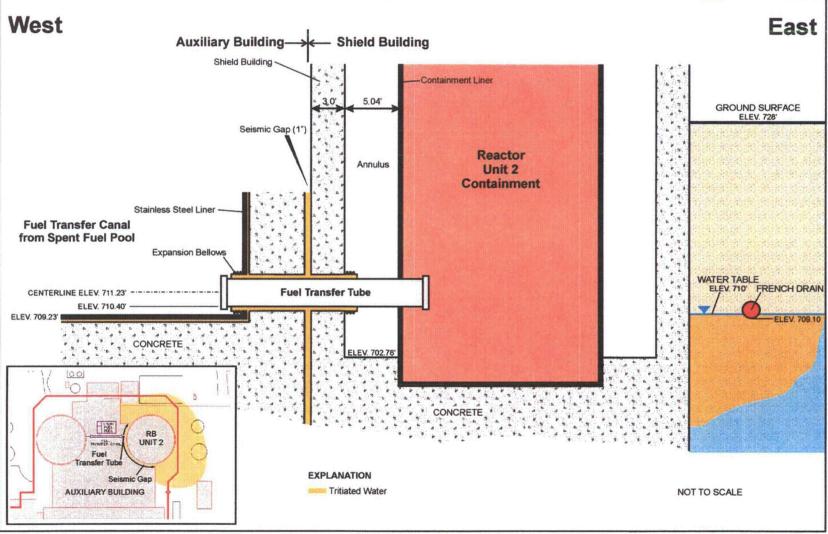
200 FT


Figure ES-2 Source #1 - Rad Waste Line Leak TVA, Watts Bar Nuclear Plant, Spring City, Tennessee

TN000607 0001 / GW INV

E40035.DWG / 17JUUN2004 Bo

Figure ES-3 Source #2 - Unit 2 Fuel Transfer Tube Sleeve TVA, Watts Bar Nuclear Plant, Spring City, Tennessee



TN000607.0001 / GW INV

E40036.DWG / 17JUN2004 Bo

Exhibit ES-4 Source #2 - Schematic Cross-Section TVA, Watts Bar Nuclear Plant, Spring City, Tennessee

TN000607.0001 / GW INV

E40037.CDR-2 / 16JUN2004 Ba

Groundwater Investigation Report

Introduction

1.0 Introduction

ARCADIS, on behalf of Tennessee Valley Authority (TVA), has prepared this Groundwater Investigation Report to document the findings of a site investigation conducted at the TVA Watts Bar Nuclear (WBN) Plant (Site) located near Spring City, Tennessee (Figure 1-1 and Attachment A). The plant is located just downstream of the Watts Bar dam, near the Tennessee River (Figure 1-2). The WBN Plant was constructed during the mid-1970s and contains substantial infrastructure for the generation of electricity (Figure 1-3 and Attachment B). The Unit 1 Reactor began operation in 1996 and the Unit 2 Reactor has never been brought online.

This report includes background to the investigation, data collected, findings, risk evaluation summary, remediation planning, and recommendations for the path forward.

The primary objectives of the investigation were to:

- Identify the potential source(s) of tritium releases;
- Characterize groundwater movement;
- Determine the nature and extent of tritium in the subsurface environment; and
- Determine preliminary remedial options to address tritium in groundwater.

This project was a collaborative effort between TVA and ARCADIS. TVA began researching the potential sources of tritium in early 2003. TVA retained ARCADIS after the fall 2003 refueling outage to aid in the investigation. During the early months of 2004, multiple project meetings and a sharing of resources resulted in identifying the sources of tritium release and accomplishment of project objectives. These findings were then presented to TVA management in April 2004. This report is meant to document the groundwater investigation, present the findings, and provide a path forward for the project.

Groundwater Investigation Report

Background

2.0 Background

As part of planned plant modifications to produce tritium for the U.S. Department of Energy, TVA expanded the Radiological Environmental Monitoring Program (REMP) by installing four additional monitor wells (Wells A, B, C, and D) adjacent to the Liquid Radioactive Effluent Line (Rad Waste Line) and Cooling Tower Blowdown Lines in December 2002. Initial sampling in January 2003 indicated the presence of tritium in three of the four new monitor wells (Wells B, C, and D) (Tables 2-1, 2-2 and Appendix B).

Based on the tritium levels found in these newly-installed REMP wells, a team consisting of both site and corporate TVA personnel was established to locate the source of the tritium and eliminate the path to groundwater. The team's first task was to identify possible sources of tritium. The possible sources listed below were identified based on tritium concentration in the component or system, location within the plant, and relative tritium concentrations in the groundwater samples. These possible sources underwent evaluations utilizing visual inspections, testing, and sampling (Table 2-1).

The following components were considered as possible sources of tritium in the groundwater:

- Rad Waste and Cooling Tower Blowdown Lines;
- Fuel Transfer Canal (FTC), Fuel Transfer Tube (FTT), Spent Fuel Pool (SFP), and Cask Loading Pit (CLP);
- Refueling Water Storage Tank (RWST);
- Auxiliary Building Passive Sump;
- Various Auxiliary Building Tanks; and
- Reactor Refueling Cavity.

Work began immediately on source identification. This work included the following: leak testing of lines and storage components; evaporation calculations of the SFP and RWST; installation and sampling of groundwater wells; inspection of drain lines; and boroscopic investigation of SFP, CLP, and FTC leak collection system channels and drains (Tennessee Valley Authority 2003). After the most recent refueling outage (fall 2003), ARCADIS was retained in January 2004 to aid TVA in identifying the source(s) of tritium, define groundwater movement and tritium extent, and support

Groundwater Investigation Report

Background

remedial planning. Details of the tritium investigation completed by TVA throughout 2003 and early 2004 are provided in the following sections.

2.1 Rad Waste Line

The Rad Waste Line contains liquids from the radioactive waste system and steam generator blowdown, as well as the condensate demineralizers drain. This line leaves various buildings in the plant and is routed to the Cooling Tower Blowdown Line, where it is diluted prior to discharging into the Tennessee River through two diffusers.

Because of the proximity of Well C to the Rad Waste Line, this line was suspected as the source of the tritium release. During March and April 2003, the line was pressure tested and acoustically monitored to determine the location of possible leaks. While pressurized to 75 pounds per square inch gauge (psig), testing indicated a leak rate of 2 to 2.5 gallons per minute (gpm). Excavation on May 1, 2003, confirmed a leak located in the eastern portion of the Power Block near the cooling towers (Figure 1-3). The leak appeared to be caused by accelerated corrosion from the pipeline exterior due to a tear in the protective pipe wrap. The line was cut, inspected, and repaired on May 5, 2003. Internally, the pipe appeared to be in very good condition. The line was then pressurized to 80 psig with no further indications of leakage noted indicating a successful repair.

Additional acoustic and pressure testing occurred during the summer of 2003 to determine if additional leaks in the line were present. The testing indicated the possibility of small leaks in the line. Several areas were excavated in an attempt to locate additional leaks, however, no more leaks were observed along the Rad Waste Line during this investigation.

2.2 Fuel Transfer Canal

The FTC is part of the plant system used to move reactor fuel during a refueling outage. Because the FTC is normally only filled with water during refueling outages, any leakage from the FTC will be intermittent. Occasional FTC leakage has been identified over the past 5 to 6 years (WBN Plant began operation in 1996). Repairs to these leaks were attempted as they were discovered. Because monitoring of potential leakage during the time the FTC is filled is difficult, the team spent some time in May 2003 "brainstorming" possible methods to detect leaks in this area of the plant. All current methods of testing (pressurizing the back of the welds with air or nitrogen, etc.) have been ruled out due to concerns over stressing the liner welds to the point of failure.

Groundwater Investigation Report

Background

Based on this, other physical inspections of the FTC were performed in lieu of a pressure test.

In early October 2003, during the most recent refueling outage, a mobile camera (submersible) was used to record the condition of the FTC walls and floor. This video was reviewed to determine possible inspection locations. The FTC has since been decontaminated in preparation for additional inspections and repair by coating or sealing methods.

2.3 Fuel Transfer Tube

As part of the equipment to refuel the reactor, a FTT is utilized along with other associated equipment to move fuel to and from the reactor. A bellows arrangement is utilized to separate the FTC and FTT from the Reactor Building. In January 2003, it was identified that the Unit 2 FTT bellows was leaking water into the Unit 2 Reactor Building annulus (Appendix A).

A catch basin was erected to catch the leakage and was routed to the appropriate tank. A boroscopic inspection of this bellows was performed on April 29, 2003. The inspection confirmed that the bellows to transfer tube weld was leaking. A repair method was developed which included removing the bellows and transfer tube and welding a plate over the remaining hole. This repair was completed in August 2003.

2.4 Unit 1 Refueling Water Storage Tank

The Unit 1 RWST is a large source of water used during refueling outages and is also a source of water to the reactor should there be a loss of coolant accident. The Unit 1 RWST is located just west of the Unit 1 reactor and is an above ground storage tank connected to the Unit 1 Auxiliary Building through an underground tunnel. The Unit 2 RWST is currently empty and has never been filled during the operation of the plant. The water from the Unit 1 RWST is used to fill the fuel transfer canal and the reactor cavity during refueling outages, and is returned to the RWST at the conclusion of the outage. As the water is mixed with reactor coolant during the time it is in the fuel transfer canal, it becomes a source of tritium.

Because the Unit 1 RWST is a large volume of water with elevated tritium concentrations [approximately 28 million picocuries per liter (pCi/L)], the integrity of the Unit 1 RWST was reviewed. The Unit 1 RWST was found to be losing water at a rate of approximately 150 to 200 gallons per day (gpd). Several valves associated with

Groundwater Investigation Report

Background

the piping to/from the Unit 1 RWST were examined and found to be leaking through the valve seat into interfacing systems. The valves were repaired, reducing the water loss to approximately 45 to 50 gpd in January 2004. Additional checks and repairs have been made since that time reducing the Unit 1 RWST leakage to approximately 15 gpd in early May 2004. This rate of loss is believed to be well within the range of loss that would be expected due to evaporation.

2.5 Spent Fuel Pool and Cask Loading Pit

The SFP is a large concrete pool with a stainless-steel liner, and is the in-plant storage location for fuel after it has been removed from the reactor core. The SFP is approximately 30 feet (ft) wide and 40 ft long and is located within the Auxiliary Building between the two reactors. The SFP depth is approximately 40 ft, with a bottom elevation of 709.23 ft msl and a maximum water elevation of 749.79 ft above mean sea level (msl) (the ground elevation around the Power Block is approximately 728 ft msl). The CLP is located immediately west of, and is connected to, the SFP. The CLP is an approximate 10 ft square with a bottom elevation of 706 ft msl. The remaining portion of the Cask Loading Area is immediately south of, and connected to, the CLP. It is approximately 20 ft long and 10 ft wide with a bottom elevation of 731 ft msl.

During refueling outages, the entire core is offloaded and stored in the SFP. Spent fuel which has reached the end of useful life remains stored in the SFP, while the remainder of the core, along with new fuel, is returned to the reactor vessel prior to restart. The tritium concentration in the SFP is approximately 95 million pCi/L. The SFP and the adjacent CLP have individual tell-tale drain systems to detect any leakage through the liner welds. Neither of these drains has exhibited any recent evidence of water leakage.

On June 16, 2003, and other occasions, boroscopic inspections were made of the drain lines and leak collection channels for the SFP and CLP to determine if there is any borated water leakage. Although the inspection area was limited due to piping configuration, the piping was not blocked and appeared to be free of any boron deposits. The CLP showed no signs of leakage, while the SFP showed minor signs of past leakage near the isolation valve. No recent leakage indications were identified. Most leak channels for SFP, FTC, and the Cask Loading Area were drilled, inspected, and no leakage was found. Water was poured down all leak channels indicating the FTC now drains while the SFP is still blocked.

Over a period of several months beginning in December 2003, water levels/makeup to the SFP was compared to measured level loss and estimates from an evaporation

Groundwater Investigation Report

Background

calculation. The water levels were measured using a pressure transducer. Also, data loggers were used to record spent fuel pool temperature and refueling area supply/exhaust air temperature and relative humidity. Results of this effort revealed that the makeup rate was approximately the same as the evaporation rate, indicating that there is either no leak in the SFP, or the leak is too small to be measured by this method.

2.6 Reactor Cavity

During the fall 2003 refueling outage, it was noted that when water was added to the Unit 1 Reactor Cavity, water was observed to be leaking into adjacent areas. A visual inspection revealed what appeared to be a tear in the liner. This tear was inspected at the end of the outage and found to be a non-penetrating welding arc-strike. Additional inspections will be required prior to adding water to the Unit 1 Reactor Cavity for the next refueling outage in the spring of 2005. However, it is noted that a cavity liner leak would be contained within the reactor containment by design, which would rule this out as a potential tritium pathway.

Groundwater Investigation Report

Summary of Groundwater Investigation Data

3.0 Summary of Groundwater Investigation Data

The following sections detail the various sources of data used for the tritium investigation.

3.1 Site Infrastructure

Because of the nature of building and operating nuclear plants, a large amount of information was available and was reviewed related to the construction and operation of site infrastructure. This information was not only used in identifying and eliminating possible sources, but was used to develop an understanding of the lithologic character of disturbed areas, and construct the various figures and plates used in this report. The following information was reviewed relating to site infrastructure:

- Site plans;
- Final Safety Analysis Report Sections 2.4 and 2.5 related to hydrology and geology (Tennessee Valley Authority 1980);
- Construction photos (Appendix A);
- Groundwater Tritium Monitoring Status Report (Tennessee Valley Authority 2003); and
- Information obtained from TVA site personnel.

Native soil and bedrock have been extensively excavated and reworked in the Power Block area. In general, native soil was removed to expose the bedrock surface beneath category I features. Category I features were installed several feet to tens of feet into bedrock. Both category I and non-category I features were backfilled with engineered fill (Class A and Class B, respectively). Many subsurface infrastructure lines were backfilled with material such as crushed stone. Because materials used to backfill these lines is more transmissive than the engineered backfill, they provide a preferential groundwater flow pathway.

3.2 Geology/Hydrogeology

The Site is located within the Valley and Ridge Physiographic Province of the Appalachian Highlands. The Valley and Ridge province is characterized by linearly continuous valleys and corresponding ridges formed in part due to horizontally extensive and typically parallel low-angle thrust faults. The local drainage patterns are typically trellis in nature, being influenced regionally by underlying bedrock structural

Groundwater Investigation Report

Summary of Groundwater Investigation Data

features. The Site is located within a floodplain of the northeast-southwest trending portion of the Tennessee River.

The Site is underlain by unconsolidated soil and fill overlying the Middle Cambrian-aged Conasauga Shale Formation, present at an average depth of 706 ft msl (Attachment C) (Tennessee Valley Authority 1980). The unconsolidated zone is composed of alluvial deposits (Tennessee River flood plain) and underlying terrace deposits. The alluvium is characterized by fine-grained, well-sorted silts and clays, and minor quartz sand. The thickness of the unit is variable, averaging approximately 25 ft (Figure 3-1 and Attachments D through G).

The older terrace deposits can be subdivided into upper and lower units. Terrace sediments were deposited when the ancestral river was flowing at higher velocities in the past. The upper unit is characterized by sandy and silty clays, while the lower unit is composed of coarse grained pebbles, cobbles, and boulders within a sandy matrix (Tennessee Valley Authority 1980). The terrace deposits exhibit bench topography (approximately 30 ft in elevation change), which is evident 200 to 1,000 ft northwest of the river. The terrace deposits are variable in thickness, ranging from 30 to 46 ft. Trends within the basal gravel terrace deposits suggest that the main course of the river historically was near the northwest margin of the Site, based on the presence of courser grained deposits in that area (Tennessee Valley Authority 1980).

There is little *in-situ* saptrolite (weathered bedrock) overlying the competent Conasauga Shale Formation (Tennessee Valley Authority 1980). The Conasauga Shale is characterized by folded red, grey, or blue-grey fissile and calcareous shale with interbedded glauconitic and/or argillaceous limestone seams. At the Site, the estimated ratio of shale to limestone is 5.25:1 (Tennessee Valley Authority 1980). The regional strike of the Conasauga Formation is N35°E, and the beds generally dip at 16° toward the southeast (Tennessee Valley Authority 1980). Complex folding at the Site yields localized variations in bedding strike and dip from this average.

Category I structures are constructed into the Conasauga Shale after the removal of all unconsolidated material in the vicinity of these structures. The elevation of bedrock ranges from approximately 690 to 702 ft msl (Attachment C) in the Power Block area indicating that bedrock surface variations are minor (Tennessee Valley Authority 1980). The Conasauga Formation is approximately 2,000 ft in thickness in the vicinity of the Site.

Groundwater Investigation Report

Summary of Groundwater Investigation Data

The alluvium and upper terrace deposits (finer grained) have been removed in the main plant area (excavated to an elevation of approximately 728 ft msl) (Tennessee Valley Authority 1980). Therefore, non-category I features are underlain by engineered backfill.

The Site is situated within the Tennessee River watershed (Figure 3-2), with the Tennessee River located to the south and east of the main plant. Local groundwater flow within the unconsolidated zone is toward the south, discharging to the Tennessee River (Figure 3-2 and Attachment H). An on-site groundwater drainage system, connected to a sump, surrounds the perimeter of the Power Block. This system influences shallow groundwater near the Power Block Building by creating an artificial groundwater divide (Figure 3-3 and Attachment I). Shallow groundwater to the north of this divide flows in a radial pattern toward the Power Block, due to the drawdown influence of the continuously-operating sump and drainage system (Figure 3-3 and Attachment I). South of the groundwater divide, flow is generally toward the Tennessee River (south) (Figure 3-2 and Attachment H).

The characteristics of various site infrastructure components have a significant impact on groundwater flow. The Yard Holding Pond (YHP), as an example, influences shallow groundwater flow by generating a groundwater mounding effect in the surrounding area. Underground piping and excessive cut and backfill during infrastructure construction also influences groundwater flow by providing preferential flow regimes within the transmissive backfill surrounding these pipes. Groundwater occurrence and movement within the Conasauga Formation bedrock is confined to small openings along fractures and bedding planes, but generally flows southward toward the Tennessee River also (Tennessee Valley Authority 1980).

3.3 Well Installation

As part of planned plant modifications to produce tritium for the U.S. Department of Energy (USDOE), TVA committed to modify the REMP by installing additional monitor wells around the WBN Plant. Four additional monitor wells (Wells A through D) were installed at Watts Bar along the existing Rad Waste and Cooling Tower Blowdown Lines. These wells were installed in December 2002.

Additional monitor wells and Geoprobe wells were installed throughout 2003 and early 2004 to delineate the extent of tritium impact to shallow groundwater. In March 2003, three additional monitor wells (Wells E, F, and G) were installed to further assess potential sources of tritium in the site groundwater. Wells H through S were installed during September and October 2003 and wells T through X were installed during

Groundwater Investigation Report

Summary of Groundwater Investigation Data

December 2003. These wells were typically drilled to bedrock and screened over the bottom 10-ft interval.

Wells Y, Z, and AA through LL were installed using a direct-push Geoprobe rig. Geoprobe wells are ¾-inch inner diameter and 1-inch outer diameter polyvinyl chloride casings. Wells Y, Z, and AA through DD were installed during the final week of January 2004 and first week of February 2004. Geoprobe Wells EE through LL were installed at the end of February 2004. All Geoprobes were installed to refusal and screened over the bottom 10-ft interval.

3.4 Hydrology

WBN Plant is located within the Tennessee River watershed (Figure 3-2). The Tennessee River, particularly above Chattanooga, Tennessee, is one of the most highly regulated rivers in the United States. The TVA reservoir system is operated for flood control, navigation, and power generation, with flood control a prime purpose with particular emphasis on protection for Chattanooga, 64 miles downstream from the WBN Plant. The WBN Plant sits on the west bank of the Tennessee River, 57 miles upstream of Chickamauga Dam. Watts Bar Dam is 1.9 miles upstream of the plant. At the WBN Plant, The river is approximately 1,100 ft wide with depths ranging between 18 ft and 26 ft at the normal pool elevation of 682.5 ft msl (Tennessee Valley Authority 1980).

Based upon Watts Bar Dam discharge records since 1942, average daily stream flow at the plant is 27,800 cubic feet per second (cfs). Flow data for water years 1960 through 1987 indicate average summer flow rates (May to October) of 23,700 cfs and average winter flow rates (November to April) of 31,900 cfs. Channel velocities at WBN Plant average about 2.3 feet per second (fps) under normal winter conditions. Because of lower flows and higher reservoir elevations in the summer months, channel velocities average about 1.0 fps (Tennessee Valley Authority 1980).

The climate of the watershed is humid temperate. The area receives approximately 50 inches of precipitation per year. Based on a 30-year average (1971 through 2000), the wettest month of the year is March (5.71 inches) and the driest month of the year is October (2.65 inches). The wettest 3-month average is 4.58 inches/month for January through March and the driest 3-month average is 2.86 inches/month for August through October (National Weather Service 2004).

The local watershed surrounding the plant is relatively small because the plant is approximately 2,000 ft from the Tennessee River. The watershed divide is located north

Groundwater Investigation Report

Summary of Groundwater Investigation Data

and northeast of the plant along a ridge (Figure 3-2). Precipitation that falls south of the ridge in the local watershed collects in numerous small streams that drain towards the Tennessee River. Precipitation collected by the Site's storm sewer system drains to the YHP before eventually being discharged to the river.

3.5 Tritium Distribution

Tritium was detected in the initial baseline groundwater samples taken from three of the four new groundwater monitor wells (Wells B, C, and D) installed as part of the REMP in January 2003. The maximum tritium detection during this initial sampling was 12,453 pCi/L at Well B (Appendix B). As described in Section 3.3, additional monitor wells and Geoprobe wells were installed throughout 2003 and the beginning of 2004 to delineate tritium in groundwater.

The most comprehensive and current tritium data set was collected on March 1, 2004, as a snapshot in time of plume distribution (Table 3-1). Based on this data, tritium is not present along the northern (Wells T, U, V, W, and X) and western (Wells Q, P, O, and N) sides of the Power Block and switchyard. Geoprobe Wells Y and Z (west and north, respectively, of the Unit 1 Reactor Building) were not sampled during this event, but previous sampling events indicate no detectable tritium concentrations at these locations. Based on the March 2004 and previous data sets, two distinct areas of tritium exist (Figures 3-5 through 3-7 and Attachment J and K).

The largest area of tritium concentrations in groundwater extend from the east side of the Turbine Building at Well R east to approximately Well K and then south to the YHP, with the southernmost extent of tritium being approximately Well B. The maximum tritium concentration during the March 2004 sampling event was located at Well K at 109,000 pCi/L. The maximum historical tritium concentration was also located at Well K on October 1, 2003 at 353,700 pCi/L. Monitor wells and Geoprobe wells with tritium concentrations greater than 10,000 pCi/L during the March 2004 sampling event include Wells K, L, R, GG, and KK (Figures 3-5 and 3-6). Maximum tritium concentrations in this area appear to follow preferential groundwater pathways created by underground piping infrastructure and their associated backfill. The Condenser Cooling Water (CCW) Discharge Pipes, particularly for Unit 1, Waste Heat Park Lines, Rad Waste Line, Storm Sewer Lines, and the Cooling Tower Blowdown Lines have the greatest affect on plume distribution. Tritium concentrations at Well L indicate a portion of tritium is moving toward the YHP, likely due to a set of abandoned waste heat lines that are positioned east/west along the northern portion of the YHP. Additional wells near the Intake Pump

Groundwater Investigation Report

Summary of Groundwater Investigation Data

Station and Tennessee River (Wells F, J, D, H, B, E, and A) indicate tritium is migrating toward the river and has extended as far south as Well B.

The second area of tritium concentrations in groundwater is located surrounding the Unit 2 Reactor Building. Well BB is the only location with detectable concentrations of tritium (2,120 pCi/L) during the March 2004 sampling event. Wells CC and DD have also recently had detectable tritium concentrations, but these wells were dry during the March 2004 sampling event.

3.6 French Drain/Groundwater Sump

A perimeter drain encompasses the entire Power Block area (i.e., Reactor, Auxiliary, Control, Turbine, and Service Buildings) and was installed at foundation depths to prevent groundwater from entering the lower levels of the plant. The French drainpipe is a porous 8-inch concrete pipe set in crushed stone, which is approximately 2 ft in thickness. The highest elevation for the perimeter drain (French drain) is located at the southwest corner of the Service Building at 710 ft msl (ground elevation surrounding the plant is approximately 728 ft msl). Hence, groundwater entering the drain moves by gravity in two directions at a slope of 0.1% from this southwest corner. Each leg of the French drain is 1,250 ft in length and ends at an elevation of 708.75 ft msl along the east side of the Auxiliary Building. The two legs of the drain empty into a groundwater sump with a bottom elevation of approximately 700 ft msl. Groundwater collected in the sump is then normally pumped to Catch Basin (CB) 50 of the stormwater sewer system where it drains to the YHP.

Beginning in March 2003, tritium samples have been collected from the groundwater sump where the two legs of the French drain discharge. Tritium samples were periodically collected from this location through the remainder of 2003 and beginning of 2004 (Figure 3-8). During April and May 2003, groundwater sump concentrations were consistently between 10,000 and 15,000 pCi/L. Since that time, concentrations have steadily decreased from approximately 10,000 pCi/L to 4,000 pCi/L in February 2004 (Figure 3-7).

With elevated tritium concentrations discovered during 2003, groundwater from the sump was rerouted to the station sump, which is a monitored release point, instead of CB 50 on April 25, 2003. Groundwater pumped from the sump was returned to the normal discharge operation to the YHP via CB 50 on February 27, 2004, following installation of runtime meters on the sump pumps to allow characterization of the discharge from this release point.

Groundwater Investigation Report

Summary of Groundwater Investigation Data

To further define the source of tritium, the two inputs were sampled (north and south leg of the French drain at the discharge point) periodically in December 2003 and January 2004. Both legs of the French drain system are collecting water with tritium. The northern French drain input to the groundwater sump consistently discharges more water (53.1 gpm) and a lower concentration (4,700 pCi/L) than the southern leg of the French drain (19.4 gpm and 8,200 pCi/L) (Figure 3-8).

3.7 Fate and Transport

Quantification of solute migration requires specification of various transport parameters and processes that control the rate, movement, mixing, sorption, and degradation of a contaminant in the subsurface. Advection defines the process of contaminant migration due to the movement of groundwater. Dispersion accounts for the spreading and mixing of the constituent due to heterogeneities and non-ideal flow paths in the soil that cause variations in the groundwater velocity, as well as Fickian diffusion driven by concentration gradients. Sorption refers to the partitioning of a contaminant between the liquid and solid phases of the aquifer. Degradation is the mass decay of a contaminant as a result of physical, chemical, and biological activity within the aquifer. Each of these processes and their effect on the movement of site-related constituents along flow pathways are summarized in the following sections.

3.7.1 Advective Water Movement

Water-level measurements taken in monitor wells and Geoprobes distributed spatially across the Site provide the necessary information to describe the direction of groundwater movement. These water-level measurements are combined with effective porosity and hydraulic conductivity information to determine the rate or speed of groundwater movement. In general, water-level measurements are used to define the slope of the water table (gradient) and direction of movement; groundwater moves down the slope or gradient from high water-table elevations to lower water-table elevations. Based upon both water levels and constituent concentrations, the primary flow pathways are toward the French drain near the power block and toward the Tennessee River once out of the influence of the French drain (Figures 3-2 and 3-3).

The movement of a solute with the groundwater, or advective transport, can be computed using Darcy's Law. Darcy's Law is written as follows:

Groundwater Investigation Report

Summary of Groundwater Investigation Data

q = Ki

where, q is the Darcian flux (ft³/day/ft² or ft/day), K is the hydraulic conductivity (ft/day), and i is the hydraulic gradient (ft/ft). Since water can only move through the pore spaces, the Darcian flux is not the velocity at which groundwater is moving. The average linear velocity of groundwater is higher as water moves only through the voids or pore spaces of the soil:

 $v = \frac{q}{\theta_e}$

where v is the velocity (ft/day) and θ_e is the effective porosity (ft³/ft³). The effective porosity for the unconsolidated sediments and engineered backfill at the Site was assumed to be 0.20. The average gradient from the groundwater divide to the river is 0.018 and the average gradient to the French drain is 0.02 based on the March 2004 water-level information. Aquifer testing was not conducted as part of this investigation. Therefore, hydraulic conductivity was determined using two different methods using the flow from the French drain and by assuming a known velocity of the existing tritium plume.

The known flow in the French drain can be used to calculate the hydraulic conductivity by computing the flux of groundwater into the drain assuming all water flowing in is from groundwater. The average linear velocity of the groundwater into the French drain multiplied by the area through which the groundwater flows will yield the flow in the French drain. The average flow in the French drain (both legs combined) for the six sampling events is 72.5 gpm or 13,956 ft³/day (Figure 3-8). The area through which groundwater flows into the French drain is the length of the French drain (both legs, 2,500 ft) multiplied by the height of the saturated interval emptying into the drain (approximately 10 ft). Also, groundwater is assumed not to flow to the French drain from inside the loop because the plant was built on bedrock (i.e., not unconsolidated deposits). The hydraulic conductivity calculated using an effective porosity of 0.20 and an average gradient of 0.02 is 5.6 ft/day.

The hydraulic conductivity can also be calculated by assuming tritium is moving at the same velocity of groundwater and the tritium leak began in 1996 when the plant first went to criticality. The length of the plume (from Geoprobe JJ to just south of Well B) is 2,000 ft, and this plume was assumed to be created over a timeframe of 7 years (Figure 3-4). This results in a groundwater/plume velocity of 285.7 ft/year or

(1)

(2)

Groundwater Investigation Report

Summary of Groundwater Investigation Data

0.78 ft/day. The hydraulic conductivity using this method is 8.7 ft/day by assuming an effective porosity of 0.20 and an average gradient during that timeframe of 0.018.

These two methods resulted in relatively similar hydraulic conductivities and provide confidence in the average hydraulic conductivity of the unconsolidated sediments and engineered backfill, the age of the plume, and the velocity of the plume. Based on these results, the edge of the plume (defined as 1,000 pCi/L) will reach the Tennessee River (a distance of approximately 600 ft) in slightly more than 2 years.

3.7.2 Sorptive Processes and Degradation

The term sorption refers to the removal of a solute from solution through association with a solid surface. This attraction between a soil surface and a solute can result from a number of forces. The effects of these forces or processes are commonly described by sorption isotherms. These isotherms assume that when a solution contacts a solid, the solute will tend to transfer from liquid to solid until the concentration of solute in solution is in equilibrium with the soil concentration. These processes, especially for inorganic compounds, tend to be pH dependent, not always completely irreversible, and site specific. With respect to the constituents found in groundwater at the WBN site, this process has no effect on the movement of tritiated water and only a minor effect on the movement of boror; therefore, this process is not important to understanding the fate and transport of tritium. Tritium is a radioactive form of hydrogen and has a half-life of 12.33 years. Tritium is not susceptible to either biological or chemical degradation enhancement.

3.7.3 Dispersion

Dispersion is the process whereby contaminants spread over a greater region than would be predicted solely from the average linear groundwater velocity. Dispersion occurs at multiple scales. The primary cause of dispersion is variations in groundwater velocity, on a microscale by variations in pore size and on a macroscale by variations in hydraulic conductivity. The hydrodynamic dispersion tensor is complex. For isotropic media, the dispersion coefficient written to incorporate molecular diffusion (described by Fick's Law), is calculated as follows:

$$D_c = \alpha_d v + D$$

(3)

Groundwater Investigation Report

Summary of Groundwater Investigation Data

where D_c is the dispersion coefficient [L²/T], α_d is the dispersivity [L], v is the groundwater velocity [L/T], and D the molecular diffusion coefficient [L²/T].

While the general process of dispersion is understood, the dispersivity of a formation is not easily measured or quantified at the field scale. Therefore, as dispersion is related to porewater velocities, plume travel distance is the single most important factor that can be correlated to dispersivity. For the WBN site, the advective transport of tritium will far exceed the effects of dispersivity and its effects can therefore be considered negligible.

If tritiated groundwater were to discharge into the Tennessee River, the tritium would significantly be diluted. Assuming a 400-ft wide tritium plume discharging into the Tennessee River at a rate of 5.8 gpm, a tritium concentration of 1,000 pCi/L results in a surface-water concentration of 0.0024 pCi/L. A 10,000 pCi/L tritium concentration would result in a surface-water concentration of 0.024 pCi/L and a 100,000 pCi/L tritium concentration would result in a surface-water concentration of 0.024 pCi/L and a 100,000 pCi/L tritium concentration would result in a surface-water concentration of 0.24 pCi/L. Background tritium concentrations are approximately 150 pCi/L. Although these concentrations would not pose an unacceptable risk or even be detectable, TVA is going forward with plans to ensure tritium does not reach the Tennessee River (Section 6.0).

Groundwater Investigation Report

Source Assessment

4.0 Source Assessment

Based on the distribution of tritium in groundwater and refined understanding of groundwater flow conditions, the tritium plumes observed at WBN are likely associated with two separate sources. This conclusion is bolstered by the differing, yet consistent, tritium concentrations discharging from the north and south legs of the French drain. The investigation and data collected indicate that Source #1 is the result of a leak in the Rad Waste Line near Geoprobe Well JJ, and Source #2 is a result of a leak in the FTT Sleeve through the Unit 2 Shield Building seismic gap. Source #1 is partially controlled by groundwater discharge from the French drain and Source #2 is completely controlled by the French drain. The following sections detail each of the two sources.

4.1 Source #1 - Rad Waste Line

Documented leaks from the Rad Waste Line appear to have resulted in tritium extending in dual branch fashion west from the Well K vicinity to the southeast edge of the Turbine Building, and south from the Well K vicinity towards the Tennessee River (Figure 4-1). The Rad Waste Line was pressure tested, acoustically monitored, and excavated at several locations to identify potential leak locations. A leak was identified east of the Power Block (Figure 4-1) after overburden was excavated on May 1, 2003. The leak appeared to be caused by accelerated corrosion from the pipeline exterior due to a tear in the protective pipe wrap. The line was cut, inspected, and repaired. Through the fall of 2003, possible additional leaks in the line were investigated, but no additional leaks have been found.

The Rad Waste Line leak, identified and repaired in May 2003, is suspected of being the primary source of tritium. A portion of the tritium originating from the leak location has migrated toward the south leg of the French drain system along preferential pathways associated with the CCW Lines and relatively permeable bedding material. Another portion of the tritium originating from the leak appears to follow major subsurface lines (i.e., Cooling Tower Blowdown Line, Waste Heat Park Lines, and storm drains) towards the Tennessee River. Again, this directional behavior is likely associated with preferential groundwater movement associated with the higher permeability bedding material surrounding subsurface piping.

When the WBN Plant was constructed, engineered fill was placed over a majority of the Site. The tighter hydraulic properties make the fill more difficult for groundwater to flow through than the gravel packs surrounding the numerous pipe systems associated

4-1

Groundwater Investigation Report

Source Assessment

with facility infrastructure. Tritium migration towards the Turbine Building appears to be influenced by the south CCW Discharge Line running from the Turbine Building to the Unit 1 Cooling Tower. Tritium migration toward the river is strongly influenced by the Cooling Tower Blowdown Line, Waste Heat Park Lines, and other piping infrastructures, as their position within the subsurface is coincident with the groundwater table along portions of their length. Based on calculations of tritium in the south leg of the French drain, it is likely that a majority of the activity is not being observed in groundwater monitor wells and is within the more permeable gravel packs of the discharge CCW Line and Raw Cooling Water Lines. A majority of the groundwater monitor wells has shown decreasing concentrations of tritium, indicating that the primary source has been eliminated.

4.2 Source #2 – Unit 2 Fuel Transfer Tube Seismic Gap

In February 2003, it was identified that water was leaking into the Unit 2 Shield Building annulus through the Unit 2 FTT sleeve connection between the Auxiliary and Unit 2 Shield Buildings. All of these units (SFP, CLP, and FTC) have the potential to be inter-connected behind the stainless-steel liner since the liner is not continuously bound in the concrete. A 1-inch seismic gap exists between the Auxiliary Building and Unit 2 Shield Building where the FTT passes through these buildings (Figures 4-2 and 4-3). Tritiated water, between the steel tube (20-inch diameter) and the Concrete Building, was observed flowing into the Unit 2 Shield Building annulus in February 2003. This water must flow across the seismic gap to get from the Auxiliary Building to the Unit 2 Shield Building, which provides a pathway to groundwater. This gap is filled with fiberglass and is glued on one side to the Unit 2 Shield Building. Potentially, water from the SFP, CLP, or FTC that has leaked behind the stainless-steel liner could migrate to the Unit 2 FTT sleeve.

Leaks through the FTT sleeve and seismic gap have resulted in groundwater impact surrounding the Unit 2 Shield Building (Figures 4-2 and 4-3). Occasional FTC leakage has been identified over the past 5 to 6 years. The SFP and adjacent CLP, along with the FTC, have individual "tell-tale" drain systems to detect leakage through the liner welds. Neither of these drain systems has exhibited recent leakage, although recent investigations indicate that the drain system for the SFP and FTC is clogged, so evidence of leakage by this method is problematic. Subsequent efforts to clear these drain systems have resulted in a functioning drain system for the FTC. The SFP system continues to not drain and additional efforts are under way. The Cask Loading Area drain system appears to be functioning as designed. Inspection of the "tell-tale" drain system is further complicated due to its piping configuration.

Groundwater Investigation Report

Source Assessment

The difference in potential head between the bottom of the FTT sleeve and the French drain directly north of the seismic gap is approximately 1.25 ft, indicating that water would flow towards the French drain from this point (either to the north or to the east). Calculations using the tritium concentrations in these areas of nearly 100 million pCi/L indicate it would take a small volume of tritiated water to result in the concentrations being observed in the north leg of the French drain, and in groundwater monitoring points around the Unit 2 Shield Building.

Groundwater Investigation Report

Risk Summary

5.0 Risk Summary

Risk analysis is the process of organizing and systematically evaluating information pertaining to the likelihood and magnitude of adverse effects. In the context of environmental contamination, this typically includes separate analyses of the risks to human health and the risks to ecological receptors. However, both human health and ecological risk assessment consist of fundamentally similar elements. These elements include a problem formulation (description), exposure analysis, effects analysis (i.e., toxicity), and risk characterization. These elements are implicitly included in this risk summary, but only the most essential factors are discussed.

5.1 Site Conceptual Exposure Model

Exposure, in the context of human health and ecological risk, is defined as the contact of a receptor with a chemical or physical agent. For exposure to occur, a source of contamination or contaminated media must exist which serves as either 1) a point of exposure or 2) transports contaminants away from the exposure unit to a point where exposure could occur. In addition, a receptor must come into either direct contact (i.e., ingestion, inhalation, dermal contact, or external exposure) or indirect contact (ingestion of foodstuffs that have bioaccumulated contaminants within their systems) with the contaminant. This concept, exposure pathway, includes the elements of a contaminant source, contaminated environmental media, exposure point, exposure route, and receptor.

Based on the activity patterns of a population, any given individual may be exposed to more than one exposure pathway. Therefore, the exposure assessment must also evaluate the activity patterns of the potential receptors and determine what combination, if any, of exposure pathways an individual might be exposed to. This evaluation results in the generation of exposure scenarios. Exposure scenarios represent the combination (if applicable) of exposure pathways that an individual could be exposed to based on their activity patterns. The result of an exposure pathways analysis is the development of a site conceptual exposure model (Figure 5-1).

5.2 Human Health

The site conceptual exposure model (Figure 5-1) indicates that currently no completed exposure pathways are known or suspected. Surface soil was not affected by the release and does not serve as a contaminant source. Releases of tritium initially affected subsurface soil and subsequently groundwater. The contaminated

Groundwater Investigation Report

Risk Summary

environmental media, groundwater, is not used as a source of potable water nor for process applications. No residential drinking water wells are located within the area of impact nor are anticipated to be installed.

Anticipated future maintenance or construction activities at the facility (on site) related to operation/upgrades of plant infrastructure could result in potential exposure of construction/excavation workers to impacted groundwater. This is considered a viable exposure pathway based on the known extent of the groundwater plume, the existence of preferential flow pathways (i.e., underground piping/conduits), and the relatively shallow depth to groundwater. Human exposure to tritium in groundwater could occur via incidental ingestion, inhalation, or dermal contact.

Potential future off-site exposure to receptors could occur as a result of the migration of affected groundwater to surface water. The Tennessee River is immediately downgradient of the facility and is used for recreational and navigational purposes. Human exposure to tritium in surface water during recreational activities could occur via incidental ingestion, inhalation, and dermal contact.

An analysis of potential adverse effects is the counterpart to a review of potential exposure pathways. Two important effects-based values for the protection of human health are drinking water standards and preliminary remediation goals. The drinking water Maximum Contaminant Level (MCL) for gross beta emissions is 4 millirems per year which equates to 20,000 pCi/L of tritium. The preliminary remediation goal based on exposure via incidental ingestion of water as part of a recreational scenario is 290,000 pCi/L (U.S. Department of Energy 2002). Based on these screening values, it is unlikely that the existing tritium contaminated groundwater will pose an unacceptable risk to future human receptors. This is especially true given the substantial dilution that would occur if the tritiated groundwater were to discharge to the river. As noted above, there currently are no known or suspected completed exposure pathways.

5.3 Ecological

The site conceptual exposure model (Figure 5-1) indicates that currently there are no known or suspected completed exposure pathways for ecological receptors. Future completed exposure pathways may exist for off-site receptors. However, any potential exposures for ecological receptors are likely to be well below typical levels of concern.

Groundwater Investigation Report

Risk Summary

Aquatic biota are the ecological receptors of primary concern at this site, based on the constituent of concern, affected media, and environmental setting. Terrestrial animals are not expected to be exposed to tritium in groundwater and the terrestrial vegetation in the area is part of the maintained facility, rather than a natural environment. Natural populations of aquatic biota do not occur on-site (i.e., the YHP is a treatment facility and is not maintained as an ecological habitat). Therefore, there are no known current or future on-site exposure pathways for aquatic biota.

Off-site ecological exposures could occur in surface water at the downgradient boundary of the Site. This exposure pathway is not believed to be a completed exposure pathway under current conditions. However, the groundwater tritium plume has the potential to reach the site boundary in the future. This could lead to a completed exposure pathway for aquatic biota in the river (Figure 5-1).

Although an ecological risk assessment is not warranted at this time, a brief review of the available screening values for tritium can provide a valuable perspective on the potential for future ecological impacts. The USDOE recently developed "A Graded Approach for Evaluating Radiation Doses to Aquatic and Terrestrial Biota" (U.S. Department of Energy 2002). This peer-reviewed USDOE technical standard is the first and only comprehensive guidance document on this topic and is the basis for the discussion of potential ecological impacts that follows.

The USDOE graded approach (U.S. Department of Energy 2002) provides screening values for water, sediment, and soil called Biota Concentration Guides (BCGs). A BCG is the concentration of a radioactive isotope (e.g., pCi/L) that is estimated to result in a dose rate (e.g., Rad/d) equivalent to the consensus safe exposure level for the receptor being evaluated (i.e., 1.0 Rad/d for aquatic animals and terrestrial plants and 0.1 Rad/d for terrestrial animals). BCGs are available for four classes of ecological receptors: aquatic animals, riparian animals, terrestrial animals, and terrestrial plants. The BCGs for tritium in water are presented on Table 5-1.

Based on these conservative screening values, potential ecological impacts due to exposure to the existing tritium contaminated groundwater are highly unlikely. It is also noteworthy that tritium does not bioaccumulate. For example, the USDOE Graded Approach used conservative uptake factors (concentration ratios) for tritium that ranged from 0.2 to 1.0 (U.S. Department of Energy 2002). A value less than or equal to 1.0 indicates that receptor organism will have the same or lower concentration of the contaminant than does the media to which it is exposed. Therefore, there is no

Groundwater Investigation Report

Risk Summary

indication of potential ecological impacts via food chain exposure pathways for tritiated groundwater.

5.4 Risk Conclusions

Actual risks to human and ecological receptors are acceptable based on available environmental data and existing radiological screening criteria. However, risks may be perceived by the public to be higher than actual because the constituent of concern is a radionuclide. Therefore, risk managers must rigorously demonstrate that remedial measures are adequate to ensure protection of human health and the environment. Additionally, risk management activities should include a risk communication component.

Groundwater Investigation Report

Remediation Planning Summary

6.0 Remediation Planning Summary

Recent assessment activities indicate that site groundwater has been impacted by tritiated process water. Two potential tritium sources have been identified; 1) Rad Waste Line, which appears to have resulted in a dual branch tritium plume that extends from the Rad Waste Line toward the river and toward the Turbine Building; and 2) Unit 2 FTT sleeve, which appears to have resulted in a tritium plume that is localized in the vicinity of the Unit 2 Shield Building. Repairs of the component infrastructure responsible for the release are already underway. All of Source #2 and a portion of Source #1 are captured by ongoing recovery at the French drain groundwater sump. The portion of the plume not captured has resulted in migration of tritiated groundwater southward toward the YHP and to the Tennessee River. This portion of the plume, and associated groundwater movement, appears to be preferentially following the bedding material surrounding the utilities, which run downgradient from the plant to the river. Since tritium does not sorb to soil, the plume is migrating at the same rate as groundwater velocity.

Remedial action objectives (RAOs) must be established to guide remedial planning and any resulting actions. RAOs are typically selected based on removing unacceptable risk to receptors, both current and potential future. The RAOs for the Site are designed to remove unacceptable risk to human receptors, protect ecological resources in the Tennessee River, and control/prevent plume growth. RAOs for the Site include:

- Protect ecological receptors in the Tennessee River from impacted groundwater;
- Prevent groundwater plume growth to ensure it does not migrate off site;
- Protect human health of plant workers from exposure to impacted groundwater; and
- Remove tritium mass in plume core to assist in natural attenuation of remaining plume.

Since the discharge from the YHP is monitored and tritium levels are very low (<1,000 pCi/L), no mitigation measures are likely necessary. However, additional migration of the plume toward the river should be monitored or controlled. Minimizing continued downgradient migration of the plume toward the river can only be achieved through some type of hydraulic control. An example of this commonly used technique would involve constructing a series of extraction wells (or trench) along the downgradient edge of the plume. Alternatively, hydraulic control can be accomplished by using phreatophytic vegetation to transpire tritiated water to the atmosphere,

Groundwater Investigation Report

Remediation Planning Summary

however, this approach would take longer to be effective and may not be appropriate for the WBN site (i.e., deep water table and preferential flow).

Tritium has a half life of 12.33 years. Aside from this natural decay, tritiated water has the same physical characteristics as normal water. As a result, treatment technologies (e.g., ion exchange, adsorption, precipitation, etc.) normally used to remove chemicals or compounds from water will not separate or remove tritiated water from normal water. Therefore, options for integrating extracted groundwater into the plant process stream need to be evaluated. Although the water is not "treated", downgradient receptors are protected as concentrations are sufficiently reduced such that the associated risk is neglible.

Control and/or management of plume migration can be accomplished through a complete understanding of site conditions. This would allow quantification of tritium flux into the Tennessee River and permit design of a hydraulic containment system to prevent a release of tritium to surface water. Prior to designing a hydraulic control system, refinement of the plume extent, a fate and transport model, and a better understanding of the engineered fill along the utility corridor would be required. Once this is completed, hydraulic testing would be conducted to develop the necessary data to design the recovery wells and size the system.

Groundwater Investigation Report

Recommendations

ARCADIS

7.0 Recommendations

Based on these initial findings, the following observations/recommendations are made to correct the tritium releases.

- Unit 2 FTT Sleeve Repair: Tritiated water must be prevented from crossing the seismic gap in the Unit 2 FTT sleeve, or prevent water from entering the FTT sleeve. WBN is currently investigating the application of a coating/sealing system for the transfer canal liner to preclude leakage into this area. This is documented in the Site Problem Evaluation Report (PER) number 12430.
- Replacement of Rad Waste Line Sections: Because the existing Steam Generator Blowdown/Rad Waste Lines likely have minor existing leaks, continuing releases could be occurring from this line system. In order to prevent these possible current or future leaks, WBN is replacing this line under the Design Change Notice (DCN) number 51690.
- Monitoring Program Development: Groundwater sampling procedures have been refined over time to make improvements when necessary. These should be further revised to examine the sequence of well sampling and use of dedicated sampling equipment. A monitoring program should be designed to continue to collect those data that will provide information on current site conditions, and what is necessary to evaluate a remedial solution/progress. Once the monitoring program has met these needs, it should be reduced or eliminated.
- *Refinement of Plume Extent*: Additional groundwater monitor wells are needed to better define the tritium plume and to monitor its movement at the distal end near the Tennessee River.
- Source #1 Remedial Measures: Source #1 is somewhat controlled by inducing groundwater flow to the plant buildings by the French drain and actively pumping the groundwater sump. A hydraulic control system may be used to capture the entire plume by installing recovery wells in the downgradient leading edge of the plume, south of the plant. Aquifer testing and a fate and transport model may be used to design the hydraulic control system.
- Source #2 Remedial Measures: Source #2 is completely contained by the French drain and actively pumping the groundwater sump. The extent of tritium in groundwater at Source #2 has likely been influenced by moderate to large storm events and underground infrastructure (i.e., RWST tunnel). Nevertheless, the plume around the Unit 2 Shield Building remains focused and contained, and no additional remedial actions are needed.

Groundwater Investigation Report

References

8.0 References

- U.S. Department of Energy. 2004. Risk Assessment Information System. http://risk.lsd.ornl.gov/rap hp.shtml.
- U.S. Department of Energy. 2002. A Graded Approach for Evaluating Radiation Doses to Aquatic and Terrestrial Biota. Office of Environment, Safety & Health, Air, Water, and Radiation Division. Washington, D.C. July 2002.

National Weather Service. 2004. Morristown, Tennessee.

Tennessee Valley Authority. 2003. Groundwater Tritium Monitoring Status Report. Watts Bar Nuclear Plant. November 2003.

Tennessee Valley Authority. 1980. Final Safety Analysis Report. Watts Bar Nuclear Plant.

Date	Activity
August 200	2 - Low levels of tritium were detected in a scheduled sample drawn from an on-site radiological monitor well (Monitor Well 1)
December 200	2 - Additional REMP wells (Wells A, B, C, and D) were installed as part of the plant modifications to produce tritium
January 200	3 - Groundwater samples collected from new monitor wells (A through D) indicated tritium in 3 of the 4 wells (Wells B, C, and D)
January 200	3 - It was identified that the Unit 2 FTT bellows was leaking water into the Unit 2 Reactor Building
March 200	3 - TVA team formed to determine and eliminate the source(s) of tritium in groundwater
March/April 200	3 - Pressure testing and soil sampling around the Rad Waste Line
May 200	3 - Leak identified in Rad Waste Line and line was cut, inspected, and repaired
June 200	3 - Boroscopic inspections were made of the drain lines for the SFP and the CLP
August 200	3 - Repair method was developed for FTT by removing the bellows and transfer tube and placing a plate over the remaining hole
October 200	3 - Refueling outage/initiation of tritium program
October 200	3 - Mobile camera (submersible) was used to record the condition of the FTC walls and floor
December 9, 200	3 - Initial Site Meeting (TVA and ARCADIS)
January 9, 200	14 - Project Kick-Off Meeting (TVA and ARCADIS)
January 23, 200	14 - Team Progress Meeting (TVA and ARCADIS)
ebruary 13, 200	14 - Team Progress Meeting (TVA and ARCADIS)
March 1, 200	4 - Comprehensive "snapshot" sampling of all wells for tritium and measurement of all well water levels
March 11, 200	4 - Team Progress Meeting to present findings (TVA and ARCADIS)
April 16, 200	4 - Presentation to TVA plant management of tritium investigation findings

FTT - Fuel Transfer Tube

REMP - Radiological Environmental Monitoring Program

SFP - Spent Fuel Pool

TVA - Tennessee Valley Authority

T40106.xls - 15JUN04 bf

Table 2-2. Well Summary and Water Levels Tennessee Valley Authority Watts Bar Nucle

Watts Bar Nuclear Plant Spring City, Tennessee

	Coordinates				0/8/03		/12/03	and the second se	14/04	······································	/1/04		11/04
Well	TN Lam		TOC	Level	Water Level	Level	Water Level	Level	Water Level	Level	Water Level	Level	Water Leve
AAG11	East	North	(ft msl)	(ft)	(msl)	(ft)	(msl)	(ft)	(msl)	(ft)	(msl)	(ft)	(msi)
A	2360776	440131	704.52	20.33	684.19	20.61	683.91	37.0	667.52	28.4	676.12	NM	NM
8	2360769	440887	709.64	25.25	684.39	26.10	683.54	26.4	683.24	27.9	681.74	NM	NM
C	2360754	442317	726.17	12.75	713.42	11.60	714.57	12.2	713.97	12.2	713.97	NM	NM
D	2360717	441161	714.71	28.33	686.38	Dry	Dry	29.8	684.91	DRY	DRY	NM	NM
£	2360204	440566	738.71	53.25	685.46	55.80	682.91	55.6	683.11	54.5	684.21	NM	NM
F	2360870	441509	723.88	22.17	701.71	20.60	703.28	22.7	701.18	21.6	702.28	· NM	NM
G	2361666	441932	723.03	36.75	686.28	37.00	686.03	36.7	686.33	19.4	703.63	NM	NM
н	2360682	441013	712.18	26.50	685.68	30.50	681.68	28.4	683.78	28.8	683.38	NM	NM
I	-2360558	442289	725.53	12.08	713.45	11.10	714,43	11.4	714,13	11.3	714.23	NM	NM
j	2360834	441341	711,77	20.25	691,52	22.10	689.67	20.5	691.27	20.4	691.37	NM	NM
ĸ	2360525	442600	728.01	14,17	713.84	13.00	715.01	13.4	714,61	13.1	714,91	12.6	715.41
l	2360510	441772	725.48	27.25	698.23	16.60	708.88	17.6	707.88	17.3	708.18	NM	NM
M	2359974	441652	729.20	24.33	704.87	16.00	713.20	25.9	703.30	25.9	703.30	NM	NM
N	2359448	441557	726.65	27.67	698.98	24.50	702.15	24.2	702.45	26.5	700.15	NM	NM
ò	2359379	442244	727.95	14.33	713.62	22.00	705.95	12.9	715.05	13.1	714.85	NM	NM
.) 2	2359440	442658	727.27	14:58	712.69	18.10	709.17	14.6	712.67	14.3	712.97	NM	NM
0	2359353	443147	725.35	4.33	721.02	3.90	721.45	4,4	720.95	4.2	721.15	NM	NM
R	2360060	442616	726.59		710.26		710.59		710.59				NM
S.	2360330			16.33		16.00		16.0		15.1	711,49	NM	
ъ Т	2359511	442595	724.49	11.58	712.91	9.90	714.59	10.2	714.29	NM	NM	9.5	714.99
•		443167	726.70	NI	NI	NI	NI	12.8	713.90	13.1	713.60	NM	NM
U V	2359641	443190	727.22	NI	NI	NI	NI	15.9	711.32	15.8	711.42	NM	NM
	2359847	443234	727.89	NI	NI	NI	NI	15.1	712.79	15.9	711.99	NM	NM
W	2359950	443252	727.60	NI	NI	NI	NI	13.6	714.00	14	713.60	NM	NM
X	2360046	443261	728.09	NI	NI	NI	NI	14,4	713.69	13.9	714.19	NM	NM
Y	NA	NA	NA	NI	NI	NI	NI	NI	NI	NM	NM	NM	NM
2	NA	NA	NA	NI	NI .	NI	NI	NI	Nİ	NM	NM	NM	NM
AA	2359992	442954	729.49	NI	NI	NI	NI	NI	NI	20.8	708.69	NM	NM
86	2359995	443017	732.07	NI	NI	NI	NI	NI	NI	23.8	708.27	NM	NM
CC	2359973	443118	730.83	NI	NI	N	NI	NI	NI	DRY	DRY	NM	NM
DD	2360043	442970	732.26	NI	NI	NI	NI	NI	NI	DRY	DRY	NM	NM
EE	2360112	442827	731.78	NI	NI	NI	NI	NI	NI	20.5	711.28	NM	NM
FF	2360035	442738	729.32	NI	NI	NI	NI	NI	NI	20	709.32	NM	NM
GG	2360036	442638	731.62	NI	,NI	NI	NI	NI	NI	21.2	710.42	NM	NM
нн	2360294	442683	727.14	NI	NI	NI	NI	NI	NI	14	713.14	13.3	713.84
11	2360550	442932	729.03	NI	NI	NI	NI	NI	NI	13.4	715.63	NM	NM
<u>)</u>]	2360567	442734	728.90	NI	NI	NI	NI	NI	NI	12.7	716.20	NM	NM
KK	2360561	442654	729.74	NI	NI	NI	NI	NI	NI	14.8	714.94	NM	NM
LL	2360279	442994	731.07	NI	NI	NI	NI	NI	NI	17.1	713.97	NM	· NM
MW-1	2360289	443209	726.99	8,11	718.88	7.90	719.09	7.9	719.09	7.6	719,39	NM	NM
MW-2	2360109	443072	727.86	15.94	711.92	15.70	712,16	15.9	711.96	15.9	711.96	NM	NM
MW-3	2360286	442873	727.34	13.96	713.38	13.70	713.64	13.7	713.64	13.4	713.94	NM	NM
MW-4	2360193	443149	727.86	17,74	710.12	12.70	715.16	12.7	715.16	12.5	715.36	NM	NM
W Sump	2359991	442920	728.50	26.09	702.41	NM	NM	NM	NM	NM	NM	NM	NM

ft - feet

.

GW - groundwater -

msl - mean sea level NA - not available

`

NI - not installed NM - not measured TOC - Top of Casing

Tennessee	e valley A		vvate	s Bar Nuci			ing City, i	ennessee				
Date	Well A	Well B	Well C	Well D	Well E	Well F	Well G	Well H	Well I	Well J	Well K	Well L
0/2/03		11,200	19,300					NI	NI	NI	NI	NI
9/4/03			••	••		1,140	••	NI	NI	N:	Ni	NI
9/15/03		••	••			••	••	5,620	NI	NI	N1	NI
9/17/03			••			••	••		32,100	NI	NI	48,700
9/18/03	••		21,300			1,230	••	6,370	36,060	NI	N	49,240
0/24/03		10,900	18,500				••	••	30,200	NI	NI	40,800
9/26/03			••	••	•-		••			NI	NI	
9/27/03	••				•-		<\$31			NI	'' NI	
9/30/03			21,180			••				1,830	92,500	••
9/30/03			••			3,055	••			••	374,700	
10/1/03			•-				2,731		23,240	••	353,700	
10/2/03	••									••	297,900	
0/3/03	••		26,090	'				6,438	19,630		291,200	
10/5/03							••				218,300	
10/7/03			20,700			1,210	1,140	••	20,300	••	204,800	43,300
10/8/03	2,930					••	3,270	••	••	••	••	
0/9/03	<513				<520				••			
10/10/03	1,370	••	28,280		<568					••	194,500	••
10/12/03	<547				<555		<554				189,000	
10/13/03	970	••	23,590		723		<\$61				247,000	
10/15/03					<\$73		<575					
10/17/03	885								••			
10/19/03	••		22,320		••						256,800	39,730
10/20/03										2,812		
10/23/03			21,980							-,	229,300	
0/24/03	2990											
11/1/03								~			226,600	
11/7/03	<544				<544		<\$44				319,400	
11/10/03								~		·		
11/11/03												
11/12/03											••	
11/13/03			23,260									
11/21/03	<501		22,200		903		<544				272,000	
12/1/03									16,000		72,100	32,100
12/3/03	••											52,100
12/4/03											91,900	
12/5/03			17,000			1,360					118,000	••
					••					2,710		
12/8/03							••					
12/10/03	••											
12/11/03				••								
12/12/03	••					••						
12/17/03		••	10,400			••			12,910	••	53,340	••
12/19/03				••	•-				••			
12/22/03			7,040	••	••			••		•-	63,500	
12/29/03		••	8,250								85,600	
12/30/03						••	<498		••	••	••	
12/31/03	••						••	••	••			
1/5/04			9,563				••			•-	128,100	
1/12/04			8,500						••	•• .	123,500	
1/20/04			8,500	••		••		••	••		144,000	••
1/26/04	••		•-						4,302		116,500	47,830
1/30/04		••	••					••	6,090		121,000	50,70
2/2/04	••					••	•-				· ••	
2/9/04								••	1,250		114,000	58,10
2/16/04				••					2,061	••	102,200	53,24
2/23/04				••			••		5,890		95,500	50,40
2/24/04	••	••										
2/26/04					-			••				

Table 3-1. Groundwater Tritium Concentrations (September 2003 - March 2004) Tennessee Valley Authority Watts Bar Nuclear Plant Spring City, Tennessee

---Note: all values in picocuries per liter

--

•••

...[`]

•••

••

••

--

••

NI - not installed

-- - not measured

3/5/04

..

••

Tennessee Valley Authority			Watt	s Bar Nucl	ear Plant	Spri	ng City, T					
Date	Well M	Well N	Well O	Well P	Well Q	Well R	Well S	Well T	Well U	Well V	Well W	
3/2/03	NI	NI	NI	NI	NI	NI	NI	NI	NI	Ní	NI	
9/4/03	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	
9/15/03	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	N	
17/03	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	
9/18/03	<558	Nł	NI	NI 1	NI	NI	NI	NI	NI	NI	NI	
3/24/03		<559		NI	NI	NI	NI	NI	NI	NI	NI	
9/26/03	<549		<549	NI	NI	NI	NI	Ni	NI	NI	NI	
9/27/03	••			<519	<519	NI	NI	NI	NI	NI	N	
9/30/03			••		••	NI	NI	NI	NI	NI	NI	
)/30/03			••		••	NI	NI	NI	NI	NI	NI	
10/1/03						NI	NI	Nł	NI	NI	NI	
0/2/03	••		·			NI	NI	Nł	NI	NI	NI	
0/3/03						18,450	11,200	NI	NI	NI	NI	
0/5/03	•-					18,490	10,520	NI	NI	NI	NI	
0/7/03						23,060	9,440	NI	NI	N)	NI	
0/8/03					·			NI	NI	NI	NI	
0/9/03								NI	NI	NI	NI	
10/10/03			·					N	NI	N	N	
10/12/03	••			••		••		NI	NI	NI	NI	
0/13/03								NI	NI	NI	N	
0/15/03								NI	Ni	N	NI	
10/17/03				••		••		NI	NI	NI	NI	
10/19/03						18,120	16,360	NI	NI	NI	N	
10/20/03								NI	NI	NI	NI	
0/23/03	••							NI	NI	NI	NI	
0/24/03	••							NI	NI	NI	NI	
11/1/03								NI	NI	NI	NI	
1/7/03	••						••	NI	NI	NI	NI	
11/10/03				••				NI	NI	NI	NI	
11/11/03			••				••	NE	NI	NI	N	
11/12/03								NI	NI	NI	NI	
11/13/03								NI	NI	NI	NI	
1 1/2 1/03					••			NI	NI	NI	NI	
12/1/03						19,800	11,000	NE	NI	NI	NI	
12/3/03								NI	NI	NI	NI	
12/4/03								NI	N	NI	NI	
12/5/03								NI	NI NI	N	N	
12/8/03							••	NI	NI	NI	NI	
12/10/03								NI	NI	NI	NI	
12/11/03								<588	<588	NI	NI	
12/12/03								< J00	< 300	<587	<587	
12/17/03						 22,030	9,166			<>87	< 587	
12/19/03							5,100					
12/22/03						20,000	7,720					
						-						
12/29/03						22,800	7,500					
12/30/03												
12/31/03		••	••				·- 8 5 70					
1/5/04						22,560	8,579					
1/12/04			••		••	22,400	9,900		۶.			
1/20/04	••				••	18,900	7,360				-	
1/26/04				••		18,750	8,267	••				
1/30/04			••	••		21,700	8,670		••	••		
2/2/04		••	••	••						••		
2/9/04	••					18,000	7,510		••	••		
2/16/04						19,420	5,172	••		••		
2/23/04					••	18,800	6,280			••	~~	
2/24/04			••									
2/26/04	••											
B 44 48 1							C ^70	<526	<524	- 406	<496	
3/1/04 3/5/04	<494	<533 	<\$33	<537 	<529	19,600 	6.070	< 520	< 524	<496 ••	<490	

 Table 3-1. Groundwater Tritium Concentrations* (September 2003 - March 2004)

 Tennessee Valley Authority
 Watts Bar Nuclear Plant
 Spring City, Tennessee

Note: all values in picocuries per liter

NI - not installed

-- - not measured

9/2/03 9/4/03 9/15/03 9/15/03 9/15/03 9/15/03 9/24/03 9/26/03 9/27/03 9/26/03 9/27/03 9/30/03 10/1/03 10/2/03 10/2/03 10/1/03 10/15/03 10/15/03 10/15/03 10/15/03 10/15/03 10/15/03 10/15/03 10/15/03 10/15/03 10/15/03 10/12/03 10/12/03 10/24/03 11/1/03 11/1/03 11/1/03	Well X NI NI NI NI NI NI NI NI NI NI NI NI NI	Well Y Ni Ni Ni Ni Ni Ni Ni Ni Ni Ni Ni Ni Ni	Weli Z Ni Ni Ni Ni Ni Ni Ni Ni Ni Ni Ni Ni Ni	Well #1	Weil #2	 	Well #5	Well #6	MW 1	MW 2	₩₩ 3 	MW 4
9/4/03 9/15/03 9/15/03 9/17/03 9/24/03 9/24/03 9/26/03 9/26/03 9/26/03 9/30/03 9/30/03 10/1/03 10/3/03 10/5/03 10/5/03 10/5/03 10/17/03 10/15/03 10/15/03 10/17/03 10/15/03 10/15/03 10/17/03 10/19/03 10/19/03 10/19/03 10/19/03 10/19/03 10/20/03 10/20/03 10/24/03 11/1/03 11/1/03 11/1/03	NI NI NI NI NI NI NI NI NI NI NI NI NI N	N N N N N N N N N	NI NI NI NI NI NI NI NI NI	· · · · · · · · · · · · · · · · · · ·		 		 		 	 	
9/15/03 9/17/03 9/18/03 9/26/03 9/26/03 9/27/03 9/30/03 10/1/03 10/2/03 10/2/03 10/3/03 10/12/03 10/12/03 10/12/03 10/12/03 10/12/03 10/12/03 10/12/03 10/12/03 10/12/03 10/12/03 10/12/03 10/12/03 10/12/03 10/24/03 11/1/03 11/1/03 11/1/03	NI NI NI NI NI NI NI NI NI NI NI NI NI	NI NI NI NI NI NI NI NI NI NI	NI NI NI NI NI NI NI NI		 	 	 	•• •• ••	 //	 	 	
9/17/03 9/18/03 9/24/03 9/24/03 9/26/03 9/30/03 9/30/03 10/2/03 10/2/03 10/3/03 10/5/03 10/10/03 10/10/03 10/12/03 10/12/03 10/12/03 10/12/03 10/12/03 10/12/03 10/12/03 10/12/03 10/12/03 10/12/03 10/24/03 11/1/03 11/1/03 11/1/03	NI NI NI NI NI NI NI NI NI NI NI NI	NI NI NI NI NI NI NI NI NI NI	NI NI NI NI NI NI NI NI		 	 	 	 	 //	 		
9/18/03 9/24/03 9/24/03 9/24/03 9/27/03 9/30/03 9/30/03 0/3/03 0/2/03 10/2/03 10/2/03 10/5/03 10/10/03 10/12/03 10/12/03 10/12/03 10/12/03 10/12/03 10/12/03 10/12/03 10/12/03 10/12/03 10/12/03 10/24/03 11/1/03 11/1/03	NI NI NI NI NI NI NI NI NI NI NI	NI NI NI NI NI NI NI NI NI	NI NI NI NI NI NI NI	•• • • • • • •	 	 	 		 /\			
9/24/03 9/26/03 9/27/03 9/27/03 9/30/03 9/30/03 10/1/03 10/2/03 10/2/03 10/2/03 10/2/03 10/2/03 10/12/03 10/12/03 10/12/03 10/12/03 10/12/03 10/12/03 10/12/03 10/12/03 10/12/03 10/12/03 10/22/03	NI NI NI NI NI NI NI NI NI NI	NI NI NI NI NI NI NI	NI NI NI NI NI NI		 	 	 		~			
9/26/03 9/27/03 9/30/03 9/30/03 10/1/03 10/2/03 10/3/03 10/3/03 10/5/03 10/5/03 10/10/03 10/12/03 10/12/03 10/12/03 10/12/03 10/12/03 10/12/03 10/12/03 10/12/03 10/24/03 10/24/03 11/1/03 11/1/03	NI NI NI NI NI NI NI NI NI	NI NI NI NI NI NI NI	NI NI NI NI NI NI	· •• ••	 	 						
9/27/03 9/30/03 9/30/03 9/30/03 10/2/03 10/2/03 10/5/03 10/5/03 10/5/03 10/7/03 10/10/03 10/12/03 10/12/03 10/15/03 10/15/03 10/15/03 10/12/03 10/20/	NI NI NI NI NI NI NI NI	NI NI NI NI NI NI	NI NI NI NI NI		 						••	••
9/30/03 9/30/03 10/1/03 10/2/03 10/3/03 10/3/03 10/5/03 10/7/03 10/7/03 10/10/03 10/12/03 10/12/03 10/12/03 10/12/03 10/12/03 10/22/03 10/22/03 10/22/03 10/22/03 10/24/03 11/1/03 11/1/03	NI . NI NI NI NI NI NI NI	NI NI NI NI NI NI	NI NI NI NI							••		••
0/30/03 10/1/03 10/2/03 10/3/03 10/5/03 10/5/03 10/7/03 10/10/03 10/10/03 10/12/03 10/13/03 10/15/03 10/15/03 10/15/03 10/15/03 10/23/03 10/23/03 10/24/03 11/1/03 11/1/03	N) N N N N N N	NI NI NI NI NI	NI NI NI	 				••	••	••		
0/1/03 0/2/03 0/3/03 0/5/03 0/5/03 0/8/03 10/8/03 10/10/03 10/10/03 10/12/03 10/15/03 10/15/03 10/15/03 10/15/03 10/15/03 10/15/03 10/24/03 11/1/03 11/1/03	NI NI NI NI NI NI NI	Ni Ni Ni Ni	NI NI NI	••						••		
10/2/03 10/3/03 10/5/03 10/5/03 10/7/03 10/9/03 10/10/03 10/12/03 10/12/03 10/15/03 10/15/03 10/15/03 10/15/03 10/24/03 11/1/03 11/1/03	NI NI NI NI NI NI	NI NI NI	NI NI						••		'	
0/3/03 0/5/03 0/7/03 0/9/03 10/9/03 10/12/03 10/12/03 10/12/03 10/12/03 10/12/03 10/12/03 10/12/03 10/12/03 10/23/03 10/24/03 11/1/03 11/1/03	NI NI NI NI NI	NI NI NI	NI	••					·	••		
0/3/03 0/5/03 0/7/03 0/9/03 0/10/03 0/10/03 0/12/03 0/12/03 0/17/03 0/17/03 0/17/03 0/20/03 0/23/03 10/24/03 11/1/03 11/1/03	NI NI NI NI	NI NI			••			••				
0/5/03 0/7/03 0/8/03 10/9/03 10/10/03 10/12/03 10/12/03 10/13/03 10/13/03 10/15/03 10/17/03 10/19/03 10/24/03 10/24/03 11/1/03 11/1/03	NI NI NI NI	NI	NJ	••		< 578		<578	· ••			
0/7/03 10/8/03 10/9/03 10/10/03 10/12/03 10/12/03 10/15/03 10/15/03 10/15/03 10/15/03 10/20/03 10/20/03 10/20/03 10/24/03 10/24/03 11/1/03 11/1/03	NI NI NI NI	NI										
10/8/03 10/9/03 10/10/03 10/12/03 10/13/03 10/13/03 10/15/03 10/17/03 10/20/03 10/20/03 10/22/03 10/24/03 10/24/03 11/1/03 11/1/03	NI NI NI		NI	•-					<580	<580	<580	<580
10/9/03 10/10/03 10/12/03 10/12/03 10/13/03 10/15/03 10/15/03 10/19/03 10/20/03 10/20/03 10/24/03 11/1/03 11/1/03 11/1/03	NI NI NI	NI	NI		<538							
10/10/03 10/12/03 10/13/03 10/15/03 10/15/03 10/19/03 10/20/03 10/20/03 10/24/03 11/1/03 11/1/03 11/1/03	NI NI	NI	NI									
10/12/03 10/13/03 10/15/03 10/15/03 10/17/03 10/20/03 10/20/03 10/23/03 10/24/03 11/1/03 11/1/03	Ni	NI	NI									
10/13/03 10/15/03 10/17/03 10/27/03 10/29/03 10/23/03 10/24/03 11/1/03 11/7/03 11/1/03		NI	NI				••					
10/15/03 10/17/03 10/19/03 10/20/03 10/23/03 10/24/03 11/1/03 11/7/03 11/10/03 11/10/03		NI	NI		••							
10/17/03 10/19/03 10/20/03 10/23/03 10/24/03 11/1/03 11/7/03 11/10/03 11/11/03	NI	NI NI	NI									
10/19/03 10/20/03 10/23/03 10/24/03 11/1/03 11/7/03 11/7/03 11/1/03												
10/20/03 10/23/03 10/24/03 11/1/03 11/7/03 11/1/03 11/1/03	NI	NI NI	NI									••
10/23/03 10/24/03 11/1/03 11/7/03 11/10/03 11/11/03	NI		NI									
10/24/03 11/1/03 11/7/03 11/10/03 11/11/03	NI	NI	NI			- -						
11/1/03 11/7/03 11/10/03 11/11/03	NI	NI	NI	••								
1 1/7/03 1 1/10/03 1 1/1 1/03	NI	NI	NI						••		••	
1 1/10/03 1 1/1 1/03	N)	NI	NI				•-			••		
11/11/03	NI	NI	NI			••			•-		••	
	NI	NI	NI		••	•• .	••		••			
	NI	NI	NI	••			••					
11/12/03	NI	NI	NI			••	••				••	
11/13/03	NI	NI	Nì							•	••	••
11/21/03	NI	NI	NI	••	••					••		
12/1/03	NI	NI	NI			••						
12/3/03	NI	NI	NI	••						••		
12/4/03	NI	N	N		••					••	••	
12/5/03	NI	NI	NI	•-	~-	••	••		••			
12/8/03	NI	1 NI	Nł			••						
12/10/03	NI	NL	NI			••						
12/11/03	Ni	NI	NI		·		••					
12/12/03	<523	NI	NI		· '				·			
12/17/03		NI	NI								••	
12/19/03		<551	NI							·		
12/22/03			NI							••	••	
12/29/03			NI									
12/30/03			NI									
12/31/03			<593									••
1/5/04												
1/12/04												
1/20/04											••	
1/26/04							••	·			-	
1/30/04	••											
2/2/04			••			`			••			••
2/9/04	••					••		••				
2/16/04												
2/23/04	••	·	••		••							
2/24/04			••							••	**'	
2/26/04												
3/1/04 3/5/04	<496				••			-				

.

Table 3-1. Groundwater Tritium Concentrations* (September 2003 - March 2004)Tennessee Valley AuthorityWatts Bar Nuclear PlantSpring City, Tennessee

Note: all values in picocuries per liter

NI - not installed

-- - not measured

Page 4 of 4

.

ARCADIS

Date	Well AA	Well BB	Well CC	Well DD	Well EE	Well FF	Well GG	Well HH	Well II	Well JJ	Well KK	Well L
9/2/03	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	N)
0/4/03	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
0/15/03	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
8/17/03	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
8/18/03	NI	NI	NI	NI	NI	NI	NI	Ni	Ni	N	NE	NI
/24/03	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
26/03	NI	NI	NI	NI	NI	NI	NI	NI	NL	NI	NI	N
7/27/03	Nł	Nł	NI	NI	NI	NI	NI	NI	NI	Nł	NI	Ni
9/30/03	NI	NI	NI	NI	NI	NI	Ni	NI	NI	NI	NI	NI
30/03	NI	NI	NI	NI	NI	NI	N	NI	NI	NI	NI	NI
0/1/03	NI	NI	NI	NI	NI	Nİ	NI	N	NI	NI	NI	NI
0/2/03	NI	NI	NI	NI	NI	N	NI	NI	NI	NI	NI	NI
0/3/03	NI	NI	NI	NI	NI	NI	Nì	NI .	NI	NI	NI	NI
0/5/03	NI	Nł	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
0/7/03	NI	· NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
0/8/03	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	N
10/9/03	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI.
10/10/03	NI	NI	NI	NI	N	Ni	NI	NI	NI	NI	NI	N
10/12/03	NI	NI	NI	NI	Nì	NI	NI	NI	NI	NI	Ni	NI
10/13/03	NI	NL	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
0/15/03	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
10/17/03	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
0/19/03	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
0/20/03	NI	Nł	N	NI	NI	NI	NI	NI	NI	NI	NI	NI
0/23/03	NI	Nł	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
0/24/03	NI	NI	NI	NI	Ni	NI	N)	NI	NI	NI	NI	NI
1/1/03	NI	NI	NI	NI	N	NI	NI	NI	NI	NI	NI	N
1/7/03	NI	NI	NI	NI	NI	NI	NI	NI	NI	Nì	NI	NI
1/10/03	N	NI	N	NI	NI	NI	NI	NI	NI	NE	NI	NI
1/11/03	NI	NI	N	NL	NI	N	NI	NI	NI	NI	NI	NI
1/12/03	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
11/13/03	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
11/21/03	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
12/1/03	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	N)
12/3/03	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
12/4/03	N	N	N	NI	NI	NI	NI	NI	NI	NI	NI	NI
12/5/03	N	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
12/8/03	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
12/10/03	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	N	NI
12/11/03	NI	NI	NI	NI	NI	N	NI	NI	NI	N	NI	NI
	N	NI	NI	NI	NI	N	NI	NI.	NI	NI	N	NI
12/12/03 12/17/03	N	N	NI	NÌ	NE	NI	NI	NI	N	NI	NI	NI
12/19/03	Ni	NI .	NI	Ni	NI	NI	NI	NI	NI	NI	NI	NI
12/22/03	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI	NI
12/29/03	NI NI	Ni	NI	NI	NI	NI	NI	NI	N	NI	NI	N
2/29/03	NI	NI	NI	NI	NI	NI	N	NI	NI	NI	NI	NI
12/30/03	NI	NI	NI	NI	NI	NI	N	NI	N	NI	NI	NI
		NI NI			NI NI	NI	NI	N	NI	NI	NE	NI
1/5/04	N)		NI	NI NE				NI	NI		NI	NI
1/12/04 1/20/04	NI	NI MI	NE	NE	N}	NI	NI NI	NI	N	NI	NI	NI
	NI	NI AD	NI	NI	NI	NI				NI		
1/26/04	NI	NI 1.424	NI	NI	NI	NI NI	N)	NI	NI	NJ	NI	NI
1/30/04	<522	1,434	NI	NI	NI	NI	NI	NI	NI	NI	NI	Ni
2/2/04	<550	<520	4,300	NI	NI	NI	NI	NI	Ni	NI	NE	NI
2/9/04	317	1,624		6,064	NI .	N	NI	N	Ni	NI	NI	NI
2/16/04			••		NI	N	NI	N	NI	NI	NE	N
2/23/04	••				NI	NI	NI	NE	NI	NI	NI	NI
2/24/04					669	<528	10,320	5,980	NI	NI	NI	NI
2/26/04		••		••	••				<533	901	26,800	661
3/1/04	<531	2,120	Dry	Dry	<530	<530	11,400	4,260	<534	<537	20,000	<536

Table 3-1. Groundwater Tritium Concentrations* (September 2003 - March 2004)Tennessee Valley AuthorityWatts Bar Nuclear PlantSpring City, Tennessee

Note: all values in picocuries per liter

NI - not installed

-- - not measured

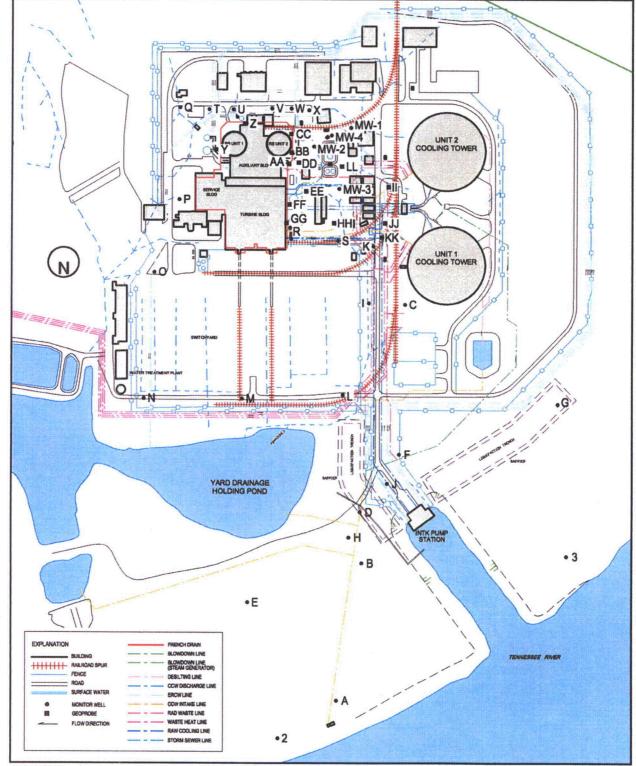
Table 5-1. Water-Only Biota Concentration Guide for Tritium

Tennessee Valley Authority Watts Bar Nuclear Plant Spring City, Tennessee

Receptor Category	Example Receptors	BCG (pCi/L)
Terrestrial Animals	Mouse	270,000,000
Riparian Animals	Raccoon	300,000,000
Aquatic Animals	Fish	6,000,000,000
Terrestrial Plants	Trees	9,000,000,000

Source[®] U.S. Department of Energy 2002 BCG - Biota Concentration Guides pCi/L - picocuries per liter

Figure 1-1 Regional Location Map TVA, Watts Bar Nuclear Plant, Spring City, Tennessee

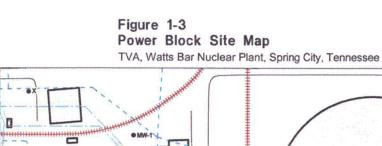

TN000607.0001 / GW INV

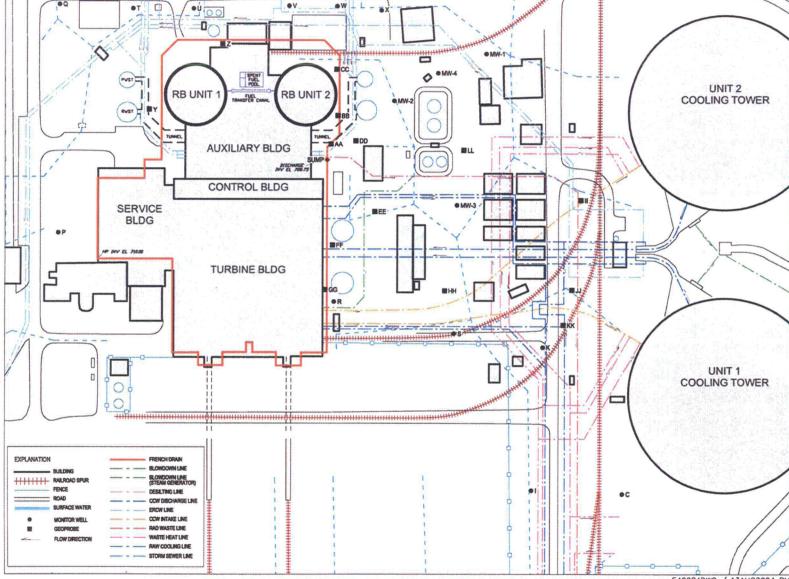
E40085.DWG / 17JUN2004 BA

500 FT

TN000607.0001 / GW INV

E40026.DWG / 17JUN2004 BA


00


200ft

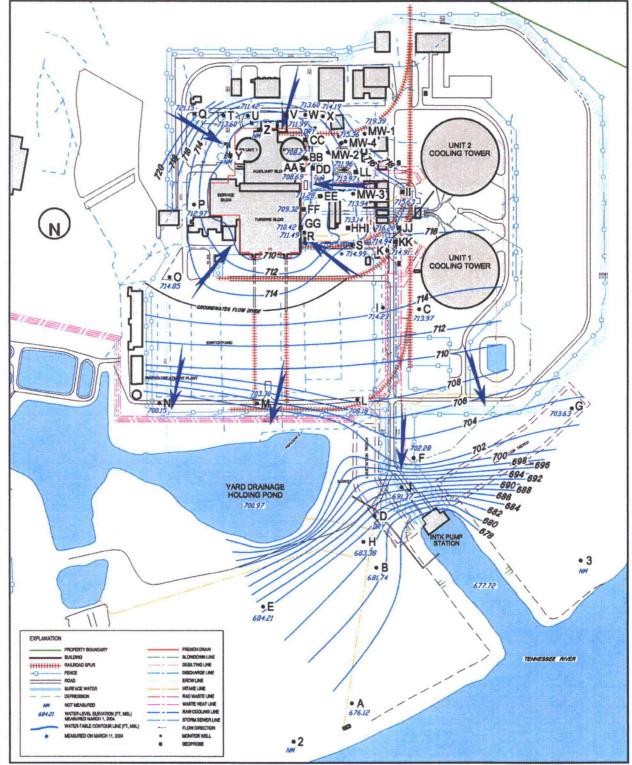
11

.V.

...W

TN000607.0001 / GW INV

E40084DWG / 13AUG2004 BH


TN000607 0001 / GW INV

E40027 CDR / 16JUN2004 Ba

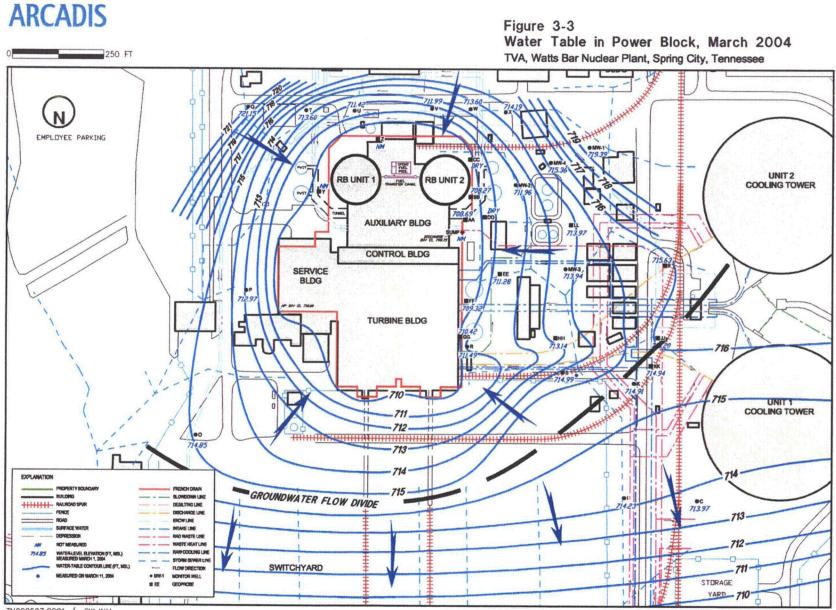
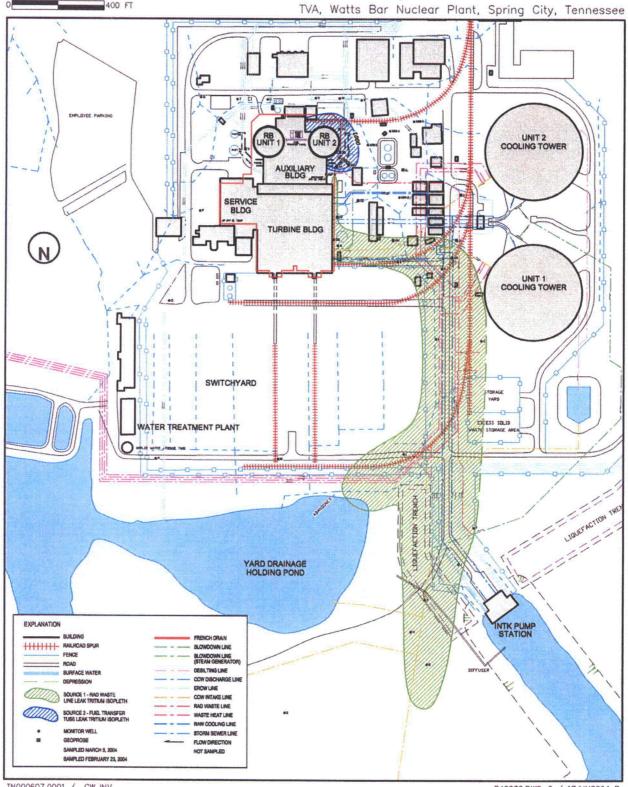

500 FT

Figure 3-2 Water Table, March 2004 TVA, Watts Bar Nuclear Plant, Spring City, Tennessee

TN000607.0001 / GW INV

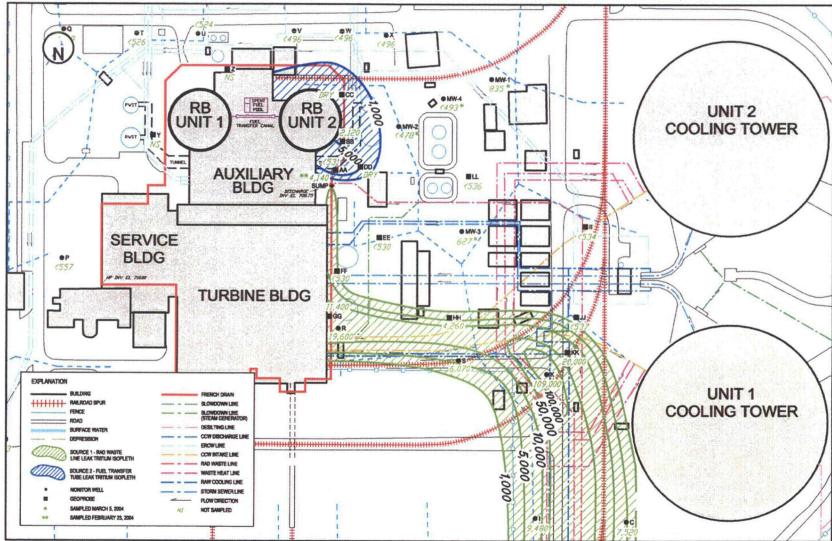
E40028.DWG / 17JUN2004 BA


TN000607.0001 / GW INV

E40029.DWG / 17JUN2004 BA

400 FT

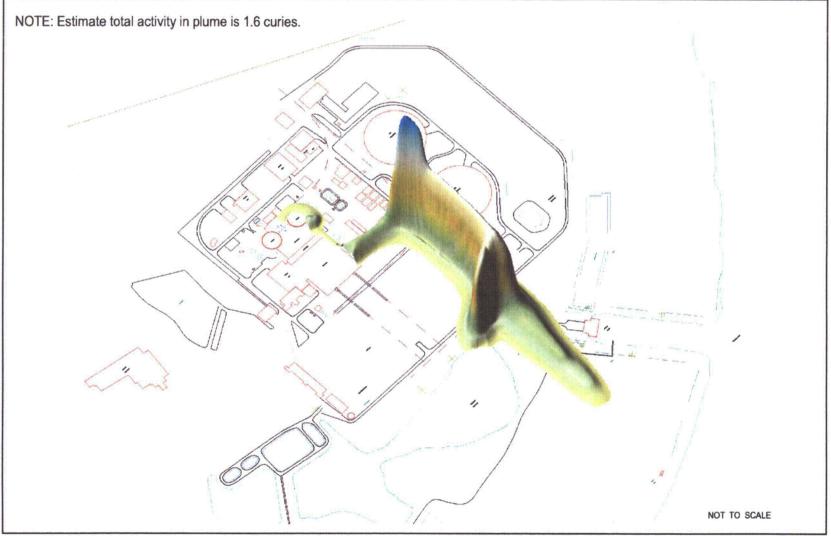
Figure 3-4 **Distribution of Tritium Concentrations** in Groundwater, March 2004



TN000607.0001 / GW INV

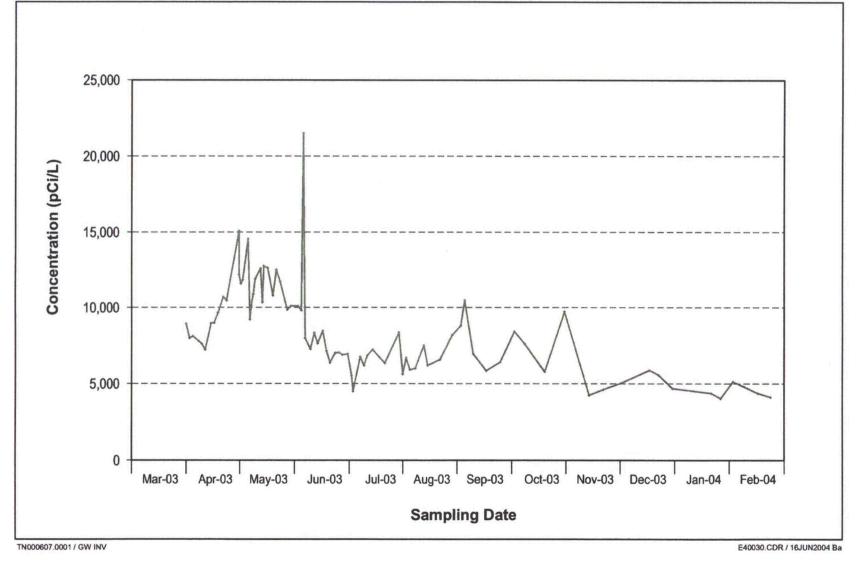
E40032.DWG-2 / 17JUN2004 Ba

200 FT


Figure 3-5 Distribution of Tritium Concentrations in Groundwater at Power Block, March 2004 TVA, Watts Bar Nuclear Plant, Spring City, Tennessee

TN000607.0001 / GW INV

E40033.DWG / 17JUN2004 Ba


Figure 3-6 Three-Dimensional Representation of Tritium Plume TVA, Watts Bar Nuclear Plant, Spring City, Tennessee

TN000607.0001 / GW INV

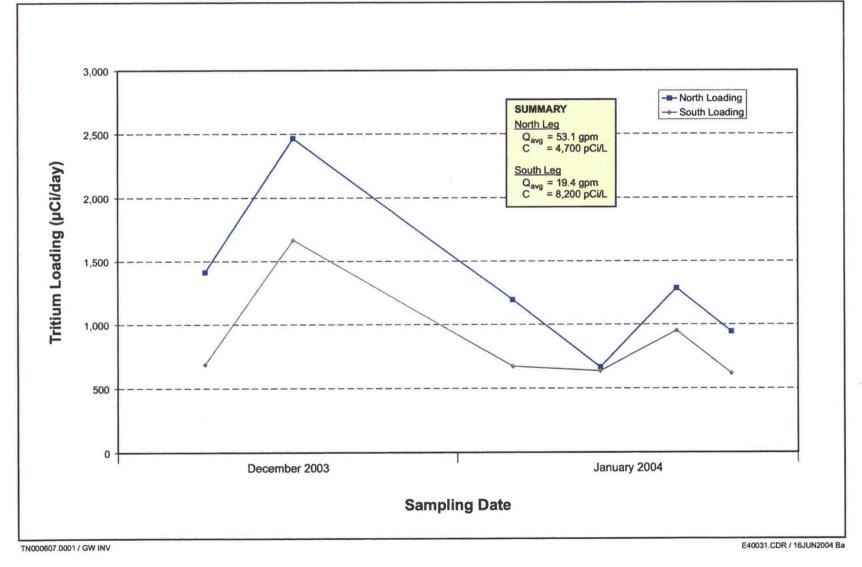

E40034.CDR / 16JUN2004 Ba

Figure 3-7 Tritium Concentrations in Sump Groundwater TVA, Watts Bar Nuclear Plant, Spring City, Tennessee

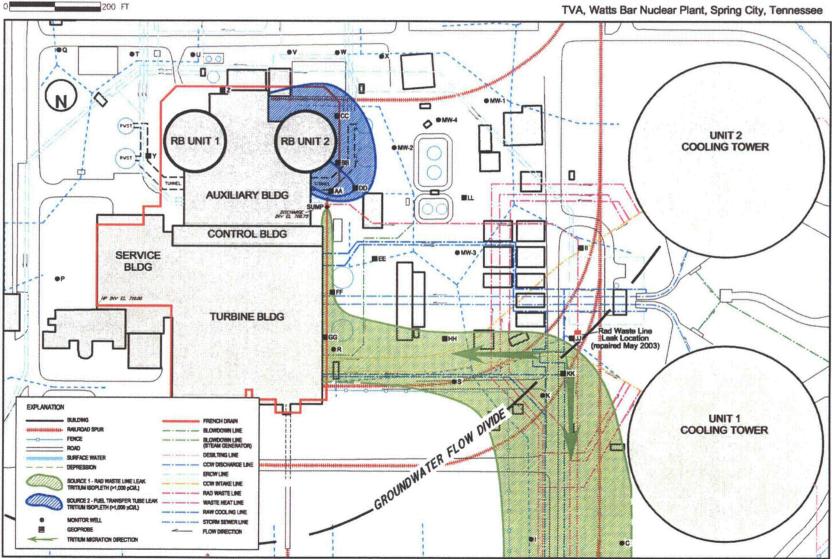
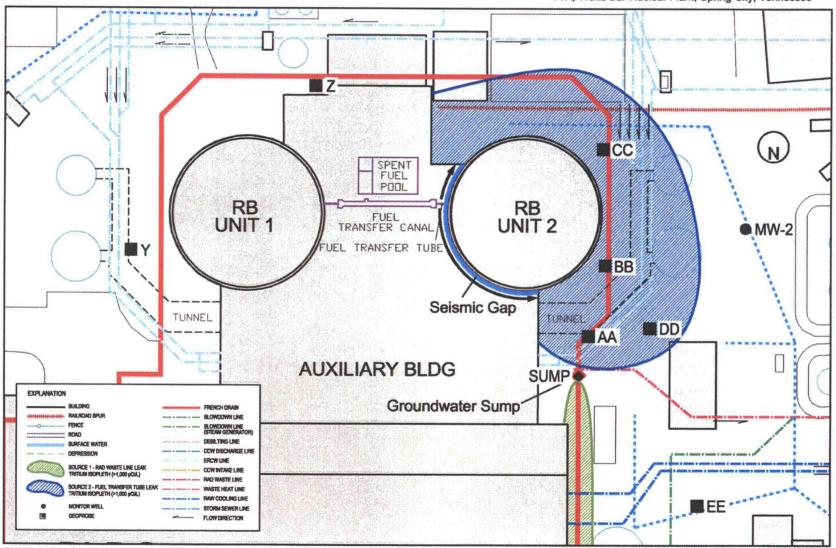

•

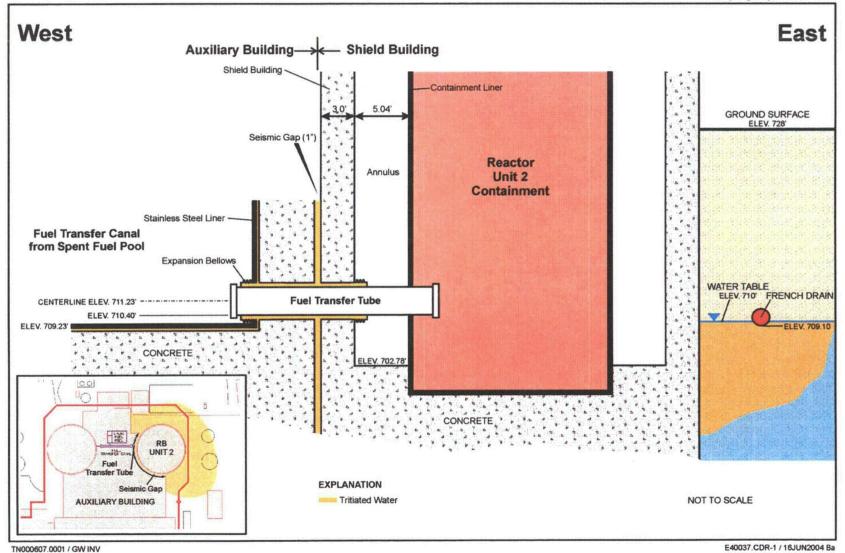
Figure 3-8 Tritium Loading in Sump Groundwater TVA, Watts Bar Nuclear Plant, Spring City, Tennessee


TN000607.0001 / GW INV

E40035.DWG / 17JUUN2004 Ba

80 FT

Figure 4-2 Source #2 - Unit 2 Fuel Transfer Tube Sleeve TVA, Watts Bar Nuclear Plant, Spring City, Tennessee



TN000607.0001 / GW INV

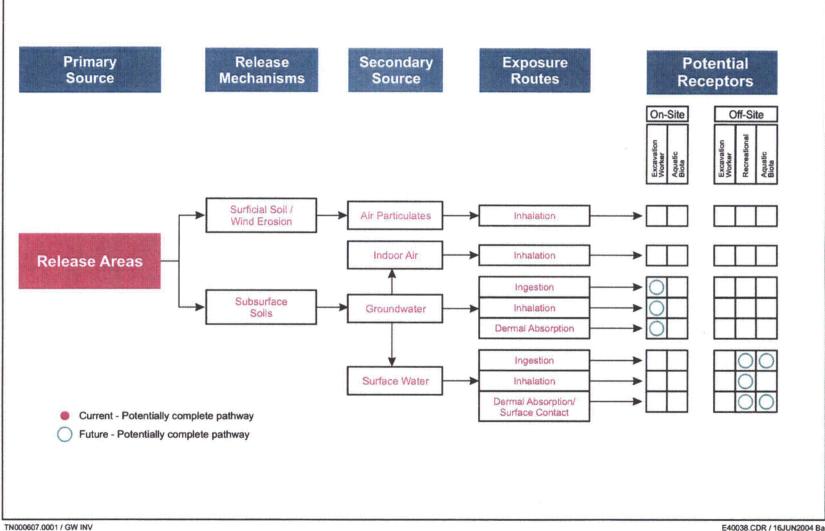

E40036.DWG / 17JUN2004 Ba

Exhibit 4-3 Source #2 - Schematic Cross-Section TVA, Watts Bar Nuclear Plant, Spring City, Tennessee

Figure 5-1 Site Conceptual Exposure Model TVA, Watts Bar Nuclear Plant, Spring City, Tennessee

E40038.CDR / 16JUN2004 Ba

.

· · ·

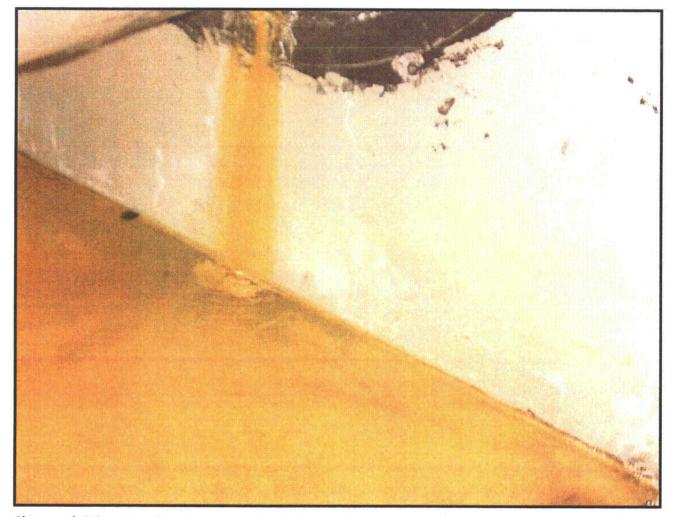
.

R04078.doc - TVA - TN000607.0001

Appendix A

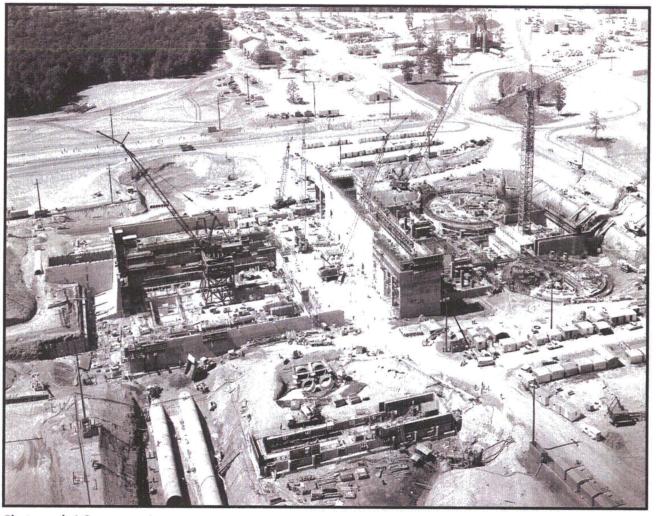
Site Photographs

.


.

.

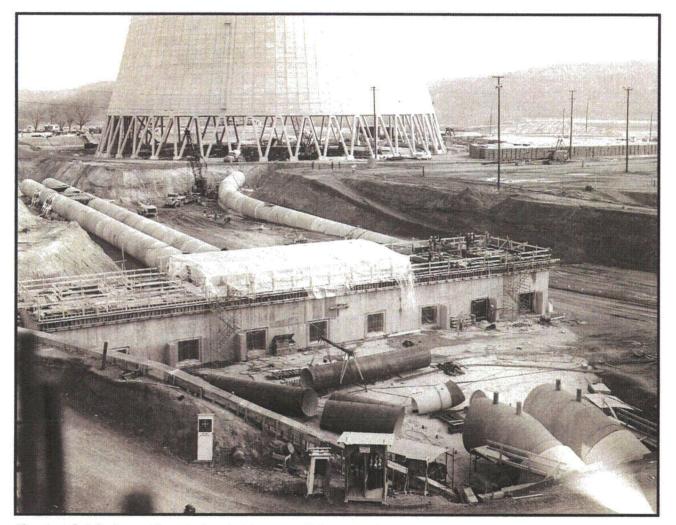
1 · · ·



Appendix A - Site Photographs TVA, Watts Bar Nuclear Plant, Spring City, Tennessee

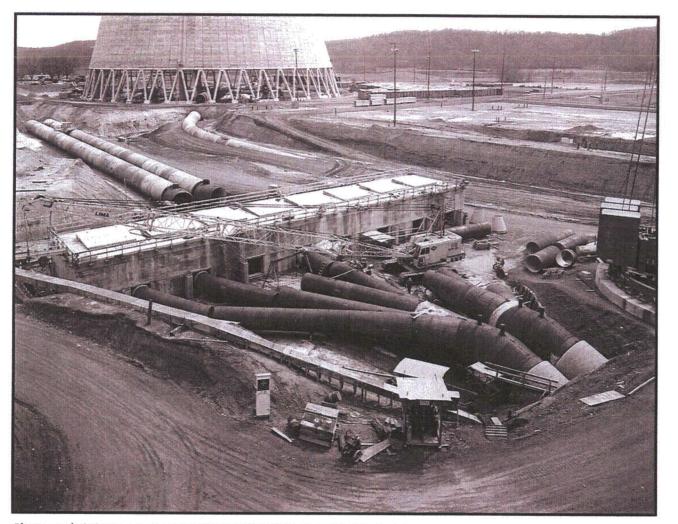
Photograph A-1. Fuel Transfer Tube Sleeve Leak in Unit 2 Reactor Building Photographed May 30, 2003.

Appendix A - Site Photographs TVA, Watts Bar Nuclear Plant, Spring City, Tennessee



Photograph A-2. View west from Unit 1 Cooling Tower of site construction. *Photographed April 1975.* Note condenser cooling water effluent lines, oriented east/west, emanating from south end of turbine building.

Appendix A - Site Photographs TVA, Watts Bar Nuclear Plant,


Spring City, Tennessee

Photograph A-3. View east from Auxiliary Building toward Unit 1 Cooling Tower of the Condenser Cooling Water Intake and Discharge Pipe construction. Photographed May 1975

Appendix A - Site Photographs TVA, Watts Bar Nuclear Plant, Spring City, Tennessee

Photograph A-4. View east from Auxiliary Building toward Unit 1 Cooling Tower of the Condenser Cooling Water Intake and Discharge Pipe construction. Photographed June 1975

AR

ARCADIS

.

• •

Appendix B

Historical Tritium Data

.

R04078.doc - TVA - TN000607.0001

ARCADIS

Date	Well A	Well B	Well C	Well D	Well #6	MW 1	MW 2	MW 3	MW 4
<u></u>	·····			· · · · · · · · · · · · · · · · · · ·					
8/20/02	NI	NI	NI	NI					
11/12/02	NI	NI	NI	NI					
12/10/02	NI	NI	NI	NI					
1/7/03		12,453	4,339	4,409					
1/27/03		13,356	7,356	NA					
2/25/03		14,730	8,465	13,992					
3/1/03				••		<584	<570	<575	<581
3/4/03		14,100	3,245	16,010	`				
3/5/03		15,100	2,760	17,700				·	
3/6/03		15,400	. 3,239	17,880					
3/7/03		13,500	2,405	19,230		<577	<585	<587	<585
3/8/03		12,390	3,894	19,070					
3/9/03		12,300	3,617	20,760	·				
3/10/03		12,170	4,337	20,210					
3/11/03		12,800	4,130	21,500					
3/12/03		8,336	5,662	18,760					~•
3/13/03	<556	8,540	3,980	17,300	<562				
3/14/03		8,910	4,600	15,900					
3/15/03		9,075	4,826	15,810					
3/16/03		9,374	3,931	14,240					
3/17/03		12,740	5,375	18,220		<585	<585	<585	<584
3/18/03		13,100	5,256	20,500					
3/19/03		14,290	NA	20,090					
3/20/03		14,700	6,650	21,100					
3/21/03		13,300	6,048	19,270					
3/22/03		15,350	6,323	18,600					
3/23/03		13,770	7,043	15,970					
3/25/03		14,230	7,280						
3/26/03		14,750							
3/28/03		14,750	·						
		14,160							
3/31/03									
4/2/03		17,390			**	·			
4/3/03		15,480				~-	••		
4/4/03		14,260							
4/7/03		14,050							
4/7/03			13,330	••					
4/8/03		~~	13,730						**
4/9/03		13960	13,060		••				
4/11/03			11,900	**					
4/14/03		17,420		••					••
4/16/03		16,600	6,560	••			••		••
4/18/03		18,500	7,402						
4/21/03	•-	19,100	6, 9 20	••					
4/23/03		18,500	7,940	3,950			••	••	
4/25/03		18,700	9,230						
4/28/03	· <580	18,050	9,124	4,990					
4/30/03		19,770	9,251	5,119					

Table B-1. Groundwater Tritium Concentrations (August 2002 - August 2003)Tennessee Valley AuthorityWatts Bar Nuclear PlantSpring City, Tennessee

Note: All values in picocuries per liter.

NI - not installed

-- - not measured

T40111 - 15JUN04 bf

ARCADIS

Date	Well A	Well B	Well C	Well D	Well #6	MW 1	MW 2	MW 3	мŴ4
5/2/03	•••	17,500	10,800	4,740					
5/5/03		18,550	9,998	3,493					
5/6/03		20,170	12,020	3,514		•••			
5/7/03		18,240	8,981	3,540					
5/8/03		19,310	7,557	3,316	~			~~	
5/9/03		18,370	6,965	2,268					
5/12/03		18,350	4,478	2,405					
5/13/03	<580	18,380	4,183	2,758					
5/14/03		NA	5,190						
5/15/03		16,970	NA	2,371					
5/16/03		17,320	4,461	2,083		· 			
5/19/03		16,700	6,170	3,180					
5/21/03		14,400	6,120	3,130					
5/23/03		13,800	5,550	3,060					
5/27/03		13,700	5,475	2,159					
5/28/03		13,100		2,430					
5/28/03		13,100		2,250				~*	
5/28/03		13,550		2,132					
5/29/03		12,180	5,747	2,039				••	
5/29/03		11,900		1,790			~~		
5/29/03	~~	12,000		3,140					
5/29/03		13,690		2,526					
5/29/03		15,150		2,450					
5/30/03		13,500	••	2,420					
6/2/03		12,200	7,840	3,440					
6/3/03		•	8,160						
6/4/03		12,200	9,150	3,030					
6/5/03		10,700	10,250	3,289					
6/5/03		10,700	9,710	3,400					
6/6/03		10,330	9,720	3,291	·				
6/6/03		9,720	10,600	2,540					
6/9/03		11,980	10,110	2,207					
6/11/03		13,980	12,800	3,575					
6/13/03		14,150	12,980	3,799					
6/16/03		13,170	12,820	3,092					
6/17/03		14,440	15,820						
6/18/03		14,900	14,600				••		
6/18/03		15,400	15,100						
6/19/03		18,530	14,080	3,230					
6/20/03	<515	17,420	13,200	2,768					
6/23/03		15,400	7,360	3,360					
6/25/03		18,130	7,464	3,578					
6/26/03		14,800	7,710			 .			
6/27/03		12,780	7,927	4,050					
6/30/03			8,417	5,560					

Table B-1. Groundwater Tritium Concentrations (August 2002 - August 2003)Tennessee Valley AuthorityWatts Bar Nuclear PlantSpring City, Tennessee

Note: All values in picocuries per liter.

NI - not installed

-- - not measured

. ,

.

Page 3 of 3

ARCADIS

Date	Well A	Well B	Well C	Well D	Well #6	MW 1	MW 2	MW 3	MW 4
7/2/03		~-	8,251	5,512					
7/7/03		15,620	5,010	5,799					
7/9/03		15,600	5,800	4,920			·		
7/10/03		16,200	7,200	5,830					
7/10/03		16,600	5,350	5,230					
7/11/03		16,100	6,128	4,892					
7/11/03		16,100	6,220	5,210					
7/12/03		17,300	6,180	6,060					
7/13/03		15,140	5,475	5,846				~-	
7/14/03		17,200	6,760	5,630					
7/21/03		11,500	7,710	5,590					
7/24/03									
7/25/03		14,000	10,100	5,200					
7/29/03		15,510	12,530	7,310					
7/31/03		15,200	12,800	3,280					
8/2/03		**			~~				
8/3/03									
8/5/03		15,200	15,100	4,060					
8/7/03		12,900	16,600	4,330					
8/12/03		10,400	18,100	4,810					
8/14/03		11,200	17,400	3,460		••			
8/21/03		12,020	20,480						
8/22/03							••		
8/25/03									
8/26/03									
8/28/03		10,200	20,300						

Table B-1. Groundwater Tritium Concentrations (August 2002 - August 2003)Tennessee Valley AuthorityWatts Bar Nuclear PlantSpring City, Tennessee

Note: All values in picocuries per liter.

NI - not installed

-- - not measured

ARCADIS

nnessee Valley Authority	Watts Bar Nuclear Plant	Spring City, Tennessee
Date		Concentration
3/31/03		8,943
4/2/03		8,002
4/4/03		8,135
4/7/03		7,808
4/9/03		7,606
4/11/03		7,255
4/14/03		8,978
4/16/03		9,012
4/18/03		9,673
4/21/03		10,700
4/23/03		10,500
4/30/03		15,070
4/30/03		12,200
5/1/03		11,600
5/2/03		11,850
5/5/03		14,540
5/6/03		9,213
5/7/03		10,140
5/8/03		10,880
5/9/03		11,910
5/12/03		12,600
5/13/03		10,360
5/14/03		12,750
5/16/03		12,630
5/19/03		10,800
5/21/03		12,500
5/23/03		11,700
5/27/03		9,864
5/29/03		10,100
6/2/03		10,100
6/4/03		9,825
6/5/03		21,510
6/6/03		7,990
6/9/03		7,284
6/11/03		8,351
6/13/03		7,666
6/16/03		8,473
6/18/03		7,140
6/20/03		6,399
6/23/03		7,010
6/25/03		7,040
6/27/03		6,909
6/30/03		6,965

Table B-2. Groundwater Sump Tritium Concentrations

Note: All values in picocuries per liter.

Page 2 of 2

ARCADIS

nessee Valley Authority	Watts Bar Nuclear Plant	Spring City, Tennessee
Date		Concentration
7/2/03		5,552
7/3/03		4,496
7/7/03		6,757
7/9/03		6,200
7/11/03		6,866
7/14/03		7,240
7/21/03		6,360
7/29/03		8,370
7/31/03		5,630
8/2/03		6,700
8/4/03		5,930
8/7/03		6,010
8/12/03		7,530
8/14/03		6,190
8/21/03		6,589
8/28/03		8,200
9/2/03		8,820
9/4/03		10,500
9/9/03		6,950
9/16/03		5,870
9/24/03		6,430
10/2/03		8,453
10/8/03		7,619
10/19/03		5,803
10/30/03	·	9,734
11/13/03		4,256
11/21/03		4,640
12/1/03		5,040
12/17/03		5,881
12/22/03		5,560
12/30/03		4,680
1/21/04		4,390
1/26/04		4,020
2/2/04		5,120
2/9/04		
2/16/04		4,378
2/23/04		4,140

Table B-2. Groundwater Sump Tritium Concentrations

Note: All values in picocuries per liter.

ARCADIS

Table B-3. Manhole Tritium Concentrations

Tennessee Vall	ley Authority	Watts E	Bar Nuclear P	lant Sp	ring City, Ter	nessee				
Date	MH #1	MH #6B	MH #7B	MH #18	MH #20	MH #21	MH #24	MH #25	MH #26	MH #27
6/25/03					*					<562
8/2/03	~~			·	<575	<575	<575		 ·	
8/3/03	<527	<527	<527	<527				<527	<527	
11/10/03	1,430	882	882	882	 ·	~-				ar 100
11/11/03	· •••	1,580	22,300	20 10	~~	~~				** *
11/12/03		. ·				~~			<560	**

Note: All values in picocuries per liter.

-- - not measured

T40113 - 15JUN04 bf

ARCADIS

Tennessee Valle	ey Authority	Watts Bar Nuclear Plant	Spring City, Ten	nessee
Date	CB #2	CB #30	CB #50	CB #52
7/24/03				1,404
8/21/03		<590	26,100	
8/22/03			9,910	
8/22/03			16,710	
8/25/03			14,600	·
8/26/03			13,000	
9/2/03	<590		16,400	
9/4/03			8,070	
9/18/03			Dry	
9/24/03			Dry	
9/25/03		3,973	. 	
11/7/03		562.8	686	
12/10/03		820	765	

Table B-4. Catch Basin Tritium Concentrations

Note: All values in picocuries per liter.

-- - not measured

THIS PAGE IS AN OVERSIZED DRAWING OR FIGURE, THAT CAN BE VIEWED AT THE RECORD TITLED: ATTACHMENT: A "Site Map"

WITHIN THIS PACKAGE...OR BY SEARCHING USING THE

THIS PAGE IS AN OVERSIZED DRAWING OR FIGURE, THAT CAN BE VIEWED AT THE RECORD TITLED: PLATE: B "Power Block Site Map"

WITHIN THIS PACKAGE...OR BY SEARCHING USING THE

THIS PAGE IS AN OVERSIZED DRAWING OR FIGURE, THAT CAN BE VIEWED AT THE RECORD TITLED: ATTACHMENT: C "Bedrock Contours"

WITHIN THIS PACKAGE...OR BY SEARCHING USING THE

THAT CAN BE VIEWED AT THE RECORD TITLED: ATTACHMENT: D "Hydrogelogic Cross-Section A-A."

WITHIN THIS PACKAGE...OR BY SEARCHING USING THE

THAT CAN BE VIEWED AT THE RECORD TITLED: ATTACHMENT: B-B "Hydrogelogic Cross-Section B-B"

WITHIN THIS PACKAGE...OR BY SEARCHING USING THE

THIS PAGE IS AN OVERSIZED DRAWING OR FIGURE, THAT CAN BE VIEWED AT THE RECORD TITLED: ATTACHMENT: F "Hydrogeologic Cross-Section C-C"

WITHIN THIS PACKAGE...OR BY SEARCHING USING THE

D-06

THIS PAGE IS AN OVERSIZED DRAWING OR FIGURE, THAT CAN BE VIEWED AT THE RECORD TITLED: ATTACHMENT: G "Hydrogeologic Cross-Section D-D"

WITHIN THIS PACKAGE...OR BY SEARCHING USING THE

THIS PAGE IS AN OVERSIZED DRAWING OR FIGURE, THAT CAN BE VIEWED AT THE RECORD TITLED: ATTACHMENT: H "Water Table, March 2004"

WITHIN THIS PACKAGE...OR BY SEARCHING USING THE

THAT CAN BE VIEWED AT THE RECORD TITLED: ATTACHMENT: I "Water Table at Power Block, March 2004"

WITHIN THIS PACKAGE...OR BY SEARCHING USING THE

D-09

THAT CAN BE VIEWED AT THE RECORD TITLED: ATTACHMENT: J "Distribution of Tritium Concentrations in Groundwater, March 2004"

WITHIN THIS PACKAGE...OR BY SEARCHING USING THE

THAT CAN BE VIEWED AT THE RECORD TITLED: ATTACHMENT: K "Distribution of Tritium Concentrations in Groundwater At Power Block, March 2004"

WITHIN THIS PACKAGE...OR BY SEARCHING USING THE

Attachment 2

Table G-5

Federal, State, and Local Authorizations

Agency	Authority	Phase/Requirement/Status	Activity Covered
U.S. Nuclear Regulatory Commission (NRC)	10 CFR Part 50	Preconstruction. Construction Permit CPPR-92 EXP: 31DEC2013	Permit for construction of a utilization facility.
NRC	10 CFR Part 50	OL Submittal. Updated license application filed 04MAR2009	Operation of a utilization facility for commercial purposes
U.S. Fish and Wildlife Service (FWS)	16 U.S.C. §§ 1531 <i>et seq.</i>	FSEIS. Concurrence. 1995 consultation with FWS, cited in FSEIS Appendix D, applied to WBN1 and WBN2. 2007 FSEIS also found no impacts.	Consultation concerning potential impacts to Federal threatened & endangered (T&E) species.
U.S. Department of the Interior (DOI)	42 U.S.C. § 1996; 25 U.S.C. § 3001 <i>et</i> <i>seq.</i>	FSEIS. Consultation. Consultation not required as FSEIS did not identify any items of cultural significance to Native American tribes.	Identification, protection, and repatriation of items of cultural significance to Native American tribes.
Federal Aviation Administration (FAA)	14 CFR Part 77	Preconstruction. Notification not required as no activities affect structures over 200ft.	Preconstruction letter of notification to FAA results in a written response certifying that no hazards exist or recommending project modification.
U.S Coast Guard	14 U.S.C. §§ 81, 83, 85, 633; 49 U.S.C. § 1655(b).	Preconstruction. Authorization not required as no activities affect navigation.	Navigation markers authorization to protect river navigation from hazards connected with temporary construction activities in a river.
Tennessee Department of Environment and Conservation (TDEC)	Water Quality Control Act, TCA §§ 69-3-101 <i>et seq.</i>	Preoperation. Certification. TVA will seek any required certification from TDEC prior to issuance of the OL.	Aquatic resource alteration permit (ARAP) for any alteration of the properties of state waters. This permit also serves as a section 401 water quality certification, which is required prior to seeking a Federal permit or license, including an operating license from the NRC:

Agency	Authority	Phase/Requirement/Status	Activity Covered
U.S. Army Corps of Engineers (USACE)	33 U.S.C. § 1344; 33 U.S.C. §§ 1341	Preconstruction. Permit. USACE stated, as listed in FSEIS Appendix D, that Section 404 permit not required as no work requires discharge of dredged or fill material.	Section 404 permit required for discharge of dredged and fill material. A section 401 certification that the action does not violate state water quality standards is required prior to obtaining a section 404 permit.
TDEC Air Division	Tennessee Air Quality Act, TCA §§ 68-201-101 <i>et seq.</i> 42 U.S.C. §§ 7401 <i>et seq.</i>	Preconstruction. Construction permit. Permit 957606P held by TVA. EXP: 01JAN2007 Renewal pending. Requested update and consolidation with operating permit 448529 on 23JAN2007.	Construction permit for prevention of significant deterioration of air quality required to construct an air contaminant source.
TDEC Air Division	TCA §§ 68-201-101 42 U.S.C. §§ 7401 <i>et seq.</i>	Preoperation. Operating permit. Permit 448529 held by TVA. EXP: 01SEP2010.	This permit covers emissions from the Watts Bar site for both Unit 1 and Unit 2 equipment. TVA - WBN opted out of major source - Not a Title V Permit.
TDEC Water Division	42 U.S.C. § 1342; TCA §§ 69-3-101 et seq.	Continuing permit requirement. NPDES Permit TN0020168 held by TVA. EXP: 04NOV2006 Permit administratively continued. Renewal filed 03MAY2006.	Facility permit for point source discharges of wastewater to surface waters and in-stream monitoring Unit 1 only - Permit modification request to include Unit 2 will be filed in June 2010.

Agency	Authority	Phase/Requirement/Status	Activity Covered
TDEC Water Division	33 U.S.C. §1342; TCA §§ 69-3-101 et seq.	Continuing permit requirement. Industrial Storm water Multi-Sector General Permit TNR050000 held by TVA. EXP: 14MAY2014	Permit for discharge of storm water associated with land disturbance and industrial activity.
TDEC Water Division	33 U.S.C. §1342; TCA §§ 69-3-101 <i>et</i> <i>seq.</i>	Preconstruction. Permit. Not required, as no construction activities planned that would result in storm water discharge.	Permit for discharge of storm water associated with construction involving clearing, grading or excavation that result in an area of disturbance of one or more acres, and activities that result in the disturbance of less than one acre if it is part of a larger common plan of development
TDEC Division of Solid and Hazardous Waste Management (SHW)	Tennessee Solid Waste Disposal Act, TCA §§ 68- 211-101 <i>et seq.</i>	Preoperation. Permit. Permit number DML72-103-0025 held by TVA. EXP: N/A	Site Permit for operation of a Class IV disposal facility (onsite construction & demolition landfill)
		EPA Facility ID TN2640030035	
TDEC Division of SHW	TCA §§ 68-212	Construction Demolition Landfill Permit Number DML 721030025 EXP: N/A	Transportation of waste
	· · · · · ·		
Alabama Department of Environmental Management	ADEM Admin. Code R. 335-14	Ongoing. Permit. Operation Permit AL2-640-090-005 held by TVA.	Storage of hazardous waste at the hazardous waste storage facility in Muscle Shoals, AL.
(ADEM)		EXP: 06MAY2011	· · · · · · · · · · · · · · · · · · ·

Agency	Authority	Phase/Requirement/Status	Activity Covered
TDEC Division UST or Solid and Hazardous Waste	TCA §§ 68-212	Preconstruction/operation. Permit. Not required as no underground storage tanks as defined by TDEC.	Installation/operation of underground storage tanks that store regulated substances.
Tennessee Historical Commission (THC) (State Historic Preservation Officer)	16 U.S.C. §§ 470 <i>et seq.</i> 36 CFR Part 800	Preoperation. Consultation. Consultation with THC completed and documented in FSEIS Appendix D.	Review and analysis of cultural and historic resources, including completion of NHPA Section 106 consultation.
Tennessee Public Service Commission		Operation. Certification not required.	Certificate of public convenience and necessity.
TVA	Executive Order 11514 (Protection and Enhancement of Environmental Quality) 40 CFR Parts 1500- 1508	FSEIS. Completed.	Protect and enhance the quality of the environment; develop procedures to ensure the fullest practicable provision of timely public information and understanding of Federal plans and programs that may have potential environmental impacts that the views of interested parties can be obtained.
TVA	Executive Order 11988 (Floodplain Management) TVA Procedure for Compliance With NEPA, Section 5.7	FSEIS. Completed.	Floodplain impacts to be avoided to the extent practicable.
TVA	Executive Order 11990 (Protection of Wetlands) TVA Procedure for Compliance With NEPA, Section 5.7	FSEIS. Completed.	Requires federal agencies to avoid any short- and long-term adverse impacts on wetlands wherever there is a practicable alternative.

Attachment 3

TVA Nuclear Power Group Calculation

WBNTSR-008 R11

Control Room Operator and Offsite Doses Due to a Steam Generator Tube Rupture

NPG CALCULATION COVERSHEET/CCRIS UPDATE

												Page	1	
REV 0 ED			-				1	EDMS	TYPE:	EDMS ACC	SSION NO (N/A for R	EV. (<u>0)</u>
826 8904	10 (001.						calculation	ns(nuclear)	T	931(02	1	9003
Caic Title: Control I	Roo	om Ope	rator	and	Offsite	Dot	es Du	to a Ste	am Gene	erator Tube	Rupture			
CALC ID		TYPE	OR	<u>ð</u>	PLANT	BF	ANCH	NUMBER C			CUR REV			
CURREN	T	CN	NUC	;	WBN		NTB	WBNTS	R-008		10	11		REVISION APPLICABILITY
NEW		CN	NUC	>										Entire calc 🖾 Selected pages 🗌
ACTION	ne Re	W VISION			elete Ename	8	SUPEI DUPLI			S UPDATE ON er Approval Si red)			(Fo bee	CCRIS Changes r caic revision, CCRIS en reviewed and no RIS changes required)
UNITS			EMS											
DCN.EDC.		1. 194				DE	SIGN DO							CLASSIFICATION E
		RE												SAR/TS and/or ISFSI
		<u>ן</u> נ	QR = y	1 8 5)	_ <u>7</u>			0000						
PREPARE	R ID	F	PREPAR	RER	PHONE N	0	PREPA	RING ORG	(BRANCH)	VERIFICAT	ION METHO			
			-	-381	0		Wor	eyParsons.			iew		Yes	No
PREPARE		GNATUR	E					ATE	CHECKER	SIGNATURE			Ť	DATE
PREPAREI Marc C. Be	ng	GNATUR	E			[,	[]-1	ATE 410	CHECKER Heather M	SIGNATURE 1. Lucek Hea	the u 1	(I)cek	Ť	DATE 1.14.10
1/2 NA DCN_EDC.N/A EDCR 54956 APPLICABLE DESIGN DOCUMENT(S) NA CLASSIFICATION E QUALITY RELATED? Yes ☑ No □ SAFETY RELATED? (If yes, QR = yes) Yes ☑ No ☑ UNVERIFIED ASSUMPTION Yes ☑ No ☑ SPECIAL REQUIREMENTS AND/OR LIMITING CONDITIONS? Yes ☑ No ☑ DESIGN OUTPUT ATTACHMENT? Yes ☑ No ☑ SAR/TS and/or ISFS SAR/CoC AFFECTE Yes ☑ No ☑ PREPARER ID MCBERG PREPARER PHONE NO 603-626-3810 PREPARING ORG (BRANCH) WorleyParsons/Polestar VERIFICATION METHOD Design Review NEW METHOD OF ANALYSIS I Yes ☑ No PREPARER SIGNATURE DATE CHECKER SIGNATURE DATE									DATE 1 · 1 4 · 10 DATE					
PREPARE Marc C. Be VERIFIER : Heather M STATEMEN This an (primary an proexisting I-131 equiv WBNNAL conservatiss is based on The rela- is taken fro code. The a examined v total closur The off rem gamma of the 10Cl	rg SIGN Luc NTO nalys nd se i odif ralen 3-00 m, n a pr case of m T1 activi vhich e tim fsite a, 300 FR10 mtrol	GNATURE WATURE wet 4200 WATURE wet 4200 WATURE wet 4200 WE PROB is determ condary me spike t with an 3 and are to credit i e-accident d activities are to a credit i e-accident d activities are to a conside and of 20.6 doses (gr 0 rem bet 00 limits l room do	E LEWAE nimes the side) are of a fac- accider e set at 0 is taken nt steady cs are us 28. The used as is ared the 5 second amma, b ta, and 3 (10% of pses due	· / · / · · / · · · · · · · · · · · · · · · · · · ·	ACT http://www. ACT http://www. mwesting of 21 μCi/g itiated iodi Ci/gm. Cru 'scrubbing te reactor of as input to trol room i t to the con ct of slow of thyroid an rem thyroid 10CFR10 a SGTR do	oper- houss m I-1 ne sp adit is of i coola comp ntake nput closu d TE i per 0 lim not o	ator and e. The a 131 equivilate of 50 s taken fr odine in nt leakage suter cod vent X/ ar FENC re times DE) due NUREG its of 25 exceed th	ATE ATE ATE 4 -16 offisite doso ctivities of ralent (maxion 0 times the r partial flictures the r partial flictures the r partial flictures the constant of the steam b e of 11 gpr c COROD Q values ar DOSE which of 0-FCV-2 to a SGTR -0800). The rem gamma e 10CFR50	CHECKER Heather M APPROVA JST due to a St the primary imum 48 ho e release ratu ashing of the ubbles as the n (10 gpm k which deter e taken from ch determine 11-3, -4 (14 with a prece e SGTR with a, 300 rem b	eam Generator coolant are be our). Also anal e from the fuel e reactor coola the bubbles rise mown + 1 gpm mines the com m WBNAPS3- es the offsite d seconds) and the existing iodine th accident init tota, and 300 m	Tube Ruptur sed on techni yzed are react. The second int as it enters through the v i unknown). Tol room oper 104 and were ose. The cont the radiation r spike does no iated iodine sp em thyroid pe	e accider cal speci for coolar ary side a the stear water. Th rator dose determin rol room nonitor r t exceed pike does r NURE	nt. Trificati nt activi n ger e pro e. Th ned us oper espon the 1 s not G-08	DATE $1 \cdot 14 \cdot 10$ DATE $0 \cdot 19 \cdot 10$ The steam releases ion limits with a tivities 0.265 μ Ci/gm tites come from nerator. For sduction rate of iodines the base COROD model sing the ARCON96 rator dose case is nse time (6.6 sec) for a 10CFR100 limits (25 exceed a small fraction

	MICROFICHE/EFICHE Yes X No K FICHE NUMBER(S) TVA-F-W0013	31	
П	LOAD INTO EDMS AND DESTROY		
	LOAD INTO EDMS AND RETURN CALCULATION TO CALCULATION LIBRARY.	ADDRESS:	``
	LOAD INTO EDMS AND RETURN CALCULATION TO:		

TVA 40532 [10-2008]

NEDP-2-1 [10-20-2008]

NPG CALCULATION COVERSHEET/CCRIS UPDATE

١

									Page 2	
CALC ID	TYPE	ORG	PLANT	BRANCH NU		MBER		REV	1^{-}	
	CN	NUC	WBN	NTB	WBNTSR-008			11		
			A	LTERNATE C	ALCULATION	DENT	FICATION			
					·····					
BLDG	ROC	<u>MC</u>	ELEV	COORD/AZIM	FIRM Polesta	ır	Print Report	Yes 🛛		
ATEGORIE	S									
				KEY NC	UNS (A-add,	D-de	lete)			
ACTION (A/D)	<u>KEY NC</u>	<u>NUC</u>				A/D	KEY NOUN			
			·····		·····			······································		
						 	•			·······
						1				
			CROS	S-REFEREN	CES (A-add,	C-cha	nge, D-dele	ete)		
ACTION (A/C/D)		REF	XREF TYPE	XREF PLANT	XREF BRANCH			XREF NUMBER		XREF REV
А		Ρ	VD	WBN	MEB	LTR-C	RA-09-153 R1			
Α		Р	VD	WBN	MEB	WBT-	D-1015			
A		Р	TS	WBN	MEB	TS 3.4	4.13	· <u> </u>		
A		Р	TS	WBN	MEB	TS 3.4.16				
Α	_	P	TS	WBN	MEB	TS 3.4	4.17			
									·····	
				ļ						
				<u> </u>			<u></u>		·····	
· · · · · · · · · · · · · · · · · · ·										
			······································					· · · · · · · · · · · · · · · · · · ·		
			<u> </u>		+					
				+	+					

CCRIS ONLY UPDATES: Following are required only when making keyword/cross reference CCRIS updates and page 1 of form NEDP-2-1 is not included:

PREPARER SIGNATURE	DATE	CHECKER SIGNATURE	DATE
PREPARER PHONE NO.	EDMS ACCESSIC	ON NO.	
TVA 40532 [10-2008]	Page 2 of 2	NEDP-2-	1 [10-20-2008]

Page 3

NPG CALCULATION RECORD OF REVISION

CALCULATION IDENTIFIER WBNTSR-008

Title	Control Room Operator and Offsite Doses Due to a Steam Generator Tube Rupture
Revision No.	DESCRIPTION OF REVISION
0	Initial Issue
1	Revision 1 was performed because the base COROD model from TI-RPS-198 changed. pages changed: 1-6, 8, 9, 24-26, 30, 32-37, 39-60, 62, 63, 73-78 pages added: 24.1-24.3
2	Revision 2 was performed to incorporate the new steam releases as determined by Westinghouse with WBN specific parameters and to add the offsite dose to the analysis. pages changed: 1-24.2, 25-67 (old coversheet now page 1.1) pages deleted: none pages added: new cover (new page 1)
3	Revision 3 was performed because of revised steam releases as determined by Westinghouse. The entire calculation was rewritten All pages were renumbered. Revision bars are shown only on areas of text which actually changed. Text which was reformatted does not show revision bars. pages changed: all pages deleted: none pages added: none
4	Revision 4 was performed because the X/Q values changed. pages added: 1 (new cover), 1.2 (abstract), 41.1, 41.2 pages deleted: none pages changed: 1.1 (old cover), 2-8, 17, 18, 20-22, 24-41
5	Revision 5 was revised because the control room intake flow was changed. pages added: none pages deleted: 41.1, 41.2 pages changed: 1, 1.2, 2-8, 18, 20-22, 24-41, 51-53
6	Revision 6 was performed because of revised reactor coolant and steam mass releases as determined by Westinghouse. pages added: 6.1 pages deleted: none pages changed: 1-8, 1.2, 11-14, 18, 20, 24-41
7	Revision 7 was performed as part of the corrective action of WBN PER 98-016506-000. The revision changed the basis of the source terms from the historical design values provided by Westinghouse which are located in the FSAR to the expected source terms based on ANSI/ANS-18.1-1984. No other modifications with respect to methodology were made. Other pending changes (such as alternate X/Q values, new Tech Spec limits, inclusion of the radiation monitor response time in the isolation time of the control room, impact of Tritium Production Core, and iodine spiking) will be dealt with in subsequent revision(s). There is no FSAR impact since there will be more changes in the near future, and the doses in this revision are less than R6. Pages deleted: Attachment 3 Pages changed: 1a (old cover), 2, 3, 6, 6.1, 7-13, 18, 24-40, 46-50 R7: 75 total pages
8	Revision 8 is performed to increase the delay in the control room isolation time from 14.0 sec to 20.6 sec (= 14 sec damper closur + 6.6 sec instrument response) as part of the corrective action for WBN PER 01-000080-000. New X/Q values as determined by ARCON96 are incorporated. The Tritium Production Core (TPC) is included. The latest versions of COROD (R5) and FENCDOSE (R4) are used, which now determine the thyroid doses based on ICRP-2 and ICRP-30 dose conversion factors as we as the TEDE. Finally, the iodine spiking is treated differently. The preaccident iodine spike is the maximum Technical Specification limit (60 µCi/cc I-131 equivalent. Also 21 µCi/cc and 10 µCi/cc are analyzed). An accident initiated iodine spike with a factor of 500 increase in iodine release from the fuel with the initial activity at 1 µCi/cc, 0.265, or 0.177 µCi/cc I-131 equivalent with the baseline iodine production based on either 10 gpm, 5.75 gpm, is now included in the analysis. Cases with the old Halitsky X/Q values are also performed. Additional justification for use of the ANS/ANSI-18.1-1984 spectrum was included. Finally, 3rd party review comments from Westinghouse and NISYS were incorporated. Due to the extent of the revision, all pages were renumbered. Text changes are marked with revision bars. Pages added: all Pages changed: all
	R8: 72 total pages The non-TPC results will affect FSAR section 15.5.5 and Tables 12.5-18 and 12.5-19, and the change will be processed in accordance with NADP-7 to reflect calculation results. A 10CFR50.59 evaluation is needed for these changes. In addition, Technical Specification LCO 3.4.16 and associated bases (RCS lodine Concentration) will be affected by this calculation revision and a TS change will be required. These actions will be tracked under the corrective actions for PER 00-012545-000.

Page 4

ALCULA	TION IDENTIFIER WBNTSR-008
itle	Control Room Operator and Offsite Doses Due to a Steam Generator Tube Rupture
Revision No.	DESCRIPTION OF REVISION
9	Revision 9 is performed for replacement steam generators (DCN 51754). The mass releases have been changed, resulting in different answers. The original steam generator results are retained. Also, the CREVS recirculation rate and time increments were corrected as part of the corrective action of PER 61493 and 94426. A 2 CREVS train operation for 2 hours is also performed. This calculation impacts FSAR section 15.4 and 15.5. The full impact to the FSAR and Technical Specifications will be addressed in the screening review of DCN 51754. Page numbers were redone, only actual text changes are marked with revision bars. Pages added: 4, Appendix F (p.36-37) Pages deleted: design verification form Pages changed: 1-3, 5-10, 14-29 R9: 63 total pages
10	Revision 10 is in support of DCN 51754. WBNNAL3003 has been revised to show the change in RCS volume due to the Replacement Steam Generators (RSG). R9 of this calculation used a RCS volume from a Westinghouse document (WB1RSG-TR-02) that has been revised since the issue of R9. Also, the 2 train CREVS cases have been deleted as it was determine to be beyond design basis. An assumption has been added to discuss this issue. Successor documents WBNAPS3048, WBNAPS3079, and WBNTSR028 were determined to be impacted by this revision. Impacts to the FSAR and TS's, if any, will be addressed in the screening review of DCN 51754.
	Pages Added: None Pages Deleted: None Pages Revised/Replaced: 1, 2, 4-7, 10, 14-17, 20, 23, 25-27, 29 R10: 63 total pages.
11	Revision 11 is performed to perform the SGTR analysis for Unit 2 (Appendix G). The steam generators are the same as the original Unit 1 steam generators, however the Westinghouse mass release calculation are different. SAR has been reviewed by <u>Marc Berg</u> and this revision of the calculation affects Unit 2 SAR section <u>Chapter 15</u> . A SAR change shall be processed in accordance with NGDC PP-10 t reflect the calculation results as part of EDCR 54956. Tech Specs have been reviewed and determined not to be affected.
	Pages added: Appendix G (p.39,40) Pages deleted: none Pages changed: 1,2,4-9, 21, 23 R11: 66 total pages

	Page 5	
	NPG CALCULATION TABLE OF CONTENTS	•
Calculation I	dentifier: WBNTSR-008 Revision: 11	······································
	TABLE OF CONTENTS	
SECTION	TITLE	PAGE
······································	Coversheet/CCRIS Input form	1
	Revision Log	3
	Table of Contents	5
	Calculation Verification Form	6
	Computer Input File Storage Information Sheet	7
	Computer Output Microfiche Information Sheet	8
	Purpose	9
	Introduction	9
	Assumptions	10
	Special Requirements/Limiting Conditions	11
	Calculations	11
	Results	21
	Conclusions:	21
	References	22
	Appendix A: Example of STP Model (preaccident Iodine spike)	24
	Appendix B: Example of STP Model (accident initiated Iodine spike)	26
	Appendix C: Example of COROD Model(ARCON96 X/Q)	28
	Appendix D: Example of FENCDOSE Model	30
	Appendix E: Determination of Letdown Flow Uncertainty	31
	Appendix F: Original Steam Generator Results	. 37
	Appendix G: Unit 2 SGTR	39
	Attachment 1- Justification for Using ANSI/ANS-18.1-1984 Expected Coolant Spectrum	41
	Attachment 2 - Maintenance Request Form A-482000 (12 pages)	52

TVA 40710 [10-2008]

NEDP-2-3 [10-20-2008]

ł

ł

	Page 6						
NPG CALCULATION VERIFICATION FORM							
Calculation Identifier WBNTSR-008 Revision 11							
Method of verification used:							
1. Design Review	Heatur Well Verifier Heather Lucek Date 1-14-10						
 Alternate Calculation Qualification Test 	Verifier Heather Lucek Date 1-14-10						
Comments:							
appropriate manner to address the Unit 2 Ste the methodology, design input, and assumption	e found the calculation to have been completed in a technically sound an am Generator Tube Rupture. In conducting the verification I reviewed ons which I found to be valid and conservative. I verified the computer ey only contained the changes as specified in this document. I also npiled in the results.						
LEGIBI	ITY EVALUATED AND						
ACCEPT Signati	20clm 2/18/10						
Strain Contraction of the second second second second second second second second second second second second s	JRE REV II DATE						

TVA 40533 [10-2008]

Page 1 of 1

NEDP-2-4 [10-20-2008]

	Page 7					
NPG COMPUTER INPUT FILE STORAGE INFORMATION SHEET						
Document WBNTSR-008	\$	Rev. 11	Plant: WBN			
Subject: Control Room Operator an	d Offsite Doses Due to	a Steam Ge	enerator Tube Rupt	ure		
Electronic storage of th	e input files for this calcu	lation is not	required. Comments	8.		
	lation have been stored e					
provided below for each use.)	n input file. (Any retrieved	d file require	s re-verification of its	contents before		
The computer input for R6 is p	ermanently stored in FILEK	EEPER file #	\$ 300203.	·····		
The computer input for R7 is p	•					
The computer input for R8 is p						
The computer input for R9 is p	-					
The computer input for R10 is The computer input for R11 is			# 308287			
The computer input for KTT is	stored in erione the 1 VA-r	-₩001301				
			-			
Microfiche/eFiche	<u></u>					
		<u> </u>	<u></u>			
VA 40535 [10-2008]	Page 1	of 1		NEDP-2-6 [10-20-2008]		

NPG COMPUTER OUTPUT page 8								
<u>na pana an</u> ita na matana ara da sa	MICROFICHE INFORMATION SHEET							
Document WBNTSF	2-008	Rev. 11	Plant: WBN					
Subject: Control Room Operator and Offsite Doses Due to a Steam Generator Tube Rupture								
Microfiche Number	Description							
R5: TVA-F-C000107 R6: 000244	TSR008S6 STP I TSR008F6 FENCDOSE	Description 14sec delay source term offsite dose no damper delay control room op	erator dose					
R7: TVA-F-C000322	TSR008S7 STP 1 TSR008F7 FENCDOSE	Description 4sec delay source term offsite dose no damper delay control room op	erator dose					
R8: TVA-F-C000356	Name Code I TSR8S8# STP TSR8S8#N STP TSR8F8# FENCDOSE	Description 20.6 sec delay source term, TPC 20.6 sec delay source term, conve offsite dose, TPC offsite dose, conventional core control room operator dose, TPC, control room operator dose conv control room operator dose, TPC control room operator dose, conv	, ARCON96 X/Q entional core, ARCON96 : , Halitsky X/Q	`				
R9: TVA-F-W000500 and TVA-F-W000573	leak basis), E=0.265µCi/g G=0.265µCi/gm I with w/ I with w/500I spike(5.75 g R9: Name Code TSR8S9# STP TSR859# FENCDOSE TSR8C9# COROD where #=A,C, E, G=21 µC	spike, B=21µCi/gm I spike, C=10 gm I with w/500l spike(10 gpm lea /500l spike(2.15 gpm leak basis), gpm leak basis), J=0.177µCi/gm(5 Description 20.6 sec delay source term, TPC offsite dose, TPC control room operator dose, TPC Ci/gm I spike, B,D, F, H=0.265µC , H=2 CREVS case; A,B,C,D=rep	ak basis), F=0.177µCi/gm H=0.177µCi/gm(2.15 gpn 5.75 gpm leak basis) C, ARCON96 X/Q 5/gm w/500 I spike (10+1	(10 gpm leak basis), h leak basis), I=0.265µCi/gm gpm leak basis); A,B, E,				
R10: TVA-F-W000613	TSR8S9A STP TSR8S9B STP TSR8F9A FENCDOSE TSR8F9B FENCDOSE TSR8C9A COROD TSR8C9B COROD	20.6 sec delay source term, TP(20.6 sec delay source term, TP(offsite dose, TPC, 21 uCi/g offsite dose, TPC, 0.265 uCi/g of control room operator dose, TP4 control room operator dose, TP4	C, 0.265 uČi/g C, 21 uCi/g					
R11: TVA-F-W001361	TSR8S11A STP TSR8S11B STP TSR8F11A FENCDOSE TSR8F11B FENCDOSE TSR8C11A COROD TSR8C11B COROD		PC, 0.265 uCi/g g PC, 21 uCi/g					
		•1993						

Calculation No. WBNTSR-008	Rev: 11	Plant: WBN	Page: 9
Subject: Control Room Operator and Offsite Doses Due to a	Steam Pro	epared: mos	Date: 1-1460
Generator Tube Rupture	Ch	ecked: Auc	Date: 1.14.10

Purpose

This analysis is performed to determine the control room operator dose following a design basis steam generator tube rupture accident (SGTR). Revision 9 is performed to address the replacement steam generators (DCN 51754, which changes the mass releases) and to correct CREVS recirculation flow (PER 61493) and time increments (PER 94423).

Introduction

This analysis determines the control room operator and offsite dose due to a Steam Generator Tube Rupture accident. The steam releases (primary and secondary side) are taken from reference 45 and 46. The activities of the primary coolant are based on technical specification limits with a preexisting iodine spike of 21 μ Ci/cc I-131 equivalent for a preaccident spike (note: all measurements are at STP, therefore 1 g=1cc water). An alternate accident initiated iodine spike case uses initial activity at 0.265 μ Ci/cc I-131 equivalent with a factor of 500 increase in iodine release rate from the fuel. The secondary side activities start at 0.1 μ Ci/cc I-131 equivalent. The secondary side activities come from WBNNAL3-003 R3 (ref.29). Credit is taken for partial flashing of the reactor coolant as it enters the steam generator. For conservatism, no credit is taken for "scrubbing" of iodine in the steam bubbles as the bubbles rise through the water, therefore it is unimportant if the break is above or below the water level at all times.

The computer code STP is used to determine the releases. The released activities are used as input to computer code COROD (ref.15) which determines the control room operator dose. The base COROD model is taken from TI-RPS-198 (ref.13, ingress and egress dose was not determined because the accident lasts less than 8 hours and the ingress/egress is after 8 hours). The control room operator dose considers the effect of slow closure times of 0-FCV-31-3, -4. The delay is 20.6 sec (which includes the 14 sec damper closure time and the 6.6 sec monitor response time). This is conservative because the delay in isolation allows a large slug of unfiltered radioisotopes into the control room. It is realistic because the isolation of the control room will most likely occur due to a high radiation signal in the control room intake HVAC. The control room intake vent X/Q values are taken from WBNAPS3-104 (ref.37) which are determined using ARCON96. These X/Q values are also found in WBNAPS3-104. The activities from STP are also used as input to the computer FENCDOSE (ref.30) which determines the offsite dose.

Revision 11 added the Unit 2 SGTR (Appendix G). The Unit 2 steam generators have are the same as the original Unit 1 steam generators, however the mass releases were reanalyzed by Westinghouse.

Calculation No. WBNTSR-008	Rev: 11	Plant: WBN	• Page: 10
Subject: Control Room Operator and Offsite Doses Due to a	Steam Pre	epared: MUR	Date: 1-14-10
Generator Tube Rupture	Ch	ecked: Huc	Date: 1.14.10

Assumptions

1. There is no iodine "scrubbing" by the water in the steam generator when the steam bubbles (formed due to the flashing of the primary water) rise to the surface of the water.

Technical Justification: This is conservative because this increases the amount of iodine released. Since the break may be below the water line, there will actually be some amount of scrubbing (removal) of iodine.

2. The maximum reactor coolant activities allowed under WBN Technical Specifications (ref.3) is assumed, with a distribution found in WBNNAL3-003 (ref.29), which are the expected source terms from ANSI/ANS-18.1-1984 modified for WBN.

Technical Justification: The maximum concentration is mandated by NUREG-0800 (ref.7). This assures maximum release of radioisotopes. See Attachment 2 for justification for using expected reactor coolant as the isotope distribution for establishing Technical Specification source terms.

3. The primary side to secondary side leakage is 150 gpd/steam generator, steady state.

Technical Justification: This is Technical Specification 3.4.13 (ref.33)

4. The maximum letdown of 120 gpm + 4.39 gpm = 124.39 gpm (ref.39, 41) is used.

Technical Justification: This value is used for calculation of iodine production/removal rates. This will maximize the removal rate of iodines from the primary coolant, and therefore will maximize the production rate of iodine (production = removal at steady state). See Calculation section for the formulas used. The letdown is assumed to be isolated at the beginning of the accident to maximize the reactor coolant inventories. The uncertainty of 4.39 gpm is determined in Appendix E.

5. The primary to secondary side leak rates and letdown flow rates are based on Standard Temperature and Pressure (STP). Technical Justification: This is the method by which the plant measure leakage. Also, this will maximize the releases because the density is higher at STP, therefore more mass (and hence radioisotopes) will be released. For the letdown flow, this will increase the steady state iodine production rate, and therefore increase the iodine releases.

6. In the intact steam generators, the iodine partition factor is assumed to be 100. (see also assumption 12).

Technical Justification: The mass of primary to secondary leakage which occurs to the intact steam generators is small relative to the mass of secondary coolant. Therefore none of this leakage is assumed to flash and the release to the environment is through the steaming process. Reference 7 allows a partition factor of 100 for such cases.

7. In one case, a preaccident iodine spike of 21 μ Ci/gm I-131 equivalent is assumed at the start of the accident. In the other case, an accident initiated iodine spike of 500 increase in the iodine release rate from the fuel is assumed in the accident initiated case with the reactor coolant starting at 0.265 μ Ci/gm I-131 equivalent.

Technical Justification: SRP 15.6.3 subsection 6a specifies the maximum allowable preaccident spike is required (21 uCi/gm is permissible for 48 hours). SRP 15.6.3 subsection 6b specifies that following an accident, the iodine release rate from the fuel to the reactor coolant is increased by a factor of 500.

8. The letdown demineralizer efficiency is assumed to be 1 for iodines.

Technical Justification: This will maximize iodine removal (=production) rate, and therefore result in larger iodine spiking. 9. The tritium inventory in the reactor coolant is assumed to be for the case with 2 TPBAR failures (98.4 μ Ci/g, ref.29).

Technical Justification: This will give an upper bound for the tritium. Also, 2 TPBAR failure is considered to be an abnormal event. This will result in conservative doses.

10. It is assumed that there is no additional fuel damage due to the accident.

Technical Justification: There is no expected extreme temperatures expected in the core due to the accident, therefore there will not be any fuel damage.

11. Only the Tritium Production Core (TPC) inventories are analyzed.

Technical Justification: Except for tritium, the reactor coolant inventories for the conventional and tritium production cores are the same. Therefore using the TPC with the additional tritium in the coolant will be conservative.

12. Water that boils in the faulted steam generator has an iodine partition factor of 100.

Technical Justification: Normally, to take into account uncovery of the faulted steam generator, there is no iodine partitioning in the release to the environment (iodine partition coefficient = 1). However, the water that boils is allowed a partition of 100. This is consistent with assumption 6.

Calculation No. WBNTSR-008	Rev: 11	Plant: WBN	Page: 11
Subject: Control Room Operator and Offsite Doses Due to a	Steam Pro	epared: MB	Date: 1-14-10
Generator Tube Rupture	Ch	ecked: Hu	Date: 1.14.10

13.Only one train of CREVS is in operation. Normally, each CREVS train takes suction from separate intakes with no cross communication between trains. This leads to one contaminated train, and one uncontaminated train. The only way a 2 CREVS operation could result in higher doses would be for both trains to take suction from the same vent. For this to happen, one intake path would require a failed closed intake path AND a fail open of normally closed passive manual damper at the beginning of the accident. An active failure of a train plus a failure of a passive component in less than 24 hours is beyond design basis.

Special Requirements/Limiting Conditions

There are no special requirements or limiting conditions in this calculation.

Calculations

The following main text represents the replacement steam generator SGTR. The original steam generator results can be found in Appendix F. The details for the App.F calculations can be found in Revision 8 of this analysis, with the exception of the COROD control room doses (which were corrected with the proper recirculation rates and time increments).

Primary Coolant Activity Releases

In NUREG-0800 R2 Chapter 15.6.3 (ref.7), section III.5 states "The reviewer assumes the primary and secondary coolant activity concentrations allowed by the technical specifications." Reference 3 of NUREG-0800 states the following "The specific activity of the reactor coolant shall be limited to: a. Less than or equal to 1 microCurie per gram DOSE EQUIVALENT I-131, and b. Less than or equal to 100/E microCuries per gram of gross activity."

Given the above considerations, the isotopic spectrum found in WBNNAL3-003 (ref.29) was examined. The I-131 dose equivalent and 100/E values for this particular spectrum are determined in Tables 1 and 2.

Table 1: Determination of I-131 Dose Equivalent

		Specific	I-131
	D/A	Activity	equivalent
	mrads/Ci	µCi/gm	µCi/gm
	(ref.8)		
I-131	1.48E+09	4.77E-02	4.77E-02
I-132	5.35E+07	2.25E-01	8.13E-03
I-133	4.00E+08	1.49E-01	4.03E-02
I-134	2.50E+07	3.64E-01	6.15E-03
I-135	1.24E+08	2.78E-01	2.33E-02
total		1.06E+00	1.255E-01

TVA

Calculation No. WBNTSR-008	Rev: 11	l	Plant: WBN	P	age: 12
Subject: Control Room Operator and Offsite Doses Due to a Ste		Prepared: hog		Date: 1-14-10	
Generator Tube Rupture		Che	cked: HUL	Date	e: 1.14.10

Table 2: Determination of 100/EBAR

	A(i)	E(i)	E(i)	E(i)	
	Activity	Beta Energy	Gamma Energy	Total	
Isotope	[uCi/gm]	[MeV/dis]	[MeV/dis]		A(i)*E(i)
Kr-85m	1.71E-01	2.5290E-01	1.5862E-01	4.1152E-01	7.04E-02
Kr-85	2.66E-01	2.5060E-01	2.2102E-03	2.5281E-01	6.73E-02
Kr-87	1.61E-01	1.3237E+00	7.9284E-01	2.1165E+00	3.40E-01
Kr-88	3.00E-01	3.7500E-01	1.9629E+00	2.3379E+00	7.01E-01
Xe-131m	6.54E-01	1.4280E-01	2.0058E-02	1.6286E-01	1.06E-01
Xe-133m	7.17E-02	1.8980E-01	4.1559E-02	2.3136E-01	1.66E-02
Xe-133	2.53E+00	1.3540E-01	4.5385E-02	1.8079E-01	4.57E-01
Xe-135m	1.39E-01	9.5000E-02	4.3176E-01	5.2676E-01	7.35E-02
Xe-135	9.04E-01	3.1680E-01	2.4696E-01	5.6376E-01	5.10E-01
Br-84	1.72E-02	1.2842E+00	1.6816E+00	2.9658E+00	5.09E-02
Rb-88	2.04E-01	2.0617E+00	6.8631E-01	2.7480E+00	5.60E-01
Cs-134	7.39E-03	1.5690E-01	1.0361E+00	1.1930E+00	8.82E-03
Cs-136	9.08E-04	1.0140E-01	2.1985E+00	2.2999E+00	2.09E-03
Cs-137	9.79E-03	1.8840E-01	0.0000E+00	1.8840E-01	1.84E-03
Na-24	4.99E-02	5.5460E-01	4.1216E+00	4.6762E+00	2.33E-01
Cr-51	3.26E-03	3.7540E-03	3.2763E-02	3.6517E-02	1.19E-04
Mn-54	1.68E-03	4.1670E-03	8.3592E-01	8.4009E-01	1.41E-03
Fe-55	1.26E-03	4.1920E-03	1.5291E-03	5.7211E-03	7.22E-06
Fe-59	3.16E-04	1.1800E-01	1.1923E+00	1.3103E+00	4.14E-04
Co-58	4.84E-03	2.0490E-01	9.7586E-01	1.1808E+00	5.72E-03
Co-60	5.58E-04	9.6840E-02	2.5043E+00	2.6011E+00	1.45E-03
Zn-65	5.37E-04	6.8940E-03	5.8169E-01	5.8858E-01	3.16E-04
Sr-89	1.47E-04	5.7300E-01	1.3636E-04	5.7314E-01	8.44E-05
Sr-90	1.26E-05	1.9630E-01	0.0000E+00	1.9630E-01	2.48E-06
Sr-91	1.02E-03	6.5050E-01	6.9508E-01	1.3456E+00	1.37E-03
Y-90	1.26E-05	9.3610E-01	0.0000E+00	9.3610E-01	1.18E-05
Y-91m	4.93E-04	0.0000E+00	5.5557E-01	5.5557E-01	2.74E-04
Y-91	5.47E-06	6.0600E-01	3.6147E-03	6.0961E-01	3.34E-06
Y-93	4.46E-03	1.1721E+00	8.9414E-02	1.2615E+00	5.63E-03
Zr-95	4.10E-04	1.1990E-01	7.3474E-01	8.5464E-01	3.51E-04
Nb-95	2.95E-04	4.4970E-02	7.6430E-01	8.0927E-01	2.38E-04
Mo-99	6.75E-03	3.9570E-01	1.6238E-01	5.5808E-01	3.77E-03
Tc-99m	5.01E-03	4.8500E-03	1.4263E-01	1.4748E-01	7.38E-04
Ru-103	7.89E-03	6.7400E-02	4.8394E-01	5.5134E-01	4.35E-03
Ru-106	9.47E-02	1.0100E-02	0.0000E+00	1.0100E-02	9.57E-04
Rh-103m	7.89E-03	3.4620E-02	2.2148E-05	3.4642E-02	2.73E-04
Rh-106	9.47E-02	7.0960E-01	2.0348E-01	9.1308E-01	8.65E-02
Te-129m	2.00E-04	1.9150E-01	9.4832E-02	2.8633E-01	5.73E-05
Te-129	2.57E-02	5.2260E-01	5.9948E-02	5.8255E-01	1.50E-02
Te-131m	1.59E-03	2.1240E-01	1.4092E+00	1.6216E+00	2.57E-03

IVA

Calculation No. WBNTSR-008	Rev: 11	Plant: WBN	Page: 13
Subject: Control Room Operator and Offsite Doses Due to a	Steam	Prepared: Mrs	Date: 1-14-10
Generator Tube Rupture		Checked: Huc	Date: 1.14.0

	A(i)	E(i)	E(i)	E(i)	
	Activity	Beta Energy	Gamma Energy	Total	
Isotope	[uCi/gm]	[MeV/dis]	[MeV/dis]		A(i)*E(i)
Te-131	8.26E-03	7.5970E-01	4.1616E-01	1.1759E+00	9.71E-03
Te-132	1.79E-03	1.0020E-01	2.0507E-01	3.0527E-01	5.47E-04
Ba-137m	9.79E-03	6.4260E-02	5.9729E-01	6.6155E-01	6.48E-03
Ba-140	1.37E-02	3.1500E-01	1.9522E-01	5.1022E-01	6.98E-03
La-140	2.64E-02	5.4050E-01	2.3074E+00	2.8479E+00	7.52E-02
Ce-141	1.58E-04	1.6930E-01	1.0181E-01	2.7111E-01	4.28E-05
Ce-143	2.96E-03	3.8420E-01	3.4335E-01	7.2755E-01	2.15E-03
Ce-144	4.21E-03	9.1300E-02	3.2865E-02	1.2417E-01	5.23E-04
Pr-143	2.96E-03	3.1430E-01	0.0000E+00	3.1430E-01	9.30E-04
Pr-144	4.21E-03	1.2258E+00	3.1010E-02	1.2568E+00	5.29E-03
Np-239	2.32E-03	1.2380E-01	2.0845E+00	2.2083E+00	5.13E-03
				•	
Total	5.82E+00				3.44E+00
				EBAR	5.91E-01

Table 2: Determination of 100/EBAR - continued

RCS Specific Activity Limit 169.14

The D/A values (rads/Curie) in Table 1 were obtained from reference 8, p.25 for each of the iodine isotopes of interest. The I-131 dose equivalence is calculated as follows:

 $D.E_{i} = A_{i} * (D/A)_{i} / (D/A)_{I131}$

As can be seen in Table 1, the resulting I-131 dose equivalency for the expected spectrum is 0.1255 µCi/g.

The definition of EBAR or E is as follows: "E shall be the average (weighted in proportion to the concentration of each radionuclide in the reactor coolant at the time of sampling) of the sum of the average beta and gamma energies per disintegration (in MeV) for isotopes, other than iodines, with half lives greater than 15 minutes, making up at least 95% of the total non-iodine activity in the coolant."

The values for E_i in Table 2 were obtained from reference 17 and the values for A_i are from WBNNAL3-003. The value of E is determined as follows:

 $\mathbf{E} = (\Sigma \mathbf{A}_i \mathbf{E}_i) / (\Sigma \mathbf{A}_i)$

The value for E calculated in Table 2 is 0.591 MeV/dis. This results in a non-iodine specific activity limit (100/E) of 169.14 μ Ci/g. The total specific activity of the expected coolant is 5.82 μ Ci/g.

Therefore, the values for noble gasses in the design reactor coolant given in reference 29 will have to be increased by a factor of 169.14/5.82 = 29.06 and the values for iodines will have to be increased by a factor of 1/0.1255 = 7.965.

Calculation No. WBNTSR-008	Rev: 11	Plant: WBN	Page: 14	
Subject: Control Room Operator and Offsite Doses Due to a Steam Prepared: m 1/2 Date: 1-1/2-				
Generator Tube Rupture	Ch	ecked: HAL I	Date: 1.14.10	

For the secondary side concentrations from WBNNAL3-003, the same procedure is performed to determine the I-131 equivalence:

	D/A	μCi/gm secondary	I-131 equivalent
	mrads/Ci	side, water ANSI 18.1	μCi/gm
1-131	1.48E+09	1.41E-06	1.41E-06
1-132	5.35E+07	3.37E-06	1.22E-07
1-133	4.00E+08	4.03E-06	1.09E-06
1-134	2.50E+07	2.93E-06	4.95E-08
1-135	1.24E+08	6.19E-06	5.19E-07
total		1.79E-05	3.189E-06
		inverse	3.136E+05

To convert to I-131 equivalence, the secondary side I-131 equivalent conversion factor is $(1/3.189E-6) = 3.136E5 \text{ gm/}\mu\text{Ci}$. Note that this factor has been developed for iodines. There is no limit on noble gasses in the secondary side as there is for the primary side (100/Ebar). However, in order to maintain the proper ratio of isotopes, and for conservatism, the iodine factor will also be applied to the noble gasses.

Note: the secondary side water does not contain any noble gasses. For conservatism, the noble gas inventory is the inventory from the secondary side steam.

Calculation No. WBNTSR-008	Rev: 11	Plant: WBN	Page: 15
Subject: Control Room Operator and Offsite Doses Due to a	Steam Pr	epared: MB	Date: 1-14-10
Generator Tube Rupture	Ch	ecked: you	Date: 1.14.10

The STP models consist of a pre-accident iodine spike (see figure 1) model and an accident initiated iodine spike model (see figure 2). The model(s) consist of the following:

Volumes:

#1: Reactor Coolant: 5.78E5 lb (ref.29) = 2.622E8 gm

#2: Steam Generator w/Leak: 5.31E7 gm (ref.40)

#3: Steam Generators w/out Leak: 1.593E8 gm (ref.40)

#4: Environment: 1 gm (arbitrary) (This volume is made into an accumulator through the "A" card to suppress radioactive decay)

The step sources to initialize the reactor coolant and the secondary side activities are:

S=2.622E8 gm*1E-6 Ci/µCi=2.622E2 (tritium)

 $S=2.622E8 \text{ gm}^{*}1E-6 \text{ Ci}/\mu\text{Ci}^{*}29.06 = 7.620E3 \text{ (noble gasses)}$

Pre-accident iodine spike case (initial concentration = $21 \,\mu \text{Ci/gm}$):

 $S=2.622E8 \text{ gm}^{*}1E-6 \text{ Ci}/\mu\text{Ci} * 7.965 [\mu\text{Ci}/\text{gm} I-131]^{-1} *21 \mu\text{Ci}/\text{gm} = 4.386E4 \text{ (iodines)}$

Accident initiated iodine spike case (initial concentration = $0.265 \,\mu \text{Ci/gm}$):

 $S=2.622E8 \text{ gm}^{+}1E-6 \text{ Ci/}\mu\text{Ci} + 7.965 \ [\mu\text{Ci/gm} I-131]^{-1} + 0.265 \ \mu\text{Ci/gm} = 5.534E2 \ (iodines)$

Secondary side, all cases, steam generator with leak (initial concentration = $0.1 \,\mu$ Ci/gm):

 $S = 5.31E7 \text{ gm} * 1E-6 \text{ Ci}/\mu\text{Ci} = 5.31E1 \text{ (tritium)}$

S = 5.31E7 gm*1E-6 Ci/ μ Ci*3.136E5 [μ Ci/gm I-131]^{-1*} 0.1 μ Ci/gm = 1.665E6 (noble gasses, iodines) Secondary side, all cases, steam generators without leak (initial concentration = 0.1 μ Ci/gm):

 $S = 1.593E8 \text{ gm} * 1E-6 \text{ Ci}/\mu\text{Ci} = 1.593E2 \text{ (tritium)}$

 $S = 1.593E8 \text{ gm}^{+}1E-6 \text{ Ci}/\mu\text{Ci}^{+}3.136E5 \text{ [}\mu\text{Ci}/\text{gm} \text{ I}-131\text{]}^{+}* 0.1 \mu\text{Ci}/\text{gm} = 4.996E6 \text{ (noble gasses, iodines)}$

Continuous Sources:

For the accident initiated iodine spike case, the iodine spike is 500 times the iodine release rate from the fuel. At steady state conditions, the iodine release (production) rate is equal to the removal rate. The iodine removal is due to a) radioactive decay, b) removal by the letdown system, and c) removal through leakage to the secondary side. These terms are expressed as:

 $P = \Sigma removal rates = decay + letdown + leakage$

or $P = \lambda + f_L \epsilon / V + p_s / V$

where $P = production rate [hr^{-1}]$

 $\lambda = \text{decay constant for the isotope in question } [\text{hr}^{-1}] = \ln(2)/T_{1/2}$

 $f_L = 120 \text{ gpm} + 4.39 = 124.39 \text{ gpm}$

 ε = letdown demineralizer efficiency = 1 (assumed so as to maximize removal/production rate)

V = volume of primary coolant = 5.78E5 lb

 p_s =removal rate of iodine from primary side due to leakage = 11 gpm (= 10 gpm identified plus 1 gpm unidentified leakage)

 $T_{1/2}$ = halflife taken from ref.42

Note: All flow rates are converted to mass flow rates at STP (H2O = 1 g/cc).

ĪM

Calculation No. WBNTSR-008	Rev: 11	Plant: WBN	Page: 16
Subject: Control Room Operator and Offsite Doses Due to a	Steam	Prepared: A.3	Date: 1-14-10
Generator Tube Rupture		Checked: Hur	Date: (.14.10

110440	Trouvelous Removal Rados for TT Spin Dearage (To Ritewith 'T anknown)					
	Half Life	λ [1/hr]	f _L ɛ/V[1/hr]	p _s /V [1/hr]	prod rate P	500*P
I-131	8.04 d	3.59E-03	1.08E-01	9.53E-03	0.1209	60.44
I-132	2.28 h	3.04E-01	1.08E-01	9.53E-03	0.4213	210.65
I-133	20.9 h	3.32E-02	1.08E-01	9.53E-03	0.1505	75.23
I-134	52.6 m	7.91E-01	1.08E-01	9.53E-03	0.9079	453.97
I-135	6.61 h	1.05E-01	1.08E-01	9.53E-03	0.2222	111.08

Production/Removal Rates for 11 gpm Leakage (=10 known +1 unknown)

The accident initiated iodine spike of 500 times the increase in the iodine release (production) rate from the fuel is modeled as a continuous source:

 $C = Volume * 1E-6 Ci/\mu Ci * Prod. Rate * 500 * 1 \mu Ci/gm I-131 equivalent conversion factor$

where Volume = 2.622E8 gm

Prod Rate = see table above

I-131 equiv. = $0.265 \ \mu Ci/gm$ I-131 equivalent

1 μ Ci/gm I-131 equivalent conversion factor = 7.965 (value determined above, this is to get the ANSI/ANS-18.1-1984 source into 1 μ Ci/gm I-131 equivalent

Continuous Source [1/hr] for Accident Initiated Iodine Spike:

	11 gpm leak (10 known+1gpm unknown)		
	0.265 µCi/gm		
I-131	3.345E+04		
I-132	1.166E+05		
I-133	4.163E+04		
I-134	2.512E+05		
I-135	6.147E+04		

Calculation No. WBNTSR-008	Rev: 11	Plant: WBN	Page: 17
Subject: Control Room Operator and Offsite Doses Due to a	Steam Pi	repared: MV3	Date: 1-14-10
Generator Tube Rupture	C	hecked: HML	Date: 1.14-10

The following table presents the variables that change for each case:

Case	Step Source S for iodine	Continuous Source C	Description
A	4.386E+04	Not Applicable	21 µCi/gm I-131
B	5.534E+02	Table above	0.265 μCi/gm I-131, 500 spiking, 11 gpm leak (10 known+1 unknown)

Flow Rates:

The following is for the replacement steam generators. The results for the original steam generators can be found in App.F (with the input details found in Revision 8 of this analysis). The amount of secondary side steam released from the ruptured steam generator is 108,200 lbm from 0-2 hours and 35,500 lbm from 2-8 hours (ref.45). The amount of secondary side steam released from the intact steam generators is 539,500 lbm from 0-2 hours and 925,000 lbm from 2-8 hours (ref.45, note that ref.45b, which is a draft, gives this values as 924,400 lbm. This is 0.06% less than ref.45a. It is conservative to use the higher value). The reactor coolant release to the steam generator was a total of 166,200 lb, of which 9189 lb flashed (ref.45,46). In order to account for the release during the 20.6 second interval when the control room is not isolated, the amount of reactor coolant released at 20.6 sec is needed. However, the release from the steam generators does not actually start until 176 sec post accident. Therefore, the releases at 176+20.6 = 196.6 sec are actually needed for release calculations. Using the releases from reference 46 and adding each time increment release, the reactor coolant release at 196.5 sec is 9732.826 lb and at 197.5 sec it is 9776.753 lb. For conservatism, 9776.743 lb is used at 196.6 sec. The amount that flashed at 196.6 sec is 1322.795lb. The mass release rate from the ruptured steam generator is non-linear. However since the time frame for the release is short (20.6 sec), the average release rate can be used. From reference 45, the flashing of the reactor coolant stops at 2208.5 sec, and the break flow stops at 4670 sec.

The following flow rates/leakage rates for each component are:

Flow from Reactor Coolant #1 to Steam Generator Faulted #2 (non-flashed):

0-196.6 sec: F = (9776.753 lb - 1322.795 lb)*(3600 sec/hr)/(196.6 sec) = 1.548E5 lb/hr = 7.0217E7 g/hr196.6 sec-4670 sec: F = (166,200 lb-9776.753 lb)-(9189lb-1322.612 lb)/(4670-196.6sec) = 33.209 lb/sec = 5.423E7 g/hr

4670+ sec: F=0

Flow from Reactor Coolant #1 to Environment #4 (flashed):

176-196.6 sec: $F = (1322.795 \text{ lb})^*(3600 \text{ sec/hr})/(20.6 \text{ sec}) = 2.312E5 \text{ lb/hr} = 1.0486E8 \text{ g/hr}$ 196.6 sec-2208.5 sec: F = (9189 lb-1322.795 lb)/(2208.6-20.6 sec]) = 3.5953 lb/sec = 5.871E6 g/hr2208.5+ sec: F=0

Flow from Steam Generator Faulted #2 to Environment #4:

176 sec-2 hr:(108,200 lb)/(2hr-[176sec/3600sec/hr])=5.548E4 lb/hr=2.516E7g/hr(noble gas and tritium)

0.01*(108,200 lb)/ (2hr-[176sec/3600sec/hr])=5.548E2 lb/hr=2.516E5g /hr (iodine)*

2-8 hr: (35500 lb)/(8hr-2hr) = 5916.67 lb/hr = 2.6837E6 g/hr (noble gas)

0.01*(35500 lb)/(8hr-2hr) = 59.1667 lb/hr = 2.6837E4 g/hr (iodine)

Flow from Steam Generator Unfaulted #3 to Environment #4:

 $176 \sec - 2 \ln (539,500 \text{ lb})/(2 \ln (176 \sec (3600 \sec / \ln))) = 276509 \ln / \ln = 1.254 \text{E8 g/hr} (noble gas)$

0.01*(539,500 lb)/(2hr-[176 sec/3600 sec/hr]) = 2765.09 lb/hr = 1.254E6 g/hr(iodine)

2-8 hr: (925,000 lb)/(8hr-2hr) = 1.542E5 lb/hr = 6.993E7 g/hr (noble gas)

0.01*(925,000 lb)/(8hr-2hr) = 1.542E3 lb/hr = 6.993E5 g/hr (iodine)

Flow from Reactor Coolant #1 to Steam Generator Unfaulted #3:

F = 3 steam generators * 150 gpd * 3785.48 cc/gal / 24 hr/day * 1g/cc= 7.098E4 g/hr

* Normally, to take into account uncovery of the faulted steam generator, there is no iodine partitioning in the release to the environment (iodine partition coefficient = 1). For conservatism, no iodine scrubbing of the bubbles in the flashed water is taken into account. However, the water that boils is allowed the iodine partition of 100 (see assumption 6).

Calculation No. WBNTSR-008	Rev: 11	Plant: WBN	Page: 18
Subject: Control Room Operator and Offsite Doses Due to a	Steam Pr	epared: Mug	Date: 1-14-10
Generator Tube Rupture	Cł	ecked: Hul	Date: 1.14.10

The STP output is used as input to COROD (which determines control room operator dose) and FENCDOSE (which determines 30-day and 2-hour LPZ offsite dose).

Control Room Dose

With the exception of the source activities and X/Q's, all of the input and assumptions used in TI-RPS-198 (ref.13) to calculate the control room operator dose are considered valid for this calculation. The X/Q values are taken from reference 37.

Maintenance Request MR-482000 (Attachment 2) gives measured closure times for several flow control valves in the control building ventilation system as measured on 12/8/88. Examination of reference 14 in conjunction with MR-482000 revealed that the worst case involved valves 0-FCV-31-3, -4 with closure times of 12.43 sec and 13.15 sec respectively. Therefore, it was conservatively assumed, and per reference 35, that these valves would be full open for 14 sec following the SGTR. (This is conservative since in actuality, as the valve closes, the flow decreases). In addition, the radiation monitor response time is 6.6 seconds (ref.38). This leads to a total unisolated control room time of 20.6 seconds. During this time the intake flow is 3200 cfm (reference 14). No filtration is provided for this stream.

Offsite Dose

The same source terms used in the COROD run are used in the FENCDOSE run. The base FENCDOSE model comes from TI-RPS-197 (ref.34). Some pertinent information from the COROD and FENCDOSE models used in this analysis are (from ref.34) with the control room X/Q values from ref.37:

30-day LPZ Offsite X/Q values [sec/cum]: 1.41E-4 0-2hr, 6.68E-5 2-8 hr, 4.59E-5 8-24 hr, 2.04E-5 1-4 day, 6.35E-6 4-30 day

2-hr EAB X/Q values: 6.07E-4

Control Room ARCON96 X/Q:4.03E-3 0-2hr, 3.35E-3 2-8hr, 2.27E-4 8-24hr, 1.81E-4 1-4day, 1.45E-4 4-30day Control Room volume: 257198 cuft

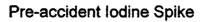
Control Room makeup/pressurization flow: 711 cfm, 3200 cfm prior to isolation (ref.44*)

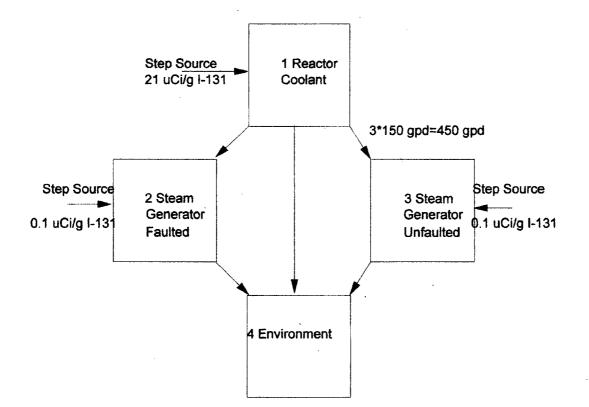
Control Room total flow: 3600 cfm

Control Room recirculation flow: 2889, for normal operation (unisolated) each pass is at 3200 cfm (same as intake flow) Control Room unfiltered intake: 51 cfm

Control Room filter efficiency: 95% first pass, 70% second pass for iodine, 0% for everything else

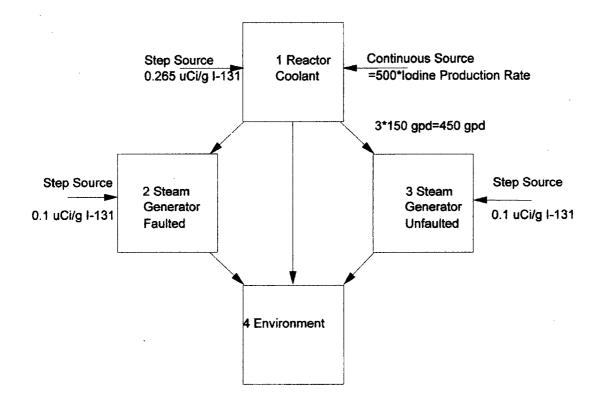
Control Room occupancy factors: 100% 0-24 hr, 60% 1-4 days, 40% 4-30 days


ICRP-2 and ICRP-30 dose conversion factors, as well as TEDE


* 3200 cfm has been deleted from 1-47W866-4 R36 (ref.10), and has been measured to be approximately 2500 cfm (0-SI-31-31-A). The value comes from 1-47W866-4 R20. The 3200 cfm will be retained in this calculation revision since this value produces conservative results.

Calculation No. WBNTSR-008	Rev: 11	Plant: WBN	Page: 19
Subject: Control Room Operator and Offsite Doses Due to a	Steam P	repared: MG	Date: 1-14-10
Generator Tube Rupture	C	hecked: HML	Date: 1.14.10

Figure 1: STP Model



Calculation No. WBNTSR-008	Rev: 11	Plant: WBN	Page: 20
Subject: Control Room Operator and Offsite Doses Due to a	Steam Pro	epared: MUS	Date: 1-14-10
Generator Tube Rupture	Ch	ecked: Hul	Date: (.14.10

Figure 2: STP Model

Accident Initiated Iodine Spike

Calculation No. WBNTSR-008	Rev: 11		Plant: WBN	Page:	21
Subject: Control Room Operator and Offsite Doses Due to a	Steam	Pre	pared: ~ 13	Date: pro	1-10
Generator Tube Rupture	•	Che	cked: MARL	Date: 1.1	14.10

Results

The following Unit 1 doses were calculated for the Tritium Production Core (the Unit 2 results are found in Appendix G):

Control room (rem)	21 uCi/g	0.265 uCi/g	Limit
Gamma	8.91E-02	8.14E-02	5
Beta	9.88E-01	9.42E-01	30
Thyroid (ICRP-30)	2.31E+01	2.31E+00	30
TEDE	1.22E+00	5.27E-01	5

Pre-accident iodine spike of 21 uCi/c I-131 equivalent

Offsite (rem)	2 hr EAB	30 day LPZ	limit
Gamma	3.30E-01	8.06E-02	25
Beta	1.92E-01	4.87E-02	300
Thyroid (ICRP-30)	1.25E+01	2.97E+00	300
TEDE	1.14E+00	2.72E-01	25

Accident initiated iodine spike of 500 at 0.265 uCi/g I-131 equivalent

Offsite (rem)	2 hr EAB	30 day LPZ	limit
Gamma	3.58E-01	8.74E-02	25
Beta	1.93E-01	4.92E-02	300
Thyroid (ICRP-30)	3.94E+00	9.64E-01	300
TEDE	7.03E-01	1.71E-01	25

Conclusion

The offsite doses (gamma, beta, thyroid and TEDE) due to a SGTR with a preexisting iodine spike does not exceed the 10CFR100 limits (25 rem gamma, 300 rem beta, and 300 rem thyroid per NUREG-0800). The SGTR with accident initiated iodine spike does not exceed a small fraction of the 10CFR100 limits (10% of the 10CFR100 limits of 25 rem gamma, 300 rem beta, and 300 rem thyroid per NUREG-0800). The control room doses due to a SGTR do not exceed the 10CFR50 App.A GDC 19 limits (5 rem gamma, 30 rem beta and 30 rem thyroid).

The reactor coolant parameters for this conclusion is based on a pre-accident spike of 21 μ Ci/gm I-131 equivalent and an accident initiated iodine spike with the initial activity at 0.265 μ Ci/gm I-131 equivalent. The secondary side activity is 0.1 μ Ci/gm I-131 equivalent. The primary to secondary leak rate (prior to the accident) is 11 gpm (10 gpm identified plus 1 gpm unidentified) with a maximum of 150 gpd leak in the steam generators.

Note on methodologies used:

This calculation determined the doses using 3 different methodologies. The gamma, beta and Thyroid (ICRP-2) doses are all based on TID-14844 methodologies utilizing the ICRP-2 iodine dose conversion factors found in TID-14844. The second methodology is the Thyroid (ICRP-30) dose, which is also based on TID-14844, but uses the ICRP-30 iodine dose conversion factors. The ICRP-30 iodine dose conversion factors are less conservative than the ICRP-2 factors. Finally, the third methodology used is the TEDE (Total Effective Dose Equivalent). The TEDE presents an overall weighted dose and is more representative of the impact of all isotopes on the body as a whole. The TEDE dose is presented for potential future use, however is not currently part of the design basis of the plant. It is important to note that tritium does not impact the thyroid doses utilizing the TID-14844 methodology, because only iodine is applied to the thyroid dose. However, in fact tritium does contribute to the thyroid dose, as well as other organs of the body. This is why the TEDE is a more representative dose when discussing the impact of tritium. It is up to the end user to choose the dose which is to be used, with the understanding that each methodology has a different meaning.

Calculation No. WBNTSR-008	Rev: 11	Plant: WBN	Page: 22
Subject: Control Room Operator and Offsite Doses Due to a	Steam P	repared: mis	Date: (-14-19
Generator Tube Rupture	C	hecked: Hur	Date: 1.14.10

References

1. Westinghouse letter TVA-87-895 from T.A Lordi to H.L. Abercrombie dated 12/28/87, "Increased Radioactivity Release to the Environment Following Reactor Trip" RIMS# S00 880104 001

2a. TI-RPS-14 R0 "Containment Activity as a Function of Time for Various Combinations of Primary System Leak Rate and Fuel Damage" p.10-13 RIMS# NEB 810212 326

2b. "Study of Reactor Shutdown Radioactivity 'Spiking' at Three Mile Island Nuclear Power Station During February 20-21, 1976" J.E.Cline and E.D.Barefoot, July 1976

3. WBN Unit 1 Technical Specification 3.4.16 "Reactor Coolant System - Specific Activity" Amendment 31

4. WBN FSAR Table 11.1-2 Amendment 62 (transmitted to TVA by Westinghouse letter WAT-D-2139, March 8, 1976

5. WBN FSAR section 15.4.3 Amendment 62 (not used as design input)

6. WBN FSAR Table 15.5-18 (Attachment 3) Amendment 62 (not used as design input)

7. U.S. Nuclear Regulatory Commission Office of Nuclear Reactor Regulation Standard Review Plan, NUREG-0800 R2,

Part 15.6.3 "Radiological Consequences of Steam Generator Tube Failure (PWR)" July 1981

8. TID 14844 "Calculation of Distance Factors for Power and Test Reactor Sites", March 23, 1962

9. deleted in R7

10. N3-68-4001 R3 "System Description for the Reactor Coolant System" RIMS# T29 930225 855

11. "Thermodynamic Properties of Steam," 1st Edition, Keenan and Keyes, pp.33, 39, 74-75

12. TI-RPS-156 R0 "Effect of Zero Steam Generator Blowdown on Offsite Dose During Various Events" RIMS# B45 850711 235

13. TI-RPS-198 R17 "Dose to Control Room Personnel Due to a Regulatory Guide 1.4 Loss of Coolant Accident"

14. WBN CCD drawing 1-47W866-4 R20

15. Computer code COROD R6, code I.D.262347

16. Regulatory Guide 1.4 R2 "Assumptions Used for Evaluating the Potential Radiological Consequences of a Loss of Coolant Accident for Pressurized Water Reactors"

17. NTB Isotope Library, found in GENAPS3-018 R1 "NEB Isotope Library Verification"

18. WBN drawing 41N712-1 RD

19. WBN drawing 41N718-1 RE

20. WBN drawing 47W415-1 RH

21. WBN drawing 47W930-2 RP

22. WBN drawing 47W930-3 RP

23. WBN drawing 47W930-5 RE

24. WBN drawing 47W200-1 R11

25. Halitsky, James et.al., "Wind Tunnel Tests of Gas Diffusion From a Leak in the Shell of a Nuclear Power Reactor and from a Nearby Stack" Department of Meteorology and Oceanography Geophysical Sciences Laboratory Report No.63-2, New York University, April 1, 1963

26. deleted in R4

27. deleted R6

28. WAT-D-10336 February 27, 1997 "Draft Data Request for SGTR and SLB Events"

RIMS# T25 970306 824

29. WBNNAL3-003 R4 "Reactor Coolant and Secondary Side Activities in Accordance with ANSI/ANS-18.1-1984"

30. Computer code FENCDOSE R4, code I.D.262358

31. Computer code STP R6, code I.D.262165

32. Computer code PARINT R1, code I.D.262350

33. Technical Specification 3.4.13, Amendment 31

34. TI-RPS-197 R17 "Offsite Doses Due to a Regulatory Guide 1.4 Loss of Coolant Accident"

35. N3-30CB-4002 R6 "Control Building Heating, Ventilating, Air Conditioning, and Air Cleanup System"

36. WBN PER 01-000080-000

37. WBNAPS3-104 R0 "WBN Control Room X/Q"

38. 0-RE-90-125 R10 "Demonstrated Accuracy Calculation For Main Control Room Air Intake Radiation Monitor 0-RE-90-125,-126, and Emergency Air Intake Radiation Monitor 0-RE-90-205, -206"

Calculation No. WBNTSR-008	Rev: 11	Plant: WBN	Page: 23
Subject: Control Room Operator and Offsite Doses Due to a	Steam Pro	pared: MUB [Date: 1-14-10
Generator Tube Rupture	Ch	ecked: HUL C	Date: (.jd.)

39. N3-62-4001 R5 "System Description for Chemical and Volume Control System"

40. WBNAPS3-053 R3 "Steam Generator Leakage Detection with the Condenser Vacuum Pump Air Exhaust Monitor (1,2-RM-90-119)" RIMS# B45 880620 238

41. NSAL-00-004 "Nonconservatisms in Iodine Spiking Calculations"

42. Lederer and Shirley, "Table of Isotopes" seventh ed.

43. WBNNAL3-002 R2 "100-Day LOCA-DBA Source Terms for the EGTS and ABGTS Filters, Containment, Sump, and Shield Building Annulus" Note: this calculation is currently at R3, however the information is found in R2. 44. 1-47W866-4 R20

45a. WCAP-16286-P "Watts Bar Unit 1 Replacement Steam Generator Program NSSS Engineering Report", Jan.2005 45b. WCAP-16286-P R1 draft "Watts Bar Unit 1 Replacement Steam Generator Program NSSS Engineering Report" Sept.2005

46. Westinghouse letter WTV-RSG-05-100 dated May 31, 2005 "Submittal of Steam Generator Tube Rupture Dose Analysis Input" from S. Radomsky to Paul G. Trudel

47a. WBT-D-1015 "Steam Generator Tube Rupture Input to Dose Mass Transfer Data"

47b. LTR-CRA-09-153 R1 "Watts Bar Unit 2 Steam Generator Tube Rupture Input to Dose Mass Transfer Data for the Completion Project"

48. Unit 2 TS 3.4.13 Rev.A (developmental) "RCS Operational Leakage"

49. Unit 2 TS 3.4.16 Rev.A (developmental) "RCS Specific Activity"

50. Unit 2 TS 3.4.17 Rev.A (developmental) "Steam Generator (SG) Tube Integrity"

51. WBNAPS3-053 R2 "Steam Generator Leakage Detection with the Condenser Vacuum Pump Air Exhaust Monitor (1,2-RM-90-119)" note: this revision is out of date, however the pertinent data, the mass of water in a SG is relevant

Calculatio		WBNTS				Rev: 1		I	: WBN		ge: 24
Subject:	Control Re	oom Oper	ator and	Offsite Doses	Due to a	Steam	Pre	pared	MUS	Date:	1-14-10
	Generator	Tube Rup	oture				Che	cked:	HML	Date:	1.14.10
//TSR8S9A J //*MAIN ORG //JCL JCLLI // EXEC //GO.FT07F0 // SP // SP //GO.SYSIN1 % 4 MS= //GO.SYSIN2 CLASS	OB 264313, =KNXLCL01, STP,SOUT=' 01 DD DSN=: ACE=(TRK, (B= (RECFM=) DD * 2 DD *	9MBERG.BIN CLASS=MB PB.NEN.PS2 *' \$KBI988.TS 5,5)),UNIT FB,LRECL=8 CRIPTION	1111, MSGL 64460.PR 88899A.OU ALLOC, 0, BLKSIZ	T, DISP= (NEW, CA	SS=T	Ξ),					
5 1 5 2		NOBLE GAS	ES								
\$ 3 NI= 23 NK= 1KRM 83 2KRM 85 3KR 85 4KR 87 5KR 86 6KR 89 7XEM 131 8XEM 133 9XE 133 10XEM 135 11XE 135 12XE 138 12XE 138 131 131 14I 132 15I 133 16I 134 17I 135 18I* 131 19I* 132 20I* 133 21I* 134 22H 33 //GO.SYSIN3 1 'REACTOR 1 0.0 2 1. 7 6.54E-1 13 4.77E-2 18 0.0 19	COOLANT AN 71E-1 3 2.0 8 7.17E-2 9 14 2.25E-1	TRITIUM NL= 3 -04 10.0 -05 10.0 -09 29.8 -04 10.0 -07 10.0 -07 131.3 -06 152.0 -06 83.5 -04 174.8 -05 107.3 -04 174.8 -05 107.3 -04 10.0 -05 10.0 -	849E-06 039E-08 365E-07 656E-06 062E-06 818E-04 0000E+00 .1-1984 61E-1 5 10 1.39E -1 16 3.	10.0 10.0 10.0 10.0 10.0 10.0 10.0 181.3039E-08 202.0365E-07 159.0531E-06 224.8062E-06 172.4322E-05 10.0 10	10.0 222.43221 10.0 10.0 10.0 10.0 10.0 10.0 10.0 1	E-05 E+00					
1 0.0 2 3. 7 1.34E-7 13 1.41E-6 18 0.0 19 0 F STEAM GENER NJ= 4 1 'REACTOR	63E-8 3 5.3 8 1.54E-8 9 14 3.37E- 0.0 20 0 ATER TUBE H COOLANT'	51E-8 4 3. 9 5.25E-7 6 15 4.03E .0 21 0.0	22E-8 5 10 2.90E -6 16 2. 22 0.0	UCI/GM, WBNAPS 6.31E-8 6 0.0 -8 11 1.91E-7 93E-6 17 6.19F 23 9.84E-2	12,2.68E-8	3					
2 'STEAM GE 3 'STM GEN											
'ENVIRONM 1 NITIAL ACT 1 2.622E8 7 2 5.31E7	IVITY GM GM										1
7 3 1.593E8 7 4 1.0 6 1 1 3 2.6 6 2 2 0 1.6 6 2 3 0 4.9	22E2 65E6 96E6										I
5 2 2 3 5.3 5 2 3 3 1.5 5 1 1 1 7.6 5 1 1 2 4.3 5 1 2 0 7.0	93E2 20E3 86E4										

-	
	5 WA 1
	- 1/A 1
	8 72 1

Calculation No.	WBNTSR-008	Rev: 1	1	Plant	WBN	Pag	je: 25
	Room Operator and Offsite Doses Due to	a Steam	Pre	pared:	MB	Date:	1-14-10
-	or Tube Rupture		Ch	ecked:	HUL		1.14.10
F 1 3 0 7.098E4 A 4 176 SEC TIME TO 176 SEC 196.6 SEC TIME TO 196.6 SEC F 1 4 0 1.0486E8 F 2 4 0 2.516E7 F 2 4 2 2.516E5 F 3 4 0 1.254E8 F 3 4 2 1.254E6 N 4 0 P 1 0 4			•				
2208.5 SEC TIME TO 2208.5 SEC F 1 2 0 5.423E7 F 1 4 0 5.871E6 4670 SEC TIME TO 4670 SEC F 1 4 0 0.0 2 HR TIME TO 2 HOUR F 1 2 0 0.0							
N 4 0 P 1 0 4 8 HR TIME TO 8 HOUR F 2 4 0 2.6837E6 F 2 4 2 2.6837E4 F 3 4 0 6.993E7 F 3 4 2 6.993E5 N 4 0 P 1 0 4					·		
Г Г /*							
ч.	· .						
·							

Calculatio	on No.	WBNTSR-008			Rev: 1	1	Plant	: WBN	Pa	ge: 26
- 		oom Operator ar	d Offsite Doses	Due to a	Steam	Pre	pared	KU3	Date:	1-14-10
	Generator	Tube Rupture				Che	ecked:	Hur	Date:	1.14.10
//TSR859B J //*MAIN ORG //JCL JCLLI	- OB 264313, 	PB.NEN.PS264460.	GLEVEL=1, MSGCLAS	•						
//GO.FT07F0 // SP // DC //GO.SYSIN1 NV= 4 MS= //GO.SYSIN2 \$ CLASS \$ 1 \$ 2 \$ 3	01 DD DSN= PACE=(TRK,(B=(RECFM= DD * 2 DD *	\$KB1988.TSR8S9B. 5,5)),UNIT=ALLOC FB,LRECL=80,BLKS CRIPTION NOBLE GASES IODINE TRITIUM	,	ATLG, DELET	Ε),					
1KRM 83 2KRM 85 3KR 85 4KR 87 5KR 88 6KR 89 7XEM 131 8XEM 133 9XE 133 10XEM 135 11XE 135 12XE 138 13I 131 14I 132 15I 133 16I 134 17I 135 18I* 131 19I* 132 20I* 133	1 1.0352E 1 4.2978E 1 2.0470E 1 1.5141E 1 6.8765E 1 3.6328E 1 6.7414E 1 3.5656E 1 3.5656E 1 7.3816E 1 8.1528E 2 9.9536E 4 8.4448E 5 9.2568E 7 2.9129E 2 9.9536E 4 8.4448E 5 9.2568E 4 8.4448E 5 9.2568E 4 8.4448E 5 9.2568E 6 2.1963E	-04 10.0 -05 10.0 -09 29.8849E-0 -04 10.0 -05 10.0 -07 131.3039E-0 -06 152.0365E-0 -06 152.0365E-0 -06 83.5656E-0 -04 174.8062E-0 -05 107.3818E-0 -04 10.0 -05 10.0 -06 10.0 -07 10.0 -05 10.0 -04 10.0 -05 10.0 -06 10.0 -07 10.0 -06 10.0 -07 10.0	10.0 10.0 8 181.3039E-08 7 202.0365E-07 6 159.0531E-06 6 224.8062E-06						· ·	• •
221* 135 23H 3 //GO.SYSIN3 1 'REACTOF 1 0.0 2 1. 7 6.54E-1 13 4.77E-2 18 0.0 19 0	7 2.9129E 3 1.7785E 3 D * COOLANT P 71E-1 3 2. 8 7.17E-2 2 14 2.25E- 0.0 20 0	-05 10.0 -09 10.0000E+0 NS/ANSI-18.1-198 66E-1 4 1.61E-1 9 2.53E0 10 1.3 1 15 1.49E-1 16 0.0 21 0.0 22 0	10.0 0 10.0000E+00 4 UCI/GM, WBNAPS 5 3.00E-1 6 0.0 9E-1 11 9.04E-1 3.64E-1 17 2.78E .0 23 9.84E1	10.0 10.0000 s3-003 R3' 12 1.29E- E-1						
1 0.0 2 3. 7 1.34E-7 13 1.41E-6	63E-8 3 5. 8 1.54E-8 5 14 3.37E-	NS/ANSI-18.1-198 51E-8 4 3.22E-8 9 5.25E-7 10 2.9 -6 15 4.03E-6 16 0.0 21 0.0 22 0	5 6.31E-8 6 0.0 0E-8 11 1.91E-7 2.93E-6 17 6.19H	12 2.68E-	8					
STEAM GENEF NJ= 4 1 'REACTOR 2 'STEAM GE 3 'STM GEN 4 'ENVIRONM -1 INITIAL ACT V 1 2.62288 V 2 5.31E7 V 3 1.59388 V 4 1.0	COOLANT' EN FAULTED' UNFAULTED' ENT' TVITY GM GM GM GM GM									
	565E6 996E6 91E1 593E2 520E3 534E2 1 1 4	4 5.534E2 1 1 5 5 4 1.166E5 1 1 5 4								

· 15*

Subject: Control Room Operator and Offsite Doses Due to a St Generator Tube Rupture 1 2 0 7.0217E7 1 3 0 7.098E4 4 76 SEC IME T0 176 SEC 96.6 SEC 1 4 0 1.0486E8 2 4 0 2.516E5 2 4 1 2.516E7 2 4 3 2.516E7 3 4 0 1.254E6 3 4 1 1.254E8 3 4 3 1.254E8 4 0 1 0 4 208.5 SEC IME T0 2208.5 SEC 1 4 0 5.871E6 670 SEC IME T0 4670 SEC IME T0 2 HOUR 1 2 0 0.0 HR IME T0 8 HOUR 1 2 4 0 2.6837E4 2 4 3 2.6837E6 3 4 0 6.993E5 1 3 1.254E8	team Pre Che	pared: /	v vo De	ate: 1-19-10 ate: 1.14.10
1 2 0 7.0217E7 1 3 0 7.098E4 4 76 SEC IME TO 176 SEC 96.6 SEC IME TO 196.6 SEC 1 4 0 1.0486E8 2 4 0 2.516E5 2 4 1 2.516E7 2 4 3 2.516E7 3 4 0 1.254E6 3 4 0 1.254E8 3 4 3 1.254E8 4 0 1 0 4 208.5 SEC IME TO 2208.5 SEC 1 2 0 5.423E7 1 4 0 5.871E6 670 SEC IME TO 2 HOUR 1 2 0 0.0 HR IME TO 2 HOUR 1 2 0 0.0 HR IME TO 8 HOUR 2 4 0 2.6837E4 2 4 1 2.6837E6 2 4 3 2.6837E6 3 4 0 6.993E5	Che	ecked: µ		
1 3 0 7.098E4 4 76 SEC IME TO 176 SEC 96.6 SEC IME TO 196.6 SEC 1 4 0 1.0486E8 2 4 0 2.516E7 2 4 3 2.516E7 3 4 0 1.254E6 3 4 1 1.254E8 3 4 3 1.254E8 4 0 1 0 4 208.5 SEC IME TO 2208.5 SEC 1 2 0 5.423E7 1 4 0 5.871E6 670 SEC IME TO 2 HOUR 1 2 0 0.0 HR IME TO 2 HOUR 1 2 0 0.0 HR IME TO 2 HOUR 1 2 0 0.0 HR IME TO 8 HOUR 2 4 0 2.6837E4 2 4 1 2.6837E6 2 4 3 2.6837E6 3 4 0 6.993E5				
1 3 0 7.098E4 4 76 SEC IME TO 176 SEC 96.6 SEC IME TO 196.6 SEC 1 4 0 1.0486E8 2 4 0 2.516E7 2 4 3 2.516E7 3 4 0 1.254E6 3 4 1 1.254E8 3 4 3 1.254E8 4 0 1 0 4 208.5 SEC IME TO 2208.5 SEC 1 2 0 5.423E7 1 4 0 5.871E6 670 SEC IME TO 2 HOUR 1 2 0 0.0 HR IME TO 2 HOUR 1 2 0 0.0 HR IME TO 2 HOUR 1 2 0 0.0 HR IME TO 8 HOUR 2 4 0 2.6837E4 2 4 1 2.6837E6 2 4 3 2.6837E6 3 4 0 6.993E5				
4 76 SEC IME TO 176 SEC 96.6 SEC IME TO 196.6 SEC 1 4 0 1.0486E8 2 4 0 2.516E5 2 4 1 2.516E7 2 4 3 2.516E7 3 4 0 1.254E6 3 4 1 1.254E8 3 4 3 1.254E8 4 0 1 0 4 208.5 SEC IME TO 2208.5 SEC 1 2 0 5.423E7 1 4 0 5.871E6 670 SEC IME TO 4 670 SEC 1 4 0 0.0 HR IME TO 2 HOUR 1 2 0 0.0 4 0 1 0 4 HR IME TO 8 HOUR 2 4 0 2.6837E4 2 4 1 2.6837E6 2 4 3 2.6837E6 3 4 0 6.993E5				
76 SEC IME TO 176 SEC 96.6 SEC IME TO 196.6 SEC 1 4 0 1.0486E8 2 4 0 2.516E5 2 4 1 2.516E7 2 4 3 2.516E7 3 4 0 1.254E6 3 4 1 1.254E8 3 4 3 1.254E8 4 0 1 0 4 208.5 SEC IME TO 2208.5 SEC 1 2 0 5.423E7 1 4 0 5.871E6 670 SEC IME TO 2 HOUR 1 2 0 0.0 HR IME TO 2 HOUR 1 2 0 0.0 HR IME TO 8 HOUR 2 4 0 2.6837E4 2 4 0 2.6837E6 2 4 3 2.6837E6 3 4 0 6.993E5	·			
<pre>IME TO 176 SEC 96.6 SEC IME TO 196.6 SEC 1 4 0 1.0486E8 2 4 0 2.516E5 2 4 1 2.516E7 2 4 3 2.516E7 3 4 0 1.254E6 3 4 1 1.254E8 3 4 3 1.254E8 4 0 1 0 4 208.5 SEC IME TO 2208.5 SEC 1 2 0 5.423E7 1 4 0 5.871E6 670 SEC IME TO 4670 SEC 1 4 0 0.0 HR IME TO 2 HOUR 1 2 0 0.0 4 0 1 0 4 HR IME TO 8 HOUR 2 4 0 2.6837E4 2 4 1 2.6837E6 2 4 3 2.6837E6 3 4 0 6.993E5</pre>				
96.6 SEC IME TO 196.6 SEC 1 4 0 1.0486E8 2 4 0 2.516E5 2 4 1 2.516E7 2 4 3 2.516E7 3 4 0 1.254E6 3 4 1 1.254E8 3 4 3 1.254E8 4 0 1 0 4 208.5 SEC IME TO 2208.5 SEC 1 2 0 5.423E7 1 4 0 5.871E6 670 SEC IME TO 4670 SEC 1 4 0 0.0 HR IME TO 2 HOUR 1 2 0 0.0 4 0 1 0 4 HR IME TO 8 HOUR 2 4 0 2.6837E4 2 4 1 2.6837E6 2 4 3 2.6837E6 3 4 0 6.993E5				
1 4 0 1.0486E8 2 4 0 2.516E5 2 4 1 2.516E7 2 4 3 2.516E7 3 4 0 1.254E6 3 4 1 1.254E8 3 4 3 1.254E8 4 0 1 0 4 208.5 SEC IME TO 2208.5 SEC 1 2 0 5.423E7 1 4 0 5.871E6 670 SEC IME TO 4670 SEC 1 4 0 0.0 HR IME TO 2 HOUR 1 2 0 0.0 4 0 1 0 4 HR IME TO 8 HOUR 2 4 0 2.6837E4 2 4 0 2.6837E6 2 4 3 2.6837E6 3 4 0 6.993E5				
2 4 0 2.516E5 2 4 1 2.516E7 2 4 3 2.516E7 3 4 0 1.254E6 3 4 1 1.254E8 3 4 3 1.254E8 4 0 1 0 4 208.5 SEC IME TO 2208.5 SEC 1 2 0 5.423E7 1 4 0 5.871E6 670 SEC IME TO 4670 SEC IME TO 4670 SEC 1 4 0 0.0 HR IME TO 2 HOUR 1 2 0 0.0 4 0 1 0 4 HR IME TO 8 HOUR 2 4 0 2.6837E4 2 4 0 2.6837E6 2 4 3 2.6837E6 3 4 0 6.993E5				
2 4 1 2.516E7 2 4 3 2.516E7 3 4 0 1.254E6 3 4 1 1.254E8 3 4 3 1.254E8 4 0 1 0 4 208.5 SEC IME TO 2208.5 SEC 1 2 0 5.423E7 1 4 0 5.871E6 670 SEC IME TO 4670 SEC 1 4 0 0.0 HR IME TO 2 HOUR 1 2 0 0.0 4 0 1 0 4 HR IME TO 8 HOUR 2 4 0 2.6837E4 2 4 0 2.6837E6 2 4 3 2.6837E6 3 4 0 6.993E5				
3 4 0 1.254E6 3 4 1 1.254E8 3 4 3 1.254E8 4 0 1 0 4 208.5 SEC IME TO 2208.5 SEC 1 2 0 5.423E7 1 4 0 5.871E6 670 SEC IME TO 4670 SEC 1 4 0 0.0 HR IME TO 2 HOUR 1 2 0 0.0 HR IME TO 2 HOUR 1 2 0 0.0 HR IME TO 8 HOUR 2 4 0 2.6837E4 2 4 1 2.6837E6 2 4 3 2.6837E6 3 4 0 6.993E5				
3 4 1 1.254E8 3 4 3 1.254E8 4 0 1 0 4 208.5 SEC IME TO 2208.5 SEC 1 2 0 5.423E7 1 4 0 5.871E6 670 SEC IME TO 4670 SEC 1 4 0 0.0 HR IME TO 2 HOUR 1 2 0 0.0 HR IME TO 2 HOUR 1 2 0 0.0 HR IME TO 8 HOUR 2 4 0 2.6837E4 2 4 1 2.6837E6 2 4 3 2.6837E6 3 4 0 6.993E5				
4 0 1 0 4 208.5 SEC IME TO 2208.5 SEC 1 2 0 5.423E7 1 4 0 5.871E6 670 SEC IME TO 4670 SEC 1 4 0 0.0 HR IME TO 2 HOUR 1 2 0 0.0 4 0 1 0 4 HR IME TO 8 HOUR 2 4 0 2.6837E4 2 4 0 2.6837E6 2 4 3 2.6837E6 3 4 0 6.993E5				
1 0 4 208.5 SEC IME TO 2208.5 SEC 1 2 0 5.423E7 1 4 0 5.871E6 670 SEC IME TO 4670 SEC 1 4 0 0.0 HR IME TO 2 HOUR 1 2 0 0.0 4 0 1 0 4 HR IME TO 8 HOUR 2 4 0 2.6837E4 2 4 0 2.6837E6 2 4 3 2.6837E6 3 4 0 6.993E5				
208.5 SEC IME TO 2208.5 SEC 1 2 0 5.423E7 1 4 0 5.871E6 670 SEC IME TO 4670 SEC 1 4 0 0.0 HR IME TO 2 HOUR 1 2 0 0.0 4 0 1 0 4 HR IME TO 8 HOUR 2 4 0 2.6837E4 2 4 0 2.6837E6 2 4 3 2.6837E6 3 4 0 6.993E5				
IME TO 2208.5 SEC 1 2 0 5.423E7 1 4 0 5.871E6 670 SEC IME TO 4670 SEC 1 4 0 0.0 HR IME TO 2 HOUR 1 2 0 0.0 4 0 1 0 4 HR IME TO 8 HOUR 2 4 0 2.6837E4 2 4 1 2.6837E6 2 4 3 2.6837E6 3 4 0 6.993E5				
1 4 0 5.871E6 670 SEC IME TO 4670 SEC 1 4 0 0.0 HR IME TO 2 HOUR 1 2 0 0.0 4 0 1 0 4 HR IME TO 8 HOUR 2 4 0 2.6837E4 2 4 0 2.6837E6 2 4 3 2.6837E6 3 4 0 6.993E5	·			
670 SEC IME TO 4670 SEC 1 4 0 0.0 HR IME TO 2 HOUR 1 2 0 0.0 4 0 1 0 4 HR IME TO 8 HOUR 2 4 0 2.6837E4 2 4 0 2.6837E6 2 4 3 2.6837E6 3 4 0 6.993E5				
IME TO 4670 SEC 1 4 0 0.0 HR IME TO 2 HOUR 1 2 0 0.0 4 0 1 0 4 HR IME TO 8 HOUR 2 4 0 2.6837E4 2 4 0 2.6837E6 2 4 3 2.6837E6 3 4 0 6.993E5				
1 4 0 0.0 HR IME TO 2 HOUR 1 2 0 0.0 4 0 1 0 4 HR IME TO 8 HOUR 2 4 0 2.6837E4 2 4 1 2.6837E6 2 4 3 2.6837E6 3 4 0 6.993E5				
HR IME TO 2 HOUR 1 2 0 0.0 4 0 1 0 4 HR IME TO 8 HOUR 2 4 0 2.6837E4 2 4 1 2.6837E6 2 4 3 2.6837E6 3 4 0 6.993E5				
IME TO 2 HOUR 1 2 0 0.0 4 0 1 0 4 HR IME TO 8 HOUR 2 4 0 2.6837E4 2 4 1 2.6837E6 2 4 3 2.6837E6 3 4 0 6.993E5				
1 2 0 0.0 4 0 1 0 4 HR IME TO 8 HOUR 2 4 0 2.6837E4 2 4 1 2.6837E6 2 4 3 2.6837E6 3 4 0 6.993E5				
4 0 1 0 4 HR IME TO 8 HOUR 2 4 0 2.6837E4 2 4 1 2.6837E6 2 4 3 2.6837E6 3 4 0 6.993E5				
HR IME TO 8 HOUR 2 4 0 2.6837E4 2 4 1 2.6837E6 2 4 3 2.6837E6 3 4 0 6.993E5				
IME TO 8 HOUR 2 4 0 2.6837E4 2 4 1 2.6837E6 2 4 3 2.6837E6 3 4 0 6.993E5				
2 4 0 2.6837E4 2 4 1 2.6837E6 2 4 3 2.6837E6 3 4 0 6.993E5				
2 4 1 2.6837E6 2 4 3 2.6837E6 3 4 0 6.993E5				
3 4 0 6.993E5				
3 4 1 6,993E7 3 4 3 6,993E7				
4 0				
104				
*				

.

Calculatio	n No.	WBNTSR-008		Rev: 1	1 P	lant: WBN	Pag	je: 28
			nd Offsite Doses Due to	a Steam	Prepa	red: mus	Date:	1-14-10
- (Generato	r Tube Rupture				red: HML	Date:	1.14.10
· · · · · · · · · · · · · · · · · · ·	<u></u>			·····	J			
oppendix C: 1	Example of	f COROD Model (A	RCON96 X/Q)					
			MSGLEVEL=1,MSGCLASS=T					
//*MAIN ORG= //JCL JCLLIH		CLASS=SB APB.NEN.EX262358	PROCLIB)					
/STEP1 EXEC	CORODV6,	COND = (4, LT)	,					
/COROD1.FTC IT= 23 NF		* P= 6 FACT= 1.0						
OROD-WBN MH	A FINAL A	ABSCE			S			
		5 KR 87 KR 88 133 XEM 135 XH						
		I 134 I 135 A	1111 XE 110					
		33 I* 134 I* 13						
4 'ENVIF 1 0.	RONMENT	2 2.963E+00	' \$ TN= 0.5461E-01 3 4.646E+00 4 2.734	E+00 5	5.174E+0	0		
6 0		7 1.142E+01	8 1.252E+00 9 4.418	E+01 10	2.710E+0	0		
	.583E+01	12 1.936E+00	13 4.717E+00 14 2.190		1.471E+0	1		
16 3. 21 0.	455E+01	17 2.734E+01 22 0.0	18 0.0 19 0.0 23 5.921E+01	20	0.0			
	RONMENT		' \$ TN= 0.2000E+01					-
10.		2 1.360E+02 7 6.129E+02	3 2.500E+02 4 8.650	· · · · · · · · · · · · · · · · · · ·	2.166E+0 2.633E+0			
60. 119.	.0 .076E+02	12 1.385E+01	8 6.672E+01 9 2.369 13 2.748E+01 14 1.140		8.468E+0			
16 1.	.534E+02	17 1.531E+02	18 0.0 19 0.0		0.0			
21 0. 4 'ENVIE		22 0.0	23 3.194E+03 '\$ TN= 0.8000E+01					
1 0	RONMENT	2 2.125E+01	3 6.768E+01 4 4.318	E+00 5	2.504E+0	1		
60	.0	7 1.645E+02	8 1.763E+01 9 6.367		9.654E+0			
	.241E+02 .152E-01	12 5.927E-03 17 5.877E+00	13 1.694E+00 14 1.917 18 0.0 19 0.0		4.524E+0 0.0	0		
21 (22 0.0	23 8.644E+02	20	0.0			
	RONMENT	CURIES	' \$ TN= 0.2400E+02					
	0.000E+00	2 0.000E+00 7 0.000E+00	3 0.000E+00 4 0.00 8 0.000E+00 9 0.00		0.000E+ 0.000E+		•	
	0.000E+00	12 0.000E+00	13 0.000E+00 14 0.00		0.000E+			
	0.000E+00	17 0.000E+00	18 0.000E+00 19 0.00	0E+00 20	0.000E+	00		
-	D.000E+00 ERONMENT	22 0.000E+00 CURIES	23 0.000E+00 '\$ TN= 0.9600E+02					
	0.000E+00	2 0.000E+00	3 0.000E+00 4 0.00		0.000E+			
	0.000E+00	7 0.000E+00	8 0.000E+00 9 0.00		0.000E+			
	0.000E+00	12 0.000E+00 17 0.000E+00	13 0.000E+00 14 0.00 18 0.000E+00 19 0.00		0.000E+ 0.000E+			
21 (0.000E+00	22 0.000E+00	23 0.000E+00					
	IRONMENT	CURIES 2 0.000E+00	'\$ TN≕ 0.7200E+03 3 0.000E+00 4 0.00	05+00 5	0.000E+	00		
	0.000E+00	7 0.000E+00	8 0.000E+00 9 0.00		0.000E+			
	0.000E+00	12 0.000E+00	13 0.000E+00 14 0.00		0.000E+			
	D.000E+00		18 0.000E+00 19 0.00 23 0.000E+00	06+00 20	0.000E+	-00		
1.03E-03 4	.03E-03 3	3.35E-03 2.27E-0	04 1.81E-04 1.45E-04					
	4 21600.0	57600.0 2592	00.0 2246400.0					
200.0 51.0 11.0 51.0								
11.0 51.0								
11.0 51.0 11.0 51.0								
11.0 51.0								
		0.0 0.0 3200.0						
		70 0.99 0.0 21 70 0.99 0.0 21						
.95 0.70	0.95 0.7	70 0.99 0.0 21						
			389.0					
		70 0.99 0.0 20 440.0 5760.0 25						
.2492 0.63	0.8352							
) 9.0 4.0 161.0 2	22.5 4.0 0.0 NEL DUE TO SHINE THROUGH	ROOF				
) 500.0 500.0 -16.0					
ADJACENT DOS	SE TO CONT	TROL ROOM PERSON	NEL DUE TO SHINE FROM AU		;			
			.0 75.0 -25.5 3.0 NEL DUE TO SHINE FROM TO	BRINE BLDG	<u>.</u>			
			161.0 56.0 -25.5 3.(
			VEL DUE TO SHINE FROM SI					

Calculation No. WBNTSR-008	Rev: 11	Plant: WBN	Page: 29
Subject: Control Room Operator and Offsite Doses Due to a	Steam Pre	epared: MV3 C	Date: 1-14-10
Generator Tube Rupture	Ch	ecked: HAL	Date: 1.14.10

322.0 45.0 26.0 32.0 9.0 5.0 22.5 161.0 -4.67 0.67 ADJACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM CR BLDG END 18.0 45.0 460.0 10.0 10.0 100.0 4.0 22.5 -25.5 3.0 ADJACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM CR BLDG END 18.0 45.0 460.0 10.0 10.0 100.0 4.0 22.5 -25.5 3.0 /*

Calculation No	D. W	BNTSR-008			Rev: 1	1	Plant:	WBN	Pag	je: 30
Subject: Conf	rol Roor	n Operator an	d Offsite Doses	Due to a	Steam	Pre	pared:	MVB	Date:	1-14-10
Gene	erator Tu	ibe Rupture				Che	ecked:	HUL	Date:	1.19.10
				·····				- M.:	<u></u>	
Appendix D: Exam	ple of FE	NCDOSE Mode	1							
//TSR8F9A JOB 26 //*MAIN ORG=KNXL //JCL JCLLIB ORE //STEP1 EXEC FNC	CL01,CLA DER=(APB.	SS=SB NEN.EX262358.1		LASS=T						
//FNCDOS1.FT05F0	01 DD *		•							
1 KRM-83 KRM-85	KR-85									
	KR-89	TH 105 WE 105	WB 100							
XEM-131 XEM-133 I-131 I-132	XE-133 X I-133 I		XE-138							
I*-131 I*-132 T			H-3							
.141E-3 .668E-4			535E-5 6.07E-4							
STEAM GENERATER TIME TO 196.6 SE		TURE ACCIDENT								
4 'ENVIRONM	-		'\$ TN= 0.54	461E-01						
1 0.0		2 2.963E+00	3 4.646E+00	4 2.734E		5.17				
6 0.0 11 1.583		7 1.142E+01 2 1.936E+00	8 1.252E+00 13 4.717E+00	9 4.418E 14 2.190E		2.71				
16 3.455		7 2.734E+01	18 0.0	19 0.0		0.0	10.01			
21 0.0		2 0.0	23 5.921E+01							
STEAM GENERATER TIME TO 2 HOUR	TUBE RUP	TURE ACCIDENT								
4 'ENVIRONM	ENT		'\$ TN= 0.20	000E+01						
1 0.0		2 1.360E+02	3 2.500E+02	4 8.656E		2.16				
6 0.0		7 6.129E+02	8 6.672E+01	9 2.369E		2.63				
11 9.076 16 1.534		2 1.385E+01 7 1.531E+02	13 2.748E+01 18 0.0	14 1.140E 19 0.0		8.46	BE+01			
21 0.0		2 0.0	23 3.194E+03	19 0.0	20	0.0				
STEAM GENERATER	TUBE RUP	TURE ACCIDENT								
TIME TO 8 HOUR 4 'ENVIRONM	IE NO		'\$ TN= 0.80	005+01						
4 ENVIRONM 1 0.0		2 2.125E+01	3 6.768E+01	4 4.318E	+00 5	2.50	4E+01			
6 0.0		7 1.645E+02	8 1.763E+01	9 6.367E		9.65				
11 3.241		2 5.927E-03	13 1.694E+00	14 1.917E		4.52	4E+00			
16 5.152		7 5.877E+00	18 0.0 23 8.644E+02	19 0.0	20	0.0				
21 0.0 WBN SGTR	2	2 0.0	23 8.0446402							
TIME TO 1 DAY										
-6 'ENVIRONM		CURIES	'\$ TN= 0.24							
1 0.000 6 0.000		2 0.000E+00 7 0.000E+00	3 0.000E+00 8 0.000E+00	4 0.000E 9 0.000E		0.00				
11 0.000		2 0.000E+00	13 0,000E+00	14 0.000E		0.00				
16 0.000				19 0.000E		0.00				
21 0.000	E+00 2	2 0.000E+00	23 0.000E+00							
WBN SGTR										
TIME TO 4 DAYS -6 'ENVIRONM	TENT	CURIES	'\$ TN= 0.96	500F+02						
1 0.000		2.0.000E+00	3 0.000E+00	4 0.000E	+00 5	0.00	0E+00			
6 0.000		7 0.000E+00	8 0.000E+00	9 0.000E		0.00				
11 0.000		2 0.000E+00	13 0.000E+00			0.00				
16 0.000 21 0.000		7 0.000E+00 2 0.000E+00	18 0.000E+00 23 0.000E+00	19 0.000E	+00 20	0.00	06+00			
WBN SGTR	2.00 2	2 0.0000000000								
TIME TO 30 DAYS										
-6 'ENVIRONM		CURIES	' \$ TN= 0.72							
1 0.000 6 0.000		2 0.000E+00 7 0.000E+00	3 0.000E+00 8 0.000E+00	4 0.000E 9 0.000E		0.00				
11 0.000			13 0.000E+00	9 0.000E		0.00				
16 0.000		7 0.000E+00	18 0.000E+00	19 0.000E		0.00				
21 0.000	E+00 2	2 0.000E+00	23 0.000E+00							

Calculation No. WBNTSR-008	Rev: 11	Plant: WBN	Page: 31
Subject: Control Room Operator and Offsite Doses Due to a	Steam Pre	pared: Mis D	ate: 1-14-10
Generator Tube Rupture	Ch	ecked: Hul D	ate: 1.14.10

Appendix E: Determination of Letdown Flow Uncertainty

The purpose of this appendix is to determine bounding errors for the measurements performed on the orifice restrictor flows using the Letdown Heat Exchanger Flow loop (1-F-62-82) during Preop Test Instruction PTI-062-03 R0.

Following these tests, a loop check was performed for the computer point F0134A by injecting a signal into the transmitter and reading the display on the computer. To determine the total loop error, the unmeasurable errors must be combined with the errors present at the time of the loop check.

WBN NESSD 1-F-62-1 will be used as a guide for determining the unmeasurable errors for loop 1-F-62-82 since it contains the same model flow element and a similar model transmitter. According to EMPAC, the flow element is a Vickery Simms Model MK-52 and the transmitter is a Foxboro E-13DM.

Millers Flow Measurement Engineering Handbook, Third Edition, Chapter 6, Table 6.1 states that Square Edged orifice flowmeters have an accuracy of \pm 1-2%URV (upper range value) of the flow rate. A value of \pm 2% will be used for the orifice.

The loop check performed by WO 94-14264-10 (following pages) gives as found data. The largest error at 50 GPM was 1.36 GPM (50 - 48.64) or 0.68% CS (1.36/200 = 0.68%). The largest error at 100 GPM was 0.48 GPM (100 - 99.52) or 0.24% CS (0.48/200 = 0.24%). The largest error at 150 GPM was 0.06 GPM (150 - 149.94) or 0.03% CS (0.06/200 = 0.03%).

Since the plant had not been started at the time of these tests, radiation was not present and need not be considered. Errors for temperature and power supply effect will need to be included. Since there is no data on actual temperature conditions, an enveloping value must be used. Environmental drawing 47E235-46 R5 gives the max abnormal temperature range as 50 - 110 °F for coordinates UA6 / El 737 where the transmitter is located per EMPAC. The transmitter is a model E-13DM per EMPAC. The product specification sheets (following pages) give the ambient temperature effect as $\pm 1\%$ per 50 °F for any span between 200 to 850" water. The transmitter will normally be calibrated at room temperature which will be between 60 and 80 °F. A temperature shift of + or - 50 °F will encompass the temperature changes seen by the transmitter. Therefore for a temperature range of ± 50 °F, the temperature effect will be $\pm 1\%$ CS d/p. The power supply effect is given as 0.1% CS for a 10% change in voltage. Thus Power supply effect is 0.1% CS d/p.

All errors for the computer should be reflected in the loop check.

Calculation No. WBNTSR-008	Rev: 11	Plant: WBN	Page: 32
Subject: Control Room Operator and Offsite Doses Due to a	Steam P	repared: MC3	Date: 1-14-10
Generator Tube Rupture	С	hecked: HM	Date: 1.14.0

Utilizing Equation 3-24.8 of <u>W</u> WCAP-12096, Rev. 8 "Westinghouse Setpoint Methodology for Protection Systems, Watts Bar Units 1 and 2, Eagle 21 Version," the unmeasured transmitter errors can be converted from percent error in full scale d/p to error in percent full span at a specified point, where Fm is the maximum flow rate of 200 GPM, and Fn is the nominal flow rate (i.e. 50, 100 or 150 GPM).

EPFS (Flow) =	(Ax _{xx} /	2) * (Fm / Fn)
Temper(Flow)@50GPM	=	$(\text{Temp}_{err} (d/p) / 2) * (200 / 50) = \pm 2\% \text{ CS Flow}$
Temper(Flow)@100GPM	=	$(\text{Temp}_{err} (d/p) / 2) * (200 / 100) = \pm 1\% \text{ CS Flow}$
Temperr(Flow)@150GPM	=	$(\text{Temp}_{err} (d/p) / 2) * (200 / 150) = \pm 0.67\% \text{ CS Flow}$
pwr supper(Flow)@50GPM	=	(pwr supp _{err} (d/p) / 2) * (200 / 50) ≈ ± 0.2% CS Flow
pwr supper(Flow)@100GPM	=	$(pwr supp_{err} (d/p) / 2) * (200 / 100) = \pm 0.1\% CS Flow$
pwr supperr(Flow)@150GPM		$(pwr supp_{err} (d/p) / 2) * (200 / 150) = \pm 0.067\% CS Flow$

Thus total loop error = $(FE_{err}^2 + Loop check_{err}^2 + Temp_{err} (Flow)^2 + pwr supp_{err} (Flow)^2)^{0.5}$ Total loop error @ 50 GPM = $(2^2 + 0.68^2 + 2^2 + 0.2^2)^{0.5} = \pm 2.92\%$ CS = ± 5.84 GPM Total loop error @ 100 GPM = $(2^2 + 0.24^2 + 1^2 + 0.1^2)^{0.5} = \pm 2.25\%$ CS = ± 4.5 GPM Total loop error @ 150 GPM = $(2^2 + 0.03^2 + 0.67^2 + 0.067^2)^{0.5} = \pm 2.11\%$ CS = ± 4.22 GPM

Total loop error at 120 GPM can be determined by linear interpolation between 100 and 150 GPM. The value will be conservative since the error is nonlinear and is a function of the square root of the d/p values above and the actual loop recorded values which also follow a square root curve.

Total loop error @ 120 GPM = \pm error @ 100 GPM + 20(error @ 150 GPM - error @ 100 GPM) / (150 - 100) Total loop error @ 120 GPM = \pm [4.5 GPM + 20(4.22 - 4.5)/50] = \pm [4.5 GPM + (-0.11)] = \pm 4.39 GPM

The following references were used in preparation of this appendix. Revisions to these references will not impact this appendix; so the references are 'information only' in lieu of 'design input'.

- 1 WBN NESSD 1-F-62-1 R1 (Methodology & guidance)
- 2 EMPAC (Manufacturer, Model number and location)
- 3 Millers Flow Engineering Handbook, Third Edition, Chapter 6, Table 6.1 (Orifice accuracy)
- 4 WO 94-14264-10 (loop check data) see next page
- 5 Drawing 47E235-46 R5 (environmental data)
- 6 Foxboro product specification sheets (transmitter accuracy data) see next pages
- 7 WCAP-12096 R 8 (methodology for converting d/p error to flow error)

Prepared	Lynn Cowan	Date	6/4/01	
Checked	D.L.Kirby	Date	6-28-01	(original signed in R8)

TVA

Calculation No.	VBNTSR-008	R	ev: 11	Plant: WBN	Page: 33
Subject: Control Roo	m Operator and Offsite Dose	s Due to a St	eam	Prepared: MB	Date: (-14-10
Generator T	ube Rupture			Checked: YML	Date: (.14.10
Supporting documents for Ap	pendix E:				
				· · · ·	
	· · · · · ·				
	WORK ORDER FOR			PAGE OF ID	
WO NO: 94-14264-10 0	RIGINATION DATE: 06/22/94		Alian and and		
RF NO: C254025					
ORIGINATOR: JAMES R R	IVERS	EXTENSION: 1	181 .	PRIORITY: 3C	
EQUIPMENT IDENTIFIER EQUIPMENT DESCRIPTION	: WBN-1-LPF-062-0082- : Excess Letdown HTX Flow	N	•		1
EQUIPMENT CATEGORY :	QR SR 1E				
TYPE OF MAINTENANCE:	OTHER MAINTENANCE				
	PERFORM POST TEST CALIBRA INSTRUMENTS LISTED ON THE ACCEPTANCE CRITERIA	E WR LARD R	62, 70) £ PTI-	68	
JOB LOCATION :	VARIOUS LOCATIONS, SEE SS A100 - AB ALL AUXILIARY B	5D	IERAL A	REA	
WORK DESCRIPTION :	PERFORM POST TEST CALIBRA AS REQUIRED, FOR PTI-062-	TION OF 1-I	.PF-062	-0082,	
LCO: YES [] NO [X] L SECT XI R/R: YES [] RWP REQ : YES []	ENGTH: NO [X] NPRDS: YES [] N NO [X] RHP #:		 A: yes	[] NO [X]	
SPECIFIC REQUIREMENTS	: NONE U/				
TAGGING REQ: YES [] : SCAFFOLD : YES [] :	NO [X] H.O. #: NO [X] INSUL: YES [] N	SHUTDOW	N: YES	[] NO [X]	
PERMITS REQ: NONE	(A) 18000. ILS () A	V [A]		×	
			• .		
DISCIPLINE: MIG EST HOURS : 4.0 PRE-MAINT TEST REQ. :	NONE			0 MAN HOURS 0 Hours	
POST-MAINT TEST REQ.;	SEE WORK INSTRUCTIONS				
		·			
PLANNER: Viene Rin	SIGNATURES AND DA	TE			
TECH REVIEW:	<u>444 6-22-94</u>				1
COG SUPV:	in 10-72-94	- NR	·····		ł
SUT ENGR: Want for	- 41-474				
COL LIGR. MANNIN	up elaira			Jose to	1
				1 A Jord W	
	8				
					-

ΠΑ

cula	tion N	lo.	WI	BNTSR-00	8			Rev		Plant:			ige: 34
			oom	Operator	and Off	site Dos	es Due t	o a Stear	n Pr	epared:	MIR		
1001				be Rupture					Cł	necked:	HM	Date	: 1.14
												_	
.•			4.	£	SSD-1-	LPF-62-82-	-D		PA	cis _10	07 1	0_	
•	•			INST	REVISI	ION 01 . DP CALIBRAT		1		4264	- 1 0		
							WID N	io: WO	94 - 1	4.4.0	~ 1 0		
[-		و مربع ها، اور ای او او واقع				LOOP	COMPONENTS	 ;	*****				
Ī	D: 1-FT	-62-82	Ī	INSTRUMENT	NO: 1-FI-4	52-82	- 						
H	IEAD: N	1A 4036	9	Ma	TE: VISU	AL							
- 1-	TEST	INPUT	1	REQUIRED	LO LIMIT	AS FOUND	HI LIMIT	LO LIMIT	AS LEFT	HI LIMIT			
- -	1	12,5		28.3	23.3		33.3	23.3		5			
-	2	39.1		50.0	45.0		55.0	45.0		55.0			
-	3	156.3	;	100.0	95.0		105.0	95,0	-	105.0			
-		351.6		150.0	145.0		155.0	145.0		155.0			
-	5	594.1		195.0	190.6	T	200.0	190.0		200.0			
. -	6	351.6		150.0	145.0	P	155.0	145.0		155.0			
-	7	156.3		100.0	98.0		105.0	95.0		105.0			
-	8	39.1		50.0	45.0		\$5.0	45.0		55.0			
·	9	12.5		28.3	23.3		33.3	23.3		33.3			
1-				······································							r t		
				INSTRUMENT	NO: LOG P	t F0134A							
		-		, M	STE: VISUA	L					-		
			TEST	REQUIRED (GPM)	LO LIMIT	AS FOUND	HI LIMIT	LO LIMIT	AS LE				
		-	1	28.30	23.18	25.63	32.38	23.18		22.38			
		-	2	50.00	47.34	48.88	52.26	47.34	9	52.26	<u> </u>		
		-	3	100.00	98.66	99.67	101.14	98.66	. 3	101.14			
		[4	150.00	149.08	150.01	150.68	149.08	00	150.68	}		
		1	5	195,00	194.32	194,72	195.60	194.32	14	195.60			
			6	150.00	149.08	149.94	150.68	149.08	12-	150.68			
			7	100.00	98.66	99.52	· /	98.66	<u>u</u>				
		_	8	50.00	47.34	48.64	\$2.26	47.34	<u> </u>				
		1	9	28.30	23.18	25.63	32.38	23.18	171	32.38	<u>1</u>		
R	emarks:	None											ĺ
ī	CREW NO	5			100T () YES (1	NO I	PC () YES	(af NO	1		ŀ
		ED BY/DAT	E 7	-9-94	REVIEWE	D.BY/BATE	(SIMF)	INSTRUCTIO		REV.			
			•	, STONE	12.81	11 cut	= 7-9.47	N	1/R	N/N	R		ĺ
						<u> </u>		··········					{
	unction	-		eat Exch Flow		y: Ed Hall	EH						
R	eviewed	by: Gary	L. 1	Hyden A	pproved by	/: Ed Hall'		Date: 03	/10/94				ł

Calculatio			Rev:			: WBN		ge: 35
Subject:	Control Room Operator	and Offsite Dos	es Due to a Steam	Pre	pared:	mos	Date:	H14-10
	Generator Tube Ruptur	e		Che	cked:	har	Date:	
	· · · · · · · ·	· · · · · · ·	· · · · · · · · · · · · · · · · · · ·	··· ·				
• .				•		<u> Andren segen</u>		
···· 4	FOXBORO							
	、 · ·	General S	pecification	-				
• •	a Electronic Series d/p Cell T. erentlei pressure in mages of 0- to 0-21500 mm1 of water st sta pei (420 itg/cm ²). They transmit or 4 to 20 mA de signel, over o to receivers located up to severe point of measurement.	5 to 0-850 inches (0-127 nic pressures up to 6000 t a proportional 10 to 50 refinary unshielded leads,		·				
•	FEATURE	2	F					
• • •	Time-Proven Design		and a			45		
	Trouble-Free Construction	· · ·	E130L	E13DM	•	E130H		
	High Performance - Excellent R	•	PEF	FORMAN	ICF.			
•	Esse of Calibration Adjustment -	- Wide Range Capability	Accuracy S to 525-inch			0.5% of spa		<u></u>
	Stable Force Balance System		(727 to 13335 mm) 525 to 850-inch		A		· 8	
•	Positive Overrange Protection		(13360 to 21590 mr Deed Band		C	1,05% of spar		
	Transmitter Housing Watertight a	nd Moistureproof	Reparability: E13DL Serie E130M, E13 Hystorelis	DH Series		15% of spec	n 🛔	
· ·	Application Versatility	1	Reproducibility: E 13DL, Sc	ries 13DH Serie		10% of spec 120% , * spec 15% of spec	• • E	
	Explosionproof/Intrinsically Safe	-	(includes effects of Hyste Orifit over 1-hr period)	razia, Repar	ubility, De	id Bend and		
ХЩ.		STANDARD S	NSMITTER * *	•		•. •	terne Jacobarte	
•	Span Fully adjustable between a Maximum Process Temperature		Output Signal	N Lósp Los	d Incom	inal Supply	1.	
	sule	•	Gerpert Signal (mA d-c) Minimum	n Mexica	Vel	arese Unit		
	Ambient Temperature Limits +82 CL. With remote amplifier, - +120 CL	40 to +180 F (-40 to -40 to +250 F (-40 to	4 to 20 C 10 to 50 480 (s)	660 660	2	(Vde DVde		
•	Bolting Steel cap screws and n	uts through body and	(a) Fezioro power supplie broted 0 to 500 ahm las Supply Voltage Limits	d adjestman	t potentiom	eter.		
•	process connectors Cover Threaded cast aluminum se	sted on Suna-N O-ring	mA output and 63 to 1 	100 volts d wer supply	ic with 10 unit	to 50 mA		
	soal. Blue textured vinyi finish. Enclosure Classification NEMA 4	watericht	Supply Voltage Effect 3 of spen for a 10% chang	Zero shift re in volta	will be less as within \$	than 0.1%		
	Electronic Transmitter and Ampli		Electric Classification E and D. Division 1.	xplosionp	roof Class I	Groups C		
·	Electrical Connections Two S-for female conduit connections	ot leads from 1/2-inch	Mounting Direct to proc zontal or vertical pipe.	ess with b	acket for 2	2-inch hori-		
	Specifications	E13DL Series	E13DM Series	1	E130H &	eries		
	Range Limits Low Range Capsule 0	-5 to 0-25" water	•					
•		2-127 to 0-635 mm)	0-20 to 0-205" water	. 0.20.	10 0-205" v	ant or .		
- -	High Range Capsule	-	(0-508 to 0-5207 mm) 0-200 to 0-850" water (0-5080 to 0-21590 mm)	10-50 0-200	8 to 0-520 to 0-850 to 0-850 30 to 0-21	7 mm) wstor		
	Primed in U.S.A.				6S Z	A-1(1		RB

TVA

alculat	tion No. WBNT	'SR-008	Re	v: 11	Plant: WBN	Page: 36
ubject	: Control Room Op	erator and Offsite D	oses Due to a Ste	am P	repared: MVB	Date: 1-14-10
•	Generator Tube R	tupture		C	hecked: UUL	
				na a ser se se se se se se se se se se se se se		ng malana na malanaja
•	•				•	
	· · · -		ECIFICATIONS daved)	-	i 1	-
	Specification	E13DL Series	E130M Series		E13DH Series	
	Wetted Perts: Body and Process Conn Diaphragm Capsule and	bon steel or forged 316 SS	Cadmium plated forged c bon steel or forged 316	ar- Cadmin SS bon ste	im plated forged car- iel or forged 316 SS	
	Force Bar Seal Force Bar Seal Capsule Gasket	 316 stainless steel Cobait nickel alloy 316 stainless steel 	316 stainless steel Cobait nickel atloy 316 stainess steel	Cobalt 316 sta	inless steel nickel alloy inless steel	
	Process Conn Gasket Force Bar Seal Gasket Backup Plate	316 stainless steel	TFE Silicone elastomer 316 stainless steel	Buna-N	inless steel	
	Manimum Static Pressure Process Connections	500 psi (35 kg/cm ²) 1/4 or 1/2 NPT femate or 1/2 inch Sch 80 welding neck, as specified,	2000 psi (140 kg/cm ²) 1/4 or 1/2 NPT femate 1/2 inch Sch 80 welde neck, as specified.	or 1/4 or ng machin	d (420 kg/cm ²) 1/2 NPT or body ed to accept 9/16- nco fittings_as spec-	
	Ambient Temperature Effect (Zero shift in percent of span)	±1.0% per 100 F (55 C) change at 25" (635 mm) water, ±1.0% per 40 F (22 C) change at 5" (127 mm) water.	Medium Range Capsule: ±1.0% per 100 -F (55 d) change at 100" (2540 mr water; ±1.0% per 125 (69 C) at 205" (5207 mr water; ±1.0% per 40 F C) C) at 25" (635 mm) wate High Range Capsule: Le	C) ±1.0% n) change: F water; n) (69 C): 22 water; r, C) at 25	n Range Capsule: per 100 F (55.C) - t 100" (2540 mm) ±1.0% per 125 F at 205" (5207 mm) ±1.0% per 40 F (22 " (635 mm) water. mge Capsule: Less	
)))			than $\pm 1\%$ per 50 F (28) change for any span b tween 200 to 850" (508 to 21590 mm) water.	C) than ±1 e- change 0 tween 2	% per 50 F (28 C) for any span be- 00 to 850" (5080 0 mm) water,	
	Position	Transmitter should be mounted with capsule in vertical position.:		•	-	
· · ·	Vibration	(-	Maximum of less than 3 zero shift for 90 degree to of instrument in any plar	it zero shi ie of instru	m of less than 3% . It for 90 degree tilt ment in any plane	
		Less than 1.5% zero shift for vibration to 1.5G in any plane, at frequencies less than 80 Hz.	Less than 1% zero shift for vibration to 2G in an plane.		n 1% zero shift for on to 20 in any	
	Static Pressure Effect	Maximum zero shift less than 0.5% of span for 500 psi (35 kg/cm ²) change.	Zero shift less than 0.5 span for 2000 pai (140 kg cm ²) change at 50 to 850 (1270 to 21590 mm) wate 1.0% span for 1000 pai (7	/ span for kg/cm ²) 5 850" (1) water or	ift fest than 1.5% 0-6000 psi (0-420 change at 50 to 270 to 21590 mm) 0.5% span for any	
			kg/cm2) change at 20 a 50° (508 to 1270 mm) wa ter.	 change: 6000 psi change a to 1270 span for 	ii (140 kg/cm ²) 2,0% span for 0 to (0 to 420 kg/cm ²) it 20 to 50° (508 nm) water or 1,0% any 2000 psi (140 change ⁹ ,	
	Overett Dimensions	15 1/8" (410 mm) H x 67/8" (175 mm) W. 321b (15 kg)	13 1/4" (337 mm) H : 67/8" (175 mm) W.	6 7/8" (1	(368 mm) H x 175 mm) W,	
		az to (15 kg) If to your nearest Foxboro Sa	25 lb (11 kg)	40 16 (18		
		a in Aoni Herigt Foxpolo 24	les Utlice.			
(d	5 2A-1C1 E	•				

Calculation No. WBNTSR-008	Rev: 11	Plant: WBN	Page: 37
Subject: Control Room Operator and Offsite Doses Due to a	Steam Pro	epared: MU3 D	ate: 1-14-10
Generator Tube Rupture	Ch	ecked: Hu D	ate: 1.14.10

Appendix F: Original Steam Generator Results

The following results are for the original steam generators. The details leading to these results are found in revision 8. The COROD runs were corrected (recirculation rate and time increments). A 2 CREVS case was also added. Only the ARCON96 21 µCi/gm and 0.265 µCi/gm I-131 equivalent Iodine spiking cases were corrected.

Tritium Production Core Doses:

Offsite Dose with Preaccident Iodine Spike

21 µCi/gm I spike						
	2hr EAB	30day LPZ	limit			
Gamma	3.587E-01	8.755E-02	25			
Beta	2.121E-01	5.387E-02	300			
Thyroid (ICRP-2)	2.714E+01	6.438E+00	300			
Thyroid (ICRP-30)	1.324E+01	3.150E+00	300			
TEDE	1.215E+00	2.906E-01	25			

Offsite Dose with Accident Initiated Iodine Spike - 11 gpm leak (10+1unidentified.)

	0.265 µCi/gm, 500 I spike					
	2hr EAB	30day LPZ	limit			
Gamma	5.181E-01	1.306E-01	2.5			
Beta	2.514E-01	6.655E-02	30			
Thyroid (ICRP-2)	1.956E+01	4.724E+00	.30			
Thyroid (ICRP-30)	6.375E+00	1.554E+00	30			
TEDE	1.204E+00	2.945E-01	2.5			

Offsite Dose with Accident Initiated Iodine Spike - 6.75 gpm leak (5.75+1unidentified.)

	0.265 µCi/gm, 500 I spike					
	2hr EAB	30day LPZ	limit			
Gamma	5.162E-01	1.301E-01	2.5			
Beta	2.510E-01	6.642E-02	30			
Thyroid (ICRP-2)	1.934E+01	4.670E+00	30			
Thyroid (ICRP-30)	6.265E+00	1.527E+00	30			
TÉDE	1.195E+00	2.923E-01	2.5			

Offsite Dose with Accident Initiated Iodine Spike - 3.15 gpm leak (2.15+1unidentified.)

	0.265 µCi/gm,	500 I spike	
	2hr EAB	30day LPZ	limit
Gamma	5.147E-01	1.298E-01	2.5
Beta	2.505E-01	6.631E-02	30
Thyroid (ICRP-2)	1.915E+01	4.624E+00	30
Thyroid (ICRP-30)	6.172E+00	1.505E+00	30
TEDE	1.188E+00	2.905E-01	2.5

ΙΑ

Calculation No. WBNTSR-008	Rev: 11	Plant: WBN	Page: 38
Subject: Control Room Operator and Offsite Doses Due to a	Steam	Prepared: r us	Date: 1-14-10
Generator Tube Rupture	[Checked: Hul	Date: (.14.10

Appendix F: Original Steam Generator Results (continued)

TPC Control Room/ARCON96 X/Q original SG

.

preaccident I spike 21 uCi/gm

	1 CREVS	2 CREVS	limit
Gamma	9.400E-02	1.397E-01	5
Beta	1.064E+00	1.611E+00	30
Thyroid (ICRP-30)	1.706E+01	1.534E+01	30
TEDE	1.057E+00	1.265E+00	5

	accident intiated 500 I spike 0.265 uCi/gm					
steady state leak =11 gpm (=10+1 unident						
Control Room	1 CREVS	2 CREVS	limit			
Gamma	9.818E-02	1.471E-01	5			
Beta	1.192E+00	1.779E+00	30			
Thyroid (ICRP-30)	2.471E+00	2.537E+00	30			
TEDE	5.886E-01	8.543E-01	5			

Calculation No. WBNTSR-008	Rev: 11	Plant: WBN	Page: 39
Subject: Control Room Operator and Offsite Doses Due to a	Steam P	repared: MU3	Date: 1-14-10
Generator Tube Rupture	[C	Checked: Km	Date: (.14.10

Appendix G: Unit 2 SGTR

The Unit 2 steam generators are the same as the original Unit 1 steam generators. However, the mass releases were reanalyzed by Westinghouse. The SGTR analyses performed below use the same methodologies as the main text, with the following changes:

Flow Rates:

The following is for the Unit 2 steam generators. The amount of secondary side steam released from the ruptured steam generator is 103,300 lbm from 0-2 hours and 32,800 lbm from 2-8 hours (ref.47). The amount of secondary side steam released from the intact steam generators is 492,100 lbm from 0-2 hours and 900,200 lbm from 2-8 hours. The reactor coolant release to the steam generator was a total of 191,400 lb, of which 10077.2 (=934.4+9142.8) lb flashed (ref.47). In order to account for the release during the 20.6 second interval when the control room is not isolated, the amount of reactor coolant released at 20.6 sec is needed. However, the release from the steam generators does not actually start until 113 sec post accident. Therefore, the releases at 113+20.6 = 133.6 sec are actually needed for release calculations. Using the releases from reference 47 and adding each time increment release, the reactor coolant release at 134.5 sec is 9687.2 lb. The amount that flashed at 134.5 sec is 1049.026 lb. The mass release rate from the ruptured steam generator is non-linear. However since the time frame for the release is short (20.6 sec), the average release rate can be used. From reference 47, the flashing of the reactor coolant stops at 2253 sec, and the break flow stops at 5032 sec.

The following flow rates/leakage rates for each component are:

Flow from Reactor Coolant #1 to Steam Generator Faulted #2 (non-flashed):

0-133.6 sec: F = (9687.2 lb - 1049.026 lb)*(3600 sec/hr)/(133.6 sec) = 2.328E5 lb/hr = 1.0558E8 g/hr133.6 sec-5032 sec: F = (191,400 lb-9687.2 lb)-(10077.2 lb-1049.026 lb)/(5032-133.6 sec) = 35.253 lb/sec = = 5.757E7 g/hr

5032+ sec: F=0

Flow from Reactor Coolant #1 to Environment #4 (flashed):

113-133.6 sec: $F = (1049.026 \text{ lb})^*(3600 \text{ sec/hr})/(20.6 \text{ sec}) = 1.833\text{E5 lb/hr} = 8.3154\text{E7 g/hr}$

133.6 sec-2253 sec: F = (10077.2 lb-1049.026 lb)/(2253-20.6 sec]) = 4.0442 lb/sec = 6.604E6 g/hr2253+ sec: F=0

Flow from Steam Generator Faulted #2 to Environment #4:

113 sec-2 hr:(103,300 lb)/(2hr-[113sec/3600sec/hr])=5.247E4 lb/hr=2.380E7g/hr(noble gas and tritium) 0.01*(103,300 lb)/ (2hr-[113sec/3600sec/hr])=5.247E2 lb/hr=2.380E5g /hr (iodine)*

2-8 hr: (32800 lb)/(8hr-2hr) = 5.467E3 lb/hr = 2.480E6 g/hr (noble gas)

0.01*(32800 lb)/(8hr-2hr) = 5.467E1 lb/hr = 2.480E4 g/hr (iodine)

Flow from Steam Generator Unfaulted #3 to Environment #4:

113 sec-2 hr: (492,100 lb)/(2hr-[113sec/3600sec/hr]) = 2.500E5 lb/hr = 1.134E8 g/hr (noble gas)

0.01*(492,100 lb)/(2hr-[113 sec/3600 sec/hr]) = 2.500E3 lb/hr = 1.134E6 g/hr(iodine)

2-8 hr: (900,200 lb)/(8hr-2hr) = 1.500E5 lb/hr = 6.805E7 g/hr (noble gas)

0.01*(900,200 lb)/(8hr-2hr) = 1.500E3 lb/hr = 6.805E5 g/hr (iodine)

Flow from Reactor Coolant #1 to Steam Generator Unfaulted #3:

F = 3 steam generators * 150 gpd * 3785.48 cc/gal / 24 hr/day * 1g/cc= 7.098E4 g/hr

* Normally, to take into account uncovery of the faulted steam generator, there is no iodine partitioning in the release to the environment (iodine partition coefficient = 1). For conservatism, no iodine scrubbing of the bubbles in the flashed water is taken into account. However, the water that boils is allowed the iodine partition of 100 (see assumption 6).

Additional data:

Volume/SG = 4.735E7 gm (1.421E8 gm in 3 unfaulted SG's) (ref.51)

RCS I-131 equivalence limits: 0.265 uCi/gm I-131 (steady state) and 21 uCi/gm (48 hr LCO) (ref.49), same as Unit 1 Leakage: 10 gm known plus 1 gpm unknown = 11gpm total, and 150 gpd per SG (ref.48,50), same as Unit 1

Calculatio	n No.	WBNTS	R-008			Rev: 1	1	Plant	: WBN	Pa	ge: 40
Subject:	Control	Room Oper	ator and	Offsite D	oses Due to a	Steam	Pre	pared:	Mr (m)	Date:	HY-10
		or Tube Ru					and the second se	cked:	_		1.14.10
Results									•		
The results (rer	m) are as	follows:									
Control Room	,										
Control Koom											
re-accident iodi	ne spike	of 21 uCi/c I-	131 equiva		,						
		A inh ann a	China	Ingress/	Total	Y insis					
		Airborne	Shine	Egress	Total	Limit					
amma .		0.0918	0.0007	0.0000	0.0924	5					
eta	()	1.0380	0.0000	0.0000	1.0380	30 20					
hyroid (ICRP-3	(U)	19.4700	0.0000	0.0000	19.470	30					
EDE		1.1220	0.0007	0.0000	1.1227	5					
ccident initiated	d iodine s	pike of 500 at	: 0.265 uC		uivalent						
				Ingress/							
		Airborne	Shine	Egress	Total	Limit					
amma		0.0853	0.0007	0.0000	0.0860	5					
eta		0.9992	0.0000	0.0000	0.9992	30					
hyroid (ICRP-3	60)	1.9870	0.0000	0.0000	1.9870	30					
EDE		0.5428	0.0007	0.0000	0.5435	5					
Offsite											
re-accident iodi	ne spike	of 21 uCi/c I-1	131 equiva	lent							
	-	2-hr EAB	30-D	ay LPZ	Limit						
amma		3.59E-01		5E-02	25						
eta		2.06E-01		5E-02	300						
hyroid (ICRP-3	0)	1.38E+01		E+00	300						
EDE	-	1.26E+00		DE-01	25						
ccident initiated	d iodine s	pike of 500 at	: 0.265 uC	i/g I-131 ec	uivalent	`.					
		-		-	Limit (10% of						
		2-hr EAB	30-D	ay LPZ	10CFR100)						
amma		3.99E-01	9.72	2E-02	2.5						
eta		2.10E-01	5.30	5E-02	30						
hyroid (ICRP-3	0)	4.49E+00	1.09)E+00	30						
EDE		7.92E-01	1.92	2E-01	2.5						
Discussion and	l Conclus	ion									
	_		-				-	-		-	
		generators (sai) App.A GDC			it 1 steam gener					e Ruptu	re will

,

.

ł

Calculation No. WBNTSR-008	Rev: 11	Plant: W	BN Page: 41
Subject: Control Room Operator and Offsite Doses Due to a	Steam	Prepared: n	(H) Date: 1-14-10
Generator Tube Rupture		Checked: Hu	し Date: 1.14.10

Attachment 1: Justification for Using ANSI/ANS-18.1-1984 Expected Coolant Spectrum

The choice of iodine spectrum is fairly important, since several isotopes have short halflives. Results may be affected when accident times are on the order of the decay of the short lived isotopes. There are several possible spectra available. The spectrum chosen for this analysis is the one that most closely resembles the actual spectrum present at WBN. From the surveillance tests 1-SI-68-28 performed on 7/10/00 and 4/9/01 (see following surveillance tests attached), the following concentrations were determined:

RC	S activities 7/10	/00			RCS activit	ies 4/9/01	
Ar-41 Kr-85M Kr-87 Xe-133 Xe-135	CS activities 7/10. μCi/gm RCS Gaseous 1.303E-02 1.915E-04 4.575E-04 9.565E-04 1.429E-03 7.364E-04	F-18 Na-24 Mn-56 Co-58 Nb-95	μCi/gram RCS Degassed 1.179E-01 9.169E-04 9.313E-05 5.019E-04 3.132E-05 6.070E.05	Ar-41 Kr-85M Kr-87 Kr-88 Xe-133	RCS activit μCi/gm RCS Gaseous 2.696E-03 2.013E-04 4.809E-04 4.982E-04 1.202E-03 1.676E-03	F-18 Na-24 Mn-56 Co-58 Co-60	μCi/gram RCS Degassed 1.116E-01 2.060E-03 2.088E-04 6.218E-04 2.776E-05 2.794E.05
Xe-135M Xe-138	7.364E-04 1.796E-03	I-131 I-132 I-133 I-134 I-135 Xe-135 Xe-135 Xe-138	6.070E-05 1.459E-03 8.208E-04 2.694E-03 1.608E-03 8.914E-05 1.406E-02 2.395E-03	Xe-135 Xe-135M	1.105E-03	Nb-95 I-131 I-132 I-133 I-134 I-135 Xe-135 Xe-135M Cs-138	2.794E-05 3.881E-05 1.165E-03 6.105E-04 2.334E-03 1.158E-03 1.380E-04 1.972E-02 2.195E-03

Two potential spectra are from WBNNAL3-003 (Reactor Coolant Activities in Accordance with ANSI/ANS-18.1-1984) and from the FSAR Table 11.1-2 (Historical Design Activities). The iodine concentrations and relative concentrations for each spectrum are as follows:

	7/10/00	7/10/00	4/9/01	4/9/01
	WBN actual	WBN actual	WBN actual	WBN actual
	μCi/gm	relative fraction	μCi/gm	relative fraction
I-131	6.070E-05	0.0091	3.881E-05	0.0073
I-132	1.459E-03	0.2196	1.165E-03	0.2195
I-133	8.208E-04	0.1236	6.105E-04	0.1151
I-134	2.694E-03	0.4056	2.334E-03	0.4399
I-135	1.608E-03	0.2421	1.158E-03	0.2182
sum:	6.643E-03	•	5.306E-03	

	ANS 18.1 μCi/gm	ANS 18.1 relative fraction	FSAR 11.1-2 μCi/gm	FSAR 11.1-2 relative fraction
I-131	0.0477	0.0448	2.5	0.2461
İ-132	0.225	0.2115	0.9	0.0886
I-133	0.149	0.1401	4	0.3937
I-134	0.364	0.3422	0.56	0.0551
I-135	0.278	0.2614	2.2	0.2165
sum:	1.0637		10.16	

1

Calculation No. WBNTSR-008	Rev: 11	Plant: WBN	Page: 42
Subject: Control Room Operator and Offsite Doses Due to a	Steam Pro	epared: Kulz	Date: 1-14-10
Generator Tube Rupture	Ch	ecked: はんし	Date: 1.14.10

As can be seen, the FSAR historical design concentrations do not reflect the actual measured concentrations. The FSAR values are weighted too strongly in favor of I-131 (24.6% of total as opposed to < 1% of the actual total). By comparison, the ANSI/ANS-18.1-1984 fractions are very close to the actual fractions. The worst fit was for I-134 which was 40.1% actual versus ANSI/ANS-18.1-1984 34.22%. The I-131 is slightly over predicted by ANS-18.1 (0.9% on 7/10/00 and 0.7% on 4/9/01 versus 4.48%), however this difference is not as large compared to the FSAR fraction. The ANSI/ANS-18.1-1984 spectrum overall fit is much better than the FSAR spectrum, therefore it can be concluded that the use of the ANSI/ANS-18.1-1984 spectrum is acceptable.

Calculation No. WBNTSR-008		Rev: 11	1	Plant: WBN	Page: 43
Subject: Control Room Operator and	Offsite Doses Due to a	Steam		bared: mog	Date: 1-14-10
Generator Tube Rupture			Che	cked: HUL	Date: (.14.10
Attachment 1 (continued): Surveillance test 1-S. JL-24-2000 13:52 TVA PLANT MGRS OFC SURVEILLANCE TAAK UODS' GROEN: 0005/VIGOO SI 2014 POSS1 PROCUMENT: 1-141-40-23 TITLE: PRIMARY RADIOSUBLISTRY REGULARMENTS ACTI 07/11/00 MAN GAT: 07/11/00 MAN GAT: 07/11/00 MAN KIT: FORM GPH-8.2-2 FREE: W 01 ASHE KI: N ASHE KI: N A	423 365 1 ENEET (599-8.2) 		7 I 0° I//A TINE TINE	·	
NAME TEST PRAFORMERE INTO SECONDATION OF THE SECOND	WHE ALL TECH BREC/TECH REA/ODCH/FIRE MEDT RED ADDEPTANCE CRITERIA SATISFIES VERE ALL OTHER ACCEPTANCE CRITERIA SATISFIED? ALEAT SCHEDULING RESULMED? IF ALL TECH SPEC/TECH RES/ODCH/FIRE PI REG WERE NOT SATISFIED, MAS AR LCO/TE. OCCI/OR ACTION REGY CHEMAIN IN REMA	7 YEBI KOT. YEBI KOT. YEBI KOT. XBJ YEBI KOT. <i>Mandalori</i> KOT. <i>Mandalori</i> 380 DA			
	COPY OF ST& SENT TO SCHEDULING:	- GJJ fuitante	<u>- 7/1/1</u> 55		
	· .	SECTION/MEA GECTION/MEA BECTION/MEA BECTION/MEA	aduk kiris Aduk kiris	- -	
					·

Calculati	on No. WBNTSR-008	Rev: 11	Plant: WBN Pag	e: 44
Subject:	Control Room Operator and Offsite Dos	es Due to a Steam	Prepared: May Date:	
-	Generator Tube Rupture		Checked: Hu Date:	1.14.10
	TENNESSEE V Watts bar	DO 09:23:05.19 VALLEY AUTHORITY NUCLEAR PLANT	23 365 1984 P.03/87	
	SAMPLE TITLE : U1 - RCS - GASEOUS ACT: FILE IDENT : DEB600:(TVA.SANPLE.CHE)	M.NEW]W0007108795_C4	01.CNF:1	
	SAMPLE ID : W0007108796_C401 SAMPLE TIME : 10-JUL-2000 08:53	* OPERATOR : * SAMPLE GEOMETRY : * SHELF HEIGHT : * REFICIENCY FILE :	0	
	SAMPLE TYPE : 1240 CC GAS MARI	* SAMPLE QUANTITY :	1.000008+00 CC	
	ACQ DATE & TINE : 10-JUL-2000 09:12 PRESET LIVE TIME : 0 00:10:00 ELASPID EMAL TIME : 0 00:10:01 ELAPSED LIVE TIME : 0 00:10:00	* DEADTIME (%) : * SENSITIVITY : * GAUSSIAN SEN : * NHR ITERATIONS :	0.3 4.00000 10.00000 10	
	DETECTOR : DET #3, GSS-3286 EFFIC CAL DATE : 29-JUL-1994 13:47 DCAL DATE & TIME : 9-JUL-2000 15:52: XEV/CHAN : 4.999288-01 OFFSET : -1.48334E-01 keV O CONFFICIENT : 3.22120E-08 PEAK START CHAN : 140	 HALF LIFE RATIO ABUNDANCE LIMIT CORRECTION FACTOR PEAK HND CHAN 	: 8.00000 : 80.0% : 1.00000E+00 : 4096	
	COUNTED ON : LION COLLECTED BY : COUNTED BY : LLMANNONE REVIEWED BY : COMMENTS :	*****	*****	
	Post-NID Peak Search Report			
	It Energy Area Bkgnd FWHM Cha			
	0 81.12 230 92 1.01 16 0 151.37 88 53 0.97 30 0 196.38 70 80 0.88 39 0 227.79 22 47 1.35 45	3.07 299 8 17.7 3.10 388 10 26.7 5.92 448 10 62.9	x E −133 X E −85M	
	0 249.81 549 53 0.94 49 0 258.71 72 40 0.89 51 0 305.21 19 34 0.76 61 0 402.80 48 34 2.39 80 0 435.19 26 16 1.31 87 0 511.06 390 49 2.28 102	9.98 494 12 5.4 7.76 514 10 20.2 0.77 607 8 57.2 5.96 801 12 29.3 0.75 866 11 35.3 2.51 1014 18 6.6	KE-135 KE-138 KR-85M KR-87 XK-138	
	0 526.45 39 24 1.21 105 0 898.31 22 16 1.29 179 0 1293.58 904 9 1.60 258	6.96 1791 9 38.8	XE-135M Ar-41	
	U 1293.38 904 9 1.00 230			
L	· · · · · · · · · · · · · · · · · · ·			

Calculatio	on No. WBNTSR-008 Rev	/: 11 Plant: WBN	
Subject:	Control Room Operator and Offsite Doses Due to a Stea	m Prepared: MVB	Date: 1-14-10
-	Generator Tube Rupture	Checked: Hul	Date: 1.19.10
	Jul-24-2000 13:53 TUA PLANT MERS OFC REFORT DATE : 10-JUL-2000 09:23 REQUESTOR : LLMANNONE	423 365 1904 P.04/07	
	TENNESSEE VALLEY AUTHORITY WATTS BAR NUCLEAR PLANT	,	
	post Nid QA Analysis		
	TITLE : UL ~ RCS - GASHOUS ACTIVTY		
	SAMPLE No. : W0007108796_C401 OPERATOR NA SAMPLE TYPE : 1240 CC GAS MARI SAMPLE GEO COUNT TIME : 10-JUL-2000 09:12:51 SAMPLE QUAN SAMPLE TIME : 10-JUL-2000 06:53:00 DETECTOR LIBRARY : NOBLEGAS	RTRY : CMIK	5
	PEAK ENERGY DECAY CORP ISOTOPE ENERGY DIFF (KEV) uCi/CC	COMMENTS	
	AR-41 1293.64 -0.06 1.303B-02 KR-85M 151.18 0.19 1.915E-04 KR-87 402.58 0.22 4.575E-04 . XE-133 81.00 0.12 9.565E-04 XE-135 249.79 0.02 1.429E-03 XE-135 526.56 -0.11 7.364E-04 XE-138 258.31 0.40 1.796E-03	OA Results OK OA Results OK OA Results OK OA Results OK OA Results OK OA Results OK OA Results OK	
	AVG ENERGY DIFF = 0.11 1.859E-02 = TOT 0.000E+00 = Tota 1.859E-02 = Tota		
	UNIDENTIFIED/REJECTED PI	ears	
	ENERGY NET AREA FWHM GAMMA/SEC /CC % EROR	POTENTIAL BLAG ID ACTIVIT	Ϋ́.
	196.38 70. 0.88 4.728E+00 4.728E+00 26.7 227.79 22. 1.35 1.675E+00 1.675E+00 62.9	R KR-88 10 5.438E- U TE-132 5.163E- U CS-138 5.110E-	05
	511.06 390. 2.28 7.016E+01 7.016E+01 6.60 898.31 22. 1.29 7.079E+00 7.079E+00 38.8	U NP-239 4.252E- U ANNIL 0.000E+ U RD-88 1.512E- U Y-88 2.049E-	00 03
		NO OLOSEREZI Jolov	
!		· + 71	

Calculati	on l	No. W	BNTSR-	008				Rev:	11	Plant: WBN	Page: 46
Subject:	Co	ntrol Roo	m Operat	or and (Offsite	Doses	Due to	a Stean	n Pr	epared: m(3	Date: 1-14-10
	Ge	nerator Tu	ube Rupti	ure					CI	necked: Hur	Date: 1. (4. 10
-	FIL SAM SAM SAM SAM SAM SAM SAM SAM SAM SAM	ORFFICIEN R START CI LYSES : PI THE ON LRCTED DY NTED DY	********* : U1 - : DKB60 : W00071 : 10-JUL : RCS 20 ******** IME : 1 TIME : 0 TIME : 1 ********** : D. IME : 1 IME : 1 IME : 1 IME : 1 IME : 1 IME : 1 IME : 0 IME : 1 IME : 0 IME : 1 IME : 0 IME >IME : 0 I I I I I I I I I I I I I	RCS - D 0:[TVA.: 08795_C. -2000_0 NL LSV ************************************	10-JT TENNES WATE EGASSI SAMPLE 402 7:25 7:25 000 08 00 00 00 00 00 00 00 00 00 00 00 00 0	C.CHER.NB + 0 + 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8	RY AUTI LEAR PI ACTIVI WJW0007 PERATOF AMPLE (HELF HH FYICIES AMPLE (HELF HE FYICIES AMPLE (HE FYICIES AMPLE ICRITY ANT TY TO8795_ ECMETRY ICRAT CY FILE UANTITY CY FILE UANTITY CANTITY SEN ATIONS ****** RT DATE OLER B RATIO CLER B RATIO CHAN CHAN	*** C402.C : LLM : LSV : LSV : 5.0 ****** : 2.2 : 4.0 : 10. : 10 : 10	ANNONE 20 201 0000E+00 GRAMS	•• •• 1:	
	COM	IEWED BY MENTS 			*****	*****	******	*****	*****	*****	•
-	It	Energy			FWHM	Channel	Left	Pv 4Br	r F :	t Nuclides]
	0 0 0	135.60 249.64 287.87	697 887 540	25268 20225	0.92 0.79	271.70 499.61 576.01	269 498	7 38.0 6 25.0 7 46.3	5	I-134 XE-135 I-135	
	0000001	364.21 405.43 417.67 462.73 511.00 522.65 \$26.58	455 310 485 545 838084 824 1048	6932 6009 5368 22601 999	1.05 1,20 1.28 2.65 1,38	728.61 810.99 835.46 925.53 1022.01 1045.31 1053.15	808 832 922 1014 1043	8 44. 8 46. 8 28. 8 23. 19 0. 7 7. 18 5.		I-135 I-131 I-134 I-135 CE-138 F-18 I-132 N+00 I-135	
	1	529.88	4510	1009	1.34	1059.77	1050			XE-135M I-133	

Calculati	on No.	WBNT	SR-008	- <u>i</u> ii		Rev: 11	L	Plant: WBN		je: 47
Subject:	Control	Room Op	erator an	d Offsite Do	oses Due to a	Steam		pared: m.s		1-14-10
	Genera	or Tube R	upture	·			Che	ecked: UM	Date:	1.101.10
-	ЛА	REQUESTOR	rs : 10-J ; LLMA	TENNESSKE WATTS BAR POST NI	VALLEY AUTHOR NUCLEAR PLAN D QA ANALYSIE QUID ACTIVITY	1177 17 17 3		.964 P. 06-767		
		SAMPLE TYPE COUNT TIME	E : RCS : 10-J : 10-J : RCSL	20ML LSV UL-2000 08:3 UL-2000 07:2	SAMPLE 6:15 SAMPLE 5:00 DETECTO	Geometry Quantity	: LSV : 5.0	120		
		isotope	pear Energy	ENERGY DIFF (REV)	DECAY CORR UCI/GRAM	COMME	nts			
	•	P-16 NA-24 MN-56 CO-58 NB-95 I-131 I-132 I-133 I-133 I-135 XE-135 XE-135 XE-135 XE-138		$\begin{array}{c} 0.07 \\ -0.63 \\ -0.01 \\ 0.89 \\ -0.27 \\ 0.03 \\ 0.01 \\ -0.05 \\ 0.03 \\ -0.16 \\ 0.02 \end{array}$	1.1798-01 9.1698-04 9.3132-05 5.0198-04 3.1322-05 6.0702-05 1.4598-03 8.2088-04 2.6942-03 1.6082-03 1.6082-03 1.4068-02 2.3982-03	OA R OA R OA R OA R OA R OA R OA R OA R	esult esult esult esult esult esult esult esult esult esult	4 OK 5 OK 5 OK 5 OK 5 OK 5 OK 5 OK 5 OK 5 OK 5 OK 5 OK 5 OK 5 OK 5 OK 5 OK 5 OK 5 OK		
		avg ener	KGX DIFF	-0.01	1.426B=01 = 1.218E=01 = 2.427E=03 = 1.512E=03 = 1.415E=02 = 6.643E=03 = 0.512E=03 0000000000000000000000000000000000	Total DGL Total FP Total AP Total Gas	Acti Activ Activ Activ	vity vity vity vity vity		
	•	Icdine 13	31/133 Ba	odine-131 = tio = 7.395 tio = 5.105	JB-02	DGI	4= 1	3.946-3		
	<u>.</u> .	526.58 K 546.88 K 766.68 K 810.75 K 846.97 K 857.15 K	ov Poak w ov Poak w ov Poak w ov Poak w ov Poak w ov Poak w	as used in i as used in i	dentifying a	2 isotopes 2 isotopes 2 isotopes 2 isotopes 2 isotopes 2 isotopes				

Calculatio	on No.	WBNTS	R-008			Rev	: 11	Pla	nt: WBN	Pa	ge: 48
Subject:	Control	Room Ope	rator a	nd Offsite	Doses Due	to a Stean	n l	Prepare	d: pers	Date:	1-14-11
-	Generat	or Tube Ru	pture					Checke			1.14.10
	, KE	24-2000 13:53 FURT DATE QUESTOR	: LU-J : LLMA	NNONE TENNESSE	:37 E VALLEY AU	TRORITY	423	365 1904	P.07/87		
•		-			ar nuclear Nid oa anal						
				A second	NTIFIED/REJ	•	(R		·		
	energy	NBT AREA	FWHM	GAMMA SUBC	GAMMA/SEC	4 ERROR PI	P	OTENTIAL ID	ACTIVITY		
	681.90 584.87 1288.56 1291.07 1566.76 1835.61	30.	2.71 2.04 1.81 1.03 2.12 1.08	1.1435+01 7.446E+00 2.239E+00 1.812E+00	2.285E+00 1.489E+00 4.478E-01 3.624E-01 1.641E+00	25.7 31.1 36.52 41.65 25.3 36.4	U R H R U R	- 183 W-187 Ad		5	
		Total Uni % Unident	dentif ified/	ied/Rejecte Rejected Po	ed Peaks = 10.	5 17					1
		Flags: U ~	Unkno	wn Line	\setminus						
		P -	Posit	ted During ively Ideni	tified (lin	o not in a	naly	sis libra	ary)		
						6	Peri	40 00 peri 110/00			
		x									l.
									•		
								ĸ			
					ſ	· ,		•			
								. '	TOTAL P.07		

Attachment 1 (continued) Surveillance test 1-SI-68-28 performed on 4/9/01

Subject: Control Room Operator and Offsite Doses Due to a Steam Generator Tube Rupture Prepared: MCD Date: I-W_1CC Checked: #.M.L. Date: I-W_1CC Checked: #.M.L. Date: I-W_1CC SERVEILLANCE TAKE EMET (SP-8.2) MARE CODES: 010024500	
SURVEILLANCE TASK ENERT (SP-8.2) PAGE _1_ OF 29 MORE _1_ OF 29 MORE _1_ OF 29 MORE _1_ OF 29 MORE _1_ OF 29 MORE _1_ OF 29 MORE _1_ OF 29 MORE _1 OF 29 M	
SUBVEILLANCE TASK SHEET (SP-8.2) PAGE _1_ of 29 NARK CORES: 010028200 SI GET: 05731 PROCEDURES: 1:01:06-023 NAR NAR <td colsp<="" th=""></td>	
CHEM_SQV THE TREVER DATE REMARKS:	

Calculation No. WBNTSR-008	Rev: 11	Plant: WBN	Page: 50
ubject: Control Room Operator and Offsite Doses Due to a	Steam	Prepared: MU3	Date: (-14-10
Generator Tube Rupture		Checked: HML	Date: 1./4.18
9-APR-2001 14:25:02.67 TENNESSEE VALLEY AUTHORITY WATTS BAR NUCLEAR PLANT ************************************	***	:1	
SAMPLE ID : W0104095767 C401 * OPERATOR SAMPLE TIME : 9-APR-2001 I3:25: * SAMPLE GEOMETRY	: DRKER : GM1K : 0 : GM1K0	NS	
ACQ DATE & TIME : 9-APR-2001 14:14: * DEADTIME (%) PRESET LIVE TIME : 0 00:10:00 * SENSITIVITY ELASPED REAL TIME : 0 00:10:00 * GAUSSIAN SEN ELAPSED LIVE TIME : 0 00:10:00 * NBR ITERATIONS	******	*****	
DETECTOR : DET #4, GSS-3310 * LIBRARY EFFIC CAL DATE : 2-AUG-1994 11:26: * RFFIC CERT DATE DCAL DATE & TIME : 9-APR-2001 02:40: * ENERGY TOLER KEV/CHAN : 5.00516E-01 * HALF LIFE BATIO OFFSET : 1.44837E-01 keV * ABUNDANCE LIMIT Q COEFFICIENT : -1.10914E-07 * CORRECTION FACT PEAK START CHAN : 140 * PEAK END CHAN ANALYSES : PEAK V16.9 NID V3.3 MINACT V2.8 WIMEAN/KEY V1	*******	BLEGAS AUG-1994 11:26: 25 00000 .0% 00000E+00 96 **********	
COUNTED ON : LION COLLECTED BY : COUNTED BY : DECERNS COUNTED BY : COMMENTS : Post-NID Peak Search Report	*****	****	
it Energy Area Bkgnd FWHM Channel Left Pw &Er	r Fit	Nuclides	
0 80.94 902 374 1.03 161.44 157 10 5. 0 151.17 294 315 1.07 301.75 297 10 12. 0 166.01 57 226 1.10 331.42 328 8 47. 0 196.08 202 345 1.03 391.51 387 10 18. 0 249.77 2313 340 1.12 498.78 494 12 2. 0 258.57 59 201 1.04 516.37 513 8 43. 0 402.62 160 50 1.21 804.27 800 8 11. 0 510.99 7378 174 2.34 1020.88 1013 19 1. 0 526.86 66 31 1.08 1052.60 1048 11 20. 0 679.00 34 35 0.87 1216.79 1209 16 43. 0 677.82 14 17 1.85 </th <th>287756200276555</th> <th>XE-133 KR-85 KR-88 KR-88 XE-135 KR-87 XE-135 XE-135 KR-88</th> <th></th>	287756200276555	XE-133 KR-85 KR-88 KR-88 XE-135 KR-87 XE-135 XE-135 KR-88	
· · ·		-	

,

	Control P		erator and Of	site Docee	Due to a	Steam	Prena	red: M.B	Date: (-14-10
Subject:	Generato	-						red: Hul	Date: / · / 4 · (0
1	REPORT DATI		HECK (V10.4) PR-2001 14:2 RNS				PA	GE: 1	
	-		TENNESSEE Watts Bab	VALLEY AUT					
			Post NI	D QA ANALY	YSIS				
!	TITLE : UL	- RCS -	GASEOUS ACT	IVTY					
	SAMPLE TYPI COUNT TIME	E : 1240 : 9-AP	4095767_C401 CC GAS MARI R-2001 14:14 R-2001 13:25 EGAS	SAMI	PLE QUANT	TRY : GI ITY : 2.	51000	E+00 GSS-3310	
	ISOTOPE	PEAK ENERGY	ENERGY DIFF (KEV)	DECAY CON UCI/CC		OMMENTS			
	AR-41 KR-85M KR-87 KR-88 XE-133 XE-135 XE-135M	1293.64 151.18 402.58 196.32 81.00 249.79 526.56	-0.01 0.04 -0.24 -0.05 -0.03	2.696E-03 2.013E-04 4.809E-04 4.982E-04 1.202E-03 1.676E-03 1.105E-03	4 4 3 3	QA Resul QA Resul QA Resul QA Resul QA Resul QA Resul QA Resul	its OK Its OK Its OK Its OX Its OX		
•	AVG ENER(JY DIFF	<u>~0.01</u>	7.859E-03 0.000E+00 7.859E-03	0 = Total	DGL Act	tivity		
			THIT DENT	IFIED/REJI	207720 DEA	FC /			
			G	amma/sec		POTI	ENTIAL		
		A FWHM	GAMMA/SEC /		43.2		LD -138	ACTIVITY 	
ENERG		1 04	3 XXQ DTUU 1		1.25	U 🖅 🖸		6.016E-03	
258.5 510.9	7 59 9 7378	. 2.34	3.448E+00 1 7.643E+02 3			U ANI	IL	0.000E+00	1
258.5 510.9 677.8	7 59 9 7378 2 14	. 2.34	7.643E+02 3 1.829E+00 7	.289E-01 <	61.5	U AG	-110M	1.845E-04 4.949E-04	
258.5 510.9 677.8 897.5	7 59 9 7378 2 14 9 24	. 2.34 . 1.85 . 2.20	7.643E+02 3 1.829E+00 7 4.089E+00 1	.289E-01 <	61/5 84.3		-110M 134 -88	1.845E-04 4.949E-04 3.932E-04 4.716E-05	
258.5 510.9 677.8	7 59 9 7378 2 14 9 24	. 2.34 . 1.85 . 2.20	7.643E+02 3 1.829E+00 7	.289E-01 <	61.5		-110M -88 -88	1.845E-04 4.949E-04 3.932E-04	
258.5 510.9 677.8 897.5	7 59 9 7378 2 14 9 24	. 2.34 . 1.85 . 2.20	7.643E+02 3 1.829E+00 7 4.089E+00 1	.289E-01 <	61/5 84.3	U AG U I= U RB U V= U RB	-110M -88 -88	1.845E-04 4.949E-04 3.932E-04 4.716E-05 3.408E-04	
258.5 510.9 677.8 897.5	7 59 9 7378 2 14 9 24	. 2.34 . 1.85 . 2.20	7.643E+02 3 1.829E+00 7 4.089E+00 1	.289E-01 <	61/5 84.3	U AG U I= U RB U V= U RB	-110M -88 -88	1.845E-04 4.949E-04 3.932E-04 4.716E-05 3.408E-04	
258.5 510.9 677.8 897.5	7 59 9 7378 2 14 9 24	. 2.34 . 1.85 . 2.20	7.643E+02 3 1.829E+00 7 4.089E+00 1	.289E-01 <	61/5 84.3	U AG U I= U RB U V= U RB	-110M -88 -88	1.845E-04 4.949E-04 3.932E-04 4.716E-05 3.408E-04	
258.5 510.9 677.8 897.5	7 59 9 7378 2 14 9 24	. 2.34 . 1.85 . 2.20	7.643E+02 3 1.829E+00 7 4.089E+00 1	.289E-01 <	61/5 84.3	U AG U I= U RB U V= U RB	-110M -88 -88	1.845E-04 4.949E-04 3.932E-04 4.716E-05 3.408E-04	
258.5 510.9 677.8 897.5	7 59 9 7378 2 14 9 24	. 2.34 . 1.85 . 2.20	7.643E+02 3 1.829E+00 7 4.089E+00 1	.289E-01 <	61/5 84.3	U AG U I= U RB U V= U RB	-110M -88 -88	1.845E-04 4.949E-04 3.932E-04 4.716E-05 3.408E-04	

Calculation	n No. WBNTSR-008	Rev: 11		Plant: WBN	Pa	ge: 52
Subject: Control Room Operator and Offsite Doses Due to a Steam				ared: MUB	Date:	1-14-10
	Generator Tube Rupture		Che	cked: 4m	Date:	1.14.10

-											the second second second second second second second second second second second second second second second se	_
	~ •	~				*******						
	-		***	********		R-2001 10			****	**		
				1712		SEE VALLE						
						BAR NUCI						
			***	********	****	********	*****	***	****	**		
		LE TITLE		RCS - DEG								
	RIFE	IDENT	: DEBOU	U:[TVA.SA	FIFLE	CHER.NEY	V]WUI04	10957	/66_C	402.CNF;1		
	SAMP	LE ID	: W01040	95766 C40	2	* OF	ERATOR	1		WNCLONT	9.	
			: 9-APR-2				MPLE G				-	
						* SE	IELF HE	IGH	2	: 1		
					_					: 65ML1		
		LE TYPE *******	1 RCS 651			* SI	MPLE O	UAN	TTY	: 1.58100	E+01 GRAMS	
	****							***	*****	*********		
	ACO	DATE & I	THE : 9-	-APR-2001	091	45: * DE	ADTIME	(%)	•	4.6%		
			TIME : 0				NSITIV			4.00000		
			TIME : 0				USSIAN			: 10.0000	0	
			TIME : 0			* NE	R ITER	ATIC	ons	: 10		
	****	*******	********	********	****	*******	******	***1	****	********	**********	
	DETE	CTOR	ום י	ST #4, GS	5-33	10 * 1. 1	DADA			: RCSL		
	RFFI	C CAL DA	TE : 19	9-JUL-200	0 20	26 • EF	FIC CR)ATE		UL-2000 20:26	
	DCAL	DATE &	TIME : 9-	-APR-2001	02:		ERGY T					
	KEV/	CHAN ET	: 5	.00516E-0		* HA	LF LIF	E RI	TIO	: 8.00		
				44837E-0	1 ke	V + AE	UNDANC					
	Q CO	EFFICIEN	T :	1.10914E-	07	* CC				R : 1.00		
				10 ********	****	********	AK END			: 4096		
			BAK V16.9	NID V3.3								
	****	*******	*******	*******	****	*******	*****	****	****	********	*********	
			~	`		1						
		ted on	: LION	1 1	N							
		ected by Ted by		L //] V							
		EWED BY	: WHICLON	~~ / k		2						
	COMM					~~~~			Tr.	4 = 7.2	746-3	
									PUI			
	****	******	*******	*******	****	*******	*****	****	****	********	*********	
			h (1									
	POST-	-NID Pea	k Search I	ebot r								
	It	Energy	Area	Bkand	FWHM	Channel	Left	Pw	%Err	Fit	Nuclides	
									v+ +			
	0	134.65	991	52495	0.82	268.75	266	7	38.5		W-187	
	•	a.a. a.						_			1-134	
	0	249.78 364.48		43764 19365					13.6		XE-135	
	ŏ	405.26	542	12870	0.96	728.04 809.53			39.0		I-131 I-134	
		433.34		11020					57.4		I-134 I-134	
	0	462.88	898	11840	1.08	924.71	921	8	21.3		CS-138	
	0	478.53	2028	19343	2.93	955.98	948	13	14.3		BE-7	
		P10									W-187	
	0		1460805	45497	2.66	1020.82	1013		0.1		F-18	
	2	522.71 526.52	1163 1531	2480		1044.29				0 3/19-01	I-132 T-135	
	-		1991	2000	-•/	1001.91	140	τ¢	5.5	9.34E-01	1-135 XE-135M	

Calculation No. WBNTSR-008	Rev: 1	1 Plant: WBN	Pa	ge: 53
Subject: Control Room Operator and Offsite Dos	es Due to a Steam	Prepared: µch	Date:	(-14-10
Generator Tube Rupture	· ·	Checked: HML	Date:	1.14.10
9-APR-2001 10:4 TENNESSEE VALLEY WATTS BAR NUCLEA	AUTHORITY			
SAMPLE TITLE : U1 - RCS - DEGASSED LIQUID AC FILE IDENT : DKB600:[TVA.SAMPLE.CHEM.NEW]W		F;1		
SAMPLE TIME : 9-APR-2001 08:20: * SAME * SHEI * EFF1	ATOR : WNCL LE GEOMETRY : 65ML F HEIGHT : 1 CIENCY FILE : 65ML	. 1		
SAMPLE TYPE : RCS 65ML BOTTLE * SAMP	LE QUANTITY : 1.58	100E+01 GRAMS		
ACQ DATE & TIME : 9-APR-2001 09:45: * DEAL PRESET LIVE TIME : 0 01:00:00 * SENS ELASPED REAL TIME : 0 01:02:52 * GAUS ELAPSED LIVE TIME : 0 01:00:00 * NBR	TIME (%) : 4.6% ITIVITY : 4.00 SIAN SEN : 10.0 ITERATIONS : 10	000 0000	-	
DETECTOR : DET #4, GSS-3310 * LIBE BEFFIC CAL DATE : 19-JUL-2000 20:26 * EFFI DCAL DATE & TIME : 9-APR-2001 02:40: * ENER KEV/CHAN : 5.00516E-01 * HALE OFFSET : 1.44837E-01 keV * ABUN Q COEFFICIENT : -1.10914E-07 * CORE PEAK START CHAN : 140 * PEAK	ር ርድድም ከልጥጅ • 1	CSLIQUID 9-JUL-2000 20:26 .25 .00000 0.0% .00000E+00		•
COUNTED ON : LION COULECTED BY : COUNTED BY : WNCLONES	****	*****		÷ .
REVIEWED BY : K.C.	DGA =	7.224E-3		
Post-NID Peak Search Report		•		
It Energy Area Bkgnd FWHM Channel L	oft Pw %Err Fi	t Nuclides		
0 134.65 991 52495 0.82 268.75	266 7 38.5			
0 405.26 542 12870 1.06 809.53 0 433.34 305 11020 0.97 865.66 0 462.88 898 11840 1.08 924.71	496 7 13.6 726 6 39.0 807 7 35.0 863 7 57.4 921 8 21.3	I-134 XE-135 I-131 I-134 I-134 CS-138		
	948 13 14.3 013 18 0.1 041 8 8.0	BE-7 W-187 F-18 I-132		
	041 0 0.0 048 16 5.5 9.34E			

÷

Calculation			SR-008		••••=•••••••••••••••••••••••••••••••••	Rev: 11	Pla	nt: WBN	Pa	ge: 54
ubject:				nd Offsite D	oses Due to a	Steam	Prepare	d: MUS	Date:	1-14-10
	Genera	ator Tub	e Rupture				Checked	: HML	Date:	1.14.10
REP	ort nam Ort dat Westor	E: QA_CI E: 9-AI : WNCL	HRCK (V10.4) PR-2001 10:4 DNTE	8		PAGE :	1	1		
				VALLEY AUTHO						
			POST NI	D QA ANALYSI	S			1		
TIT	LE : 01	- RCS -	DEGASSED LI	QUID ACTIVIT	Y					
san Cou Sam	iple typ: Int time	E : RCS (: 9-AP)	4095766 C402 55ML BOTTLE R~2001 09:45 R~2001 08:20 IQUID	SAMPLE :36. SAMPLE	GEOMETRY : 6 QUANTITY : 1				,	
. 18	OTOPE	PEAK ENERGY	ENERGY DIFF (KEV)	DECAY CORR uCi/GRAM	COMMENTS					
	-18	511.00	-0.03	1.116E-01	QA Resu					
	IA-24 IN-56	1368.53 1810.69	0.05 0.33	2.060E-03 2.088E-04	QA Resu QA Resu			ł		
	058 0-60	810.76 1173.22	0.00	6.2188-04	QA Resu QA Resu					
	B-95	765.79	0.28 0.46	2.7768-05 2.7948-05	QA Resu QA Resu					
	-131	364.48	0.00	3.881E-05						
	-132 -133	667.69 529.87		1.165E-03 6.105E-04	QA Resu QA Resu					
I	-134	847.03	-0.04	2.334B-03	QA Resu	lts OX				
	-135 B-135	1260.41 249.79	-0.03 -0.02	1.158E-03 1.380E-04	QA Resu QA Resu					
X	E-135M	526.56		1.972E-02	QA Resu					
C	8-138	1435.86	-0.20	2.195E-03	QA Resu	lts OK				
A	VG ENER	gy diff :	• 0.06	1.168E-01 == 2.223E-03 == 2.918E-03 == 1.986E-02 ==	TOTAL GAMMA Total DGL Ac Total FP Act Total AP Act Total Gas Ac Total HFP Ac	tivity ivity ivity tivity tivity				
Io	dine 13.	1/133 Rat	dine-131 = tio = 6.357 tio = 5.274	E-02						·
47 52 54 76 77 81 83	8.53 Ke 6.52 Ke 6.25 Ke 2.62 Ke 0.76 Ke 5.61 Ke	V Poak wa V Poak wa V Poak wa V Poak wa V Poak wa V Poak wa	AB USOG in i AB USOG in i	dentifving	2 isotopes 2 isotopes 2 isotopes 2 isotopes 2 isotopes 2 isotopes 2 isotopes					
				• .						

Calculation No.	WBNTSR-008		Rev: 1	l Plant	: WBN	Page: 55
- · ·			Steam	Prepared:		Date: 1-14-18
	Room Operator and Offsi	le Doses Due lo	a Steam			
Genera	tor Tube Rupture	<u> </u>		Checked:	Jmr	Date: 1.(4.)
ALLUME DESCRIPTION ALLUME DESCRIPTION CR. THE MENT NAME: COLUMN CO	REQUEST FORM-TVA N VEAR B B TIME CT U PR USYSTEE USYST	UCLEAR PLANTS NT IDENTIFIER: INCTION SYSTEM O 3 (COMPONENT C	ADDRE ADDRE ADDRE ADDRE SNT OUTAGE	53 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		
INSTRUCTIONSPOST MAINT. ST REQUIREMENTS: F 72-ST RSWORK/GETEVIEW (CSSC AUTH) DIZON /2/ RESP. SUP ISIGNATURE	6/88 70 1 Pontanipar 121					
LANNER ENERT E JOB	SAFETY PLANING ISEE FORM TVA 4436	TE EN WORK ANTHO	ZATION:	<u>g:</u>		
PLANNER SIGNATURE	Jackie Kerris 12	8188 A	Dellaha	- 148 188		
ORRECTIVE ACTION		ATE OPERATIONS: M.L. 18STALL-d		E DATE		
	Emp. fur Tast Norifiel ++					
		······································		·· · ·		
	····	i		·		
		· · · · · ·				
AUSE OF AILURE:	· · ·			24		4
	· · · · · · · · · · · · · · · · · · ·		••••••••••••••••••••••••••••••••••••••			
•						
ATERIAL PROCUREMENT No 11 575, 9625, 4421, 4139, 209, 201, 1	44'3)	1	• • •	52		
FTSMEN'S 1141		÷ .	·			
MES: HILL	• • • • • •		* * * *	26		
	POST MAINTENANCE / 20 ALL	WORK/TESTING		TE- 10		

Calculation No. WBNTSR-008	Rev: 1	1 P	lant:	WBN	Pag	ge: 56
Subject: Control Room Operator and Offsite Doses Due to	a Steam	Prepa	red:	MUS	Date:	1-14-10
Generator Tube Rupture		Check	(ed:	HM	Date:	1.14.10

TIT

,

MAINTENAN	ICE REQUES	ST FORM-	SZ-COR	EAR PLANTS	-	482000
AL	YEAR O'R		EQUIPMENT ID	INTIFIER	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	HUDAN
NONTH 12 DAY L	YEAR	TIME	U PUNCTIO	N - SYSTEM	ADDRE	SS KNOTILING
EQUIPMENT NAMEL			k f	F 1211		
SEE M	EE	÷	U/SYSTEM	COMPONENT -	ADDRE	33 S S
JUIPMENT LOCATION	- BLOG					
COLUMN	ELEV		MECH	ELEC. INSTRUM	ENT OUTAGE	OTHER
REMARKS 1-M-4				Μ. Ο		
WORK REQUESTED, P	towner in the		* <i>c</i> · · · <i>c</i>			
THE NOTELE	ATION SID	CT 10- 240	C. Aresian		arraines	· · · · · · · · · · · · · · · · · · ·
INST AUCTIONE 5	YETI WALL					
MACTORETON A	Viene at 1	a lista			<u> </u>	
		EXT:	181		- Lalerian mit	A1 #
PRIORITY:		BLE LCO TECH.	1950110	T CATEGORY:	SUPV. INITI	1 <u>815: 222-21</u> 434
	ROUTINE SPEC		- CSSC	NON-CSSC		NPAD/EGPT. HIST
	D TIME LI	WIT: * <u>* v A'</u>	HRS E	<u>. D- ve</u>	E NOR	YES NO
NORK INSTRUCTIONS (INC	LUGING	creans -		• • • • • •	* •	Strange
Ann LANDE	1 aur - m		65 A.X.+	The letter		TP
Lot 4 Tota 4.	.5 u _ ar.	171 Et	1 70 RE	- 5/		
at my is w	les Deriv.				1.7-	
End min.					Elbardina	
170: 13 into 1 10	and the second second	in the c				
restant 13	CALLER -	the second second		- 1		
in climit is						
1777 . 1977 . 1977 . 197 198 - 1978 . 1977 - 1977 . 1977 . 1977 . 1977 . 1977 . 1977 . 1977 . 1977 . 1977 . 1977 . 1977 . 1977 . 1977 . 1				and the state of the second second second second second second second second second second second second second		
INSTRUCTIONS/POST M	AINT.		· · · · · · · · · · · · · · · · · · ·	and the state of the second second second second second second second second second second second second second		
INSTRUCTIONS/POST M	AINT.	5-6 70	بيشيهان اليهوك بالساحة الألطا فسيبا تشاطيهم	and the state of the second second second second second second second second second second second second second		
INSTRUCTIONS/POST M	AINT	5-6 70	· · · · · · · · · · · · · · · · · · ·	and the state of the second second second second second second second second second second second second second		
INSTRUCTIONS/POST M	AINT. 5.52	5-6 70	<u> </u>			
INSTRUCTIONS/POST M	AINT. 5.52	5-6 70	<u> </u>		<u>د.</u> E: ا <u>نت</u> ا TOTA	LESTIMATED
INSTRUCTIONS/POST M	(CSSC ONLY):		<u> </u>		<u>د.</u> E: ا <u>نت</u> ا TOTA	
TREQUIREMENTS:	(CSSC ONLY):	CLA TO	<u>(:/:/:/:</u> DATE	29006K CREW 51	<u>د.</u> E: ا <u>نت</u> ا TOTA	LESTIMATED
INSTRUCTIONS/POST M ST REQUIREMENTS:	(CSSC ONLY):	CLA TO	<u>(:'/ : /:</u> <u>DATE</u>	29006K CREW 51	:e: [1:]TOTA	LESTIMATED
INSTRUCTIONS/POST M AT REQUIREMENTS:	CCSSC ONLYI:	CLA TO	<u>(:'/ : /:</u> <u>DATE</u>	19WORK CREW 512	:e: [1:]TOTA	L ESTIMATED
INSTRUCTIONS/POST M ST REQUIREMENTS:	ICSSC ONLY): 1 CCSSC ONLY): 1 COATE JOB SAFETY PLA RESP. SUPV.	CE SIGNATURE	<u>1."/. 7:</u> DATE TVA (436D: DATE	19WORK CREW 512		L ESTIMATED
INSTRUCTIONS/POST M ST REQUIREMENTS: D-ST PRE-WORK/QE PEV EW RESP. SUPV. SIGNATURE PLANNER REMOVE 131 PLANNER SIGNATURE	CCSSC ONLYI:	CE SIGNATURE	<u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> (1) <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> (1) (1) (1)) (1) (1) (1)) (1) (1)) (1)	19WORK CREW 512		L ESTIMATED
INSTRUCTIONS/POST M AT REQUIREMENTS:	ICSSC ONLY): 1 CCSSC ONLY): 1 COATE JOB SAFETY PLA RESP. SUPV.	CE SIGNATURE	<u>1."/. 7:</u> DATE TVA (436D: DATE	ISWORK CREW SIZ		L ESTIMATED
TREQUIREMENTS:	ICSSC ONLY): 1 CCSSC ONLY): 1 COATE JOB SAFETY PLA RESP. SUPV.	CE SIGNATURE	<u>1."/. 7:</u> DATE TVA (436D: DATE	ISWORK CREW SIZ	E: [1:]TOTA MANH	L ESTIMATED
INSTRUCTIONS POST M	ICSSC ONLY): 1 CCSSC ONLY): 1 COATE JOB SAFETY PLA RESP. SUPV.	CE SIGNATURE	<u>1."/. 7:</u> DATE TVA (436D: DATE	ISWORK CREW SIZ	E: [1:]TOTA MANH	L ESTIMATED
INSTRUCTIONS POST M	ICSSC ONLY): 1 CCSSC ONLY): 1 COATE JOB SAFETY PLA RESP. SUPV.	GE SIGNATURE	<u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> (1)) <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> (<u>(1)</u>) <u>(1)</u> (<u>(1)</u>) (<u>(1)</u>)) (<u>(1)</u>) ((<u>(1)</u>)) ((<u>(1)</u>)) ((<u>(1)</u>)) ((<u>(1)</u>	AWORK CREW SIZ	E: LITTOTA MANH	L ESTIMATED
INSTRUCTIONS POST M	ICSSC ONLY): 1 CCSSC ONLY): 1 COATE JOB SAFETY PLA RESP. SUPV.	GE SIGNATURE	<u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> (1)) <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> (<u>(1)</u>) <u>(1)</u> (<u>(1)</u>) (<u>(1)</u>)) (<u>(1)</u>) ((<u>(1)</u>)) ((<u>(1)</u>)) ((<u>(1)</u>)) ((<u>(1)</u>	AWORK CREW SIZ	E: LITTOTA MANH	L ESTIMATED
INSTRUCTIONS/POST M ST REQUIREMENTS: D-ST PRE-WORK/QE PEV EW RESP. SUPV. SIGNATURE PLANNER REMOVE 131 PLANNER SIGNATURE	ICSSC ONLY): 1 CCSSC ONLY): 1 COATE JOB SAFETY PLA RESP. SUPV.	GE SIGNATURE	<u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> (1)) <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> (<u>(1)</u>) <u>(1)</u> (<u>(1)</u>) (<u>(1)</u>)) (<u>(1)</u>) ((<u>(1)</u>)) ((<u>(1)</u>)) ((<u>(1)</u>)) ((<u>(1)</u>	AWORK CREW SIZ	E: LITTOTA MANH	L ESTIMATED
TREQUIREMENTS:	ICSSC ONLY): 1 CCSSC ONLY): 1 COATE JOB SAFETY PLA RESP. SUPV.	GE SIGNATURE	<u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> (1)) <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> <u>(1)</u> (<u>(1)</u>) <u>(1)</u> (<u>(1)</u>) (<u>(1)</u>)) (<u>(1)</u>) ((<u>(1)</u>)) ((<u>(1)</u>)) ((<u>(1)</u>)) ((<u>(1)</u>	ISWORK CREW SIZ	E: LITTOTA MANH	L ESTIMATED

Calculation No. WBNTSR-008	Rev: 1	1 F	Plant:	WBN	Pag	je: 57
Subject: Control Room Operator and Offsite Doses Due to a	Steam	Prepa	ared: /	ACAS	Date:	1-14-10
Generator Tube Rupture		Chec	ked: y	m	Date:	1.14.10

AI-9.2 Appendix E Page 1 of 1 Revision 19

• MULTIPLE EQUIPMENT LIST

. .,

NOTE:

. .

÷ .

.

•

1

TVA

This form is also used to maintain traceability for QA Levels I & II equipment when components are moved from one location to another.

HTU# <u>A 482000</u> 1 Page / of /

		EQUIPMENT	IDENTIFIE	R .	EQUIPHENT	EQUIPMENT
	UNIT	FUNCTION	SYSTEM	ADDRESS	NAME	LOCATION
	::::::::::::::::::::::::::::::::::::::	FCY	31=	3-A	MCRHZ ISO. DAMPER	CONTROL BLOG
1	<i>=</i> ±0	FCV	315	· 4-B	الا بيع مع بين الم	1
	0	FCO	31	9-B	11 11	ણ ગ
•	<i>```</i> 0	FCQ	31	10-A	11 *	11 23
	<i></i> 0	FCO	31	16-B	4 D	H H
	0	FLO	31	17-A	lt h	ų <i>1</i>)
	0	FCO	31	25	i(11 11
	0	FCO	31	26	11 11	ų. <i>11</i>
	0	FCV	31.	36-B	16	ц
	0	FCV	31	37-A	1 1	n 71
	0	FCV	31	204	11 11	11 . 11
			.	[
	1	1		1	i	÷

Calculation No. WBNTSR-008	Rev: 1	1 Plant: WBN	Page: 58
Calculation No. WBNTSR-008 Subject: Control Room Operator and Offsite Doses Du	ue to a Steam	Prepared: MUD	Date: 1-14-10
Generator Tube Rupture		Checked: Hm	Date: 1.14.10
WBUTSR-008		P. 55 ALLA 1-19-06	
	482000		
	1 of 9		
1) CONNECT 3 BRUSH RECORDERS ON 1-M-	-9_AS_1		
SPECIFICO_IN ATTACHMENT 1. VERIFY CO	DANECTIONS		
COMPLETED Relat & Braker	t 1 12/88	• • • • • • • • • • • • • • • • • • •	
Z) ENSURE THE FOLLOWING SYSTEM LINA	E-UP	. *	
	n Ø.	· · · · · · · · · · · · · · · · · · ·	
CONTROL BLOG PRESS FAN A-A DE B-B OI	N AT	/12/3/38	
MCR AHU A-A or B-B 0,	1	(12/8/33	
SPREADING RM SUPPLY FAN	N	- 12/8/33	
SPREADING RM EXH FAN A-A	N	-/12/8/39	
SPREADING RM EXH FAN B-B 01	N At	/12/8/38	
SMOKE REMOULL FAN (FROM HS-JI-204) 01	N	12/3/58	
FCV-31-3 OPEN	- the	<u>/12/8/3</u> 9	
FCV-31-4 OPEN	- Sta	12.13/33	
FCO-31-9 OPEN		<u>/12/8/33</u>	
FCO-31-10 OPEN	·	/12/3/33	
FCO-31-16 OPEN	- HK	<u>/12/8/83</u>	· .
FC0-31-17 OPEN		/12/8/89	
FC0-31-25 OPEN	CAD	/12/3/83	
FCO-31-26		/12/8/89	
FCV-31-36OPEN	fal	/12/3/33	
FCV-31-37OPEN	Afd Old	<u>8/8/21 /</u> 88/8/21/	
FCV-31-204 OPEN		110100	

Page: 59 Plant: WBN **Rev:** 11 WBNTSR-008 Calculation No. Prepared: Nos Date: 1-14-10 Subject: Control Room Operator and Offsite Doses Due to a Steam Date: 1.14.10 Checked: Hu Generator Tube Rupture · p. 54 HBNTSR-007 1-19-06 MR 482000 PAGE 3) ESTABLISH COMMUNICATION _ KUTH_PERSON STATIONED AT FCY-31-204 _ 4) START STRIP RECORDERS 1 AND 3. M. 5) INITIATE A-TRAIN CRI BY 1-HS-31-177A 100000000000 6) VERIFY THE FOLLOWING DAMPERS CLOSE FCV-31-3 n FC0-31-10 FCO-31-17 FCO-31-25 ____ FC0-31-26 FCV-31-37 FCV-31-204 7) STOP_RECORDERS 1 AND 3 8) RECORD FLY-31-204_CLOSURE_TIME AND METE_DATA.____ : STORNATCH ID # 902597 CAL Due Dare 7-14-89 - 11 8,48 CLOSURE TIME ____ SEC 1 DATA TAKEN BY Reat 5 Bra 6# 12/8/88

Calculation No. WBNTSR-008		Rev: 1	1	Plant	: WBN	Pa	ge:
Subject: Control Room Operator and O	ifsite Doses Due to	a Steam			purs		_
Generator Tube Rupture			Che	cked:	HML	Date:	1.
CENTSR-	MRS-4	8200	O S	22			
	PAGE 3		18-2				
9) = Reset [= HS=31-177A							
	XIE -	18/51 1	9 9				
				•			
OFREINSTATE THE FOLLOWING 3	ISTER LINEUP						
		TO.C.					
CONTROL BLOG PRESS. FAN A-A	ER B-B ON	<u>gpr</u>	/12	12/37			
SPREADING RM EXH. FAN A-A	ON	JH		13/93			
SPREADING RIM EXIL FAN B-B	ON	<u>eff</u>		12/3/32			
SPREADING RW SUPPLY FAN	ON	¥		<u>ız 9 38</u>			
SMOKE REMOVAL FAN (FROM HS-31-204)	ON	de la		2/3/33			
FCV-31-3	OPEN2			2/2/33			
FCO-31-25	OPEN			2/8/93			
Fco-31-26	OPEN	900	. /1	13/33			
FC0-31-10	OPEN			2 <u>18/33</u>			
FC0-31-17	OPEN			2/9/93			
FCV-31-37	· OPEN			z <i>13/33</i>			
FCY- 31-204	OPEN	<u>k</u>		2/9/38			
u) s					,		
11) ESTABLISH COMMUNICATION WIT	H PERSON STATI	ONED	•				
- AT FCV-31-204							
······································	000	/12	18/38) 			
		••••••		· · ·			
12) START RECORDERS Z AND	5 Off		-1				

Plant: WBN Page: 61 **Rev:** 11 WBNTSR-008 **Calculation No.** Date: 1-14-10 Prepared: MUD Subject: Control Room Operator and Offsite Doses Due to a Steam Checked: HM Date: 1.14.10 Generator Tube Rupture PASE 4 B _ INITIATE B-TRAINS CRI BY F-HS-31-1778 14) VERIFY THE FOLLOWING DAMPERS _CLOSE FCV-31-4 12 FC0-31-9 FC0-31-16 FCO-31-25 FCO-31-26 FCV-31-36= FCY-31-204 15) STOP RECORDERS 2 AND 3 12/8/88 16) RECORD FLY-31-204 CLOSURE TIME AND M&TE DATA STOPLATCH ID # 902597 CAL DUE DATE __ 7-14-84 8.22 CLOSURE TIME SEC DATA TAKEN BY Robert & Bralet 170100 _17) RESET_1-HS-31-177B. 12/3/83

Page: 62 **Rev:** 11 Plant: WBN WBNTSR-008 **Calculation No.** Date: 1-1-1-10 Prepared: h() Subject: Control Room Operator and Offsite Doses Due to a Steam Checked: 1444 Date: 1.14.10 **Generator Tube Rupture** PAGE _____ 18)_RETURN_CONTROL_OF_SYSTEM: TO _ OPERATIONS TO BE ALIGNED AT THEIR DISCRETION. . 19) RECORD THE CLOSURE TIME FOR THE FOLLOWING DAMPERS AS MEASURED BY THE STRIP CHARTS. (ELCEPT FCV-31-204 WHICH WAS MEASURED BY STOPLIATEN) A-TRAIN CRI B-TRAN CRI FCV-31-3 12,43 SEC FCY-31-4 13,15 SEC FCO-31-10 9.64 sec == FCO-31-9 -10.94 - sec -FCO-31-17-16, 3 -SEC -FCO-31-16 -7.64 -SEC FCV-31-37 13,56 sec FCO-31-36 12,32 SEC FCO-31-25 - 8.60 SEC FCO-31-25 8.57 SEC 6,44 SEC FCO-31-26 6,56 SEC FC0-31-26 FCV-31-204 8,48 SEC FCV-31-204 8,22 SEC · DATA RECORDED BY __ 12/2/33 20) ATTACH STRIP CHARTS TO THIS MR. RECORD MR NUMBER ON THE CHARTS. . . 21) REMOVE TEST EQUIPMENT AS LISTED IN ATTACHMENT 1. SECOND PERSON VERIFICATION IS REQUIRED. VERIFF ATTREMENT 1 CUMPLETED Bolut S. Bralitt /12/8/68

Subject:	Control Room Operator and Offsite Do	ses Due to a Steam	Prepared: McA	Date: 1-14-
	Generator Tube Rupture		Checked: Uni	Date: 1.10
			1 10.00	
	ATTACH MENT L		MUS 1-19-06	
	A Age / of 4		48.2000	
15-31		Pro-	5 . 9	
		• 7		
e Pe	RFORMERS.			
51	SNATURE	INTITIAL		
PI.	4 S.B. Lett	RSR		4
	Iniver	Hat.		
Finn	4 full	ort		

alculatio			TSR-008			Rev:	11	Plant	: WBN	I	Pag	e: 64
ubject:	Contre	ol Room O	perator a	nd Offsite	Doses Due	to a Steam	Pre	pared	MUS	Da	te:	-14-10
	Gener	ator Tube	Rupture				Che	cked:	Hui		te:	1.14.10
		- 2 -2		33 A -								
			3 E E	1	ेटेडे							
		E ala	0 9	90	м							
11	3.20	< 7 2	źć	22	R54	<u>जे</u> ज	ş					
89		21 21	S . S	÷.	5.5	2 E				•		
Que	a/v8	42	1	- in the	la v	25						
Q I	1	2010	Sale	He of	15 15	a a	241					
				E.	<u>B</u> B		5	·				
ma Pace	-*	হা শ	1.1	SEL SEL			VSEP. EASURE					
66	lerrome Br/mt	23	E E		No. 12	Not the	3)			
	- Q	.]]			17		INPPEANDLE INPPEANDLE					
	- S	RAR	EN TO	K.K.	N.R.	N N	CCA.					
	d <u>u</u>	A A	ब्द	A A	Ad		ANN 3					
•	E		. 3									
	TERM	6 7	. w =		* 5	20	spare(s) we # 774					
7.75 A + 20	چين ^ي مدينا		್ಷ ನಿರ್ವಹಿಸಿದ್ದಾರೆ. ಕಲ್ಲಿ ಎಂಗಳಲ್ಲಿ ಕ್ಷೇ				× ·	::				
		VADI VADI	<u>ک</u> کر		αται μεταγικάς μεταγ απογραφικός Α. λ. λ. α. α. α. α. α. α. α. α. α. α. α. α. α.	State 1 = 73	148	a		•		
	3	VXDI	VKG Y	VK62. VK6 Y	vkgz Yk6 Y	VKG 16 VKG 7	Then DATO	÷				
2	٩	_	730		T a .		. 9					
Č ·	81A(P	5-24 -7 5-2 5-2	3-45 15-2 - 470 18-10 - 19-10-10-10-10-10-10-10-10-10-10-10-10-10-	35-400 3 459 1 210/88	88/ 8/12. 4 x x 4 Wh-E	3-4M 5 RUB MH	NOPERABLE					
		38	127	n n - 2	m	m p J	LT.M					
	RISER	. उहे	8	1)a	5	2.5	સંસ્					
~ 73	ž	42	ŝ	ŝ	m	m	ECOMES E LING USED.					
858 299				•								
#346 7-7-6 R.S. On	Component	htti	ŝ	0	2	~	17 18 11 18 11 18					
2 - 2	nPol	÷.	-16-		-16	i. IE	11 A.M. 2 2 A.M.E.					
#	ů.	fati-16 -24-1	0-FCV-31-3	0- fco-31-10	0 - FC0-31-17	16-1E-431-0	7 18 1 7 18 1 7 18 1					
Ч Ч Ч		- ·	•	ò	0	1-0	IF ANY CAMMEL B Noted BY Singly WHER CHANNEL 15	•				
Recorder 1 Ib th Calibritian Die Dole Ukrifiad Sy	ר .					· · ·	NOTE: IF ANY CHANKL B Noted By Single WHCA CHANNEL IS					
Recorder 1 Calibratian D Unified Sy	CHANNEL	OVE	\$	ui Si	¥.	2	, 5TC .					
L'IL	C.F.	0	ort .	Takes	Foug.	FIVE	ž					

culation N	lo.	WBNTSR-	-008			Rev: 11	Pla	nt: WBN	Page: 65
			ator and Offs	ite Doses	Due to a	Steam	Prepare		Date: 1-M-10
Gen	erator	r Tube Rupt	ture	-			Checke	d: Anr	Date: 1.14.10
				্রস্ত		্ৰ হাৰ	51		
			23	<u> </u>					
	24	00	80	28	22	88			
8		दर	र्ष	252	રા લ	20	: 2		
No a	a.	2 2	12 A	St. 36.	34 26	128 3	tin t		
0.5	4				as ter	-4/2	D 20		
) d		12 h	n to	No the	M M	27	10		
MA #	Ž	J.C.	NA	d'al	A ST	S S S			
₹ €		AL 4		- [] • [امد ا م	- L.	0.56		
	10.4	1200 - 12	No. No.	NY NY	Total The	11 10		•	
• • •	10 Q						AMY		
	PEA PEAMED &Y	15 25	THE REAL	5 2				·	
•	Pea	N N	A A	म्मू	642		The IN		
ما وي الله الله . مكترة المنتقال بينة المعالي	<u> </u>		ب محمد کرد و کرچو پیداید و می و مامبر او میکو میگور با این از ا					·····	
•••• •••	2		N M	w -	~ +	ف ما ا	484 eVHT 94 T V		
1" -1"	43		S.	5	. .	ž	44	• .	
	. <u>R</u>	YX E I	VKH24 VKHY Cu	VKHS2 VKHY	уки сц	vkils6 vkRY ce	, v		
Profe B	•.	~ ~	75	* * *	X X	- 5 5	AND		
	STRIP	5. 5	ZE	2 No	2 8	WZ			
	\$1	61-29 1418	NE-2 ME-8	3-3N 3-3M	3-3N 3-3M	2 mg	THILINI BOONI		
望らい		Lalaz	3		belat	10	11.1 1 16,		
8 8	Risea	19 V	3 1.4.2 1.4.2	3 cula3 wb _i rla	3 Geberts And Calified	and the 5	RIB 1 ²¹ BECOME LING,	N3 0	
434857 8-21-89 R.S.Budd	i		·	J	2	- 3	(1) IV CHANKEL BECOME 1 K ANY CHANKEL BECOME NOTED BY SINGLE LING	WHCH CHINNEL IS USED.	
* J	ž	911	4		- A		NOTE: IF ANY CHANNEL NOTE: IF ANY CHANEL	anni	
Recorder 2 Id #_ Gebertion Dre Date_ Verified By	LomPoNENT	d 771 - 18 - 24 - 1	0-FCV-31-4	0-15-031-9	D-FC0-31-16	D-FCV-31-36	NV B	CH	
20.3	Com Com	÷¥.	J.C.V.	FCD-	FC0-	Fcv.	A A	NICH	
etter de		-	ò	0	-0 .	4	/ ~ 	2	
Recorden 2 Calibatian D Vicitiad By	ner		· •			•	Jav		
	CHANNEL	ene	oml	Ture	FOUR	FIVE			
	-	~	r	· •		1-1-	

Calculation No.	WBNTSR-008		Rev: 1	1	Plant:	WBN	Pag	e: 66
		Offsite Doses Due to	a Steam		pared:	Inco .	Date:	
Generate	or Tube Rupture			Che	ecked:	Hm	Date:	(.14.10
MR # 482000 MR # 482000 Mes 9 or 9	4 1994 120-11 120-11 150 101000 4 1996 1991 120-11 156 10100 4 1956 1991 120-15 156 101000 4 1956 1992 120-11 100-10	1 198 1421 12-81 23 13 10000 1 198 142 12-82 13 6 10000 1 198 142 12-82 13 6 10000	SPACE (1) MAY BE VIED, ENDAGE THA 12 THE INDERABLE CHANNEL, AND SPECIFYAG					
A Traceline war a Ray of the offer the offet the offer t	VKDL 6 VKDL VKDL VKDL VKDL VKDL VKDL VKDL VKDL	VKH48 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	68 INOPERABLE, THEN THE INITIAL AND DATE THROUGH					
379817 9-1-63) 1.5. Brudiett	AZ AZ-3 CLL 3 A50 9/9/26 9/9/26 1 B1-29 V 5/4/9 A50 V	3 3-21 VKHY VKHY 3 3-21 VKHY	BECoM INE J	EL 15 48ED.				
RECORDER 3 ID # Calibratian Dor Date 9 Verified By <u>R.</u> CHANNEL COMPONENT	one I-HS-31-117A Two I-HS-34-1778	THREE 0-FC0-31-25 Four 0-FC0-31-26	NOTE: IF ANY CHARNEL NOTED BY SINGLE	WHER CHANTEL 15 US				

Attachment 4

FENCDOSE Run

TSR8F11Aout.txt

Time Dependent Releases 21 uCi/g I-131 equivalent preaccident lodine spiking case

1			TSR8F11	Aout	.txt	•					
	FFFFFFFFFF	EEEEEEEEE	NN	NN	ccc	ccc	DDDDDDD	D	00000	0	
SSSSSS	EEEEEEEEEE FFFFFFFFFF	EEEEEEEEE	NNN	NN	cccc	cccc	DDDDDDD	DDD	000000	000	
SSSSSSSS	EEEEEEEEE FF	EE	NNNN	NN	сс	· CC	DD	DD	00	00	SS
SS	EE					•••					SS
	FF EE	EE	NN NN	NN	СС		DD	DD	00	00	55
SSSSSSSSS	FFFFFFFF EÉEEEEEE	EEEEEEE	NN NN	NN	CC		DD	DD	00	00	
SSSSSSSSS	FFFFFFF	EEEEEEE	NN NN	NN	СС		DD	DD	00	00	
	FF	EE	NN N	NNN	сс		DD	DD	00	00	
₽.	EE FF EE	EE	NN	NNN	сс	сс	DD	DD	00	00	SS
	FF	EEEEEEEEE	NN	NN	cccc	cccc	DDDDDDD	DDD	000000	000	
SSSSSSSS	EEEEEEEEE FF	EEEEEEEEE	NN	NN	ссо	ccc	DDDDDDD	DD	00000	00	
SSSSSS	EEEEEEEEEE										
,	RRRRRRR	EEEEEEEEE	vv	vv			5555555	5555			
	RRRRRRRR	EEEEEEEEE	VV	vv			5555555				
J	RR RR	EE	VV	VV			55				
	RR RR	EE	VV	vv			55				
	RRRRRRRR	EEEEEEE	vv v	V			555555	55			
	RRRRRRR	EEEEEEE	vv v	V			55555	555			
	RR RR	EE	~~~~					55			
	RR RR	EE	~~~~				55	55			
	RR RR	EEEEEEEEE	vv				555555	555			
	RR RR	EEEEEEEEE	vv				55555	55			
	ww ww	IIIIII	NN	NN	999	9999	5555555	5555	NN	NN	
QQQQQQ	AAAAA WW WW	IIIIII	NNN	NN	9999	99999	5555555	5555	NNN	NN	
QQQQQQQQ		тт	NNNN	NN	99	ga	55		NNNN	NN	00

~~~~~	,,,,,											
	WW -	WW	IIIIII	NNN	NN	99999	9999	55555	55555	NNN	NN	
QQQQQQQQ	AAA	AAAAA										
	WW	WW	II	NNNN	NN	99	99	55 ·		NNN	N NN	QQ
QQ	AA	AA										
	WW	WW	II	NN NN	NN	99	99	55		NN	NN NN	QQ
QQ	AA	AA										
	WW	WW	II	NN N	N NN	99999	99999	5555	555	NN	NN NN	QQ
QQ	AA	AA										
	WW W	w ww	II	NN	NN NN	9999	99999	555	5555	NN	NN NN	QQ
Q QQ	АААААА	AAAA										
	WW WW	ww ww	II	NN	NNNN		99		55	NN	NNNN	QQ
QQQ	ΑΑΑΑΑΑ	АААА										•••
	WWWW	www	II	NN	NNN	99	99	55	55	NN	NNN	QQ
QQQ	AA	AA										•••
	WWW	WWW	IIIIII	NN	NN	99999	9999	5555	5555	NN	NN	
QQQQQQQQ	AA	AA										
					-							

ପ୍ରପ୍ରପ୍ରପ୍ର ପ୍ର		W IIIII A	TSR8F11Aou NN NN	t.txt 999999	555555	NN NN	
11	00000 00000	11	//	11	11		
111	0000000	111	//	111	111	//	
	00 00		11	1111	1111	//	
1111	00 00 00	. 11	//	11	11	11	
11	00 00	11	//	11	11	//	
- 11	00 00 00 00	11	//	11	11	11	
11	00 00 00 00	) · 11	//	11	11	//	
11	00 00 00 00	11	11	11	11	//	
11	00 00 0000000	111111	//	111111	111111	//	
111111	0000000 00000	111111	/	111111	111111	/ .	
111111	00000						
	11	888888		222222	222222		
00000	00000 111	88888888		22222222	22222222		
0000000	0000000 1111	88 88	::	22 22	22 22	::	00
00	00 00 11	88 88		22	22	::	00
00	00 00 11	88888888		2222222	2222222		00
00	00 00 11	88888888		2222222	2222222		00
00	00 ¹¹ 00 11	88 88	. ::	22	22	::	00
00	00 ¹¹ 00 11	88 88		22	22	::	00
00	$\begin{array}{ccc} 00 & & 10 \\ & & 111111 \end{array}$	88888888	••	222222222222222222222222222222222222222	222222222222222222222222222222222222222	••	00
0000000	0000000	888888		222222222222			
00000	00000	000000					

1 REPRODUCTION OF INPUT DATA DECK

+ + + + + 1 KRM-83 KRM-85 KR-85 KR-87 KR-88 KR-89 XEM-131 XEM-133 XE-133 XEM-135 XE-135 XE-138 I-131 I-132 I-133 I-134 I-135 Page 2

I*-131	I*-132	I*-133 I	. +	R8F11Aout 5 H-3	.txt		
т .141E-3					6.07E-4		
	ENERATER		TURE ACCIDEN	IT		·	
4	'ENVIRON	MENT		'\$т	N= 0.371	L1E-01	
	1 0.00	0E+00	2 2.364E+00		7E+00	4 2.196E+00	5 4.135E+00
	$\begin{array}{c} 6 & 0.00 \\ 11 & 1.25 \end{array}$		7 9.090E+00 2 1.622E+00	8 9.96 13 3.74		9 3.516E+01 L4 1.747E+01	10 2.085E+00 15 1.168E+01
	16 2.77		7 2.173E+01			L9 0.000E+00	20 0.000E+00
	21 0.00		2 0.000E+00	23 4.71	.2E+01		
	ENERATER	TUBE RUP	TURE ACCIDEN	IT		•	
4	'ENVIRON	MENT		ר \$ י	N= 0.200	00E+01	
	1 0.00	0e+00	2 1.462E+02	3 2.68		4 9.306E+01	5 2.328E+02
	$ \begin{array}{c} 6 & 0.00 \\ 11 & 9.75 \end{array} $	0E+00 1E+02 1	7 6.593E+02 2 1.538E+01	$8 7.17 \\ 13 3.18$		9 2.548E+03 L4 1.328E+02	10 2.783E+02 15 9.824E+01
	16 1.79	6E+02 1	7 1.778E+02	18 0.00		L9 0.000E+00	20 0.000E+00
	21 0.00		2 0.000E+00	23 3.43	4E+03		
	ENERATER	TUBE RUP	TURE ACCIDEN	ΙT			
4	'ENVIRON	MENT		ר \$ י		00E+01	
	10.00		2 2.348E+01	3 7.48		4 4.758E+00	5 2.765E+01
	$   \begin{array}{c}     6 & 0.00 \\     11 & 3.50   \end{array} $		7 1.820E+02 2 6.510E-03	$8 1.94 \\ 13 1.75$	8E+01	9 7.039E+02 L4 1.990E+00	10 1.003E+02 15 4.681E+00
	16 5.36	1E-01 1	7 6.088E+00	18 0.00	0E+00 1	19 0.000E+00	20 0.000E+00
	21 0.00	0E+00 2	2 0.000E+00	23 9.56	64E+02		
WBN SGT TIME TO							
-6	'ENVIRON	MENT	CURIES	ר \$ '	N= 0.240	00E+02	
	10.00		2 0.000E+00	3 0.00		4 0.000E+00	5 0.000E+00
	$   \begin{array}{c}     6 & 0.00 \\     11 & 0.00 \\   \end{array} $		7 0.000E+00 2 0.000E+00	8 0.00 13 0.00		9 0.000E+00 14 0.000E+00	10 0.000E+00 15 0.000E+00
	16 0.00	0E+00 1	7 0.000E+00	18 0.00	0E+00	19 0.000E+00	20 0.000E+00
	21 0.00	0E+00 2	2 0.000E+00	23 0.00	0E+00		
WBN SGT	R 4 DAYS						
-6	'ENVIRON	MENT	CURIES	ר \$ '	N= 0.960		
	1 0.00	0E+00	2 0.000E+00	3 0.00		4 0.000E+00	5 0.000E+00
	$   \begin{array}{c}     6 & 0.00 \\     11 & 0.00   \end{array} $		7 0.000E+00 2 0.000E+00	8 0.00 13 0.00		9 0.000E+00 14 0.000E+00	10 0.000E+00 15 0.000E+00
	16 0.00	0E+00 1	7 0.000E+00	18 0.00		19 0.000E+00	20 0.000E+00
	21 0.00	0E+00 2	2 0.000E+00	23 0.00	00E+00		
WBN SGT	k 30 days						
-6	'ENVIRON	MENT	CURIES	ר \$ '	N= 0.72	00E+03	
	10.00		2 0.000E+00	3 0.00		4 0.000E+00	5 0.000E+00
	$\begin{array}{c} 6 & 0.00 \\ 11 & 0.00 \end{array}$		7 0.000E+00 2 0.000E+00	8 0.00 13 0.00		9 0.000E+00 14 0.000E+00	10 0.000E+00 15 0.000E+00
	16 0.00		7 0.000E+00	18 0.00		19 0.000E+00	20 0.000E+00
	21 0.00	0E+00 2	2 0.000E+00	23 0.00	00E+00		
+	+	+	+	+	+	+	+

PROGRAM FENCDOSE REVISION NUMBER:5 REVISION DATE: 31 JUL 2009 TODAY IS: 01/11/10 STARTING TIME IS: 18:22:00

1ISOTOPE KRM-83 KRM-85 KR-85 KR-87 KR-88 KR-89 XEM-131 YEM 122	GAMMA ENERGY (MEV/DIS) 0.0025 0.1586 0.0022 0.7928 1.9629 2.0837 0.0201	TSR8F11Aout.txt BETA ENERGY (MEV/DIS) 0.0371 0.2529 0.2506 1.3237 0.3750 1.2310 0.1428 0.1908

OCHI/Q 1.410E-04 6.070E-04

6.680E-05 4.590E-05 2.040E-05 6.350E-06

, TIME = 0.

1

OSTEAM GENERATER TUBE RUPTURE ACCIDENT TIME TO 133.6 SEC COMPONENT 4 ENVIRONMENT 1ISOTOPE

KRM-83 KRM-85 KR-85 KR-87 KR-88 KR-89 XEM-131 XEM-133 XE-133 XE-135 XE-135 XE-135 XE-138 I-131 I-132	0.9963E+00 0.3516E+02 0.2085E+01 0.1259E+02 0.1622E+01 0.3742E+01 0.1747E+02
XEM-135	0.2085E+01
XE-135	
	• • • • • • • • •
I-133	0.1168E+02
1-134	0.2779E+02
I-135	0.2173E+02
I*-131	0.0000E+00
I*-132	0.0000E+00
I*-133	0.0000E+00
I*-134	0.0000E+00
I*-135	0.0000E+00
Н-3	0.4712E+02
USIEAM GENERAT	ER TUBE RUPTURE

TIME TO 2 HOUR

Page 4

ACCIDENT

COMPONENT 1ISOTOPE	4 ENVIRONMENT	TSR8F
KRM-83 KRM-85 KR-85 KR-87 KR-88 KR-89 XEM-131 XEM-133 XE-133 XE-135 XE-135 XE-135 XE-138 I-131 I-132 I-133 I-134 I-135 I*-131 I*-132 I*-133 I*-134 I*-135 H-3 OSTEAM GENE TIME TO 8	0.0000E+00 0.1462E+03 0.2689E+03 0.9306E+02 0.2328E+03 0.0000E+00 0.6593E+03 0.7176E+02 0.2548E+04 0.2783E+03 0.9751E+03 0.9751E+03 0.1538E+02 0.3186E+02 0.3186E+02 0.1328E+03 0.9824E+02 0.1796E+03 0.9824E+02 0.1778E+03 0.9824E+02 0.1778E+03 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.3434E+04 RATER TUBE RUPTURE HOUR 4 ENVIRONMENT	ACCIDENT
KRM-83 KRM-85 KR-85 KR-87 KR-88 KR-89 XEM-131 XEM-133 XE-133 XE-135 XE-135 XE-138 I-131 I-132 I-133 I-134 I-135 I*-131 I*-133 I*-134 I*-135 I*-134 I*-135 H-3 OWBN SGTR TIME TO 1 COMPONENT IISOTOPE	0.0000E+00 0.2348E+02 0.7488E+02 0.4758E+01 0.2765E+02 0.0000E+00 0.1820E+03 0.1948E+02 0.7039E+03 0.1003E+03 0.3507E+03 0.6510E-02 0.1752E+01 0.1990E+01 0.4681E+01 0.5361E+00 0.6088E+01 0.6088E+01 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.9564E+03 DAY 6 ENVIRONMENT	CURIES
KRM-83 KRM-85 KR-85 KR-87	0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	

, TIME = 8.

CURIES

, TIME = 24.

KR-88	0.0000E+00
KR-89	0.0000E+00
XEM-131	0.0000E+00
XEM-133	0.0000E+00
XE-133	0.0000E+00
XE-135	0.0000E+00
XE-135	0.0000E+00
XE-138	0.0000E+00
I-131	0.0000E+00
I-132	0.0000E+00
I-133	0.0000E+00
I-134	0.0000E+00
I-135	0.0000E+00
I*-131	0.0000E+00
I*-132	0.0000E+00
I*-133	0.0000E+00
I*-134	0.0000E+00
I*-135	0.0000E+00
H-3	0.0000E+00
OWBN SGTR	0.0000E+00
TIME TO 4 DAY	0.0000E+00
COMPONENT 6	0.0000E+00
IISOTOPE	0.0000E+00
	0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
KRM-83	0.0000E+00
KRM-85	0.0000E+00
KR-85	0.0000E+00
KR-87	0.0000E+00
KR-88	0.0000E+00
KR-89	0.0000E+00
XEM-131	0.0000E+00
XEM-133	0.0000E+00
XEM-133	0.0000E+00
XEM-135	0.0000E+00
XE-135	0.0000E+00

CURIES

, TIME = 96.

CURIES

, TIME =720.

Page 6

XE-138	0.0000E+00
I-131	0.0000E+00
I-132	0.0000E+00
I-133	0.0000E+00
I-134	0.0000E+00
I-135	0.0000E+00
I*-131	0.0000E+00
I*-132	0.0000E+00
I*-133	0.0000E+00
I*-134	0.0000E+00
I*-135	0.0000E+00
н-3	0.0000E+00

1INPUT CON	CENTRATION				<b>x</b>
krm-83	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
krm-85	1.4856E+02	2.3480E+01	0.0000E+00	0.0000E+00	0.0000E+00
KR-85	2.7260E+02	7.4880E+01	0.0000E+00	0.0000E+00	0.0000E+00
kr-87	9.5256E+01	4.7580E+00	0.0000E+00	0.0000E+00	0.0000E+00
kr-88	2.3693E+02	2.7650E+01	0.0000E+00	0.0000E+00	0.0000E+00
kr-89	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
XEM-131	6.6839E+02	1.8200E+02	0.0000E+00	0.0000E+00	0.0000E+00
XEM-133	7.2756E+01	1.9480E+01	0.0000E+00	0.0000E+00	0.0000E+00
XE-133	2.5832E+03	7.0390E+02	0.0000E+00	0.0000E+00	0.0000E+00
XEM-135	2.8038E+02	1.0030E+02	0.0000E+00	0.0000E+00	0.0000E+00
XE-135	9.8769E+02	3.5070E+02	0.0000E+00	0.0000E+00	0.0000E+00
XE-138	1.7002E+01	6.5100E-03	0.0000E+00	0.0000E+00	0.0000E+00
I-131	3.5602E+01	1.7520E+00	0.0000E+00	0.0000E+00	0.0000E+00
I-132	1.5027E+02	1.9900E+00	0.0000E+00	0.0000E+00	0.0000E+00
I-133	1.0992E+02	4.6810E+00	0.0000E+00	0.0000E+00	0.0000E+00
I-134	2.0739E+02	5.3610E-01	0.0000E+00	0.0000E+00	0.0000E+00
I-135	1.9953E+02	6.0880E+00	0.0000E+00	0.0000E+00	0.0000E+00
I*-131	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
I*-132	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
I*-133	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
I*-134	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
I*-135	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
H-3	3.4811E+03	9.5640E+02	0.0000E+00	0.0000E+00	0.0000E+00

#### 1WBN SGTR

OGAMMA DOSE FOR EACH ISOTOPE AND TIME PERIOD (REM)

ID ISOTOPE 2-HR EAB	0-2 HRS	2-8 HRS	8-24 HRS	1-4 DAYS	4-30 DAYS
1 ккм-83 0.000е+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
2 KRM-85	8.307E-04	6.220E-05	0.000E+00	0.000E+00	0.000E+00
3.576E-03 3 KR-85 9.143E-05	2.124E-05	2.764E-06	0.000E+00	0.000E+00	0.000E+00
4 KR-87	2.662E-03	6.300E-05	0.000E+00	0.000E+00	0.000E+00
1.146E-02 5 KR-88 7.058E-02	1.639E-02	9.064E-04	0.000E+00	0.000E+00	0.000E+00
6 KR-89 0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
7 XEM-131	4.726E-04	6.096E-05	0.000E+00	0.000E+00	0.000E+00
2.034E-03 8 XEM-133	1.066E-04	1.352E-05 Pag	0.000E+00 e 7	0.000E+00	0.000E+00

						i.
.588E-04		TSR8F11AC	out.txt		· · ·	
9 XE-133 .779E-02	4.133E-03	5.335E-04	0.000E+00	0000E+00	0.000E+00	
10 XEM-135 .837E-02	4.267E-03	7.232E-04	0.000E+00	0.000E+00	0.000E+00	
11 XE-135 .701E-02	8.598E-03	1.446E-03	0.000E+00	0.000E+00	0.000E+00	
12 XE-138 .052E-03	7.090E-04	1.286E-07	0.000E+00	0.000E+00	0.000E+00	
13 I-131 .058E-03	4.781E-04	1.115E-05	0.000E+00	0.000E+00	0.000E+00	
14 I-132 .321E-02	1.236E-02	7.754E-05	0.000E+00	0.000E+00	0.000E+00	
15 I-133 .017E-02	2.363E-03	4.768E-05	0.000E+00	0.000E+00	0.000E+00	
16 I-134	1.895E-02	2.321E-05	0.000E+00	0.000E+00	0.000E+00	
.160E-02 17 I-135 .785E-02	1.111E-02	1.607E-04	0.000E+00	0.000E+00	0.000E+00	
18 I*-131	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
.000E+00 19 I*-132	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
.000E+00 20 1*-133	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
.000E+00 21 1*-134	0.000E+00	0.000e+00	0.000E+00	0.000E+00	0.000E+00	
.000E+00 22 I*-135	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
.000E+00 23 H-3	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
.000E+00						
TOTAL	8.346E-02	4.132E-03	0.000E+00	0.000E+00	0.000E+00	1 A
.593E-01 BETA DOSE FOR EACH	ISOTOPE AND	TIME PERIOD	(REM)			
ID ISOTOPE -HR EAB	0-2 HRS	2-8 HRS	8-24 HRS	1-4 DAYS	4-30 DAYS	
1 KRM-83	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
.000E+00 2 KRM-85	1.218E-03	9.123E-05	0.000E+00	0.000E+00	0.000E+00	
.245E-03 3 KR-85	2.215E-03	2.883E-04	0.000E+00	0.000E+00	0.000E+00	
.537E-03 4 KR-87	4.089E-03	9.676E-05	0.000E+00	0.000E+00	0.000E+00	
.760E-02	2.881E-03	1.593E-04	0.000E+00	0.000E+00	0.000E+00	
.240E-02 6 KR-89	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
.000E+00 7 ХЕМ-131	3.095E-03	3.993E-04	0.000E+00	0.000E+00	0.000E+00	
333E-02 8 XEM-133	4.478E-04	5.681E-05	0.000E+00	0.000E+00	0.000E+00	
.928E-03 9 XE-133	1.134E-02	1.464E-03	0.000E+00	0.000E+00	0.000E+00	
.883E-02 10 ХЕМ-135	8.638E-04	1.464E-04	0.000E+00	0.000E+00	0.000E+00	
.719E-03 11 XE-135	1.015E-02	1.707E-03	0.000E+00	0.000e+00	0.000E+00	
.368E-02 12 XE-138	3.340E-04	6.059E-08 Page	0.000E+00	0.000E+00	0.000E+00	

		TSR8F11A	out.txt		
1.438E-03 13 I-131	2.243E-04	5.230E-06	0.000E+00	0.000E+00	0.000E+00
9.657E-04 14 I-132	2.506E-03	1.572E-05	0.000E+00	0.000E+00	0.000E+00
1.079E-02 15 I-133	1.454E-03	2.934E-05	0.000E+00	0.000E+00	0.000E+00
6.261E-03 16 I-134	4.104E-03	5.026E-06	0.000E+00	0.000E+00	0.000E+00
1.767E-02 17 I-135	2.381E-03	3.442E-05	0.000E+00	0.000E+00	0.000E+00
1.025E-02 18 I*-131	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.000E+00 19 I*-132	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.000E+00 20 I*-133	0.000E+00	0.000E+00	0.000e+00	0.000E+00	0.000E+00
0.000E+00 21 I*-134	0.000e+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.000E+00 22 I*-135	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
	6.412E-04	8.346E-05	0.000E+00	0.000E+00	0.000e+00
2.760E-03					
TOTAL	4.795E-02	4.583E-03	0.000E+00	0.000E+00	0.000E+00
2.064E-01 OINHALATION DOSE F	OR EACH IODIN	NE AND TIME F	PERIOD (REM)	(ICRP 2 DATA	N
ID ISOTOPE 2-HR EAB	0-2 HRS	2-8 HRS	8-24 HRS	1-4 DAYS	4-30 DAYS
1 I-131	2.578E+00	6.010E-02	0.000E+00	0.000E+00	0.000E+00
1.110E+01 2 I-132	3.933E-01	2.468E-03	0.000E+00	0.000E+00	0.000E+00
1.693E+00 3 I-133	2.151E+00	4.340E-02	0.000E+00	0.000E+00	0.000E+00
9.261E+00 4 I-134	2.537E-01	3.107E-04	0.000E+00	0.000E+00	0.000E+00
1.092E+00 5 I-135	1.211E+00	1.750E-02	0.000e+00	0.000E+00	0.000E+00
5.211E+00 6 I*-131	0.000E+00	0.000E+00	0.000e+00	0.000E+00	0.000E+00
0.000E+00 7 I*-132	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000e+00
0.000E+00 8 I*-133	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
	0.000e+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.000E+00 10 I*-135	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.000E+00			·		
TOTAL	6.587E+00	1.238E-01	0.000E+00	0.000E+00	0.000E+00
2.836E+01 QINHALATION DOSE F	OR EACH IODIN	NE AND TIME I	PERIOD (REM)	(ICRP 30 DAT	ГА)
ID ISOTOPE 2-HR EAB	0-2 HRS	2-8 HRS	8-24 HRS	1-4 DAYS	4-30 DAYS
1 I-131	1.881E+00	4.386E-02	0.000E+00	0.000E+00	0.000E+00
8.099E+00		Page	e 9		

	TSR8F11Aout.txt										
2 I-132	4.735E-02	2.971E-04	0.000E+00	0.000E+00	0.000E+00						
2.038E-01 3 I-133	9.681E-01	1.953E-02	0.000E+00	0.000E+00	0.000E+00						
4.167E+00	9.0016-01	1.9335-02	0.0002+00	0.0002+00	0.0001+00						
4 I-134	1.086E-02	1.330E-05	0.000E+00	0.000E+00	0.000E+00						
4.674E-02	2 0565 01	4 4175 02	0.000E+00	0.000E+00	0.000E+00						
5 I-135 1.315E+00	3.056E-01	4.417E-03	0.000E+00	0.000E+00	0.000E+00						
6 I*-131	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00						
0.000E+00		0.0005.00		0.00000	0.000-00						
7 I*-132 0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00						
8 I*-133	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00						
0.000E+00	0.00000	0.000=.00	0.0005.00	0.0005.00	0.000=.00						
9 I*-134 0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00						
10 I*-135	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00						
0.000E+00											
TOTAL	3.213E+00	6.812E-02	0.000E+00	0.000E+00	0.000E+00						
1.383E+01											

OAT 2 HOUR EXCLUSION AREA BOUNDARY (EAB)

TOTAL GAMMA DOSE = 3.593E-01 REMTOTAL BETA DOSE = 2.064E-01 REMTOTAL INHALATION DOSE (ICRP-2) = 2.836E+01 REMTOTAL INHALATION DOSE (ICRP-30) = 1.383E+01 REM

OAT 30 DAY LPZ BOUNDARY

TOTAL GAMMA DOSE = 8.760E-02 REM TOTAL BETA DOSE = 5.253E-02 REM TOTAL INHALATION DOSE (ICRP-2) = 6.711E+00 REM TOTAL INHALATION DOSE (ICRP-30) = 3.281E+00 REM KRM 83 IS NOT IN EPA LIBRARY. ISOTOPE IGNORED. KRM 83 IS NOT IN EPA LIBRARY. ISOTOPE IGNORED. KRM 83 IS NOT IN EPA LIBRARY. ISOTOPE IGNORED. KRM 83 IS NOT IN EPA LIBRARY. ISOTOPE IGNORED. KRM 83 IS NOT IN EPA LIBRARY. ISOTOPE IGNORED. KRM 83 IS NOT IN EPA LIBRARY. ISOTOPE IGNORED. KRM 83 IS NOT IN EPA LIBRARY. ISOTOPE IGNORED. KRM 83 IS NOT IN EPA LIBRARY. ISOTOPE IGNORED. KRM 83 IS NOT IN EPA LIBRARY. ISOTOPE IGNORED.

1WBN SGTR

OTEDE FOR EACH ISOTOPE AND TIME PERIOD (REM)

ID ISOTOPE 2-HR EAB	0-2 HRS	2-8 HRS	8-24 HRS	1-4 DAYS	4-30 days
1 KRM-83 0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
2 KRM-85 2.330E-03	5.411E-04	4.052E-05	0.000E+00	0.000E+00	0.000E+00
3 KR-85 5.975E-05	1.388E-05	1.806E-06	0.000E+00	0.000E+00	0.000E+00
4 KR-87	1.903E-03	4.503E-05	0.000E+00	0.000E+00	0.000E+00
8.191E-03 5 KR-88	1.206E-02	6.670E-04 Page	0.000E+00 10	0.000E+00	0.000E+00

TSR8F11Aout.txt										
5.193E-02 6 KR-89	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00					
0.000E+00 7 XEM-131	1.283E-04	1.655E-05	0.000E+00	0.000E+00	0.000E+00					
5.522E-04 8 ХЕМ-133	4.844E-05	6.145E-06	0.000E+00	0.000E+00	0.000E+00					
2.085E-04 9 XE-133	2.023E-03	2.612E-04	0.000E+00	0.000E+00	0.000E+00					
8.711E-03 10 XEM-135	2.745E-03	4.653E-04	0.000E+00	0.000E+00	0.000E+00					
1.182E-02 11 XE-135	5.416E-03	9.110E-04	0.000E+00	0.000E+00	0.000E+00					
2.331E-02 12 XE-138	4.795E-04	8.697E-08	0.000E+00	0.000E+00	0.000E+00					
2.064E-03 13 I-131	7.390E-02	1.723E-03	0.000E+00	0.000E+00	0.000E+00					
3.182E-01 14 I-132 1.242E-01	2.884E-02	1.809E-04	0.000E+00	0.000E+00	0.000E+00					
1.242E-01 15 I-133 2.780E-01	6.458E-02	1.303E-03	0.000E+00	0.000E+00	0.000E+00					
16 I-134 1.084E-01	2.518E-02	3.084E-05	0.000E+00	0.000E+00	0.000E+00					
17 I-135 2.725E-01	6.330E-02	9.150E-04	0.000E+00	0.000E+00	0.000E+00					
18 I*-131 0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00					
19 I*-132 0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00					
20 I*-133 0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00					
21 I*-134 0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00					
22 I*-135 0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00					
23 H-3 4.520E-02	1.050E-02	1.366E-03	0.000E+00	0.000E+00	0.000E+00					
TOTAL 1.256E+00	2.917E-01	7.934E-03	0.000e+00	0.000E+00	0.000E+00					
TOTAL TEDE = $2.9$	996E-01		DOED TTHE TO		0.0.55500					

OTHIS RUN IS DATED 01/11/10. THE TOTAL ELAPSED TIME IS 0.0 MINUTES. 0.0 SECONDS.

### Attachment 5

# **FENCDOSE** Run

### TSR8FBout.txt

Time Dependent Releases 0.265 uCi/g I-131 equivalent accident initiate lodine spike case TSR8F11Bout.txt

1			TSR8F	F11Bout	.txt				
1	FFFFFFFFF	EEEEEEEEE	NN	NN	ccccc	DDDDDDDD	000000		
SSSSSS	EEEEEEEEEE FFFFFFFFFF	EEEEEEEEE	NNN	NN	ccccccc	DDDDDDDDD	00000000		
SSSSSSS	EEEEEEEEE FF	EE	NNNN	NN	сс сс	DD DD	00 00	SS	
	EE FF	EE	NN NN	I NN	СС	DD DD	00 00	SS	
	EE FFFFFFF	EEEEEEE	NN N	IN NN	сс	DD DD	00 00		
SSSSSSSS	FFFFFFF	EEEEEEE	NN	NN NN	СС	DD DD	00 00		
SSSSSSSS	FF	EE	NN	NNNN	СС	DD DD	00 00		
	EE FF	EE	NN	NNN	сс сс	DD DD	00 00	SS	
	EE FF	EEEEEEEEE	NN	. NN	ccccccc	DDDDDDDDD	00000000		
SSSSSSSS	EEEEEEEEEEEEEE	EEEEEÈEEE	NN	NN	ccccc	DDDDDDDD	000000		
SSSSSS	EEEEEEEEEE								
	RRRRRRR	EEEEEEEEE	vv	vv		55555555555			
	RRRRRRRR	EEEEEEEE	vv	vv		555555555555555555555555555555555555555			
	RR RR	EE	VV	vv		55			
	RR RR	EE	VV	vv		55			
	RRRRRRRR	EEEEEEE	vv	vv		5555555	,		
	RRRRRRR	EEEEEEE	vv	VV	5555555				
	RR RR	EE ·	VV	/VV		55			
	RR RR	· EE	VV	/VV		55 55			
	RR RR	EEEEEEEEE	v	/V		55555555			
	RR RR	EEEEEEEEE	v	/V		555555			
QQQQQQ	WW WW AAAAAA	IIIIII	NN	NN	999999	555555555555555555555555555555555555555	NN NN		
QQQQQQQQQ	WW WW AAAAAAAA	IIIIII	NNN	NN	999999999	555555555555555555555555555555555555555	NNN NN		
	WW WW AA AA	II	NNNN	NN	99 99	55	NNNN NN	QQ	
	WW WW AA AA	II	NN NN	I NN	99 99	55	NN NN NN	QQ	
	WW WW AA AA	II	NN N	IN NN	9999999999	5555555	NN NN NN	QQ	
	WW WW WW AAAAAAAAAAA	II .	NN	NN NN	99999999	5555555	NN NN NN	QQ	
	WW WWWW WW	II	NN	NNNN	99	. 55	NN NNNN	QQ	
	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	II	NN	NNN	99 99	55 55	NN NNN	QQ	
	AA AA WWW WWW AA AA	IIIIII	NN	NN	999999999	55555555	NN NN		
QQQQQQQQ		L. C. C. C. C. C. C. C. C. C. C. C. C. C.		Page 1					

Page 1

ଦ୍ରପ୍ରପ୍ରୁପ୍ ଦୁ	WW AA	WW AA	IIIII	I	TSR81 NN	=11Bout NN		999	555	555	NN	NN	
11	0000 00000		11			//	11	1	1	1		//	
111	00000	000	111			11	11:	1	11	1		//	
	00	00	1111			//	1111	1	111	1		//	
1111	00 00	00	11			//	1	1	1	1		//	
11	00	00	11		/	7	1	1	.1	1		11	
11	00	00	11			,	1	1	1	1	/	'/	
11	00	00	11	•	11		1	1	1	1	11		
11	00	00 00	11		11		1	1	1	.1	11		
11	00000	00	11111	.1	11		111	111	111	111	11		
$\frac{111111}{111111}$	00000 0000 0000	)0	11111	.1	/		111	111	111	111	/		
222222	11 3333		88888	8			222	222	222	222			
22222222	. 111		888888	88			2222	2222	2222	2222			
22	1111 33		88	88	:	:	22	22	22	22		::	22
22	11		88	88	:	:		22		22		::	
2222222	11		888888	88			222	2222	222	2222			
2222222	11		888888	88			2222	222	2222	222			
	11	L	88	88	:	:	22		22			::	22
	11 33		88	88	. :	:	22		22			::	22
	1111		888888	888			22222	22222	22222	22222			
222222222 222222222	1111	333333 L11 33333	88888	88			22222	22222	22222	22222			

+

+

1

1 REPRODUCTION OF INPUT DATA DECK

+ + + + + + + 1 KRM-83 KRM-85 KR-85 KR-87 KR-88 KR-89 XEM-131 XEM-133 XE-133 XEM-135 XE-135 XE-138 I-131 I-132 I-133 I-134 I-135 Page 2

I*-131 I*-132 I*-13		R8F11Bout.txt 35 H-3		
т	59E-4 .204E-4		1	
STEAM GENERATER TUBE			<b>+</b>	
TIME TO 133.6 SEC	Nor Tone Accept			
4 'ENVIRONMENT		' \$ TN= 0.3		
1 0.000E+00	2 2.364E+00	3 3.697E+00	4 2.196E+00	5 4.135E+00
6 0.000E+00 11 1.254E+01	7 9.090E+00 12 1.622E+00	8 9.962E-01 13 1.460E-01	9 3.516E+01 14 1.831E+00	10 1.778E+00 15 5.307E-01
16 5.915E+00	17 1.328E+00	18 0.000E+00	19 0.000E+00	20 0.000E+00
21 0.000E+00	22 0.000E+00	23 4.712E+01	20 0.0002100	
STEAM GENERATER TUBE	RUPTURE ACCIDE	NT		
TIME TO 2 HOUR				
4 'ENVIRONMENT 1 0.000E+00	2 1.462E+02	'\$ TN= 0.2 3 2.689E+02	4 9.306E+01	5 2.328E+02
6 0.000E+00	7 6.593E+02	8 7.160E+01	9 2.545E+03	10 2.224E+02
11 9.328E+02	12 1.538E+01	13 9.456E+00	14 1.356E+02	15 3.597E+01
16 4.100E+02	17 9.531E+01	18 0.000E+00	19 0.000E+00	20 0.000E+00
21 0.000E+00	22 0.000E+00	23 3.434E+03		
STEAM GENERATER TUBE TIME TO 8 HOUR	RUPTURE ACCIDE	NT		
4 'ENVIRONMENT		'\$ TN= 0.8	3000E+01	
1 0.000E+00	2 2.348E+01	3 7.488E+01	4 4.758E+00	5 2.765E+01
6 0.000E+00	7 1.820E+02	8 1.934E+01	9 7.013E+02	10 1.207E+02
11 3.663E+02	12 6.510E-03	13 1.187E+00	14 5.062E+00	15 3.866E+00
16 4.067E+00	17 7.417E+00	18 0.000E+00	19 0.000E+00	20 0.000E+00
21 0.000E+00 WBN SGTR	22 0.000E+00	23 9.564E+02		
TIME TO 1 DAY				
-6 'ENVIRONMENT	CURIES	'\$ TN= 0.2	2400E+02	
1 0.000E+00	2 0.000E+00	3 0.000E+00	4 0.000E+00	5 0.000E+00
6 0.000E+00	7 0.000E+00	8 0.000E+00	9 0.000E+00	10 0.000E+00
11 0.000E+00 16 0.000E+00	12 0.000E+00	13 0.000E+00 18 0.000E+00	14 0.000E+00 19 0.000E+00	15 0.000E+00
21 0.000E+00	17 0.000E+00 22 0.000E+00	23 0.000E+00	19 0.000E+00	20 0.000E+00
WBN SGTR	22 0.0002+00	25 0.0002100		
TIME TO 4 DAYS				
-6 'ENVIRONMENT	CURIES	' \$ TN= 0.9		
1 0.000E+00	2 0.000E+00	3 0.000E+00	4 0.000E+00	5 0.000E+00
6 0.000E+00 11 0.000E+00	7 0.000E+00 12 0.000E+00	8 0.000E+00 13 0.000E+00	9 0.000E+00 14 0.000E+00	10 0.000E+00 15 0.000E+00
16 0.000E+00	17 0.000E+00	18 0.000E+00	19 0.000E+00	20 0.000E+00
21 0.000E+00	22 0.000E+00	23 0.000E+00	15 010002100	20 0.0002100
WBN SGTR	/			
TIME TO 30 DAYS	010750		720002	
-6 'ENVIRONMENT 1 0.000E+00	CURIES 2 0.000E+00	'\$ TN= 0.1 3 0.000E+00	4 0.000E+00	5 0.000E+00
6 0.000E+00	7 0.000E+00	8 0.000E+00	9 0.000E+00	10 0.000E+00
11 0.000E+00	12 0.000E+00	13 0.000E+00	14 0.000E+00	15 0.000E+00
16 0.000E+00	17 0.000E+00	18 0.000E+00	19 0.000E+00	20 0.000E+00
21 0.000E+00	22 0.000E+00	23 0.000E+00		
+ + -	+ +	+ +	+	+

PROGRAM FENCDOSE REVISION NUMBER:5 REVISION DATE: 31 JUL 2009 TODAY IS: 01/11/10 STARTING TIME IS: 18:22:23

Page 3

 $\begin{array}{c}
 1 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\$ 

1ISOTOPE ( KRM-83 KRM-85 KR-85 KR-87 KR-88 KR-89 XEM-131 XEM-133 XE-133 XE-135 XE-135 XE-138	GAMMA ENERGY (MEV/DIS) 0.0025 0.1586 0.0022 0.7928 1.9629 2.0837 0.0201 0.0201 0.0416 0.0454 0.4318 0.2470 1.1830	TSR8F11Bout.txt BETA ENERGY (MEV/DIS) 0.0371 0.2529 0.2506 1.3237 0.3750 1.2310 0.1428 0.1898 0.1354 0.0950 0.3168 0.6058
I-131 I-132 I-133 I-134	0.3810 2.3332 0.6100 2.5928	0.1943 0.5143 0.4080 0.6102
I-134 I-135 I*-131 I*-132 I*-133 I*-134 I*-135 H-3	1.5802 0.3810 2.3332 0.6100 2.5928 1.5802 0.0000	0.3680 0.1943 0.5143 0.4080 0.6102 0.3680 0.0057

ОСНІ/Q 1.410E-04 6.070E-04 6.680E-05 4.590E-05 2.040E-05 6.350E-06

4

1 OSTEAM GENERAT TIME TO 133.0	TER TUBE RUPTURE ACCIDENT	
	ENVIRONMENT	, TIME =
	0.0000E+00 0.2364E+01 0.3697E+01 0.2196E+01 0.4135E+01 0.9090E+01 0.9990E+01 0.99962E+00 0.3516E+02 0.1778E+01 0.1254E+02 0.1622E+01 0.1460E+00 0.1831E+01 0.5307E+00 0.5915E+01 0.1328E+01 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.4712E+02 FER TUBE RUPTURE ACCIDENT	
TIME TO 2 HOU	JK _	

Page 4

TIME TO 8	0.0000E+00 0.1462E+03 0.2689E+03 0.9306E+02 0.2328E+03 0.0000E+00 0.6593E+03 0.7160E+02 0.2545E+04 0.2224E+03 0.9328E+03 0.9328E+03 0.1538E+02 0.9456E+01 0.1356E+03 0.3597E+02 0.4100E+03 0.9531E+02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.3434E+04 ERATER TUBE RUPTURE HOUR 4 ENVIRONMENT
KRM-83 KRM-85 KR-85 KR-87 KR-88 KR-89 XEM-131 XEM-133 XE-133 XE-135 XE-135 XE-138 I-131 I-132 I-133 I-134 I-135 I*-131 I*-133 I*-133 I*-134 I*-135 H-3 OWBN SGTR TIME TO 1 COMPONENT IISOTOPE	0.0000E+00 0.2348E+02 0.7488E+02 0.4758E+01 0.2765E+02 0.0000E+00 0.1820E+03 0.1934E+02 0.7013E+03 0.1207E+03 0.3663E+03 0.6510E-02 0.1187E+01 0.3866E+01 0.3866E+01 0.4067E+01 0.7417E+01 0.7417E+01 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.9564E+03 DAY 6 ENVIRONMENT
KRM-83 KRM-85 KR-85 KR-87	0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

COMPONENT 4 ENVIRONMENT 1ISOTOPE

, TIME = 8.

ACCIDENT

CURIES , TIME = 24.

KR-89 KR-89 XEM-131 XEM-133 XE-133 XE-135 XE-135 XE-138 I-131 I-132 I-133 I-134 I-135 I*-131 I*-132 I*-133 I*-134 I*-135 H-3 OWBN SGTR TIME TO 4 DAY COMPONENT 6 IISOTOPE	0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
	0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
KRM-83 KRM-85 KR-85 KR-87 KR-88 KR-89 XEM-131 XEM-133 XE-133 XE-135	0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

0.0000E+00

KR-88

CURIES

CURIES

, TIME =720.

, TIME = 96.

Page 6

XE-138	0.0000E+00
I-131	0.0000E+00
I-132	0.0000E+00
1-133	0.0000E+00
1-134	0.0000E+00
I-135	0.0000E+00
I*-131	0.0000E+00
I*-132	0.0000E+00
I*-133	0.0000E+00
I*-134	0.0000E+00
I*-135	0.0000E+00
н-3	0.0000E+00

1INPUT CON	ICENTRATION				
krm-83	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
KRM-85	1.4856E+02	2.3480E+01	0.0000E+00	0.0000E+00	0.0000E+00
KR-85	2.7260E+02	7.4880E+01	0.0000E+00	0.0000E+00	0.0000E+00
kr-87	9.5256E+01	4.7580E+00	,0.0000E+00	0.0000E+00	0.0000E+00
kr-88	2.3693E+02	2.7650E+01	0.0000E+00	0.0000E+00	0.0000E+00
KR-89	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
XEM-131	6.6839E+02	1.8200E+02	0.0000E+00	0.0000E+00	0.0000E+00
XEM-133	7.2596E+01	1.9340E+01	0.0000E+00	0.0000E+00	0.0000E+00
XE-133	2.5802E+03	7.0130E+02	0.0000E+00	0.0000E+00	0.0000E+00
XEM-135	2.2418E+02	1.2070E+02	0.0000E+00	0.0000E+00	0.0000E+00
XE-135	9.4534E+02	3.6630E+02	0.0000E+00	0.0000E+00	0.0000E+00
XE-138	1.7002E+01	6.5100E-03	0.0000E+00	0.0000E+00	0.0000E+00
I-131	9.6020E+00	1.1870E+00	0.0000E+00	0.0000E+00	0.0000E+00
I-132	1.3743E+02	5.0620E+00	0.0000E+00	0.0000E+00	0.0000E+00
I-133	3.6501E+01	3.8660E+00	0.0000E+00	0.0000E+00	0.0000E+00
I-134	4.1592E+02	4.0670E+00	0.0000E+00	0.0000E+00	0.0000E+00
I-135	9.6638E+01	7.4170E+00	0.0000E+00	0.0000E+00	0.0000E+00
I*-131	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
I*-132	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
I*-133	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
I*-134	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
I*-135	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
н-3	3.4811E+03	9.5640E+02	0.0000E+00	0.0000E+00	0.0000E+00

## 1WBN SGTR

OGAMMA DOSE FOR EACH ISOTOPE AND TIME PERIOD (REM)

ID ISOTOPE 2-HR EAB	0-2 HRS	2-8 HRS	8-24 HRS	1-4 DAYS	4-30 DAYS
1 KRM-83 0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
2 KRM-85	8.307E-04	6.220E-05	0.000E+00	0.000E+00	0.000E+00
3.576E-03 3 KR-85 9.143E-05	2.124E-05	2.764E-06	0.000E+00	0.000E+00	0.000E+00
9.143E-03 4 KR-87 1.146E-02	2.662E-03	6.300E-05	0.000E+00	0.000E+00	0.000E+00
5 KR-88 7.058E-02	1.639E-02	9.064E-04	0.000E+00	0.000E+00	0.000E+00
6 KR-89 0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
7 XEM-131 2.034E-03	4.726E-04	6.096E-05	0.000E+00	0.000E+00	0.000E+00
8 XEM-133	1.064E-04	1.342E-05 Page	0.000E+00 7	0.000E+00	0.000E+00

		TSR8F11Bo	ut.txt		
4.578E-04 9 XE-133	4.128E-03	5.315E-04	0.000E+00	0.000E+00	0.000E+00
1.777E-02 10 XEM-135	3.412E-03	8.703E-04	0.000E+00	0.000E+00	0.000E+00
1.469E-02 11 XE-135	8.230E-03	1.511E-03	0.000E+00	0.000E+00	0.000E+00
3.543E-02 12 XE-138	7.090E-04	1.286E-07	0.000E+00	0.000E+00	0.000E+00
3.052E-03 13 I-131	1.289E-04	7.552E-06	0.000E+00	0.000E+00	0.000E+00
5.551E-04 14 I-132	1.130E-02	1.972E-04	0.000E+00	0.000E+00	0.000E+00
4.866E-02 15 I-133	7.848E-04	3.938E-05	0.000E+00	0.000E+00	0.000E+00
3.379E-03 16 I-134	3.801E-02	1.761E-04	-0.000E+00	0.000E+00	0.000E+00
1.636E-01 17 I-135	5.383E-03	1.957E-04	0.000E+00	0.000E+00	0.000E+00
2.317E-02 18 I*-131	0.000E+00	0.000E+00	0.000E+00	0.000E+00 ·	0.000E+00
0.000E+00 19 I*-132	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.000E+00 20 I*-133	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.000E+00 21 I*-134	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.000E+00 22 I*-135	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.000E+00 23 H-3	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.000E+00					
		4 637- 03			
TOTAL	9.238E-02	4.637E-03	0.000E+00	0.000E+00	0.000E+00
3.985E-01 OBETA DOSE FOR EACH				0.000E+00	0.000E+00
3.985E-01 OBETA DOSE FOR EACH		TIME PERIOD	(REM)		
3.985E-01 OBETA DOSE FOR EACH ID ISOTOPE 2-HR EAB 1 KRM-83	ISOTOPE AND 0-2 HRS	TIME PERIOD	(REM)		
3.985E-01 OBETA DOSE FOR EACH ID ISOTOPE 2-HR EAB 1 KRM-83 0.000E+00 2 KRM-85	ISOTOPE AND 0-2 HRS	TIME PERIOD 2-8 HRS 0.000E+00	(REM) 8-24 HRS	1-4 DAYS	4-30 days
3.985E-01 OBETA DOSE FOR EACH ID ISOTOPE 2-HR EAB 1 KRM-83 0.000E+00 2 KRM-85 5.245E-03 3 KR-85	ISOTOPE AND 0-2 HRS 0.000E+00	TIME PERIOD 2-8 HRS 0.000E+00	(REM) 8-24 HRS 0.000E+00	1-4 DAYS 0.000E+00	4-30 DAYS 0.000E+00
3.985E-01 OBETA DOSE FOR EACH ID ISOTOPE 2-HR EAB 1 KRM-83 0.000E+00 2 KRM-85 5.245E-03 3 KR-85 9.537E-03 4 KR-87	ISOTOPE AND 0-2 HRS 0.000E+00 1.218E-03	TIME PERIOD 2-8 HRS 0.000E+00 9.123E-05	(REM) 8-24 HRS 0.000E+00 0.000E+00	1-4 DAYS 0.000E+00 0.000E+00	4-30 DAYS 0.000E+00 0.000E+00
3.985E-01 OBETA DOSE FOR EACH ID ISOTOPE 2-HR EAB 1 KRM-83 0.000E+00 2 KRM-85 5.245E-03 3 KR-85 9.537E-03 4 KR-87 1.760E-02 5 KR-88	ISOTOPE AND 0-2 HRS 0.000E+00 1.218E-03 2.215E-03	TIME PERIOD 2-8 HRS 0.000E+00 9.123E-05 2.883E-04	(REM) 8-24 HRS 0.000E+00 0.000E+00 0.000E+00	1-4 DAYS 0.000E+00 0.000E+00 0.000E+00	4-30 DAYS 0.000E+00 0.000E+00 0.000E+00
3.985E-01 OBETA DOSE FOR EACH ID ISOTOPE 2-HR EAB 1 KRM-83 0.000E+00 2 KRM-85 5.245E-03 3 KR-85 9.537E-03 4 KR-87 1.760E-02 5 KR-88 1.240E-02 6 KR-89	ISOTOPE AND 0-2 HRS 0.000E+00 1.218E-03 2.215E-03 4.089E-03	TIME PERIOD 2-8 HRS 0.000E+00 9.123E-05 2.883E-04 9.676E-05	(REM) 8-24 HRS 0.000E+00 0.000E+00 0.000E+00 0.000E+00	1-4 DAYS 0.000E+00 0.000E+00 0.000E+00 0.000E+00	4-30 DAYS 0.000E+00 0.000E+00 0.000E+00 0.000E+00
3.985E-01 OBETA DOSE FOR EACH ID ISOTOPE 2-HR EAB 1 KRM-83 0.000E+00 2 KRM-85 5.245E-03 3 KR-85 9.537E-03 4 KR-87 1.760E-02 5 KR-88 1.240E-02 6 KR-89 0.000E+00 7 XEM-131	ISOTOPE AND 0-2 HRS 0.000E+00 1.218E-03 2.215E-03 4.089E-03 2.881E-03	TIME PERIOD 2-8 HRS 0.000E+00 9.123E-05 2.883E-04 9.676E-05 1.593E-04	(REM) 8-24 HRS 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	1-4 DAYS 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	4-30 DAYS 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
3.985E-01 OBETA DOSE FOR EACH ID ISOTOPE 2-HR EAB 1 KRM-83 0.000E+00 2 KRM-85 5.245E-03 3 KR-85 9.537E-03 4 KR-87 1.760E-02 5 KR-88 1.240E-02 6 KR-89 0.000E+00 7 XEM-131 1.333E-02 8 XEM-133	ISOTOPE AND 0-2 HRS 0.000E+00 1.218E-03 2.215E-03 4.089E-03 2.881E-03 0.000E+00	TIME PERIOD 2-8 HRS 0.000E+00 9.123E-05 2.883E-04 9.676E-05 1.593E-04 0.000E+00	(REM) 8-24 HRS 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	1-4 DAYS 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	4-30 DAYS 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
3.985E-01 OBETA DOSE FOR EACH ID ISOTOPE 2-HR EAB 1 KRM-83 0.000E+00 2 KRM-85 5.245E-03 3 KR-85 9.537E-03 4 KR-87 1.760E-02 5 KR-88 1.240E-02 6 KR-89 0.000E+00 7 XEM-131 1.333E-02 8 XEM-133 1.924E-03 9 XE-133	ISOTOPE AND 0-2 HRS 0.000E+00 1.218E-03 2.215E-03 4.089E-03 2.881E-03 0.000E+00 3.095E-03	TIME PERIOD 2-8 HRS 0.000E+00 9.123E-05 2.883E-04 9.676E-05 1.593E-04 0.000E+00 3.993E-04	(REM) 8-24 HRS 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	1-4 DAYS 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	4-30 DAYS 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
3.985E-01 OBETA DOSE FOR EACH ID ISOTOPE 2-HR EAB 1 KRM-83 0.000E+00 2 KRM-85 5.245E-03 3 KR-85 9.537E-03 4 KR-87 1.760E-02 5 KR-88 1.240E-02 6 KR-89 0.000E+00 7 XEM-131 1.333E-02 8 XEM-133 1.924E-03 9 XE-133 4.877E-02 10 XEM-135	ISOTOPE AND 0-2 HRS 0.000E+00 1.218E-03 2.215E-03 4.089E-03 2.881E-03 0.000E+00 3.095E-03 4.468E-04	TIME PERIOD 2-8 HRS 0.000E+00 9.123E-05 2.883E-04 9.676E-05 1.593E-04 0.000E+00 3.993E-04 5.640E-05	(REM) 8-24 HRS 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	1-4 DAYS 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	4-30 DAYS 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
3.985E-01 OBETA DOSE FOR EACH ID ISOTOPE 2-HR EAB 1 KRM-83 0.000E+00 2 KRM-85 5.245E-03 3 KR-85 9.537E-03 4 KR-87 1.760E-02 5 KR-88 1.240E-02 6 KR-89 0.000E+00 7 XEM-131 1.333E-02 8 XEM-133 1.924E-03 9 XE-133 4.877E-02	ISOTOPE AND 0-2 HRS 0.000E+00 1.218E-03 2.215E-03 4.089E-03 2.881E-03 0.000E+00 3.095E-03 4.468E-04 1.133E-02	TIME PERIOD 2-8 HRS 0.000E+00 9.123E-05 2.883E-04 9.676E-05 1.593E-04 0.000E+00 3.993E-04 5.640E-05 1.459E-03	(REM) 8-24 HRS 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	1-4 DAYS 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	4-30 DAYS 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

		TSR8F11B	out.txt		
	6.050E-05	3.543E-06	0.000E+00	0.000E+00	0.000E+00
2.605E-04 14 I-132	2.292E-03	4.000E-05	0.000E+00	0.000E+00	0.000E+00
9.868E-03 15 I-133	4.830E-04	2.423E-05	0.000E+00	0.000E+00	0.000E+00
2.079E-03 16 I-134	8.230E-03	3.813E-05	0.000E+00	0.000E+00	0.000E+00
3.543E-02 17 I-135	1.153E-03	4.194E-05	0.000E+00	0.000E+00	0.000E+00
4.965E-03 18 I*-131	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.000E+00 19 I*-132	0.000e+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.000E+00 20 I*-133	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.000E+00 21 I*-134	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.000E+00 22 I*-135	0.000e+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.000E+00 23 H-3	6.412E-04	8.346E-05	0.000E+00	0.000E+00	0.000E+00
2.760E-03					
TOTAL	4.887E-02	4.741E-03	0.000E+00	0.000E+00	0.000E+00
2.104E-01 OINHALATION DOSE	FOR EACH IODIN	IE AND TIME F	PERIOD (REM)	(ICRP 2 DATA	L.
ID ISOTOPE 2-HR EAB	0-2 HRS	2-8 HRS	8-24 HRS	1-4 DAYS	4-30 DAYS
	6.953E-01	4.072E-02	0.000E+00	0.000E+00	0.000E+00
2.993E+00 2 I-132	6.953E-01 3.597E-01	4.072E-02 6.277E-03	0.000E+00 0.000E+00	0.000E+00 0.000E+00	0.000E+00 0.000E+00
2.993E+00 2 I-132 1.549E+00 3 I-133					
2.993E+00 2 I-132 1.549E+00 3 I-133 3.075E+00 4 I-134	3.597E-01	6.277E-03	0.000E+00	0.000E+00	0.000E+00
2.993E+00 2 I-132 1.549E+00 3 I-133 3.075E+00 4 I-134 2.190E+00 5 I-135	3.597E-01 7.143E-01	6.277E-03 3.584E-02	0.000E+00 0.000E+00	0.000E+00 0.000E+00 0.000E+00	0.000E+00 0.000E+00
2.993E+00 2 I-132 1.549E+00 3 I-133 3.075E+00 4 I-134 2.190E+00 5 I-135 2.524E+00 6 I*-131	3.597E-01 7.143E-01 5.087E-01	6.277E-03 3.584E-02 2.357E-03	0.000E+00 0.000E+00 0.000E+00	0.000E+00 0.000E+00 0.000E+00	0.000E+00 0.000E+00 0.000E+00
2.993E+00 2 I-132 1.549E+00 3 I-133 3.075E+00 4 I-134 2.190E+00 5 I-135 2.524E+00 6 I*-131 0.000E+00 7 I*-132	3.597E-01 7.143E-01 5.087E-01 5.863E-01 0.000E+00	6.277E-03 3.584E-02 2.357E-03 2.132E-02 0.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
2.993E+00 2 I-132 1.549E+00 3 I-133 3.075E+00 4 I-134 2.190E+00 5 I-135 2.524E+00 6 I*-131 0.000E+00 7 I*-132 0.000E+00 8 I*-133	3.597E-01 7.143E-01 5.087E-01 5.863E-01 0.000E+00	6.277E-03 3.584E-02 2.357E-03 2.132E-02 0.000E+00 0.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.597E-01 7.143E-01 5.087E-01 5.863E-01 0.000E+00 0.000E+00 0.000E+00	6.277E-03 3.584E-02 2.357E-03 2.132E-02 0.000E+00 0.000E+00 0.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3.597E-01 7.143E-01 5.087E-01 5.863E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00	6.277E-03 3.584E-02 2.357E-03 2.132E-02 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
2.993E+00 2 I-132 1.549E+00 3 I-133 3.075E+00 4 I-134 2.190E+00 5 I-135 2.524E+00 6 I*-131 0.000E+00 7 I*-132 0.000E+00 9 I*-134 0.000E+00	3.597E-01 7.143E-01 5.087E-01 5.863E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	6.277E-03 3.584E-02 2.357E-03 2.132E-02 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
2.993E+00 2 I-132 1.549E+00 3 I-133 3.075E+00 4 I-134 2.190E+00 5 I-135 2.524E+00 6 I*-131 0.000E+00 7 I*-132 0.000E+00 9 I*-134 0.000E+00 10 I*-135 0.000E+00 	3.597E-01 7.143E-01 5.087E-01 5.863E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	6.277E-03 3.584E-02 2.357E-03 2.132E-02 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
$\begin{array}{c} 2.993E+00\\ 2 & I-132\\ 1.549E+00\\ 3 & I-133\\ 3.075E+00\\ 4 & I-134\\ 2.190E+00\\ 5 & I-135\\ 2.524E+00\\ 6 & I^*-131\\ 0.000E+00\\ 7 & I^*-132\\ 0.000E+00\\ 8 & I^*-133\\ 0.000E+00\\ 9 & I^*-134\\ 0.000E+00\\ 10 & I^*-135\\ 0.000E+00\\ \end{array}$	3.597E-01 7.143E-01 5.087E-01 5.863E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 2.864E+00	6.277E-03 3.584E-02 2.357E-03 2.132E-02 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 1.065E-01	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
2.993E+00 2 I-132 1.549E+00 3 I-133 3.075E+00 4 I-134 2.190E+00 5 I-135 2.524E+00 6 I*-131 0.000E+00 7 I*-132 0.000E+00 9 I*-134 0.000E+00 10 I*-135 0.000E+00 	3.597E-01 7.143E-01 5.087E-01 5.863E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 2.864E+00 FOR EACH IODIM	6.277E-03 3.584E-02 2.357E-03 2.132E-02 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 1.065E-01	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00  0.000E+00	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 (ICRP 30 DAT	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
2.993E+00 2 I-132 1.549E+00 3 I-133 3.075E+00 4 I-134 2.190E+00 5 I-135 2.524E+00 6 I*-131 0.000E+00 7 I*-132 0.000E+00 9 I*-134 0.000E+00 10 I*-135 0.000E+00 10 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-135 0.000E+00 I0 I*-155 0.000E+00 I0 I*-155 0.000E+00 I0 I*-155 0.000E+00	3.597E-01 7.143E-01 5.087E-01 5.863E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 2.864E+00 FOR EACH IODIM 0-2 HRS	6.277E-03 3.584E-02 2.357E-03 2.132E-02 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 1.065E-01 NE AND TIME I 2-8 HRS	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00  0.000E+00 PERIOD (REM) 8-24 HRS	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 (ICRP 30 DAT 1-4 DAYS	0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00  0.000E+00

Page 9

		TSR8F11B	out.txt		
2 I-132	4.330E-02	7.556E-04	0.000E+00	0.000E+00	0.000E+00
1.864E-01					
3 I-133	3.215E-01	1.613E-02	0.000E+00	0.000E+00	0.000E+00
1.384E+00					
4 I-134	2.177E-02	1.009E-04	0.000E+00	0.000E+00	0.000E+00
9.374E-02			0 000- 00	0 000- 00	0 000- 00
5 I-135	1.480E-01	5.381E-03	0.000E+00	0.000E+00	0.000E+00
6.371E-01	0 000- 00	0 000- 00	0.00000	0.000=.00	0.00000
	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.000E+00 7 I*-132	0.000E+00	.0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.000E+00	0.000E+00	0.000E+00	0.0002+00	0.0002+00	0.000E+00
8 I*-133	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.000E+00	0.0002100	0.0005100	0.0002100	0.0002100	0.0002100
9 1*-134	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.000E+00	010002/00				
10 I*-135	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.000E+00					
		<u>_</u> <b>_</b> _		<del></del> `	
TOTAL	1.042E+00	5.208E-02	0.000E+00	0.000E+00	0.000E+00
4.485E+00					

OAT 2 HOUR EXCLUSION AREA BOUNDARY (EAB)

TOTAL GAMMA DOSE = 3.985E-01 REM TOTAL BETA DOSE = 2.104E-01 REM TOTAL INHALATION DOSE (ICRP-2) = 1.233E+01 REM TOTAL INHALATION DOSE (ICRP-30) = 4.485E+00 REM

OAT 30 DAY LPZ BOUNDARY

TOTAL GAMMA DOSE = 9.722E-02 REM TOTAL BETA DOSE = 5.361E-02 REM TOTAL INHALATION DOSE (ICRP-2) = 2.971E+00 REM TOTAL INHALATION DOSE (ICRP-30) = 1.094E+00 REM KRM 83 IS NOT IN EPA LIBRARY. ISOTOPE IGNORED. KRM 83 IS NOT IN EPA LIBRARY. ISOTOPE IGNORED. KRM 83 IS NOT IN EPA LIBRARY. ISOTOPE IGNORED. KRM 83 IS NOT IN EPA LIBRARY. ISOTOPE IGNORED.

83 IS NOT IN EPA LIBRARY. ISOTOPE IGNORED.

83 IS NOT IN EPA LIBRARY. ISOTOPE IGNORED.

1WBN SGTR

KRM KRM

OTEDE FOR EACH ISOTOPE AND TIME PERIOD (REM)

ID ISOTOPE 2-HR EAB	0-2 HRS	2-8 HRS	8-24 HRS	1-4 DAYS	4-30 DAYS
1 ккм-83 0.000е+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
2 KRM-85 2.330E-03	5.411E-04	4.052E-05	0.000E+00	0.000E+00	0.000E+00
3 KR-85 5.975E-05	1.388E-05	1.806E-06	0.000E+00	0.000E+00	0.000E+00
4 KR-87	1.903E-03	4.503E-05	0.000E+00	0.000E+00	0.000E+00
8.191E-03 5 KR-88	1.206E-02	6.670E-04 Page	0.000E+00 10	0.000E+00	0.000E+00

		TSR8F11B	out.txt		
5.193E-02 6 KR-89	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000e+00
0.000E+00 7 XEM-131	1.283E-04	1.655E-05	0.000E+00	0.000E+00	0.000E+00
5.522E-04 8 XEM-133 2.081E-04	4.834E-05	6.101E-06	0.000E+00	0.000E+00	0.000E+00
9 XE-133 8.701E-03	2.021E-03	2.603E-04	0.000E+00	0.000E+00	0.000E+00
10 XEM-135 9.450E-03	2.195E-03	5.599E-04	0.000E+00	0.000E+00	0.000E+00
11 XE-135 2.232E-02	5.184E-03	9.516E-04	0.000E+00	0.000E+00	0.000E+00
12 XE-138 2.064E-03	4.795E-04	8.697E-08	0.000E+00	0.000E+00	0.000E+00
13 I-131 8.581E-02	1.993E-02	1.167E-03	0.000E+00	0.000E+00	0.000E+00
14 I-132 1.135E-01	2.638E-02	4.602E-04	0.000E+00	0.000E+00	0.000E+00
9.232E-02	2.144E-02	1.076E-03	0.000E+00	0.000E+00	0.000E+00
2.174E-01	5.050E-02	2.339E-04	0.000E+00	0.000E+00	0.000E+00
1.320E-01	3.066E-02	1.115E-03	0.000E+00	0.000E+00	0.000E+00
18 I*-131 0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
19 I*-132 0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
20 I*-133 0.000E+00		0.000E+00	0.000E+00	0.000E+00	0.000E+00
21 I*-134 0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
22 I*-135 0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
23 H-3 4.520E-02			0.000E+00	0.000E+00	0.000E+00
					0.0005.00
TOTAL 7.920E-01 TOTAL TEDE = 1.92		7.968E-03	0.000E+00	0.000E+00	0.000E+00
OTHIS RUN IS DATED		HE TOTAL ELA	PSED TIME IS	0.0 MINUTES	5. 0.0 SECONDS.

## SP8E11BOUT TYT

Attachment 6

# **TVA Nuclear Power Group Calculation**

# WBNTSR-009 R11

# Control Room Operator and Offsite Doses from a Fuel Handling Accident

#### TVAN CALCULATION COVERSHEET/CCRIS UPDATE

		· · · ·				4.5. 	n n Na Na A	F	Page 1
REV 0 EDMS/RIN 326 890302 00				EDMS TY calculations(n	1 a a 1			for REV. 0)	803
alc Title: Cont	trol Room Op	erator and Of	fsite Dos	es From a Fu	iel Han	dling Accid	lent	· ·	
CALC ID	TYPE PLAN	I BRANCH		NUMBER	· •	CUR REV	NEW REV		
CURRENT	CN	NTB	W	BNTSR-00	9	R10	R11	REVISION	APPLICABILITY
NEW	CN							Select	calc
CTION NEV	W □ VISION ∎	DELETE	SUPER DUPLIC			UPDATE ONL Approval Sign d)		(For calc re	Changes vision, CCRIS ved and no CCRIS guired)
<u>NITS</u> 1/2	SYSTEMS NA	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s			<u>)S</u>				
CN.EDC N/A	Here was approved by the second second second second second second second second second second second second s		ESIGN DOC						SSIFICATION
DC 51930	SAFETY RELA				EMENTS	AND/OR	DESIGN OUTP		TS and/or ISFS
RELATED?	(If yes, QR = Yes ■ No			LIMITING CO		NS?			
				G (BRANCH)		VERIFICATIO		_	
CBERG	751-8122		NTI		Design R	A STATISTICS AND A STATISTICS		🛛 Yes 🗌	
REPARER SIG	NATURE			DATE	HECKER	SIGNATURE		1.7.	DATE
arc C. Berg 🦩	dave C. B	ing .	5-3	-06 D	ouglas P.	Pollock 🔊	of le	loch	5/3/06
ESIGN VERIFIE	RSIGNATURE	Ch 11		DATE	PROVAL	SIGNATURE	- <del>[}87</del> _c	19104	DATE
ouglas P. Polloci	* Story	block	IS/	3/06	naries Allei	" H Rober	tan lo	CRA	6/29/06
This calc accident (FHA The calcu Filters) until is n the fuel han ilters, and a F solation and g assumptions u activity for the performed usin loses both with The comp is determined CI-RPS-198 ex	). In addition, to ory Guide 1.25 lation consider solation in 12.7 dling area of to THA in contain yoing through to sed to calculat e AB case is ass ing Regulatory ( h and without outer code STP by STP was in cept that the c	RACI rformed to dete the offsite doses (Safety Guide 1 s a FHA occurr seconds; a FH. the Auxiliary Bu ment with conti- ne ABGTS. The the activity re- umed to be rele- Guide 1.183 (Al- ABGTS filters: was used to cal put into the cor- ontainment shift the finite closu	s resulting 25) or Regu- ing in conta- ilding with amination FHA is as leased are eased over ternate So For AST, a culate the inputer cod- ne is not in	from a design alatory Guide ainment with inment exhaus activity pass migrating, du sumed to occu in accordance a two hour the urce Term or any containme activity releas le COROD. This	basis F 1.183 (A activity sting to ing thro e to ope ir at 10( a with S me perio AST) as sent FHA sed after ie contro calculat	HA were als Uternate Sou passing dir- the environr ough the Aux n penetratio D hours after afety Guide of per Safety sumptions. 7 is bounded r a FHA The D room mode ion also con	o calculated l irce Term) ectly to the en nent via Purge iliary Buildin ns, to the AB shutdown, Al 25 and NURE Guide 25: A s The AST calcu by the AB FH. a activity releas I used is iden siders the effe	Base assun vironment Filters, a g Gas Trea after conta ll of the oth G/CR-5009 set of newe lations det A with no 2 ased to the tical to tha ct of a 20.6	options utilize (no Purge FHA occurring tment System inment er All of the r cases are ermined the ABGTS filters. environment t described in second
ime (6.6 sec). ENCDOSE to one (LPZ) bou The co em thyroid, ai	The activity re o calculate the indary after 30 ontrol room ope nd 10CFR50 67	eleased to the e doses at the Sit days. The FEN rator doses are 'limit of 5 rem m thyroid, and	nvironmen e Boundar ICDOSE n below the TEDE: TI	t as determin y (SB)/Exclus nodel came fro 10CFR50 App 16 offsite dose	ed by S7 ion Area om TI-RI cendix A s are les	IP was also a Boundary a PS-197 A GDC 19 li a than 25%	used as input ifter 2 hours a mits of 5 rem of the 10CFR1	to compute nd at the I gamma, 30 00 limits o	r code ow Population ) rem beta, 30 f 25 rem
	E).								

If the design basis of the plant is Regulatory Guide 1.25, then there are several Special Requirements/Limiting Conditions in this calculation (see main text). If the design basis of the plant is Regulatory Guide 1.183, then there are no Special Requirements/Limiting Conditions.

# This calculation directly impacts FSAR Table 15.5-23

MICR	OFICHE/EFICHE	res 🔳 . N	lo 🖸 🔛	FICHE	NUMBER(S	B) TVA F	-W000575 and TV	A-F-W000622 and	TVA-F-W000624	2 1 1 1 1 1 1 1 1
	INTO EDMS AND DES				ULATION	LIBRARY.	ADDRES	S: EQB 1N-WBN	a ta an an an an an an an an an an an an an	
	INTO EDMS AND RET							taran Marina Marina	**	-
	TVA 40532 [7-2005]		an gewaari Anaari	Page 1 of	2	· ·		NEDP-2-1 [7	-08-2005]	

### TVAN CALCULATION COVERSHEET/CCRIS UPDATE

								-		Page _	2
	TYPE	PLANT	BRANCH		NUMBER		REV	I ·			`
	CN	WBN	NTB	WBNTSR	-009	<i>2</i> .	. 11				
BLDG	RC	MO	<u>ELEV</u> C	OORD/AZIM	<u>FIRM</u>		Print Report	Yes 🛄			- -
TEGORIE	S										
	1.1			KEY NO	UNS (A-add,	D-de	ete)	N.	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 		
ACTION	KEYN	· _ ·				A/D	KEY NOUN	an a ta			NG 1997
(À/D)			2 	· ·						i di Shini ye sh	
A	AST			·····	······································					Ale telli	
							· ·		, • 		
							<u>·</u>				
	<u> </u>		CROSS	DEEEDENI	CES (A-add,	L		oto)	ц		÷.
ACTION		XREF	XREF	XREF	XREF	C-Che	inge, D-uei	XREF		et et goet go Theorem	XRE
(A/C/D)		CODE		PLANT	BRANCH		-0 	NUMBER	<u> </u>		RE
		<b>P</b> , 3	RG	GEN	MEB	RG 1	140				
	n de	1626. • <b>P</b> : 222.	SS	WBN	EEB		90-130			alian 1955 - Jane State 1967 - State	
		P	RG [®] IN	GEN	NTB	RG 1.	183				
									11. fef.		
. ·					1977 - 1979 1979 - 1979	994	· · · · · · · · · · · · · · · · · · ·				
									·.		:
·										<u></u>	
					-	_			<u> </u>		<b>`</b> .
	_						· · · · ·		<u> </u>		
		· · · · · ·	, exe	······································			· · · · · · · · · · · · · · · · · · ·				
<u></u>	_			·	2		<u></u>		-		
· .		4.2 2 2						ь. - Д	( - 13 C T T )		
		<u>,</u> 收送了2							Jay Billighters (1)		
•.			and the second second second second second second second second second second second second second second second		11년 - 20 X의 1943 일본 비행하는 11일 -	- 1	hara a ba	2000 (A.)		1	
	· · ·	$\frac{1}{2} \frac{g_{\rm eff}}{g_{\rm eff}} = 1$						,	ang di j		
			*								
				· · ·							
						-	•				
							· · · · · ·			а- ² б. ил	
	<u> </u>		<u></u>							<u>.</u>	
CRIS ONL ollowing are	Y UPDA require	TES; d only when I	making keyword	l/cross referenc	e CCRIS update	s and pa	age 1 of form N	EDP-2-1	s not inclu	ded:	12
	4					1					4.). 1
	PREF	ARER SIG	NATURE		DATE		CHECKER SI	GNATUR	E	DA	TE
REPARER	ا سنڌي ' قلم د ' اور ۲۲۶			Part in the second second second second second second second second second second second second second second s	a state and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the st	一、连你们	a da na da seria.		·····································	at etcaster	a shi ta

	TVAN CALCULATION RECORD OF	FREVISION
CALCULA	TION IDENTIFIER WBNTSR-009	
Title	Control Room Operator and Offsite Doses From a Fu	el Handling Accident
Revision	DESCRIPTION OF REVISION	
No.		
0	Initial Issue	······································
1	This revision was performed because the key references cha models needing revision. Also, the case of a FHA occurring i	
	Pages added: 2.1-2.4, 4.1	
	Pages changed: 1-12	1.C - 3 41 1:1.44
2	This revision was performed because the previous analysis of has been corrected analytically without running the STP coor was sufficient to refer to ref. 4. Safety Guide 25. Ref. 11 MR WB-DC-36.1 R4.	de. Ref. 12, FSAR chapter 15 was deleted as it
	The control room operator doses are slightly reduced. There calculation.	is no impact on the conclusions of the
	Pages added: 1a, 2.1, 2.5 Pages deleted: 2.1	
	Pages changed: 1, 2, 2.2, 4, 7, 8, 9, 10 Total pages: 35	
-	CCRIS and DCCM were checked on 01.04.93 and no changes	
	This calculation does not require impact review as no other	
3	Revision 3 was performed to take into account a single failu Ventilation Exhaust Fan in the "on" position concurrent wit resulting in ABGTS filter bypass. All pages were rewritten changed text are identified with revision bars. Pages added: all Pages deleted: all	h a single isolation damper failing to close
	Pages changed: all	
4	Revision 4 was performed because the ABGTS bypass was f R4 reinstated the R2 models and results. Pages added: 1(new cover) Pages changed: 1.1(old cover), 2-6, 8, 9, 11, 13-15, 17 Pages deleted: none	ixed by DCN M-29141-A.
5	Revision 5 was performed because the X/Q values changed	
	Pages added: 1.2 Pages deleted: none	الله المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع ال المراجع المراجع br>المراجع المراجع
	Pages changed: 1-8, 10-14, 16, 17	
6	Revision 6 was performed because the control room makeup	flow was changed.
	Pages changed: 1, 1.2, 2-6, 8, 12-14, 16, 17 Pages added: none Pages deleted: none	
· · ·		
	20001 Page 1 of 1	

TVA 40709 [12-2000]

NEDP-2-2 [12-04-2000]

Page 4

		ULATION RECORD OF REV	ISION
CALCULA	TION IDENTIFIER WBNTSR-009		
Title	Control Room Operator and Off	site Doses From a Fuel Han	dling Accident
Revision No.	DESCRI	IPTION OF REVISION	
7	month) fuel. pages added: 1, 2.1 pages changed: 1a (old cover), 1. pages deleted: none	2, 3-17	e 2 1000 EFPD, extended burnup (18
8	the corrective action of WBPER96 pages added: none pages changed: 1, 2.1, 3-7, 9, 10, pages deleted: 1a, 1.1, 1.2	60798. 12, 14-17	n 1000 EFPD to 1500 EFPD as part of
9			hich allow containment penetrations
	to be open during fuel movemen Pages changed: 1, 2.1, 3, 17 Pages added: 9.1 Pages deleted: none	L. Inere was no impact on th	e nnai answers.
	R9: 36 total pages Revision 10 is performed to incorpor		
	determine thyroid doses based on be the TEDE. Also, independent third incorporated where appropriate. Du	e latest versions of COROD (R5) oth ICRP-2 and ICRP-30 dose co party review comments by West to the extent of the changes, a pars. Changes in this revision with	by ARCON96, and incorporate the oversion factors, as well as determine tdyne (Westinghouse) and NYSIS were all pages were renumbered. Actual text ill be screened for 50.59 applicability via
11	contamination to other un-isolated a loading area) and EDC 51930 (down cases. EDC 51930 downgrades the H cannot be taken for them to mitigat for containment isolation, which occ documents that the wrong control re cfm- makeup flow (711) = 2889 cfm. assumption. Another case was adde isolation through open penetrations Special Requirement was added to r ABSCE be established within 4 min	ling), 95217 (potential for 15 mi areas), and 96939 (failure to eva igrade Purge Filters) and also to Reactor Building Purge filters to the the FHA. The design basis for curs in 12.7 seconds once EDC 5 com recirculation flow rate is us 2 trains of CREVS in operation of to analyze a FHA in containum 3. The discussion about penetrat require a CVI with an ABI and w butes even if there are other pen hout Purge/ABGTS filters. This inical Specification change for the cenamed Attachment 4 as Attach t 6 as Attachment 3	nute unfiltered releases and migration of iluate FHA in the transfer canal or cask o add Alternate Source Term (AST) o non-safety related and thus credit a FHA in containment is to take credit 1930 is implemented. PER 61493 sed. The recirculation flow rate is 3600 n for the first 2 hours is addressed in an nent with migration to the AB after ions on page 11 of R10 was deleted and a vice versa. It was also required that the etrations to outside the ABSCE AST calculation directly impacts FSAR Table he Reactor Building Purge filters hment 1, renamed Attachment 5 as
	Total Pages = 29	in vermication form, 11,13, old a	auachments 1-3
	2000]	Page 1 of 1	

Calculation Identifier: WBNTSR-009	Revision: 11		
	TABLE OF CONTENTS		
SECTION	TITLE		PAGE
•	* *		
Coversheet	· ·		1
CCRIS Update Sheet Revision Log			2 3,4
Table of Contents			5
Computer Input File Storage			6
Computer Output Microfiche	Information Sheet		. 7
Purpose	• • • • •	F	8
Special Requirements/Lin	iting Conditions		8
Introduction			8
Assumptions	<ul> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constraints</li> <li>March 1997 Constr</li></ul>		9
Calculations			12
Results Conclusions:			17 21
References			21 22
Attachment 1. Mitting Manuel	+ Auglification Desired De 1	WTO TO 1 001	0.0
Attachment 1: Tritium Targe Attachment 2: memorandum	t Qualification Project Proced T35 001023 938	ure, 11Wr-1-091	23 28
Attachment 3: reference 28b		13	29
	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec		
		a da serie da serie da serie da serie da serie da serie da serie da serie da serie da serie da serie da serie Serie da serie	
		and the second second second second second second second second second second second second second second second	

			1. <u>1. 1</u> .				Page	<u> </u>
	•		AN COMPUT RAGE INFOR					•
ocument V	WBNTSR-009	· · · · ·		Rev. 11	Plant	: WBN		
ubject:	ri d Sinta							
ontrol Room	Operator a	nd Offsite [	Doses From a	a Fuel Han	dling A	ccident		
N			•	۰ ۲		ا الاستى	1. 1	
Electronic	storage of the	ne input files	for this calcu	lation is no	t require	ed. Comme	ents: Destable	
· · · · ·	y terif i s	i uni e i i i i i i e		1. 1.		ing ing ang ang ang ang ang ang ang ang ang a		
				2 2	· · ·		an an an an an an an an an an an an an a	
							·	
	i, nt				÷.,		e de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la comp	
Input files	for this calci	lation have	been stored	electronica	lly and s	ufficient ide	ntifying informatio	n is
use.)	below for eac	h input file.	(Any retrieve	d file requi	res re-v	erification o	f its contents befo	re de la company
	uter input is p	ermanently	stored in FILE	EKEEPER	file <b>#</b> 26	3662		
7: The comp	uter input is p	ermanently	stored in FILE	EKEEPER	file <b>#</b> 29	2579		
			stored in FILE					
			y stored in FII y stored in FII				0.60	
11. 110 0011	putoramputio	permanenti	y stored in th			,00000,0000		
							-	
• •								
					14.		and the second	
								사 위험 운영 전 1997년
							•	
				<b>F</b> ₁ =		, •	- - -	
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -					· · ·	· · · ·	4.	
1. 			1. A 41	-				
			x			· · ·		
		· .						
								s suget
. '		-	•				14 ¹	
								· · · · · · · · · · · · · · · · · · ·
	· .					······		
Microfiche	e/eFiche		n di San Ang				4 - K - 1	
	e e e e e e e e e e e e e e e e e e e					in any ingeneration of the large states of the states of the states of the states of the states of the		n yrag i si'r yrag i si'r yrag i si'r yrag i si'r yrag i si'r yrag i si'r yrag i si'r yrag i si'r yrag i si'r y Yrag i si'r yrag
See next	page					· k·		
	· · ·							
40535 [12-2000	)]		Page 1	of 1	:		NEDP-2-6 [12-0	4-2000]
	Tielietti. Agi tilite			e e Alexandre e	1. 		문제 한 상태와 방법 한 전 한 방법 한 문제 한 문화 한 동물	
e de la companya de la companya de la companya de la companya de la companya de la companya de la companya de l La companya de la comp				1				
	• •					5		



page 7

# **TVAN COMPUTER OUTPUT**

**MICROFICHE INFORMATION SHEET** Document WBNTSR-009 Rev. 11 Plant: WBN Subject: **Control Room Operator and Offsite Doses From a Fuel Handling Accident** Microfiche Description R3:TVA-F-G104672 R5:TVA-F-C000074 R6:TVA-F-C000108 R7:TVA-F-C000138 R8:TVA-F-C000219 R10: R10: TVA-F-W000221 Name Code Description **TS9S10\$** STP source term TS9C10#\$ COROD control room operator dose TS9F10#\$ FENCODSE Offsite dose where \$= A = standard core, instant control room isolation B = standard core, 20.6 sec control room isolationC = Tritium Production Core, once burned assembly, instant control room isolation D = Tritium Production Core, once burned assembly, 20.6 sec control room isolation E = Tritium Production Core, twice burned assembly, instant control room isolation F = Tritium Production Core, twice burned assembly, 20.6 sec control room isolation G = Tritium Production Core, 3X burned assembly, instant control room isolation H = Tritium Production Core, 3X burned assembly, 20.6 sec control room isolation X = standard core, 20.6 sec isolation time, revision 9 (old Halitsky) X/Q values #= A= Spent Fuel Pit/Auxiliary Building/ABGTS FHA P = Containment/PAE FHA R11: R11: TVA-F-W000575 Name Code Description TVA-F-W000622 TS9S11\$# STP release models TVA-F-W000624 TS9C11\$# COROD control room dose with 1 train of CREVS, 20.6 sec control room isol TS9F11\$# FENCDOSE offsite dose where = A = standard coreB = Tritium Production Core, once burned assembly C = Tritium Production Core, twice burned assembly D = Tritium Production Core, thrice burned assembly #= 1= RG 1.25 Contain FHA w/ 12.7 sec contain isolation, containment closed to AB, no Purge Filters 2= RG 1.25Spent Fuel Pit/Auxiliary Building FHA, AB open or closed to containment 3 = RG 1.25 Containment FHA with Purge Filters (no containment isolation) 4=RG 1.183 AST Auxiliary Building FHA with no ABI 5=RG 1.183 AST Auxiliary Building FHA with ABI (ABGTS)

•	
3	L).

Calculation No. WBNTSR-009	l Plant: WBN Page: 8
Subject: Control Room Operator and Offsite Doses From a Fuel	Prepared: ٢ من Date: ٢-٦ ٥
Handling Accident	Checked: Off Date: 5/3/06

#### Purpose

The purpose of this calculation is to determine the dose to the control room operators following a design basis Fuel Handling Accident (FHA) In addition, the offsite doses resulting from a FHA is also to be determined. This calculation is to address concerns raised during the vertical slice review program as to whether the Loss of Coolant Accident (LOCA) actually produces the bounding control room operator doses (ref.1).

Revision 10 is performed to increase the delay in the control room isolation to 20.6 seconds (this value is the sum of the damper closure time and the instrument reaction time, this is documented in WBN PER 01-000080-000, ref.12). to change the X/Q values to new ones determined by ARCON96 (while keeping the original Halitsky X/Q case), to utilize NUREG/CR-5009 gap inventory releases to supplement Safety Guide 25 (Regulatory Guide 1.25), and to utilize the latest versions of FENCDOSE (R4) and COROD (R6, which now determine thyroid doses based on ICRP-2 and ICRP-30 iodine dose conversion factors, as well as the TEDE, and also allow for changes in flow rates and filter efficiencies). Finally, the Tritium Production Core (TPC) fuel assemblies (once burned, twice burned, and three times burned) are analyzed in addition to the standard core 1500 EFPD assembly. Revision 11 is performed in support of PERs 61493 (control room recirculation rate modeling), 94426 (control room time increment modeling), 95217 (potential for 15 minute unfiltered releases and migration of contamination to other un-isolated areas), and 96939 (failure to evaluate FHA in the transfer canal and cask loading area) and EDC 51930 (downgrade Purge Filters) and also to add Alternate Source Term (AST) cases. Revision 11 changes the containment FHA case to credit containment isolation in 12.7 seconds instead of crediting the purge filtration system to mitigate the consequences of an FHA in containment. The filtered release case is retained (this case will become information only once EDC 51930 is implemented) Additionally, revision 11 adds cases based on Regulatory Guide 1.183 (Alternate Source Term or AST) assumptions. One of the AST cases credits filters, the other does not credit any filters.

#### Special Requirements/Limiting Conditions

If the design basis for WBN is RG 1.25, then if the equipment hatch or any penetration between the Auxiliary Building and Containment is open, the containment purge system shall be operational during fuel movement and an Auxiliary Building Isolation (ABI) due to a high radiation signal shall initiate a Containment Ventilation Isolation (CVI) and a CVI due to a high radiation signal must initiate an ABI. If other penetrations are open to the outside of the ABSCE, the ABGTS system must be able to draw down within 4 minutes of the initiating event.

Also, for RG 1.25, the HVAC intake vent in the transfer canal must be blocked, and the -103 monitor must be raised so that it has a line of sight across the 757 floor. The HVAC intake vents for the cask loading area shall be blocked when handling irradiated fuel in this area. The -102 monitor is far enough away so that it will see very close to the floor at the canal/cask loading area, therefore it will not have to be raised (see assumption 17 for further discussion). This requirement is to prevent radioisotopes from entering the HVAC ductwork in the transfer canal (and ultimately released via the Auxiliary Building Vent without filtration) and therefore bypassing the isolation function of the -102 and -103 radiation monitors.

If the design basis for WBN is RG 1.183 (AST), then there are no special requirements or limiting conditions. Based on the results of this analysis, no isolation of either containment or the auxiliary building is required following a Fuel Handling Accident for AST.

#### Introduction

This calculation determines the offsite and control room doses due to a FHA. The computer code STP is used to determine the releases. Using the STP output, the computer code FENCDOSE determines the offsite doses, and the computer code COROD determines the control room doses. The FHA accident is analyzed for both the Auxiliary. Building and the Containment. Also, 4 types of assemblies are analyzed: the 1500 EFPD end of life assembly for a standard core, a once burned TPC assembly with 24 TPBAR rods (which contain the tritium), a twice burned TPC assembly with 24 TPBAR rods, and a three times burned TPC assembly (no TPBARs).



Calculatio	n No. WBNTSR-009	Rev: 1	1`	Plant:	WBN		Page: 9
Subject:	Control Room Operator and Offsite Doses From a	Fuel	Prep	pared:	MS	Da	ate: 5-3-06
	Handling Accident		Che	cked:	0 $N$	Da	ate: 5/3/06

Assumptions

1. The FHA occurs at 100 hours after shutdown, consistent with the FSAR and the Technical Specifications (ref.4 and 18).

2. All of the rods in one fuel assembly are assumed to be damaged.

Technical Justification: Safety Guide 25, ref.4, implies that the activity from the worst peak assembly is released. It is conservative to assume that all rods will break; thereby maximizing the release. Regulatory Guide 1.183 (AST), ref.36, section 3.6 requires that the case with the highest radioactivity release should be analyzed.

3. For all cases except the 12.7 containment isolation case, it is assumed that everything except tritium is released to the environment within 2 hours (ref.4). To assure this, at 2 hours all remaining isotopes (except tritium, see assumption 13) above the spent fuel pool (or in containment) are stepped into the environment (using the appropriate filter efficiency as a multiplication factor).

4. For the RG 1.25 cases, it is assumed that in the 4 minutes it takes to establish the ABSCE for an AB FHA, there will be no unfiltered releases to the environment (see assumption 17 regarding isolation). The ABSCE is normally established within 4 minutes and within this time frame all of the flow is through the ABGTS. Because there will be an ABI and CVI, any other contaminated air which does not go through the ABGTS (leakage) will have to travel to a penetration in containment or the AB to go outside of the ABSCE. Because this leakage flow will be fairly low and the distance from the contamination source is great, it can be concluded that the contaminated air will not reach the outside. Also as the ABGTS draws down the Auxiliary Building, the flow of air will be more likely to be drawn into the ABGTS due to flow characteristics of pumping the air volume down. For one of the RG 1.183 AST cases (case series 5), the above also applies. For the other AST case (case series 4), no isolation is assumed.

5. For the RG 1.25 cases (case series 1, 2, and 3), all of the gap activity in the damaged rods is released which consists of 10% of the inventory in the rods at the time of the accident (ref.4), except for the following (per NUREG/CR-5009 for 60 GWd/t, note for lesser burnups the releases are less, therefore use of these 60 GWd/t values for all burnups is conservative):

Kr-85 = 14%

Kr-87 = 10% Note: The NUREG/CR-5009 value is actually 0.7%. Since STP is limited to 9 classes, and the halflife of Kr-87 is 76 min (ref.33), after 100 hours of decay there will be exp(-100*ln(2)/(76/60)) = 1.7E-24 or 1.7E-22% left. Therefore the increase in the gap percentage does not affect the results.

Kr-88 = 10% Note: The NUREG/CR-5009 value is actually 1%. Since STP is limited to 9 classes, and the halflife of Kr-88 is 2.84 hr (ref.33), after 100 hours of decay there will be exp(-100*ln(2)/2.84) = 2.5E-11

or 2.5E-9% left. Therefore the increase in the gap percentage does not affect the results.

Kr-89 = 10%

Xe-133 = 5%

Xe-135 = 2%I-131 = 12%

For the RG 1.183 AST cases, all of the gap activity in the damaged rods is released which consists of 8% I-131, 10% Kr-85, 5% other noble gasses and other halogens. Note that RG 1.183 also specifies 12% of Alkali metals (Cs, Rb), however since particulates have essentially an infinite partition factor, no alkali metals will be released and therefore are not included in this analysis.

6. The values assumed for individual fission product inventories are calculated assuming full power operation at the end of core life immediately preceding shutdown with a radial peaking factor of 1.65 (ref.4, 36) for the standard core assembly. For the TPC assemblies, the inventories are taken at the end of cycle,



Calculatio	n No. WBNTSR-009	Rev: 1	1	Plant:	WBN	ſ	Page: 10
Subject:	Subject: Control Room Operator and Offsite Doses From a		Pre	pared:	MUS	Da	ite: 5-3-06
	Handling Accident		Che	cked:	OPP	Da	ite: 5/3/00

with the factor of 1.65 applied to all isotopes except tritium. Also, the factor of 1.65 is the maximum peaking factor allowed by the COLR. The factor of 1.65 is not applied to the tritium isotope because the maximum inventory of tritium is used already at a maximum (see assumptions #13, and ref.29) at 1.2g tritium/rod with 24 rods/assembly. It would be too conservative to apply the 1.65 to a value which is already the maximum inventory which can occur.

7. From RG 1.25 (ref.4), the iodine gap inventory is composed of inorganic species (99.75%) and organic species (0.25%). From RG 1.183, the inorganic species is 99.85% and the organic species is 0.15%. An overall decontamination factor is utilized in the RG 1.183 cases(see assumption 8), therefore the makeup of the species is not utilized in AST.

8. From RG 1.25, the pool decontamination factors for the inorganic iodine is assumed to be 133, and organic iodine is assumed to be 1 (ref.4). From RG 1.183 (AST) the decontamination factors are specified to be 500 for elemental (inorganic) iodine, and 1 for organic iodine. Doing the math, this leads to an overall decontamination factor of 286 = 1/(0.9985/500+0.0015/1). However, RG 1.183 also specifies an overall decontamination factor of 200. The use of the 200 factor is more conservative (also, BFN was asked by the NRC to use the overall factor instead of the species specific factors), and therefore the overall factor of 200 for AST will be used in this analysis.

9. The retention of noble gasses in the pool is negligible (ref.4).

10. For FHA in containment with isolation (case series 1), it is assumed that the Purge Air Exhaust (PAE) System isolates in 12.7 seconds (ref. 2). This includes instrument loop response time (6.7 sec) and containment purge valve closure time (6 sec). This should be noted to be a very conservative value. The instrument loop response time contains very conservative assumptions and rounding. In the event that containment needs to be purged (for instance if entry is required into containment), then it is possible to defeat the isolation. An additional case (case series 3) analyzed assumes that the PAE (including the filters) will be used to purge containment for two hours.

11. This calculation includes a case with no credit for the PAE filters for the FHA in containment once the purge filters are downgraded. However, for historical purposes, the filtered release analysis is retained in the results section (case series 3). The filter efficiencies for the PAE filter are 90% for inorganic iodines and 30% for organic iodines (ref.3). EDC 51930 downgrades the filters to non-safety related. R.G. 1.140 R3 will be the standard to which these filters conform to. The guide specifies the filter efficiency as 95%. Therefore using the original 90%/30% is conservative. One of the RG 1.183 AST cases does not credit any filters (case series 4).

12. The filter efficiency for the ABGTS is 99% for all iodines (ref.3).

13. It is assumed that all 24 TPBARs in a TPC once or twice burned assembly break. It is also assumed that all the tritium (84490 Ci) in the spent fuel pool is released following the FHA through evaporation of the pool.

Technical Justification: All TPBARs breaking is conservative. Also, it is difficult to predict the chemical form of the tritium release from a broken TPBAR in the spent fuel pit. Most likely it will be in the form of tritiated water or methane. There will not be 100% release of tritium from a TPBAR failure in a FHA because there are no high temperatures involved with the accident. Reference 26, section 2.3, gives the release from the TPBARs will not cause the water tritium concentration to exceed  $60\mu$ Ci/gm. If all the water (372,000 gal, ref.28) were to evaporate, then the amount of tritium release would be:

60μCi/gm * 372,000 gal * 3,785.4 cc/gal * 1 gm/cc * 1E-6 Ci/μCi = 84490 Ci To assume all the water evaporates within 2 hours is very conservative. For the RG 1.25 containment FHA



Calculatio	n No. WBNTSR-009	Rev:	11	Plant: WBN	V Page: 11
Subject:	Control Room Operator and Offsite Doses From	a Fuel	Pre	pared: MUB	Date: 5-3-06
	Handling Accident	•	Ch	ecked: 0//	Date: 5/3/06

case with purge filters and Auxiliary Building case (case series 2 and 3), tritium was released over 2 hours. For the RG 1.25 containment with 12.7 sec isolation and no purge filters (case series 1) and the AST cases (case series 4 and 5), tritium was assumed to evaporate at a constant rate over 8 hours. Also, from reference 26 (see attachment 1), less than 25% of the tritium will be released at a steady rate over a period greater than 8 hours. For conservatism, 25% of the inventory will be released linearly over 8 hours for the RG 1.183 cases.

14. For the RG 1.25 case, the effective volume of upper containment is taken as 1/2 the upper containment free volume. Technical Justification: This takes into account incomplete mixing and dead end spaces and is typical for the representation of air mixing volumes.

15. It is assumed that the suction flow for the ABGTS from the spent fuel pit area is the maximum ABGTS flow (9000 cfm +10%, ref.32).

Technical Justification: The ABGTS suction is actually less than this from the spent fuel pit area, since suction is also taken from several other areas, such as the pipe chase. In discussions with John Ferguson, WBN HVAC system engineer, there have been no measurements of the suction flow during ABGTS operation from the spent fuel pit area. However the majority of the flow is from the spent fuel pit. Using the maximum flow reduces the holdup time and increases the releases at earlier times during the accident. This is therefore conservative.

16. NUREG/CR-5009 implies that Cs-134 and Cs-137 are also in the gap. This calculation assumes these isotopes do not get released to the environs.

Technical Justification: Cs-134 decays to either Xe-134 or Ba-134, both of which are stable. Cs-137 decays to Ba-137m which in turn decays to Ba-137, which is stable. Per Regulatory Guide 1.183, particulates (Cs, Ba) have an infinite decontamination factor in the spent fuel pool/reactor vessel water. Therefore, Cs-134 and Cs-137, and their daughters, may be neglected from the calculation.

17. It is assumed for the RG 1.25 design basis cases, that Auxiliary Building isolation is automatic so that there is no unfiltered release. The isolation is due to the RE-90-102 and -103 spent fuel pool monitors. PER 96939 documents that an accident in the fuel transfer canal and cask loading area will result in no automatic isolation since the monitors have no line of sight to the transfer canal and the HVAC intake ductwork is below the floor elevation. Therefore, any accident in the transfer canal or cask loading area will result in the HVAC uptake of radioactive gasses before it rises above the 757' floor elevation where it will have a line of sight to the monitors. The radioactive gasses would then be exhausted to the environs via the Auxiliary Building Vent with no filtration. The AB vent X/Q values are worse than the Shield Building Vent (the exhaust location following isolation) X/Q values. Preliminary work indicates that this situation would result in control room doses far in excess of the GDC 19 limits. Therefore, for the RG 1.25 assumptions (specifically, isolation of the Auxiliary Building), the following special requirements/limiting conditions apply: The HVAC intake vent in the transfer canal or cask loading area must be blocked, and the -103 monitor is raised so that it has a line of sight across the 757 floor. The -102 monitor is far enough away so that it will see very close to the floor at the canal, therefore it will not have to be raised. [Note: the AST case with no isolation was performed due to the possibility of the transfer canal or cask loading area accident with no ABI. In order to obtain isolation, the HVAC in the transfer canal or cask loading area must be blocked and the -103 monitor must be raised. However, since the no ABI case with AST assumptions did not exceed limits, the blockage and monitor movement will not be required if WBN becomes an AST plant for the FHA.

18. The RG 1.25 cases utilize exponential releases. That is, the releases are governed by the mixing volume and the exhaust flow rate. This results in conservative releases compared to linear releases as more gets released in the beginning of the accident when there is less control room filtration (it takes 20.6 sec to

		· ·		
Calculation No. WBNTSR-009	Rev: 11	1	Plant: WB	N Page: 12
Subject: Control Room Operator and Offsite Doses From a	Fuel	Pre	pared: Moz	Date: 5-3-06
Handling Accident		Che	cked: ///	Date: 5/3/04

isolate the control room) and also allows more to be released prior to isolation.

The RG 1.183 cases utilize linear releases. That is, all releases are constant over the 2 hour time period (except for tritium, which is over an 8 hour time period). This is implied in RG 1.183 by requiring all releases to be within 2 hours. Also, this methodology is utilized by Westinghouse for SQN and other utilities.

19. Only one train of CREVS is in operation. Normally, each CREVS train takes suction from separate intakes with no cross communication between trains. This leads to one contaminated train, and one uncontaminated train. The only way a 2 CREVS operation could result in higher doses would be for both trains to take suction from the same vent. For this to happen, one intake path would require a failed closed intake path AND a fail open of normally closed passive manual damper at the beginning of the accident. An active failure of a train plus a failure of a passive component in less than 24 hours is beyond design basis.

#### Calculations

This calculation considers several cases broken down into Regulatory Guide 1.25 and Regulatory Guide 1.183 (AST) groupings

#### I. Regulatory Guide 1.25 Cases:

One case is for a FHA in containment with the activity released directly to the environment until containment isolation (12.7 seconds), there are no penetrations open to the AB, and the PAE filters are not credited. Another case utilizes a containment release without isolation but with Purge Filters Credited. The third case is for a FHA at the refueling area of the Auxiliary Building with the activity release through the Auxiliary Building Gas Treatment System (ABGTS) filters. The fourth case is for a FHA in containment with penetrations open to the AB and thus the contamination migrates to the AB after the containment is isolated. This last case will be analyzed by simply adding the results of the isolated containment case and AB case. This is conservative because this would simulate two releases, one through ABGTS and one through the PAE system before isolation. In reality, the flow would be through the PAE system until isolation then contaminated air will migrate to the AB and then released to the environment via the ABGTS. Computer code STP (ref.6) is used to calculate the activity released after a FHA. Figure 1 shows the model. To insure a conservative dose, the radioisotopes are allowed only 100 hours of decay after shutdown, and are released to the containment/spent fuel pit release rate based on PAE or ABGTS flow. For the Auxiliary Building case, anything left at 2 hours is automatically released through the filters nonmechanistically so that everything is released within 2 hours, except for tritium which is assumed to take 8 hours. (This is performed by stepping the remaining isotopes into the environment at 2 hours). The step source fractions of the core inventory are based on NUREG/CR-5009 and Reg.Guide 1.25. The source terms are the 1500 EFPD maximum burnup for 18 month fuel cycle from WBNAPS3-084 (ref.14) for the standard core. These source terms are used instead of the core average 1000 EFPD source terms because the accident involves a single fuel assembly, not the entire core (as in a LOCA). For the TPC, the source terms for the once burned, twice burned, and 3 times burned assemblies are taken from WBNAPS3-098 (ref.29). The 24 TPBAR release apply only to the once and twice burned assemblies (the 3 times burned assembly will not have any TPBARs).

	- 17	. 1
	- 11	. 1
1	. 8	

Calculation No	. WBNTSR-009		Rev: 1	1 Plant: WBN	N Page: 13	
Subject: Co	······································	and Offsite Doses From	a Fuel	Prepared: MA	Date: 5-3-06 Date: 5/3/06	
		Figure 1 STP Model	· · · · · · ·			
	Fuel Initial	1 Fuel 100-hr Decay	а 1949 — 1949 М 4			1 19
	2 Containment Air		3 Spent	Fuel Pit		
	6 PAE Filter		7 ABG' Filter			- - 
	4 Containment Release		5 ABG'	<b>FS Release</b>		•

Note: the arrow from component 2 to 4 (for crediting purge filters in Appendix D) and 3 to 5 does not imply a filter bypass. It indicates how STP models a filter with the "U" card, where  $F 2-6 = F^*$ (efficiency),  $F2-4 = F^*(1-efficiency)$ 

Component 1: Fuel volume=1.0 (arbitrary)

Component 2: Containment Air volume = 647,000 cuft (ref.30) /2 = 3.235E5 cuft (see assumption #15) Component 3: Spent Fuel Pit volume = 10,017 cuft = 39.5'x31.7'x8' (ref.31). Note: the dimensions come from ref.31b. The 8' dimension (air above the pool) is an arbitrary value to account for the rise of the gasses above the pool. This is reasonable and consistent with references 31a and 31c.

Component 4: Containment Release volume =1.0 (arbitrary)

Component 5: ABGTS Release volume=1.0 (arbitrary)

Component 6: PAE Filter volume =1.0 (arbitrary)

Component 7: ABGTS Filter volume =1.0 (arbitrary)

Flow from containment through PAE to release (U 2 6 4)= purge rate = 14954 cfm (ref.30, note the actual value should be 14958 cfm, but this will not change the results so is not corrected) = 8.9724E5 cfh with Purge Air Exhaust filter efficiencies: 90% inorganic iodine, 30% organic (ref.3), 0% for tritium

Flow from spent fuel pit through ABGTS to release (U 3 7 5) = ABGTS flow = 9900 cfm = 5.94E5 cfh (see assumption #16) with filter efficiencies of 99% for iodines.

Fuel activities are as given in WBNAPS3-084 (ref.14) and WBNAPS3-098 (ref.29), with the inorganic iodines equal to 99.75% of total, and organic iodines equal to 0.25% of total iodines.

5	T // 1
ł	1.14.1
L	L

Calculation No. WBNTSR-009	Rev: 11	Plant:	WBN	Pag	ge: 14
Subject: Control Room Operator and Offsite Doses From a	Fuel	Prepared:	Mis	Date:	5-3-06
Handling Accident		Checked:	D.0?	Date:	513/06

Peaking Factor for the highest activity fuel assembly = 1.65 (ref.4) except for tritium isotope, which is 1.0 (see assumption #6).

ABGTS filter efficiencies: 99% (ref.3), for iodines, 0% for tritium

The gap activity in the damaged rods is released which consists of 10% of the inventory in the rods at the time of the accident, except for the following: Kr-85=14%, Xe-133=5%, Xe-135=2%, I-131=12% Partition Factors: 133 for inorganic iodine.

The step fractions from the fuel to the containment (or spent fuel pit) are: S = 0.1 for Kr-83m, Kr-85m, Kr-87, Kr-88, Kr-89, Xe-131m, Xe-133m, Xe-135m, Xe-138, organic iodine (except I-131) S= 0.14 for Kr-85 S=0.05 for Xe-133 S=0.02 for Xe-135 S=0.000752 for 1-132, I-133, I-134, I-134 (=0.1/133) S=0.000902 for I-131 (=0.12/133) S=0.12 for I-131 (organic iodine)

All of the activity for the AB FHA is assumed to be released after 2 hours, except for tritium. To simulate this all activity remaining in the Reactor Building or Auxiliary Building at the end of 2 hours is put into a new "source" which is stepped to the environment. The stepping fraction is equal to what would have gotten through the filters (i.e. 1-efficiency, or 25% for 0-2 hr and 75% for 2-8 hrs for tritium) had the isotopes been released through the filters. For the Containment case with isolation, the purge flow (F 2 4 0) is set to 0 cfm after 12.7 seconds.

The activity released to the environment as calculated by STP is used as input to computer code COROD (ref.7) to determine the control room operator doses. The control room model is identical to that described in TI-RPS-198 (ref.5) except for the shine from containment which is neglected (all activity inside the containment from FHA is released).

During the vertical slice review of the control room, a concern was raised that when the control room is isolated by a signal from the main control room intake radiation monitors, some amount of unfiltered activity could enter the control room before the isolation dampers close (ref.9). This could be the case for a fuel handling accident because there will be no safety injection signal to isolate the control room. The isolation dampers downstream from the radiation monitors are 0-FCV-31-3 and 0-FCV-31-4 (ref.10). It is required by reference 11 that the closure time of the dampers is 14 seconds, with a signal response time of 6.6 seconds (ref.13), which gives a total closure time of 20.6 seconds. Therefore all cases will analyze the first 20.6 seconds without CREVS filtration.- The ARCON96 X/Q values used (which supersede the Halitsky X/Q values) for the Shield Building Vent were: from ref.34: 1.12E-03 sec/m^{*} for 0-2 hr, 9.78E-04 for 2-8 hr, (since all releases are < 8 hours, X/Q values after 8 hours are unimportant.

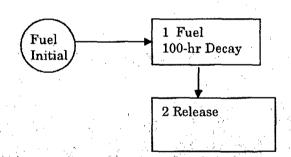
Prior to isolation the intake flow is 3200 cfm* (ref.10). It is assumed that the unfiltered inleakage is the same as for the isolated case (51 cfm, due to open doors, leaky valves, etc.) After isolation, the total flow rate into the control room is 711 cfm filtered plus 51 cfm unfiltered (ref.5). The circulation flow rate in the control room is the total flow – the makeup flow = 3600 - 711 = 2889 cfm (ref.5).

Cases were performed for the standard core using ARCON96 X/Q values and ICRP-30 dose conversion factors (see note on methodologies in Conclusion section).

The activity released to the environment as calculated by STP is used as input to computer code FENCDOSE (ref.8) to determine the site boundary dose. The FENCDOSE model is the same as that found in reference 19.

* 3200 cfm has been deleted from 1-47W866-4 R36 (ref.10), and has been measured to be approximately




Calculatio	n No. WBNTSR-009	Rev: 1	1	Plant: WB	N Pa	ge: 15
Subject:	Control Room Operator and Offsite Doses From a	Fuel	Prep	ared: MUB	Date:	5-3-06
	Handling Accident		Cheo	cked: DPP	Date:	5/3/04

2500 cfm (0-SI-31-31-A). The value comes from 1-47W866-4 R20. The 3200 cfm will be retained in this calculation revision since this value produces conservative results.

II. Regulatory Guide 1.183 (Alternate Source Term) Cases:

There are two AST FHA cases. One where there is an ABI (with ABGTS in operation) and one with no ABI with no filtration. An accident in the containment is bounded by the no ABI case because containment is exhausted through the Shield Building Vent and the no ABI case exhaust is through the Auxiliary Building Vent. The AB Vent has less favorable X/Q values than the Shield Building Vent. Computer code STP (ref.6) is used to calculate the activity released after a FHA. Figure 2 shows the model. To insure a conservative dose, the radioisotopes are allowed only 100 hours of decay after shutdown, and are released to the environment linearly, except for tritium which is assumed to take 8 hours. The step source fractions of the core inventory are based on Reg.Guide 1.183. The source terms are the 1500 EFPD maximum burnup for 18 month fuel cycle from WBNAPS3-084 (ref.14) for the standard core. These source terms are used instead of the core average 1000 EFPD source terms because the accident involves a single fuel assembly, not the entire core (as in a LOCA). For the TPC, the source terms for the once burned, twice burned, and 3 times burned assemblies are taken from WBNAPS3-098 (ref.29). The 24 TPBAR release apply only to the once and twice burned assemblies (the 3 times burned assembly will not have any TPBARs).

> Figure 2 AST STP Model



The STP model consists of the assembly inventory stepped into the Fuel component with a 1.65 peaking factor and allowed to decay for 100 hours. The remaining decayed isotopes are then stepped into the Belease component based on filtration efficiency (=99% for iodines for ABI case, =0% filtered for no ABI case). The tritium will only have 25%*(2hr/8hrs) for the 0-2 hour released, and 25%*(6hr/8hrs) for the 2-8 hr time period.

Component 1: Fuel volume=1.0 (arbitrary) Component 2: Release volume = 1.0 (arbitrary)

ABGTS filter efficiencies: 99% (ref.3), for iodines, 0% for tritium

The gap activity in the damaged rods is released which consists of 5% of the inventory in the rods at the time of the accident, except for the following: Kr-85=10%, I-131=8%

Partition Factors: 200 for all iodines (see assumption 8).

The 20.6 second delay in Control Room isolation is taken into account through the appropriate Step fractions



Calculation No. WBNTSR-009	Rev: 1.	1	Plant: WBN	I Pag	ge: 16
Subject: Control Room Operator and Offsite Doses From a	Fuel	Prep	ared: M 44	Date:	5-306
Handling Accident		Chec	ked: ng	Date:	5/3/06

The step fractions from the fuel to the outside "Release" component are:

0-20.6 sec:

S = 1.431E-4 (=0.05*(20.6sec/7200sec)) for all except Kr-85, iodines, and H-3

S = 2.861E-4 (=0.1*(20.6sec/7200sec)) for Kr-85

S= 7.153E-7 (=0.05*(20.6sec/7200sec/200)) with no ABI for iodines except I-131 or 7.153E-9 with an ABI (filter eff=0.01)

S= 1.144E-6 (=0.08*(20.6sec/7200sec/200)) with no ABI for I-131 or 1.144E-8 with an ABI (filter eff=0.01)

S = 1.788E-4 (=0.25*(20.6sec/7200sec*2hr/8hr)) for H-3

20.6 sec-2 hr:

S= 4.986E-2 (=0.05*(7200 sec-20.6sec)/7200sec) for all except Kr-85, iodines, and H-3

 $S = 9.971E_{-2} (=0.1*(7200 \text{ sec-} 20.6 \text{ sec})/7200 \text{ sec})$  for Kr-85

- S= 2.493E-4 (=0.05*(7200 sec-20.6sec)/7200sec/200) with no ABI for iodines except I-131or 2.493E-6 with an ABI (filter eff=0.01)
- S= 3.989E-4 (=0.08*(7200 sec-20.6sec)/7200sec/200) with no ABI for I-131or 3.989E-6 with an ABI (filter eff=0.01)

S= 6.232E-2 (=0.25*(7200 sec-20.6sec)/7200sec*2hr/8hr) for H-3

2hr-8hr

S=1.875E-1 (=0.25*(6/8)) for H-3

The activity released to the environment as calculated by STP is used as input to computer code COROD (ref.7) to determine the control room operator doses. The control room model is identical to that described in TI-RPS-198 (ref.5) except for the shine from containment which is neglected (all activity inside the containment from FHA is released). For AST, all breathing rates for all times are the same 3.47E-4 m³/sec

The ARCON96 X/Q values used for Shield Building Vent releases (which supersede the Halitsky X/Q values) were: from ref.34: 1.12E-03 sec/m³ for 0-2 hr, 9.78E-04 for 2-8 hr. For Auxiliary Building Vent releases (when there is no ABI), the X/Q values are:2.52E-3sec/m³ for 0-2 hr, 1.57E-3 for 2-8 hr.

Prior to isolation the intake flow is 3200 cfm^{*} (ref. 10). It is assumed that the unfiltered inleakage is the same as for the isolated case (51 cfm, due to open doors, leaky valves, etc.) After isolation, the total flow rate into the control room is 711 cfm filtered plus 51 cfm unfiltered (ref.5). The circulation flow rate in the control room is the total flow – the makeup flow = 3600 - 711 = 2889 cfm (ref.5).

The activity released to the environment as calculated by STP is used as input to computer code FENCDOSE (ref.8) to determine the site boundary dose. The FENCDOSE model is the same as that found in reference 19.

* 3200 cfm has been deleted from 1-47W866-4 R36 (ref.10), and has been measured to be approximately 2500 cfm (0-SI-31-31-A). The value comes from 1-47W866-4 R20. The 3200 cfm will be retained in this calculation revision since this value produces conservative results.



Calculatio	on No. WBNTSR-009	Rev: 11	L	Plant: WBN	Page: 17
Subject:	Control Room Operator and Offsite Doses From	a Fuel	Prep	pared: May	Date: 5-3-06
	Handling Accident		Che	cked: D	Date: 5/3/06

#### Results

The control room doses with 1 train of CREVS and 20.6 sec control room isolation are as follows (rem): Regulatory Guide 1.25 Control Room Doses

Spent Fuel Pit/Auxiliary Building FHA, AB open or closed to containment

	Standard	TPC	TPC	TPC	limit
	Core	Once Burned	Twice Burned	Thrice Burned	., 1 i <b>l</b> .,
Gamma	4.935E-01	5.638E-01	4.2506-01	5.546E-01	5
Beta	4.068E+00	4.743E+00	3.720E+00	4.535E+00	30
Thyroid (ICRP-30)	1.540E+00	1.634E+00	1.275E+00	1.711E+00	30
TEDE	5.824E-01	4.559E+00	4.399E+00	6.536E-01	5
		•	·	and the state of the state of the state of the state of the state of the state of the state of the state of the	· · · · · · · · · · · · · · · · · · ·

Containment FHA with 12.7 sec containment isolation, containment closed to AB, no Purge Filters

· · · ·	Standard	TPC	TPC	TPC	limit	
	Core	Once Burned	Twice Burned	Thrice Burned		Í.
Gamma	1.065E-02	1.216E-02	9.169E-03	1.197E-02	5	
Beta	8.782E-02	1.023E-01	8.024E-02	9.788E-02	30	
Thyroid (ICRP-30)	4.8966+00	5.195E+00	4.054E+00	5.439E+00	30	Ĺ
TEDE	1.648E-01	2.592E-01	2.203E-01	1.832E-01	5	É
1.			and the second second second second second second second second second second second second second second second	ジョート 特別会社 ないがたい		Ι.

Containment FHA with 12.7 sec containment isolation, containment open to AB, No Purge Filters, with ABGTS

	Standard	TPC	TPC	TPC	limit
	Core	Once Burned	Twice Burned	Thrice Burned	
Gamma	5.042E-01	5.760E-01	4.342E-01	5.666E-01	5
Beta	4.156E+00	4.845E+00	3.800E+00	4.633E+00	30
Thyroid (ICRP-30)	6.436E+00	6.829E+00	5.329E+00	7.150E+00	30
TEDE	7.472E-01	4.818E+00	4.619E+00	8.368E-01	5
		a de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	요즘 가슴 집에 가슴 가슴을 걸었는 것 같아. 것이 같아.	
ontainment FHA with Purge Filters (no cont	ainment isolation)				
ontainment FHA with Purge Filters (no cont	ainment isolation) Standard	TPC	TPC	TPC	limit
containment FIIA with Purge Filters (no cont		TPC Once Burned	TPC Twice Burned	TPC Thrice Burned	limit
containment FHA with Purge Filters (no cont Gamma	Standard			이 이 방송되고 말하지 않는다.	limit 5
	Standard Core	Once Burned	Twice Burned	Thrice Burned	
Gamma	Standard Core 2.677E-01	Once Burned 3.058E-01	Twice Burned 2.305E-01	Thrice Burned	5

Note that the shine through the control room walls, ceiling and floor constitute < 1E7 rem and is therefore negligible.



Calculation	No. WBNTSR-009		Rev: 11	Plant: WBN	Page: 18
Subject:	Control Room Operator and C	Offsite Doses From	a Fuel Pre	epared: MUS	Date: 5-3-06
	Handling Accident	<ul> <li>We shall a set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of th</li></ul>	Ch	ecked: All	Date: 5/3/06
Regulatory Guide	e 1.183 Alternate Source Term (AST)	· · ·	2 mile 112	,	
			•		

imit

Auxiliary Building FH	LA with A	BI (ABGTŠ)	
		Standard	

	<b>.</b> .	Standard	TPC	TPC	TPC	limit
	n eu Lite	Core	Once Burned	Twice Burned	Thrice Burned	. دور  محرب ال
	Gamma	2.543E-01	2.907E-01	2.190E-01	2.857E-01	5
, i ^è	Beta	2.029E+00	2.295E+00	1.768E+00	2.267E+00	30
	Thyroid (ICRP-30)	5.305E-02	5.629E-02	4.393E-02	5.894E-02	30
÷	TEDE	2.761E-01	7.684E-01	6.911E-01	3.101E-01	5
					-	

# Auxiliary Building FIA with no ABI (Exhaust Through Auxiliary Building Vent)

an an an an an an an an an an an an an a		Standard	TPC	TPC	TPC
· · · ·		Core	Once Burned	Twice Burned	Thrice Burned
,	Gamma	5.723E-01	6.543E-01	4.930E-01	6.431E-01
	Beta	4.566E+00	5.153E+00	3.966E+00	5.101E+00
Thy	roid (ICRP-30)	1.194E+01	1.266E+01	9.884E+00	1.326E+01
·* .	TEDE	9.632E-01	1.881E+00	1.628E+00	1.078E+00



Calculation	No. WBNTSR-009	, ,		Rev	/: 11	Plant: WB	N Pag	e: 19
Subject:	Control Room Operate	or and Offs	ite Doses F	From a Fuel	Prep	ared: MUB	Date:	5-3-06
4.	Handling Accident			· . · .	Che	cked: \M		513106
	······			· · ·				1.4.8 1.4.8
The offsite d	oses were determined t	be (rem):						
Regulatory (						-		· · ].
			e		· ·			
ent Fuel Pit/Auxil	iary Building FHA, AB open or c	losed to contail	nment		· *			
	Standard	TPC 1	ne in the second second second second second second second second second second second second second second se	TPC2		TPC3		
-	2-hr EAB 30-day LPZ	2-hr EAB	30-day LPZ	2-hr EAB	30-day LPZ	2-hr EAB	30-day LPZ	limit
imma	3.994E-01 9.278E-02	4,554E-01	1.058E-01	3.435E-01	7.980E-02		1.041E-01	6.25
ta	1.177E+00 2.734E-01	1.371E+00	3.185E-01	1.074E+00	2.495E-01		3.047E-01	75
yroid (ICRP-30)	1.577E+00 3.663E-01	1.674E+00	3.888E-01	1.306E+00	3.033E-01		4.070E-01	75
DE	2.572E-01 5.974E-02	1.384E+00	3.216E-01	1.316E+00	3.056E-01		6.688E-02	
· · · ·			2 N -			e vight a		
n an trainin Tao tao amin'ny fisiana			an tha an tha				- s	
ntainment FHA w	with 12.7 sec containment isolati	on, containmen	t closed to AB,	no Purge Filter	5		still an an the	
	Standard	TPC 1		TPC2		TPC3		
	2-hr EAB 30-day LPZ	2-hr EAB	30-day LPZ	2-hr EAB	30-day LPZ	2-hr EAB	30-day LPZ	limit
imma .	4.322E-03 1.004E-03	4.896E-03	1.137E-03	3.704E-03	8.604E-04	4.845E-03	1.126E-03	6.25
ta	1.167E-02 2.711E-03	1.357E-02	3.153E-03	1.063E-02	2.470E-03	<ul> <li>A state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the sta</li></ul>	3.022E-03	75
yroid (ICRP-30)	1.536E+00 3.567E-01	1.630E+00	3.786E-01	1.272E+00	2.954E-01	1.706E+00	3.963E-01	75
DE	6.282E-02 1.459E-02	7.752E-02	.1.801E-02	6.276E-02	1.458E-02	6.979F-02	1.621E-02	6.25
				al a stragal h. Salah	n gan in a			
· .			:			(영상) 이상 (1999) 		
ntainment FHA w	vith 12.7 sec containment isolati	on, containmen	t open to AB, N	o Purge Filters	with ABGTS	-		
	Standard	TPC 1	•••	TPC2		TPC3		
	2-hr EAB 30-day LPZ	2-hr EAB	30-day LPZ	2-hr EAB	30-day LPZ	2-hr EAB	30-day LPZ	limit
mma	4.037E-01 9.378E-02	4.603E-01		3.472E-01	8.066E-02	1	1.052E-01	6.25
ta	1.189E+00 2.761E-01	1.385E+00	3.217E-01	1.085E+00	2.520E-01	1:325E+00	3.077E-01	75
yroid (ICRP-30)	3.113E+00 7.230E-01	3.304E+00	7.674E-01	2.578E+00	5.987E-01	3.458E+00	8.033E-01	75
DE	3.200E-01 7.433E-02	1.462E+00	3.396E-01	1.378E+00	3.202E-01	3.577E-01	8.309E-02	6.25
a da serie de la companya de la companya de la companya de la companya de la companya de la companya de la comp		n an thairte. An thairte			· · · · ·			
						· 2		
ntainment FHA w	vith Purge Filters				•			
	Standard	TPC 1	· ·	TPC2	• •.	TPC3		
	2-hr EAB 30-day LPZ		30-day LPZ	2-hr EAB	30-day LPZ	2-hr EAB	30-day LPZ	limit
imma 📜 .	4.102E-01 9.529E-02	4.669E-01	1.085E-01	3.525E-01	8.188E-02	4.602E-01	1.069E-01	6.25
ta	1.182E+00 2.746E-01	1.377E+00	3.198E-01	1.079E+00	2.505E-01	1.318E+00	3.061E-01	75
yroid (ICRP-30)	3.942E+01 9.158E+00	4.185E+01	9.722E+00	3.266E+01	7.586E+00	4.382E+01	1.018E+01	75
DE	1.759E+00 4.085E-01	2.979E+00	6.921E-01	2.559E+00	5.945E-01	1.956E+00	4.545E-01	6.25

÷.,

TVA

Calculation	No. WB	NTSR-009			Rev	: 11	Plant: WBN	Page	: 20
Subject: 0	Control Ro	om Operato	r and Offs	te Doses F	rom a Fuel	Prep	ared: Mury	Date: 5-	3-06
	Handling	Accident				Che	cked: D(f	Date: 5	13/06
									ин и 1. и
Regulatory G	uide 1.183	Alternate So	ource Term	(AST)		fan sin fi		가 전통 나라	
					4		· · · · ·		
xiliary Building FH/	A with ABI (AB	IGTS)			. * · · ·		· .		
	Standard		TPC 1		TPC2		TPC3	· · ·	. 1
	2-hr EAB	30-day LPZ	2-hr EAB	30-day LPZ	2-hr EAB	· 30-day LPZ	Z 2-hr EAB	30-day LPZ	limit
imma	3.938E-01	9.147E-02	4.495E-01	1.044E-01	3.389E-01	7.871E-02	4.420E-01	1.027E-01	6.25
la	1.128E+00	2.620E-01	1.266E+00	2.953E-01	9.716E-01	2.271E-01	1.260E+00	2.927E-01	75
yroid (ICRP-30)	5.241E-01	1.217E-01	5.560E-01	1.292E-01	4.339E-01	1.008E-01	5.822E-01	1.352E-01	75
DE	2.136E-01	4.962E-02	3.107E-01	9.478E-02	2.516E-01	8.107E-02	2.395E-01	5.562E-02	6,25
					1		, i i i i i i i i i i i i i i i i i i i		
ies 4									1
xiliary Building FH/	A with no ABI	· · ·			Are and				. j. <b>j</b> .
. s.	Standard		TPC 1		TPC2	· . · ·	ТРСЗ		the second second second second second second second second second second second second second second second se
•	2-hr EAB	30-day LPZ	2-hr EAB	30-day LPZ	2-hr EAB	30-day LP2	Z 2-hr EAB	30-day LPZ	limit
mma	4.082E-01	9.481E-02	4.648É-01	1.080E-01	3.508E-01	8.148E-02	4.579E-01	1.064E-01	6.25
а	1.135E+00	2.636E-01	1.273E+00	2.971E-01	9.773E-01	2.284E-01	1:268E+00	2.945E-01	75
yroid (ICRP-30)	5.241E+01	1.217E+01	5.560E+01	1.292E+01	4.339E+01	1.008E+01	5.822E+01	1.352E+01	75
DE S	2.267E+00	5.266E-01	2.490E+00	6.010E-01	1.952E+00	4.760E-01	2.520E+00	5.854E-01	6.25
								an an the	
gen i e statuet							an an an an an an an an an an an an an a		
	· · ·				2 	전화 승규는			
- · · ·	•								
, , , , , , , , , , , , , , , , , , ,									
۰.								en la	
			· · · ·		:		;	en en en en en en en en en en en en en e	
						¢.			

# IVA

Calculation No. WBNTSR-009 Rev: 11	Plant: WBN, Page: 21	
Subject: Control Room Operator and Offsite Doses From a Fuel	Prepared: MUS Date: 5-3-06	2 10 1
Handling Accident	Checked: Dff Date: 5/3/64	15 •

#### Conclusions

The control room operator doses resulting from a Fuel Handling Accident are less than the 10CFR50, Appendix A, GDC 19 limits of 5 rem gamma, 30 rem beta, 30 rem thyroid, and less than the 10CFR50.67 limit of 5 rem TEDE.

The 2 hour Site Boundary (SB)/Exclusion Area Boundary and 30 day Low Population Zone (LPZ) doses from a FHA are less than 25% of the 10CFR100 limits of 25 rem gamma, 300 rem beta, and 300 rem thyroid (=6.25 rem gamma, 75 rem beta, 75 rem thyroid, 6.25 rem TEDE). 10CFR50.67 provides the TEDE equivalence to the gamma limits.

It should be noted that the instrument loop response time is very conservative. For example the sample low flow alarm is at 4 cfm with a very conservative accuracy of  $\pm 2$  cfm, which was based on engineering judgment. This accounts for 5.5 seconds and could be lowered by approximately 1-2 seconds. Also the Response of the Beta Scintillator, Photomultiplier tube, and the pre-amplifier have been rounded up from nanoseconds to seconds. This accounts for 0.7 seconds and could be neglected.

#### Note on methodologies used:

This calculation determined the doses using different methodologies. The gamma, beta and Thyroid (ICRP-30) doses are all based on TID-14844 methodologies utilizing the ICRP-30 iodine dose conversion factors. The other methodology used is the TEDE (Total Effective Dose Equivalent). The TEDE presents an overall weighted dose and is more representative of the impact of all isotopes on the body as a whole. The TEDE dose is required for AST, however is not required for RG 1.25 methodology. It is important to note that tritium does not impact the thyroid doses utilizing the TID-14844 methodology, because only iodine is applied to the thyroid dose. However, in fact tritium does contribute to the thyroid dose, as well as other organs of the body. This is why the TEDE is a more representative dose when discussing the impact of tritium.

TVA
-----

<u>6</u>44

	n No. WBNTS	K-009	Rev: 1		Plant: WBN		age: 22
Subject:	Control Room C	perator and Offsite Doses I	From a Fuel	Pre	pared: Mus	Date	: 5-3-01
	Handling Accid	ent		Che	cked: Off	Date	: 5/3/06
		the second second second second second second second second second second second second second second second se	- · · · · · · · · · · · · · · · · · · ·	. :			
References							
. Discrepa	ncy Report No. 274,	R0, 10/14/88	and the second				
2. 1-RE-90-1	130 R11, "Demonstra	ated Accuracy Calculation for C	ontainment Build	ling P	urge Air Exhaus	st Mon	tors"
		n, Testing And Maintenance C					
Atmosphere	<b>Cleanup System Air</b>	Filtration And Adsorption Uni	its Of Light-Wate	r-Cool	ed Nuclear Pow	er Plai	nts,"
	March 1978.				a the second second second second second second second second second second second second second second second		
		as Used For Evaluating The Pot				Fuel F	Iandling
		nd Storage Facility For Boiling					· ,
		trol Room Personnel Due to a H	Regulatory Guide	1.4 LC	oss of Coolant A	ccident	, , ,
	r Code STP R6, Code	6, Code I.D. 262347					
		R4, Code I.D. 262358		•			
	ncy Report No.209, 1				i i		
		66-4 R20 (note: the latest revisi	on is at R36. but	the va	lue is from 20).	2	a sa sa sa sa sa sa sa sa sa sa sa sa sa
		sification of Heating, Ventilati					
	ER 01-000080-000		n <b>e</b> volga godina o serviça Ne	1 (E).			کی اور ایرانی میلید. ایرانی ایرانی
		ated Accuracy Calculation For I	Main Control Roo	m Air	Intake Radiatio	n Mon	tor 0-RE-
		Intake Radiation Monitor 0-RE		197	같은 이 특별하는 가방에 가지 있는 것. 2017년 - 11월 11일 - 11일 - 11일 - 11일 - 11일 - 11일 - 11일 - 11일 - 11일 - 11일 - 11일 - 11일 - 11일 - 11일 - 11일 - 11일 - 11일 2017년 - 11일 - 11일 - 11일 - 11일 - 11일 - 11일 - 11일 - 11일 - 11일 - 11일 - 11일 - 11일 - 11일 - 11일 - 11일 - 11일 - 11일 - 1		
4. WBNAP	S3-084 R0 "Source 1	erms For 1500 EFPD Burnup"		•			· · · ,
15. Code of	Federal Regulations	, Title 10, Chapters 50 and 100		4 14 			· · · ·
		001 R4 "Fuel Handling and Sto					
		B-4002 R4 "Auxiliary Building -	Heating, Ventile	ition a	nd Air Conditio	ning Sy	/stem"
		cations Bases Section 3.9.4	·				
		ses Due to a Regulatory Guide	1.4 Loss of Coolar	nt Acci	dent"		
20. WBPERS				. : 	ie ima i smalla	, ,	· ·
		ion Damper Leakage Rate for t	he Aux Bldg Sup	oly and	i <u>Exh</u> aust Fans	•	
12. DCN M		· · · · · · · · · · · · · · · · · · ·			이 없는 것이 없는 것이 없다.	ú,	No. of the
23. WBPERS		nd Control Room Dose Due to a	TUA mith 15 Mi	unesta Maria Maria	Infiltened Date		i Vaniana
Tow Rates"			LIIV MIUI IO MI	IIuves	Cumicated Ivere	ase am	I VALIOUS
	CR-5009 "Assessme	nt of the Use of Extended Burn	up Fuel in Light	Water	Power Reactors	" Feb	1988
		chnology Program - Unclassifie					
		ool Cooling and Cleaning Syste					
28a. Memora	andum from James S	5. Chardos to Cheryl K. Thornh	ill, TVATP-00-06	8, Oct	ober 23, 2000 "V	erifica	tion of
Design Inpu	ts for Calculations of	f Breached TPBAR Leaching in	the Spent Fuel F	'oo]" —	Att. 5		· · · ·
		K. Thornhill to James S. Chard				Verific	ation of
		f Breached TPBAR Leaching in		'ool" —	Att. 6		5 A
		erms for WBN Tritium Product				· ·	
		rborne Concentration in Prima	ry Containment,	Turbir	ie Building, Aux	iliary ]	Building,
	ent Room During No				공관 가격을 다		ll an ∂
		Time, Range, and Accuracy for	r the Spent Fuel	Pool R	adiation Monito	rs (TSI	(PRM)" -
		r comparative purposes					en (Marin Arma) n community (Marin n community (Marin
B1b. DCN W		wit For the Creat Fiel Deal Dr	Binking Mensional	, . 	المراجعة (1997). 1993 - مراجع المراجع (1997).		
omparative		mit For the Spent Fuel Pool Ra	diation Monitors	- not	used as design i	input, d	only for
	wing 1-47W866-10 F	900					
		f Isotopes" 7th edition			2		1 N.
	53-104 R0 "WBN Con				* .	•	· · · · ·
		stance Factors For Power and '	Test Reactor Site	"	. 1 y		
		Alternative Radiological Source			Design Basis Ad	cident	s At
Nuclear Pow							· · · · · · · · · · · · · · · · · · ·
		Design, Inspection, and Testing	criteria for Air	Filtrat	tion and Adsorp	tion Ui	nits of
		stems in Light-water-cooled Nu			· · · · · · · · · · · · · · · · · · ·		
	in Marian Indiana	The second second second second second second second second second second second second second second second s	e e e e				
		and the second second second second second second second second second second second second second second second	6. 1	nge Fort Fort A			
	the second second						
		•					•
	-						

•

F	

Calculation	No. WBNTSR-009		Rev: 1	1	Plant	WBN	Pa	ge: 23	
Subject:	Control Room Operator and	Offsite Doses From a	Fuel	Prep	ared:	may	Date:	5-3-06	,
	Handling Accident		· · · · ·	Che	cked:	DPP	Date:	5/3/06	
		Attachment 1	÷						1
•	· · · · · · · · · · · · · · · · · · ·								
				••••••					
	,								
				÷					
				. ,					
	TRITIUM TEC	HNOLOGY PRO	GRAN	Л					
									1.
					n de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la comp				ł
			ان المتحصر ال						
		ED TPBAR REL		•	· •		•••		1
	INCLU	DING TRITIUM							
				· · · .					
	. ·			* :				i i Ja	
			• .						
							e - 1		
	n	PTOD 1 001	• •						
		FTQP-1-091							
-	,	Revision 10			•				
-									
	· · ·		· •						
- 1 - A			a teoria d	2	-	- -			
	Effec	tive Date:			i.				
			a Ala ana ang	·				· · · · · · ·	
				n de la constante La constante de la  al c					
				4 				tan atan ar Arrangi tertakan Arrangi tertakan	Į.,
	and the second second second second second second second second second second second second second second secon								

. Taob

۱. ۱

.

Calculation No. WBNTSR-009	Rev: 11	Plant	WBN	Pag	je: 24
Subject: Control Room Operator and Offsite Doses From a		Prepared:	mon	Date:	5-3-06
Handling Accident		Checked:	DPP	Date:	5/3/06

TTQP-1-091

# TRITIUM TECHNOLOGY PROGRAM

# UNCLASSIFIED TPBAR RELEASES, **INCLUDING TRITIUM**

**Revision** 10

Prepared By:

DO Lanning, Author

**Reviewed By:** 

<u>*E.*</u> E.R. G dependent Reviewer

Concurrence:

athorized Derivative Classifier

mo T.M. Brewer, Quality Engineer

GORei

B.D. Reid, Design Task Manager

Approval:

CK. Thornhill, TTP Project Manager

16/06 Date

2/16/06 Date

24/08 Date

3/17/06 Date

23/06 Date

3/24/06 Date

	ï		1	I		
10 - 10 A		·	U	ł		с. Э
20		- 15	- 1	•	1	

Calculation No. WBNTSR-009	Rev: 11 Plant: WBN Page: 25
Subject: Control Room Operator and Offsite Doses From a	Fuel Prepared: Muy Date: 5-306
Handling Accident	Checked: 011 Date: 5/3/06

#### Tritium Technology Program Unclassified TPBAR Releases, Including Tritium TTQP-1-091 Revision 10 Page 1 of 8

#### 1.0 INTRODUCTION

This document provides a complete listing of all unclassified tritum release values that should be assumed for unclassified analysis. Much of the information is brought forth from the related documents listed in Section 4.0 to provide a single-source listing of unclassified release values. Some information, however, is new or updated based on current design analysis and available experimental data.

This document provides unclassified information for a larger number of release scenarios than previously analyzed. This information is summarized in Tables 1, 2, and 3. In addition, a section is included to address lithium and aluminum release in the event of a 24-TPBAR breach in the spent fuel pool.

#### 2.0 SUMMARY OF UNCLASSIFIED RELEASES, INCLUDING TRITIUM

All tritium-producing burnable absorber rod (TPBAR) analysis assumes a maximum of 1.2 grams of tritium per TPBAR will be generated during an 18-month operating cycle.

2.1 Intact TPBAR In-reactor Tritium Permeation

The in-reactor tritium permeation rate deduced from RCS tritium activity for the group of 240 TPBARs in Watts Bar Nuclear Cycle, 6 averaged over a year extending to end-of-cycle, was  $2.4 \pm 1.8$  Ci/TPBAR/year (95% confidence interval) (Lanning and Pagh; 2005). The 95% upper bound of 2.4 + 1.8 = 4.2 Ci/TPBAR/year is recommended as the basis for assessing the tritium release from intact TPBARs.

2.2 In-reactor Tritium Release from a Failed TPBAR

The first scenario involves a TPBAR that may have a fabrication defect or may be damaged prior to insertion into the reactor for irradiation. In this case, 100 percent of the tritium generated in the TPBAR is assumed to be released to the reactor coolant as it is generated.

- 2.3 TPBAR Releases from Spent Fuel Pool Accidents.
  - 2.3.1 Spent Fuel Pool Tritium Concentration Limit

It has been determined that following the simultaneous breach of 24 TPBARs, the Tennessee Valley Authority take-action limit for tritum concentration in the spent fuel pool water will not be exceeded. The concentration limit is 60 microcuries per milliliter. The best estimate of total tritum release in this event is less than 25% of the TPBAR inventory. <del>The best estimate tritum release is less than 25% of the TPBAR inventory.</del> The release will not be instantaneous, but will occur at a steady rate over a time period substantially greater than 8 hours. The rate will thus be less than 3% (of initial inventory) per hour. T/A

Calculation	n No. WBNTSR-009		Rev:	11	Plant: WBN	Page: 26
Subject:	<b>Control Room Operator and</b>	Offsite Doses From a	Fuel	Pre	epared: pcns	Date: 5-3-06
	Handling Accident		· · ·	Ch	ecked: )//	Date: 5/3/06

#### Tritium Technology Program Unclassified TPBAR Releases, Including Tritium Revision 10

Page 2 of 8

2.3.2 Instantaneous Tritium Release per TPBAR

In particular, the instantaneous release of tritium from breached TPBARs in the spent fuel pool (as gas within the released gas from the TPBARs) will not exceed 0.001 Ci/TPBAR.

2.3.3 Lithium and Aluminum Release

In the event of a 24-TPBAR breach in the spent fuel, the following concentration limits for lithium and aluminum will not be exceeded:

400 ppb lithium

50 ppb aluminum.

2.4

TTOP-1-091

Tritium Releases from TPBARs within Storage Canisters (<200°F)

The upper-bounding tritium partial pressure within storage canisters containing lead test assembly (LTA) TPBARs and sections is not expected to exceed 20 torr under nominal storage conditions (~86°F). The quoted bounding pressure for maximum temperatures (<200°F) is estimated by increasing this figure by the ratio of Kelvin temperatures, to 25 tor

Tritium release from extracted TPBARs in storage will not exceed 1% of the declared post-extraction residual tritium (Clemmer et al. 1984; and Johnson et al. 1976).

In both cases, the form of the released tritium will be tritiated water vapor or condensate (HTO).

2.5 TPBAR Transportation Cask Event Releases

2.5.1 Intact TPBARs

2.5.1.1 For TPBAR temperatures ranging from ambient to less than 200°F, and for casks containing 1,200 or less TPBARs, the tritium release from the entire cask loading would be less than 0.19 mCi per hour, based on extrapolation from an in-reactor upper bound observed permeation rate of 4.2 Ci/TPBAR/year. The tritium would be released from the TPBARs in the form of molecular tritium gas (i.e., T₂ or HT).

1-091 Rev10draft dooR10WGTTQP-1-091.d

TVA

Calculation No. WBNTSR-009		1	Plant: WBN	Page: 27	
Subject: Control Room Operator and Offsite Doses From a Fuel		Prep	ared: muny	Date: 5-3-06	
Handling Accident		Che	cked: <u>)</u> //	Date: 5/3/06	

		Fritium Technology Program		
		d TPBAR Releases, Including Tritium		
TTOP-1-091		Revision 10	Page 3 of 8	
			<b></b>	
	2.5.1.2	For TPBAR temperatures ranging from 2 average tritium release would be less that TPBAR per hour based on the upper-bou	n 0.48 mCi per	
		rate of 4.2 Ci/TPBAR/year. The tritium v from the TPBARs in the form of tritium y		
	2.5.1.3	For TPBAR temperatures ranging from 6		
	an An An An An	(565°C), the tritium release should be cor		
a a chuir an ann an Aonaichtean an An Aonaichtean an Aonai		instantaneous release of less than 0.5 Ci I Again, the tritium would be released from		
		form of tritium gas.		
·		The potential for TPBAR rupture was ass	essed at 1050°F	۰.
		because this is one of the temperature bre Modal Study matrix cited earlier (Laity 1		· · ·
	·	determined that the TPBARs are unlikely		
		temperatures less than 1050°F, but may n	upture at higher	
		temperatures.		r
· ·	2.5.1.4	Helium release from intact TPBARs is ne	gligible.	
2.5.2	Event-fai	led TPBARs		
	2.5.2.1			
		tritium release from a TPBAR whose class mechanically (e.g., due to impact forces)		· · ·
	- -	should be considered to be less than 0.1 C	Ci per TPBAR per	
	•	hour, not to exceed 1% of the tritium inve		
· · ·		aluminate pellets. The release should be the form of tritiated water and a very sma		
		methane.		-
· · ·		T TRAIL & D	0000	
	2.5.2.2	For TPBAR temperatures ranging from 2 the tritium release from a TPBAR whose		
		mechanically (e.g., due to impact forces)		
		should be considered to be less than 55 cr		
	, a	desorption release. The release should be	(1) Fig. (1) A start with the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start of the second start	
		the form of tritiated water and a very sma methane.	ll fraction of	ی این وقع ایر ایک اینها ایر که ایر ۱۹۹۵ مور
	2.5.2.3	For TPRAD temperatures renains from 6	509E to 10 509E the	*
	4.3.4.3	For TPBAR temperatures ranging from 6 tritium release should be considered to be		
•		TPBAR tritium inventory, in the form of	<ul> <li>A second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec second second sec</li></ul>	
		methane.		

-091Rev10draft.docR10WCTTQP-1-091.dow



Calculation No. WBNTSR-009		Rev: 11		Plant: WBN	Page: 28	
Subject:	Control Room Operator and Offsite Doses From a	Fuel	Prep	pared: M J	Date: 5-3-06	
	Handling Accident		Che	cked: DPP	Date: 5/3/06	

#### Attachment 2

· TS5 001023_938

October 23, 2000

TVATP-00-068

MS. Cheryl K. Thornhill TTOP Project Manager Pacific Northwest National Laboratory P. 0. Box 999 Richland, WA 99352

SUBJECT: VERIFICATION OF DESIGN INPUTS FOR CALCULATIONS OF BREACHED TPRAR LEACHING IN THE SPENT FUEL POOL

REF: C. K. Thornhill to J. S. Chardos letter dated September 19, 2000, same subject

Dear Cheryl:

TVA has reviewed the design assumptions in the referenced letter and finds them to be correct except for assumption number 2. The value for tritium should be 60 uc/ml not 60 mc/ml. If you have any questions, please call.

Sincerely

pames S. Chardos Tratium Program Manager

JSC/LDR cc: F. A. Koontz, EQB 1A-WBN D. M. LaFever, OPS 2B-SQN J. A. Flanigan, BR 3F-C EDMS WT 3B-K

194-62-2981 68:32 2663 F. 63-694

Subject: Control Room Operator and Offsite Doses From a Fuel Prepared: Acc Date: C.2-c6 Handling Accident Provide Control Room Operator and Offsite Doses From a Fuel Checked: 01 Date: C.2-c6 Checked: 01 Date: C.11/2e achment 3 Pacific Northwest National Laboratory Discourse of Sector Advisor 11, 200 TTOP-0-17 Me. Ione 5 Chantes Project Manage Advisor 17, 200 September 19, 200 TTOP-0-17 Me. Ione 5 Chantes Project Manage Advisor 17, 200 September 19, 200 TTOP-0-17 Me. Ione 5 Chantes Project Manage Advisor 17, 200 Date 5, 17 Me. Ione 5 Chantes Project Manage Advisor 17, 200 Date 5, 17 Me. Ione 5 Chantes Project Manage Advisor 17, 200 Date 5, 17 Me. Ione 5 Chantes Project Manage Advisor 17, 200 Date 5, 17 Me. Ione 5, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 10 Me. Ione 10, 1	Calculatio	n No. WBNTSR-00		Rev:	11 Plar	nt: WBN	Pag	e: 29
Handling Accident     Checked: 0/2     Date: 5/1/02       achment 3     Po's 10:01     Pacific Northwest National Laboratory Outs Userstory     Potential Pachatory       September 19, 200     TTQP-00-179       Mr. James 7, Charles, Project Manager ADM: 1994 2010     TTQP-00-179       Mr. James 7, Charles, Project Manager ADM: 1994 2010     BD Bad CC Science CC Science Reserve Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Value Automatic Science Automatic Science Value Automatic Science Value Automatic Science Automatic Science Automatic Scie		·		s From a Fuel	Prepared	: Mus	Date:	5-3-06
<page-header><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></page-header>	•,	•					·····	
<page-header>      Partice Northwest National Laboratory       Partice Northwest National National Northwest National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National National</page-header>					· · · · · · · · · · · · · · · · · · ·			
<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>	chment 3							}
<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>				· · · · · · · · · · · · · · · · · · ·	4	•	1	
<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>								•
<section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><section-header><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header></section-header>								
Processing         September 19, 2001         Mr. Jammes 5, Chardos, Paripote Manager ADM-JU-VERNI Teamesers Valley Authoning Wanning Teamesers Valley Authoning Teamesers Team Authoning Team Authoning Wanning Teamesers Valley Authoning Teamesers Teamesers Valley Authoning Teamesers Teamesers Valley Authoning Teamesers Teamesers Valley Authoning Team Authoning Teamesers Teamesers Valley Authoning Team Authoning Teamesers Teamesers Valley Authoning Team Authoning Teamesers Teamesers Valley Authoning Team Authoning Teamesers Teamesers Valley Authoning Team Authoning Teamesers Teamesers Valley Authoning Team Authoning Teamesers Teamesers Valley Authoning Team Authoning Teamesers Teamesers Valley Authoning Teamesers Teamesers Valley Authoning Teamesers Teamesers Valley Authoning Teamesers Teamesers Valley Authoning Teamesers Teamesers Valley Authoning Teamesers Teamesers Valley Authoning Teamesers Teamesers Valley Authoning Teamesers Teamesers Valley Authoning Teamesers Teamesers Valley Authoning Teamesers Teamesers Valley Authoning Teamesers Teamesers Valley Authoning Teamesers Teamesers Valley Authoning Teamesers Teamesers Valley Authoning Teamesers Teamesers Valley Authoning Teamesers Teamesers Valley Authoning Teamesers Teamesers Teamesers Teamesers Valley Authoning Teamesers Teamesers Teamesers Valley Teamesers	PØ.	. TOTAL P.			· · <u> </u>	ب مست		
September 19, 200       TTQP-00.173         Mic. Sensers 5, Chardons, Project Manager ADM-VP-Warn Transersco Vallery Authority Warns Bar Meelary Think Spring (Try, 1973)       for DD Leading DD Reids DD Reid	-		1. B.					
September 19, 200       TTQP-00.173         Mar. Jammes 5, Chardos, Project Manager ADM-JV-WBN Transacco VLBP Authority Wann Bar Nackar Than Spring CTP, 19 77381       DD Loids DD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong BD Dodd DD Canthong DD Canthong DD Canthong BD Canthong BD Canthong DD Can			Desta		- ·		· .	
Control by Bandwide to observe         September 19, 2000         Med. Rumes 9, Charded, Project Manager ADM-UN-WBN Wann Banc Noder Than Bandwider T			National Labor		· · · · · · · · · · · · · · · · · · ·			
<page-header><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></page-header>			Operated by Banetie fo	dlDFV The		· •		
Md. James S. Chardos, Project Manager ADM_IV-WWN Tennessee Valloy Authority Wars Bit McLear Film Spring City, TN 37381 Dear MS. Chardos HERECATION OF DESIGN DNFUTS FOR CALCULATIONS OF BREACHED TPBAR LEACHEDS DR. Market S. Chardos MR. Bernessee MR. Bernessee MR. Chardos MR. Chardo		Contraction to a second		e (17)		e e K		۳. ۲. ۲. ۲. ۲. ۲. ۲.
Tamesees Willow Authority       Dot Roll         Spanks (T) Normal       BD Roll         Banks (T) Normal       Bonks (T) Normal         Banks (T) Normal       Banks (T) Normal         Banks (T) Normal<		Depictaloci 19, 2000			TTQF-00-175		ak a	
Tamesee:       Values Authority         Wang Bart Nacian That       BD Raid         Burg Grin       Barting Grin         Dear No. Chandon:       BD Raid         WHINT CATION OF DESIGN INPUTS FOR CALCULATIONS OF BREACTING TFBAR LEACHING       Boother Total States         WHINT CATION OF DESIGN INPUTS FOR CALCULATIONS OF BREACTING TFBAR LEACHING       Boother Total States serves to document to giant specified design assungtions proposed for use in calculating the transmission of Transmission of Transmission and transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Transmission of Tran	•	Mr. James S. Chardos, Proje	xt Manager					
Spring City, Tr. 37381 Desr Mr. Chardon: MRENTECATION OF DESIGN INPUTS FOR CALCULATIONS OF BREACHED TYBAR LEACHING MRENTECATION OF DESIGN INPUTS FOR CALCULATIONS OF BREACHED TYBAR LEACHING This hear revers to document the plant specific design termingtions proported for use in calculating the ten data terms to the counter the plant specific design termingtions proported for use in calculating the term data terms to document the plant specific design termingtions proported for use in calculating the term data terms to document the plant specific design termingtions proported for use in calculating the term data terms to document the plant specific design termingtions proported for use in calculating term data terms to document the plant specific design termingtions to the school of the labored term data terms to document the plant specific design termingtions to the school of the following design assumptions for application as both Wath Bar and Segmental Noblem Plants. The terms of a specific design assumptions include: 1 The simultaneous breaching of 24 TERASE. 1 The spece field pool water volume would benefit the subjus. 1 For appent field pool water volume would benefit the subjus. 1 For above, proposed design assumptions for the spece field water volumes was selected to be constanting. 1 For appent field pool water volume would benefit the subjus. 2 Cherry K. Themhall, Mannger Triuum Targer Qualification Project 1 K. Towner, DOB-HO, Db-251 1 K. Towner, DOB-HO, Db-251 2 K. Targer, DOB-HO, Db-250 2 K. Teraser, DOB-HO, Db-250 2 K. Theorem I. Project Project Plakind. WA, 90262		Tennessee Valley Automine		beo: DD Lunnin	0		and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	
<ul> <li>HEREFICATION OF DESIGN INFUTS FOR CALCULATIONS OF BREACHED TPEAR LEACHING</li> <li>In THE SPERT FUEL POOL</li> <li>This letter serves to document the plant specific design estrumptions proposed for use in calculating the fit of the show quickly transdul attions, if any, say angehod. The purpose of the calculating calculations in the specific design estrumptions the offensional of the calculations of the calculations of the calculations of the calculations of the calculations of the calculations of the calculations of the calculations of the calculations of the calculations of the calculations of the calculations of the calculations of the calculations of the calculations of the calculations of the calculations of the calculations of the calculations of the calculations of the calculations of the calculations of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation of the calculation o</li></ul>	i.	Spring City, TN 37381	and a start of the start of the start of the start of the start of the start of the start of the start of the s the start of the star	GC Soreas	<b>C</b> 21			
This latter serves to document the plant specific design assumptions proposed for use in calculating the design approach is to define how quickly remodel allocations in the specific design assumptions for use in calculating the design assumptions for proposed design assumptions for the location of the location of the balance of the calculating of the second design assumptions for proposed design assumptions include: THE ARA, Temperson Valley Authority (TVA) is requested to confirm the analysishibity of the following design assumptions include: THE arrow of the plant specific design assumptions includes Plants. The proposed design aspunptions include: 1. The asimultaneous breaching of 24 TPEARs. 2. The astern jumit for titizen concentration in the specific field pool water is 60 fmCVmL. 3. The astern field pool water due to a vizit could be assumptions was selected to be constant to a constant of the design assumptions plants. By the aster asy questions, plants contact Bruces Reid on 500-372-4135. Statesrely, M. Charyl K. Thornhill, Manager Tritum Targer Qualification Project Agin 3. O. W. Taylor, DOR-HO, DP-251 J. K. Taran, DOR-HO, DP-251 J. K. Taran, DOR-HO, DP-251 J. K. Taran, DOR-HO, DP-251 J. K. Taran, DOR-HO, DP-251 J. K. Taran, DOR-HO, DP-251 J. K. Taran, DOR-HO, DP-251 J. K. Taran, DOR-HO, DP-251 J. K. Taran, DOR-HO, DP-251 J. K. Taran, DOR-HO, DP-251 J. K. Taran, DOR-HO, DP-251 J. K. Taran, DOR-HO, DP-251 J. K. Taran, DOR-HO, DP-251 J. K. Taran, DOR-HO, DP-251 J. K. Taran, DOR-HO, DP-251 J. K. Taran, DOR-HO, DP-251 J. K. Taran, DOR-HO, DP-251 J. K. Taran, DOR-HO, DP-251 J. K. Taran, DOR-HO, DP-251 J. K. Taran, DOR-HO, DP-251 J. K. Taran, DOR-HO, DP-251 J. K. Taran, DOR-HO, DP-251 J. K. Taran, DOR-HO, DP-251 J. K. Taran, DOR-HO, DP-251 J. K. Taran, DOR-HO, DP-251 J. K. Taran, DOR-HO, DP-251 J. K. Taran, DOR-HO, DP-251 J. K. Taran, DOR-HO, DP-251 J. K. Taran, DOR-HO, DP-251 J. K. Taran, DOR-HO, DP-251 J. K. Taran, DOR-HO, DP-251 J. K. Taran, DOR-HO, DP-251 J. K.		Dear Mr. Charlos:		Raconda T	16.1/File/LD.00-1	<b>15</b>		ه. ۱۹
This letter serves to document the plant specific design assumptions proposed for use in calculating the tracking from breached TPBARs in the specific docides assumptions proposed for use in calculating the tracking calculations of the plant bar of the plant specific docides as a specific docides the consequences of breached docides as assumptions for specific docides the consequences of breached docides as assumptions for specific docides as both Warn Bur and Sequence Nicker Plants. The proposed design assumptions include: 9. The atimulasecone breaching of 24 TPBARs. 9. The atimulasecone breaching of 24 TPBARs. 9. The assumptions breaching of 24 TPBARs. 9. The assumptions for this operations in the specific docides Plants. 9. The assumptions breaching of 24 TPBARs. 9. The assumptions for the specific docide assumptions in the specific docides Plants. 9. The assumptions for the specific docide assumptions in the specific docides of the following docides assumptions in the specific docides assumptions to the specific docides assumptions in the specific docides of the following docides as a specific docide assumptions in the specific docides of the following docides assumptions in the specific docides assumptions in the specific docides assumptions assumptions assumptions in the specific docides assumptions is a specific docide assumptions assumptions assumptions in the specific docide docides assumptions assumptions as a specific docide docides assumptions assumptions as a specific docide docides assumptions assumptions for the specific docide docides docide docides docides assumptions are assumptions for the specific docide docides docide docides docides docide docides docide docides docides docides docide docides docide docides docides docides docide docides docide docides docides docides docides docides docide docides docides docides docides docides docides docides docides docides docides docides docides docides docides docides docides docides docides docides docides docides docides docides docides do		VERIFICATION OF DESIG	N INPUTS FOR CALCULATION					a · · ·
TPRARs. Tempered Valley Automatic (TOA) is are required to address the omasquences of valley design assumptions for applications at both Warn Bar and Sequence in confirm the source plant. The proposed design assumptions include: 1. The simultaneous breaching of 24 TPRARs. 2. The action limit for thinns opacumation in the spent fiel pool water is 60 fmLiml. 3. The spent fuel pool water volume is 372,000 gallons. 4. The above-proposed design assumption for the spent fiel pool water is 60 fmLiml. 3. The action limit for thinns opacumation in the spent fiel pool water is 60 fmLiml. 4. The above-proposed design assumption for the spent fiel water volume was selected to be conservative. Addensiable larger pool weiner would benefit the samphais. If you have any questions, please contact Bruces Reid on 500-372-4135. Sincereby. M. Cheryl K. Thornhill, Mannger Tritum Targer Queiffication Project Ajk C: O. W. Taylor, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR		This letter commended			te et al.			4
TPRARs. Tempered Valley Automatic (TOA) is are required to address the omasquences of valley design assumptions for applications at both Warn Bar and Sequence in confirm the source plant. The proposed design assumptions include: 1. The simultaneous breaching of 24 TPRARs. 2. The action limit for thinns opacumation in the spent fiel pool water is 60 fmLiml. 3. The spent fuel pool water volume is 372,000 gallons. 4. The above-proposed design assumption for the spent fiel pool water is 60 fmLiml. 3. The action limit for thinns opacumation in the spent fiel pool water is 60 fmLiml. 4. The above-proposed design assumption for the spent fiel water volume was selected to be conservative. Addensiable larger pool weiner would benefit the samphais. If you have any questions, please contact Bruces Reid on 500-372-4135. Sincereby. M. Cheryl K. Thornhill, Mannger Tritum Targer Queiffication Project Ajk C: O. W. Taylor, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR-HO, DP-251 J. K. Tonord, DOR		tritium leaching from breacher	TPBARs in the spent fuel pool. T	as proposed for use in ca	culating the			
The proposed design asymptions include: 9. The simultancess breaching of 24 TPBARs. 9. The action limit for thinne concentration in the spent field pool water is 60 fmCk/ml. 9. The spent field pool water volume is 372,000 gallons. 9. The spent field pool water depth is 39 feet. The above-proposed design assumption for the spent field water volume was selected to be conservative. A detendable larger pool volume would benefit the analysis. If you have any questions, please contact Bruces Reid on 500-372-4135. Sincerely. 7. Charyl K. Thornhill, Manager Tritium Target Quadification Project Agik C: O. W. Taylor, DOR HO, DP-251 J. K. Tanner, DOR-HO, DP-251 J. K. Tanner, DP-251 J		TPBARA TANKALA IT	and accord, if any, are required to a	dirent the own over	E calculations if breached			
<ul> <li>1. The simultaneous breaching of 24 TPEARs.</li> <li>2. The action limit for titizen concentration in the spent fael pool water is 60 fmC.itml.</li> <li>3. The spent fiel pool water volume is 372,000 gallons.</li> <li>4. The spent fiel pool water volume is 372,000 gallons.</li> <li>4. The above-proposed design assumption for the spent fiel water volume was selected to be conservative. A defendable larger pool volume would benefit the analysis.</li> <li>If you have any questions, please contact Bruce Reid on 500-372-4135.</li> <li>Sincerely,</li> <li>M. Jonesou</li> <li>Cheryl K. Thornhill, Manager Tribum Tager Qualification Project</li> <li>Apit</li> <li>C: O. W. Tayler, DOB-HO, DP-251</li> <li>J. K. Tanpar, DOB-HO, DP-251</li> </ul>		,		ah Nuclear Plants.	an word and an and an and an and an and an and an an an an an an an an an an an an an			<u>.</u>
<ul> <li>3. The spart fiel pool watter volume is 372,000 gallons.</li> <li>4. The spart fiel pool watter volume is 372,000 gallons.</li> <li>4. The spart fiel pool watter volume is 372,000 gallons.</li> <li>4. The spart fiel pool watter volume is 372,000 gallons.</li> <li>A defendable larger pool volume would benefit the small vis.</li> <li>If you have any questions, please contact Bruce Reid on 308-372-4135.</li> <li>Sincersly.</li> <li>Charyl K. Thomhill, Manager Tritium Tager Questification Project</li> <li>Apik</li> <li>C: O. W. Taylor, DOR-HO, DP-251</li> <li>J. K. Tutner, DOR-HO, DP-251</li> <li>J. K. Tutner, DOR-HO, DP-251</li> <li>J. K. Tutner, DOR-HO, DP-251</li> <li>DO2 Bastelly Bouleward - PO: Dox 998 - Richland. WA 09362</li> </ul>	•	2. The simultaness been					1	2
<ul> <li>A link spend fiel pool water doph is 39 feet.</li> <li>The above-proposed design assumption for the spent fiel water volume was selected to be conservative.</li> <li>A defendable larger pool volume would benefit the analysis.</li> <li>If you have any questions, please contact Bruce Reid on 500-372-4135.</li> <li>Sincerely.</li> <li>M Assesses</li> <li>Cheryl K. Thornhill, Manager Tritium Targer Qualification Project</li> <li>Agit</li> <li>C: O. W. Taylor, DOB-HO, DP-251</li> <li>J. K. Totom, DOB-RL.</li> <li>Yo2 Bastelle Boulerand - P.O. Dex 998 - Eighlind. WA 99362</li> </ul>	,	3. The spent file moi we	the opposite in the spent fuel	pool water is 60 milium			· .	
If you have any questions, please contact Bruce Reid on 500-372-4135. Sincerely, Cheryl K. Thomhill, Manager Tritum Tatget Qualification Project Nik CC: O. W. Taylor, DOR-HO, DP-251 J. K. Tutum, DOR-HO, DP-251 J. K. Tutum, DOR-RL. 902 Battelle Boolerard - PO. Dox 939 - Etchlind. WA 99362		4. I ha spant fiel pool wat	the depth is 39 feet.					
If you have any questions, please contact Bruce Reid on 300-372-4135. Sincerely, Cheryl K. Thornhill, Manager Tritum Targes Qualification Project /bjk CC: O. W. Taylor, DOR-HO, DP-251 J. K. Tunner, DOB-RL. 902 Battelle Beelwood - PO. Der 999 - Richlind. WA 99362		The above proposed design asso A defendable larger pool volume	unption for the spent fiel water woh	ume was selected to be ~		,		
Sincerely, M. Jaconou F. Cheryl K. Thomhill, Manager Tritium Target Qualification Project Apjk CC: O. W. Taylor, DOR-HO, DP-251 J. K. Tutner, DOR-HO, DP-251 J. K. Tutner, DOR-RL 902 Battelle Boulerard - P.O. Der 999 - Richlind, WA 99362					₩₩ ¥20¥2,			· · · ·
<ul> <li>Intura Talget Qualification Project</li> <li>/bjk</li> <li>C: O. W. Taylor, DOR-HO, DP-251</li> <li>J. K. Tonpar, DOR-RI.</li> <li>902 Battelle Boulevard - P.O. Dox 999 - Richland, WA 99952</li> </ul>	, <b>'</b>	Sincerely,	e contact Bruce Reid on 509-372-4;	195.				
<ul> <li>Intura Target Qualification Project</li> <li>/bjk</li> <li>C: O. W. Taylor, DOR-HO, DP-251</li> <li>J. K. Totpar, DOR-RI.</li> <li>\$022 Battelle Boolerard - P.C. Dox 999 - Richland, WA 99362</li> </ul>		Al langer	•					
<ul> <li>Intura Talget Qualification Project</li> <li>/bjk</li> <li>C: O. W. Taylor, DOR-HO, DP-251</li> <li>J. K. Tonpar, DOR-RI.</li> <li>902 Battelle Boulevard - P.O. Dox 999 - Richland, WA 99952</li> </ul>	fr	Cheryl K. Thornhill, Manager				· · · ·	t	· ·
CC: O. W. Taylor, DOR-HO. DP-251 J. K. Totnar, DOR-RL. 202 Bettelle Boulevard - P.O. Dox 999 - Richland, WA 09352	Ú .	Intuin Target Qualification Proj	icct					
A. Johnar, DOE-RL. 202 Bastelle Boulwrad - P.C. Box 998 - Fichland, WA . 99862	•							
902 Bettelle Boulevard - P.O. Box 999 - Richland, WA 09352	· · ·	CC: O. W. Taylor, DOR-HO. J. K. Tunner, DOB-RI.	DP-251				<b>₽</b>	
			Boulerard - PO n- orn - n.					
Telephone 509-375-2532 ■ Email cheryl thom hill@pollov ■ Fax 509.575-2610 PO.PO.J 6982 535 52P NEM KAL S2:88 1002-20-NMC							an Hing Dirig N	
New AUT	•••••	Telephone 509-375-25	12 Email cheryl thornhill@onl	207 Fat 100.875 24				an an an an an an an an an an an an an a
	PU/1	452 322 3040 D D	NEM HOL	8.8	1007-03-5001			
							<b>#</b>	•.

.

Attachment 7

# **TVA Nuclear Power Group Calculation**

## WBNTSR-080 R6

## Control Room Operator and Offsite Doses Due to a Loss of AC Power

## NPG CALCULATION COVERSHEET/CCRIS UPDATE

											Page _1	
REV 0 EDMS/RIMS NO. EDMS TYPE: EDMS ACCESSION NO (N/A for REV. 0)												
020 910020	B28 910828 201 calculations(nuclear) T93100219004											
Calc Title: Control Ro	Calc Title: Control Room Operator and Offsite Doses Due to a Loss of AC Power											
CALC ID	IYPE	ORG	PLANI	BR	ANCH	<i>.</i>	NU	MBER		<u>CUR REV</u>	NEW REV	
CURRENT	CN	NUC	WBN	N						APPLICABILITY		
NEW	CN	NUC										Entire calc 🛛 Selected pages 🔲
	ew Evision		DELETE RENAME		SUPER				UPDATE ON r Approval Sig ed)		(I D	to CCRIS Changes For calc revision, CCRIS een reviewed and no CCRIS changes required)
UNITS 1/2	SYST NA	EMS					UNIDS NA					· · · · · · · · · · · · · · · · · · ·
DCN.EDC.N/A EDGR 54956			APPLICABLI	e des	IGN DO							CLASSIFICATION
QUALITY RELATED?	REL	SAFETY ATED? (			RIFIED PTION				UREMENTS CONDITION		N OUTPUT	SAR/TS and/or ISFSI SAR/CoC AFFECTED
Yes 🛛 No	]	QR = yes s 🛛 No	» Ÿ		No 🛛	( <u>Kab</u> /		is 🗌			] No 🛛	
PREPARER ID	1			0 1		NING ORC			C Hernited.	ION METHO		AETHOD OF ANALYSIS
PREPARER SI	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec	303-928-38 	570			ATE			Design Revi SIGNATURE	<u>ew</u>		DATE
Marc C. Berg	Han		berg		ł ·	1-10	1		Lucek Hai	the en-	loror	1.29.10
VERIFIER SIG	NATURE		1		D	ATE	APPF	ROVAL	SIGNATURE	D6F 21	8 2070	DATE
Heather M. Lu	оек 4122	other	upix	er_	1.2	9.10	1/F	75	Shory	sic u	Thomas	02/19/10
STATEMENT ( A loss of AC steam will cor	power to	the Wa	tts Bar Nuc	<b>lear P</b> Ty to s	Plant wi	ll result ir Iry side le	n a sigi eak oci	nifican curs p	it amount of rior to the st	steam relea eam dump.	se to the e	nvironment. This
radionuclides steam dumpe the control roo	This calculation determined the control room operator and offsite doses following a Loss of AC Power. The inventory of radionuclides released to the environment was determined using the secondary steam inventories in WBNNAL3-003. The amount of steam dumped was obtained from Westinghouse for the new Steam Generators. The computer code COROD was used to determine the control room operator doses. Computer code FENCDOSE was used to determine the offsite doses. Design doses (~1% failed fuel) were determined by multiplying the realistic secondary steam inventory by 8. The results are provided in the results section.											
The calculated offsite doses are substantially below (<10%) the regulatory limits of 25 rem whole body, 300 rem beta, 300 rem thyroid, and 25 rem TEDE. The control room operator doses are substantially below the regulatory limits of 5 rem gamma, 30 rem beta, 30 rem thyroid, and 5 rem TEDE.												
The results of this calculation are direct input to FSAR Table 15.5-2												
	CHE/EFK	-	Yes 🖾 No		FICHE	NUMBER	R(S) TV	A-F-W	001413			
LOAD IN	TO EDMS TO EDMS TO EDMS	AND RE	STROY TURN CALC TURN CALC	ULATI	ON TO	CALCULA		LIBRAF	RY. ADD	RESS:		

TVA 40532 [10-2008]

NEDP-2-1 [10-20-2008]

## NPG CALCULATION COVERSHEET/CCRIS UPDATE

								rage	2	
CALC ID	TYPE	ORG	PLANT	BRANCH	NUMBE	R	REV	<u>י</u> נ		
	CN	NUC	WBN	NTB	WBNTSR-080		6	1		
· · · · · · · · · · · · · · · · · · ·	·····		Δ	LTERNATE C	ALCULATION IDEN	TIFICATION				
<u> </u>	<u> </u>	· <u>_</u> ·· <u>v</u> m <u>_</u>	····	<u></u>	<u></u>					
				· · · · · · · ·						
BLDG	RO	OM	ELEV	COORD/AZIN	I <u>FIRM</u> Polestar	Print Report	Yes 🖾			·
CATEGORI	ES									

## KEY NOUNS (A-add, D-delete)

ACTION (A/D)	KEY NOUN	<u>A/D</u>	<u>KEY NOUN</u>
(			

## <u>CROSS-REFERENCES</u> (A-add, C-change, D-delete)

ACTION (A/C/D)	XREF CODE	XREF TYPE	XREF PLANT	XREF BRANCH	XREF NUMBER	XREF REV
Α	Р	VD	WBN	MEB	LTR-CRA-09-103	
A	Р	VD	WBN	MEB	WBT-D-1202	
Α	Р	ED	WBN	MEB	EDCR 54956	
					· · · · · · · · · · · · · · · · · · ·	
				·		
CCRIS ONLY U Following are re	PDATES: quired only wh	en making kev	word/cross ref	erence CCRIS up	dates and page 1 of form NEDP-2-1 is not	included:
g						
				DATT		DATE
	PREPARER SI	SNATURE		DATE	CHECKER SIGNATURE	DATE
PREPARER PH				EDMS ACCESSIC		
VA 40532 [10-2008] Page 2 of 2 NEDP-2-1 [10-20-2008]						110-20-20081

	Page 3
	NPG CALCULATION RECORD OF REVISION
CALCULA	TION IDENTIFIER WBNTSR-080
Title	Control Room Operator and Offsite Doses Due to a Loss of AC Power
Revision No.	DESCRIPTION OF REVISION
0 .	Initial issue.
I	This revision was prepared to remove the FSAR as a reference and to apply the offsite dose limit of 10% of 10CFR100 per ANSI/ANS 51.1. Also, per OICP 92-1c, the results were compared to 10CFR20 exposure limits. The dose results as previously calculated in revision 0 of this calculation satisfy these limits. Therefore, the conclusion of the calculation remains the same. CCRIS was checked on 02/09/93, and no changes which impact this calculation were found. As no drawings were used, a DCCM review was not required. pages added: 3, 6a pages changed: 1, 2, 4, 9, 10, 13, 14 total pages: 15
	As this calculation is not used as a design input by any other discipline, an impact review is not required. The calculation results have not changed.
2	Revision 2 of this calculation was performed because the X/Q values changed. All pages were rewritten for legibility and renumbered. Only actual text changes are marked with a revision bar. pages changed: all pages added: none pages deleted: none
3	Revision 3 was performed because the control room makeup flow changed from 325 to 711 cfm. pages changed: 1-7, 9, 14, 15 pages added: none pages deleted: none R3 total pages = 15
4	Revision 4 implements EDC E50629A, which implements the use of a Tritium Production Core. The calculation was rewritten and renumbered, actual text changes are marked by a revision bar. The revision revised the methodology for determining the source terms for the steam release; the use of STP was replaced by using the source terms for secondary steam provided in WBNNAL3-003. The evaluations in this revision utilize the latest version of COROD and FENCDOSE, which calculate dose using ICRP-2 and the new ICRP-30 methodology as well as the TEDE. New $\chi/Q$ 's are being used from the ARCON96 methodology in addition to the Halitsky values. Applicable changes to the FSAR are being handled via EDC E50629A Pages changed : 1-11, including 2a (old cover sheet) Pages added: all
	Pages deleted: all R4 total Pages = 22
5	Revision 5 is in support of the Steam Generator Replacement Project (DCN 51754). The mass releases have been changed and are thus updated in this calculation. PER 61493 was addressed in regards to operation with 2 trains of CREVS. An assumption was added that discussed the 2 trains of CREVS is beyond design basis. The FSAR and Technical Specifications impacts, if any, are addressed in the screening review for DCN 51754. FSAR Table 15.5-2 is directly affected by the revision. Pages changed : 1-10 Pages added: none
	Pages deleted: 2a, old page 5 (Design Verification Form), old page 7 (Output Info Sheet), Appendices A and B (2 pages), and Attachment 1 (8 pages) R4 total Pages = 10
6	Revision 6 is performed for a Unit 2 accident. The original steam generators are used, however Westinghouse has provided revised mass releases. The Unit 2 ARCON96 values were also used. The SAR has been reviewed by <u>Marc</u> <u>Berg</u> and this revision of the calculation affects Unit 2 SAR section <u>Chapter 15</u> . A SAR change shall be processed in accordance with NGDC PP-10 to reflect the calculation results as part of EDCR 54956. Tech Specs have been reviewed and determined not to be affected. Pages added: design verification form (p.5), Appendix B (p 13, 14) Pages changed: 1-8, 10-12 R6: 14 total pages

TVA 40709 [10-2008]

		TION TABLE OF CONTENT	Page 4	
Colouiotion I			J	
	dentifier: WBNTSR-080	Revision: 6	<u> </u>	
SECTION	Coversheet	TITLE		PAGE 1
	CCRIS Update Sheet			2
	Revision Log			3
	Table of Contents			4
	Calculation Design Verification For	n		5
	Computer Input File Storage Information	ation Sheet		6
	Computer Output Information Sheet	t		7
	Purpose			8
	Introduction			8
	Design Input			8
	Assumptions			8
	Special Requirements/Limiting Cond	litions		. 9
	Calculations		•	9
	Results			10
	Discussion and Conclusions:			11
	References			11
	Appendix A – Original Steam Generation	ator Results		12
	Appendix B – Unit 2 Loss of AC Po			13
• .				

TVA 40710 [10-2008]

NEDP-2-3 [10-20-2008]

		Page 5							
	NPG CAL	CULATION VERIFICATION FORM							
Calculation Identifier WBNT	SR-080	Revision 6							
Method of verification used:									
1. Design Review		father herced							
2. Alternate Calculation		Verifier <u>Heather Lucek</u> Date <u>1-29-2010</u>							
3. Qualification Test Comments:									
I have reviewed WBNTSR-080 R6 and have found the calculation to have been completed in a technically sound an appropriate manner to address the Loss of AC Power in Unit 2. In conducting the verification I reviewed the methodology, design input, and assumptions which I found to be valid and conservative. I verified the computer code inputs for correctness and confirmed they only contained the changes as specified in this document. I also confirmed the correct output values were compiled in the results.									
A	CCEPT	ITY EVALUATED AND ED FOR ISSUE. ALL PAGES Hydelm - 2/18/10 RE REV 10 DATE							

TVA 40533 [10-2008]

NEDP-2-4 [10-20-2008]

COMPUTER INPU GE INFORMATION Rev.6 Rev.6 this calculation is n	Plant: WBN		
es Due to a Loss o	f AC Power		
this calculation is n	ot required. Comments:		1
this calculation is n	ot required. Comments:		
n stored electronica y retrieved file requ	ally and sufficient identifyin ires re-verification of its co	g information is ontents before	
ile # 263720	. <u> </u>	· · · · · · · · · · · · · · · · · · ·	-
	OOSE runs and ARCON96 C	COROD)	
# 303556 (Halits	ky COROD runs)		
F-W001413			
,	·		
			· · ·
			н. Н
	,		
·····			
Page 1 of 1		NEDP-2-6 [10-20-2008]	
	y retrieved file requ file # 263720 file # 303460 (FENCI	y retrieved file requires re-verification of its co file # 263720 file # 303460 (FENCDOSE runs and ARCON96 C # 303556 (Halitsky COROD runs) file # 308245	ile # 303460 (FENCDOSE runs and ARCON96 COROD) # 303556 (Halitsky COROD runs) ile # 308245



.

NPG COMPUTER OUTPUT											
· · · · · · · · · · · · · · · · · · ·	MICR	OFICHE INF	ORMATION SHEET	ſ							
Document			Rev.	Plant:							
Subject: Control Room Oper	Control Room Operator and Offsite Doses Due to a Loss of AC Power										
Microfiche Number	Description			······································							
R0 : WRAD-27 R2 : TVA-F-C000079 R3 : TVA-F-C000118 R4 : TVA-F-C-000344 TVA-F-C000351 R5 : TVA-F-W000606											
R6: TVA-F-W001413	TSR080FA5 TSR080FB5 TSR080FC5 TSR080FD5 TSR080CA5 TSR080CB5 TSR080CC5 TSR080CD5 TSR080FA6 TSR080FA6 TSR080FB6	FENCDOSE FENCDOSE COROD COROD COROD COROD COROD FENCDOSE FENCDOSE	Description Offsite Dose, Realistic ( Offsite Dose, 1% Case - Offsite Dose, Realistic ( Offsite Dose, Realistic ( Offsite Dose, 1% - Non Control Room operator Control Room operator Control Room operator Offsite Dose, Realistic ( Offsite Dose, 1% Case -	TPC Case - Non-TPC -TPC dose, Realistic Case dose, 1 % Case - TF dose, Realistic Case dose, 1 % Case - No Case – TPC TPC	PC - Non-TPC on-TPC						
	TSR080CA6 TSR080CB6		Control Room operator Control Room operator								

.

Calculation	No. WBNTSR-080	Rev: 6	Plant: WBN	Page: 8
Subject:	Control Room Operator and Offsite Doses			Date: 1-29-60
	of AC Power			Date: (. 29. 10

#### Purpose

The purpose of this calculation is to determine the control room operator and offsite dose due to a Loss of AC Power. This calculation supports FSAR chapter 15.5. Revision 2 is performed because  $\chi/Q$  values have changed. Revision 3 is performed because the control room makeup flow changed from 325 to 711 cfm. Revision 4 implements EDC E50629A to allow the use of a Tritium Production Core (TPC), it also revises the source inventory to the secondary steam in WBNNAL3-003 (ref.2), and utilizes new  $\chi/Q$  values used from ARCON96 methodology in addition to the old Halitsky values. Revision 5 was performed as the mass releases changed due to replacement steam generators.

Revision 6 added the Unit 2 accident (see Appendix B). Unit 2 has the original steam generators, however Westinghouse provided revised mass releases. Also the Unit 2 ARCON96 X/Q values are used. Only the TPC was evaluated as it bounds the conventional core.

#### Introduction

A Loss of AC Power to the Watt's Bar Nuclear Plant will result in a significant steam release to the environment. The steam will contain radionuclides if a primary to secondary side leak occurs prior to the event. The secondary steam inventory from WBNNAL3-003 consists of expected radionuclide activity levels (ANS/ANSI-18.1-1984, ref.2). Computer code COROD (ref.4) will be used to determine the control room operator dose using the secondary steam inventory. Computer code FENCDOSE (ref.5) will be used to determine the offsite dose using the secondary steam inventory. The calculation will provide the control room operator and offsite dose for both the standard core and the TPC for both the realistic case and 1% failed fuel case.

It should be noted that there is no standard review plan or regulatory guide for this accident. This is a simple best estimate analysis. The 1% failed fuel case is a conservative analysis that utilizes a factor of 8 as a multiplier to the realistic case. This factor causes the inventories to exceed the technical specification values (which would have a multiplier of 7.965, ref.12). The 1% failed fuel is not exactly 1%. It is based on the realistic case being close to but not exactly 0.125% failed fuel, therefore 8 times 0.125% = 1%. It should be considered just a label for a severe case.

The offsite dose limits are 10% (ref.16) of the following regulatory limits: 25 rem gamma (10CFR100.11), 300 rem thyroid (10CFR100.11), 300 rem beta, and 25 rem TEDE (10CFR50.67). SRP 6.4 in NUREG 0800 shows that the thyroid dose and beta dose limits are equivalent for the control room, therefore the offsite beta dose limit can be assumed the same as the offsite thyroid dose limit, 300 rem. 10CFR20.1201 also states that the organ (thyroid) dose and skin (beta) dose are equivalent. The control room dose limits are 5 rem gamma (10CFR50 Appendix A GDC19), 30 rem thyroid (SRP 6.4), 30 rem beta (SRP 6.4), and 5 rem TEDE (10CFR50.67).

#### Design Input

The amount of steam released to the environment due to the loss of AC power is provided below as given in ref.10.

- 0 2 hours 455,718 lbs.
- 2 8 hours 962,213 lbs.

The following are the  $\chi/Q$  values used in the computer code models:

Offsite (ref.12): 30 day LPZ : 1.41E-4 0-2hr; 6.68E-5 2-8hr; 4.59E-5 8-24 hr; 2.04E-5 1-4 days; 6.35E-04 4-30 days 2 hr EAB : 6.07E-4

Control Room (ref. 13): 4.03E-3 0-2hr; 3.35E-3 2-8hr; 2.27E-4 8-24hr; 1.81E-4 1-4 day; 1.45E-4 4-30 day

#### Assumptions

- 1. The secondary side source consists of expected/realistic radionuclide activity levels for a reactor based on ANSI/ANS 18.1-1984, as calculated in WBNNAL3-003 (ref.2).
- 2. WBNNAL3-003 (ref.2) provides the inventory for tritium in a TPC. Only the 2 TPBAR failure source term is used for each case, as the tritium has only a small impact on the result and using the 2 TPBAR failure source term is conservative since additional failed fuel has no impact on tritium from a failed TPBAR.
- 3. Only one train of CREVS is in operation. Normally, each CREVS train takes suction from separate intakes with no cross communication between trains. This leads to one contaminated train, and one uncontaminated train. The only way a 2 CREVS operation could result in higher doses would be for both trains to take suction from the same vent. For

Calculation N	lo. WBNTSR-080	Rev: 6	Plant: WBN	Page: 9
Subject: C	Control Room Operator and Offsite Doses I	Due to a Loss	Prepared: MC3	Date: 1-29-00
0	f AC Power		Checked: Huc	Date: 1.29.10

this to happen, one intake path would require a failed closed intake path AND a fail open of normally closed passive manual damper at the beginning of the accident. An active failure of a train plus a failure of a passive component in less than 24 hours is beyond design basis.

#### Special Requirements/Limiting Conditions

There are no special requirements or limiting conditions in this calculation.

#### Calculations

The radionuclide inventory is provided in  $\mu$ Ci/g in WBNNAL3-003. The releases, in Ci, are determined for each isotope per the following equation and are provided in the table below (the table also provides the 1% values by multiplying the realistic values by 8 except for tritium):

Ci (isotope) =  $\mu$ Ci/g (isotope) * (Ci/1E6  $\mu$ Ci) * 453.59 gm/lb. * steam released lbs.

		Realistic Inventory		1% Fai	led Fuel
Isotope	μCi/g	(0-2 hr) Ci	(2-8 hr) Ci	(0-2 hr) Ci	(2-8 hr) Ci
Kr-83m	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
Kr-85m	3.630E-08	7.504E-06	1.584E-05	6.003E-05	1.267E-04
Kr-85m	5.510E-08	1.139E-05	2.405E-05	9.112E-05	1.924E-04
Kr-87	3.220E-08	6.656E-06	1.405E-05	5.325E-05	1.124E-04
Kr-88	6.310E-08	1.304E-05	2.754E-05	1.043E-04	2.203E-04
Kr-89	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
Xe-131m	1.340E-07	2.770E-05	5.848E-05	2.216E-04	4.679E-04
Xe-133m	1.540E-08	3.183E-06	6.721E-06	2.547E-05	5.377E-05
Xe-133m	5.250E-07	1.085E-04	2.291E-04	8.682E-04	1.833E-03
Xe-135m	2.900E-08	5.995E-06	1.266E-05	4.796E-05	1.013E-04
Xe-135m	1.910E-07	3.948E-05	8.336E-05	3.159E-04	6.669E-04
Xe-137	7.620E-09	1.575E-06	3.326E-06	1.260E-05	2.661E-05
Xe-138	2.680E-08	5.540E-06	1.170E-05	4.432E-05	9.357E-05
I-131	1.410E-08	2.915E-06	6.154E-06	2.332E-05	4.923E-05
I-132	3.370E-08	6.966E-06	1.471E-05	5.573E-05	1.177E-04
I-133	4.030E-08	8.330E-06	1.759E-05	6.664E-05	1.407E-04
I-134	2.930E-08	6.057E-06	1.279E-05	4.845E-05	1.023E-04
I-135	6.190E-08	1.280E-05	2.702E-05	1.024E-04	2.161E-04
H-3 2-Rod	9.840E-02	2.034E+01	4.295E+01	2.034E+01	4.295E+01

Secondary Side Steam Inventory From WBNNAL3-003

For each case the released radionuclides are input into computer code FENCDOSE (ref. 3) to calculate the Low Population Zone (LPZ) offsite dose. The FENCDOSE model is taken from WBNAPS3-077 (ref. 12).

For each case the released radionuclides are also input into computer code COROD (ref. 4) to determine the control room operator dose. The COROD model is taken from WBNAPS3-077 (ref. 12). The  $\chi/Q$  values used are from WBNAPS3-104 (ref.13) for the SGTR accident, because the steam release points are the same.

Calculatio	n No. WBNTSR-080	Rev: 6		Plant: WBN	Page: 10
Subject:	Control Room Operator and Offsite Doses Due to a	Loss	Prep	pared: My	Date: [-79-10
	of AC Power		Che	cked: HML	Date: 1.29.10

**Results** 

Unit 1 Doses Due to Loss of AC Power (Rem)

Non-TPC

Realistic Inventory	Offsite		
	2 hr EAB	30 day LPZ	Control Room
gamma	1.75E-08	8.13E-09	8.26E-09
Beta	1.02E-08	4.72E-09	9.24E-08
Inhalation (ICRP-30)	1.07E-06	4.99E-07	7.62E-07
TEDE*	7.94E-08	3.69E-08	3.69E-08

1% Failed Fuel	Offsite		]
	2 hr EAB	30 day LPZ	Control Room
gamma	1.40E-07	6.50E-08	6.61E-08
Beta	8.12E-08	3.77E-08	7.39E-07
Inhalation (ICRP-30)	8.59E-06	3.99E-05	6.10E-06
TEDE*	6.35E-07	2.95E-07	2.95E-07

TPC

Realistic Inventory	Offsite		
•	2 hr EAB	30 day LPZ	Control Room
gamma	1.75E-08	8.13E-09	8.26E-09
Beta	1.61E-05	7.50E-06	2.92E-04
Inhalation (ICRP-30)	1.07E-06	4.99E-07	7.62E-07
TEDE*	2.64E-04	1.23E-04	4.78E-03

1% Failed Fuel	Offsite	· · · · · · · · · · · · · · · · · · ·	]
	2 hr EAB	30 day LPZ	Control Room
gamma	1.40E-07	6.50E-08	6.61E-08
Beta	1.62E-05	7.53E-06	2.93E-04
Inhalation (ICRP-30)	8.59E-06	3.99E-06	6.10E-06
TEDE*	2.65E-04	1.23E-04	4.78E-03

Notes for Table:

* COROD R6 does not include in the TEDE, the dose due to direct shine from outside the control room. The value is manually added to arrive at the total TEDE.

 $TEDE_{total} = TEDE_{air} + gamma_{shine} + TEDE_{In/Egress}$ where gamma shine > 0 but is negligible

Calculation	No. WBNTSR-080	Rev: 6	Plant: WBN	Page: 11
Subject:	Control Room Operator and Offsite Doses D	ue to a Loss	Prepared: MCB	Date: 1-29-10
	of AC Power		Checked: UM	Date: 1.29.10

#### **Discussion and Conclusion**

The calculated offsite doses are substantially below (< 10%, ref.16) the regulatory limits of 25 rem whole body, 300 rem beta, 300 rem thyroid, and 25 rem TEDE. The control room operator doses are substantially below the regulatory limits of 5 rem gamma, 30 rem beta, 30 rem thyroid, and 5 rem TEDE. The calculated offsite TEDE dose is also less than the 10CFR20.1301 (ref.14) limit of 0.1 rem. The Unit 1 accident bound the Unit 2 accident.

#### **References**

- 1. DCN 51754, Steam Generator Replacement (I/O)
- 2. WBNNAL3-003 R4 " Reactor Coolant Activities in Accordance with ANS/ANSI-18.1-1984"
- 3. Deleted in revision 4
- 4. Computer code COROD R7, code ID 262347
- 5. Computer code FENCDOSE R5, code ID 262358
- 6. Deleted in revision 4
- 7. Deleted in revision 4
- 8. Deleted in revision 4
- 9. Deleted in revision 4
- 10. WCAP-16286-P, January 1005, "Watts Bar Unit 1 Replacement Steam Generator Program NSSS Engineering Report"
- 11. Deleted in revision 4
- 12. WBNAPS3-077 R10, "Offsite and Control Room Operator Doses Due to a Main Steam Line Break"
- 13. WBNAPS3-104 R0, "WBN Control Room  $\chi/Q$ "
- 14. 10CFR20, section 20.1301, "Dose Limits for Individual Members of the Public"
- 15. EDC E50629A
- 16. ANS/ANSI 51.1-1983, "Nuclear Safety Criteria for the Design of Stationary Pressurized Water Reactor Plants"
- 17a. WBT-D-1202 October 22, 2009 "WBS 5.2.11 Revised Steam Releases for Dose"

17b. LTR-CRA-09-103 Rev.1 "Watts Bar Unit 2 Completion Project – Results of Steam Releases for Dose Calculations"

18. EDCR 54956

Calculation	No. WBNTSR-080	Rev: 6		Plant: WBN	Page: 12
Subject:	Control Room Operator and Offsite Doses Due to	a Loss	Prep	ared: MB	Date: 6-29-00
	of AC Power		Chec	ked: HML	Date: 1.29.10

Appendix A		
Original Steam Generator Results,	Unit	1.

The following are the results for the original steam generators (R4 of this calculation).

Π

Realistic Case - Non-TPC		Cont	rol Room Operat	or
	30 day LPZ	2 hr EAB	ARCON96	Halitsky
Gamma (whole body)	9.625E-09	2.399E-08	9.344E-09	8.012E-09
Beta	5.583E-09	1.392E-08	1.046E-07	8.967E-08
Iodine (thyroid)-ICRP-2	1.130E-06	2.818E-06	1.499E-06	1.301E-06
Iodine (thyroid)-ICRP-30	5.908E-07	1.473E-06	8.227E-07	7.144E-07
TEDE*	4.365E-08	1.088E-07	4.004E-08	3.443E-08
1% Failed Fuel Case - Non-TPC		Cont	rol Room Operat	tor
	30 day LPZ	2 hr EAB	ARCON96	Halitsky
Gamma (whole body)	7.696E-08	1.919E-07	7.447E-08	6.389E-08
Beta	4.452E-08	1.113E-07	8.301E-07	7.126E-07
Iodine (thyroid)-ICRP-2	9.045E-06	2.255E-05	1.199E-05	1.041E-05
Iodine (thyroid)-ICRP-30	4.727E-06	1.178E-05	6.583E-06	5.716E-06
TEDE*	3.492E-07	8.705E-07	3.200E-07	2.752E-07
Realistic Case - TPC (2 TPBAR	Failure)		Control Room	Operator
Realistic Case - TPC (2 TPBAR	Failure) 30 day LPZ	2 hr EAB	Control Room ( ARCON96	Operator Halitsky
Realistic Case - TPC (2 TPBAR Gamma (whole body)		2 hr EAB 2.399E-08		•
	30 day LPZ		ARCON96	Halitsky
Gamma (whole body)	30 day LPZ 9.625E-09	2.399E-08	ARCON96 9.344E-09	Halitsky 8.012E-09
Gamma (whole body) Beta	30 day LPZ 9.625E-09 8.880E-06	2.399E-08 2.214E-05	ARCON96 9.344E-09 3.314E-04	Halitsky 8.012E-09 2.842E-04
Gamma (whole body) Beta Iodine (thyroid)-ICRP-2	30 day LPZ 9.625E-09 8.880E-06 1.130E-06	2.399E-08 2.214E-05 2.818E-06	ARCON96 9.344E-09 3.314E-04 1.499E-06	Halitsky 8.012E-09 2.842E-04 1.301E-06
Gamma (whole body) Beta Iodine (thyroid)-ICRP-2 Iodine (thyroid)-ICRP-30	30 day LPZ 9.625E-09 8.880E-06 1.130E-06 5.908E-07 1.453E-04	2.399E-08 2.214E-05 2.818E-06 1.473E-06 3.623E-04	ARCON96 9.344E-09 3.314E-04 1.499E-06 8.227E-07 5.415E-03	Halitsky 8.012E-09 2.842E-04 1.301E-06 7.144E-07 4.644E-03
Gamma (whole body) Beta Iodine (thyroid)-ICRP-2 Iodine (thyroid)-ICRP-30 TEDE*	30 day LPZ 9.625E-09 8.880E-06 1.130E-06 5.908E-07 1.453E-04	2.399E-08 2.214E-05 2.818E-06 1.473E-06 3.623E-04	ARCON96 9.344E-09 3.314E-04 1.499E-06 8.227E-07	Halitsky 8.012E-09 2.842E-04 1.301E-06 7.144E-07 4.644E-03
Gamma (whole body) Beta Iodine (thyroid)-ICRP-2 Iodine (thyroid)-ICRP-30 TEDE*	30 day LPZ 9.625E-09 8.880E-06 1.130E-06 5.908E-07 1.453E-04 PBAR Failure)	2.399E-08 2.214E-05 2.818E-06 1.473E-06 3.623E-04 Contr	ARCON96 9.344E-09 3.314E-04 1.499E-06 8.227E-07 5.415E-03 rol Room Operat	Halitsky 8.012E-09 2.842E-04 1.301E-06 7.144E-07 4.644E-03 or
Gamma (whole body) Beta Iodine (thyroid)-ICRP-2 Iodine (thyroid)-ICRP-30 TEDE* 1% Failed Fuel Case - TPC (2 T	30 day LPZ 9.625E-09 8.880E-06 1.130E-06 5.908E-07 1.453E-04 PBAR Failure) 30 day LPZ	2.399E-08 2.214E-05 2.818E-06 1.473E-06 3.623E-04 Contr 2 hr EAB	ARCON96 9.344E-09 3.314E-04 1.499E-06 8.227E-07 5.415E-03 rol Room Operat ARCON96	Halitsky 8.012E-09 2.842E-04 1.301E-06 7.144E-07 4.644E-03 or Halitsky
Gamma (whole body) Beta Iodine (thyroid)-ICRP-2 Iodine (thyroid)-ICRP-30 TEDE* 1% Failed Fuel Case - TPC (2 The Gamma (whole body) Beta	30 day LPZ 9.625E-09 8.880E-06 1.130E-06 5.908E-07 1.453E-04 PBAR Failure) 30 day LPZ 7.696E-08	2.399E-08 2.214E-05 2.818E-06 1.473E-06 3.623E-04 Contr 2 hr EAB 1.919E-07	ARCON96 9.344E-09 3.314E-04 1.499E-06 8.227E-07 5.415E-03 rol Room Operat ARCON96 7.447E-08	Halitsky 8.012E-09 2.842E-04 1.301E-06 7.144E-07 4.644E-03 or Halitsky 6.389E-08
Gamma (whole body) Beta Iodine (thyroid)-ICRP-2 Iodine (thyroid)-ICRP-30 TEDE* 1% Failed Fuel Case - TPC (2 T Gamma (whole body)	30 day LPZ 9.625E-09 8.880E-06 1.130E-06 5.908E-07 1.453E-04 PBAR Failure) 30 day LPZ 7.696E-08 8.919E-06	2.399E-08 2.214E-05 2.818E-06 1.473E-06 3.623E-04 Contr 2 hr EAB 1.919E-07 2.224E-05	ARCON96 9.344E-09 3.314E-04 1.499E-06 8.227E-07 5.415E-03 rol Room Operat ARCON96 7.447E-08 3.321E-04	Halitsky 8.012E-09 2.842E-04 1.301E-06 7.144E-07 4.644E-03 or Halitsky 6.389E-08 2.849E-04
Gamma (whole body) Beta Iodine (thyroid)-ICRP-2 Iodine (thyroid)-ICRP-30 TEDE* 1% Failed Fuel Case - TPC (2 T Gamma (whole body) Beta Iodine (thyroid)-ICRP-2	30 day LPZ 9.625E-09 8.880E-06 1.130E-06 5.908E-07 1.453E-04 PBAR Failure) 30 day LPZ 7.696E-08 8.919E-06 9.045E-06	2.399E-08 2.214E-05 2.818E-06 1.473E-06 3.623E-04 Contri 2 hr EAB 1.919E-07 2.224E-05 2.255E-05	ARCON96 9.344E-09 3.314E-04 1.499E-06 8.227E-07 5.415E-03 rol Room Operat ARCON96 7.447E-08 3.321E-04 1.199E-05	Halitsky 8.012E-09 2.842E-04 1.301E-06 7.144E-07 4.644E-03 or Halitsky 6.389E-08 2.849E-04 1.041E-05

Calculatio	n No. WBNTSR-080	Rev: 6	Plant: WBN	Page: 13
Subject:	Control Room Operator and Offsite Doses Du	e to a Loss	Prepared: MB	Date: 1-29-60
	of AC Power		Checked: HML	Date: 1.24.10

Appendix B: Unit 2 Loss of AC Power

This appendix evaluates the Unit 2 Loss of AC Power. The steam generators are the original steam generators, however Westinghouse has revised the mass releases.

Using the same methodology as in the main text, with the TPC only (since that bounds the conventional core), and with Unit 2 ARCON96 X/Q values (2.87E-3 sec/cum 0-2 hr, 2.46E-3 sec/cum, ref.13):

The amount of steam released to the environment due to the loss of AC power is provided below as given in ref.17.

0 - 2 hours 444,875 lbs.

2 - 8 hours 903,530 lbs.

Unit 2 Loss of AC Power Releases

	Secondary				
	Side Concentratio	Realistic		1% Failed Fuel	
	n	Release		Release	
Isotope	uCi/g	(0-2 hr) Ci	(2-8 hr) Ci	(0-2 hr) Ci	(2-8 hr) Ci
Kr-83m	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
Kr-85m	3.630E-08	7.325E-06	1.488E-05	5.860E-05	1.190E-04
Kr-85m	5.510E-08	1.112E-05	2.258E-05	8.895E-05	1.807E-04
Kr-87	3.22 <u>0E-08</u>	6.498E-06	1.320E-05	5.198E-05	1.056E-04
Kr-88	6.310E-08	1.273E-05	2.586E-05	1.019E-04	2.069E-04
Kr-89	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
Xe-131m	1.340E-07	2.704E-05	5.492E-05	2.163E-04	4.393E-04
Xe-133m	1.540E-08	3.108E-06	6.311È-06	2.486E-05	5.049E-05
Xe-133m	5.250E-07	1.059E-04	2.152E-04	8.475E-04	1.721E-03
Xe-135m	2.900E-08	5.852E-06	1.189E-05	4.682E-05	9.508E-05
Xe-135m	1.91 <u>0E-07</u>	3.854E-05	7.828E-05	3.083E-04	6.262E-04
Xe-137	7.620E-09	1.538E-06	3.123E-06	1.230E-05	2.498E-05
Xe-138	2.680E-08	5.408E-06	1.098E-05	4.326E-05	8.787E-05
I-131	1.410E-08	2.845E-06	5.779E-06	2.276E-05	4.623E-05
I-132	3.370E-08	6.800E-06	1.381E-05	5.440E-05	1.105E-04
I-133	4.030E-08	8.132E-06	1.652E-05	6.506E-05	1.321E-04
I-134	2.930E-08	5.912E-06	1.201E-05	4.730E-05	9.606E-05
I-135	6.190E-08	1.249E-05	2.537E-05	9.993E-05	2.029E-04
H-3 2-Rod	9.840E-02	1.986E+01	4.033E+01	1.986E+01	4.033E+01

Calculatio	n No. WBNTSR-080	Rev: 6	Plant	: WBN	Page: 14
Subject:	Control Room Operator and Offsite Doses	Due to a Loss	Prepared:	MB	Date: 1-24-10
	of AC Power		Checked:	HM	Date: 1.7.9.10

#### Results

The results for Unit 2 Loss of AC Power were (rem):

**Realistic Case** 

		Offsite	Offsite
	Control Room	2-hr EAB	30-day LPZ
Gamma	7.05E-09	1.69E-08	7.74E-09
Beta	2.52E-04	1.58E-05	7.18E-06
Thyroid (ICRP-30)	5.51E-07	1.05E-06	4.78E-07
TEDE	4.12E-03	2.58E-04	1.18E-04

#### 1% Failed Fuel Case

		Offsite	Offsite
	Control Room	2-hr EAB	30-day LPZ
Gamma	4.57E-08	1.37E-07	6.23E-08
Beta	2.03E-04	1.58E-05	7.21E-06
Thyroid (ICRP-30)	4.22E-06	8.39E-06	3.82E-06
TEDE	3.31E-03	2.59E-04	1.18E-04

#### **Discussion and Conclusion**

The calculated offsite doses are substantially below (< 10%, ref.16) the regulatory limits of 25 rem whole body, 300 rem beta, 300 rem thyroid, and 25 rem TEDE. The control room operator doses are substantially below the regulatory limits of 5 rem gamma, 30 rem beta, 30 rem thyroid, and 5 rem TEDE. The calculated offsite TEDE dose is also less than the 10CFR20.1301 (ref.14) limit of 0.1 rem. The Unit 2 accident is bounded by the Unit 1 accident.

# Attachment 8

>

# **FENCDOSE** File

# TSR80FA6.txt

# Time Dependent Releases realistic case

TSR80FA6.txt						
1	FFFFFFFFF	EEEEEEEEE	NN NN	CCCCCC	DDDDDDDD	000000
SSSSSS	EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	EEEEEEEEE	NNN NN	ссссссс	DDDDDDDDD	0000000
SSSSSSSS	EEEEEEEEE FF	EE	NNNN NN	cc cc	DD DD	00 - 00 SS
SS	EE FF	EE	NN NN NN	сс	DD DD	00 00 SS
	EE FFFFFFFF	EEEEEEE	NN NN NN	CC	DD DD	00 00
SSSSSSSS	FFFFFFF	EEEEEEE	NN NN NN	сс	DD DD	00 00
SSSSSSSS	FF	EE	NN NNNN	сс	DD DD	00 00
SS	EE FF	EE	NN NNN	cc cc	DD DD	00 00 SS
SS	EE FF	EEEEEEEEE	NN NN	ccccccc	DDDDDDDDD	0000000
SSSSSSSS	EEEEEEEEE FF	EEEEEEEEE	NN NN	сссссс	DDDDDDDD	000000
SSSSSS	EEEEEEEEE			•		·
	RRRRRRR	EEEEEEEEE	vv vv		55555555555	
	RRRRRRRR	EEEEEEEEE	vv vv		55555555555	
	RR RR	EE	vv vv		55	
	RR RR	EE	vv vv		55	
	RRRRRRRR	EEEEEEE	vv vv		5555555	
	RRRRRRR	EEEEEEE	VV VV		5555555	
	RR RR	EE	VVVV		55	
	RR RR	EE	VVVV		55 55	
	RR RR	EEEEEEEEE	vv		55555555	
	RR RR	EEEEEEEEE	VV		555555	
	ww ww	IIIIII	NN NN	999999	55555555555	NN NN
QQQQQQ	AAAAA WW WW	IIIII	NNN NN	99999999	55555555555	NNN NN
QQQQQQQQ	AAAAAAA WW WW	II	NNNN NN	99 99	55	NNNN NN QQ
QQ	AA AA WW WW	II	NN NN NN	99 99	55	NN NN NN QQ
QQ	AA AA WW WW	II	NN NN NN	9999999999	5555555	NN NN NN QQ
QQ	AA AA WW WW WW	II	NN NN NN	999999999	5555555	NN NN NN QQ
Q QQ	AAAAAAAAAA WW WWWW WW	II	NN NNNN	99	55	NN NNNN QQ
Q QQ	AAAAAAAAAA WWWW WWWW	II	NN NNN	99 99	55 55	NN NNN QQ
000	ΔΔ ΔΔ					

Page 1

NN

NN

QQQ AA WWW

AA

QQQQQQQQ

AA WWW

AA

IIIIII

99999999

55555555

NN

NN

				TSF	80FA6.	txt						
QQQQQQ Q	WW AA	WW AA	IIIIII	NN	NN ,	999	9999	5555	55	NN	NN	
11	000	000 00	11	•	//		2222	9999			//	,
111	000 0000	0000	111			2222	22222	99999	999			
	00	00	1111		11	22	22	99	99		11	
1111 11	00 00 00	00 00 00	11		//		22	99	99		//	
	00	00	11	/	//	222	22222	99999	99999	1	7	
11 11	00 00 00	00 00 00	11	11	/	2222	2222	9999	99999	11		
	00	00	11			22			99			
11	00 00	00 00	11	11		22		99	99	11		
11	00	00 0000	111111	11		22222	222222	99999	9999	11		
111111	000	0000	111111	/		2222	222222					
111111	00	000	TTTTT	/		<i>LLLL</i>		9999	99	/		
00000	•	11 44	44			333	3333	11	L.			
	1	.11	444			3333	33333	111	L			
0000000	11	444 11	4444		•	33	33	1111			:	00
00	4	444										
00		11 44	44 44	:	::		33	11		:	:	00
		11	44 44				33333	11	Ļ			00
00	44	44 11	44 44				33333	11	L			00
00	44	44	444444444							-		
00	44444	11 44444			::		33	11			•	00
00	ллллл	11 44444	444444444		::	33	33	11	L	:	:	· <b>00</b> ·
		.1111	44			333	33333	1111	L11			
0000000	11	44 1111	44			33	3333	1111	11			
00000		44										

1

1 REPRODUCTION OF INPUT DATA DECK

+ + + + + + + + 1 KRM-83 KRM-85 KR-85 KR-87 KR-88 KR-89 XEM-131 XEM-133 XEM-135 XE-135 XE-137 XE-138 I-131 I-132 I-133 I-134 I-135 H-3

Page 2

+

+

## TSR80FA6.txt

_			TSR80FA6.txt		•
LOSS OF	.668E-4 .459 AC POWER	E-4 .204E-	4 .635E-5 6.	07E-4 [°]	
9 LOSS OF	7200 SEC ENVIRONMENT 1 0.0 6 0.0 11 3.854E-05 16 8.132E-06 AC POWER	2 0.0 7 2.704E- 12 1.538E- 17 5.912E-	3 1.112E 05 8 3.108E 06 13 5.408E	-06 9 1.059E-0 -06 14 2.845E-0	06 5 1.273E-05 14 10 5.852E-06 16 15 6.800E-06 11
LOSS OF	'ENVIRONMENT 1 0.0 6 0.0 11 7.828E-05 16 1.652E-05 AC POWER	2 1.488E- 7 5.492E- 12 3.123E- 17 1.201E-	05 3 2.258E 05 8 6.311E 06 13 1.098E	-06 9 2.152E-0 -05 14 5.779E-0	04 10 1.189E-05 06 15 1.381E-05
LOSS OF	'ENVIRONMENT 1 0.0 6 0.0 11 0.0 16 0.0 AC POWER	2 0.0 7 0.0 12 0.0 17 0.0	'\$ TN= 3 0.0 8 0.0 13 0.0 18 0.0	0.2400E+02 4 0.0 9 0.0 14 0.0 19 0.0	5 0.0 10 0.0 15 0.00
	'ENVIRONMENT 1 0.0 6 0.0 11 0.0 16 0.0 AC POWER	2 0.0 7 0.0 12 0.0 17 0.0	\$ TN= 3 0.0 8 0.0 13 0.0 18 0.0	0.9600E+02 4 0.0 9 0.0 14 0.0 19 0.0	5 0.0 10 0.0 15 0.00
	'ENVIRONMENT 1 0.0 6 0.0 11 0.0 16 0.0	2 0.0 7 0.0 12 0.0 17 0.0	'\$TN= 30.0 80.0 130.0 180.0	0.7200E+03 4 0.0 9 0.0 14 0.0 19 0.0	5 0.0 10 0.0 15 0.00
+	+ +	+	+	+ +	+
1 0 0 0 0				REVISION REVISION DATE: TODAY IS:	
1ISOTOPE KRM-83 KRM-85 KR-85 KR-87 KR-88 KR-89 XEM-131 XEM-133 XE-133 XE-135 XE-137	GAMMA EN (MEV/D 0.002 0.158 0.002 0.792 1.962 2.083 0.020 0.041 0.045 0.431 0.247 0.193	$\begin{array}{cccc} \text{IS}) & (\text{M} \\ 5 & 0 \\ 6 & 0 \\ 2 & 0 \\ 8 & 1 \\ 9 & 0 \\ 7 & 1 \\ 1 & 0 \\ 6 & 0 \\ 4 & 0 \\ 8 & 0 \\ 0 & 0 \end{array}$	A ENERGY EV/DIS) .0371 .2529 .2506 .3237 .3750 .2310 .1428 .1898 .1354 .0950 .3168 .6420 Page 3		·

XE-138 I-131 I-132 I-133 I-134 I-135 H-3	$\begin{array}{c} 1.1830 \\ 0.3810 \\ 2.3332 \\ 0.6100 \\ 2.5928 \\ 1.5802 \\ 0.0000 \end{array}$	0.60 0.19 0.51 0.408 0.610 0.368 0.005	43 43 80 02 80
OCHI/Q 1.410E-04 6.070E-04	6.680E-05	4.590E-05	2.040E-05 6.350E-06
1 OLOSS OF AC P TIME TO 7200 COMPONENT 9 1ISOTOPE			, TIME = 2.
KRM-83 KRM-85 KR-85 KR-87 KR-88 KR-89 XEM-131 XEM-133 XE-133 XE-133 XE-135 XE-135 XE-137 XE-138 I-131 I-132 I-133 I-134 I-135 H-3 OLOSS OF AC P TIME TO 8 HO	UR		
COMPONENT 9 1ISOTOPE KRM-83 KRM-85 KR-85 KR-87 KR-88 KR-89 XEM-131 XEM-133 XE-133 XE-133 XE-135 XE-135 XE-137 XE-138 I-131 I-132 I-133 I-134	ENVIRONMENT 0.0000E+00 0.1488E-04 0.2258E-04 0.2586E-04 0.2586E-04 0.0000E+00 0.5492E-04 0.6311E-05 0.2152E-03 0.1189E-04 0.7828E-04 0.3123E-05 0.1098E-04 0.5779E-05 0.1381E-04 0.1652E-04 0.1201E-04		, TIME = 8.
I-135 H-3	0.2537E-04 0.4033E+02		Page A

OLOSS OF AC TIME TO 24	POWER
	HR 9 ENVIRONMENT
KRM-83 KRM-85 KR-85 KR-87 KR-88 KR-89 XEM-131 XEM-133 XE-133 XE-133 XE-135 XE-135 XE-135 XE-137 XE-138 I-131 I-132 I-133 I-134 I-135 H-3 OLOSS OF AC TIME TO 96 COMPONENT IISOTOPE	0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 POWER
KRM-83 KRM-85 KR-85 KR-87 KR-88 KR-89 XEM-131 XEM-133 XE-133 XE-135 XE-135 XE-137 XE-138 I-131 I-132 I-133 I-134 I-135 H-3 OLOSS OF AC TIME TO 720 COMPONENT IISOTOPE	0.0000E+00 0.0000E+00 0.0000E+00 POWER ) HR
KRM-83 KRM-85 KR-85 KR-87 KR-88 KR-89 XEM-131 XEM-133 XE-133 XE-133	0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

, TIME = 24.

, TIME = 96.

, TIME =720.

XE-135	0.0000E+00
XE-137	0.0000E+00
XE-138	0.0000E+00
I-131	0.0000E+00
I-132	0.0000E+00
I-133	0.0000E+00
I-134	0.0000E+00
I-135	0.0000E+00
н-3	0.0000E+00

1INPUT CON	CENTRATION				•
krm-83	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
KRM-85	0.0000E+00	1.4880E-05	0.0000E+00	0.0000E+00	0.0000E+00
KR-85	1.1120E-05	2.2580E-05	0.0000E+00	0.0000E+00	0.0000E+00
kr-87	6.4980E-06	1.3200E-05	0.0000E+00	0.0000E+00	0.0000E+00
kr-88	1.2730E-05	2.5860E-05	0.0000E+00	0.0000E+00	0.0000E+00
KR-89	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
XEM-131	2.7040E-05	5.4920E-05	0.0000E+00	0.0000E+00	0.0000E+00
XEM-133	3.1080E-06	6.3110E-06	0.0000E+00	0.0000E+00	0.0000E+00
XE-133	1.0590E-04	2.1520E-04	0.0000E+00	0.0000E+00	0.0000E+00
XEM-135	5.8520E-06	1.1890E-05	0.0000E+00	0.0000E+00	0.0000E+00
XE-135	3.8540E-05	7.8280E-05	0.0000E+00	0.0000E+00	0.0000E+00
XE-137	1.5380E-06	3.1230E-06	0.0000E+00	0.0000E+00	0.0000E+00
XE-138	5.4080E-06	1.0980E-05	0.0000E+00	0.0000E+00	0.0000E+00
I-131	2.8450E-06	5.7790E-06	0.0000E+00	0.0000E+00	0.0000E+00
I-132	6.8000E-06	1.3810E-05	0.0000E+00	0.0000E+00	0.0000E+00
I-133	8.1320E-06	1.6520E-05	0.0000E+00	0.0000E+00	0.0000E+00
I-134	5.9120E-06	1.2010E-05	0.0000E+00	0.0000E+00	0.0000E+00
I-135	1.2490E-05	2.5370E-05	0.0000E+00	0.0000E+00	0.0000E+00
н-3	1.9860E+01	4.0330E+01	0.0000E+00	0.0000E+00	0.0000E+00

1LOSS OF AC POWER

OGAMMA DOSE FOR EACH ISOTOPE AND TIME PERIOD (REM)

ID 2-HR EA	ISOTOPE B	0-2 HRS	2-8 HRS	8-24 HRS	1-4 DAYS	4-30 days
1 0.000E+	KRM-83	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
2 0.000E+	KRM-85	0.000E+00	3.942E-11	0.000E+00	0.000E+00	0.000E+00
	KR-85	8.664E-13	8.334E-13	0.000E+00	0.000E+00	0.000E+00
	 КR-87	1.816E-10	1.748E-10	0.000E+00	0.000E+00	0.000E+00
	KR-88	8.808E-10	8.477E-10	0.000E+00	0.000E+00	0.000E+00
	KR-89	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
7 8.230E-	XEM-131	1.912E-11	1.840E-11	0.000E+00	0.000E+00	0.000E+00
	XEM-133	4.553E-12	4.380E-12	0.000E+00	0.000E+00	0.000E+00
9 7.294E-	XE-133	1.694E-10	1.631E-10	0.000E+00	0.000E+00	0.000E+00
	XEM-135	8.906E-11	8.573E-11	0.000E+00	0.000E+00	0.000E+00
	XE-135	3.355E-10	3.228E-10	0.000E+00	0.000E+00	0.000E+00

12 XE-137	1.049E-11	TSR80FA	6.txt 0.000E+00	0.000e+00	0.000E+00
4.518E-11 13 XE-138	2.255E-10		0.000E+00	0.000E+00	0.000E+00
9.708E-10 14 I-131	3.821E-11		0.000E+00	0.000E+00	0.000E+00
1.645E-10 15 I-132	5.593E-10	5.381E-10	0.000E+00	0.000E+00	0.000E+00
2.408E-09 16 I-133	1.749E-10	1.683E-10	0.000E+00	0.000E+00	0.000E+00
7.527E-10 17 I-134	5.403E-10	5.200E-10	0.000E+00	0.000E+00	0.000E+00
2.326E-09 18 I-135	6.957E-10	6.695E-10	0.000E+00	0.000E+00	0.000E+00
2.995E-09 19 H-3	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.000E+00					
TOTAL	3.925E-09	3.817E-09	0.000E+00	0.000E+00	0.000E+00
1.690E-08 OBETA DOSE FOR EACH	ISOTOPE AND	TIME PERIOD	(REM)		
	0-2 HRS	2-8 HRS	8-24 HRS	1-4 DAYS	4-30 DAYS
2-HR EAB	0 000- 00				0 000- 00
1 KRM-83 0.000E+00		0.000E+00	0.000E+00	0.000E+00	0.000E+00
2 KRM-85 0.000E+00	0.000E+00	5.782E-11	0.000E+00	0.000E+00	0.000E+00
3 кк-85 3.890е-10	9.037E-11	8.694E-11	0.000E+00	0.000E+00	0.000E+00
4 кк-87 1.201е-09	2.789E-10	2.685E-10	0.000E+00	0.000E+00	0.000E+00
5 KR-88 6.665E-10	1.548E-10	1.490E-10	0.000E+00	0.000E+00	0.000E+00
6 кк-89 0.000е+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
7 ХЕМ-131 5.391E-10	1.252E-10	1.205E-10	0.000E+00	0.000E+00	0.000E+00
8 XEM-133 8.236E-11	1.913E-11	1.840E-11	0.000E+00	0.000E+00	0.000E+00
9 XE-133 2.002E-09	4.650E-10	4.477E-10	0.000E+00	0.000E+00	0.000E+00
10 ХЕМ-135 7.761Е-11	1.803E-11	1.735E-11	0.000E+00	0.000E+00	0.000E+00
11 XE-135 1.705E-09	3.960E-10	3.810E-10	0.000E+00	0.000E+00	0.000E+00
12 XE-137 3.526E-10	8.190E-11	7.879E-11	0.000E+00	0.000E+00	0.000E+00
13 XE-138 4.574E-10	1.062E-10	1.022E-10	0.000E+00	0.000E+00	0.000E+00
14 I-131 7.717E-11	1.793E-11	1.725E-11	0.000E+00	0.000E+00	0.000E+00
15 I-132 4.882E-10	1.134E-10	1.091E-10	0.000E+00	0.000E+00	0.000E+00
16 I-133 4.632E-10	1.076E-10	1.036E-10	0.000E+00	0.000E+00	0.000E+00
17 I-134 5.036E-10	1.170E-10	1.126E-10	0.000E+00	0.000E+00	0.000E+00
18 I-135 6.417E-10	1.491E-10	1.434E-10	0.000E+00	0.000E+00	0.000E+00
19 H-3 1.575E-05	3.658E-06	3.519E-06	0.000E+00	0.000E+00	0.000E+00
1.J.J. UJ		_	_		

TSR80FA6.txt _____ ______ _ _ _ _ _ _ _ _ _ _____ 3.522E-06 0.000E+00 0.000E+00 TOTAL 3.661E-06 0.000E+00 1.576E-05 OINHALATION DOSE FOR EACH IODINE AND TIME PERIOD (REM) (ICRP 2 DATA 4-30 DAYS ISOTOPE 0-2 HRS 2-8 HRS 8-24 HRS 1-4 DAYS ID 2-HR EAB 2.060E-07 1.983E-07 0.000E+00 0.000E+00 0.000E+00 1 I-131 8.869E-07 2 I-132 1.780E-08 1.713E-08 0.000E+00 0.000E+00 0.000E+00 7.663E-08 0.000E+00 0.000E+00 . 3 I-133 1.591E-07 1.532E-07 0.000E+00 6.851E-07 6.960E-09 0.000E+00 0.000E+00 4 I-134 7.231E-09 0.000E+00 3.113E-08 7.292E-08 5 I-135 7.578E-08 0.000E+000.000E+000.000E+00 3.262E-07 _____ -----. _ _ _ _ _ _ _ _ _ _____ _____ _ _ _ _ _ _ _ _ _ _ TOTAL 4.484E-07 0.000E+00 0.000E+00 0.000E+00 4.660E-07 2.006E-06 OINHALATION DOSE FOR EACH IODINE AND TIME PERIOD (REM) (ICRP 30 DATA) 2-8 HRS 8-24 HRS 4-30 DAYS 0-2 HRS 1-4 DAYS ID ISOTOPE 2-HR EAB 1 I-131 1.503E-07 1.447E-07 0.000E+00 0.000E+00 0.000E+00 6.472E-07 0.000E+00 0.000E+00 2.143E-09 2.062E-09 0.000E+00 2 I-132 9.224E-09 3 I-133 7.162E-08 6.893E-08 0.000E+00 0.000E+00 0.000E+00 3.083E-07 4 I-134 3.095E-10 2.979E-10 0.000E+00 0.000E+00 0.000E+00 1.332E-09 1.913E-08 1.841E-08 0.000E+000.000E+000.000E+00 I-135 5 8.234E-08 _____ _ _ _ _ _ _ _ _ _ _ _____ ______ _____ _____ 0.000E+00 0.000E+00 0.000E+00TOTAL 2.435E-07 2.344E-07 1.048E-06 OAT 2 HOUR EXCLUSION AREA BOUNDARY (EAB) TOTAL GAMMA DOSE = 1.690E-08 REM TOTAL BETA DOSE = 1.576E-05 REM TOTAL INHALATION DOSE (ICRP-2) = 2.006E-06 REM TOTAL INHALATION DOSE (ICRP-30) = 1.048E-06 REM OAT 30 DAY LPZ BOUNDARY TOTAL GAMMA DOSE = 7.742E-09 REM TOTAL BETA DOSE = 7.182E-06 REM TOTAL INHALATION DOSE (ICRP-2) = 9.144E-07 REM TOTAL INHALATION DOSE (ICRP-30) = 4.779E-07 REM 83 IS NOT IN EPA LIBRARY. ISOTOPE IGNORED. KRM 83 IS NOT IN EPA LIBRARY. ISOTOPE IGNORED. KRM 83 IS NOT IN EPA LIBRARY. ISOTOPE IGNORED. KRM 83 IS NOT IN EPA LIBRARY. ISOTOPE IGNORED. KRM KRM 83 IS NOT IN EPA LIBRARY. ISOTOPE IGNORED. Page 8

TSR80FA6.txt KRM 83 IS NOT IN EPA LIBRARY. ISOTOPE IGNORED.

1LOSS OF AC POWER

OTEDE FOR EACH ISOTOPE AND TIME PERIOD (REM)

ID 2-HR EA		0-2 HRS	2-8 HRS	8-24 HRS	1-4 DAYS	4-30 DAYS
		0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.000E+	krm-85	0.000E+00	2.568E-11	0.000E+00	0.000E+00	0.000E+00
0.000E- 3 2.437E-	kr-85	5.662E-13	5.447E-13	0.000E+00	0.000E+00	0.000E+00
2.457E- 4 5.588E-	kr-87	1.298E-10	1.249E-10	0.000E+00	0.000E+00	0.000E+00
2.790E	kr-88	6.482E-10	6.238E-10	0.000E+00	0.000E+00	0.000E+00
0.000E-	kr-89	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
2.234E	XEM-131	5.189E-12	4.993E-12	0.000E+00	0.000E+00	0.000E+00
8.909E	XEM-133	2.069E-12	1.991E-12	0.000E+00	0.000E+00	0.000E+00
3.571E	XE-133	8.295E-11	7.986E-11	0.000E+00	0.000E+00	0.000E+00
10 2.467E	XEM-135	5.730E-11	5.516E-11	0.000E+00	0.000E+00	0.000E+00
	XE-135	2.113E-10	2.034E-10	0.000E+00	0.000E+00	0.000E+00
12 2.853E	XE-137	6.626E-12	6.374E-12	0.000E+00	0.000E+00	0.000E+00
13 6.565E	XE-138	1.525E-10	1.467E-10	0.000E+00	0.000E+00	0.000E+00
14 2.542E	1-131	5.906E-09	5.683E-09	0.000E+00	0.000E+00	0.000E+00
15 5.618E	I-132	1.305E-09	1.256E-09	0.000E+00	0.000E+00	0.000E+00
16 2.057E	I-133	4.778E-09	4.598E-09	0.000E+00	0.000E+00	0.000E+00
17 3.090E	I-134	7.178E-10	6.908E-10	0.000E+00	0.000E+00	0.000E+00
18 1.706E	I-135	3.962E-09	3.813E-09	0.000E+00	0.000E+00	0.000E+00
19 2.578E	н-3	5.989E-05	5.762E-05	0.000E+00	0.000E+00	0.000E+00
TOTAL 2.579E TOTAL	TEDE = 1.17	5.991E-05 76E-04	5.764E-05		0.000E+00	0.000E+00
011110		01,20,10. 11		560 TIME IJ	OTO PEROTES	. 0.0 SECONDS.

Attachment 9

# **FENCDOSE** File

## TSR80FB6.txt

Time Dependent Releases 1% failed fuel case

TSR80FB6.txt						
1 .	FFFFFFFFF	EEEEEEEEE	NN NN	сссссс	DDDDDDDD	000000
SSSSSS	EEEEEEEEEE FFFFFFFFFF	EEEEEEEEEE	NNN NN	сссссссс	DDDDDDDDD	0000000
SSSSSSSS	EEEEEEEEEE FF	EE	NNNN NN	cc cc	DD DD	00 00 SS
SS	EE FF	EE	NN NN NN	сс	DD DD	00 00 SS
	EE FFFFFFFF	EEEEEEEE	NN NN NN	СС	DD DD	00 00
SSSSSSSSS	EEEEEEEE FFFFFFFF	EEEEEEE	NN NN NN	сс	DD DD	00 00
SSSSSSSSS	EEEEEEE FF	EE	NN NNNN	сс	DD DD	00 00
SS	EE FF	EE	NN NNN	сс сс		00 00 SS
SS	EE FF	EEEEEEEEE	NN NN	сссссссс	DDDDDDDDD	0000000
SSSSSSSS	EEEEEEEEEE	EEEEEEEEE	NN NN	сссссс	DDDDDDDD	000000
SSSSSS	EEEEEEEEE		t .		00000000	00000
	RRRRRRRR	EEEEEEEEE	vv vv		55555555555	
	RRRRRRRR	EEEEEEEEE	vv vv		555555555555555555555555555555555555555	
	RR RR	EE	vv vv		55	
	RR RR	EE	vv vv		55	
	RRRRRRRR	EEEEEEE	vv vv	,	5555555	
	RRRRRRRR	EEEEEEEE	VV VV		5555555	
	RR RR	EE	VVVV		55	
	RR RR	EE	 		55 55	
	RR RR	EEEEEEEEE	vv		55555555	
	RR RR	EEEEEEEEEE	vv		555555	
			•••		555555	:
	ww ww	IIIIII	NN NN	999999	555555555555555555555555555555555555555	NN NN
QQQQQQ	AAAAAA WW WW	IIIII	NNN NN	999999999	555555555555555555555555555555555555555	NNN NN
QQQQQQQQ	AAAAAAAA WW WW	II	NNNN NN	99 99	55	NNNN NN QQ
QQ	AA AA WW WW	II	NN NN NN	99 99	55	NN NN NN QQ
QQ	AA AA WW WW	II	NN NN NN	9999999999	5555555	NN NN NN QQ
QQ	AA AA WW WW WW	II	NN NN NN	999999999	5555555	NN NN NN QQ
Q QQ	AAAAAAAAAA WW WWWW WW	II	NN NNNN	9999999999999999	55	NN NNNN QQ
Q QQ	AAAAAAAAAAA WWWW WWWW	II	NN NNN	99 99	55 55	
QQQ	AA AA WWW WWW		NN NN	999999999	555555555555555555555555555555555555555	
QQQQQQQQ	AA AA	IIIIII	NN NN Page 1		111111111	NN NN

Page 1

				TSR8(	)FB6.	txt					
QQQQQQ Q	WW AA	WW AA	IIIIII	NN	NN		999	555	555	NN	NN
11	000		11		//	222	222	999	999		11
11	0000 0000	000	111		11	2222	2222	9999	9999		11
111	00000 00	00	1111	,	//	22	22	99	99		//
1111	00 00	00 00	11	1,	<i>.</i>		22	99	99		//
11	00	00 00	11	11		222	2222	9999	99999		7
11	00 00	00 00	11	11		2222	222		99999		
11	00	00 00	11	//		22			99	11	
11	00		11	//		22		99	99	11	
11	00	00									
111111	0000	000	111111	//			22222	9999		//	
111111	000 000		111111	/ .		22222	22222	999	999	/ .	
11	1 777777		44				333	1			
111	11 777777		444			3333	3333	11	1		
1111	111		4444	::		33	33	111	1	:	:
1111		1 77	44 44	::			33	1	1	:	:
	1	1	44 44			3	3333	1	1		
11	7 _1	1	44 44			3	3333	. 1	1		
11		1	444444444	::			33	1	1	:	:
11	77 1	1	444444444	::		33	33	1	1	:	:
11	77	111	44				3333	111			
111111	77	111	44				3333	111			
111111	77	<b>TTT</b>				202	נננו	111	<b>T T T</b>		

1

1 REPRODUCTION OF INPUT DATA DECK

+ + + + + + + 1 KRM-83 KRM-85 KR-85 KR-87 KR-88 KR-89 XEM-131 XEM-133 XE-133 XEM-135 XE-135 XE-137 XE-138 I-131 I-132 I-133 I-134 I-135 H-3 Page 2

+

## TSR80FB6.txt

_			TSR80FB6.t>	(t	· .
	AC POWER	9E-4 .204E-	4 .635E-5 6	5.07E-4	
9	7200 SEC 'ENVIRONMENT 1 0.0 6 0.0 11 3.083E-04 16 6.506E-05 AC POWER	2 5.860E- 7 2.163E- 12 1.230E- 17 4.730E-	05 3 8.895 04 8 2.486 05 13 4.326	5E-05 9 8.475E-0 5E-05 14 2.276E-0	4 10 4.682E-05 5 15 5.440E-05
9 LOSS OF	'ENVIRONMENT 1 0.0 6 0.0 11 6.262E-04 16 1.321E-04 AC POWER	2 1.190E- 7 4.393E- 12 2.498E- 17 9.606E-	04 3 1 807 04 8 5 049 05 13 8 787	9E-05 9 1.721E-0 7E-05 14 4.623E-0	3 10 9.508E-05 5 15 1.105E-04
LOSS OF	'ENVIRONMENT 1 0.0 6 0.0 11 0.0 16 0.0 AC POWER	2 0.0 7 0.0 12 0.0 17 0.0	' \$ Th 3 0.0 8 0.0 13 0.0 18 0.0	N= 0.2400E+02 4 0.0 9 0.0 14 0.0 19 0.0	5 0.0 10 0.0 15 0.00
LOSS OF	'ENVIRONMENT 1 0.0 6 0.0 11 0.0 16 0.0 AC POWER	2 0.0 7 0.0 12 0.0 17 0.0	'\$ TH 3 0.0 8 0.0 13 0.0 18 0.0	N= 0.9600E+02 4 0.0 9 0.0 14 0.0 19 0.0	5 0.0 10 0.0 15 0.00
TIME TO 9	720 HR 'ENVIRONMENT 1 0.0 6 0.0 11 0.0 16 0.0	2 0.0 7 0.0 12 0.0 17 0.0	'\$ Tr 3 0.0 8 0.0 13 0.0 18 0.0	N= 0.7200E+03 4 0.0 9 0.0 14 0.0 19 0.0	5 0.0 10 0.0 15 0.00
+	+. +	⊦. <b>+</b>	+	+ +	+
1 0 0 0 0				REVISION REVISION DATE: TODAY IS:	FENCDOSE NUMBER:5 31 JUL 2009 01/29/10 IS: 14:31:17
1ISOTOPE KRM-83 KRM-85 KR-85 KR-87 KR-88 KR-89 XEM-131 XEM-133 XE-133 XE-135 XE-137	(MEV) 0.00 0.15 0.00 0.79 1.96 2.08 0.02 0.04 0.04	/DIS)       (1)         025       (1)         0586       (1)         022       (1)         023       (1)         024       (1)         025       (1)         026       (1)         027       (1)         028       (1)         029       (1)         0317       (1)         0416       (1)         0416       (1)         0418       (1)         0470       (1)	TA ENERGY MEV/DIS) 0.0371 0.2529 0.2506 1.3237 0.3750 1.2310 0.1428 0.1428 0.1354 0.0950 0.3168 1.6420 Page 3		

XE-138 I-131 I-132 I-133 I-134 I-135 H-3	$\begin{array}{c} 1.1830 \\ 0.3810 \\ 2.3332 \\ 0.6100 \\ 2.5928 \\ 1.5802 \\ 0.0000 \end{array}$	TSR80FB6.txt 0.6058 0.1943 0.5143 0.4080 0.6102 0.3680 0.0057	
OCHI/Q 1.410E-04 6.070E-04	6.680E-05	4.590E-05 2.040E-05 6.350E-06	
1 OLOSS OF AC PC TIME TO 7200 COMPONENT 9 1ISOTOPE		, TIME = 2.	
KRM-83 KRM-85 KR-85 KR-87 KR-87 KR-88 KR-89 XEM-131 XEM-133 XE-133 XE-133 XE-135 XE-135 XE-137 XE-138 I-131 I-132 I-133 I-134 I-135 H-3 OLOSS OF AC PO TIME TO 8 HOU COMPONENT 9 IISOTOPE		, TIME = 8.	
KRM-83 KRM-85 KR-85 KR-87 KR-88 KR-89 XEM-131 XEM-133 XEM-133 XEM-135 XE-135 XE-137 XE-138 I-131 I-132 I-133 I-134 I-135 H-3	0.0000E+00 0.1190E-03 0.1807E-03 0.2069E-03 0.2069E-03 0.0000E+00 0.4393E-03 0.5049E-04 0.1721E-02 0.9508E-04 0.6262E-03 0.2498E-04 0.8787E-04 0.4623E-04 0.4623E-04 0.1105E-03 0.1321E-03 0.9606E-04 0.2029E-03 0.4033E+02	Page 4	

OLOSS OF AC TIME TO 24 COMPONENT 1ISOTOPE	POWER HR 9 ENVIRONMENT
KRM-83 KRM-85 KR-85 KR-87 KR-88 KR-89 XEM-131 XEM-133 XE-133 XE-135 XE-135 XE-135 XE-137 XE-138 I-131 I-132 I-133 I-134 I-135 H-3 OLOSS OF AC TIME TO 96 COMPONENT IISOTOPE	0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00
KRM-83 KRM-85 KR-85 KR-87 KR-88 KR-89 XEM-131 XEM-133 XE-133 XE-135 XE-135 XE-137 XE-138 I-131 I-132 I-133 I-134 I-135 H-3 OLOSS OF AC TIME TO 720 COMPONENT IISOTOPE	
KRM-83 KRM-85 KR-85 KR-87 KR-88 KR-89 XEM-131 XEM-133 XE-133 XEM-135	0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

, TIME = 24.

, TIME = 96.

, TIME =720.

XE-135	0.0000E+00
XE-137	0.0000E+00
XE-138	0.0000E+00
I-131	0.0000E+00
I-132	0.0000E+00
I-133	0.0000E+00
I-134	0.0000E+00
I-135	0.0000E+00
н-3	0.0000E+00

1INPUT CONCENTRATION							
KRM-83	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00		
KRM-85	5.8600E-05	1.1900E-04	0.0000E+00	0.0000E+00	0.0000E+00		
kr-85	8.8950E-05	1.8070E-04	0.0000E+00	0.0000E+00	0.0000E+00		
kr-87	5.1980E-05	1.0560E-04	0.0000E+00	0.0000E+00	0.0000E+00		
kr-88	1.0190E-04	2.0690E-04	0.0000E+00	0.0000E+00	0.0000E+00		
kr-89	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00		
XEM-131	2.1630E-04	4.3930E-04	0.0000E+00	0.0000E+00	0.0000E+00		
XEM-133	2.4860E-05	5.0490E-05	0.0000E+00	0.0000E+00	0.0000E+00		
XE-133	8.4750E-04	1.7210E-03	0.0000E+00	0.0000E+00	0.0000E+00		
XEM-135	4.6820E-05	9.5080E-05	0.0000E+00	0.0000E+00	0.0000E+00		
XE-135	3.0830E-04	6.2620E-04	0.0000E+00	0.0000E+00	0.0000E+00		
XE-137	1.2300E-05	2.4980E-05	0.0000E+00	0.0000E+00	0.0000E+00		
XE-138	4.3260E-05	8.7870E-05	0.0000E+00	0.0000E+00	0.0000E+00		
I-131	2.2760E-05	4.6230E-05	0.0000E+00	0.0000E+00	0.0000E+00		
I-132	5.4400E-05	1.1050E-04	0.0000E+00	0.0000E+00	0.0000E+00		
I-133	6.5060E-05	1.3210E-04	0.0000E+00	0.0000E+00	0.0000E+00		
I-134	4.7300E-05	9.6060E-05	0.0000E+00	0.0000E+00	0.0000E+00		
I-135	9.9930E-05	2.0290E-04	0.0000E+00	0.0000E+00	0.0000E+00		
н-3	1.9860E+01	4.0330E+01	0.0000E+00	0.0000E+00	0.0000E+00		

1LOSS OF AC POWER

OGAMMA DOSE FOR EACH ISOTOPE AND TIME PERIOD (REM)

ID ISOTOPE 2-HR EAB	0-2 HRS	2-8 HRS	8-24 HRS	1-4 DAYS	4-30 DAYS
1 KRM-83 0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
2 KRM-85 1.411E-09	3.277E-10	3.152E-10	0.000E+00	0.000E+00	0.000E+00
3 KR-85 2.983E-11	6.930E-12	6.670E-12	0.000E+00	0.000E+00	0.000E+00
4 KR-87 6.254E-09	1.453E-09	1.398E-09	0.000E+00	0.000E+00	0.000E+00
5 KR-88 3.035E-08	7.051E-09	6.782E-09	0.000E+00	0.000E+00	0.000E+00
6 KR-89 0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
7 XEM-131 6.584E-10	1.529E-10	1.472E-10	0.000E+00	0.000E+00	0.000E+00
8 XEM-133 1.568E-10	3.642E-11	3.504E-11	0.000E+00	0.000E+00	0.000E+00
9 XE-133 5.837E-09	1.356E-09	1.304E-09	0.000E+00	0.000E+00	0.000E+00
10 XEM-135 3.068E-09	7.126E-10	6.856E-10	0.000E+00	0.000E+00	0.000E+00
11 XE-135 1.155E-08	2.684E-09	2.583E-09	0.000E+00	0.000E+00	0.000E+00

10	0 202- 11	TSR80FB		0 000- 00	0 0005 00
12 XE-137 3.613E-10	8.392E-11	8.075E-11	0.000E+00	0.000E+00	0.000E+00
13 XE-138 7.766E-09	1.804E-09	1.736E-09	0.000E+00	0.000E+00	0.000E+00
14 I-131 1.316E-09	3.056E-10	2.941E-10	0.000E+00	0.000E+00	0.000E+00
15 I-132 1.926E-08	4.474E-09	4.306E-09	0.000E+00	0.000E+00	0.000E+00
16 I-133 6.022E-09	1.399E-09	1.346E-09	0.000E+00	0.000E+00	0.000E+00
17 I-134 1.861E-08	4.323E-09	4.159E-09	0.000E+00	0.000E+00	0.000E+00
18 I-135 2.396E-08	5.566E-09	5.354E-09	0.000E+00	0.000E+00	0.000E+00
19 H-3 0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
			<b>_</b>		
TOTAL 1.366E-07	3.174E-08	3.053E-08	0.000E+00	0.000E+00	0.000E+00
OBETA DOSE FOR EACH	ISOTOPE AND	TIME PERIOD	(REM)		
ID ISOTOPE 2-HR EAB	0-2 HRS	2-8 HRS	8-24 HRS	1-4 DAYS	4-30 DAYS
1 KRM-83 0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
2 KRM-85	4.806E-10	4.624E-10	0.000E+00	0.000E+00	0.000E+00
2.069E-09 3 KR-85	7.229E-10	6.957E-10	0.000E+00	0.000E+00	0.000E+00
3.112E-09 4 KR-87	2.231E-09	2.148E-09	0.000E+00	0.000E+00	0.000E+00
9.606E-09 5 KR-88	1.239E-09	1.192E-09	0.000E+00	0.000E+00	0.000E+00
5.335E-09 6 KR-89	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.000E+00 7 XEM-131	1.002E-09	9.638E-10	0.000E+00	0.000E+00	0.000E+00
4.312E-09 8 XEM-133	1.530E-10	1.472E-10	0.000E+00	0.000E+00	0.000E+00
6.587E-10 9 XE-133	3.721E-09	3.580E-09	0.000E+00	0.000E+00	0.000E+00
	1.442E-10	1.388E-10	0.000E+00	0.000E+00	0.000E+00
6.210E-10 11 XE-135	3.167E-09	3.048E-09	0.000E+00	0.000E+00	0.000E+00
1.364E-08 12 XE-137	6.550E-10	6.302E-10	0.000E+00	0.000E+00	0.000E+00
2.820E-09 13 XE-138	8.499E-10	8.179E-10	0.000E+00	0.000E+00	0.000E+00
3.659E-09 14 I-131	1.434E-10	1.380E-10	0.000E+00	0.000E+00	0.000E+00
6.174E-10 15 I-132	9.073E-10	8.731E-10	0.000E+00	0.000E+00	0.000E+00
3.906E-09 16 I-133	8.608E-10	8.281E-10	0.000E+00	0.000E+00	0.000E+00
3.706E-09 17 I-134	9.360E-10	9.006E-10	0.000E+00	0.000E+00	0.000E+00
4.029E-09 18 I-135	1.193E-09	1.147E-09	0.000E+00	0.000E+00	0.000E+00
5.134E-09 19 H-3	3.658E-06	3.519E-06	0.000E+00	0.000E+00	0.000E+00
1.575E-05		0	7		

TSR80FB6.txt

			BO.LXL					
TOTAL 1.583E-05 0INHALATION DOSE FC								
			8-24 HRS					
1 I-131 7.095E-06					0.000E+00			
2 I-132 6.130E-07	1.424E-07	1.370E-07	0.000E+00	0.000E+00	0.000E+00			
	1.273E-06	1.225E-06	0.000E+00	0.000E+00	0.000E+00			
4 I-134 2.491E-07	5.786E-08	5.567E-08	0.000E+00	0.000E+00	0.000E+00			
2.491E-07 5 I-135 2.610E-06				0.000E+00				
TOTAL 1.605E-05	3.728E-06	3.587E-06	0.000E+00	0.000E+00	0.000E+00			
OINHALATION DOSE FO	OR EACH IODIN	NE AND TIME	PERIOD (REM)	(ICRP 30 DAT	TA)			
ID ISOTOPE 2-HR EAB	0-2 HRS	2-8 HRS	8-24 HRS	1-4 DAYS	4-30 DAYS			
1 I-131 5.177E-06	1.203E-06	1.157E-06	0.000E+00	0.000E+00	0.000E+00			
2 I-132	1.714E-08	1.650E-08	0.000E+00	0.000E+00	0.000E+00			
7.379E-08 3 I-133 2.467E-06	5.730E-07	5.512E-07	0.000E+00	0.000E+00	0.000E+00			
4 I-134	2.476E-09	2.382E-09	0.000E+00	0.000E+00	0.000E+00			
1.066E-08 5 I-135 6.588E-07	1.530E-07	1.472E-07		0.000E+00	0.000E+00			
TOTAL 8.387E-06 0AT 2 HOUR EXCLUSIC	1.948E-06	1.875E-06		0.000E+00	0.000E+00			
TOTAL GAMMA DOSE = 1.366E-07 REM TOTAL BETA DOSE = 1.583E-05 REM TOTAL INHALATION DOSE (ICRP-2) = 1.605E-05 REM TOTAL INHALATION DOSE (ICRP-30) = 8.387E-06 REM								
OAT 30 DAY LPZ BOUNDARY								
TOTAL GAMMA DOSE = 6.227E-08 REM TOTAL BETA DOSE = 7.214E-06 REM TOTAL INHALATION DOSE (ICRP-2) = 7.315E-06 REM TOTAL INHALATION DOSE (ICRP-30) = 3.823E-06 REM								
KRM 83 IS NOT IN KRM 83 IS NOT IN KRM 83 IS NOT IN	KRM83 IS NOT IN EPA LIBRARY. ISOTOPE IGNORED.KRM83 IS NOT IN EPA LIBRARY. ISOTOPE IGNORED.							

TSR80FB6.txt KRM 83 IS NOT IN EPA LIBRARY. ISOTOPE IGNORED.

1LOSS OF AC POWER

OTEDE FOR EACH ISOTOPE AND TIME PERIOD (REM)

ID 2-HR EA		0-2 HRS	2-8 HRS	8-24 HRS	1-4 DAYS	4-30 DAYS
1	KRM-83	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.000E+ 2	KRM-85	2.135E-10	2.054E-10	0.000E+00	0.000E+00	0.000E+00
9.189E- 3	kr-85	4.529E-12	4.359E-12	0.000E+00	0.000E+00	0.000E+00
1.950E- 4	KR-87	1.038E-09	9.993E-10	0.000E+00	0.000E+00	0.000E+00
4.470E- 5 2.234E-	KR-88	5.188E-09	4.991E-09	0.000E+00	0.000E+00	0.000E+00
	kr-89	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
1.787E-	XEM-131	4.151E-11	3.994E-11	0.000E+00	0.000E+00	0.000E+00
	XEM-133	1.655E-11	1.593E-11	0.000E+00	0.000E+00	0.000E+00
2.858E-	XE-133	6.639E-10	6.387E-10	0.000E+00	0.000E+00	0.000E+00
10 1.974E-	XEM-135	4.584E-10	4.411E-10	0.000E+00	0.000E+00	0.000E+00
11 7.278E-	XE-135	1.691E-09	1.627E-09	0.000E+00	0.000E+00	0.000E+00
	XE-137	5.299E-11	5.099E-11	0.000E+00	0.000E+00	0.000E+00
	XE-138	1.220E-09	1.174E-09	0.000E+00	0.000E+00	0.000E+00
14 2.034E-	I-131	4.725E-08	4.546E-08	0.000E+00	0.000E+00	0.000E+00
	I-132	1.044E-08	1.005E-08	0.000E+00	0.000E+00	0.000E+00
16 1.645E-	I-133	3.822E-08	3.677E-08	0.000E+00	0.000E+00	0.000E+00
	I-134	5.743E-09	5.526E-09	0.000E+00	0.000E+00	0.000E+00
18 1.365E-	1-135	3.170E-08	3.050E-08	0.000E+00	0.000E+00	0.000E+00
	н-3	5.989E-05	5.762E-05	0.000E+00	0.000E+00	0.000E+00
TOTAL 2.585E-	-04	6.004E-05	5.776E-05	0.000E+00	0.000E+00	0.000E+00
	TEDE = 1.17 RUN IS DATED		IE TOTAL ELAP	SED TIME IS	0.0 MINUTES	5. 0.0 SECONDS.

Attachment 10

## **TVA Nuclear Power Group Calculation**

## WBNAPS3-077 R11

Offsite and Control Room Operator Doses Due to a Main Steam Line Break

# NPG CALCULATION COVERSHEET/CCRIS UPDATE

				ı										Page	1	·
REV 0 EDA	IS/RIN	AS NO.						EÐ	MS TY	PE:	EDMS AC					
B26 931014 409				calcula	n)enoti	u <b>ciear</b> )	Τ9	31	00	21	90	102				
Calc Title:																
Offsite a	nd Co	ontrol	Roon	n O	perator	Dos	es Du	e to a l	Main	Steam	Line Brea	ak				
CALC ID	1	MPE	ORC	2	PLANT	B	RANCH			NUMBE	3	CUI	REY	NEW	REV	
CURREN	r	CN	NUC	;	WBN		NTB	WBN	APS3-	077			10	11		APPLICABILITY
NEW		CN	NUC	;								Entire calc 🛛 Selected pages 🔲				
ACTION	NEW REV	/ ISION			elete Ename	8		RSEDE					(F be	CCRIS Changes D or calc revision, CCRIS en reviewed and no CRIS changes required)		
<u>UNITS</u> 1/2		<u>syst</u> Nà	EMS							<u>25</u>						· .
DCN.EDC.					PLICABL	e de	SIGN DO	CUMEN				·				CLASSIFICATION
QUALITY SAFETY UNVERIFIED S				D/OR		UIREMENT 3 CONDITIC No 🖾		DESIGI ATTAC Yes [	HMEN	17	SAR/TS and/or ISFSI SAR/CoC AFFECTEL Yes X No					
PREPARER ID     PREPARER PHONE NO     PREPARING ORG (BRANCH)     VERIFICATION METHOD     NEW.METHOD OF ANA MCBERG       MCBERG     603-926-3810     WorkeyParsons/Poliestar     Design Review     II Yes     No																
PREPARE	R SIG	NATUR	Ē					DATE		HECKER	SIGNATU	۲Ē			1	DATE
Marc C. Be	ng 🎜	then	C.Bl	r	9		1-2	-1-10	P-10 Heather M. Lucek Heather M. Twelk			1.29.10				
VERIFIER	-			T				DATE APPROVAL SIGNATURE DEF 2/19/2010			DATE					
Heather M	. Luce	* He	athe	L	Mh	хl	K /·	29,10	<u>A</u>	JSTh	moson (	204	esn	er -		02/19/10
dose limits output is un There an at the 48 he of 0.265 µc primary to 0.1µCi/gm values give	ation i due to sed as re seve our ma Ci/gm Secon . The T e more	is perform a Main input to cral case eximum with an dary sid fritium limitin	rmed to n Steam o compt es mode allowa accide le leak i Produc g result	sho tin teled. ble 2 nt in is 15 tion s. Re	w that the e Break a codes FEI Each cas 21 µCi/gn itiated iou 0 gpd in t Core (TP evision 46	t the NCDO has I-13 line s he un C) war	Watts Be DSE and two sets 1 equiva pike con faulted 1 as used yzed the	ar Nuclea COROI One set lient. The sisting coops, an The X/O Unit 2 N	ar Plan O which t has a p e other of a 500 ad the s Values MSLB.	t. The c h determ pre-accid set has t ) increase econdary s using th	omputer cod ine the offsit lent iodine s the reactor co in the rate side activit the ARCON9	le STP d te and c spike wh colant a of iodin ty is at th 6 metho	etermine ontrol ro are the i t the may e release ne Techn adology	es the ac om dos odine le cimum : from the ical Special  xivity cs. zvel i steady he fue ecific	CFR50 App. A GDC 19 y releases. The STP n the reactor coolant is y state I-131 equivalent el. In both sets, the sation limit of 'he ARCON96 X/Q	
The follow using ICR	ing re	suits sh	ould ub	tima	tely be ref	lecte	<u>i in FSA</u>	<u>R Table</u>	15.5-7	and Tex	hnical Spec	ification	<b>s:</b>			· .
2	l μCi	/gm I-1	131 equ	ivak	ent 48 ho	ır lie		•.								
					valent equilent in the											
Г	he m	ximun	1 prima	ry t	o seconds	ry si	de leak 1	rate in ti	he unfs	aulted st	cam genera	tors is 1	50 gpd/	steam g	;ener	ator
					y to secon ary to sec											
See Appen	dix G	for oth	er cases		· · · · · · · · · · · · · · · · · · ·			-			ance the lim	iting do		he thum	id de	oses. The tritium affects
only the be	ta dos	e and T	EDE. 1	The ]	IPC obvi	usty	bounds	the non-	TPC cc	onfigurat	ion.		303 M C U			
		HE/EF					FIC	HE NUM	BER(S	) TVA-F-	W001412					
LOA	DINT	O EDM	s and S and S and	RET	TROY URN CAL URN CAL		ATION T	O CALC	ULATIC	on libr	ARY. A	DDRES	:S:			
																NEDD 2 4 F10 20 2000

TVA 40532 [10-2008]

NEDP-2-1 [10-20-2008]

# NPG CALCULATION COVERSHEET/CCRIS UPDATE

								Page 2	
CALC ID	TYPE	ORG	PLANT	BRANCH	NUMBER	<u>}</u>	REV		
	CN	NUC	WBN	NTB	WBNAPS3-077		11		
	<u></u>		Å	LTERNATE C	ALCULATION IDENT	IFICATION			
				·····		•			
							· · · · · · · · · · · · · · · · · · ·	·····	{
BLDG	RO	OM	ELEV	COORD/AZIM		Print Report	Yes 🛛		
and the second second second second second second second second second second second second second second second					Polestar	1			
CATECODI	E C								1

# KEY NOUNS (A-add, D-delete)

ACTION (A/D)	KEY NOUN	<u>A/D</u>	KEY NOUN
			· · · · · · · · · · · · · · · · · · ·

# <u>CROSS-REFERENCES</u> (A-add, C-change, D-delete)

ACTION (A/C/D)	XREF CODE	XREF TYPE	XREF PLANT	XREF BRANCH	XREF NUMBER	XREF REV
Α	Р	VD	WBN	MEB	LTR-CRA-09-103	
<u>A</u>	Р	VD	WBN	MEB	WBT-D-1202	
Α	Р	ED	WBN	MEB	EDCR 54956	
	<u> </u>		·		-	
					\	
· · · · · · · · · · · · · · · · · · ·						
				-	· · · · ·	
CCRIS ONLY L Following are n	JPDATES: equired only wh	en making key	word/cross refer	ence CCRIS up	dates and page 1 of form NEDP-2-1 is not	included:
					:	
	PREPARER SI	GNATURE		DATE	CHECKER SIGNATURE	DATE
PREPARER PI	HONE NO.		EC	MS ACCESSIC	, NO.	
TVA 40532 [10-2				ge 2 of 2		[10-20-2008]

# NPG CALCULATION RECORD OF REVISION

# CALCULATION IDENTIFIER WBNAPS3-077

<b>Fitle</b>	Offsite and Control Room Operator Doses Due to a Main Steam Line Break
Revision No.	DESCRIPTION OF REVISION
0	Initial Issue
1	Revision 1 is performed because the X/Q values have changed. R1 pages 6 and 7 are new, and all pages are renumbered. Only changed text have revision bars. pages added: 6, 7 pages changed: all pages deleted: none
2	Revision 2 was performed because of new control room makeup flow (711 cfm). pages added: none pages deleted: none pages changed: 1-7, 9, 13
3	Revision 3 was performed to incorporate larger Technical Specification primary to secondary side leakage as part of the alternate steam generator tube plugging project. Since the final leakage value has not been established, a 5 gpm and a 10 gpm case was performed. All pages were renumbered, however only pages with text changes will have revision bars and will be listed as having been changed: Pages added: none pages deleted: classification forms pages changed: 1-9, 12 R3: 13 total pages
4	Revision 4 was performed to change the iodine partition factor for the faulted steam generator from 100 to 1 to account for steam generator dryout. The steady state preaccident leakage is changed to 150 gpd/steam generator. A preaccident iodine spike of 60 uCi/gm is applied to the reactor coolant. An accident initiated spiking factor of 500 increase in iodine release from the fuel to the reactor coolant was incorporated in the STP model. This revision is part of the corrective action for WBN PER 99-017510-000. Pages added: new coversheet (page 1) Pages deleted: none
	Pages changed: 1a (old coversheet page 1), 1b (old page 1a), 2-9, 12 R4: 15 total pages
5	Revision 5 is performed to incorporate new iodine production rates, split the iodine spiking model into two separate cases, and also to perform an additional analysis for a maximum Technical Specification limit of 0.35 $\mu$ Ci/gm I-131 equivalent (steady state The non-steady state maximum limit of 60 $\mu$ Ci/gm I-131 * 0.35 = 21 $\mu$ Ci/gm I-131 is also analyzed. Additionally, the maximum allowable primary to secondary side leakage is determined for all cases. Justification for usage of the ANSI-ANS 18.1-1984 spectrum is also provided. Due to the nature of the revision, all pages were changed, with significant additions (Appendix A, and Attachment 1). Pages added: all pages changed: all R5: 27 total pages
6	Revision 6 is performed to add the Tritium Production Core (TPC) with a two TPBAR failure, add a 0.265 and 0.177 $\mu$ Ci/gm 1- 131 equivalent steady state with factor of 500 iodine spike case (and deleted the 0.35 $\mu$ Ci/gm case), add 21 $\mu$ Ci/gm I-131 equivalent 48 hour maximum case, change the noble gas inventories to the maximum allowable based on 100/Ebar, add ARCON96 X/Q values (also use Halitsky X/Q values), and to use the latest versions of COROD (R5) and FENCDOSE (R4) which now determine thyroid doses based on ICRP-2 and ICRP-30 as well as now determines the TEDE. Add a second actual measurement of reactor coolant inventories. Incorporated NISYS and Westinghouse 3rd party review comments. Due to the natur of the changes, all pages were renumbered. Actual text changes are indicated with revision bars. The results of this calculation affect the FSAR and Technical Specifications. These changes will be incorporated by the corrective action plan for PER 00-012545-000. Pages added: all Pages deleted: all Pages changed: all R6: 60 total pages
7	Revision 7 is performed to increase the Steam Generator leakage post accident. In order to accommodate a later decision on the actual leakage, several different leakages were analyzed. The calculation methodology from R6 was unchanged. Revision 6 result were preserved by placing them in Appendix G. The results of this calculation affect the FSAR. The SAR change package number is 1770. Pages added: none Pages deleted: all old coversheets Pages changed: 1-8, 13, 14, 18-25, 41, 45, 48, 49
	R7: 61 total pages

# NPG CALCULATION RECORD OF REVISION

CALCULATION IDENTIFIER WBNAPS3-077

Title	Offsite and Control Room Operator Doses Due to a Main Steam Line Break
Revision No.	DESCRIPTION OF REVISION
8	Revision 8 is performed to add a 1.4 gpm SG leak case. The results of this calculation may affect the FSAR depending on establishment of final allowable leakage rate. Pages added: none Pages changed: 1-3, 5-8, 14, 19, 21, 23 R8: 61 total pages
9	Revision 9 is performed to address the new Replacement Steam Generators (DCN 51754). The number of cases analyzed has been reduced to only the preaccident and accident initiated Iodine spike with no additional post accident Steam Generator leakage (alternate repair criteria). The new steam generators have different inventories and mass releases. The previous original steam generator cases used in the FSAR (10 gpm known + 1 gpm unknown + 3 gpm post accident leakage) can be found in Appendix G (COROD results were corrected). In addition, the COROD model recirculation rate was corrected as part of corrective action PER 61493. Two CREVS train operation is addressed in assumption 14. The COROD time increments were corrected (PER 94426). Due to the nature of the revision, all pages were renumbered. Actual text changes are marked with revision bars. The results of thi calculation will result in changes to ch. 15 of the FSAR. The full impact to the FSAR and TS are discussed in the screening review for DCN 51754. Pages added: 4 Pages changed: 1, 2, 5-10, 13-20, 29-35 Pages deleted: design verification form
10	<ul> <li>R9: 46 total page</li> <li>Revision 010 of this calculation was created to add/update Unit 2 applicability. This calculation is applicable to Unit 2 based on the following: <ul> <li>Appendix H of this calculation was added (1) to evaluate the recent Westinghouse steam releases during a Main Steam Line Break (MSLB); and (2) to install Revision 006 (original steam generator) as Appendix H, because it contains more conservative results than Revision 009 which are applicable to Unit 2. This calculation supports Chapter 15 of the FSAR.</li> <li>Affected design inputs were reviewed and (1) were found to be correct, or (2) were corrected as necessary.</li> <li>The effect of Unit 2 operation on Unit 1 margins has been reviewed with no impact.</li> <li>Ultimate heat sink (UHS) temperature was not used as an input to the calculation analyses. Therefore, existing calculation results will not be affected by changing the UHS technical specification temperature.</li> <li>FSAR AND TECHNICAL SPECIFICATIONS HAVE BEEN REVIEWED AND FSAR SECTION 15.5.4 CHANGE PAGES ARI PART OF FSAR AMENDMENT 97.</li> <li>Reviewer:</li></ul></li></ul>
11	<ul> <li>1 page; Appendix G - 1 page; Appendix H - 15 pages; Attachment 1 - 11 pages)</li> <li>Revision 11 is performed to explicitly evaluate Unit 2, which has the original steam generators. This is performed in Appendix H and replaces the previous Appendix H added in revision 10. Westinghouse provided revised mass releases. Also, the Unit 2 specific ARCON96 X/Q values were used. The SAR has been reviewed by <u>Marc</u></li> <li>Berg and this revision of the calculation affects Unit 2 SAR section <u>Chapter 15.5.4</u>, A SAR change shall be processed in accordance with NGDC PP-10 to reflect the calculation results as part of EDCR 54956. Tech Specs has been reviewed and determined not to be affected.</li> <li>Pages added: design verification form (p.6)</li> <li>Pages changed: 1, 2, 4-9, 19-21, 37-40</li> <li>R11: 51 total pages</li> </ul>

TVA 40709 [10-2008]

NEDP-2-2 [10-20-2008]

	Page NPG CALCULATION TABLE OF CONTENTS	<u> </u>					
alculation	dentifier: WBNAPS3-077 Revision: 11						
<u> </u>							
SECTION	TITLE						
	Coversheet	1					
	Revision Log	3					
	Table of Contents	5					
	Calculation Design Verification Form	6					
	Computer Input File Storage Information Sheet	7					
	Computer Output Microfiche Information Sheet	8					
	Purpose	9					
	Introduction	9					
	Assumptions	9					
	Special Requirements/Limiting Conditions	10					
	Calculations	11					
	Results	19					
	Discussion and Conclusion	20					
	References	21					
	Appendix A: Justification for Using ANSI/ANS-18.1-1984 Expected Coolant Spectrum	22					
	Appendix B: Determination of Letdown Flow Rate Uncertainty	24					
	Supporting attachments for Appendix B	26					
	Appendix C: Example of STP run, preaccident iodine spiking case	30					
	Appendix D: Example of STP run, accident initiated iodine spiking case	32					
	Appendix E: Example of COROD run	34					
	Appendix F: Example of FENCDOSE run	36					
	Appendix G: Additional Cases	37					
	Appendix H: Unit 2 MSLB	38					
	Attachment 1: Surveillance Test 1-SI-68-28 performed on 7/10/00	41					
	Surveillance Test 1-SI-68-28 performed on 4/9/01	46					
	、						

TVA 40710 [10-2008]

NEDP-2-3 [10-20-2008]

|

	Page 6					
NPG CAL	CULATION VERIFICATION FORM					
Calculation Identifier WBNAPS3-077	Revision 11					
Method of verification used:         1.       Design Review       Image: Constraint of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco	Heatur Tweel Verifier Heather Lucek Date 1-29-2010					
3. Qualification Test						
an appropriate manner to address the main sta methodology, design input, and assumptions	ve found the calculation to have been completed in a technically sound earn line break in Unit 2. In conducting the verification I reviewed the which I found to be valid and conservative. I verified the computer code by contained the changes as specified in this document. I also confirmed e results.					
<b>*</b> -						
	ITY EVALUATED AND					
ACCEPT						
	RE REV II DATE					

TVA 40533 [10-2008]

Page 1 of 1

NEDP-2-4 [10-20-2008]

				· · ·			
			,				
		Pag	e 7				
NPG COMPUTER INPUT FILE STORAGE INFORMATION SHEET							
Document WBNAPS3-077	Rev. 11	Plant: WBN					
Subject:							
Offsite and Control Room Operator Doses Due	to a Main Ste	am Line Break					
Electronic storage of the input files for this ca	culation is not	required Commen	te:				
		Tegarca. Commen					
· · · · ·							
Input files for this calculation have been store		and sufficient ident	tifuing information is				
provided below for each input file. (Any retrie							
The R1 input files are archived on FILEKEEPER u	inder reference	I.D.# 263447					
The R2 input files are archived on FILEKEEPER u	inder reference	I.D.# 263715					
The R3 input files are permanently stored in FILE	-						
The R4 input files are permanently stored in FILE							
The R5 input files are permanently stored in FILE							
The R6 input files are permanently stored in FILE							
The R7 input files are permanently stored in FILEP.							
The R8 input files are permanently stored in FILE The R9 input files are permanently stored in FILE							
The R11 input files are permanently stored in eFic							
				·			
Microfiche/eFiche	.,,						
		<u></u>					



	NPG CO	MPUTER OUTPUT	· · · · · · · · · · · · · · · · · · ·	pa	ge 8
	MICROFICHI	E INFORMATION SHI	EET		
Document WBNAP	S3-077	Rev. 11	Plant: WBN		
Subject: Offsite and Control	Room Operator Do	ses Due to a Main Ste	eam Line Break		
Microfiche Number	Description				
R0:TVA-F-G104614 R1:TVA-F-C000078 R2:TVA-F-C000119 R3:TVA-F-C000294 R4:TVA-F-C000301 R5:TVA-F-C000316 R6:TVA-F-W000220	R0 Computer Runs see R5 fi R1 Computer Runs see R5 fi R2 Computer Runs see R5 fi R3: Computer Runs see R5 fi R4: Computer Runs see R5 fi R5: Computer Runs see R5 fi R6: Computer Runs: See R9 for listing	or listing or listing for listing for listing			
R7: TVA-F-W000290	APS77C7# COROD co APS77F7# FENCDOSE off where #=: A, E, I, M, Q, U = 21 $\mu$ Ci/gr B, F, J, N, R, V = 0.265 $\mu$ Ci C, G, K, O, S, W = same as D, H, L, P, T, X = same as B And A, B, C, D = 5.4 gpm SG lea E, F, G, H = 1.0 gpm SG lea I, J, K, L = 2.0 gpm SG lea Q, R, S, T = 4.0 gpm SG lea U, V, W, X = 5.0 gpm SG lea	n with 10+1 gpm primary to seca /gm with 10+1 gpm prim to seco A, E, I, M, Q, U but with ARCO , F, J, N, R, V but with ARCON k k	ndary leak, 500 I spike, Halitsk N96 X/Q		
R8: TVA-F-W000360	APS77C8# COROD co APS77F8# FENCDOSE off where $\#=:$ A = 21 $\mu$ Ci/gm with 10+1 gg	om primary to secondary side lea gpm prim to secondary leak, 50 CON96 X/Q			
R9: TVA-F-W000611	APS77C9# COROD co APS77F9# FENCDOSE off where $\#=: A, E = 21 \ \mu Ci/gm$	with 10+1 gpm primary to secon leak, 500 I spike, ARCON96 X		, В,F=0.265 µСі/gm wi	ith
R11: TVA-F-W001412	APS77C10# COROD c APS77F10# FENCDOSE of where #=: A=21 µCi/gm wit	urce terms ontrol room dose fisite dose h 10+1 gpm primary to secondar gpm prim to secondary leak, 500			
		• · · · · · · · · · · · · · · · · · · ·			

Calculatio	n No. WBNAPS3-077	Rev: 11		Plant: WBN	Page: 9
Subject:	Offsite and Control Room Operator Doses Du	e to a Main	Prep	ared: MUS	Date: 1-29-10
	Steam Line Break		Cheo	ked: Um	Date: 1.29.10

#### Purpose

The purpose of this calculation is to determine the offsite and control room operator dose due to a Main Steam Line Break (MSLB). The results will be used in FSAR ch.15.5 to show compliance with 10CFR100 and 10CFR50 App.A GDC 19. This calculation also establishes the maximum primary to secondary side leakage and the maximum I-131 equivalent concentrations in the primary and secondary side coolant.

Revision 9 is performed due to the replacement of the steam generators. The new steam generators have different mass inventories and mass releases than the original steam generators. Also, the post accident leakage due to Alternate Repair Criteria is eliminated. Therefore only one leakage case is analyzed, utilizing the Tritium Production Core (TPC). The original steam generator cases used in the FSAR are archived in Appendix G. There are two cases modeled. One case has a pre-accident iodine spike where the iodine level is the reactor coolant at the 48 hour maximum allowable 21  $\mu$ Ci/gm I-131 equivalent. The other case has the reactor coolant at the maximum steady state I-131 equivalent of 0.265  $\mu$ Ci/gm I-131 equivalent with an accident initiated iodine spike consisting of a 500 increase in the rate of iodine release from the fuel. In both sets, the primary to secondary side leak is 150 gpd in the unfaulted loops, and secondary side activity is at the Technical Specification limit of 0.1  $\mu$ Ci/gm. The Tritium Production Core (TPC) was used. The control room X/Q values using ARCON96 methodology was used. COROD (R6) and FENCDOSE (R4) were used to determine the thyroid doses based on ICRP-2, ICRP-30 and also the TEDE. Only one train of CREVS is utilized (see assumption 14).

Revision 11 is performed to evaluate the Unit 2 MSLB. Unit 2 has the original steam generators, however Westinghouse has provided revised mass releases. Also the Unit 2 ARCON96 X/Q values are used. The results are found in Appendix H.

#### Introduction

A Main Steam Line Break at the Watts Bar Nuclear Plant will result in a significant steam release to the environment. The steam will contain radionuclides if a primary to secondary side leak occurs prior to the MSLB event. This calculation is performed to show that the offsite and control room operator doses do not exceed the 10CFR100 and 10CFR50 App.A GDC 19 dose limits.

This calculation uses the computer code STP (ref.3) to determine the activity releases. The STP output is used as input to computer codes FENCDOSE and COROD. Computer code FENCDOSE (ref.4) is used to determine the offsite dose. Computer code COROD (ref.5) is used to determine the control room operator dose. The base FENCDOSE and COROD models are taken from WBNTSR-008 (ref.9).

There are 2 cases modeled. The first case has a pre-accident iodine spike where the iodine level in the reactor coolant is at the maximum allowable of 21  $\mu$ Ci/gm I-131 equivalent (ref.1). The second has the reactor coolant at the maximum steady state I-131 equivalent of 0.265  $\mu$ Ci/gm with an accident initiated iodine spike consisting of a 500 increase in the rate of iodine release from the fuel. In both cases, the primary to secondary side leak is 150 gpd in the unfaulted loops (ref.21), and the secondary side activity is at the Technical Specification limit of 0.1 $\mu$ Ci/gm (ref.23). There is no additional steam generator leakage post accident, however the preaccident 1 gpm ("unknown") leakage in the faulted steam generator and the 150 gpd/unfaulted steam generator continues post accident. To establish the Iodine release rate rate from the fuel, a preaccident 10 gpm known reactor coolant leak is used with a 1 gpm unknown leak for a total of 11 gpm. Additional cases are performed in Appendix G with other leakage rates and other iodine concentrations. These extra cases were performed so as to give additional information for possible future changes in Technical Specifications. The relative isotopic spectrum is taken from WBNNAL3-003 (Reactor Coolant Activities in Accordance with ANSI/ANS-18.1-1984). Justification of the usage of this spectrum as opposed to the historical design spectrum as found in chapter 11 of the FSAR can be found in Appendix A.

### Assumptions

1. The primary side to secondary side leakage is 150 gpd/steam generator, steady state, with 1 gpm in the faulted steam generator (steady state). The 1 gpm in the faulted steam generator and the 150 gpd/unfaulted steam generators continue following the accident. No additional leakage is assumed.

Technical Justification: 150 gpd/steam generator and the 1 gpm are the maximum Technical Specification leakages. Having the 1 gpm in the faulted loop is conservative.

2. The maximum letdown of 120 gpm (ref.16) + 4.39 gpm uncertainty for a total of 124.39 gpm is used.

Calculation No. WBNAPS3-077	Rev: 11	Plant: WBN	Page: 10
Subject: Offsite and Control Room Operator Doses Du	ue to a Main	Prepared: Mr	Date: (-29-19
Steam Line Break		Checked: Hure	Date: 1.29-10

Technical Justification: This will maximize the removal rate of iodines from the primary coolant, and therefore will maximize the production rate of iodine (production = removal at steady state) and is consistent with NSAL-00-004. See Calculation section for the formulas used. Note, this value is used for calculation of iodine production/removal rates. The letdown is assumed to be isolated at the beginning of the accident to maximize the reactor coolant inventories. The uncertainty of 4.39 gpm is determined in Appendix B.

3. The primary to secondary side leak rates and letdown flow rates are based on Standard Temperature and Pressure (STP). Technical Justification: STP conditions will result in higher densities, therefore higher masses, especially when determining the production rate of iodines.

4. It is assumed that the faulted steam generator dries out at the start of the accident, resulting in an iodine partition factor of 1.0 per ref.10.

Technical Justification: Following an accident, the Main Steam Line will be isolated and the Main and Auxiliary Feedwater will also be isolated. Since the worst case accident occurs with the line associated with a Steam Generator with Technical Specification leakage, that Steam Generator will dry out. In reality, this dry out will not occur until all feedwater has been isolated, and the water boiled off. Assuming dry out conditions at time zero is clearly conservative.

5. In the intact steam generators, the iodine partition factor is assumed to be 100.

Technical Justification: The mass of primary to secondary leakage which occurs to the intact steam generators is small relative to the mass of secondary coolant. Therefore none of this leakage is assumed to flash and the release to the environment is through the steaming process. Reference 10 allows a partition factor of 100 for such cases.

6. A preaccident iodine spike of 21  $\mu$ Ci/gm I-131 equivalent is assumed at the start of the accident. In other cases, an accident initiated iodine spike of 500 increase in the iodine release rate from the fuel is assumed in the accident initiated case with the reactor coolant starting at 0.265  $\mu$ Ci/gm I-131 equivalent.

Technical Justification: SRP 15.1.5 subsection 4a specifies the maximum allowable preaccident spike is required (21  $\mu$ Ci/gm is permissible for 48 hours). SRP 15.1.5 subsection 4b specifies that following an accident, the iodine release rate from the fuel to the reactor coolant is increased by a factor of 500.

7. The letdown demineralizer efficiency is assumed to be 1 for iodines.

Technical Justification: This will maximize iodine removal (=production) rate, and therefore result in larger iodine spiking. 8. The control room isolates in 20.6 seconds (ref.9) due to high radiation in the Control Building Ventilation intake (400 cpm, ref.18). This will result in an unfiltered puff into the control room for that 20.6 seconds.

Technical Justification: This is based on 14 seconds closure time of the dampers, plus 6.6 seconds instrument response time. 9. The tritium inventory in the TPC assumes 2 TPBAR failures (98.4  $\mu$ Ci/gm in the reactor coolant, per WBNNAL3-003, ref.2).

Technical Justification: This will maximize the tritium release.

10. The iodine production rate is based on 10 gpm identified primary side leakage (all leaks) plus 1 gpm unidentified leak, for a total of 11 gpm.

Technical Justification: This is per Technical Specification 3.4.13 (ref.21), and maximizes the iodine production rates. This methodology is consistent with NSAL-00-004, ref.22.

11. It is assumed that the secondary side concentrations are at the maximum of 0.1 µCi/gm I-131 equivalent.

Technical Justification: This is the maximum allowed by the Technical Specifications (ref.23) and is conservative.

12. The noble gas inventories are maximized by scaling them up to 100/Ebar.

Technical Justification: This maximizes the noble gas inventories. 100/Ebar is the Technical Specification limit.

13. It is assumed that there are no fuel failures associated with the accident.

Technical Justification: This accident will not uncover the core, therefore the core will not see extreme temperatures which would lead to fuel failure.

14. Only one train of CREVS is in operation.

Technical Justification: Normally, each CREVS train takes suction from separate intakes with no cross contamination between trains. This leads to on contaminated train, and one uncontaminated train. The only was a 2 CREVS operation could result in higher doses would be for both trains to take suction from the same vent. For this to happen, one intake path would require a failed closed intake path AND a fail open of normally close passive manual damper at the beginning of the accident. An active failure of a train plus a failure of a passive component in less than 24 hours is beyond design basis.

### Special Requirements/Limiting Conditions

There are no special requirements or limiting conditions in this calculation.

Calculation No. WBNAPS3-077	Rev: 11	Plant: WBN	Page: 11
Subject: Offsite and Control Room Operator Doses	Due to a Main	Prepared: M 03	Date: 1-29-10
Steam Line Break	·	Checked: HML	Date: 1.29.10

### Calculations

The STP models consist of a pre-accident iodine spike (see figure 1) model and an accident initiated iodine spike model (see figure 2). The model(s) consist of the following:

Volumes:

#1: Reactor Coolant: 5.78E5 lb (ref.2) = 2.622E8 gm

#2: Steam Generator w/Leak: 5.31E7 gm (ref.6)

#3: Steam Generators w/out Leak: 1.593E8 (ref.6).

#4: Environment: 1 gm (arbitrary) (This volume is made into an accumulator through the "A" card to suppress radioactive decay)

#### Step Sources:

The following equation is used to set up the initial activities (in Ci) for each component using the initial ANSI/ANS-18.1-1984 source modified for WBN operational parameters (which is in units of  $\mu$ Ci/gm):

S = Component Volume [gm] * 1E-6 Ci/µCi * I-131 equivalent conversion factor

To obtain the I-131 equivalent conversion factor, the ANSI/ANS-18.1-1984 spectrum must be converted to I-131 equivalence. See Appendix A for justification for using the ANSI/ANS-18.1-1984 spectrum. From WBNTSR-008, the I-131 equivalence is:

I-131 equivalent = dose conversion factor (D/A) * concentration / I-131 dose conversion factor

	D/A	μCi/gm	I-131 equivalent	1 μCi/gm
	mrads/Ci	coolant ANSI-18.1	µCi/gm	I-131 equivalent
	(ref.9)	(ref.2)		(validation)
1-131	1.48E+09	4.77E-02	4.77E-02	3.80E-01
1-132	5.35E+07	2.25E-01	8.13E-03	6.48E-02
1-133	4.00E+08	1.49E-01	4.03E-02	3.21E-01
1-134	2.50E+07	3.64E-01	6.15E-03	4.90E-02
1-135	1.24E+08	2.78E-01	2.33E-02	1.86E-01
total		1.06E+00	1.255E-01	1.000E+00
		inverse	7.965E+00	

The above table shows that the I-131 equivalent concentration of the initial RCS ANSI 18.1 source term is 0.1255 uCi/gm, as compared to 1 uCi/gm when the RCS is at the TS allowable concentration. Consequently, to ratio the initial source term up to the TS allowable values, the ANSI 18.1 concentrations must be multiplied by 1/0.1255 or 7.965. Note: this equivalence is based on ICRP-2 iodine dose conversion factors because this is what Chemistry uses. Some of the final dose results are based on ICRP-30. Utilizing the different ICRP conversion factors in this case is appropriate because in the above case, the ICRP-2 establishes the inventories, which is independent of determination of doses due to releases.

For the secondary side concentrations from WBNNAL3-003, the same procedure is performed to determine the I-131 equivalence:

	D/A	μCi/gm secondary	I-131 equivalent
	mrads/Ci	side, water ANSI 18.1	µCi/gm
1-131	1.48E+09	1.41E-06	1.41E-06
1-132	5.35E+07	3.37E-06	1.22E-07
1-133	4.00E+08	4.03E-06	1.09E-06
1-134	2.50E+07	2.93E-06	4.95E-08
1-135	1.24E+08	6.19E-06	5.19E-07
total		1.79E-05	3.189E-06
		inverse	3.136E+05

To convert to I-131 equivalence, the secondary side I-131 equivalent conversion factor is (1/3.189E-6) = 3.136E5 gm/µCi (Note: since there is no Technical Specification limit on gross activity for the secondary side like the 100/Ebar for the primary side, this factor is also applied to the secondary side noble gasses in order to retain the proper isotopic ratios).

The isotopes other than iodine in the primary coolant must also be scaled up. In NUREG-0800 R2 Chapter 15.6.3, section III.5 states "The reviewer assumes the primary and secondary coolant activity concentrations allowed by the technical specifications." Reference 3 (of the NUREG-0800) states the following "The specific activity of the reactor coolant shall be limited to: a. Less than or equal to 1 microCurie per gram DOSE EQUIVALENT I-131, and b. Less than or equal to 100/E microCuries per gram of gross activity."

Given the above considerations, the isotopic spectrum found in WBNNAL3-003 was examined. The 100/E values for this particular spectrum are determined in the following Table:

Calculation No. WBNAPS3-077	Rev: 11	Plant: V	WBN	Page: 12
Subject: Offsite and Control Room Operator Doses Due to	a Main	Prepared: M	UB	Date: 1-29-10
Steam Line Break		Checked: #	m	Date: (.24.10

Table 2: Determination of 100/EBAR

Ŧ ſ V.

	A(i)	E(i)	E(i)	E(i)	
	Activity	Beta Energy	Gamma Energy	Total	
Isotope	[uCi/gm]	[MeV/dis]	[MeV/dis]		A(i)*E(i)
Kr-85m	1.71E-01	2.5290E-01	1.5862E-01	4.1152E-01	7.04E-02
Kr-85	2.66E-01	2.5060E-01	2.2102E-03	2.5281E-01	6.73E-02
<b>Kr-8</b> 7	1.61E-01	1.3237E+00	7.9284E-01	2.1165E+00	3.40E-01
Kr-88	3.00E-01	3.7500E-01	1.9629E+00	2.3379E+00	7.01E-01
Xe-131m	6.54E-01	1.4280E-01	2.0058E-02	1.6286E-01	1.06E-01
Xe-133m	7.17E-02	1.8980E-01	4.1559E-02	2.3136E-01	1.66E-02
Xe-133	2.53E+00	1.3540E-01	4.5385E-02	1.8079E-01	4.57E-01
Xe-135m	1.39E-01	9.5000E-02	4.3176E-01	5.2676E-01	7.35E-02
Xe-135	9.04E-01	3.1680E-01	2.4696E-01	5.6376E-01	5.10E-01
Br-84	1.72E-02	1.2842E+00	1.6816E+00	2.9658E+00	5.09E-02
Rb-88	2.04E-01	2.0617E+00	6.8631E-01	2.7480E+00	5.60E-01
Cs-134	7.39E-03	1.5690E-01	1.0361E+00	1.1930E+00	8.82E-03
Cs-136	9.08E-04	1.0140E-01	2.1985E+00	2.2999E+00	2.09E-03
Cs-137	9.79E-03	1.8840E-01	0.0000E+00	1.8840E-01	1.84E-03
Na-24	4.99E-02	5.5460E-01	4.1216E+00	4.6762E+00	2.33E-01
Cr-51	3.26E-03	3.7540E-03	3.2763E-02	3.6517E-02	1.19E-04
Mn-54	1.68E-03	4.1670E-03	8.3592E-01	8.4009E-01	1.41E-03
Fe-55	1.26E-03	4.1920E-03	1.5291E-03	5.7211E-03	7.22E-06
• Fe-59	3.16E-04	1.1800E-01	1.1923E+00	1.3103E+00	4.14E-04
Co-58	4.84E-03	2.0490E-01	9.7586E-01	1.1808E+00	5.72E-03
Co-60	5.58E-04	9.6840E-02	2.5043E+00	2.6011E+00	1.45E-03
Zn-65	5.37E-04	6.8940E-03	5.8169E-01	5.8858E-01	3.16E-04
Sr-89	1.47E-04	5.7300E-01	1.3636E-04	5.7314E-01	8.44E-05
Sr-90	1.26E-05	1.9630E-01	0.0000E+00	1.9630E-01	2.48E-06
Sr-91	1.02E-03	6.5050E-01	6.9508E-01	1.3456E+00	1.37E-03
<b>Y-90</b>	1.26E-05	9.3610E-01	0.0000E+00	9.3610E-01	1.18E-05
Y-91m	4.93E-04	0.0000E+00	5.5557E-01	5.5557E-01	2.74E-04
Y-91	5.47E-06	6.0600E-01	3.6147E-03	6.0961E-01	3.34E-06
Y-93	4.46E-03	1.1721E+00	8.9414E-02	1.2615E+00	5.63E-03
Zr-95	4.10E-04	1.1990E-01	7.3474E-01	8.5464E-01	3.51E-04
Nb-95	2.95E-04	4.4970E-02	7.6430E-01	8.0927E-01	2.38E-04
Mo-99	6.75E-03	3.9570E-01	1.6238E-01	5.5808E-01	3.77E-03
Tc-99m	5.01E-03	4.8500E-03	1.4263E-01	1.4748E-01	7.38E-04
• Ru-103	7.89E-03	6.7400E-02	4.8394E-01	5.5134E-01	4.35E-03
Ru-106	9.47E-02	1.0100E-02	0.0000E+00	1.0100E-02	9.57E-04

 Calculation No.
 WBNAPS3-077
 Rev: 11
 Plant: WBN
 Page: 13

 Subject:
 Offsite and Control Room Operator Doses Due to a Main Steam Line Break
 Prepared:  $\mathcal{M} \cup S$  Date: (-2g-10) 

 Checked:
 Huc
 Date: (-2g-10) 

	A(i)	E(i)	E(i)	E(i)	
	Activity	Beta Energy	Gamma Energy	Total	
Isotope	[uCi/gm]	[MeV/dis]	[MeV/dis]		A(i)*E(i)
Rh-103m	7.89E-03	3.4620E-02	2.2148E-05	3.4642E-02	2.73E-04
Rh-106	9.47E-02	7.0960E-01	2.0348E-01	9.1308E-01	8.65E-02
Te-129m	2.00E-04	1.9150E-01	9.4832E-02	2.8633E-01	5.73E-05
Te-129	2.57E-02	5.2260E-01	5.9948E-02	5.8255E-01	1.50E-02
Te-131m	1.59E-03	2.1240E-01	1.4092E+00	1.6216E+00	2.57E-03
Te-131	8.26E-03	7.5970E-01	4.1616E-01	1.1759E+00	9.71E-03
Te-132	1.79E-03	1.0020E-01	2.0507E-01	3.0527E-01	5.47E-04
Ba-137m	9.79E-03	6.4260E-02	5.9729E-01	6.6155E-01	6.48E-03
Ba-140	1.37E-02	3.1500E-01	1.9522E-01	5.1022E-01	6.98E-03
La-140	2.64E-02	5.4050E-01	2.3074E+00	2.8479E+00	7.52E-02
Ce-141	1.58E-04	1.6930E-01	1.0181E-01	2.7111E-01	4.28E-05
Ce-143	2.96E-03	3.8420E-01	3.4335E-01	7.2755E-01	2.15E-03
Ce-144	4.21E-03	9.1300E-02	3.2865E-02	1.2417E-01	5.23E-04
Pr-143	2.96E-03	3.1430E-01	0.0000E+00	3.1430E-01	9.30E-04
Pr-144	4.21E-03	1.2258E+00	3.1010E-02	1.2568E+00	5.29E-03
Np-239	2.32E-03	1.2380E-01	2.0845E+00	2.2083E+00	5.13E-03
	·····	, ,			
Total	5.82E+00				3.44E+00
				EBAR	5.91E-01
		DCO	Succific Activity T:		169.14
		RUS	Specific Activity Li	mn	109.14

Determination of 100/EBAR - continued

The definition of EBAR or E is as follows: "E shall be the average (weighted in proportion to the concentration of each radionuclide in the reactor coolant at the time of sampling) of the sum of the average beta and gamma energies per disintegration (in MeV) for isotopes, other than iodines, with half lives greater than 15 minutes, making up at least 95% of the total non-iodine activity in the coolant."

The values for  $E_i$  in the above table were obtained from reference 9 and the values for  $A_i$  are from WBNNAL3-003. The value of E is determined as follows:

Ebar =  $E = (\Sigma A_i E_i) / (\Sigma A_i)$ 

The value for E calculated in Table 2 is 0.591 MeV/dis. This results in a non-iodine specific activity limit (100/E) of 169.14  $\mu$ Ci/g. The total specific activity of the expected coolant is 5.82  $\mu$ Ci/g.

Therefore, the values for noble gasses in the design reactor coolant will have to be increased by a factor of 169.14/5.82 = 29.06.

Calculation No. WBNAPS3-077	Rev: 11	Plant: WBN	Page: 14
Subject: Offsite and Control Room Operator Doses Due to a	a Main	Prepared: Mug	Date: 1-29-10
Steam Line Break		Checked: wul	Date: 1.29.0

The step sources (Ci-gm/ $\mu$ Ci) to initialize the reactor coolant and the secondary side activities are:

All cases:

S=2.622E8 gm*1E-6 Ci/µCi * 29.06 =7.6195E3 (noble gasses)

 $S=2.622E8 \text{ gm}^{*}1E-6 \text{ Ci}/\mu\text{Ci} = 2.622E2 \text{ (tritium)}$ 

Pre-accident iodine spike case (initial concentration =  $21 \,\mu \text{Ci/gm}$ ):

S=2.622E8 gm*1E-6 Ci/ $\mu$ Ci * 7.965[ $\mu$ Ci/gm I-131]⁻¹ *21 $\mu$ Ci/gm I-131 = 4.386E4 (iodines)

Accident initiated iodine spike case (initial concentration =  $0.265 \,\mu$ Ci/gm):

S=2.622E8 gm*1E-6 Ci/µCi * 7.965 [µCi/gm I-131]⁻¹*0.265 µCi/gm I-131= 5.170E2

Secondary side, all cases, steam generator w/ leak, release to environment. (concentration =  $0.1 \mu \text{Ci/gm}$ ) which is due to dryout (from reference 8, the initial steam from the defective steam generator is 117,200 lb):

 $S = 117,200 \text{ lb } \pm 453.59 \text{ g/lb } \pm 1E-6 \text{ Ci/}\mu\text{Ci} \pm 3.136\text{E5} [\mu\text{Ci/gm I}-131]^{-1} \pm 0.1\mu\text{Ci/gm I}-131 = 1.667\text{E6}$ 

 $S = 117,200 \text{ lb } *453.59 \text{ g/lb } * 1E-6 \text{ Ci}/\mu\text{Ci} = 6.8039\text{E1} \text{ (tritium)}$ 

Secondary side, all cases, steam generators without leak (initial concentration = 0.1 µCi/gm):

 $S = 1.593E8 \text{ gm} + 1E-6 \text{ Ci/}\mu\text{Ci} + 3.136E5 [\mu\text{Ci/gm I-131}]^{-1} + 0.1\mu\text{Ci/gm I-131} = 4.996E6$ 

 $S = 1.593E8 \text{ gm}^{*}1E-6 \text{ Ci}/\mu\text{Ci} = 1.593E2 \text{ (tritium)}$ 

Continuous Sources:

For the accident initiated iodine spike case, the iodine spike is 500 times the iodine release rate from the fuel. At steady state, the iodine release (production) rate is equal to the removal rate. The iodine removal is due to a) radioactive decay, b) removal by the letdown system, and c) removal through reactor coolant leakage. These terms are expressed as:

 $P = \Sigma removal rates = decay + letdown + leakage$ 

or  $P = \lambda + f_L \epsilon / V + p_g / V$ 

where  $P = production rate [hr^{-1}]$ 

 $\lambda = \text{decay constant for the isotope in question } [hr^{-1}] = \ln(2)/T_{1/2}$ 

 $f_L$  = letdown flow rate = 120 gpm + 4.39 gpm = 124.39 gpm

 $\varepsilon =$ letdown demineralizer efficiency = 1 (assumed so as to maximize removal/production rate)

V = volume of primary coolant = 5.78E5 lb = 2.62E8 gm

ps = removal rate of iodine from the primary side due to preaccident primary side leakage

= 11 gpm (10 gpm identified + 1 gpm unidentified)

 $T_{1/2}$  = halflife taken from ref.15

Note: all the above flow rates are converted to mass flow rates at STP:

### Production Rates for a Reactor Coolant Leak of 11 gpm (10 gpm identified + 1 gpm unidentified)

	Half Life	λ [1/hr]	f _L ε/V [1/hr]	p,/V [1/hr]	prod rate P [1/hr]	500*P
I-131	8.04 đ	3.59E-03	1.08E-01	9.53E-03	0.1209	60.44
I-132	2.28 h	3.04E-01	1.08E-01	9.53E-03	0.4213	210.65
I-133	20.9 h	3:32E-02	1.08E-01	9.53E-03	0.1505	75.23
I-134	52.6 m	7.91E-01	1.08E-01	9.53E-03	0.9080	453.98
I-135	6.61 h	1.05E-01	1.08E-01	9.53E-03	0.2222	111.08

Calculation No. WBNAPS3-077	Rev: 11	Plant: WBN	Page: 15
Subject: Offsite and Control Room Operator Doses Due to a	a Main	Prepared: Muy	Date: 1-29-10
Steam Line Break		Checked: Huc	Date: 1-29.10

The accident initiated iodine spike of 500 times the increase in the iodine release (production) rate from the fuel is modeled as a continuous source:

 $C = Volume * 1E-6 Ci/\mu Ci * Prod. Rate * 500 * 1 \mu Ci/gm I-131 equiv. conversion factor*I-131 equiv.$ 

where Volume = 2.622E8 gm

Prod Rate = see table above

1 μCi/gm I-131 equivalent conversion factor = 7.965 (value determined above, this is to get the ANSI/ANS-18.1-1984 source into 1 μCi/gm I-131 equivalent

I-131 equiv. =  $0.265 \,\mu \text{Ci/gm}$  I-131

Continuous Source [gm-Ci/µCi-hr] for Accident Initiated Iodine Spike:

Reactor Coolant Leak of 11 gpm (10 gpm identified + 1 gpm unidentified)

case:	0.265 µCi/gm I-131
I-131	3.345E+04
I-132	1.166E+05
I-133	4.163E+04
1-134	2.512E+05
I-135	6.147E+04

#### Flow Rates:

The following flow rates/leakage rates for each component are:

Flow from Reactor Coolant #1 to Environment #4 all classes (consists of 1 gpm and is for leak in the steam generators, however the production rate of iodines is based on a total RCS leakage of 11 gpm (=10gpm identified +1gpm unidentified):

F = 1.0 gpm * 60 min/hr * 3785.48 cc/gal * 1g/cc = 2.271E5 g/hr

Flow from Reactor Coolant #1 to Steam Generator w/ no Leak #3 all classes:

F = 3 steam generators * 150 gpd * 3785.48 cc/gal / 24 hr/day * 1g/cc = 7.098E4 g/hr

From reference 25, the initial steam released from the defective steam generator is 117,200 lb. From the non-defective steam generators (= "steam generators without leak" in this model) the mass release is 442,083 lb (0-2 hr), and 922,918 lb (2-8 hr). The accident releases end at eight hours. To take into account uncovery of the faulted steam generator, there is no iodine partitioning in the release to the environment (iodine partition coefficient = 1). The mass release representing 1 gpm primary to secondary side leak is a flow directly to the environment.

The reactor coolant release to the unfaulted steam generator is small relative to the secondary side mass, therefore partitioning is allowed per the SRP. The iodine partition coefficient due to steaming for the unfaulted steam generators to the environment is 100. These mass releases translate into the following flows:

Flow from Steam Generators w/out Leak #3 to Environment #4:

F = (442,083 lb)(453.59 g/lb)/(2 hr) = 1.0026E8 g/hr (0-2 hr, noble gasses, tritium)

F = (442,083 lb)(453.59 g/lb)/(100*2 hr) = 1.0026E6 g/hr (0-2 hr, iodines)

F = (922,918 lb)(453.59 g/lb)/(6 hr) = 6.977E7 g/hr (2-8 hr) (noble gasses, tritium)

F = (922,918 lb)(453.59 g/lb)/(100*6 hr) = 6.977E5 g/hr (2-8 hr) (iodines)

The STP output is used as input to COROD (which determines control room operator dose) and FENCDOSE (which determines 30-day and 2-hour LPZ offsite dose).

Some pertinent information from the COROD and FENCDOSE models used (but not changed) in this analysis are (from ref.9):

30-day LPZ Offsite X/Q values [sec/cum]: 1.41E-4 0-2hr, 6.68E-5 2-8 hr, 4.59E-5 8-24 hr, 2.04E-5 1-4 day, 6.35E-6 4-30 day

2-hr EAB X/Q values: 6.07E-4

Control Room X/Q (ARCON96 method): 4.03E-3 0-2 hr, 3.35E-3 2-8 hr, 2.27E-4 8-24 hr, 1.81E-4 1-4 day, 1.45E-4 4-30 day

Control Room volume: 257198 cuft

Control Room makeup/pressurization flow: 711 cfm (3200 cfm prior to isolation, ref.24)

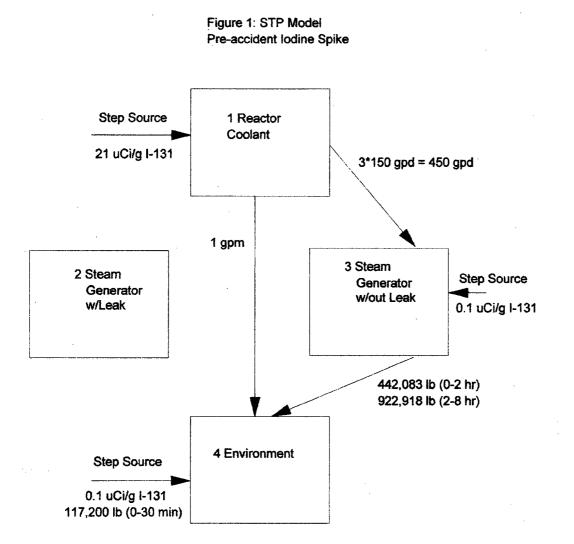
Calculation No. WBNAPS3-077	Rev: 11	1	Plant: WBN	Page: 16
Subject: Offsite and Control Room Operator Doses Due to	a Main	Prepa	ared: MUB	Date: 1-29-10
Steam Line Break		Chec	ked: HML	Date: 1.29.10

Control Room total flow: 3600 cfm

I I I

Control Room recirculation flow: 2889 cfm

Control Room unfiltered intake: 51 cfm


r

Control Room filter efficiency: 95% first pass, 70% second pass, 0% for tritium, 0% all elements prior to isolation

Control Room occupancy factors: 100% 0-24 hr, 60% 1-4 days, 40% 4-30 days

ICRP-2 and ICRP-30 dose conversion factors (internal to the codes)

Calculatio	n No. WBNAPS3-077	Rev: 11	Plan	t: WBN	Page: 17
Subject:	Offsite and Control Room Operator Doses Du	le to a Main	Prepared:	MUB	Date: 1-29-10
	Steam Line Break		Checked:	UML	Date: 1 29,0



Calculatio	n No. WBNAPS3-077	<b>Rev:</b> 11	Plant: WBN	Page: 18
Subject:	Offsite and Control Room Operator Dose	s Due to a Main	Prepared: M 03	Date: 1-29-10
	Steam Line Break		Checked: HML	Date: 1.29.10

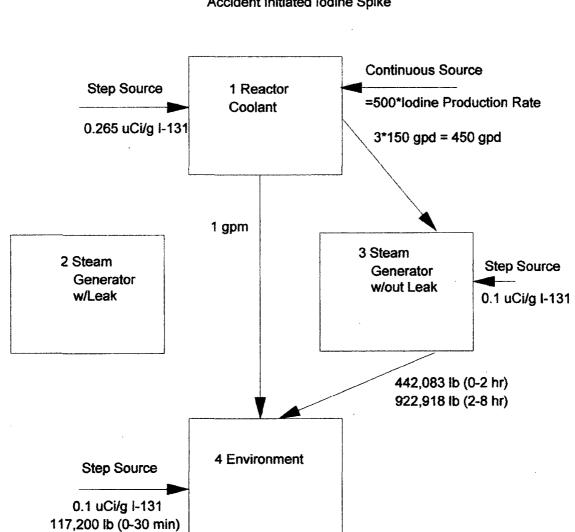



Figure 2: STP Model Accident Initiated Iodine Spike

5777

Calculation No. WBNAPS	8-077 Rev: 11	Plant: WBN	Page: 19
Subject: Offsite and Contr	ol Room Operator Doses Due to a Main	Prepared: M.B	Date: 1-29-10
Steam Line Break		Checked: HM	Date: 1.29.10

# Results

The following results are based on a Tritium Production Core (TPC). The results from previous revisions showed that the TPC bounds the conventional core. In the following, the pre-accident reactor coolant lake rate is 11 gpm (10 gpm known + 1 gpm unknown), and the primary to secondary side steam generator post accident leak rate in the steam generators is 1 gpm (= the unknown leak rate). The Unit 2 results are found in Appendix H. The results were (rem):

1

## Unit 1 MSLB Offsite Doses (rem):

Pre-accident Iodine spiking case			Accident Initiated Iodine S	se			
I-131 equivalent:	21 uCi/cc			I-131 equivalent:	0.265 uCi/cc		
	2-hr EAB	30-day LPZ	limit		2-hr EAB	30-day LPZ	limit
gamma	2.604E-02	8.739E-03	25	gamma	7.075E-02	6.682E-02	2.5
beta	8.313E-03	3.270E-03	300	beta	1.784E-02	1.642E-02	30
Inhalation (ICRP-2)	4.482E+00	1.815E+00	300	Inhalation (ICRP-2)	5.168E+00	5.785E+00	30
Inhalation (ICRP-30)	2.282E+00	9.543E-01	300	Inhalation (ICRP-30)	2.197E+00	2.510E+00	30
TEDE	1.680E-01	6.571E-02	25	TEDE	2.376E-01	2.552E-01	2.5

Unit 1 MSLB Control Room Doses (rem) Using ARCON96 X/Q values:

	Pre-accident Iodine	Accident Initiated	
·	Spiking	Iodine Spiking	limit
Gamma	5.829E-03	8.693E-03	5
Beta	5.218E-02	7.062E-02	30
Thyroid (ICRP-2)	1.923E+01	2.356E+01	30
Thyroid (ICRP-30)	1.058E+01	1.250E+01	30
TEDE	3.699E-01	4.512E-01	5

Calculation No. WBNAPS3-077	Rev: 11	Plant: WBN	Page: 20
Subject: Offsite and Control Room Operator Doses	Due to a Main	Prepared: MB	Date: 1-29-10
Steam Line Break		Checked: HML	Date: 1 . 29.10

**Discussion and Conclusion** 

The offsite doses due to a MSLB with preaccident iodine spiking has 10CFR100 limits of 25 rem gamma, 300 rem beta, and 300 rem thyroid. The offsite doses due to a MSLB with accident initiated iodine spike (factor of 500) has limits of 10% of the 10CFR100 limits or 2.5 rem gamma, 30 rem beta, and 30 rem thyroid (ref.10). The control room operator doses limits from 10CFR50 App.A GDC 19 are 5 rem gamma, 30 rem beta, and 30 rem beta, and 30 rem thyroid.

With the Technical Specification limits of  $0.265 \ \mu \text{Ci/gm I-131}$  equivalent steady state (and  $21 \ \mu \text{Ci/gm}$  maximum), the control room and offsite doses exceed the limits with a 1 gpm leak in the faulted line and 150 gpd in the unfaulted lines. These apply to Unit 2 also.

Unit 1 doses bound the Unit 2 doses, except for the gamma, beta and TEDE offsite doses for the accident initiated iodine spike, and the gamma control room for the accident initiated iodine spike.

Note: these limits are based on a maximum 0.1  $\mu$ Ci/gm I-131 limit in the secondary side and using ARCON96 X/Q values. If the secondary side limit were to be reduced, then the primary to secondary side leakage and the primary side I-131 concentrations can increase.

The Tritium Production Core (TPC) does not affect the limits above, because the limiting doses are the thyroid doses. The tritium affects only the beta dose and TEDE. The TPC obviously bounds the non-TPC configuration.

This calculation is conservative because it models the mass releases as linear within each time interval. This allows larger iodine releases for the accident initiated iodine spiking cases because iodine increases over time in the reactor coolant. In reality, the mass releases are greater at the beginning of the accident, and decrease over time. For the pre-existing iodine spike (which is not the limiting case), this has little effect, since the decay of short lived isotopes is compensated by the buildup of iodine in the unfaulted steam generators due to reactor coolant leakage.

#### Note on methodologies used:

This calculation determined the doses using 3 different methodologies. The gamma, beta and Thyroid (ICRP-2) doses are all based on TID-14844 methodologies utilizing the ICRP-2 iodine dose conversion factors found in TID-14844. The second methodology uses the ICRP-30 iodine dose conversion factors which are less conservative than the ICRP-2 factors. This methodology is presented for potential future use. Finally, the third methodology used is the TEDE (Total Effective Dose Equivalent). The TEDE presents an overall weighted dose and is more representative of the impact of all isotopes on the body as a whole. It is important to note that tritium does not impact the thyroid doses utilizing the TID-14844 methodology, because only iodine is applied to the thyroid dose. However, in fact tritium does contribute to the thyroid dose, as well as other organs of the body. This is why the TEDE is a more representative dose when discussing the impact of tritium. It is up to the end user to choose the dose which is to be used, with the understanding that each methodology has a different meaning.

Calculatio	n No. WBNAPS3-077	Rev: 11	Plant: WBN	Page: 21
Subject:	Offsite and Control Room Operator Doses D	ue to a Main	Prepared: Mug	Date: 1-29-10
	Steam Line Break		Checked: HML	Date: (.29.10

## References

-----

1. WBN Technical Specification 3.4.16, Amendment 11

2. WBNNAL3-003 R4 "Reactor Coolant Activities in Accordance with ANSI/ANS-18.1-1984"

3. Computer Code STP R7, code I.D. 262165

4. Computer Code FENCDOSE R5,code I.D. 262358

5. Computer Code COROD R7, code I.D. 262347

6. WBNAPS3-053 R2 "Steam Generator Leakage Detection with the Condenser Vacuum Pump Air Exhaust Monitor (1,2-RM-90-119)"

7. WBNAPS3-043 R1 "Shielding Calculation For the Steam Generator Blowdown Demineralizer System" RIMS# B26 900620 200

8. Memorandum from J.W. Irons to W.L. Elliott, WAT-D-9489, "Verification of Data in FSAR Table 15.5-16" RIMS# T33 930927 823

9. WBNTSR-008 R11 "Control Room Operator and Offsite Dose Due to a Steam Generator Tube Rupture" 10. NUREG-0800 R2 section 15.1.5

11. WAT-D-10690, Nov.9, 1999, Memorandum from John W. Irons to J.E. Maddox "SLB Leak Rates" RIMS# B44 991109 002

12. WAT-D-10724, February 10, 2000, Memorandum from John W. Irons to J.E. Maddox "SLB Leak Rates Conversion" RIMS# T71 000217 928

13. N3-15-4002 R5 System Description For "Steam Generator Blowdown System"

14. FSAR Table 11.1-2 (note: this information is used only for comparison with reference 2, and not used as design input).

15. Lederer and Shirley, "Table of Isotopes", seventh ed.

16. N3-62-4001 R5 System Description for "Chemical and Volume Control System"

17. WBNNAL3-002 R2 "100-Day LOCA-DBA Source Terms for the EGTS and ABGTS Filters,

Containment, Sump, and Shield Building Annulus" Note: this calculation is currently at R3, however the information is found in R2.

18. WBNAPS3-050 R2 "Determine the Main Control Room Intake Monitor (0-RE-90-125, -126) Setpoints and Post Accident Air Intake Concentrations"

19. WB-DC-40-70 R1 "Accident Analysis Parameter Checklist (AAPC)", Figures 4.3.2-13 and -25

20. WBNAPS3-104 R0 "WBN Control Room X/Q"

21. WBN Technical Specification 3.4.13

22. NSAL-00-004 "Nonconservatisms in Iodine Spiking Calculations"

23. WBN Technical Specification 3.7.14

24. WBN drawing 1-47W866-4 R36

25. WCAP 16286-P "Watts Bar Unit 1 Replacement Steam Generator Program NSSS Engineering Report" January 2005

26a. WBT-D-1202 October 22, 2009 "WBS 5.2.11 Revised Steam Releases for Dose"

26b. LTR-CRA-09-103 Rev.1 "Watts Bar Unit 2 Completion Project – Results of Steam Releases for Dose Calculations"

27. EDCR 54956

Calculation No. WBNAPS3-077	<b>Rev:</b> 11	Plant: WBN	N Page: 22
Subject: Offsite and Control Room Operator Dose	es Due to a Main	Prepared: MU3	Date: 1-29-14
Steam Line Break		Checked: HUL	Date: 1-29.10

Appendix A: Justification for Using ANSI/ANS-18.1-1984 Expected Coolant Spectrum

The choice of iodine spectrum is fairly important, since several isotopes have short halflives. Noble gas spectrum is not at important because the noble gasses contribute only to the gamma and beta doses which are orders of magnitude from the regulatory limits, whereas the limiting doses are thyroid (iodine influenced). Results may be affected when accident times are on the order of the decay of the short lived isotopes. There are several possible spectra available. The spectrum chosen for this analysis is the one that most closely resembles the actual spectrum present at WBN. From the surveillance tests 1-SI-68-28 performed on 7/10/00 and 4/9/01 (see Attachment 1), the following concentrations were determined:

RC	S activities 7/10/	00		•	RCS activit	ies 4/9/01	
	µCi/gm		µCi/gram		µCi/gm		µCi/gram
	RCS		RCS		RCS		RCS
	Gaseous		Degassed		Gaseous		Degassed
Ar-41	1.303E-02	F-18	1.179E-01	Ar-41	2.696E-03	F-18	1.116E-01
Kr-85M	1.915E-04	Na-24	9.169E-04	Kr-85M	2.013E-04	Na-24	2.060E-03
Kr-87	4.575E-04	Mn-56	9.313E-05	Kr-87	4.809E-04	Mn-56	2.088E-04
Xe-133	9.565E-04	Co-58	5.019E-04	Kr-88	4.982E-04	Co-58	6.218E-04
Xe-135	1.429E-03	Nb-95	3.132E-05	Xe-133	1.202E-03	Co-60	2.776E-05
Xe-135M	7.364E-04	I-131	6.070E-05	Xe-135	1.676E-03	Nb-95	2.794E-05
Xe-138	1.796E-03	I-132	1.459E-03	Xe-135M	1.105E-03	I-131	3.881E-05
		I-133	8.208E-04			I-132	1.165E-03
		I-134	2.694E-03			I-133	6.105E-04
		I-135	1.608E-03			I-134	2.334E-03
		Xe-135	8.914E-05			I-135	1.158E-03
		Xe-135M	1.406E-02			Xe-135	1.380E-04
		Cs-138	2.395E-03			Xe-135M	1.972E-02
						Cs-138	2.195E-03

Two potential spectra are from WBNNAL3-003 (Reactor Coolant Activities in Accordance with ANSI/ANS-18.1-1984) and from the FSAR Table 11.1-2 (Historical Design Activities). The iodine concentrations and relative concentrations for each spectrum are as follows:

	7/10/00	7/10/00	4/9/01	4/9/01
	WBN actual	WBN actual	WBN actual	WBN actual
	μCi/gm	relative fraction	μCi/gm	relative fraction
I-131	6.070E-05	0.0091	3.881E-05	0.0073
I-132	1.459E-03	0.2196	1.165E-03	0.2195
I-133	8.208E-04	0.1236	6.105E-04	0.1151
I-134	2.694E-03	0.4056	2.334E-03	0.4399
I-135	1.608E-03	0.2421	1.158E-03	0.2182
sum:	6.643E-03		5.306E-03	

T

	ANS 18.1 µCi/gm	ANS 18.1 relative fraction	FSAR 11.1-2 µCi/gm	FSAR 11.1-2 relative fraction
I-131	0.0477	0.0448	2.5	0.2461
I-132	0.225	0.2115	0.9	0.0886
I-133	0.149	0.1401	. 4	0.3937
1-134	0.364	0.3422	0.56	0.0551
I-135	0.278	0.2614	2.2	0.2165
sum:	1.0637		10.16	

1

As can be seen, the FSAR historical design concentrations do not reflect the actual measured concentrations. The FSAR values are weighted too strongly in favor of I-131 (24.6% of total as opposed to < 1% of the actual total). By comparison,

			····
Calculation No. WBNAPS3-077	<b>Rev:</b> 11	Plant: WBN	Page: 23
Subject: Offsite and Control Room Operator Doses Du	e to a Main	Prepared: MCB	Date: 1-29-10
Steam Line Break		Checked: HML	Date: 1.29. K

the ANSI/ANS-18.1-1984 fractions are very close to the actual fractions. The worst fit was for I-134 which was 40.1% actual versus ANSI/ANS-18.1-1984 34.22%. The I-131 is slightly over predicted by ANS-18.1 (0.9% on 7/10/00 and 0.7% on 4/9/01 versus 4.48%), however this difference is not as large compared to the FSAR fraction. The ANSI/ANS-18.1-1984 spectrum overall fit is much better than the FSAR spectrum, therefore it can be concluded that the use of the ANSI/ANS-18.1-1984 spectrum is acceptable.

Calculation No. WBNAPS3-077	Rev: 11	Plant: WI	BN Page: 24
Subject: Offsite and Control Room Operator Doses D	ue to a Main	Prepared: M 02	Date: 1-29-00
Steam Line Break		Checked: 44	Date: 1.29.0

Appendix B: Determination of Letdown Flow Rate Uncertainty

The purpose of this appendix is to determine bounding errors for the measurements performed on the orifice restrictor flows using the Letdown Heat Exchanger Flow loop (1-F-62-82) during Preop Test Instruction PTI-062-03 R0.

Following these tests, a loop check was performed for the computer point F0134A by injecting a signal into the transmitter and reading the display on the computer. To determine the total loop error, the unmeasurable errors must be combined with the errors present at the time of the loop check.

WBN NESSD 1-F-62-1 will be used as a guide for determining the unmeasurable errors for loop 1-F-62-82 since it contains the same model flow element and a similar model transmitter. According to EMPAC, the flow element is a Vickery Simms Model MK-52 and the transmitter is a Foxboro E-13DM.

Millers Flow Measurement Engineering Handbook, Third Edition, Chapter 6, Table 6.1 states that Square Edged orifice flowmeters have an accuracy of  $\pm$ 1-2%URV (upper range value) of the flow rate. A value of  $\pm$ 2% will be used for the orifice.

The loop check performed by WO 94-14264-10 (following pages) gives as found data. The largest error at 50 GPM was 1.36 GPM (50 - 48.64) or 0.68% CS (1.36/200 = 0.68%). The largest error at 100 GPM was 0.48 GPM (100 - 99.52) or 0.24% CS (0.48/200 = 0.24%). The largest error at 150 GPM was 0.06 GPM (150 - 149.94) or 0.03% CS (0.06/200 = 0.03%).

Since the plant had not been started at the time of these tests, radiation was not present and need not be considered. Errors for temperature and power supply effect will need to be included. Since there is no data on actual temperature conditions, an enveloping value must be used. Environmental drawing 47E235-46 R5 gives the max abnormal temperature range as 50 - 110 °F for coordinates UA6 / El 737 where the transmitter is located per EMPAC. The transmitter is a model E-13DM per EMPAC. The product specification sheets (following pages) give the ambient temperature effect as  $\pm 1\%$  per 50 °F for any span between 200 to 850° water. The transmitter will normally be calibrated at room temperature which will be between 60 and 80 °F. A temperature shift of + or - 50 °F will encompass the temperature changes seen by the transmitter. Therefore for a temperature range of  $\pm 50$  °F, the temperature effect will be  $\pm 1\%$  CS d/p. The power supply effect is given as 0.1% CS for a 10% change in voltage. Thus Power supply effect is 0.1% CS d/p.

All errors for the computer should be reflected in the loop check.

		······			
Calculation No. WBNAPS3-077	Rev: 11		Plant	: WBN	Page: 25
Subject: Offsite and Control Room Operator Doses Due to	a Main	Prep	ared:	MCS	Date: 1-29-10
Steam Line Break		Chec	ked:	HML	Date: 1.29.10

Utilizing Equation 3-24.8 of <u>W</u> WCAP-12096, Rev. 8 "Westinghouse Setpoint Methodology for Protection Systems, Watts Bar Units 1 and 2, Eagle 21 Version," the unmeasured transmitter errors can be converted from percent error in full scale d/p to error in percent full span at a specified point, where Fm is the maximum flow rate of 200 GPM, and Fn is the nominal flow rate (i.e. 50, 100 or 150 GPM).

EPFS (Flow) = $(Ax_{XX})$	
Temper(Flow)@50GPM =	$(\text{Temp}_{err} (d/p) / 2) * (200 / 50) = \pm 2\% \text{ CS Flow}$
Temper(Flow)@100GPM	= $(\text{Temp}_{err} (d/p) / 2) * (200 / 100) = \pm 1\% \text{ CS Flow}$
Temper(Flow)@150GPM	= $(\text{Temp}_{err} (d/p) / 2) * (200 / 150) = \pm 0.67\% \text{ CS Flow}$
pwr supp _{err} (Flow)@50GPM pwr supp _{err} (Flow)@100GPM pwr supp _{err} (Flow)@150GPM	$= (pwr supp_{err} (d/p) / 2) * (200 / 50) = \pm 0.2\% CS Flow$ = (pwr supp_{err} (d/p) / 2) * (200 / 100) = $\pm 0.1\% CS Flow$ = (pwr supp_{err} (d/p) / 2) * (200 / 150) = $\pm 0.067\% CS Flow$

Thus total loop error =  $(FE_{err}^2 + Loop check_{err}^2 + Temp_{err} (Flow)^2 + pwr supp_{err} (Flow)^2)^{0.5}$ Total loop error @ 50 GPM =  $(2^2 + 0.68^2 + 2^2 + 0.2^2)^{0.5} = \pm 2.92\%$  CS =  $\pm 5.84$  GPM Total loop error @ 100 GPM =  $(2^2 + 0.24^2 + 1^2 + 0.1^2)^{0.5} = \pm 2.25\%$  CS =  $\pm 4.5$  GPM Total loop error @ 150 GPM =  $(2^2 + 0.03^2 + 0.67^2 + 0.067^2)^{0.5} = \pm 2.11\%$  CS =  $\pm 4.22$  GPM

Total loop error at 120 GPM can be determined by linear interpolation between 100 and 150 GPM. The value will be conservative since the error is nonlinear and is a function of the square root of the d/p values above and the actual loop recorded values which also follow a square root curve.

Total loop error @ 120 GPM =  $\pm |$  error @ 100 GPM + 20(error @ 150 GPM - error @ 100 GPM) / (150 - 100) | Total loop error @ 120 GPM =  $\pm [4.5 \text{ GPM} + 20(4.22 - 4.5)/50] = \pm [4.5 \text{ GPM} + (-0.11)] = \pm 4.39 \text{ GPM}$ 

The following references were used in preparation of this appendix. Revisions to these references will not impact this appendix; so the references are 'information only' in lieu of 'design input'.

- 1 WBN NESSD 1-F-62-1 R1 (Methodology & guidance)
- 2 EMPAC (Manufacturer, Model number and location)
- 3 Millers Flow Engineering Handbook, Third Edition, Chapter 6, Table 6.1 (Orifice accuracy)
- 4 WO 94-14264-10 (loop check data) see next page
- 5 Drawing 47E235-46 R5 (environmental data)
- 6 Foxboro product specification sheets (transmitter accuracy data) see next pages
- 7 WCAP-12096 R 8 (methodology for converting d/p error to flow error)

Prepared	Lynn Cowan	Date	6/4/01
Checked		Date	·

Calculation No. WBNAPS3-077	Rev: 11	Plar	t: WBN	Pa	ge: 2
Subject: Offsite and Control Room Operator Doses I	Due to a Main	Prepared	Moz	Date:	
Steam Line Break		Checked:	HUL	Date:	_ <u></u>
upporting documents for Appendix B:					
		PAGE			
WORK ORDER FORM					
WO NO: 94-14264-10 ORIGINATION DATE: 06/22/94 RF NO: C254025					
ORIGINATOR: JAMES R RIVERS EXT	TENSION: 3181	PRIORIT	X: JC		
EQUIPMENT IDENTIFIER : WBN-1-LPF-062-0082- EQUIPMENT DESCRIPTION: EXCESS LETDOWN HTX FLOW					
EQUIPMENT CATEGORY : OR SR 1E					
TYPE OF MAINTENANCE: OTHER MAINTENANCE					
PROBLEM DESCRIPTION: PERFORM POST TEST CALIBRATION	W OF 545 62.7	0768	_		
NOTRUMENTS LISTED ON THE LACCEPTANCE CRITERIA	WR CARD FUR PT	1-062-03			
JOB LOCATION : VARIOUS LOCATIONS, SEE SSD	· · · · · · · · · · · · · · · · · · ·		-	·	
LOCATION CODE : A100 - AB ALL AUXILIARY BUI					
WORK DESCRIPTION : PERFORM POST TEST CALIBRATI AS REQUIRED, FOR PTI-062-03					
LCO: YES [ ] NO [X] LENGTH: $\frac{\nu}{\rho}$ LCO EXPIRES: SECT XI R/R: YES [ ] NO [X] NPRDS: YES [ ] NO	N/R_				
SECT XI R/R: YES [] NO [X] NPRDS: YES [] NO RWP REQ : YES [] NO [X] RWP #:	ALARA: Y	es [] No	[X]		
SPECIFIC REQUIREMENTS: AICHE		····-			
TAGGING REQ: YES [] NO [X] H.O. #: $\frac{\nu/e}{2}$ SCAFFOLD : YES [] NO [X] INSUL: YES [] NO	SHUTDOWN: Y	ES ( ) NO	[X]		
PERMITS REQ: NONE	[~]				
DISCIPLINE: MIG EST HOURS : 4.0	TASK TOT: DURATION:	8.0 MAN 4.0 HOUR	Hours S		
PRE-MAINT TEST REQ. : NONE					
POST-MAINT TEST PEQ.: SEE WORK INSTRUCTIONS					
SIGNATURES AND DATE	E	1			
PLANNER: Queue Rivere 6-22-94					
TECH REVIEW: Jon Q. Ban Con 6-22-94	NR				
COG SUPV: 6/2-194	<u> </u>				
SUT ENGR: Figure Douling 4/24/14			- Conta		
l.		N	A Not A	i	
		(	, 7, 2, 4, 3,		

Π

Calculation No. WBNAPS3-077	Rev: 11	1	Plant:	WBN	Page: 27
Subject: Offsite and Control Room Operator Doses Due to a	Main	Prepa	red:	MS	Date: 1-29-10
Steam Line Break		Check	ked:	Hur	Date: 1.29.10

•	۰	. 1 4			PAGE 1 REVISI	LPF-62-82- 10 OF 17 10N 01 - 10P CALIBRAT	-	o: WO	94		4 2 6 4 - 1	
						LOOP	COMPONENTS					
l	10: 1-FT	-62-82	I	INSTRUMENT	NO: 1-FI-6	52-82						
	HEAD: NATE: 5	40369	7	M	TE: VISU	AL.						
	TEST	INPUT ( IN WC	)	REQUIRED ( GPM )	LO LIHIT	AS FOUND AS FOUND	HI LINIT	LO LIMIT		LEFT	HI LIMIT	
	1	12.5		28.3	23.3		33.3	23.3			32.8	
	2	39.1		50.0	45.0		55.0	45.0			55.0	
	3	156.3		100.0	95.0		105.0	95.0	_		105.0	
	4	351.6		150.0	145.0		155.0	145.0			155.0	
	5	594.1		195.0	190.0	N	200.0	190.0			200.0	
	6	351.6		150.0	145.0		155.0	145.0			155.0	
	7	156.3		100.0	98.0		105.0	95.0			105.0	
	8	39.1		50.0	45.0		55.0	45.0			55.0	
	9	12.5		28.3	23.3		33.3	23.3			33.3	
		<del></del>		•	NO: LOG P STE: VISUA	L		3				
			EST	REQUIRED ( GPH )	LO LIMIT	AS FOUND	HI LIMIT	LO LIMIT		S LEF	HI LIMIT	
		-	1	28.30	23.18	25.63	32.38	23.18		1	32.38	
		1	2	50.00	47.34	48.88	52.26	47.34		0	52.26	
			3	100.00	98.66	99.67	101.14	98.66		र्	101.14	
			4	150.00	149.08	150.01	150.68	149.08	5	0	150.68	
		_	5	195,00	194.32	194,72	195.60	194.32		L	195.60	
			6	150.00	149.08	149.94	150.68	149.08	ア		150.68	
			7	100_00	98.56	99.52	101.14	98.66	Ľ.		101.14	
			8	50.00	47.34	48.64	52.26	47.34	Ŀ		52.26	
	•		9	28.30	23.18	25.63	32.38	23.18	1		32.38	•

 ICREW NO
 5
 100T () YES (MNO) PC () YES (MNO)

 IPERFORMED BY/DATE
 7-9-94
 IRFYIENED BY/DATE (SIMF)

 INSTRUCTION NO.
 REV. NO.

 M°KINNEY
 HANT, STONE

Function: Letdown Heat Exch. Flow

Reviewed by: Gary L. Hyden Approved by: Ed Hall EH

Date: 03/10/94

lculation	No. WBNAPS3-077		R	ev: 11	Pla	nt: WBN	Pag	ge: 28
bject:	Offsite and Control Ro	om Operator Dose	s Due to a M	ain	Prepared	: MUS	Date:	1-29-
-	Steam Line Break	•		Ī	Checked	Huc	Date:	1.29
								ł
	· · · · · · · · · · · · · · · · · · ·							,
	• • • •	· · · · · · · · · · · ·		9 - P	••	• •		
					-			
			AND AND AND AND AND AND AND AND AND AND	:	• • • •	****	in a second	
	· · ·····			İ	•		_	
•	- Lormond						1	
4	<b>TOXHOHO</b>							
		General Sp	ecificati	on		• -		
•	Electronic Series d/p Cell	Transmitters measure diti-						
	erendel pressure in ranges of to 0-21600 mm] of water at a	0-5 to 0-850 inches (0-127		. • 6				
	pri (420 kg/cm ² ). They transm or 4 to 20 mA de signal, over	at a proportional 10 to 50	E.		, , ,		· .	
•	to receivers located up to save point of metaurement.	rel thousand feet from the		Į.		-		i I
	•	· ••••	1.0-			1.10	<b>:</b> •	
•	FEATU	RES			L		<b>-</b> •	
• •	. Time-Proven Design		No.	~	C.e.	. The		
	Trouble-Free Construction	· · ·	E130L	<b>ا</b> ف	130M	• E13DH	· · ·	
	High Performance - Excellent	Reproducibility		PERF	DRMANCE			
•	Esse of Calibration Adjustmen	t Wide Range Capability	Accuracy S to S25-inch	•			In.	
	Stable Force Balance System		526 to 850-in	ch	<u> </u>	±0.75% of sp		
	Positive Overrange Protoction		Deed Band	21590 mm)		0.05% of sp		
	Transmitter Housing Watertigh	t and Moistureproof	Ropestability: El	30M, E130	i Series	0.10% of sp 0.10% of sp	#11 .	
• •	Application Versatility	· · ·	Reproducibility:	E130M. E13	CH Series	0.15% of so	40 ° '	
:	Explosionproof/Intrinsically S	-fe	(includes effects Drift over 1-hr	of Hystorics periodi	is, Piepentabili	Y. Dead Band Ad	<b>vđ</b>	
-		·	NSMITTER		•	•		
ай	· · ·	STANDARD S	PECIFICATIONS	.1			t -	
	Spen Fully adjustable betwee		Output Signal	-		e 5.2 - 44		
	Meximum Process Temperatur		Output Signal		Loop Lood und	Nominal Supply Voltage from	1	
	sule Ambient Temperature Limits	40 to +180 F 140 to	(mA del	Minimum 0	Maxim, m 660	Separete Unit	- ·	
	+82 Cl. With remote amplifue +120 CL		4 to 20 10 to 50	480 (4)	660	80 V de	1.	
	Bolting Steel cap screws an	bne vood devous through	bratel C to S	C alam land	duitment pet	nerols include a c encion eter.	20	
•	process connectors		Supply Voltage mA output an	d 63 to 10	0 volts d-c w	ith 10 to 50 m	ià de la companya de la companya de la companya de la companya de la companya de la companya de la companya de	
	Cover Threaded cast aluminur seal. Blue textured vinyi finish.		supply Voltag	parate pow i Effect Za	er supply unit tro shift will	L be less thad 0.1	1%	
	Enclosure Classification NEM	· · · · · ·	of span for a 1	0% change	in voltage w	ithin stated lim Class I, Groups	iits.	
	Electronic Transmitter and Arr	•	end D, Division	1.	•	•	· ·	
	Electrical Connections Two 5 female conduit connections	HOOT HEADS TROM 1/24ACh	Mounting Dire zontal or vertic		is with Drock	n for 2-inch ho	CP -	
	Specification:	E13DL Series	E13DM	Series	EI	3DH Series		
	Range Limits		• •					
	Low Range Capsule	0-5 to 0-25" water (0-127 to 0-635 mm)				•		
•	Medium Range Capsule	<b></b>	0-20 to 0-205" + (0-508 to 0-5207	(mm)	(0-508 to	205" weter 0-5207 mm)		
•	High Ronge Capsule	-	0-200 to 0-850" 10-6080 to 0-215	water		0-850" wster 0-0-21590 mm		
-	Ll						السب	ERB
	<b>*</b>					65 ZA-1(1		RB B
<b></b> .	Primed in U.S.A.					November 197	12	M I

alcul	ation No. WBNAE	PS3-077		Rev: 11	Plant: WBN	V Page: 29	
Subjec	t: Offsite and Co	ntrol Room Operato	or Doses Due to a M	lain	Prepared: M.S	Date: 1-29-1	10
	Steam Line Bre	ak	· · · · · · · · · · · · · · · · · · ·		Checked: 424	Date: 1.29	• \(
	•	 STANDARD SF					
			tinued)		<u> </u>		•
( -	Specification	E13DL Series	E130M Series		13DH Series		
-	Wetted Parts:           Body and Process Conn           Disphragm Copsule and           Force Bar           Force Bar Seal           Capsule Gasket           Process Conn Gasket           Force Bar Seal Gasket	bon steel or lorged 316 SS 316 stainless steel Cobalt nickel alloy 316 stainless steel TFE Sillicone elastomer	bon steel or forged 316 : 316 stainless steel Cobalt nickel alloy 316 sr.J 'cas steel TFE Silicone elastomer	SS bon ste 316 stai Cobalt i 316 stai	m plated lorged car- el or forged 316 SS inless steel nicket atloy inless steel led TFE		
	Backup Plate	3:6 stainless steel 500 psi (35 kg/cm ² )	316 stainless steel		niess steel		
	Process Connections	1/4 or 1/2 NPT female or 1/2 inch Sch 80 welding neck, as specified,		x 1/4 or ig machine	i (420 kg/cm ² ) 1/2 NPT or body of to accept 9/16- neo fittings, as spec-		
	Ambient Temporature Effect (Zero shift in percent of span)	±1.0% per 100 F (55 C) change at 25" (635 mm) water, ±1.0% per 40 F (22 C) change at 5" (127 mm) water.	±1.0% per 100 F (55 C change at 100" (2540,mm	Medium 1 ±1.0% ( 1 changes F water; ± 1 (69 C) a 2 water; ± C) at 25 a High Ra 1 than ±1' - change 1 tween 2	Frange Capsule: per 100 F (55,C) t 100" (2540 mm) ±1.0% per 125 F t 205" (5207 mm) :1.0% per 40 F (22 "(635 mm) water. inge Capsule: Less % per 50 F (28 C) for any span be- 00 to 850" (5080 0 mm) water.		
	Position	Transmitter should be mounted with capsule in vertical position.	-	•	-	· · · · · · · · · · · · · · · · · · ·	
	Vibration	+	Maximum of less than 39 zero shift for 90 degree tit of instrument in any plan	t zero shif of instru	n of less than 3% - t for 90 degree till ment in any plane		
	-	Less than 1.5% zero shift forvibration to 1.5G in any plane, at frequencies less than 80 Hz.	Less than 1% zero shift for vibration to 2G in any plane.	Lets that vibratio plane,	a 1% zero shift for a to 2G in any		
	Static Pressure Elfact	Maximum zero shift less than 0.5% of span for 500 psi (35 kg/cm²) change.	Zero shift less than 0.5% shap for 2000 psi (140 kg cm ² ) change at 50 to 850° (1270 to 21590 mm) water 1.0% span for 1000 psi (70 ts/cm ² ) change at 20 to 50° (508 to 1270 mm) wa- ter.	span for tg/on2) 850" (12 water or 2000 psi change at to 1270 n span for a kg/cm ² )	ft (ess than 1.5% 0-6000 psi (0-420 change at 50 to 70 to 21590.mm) 0.5% span for any i (140 kg/cm ² ) .0% span for 0 to 10 to 420 kg/cm ² ) t 20 to 50° (1508 am) water or 1,0% any water or 1,0% any 2000 psi (140 change*.		
	Overall Ofmensione	16 1/8" (410 mm) H x 67/8" (175 mm) W.	13 1/4" (337 mm) H x 67/8" (175 mm) W.		(368 mm) H x 75 mm) W,		
I			25.lb (11 kg)	40 tb (18			
Ę		r to your nearest Foxboro Sa	the second second second second second second second second second second second second second second second s	1			
Č	• •						

Calculation	No. WBNAPS3-077	Rev: 11		Plant: WBN		Page: 30
Subject:	Offsite and Control Room Operator Doses Due to	a Main	Prep	ared: AB	Da	ite: 1-29-00
	Steam Line Break		Che	ked: un	Da	ite: 1.29.10
	xample of Pre-Accident Iodine Spike STP Model					

11 //GO.FT07F001 DD DSN=\$KB1988.APS77S9A.OUT, UNIT=ALLOC, 11 DCB=(RECFM=FB, LRECL=80, BLKSIZE=6160), SPACE=(TRK, (5,2), RLSE), DISP=(NEW, CATLG, DELETE) 11 //GO.FT01F001 DD * NV= 4 MS= 2 //GO.FT11F001 DD * CLASS DESCRIPTION S Ś 1 NOBLE GASES \$ 2 IODINE Ś 3 TRITIUM NI= 23 NK= 7 NG= 0 NL= 3 1KRM 83 1 1,0352E-04 10.0 10.0 10.0 2KRM 85 1 4,2978E-05 10.0 10.0 10.0 3KR 85 1 2.0470E-09 29.8849E-06 10.0 10.0 87 1 1.5141E-04 4KR 10.0 10.0 10.0 5KR 88 1 6.8765E-05 10.0 10.0 10.0 6KR 89 1 3.6328E-03 10.0 10.0 10.0 7XEM 131 1 6.7414E-07 131.3039E-08 181.3039E-08 10.0 8XEM 133 1 3.5656E-06 152.0365E-07 202.0365E-07 10.0 9XE 133 1 1,5165E-06 83.5656E-06 159.0531E-06 209.0531E-06 10XEM 135 1 7.3818E-04 174.8062E-06 224.8062E-06 10.0 11XE 135 1 2,1043E-05 107.3818E-04 172.4322E-05 222.4322E-05 138 1 8.1528E-04 12XE 10.0 10.0 10.0 13I 131 2 9,9536E-07 10.0 10.0 10.0 132 3 8,4448E-05 14I 10.0 10.0 10.0 15I 133 4 9.2568E-06 10.0 10.0 10.0 161 134 5 2.1963E-04 10.0 10.0 10.0 171 135 6 2,9129E-05 10.0 10.0 10.0 131 2 9,9536E-07 181* 10.0 10.0 10.0 132 3 8.4448E-05 191* 10.0 10.0 10.0 133 4 9.2568E-06 201* 10.0 10.0 10.0 134 5 2,1963E-04 211* 10.0 10.0 10.0 221* 135 6 2.9129E-05 10.0 10.0 10.0 23H 3 7 1.7785E-09 10.0000E+00 10.0000E+00 10.0000E+00 //GO.SYSIN3 DD * 'REACTOR COOLANT ANS/ANSI-18.1-1984 UCI/GM, WBNAPS3-003 R3' 1 1 0.0 2 1.71E-1 3 2.66E-1 4 1.61E-1 5 3.00E-1 6 0.0 7 6.54E-1 8 7.17E-2 9 2.53E0 10 1.39E-1 11 9.04E-1 12 1.29E-1 13 4.77E-2 14 2.25E-1 15 1.49E-1 16 3.64E-1 17 2.78E-1 18 0.0 19 0.0 20 0.0 21 0.0 22 0.0 23 9.84E1 0 2 'SECONDARY COOL ANS/ANSI-18.1-1984 UCI/GM, WBNAPS3-003 R3' 0.0 2 3.63E-8 3 5.51E-8 4 3.22E-8 5 6.31E-8 6 0.0 1 7 1.34E-7 8 1.54E-8 9 5.25E-7 10 2.90E-8 11 1.91E-7 12 2.68E-8 13 1.41E-6 14 3.37E-6 15 4.03E-6 16 2.93E-6 17 6.19E-6 18 0.0 19 0.0 20 0.0 21 0.0 22 0.0 23 9.84E-2 n Т WBN MSLB, 21 UCI/CC INITIAL CONC, 10+1GPM LK SS,1.0 GPM LEAK IN SG

NJ= 4 KCONC= 1 1 'REACTOR COOLANT' 2 'STEAM GENERATOR W/LEAK' 3 'STEAM GENERATORS/NO LEAK' 4 'ENVIRONMENT' -1 INITIALIZATION V 1 2.622E8 GM V 2 5.31E7 GM V 3 1.593E8 GM V 4 1.0 GM S 1 1 0 4.386E4 S 1 1 1 7.6195E3 S 2 3 0 4.996E6 S 1 1 7 2.622E2 S 2 3 7 1.593E2 S 2 4 1 1.667E6 2 4 2 1.667E6 2 4 3 1.667E6 S 2 4 4 1.667E6 2 4 5 1.667E6 2 4 6 1.667E6 S 2 4 7 5.316E1 A 4

Calculation No. WBNAPS3-077	Rev: 11	Plant: WBN	Page: 31
Subject: Offsite and Control Room Operator Doses Due	e to a Main	Prepared: MS	Date: 1-29-10
Steam Line Break		Checked: Huc	Date: 1. 2A. 10
1 3 0 7.098E4 GM/HR 3 4 0 1.0026E6 GM/HR 3 4 1 1.0026E8 GM/HR 3 4 7 1.0026E8 GM/HR 4 0 2.271E5 GM/HR 6 SEC ME TO 20.6 SEC 4 0 1 0 4 0 HR ME TO 2.0 HR 4 0 1 0 4 0 HR 4 0 6.977E5 GM/HR 3 4 1 6.977E7 GM/HR 3 4 7 6.977E7 GM/HR			

Calculatio	n No. WBNAPS3-077	Rev: 11	Plant: WBN	Page: 32
Subject:	Offsite and Control Room Operator Dose	s Due to a Main	Prepared: Mus	Date: [-19-10
	Steam Line Break		Checked: yuu	Date: 1.24.10

Appendix D: Example of Accident Initiated Iodine Spike (factor of 500 increase) STP Model

```
//APS77S9B JOB 264318,9MBERG.LP4T-C,MSGLEVEL=1,MSGCLASS=T
//*MAIN ORG=KNXLCL01,CLASS=LB
//JCL JCLLIB ORDER=(APB.NEN.PS264460.PROCLIB)
11
      EXEC STP, SOUT='*'
//GO.FT07F001 DD DSN=$KBI988.APS77S9B.OUT, UNIT=ALLOC,
      DCB=(RECFM=FB, LRECL=80, BLKSIZE=6160), SPACE=(TRK, (5,2), RLSE),
11
11
      DISP= (NEW, CATLG, DELETE)
//GO.FT01F001 DD *
NV= 4 MS= 2
//GO.FT11F001 DD *
     CLASS
                   DESCRIPTION
ŝ
Ŝ
       1
                       NOBLE GASES
$
       2
                       IODINE
$
       3
                       TRITIUM
NI= 23 NK= 7 NG= 0 NL= 3
   1KRM 83 1 1.0352E-04
                                                           10.0
                             10.0
                                            10.0
   2KRM 85 1 4.2978E-05
                             10.0
                                            10.0
                                                           10.0
   3KR
         85 1 2.0470E-09
                             29.8849E-06
                                            10.0
                                                           10.0
   4KR
         87 1 1.5141E-04
                             10.0
                                            10.0
                                                           10.0
   5KR
         88 1 6.8765E-05
                            10.0
                                            10.0
                                                           10.0
   6KR
         89 1 3.6328E-03
                                                           10.0
                            10.0
                                            10.0
   7XEM 131 1 6.7414E-07
                           131.3039E-08 181.3039E-08
                                                           10.0
   8XEM 133 1 3.5656E-06
                           152.0365E-07
                                           202.0365E-07
                                                           10.0
   9XE 133 1 1.5165E-06
                             83.5656E-06
                                           159.0531E-06
                                                          209.0531E-06
  10XEM 135 1 7.3818E-04
                           174.8062E-06
                                           224.8062E-06
                                                           10.0
  11XE 135 1 2.1043E-05
                           107.3818E-04
                                           172.4322E-05
                                                          222.4322E-05
  12XE
        138 1 8.1528E-04
                                            10.0
                                                           10.0
                            10.0
  13I
        131 2 9.9536E-07
                             10.0
                                            10.0
                                                           10.0
  141
        132 3 8.4448E-05
                            10.0
                                            10.0
                                                           10.0
  15I
        133 4 9.2568E-06
                                            10.0
                                                           10.0
                            10.0
  16I
        134 5 2.1963E-04
                            10.0
                                            10.0
                                                           10.0
  17T
        135 6 2.9129E-05
                             10.0
                                            10.0
                                                           10.0
  181*
        131 2 9.9536E-07
                             10.0
                                            10.0
                                                           10.0
  191*
        132 3 8.4448E-05
                            10.0
                                            10.0
                                                           10.0
  201*
        133 4 9.2568E-06
                                            10.0
                                                           10.0
                             10.0
  211*
        134 5 2.1963E-04
                                                           10.0
                             10.0
                                            10.0
  221*
       135 6 2.9129E-05
                             10.0
                                            10.0
                                                           10.0
                                            10.0000E+00
  23H
          3 7 1.7785E-09
                            10.0000E+00
                                                           10.0000E+00
//GO.SYSIN3 DD *
   'REACTOR COOLANT ANS/ANSI-18.1-1984 UCI/GM, WBNAPS3-003 R3'
1 0.0 2 1.71E-1 3 2.66E-1 4 1.61E-1 5 3.00E-1 6 0.0
7 6.54E-1 8 7.17E-2 9 2.53E0 10 1.39E-1 11 9.04E-1 12 1.29E-1
13 4.77E-2 14 2.25E-1 15 1.49E-1 16 3.64E-1 17 2.78E-1
 18 0.0 19 0.0 20 0.0 21 0.0 22 0.0 23 9.84E1
0
2
   'SECONDARY COOL ANS/ANSI-18.1-1984 UCI/GM, WBNAPS3-003 R3'
1 0.0 2 3.63E-8 3 5.51E-8 4 3.22E-8 5 6.31E-8 6 0.0
 7 1.34E-7 8 1.54E-8 9 5.25E-7 10 2.90E-8 11 1.91E-7 12 2.68E-8
 13 1.41E-6 14 3.37E-6 15 4.03E-6 16 2.93E-6 17 6.19E-6
 18 0.0 19 0.0 20 0.0 21 0.0 22 0.0 23 9.84E-2
0
т
WBN MSLB, .265 UCI/CC INIT CONC, 10+1GPM LK, 500 IODINE SPIKE, 1.0 GPM SG LK
NJ= 4 KCONC= 1
1 'REACTOR COOLANT'
2 'STEAM GENERATOR W/LEAK'
3 'STEAM GENERATORS/NO LEAK'
4 'ENVIRONMENT'
-1
INITIALIZATION
V 1 2.622E8 GM
V 2 5.31E7 GM
V 3 1.593E8 GM
V 4 1.0 GM
S 1 1 0 5.534E2
S 1 1 1 7.6195E3
S 2 3 0 4.996E6
S 1 1 7 2.622E2
S 2 3 7 1.593E2
S 2 4 1 1.667E6 2 4 2 1.667E6 2 4 3 1.667E6
S 2 4 4 1.667E6 2 4 5 1.667E6 2 4 6 1.667E6
S 2 4 7 5.316E1
C 1 1 2 3.345E4
```

И		•									•																																										1		Ì	•																		
									•																																																																	

Calculation No. WBNAPS3-077		Rev: 11	Plant: WBN	N Page: 33
Subject:	Offsite and Control Room Operator Doses Due to a	Main	Prepared: MUJ	Date: 1-29-10
	Steam Line Break		Checked: HMC	Date: 1.29.10
				······································

C 1 1 3 1.166E5 C 1 1 4 4.163E4 C 1 1 5 2.512E5 C 1 1 6 6.147E4 A 4 F 1 3 0 7.098E4 GM/HR F 3 4 0 1.0026E6 GM/HR F 3 4 1 1.0026E8 GM/HR F 3 4 7 1.0026E8 GM/HR F 3 4 7 1.0026E8 GM/HR F 1 4 0 2.271E5 GM/HR 20.6 SEC TIME TO 20.6 SEC N 4 0 P 1 0 4 2.0 HR TIME TO 2.0 HR N 4 0 P 1 0 4 8.0 HR TIME TO 8.0 HR F 3 4 0 6.977E5 GM/HR F 3 4 1 6.977E7 GM/HR F 3 4 7 6.977E7 GM/HR P 1 0 4 T T /*

Calculation No. WBNAPS3-077	Rev: 11	Plant: WBN	Page: 34	
Subject: Offsite and Control Room Operator Doses	Due to a Main	Prepared: Mus	Date: 1-29-10	
Steam Line Break		Checked: Huc	Date: 1. 24. 10	

# Appendix E: Example of COROD Input (ARCON96 X/Q)

//APS77C9A JOB 264318,9MBERG.LP4T-C,MSGLEVEL=1,MSGCLASS=T //*MAIN ORG=KNXLCL01, CLASS=SB //JCL JCLLIB ORDER=(APB.NEN.EX262358.PROCLIB)
//STEP1 EXEC CORODV6,COND=(4,LT) //COROD1.FT05F001 DD * NIT= 23 NR= 1 ITP≕ 6 FACT = 1.0COROD-WBN MSLB s KRM 83 KRM 85 KR 85 KR 87 KR 88 KR 89 XEM 131 XEM 133 XE 133 XEM 135 XE 135 XE 138 I 131 I 132 I 133 I 134 I 135 I* 131 I* 132 I* 133 I* 134 I* 135 н 3 'ENVIRONMENT 4 ' \$ TN= 0.5722E-02 1 0.0 2 6.762E-02 3 1.029E-01 4 6.033E-02 5 1.176E-01 6 0.0 7 2.505E-01 8 2.866E-02 9 9.802E-01 10 5.429E-02 11 3.560E-01 12 4.999E-02 13 2.361E+00 14 5.667E+00 15 6.751E+00 16 4.964E+00 17 1.038E+01 18 0.0 19 0.0 20 0.0 21 0.0 22 0.0 23 5.415E+00 'ENVIRONMENT 4 \$ TN= 0.2000E+01 3 4.166E+00 5 3.687E+00 1 0.0 2 2.298E+00 4 1.513E+00 6 0.0 7 1.021E+01 8 1.119E+00 9 3.957E+01 10 7.468E+00 11 1.647E+01 12 3.232E-01 13 3.691E+00 14 1.293E+01 15 1.117E+01 16 1.391E+01 17 1.936E+01 18 0.0 19 0.0 20 0.0 21 0.0 22 0.0 23 6.170E+01 \$ TN= 0.8000E+01 'ENVIRONMENT 4 4 7.744E-01 5 4.691E+00 1 0.0 2 4.043E+00 3 1.324E+01 6 0.0 7 3.216E+01 8 3.429E+00 9 1.242E+02 10 1.706E+01 11 5.754E+01 12 9.744E-04 13 1.087E+01 14 1.296E+01 15 2.926E+01 16 3.585E+00 20 0.0 17 3.865E+01 18 0.0 19 0.0 21 0.0 22 0.0 23 1.718E+02 'ENVIRONMENT -6 CURIES ' \$ TN= 0.2400E+02 1 0.000E+00 2 0.000E+00 3 0.000E+00 4 0.000E+00 5 0.000E+00 8 0.000E+00 9 0.000E+00 10 0.000E+00 6 0.000E+00 7 0.000E+00 14 0.000E+00 11 0.000E+00 12 0.000E+00 13 0.000E+00 15 0.000E+00 17 0.000E+00 16 0.000E+00 18 0.000E+00 19 0.000E+00 20 0,000E+00 21 0.000E+00 22 0.000E+00 23 0.000E+00 -6 'ENVIRONMENT CURIES ' \$ TN= 0.9600E+02 1 0.000E+00 2 0.000E+00 3 0.000E+00 4 0.000E+00 5 0.000E+00 9 0.000E+00 8 0.000E+00 10 0.000E+00 6 0.000E+00 7 0.000E+00 12 0.000E+00 14 0.000E+00 15 0.000E+00 11 0.000E+0013 0.000E+00 16 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 20 0.000E+00 21 0.000E+00 22 0.000E+00 23 0.000E+00 -6 'ENVIRONMENT CURIES ' \$ TN= 0.7200E+03 1 0.000E+00 2 0.000E+00 3 0.000E+00 4 0.000E+00 5 0.000E+00 8 0.000E+00 9 0.000E+00 10 0.000E+00 6 0.000E+00 7 0.000E+00 12 0.000E+00 13 0.000E+00 14 0.000E+00 15 0.000E+00 11 0.000E+00 17 0.000E+00 16 0.000E+00 18 0.000E+00 19 0.000E+00 20 0.000E+00 21 0.000E+00 22 0.000E+00 23 0.000E+00 4.03E-03 4.03E-03 3.35E-03 2.27E-03 1.81E-03 1.45E-04 20.6 7179.4 21600.0 57600.0 259200.0 2246400.0 3200.0 51.0 711.0 51.0 711.0 51.0 711.0 51.0 711.0 51.0 711.0 51.0 0.0 0.0 0.0 0.0 0.0 0.0 3200.0 0.95 0.70 0.95 0.70 0.99 0.95 0.70 0.95 0.70 0.99 0.0 2889.0 0.0 2889.0 0.95 0.70 0.95 0.70 0.99 0.0 2889.0 0.95 0.70 0.95 0.70 0.99 0.0 2889.0 0.95 0.70 0.95 0.70 0.99 0.0 2889.0 100.0 60.0 40.0 1440.0 5760.0 257198.0 1.2492 0.63 0.8352 322.0 45.0 17.75 46.0 9.0 4.0 161.0 22.5 4.0 0.0 ROOFFLUX DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE THROUGH ROOF 1000.0 1000.0 1000.0 20.0 20.0 20.0 500.0 500.0 -16.0 2.25 ADJACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM AUX BUILDING 270.0 150.0 148.0 27.0 15.0 14.0 135.0 75.0 -25.5 3.0 ADJACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM TURBINE BLDG 322.0 112.0 341.0 32.0 11.0 34.0 161.0 56.0 -25.5 3.0 ADJACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM SPREADING ROOM 322.0 45.0 26.0 32.0 9.0 5.0 22.5 161.0 -4.67 0.67

Calculation No. WBNAPS3-077		Rev: 11	Plant: WBN	Page: 35	
Subject:	Offsite and Control Room Operator Doses Due to	a Main	Prepared: Mon	Date: 1-29-00	
	Steam Line Break		Checked: pur	Date: 1.29.10	

ADJACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM CR BLDG END 18.0 45.0 460.0 10.0 10.0 100.0 4.0 22.5 -25.5 3.0 ADJACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM CR BLDG END 18.0 45.0 460.0 10.0 10.0 100.0 4.0 22.5 -25.5 3.0 /*

Calculation No. WBNAPS3-077 Subject: Offsite and Control Room Operator Doses Due to a l			<b>Rev:</b> 11	Pla	Plant: WBN		ge: 36		
			Doses Due to a	Main	Prepared: M.B		Date: 1-29-60		
Steam Line Break					Checked	cked: unc		Date: 1.29.0	
ondiy E: Example	OF EENCDOSE N	ladal				<b>,</b>			
pendix F: Example		louel			•				
PS77F9A JOB 26436	0,'9MBERG.LP4T-C	', MSGLEVEL=1, MS	GCLASS=T						
MAIN ORG=KNXLCL01		,							
CL JCLLIB ORDER=(		.PROCLIB)							
TEP1 EXEC FNCDOSV		•							
NCDOS1.FT05F001 [	D *								
-83 KRM-85 KR-8	F								
-83 KR-89 KR-8	-								
-131 XEM-133 XE-1		5 XE-138							
31 I-132 I-13									
131 I*-132 I*-1									
1E-3 .668E-4 .4	59E-4 .204E-4	.635E-5 6.07E-	4						
MSLB, 21 UCI/CC	INITIAL CONC, 10	+1GPM LK SS,1.0	GPM LEAK IN S	G					
E TO 20.6 SEC									
		'\$ TN= 0.							
4 'ENVIRONMENT	2 6.762E-02	3 1.029E-01	4 6.033E-02						
1 0.0									
1 0.0 6 0.0	7 2.505E-01								
1 0.0 6 0.0	7 2.505E-01 12 4.999E-02								

١

	4 ENVIRON	MENT			'ŞTN≕ U.	.2000	ビキリエ			
	1 0.0	2	2.298E+00	. 3	4.166E+00	4	1.513E+00	5	3.687E+00	
	6 0.0	7	1.021E+01	8	1.119E+00	9	3.957E+01	10	7.468E+00	
	11 1.64	7E+01 12	3.232E-01	13	3.691E+00	14	1.293E+01	15	1.117E+01	
	16 1.39	1E+01 17	1.936E+01	18	0.0	19	0.0	20	0.0	
	21 0.0	22	0.0	23	6.170E+01				•	
	WBN MSLB, 21 UC	I/CC INITIA	AL CONC, 10	)+1GPN	4 LK SS,1.0	0 GPM	LEAK IN SG	;		
	TIME TO 8.0 HR									
	4 'ENVIRON	MENT	' \$ TN= 0.8000E+01							
	1 0.0	2	4.043E+00	3	1.324E+01	4	7.744E-01	5	4.691E+00	
	6 0.0	7	3.216E+01	8	3.429E+00	9	1.242E+02	10	1.706E+01	
	11 5.75	4E+01 12	9.744E-04	13	1.087E+01	14	1.296E+01	15	2.926E+01	
	16 3.58	5E+00 17	3.865E+01	18	0.0	19	0.0	20	0.0	
	21 0.0	22	0.0	23	1.718E+02					
	WBN MSLB									
	TIME TO 1 DAY									
-6 'ENVIRONMENT		MENT	CURIES		\$ TN= 0.	.24001	E+02			
•	1 0.00	0E+00 2	0.000E+00	3	0.000E+00	4	0.000E+00	-	0.000E+00	
	6 0.00	0E+00 7	0.000E+00		0.000E+00		0.000E+00		0.000E+00	
	11 0.00	0E+00 12	0.000E+00	13	0.000E+00	14	0.000E+00	15	0.000E+00	
	16 0.00	0E+00 17	0.000E+00	18	0.000E+00	19	0.000E+00	20	0.000E+00	
	21 0.00	0E+00 22	0.000E+00	23	0.000E+00					
	WBN MSLB									
	TIME TO 4 DAYS									
	-6 'ENVIRON	MENT	CURIES	1	\$ TN= 0.	.96001	E+02			
	1 0.00	0E+00 2	0.000E+00	3	0.000E+00	4	0.000E+00	5	0.000E+00	
	6 0.00	0E+00 7	0.000E+00	8	0.000E+00	9	0.000E+00		0.000E+00	
	11 0.00		0.000E+00	13	0.000E+00	14	0.000E+00		0.000E+00	
	10 0 00	07.00 17	0 0000.00	10	0 000 0 00	10	0 0000.00	20	0.0000.00	

WBN MSLB TIME TO 30 DAYS

16 0.000E+00 21 0.000E+00

17 0.000E+00 22 0.000E+00

' \$ TN= 0.7200E+03 3 0.000E+00 4 0.00 -6 'ENVIRONMENT CURIES 2 0.000E+00 7 0.000E+00 4 0.000E+00 9 0.000E+00 1 0.000E+00 5 0.000E+00 6 0.000E+00 8 0.000E+00 10 0.000E+00 12 0.000E+00 17 0.000E+00 11 0.000E+00 13 0.000E+00 14 0.000E+00 15 0.000E+00 16 0.000E+00 18 0.000E+00 19 0.000E+00 20 0.000E+00 21 0.000E+00 22 0.000E+00 23 0.000E+00

18 0.000E+00 23 0.000E+00

19 0.000E+00

20 0.000E+00

Calculation No. WBNAPS3-077	Rev: 11	Plant	: WBN	Page: 37
Subject: Offsite and Control Room Operator Doses Du	ue to a Main	Prepared:	NUB	Date: (-29.10
Steam Line Break		Checked:	HML	Date: 1.29.10

Appendix G: Additional Cases

-----

This appendix documents the original steam generator MSLB results used as input to the FSAR (0.265  $\mu$ Ci/gm I-131 equivalent or 21  $\mu$ Ci/gm I-131 equivalent, with a 10 gpm known primary to secondary side leakage and 1 gpm unknown leakage and 150 gpd per steam generator with the 3 gpm post accident leakage). The control room operator dose COROD model recirculation and time increments were corrected. All other cases (with different concentrations and/or leak rates) can be found in revision 8 of this calculation (these were not corrected, as they were not used in the FSAR). Note that all other cases are historical and utilize original steam generator data. Details of these results (excluding the COROD corrections) may be found in revision 8.

# Unit 1 MSLB Control Room Doses (rem) Using ARCON96 X/Q values with ORIGINAL STEAM GENERATOR DATA:

10 gpm known + 1 gpm unknown + 3 gpm post accident leakage

	Pre-accident Iodine	Accident Initiated	ł
	Spiking	Iodine Spiking	limit
Gamma	1.340E-02	2.475E-02	5
Beta	1.339E-01	2.052E-01	30
Thyroid (ICRP-2)	2.851E+01	4.730E+01	30
Thyroid (ICRP-30)	1.570E+01	2.426E+01	30
TEDE	5.856E-01	9.425E-01	5

Unit 1 MSLB Offsite Doses (rem) with ORIGINAL STEAM GENERATOR DATA : 10 gpm known + 1 gpm unknown + 3 gpm post accident leakage

Pre-accident Iodine spikin	ig case			Accident Initiated Iodine Spiking (500) case							
I-131 equivalent:	21 uCi/cc			I-131 equivalent:	0.265 uCi/cc						
· · · · · · · · · · · · · · · · · · ·	2-hr EAB	30-day LPZ	limit		2-hr EAB	30-day LPZ	limit				
gamma	6.381E-02	2.233E-02	25	gamma	2.006E-01	1.981E-01	2.5				
beta	2.058E-02	8.335E-03	300	beta	4.981E-02	4.809E-02	30				
Inhalation (ICRP-2)	1.046E+01	4.695E+00	300	Inhalation (ICRP-2)	1.296E+01	1.709E+01	30				
Inhalation (ICRP-30)	5.282E+00	2.469E+00	300	Inhalation (ICRP-30)	5.251E+00	7.394E+00	30				
TEDE	3.957E-01	1.698E-01	25	TEDE	6.212E-01	7.551E-01	2.5				

Calculation No. WBNAPS3-0	Rev:	11 P	lant: WBN	Page: 38
Subject: Offsite and Control	Room Operator Doses Due to a Main	Prepare	ed: µ s	Date: 1-29-00
Steam Line Break		Checke	d: HML	Date: \. 29.10
endix H: Unit 2 MSLB				
				(ref.26). The

#1: Reactor Coolant: 5.4E5 lb (ref.2) = 2.4494E8 gm

#2: Steam Generator w/Leak: 4.735E7 gm (ref.2)

#3: Steam Generators w/out Leak: 1.421E8 gm (ref.2).

Step Sources:

The step sources (Ci-gm/ $\mu$ Ci) to initialize the reactor coolant and the secondary side activities are:

All cases:

S=2.4494E8 gm*1E-6 Ci/µCi * 29.06 =7.118E3 (noble gasses)

S=2.4494E8 gm*1E-6 Ci/µCi = 2.4494E2 (tritium)

Pre-accident iodine spike case (initial concentration =  $21 \ \mu Ci/gm$ ):

S=2.4494E8 gm*1E-6 Ci/ $\mu$ Ci * 7.965[ $\mu$ Ci/gm I-131]⁻¹ *21 $\mu$ Ci/gm I-131 = 4.097E4 (iodines)

Accident initiated iodine spike case (initial concentration = 0.265 µCi/gm):

S=2.4494E8 gm*1E-6 Ci/µCi * 7.965 [µCi/gm I-131]⁻¹*0.265 µCi/gm I-131= 5.170E2

Secondary side, all cases, steam generator w/ leak, release to environment. (concentration =  $0.1 \mu \text{Ci/gm}$ ) which is due to dryout (4.74E7 gm rounded up from 4.735E7 gm mass in steam generator with leak):

 $S = 4.74E7 \text{ gm} * 1E-6 \text{ Ci}/\mu\text{Ci} * 3.136E5 [\mu\text{Ci}/\text{gm} I-131]^{-1} * 0.1\mu\text{Ci}/\text{gm} I-131 = 1.49E6$ 

 $S = 4.74E7 \text{ gm} * 1E-6 \text{ Ci}/\mu\text{Ci} = 4.74E1 \text{ (tritium)}$ 

Secondary side, all cases, steam generators without leak (initial concentration = 0.1 µCi/gm):

 $S = 1.421E8 \text{ gm} * 1E-6 \text{ Ci}/\mu\text{Ci} * 3.136E5 [\mu\text{Ci}/\text{gm} I-131]^{-1} * 0.1\mu\text{Ci}/\text{gm} I-131 = 4.46E6$ 

 $S = 1.421E8 \text{ gm}^{*}1E-6 \text{ Ci}/\mu\text{Ci} = 1.421E2 \text{ (tritium)}$ 

Continuous Sources:

For the accident initiated iodine spike case, the iodine spike is 500 times the iodine release rate from the fuel. At steady state, the iodine release (production) rate is equal to the removal rate. The iodine removal is due to a) radioactive decay, b) removal by the letdown system, and c) removal through reactor coolant leakage. These terms are expressed as:

 $P = \Sigma$ removal rates = decay + letdown + leakage

or  $P = \lambda + f_L \varepsilon / V + p_s / V$ 

where  $P = production rate [hr^{-1}]$ 

 $\lambda$  = decay constant for the isotope in question [hr⁻¹] = ln(2)/T_{1/2}

 $f_L$  = letdown flow rate = 120 gpm + 4.39 gpm = 124.39 gpm

 $\varepsilon$  = letdown demineralizer efficiency = 1 (assumed so as to maximize removal/production rate)

V = volume of primary coolant = 5.4E5 lb

p_s = removal rate of iodine from the primary side due to preaccident primary side leakage

= 11 gpm (10 gpm identified + 1 gpm unidentified)

 $T_{1/2}$  = halflife taken from ref.15

Note: all the above flow rates are converted to mass flow rates at STP:

Production Rates for a Reactor Coolant Leak of 11 gpm (10 gpm identified + 1 gpm unidentified)

	Half Life	λ [1/hr]	f _L ε/V [1/hr]	p _s /V [1/hr]	prod rate P [1/hr]
I-131	8.04 d	3.59E-03	1.15E-01	1.02E-02	0.1291
I-132	2.28 h	3.04E-01	1.15E-01	1.02E-02	0.4296
I-133	20.9 h	3.32E-02	1.15E-01	1.02E-02	0.1587
I-134	52.6 m	7.91E-01	1.15E-01	1.02E-02	0.9162
I-135	6.61 h	1.05E-01	1.15E-01	1.02E-02	0.2304

Calculation No. WBNAPS3-077	Rev: 11	Plant:	WBN	Page: 39
Subject: Offsite and Control Room Operator Doses D	ue to a Main	Prepared:	MUS	Date: 1-29-14
Steam Line Break		Checked:	HML	Date: 1.29.10

The accident initiated iodine spike of 500 times the increase in the iodine release (production) rate from the fuel is modeled as a continuous source:

 $C = Volume * 1E-6 Ci/\mu Ci * Prod. Rate * 500 * 1 \mu Ci/gm I-131 equiv. conversion factor*I-131 equiv.$ 

where Volume = 2.4494E8 gm

Prod Rate = see table above

1 μCi/gm I-131 equivalent conversion factor = 7.965 (value determined above, this is to get the ANSI/ANS-18.1-1984 source into 1 μCi/gm I-131 equivalent

I-131 equiv. =  $0.265 \,\mu \text{Ci/gm}$  I-131

Continuous Source [gm-Ci/µCi-hr] for Accident Initiated Iodine Spike:

Reactor Coolant Leak of 11 gpm (10 gpm identified + 1 gpm unidentified)

case:	0.265 µCi/gm I-131
I-131	3.338E+04
I-132	1.110E+05
I-133	4.103E+04
I-134	2.368E+05
I-135	5.956E+04

Flow Rates:

The following flow rates/leakage rates for each component are (determined by trial and error with the ultimate goal being to find the flow/leak which would lead to the offsite/control room doses reaching the regulatory limits):

Flow from Reactor Coolant #1 to Environment #4 all classes which consists of 1 gpm and is for leak in the steam generators, the production rate of iodines is based on a total RCS leakage of 11 gpm (=10gpm identified +1gpm unidentified):

F = 1.0 gpm * 60 min/hr * 3785.48 cc/gal * 1g/cc = 2.271E5 g/hr

Flow from Reactor Coolant #1 to Steam Generator w/ no Leak #3 all classes:

F = 3 steam generators * 150 gpd * 3785.48 cc/gal / 24 hr/day * 1g/cc = 7.098E4 g/hr

The initial steam released from the defective steam generator is 4.74E7 g (entire mass of SG rounded up). From reference 26, the non-defective steam generators (= "steam generators without leak" in this model) the mass release is 433,079 lb (0-2 hr), and 870,754 lb (2-8 hr). The accident releases end at eight hours. To take into account uncovery of the faulted steam generator, there is no iodine partitioning in the release to the environment (iodine partition coefficient = 1). The mass release representing 1 gpm primary to secondary side leak is a flow directly to the environment. This is reflected in the flows listed above. For other leak rates, the flow cards will correctly take into account the mass released.

The reactor coolant release to the unfaulted steam generator is small relative to the secondary side mass, therefore partitioning is allowed per the SRP. The iodine partition coefficient due to steaming for the unfaulted steam generators to the environment is 100. These mass releases translate into the following flows:

Flow from Steam Generators w/out Leak #3 to Environment #4:

F = (433,079 lb)(453.59 g/lb)/(2 hr) = 9.822E7 g/hr (0-2 hr, noble gasses, tritium)

F = (433,079 lb)(453.59 g/lb)/(100*2 hr) = 9.822E5 g/hr (0-2 hr, iodines)

F = (870,754 lb)(453.59 g/lb)/(6 hr) = 6.583E7 g/hr (2-8 hr) (noble gasses, tritium)

F = (870,754 lb)(453.59 g/lb)/(100*6 hr) = 6.583E5 g/hr (2-8 hr) (iodines)

The STP output is used as input to COROD (which determines control room operator dose) and FENCDOSE (which determines 30-day and 2-hour LPZ offsite dose).

Unit 2 ARCON96 X/Q values (worst case) for Unit 2 (ref.20): 2.87E-3 sec/cum 0-2 hr, 2.46E-3 sec/cum

Calculation	No. WBNAP	<b>S3-07</b> 7			Rev: 1	1	Plant: WBN	Pag	ge: 40
Subject:	Offsite and Con	trol Room	Operator D	oses Due t	o a Main	Prepa	red: ncg	Date:	1-29-10
	Steam Line Brea	k	,		<del></del>	Check	ed: huc	Date:	1.29.1
Results									
The results we	ere (rem):								
Unit 2 MSLB	Offsite:								
Pre-Accident 21 uCi/g I-13									
Ũ	2-hr EAB	30-day L	PZ lin	uit					i
amma	2.527E-02	8.554E-		5					i
eta	8.118E-03	3.221E-	03 30	0			,		1
hyroid (ICRP-30	)) 2.190E+00	9.325E-	01 30	0					İ
EDE	1.617E-01	6.422E-	02 2:	5					
	ated Iodine Spike 131 Equivalent								
	2-hr EAB	30-day L	PZ lin	nit					
amma	7.091E-02	6.747E-	02 2.	5					ł
eta	1.787E-02	1.659E-	02 3	0					
hyroid (ICRP-30	)) 2.177E+00	2.583E+	00 3	0					
EDE	2.369E-01	2.603E-	01 2.	5					
nit 2 MSLB Co	ntrol Room								
Pre-Accident 21 uCi/g I-13						·			
	Airborne	Shine	Total	Limit					
amma	4.448E-03	4.488E-03	8.936E-03	5					ĺ
eta	4.241E-02	0.000E+00	4.241E-02	30					
hyroid (ICRP-30	)) 6.912E+00	0.000E+00	6.912E+00	30					
EDE	2.469E-01	4.488E-03	2.514E-01	-5					
	ated Iodine Spike 131 Equivalent								
	Airborne	Shine	Total	Limit					,
amma	7.059E-03	7.344E-03	1.440E-02	5					
eta	6.126E-02	0.000E+00	6.126E-02	30					
hyroid (ICRP-30	)) 9.018E+00	0.000E+00	9.018E+00	30					
EDE	3.346E-01	7.344E-03	3.419E-01	5					

The Unit 2 MSLB doses are less than the 10CFR100 and 10CFR50 GDC 19 limits. Most of the Unit 1 doses bound the Unit 2 doses, except for the gamma, beta and TEDE offsite doses for the accident initiated iodine spike, and the gamma control room for the accident initiated iodine spike.

Calculatio	n No. WBNAPS	3-077			<b>Rev:</b> 11	Plan	t: WBN	Pag	e: 41
Subject:	Offsite and Cont Steam Line Breat	•	erator Dos	es Due to a	Main	Prepared: Checked:	MUS	Date: Date:	1-29-10
hment 1.5	Surveillance test 1-SI-	58-78 performed	1  on  7/10/00	1					
		TVA PLANT M			423 365	1994 P.02	1977		
	JUL-24-2000 13:52								
•	KRK URDER: 009679300	SURVEILL	ANCE TASK BHEET	(SPP-8.2)		PAGE	_1_ 0 [#]		
	EI XEY: P0531 ROCEDURE#: 1-81-68-28							1	,
	TITLE: PRIMARY RADIOCHEN PERF SECT: CEM INT REAGON: PERIODIC PERFORMA						N/A		•
	DUE: 07/10/00 VAN EXT: 97/11/00 NAX EXT: FORM SPP-8,2-2			UTHORIZATION TO BE	ain: sho	DATE	Tint		
	Fileg: U Eq: H Ashe XI: H					START DATE			
	APP NODE: 123 PERF NODE: 1234 SGIT RVH1					COMPLETION DA	J.J.J.K.		
	TRUCTIONS: Do NOT start prio	r to schedulet che da	ta			CONFLETION DA	NG EINGE		
****		REPORT OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PART		THIS A COMPLETE OR	PARTIAL	PP\$\$\$64	<del>a strije i CDD a CDD a</del>		
6	MAR MANAGAL Right	BATURE 1	NIT SECT PERI IN I	CHMARICE? (CXPLA1) HMARICS)	"PARTIAL"		PARTIALI		
	7			ALL TECH SPEC/TEC REG ACCEPTANCE CR	H RER/ODCH/FII ITERIA BATISFI	NE IED7 YES:W	0: N/A:		
		····		ALL OTHER ACCEPTA SFIED?	NCE CRITERIA	YES: N	01_ N/A1_		
	······································	·····	H	T OCHEDVILING ACOUT			01 N/A1_X_		
			MEQ	LL TECH EPEC/TECH WERE NOT SATISFIED //OR ACTION RERO? (	, WAS AN LCO/!	TR/	0: W/A;		
			<b></b>	TEST DIA	P.	6 Manuar	rligion		
					N/A		N/A TINE		
•				HI.	OO		7/11/00		
	······			- CHEN SU	V THE REVIEW		DATE		
					RB& Shihika a saya				
REN	ARK5 :								
		*** #****, ··· * *** ··· ·	COP1	OF STS BENT TO SC	HEDGLING:	BH	1 Jula		
							0116		
_		· · · · · · · · · · · · · · · · · · ·				SECTION/M	EN/DUR BRS		
						SECTION/IN	W/DUR WRS		
						SECT LON/IN			
	·····	**······	[]			SECTION/M			
					RECORDS TRAN	HITTAL#:			
								·	
-									
							-		
	.:								

alculation No.	WBNAPS3-0	77				Rev:	11	Plai	nt: WBN	Page	e: 42
	e and Control		perato	r Doses D	ue to a	Main	1	Prepared	: MUB	Date: /	-29-10
-	Line Break							Checked	Huc	Date:	. 24.1
Jlean	Line Dioak				·		L		<u>.</u>		<u></u>
	2888 13:52	TE W ******	NNESS ATTS	-2000 09: EE VALLEY BAR NUCLE	AUTH	ORITY	42 * * * * •	3 365 190	14 P.03/0	7	
FILE IDENT	E : U1 - R : DKB600	:(TVA.SA	MPLE.	CHEM.NEW]	W0007	10879	6_C4(	)1.CNF)]	L		
SAMPLE ID SAMPLE TIME	: W000710 : 10-JUL-			* SAN * Shi * EFI		Bomet Ight Cy fi	RY i LE i	o Gmiko	•	**	
SAMPLE TYPI	2 : 1240 CC	GAS NAR	.I ******	* San ********	PLE O	JANT1	TY : ****	1.00000	B+00 CC	****	
ELASPED REA	TIME : 10 VE TIME : 0 AL TIME : 0 VE TIME : 0	00:10:00	)	* GAT	DTIME ISITIV ISSIAN ITER	ITY SEN	1	0.39 4.00000 10.0000	•	****	
EFFIC CAL 1 DCAL DATE 4 KEV/CHAN OFFSET 9 COEFFICI PEAK START	5 TIME : 9-	-JUL-199 JUL-2000 999288-0 .483348- 221208-0	)4 13: ) 15:5 )1 -01 ke )8	47 * EFF 2: * ENF * HAI V * ABC * COF * PEF	IC CR RGY T P LIF INDANC RECTI RECTI	rt da Oler E Rat E Lim On Fa Chan	TE IO IT CTOR	: 1.2 : 8.0 : 80.0 : 1.0 : 409	TUL-1994 5 0000 0% 0000E+00	13:47	
COUNTED ON COLLECTED 1 COUNTED BY REVIEWED BY	BY : : Llmanno		Œ4		-	****	****				
COMMENTS	********										
******	wak Search I	eport									
******		leport Bkgnå	<b>BWHM</b>	Channel	Left	PV 4	Err	Fit	Nuclide	98	
Post-NID Po It Energy 0 81.11 0 151.33 0 196.3 0 227.7	y Area 2 230 7 88 8 70 9 22	- Bkgnd 92 53 80 47	1.01 0.97 0.88 1.35	162.55 303.07 393.10 455.92	157 299 388 448	12 1 8 1 10 2 10 6	0.8	Fit	Nuclido XE-133 KR-85M XE-135		
Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Pos	y     Area       2     230       7     88       8     70       9     22       1     549       1     72       1     12       0     48       9     26	- Bkgnd 92 53 80 47 83 40 34 34 34 16	1.01 0.97 0.88 1.35 0.94 0.89 0.76 2.39 1.31	162,55 303,07 393,10 455.92 499.98 517,78 610.77 805.96 870.75	157 299 388 448 494 514 607 801 866	12 1 8 1 10 2 10 6 12 2 10 2 12 3 12 3	0.8 7.7 5.7 5.4 7.2 9.3 5.3	Fit	XE-133 KR-85M		
Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Pos	Y     Area       2     230       7     88       8     70       9     22       1     549       1     72       1     19       0     48       9     26       6     390       5     39       1     22	- Bkgnd 92 53 80 47 83 40 34 34 34	1.01 0.97 0.88 1.35 0.94 0.79 2.39 1.31 2.28 1.21 1.29	162.55 303.07 393.10 455.92 499.98 517.78 610.77 805.96 870.75 1022.51 1053.28 1796.96	157 299 388 494 514 607 8666 1014 1048 1791	12 1 8 1 10 2 10 6 12 2 10 2 8 5 12 2 11 3 18 2 12 2 9 3	0.8 7.7 5.7 5.2 9.3 5.3 6.6 9.8 8 8.8	Fit	XE-133 KR-85M XE-135 XE-138 KR-85M KR-87 XE-138 XE-135		
Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Post-NID Pos	Y     Area       2     230       7     88       8     70       9     22       1     549       1     72       1     19       0     48       9     26       6     390       5     39       1     22	Bkgnd 92 53 80 47 83 40 34 34 16 49 24	1.01 0.97 0.88 1.35 0.94 0.79 2.39 1.31 2.28 1.21 1.29	162.55 303.07 393.10 455.92 499.98 517.78 610.77 805.96 875.95 1022.51 1053.28	157 299 388 448 494 514 607 801 866 1014 1048	12 1 8 1 10 2 10 6 12 2 8 5 12 2 11 3 18 2 12 2	0.8 7.7 5.7 5.2 9.3 5.3 6.6 9.8 8 8.8	Fit	XE-133 KR-85M XE-135 XE-138 KR-85 KR-87 XE-138		

Page: 43 Plant: WBN **Rev:** 11 WBNAPS3-077 Calculation No. MG Date: Offsite and Control Room Operator Doses Due to a Main Prepared: 1-29-10 Subject: Date: 1.29.10 Checked: **Steam Line Break** mu JUL-24-2000 13:53 TVA PLANI TRACE REFORT DATE : 10-JUL-2000 09:23 PRODESTOR : LLMANNONE TVA PLANT MORS OFC 423 365 1984 P.04/07 TENNESSEE VALLEY AUTHORITY WATTS BAR NUCLEAR PLANT POST NID OA ANALYSIS TITLE : U1 - RCS - GASEOUS ACTIVTY SAMPLE No.<th::W0007108796</th>C401OPERATOR NAME: LLEANNONESAMPLE TYPE : 1240 CC GAS MARISAMPLE GEOMETRY : GM1XCOUNT TIME : 10-JUL-2000 09:12:51SAMPLE QUANTITY : 1.00000E+00SAMPLE TIME : 10-JUL-2000 08:53:00DETECTOR : DET #3, GSS-LIBRARY : NOBLEGAS : DET #3, GSS-3286 PEAK ENERGY DECAY CORR ENERGY DIFF (KEV) ISOTOPE uCi/CC COMMENTS ----1293.64 -0.06 QA Results OK AR-41 1.3035-02 QA Results OK QA Results OK XR-85M 151.18 0.19 1.9158-04 KR-87 402.58 0.22 4.5758-04 0.12 XE-133 81.00 9.5658-04 QA Results OK 1.429E-03 XE-135 249.79 QA Results OK QA Results OK 7.3648-04 526.56 -0.11 XE-135M 1.7968-03 XE-138 258.31 0.40 QA Results OK . . . . . 1.859E-02 = TOTAL GAMMA ACTIVITY 0.000E+00 = Total DGL Activity AVG ENERGY DIFF . 0.11 1.859B-02 = Total Gas Activity

#### UNIDENTIFIED/REJECTED PEAKS

ENERGY	NET AREA	FWHM	GAMMA/SEC	GANMA/SEC /CC		ROR	FLAG	POTENTIAL ID	ACTIVITY
196.38 227.79	70. 22.	0.8B 1.35	4.728E+00 1.675E+00	4.728E+00 1.675E+00	20	T		KR-88 PD TE-132 CS-138	5.438E-04 5.163E-05 5.110E-03
511.06 898.31	390. 22.	2.28 1.29		7.016E+01 7.079E+00		60 . B	<b>4</b> <b>4</b> <b>4</b>	NP-239 ANNIL RB-88 Y-88	4.252E-04 0.000E+00 1.512E-03 2.049E-04

No -eles. 7 /10/00 Ъ

Ν

Disc:       Offsite and Control Room Operator Doses Due to a Main       Prepared: MLS       Date:       Light         Staam Line Break       In-Staam Line Break       Checked: WANL       Date:       Light         JL-24-2080 13'53       TWA PLENT MERS GFC       423 355 1964       P. 85-87         JL-24-2080 13'53       TWA PLENT MERS GFC       423 355 1964       P. 85-87         SMPLE FILE:       UI - RES - DESASED LIQUID ACTIVITY       TIMENESSEE VALUER ATTRONTY       LEANT         SAMPLE TIME:       UI - ACE - DESASED LIQUID ACTIVITY       SAMPLE GOOMETRY:       LEAVE         SAMPLE TIME:       UI - ACE - DESASED LIQUID ACTIVITY       SAMPLE GOOMETRY:       LEAVE         SAMPLE TIME:       UI - ACE - DESASED LIQUID ACTIVITY       SAMPLE GOOMETRY:       LEAVE         SAMPLE TIME:       UI - AUE - 2000 09:16       CEPERATOR       I LHANNONE         SAMPLE TIME:       10-JUL-2000 08:36       DEADTIME ()       : 2.2%       -         SAMPLE TIME:       0.01:00:10       GRADESINA HER TIME :       : 2.2%       -         FREEST LIVE TIME :       0.01:00:10       GRADESINA HER TIME :       : 2.2%       -         SAMPLE ONTH :       : 2.00:00       : 2.2%       -       : 2.2%       -         FREEST LIVE TIME :       0.01:00:00       :	culatic		BNAPS3-					Rev: 1	l	t: WBN		ge: 44
JL-24-2000 13:53       TAR PLANT MERS DFC       423 355 1504 P.05-07         JL-24-2000 13:53       TAR PLANT MERS DFC       423 355 1504 P.05-07         JL-24-2000 13:53       TAR PLANT MERS DFC       423 355 1504 P.05-07         JL-24-2000 13:53       TAR PLANT MERS DFC       423 355 1504 P.05-07         SAMPLE STILE : UL - RCS - DEGASSED LIQUID ACTIVITY       WINTES BER NOLLERY PLANT         SAMPLE STILE : UL - RCS - DEGASSED LIQUID ACTIVITY       : LUANNONE         SAMPLE STINE : 10-JUL-2000 07:25       · SEMELY BITGERY : LEVIO         SAMPLE STINE : 10-JUL-2000 07:25       · SEMELY BITGERY : LEVIO         SAMPLE TITE : RCS 200L LEV       · SPELTINE : LEVIO         SAMPLE TITE : RCS 200L LEV       · SEMELY BITGERY : LEVIO         PRESET LIVE TIME : 0 01:00:00       · SEMELY BITGERY : 1 4.00000         ELASPED REAL TIME : 0 01:00:00       · SEMELY BITGERY NET : 1 4.00000         ELASPED REAL TIME : 0 01:00:00       · NER IFERATIONS : 10         DETECTOR : DATE : TIME : 0 01:00:00       · SEMELY BITGERY NET : 1.280 1000         COUNTED OR : LINTE : .000001 15:52:       · EMERGY TOLER : 1.280         DETECTOR : : DET AL 00 2E-00       · CORECTION FACTOR : 1.000002+00         PERSET LIVE TIME : 0 01:00:00       · SEMELY BITGER BATTO : 80.0000         OPTERT : : 1.00TE       · CONTEND N: : 1.000002+00         OPTERT : : 1.14092E	ject:	Offsite a	nd Contro	I Room O	perato	or Doses Du	ie to a <b>h</b>	lain				
DETECTOR       10.503       10.503       10.503       10.503       10.503         SAMPLE 517:       UL - RCS - DECASSED LIQUID ACTIVITY         FILE IDENT       : DECOSOTION 58 C402       • OFERATOR       : LLANNONE         SAMPLE 517:       : W0007108795 C402       • OFERATOR       : LLANNONE         SAMPLE 518:       : W0007108795 C402       • OFERATOR       : LLANNONE         SAMPLE 518:       : W0007108795 C402       • OFERATOR       : LLANNONE         SAMPLE 518:       : W0007108795 C402       • OFERATOR       : LLANNONE         SAMPLE 518:       : W0007108795 C402       • OFERATOR       : LLANNONE         SAMPLE 518:       : W0007108795 C402       • OFERATOR       : LLANNONE         SAMPLE 518:       : W0007105795 C402       • OFERATOR       : LLANNONE         SAMPLE 518:       : W0007105795 C402       • OFERATOR       : LLANNONE         SAMPLE 518:       : W0007105795 C402       • OFERATOR       : LLANNONE         SAMPLE 518:       : W0007105795 C402       • OFERATOR       : RCSLIQUID         CODATE 618:       : DET 44, G89-3310       • LIBRARY       : RCSLIQUID         ELAPSED LIVE 518:       : DET 44, G89-3310       • LIBRARY       : SCSLIQUID         EFFIC 7018:       : DET 44, G89-		Steam Lir	ne Break						Checked:	HML	Date:	1.29.
DETECTOR : DET #4. G86-3310 * LIBRARY : BCELIGULF EFFIC CAL DATE : JINE : 9-JUL-2000 13:51: DCAL DATE : JINE : 9-JUL-2000 13:52: NEW/CHAN : 5.00474E-01 keV ABURDANCY TOLER : 1.23 * HALF LIPS RATIO : 8.0000 OFFSET :: -3.7324E-01 keV ABUNDANCE LIMIT : 80.0% * CORFECTION FACTOR : 1.00000E+00 * CONTED ON : LION COLLECTED BY : LLMANNONE REVIEWED BY : COMMENTS : ILMANNONE REVIEWED BY : LLMANNONE REVIEWED BY : LLMANNONE REVIEWED BY : LLMANNONE REVIEWED BY : LLMANNONE REVIEWED BY : LLMANNONE COMMENTS : ILMANNONE BY 10 135.60 697 25266 0.92 271.70 269 7 38.0 1-134 0 135.60 697 25266 0.92 271.70 154 7 46.3 1-135 0 364.21 455 13323 1.06 728.61 726 8 444.3 1-131 0 405.43 310 6322 1.05 810.99 808 8 46.9 1-134 0 417.67 485 609 1.20 835.66 12.9 83.7 4 7.3 1-134 0 417.67 485 609 1.20 83.6 81.9 1-134 0 417.67 485 609 1.20 83.6 6 81.9 1-134 0 417.67 485 609 1.20 835.66 82.7 1-135 0 364.21 455 13323 1.06 728.61 726 8 444.3 1-131 0 405.43 310 6322 1.05 810.99 808 8 46.9 1-134 0 417.67 485 609 1.20 835.66 81.9 1-134 0 417.67 485 609 1.20 835.66 81.9 1-134 0 417.67 485 609 1.20 835.66 81.9 1-134 0 417.67 485 609 1.20 835.66 81.9 1-134 0 417.67 485 609 1.20 835.66 81.9 1-134 0 417.67 485 609 1.20 835.66 81.9 1-134 0 522.65 8024 999 1.38 1045.31 1043 7 7.3 1-135 1 526.58 1046 823 1.29 1053.15 1050 18 5.2 1.06E+00 1-135 XE-135M 1 529.88 4510 1009 1.34 1059.77 1050 18 1.9 1-133	PILI SAMI SAMI SAMI ACO PRES ELAS	PLE TITLE S IDENT PLE ID PLE TIME PLE TYPE TATE & TI SET LIVE SPED REAL	: U1 - H : DKB600 : W000710 : 10-JUL- : RCS 200 ********* ME: 10 TIME : 0 TIME : 0	T CCS - DE 1 [TVA.S. 0 8795_C4 -2000_07 AL LSV -2000_07 AL LSV -301.00:0 01:00:0 01:01:2	DO OB:	-2000 09:3 SEE VALLEY BAR NUCLES D LIQUID A( CHEM.NEW) * OPEN * SAM * SAM	AUTHOR AR PLAN TIVITY 0000710 AATOR PLE GEO LF HEIG CLENCY PLE QUA TINE ( SITIVIT SSIAN S	L ITY T 8795_C METRY HT FILE NTITY ******	** 402.CNF;1 : LLMANNOF : LSV20 : 1 : LSV201 : 5.00000 : 2.2% : 4.00000 : 10.0000	E 		
It       Energy       Area       Bkgnd       FWHM Channel       Left       Pw %Err       Fit       Nuclides         0       135.60       697       25268       0.92       271.70       269       7       38.0       I-134         0       249.64       887       20225       0.79       499.61       498       6       25.6       XE-135         0       287.87       540       22521       0.98       576.01       574       7       46.3       I-135         0       364.21       455       13323       1.06       728.61       726       8       44.3       I-131         0       405.43       310       6932       1.05       810.99       808       8       46.9       I-134         0       417.67       485       6009       1.20       835.46       832       8       28.1       I-135         0       462.73       545       5368       1.28       925.53       922       8       23.7       CS-138         0       511.00       838084       22601       2.65       1022.01       1014       19       0.1       F-18         0       522.65       824       99 </td <td>DETI EFF: DCAI KEV, OFF: Q CO PEAI **** ANAI **** COUI COUI COUI REV:</td> <td>SCTOR IC CAL DAT L DATE &amp; T /CHAN SET DEFFICIENT &amp; START CH ********** LYSES : PE ************************************</td> <td>: DI E : 5- IME : 9- : -1 AN : 14 ************************************</td> <td>ST #4, G         -AUG-199         -JUL-200         00474E-         3.73924E         1.14092E         40         ************************************</td> <td>88-331 4 11:1 0 15:5 01 -01 ke -07</td> <td>.0 * LIBA L1: * EFF: 52: * ENE * HALJ 2V * ABU * COR * PEA</td> <td>AARY IC CERT RGY TOL F LIFB NDANCE RECTION K END C</td> <td>DATE BR BATIO LIMIT FACTO HAN</td> <td>: BCSL1 : 5-AU : 1.25 : 8.00 : 80.09 R : 1.00 : 4096</td> <td>-1994 1: 000</td> <td>*****</td> <td></td>	DETI EFF: DCAI KEV, OFF: Q CO PEAI **** ANAI **** COUI COUI COUI REV:	SCTOR IC CAL DAT L DATE & T /CHAN SET DEFFICIENT & START CH ********** LYSES : PE ************************************	: DI E : 5- IME : 9- : -1 AN : 14 ************************************	ST #4, G         -AUG-199         -JUL-200         00474E-         3.73924E         1.14092E         40         ************************************	88-331 4 11:1 0 15:5 01 -01 ke -07	.0 * LIBA L1: * EFF: 52: * ENE * HALJ 2V * ABU * COR * PEA	AARY IC CERT RGY TOL F LIFB NDANCE RECTION K END C	DATE BR BATIO LIMIT FACTO HAN	: BCSL1 : 5-AU : 1.25 : 8.00 : 80.09 R : 1.00 : 4096	-1994 1: 000	*****	
0 135.60 697 25268 0.92 271.70 269 7 38.0 I-134 0 249.64 887 20225 0.79 499.61 498 6 25.6 XE-135 0 287.87 540 22521 0.98 576.01 574 7 46.3 I-135 I-135 0 364.21 455 13323 1.06 728.61 726 8 44.3 I-131 0 405.43 310 6932 1.05 810.99 808 8 46.9 I-134 0 417.67 485 6009 1.20 835.46 832 8 28.1 I-135 0 462.73 545 5368 1.28 925.53 922 8 23.7 CS-138 0 511.00 836084 22601 2.65 1022.01 1014 19 0.1 F-18 0 522.65 824 999 1.38 1045.31 1043 7 7.3 I-132 1 526.58 1048 823 1.29 1053.15 1050 18 5.2 1.06B+00 I-135 XE-135N 1 529.88 4510 1009 1.34 1059.77 1050 18 1.9 I-133				•		<b>A</b> haana i				Mu al é da	_	
0 462.73 545 5368 1.28 925.53 922 8 23.7 CS-138 0 511.00 838084 22601 2.65 1022.01 1014 19 0.1 F-18 0 522.65 824 999 1.38 1045.31 1043 7 7.3 I-132 1 526.58 1048 823 1.29 1053.15 1050 18 5.2 1.06E+00 I-135 XE-135H 1 529.88 4510 1009 1.34 1059.77 1050 18 1.9 I-133		135.60 249.64	697 887	25268 20225	0.92 0.79 0.98	271.70 499.61 576.01	269 498 574 726	7 38.0 6 25.6 7 46.3 8 44.3	) ; ;	I-134 XE-135 I-135 I-135 I-135 I-131	8	
	0	405.43	310	6932	1.05	810.99						

____

____

alculatio	on No. WBNA	PS3-077			Rev: 11	Plant: WBN	Page: 45
ubject:	Offsite and C	ontrol Roor	n Operator I	Doses Due to a	Main	Prepared: MO	Date: 1-29-10
	Steam Line Br	reak				Checked: UNL	Date: 1.29.(
	JUL-24-2008 131 REPORT DAT REQUESTOR	53 T E 1 LU-JUI : LLMANI	ja plant MGRS G-2000 09:3 Nones	0FC 7	42	23 365 1984 P.25/6	77
	۰.			VALLEY AUTHO NUCLEAR PLA			
			POST NI	d qa analysi	\$		
	TITLE : 01	- RCS - 1	DEGASSED LI	QUID ACTIVIT	¥		
	COUNT TIME	E : RCS 2	L-2000 07:2	SAMPLE	or Name Geometry Quantity Or	: 5.00000E+00	3310
	isotope	PEAR ENERGY	ENERGY DIFF (REV)		COMM	ents	
	F-18 NA-24 MN-56 CO-58	511.00 1368.53 1810.69 810.76	0.00 0.07 -0.63 -0.01	1.1798-01 9.1698-04 9.313E-05 5.019E-04	oa Oa	Results OK Results OK Results OK Results OK	
	NB-95 I-131	765.79	0.89	3.132E-05 6.070E-05	QA	Results OK Results OK	
	I-132 I-133	667.69 529.87	0.03	1.459E-03 8.208E-04	δA	Results OK Results OK	
	I-134 I-135	847.03 1260.41	-0.05	2.694E-03 1.608E-03	<u>QA</u>	Results OK Results OK	
	XE-135 XE-135M	249.79	-0.16	8.914E-05 1.406E-02	AQ	Results OK Results OK	
	CS-138	1435.86	-0.11	2.395E-03		Results OK	1
	avg einef	RGY DIFF -	-0.01	1.426E-01 = 1.218E-01 = 2.427E-03 = 1.512E-03 = 1.415E-02 = 6.643E-03 =	Total DG Total FF Total AP Total Gs	Activity Activity & Activity	
	Doco Frant	ivelent Te	dinam131 m	2 0058-04	- 	3.946	-3
	Iodine 13	1/133 Rat	10 = 7.39 10 = 5.10	2.905E-04 5E-02 3E-01	DG	. A = ( <b>Geice</b> )A	30
	526.58 KG 546.88 KG 766.68 KG 810.75 KG 846.97 KG 857.15 KG	9V Poak wa 9V Poak wa 9V Poak wa 9V Poak wa 9V Poak wa 9V Poak wa	s used in : s used in : s used in s used in : s used in : s used in :		2 isotope 2 isotope 2 isotope 2 isotope	95 95 95 95 95	
		•					

Calculation No. WBNAPS3-077	Rev: 11	Plant: WBN	Page: 46
Subject: Offsite and Control Room Operator Dos	es Due to a Main	Prepared: MUS	Date: 1-19-10
Steam Line Break		Checked: UML	Date: 19.10

Surveillance test 1-SI-68-28 performed on 4/9/01

PAGE _1_ OF 29 SURVEILLANCE TASK SHEET (SPP-8.2) SORVEILLAND WORK ORDER: 010028300 SI KEY: PO531 PROCEDURE#: 1-SI-68-28 TITLE: PRIMARY RADIOCHEMISTRY REQUIREMENTS PEFF SECT: CEM TEST REASON: PERIODIC PERFORMANCE OUE: 04/09/01 WEN EXT: 04/09/01 WEN EXT: 04/09/01 MAX EXT: FORM SPP-8.2-2 FREO: W EQ: N ASME XI: N ASME XI: N ASME XI: N ASME XI: N ASME XI: N ASME XI: N SUBSENT RVMS: INSTRUCTIONS: Do NOT start prior to scheduled due date N/A_____ TIME N/A AUTHORIZATION TO BEGIN: SRO DATE 4/8/01 10745 DATE TIM 1500 , 1500 LETION DATE TIME 19/01 WAS THIS A COMPLETE OR PARTIAL PERFORMANCE? (EXPLAIN "PARTIAL" IN REMARKS) TEST PERFORMERS NAME SIGNATURE INIT SECT COMPLETE: X PARTIAL: ____ LUN Clout Clit \$ í. 5 1/2 WERE ALL TECH SPEC/TECH REQ/ODCH/FIRE PROT REQ ACCEPTANCE CRITERIA SATISFIED? Danial L Kerns DK CEM YES: X HO:___ H/A:___ WERE ALL OTHER ACCEPTANCE CRITERIA SATISFIED? YES:___ NO:___ N/A ALERT SCHEDULING REQUIRED? YES:____ NO:____ N/A:_X_ IF ALL TECH SPECTRCH REQ/ODCM/FIRE PROT REQ WERE NOT SUTISHIED, WAS AN LCO/TR/ CDCM/OR ACTION RECO? (EXPOSIN /A PENARKS) YES:____ NO:____ N/A:X_____ TEST DIRECTOR / LEAD PERFORMER DATE N/A ACCEPTANCE CRITERIA REVIEW: SRO N/A DATE / TIME <u>4/12/0/</u> DATE CHEM DORV IND REVIER ********* REMARKS 4/12-DATE ST COPY OF STS SENT TO SCHEDULING: SECTION/#MEN/DUR HRS SECTION/#MEN/DUR HRS SECTION/#MEN/DUR HRS SECTION/IMEN/DUR HRS RECORDS TRANSMITTAL#: 

alcul	ation No.	WBNAPS:	3-077				Rev:	11	Plant	: WBN	Page: 47
ubjeo	t: Offsite	and Contr	ol Room	Operat	or Doses	Due to a	Main	P	repared:	MB	Date: 1-29-00
	Steam	ine Break			····=··			C	hecked:	HML	Date: 1. 2.
21		***	******	9-APR ENNESS WATTS	-2001 1 EF VALL BAR NUC	4:25:02 EY AUTH LEAR PL	.67 ORITY		•	·	
sami Fili	LE TITLE Ident	: U1 - B : DKB600	CS - GA	SEOUS AMPLE.	ACTIVTY CHEM.NE	W]W0104	09576	7_C40	01.CNF;1		
SAMI	PLE ID PLE TIME PLE TYPE	: 9-APR-2	001 13:	25:	* S * S * E	PERATOR AMPLE G HELF HE FFICIEN AMPLE Q	EOMET IGHT CY FI	RY : : LE :	0		
PRE	DATE & TI SET LIVE ! SPED REAL ! SED LIVE !	PIME : 0 PIME : 0	00:10:0 00:10:0	0 0	* \$ * G	EADTIME ENSITIV AUSSIAN BR ITER	ITY SEN	:	4.00000	0	*****
Q C	SCTOR IC CAL DATI L DATE & T /CHAN SET DEFFICIENT & START CH	: 1.	44837E- 10914E	01 KeV	/ *A *C	BUNDANC	ON FA	LT CTOR	: NOBL : 2-AU : 1.25 : 8.00 : 80.0 : 1.00 : 4096	000E+00	Į.
ANAI	LYSES : PE	AK V16.9	NID V3.	3 MINA	CT V2.8	WTMEAN	/KEY	V1.8	*******	******	*****
COLI COUI REV: COMI	LECTED BY VTED BY LEWED BY MENTS		 *******	ß	/	<u>&gt;</u>	****	****			*****
Posi It	t-NID Peak		leport Bkgnd		Channel	Left	Der B	Tiles er	Fit	Nuclic	
000000000000000000000000000000000000000	Energy 80.94 151.17 166.01 196.08 249.77 258.57 402.62 510.99 526.86 609.00 677.82	Area 902 294 57 202 2313 59 160 7378 66 34 14	374 315 226 345 340 201 50 174 31 35	1.03 1.07 1.10 1.03 1.12 1.04 1.21 2.34 1.08 0.87	161.44 301.75 331.42 391.51 498.78	157 297 328 387 494 513 800 1013 1048 1209	10 10 10 12 12 8 4 8 1 19 11 2 16 4	5.2 2.8 7.7 8.5 2.6 3.2 1.0 1.2		XE-133 KR-85N KR-88 KR-88 XE-135 KR-87 XE-135 XE-135	3 5 5 <b>M</b>

. .

ΙΑ					
Calculatio	n No. WBNAPS3-077	Rev: 1	1	Plant: WBN	Page: 48
Subject:	Offsite and Control Room Operator Doses	Due to a Main	Pre	pared: pc 03	Date: 1-29-00
	Steam Line Break		Che	cked: 4ML	Date: 1.29.10

			Post 1	NID QA ANALYSI	18		
T	ITLE : U1	- RCS -	GASEOUS AG	CTIVTY			
S C S	OUNT TIME	E : 1240 : 9-AP	4095767_C40 CC GAS MAI R-2001 14:3 R-2001 13:2 EGAS	RI SAMPLI 14:53. SAMPLI		: DRKERNS : GM1K : 2.51000E : DET #4,	
	ISOTOPE	PEAK ENERGY	ENERGY DIFF (KEV)	DECAY CORR ) uCi/CC	COMM	ents	
	AR-41 KR-85M KR-87	1293.64 151.18 402.58	-0.01 0.04	2.696E-03 2.013E-04 4.809E-04	QA QA	Results OK Results OK Results OK	
	KR-88	196.32		4.982E-04		Results OK Results OK	
	XE-133 XE-135	81.00 249.79		1.202E-03 1.676E-03		Results OK	
	XE-133 XE-135 XE-135M AVG ENER(	249.79 526.56	-0.03 0.30	1.676E-03 1.105E-03	QA QA = TOTAL GA = Total DG	Results OK Results OK MMA ACTIVI1 L Activity	צי
	XE-135 XE-135M	249.79 526.56	-0.03 0.30   	1.676E-03 1.105E-03 	QA QA ■ TOTAL GA ■ Total DG ■ Total Ga	Results OK Results OK MMA ACTIVI1 L Activity	צי
ENERGY	XE-135 XE-135M	249.79 526.56 SY DIFF	-0.03 0.30  	1.676E-03 1.105E-03 7.859E-03 0.000E+00 7.859E-03 7.859E-03	QA QA ■ TOTAL GA ■ Total DG ■ Total Ga	Results OX Results OK MMA ACTIVIT L Activity S Activity POTENTIAL	
ENERGY 258.57 510.99	XE-135 XE-135M AVG ENERG	249.79 526.56 SY DIFF A FWHM 1.04	-0.03 0.30 ∞ -0.01 UNIDE GAMMA/SEC 3.448E+00	1.676E-03 1.105E-03 7.859E-03 0.000E+00 7.859E-03 1.859E-03 0.000E+00 1.374E+00	QA QA = TOTAL GA = Total DG = Total Ga TED PEAKS ERROR FLAG 43.2 R 1.25 U	Results OX Results OX MMA ACTIVIT L Activity S Activity POTENTIAL ID XE-138 F-18	ACTIVITY 
258.57	XE-135 XE-135M AVG ENERG NET ARE	249.79 526.56 SY DIFF 1.04 2.34	-0.03 0.30  = -0.01 UNIDE GAMMA/SEC 3.448E+00 7.643E+02	1.676E-03 1.105E-03 7.859E-03 0.000E+00 7.859E-03 T.859E-03 T.859E-03 T.859E-03 1.374E+00 3.045E+02	QA QA = TOTAL GA = Total DG = Total Ga TED PEAKS ERROR FLAG 43.2 R 1.25 U 061.5 U	Results OX Results OX MMA ACTIVIT L Activity S Activity POTENTIAL ID XE-138 F-180 ANNIL AG-110M	ACTIVITY 
258.57 510.99	XE-135 XE-135M AVG ENER( NET ARE) 59 7378	249.79 526.56 SY DIFF 1.04 2.34 1.85	-0.03 0.30 0.01 = -0.01 UNIDE GAMMA/SEC 3.448E+00 7.643E+02 1.829E+00	1.676E-03 1.105E-03 7.859E-03 0.000E+00 7.859E-03 0.000E+00 7.859E-03 0.000E+00 1.374E+00 3.045E+02 7.289E-01	QA QA = TOTAL GA = Total DG = Total Ga TED PEAKS ERROR ELAG 43.2 R 1.25 U 61.5 U 061.5 U 061.5 U	Results OX Results OX MMA ACTIVIT L Activity S Activity POTENTIAL ID XE-138 F-18 ANNIL AG-110M I=134 RB-8B	ACTIVITY 1.724E-0 6.016E-0 0.000E+0 1.845E-0 4.949E-0 3.932E-0
258.57 510.99 677.82	XE-135 XE-135M AVG ENERG 59 7378 14 24	249.79 526.56 SY DIFF 1.04 2.34 1.85 2.20	-0.03 0.30 -0.01 ■ -0.01 UNIDE GAMMA/SEC 3.448E+00 7.643E+02 1.829E+00 4.089E+00	1.676E-03 1.105E-03 7.859E-03 0.000E+00 7.859E-03 7.859E-03 0.000E+00 7.859E-03 1.374E+00 3.045E+02 7.289E-01 1.629E+00	QA QA = TOTAL GA = Total DG = Total Ga TED PEAKS ERROR FLAG 43.2 R 1.25 U 061.5 U U	Results OX Results OX Results OK MMA ACTIVIT L Activity s Activity s Activity POTENTIAL ID XE-138 F-18 ANNIL AG-110M I=134 RB-88 Y-BB	ACTIVITY 

TVA						
Calculation No. WBNAPS3-077	Rev: 1	l	Plant	: WBN	P	age: 49
Subject: Offsite and Control Room Operator Doses Due to a	a Main	Prep	ared:	MUS	Date	: 1-24-00
Steam Line Break		Che	cked:	HML	Date	: 1.29.0

	4	***	******	*****	*******	******	****	****	**	
				9-AP	R-2001 1	0:48:39	.98			
				ENNES	SEE VALL	EY AUTE	IORI	ГY		
				WATTS	BAR NUC	LEAR PI	ANT		• •	
		***	******	*****	*******	******	***1	****	* *	
SAMI FILI	PLE TITLE E IDENT	: U1 - I : DKB600	CS – DE	GASSEI Ample	D LIQUID .CHEM.NE	ACTIVI W0104	(TY 10957	766_C	402.CNF;1	
SAM	PLE ID	: W010409	15766 C4	02	* <b>O</b> I	PERATOR	2		: WNCLONT	7.
		: 9-APR-2			* 57	AMPLE Q	EOM	ETRY	: 65ML	-
						HELF HE				
				-					: 65ML1	
SAM	PLE TYPE	: RCS 651		<u> </u>	* S/	AMPLK (	UAN	CITY CAAAAA	: 1.58100	E+01 GRAMS
;										
ACO	DATE & T	IME : 9-	-APR-200	1 09:0	45: • DI	EADTIME	C (%)	)	: 4.6%	
PRES	SET LIVE	TIME : 0 TIME : 0	01:00:0	0	* 51	ENSITIV	ITY		4.00000	
ELAS	SPED REAL	TIME : 0	01:02:5	2	* G2	AUSSIAN	I SEI	4	: 10.0000	0
ELAI	PSED LIVE	TIME : 0	01:00:0	0	* NI	BR ITER	ATIC	DNS	: 10	
***	********	********	******	*****	*******	******	****	*****	********	**********
וידיאנו	RCTOR	• 108	87 <b>#</b> 4. G	55-33	10 * T.	TRDADY			· PCST.	IQUID UL-2000 20:26 000 % 000E+00
EFF	IC CAL DA	TE : 19	JUL-20	00 20	:26 * E		RT 1	ጋልጥድ	: 19-J	m - 2000 20:26
DCAI	L DATE &	TIME : 9-	APR-200	1 02:4	40: * El	NERGY 1	OLE	2	: 1.25	
REV,	/CHAN	: 5.	00516E-	01	* H	ALF LIE	ERI	ATIO	: 8.00	000
OFF	Set	: 1.	44837E-	01 ke	7 * A1	BUNDANC	EL	IMIT	: 80.0	8
0 00	DEFFICIEN	T : -1	.10914E	-07	* C	DRRECTI	ON I	TACTO	R : 1.00	000E+00
PISAL	K START C	HAN : 14	10		- P]	eak eni		1N 	: 4096	
ANAT	VSRS · P	EAK V16.9	NTD 73	3 MTN	ACT 77 8	UTIMIT'S N	1/2123	7 171 1		***********
***	******	*********	******	*****	*******	******	****	*****	*********	**********
		~			1					
	NTED ON			NI						
	LECTED BY		- //	111						
	NTED BY IEWED BY	: WHOLONE		K K ,	7					
	MENTS									
L LITE						-			A = 7.7	245-3
COR						-		DG	4 = 7.2	24E-3
****		; <u> </u>	*****	*****	******	*****	****	DG	4 = 7.2	24 <i>E-3</i>
****	* * * * * * * * * *		****	*****	******		****	DG	4 = 7.2	24 <i>E-3</i>
****	* * * * * * * * * *	: *********** k Search B	eport	*****	******	*****	****	DG	4 = 7.2	24 <i>E-</i> 3
****	********* t-NID Pea	: *********** k Search B Area	-	FWHM	Channel	Left	****	****	*****	********
**** Post	t-NID Pea Energy	Area	Bkgnđ				Pw	**** *Err	*****	Nuclides
**** Post It	t-NID Pea Energy	Area 991	Bkgnä 52495	0.82	268.75	266	Pw 7	**** *Err	*****	********
**** Post It 0	Energy 134.65 249.78	Area 991 2586	Bkgnä 52495 43764	0.82	268.75 498.80	266 496	Pw 7	%Err 38.5 13.6	*****	Nuclides W-187 I-134 XE-135
Post It 0 0	Energy 134.65 249.78 364.48	Area 991 2586 569	Bkgnd 52495 43764 19365	0.82 1.22 0.96	268.75 498.80 728.04	266 496 726	Pw 7 7 6	%Err 38.5 13.6 39.0	*****	Nuclides W-187 I-134 XE-135 I-131
**** Post It 0 0 0	Energy 134.65 249.78 364.48 405.26	Area 991 2586 569 542	Bkgnd 52495 43764 19365 12870	0.82 1.22 0.96 1.06	268.75 498.80 728.04 809.53	266 496 726 807	Pw 7 7 6 7	%Err 38.5 13.6 39.0 35.0	*****	Nuclides W-187 I-134 XE-135 I-131 I-134
**** Post It 0 0 0 0 0	Energy 134.65 249.78 364.48 405.26 433.34	Area 991 2586 569 542 305	Bkgnd 52495 43764 19365 12870 11020	0.82 1.22 0.96 1.06 0.97	268.75 498.80 728.04 809.53 865.66	266 496 726 807 863	Pw 7 7 6 7 7	%Err 38.5 13.6 39.0 35.0 57.4	*****	Nuclides W-187 I-134 XE-135 I-131 I-134 I-134 I-134
Post It 0 0 0 0 0	Energy 134.65 249.78 364.48 405.26 433.34 462.88	Area 991 2586 569 542 305 898	Bkgnd 52495 43764 19365 12870 11020 11840	0.82 1.22 0.96 1.06 0.97 1.08	268.75 498.80 728.04 809.53 865.66 924.71	266 726 807 863 921	Pw 7 7 6 7 7 8	%Err 38.5 13.6 39.0 35.0 57.4 21.3	*****	Nuclides W-187 I-134 XE-135 I-131 I-134 I-134 CS-138
**** Post It 0 0 0 0 0	Energy 134.65 249.78 364.48 405.26 433.34	Area 991 2586 569 542 305	Bkgnd 52495 43764 19365 12870 11020	0.82 1.22 0.96 1.06 0.97	268.75 498.80 728.04 809.53 865.66	266 496 726 807 863	Pw 7 7 6 7 7 8	%Err 38.5 13.6 39.0 35.0 57.4	*****	Nuclides W-187 I-134 XE-135 I-131 I-134 I-134 CS-138 BE-7
Post It 0 0 0 0 0	Energy 134.65 249.78 364.48 405.26 433.34 462.88	Area 991 2586 569 542 305 898	Bkgnd 52495 43764 19365 12870 11020 11840	0.82 1.22 0.96 1.06 0.97 1.08 2.93	268.75 498.80 728.04 809.53 865.66 924.71	266 496 726 807 863 921 948	Pw 7 7 6 7 7 8	%Err 38.5 13.6 39.0 35.0 57.4 21.3	*****	Nuclides W-187 I-134 XE-135 I-131 I-134 I-134 CS-138
Post It 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Energy 134.65 249.78 364.48 405.26 433.34 462.88 478.53 510.97 522.71	Area 991 2586 569 542 305 898 2028 1460805 1163	Bkgnd 52495 43764 19365 12870 11020 11840 19343 45497 2480	0.82 1.22 0.96 1.06 0.97 1.08 2.93 2.66 1.33	268.75 498.80 728.04 809.53 865.66 924.71 955.98 1020.82 1044.29	266 496 726 807 863 921 948 1013 1041	Pw 7 7 6 7 7 8 13	%Err 38.5 13.6 39.0 35.0 57.0 21.3 14.3	*****	Nuclides W-187 I-134 XE-135 I-131 I-134 I-134 CS-138 BE-7 W-187
Post It 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Energy 134.65 249.78 364.48 405.26 433.34 462.88 478.53 510.97	Area 991 2586 569 542 305 898 2028 1460805	Bkgnd 52495 43764 19365 12870 11020 11840 19343 45497	0.82 1.22 0.96 1.06 0.97 1.08 2.93 2.66 1.33	268.75 498.80 728.04 809.53 865.66 924.71 955.98 1020.82	266 496 726 807 863 921 948 1013	Pw 7 7 6 7 7 8 13	%Err 38.5 13.6 39.0 35.0 57.4 21.3 14.3 0.1 8.0	*****	Nuclides W-187 I-134 XE-135 I-131 I-134 CS-138 BE-7 W-187 F-18 I-132 I-135
Post It 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Energy 134.65 249.78 364.48 405.26 433.34 462.88 478.53 510.97 522.71	Area 991 2586 569 542 305 898 2028 1460805 1163	Bkgnd 52495 43764 19365 12870 11020 11840 19343 45497 2480	0.82 1.22 0.96 1.06 0.97 1.08 2.93 2.66 1.33	268.75 498.80 728.04 809.53 865.66 924.71 955.98 1020.82 1044.29	266 496 726 807 863 921 948 1013 1041	Pw 7 7 6 7 8 13 18 8	%Err 38.5 13.6 39.0 35.0 57.4 21.3 14.3 0.1 8.0	Fit	Nuclides W-187 I-134 XE-135 I-131 I-134 CS-138 BE-7 W-187 F-18 I-132

Calculation No. WBNAPS3-077	Rev: 11	Plant: WB	N Page: 50
Subject: Offsite and Control Room Operator Doses Due to	a Main	Prepared: MC3	Date: 1-24-00
Steam Line Break		Checked: HML	Date: 1.24.10

		***	******		*******			****	* *	
			-		R-2001 10					
					SEE VALLE			r¥		
				WATTS	BAR NUCL	KAK PL	ANT			
SAMPLE	C TITLE	: Ul - B	RCS - DE	GASSE	D LIQUID	ACTIVI	TY			
FILE I	DENT	: DKB600	):[TVA.S	AMPLE	. CHEM . NEW	]W0104	0957	766_C4	402.CNF;1	•
AMOT.F	מ דם	: W010409	95766 CA	02	* 07	RATOR			WNCLONT	2
AMPLE	TIME	: 9-APR-2	2001 08:	20:		MPLE G				
						ELF HE				
									: 65ML1	
AMPLE	TYPE	: RCS 651	IL BOTTL	E	* SA	MPLE O	UAN	FITY	: 1.58100	E+01 GRAMS
*****	******	*********	******	*****	****	******	***1	*****	*******	**********
CO DE	те & Т	IME : 9-	-APR-200	1 09:	45: * DE	CADTIME	(%)	\$	: 4.6%	
RESET	LIVE	TIME : 0 TIME : 0	01:00:0	0	* SE	INSITIV	ITY		4.00000	)
LASPE	ED REAL	TIME : 0	01:02:5	2	* G1	USSIAN	SER	<b>1</b> .	: 10.0000	0
LAPSE	ED LIVE	TIME : 0	01:00:0	0	* NE	R ITER	ATI(	)NS 👘	: 10	
****	******	********	*******	****	*******	*****	****	*****	*******	********
) स्था स्था राज्य	rOR	<b>ז</b> ת .	CT #4. C	55-22	10 <b>* 1</b> .1	BRARV			: RCST	JQUID TUL-2000 20:20 0000 0% 0000E+00
WFTC	CAL DA	TE 1	9TDT20	00 20	:26 * EF	FRIC CE	ም 1	ገልሞድ	: 19-3	110010 $10010$ $20:20$
CAL E	DATE &	TIME : 9-	-APR-200	1 02:	40: * EN	IERGY T	OLE	2	: 1.25	
EV/CF	IAN	: 5,	00516E-	01	* 112	LF LIF	ERI	ĂTIO	: 8.00	000
FFSET		; 1.	44837E-	01 ke	V + AE	BUNDANC	E L	III	: 80.0	9%
COFF	ER T C'T RN	m1	1001412				ANT 1			00000000
		т <u>-</u> т	r*TAAT#0	-07		DRRECTI	ON 1	ACTO	K : T'AC	10005400
an sar s	START C	HAN : 14	10	-07	* PE	CAK END	CHI	ACTO N	: 4096	5 5
*****	*****		1U *******	****	********	AK 500	***1	1.N	: 4090	5 5 6 * * * * * * * * * * * * * * * *
NALYS	SES : P	HAN : 14 EAK V16.9	NID V3.	****	********	AK 500	***1	1.N	: 4090	JUUUE+UU 5 • * * * * * * * * * * * * * * * *
NALYS	SES : P	EAK V16.9	NID V3.	****	********	AK 500	***1	1.N	: 4090	JUUL+UU 5 ***************
NALYS	START C	EAK V16.9	NID V3.	****	********	AK 500	***1	1.N	: 4090	JUUUE+UU 5 1 * * * * * * * * * * * * * * * * * *
COUNTE	START C SES : F SES : F SEC ON CTED BY	EAK V16.9	NID V3.	****	********	AK 500	***1	1.N	: 4090	JUUUE+UU 5 1 * * * * * * * * * * * * * * * *
COUNTE COUNTE COUNTE	START C SES : F SES : F SEC ON STED BY ED BY	EAK V16.9 : LION : WWW.LON	NID V3.	****	********	AK 500	***1	1.N	: 4090	JUUUE+UU 5 ****************
COUNTE COUNTE COUNTE COUNTE EVIEW	START C SES : F SES : F SED ON CTED BY ED BY WED BY	EAK V16.9 : LION : WAULON	NID V3.	****	********	AK 500	***1		: 4090 ********** 8 *******	,
BAK 2 NALYS COUNTE COLLEC COUNTE EVIEW	START C SES : F SES : F SEC ON STED BY ED BY	EAK V16.9 : LION : WAULON	NID V3.	****	********	AK 500	***1		: 4090 ********** 8 *******	24E-3
BAK 2 NALYS COUNTE COLLEC COUNTE EVIEW	START C SES : F SES : F SED ON CTED BY ED BY WED BY	EAK V16.9 : LION : WAULON	NID V3.	****	********	AK 500	***1		: 4090 ********** 8 *******	,
SAK 2 ***** OUNTE OLLEC OUNTE EVIEW OMMEN	ED ON ED ON ED BY ED BY ED BY ED BY ED BY	EAK VI6.9	NID V3.	****	********	AK 500	***1		: 4090 ********** 8 *******	,
SAK 2 ***** OUNTE OLLEC OUNTE EVIEW OMMEN	ED ON ED ON ED BY ED BY ED BY ED BY ED BY	EAK V16.9 : LION : WAULON	NID V3.	****	********	AK 500	***1		: 4090 ********** 8 *******	,
SAK 2 ***** NALYS ***** OUNTE OUNTE OUNTE EVIEW OMMEN *****	START CON SES : P SAME SES : P SAME SES SED ON STED BY MED BY MED BY MED BY MED BY MED BY MED BY MED BY MED BY	EAK V16.9	NID V3.	3 MIN.	ACT V2.8	WTMEAN	****	DG1	A = 7.2	24 <i>E-</i> 3
NALYS NALYS COUNTE COLLEC COUNTE EVIEW COMMEN COMMEN COST-N	START CON SES : F SES : F SED ON CTED BY NED BY NED BY NED BY NED BY NED BY NED BY NED BY NED BY NED BY NED BY NED BY	EAK V16.9 : LION : WMULON : k Search F Area	NID V3.	3 MIN.	ACT V2.8	Left	**** /KE3 ****	DG BEIT	A = 7.2 Fit	24E-3 Nuclides
SAK 2 ***** NALYS OUNTE OLLEC OUNTE EVIEW OMMEN *****	START CON SES : F SES : F SED ON CTED BY NED BY NED BY NED BY NED BY NED BY NED BY NED BY NED BY NED BY NED BY NED BY	EAK V16.9	NID V3.	3 MIN.	ACT V2.8	Left	**** /KE3 ****	DG BEIT	A = 7.2 Fit	24 <i>E-3</i> Nuclides W-187
COUNTE COUNTE COLLEC COUNTE EVIEW COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COM	START C SES : F SES : F SED ON TED BY MED BY MED BY MED BY MED Pea Snergy 134.65	EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9	NID V3.	3 MIN  FWHM 0.82	Channel 268.75	Left 266	**** /KE3 ****	DG1 %Err 38.5	A = 7.2	Nuclides W-187 I-134
COUNTE COUNTE COLLEC COUNTE EVIEW COMMEN COMMEN COST-N t E 0 1 0 2	START C SES : F SES :	EAK V16.9 : LION : WMULON : WMULON : WMULON : AIGA 991 2586	NID V3. NID V3. Report Bkgnd 52495 43764	3 MIN 3 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN	Channel 268.75 498.80	Left 266 496	**** /KE3 **** Pw 7	DG1 %Err 38.5 13.6	A = 7.2	Nuclides W-187 I-134 XE-135
COUNTE COUNTE COLLEC COUNTE EVIEW COMMEN t E 0 1 0 2 0 3	START C SES : F SES	EAK V16.9 : LION : WMULON : WMULON : : : : : : : : : : : : :	NID V3.	3 MIN 3 MIN FWHM 0.82 1.22 0.96	Channel 268.75 498.80 728.04	Left 266 496 726	**** /KE **** Pw 7 7	\$EIT 38.5 13.6 39.0	A = 7.2	Nuclides W-187 I-134 XE-135 I-131
COUNTE COUNTE COLLEC COUNTE EVIEW COMMEN ***** ***** ***** ***** ***** *****	START C SES : F SES :	EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9	NID V3. NID V3. Report Bkgnd 52495 43764	3 MIN 3 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN 5 MIN	Channel 268.75 498.80 728.04 809.53	Left 266 496 726 807	**** /KE3 **** Pw 7 7 6 7	DG1 ***** *Err 38.5 13.6 39.0 35.0	A = 7.2	Nuclides W-187 I-134 XE-135
NALYS NALYS COUNTE COLLEC COUNTE EVIEW COMMEN COST-N t E 0 1 0 2 0 3 0 4 0 4	START CONSTRUCTED BY SES : F STED BY SED BY SED BY SED BY SED BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY SEC BY	EAK V16.9 : LION : WMULON : WMULON : : : : : : : : : : : : :	NID V3. NID V3. Z Report Bkgnd 52495 43764 19365 12870	3 MIN 3 MIN 5 000000000000000000000000000000000000	Channel 268.75 498.80 728.04 809.53	Left 266 496 726	**** /KE3 **** Pw 7 7 6 7 7 6 7 7	\$EIT 38.5 13.6 39.0	A = 7.2	Nuclides W-187 I-134 XE-135 I-131 I-134
NALYS NALYS COUNTE COLLEC COUNTE EVIEW COMMEN t E 0 1 0 2 0 3 0 4 0 4 0 4	START (         SES : F         SED BY         SED BY         SED BY         SES : F         SED BY         SES : F         SES : F         SED BY         SES : F         SES	EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9	NID V3. NID V3. 2 2 2 2 3 3 3 3 3 4 3 7 6 4 19365 12870 11020	3 MIN 3 MIN 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Channel 268.75 498.80 728.04 809.53 865.66	Left 266 496 726 807 863	***** /XE3 **** Pw 7 7 6 7 7 8	DG %Err 38.5 13.6 39.0 35.0	A = 7.2	Nuclides W-187 I-134 KE-135 I-131 I-134 CS-138 BE-7
COUNTE COUNTE COLLEC COUNTE EVIEW COMMEN t E 0 1 0 2 0 3 0 4 0 4 0 4 0 4 0 4	START C SES : F SES	EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V1	NID V3. NID V3. Report Bkgnd 52495 43764 19365 12870 11020 11840 19343	3 MIN 3 MIN 6 5 5 5 5 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	Channel 268.75 498.80 728.04 809.53 865.66 924.71 955.98	Left 266 496 726 807 863 948	Pw 7 6 7 8 13	DG %EII 38.5 13.6 39.0 35.0 57.4 21.3 14.3	A = 7.2	Nuclides W-187 I-134 XE-135 I-131 I-134 I-134 CS-138 BE-7 W-187
COUNTE COUNTE COLLEC COUNTE COLLEC COUNTE EVIEW COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COM	START C         SES : F         SED ON         STED BY         MED BY         MED BY         SES : F         SES : F         SES : F         SED BY         MED BY         MED Pea         SID Pea         SID Pea         SID Pea         SID PEA         SID Pea         SID Pea         SID Pea         SID Pea         SID Pea         SID PEA         SID PEA         SID PEA         SID PEA         SID PEA         SID PEA         SID PEA         SID PEA         SID PEA         SID PEA         SID PEA         SID PEA         SID PEA         SID	EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V1	NID V3. NID V3. Report Bkgnd 52495 43764 19365 12870 11020 11840 19343 45497	3 MIN 3 MIN 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Channel 268.75 498.80 728.04 809.53 865.66 924.71 955.98 1020.82	Left 266 496 726 807 863 921 948 1013	Pw 7 6 7 8 13	DG *Err 38.5 13.6 39.0 35.0 57.4 21.3 14.3 0.1	A = 7.2	Nuclides W-187 I-134 XE-135 I-131 I-134 I-134 CS-138 BE-7 W-187 F-18
COUNTE COUNTE COLLEC COUNTE EVIEW COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COMMEN COM	START C SES : F SES	EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V16.9 EAK V1	NID V3. NID V3. Report Bkgnd 52495 43764 19365 12870 11020 11840 19343	3 MIN 3 MIN 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Channel 268.75 498.80 728.04 809.53 865.66 924.71 955.98	Left 266 496 726 807 863 948	Pw 7 6 7 8 13	\$EIT 38.5 13.6 39.0 35.0 57.4 21.3 14.3 0.1 8.0	A = 7.2	Nuclides W-187 I-134 KE-135 I-131 I-134 CS-138 BE-7 W-187 F-18 I-132

Calcula	ation No.	WBNAPS	53-077			Rev: 11		Plant: WBN	Page	: 51
Subjec	t: <b>Offsit</b> e	and Con	trol Room O	perator Doses	Due to a	Main	Prep	ared: A CB	Date: -	29-10
		Line Brea		-				ked: fue	Date:	
	·· ·· · · · · · · · · · · · · · · · ·						1			2
i Tadalan na sa sa sa sa sa sa sa sa sa sa sa sa sa									I.	
			ECK (V10.4) R-2001 10:4 NTZ				Page	; 1		
			TENNESSEE Watts Bai	VALLEY AUTHO NUCLEAR PLA	rity Nt					
			POST NI	D QA ANALYSI	s					
	TITLE : Ul	- RCS -	DEGASSED LI	QUID ACTIVIT	<b>Y</b>					
	COUNT TIME	: 9-APR	-2001 09:45 -2001 08:20	OPERAT SAMPLE 5:36. SAMPLE 0:00. DETECT	QUANTIT:	: : 1.58	100E+	01 8 <b>8</b> -3310		
	isotope	PEAK ENERGY	ENERGY DIFF (KEV)	DECAY CORR uCi/GRAM	COM	<b>ENTS</b>				
	F-18	511.00	-0.03	1.116E-01	OA	Results				
	NA-24 MN-56	1368.53	0.05	2.060E-03 2.088E-04	QA	Results Results	OK			
	CO~58	1810.69 810.76	0.00	6.218E-04	ΩĂ	Results	OK			
	CO-60 NB-95	1173.22 765.79	0.28 0.46	2.776E-05 2.794E-05		Results Results				
	I-131	364.48	0.00	3.881E-05	<u> </u>	Results	OK			
	I-132	667.69	0.00	1.165E-03	QA	Results Results	OK			
	I-133 I-134	529.87 847.03	0.01 -0.04	6.105E-04 2.334E-03		Results				
	I-135	1260.41	-0.03	1.158E-03		Results				
	XE-135 XE-135M	249.79 526.56	-0.02	1.380E-04 1.972E-02		Results Results				
	CS-138	1435.86	-0.20	2.195E-03		Results				
	AVG ENER	GY DIFF =	.06	1.419E-01 = 1.168E-01 = 2.223E-03 = 2.918E-03 = 1.986E-02 = 5.307E-03 =	Total D Total F Total A Total G	C Activ Activi Activi Activi As Activ	ity ty ty ity			
	Iodine 13	1/133 Rat	dine-131 = io = 6.35 io = 5.27	/E-02						
				ldentifying identifying	2 isotop 2 isotop					
	526.52 Ke	V Peak wa	s used in :	dentifying	2 isotop	98				
	766.25 Ke	v reak wa V Peak wa	a used in : Is used in :	dentifying dentifying	2 isotop 2 isotop					
	772.62 Ke	V Peak wa	s used in :	Identifying	2 isotop	8				
	835.61 Ke	V Peak wa	s used in :	dentifying		98				
				ldentifying						

Attachment 11

### FENCDOSE Run

### APS77F10A.txt

## Time Dependent Releases preaccident 21 uCi/gm I-131 equivalent case

			APS77F10A.	txt		:
1	FFFFFFFFF	EEEEEEEEE	NN NN	сссссс	DDDDDDDD	000000
SSSSSS	EEEEEEEEEE FFFFFFFFFFF	EEEEEEEEE		ccccccc	DDDDDDDDD	0000000
SSSSSSSS	EEEEEEEEEEEEEEE	EE	NNNN NN	сс сс	DD DD	00 00 SS
	EE FF	EE	NN NN NN	сс	DD DD	00 00 SS
	EE FFFFFFF	EEEEEEE	NN NN NN	cc	DD DD	00 00
SSSSSSSSS		EEEEEEE	NN NN NN	СС	DD DD	00 00
SSSSSSSSS		EE	NN NNNN	CC ·	DD DD	00 00
SS	EE FF	EE	NN NNN	cc cc	DD DD	00 00 SS
SS	EE FF	EEEEEEEEE	NN NN		DDDDDDDDD	00000000
SSSSSSSS	EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE		NN NN	сссссс	DDDDDDDD	000000
SSSSSS	EEEEEEEEEE			ceece	00000000	000000
	RRRRRRR	EEEEEEEEE	vv vv		555555555555555555555555555555555555555	
	RRRRRRRRRR	EEEEEEEEEE	vv vv		555555555555555555555555555555555555555	
	RR RR	EE			55	
	RR RR	EE -			55	
	RRRRRRRRR	EEEEEEEE			5555555	
					5555555	
		EEEEEEE				
	RR RR	EE			55	
	RR RR	EE	VVVV		55 55	
	RR RR	EEEEEEEEE	VV		55555555	
	RR RR	EEEEEEEEE	· <b>VV</b>		555555	
QQQQQQ	WW WW AAAAAA	IIIIII	NN NN	999999		NN NN
QQQQQQQQ	WW WW AAAAAAAA	IIIIII	NNN NN		555555555555555555555555555555555555555	NNN NN
	WW WW AA AA	II	NNNN NN	99 99	55	NNNN NN QQ
	WW WW AA AA	II	NN NN NN	99 99	55	NN NN NN QQ
	WW WW AA AA	II	NN NN NN	9999999999	5555555	NN NN NN QQ
	WW WW WW AAAAAAAAAA	II	NN NN NN	999999999	5555555	NN NN NN QQ
	WW WWWW WW AAAAAAAAAA	II	NN NNNN	99	55	NN NNNN QQ
	WWW WWW AA AA	II	NN NNN	99 99	55 55	NN NNN QQ
QQQQQQQQ	www www	IIIIII	NN NN		55555555	NN NN
~~~~~~			Page 1			

Page 1

QQQQQQ Q	WW WM AA AA		APS77F10A NN NN		555555	NN N	١N
11	00000 00000 000000	11 111		222222 22222222	888888 88888888		[]
111	0000000 00 00	1111		22 22	88 88	//	
1111	00 00 00 00	11	//	22	88 88	//	
11	00 00 00 00	11	//	2222222	88888888	//	
11	00 00 00 00	11	//	2222222	88888888	//	•
11	00 00 00 00	11	//	22	88 88	11	
11	00 00 00 00	11	//	22	88 88		
11	00 00 00 00 00	111111	//	222222222222222222222222222222222222222	88888888	//	
111111 1111111	0000000 00000 00000	111111	/.	2222222222	888888	/	
333333	11 55555555555555555555555555555555555				7777777777		
33333333	111 555555555	66666666 5		555555555555555555555555555555555555555	7777777777		
33	1111 55	66 66	::	55	77	::	. 33
33	11 55	66	::	55	77	::	
33333	11 5555555	66666666		5555555	77		
33333	11 5555555	666666666		5555555	77		
33	11 55	66 66	::	55	77	::	
33	11 55 55	66 66	` ::	55 55	77	::	33
33333333	111111	66666666		55555555	77		
333333	111111 555555	666666		555555	77		

1

1 REPRODUCTION OF INPUT DATA DECK

+ + + + + + + + + 1 KRM-83 KRM-85 KR-85 KR-87 KR-88 KR-89 XEM-131 XEM-133 XE-133 XEM-135 XE-135 XE-138 I-131 I-132 I-133 I-134 I-135 Page 2

+

APS77F10A.txt I*-131 I*-132 I*-133 I*-134 I*-135 H-3 Т .141E-3 .668E-4 .459E-4 .204E-4 .635E-5 6.07E-4 WBN MSLB, 21 UCI/CC INITIAL CONC, 10+1GPM LK SS,1.0 GPM LEAK IN SG TIME TO 20.6 SEC 'ENVIRONMENT 4 ' \$ TN= 0.5722E-02 1 0.000E+00 2 6.118E-02 3 9.312E-02 4 5.462E-02 5 1.065E-01 9 8.871E-01 6 0.000E+00 7 2.267E-01 8 2.593E-02 10 4.914E-02 11 3.221E-01 12 4.523E-02 13 2.112E+00 14 5.071E+00 15 6.038E+00 16 4.445E+00 17 9.285E+00 18 0.000E+00 19 0.000E+00 20 0.000E+00 22 0.000E+00 21 0.000E+00 23 4.847E+00 WBN MSLB, 21 UCI/CC INITIAL CONC, 10+1GPM LK SS,1.0 GPM LEAK IN SG TIME TO 2.0 HR 4 'ENVIRONMENT' '\$ TN= 0.2000E+01 1 0.000E+002 2.306E+00 3 4.182E+00 4 1.518E+00 5 3.700E+00 9 3.972E+01 6 0.000E+00 7 1.025E+01 8 1.123E+00 10 7.368E+00 14 1.292E+01 11 1.645E+01 12 3.237E-01 13 3.690E+00 15 1.117E+01 16 1.391E+01 17 1.935E+01 18 0.000E+00 19 0.000E+00 20 0.000E+00 21 0.000E+00 22 0.000E+00 23 6.132E+01 WBN MSLB, 21 UCI/CC INITIAL CONC, 10+1GPM LK SS,1.0 GPM LEAK IN SG TIME TO 8.0 HR 'ENVIRONMENT 4 ' \$ TN= 0.8000E+01 1 0.000E+00 2 4.046E+00 3 1.325E+01 4 7.748E-01 5 4.693E+00 10 1.677E+01 6 0.000E+00 7 3.219E+01 8 3.429E+00 9 1.243E+02 12 9.735E-04 14 1.295E+01 11 5.700E+01 13 1.086E+01 15 2.924E+0118 0.000E+00 19 0.000E+00 16 3.584E+00 17 3.862E+01 20 0.000E+00 21 0.000E+00 22 0.000E+00 23 1.713E+02 WBN MSLB TIME TO 1 DAY ' \$ TN= 0.2400E+02 -6 ENVIRONMENT CURIES 3 0.000E+00 2 0.000E+00 4 0.000E+00 1 0.000E+005 0.000E+00 7 0.000E+00 9 0.000E+00 6 0.000E+00 8 0.000E+00 10 0.000E+00 15 0.000E+00 11 0.000E+00 12 0.000E+00 13 0.000E+00 14 0.000E+00 16 0.000E+00 17 0.000E+00 19 0.000E+00 20 0.000E+00 18 0.000E+00 22 0.000E+00 21 0.000E+00 23 0.000E+00 WBN MSLB TIME TO 4 DAYS ' \$ TN= 0.9600E+02 3 0.000E+00 4 0.00 -6 'ENVIRONMENT CURIES 2 0.000E+00 1 0.000E+00 4 0.000E+00 5 0.000E+00 7 0.000E+00 6 0.000E+00 8 0.000E+00 9 0.000E+00 10 0.000E+00 11 0.000E+00 12 0.000E+00 13 0.000E+00 14 0.000E+00 15 0.000E+00 17 0.000E+00 16 0.000E+00 18 0.000E+00 19 0.000E+00 20 0.000E+00 22 0.000F+00 21 0.000E+00 23 0.000F+00 WBN MSLB TIME TO 30 DAYS -6 ' \$ TN= 0.7200E+03 ENVIRONMENT CURIES 3 0.000E+00 1 0.000E+00 2 0.000E+00 4 0.000E+00 5 0.000E+00 6 0.000E+00 7 0.000E+00 8 0.000E+00 9 0.000E+00 10 0.000E+00 13 0.000E+00 11 0.000E+00 12 0.000E+00 14 0.000E+0015 0.000E+00 17 0.000E+00 19 0.000E+00 16 0.000E+0018 0.000E+00 20 0.000E+00 22 0.000E+00 21 0.000E+00 23 0.000E+00 +

> PROGRAM FENCDOSE REVISION NUMBER:5 REVISION DATE: 31 JUL 2009 TODAY IS: 01/28/10 STARTING TIME IS: 16:57:35

1 0 0 0

U 0

1ISOTOPE KRM-83 KRM-85 KR-85 KR-87 KR-88 KR-89 XEM-131 XEM-133 XE-133 XE-135 XE-135 XE-138 I-131 I-132 I-133 I-134 I-135 I*-131 I*-132 I*-133 I*-134 I*-135 H-3	GAMMA ENERGY (MEV/DIS) 0.0025 0.1586 0.0022 0.7928 1.9629 2.0837 0.0201 0.0416 0.0454 0.4318 0.2470 1.1830 0.3810 2.3332 0.6100 2.5928 1.5802 0.3810 2.3332 0.6100 2.5928 1.5802 0.0000	APS77F10A.txt BETA ENERGY (MEV/DIS) 0.0371 0.2529 0.2506 1.3237 0.3750 1.2310 0.1428 0.1898 0.1354 0.0950 0.3168 0.6058 0.1943 0.5143 0.4080 0.6102 0.3680 0.1943 0.5143 0.554 0.5556 0.5556 0.5566 0.5566 0.5566 0.5566 0.5566 0.5566 0.55666 0.55666 0.556666666666
OCHI/Q 1.410E-04 6.070E-04	6.680E-05 4	.590E-05 2.040E-05 6.350E-06
TIME TO 20.6	UCI/CC INITIAL SEC ENVIRONMENT	CONC, 10+1GPM LK SS,1.0 GPM LEAK IN SG , TIME = 0.
KRM-83 KRM-85 KR-85 KR-87 KR-88 KR-89 XEM-131 XEM-133 XE-133 XE-135 XE-135 XE-138 I-131 I-132 I-133 I-134 I*-132 I*-133 I*-134 I*-135 H-3 OWBN MSLB, 21 TIME TO 2.0 H		conc, 10+1gpm lk ss,1.0 gpm leak in sg
		Page A

Page 4

.

		APS77F10A.txt
COMPONENT 1ISOTOPE	4 ENVIRONMENT	, TIME = 2.
KRM-83 KRM-85 KR-85 KR-85 KR-87 KR-88 KR-89 XEM-131 XEM-133 XE-133 XE-135 XE-135 XE-138 I-131 I-132 I-133 I-134 I-135 I*-131 I*-132 I*-133 I*-134 I*-135 H-3 OWBN MSLB, TIME TO 8 COMPONENT IISOTOPE	.0 HR	CONC, 10+1GPM LK SS,1.0 GPM LEAK IN SG , TIME = 8.
KRM-83 KRM-85	0.0000E+00 0.4046E+01	
KR-85	0.1325E+02	
KR-87 KR-88	0.7748E+00 0.4693E+01	
KR-89 XEM-131	0.0000E+00 0.3219E+02	
XEM-133 XE-133	0.3429E+01 0.1243E+03	
XEM-135 XE-135	0.1677E+02 0.5700E+02	
XE-138 I-131	0.9735E-03 0.1086E+02	
I-132 I-133	0.1295E+02 0.2924E+02	
I-134	0.3584E+01	
I-135 I*-131	0.3862E+02 0.0000E+00	
I*-132 I*-133	0.0000E+00 0.0000E+00	
I*-134 I*-135	0.0000E+00 0.0000E+00	
H-3 Owbn mslb	0.1713E+03	
TIME TO 1 COMPONENT 1ISOTOPE	DAY 6 ENVIRONMENT	CURIES , TIME = 24.
KRM-83 KRM-85	0.0000E+00 0.0000E+00	
KR-85 KR-87	0.0000E+00 0.0000E+00 0.0000E+00	
NN-07	0.00002+00	Page 5

APS77F10A.txt IME

Page 5

KR-88 KR-89 XEM-131 XEM-133 XE-133 XE-135 XE-135 XE-135 XE-138 I-131 I-132 I-133 I-134 I*-135 I*-131 I*-132 I*-133 I*-134 I*-135 H-3 OWBN MSLB TIME TO 4 DAY COMPONENT 6 IISOTOPE	
	0.0000E+00 0.0000E+00
KRM-83 KRM-85 KR-85 KR-87 KR-88 KR-89 XEM-131 XEM-133 XE-133 XE-135 XE-135	0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

CURIES

, TIME = 96.

CURIES

, TIME =720.

Page 6

XE-138	0.0000E+00
1-131	0.0000E+00
I-132	0.0000E+00
I-133	0.0000E+00
I-134	0.0000E+00
I-135	0.0000E+00
I*-131	0.0000E+00
I*-132	0.0000E+00
I*-133	0.0000E+00
I*-134	0.0000E+00
I*-135	0.0000E+00
н-3	0.0000E+00

1INPUT CON	CENTRATION				
krm-83	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
KRM-85	2.3672E+00	4.0460E+00	0.0000E+00	0.0000E+00	0.0000E+00
KR-85	4.2751E+00	1.3250E+01	0.0000E+00	0.0000E+00	0.0000E+00
KR-87	1.5726E+00	7.7480E-01	0.0000E+00	0.0000E+00	0.0000E+00
KR-88	3.8065E+00	4.6930E+00	0.0000E+00	0.0000E+00	0.0000E+00
kr-89	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
XEM-131	1.0477E+01	3.2190E+01	0.0000E+00	0.0000E+00	0.0000E+00
XEM-133	1.1489E+00	3.4290E+00	0.0000E+00	0.0000E+00	0.0000E+00
XE-133	4.0607E+01	1.2430E+02	0.0000E+00	0.0000E+00	0.0000E+00
XEM-135	7.4171E+00	1.6770E+01	0.0000E+00	0.0000E+00	0.0000E+00
XE-135	1.6772E+01	5.7000E+01	0.0000E+00	0.0000E+00	0.0000E+00
XE-138	3.6893E-01	9.7350E-04	0.0000E+00	0.0000E+00	0.0000E+00
I-131	5.8020E+00	1.0860E+01	0.0000E+00	0.0000E+00	0.0000E+00
I-132	1.7991E+01	1.2950E+01	0.0000E+00	0.0000E+00	0.0000E+00
I-133	1.7208E+01	2.9240E+01	0.0000E+00	0.0000E+00	0.0000E+00
I-134	1.8355E+01	3.5840E+00	0.0000E+00	0.0000E+00	0.0000E+00
I-135	2.8635E+01	3.8620E+01	0.0000E+00	0.0000E+00	0.0000E+00
I*-131	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
I*-132	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
I*-133	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
I*-134	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
I*-135	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
н-3	6.6167E+01	1.7130E+02	0.0000E+00	0.0000E+00	0.0000E+00

1WBN MSLB

OGAMMA DOSE FOR EACH ISOTOPE AND TIME PERIOD (REM)

ID ISOTOPE 2-HR EAB	0-2 HRS	2-8 HRS	8-24 HRS	1-4 DAYS	4-30 days
1 KRM-83	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
2 KRM-85 5.698E-05	1.324E-05	1.072E-05	0.000E+00	0.000E+00	0.000E+00
3.698E-05 3 KR-85 1.434E-06	3.331E-07	4.891E-07	0.000E+00	0.000E+00	0.000E+00
1.434E-06 4 KR-87 1.892E-04	4.395E-05	1.026E-05	0.000E+00	0.000E+00	0.000E+00
1.892E-04 5 KR-88 1.134E-03	2.634E-04	1.538E-04	0.000E+00	0.000E+00	0.000E+00
6 KR-89 0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
7 XEM-131 3.189E-05	7.407E-06	1.078E-05	0.000E+00	0.000E+00	0.000E+00
8 XEM-133	1.683E-06	2.380E-06 Page	0.000E+00 2 7	0.000E+00	0.000E+00

		APS77F1	0A.txt		
246E-06 9 XE-133	6.496E-05	9.421E-05	0.000E+00	0.000e+00	0.000E+00
797E-04 LO XEM-135	1.129E-04	1.209E-04	0.000E+00	0.000E+00	0.000E+00
360E-04 11 XE-135	1.460E-04	2.351E-04	0.000E+00	0.000E+00	0.000E+00
286E-04 L2 XE-138	1.538E-05	1.923E-08	0.000E+00	0.000E+00	0.000E+00
523E-05 L3 I-131	7.792E-05	6.909E-05	0.000E+00	0.000E+00	0.000E+00
354E-04 L4 I-132	1.480E-03	5.046E-04	0.000E+00	0.000E+00	0.000E+00
370E-03 L5 I-133	3.700E-04	2.979E-04	0.000E+00	0.000E+00	0.000E+00
593E-03 L6 I-134	1.678E-03	1.552E-04	0.000E+00	0.000E+00	0.000E+00
222E-03 L7 I-135	1.595E-03	1.019E-04	0.000E+00	0.000E+00	0.000E+00
367E-03	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
000E+00				0.000E+00	
19 I*-132 000E+00	0.000E+00	0.000E+00	0.000E+00		0.000E+00
20 I*-133 000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
21 I*-134 000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
22 I*-135 000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
23 н-3 000е+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0TAL 527E-02	5.869E-03	2.685E-03	0.000E+00	0.000E+00	0.000E+00
ETA DOSE FOR EAC	H ISOTOPE AND) TIME PERIO) (REM)		
ID ISOTOPE HR EAB	0-2 HRS	2-8 HRS	8-24 HRS	1-4 DAYS	4-30 DAYS
1 ккм-83 000е+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
2 KRM-85 358E-05	1.941E-05	1.572E-05	0.000E+00	0.000E+00	0.000E+00
3 KR-85 496E-04	3.474E-05	5.102E-05	0.000E+00	0.000E+00	0.000E+00
4 KR-87 906E-04	6.751E-05	(1.576E-05	0.000E+00	0.000E+00	0.000E+00
5 KR-88 993E-04	4.629E-05	2.704E-05	0.000E+00	0.000E+00	0.000E+00
6 KR-89	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
000E+00 7 XEM-131	4.852E-05	7.062E-05	0.000E+00	0.000E+00	0.000E+00
089E-04 8 XEM-133	7.072E-06	9.999E-06	0.000E+00	0.000E+00	0.000E+00
044E-05 9 XE-133	1.783E-04	2.586E-04	0.000E+00	0.000E+00	0.000E+00
676Е-04 10 ХЕМ-135	2.285E-05	2.448E-05	0.000E+00	0.000E+00	0.000E+00
837E-05 11 XE-135	1.723E-04	2.774E-04	0.000E+00	0.000E+00	0.000E+00
418E-04			0.000E+00	0.000E+00	0.000E+00

2 120- 05		APS77F1	0A.txt		
3.120E-05 13 I-131	3.656E-05	3.242E-05	0.000E+00	0.000E+00	0.000E+00
1.574E-04 14 I-132	3.001E-04	1.023E-04	0.000E+00	0.000E+00	0.000E+00
1.292E-03 15 I-133	2.277E-04	1.833E-04	0.000E+00	0.000E+00	0.000E+00
9.802E-04 16 I-134	3.632E-04	3.360E-05	0.000E+00	0.000E+00	0.000E+00
1.564E-03 17 I-135	3.417E-04	2.184E-04	0.000E+00	0.000E+00	0.000E+00
1.471E-03 18 I*-131	0.000E+00	0.000E+00	0.000E+00	0.000e+00	0.000E+00
0.000E+00 19 I*-132	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.000E+00 20 I*-133	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.000E+00 21 I*-134	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.000E+00 22 I*-135	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.000E+00 23 H-3	1.219E-05	1.495E-05	0.000E+00	0.000E+00	0.000E+00
5.247E-05		-			
TOTAL	1.886E-03	1.336E-03	0.000E+00	0.000E+00	0.000E+00
8.118E-03 OINHALATION DOSE F	OR EACH IODIN	NE AND TIME F	PERIOD (REM)	(ICRP 2 DATA	A
ID ISOTOPE 2-HR EAB	0-2 HRS	2-8 HRS	8-24 HRS	1-4 DAYS	4-30 DAYS
1 I-131	4.201E-01	3.726E-01	0.000E+00	0.000E+00	0.000E+00
1.809E+00 2 I-132 2.027E-01	4.709E-02	1.606E-02	0.000E+00	0.000E+00	0.000E+00
2.027E-01 3 I-133 1.450E+00	3.368E-01	2.711E-01	0.000E+00	0.000E+00	0.000E+00
1.450E+00 4 I-134 9.665E-02	2.245E-02	2.077E-03	0.000E+00	0.000E+00	0.000E+00
5 I-135	1.737E-01	1.110E-01	0.000E+00	0.000E+00	0.000E+00
7.479E-01 6 1*-131	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.000E+00 7 I*-132 0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
8 I*-133	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.000E+00 9 I*-134	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.000E+00 10 1*-135 0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.000E+00					
TOTAL 4.306E+00	1.000E+00	7.728E-01	0.000E+00	0.000E+00	0.000E+00
0INHALATION DOSE F	OR EACH IODI	NE AND TIME	PERIOD (REM)	(ICRP 30 DA	TA)
ID ISOTOPE 2-HR EAB	0-2 HRS	2-8 HRS	8-24 HRS	1-4 DAYS	4-30 DAYS
1 I-131 1.320E+00	3.066E-01	2.719E-01		0.000E+00	0.000E+00

Page 9

		APS77F1	0A.txt		
2 I-132 2.440E-02	5.669E-03	1.933E-03	0.000E+00	0.000E+00	0.000E+00
3 I-133 6.524E-01	1.515E-01	1.220E-01	0.000E+00	0.000E+00	0.000E+00
4 I-134 4.137E-03	9.609E-04	8.889E-05	0.000E+00	0.000E+00	0.000E+00
5 I-135	4.385E-02	2.802E-02	0.000E+00	0.000E+00	0.000E+00
1.888E-01 6 I*-131 0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
7 I*-132	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.000E+00 8 I*-133 0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
9 I*-134	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.000E+00 10 I*-135 0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
TOTAL 2.190E+00	5.086E-01	4.239E-01	0.000E+00	0.000E+00	0.000E+00

OAT 2 HOUR EXCLUSION AREA BOUNDARY (EAB)

TOTAL GAMMA DOSE = 2.527E-02 REM TOTAL BETA DOSE = 8.118E-03 REM TOTAL INHALATION DOSE (ICRP-2) = 4.306E+00 REM TOTAL INHALATION DOSE (ICRP-30) = 2.190E+00 REM

OAT 30 DAY LPZ BOUNDARY

TOTAL GAMMA DOSE = 8.554E-03 REM TOTAL BETA DOSE = 3.221E-03 REM TOTAL INHALATION DOSE (ICRP-2) = 1.773E+00 REM TOTAL INHALATION DOSE (ICRP-30) = 9.325E-01 REM KRM 83 IS NOT IN EPA LIBRARY. ISOTOPE IGNORED. KRM 83 IS NOT IN EPA LIBRARY. ISOTOPE IGNORED. KRM 83 IS NOT IN EPA LIBRARY. ISOTOPE IGNORED. KRM 83 IS NOT IN EPA LIBRARY. ISOTOPE IGNORED. KRM 83 IS NOT IN EPA LIBRARY. ISOTOPE IGNORED. KRM 83 IS NOT IN EPA LIBRARY. ISOTOPE IGNORED. KRM 83 IS NOT IN EPA LIBRARY. ISOTOPE IGNORED. KRM 83 IS NOT IN EPA LIBRARY. ISOTOPE IGNORED. KRM 83 IS NOT IN EPA LIBRARY. ISOTOPE IGNORED.

1WBN MSLB

OTEDE FOR EACH ISOTOPE AND TIME PERIOD (REM)

ID ISOTOPE 2-HR EAB	0-2 HRS	2-8 HRS	8-24 HRS	1-4 DAYS	4-30 days
1 KRM-83 0.000e+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
2 KRM-85 3.712E-05	8.622E-06	6.982E-06	0.000E+00	0.000E+00	0.000E+00
3 KR-85	2.177E-07	3.196E-07	0.000E+00	0.000E+00	0.000E+00
9.371E-07 4 KR-87	3.141E-05	7.332E-06	0.000E+00	0.000E+00	0.000E+00
1.352E-04 5 KR-88	1.938E-04	1.132E-04 Page	0.000E+00 10	0.000E+00	0.000E+00

APS77F10A.txt							
	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00		
0.000E+00 7 XEM-131	2.011E-06	2.927E-06	0.000E+00	0.000E+00	0.000E+00		
	7.650E-07	1.082E-06	0.000E+00	0.000E+00	0.000E+00		
3.293E-06 9 XE-133	3.181E-05	4.613E-05	0.000E+00	0.000E+00	0.000E+00		
1.369E-04 10 XEM-135 3.127E-04	7.263E-05	7.779E-05	0.000E+00	0.000E+00	0.000E+00		
11 XE-135 3.959E-04	9.197E-05	1.481E-04	0.000E+00	0.000E+00	0.000E+00		
12 XE-138 4.479E-05	1.040E-05	1.301E-08	0.000E+00	0.000E+00	0.000E+00		
13 I-131 5.185E-02	1.204E-02	1.068E-02	0.000E+00	0.000E+00	0.000E+00		
	3.453E-03	1.177E-03	0.000E+00	0.000E+00	0.000E+00		
15 I-133 4.352E-02	1.011E-02	8.138E-03	0.000E+00	0.000E+00	0.000E+00		
16 I-134 9.594E-03	2.229E-03	2.062E-04	0.000E+00	0.000E+00	0.000E+00		
17 I-135 3.911E-02	9.084E-03	5.805E-03	0.000E+00	0.000E+00	0.000E+00		
18 I*-131 0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00		
19 I*-132 0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00		
20 I*-133 0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00		
21 I*-134 0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00		
22 I*-135 0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00		
23 H-3 8.590E-04	1.995E-04	2.447E-04	0.000E+00	0.000E+00	0.000E+00		
TOTAL 1.617E-01	3.756E-02	2.666E-02	0.000E+00	0.000E+00	0.000E+00		
TOTAL TEDE = 6.42 OTHIS RUN IS DATED		HE TOTAL ELAF	SED TIME IS	0.0 MINUTES	. 0.0 SECONDS.		

APS77F10A.txt

J

Attachment 12

FENCDOSE Run

APS77F10B.txt

Time Dependent Releases 0.265 uCi/gm I-131 accident initiated lodine spike

APS77F10B.txt											
1	FFFFFFFFF	EEEEEEEEE	NN	NN	ccccc		DDDDDDDD		0000	00	
SSSSSS	EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	EEEEEEEEE	NNN	NN	ccccccc	C	DDDDDDDD	C	00000	000	
SSSSSSSS	EEEEEEEEE FF	EE	NNNN	NN	cc o	cc	DD [DD	00	00	SS
SS	EE FF	EE	NN NN	NN	сс		DD [DD	00	00	SS
	EE FFFFFFFF	EEEEEEE	NN NN	I NN	сс		DD [DD.	00	00	
SSSSSSSS	FFFFFFF	EEEEEEE	NN N	IN NN	сс		DD [DD	00	00	
SSSSSSSSS	FF	EE	NN	NNNN	сс		DD [DD	00	00	
	EE FF	EE	NN	NNN	cc o	сс	DD [DD	00	00	SS ·
SS	EE FF	EEEEEEEEE	NN	NN	ccccccc	С	DDDDDDDD	D	00000	0000	
SSSSSSSS	EEEEEEEEE FF	EEEEEEEEE	NN	NN	сссссс		DDDDDDDD		0000	000	
SSSSSS	EEEEEEEEE										
	RRRRRRR	EEEEEEEEE	VV	vv			55555555	55			
	RRRRRRRR	EEEEEEEEE	VV	vv			555555555	55			
	RR RR	EE	vv	vv			55				
	RR RR	EE	vv	vv			55				
	RRRRRRRR	EEEEEEE	vv	vv			5555555				
	RRRRRRR	EEEEEEE	vv	vv			555555	5			
	RR RR	EE	VVV	\sim			ļ	55			
	RR RR	EE	VVV	N			55	55			
	RR RR	EEEEEEEEE	v	/			5555555	5.			
	RR RR	EEEEEEEEE	vv	/			555555				
	WW WW	IIIIII	NN	NN	999999		55555555	55	NN	NN	
QQQQQQ	AAAAA WW WW	IIIIII	NNN	NN	99999999	9	55555555	55	NNN	NN	
QQQQQQQQ	AAAAAAA WW WW	II	NNNN	NN	99	99	55		NNNN	ŇŇ	QQ
QQ	AA AA WW WW	II	NN NN	NN	99	99	55		NN NN	NN	QQ
QQ	AA AA WW WW	II	NN NN	NN N	99999999	99	5555555		NN NN	I NN	QQ
QQ	AA AA WW WW WW	тт		IN NN	9999999	99	555555	5		IN NN	00

Page 1

NN

NN NN

NNNN

NNN 99

WW WW WW

WWWW WWWW

AA

WWW

AA

Q QQ AAAAAAAAAA WW WWWW WW

Q QQ AAAAAAAAA

WWW

AA

QQQ AA

QQQQQQQQ

II

II

II

IIIIII

NN

NN

NN

NN

99999999 5555555

99 55

99

99999999

NN

NN

NN

NN

55

55

55555555

NN NN QQ

QQ

QQ

NNNN

NNN

NN

QQQQQQ Q	WW AA	WW AA	IIII	II	APS NN	77F10B. NN		9999	555	555	NN	NN	
11	00 000	000	11			11	222	2222	8888	388		11	
111	000 000 0000	0000	111			11	2222	2222	8888	8888		//	
1111	00	00 00	1111			//	22	22	88	88		//	
1111	00 00	00	11	-		//		22	88	88		11.	÷
11	00 00	00	11			//	222	22222	8888	8888		//	
11 11	00 00	00 00	11		1.	/	2222	2222	8888	8888	/	//	
11	00 00	00 00	11	-			22		88	88	11	/	
11	00 00	00 00	11	-	//		22		88	88			
1111111	000	0000	1111	.11	//		22222	222222	8888	8888	//		
111111	00	0000	1111	.11	. /		22222	222222	888	888	/		
		11	6666	666	•		55555	555555	77777	77777			
55555555	1	11 .11	66666	6666			55555	555555	77777	77777			
55555555	11	111 11	66	66		::	55			77		::	55
		.⊥ 11 .1	66			::	55			77		::	55
		.1 11 11	666666	666			5555	5555		77			
5555555		11	666666	6666			555	55555	7	7			
5555555		11 11	66	66		::		55	77			::	
55	,	.1 11	66	66		::	55	55	77			::	55
55	11	.1 .1111 .1111	66666	6666			5555	55555	77				
55555555 55555555555555555555555555555	11	$\begin{array}{c} 111111\\ 11111\\ 11111\\ 11111 \end{array}$	6666	666			555	5555	77				

1

1 REPRODUCTION OF INPUT DATA DECK

+ + + + + 1 KRM-83 KR-87 KR-88 KR-88 KR-89 XEM-131 I-132 I-133 I-134 KE-135 XE-138 I-135 Page 2

+

APS77F10B.txt I*-131 I*-132 I*-133 I*-134 I*-135 H-3 Т .141E-3 .668E-4 .459E-4 .204E-4 .635E-5 6.07E-4 WBN MSLB, 265 UCI/CC INIT CONC, 10+1GPM LK, 500 IODINE SPIKE, 1.0 GPM SG LK TIME TO 20.6 SEC 4 'ENVIRONMENT ' \$ TN= 0.5722E-02 3 9.312E-02 1 0.000E+00 2 6.118E-02 4 5.462E-02 5 1.065E-01 7 2.267E-01 6 0.000E+00 8 2.593E-02 9 8.871E-01 10 4.907E-02 11 3.221E-01 12 4.523E-02 13 2.101E+00 14 5.023E+00 15 6.006E+00 17 9.225E+00 18 0.000E+00 16 4.369E+00 19 0.000E+00 20 0.000E+00 21 0.000E+00 22 0.000E+00 23 4.847E+00 WBN MSLB, 265 UCI/CC INIT CONC, 10+1GPM LK, 500 IODINE SPIKE, 1.0 GPM SG LK TIME TO 2.0 HR 4 'ENVIRONMENT '\$ TN= 0.2000E+01 2 2.306E+00 7 1.025E+01 4 1.518E+00 1 0.000E+00 3 4.182E+00 5 3.700E+00 9 3.970E+01 6 0.000E+00 8 1.121E+00 10 8.098E+00 11 1.638E+01 12 3.237E-01 13 3.079E+00 14 3.853E+01 15 1.147E+01 16 1.009E+02 21 0.000E+00 18 0.000E+00 19 0.000E+00 17 2.926E+01 20 0.000E+00 22 0.000E+00 23 6.132E+01 WBN MSLB, 265 UCI/CC INIT CONC, 10+1GPM LK, 500 IODINE SPIKE, 1.0 GPM SG LK TIME TO 8.0 HR 'ENVIRONMENT ' \$ TN= 0.8000E+01 Δ. 3 1.325E+01 1 0.000E+00 2 4.046E+00 4 7.748E-01 5 4.693E+00 6 0.000E+00 8 3.533E+00 7 3.219E+01 9 1.262E+02 10 7.861E+01 11 1.250E+02 12 9.735E-04 13 4.417E+01 14 3.430E+02 15 1.561E+02 19 0.000E+00 17 3.509E+02 18 0.000E+00 16 5.806E+02 20 0.000E+00 21 0.000E+00 22 0.000E+00 23 1.713E+02 WBN MSLB TIME TO 1 DAY ' \$ TN= 0.2400E+02 -6 ENVIRONMENT CURIES 2 0.000E+00 7 0.000E+00 3 0.000E+00 4 0.000E+00 1 0.000E+00 5 0.000E+00 8 0.000E+00 9 0.000E+00 6 0.000E+00 10 0.000E+00 11 0.000E+00 12 0.000E+00 13 0.000E+00 14 0.000E+00 15 0.000E+00 16 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 20 0.000E+00 22 0.000E+00 21 0.000E+00 23 0.000E+00 WBN MSLB TIME TO 4 DAYS ' \$ TN= 0.9600E+02 -6 ENVIRONMENT CURIES 2 0.000E+00 3 0.000E+00 1 0.000E+004 0.000E+00 5 0.000E+00 7 6 0.000E+00 8 0.000E+00 9 0.000E+00 0.000E+00 10 0.000E+00 11 0.000E+00 12 0.000E+00 13 0.000E+00 14 0.000E+00 15 0.000E+00 16 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 20 0.000E+00 21 0.000E+00 22 0.000E+00 23 0.000E+00 WBN MSLB TIME TO 30 DAYS 'ENVIRONMENT -6 ' \$ TN= 0.7200E+03 CURIES 3 0.000E+00 1 0.000E+00 2 0.000E+00 4 0.000E+00 5 0.000E+00 7 0.000E+00 9 0.000E+00 6 0.000E+00 8 0.000E+00 10 0.000E+00 11 0.000E+0012 0.000E+00 13 0.000E+00 14 0.000E+0015 0.000E+00 18 0.000E+00 19 0.000E+00 16 0.000E+00 17 0.000E+0020 0.000E+00 21 0.000E+00 22 0.000E+00 23 0.000E+00 + +

 $\begin{array}{c}
 1 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\
 0 \\$

PROGRAM FENCDOSE REVISION NUMBER:5 REVISION DATE: 31 JUL 2009 TODAY IS: 01/28/10 STARTING TIME IS: 16:57:51

1ISOTOPE KRM-83 KRM-85 KR-85 KR-87 KR-88 KR-89 XEM-131 XEM-133 XEM-135 XE-135 XE-135 XE-138 I-131 I-132 I-133 I-134 I-135 I*-131 I*-132 I*-133 I*-134	GAMMA ENERGY (MEV/DIS) 0.0025 0.1586 0.0022 0.7928 1.9629 2.0837 0.0201 0.0416 0.0454 0.4318 0.2470 1.1830 0.3810 2.3332 0.6100 2.5928 1.5802 0.3810 2.3332 0.6100 2.5928	AP\$77F10B.txt BETA ENERGY (MEV/DIS) 0.0371 0.2529 0.2506 1.3237 0.3750 1.2310 0.1428 0.1898 0.1354 0.0950 0.3168 0.6058 0.1943 0.5143 0.4080 0.6102 0.3680 0.1943 0.5143 0.5143 0.5143 0.5143 0.4080 0.6102
	0.6100	0.4080

OCHI/Q

1.410E-04	6.680E-05	4.590E-05	2.040E-05	6.350E-06
6.070E-04				•

1

OWBN MSLB, 265 UCI/CC INIT CONC, 10+1GPM LK, 500 IODINE SPIKE, 1.0 GPM SG LK TIME TO 20.6 SEC COMPONENT 4 ENVIRONMENT , TIME = 0. **1ISOTOPE KRM-83** 0.0000E+00 KRM-85 0.6118E-01 KR-85 0.9312E-01 KR-87 0.5462E-01 KR-88 0.1065E+00KR-89 0.0000E+00 XEM-131 0.2267E+00 XEM-133 0.2593E-01 XE-133 0.8871E+00 0.4907E-01 XEM-135 XE-135 0.3221E+00 XE-138 0.4523E-01 I-131 0.2101E+01 0.5023E+01 I-132 I-133 0.6006E+01I-134 0.4369E+01 I-135 0.9225E+01 I*-131 0.0000E+00 Ī*-132 0.0000E+00 I*-133 0.0000E+00 I*-134 0.0000E+00 I*-135 0.0000E+00 н-3 0.4847E+01 OWBN MSLB, 265 UCI/CC INIT CONC, 10+1GPM LK, 500 IODINE SPIKE, 1.0 GPM SG LK TIME TO 2.0 HR

Page 4

COMPONENT 4 EN 1ISOTOPE	NVIRONMENT	, TIME = 2 .
KRM-85 KR-85 KR-87 KR-87 KR-88 KR-89 XEM-131 XEM-133 XEM-133 XEM-135 XE-135 XE-135 XE-135 XE-135 XE-135 XE-135 XE-135 XE-135 XE-138 I-131 I-132 I-133 I-135 I*-131 I*-132 I*-133 I*-134 I*-135 H-3 OWBN MSLB, 265 TIME TO 8.0 HR	0.0000E+00 0.2306E+01 0.4182E+01 0.1518E+01 0.3700E+01 0.0000E+00 0.1025E+02 0.1121E+01 0.3970E+02 0.8098E+01 0.1638E+02 0.3237E+00 0.3237E+00 0.3079E+01 0.3853E+02 0.1147E+02 0.1009E+03 0.2926E+02 0.0000E+00	CONC,10+1GPM LK,500 IODINE SPIKE,1.0 GPM SG LK , TIME = 8.
KRM-85 KR-85 KR-87 KR-88 KR-89 XEM-131 XEM-133 XE-133 XE-133 XE-135 XE-135 XE-138 I-131 I-132 I-133 I-134 I*-131 I*-132 I*-133 I*-134 I*-135 H-3 OWBN MSLB TIME TO 1 DAY	0.0000E+00 0.4046E+01 0.1325E+02 0.7748E+00 0.4693E+01 0.0000E+00 0.3219E+02 0.3533E+01 0.1262E+03 0.7861E+02 0.1250E+03 0.7861E+02 0.3430E+03 0.4417E+02 0.3430E+03 0.5806E+03 0.5806E+03 0.5806E+03 0.3509E+03 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00	curies , time = 24.
KRM-83 KRM-85 KR-85	0.0000E+00 0.0000E+00 0.0000E+00	
KR-87	0.0000E+00	Page 5

ł

KR-88 KR-89 XEM-131 XEM-133 XE-133 XE-135 XE-135 XE-138 I-131 I-132 I-133 I-134 I*-135 I*-131 I*-132 I*-133 I*-134 I*-135 H-3 OWBN MSLB TIME TO 4 DAY COMPONENT 6 IISOTOPE	0.0000E+00 0.0000E+00
	0.0000E+00 0.0000E+00
KRM-83 KRM-85 KR-85 KR-87 KR-88 KR-89 XEM-131 XEM-133 XE-133 XE-135 XE-135	0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

, TIME = 96.

CURIES , TIME =720.

Page 6

XE-138	0.0000E+00
I-131	0.0000E+00
I-132	0.0000E+00
I-133	0.0000E+00
I-134	0.0000E+00
I-135	0.0000E+00
I*-131	0.0000E+00
I*-132	0.0000E+00
I*-133	0.0000E+00
I*-134	0.0000E+00
I*-135	0.0000E+00
н-3	0.0000E+00

1INPUT CON	CENTRATION				
KRM-83	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
KRM-85	2.3672E+00	4.0460E+00	0.0000E+00	0.0000E+00	0.0000E+00
KR-85	4.2751E+00	1.3250E+01	0.0000E+00	0.0000E+00	0.0000E+00
KR-87.	1.5726E+00	7.7480E-01	0.0000E+00	0.0000E+00	0.0000E+00
kr-88	3.8065E+00	4.6930E+00	0.0000E+00	0.0000E+00	0.0000E+00
KR-89	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
XEM-131	1.0477E+01	3.2190E+01	0.0000E+00	0.0000E+00	0.0000E+00
XEM-133	1.1469E+00	3.5330E+00	0.0000E+00	0.0000E+00	0.0000E+00
XE-133	4.0587E+01	1.2620E+02	0.0000E+00	0.0000E+00	0.0000E+00
XEM-135	8.1471E+00	7.8610E+01	0.0000E+00	0.0000E+00	0.0000E+00
XE-135	1.6702E+01	1.2500E+02	0.0000E+00	0.0000E+00	0.0000E+00
XE-138	3.6893E-01	9.7350E-04	0.0000E+00	0.0000E+00	0.0000E+00
I-131	5.1800E+00	4.4170E+01	0.0000E+00	0.0000E+00	0.0000E+00
I-132	4.3553E+01	3.4300E+02	0.0000E+00	0.0000E+00	0.0000E+00
I-133	1.7476E+01 1.0527E+02	1.5610E+02 5.8060E+02	0.0000E+00 0.0000E+00	0.0000E+00 0.0000E+00	0.0000E+00 0.0000E+00
I-134 I-135	3.8485E+01	3.5090E+02	0.0000E+00	0.0000E+00	0.0000E+00 0.0000E+00
I*-135	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
I*-131	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
I*-133	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
I*-134	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
I*-135	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00	0.0000E+00
Ĥ-3	6.6167E+01	1.7130E+02	0.0000E+00	0.0000E+00	0.0000E+00
· -					

1WBN MSLB

OGAMMA DOSE FOR EACH ISOTOPE AND TIME PERIOD (REM)

ID ISOTOPE 2-HR EAB	0-2 HRS	2-8 HRS	8-24 HRS	1-4 DAYS	4-30 days
1 KRM-83 0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
2 KRM-85	1.324E-05	1.072E-05	0.000e+00	0.000E+00	0.000E+00
5.698E-05 3 KR-85 1.434E-06	3.331E-07	4.891E-07	0.000E+00	0.000E+00	0.000E+00
1.434E-00 4 KR-87 1.892E-04	4.395E-05	1.026E-05	0.000E+00	0.000E+00	0.000E+00
1.134E-03	2.634E-04	1.538E-04	0.000E+00	0.000E+00	0.000E+00
6 KR-89 0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
7 XEM-131 3.189E-05	7.407E-06	1.078E-05	0.000E+00	0.000E+00	0.000E+00
8 XEM-133	1.680E-06	2.452E-06 Page	0.000E+00 2 7	0.000E+00	0.000E+00

						1
<i>i</i>						
	~	APS77F1	.0B.txt			
7.233E-06 9 XE-133	6.493E-05	9.565E-05	0.000E+00	0.000E+00	0.000E+00	
2.795E-04 10 XEM-135	1.240E-04	5.668E-04	0.000E+00	0.000E+00	0.000E+00	
.338E-04 11 XE-135	1.454E-04	5.155E-04	0.000E+00	0.000E+00	0.000e+00	
259E-04 12 XE-138	1.538E-05	1.923E-08	0.000E+00	0.000E+00	0.000E+00	
623E-05 13 I-131	6.956E-05	2.810E-04	0.000E+00	0.000E+00	0.000e+00	
2.995E-04 14 I-132	3.582E-03	1.336E-02	0.000E+00	0.000E+00	0.000e+00	
.542E-02 15 I-133	3.758E-04	1.590E-03	0.000E+00	0.000E+00	0.000E+00	
.618E-03 16 I-134	9.621E-03	2.514E-02	0.000E+00	0.000E+00	0.000E+00	
.142E-02 17 I-135	2.144E-03	9.260E-03	0.000E+00	0.000E+00	0.000E+00	
.229E-03 18 I*-131	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000e+00	
.000E+00 19 I*-132	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
.000E+00 20 I*-133	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
.000E+00 21I*-134	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000e+00	
.000E+00 22 I*-135	0.000e+00	0.000E+00	0.000E+00	0.000E+00	0.000e+00	
.000E+00 23 H-3	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
).000E+00						
TOTAL	1.647E-02	5.100E-02	0.000E+00	0.000E+00	0.000E+00	
'.091E-02)BETA DOSE FOR EAG	CH ISOTOPE ANI	O TIME PERIO	D (REM)			
ID ISOTOPE	0-2 HRS	2-8 HRS	8-24 HRS	1-4 DAYS	4-30 DAYS	
2-HR EAB 1 KRM-83	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
1 KRM-85 0.000E+00 2 KRM-85	1.941E-05	1.572E-05	0.000E+00	0.000E+00	0.000E+00	
3.358E-05 3 KR-85	3.474E-05	5.102E-05	0.000E+00	0.000E+00	0.000E+00	
496E-04	6.751E-05	1.576E-05	0.000E+00	0.000E+00	0.000E+00	
4 кк-87 .906е-04 5 кк-88	4.629E-05	2.704E-05	0.000E+00	0.000E+00	0.000E+00	
993e-04	4.029E-03	0.000E+00	0.000E+00	0.000E+00	0.000E+00	
6 KR-89).000E+00 7 XEM-131		7.062E-05	0.000E+00	0.000E+00	0.000E+00	
7 XEM-131 .089E-04	4.852E-05					
8 XEM-133 3.039E-05	7.060E-06	1.030E-05	0.000E+00	0.000E+00	0.000E+00	
9 XE-133 7.672E-04	1.782E-04	2.625E-04	0.000E+00	0.000E+00	0.000E+00	
10 XEM-135 081E-04	2.510E-05	1.147E-04	0.000E+00	0.000E+00	0.000E+00	
11 XE-135 7.387E-04	1.716E-04	6.084E-04	0.000E+00	0.000E+00	0.000E+00	
12 XE-138	7.248E-06	9.061E-09	0.000E+00 e 8	0.000E+00	0.000E+00	

		APS77F	LOB.txt	•	
3.120E-05 13 I-131	3.264E-05	1.319E-04	0.000E+00	0.000E+00	0.000E+00
1.405E-04 14 I-132	7.264E-04	2.710E-03	0.000E+00	0.000E+00	0.000E+00
3.127E-03 15 I-133	2.312E-04	9.785E-04	0.000E+00	0.000E+00	0.000E+00
9.954E-04 16 I-134	2.083E-03	5.443E-03	0.000E+00	0.000E+00	0.000E+00
8.968E-03 17 I-135	4.593E-04	1.984E-03	0.000E+00	0.000E+00	0.000E+00
1.977E-03 18 I*-131	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.000E+00 19 I*-132	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.000E+00 20 I*-133	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.000E+00 21 I*-134	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.000E+00 22 I*-135	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.000E+00 23 H-3			0.000E+00	0.000E+00	0.000E+00
5.247E-05					
TOTAL	4.151E-03	1.244E-02	0.000E+00	0.000E+00	0.000E+00
1.787E-02 OINHALATION DOSE					
	0-2 HRS		8-24 HRS		4-30 DAYS
2-HR EAB	0		• • • • • • • • •		
1 I-131 1.615E+00	3.751E-01	1.515E+00	0.000E+00	0.000E+00	0.000E+00
2 I-132 4.908E-01	1.140E-01	4.254E-01	0.000E+00	0.000E+00	0.000E+00
3 I-133 1.472E+00	3.420E-01	1.447E+00	0.000E+00	0.000E+00	0.000E+00
4 I-134 5.543E-01	1.288E-01	3.365E-01	0.000E+00	0.000E+00	0.000E+00
5 I-135 1.005E+00	2.335E-01	1.009E+00	0.000E+00	0.000E+00	0.000E+00
6 I*-131 0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
7 I*-132 0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
8 I*-133	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.000E+00 9 I*-134	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.000E+00 10 I*-135	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
0.000E+00					
TOTAL	1.193E+00	4.733E+00	0.000E+00	0.000E+00	0.000E+00
5.137E+00 OINHALATION DOSE	FOR EACH IODIN	NE AND TIME	PERIOD (REM)	(ICRP 30 DAT	ГА)
ID ISOTOPE 2-HR EAB	0-2 HRS	2-8 HRS	8-24 HRS	1-4 DAYS	4-30 days
1 I-131 1.178E+00	2.737E-01	1.106E+00	0.000E+00	0.000E+00	0.000E+00
I.I. 0L+00		· n			1

Page 9

		APS77F1	OB.txt		
2 I-132	1.372E-02	5.120E-02	0.000E+00	0.000E+00	0.000E+00
5.908E-02 3 I-133 6.626E-01	1.539E-01	6.513E-01	0.000E+00	0.000E+00	0.000E+00
4 I-134 2.372E-02	5.511E-03	1.440E-02	0.000E+00	0.000E+00	0.000E+00
5 I-135 2.537E-01	5.894E-02	2.546E-01	0.000E+00	0.000E+00	0.000E+00
6 I*-131 0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
7 I*-132 0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
8 I*-133 0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
9 I*-134 0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
10 I*-135 0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
TOTAL 2.177E+00	5.058E-01	2.077E+00	0.000E+00	0.000E+00	0.000E+00

OAT 2 HOUR EXCLUSION AREA BOUNDARY (EAB).

TOTAL GAMMA DOSE = 7.091E-02 REM TOTAL BETA DOSE = 1.787E-02 REM TOTAL INHALATION DOSE (ICRP-2) = 5.137E+00 REM TOTAL INHALATION DOSE (ICRP-30) = 2.177E+00 REM

OAT 30 DAY LPZ BOUNDARY

TOTAL GAMMA DOSE = 6.747E-02 REM TOTAL BETA DOSE = 1.659E-02 REM TOTAL INHALATION DOSE (ICRP-2) = 5.926E+00 REM TOTAL INHALATION DOSE (ICRP-30) = 2.583E+00 REM KRM 83 IS NOT IN EPA LIBRARY. ISOTOPE IGNORED. KRM 83 IS NOT IN EPA LIBRARY. ISOTOPE IGNORED. KRM 83 IS NOT IN EPA LIBRARY. ISOTOPE IGNORED. KRM 83 IS NOT IN EPA LIBRARY. ISOTOPE IGNORED. KRM 83 IS NOT IN EPA LIBRARY. ISOTOPE IGNORED. KRM 83 IS NOT IN EPA LIBRARY. ISOTOPE IGNORED. KRM 83 IS NOT IN EPA LIBRARY. ISOTOPE IGNORED. KRM 83 IS NOT IN EPA LIBRARY. ISOTOPE IGNORED. KRM 83 IS NOT IN EPA LIBRARY. ISOTOPE IGNORED.

1WBN MSLB

OTEDE FOR EACH ISOTOPE AND TIME PERIOD (REM)

ID ISOTOPE 2-HR EAB	0-2 HRS	2-8 HRS	8-24 HRS	1-4 DAYS	4-30 DAYS
1 КRM-83 0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
2 KRM-85 3.712E-05	8.622E-06	6.982E-06	0.000E+00	0.000E+00	0.000E+00
3.712E-05 3 KR-85 9.371E-07	2.177E-07	3.196E-07	0.000E+00	0.000E+00	0.000E+00
4 KR-87	3.141E-05	7.332E-06	0.000E+00	0.000E+00	0.000E+00
1.352E-04 5 KR-88	1.938E-04	1.132E-04 Page	0.000E+00 10	0.000E+00	0.000E+00

	· .	APS77F1	OB.txt		
8.344E-04 6 KR-89	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000e+00
0.000E+00 7 XEM-131 8.656E-06	2.011E-06	2.927E-06	0.000E+00	0.000E+00	0.000E+00
	7.637E-07	1.114E-06	0.000E+00	0.000E+00	0.000E+00
9 XE-133 1.369E-04	3.179E-05	4.683E-05	0.000E+00	0.000E+00	0.000E+00
	7.977E-05	3.647E-04	0.000E+00	0.000E+00	0.000E+00
11 XE-135 3.943E-04	9.158E-05	3.247E-04	0.000E+00	0.000E+00	0.000E+00
12 XE-138 4.479E-05	1.040E-05	1.301E-08	0.000E+00	0.000E+00	0.000E+00
13 I-131 4.629E-02	1.075E-02	4.344E-02	0.000E+00	0.000E+00	0.000E+00
14 I-132 3.598E-02	8.359E-03	3.119E-02	0.000E+00	0.000E+00	0.000E+00
15 I-133 4.420E-02	1.027E-02	4.345E-02	0.000E+00	0.000E+00	0.000E+00
16 I-134 5.502E-02	1.278E-02	3.340E-02	0.000E+00	0.000E+00	0.000E+00
17 I-135 5.256E-02	1.221E-02	5.274E-02	0.000E+00	0.000E+00	0.000E+00
18 I*-131 0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
19 I*-132 0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
20 I*-133 0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
21 I*-134 0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
22 I*-135 0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00	0.000E+00
23 H-3 8.590E-04	1.995E-04	2.447E-04	0.000E+00	0.000E+00	0.000E+00
TOTAL 2.369E-01	5.502E-02	2.053E-01	0.000E+00	0.000E+00	0.000E+00
TOTAL TEDE = 2.60 OTHIS RUN IS DATED		IE TOTAL ELAP	SED TIME IS	0.0 MINUTES	6. 0.0 SECONDS.

.

Page 11

Attachment 13

TVA Nuclear Power Group Calculation

WBNTSR-064 R8

Offsite and Control Room Operator Doses Due to a Waste Gas Decay Tank Rupture

TVAN CALCULATION COVERSHEET/CCRIS UPDATE

326 910624 2	<u>RIMS NO.</u> 200		•		EDMS TYPE calculations(nucl		CCESSION 71		/A for REV		8 T A
Calc Title: Dffsite and	Control	Room)perator	Doses Du	ie to a Waste	Gas Decay 1	ank Ru	pture	*		
CALC ID	TYPE	ORG	PLANT	BRANCH	NU	MBER	CUR	REV	NEW RE	Y I	
CURRENT	CN	NUC	WBN	NTB	WBNTSR-064		F	27	R8	R	VISION
NEW	CN	NUC			844 - 191					E	PLICABILITY ntire calc 🛛
	EW EVISION					CCRIS UPDATE (Verifier Approva		s Not Re	quired)	No CC (For ca	RIS Changes Crevision, CCRIS Viewed and no changes required)
<u>JNITS</u>	<u>SYST</u> NA	<u>EMS</u>									
DCN.EDC.N/A		AF		DESIGN DC	CUMENT(S)						
QUALITY RELATED?	() ()	ETY RELAT yes, QR = y	ED? <u>U</u> es) <u>A</u>		AND/OR LIN	REQUIREMEN	IONS?	and the state of t	UUTPU	L SA	R/TS and/or ISFS
Yes X No C REPARER ID DPPOLLOCK	i j	25 2 No [REPARER 51-4312	<u>PHONE NO</u>	no REPA	RINGIORG (BRAI NTB	s No 🔀 NCH) VERIEI Desian	CATION M	Yes		METH	SINO OD OF ANALYSIS No
REPARER SI Jouglas P. Poll	N 10 1 19 20	James 6	floot	198.00	- 「「「「」」「」」「「」「」「「」「」「「」「」「」「」「」」「」「」」「			Benerg		4 4	DATE - 24- 06
/ERIFIER SIG	NATURE	- C, BC						10	87 8/3/0 .R. Alev	6	DATE 9/1/06
alculation su erms (from V letermined s nventory rele o fill the 600 ifter it was fil perator dose oom isolation o computer o esults are pr The 30 day I perator dose jamma, 30 re	on detern pports F VBNNAL ource ter ased to t cuft tank led. The rs. The rr n delay code FEN ovided in LPZ offsi ly below es for a ro ern beta, very cons	nined the o SAR secti 3-006) we ms which he enviror) The tan STP result todel was The χ/Q va (CDOSE) Tables 3 te doses fo the regula calistic and 30 rem th servative (I	offsite and on 15.5.2 re present results in a iment. Dec k was assi the same alues were which dete and 5 in th or a realist atory limits d Regulato yroid, and high) noble	and Table in the WG an offsite g cay was all umed to rel ed as input as that four determined that four determined the Results ic and Regu of 25 rem ry Guide 1. 5 rem TED	ulatory Guide 1 gamma, 300 rei 24 WGDT ruptu E. The Regulato tory for that case	ses were calcu sumed design 5 rem. Compu- instantaneous de COROD C 8, except for th 96 in WBNAPS e FENCDOSE 24 Waste Gas n beta, 300 re ire calculated to bry Guide1.24 e.	Ilated On basis sou ter code s and only ly and no OROD we be 2/Q val S3-104. T model wa Decay Ta m thyroid to be belo	ie case urce ter STP wa for the nmech as used ues an he STP as the s ank rup , and 20 w the n	assume ms (1% is used t time to anisticall to deter d adding results same fou same fou ture acci 5 rem TE egulator	d reali failed o dete fill the y to th mine 1 a 20 (were a ind in dent v EDE. T / limits	stic gas source (uel) and the thir rmine the tank (55.75 hrs e environment he control room 5 sec control (so used as inputed) TI-RPS-197. The vere calculated to he control room of 5 rem

TVAN CALCULATION COVERSHEET/CCRIS UPDATE

					<u> </u>				Page	_2	
	TYPE	ORG	PLANT	BRANCH		JMBER		REV	7		
_	CN	NUC	WBN	NTB.	WBNTSR-06	4	· · · · ·	8			
				· · · · · · · · · · · · · · · · · · ·	CALCULATION	IDENT				er Constant gen Trans La Sen Transford	
	<u> </u>	nte in an an a		<u>un du cuint.</u> Suint a suint			Saul en				****
	<u></u>		<u> </u>	<u>n an an an an an an an an an an an an an</u>							<u>مر</u> المراجع
BLDG	R	OOM	ELEV	COORD/AZI			Print Report	Yes 🛛		•	n din 19. Nganana
										· · ·	
ATEGORIE	S	·	·······					<u>10 (10)</u>		· · · · · · · · · · · · · · · · · · ·	
			<u> </u>	KEYN	IOUNS (A-add	, D-de	lete)				
ACTION	KEY	NOUN		· · · · ·		<u>A/D</u>	KEY NOUN	د. المعنون الجاني	н н. 1		· .
<u>(A/D)</u>		ي. د ۲۰۰ سريني				_					
<u>.</u>		1 			ar far ta an an an an an an an an an an an an an				in de la composition de la composition de la composition de la composition de la composition de la composition En la composition de la composition de la composition de la composition de la composition de la composition de la	in i stari	e en la companya de
					and the second sec	· · · · · ·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	a constant a		an an	<u>e il nate</u> r
		an ann an Airtean Airtean Airtean Airtean Airtean Airtean Airtean Airtean Airtean Airtean Airtean Airtean Airte	n an an an an an an an an an an an an an					NARA PERIA. Prima di Angelaria di Angelaria di Angelaria di Angelaria di Angelaria di Angelaria di Angelaria di	國大型社。 日本 《翻》		t di ja
			CROS	and a law of some holds	NCES (A-add,	C-ch		ar water and a state		2 × 1	
ACTION		XREF	XREF	XREF	XREF			XREF			XREF
<u>(A/C/D)</u>		CODE	TYPE	PLANT	BRANCH	<u> </u>	· · · · · · · · · · · · · · · · · · ·	NUMBER			REV
D		<u> </u>	CN	WBN	NTB	<u> </u>	APS3104.		·····		
A		<u>P</u>	CN	WBN	NTB	WBN.	APS3104		<u></u>	<u> </u>	
<u>.</u>						ļ					
			· · · ·	ļ		ļ	· · ·				
			,		19					la de la de	
<u></u>	27 23	n a star i han an An an an an an an an an an an an an an an	W strag		an an an an an an an an an an an an an a						
										9.00 State 1	
	, ·			1				، الجمع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع مستخدم المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع ا مستخدم المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع ا		· · · ·	
									·, ·:		
	_				· · · · · · · · · · · · · · · · · · ·						
							· .				
										* 1	
	ŀ										
			a de la companya de la compa			-			2. 2.		
									3. g 1		
		i tilm ¹ til son i til ¹ til son i til til son i til son i til til son i til son i til son i til son i til son i til til son i til son i til son i til son i til son i til son i til son i til son i til son i til son i til son i til							1997) 1997) 1997)		
	-	تىرىنىيە يې <u>تەر</u> بەرمەنمەر بەر			es parter a de la companya de la compa					s Parts	ی محمد از از جانب از از حامی از
CCRIS ONL	Y UPD	ATES:	L	<u> </u>		L					<u> </u>
Following are	e requir	ed only whe	n making keyw	ord/cross refer	ence CCRIS update	es and p	age 1 of form h	<u>VEDP-2-1 is</u>	not inclu	ded:	<u></u>
		1 + .		1			•		1.		e e e p
	PRE	PARER SI	SNATURE		DATE	L	CHECKER S	IGNATURE	••••	DA	TE /
PREPARER	PHON	E NO.			EDMS ACCESSIO	N NO.			· · · · ·		میں۔ 1 کا م روفین میں د
PREPARER VA 40532 [0]		PARER SIG		ord/cross refer			-	IGNATURE	1		÷.,

.

		•		
· .		Page 3		•
	TVAN CALCULATION RECORD OF REVIS	BION	•	
CALCULA	TION IDENTIFIER WBNTSR-064		al Alternational	
Title	Offsite and Control Room Operator Doses Due to a Wast	e Gas Decay 1	ank Rupture	त्योः भूषे
Revision No.	DESCRIPTION OF REVISION	·····	p • • s	• •
0	Initial issue.	in the second second second second second second second second second second second second second second second		
1	Revision 1 was performed to update references and validate/justify an FSAR reference.			
	pages added: 5.5 pages deleted: none	± +	•	
	pages changed: 1-6, 9, 10, 15			, i
	Revision 2 was performed because the X/Q values changed and to update references. Al changes will have revision bars:	ll pages were renumb	ered. Only text with ac	tual
	pages added: 7 paged deleted: none			
	pages changed: all	-	· · ·	
3	Revision 3 was performed because of new control building makeup flow.			
n general de la companya de la companya de la companya de la companya de la companya de la companya de la compa	pages added: none pages deleted: none			,, .
	pages changed: 1-7, 9, 15, 17		м н	
4	Revision 4 was performed because the Regulatory Guide 1.24 source terms as supplied	by Westinghouse cha	nged due to the extend	ed
	fuel cycle (18 month, 1000 EFPD, 5% enrichment). These source terms are an unver later.	rified assumption th	at need to be verified	ŀ ;
	pages changed: all (all pages replaced since original R3 lost Actual text changes have repages added; none	evision bars).		
	pages deleted: none	-		
5	Revision 5 was performed to eliminate the unverified assumption by using the latest We pages changed: 1-7, 9-11, 15, 17	stinghouse information	»n.	
	pages added: none		an Align Frida an Align Frida and Align Align	
	pages deleted none R5 total pages = 18		arth a shi the	
6	Revision 6 implements EDC E50629A, which implements the use of a Tritium Product corrective action for PER WBN 01-000395-000. The calculation was reformatted and r	enumbered. The revis	sion added an evaluation	on i
	to determine the source inventory using Xe-133 equivalency that results in a Site bound evaluations in this revision utilize latest revision of COROD and FENCDOSE, which me			•
	addition to the ICRP-2, and a TEDE dose. The results for the Non-TPC core are not imp administrative limit in PAI-15.01 was deleted. An independent 3rd party was performed	pacted. Further, the di	scussion related to the	
	comments were incorporated into the calculation, with no technical impact. Pages changed: 1-11, 14-18	Juiouauon Uy	The second second second second second second second second second second second second second second second se	•
	Pages added: All		1 - Γ _{αγ} Η Η	' .g
	Pages deleted: All R6 total Pages: 22			
7	Revision 7 is performed to incorporate a control room 20.6 second isolation time. Also in	nonproted AD()())	96 control - V/O	
	values. Fixed minor typographical errors. All pages were renumbered, only pages with a	ictual text changes are	marked with revision	·
	bars. This revision is part of corrective actions for WBN PERs 03-012566-000 and 03- FSAR section 15.5 were reviewed and are not affected by this revision.	0144/3-000. The Te	cnnical Specifications :	and
- 18 - 10	Pages changed: 1-9, 11-13, 15-17 Pages deleted, the following page numbers correspond to the R6 pagination: 2, 12, 13, 2			$h_{p,\sigma,p_1}^{[0]}$
	Pages added: all		»- * ,	
	87 18 total nages		8 ·	
	R7: 18 total pages			
1	Revision 8 is performed as corrective action for PER 61493 and PER 94426. PER 6149	3 documents that the	recirculation flow rate	for
	Revision 8 is performed as corrective action for PER 61493 and PER 94426. PER 6149 the control room was incorrectly modeled. PER 94426 documents that the time incremen delay. This revision corrects both modeling errors. This calculation directly impacts FSA	nts do not accurately i AR Table 15:5-5: The	reflect the 20.6 second Technical Specification	- I.
8	Revision 8 is performed as corrective action for PER 61493 and PER 94426. PER 6149 the control room was incorrectly modeled. PER 94426 documents that the time increment delay. This revision corrects both modeling errors. This calculation directly impacts ISA are not impacted. Successor calculation WBNAPS3-074 is impacted by this revision. W calculation, but a review of this calculation determined it does not use any information fit	nts do not accurately (AR Table 15:5-5: The BNAPS3104 is listed from this calculation is	reflect the 20.6 second Technical Specificatio as a successor being deleted as a	ons
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Revision 8 is performed as corrective action for PER 61493 and PER 94426. PER 6149 the control room was incorrectly modeled. PER 94426 documents that the time increment delay. This revision corrects both modeling errors. This calculation directly impacts ISA are not impacted. Successor calculation WBNAPS3-074 is impacted by this revision. W	nts do not accurately (AR Table 15:5-5: The BNAPS3104 is listed from this calculation is	reflect the 20.6 second Technical Specificatio as a successor being deleted as a	ons
8	Revision 8 is performed as corrective action for PER 61493 and PER 94426. PER 6149 the control room was incorrectly modeled. PER 94426 documents that the time increment delay. This revision corrects both modeling errors. This calculation directly impacts PSA are not impacted. Successor calculation WBNAPS3-074 is impacted by this revision. W calculation, but a review of this calculation determined it does not use any information fis successor. Successors WBNOSG4243 and WBNTSR040 do not use any information the impacted. Pages Revised/Replaced: 1-3, 6-9, 11, 12, 16, 17	nts do not accurately (AR Table 15:5-5: The BNAPS3104 is listed from this calculation is	reflect the 20.6 second Technical Specificatio as a successor being deleted as a	ons
8	Revision 8 is performed as corrective action for PER 61493 and PER 94426. PER 6149 the control room was incorrectly modeled. PER 94426 documents that the time increment delay. This revision corrects both modeling errors. This calculation directly impacts FSA are not impacted. Successor calculation WBNAPS3-074 is impacted by this revision. W calculation, but a review of this calculation determined it does not use any information fis successor. Successors WBNOSG4243 and WBNTSR040 do not use any information the impacted.	nts do not accurately (AR Table 15:5-5: The BNAPS3104 is listed from this calculation is	reflect the 20.6 second Technical Specificatio as a successor being deleted as a	ons

			4	
· · · · · · · · · · · · · · · · · · ·			Page 4	· · · ·
	TION TABLE OF	CONTENTS		· · · ·
alculation Identifier: WBNTSR-064	Revisio	on: 8		
	E OF CONTENT	4		
	· · · · · · · · · · · · · · · · · · ·	-		
SECTION	TITLE		· · · · · · · · · · · · · · · · · · ·	PAGE
Coversheet Revision Log			. · ·	1
Table of Contents Calculation Design Verification Form				,4 5
Computer Input File Storage Informat Computer Output Microfiche Informat	ion Sheet		•	6 7
Purpose Introduction		·		8
Design Input	•			8
Assumptions Special Requirements/Limiting Con	nditions			9 10
Calculations				10
Results Discussion and Conclusion: References				12 15 16
Appendix A - Input for COROD		,	•	17
Appendix B - Input for FENCDOS	E			18
	•	:		
			· · · · · · · · · · · · · · · · · · ·	i ante Pos
		·.		ta di seri
		· ''	· · · · ·	
an an an Arthrean an Arthrean an Arthrean an Arthrean an Arthrean an Arthrean an Arthrean an Arthrean an Arthr An Arthrean an Arthrean an Arthrean an Arthrean an Arthrean an Arthrean an Arthrean an Arthrean Arthrean an Arth				
	· ·			
				4.
· ·				
· · · ·				

Page 5 **TVAN CALCULATION VERIFICATION FORM** Calculation Identifier WBNTSR-064 Revision 8 Method of verification used: 1. **Design Review** \boxtimes Verifier War c. Bargate 1- 7.4-06 **2**. Alternate Calculation 3. **Qualification Test** Comments: This calculation revision corrects the corrow model allo a 2 crease. The calculation is technically ay! adernate. TVA 40533 [07-2001] Page 1 of 1 NEDP-2-4 [07-09-2001]

			· .					
	SR-064	<u> </u>	Rev. 8	Plant: \	WBN			
Subject: Offsite and Control	Room Operator Do	oses Due to a	a Waste G	as Decay	Tank Ru	pture		· ·
Electronic stora	age of the input files	for this calcul	ation is not	required	Commen	ts:		
		· · ·				,		
	· ·	•						
	· · · ·						t su a	
Input files for th provided below use.)	nis calculation have to for each input file.	been stored el (Any retrieved	lectronically 1 file require	y and suff es re-veri	ficient iden fication of	tifying in its conti	nforma ents be	ation is efore
	re stored in FILEKEE	PER file # 26	3465			n an an Arthur An an Arthur An an Arthur	anger Also gan Also gan	
	e stored in FILEKEE	 South Local Control 		and and a star An an an an an an an an an an an an an an		n		1 清
	re stored in FILEKEE	그 승규는 것 같은 것 같은 말을 하는 것 같이 많이 많이 많이 많이 많이 많이 많이 많이 많이 많이 많이 많이 많이	우 그 밤을 넣다.	1.				
he R5 input files ar	re stored in FILEKEE	PER file # 30	0588			* · · ·		
he R6 input files ar	e stored in FILEKEE		and the second second second second second second second second second second second second second second second		1 ¹ 1		•	
, •	re stored in FILEKEE				· · · ·			. <u>.</u>
, •	e stored in FILEKEE e stored in FILEKEE			- · · · · · · · · · · · · · · · · · · ·		,		
, •							. •	
, •							. •	
. •								
· •								
, •								
· •								
· •								
· •								
. •								
. •								
· •						· ·		
· •	e stored in FILEKEE							
The R8 input files ar	e stored in FILEKEE							
The R8 input files ar ∑ Microfiche/eFic See next page	e stored in FILEKEE	PER file # 30	08013					
The R8 input files ar	e stored in FILEKEE		08013			NED	P-2-6 [1	2;04-2000]

1.12.

		VAN COMPUTE DFICHE INFOR		FT	page 7
ocument WBNTSR	1.1	and a state of	ev. 8	Plant: WBN	
ubject:		ĸ	ev. 8		<u></u>
	Room Opera	ator Doses Due	to a Waste G	as Decay Tank Rupture	
licrofiche Number	Description				
20:	TSR064S	STP	Activity in V	VGDT	
VRAD-27 (ufilm)	TSR064F1	FENCOOSE		, Realistic Case	
	TSR064F2	FENCOOSE		. RG 1.24 case	
· .	TSR064C1	COROD		Operator Dose, Realistic	
	TSR064C2	COROD		m Operator Dose, RG 1.24	•
					*
		×			· · · ·
2:	TSR64FA2	FENCLOSE	Offsite Dose	, Realistic Case	$= 10^{-1} \xi_{\rm gc}$
VA-F-C000081	TSR64FB2			, RG 1.24 case	
	TSR64CA2	COROD		Operator Dose, Realistic	and a set of the set of the set of the set of the set of the set of the set of the set of the set of the set of
	TSR64CB2	COROD		m Operator Dose, RG 1.24	
3:	TSR64CA3	COROD	Cont Boom	Operator Dose, Realistic	н.,
VA-F-C000118	TSR64CB3	COROD		oom Operator Dose, RG 1.24	
	10101010	CONOD	Control 10	tom Operator Dose, 103 1.24	
4:	TSR64FB4	FENCDOSE	Offeite Doco	, RG 1.24 case	
VA-F-C000273	TSR64CB4	COROD	Sector 1	oom Operator Dose, RG 1.24	.*
	TOWOTODE	UCINOD	Control In	bolii Operator Dose, KG 1.24	
5:	TSR64FB5	FENCDOSE	Offeita Doco	, RG 1.24 case	·
VA-F-C000282	TSR64CB5			oom Operator Dose, RG 1.24	en en en en en en en en en en en en en e
		- OONOD	CONTROLIN Second	Juni Operator Dose, NG 1.24	
.6:	TSR64FA6	FENCDOSE	Offeite Dece	, Realistic case -TPC	
VA-F-C000337	TSR64FB6	FENCOOSE		, RG 1.24 case - TPC	
e.	TSR64CA6	COROD			IDCI
	TSR64CB6	COROD		m Operator Dose, Realistic -	
	TSR64FC6	FENCDOSE		m Operator Dose, RG 1.24 -T	PC .
	TSR64FD6	FENCLOSE		, Reduced case -TPC	
	TOTO4L DO	FERCIOSI	Ulisite Do	se, Reduced case -Non-TPC	
n.	TSR64IS7	STPISOTP	ant un OTTO :	sotopic input	
/: VA P W000251	TSR64S7	STP			
VA-F-W000351 Fiche)	TSR64CA7	COROD	BG 1 24 con	ventional core, control room	daga
riciic)	TSR64CB7	COROD			
	TSR64CC7	COROD		ventional core, control room C, control room dose	uvse
5 N 1	TSR64CD7	COROD		2, control room dose C, control room dose	
8:				o, control i dont dose	
o. VA-F-W000574	TSR64C8A	COROD	RG 1 94	ventional core, control room	doeo
T-1 = ## UUU J /4	TSR64C8B	COROD		ventional core, control room	
	TSR64C8C	COROD		C, control room dose	uuse
	TSR64C8D	COROD		C, control room dose	х. Х.
	TSR64C8E	COROD		ventional core, control room	dana 9 MDENT
	TSR64C8F	COROD		ventional core, control room	
· · · ·	TSR64C8G	COROD		C, control room dose – 2 CRE	
· · · · · · · · · · · · · · · · · · ·	TSR64C8H	COROD			
	とうみんがん しょうしん あいした	OOTIOD.	icausuc, IPC	C, control room dose – 2 CRE	assumptions #

.

Calculation No. WBNTSR-064	Rev: 8 Plant: WBN Page: 8
Subject: Offsite and Control Room Operator Doses Due to	o a Waste Prepared: /// Date: 1/14/06
Gas Decay Tank Rupture	Checked: M 3 Date: 1-24-06

Purpose

The purpose of this calculation is to determine the offsite and control room operator doses due to a Waste Gas Decay Tank rupture. This calculation will support Watts Bar Safety Analysis Report (FSAR) section 15.5.2 and Table 15.5-5. Revision 2 was done due to revised χ/Q values. Revision 3 is performed because of new control building makeup flow (711 cfm). Revision 4 is performed due to new R.G. 1.24 source terms as provided by Westinghouse as part of the extended fuel cycle (18 months, 1000 EFPD, 5% enrichment). Revision 5 uses new final WGDT inventories to eliminate an UVA. Revision 6 implements EDC E50629A to allow the use of a Tritium Production Core (TPC) and provide source terms for just satisfying an offsite gamma dose of < 0.5 rem, and supports the corrective action for PER WBN 01-000395-000. Revision 7 is performed to change the control room analysis to include a 20.6 sec isolation delay and to incorporate ARCON96 X/Q values. Revision 8 corrects the control room recirculation flow rate and time increments in the COROD model.

Introduction

From reference 4, the gaseous waste disposal system (WDS) contains nine (9) gas decay tanks. These tanks receive gaseous waste from the Chemical Volume and Control System (CVCS) Holdup Tank, CVCS Volume Control Tank, WDS Spent Resin Tank, CVCS Boric Acid Evaporator, and WDS Reactor Drain Tank. "The probability of a gas decay tank rupturing is low. However, the probability of an accidental release resulting from such things as operator error or malfunction of a valve or the overpressure relief system is considered to be sufficiently high that the calculated offsite whole body exposure that might result from a single failure during normal operation should be substantially below the guidelines of 10CFR Part 100," (ref.5).

This calculation will determine the offsite and control room operator doses due to a Waste Gas Decay Tank rupture. The calculation will be done for both a Regulatory Guide 1.24 (1% failed fuel, ref.5) accident and for a realistic case (ANS/ANSI-18.1-1984, ref.6) and one which results in an EAB/Site Boundary dose of just less than 500 mrem gamma. The maximum content of the failed decay tank is assumed to be released non-mechanistically to the environment over a two hour time period (ref.5). Radioactive decay is only taken into account for the time required to transfer the gasses to the decay tank (ref.5). Computer code STP (ref.1) will be used to determine the inventory of the radioactive gasses in the tank for the realistic case. The R.G. 1.24 case uses the inventory provided by Westinghouse in reference 11. Computer code FENCDOSE (ref.3) will be used to determine offsite doses utilizing STP results as input. The FENCDOSE model parameters, other than the releases activity are taken from TI-RPS-197 (ref.8). Computer code COROD (ref.7) will be used to determine the control room operator dose utilizing the STP results as input. The COROD parameters, other than released activity, and χ/Q values, are taken from TI-RPS-198 (ref.9). The ARCON96 χ/Q values were determined in WBNAPS3-104 (ref.24). The model sections pertaining to the 20.6 sec isolation delay are taken from WBNTSR-009 (ref.31).

The main dose limit for this calculation is an offsite gamma dose of 500 mrem from NUREG-0800 section 11 3. The following are standard limits for accidents. The offsite gamma dose limit is 25 rem (10CFR100.11), the thyroid dose limit is 300 rem (10CFR100.11), and the TEDE dose limit is 25 rem (10CFR50.67). SRP 6.4 in NUREG 0800 (ref.32) shows that the thyroid dose and beta dose limits are equivalent for the control room, therefore the offsite beta dose limit can be assumed the same as the offsite thyroid dose limit, 300 rem. 10CFR20.1201 also states that the organ (thyroid) dose and skin (beta) dose are equivalent. The control room dose limits are 5 rem gamma (10CFR50 Appendix A GDC19),30 rem thyroid (SRP 6.4), 30 rem beta (SRP 6.4), and 5 rem TEDE (10CFR50.67).

Design Input

The Following are the Regulatory Guide 1.24 WGDT activities from WAT-D-10436

. F.	Kr-8		58 "A" " -	- 18 a 👾	Ci	2			ind later of	~ 노태산값 빈	dam St. 1 . m.	e 9 - 1 - 1	A	ું કો જે તે ક	"는 말 말 말 봐.	grow watch	10.03 945 3	off 1991	later in the	e de la composition de la composition de la composition de la composition de la composition de la composition de	Q. 21.	2.
	· N 7-X	sm .	Contraction and a second second second second second second second second second second second second second s	IV.	1.	C 1. 3	"Ad83" C" 🗹	r-85	dallar ye hayi e	 (a) (1) (1) 	ിഷ്ഷിറ	00 C		5 N. 14 S	S & V -	-85m	SC 11 (16)	1. 6. 6. 1.	- 1 1	0 Ci	190° a 41°	1.22
	- 4 4 A - COV	om		Sec. Sec. 1.	UI ST	1 1 *	· · · · · · · · · · · · · · · · · · ·	1-00	Sold Lines		- 4 2	UU U	- ÷		n r	-00 T	1.4		14		N	0
- v`	V N K Hida	a ways a sin sin sin sin sin sin sin sin sin sin	10.11.1	-4.7	- , , Lata -	1 H.C. 2 Dr.	김 이번 몸을 가 났는 것	للجيمة والعظامي	national states	人 经财产股份	Carl Street, or other	rat ¹	- 40	With	1 1 1 1	ad		S Frankel .			20.241.8	2 .
	TZ O	7 6	ante conte	° 00	C111		T P	100	disp Policie March	<u>^ _</u>			a di tana ang	- 14 A S			- · · · · · · · · · · · · · · · · · · ·	朝いてい	S.C	1324	See	2.1
1.02	Kr-8	1.1.1.1	t, maxim	, <i>2</i> 74	Ci	ನ ಎಂಗಳಲ್ಲಿ	The second second	r-88	8,0, T	- F.a.t	16	0 Ci	1. la el .	a	· · · ·	00	0 4 41	1. 1 No.	- A . 1	Ci	3.0	
N		5			UL S	- A.	- C	1-00	126 1 24	10 m an an an an an an an an an an an an an	10	U UI	1. S. A. A.	Po - 4) nr	-03	drar H	-0.+	- U23		10.0	e. '
10		ET2, V.L. 1	1 1 1 1 1 1 1	- C. C.	18 A. L.	· · · · · · · · · · · · · · · · · · ·	98 S. Co. 19	an Li Coligeri	See .	金服をご	as so and s	e 5 2	Come 1	· · · · ·	1. 01.2		التأسيع سرا	- 19 B		St. 10. 1	14 G	· · · · · ·
÷	V		요즘은 소송 문제		A 74 -	しき いんぞうしん	2 DA 1977		- 12 HE -	NY 100 11				*****	- Carlos - S.	- a	1.		1207	· 귀하면 남 · · ·		4 12
- 92	Xe-1	s i m	2325 5	- X4	0 Ci		т X.	e-13	- 18 - L	19. St. 19.	- 6 9	000		2.2 M F.	· YA		and a shine		°°1.∩	ሳሳጣ:	10 - L	
2.15			1. The 1		v v .	2	- C ((14 k	C-IO	U Contra			000	01	55 g K - 1	_ Ae	-89	the party of the	-197 A.D.	- 1 U	00Ci	5	15.
×× ,		taning ing	- 169 - L.M.	 No second constraints 		** 2012 Do	あっせい 新しい	2.55 (0.357)	PE, 25 MIL	4 12 11 13	しここ 長度	승규가 두 왕	St. 21 S. 1		1 A 1 A A A	The star all 13					Sec. 16	- Ú
·	Xe-1	DE	1. A. Y. 1. A. Y. 1.	0.4	o o :			- 64 M	P			1 - 1 - 2			1		i var		S		dia fili.	19 E
	Ae-Ia		rik e i	- 94	0 Ci 👘		· · · · · · · · · · · · · · · · · · ·	e°13	ົກກາ	a milita da milita da	_×.a×	Ci	110 <u>0</u> - 6	a 222	'. XA	137	×		. n e	27 Ci	- m	- ' ×
		전 국 전 가운 것 ~	in an t-ra			14. 1 A			·	ي و الا الي ا		∽ v t ⊡			_ <u>A</u> q	TA' -			. V.Z	11.01	36 T.S.	4n /
· .			e	- 16 <u>-</u> 1	21 - Frank 1	CONTRACTOR NO.	5 a a 10 i	Mental Cont	1 . A # . 194	한쪽 수 있어.	ひて 声読い	西方 白田市石	84 N.S. V.	- 1. A.Z. 1.	Chi grenti	the state of the second	31 M	(A)	1913 A.M.	1000 a c 2	6.58.12	S (2)
- 26	Xe-1	20	1.1 8	ംററ	2 Ci		28 24 1840	19 C 20	p	n jes grogi		1	100 a 1	Section.	14 G	strate in the		UL	2	승규는 영상 문제	말 만.	14.5
43	VG-14	JO	12 M 1 M	· 0.2		3.32 (a) 1.32	. Philippine	NE YE K.E.	12.27	, No. 11, 11	A 10.00	1. N. N. N	6. QV - 1.		. Yr 8 1. 4			2 B.A	A. 1. 1984 N	يەر 💬 - مىر	10 P. 1 - 1	신전문문
	1. · · ·	S	A. 674 h	C	1. C.X.	. .	 K Statistics The A 	2.2 2	1 Sec. 2 Sec.	1.1 101080		38-1-4 L	1.112	1.1.2 (0.1.2)		43. A. A.	51		1 . S. K.L.	S 12 5 14	6° C	AL Ch
-1	TYAA	10 10 10 10 10	C	10000	for a for a second	141. I H.		21.144	- 472 î. N	25 a etc.	뒷가던 제	ં તમ્	1997 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 -	1 C	じょくもい	21111	计中心处理的	-11153	10 S. 1	3 3 ASA ZY	1. A. A. A. A. A. A. A. A. A. A. A. A. A.	13 H F
· 2 '	I-131	LIGHT Port L	1, (25, 1,7)	 .	48 Ci	8 - 1 e . E	1 - 2 - 2 T 1	100 -	- 4.4 20 -	ાર્ગ્ય પ્રાવેક	്ററ	ነሰብ ፖ	1 1 1 1 1 1	2 . Ango	. T 4	0000						40. je
× 1	1-101	1.50		.v.v	140 UI	- 이야 하나 아이 아이 아이 아이 아이 아이 아이 아이 아이 아이 아이 아이 아이	 -	133		. it. it. it. it. it. it. it. it. it. it	- HD 1)33 (∴I-1	35	1.		330 a C)12 (°	e 12,
- 67		Sec. 1	141 1670	Sec. 24 1 1	0 790 G/ # 117	2. 19.			a . 145.	Sec. 16				清晰的 网络		00	6	5 439 5	V . V	14 1	71 .2 S	べいも
. S.	ന്റ്റ്റ		11 A 17 A 17	See. 1. 1.	- 1 Y	- 98 f + .	herr	يدر الأنبر الأران	- Sec. 17. 1		A 11 96	- A		G 147 M 4		ويدرجون وا	i dan Basa	4195-04	ALL HOLD	一部的に認知	ber find	err
5.0	'L'Atol	. <u> </u>	A 10 A 1	1 - Chi -		5 9 F - 19	- N	2511.414	1 S & F						19 Y	x 1.6 s 3	(177) L	- A A A A A A A A A A A A A A A A A A A	1.000	A Street	11.75	17 E I
-	Total		/101	$\mathbf{u}_{2,1}$	1991 (J. 1997)	. Rat 4	A 100 all	11 1 1	a) (2.5)		- p 1 - 1 - 1			a produce		4.1、金箔-2-3	92 C. 23 N.	2. 101.9	, shu i,	1 a to 10 a	S. C. S.	

ARCON96 X/Q values (ref.24): 0-2hr=2.52E-3 sec/m³, 2-8hr=1.57E-3, 8-24hr=6.71E-4, 1-4day=4.99E-4, 4-30day=3.79E-4

WGDT Room volume = 11269 cuft (room 692-A5, ref.29, which is smaller volume than WGDT room A3=11503 cuft) Flow out of WGDT room = 944 cfm (= largest measured value, ref.30).

	on No. WBNTSR-064	Rev: 8	Plant: WBN	8
Subject:	Offsite and Control Room Operator Doses Due to	a Waste Pr	epared: 0 //	Date: 4/19/04
· · · · · · · · · · · · · · · · · · ·	Gas Decay Tank Rupture			Date: 4-24-06

Assumptions

1. The tank is assumed to be filled with the highest concentration for each isotope from all sources into the WGDT. This will ensure maximum concentration of all isotopes.

a) The realistic source terms come from WBNNAL3-006 (ref.10). The WBNNAL3-006 concentrations correspond to the realistic inventory (ANSI/ANS 18.1-1980 4). The Regulatory Guide 1.24 (design basis, 1% failed fuel) source terms are provided by Westinghouse in WAT-D-10436 (ref.11).
b) WBNNAL3-003 (ref. 6) provides the total inventory of tritium for a TPC and in accordance with NUREG-0017(ref. 25) 10% of the tritium is released as gas, thus the tritium source terms are:

17(rei, 25) 10% of the tritium		
TPC - Normal Operation:	906.9 Ci (total) * 10%	= 90.69 Ci
1 TPBAR Failure:	12506.9 Ci * 10%	= 1250.69 Ci
2 TPBAR Failure:	24106.9 Ci * 10%	= 2410.66 Ci
	1	

Only the 2 TPBAR Failure case is run, as the tritium has only a small impact on the results and using the 2 TPBAR failure source term is conservative.

- 2. Radioactive decay is only taken into account for the time period required to transfer the gasses to the tank (ref.5), except for tritium. The maximum content of the failed decay tank is assumed to be released non-mechanistically to the environment over a two hour time period (ref.5). For tritium, due to its 12.3 year half life, it is considered that no decay occurs.
- 3. The tank failure is assumed to occur immediately upon completion of the waste gas transfer (ref.5).
- 4. Only one tank is assumed to fail, as all decay tanks are isolated from each other whenever they are in use (ref.4).

5. deleted in R5

6. The release path of the radioisotopes from the ruptured tank is through the Auxiliary Building vent (ref. 12).

Technical Justification: A rupture of a Waste Gas Decay Tank will lead to release into the Auxiliary Building and hence into the normal ventilation. Planned releases of the WGDT inventory to the environment will be through the Shield Building Vent. The Shield Building Vent release path is monitored by radiation monitors such that if excessive releases occur, the vent will isolate (ref. 4). The Auxiliary Building Vent is monitored and alarmed (1-RE-90-101), but no automatic isolation occurs (ref. 27). Also, the χ/Q values from the Auxiliary Building Vent are worse for the control room than the Shield Building Vent (see calculation WBNAPS3-104). Therefore, this release path is the most likely path and the most conservative path.

7. deleted in revision 7

8. All assumptions from TI-RPS-198 (ref.9) regarding the COROD model hold, except as denoted above.

9. Only one train of CREVS is in operation.

Technical Justification: Normally, each CREVS train takes suction from separate intakes with no cross communication between trains. This leads to one contaminated train, and one uncontaminated train. The only way a 2 CREVS operation could result in higher doses would be for both trains to take suction from the same vent. For this to happen, one intake path would require a failed closed intake path AND a fail open of normally closed passive manual damper at the beginning of the accident. An active failure of a train plus a failure of a passive component in less than 24 hours is beyond design basis. ĪVA

Calculatio	on No. WBNTSR-064	Rev: 8	Plant: WBN	Page: 10
Subject:	Offsite and Control Room Operator Doses Due to a	Waste	Prepared: [)[[Date: 1/24/06
	Gas Decay Tank Rupture		Checked: Mos	Date: 1-24-06

Special Requirements / Limiting Conditions

There are no special requirements or limiting conditions in this calculation.

<u>Calculations</u>

A waste gas decay tank has a volume of 600 cuft and is filled at 1.4 scfm (from 2 volume control tanks at 0.7 scfm each) until it reaches 100 psig (114.696 psia, ref.4). Once full, the flow is diverted to another tank. Therefore the volume of the gas at STP and the time to fill the tank is:

 $\mathbf{P}_1\mathbf{V}_1 = \mathbf{P}_2\mathbf{V}_2$

or

 $V_2 = P_1 V_1 / P_2 = (114.696 \text{ psia}(600 \text{ cuft}) / (14.696 \text{ psia}))$

= 4682.7 cuft at STP

then

time = (4682.7 cuft)/(1.4 cuft/min * 60 min/hr)

= 55.75 hr

The realistic case (ANSI/ANS 18.1-1984) isotope concentration is taken from WBNNAL3-006 (ref. 10). The Regulatory Guide 1.24 case (1% failed fuel) isotope concentration is taken from WAT-D-10436 (ref. 11). For each case the tritium concentration for a TPC is taken from WBNNAL3-003 (ref. 6). Using computer code STP (ref. 1), a continuous realistic source flows at 1.4 cfm for 55.75 hr into a component labeled "Realistic WGDT". Because a total inventory is given in reference 11, the Regulatory Guide 1.24 source is stepped into a component labeled "R.G. 1.24 WGDT". No decay is assumed for the R.G. 1.24 case and no decay is assumed for tritium. Since the STP realistic case input values are in μ Ci/cc, and the FENCDOSE/COROD codes require input values in Curies, the realistic continuous source flow rate in the "Realistic WGDT" is:

 $F = (x \mu Ci/cc)(1.4 cuft/min)(60 min/hr)(28317 cc/cuft)(10-6 Ci/\mu Ci)$

 $= (x \mu Ci/cc)(2.3786 Ci-cc/\mu Ci-hr) = x * 2.3786 Ci/hr$

At the end of the 55.75 hr time period, the inventory of the tank is assumed to be released into the atmosphere. The inventory as calculated by STP is used as input into computer code FENCDOSE (ref.3) to calculate the Low Population Zone (LPZ) and the site boundary (SB), which is the same as the Exclusion Area Boundary (EAB), offsite dose. The FENCDOSE model is taken from TI-RPS-197 (ref.8).

Calculation No.WBNTSR-064Rev: 8Plant: WBNPage: 11Subject:Offsite and Control Room Operator Doses Due to a WastePrepared: 000Date: 4/100Gas Decay Tank RuptureChecked: 400Date: 4-24-060			· · · · · · · · · · · · · · · · · · ·		e Northa			
	Calculatio	on No. WBNTSR-064	· · · ·	Rev: 8	^r .	Plant: WBN	· .	Page: 11
Gas Decay Tank Rupture Checked: #13 Date: 4-24-06	Subject:	Offsite and Control Room Operator	Doses Due to	a Waste	Рге	pared: 00	D	ate: 4/11/100
		Gas Decay Tank Rupture	n de la companya de la companya de la companya de la companya de la companya de la companya de la companya de l La companya de la companya de la companya de la companya de la companya de la companya de la companya de la comp		Che	cked: µ3	D	ate: 4-24-06

The inventory as calculated by STP is also used as input into computer code COROD to determine the control room operator dose. The COROD models (less the containment shine) are taken from TI-RPS-198 (ref. 9) with a 20.6 second delay in isolation. From WBNTSR-009: "During the vertical slice review of the control room, a concern was raised that when the control room is isolated by a signal from the main control room intake radiation monitors, some amount of unfiltered activity could enter the control room before the isolation dampers close. This could be the case for a fuel handling accident [or waste gas decay tank rupture] because there will be no safety injection signal to isolate the control room. The isolation dampers downstream from the radiation monitors are 0-FCV-31-3 and 0-FCV-31-4. It is required ... that the closure time of the dampers is 14 seconds, with a signal response time of 6.6 seconds, which gives a total closure time of 20.6 seconds."

The X/Q values used are different than the TI-RPS-198 model because the release points are different. There are 2 cases of X/Q values for the control room with a release from the Auxiliary Building exhaust vent. Per TI-RPS-198, the worst case X/Q values for the first 8 hours are used, with the better X/Q values used after 8 hours due to operator action to select the better intake

	on No. WBNTSR-064	Rev: 8	Plant: WBN	Page: 12
Subject:	Offsite and Control Room Operator Doses Du	ie to a Waste Pr	epared: D // I	Date: 4/14/06
	Gas Decay Tank Rupture	Ch	ecked: Muy I	Date: 4-24-06

Results

	aste Gas Decay	, Tank Itapit	
Conventional Core	Offs	ite	
Realistic Case (rem)	30 day LPZ	2 hr EAB	Control Room
Gamma	6.40E-03	2.76E-02	3.48E-02
Beta	2.44E-02	1.05E-01	4.58E-01
Inhalation (ICRP-2)	4.16E-03	1.79E-02	6.68E-03
Inhalation (ICRP-30)	ale di Arcana. Se se se se se se se se se se se se se se	-	4.35E-03
TEDE			3.95E-02
Conventional Core	Offs	ite	
R.G. 1.24 (rem)	30 day LPZ	2 hr EAB	Control Room
Gamma	1.33E-01	5.72E-01	7.70E-01
Beta	3.57E-01	1.54E+00	6.65E+00
Inhalation (ICRP-2)	4.19E-03	1.81E-02	6.84E-03
Inhalation (ICRP-30)			4.68E-03
TEDE	la de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de		8.36E-01
· · · · · · · · · · · · · · · · · · ·			
TPC (2 TPBAR Failure)	Offs	ite	$ \begin{array}{c} \left(\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $
Realistic Case (rem)	30 day LPZ	2 hr EAB	Control Room
Gamma	6.40E-03	2.76E-02	3.48E-02
Beta	2.48E-02	1.07E-01	4.66E-01
Inhalation (ICRP-2)	4.16E-03	1.79E-02	6.68E-03
Inhalation (ICRP-30)	2.67E-03	1.15E-02	4.35E-03
TEDE	1.06E-02	4.56E-02	1.81E-01
TPC (2 TPBAR Failure)	Offs	ite	A STATE OF A
R.G. 1.24 (rem)	30 day LPZ	2 hr EAB	Control Room
Gamma	1.33E-01	5.72E-01	7.70E-01
Beta	3.58E-01	1.54E+00	6.66E+00
Inhalation (ICRP-2)	4.19E-03	1.81E-02	6.84E-03
Inhalation (ICRP-30)	2.85E-03	1.23E-02	4.68E-03
TEDE	7.66E-02	3.30E-01	9.77E-01

Table 3 Doses Due to Waste Gas Decay Tank Rupture (Rem)

Notes for Table 3

COROD R6 does not include in the TEDE the dose due to direct shine from outside the control room, the value is manually added to arrive at the TEDE.

 $\begin{aligned} \mathbf{TEDE}_{total} &= \mathbf{TEDE}_{Ab} + \mathbf{gamma}_{Shine} + \mathbf{TEDE}_{Taylognese} \\ &= 4.442E-01 + \text{negligible} + 0.0 = 4.442E-01 \text{ (Realistic TPC)}, \end{aligned}$

= 2.406E+00 + negligible + 0.0 = 2.406E+00 (R.G. 1.24 TPC)

where gamma shine > 0 but is considered to be negligible

Î	I VA
L	L/A

Calculatio	on No. WBNTSR-064	Rev: 8	Plant: WBN	Page: 13
Subject:	Offsite and Control Room Operator Doses Due to	a Waste Pre	pared: /) / /	Date: 1/24/07
а 1	Gas Decay Tank Rupture	Che	ecked: n.z	Date: 1-24-06

The R.G. 1.24 EAB gamma dose presented in Table 3 exceeds the limit of 500 mrem gamma. In order to define a limiting condition for the WGDT that would, if released, not exceed the limits, a case is developed to determine the source inventory of the WGDT that would result in the EAB being just less than 500 mrem. The limiting condition for the WGDT is addressed as a total Xe-133 equivalency. To determine the limiting source terms a Xe-133 equivalent was determined for the R.G. 1.24 source inventory using dose factors for γ -body in Table B-1 of R.G. 1.109 (ref.26). A reduction factor value was determined by trial and error (by using various reduced source inventories as input to FENCDOSE) to be 0.127 so that the resulting offsite dose is just below the limit of 500 mrem. The R.G. 1.24 Xe-133 equivalent values were reduced by this reduction factor using the following equation:

[Xe-133 Equivalency - (Reduction Factor*Xe-133 Equivalency)] To determine reduced source inventory the reduced Xe-133 Equivalency for each isotope is multiplied by the same dose factors ratio as used to determine the Xe-133 equivalency for each R. G. 1.24 isotope. This calculation is provided in Table 4. The reduced isotopic values were entered into FENCDOSE to validate the reduced source inventory and yielded the results provided in Table 5 for both a Non-TPC core and TPC core.

Table 4 - R.G. 1.24 case

Dose fa	ctors based on R.G.	1.109 R1 Table B-	1 (DFB.)		Reduction Factor (1	RF) = 0.127
Nuclide	DFB	Ratio		 A state of the sta		
an ta an ta	mrem-m³/pCi-yr	DFB/DFB	RG-1.24 (Ci)	Xe-133 Eqv (Ci) Eqv-RF	Reduced Ci *
Kr-83m	7.56E-08	2.571E-04	1.700E+01	4.371E-03	3.816E-03	1.484E+01
Kr-85m	1.17E-03	3.980E+00	1.300E+02	5.173E+02	4.516E+02	1.135E+02
Kr-85	1.61E-05	5.476E-02	4.200E+03	2.300E+02	2.008E+02	3.667E+03
Kr-87	5.92E-03	2.014E+01	2.900E+01	5.839E+02	5.098E+02	2.532E+01
Kr-88	1.47E-02	5.000E+01	1.600E+02	8.00E+03	6.984E+03	1.397E+02
Kr-89	1.66E-02	5.646E+01	1.000E-01	5.646E+00	4.929E+00	8.730E-02
Xe-131m	9.15E-05	3.112E-01	8.900E+02	2.770E+02	2.418E+02	7.770E+02
Xe-133m	2.51E-04	8.537E-01	1.000E+03	8.537E+02	7.453E+02	8.730E+02
Xe-133	2.94E-04	1.0	6.800E+04	6.800E+04	5.936E+04	5.936E+04
Xe-135m	3.12E-03	1.061E+01	4.800E+01	5.094E+02	4.447E+02	4.190E+01
Xe-135	1.81E-03	6.156E+00	9.400E+02	5.787E+03	5.052E+03	8.206E+02
Xe-137	1.42E-03	4.830E+00	2.700E-01	1.304E+00	1.138E+00	2.357 E-01
Xe-138	8.83E-03	3.003E+01	3.200E+00	9.611E+01	8.390E+01	2.794E+00
	na series de la companya de la companya de la companya de la companya de la companya de la companya de la comp Na companya de la companya de la companya de la companya de la companya de la companya de la companya de la comp	Total Xe-	133 Equivalent	8.486E+04	7.408E+04	

* Note that the Reduced Ci column is the "Eqv.-RF"/"Ratio" (col.6/col.3).

T/A

Calculatio	on No. WBNTSR-064	Rev: 8	Plant: WBN	Page: 14
Subject:	Offsite and Control Room Operator Doses Due t	o a Waste Pre	pared: D/f D	ate: 1/24/06
100 A	Gas Decay Tank Rupture	Ch	ecked: nus D	ate: 1-24-06

Using the same methodology as above the Xe-133 equivalency for the Realistic case isotopic source terms resulting from STP is 3.966E+03 Ci (Xe-133) as provided in the following table.

Dose Factors based on RG 1.109 R1 Table B-1 (DFBi)

ł	Realistic Case	1	
Nuclide	DFBi	Ratio	
e e fan de se	mrem-m3/pCi-yr	DFBi/DFBi Xc-133	Realistic (Ci) Xe-133 Eqiv. Ci
Kr-83m	7.56E-08	2.571E-04	0.0
Kr-85m	1.17E-03	3.980E+00	6.302E+00 2.508E+01
Kr-85	1.61E-05	5.476E-02	7.689E+02 4.211E+01
Kr-87	5.92E-03	2.014E+01	7.418E-01 1.494E+01
Kr-88	1.47E-02	5.000E+01	5.092E+00 2.546E+02
Kr-89	1.66E-02	5.646E+01	0.0 0.0
Xe-131m	9.15E-05	3.112E-01	1.104E+03 3.436E+02
Xe-133m	2.51E-04	8.537E-01	4.546E+01 3.881E+01
Xe-133	2.94E-04	1.0	2.636E+03 2.636E+03
Xe-135m	3.12E-03	1.061E+01	2.611E-02 2.771E-01
Xe-135	1.81E-03	6.156E+00	9.905E+01 6.098E+02
Xe-137	1.42E-03	4.830E+00	3.724E-04 1.799E-03
Xe-138	8.83E-03	3.003E+01	2.026E-02 6.085E-01
			Total Xe-133 Equivalent 3.966E+03

Table 5

	30 day LPZ	2 hour SB(EAB)
Gamma (whole body)	1,160E-01	4.994E-01
Beta	3.122E-01	1.344E+00
Iodine (Thyroid) - ICRP-2	4.194E-03	1.806E-02
Iodine (Thyroid) - ICRP-30	2.845E-03	1.225E-02
TEDE*	6.784E-02	2.921E-01
Regulatory Guide 1.24 Reduc	ed Case* - Non-TPC (r	em)

	30 day LPZ	2 hour SB(EAB)
Gamma (whole body)	1.160E-01	4.994E-01
Beta	3.118E-01	1.342E+00
Iodine (Thyroid) - ICRP-2	4.194E-03	1.806E-02
Iodine (Thyroid) - ICRP-30	2.845E-03	1.225E-02
TEDE*	6.056E-02	2.607E-01

* Reduced = Limited to Xe-133 equivalent of 7.408E4 Ci

Calculatio	on No. WBNTSR-064	Rev: 8	Plant: WBN	Page: 15
Subject:	Offsite and Control Room Operator Doses Due to	a Waste Pre	pared: 0ff D	ate: 1/1-1/06
	Gas Decay Tank Rupture	- 👘 🏷 Che	cked: Mung D	ate: 1-24-06

Discussion and Conclusion

The implementation of a TPC core impacts the beta doses determined in Revision 5 by a small amount; however, the tritium does have a significant impact on the TEDE. Thus the following conclusions are applicable to both the TPC and Non-TPC cores.

The 30 day LPZ offsite doses for a realistic and Regulatory guide 1.24 Waste Gas Decay Tank rupture accident were calculated to be substantially below the regulatory limits of 25 rem gamma, 300 rem beta, 300 rem thyroid, and 25 rem TEDE. The control room operator doses for a realistic and Regulatory guide 1.24 WGDT rupture were calculated to be below the regulatory limits of 5 rem gamma, 30 rem beta, 30 rem thyroid, and 5 rem TEDE. The Regulatory Guide 1.24 control room beta dose is relatively high, but this is due to the very conservative (high) noble gas inventory for that case.

For the realistic case, the 2-hr EAB/Site Boundary offsite dose was less than the 500 mrem criterion set forth in NUREG0800 section 11.3. The Reg. Guide 1.24 case exceeds the 500 mrem limit. In order to not exceed the 500 mrem limit, the Xe-133 equivalent for a WGDT must be maintained less than 7.408E+04 Ci. However, PAL 15.01 (ref.22) administratively limits the activity in a tank to 500 Ci.(Xe-133equivalent) or more frequent surveillance would be required. Given this administrative limit, and By maintaining the Xe-133 equivalency to less than 7.408E+04 Ci according and that the realistic casedoes not exceed the offsite dose limits, a rupture of a single Waste Gas Decay Tank will meet the intent of NUREG0800 section 11.3. This requirement is implemented by section 4.2 of the Gaseous Waste Disposal System Description, N3-77A-4001.

Note on Methodologies used for Doses:

This calculation determined the doses using 3 different methodologies which are in revision 5 of COROD. The gamma, beta and Thyroid (ICRP-2) doses are all based on TID-14844 methodologies utilizing the ICRP-2 iodine dose conversion factors found in TID-14844 and are the current (as of June 2001) licensing basis of the plant. The second methodology is the Thyroid (ICRP-30) dose, which is also based on TID-14844, but uses the ICRP-30 iodine dose conversion factors. The ICRP-30 iodine dose conversion factors are less conservative than the ICRP-2 factors. This methodology is presented for potential future use. Finally, the third methodology used is the TEDE (Total Effective Dose Equivalent). The TEDE presents an overall weighted dose and is more representative of the impact of all isotopes on the body as a whole. The TEDE dose is presented for potential future use. It is important to note that tritium does not impact the thyroid doses utilizing the TID-14844 methodology, because only iodine is applied to the thyroid dose. However, in fact tritium does contribute to the thyroid dose, as well as other organs of the body. This is why the TEDE is a more representative dose when discussing the impact of tritium. It is up to the end user to choose the dose which is to be used, with the understanding that each methodology has a different meaning

	on No. WBNTSR-064	Rev: 8		ingi in the intervention	Page: 16
Subject:	Offsite and Control Room Operator Doses Due to	a Waste	Prep	ared: D/P	Date: 1/24/66
	Gas Decay Tank Rupture	-	Cheo	ری ۾ :ked	Date: 1-24-06

References

- 1. Computer Code STP R6, code I. D. 262165, controlled user's manual # 2
- 2. Halitsky, James et. al., "Wind Tunnel Tests of Gas Diffusion From a Leak in the Shell of a Nuclear Power Reactor and from a Nearby Stack" Department of Meteorology and Oceanography Geophysical Sciences Laboratory Report No.63-2, New York University, April 1, 1963
- 3. Computer Code FENCDOSE R4, code I. D. 262358
- 4. System Description N3-77A-4001 R4 "Gaseous Waste Disposal System"
- 5. Safety Guide 24 (Regulatory Guide 1.24) "Assumptions Used For Evaluating the Potential Radiological Consequences of a Pressurized Water Reactor Radioactive Storage Tank Failure" 3/23/72
- 6. WBNNAL3-003 R4 "Reactor Coolant Activities in Accordance with ANS/ANSI-18.1-1984"
- 7. Computer Code COROD R5, code I. D. 262347
- 8. TI-RPS-197 R17 "Offsite Doses Due to a Regulatory Guide 1.4 Loss of Coolant Accident"
- 9. TI-RPS-198 R17 "Dose to Control Room Personnel Due to a Regulatory Guide 1.4 Loss of Coolant Accident"
- 10. WBNNAL3-006 R1 "Gaseous Source Term Study" RIMS# B26 940916 362
- 11. WAT-D-10436, September 12, 1997 RIMS# T28 970912 803
- 12. WBN CCD drawing 1-47W866-2 R10
- 13. WBN drawing 47W930-5 RE
- 14. WBN drawing 47W200-1 R11
- 15. WBN drawing 41N712-1 RD
- 16. WBN drawing 41N718-1 RE
- 17. WBN drawing 47W200-13 R5
- 18. WBN drawing 47W930-2 RP
- 19. WBN drawing 47W930-3 RP
- 20. WBN drawing 47W200-8 R7
- 21. deleted in R4
- 22. deleted in R6
- 23. NUREG-0800 R2 section 11.3
- 24. WBNAPS3-104, R2 "WBN Control Room X/Q"
- 25. NUREG-0017 R1, "Calculation of Releases of Radioactive Materials in Gaseous and Liquid Effluents from Pressurized Water Reactors', USNRC, April 1985
- 26. Regulatory Guide 1.109 R1, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I
- 27. Design Criteria WB-DC-40-24 R10, "Radiation Monitoring"
- 28. EDC E50629A
- 29. Calculation EPM-PFS-072991 R3 "Air Volumes, Penetrations and Door Opening Data for Auxiliary Building"
- 30. WBN CCD drawing 1-47W866-2 R24
- 31. Calculation WBNTSR-009 R11 "Control Room Operator and Offsite Doses From a Fuel Handling Accident"

Appendix A Input for COROD DERFACTA JOB 264360, '9MEERG. BIN111', MSGLEVEL=1, MSGCLASS=T MAIN ORG-LOCAL. CLASS=SB TCL JCLIB ORDER-(APB. NEN. EX262358. PROCLIB) TEP1 EXEC COROUG. (2001) 4(. LT) ORDOL.PTO5P001 DD * F 19 NR= 1 TTP= 6 FACT 1.0 3D-MEN WODT SCHOLLTOS AND ADD * F 19 NR= 1 TTP= 6 FACT 1.0 3D-MEN WODT SCHOLLTOS ADD * F 19 NR= 1 TTP= 6 FACT 1.0 3D-MEN WODT SCHOLLTOS ADD * F 19 NR= 1 TTP= 6 FACT 1.0 3D-MEN WODT SCHOLLTOS ADD * F 19 NR= 1 TTP= 6 FACT 1.0 3D-MEN WODT SCHOLLTOS ADD * F 19 NR= 1 TTP= 6 FACT 1.0 3D-MEN WODT SCHOLLTOS ADD * F 10 NR=1 1 TTP= 6 FACT 1.0 3D-MEN WODT SCHOLLTOS ADD * F 10 NR=1 1 TTP= 6 FACT 1.0 3D-MEN WODT SCHOLLTOS ADD * F 10 NR=1 1 TTP= 6 FACT 1.0 3D-MEN WODT SCHOLLTOS ADD * F 10 NR=1 1 TTP= 6 FACT 1.0 3D NR=1 1 12 .6 48E-01 12 7.423E-03 13 8.997E-02 14 1.354E+03 10 1.351E+00 11 2.6 46E-01 12 7.423E-03 13 8.997E-02 14 1.354E+03 10 1.351E+00 11 2.6 46E-01 12 7.423E-03 13 8.997E-02 14 1.354E+03 15 1.400F+02 4 2.530E+02 7 8.633E+02 8 9.690E+02 9 6.599E+04 10 3.005E+00 11 8.354E+01 7 0.0 18 1.41HE-02 19 0.0 5 NR 1.534E+01 7 0.0 08E+00 3 0.000E+00 19 0.000E+00 15 0.000E+00 1 0.000E+00 7 0.000E+00 8 0.000E+00 19 0.000E+00 15 0.000E+00 6 0.000E+00 7 0.000E+00 8 0.000E+00 19 0.000E+00 15 0.000E+00 1 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 15 0.000E+00 1 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 1 10.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 1 10.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 1 10.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 15 0.000E+00 1 10.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 1 10.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 1 0.000E+00 17 0.000E+00 18 0.000E+00 19	lant: WBN	Page: 17
Appendix A Input for COROD SEGACTA JOB 264360. '9MEERG.BIN111', MSGLEVEL=1, MSGCLASS=T MAIN ORC-LOCAL.CLASS=SB CL JCLIB ORDER.(APB.NEN.EX262358.PROCLIB) TEPI EXEC COROMS(.COMD.(4, LT) ORDD.PTOSP001 DD * = 19 NR=1 TTP=6 FACT=1.0 DD MEM MCDT STEPI EXEC COROMS(.COMD.(4, LT) STEPI EXEC CORO	red: /)//	Date: 1/19/06
Input for COROD MAIN ORG=LOCAL CLASS=ES CL SCLLE ORDER=(APR NEN, EX262358, PROCLED) TEP1 EXEC CORODY6, COND=[4,LT] OKODI, FYOSPOIL DD * = 19 NR=1 ITP= 6 FACT= 1.0 SOP-NEN KOPT 5 K 7 K 8 8 K 89 5 K 135 XE 137 XE 138 31 I 132 L 133 I 1.34 I 1.35 H.3 5 K 0.1.24 REL 5 K 87 K 18 K 89 5 K 89 5 K 135 XE 137 XE 138 31 I 132 L 1 133 I 1.34 I 1.35 H.3 5 K 0.1.24 REL 5 K 87 K 18 8 K 89 5 K 87 7 K 58 5 K 135 XE 137 XE 138 31 I 132 L 1 133 I 1.34 I 1.35 H.3 5 K 0.1.24 REL 5 K 7 8 5 K 7 7 K 58 5 K 7 7 K 7 5 7 K 7 K 7 5 7 K 7 K 7 5 7 K 7 K	ked: MUB	Date: 1.27.06
Input for COROD MAIN ORG=LOCAL CLASS=58 CL SCLUT ORDER=(APRINE RX262358 PROCLID) TTEP1 EXEC CORODY6, COND=(4,LT) OKODI, PTOSPENT (APRINE, RX262358, PROCLID) TTEP1 EXEC CORODY6, COND=(4,LT) OKODI, PTOSPOIL DD * = 19 NR=1 ITTP= 6 PACTE 1.0 IOD-WENN WOTT S = 133 X E133 X L33 L 1.34 K L35 K L35 X E137 XE 138 31 I 132 L 133 I 1.34 K L35 K K 88 K 89 1 4.8158-03 2 3.688+00 1 1.9128+02 1 4.8158-03 2 1.7.4238-03 1 3 8.9978+02 1 4 8.2298+03 10 1.3518+03 1 5 K0 1.24 REL 5 K 8 8 K 87 5 K0 1.24 REL 5 K 8 8 K 89 1 5 K0 1.24 REL 5 K 8 8 K 89 1 5 K0 1.24 REL 5 K 8 8 K 89 1 6 3.1558+04 17 0.0 1 8 1.9418+02 1 2 1.2248+02 3 4.0818+03 4 2.5348+01 5 1.4808+02 6 2.5037+02 12 7.86438+02 8 9.6509+02 9 6.5998+04 10 3.0058+00 1 6 3.158E+02 12 7.8018+02 13 1.9308+00 14 4.6602+02 15 0.0 1 6 3.0008+00 7 0.0008+00 8 0.0008+00 4 0.0008+00 15 0.0008+00 1 0.0008+00 7 0.0008+00 8 0.0008+00 1 0 0.0008+00 1 0.0008+00 7 0.0008+00 8 0.0008+00 1 0 0.0008+00 1 0.0008+00 7 0.0008+00 8 0.0008+00 1 0 0.0008+00 1 0.0008+00 1 7 0.0008+00 1 3 0.0008+00 1 0 0.0008+00 1 0.0008+00 1 7 0.0008+00 8 0.0008+00 1 0 0.0008+00 1 0.0008+00 1 7 0.0008+00 8 0.0008+00 1 0 0.0008+00 1 0.0008+00 1 0 0.0008+00 1 3 0.0008+00 1 0 0.0008+00 1 0.0008+00 1 3 0.0008+00 1 3 0.0008+00 1 0 0.0008+00 1 0.0008+00 1 3 0.0008+00 1 3 0.0008+00 1 0 0.0008+00 1 0.0008+00 1 3 0.0008+00 1 3 0.0008+00 1 0 0.0008+00 1 0.0008+00 1 3 0.0008+00 1 3 0.0008+00 1 0 0.0008+00 1 0.0008+00 1 3 0.0008+00 1 3 0.0008+00 1 0 0.0008+00 1 0.0008+00 1 3 0.0008+00 1 3 0.0008+00 1 0 0.0008+00 1 0.0008+00 1 3 0.0008+00 1 0 0.0008+00 1 0.0008+00 1 2 0.0008+00 1 3 0.0008+00 1 0 0.0008+00 1 0.0008+00 1 2 0.0008+00 1 3 0.0008+00 1 0 0.0008+00 1 0.0008+00 1 2 0.0008+00 1 0 0.0008+00 1 0.0008+00 1 2 0.0008+00 1 0 0.0008+00 1 0.0008+00 1 2 0.0008+00 1 0 0.0008+00 1 0.0008+00 1 0 0.0008+00 1 0 0.0008+00	ndes and Bart	
SR4G47A JOE 264360, '9MEBRG.BINIL', MSGCLEVEL-1, MSGCLASS=T MAIN ORG-LOCAL CLASS=SB CL JCLLIB ORDER-(APE.NEN.EX.22535.PROCLIB) TEP! EXEC CORDOVG.COND.(4, LT) ORDD.PTOSF001 DD * = 19 NR=1 ITTP= 6 PACT= 1.0 DD MEM MGDT 5 NG 1.24 REL 5 NJ 1 132 JIN SEM 313 XE 133 T.1314 I 135. H.3 JIN SEM 313 XE 133 T.1314 I 135. H.3 JIN SEM 313 XE 133 T.1314 I 135. H.3 JIN SEM 313 XE 133 T.1314 I 135. H.3 JIN SEM 313 T.1314 I 135. H.3 JIN SEM 313 T.1314 I 135. H.3 ST NG 1.24 REL 5 STM= 0.5722E-02 JIN SEM 313 T.1314 I 135. H.3 STM= 0.5722E-03 JIN SEM 313 T.1314 I 135. H.3 STM= 0.5722E-03 JIN SEM 313 T.1314 I 135. H.3 STM= 0.5722E-02 JIN SEM 313 T.1314 I 135. H.3 STM= 0.5722E-02 JIN SEM 313 T.1314 JIN SEM 135 XE 137 XE 137 XE 138 STM= 0.5722E-03 JIN SEM 313 T.1345 JIN SEM 315 XE 137 XE 137 XE 138 STM= 0.5000E+01 JIN SEM 315 XE 137 XE 137 XE 138 STM= 0.5000E+01 JIN SEM 315 XE 137 XE 138 STM= 0.5000E+01 JIN SEM 315 XE 137 XE 138 STM= 0.5000E+01 JIN SEM 315 XE 137 XE 138 STM= 0.5000E+01 JIN SEM 315 XE 137 XE 138 STM= 0.5000E+01 JIN SEM 315 XE 137 XE 138 STM= 0.5000E+01 JIN SEM 315 XE 137 XE 138 STM= 0.5000E+01 JIN SEM 315 XE 137 XE 138 STM= 0.5000E+01 JIN SEM 315 XE 137 XE 138 STM= 0.5000E+01 JIN SEM 315 XE 137 XE 138 STM= 0.5000E+01 JIN SEM 315 XE 137 XE 138 STM= 0.5000E+01 JIN SEM 315 XE 137 XE 138 STM= 0.5000E+01 JIN SEM 315 XE 137 XE 138 STM= 0.5000E+00 JIN SEM 315 XE 137 XE 138 STM= 0.5000E+00 JIN SEM 315 XE 137 XE 138 XE 137 XE 138 STM= 0.5000E+00 JIN SEM 315 XE 137 XE 138 XE 137 XE 138 STM SEM 315 XE 137 XE 138 XE 137 X		and the second second second second second second second second second second second second second second second
MAIN ORG=LOCAL CLASS=58 CL JCLLE DORDER (APR JEN, SK2 62358. PROCLIB) TEPI EXEC CORODYG, COND=14, LTT ORODH, FTOSFOOL DD * = 19 NR=1 TTP= 6 FACT= 1.0 DD *MEN GOTR 55 KR 87 KR 69 KR 89 S TM= 0.5 KR 45 KR 85 KR 87 KR 69 KR 89 S TM= 0.5 TX2E=02 1 1.32 113 113 L13 KM 1 135 K2 137 XE 138 S TM= 0.5722E=02 1 4.815E=01 2 3.648 FN 0 3 1.1914=02 4 8.209E=01 5 4.533E+00 1 2.6464=01 12 7.423E=01 3 8.997E=02 14 1.616E=03 1 1.534E=01 2 3.648 FN 0 3 1.916=02 4 8.209E=01 5 4.533E+00 1 6 9.355E=04 17 0.0 18 3.401E=04 19 0.0 5 KR 1.24 REL 5 1.420E=02 3 4.081E=03 4 2.534E+01 5 1.480E=02 1 5 KR 1.24 REL 5 1.224E+02 3 4.081E=03 4 2.534E+01 5 1.480E=02 1 1.534E=01 2 1.224E+02 3 4.081E=03 4 2.534E+01 5 1.480E=02 1 6 3.153E=02 17 .643E=02 18 1.930E=02 14 4.660E=02 15 0.0 1 6 3.163E=02 17 0.0 18 1.141E=02 19 0.0 5 KR 1.24 REL 5 0.0 18 1.141E=02 19 0.0 5 KR 1.24 REL 5 0.0 18 1.141E=02 19 0.0 5 KR 1.24 REL 5 0.0 18 1.141E=02 19 0.0 5 KR 1.24 REL 5 0.0 18 1.141E=02 19 0.0 5 CN 1.000E=00 12 0.000E=00 13 0.000E=00 14 0.000E=00 1 0.000E=00 12 0.000E=00 13 0.000E=00 19 0.000E=00 1 0.000E=00 12 0.000E=00 13 0.000E=00 19 0.000E=00 5 0.000E=00 17 0.000E=00 13 0.000E=00 19 0.000E=00 1 0.000E=00 12 0.000E=00 18 0.000E=00 19 0.000E=00 5 0.000E=00 12 0.000E=00 18 0.000E=00 19 0.000E=00 1 0.000E=00 12 0.000E=00 18 0.000E=00 19 0.000E=00 1 0.000E=00 12 0.000E=00 18 0.000E=00 10 0.000E=00 1 0.000E=00 12 0.000E=00 18 0.000E=00 19 0.000E=00 1 0.000E=00 12 0.000E=00 18 0.000E=00 10 0.000E=00 1 0.000E=00 12 0.000E=00 18 0.000E=00 10 0.000E=00 1 0.000E=00 12 0.000E=00 18 0.000E=00 10 0.000E=00 1 0.000E=00 12 0.000E=00 18 0.000E=00 10 0.000E=00 1 0.000E=00 12 0.000E=00 18 0.000E=00 10 0.000E=00 1 0.000E=00 12 0.000E=00 18 0.000E=00 10 0.000E=00 1 0.000E=00 12 0.000E=00 18 0.000E=00 10 0.000E=00 1 0.000E=00 12 0.000E=00 18 0.000E=00 10 0.000E=00 1 0.000E=00 12 0.000E		. * .
TEPI EXEC CORDUPS, CONDE (4, LT) ORDOIL PTOSYCO1 DD * = 19 NR= 1 ITP= 6 PACT= 1.0 OD *WEN WOTT 5 83 KRM 85 KR 85 KR 87 KR 88 KR 89 S 13 I 132, I 133 I 1.134 I 135, H.3 14 .132, L 1 133 I 1.134 I 135, H.3 15 Roll.24 REL 5 TW= 0.5722E=02 1 .4.815E=01 2 .3.684E=00 3 1.191E+02 4 8.209E=01 5 4.531E+00 11 2.664E+01 12 7.422E=03 13 8.937E=02 14 1.561E=03 15 0.0 15 Roll.24 REL 5 0.0 16 2.732E=03 7 2.523E+01 8 2.835E+01 9 1.928E+00 10 1.351E+00 11 2.664E+01 12 7.422E=03 13 8.937E=02 14 1.561E=03 15 0.0 16 3.185E=02 17 0.0 18 1.4401E=02 10.0000E+01 1 2.563E=02 7 0.0 18 1.4401E=02 19 0.0 16 3.185E=02 17 0.0 18 1.141E=02 19 0.0 16 3.185E=02 17 0.0 18 1.141E=02 19 0.0 16 0.000E+00 7 0.000E+00 3 0.000E+00 4 0.000E+00 15 0.000E+00 16 0.000E+00 7 0.000E+00 13 0.000E+00 19 0.000E+00 15 0.000E+00 16 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 16 0.000E+00 17 0.000E+00 13 0.000E+00 19 0.000E+00 16 0.000E+00 17 0.000E+00 8 0.000E+00 19 0.000E+00 16 0.000E+00 17 0.000E+00 8 0.000E+00 19 0.000E+00 16 0.000E+00 12 0.000E+00 18 0.000E+00 14 0.000E+00 16 0.000E+00 12 0.000E+00 13 0.000E+00 14 0.000E+00 16 0.000E+00 12 0.000E+00 18 0.000E+00 14 0.000E+00 16 0.000E+00 12 0.000E+00 18 0.000E+00 19 0.000E+00 16 0.000E+00 12 0.000E+00 18 0.000E+00 19 0.000E+00 16 0.000E+00 12 0.000E+00 13 0.000E+00 13 0.000E+00 16 0.000E+00 12 0.000E+00 13 0.000E+00 10 0.000E+00 16 0.000E+00 17 0.000E+00 13 0.000E+00 19 0.000E+00 16 0.000E+00 17 0.000E+00 13 0.000E+00 10 0.000E+00 16 0.000E+00 17 0.000E+00 13 0.000E+00 19 0.000E+00 16 0.000E+00 17 0.000E+00 13 0.000E+00 10 0.000E+00 16 0.000E+00 17 0.000E+00 13 0.000E+00 15 0.000E+00 16 0.000E+00 17 0.000E+00 13 0.000E+00 19 0.000E+00 15 0.000E+00 16 0.000E+00 17 0.000E+00 13 0.000E+00 19 0.000E+00 16 0.000E+00 17 0.000E+00 13 0.000E+00 19 0.000E+00 16 0.000E+00 17 0.000E+00 13 0.000E+00 15 0.000E+00 16 0.000E+00 17 0.000E+00 13 0.000E+00 15 0.000E+00 16 0.000E+00 17 0.000E+00 13 0.000E+00 15 0.000E+00 16 0.000E+00 0 17 0.000E+00 13 0.000E+00 15 0.000E+00 16 0.	· .	
ORDD1_PTO5F001 DD * 19 NR-1 ITTP 6 FACT 1.0 DD-MEN WOLT 5 FACT 1.0 DD-MEN WOLT 5 FACT 1.0 DD-MEN WOLT 5 FACT 1.0 DD-MEN WOLT 5 FACT 1.0 DD-MEN WOLT 5 FACT 1.0 DD-MEN WOLT 5 FACT 1.0 STATE 1.0 STATE 1.0 STATE 1.0 STATE 1.0 STATE 1.0 STATE 1.0 STATE 0.0 STATE 0.		· .
DD-MEN WOLT 53 KR 85 KR 87 KR 87 KR 88 KR 89 131 KREM 133 KR 133 KR 135 KR 135 KR 135 KR 137 KR 138 131 L 132 L 133 L 134 L 135 H.3 5 KG 1.24 KRL 57 7 2.528F-01 8 2.858F-01 9 1.928F-03 10 1.551F+00 11 2.664F-01 12 7.428F+02 3 13 8.99FF-02 14 1.361F-03 15 0.0 16 9.355E-04 17 0.0 18 3.401F-04 19 0.0 5 KG 1.24 KRL 57 8.641F-02 3 4.081F+03 4 2.534F+01 5 1.480F+02 1 1.534F+01 2 1.224F+02 3 4.081F+03 4 2.534F+01 5 1.480F+02 1 1.534F+01 2 1.224F+02 3 4.081F+03 4 2.534F+01 5 1.480F+02 1 1.534F+01 2 1.224F+02 3 4.081F+03 4 2.534F+01 5 1.480F+02 1 1.534F+01 2 1.224F+02 3 4.081F+03 4 2.534F+01 5 1.480F+02 1 1.534F+01 2 1.724F+02 8 9.600F+03 4 0.000F+00 15 0.000F+00 1 0.006F+00 2 7 0.00F+00 3 0.000F+00 14 0.000F+00 15 0.000F+00 1 0.006F+00 17 0.000F+00 3 0.000F+00 14 0.000F+00 15 0.000F+00 1 0.000F+00 17 0.000F+00 3 0.000F+00 14 0.000F+00 15 0.000F+00 1 0.000F+00 17 0.000F+00 13 0.000F+00 19 0.000F+00 15 0.000F+00 1 0.000F+00 17 0.000F+00 13 0.000F+00 19 0.000F+00 15 0.000F+00 1 0.000F+00 17 0.000F+00 13 0.000F+00 19 0.000F+00 15 0.000F+00 1 0.000F+00 17 0.000F+00 13 0.000F+00 19 0.000F+00 15 0.000F+00 1 0.000F+00 17 0.000F+00 13 0.000F+00 19 0.000F+00 15 0.000F+00 1 0.000F+00 17 0.000F+00 13 0.000F+00 19 0.000F+00 15 0.000F+00 1 0.000F+00 12 0.000F+00 13 0.000F+00 19 0.000F+00 15 0.000F+00 1 0.000F+00 12 0.000F+00 13 0.000F+00 19 0.000F+00 1 0.000F+00 12 0.000F+00 13 0.000F+00 10 0.000F+00 1 0.000F+00 12 0.000F+00 18 0.000F+00 10 0.000F+00 1 0.000F+00 12 0.000F+00 13 0.000F+00 10 0.000F+00 1 0.000F+00 12 0.000F+00 13 0.000F+00 10 0.000F+00 1 0.000F+00 12 0.000F+00 13 0.000F+00 19 0.000F+00 1 0.000F+00 12 0.000F+00 13 0.000F+00 10 0.000F+00 1 0.000F+00 12 0.000F+00 13 0.000F+00 10 0.000F+00 1 0.000F+00 12 0.000F+00 13 0.000F+00 10 0.000F+00 1 0.000F+00 17 0.000F+00 13 0.000F+00 19 0.000F+00 1 0.000F+00 17 0.000F+00 13 0.000F+00 19 0.000F+00 1 0.000F+00 17 0.000F+00 13 0.000F+00 19 0.000F+00 1 0.000F+00 17 0.000F+00 13 0.000F+00 19 0.000F+00 1 0.000F+00 10 0.00 2889.0 5 0.70 0.95 0.70 0.9	,	
131 KEM 133 KE 133 KE 135 KE 135 KE 137 KE 138 13 F 132 F 133 T.134 F 135 H.3 5 RG 1.24 KEL 5 STM= 0.5722E-02 14.4815E-01 2 5.634E+00 3 1.191E+02 4 8.209E-01 5 4.533E+00 6 2.732E-03 7 2.533E+01 8 2.835E+01 9 1.928E+03 10 1.351E+00 11 2.664E+01 12 7.423E-01 13 8.97E-02 14 1.361E-03 15 0.0 16 5.355E-04 17 0.0 18 3.401E-04 19 0.0 5 RG 1.24 KEL 5 TM= 0.2000E+01 1 1.534E+01 2 1.224E+02 3 4.081E+03 4 2.534E+01 5 1.480E+02 6 2.503E+02 7 8.633E+02 8 9.690E+02 9 6.599E+04 10 3.065E+01 11 8.938E+02 12 7.801E-02 13 1.930E+00 14 4.660E+02 15 0.0 16 3.185E+02 17 0.0 18 1.141E+02 19 0.0 5 FNUTRONMENT CURIES 5 TM= 0.8000E+01 1 0.000E+00 2 0.000E+00 3 0.000E+00 14 0.000E+00 5 0.000E+00 6 0.000E+00 7 0.000E+00 3 0.000E+00 14 0.000E+00 5 0.000E+00 10 0.000E+00 7 0.000E+00 3 0.000E+00 14 0.000E+00 15 0.000E+00 11 0.000E+00 17 0.000E+00 13 0.000E+00 14 0.000E+00 15 0.000E+00 10 0.000E+00 7 0.000E+00 13 0.000E+00 19 0.000E+00 15 0.000E+00 10 0.000E+00 7 0.000E+00 13 0.000E+00 9 0.000E+00 15 0.000E+00 11 0.000E+00 17 0.000E+00 13 0.000E+00 9 0.000E+00 15 0.000E+00 11 0.000E+00 17 0.000E+00 13 0.000E+00 9 0.000E+00 15 0.000E+00 10 0.000E+00 17 0.000E+00 13 0.000E+00 4 0.000E+00 15 0.000E+00 10 0.000E+00 17 0.000E+00 13 0.000E+00 4 0.000E+00 15 0.000E+00 10 0.000E+00 12 0.000E+00 13 0.000E+00 4 0.000E+00 15 0.000E+00 10 0.000E+00 12 0.000E+00 13 0.000E+00 4 0.000E+00 15 0.000E+00 10 0.000E+00 12 0.000E+00 18 0.000E+00 4 0.000E+00 15 0.000E+00 10 0.000E+00 12 0.000E+00 18 0.000E+00 4 0.000E+00 15 0.000E+00 10 0.000E+00 7 0.000E+00 18 0.000E+00 19 0.000E+00 10 0.000E+00 7 0.000E+00 18 0.000E+00 19 0.000E+00 10 0.000E+00 7 0.000E+00 18 0.000E+00 19 0.000E+00 10 0.000E+00 7 0.000E+00 18 0.000E+00 19 0.000E+00 10 0.000E+00 7 0.000E+00 18 0.000E+00 19 0.000E+00 10 0.000E+00 7 0.000E+00 18 0.000E+00 19 0.000E+00 10 0.000E+00 7 0.000E+00 18 0.000E+00 19 0.000E+00 10 0.000E+00 7 0.000E+00 12 0.000E+00 19 0.000E+00 10 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 10 0.000E+00 0 20 0.0 2889.0 5 0.70 0.95 0		
<pre>31. T 132. T 133. T 136. H 33</pre>		
1 4.4155-01 2 3.644E+00 3 1.191E+02 4 8.209E-01 5 4.533E+00 11 2.664E+01 12 7.423E-03 13 8.997E-02 14 1.361E+03 15 0.0 16 9.355E+04 17 0.0 18 3.401E+04 19 0.0 5 KG 1.24 KEL 5 KTM 0.018 3.401E+04 19 0.0 1 1.534E+01 2 1.224E+02 3 4.081E+03 4 2.534E+01 5 1.480E+02 6.2.503E+02 7 8.643E+02 8 9.690E+02 9 6.599E+04 10 3.005E+01 11 8.998E+02 17 7.0.0 18 1.141E+02 19 0.0 6 KUNENMENT CURIES 5 TM 0.000E+00 1 10.000E+00 2 0.000E+00 8 0.000E+00 4 0.000E+01 5 0.000E+00 10.000E+00 7 0.000E+00 13 0.000E+00 4 0.000E+01 5 0.000E+00 10.000E+00 7 0.000E+00 13 0.000E+00 4 0.000E+00 5 0.000E+00 10.000E+00 7 0.000E+00 18 0.000E+00 19 0.000E+00 5 0.000E+00 10.000E+00 7 0.000E+00 18 0.000E+00 4 0.000E+00 5 0.000E+00 10.000E+00 7 0.000E+00 18 0.000E+00 9 0.000E+00 5 0.000E+00 10.000E+00 7 0.000E+00 18 0.000E+00 9 0.000E+00 5 0.000E+00 10.000E+00 7 0.000E+00 18 0.000E+00 9 0.000E+00 15 0.000E+00 10.000E+00 7 0.000E+00 18 0.000E+00 9 0.000E+00 15 0.000E+00 10.000E+00 17 0.000E+00 18 0.000E+00 4 0.000E+00 15 0.000E+00 10.000E+00 17 0.000E+00 18 0.000E+00 4 0.000E+00 15 0.000E+00 10.000E+00 17 0.000E+00 18 0.000E+00 4 0.000E+00 15 0.000E+00 10.000E+00 12 0.000E+00 18 0.000E+00 4 0.000E+00 15 0.000E+00 10.000E+00 12 0.000E+00 18 0.000E+00 4 0.000E+00 15 0.000E+00 10.000E+00 7 0.000E+00 18 0.000E+00 4 0.000E+00 15 0.000E+00 10.000E+00 7 0.000E+00 18 0.000E+00 19 0.000E+00 15 0.000E+00 10.000E+00 7 0.000E+00 18 0.000E+00 19 0.000E+00 15 0.000E+00 10.000E+00 7 0.000E+00 18 0.000E+00 19 0.000E+00 15 0.000E+00 10.000E+00 7 0.000E+00 18 0.000E+00 19 0.000E+00 15 0.000E+00 10.000E+00 7 0.000E+00 18 0.000E+00 19 0.000E+00 5 0.000E+00 10.000E+00 7 0.000E+00 18 0.000E+00 19 0.000E+00 5 0.000E+00 10.000E+00 7 0.000E+00 18 0.000E+00 19 0.000E+00 5 0.000E+00 10.000E+00 7 0.000E+00 18 0.000E+00 19 0.000E+00 5 0.000E+00 10.000E+00 7 0.000E+00 12 0.000E+00 19 0.000E+00 5 0.000E+00 10.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 10.000E+00 10 0.000E+00 20 0.02889.0 5 0.70 0.95 0.70 0.99 0.0 2889.0 5 0.70 0.95 0.70 0.99 0.		
6 2:732E-03 7 2:523E+01 8 2:835E+01 9 1.928E+03 10 1.351E+00 11 2:7422E-03 13 8:97E-02 14 1.361E-03 15 0.0 16 3:355E-04 17 0.0 18 3:401E-04 19 0.0 1 1:534E+01 2 1.224E+02 3 4.081E+03 4 2:534E+01 5 1.480E+02 2 5:03E-02 7 8:643E+02 8 9:690E+02 9 6:599E+04 10 3.055E+01 1 8:998E+02 12 7.801E-02 13 1.930E+00 14 4.660E-02 15 0.000E+00 1 0:000E+00 2 0:000E+00 13 0:000E+00 4 0:000E+00 5 0.000E+00 1 0:000E+00 10:0.000E+00 18 0:000E+00 19 0:000E+00 10 0:000E+00 1 0:000E+00 17 0:000E+00 18 0:000E+00 4 0:000E+00 10 0:000E+00 1 0:000E+00 12 0:000E+00 18 0:00E+00 19 0:000E+00 10 0:000E+00 1 0:000E+00 12 0:000E+00 18 0:00E+00 10 0:000E+00 10 0:000E+00 1 0:000E+00 12 0:000E+00 13 0:00E+00 10 0:000E+00 10 0:000E+00 1 0:000E+00 12 0:000E+00 13 0:00E+00 10 0:00E+00<		
16 9.355E-04 17 0.0 18 3.401E-04 19 0.000E+01 5 RG 1.24 REL 5 TME 0.2000E+01 5 1.480E+02 62 5.50E-02 7 8.643E+02 8 6.690E+02 9 6.599E+04 10 1.000E+00 10 1.050E+01 14 4.660E-02 15 0.0 16 3.165E+02 12 7.801E+02 13 1.930E+00 14 4.660E-02 15 0.00E+00 10 0.000E+00 7 0.000E+00 14 0.000E+00 10 0.000E+00 10 0.000E+00 10 0.000E+00 12 0.000E+00 13 0.000E+00 14 0.000E+00 15 0.000E+00 15 0.000E+00 16 0.000E+00 10 0.000E+0	and a second second second second second second second second second second second second second second second	
1 1.534E+01 2 1.224E+02 3 4.081E+03 4 2.534E+01 5 1.480E+02 6.2.503E+02 7 8.643E+02 8 9.690E+02 9 6.599E+04 10 3.005E+01 11 8.998E+02 12 7.801E+02 13 1.930E+00 14 4.660E+02 15 0.0 16 3.165E+02 17 0.0 18 1.141E+02 19 0.0 -5 'ENVIRONMENT CURIES 'S TM= 0.8000E+01 1 1 0.000E+00 7 0.000E+00 8 0.000E+00 4 0.000E+00 15 0.000E+00 11 0.000E+00 12 0.000E+00 18 0.000E+00 19 0.000E+00 16 0.000E+00 2 0.000E+00 18 0.000E+00 4 0.000E+00 5 0.000E+00 16 0.000E+00 2 0.000E+00 18 0.000E+00 4 0.000E+00 5 0.000E+00 16 0.000E+00 12 0.000E+00 18 0.000E+00 4 0.000E+00 10 0.000E+00 11 0.000E+00 12 0.000E+00 18 0.000E+00 4 0.000E+00 15 0.000E+00 11 0.000E+00 12 0.000E+00 18 0.000E+00 4 0.000E+00 15 0.000E+00 11 0.000E+00 12 0.000E+00 18 0.000E+00 4 0.000E+00 15 0.000E+00 10 0.000E+00 17 0.000E+00 18 0.000E+00 4 0.000E+00 15 0.000E+00 10 0.000E+00 17 0.000E+00 18 0.000E+00 4 0.000E+00 15 0.000E+00 10 0.000E+00 12 0.000E+00 13 0.000E+00 19 0.000E+00 10 0.000E+00 10 0.000E+00 12 0.000E+00 13 0.000E+00 19 0.000E+00 10 0.000E+00 11 0.000E+00 12 0.000E+00 13 0.000E+00 19 0.000E+00 10 0.000E+00 11 0.000E+00 7 0.000E+00 13 0.000E+00 19 0.000E+00 10 0.000E+00 11 0.000E+00 7 0.000E+00 13 0.000E+00 19 0.000E+00 15 0.000E+00 16 0.000E+00 7 0.000E+00 18 0.000E+00 19 0.000E+00 15 0.000E+00 16 0.000E+00 7 0.000E+00 18 0.000E+00 19 0.000E+00 10 0.000E+00 10 0.000E+00 7 0.000E+00 18 0.000E+00 19 0.000E+00 10 0.000E+00 10 0.000E+00 7 0.000E+00 18 0.000E+00 14 0.000E+00 15 0.000E+00 10 0.000E+00 57600.0 259200.0 2246400.0 0.0 51.0 0 50.0 0 50.70 0.99		
6.2 5.33 2.02 7 8.43 9.690 9.592 10 3.0052 15 0.0 16 3.1652 17 0.0 18 1.414 0.001 1 0.002 15 0.0 -6 'ENVIRONMENT CURIES 'S TM=0.8000E+00 1 0.002+00 5 0.0002+00 1 0.0002+00 1 0.0002+00	1.	
<pre>16 3.185E-02 17 0.0 18 1.141E-02 19 0.0 -6 ENVIRONMENT CURIES 5 TM= 0.8000E+01 1 0.000E+00 2 0.000E+00 3 0.000E+00 9 0.000E+00 5 0.000E+00 11 0.000E+00 12 0.000E+00 13 0.000E+00 14 0.000E+00 15 0.000E+00 16 0.000E+00 17 0.000E+00 13 0.000E+00 9 0.000E+02 -6 ENVIRONMENT CURIES 5 TM= 0.2400E+02 1 0.000E+00 12 0.000E+00 13 0.000E+00 19 0.000E+00 15 0.000E+00 10 0.000E+00 12 0.000E+00 13 0.000E+00 19 0.000E+00 15 0.000E+00 10 0.000E+00 12 0.000E+00 13 0.000E+00 19 0.000E+00 15 0.000E+00 10 0.000E+00 12 0.000E+00 13 0.000E+00 19 0.000E+00 15 0.000E+00 10 0.000E+00 12 0.000E+00 13 0.000E+00 19 0.000E+00 15 0.000E+00 10 0.000E+00 7 0.000E+00 13 0.000E+00 14 0.000E+00 15 0.000E+00 10 0.000E+00 7 0.000E+00 18 0.000E+00 40 0.000E+00 15 0.000E+00 10 0.000E+00 17 0.000E+00 13 0.000E+00 40 0.000E+00 15 0.000E+00 11 0.000E+00 17 0.000E+00 13 0.000E+00 40 0.000E+00 15 0.000E+00 11 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 15 0.000E+00 10 0.000E+00 17 0.000E+00 18 0.000E+00 40 0.000E+00 15 0.000E+00 10 0.000E+00 17 0.000E+00 18 0.000E+00 40 0.000E+00 15 0.000E+00 10 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 10 0.000E+00 10 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 10 0.000E+00 10 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 15 0.000E+00 10 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 15 0.000E+00 10 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 15 0.000E+00 10 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 15 0.000E+00 10 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 15 0.000E+00 10 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 10 0.000E+00 10 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 10 0.000E+00 10 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 10 0.000E+00 10 0.0 0.0 0.0 2889.0 5 0.70 0.95 0.70 0.99 0.0 2889.0 5 0.70 0.95 0.70 0.99 0.0 2889.0 5 0.70 0.95 0.70 0.99 0.0 2889.0 5 0.70 0.95 0.70 0.99 0.0 2889.0 5 0.70 0.95 0.70 0.99 0.0 2889.0 5 0.70 0.95 0.70 0.99 0.0 2889.0 5 0.70 0.95 0.70 0.99 0.0 2889.0 5 0.70 0.95 0.70 0.99 0.0 2889.</pre>		
-6 'ENVIRONMENT' CURIES 'S TN= 0.8000E+01 1 0.000E+00 7 0.000E+00 8 0.000E+00 4 0.000E+00 10 0.000E+00 11 0.000E+00 12 0.000E+00 13 0.000E+00 14 0.000E+00 11 0.000E+00 17 0.000E+00 18 0.000E+00 4 0.000E+00 5 0.000E+00 7 0.000E+00 18 0.000E+00 4 0.000E+00 10 0.000E+00 1 0.000E+00 7 0.000E+00 18 0.000E+00 19 0.000E+00 10 0.000E+00 1 0.000E+00 12 0.000E+00 18 0.000E+00 19 0.000E+00 10 0.000E+00 1 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 15 0.000E+00 1 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 15 0.000E+00 1 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 15 0.000E+00 1 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 5 0.000E+00 1 0.000E+00 17 0.000E+00 13 0.000E+00 19 0.000E+00 15 0.000E+00 1 0.000E+00 17 0.000E+00 13 0.000E+00 19 0.000E+00 15 0.000E+00 1 0.000E+00 17 0.000E+00 13 0.000E+00 19 0.000E+00 15 0.000E+00 1 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 15 0.000E+00 1 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 15 0.000E+00 1 0.000E+00 12 0.000E+00 3 0.000E+00 14 0.000E+00 15 0.000E+00 1 0.000E+00 12 0.000E+00 18 0.000E+00 19 0.000E+00 1 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 2E-3 2.52E-3 1.57E-3 6.71E-4 4.99E-4 3.79E-4 5 .71M 0.7200E+03 1 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 2E-3 2.52E-3 1.57E-3 6.71E-4 4.99E-4 3.79E-4 5 .700 0.95 0.70 0.99 0.0 2289.0 5 0.70 0.95 0.7		
6 0.000E+00 7 0.000E+00 8 0.000E+00 9 0.000E+00 15 0.000E+00 16 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 16 0.000E+00 2 0.000E+00 8 0.000E+00 9 0.000E+00 5 0.000E+00 10 0.000E+00 7 0.000E+00 18 0.000E+00 9 0.000E+00 15 0.000E+00 11 0.000E+00 12 0.000E+00 18 0.000E+00 19 0.000E+00 16 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 16 0.000E+00 2 0.000E+00 18 0.000E+00 4 0.000E+00 16 0.000E+00 2 0.000E+00 13 0.000E+00 4 0.000E+00 16 0.000E+00 12 0.000E+00 13 0.000E+00 19 0.000E+00 10 0.000E+00 12 0.000E+00 13 0.000E+00 19 0.000E+00 10 0.000E+00 12 0.000E+00 13 0.000E+00 19 0.000E+00 10 0.000E+00 12 0.000E+00 13 0.000E+00 19 0.000E+00 10 0.000E+00 12 0.000E+00 3 0.000E+00 19 0.000E+00 10 0.000E+00 12 0.000E+00 3 0.000E+00 19 0.000E+00 10 0.000E+00 12 0.000E+00 3 0.000E+00 19 0.000E+00 10 0.000E+00 12 0.000E+00 13 0.000E+00 19 0.000E+00 10 0.000E+00 12 0.000E+00 13 0.000E+00 19 0.000E+00 10 0.000E+00 12 0.000E+00 13 0.000E+00 10 0.000E+00 10 0.000E+00 12 0.000E+00 13 0.000E+00 10 0.000E+00 10 0.000E+00 12 0.000E+00 13 0.000E+00 10 0.000E+00 10 0.000E+00 12 0.000E+00 13 0.000E+00 10 0.000E+00 10 0.000E+00 12 0.000E+00 13 0.000E+00 10 0.000E+00 10 0.000E+00 12 0.000E+00 13 0.000E+00 15 0.000E+00 10 0.000E+00 12 0.000E+00 13 0.000E+00 10 0.000E+00 10 0.000E+00 12 0.000E+00 13 0.000E+00 10 0.000E+00 10 0.000E+00 12 0.000E+00 13 0.000E+00 15 0.000E+00 10 0.000E+00 12 0.000E+00 12 0.000E+00 15 0.000E+00 10 0.000E+00 57600.0 259200.0 2246400.0 0.0 51.0 0.5 0.7 0 0.95 0.7 0 0.99 0.0 2889.0 5 0.7 0 0.95 0.7 0 0.99 0.0 2889.0 5 0.7 0 0.95 0.7 0 0.99 0.0 2889.0 5 0.7 0 0.95 0.7 0 0.99 0.0 2889.0 5 0.7 0 0.95 0.7 0 0.99 0.0 2889.0 5 0.7 0 0.95 0.7 0 0.99 0.0 2889.0 5 0.7 0 0.95 0.7 0 0.99 0.0 2889.0 5 0.7 0 0.95 0.7 0 0.99 0.0 2889.0 5 0.7 0 0.95 0.7 0 0.99 0.0 2889.0 5 0.7 0 0.95 0.7 0 0.99 0.0 2889.0 5 0.7 0 0.95 0.7 0 0.99 0.0 2889.0 5 0.7 0 0.95 0.7 0 0.99 0.0 2889.0 5 0.7 0 0.95 0.7 0 0.99 0.0 2889.0 5 0.7 0 0.95 0.7 0 0.99 0.0 2255 3.0 ACENT DOSE TO CONTROL ROOM PERSONN	• • •	· · · · · ·
11 0.000E+00 12 0.000E+00 13 0.000E+00 14 0.000E+00 5 0.000E+00 16 0.000E+00 2 0.000E+00 18 0.000E+00 4 0.000E+00 5 0.000E+00 1 0.000E+00 2 0.000E+00 3 0.000E+00 4 0.000E+00 10 0.000E+00 1 0.000E+00 12 0.000E+00 13 0.000E+00 14 0.000E+00 15 0.000E+00 1 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 15 0.000E+00 1 0.000E+00 17 0.000E+00 3 0.000E+00 4 0.000E+00 5 0.000E+00 1 0.000E+00 7 0.000E+00 3 0.000E+00 4 0.000E+00 5 0.000E+00 1 0.000E+00 7 0.000E+00 3 0.000E+00 4 0.000E+00 10 0.000E+00 1 0.000E+00 7 0.000E+00 13 0.000E+00 14 0.000E+00 15 0.000E+00 1 0.000E+00 7 0.000E+00 13 0.000E+00 14 0.000E+00 15 0.000E+00 1 0.000E+00 7 0.000E+00 3 0.000E+00 14 0.000E+00 5 0.000E+00 1 0.000E+00 7 0.000E+00 8 0.000E+00 9 0.000E+00 15 0.000E+00 1 0.000E+00 7 0.000E+00 8 0.000E+00 9 0.000E+00 5 0.000E+00 1 0.000E+00 7 0.000E+00 8 0.000E+00 9 0.000E+00 5 0.000E+00 1 0.000E+00 7 0.000E+00 18 0.000E+00 9 0.000E+00 15 0.000E+00 1 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 15 0.000E+00 1 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 15 0.000E+00 1 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 15 0.000E+00 1 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 15 0.000E+00 1 0.000E+00 57600.0 259200.0 2246400.0 0.0 51.0 0.50.0 0.0 0.0 0.0 0.0 0.0 2889.0 5 0.70 0.95 0.70 0.99 0.0 2889.0 5 0.70 0.95 0.70 0.99 0.0 2889.0 5 0.70 0.95 0.70 0.99 0.0 2889.0 5 0.70 0.95 0.70 0.99 0.0 2889.0 5 0.70 0.95 0.70 0.99 0.0 2889.0 5 0.70 0.95 0.70 0.99 0.0 2889.0 5 0.70 0.95 0.70 0.99 0.0 2889.0 5 0.70 0.95 0.70 0.99 0.0 2889.0 5 0.70 0.95 0.70 0.99 0.0 2889.0 5 0.70 0.95 0.70 0.99 0.0 2889.0 5 0.70 0.95 0.70 0.99 0.0 2889.0 5 0.70 0.95 0.70 0.99 0.0 2889.0 5 0.70 0.95 0.70 0.99 0.0 2889.0 5 0.70 0.95 0.70 0.99 0.0 2889.0 5 0.70 0.95 0.70 0.99 0.0 2889.0 5 0.70 0.95 0.70 0.99 0.0 2889.0 5 0.70 0.95 0.70 0.99		
-6 'ENVIRONMENT' CURIES' ' 5 TN- 0.2400E+02. 1 0.000E+00 2 0.000E+00 3 0.000E+00 9 0.000E+00 10 0.000E+00 1 0.000E+00 12 0.000E+00 13 0.000E+00 14 0.000E+00 15 0.000E+00 1 0.000E+00 12 0.000E+00 13 0.000E+00 9 0.000E+00 5 0.000E+00 -6 'ENVIRONMENT' CURIES' ' 5 TN- 0.9600E+02 1 0.000E+00 12 0.000E+00 13 0.000E+00 9 0.000E+00 10 0.000E+00 1 0.000E+00 12 0.000E+00 13 0.000E+00 19 0.000E+00 15 0.000E+00 1 0.000E+00 12 0.000E+00 18 0.000E+00 19 0.000E+00 15 0.000E+00 1 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 15 0.000E+00 1 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 15 0.000E+00 1 0.000E+00 17 0.000E+00 18 0.000E+00 9 0.000E+00 15 0.000E+00 1 0.000E+00 12 0.000E+00 18 0.000E+00 9 0.000E+00 10 0.000E+00 1 0.000E+00 12 0.000E+00 13 0.000E+00 9 0.000E+00 10 0.000E+00 1 0.000E+00 12 0.000E+00 13 0.000E+00 19 0.000E+00 15 0.000E+00 1 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 15 0.000E+00 1 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 1 0 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 1 0 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 2E-3 2.52E-3 1.57E-3 6.71E-4 4.99E-4 3.79E-4 6 7179 4 21600.0 57600.0 259200.0 2246400.0 0.0 51.0 0.5 1.0 0.5 1.0 0.5 0.70 0.95 0.70 0.99 0.0 2889.0 5 0.70 0.95 0.70 0.99		
6 0.000E+00 7 0.000E+00 8 0.000E+00 9 0.000E+00 10 0.000E+00 11 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 6 0.000E+00 2 0.000E+00 8 0.000E+00 9 0.000E+00 5 0.000E+00 6 0.000E+00 7 0.000E+00 8 0.000E+00 9 0.000E+00 10 0.000E+00 11 0.000E+00 12 0.000E+00 18 0.000E+00 19 0.000E+00 15 0.000E+00 16 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 15 0.000E+00 16 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 16 0.000E+00 17 0.000E+00 3 0.000E+00 19 0.000E+00 16 0.000E+00 17 0.000E+00 3 0.000E+00 19 0.000E+00 16 0.000E+00 17 0.000E+00 3 0.000E+00 9 0.000E+00 10 0.00E+00 17 0.000E+00 3 0.000E+00 9 0.000E+00 10 0.00E+00 17 0.000E+00 3 0.000E+00 9 0.000E+00 10 0.00E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 10 0.00E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 16 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 16 0.000E+00 17 0.000E+00 12 0.000E+00 19 0.000E+00 16 0.000E+00 17 0.000E+00 2246400.0 0 51.0 0 50.70 0.95 0.70 0.99 0.0 2889.0 5 0.70 0.95 0.70 0.99 0.0 28		
11 0.000E+00 12 0.000E+00 13 0.000E+00 14 0.000E+00 15 0.000E+00 16 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 6 0.000E+00 7 0.000E+00 3 0.000E+00 4 0.000E+00 15 0.000E+00 1 0.000E+00 12 0.000E+00 13 0.000E+00 19 0.000E+00 10 0.000E+00 11 0.000E+00 12 0.000E+00 18 0.000E+00 19 0.000E+00 15 0.000E+00 16 0.000E+00 12 0.000E+00 3 0.000E+00 4 0.000E+00 5 0.000E+00 16 0.000E+00 7 0.000E+00 3 0.000E+00 4 0.000E+00 5 0.000E+00 10 0.000E+00 7 0.000E+00 3 0.000E+00 9 0.000E+00 5 0.000E+00 10 0.000E+00 7 0.000E+00 3 0.000E+00 9 0.000E+00 15 0.000E+00 11 0.000E+00 12 0.000E+00 13 0.000E+00 19 0.000E+00 15 0.000E+00 11 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 15 0.000E+00 16 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 15 0.000E+00 16 0.000E+00 57600.0 259200.0 2246400.0 0.0 51.0 0 51.0 0 51.0 0 51.0 0 51.0 0 50.70 0.95 0.70 0.99 0.0 2889.0 5 0.70 0.95 0.70 16.9 0.0 2889.0 5 0.70 0.95 0.70 16.9 0.0 2889.0 5 0.70 0.95 0.70 16.9 0.0 2889.0 5 0.70 0.95 0.70 16.0 2.57198.0 492 0.63 0.8352 0.45.0 17.75 46.0 9.0 4.0 161.0 22.5 4.0 0.0 FFLUX DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE THROUGH ROOF FLUX DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE TROW AUX BUILDING 0 150.0 148.0 27.0 15.0 14.0 135.0 75.0 -25.5 3.0 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM AUX BUILDING 0 150.0 148.0 27.0 15.0 14.0 135.0 75.0 -25.5 3.0 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM CR BLDG END 0 45.0 26.0 32.0 9.0 5.0 22.5 161.0 -4.67 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM CR BLDG END 0 45.0 36.0 10.0 10.0 10.0 4.0-22.5 -25.5 3.0 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM CR BLDG END	i an an third and a start and a start and a start and a start and a start and a start and a start and a start a	1 8 Å.
-6 'ENVIRONMENT CURIES' \$ TN= 0.9600E+02 1 0.000E+00 2 0.000E+00 3 0.000E+00 4 0.000E+00 10 0.000E+00 1 0.000E+00 12 0.000E+00 13 0.000E+00 14 0.000E+00 15 0.000E+00 1 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 15 0.000E+00 -6 'ENVIRONMENT CURIES' \$ TN= 0.7200E+03 1 0.000E+00 7 0.000E+00 3 0.000E+00 9 0.000E+00 15 0.000E+00 -6 'ENVIRONMENT CURIES' \$ TN= 0.7200E+03 1 0.000E+00 7 0.000E+00 13 0.000E+00 9 0.000E+00 10 0.000E+00 1 0.000E+00 7 0.000E+00 13 0.000E+00 14 0.000E+00 15 0.000E+00 16 0.000E+00 17 0.000E+00 13 0.000E+00 14 0.000E+00 15 0.000E+00 16 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E-00 22-3 2.52E-3 1.57E-3 6.71E-4 4.99E-4 3.79E-4 6 7179.4 21600.0 57600.0 259200.0 2246400.0 0.0 51.0 0 51.0 0 51.0 0 51.0 0 51.0 0 51.0 0 50.70 0.95 0.70 0.99 0.0 2889.0 5 0.70 0.95 0.70 0.95 0.70 0.95 0.70 0.95 0.70 0.95 0.0 6 0.0 40.0 1140.0 161.0 161.0 25.0 50.0 0 -16.0 2.25 3 0.00EEEED	15 A	
6 0.000E+00 1 0.000E+00 1 0.000E+00 1 0.000E+00 1 0.000E+00 11 0.000E+00 1 2 0.000E+00 1 3 0.000E+00 1 9 0.000E+00 15 0.000E+00 16 0.000E+00 17 0.000E+00 3 0.000E+00 19 0.000E+00 5 0.000E+00 1 0.000E+00 2 0.000E+00 3 0.000E+00 9 0.000E+00 10 0.000E+00 1 0.000E+00 17 0.000E+00 13 0.000E+00 9 0.000E+00 15 0.000E+00 1 0.000E+00 17 0.000E+00 13 0.000E+00 19 0.000E+00 15 0.000E+00 1 0.000E+00 17 0.000E+00 13 0.000E+00 19 0.000E+00 15 0.000E+00 1 0.000E+00 17 0.000E+00 13 0.000E+00 19 0.000E+00 15 0.000E+00 2E-3 2.52E-3 1.57E-3 6.71E-4 4.99E-4 3.79E-4 6 7179.4 21600.0 57600.0 259200.0 2246400.0 0.0 51.0 0.51.0 0.51.0 0.51.0 0.51.0 0.51.0 0.51.0 0.0 0.0 0.0 0.0 0.0 2889.0 5 0.70 0.95 0.70 0.99 0.0 2889.0 5 0.70 0.95 0.70 0.95 0.70 0.95 0.70 0.95 0.70 0.95 0.0 0.500.0 0 45.0 2.50 3.0 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM TURBINE BLDG 0 45.0 26.0 32.0 9.0 5.0 22.5 5 1.61.0 -4.67 0.		
11 0.000E+00 12 0.000E+00 13 0.000E+00 14 0.000E+00 15 0.000E+00 16 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E+00 6 0.000E+00 2 0.000E+00 3 0.000E+00 4 0.000E+00 5 0.000E+00 6 0.000E+00 7 0.000E+00 8 0.000E+00 14 0.000E+00 10 0.000E+00 11 0.000E+00 12 0.000E+00 18 0.000E+00 19 0.000E+00 16 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E-00 2E-3 2.52E-3 1.57E-3 6.71E-4 4.99E-4 3.79E-4 6 7179.4 21600.0 57600.0 259200.0 2246400.0 0.0 51.0 0.0 51.0 0.50.0 0.		
-6 'ENVIRONMENT CURIES' \$ TN= 0.7200E+03 1 0.000E+00 2 0.000E+00 3 0.000E+00 4 0.000E+00 5 0.000E+00 11 0.000E+00 12 0.000E+00 13 0.000E+00 14 0.000E+00 15 0.000E+00 16 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E-00 2E-3 2.52E-3 1.57E-3 6.71E-4 4.99E-4 3.79E-4 6 7179 4 21600.0 57600.0 259200.0 2246400.0 0.0 51.0 0.0 51.0 0.0 51.0 0.0 51.0 0.0 0.0 0.0 0.0 0.0 3200.0 5 0.70 0.95 0.70 0.99 0.0 2889.0 5 0.70 0.95 0.70 0.99 0.0 2.0 2.0 50.0 500.0 -16.0 2.25 3 .0 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM TURBINE BLDG 0 45.0 26.0 32.0 9.0 5.0 22.5 161.0 -4.67 0.67 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM CR BLDG END 0 45.0 26.0 10.0 10.0 100.0 4.0 22.5 -25.5 3.0 ACENT DOS		
6 0.000E+00 7 0.000E+00 8 0.000E+00 9 0.000E+00 10 0.000E+00 16 0.000E+00 12 0.000E+00 13 0.000E+00 14 0.000E+00 15 0.000E+00 16 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E-00 2E-3 2.52E-3 1.57E-3 6.71E-4 4.99E-4 3.79E-4 6 7179.4 21600.0 57600.0 259200.0 2246400.0 0.0 51.0 0.0 51.0 0.51.0 0.51.0 0.51.0 0.51.0 0.0 0.0 0.0 0.0 0.0 0.0 3200.0 5 0.70 0.95 0.70 0.99 0.0 2889.0 5 0.70 0.95 0.70 0.99 0.0 25.0 128.0 492 0.63 0.8352 0 45.0 12.0 14.0 0.5760.0 25.7 3.0 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM SPREADING ROOM 0 45.0 26.0 32.0 9.0 5.0 22.5 161.0 -4.67 0.67 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM SPREADING ROOM 0 45.0 26.0 32.0 9.0 5.0 22.5 161.0 -4.67 0.67 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM SPREADING ROOM 0 45.0 26.0 32.0 9.0 5.0 22.5 161.0 -4.67 0.67 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM CR BLDG END	×	
11 0.000E+00 12 0.000E+00 13 0.000E+00 14 0.000E+00 15 0.000E+00 16 0.000E+00 17 0.000E+00 18 0.000E+00 19 0.000E-00 2E-3 2.52E-3 1.57E-3 6.71E-4 4.99E-4 3.79E-4 6 7179.4 21600.0 57600.0 259200.0 2246400.0 0.0 51.0 0.0 51.0 0.0 51.0 0.0 51.0 0.0 51.0 0.0 0.0 0.0 0.0 0.0 3200.0 5 0.70 0.95 0.70 0.99 0.0 2889.0 5 0.70 0.95 0.70 0.99 0.0 20.0 25.5 3.0 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM SPREADING ROOM .0 45.0 26.0 32.0 9.0 5.0 22.5 161.0 -4.67 0.67 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM CR BLDG END 0 45.0 26.0 32.0 9.0 5.0 22.5 161.0 -4.67 0.67 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM CR BLDG END .0 45.0 10.0 10.0 10.0 4.0 22.5 -25.5 3.0	الم الم الم	
2E-3 2.52E-3 1.57E-3 6.71E-4 4.99E-4 3.79E-4 6 7179.4 21600.0 57600.0 259200.0 2246400.0 0.0 51.0 0.0 51.0 0.0 51.0 0.0 51.0 0.0 0.0 0.0 0.0 0.0 0.0 3200.0 5 0.70 0.95 0.70 0.99 0.0 2889.0 5 60.0 40.0 1440.0 5760.0 257198.0 492 0.63 0.8352 0 45.0 17.75 46.0 9.0 4.0 161.0 22.5 4.0 0.0 FFLUX DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE THROUGH ROOF 0.0 1000.0 1000.0 20.0 20.0 20.0 500.0 500.0 -16.0 2.25 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM AUX BUILDING .0 150.0 148.0 27.0 15.0 14.0 135.0 75.0 -25.5 3.0 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM TURBINE BLDG .0 112.0 341.0 32.0 11.0 34.0 161.0 56.0 -25.5 3.0 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM SPREADING ROOM .0 45.0 26.0 32.0 9.0 5.0 22.5 161.0 -4.67 0.67 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM CR BLDG END 0 45.0 460.0 10.0 10.0 100.0 4.0-22.5 -3.0 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM CR BLDG END ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM CR BLDG END .0 45.0 26.0 32.0 9.0 5.0 22.5 161.0 -4.67 0.67 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM CR BLDG END .0 45.0 460.0 10.0 10.0 100.0 4.0-22.5 -3.5 3.0 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM CR BLDG END .0 45.0 26.0 32.0 9.0 5.0 22.5 161.0 -4.67 0.67 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM CR BLDG END .0 45.0 460.0 10.0 100.0 4.0-22.5 -35.5 3.0 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM CR BLDG END .0 45.0 26.0 32.0 9.0 5.0 22.5 161.0 -4.67 0.67 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM CR BLDG END		
6 7179.4 21600.0 57600.0 259200.0 2246400.0 0. 51.0 0. 51.0 0. 51.0 0. 51.0 0. 51.0 0. 0.0 0.0 0.0 0.0 0.0 3200.0 5 0.70 0.95 0.70 0.99 0.0 2889.0 5 0.70 0.95 0.70 0.99 0.0 257198.0 492 0.63 0.8352 .0 45.0 17.75 46.0 9.0 4.0 161.0 22.5 4.0 0.0 FFLUX DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE THROUGH ROOF 0.0 1000.0 1000.0 20.0 20.0 500.0 500.0 -16.0 2.25 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM AUX BUILDING .0 150.0 148.0 27.0 15.0 14.0 135.0 75.0 -25.5 3.0 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM TURBINE BLDG .0 112.0 341.0 32.0 11.0 34.0 161.0 56.0 -25.5 3.0 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM SPREADING ROOM .0 45.0 26.0 32.0 9.0 5.0 22.5 161.0 -4.67 0.67 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM CR BLDG END 0 45.0 460.0 10.0 10.0 100.0 4.0-22.5 -35.0 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM CR BLDG END		
.0 51.0 .0 51.0 .0 51.0 .0 51.0 .0 51.0 .0 51.0 .0 0.0 0.0 0.0 0.0 0.0 3200.0 5 0.70 0.95 0.70 0.99 0.0 2889.0 5 0.0 40.0 1440.0 5760.0 257198.0 492 0.63 0.8352 .0 45.0 17.75 46.0 9.0 4.0 161.0 22.5 4.0 0.0 FFLUX DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE THROUGH ROOF 0.0 100.0 100.0 20.0 20.0 50.0 500.0 -16.0 2.25 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM AUX BUILDING .0 150.0 148.0 27.0 15.0 14.0 135.0 75.0 -25.5 3.0 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM TURBINE BLDG .0 112.0 341.0 32.0 11.0 34.0 161.0 56.0 -25.5 3.0 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM SPREADING ROOM .0 45.0 26.0 32.0 9.0 5.0 22.5 161.0 -4.67 0.67 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM CR BLDG END 0 45.0 460.0 10.0 10.0 100.0 4.0-22.5 -25.5 3.0 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM CR BLDG END		
.0 51.0 .0 51.0 .0 51.0 .0 51.0 .0 51.0 .0 0.0 0.0 0.0 0.0 0.0 3200.0 5 0.70 0.95 0.70 0.99 0.0 2889.0 5 0.0 40.0 140.0 5760.0 257198.0 492 0.63 0.8352 .0 45.0 17.75 46.0 9.0 4.0 161.0 22.5 4.0 0.0 FFLUX DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE THROUGH ROOF 0.0 1000.0 1000.0 20.0 20.0 50.0 500.0 500.0 -16.0 2.25 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM AUX BUILDING .0 150.0 148.0 27.0 15.0 14.0 135.0 75.0 -25.5 3.0 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM TURBINE BLDG .0 112.0 341.0 32.0 11.0 34.0 161.0 56.0 -25.5 3.0 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM SPREADING ROOM .0 45.0 26.0 32.0 9.0 5.0 22.5 161.0 -4.67 0.67 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM CR BLDG END 0 45.0 460.0 10.0 10.0 10.0 4.0-22.5 -25.5 3.0 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM CR BLDG END		
.0 51.0 .0 51.0 .0 0.0 0.0 0.0 0.0 0.0 3200.0 5 0.70 0.95 0.70 0.99 0.0 2889.0 5 60.0 40.0 1440.0 5760.0 257198.0 492 0.63 0.8352 .0 45.0 17.75 46.0 9.0 4.0 161.0 22.5 4.0 0.0 FFLUX DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE THROUGH ROOF 0.0 1000.0 1000.0 20.0 20.0 500.0 500.0 -16.0 2.25 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM AUX BUILDING .0 150.0 148.0 27.0 15.0 14.0 135.0 75.0 -25.5 3.0 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM TURBINE BLDG .0 112.0 341.0 32.0 11.0 34.0 161.0 56.0 -25.5 3.0 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM SPREADING ROOM .0 45.0 26.0 32.0 9.0 5.0 22.5 161.0 -4.67 0.67 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM CR BLDG END ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM CR BLDG END		
0.0 0.0 0.0 0.0 0.0 3200.0 5 0.70 0.95 0.70 0.99 0.0 2889.0 5 60.0 40.0 1440.0 5760.0 257198.0 492 0.63 0.8352 .0 45.0 17.75 46.0 9.0 4.0 161.0 22.5 4.0 0.0 FFLUX DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE THROUGH ROOF 0.0 1000.0 1000.0 20.0 20.0 500.0 500.0 -16.0 2.25 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM AUX BUILDING .0 150.0 148.0 27.0 15.0 14.0 135.0 75.0 -25.5 3.0 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM TURBINE BLDG .0 112.0 341.0 32.0 11.0 34.0 161.0 56.0 -25.5 3.0 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM SPREADING ROOM .0 45.0 26.0 32.0 9.0 5.0 22.5 161.0 -4.67 0.67 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM CR BLDG END 0 45.0 10.0 10.0 10.0 10.0 4.0-22.5 -25.5 3.0 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM SPREADING ROOM .0 45.0 26.0 32.0 9.0 5.0 22.5 161.0 -4.67 0.67 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM CR BLDG END 0 45.0 460.0 10.0 10.0 100.0 4.0-22.5 -25.5 3.0	•	· . ·
5 0.70 0.95 0.70 0.99 0.0 2889.0 5 0.70 0.95 0.70 0.99 0.0 2889.0 5 0.70 0.95 0.70 0.99 0.0 2889.0 5 0.70 0.95 0.70 0.99 0.0 2889.0 5 0.70 0.95 0.70 0.99 0.0 2889.0 5 0.70 0.95 0.70 0.99 0.0 2889.0 0 60.0 40.0 1440.0 5760.0 257198.0 492 0.63 0.8352 .0 45.0 17.75 46.0 9.0 4.0 161.0 22.5 4.0 0.0 FFLUX DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE THROUGH ROOF 0.0 1000.0 1000.0 20.0 20.0 20.0 500.0 500.0 -16.0 2.25 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM AUX BUILDING .0 150.0 148.0 27.0 15.0 14.0 135.0 75.0 -25.5 3.0 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM TURBINE BLDG .0 112.0 341.0 32.0 11.0 34.0 161.0 56.0 -25.5 3.0 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM SPREADING ROOM .0 45.0 26.0 32.0 9.0 5.0 22.5 161.0 -4.67 0.67 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM CR BLDG END 0 45.0 10.0 10.0 10.0 04.0 22.5 -25.5 3.0 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM CR BLDG END		. · · · •
5 0.70 0.95 0.70 0.99 0.0 2889.0 5 0.70 0.95 0.70 0.99 0.0 2889.0 5 0.70 0.95 0.70 0.99 0.0 2889.0 5 0.70 0.95 0.70 0.99 0.0 2889.0 492 0.63 0.8352 0 45.0 17.75 46.0 9.0 4.0 161.0 22.5 4.0 0.0 FFLUX DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE THROUGH ROOF 0.0 1000.0 1000.0 20.0 20.0 500.0 500.0 -16.0 2.25 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM AUX BUILDING .0 150.0 148.0 27.0 15.0 14.0 135.0 75.0 -25.5 3.0 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM TURBINE BLDG .0 112.0 341.0 32.0 11.0 34.0 161.0 56.0 -25.5 3.0 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM TURBINE BLDG .0 45.0 26.0 32.0 9.0 5.0 22.5 161.0 -4.67 0.67 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM CR BLDG END 0 45.0 10.0 10.0 10.0 4.0 -2.5 -35.0	а 	
5 0.70 0.95 0.70 0.99 0.0 2889.0 0 60.0 40.0 1440.0 5760.0 257198.0 492 0.63 0.8352 0.45.0 17.75 46.0 9.0 4.0 161.0 22.5 4.0 0.0 FFLUX DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE THROUGH ROOF 0.0 1000.0 1000.0 20.0 20.0 500.0 500.0 -16.0 2.25 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM AUX BUILDING .0 150.0 148.0 27.0 15.0 14.0 135.0 75.0 -25.5 3.0 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM TURBINE BLDG .0 112.0 341.0 32.0 11.0 34.0 161.0 56.0 -25.5 3.0 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM SPREADING ROOM .0 45.0 26.0 32.0 9.0 5.0 22.5 161.0 -4.67 0.67 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM CR BLDG END 0 45.0 460.0 10.0 10.0 100.0 4.0 22.5 -25.5 3.0	uni Al est Al Charles	
.0 60.0 40.0 1440.0 5760.0 257198.0 492 0.63 0.8352 .0 45.0 17.75 46.0 9.0 4.0 161.0 22.5 4.0 0.0 FFLUX DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE THROUGH ROOF 0.0 1000.0 1000.0 20.0 20.0 20.0 500.0 500.0 -16.0 2.25 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM AUX BUILDING .0 150.0 148.0 27.0 15.0 14.0 135.0 75.0 -25.5 3.0 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM TURBINE BLDG .0 112.0 341.0 32.0 11.0 34.0 161.0 56.0 -25.5 3.0 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM SPREADING ROOM .0 45.0 26.0 32.0 9.0 5.0 22.5 161.0 -4.67 0.67 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM CR BLDG END 0 45.0 460.0 10.0 10.0 100.0 4.0-22.5 -25.5 3.0 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM CR BLDG END		and the second second second second second second second second second second second second second second second
.0 45.0 17.75 46.0 9.0 4.0 161.0 22.5 4.0 0.0 FFLUX DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE THROUGH ROOF 0.0 1000.0 1000.0 20.0 20.0 20.0 500.0 -16.0 2.25 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM AUX BUILDING .0 150.0 148.0 27.0 15.0 14.0 135.0 75.0 -25.5 3.0 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM TURBINE BLDG .0 112.0 341.0 32.0 11.0 34.0 161.0 56.0 -25.5 3.0 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM SPREADING ROOM .0 45.0 26.0 32.0 9.0 5.0 22.5 161.0 -4.67 0.67 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM CR BLDG END 0 45.0 10.0 10.0 100.0 4.0-22.5 -25.5 3.0 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM CR BLDG END		
0.0 1000.0 1000.0 20.0 20.0 20.0 500.0 500.0 -16.0 2.25 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM AUX BUILDING .0 150.0 148.0 27.0 15.0 14.0 135.0 75.0 -25.5 3.0 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM TURBINE BLDG .0 112.0 341.0 32.0 11.0 34.0 161.0 56.0 -25.5 3.0 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM SPREADING ROOM .0 45.0 26.0 32.0 9.0 5.0 22.5 161.0 -4.67 0.67 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM CR BLDG END 0 45.0 460.0 10.0 10.0 100.0 4.0 -22.5 - 3.0 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM CR BLDG END		
ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM AUX BUILDING .0 150.0 148.0 27.0 15.0 14.0 135.0 75.0 -25.5 3.0 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM TURBINE BLDG .0 112.0 341.0 32.0 11.0 34.0 161.0 56.0 -25.5 3.0 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM SPREADING ROOM .0 45.0 26.0 32.0 9.0 5.0 22.5 161.0 -4.67 0.67 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM CR BLDG END 0 45.0 10.0 10.0 100.0 4.0-22.5 -25.5 3.0 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM CR BLDG END	•	
ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM TURBINE BLDG .0 112.0 341.0 32.0 11.0 34.0 161.0 56.0 -25.5 3.0 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM SPREADING ROOM .0 45.0 26.0 32.0 9.0 5.0 22.5 161.0 -4.67 0.67 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM CR BLDG END 0 45.0 460.0 10.0 10.0 100.0 4.0-22.5 -25.5 3.0 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM CR BLDG END	· · ·	-
.0 112.0 341.0 32.0 11.0 34.0 161.0 56.0 -25.5 3.0 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM SPREADING ROOM .0 45.0 26.0 32.0 9.0 5.0 22.5 161.0 -4.67 0.67 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM CR BLDG END 0 45.0 460.0 10.0 10.0 100.0 4.0-22.5 -25.5 3.0 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM CR BLDG END		
.0 45.0 26.0 32.0 9.0 5.0 22.5 161.0 -4.67 0.67 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM CR BLDG END 0 45.0 460.0 10.0 10.0 100.0 4.0-22.5 -25.5 3.0 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM CR BLDG END		
ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM CR BLDG END 0 45.0 460.0 10.0 10.0 100.0 4 0-22.5 -25.5 3.0 ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM CR BLDG END	- -	
ACENT DOSE TO CONTROL ROOM PERSONNEL DUE TO SHINE FROM CR BLDG END	a da fast 2004 - Angelson Angelson Angelson Angelson Angelson Angelson Angelson Angelson Angelson Angelson Angelson Angels	2 - 2
0 45.0 460.0 10.0 10.0 100.0 4.0 22.5 -25.5 3.0 194	а Х.	

ĪA

J

Calculation No. WBNTSR-064	Rev: 8	Plant:	WBN	Page: 18
Subject: Offsite and Control Room Operator Doses Due to	a Waste	Prepared:	DIP	Date: 1/24/66
Gas Decay Tank Rupture		Checked:		and the second sec
	<u> </u>	10	<u> </u>	Louis i a
Appendix B			· .	ر دهنان از در از در از در از در از در از در از در از در از در از در از در از در از در از در از در از در از در در از در در در در در در در در در در در در در
Input for FENCDOSE	•	의 고문의 문제가 한다.		
	and the second second second second second second second second second second second second second second second		· · ·	· 사람이는 신상은 행 전망
	•		1, N	
(RM-83 KRM-85 KR-85				
KR-87 KR-88 KR-89 KEM-131 XEM-133 XE-133 XEM-135 XL-135 XE-137 XE-138				
-131 J-132 J-133 J-134 J-135				. = *
Γ. Γ. Γ. Γ. Γ. Γ. Γ. Γ. Γ. Γ. Γ. Γ. Γ. Γ				
141E-3 .668E-4 .459E-4 .204E-4 .635E-5 6.07E-4				
WBN WASTE GAS DECAY TANK RUPTURE, 500MREM EQIVALENCY-NON-TPC		4		· · ·
TIME TO 2.0 HOURS		•		
-6 WG DECAY TANK CURIES 'S TN- 0.2000E+01				
11.484E+01 21.135E+02 33.667E+03 42.532E+01 51.397E+02 6 8.730E 02: $47.77000+02$ 8.8.730E+02 9.5.036E+04 10.4.100E+01		· · ·		
6 8.730E-02 7 7.770E+02 8 8.730E+02 9 5.936E+04 10 4.190E+01 11 8.206E+02 12 2.357E-01 13 2.794E+00 14 4.800E-02 15 0.000E+00			· .	And And And
16 3.300E-02 17 0.000E+00 18 1.200E-02		A Section Section		
WBN WASTE GAS DECAY TANK RUPTURE		an an an an an an an an an an an an an a	1.11	
TIME TO 8 HOURS	1. A. A.		••••	
-6 'WG DECAY TANK CURIES 'S TN- 0.8000E+01	1997 - 1997 -	the second second	1997 - 19	tak antara antara antara antara antara antara antara antara antara antara antara antara antara antara antara a Antara antara
10.0 20.0 30.0 40.0 50.0				
60.0 70.0 80.0 90.0 100.0				
.11 0.0 12 0.0 13 0.0 14 0.0 15 0.0				· · · · · ·
16.0.0 17.0.0 18.0.0				
WBN WASTE GAS DECAY TANK RUPTURE TIME TO I DAY				· ·
-6 'WG DECAY TANK CURIES '\$ TN= 0.2400E+02				
10.0 20.0 30.0 40.0 50.0				
60.0 70.0 80.0 90.0 100.0		-1		
11 0.0 12 0.0 13 0.0 14 0.0 15 0.0				1.1
16 0.0 17 0.0 18 0.0				and the second second second second second second second second second second second second second second second
WBN WASTE GAS DECAY TANK RUPTURE		and the second second	n Na an an an an an an an an an an an an an	یه آرمن المراجع که در المراجع که در المراجع که در المراجع که در المراجع که در المراجع که در المراجع که در المر المراجع که مراجع که در المراجع
TIME TO 4 DAYS	1.1.1.1.1			
-6 WG DECAY TANK CURIES 'S TN= 0.9600E+02 1 0.0 2 0.0 3 0.0 4 0.0 5 0.0		an an an an an an an an an an an an an a		
1 0.0 2 0.0 3 0.0 4 0.0 5 0.0 6 0.0 7 0.0 8 0.0 9 0.0 10 0.0	· .	and get	i e	
60.0 70.0 80.0 90.0 100.0 11 0.0 12 0.0 13 0.0 14 0.0 15 0.0				
16 0.0 17 0.0 18 0.0				•
WBN WASTE GAS DECAY TANK RUPTURE				
TIME TO 30 DAYS		м. н. н. с. с. с. с. с. с. с. с. с. с. с. с. с.		
-6 'WG DECAY TANK CURIES '\$ TN- 0.7200E+03		, · ·	,	
10.0 20.0 30.0 40.0 50.0				
60.0 70.0 80.0 90.0 100.0				
11 0.0 12 0.0 13 0.0 14 0.0 15 0.0		· · · ·		
16 0.0 17 0.0 18 0.0				· · · · · · · · · · · · · · · · · · ·
		$z \rightarrow z_{\pm}$		
				and the second second second second second second second second second second second second second second second
		3	, ė ir k	

.

Attachment 14

TVA Nuclear Power Group Calculation

TI-RPS-197 R21

Offsite Doses Due to a Regulatory Guide 1.4 Loss of Coolant Accident

NPG CALCULATION COVERSHEET/CCRIS UPDATE

Page

ł

1	REV 0 EDMS/RIMS NO. NEB 850213 236						EDMS TYPE: EDMS ACCESSION NO (N/A for REV. 0) calculations(nuclear) 193100113019								
Calc Title: Offsite Do	Calc Title: Offsite Doses Due to a Regulatory Guide 1.4 Loss of Coolant Accident														
CALCID	2 1	YPE	ORG	1.	PLANT	BR	ANCH		1	UMBER	ξ	CURREY	NEW	REV	
CURRENT	т	CN	NUC	; [WBN	Ň	ITB	TI-R	PS-1	197	1	R20	R2	1	REVISION APPLICABILITY
NEW		CN	NUC	: [Entire calc S Selected pages
ACTION	NEW REVI			DELI REN				RSEDE ICATE			UPDATE ON er Approval Si	ILY [] gnatures Not R	equired)	(Fo	CCRIS Changes [] or calc revision, CCRIS on teviewed and no CCRIS anges required)
UNITS 1,2		SYST NA	ems						<u>UNID</u> NA	IS			· .		· · · · · · · · · · · · · · · · · · ·
DCN.EDC. EDCR 549				APPI NA	LICABLE	DESI	GN DO	CUMENT	<u>S)</u>				· .		CLASSIFICATION E
	ED?	0	ETY RE f yes, QR 'es 🛛	(= yes)			RIFIED MPTION No 🛛	Ĩ	LM	the second second second second second second second second second second second second second second second s	EMENTS AND INDITIONS? No 🗌		GN OUTP ACHMEN	117	SAR/TS and/or ISPSI SAR/Coc APPECTED Yes SI No]
PREPARER MCBERG	RID	- E	PREPAR (603) 926		IONE NO	Ī		RING ORC			VERIFICA Design Rep	TION METHO		EW M Yes	ETHOD OF ANALYSIS X No
PREPAREI Marc C. Be				c. /	see	Ŧ	1	date 8-10	> H	leather Lu	SIGNATURE	Ten hu	relc		DATE 1 • 8 • 10
VERIFIER SIGNATURE					4	date 8- 10	R	ROYA	L SIGNATUR	Apsine	AVO		DATE 1/09/2010		

STATEMENT OF PROBLEM/ABSTRACT

This calculation determined the offsite doses due to a Regulatory Guide 1.4 Loss of Coolant Accident (LOCA). Revision 2 was performed because the dispersion coefficients (X/Q) values have changed. Also, the Interim Auxiliary Building Secondary Containment Enclosure (ABSCE) is being changed to the Final ABSCE. Since the ABSCE has not changed yet, this calculation determined the doses due to both the Interim and Final ABSCE. The calculation was entirely rewritten for legibility and to bring the format into accordance with NEP 3.1.

Computer code STP was used to determine the activity released to the environs and computer code FENCDOSE was used to determine the offsite doses. Initial core inventories came from WBNNAL3-004. It was assumed that 25% of the iodines and 100% of the noble gasses were available for release. The primary containment leak rate was assumed to be 0.25%/day for the first 24 hours and 0.125%/day thereafter. The annulus inleakage (250 cfm), EGTS recirculation flow rates, and EGTS exhaust rates were taken from TI-ANL-166. 75% of the leakage from containment went to the annulus and 25% to the Auxiliary Building. Iodine removal due to the ice condenser was taken into account.

-continued-

Special Requirements/Limiting Conditions

The special requirement/limiting condition of this calculation is: if 2 EGTS fans are operating, one must be turned off between 1 and 2 hours. Failure to turn off the second fan will not result in exceeding the 10CFR100 offsite dose limits.

MICROFICHE/EFICH	E Yes 🛛 No 🗌 🔢	FICHE NUMBER(S) TVA-F-W001342		
LOAD INTO EDMS A		TO CALCULATION LIBRARY.	ADDRESS ER	1M-WBN
	ND RETURN CALCULATION			
	1	<u>in</u>		

TVA 40532 [10-2008]

NEDP-2-1 [10-20-2008]

Calculatio	on No. TI-RPS-197	Rev: 21		Plant: WBN	Page: 2
Subject:	Offsite Doses Due to a Regulatory Guide 1.4 Loss of		Date:		
Coo	lant Accident		Che	ecked:	Date:

Revision 3 was performed because the annulus setpoint was changed from -0.5" to -1.036", which results in different EGTS exhaust curves (TI-ANL-166). The Interim ABSCE case was eliminated from the analysis. Revision 4 was performed to include in the STP model a single failure of the General Ventilation Exhaust Fans in the "on" position concurrent with one isolation damper failing open leading to unfiltered bypass of the ABGTS filters (WBPER930129). Revision 5 was performed because DCN M-29141-A fixed the unfiltered bypass condition described above. Therefore revision 5 re-establishes the revision 3 models and results. Revision 6 was performed to take into account ductwork leakage bypassing the ABGTS and EGTS filters and to also the potential temporary loss of differential pressure in the Auxiliary Building following the single failure of an ABGTS train. Revision 7 includes new X/Q values, added additional justification for ice condenser performance, and updated references. Revision 8 gave later test results for ABGTS leakage which is less than the values in R7. The calculation was not updated because the old leakages are more conservative. Successor calculations do not need to be revised because the results of this calculation were not changed. Revision 9 was performed to increase the ABGTS leakages. Revision 10 was performed to increase the ABGTS leakages. Revision 11 was performed because the annulus setpoint changed from -1.036" to -1.048" H2O.

Revision 12 incorporates new source terms from WBNNAL3-004 for 1000 EFPD (18 month cycle) with 5% U235 enrichment. R13 incorporated the 650 EFPD back into the calculation. Revision 14 was performed because the annulus setpoint was changed to -1.45" H2O and used the 1000 EFPD source. The results were the same as R13 (except for the third decimal point for the gamma, which was less by 0.001). Therefore it can be concluded that the new setpoint does not affect the offsite doses, and the analysis does not have to be performed for the 650 EFPD sources. Successor calculations do not need to be revised due to the change in setpoint.

Revision 15 is performed to establish the offsite doses with a Tritium Production Core (TPC). In addition, the standard core (non-TPC) results were redone to include different thyroid dose determination methodologies. The previous method used ICRP-2 iodine dose conversion factors. Now, ICRP-30 iodine dose conversion factors are also used, and the Total Effective Dose Equivalent (TEDE) are determined. The 650 EFPD results were deleted. Revision 15 added the new methodologies of ICRP-30 dose conversion factors for thyroid, and TEDE. Also, the TPC core was analyzed. The two TPC cores analyses (100% and 3% tritium release to atmosphere) show that the limits are not exceeded. Note that the standard core values do NOT have the same initial core inventories of iodines and noble gasses as the TPC core. This explains the difference in the standard vs. 3% tritium release TPC core results (one would have expected the results to be similar). The results are mixed, in that in some cases the TPC core gives the largest dose (such as 2-hr EAB TEDE). However, in other cases the standard core gives a larger dose (such as 2-hr EAB thyroid). Therefore, both standard and TPC configurations must be examined in any LOCA personnel dose analysis. The offsite doses calculated are below the regulatory limits of 25 rem gamma, 300 rem beta, and 300 rem thyroid (and below the 25 rem TEDE).

Revision 18 is performed to roll calculations WBNNAL3-028 and WBNTSR-073 into this calculation. The EGTS is assumed to fail in such a way so as to have a maximum exhaust for the duration of the accident. This will bound any accident, failure, or abnormal operation which affects the EGTS system.

Revision 19 addresses the changes in the drawdown volume of the Auxiliary Building for ABGTS resulting from the changed ABSCE boundary of DCN 52283A. Revision 19 shows that changes to the ABSCE will create a minimal difference in Auxiliary Building volume that remains bounded by the effective volume applied in this calculation. The DCN 52283-A changes are intended to remain in effect during WBN Unit 2 construction completion activities.

Revision 20 is performed to change the flow rates due to a more rigorous exhaust calculation, and to incorporate an operator action time between 1 and 2 hours to support corrective actions for PER 91670. Revision 20 investigated the impact of a new single failure scenario associated with the control loop for one pair of PCOs. Current procedures require Operations to turn off one EGTS fan subsequent to EGTS start. An operator action between 1 and 2 hours to shut off one of two EGTS fans will impact the results. If there is some recirculation with the second train running, then there will be an insignificant (about 1%) increase in the dose if the action is at 1 hour instead of 2 hours (Appendix H). Per Appendix H, a 1 hour operator action should be the design basis of the plant, since it results in the highest doses for gamma, beta, and TEDE. The EGTS single failure with 250 cfm steady state exhaust results (Appendix I) in higher Inhalation and 2-hr EAB TEDE doses. Per Appendix G, there is not much difference between 8000+10% and 8000-10% EGTS flow. However, the lower flow is slightly higher, and this is primarily due to the increase time at the beginning of the accident when the annulus is at a positive pressure and the slower pump down rates. The offsite doses calculated are below the regulatory limits of 25 rem gamma, 300 rem beta, and 300 rem thyroid (and below the 25 rem TEDE). See Results section for values. Revision 21 performs the PCO control loop single failure for Unit 2 (which is bounded by the Unit 1 LOCA, Appendix J.

Special Note: The EGTS single train (250 cfm steady state exhaust) scenario applies to both units.

NPG CALCULATION COVERSHEET/CCRIS UPDATE

							•	Page 3	
CALC ID	TYPE	ORG	PLANT	BRANCH	NUME	BER	<u>REV</u>		
	CN	NUC	WBN	NTB	TIRPS197		21		
	<u></u>		Â	TERNATE C	ALCULATION IDE	INTIFICATION	• .	.	
				· · · · ·			:	·····	<u></u>
BLDG	RO	<u>om</u>	<u>ELEV</u>	COORD/AZIM	I <u>FIRM</u>	Print Report	Yes 🛛		
CATEGORIE	es –								

KEY NOUNS (A-add, D-delete)

<u>ACTION</u> (A/D)	<u>KEY NOUN</u>	<u>A/D</u>	KEY NOUN
	· · ·		•
	· · · · · · · · · · · · · · · · · · ·		

ACTION (A/C/D)	XREF CODE	XREF TYPE	XREF <u>PLANT</u>	XREF <u>BRANCH</u>	XREF <u>NUMBER</u>		XREF REV	
A	Р	CN	WBN	MÉB	MDQ00206520090368		0	
A	Р	ED	WBN	MEB	EDCR 54956			
÷					· ·			
					· · · · · · · · · · · · · · · · · · ·			
			•					
				-				
· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·			
CCRIS ONLY U Following are rec	PDATES: uired only wher	n making keywor	rd/cross reference	ce CCRIS updates a	nd page 1 of form NEDP-2-1 is not included:	· · · · · ·		
PREPARER SIGNATURE				DATE	CHECKER SIGNATURE	DATE	E	
		,		EDMS ACCESSION NO.				
PREPARER PHONE NO. TVA 40532 [10-2008]				Page 2 of 2 NEDP-2-1 [10-20-2008]				

<u>CROSS-REFERENCES</u> (A-add, C-change, D-delete)

•	
. <u></u>	Page 4
	NPG CALCULATION RECORD OF REVISION
CALCULA	TION IDENTIFIER TI-RPS-197
Title	Offsite Doses Due to a Regulatory Guide 1.4 Loss of Coolant Accident
Revision	DESCRIPTION OF REVISION
No.	
0	Initial Issue
1	Revision 1 was performed to change the calculation to reflect the Interim ABSCE (10 minute AI
·	bypass) instead of the Final ABSCE (4 minute ABGTS bypass). In addition, the ice condenser ic
	removal efficiencies were changed to reflect new ice weight technical specifications.
	Pages added: 2.1, 2.2, 18.1, 21.1., 22.1 Pages deleted: 1,2,18,21,22
	Pages changed: coversheet, 5, 7, 8, 14-16, 24
2	Revision 2 was performed to reflect new X/Q values, and because the configuration of the plant
~	changing to the Final ABSCE. However, both the Interim and Final ABSCE results will be prese
	because the ABSCE changes have not been finalized. The calculation was entirely rewritten for
	and to bring the format in conformance with NEP 3.1 R1-PCN4.
	Pages added: all
	Pages deleted: all of revision 1
3	Revision 3 was performed because the annulus setpoint was changed from -0.5" H2O to -1.036"
	This resulted in new EGTS exhaust rates. This revision also eliminated the Interim ABSCE case
	Pages added: none
	Pages deleted: none
	Pages changed: 1-4, 6-8, 10-12, 14-15, 17-18 Revision 4 was performed to add unfiltered leakage past the ABGTS filters for 1 hour at the beginning of the second
4	the LOCA due to a single failure of the Auxiliary Building General Ventilation Exhaust Fan fail
	"on" position (WBPER930129).
	Pages added: new cover (p.1)
•	Pages changed: 1.1 (old cover, previously p.1), 2-10, 13, 16-18
	Pages deleted: none
5	Revision 5 was performed because the unfiltered bypass leakage from revision 4 was fixed in D
	29141-A. The revision 3 models and results were re-established.
	Pages added: none
	Pages changed: 2-6, 8, 9, 17, 18
	Pages deleted: none
6	Revision 6 was performed to take into account ductwork leakage and the temporary loss of differences in the Augustian Building following the single failure of an ABCTS main
	pressure in the Auxiliary Building following the single failure of an ABGTS train. Pages added: 19
	Pages deleted: none
	Pages changed: 1-6, 8, 9, 11-13, 17, 18
	Revision 7 was performed to include new X/Q values, justify ice condenser assumptions, and update refer
7	pages were renumbered. The "pages changed" listing does not include pages renumbered, but only pages
	text modifications
	Pages added: Appendix A, Appendix B, Appendix C
	Pages deleted: Attachment B, Attachment C
	Pages changed: 4-13, 15-17, 19-22

NPG CALCULATION RECORD OF REVISION CALCULATION IDENTIFIER TI-RPS-197 Title Offsite Doses Due to a Regulatory Guide 1.4 Loss of Coolant Accident Revision DESCRIPTION OF REVISION No. Revision 8 was performed to address new ABGTS leak test data. The new data shows less leakage, therefore the calculation was not changed because 8 the old leakage values lead to conservative results. Successor calculations do not need to be upgraded due to this revision because results did not change. pages changed: 1, 4, 6-9, 10, 11, 15, 22 pages added: 5.1, Attachment D (3 pages) pages deleted: none Revision 9 was performed because the ABGTS leakage rate changed, but did not significantly impact the results. Therefore, successor calculations do 9 not need to be updated. pages added: none pages deleted: none pages changed: 1, 4, 5.1, 6-9, 11, 12, 15, 20 Revision 10 was performed because the ABGTS leakage rate changed, but did not significantly impact the results. Therefore, successor calculations do 10 not need to be updated. pages added: 1, 9.1 pages deleted: none pages changed 1.1 (old page 1), 4, 5.1, 6-12, 15, 20 11 Revision 11 was performed because of a change of the annulus setpoint from -1.036" H2O to -1.048" H2O. pages added: Attachment E (5 pages) pages deleted: none pages changed: 1, 4, 5.1, 6-12, 9.1, 15-18, 20-22 12 Revision 12 was performed because of new source terms. The calculation is based on 5% U235 enrichment, 1000 EFPD (18 month cycle). This was specifically done for cycle 2, however the results are also applicable to cycle 1. The R11 results should be used for cycle 1 until a 50.59 has been performed for the new fuel. pages added: none pages deleted: none pages changed: 1, 4, 5.1, 6-9, 9.1, 11, 12, 20, 21 Revision 13 was performed to incorporate the 650 EFPD results (from R11) into the calculation. 13 pages added: 1 pages changed: 1a (old page 1), 4, 5.1, 6-8, 11, 20,21 pages deleted: none 14 Revision 14 was performed because the annulus setpoint changed from -1.048" to -1.45" H2O. pages added: none pages changed: 1, 4, 5.1, 6-9, 8.1, 11, 17, 18, 20, 21 pages deleted: none Revision 15 was performed to incorporate the Tritium Production Core (TPC) as part of the analysis. Included as part of this is the revised version of 15 FENCDOSE which can handle tritium. The answers are now expressed in terms of ICRP-2 thyroid dose (current design basis for the plant), ICRP-30 thyroid dose, and TEDE. 650 EFPD results were deleted as they no longer apply to WBN. Discussion on the limits and new dose methodologies were also added. pages added: Appendix A and B pages changed: 1, 4, 5.1, 6, 9, 9.1, 11-13, 15, 19, 20-22 pages deleted: Classification Forms R15: 50 total pages Revision 16 was performed as part of EDC 50951A. This lowered the ice weight and thus changed the iodine removal efficiencies. The new values 16 were found to give less conservative dose results compared to Revision 15. Therefore the previous results are still acceptable and no successors are impacted by this revision. Also, because the previous results are more conservative, the SAR and T/S are not impacted. Pages deleted: TVAN CTS Form, old coversheets Pages added: CCRIS Update Sheet, Appendix D Pages Changed: 1,5-9,19,21 Total Pages : 47 Revision 17 was performed as corrective action to PER 61493. This PER documented that dose calculations did not take into consideration the 17 operation of two trains of ABGTS or EGTS. This calculation models the ABGTS with a conservative arbitrary holdup time of 0.3 hours. Therefore no matter the flow rate of the ABGTS, the volume is adjusted so that the holdup time is 0.3 hours. Therefore since the flowrate with two trains in operation would result in an AB volume less than that of the actual AB volume, the results would not be impacted by having two trains of ABGTS in operation. Operating with two trains of EGTS would achieve the desired annulus pressure differential in less time that with one train in operation. This results in less radioactivity released directly to the environment (i.e. less offsite dose). The steady state flow rate of 250 cfm would not be changed as this is the approximate flowrate required to maintain the desired annulus pressure differential. Therefore operating with two trains of EGTS would not impact the results of this calculation. Since the body of the calculation was not revised, the results remain unchanged and the FSAR and TS's are not impacted. Pages deleted: none Pages added: 12A Total Pages : 48 Pages Changed: 1, 3, 5, 12

TVA 40709 [10-2008]

NEDP-2-2 [10-20-2008]

Page 5

		Page 6
	NPG CALCULATION RECORD OF RE	VISION
CALCULA	TION IDENTIFIER TI-RPS-197	· · · · · · · · · · · · · · · · · · ·
Title	Offsite Doses Due to a Regulatory Guide 1.4 Loss of Coolant Accide	nt
Revision No.	DESCRIPTION OF REVISION	
18	Revision 18 is performed to address corrective actions for PERs 5313 and 9. WBNTSR-073 into this calculation. The EGTS system is assumed to fail in in duration of the accident. This will bound any accident, failure, or abnormal of inleakage was increased to 1281 cfm at -13.13" to correspond to maximum et basis LOCA for FSAR chapter 15. The FSAR is affected by this revision. So RPS-198, WBNNAL3-028, WBNTSR-073, WBNAPS3-109, WBNAPS3-00 002, WBNNAL3-004, WBNTSR-112, WBNTSR-005, WBNTSR-011, WBI WBNTSR-081, WBNTSR-114, WBNTSR-082, WBNTSR-083, WBNTSR- 087, WBNAPS3-081, WBNAPS3-078. Successor calculations will be handl and 91670 i.e. a DCN or EDC will not be issued for these issues. Pages added: 6, App.E	such a way so as to have maximum exhaust for the operation which affects the EGTS system. The exhaust flow. This is intended to become the design ome of the affected successor calculations are: TI- 89, WBNAPS3-050, WBNTSR-028, WBNNAL3- NTSR-096, WBNAPS3-049, WBNAPS3-072, 084, WBNTSR-085, WBNTSR-086, WBNTSR-
· ·	Pages deleted: design verification form Pages changed: 1-3, 7-11, 13, 15, 16, 19, 21-26, 31-33 R18: 49 total pages	·
19	Revision 019 of this calculation supports the implementation of DCN 52283-A. DCI the ABSCE (Auxiliary Building Secondary Containment Envelope). Appendix F of this calculation was added to define the new ABSCE boundary as well ABSCE boundary is bound by the applied effective volume. FSAR/TS will be reviewed/modified under DCN 52283A.	
	FSAR Reviewer Date Pages Added: Calculation Cover Sheet - pgs ii1, i1 Record of Revision - pg 6a Calculation Design Verification Form - pg 9a Appendix F - Modified ABSCE Boundary of DCN 52883-A - pg Fi Pages Revised/Replaced: Table of Contents - pg 7 Purpose - pg 10 Conclusions - pg 19	I, F2, F3
·	References – pg 21 Pages Deleted: N/A Total number of pages in this revision including Attachments: 55 Pages	
20	Revision 20 is performed to model a new single failure scenario and incorpo between 1 to 2 hours. Two train EGTS operation with a PCO control loop s results in greater flow rates out the shield building stack and correspondingl is to correct the EGTS system such that only one fan is in operation long ter between 2 train EGTS flows of 8000+10% = 8800 cfm versus 8000-10%=7 operator action time (1 hour versus 2 hour). The single train EGTS failure c exhaust) is presented in Appendix I. SAR has been reviewed by <u>Marc Berr</u> SAR section <u>Chapter 15</u> . A SAR change shall be processed in accordance part of EDC 52564. Tech Specs have been reviewed and determined not to b listed in the R18 revision log. Successor calculations will be updated as part Pages added: Appendix G, Appendix H, Appendix I Pages deleted: none Pages changed: 1-3, 6, 7, 9-19, 21-28	ingle failure is now the design basis accident which y higher gamma and beta doses. The operator action m. Appendix G is added to evaluate the difference 200 cfm flow. Appendix H is added to evaluate the ase from WBNAL3-028 (250 cfm EGTS steady stat g and this revision of the calculation affects with NADP-7 to reflect the calculation results as a affected. The affected successor calculations are
	R20: 61 total pages Revision 21 is performed to model the unit 2 version of the PCO control loo	on single failure (revision 20 only analyzed Unit 1)
21	Revision 21 is performed to model the unit 2 version of the PCO control for SAR has been reviewed by <u>Marc Berg</u> and this revision of the calcu SAR change shall be processed in accordance with NGDC PP-10 to reflect Specs have been reviewed and determined not to be affected. The affected s log. Successor calculations will be updated as part of EDCR 54956. Pages added: 7.1, Appendix J (pages 46-48) Pages deleted: none Pages changed: 1-3, 6-10, 13, 18, 19, 21-23	lation affects Unit 2 SAR section <u>Chapter 15</u> . A the calculation results as part of EDCR 54956. Tech
	R21: 65 total pages	
TVA 40709 [10	D-2008] Page 1 of 1	NEDP-2-2 [10-20-2008]

Coversheet/CCRIS Input1Revision Log4Table of Contents7Calculation Verification Form7.1Computer Input File Storage Information Sheet8Computer Output Microfiche Information Sheet9Purpose10Introduction11Assumptions and Data11Special Requirements/Limiting Conditions13Calculations14Results21Discussions and Conclusions:22References22Appendix A: STP Input Deck24Appendix D: Low Weight Reduction Impact32Appendix D: Low Weight Reduction Impact32Appendix D: Low Weight Reduction Impact33Appendix D: Low Weight Reduction Time (1 Hour vs. 2 Hour)41Appendix D: Evaluation of Singe EGTS train operation with 250 cfm exhaust42Appendix I: Evaluation of Singe EGTS train operation with 250 cfm exhaust42Appendix I: Evaluation of singe EGTS train operation with 250 cfm exhaust42Appendix I: Evaluation of Singe Lefailure for Unit 246Attachment A: Westinghouse letter (iodine removal (1 pages)41Attachment D Test Report W.O.94-17190-00, -01 and summary sheet (3 pages)42	Calculation Id	entifier: TI-RPS-197 Revision: 21	-
Coversheet/CCRIS Input1Revision Log4Table of Contents7Calculation Verification Form7.1Computer Input File Storage Information Sheet8Computer Output Microfiche Information Sheet9Purpose10Introduction11Assumptions and Data11Special Requirements/Limiting Conditions13Calculations14Results21Discussions and Conclusions:22References22Appendix A: STP Input Deck24Appendix D: Low Weight Reduction Impact32Appendix D: Low Weight Reduction Impact32Appendix D: Low Weight Reduction Impact33Appendix D: Low Weight Reduction Time (1 Hour vs. 2 Hour)41Appendix D: Evaluation of EGTS Flow Rates (8000-10%) vs. 8000-10%)39Appendix D: DCO Control Loop Single Failure for Unit 246Attachment A: Westinghouse letter (Iodine removal (1 Hour vs. 2 Hour)41Appendix I: Evaluation of Singe EGTS train operation with 250 cfm exhaust42Appendix I: DCO Control Loop Single Failure for Unit 246Attachment A: Westinghouse letter (Iodine removal Efficiencies) B45 850301 62541Attachment C: WAT-D-9902 (Ice Condenser Iodine Removal Efficiency) T33 950110 82241Attachment D Test Report W.O.94-17190-00, -01 and summary sheet (3 pages)41		TABLE OF CONTENTS	
Revision Log4Table of Contents7Calculation Verification Form7.1Computer Input File Storage Information Sheet8Computer Output Microfiche Information Sheet9Purpose10Introduction11Assumptions and Data11Special Requirements/Limiting Conditions13Calculations14Results21Discussions and Conclusions:22References22Appendix A: STP Input Deck24Appendix B: FENCDOSE Input Deck28Appendix B: FENCDOSE Input Deck29Appendix D: Ice Weight Reduction Impact32Appendix D: Ice Weight Reduction Impact32Appendix E: Revision 17 EGTS Exhaust and Recirculation Rates and Results33Appendix E: Revision of Operator Action Time (1 Hour vs. 2 Hour)41Appendix I: Evaluation of Single EGTS Friow Rates (8000+10% vs. 8000-10%)39Appendix I: Evaluation of Single EGTS Friow Rates (8000+10% vs. 8000-10%)39Appendix I: Evaluation of Single EGTS Friow Rates (8000+10% vs. 8000-10%)39Appendix I: Evaluation of Single EGTS Friow Rates (8000+10% vs. 8000-10%)39Appendix I: Evaluation of Single EGTS Friow Rates (8000+10% vs. 8000-10%)39Appendix I: Evaluation of Single EdTS Friow Rates (8000+10% vs. 8000-10%)39Appendix I: Evaluation of Single EdTS Friow Rates (8000+10% vs. 8000-10%)39Appendix I: Evaluation of Single EdTS friom perator Action Time (1 Hour vs. 2 Hour)41Appendix I: Evaluation of Single EdTG To r	SECTION	TITLE	PAGE
Table of Contents7Calculation Verification Form7.1Computer Input File Storage Information Sheet8Computer Output Microfiche Information Sheet9Purpose10Introduction11Assumptions and Data11Special Requirements/Limiting Conditions13Calculations14Results21Discussions and Conclusions:22References22Appendix A: STP Input Deck28Appendix B: FENCDOSE Input Deck28Appendix C: Justification for use of 40,000 cfm flow for ice condenser iodine removal (3 pages)29Appendix C: Justification for use of 40,000 cfm flow for ice condenser iodine removal (3 pages)29Appendix D: Ice Weight Reduction Impact32Appendix D: Ice Weight Reduction Impact33Appendix F: Modified ABSCE Boundary of DCN 52283-A36Appendix I: Evaluation of GTS Flow Rates (8000+10%)39Appendix I: Evaluation of Gorstor Action Time (1 Hour vs. 2 Hour)41Appendix I: Evaluation of Singe EGTS train operation with 250 cfm exhaust42Appendix I: Evaluation of Singe EGTS train operation with 250 sth 35850301 6254tachment A: Westinghouse letter (Iodine removal efficiencies) B45 850301 625Attachment B: Memorandum (x/Q values) (3 pages)Attachment C: WAT-D-9902 (Ice Condenser Iodine Removal Efficiency) T33 950110 822Attachment D Test Report W.O.94-17190-00, -01 and summary sheet (3 pages)4tachment D Test Report W.O.94-17190-00, -01 and summary sheet (3 pages)	•		1
Calculation Verification Form7.1Computer Input File Storage Information Sheet8Computer Output Microfiche Information Sheet9Purpose10Introduction11Assumptions and Data11Special Requirements/Limiting Conditions13Calculations14Results21Discussions and Conclusions:22References22Appendix A: STP Input Deck24Appendix C: Justification for use of 40,000 cfm flow for ice condenser iodine removal (3 pages)29Appendix D: Ice Weight Reduction Impact32Appendix G: Evaluation of EGTS Flow Rates (8000+10% vs. 8000-10%)39Appendix H: Evaluation of Operator Action Time (1 Hour vs. 2 Hour)41Appendix I: Evaluation of singe EGTS Strain operation with 250 cfm exhaust42Appendix I: Evaluation of Singe EGTS Flow Rates (8000+10%)39Appendix I: Evaluation of Singe EGTS Strain operation with 250 cfm exhaust42Appendix I: Evaluation of Singe EGTS Strain operation with 250 cfm exhaust42Appendix I: Evaluation of Singe EGTS Strain operation with 250 cfm exhaust42Appendix I: Evaluation of Singe EGTS train operation with 250 cfm exhaust46Attachment A: Westinghouse letter (iodine removal efficiencies) B45 850301 62541Attachment A: Westinghouse letter (iodine removal Efficiency) T33 950110 82241Attachment D: Test Report W.O.94+17190-00, -01 and summary sheet (3 pages)41			4
Computer Input File Storage Information Sheet8Computer Output Microfiche Information Sheet9Purpose10Introduction11Assumptions and Data11Special Requirements/Limiting Conditions13Calculations14Results21Discussions and Conclusions:22References22Appendix A: STP Input Deck24Appendix B: FENCDOSE Input Deck28Appendix C: Justification for use of 40,000 cfm flow for ice condenser iodine removal (3 pages)29 pages)Appendix D: Ice Weight Reduction Impact32Appendix F: Modified ABSCE Boundary of DCN 52283-A36Appendix G: Evaluation of Degrator Action Time (1 Hour vs. 2 Hour)41Appendix I: Evaluation of Singe EGTS train operation with 250 cfm exhaust42Appendix I: Evaluation of Singe EGTS train operation with 250 cfm exhaust42Appendix I: Evaluation of Singe EGTS train operation with 250 cfm exhaust42Appendix J: PCO Control Loop Single Failure for Unit 246Attachment A: Westinghouse letter (iodine removal efficiencies) B45 850301 62541Attachment B: Memorandum (x/Q values) (3 pages)41Attachment C: WAT-D-9902 (Ice Condenser Iodine Removal Efficiency) T33 950110 82241Attachment D Test Report W.O.94-17190-00, -01 and summary sheet (3 pages)41		Table of Contents	7
Computer Output Microfiche Information Sheet9Purpose10Introduction11Assumptions and Data11Special Requirements/Limiting Conditions13Calculations14Results21Discussions and Conclusions:22References22Appendix A: STP Input Deck24Appendix B: FENCDOSE Input Deck28Appendix D: Ice Weight Reduction Impact32Appendix D: Ice Weight Reduction Impact32Appendix D: Ice Weight Reduction Impact33Appendix D: Ice Weight Reduction Time (1 Hour vs. 2 Hour)41Appendix D: Ice Veight Cort Action Time (1 Hour vs. 2 Hour)41Appendix I: Evaluation of Operator Action Time (1 Hour vs. 2 Hour)41Appendix J: PCO Control Loop Single Failure for Unit 246Attachment A: Westinghouse letter (iodine removal efficiencies) B45 850301 6254ttachment A: Westinghouse letter (iodine removal efficiencies) 733 950110 822Attachment D Test Report W.O.94-17190-00, -01 and summary sheet (3 pages)4ttachment D Test Report W.O.94-17190-00, -01 and summary sheet (3 pages)		Calculation Verification Form	7.1
Purpose10Introduction11Assumptions and Data11Special Requirements/Limiting Conditions13Calculations14Results21Discussions and Conclusions:22References22Appendix A: STP Input Deck24Appendix C: Justification for use of 40,000 cfm flow for ice condenser iodine removal (3 pages)29Appendix C: Justification for use of 40,000 cfm flow for ice condenser iodine removal (3 pages)29Appendix D: Ice Weight Reduction Impact32Appendix F: Modified ABSCE Boundary of DCN 52283-A36Appendix G: Evaluation of EGTS Flow Rates (8000+10% vs. 8000-10%)39Appendix I: Evaluation of Operator Action Time (1 Hour vs. 2 Hour)41Appendix I: Evaluation of singe EGTS train operation with 250 cfm exhaust42Appendix J: PCO Control Loop Single Failure for Unit 246Attachment A: Westinghouse letter (iodine removal efficiencies) B45 850301 6254ttachment B: Memorandum (x/Q values) (3 pages)Attachment D Test Report W.O.94-17190-00, -01 and summary sheet (3 pages)4ttachment D Test Report W.O.94-17190-00, -01 and summary sheet (3 pages)		Computer Input File Storage Information Sheet	8
Introduction11Assumptions and Data11Special Requirements/Limiting Conditions13Calculations14Results21Discussions and Conclusions:22References22Appendix A: STP Input Deck28Appendix B: FENCDOSE Input Deck28Appendix C: Justification for use of 40,000 cfm flow for ice condenser iodine removal (3 pages)29 pages)Appendix D: Ice Weight Reduction Impact32Appendix D: Ice Weight Reduction Impact33Appendix G: Evaluation of EGTS Flow Rates (8000+10% vs. 8000-10%)39Appendix I: Evaluation of Operator Action Time (1 Hour vs. 2 Hour)41Appendix I: Evaluation of singe EGTS train operation with 250 cfm exhaust42Appendix I: Evaluation of singe EGTS train operation with 250 cfm exhaust42Appendix I: Evaluation of Single Failure for Unit 246Attachment A: Westinghouse letter (iodine removal efficiencies) B45 850301 62541Attachment B: Memorandum (x/Q values) (3 pages)41Attachment D Test Report W.O.94-17190-00, -01 and summary sheet (3 pages)41		Computer Output Microfiche Information Sheet	9
Introduction11Assumptions and Data11Special Requirements/Limiting Conditions13Calculations14Results21Discussions and Conclusions:22References22Appendix A: STP Input Deck28Appendix D: Ice Weight Reduction Impact28Appendix D: Ice Weight Reduction Impact29pages)29Appendix D: Ice Weight Reduction Impact33Appendix D: Ice Weight Reduction Time (1 Hour vs. 2 Hour)41Appendix I: Evaluation of Singe EGTS train operation with 250 cfm exhaust42Appendix I: Evaluation of Singe EGTS train operation with 250 cfm exhaust42Appendix I: Evaluation of Singe EGTS train operation with 250 cfm exhaust42Appendix I: Evaluation of Singe EGTS train operation with 250 cfm exhaust42Appendix I: Evaluation of Singe EGTS train operation with 250 cfm exhaust42Appendix I: Evaluation of Singe EGTS train operation with 250 cfm exhaust42Appendix I: Evaluation of Singe EGTS train operation with 250 cfm exhaust42Appendix I: Evaluation of Singe EGTS train operation with 250 cfm exhaust42Appendix I: Evaluation of Singe EGTS train operation with 250 cfm exhaust42Appendix I: Evaluation of Singe EGTS train operation with 250 cfm exhaust42Appendix I: Evaluation of Singe EGTS train operation with 250 cfm exhaust42Appendix I: Evaluation of Singe EGTS train operation with 250 cfm exhaust42Appendix I: Evaluation of Singe EGTS train operation with 250 cfm exhaust42	۱.		
Assumptions and Data11Special Requirements/Limiting Conditions13Calculations14Results21Discussions and Conclusions:22References22Appendix A: STP Input Deck28Appendix B: FENCDOSE Input Deck28Appendix D: Ice Weight Reduction Impact32Appendix D: Ice Weight Reduction Impact32Appendix E: Revision 17 EGTS Exhaust and Recirculation Rates and Results33Appendix G: Evaluation of DCN 52283-A36Appendix G: Evaluation of EGTS Flow Rates (8000+10% vs. 8000-10%)39Appendix I: Evaluation of Singe EGTS train operation with 250 cfm exhaust42Appendix I: Evaluation of singe EGTS train operation with 250 scfm exhaust42Appendix I: PCO Control Loop Single Failure for Unit 246Attachment A: Westinghouse letter (iodine removal efficiencies) B45 850301 6254ttachment A: Westinghouse letter (iodine Removal Efficiency) T33 950110 822Attachment D Test Report W.O.94-17190-00, -01 and summary sheet (3 pages)4ttachment G: WAT-D-9902 (Ice Condenser Iodine Removal Efficiency) T33 950110 822		Purpose	10
Special Requirements/Limiting Conditions13Calculations14Results21Discussions and Conclusions:22References22Appendix A: STP Input Deck24Appendix B: FENCDOSE Input Deck28Appendix C: Justification for use of 40,000 cfm flow for ice condenser iodine removal (3 pages)29Appendix D: Ice Weight Reduction Impact32Appendix E: Revision 17 EGTS Exhaust and Recirculation Rates and Results33Appendix F: Modified ABSCE Boundary of DCN 52283-A36Appendix G: Evaluation of EGTS Flow Rates (8000+10% vs. 8000-10%)39Appendix I: Evaluation of Operator Action Time (1 Hour vs. 2 Hour)41Appendix I: Evaluation of singe EGTS train operation with 250 cfm exhaust42Appendix J: PCO Control Loop Single Failure for Unit 246Attachment A: Westinghouse letter (iodine removal efficiencies) B45 850301 6254ttachment B: Memorandum (x/Q values) (3 pages)Attachment C: WAT-D-9902 (Ice Condenser Iodine Removal Efficiency) T33 950110 822Attachment O Test Report W.O.94-17190-00, -01 and summary sheet (3 pages)		Introduction	11
Calculations14Results21Discussions and Conclusions:22References22Appendix A: STP Input Deck24Appendix B: FENCDOSE Input Deck28Appendix C: Justification for use of 40,000 cfm flow for ice condenser iodine removal (3 pages)29Appendix D: Ice Weight Reduction Impact32Appendix E: Revision 17 EGTS Exhaust and Recirculation Rates and Results33Appendix F: Modified ABSCE Boundary of DCN 52283-A36Appendix G: Evaluation of EGTS Flow Rates (8000+10% vs. 8000-10%)39Appendix I: Evaluation of Operator Action Time (1 Hour vs. 2 Hour)41Appendix I: Evaluation of singe EGTS train operation with 250 cfm exhaust42Appendix J: PCO Control Loop Single Failure for Unit 246Attachment A: Westinghouse letter (iodine removal efficiencies) B45 850301 6254ttachment B: Memorandum (x/Q values) (3 pages)Attachment D Test Report W.O.94-17190-00, -01 and summary sheet (3 pages)4ttachment D Test Report W.O.94-17190-00, -01 and summary sheet (3 pages)		Assumptions and Data	11
Results21Discussions and Conclusions:22References22Appendix A: STP Input Deck24Appendix B: FENCDOSE Input Deck28Appendix C: Justification for use of 40,000 cfm flow for ice condenser iodine removal (329pages)29Appendix D: Ice Weight Reduction Impact32Appendix F: Modified ABSCE Boundary of DCN 52283-A36Appendix G: Evaluation of EGTS Flow Rates (8000+10% vs. 8000-10%)39Appendix I: Evaluation of Operator Action Time (1 Hour vs. 2 Hour)41Appendix I: Evaluation of singe EGTS train operation with 250 cfm exhaust42Appendix J: PCO Control Loop Single Failure for Unit 246Attachment A: Westinghouse letter (iodine removal efficiencies) B45 850301 6254ttachment C: WAT-D-9902 (Ice Condenser Iodine Removal Efficiency) T33 950110 822Attachment D Test Report W.O.94-17190-00, -01 and summary sheet (3 pages)4ttachment D Test Report W.O.94-17190-00, -01 and summary sheet (3 pages)		Special Requirements/Limiting Conditions	13
Discussions and Conclusions:22References22Appendix A: STP Input Deck24Appendix B: FENCDOSE Input Deck28Appendix C: Justification for use of 40,000 cfm flow for ice condenser iodine removal (3 pages)29Appendix D: Ice Weight Reduction Impact32Appendix E: Revision 17 EGTS Exhaust and Recirculation Rates and Results33Appendix F: Modified ABSCE Boundary of DCN 52283-A36Appendix G: Evaluation of EGTS Flow Rates (8000+10% vs. 8000-10%)39Appendix I: Evaluation of Operator Action Time (1 Hour vs. 2 Hour)41Appendix I: Evaluation of operator Action Time (1 Hour vs. 2 Hour)42Appendix J: PCO Control Loop Single Failure for Unit 246Attachment A: Westinghouse letter (iodine removal efficiencies) B45 850301 6254ttachment B: Memorandum (χ /Q values) (3 pages)Attachment C: WAT-D-9902 (Ice Condenser Iodine Removal Efficiency) T33 950110 822Attachment D Test Report W.O.94-17190-00, -01 and summary sheet (3 pages)	•	Calculations	14
References22Appendix A: STP Input Deck24Appendix B: FENCDOSE Input Deck28Appendix C: Justification for use of 40,000 cfm flow for ice condenser iodine removal (3 pages)29Appendix D: Ice Weight Reduction Impact32Appendix E: Revision 17 EGTS Exhaust and Recirculation Rates and Results33Appendix F: Modified ABSCE Boundary of DCN 52283-A36Appendix G: Evaluation of EGTS Flow Rates (8000+10% vs. 8000-10%)39Appendix H: Evaluation of Operator Action Time (1 Hour vs. 2 Hour)41Appendix I: Evaluation of singe EGTS train operation with 250 cfm exhaust42Appendix J: PCO Control Loop Single Failure for Unit 246Attachment A: Westinghouse letter (iodine removal efficiencies) B45 850301 6254ttachment B: Memorandum (χ /Q values) (3 pages)Attachment C: WAT-D-9902 (Ice Condenser Iodine Removal Efficiency) T33 950110 822Attachment D Test Report W.O.94-17190-00, -01 and summary sheet (3 pages)		Results	21
Appendix A: STP Input Deck24Appendix B: FENCDOSE Input Deck28Appendix C: Justification for use of 40,000 cfm flow for ice condenser iodine removal (329pages)22Appendix D: Ice Weight Reduction Impact32Appendix E: Revision 17 EGTS Exhaust and Recirculation Rates and Results33Appendix F: Modified ABSCE Boundary of DCN 52283-A36Appendix G: Evaluation of EGTS Flow Rates (8000+10% vs. 8000-10%)39Appendix H: Evaluation of Operator Action Time (1 Hour vs. 2 Hour)41Appendix I: Evaluation of singe EGTS train operation with 250 cfm exhaust42Appendix J: PCO Control Loop Single Failure for Unit 246Attachment A: Westinghouse letter (iodine removal efficiencies) B45 850301 6254ttachment B: Memorandum (χ /Q values) (3 pages)Attachment C: WAT-D-9902 (Ice Condenser Iodine Removal Efficiency) T33 950110 822Attachment D Test Report W.O.94-17190-00, -01 and summary sheet (3 pages)		Discussions and Conclusions:	22
Appendix B: FENCDOSE Input Deck28Appendix C: Justification for use of 40,000 cfm flow for ice condenser iodine removal (329pages)Appendix D: Ice Weight Reduction Impact32Appendix E: Revision 17 EGTS Exhaust and Recirculation Rates and Results33Appendix F: Modified ABSCE Boundary of DCN 52283-A36Appendix G: Evaluation of EGTS Flow Rates (8000+10% vs. 8000-10%)39Appendix H: Evaluation of Operator Action Time (1 Hour vs. 2 Hour)41Appendix J: PCO Control Loop Single Failure for Unit 246Attachment A: Westinghouse letter (iodine removal efficiencies) B45 850301 6254ttachment C: WAT-D-9902 (Ice Condenser Iodine Removal Efficiency) T33 950110 822Attachment D Test Report W.O.94-17190-00, -01 and summary sheet (3 pages)41	. •	References	22
Appendix B: FENCDOSE Input Deck28Appendix C: Justification for use of 40,000 cfm flow for ice condenser iodine removal (329pages)Appendix D: Ice Weight Reduction Impact32Appendix E: Revision 17 EGTS Exhaust and Recirculation Rates and Results33Appendix F: Modified ABSCE Boundary of DCN 52283-A36Appendix G: Evaluation of EGTS Flow Rates (8000+10% vs. 8000-10%)39Appendix H: Evaluation of Operator Action Time (1 Hour vs. 2 Hour)41Appendix J: PCO Control Loop Single Failure for Unit 246Attachment A: Westinghouse letter (iodine removal efficiencies) B45 850301 6254ttachment C: WAT-D-9902 (Ice Condenser Iodine Removal Efficiency) T33 950110 822Attachment D Test Report W.O.94-17190-00, -01 and summary sheet (3 pages)41		Appendix A: STP Input Deck	24
Appendix C:Justification for use of 40,000 cfm flow for ice condenser iodine removal (3 pages)29 pages)Appendix D:Ice Weight Reduction Impact32Appendix E:Revision 17 EGTS Exhaust and Recirculation Rates and Results33Appendix F:Modified ABSCE Boundary of DCN 52283-A36Appendix G:Evaluation of EGTS Flow Rates (8000+10% vs. 8000-10%)39Appendix H:Evaluation of Operator Action Time (1 Hour vs. 2 Hour)41Appendix I:Evaluation of singe EGTS train operation with 250 cfm exhaust42Appendix J:PCO Control Loop Single Failure for Unit 246Attachment A:Westinghouse letter (iodine removal efficiencies) B45 850301 6254ttachment B: Memorandum (χ /Q values) (3 pages)Attachment C:WAT-D-9902 (Ice Condenser Iodine Removal Efficiency) T33 950110 822Attachment D Test Report W.O.94-17190-00, -01 and summary sheet (3 pages)			28
Appendix E: Revision 17 EGTS Exhaust and Recirculation Rates and Results33Appendix F: Modified ABSCE Boundary of DCN 52283-A36Appendix G: Evaluation of EGTS Flow Rates (8000+10% vs. 8000-10%)39Appendix H: Evaluation of Operator Action Time (1 Hour vs. 2 Hour)41Appendix I: Evaluation of Singe EGTS train operation with 250 cfm exhaust42Appendix J: PCO Control Loop Single Failure for Unit 246Attachment A: Westinghouse letter (iodine removal efficiencies) B45 850301 62541Attachment B: Memorandum (x/Q values) (3 pages)41Attachment C: WAT-D-9902 (Ice Condenser Iodine Removal Efficiency) T33 950110 82241Attachment D Test Report W.O.94-17190-00, -01 and summary sheet (3 pages)41		Appendix C: Justification for use of 40,000 cfm flow for ice condenser iodine removal (3	29
Appendix F: Modified ABSCE Boundary of DCN 52283-A36Appendix G: Evaluation of EGTS Flow Rates (8000+10% vs. 8000-10%)39Appendix H: Evaluation of Operator Action Time (1 Hour vs. 2 Hour)41Appendix I: Evaluation of Singe EGTS train operation with 250 cfm exhaust42Appendix J: PCO Control Loop Single Failure for Unit 246Attachment A: Westinghouse letter (iodine removal efficiencies) B45 850301 62546Attachment B: Memorandum (χ /Q values) (3 pages)41Attachment C: WAT-D-9902 (Ice Condenser Iodine Removal Efficiency) T33 950110 82241Attachment D Test Report W.O.94-17190-00, -01 and summary sheet (3 pages)41		Appendix D: Ice Weight Reduction Impact	32
Appendix G: Evaluation of EGTS Flow Rates (8000+10% vs. 8000-10%)39Appendix H: Evaluation of Operator Action Time (1 Hour vs. 2 Hour)41Appendix I: Evaluation of singe EGTS train operation with 250 cfm exhaust42Appendix J: PCO Control Loop Single Failure for Unit 246Attachment A: Westinghouse letter (iodine removal efficiencies) B45 850301 62546Attachment B: Memorandum (χ /Q values) (3 pages)41Attachment C: WAT-D-9902 (Ice Condenser Iodine Removal Efficiency) T33 950110 82241Attachment D Test Report W.O.94-17190-00, -01 and summary sheet (3 pages)41		Appendix E: Revision 17 EGTS Exhaust and Recirculation Rates and Results	33
Appendix H: Evaluation of Operator Action Time (1 Hour vs. 2 Hour)41Appendix I: Evaluation of singe EGTS train operation with 250 cfm exhaust42Appendix I: PCO Control Loop Single Failure for Unit 246Attachment A: Westinghouse letter (iodine removal efficiencies) B45 850301 62546Attachment B: Memorandum (χ /Q values) (3 pages)41Attachment C: WAT-D-9902 (Ice Condenser Iodine Removal Efficiency) T33 950110 82246Attachment D Test Report W.O.94-17190-00, -01 and summary sheet (3 pages)41		Appendix F: Modified ABSCE Boundary of DCN 52283-A	36
Appendix I: Evaluation of singe EGTS train operation with 250 cfm exhaust42Appendix J: PCO Control Loop Single Failure for Unit 246Attachment A: Westinghouse letter (iodine removal efficiencies) B45 850301 62546Attachment B: Memorandum (χ /Q values) (3 pages)41Attachment C: WAT-D-9902 (Ice Condenser Iodine Removal Efficiency) T33 950110 82241Attachment D Test Report W.O.94-17190-00, -01 and summary sheet (3 pages)42		Appendix G: Evaluation of EGTS Flow Rates (8000+10% vs. 8000-10%)	39
Appendix J: PCO Control Loop Single Failure for Unit 246Attachment A: Westinghouse letter (iodine removal efficiencies) B45 850301 625Attachment B: Memorandum (χ /Q values) (3 pages)Attachment C: WAT-D-9902 (Ice Condenser Iodine Removal Efficiency) T33 950110 822Attachment D Test Report W.O.94-17190-00, -01 and summary sheet (3 pages)		Appendix H: Evaluation of Operator Action Time (1 Hour vs. 2 Hour)	41
 Attachment A: Westinghouse letter (iodine removal efficiencies) B45 850301 625 Attachment B: Memorandum (χ/Q values) (3 pages) Attachment C: WAT-D-9902 (Ice Condenser Iodine Removal Efficiency) T33 950110 822 Attachment D Test Report W.O.94-17190-00, -01 and summary sheet (3 pages) 		Appendix I: Evaluation of singe EGTS train operation with 250 cfm exhaust	42
Attachment B: Memorandum (χ/Q values) (3 pages) Attachment C: WAT-D-9902 (Ice Condenser Iodine Removal Efficiency) T33 950110 822 Attachment D Test Report W.O.94-17190-00, -01 and summary sheet (3 pages)		Appendix J: PCO Control Loop Single Failure for Unit 2	46
Attachment C: WAT-D-9902 (Ice Condenser Iodine Removal Efficiency) T33 950110 822 Attachment D Test Report W.O.94-17190-00, -01 and summary sheet (3 pages)		Attachment A: Westinghouse letter (iodine removal efficiencies) B45 850301 625	
Attachment D Test Report W.O.94-17190-00, -01 and summary sheet (3 pages)		Attachment B: Memorandum (χ/Q values) (3 pages)	
		Attachment C: WAT-D-9902 (Ice Condenser Iodine Removal Efficiency) T33 950110 822	
		Attachment D Test Report W.O.94-17190-00, -01 and summary sheet (3 pages)	-
Automicit D. Tost Report W.O., 17127 00, 01 and Sammary Shoet (5 pages)		Attachment E: Test Report W.O94-17127-00, -01 and summary sheet (5 pages)	

NEDP-2-3 [10-20-2008]

	Page 7.1
NPG CA	CULATION VERIFICATION FORM
Calculation Identifier TI-RPS-197	Revision 21
Method of verification used: 1. Design Review Image: Comparison of the second seco	Verifier Heather Lucek Date 1-7-2010
appropriate manner to address the PCO con reviewed the methodology, design input, an	found the calculation to have been completed in a technically sound an trol loop single failure in Unit 2. In conducting the verification I d assumptions which I found to be valid and conservative. I verified the nfirmed they only contained the changes as specified in this document. I re compiled in the results.

TVA 40533 [10-2008]

Page 1 of 1

NEDP-2-4 [10-20-2008]

		•							
					• .				
				<u></u>		ge 8			
			G COMPUTI						
	Document TI-RPS-	197	· . •	Rev. 21	Plant: WBN	-			
	Subject: Offsite Doses Due to a R	egulatory Guide 1.4	Loss of Cool	ant Accident					
						•			
	Electronic storage	of the input files for	this calculatio	on is not requ	ired. Comments:	· · · · · · · · · · · · · · · · · · ·			
	· · ·				•				
· .	Input files for this	calculation have bee	en stored electr	ronically and	sufficient identifyin	g information	is provided		K
	below for each inp	ut file. (Any retrieve	ed file require	s re-verificat	ion of its contents be				
	The computer input for I							· .	
	The computer input for I The computer input for I	. –			· · ·				
	The computer input for I	-							
	The computer input for I	-							
	The computer input for I	-							
•	The computer input for								
	The computer input for		stored in FILE	EKEEPER fil	e # 308817				
				EKEEPER fil	e # 311653 through	311668			·
	The computer input for			EKEEPER fil		311668			·
				EKEEPER fil		311668			
				EKEEPER fil		311668			
				EKEEPER fil		311668			
				EKEEPER fil		311668			
				EKEEPER fil		311668			
				EKEEPER fil		311668			
				EKEEPER fil		311668			
	The computer input for	R21 is stored in eFic		EKEEPER fil		311668			
		R21 is stored in eFic		EKEEPER fil		311668			
•	The computer input for	R21 is stored in eFic		EKEEPER fil		311668			
	The computer input for	R21 is stored in eFic	che TVA-F-W00	EKEEPER fil			2.6 [10.20.2000		
•	The computer input for	R21 is stored in eFic		EKEEPER fil			-2-6 [10-20-2008		
•	The computer input for	R21 is stored in eFic	che TVA-F-W00	EKEEPER fil			-2-6 [10-20-2008		·

		TER OUTPUT		page 9
· · · · · · · · · · · · · · · · · · ·	MICROFICHE INFO	<u>DRMATION SHI</u>		
Document TI-RPS-	.97	Rev. 21	Plant: WBN	
Subject: Offsite Doses Due to a	Regulatory Guide 1.4 Loss o	f Coolant Accident	t .	
Microfiche Number	Description		······································	
R2: WRAD-22	R2: note this is microfilm	A 41400000000000000000000000000000000000		
R3:TVA-F-G104044				
R4:TVA-F-G104620				
R6: TVA-F-C000022				•
R7:	R7:	· .•		
TVA-F-C000048		ription ity released Final ABS	CE	
TVA-F-I000084		te dose Final ABSCE	CE .	
		wdown flow determinat	ion (Appendix A)	
•	[•] R9:			
R9:		vity released Final ABS	CE	
TVA-F-C000094		te dose Final ABSCE		
1177-000074	R10: RP197S10 STP activ	vity released Final ABS	CE	
D 10		te dose Final ABSCE	CL .	
R10:	R11:			
TVA-F-C000098		ity released Final ABS	CE	
R11:		te dose Final ABSCE		
TVA-F-C00010	R12: RP197S12 STP activ	uitu mlaaaad Einal ABC	CE.	
R12:		vity released Final ABS te dose Final ABSCE	CE	
TVA-F-C000133	R14:			
	RP197S14 STP activ	vity released Final ABS	CE	
R14:		te dose Final ABSCE		
TVÁ-F-C000161	R15:			
R15:		na and decay info for S vity released, TPC 1009		
TVA-F-C000325		rity released, TPC 3% I		
177-1-0000325		te dose, TPC 100% H3		
		te dose, TPC 3% H3 air		
		te dose, standard core (i	non-TPC)	
	R16 (efiche):			
		eleased, TPC 100% H3 ose, TPC 100% H3 airb		
R16:	R18 (efiche):	se, IFC 100% n3 and	ome	,
TVA-F-W000237		ty released, convention	al core (non-TPC)	
R18:		ty released, TPC 100%		
TVA-F-W000672	R197S18C STP .activit	ty released, TPC 3% H	3 airborne	
		e dose, standard core (r		•
		e dose, TPC 100% airb e dose, TPC 3% H3 airl		
	KI9/178C TENCEOSE OIISID		borne	
	R20 (efiche):			
	R197S19# STP activit	ty released		
P 20.		e dose	•	
R20:	A= conventional core, 1-hr operational A= TPC 100% H3 sittorne 1-hr		ofm ECTS	
TVA-F-W000751,	B= TPC 100% H3 airborne, 1-hr C= TPC 3% H3 airborne, 1-hr o			
TVA-F-W000754,	D= TPC 3% H3 airborne, no ope			
TVA-F-W000814	E= conventional core, no operate	or action, 7200 cfm EG	TS	
	F= TPC 100% H3 airborne, no c	operator action, 7200 cf	fm EGTS	
	G= TPC 3% H3 airborne, 2-hr o			
	H= TPC 3% H3 airborne, 2-hr o	perator action, 8800 cf	m EGTS	
R21:	R21 (efiche): R197S21# STP activit	ty released		
TVA-F-W001342		e dose	•	
	A= conventional core B= TPC		TPC 3% H3 airborne	

.

.

Calculation No. TI-RPS-197		Rev: 21		Plant: WBN	Pag	e: 10
Subject:	Offsite Doses Due to a Regulatory Guide 1.4 Loss of	to a Regulatory Guide 1.4 Loss of Prepared: Date:				
Coolant Accident			Che	cked:	Date:	

Purpose

The purpose of this calculation is to determine the offsite doses due to a Regulatory Guide 1.4 (ref.1) Loss of Coolant Accident. Revision 2 is being performed because the X/Q values and EGTS exhaust rates have changed. The calculation is being rewritten for legibility and to bring the format into accordance with NEP 3.1 R1. Revision 3 is performed because the annulus setpoint was changed from -0.5" to -1.036" H2O, which results in different EGTS exhaust curves (ref.19). The Interim ABSCE case was eliminated from the analysis. Revision 4 is performed to include in the STP model a single failure of the General Ventilation Exhaust Fans in the "on" position concurrent with the failure of one of the isolation dampers to close leading to unfiltered bypass of the ABGTS filters (WBPER930129, ref.22). Revision 5 is performed to re-establish the revision 3 models and results because the ABGTS bypass no longer exists due to modifications from DCN M-29141-A (ref.25). Revision 6 is performed to take into account ABGTS and EGTS leakage and also the potential temporary loss of Auxiliary Building differential pressure following a single failure of an ABGTS train. Revision 7 is performed to incorporate new X/Q values, justify Ice Condenser parameters, and update references. Revision 8 is performed to address new ABGTS leakage values. Revision 9 is performed to increase ABGTS leakage. Revision 10 is performed to increase ABGTS leakage. Revision 11 is performed because the annulus setpoint changed from -1.036" to -1,048" H2O. Revision 12 incorporates new source terms from WBNNAL3-004 for 1000 EFPD (18 month cycle) with 5% U235 enrichment. The extended burnup fuel is for cycle 2. R13 is performed to incorporate the R11, 650 EFPD (cycle 1) results into the calculation. Revision 14 is performed because the annulus setpoint was changed from -1.048" to 1.45" H2O.

Revision 15 is performed to establish the offsite doses with a Tritium Production Core (TPC). In addition, the standard core (non-TPC) results were redone to include different thyroid dose determination methodologies. The previous method used ICRP-2 iodine dose conversion factors. This calculation determined the doses using 3 different methodologies. The gamma, beta and Thyroid (ICRP-2) doses are all based on TID-14844 methodologies utilizing the ICRP-2 iodine dose conversion factors found in TID-14844 and are the current (as of June 2001) licensing basis of the plant. The second methodology is the Thyroid (ICRP-30) dose, which is also based on TID-14844, but uses the ICRP-30 iodine dose conversion factors. The ICRP-30 iodine dose conversion factors are less conservative than the ICRP-2 factors. This methodology is presented for potential future use. Finally, the third methodology used is the TEDE (Total Effective Dose Equivalent). The TEDE presents an overall weighted dose and is more representative of the impact of all isotopes on the body as a whole. The TEDE dose is presented for potential future use, however is not currently (as of June 2001) part of the design basis of the plant. It is important to note that tritium does not impact the thyroid doses utilizing the TID-14844 methodology, because only iodine is applied to the thyroid dose. However, in fact tritium does contribute to the thyroid dose, as well as other organs of the body. This is why the TEDE is a more representative dose when discussing the impact of tritium. It is up to the end user to choose the dose which is to be used, with the understanding that each methodology has a different meaning. The 650 EFPD results were deleted as WBN utilizes an extended cycle, ie. 18 months and 1000 EFPD.

Revision 18 is performed to incorporate EGTS exhaust rates which reflect failures in the EGTS system. It is now assumed that the EGTS exhausts at the maximum rate for the entire accident, and the accident starts with the annulus at 0" H2O differential pressure (instead of -5" H2O). The calculations WBNNAL3-028 and WBNTSR-073 are rolled into this calculation. Revision 19 is performed to address changes in the ABSCE boundary identified as part of DCN 52283-A.

Revision 20 is performed to incorporate a 1 to 2 hour operator action to correct the EGTS system. The EGTS system will be modeled as 2 trains with appropriate recirculation/exhaust based on new more rigorous flow calculations (both initial transient conditions as well as steady state single failure conditions) as opposed to maximum exhaust with no recirculation. Appendix G is added to evaluate the difference between 2 train EGTS flows of 8000+10% = 8800 cfm versus 8000-10%=7200 cfm flow. Appendix H is added to evaluate the operator action time (1 hour versus 2 hour).

Revision 21 is performed to add the Unit 2 evaluation of the PCO control loop single failure (Appendix J). Only the bounding cases (as determined in revision 20) of 1 hour operation action with the 8000-10% = 7200 cfm EGTS flow were evaluated.

Calculation No. TI-RPS-197		Rev: 21	Plant:	WBN	Page: 11
Subject:Offsite Doses Due to a Regulatory Guide 1.4 Loss ofPrepared:Date:		Date:			
Coo	Coolant Accident		hecked:		Date:

Introduction

Guidelines for determining the radiological consequences due to design basis Loss of Coolant Accident (LOCA) for a pressurized water reactor are presented in Regulatory Guide 1.4 (ref.1). These guidelines provided the basis for this analysis. The computer code STP (ref.3) is used to calculate the activity released to the environs during the 30 days following the Reg.Guide 1.4 LOCA, and the computer code FENCDOSE (ref.4) is used to calculate the resulting offsite doses.

The offsite gamma dose limit is 25 rem (10CFR100.11), the thyroid dose limit is 300 rem (10CFR100.11), and the TEDE dose limit is 25 rem (10CFR50.67). SRP 6.4 in NUREG 0800 (ref.32) shows that the thyroid dose and beta dose limits are equivalent for the control room, therefore the offsite beta dose limit can be assumed the same as the offsite thyroid dose limit, 300 rem. 10CFR20.1201 also states that the organ (thyroid) dose and skin (beta) dose are equivalent.

Assumptions and Data

The following assumptions and parameters are used in th	is analysis:			
1. The primary containment free volume	1.27E6 cuft	ref.2		
available for mixing is: 2. The encludes free values (50% of which is secured.)	3.75E5 cuft	ref.19		
2. The annulus free volume: (50% of which is assumed available for mixing)	5.75E5 Cult	101.19		
3. The auxiliary building volume		assumed,		
available for mixing is assumed to be:	1.62E5 cuft	see Calc.		
		(this is based of	on a conservative "effective	/e
· · · ·		volume" with a	an section assumed mean l	ıoldup
		time of 0.3 hor justification)	urs, see calculation section	for
4. The primary containment air return				
fan flow rate (1 of 2 assumed operating):	40,000 cfm	ref.5		
5. Total EGTS flow rate:	7,200 cfm	ref.12,13 (see a Appendix G)	assumption 23 and 24 and	
6a. EGTS exhaust flow rates:	variable, Tal	ble 3 (see assump	otion 23)	
6b. EGTS recirculation flow rates:	variable, Ta	ble 3 (see assum	otion 23)	
7. ABGTS flow rate:	9,000 cfm	ref.18 see no	te 1,2	
8. Primary containment leak rate:	0.25%/day 0-	24 hrs,ref.1,11		
	0.125%/day	>24 hrs,ref.1,11		
9. Annulus Inleakage (from Aux.Building):	957 cfm at -2	.1"H2O with 2 E	GTS trains, 694 cfm with	1 EGTS
	assumption 2	5 .		
10. Primary containment leakage to annulus:	75%	ref.11		
11. Primary containment leakage to the Aux Bldg	25%	ref.11		
12. EGTS filter efficiencies:		99%	ref.10	
13. ABGTS filter efficiencies:		99%	ref.10	
14. Delay before credit is taken for ABGTS filters	4 min.Final A	ABSCE, ref. 20, 14		
15. Mean holdup time of activity in the		,		
auxiliary building after initial 4 minutes: 0.3 hr	assumed			
(see calculation section for discussion)			,	
16. Ice condenser removal rates:	see Table 2	ref.6	•	
17. Meteorology:	see Table 4	ref.8		
18. Radioisotopes available for release:	25% core iod			
	100% noble	gasses ref.1		
	170010			

19. Releases between time=0 to times up to 66 seconds post LOCA from the various systems breaching containment listed in WB-DC-40-34 (ref.37) are not taken into account. It is assumed that the consequences of any releases from the systems during the time when the system containment isolation valves are open is insignificant.

Technical Justification: The dose due to releases from the systems which are isolated will be very small. Calculation TI-632 (ref.39) analyzed the dose due to releases due to a purge at the start of the accident. Those doses were very small. The purge mass releases will certainly bound any potential release through the other systems being isolated, especially since many of

Calculatio	on No. TI-RPS-197	Rev: 21	Plant: WBN	Page: 12
Subject:Offsite Doses Due to a Regulatory Guide 1.4 Loss ofPrepared:Date:				Date:
Coo	lant Accident	Ch	ecked:	Date:

those systems are closed/self contained. Also, most of the systems do not have a credible leakage path for the 0-66 sec time period from the containment atmosphere or reactor coolant into the system in question due to the system being at higher pressure than the containment atmosphere or the depressurized reactor coolant.

note 1) The ABGTS flow is 9000 cfm total, but only 7000 cfm is from the Auxiliary Building. 2000 cfm is from the vacuum relief. If the vacuum relief valves fail, then the flow from the Auxiliary Building will become 9000 cfm. For conservatism, it is assumed in this calculation that the vacuum relief lines fail.

note 2) DCN M-10354-B (ref.31) installed new controllers for the ABGTS. This modification resulted in new setpoints (ref.32). Initially following an accident, both ABGTS trains start up (ref.14). Operator action is needed to turn one of these trains off. If a single failure occurs subsequent to this action, the Auxiliary Building will lose its differential pressure. When the differential pressure reaches the setpoint, the other train is started up, but by this time the differential pressure requirement of -0.25" or greater has been lost. Therefore, according to the Standard Review Plan, secondary containment is lost. The time to reestablish the differential pressure is conservatively assumed to be the same as when the ABGTS first started at the beginning of the accident (4 minutes). The single failure is assumed to occur immediately following the operator action (30 minutes), therefore the direct leakage to the environment occurs from 30 to 34 minutes post LOCA. The leakage is assumed to be 9900 cfm, which is the same as the inleakage when there is a driving force (the differential pressure). This value is chosen because, as the differential pressure decreases, the driving force also decreases. The 9900 cfm is maximum leakage during maximum delta pressure (9000 cfm+10%), therefore, it is expected that during essential zero delta pressure, the outleakage will not exceed 9900 cfm. This calculation establishes 9900 cfm as the maximum permissible leakage. Note: the value of 9000 cfm was actually used in the analysis. This will not affect the results since the volume of the Auxiliary Building is arbitrarily set to have a holdup of 0.3 hour. If the model were changed from 9000 cfm to 9900 cfm, the volume would also change. The net effect would be for the holdup to be the same, and would not change any results.

20. For TPC configurations, two cases are analyzed. One TPC assumes 100% of the core tritium release to the containment atmosphere. The more realistic TPC case assumes 3% of the core tritium is released. (A conventional core is also analyzed) Technical Justification: The TPC 100% release is clearly conservative since most tritium is expected to be in the form of water (H₂O), especially because of hydrogen recombiners in containment. Therefore, realistically a significant fraction of tritium will be in the sump water. The TPC 100% airborne case clearly provides an upper bound for tritium releases to the environment. The TPC 3% airborne case is a more realistic case where the tritium will mostly be in the sump. This case will maximize tritium in the sump. The 3% value is taken from the topical report, reference 41.

21. It is assumed that tritium is not filtered out by the EGTS or ABGTS system.

Technical Justification: It is expected that a significant fraction of tritium will be in the chemical form of water (HTO). Carbon filters will trap water. Assuming no delay, trapping, or filtration of the tritiated water assures that the results will be conservative.

22. Only one train of ABGTS is in operation. Two trains of EGTS trains are in operation

Technical Justification: This calculation models the ABGTS with a conservative arbitrary holdup time of 0.3 hours. Therefore no matter the flow rate of the ABGTS, the volume is adjusted so that the holdup time is 0.3 hours. Therefore since the flow rate with two trains in operation would result in a AB volume less than that of the actual AB volume, the results would not be impacted by having two trains of ABGTS in operation. With the exception of the thyroid dose, operation with a postulated PCO control loop single failure has greater releases than the previous design basis accident assumption of a single failure of one EGTS train (250 cfm steady state exhaust). The single EGTS failure (250 cfm steady state exhaust) case is presented in Appendix I. For the EGTS, cases with no operator action and with operator action to shut down one EGTS fan are presented in this analysis. In addition, comparisons between EGTS flow of 8000 cfm +10% and 8000 cfm - 10% are examined (Appendix G).

23. The EGTS is assumed to have a PCO control loop single failure at the beginning of the accident, such that the maximum 2 train flow occurs at the beginning of the accident until operator action is credited in turning off one fan between 1 and 2 hours.

Technical Justification: This will bound any operation mode (normal, single failure, or abnormal operation) of the EGTS. With full flow, the beginning of the accident will have variable exhaust flow. As the annulus is depressurized, less exhaust will be available. From MDQ00006520070121 (ref.55), the maximum steady state 2 train EGTS flow is 6131 cfm with an

TVA

Calculatio	on No. TI-RPS-197	Rev: 21		Plant: WBN	Pa	ge: 13
Subject:	Offsite Doses Due to a Regulatory Guide 1.4 Loss of	f Prepared: Date:				
Cool	lant Accident	-	Che	cked:	Date:	

exhaust of 957 cfm. This set of flows occurs when the EGTS should be set to full recirculation mode due to excessive depressurization (see flow curves taken from TI-ANL-166). At 602 seconds, the variable exhaust flow is reduced linearly to 957 cfm (finally achieving the steady state 957 cfm at 2100 sec) with recirculation of 6131-957=5174 cfm. This will remain the exhaust for the duration of the accident for the no operator action case. For the operator action cases to shut down one EGTS fan, the flows are changed to 694 cfm exhaust and 4278-694=3584 cfm recirculation. For Unit 2, from MDQ00206520090368 (ref. 58), the 2 train EGTS flow is 6569 cfm with an exhaust of 832 cfm and recirculation of 6569-832 = 5737 cfm. The 1 train EGTS flow is 4059 cfm with and exhaust of 604 cfm and recirculation of 4059-604 = 3455 cfm.

24. Prior to 60 seconds with 8000-10% = 7200 cfm EGTS flow, the containment leakage goes directly to the environment. For 8000+10% = 8800 cfm EGTS flow, the containment leakage directly to the environment last until 56 sec. Technical Justification: From TI-ANL-166, the pressure in the annulus is positive (>-0.25" H20) for 60 sec or 56 sec. Therefore, there is no secondary containment (annulus) at that time.

25. This analysis was originally based on 250 cfm inleakage to the annulus (the tech spec leakage into the annulus at -0.5" H2O). With the inclusion of EGTS control loop single failure with maximum pumping down and the EGTS exhausting continually for the duration of the accident, the inleakage is assumed to be 957 cfm at -2.1" (ref. 47) with 2 EGTS trains, and 694 cfm at -2.1" with 1 EGTS fan operating. For Unit 2, the inleakage is assumed to be 832 cfm at -1.88" (2 EGTS trains) and 604 cfm at -1.48" (1 EGTS train) (ref.47).

Technical Justification: Due to the increase in steady state exhaust, the inleakage must be at the same as the exhaust rate.

26. For the case of operator action correcting the 2 train EGTS failure scenario described above, it is assumed that the action is between 1 and 2 hours to correct the operation to a single fan.

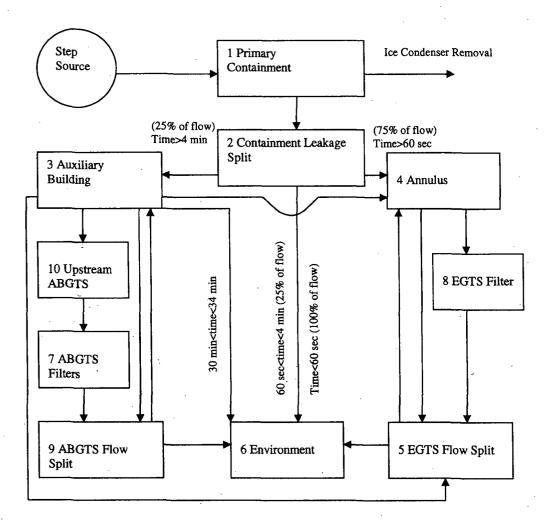
Technical Justification: The time frame is engineering judgment. Most operator actions are assumed to occur with 30 minutes. However, during discussions with Ops, it has been determined that 30 minutes is too short a time period for the type of accident where this failure could occur. A more reasonable time period of 1 to 2 hours was used in this calculation. Appendix H evaluates the worst case time frame.

Special Requirements/Limiting Conditions

The special requirement/limiting condition of this calculation is: If 2 EGTS fans are operating, one EGTS fan must be turned off between 1 and 2 hours. See assumption 26. The fan shall not be turned off earlier than 1 hour. Failure to turn off the second train will not result in exceeding the 10CFR100 offsite dose limits. However, turning off one fan prior to 1 hour could result in higher doses.

Calculatio	on No. TI-RPS-197	Rev: 21	Plant: WBI	N Page: 14
Subject:	Offsite Doses Due to a Regulatory Guide 1.4 Loss of		Prepared:	Date:
Coolant Accident			Checked:	Date:

Calculations


The primary containment is modeled as one volume. The reduction of the iodine population due to the ice condenser is modeled as a time dependent removal process. Elemental and particulate species are only removed, the ice condenser removal efficiencies for organic iodines is minimal, thus no credit is assumed (ref.15 sec.8.2.6). The iodine removal rates and the basis for these removal rates are shown in Table 2. The Standard Review Plan 6.5.4 section III.1.a (ref.33) says that the ice condenser is considered ineffective in the removal of particulate iodine. However, Westinghouse has provided WBN with information (WAT-D-9902, ref.34) which shows that particulate iodine has a variety of removal mechanisms. The use of the same ice condenser removal efficiency for particulate as elemental iodine is conservative if no other particulate iodine removal mechanisms are modeled.

A description of the STP models' parameters are shown in Table 1. The activity assumed to be available for immediate release is 25% of the core activity of iodine and 100% of the core activity of noble gasses (ref.1). With the TPC, two cases are analyzed. Case B assumes 100% of the tritium is released to the containment atmosphere. In case C, only 3% is released to the containment atmosphere. The activities are taken from WBNAL3-004 (ref.7). Activities for the TPC core are taken from WBNAPS3-098 (ref.40). The iodine is assumed to be 91% elemental, 5% particulate, and 4% organic (ref.1). Isotopes Kr-90, Xe-137, Xe-139, and Xe-140 are not used because of the very short half-lives (ranging from 13 seconds to 3.8 minutes). I-130 is not used because it has a very small core inventory (10^3 curies) compared to the other iodine isotopes $(10^7-10^8 \text{ curies})$.

The LPZ doses are calculated by using the computer code FENCDOSE. The activity released to the environment during the time intervals 0-2 hrs, 2-8 hrs, 8-24 hrs, 24-96 hrs, and 96-720 hrs is taken directly form the STP results. The respective dispersion coefficients (X/Q) are taken from refs. 8 and 9 (see Table 4).

TM			
Calculation No. TI-RPS-197	Rev: 21	Plant: WBN	V Page: 15
Subject: Offsite Doses Due to a Regulatory Guide 1.4 Loss of		Prepared:	Date:
Coolant Accident		Checked:	Date:

Figure 1 STP Model

TVA

Calculatio	n No. TI-RPS-197	Rev: 21		Plant: WBN	Page: 16
Subject:	Offsite Doses Due to a Regulatory Guide 1.4 Loss of	Prepared: Date:		Date:	
Coola	ant Accident		Che	cked:	Date:

Table 1

STP Parameter Description (see Figure 1)

Step Source: At t=0, 100% of the core inventory of noble gasses and 25% of the core inventory of iodine are stepped into component 1. Core inventories are taken from reference 7 for normal core, reference 40 for TPC. With the TPC core, two cases are analyzed: case B assumes 100% of the tritium is released to the containment atmosphere. Case C assumes only 3% is released. Conventional core is designated as Case A.

Primary Containment: Volume = 1.27E6 cuft (ref.2)

(component 1) Ice condenser removal efficiencies see Table 2.

Flow 1-2: 0-24 hrs: 0.25% vol/day = (0.25%)(1.27E6 cuft)(day/24hr)=132.3 cuft/hr 24 hrs-30 days: 0.125% vol/day = (0.125%)(1.27E6 cuft)(day/24hr)=66.1 cuft/hr

Containment Leakage Split: Volume=1E-6 (arbitrarily small)

(component 2) Flow 2-6 = 1.0 for t<114 sec

Flow 2-6 = 0.25 for 114 sec <time<4 minutes (Final ABSCE)

Flow 2-6 = 0 for time>4 min

Flow 2-3=0.25 for t>4 minutes (Final ABSCE)

Flow 2-4=0.75 for t>114 sec

Auxiliary Building: Flow 3-10=9000 cfm or 5.4E5 cfh for t>4 minutes

(component 3) The auxiliary building free volume is about 3.5E6 cuft (ref.14). The exhaust rate is therefore about 0.15 volumes/hour, providing a mean holdup time of more than 6 hours. To account for any short circuits (incomplete mixing) a reduction factor is arbitrarily taken so that the holdup time will be a conservatively low 0.3 hour holdup time (tH):

tH=V/F or V=tH*F=(0.3 hr)(5.4E5 cuft/hr) = 1.62E5 cuft

Flow 3-4=957 cfm (5.74E4 cfh) when 2 fans of EGTS operate and 695 cfm (4.16E4 cfh) when one fan is in operation (ref.55, leakage into annulus = EGTS exhaust rate)

Flow 3-6=9900 cfm or 5.94E5 cfh (as mentioned earlier, this is the leakage out of the building during the loss of ABGTS and lasts from 30 minutes to 34 minutes post LOCA)

Flow 3-5 = 10.7 cfm or 642 cfh (ref.30). This is the leakage into the entire EGTS system from the Auxiliary Building. The number is therefore very conservative because this leakage represents the unfiltered bypass of the EGTS, but the actual value includes leakage upstream of (and therefore filtered by) the EGTS filters.

Flow 3-9 = 27.88 cfm or 1672.8 cfh (ref.27). This is the leakage into the ABGTS ductwork downstream (and therefore bypassing) the filters and upstream of the fans. This value is for Unit 1. Unit 2 leakage is only 19.32 cfm, ref.28. Later testing (ref.38) gives the leakage for U1 as 5.39 cfm and for U2 as 3.73 cfm. The 27.88 cfm is conservative (more iodines will get out), therefore the model will not be updated and will bound any future increase (up to 27.88 cfm).

Annulus: Volume=0.5 * annulus free volume (this is assumed in order to account for incomplete mixing)

(component 4) =0.5*3.75E5 cuft =1.88E5 cuft

Flow 4-5=0 for t<8.33E-3 hr (based on 30 second delay in EGTS operation)

Flow 4-5=7200 cfm or 2.16E5 cfh for t>8.33E-3 hr

EGTS Flow Split: Volume=1E-6 (arbitrarily small)

(component 5) Flow 5-6= variable, see Table 3

Flow 5-4= variable, see Table 3

TVA

Calculatio	on No. TI-RPS-197	Rev: 21		Plant: WBN	Page: 17
Subject:	Offsite Doses Due to a Regulatory Guide 1.4 Loss of		Pre	pared:	Date:
Coo	lant Accident		Che	cked:	Date:

Environment: Volume=1 environment

(component 6) The environment is modeled as an accumulator which accumulates activity with no decay during the time periods for FENCDOSE input.

ABGTS Filters:Charcoal efficiency is 99% for iodine (ref.10), 0% for tritium(component 7)EGTS Filters:(component 8)Charcoal efficiency is 99% for iodine (ref.10), 0% for tritium

Note on filters: In revision 2, the transmission cards "X" are replaced by the "U" filter card (and components 7 and 8 are added). This is done to take into account the transmission of noble gas daughter products through the filters.

ABGTS Flow Split: Volume = 1E-6 (arbitrarily small to prevent holdup)

(component 9) Flow 9-6 = 9000 cfm or 5.4E6 cfh (this is flow through the filters to the environment)

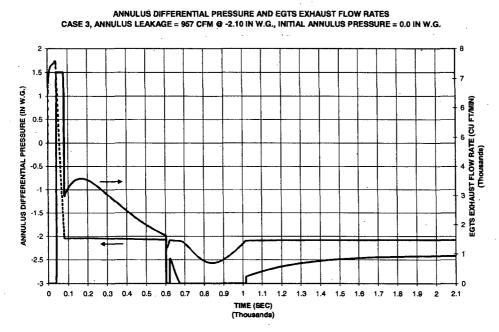
Flow 9.3 = 8.87 cfm or 532.2 cfh (ref.26) This is the leakage from the Unit 1 ABGTS ductwork downstream from the ABGTS filters into the Auxiliary Building. Unit 2 leakage is 24.32 cfm, ref.29, which would result in a smaller release if used. Later testing (ref.38) gives the leakage for U1 as 7.15 cfm and U2 as 5.1 cfm. Again, the old values will remain for conservatism. and for any changes in the future.

Upstream ABGTS:Volume = 1E-6 (arbitrarily small to prevent holdup) (component 10) Flow = 9000 cfm or 5.4E6 cfh (the card used is "U 10 7 9 5.4E6 0.0 0.0 0.99 0.99 0.0")

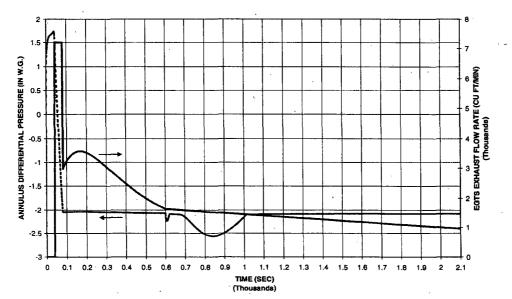
Table 2:

Ice Condenser Removal Efficiencies (ref.6) Elemental and Particulate Iodine

Time	Removal	Lambda*
Interval	Efficiency	(hr ⁻¹)
(hours)	(eff)	
0-0.156	0.96	1.8 1
0.156-0.267	0.76	1.44
0.267-0.323	0.73	1.38
0.323-0.489	0.71	1.34
0.489-0.615	0.60	1.13
0.615-0.768	0.58	1.10
0.768-0.824	0.40	0.76
0.824-720	0.0	0.0


* Based on a primary containment free volume of 1.27E6 cuft and a flow rate of 40,000 cfm where:

Lambda = $(F/V)^{*}$ eff = $(40,000 \text{ cfm}/1.27E6 \text{ cuft})(60 \text{ min/hr})(eff) = 1.89^{*}$ eff $[hr^{-1}]$


Note: The lower containment air return fans do not start until 8-10 minutes post LOCA (ref.35,5). However, the normal circulation during this time period is much greater than the fan flow of 40,000 cfm (see Appendix A). Therefore, it is conservative to use the 40,000 cfm for the 0-10 minute time period.

L VA					
Calculatio	on No. TI-RPS-197	Rev: 21	Pla	ant: WBN	Page: 18
Subject:	Offsite Doses Due to a Regulatory Guide 1.4 Loss of		Prepare	ed:	Date:
Cool	lant Accident		Checke	d:	Date:

The following is the EGTS performance curve from TI-ANL-166 (ref.19) With Initial Annulus Pressure at 0" H2O for Unit 1.

This is the EGTS profile as modeled for Unit 1. The above curve is modified at 602 sec to have constant flows (see assumptions 22 and 23):

Modified ANNULUS DIFF. PRES. AND EGTS EXHAUST FLOW RATES With Controller Fallure CASE 3, ANNULUS LEAKAGE = 957 CFM @ -2.10 IN W.G., INITIAL ANNULUS PRESSURE = 0.0 IN W.G.

ΓΛΑ				
Calculation No. TI-RPS-197	Rev: 21	Plant: V	VBN Page: 19	
Subject: Offsite Doses Due to a Regulatory Guide 1.4 Loss of	·	Prepared:	Date:	
Coolant Accident		Checked:	Date:	

Time Inter		Time Inter		I2O (ref.19: TI-A Recirculation	Rate	Exhaust R	
[sec]	[sec]	[hours]	[hours]	[cfm]	[cfh]	[cfm]	[cfh]
0	30	0	0.0083	0	0.00E+00	0	0.00E+00
30	39	0.0083	0.0108	7200	4.32E+05	0	0.00E+00
39	40	0.0108	0.0111	6573.24	3.94E+05	626.76	3.76E+04
40	41	0.0111	0.0114	4704.62	2.82E+05	2495.38	1.50E+05
41	42	0.0114	0.0117	2609.58	1.57E+05	4590.42	2.75E+05
42	43	0.0117	0.0119	725.2	4.35E+04	6474.8	3.88E+05
43	71	0.0119	0.0197	0	0.00E+00	7200	4.32E+05
71	80	0.0197	0.0222	0	0.00E+00	7200	4.32E+05
80	81	0.0222	0.0225	1567.6	9.41E+04	5632.4	3.38E+05
81	82	0.0225	0.0228	4222.38	2.53E+05	2977.62	1.79E+05
82	102	0.0228	0.0283	4064	2.44E+05	3136	1.88E+05
102	132	0.0283	0.0367	3816	2.29E+05	3384	2.03E+05
132	165	0.0367	0.0458	3659	2.20E+05	3541	2.12E+05
165	169	0.0458	0.0469	3619	2.17E+05	3581	2.15E+05
169	210	0.0469	0.0583	3659	2.20E+05	3541	2.12E+05
210	307	0.0583	0.0853	3950	2.37E+05	3250	1.95E+05
307	498	0.0853	0.1383	4701	2.82E+05	2499	1.50E+05
498	. 602	0.1383	0.1672	5386	3.23E+05	1814	1.09E+05
602 .	603	0.1672	0.1675	5568.4	3.34E+05	1631.6	9.79E+04
603	850	0.1675	0.2361	4597	2.76E+05	1534	9.20E+04
850	1100	0.2361	0.3056	4694	2.82E+05	1437	8.62E+04
1100	1350	0.3056	0.3750	4791	2.87E+05	1340	8.04E+04
1350	1600	0.3750	0.4444	4888	2.93E+05	1243	7.46E+04
1600	1850	0.4444	0.5139	4985	2.99E+05	1146	6.88E+04
1850	2100	0.5139	0.5833	5082	3.05E+05	1049	6.29E+04
2100	3600*	0.5833	1.0000	5174	3.10E+05	957	5.74E+04
3600*	30 days	1.0000	30days	3584	2.15E+05	694	4.16E+04

Table 3

* 1 hour operator action. For no operator action cases, the 3600-30 day flows do not change from the 2100-3600 sec case.

Calculation No. TI-RI	PS-197		Rev: 21	Plant: W	BN Pa	age: 20
Subject: Offsite Dos	Prepared: Checked:		Date: Date:			
Coolant Acciden						
		Table 4				
	Dispersion	Coefficients (X/Q,	ref.8)			
		(Meteorology)	,			
			· .			
		· .	Low			,
		Site	Populat			
	Period	Boundary	Zone	e		
	(hours)	(1100 m)	(4828)	m)		
	0-2	6.07E-04	1.41E-	.04		
	2-8	· -	6.68E-	05		·. ·
	8-24	_	4.59E-			•
	24-96	-	2.04E-	-05		
	96-720	_	6.35E-	06		

Note: The Site Boundary is equivalent to the Exclusion Area Boundary

Calculation No. TI-RPS-197	Rev: 21		Plant: WBN	Page: 21
Subject: Offsite Doses Due to a Regulatory Guide 1.4 Loss of		Pre	pared:	Date:
Coolant Accident		Che	cked:	Date:

Results

The results for the Unit 1 LOCA with EGTS PCO control loop single failure are (rem):

2-hr EAB		
	No Operator	1 hr Operator
Conventional core	Action	Action
Gamma	2.055	2.077
Beta	1.21	1.224
Inhalation (ICRP-30)	29.89*	29.92*
TEDE	3.073*	3.089*
Jj		
TPC 100%		
Gamma	2.133	2.156
Beta	1.215	1.229
Inhalation (ICRP-30)	28.55*	28.57*
TEDE	3.083*	3.101*
TPC 3%		
Gamma	2.133 -	2.156
Beta	1.213	1.227
Inhalation (ICRP-30)	28.55*	28.57*
TEDE	3.061*	3.078*
		1 .

30-Day LPZ

	No Operator	1 hr Operator
Conventional core	Action	Action
Gamma	1.646	1.666
Beta	1.911	1.926
Inhalation (ICRP-30)	9.396*	9.472*
TEDE	1.588	1.606
TPC 100%		
Gamma	1.648	1.668
Beta	1.859	1.873
Inhalation (ICRP-30)	8.973*	9.05*
TEDE	1.797	1.816
TPC 3%		
Gamma	1.648	1.668
Beta	1.846	1.86
Inhalation (ICRP-30)	8.973*	9.045 *
TEDE	1.58	1.598

* Note that the Inhalation/Thyroid and TEDE doses for this failure scenario are bounded by the single failure of one EGTS train (see appendix I).

Calculatio	n No. TI-RPS-197	Rev: 21		Plant: WBN	Page: 22
Subject:	Offsite Doses Due to a Regulatory Guide 1.4 Loss of		Pre	pared:	Date:
Cool	ant Accident		Che	cked:	Date:

Discussion and Conclusion

5 1 1/1

The offsite doses calculated are below the regulatory limits of 25 rem gamma, 300 rem beta, and 300 rem thyroid (and below the 25 rem TEDE).

Revision 16 investigated iodine removal efficiencies based on reduced ice weight. The results are found in Appendix D for the bounding case of the 100% airborne TPC case. Previous results were found to be more conservative. Therefore the results found in Revision 15 are still acceptable. The reduced ice weight with updated iodine removal rates do not need to be incorporated into future analyses unless some conservatism needs to be eliminated.

Revision 19 identifies changes in the ABSCE boundary due to DCV52283-A. The offsite doses from the previous revision were found to still be applicable. An explanation can be found in Appendix F.

Revision 20 investigated the impact of an EGTS PCO control loop single failure. This failure still results in doses less than regulatory limits. An operator action between 1 and 2 hours to shut off one of two EGTS fans will impact the results. If there is some recirculation with the second fan running, then there will be an insignificant (about 1%) increase in the dose if the action is at 1 hour instead of 2 hours (Appendix H). Current procedures require Operations to turn off one EGTS fan subsequent to EGTS start. Per Appendix H, a 1 hour operator action should be the design basis of the plant, since it results in the highest doses. Per Appendix G, there is not much difference between 8000+10% and 8000-10% EGTS flow. However, the lower flow is slightly higher, and this is primarily due to the increase time at the beginning of the accident when the annulus is at a positive pressure and the slower pump down rates. Per Appendices I and J (revision 21), the Unit 1 EGTS PCO control loop single failure (250 cfm steady state exhaust) previously analyzed in WBNNAL3-028. The single train failure case is presented in Appendix I.

Special Note:. The EGTS single train (250 cfm steady state exhaust) scenario applies to both units.

References

1. Regulatory Guide 1.4 "Assumptions used for Evaluating the Potential Radiological Consequences of a Loss Of Coolant Accident for Pressurized Water Reactors" Rev.2, June 1984

2. WBNAPS2-030 R1 "WBN Containment MONSTER Model Input Parameter Development" RIMS# B18 920729 261

3. Computer code STP R6, code I.D. 262165

4. Computer code FENCDOSE R4, code I.D. 262358

5. N3-30RB-4002 R5 "Reactor Building Ventilation System" RIMS# T29 930324 956

6. Westinghouse letter from E.A. Novotnak to J.A. Raulston, February 21, 1985, RIMS# B45 850301 625 - Attachment A

7. WBNNAL3-004 R4 "Accident Dose Inside Reactor Building" RIMS# B26 951121 304

8. Memorandum from Francis P. Weatherford to Walter L.Elliott on January 27, 1995 "Watts Bar Nuclear Plant (WBN) Final Safety Analysis Report (FSAR) Update - Dispersion Meteorology For Accident Analysis" RIMS# T33 950127 962-Attachment B

9. Not used

10. Regulatory Guide 1.52 "Design, Testing, and Maintenance Criteria for Post Accident Engineered-Safety-Feature Atmosphere Cleanup System Air Filtration and Adsorption Units of Light-Water-Cooled Nuclear Power Plants" Rev.2, March 1978

11. Technical Specification TS SR 3.6.1.1, Nov, 1994

12. Technical Specification TS SR 3.6.9.4, Nov, 1994

13. WBN CCD drawing 1-47W866-1 R25

14. N3-30AB-4001 R4 "Auxiliary Building Heating, Ventilation and Air Conditioning System (31,44)" RIMS# T29 930324 953

15. WCAP-7426, "Topical Report - Iodine Removal in the Ice Condenser System" D.D. Malinowsky, March 1970

16. not used

17. not used

18. WBN CCD drawing 1-47W866-10 R22

19. TI-ANL-166 R15 "Annulus Pressure Control During a Loss of Coolant Accident (LOCA)"

20. Memorandum from J.L.Standifer to D.W.Wilson, RIMS# T16 850513 943

21. FSAR section 6.2.3.3.3 Amendment 62

I VA						
Calculatio	n No. TI-RPS-197	Rev: 21		Plant: WBN	Page: 24	
Subject:	Offsite Doses Due to a Regulatory Guide 1.4 Loss of		Prepared:		Date:	
Cool	ant Accident		Che	ecked:	Date:	

APPENDIX A STP Input Deck

(1 hr operator action, TPC 3% H3 airborne) //R197S19I JOB 264318,9MBERG.BIN111,MSGLEVEL=1,MSGCLASS=T //*MAIN ORG=KNXLCL01,CLASS=MB //JCL JCLLIB ORDER= (APB.NEN.PS264460.PROCLIB) 11 EXEC STP, SOUT='*' //GO.FT07F001 DD DSN=\$KBI988.R197S19I.OUT, UNIT=ALLOC, DCB=(RECFM=FB, LRECL=80, BLKSIZE=6160), SPACE=(TRK, (5,2), RLSE), 11 11 DISP=(NEW, CATLG, DELETE) //GO.FT01F001 DD * NV= 10 MS= 1 //GO.FT11F001 DD * NI= 23 NK= 5 NG= 0 NL= 3 10.0000E+00 1KRM 83 1 1.0352E-04 10.0000B+00 10.0000E+00 85 1 4.2978E-05 10.0000E+00 10.0000E+00 2KRM 10.0000E+00 29.8849E-06 3KR 85 1 2.0470E-09 10.0000E+00 10.0000E+00 87 1 1.5141E-04 10.0000E+00 10.0000E+00 4KR 10.0000E+00 5KR 88 1 6.8765E-05 10.0000E+00 10.0000E+00 10.0000E+00 6KR 89 1 3.6328E-03 10.0000E+00 10.0000E+00 10.0000E+00 7XEM 131 2 6.7414E-07 131.3039E-08 181.3039E-08 10.0000E+00 8XEM 133 2 3.5656E-06 152.0365E-07 202.0365E-07 10.0000E+00 209.2568E-06 9XE 133 2 1.5165E-06 83.5656E-06 159.2568E-06 10XEM 135 2 7.3818E-04 174.8062E-06 224.8062E-06 10.0000E+00 11XE 135 2 2.1043E-05 107.3818E-04 172.9129B-05 222.9129E-05 12XE 138 2 8.1528E-04 10.0000E+00 10.0000E+00 10.0000E+00 13I 131 3 9.9536E-07 10.0000E+00 10.0000E+00 10.0000E+00 14I 132 3 8.4448E-05 10.0000E+00 10.0000E+00 10.0000E+00 15I 133 3 9.2568E-06 10.0000E+00 10.0000E+00 10.0000E+00 134 3 2.1963E-04 10.0000E+00 10.0000E+00 10.0000E+00 16I 17I 135 3 2.9129E-05 10.0000E+00 10.0000E+00 10.0000E+00 131 4 9.9536E-07 10.0000E+00 10.0000E+00 10.0000E+00 181' 191 132 4 8.4448E-05 10.0000E+00 10.0000E+00 10.0000E+00 133 4 9.2568E-06 10.0000E+00 10.0000E+00 201* 10.0000E+00 211* 134 4 2.1963E-04 10.0000E+00 10.0000E+00 10.0000E+00 221* 135 4 2.9129E-05 10.0000E+00 10.0000E+00 10.0000E+00 23H 3 5 1.7785E-09 10.0000E+00 10.0000E+00 10.0000E+00 0 'TRIT PROD CORE INV, 1000 EFPD, 5% U235 (ORIGEN), REF.WBNAPS3-098 RO' 1 2 2.69E7 3 8.81E5 4 5.23E7 5 7.38E7 6 9.10E7 8 5.80E6 9 1.88E8 10 3.59E7 11 4.96E7 12 1.5 1.1.23E7 7 9.54E5 12 1.59E8 13 8.65E7 14 1.26E8 15 1.80E8 16 2.00E8 17 1.69E8 18 3.60E6 19 5.24E6 20 7.52E6 21 8.32E6 22 7.04E6 23 2.68E7 0 \mathbf{T} WBN MHA-4 MIN AUX BLDG BYPASS (FINAL ABSCE) NJ = 101 'PRIMARY' 'CONTAINMENT' 2 'CONT. LEAKAGE' ' SPLIT 3 'AUX. BLD 4 'ANNULUS EGTS ' FLOW SPLIT 5 ENVIRONMENT 6 CURIES 'ABGTS FILTER' 7 'EGTS FILTER' 8 9 'ABGTS FLOW SPLIT' 10 'UPSTREAM ABGTS' 0.00833 HR TIME TO 30 SECOND POST LOCA V 1 1.27+6 CUFT V 2 1.0-6 V 3 1.62+5 CUFT V 4 1.88+5 CUFT V 5 1.0-6 V 6 1.0 ENVIRONMENT V 7 1.0E-6 V 8 1.0E-6 V 9 1.0E-6 V 10 1.0E-6 A 6 s 1 1 0 1.0 1 1 3 0.25 1 1 4 0.25 1 1 5 0.03 F 1 2 0 132.3 CFH F 2 3 0 0

Calculation No. 7			Rev: 21	Plant: WBN	N Page: 25
		atory Guide 1.4 Loss of	Pre	epared:	Date:
Coolant Acc				ecked:	Date:
		·		echeu.	
\$F 2 4 0 0.75					
F2601.0 F3600				•	
F 3 4 0 0					
F4500 F5400		• •			
F 5 6 0 0 R 1 3 1.81					
0.0108 HR					
TIME TO 39 SEC F 5 4 0 4.32E5 CF	н				
F 5 6 0 0.0 CFH	-				
F 3 5 0 642 U 4 8 5 2.16+5 0.	0 0.0 0.99 0.99 0.0				
0.0111 HR TIME TO 40 SEC					
F 5 4 0 3.94E5		. •			
F 5 6 0 3.76E4 0.0114 HR					
TIME TO 41 SEC	· · · · ·				
F 5 4 0 2.82E5 F 5 6 0 1.50E5					
0.0117 HR TIME TO 42 SEC					
F 5 4 0 1.57E5			. '		
F 5 6 0 2.75E5 0.0119 HR				-	
TIME TO 43 SEC F 5 4 0 4.35E4					
F 5 6 0 3.88E5					
0.01667 HR TIME TO 60 SEC					
F5400.0					
F 5 6 0 4.32E5 0.0197 HR	•				
TIME TO 71 SEC F 2 4 0 0.75				•	
F 2 6 0 0.25					
0.0222 HR TIME TO 80 SEC					*
F 5 4 0 0 0	v			•	
F 5 6 0 4.32E5 0.0225 HR					
TIME TO 81 SEC F 5 4 0 9.41E4				•	
F 5 6 0 3.38E5					
0.0228 HR TIME TO 82 SEC					
F 5 4 0 2.53E5 F 5 6 0 1.79E5					
0.0283 HR					•
TIME TO 102 SEC F 5 4 0 2.44E5					
F 5 6 0 1.88E5 0.0367 HR					
TIME TO 132 SEC					
F 5 4 0 2.29E5 F 5 6 0 2.03E5					•
0.0458 HR					·
TIME TO 165 SEC F 5 4 0 2.20E5					
F 5 6 0 2.12E5 0.0469 HR			•		
TIME TO 169 SEC					
F 5 4 0 2.17E5 F 5 6 0 2.15E5					
0.0583 HR					
TIME TO 210 SEC F 5 4 0 2.20E5					
F 5 6 0 2.12E5					
0.0667 HR TIME TO 4 MIN					

•

			<u>.</u>	. ·		
AVA						;
Calculation No. TI-RPS-197			Rev: 2	1	Plant: WB	N Page:
Subject: Offsite Doses Due to	a Regulatory Guide 1	.4 Loss of			pared:	Date:
Coolant Accident				Che	ecked:	Date:
0.0853 HR						
TIME TO 307 SEC F 2 6 0 0						
F 2 3 0 0.25 F 3 4 0 5.74E4 CFH						
F 3 10 0 5.4E5 F 3 9 0 1672.8			•			
U 10 7 9 5.4+5 0.0 0.0 0.99 0.9 F 9 3 0 532.2	9 0.0					
F 9 6 0 5.4E5 0.1383 HR						<i>,</i>
TIME TO 498 SEC F 5 4 0 2.82E5	·					
F 5 6 0 1.50E5 0.156 HR						
TIME TO 0.156 HR F 5 4 0 3.23E5						
F 5 6 0 1.09E5 0.1672 HR						
TIME TO 602 SEC R 1 3 1.44						
0.1675 HR TIME TO 603 SEC						
F 5 4 0 3.34E5 F 5 6 0 9.79E4						
0.2361 HR TIME TO 850 SEC						•
F 5~4 0 2.76E5 F 5 6 0 9.20E4						
0.267 HR TIME TO 0.267 HR						
F 5 4 0 2.82E5 F 5 6 0 8.62E4						
0.3056 HR TIME TO 0.1100 SEC						
R 1 3 1.38 0.323 HR						
TIME TO 0.323 F 5 4 0 2.87E5	· .					
F 5 6 0 8.04E4 0.3750 HR						
TIME TO 1350 SEC R 1 3 1.34						
0.4444 HR TIME TO 1600 SEC						
F 5 4 0 2.93E5 F 5 6 0 7.46E4						
0.489 HR TIME TO 0.489 HOUR						
F 5 4 0 2.99E5 F 5 6 0 6.88E4			·			
R 1 3 1.34 0.5 HR						
TIME TO 30 MIN R 1 3 1.13						
0.5139 HR TIME TO 1850 SEC						
F 3 6 0 5.94E5 U 10 7 9 0.0 0.0 0.0 0.99 0.99	0.0		•			
0.5666 HR TIME TO 34 MIN						
F 5 4 0 3.05E5 F 5 6 0 6.29E4						
0.5833 HR TIME TO 2100						
U 10 7 9 5.4+5 0.0 0.0 0.99 0. F 3 6 0 0.0	99 0.0				• •	
.615 HR TIME TO 0.615 HOUR						
F 5 4 0 3.10B5 F 5 6 0 5.74B4						
.768 HR TIME TO 0.768 HOUR						

	. 107		Rev: 21	. T	Plant: WB	Page 07	
Calculation No. TI-RPS		tom: Guide 1 4 Loss of	NEV: 21	Prep			
Coolant Accident	S Due to a Regula	lory Guide 1.4 Loss of		Chec		Date: Date:	
		<u></u>		Onec		Date.	. .
.824 HR FIME TO 0.824 R 1 3 0.76 1.00 HR	•.		•				
TIME TO 1.00 HOURS R 1 3 0.0 2.0 HR TIME TO 2.0 HOURS							
F 3 4 0 4.16E4 F 5 4 0 2.150E5 F 5 6 0 4.164E4 N 6 0 P 1 0 6							
PI06 8 HR FIME TO 8 HOURS N 6 0 P 1 0 6			·			·	
24.0 HR TIME TO 1 DAY N 6 0 P 1 0 6 96 HR			. [.]				
TIME TO 4 DAYS F 1 2 0 66.1 CFH N 6 0 P 1 0 6		· .	·				
720 HR TIME TO 30 DAYS P 1 0 6 T	·						
т * /		,					

. Y .

,

. 1

U VA	· · ·			
Calculatio	on No. TI-RPS-197	Rev: 21	Plant: W	BN Page: 28
Subject: Offsite Doses Due to a Regulatory Guide 1.4 Los			Prepared:	Date:
Coo	lant Accident		Checked:	Date:

Appendix B FENCDOSE Input Deck

//R197F19F JOB 264360, '9MBERG.BIN111', MSGLEVEL=1, MSGCLASS=T //*MAIN ORG=LOCAL, CLASS=SB //JCL JCLLIB ORDER=(APB.NEN.EX262358.PROCLIB) //STEP1 EXEC FNCDOSV4, COND=(4, L/T) //FNCDOS1.FT05F001 DD * 1 KRM-83 KRM-85 KR-85 KR-87 KR-88 KR-89 XEM-131 XEM-133 XE-133 XEM-135 XE-135 XE-138 I-131 I-132 I-133 I-134 I-135 I*-131 I*-132 I*-133 I*-134 I*-135 н-3 т .141E-3 .668E-4 .459E-4 .204E-4 .635E-5 6.07E-4 WBN MHA-4 MIN AUX BLDG BYPASS (FINAL ABSCE) TIME TO 2.0 HOURS 6 'ENVIRONMENT CURIES ' \$ TN= 0.2000E+01 1 5.526E+02 2 1.528E+03 3 5.974E+01 4.1.972E+03 5 3.788E+03 6 2.378E+02 7 6.454E+01 8 3.879E+02 9 1.268E+04 10 7.974E+02 11 3.325E+03 12 1.300E+03 13 8.458E+01 14 1.169E+02 15 1.751E+02 19 5.951E+00 16 1.734E+02 17 1.623E+02 18 4.447E+00 20 9.208E+00 21 8.491E+00 22 8.440E+00 23 5.452E+01 WBN MHA-4 MIN AUX BLDG BYPASS (FINAL ABSCE) TIME TO 8 HOURS 6. 'ENVIRONMENT CURIES ' \$ TN= 0.8000E+01 1 8.983E+02 2 5.238E+03 3 3.741E+02 4 1.915E+03 9 7.792E+04 5 9.316E+03 7 4.008E+02 8 2.316E+03 6 1.504E-09 10 4.744E+03 12 7.954E+00 15 3.444E+01 11 1.748E+04 13 1.917E+01 14 7.114E+00 17 2.295E+01 18 2.378E+00 16 1.938E+00 19 8.783E-01 20 4.284E+00 21 2.383E-01 22 2.844E+00 23 3.414E+02 WBN MHA-4 MIN AUX BLDG BYPASS (FINAL ABSCE) TIME TO 1 DAY 6 'ENVIRONMENT CURIES ' \$ TN= 0.2400E+02 1 1.536E+02 2 4.389E+03 3 1.385E+03 4 1.109E+02 5 3.775E+03 6 0.0 7 1.452E+03 8 7.541E+03 9 2.738E+05 10 1.324E+04 11 3.686E+04 12 2.994E-07 13 4.914E+01 14 1.359E+00 15 6.428E+01 17 2.130E+01 16 1.704E-02 18 6.118E+00 19 1.689E-01 20 8.029E+00 21 2.119E-03 22 2.652E+00 23 1.264E+03 WBN MHA-4 MIN AUX BLDG BYPASS (FINAL ABSCE) TIME TO 4 DAYS ' \$ TN= 0.9600E+02 6 'ENVIRONMENT CURIES 1 3.524E-01 2 3.044E+02 3 3.487E+03 4 1.714E-02 5 6.050E+01 6 0.0 7 3.390E+03 9 5.606E+05 8 1.177E+04 10 6.372E+03 11 1.385E+04 12 0.0 17 2.606E+00 13 9.541E+01 14 6.319E-03 15 4.242E+01 19 7.853E-04 16 3.817E-08 18 1.188E+01 20 5,298E+00 21 4.745E-09 22 3.246E-01 23 3.181E+03 WBN MHA-4 MIN AUX BLDG BYPASS (FINAL ABSCE) TIME TO 30 DAYS ' \$ TN= 0.7200E+03 6 'ENVIRONMENT CURIES 3 2.790E+04 8 7.087E+03 2 3.240E-03 7 1.404E+04 1 4.419E-13 4 2.444E-21 5 7.596E-07 6 0.0 9 1.048E+06 10 7.528E+00 12 0.0 17 1.279E-03 11 5.032E+01 13 2.828E+02 14 1.637E-12 15 4.113E+00 16 0.0 18 3.520E+01 19 1.096E-13 20 5.137E-01 22 1.592E-04 21 0.0 23 2.546E+04

Calculation No. TI-RPS-197	Rev: 21	Plant: WBN	Page: 29
Subject: Offsite Doses Due to a Regulatory Guide 1.4 Loss of	Pr	epared:	Date:
Coolant Accident		necked:	Date:

Ren ihelps

Appendix C

TI-RPS-197 Appendix AC

Flow to ice Condenser Prior to Air Return Fan Startup

The purpose of this paper is to demonstrate that sufficient containment volume will be directed to the ice condenser compartment during the first 10 minutes of a design basis LOCA to meet statements made concerning the ice condenser's ability to remove lodine.

For this calculation, the containment model used in the safety-related qualification of the MONSTER software was rerun after modifying the printout frequency inputs to secure the flow information which was not readily retrievable from the original run. The containment model is of the SQN containment; however, for the purposes of demonstrating the amount of flow which can reasonably be expected to be directed to the ice condenser, the SQN model is adequate for use at WBN since the mass and energy releases are similar for both plants during the time of interest.

Sufficient flow to the ice condenser is demonstrated if <u>at least</u> 400,000 ft⁹ of the lower compartment atmosphere can be shown to enter the ice condenser during the first 10 minutes following the DBA. This requirement comes from the calculations of offsite dose, control room operator dose and equipment qualification considerations, all of which assume that airflow through the ice condenser averages 40,000 cfm for the duration of the event. It should be emphasized that the important parameter for these dose calculations is the total volume that passes through the ice condenser and not the consistency of the volumetric flow rate.

From the following figures, which were generated from the containment model rerun, the volume entering the ice condenser can be estimated during the blowdown period (0. to ~23 seconds, Figure A). During this period, the total mass entering the ice condenser is approximately 519,000 b which consists of an air/steam mixture. From the computer run, the specific volume during the blowdown period is at least 6 ft⁴/b. The total volume entering the ice condenser is therefore estimated to be 3.114 E6 ft³. This is well above the required volume of 400,000 ft³ which demonstrates the conservative assumptions regarding flow into the los condenser made in the offsite dose, control room operator dose and equipment qualification calculations.

Figure B shows the flow to the ice condenser as calculated by the model for the 50 second to 600 second time period. An estimate of the volume entering the ice condenser during this period was not made. The figure is included simply to show that flow does continue prior to air return fan startup at 600 seconds albeit at a reduced and fluctuating rate caused by the reduced mass and energy release produced by the large break LOCA.

References:

1. MONSTER, Software ID 262303, User Manual P3 (D01930302007)

2. Microfiche TVA-F-1000084

3. MONSTER Input file - Fliekeeper Reference Number 263082

Prepared: tata

Reviewed

Calculation No. TI-RPS-197	Rev: 2	I Plant: WBN	Page: 30
Subject: Offsite Doses Due to a Regulatory Guide 1.4 Loss of	<u> </u>	Prepared:	Date:
Coolant Accident		Checked:	Date:

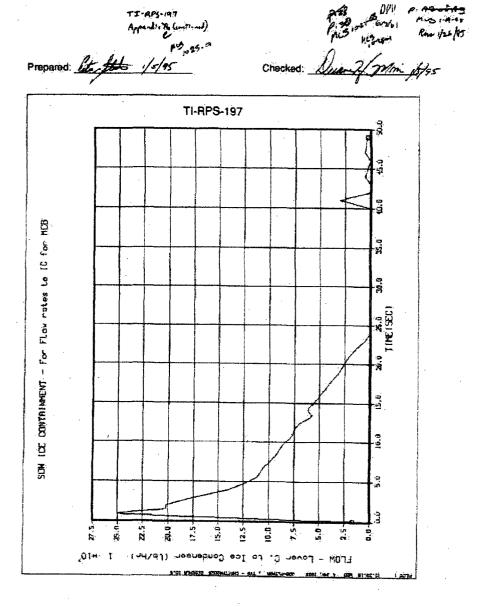


Figure A

IVA					
Calculatio	on No. TI-RPS-197	Rev: 21	1	Plant: WBN	Page: 31
Subject:	Offsite Doses Due to a Regulatory Guide 1.4 Loss of	• • • • • •	Pre	pared:	Date:
Coo	lant Accident		Ch	ecked:	Date:

T'S-1205 147 Appendix & link رقى ه Prepared:

24 Moria 1/3/95 Checked:

TI-RPS-197 800.0 550.0 2005 10.03 SCIV ICE CONTRINEINT - For flav roles to 10 for MCB 00010 350.0 250.0 XID.0 TIME(SEC) 200.0 8 0,00 8.95 0.0 6.5 10.0-30.01 5 N.0. 0.00 6.52 0.02 0.51 5.0 \$ Frink - Louer C. to Toe Condenser - Mill? ,01× 1

Figure B

Calculation No. TI-RPS-197	Rev: 21	l	Plant: WBN	Page: 32
Subject: Offsite Doses Due to a Regulatory Guide 1.4 Loss of	•	Pre	pared:	Date:
Coolant Accident		Che	cked:	Date:

Appendix D - Ice Weight Reduction Impact

Revision 16 incorporated EDC 50951A, which reduced the ice weight in containment. This impacts the iodine removal efficiencies for this calculation. As a result of this, the iodine removal efficiencies found in ref. 44 are used in place of the old values found in ref. 15. It was found that the previous values found in Revision 15 were conservative and bounded the results in Revision 16, and thus are still acceptable. Therefore successors to this calculation will not need to be revised. The following are the iodine removal efficiencies used in the STP model:

Table 2a Iodine removal efficiencies.

time (hrs)	efficiency	lambda *
0 - 0.0373	0.98	1.85
0.0373-0.154	0.972	1.84
0.154-0.171	0.947	1.79
0.171-0.212	0.71	1.34
0.212-0.272	0.7	1.32
0.272-0.567	0.656	1.24
0.567-0.939	0.5	0.94
0.939-0.982	0.4	0.76
0.982-1.007	0.21	0.40
1.007-720	0	0.00
Mates This table is		T-11- 2

Note: This table is the equivalent of Table 2 on page 15.

* Lambda = (F/V)*eff = (40,000 cfm/1.27E6 cuft)(60 min/hr)(eff) = 1.89*eff [hr⁻¹]

The following is a comparison of the results for the 100% tritium airborne case. The R16 column results use the values in the above table and are less than or equal to the doses found in R15. Only the one case was ran as it was the bounding case in R15.

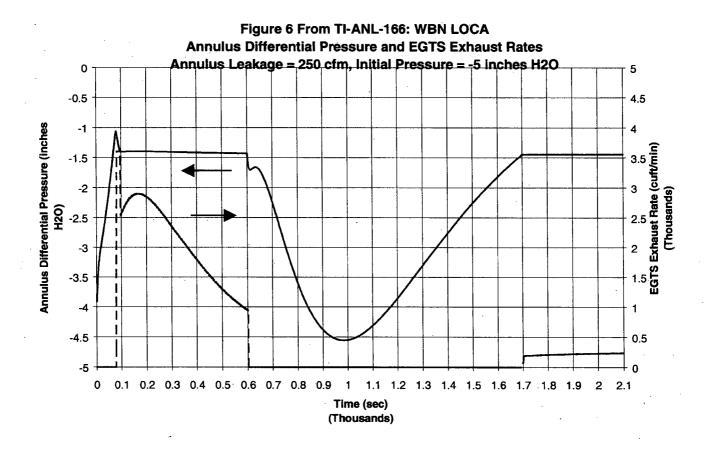
2-hr EAB	R15	R16	
	TPC	TPC	
• •	100% tritium	100% tritium	
	airborne	airborne	
gamma	1.660	1.659	
beta	0.955	0.955	
thyroid (ICRP-2)	33.84	33.79	
thyroid (ICRP-30	19.34	19.32 2.238	
TEDE	2.240		
30-day LPZ	TPC	TPC	
30-day LPZ	TPC 100% tritium	TPC 100% tritium	
30-day LPZ			
	100% tritium	100% tritium	
gamma	100% tritium airborne	100% tritium airborne	
gamma beta	100% tritium airborne 1.328	100% tritium airborne 1.317	
30-day LPZ gamma beta thyroid (ICRP-2) thyroid (ICRP-30	100% tritium airborne 1.328 1.605	100% tritium airborne 1.317 1.598	

		· · ·	` . .	. —	
Calculatio	on No. TI-RPS-197	Rev: 21	1	Plant: WBN	1 Page: 33
Subject:	Offsite Doses Due to a Regulatory Guide 1.4 Loss of		Pre	pared:	Date:
Coo	lant Accident		Ch	ecked:	Date:

Appendix E EGTS Exhaust and Recirculation Rates and old R17 Results

This appendix is to archive the old EGTS exhaust and recirculation rates. These flows are based on the old Revision 17 models. The initial conditions are for the annulus to start at -5" H2O, one train of EGTS operation, and no single failure of any controllers or component in the system and 250 cfm steady state EGTS exhaust. R18 if the calculation assumes EGTS is running abnormally, so as to encompass all possible failure modes.

Revision 17 Table 3 EGTS Flow Rates


Time Interval	• · · ·	Recircula	ation Rate	Exhaust Rate	
[sec]	[hours]	[cfm]	[cfh]	[cfm] [cfh]	
0-30	0-0.00833	0.00	0.00E+00	0.00 0.00E+00	F .
30-77	0.00833-0.0214	3600.00	2.16E+05	0.00 0.00E+00)
77-78	0.0214-0.0217	3286.62	1.97E+05	313.38 1.88E+04	: •
78-79	0.0217-0.0219	2352.31	1.41E+05	1247.69 7.49E+04	:
79-80	0.0219-0.0222	1304.79	7.83E+04	2295.21 1.38E+05	j –
80-81	0.0222-0.0225	362.60	2.18E+04	3237.40 1.94E+05	ý –
81-96	0.0225-0.0267	0.00	0.00E+00	3600.00 2.16E+05	;
96-97	0.0267-0.0269	1067.04	6.40E+04	2532.96 1.52E+05	i
97-98	0.0269-0.0272	1074.82	6.45E+04	2525.18 1.52E+05	i
98-99	0.0272-0.0275	1063.01	6.38E+04	2536.99 1.52E+05	;
99-113	0.0275-0.0314	986.43	5.92E+04	2613.57 1.57E+05	5
113-123	0.0314-0.0342	878.98	5.27E+04	2721.02 1.63E+05	5
123-138	0.0342-0.0383	801.79	4.81E+04	2798.21 1.68E+05	5
138-153	0.0383-0.0425	741.04	4.45E+04	2858.96 1.72E+05	5
153-169	0.0425-0.0469	713.24	4.28E+04	2886.76 1.73E+05	5
169-170	0.0469-0.0472	707.42	4.24E+04	2892.58 1.74E+05	5
170-180	0.0472-0.05	711.09	4.27E+04	2888.91 1.73E+05	5
180-200	0.05-0.0556	735.79	4.41E+04	2864.21 1.72E+05	5
200-220	0.0556-0.0611	791.97	4.75E+04	2808.03 1.68E+05	5
220-240	0.0611-0.0667	872.06	5.23E+04	2727.94 1.64E+05	5
240-260	0.0667-0.0722	968.80	5.81E+04	2631.20 1.58E+05	5
260-446	0.0722-0.1239	1537.22	9.22E+04	2062.78 1.24E+05	5
446-601	0.1239-0.1669	2357.54	1.41E+05	1242.46 7.45E+04	1
601-602	0.1669-0.1672	2661,92	1.60E+05	938.08 5.63E+04	1
602-1700	0.1672-0.4722	3600.00	2.16E+05	0.00 0.00E+00	כ
1700-1701	0.4722-0.4725	3518.30	2.11E+05	81.70 4.90E+03	3
1701-1702	0.4725-0.4728	3424.95	2.05E+05	175.05 1.05E+04	1
1702-1703	0.4728-0.4731	3410.95	2.05E+05	189.05 1.13E+04	1
1703-1704	0.4731-0.4733	3408.70	2.05E+05	191.30 1.15E+04	1
1704-1705	0.4733-0.4736	3408.18	2.04E+05	191.82 1.15E+04	1
1705-1855	0.4736-0.5153	3395.35	2.04E+05	204.65 1.23E+04	1
1855-2100	0.5153-0.5833		2.02E+05	227.63 1.37E+04	
2100-30days*		· - · - ·	2.01E+05	250.00 1.50E+04	

*required to maintain annulus pressure when assuming 250 cfm annulus inleakage, ref.19

Note: The annulus exhaust rates from TI-ANL-166 (ref.19) are based on total EGTS flow of 3600 cfm (=4000-10%). This is conservative as it minimizes cleanup of the annulus environment via EGTS filters.

t VA				. •	
Calculatio	on No. TI-RPS-197	Rev: 21	1	Plant: WBN	Page: 34
Subject:	Offsite Doses Due to a Regulatory Guide 1.4 Loss of		Pre	pared:	Date:
Coo	lant Accident		Che	ecked:	Date:

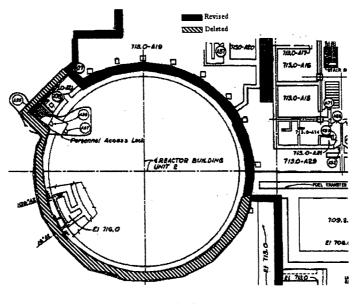
Revision 17 EGTS performance curves:

TVA				
Calculation No. TI-RPS-197	Rev: 21		Plant: WBN	Page: 35
Subject: Offsite Doses Due to a Regulatory Guide 1.4 Loss of		Pre	pared:	Date:
Coolant Accident		Che	cked:	Date:

Revision 17 Results (with EGTS operating correctly and initial -5" H2O annulus pressure)

2-hr EAB				
		TPC	TPC	
	Standard	100% tritium	3% tritium	
	Core	airborne	airborne	limit
Gamma	1.596	1.660	1.660	25
Beta	0.951	0.955	0.954	300
Thyroid (ICRP-2)	35.42	33.84	33.84	300
Thyroid (ICRP-30)	20.25	19.34	19.34	300
TEDE	2.221	2.240	2.222	25
30-day LPZ				
		TPC	TPC	
	Standard	100% tritium	3% tritium	
	Core	airborne	airborne	limit
Gamma	1.322	1.328	1.328	25
Beta	1.640	1.605	1.593	300
Thyroid (ICRP-2)	11.50	10.99	10.99	300
Thyroid (ICRP-30)	6.872	6.563	6.563	300
TEDE	1.230	1.435	1.229	25

Julation No. TI-RPS-197	Rev: 21	Plant: WBN	Page: 36
Subject: Offsite Doses Due to a Regulatory Guide 1.4 Loss of	Р	repared:	Date:
Coolant Accident	C	hecked:	Date:

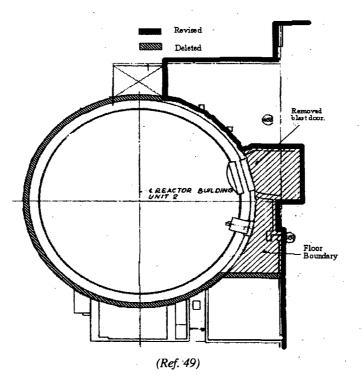

APPENDIX F - Modified ABSCE Boundary of DCN 52283-A

The purpose of this appendix is to address changes in the ABSCE boundary identified as part of DCN 52283-A. In order to complete Watts Bar Unit 2, a construction access opening needs to be created in the Unit 2 reactor building concrete wall. This requires the definition of an interim ABSCE that does not include the Unit 2 reactor building (Ref. 49).

The total ABSCE volume enclosed when one unit's containment with one annulus and Condensate Demineralized Waste Evaporator (CDWE) are added to that of the Auxiliary Building (Ref. 52) is:

Auxiliary Building (net free volume) = $3.5 \times 10^6 \text{ ft}^3$ <u>One</u> Containment (net free volume) = $1.27 \times 10^6 \text{ ft}^3$ <u>One</u> Annulus (net free volume) = $3.96 \times 10^5 \text{ ft}^3$ CDWE (net free volume) = $5.1433 \times 10^4 \text{ ft}^3$

Additionally, Door A-77 at elevation 713.0 in the auxiliary building becomes a pressure and security barrier and needs to be sealed:


The volume from elevation 713.0 not within the interim ABSCE is approximately

a) $(4.69 \times 10^2 \text{ ft}^2) \cdot (24 \text{ ft}) = 1.13 \times 10^4 \text{ ft}^3.$

This was calculated using dimensions from Ref. 54 and a building height of 24 ft for the building provided in Ref. 52, Appendix A.

	on No. TI-RPS-197	Rev: 21		Plant: WBN	Page: 37
Subject:	Offsite Doses Due to a Regulatory Guide 1.4 Loss of		Pre	pared:	Date:
Coo	lant Accident	·	Che	ecked:	Date:

Also as part of the ABSCE redefinition, the west wall of room 757.0-A14 in the auxiliary building becomes the revised boundary. Door A157 is sealed and locked. With use of the Unit 2 reactor building equipment hatch during construction, room 757.0-A15 in the auxiliary building can either be within or outside the interim ABSCE boundary.

To correctly estimate the volume of the interim ABSCE boundary under both conditions, calculations were performed that included and excluded the equipment hatch enclosure volume from the ABSCE.

The volume from room 757.0-A14 not within the interim ABSCE is approximately

a) $(1.01 \times 10^3 \text{ ft}^2) \cdot (25 \text{ ft}) = 2.73 \times 10^4 \text{ ft}^3.$

The volume from room 757.0-A15 is approximately

b) $(1.17 \text{ x } 10^3 \text{ ft}^2) \cdot (25 \text{ ft}) = 2.93 \text{ x } 10^4 \text{ ft}^3.$

The areas for both rooms were calculated using dimensions from Ref. 53 and a building height of 25 ft was provided in Ref. 52, Appendix A.

The volume of the revised auxiliary building is either:

a) $3.5 \times 10^6 \text{ ft}^3 - [1.13 \times 10^4 \text{ ft}^3 + 2.73 \times 10^4 \text{ ft}^3] = 3.46 \times 10^6 \text{ ft}^3$ including room 757.0-A15.

b) $3.5 \times 10^6 \text{ ft}^3 - [1.13 \times 10^4 \text{ ft}^3 + 2.73 \times 10^4 \text{ ft}^3 + 2.93 \times 10^4 \text{ ft}^3] = 3.43 \times 10^6 \text{ ft}^3$ not including 757.0-A15.

					•
Julatic	on No. TI-RPS-197	Rev: 22	1	Plant: WBN	Page: 38
Subject:	Offsite Doses Due to a Regulatory Guide 1.4 Loss of		Prepared:		Date:
Cool	lant Accident		Che	ecked:	Date:

The volume of the revised ABSCE boundary is either:

a) $(3.46 + 1.27 + 0.396 + 0.051) \times 10^6 \text{ ft}^3 = 5.18 \times 10^6 \text{ ft}^3$ including room 757.0-A15.

b) $(3.43 + 1.27 + 0.396 + 0.051) \times 10^6 \text{ ft}^3 = 5.15 \times 10^6 \text{ ft}^3$ not including 757.0-A15.

The new total enclosed volume of the ABSCE is as much as 1.73×10^6 ft³ less than the original which contained two containments and two annuli (Ref. 52, Section 7.1).

The applied effective auxiliary building volume of 1.62×10^5 ft³ (see Assumptions & Data section, pg 11) is conservatively bounding for both the auxiliary building volume of 3.5×10^6 ft³ and the smallest possible auxiliary building volume of 3.43×10^6 ft³ resulting from DCN 52283-A. Thus, the offsite doses calculated are still appropriate for use while the ABSCE boundary is modified.

This Appendix added by Revision 19.

	on No. TI-RPS-197	Rev: 21	Plant: WB	N Page: 39
Subject:	Offsite Doses Due to a Regulatory Guide 1.4 Loss of	F	Prepared:	Date:
Coo	lant Accident		Checked:	Date:

Appendix G Evaluation of the EGTS Flow Rates (8000+10% vs. 8000-10%)

This appendix is to compare the EGTS flow of 8000+10%=8800 cfm total flow to 8000-10%=7200 cfm total flow. The main text contains the 7200 cfm case. The 8800 cfm case utilizes the following flow profiles from TI-ANL-166 (ref.19)

 Table 3

 EGTS Performance with Annulus Initially at 0" H2O (ref.19: TI-ANL-166) 2 train EGTS 8800 cfm

Time Inter	rval	Time Inter	val	Recirculation	Rate	Exhaust R	ate
[sec]	[sec]	[hours]	[hours]	[cfm]	[cfh]	[cfm]	[cfh]
0	30	0	0.0083	0	0.00E+00	0	0.00E+00
30	39	0.0083	0.0108	8800	5.28E+05	0	0.00E+00
39	40	0.0108	0.0111	8033.96	4.82E+05	766.04	4.60E+04
40	41	0.0111	0.0114	5750.1	3.45E+05	3049.9	1.83E+05
41	42	0.0114	0.0117	3189.48	1.91E+05	5610.52	3.37E+05
42	43	0.0117	0.0119	886.35	5.32E+04	7913.65	4.75E+05
43	[·] 71	0.0119	0.0197	0	0.00E+00	8800	5.28E+05
71	80	0.0197	0.0222	5647	3.39E+05	3153	1.89E+05
80	81	0.0222	0.0225	5820	3.49E+05	2980	1.79E+05
81	82	0.0225	0.0228	5804.2	3.48E+05	2995.8	1.80E+05
82	102	0.0228	0.0283	5664	3.40E+05	3136	1.88E+05
102	132	0.0283	0.0367	5416	3.25E+05	3384	2.03E+05
132	165	0.0367	0.0458	5259	3.16E+05	3541	2.12E+05
165	169	0.0458	0.0469	5219	3.13E+05	3581	2.15E+05
169	210	0.0469	0.0583	5259	3.16E+05	3541	2.12E+05
210	307	0.0583	0.0853	5550	3.33E+05	3250	1.95E+05
307	498	0.0853	0.1383	6301	3.78E+05	2499	1.50E+05
498	602	0.1383	0.1672	6986	4.19E+05	1814	1.09E+05
602	603	0.1672	0.1675	7168.4	4.30E+05	1631.6	9.79E+04
603	850	0.1675	0.2361	4597	2.76E+05	1534	9.20E+04
850	1100	0.2361	0.3056	4694	2.82E+05	1437	8.62E+04
1100	1350	0.3056	0.3750	4791	2.87E+05	1340	8.04E+04
1350	1600	0.3750	0.4444	· 4888	2.93E+05	1243	7.46E+04
1600	1850	0.4444	0.5139	4985	2.99E+05	1146	6.88E+04
1850	2100	0.5139	0.5833	5082	3.05E+05	1049	6.29E+04
2100	7200	0.5833	2.0000	5174	3.10E+05	957	5.74E+04
7200	30 days	2.0000	30days	3584	2.15E+05	694	4.16E+04

Julati		Rev: 2	1	Plant: WBN	Page: 40
Subject:	Offsite Doses Due to a Regulatory Guide 1.4 Loss of	• · · ·	Pre	pared:	Date:
Coo	lant Accident		Che	ecked:	Date:

Results

2 train 7200 cfm

2-Hr	EAB

	2 hr op
TPC 3%	action
Gamma	2.133
Beta	1.213
Inhalation (ICRP-30)	28.55
TEDE	3.061

2 train 8800 cfm 2-Hr EAB

Z-HI EAD	
TPC 3%	2 hr op action
Gamma	2.13
Beta	1.211
Inhalation (ICRP-30)	28.54
TEDE	3.058

30-Day LPZ

	2 hr op
TPC 3%	action
Gamma	1.662
Beta	1.856
Inhalation (ICRP-30)	9.038
TEDE	1.594

30-Day LPZ

TPC 3%	2 hr op action
Gamma	1.662
Beta	1.856
Inhalation (ICRP-30)	9.036
TEDE	1.593

Discussion

As can be seen the 7200 cfm EGTS case is slightly higher than the 8800 cfm case. This is primarily due to the increased time to establish a negative pressure in the annulus and increased time to pump it down.

Jation No. TI-RPS-197	Rev: 21	Plant: WBI	N Page: 41
Subject: Offsite Doses Due to a Regulatory Guide 1.4	4 Loss of Pro	epared:	Date:
Coolant Accident	Ch	ecked:	Date:

Appendix H Evaluation of Operator Action Time (1 Hour vs. 2 Hour)

This appendix is to evaluate the operator action time. As noted in Appendix F, the failure to perform an operator action could result in significant increases in offsite doses. This appendix evaluates a reasonable time frame for operator action. The main text uses a 1 hour time operator action. The 7200 cfm EGTS STP model is modified to have an operator action time at 2 hours instead of 1. The results (rem) were:

2-Hr EAB

TPC 3%	2 hr op action		
Gamma	2.133		
Beta	1.213		
Inhalation (ICRP-30)	28.55		
TEDE	3.061		

30-Day LPZ

TPC 3%	2 hr op action
Gamma	1.662
Beta	1.856
Inhalation (ICRP-30)	9.038
TEDE	1.594

2-Hr EAB	
TPC 3%	1 hr op action
Gamma	2.156
Beta	1.227
Inhalation (ICRP-30)	28.57
TEDE	3.078

30-Day LPZ

50 Day Land	
TPC 3%	1 hr op action
Gamma	1.668
Beta	1.860
Inhalation (ICRP-30)	9.045
TEDE	1.598

Discussion:

The difference between an operator action of 1 hour or 2 hours is very small (about 1% maximum). The 1 hour action will result in slightly higher doses, therefore it should be used as the design basis of the plant. The window for operator action should be between 1 and 2 hours.

	on No. TI-RPS-197	Rev: 21		Plant: WBN	Page: 42
Subject:	Offsite Doses Due to a Regulatory Guide 1.4 Loss of	· · · · · · · · · · · · · · · · · · ·	Pre	pared:	Date:
Coo	lant Accident		Che	ecked:	Date:

Appendix I - Evaluation of singe EGTS train operation with 250 cfm exhaust

Calculation WBNNAL3-028 R4 determined the offsite and control room doses due to a single EGTS train (one train has a single failure) with a Technical Specification annulus leakage of 250 cfm steady state at -0.5" H2O. The following is the pertinent parts of the calculation that still apply to this analysis.

Assumptions

2. It is assumed that the annulus is at atmospheric pressure (0 inches H2O) at the start of the LOCA. Technical Justification: This is the basis for this calculation.

Special Requirements/Limiting Conditions

There are no special requirements or limiting conditions in this calculation.

Calculations

The isotope releases are determined by STP. Except for the initial containment leakage and the EGTS recirculation and exhaust flows, the model is the same as the final ABSCE STP model found in TI-RPS-197. The EGTS flows are taken from TI-ANL-166 and are shown in Table 1. Since the annulus starts out at positive pressure (>0.25" H2O), the containment leakage that normally goes to the annulus will instead go directly to the environment. The TI-RPS-197 flow split is 75% to the annulus and 25% to the Auxiliary Building. Since the ABGTS has not started up (until 4 minutes), the entire leakage goes to the environment. The containment flow split is therefore modeled as "F 2 6 0 1.0". This condition lasts for 114 seconds post LOCA. After 114 seconds, the annulus differential pressure falls below -0.25" (see TI-ANL-166). The containment flow split is reset to the 75% split to the annulus (and 25% split to the environment) at this time. The LPZ doses are calculated by using the computer code FENCDOSE. The activity released to the environment during the time intervals 0-2 hours, 2-8 hours, 8-24 hours, 24-96 hours, and 96-720 hours is taken directly from the STP results. The dispersion coefficients (X/Q) are taken from TI-RPS-197.

The control room operator doses are determined by COROD utilizing the STP results as input. The COROD model comes from TI-RPS-198, with the recirculation rates corrected.

	on No. TI-RPS-197	Rev: 21		Plant: WBN	Page: 4	43
Subject:	Offsite Doses Due to a Regulatory Guide 1.4 Loss of	f Prepared:		Date:		
Coo	lant Accident		Che	cked:	Date:	

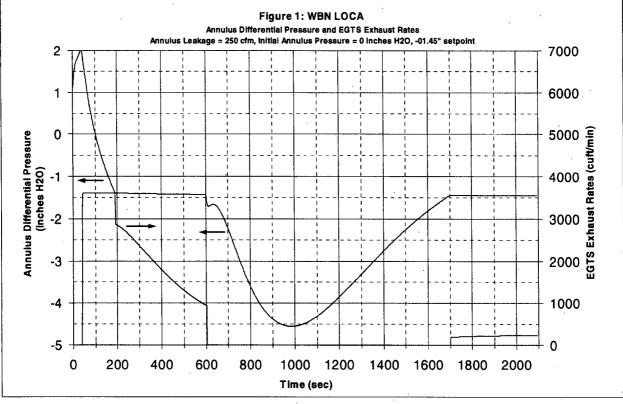

Time Interval				Recirculation Rate		Exhaust Rate		
[sec]	[sec]	[hours]	[hours]	[cfm]	[cfh]	[cfm]	[cfh]	
0	30	0	0.0083	0.00	0.00E+00	0.00	0.00E+00	
30	·39	0.0083	0.0108	3600.00	2.16E+05	0.00	0.00E+00	
39	40	0.0108	0.0111	3286.62	1.97E+05	313.38	1.88E+04	
40.	41	0.0111	0.0114	2352.31	1.41E+05	1247.69	7.49E+04	
41	42	0.0114	0.0117	1304.79	7.83E+04	2295.21	1.38E+05	
42	43	0.0117	0.0119	362.60	2.18E+04	3237.40	1.94E+05	
43	190	0.0119	0.0528	0.00	0.00E+00	3600.00	2.16E+05	
190	191	0.0528	0.0531	537.28	3.22E+04	3062.72	1.84E+05	
191	192	0.0531	0.0533	733.23	4.40E+04	2866.77	1.72E+05	
192	193	0.0533	0.0536	735.14	4.41E+04	2864.86	1.72E+05	
193	194	0.0536	0.0539	737.51	4.43E+04	2862.49	1.72E+05	
194	199	0.0539	0.0553	745.23	4.47E+04	2854.77	1.71E+05	
1 99	207	0.0553	0.0575	764.12	4.58E+04	2835.89	1.70E+05	
207	215	0.0575	0.0597	790.80	4.74E+04	2809.20	1.69E+05	
215	225	0.0597	0.0625	825.45	4.95E+04	2774.56	1.66E+05	
225	245	0.0625	0.0681	892.72	5.36E+04	2707.29	1.62E+05	
245	265	0.0681	0.0736	992.80	5.96E+04	2607.20	1.56E+05	
265	285	0.0736	0.0792	1102.40	6.61E+04	2497.61	1.50E+05	
285	305	0,0792	0.0847	1217.05	7.30E+04	2382.95	1.43E+05	
305	446	0.0847	0.1239	1664.05	9.98E+04	1935.96	1.16E+05	
446	601	0.1239	0.1669	2356.72	1.41E+05	1243.29	7.46E+04	
601	602	0.1669	0.1672	2661.35	1.60E+05	938.65	5.63E+04	
602	1700	0:1672	0.4722	3600.00	2.16E+05	0.00	0.00E+00	
1700	1701	0.4722	0.4725	3508.13	2.10E+05	91.87	5.51E+03	
1701	1702	0.4725	0.4728	3423.44	2.05E+05	176.56	1.06E+04	
1702	1703	0.4728	0.4731	3410.73	2.05E+05	189.27	1.14E+04	
1703	1704	0.4731	0.4733	3408.66	2.05E+05	191.34	1.15E+04	
1704	1705	0.4733	0.4736	3408.17	2.04E+05	191.83	1.15E+04	
1705	1706	0.4736	0.4739	3407.91	2.04E+05	192.09	1.15E+04	
1706	1855	0.4739	0.5153	3395.23	2.04E+05	204.77	1.23E+04	
1855	2100	0.5153	0.5833	3372.37	2.02E+05	227.64	1.37E+04	
2100	30days*	0.5833	720	3350.00	2.01E+05	250.00	1.50E+04	

Table 1 EGTS Flow Rates

*required to maintain annulus pressure when assuming 250 cfm annulus inleakage

Note: The annulus exhaust rates from TI-ANL-166 are based on total EGTS flow of 3600 cfm (=4000-10%). This is conservative as it minimizes cleanup of the annulus environment via EGTS filters

June June 197	Rev: 21		Plant: WBN	Page: 44	
Subject: Offsite Doses Due to a Regulatory Guide 1.4 Loss of		Prepared:		Date: Date:	
Coolant Accident		Che	ecked:		

Julation No. TI-RPS-197		Plant: WBN	Page: 45	
Subject: Offsite Doses Due to a Regulatory Guide 1.4 Loss of	1	Prepared:	Date:	
Coolant Accident		Checked:	Date:	

Results

Offsite Doses (rem):

Olisite Doses (reili).				
2-hr EAB				
	Standard	TPC	TPC	
	Core	100% H3 Rel.	3% H3 Rel.	Limit
gamma	1.899	1.963	1.963	25
beta	1.082	1.087	1.086	300
Thyroid (ICRP-30)	38.43	36.7	36.7	300
TEDE	3.433	3.407	3.388	25
30-day LPZ				
	Standard	TPC	TPC	
	Core	100% H3 Rel.	3% H3 Rel.	Limit
gamma	1.398	1.397	1.397	25
beta	1.677	1.635	1.622	300
Thyroid (ICRP-30)	11.09	10.6	10.6	300
TEDE	1.515	1.705	1.499	25

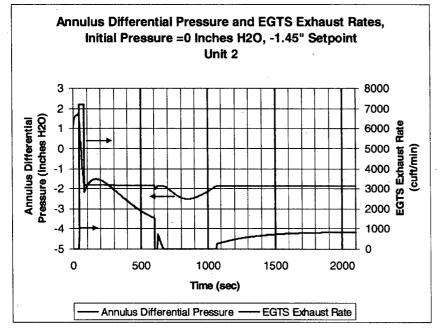
Discussion and Conclusion

The offsite doses calculated are below the 10CFR100 limits of 25 rem gamma, 300 rem beta, 300 rem thyroid and 25 rem TEDE. The control room operator doses are below the 10CFR50 App.A GDC 19 limits of 5 rem gamma, 30 rem beta, 30 rem thyroid, and 5 rem TEDE. The doses determined in the main text (EGTS PCO control loop single failure case) bound except for the thyroid and 2-hr EAB TEDE doses.

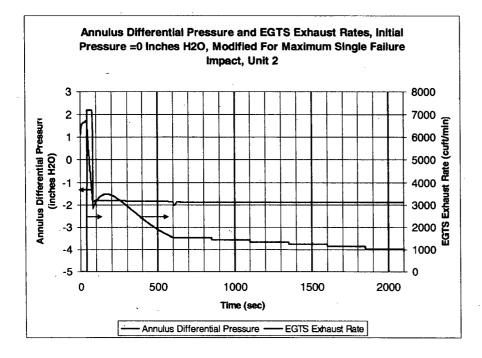
Juliatio	Julation No. TI-RPS-197		Rev: 21		Plant: WBN	
Subject:	Offsite Doses Due to a Regulatory Guide 1.4 Loss of		Prepared:		D)ate:
Coo	lant Accident		Che	cked:	C	Date:

Appendix J: Unit 2 PCO Control Loop Single Failure

The Unit 2 PCO Control Loop Single Failure evaluation only used the bounding Unit 1 models (7200 cfm EGTS flow, 1 hr operator action). The models were the same except for the EGTS flows (case 3-2 taken from TI-ANL-166, ref. 19).


Table 3aEGTS Performance with Annulus Initially at 0" H2O (ref.19: TI-ANL-166) 2 train EGTS 7200 cfm for Unit 2 and 1 hour
operator action

Time Inter	val	Time Inter	val	Recirculation	Rate	Exhaust Ra	te
[sec]	[sec]	[hours]	[hours]	[cfm]	[cfh]	[cfm]	[cfh]
0	30	0	0.0083	0	0.00E+00	0	0.00E+00
30	39	0.0083	0.0108	7200	4.32E+05	0	0.00E+00
39	40	0.0108	0.0111	6573.24	3.94E+05	626.76	3.76E+04
40	41	0.0111	0.0114	4704.62	2.82E+05	2495.38	1.50E+05
41	42	0.0114	0.0117	2609.58	1.57E+05	4590.42	2.75E+05
42	43	0.0117	0.0119	725.2	4.35E+04	6474.8	3.88E+05
43	71	0.0119	0.0197	0	0.00E+00	7200	4.32E+05
71	78	0.0197	0.0217	0	0.00E+00	7200	4.32E+05
78	79	0.0217	0.0219	1062	6.37E+04	6138	3.68E+05
79	80	0.0219	0.0222	4775	2.87E+05	2425	1.46E+05
80	102	0.0222	0.0283	4337	2.60E+05	2863	1.72E+05
102	132	0.0283	0.0367	4188	2.51E+05	3012	1.81E+05
132	165	0.0367	0.0458	3922	2.35E+05	3278	1.97E+05
165	170	0.0458	0.0472	3762	2.26E+05	3438	2.06E+05
170	210	0.0472	0.0583	3719	2.23E+05	3481	2.09E+05
210	307	0.0583	0.0853	3760	2.26E+05	. 3440	2.06E+05
307	498	0.0853	0.1383	4050	2.43E+05	3150	1.89E+05
498	602	0.1383	0.1672	4797	2.88E+05	2403	1.44E+05
602	603	0.1672	0.1675	5232	3.14E+05	1968	1.18E+05
603	850	0.1675	0.2361	5137	3.08E+05	1432	8.59E+04
850	1100	0.2361	0.3056	5237	3.14E+05	1332	7.99E+04
1100	1350	0.3056	0.3750	5337	3.20E+05	1232	7.39E+04
1350	1600	0.3750	0.4444	5437	3.26E+05	1132	6.79E+04
1600	1850	0.4444	0.5139	5537	3.32E+05	1032	6.19E+04
1850	2100	0.5139	0.5833	5637	3.38E+05	932	5.59E+04
2100	3600	0.5833	1.0000	5737	3.44E+05	832	4.99E+04
3600	30 days	1.0000	30days	3455	2.07E+05	604	3.62E+04


After 603 sec, total flow is 5737+832= 6596 cfm for 2 trains and 3455+604=4059 cfm for 1 train based on steady state flow calculation reference 58. This reduces the recirculation cleanup and increases effective releases.

	on No. TI-RPS-197	Rev: 21		Plant: WBN	Page: 47	
Subject: Offsite Doses Due to a Regulatory Guide 1.4 Loss of		L	Prepared:		Date:	
Coolant Accident			Checked:		Date:	

The following is the EGTS performance curve from TI-ANL-166 (ref.19) With Initial Annulus Pressure at 0" H2O for Unit 2:

This is the EGTS profile as modeled for Unit 2. The above curve is modified at 602 sec to have constant flows (see assumptions 22 and 23):

Julation No. 1	'I-RPS-197		· · ·	Rev:	21	Plant: W	BN	Page: 48	
		Regulatory Guide	e 1.4 Loss of		Pr	epared:	Da	ite:	
Coolant Acc						ecked:		ite:	
esults	· · · · · · · · · · · · · · · · · · ·		, * ,						
he results are as follows ((rem):								
nit 2 LOCA with PCO C 2-Hr EAB	ontrol Loop Single	e Failure	-	•					
		10CFR100							
conv core	1 hr op action	Limit							
Gamma	2.019	25							
Beta	1.187	300		•	`				
Inhalation (ICRP-30)	29.88	300							
TEDE	3.047	25							
TPC 100%									
Gamma	2.095	25	1						
Beta	1.192	300							
Inhalation (ICRP-30)	28.54	300							
TEDE	3.055	25							
·									
TPC 3%	4								
Gamma	2.095	25							
Beta	1.191	300							
Inhalation (ICRP-30)	28.54	300							
TEDE	3.033	25							
30-Day LPZ									
conv core	1 hr op action	1 hr op action				:			
Gamma	1.629	25							
Beta	1.898	300							
Inhalation (ICRP-30)	9.404	300							
TEDE	1.577	25	· ·			4			
TPC 100%									
Gamma	1.630	25							
Beta	1.847	300							
Inhalation (ICRP-30)	8.980	300	1						
TEDE	1.785	25							
	1.700	25	-						
TPC 3%									
Gamma	1.630	25							
Beta	1.834	300							
Inhalation (ICRP-30)	8.980	300	· ·						
TEDE	1.568	25							

Discussion and Conclusion

The Unit 2 LOCA with a PCO control loop single failure does not exceed the 10CFR100 limits. The dose consequences of the Unit 2 LOCA with PCO control loop single failure are bounded by the Unit 1 LOCA with PCO control loop single failure.

	n No. TI-RPS-197	Rev: 2	1	Plant: WBN	Page: 49
Subject:	Offsite Doses Due to a Regulatory Guide 1.4 Loss of		Pre	pared:	Date:
Coo	ant Accident		Che	ecked:	Date:

Attachment A

P. AlofA: Attechnicant A TI-RPS-197 TI-RPS-197 Westinghouse Water Reactor Nuclear Technology Division **Electric Corporation** Divisions Box 355 Pillsbuilgh Pennsylvania 15230 28 February 21, 1985 TVA Contract \$71C62-54114-1 WAT-D-6420 Mr. J. A. Raulston Chief Nuclear Engineer NS-OPLS-OPL-85-073 X Tennessee Valley Authority S.O. WAT/WBT-4705 400 W. Summit Hill Drive, W10 C126 Knorville, Tennessee 37902 Jeff Schermerhoraj 14 SQUAD CHECKS Dear Mr. Raulston: D RULL REVIEW TENNESSEE VALLEY AUTHORITY WATTS BAR NUCLEAR PLANT ٥. UNITS NUMBERS 1 AND 2 ICE CONDENSER TODINE REMOVAL EFFICIENCY

The attached reference table (15.5-7) was calculated to show the lice Condenser Todine Removal Efficiency for an ice weight of 2.125 x 10° pounds. The current Watts Bar FSAR Table 15.5-7 was calculated with an ice weight of 2.45 x 10° pounds (page 6.2.11-6).

After you have reviewed the preceding, please contact Larry Tomasic at 412 \star 374-4715 with any questions or comments.

Very truly yours.

L. V. Tomasic/pj Attachment

J. A. Raulston, 3L. 3A

co: L. M. Hills, 1L, 1A J Larkin, 1L I. R. Williamson, 11 R. G. Williams 11

archie Mar (un E. A. Novotnak, Manager Tennessee Valley Authority Projects

JAR

JFC

MNB

RFC

HGO PGI

NAL

OSG DSG SSG

GRJ

B45

ଞ୍ଜ

N O

62

S

ADVANCE COPY OF THIS LETTER SENT TO WEP & RMP.

Am word by Low NAR

NAR FAK FAK WASS MASTER FILE RHB BINB RIM N3M-2-19

Jatio	on No. TI-RPS-197		Rev: 21		Plant: WBN	Page: 50
Subject:	Offsite Doses Due to a Re	gulatory Guide 1.4 Loss of	L	Prep	ared:	Date:
Coo	lant Accident	· · ·		Chec	ked:	Date:
* a * •	TI-RP3-117	TVA WATTS BAR FOR ICE WEIGHT OF 2.12	6		-F P.	AROFAZ

REFERENCE TABLE (15.5-7)

ICE CONDENSER IODINE REMOVAL EFFICIENCY (1)

Time Interval Post LOCA (Hours)	Iddine Removal Efficiency
0.0 to 0.156	0.96
0.156 to 0.267	0.76
0.267 to 0.323	0.73
0.323 to 0.489	0.71
0.489 to 0.615	0.60
0.615 to 0.768	0.58
0.768 to 0.824	0,40
0.824 to 720	0.0

(1) The ice condenser removal efficiencies given in the above table are used for the conservative Regulatory Guide 1.4 analyses. The inlet steam-air mixture coming into the ice condenser is greater than 90 percent steam by volume initially due to the delaying of the operation of the deck fans. Without the delay of operation of the deck fans the amount of steam by volume in the inlet mixture initially would be much lower and the ice condenser iodine removal efficiencies would be reduced.

Juliation No. TI-RPS-197	Rev: 21	Plant: WBN	Page: 51
Subject: Offsite Doses Due to a Regulatory Guide 1.4 Loss of	Pre	epared:	Date:
Coolant Accident	Ch	ecked:	Date:

TI-RP>-197

JAN 2 7 1995

Attachment B

p. BIOFB3 mus 1-2795 Rom 1/27/45

962

950127

January 27, 1995

Walter L. Ellion, IOB IA-WBN

Т ЗЗ

WATTS BAR NUCLEAR PLANT (WBN) FINAL SAFETY ANALYSIS REPORT (FSAR) UPDATE -DISPERSION METEOROLOGY FOR ACCIDENT ANALYSIS

This replaces the January 24, 1995, (RIMS T33 950124 950) memorandum to correct information that was previously provided related to the request for additional information from the Nuclear Regulatory Commission for their environmental review: A sypographical error has been corrected in Attachment 1. Attachment 2 is unchanged.

If you have any questions, please call Doyle Pinman at 8097-C.

Remet & Aventral

Frances P. Weatherford Team Leader Operations Support Atmospheric Sciences CEB 2A-M

DEP:JA

cc(Artachmenis): M. C. Berg, IOB 1F-WBN J. M. Loney, WT 8C-K V. J. Shanks, MOB 2U-WBN D. J. Voeller, MOB 1F-WBN K. G. Wastrack, CEB 2A-M Files, Center, CEB 1B-M

Jation No. TI-RPS-197	Rev: 21	Plant: WBN	Page: 52
Subject: Offsite Doses Due to a Regulatory Guide 1.4 Loss of	Pi	repared:	Date:
Coolant Accident	C	hecked:	Date:

p. B 2 + 53 non +77 55 Auschment 1

Atmospheric Dispersion Factors χ/Q , sec/m³, for Design Basis Accident Analyses Based on Onsite Meteorological Data for Watts Bar Nuclear Plant

A. Based on Meteorological Data from 1974-68 (Section B of Table 2.3-66 in WBN FSAR)

Period (hours)	Exclusion Boundary (1100m)	Low Population Zone (4828m)
0-2	0.604E-3	0.145E-3
2-8	• • •	0.677E-4
8-24	-	0.463E-4
24-96	•	0.203E-4
96-720	·•	0.623E-5

B. Based on Meteorological Data from 1974-93

Period (liours)	Exclusion Boundary (1100m)		Low Population Zone (4828m)
0-2	0.607E-3	-	0.141E-3
2-8	*		0.668E-4
8-24	• · ·	<u>.</u>	0.459E-4
24-96			0.204E-4
96-720	•		0.635E-5

Jation No. TI-RPS-197	Rev: 21	Plant: WBN	N Page: 53
Subject: Offsite Doses Due to a Regulatory Guide 1.4 Loss of		Prepared:	Date:
Coolant Accident		Checked:	Date:

1.53-533 ALS 1-274 Attachment 2 Mar /27

Dispersion Meteorology - Onsite 10-meter Wind Data - 5th Percentile Values of Inverse Wind Speed (1/u) Distributions for Control Room Dose Calculations for Watts Bar Nuclear Plant

A. January 1974 through December 1988 Wind Speed and Direction Data (Section B of Table 2.3-67 in WBN FSAR)

Plume Sectors		А	veraging Periods		
(degrees)	1-hour	8-hour	16-hour	<u>3-day</u>	<u>26-day</u>
89.75-157.25	1.82	1.04	0.852	0.593	0.463
132.25-199.75	1.27	0.760	0.626	0.440	0.316
154,75-222.25	0.866	0.574	0.497	0.360	0.264
192.25-259.75	1.04	0.653	0.576	0.416	0.266
	· .				

B. January 1974 through December 1993 Wind Speed and Direction Data

Plume Sectors			veraging Period		
(deerces)	<u>l-hour</u>	<u>8-hour</u>	16-hour	3-day	<u>26-dav</u>
89.75-157.25	1.97	1.04	0.862	0.607	0.456
132,25-199.75	1.29	0.784	0.626	0.434	0.312
154,75-222:25	0.891	0.606	0.516	0.368	0.255
192,25-259.75	1.10	0.713	0.610	0.435	0.300

1/27/95

Jation No. TI-RPS-197	Rev: 21	Plant: V	WBN	Page: 54
Subject: Offsite Doses Due to a Regulatory Guide 1.4 Loss of		Prepared:	Da	ate:
Coolant Accident		Checked:	Da	ate:

Attachment C

TI-RPS-147 Attachiment T33 950110 822

p. c1 of c Mc3 1-19-9: WAT-D-9902 Han 1/26/43

Westinghouse Electric Corporation

Energy Systems

Nucreal and Advanced Technology Division

221 155 P.050-20 PENASWANA (5230-6355 NTD-NSRLA-OPL-95-012 January 10, 1995

Mr. W.L. Ellion Manager of Engineering Wats Bar Nuclear Power Plant Tennessee Valley Authority IOB-1A, P.O. Box 2000 Spring City, TN 37381

NAR

Attention: Steve Robertson

TENNESSEE VALLEY AUTHORITY WATTS BAR UNITS 1 & 2 Ice Condenser Iodine Removal Efficiency FSAR Table 15.5-7

Dear Mr. Ellion:

In response to your request, the attachment addresses the applicability of the subject table to the removal of both elemental iodine and particulate lodine.

If you have any questions, please contact the undersigned.

Yery truly yours.

lath a. House for

J. W. Irons, Manager TVA Watts Bar Project

LVT/bbp

Attachments

cc: Mr. S. L. Robertson, 1L

HLR		CON	INFO COP	DATE	1
EED]			1	Í
Car	ì		f	t	1
HEG					
NEB	ŀ			<u> </u>	
Schoontron In	IM		1		
menny Tos IM			,		
, care to in					your reque

MERIA MISLAT VACON

Jation No. TI-RPS-197	Rev: 21	Plant: WB	N Page: 55
Subject: Offsite Doses Due to a Regulatory Guide 1.4 L	oss of P	repared:	Date:
Coolant Accident	C	hecked:	Date:

TI-APS-19-1 Attachmente (until mod)

p. C2 . Fr Mus 14-17 Run /26/15

Attechment To WAT-D-9902

ICE CONDENSER IODINE REMOVAL EFFICIENCY

Purpose

The ice condenser iodine removal efficiencies provided in the FSAR (Table 15.5-7, strached) were used in the LBLOCA offsite dose calculation for both elemental and particulate iodine removal. However, these efficiencies are applicable only to elemental iodine. TVA has asked if the use of the referenced efficiencies for both elemental and particulate removal is conservative in light of the overall iodine removal conservatism that exists in the dose calculation.

Evaluation

Following a LBLOCA, iodine may be removed from the containment atmosphere by the ice condenser, containment sprays, and by deposition or impaction on internal containment surfaces. Of these, only iodine removal by the ice condenser is currently assumed in the TVA iodine release/offsite dose calculation. The table that follows compares the overall elemental and particulate iodine removal coefficients (hr⁻¹) approximated for only the ice condenser and with the combined effects of the ice condenser and containment spray and the overall decontamination factor (DF).

	elemental A	elementel DF	particulate A	particulate DF
lee only '	1.2	.3 *	1.2	3.2.
ice ^s and spray	5	100 to 200	6	50

1 The overall lodine removal coefficient is the numeric average of the initial and final coefficients.

2. The elemental and particulate DFs are based on 49 min of iodine removal.

3. Ice and spray lodine removal is consistent with current Standard Review Plan recommendations. The ice condenser elemental lodine removal efficiency is a constant 30%. The particulate lodine removal efficiency is 0.

June Jation No. TI-RPS-197	Rev: 21	Plant: WBN	Page: 56
Subject: Offsite Doses Due to a Regulatory Guide 1.4 Loss of		Prepared:	Date:
Coolant Accident		Checked:	Date:

TI-RP>-117

p. c3 of c3 Mus 1.19. Run 1/249

Results

Both the lambdas and DFs for lodine removal by only the ice condenser are less than the corresponding values for the combined effect of ice and spray removal of iodine.

Conclusion

TVA's use of the FSAR ice condenser iodine removal coefficients for both elemental and particulate iodine is conservative.

					•
Lalatio	NO . TI-RPS-197	· · · · · · · · · · · · · · · · · · ·	Rev: 21	Plant: W	BN Page: 57
Subject:	Offsite Doses Due	to a Regulatory Guide 1.4 Loss of	of I	Prepared:	Date:
Coola	ant Accident			Checked:	Date:
Attachment D					
ATTACHME ATT PG_		TI-RP3-197		a sof	· · · · · · · · · · · · · · · · · · ·
W.O.94 WEFG_	190-00	Attachant P	<u>ا</u> ــــــــــــــــــــــــــــــــــــ	. PI. F 0.3	
		ACTUAL LEAKAGE RATE	ÞER		ten mana
		ANSI N-510		C	105 3-21-51
CALCULATE	LEAK RATE:				:
		f pi spf]	17		
		$Q = \left(\frac{Pi}{Ti} - \frac{Pf}{Tf}\right) \times \frac{Pf}{Ti}$		<u> </u>	
6	-		61 (4. WOL25		
WHERE:		niša pusim na	(Z 30	· .
1	AVERAGE LEAKA		(Q) _	5.39	_ CFM
2.	×.	TEST BOUNDARY	(V)	381.40	_ FT.
З.	INITIAL PRESS LB/FT SQ. ABS	URE WITHIN TEST BOUNDAR (SEE CONVERSION BELOW)	Y, (Pi)	2143.15	LB/FT:
4 .	FINAL PRESSUR	E WITHIN TEST BOUNDARY,			
	LB/FT SQ. ABS	(SEE CONVERSION BELOW)	(Pf)	2109.86	LB/FT?
5.		ERATURE AT START OF RANKINE (SEE CONVERSION	đ		
	BELOW)		(Ti) _	534.8	- ^e R
		ERATURE AT END OF RANKINE (SEE CONVERSION	4		
	BELOW)		(T <u>f</u>)	535.8	- ^e R
7.	LAPSED TIME B	ETWEEN START OF TEST (P	L)	1 0 3	
,	MAD FUD (53)	(1 SEC. = 0.0167 MIN.)	(AL) _	1.23	MINS.
TEMPERATUS	E TEST STAL	RT (T1) 74.8 . F TI	ST END (T	2) <u>75.8 °</u> :	
	T <u>à</u> 1	- <u></u>	534.8	¢ R	
	Tf e	- <u>75.8</u> • F + 460 =	535.8	° R	
PRESSURE		RT (P1) 15.7 "W.G. TE		2) <u>9.3</u> * 1	N.G.
	BAROMETER	READING (B1) 29.15 "	Нg		
		x (07355 + 29,15 " Hg)		· · ·	
	(<u>9.3</u> " w.c.	x .07355 + <u>29.15</u> " Hg)	x 70.72 =	2107. 8618/ F	د . آ . ه
	PREPARED BY	Brun Bil	DATE Q.	-27-94	
	CHECKED BY .	3 Dahan Cupelle	DATE 3	-19-95	

--

	Rev:	21 Plant: WBI	N Page: 58
	Subject: Offsite Doses Due to a Regulatory Guide 1.4 Loss of	Prepared:	Date:
	Coolant Accident	Checked:	Date:
	ATT PS, OF 099-27-94 TI-APS-197 WO94-17190-0001 Att have TD	DG G O	- 2-seret
-	ACTUAL LEAKAGE RATE FER		p. Dzufi)3 MUS 3-21-6 R 3/21/85
	ACTUAL LEAAAGE RATE FER		E 3-21-6
			4.1
	CALCULATE LEAK RATE:		
	$Q = \left(\frac{Pi}{Ti} - \frac{Pf}{Tf}\right) \times \frac{1}{wt}$		
			·.
	WHERE:		
		(2) - 7.15	CFM
•		(V) <u>310,93</u>	FT:
	3. INITIAL PRESSURE WITHIN TEST BOUNDARY, LE/FT SQ. ABS (SEE CONVERSION BELOW)	(Pi) <u>2132.54</u>	LB/FT:
	4. FINAL PRESSURE WITHIN TEST BOUNDARY, LB/FT SQ. ABS (SEE CONVERSION BELOW)	(Pf) 2099.2	5_ LB/PT=
	5. ABSOLUTE TEMPERATURE AT START OF TEST, DEGREES RANKINE (SEE CONVERSION BELOW)	(II) <u>537.C</u>	• R
	5. ABSOLUTE TEMPERATURE AT END OF TEST, DEGREES RANKINE (SEE CONVERSION BELOW)	(Tf) <u>536.8</u>	• R.
	7. LAPSED TIME BETWEEN START OF TEST (P1) AND END (P2). (1 SEC 0.0167 MIN.)	(at) <u>0.658</u>	MINS.
	TEMPERATURE: TEST START (T1) 7.0 . F TEST I	END (T2) 76.8	° F
	$Ti = \boxed{}_{\bullet} O \circ F + 450 = \underbrace{}_{\bullet}$	337.0° R	
	$Tf = -16.8 \circ F + 460 = 53$	<u>6.8</u> ° ℝ	
	PRESSURE: TEST START (P1) 15. W.G. TEST H	END (P2) 9.3	" W.G.
	BAROMETER READING (BI) 29.0 * Hg		
	$P_{1} = (15.7 \text{ W.G. } \times .07355 + 29.0 \text{ Hg}) \times .70$	0.72 = 2132.54 L	S/FT'
	$Pf = (9.3 "W.G. \times .07355 + 29.0 "Hg) \times 70$		
	PREPARED BY: Brun Mich DAT	TE 9-27-94	

Jajulation N	o . TI-RPS-197				Rev: 21		Plant: V	VBN -	Page: 59
•	fsite Doses Due	to a Regula	atory Gui	de 1.4 Loss of		·	bared:		Date:
Coolant	Accident					L	cked:		Date:
* * .		TI-RI	PS-197	> (con timed)		G-	20	F	
		A=+==	hmentl	> (con timed))				
									D3 of D3 MUS 3.2 a ce guli
19	B1 ABGTS TH	STING		199	4 ABGT	S TE	STING		
TEST	0-30-AB-L	T-07		TEST	94-17	190-	00		
BOUNDARY:	OUTLET UI	FLT. H	HOUSE	BOUNDARY:	OUTLE	r U1	FLT. 1	HOUSI	E
	TO FAN AA	DISCH.	. FLX		TO FAL	N AA	SUCT.	FLG.	
ALLOWABLE	LEAKAGE	3.4 0	CFM	ALLOWABLE	LEAKA	GE	.91 0	CFM	
ACTUAL LE	AKAGE	37.3 C	FM	ACTUAL LE	AKAGE		5.39 (CFM	
	- <u>a-</u>								
					•				
TEST	0-30-AB-L	T-02		TEST	94-17	190-	01		
BOUNDARY:	FAN AA IN	LET FLE	X TO	BOUNDARY	FAN A	A DI	SCH FLO	G TO	
	REACTOR S	HIELD W	ALL		DAMPEI	3 1-	FC0-30-	-1462	3
ALLOWABLE	LEAKAGE	3.1	CFM	ALLOWABLE	LEAKA	3E	.81 (CFM	
ACTUAL LE	AKAGE	12.52	CFM	ACTUAL LEA	AKAGE		7.15 0	CFM]

170000-...... - - - ----------

Subulation No. TI-RPS-197	Rev: 21		Plant: WBN	1 • Page: 6
Subject: Offsite Doses Due to a Regulatory Guide 1.4 Loss of		Prep	bared:	Date:
Coolant Accident	l l	Che	cked:	Date:

Attachment E

ACTUAL BEAN NATE TI-RPS-197 ANSI/ASME N510 Attachment E POSITIVE & NEGATIVE C

1.0.# 94-17127-01 PG. # 0F ATT PG 0F

ATTACHMENT C

p. El of ES NUS 61245 Do F6/1465

CALCULATE LEAR RATE:

$$Q = \left(\frac{Pi}{Ti} - \frac{Pf}{Tf}\right) \times \frac{V}{at(4.00125)}$$

WHERE:

1.	AVERAGE LEAKAGE RATE	(Q)	5.1	SCFM
2.	VOLUME WITHIN TEST BOUNDARY	$\langle v \rangle$	375.65	
3.	INITIAL PRESSURE WITHIN TEST BOUNDARY, LB/FT SQ. ABS (SEE CONVERSION BELOW)	(Pi)	2157.95	LB/FT2
4.	FINAL PRESSURE WITHIN TEST BOUNDARY, LB/FT 5Q. ABS (SEE CONVERSION BELOW)	(Pf).	2124.68	LB/FT=
5.	ABSOLUTE TEMPERATURE AT START OF TEST, DEGREES RANKINE (SEE CONVERSION BELOW)	(TÌ)	_540.6	• R
б.	ABSOLUTE TEMPERATURE AT END OF TEST, DEGREES RANKINE (SEE CONVERSION BELOW)	(Tf)	540.0	* R
	LAPSED TIME BETWEEN START OF TEST (P1) AND END (P2). (1 SEC. = 0.0167 MIN.)		1.05	- •
TEMPERATU	RE: TEST START (T1) 80.6 F TEST	END (T2) <u>83.0</u> • F	
	Ti = 30.6 * F + 460 = 5	40.6	* R	
	$Tf = \underline{80}_{c0} \circ F + 460 = \leq \leq$			
PRESSURE:	TEST START (P1) 15.7 "W.G. TEST BAROMETER READING (B1) 527, 35 Hg	END (1	P2) 9.3 " W.	S.,
	BAROMETER READING (BIT			
Pi =	(157 " W.G. x .0735 + 29.36" Hg) x 70.	.72 =	2/57.95 LB/FT:	
	(<u>9.3</u> " W.G. x .0735 + 29.36 " Hg) x 70.	.72 =	2131.63 LB/FT:	
:	PREPARED BY: Brun Mine DAT	m_ 3	-34-92	
	CHECKED BY: BOCUMPICLE DAT	¥_5	-31-9.5	

Jalatio	on No. TI-RPS-197	Rev: 21		Plant: WBN	Page: 61
Subject:	Offsite Doses Due to a Regulatory Guide 1.4 Loss of	·	Pre	pared:	Date:
Coo	lant Accident		Che	cked:	Date:

ACTUAL LEAK RATE ANSI/ASME N510 FOSITIVE D NEGATIVE D TI- RPS-157 Attachment F (cont.)

.0.1 94-17127-00 FG. 1 OF ATT PG OF r E20FES M.A 6-1295 D6F 6/15/5,-

ATTACHMENT C

CALCULATE LEAK RATE:

$$Q = \left(\frac{Pi}{Ti} - \frac{Pf}{Tf}\right) \times \frac{V}{\Delta t (4.00125)}$$

WHERE:

ΠU

1.	AVERAGE LEAKAGE RATE	(2)	3.73	SCFM
2.	VOLUME WITHIN TEST BOUNDARY		336.90	FT:
3.	INITIAL PRESSURE WITHIN TEST BOUNDARY, LB/FT SQ. ABS (SEE CONVERSION BELOW)		2(57.45	LB/FT:
A.	FINAL PRESSURE WITHIN TEST BOUNDARY, LB/FT SQ. ABS (SEE CONVERSION BELOW)			
5.			538,0	₽.R
6.	ABSOLUTE TEMPERATURE AT END OF TEST, DEGREES RANKINE (SEE CONVERSION BELOW)	(Tf)	539.0	• R
	LAPSED TIME BETWEEN START OF TEST (P1) AND END (P2). (1 SEC.= 0.0167 MIN.)			MINS.
TEMPERATU	RE: TEST START (T1) 78.0 • F TEST	END (T2) 79.0 . F	
	TI = 780 ° F + 460 = 5	538.0) • R	
	$Tf = 79.0 \cdot F + 460 = 5$	<u>39.0</u>	• R	·
PRESSURE:	W.G. TEST	END: (P2) 9.3 " W.	G.
	BAROMETER READING (B1) 29.36 " Hg			
Pi =	(15.7 " R.G. x .0735 + 29.36 " Hg) x 70	.72 =	2157,95 LB/FT:	ż
Pf =	(<u>9.3</u> "W.G. x .0735 + 29.36 " Hg) x 70	.72 =	2124.68 L8/FT*	
	PREPARED BY: Brun Due DA	TE	- 24-95	
	BAD	,	-31-95	

ulation No. TI-RPS-197		Rev: 21	Plant: WBN	Page: 62
ject: Offsite Doses Due to a Regul	latory Guide 1.4 Loss of		Prepared:	Date:
Coolant Accident	• •		Checked:	Date:
Attachment Eleon	Page 1 of 2	WO A Data Pat	Page 25 7-17/27-00 Skage Page 0	۶ ۲ ا
	DEFICIENCY LOG		s m.	p. 230 FES must-bass Def-6/15/4,
Deficiency Index	Page Rumbers	Step/S	ection Numbers	Decit
Test Number : <u>4-17/27-00</u> Rev Number : <u>ADAOD/</u> DN Number ::D <u>-17-308-0</u> /S DN Page 1 of:	Amauman's' RG 20FS	Secto	N/200 5.0	507 9.55 Hz
11 entries below MUST he sign	ied (or initialed) an	d dated.		· .
DEFICIANCY DESCRIPTION; STED 5.D CANNUST DE A	mapisten	< ~~ ~~	a de malam	
INITTATTON AND COMPLE	TTONOFSECTION	SGAU	2705	
CAUNOT BEATTAINED	N. I KEDURED E	STIMA	ED TIME	
	TEST DIRECTOR	: Bru	my 15-24-	15
STO notification for Tech Sp	ec/Tech Rep repuired	2 1) Yes V No	
		· · ·		
SIMP notification for compli-	ance, instrument requ	ired? []	1 Ván 12 Rộ	
	- N ANTE	······		
NAR time, dute, and SRO or St signald for those checked "No		SIRECTOR	Dize	
WALUATION and PROPOSED CORREC	TIME ACTION (Includ	ne RETE	TTHE N	
Linclude ACP or SCAR AC, IN SIGNATURES FOR SED S.D.	hised			
Did NUMBER TOTEST IN				E
SETTOS GANDADAT)
of Altural Leakage, T	LOI ILLIDO/EDI	-MEJJE 26.1	MAYDE	
SHOWD NEFIND ACTO	ALLEAKAGE FIG	JUES S	UNACEP 32	2-
ELITIRE TEST SUAL I	Performed by: YA	D AG	4. 15.29	29
AIR or STAR requireds 11 Yea	N. 110.	·		
l'yte, theord & coord.	Eveluance By: 704	men D	<u>al 15.24.9</u>	Ž.
SATETINE ACTION (Including 3)	LILLING PERTORNAL			
	ः — — – ः र क्ष्मारम् अविकाशित के			
				۰.
			a Alian Alian Alian	
restring 1918 - Dupers				

.

lation No. TI-RPS-197		Rev: 21	Plant: WBN	N Page: 63	
	atory Guide 1.4 Loss of		Prepared:	Date:	
ect: Offsite Doses Due to a Regula Coolant Accident			Checked:	Date:	
TI-APS-197 Attachment E (cont.) APPENDEX B	WOJE	Page 25		
	Page 1 of 2	Date Pac	Nege Page 0	<u>ا</u> ا	
	DEFICIENCY LOC		·	1.690FES 1.066295 Durblister	
Deficiency Index	Page Numbers	Sten/5	estion lumbers	T D Lillia	
Test Number : 9 <u>4-17127-01</u> Rev Number : A <u>D ADD 2</u> DN Number :: <u>CD-17:30D-D</u> : 44 DN Pece 1 of:	Amounar 'B' RG 20FS	Serm	150 S.D	- JUF 4(2/9)	
1 entries below MUST be size		- 1		·· \$	
STILLENCY DESCRIPTION	DMAJJHED THU TOVO SELTION N. (REQUIRED E	5 500 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DTOF		
	TEST DINECTOR	· · · · · ·	- Mulys-24-9	2	
SRO notification for Tech Spe Time: Doto:	AJ SHOL] Yes ¥4 ño		
SIEF notification for complic	nce, instrument requ) Seo 🔆 Ho		
WA time, date, and SRD or SI signaff for those checked "No	Sizalas	DIRECTOR	<u>5-24-95</u> Dete		
VALUATION and PEOPOSED CORREC (Include ACP or SCAR 85, 15 SCARTANES FOR STOP STO	TENT ACTION (Inclus used)		SINC): NOTNGTH'S		
NI NUMBERTOTEST IN ECHOSGANDSUBMITT SE ALTURI LEXAGE. TE	MERCENCIA DIE	DS.D NEFO	reves him	i sinan	
REVICED AFTER COMP	LETION OF STER	> 6. T.	NT ROK.		
ENTRE TEST SUBL P	PERFORME Performed by	D AG	Rain la	1	
ff to EDAX mitugred) [] Yeb 7 yes, sweeth platevel	X si Evalutive for <u>Z</u>	10-10	<u>~~ .5-24</u> -	55	
RECTIVE ACTION (including R	CECTURE FURFORMELY	······································		2 • • •	
				Ϋ́, '	
	· · ·				
	ing an the second second second second second second second second second second second second second second s In the second second second second second second second second second second second second second second second In the second second second second second second second second second second second second second second second				

072 d'S _

Jation No. TI-RPS-197	Rev: 21	Plant: W	BN Page: 64
Subject: Offsite Doses Due to a Regulatory Guide 1.4 Loss of		Prepared:	Date:
Coolant Accident		Checked:	Date:

TI-APS-197 Affechment E (cont.)

P. EJ-FES HUBBILLAS DGF 6/15/41

1981 ABGTS TESTING	1995 ABGTS TESTING
TEST 0-30-AB-LT-08	TEST 94-17127-00
BOUNDARY: OUTLET U2 FLT. HOUSE TO FAN BB OUTLET	BOUNDARY: OUTLET U2 FLT. HOUSE TO FAN BE INLET
ALLOWABLE LEAKAGE: 2.9	ALLOWABLE LEAKAGE: . 82 CFM
ACTUAL LEAKAGE: 33.9	ACTUAL LEAKAGE: 3.73 CFM
TEST D-30-AB-LT-04	TEST 94-17127-01
BOUNDARY: U2 FAN BB INLET FLG TO INSIDE SHIELD WALL	BOUNDART: U2 FAN BE DISCH FLG TO INSIDE SHIELD WALL
ALLOWABLE LEAKAGE: 3.4 CFM	ALLOWABLE LEAKAGE: .95 CFM
ACTUAL LEAKAGE: 10.0 CFM	ACTUAL LEAKAGE: 5.1 CFM
OTE: 1981 ACTUAL LEAKAGE	TOTALS LISTED ABOVE HAVE BEEN

PREVIOUSLY ACCEPTED ON NCR-3285R

Attachment 15 (Located on Attached OSM)

Met files used in the ARCON96 X/Q calculations

Metwbnp1976.dat Metwbnp1977.dat Metwbnp1978.dat Metwbnp1979.dat Metwbnp1980.dat Metwbnp1981.dat Metwbnp1982.dat Metwbnp1983.dat Metwbnp1984.dat Metwbnp1985.dat Metwbnp1986.dat Metwbnp1987.dat Metwbnp1988.dat Metwbnp1989.dat Metwbnp1990.dat Metwbnp1991.dat Metwbnp1992.dat Metwbnp1993.dat

Attachment 16

1976 TVA Report

Impingement at Watts Bar Steam Plant

6387

IMPINGEMENT AT WATTS BAR STEAM PLANT

Watts Bar Steam Plant, TVA's first fuel-burning electric power plant, is located on the right bank of the Tennessee River (Tennessee River Mile 529.2) near the upper end of Chickamauga Reservoir about 1,036 meters downstream of Watts Bar Dam (Figures 1 and 2). The four-unit plant, rated at 240,000 kW total capacity with a 280,000 gpm condenser cooling water requirement, became fully operational in April 1945. Although the plant operated on base load during much of its early history, it currently operates as a peaking plant.

Physical Data

Pumping Station - The intake screen house for the circulating water supply system is continuous with the upstream face of the service bay at the Watts Bar hydroplant and contains six intake openings at 90° to the axis of the dam. Each of the six 18.3m² intake openings is equipped with a steel trashrack 6.3 meters high by 2.9 meters wide. The trashrack bars are 12.70 cm wide by ? 0.95 cm thick and are spaced 7.52 cm on centers. Following the trashracks, the water passes through the vertical traveling screens. These are made of 0.61 by 1.83 meter screen panels interlocked and attached to chains operating between sprockets at the bottom and drive sprockets supported on the intake deck. These panels are made of 12-gauge galvanized wire with 0.95-cm (3/8 inch) mesh openings.

Circulating water for the condensers is supplied by gravity from the Watts Bar Reservoir through a conduit system approximately 1,036 meters long. The circulating water supply system is designed to produce a maximum flow through from condensers of 17.67 cubic meters per second (624 cfs) when the Watts Bar Reservoir is at elevation 733 (ft) and the tailwater at the steam plant discharge is at elevation 699, a gross head of 10.36 meters. With this flow through the six screens, there is a calculated velocity throug the trashracks of 25.60 cm/sec (.83 fps).

Biological Data

1. Sampling methods

Samples were collected weekly between August 8, 1974, and May 29, 1975, as follows: at the beginning of the sample period (1,100 hours, Wednesday), all traveling screens were simultaneously rotated and washed clean of fish and debris. Twenty-four hours later, the screens were washed individually, and the impinged fish were collected in a catch basket installed in the screen was sluiceway. All individuals were separated by species into 25 mm length categories and counted. Total weights (grams) for each length class were recorded.

2. Results

Below are listed (Table 1) the total number of each of the 19 species collected from the 33 samples taken at Watts Bar Steam Plant during the sampling period August 8, 1974 through May 29, 1975. Seventy-three percent of the total 2,130 fish collected.were shad. The remaining 16 nonshad species which totaled 575 individuals were impinged at an average rate of 17.4 fish per sample.

Since sampling was done on a fixed schedule, independent of plant operation, the average number of screens counted per twenty-four hour sample is assumed to approximate the average number of screens in operation per day throughout the entire sampling period. In addition, the average number of fish collected per sample through the 10-month sampling period is assumed to approximate the average daily impingement for that period. Since Watts Bar is a peaking plant there were several sampling dates on which the plant was not in operation. The percent

2

of time the plant was not operating on the sampling days (30.3%) is assumed to approximate the percent of time the plant did not operate during the entire 10-month sampling period. Extrapolating the average impingement counts per sample for the number of days the plant presumably operated during the 10-month period August 1974 - May 1975 and will operate during June and July 1975 yields the estimated annual numbers (Table 2) and biomass (Table 3) impinged.

3

Figure 3 depicts the total number of fish impinged during each of the thirtythree 24-hour samples. The greatest number of fish for a single sample (438) occurred on March 27, 1975, in which 79.9 percent were threadfin shad.

Table	1.	Total	Numb	ber	of	Each	Spe	cies	s Impinge	ed on	the	Intake	Screens	of
		'Watts	Bar	Ste	am	Plant	in	33	Samples	Coll	ected	Betwee	en August	t 8,
		1974,	and	May	29), 197	5							

. .

Scientific Name	Common Name	Total Number
Alosa chrysochloris	Skipjack Herring	187
Dorosoma cepedianum	Gizzard Shad	36
D. petenense	Threadfin shad	1,333
<u>Biodon tergisus</u>	Mooneye	13
Notropis antherinoides	Emerald Shiner	1
<u>N. whipplei</u>	Steelcolor Shiner	3
Pimephales vigilax	Bullhead Minnow	1.
Ictiobus bubalus	Smallmouth Buffalo	1
Ictalurus furcatus	Blue Catfish	8
I. punctatus	Channel Catfish	17 ~
Pylodictis olivaris	Flathead Catfish	3
Morone chrysops	White Bass	25
<u>M. mississippiensis</u>	Yellow Bass	1
<u>M. saxitilis</u>	Striped bass	1
Lepomis macrochirus	Bluegill	235
<u>Micropterus</u> <u>dolomieui</u>	Smallmouth Bass	5
Pomoxis annularis	White Crappie	19
Apoldinotus grunniens	Freshwater drum	232
Percina caprodes	Logperch	9
Total		2,130

4

-

	•
Species	Total Number
Clupeidae	11,995
Bluegill	1,812
All other species	2,613
Total	16,421

•.•

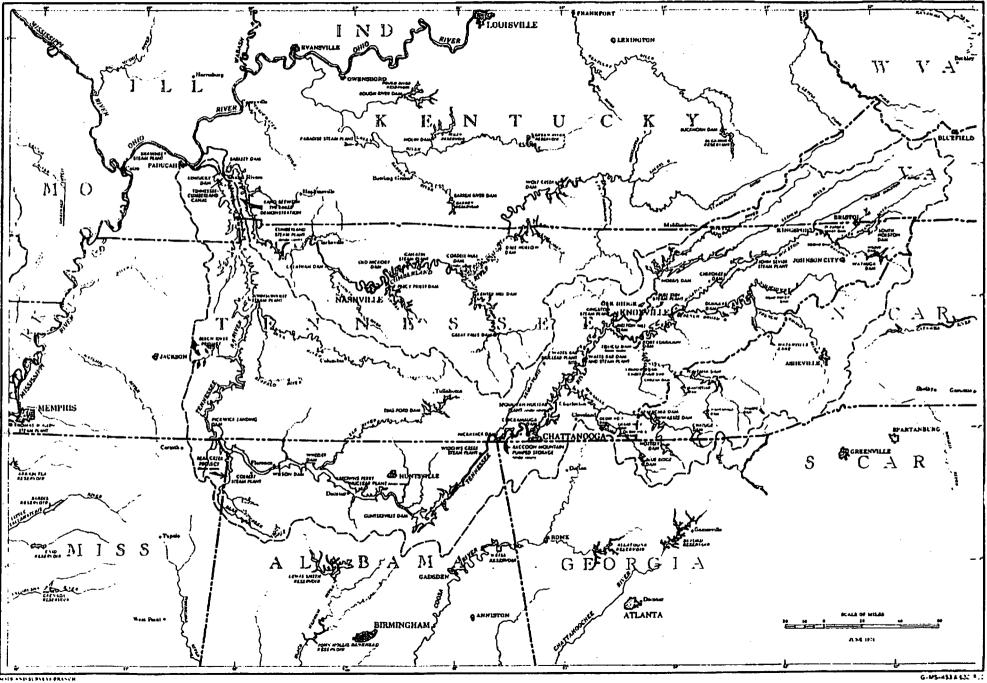
Table 2. Estimated Annual Number of Fish Impinged atWatts Bar Steam Plant (Plant Operating 69.7 Percentof the Time)

Species	Biomass (kg)
Clupeidae	355.43
Bluegill	25.47
All other species	87.21
Total	468.11

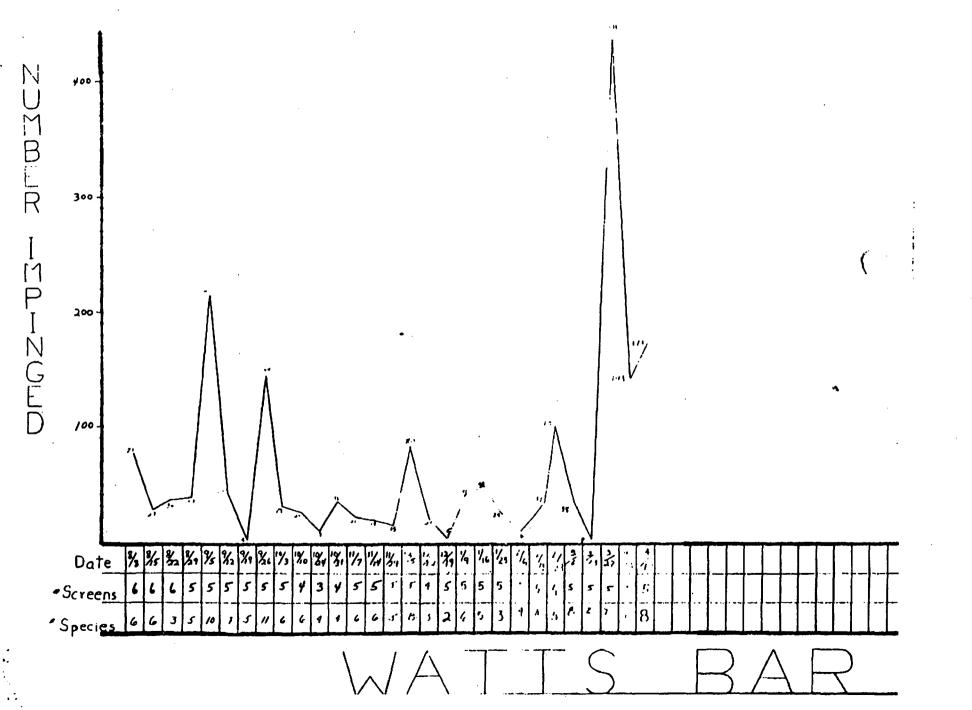
•

Table 3. Estimated Annual Biomass (kg) of Fish Impinged at Watts Bar Steam Plant (Plant Operating 69.7 Percent of the Time)

ł


Discussion and Conclusion

Only five of the samples contained more than 100 fish during the sampling period (August 8, 1974, to May 29, 1975). Of the 16 non-shad species collected only bluegill (7.1 per sample) and drum (7.0 per sample) were impinged at an average rate exceeding one individual per 24 hours.


Because Watts Bar is a peaking plant and is of comparatively low generating capacity, its cooling water requirement is low resulting in a low total annual volume of water passed through the plant. These factors undoubtedly account for the low impingement at this plant. Based on the results of this study, we conclude that the impingement of fish at Watts Bar Steam Plant does not constitute an adverse environmental impact to the fish population of Watts Bar Reservoir.

JAH:MCL 6/6/75

•••

.:

Attachment 17

Table 3-7

Total Numbers of Each Native Mussel Species Collected During Preoperational (1983-1994) and Operational (1996-1997) Surveys Near Watts Bar Nuclear Plant

 Table 3-7. Total numbers of each native mussel species collected during preoperational (1983-1994) and operational (1996-1997)

 surveys near Watts Bar Nuclear Plant.

						Preop	erations	J					Opera	tional		
	1983	1983	1984	1984	1985	1985	1986	1986	1988	1990	1992	1994	1996	1997	Totals	Times
		_ Fall		Fall		Fall		Fall			1					Found
Elliptio crassidens	754	836	779	984	738	929	734	765	970	524	424	583	594	489	10103	14
Pleurobema cordatum	264	275	220	156	113	177	110	169	224	139	82	95	94	101	2219	14
Cyclonaias tuberculata	88	70	73	62	60	66	55	76	93	90	68	64	38	47	950	14
Quadrula pustulosa	99	75	85	53	53	85	31	41	80	79	48	65	30	24	848	14
Potamilus alatus	14	29	18	29	34	43	41	27	55	45	16	10	35	12	408	14
Ellipsaria lineolata	24	29	24	25	8	27	19	18	23	28	14	11	15	8	273	14
Amblema plicata	18	33	19	11	17	25	23	24	49	10	13	13	11	5	271	14
Anodonta grandis	18	10	5	4	3	7	9	7	29	20	5	7	7	1	132	14
Quadrula metanevra	14	24	11	13	6	10	7	7	8	8	8	4	2	2	124	14
Tritogonia vertucosa	6	12	5	5	4	15	8	13	18	9	9	7	4	1	116	14
Obliquaria reflexa	14	6	8	3	7	5	9	3		11	6	11	6	3	99	14
Ligumia recta	6	3	4	10	3	8	8	10	7	2	3	1	2	1	68	14
Lampsilis abrupta	3	7	6	2]	7	6	2	12	4	6	2	4		62	13
Leptodea fragilis	1	3	4	2	3	2	6	3	12	8		3	. 1	2	50	13
Actinonaias ligamentina	3	2	2	•	4	7	-	8	3	5	1	-	-	-	35	9
Megalonaias nervosa	2	1	•	1	1	4	5	<u> </u>	9	3	4	2	1		34	12
Lampsilis gyata	3	1	1	4	5	4	1	2	3]		-	-	1	26	11
Elliptio dilatata	4	2	1	1	-	2	2	1	3	1		-	1	-	18	10
Pleurobema oviforme	-	-	2	-	-	1		2	2	1	-	1	-	-	9	6
Anodonta imbecillis	-	•		2	_	-	-	1	1	1	-	-	-	-	5	4
Cyprogenia stegaria	2	1	•	1	1	-	-	-	-		-	-	-	•	5	4
Pleurobema plenum	1	1	2	-	1	-	-	-		-			-	-	5	4
Plethopasus cyphyus	•	2	-		-		-	-	-	-	1	1		•	4	3
Pleurobema rubrum	-	-	-	-	-	3	-	-	1	•	-	-	-	•	4	2
Anodonta suborbiculata	-	-	-	_		-	-	-	1	E	-	-	-	-	2	2
Fusconaia subrotunda	2	•	-	-	-		•		•	-	-	-	•		2	1
Lasmigona costata	-	•	-	-	-	-	1			-	-	_	1		2	2
Ptychobranchus fasciolaris	•	-	1	-	-		-	-	•	1			-	-	2	2
Dromus dromas	1	•	•	-	-	-	-	-	•	-	-	-	-	-	1	1
Lasmigona complanata	-	-	-	-	1	-		-	•	-	-	-	-	-	1	1
Total Mussels	1341	1422	1270	1368	1063	1427	1075	1180	1610	991	708	880	846	697	15878	
Number of Species Collected	22	21	20	19	20	20	18	20	22	22	16	17	17	14	30	1

.

٠.

• •

, A

Attachment 18

Appendix A-2

Results of 14 Native Mussel Surveys at 12 Sites in the Vicinity of Watts Bar Nuclear Plant, 1983-1997

September 13-14,1983					Bed					Bed	<u> </u>				Bed	Su	rvey
Species	520.0	520.3	520.6	520.8	Total	526.0	526.3	526.5	526.8	Total	528.2 5	528.5	528.8	528.9			
Elliptio crassidens	163	71	78	102	414		65					43	69				
Pleurobema cordatum	17	41	16	16	90	17	82	7	3	109	12	18	20				
<u>Quadrula pustulosa</u>	8	3	6	15	32	4	22	14	5	45	6	5	9		22	99	7.38
Cyclonaias tuberculata	8	5	21	11	45	3	7	4	4	18	5	8	- 8	4	25	88	6.56
<u>Ellipsaria lincolata</u>	2	3	2	8	15	1	4	2	1	8	0	1	0	0	1	24	1.79
Amblema plicata	0	0	1	0	1	0	5	5	5	15	0	1	1	0	2	18	1.34
Anodonta grandis	0	0	0	0	0	4	1	3	6	14	0	0	1	3	4	18	1.34
Obliquaria reflexa	1	0	0	0	1	· 0	4	6	2	12	0	1	. 0	o	1	14	1.04
Potamilus alatus	2	1	3	o]	6	3	0	1	3	7	0	0	1	0	1	14	1.04
Quadrula metanevra	1	0	5	2	8	2	0	2	0	4	1	1	0	o	2	14	1.04
Ligumia recta	1	1	0	1[3	0	0	0	1	1	0	1	1	0	2	6	0.45
Tritogonia verrucosa	0	0	0	0	0	2	1	0	2	5	0	0	1	0	1	6	0.45
Elliptio dilatata	1	0	1	1	3	0	0	0	0	0	0	0	0	1	1	4	0.30
Actinonaias ligamentina	1	0	0	0	1	0	I	0	0	1	0	1	0	o	1	3	0.22
Lampsilis abrupta	0	0	0	0	o	0	1	0	0	1	0	1	1	0	2	3	0.22
Lampsilis ovata	1	0	1	0	2	0	0	0	0	o	0	0	1	0	1	3	0.22
Cyprogenia stegaria	0	0	1	0	1	0	0	0	0	0	0	0	I	0	1	2	0.15
Fusconaia subrotunda	0	0	0	1	1	0	0	0	o	0	0	0	1	0	1	2	0.15
Megalonaias nervosa	0	0	0	0	0	0	1	1	0	2	0	0	0	0	ol	2	0.15
Dromus dromas	0	0	1	· 0	1	0	0	0	0	0	0	0	0	0	o	1	0.07
Leptodea fragilis	0	0	0	0	0	1	0	0	o	1	0	0	0	o	o	1	0.07
Pleurobema plenum	0	0	0	1	1	0	0	0	0	0	0	0	Ō	0	0	1	0.07
Grand Total	206	125	136	158	625	58	194	57	66	375	77	81	115	68	341	1341	100.00
Species Count	12	7	12	10	17	10	12	11	11	16	5	11	13	6	18	22	

L

4

¢

Appendix A-2. Results of 14 native mussel surveys at 12 sites in the vicinity of Watts Bar Nuclear Plant, 1983-1997.

. •

• *

Appendix A-2. (Continued)

١,

••

November 1-2,1983					Bed					Bed		÷			Bed	Su	гуеу
Species	520.0	520.3	520.6	520.8	Total	<u>526.0</u>	526.3	526.5	526. 8	Total	528.2	528.5	528.8	528.9	Total		Percent
Elliptio crassidens	0	145	100	102		21	52			171	54	108	91	65	318	836	58.79
Pleurobema cordatum	32	13	13	24	82	9	24	22	2	57	8	51	46	31	136	275	19.34
Quadrula pustulosa	6	0	6	10	22	4	8	6	0	18	12	7	1	15			5.27
Cyclonaias tuberculata	5	4	14	15	38	1	8	5	0	14	1	4	4	9	18	70	4.92
Amblema plicata	2	0	3	1	6	6	6	10	2	24	0	-1	0	2	3	33	2.32
Ellipsaria lineolata	1	2	4	6	13	1	1	0	3	5	1	7	0	3	11	29	2.04
Potamilus alatus	1	1	3	0	5	7	0	6	7	20	1	1	1	1	4	29	2.04
Quadrula metanevra	5	2	1	2	10	1	2	0	0	3	2	5	1	3	11	24	1.69
Tritogonia verrucosa	0	0	0	0	0	7	0	2	3	12	0	0	0	0	0	12	0.84
Anodonta grandis	0	0	0	0	0	4	0	1	3	8	0	1	1	0	2	10	0.70
<u>Lampsilis abrupta</u>	0	1	1	0	2	0	0	0	0	0	1	1	1	2	5	7	0.49
<u>Obliquaria</u> reflexa	0	0	0	0	0	1	1	2	2	6	0	0	0	0	0	6	0.42
Leptodea fragilis	0	0	1	1	2	0	0	0	0	0	0	0	0	1	1	3	0.21
Ligumia recta	0	· 1	0	0	1	0	1	0	0	1	0	0	1	0	1	3	0.21
Actinonaias ligamentina	1	0	0	0	1	0	0	0	0	0	0	0	0	1	1	2	0.14
Elliptio dilatata	0	1	0	0	1	1	0	0	0	1	0	0	0	0	0	2	0.14
Plethobasus cyphyus	0	0	0	0	. 0	2	0	0	0	2	0	0	0	0	0	2	0.14
Cyprogenia stegaria	0	0	0	0	.0	0	0	0	0	0	1	0	0	0	1	1	0.07
<u>Lampsilis</u> ovata	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0.07
<u>Megalonaias nervosa</u>	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1	0.07
Pleurobema plenum	0	1	0	0	1	0	0	0	0	0	0	0	. 0	0	0	1	0.07
Grand Total	53	172	146	161	532	65	104	80	94	343	81	186	147	133	547	1422	100.00
Species Count	8	11	10	8	15	13	10	9	8	15	9	10	9	11	14	21	

•

۰.

اره،

Appendix A-2. (Continued)

July 11-12, 1984			· · · · · · · · ·		Bed		· - ·			Bed					Bed	Su	rvey
	520.0	520.3	520.6	520.8	Total	526.0	526.3	526.5	526.8	Total	528.2	528.5	528.8	528.9	Total		Percent
Elliptio crassidens	110	63	15	- 44	232	9	33	21	18	81	11	88			466		61.34
Pleuroberna cordatum	33	27	24	23	107	4	7	1	0	12	3	18	55	25	101	220	17.32
<u>Quadrula pustulosa</u>	4	0	13	10	27	8	2	6	4	20	5	13	9		38		6.69
Cyclonaias tuberculata	0	4	33	25	62	0	0	2	0	2	. 0	3	6	0	9	73	5.75
Ellipsaria lineolata	1	2	7	3	13	2	1	0	1	4	1	4	2	0	7	24	1.89
Amblema plicata	0	· 0	4	0	4	4	1	7	0	12	1	1	1	0	3	19	1.50
Potamilus alatus	0	2	3	2	7	2	1	0	6	9	0	1	· 1	0	2	18	1.42
Quadrula metanevra	0	2	2	2	6	0	0	1	0	1	0	2	2	0	4	11	0.87
<u>Obliquaria reflexa</u>	0	0	1	0	1	1	0	5	1	7	0	0	0	0	0	8	0.63
Lampsilis abrupta	0	1	0	0	1	1	1	0	0	2	0	0	2	1	3	6	0.47
Anodonta grandis	0	0	0	0	0	1	2	2	0	5	0	0	0	0	0	5	0.39
Tritogonia verrucosa	0	0	1	0	1	3	0	0	0	3	0	1	0	0	1	5	0.39
Leptodea fragilis	0	0	0	0	0	0	1	0	2	3	0	1	0	0	1	4	0.31
Ligumia recta	2	0	0	0	2	0	0	0	0	0	0	0	2	0	2	4	0.31
Actinonaias ligamentina	0	0	0	0	0	0	0	0	0	0	1	1	0	0	2	2	0.16
Pleurobema oviforme	0	0	0	0	0	0	0	0	0	0	0	0	0	2	2	2	0.16
<u>Pleuroberna plenum</u>	. 0	0	2	0	2	0	0	0	0	0	0	0	0	0	0	2	0.16
Elliptio dilatata	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1		0.08
Lampsilis ovata	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0] 1	0.08
Ptychobranchus fasciolaris	0	0	1	0	<u> </u>	0	0	0	0	0	0	0	0	0	0	1	0.08
Grand Total	151	101	106	109	467	35	49	45	32			133					
Species Count	6	7	12	7	15	10	9	8	6	13	7	11	10	5	15	20	

.

•

٩.

.

Appendix A-2. (Continued)

×,

4

.

November 1-2, 1984					Bed					Bed					Bed	Su	rvey
Species	520.0	520.3	<u>520.6</u>	520.8	Total	526.0	526.3	526.5	<u>526.8</u>	Total	528.2	528.5	528.8	528.9	Total	Total	Percent
Elliptio crassidens	128	58	92	102	380	41	60	36	67	204	18	31	200	151	400	984	71.93
Pleuroberna cordatum	12	13	25	20	70	_	27	0	1	31	3	12	25	15	55	156	11.40
<u>Cyclonaias tuberculata</u>	2	11	20	10	43	1	3	1	0	5	1	0	11	2	14	62	4.53
Quadrula pustulosa	3	7	7	9	26	0	7	1	1	9	1	0	10	7	18	53	3.8
<u>Potamilus</u> <u>alatus</u>	1	0	2	4	7	4	0	2	8	14	3	4	1	0	8	29	2.12
<u>Ellipsaria lineolata</u>	· 0	1	6	3	10	2	2	0	4	8	1	1	4	1	7	25	1.83
<u>Ouadrula metanevra</u>	0	4	1	3	8	0	0	0	0	0	1	0	4	0	5	13	0.9
<u>Amblema plicata</u>	0	1	0	1	2	1	1	0	2	4	2	0	2	1	5	11	0.80
Ligumia recta	0	0	1	2	3	0	0	0	0	0] 0	5	1	1	7	10	0.7
Tritogonia vernicosa	0	0	0	0	0	2	0	1	0	3	1	1	0	0	2	5	0.3
Anodonta grandis	0	0	0	0	0	2	0	0	1	3	0	0	0	1	1	4	0.2
<u>Lampsilis ovata</u>	0	0	0	0	0	0	0	1	0	1	0	3	0	0	3	4	0.2
<u>Obliquaria reflexa</u>	0	0	0	0	0	0	1	1	0	2	0	0	0	1	1	3	0.2
Anodonta imbecillis	0	0	1	0	1	0	1	0	0	1	0	0	0	0	0	- 2	0.1:
<u>Lampsilis abrupta</u>	0	0	0	0	0	0	0	1	0	1	0	0	1	- 0	1	2	0.1
Leptodea fragilis	0	0	0	0	0	0	1	0	1	2	0	0	0	0	0	2	0.1
Cyprogenia stegaria	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	1	0.0
<u>Elliptio dilatata</u>	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0.0
Megalonaias nervosa	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1	0.0
Grand Total	146	96	156	154	552	56	104	44	85	289	31	57	259	180	527	1368	100.0
Species Count	5	8	10	9	12	8	10	8	8	15	9	7	10	9	14	19	

•

...

- 64

ς.

Appendix A-2. (Continued)

July 31-August 1, 1985		· · ·		· · · · · · · · · · · · · · · · · · ·	Bed					Bed					Bed	Su	rvey
	520.0	520.3	520.6	520.8		526.0	526.3	526.5	526.8	•	528.2	528.5	528.8	528.9			Percent
Elliptio crassidens	39	41	35	88	203	38	25	8	24	95	44	91	150	155	440		69.43
Pleurobema cordatum	1	13	5	17	36	2	18	2	1	23	5	11	13	25	54	113	10.63
Cyclonaias tuberculata	3	1	17	13	- 34	0	5	1	1	7	0	5	11	3	19	60	5.64
<u>Quadrula pustulosa</u>	0	0	1	6	7	0	11	5	2	18	2	4	15	7	28	53	4.99
Potamilus alatus	0	0	0	3	3	3	. 0	5	17	25	0	0	5	1	6	34	3.20
Amblema plicata	0	0	0	0	0	0	2	7	0	9	2	0	5	1	8	17	1.60
Ellipsaria lineolata	0	0	3	1	4	0	2	0	0	2	0	0	2	0	2	8	0.75
Anodonta grandis	0	0	0	0	0	1	0	Ý 0	0	1	0	1	I	0	2	3	0.28
Obliguaria reflexa	0	0	0	0	0	0	2	4	0	6	0	0	0	· 1	1	7	0.66
Tritogonia verrucosa	0	0	0	0	0	2	0	2	0	4	0	0	0	0	0	4	0.38
Quadrula metanevra	1	1	2	2	6	0	0	0	0	0	0	0	0	0	0	6	0.56
Lampsilis abrupta	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0.09
Leptodea fragilis	0	0	0	0	0	0	0	0	2	2	0	0	1	0		3	0.28
Ligumia recta	0	0	0	0	0	0	0	0	0	0	1	1	1	0	3	3	0.28
Megalonaias nervosa	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1	0.09
Actinonaias ligamentina	0	0	0	1	1	0	0	0	0	0	· 0	0	3	0	3	4	0.38
Lampsilis ovata	1	0	0	0	1	0	0	0	0	0	2	0	2	0	4	5	0.47
Cyprogenia stegaria	0	0	- 1	0	1	0	0	0	0	0	0	0	0	0	0	1	0.09
Pleurobema plenum	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0.09
Lasmigona complanata	0	0	0	0	0	0	0	0	0	0	0	0	1	0	. 1	1	0.09
Grand Total	45	56	64	131	296	46	66	34	47		56	113	211	194	574	1063	100.00
Species Count	5	4	7	8	10	5	8	8	6	12	6	6	14	8	16	20	

4

¢.

۹,

October 16-17,1985					Bed					Bed	<u> </u>				Bed	Su	rvey
	520.0	520.3	520.6	520.8	Total	526.0	526.3	526.5	526.8	Total	528.2	528.5	528.8	528.9	Total	Total	
Elliptio crassidens	79	128	73	47	327	23	32	29	32	116	8	70	182	226	486	929	65.10
Pleurobema cordatum	22	17	10	18	67	2	26	3	9	40	0	18	31	21	70	177	12.40
<u>Quadrula pustulosa</u>	2	7	1	9	19	6	5	6	8	25	0	14	16		41	85	5.96
Cyclonaias tuberculata	3	7	6	24	40	0	2	1	1	4	2	9	10	1	22	66	4.63
Potamilus alatus	1	1	5	5	12	7	3	14	0	24	0	3	2	2	7	43	3.01
Ellipsaria lincolata	2	0	0	1	3	2	4	2	3	11	0	3	4	6	13	27	1.89
Amblema plicata	1	1	1	0	3	2	1	3	5	- 11	0	3	5	3	11	25	1.75
Tritogonia verrucosa	0	0	0	1	1	8	1	2	2	13	1	0	0	0	1	15	1.05
Quadrula metanevra	0	0	1	4	5	2	1	0	0	3	0	0	0	2	2	10	0.70
Ligumia recta	0	1	2	1	4	0	0	1	0	. 1	0	0	2	1	3	8	0.56
Actinonaias ligamentina	2	0	2	0	4	0	0	0	0	0	0	1	2	0	3	7	0.49
Anodonta grandis	0	0	0	0	0	4	0	0	1	5	0	1	0	1	2	7	0.49
Lampsilis abrupta	0	1	1	0	2	0	0	0	0	0	0	1	4	0	5	7	0.49
<u>Obliguaria</u> reflexa	1	0	0	0	1	1	0	1	0	2	1	0	1	0	2	5	0.35
Lampsilis ovata	0	0	0	0	0	0	2	0	0	2	0	0	2	0	2	4	0.28
Megalonaias nervosa	0	1	0	1	2	0	0	0	0	0	0	0	0	2	2	4	0.28
Pleurobema rubrum	0	1	0	0	1	0	0	0	0	0	0	1	1	0	2	3	0.21
Elliptio dilatata	0	0	1	0	1	0	1	0	0	1	0	0	0	0	0	2	0.14
Leptodea fragilis	0	0	0	0	0	0	0	1	1	2	0	0	0	0	0	2	0.14
Pleurobema oviforme	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0.07
Grand Total	114	165	103	111	493	57	78	63	62	260	12	124	262	276	674	1427	100.00
Species Count	10	10	11	10	17	10	11	11	9	15	4	11	13	11	17	20	

_

. •

July 9-10, 1986					Bed					Bed			<u>.</u>		Bed	Su	rvey
	520.0	520.3	520.6	520.8	Total	526.0	<u>526.3</u>	526.5	526.8	Total	528.2	528.5	528.8	528.9	Total	Total	Percent
Elliptio crassidens	100	56	38	30	224		23	47	44	142			-				
Pleurobema cordatum	7	30	7	11	55	2	1	3	2	8	15	16	i 4	12	47		
Cyclonaias tuberculata	1	2	6	14	23	2	2	4	0	8	9	7	2	6	24	55	5.12
Quadrula pustulosa	1	0	0	2	3	1	4	5	2	12		6	1	2	16	31	2.88
Potamilus alatus	2	1	0	1	. 4	3	6	5	9	23	1	1	4	.8	14	41	3.81
Amblema plicata	1	0	0	2	3	1	5	7	1	14	4	2	. 0	0	6	23	2.14
Ellipsaria lineolata	1	0	1	3	5	0	2	4	0	6	1	2	0	5	8	19	1.77
Anodonta grandis	0	0	0	0	0	1	2	1	0	4	0	. 0	1	4	5	- 9	0.84
Obliquaria reflexa	0	0	0	0	0	2	2	4	0	8	0	0	0	1	1	9	0.84
Tritogonia verrucosa	0	0	0	0	0	2	4	1	1	8	0	0	0	0	0	8	0.74
Quadrula metanevra	0	0	1	3	4	0	1	0	0	1	1	0	- 1	0	. 2	7	0.65
Lampsilis abrupta	1	2	0	0	3	0	0	0	1	1	1	1	0	0	2	6	0.56
Leptodea fragilis	0	0	0	0	0	0	4	1	0	5	0	0	1	0	1	6	0.56
Ligumia recta	1	0	2	0	3	0	0	0	1	1	0	2	1	1	4	8	0.74
Megalonaias nervosa	1	1	1	0	3	0	1	1	0	2	0	0	0	0	0	5	0.47
Lampsilis ovata	0	0	0	0	0	0	0	0	0	0	0	0	1	0	i	1	0.09
Elliptio dilatata	0	0	0	. 0	0	0	0	1	0	1	1	0	0	0	1	2	0.19
Lasmigona costata	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	1	0.09
Grand Total	116	92	56	67	331	42	57	84	61	244	126	123	50	201	500	1075	100.00
Species Count	10	6	7	9	12	9	13	13	8	16	10	9	10	9	15	18	1

٠.

October 16-17, 1986			<u> </u>		Bed					Bed					Bed	Su	rvey
1	520.0	520.3	520.6	520.8		526.0	526.3	526.5	526.8	Total	528.2	528.5	528.8	528.9	Total		Percent
Elliptio crassidens	97	29	73	61	260	14	30	20	28	92	13	100	132	168	413	765	64.83
Pleurobema cordatum	6	18	21	9	54	3	28	1	1	33	1	22	34	25	82	169	14.32
Cyclonaias tuberculata	0	5	28	16	49	0	2	7	0	9	3	1	13	1	18	76	6.44
<u>Ouadrula pustulosa</u>	3	0	0	11	14	0	1	6	1	8	4	4	10	1	19	41	3.47
Potamilus alatus	0	1	3	3	7	3	4	4	4	15	5	0	0	0	5	27	2.29
Amblema plicata	0	0	1	1	2	1	6	· 6	0	13	3	• 0	4	2	9	24	2.03
Ellipsaria lineolata	2	: 1	3	4	10	0	0	0	1	1	0	2	3	2	• 7	18	1.53
Tritogonia verrucosa	0	0	0	0	0	5	2	1	4	12	0	1	0	0	1	13	1.10
Ligumia recta	0) 1	2	1	4	0	0	0	1	1	0	3	2	0	5	10	0.85
Actinonaias ligamentina	0) – 1	1	2	4	0	0	0	0	0	0	2	2	0	4	8	0.68
Anodonta grandis	0	2	0	0	2	2	1	0	1	4	0	0	1	0	1	7	0.59
Quadrula metanevra	1	0	1	3	5	0	0	0	0	0	0	1	1	0	2	7	0.59
Leptodea fragilis	0	0	0	0	0	0	1	0	0	1	0	0	2	0	2	3	0.25
<u>Obliquaria reflexa</u>	0	0	0	0	0	0	1	1	0	2	0	1	0	0	1	3	0.25
<u>Lampsilis</u> abrupta	0	0	0	1	1	0	0	0	0	0	0	0	0	1	1	2	0.17
<u>Lampsilis</u> ovata	0) 1	0	0	1	0	1	0	0	1	0	0	0	0	0	2	0.17
Pleurobema oviforme	0) 0	0	0	0	0	0	0	0	0	0	2	0	0	2	2	0.17
Anodonta imbecillis	0	0 0	0	1	1	0	0	0	0	0	0	0	0	0	0		0.08
<u>Elliptio dilatata</u>	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0		0.08
Megalonaias nervosa	0	00	0	0	0	0	0	0	0	0	0	0	0	1	1		0.08
Grand Total	109	59	134	113				46				139					100.00
Species Count	5	9	10	12	15	6	11	8	8	13	6	11	11	8	17	20	

*

. •

July 12 & 14, 1988					Bed					Bed					Dad	<u> </u>	<u> </u>
	520.0	520.3	520 6	son el		576 0	576 7	576 E	576 P	-	620.2	530 E	500 P	530 C	Bed	T !	Survey
											528.2				Total		Percent
Elliptio crassidens	71			79	236			-	-			80	248				60.25
Pleurobema cordatum	8	22		20	68	10	28	6	0	44	16	22	38				
Cyclonaias tuberculata		. 14	19	22	56		1	3	3	8	4	4	17		29		5.78
Quadrula pustulosa	0) 2	1	.2	5	1	3	9		21	11	9	25	9	54	80	4.97
Potamilus alatus	0) 2	5	3	10	5	4	9		30	-	3	0	3	· 15	55	3.42
Amblema plicata	1	. 4	4	3	· 12	4	0	10	9	23	10	1	3	0	14	49	3.04
Ellipsaria lineolata	2	. 1	2	- 4	9	0	4	0	0	4	3	3	3	1	10	23	1.43
Anodonta grandis	0) 1	2	0	3	. 9	1	4	5	19	2	0	1	4	7	29	1.80
Obliquaria reflexa	0	0	0	0	0	1	0	3	3	7	0	0	0	0	0	7	0.43
Tritogonia verrucosa	0	0	1	2	3	4	5	0	4	13	0	1	0	. 1	2	. 18	1.12
Quadrula metanevra	0	2	3	1	6	0	0	0	0	0	0	0	2	0	2	8	0.50
Lampsilis abrupta	0	0	0	0	0	1	0	1	0	2	4	1	3	2	10	12	0.75
Leptodea fragilis	0	0	0	0	0	1	1	I	6	9	2	1	0	0	3	12	0.75
Ligumia recta	1	0	1	0	2	0	0	0	0	0	0	1	3	1	5	7	0.43
Megalonaias nervosa	· 0	1	1	2	4	0	0	0	0	0	4	0	1	0	5	9	0.56
Actinonaias ligamentina	0	0	0	2	2	0	0	0	1	I	0	0	0	0	0	3	0.19
Lampsilis ovata	0	1	0	0	1	0	0	1	0	1	0	1	0	0	1	3	0.19
Elliptio dilatata	0	0	1	0	1	0	0	0	0	0	0	0	2	0	2	3	0.19
Pleurobema oviforme	0	0	0	o	0	0	0	0	0	0	0	0	0	2	2	2	0.12
Anodonta imbecillis	Ó	0	0	o	0	0	0	0	1	1	0	0	0	0	0	1	0.06
Anodonta suborbiculata	Ō	0	Õ	o	0	0	Ō	Ō	0	Ð	i	Ŏ	Ō	0	1	1	0.06
Pleurobema pyramidatum	Ō	0	Õ	0	o	Ō	1	Ō	Ŏ	1	Ō	Õ	Õ	0	0	i	0.06
Grand Total	84	93	101	140	418	51	76	72	72	271	142	127	346	306	921	1610	
Species Count	6	11	13	11	15	11	10	11	11	16	12	12	12		_		

ε,

July 24-25, 1990					Bed					Bed					Bed	Su	rvey
	520.0	520.3	520.6	520.8	Total	5 <u>26.0</u>	526.3	526.5	526.8	Total	528.2	528.5	528.8	528.9	Total		Percent
Elliptio crassidens	79	21	37	58	195	23	17	18	27	85	25	67	84	68	244	524	52.88
Pleurobema cordatum	11	2	12	9	34	3	13	8	0	24	9	33	19	20	81	139	14.03
Cyclonaias tuberculata	11	26	20	14	71	1	2	2	0	5	6	4	4	0	14	90	9.08
Quadrula pustulosa	2	: 4	8	3	17	0	9	10	7	26		9	13	5	36	79	7.97
Potamilus alatus	2	2 2	5	4	13	8	2	8	10	28	1	0	2	1	4	45	4.54
Amblema plicata	0) 1	0	- 4	5	0	· 1	2	1	4	0	1	0	0	1	10	1.01
Ellipsaria lineolata	4	1	· 8	3	16	3	0	0	0	3	3	3	2	1	9	28	2.83
Anodonta grandis	0) 0	0	1	1	5	4	3	5	17	0	1	1	0	2	20	2.02
Obliguaria reflexa	0) 1	0	1	2	0	I	2	3	6	0	0	2	1	3	11	1.11
Tritogonia verrucosa	0) 1	0	0	1	2	3	0	2	7	1	0	0	0	1	9	0.91
<u>Quadrula metanevra</u>	1	1	0	0	2	1	1	0	· 0	2	0	1	3	0	4	8	0.81
Lampsilis abrupta	0) 0	0	0	0	0	0	0	1	1	0	1	2	0	3	4	0.40
Leptodea fragilis	0) 0	2	0	2	3	1	1	0	5	0	0	1	0	1	8	0.81
Ligumia recta	0) 0	0	0	0	0	0	1	0	1	0	0	0	1	1	2	0.20
Megalonaias nervosa	1	0	1	0	2	0	0	0	0	0	0	0	0	1	1	- 3	0.30
Actinonaias ligamentina	0) 2	0	0	2	1	0	0	0	1	1	0	1	0	2	5	0.50
Lampsilis ovata	0) 0	0	0	0	0	0	0	0	. 0	0	0	0	1	1	1	0.10
Elliptio dilatata	0) 0	0	0	0	0	0	0	0	0	0	0	1	- 0	1	1	0.10
Pleurobema oviforme	0) 0	0	0	0	0	· 0	0	0	0	0	1	0	0	1	1	0.10
Anodonta imbecillis	0) 0	0	1	1	0	0	0	0	0	0	0	0	0	0	1	0.10
Anodonta suborbiculata	0) 0	0	0	0	0	0	1	0	1	0	0	0	0	0	1	0.10
Ptychobranchus fasciolaris	0		0	0	0	0	0	0	0	0	0	1	0	0	1	1	0.10
Grand Total	111	62	93	98	364	50	54	56	56	216	55	122	135	99	411	99 1	100.00
Species Count	8	11	8	10	15	· 10	11	11	8	16	8	11	13	9	20	22	

،

ລ

. .

Summer 1992				<u></u>	Bed					Bed					Bed	Su	rvey
Species	520.0	520.3	520.6	520.8	Total	526.0	526.3	526.5	526.8	Total	528.2	528.5	528.8	528.9	Total	Total	Percent
Elliptio crassidens	82	15	6	7	110	19	8	13	2	42	6	49	118	99			59.89
Pleurobema cordatum	11	9	2	- 4	26	3	7	'4	13	27	6	6 6	8	9	29	82	11.58
Cyclonaias tuberculata	9	18	12	5	44	2	4	6	0	12	1	2	6	3	12	68	9.60
Quadrula pustulosa	3	8	2	1	14	0	8	4	4	16	1	1	14	2	18	48	6.78
Potamilus alatus	2	2	0	2	6	1	0	1	3	5	0	3	1	· I	· 5	16	2.26
Amblema plicata	1	0	0	1	2	1	1	2	2	6	1	1	3	0	5	13	1.84
Ellipsaria lineolata	7	1	0	0	8	3	0	0	0	3	0	0	2	1	3	14	1.98
Anodonta grandis	0	0	0	1	1	1	l	0	2	4	0	0	0	0	0	5	0.71
Obliguaria reflexa	0	1	0	0	1	0	1	1	2	4		0	0	1	1	6	0.85
Tritogonia verrucosa	1	0	0	1	2	0	2	. 4	1	7	0	0	0	0	0	9	1.27
Quadrula metanevra	0	0	2	0	· 2	0	2	. 1	. 0	3	0	0	2	1	3	8	1.13
Lampsilis abrupta	0	0	0	0	0	0	0	1	1	2	0	2	2	0	4	6	0.85
Ligumia recta	2	0	0	0	2	0	0	0	0	0	0	0	ł	0	1	3	0.42
Megalonaias nervosa	0	0	0	1	1	0	0	2	1	3	0	0	0	0	0	4	0.56
Actinonaias ligamentina	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	1	0.14
Plethobasus cyphyus	0	0	0	0	0	1	0	0	0	<u> </u>	0	0	0	0	0	1	0.14
Grand Total	118	54	25	23	220	31	34	39	31	135	15	64	157	117	353	708	100.00
Species Count	9	7	6	9	14	8	9	11	10	14	5	7	10	8	11	16	

.

-

Summer 1994					Bed					Bed					Bed	Su	irvey
Species	520.0	520.3	520.6	520.8	Total	526.0	526.3	<u>526.5</u>	526.8	Total	528.2	528.5	528.8	528.9	Total		Percent
Elliptio crassidens	85	31	52	29	197	24	50	11	25	110	23	56	75	122	276		
Pleurobema cordatum	14	3	7	11	35	1	13	2	3	19	8	6	12	15	41	95	10.80
<u>Quadrula pustulosa</u>	0	1	1	4	6	1	6	11	12	30	1	14	3	11	29	65	7.39
Cyclonaias tuberculata	6	16	13	11	46	1	2	3	2	8	0	6	1	3	10	64	7.27
Amblema plicata	0	1	0	1	2	3	2	4	2	11	0	0	0	0	0	13	1.48
Ellipsaria lincolata	1	0	4	2	7	0	0	0	1	1	0	2	0	1	3	11	1.25
<u>Obliquaria reflexa</u>	0	0	0	0	0	0	1	7	3	11	0	0	0	0	0	11	1.25
Potamilus alatus	0	1	0	1	2	2	1	1	1	5	1	1	0	1	3	10	1.14
Anodonta grandis	0	0	0	0	0	2	0	1	4	7	0	0	0	0	0	7	0.80
Tritogonia verrucosa	0	0	0	0	0	0	0	1	4	5	0	0	1	1	2	7	0.80
Quadrula metanevra	0	1	1	1	3	0	0	0	0	0	0	0	0	1	1	4	0.45
Leptodea fragilis	0	0	0	0	0	0	1	1	0	2] 0	1	0	0	1	3	0.34
Lampsilis abrupta	0	0	0	0	0	. 0	0	0	1	1	0	0	0	1	1	2	0.23
Megalonaias nervosa	0	0	0	1	1	0	0	0	0	0	0	1	0	0	1	2	0.23
Ligumia recta	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	1	0.11
Plethobasus cyphyus	0	0	0	o	0	0	1	0	0	1	0	0	0	0	0	1	0.11
<u>Pleuroberna oviforme</u>	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0.11
Grand Total	106	54	78	61	299	34	77	43	58	212	33	87	92	157	369	880	100.00
Species Count	4	7	6	9	9	7	9	11	11	14	4	8	5	10	12	17	

.

10

...

July 22-23, 1996		······			Bed					Bed					Bed	Su	rvey
	520.0	520.3	520.6	520.8	Total	526.0	526.3	526.5	526.8	Total	528.2	528.5	52 <u>8.</u> 8	<u>528.9</u>	Total		Percent
Elliptio crassidens	88	22	76	26	212	10	54	27	23	114	24	71	73	100	268	594	70.21
Pleurobema cordatum	6	4	8	9	27	0	12	7	1	20	9	10	7	21	47	94	11.11
Cyclonaias tuberculata	5	6	5	2	18	0	3	4	0	7	3	6	1	3	13	38	4.49
Potamilus alatus	0	0	2	1	3	8	6	9	5	28	0	0	1	3	4	35	4.14
Quadrula pustulosa	0	0	0	1	1	1	1	3	4	9	8	10	0	2	20	30	3.55
Ellipsaria lineolata	0	0	1	1	2	1	3	0	0	4	0	4	4	1	9	15	1.77
Amblema plicata	0	0	0	2	2	1	4	1	0	6	1	2	0	0	3	11	1.30
Anodonta grandis	0	0	0	0	0	3	0	2	1	6	0	0	0	1	1	7	0.83
Obliguaria reflexa	0	0	0	0	0	0	0	6	0	6	0	0	0	0	0	6	0.71
Lampsilis abrupta	1	0	0	0	1	0	1	1	0	2	0	0	1	0	1	4	0.47
Tritogonia verrucosa	0	0	0	0	0	1	1	0	1	3	0	0	1	0	1	4	0.47
Ligumia recta	0	0	0	1	1	0	0	0	0	0	1	0	0	0	1	2	0.24
<u>Ouadrula metanevra</u>	0	0	0	0	0	0	0	1	0	1	0	1	0	0	1	2	0.24
Elliptio dilatata	0	I	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0.12
Lasmigona costata	0	0	0	0	0	0	0	0	0	0	0	0	1	0	I	1	0.12
Leptodea fragilis	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1	0.12
Megalonaias nervosa	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	1	0.12
Grand Total	100	33	92	43	268	25	86	61	35	207	47	104	89	131	371	846	100.00
Species Count	4	4	5	8	10	7	10	10	6	13	7	7	8	7	14	17	

July 7-8, 1997					Bed					Bed					Bed	Su	rvey
Species	520.0	520.3	520.6	520.8	Total	526.0	526.3	526.5	526.8	Total	528.2	528.5	528.8	528.9	Total	Total	Percent
Elliptio crassidens	24	13	51	35	123	45	33	17	14	109	20	66	126	45	257	489	70,16
Pleurobema cordatum	4	4	9	11	28	2	16	0	0	18	3	33	7	12	55	101	14.49
Cyclonaias tuberculata	1	16	9	5	31	1	2	0	0	3	2	7	4	0	13	47	6.74
Quadrula pustulosa	0	5	2	2	9	1	0	2	3	6	1	7	1	0	9	24	3.44
Potamilus alatus	0	0	1	1	2	0	1	4	1	6	4	0	0	0	4	12	1.72
Ellipsaria lineolata	1	0	2	2	5	0	0	0	1	1	1	0	1	0	2	8	1.15
Amblema plicata	0	0	0	0	0	0	0	3	1	4	0	0	1	0	1	5	0.72
Obliquaria reflexa	0	0	0	1	1	0	0	0	2	2	0	0	0	0	0	3	0.43
Leptodea fragilis	0	0	0	.0	0	0	0	0	2	2	0	0	0	0	0	2	0.29
Quadrula metanevra	0	0	0	0	0	0	1	0	0	1	1	0	0	0	1	2	0.29
Anodonta grandis	0) · · 0	0	0	0	0	0	0	1	1	0	0	0	0	0	1	0.14
Lampsilis ovata	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1	0.14
Ligumia recta	0) ()	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0.14
Tritogonia verrucosa	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	1	0.14
Grand Total	30	38	- 74	57	199	49	53	26	26	154	32	114	141	57	344	697	100.00
Species Count	4	4	6	7	7	4	5	4	9	12	7	5	1	2	10	14	

Appendix A-2. (Continued)

. *

TRM 520-521		L	ength		H	leight		Th	ickness	
and Year 1983	N	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Actinonaias ligamentina	2	104.30	102.6	106.0	76.50	72.9	80.1	49.50	46.8	52.2
Amblema plicata	7	85,33	74.4	96.1	64.81	56.8	72.3	40.49	36.1	48.7
Cyclonaias tuberculata	72	75.80	62.1	92.6	65.60	52.1	80.2	38.20	32.4	44.1
Cyprogenia stegaria	1	51.60	51.6	51.6	49.70	49.7	49.7	36.00	36.0	36.0
Dromus dromas	1	60.10	60.1	60.1	58,30	58,3	58.3	32.80	32.8	32.8
Ellipsaria lineolata	20	78.94	56.8	94.5	61.21	44.6	72.0	37.78	30.1	48.8
Elliptio crassidens	102	101.28	87.5	125.5	63.90	54.0	80.5	40.59	21.0	50.3
Elliptio dilatata	3	106.37	102.3	113.3	45.70	42.2	48.8	33.40	30.9	34.7
Lampsilis abrupta	2	91.40	83.7	99.1	67.05	61.4	72.7	44.75	43.4	46.1
Lampsilis ovata	3	122.47	122.0	123.2	84.40	74.7	92.3	65.87	62.0	69.4
Leptodea fragilis	2	71.20	59.6	82.8	41.35	34.6	48.1	23.10	20.1	26.1
Ligumia recta	3	150.60	145.1	154.9	59,70	56.6	63.4	45.93	42.5	48.6
Obliquaria reflexa	1	48.30	48.3	48.3	24.10	24.1	24.1	24.60	24.6	24.6
Pleuroberna cordatum	102	90.57	72.1	108.8	72.31	60.6	84.8	45.72	31.4	59.8
Pleurobema plenum	1	58.10	58.1	58.1	52.90	52.9	52.9	36.40	36.4	36.4
Potamilus alatus	- 11	122.31	46.9	156.9	88.34	71.1	104.9	35.5 8	30.6	40.9
Quadrula metaneyra	16	73.55	63.5	85.3	58.82	52.3	68.0	43.65	38.3	49.2
Quadrula pustulosa	38	52.02	43.7	61.7	49.89	40.5	59.6	31.92	26.3	36.9

Appendix A-2. (Continued)

٠.

TRM 520-521		1	ength		H	leight		Th	ickness	
and Year 1984	N	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Amblema plicata	6	96.08	80.5	107.3	72.63	62.6	80.4	42.58	34.6	46.6
Anodonta imbecillis	. 1	52.50	52.5	52.5	24.70	24.7	24.7	14.30	14.3	14.3
Cyclonaias tuberculata	101	74.39	59.1	92.2	63.86	52.2	76.5	37.48	29.5	44.9
Cyprogenia stegaria	1	52.90	52.9	52.9	51.40	51.4	51.4	36.40	36.4	36.4
Ellipsaria lineolata	23	77.57	56.6	102.2	58.68	44.0	74.2	35.53	26.3	42.0
Elliptio crassidens	101	104.82	89.2	122.7	66.24	56.3	78.4	41.70	24.4	60.9
Elliptio dilatata	1	100.10	100.1	100.1	42.20	42.2	42.2	28.00	28.0	28.0
Lampsilis abrupta	1	90.60	90.6	90.6	60.70	60.7	60.7	48.10	48.1	48.1
Lampsilis ovata	1	102,10	102.1	102.1	72.90	72.9	72.9	56.50	56.5	56.5
<u>Ligumia recta</u>	5	149.30	140.9	155.9	57.52	50.5	60.3	46.68	40.0	49.7
Obliquaria reflexa	1	36.50	36.5	36.5	32.90	32.9	32.9	22.90	22.9	22.9
Pleurobema cordatum	100	90.46	62.1	112.9	71.74	44.7	86.7	44.20	32.8	52.8
Pleurobema plenum	2	60.10	51.3	68.9	57.70	49.4	66.0	44.00	39.4	48.6
Potamilus alatus	14	126.87	96.7	160.0	90.56	74.4	108.0	36,16	30.0	42.5
Ptychobranchus fasciolaris	1	94.40	94.4	94.4	56.70	56.7	56.7	34.80	34.8	34.8
Quadrula metanevra	14	74.78	64.5	82.8	59.29	52.6	66.6	40.09	32.4	50.6
Quadrula pustulosa	53	53.28	40.0	74.1	50.63	39.5	64.1	31.69	22.0	40.1
Tritogonia verrucosa	1	76.70	76.7	76.7	42.70	42.7	42.7	19.70	19.7	19.7

٩

.

Appendix A-2. (Continued)

+ "

TRM 520-521	Ī	L	ength		ł	leight		Th	ickness	
and Year 1985	N	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Actinonaias ligamentina	5	105.42	97.4	112.3	75.42	70.6	78.9	52.78	50.2	54.9
Amblema plicata	3	94,77	92.1	97.9	69.83	69 .1	70.3	39.80	36.6	42.8
Cyclonaias tuberculata	72	75.62	60.5	86.6	65.14	54.7	74.5	36.95	30.6	. 43.1
Cyprogenia stegaria	1	57.70	57.7	57.7	55.60	55.6	55.6	44.10	44.1	44.1
Ellipsaria lineolata	7	79.13	62.3	92.5	61.27	46.9	69.9	34.84	32.0	36.2
Elliptio crassidens	101	104.43	90,1	122.5	65.82	54.1	88.5	41.43	29.5	50.9
Elliptio dilatata	1	96.80	96.8	96.8	44.20	44,2	44.2	29.80	29.8	29.8
Lampsilis abrupta	2	96.45	82.3	110.6	71.65	69,8	73.5	51.95	43.5	60.4
Lampsilis ovata	1	121.20	121.2	121.2	86,50	86.5	86.5	62.30	62.3	62.3
Ligumia recta	4	158.93	142.2	170.2	59.88	57.2	60.8	45.15	41.3	48.5
Megalonaias nervosa	2	165.15	160.1	170.2	109.35	102.3	116.4	54.45	52.4	56.5
Obliquaria reflexa	1	46.60	46.6	46.6	36.10	36.1	36.1	23.40	23.4	23.4
Pleurobema cordatum	88	91.57	70.4	108.5	73.40	58.2	89.5	43.91	30.2	52.7
Pleurobema oviforme	1	72.90	72.9	72.9	56.50	56.5	56.5	40.20	40.2	40.2
Pleurobema rubrum	1	80.70	80.7	80.7	64.30	64.3	64.3	44.50	44.5	44.5
Potamilus alatus	15	128.51	98.0	150.7	87.92	76.5	106.7	36.53	30.9	40.7
Ouadrula metanevra	11	75.45	67.3	88.2	60.21	56.1	70.3	40.83	36.8	46.2
Quadrula pustulosa	26	54.20	46,3	72.8	51.48	44.7	64.3	31.89	25.7	37.4
Tritogonia verrucosa	1	104.10	104.1	104.1	52.80	52.8	52.8	36.10	36.1	36.1

Appendix A-2. (Continued)

TRM 520-521		I	ength		H	leight		Th	ickness	
and Year 1986	_N	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Actinonaias ligamentina	4	94.93	91,3	97.5	68.15	65.3	71.6	46.03	40.3	53.8
Amblema plicata	5	102.18	90.3	112.9	72.96	66.4	78.2	44.38	39.3	52.1
Anodonta grandis	2	123.05	119.4	126.7	70.00	63.3	76.7	47.05	43.4	50.7
Anodonta imbecillis	1	39.20	39.2	39.2	17,40	17.4	17.4	7,10	7.1	7.1
Cyclonaias tuberculata	72	72.03	56.9	85.1	61.53	47.6	76.6	34.82	23.7	44.9
Ellipsaria lineolata	15	73.42	51.8	86.9	54.71	39.2	65.3	30.81	22.6	42.0
Elliptio crassidens	100	105.59	87.2	151.8	64.88	55.9	82.5	40.83	31.1	51.4
Elliptio dilatata	1	109.40	109.4	109.4	45.50	45.5	45.5	39.9 0	39,9	39.9
<u>Lampsilis abrupta</u>	4	98.43	86.1	104.7	72,45	66.3	80.7	50.15	48.3	52.2
<u>Lampsilis ovata</u>	1	139.10	139.1	139.1	90,30	90.3	90.3	55.90	55.9	55.9
Lasmigona costata	1	122.10	122.1	122.1	69.90	69.9	69.9	25.50	25.5	25.5
Ligumia recta	7	133.40	107.7	150.2	51.84	45.0	55.9	40.80	33.1	48.6
Megalonaias nervosa	3	148.97	146.9	150.3	102.27	97.6	109.3	57.37	53.9	63.2
Pieurobema cordatum	94	88.69	54.9	109.6	70.34	49.7	88.5	42.39	25.2	54.6
Potamilus alatus	11	127,29	93.4	144.9	84.49	67.9	95.8	32.73	26.8	40.0
Quadrula metanevra	9	69.98	54.9	80.9	54.79	42.4	64.3	37.06	31.0	42.4
Quadrula pustulosa	17	48.40	38.2	55,9	45.26	37.2	52.8	27.30	20.5	35.7

1

1

· *4 *4

Appendix A-2. (Continued)

ب • •

TRM 520-521		I	ength		l	Height	Ĩ	Th	ickness	
and Year 1988	Ν	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Actinonaias ligamentina	2	93.00	90.9	95.1	71,65	71.3	72.0	49.35	47.6	51.1
Amblema plicata	12	97.95	73.2	115.3	72.45	53.0	86.1	43.01	33.3	52.1
Anodonta grandis	3	101.60	81.7	119.9	59.83	53.6	65.3	44.00	34.5	50.4
Cvclonaias tuberculata	50	75.88	64.3	88.6	64.96	55,2	75.2	38.08	32.2	44.9
Ellipsaria lineolata	9	79.49	65.1	100.0	59.98	47.5	70.6	37.53	32.7	50.3
Elliptio crassidens	52	104.08	92.4	124.5	66.17	60.1	84.9	42.50	34.I	50.7
Elliptio dilatata	1	96.80	96.8	96.8	45.40	45.4	45.4	26.90	26.9	26.9
Lampsilis ovata	1	110.70	110.7	110.7	76.90	76.9	76.9	61.80	61.8	61.8
Ligumia recta	2	156.05	144.4	167.7	57.45	54.2	60.7	48.65	44.4	52.9
Megalonaias nervosa	4	155.25	144.2	170.2	109.25	100.8	117.2	59.88	53.3	65.6
Pleurobema cordatum	52	91.03	68,5	110.1	73.16	54,9	83.6	46.47	38.2	54.8
Potamilus alatus	10	132.07	114.9	151.0	96.46	76.3	113.4	39.75	34.4	48.3
Quadrula metanevra	6	80.70	66.7	92.1	63.15	54.2	70.1	43.43	38.4	47.3
Quadrula pustulosa	5	57.08	52.2	68.8	52.20	46.9	61.3	34.66	31.3	37.3
Tritogonia verrucosa	3	101.07	91.8	109.4	55.10	50.5	57.4	27.93	23.2	34.0

TRM 520-521		1	ength	-	· H	leight		Th	ickness	
and Year 1990	N	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Actinonaias ligamentina	2	97.35	96.0	98.7	72.15	71.4	72.9	49.60	47.6	51.6
Amblema plicata	5	100.30	76.6	120.1	71.08	54.5	87.2	41.74	33.6	47.2
Anodonta grandis	1	136.30	136.3	136.3	76.70	76.7	76.7	51.00	51.0	51.0
Anodonta imbecillis	1	52.00	52.0	52.0	24.80	24.8	24.8	14.30	14.3	14.3
Cyclonaias tuberculata	50	77.43	62.0	111.0	65.32	52.1	92.1	37.12	28.0	46.5
Ellipsaria lineolata	16	85.20	64.2	94.8	63.94	51.6	71.3	37.67	32.1	44.6
Elliptio crassidens	50	109.49	87.5	130.1	68.71	62.4	79.9	42.94	36.3	50.2
Leptodea fragilis	2	100.15	89.9	110.4	67.65	62.7	72.6	37.85	36.5	39.2
Megalonaias nervosa	2	164.85	155.6	174.1	115.65	110.7	120.6	56.20	56.2	56.2
Obliguaria reflexa	2	45.40	44.5	46.3	36.80	36.7	36.9	26.60	25.4	27.8
Pleurobema cordatum	34	91.89	75.6	110.1	71.37	59,5	82.4	42.27	32.9	52.0
Potamilus alatus	13	141.24	131.6	152.9	105.18	83.3	120.9	55.30	37.2	139.8
Quadrula metanevra	2	73,35	65.2	81.5	53.60	48.1	59.1	39.40	35.5	43.3
Quadrula pustulosa	17	52.47	45.7	64.1	49.12	42.8	55.7	31.34	25.3	. 37.5
Tritogonia vertucosa	1	94.00	94.0	94.0	52.20	52.2	52.2	32.50	32.5	32.5

Potamilus alatus

Quadrula metanevra

Quadrula pustulosa

۰.,

щ

TRM 520-521		Ĩ	ength		H	leight		Th	ickness	
and Year 1992	Ν	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Actinonaias ligamentina	1	94.80	94,8	94.8	65.40	65.4	65.4	49.60	49.6	49.6
Amblema plicata	2	119.45	114.2	124.7	85.55	84.7	86.4	51.95	49.1	54.8
Anodonta grandis	1	131.50	131.5	131.5	84.90	84.9	84.9	57.20	57.2	57.2
Cyclonaias tuberculata	44	78.27	63.2	89.0	65.77	53.4	87.1	37.92	30.8	44.7
Ellipsaria lineolata	8	86.17	69.6	95.5	65.55	49.7	75.1	38.46	31.3	44.8
Elliptio crassidens	43	104.55	88.4	116.5	65.75	55.6	74.3	42.35	27.2	51.7
Ligumia recta	2	153.05	148.0	158.1	59.65	56.9	62.4	48,50	47.3	49.7
Megalonaias nervosa	1	182.10	182.1	182.1	116.20	116.2	116.2	58.40	58.4	58.4
Obliquaria reflexa	1	52.70	52.7	52.7	41.60	41.6	41.6	29.80	29.8	29.8
Pleurobema cordatum	26	89.13	64.7	104.0	70.92	60.9	82.9	43.46	37.5	51.2
Potamilus alatus	6	141.35	124.8	155.3	105.82	98.1	114.8	42.15	35.2	45.4
Quadrula metanevra	2	82.65	82.5	82.8	62.55	61.7	63.4	42.80	42.0 [°]	43.6
Quadrula pustulosa	14	52.09	45.3	57.4	48.60	40.2	54.9	31.74	25.2	37.9
Tritogonia verrucosa	2	108.60	100.9	116.3	60.15	<u>59.4</u>	60.9	33.45	31.3	35.6
TRM 520-521		Ι	ength		ŀ	leight		Th	ickness	
and Year 1994	N	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Amblema plicata	2	97.85	84.7	111.0	65.95	59.2	72.7	43.10	35.0	51.2
Cyclonaias tuberculata	46	77.77	66.2	91.1	65.59	58.4	74.3	38.82	32.9	48.9
Ellipsaria lineolata	7	82.13	76.1	89.6	63.57	57.7	69.0	37.46	32.9	42.1
Elliptio crassidens	65	108.95	96.8	128.7	68.19	61.3	88.6	43.51	36.6	50.4
Megalonaias nervosa	1	180.20	180.2	180.2	119.70	119.7	119.7	69.00	69.0	69.0
Pleurobema cordatum	35	90.84	59.8	107.7	72.35	58.1	86.8	45.37	35.5	53.0
1 · · ·	I _									

131.3

75.5

103.60

56,63

57.3 51.02

99.6

54.4

46.6

.

107.6

59.5

54.5

38.90

40.67

32.85

38.5

39.9

28.9

39.3

42.2

35.1

129.80 128.3

71.60

55.28

68.4

52.1

236

1	90

6

Appendix A-2. (Continued)

• 7

TRM 520-521		1	ength		H	leight		Thickness		
and Year 1996	N	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Amblema plicata	2	101.80	78.2	125.4	68.60	52.4	84.9	36.70	26.7	46.7
Cyclonaias tuberculata	18	79.90	73.0	91.3	67.10	58,4	75.6	39.30	34.6	45.3
<u>Ellipsaria lineolata</u>	2	79.50	69.7	89.3	59.90	48.0	71.9	37.60	30.8	44.3
Elliptio crassidens	61	108.80	97.8	127.2	66.30	56.9	75.2	43.50	34.2	50.2
Elliptio dilatata	1	95.40	95.4	95.4	41,00	41.0	41.0	29.70	29.7	29.7
Lampsilis abrupta	1	99.40	99.4	99.4	73.10	73.1	73.1	55,30	55.3	55.3
Ligumia recta	1 1	160.00	160.0	160.0	61.10	61.1	61.1	49.40	49.4	49.4
Pleurobema cordatum	27	94.50	82.8	107.7	72.50	67.2	79.2	46.20	39.0	53.0
Potamilus alatus	3	117.10	98.2	133.0	70.40	60,1	79.9	36.80	28.9	45.5
Quadrula pustulosa		56. 6 0	56.6	56.6	54. 9 0	54.9	54.9	34.50	34.5	34.5
TPM 570-571			enath		Ľ	eight		Th	ickness	

TRM 520-521	i l	L	.ength		H	leight	1	Thickness		
and Year 1997	N	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Cyclonaias tuberculata	31	78.50	67.0	91.4	65.40	56.5	73.7	41.60	35.6	49.8
Ellipsaria lineolata	5	83.10	56.4	105.5	61.00	45.9	71.6	41.60	33.8	52.6
Elliptio crassidens	52	107.70	92.2	120.8	64.90	53.7	73.1	44.40	34.7	51.1
Obliquaria reflexa	1	50.60	50.6	50.6	34,70	34.7	34.7	33.90	33.9	33.9
Pleurobema cordatum	28	93.40	83.1	117.2	71.70	60.2	92.3	47.50	41.7	52.8
Potamilus alatus	2	113.60	105.7	121.4	70.00	63.3	76.6	36.00	33.3	38.8
Quadrula pustulosa	9	56.60	49.7	65.2	51.50	45.2	57.9	36.00	30.9	45.6

Appendix A-2. (Continued)

TRM 520-521		I	ength		ł	leight		Th	ickness	
and Years 1983-1997	N	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Actinonaias ligamentina	16	99.43	90.9	112.3	72.23	65.3	80.1	49.66	40.3	54.9
Anblema plicata	44	97.36	73.2	125.4	71.11	52.4	87.2	42,46	26.7	54.8
Anodonta grandis	7	116.96	81.7	136.3	68,73	53.6	84.9	47.76	34.5	57.2
Anodonta imbecillis	3	47.90	39.2	52.5	22.30	17.4	24.8	11.90	7.1	14.3
Cyclonaias tuberculata	556	75.83	56.9	111.0	64.66	47.6	92.1	37.61	23.7	49.8
Cyprogenia stegaria	3	54.07	51.6	57.7	52.23	49.7	55.6	38.83	36.0	44.1
Dromus dromas	1	- 60.10	60.1	60.1	58.30	58.3	58.3	32.80	32.8	32.8
Ellipsaria lineolata	112	79.78	51.8	105.5	60.54	39.2	75.1	36.80	22.6	52.6
Elliptio crassidens	727	105.54	87.2	151.8	65.89	53.7	88.6	42.08	21.0	60.9
Elliptio dilatata	8	102.20	95.4	113.3	44.42	41.0	48.8	31.81	26.9	39.9
Lampsilis abrupta	10	95.94	82.3	110.6	70.10	60.7	80.7	49.74	43.4	60.4
Lampsilis ovata	7	120.07	102,1	139.1	82,83	72.9	92.3	62.01	55.9	69.4
Lasmigona costata	1	122.10	122.1	122.1	69.90	69.9	69.9	25.50	25.5	25.5
Leptodea fragilis	4	85.67	59.6	110.4	54.50	34.6	72.6	30.48	20.1	39.2
Ligumia recta	24	147.75	107.7	170.2	56.85	45.0	63.4	45.05	33.1	52.9
Megalonaias nervosa	13	160.78	144.2	182.1	109.98	97.6	120.6	58.48	52.4	69.0
Obliquaria reflexa	7	46.50	36.5	52.7	34.72	24.1	41.6	26.83	22.9	33.9
Pleurobema cordatum	586	90.78	54.9	117.2	72.00	44.7	92.3	44.50	25.2	59.8
Pleuroberna oviforme	1	72.9 0	72.9	72.9	56.50	56.5	56.5	40.20	40.2	40.2
Pleuroberna plenum	3	59.43	51.3	68.9	56.10	49.4	66.0	41.47	36.4	48.6
Pleurobema rubrum	1	80.70	80.7	80.7	64.30	64.3	64.3	44.50	44.5	44.5
<u>Potamilus alatus</u>	87	129.80	46.9	160.0	92.1 1	60.1	120.9	39.49	26.8	139.8
Ptychobranchus fasciolaris	1	94.40	94.4	94.4	56.70	56.7	56.7	34.80	34.8	34.8
Quadrula metanevra	63	74.52	54.9	92.1	58.85	42.4	70.3	41.10	31.0	50.6
Quadrula pustulosa	186	52.89	38.2	74.1	49.94	37.2	64.3	31.68	20.5	45.6
Tritogonia verrucosa	8	99.4 0	76.7	116.3	54.16	42.7	60.9	29.87	19.7	36.1

1

a,

\$

8

*...

÷.,

Appendix A-2. (Continued)

. •

TRM 526-527		I	ength			leight		Th	ickness	
and Year 1983	N	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Actinonaias ligamentina	. 1	105.50	105,5	105.5	70.30	70.3	70.3	53,60	53.6	53.6
Amblema plicata	41	98.06	76.5	121.1	73.71	56.6	99.7	46.80	34.8	56.9
Anodonta grandis	22	124.84	101.6	154.6	68.28	55,3	89.6	53,76	39.6	67.9
Cyclonaias tuberculata	32	82.55	66.4	94.7	70.40	60.8	78.1	40,98	34.2	49.8
Ellipsaria lineolata	13	90.57	71.1	96.5	71.33	61.5	78.6	42.22	36.6	50.9
Elliptio crassidens	104	112.07	93.1	134.2	69.83	59,4	79.1	44,82	36.3	52.5
Elliptio dilatata	. 1	102.20	102.2	102.2	46.30	46.3	46.3	31.20	31.2	31.2
Lampsilis abrupta	1	103.10	103.1	103.1	84.40	84.4	84.4	58,20	58.2	58.2
Leptodea fragilis	1	112.40	112.4	112.4	66.40	66.4	66.4	32,70	32.7	32.7
Ligumia recta	2	162.50	160.0	165.0	66.05	63.8	68.3	55,35	54.0	56.7
Megalonaias nervosa	3	173.83	164.4	180.6	117.43	111.7	120.7	60.50	57.2	63.0
Obliquaria reflexa	18	54.35	45.1	64.1	44.40	35.3	51.5	34,88	25,5	41.4
Plethobasus cyphyus	2	91,80	89.3	94.3	64.55	62.8	66.3	45,00	43.6	46.4
Pleurobema cordatum	94	98.39	81.1	129.1	78.17	62.2	99.5	49.67	39.0	62.9
Potamilus alatus	27	142,29	96.6	162.8	104.00	79.3	120.9	38,95	24.1	46.5
Quadrula metanevra	7	84.54	75.1	92.2	64.21	60.1	71.1	47.81	44.0	50.9
Quadrula pustulosa	63	57.01	46.2	66.0	55.09	46.3	66.0	35,49	28.2	43.8
Tritogonia vertucosa	17	110.26	96 .0	128.7	58.53	54.3	64.1	<u>36.48</u>	30.1	42.7

ð

Appendix A-2. (Continued)

٠.

TRM 526-527		I	ength		I	Height		Thickness			
and Year 1984	N	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max	
Amblema plicata	16	100.54	84.8	120.1	73.24	62.3	88.0	44.96	38.9	52.4	
Anodonta grandis	8	127.31	104.3	144.3	68.77	56.6	74.1	50.76	42 .1	54.6	
Anodonta imbecillis	1	54.70	54.7	54.7	23.20	23.2	23.2	16.90	16.9	16.9	
Cyclonaias tuberculata	7	80.50	66.6	92.6	70.53	60.5	80.9	37.67	31.5	43.1	
Ellipsaria lineolata	12	90.98	62.7	109.7	70.40	50.4	86.0	40.49	31.3	50.2	
Elliptio crassidens	100	111.95	96.9	130.8	70.98	60.5	82.4	44.64	38.2	53.1	
Lampsilis abrupta	3	98.63	96.4	100.2	70.80	66.1	74.8	57.07	54.7	60.2	
Lampsilis ovata	1	139. 8 0	139.8	139.8	92.60	92.6	92.6	68.80	68.8	68.8	
Leptodea fragilis	5	109.62	104.5	118.1	65.02	62.1	68.4	35.10	30.9	38.4	
Megalonaias nervosa	1	180.00	180.0	180.0	130.20	130.2	130.2	63.00	63.0	63.0	
Obliquaria reflexa	9	55.80	49.2	64.0	43.27	36.1	52.3	34.44	26.3	39.8	
Pleurobema cordatum	31	98.37	82.0	119.1	77.38	69.3	99.8	47.24	40.6	58.7	
Potamilus alatus	23	153.90	132.3	182.1	105.20	80.5	134.5	41.12	36.8	46.5	
Quadrula metanevra	1	79.10	79.1	79.1	64.60	64.6	64.6	54,90	54.9	54.9	
Quadrula pustulosa	29	59.12	50.2	66.8	55.92	49.5	61.7	34.46	29.4	40.8	
Tritogonia verruçosa	6	118.87	94.2	134.9	61.53 _	56.1	66.8	38.98	29.3	44.8	

194

*

Appendix A-2. (Continued)

....

. •

TRM 526-527		L	ength		1	leight		Thickness		
and Year 1985	N	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Amblema plicata	20	100.06	84.1	119.5	71.56	58.2	84.8	43.86	36.1	56.7
Anodonta grandis	6	122.98	108.7	142.6	72.18	62.9	80.4	50.47	41.9	58.7
Cyclonaias tuberculata	11	82.09	73.5	91.5	70.28	62.1	76.6	39.97	35.6	42.7
Ellipsaria lineolata	13	89.20	80.9	100.4	69.52	62.3	76.9	39.52	34.9	46.8
Elliptio crassidens	105	111.88	9 0.7	134.8	70.36	60.1	82.9	43.96	34.2	53.7
Elliptio dilatata	1	100.80	100.8	100.8	44.20	44.2	44.2	34.80	34.8	34.8
Lampsilis ovata	2	127.20	120.8	133.6	81.15	76.1	86.2	63.05	61.5	64.6
Leptodea fragilis	4	103.30	86.9	114.7	61.30	55.4	66.8	34.38	30.2	39.8
Ligumia recta	1	170.10	170.1	170.1	72.40	72.4	72.4	50.10	50.1	50.1
Megalonaias nervosa	1	190.80	190.8	190.8	121.10	121.1	121.1	57.10	57.1	57.1
Obliguaria reflexa	8	57.25	52.4	66.9	43.74	40.1	50.8	33.39	30.1	36.6
Pleurobema cordatum	52	103.59	83.6	160.2	81.47	66.5	134.9	46.31	34.3	54.4
Potamilus alatus	49	143.15	104.7	170.2	103.43	81.6	125.6	40.52	28.4	49.6
Quadrula metanevra	3	85.90	80.6	88.9	67.2 7	64.7	70.3	43.80	40.2	50.3
Ouadrula pustulosa	43	60.61	46.3	72.3	57.34	32.I	68.1	36.61	28.9	44.2
Tritogonia verrucosa	17	125.20	92.3	148.8	61.35	40.6	70.0	40.43	34.1	48.7

.

4

.

Appendix A-2. (Continued)

TRM 526-527		Ľ	ength		H	leight		Th	ickness	
and Year 1986	N	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Amblema plicata	27	97.68	66.7	121.4	69.54	50.6	84.9	44.09	26.8	57.4
Anodonta grandis	8	125.85	80.9	147.8	70.95	50.7	82.0	52.32	35.1	63.2
Cyclonaias tuberculata	17	79.26	63.2	96.7	67.04	55.9	80.2	39.89	33.1	51.0
Ellipsaria lineolata	7	96.04	83.6	112.3	70.80	61.5	78.2	43.99	34.1	52.5
Elliptio crassidens	105	113.05	92.3	145.2	68.73	59.1	87.1	43.35	35.1	54.1
Elliptio dilatata	1	107.10	107.1	107.1	50.00	50.0	50.0	35,40	35.4	35,4
Lampsilis abrupta	1	114.80	114.8	114.8	77.70	77.7	77.7	57.20	57.2	57.2
Lampsilis ovata	1	132.90	132.9	132.9	91.30	91.3	91.3	72.60	72.6	72.6
Leptodea fragilis	6	100.25	80.1	112.1	57.62	46.6	67.5	31.87	25.3	36.0
Ligumia recta	2	158.55	153.1	1 64 .0	67.00	66.4	67.6	49.75	48.8	50.7
Megalonaias nervosa	2	145.80	124.6	167.0	103.25	87.2	119.3	58.35	57.0	59.7
Obliquaria reflexa	10	55.84	46.6	66.7	44.39	34.1	52.4	34.92	25.7	41.2
Pleurobema cordatum	38	96.12	75.7	117.9	75.20	63.2	83.5	47.08	42.4	56.3
Potamilus alatus	38	142.16	79.8	174.0	90.65	56.7	112.8	40.22	26.7	57.9
Quadrula metanevra	1	81.40	81.4	81.4	70.40	70.4	70.4	55.30	55.3	55.3
Quadrula pustulosa	20	57.10	42.4	67.0	54.51	42.4	66.1	33.57	25.7	40.0
Tritogonia vertucosa	20	111.93	87.1	133.0	56.05	47.6	66.7	33.90	24.7	42.9

 . 4.

/P

Appendix A-2. (Continued)

. .

•

. -

TRM 526-527		L	ength	×	H	leight		Th	ickness	
and Year 1988	<u>N</u>	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Actinonaias ligamentina	1	107.60	107.6	107.6	76.80	76.8	76.8	55.40	55.4	55.4
Amblema plicata	22	105.73	64.8	117.6	77.38	51.1	89.3	49.21	34.8	56.9
Anodonta grandis	19	131.44	101.0	155.1	72.65	56.1	89.9	55.26	43.5	71.2
Anodonta imbecillis	1	54.00	54.0	54.0	24.10	24.1	24.1	16.20	16.2	16.2
Cyclonaias tuberculata	8	82.56	63.4	94.7	71.49	60.7	78.1	41.26	31.3	45.0
Ellipsaria lincolata	4	88.22	81.7	94.3	68,20	61.5	72.8	40.80	38.4	42.3
Elliptio crassidens	51	113.30	100,1	129.2	70.47	44.2	79.3	45.82	39.9	55.3
Lampsilis abrupta	2	96,10	93,4	98.8	69.75	69.5	70.0	57,50	51.4	63.6
Lampsilis ovata	1	139,90	139.9	139.9	90.40	90.4	90.4	77.30	77.3	77.3
Leptodea fragilis	9	98.76	70,4	126.3	61.44	44.9	76.0	32.27	23.8	39.8
Obliguaria reflexa	. 7	54.84	44.2	. 62.7	43.20	36.2	49.6	32.27	24.4	36.0
Pleurobema cordatum	31	100,33	83.4	113.9	79.15	70.3	89.2	49.45	43.1	54.5
Pleurobema rubrum	1	88.30	88.3	88.3	69.50	69.5	69.5	46.70	46.7	46.7
Potamilus alatus	29	147.89	110.3	187.7	109.59	86.7	131.2	41.57	31.0	50.3
Quadrula pustulosa	21	58.90	52.6	64.0	55.89	46.6	64.1	36.14	30.0	40.6
Tritogonia verrucosa	13	114.88	96,3	140.8	64.74	50.1	76.3	41.53	29.7	50.7

1

Appendix A-2. (Continued)

.

. (1

~

TRM 526-527		I	ength		ŀ	leight		Th	ickness	
and Y <u>ear 1990</u>	N	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Actinonaias ligamentina	1	115.40	115.4	115.4	82.60	82 .6	82.6	58.30	58.3	58.3
Amblema plicata	4	102.48	87.2	112.4	73.68	66 .7	80.7	48.68	43.4	50.9
Anodonta grandis	17	136.27	108.7	159.1	76.23	61.5	99.9	56.54	44.4	68.8
Anodonta suborbiculata	1	126.20	126.2	126.2	96.40	96.4	96.4	48.30	48.3	48.3
Cyclonaias tuberculata	5	80.92	73,5	86.7	69.12	64.2	72.2	39.28	35.8	43.2
<u>Ellipsaria lincolata</u>	3	87.13	64.7	101.6	67.33	53.1	76.9	41.37	39.5	42.3
Elliptio crassidens	50	115.95	104.0	149.3	71.21	61.4	82.1	45.56	38.3	51.0
Lampsilis abrupta	1	98.10	98 .1	98.1	83.70	83.7	83.7	62.10	62.1	62.1
Leptodea fragilis	5	111.74	101.8	130.1	69.30	61.0	89.5	36,24	32.8	40.0
Ligumia recta	1	173.10	173.1	173.1	73.50	73.5	73.5	59.90	59.9	59.9
Obliquaria reflexa	6	57.62	48.5	64.6	45.73	39.6	49.9	36.08	29.9	45.1
Pleuroberna cordatum	24	102.52	90.2	120.7	78.21	69.0	90.6	48.51	41.7	52.8
Potamilus alatus	28	146.09	120.1	169.1	108.90	88.4	126.3	40.99	33.1	47.7
Quadrula metanevra	2	84.35	77.9	90.8	66.20	62.3	70.1	50.65	49.9	51.4
Ouadrula pustulosa	26	60.05	50 .1	74.4	55.38	44.9	66.9	35.37	28.0	42.1
Tritogonia verrucosa	7	105.43	<u>78.1</u>	130.1	56.16	43.4	65.9	35.67	26.6	42.5

۰.

4

-a-

Appendix A-2. (Continued)

• -

. •

.

TRM 526-527		L	ength		ł	leight	T	Th	ickness	
and Year 1992	N	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Amblema plicata	6	99.72	94.7	105.1	73,83	65.5	82.1	47.28	44.7	51.6
Anodonta grandis	4	129.70	122.0	136.8	73.85	67.3	79.2	58,88	54.0	65.1
Cyclonaias tuberculata	12	84.87	75.5	92.4	70.85	64.1	75.4	40.52	36.5	43.2
Ellipsaria lineolata	3	95.83	94.6	96.7	73.90	71.1	77.2	41.23	36.1	44.5
Elliptio crassidens	42	113.78	100.1	126.7	71.49	63.2	81.6	45.96	39.1	52.3
Lampsilis abrunta	2	107.55	99.8	115.3	72.35	66.3	78.4	52.55	52.2	52.9
Megalonaias nervosa	3	170.43	155.9	183.2	122.43	112.2	128.2	61.77	53.1	69.3
Obliquaria reflexa	4	57.75	52.0	61.5	44.05	40.9	47.9	33.78	30.9	36.7
Plethobasus cyphyus	1	91.40	91.4	91.4	64.80	64.8	64.8	50.30	50.3	50.3
Pleurobema cordatum	27	103.31	82.5	127.9	78.67	68.5	90.7	45.82	39.5	49.7
Potamitus alatus	5	142.44	116.6	161.2	106.72	94.0	116.9	40.20	35.1	47.4
Quadrula metanevra	3	79.53	75.7	87.2	61,43	58.3	66.5	44.37	40.9	48.2
Quadrula pustulosa	16	58.32	51.5	64.7	54.97	50,1	62.7	35.34	30.3	44.8
Tritogonia verrucosa	7	105,57	<u> 77.0 </u>	127.3	<u>58.67</u>	43.1	66.7	37.10	21.7	48.3
·····				· · · · · · · · · · · · · · · · · · ·						
TRM 526-527	[]		ength			leight			ckness	
and Year 1994	N	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
and Year 1994 Amblema plicata	11	Mean 108.42	<u>Min</u> 97.6	119.1	<u>Mean</u> 78.67	Min 72.2	89.7	Mean 49.41	<u>Min</u> 45.2	54.7
and Year 1994 Amblema plicata Anodonta grandis	11 7	Mean 108.42 135.29	<u>Min</u> 97.6 121.4	119.1 142.7	Mean 78.67 79.13	Min 72.2 66.7	89.7 85.1	Mean 49.41 57.84	Min 45.2 47.6	54.7 64.6
and Year 1994 Amblema plicata Anodonta grandis Cyclonaias tuberculata	11 7 8	Mean 108.42 135.29 79.01	Min 97.6 121.4 72.0	119.1 142.7 85.1	Mean 78.67 79.13 68.94	Min 72.2 66.7 63.7	89.7 85.1 73.5	Mean 49.41 57.84 38.94	Min 45.2 47.6 34.8	54.7 64.6 41.6
and Year 1994 Amblema plicata Anodonta grandis Cyclonaias tuberculata Ellipsaria lineolata	11 7 8 1	Mean 108.42 135.29 79.01 96.10	Min 97.6 121.4 72.0 96.1	119.1 142.7 85.1 96.1	Mean 78.67 79.13 68.94 76.70	Min 72.2 66.7 63.7 76.7	89.7 85.1 73.5 76.7	Mean 49.41 57.84 38.94 42.30	Min 45.2 47.6 34.8 42.3	54.7 64.6 41.6 42.3
and Year 1994 Amblema plicata Anodonta grandis Cyclonaias tuberculata Ellipsaria lineolata Elliptio crassidens	11 7 8 1 85	Mean 108.42 135.29 79.01 96.10 116.05	Min 97.6 121.4 72.0 96.1 96.5	119.1 142.7 85.1 96.1 129.8	Mean 78.67 79.13 68.94 76.70 72.99	Min 72.2 66.7 63.7 76.7 62.5	89.7 85.1 73.5 76.7 82.4	Mean 49.41 57.84 38.94 42.30 46.66	Min 45.2 47.6 34.8 42.3 39.4	54.7 64.6 41.6 42.3 52.9
and Year 1994 Amblema plicata Anodonta grandis Cyclonaias tuberculata Ellipsaria lineolata Elliptio crassidens Lampsilis abrupta	11 7 8 1 85 1	Mean 108.42 135.29 79.01 96.10 116.05 101.20	Min 97.6 121.4 72.0 96.1 96.5 101.2	119.1 142.7 85.1 96.1 129.8 101.2	Mean 78.67 79.13 68.94 76.70 72.99 86.10	Min 72.2 66.7 63.7 76.7 62.5 86.1	89.7 85.1 73.5 76.7 82.4 86.1	Mean 49.41 57.84 38.94 42.30 46.66 65.40	Min 45.2 47.6 34.8 42.3 39.4 65.4	54.7 64.6 41.6 42.3 52.9 65.4
and Year 1994 <u>Amblema plicata</u> <u>Anodonta grandis</u> <u>Cyclonaias tuberculata</u> <u>Ellipsaria lineolata</u> <u>Elliptio crassidens</u> <u>Lampsilis abrupta</u> <u>Leptodea fragilis</u>	11 7 8 1 85 1 2	Mean 108.42 135.29 79.01 96.10 116.05 101.20 117.15	Min 97.6 121.4 72.0 96.1 96.5 101.2 112.2	119.1 142.7 85.1 96.1 129.8 101.2 122.1	Mean 78.67 79.13 68.94 76.70 72.99 86.10 74.05	Min 72.2 66.7 63.7 76.7 62.5 86.1 71.2	89.7 85.1 73.5 76.7 82.4 86.1 76.9	Mean 49.41 57.84 38.94 42.30 46.66 65.40 39.70	Min 45.2 47.6 34.8 42.3 39.4 65.4 39.4	54.7 64.6 41.6 42.3 52.9 65.4 40.0
and Year 1994 <u>Amblema plicata</u> <u>Anodonta grandis</u> <u>Cyclonaias tuberculata</u> <u>Ellipsaria lineolata</u> <u>Elliptio crassidens</u> <u>Lampsilis abrupta</u> <u>Leptodea fragilis</u> <u>Ligumia recta</u>	11 7 8 1 85 1 2 1	Mean 108.42 135.29 79.01 96.10 116.05 101.20 117.15 161.40	Min 97.6 121.4 72.0 96.1 96.5 101.2 112.2 161.4	119.1 142.7 85.1 96.1 129.8 101.2 122.1 161.4	Mean 78.67 79.13 68.94 76.70 72.99 86.10 74.05 73.30	Min 72.2 66.7 63.7 76.7 62.5 86.1 71.2 73.3	89.7 85.1 73.5 76.7 82.4 86.1 76.9 73.3	Mean 49.41 57.84 38.94 42.30 46.66 65.40 39.70 61.20	Min 45.2 47.6 34.8 42.3 39.4 65.4 39.4 61.2	54.7 64.6 41.6 42.3 52.9 65.4 40.0 61.2
and Year 1994 <u>Amblema plicata</u> <u>Anodonta grandis</u> <u>Cyclonaias tuberculata</u> <u>Ellipsaria lineolata</u> <u>Elliptio crassidens</u> <u>Lampsilis abrupta</u> <u>Leptodea fragilis</u> <u>Ligumia recta</u> <u>Obliquaria reflexa</u>	11 7 8 1 85 1 2 1 1	Mean 108.42 135.29 79.01 96.10 116.05 101.20 117.15 161.40 57.30	Min 97.6 121.4 72.0 96.1 96.5 101.2 112.2 161.4 52.8	119.1 142.7 85.1 96.1 129.8 101.2 122.1 161.4 69.5	Mean 78.67 79.13 68.94 76.70 72.99 86.10 74.05 73.30 45.68	Min 72.2 66.7 63.7 76.7 62.5 86.1 71.2 73.3 41.4	89.7 85.1 73.5 76.7 82.4 86.1 76.9 73.3 51.7	Mean 49.41 57.84 38.94 42.30 46.66 65.40 39.70 61.20 35.04	Min 45.2 47.6 34.8 42.3 39.4 65.4 39.4 61.2 29.6	54.7 64.6 41.6 42.3 52.9 65.4 40.0 61.2 42.7
and Year 1994 Amblema plicata Anodonta grandis Cyclonaias tuberculata Ellipsaria lineolata Elliptio crassidens Lampsilis abrupta Leptodea fragilis Ligumia recta Obliquaria reflexa Plethobasus cyphyus	11 7 8 1 85 1 2 1 11 11	Mean 108.42 135.29 79.01 96.10 116.05 101.20 117.15 161.40 57.30 88.60	Min 97.6 121.4 72.0 96.1 96.5 101.2 112.2 161.4 52.8 88.6	119.1 142.7 85.1 96.1 129.8 101.2 122.1 161.4 69.5 88.6	Mean 78.67 79.13 68.94 76.70 72.99 86.10 74.05 73.30 45.68 59.40	Min 72.2 66.7 63.7 76.7 62.5 86.1 71.2 73.3 41.4 59.4	89.7 85.1 73.5 76.7 82.4 86.1 76.9 73.3 51.7 59.4	Mean 49.41 57.84 38.94 42.30 46.66 65.40 39.70 61.20 35.04 46.20	Min 45.2 47.6 34.8 42.3 39.4 65.4 39.4 61.2 29.6 46.2	54.7 64.6 41.6 42.3 52.9 65.4 40.0 61.2 42.7 46.2
and Year 1994 <u>Amblema plicata</u> <u>Anodonta grandis</u> <u>Cyclonaias tuberculata</u> <u>Ellipsaria lineolata</u> <u>Elliptio crassidens</u> <u>Lampsilis abrupta</u> <u>Leptodea fragilis</u> <u>Ligumia recta</u> <u>Obliguaria reflexa</u> <u>Plethobasus cyphyus</u> <u>Pleurobema cordatum</u>	11 7 8 1 85 1 2 1 1 1 1 1 1 1 1 9	Mean 108.42 135.29 79.01 96.10 116.05 101.20 117.15 161.40 57.30 88.60 103.80	Min 97.6 121.4 72.0 96.1 96.5 101.2 112.2 161.4 52.8 88.6 83.1	119.1 142.7 85.1 96.1 129.8 101.2 122.1 161.4 69.5 88.6 116.5	Mean 78.67 79.13 68.94 76.70 72.99 86.10 74.05 73.30 45.68 59.40 79.25	Min 72.2 66.7 63.7 76.7 62.5 86.1 71.2 73.3 41.4 59.4 69.1	89.7 85.1 73.5 76.7 82.4 86.1 76.9 73.3 51.7 59.4 90.1	Mean 49.41 57.84 38.94 42.30 46.66 65.40 39.70 61.20 35.04 46.20 48.48	Min 45.2 47.6 34.8 42.3 39.4 65.4 39.4 61.2 29.6 46.2 37.4	54.7 64.6 41.6 42.3 52.9 65.4 40.0 61.2 42.7 46.2 57.6
and Year 1994 <u>Amblema plicata</u> <u>Anodonta grandis</u> <u>Cyclonaias tuberculata</u> <u>Ellipsaria lineolata</u> <u>Elliptio crassidens</u> <u>Lampsilis abrupta</u> <u>Leptodea fragilis</u> <u>Ligumia recta</u> <u>Obliquaria reflexa</u> <u>Plethobasus cyphyus</u> <u>Pleurobema cordatum</u> <u>Potamilus alatus</u>	11 7 8 1 85 1 2 1 1 11 11 19 5	Mean 108.42 135.29 79.01 96.10 116.05 101.20 117.15 161.40 57.30 88.60 103.80 153.00	Min 97.6 121.4 72.0 96.1 96.5 101.2 112.2 161.4 52.8 88.6 83.1 131.9	119.1 142.7 85.1 96.1 129.8 101.2 122.1 161.4 69.5 88.6 116.5 168.6	Mean 78.67 79.13 68.94 76.70 72.99 86.10 74.05 73.30 45.68 59.40 79.25 117.24	Min 72.2 66.7 63.7 76.7 62.5 86.1 71.2 73.3 41.4 59.4 69.1 109.4	89.7 85.1 73.5 76.7 82.4 86.1 76.9 73.3 51.7 59.4 90.1 128.5	Mean 49.41 57.84 38.94 42.30 46.66 65.40 39.70 61.20 35.04 46.20 48.48 43.88	Min 45.2 47.6 34.8 42.3 39.4 65.4 39.4 61.2 29.6 46.2 37.4 38.4	54.7 64.6 41.6 42.3 52.9 65.4 40.0 61.2 42.7 46.2 57.6 46.5
and Year 1994 <u>Amblema plicata</u> <u>Anodonta grandis</u> <u>Cyclonaias tuberculata</u> <u>Ellipsaria lineolata</u> <u>Elliptio crassidens</u> <u>Lampsilis abrupta</u> <u>Leptodea fragilis</u> <u>Ligumia recta</u> <u>Obliguaria reflexa</u> <u>Plethobasus cyphyus</u> <u>Pleurobema cordatum</u>	11 7 8 1 85 1 2 1 1 1 1 1 1 1 1 9	Mean 108.42 135.29 79.01 96.10 116.05 101.20 117.15 161.40 57.30 88.60 103.80	Min 97.6 121.4 72.0 96.1 96.5 101.2 112.2 161.4 52.8 88.6 83.1	119.1 142.7 85.1 96.1 129.8 101.2 122.1 161.4 69.5 88.6 116.5	Mean 78.67 79.13 68.94 76.70 72.99 86.10 74.05 73.30 45.68 59.40 79.25	Min 72.2 66.7 63.7 76.7 62.5 86.1 71.2 73.3 41.4 59.4 69.1	89.7 85.1 73.5 76.7 82.4 86.1 76.9 73.3 51.7 59.4 90.1	Mean 49.41 57.84 38.94 42.30 46.66 65.40 39.70 61.20 35.04 46.20 48.48	Min 45.2 47.6 34.8 42.3 39.4 65.4 39.4 61.2 29.6 46.2 37.4	54.7 64.6 41.6 42.3 52.9 65.4 40.0 61.2 42.7 46.2 57.6

÷.

.

Appendix A-2. (Continued)

1.

- 2

.

TRM 526-527		Ľ	ength		F	leight		Th	ickness	
and Year 1996	N	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Amblema plicata	6	103.30	84.0	117.1	73.70	59.1	86.5	49.20	41.0	57.3
Anodonta grandis	6	144.90	130.6	160.0	84.20	71.9	102.4	58.50	52.1	64.2
Cyclonaias tuberculata	7	84.50	75.5	87.9	69.80	67.8	71.5	42.30	40.0	46.5
Ellipsaria lineolata	4	94.40	89.0	100.9	71.10	66.5	75.6	43.30	42.0	44.4
Elliptio crassidens	29	118.20	101.4	151.1	73.10	63.5	82.5	48.40	42.3	56.9
<u>Lampsilis abrupta</u>	2	115.70	109.1	122.4	84.30	83.0	85.5	63.00	59.1	66.9
Megalonaias nervosa	1	180.00	180.0	180.0	123.60	123.6	123.6	66.00	66.0	66.0
Obliquaria reflexa	6	56.10	51.8	59.6	43.90	39,8	50.1	36.40	33.4	40.3
Pleurobema cordatum	20	102.60	77.1	120.9	79 .30	65.2	91.2	50.20	41.2	56.0
<u>Potamilus alatus</u>	28	148.90	125.9	180.0	83.90	70.8	97.3	41.30	32.2	51.5
Quadrula metanevra	1	77.80	77.8	77.8	61.00	61.0	61.0	51.60	51.6	51.6
Quadrula pustulosa	9	59.60	50.6	68.6	55.40	48.9	60.0	38.10	31.3	47.7
Tritogonia verrucosa	3	101.60	88.5	127.5	54.20	49.4	60.8	35.50	29.6	40.3

TRM 526-527		Ľ	ength		H	leight		Th	ickness	
and Year 1997	N	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Amblema plicata	4	100.60	73.5	123.0	71.90	57.0	78.9	47.40	35.1	53.2
Anodonta grandis	1	147.00	147.0	147.0	81.00	81.0	81.0	63.40	63.4	63.4
Cyclonaias tuberculata	3	86.20	75.3	96.8	71.10	60.4	78.8	42.70	37.8	49.4
<u>Ellipsaria lineolata</u>	1	85.10	85.1	85.1	71.60	71.6	71.6	41.50	41.5	41.5
Elliptio crassidens	50	115.60	96.7	131.5	71.50	58.8	80.5	46.90	39.6	59.8
Leptodea fragilis	2	92.20	69.3	115.0	56.10	40.5	71.7	26.90	21.5	37.3
Obliquaria reflexa	2	55.80	54.2	57.4	45.70	44.6	46.7	34.80	33.0	36.6
Pleurobema cordatum	18	103.20	93.5	112.6	77.60	70.5	83.9	52.40	43.8	57.3
Potamilus alatus	6	154.00	142.4	166.9	87.10	78.4	95.8	43.20	39.7	48.9
Quadrula metanevra	1	85.00	85.0	85.0	65.70	65.7	65.7	45.40	45.4	45.4
Quadrula pustulosa	6	60.50	53.7	65.3	55.80	51.6	58.9	37.20	31.9	42.0
Tritogonia verrucosa	1	109.60	109.6	109.6	52.80	52.8	52.8	38.30	38.3	38.3

.1

es.

Appendix A-2. (Continued)

....

TRM 526-527		L	ength		H	leight	T	· Th	ickness	
and Years 1983-1997	N	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Actinonaias ligamentina	3	109.50	105.5	115.4	76.57	70.3	82.6	55.77	53.6	58.3
Amblema plicata	157	100.74	64.8	123.0	73.92	50.6	99.7	46.47	26.8	57.4
Anodonta grandis	98	130.67	80.9	160.0	73.11	50.7	102.4	54.85	35.1	71.2
Anodonta imbecillis	2	54.35	54.0	54.7	23.65	23.2	24.1	16.55	16.2	16.9
Anodonta suborbiculata	1	126.20	126.2	126.2	96.40	96.4	96.4	48.30	48.3	48.3
Cyclonaias tuberculata	110	82.01	63.2	96.8	69.81	55.9	80.9	40.37	31.3	51.0
Ellipsaria lineolata	61	91.17	62.7	112.3	70.50	50.4	86.0	41.38	31.3	52.5
Elliptio crassidens	721	113.59	90.7	151.1	70.76	44.2	87.1	45.15	34.2	59.8
Elliptio dilatata	3	103.37	100.8	107.1	46.83	44.2	50.0	33.80	31.2	35.4
Lampsilis abrupta	13	103.98	93.4	122.4	76.00	66.1	86.1	58.47	51.4	65.4
<u>Lampsilis ovata</u>	5	133.40	120.8	139.9	87.32	76.1	92.6	68.96	61.5	77.3
Leptodea fragilis	34	104.16	69.3	130.1	63.01	40.5	89.5	33.58	21.5	40.0
Ligumia recta	7	163.81	153.1	173.1	69.33	63.8	73.5	54.49	48.8	61.2
Megalonaias nervosa	11	170.47	124.6	190.8	118.27	87.2	130.2	60.87	53,1	69.3
Obliquaria reflexa	81	56.00	44.2	69.5	44.35	34.1	52.4	34.63	24.4	45.1
Plethobasus cyphyus	4	90,90	88.6	94.3	63.33	59.4	66.3	46.63	43,6	50.3
Pleurobema cordatum	354	100.51	75.7	160.2	78.49	62.2	134.9	48.39	34.3	62.9
Pleurobema rubrum	1	88,30	88.3	88.3	69.50	69.5	69.5	46.70	46.7	46.7
Potamilus alatus	238	145.99	79.8	187.7	91.15	56.7	134.5	40.76	24.1	57.9
<u>Ouadrula metanevra</u>	19	83.16	75.1	92.2	64.72	58.3	71.1	47.77	40.2	55.3
<u>Quadrula pustulosa</u>	263	58.64	42.4	74.4	55.53	32.1	68.1	35.59	25.7	49.9
Tritogonia verrucosa	96	113.63	77.0	148.8	59.09	40.6	76.3	37.46	21.7	50.7

.

٠

Appendix A-2. (Continued)

4,

•

TRM 528-529		Ĩ	ength		H	leight		Th	ickness	
and Year 1983	N	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Actinonaias ligamentina	2	102.95	92.5	113.4	72,95	69.3	76.6	53.40	48,3	58.5
Amblema plicata	5	103.20	84.7	132.3	75.74	64.1	94.6	40.42	30.4	51.3
Anodonta grandis	6	111.01	83.0	128.0	63.24	46.1	72.3	46,23	35.4	54.9
Cyclonaias tuberculata	43	82.19	66.8	96.5	69.89	57.3	79.9	40.56	32.6	46.6
Cyprogenia stegaria	2	56.45	52.9	60.0	51,14	50.9	51.4	38,71	36.8	40.6
Ellipsaria lineolata	12	90.16	66.4	108.8	67.22	52.4	76.8	42.40	36.6	51.3
Elliptio crassidens	105	110.49	86.8	134.6	68.14	54.4	89.9	43.39	34.9	56.1
Elliptio dilatata	1	95.30	95,3	95.3	44.10	44,1	44.1	30.50	30.5	30.5
Fusconaia subrotunda	1	66.09	66.1	66.1	53,56	53.6	53.6	36.58	36.6	36.6
Lampsilis abrupta	7	94.00	70.5	106.4	70.46	59,4	80.4	51.68	39.8	60.1
Lampsilis ovata	1	132.30	132.3	132.3	91.64	91.6	91.6	76.30	76.3	76.3
Leptodea fragilis	1	81.70	81.7	81.7	48.20	48,2	48.2	29.50	29,5	29.5
Ligumia recta	3	155.31	145.8	160.1	62,95	60.3	65.1	51.84	50.6	53.8
Obliquaria reflexa	1	49.00	49.0	49.0	39.70	39,7	39.7	34.30	34.3	34.3
Pleurobema cordatum	105	97.39	73.3	114.2	76.61	59.3	86.7	49.44	32.3	61.2
Potamilus alatus	5	126.89	110.3	141.8	88.62	69,1	119.8	39.26	34.5	44.1
Quadrula metanevra	13	75.86	46.9	92.6	59.96	42.2	74.4	42.98	26.2	.54.7
Quadrula pustulosa	57	57.27	44.8	69.9	54.45	42.1	66.9	35.05	28.8	43.5
Tritogonia verrucosa	1	106.72	106.7	106.7	62.81	62.8	62.8	32.64	32.6	32.6

đ

1

-

~

....

. -

TRM 528-529		1	ength		H	leight		Th	ickness	
and Year 1984	N	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Actinonaias ligamentina	2	109.55	99.4	119.7	81.00	74.0	88.0	53.25	53.1	53.4
Amblema plicata	8	95.05	73.6	113.8	71.76	59.5	84.3	37.02	26.8	48.4
Anodonta grandis	1	102.70	102.7	102.7	56.90	56.9	56.9	39.60	39.6	39.6
Cyclonaias tuberculata	23	82.19	69.4	99.1	69.40	60.3	79.1	39.06	33,5	46.3
Ellipsaria lineolata	14	84.82	63.6	108.7	63.59	50.1	78.3	39.51	34.1	46.3
Elliptio crassidens	101	112.00	94.7	129.8	69.07	58.0	78.5	43.58	36.0	54.5
Elliptio dilatata	1	92.60	92.6	92.6	43.70	43.7	43.7	21.50	21.5	21.5
Lampsilis abrupta	4	96.70	86.8	106.8	68.78	64.6	74.0	57.80	52.9	62.4
Lampsilis ovata	3	132.67	118.5	142.7	88.90	82 .0	102.7	70.83	63.5	76.7
Leptodea fragilis	1	119.90	119.9	119.9	66.50	66.5	66.5	40.80	40.8	40.8
Ligumia recta	9	162.78	146.6	185.2	60.77	56.1	66.6	51.30	44.0	54.9
Obliquaria reflexa	1	51.20	51.2	51.2	40.20	40.2	40.2	30,80	30.8	30.8
Pleuroberna cordatum	103	98.58	76.1	132.6	77.42	52.1	90.6	47.97	34.2	79.9
Pleurobema oviforme	2	69.80	63.5	76.1	55.70	50.6	60.8	40.35	40.0	40.7
Potamilus alatus	10	139.25	110.2	163.2	91.64	72.5	102.3	40.80	34.3	44.8
Quadrula metanevra	9	84.71	72.5	94.8	67.19	56.9	76,1	46.33	39.7	50.9
Quadrula pustulosa	56	58.80	46.4	72.0	55.34	44.4	64.8	34.54	20.2	40.9
Tritogonia verrucosa	3	104.83	84.6	121.4	59.37	49.5	64.4	29.40	24.3	32.4

Appendix A-2. (Continued)

4.

13

TRM 528-529		L	ength		H	leight		Th	ickness	
and Year 1985	N	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Actinonaias ligamentina	6	104.13	92.7	113.4	72.30	66.8	80.3	50.88	46.6	54.6
Amblema plicata	19	108.21	76.3	132.5	79.99	62.9	94.9	42.61	30.5	54.4
Anodonta grandis	4	123.38	107.9	130.1	65.80	60.9	69.6	46.20	40.7	50.1
Cyclonaias tuberculata	41	82.26	70.5	94.6	68.68	59.5	78.4	38.85	32.0	44.9
Ellipsaria lineolata	15	90.71	70.1	98.4	68.05	52.2	76.1	40.40	36.4	44.7
Elliptio crassidens	100	114.33	99.1	130.5	69.92	20.1	84.7	44.20	36.1	52.4
Lampsilis abrupta	6	103.77	92.6	113.3	75.07	64.4	81.1	56.83	50. 6	64.4
Lampsilis ovata	6	128.43	114.0	142.0	84.58	70.0	103.4	62.65	57.3	70.2
Lasmigona complanata	1	180.20	180.2	180.2	114.30	114.3	114.3	40.30	40.3	40.3
Leptodea fragilis	1	88.20	88.2	88.2	50.20	50.2	50.2	28.60	28.6	28.6
Ligumia recta	6	168.92	154.4	180.3	64.07	60.2	72.4	53,33	49.9	60.4
Megalonaias nervosa	2	173.70	172.2	175.2	118.25	116,8	119.7	66.15	60.9	71.4
Obliguaria reflexa	3	54.67	50.5	58.8	43.13	40.2	46.8	33.50	30.9	36.7
Pleurobema cordatum	105	96.94	76.3	112.2	76.82	60.6	89.9	46.09	34.1	59.1
Pleurobema plenum	1	84.60	84.6	84.6	70.20	70.2	70.2	50,60	50.6	50.6
Pleurobema rubrum	2	91.60	90.4	92.8	73,20	71.6	74.8	50.60	49.8	51.4
Potamilus alatus	13	140.13	102.6	155.2	102.73	80.6	119.5	41.25	30.6	46.8
Quadrula metanevra	2	80.70	76.9	84.5	63,45	62.8	64.1	48.90	43.6	54.2
Quadruia pustulosa	69	57.78	48.5	80.5	54.68	44.8	68.8	34.83	26.3	42.8
Tritogonia verrucosa	1	136.10	136.1	136.1	72.00	72.0	72.0	34.00	34.0	34.0

.

-et

Appendix A-2. (Continued)

--

.

. •

TRM 528-529		L	ength		I	leight	T	Th	ickness	
and Year 1986	N	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Actinonaias ligamentina	4	103.52	88.2	116.3	71.28	63.2	75.7	48.63	43.4	52.8
Amblema plicata	15	113.97	80.9	137.4	79.28	58.0	94.9	43.03	27.8	55.3
Anodonta grandis	6	117.00	102.2	135.2	64.53	57.0	79.4	46.35	37.2	56.7
Cyclonaias tuberculata	42	81,98	68.4	94.3	69.32	57.0	79.3	39.83	33.0	48.1
Ellipsaria lineolata	15	89.69	63.9	110.8	66.99	50.1	78.8	41.21	35.1	53.3
Elliptio crassidens	99	112.84	93.4	136.2	68.64	53.8	85.2	42.61	31.0	55.5
Elliptio dilatata	. 1	111.20	111.2	111.2	52.60	52.6	52.6	42.20	42.2	42.2
Lampsilis abrupta	3	98.33	90.3	108.6	72.07	66.4	76.2	53.30	50.7	56.7
Lampsilis ovata	1	152.20	152.2	152.2	101.40	101.4	101.4	72.00	72.0	72.0
Leptodea fragilis	3	90.10	79.4	111.1	51.33	47.3	59.1	29.23	26.7	33.1
Ligumia recta	9	155.47	135.3	173.1	58.03	48 .0	64.5	50.77	44.5	55.9
Megalonaias nervosa	1	175.60	175.6	175.6	117.90	117.9	117.9	58.00	58.0	58.0
Obliquaria reflexa	2	51.45	50.7	52.2	36.15	32.0	40.3	25.75	21.6	29.9
Pleurobema cordatum	99	95,61	74.4	116.0	74.47	57.4	84.8	46.86	36.2	61.9
Pleurobema oviforme	2	68.90	68.4	69.4	50,70	48.6	52.8	35.60	33.0	38.2
Potamilus alatus	19	141.82	112.8	164.1	90.17	72.9	123.6	41.89	30.9	79.6
Quadrula metanevra	4	83.83	75.7	91.2	68.80	61.1	84.2	50.20	46.4	54.1
Quadrula pustulosa	35	56.95	46.5	71.6	53.18	43.4	64.2	33.65	24.7	42.1
Tritogonia verrucosa	1	78.80	78.8	78,8	41.40	41.4	41.4	26.70	26.7	26.7

٠

Appendix A-2. (Continued)

4,

TRM 528-529		L	ength		I	Height		Th	ickness	
and Year 1988	Ν	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Amblema plicata	14	101.22	82.3	119.8	74.19	63.5	89.8	44.59	32.1	52.0
Anodonta grandis	7	125.20	109.7	136.1	66.87	57.6	81.3	52.64	48.4	58.7
Anodonta suborbiculata	1	107.80	107.8	107.8	79.20	79.2	79.2	38.70	38.7	38.7
Cyclonaias tuberculata	29	83.77	67.2	97.5	69.95	58.9	97.7	41.00	36.1	49.3
Ellipsaria lineolata	10	93.77	83.5	102.8	69.20	62.1	77.4	41.00	36.1	44.5
Elliptio crassidens	51	112.93	99.6	136.4	69.48	61.3	76.2	44.49	36.3	54.6
Elliptio dilatata	2	103.25	95.6	110.9	45.45	40.8	50.1	29.15	27.5	30.8
Lampsilis abrupta	10	101.72	86.8	119.8	72.11	62.7	79.8	57.43	51.9	60.9
Lampsilis ovata	1	140.50	140.5 ·	140.5	87.70	87.7	87.7	58.00	58.0	58.0
Leptodea fragilis	3	102.97	98.2	106.4	60.70	56.7	63.0	31.67	28.8	34.0
Ligumia recta	5	161.96	146.6	175.1	64.36	62.0	68.7	53.08	50.2	55.1
Megalonaias nervosa	5	164.90	155.I	170.8	118.14	110.4	126.6	61.18	53.6	68.7
Pleurobema cordatum	50	99.99	86.1	119.1	78.51	69.2	87.5	48.33	39.4	58.6
Pleurobema oviforme	2	72.20	70.2	74.2	55.00	54.0	56.0	40.70	40.7	40.7
Potamilus alatus	15	139.96	118.6	155.2	107.58	90.1	120.9	40.10	34.8	49.3
Ouadrula metanevra	2	91.25	90.7	91.8	67.40	67.2	67.6	52.10	50.6	53.6
Quadrula pustulosa	51	58.83	36.1	81.1	55.00	40.7	98.4	35.02	26.2	43.1
Tritogonia verrucosa	2	115.75	98.3	133.2	<u>56.80</u>	51.4	62.2	43.55	26.7	60.4

.

..

e

Appendix A-2. (Continued)

**

- *

TRM 528-529		I	ength		I	leight		Th	ickness	
and Year 1990	N	Mean	Min	Max	<u>Mean</u>	Min	Max	Mean	Min	Max
Actinonaias ligamentina	2	120.90	120.8	121.0	81.30	80.1	82.5	60.95	60.1	61.8
Amblema plicata	1	110.20	110.2	110.2	75.70	75.7	75.7	38.50	38.5	38.5
Anodonta grandis	2	127,75	126.4	129.1	74.10	69.2	79.0	52.95	46.8	59.1
Cyclonaias tuberculata	14	87.13	76.3	94.9	73.68	66.8	83.3	40.56	34.1	49.6
Ellipsaria lincolata	9	85.23	72.7	102.3	64.28	53.2	74.6	41.13	36.2	47.4
Elliptio crassidens	60	119.35	104.6	134.7	72.48	61.1	82.7	46.00	38.2	51.6
Elliptio dilatata	1	94.60	94.6	94.6	46.90	46.9	46.9	28.60	28.6	28.6
Lampsilis abrupta	3	108.57	101.0	120.6	83.23	81.8	86.0	62.17	55.7	67.7
<u>Lampsilis ovata</u>	1	121.70	121.7	121.7	78,10	78.1	78.1	68.30	68.3	68.3
Leptodea fragilis	1	124.70	124.7	124.7	69.60	69.6	69.6	39.70	39.7	39.7
<u>Ligumia recta</u>	1	172.10	172.1	172.1	68.30	68.3	68.3	58.70	58.7	58.7
Megalonaias nervosa	1	170.10	170.1	170.1	118.40	118.4	118.4	57.10	57.1	57.1
Obliguaria reflexa	3	56.40	54.8	58.0	42,90	40.3	46.4	30.37	28.5	31.7
Pleurobema cordatum	74	98.21	85.4	116.8	76.30	67.2	90.1	47.50	39.6	56.9
Pleurobema oviforme	1	72.80	72.8	72.8	56.00	56.0	56.0	41.70	41.7	41.7
Potamilus alatus	4	124.70	83,2	147.6	101.20	72.6	116.9	36.65	21.5	43.5
Ptychobranchus fasciolaris	1	116.80	116.8	116.8	61.40	61.4	61.4	44.70	44.7	44.7
Quadrula metanevra	- 4	89.70	85.3	100.7	66.98	60.2	71.5	48.43	46.3	51.8
Quadrula pustulosa	35	58.17	44.1	82.8	54.31	43.3	67.4	34.77	25.2	45.4
Tritogonia verrucosa	1	136.30	136.3	136.3	70.90	70.9	70.9	34,70	34.7	34.7

н

Appendix A-2. (Continued)

۰,

TRM 528-529		· I	ength		H	leight		Th	ickness	
and Year 1992	N	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Amblema plicata	5	106.76	89.9	118.2	78.08	68.4	88.8	39.76	24.9	50.4
Cyclonaias tuberculata	12	82.04	70.3	97.1	70.42	59.6	79.4	39.90	29.5	44.5
Ellipsaria lineolata	3	96.67	90.8	99.6	68.43	67.9	69.1	40.80	39.6	42.2
Elliptio crassidens	52	· 117.40	99.7	136.6	71.86	63.2	83.3	45.77	39.2	53.3
Lampsilis abrupta	4	109.50	96.8	116.3	75.78	68.8	83.4	55.78	50.7	59.8
Ligumia recta	1	165.70	165.7	165.7	60.70	60.7	60.7	59.90	59.9	59.9
Obliquaria reflexa	1	59.30	59.3	59.3	42.90	42.9	42.9	28.90	28.9	28.9
Pleurobema cordatum	29	102.50	86.8	119.8	78.50	72.0	94.2	49.27	39.3	59.8
Potamilus alatus	5	145.50	139.3	150.1	103.32	90.6	109.4	42.50	39 .0	46.8
Ouadrula metanevra	3	75.00	61.9	84.7	61.57	60.7	62.0	44.23	37.4	47.7
Quadrula pustulosa	18	57.97	52.2	66.9	53.86	47.6	59.7	33.30	28.2	40.3
TRM 528-529	1 1	I	ength		H	eight	<u>.</u>	Thi	ickness	
and Year 1994	N	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Cyclonaias tuberculata	10	81.57	58.4	91.2	67.30	50.3	72.9	39.50	28.3	46.9
Ellipsaria lineolata	3	97.83	94.0	100.2	71.60	69.5	73.1	46.57	44.4	48.6

anu icai 1774		Ivicali	TARW9	IVIGA	IAICUN	IATET	IVIAN	IVICAL	14111	IVIAN
Cyclonaias tuberculata	10	81.57	58.4	91.2	67.30	50.3	72.9	39.50	28.3	46.9
Ellipsaria lincolata	3	97.83	94.0	100.2	71.60	69.5	73.1	46.57	44.4	48.6
Elliptio crassidens	66	115.95	104.6	129.2	71.54	62.5	84.7	45.53	39.2	50.8
Lampsilis abrupta	1	108.90	108.9	108.9	82.30	82.3	82.3	65.90	65.9	65.9
Leptodea fragilis	1	118.70	118.7	118.7	70.50	70.5	70.5	39.40	39.4	39.4
Megalonaias nervosa	1	168.70	168.7	168.7	119.20	119.2	119.2	58.70	58.7	58.7
Pleurobema cordatum	41	100,75	84.4	110.7	77.52	68.1	86.3	47.35	34.3	62.7
Pleurobema oviforme	1	71.90	71.9	71.9	59.80	59.8	59.8	41.70	41.7	41.7
Potamilus alatus	3	158.20	145.7	172.3	119.43	108.8	128.6	45.40	43.6	46.5
Quadrula metanevra	1	81.90	81.9	81.9	60.20	60.2	60.2	39.30	39.3	39.3
<u>Quadrula pustulosa</u>	29	58.69	46.2	66.6	54.43	43.8	64.8	35.44	29.8	42.5
Tritogonia verrucosa	2	119.95	99.6	140.3	64.15	58.7	69.6	36.90	31.8	42.0

1

200

.1

Appendix A-2. (Continued)

. •

TRM 528-529		L	ength		H	leight		Th	ickness]
and Year 1996	N	Mean	Min	Max	Mean	Min	Max	Mean	<u>Min</u>	Max
Amblema plicata	3	109.90	100,4	122.5	76.50	72.1	79.0	46.30	38.0	52.3
Anodonta grandis	1	118.10	118.1	118.1	67.70	67.7	67.7	47.40	47.4	47.4
Cyclonaias tuberculata	13	86.50	75.3	94.9	71, 9 0	65.1	80.8	42.50	35.5	47.7
Ellipsaria lineolata	9	94.00	72.6	107.5	68,30	49.7	80.7	44.70	34.5	50.7
Elliptio crassidens	50	114.90	88.9	131.3	68.90	53.5	85.7	46.30	39.4	61.7
Lampsilis abrupta	1	110.10	110.1	110.1	75,70	75.7	75.7	60.30	60.3	60.3
Lasmigona costata	1	118.40	118.4	118.4	60.60	60.6	60.6	35.20	35.2	35.2
Leptodea fragilis	1	126.20	126.2	126.2	71.30	71.3	71.3	40.70	40.7	40.7
Ligumia recta	1	155.00	155.0	155.0	61,90	61.9	61.9	49.50	49.5	49.5
Pleurobema cordatum	46	100.80	85.3	112.5	78.90	65.4	90.5	49.60	38,3	59.6
Potamilus alatus	4	145.90	135.5	154.1	110.60	86.7	131.7	44.20	39.2	46.8
Quadrula metanevra	1	86.10	86.1	86.1	66.10	66.1	66.1	47.70	47.7	47.7
Quadrula pustulosa	19	61.60	53.0	77.3	56.00	49.6	62.5	38,20	31.1	49.5
Tritogonia vertucosa	1	134.10	134.1	134.1	61.30	61.3	61.3	31.60	31.6	31.6

Appendix A-2. (Continued)

.

,

٠,

TRM 528-529		I	ength		H	leight		Th	ickness	
and Year 1997	N	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Amblema plicata	1	77.60	77.6	77.6	57.10	57.1	57.1	31.50	31.5	31.5
Cyclonaias tuberculata	13	87.40	79.3	96.2	72.70	65.4	78.8	44.10	38.5	51.9
Ellipsaria lineolata	2	77.00	69.4	84.6	57.70	54.3	61.0	38.80	35.5	42.2
Elliptio crassidens	50	116.10	101.7	134.5	68.40	59.1	83.4	45.80	33.5	65.0
Lampsilis ovata	1	115.30	115.3	115.3	74.10	74.1	74.1	69,50	69.5	69.5
Ligumia recta	l I	160.00	160.0	160.0	71.50	71.5	71.5	59.60	59.6	59.6
Pleurobema cordatum	36	99.50	87.1	107.9	77.30	68.7	88.4	50.50	42.9	57.1
Potamilus alatus	4	151.50	122.0	168.8	85.0 0	74.6	92.9	44.90	42.4	46.6
Quadrula metaneyra	1	91.00	91.0	91.0	63.50	63.5	63.5	46.40	46.4	46.4
Quadrula pustulosa	9	<u>60.5</u> 0	49.2	67.3	<u>55.60</u>	48.7	60.7	35.80	28.4	41.8

.

.

.

.

Ċ,

۵

5.5

TRM 528-529		I	cngth		1	Height		Th	ickness	7
and Years 1983-1997	N	Mean	Min	Max		Min	Max	Mean	Min	Max
Actinonaias ligamentina	16	106.61	88.2	121.0	74.34	63.2	88.0	52.19	43.4	61.8
Amblema plicata	71	105.77	73.6	137.4	76.80	57.1	94.9	42.13	24.9	55.3
Anodonta grandis	27	119.14	83.0	136.1	65.58	46.1	81.3	48.21	35,4	59.1
Anodonta suborbiculata	1	107.80	107.8	107.8	79.20	79.2	79.2	38.70	38.7	38.7
Cyclonaias tuberculata	240	83.12	58.4	99.1	69.95	50.3	97.7	40.27	28.3	51.9
Cyprogenia stegaria	2	56.45	. 52.9	60.0	51.14	50.9	51.4	38.71	36.8	40.6
Ellipsaria lineolata	92	89.83	63.6	110.8	66.77	50.1	80.7	41.39	34.1	53.3
Elliptio crassidens	734	114.11	86.8	136.6	69.70	20.1	89.9	44.44	31.0	65.0
Elliptio dilatata	6	100.03	92.6	111.2	46.37	40.8	52.6	30.18	21.5	42.2
Fusconaia subrotunda	1	66.09	66.1	66.1	53.56	53.6	53.6	36.58	36,6	36.6
Lampsilis abrupta	39	101.59	70.5	120.6	73.51	59.4	86.0	56.51	39.8	67.7
Lampsilis ovata	14	130.76	114.0	152.2	86.23	70,0	103.4	66.60	57.3	76.7
Lasmigona complanata	1	180.20	180.2	180.2	114.30	114.3	114.3	40.30	40.3	40.3
Lasmigona costata	1	118.40	118.4	118.4	60,60	60.6	60.6	35.20	35.2	35.2
Leptodea fragilis	12	103.22	79.4	126.2	59.36	47.3	71.3	33.45	26.7	40.8
<u>Ligumia recta</u>	36	161.29	135.3	185.2	61,85	48.0	74.1	52.42	44.0	60.4
<u>Megalonaias nervosa</u>	10	168.63	155.1	175.6	118.27	110.4	126.6	61.20	53.6	71.4
Obliquaria reflexa	11	54.15	49.0	59.3	41,20	32.0	46.8	30.65	21.6	36.7
Pleurobema cordatum	688	98.28	73.3	132.6	76.89	52.1	94.2	47.97	32.3	79.9
Pleurobema oviforme	8	70.81	63.5	76.1	54.82	48.6	60.8	39,59	33.0	41.7
Pleurobema plenum	1	84.60	84.6	84.6	70.20	70.2	70.2	50.60	50.6	50.6
Pleurobema rubrum	2	91.60	90.4	92.8	73.20	71.6	74.8	50.60	49.8	51.4
Potamilus alatus	82	140.65	83.2	172.3	98,58	69.1	131.7	41.34	21.5	79.6
Ptychobranchus fasciolaris	1	116.80	116.8	116.8	61.40	61.4	61.4	44.70	44.7	44.7
Quadrula metanevra	40	81,77	46.9	100.7	64.09	42.2	84.2	45.96	26.2	54.7
Quadrula pustulosa	378	58,29	36.1	82.8	54.64	40.7	98.4	34.90	20.2	49.5
Tritogonia verrucosa	12	114.82	78.8	140.3	60.70	41.4	72.0	34.06	24.3	60.4

.

.

đ

æ

Appendix A-2. (Continued)

۰,

Three Bed Composite		L	ength		F	leight		Thi	ickness	
and Year 1983	N	_Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Actinonaias ligamentina	5	104.00	92.5	113.4	73.84	69.3	80.1	51.88	46.8	58.5
Amblema plicata	53	96.86	74.4	132.3	72.73	56.6	99.7	45.37	30.4	56.9
Anodonta grandis	28	121.88	83.0	154.6	67.20	46.1	89.6	52.15	35,4	67.9
Cyclonaias tuberculata	147	79.14	62.1	96.5	67.90	52.1	80.2	39,50	32.4	49.8
Cyprogenia stegaria	3	54.83	51.6	60.0	50.66	49.7	51.4	37.81	36,0	40.6
Dromus dromas	1	60.10	60.1	60.1	58.30	58.3	58.3	32.80	32.8	32.8
Ellipsaria lineolata	45	85.29	56.8	108.8	65.74	44.6	78.6	40.30	30.1	51.3
Elliptio crassidens	311	107.96	86.8	134.6	67.29	54.0	89.9	42.93	21.0	56.1
Elliptio dilatata	5	103.32	95.3	113.3	45.50	42.2	48.8	32.38	30.5	34.7
Fusconaia subrotunda	. 1	66.09	66.1	66.1	53.56	53.6	53.6	36.58	36,6	36.6
Lampsilis abrupta	10	94.39	70.5	106.4	71.17	59.4	84.4	50.94	39.8	60.1
Lampsilis ovata	4	124.93	122.0	132.3	86.21	74.7	92.3	68.48	62.0	76.3
Leptodea fragilis	4	84.13	59.6	112.4	49.33	34.6	66.4	27.10	20.1	32.7
Ligumia recta	8	155.34	145.I	165.0	62.50	56.6	68.3	50.50	42.5	56.7
Megalonaias nervosa	3	173.83	164.4	180.6	117.43	111.7	120.7	60.50	57.2	63.0
Obliquaria reflexa	20	53.78	45.1	64.1	43.15	24.1	51.5	34.33	24.6	41.4
Plethobasus cyphyus	2	91.80	89.3	94.3	64.55	62.8	66.3	45.00	43.6	46.4
Pleurobema cordatum	301	95.39	72.1	129.1	75.65	59.3	99.5	48.25	31.4	62.9
Pleurobema plenum	1	58.10	58.1	58.1	52.90	52.9	52.9	36.40	36.4	36.4
Potamilus alatus	43	135.39	46.9	162.8	98.20	69 .1	120.9	38.12	24.1	46.5
Ouadrula metanevra	36	76.52	46.9	92.6	60.28	42.2	74.4	44.22	26.2	54.7
Quadrula pustulosa	158	55.91	43.7	69.9	53.61	40.5	66.9	34.47	26.3	43.8
Tritogonia verrucosa	18	110.06	96.0	128.7	58.77	54.3	64.1	36.27	30,1	42.7

.

.

<u>م</u>تر

10

i de

٩

Ø

Appendix A-2. (Continued)

...

...

Three Bed Composite		I	ength		· F	leight	T	Thi	ickness	
and Year 1984	N	Mean	Min	_ Max	Mean	Min	Max	Mean	Min_	Max
Actinonaias ligamentina	2	109.55	99.4	119.7	81.00	74.0	88.0	53.25	53.1	53.4
Amblema plicata	30	98.18	73.6	120.1	72.73	59.5	88.0	42.37	26.8	52.4
Anodonta grandis	9	124.58	102.7	144.3	67.46	56.6	74.1	49.52	39.6	54.6
Anodonta imbecillis	2	53.60	52.5	54.7	23.95	23.2	24.7	15.60	14.3	16.9
Cyclonaias tuberculata	131	76.09	59.1	99.1	65.19	52.2	80.9	37.77	29.5	46.3
Cyprogenia stegaria	1	52.90	52.9	52.9	51.40	51.4	51.4	36.40	36.4	36.4
Ellipsaria lineolata	49	82.92	56.6	109.7	62.95	44.0	86.0	37.88	26.3	50.2
Elliptio crassidens	302	. 109.58	89.2	130.8	68.75	56.3	82.4	43.30	24.4	60.9
Elliptio dilatata	2	96,35	92.6	100.1	42.95	42.2	43.7	24.75	21.5	28.0
Lampsilis abrupta	8	96.66 ·	86.8	106.8	68.52	60.7	74.8	56.31	48.1	62.4
Lampsilis ovata	5	127.98	102.1	142.7	86.44	72.9	102.7	67.56	56.5	76.7
Leptodea fragilis	6	111.33	104,5	119.9	65.27	62.1	68.4	36.05	30.9	40.8
Ligumia recta	14	157.96	140.9	185.2	59.61	50.5	66.6	49,65	40.0	54.9
<u>Megalonaias nervosa</u>	1	180.00	180.0	180.0	130.20	130.2	130.2	63.00	63.0	63.0
Obliquaria reflexa	11	53,63	36.5	64.0	42.05	32.9	52.3	33.06	22.9	39.8
Pleurobema cordatum	234	95.08	62 .1	132.6	74.99	44.7	99.8	46.26	32.8	79.9
Pleurobema oviforme	2	69.80	63.5	76.1	55.70	50.6	60.8	40.35	40.0	40.7
Pleurobema plenum	2	60.10	51.3	68.9	57.70	49.4	66.0	44.00	39.4	48.6
Potamilus alatus	47	142.73	96.7	182.1	97.9 6	72.5	134.5	39,57	30.0	46.5
Ptychobranchus fasciolaris	1	94.40	94.4	94.4	56.70	56.7	56.7	34.80	34.8	34.8
Quadrula metanevra	24	78.68	64.5	94.8	62.47	52.6	76.1	43.05	32.4	54.9
<u>Quadrula pustulosa</u>	138	56.75	40.0	74.1	53.65	39.5	64.8	33.43	20.2	40.9
Tritogonia verrucosa	10	110.44	76.7	134,9	59.00	42.7	66.8	34.18	19.7	44.8

.

4

Appendix A-2. (Continued)

Three Bed Composite		L	ength		· F	leight		Th	ickness	
and Year 1985	N	Mean	Min	Max	Mean	Min	Max	Mean	Min	_ Max
Actinonaias ligamentina	11	104.72	92.7	113.4	73.72	66.8	80.3	51.75	46.6	54.9
Amblema plicata	42	103.37	76,3	132.5	75.25	58.2	94.9	43.01	30.5	56.7
Anodonta grandis	10	123.14	107.9	142.6	69.63	60.9	80.4	48.76	40.7	58.7
Cyclonaias tuberculata	124	78.39	60.5	94.6	66.76	54.7	78.4	37.85	30.6	44.9
Cyprogenia stegaria	1	57.70	57.7	57.7	55.60	55.6	55.6	44.10	44.1	44.1
Ellipsaria lineolata	35	87.83	62.3	100.4	67.24	46.9	76.9	38.96	32.0	46.8
Elliptio crassidens	306	110.22	90.1	134.8	68.72	20.1	88.5	43.21	29.5	53.7
Elliptio dilatata	2	98.80	96.8	100.8	44.20	44.2	44.2	32.30	29.8	34.8
Lampsilis abrupta	8	101.94	82.3	113.3	74.21	64.4	81.1	55.61	43.5	64.4
Lampsilis ovata	9	127.36	114.0	142.0	84.03	70.0	103.4	62,70	57.3	70.2
Lasmigona complanata	1	180.20	180.2	180.2	114.30	114.3	114.3	40.30	40.3	40.3
Leptodea fragilis	5	100.28	86.9	114.7	59.08	50.2	66.8	33.22	28.6	39.8
Ligumia recta	11	165.39	142.2	180.3	63.30	57.2	72.4	50.06	41.3	60.4
Megalonaias nervosa	5	173.70	160.1	190.8	115.26	102.3	121.1	59.66	52.4	71.4
Obliquaria reflexa	12	55.72	46.6	66.9	42.95	36.1	50.8	32,58	23.4	36.7
Pleurobema cordatum	245	96.42	70.4	160.2	76.58	58.2	134.9	45.35	30.2	59.1
Pleurobema oviforme	1	72.90	72.9	72.9	56.50	56.5	56.5	40.20	40.2	40.2
Picurobema plenum	1	84.60	84.6	84.6	70.20	70.2	70.2	50.60	50.6	50.6
Pleurobema rubrum	3	87.97	80.7	92.8	70.23	64.3	74.8	48.57	44.5	51.4
Potamilus alatus	77	139.79	98.0	170.2	100.29	76.5	125.6	39.87	28.4	49.6
Quadrula metanevra	16	78.07	67.3	88.9	61.94	56.1	70.3	42.39	36.8	54.2
Quadrula pustulosa	138	57.98	46.3	80.5	54.91	32.1	68.8	34.83	25.7	44.2
Tritogonia verrucosa	19	124.66	92.3	148.8	61.46	40.6	72.0	39.86	34.0	48.7

٠

4

÷

*. ...

ſŁ.

. ..

••

Three Bed Composite		I	ength		H	leight		Th	ickness	
and Year 1986	Ν	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Actinonaias ligamentina	8	99.23	88.2	116.3	69.71	63.2	75.7	47.32	40.3	53.8
Amblema plicata	47	103.36	66.7	137.4	73.01	50,6	94.9	43,79	26,8	57.4
Anodonta grandis	16	122.18	80.9	147.8	68.42	50.7	82.0	49.42	35.1	63.2
Anodonta imbecillis	1	39.20	39.2	39.2	17.40	17.4	17.4	7.10	7.1	7.1
Cyclonaias tuberculata	131	76.16	56.9	96.7	64.74	47.6	80.2	37.08	23.7	51.0
Ellipsaria lineolata	37	84.30	51.8	112.3	62.73	39.2	78.8	37.52	22.6	53.3
Elliptio crassidens	304	110.53	87.2	151.8	67.43	53.8	87.1	42.28	31.0	55.5
Elliptio dilatata	3	109.23	107.1	111.2	49.37	45.5	52.6	39.17	35.4	42.2
Lampsilis abrupta	8	100.44	86.1	114.8	72.96	66.3	80.7	52.21	48.3	57.2
Lampsilis ovata	3	141.40	132.9	152.2	94.33	90.3	101.4	66.83	55.9	72.6
Lasmigona costata	1	122.10	122.1	122.1	69.90	69.9	69.9	25.50	25.5	25.5
Leptodea fragilis	9	96.87	79.4	112.1	55.52	46.6	67.5	30.99	25.3	36.0
Ligumia recta	18	147.23	107.7	173.1	56.62	45.0	67.6	46.78	33.1	55.9
Megalonaias nervosa	6	152.35	124.6	175.6	105.20	87.2	119.3	57.80	53,9	63.2
Obliquaria reflexa	12	55.11	46.6	66.7	43.02	32.0	52.4	33.39	21.6	41.2
Pleurobema cordatum	231	92.87	54.9	117.9	72.90	49.7	88.5	45.07	25.2	61.9
Pleurobema oviforme	2	68.90	68.4	69.4	50.70	48.6	52.8	35.60	33.0	38.2
Potamilus alatus	68	139. 66	79.8	174.0	89.52	56.7	123.6	39.47	26.7	79.6
Quadrula metanevra	14	74.75	54.9	91.2	59.91	42.4	84.2	42.11	31.0	55.3
Quadrula pustulosa	72	54.97	38.2	71.6	51.68	37.2	66.1	32.13	20.5	42.1
Tritogonia verrucosa	21	110.36	78.8	133.0	55.36	41.4	66.7	33.56	24.7	42.9

4

4

Ø

۰.

• •

.

Three Bed Composite		L	ength		H	leight		Th	ickness	
and Year 1988	N	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Actinonaias ligamentina	3	97.87	90.9	107.6	73.37	71.3	76.8	51.37	47.6	55.4
Amblema plicata	48	102.47	64.8	119.8	75.22	51.1	89.8	46.31	32.1	56.9
Anodonta grandis	29	126.85	81.7	155.1	69.93	53.6	89.9	53.46	34,5	71.2
Anodonta imbecillis	L I	54.00	54.0	54.0	24.10	24.1	24.1	16.20	16.2	16.2
Anodonta suborbiculata	1	107.80	107.8	107.8	79.20	79.2	79.2	38.70	38.7	38.7
Cyclonaias tuberculata	87	79.12	63.4	97.5	67.22	55.2	97.7	39.34	31.3	49.3
<u>Ellipsaria lineolata</u>	23	87.22	65.1	102.8	65.42	47.5	77.4	39.61	32.7	50.3
Elliptio crassidens	154	110.06	92.4	136.4	68.69	44.2	84.9	44.26	34.1	55.3
<u>Elliptio dilatata</u>	3	101.10	95.6	110.9	45.43	40.8	50.1	28.40	26.9	30.8
<u>Lampsilis abrupta</u>	12	100.78	86.8	119.8	71.72	62.7	79.8	57.44	51.4	63.6
Lampsilis ovata	3	130.37	110.7	140.5	85.00	76.9	90.4	65.70	58.0	77.3
Leptodea fragilis	12	99.81	70.4	126.3	61.26	44.9	76.0	32.12	23.8	39.8
Ligumia recta	7	160.27	144.4	175.1	62,39	54.2	68.7	51.81	44.4	55.1
Megalonaias nervosa	9	160.61	144.2	170.8	114.19	100.8	126.6	60.60	53,3	68.7
<u>Obliquaria reflexa</u>	7	54.84	44.2	62.7	43.20	36.2	49.6	32.27	24.4	36.0
Pleurobema cordatum	133	96.57	68.5	119.1	76.57	54.9	89.2	47.87	38.2	58.6
Pleurobema oviforme	2	72.20	70.2	74.2	55.00	54.0	56.0	40.70	40.7	40.7
Pleurobema rubrum	1	88.30	88.3	88.3	69.50	69.5	69.5	46.70	46.7	46.7
Potamilus alatus	54	142.76	110.3	187.7	106.60	76.3	131.2	40.82	31.0	50.3
<u>Quadrula metanevra</u>	8	83.34	66.7	92.1	64.21	54.2	70.1	45.60	38.4	53.6
<u>Quadrula pustulosa</u>	77	58.73	36.1	81.1	55.06	40.7	98.4	35.31	26.2	43.1
Tritogonia verrucosa	18	112.68	91.8	140.8	62.25	50.1	76.3	39,49	23.2	60.4

-6

...

×.

а

.

a *

Three Bed Composite		L	ength		Ē	leight		Th	ickness	
and Year 1990	N	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Actinonaias ligamentina	5	110.38	96.0	121.0	77.90	71.4	82.6	55.88	47.6	61.8
Amblema plicata	10	102.16	76.6	120.1	72.58	54,5	87.2	44.19	33.6	50.9
Anodonta grandis	20	135.42	108.7	159.1	76.04	61.5	99.9	55.90	44.4	68.8
Anodonta imbecillis	1	52.00	52.0	52.0	24.80	24.8	24.8	14.30	14.3	14.3
Anodonta suborbiculata	1	126.20	126.2	126.2	96 .40	96.4	96.4	48.30	48,3	48.3
Cyclonaias tuberculata	69	79.65	62.0	111.0	67.29	52.1	92.1	37.97	28 .0	49.6
<u>Ellipsaria lineolata</u>	28	85.42	64.2	102.3	64.41	51.6	76.9	39.18	32.1	47.4
Elliptio crassidens	160	115.21	87.5	149.3	70.91	61.1	82.7	44.91	36.3	51.6
Elliptio dilatata	1	94.60	94.6	94.6	46.90	46.9	46.9	28.60	28.6	28.6
Lampsilis abrupta	4	105.95	98 .1	120.6	83.35	81.8	86.0	62.15	55.7	67.7
Lampsilis ovata	1	121.70	121.7	121.7	78.10	78 .1	78.1	68,30	68.3	68.3
Leptodea fragilis	8	110.46	89.9	130.1	68.93	61.0	89.5	37,08	32,8	40.0
Ligumia recta	2	172.60	172.1	173.1	70.90	68.3	73.5	59.30	58.7	59.9
Megalonaias nervosa	3	166.60	155.6	174.1	116.57	110.7	120.6	56,50	56.2	57.1
<u>Obliquaria reflexa</u>	11	55.06	44.5	64.6	43.34	36.7	49.9	32.80	25.4	45.1
Pleuroberna cordatum	132	97.37	75.6	120.7	75.38	59.5	90.6	46,34	32.9	56.9
Pleurobema oviforme	1	72.80	72.8	72.8	56.00	56.0	56.0	41.70	41.7	41.7
<u>Potamilus alatus</u>	45	142.78	83.2	169.1	107.14	72.6	126.3	44.74	21.5	139.8
Ptychobranchus fasciolaris	1	116.80	116.8	116.8	61.40	61.4	61.4	44.70	44.7	44.7
Quadrula metanevra	8	84.28	65.2	100.7	63.44	48,1	71.5	46,72	35.5	51.8
Quadrula pustulosa	78	57.56	44.1	82.8	53.53	42.8	67.4	34.22	25.2	45.4
Tritogonia verrucosa	9	107.59	78.1	136.3	57.36	43,4	70.9	35.21	26.6	42.5

Appendix A-2. (Continued)

Three Bed Composite		I	ength		I	leight		Th	ickness	
and Year 1992	N	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Actinonaias ligamentina	1	94.80	94.8	94.8	65.40	65.4	65.4	49.60	49.6	49.6
Amblema plicata	13	105.46	89.9	124.7	77.27	65.5	88.8	45.11	24.9	54.8
Anodonta grandis	5	130.06	122.0	136.8	76.06	67.3	84.9	58.54	54.0	65.1
Cyclonaias tuberculata	68	80.10	63.2	97.1	67.49	53.4	87.1	38.73	29.5	44.7
Ellipsaria lineolata	14	90.49	69.6	99.6	67.96	49.7	77.2	39.56	31.3	44.8
Elliptio crassidens	137	112.26	88.4	136.6	69.83	55.6	83.3	44.75	27.2	53.3
Lampsilis abrupta	6	108.85	96.8	116.3	74.63	66.3	83.4	54.70	50.7	59.8
Ligumia recta	3	157.27	148.0	165.7	60.00	56.9	62.4	52.30	47.3	59.9
Megalonaias nervosa	4	173.35	155.9	183.2	120.88	112.2	128.2	60.93	53.1	69.3
Obliquaria reflexa	6	57.17	52.0	61.5	43.45	40.9	47.9	32.30	28.9	36.7
Plethobasus cyphyus	1 1	91.40	91.4	91.4	64.80	64.8	64.8	50.30	50.3	50.3
Pleurobema cordatum	82	98.53	64.7	127.9	76.15	60.9	94.2	46.29	37.5	59.8
Potamilus alatus	16	142.99	116.6	161.2	105.32	90.6	116.9	41.65	35.1	47.4
Ouadrula metanevra	8	78.61	61.9	87.2	61.76	58,3	66.5	43.92	37.4	48.2
Quadrula pustulosa	48	56.37	45.3	66.9	52.70	40.2	62.7	33.52	25.2	44.8
Tritogonia verrucosa	9	106.24	77.0	127.3	59.00	43.1	66.7	36.29	21.7	48.3

 ~ 4

∞

4.4

٦ *

Three Bed Composite		Length			I	leight		Thickness		
and Year 1994	N	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Amblema plicata	13	106.79	84.7	119.1	76.72	59.2	89.7	48.44	35.0	54.7
Anodonta grandis	7	135.29	121.4	142.7	79.13	66.7	85.1	57.84	47.6	64.6
Cyclonaias tuberculata	64	78.52	58.4	91.2	66.28	50.3	74.3	38.94	28.3	48.9
Ellipsaria lineolata	11	87.68	76.1	100.2	66.95	57.7	76.7	40.38	32.9	48.6
Elliptio crassidens	216	113.88	96.5	129.8	71.10	61.3	88.6	45.37	36.6	52.9
Lampsilis abrupta	2	105.05	101.2	108.9	84.20	82.3	86.1	65,65	65.4	65.9
Leptodea fragilis	3	117.67	112.2	122.1	72.87	70.5	76.9	39.60	39.4	40.0
Ligumia recta	1	161.40	161.4	161.4	73.30	73.3	73.3	61.20	61.2	61.2
Megalonaias nervosa	2	174.45	168.7	180.2	119.45	119.2	119.7	63.85	58.7	69.0
<u>Obliquaria reflexa</u>	11	57.30	52.8	69.5	45.68	41.4	51.7	35.04	29.6	42.7
Plethobasus cyphyus	1	88.60	88.6	88.6	59.40	59.4	59.4	46.20	46.2	46.2
Pleurobema cordatum	95	97.71	59.8	116.5	75.96	58.1	90.1	46.85	34.3	62.7
Pleurobema oviforme	1	71.90	71.9	71.9	59.80	59.8	59.8	41.70	41.7	41.7
Potamilus alatus	10	149.92	128.3	172.3	115.17	99.6	128.6	43.34	38.4	46.5
Quadrula metanevra	4	74.18	68.4	81.9	57.53	54.4	60.2	40.33	39.3	42.2
<u>Quadrula pustulosa</u>	65	58.02	46.2	66.6	54.08	43.8	64.8	35.28	27.1	49.9
Tritogonia verrucosa	7	115.60	95.8	140.3	58.90	52.4	69.6	36.64	30.7	42.0

٠

¢

4

Ø

Appendix A-2. (Continued)

٠,

• •

Three Bed Composite		Length			ł	leight		Thickness		
and Year 1996	N	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Amblema plicata	11	104.90	78.2	125.4	73.50	52.4	86.5	46.10	26.7	57.3
Anodonta grandis	7	141.10	118.1	160.0	81.80	67.7	102.4	56.90	47.4	64.2
Cyclonaias tuberculata	38	83,00	73.0	94.9	69.20	58.4	80.8	40.90	34.6	47.7
Ellipsaria lincolata	15	92.20	69.7	107.5	67.9 0	48.0	80.7	43.40	30.8	50.7
Elliptio crassidens	140	112.90	88.9	151.1	68.60	53.5	85.7	45.50	34.2	61.7
Elliptio dilatata	1	95.40	95,4	95.4	41.00	41.0	41.0	29.70	29.7	29.7
Lampsilis abrupta	4	110.20	99.4	122.4	79.30	73.1	85.5	60.40	55.3	66.9
Lasmigona costata	1	118.40	118.4	118.4	60.60	60.6	60.6	35.20	35.2	35.2
Leptodea fragilis		126.20	126.2	126.2	71.30	71.3	71.3	40.70	40.7	40.7
Ligumia recta	2	157.50	155.0	160.0	61.50	61.1	61.9	49.40	49.4	49.5
Megalonaias nervosa	. 1	180.00	180.0	180.0	123.60	123.6	123.6	66.00	66.0	6 6 .0
Obliguaria reflexa	6	56,10	51.8	59.6	43.90	39.8	50.1	36.40	33.4	40.3
Pleurobema cordatum	93	99.40	77.1	120.9	77.20	65.2	91.2	48.70	38.3	59.6
Potamilus alatus	35	145.90	98.2	180.0	85.80	60,1	131.7	41.30	28.9	51.5
Quadrula metanevra	2	81.90	77.8	86.1	63.50	61.0	66.1	49.60	47.7	51.6
Quadrula pustulosa	29	60.80	50.6	77.3	55.80	48.9	62.5	38.10	31.1	49.5
Tritogonia verrucosa	4	109.70	88.5	134.1	56.00	49.4	61.3	34.50	29.6	40.3

Three Bed Composite		Length			H	leight		Thickness		
and Year 1997	Ν	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Amblema plicata	5	96.00	73.5	123.0	68.90	57.0	78.9	44.20	31.5	53.2
Anodonta grandis	1	147.00	147.0	147.0	81.00	81.0	81.0	63.40	63.4	63.4
Cyclonaias tuberculata	47	81,50	67.0	96.8	67.80	56.5	78.8	42.40	35.6	51.9
Ellipsaria lineolata	8	81.80	56.4	105.5	61.50	45.9	71.6	40.90	33.8	52.6
Elliptio crassidens	152	113.10	92.2	134.5	68.20	53.7	83.4	45.70	33.5	65.0
Lampsilis ovata	1	115.30	115.3	115.3	74.10	74.1	74.1	69.50	69.5	69.5
Leptodea fragilis	2	92.20	69.3	115.0	56.10	40.5	71.7	26.90	21.5	37.3
Ligumia recta	1	160.00	160.0	160.0	71.50	71.5	71.5	59.6 0	59.6	59.6
Obliquaria reflexa	3	54.10	50.6	57.4	42.00	34.7	46.7	34.50	33.0	36.6
Pleurobema cordatum	82	98.20	83.1	117.2	75.50	60.2	92.3	49.90	41.7	57.3
Potamilus alatus	12	146.40	105.7	168.8	83.50	63.3	95.8	42.60	33.3	48.9
Quadrula metanevra	2	88.00	85.0	91.0	64.60	63.5	65.7	45.90	45.4	46.4
Quadrula pustulosa	24	59.00	49.2	67.3	54.10	45.2	60.7	36.20	28.4	45.6
Tritogonia verrucosa	1	109.60	109.6	109.6	52.80	<u>52.8</u>	52,8	38.30	38.3	38.3

220

•

.

۵.`

ä

....

w *

Three Bed Composite		Length			1	Height	Ī	Thickness		
and Years 1983-1997	N	Mean	Min	Max	Mean	Min	Max	Mean	Min	Max
Actinonaias ligamentina	35	103.57	88.2	121.0	73.57	63.2	88.0	51.34	40,3	61.8
Amblema plicata	272	101.52	64.8	137.4	73.97	50.6	99.7	44.66	24.9	57.4
Anodonta grandis	132	127.57	80.9	160.0	71.34	46.1	102.4	53.12	34.5	71.2
Anodonta imbecillis	5	50.48	39.2	54.7	22.84	17.4	24.8	13.76	7.1	16.9
Anodonta suborbiculata	2	117.00	107.8	126.2	87.80	79.2	96.4	43.50	38.7	48.3
Cyclonaias tuberculata	897	79.30	56.9	111.0	67.36	47.6	97.7	39.04	23,7	51.9
Cyprogenia stegaria	5	55.02	51.6	60.0	51.80	49.7	55.6	38.78	36.0	44.1
Dromus dromas	1	60.10	60.1	60.1	58.30	58.3	58.3	32.80	32,8	32.8
Ellipsaria lineolata	265	85.90	51.8	112.3	64.99	39.2	86.0	39.27	22,6	53.3
Elliptio crassidens	2182	111.08	86.8	151.8	68.76	20.1	89.9	43,88	21.0	65.0
Elliptio dilatata	17	101.64	92 .6	113.3	45.54	40.8	52.6	31.59	21.5	42.2
Fusconaia subrotunda	1	66.09	66.1	66.1	53.56	53.6	53.6	36.58	36.6	36.6
Lampsilis abrupta	62	101.18	70.5	122.4	73.62	59.4	86.1	55,83	39,8	67.7
Lampsilis ovata	26	128.39	102.1	152.2	85.52	70.0	103.4	65.83	55.9	77.3
Lasmigona complanata	1	180.20	180.2	180.2	114.30	114.3	114.3	40.30	40.3	40.3
Lasmigona costata	2	120.25	118.4	122.1	65.25	60.6	69.9	30.35	25.5	35.2
Leptodea fragilis	50	102.46	59.6	130.1	61.45	34.6	89.5	33,30	20.1	40.8
Ligumia recta	67	156.70	107.7	185.2	60.84	45.0	73.5	49.99	33.1	61.2
Megalonaias nervosa	34	166.23	124.6	190.8	115.10	87.2	130.2	60.06	52.4	71.4
Obliquaria reflexa	99	55.12	36.5	69.5	43.32	24.1	52.4	33,63	21.6	45.1
Plethobasus cyphyus	4	90.90	88.6	94.3	63.33	59.4	66.3	46,63	43.6	50.3
Pleurobema cordatum	1628	96.06	54.9	160.2	75.48	44.7	134.9	46.52	25.2	79.9
Pleurobema oviforme	9	71.04	63.5	76.1	55.01	48 .6	60.8	39.66	33.0	41.7
Pleurobema plenum	4	65,73	51.3	84.6	59.63	49.4	70.2	43,75	36.4	50.6
Pleurobema rubrum	4	88.05	80.7	92.8	70.05	64.3	74.8	48.10	44.5	51.4
Potamilus alatus	407	141.46	46.9	187.7	98.42	56.7	134.5	40.60	21.5	139.8
Ptychobranchus fasciolaris	2	105.60	94.4	116.8	59.05	56.7	61.4	39.75	34.8	44.7
Quadrula metaneyra	122	78.24	46.9	100.7	61.48	42.2	84.2	43.73	26.2	55.3
Quadrula pustulosa	.827	57.18	36.1	82.8	53.87	32.1	98.4	34.39	20.2	49,9
Tritogonia verrucosa	116	112.77	76.7	148.8	<u>58.92</u>	40.6	76.3	36.59	19.7	60.4

221

č

a

Enclosure 2

List of Regulatory Commitments

Tennessee Valley Authority Watts Bar Nuclear Plant - Unit 2, Docket No. 50-391

	TVA will provide a response to the following Request for Additional Information on or pefore April 23, 2010:					
H-16	The figure included in Appendix B of the 2007 TVA EIS shows water flow rates for plant systems with one unit in operation. Provide an update of this figure showing the flow rates for the system with WNB Unit 1 and 2 in operation. Provide an update to the table on page 3-3 of 1978 EIS to include values that include the flow rates needed for both units in operation.					

The first two buildings are in the Unit 1 FSAR; TVA will include all three buildings (the Old Steam Generator Storage Facility, Radwaste Pad, and Decon Building) in one of the next updates to the Unit 2 FSAR.

RP-1o	Identify (preferably on a diagram) and provide a reference for principal release points for gaseous and liquid radioactive materials to the environment.
	Identify and provide a reference for direct radiation sources within or onsite out-of-plant as solid waste (e.g., independent fuel storage)