Standard Review Plan for Spent Fuel Dry Storage Systems at a General License Facility

Draft Rev. 1C For ACRS Review

Manuscript Completed: Date Published:

MAY BE RELEASED UNDER THE GUIDELINES OF THE ACRS

This version of the draft SRP has been developed for review by the Advisory Committee for Reactor Safety. It reflects draft comment responses and updates from Rev. 1A which was issued for public comment. This draft does not represent formal review guidance, NRC position, or legal interpretation until published as a final document. The final SRP is intended to be issued as Final NUREG-1536, Revision 1

Division of Spent Fuel Storage and Transportation Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission Washington, DC 20555-0001

1 2		ABSTRACT
2 3 4 5 6 7 8	Nuclear Regu Transportation storage system	Review Plan (SRP) for dry storage systems (DSS) provides guidance to the U.S. ulatory Commission (NRC) staff in the Division of Spent Fuel Storage and n (SFST) for reviewing applications for a Certificate of Compliance (CoC) of a dry m (DSS) for use at a general license facility. This SRP is intended for use by the objectives are to:
9 10 11	•	provide a basis that promotes a consistent regulatory review of an application for a DSS;
12 13	•	promote quality and uniformity of these reviews across each technical discipline;
14 15	•	present a basis for the review scope;
16 17	•	identify acceptable approaches to meeting regulatory requirements; and
18 19 20	•	develop an approach for review of each review procedure section of each chapter to assist the staff in prioritization of its review.
21 22 23 24 25 26 27 28 29 30 31	specifies the nuclear fuel for application for <i>Format and C</i> contains an or with appendic positions, ind discussed. H	the U.S. Code of Federal Regulations (CFR) Part 72 (10 CFR 72), Subpart B, information needed in a license application for the independent storage of spent or a site specific application. Subparts A specifies the information needed in an r a CoC for use at a general license facility. Regulatory Guide 3.61, <i>Standard Content for a Topical Safety Analysis Report for a Spent Fuel Dry Storage Cask</i> , utline of the information required by the staff. This SRP is divided into 14 chapters that reflect the standard application format. Regulatory requirements, staff lustry codes and standards, acceptance criteria, and other information are owever, the format used herein has evolved and, in some instances, superseded uide 3.61 to better reflect current staff practice.
32 33 34 35 36 37 38 39	documents. applicants. T learned and e available on th applicable ISC	n with the SRP, the SFST developed several Interim Staff Guidance (ISG) An ISG addresses emergent review issues in a timely manner by staff and these ISGs were developed to address changes in requirements, reflect lessons evolving technology, and document detailed technical positions. Current ISGs are the NRC website. Although Revision 1 of this SRP was revised to incorporate the Gs listed in Appendix C, other ISGs will continue to be developed as needed. This evised periodically to reflect current guidance to the staff.
40 41 42 43 44	NRC staff in Review Proce	ocedures sections of each chapter of this SRP have been prioritized to assist the its review in an effort to increase efficiency. The method used to prioritize the edures sections is documented in Appendix B. The priority of each review shown in the applicable section of each chapter.
45 46 47 48 49	omissions, an	re solicited on this document and applicable ISGs. Comments, errors or ad suggestions for improvement should be sent to the Director, Division of Spent and Transportation, U.S. Nuclear Regulatory Commission, Washington, DC

iii

50		TABLE OF CONTENTS	
51			
52	ABSTRACT		iii
53	TABLE OF CO	ONTENTS	v
54	LIST OF FIGU	JRES	xii
55	LIST OF TABI	LES	xiii
56	ACRONYMS	AND ABBREVIATIONS	xv
57	UNITS		xix
58	GLOSSARY		xxi
59	INTRODUCTI	ON	1
60	GENERAL IN	FORMATION EVALUATION	1-1
61	1.1	Review Objective	1-1
62	1.2	Areas of Review	1-1
63	1.3	Regulatory Requirements	1-1
64	1.4	Acceptance Criteria	
65	1.4.1	DSS Description and Operational Features	
66	1.4.2	Drawings	
67	1.4.3	DSS Contents	
-	1.4.3		
68		Quality Assurance	
69	1.4.5	Consideration of 10 CFR Part 71 Requirements Regarding Transportation	
70	1.5	Review Procedures	
71	1.5.1	DSS Description and Operational Features	
72	1.5.2	Drawings (MEDIUM Priority)	
73	1.5.3	DSS Contents	1-6
74	1.5.4	Quality Assurance Program	
75	1.5.5	Consideration of 10 CFR Part 71 Requirements	1-8
76	1.6	Evaluation Findings	1-8
77	2 PRINCIPA	L DESIGN CRITERIA EVALUATION	2-1
78	2.1	Review Objective	
79	2.2	Areas of Review	
80	2.3	Regulatory Requirements	
81	2.4	Acceptance Criteria	
82	2.4.1	SSCs Important to Safety	
83	2.4.2	Design Bases for SSCs Important to Safety	
84	2.4.2.1	SNF Specifications	
85	2.4.2.2		
86	2.4.2	Design Criteria for Safety Protection Systems	
	2.4.3	0 , ,	
87		General	
88	2.4.3.2	Structural	
89	2.4.3.3	Thermal	
90	2.4.3.4	Shielding/Confinement/Radiation Protection	
91	2.4.3.5	Criticality	
92	2.4.3.6	Material Selection	
93	2.4.3.7	Operating Procedures	
94	2.4.3.8	Acceptance Tests and Maintenance	2-5
95	2.4.3.9	Decommissioning	2-6

96	2.5	Review Procedures	
97	2.5.1	SSCs Important to Safety (MEDIUM Priority)	
98	2.5.2	Design Bases for SSCs Important to Safety	
99	2.5.2.1	SNF Specifications (MEDIUM Priority)	
100	2.5.2.2		
101	2.5.3	Design Criteria for Safety Protection Systems (MEDIUM Priority)	
102	2.6	Evaluation Findings	2-18
103	3 STRUCTU	RAL EVALUATION	3-1
104	3.1	Review Objective	3-1
105	3.2	Areas of Review	3-1
106	3.3	Regulatory Requirements	3-2
107	3.4	Acceptance Criteria	3-2
108	3.4.1	Confinement Cask and Metallic Internals	3-3
109	3.4.1.1	Steel Confinement Cask	3-3
110	3.4.1.2	Steel-Lined Concrete Confinement Cask	3-3
111	3.4.2	Other Structural System Components and Structures Important to Safety	3-4
112	3.4.2.1	Steel Structures	3-4
113	3.4.2.2	Reinforced Concrete Structures	3-4
114	3.4.3	Other Structural Components Subject to NRC Approval	3-4
115	3.5	Review Procedures (HIGH Priority)	
116	3.5.1	Confinement Cask and Metallic Internals	
117	3.5.1.1	Scope	
118	3.5.1.2	Structural Design Criteria and Design Features	
119	3.5.1.3	Materials Related to Structural Evaluation (HIGH Priority)	
120	3.5.1.4	Structural Analysis	
121	3.5.2	Other System Components and Structures Important to Safety	
122	3.5.2.1	Scope	
123	3.5.2.2	Structural Design Criteria and Design Features	3-27
124	3.5.2.3	Structural Analysis	3-32
125	3.5.3	Other Structural Components Subject to NRC Approval (MEDIUM Priority) .	3-37
126	3.5.3.1	Scope	3-37
127	3.5.3.2	Structural Design Criteria and Design Features	. 3-38
128	3.5.3.3	Materials Related to Structural Evaluation	. 3-39
129	3.5.3.4	Structural Analysis	3-39
130	3.6	Evaluation Findings	3-40
131	3.7	Designations and Descriptions of Loads	3-41
132	3.7.1	Load Combinations for Steel and Reinforced Concrete Non-Confinement	
133		Structures	3-46
134		A - COMPUTATIONAL MODELING SOFTWARE	3 50
135		EVALUATION	
136	4.1	Review Objective	
137	4.2	Areas of Review	
138	4.3	Regulatory Requirements	
139	4.4	Acceptance Criteria	
140	4.4.1	Decay Heat Removal System	
141	4.4.2	Material and Design Limits	
142	4.4.3	Thermal Loads and Environmental Conditions	
143	4.4.4	Analytical Methods, Models, and Calculations	
144	4.5	Review Procedures	4-4

145	4.5.1	Decay Heat Removal System (HIGH Priority)	
146	4.5.2	Material and Design Limits (Priority - as indicated)	
147	4.5.3	Thermal Loads and Environmental Conditions (Priority - as indicated)	
148	4.5.4	Analytical Methods, Models, and Calculations (MEDIUM Priority)	
149	4.5.4.1	Configuration (HIGH Priority)	
150	4.5.4.2	Material Properties (MEDIUM Priority)	
151	4.5.4.3	Boundary Conditions (Priority - as indicated)	
152	4.5.4.4	Computer Codes (HIGH Priority)	4-12
153	4.5.4.5	Temperature Calculations (Priority – as indicated)	
154	4.5.4.6	Pressure Analysis (LOW Priority)	
155	4.5.4.7	Confirmatory Analysis (HIGH Priority)	
156	4.6	Evaluation Findings	4-17
157	5 CONFINE	MENT EVALUATION	5-1
158	5.1	Review Objective	5-1
159	5.2	Areas of Review	5-1
160	5.3	Regulatory Requirements	5-2
161	5.4	Acceptance Criteria	5-2
162	5.4.1	Confinement Design Characteristics	5-2
163	5.4.2	Confinement Monitoring Capability	
164	5.4.3	Nuclides with Potential for Release	5-3
165	5.4.4	Confinement Analyses	5-3
166	5.4.5	Supplemental Information	
167	5.5	Review Procedures	
168	5.5.1	Confinement Design Characteristics (MEDIUM Priority)	5-4
169	5.5.1.1	Design Criteria	
170	5.5.1.2	Design Features	
171	5.5.2	Confinement Monitoring Capability (LOW Priority)	
172	5.5.3	Nuclides with Potential for Release (LOW Priority)	
173	5.5.4	Confinement Analyses (MEDIUM Priority)	
174	5.5.4.1	Normal Conditions	
175	5.5.4.2	Off-Normal Conditions (Anticipated Occurrences)	5-12
176	5.5.4.3	Design-Basis Accident Conditions (Including Natural Phenomenon Event	
177			
178	5.5.5	Supplemental Information	5-13
179	5.6	Evaluation Findings	5-13
180	6 SHIELDING	G EVALUATION	6-1
181	6.1	Objective	6-1
182	6.2	Areas of Review	6-1
183	6.3	Regulatory Requirements	6-2
184	6.4	Acceptance Criteria	6-2
185	6.4.1	Shielding Design Description	6-4
186	6.4.1.1	Design Criteria	6-4
187	6.4.1.2	Design Features	6-4
188	6.4.2	Radiation Source Definition	6-4
189	6.4.2.1	Gamma Sources	6-4
190	6.4.2.2	Neutron Sources	6-5
191	6.4.3	Shielding Model Specification	6-5
192	6.4.3.1	Configuration of Shielding and Source	6-5
193	6.4.3.2	Material Properties	6-5
194	6.4.4	Shielding Analyses	6-5

195	6.4.4.1	Computer Codes	6-5
196	6.4.4.2	Flux-to-Dose-Rate Conversion	6-6
197	6.4.4.3	Dose Rates	6-6
198	6.5	Review Procedures	6-7
199	6.5.1	Shielding Design Description	6-7
200	6.5.1.1	Design Criteria (MEDIUM Priority)	6-7
201	6.5.1.2	Design Features (HIGH Priority)	6-9
202	6.5.2	Radiation Source Definition (HIGH Priority)	6-9
203	6.5.2.1	Initial Enrichment	
204	6.5.2.2	Computer Codes for Radiation Source Definition	6-10
205	6.5.2.3	Gamma Source	
206	6.5.2.4	Neutron Source	6-11
207	6.5.2.5	Other Parameters Affecting the Source Term	6-12
208	6.5.3	Shielding Model Specification (HIGH Priority)	
209	6.5.3.1	Configuration of the Shielding and Source	6-12
210	6.5.3.2	Material Properties	6-13
211	6.5.4	Shielding Analyses	6-13
212	6.5.4.1	Computer Codes (MEDIUM Priority)	6-13
213	6.5.4.2	Flux-to-Dose-Rate Conversion (MEDIUM Priority)	6-16
214	6.5.4.3	Dose Rates (MEDIUM Priority)	6-16
215	6.5.4.4	Confirmatory Calculations (HIGH Priority)	6-18
216	6.5.5	Supplemental Information	
217	6.6	Evaluation Findings	6-19
218			7 1
210	7.1	Review Objective	
220	7.2	Areas of Review	
220	7.3	Regulatory Requirements	
222	7.4	Acceptance Criteria	
223	7.5	Review Procedures	
224	7.5.1	Criticality Design Criteria and Features (HIGH Priority)	
225	7.5.2	Fuel Specification (HIGH Priority)	
226	7.5.2.1	Non-Fuel Hardware	
227	7.5.2.2		
228	7.5.3	Model Specification (HIGH Priority)	
229	7.5.3.1	Configuration	
230	7.5.3.2	Material Properties	
231	7.5.4	Criticality Analysis (Priority as indicated)	
232	7.5.4.1	Computer Codes	
233	7.5.4.2	Multiplication Factor	
234	7.5.4.3	Benchmark Comparisons (HIGH Priority)	
235	7.5.5	Burnup Credit (HIGH Priority)	
236	7.5.5.1	Limits for the Licensing Basis	
237	7.5.5.2	Code Validation	
238	7.5.5.3	Licensing-Basis Model Assumptions	
239	7.5.5.4	Loading Curve	
240	7.5.5.5	Assigned Burnup Loading Value	
241	7.5.5.6	Estimate of Additional Reactivity Margin	
242	7.5.6	Supplemental Information	
243	7.6	Evaluation Findings	
244	8 MATERIAL	S EVALUATION	8-1

245	8.1 Review Objective	8_1
245	8.2 Areas of Review	
247	8.3 Regulatory Requirements	
248	8.4 Review Procedures and Acceptance Criteria	8-3
249	8.4.1 General Review Considerations (HIGH Priority)	
250	8.4.2 Codes and Standards (HIGH Priority)	
251	8.4.2.1 Usage and Endorsement	
252	8.4.2.2 Code Case Use/Acceptability	
253	8.4.3 Environment (Priority – as indicated)	
254	8.4.4 Drawings (MEDIUM Priority)	
255	8.4.5 Material Properties (MEDIUM Priority)	
256	8.4.5.1 Structural Properties	
257	8.4.5.2 Thermal Materials	
258	8.4.6 Coastal Marine ISFSI Sites–Material Selections (MEDIUM Priority)	.8-8
259	8.4.7 Weld Design/Inspection (MEDIUM Priority)	
260	8.4.7.1 Welding Codes–Background Discussion	.8-9
261	8.4.7.2 Weld Design and Testing	8-10
262	8.4.7.3 Lid Welds and Closure Welds	8-11
263	8.4.7.4 Austenitic Stainless and Nickel-Base Alloy Steels Cask Design	8-13
264	8.4.8 Galvanic/Corrosive Reactions (LOW Priority)	
265	8.4.8.1 Environmental considerations	8-13
266	8.4.8.2 Canister Contents	
267	8.4.9 Creep Behavior of Aluminum Components (HIGH Priority)	
268	8.4.10 Bolt Applications (MEDIUM Priority)	
269	8.4.11 Exterior Protective Coatings (LOW Priority)	8-14
270	8.4.11.1 Review Guidance	
271	8.4.11.2 Scope of Coating Application	
272	8.4.11.3 Coating Selection	
273	8.4.11.4 Surface Preparation	
274	8.4.11.5 Coating Repairs	
275	8.4.11.6 Coating Qualification Testing	
276	8.4.12 Neutron Shielding (MEDIUM Priority)	
277	8.4.12.1 Neutron Shielding Materials	
278	8.4.12.2 Assessing Previously Unreviewed (New) Neutron Shielding Materials	
279	8.4.13 Criticality Control (HIGH Priority)	
280	8.4.13.1 Neutron-Absorbing/Poison Materials	
281	8.4.13.2 Computation of Percent Credit for Boron-Based Neutron Absorbers	
282	8.4.13.3 Qualifying the Neutron Absorber Material Fabrication Process	
283	8.4.14 Concrete and Reinforcing Steel (LOW Priority)	
284 285		
285	8.4.14.2 Concrete Temperature Limits	
280 287	8.4.15 Seals	
288	8.4.15 Seals	
289	8.4.15.2 Elastomeric Seals (ICOW Priority)	
209	8.4.16 Low Temperature Ductility and Fracture Control of Ferritic Steels	0-20
290 291	(MEDIUM Priority)	8-26
291	8.4.17 Cladding	
292	8.4.17.1 Cladding Temperature Limits (MEDIUM Priority)	
293 294	8.4.17.2 Fuel Classification (HIGH Priority)	
295	8.4.17.3 Reflood Analysis (HIGH Priority)	
200		5 52

296	8.4.18	Prevention of Oxidation Damage During Loading of Fuel (MEDIUM Priorit	ty).8-32
297	8.4.19	Flammable Gas Generation (MEDIUM Priority)	
298	8.4.20	Helium Leakage Testing (MEDIUM Priority)	8-33
299	8.4.21	Periodic Inspections (LOW Priority)	
300	8.5	Evaluation Findings	
301	8.6	Supplemental Information for Methods for Classifying Fuel (HIGH Priority)	
302	8.7	Supplemental Information for Potential Rod Splitting Due to Exposure to a	
303		Oxidizing Atmosphere During Short-Term Cask Loading Operations in LW	/R or
304		Other Uranium Oxide Based Fuel (MEDIUM Priority)	8-41
305	8.7.1	Fuel Oxidation and Cladding Splitting	8-41
306	8.7.2	Data Base	
307	8.7.3	References	
308	8.8	Supplemental Information for Background justification for Cladding Tempe	
309		Considerations for the Storage of Spent Fuel (MEDIUM Priority)	8-43
310	8.8.1	Basis for Guidance	8-43
311	8.8.2	Review Guidance	8-45
312	8.8.3	References	8-46
313	8.9	Supplemental Information for the Design and Testing of Lid Welds on Aus	
314		Stainless Steel Canisters as Confinement Boundary for Spent Fuel Storag	je
315		(MEDIUM Priority)	8-47
316	8.9.1	Basis for the Review	8-47
317	8.9.2	Helium Leak Test	8-48
318	9 OPERATIN	NG PROCEDURES EVALUATION	9-1
319	9.1	Review Objective	
320	9.2	Areas of Review	
321	9.3	Regulatory Requirements	9-2
322	9.4	Acceptance Criteria	9-2
323	9.4.1	Cask Loading	9-3
324	9.4.2	Cask Handling and Storage Operations	9-3
325	9.4.3	Cask Unloading	9-4
326	9.5	Review Procedures	
327	9.5.1	Cask Loading (Priority - as indicated)	
328	9.5.2	Cask Handling and Storage Operations (LOW Priority)	9-11
329	9.5.3	Cask Unloading (Priority – as indicated)	9-12
330	9.6	Evaluation Findings	9-14
331	10 ACCEPT	ANCE TESTS AND MAINTENANCE PROGRAM EVALUATION	10-1
332	10.1	Review Objective	10-1
333	10.2	Areas of Review	10-1
334	10.3	Regulatory Requirements	10-1
335	10.4	Acceptance Criteria	10-2
336	10.5	Review Procedures	
337	10.5.1	Acceptance Tests (Priority – as indicated)	
338	10.5.1.		
339	10.5.1.		
340	10.5.1.3	· · · · · · · · · · · · · · · · · · ·	
341	10.5.1.4		
342	10.5.1.		
343	10.5.1.		
344	10.5.1.		
345	10.5.2	Maintenance Program (LOW Priority)	10-12

346	10.5.2.		
347	10.5.2.		
348	10.5.2.		
349	10.6	Evaluation Findings	10-13
350	11 RADIATI	ON PROTECTION EVALUATION	11-1
351	11.1	Review Objective	11-1
352	11.2	Areas of Review	11-1
353	11.3	Regulatory Requirements	11-2
354	11.4	Acceptance Criteria	11-3
355	11.4.1	Radiation Protection Design Criteria and Features	11-3
356	11.4.2	Occupational Exposures.	
357	11.4.3	Exposures at or Beyond the Controlled Area Boundary	11-3
358	11.4.4	ALARA	
359	11.5	Review Procedures	
360	11.5.1	Radiation Protection Design Criteria and Features for the Transfer Cask an	d
361		Storage Cask (MEDIUM Priority)	11-4
362	11.5.2	Occupational Exposures (MEDIUM Priority)	11-6
363	11.5.3	Exposures at or Beyond the Controlled Area Boundary (MEDIUM Priority).	11-6
364	11.5.3.		
365	11.5.3.	.2 Accident Conditions and Natural Phenomenon Events	11-8
366	11.5.4	ALARA (MEDIUM Priority)	11-8
367	11.5.4.	··· J ··· · · · · · · · · · · · · · · ·	
368	11.5.4.	.2 Procedures and Engineering Controls	11-8
369	11.6	Evaluation Findings	11-8
370	12 ACCIDE	NT ANALYSES EVALUATION	12-1
371	12.1	Review Objective	12-1
372	12.2	Areas of Review	12-1
373	12.3	Regulatory Requirements	12-1
374	12.4	Acceptance Criteria	
375	12.4.1	Dose Limits for Off-Normal Events	12-2
376	12.4.2	Dose Limit for Design-Basis Accidents	12-3
377	12.4.3	Criticality	12-3
378	12.4.4	Confinement	12-3
379	12.4.5	Recovery and Retrievability	
380	12.4.6	Instrumentation	12-3
381	12.5	Review Procedures	
382	12.5.1	Cause of the Event (MEDIUM Priority)	
383	12.5.2	Detection of the Event (MEDIUM Priority)	12-5
384	12.5.3	Summary of Event Consequences and Regulatory Compliance	
385		(MEDIUM PRIORITY)	
386	12.5.4	Corrective Course of Action (MEDIUM Priority)	
387	12.6	Evaluation Findings	12-6
388		CAL SPECIFICATIONS AND OPERATING CONTROLS AND LIMITS	
389		.TION	
390	13.1	Review Objective	
			10 1
391	13.2	Areas of Review	
391 392 393	13.2 13.3 13.4	Areas of Review Regulatory Requirements Acceptance Criteria	13-2

394	13.4.1	Functional/Operating Limits, Monitoring Instruments, and Limiting Control	
395	40.40	Settings	
396	13.4.2	Limiting Conditions	
397	13.4.3	Surveillance Requirements	
398	13.4.4	Design Features	
399	13.4.5	Administrative Control	
400	13.5	Review Procedures (HIGH Priority)	
401	13.6	Evaluation Findings	13-8
402		TY ASSURANCE EVALUATION	
403	14.1	Review Objective	
404	14.2	Areas of Review	
405	14.3	Regulatory Requirements	
406	14.4	Acceptance Criteria	
407	14.5	Review Procedures (All items in this section are HIGH Priority)	14-1
408	14.5.1	Quality Assurance Organization	14-3
409	14.5.2	Quality Assurance Program	14-4
410	14.5.3	Design Control	14-6
411	14.5.4	Procurement Document Control	14-7
412	14.5.5	Instructions, Procedures, and Drawings	14-8
413	14.5.6	Document Control	14-8
414	14.5.7	Control of Purchased Material, Equipment, and Services	14-9
415	14.5.8	Identification and Control of Materials, Parts, and Components	
416	14.5.9	Control of Special Processes	
417	14.5.10	•	
418	14.5.11		
419	14.5.12		
420	14.5.13	S 11	
421	14.5.14	• • •	
422	14.5.15		
423	14.5.16	5 , , , 1	
424	14.5.17		
425	14.5.18	•	
426	14.6	Evaluation Findings	
427	APPENDIX	A CONSOLIDATED REFERENCES	A-1
428		B PROCESS FOR PRIORITIZING THE STANDARD REVIEW PLAN FOR I	
420		AGE SYSTEMS	
430		C LIST OF ISGs 1 TO 22 WITH THOSE INCORPORATED INTO NUREG-1	
431			
432	APPENDD	K D PUBLIC COMMENTS RECEIVED AND THEIR DISPOSITION	D1
433			
434			
435		LIST OF FIGURES	
436			
437		Overview of Safety Evaluation	
438		Overview of Principal Design Criteria Evaluation	
439		Overview of the Structural Evaluation	
440		Overview of the Thermal Evaluation	
441		Overview of the Confinement Evaluation	
442	⊢igure 6-1	Overview of the Shielding Evaluation	6-8

443	Figure 7-1 Overview of Criticality Evaluation	7-4
444	Figure 8-1 Overview of Materials Evaluation	
445	Figure 8-2 Relationship of Spent Fuel Populations	
446	Figure 9-1 Overview of Operating Procedures Evaluation	
447	Figure 10-1 Overview of Acceptance Test Review Evaluation	10-3
448	Figure 10-2 Overview of Maintenance Program Review Evaluation	10-4
449	Figure 11-1 Overview of the Radiation Protection Evaluation	11-5
450	Figure 12-1 Overview of Accident Analysis Evaluation	12-4
451	Figure 13-1 Provision Example	13-4
452	Figure 13-2 Overview of Technical Specifications and Operating Controls Evaluation	13-6
453	Figure 14-1 Quality Assurance Evaluation	
454		
455		
456		
457	LIST OF TABLES	
458		
459		
460	Table 1-1 Relationship of Regulations and Areas of Review	
461	Table 2-1 Relationship of 10 CFR Part 72 Regulations and Areas of Review	2-2
462	Table 2-2 Outline of Design Criteria and Bases for DSS	
463	Table 3-1 Relationship of Regulations and Areas of Review	3-2
464	Table 3-2 Loads and Their Descriptions	3-42
465	Table 3-3 Load Combinations for Steel and Reinforced Concrete Non-Confinement Strue	ctures
466		
467	Table 4-1 Relationship of Regulations and Areas of Review	
468	Table 5-1 Relationship of Regulations and Areas of Review	
469	Table 5-2 Fractions of Radioactive Materials Available for Release from Spent Fuel	
470	Table 6-1 Relationship of Regulations and Areas of Review	
471	Table 7-1 Relationship of Regulations and Areas of Review	
472	Table 8-1 Relationship of 10 CFR Part 72 Regulations and Areas of Review	
473	Table 9-1 Relationship of Regulations and Areas of Review	
474	Table 10-1 Relationship of Regulations and Areas of Review	
475	Table 11-1 Relationship of 10 CFR Part 20 Regulations and Areas of Review	
476	Table 11-2 Relationship of 10 CFR Part 72 Regulations and Areas of Review	
477	Table 12-1 Relationship of Regulations and Areas of Review	
478	Table 13-1 Relationship of Regulations and Areas of Review	13-2
479		

ACRONYMS AND ABBREVIATIONS

ADEannual dose equivalentAISCAmerican Institute of Steel ConstructionALARAas low as is reasonably achievableANLArgonne National LaboratoryANSAmerican Nuclear SocietyASCEAmerican Society of Civil EngineersANSIAmerican National Standards InstituteAPIAmerican Petroleum InstituteAPSRaxial power shaping rodASDallowable stress designASMEAmerican Society of Mechanical EngineersASTMAmerican Society of Mechanical EngineersASTMAmerican Society for Testing and MaterialsAWWAAmerican Welding SocietyB&PVboiler and pressure vesselBPRAburnable poison rod assemblyBRbreathing rateBWRboiling-water reactorCDEcommitted dose equivalentCFDcomputational fluid dynamicsCFRU.S. Code of Federal RegulationsCoCCertificate of ComplianceCSFMCommercial Spent Fuel Management ProgramDBAdesign-basis accidentDBEdesign-basis eventDCFdose conversion factorDSSdry storage systemDDEdeep dose equivalentDEdeep dose equivalentDEdeep dose equivalent	ACI	American Concrete Institute
ALARAas low as is reasonably achievableANLArgonne National LaboratoryANSAmerican Nuclear SocietyASCEAmerican Society of Civil EngineersANSIAmerican National Standards InstituteAPIAmerican Petroleum InstituteAPSRaxial power shaping rodASDallowable stress designASMEAmerican Society of Mechanical EngineersASTMAmerican Society of Mechanical EngineersASTMAmerican Society for Testing and MaterialsAWWAAmerican Water Works AssociationAWSAmerican Welding SocietyB&PVboiler and pressure vesselBPRAburnable poison rod assemblyBRbreathing rateBWRboiling-water reactorCDEcommitted dose equivalentCEAcontrol element assemblyCEDEcommitted effective dose equivalentCFRU.S. Code of Federal RegulationsCoCCertificate of ComplianceCSFMCommercial Spent Fuel Management ProgramDBAdesign-basis accidentDBEdesign-basis eventDCFdose conversion factorDSSdry storage systemDDEdeep dose equivalent	ADE	annual dose equivalent
ANLArgonne National LaboratoryANSAmerican Nuclear SocietyASCEAmerican Society of Civil EngineersANSIAmerican National Standards InstituteAPIAmerican Petroleum InstituteAPSRaxial power shaping rodASDallowable stress designASMEAmerican Society of Mechanical EngineersASMEAmerican Society of Mechanical EngineersASMEAmerican Society of Testing and MaterialsAWWAAmerican Water Works AssociationAWSAmerican Welding SocietyB&PVboiler and pressure vesselBPRAburnable poison rod assemblyBRbreathing rateBWRboiling-water reactorCDEcommitted effective dose equivalentCEAcontrol element assemblyCEDEcommitted effective dose equivalentCFDcomputational fluid dynamicsCFRU.S. Code of Federal RegulationsCoCCertificate of ComplianceCSFMCommercial Spent Fuel Management ProgramDBAdesign-basis accidentDBEdesign-basis eventDCFdose conversion factorDSSdry storage systemDDEdeep dose equivalent	AISC	American Institute of Steel Construction
ANSAmerican Nuclear SocietyASCEAmerican Society of Civil EngineersANSIAmerican National Standards InstituteAPIAmerican Petroleum InstituteAPSRaxial power shaping rodASDallowable stress designASMEAmerican Society of Mechanical EngineersASTMAmerican Society of Testing and MaterialsAWWAAmerican Water Works AssociationAWSAmerican Welding SocietyB&PVboiler and pressure vesselBPRAburnable poison rod assemblyBRbreathing rateBWRboiling-water reactorCDEcommitted dose equivalentCEAcontrol element assemblyCEDEcommitted effective dose equivalentCFDcomputational fluid dynamicsCFRU.S. Code of Federal RegulationsCoCCertificate of ComplianceCSFMCommercial Spent Fuel Management ProgramDBAdesign-basis accidentDBEdesign-basis eventDCFdose conversion factorDSSdry storage systemDDEdeep dose equivalent	ALARA	as low as is reasonably achievable
ASCEAmerican Society of Civil EngineersANSIAmerican National Standards InstituteAPIAmerican Petroleum InstituteAPSRaxial power shaping rodASDallowable stress designASMEAmerican Society of Mechanical EngineersASTMAmerican Society for Testing and MaterialsAWWAAmerican Water Works AssociationAWSAmerican Welding SocietyB&PVboiler and pressure vesselBPRAburnable poison rod assemblyBRbreathing rateBWRboiling-water reactorCDEcommitted dose equivalentCEAcontrol element assemblyCEDEcommitted effective dose equivalentCFRU.S. Code of Federal RegulationsCoCCertificate of ComplianceCSFMCommercial Spent Fuel Management ProgramDBAdesign-basis accidentDBEdesign-basis eventDCFdose conversion factorDSSdry storage systemDDEdeep dose equivalent	ANL	Argonne National Laboratory
ANSIAmerican National Standards InstituteAPIAmerican Petroleum InstituteAPSRaxial power shaping rodASDallowable stress designASMEAmerican Society of Mechanical EngineersASTMAmerican Society for Testing and MaterialsAWWAAmerican Water Works AssociationAWSAmerican Welding SocietyB&PVboiler and pressure vesselBPRAburnable poison rod assemblyBRbreathing rateBWRboiling-water reactorCDEcommitted dose equivalentCEAcontrol element assemblyCEDEcommitted of Federal RegulationsCoCCertificate of ComplianceCSFMCommercial Spent Fuel Management ProgramDBAdesign-basis accidentDBEdesign-basis eventDCFdose conversion factorDSSdry storage systemDDEdeep dose equivalent	ANS	American Nuclear Society
APIAmerican Petroleum InstituteAPSRaxial power shaping rodASDallowable stress designASMEAmerican Society of Mechanical EngineersASTMAmerican Society for Testing and MaterialsAWWAAmerican Water Works AssociationAWSAmerican Welding SocietyB&PVboiler and pressure vesselBPRAburnable poison rod assemblyBRbreathing rateBWRboiling-water reactorCDEcommitted dose equivalentCEAcontrol element assemblyCEDEcommitted effective dose equivalentCFDcomputational fluid dynamicsCFRU.S. Code of Federal RegulationsCoCCertificate of ComplianceCSFMCommercial Spent Fuel Management ProgramDBAdesign-basis accidentDBEdesign-basis eventDCFdose conversion factorDSSdry storage systemDDEdeep dose equivalent	ASCE	American Society of Civil Engineers
APSRaxial power shaping rodASDallowable stress designASMEAmerican Society of Mechanical EngineersASTMAmerican Society for Testing and MaterialsAWWAAmerican Water Works AssociationAWSAmerican Welding SocietyB&PVboiler and pressure vesselBPRAburnable poison rod assemblyBRbreathing rateBWRboiling-water reactorCDEcommitted dose equivalentCEAcontrol element assemblyCEDEcommitted effective dose equivalentCFRU.S. Code of Federal RegulationsCoCCertificate of ComplianceCSFMCommercial Spent Fuel Management ProgramDBAdesign-basis accidentDBEdesign-basis eventDCFdose conversion factorDSSdry storage systemDDEdeep dose equivalent	ANSI	American National Standards Institute
ASDallowable stress designASMEAmerican Society of Mechanical EngineersASTMAmerican Society for Testing and MaterialsAWWAAmerican Water Works AssociationAWSAmerican Welding SocietyB&PVboiler and pressure vesselBPRAburnable poison rod assemblyBRbreathing rateBWRboiling-water reactorCDEcommitted dose equivalentCEAcontrol element assemblyCEDEcommitted effective dose equivalentCFRU.S. Code of Federal RegulationsCoCCertificate of ComplianceCSFMCommercial Spent Fuel Management ProgramDBAdesign-basis accidentDEdesign-basis eventDCFdose conversion factorDSSdry storage systemDDEdeep dose equivalent	API	American Petroleum Institute
ASMEAmerican Society of Mechanical EngineersASTMAmerican Society for Testing and MaterialsAWWAAmerican Water Works AssociationAWSAmerican Welding SocietyB&PVboiler and pressure vesselBPRAburnable poison rod assemblyBRbreathing rateBWRboiling-water reactorCDEcommitted dose equivalentCEAcontrol element assemblyCEDEcommitted effective dose equivalentCFRU.S. Code of Federal RegulationsCoCCertificate of ComplianceCSFMCommercial Spent Fuel Management ProgramDBAdesign-basis accidentDEEdose conversion factorDSSdry storage systemDDEdeep dose equivalent	APSR	axial power shaping rod
ASTMAmerican Society for Testing and MaterialsAWWAAmerican Water Works AssociationAWSAmerican Welding SocietyB&PVboiler and pressure vesselBPRAburnable poison rod assemblyBRbreathing rateBWRboiling-water reactorCDEcommitted dose equivalentCEAcontrol element assemblyCEDEcommitted effective dose equivalentCFDcomputational fluid dynamicsCFRU.S. Code of Federal RegulationsCoCCertificate of ComplianceCSFMCommercial Spent Fuel Management ProgramDBAdesign-basis accidentDBEdesign-basis eventDCFdose conversion factorDSSdry storage systemDDEdeep dose equivalent	ASD	allowable stress design
AWWA AWSAmerican Water Works Association American Welding SocietyB&PVboiler and pressure vessel BPRABPRAburnable poison rod assemblyBRbreathing rateBWRboiling-water reactorCDEcommitted dose equivalent CEACEAcontrol element assemblyCEDEcommitted effective dose equivalent CFDCFRU.S. Code of Federal Regulations CoCCOCCertificate of Compliance CSFMDBAdesign-basis accident DCFDBEdesign-basis event DCFDCFdose conversion factor DSSDDEdeep dose equivalent	ASME	American Society of Mechanical Engineers
AWSAmerican Welding SocietyB&PVboiler and pressure vesselBPRAburnable poison rod assemblyBRbreathing rateBWRboiling-water reactorCDEcommitted dose equivalentCEAcontrol element assemblyCEDEcommitted effective dose equivalentCFDcomputational fluid dynamicsCFRU.S. Code of Federal RegulationsCoCCertificate of ComplianceCSFMCommercial Spent Fuel Management ProgramDBAdesign-basis accidentDEEdesign-basis eventDCFdose conversion factorDSSdry storage systemDDEdeep dose equivalent	ASTM	American Society for Testing and Materials
B&PVboiler and pressure vesselBPRAburnable poison rod assemblyBRbreathing rateBWRboiling-water reactorCDEcommitted dose equivalentCEAcontrol element assemblyCEDEcommitted effective dose equivalentCFDcomputational fluid dynamicsCFRU.S. Code of Federal RegulationsCoCCertificate of ComplianceCSFMCommercial Spent Fuel Management ProgramDBAdesign-basis accidentDEEdesign-basis eventDCFdose conversion factorDSSdry storage systemDDEdeep dose equivalent	AWWA	American Water Works Association
BPRAburnable poison rod assemblyBRbreathing rateBWRboiling-water reactorCDEcommitted dose equivalentCEAcontrol element assemblyCEDEcommitted effective dose equivalentCFDcomputational fluid dynamicsCFRU.S. Code of Federal RegulationsCoCCertificate of ComplianceCSFMCommercial Spent Fuel Management ProgramDBAdesign-basis accidentDEEdose conversion factorDSSdry storage systemDDEdeep dose equivalent	AWS	American Welding Society
BPRAburnable poison rod assemblyBRbreathing rateBWRboiling-water reactorCDEcommitted dose equivalentCEAcontrol element assemblyCEDEcommitted effective dose equivalentCFDcomputational fluid dynamicsCFRU.S. Code of Federal RegulationsCoCCertificate of ComplianceCSFMCommercial Spent Fuel Management ProgramDBAdesign-basis accidentDEEdose conversion factorDSSdry storage systemDDEdeep dose equivalent		
BRbreathing rateBWRboiling-water reactorCDEcommitted dose equivalentCEAcontrol element assemblyCEDEcommitted effective dose equivalentCFDcomputational fluid dynamicsCFRU.S. Code of Federal RegulationsCoCCertificate of ComplianceCSFMCommercial Spent Fuel Management ProgramDBAdesign-basis accidentDEEdesign-basis eventDCFdose conversion factorDSSdry storage systemDDEdeep dose equivalent	B&PV	boiler and pressure vessel
BWRboiling-water reactorCDEcommitted dose equivalentCEAcontrol element assemblyCEDEcommitted effective dose equivalentCFDcomputational fluid dynamicsCFRU.S. Code of Federal RegulationsCoCCertificate of ComplianceCSFMCommercial Spent Fuel Management ProgramDBAdesign-basis accidentDBEdesign-basis eventDCFdose conversion factorDSSdry storage systemDDEdeep dose equivalent	BPRA	burnable poison rod assembly
CDEcommitted dose equivalentCEAcontrol element assemblyCEDEcommitted effective dose equivalentCFDcomputational fluid dynamicsCFRU.S. Code of Federal RegulationsCoCCertificate of ComplianceCSFMCommercial Spent Fuel Management ProgramDBAdesign-basis accidentDBEdesign-basis eventDCFdose conversion factorDSSdry storage systemDDEdeep dose equivalent	BR	breathing rate
CEAcontrol element assemblyCEDEcommitted effective dose equivalentCFDcomputational fluid dynamicsCFRU.S. Code of Federal RegulationsCoCCertificate of ComplianceCSFMCommercial Spent Fuel Management ProgramDBAdesign-basis accidentDBEdesign-basis eventDCFdose conversion factorDSSdry storage systemDDEdeep dose equivalent	BWR	boiling-water reactor
CEAcontrol element assemblyCEDEcommitted effective dose equivalentCFDcomputational fluid dynamicsCFRU.S. Code of Federal RegulationsCoCCertificate of ComplianceCSFMCommercial Spent Fuel Management ProgramDBAdesign-basis accidentDBEdesign-basis eventDCFdose conversion factorDSSdry storage systemDDEdeep dose equivalent		
CEDEcommitted effective dose equivalentCFDcomputational fluid dynamicsCFRU.S. Code of Federal RegulationsCoCCertificate of ComplianceCSFMCommercial Spent Fuel Management ProgramDBAdesign-basis accidentDBEdesign-basis eventDCFdose conversion factorDSSdry storage systemDDEdeep dose equivalent	CDE	committed dose equivalent
CFDcomputational fluid dynamicsCFRU.S. Code of Federal RegulationsCoCCertificate of ComplianceCSFMCommercial Spent Fuel Management ProgramDBAdesign-basis accidentDBEdesign-basis eventDCFdose conversion factorDSSdry storage systemDDEdeep dose equivalent	CEA	control element assembly
CFRU.S. Code of Federal RegulationsCoCCertificate of ComplianceCSFMCommercial Spent Fuel Management ProgramDBAdesign-basis accidentDBEdesign-basis eventDCFdose conversion factorDSSdry storage systemDDEdeep dose equivalent	CEDE	committed effective dose equivalent
CoCCertificate of ComplianceCSFMCommercial Spent Fuel Management ProgramDBAdesign-basis accidentDBEdesign-basis eventDCFdose conversion factorDSSdry storage systemDDEdeep dose equivalent	CFD	computational fluid dynamics
CSFMCommercial Spent Fuel Management ProgramDBAdesign-basis accidentDBEdesign-basis eventDCFdose conversion factorDSSdry storage systemDDEdeep dose equivalent	CFR	U.S. Code of Federal Regulations
DBAdesign-basis accidentDBEdesign-basis eventDCFdose conversion factorDSSdry storage systemDDEdeep dose equivalent	CoC	Certificate of Compliance
DBEdesign-basis eventDCFdose conversion factorDSSdry storage systemDDEdeep dose equivalent	CSFM	Commercial Spent Fuel Management Program
DBEdesign-basis eventDCFdose conversion factorDSSdry storage systemDDEdeep dose equivalent		
DCFdose conversion factorDSSdry storage systemDDEdeep dose equivalent	DBA	design-basis accident
DSSdry storage systemDDEdeep dose equivalent		design-basis event
DDE deep dose equivalent	DCF	dose conversion factor
· ·	DSS	dry storage system
DE design earthquake	DDE	deep dose equivalent
	DE	design earthquake

DLF	design load factor
DOE	U.S. Department of Energy
EPA	Environmental Protection Agency
	Environmental Protection Agency Electric Power Research Institute
EPRI	Electric Power Research Institute
FR	Federal Registry
g	gram
Gr	Grashof
GTCC	greater than Class C
Gy	Gray
Gz	Graetz
HAC	hypothetical accident condition
HAZ	heat affected zone
HTGR	high-temperature gas-cooled reactor
H/U	hydrogen-to-uranium
IBC	International Building Code
ICBO	International Conference of Building Officials
ICC	International Code Council
ICRP	International Commission on Radiological Protection
INEL	Idaho National Engineering Laboratory
ISFSI	Independent Spent Fuel Storage Installation
ISG	Interim Staff Guidance
LANL	Los Alamos National Laboratory
LCO	limiting condition of operations
LDE	lens dose equivalent
LLNL	Lawrence Livermore National Laboratory
LRFD	load resistance factor design
LT	leak testing
LWR	light water reactor
mJ	milliJoule
mm	millimeter
MNOP	maximum normal operating pressure
	maximum normal operating probatio

MPa	megapascal
ms	millisecond
MT	magnetic particle examination
N	Newton
NDE	nondestructive examination
NDT	nil-ductility transition
NEI	Nuclear Energy Institute
NEPA	National Fire Protection Association
NOAA	National Oceanic and Atmospheric Administration
NRC	United States Nuclear Regulatory Commission
NRPB	National Radiation Protection Board
NRR	Office of Nuclear Reactor Regulation
OBE	operating-basis earthquake
OFA	optimized fuel assembly
ORNL	Oak Ridge National Laboratory
PNL	Papific Northwest Laboratory
PNL PT	Pacific Northwest Laboratory
PWHT	liquid (dye) penetrant examination
PWR	preheat and post-weld heat treatment
FVIK	pressurized-water reactor
QA	Quality Assurance
QAPD	Quality Assurance Program Description
QC	quality control
RAI	request for additional information
RC	reinforced concrete
RCCA	rod cluster control assembly
RG	Regulatory Guide
RSICC	Radiation Safety Information Computational Center
RT	radiographic examination
SAR	Safety Analysis Report
SDE	shallow (skin) dose equivalent
SEM	scanning electron microscopy
SER	Safety Evaluation Report

SFST	Division of Spent Fuel Storage and Transportation
SI	système international (d'unités) (International System of Units)
SNF	spent nuclear fuel
SNT	American Society for Nondestructive Testing
SRP	Standard Review Plan
SSC	structures, systems, and components
SSE	safe shutdown earthquake
Sv	Sievert
TEDE	total effective dose equivalent
TEM	transmission electron microscopy
TODE	total organ dose equivalent
TS	Technical Specification
TSAR	Topical Safety Analysis Report
UBC	Uniform Building Code
UK	United Kingdom
UT	ultrasonic examination
VT	visual examination

483 484		UNITS
485		Dritich the most write new hours fact do most February cit
	Btu/hr.ft.°F °C	British thermal units per hour-foot-degree Fahrenheit
	Ci/cm ³	degrees Centigrade
		Curies per cubic centimeters
	Ci/s	Curies per second
	cm³/s	cubic centimeters per second
	°F	degrees Fahrenheit
	ft ft/a	feet
	ft/s ft ³	feet per second
	n ft ³ /s	cubic feet
		cubic feet per second
	g/cm ³	grams per cubic centimeters
	GWd/MTU	GigaWatt days per Metric Ton Uranium
	in.	inches
	K	Kelvin
	kg	kilogram
	kgf/cm ²	kilograms force per square centimeters
	kPa	kiloPascal
	ksi	thousand pounds per square inch
	kW	kilowatts
	lb	pounds
	m m²	meters
	m ³	square meters cubic meters
	m ³ /s	
		cubic meters per second
	m/s mCi	meters per second millicuries (one-thousandth of a curie)
	MeV	million electron volts
	mg	milligram (one-thousandth of a gram)
	mm	millimeters (one-thousandth of a meter)
	MPa	MegaPascal (million Pascals)
	mrem	millirem (one-thousandth of a rem)
	mSv	millisievert (one-thousandth of a sievert)
	MWd/MTU	MegaWatt days per Metric Ton Uranium
	pCi/m ³	picocurie (one-trillionth of a curie)/cubic meter
	PM ¹⁰	particulate matter (less than 10 microns in diameter)
		parts per million
	ppm	

psi pounds per square inch

s second

Sv sievert

 μ Ci microcurie (one-millionth of a curie)

 μ Ci/cm² microcurie per square centimeter

W/m.K Watts per meter - Kelvin

GLOSSARY

489 The following terms are defined here by the staff for the purpose of this document. 490

491 <u>Acceptance Test</u>. Tests conducted by the applicant to ensure that material or component 492 produced in a given production run is in compliance with the material or design requirements of 493 the application. Acceptance tests are also used to ensure that the process is operating in a 494 satisfactory manner by using statistical data for selected measurable parameters. 495

- 496 *Accident-Level*. A term used to include both design-basis accidents and design-basis natural 497 phenomenon events and conditions.
- 498
- 499 <u>Areal Density</u>. Mass per unit area, usually expressed in grams per square centimeters (g/cm²).
 500 In this document, this term is used to describe the distribution of neutron absorber content in a
 501 material.
 502
- 503 <u>Adequate Margin</u>. In the design of structures, systems, and components, the margin for safety 504 is achieved by satisfying the acceptance criteria of the codes and standards for the specified 505 design criteria loads, and the design basis (performance requirements). The reviewer must 506 judge if the calculated design bases values require any margins with respect to the acceptance 507 criteria of the codes and standards. This may depend on the uncertainties associated with the 508 calculation of predicted design bases values (stress, displacements, etc.) used as reference for 509 the performance of the structures.
- 510

511 As Low As is Reasonably Achievable (ALARA). Making every reasonable effort to maintain 512 exposures to radiation as far below the dose limits in 10 CFR Part 20 as is practical and 513 consistent with the purpose for which the licensed activity is undertaken taking into account the 514 state of technology, the economics of improvements in relation to state of technology, the 515 economics of improvements in relation to benefits to the public health and safety, other societal 516 and socioeconomic considerations, and in relation to utilization of nuclear energy and licensed 517 materials in the public interest (10 CFR 20.1003). Per 10 CFR 72.3, ALARA means as low as 518 reasonably achievable taking into account the state of technology, and the economics of 519 improvement in relation to: (1) benefits to the public health and safety, (2) other societal and 520 socioeconomic considerations, and (3) the utilization of atomic energy in the public interest. 521

- 522 <u>Benchmarking</u>. Establishment of the bias of a computer code for a particular application by 523 comparison of the calculated results with the measured results of relevant representative 524 experiments. For purposes of criticality analyses, benchmarking is the process of establishing 525 the bias of the calculational method, which includes aspects such as the computer code, cross 526 sections set, analyst's technique, and analysis assumptions. 527
- 528 <u>Bias</u>. ANSI/ANS-8.1 defines bias as "a measure of the systematic differences between 529 calculational method results and experimental data" and uncertainty in the bias as "a measure 530 of both the accuracy and the precision of the calculations and the uncertainty of the 531 experimental data." See NUREG/CR-6361 for further discussion of bias. Bias defined as the 532 average of the differences between results and measurements may be acceptable, provided 533 that one adequately considers the variation in the differences. 534
- 535 <u>Burnable Poison Rod Assembly (BPRA)</u>. An assembly of poison rods used to absorb neutrons 536 created in the nuclear reactor to control the power produced in the associated fuel assembly 537 during the early core life. The BPRs are inserted into the fuel assemblies through the upper end

- fittings of the assembly and held in place against lift forces in the core by a retainer mechanism.
 BPRs within the spent fuel assembly envelope may be approved for storage in a dry storage
 system as part of the spent fuel assembly.
- 542 <u>Burnup</u>. The measure of the thermal power produced in a specific amount of nuclear fuel 543 through fission, usually expressed in units of MWd/MTU (megawatt days per metric ton of 544 uranium). For the purpose of assessing the allowable contents, the maximum burnup(s) of the 545 fuel should be specified in terms of the average burnup of the entire fuel assembly (i.e. 546 assembly average). For the purpose of assessing fuel cladding integrity in the materials review, 547 the rod with the highest burnup within the fuel assembly should be specified in terms of peak 548 rod average burnup.
- 549

- 550 <u>*Calculational Method.*</u> The calculational procedures mathematical equations, approximations, 551 assumptions, and associated numerical parameters (e.g., cross sections) – that yield the 552 calculated results (ANSI/ANS-8.1-1998). 553
- 554 <u>*Canister*</u>. In a dry storage system for spent nuclear fuel, a metal cylinder that is sealed at both 555 ends and may be used to perform the function of confinement. Typically, a separate overpack 556 performs the radiological shielding and physical protection function. 557
- 558 <u>*Canning*</u>. To store damaged or consolidated spent nuclear fuel or nuclear fuel debris in a 559 separate container and confine it in such a way that degradation of the fuel during storage will 560 not pose operational safety problems with respect to its removal from storage 561 [10 CFR 72.122(h)(1)].
- 562 563 <u>*Cask.*</u> In a dry storage system using the cask design for spent nuclear fuel, a passive stand-564 alone component that performs the functions of confinement, radiological shielding, decay heat 565 removal, and physical protection of spent fuel during normal, off-normal, and accident-level 566 conditions (NUREG-1571).
- 567
- 568 <u>*Certificate of Compliance*</u>. The certificate issued by the NRC that approves the design of a 569 spent nuclear fuel storage cask in accordance with the provisions of Subpart L of 10 CFR 72 570 (10 CFR 72.3). 571
- 572 <u>Code</u>. A generic reference to a national or "consensus" code, standard, and specification, or 573 specifically to the ASME Boiler and Pressure Vessel Code (ASME B&PV Code). 574
- 575 <u>*Committed Dose Equivalent* (H_{T} ,50</u>). The dose equivalent to organs or tissues of reference (T) 576 that will be received from an intake of radioactive material by an individual during the 50-year 577 period following the intake (10 CFR 20.1003). 578
- 579 *Confinement*. The ability to prevent the release of radioactive substances into the environment (NUREG-1571).
- 581
- 582 <u>*Confinement System*</u>. Those systems, including ventilation, that act as barriers between areas 583 containing radioactive substances and the environment (10 CFR 72.3).
- 584
- 585 <u>*Confirmatory Calculations*</u>. Calculations made by the reviewer to determine whether the cask 586 design and specifications meet the requirements of the Code of Federal Regulations. These 587 calculations do not replace the design calculations and are not intended to endorse the 588 applicant's calculations.

- 590 <u>*Construction*</u>. Includes materials, design, fabrication, installation, examination, testing, 591 inspection, and certification as required in the manufacture and installation of components. 592
- 593 <u>*Control Element Assembly (CEA)*</u> An assembly of neutron poison elements used to control the 594 reactor power during operations, if needed, and to provide shutdown capability. This 595 component is designed for operations within the fuel assembly envelope, and when stored with 596 spent fuel, fits within that envelope.
- 597 598 <u>Controlled Area</u>. For an independent spent fuel storage installation (ISFSI), that area 599 immediately surrounding the ISFSI for which the licensee exercises authority over its use and 600 within which ISFSI operations are performed (10 CFR 72.3). For a nuclear power plant, that 601 area outside of a restricted area but inside the site boundary to which access can be limited by 602 the licensee for any reason (10 CFR 20.1003).
- 603604 <u>*Criticality.*</u> A measurement of the state of a fission system.
- 605
- 606 <u>*Curie*</u>. The basic unit of radioactivity. A curie is equal to 37 billion (3.7×10^{10}) disintegrations 607 per second.
- 608
 609 <u>Damaged Fuel</u>. Spent nuclear fuel is considered damaged for storage purposes if it cannot
 610 fulfill its regulatory or design function. Specific conditions that define damaged fuel are provided
 611 in Section 8.4.17.2 of this SRP. Section 8.6, Supplemental Information for Methods for
 612 Classifying Fuel, provides methods for classifying spent nuclear fuel as damaged.
- 613
- 614 <u>Damaged-Fuel Can</u>. A metal enclosure that is sized to confine one damaged spent fuel 615 assembly. A fuel can for damaged spent fuel with damaged spent-fuel assembly contents must 616 satisfy fuel-specific and system-related functions for undamaged SNF required by the applicable 617 regulations.
- 618
- 619 *Degradation*. Any change in the properties of a material that adversely affects the behavior of 620 that material; adverse alteration (ASTM C1174-97). 621
- 622 <u>Design Bases</u>. The information that identifies the specific functions to be performed by a 623 structure, system, or component (e.g., spent fuel storage cask) and the specific values or 624 ranges of values chosen for controlling parameters as reference bounds for design. 625
- 626 <u>Design Earthquake</u>. The design earthquake ground motion for a site where a cask system may 627 be used that is determined in accordance with 72.102 or 72.103. 628
- 629 <u>Design Event (I, II, III, or IV)</u>. Conditions and events as defined and used for an independent 630 spent fuel storage installation in ANSI/ANS 57.9.
- 631
 632 <u>Double Contingency Principle</u>. A design principle requiring that at least two unlikely,
 633 independent, and concurrent or sequential changes in conditions essential to nuclear criticality
 634 safety must occur before a criticality accident is possible (10 CFR 72.124(a)).
- 635
 636 <u>Exclusion Area</u>. At a nuclear reactor site, the area surrounding the reactor in which the reactor
 637 licensee has the authority to determine all activities including exclusion or removal of personnel
 638 and property from the area. This area may be traversed by a highway, railroad, or waterway
 639 provided these are not so close to the facility as to interfere with normal operations of the

facility, and provided appropriate and effective arrangements are made to control traffic on the
highway, railroad, or waterway, in case of emergency, to protect the public health and safety.
Residence within the exclusion area shall normally be prohibited. In any event, residents shall
be subject to ready removal in case of necessity. Activities unrelated to operation of the reactor
may be permitted in an exclusion area under appropriate limitations, provided that no significant
hazards to the public health and safety will result (10 CFR 50.2).

- 647 *Gray (Gy)*. The SI unit of absorbed dose. 1 Gy is equal to 100 rad. 648
- 649 *Hard Receiving Surface*. For a horizontal or vertical drop, need not be an unyielding surface; 650 rather, the receiving surface may be modeled as a reinforced concrete pad on engineered fill. 651
- 652 <u>*High Burnup Fuel.*</u> Spent nuclear fuel with burnups (see "Burnup") generally exceeding 653 45 GWd/MTU.
- 655 <u>Hoop Stress</u>. The tensile stress in the cladding wall in the circumferential orientation.
- 656657 *Important Confinement Features*. See "important to safety."
- 658

654

646

659 Important to Safety, "Important to Nuclear Safety," or "Structures, Systems, and Components Important to Safety." Those features of a dry storage system that have one or more of the 660 661 following functions: (1) maintain the conditions required to store spent nuclear fuel safely; 662 (2) prevent damage to the spent nuclear fuel cask during handling or storage; or (3) provide reasonable assurance that spent nuclear fuel can be received, handled, containerized, stored, 663 664 and retrieved without undue risk to the health and safety of the public. ANSI/ANS 57.9 uses the 665 term "important confinement features"; however, NRC does not find this term acceptable. Per 666 Regulatory Guide 3.60, Design of an Independent Spent Fuel Storage Installation (Dry Storage), 667 "important to safety" should be substituted for "important confinement features" in the standard. 668

- 669 *Interim Staff Guidance (ISG)*. Supplemental information that clarifies important aspects of 670 regulatory requirements. An ISG provides NRC review guidance to NRC Staff in a timely 671 manner until standard review plans are revised accordingly.
- 673 *Low Burnup Fuel*. Spent nuclear fuel with burnups (see "Burnup") generally less than 674 45 GWd/MTU.
- 675
 676 <u>Margin of Safety, or MofS</u>. This term may be defined, through a factor of safety, f.s =
 677 capacity/demand, as MofS = F.S.(capacity/demand)-1 (with minimum acceptable MofS> 0.0)."
- 678

- Misloading. The placement in a cask of spent nuclear fuel in a configuration not supported by
 the cask's design basis or technical specifications. Also, the placement in a cask of spent
 nuclear fuel with characteristics that do not meet the characteristics of the cask's allowable
 contents.
- Monitoring. Testing and data collection to determine the status of a dry storage system and to verify the continued efficacy of the system on the basis of measurements of specified parameters including temperature, radiation, and functionality and/or characteristics of components of the system. With respect to radiation, per 10 CFR 20.1003, monitoring means the measurement of radiation levels, concentrations, surface area concentrations or quantities of radioactive material, and the use of the results of these measurements to evaluate potential exposures and doses.

691 692 Neutron Absorber. Also known as "poison." Materials that have high neutron absorption cross 693 section and are used to absorb neutrons to make a fission system less reactive. They are used 694 to ensure subcriticality during normal/offnormal/accident-level conditions in containers of fissile 695 materials.

697 Nondestructive Examination (NDE). Testing, examination, and/or inspection of a component 698 that does not affect the functionality and performance of the component. NDE can be broadly 699 divided into three categories: visual, surface, and volumetric examinations. Additional 700 information may be found in the ASME B&PV Code, Section V, Nondestructive Examination, 701 Appendix A.

702

710 711

712

717

725

696

703 NDE-related terms in order of increasing severity: 704

- 705 Discontinuity: An interruption in the normal physical structure of a material. 706 Discontinuities may be unintentional (such as those formed inadvertently 707 during the fabrication process) or intentional (such as a drilled hole). 708
- 709 Indication: Sign of a discontinuity observed when using an NDE method.
 - Flaw: An imperfection in an item or material which may or may not be harmful.
- 713 Defect: A flaw that, due to its size, shape, orientation, location, or other 714 properties, is rejectable to the applicable construction code. Defects may 715 be detrimental to the intended service of a component and the component 716 must be repaired or replaced.
- 718 Common NDE examination methods include: 719
- 720 LT leak testing
- 721 MT magnetic particle examination
- 722 PT liquid penetrant examination
- 723 RT radiographic examination 724
 - UT ultrasonic examination
 - VT visual examination

726 727 Non-Fuel Hardware. Hardware that is not an integral part of a fuel assembly. Burnable Poison 728 Rod Assembly (BPRA), Control Element Assembly (CEA), Thimble Plug Assembly (TPA), etc. 729 are typical non-fuel hardware.

730

731 Normal Events and Conditions. Conditions that are intended operations, planned events, and 732 environmental conditions, that are known or reasonably expected to occur with high frequency 733 during storage operations The maximum level of an event or condition it that expected to 734 routinely occur. The cask system is expected to remain fully functional and to experience no 735 temporary or permanent degradation from normal operations, events and conditions. Specific 736 normal conditions to be addressed are evaluated for each dry storage system and are 737 documented in a safety analysis report for that system.

738

739 Normal Means. The ability to move a fuel assembly and its contents by the use of a crane and 740

grapple used to move undamaged assemblies at the point of cask loading. The addition of

crane and grapple does not preclude the assembly as being considered moveable by normalmeans.

744

745 Off-Normal Events or Conditions. The maximum level of an event or condition that although not 746 occurring regularly can be expected to occur with moderate frequency and for which there is a 747 corresponding maximum specified resistance, limit of response, or requirement for a given level 748 of continuing capability. "Off-Normal" events and conditions are similar to "Design Event II" of 749 ANSI/ANS 57.9. An independent spent fuel storage installation structure, system, or component 750 is expected to experience off-normal events and conditions without permanent deformation or 751 degradation of capability to perform its full function (although operations may be suspended or 752 curtailed during off-normal conditions) over the full license period.

- 753
- 754 <u>Preferential Loading</u>. A non-uniform loading configuration of spent fuel assemblies within a dry 755 storage system, that is typically specified by assigning a fuel zone designation to each basket 756 cell, and specifying limiting nuclear and physical parameters of SNF assemblies that can be 757 loaded into each zone. Preferential loading is often used as a means to optimize allowable SNF 758 parameters (e.g. burnup, cooling time, decay heat), while satisfying the shielding, criticality, and 759 thermal performance objectives of the cask system.
- 760

761 <u>*Qualification Test.*</u> A test, or series of tests, that is conducted at least once for a given 762 manufacturing process and set of material specifications to demonstrate the quality and 763 durability of the component such as neutron absorber product over its licensed service life. 764

765 *Rad*. The unit of absorbed dose. 1 rad is equal to the absorption of 100 ergs per gram. 766

767 <u>Ready Retrieval.</u> The ability to move a canister containing spent fuel to either a transportation
 768 package or to a location where the spent fuel can be removed. Ready retrieval also means
 769 maintaining the ability to handle individual or canned spent fuel assemblies by the use of normal
 770 means

771

Real Individual. A person who is not a nuclear worker and who is at or beyond the controlled
 area of an independent spent fuel storage installation, a nuclear power plant, or other nuclear
 facility. For example, a real individual may be anyone living, working, or recreating close to the
 facility for a significant portion of the year.

- *Reasonable Assurance*. NRC staff base their decisions on the adequacy of a dry storage
 system design to protect public health and safety on a variety of factors including: technical
 evaluations, test and operational data, compliance with NRC requirements, and insights from
 operational safety events.
- 781

<u>Recovery.</u> The capability to return the stored radioactive material to a safe condition after an
 accident event without endangering public health and safety. This generally means ensuring
 that any potential release of radioactive materials to the environment or radiation exposures is
 not in excess of the limits in 10 CFR Part 20 during post-accident recovery operations.

786

Rem. The special unit of any of the quantities expressed as dose equivalent. The dose equivalent in rems is equal to the absorbed dose in rads multiplied by the quality factor (1 rem = 0.01 sievert) (10 CFR 20.1004).

- *Restricted Area*. An area to which access is limited by the licensee for the purpose of protecting
 individuals against undue risks from exposure to radiation and radioactive materials. Restricted
 area does not include areas used as residential quarters, but separate rooms in a residential
 building may be set apart as a restricted area (10 CFR 20.1003).
- 797 <u>Retrievability</u>. In accordance with 10 CFR 72.122(I), storage systems must be designed to allow
 798 ready retrieval of spent fuel, high-level radioactive waste, and reactor-related GTCC waste for
 799 further processing or disposal._
 800
- 801 <u>Safety Analysis Report (SAR)</u>. In the context of this standard review plan, the report submitted 802 to the NRC staff by a certificate applicant to present information related to the design of a dry 803 storage system. This document provides the justification and analyses to demonstrate that the 804 design meets the requirements and acceptance criteria. 805
- Solution Selection Report (SER). In the context of this standard review plan, the report prepared by the NRC staff to present findings and recommendations relating to the acceptability of an applicant's safety analysis and other required documents submitted as part of a certificate application. The SER also identifies the bases for those recommendations and the recommended technical specifications ("operating controls and limits" or "conditions of use").
- 812 <u>Safety Functions</u>. The functions that dry storage system structures, systems, and components 813 important to safety are designed to maintain include:
- 814 815

- Protection against environmental conditions,
- Content Temperature Control,
- Radiation Shielding,
- Confinement,
- Sub-criticality control,
- Retrievability.
- 821
- 822 <u>Sievert (Sv)</u>. The SI unit of any of the quantities expressed as dose equivalent. 1 Sv equals
 823 100 rem. The dose equivalent in sieverts equals the absorbed dose in grays multiplied by the
 824 quality factor (10 CFR 20.1004).
- 825
- Spent Nuclear Fuel, (SNF). Nuclear fuel that has been withdrawn from a nuclear reactor
 following irradiation, has undergone at least one year's decay since being used as a source of
 energy in a power reactor, and has not been chemically separated into its constituent elements
 by reprocessing. Spent fuel includes the special nuclear material, byproduct material, source
 material, and other radioactive materials associated with fuel assemblies (10 CFR 72.3).
- 832 <u>Subcritical</u>. The state at which the number of fission neutrons decreases with time and the 833 effective neutron multiplication factor (k_{eff}) is less than unity.
- 834
- Supplemental Shielding. At an independent spent fuel storage installation, an engineered radiation shield (principally neutron and gamma radiation) such as an earthen berm or concrete wall. Supplemental shielding shall be deemed as component(s) important to safety and be specified in the Technical Specifications as a condition for use of the system as designed, if credited in the shielding analyses for meeting 72.104(a) or 72.106(b) requirements.
- 840
 841 *Thimble Plug Assembly (TPA)* An assembly of short rods used to restrict the flow of coolant
 842 through a fuel assembly by being inserted into the assembly's guide tubes. This assembly is a fuel assembly by being inserted into the assembly is guide tubes.
- through a fuel assembly by being inserted into the assembly's guide tubes. This component is

- designed for operations within the fuel assembly envelope, and when stored with spent fuel, fitswithin that envelope.
- 845

Total Effective Dose Equivalent (TEDE). The sum of the deep-dose equivalent for external
 exposures and the committed effective dose equivalent for internal exposures
 (10 CFR 20.1003).

- *Unrestricted Area*. An area to which access is neither limited nor controlled by the licensee
 (10 CFR 20.1003).
- *Validation*. Demonstration of the validity of a computer code for use in a general area of
 application by comparison of the code's calculational results with the measured results from a
 variety of experiments spanning the area of intended applications.

857 <u>Volume Percent</u>. The percent of a mole of the material that is present in a volume equal to the 858 standard volume for the material as a gas; the volume occupied by one mole of the material as 859 a gas at standard conditions for gases (760 mm Hg [760 torr] pressure and 0°C [32°F] 860 temperature).

INTRODUCTION

This document is a Standard Review Plan (SRP). It is intended to provide guidance to the NRC staff conducting the safety review of an application for a spent fuel dry storage system (DSS) for facilities storing spent fuel under the general license authorized by 10 CFR 72.210. A general license authorizes a nuclear power plant licensee to store spent nuclear fuel (SNF) in NRCapproved casks at a site that is licensed to operate a power reactor under 10 CFR Part 50.

869

This SRP was developed to promote a consistent regulatory review of an application for a DSS, present a basis for the review scope, and identify acceptable approaches to meeting regulatory requirements.

873

This introduction provides an overview of the DSS and the Safety Analysis Report (SAR) review process, and assists the project manager in the coordination of the review effort. It is also designed to help individual technical reviewers understand how their specific review should be coordinated and integrated with other disciplines to produce a complete Safety Evaluation Report (SER).

This SRP may be revised and updated as the need arises to clarify the content, correct errors, or incorporate modifications approved by the Director of the Division of Spent Fuel Storage and Transportation (SFST). Comments, suggestions for improvement, and notices of errors or omissions will be considered by and should be sent to the Director, Division of Spent Fuel Storage and Transportation, Office of Nuclear Material Safety and Safeguards, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001.

887 Use of Dry Storage Systems

888

In accordance with the requirements set forth in 10 CFR 72.212, a DSS may be used to store
SNF in an independent spent fuel storage installation (ISFSI) under a general license. At
present, any holder of an active reactor operating license under Title 10, Part 50, of the U.S. *Code of Federal Regulations* (10 CFR Part 50) has the authority to construct and operate an
ISFSI using NRC-approved cask designs under the provisions of the general license.

894

895 The DSS safety review is primarily based on the information provided by an applicant, or cask 896 vendor, in a SAR. Section 72.230 of 10 CFR Part 72 requires inclusion of a SAR in each application for approval of SNF cask storage design. Before submitting a SAR, an applicant 897 898 should have designed the DSS considering as-low-as-is-reasonably-achievable (ALARA) 899 principles for radiation protection and analyzed it in sufficient detail to conclude that it can be 900 properly fabricated and safely operated without endangering the health and safety of the public. 901 The SAR is the principal document in which the applicant provides the information on the design 902 and operational features and their associated technical bases. The reviewers need to 903 understand the design and operational features and their technical bases, including but not 904 limited to the selection of materials and geometries, mathematical models and equations used, 905 computer models and calculated results in order to be able to draw conclusions that the storage 906 cask is acceptable for use.

907

908 Technical Review Oversight909

Cask designers are responsible for the safety of the cask design, and the cask users are responsible for safely operating the cask system at Part 50 reactor sites and complying with appropriate safety regulations. The mission of the regulator is to license and regulate the use of each DSS and ensure adequate protection of public health and safety. The value of the NRC
review team is its independent expertise in identifying and resolving potential design or
operational deficiencies; potential analytical errors; significant uncertainties in novel design
approaches; or other non-compliance problems. If otherwise left unchecked by the designer,
user and regulator, these issues could potentially lead to the unsafe or non-compliant use of the
DSS.

919

920 Several considerations may influence the depth and rigor that is needed for a reasonable 921 assurance determination of both safety and compliance. These include the novelty of the 922 design (as compared to existing designs); safety margins; operational experience; defense-in-923 depth, and the relative risks that have been identified for normal operations and potential 924 accident conditions. Consideration should also be given to the design parameters and 925 methodology approved in the SAR and their possible use in subsequent 10CFR 72.48(c) 926 changes to the design or procedures by the licensee or certificate holder. Any aspect of the 927 design or procedures that the NRC determines should not be changed by either the certificate 928 holder or general licensee, without prior NRC approval, must be placed in the CoC conditions or 929 in the attached technical specifications.

930

931 As described further below, each review procedure is prioritized using a graded approach that 932 factored in many of these considerations for a typical review. The prioritization was developed 933 with the expertise of NRC reviewers within each discipline, who have several years of regulatory 934 experience with the current fleet of certified spent fuel storage cask designs. These priorities 935 are intended to serve as a guidepost to the depth and rigor that is expected for a typical review; 936 but should not be treated as absolutes for every case. It is the responsibility of the individual 937 reviewer to assess the design and determine the ultimate rigor needed to make a safety 938 determination, with reasonable assurance, in each review area. In other words, reviewers 939 should consistently apply these review procedures for each case, but may need to adjust the 940 scope of review in some areas based on safety margins, operational experience, defense-in-941 depth considerations, design novelty, or other issues that are unique to each proposed design. 942

943 Review Process

944

945 The purpose of the staff review is to evaluate the proposed cask design, contents and 946 operations, and provide regulatory confirmation of reasonable assurance of safe design and 947 construction of the cask.

948

The reviews are performed by project management and technical review staff with expertise in the technical discipline areas described in the review plan. Due to the complexity of the technical information in the application, coordination among the different disciplines is important to ensure a consistent, uniform, and quality review. As described in the flow charts of each chapter, technical issues can overlap between the disciplines and many rely on input from other areas.

956 This SRP is guidance meant to be used in unison with the current ISGs. ISGs provide guidance concerning specific, important issues that either are not currently addressed in the SRP or need 957 958 clarification beyond that in the present SRP text and may delineate specific review procedures. 959 For this reason, the staff should be familiar with ISGs that may supersede this guidance and these new ISGs should be used together with this SRP in the review of a DSS application. 960 961 ISGs may be discontinued if they are fully incorporated into all applicable regulatory guidance 962 documents. Appendix C lists the ISGs from 1 to 22, and identifies which ones have been 963 incorporated in this revision of the SRP.

The staff may consult the SERs of previous CoC amendments, if reviewing an amendment to a currently approved design, as well as the SERs for approved systems of similar design to understand past NRC determinations regarding analyses affecting or similar to those in the application under review.

- 970 For amendments, the staff should review the entire amendment to ensure that all the licensing 971 changes have been identified by the applicant. Amendments may range from minor changes in 972 the design, contents, or operations, to adding new major component designs such as storage 973 overpacks, transfer casks, and canisters.. Some amendments such as content and design 974 changes, are founded upon the design and methodologies previously reviewed by NRC for that 975 system. Evaluation of amendment changes to a DSS are often based on the performance of 976 the contents, canister, and overpacks as an integrated system. As a result, portions of 977 previously approved components, contents, or methodologies in the SAR may be re-examined 978 to ensure that the new system under the amendment proposal meets Part 72 requirements. 979 During the audit review of an amendment, the staff may occasionally find errors or other safety 980 questions that affect part of the previously approved design. The staff may need to review that part of the SAR and ask questions to assure the design remains safe and compliant with 981 applicable regulations. The questions should be limited to understanding and resolving the 982 983 specific technical issue, and should consider past precedents, regulatory guidance, and risk significance, as appropriate. The staff should also consider other processes (e.g. inspections, 984 985 enforcement actions, generic issue program, etc..) to resolve these potential type of safety 986 questions with a previously approved design... 987
- In case the reviewer finds that the information provided in the SAR is not properly justified, the reviewer may develop and then forward to the applicant questions requesting clarification of technical issues via a Request for Additional Information (RAI). The applicant's response to the RAI should be reviewed for accuracy as well as the need to update the applicant's SAR. The RAI process is repeated as necessary, consistent with NRC's in-office instructions, until the application is deemed technically acceptable, or until the application review is terminated by the NRC or withdrawn by the applicant.
- 996 Once the technical review is complete, a draft SER is written that summarizes the results of the 997 review and the cognizant NRC Project Manager approves the SER. If the NRC intends to approve the application, the staff prepares Federal Register notices for a direct final rule and a 998 999 companion proposed rule. The rulemaking notices identify the ADAMS numbers for the draft 1000 CoC, TSs and SER. During the rulemaking process, stakeholders and members of the public 1001 are allowed to comment on the draft CoC, TSs and SER. After addressing and responding to 1002 any public comments, the NRC staff modifies the proposed CoC, TS and preliminary SER, if 1003 necessary, and issues the Final CoC, TS, and SER. The rulemaking adds the CoC, or in the 1004 case of an amendment to an existing CoC, the CoC amendment, to the list of approved cask 1005 designs in 10 CFR 72.214. 1006

1007 Safety Evaluation Report and Content

1008
1009 The results of a SAR review are documented in an SER. The final determination of the
1010 organization of an SER is determined by the review project manager, but the SER typically is
1011 organized in the same manner as this SRP and contains the following information:
1012

1013•A general description of the system, operational features, and SNF1014specifications.

- 1015 1016 A summary of the approach used by the applicant to demonstrate compliance ٠ 1017 with the regulations, and a description of the reviews that the staff performed to 1018 confirm compliance. 1019 1020 • Comparison of systems, components, analyses, data, or other information 1021 important in the review analysis to the acceptance criteria, in addition to. 1022 conclusions regarding the acceptability, suitability, or appropriateness that this 1023 information provides reasonable assurance the acceptance criteria has been 1024 met. 1025 1026 Summary of aspects of the review that were selected or emphasized; matters • 1027 that were modified by the applicant: aspects of the cask's design that deviates 1028 from the criteria stated in the SRP; and the bases for any deviations from the 1029 SRP. 1030 1031 Summary statements for evaluation findings at the end of each chapter. ٠ 1032 1033 Content of SRP 1034 1035 Each chapter of the SRP is organized into the following sections: 1036 1037 **Review Objective** 1038 Areas of Review • 1039 **Regulatory Requirements** • 1040 Acceptance Criteria • 1041 **Review Procedures** • 1042 **Evaluation Findings** • 1043 1044 <u>Review Objective</u>. This section provides the purpose and scope of the review and establishes 1045 the major review objectives for the chapter. The reviewer should obtain reasonable assurance 1046 during the review that the objectives are met. It also discusses the information needed or coordination expected from reviewers of other SAR chapters to complete the subject technical 1047 1048 review. 1049 1050 Areas of Review. This section describes the systems, components, analyses, data, or other information and their sequence in the discussion of acceptance criteria and review procedures 1051 1052 sections of each chapter. 1053 1054 Regulatory Requirements. This section summarizes the regulatory requirements from 1055 10 CFR Part 72 pertaining to the given SAR section. This list is not all inclusive (e.g., some 1056 parts of the regulations, such as 10 CFR Part 20, are assumed to apply to all chapters of the SAR). 10 CFR Part 72 sections applicable to a DSS are listed in 10 CFR 72.13(d). In addition, 1057 1058 10 CFR 72.13(c) is important to the applicant to ensure that the general licensee does not violate those conditions. The reviewer should read the complete language of the current 1059 1060 version of 10 CFR Part 72 to determine the proper set of regulations for the section being 1061 reviewed. 1062 1063 Acceptance Criteria. This section addresses the design criteria and in some cases specific
- analytical methods that NRC staff reviewers have found to be acceptable for meeting regulatory

requirements, specified in 10 CFR Part 72, that apply to the given SAR chapter. The acceptance criteria are organized in accordance with the review areas established in Section 2 of the specific chapter and identify the type and level of information that should be in the application.

1069

1070 These acceptance criteria typically set forth the solutions and approaches that staff reviewers 1071 have previously determined to be acceptable in addressing a specific safety concern or design 1072 area that is important to safety. These solutions and approaches are discussed in the SRP so 1073 that staff reviewers can implement consistent and well-understood positions as similar safety 1074 issues arise in future cases. These solutions and approaches are acceptable to the staff, but 1075 they are not the only possible solutions and approaches.

1076

1077 Substantial staff time and effort has gone into developing these acceptance criteria. Consequently, a corresponding amount of time and effort may be required to review and accept 1078 1079 new or different solutions and approaches. Thus, applicants proposing solutions and 1080 approaches to new safety issues or analytical techniques other than those described in the SRP 1081 may experience longer review times and more extensive staff questioning in these areas. An alternative for the applicant is to propose new methods on a generic basis, apart from a specific 1082 license application. Such an alternative proposal could consist of a submittal of a Topical Safety 1083 1084 Analysis Report (TSAR). This type of application could form the basis for either a change in the 1085 staff interpretation of the regulatory requirements or support a request for rulemaking to change 1086 the requirements themselves.

- 1087
- 1088 <u>Review Procedures</u>. 1089

1090 This section presents a general approach that reviewers typically follow to establish reasonable 1091 assurance that the applicable acceptance criteria have been met. As an aid to the reviewer, this 1092 section may also provide information on what has been found acceptable in past reviews. 1093 Standards that have been found acceptable in specific licensing reviews, or are desirable, but 1094 not specifically identified in existing regulatory documents, are identified in this section. Since 1095 many of the reviews are interdisciplinary, the reviewer should coordinate with other reviewers, 1096 as necessary, for identification of issues in other SAR chapters.

1097

Each review procedure has been assigned a HIGH, MEDIUM or LOW priority, following application of the prioritization process described in Appendix B. These priorities are intended to provide guidance to the reviewer regarding the relative level of effort typically applied in implementing each procedure. As previously discussed, unique aspects of an application may result in an adjustment to the scope of review in a specific technical area. Specifically, the following can be used as general guidance on the implications of the priorities for the staff review:

1104 10

- 1106**HIGH** priority means the NRC staff review should ensure all items in the applicant's1107submittal are complete and correct as specified in the review procedure. This1108represents the most comprehensive review where many of the analytical methods,1109assumptions, and supporting references are evaluated. The reviewer may need to1110perform independent confirmatory analysis to validate the results of the safety analysis1111calculations. It is expected a reviewer would spend approximately 60 percent of his or1112her review time focused on the high priority review procedures.
- 1114 **MEDIUM** priority means the NRC staff should review the applicant's submittal for 1115 completeness and correctness in key areas. This represents a review in which key

analytical methods, key assumptions, and key supporting references are checked and
evaluated. It is expected a reviewer would spend approximately 30 percent of his or her
review time focused on the medium priority review procedures.

1120 **LOW** priority means the NRC staff review should ensure that the applicant's submittal contains all of the requested information. A limited review of selected portions of the 1121 1122 application for correctness would be performed. Given its relative significance, the 1123 reviewer should generally consider the applicant's analysis to be complete and accurate and forego independent confirmation, unless there is a reason to believe otherwise. 1124 1125 However, if a problem is detected, the reviewer must thoroughly evaluate and resolve the issue. It is expected a reviewer would spend approximately 10 percent of his or her 1126 1127 review time focused on the low priority areas. 1128

- 1129 The prioritized review procedures are intended to ensure that staff focus most of their effort on 1130 the areas considered to have the greatest impact on safety and compliance with regulatory 1131 limits. While some issues could possibly escape detection and resolution through this audit 1132 review, they would be of lower regulatory significance. It is important to remember that the 1133 priority designations were developed on a generic basis and may need to be adjusted depending upon the characteristics of specific applications. It is the responsibility of the 1134 1135 individual reviewer to assess the design and determine the ultimate rigor needed to make a 1136 safety determination, with reasonable assurance, in each review area.
- 1137

1119

Finally it should be noted that a low or medium priority review procedure does not mean an application is exempted from any associated regulatory requirement, design requirement, or safety analyses that is expected within the review objectives and acceptance criteria in this SRP.

1142

Evaluation Findings. This section provides example summary statements for evaluation
 findings to be incorporated into the SER for each area of review. The evaluation findings are
 prepared by the reviewer based on the satisfaction of the regulatory requirements. The findings
 are published in the SER.

GENERAL INFORMATION EVALUATION

1149 1150 **1.1 Review Objective** 1151

The purpose of reviewing the general description of the Spent Fuel dry storage system (DSS) is to ensure that the applicant has provided a non-proprietary description, or overview, that is adequate to familiarize reviewers and other interested parties with the pertinent features of the system.

1157 **1.2** Areas of Review

1158 1159 The general description should be reviewed by all reviewers, regardless of their specific review 1160 assignments, to obtain a basic understanding of the DSS, its components, and the protections 1161 afforded for the health and safety of the public. Because much of the information relevant to 1162 this initial aspect of the DSS review is presented in more detail in other chapters of this SRP. 1163 this chapter focuses on familiarization with the DSS and consistency of the DSS general 1164 description with the remaining chapters of the safety analysis report (SAR). The SAR should be 1165 reviewed for adequacy of the DSS and DSS support system descriptions and drawings. Areas 1166 of review addressed in this chapter include the following:

1167

1148

1168	DSS Description and Operational Features
1169	Drawings
1170	DSS Contents
1171	Qualifications of the Applicant
1172	Quality Assurance
1173	Consideration of 10 CFR Part 71 Requirements Regarding Transportation
1174	

1175 **1.3 Regulatory Requirements**

1176

1177 This section presents a summary matrix of the portions of U.S. Code of Federal Regulations 1178 (CFR) Part 72, "Licensing Requirements for the Independent Storage of Spent Nuclear Fuel, 1179 High-Level Radioactive Waste and Reactor-Related Greater Than Class C Waste," Title 10, 1180 "Energy" (10 CFR Part 72) that are relevant to the review areas addressed by this chapter. The 1181 NRC staff reviewer should read the exact regulatory language. Table 1-1 matches the relevant 1182 regulatory requirements associated with this chapter to the areas of review.

1183

Table 1-1 Relationship of Regulations and Areas of Review									
	10 CFR Part 72 Regulations								
Areas of Review	72.2(a)(1), (b)	72.122 (a), (h)(1)	72.140 (c)(2)	72.230 (a)	72.230 (b)	72.236(a), (c), (h),(m)			
DSS Description and Operational Features	•	•		•					
Drawings	•			•					
DSS Contents	•					•			
Qualifications of the Applicant	•								
Quality Assurance	•		•						
Consideration of 10 CFR Part 71 Certified Transportation Cask System Requirements	•				•	•			

1187 1188

1196

1.4 Acceptance Criteria

1189 1190 This section identifies the acceptance criteria for the material provided in the introduction. This 1191 initial aspect of the DSS review should contain sufficient information to allow all reviewers, 1192 regardless of their specific review assignments, to understand the principal functions and design 1193 features of the DSS.

1194 1195 **1.4.1**

4.1 DSS Description and Operational Features

1197 The application should contain a broad overview and a general, non-proprietary description (including engineering drawings, sketches, and illustrations) of the DSS. This information 1198 1199 should clearly identify the functions of all principal components and principal auxiliary 1200 equipment, and provide a list of those components classified as being "important to safety." 1201 Important aspects from all of the disciplinary areas should be summarized. If there are several 1202 versions of the cask because of design limitations of nuclear power plants and ISFSIs, the differences between the versions should be delineated. Typical operational sequences for 1203 1204 loading and unloading procedures should be described.

1205

1206 If the potential exists that the DSS will be used to store damaged fuel, the SAR should include a 1207 discussion of how the sub-criticality requirement of 10 CFR 72.236(c) and the wet or dry loading 1208 and unloading requirements of 10 CFR 72.236(h) will be maintained.

1209 The reviewer should verify that any documents submitted to the NRC in other applications and 1210 incorporated in whole or in part have been indexed, and a summary has been included in the 1211 appropriate section of the SAR.

1213 **1.4.2 Drawings**

1214 1215 Drawings should be included in the first chapter of the SAR. The drawings should contain 1216 sufficient detail to allow the reviewer to understand the operation of the DSS and any special 1217 equipment used for loading, unloading, transportation, or long-term storage of the DSS. Also, 1218 the drawings should provide enough detail to allow the reviewer the option of developing an 1219 analysis model for confirmatory calculations.

1220

1221 Ideally, the drawings should be non-proprietary. However, in some cases, the applicant may
1222 request to have certain specific portions of the drawings classified as proprietary. Reviewers
1223 should note that any drawings relied on as the technical basis for adding the DSS design to the
1224 list of approved DSSs contained in Subpart K of 10 CFR 72 become part of the public record.
1225 Such drawings will not be treated as proprietary and will be made available to the public
1226 [10 CFR 2.390].

1227

Any request for withholding from public disclosure subject to the provisions of 10 CFR 2.390 should be accompanied by an affidavit and must include information to support the claim that the material is proprietary. The NRC Project Manager will develop and administer public disclosure determinations, and the Office of the General Counsel will review them for compliance with the requirements of 10 CFR 2.390.

1234 **1.4.3 DSS Contents** 1235

1236 The reviewer should ensure specifications are provided for the contents expected to be stored 1237 in the DSS (normally spent nuclear fuel [SNF]). These specifications may include, but not be 1238 limited to, type of SNF (i.e., boiling-water reactor [BWR], pressurized-water reactor [PWR], or both); number of SNF assemblies the cask can accommodate; maximum allowable enrichment 1239 1240 of the fuel before any irradiation; burnup (i.e., MWd/MTU); minimum acceptable cooling time of 1241 the SNF before storage in the DSS (e.g., aged at least 1 year); maximum heat designed to be 1242 dissipated; maximum SNF loading limit; condition of the SNF (i.e., intact, undamaged, 1243 damaged, etc.); weight and nature of non-SNF contents; and inert atmosphere requirements.

1245 **1.4.4 Quality Assurance** 1246

Reviewers should verify that the application describes the proposed quality assurance (QA) program and cites the applicable implementing procedures. This description should satisfy all requirements of 10 CFR Part 72, Subpart G. A detailed review of the QA program to be described in the SAR is presented in Chapter 14, "Quality Assurance Evaluation," of this SRP.

1252 **1.4.5** Consideration of 10 CFR Part 71 Requirements Regarding Transportation

1253

1260

1244

1254 If the DSS has previously been evaluated for use as a transportation cask, the submittal should 1255 include the Part 71 Certificate of Compliance (CoC) and associated documents in accordance 1256 with 10 CFR 72.230(b). If application for storage is submitted, the transportability, per 10 CFR 1257 72.236(m) should be addressed. (See Section 1.5.5).

1258 1259 **1.5 Review Procedures**

Figure 1-1 presents an overview of the evaluation process and a complete bulleted listing of pertinent information for each chapter. Figure 1-1 and the corresponding figures in each 1263 chapter of this Standard Review Plan (SRP) provide a means to coordinate the review among the NRC staff disciplines. 1264

1265 1266 Regulatory requirements of 10 CFR Part 72 applicable to the general description review are delineated in the following subsections. Since the review of the General Description of the SAR 1267 1268 is interdisciplinary, the reviewer should coordinate with other reviewers (e.g., structural, thermal, 1269 shielding, criticality, materials), as necessary, for identification of related issues.

1271 1.5.1 DSS Description and Operational Features (MEDIUM Priority)

1272

1270

1273 Reviewers should verify that the application provides a broad overview of the DSS design that is 1274 non-proprietary and may be used as a tool to familiarize interested parties with the features of 1275 the proposed DSS. This description should present the principal characteristics of the DSS 1276 including its dimensions, weight, and construction materials. In addition, the description should 1277 clearly identify all components considered important to safety. Features such as the confinement vessel, fuel basket, valves, lids, seals, penetrations, trunnions, closure 1278 mechanisms, shielding safety features, criticality control features, impact limiters, and cask 1279 identification should be identified and described. A clear definition of the primary confinement 1280 system is particularly important. Special design features of the DSS such as a non-passive 1281 1282 heat-removal system, neutron poisons or monitoring instrumentation should be discussed. 1283

- 1284 Sketches and diagrams found throughout the SAR should be compared with the detailed 1285 drawings presented in SAR Chapter 1, "General Information". If the application includes proprietary drawings and descriptions that will remain proprietary upon approval of the license 1286 or certificate, the sketches, drawings, and diagrams that provide the general description and 1287 1288 operational features need not show the proprietary features. This may be achieved by depicting less detail or by illustrating generic components that fulfill the design function. However, these 1289 1290 representations should show the operational concept and features important to safety in 1291 sufficient detail to form an acceptable basis for public review and comment.
- 1292

1293 In addition to information on a single DSS, the application should describe any limitations on the arrangement of DSS arrays. For a particular DSS, these limitations may include the minimum 1294 spacing between the casks, maximum density of casks in an array, and/or total number of casks 1295 1296 or amount of SNF that may be stored at a single ISFSI. The acceptable limitations should be included among the technical specifications in the Safety Evaluation Report (SER) (see Chapter 1297 1298 13, "Technical Specifications and Operating Controls and Limits Evaluation," of this SRP). For a DSS such as those with metal confinement vessels stored in a concrete vault, information on 1299 1300 the configuration of vault compartments and horizontal/vertical arrangement is necessary. The 1301 operational sequences for loading and unloading the cask should be described.

1302

1303 Damaged fuel may require canning for storage and transportation. The purpose of canning is to 1304 confine gross fuel particles to a known, subcritical volume during off-normal and accident 1305 conditions, and to facilitate handling and ready retrieval of contents. Therefore, the reviewer 1306 should verify that a description of how damaged fuel would be canned, the characteristics of the can, and the means in which the can would be placed in the cask and either readily retrieved 1307 1308 (recovered) or retrieved is in the application.

	Chapter 1 –	General Information Evalu	uation			
 DSS Design Information Purpose of Application Quality Assurance Program Proposed Use and Conten DSS Category, Type, and Thermal Loading Fabrication and Welding C 	n • ts of DSS • Model Number	PSS Description Cask and Overpack Operating Features Contents of DSS	 Compliance with 10 CFR Part Condition of DSS after Testin Portions of §72.122 Structural, Thermal, Confinen Criticality Requirements, and Operating Procedures, Accep and Maintenance 	g per Applicable nent, Shielding, Materials		
	Chapter 2 – Principal Design C	riteria Evaluation				
	Items Important to Safety DSS Design Basis	Spent Fuel Design BasisExternal Conditions				
	Chapter 3 – Structural Evaluation	on				
	Internal and External Structure Codes and Standards	Component MaterialsDimensions and Weights				
	Chapter 4 – Thermal Evaluatior	1				
	Spent Fuel Cladding Configuration	Component MaterialsDimensions	Decay HeatHeat Dissipation			
	Chapter 5 – Containment Evalu	ation				
	Dimensions Component Materials	Containment Boundary DSS Contents	Allowable Leak RateAccident Conditions	Penetrations		
	Chapter 6 – Shielding Evaluatio	on				
	Dimensions Configuration	Component Materials Content Limits				
	Chapter 7 – Criticality Evaluation					
	Fissile Content Materials Dimensions and Tolerance	Component MaterialsNeutron Poison Contents				
	Chapter 8 – Materials Evaluatio	n				
•	Material Selection	Corrosion	Cladding Integrity			
	Chapter 9 – Operating Procedures Evaluation					
	General Restrictions Operational Sequences					
	Chapter 10 – Acceptance Tests	and Maintenance Program Evaluation	ı			
	Codes and Standards Dimensions and Tolerances	Fabrication Materials Contents	Maintenance Tasks Instrumentation			
	Chapter 11– Radiation Protection	on Evaluation				
	ALARA Radiation Protection Features	Dose AssessmentHealth Physics Program				
	Chapter 12 – Accident Analysis Evaluation					
	Accident Identification DSS Performance Analysis	Corrective Action Program				
	Chapter 13 – Technical Specifications and Operating Controls Evaluation					
	Operating, Monitoring, and Safety I Loading and Unloading	.imits • Transport • Surveillance				
	Chapter 14 – Quality Assurance	e Evaluation				
	Program Description National Standards	Items Important to SafetyDocument Control				

Figure 1-1 Overview of Safety Evaluation

13151.5.2Drawings (MEDIUM Priority)

1316

Drawings are usually presented in Chapter 1, "General Information" of the SAR. Reviewers
should be familiar with NUREG/CR-5502, "Engineering Drawings for 10 CFR Part 71 Package
Approval." While NUREG/CR-5502 was written for transportation packages, the criteria in
NUREG/CR-5502 for drawings can be applied to applications for storage casks.

1322 Although some applications may contain drawings designated as "proprietary," reviewers should note that any drawings relied on as the technical basis for adding the DSS design to the "list of 1323 1324 approved spent-fuel storage DSS" contained in Subpart K of 10 CFR 72 become part of the 1325 public record. Such drawings will not be treated as proprietary and will be made available to the 1326 public [10 CFR 2.390(a)]. Applicants may submit additional drawings showing greater detail to 1327 support their evaluations, and these may be exempted from the public record if they are not 1328 relied on by the staff as part of the technical basis for DSS design approval. The reviewer 1329 should verify that all structures, systems, and components (SSC) important to safety are sufficiently detailed to enable reviewers to evaluate their effectiveness. In addition, information 1330 1331 on non-safety items may also be necessary to ensure they do not impede the safety systems.

Each reviewer should evaluate the level of detail furnished with the application. The drawings should specify those details of the cask design that affect its evaluation. Those design features that have a significant effect on safety if altered or modified, should be considered for inclusion into the technical specifications directly or by reference. If size reduction has rendered any information unclear or illegible, the Project Manager in the Division of Spent Fuel Storage and Transportation (SFST) should request that the applicant provide larger or full-size drawings.

Particular attention should be devoted to ensuring that dimensions, materials, and other details on the drawings are consistent with those described in both the text of the SAR and those used in supplementary analysis. The dimensions shown on the general arrangement drawing should specify the overall size of the cask and the location and configuration of the contents. All dimensions indicated on drawings should include tolerances that are consistent with the cask evaluation.

1346

1332

13471.5.3DSS Contents (MEDIUM Priority)

1348 1349 The application should present a general description of the contents proposed for storage in the 1350 DSS. Because a very detailed description of the proposed DSS contents or SNF is typically provided in Chapter 2, "Principal Design Criteria," of the SAR, the information presented in 1351 1352 Chapter 1, "General Information" of the SAR is important only to the extent that it permits overall 1353 familiarization with the DSS. Key parameters for SNF include the type of fuel (i.e., PWR, BWR, 1354 or both), number of fuel assemblies, the radiation source terms associated with these fuel 1355 assemblies, preferential loading, and condition of the fuel assemblies (i.e., intact or 1356 consolidated). Chapter 1 may also include additional characteristics such as maximum burnup, 1357 initial enrichment, heat load, and cooling time as well as the assembly vendor and configuration 1358 (e.g., Westinghouse 17x17). These characteristics may also be repeated in Chapter 2. In 1359 addition, the cover gas, if any, should be identified.

1360

1361 If the applicant proposes the storage of damaged fuel or components that are associated with or 1362 integral to the fuel assembly that do not have an integral confinement boundary, the range of 1363 permissible conditions for the stored material should be defined. If the DSS system is intended 1364 to be used to store damaged fuel or components that are associated with or integral to the fuel 1365 assembly with an integral confinement boundary when placed in the confinement DSS, the possible range of conditions of the fuel or components should be stated. 10 CFR 72.122(h)(1)
requires "canning" or use of other acceptable means for storing fuel with cladding that is not or
may not remain intact and for unconsolidated assemblies (without intact cladding).
10 CFR 72.236(c) requires the damaged fuel be maintained in a subcritical condition, while
10 CFR 72.236(h) requires the damaged fuel to be compatible with wet or dry loading and
unloading facilities. If damaged fuel is to be stored, the application should address how the
following basic requirements will be met:

- Maintain subcriticality;
 - Prevent unacceptable release of contained radioactive material;
- Avoid excessive radiation dose rates and doses;
- 1377 1378

1373

1375

• Maintain ready retrieval of the contents.

1379 If the application requests approval to use the DSS system to store components that are 1380 associated with or integral to the fuel assembly (i.e., control spiders, burnable poison rod assemblies, control rod elements, thimble plugs, fission chambers, and primary and secondary 1381 neutron sources, or BWR channels that are an integral part of the fuel assembly that do not 1382 1383 require special handling), the application should present summary descriptions of those 1384 components in Chapter 1, "General Information" of the SAR. The SFST staff has made a 1385 practice of carefully characterizing components as being "associated with or integral to" the fuel 1386 assembly because only those components listed above are acceptable at a geologic repository 1387 per 10 CFR 961.11, Appendix E, Section B.2. Components that are associated with or integral 1388 to the fuel assembly are reviewed in more detail as part of Chapter 2, "Principal Design Criteria Evaluation," of this SRP. Also, if the components are degraded (e.g., the component does not 1389 provide adequate confinement under design basis conditions to contain radioactive gas or other 1390 dispersible radioactive materials), the application should describe the possible conditions and 1391 alternative confinement methods, if any, 1392

1393

13941.5.4Quality Assurance Program (See Chapter 14 for Priority)1395

1396 The application should describe the proposed QA program, citing all implementing procedures in a manner that satisfies the 18 criteria defined in 10 CFR Part 72, Subpart G, "Quality 1397 1398 Assurance" (10 CFR §§ 72.142-72.176). The description need only refer to procedures that 1399 implement the QA program, and these procedures need not be explicitly included in the 1400 application. The QA program should address design, fabrication, construction, testing, operation, and modification activities regarding the SSCs that are important to safety. The 1401 1402 application should also discuss the activities to be performed under the QA program and how 1403 these activities will be controlled to ensure compliance with all of the requirements of Subpart G. 1404 These controls may be applied to the various activities using a graded approach as presented in 1405 NUREG/CR-6407, "Classification of Transportation Packaging and Dry Spent Fuel Storage 1406 System Components According to Importance to Safety" (i.e., QA efforts expended for a given 1407 activity should be consistent with that activity's system classification and function).

1408

1409 Per 10 CFR 72.140(d), a QA program previously approved by the NRC and established, 1410 maintained, and executed for another DSS will be accepted as satisfying the requirements for a 1411 QA program for the purpose of this application. Additionally, previously approved QA programs that meet the requirements of Appendix B to 10CFR 50 or Subpart H to 10 CFR 71, will be 1412 1413 acceptable provided they also meet the recordkeeping requirements of §72.174. Any reference 1414 to a previously approved QA program should identify the program by date of submittal to the 1415 NRC, docket number, and date of NRC approval. The reviewer should coordinate with the 1416 Chapter 14, "Quality Assurance Evaluation," review of this SRP.

1418 1.5.5 Consideration of 10 CFR Part 71 Requirements (MEDIUM Priority)

- 1419
 1420 Casks that have been certified for transportation of SNF under 10 CFR Part 71 may be
 1421 approved for the storage of SNF under 10 CFR Part 72 provided the application contains:
- 1422 1423 1424

1428

1429

1430

- A copy of the CoC issued under 10 CFR Part 71,
- Copies of all drawings and other documents referenced in the 10 CFR Part 71
 CoC, and
 - Sufficient information in the SAR to demonstrate that the cask is suitable for the storage period of SNF as defined by 10 CFR 72.230(b).

Because applications for dual-purpose certification under 10 CFR Parts 71 and 72 are sometimes submitted jointly, the final (approved) version of such documents may not be available at the time of initial DSS SAR submission. Nonetheless, applicable documentation of the Part 71 certification (or application), including questions and responses from the related review, should be provided to the Part 72 review team, as appropriate.

1436

1437 Substantial coordination of the Part 71 and Part 72 reviews is necessary to ensure consistency 1438 and avoid duplication of effort. The reviewer should verify that a process for promptly informing 1439 each of the review teams about DSS system design changes precipitated by any concurrent safety reviews has been identified by the applicant. Provisions for communicating these 1440 1441 changes should be addressed by, and discussed with, the applicant. In addition, transportability 1442 of storage-only or dual purpose casks, per 10 CFR 72.236(m) should be addressed. The 1443 applicant should address how it is planning to address the transportation requirements. The 1444 reviewer should verify that such considerations have been made and described in the SAR, when the SAR and/or accompanying documentation indicate plans to use the cask system for 1445 1446 transportation purposes. 1447

1448 **1.6 Evaluation Findings** 1449

The evaluation findings are prepared by the reviewer on satisfaction of the regulatory requirements in Section 1.3. These statements should be similar to the following examples, if the documentation submitted with the application supports positive findings for each of the regulatory requirements (the finding number is for convenience in reference within the SRP and SER):

- 1456F1.1A general description and discussion of the DSS is presented in Section(s)1457of the SAR, with special attention to design and operating characteristics,1458unusual or novel design features, and principal considerations important to1459safety.1460
- 1461F1.2Drawings for SSCs important to safety are presented in Section _____ of the1462SAR. A listing of those drawings (including dates and revision numbers) that1463were relied upon as a basis for approval appears in Section _____ of the SER.1464
- 1465F1.3Specifications for the SNF to be stored in the DSS are provided in SAR1466Section _____.Additional details concerning these specifications are presented1467in Chapter _____ of both the SAR and SER.

1468 1469 1470 F1.4 The quality assurance program and implementing procedures are described in Section of the SAR. 1471 1472 The [DSS system designation] [has been/is/is not being] certified under 10 CFR 1473 F1.5 1474 Part 71 for use in transportation. A copy of the SAR and CoC issued under 10 CFR Part 71 is on file with the NRC under Docket No. _____ [if applicable]. 1475 1476 1477 A summary statement similar to the following should be made: 1478 1479 "The staff concludes that the information presented in Chapter 1, "General Information" 1480 of the SAR satisfies the requirements for the general description under 10 CFR Part 72. This finding is reached on the basis of a review that considered the regulation itself, 1481 1482 Regulatory Guide 3.61, and accepted practices." 1483

2 PRINCIPAL DESIGN CRITERIA EVALUATION

2.1 1486 **Review Objective** 1487

1488 The objective of evaluating the principal design criteria related to structures, systems, and 1489 components (SSCs) important to safety is to ensure that, in the view of the U.S. Nuclear 1490 Regulatory Commission (NRC) staff, the principal design criteria comply with the relevant 1491 general criteria established in U.S. Code of Federal Regulations (CFR) Part 72, "Licensing Requirements for the Independent Storage of Spent Nuclear Fuel, High-Level Radioactive 1492 1493 Waste and Reactor-Related Greater Than Class C Waste," Title 10, "Energy" (10 CFR Part 72). 1494 Further guidance can be found in NUREG/CR-6407, "Classification of Transportation Packaging 1495 and Dry Spent Fuel Storage System Components According to Importance to Safety." Material 1496 provided in this chapter will form the basis for accepting the safety analysis report (SAR) for 1497 NRC staff review.

1498

1499 With regard to reviewing the principal design criteria, the applicant may take one of two approaches: (1) SAR Chapter 2, "Principal Design Criteria" may discuss these criteria in general 1500 terms with details provided in later sections or (2) SAR Chapter 2 may present detailed 1501 discussions of selected (or all) criteria. Past applicants have generally selected the latter 1502 1503 approach. Subsequent chapters of this Standard Review Plan (SRP) provide detailed 1504 discussions of the design criteria applicable to each functional area (e.g., structural, thermal) 1505 without regard to those that may have been presented in SAR Chapter 2. 1506

1507 2.2 Areas of Review

1508 1509 The review of the principal design criteria should provide reasonable assurance that all design 1510 criteria are addressed in the SAR. The following areas of review have been adopted by the 1511 NRC staff:

1512 1513

1518 1519

Structures, Systems, and Components Important to Safety

- 1514 1515 Design Basis for Structures, Systems, and Components Important to Safety 1516 Spent Nuclear Fuel (SNF) Specifications 1517
 - **External Conditions**
 - Design Criteria for Safety Protection Systems
- 1520 General
- 1521 Structural
- 1522 Thermal
- 1523 Shielding/Confinement/Radiation Protection
- 1524 Criticality
- 1525 Material Selection
- 1526 **Operating Procedures**
- 1527 Acceptance Tests and Maintenance
- 1528 Decommissioning 1529

1530 2.3 **Regulatory Requirements** 1531

1532 This section presents a summary matrix of the portions of U.S. Code of Federal Regulations 1533 (CFR) Part 72, "Licensing Requirements for the Independent Storage of Spent Nuclear Fuel, 1534 High-Level Radioactive Waste, and Reactor-Related Greater Than Class C Waste" Title 10,

"Energy" (10 CFR Part 72) that are relevant to the review areas addressed by this chapter. The
NRC staff reviewer should read the exact regulatory language. Table 2-1 matches the relevant
regulatory requirements associated with this chapter to the areas of review.

1538

Table 2-1 Relationship of 10 CFR Part 72 Regulations and Areas of Review										
		10 CFR Part 72 Regulations								
Areas of Review	72.2 (a)(1)	72.104 (a), (b), (c)	72.106 (a), (b), (c)	72.122 (a), (b) (1)(2) (3), (c), (f)	72.122 (h)(1) (4)	72.122 (i), (l)	72.124 (a), (b)	72.126 (a)(1) (2)(3) (4)(5) (6)	72.236 (a), (b), (c), (d)	72.236 (e), (f), (g), (h), (i), (l), (m)
SSCs Important to Safety									•	
Design Bases for SSCs Important to Safety	•			•					•	
Design Criteria for Safety Protection Systems		•	•	•	•	•	•	•	•	•

1539 1540

2.4 Acceptance Criteria

1541 1542 The reviewer should verify that the applicant has provided either sufficient general or summary 1543 discussions of the SSC design features and of both operational and accident conditions. This 1544 demonstrates a clear and defensible case that they have met the design criteria. In evaluating 1545 the principal design criteria related to DSS SSCs that are important to safety, reviewers should 1546 seek to ensure that the given design fulfills the following acceptance criteria.

1547 1548 **2.4.1** SSCs Important to Safety

1549 1550 The reviewer should verify that the applicant presents the general configuration of the DSS and 1551 provides an overview of specific components and their intended functions. In addition, the 1552 reviewer should ensure the applicant identifies those components deemed to be important to 1553 safety and addresses the safety functions of these components in terms of how they meet the 1554 general design criteria and regulatory requirements discussed above. Additional information 1555 concerning specific functional requirements for individual DSS components is addressed in 1556 subsequent chapters of this SRP.

15582.4.2Design Bases for SSCs Important to Safety

1559

1567

1569

1572

1575

1577 1578

1579 1580

1581 1582

1583 1584

1585

1586 1587

1588

1589 1590

1591 1592

1593

1594 1595

1596

1597

1599 1600

1601 1602

1603

Detailed descriptions of each of the items listed below are generally found in specific sections of the SAR. However, a brief description of these areas, including a summary of the analytical techniques used in the design process, should also be captured in Chapter 2, "Principal Design Criteria" of the SAR. This description gives reviewers a perspective of how specific DSS components interact to meet the regulatory requirements of 10 CFR Part 72. This discussion should be non-proprietary since it may be used to familiarize interested persons with the design features and bounding conditions of operation of a given DSS.

1568 2.4.2.1 SNF Specifications

1570 The range and types of SNF or other radioactive materials that the DSS is designed to store 1571 should be specified. In addition, these specifications should include, but are not limited to:

- The type of SNF (i.e., boiling-water reactor (BWR), pressurized-water reactor (PWR), or both),
- Cladding material,
 - Maximum assembly uranium mass loading,
 - Weights of the stored materials,
 - Dimensions and configurations of the fuel,
 - The identification and limits on amount and position of damaged fuel, if damaged fuel is to be stored, and the dimensions of the "damaged-fuel can,"
 - Maximum allowable enrichment of the fuel before any irradiation for criticality safety and minimum enrichment for the shielding evaluation,
 - Assigned Burnup Loading Value (i.e., MWd/MTU),
 - Loading Curves for each set of licensing conditions if Burnup Credit is used (required minimum burnup versus enrichment curve),
 - Operational history parameters (e.g., average in-core soluble boron concentration, average moderator temperature, etc.) if burnup credit is used,
- Minimum acceptable cooling time of the SNF before storage in the DSS,
 - Maximum heat to be dissipated,
 - Maximum number of SNF elements.
- Condition of the SNF (i.e., intact assembly, damaged fuel or consolidated fuel rods),
 1606

1607Inerting atmosphere requirements and the maximum amount of fuel permitted for1608storage in the DSS.

For DSSs that will be used to store components that are associated with or integral to fuel assemblies (e.g., control rods and BWR fuel channels), the reviewer should ensure the applicant specifies the types and amounts of radionuclides, heat generation, and the relevant source strengths and radiation energy spectra permitted for storage in the DSS. For other radioactive materials to be stored with the SNF assemblies, the SAR should specify the following:

1616 1617

1618 1619

1620 1621

1622

1623

1627

1628

1629

The design basis source term;

- The effects of gas generation on the cask internal pressure;
- The effects of the additional weight and length of the proposed material on structural and stability analyses;
- The impact of the added heat from these components, including the impact on heat transfer characteristics; and
 1626
 - Credit for any negative reactivity from residual neutron absorbing material remaining in the control components.
- 1630 2.4.2.2 External Conditions 1631

1632 The SAR should define the bounding conditions under which the DSS is expected to operate. 1633 Such conditions include both normal and off-normal environmental conditions as well as 1634 accident conditions. In addition, the reviewer should verify that the applicant has considered the 1635 effects of natural events such as tornadoes, earthquakes, floods, and lightning strikes. 1636

16372.4.3Design Criteria for Safety Protection Systems

1638 1639 2.4.3.1 General

٠

1640 1641 The SAR should define an expected lifetime for the cask design. The minimum licensing period 1642 is defined in 10 CFR 72.230(b). The reviewer should verify that the applicant has provided a 1643 brief description of the proposed quality assurance (QA) program, and applicable industry codes 1644 and standards, which will be applied to the design, fabrication, construction, and operation of 1645 the DSS. The applicant should also describe how the cask design reflects consideration of 1646 compatibility with removal from a reactor site, transportation, and ultimate disposition of the 1647 stored spent fuel.

- 1648
- In establishing normal and off-normal conditions applicable to the design criteria for DSS
 designs, applicants should account for actual facility operating conditions. Therefore, design
 considerations should reflect normal operational ranges, including any seasonal variations or
 effects.
- 1654 2.4.3.2 Structural 1655

1656 The SAR should define how the DSS structural components are designed to accommodate 1657 combined normal, off-normal, and accident loads while preserving recover and protecting the 1658 DSS contents from significant structural degradation, criticality, and loss of confinement. This 1659 discussion is generally a summary of the analytical techniques and calculation results from the 1660 detailed analysis discussed in SAR Chapter 3, "Structural Evaluation," and should be presented 1661 in a non-proprietary form.

1663 2.4.3.3 Thermal 1664

1662

1665 The SAR should contain a general discussion of the proposed heat-removal systems, including 1666 the reliability and verifiability of such systems, and any associated limitations. All heat-removal 1667 systems should be passive and independent of intervening actions under normal and off-normal 1668 conditions. 1669

1670 2.4.3.4 Shielding/Confinement/Radiation Protection 1671

1672 The reviewer should ensure that the applicant describes those features of the cask that protect 1673 occupational workers and members of the public against direct radiation dosages and releases 1674 of radioactive material, and minimize the dose after any off-normal or accident-level conditions. 1675

1676 2.4.3.5 Criticality

1677
1678 The SAR should address the mechanisms and design features that enable the DSS to maintain
1679 SNF in a subcritical condition under normal, off-normal, and accident-level conditions.
1680

1681 2.4.3.6 Material Selection

1682
1683 The materials selected for the DSS must demonstrate adequate corrosion performance during
1684 normal operation, off-normal, and accident-level conditions in the environmental conditions of
1685 the ISFSI for the duration of the license.
1686

The spent fuel cladding must be protected during storage against degradation that leads to gross ruptures, or the fuel must be otherwise confined such that degradation of the fuel during storage will not pose operational problems with respect to its removal from storage.

1691 2.4.3.7 Operating Procedures

1693 The reviewer should ensure that the applicant provides potential licensees with guidance 1694 regarding the content of normal, off-normal, and accident response procedures. Cautions 1695 regarding both loading, unloading, and other important procedures should be mentioned here. 1696 Retrievability should be provided for normal and off-normal conditions. Applicants may choose 1697 to provide model procedures to be used as aids in preparing detailed site-specific procedures. 1698

1699 2.4.3.8 Acceptance Tests and Maintenance

1700 1701 The reviewer should verify that the applicant identifies the general commitments and industry 1702 codes and standards used to derive acceptance, maintenance, and periodic surveillance tests 1703 used to verify the capability of DSS components to perform their designated functions. In 1704 addition, the reviewer should ensure the applicant discusses the methods used to assess the 1705 need for such tests with regard to specific components.

1706

1690

1707 2.4.3.9 Decommissioning

1708

1709 Casks should be designed for ease of decontamination and eventual decommissioning. The
1710 reviewer should examine the SAR to ensure the applicant describes the features of the design
1711 that support these two activities.

1713 **2.5 Review Procedures**

1714

1712

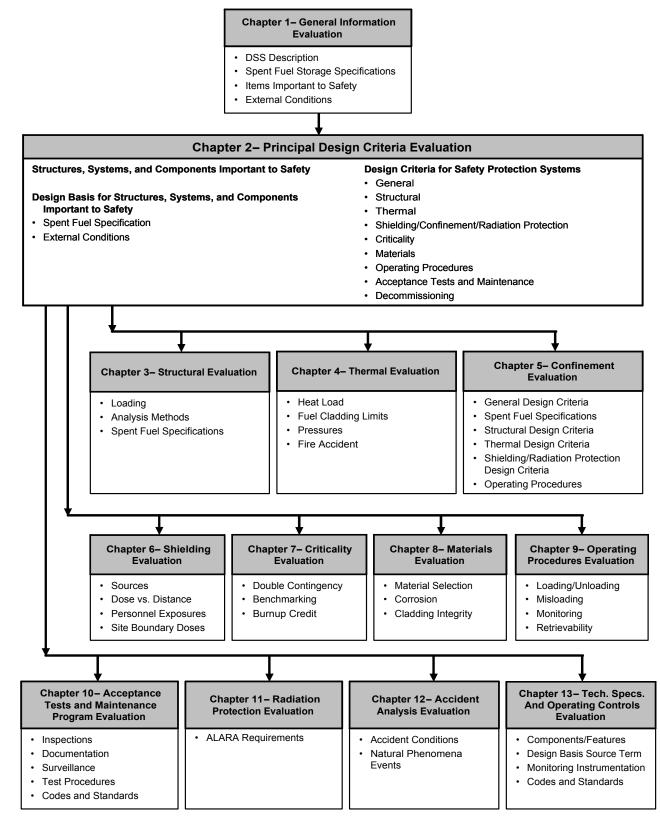
1715 Chapter 2, "Principal Design Criteria" applies to all review disciplines. Figure 2-1 presents an 1716 overview of the evaluation process and may be used as a guide for the coordination of the 1717 review among review disciplines.

1718

1744

1719 Reviewers for each section of the SAR should consider SAR Chapter 2 in combination with 1720 additional details presented later in the SAR. In this SRP, evaluations of design criteria 1721 applicable to each of the relevant chapters of the SAR are discussed in detail. Reviewers 1722 should coordinate the review of each chapter with the applicable disciplines to ensure that multi-1723 disciplinary issues, which impact more than one chapter, have been addressed. 1724

1725**2.5.1**SSCs Important to Safety (MEDIUM Priority)


Reviewers should verify that the applicant has clearly identified all SSCs important to safety
(see Glossary for the definition of "important to safety") and documented the rationale for this
designation. Such information may be provided in tabular form. Reviewers should review the
general DSS description presented in SAR Chapter 1, "General Description." Reviewers should
ensure that the applicant has provided adequate justification for excluded SSCs.

Reviewers should pay particular attention to instrumentation and other equipment (e.g., lifting
devices and transport vehicles). In general, the NRC staff accepts that monitoring systems
need not be classified as being important to safety. For example, a failure in the functioning of
the pressure monitoring system does not directly result in a release of radionuclides. Additional
justification for not considering such systems as being important to safety may be presented in
later sections of the SAR and summarized in SAR Chapter 2, "Principal Design Criteria".

1739
1740 Reviewers should consider adding to SAR Chapter 13 "Technical Specifications and Operating
1741 Controls and Limits" any design features that would have a significant effect on safety if altered
1742 or modified. Any such additions to Chapter 13 should be thoroughly discussed in their
1743 respective sections of the SER.

1745**2.5.2Design Bases for SSCs Important to Safety**

1746
1747 The reviewer should verify that the applicant's design basis for DSS approval accurately
1748 identifies the range of SNF configurations and characteristics, the enveloping conditions of use,
1749 the bounding site characteristics, and is consistent with or bounds the DSS's Technical
1750 Specifications. These factors determine the bounds within which an ISFSI owner may use the
1751 SAR rather than provide additional proof regarding suitability of the covered topics.

Figure 2-1 Overview of Principal Design Criteria Evaluation

1755 2.5.2.1 SNF Specifications (MEDIUM Priority)

1756

1757 The reviewer should review the detailed specifications for the SNF to be stored in the DSS as presented in SAR Chapter 2, "Principal Design Criteria" and ensure that they are consistent with 1758 those specifications discussed in SAR Chapter 1, "General Information" and later in the SAR. 1759 1760 The description of the range of SNF to be stored should include the type (PWR, BWR, or both); 1761 configuration (e.g., 17x17, 15x15, or 8x8); fuel vendor; number of assemblies per cask; enrichment; burnup and burnup profiles; minimum cooling time; decay heat generation rate; 1762 type of cladding; physical dimensions; total weight per assembly; and uranium weight per 1763 1764 assembly. In addition, if components associated with fuel assemblies (e.g., control assemblies) will be stored with the fuel, the reviewer should ensure that combined weight, dimensions, heat 1765 1766 load, and other appropriate information (e.g., number per cask) are specified.

1767

1768 The reviewer should examine any limitations regarding the condition of the SNF. If damaged 1769 fuel is allowed, the effects of such damage should be assessed in later sections of the SAR. 1770 Specific conditions that define damaged fuel are provided in Section 8.6, "Supplemental Information for Methods for Classifying Fuel," of this SRP with methods for classifying fuel 1771 identified in Section 8.4.17.2 of this SRP. If damaged rods have been removed from a fuel 1772 assembly, and they have/have not been replaced with solid dummy rods, the criticality reviewer 1773 1774 should determine whether the intended loading configuration has been adequately analyzed to show sub-criticality. Note, the presence of additional moderating material will need to be 1775 addressed in the criticality analysis in SAR Chapter 7, "Criticality". Coordination with the 1776 1777 structural reviewer is necessary if there are structural defects in the assembly hardware.

1778

1779 The release of fill and fission product gases from failed fuel rods increases the pressure in the 1780 cask cavity and the potential source term in the event of confinement failure. Consequently, the 1781 reviewer should verify that the applicant provides information regarding the fill/fission product 1782 gas present in the fuel as well as the free volume in the cask cavity to enable reviewers to evaluate the pressure in the cask cavity resulting from cladding failure during storage. For the 1783 1784 purpose of calculating internal cask pressures, the NRC staff has accepted the bounding 1785 assumptions given in SRP Section 4.5.4.6, "Pressure Analysis" regarding the minimum 1786 percentages of fuel rods have failed (and released their gases). 1787

The reviewer should pay particular attention to the specification of burnup, cooling time, and
decay heat generation rate. These parameters are generally not independent, and the manner
in which they are specified and combined can significantly affect the maximum allowed cladding
temperature as discussed in SRP Chapter 4, "Thermal Evaluation."

The SAR will typically list various fuel assemblies that can be stored in the DSS. It is not expected that one type of fuel assembly will be bounding for all analyses. The reviewer should ensure that the applicant has justified which specifications are bounding for each of the evaluations presented in subsequent sections of the SAR. Specifications used in these analyses should also be clearly identified or referenced in SAR 13, "Technical Specifications and Operational Controls and Limits".

1799

1800 If the applicant requests permission for the storage of components that are associated with or 1801 integral to the fuel assembly in the cask, the reviewer should examine the relevant detailed 1802 specifications, conditions, and constraints presented in the SAR. These specifications should 1803 be as detailed as the applicable information presented for the fuel designs to provide the 1804 reviewer with a basis for determining that the relevant safety functions of the DSS will be maintained. The reviewer should ensure that the applicant also considers the storage of thesecomponents in the analyses.

1807
1808 If the applicant requests burnup credit, the reviewer should examine the relevant detailed
1809 specifications of the contents to which burnup credit is being applied. These specifications
1810 include those that are already considered in criticality analyses for fresh fuel (e.g., maximum
1811 initial enrichment). Additional specifications that must be reviewed include the cooling time, the

initial enrichment). Additional specifications that must be reviewed include the cooling time, the
 burnup, the requested amount of credit (i.e., the specific actinides), and operational history
 parameters (e.g., core average boron concentration and assembly average moderator
 temperature).

1815

1817

1816 2.5.2.2

2 External Conditions (MEDIUM Priority)

The SAR should identify those external conditions that significantly affect, or could potentially affect, the performance of the DSS. These design-basis conditions will generally restrict either the sites at which the DSS can be used for SNF storage or the manner in which the DSS can be handled. For example, by selecting the design earthquake, the SAR limits the use of the cask being reviewed to sites that are bounded by this seismic limit. By establishing a design-basis drop, the SAR defines the maximum height to which a cask can be lifted without additional safety analysis or design changes (e.g., addition of impact limiters) by the applicant.

1825

Reviewers should note that movement of cask system components within a reactor building
may not meet the NRC's criteria described in the NRC Bulletin 96-02, "Movement of Heavy
Loads over Spent Fuel, over Fuel in the Reactor Core, or over Safety Related Equipment," for
movement of heavy loads within the reactor building. As such, if a potential user (licensee) has
been identified, coordination with the appropriate project manager or technical lead from the
NRC's Office of Nuclear Reactor Regulation (NRR) should occur during the early stages of DSS
design review.

At a minimum, the NRC staff has generally addressed the conditions discussed below; however, other conditions may be relevant depending on specific details of the DSS design. Reviewers should pay particular attention to special design features and how these might be affected both by other external conditions and other DSS components. Reviewers should ensure all required information is provided in the SAR for the design earthquake accident analysis.

1839

1840 "Normal" conditions (including conditions involving handling and transfer) and the extreme 1841 ranges of normal conditions are presumed to exist during design-basis accidents or design-1842 basis natural phenomena with the exception of irrational or readily avoidable combinations. For 1843 example, an earthquake or tornado may occur at any time and in combination with any "normal" 1844 condition. By contrast, it can be presumed that transfer, loading, and unloading operations 1845 would not be conducted during a flood.

1846

"Off-normal" conditions and events are presumed to occur in combination with normal conditions
that are not mutually exclusive. Nonetheless, it is not required that the SAR analyze or the
system be designed for the simultaneous occurrence of independent off-normal conditions or
events, design-basis accidents, or design-basis natural phenomena.

1852 Conditions involving a "latent" equipment or instrument failure or malfunction (that is, one that 1853 occurs and remains undetected) should be presumed to exist concurrently with other off-normal 1854 or design-basis conditions and events. Typical latent malfunctions include a misreading 1855 instrument that is not detected as part of routine procedures, an undetected ventilation 1856 blockage, or undetected damage from an earlier design-basis event or condition if no provisions1857 exist for detection, recovery, or remediation of such conditions.

1858

1859 For normal, off-normal, and accident-level conditions, reviewers should verify that the applicant has defined appropriate operating and accident scenarios. For these scenarios, the reviewer 1860 should verify the applicant includes in the SAR a comprehensive evaluation of the effects of 1861 1862 such scenarios on the SSCs important to safety. The analyses of such events are addressed in individual chapters of the SRP. For example, the analyses of an earthquake on the DSS 1863 structural components are addressed in SRP Chapter 3, "Structural Evaluation." 1864 The 1865 applicant's evaluations should demonstrate that the requirements of 10 CFR §§ 72.104 and 72.106 as well as 10 CFR Part 20 have been met. 1866

1867

1871

1872 1873

1874 1875

1876

1884

1897 1898

1899

1868 If appropriate, the following design bases should be included as operating controls and limits in
1869 SAR Chapter 13, "Technical Specifications and Operational Controls and Limits Evaluation":
1870

(1) <u>Normal Conditions</u>

For a given SNF specification, the primary external conditions that affect DSS performance are the ambient temperatures, insolation, and the operational environment experienced by the DSS.

1877The NRC accepts as the maximum and minimum "normal" temperatures the
highest and lowest ambient temperatures recorded in each year, averaged over
the years of record. For the SAR, the applicant may select any design-basis
temperatures as long as the restrictions they impose are acceptable to both the
applicant and the NRC. If the cask is also designed for transportation, the
temperature requirements of 10 CFR Part 71 could determine the design-basis
temperatures for storage.

1885For storage casks, the NRC staff accepts a treatment of insolation similar to that1886prescribed in 10 CFR Part 71.71 for transportation casks. If the applicant selects1887another design approach, the alternative approach should be justified in the SAR.1888

1889 The operational environment experienced by the DSS under normal conditions includes the manner in which the cask is loaded, unloaded, and lifted. 1890 1891 Occupational dose rates will, in part, depend on whether the cask is sealed in a wet or a dry environment. Fuel cladding temperatures may also be affected. 1892 The manner in which the cask is lifted will determine the load on the trunnions 1893 1894 and/or lifting voke. The orientation of the cask (vertical or horizontal) and its 1895 height above ground during transport to the ISFSI will establish initial conditions for the drop accidents discussed below. 1896

(2) <u>Off-Normal Conditions</u>

An applicant's SAR generally addresses several off-normal conditions. These should include variations in temperatures beyond normal, failure of 10 percent of the fuel rods combined with off-normal temperatures, failure of one of the confinement boundaries, partial blockage of air vents, human error, out-oftolerance equipment performance, equipment failure, and instrumentation failure or faulty calibration.

1907 (3) <u>Accident Conditions</u>

 The staff has generally considered that the following accidents should be evaluated in the SAR. These do not constitute the only accidents that should be addressed if the SAR is to serve as a reference for accidents for a specific application. Other credible accidents that may be derived from a hazard analysis could include accidents resulting from operational error, instrument failure, lightning, and other occurrences. Post-accident recovery of damaged fuel may require such systems as overpacks or dry- transfer systems since ready retrieval of the fuel is required only for normal and off-normal conditions. Accident situations that are not credible because of design features or other reasons should be identified and justified in the SAR. Chapter 3, "Structural Evaluation" of this SRP provides more detail regarding accidents.

(a) Cask Drop

The SAR should identify the operating environment experienced by the cask as well as the drop events (i.e., end, side, corner) that could result. Generally, the design basis is established either in terms of the maximum height to which the cask may be lifted when handled outside the reactor site SNF building or in terms of the maximum acceleration that the cask could experience in a drop.

(b) Cask Tipover

Although cask system supporting structures may be identified and constructed as being important to safety (i.e., designed to preclude cask tipovers), the NRC considers that cask tipover events should be analyzed. In some cases, cask tipover may be determined to be a credible hazard, and the associated analysis should reflect the conditions (e.g., heights and accelerations) associated with that hazard.

The NRC staff has accepted an unyielding surface for determining the bounding cask deceleration loads. Prototype or scale model testing and analytical modeling can be used. In the analytical approach, the hard receiving surface need not be unyielding.

(c) Fire

The fire conditions postulated in the SAR should provide an "envelope" for subsequent comparison with site-specific conditions. The NRC accepts the methods discussed in 10 CFR 71.73(c)(4). In addition, the NRC staff accepts that the applicant may consider a fire based upon the limited availability of flammable material at an ISFSI (e.g., only that associated with vehicles transporting or lifting the cask, or sources of nearby combustible materials). Regardless of which approach the applicant takes, the SAR should specify and justify the bounding conditions for a "design-basis" fire.

(d) Fuel Rod Rupture

The regulations require that the cask be designed to withstand the effects of accident conditions and natural phenomena events without impairing its capability to perform safety functions. Consequently, during the cask analysis for conditions resulting from design-basis accidents and natural phenomena, the NRC has asserted and the applicant should assume a release of 100 percent of the initial rod fill gases and a release of 30 percent of the fission product gases from the fuel rods into the cask interior. The remaining 70 percent of the fission product gases is presumed to be retained within the fuel pellet.

(e) Leakage of the Confinement Boundary

Casks are designed to provide the confinement safety function under all credible conditions.

(f) Explosive Overpressure

The conditions under which a DSS may be exposed to the effects of an explosion vary greatly among individual sites. Generally, explosive overpressure is postulated to originate from an industrial accident. The NRC separately evaluated the effects of various sabotage methods on cask systems in developing appropriate regulations in 10 CFR Part 73. Consequently, this SRP does not consider explosive overpressures from sabotage events.

The extent to which explosive overpressure is addressed in the SAR directly affects the degree of site-specific review required. The principal concern in the SAR should be the effects of explosive overpressure on the storage system rather than descriptions of hypothesized causes. Design parameters for blast or explosive overpressures should identify pressure levels as reflected ("side-on") overpressure and provide an assumed pulse length and shape. This discussion should provide sufficient information for licensees to determine if the effects of their site-specific hazards are bounded by the cask system design bases.

(g) Air Flow Blockage

For storage systems with internal air flow passages, the reviewer should verify the applicant considers blockage of air inlets and outlets in an accident condition. The NRC staff considers that the effects of such an assumption should be utilized in determining the appropriate inspection intervals, and/or monitoring systems, for the DSS.

(4) <u>Natural Phenomena Events</u> (LOW Priority)

The NRC staff has generally considered that the following events should be evaluated as design-basis accidents in the SAR:

(a) Flood

The SAR should establish a design-basis flood condition. This condition may be determined on the basis of the presumption that the cask cannot tip over and the yield strength of the cask will not be exceeded. Alternatively, the SAR can show that credible flooding conditions have negligible impact on the cask design.

If the SAR establishes parameters for a design-basis flood, all of the potential effects of flood water and ravine flood byproducts should be recognized. Serious flood consequences can involve effects such as blockage of ventilation ports by water and silting of air passages. Other potential effects include scouring below foundations and severe temperature gradients resulting from rapid cooling from immersion.

(b) Tornado

The NRC staff accepts design-basis tornado wind loading as defined by RG 1.76, "Design Basis Tornado and Tornado Missiles for Nuclear Power Plants" (Region 1) and RG 1.117, "Tornado Design Classification." Design criteria should be established for the cask on the basis of these wind-loading and missile-impact definitions. The cask should not tip over, and the capability to perform the confinement safety function should not be impaired. The NRC staff considers that tornados and tornado missiles may occur without warning. The review should note that, in general, the effects of a tornado missile bound those of a light general aviation aircraft directly impacting a DSS.

(c) Earthquake

The SAR should state the parameters of the design earthquake. For use of a DSS at reactor sites, this is equivalent to the SSE used for analysis of nuclear facilities under 10 CFR Part 50. An analysis for an Operating-Basis Earthquake (OBE) is not required for a DSS SAR prepared in accordance with 10 CFR Part 72. Cask tipover accidents are analyzed, but tipover caused by an earthquake may not be a credible event. The reviewer should verify that the SSCs meet appropriate guidance in RG 1.29, "Seismic Design Classification," RG 1.61, "Damping Values for Seismic Design of Nuclear Power Plants," and RG 1.92, "Combining Modal Responses and Spatial Components in Seismic Response Analysis."

(d) Burial Under Debris

Debris resulting from natural phenomena or accidents that may affect cask system performance may be addressed in the SAR or left to the site-

specific application. Such debris can result from floods, wind storms, or land slides. The principal effect is typically on thermal performance.

(e) Lightning

Lightning typically has a negligible effect on cask systems; however, the requirements of the Lightning Protection Code and National Electric Code should be applied to the design of the cask system structures. The applicant should cite these codes as part of the general design criteria for the cask system (see Section 2.4.3.1). In addition, the SAR should address lightning as a natural phenomenon if cask-system performance may be impacted by the effect of lightning on a component that is important to safety.

(f) Other

10 CFR Part 72 identifies several other natural phenomena events (including seiche, tsunami, and hurricane) that should be addressed for SNF storage. The SAR may include these natural phenomena as designbasis events or show that their effects are bounded by other events. If these events are not addressed in the SAR and they prove to be applicable to a specific site, a safety analysis is required prior to approval for use of the DSS under either a site-specific or general license.

20792.5.3Design Criteria for Safety Protection Systems (MEDIUM Priority)2080

Cask system components that are to be used in facility areas subject to review under 10 CFR Part 50 should satisfy both the requirements in 10 CFR Part 72 (with review guided by this SRP) and 10 CFR Part 50 (with review guided by NUREG-0800). Acceptance of the cask system in areas covered by 10 CFR Part 50 license requirements is not addressed in this SRP for approval under 10 CFR Part 72. If the applicant states that the storage system will be used at a specific reactor site, then the Division of Spent Fuel Storage and Transportation (SFST) project manager should inform the appropriate NRR project manager. The reviewer is reminded that heavy loads are a likely matter of interest to NRR.

Table 2-2 presents a summary of design criteria (and design bases) that should generally be identified during the initial stages of the review. The applicability of Table 2-2 may vary depending on the details of the storage system design.

Regardless of where the descriptions and associated criteria are located in the SAR, reviewers should include a description and evaluation of the safety protection systems in SER Chapter 2, "Principal Design Criteria." The system descriptions should address the functions of the various system components in providing confinement, cooling, subcriticality, radiation protection of the public and workers, and SNF retrievability. Summary criteria for the performance of the system as a whole in providing for these capabilities or functions should also be described and evaluated. Reviewers should verify that the design-basis assumptions presented are consistent with and reasonable for actual site or facility conditions. Reviewers should also include a description and evaluation of the cask system design's compatibility with removal from a reactor site, transportation, and ultimate disposition of the stored spent fuel.

Table 2-2 Outline of Design Criteria and Bases for DSS					
Design Life	Limited to the requested term in the application				
Design Bases	 SNF Specifications Type Configuration/Vendor Enrichment (Maximum and Minimum) Weight or Range of Weights Burnup Type of Cladding Assemblies/Cask Dimensions 				
	 Decay Heat/Assembly Minimum Decay/Cooling Time (e.g., 5 years, 10 years, etc.) Maximum Kilowatts per assembly Gas Volume (at Temperature) Fuel Condition/Damage Allowed Burnup Credit Credit Amount (specific actinides) Operational History Parameters Non-Fuel Hardware 				
Normal Design Event Conditions	 Ambient Temperature (1) Maximum (2) Minimum Loading (1) (Wet/Dry) Storage Handling Orientation (1) (Vertical/Horizontal) Maximum Lift Height Maximum Cladding Temperature Other Conditions Considered in 2.5.2.2 (1) 				
Off-Normal Design Event Conditions	Summarize Events Considered in 2.5.2.2 (2)				
Design-Basis Accident Design Events and Conditions	End Drop (1) Lift Height (or Maximum Acceleration) Side Drop (1) Lift Height (or Maximum Acceleration) Tip-Over (1) Acceleration (if applicable) Fire (1) Duration (2) Temperature Other Events Considered in 2.5.2.2 (3) (As Applicable)				

Table 2-2 Outline of Design Criteria and Bases for DSS					
Design-Basis Natural Phenomena Design Events and Conditions	 Flood Earthquake Tornado Other Events Considered in 2.5.2.2 (4) (As Applicable) 				
Structural	 Design Code (e.g., ASME, AISC) (1) Containment (2) Noncontainment (3) Basket (4) Trunnions (5) Storage Radiation and Protective Shielding and Enclosure (6) Transfer Radiation and Protective Shielding and Enclosure (7) Cooling Structure or System Design Weight Design Cavity Pressure (1) Normal/Off-Normal/Accident Response and Degradation Limits (1) Normal/Off-Normal/Accident 				
Thermal	 Maximum Design Temperatures (1) Cladding (2) Other Components Insolation (Side/Top/Bottom) Fill Gas (1) Type (e.g., helium, etc.) (2) Initial Fill Pressure (at temperature) Modes of Heat Transfer Utilized in the Design 				
Confinement	 Description of Confinement Boundary Redundant Seals for Closure Maximum Leak Rate for Confinement Boundary (1) Normal/Off-Normal/Accident (2) Justification of Leakage Rate if not Leaktight Monitoring System Specifications 				

Table 2-2 Outline of Design Criteria and Bases for DSS				
Radiation Protection/Shielding	 Confinement Cask Surface Position Normal/Off-Normal/Accident Exterior of Shielding Transfer Mode Position Storage Mode Position Normal/Off-Normal/Accident ISFSI Controlled Area Boundary Dose Rate Annual Dose Normal/Off-Normal/Accident 			
Criticality	 Method of Control Geometry, Fixed Poison, Soluble Poison Minimum Boron Concentration (Fixed and/or Soluble Poison) Maximum k_{eff} Burnable Neutron Absorber Credit Burnup Credit Analysis 			
Materials	Cladding Hoop StressCorrosion			
Operating Procedures	Normal and Off-NormalAfter Accident-level Conditions			
Acceptance Tests and Maintenance	Industry codes and standards			
Tech Specs	Operational Controls and Limits			

2106 Criteria relating to redundancy and allowable levels of response by the DSS under normal, off-2107 normal, and accident-level conditions and events should be described and evaluated. In general, no unacceptable degradation in physical condition or functional performance should 2108 result from normal or off-normal conditions. The design criteria regarding limits of permissible 2109 2110 system response and degradation resulting from an accident condition should be evaluated against the SSC capabilities to perform the principal safety functions. Considerations of 2111 2112 permissible responses should include detect-ability and corrective actions that may be proposed 2113 as conditions of system use.

- 2114
- The staff accepts that both routine surveillance programs and active instrumentation meet the intent of "continuous monitoring" as required in 10 CFR 72.122(h)(4).
- 2117

Reviewers should note that some DSS designs may contain a component or feature whose continued performance over the licensing period has not been demonstrated to staff with a sufficient level of confidence (e.g., rubber "O" rings). Therefore, staff may require the use of active instrumentation if the failure of that system or component causes an immediate threat to the public health and safety, and if that failure would not be detected by any other means. In some cases, to demonstrate compliance with 10 CFR 72.122(h)(4), the vendor or NRC staff

- 2124 may propose a technical specification requiring such instrumentation as part of the first use of a 2125 cask system. After first use, and if warranted and approved by staff, such instrumentation may 2126 be discontinued or modified.
- The staff should verify that the applicant has met the intent of continuous monitoring so that the applicant can determine when corrective action needs to be taken to maintain safe storage conditions.

2.6 Evaluation Findings 2133

- The reviewer will prepare evaluation findings on satisfaction of the regulatory requirements in Section 2.3. If the documentation submitted with the application supports positive findings for each of the regulatory requirements (the finding number is for convenience in reference within the SRP and SER), these statements should be similar to the following examples:
 - F2.1 The SAR and docketed materials adequately identify and characterize the SNF to be stored in the DSS in conformance with the requirements given in 10 CFR 72.236.
 - F2.2 The SAR and the docketed materials relating to the design bases and criteria meet the general requirements as given in 10 CFR 72.122(a), (b), (c), (f), (h)(1), (h)(4), (i), and (l).
 - F2.3 The SAR and docketed materials relating to the design bases and criteria for structures categorized as important to safety meet the requirements given in 10 CFR 72.122(a), (b)(1), (b)(2) and (b)(3), (c), (f), (h)(1), (h)(4), and (i); and 10 CFR 72.236.
 - F2.4 The SAR and docketed materials meet the regulatory requirements for design bases and criteria for thermal consideration as given in 10 CFR 72.122 (a), (b)(1), (b)(2) and (b)(3), (c), (f), (h)(1), (h)(4), and (i).
 - F2.5 The SAR and docketed materials relating to the design bases and criteria for shielding, confinement, radiation protection, and ALARA considerations meet the regulatory requirements as given in 10 CFR 72.104(a) and (b); 10 CFR 72.106(b); 10 CFR 72.122(a), (b), (c), (f), (h)(1), (h)(4), and (i); 10 CFR 72.126(a).
 - F2.6 The SAR and docketed materials relating to the design bases and criteria for criticality safety meet the regulatory requirements as given in 10 CFR 72.124(a) and (b).
 - F2.7 The SAR and docketed materials relating to the design bases and criteria for retrievability meet the regulatory requirements as given in 10 CFR 72.122(a), (b)(1), (b)(2), and (b)(3), (c), (f), (h)(1), (h)(4), and (l).
- 2170F2.8The SAR and docketed materials relating to the design bases and criteria for
other SSCs not important to safety but subject to NRC approval meet the general
regulatory requirements as given in the following subparts of

- 217310 CFR Part 72: Subpart E, "Siting Evaluation Factors" 72.104 and 72.106;2174Subpart F, "General Design Criteria" 72.122, 72.124, and 72.126; and Subpart L,2175"Approval of Spent Fuel Storage Casks."
- 2177 The reviewer should provide a summary statement similar to the following:

2178
2179 "The staff concludes that the principal design criteria for the [cask designation] are
2180 acceptable with regard to meeting the regulatory requirements of 10 CFR Part 72. This
2181 finding is reached on the basis of a review that considered the regulation itself,
2182 appropriate regulatory guides, applicable codes and standards, and accepted
2183 engineering practices. A more detailed evaluation of the design criteria and an
2184 assessment of compliance with those criteria are presented in Chapters 3 through 14 of
2185 the SER."

2-19

2186

2176

3 STRUCTURAL EVALUATION

2189 2190

2192

2213

2214

2215

2216

2220

2221 2222

2223

2224

2225

2226

2227 2228

2191 **3.1 Review Objective**

In this portion of the dry storage system (DSS) review, the U.S. Nuclear Regulatory Commission (NRC) evaluates aspects of the DSS design and analysis related to structural performance under normal and off-normal operations, accident conditions, and natural phenomena events. In conducting this evaluation, the NRC staff seeks a high degree of assurance that the cask system will maintain confinement, subcriticality, radiation shielding, and retrievability or recovery of the fuel, as applicable, under all credible loads for normal and off-normal conditions accidents, and natural phenomenon events.

2201 **3.2 Areas of Review** 2202

This chapter of the DSS Standard Review Plan (SRP) provides guidance for use in evaluating the design and analysis of the proposed cask system with regard to its structural performance. All DSSs include a confinement cask that may have both internal components and integral external components. In addition, some DSSs have a variety of other components that are subject to NRC evaluation and approval under the cask certification provisions of Subpart L of 10 CFR Part 72.

2210 Recognizing the diversity of the various cask system components, the NRC has broadly 2211 categorized the applicable review procedures and acceptance criteria as follows: 2212

- Structural Capability of the Confinement boundary and Internals,
- Other structural system components important to safety,
- Other structural components subject to NRC approval.

Within these broad categories, the NRC focuses the DSS structural evaluation, as described in
Section 3.5, "Review Procedures," using the following areas of review as appropriate:

Scope

- Structural Design Criteria and Design Features
 - Design Criteria
 - General Structural Requirements Applicable Codes and Standards
 - Structural Design Features

Materials Related to Structural Evaluation

2229	
2230	Structural Analysis
2231	Load Conditions
2232	Normal Conditions
2233	Off-normal Conditions
2234	Natural Phenomena and Accident Conditions
2235	Structural Analysis Methods
2236	Finite-element Analysis
2237	Closed-form Calculations
2238	Structural Analysis for Specific Cask Components
2239	Structural Evaluation

- 2240 Structural Capability
- 2241 2242

Fabrication and Construction

3.3 2243 **Regulatory Requirements** 2244

2245 Table 3-1 presents a matrix that shows the primary relationship of the regulations provided in 2246 this section to the specific areas of review associated with this SRP chapter. The NRC staff 2247 reviewer should verify the association of regulatory requirements with the areas of review presented in the matrix to ensure that no requirements are overlooked as a result of unique 2248 2249 applicant design features.

2250

Table 3-1 Relationship of Regulations and Areas of Review						
	10 CFR Part 72 Regulations					
Areas of Review	72.124(a)	72.234(a), (b)	72.236(b),(c), (d), (l)	72.236(g), (h)		
Scope	•	•	•			
Structural Design Criteria and Design Features	•	•	•	•		
Materials Related to Structural Evaluation			•			
Structural Analysis		•	•			
Structural Evaluation		•	•	•		

2251 2252

3.4 **Acceptance Criteria**

2253 2254 The most important function of the structural analysis is to ensure sufficient structural capability 2255 for every applicable section of the cask system to withstand the worst-case loads under 2256 accident conditions and natural phenomena events. Withstanding such loads enables the cask 2257 system to successfully preclude the following negative consequences:

- 2258 2259 2260
- Unacceptable risk of criticality,
- Unacceptable release of radioactive materials,
- Unacceptable radiation levels,
- 2261 2262 2263
- Impairment of retrievability or recovery, as applicable.

2264 Because of the diversity of cask system components and various materials that are subject to NRC evaluation and approval, it is not possible to define objective structural review criteria that 2265 2266 address all possible component configurations. No single structural code currently accepted by 2267 the NRC (such as the American Society of Mechanical Engineers [ASME] Boiler and Pressure Vessel [B&PV] Code, Section III, Division 1 [ASME B&PV]) or Section III, Division 2 may cover 2268 2269 the design of all spent nuclear fuel (SNF) storage systems. Consequently, the acceptability of 2270 any given structure will be contingent upon a combination of adherence to applicable portions of

2271 multiple codes and a review of the functional performance of the structure taken as a whole. 2272 This combined approach allows the designer to request relief, or provide alternatives, and the 2273 reviewer to impose additional restrictions when warranted by specific design features. 2274

In general, the DSS structural evaluation seeks to ensure that the proposed design and analysis fulfill the following acceptance criteria that reflect the industry codes and standards the NRC staff has accepted in past DSS structural evaluations. The American National Standards Institute's (ANSI) "Design Criteria for an Independent Spent Fuel Storage Installation (Dry Storage Type)" (ANSI/ANS-57.9) generally applies to the design and construction of an ISFSI but contains some criteria/design requirements relative to dry storage systems.

2281 2282

2283

2304

2305 2306

2307

2308 2309

3.4.1 Confinement Cask and Metallic Internals

2284 3.4.1.1 Steel Confinement Cask 2285

2286 The structural design, fabrication, and testing of the confinement system and its redundant sealing system should comply with an acceptable code or standard such as ASME B&PV Code. 2287 (The NRC has accepted use of either Subsection NB or Subsection NC of Section III, Division 1 2288 of this code.) Division 3 of Section III of the ASME B&PV Code, addressing storage of spent 2289 2290 nuclear fuel, has been published, but currently no NRC position has been established on that 2291 standard. Other design codes or standards may be acceptable depending on their application. An applicant must justify the use of new criteria where no NRC staff position has been 2292 2293 established. 2294

- 2295 i. The NRC staff evaluates the proposed limitations on allowable stresses and 2296 strains in the confinement cask, steel parts important to safety and subject to review by comparison with those specified in applicable codes and standards. 2297 Where certain proposed load combinations will produce values that exceed the 2298 2299 accepted limits for localized points on the structure, the applicant should provide 2300 adequate justification to show that the deviation will not affect the functional 2301 integrity of the structure. Under certain conditions limiting strains and limiting deformations may form part of the acceptance criteria. 2302 2303
 - ii. The NRC has accepted the use of applicable subsections of the ASME B&PV Code, Section III, Division 1, such as Subsections NF and NG, for components used in the cask system. This includes the "basket" structure used in casks to restrain and position multiple fuel elements in the storage system in which Subsection NG has been used.
- 2310 3.4.1.2 Steel-Lined Concrete Confinement Cask 2311
- 2312 i. The American Concrete Institute (ACI) and ASME's "Code for Concrete Reactor Vessels and Containments" (ACI 359), also known as Section III, Division 2 of 2313 2314 the ASME B&PV Code, constitutes an acceptable standard for prestressed and reinforced concrete structures that are an integral component of a steel-lined 2315 2316 concrete confinement cask that must withstand internal pressure in operation or testing and constitutes a confinement cask. 2317 The minimum functional 2318 requirements of ANSI/ANS-57.9 for subject areas not specifically addressed in 2319 ACI 359 shall be met. 2320
 - 3-3

ii. The NRC will review the use of applicable subsections of the ASME B&PV Code,
Section III, Division 1, such as Subsections NF and NG, for components used
within the confinement cask but not integrated with it. This includes Subsection
NG for the "basket" structure used in casks to restrain and position multiple fuel
elements in the storage system.

2326 2327

2328

2345

2346

2347 2348

2349

2350 2351

2352

2354

2357

2359

2362 2363

2364

2365 2366

2367

7 3.4.2 Other Structural System Components and Structures Important to Safety

2329 The NRC accepts the use of ANSI/ANS-57.9 (together with the codes and standards cited 2330 therein) as the basic reference for the ISFSI dry storage systems important to safety that are not designed in accordance with accepted provisions or alternatives to applicable portions of 2331 Section III, Division 1 or 2 (ACI-359) of the ASME B&PV Code. Structures and components that 2332 2333 are important to safety which are related to lifting and handling cask systems should comply with American National Standards Institute (ANSI) Standard, "American National Standards for 2334 2335 Radioactive Material Lifting Devices for Shipping Containers Weighing 10.000 lbs (4500 kg) or 2336 More" (N14.6). The loadings defined in American Society of Civil Engineers, "Minimum Design Loads for Buildings and Other Structures," (ASCE 7) can be used when load combinations are 2337 2338 considered on the basis of ANSI/ANS-57.9. 2339

2340 3.4.2.1 Steel Structures 2341

The principal codes and standards include the following references that may be applied to steel structures and components:

- a. American Institute of Steel Construction (AISC), "Specification for Structural Steel Buildings Allowable Stress Design and Plastic Design."
- b. AISC, "Load and Resistance Factor Design Specification for Structural Steel Buildings."
- c. American Welding Society, "Structural Welding Code Steel," (AWS D1.1).
- 2353 3.4.2.2 Reinforced Concrete Structures

ACI's "Code of Requirements for Nuclear Safety Related Concrete Structures," ACI 349 can be applied to reinforced concrete structures and components.

2358 **3.4.3 Other Structural Components Subject to NRC Approval**

For structural design and construction of other components subject to NRC approval, the principal codes and standards include the following:

- a. American Society of Civil Engineers (ASCE), "Minimum Design Loads for Buildings and Other Structures" (ASCE 7).
- b. International Building Code (IBC) 2006 from International Code Council.
- 2368 c. AISC, "Specification for Structural Steel Buildings—Allowable Stress Design and
 2369 Plastic Design."
 2370
- d. AISC, "Code of Standard Practice for Steel Buildings and Bridges."

2374

2376

2390 2391

2392 2393

2394 2395

2396

2397

2398

2399

- e. ASME B&PV Code, Section VIII.
- f. ACI 318, "Building Code Requirements for Structural Concrete."

2377 3.5 Review Procedures (HIGH Priority)2378

The SAR documentation should be reviewed to confirm that the design of the cask structure provides for satisfactory functional performance. This includes operating suitability within specified limiting conditions and satisfaction of the basic safety criteria under all credible events and environmental conditions.

The SAR should clearly identify the confinement system and other structures important to safety, and each component should have sufficient structural capability for every applicable section to withstand the worst-case loads under accident-level events and conditions to successfully preclude the following:

- Unacceptable risk of criticality.
 - Unacceptable release of radioactive materials to the environment.
 - Unacceptable radiation dose to the public or workers.
 - Significant impairment of retrievability or recovery, as applicable, of stored nuclear materials (the NRC has accepted some degradation of retrievability under accident conditions and severe natural phenomena events that are treated as design bases events).

2400 This position does not necessarily require that all confinement system and other structures 2401 important to safety survive all design-basis accidents and extreme natural phenomena without any permanent deformation or other damage. Some load combination expressions for the 2402 2403 design basis event (DBE) and conditions for structures important to safety permit stress levels 2404 that exceed yield. The SAR should include computations of the maximum extent of potentially 2405 significant accident deformations and any permanent deformations, degradation, or other 2406 damage that may occur. The reviewer should verify that the applicant has performed 2407 computations, analyses, and/or tests and that both the tests and results are acceptable to the 2408 NRC to clearly demonstrate that any permanent deformations, degradation, or other damage 2409 that may occur does not render the system performance unacceptable. 2410

- 2411 Structures important to safety are not required to survive accidents to the extent that they 2412 remain suited for use for the life of the cask system without inspection, repair, or replacement. If 2413 the service life of structures important to safety may be degraded by accident-level conditions, 2414 there must be SAR commitments and procedures for determining and correcting the 2415 degradation and performing other acceptable remedial action.
- 2416

The proposed technical specifications should be reviewed to ensure that they include adequate restrictions on cask handling and operations to preclude the possibility of damage to the structure or the confined nuclear material. Operating controls and limits of the technical specifications (reviewed under Chapter 13 of this SRP) should be included in both the SAR and the SER, and should describe actions to be taken and inspections to be conducted upon occurrence of events that may cause such damage.

Figure 3-1 presents an overview of the evaluation process and can be used as a guide to assist in coordinating with other review disciplines.

In evaluating the structural design and performance of a proposed DSS, the reviewer should select and emphasize aspects of the following review procedures, as appropriate for the particular DSS, in relation to the acceptance criteria summarized in Section 3.4.

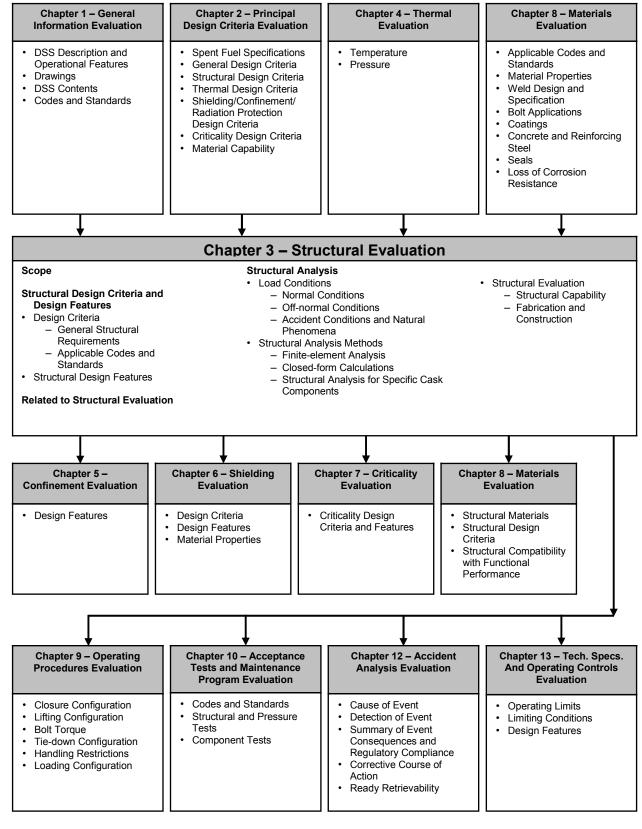
2430

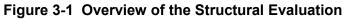
2431 Description of Structures, Systems, and Components Important to Safety

2432

The reviewer should verify that the applicant's safety analysis report (SAR) clearly identifies the proposed structural design and construction of structures, systems, and components (SSCs) that are important to safety and necessary for effective functional performance and safety of the DSS. The SAR and supplemental material submitted by the applicant should be reviewed to assess compliance with the applicable scope and content requirements defined in 10 CFR 72.230. The reviewer should focus in particular on requirements and conditions of use related to design, construction, implementation, operation, and maintenance of structural SSCs.

2441 Applicable Codes, Standards, and Specifications


2442


2443 NRC guidelines recommend that the safety evaluation report (SER) prepared by the NRC staff 2444 include a table (in the design criteria evaluation section) summarizing the applicable reference 2445 sources. This table should identify all source documents cited in the SAR, their usage (e.g., 2446 description of model, prior NRC approval of cask system elements, design code, construction 2447 code), and acceptability for that usage. The sources of interest include documents directly 2448 referenced in the SAR; sources of material incorporated by reference; and codes, standards, 2449 specifications, and other sources of criteria that further define the design and construction of the 2450 proposed structures. If not tabulated, the consolidated review and assessment of reference 2451 sources should otherwise be included in the SER.

2452

2453 Loads and Load Combinations

The reviewer should verify that the loads and load combinations are as specified in Chapter 2, "Principal Design Criteria Evaluation," of this SRP. If the applicant has not adequately justified any deviations from the acceptance criteria for loads and load combinations, the reviewer should identify the deviations as unacceptable and transmit them to the applicant for further justification. If components associated with or integral to the fuel assembly are to be stored in the cask, then the reviewer should ensure these components are considered by the applicant in the structural analyses.

The SAR should include a comprehensive table of load combinations and safety margins for selected structural sections of components important to safety (or otherwise subject to NRC evaluation). The summary table should include sufficient structural sections and forms of loadings (e.g., shear, flexure, axial, and combined stress situations) to verify that the lowest margins of safety are represented for the various components. In addition, this table can be used to summarize the structural capacity evaluation.

2472 2473

3 Design and Analysis Procedures

2474

The reviewer should determine whether the applicant's design and analysis procedures and assumptions are conservatively defined on the basis of accepted engineering practice. The behavior of the structure under various loads, and the manner in which these loads are treated in conjunction with other coexistent loads should be reviewed, while compliance with the acceptance criteria, defined in Section 3.4 of this SRP should be assessed.

- 2481 <u>Structural Acceptance Criteria</u>
- 2482

2483 The proposed limitations on allowable stresses, strains, or deformations in the confinement 2484 cask, its internals, system components important to safety, and other components subject to 2485 review should be analyzed. The reviewer should compare the proposed limitations with those specified in the applicable codes and standards. Where the applicant proposes to exceed the 2486 2487 accepted limits for certain load combinations at localized points on the structure, the reviewer 2488 should evaluate the justification provided to ensure that the deviation will not affect the functional integrity of the structure. If the justification is not acceptable, the reviewer should 2489 2490 request additional justification and bases. 2491

2492 <u>Materials, Quality Control, and Special Fabrication Techniques</u> 2493

2494 Information provided in the SAR regarding materials is reviewed under the guidance of Chapter 2495 8, "Materials Evaluation" of this SRP. Quality control methods, and special fabrication 2496 techniques, if any, related to the structural evaluation should be reviewed in coordination with the materials discipline and QA. The QA program is reviewed under Chapter 14 "Quality 2497 Assurance Evaluation" of this SRP. If the applicant proposes to use a new material not 2498 2499 addressed in prior approvals, the applicant must provide sufficient data regarding the material's structural properties to establish the acceptability of the material. Similarly, the reviewer should 2500 2501 evaluate any new guality control programs or construction techniques to ensure that they will 2502 not degrade the structural quality, integrity, or function of the DSS.

- 25032504 Testing and In-Service Surveillance Requirements
- 2505

2506 The proposed pressure test procedures for the confinement cask should be reviewed in 2507 comparison with the procedures described in ASME Code, Section III, Division 1, Subsection 2508 NB-6000, and in conjunction with Chapter 10, "Acceptance Tests and Maintenance Program 2509 Evaluation" of this SRP. Also, the proposed acceptance test and maintenance requirements for 2510 trunnions should be reviewed in comparison with those described in the ASME Code and ANSI 2511 N14.6, as applicable for load bearing components. Any other proposed testing and in-service surveillance programs should be reviewed on a case-by-case basis. Also, the reviewer should 2512 2513 read SAR Section 10 to verify that the applicant has included all appropriate acceptance tests 2514 and addressed all required evaluations in Section 10 of the SER.

2516 <u>Conditions for Use of Structures</u>

2517

The structural evaluation should be reviewed to determine if conditions of use or technical 2518 2519 specifications should be associated with the structural design or proposed fabrication and construction methods. The reviewer should determine the appropriateness of and need for any 2520 proposed technical specifications related to structural design and construction. Also, the 2521 2522 reviewer should determine whether any additional technical conditions related to structural performance are needed and, if so, provide input to the conditions of use discussed in the SER. 2523 In addition, the reviewer should describe the basis for the suggested conditions in the structural 2524 2525 evaluation section of the SER. Structure-related conditions of use may be linked to evaluations 2526 performed under other sections (such as a field verification that maximum concrete 2527 temperatures predicted from thermal analysis will not be exceeded).

2528

The remainder of this section provides specific review procedures for each of the three categories of cask system components including the confinement cask and steel internals, other structures important to safety, and other components subject to NRC approval. Within each of these broad categories, the specific review procedures focus the DSS structural evaluation using the areas of review identified in Section 3.2 of this SRP.

2534 2535

2536

3.5.1 Confinement Cask and Metallic Internals

The structural review of the confinement cask addresses drawings, plans, sections, supporting computations, and specifications for those structural components comprising confinement barriers. The review also addresses structural and sealing interfaces, and connections that are necessary to complete the confinement system (as defined in 10 CFR Part 72). In addition, this review includes evaluation of components that serve no structural function to confirm that they do not impair the functioning of the confinement cask. The review also encompasses the evaluation of the metallic internals that constitute the "basket" structure.

2545 3.5.1.1 Scope

The SAR must describe all components of the confinement cask and internals important to
safety in sufficient detail to allow evaluation of their structural behavior and effectiveness under
the imposed design conditions. In addition, the SAR must identify all codes and standards
applicable to the components.

2551

The discussion in the SAR must demonstrate that all components of the confinement cask and internals important to safety will be designed and fabricated to quality standards commensurate with the importance to safety of the function to be performed. In addition, components of the confinement cask and internals important to safety must be designed to accommodate the combined loads anticipated during normal, off-normal, accident, and natural phenomenon events with an adequate margin of safety.

- 2559 3.5.1.2 Structural Design Criteria and Design Features 2560
- 2561 i. Design Criteria (MEDIUM Priority) 2562

2563The cask-related design criteria presented in SAR Chapter 2, "Principal Design2564Criteria Evaluation" should be reviewed as well as the criteria provided herein.2565The NRC generally considers the following design criteria to be acceptable to2566meet the structural requirements of 10 CFR Part 72:

2569 2570

2571 2572

2573

2574

2575 2576 2577

2578

2579

2580 2581

2582 2583 2584

2585 2586

2587

2588 2589

2590

2591

2592

2593 2594

2595 2596

2597

2598 2599

2600 2601

2602 2603

2604

2605

2606

2607

2608 2609

2610

2611

2612 2613

2614

2615

2616

2617

(1) General Structural Requirements

The proposed cask must maintain confinement of radioactive material under normal and off-normal operations, accident conditions, and natural phenomenon events. In addition, neither the cask nor any basket within the cask may deform under credible loading conditions in a manner that would jeopardize the subcritical condition and recovery or retrievability of the fuel, as applicable.

The design must adequately protect the fuel cladding against gross rupture caused by degradation resulting from design or accident conditions. In addition, the design must ensure that the SNF will not experience accelerations/decelerations that would damage its structural integrity or jeopardize its subcritical condition or retrievability under normal and off-normal design conditions.

The applicant must analyze the cask to show that it will not tip over or drop in its storage condition as a result of a credible natural phenomenon event. A tipover or drop is always assessed as a bounding condition during handling operations.

Radiation shielding in the cask system is required to protect the public and workers involved with spent fuel handling and storage, and such shielding must not degrade under normal or off-normal conditions or events. The shielding function may degrade as a result of an accident (e.g., displacement of source or shielding, reduction in shielding). However, the loss of function must be readily visible, apparent, or detectable. (Any permissible degradation in shielding must be shown to result in dose rates sufficiently low to permit recovery of the damaged cask including unloading, if necessary). The necessary structural criteria to assure adequate shielding remains in-place should be clearly identified.

(2) Applicable Codes and Standards

The structural design, fabrication, and testing of the confinement system and any necessary redundant sealing system should comply with acceptable codes or standards. Use of codes and standards previously accepted by the NRC expedites the evaluation process. Use of other codes and standards, definition of criteria composed of extracts from multiple codes and standards with overlapping scopes, or substitution of other criteria, in whole or in part, in place of acceptable published codes or standards requires a custom NRC review and may delay the evaluation process.

Section III, Division 1, of the ASME B&PV Code is an accepted code for design, fabrication, and test of steel confinement casks. Specifically, the NRC has accepted use of either Subsection NB or NC. Other design codes or standards may be acceptable depending on their application. The NRC has accepted use of the applicable subsections of the ASME

2618 Code, Section III, Division 1, for cask system components used within the confinement cask but not integrated with it. This includes the "basket," 2619 which is a structure used in casks to restrain and position multiple fuel 2620 elements. Section III, Division 3 of the ASME B&PV Code is also 2621 available and addresses storage cask systems, but NRC has not 2622 endorsed its use at the current time. 2623 2624 2625 Also, the NRC has accepted applicable subsections of Division 1, of the ASME Code, for structural external integral elements of the confinement 2626 (e.g., Subsection NF for integral supports) cask. 2627 2628 2629 Commitments for structures important to safety to ASME Code Section III, 2630 with proposed alternatives to the Code, should be documented in the application. Likewise, NRC staff-approved alternatives to the Code 2631 2632 should be incorporated, either directly or referenced, in the certificate of compliance (or in the technical specifications attached to the certificate) 2633 issued by the NRC. In the event that alternatives to codes are required 2634 during fabrication and the alternatives do not impact the quality or safety 2635 of the component, an alternative to the requirements of the certificate of 2636 2637 compliance or technical specification may be granted with approval of the NRC. 2638 2639 2640 Applicants should propose a condition to the certificate of compliance or technical specification, either directly or referenced, describing the 2641 alternatives to the referenced codes. The condition or technical 2642 specification should also describe a process to address one-time 2643 alternatives from the ASME Code that may occur during fabrication. The 2644 information provided should include the identification of the component. 2645 the reference to the ASME Code (code edition, addenda, section or 2646 2647 article), description of the Code requirement, and a description of the 2648 alternative. In addition, the applicant should justify the alternative, including a description of how the alternative would provide an acceptable 2649 level of quality and safety. Additionally, the applicant should describe 2650 how compliance with the code provisions would result in hardship or 2651 difficulty without a compensating increase in the level of quality or safety. 2652 2653 2654

2655 2656

2657

2658

2659 2660

2661

2662 2663

2664

2665

2666 2667 For a steel-lined concrete confinement cask system, NRC accepts ACI 359, also designated Section III, Division 2, of the ASME Boiler and Pressure Vessel Code. This Code is acceptable for prestressed and reinforced concrete that is an integral component of a radioactive material containment vessel that must withstand internal pressure in operation or testing. ACI 359, as endorsed by RG 1.136, Rev. 3, "Design Limits, Loading Combinations, Materials, Construction, and Testing of Concrete Containments," and Section 3.8.1, "Concrete Containments" of NUREG-0800, "Standard Review Plan for Review of Safety Analysis Reports for Nuclear Power Plants," should be applied on the basis of containment function regardless of whether the concrete structure is fixed or portable and regardless of structural concrete supports constructed as an integral part of the containment. If ACI 359 and RG 1.136 apply to the structure,

the Code applies to the entire design, material selection, fabrication, and construction of that structure.

As an alternative to the requirements of Section CC-3440 of ACI 359, the NRC also accepts the following. These criteria are an alternative to the temperature requirements of ACI 349, A.4, but only for the specified uses and temperature ranges:

- a. If concrete temperatures of general or local areas are 93°C (200°F) in normal or off-normal conditions/ occurrences, no tests to prove capability for elevated temperatures or reduction of concrete strength are required.
- b. If concrete temperatures of general or local areas exceed 93°C (200°F) but would not exceed 149°C (300°F), no tests to prove capability for elevated temperatures or reduction of concrete strength are required if Type II cement is used and aggregates are selected which are acceptable for concrete in this temperature range. The following criteria for fine and coarse aggregates are acceptable:
 - 1) Satisfy ASTM C33, ("Standard Specification for Concrete Aggregates") requirements and other requirements referenced in ACI 349 for aggregates.
 - 2) Satisfy ASTM C150, ("Standard Specification for Portland Cement") requirements and other requirements referenced in ACI 349 for cement.
 - 3) Have demonstrated a coefficient of thermal expansion (tangent in temperature range of 20°C to 38°C [70°F to 100°F]) no greater than 11x10⁻⁶ mm/mm/°C (6x10⁻⁶ in./in./°F), or be one of the following minerals: limestone, dolomite, marble, basalt, granite, gabbro, or rhyolite.
- c. If concrete temperatures of general or local areas in normal or offnormal conditions or occurrences do not exceed 107°C (225°F), the requirements of 1 and 2 apply to the coarse aggregate, but fine aggregate that meets 1 and is composed of quartz sands or sandstone sands may be used in place of compliance with 2.
- ii. Structural Design Features (LOW Priority)

The cask-related descriptive information presented in SAR Chapter 1, "General Information Evaluation" should be reviewed as well as any related information provided in SAR Chapter 3 "Structural Evaluation". The drawings, figures, tables, and specifications included in the SAR should fully define the structural features of the cask. These may include the cask system that could include an inner shell, an outer shell, and a gamma shield, inner and outer lids and bolts, port

- 2717 covers and bolts, vent port covers to be welded in place, neutron shields and 2718 shell, trunnions, fuel basket, and impact limiters (if used).
 - The reviewer should coordinate with the confinement review (Chapter 5, "Confinement Evaluation," of this SRP) to verify that the SAR clearly identifies the confinement boundaries. These boundaries include the primary confinement vessel; its penetrations, seals, welds, and closure devices; and the redundant sealing system as provided by the system.
 - The list of weights and calculation of the cask center of gravity should be reviewed. The reviewer should verify that the applicant used the appropriate limiting cases in the structural evaluations.
- 2728 2729 2730

2731

2719 2720

2721

2722 2723

2724 2725

2726

2727

3.5.1.3 Materials Related to Structural Evaluation (HIGH Priority)

The structural reviewer should coordinate with the materials reviewer to determine the impact of corrosion, reviewed in Chapter 8, "Materials Evaluation" of this SRP, on structural integrity. The reviewer should ensure that the applicant used appropriate corrosion allowances for the structural analyses. The reviewer should consider the static and dynamic (where appropriate) stresses, strains, deformations, and response, and the limits used for the structural design and evaluations.

2738

2739 A DSS serves to confine and maintain safe storage conditions throughout its service life. Design and construction codes (e.g., ASME B&PV Code Section III) give reasonable assurance 2740 2741 that the as-fabricated material will provide the necessary integrity. It is noted that the ASME 2742 Code Section III, Division 1, applies specifically to maintaining pressure boundaries and supporting structures in nuclear power plants, and may not necessarily be totally applicable to 2743 all DSS. However, designers may choose to cite it as the code to which selected components 2744 2745 are to be fabricated. Codes such as the ASME B&PV are not likely to address all the potential 2746 performance conditions (e.g., cracking, creep, corrosion, etc.) that may arise from environmental, electrochemical, or dynamic-loading. These and other effects are specific to the 2747 2748 individual application and should be addressed to meet the guidance of Chapter, 8, "Materials Evaluation" of this SRP. 2749

2750

The reviewer should verify that the properties used are appropriate for the load conditions of interest (e.g., static or dynamic, impact loading, hot or cold temperature, wet or dry conditions). SAR Chapter 12, "Accident Analyses Evaluation" should be reviewed to ensure that the applicant considered any appropriate restrictions regarding temperature or environmental conditions for the materials under accident conditions.

The reviewer should coordinate with the thermal and material disciplines to determine the appropriate temperatures at which allowable stress limits should be defined. For most cask materials, the stress limits should be defined at the maximum temperature for each material as established by the SAR thermal analysis. Further discussion of the background for the temperature limits can be found in Chapters 4, "Thermal Evaluation" and 8, "Materials Evaluation" of this SRP.

The reviewer should coordinate with the materials, criticality, and shielding reviews to ensure that, during storage and accident conditions, any structural materials considered as neutron absorbers and/or gamma shields will perform safety functions as intended.

2767

2763

2768 If the cask has impact limiters, used in the transfer and storage operations, the applicant should 2769 thoroughly evaluate and verify their nonlinear impact characteristics. In addition, the applicant 2770 should tabulate and describe the crush characteristics and properties of the limiters in the 2771 directions that are to be used.

- 2773 3.5.1.4 Structural Analysis 2774
- i. Load Conditions

2772

2776

2777

2778

2779 2780

2781

2782

2783 2784

2785

2786 2787

2788

2789 2790

2791 2792 2793

2794

2795

2796

2797

2798

2799

2800

2801

2802 2803

2804 2805

2806 2807

2808

2809

2810

2811

2812

2813

2814

2815

2816 2817

2818

(MEDIUM Priority) To meet the structural requirements of 10 CFR Part 72, the DSS design must accommodate the full spectrum of load conditions including all anticipated normal, off-normal, and accident-level conditions (including natural phenomenon events). The system should not experience any permanent deformation or loss of safety function capability during normal or off-normal operating conditions. However, the system may experience some permanent deformation, but no loss of safety function capability, in response to an accident.

(1) Normal Conditions (LOW Priority)

Normal conditions and events are those associated with cask system operations, including storage of nuclear material, under the normal range of environments. The SAR should state the assumed limits of normal use environments to support evaluation by a user of the certified cask system suitability for use at a specific site under a general license.

Loads normally applicable to a confinement cask include weight, internal and external pressures, and thermal loads associated with operating temperature. The loads experienced may vary during loading, preparation for storage, transfer, storage, and retrieval operations. The weight is the maximum or design weight (including tolerances) of the cask as it is stored and loaded with SNF. However, depending on the operation and procedures, the weight should also include water fill. The applicant should evaluate all orientations of the cask body and closure lids during normal operations and storage conditions including loads associated with loading, transfer, positioning, and retrieval of the confinement cask.

Internal pressures result from hydrostatic pressure, cask drying and purging operations, filling with non-reactive cover gas, out-gassing of fuel, refilling with water, radiolysis, and temperature increases. Temperature variations and thermal gradients in the structural material may cause additional stresses in the cask and closure lids. The reviewer should coordinate with the thermal review (Chapter 4, "Thermal Evaluation," of this SRP) to determine the conservative (or enveloping) values and combinations of the cask internal pressures and temperatures for both hot and cold conditions. The reviewer should use the temperature gradients calculated in SAR Chapter 4 to determine thermal stresses. Note that if the confinement system has several enclosed areas; all areas may not have the same internal pressures. In some casks, enclosed areas consist of the cask cavity and the region between the inner and outer lids. Required evaluations include weight plus internal pressures and thermal stresses from both hot and cold conditions. The reviewer should verify that the applicant included the maximum thermal gradient as determined in the thermal analysis, when evaluating thermal stresses.

(2) Off-Normal Conditions (LOW Priority)

The review should identify and evaluate all off-normal events and conditions described in Chapter 12, "Accident Analyses Evaluation," of this SRP. The off-normal conditions and events should be reviewed for those that affect the confinement cask structure. The confinement cask components should satisfy the same structural criteria required for normal conditions, as discussed above.

The SAR should clearly identify anticipated off-normal conditions and events that may reasonably be expected to occur during the life of the cask system at the proposed site. In addition, the SAR should state the environmental limits to support comparison of the cask system design bases with specific site environmental data. Off-normal conditions and events can involve potential mishandling, simple negligence of operators, equipment malfunction, loss of power, and severe weather (short of extreme natural phenomena).

(3) Accident-Level Events and Conditions

The reviewer should follow the guidance below in reviewing the structural response to accident-level conditions. Note that the SAR must address, at a minimum, each of the following accidents. However, this discussion may not address all of the potential events or accidents that apply to a cask (Chapter 12 of this SRP addresses the identification and evaluation of accidents).

(a) Cask Drop and Tipover (HIGH Priority)

The reviewer should ensure the applicant performs a cask drop and tipover analysis or demonstrates that this scenario is not credible. The SAR should identify the operating environment experienced by the cask and the drop events (end/side/tipover) that could result. Generally, applicants establish the design basis in terms of the maximum height to which the cask is lifted outside the building or the maximum deceleration that the cask could experience in a drop. The design-basis drops should be determined on the basis of the actual potential handling and transfer accidents.

If the analytical approach described in the LLNL report UCID-21246 (Chun, R., et al., 1986) for axial buckling is used to assess fuel integrity for the cask drop accident, the analysis should use the irradiated material properties and should include the weight of fuel pellets. Alternatively, an analysis of fuel integrity which considers the dynamic nature of the drop accident and any restraints on fuel movement resulting from cask design is acceptable if it demonstrates that the cladding stress remains below yield. If a finite element analysis is performed, the analysis model may consider the entire fuel rod length with intermediate supports at each grid support (spacer). Irradiated material properties and weight of fuel pellets should be included in the analysis.

2870

2871

2872

2873

2874

2875 2876

2877 2878

2879

2880 2881

2882

2883 2884 2885

2886

2887

2888 2889

2890

2891 2892

2893

2894

2895 2896 2897

2898 2899

2900

2901

2902

2903 2904

2905

2906 2907 2908

2909

2910 2911

2912 2913

2914 2915

2916 2917

2918

2919 2920 The NRC will accept cask tipover about a lower corner onto a hard receiving surface from a position of balance with no initial velocity. The NRC has also accepted analysis of cask drops with the longitudinal axis horizontal which, together with analysis of a vertical drop, could bound a non-mechanistic tipover case.

NRC staff has accepted an unyielding surface for determining the bounding cask deceleration loads that can far exceed the decelerations experienced by a cask dropping onto or tipping over the concrete storage pad that will bend and deform. Prototype or scale model testing can be used to obtain more realistic cask deceleration or equivalent load for quasi-static analyses. Alternatively, applicants can develop an analytical model to calculate cask deceleration loads. In the analytical approach, the hard receiving surface for a drop or tipover accident need not be an unyielding surface, and its flexibility may be included in the modeling.

The structural discipline should review validation of the analytical model. The staff has completed a series of low-velocity impact tests of a steel billet from which a model validation approach and corresponding acceptance criteria have been developed. These tests analytical evaluations are summarized and in NUREG/CR-6608, Summary and Evaluation of Low-Velocity Impact Tests of Solid Steel Billet Onto Concrete Pads (Witte, 1998). On the basis of the report, the following model validation acceptance criteria apply to a cask-pad-soil analytical model for predicting impact responses of the cask:

- When solid steel billet is used to replace the cask in the cask-pad-soil analytical model, it should predict a pulse amplitude slightly higher than the recorded pulse amplitude from the billet test.
- The calculated pulse duration and shape should be similar, but not necessarily identical, to those recorded from the billet test.

The validated billet-pad-soil model is considered adaptable to a cask-pad-soil analysis model if relevant attributes of the cask are used to replace those of the billet.

2921 2922

2923

2924

2925

2926 2927

2928

2929 2930

2931 2932 2933

2934

2935

2936

2937

2938

2939 2940

2941 2942

2943

2944

2945

2946

2947 2948

2949 2950

2951

2952

2953 2954 2955

2956 2957

2958 2959

2960

2961

2962 2963

2964

2965 2966

2967

2968

2969 2970

2971

(b) Explosive Overpressure (LOW Priority)

Explosion-induced overpressure and reflected pressure may result from explosion hazards associated with explosives and chemicals transported by rail or on public highways, natural gas pipelines, and vehicular fires of equipment used in the transfer of casks. Explosions may result from detonation of an air-gaseous fuel mixture. With the exception of transfer vehicle accidents, the explosion hazards are typically similar to those for facilities subject to reviews under 10 CFR Part 50, "Domestic Licensing of Production and Utilization Facilities."

The SAR should state the level of overpressure that the cask system can withstand for this accident condition. This overpressure level would then serve as the quantitative envelope for future comparison with hazards for specific site installations. The pressure criteria for the assumed design-basis wind or tornado may also serve as an envelope for the explosive pressures for comparison with actual site hazards of a general licensee's facility.

If the SAR includes bounding explosion effects for which the cask system is to be approved, the reviewer should verify that the applicant also provided structural analyses of those effects for cask system structures that may be affected. The SAR should identify the maximum response determined. The maximum response includes pressure-induced maximum stresses at critical cask locations and governing structural performance modes for the cask components important to safety. That response should be sufficiently low such that while damage may occur, it would not impair the capability of the component to perform its safety functions. In addition, the SAR should identify any post-event inspection and remedial actions that may be necessary.

(c) Fire (LOW Priority)

Chapter 4, "Thermal Evaluation" of this SRP addresses potential fire conditions. Fire-related structural evaluation considerations include increased pressures in the confinement cask, changes in material properties, stresses caused by different coefficients of thermal expansion and/or temperatures in interacting materials, and physical destruction.

The reviewer should evaluate the discussion in the SAR concerning the treatment of structural effects associated with the presumed fire. The reviewer should evaluate the appropriateness of the applicant's analysis of those structural effects for the assumed parameters of the design-basis fire. The reviewer should confirm that the applicant defined the confinement cask pressure capacity on the basis of the cask material properties at the temperature resulting from the fire. Spalling of concrete that

may result from a fire is generally considered acceptable and need not be estimated or evaluated. Such damage is readily detectable, and appropriate recovery or corrective measures may be presumed. The NRC accepts concrete temperatures that exceed the temperature limits of ACI349 for accidents, providing that the temperatures result from a fire. However, corrective actions may need to be taken for continued safe storage.

(d) Flood (LOW Priority)

The applicant's evaluation of the DSS design should be reviewed with regard to the structural consequences of a flood event. The SAR may stipulate an assumption that the DSS not be used at any site where there is potential for flooding. In this case, the DSS would have to be placed at an ISFSI site above the maximum probable flood level (SAR Chapter 12, "Accident Analyses Evaluation" should state this condition). Alternatively, an application for a certificate of compliance to use a DSS at a site with flooding potential would require a full analysis for a defined flood event.

If a design flood event is defined for the certificate of compliance the reviewer should verify that the SSCs meet appropriate guidance in RG 1.59, Rev. 2 and 1.102, Rev. 1 for that level of flood protection.

One possible structural consequence of a flood is that a vertically stored cask may tip over or translate horizontally (slide) because of the water velocity. Another possible consequence is that external hydrostatic pressure will exceed the capacity of the cask. The applicant may state the critical water velocity and hydrostatic pressure as bounds for the SAR flood analysis.

The NRC accepts the evaluation for flooding events when the flood conditions for overturning and sliding of stored confinement casks and other cask system structures (with a safety factor of 1.1 for accidents cases) have been applied. The applicant should state the basis for estimation of lateral pressure on a structure as a result of water velocity.

The NRC accepts the use of Hoerner's *Fluid-Dynamics Drag* (Hoerner, 1965) for estimating drag coefficients and net lateral water pressure. An approach for calculating the velocity corresponding to the cask stability limit is to assume that the cask is pinned at the outer edge of the cask bottom and rotates about that outer edge, and the pinned edge does not permit sliding. The overturning moment from the velocity of the flood water can be compared to the stability moment of the cask (with buoyancy considered). The structural consequences of the flood event are typically bounded by analyses for the drop or tipover accident cases.

3023 3024 3025 3026 3027 3028 3029 3030 3031 3032		The analysis of the confinement cask should be reviewed for flood-related hydrostatic pressure. The analysis should include the combined effects of weight, external hydrostatic pressure, internal pressure(s), and thermal stress. Resistance of the confinement cask to flood-related hydrostatic pressure should be analyzed in accordance with Section III, Subsection NB or NC, of the ASME B&PV Code (depending on the subsection used for design).
3033 3034 3035 3036 3037 3038 3039 3040 3041 3042		Additional flood consequences include potential scouring under a foundation, damage to access routes, temporary blockage of ventilation passages with water, blockage of ventilation passages and interstitial spaces between the confinement cask and shielding structure with mud, and steep temperature gradients in the shielding structure and confinement cask. The consequences of these conditions may be analyzed in the SAR and identified in the certificate of compliance so a general licensee will be able to consider these factors when siting an ISFSI.
3042	(e)	Tornado Winds (LOW Priority)
3044 3045	(0)	The reviewer should verify that the SAR addresses the potential
3046 3047 3048 3049 3050 3051 3052 3053 3054		structural consequences of design-basis tornado or extreme wind effects. The load combination analyses should be reviewed for acceptable inclusion of tornadoes and tornado missiles. Current NRC guidance provided in RG 1.76, Rev. 1, recognizes three regions in the contiguous United States each with distinct design- basis tornado parameters. The applicant for a certificate of compliance must clearly define the boundary conditions of the proposed cask system with respect to these regions or utilized Region 1.
3055 3056 3057 3058 3059 3060		Confinement casks may be vulnerable to overturning and/or translation caused by the direct force of the drag pressure while in storage or during transfer operations. Criteria for resistance to overturning or sliding should be provided in the SAR.
3061 3062 3063 3064 3065 3066 3067 3068		Confinement casks are generally not vulnerable to damage from overpressure or negative pressure associated with tornadoes or extreme winds. However, they may be vulnerable to secondary effects, such as wind-borne missiles (see (f), below) or collapse of a weather enclosure, if used. The capability and behavior of the cask system under the collapse of any such external structure, if allowed by the Certificate of Compliance should be identified in the SAR.
3069 3070 3071 3072 3073		Tornadoes typically produce the greatest "design-level" wind effects for American sites. However, there are some potential American sites at which high winds may be more severe than the credible tornado. The SARs for a limited set of potential sites

could reflect high wind effects as a basis for structural analysis. If the certificate is to include proven design resistance to tornadoes or extreme winds, the SAR documentation must identify the wind levels (e.g., in miles or kilometers per hour), source (tornado or high wind), and specific wind-driven missiles (shape, weight, and velocity) for which the design is to be evaluated.

RG 1.76, Rev. 1, "Design-Basis Tornado for Nuclear Power Plants," provides applicable tornado-related parameters. The NRC accepts the use of ASCE 7 for conversion of wind speed to pressure and for typical building shape factors. Conversion of tornado or other wind speeds to pressure in the SAR documentation should assume that the cask system is at sea level.

The reviewer should verify that the cask system design meets appropriate guidance in the RG 1.76, Rev. 1, and 1.117, Rev. 1, and NUREG-0800 "Standard Review Plan for Power Reactors," Section 3.3.2, Rev. 3 for tornado protection.

Tornadoes and high winds can produce a significant negative pressure differential between interior spaces and the outside in a storage cask system that should be considered. This is a function of wind speed and factors relating to the structure. The magnitude of negative pressure depends on other parameters of the tornado or wind, and on wall pressure coefficients (as expressed in ASCE 7). There is no need for the SAR to separately state negative pressure to establish an envelope for approval since negative pressure is insignificant with regard to confinement cask accident pressure analysis.

The NRC does not accept the presumption that there will be sufficient warning of tornadoes that operations such as transfer between the fuel pool facility and storage site may never be exposed to tornado effects. Overturning during onsite transfer is considered by the staff to be a design-basis event. The tornado analysis should determine if tornado-induced overturning is bounded by drop and tipover cases. In addition, the SAR should show that the cask system will continue to perform its intended safety functions (i.e., criticality, radioactive material release, heat removal, radiation exposure, and retrievability).

(f) Tornado Missiles (LOW Priority)

3074

3075

3076

3077

3078

3079 3080 3081

3082

3083

3084

3085 3086

3087

3088 3089

3090

3091

3092 3093 3094

3095

3096

3097

3098

3099

3100

3101

3102 3103

3104

3105

3106 3107

3108 3109

3110

3111

3112 3113

3114

3115 3116

3117

3118 3119

3120

3121

3122 3123

3124

The applicant's evaluation of the cask system design should be reviewed with regard to the structural consequences of winddriven missile impact (RG 1.76, Rev. 1 and NUREG-0800, "Standard Review Plan for Power Reactors," Section 3.5.1.4 (Rev. 3) and Section 3.5.3 (Rev. 3) describe the effects of tornado missiles). The SAR should define the missile parameters for which the cask system is to be evaluated based on the three tornado regions currently identified in the RG 1.76, Rev. 1. Among the possible missile effects, the SAR should address those that may result in a tipover and those that may cause physical damage as a result of impact. The damage should not result in unacceptable radiation dose or significantly impair either criticality control, heat removal, or the retrievability of the fuel.

The NRC has accepted use of the analytical approaches given in U.S. Reactor Containment Technology, ORNL-NSIC-5, Volume 1, Chapter 6 (Cottrell and Savolainen), for estimating the potential effects of missile impact on steel sheets, plates, and other structures. Further guidance on analytical acceptable approaches for use in ISFSI design is provided in NUREG-0800, Section 3.5.3, "Barrier Design Procedures." In addition, for analysis and design regarding the ability of reinforced concrete structures to resist missiles, the NRC has accepted use of "Review of Procedures for the Analysis and Design of Concrete Structures to Resist Missile Impact Effects" (Kennedy, 1975).

Cask systems are not required to survive missile impacts without permanent deformation. However, the maximum extent of damage from a design-basis event must be predicted and should be sufficiently limited. Moreover, the capability of the SSC to perform their safety functions should not be impaired.

(g) Earthquake (MEDIUM Priority)

The applicant's evaluation of the cask design should be reviewed with regard to the structural consequences of the earthquake event. Cask designs must satisfy the load combinations that encompass earthquake, including those for sliding and overturning. The applicant should demonstrate that no tipover or drop will result from an earthquake. In addition, impacts between casks should either be precluded, or should be considered an accident event for which the cask must be shown to be structurally adequate.

Appendix H of ANSI/ANS-57.9-1992 provides guidance for seismic analysis. Implicit in this guidance is the assumption that the ISFSI concrete pad, supported by soil, behaves as a rigid mat and therefore possesses no out-of-plane flexibility. This is valid for the majority of nuclear power plant structures where relatively thick mats support integral reinforced concrete walls. However, ISFSI pads are usually relatively thin structures (i.e., small thickness to length ratio) and generally do not incorporate integral walls to stiffen the pad. While the cask itself is relatively rigid, the rigid cask resting on a flexible pad has a lateral mode frequency that is generally low enough to fall within the amplified range of most design earthquake spectra. Thus, in determining the inertia forces that act at the center of gravity of the cask for the purpose of evaluating the onset of sliding or tipping, the reviewer should

ensure that the applicant has either accounted for the out-of-plane flexibility of the pad in the seismic analysis or demonstrated that it is not an important parameter in determining the response of the cask, ("Influence of ISFSI Design Parameters on the Seismic Response of Dry Storage Casks," Bjorkman & Moore, 2001).
The reviewer should verify that the cask system design meets appropriate guidance in RGs 1.29, Rev. 4, 1.60, Rev. 1, 1.61, Rev. 1, and 1.92, Rev. 2, for protection against seismic events.
The SAR documentation should include analysis of the potential for impacts between components of the cask system. These could include contact between the confinement shell and its inner components or outer shield and the rocking and fall back of a vertically or horizontally oriented confinement cask on its supports.

Cask systems are not required to survive a design earthquake without permanent deformation. However, the maximum extent of damage from a design earthquake must be predicted, and the capability to provide principal safety functions should not degrade.

ii. Structural Analysis Methods

(LOW Priority) The applicant's structural analysis of various loading combinations and the resulting stresses, strains, and deformations from different loads should be reviewed. The reviewer should verify that the applicant properly used acceptable analytical approaches and tools. In addition, the applicant should have performed and reviewed the associated computations internally under an acceptable independent design review (equivalent to ASME NQA-1) and quality assurance procedures. The scope of the staff's review may include performing detailed parallel computations (such as finite element analyses) to validate submitted computations or their results. The reviewer may perform separate, less extensive calculations when these could most readily evaluate any suspected problems.

3211The applicant's analysis of loads and load combinations resulting from different3212structural conditions should be consistent with the code or criteria requirements3213used in designing the component.3214

- 3215Subsection NB or NC of the ASME B&PV Code defines the requirements for
categorizing stresses and determining allowable stress limits for the confinement
boundary of the cask. For the fuel basket, Subsection NG of the Code applies.3217boundary of the cask. For the fuel basket, Subsection NG of the Code applies.
These references also provide definitions of stress categories and stress
intensity limits for normal and off-normal operating conditions. For Level D or
accident conditions, Appendix F to the ASME B&PV Code provides definitions of
the stress intensity limits.322032213222
- 3223In accordance with these references, stress intensity is defined on the basis of3224the maximum shear stress theory for ductile materials. Since the maximum3225shear stress is not identical to the maximum octahedral shear stress, octahedral3226shear stresses should not be compared with the stress intensity limits. Values

3227 for the stress intensity limits are defined in Appendices I and III of the ASME Code. Stresses resulting from inertial and pressure loads should be considered 3228 primary stresses. Thermal stresses resulting from temperature gradients may be 3229 considered secondary stresses if they are self-limiting and do not cause 3230 structural failure. Stresses due to thermal gradients in fuel baskets may not be 3231 self-limiting and should be considered by the applicant because of the possibility 3232 3233 of uneven heat loadings of adjacent assemblies as well as the effects of asymmetry in the basket structure. 3234 3235 3236 (1) Finite-Element Analyses (HIGH Priority) 3237 3238 Because of the complexity of many structural design considerations and load conditions, structural design computations are often performed using 3239 finite-element analysis. 3240 3241 3242 The applicant should perform the finite-element analyses using a generalpurpose program that is well benchmarked and widely used for many 3243 types of structural analyses. 3244 3245 3246 Consistent with the provisions of ASME Code, Section III, Appendix F, inelastic material properties may be used for the storage cask design 3247 analysis evaluation for accident loads. The SAR should identify the 3248 3249 sources used for the inelastic material properties. 3250 Lead shielding can be modeled either with elastic or inelastic properties. 3251 The elastic modulus and limit used for lead in the elastic analysis should 3252 be determined on the basis of the potential temperature of the material. 3253 An appropriate plasticity model of lead can be used to account for its 3254 inelastic behavior. 3255 3256 3257 Nonstructural components of the confinement cask are generally not included in finite element models. However, the models should include 3258 any influence these nonstructural components may have on the structural 3259 performance of the cask. Possible influences include the nonstructural 3260 components' inertial weight, restraint to motion of the structural 3261 3262 components, and localized influence on load applications because of geometrical effects. 3263 3264 3265 Bolted connections can be modeled either discretely or with contact 3266 conditions. To discretely model the bolted connections, the applicant should use appropriate element types and material properties. With 3267 contact conditions, the interfaces joined by the bolts can be modeled as 3268 3269 tied. 3270 Verify that the applicant has provided information on any computer-based 3271 modeling as described in Appendix 3A to this chapter, and review the 3272 structural analyses submitted by the applicant in accordance with the 3273 3274 Appendix. 3275 3276 (2) Closed-Form Calculations (MEDIUM Priority) 3277

The applicant should perform closed-form calculations for relatively simple structural load conditions or conditions for which a formula has been developed. Closed-form calculations are also typically used to check the results of finite-element analyses. In addition, this type of calculation can be used for analyses involving principles of conservation of energy and comparisons of overturning moments.

One source of closed-form equations accepted by the NRC is *Formulas for Stress and Strain* (Roark, 1965). Use of a particular equation or formulation for the load conditions should be justified. The most important aspect of the calculations to evaluate is the basis for the assumptions used in the calculations. In many cases, the calculations are faulty in that they fail to include portions of the cask, or the load conditions are idealized inappropriately.

To be consistent with the provisions in Section III of the ASME Code, the analyses should use linear material properties. Linear analysis should be the basis for all closed-form calculations.

(3) Structural Analysis for Specific Cask Components

The following paragraphs present a few specific examples of structural analysis for some of the confinement cask components of a cask storage system.

(a) Fuel Basket (HIGH Priority)

The fuel basket design should be reviewed to assess the applicant's analysis of the combined effects of weight, thermal stresses, and cask-drop impact forces that could arise during spent fuel transfer and storage operations. The weight supported by the basket should be the maximum or design weight of the SNF to be stored. In addition, the applicant should evaluate all credible potential orientations of the cask and basket during cask transfer and handling drops while transferring the spent fuel into storage. End or side drops typically produce the greatest structural demand on various basket components. In an end drop, the basket is supported by the bottom of the confinement cask cavity upon impact. In the side drop, the basket structure and points of contact with the confinement cask must support the mass of the basket and loaded fuel.

In previous DSS evaluations, the NRC has accepted two approaches for analyses regarding the structural capability of the basket to acceptably survive a cask drop during transfer and storage. The first approach uses dynamic analyses in a two-step process. In Step 1, the applicant performs a dynamic analysis of the cask body impacting a target surface and assesses the performance of the cask body, including determining the timehistory response from the cask drop impact. In Step 2, this timehistory response can be translated into a forcing function that can be applied to the supporting contact points of an appropriate model of the fuel basket.

3329

3330 3331 3332

3333

3334

3335

3336

3337

3338

3339

3340 3341

3342 3343

3344 3345

3346 3347

3348

3349

3350 3351

3352

3353

3354

3355 3356 3357

3358 3359

3360

3361

3362

3363

3364

3365

3366 3367

3368

3369

3370

3371

3372

3373 3374

3375

3376

3377 3378

3379

The second approach uses a quasi-static analysis of the basket subjected to the equivalent acceleration inertial load derived from the cask-drop impact analysis. In this analysis, the applicant should apply the equivalent acceleration inertial load using an appropriate model of the basket with the location(s) most vulnerable to the impact. Support provided by the inside surface of the cask cavity should be represented by the appropriate boundary conditions on the outside edge of the basket. In addition, the applicant should conservatively select the equivalent acceleration inertial load such that it bounds the possible inertial loads resulting from a cask-drop accident onto the bounding target surfaces. If applicable, the inertial load should also account for dynamic amplification effects by using a dynamic amplification factor.

The applicant should also evaluate the buckling capacity of the cask basket materials. Acceptable guidance for this evaluation is provided in Section III of the ASME B&PV Code and NUREG/CR-6322, "Buckling Analysis of Spent Fuel Basket," (Lee and Bumpas, 1995). For this evaluation, the applicant should select the appropriate end conditions used in the buckling capacity equations on the basis of sensitivity studies. These studies can bound the range of conditions that are typically either fixed for a welded connection or free if there is no rigid connection.

(b) Closure Lid Bolts of Confinement Boundary (MEDIUM Priority)

The design analysis for the closure-lid bolts should be reviewed to ensure that it properly includes the combined effects of weight, internal pressure(s), thermal stress, O-ring compression force, cask impact forces, and bolt pre-load. Typically, applicants specify the pre-load and bolt torque for the closure bolts on the basis of bolt diameter, and the coefficient of friction between the bolt and the lid. Externally applied loads (such as the internal pressure and impact force) produce direct tensile force on the bolts as well as an additional prying force caused by lid rotation at the bolted joint. The tensile bolt force obtained by adding together the pressure loads, impact forces, thermal load, and O-ring compression force should then be compared with the tensile bolt force computed from the pre-load and operating temperature load alone. The larger of the two calculated tensile forces should control the design. The maximum design bolt force should then be obtained by combining the larger direct tensile bolt force with the additional prying force. The weight is derived from the maximum or design weight of the closure lids and any cask components supported by the lids. Acceptable analytical methods for closure bolts are given in NUREG/CR-6007, "Stress Analysis of Closure Bolts for Shipping Casks" (Mok and Fischer, 1993).

The bolt engagement lengths should be reviewed. If the lids are fabricated from relatively non-hardened materials, threaded inserts may be used in the closure lids to accommodate the hardened material of the bolts.

(c) Trunnions (LOW Priority)

The design of the trunnions, their connections to the cask body, and the cask body in the local area around the trunnions should be reviewed. The design basis for the trunnions can be either non-redundant or redundant. In either case, the design should meet the requirements of ANSI N14.6 for critical loads and the requirements of NUREG-0612, "Control of Heavy Loads at Power Plants."

Non-redundant lifting systems should be designed for not less than 6 times the material yield strength and 10 times the material ultimate strength given the design lift weight of the loaded cask. Redundant lifting systems should be designed for not less than 3 times the material yield strength and 5 times the material ultimate strength given the design loaded lift weight of the cask. Acceptance testing requirements for trunnions are discussed in Chapter 10, "Acceptance Tests and Maintenance Program Evaluation," of this SRP.

For a typical trunnion design, the maximum stress occurs at the base of the trunnion as a combination of bending and shear stresses. A conservative technique for computing the bending stress is to assume that the lifting force is applied at the cantilevered end of the trunnion, and that the stress is fully developed at the base of the trunnion. If other assumptions, including ASME Section III stress limits by the finite element design analysis and slight material yielding at localized regions, are considered, the applicant should provide adequate justifications.

iii. Structural Evaluation

(1) Structural Capability (LOW Priority)

The applicant's structural analyses should be reviewed to assess the information regarding margins of safety or compliance with ASME Code stress limits, overturning margins, and other criteria appropriate for the division of the ASME Code being used. The comparisons of capability versus demand for the various applicable loading conditions should be presented in the same terms used in the design code (e.g., type of stress). In addition, margins of safety should be included on the basis of comparisons between capacity and demand for each of structural component analyzed. The minimum margin of safety for any structural

3430 section of a component should be included for the different load conditions.

 (2) Fabrication and Construction (MEDIUM Priority)

The NRC has accepted fabrication of metallic confinement casks in accordance with Section III, Division 1 of the ASME B&PV Code. If the fabrication, construction, or assembly deviate in any way from the subsection of this standard used for design, the SAR must explicitly state the applicant's justification for the deviation, and the justification must be acceptable to the NRC.

If the design of the confinement cask is proposed to be governed by ASME, Section III, Division 2, similar to a metallic-lined concrete pressure vessel NRC would expect the fabrication/construction of such a cask to also be governed by the Division 2 requirements. Any deviations from the Code requirements should be addressed as noted for Division I above for metallic containment.

If the design of the confinement cask is proposed to be governed by ASME, Section III, Division 3, the applicant will have to provide supplemental details to the Code provisions since Subsection WC does not provide guidance to address all construction details for classic containments.

34553.5.2Other System Components and Structures Important to Safety3456

3457 3.5.2.1 Scope

This portion of the DSS structural review provides guidance by addressing procedures for evaluating all structures that are important to safety (as defined in 10 CFR Part 72.3), whether steel, concrete or other material not addressed as the confinement cask and internals (Subsection 3.5.1). Structures may include items such as gamma and neutron shielding, overpack material, any respective encasement foundations, structural supports, ventilation passages, weather enclosures, earth retention structures, and protective structures. This evaluation should include drawings, plans, sections, and technical specifications for these SSCs.

- 34683.5.2.2Structural Design Criteria and Design Features3469
- 3470 i. Design Criteria (MEDIUM Priority)
 - (1) General Structural Requirements

Structural requirements are driven by the functional roles of the system components and the need to maintain safety. Safety requirements are expressed in the referenced rules, standards, and codes and as criteria specific to the component. The basic safety requirements are that the structural and functional design must preclude the following:

• Unacceptable risk of criticality.

3481	
3482	• Unacceptable release of radioactive materials to the environment.
3483	
3484	Unacceptable radiation dose to the public or workers.
3485	
3486	• Significant impairment of retrievability of stored nuclear materials
3487	during normal and off-normal conditions.
3488	during hormal and on hormal conditions.
3489	The applicant should consider the potential for liquefaction and other soil
3490	instabilities attributable to vibrating ground motion, for any structure or
3491	
	system component such as a cask system support pad.
3492	Deinferred concrete mode that compart configurate codes in starsau de
3493	Reinforced concrete pads that support confinement casks in storage do
3494	not constitute "pavements." As such, they should be designed and
3495	constructed as foundations under an applicable code such as, ACI 349,
3496	ACI 318, or IBC. Such pads typically are not classified as important to
3497	safety; however, in some cases they may be.
3498	
3499	Steel embedments in reinforced concrete structures must satisfy the
3500	requirements of the design code applicable to the reinforced concrete
3501	structure. Similarly, structural steel must satisfy the requirements of the
3502	applicable steel design code (e.g., ASME B&PV Code, AISC, or other
3503	identified code).
3504	,
3505	(2) Applicable Codes and Standards
3506	
3507	The codes and standards identified in the SAR should be reviewed as
3508	well as their proposed applications. This subsection addresses the codes
3509	and standards that the NRC has accepted for structures important to
3510	safety categorized by application that are not confinement casks or the
3511	steel internals.
3512	
3513	The NRC accepts the use of ANSI/ANS-57.9 (together with the codes and
3514	standards cited therein) as the basic reference for the structures
3515	important to safety that are not designed in accordance with the Section
3516	III, Division 1 or Division 2 of the ASME B&PV Code. However, both the
3517	lifting equipment design and the devices for lifting system components
3518	that are important to safety must comply with ANSI Standard N14.6. The
3519	NRC accepts the load combinations shown in Table 3-3 for structures not
3520	designed under either Section III of the ASME B&PV Code Section III,
3521	Division 1 or 2 (ACI 359). See Table 3-2 for loads and their descriptions.
3522	
3523	The reviewer should review the suitability of the applicant's identification
3524	of codes and standards that are to be met by the structural design and
3525	construction of other components subject to NRC approval. The principal
3526	codes and standards include the following references that may apply to
3527	steel structures and components as well as concrete portions of the cask
3528	system:
3529	
3530	• AISC, "Specification for Structural Steel Buildings – Allowable
3531	Stress Design and Plastic Design." The NRC has not yet received

3532	any applications that propose a steel design on the basis of the
3533	AISC's "Load and Resistance Factor Design (LRFD) Specification
3534	for Structural Steel Buildings." If such a design was received, the
3535	NRC would evaluate the proposal for compliance with the load
3536	combinations summarized in Table 3-3 and for consistent
3537	application of the LRFD design methodology.
3538	
3539	• To date, the NRC has not required applicants to design or build
3540	structural steel components of a cask system important to safety
3541	in compliance with ANSI/ANS N690, "Nuclear Facilities - Steel
3542	Safety-Related Structures for Design Fabrication and Erection."
3543	
3544	 AWS D1.1, "Structural Welding Code Steel."
3545	
3546	 ASCE 7, "Minimum Design Loads for Buildings and Other
3547	Structures."
3548	
3549	ACI 349, Appendix D, for anchoring to concrete or Section 10.14
3550	for composite compression sections, as applicable, when
3551	constructed of structural steel embedded in reinforced concrete.
3552	Where requirements do not conflict, the steel must also comply
3553	with the requirements of the codes stated above. In addition, ACI
3554	349 defines constraints for obtaining ductile response to extreme
3555	loads by ensuring that the strength of steel embedments controls
3556	the design; these constraints must not be subverted by over-
3557	design of the steel.
3558	For reinforced concrete the NDC has not accorded the use of a
3559	 For reinforced concrete the NRC has not accepted the use of a set of criteria calculated from multiple standards and cades, event
3560	set of criteria selected from multiple standards and codes, except
3561 3562	when the selected criteria meet the most limiting requirements of
3563	each code. However, in recognizing a graded approach to quality assurance, the NRC has approved the use of ACI 349 for design
3564	and material selection for reinforced concrete structures important
3565	to safety (not confinement). The NRC has allowed the optional
3566	use of ACI 318 as an alternative standard for construction as
3567	described below.
3568	
3569	 In both cases, however, the design, material selection and
3570	specification, and construction must also meet any additional or
3571	more stringent requirements given in ANSI/ANS-57.9.
3572	
3573	The following paragraphs identify the portions of ACI 349 that
3574	apply to design (including material selection) and must be met by
3575	applicants who choose to use ACI 318 for construction. (The
3576	paragraph references are as in ACI 349-06.). Unlisted and
3577	excepted sections address construction requirements for which
3578	the NRC accepts substitution of ACI 318.
3579	
3580	Chapter 1 "General Requirements," Sections 1.1 and 1.5
3581	(except references to construction), and Sections
3582	1.2 and 1.4.

3583	Chapter 2	"Definitions."
3584	Chapter 3	"Materials" (except Sections 3.1, 3.2.3, 3.3.3,
3585	Chapter 0	3.5.3.1.1, 3.6.1.0, and 3.7).
3586	Chapter 4	"Durability Requirements"
3587	Chapter 6	"Form Work, Embedded Pipes, and Construction
3588	Chapter 0	Joints," Sections 6.3.13, 6.3.14, and 6.3.15.
3589	Chapter 7	"Details of Reinforcement."
3590	Chapter 8	"Analysis and Design General Considerations."
3591	Chapter 9	"Strength and Serviceability Requirements."
3592	Chapter 10	"Flexure and Axial Load."
3593	Chapter 11	"Shear and Torsion."
3594	Chapter 12	"Development and Splices of Reinforcement."
3595	Chapter 13	"Two-way Slab Systems."
3596	Chapter 14	"Walls."
3597	Chapter 15	"Footings."
3598	Chapter 16	"Precast Concrete."
3599	Chapter 17	"Composite Concrete Flexural Members."
3600	Chapter 18	"Prestressed Concrete."
3601	Chapter 19	"Shells."
3602	Appendix A	"Strut-and-Tie Models."
3603	Appendix D	"Anchoring to Concrete."
3604	Appendix E	"Thermal Considerations."
3605	Appendix F	"Special Provisions for Impulsive and Impactive
3606	Лррепаіх і	Effects" (except that the load combinations included
3607		herein, must be used.
3608		
3609	For fluid syst	ems used with a cask system that may be connected
3609 3610		ems used with a cask system that may be connected
3610	to a penetrat	ion of the confinement barrier outside an enclosing
3610 3611	to a penetral structure lice	ion of the confinement barrier outside an enclosing ensed under 10 CFR Part 50 (e.g., the fuel pool
3610 3611 3612	to a penetral structure lice building), th	ion of the confinement barrier outside an enclosing ensed under 10 CFR Part 50 (e.g., the fuel pool ne NRC accepts construction consistent with
3610 3611 3612 3613	to a penetral structure lice building), th requirements	ion of the confinement barrier outside an enclosing ensed under 10 CFR Part 50 (e.g., the fuel pool ine NRC accepts construction consistent with comparable to those used for Quality Group C, as
3610 3611 3612 3613 3614	to a penetral structure lice building), th requirements shown in RG	ion of the confinement barrier outside an enclosing ensed under 10 CFR Part 50 (e.g., the fuel pool ine NRC accepts construction consistent with comparable to those used for Quality Group C, as 1.26, "Quality Group Classifications and Standards
3610 3611 3612 3613 3614 3615	to a penetral structure lice building), th requirements shown in RG for Water-,	ion of the confinement barrier outside an enclosing insed under 10 CFR Part 50 (e.g., the fuel pool ie NRC accepts construction consistent with comparable to those used for Quality Group C, as 1.26, "Quality Group Classifications and Standards Steam-, and Radioactive Waste-Containing
3610 3611 3612 3613 3614 3615 3616	to a penetrat structure lice building), th requirements shown in RG for Water-, Components	ion of the confinement barrier outside an enclosing ensed under 10 CFR Part 50 (e.g., the fuel pool in NRC accepts construction consistent with comparable to those used for Quality Group C, as 1.26, "Quality Group Classifications and Standards Steam-, and Radioactive Waste-Containing of Nuclear Power Plants," Rev. 4 and
3610 3611 3612 3613 3614 3615 3616 3617	to a penetrat structure lice building), th requirements shown in RG for Water-, Components NUREG-0800	tion of the confinement barrier outside an enclosing ensed under 10 CFR Part 50 (e.g., the fuel pool be NRC accepts construction consistent with comparable to those used for Quality Group C, as 1.26, "Quality Group Classifications and Standards Steam-, and Radioactive Waste-Containing of Nuclear Power Plants," Rev. 4 and 0," Section 3.2.2, "Standard Review Plan for Nuclear
3610 3611 3612 3613 3614 3615 3616 3617 3618	to a penetral structure lice building), th requirements shown in RG for Water-, Components NUREG-0800 Power Plants	ion of the confinement barrier outside an enclosing ensed under 10 CFR Part 50 (e.g., the fuel pool ie NRC accepts construction consistent with comparable to those used for Quality Group C, as 1.26, "Quality Group Classifications and Standards Steam-, and Radioactive Waste-Containing of Nuclear Power Plants," Rev. 4 and 0," Section 3.2.2, "Standard Review Plan for Nuclear 5." In this context, "construction" includes materials,
3610 3611 3612 3613 3614 3615 3616 3617 3618 3619	to a penetral structure lice building), the requirements shown in RG for Water-, Components NUREG-0800 Power Plants design, fab	ion of the confinement barrier outside an enclosing ensed under 10 CFR Part 50 (e.g., the fuel pool in NRC accepts construction consistent with comparable to those used for Quality Group C, as 1.26, "Quality Group Classifications and Standards Steam-, and Radioactive Waste-Containing of Nuclear Power Plants," Rev. 4 and 0," Section 3.2.2, "Standard Review Plan for Nuclear a." In this context, "construction" includes materials, rication, examination, testing, inspection, and
3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620	to a penetral structure lice building), the requirements shown in RG for Water-, Components NUREG-0800 Power Plants design, fab certification	ion of the confinement barrier outside an enclosing ensed under 10 CFR Part 50 (e.g., the fuel pool be NRC accepts construction consistent with comparable to those used for Quality Group C, as 1.26, "Quality Group Classifications and Standards Steam-, and Radioactive Waste-Containing of Nuclear Power Plants," Rev. 4 and 0," Section 3.2.2, "Standard Review Plan for Nuclear s." In this context, "construction" includes materials, rication, examination, testing, inspection, and required in the manufacture and installation of
3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621	to a penetrat structure lice building), th requirements shown in RG for Water-, Components NUREG-0800 Power Plants design, fab certification components.	ion of the confinement barrier outside an enclosing ensed under 10 CFR Part 50 (e.g., the fuel pool in NRC accepts construction consistent with comparable to those used for Quality Group C, as 1.26, "Quality Group Classifications and Standards Steam-, and Radioactive Waste-Containing of Nuclear Power Plants," Rev. 4 and 0," Section 3.2.2, "Standard Review Plan for Nuclear a." In this context, "construction" includes materials, rication, examination, testing, inspection, and
3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622	to a penetral structure lice building), the requirements shown in RG for Water-, Components NUREG-0800 Power Plants design, fab certification	ion of the confinement barrier outside an enclosing ensed under 10 CFR Part 50 (e.g., the fuel pool be NRC accepts construction consistent with comparable to those used for Quality Group C, as 1.26, "Quality Group Classifications and Standards Steam-, and Radioactive Waste-Containing of Nuclear Power Plants," Rev. 4 and 0," Section 3.2.2, "Standard Review Plan for Nuclear s." In this context, "construction" includes materials, rication, examination, testing, inspection, and required in the manufacture and installation of
3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623	to a penetral structure lice building), the requirements shown in RG for Water-, Components NUREG-0800 Power Plants design, fab certification components. be justified.	ion of the confinement barrier outside an enclosing insed under 10 CFR Part 50 (e.g., the fuel pool in NRC accepts construction consistent with comparable to those used for Quality Group C, as 1.26, "Quality Group Classifications and Standards Steam-, and Radioactive Waste-Containing of Nuclear Power Plants," Rev. 4 and 0," Section 3.2.2, "Standard Review Plan for Nuclear a." In this context, "construction" includes materials, rication, examination, testing, inspection, and required in the manufacture and installation of Quality Group D may, under some circumstances
3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3623	to a penetral structure lice building), the requirements shown in RG for Water-, Components NUREG-0800 Power Plants design, fab certification components. be justified. Quality Grou	ion of the confinement barrier outside an enclosing insed under 10 CFR Part 50 (e.g., the fuel pool be NRC accepts construction consistent with comparable to those used for Quality Group C, as 1.26, "Quality Group Classifications and Standards Steam-, and Radioactive Waste-Containing of Nuclear Power Plants," Rev. 4 and 0," Section 3.2.2, "Standard Review Plan for Nuclear 5." In this context, "construction" includes materials, rication, examination, testing, inspection, and required in the manufacture and installation of Quality Group D may, under some circumstances
3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3621 3622 3623 3624 3625	to a penetral structure lice building), th requirements shown in RG for Water-, Components NUREG-0800 Power Plants design, fab certification components. be justified. Quality Grou atmospheric	tion of the confinement barrier outside an enclosing ensed under 10 CFR Part 50 (e.g., the fuel pool be NRC accepts construction consistent with comparable to those used for Quality Group C, as 1.26, "Quality Group Classifications and Standards Steam-, and Radioactive Waste-Containing of Nuclear Power Plants," Rev. 4 and 0," Section 3.2.2, "Standard Review Plan for Nuclear s." In this context, "construction" includes materials, rication, examination, testing, inspection, and required in the manufacture and installation of Quality Group D may, under some circumstances
3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3623	to a penetral structure lice building), th requirements shown in RG for Water-, Components NUREG-0800 Power Plants design, fab certification components. be justified. Quality Grou atmospheric conformance	tion of the confinement barrier outside an enclosing ensed under 10 CFR Part 50 (e.g., the fuel pool be NRC accepts construction consistent with comparable to those used for Quality Group C, as 1.26, "Quality Group Classifications and Standards Steam-, and Radioactive Waste-Containing of Nuclear Power Plants," Rev. 4 and 0," Section 3.2.2, "Standard Review Plan for Nuclear a." In this context, "construction" includes materials, rication, examination, testing, inspection, and required in the manufacture and installation of Quality Group D may, under some circumstances p C requires construction of piping, pumps, valves, storage tanks, and 0-15 psig storage tanks in with Section III of ASME B&PV Code 1, Class 3
3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3623 3624 3625 3626	to a penetral structure lice building), th requirements shown in RG for Water-, Components NUREG-0800 Power Plants design, fab certification components. be justified. Quality Grou atmospheric conformance (Subsection	tion of the confinement barrier outside an enclosing ensed under 10 CFR Part 50 (e.g., the fuel pool be NRC accepts construction consistent with comparable to those used for Quality Group C, as 1.26, "Quality Group Classifications and Standards Steam-, and Radioactive Waste-Containing of Nuclear Power Plants," Rev. 4 and 0," Section 3.2.2, "Standard Review Plan for Nuclear a." In this context, "construction" includes materials, rication, examination, testing, inspection, and required in the manufacture and installation of Quality Group D may, under some circumstances p C requires construction of piping, pumps, valves, storage tanks, and 0-15 psig storage tanks in with Section III of ASME B&PV Code 1, Class 3 ND). In addition, Quality Group C requires that
3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3623 3624 3625 3626 3627	to a penetral structure lice building), th requirements shown in RG for Water-, Components NUREG-0800 Power Plants design, fab certification components. be justified. Quality Grou atmospheric conformance (Subsection	ion of the confinement barrier outside an enclosing insed under 10 CFR Part 50 (e.g., the fuel pool be NRC accepts construction consistent with comparable to those used for Quality Group C, as 1.26, "Quality Group Classifications and Standards Steam-, and Radioactive Waste-Containing of Nuclear Power Plants," Rev. 4 and 0," Section 3.2.2, "Standard Review Plan for Nuclear 5." In this context, "construction" includes materials, rication, examination, testing, inspection, and required in the manufacture and installation of Quality Group D may, under some circumstances p C requires construction of piping, pumps, valves, storage tanks, and 0-15 psig storage tanks in with Section III of ASME B&PV Code 1, Class 3 ND). In addition, Quality Group C requires that these components meet the requirements of
3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3623 3624 3625 3625 3626 3627 3628	to a penetral structure lice building), the requirements shown in RG for Water-, Components NUREG-0800 Power Plants design, fab certification components. be justified. Quality Grou atmospheric conformance (Subsection supports for	ion of the confinement barrier outside an enclosing insed under 10 CFR Part 50 (e.g., the fuel pool be NRC accepts construction consistent with comparable to those used for Quality Group C, as 1.26, "Quality Group Classifications and Standards Steam-, and Radioactive Waste-Containing of Nuclear Power Plants," Rev. 4 and 0," Section 3.2.2, "Standard Review Plan for Nuclear 5." In this context, "construction" includes materials, rication, examination, testing, inspection, and required in the manufacture and installation of Quality Group D may, under some circumstances p C requires construction of piping, pumps, valves, storage tanks, and 0-15 psig storage tanks in with Section III of ASME B&PV Code 1, Class 3 ND). In addition, Quality Group C requires that these components meet the requirements of
3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3622 3623 3624 3625 3625 3626 3627 3628 3629	to a penetral structure lice building), th requirements shown in RG for Water-, Components NUREG-0800 Power Plants design, fab certification components. be justified. Quality Grou atmospheric conformance (Subsection N	ion of the confinement barrier outside an enclosing insed under 10 CFR Part 50 (e.g., the fuel pool ie NRC accepts construction consistent with comparable to those used for Quality Group C, as 1.26, "Quality Group Classifications and Standards Steam-, and Radioactive Waste-Containing of Nuclear Power Plants," Rev. 4 and 0," Section 3.2.2, "Standard Review Plan for Nuclear a." In this context, "construction" includes materials, rication, examination, testing, inspection, and required in the manufacture and installation of Quality Group D may, under some circumstances p C requires construction of piping, pumps, valves, storage tanks, and 0-15 psig storage tanks in with Section III of ASME B&PV Code 1, Class 3 ND). In addition, Quality Group C requires that these components meet the requirements of F.
3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630	to a penetral structure lice building), th requirements shown in RG for Water-, Components NUREG-0800 Power Plants design, fab certification components. be justified. Quality Grou atmospheric conformance (Subsection supports for Subsection N By contrast,	ion of the confinement barrier outside an enclosing insed under 10 CFR Part 50 (e.g., the fuel pool in NRC accepts construction consistent with comparable to those used for Quality Group C, as 1.26, "Quality Group Classifications and Standards Steam-, and Radioactive Waste-Containing of Nuclear Power Plants," Rev. 4 and 0," Section 3.2.2, "Standard Review Plan for Nuclear 5." In this context, "construction" includes materials, rication, examination, testing, inspection, and required in the manufacture and installation of Quality Group D may, under some circumstances p C requires construction of piping, pumps, valves, storage tanks, and 0-15 psig storage tanks in with Section III of ASME B&PV Code 1, Class 3 ND). In addition, Quality Group C requires that these components meet the requirements of
3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631	to a penetral structure lice building), th requirements shown in RG for Water-, Components NUREG-0800 Power Plants design, fab certification components. be justified. Quality Grou atmospheric conformance (Subsection supports for Subsection N By contrast,	ion of the confinement barrier outside an enclosing insed under 10 CFR Part 50 (e.g., the fuel pool ine NRC accepts construction consistent with comparable to those used for Quality Group C, as 1.26, "Quality Group Classifications and Standards Steam-, and Radioactive Waste-Containing of Nuclear Power Plants," Rev. 4 and 0," Section 3.2.2, "Standard Review Plan for Nuclear a." In this context, "construction" includes materials, rication, examination, testing, inspection, and required in the manufacture and installation of Quality Group D may, under some circumstances p C requires construction of piping, pumps, valves, storage tanks, and 0-15 psig storage tanks in with Section III of ASME B&PV Code 1, Class 3 ND). In addition, Quality Group C requires that these components meet the requirements of F.

3634 3635			Piping:	ANSI/ASME B31.1, "Power Piping."
3636 3637			Pumps:	Manufacturer's Standards.
3638 3639			Valves:	ANSI/ASME B31.1 and ANSI B16.34, "Valves."
3640			Atmospheric S	Storage Tanks:
3641			Autospheric C	American Water Works Association (AWWA),
3642				"Standard for Steel Tanks — Standpipes,
3643				Reservoirs, and Elevated Tanks for Water Storage"
3644				(AWWA D100) or ANSI/ASME B96.1, "Specification
3645				
3646				for Welded Aluminum-Alloy Field-Erected Storage
				Tanks."
3647			0 15 pair Sta	
3648			0–15 psig Stor	T
3649				American Petroleum Institute's (API)
3650				"Recommended Rules for Design and Construction
3651				of Large, Welded, Low-Pressure Storage Tanks"
3652				(API 620).
3653				ante the "Devendence of their disting" and is able to
3654				cepts the "Boundaries of Jurisdiction" applicable to
3655				ubsections NB-1130 and NC-1130, of ASME B&PV
3656				boundaries apply to attachments to penetrations of
3657				ent barrier outside an enclosure licensed under 10
3658				Specifically, these boundaries define whether the
3659				must be designed, fabricated, and installed in
3660				vith Section III, Subsection NB or NC, of ASME
3661			B&PV Code.	
3662				
3663				des, other than those discussed herein (e.g., the
3664			,	e Safety, and Lightning Protection Codes"
3665			•	by the National Fire Protection Association [NFPA]),
3666			• • • •	he design and construction of the cask system. It is
3667				include such codes in the design by inclusion in the
3668				designs of structures subject to approval are also
3669				ch other codes, the review should include evaluation
3670			of compliance	with those codes.
3671				
3672				s not yet received any applications for licensing or
3673				cask system that included masonry important to
3674			•	nry is not considered suitable for confinement, but it
3675			•	eptable for enclosures and physical or radiation-
3676			shielding appli	ications.
3677				
3678	ii.	Structural Des	ign Features (N	MEDIUM Priority)
3679		T I I I I I		
3680				e SAR documentation should be reviewed to ensure
3681				performance required of the structures. The design
3682				ement safety-related structures of the cask system
3683				erstanding to be reached by the reviewer of the
3684		significance of	the satety-rela	ated features to the required performance.

3685 3686 3687 3688 3689 2600	The SAR documentation should also be reviewed regarding the physical design of the structures important to safety. This should include the following as a minimum. As appropriate to the specific structure the following information should be provided.
3690 3691 2602	Dimensioning of all structural elements.
3692 3693 3694 3695	• Locations, sizes, configuration, spacing, welding, fasteners etc. of the safety-related non-confinement structures should be provided.
3696 3697 3698	 Locations and specifications for controls, that will be necessary in fabrication and construction.
3699 3700 3701 3702	 Structural materials with defining standards or specifications summarized or references to Chapter 8, "Materials Evaluation" of this SRP herein should be reviewed.
3702 3703 3704 3705	 Information on the physical design of attachments, embedments, and other structural elements should be provided.
3706 3707 3708 3709 3710 3711 3712	Auxiliary cask system equipment important to safety has often been specially designed. In particular, the structural design features that provide for safety should be supported by design or operational analysis. This analysis should demonstrate that the equipment will meet the basic safety criteria, regardless of problems that may occur in mechanical, electrical, human operator, or other operations.
3712 3713 3714 3715 3716 3716 3717 3718 3719 3720	The NRC has accepted and approved cask system designs that depend on the operation of new mechanical systems for system use. NRC approval does not certify that the mechanical systems will operate as projected but rather that proper functioning is necessary to successfully complete a specified operation. Such approval reflects a finding by the NRC staff that, regardless of the system's success (or lack thereof) in mechanical operation, the basic safety criteria will be met, as stated above.
3720 3721 3722 3723 3724 3725 3726 3727	The proposed system design should be reviewed against planned normal and off-normal, operations and accidents. The reviewer should determine whether the structural design of the equipment provides for continuing satisfaction of the basic safety criteria. The reviewer should consider that the equipment could fail to operate at any time (i.e., during operations at the physical limits of speed or range, or during a credible, off-normal, or accident-level event).

3728 3.5.2.3 Structural Analysis

3729 3730 Subsections 3.5.1.4 (i) and (ii) provide guidance regarding structural analysis for the 3731 confinement cask and metallic internals of cask systems. These subsections provide 3732 supplemental guidance primarily related to steel and concrete structures, other than the 3733 confinement cask and its contents and integral components that are important to safety. The 3734 appropriateness, completeness, and correctness of the applicant's proposed implementation of these load conditions and combinations for the metallic and reinforced concrete structuresshould be reviewed.

3738 i.

Load Conditions (MEDIUM Priority)

The load definitions and combinations shown in Tables 3-2 and 3-3 have been accepted by the NRC for analysis of steel and reinforced concrete ISFSI structures that are important to safety. These load combinations are included in or derived from ANSI/ANS 57.9 and ACI 349.

- 37443745Structures that are important to safety should have sufficient capability for every3746section to withstand the worst-case loads under normal and off-normal3747conditions. Such capability ensures that these structures will not experience3748permanent deformation or degradation of the capability to withstand any future3749loadings.
- 3751 The NRC accepts the load combinations in Table 3-3 that implement and 3752 supplement those of ANSI/ANS-57.9.
 - (1) Normal Conditions

The SAR documentation should be reviewed to ensure adequate inclusion of the following conditions that may be of particular concern for concrete structures important to safety if the loading condition is appropriate:

- Live and dynamic loads associated with transfer of the confinement cask to and from its storage position and in its storage location for its service lifetime.
- Live and dynamic loads associated with installing closures.
- Load or support conditions associated with potential differential settlement of foundations over the life of the cask system.
- Thermal gradients associated with the normal range of operations and ranges of ambient temperature.
- Thermal gradients that may result from impingement of precipitation on highly heated concrete.
- (2) Off-Normal Conditions

The SAR should be reviewed to ensure adequate inclusion of the following off-normal operations and events:

• Live and dynamic loads associated with equipment or instrument malfunctions, or accidental misuse during transfer of the confinement cask to and from its storage position.

3785 3786 3787		• Situations in which a confinement cask is jammed or moved at an excessive speed into contact with a reinforced concrete structure.
3788 3789 3790		• The impact of reinforced concrete structures by a suspended transfer, confinement, or storage cask.
3791 3792		Off-normal ambient temperature conditions (although they may be less severe than accident conditions, these may be of concern because of different acts of factors in the off normal and accident.
3793 3794 3795		because of different sets of factors in the off-normal and accident load combinations, and because concrete temperature limits for off-normal conditions are the same as for normal conditions. Note
3796 3797 3798		that greatly elevated concrete temperatures are allowed for accident conditions in accordance with ACI 349, Section A.4).
3799 3800	(3)	Accident Conditions and Natural Phenomena Events
3801 3802 3803 3804		The SAR should be reviewed for adequate inclusion of the following conditions associated with accident and conditions that may be of special concern for reinforced concrete structures:
3805 3806 3807		• Loads associated with accidental drops or other impacts during transfer of the confinement cask to and from its storage position.
3808 3809		• Events that produce extreme thermal gradients in the concrete.
3810 3811 3812		• Contact caused by earthquake between the confinement cask and the reinforced concrete structures.
3813 3814		• Drop of a closure into position or onto the structure.
3815 3816 3817		The ACI codes are intended to ensure ductile response beyond initial yield of structural components. ACI 349 also imposes conditions on design (beyond those of ACI 318) that effectively increase ductility. In
3818 3819 3820		particular, the reviewer should review the proposed reinforced concrete design to ensure that it provides code levels of ductility by satisfying the pertinent ACI 349 provisions. Seismic loads are considered to be
3821 3822 3823		"impulsive" and, therefore, are subject to the additional design constraints of Appendix F to ACI 349. Other accident conditions or natural phenomenon events may also produce impulsive or impactive loadings
3824 3825 3826		requiring the additional requirements of Appendix F to ACI 349. Reviewers should check the steel reinforcement schedules and drawings
3820 3827 3828 3829		to ensure that any reinforcing steel quantities, sizes, and locations are consistent with the design analysis.
3830 3831		In particular, consider the following aspects of the design:
3832 3833 3834		• Upper limit (60 ksi, 4219 kgf/cm2) on the specified yield strength of reinforcement, lower limit (3 ksi, 211 kgf/cm2) on concrete specified compressive strength (f"c), and upper limit on concrete

3835			strength, as analyzed and specified for the ISFSI cask storage
3836			pads.
3837			
3838		•	Limit on the amount (cross-section area) of compressive
3839			reinforcement in flexural members.
3840			
3841		•	Requirements on continuation and development lengths of tensile
3842			reinforcement.
3843			
3844		•	Specifications for confinement and lateral reinforcement in
3845			compression members, in other compressive steel, and at
3846			connections of framing members.
3847			·
3848		•	Aspects of the design that ensure flexure controls (and limits) the
3849			response.
3850			
3851		•	Requirements for shear reinforcement.
3852			
3853		•	Limitations on the amount of tensile steel in the flexural members
3854			relative to that which would produce a balanced strain condition.
3855			
3856		•	Projected maximum responses to design-basis loads within the
3857			permissible ductility ratios for the controlling structural action.
3858			
3859		•	Embedments designed for ductile failure and to fail in the steel
3860		-	before pullout from the concrete.
3861			before pullout from the concrete.
3862			In addition, the construction specifications or descriptions (to the
3863			extent included in the SAR documentation) should be reviewed to
3864			ensure that substitution of materials, use of larger sizes, or
3865			placement of larger quantities of steel will be precluded, and that
3866			provisions for splicing or development of reinforcing steel will not
3867			reduce ductility of the members.
3868			reduce ductility of the members.
3869	ii.	Structural Apr	alysis Methods (HIGH Priority)
3870	н.	Structural And	alysis Methous (HIGH Phoney)
3870		The applicant	should select and use analytical methods that are appropriate for
3872			type of materials and construction. In certain instances, however,
			31
3873 3874			may have to adapt existing analytical methods, codes, and models
			cialized cask system equipment designs. Such instances require
3875			w attention. In particular, the reviewer should ensure that the
3876			oach is fully documented, supported, and acceptable. In addition,
3877			should consider the potential for safety-related risk associated with
3878		•	or in the design of special cask system equipment. The degree of
3879			s the suitability and acceptability of the adapted approach.
3880			5.1.4.ii provides acceptable analytical methods of analysis that can
3881			Appendix 3A addresses the application of computational modeling
3882		software.	
3883		Ctru of the L	stuction (LON/ Dright)
3884	iii.	Structural EVa	aluation (LOW Priority)

In evaluating the variety of cask system equipment and structures that may be important to safety, the reviewer should ensure compliance with the basic safety criteria in Subsection 3.5.2.2 (i)(1) and that the specified parameters for acceptability such as stress, strain or deflection are within the permitted values identified in Subsection 3.5.2.2.i.(2).

The NRC accepts strength design as presented in the current revision of ACI 349 for reinforced concrete structures important to safety that are not within the scope of ACI 359. If the applicant uses another design approach, the review conducted within the scope of the DSS SAR evaluation should include in-depth comparison of that approach with the provisions of ACI 349.

The NRC accepts the use of guidance in NUREG-0800 for analysis of natural phenomena, as related to the conditions that apply to the design of cask systems. However, the load combinations shown in Table 3-3 and the design and construction requirements of the codes cited above take precedence. The NRC accepts the American Society of Civil Engineers' "Seismic Analysis of Safety Related Nuclear Structures" (ASCE 4) and ASCE 7 as the standards for seismic analysis. In addition, the NRC accepts tornado missile impact analysis in accordance with Kennedy's *Review of Procedures for the Analysis and Design of Concrete Structures to Resist Missile Impact Effects.*

(1) Structural Capability (LOW Priority)

Section 3.5.1.4.iii (1) addresses the assessment of the structures capability with respect to the ASME Code stress limits which are appropriate for metallic structures under Division 1 and for concrete structures under Division 2.

For other safety related structural concrete, strength (or "ultimate strength") design is the approach usually used in reinforced concrete design. Strength design is the only design approach that has been accepted for reinforced concrete structures that are part of cask systems not within the scope of ACI 359, and it is the approach used in the current revisions of ACI 349. This design code was tested and developed on the basis of extensive empirical experience with concrete construction. The current strength design approach, as presented in this code, includes empirically derived requirements and constraints. Determination that a reinforced concrete structure designed by another approach satisfies ACI 349 typically requires clause-by-clause review of the code for compliance. Allowable stress design was formerly used as the basis for ACI codes related to reinforced concrete design. However, those codes do not reflect additional experience gained through observations of structural performance and experimental testing that has since been included in the current approach to strength design.

With respect to structural steel or other metallic structures important to safety, but not to the confinement structure or internals, the structural capability of the design may be based on the ASME Code with the use of the appropriate subsections as identified in Section 3.5.2.2 (i)(2) herein,

or the AISC specifications also identified. Allowable stress, plastic design, and load and resistance factor methods of design are acceptable for use when there is justification for the method used provided in the application.

3941

3936

3937 3938

3939

3940

3942 3943

3944 3945

3946 3947

3948 3949

3950

3951

3952

3953

3954 3955

3956 3957

3958

3959

3960 3961 3962

3963

3964 3965

3966

3967

3968 3969

3970

3971

3972

3973

3975

3977

(2) Fabrication and Construction (MEDIUM Priority)

For structures and structural components analyzed and designed based on ASME B&PV Code requirements of Section III, Division 1 or Division 2, the fabrication and construction provisions of these documents should form the basis for the production and installation of the structures and components of the cask storage system.

NRC accepts construction in accordance with ACI 349 or ACI 318. Selection and validation of the proper concrete mix to meet design requirements are considered a construction function. By contrast, specification of cement type, aggregates, and special requirements for durability and elevated temperatures is considered a design or material selection function and is, therefore, governed by ACI 349 (and/or ACI 359, if applicable).

The following sections of ACI 318 (chapters, appendix, and paragraphing per ACI-318-02) have been accepted by the NRC for construction of ISFSI reinforced concrete structures that are not within the scope of ACI 359:

Chapter 1 "General Requirements," Sections 1.1.1, 1.1.2, 1.1.3. and 1.1.5 (except references to design and material properties), and Section 1.3. Chapter 2 "Definitions" (use ACI 349, Chapter 2). Chapter 3 "Materials," Sections 3.1 and 3.8 (except A-616, A-617, A-767, A-775, A-884, and A-934). Chapter 4 "Durability Requirements." Chapter 5 "Concrete Quality, Mixing, and Placing." "Form Work, Embedded Pipes, and Construction Chapter 6 Joints" (except references to design and material properties, which are governed by ACI 349).

3974 3.5.3 Other Structural Components Subject to NRC Approval (MEDIUM Priority)

3976 3.5.3.1 Scope

3978 The cask system description provided in the SAR may include a variety of components that are 3979 not important to safety such as transporters, ram systems, vacuum drying systems, drain and fill quick disconnects, support pads and other concrete structures not important to safety. These 3980 3981 components should be reviewed to ensure proper functioning to the extent that the structures represent required elements of the total cask system. In particular, the reviewer should 3982 evaluate all structures that are proposed for approval in a cask system design acceptable to the 3983 NRC. This evaluation should ensure that the SAR provides sufficient information to confirm the 3984 3985 proper functioning of the components and the overall system. For each system element that is not important to safety, the reviewer should address the potential response to accidents and 3986

3987 natural phenomenon events to ensure that the given element will not jeopardize the safety
3988 provided by other system elements.
3989

- 3990 3.5.3.2 Structural Design Criteria and Design Features
- 3992 i. Design Criteria

(1) General Structural Requirements

Structures subject to approval but not important to safety should be reviewed on the basis of determining whether the structures can properly perform their intended function(s). In addition, the NRC review should ensure that the response of the structures to credible off-normal and accident conditions will not create secondary hazards for cask system components or the stored nuclear materials.

(2) Applicable Codes and Standards

The reviewer should review the suitability of the applicant's identification of codes and standards to be met by the structural design and construction of other components subject to NRC approval. The principal codes and standards include the following references although any of the previously identified codes in Sections 3.5.1.2.ii(2) and 3.5.2.2.i(2) may be used.

- ASCE 7.
 - International Building Code (IBC).
 - AISC, "Specification for Structural Steel Buildings—Allowable Stress Design and Plastic Design."
 - AISC, "Code of Standard Practice for Steel Buildings and Bridges."
 - ASME B&PV Code, Section VIII.
 - ACI 318.
- ii. Structural Design Features

The reviewer should examine the adequacy of the applicant's descriptions of cask system components that are not important to safety but are subject to NRC approval. These descriptions should adequately identify the intended function(s) of each component.

4033Although the components evaluated in this portion of the DSS review are not4034directly important to safety, a credible possibility may exist that the structural4035response or failure of these components may cause a secondary risk to other4036components that *are* important to safety or to the subject nuclear material. For4037example, under tornado or seismic event conditions, the components may impact

- 4038other components that are important to safety. When such a possibility exists,4039the applicant must provide more extensive structural information and greater4040assurance of acceptable fabrication and construction.
- 4042 3.5.3.3 Materials Related to Structural Evaluation

The identification of structural materials should be reviewed in coordination with the materials discipline in Chapter 8 to the extent appropriate to determine if they are adequate for their intended function(s). The reviewer should determine the required level of review and extent of information in relation to the possibility and consequences of secondary effects on components that are important to safety. Materials should be as permitted or specified in the applicable code(s).

4051 3.5.3.4 Structural Analysis

4041

4043

4050

4052

4063 4064

4065

4066 4067 4068

4069 4070

4071

4072 4073

4074 4075

4076 4077

4078

4079

4080

4081 4082

- 4053 i. Load Conditions 4054
- 4055The load definitions and combinations shown in Tables 3-2 and 3-3 have been4056accepted by the NRC for analysis of steel and reinforced concrete ISFSI4057structures that are important to safety. These load combinations may also be4058used for structures not important to safety.
- 4060In addition, for structures not important to safety, the NRC accepts the use of4061load combinations given in the IBC as well as ACI 349, ANSI/ANS 57.9, and4062ASCE 7.

The NRC also accepts the load descriptions, combinations, and analytical approaches given in the ASME B&PV Code, Section VIII, for pressure systems, vessels, and casks that do not form elements of the confinement cask.

ii. Structural Analysis Methods

The reviewer should evaluate the applicant's selection and use of structural analysis methods, codes, and models and ensure that these are consistent with and appropriate for the design code applicable to the component (as discussed above).

iii. Structural Evaluation

The reviewer may determine that an NRC structural evaluation of certain other components is not necessary for approval of the cask system. Similarly, the NRC may determine that approval of the cask system does not need to include specific components that are not important to safety, even though the applicant seeks approval of those components as part of the application.

4083The SER should identify the system components that are excluded from the
approval, stating the rationale for exclusion of each. As a corollary, the SER
should also identify the components that are included, stating any limitations on
the scope of the NRC review (e.g., "reviewed for functionality only").4087

4088 **3.6 Evaluation Findings**

4089

4095

4109

4110

4111 4112

4113 4114

4115 4116

4117

4118

4119

4120 4121 4122

4123

4124 4125

4126

4127 4128

4129 4130

4131 4132 4133

4134 4135

The structural evaluation must provide reasonable assurance that the cask system will allow safe storage of SNF. This finding should be reached on the basis of a review that considered the regulation, appropriate RG, applicable codes and standards, and accepted engineering practices. Acceptance of the structural design of a storage cask system therefore implies that the design meets the relevant requirements of the following regulations:

- 4096 F3.1 The SAR adequately describes all SSCs that are important to safety, providing 4097 drawings and text in sufficient detail to allow evaluation of their structural 4098 effectiveness.
- 4100 F3.2 The applicant has met the requirements of 10 CFR Part 72.236(b). The SSCs important to safety are designed to accommodate the combined loads of normal 4101 4102 or off-normal operating conditions and accidents or natural phenomena events with an adequate margin of safety. Stresses at various locations of the cask for 4103 4104 various design loads are determined by analysis. Total stresses for the combined loads of normal, off-normal, accident, and natural phenomena events 4105 are acceptable and are found to be within limits of applicable codes, standards, 4106 4107 and specifications. 4108
 - F3.3 The applicant has met the requirements of 10 CFR Part 72.236(c), for maintaining subcritical conditions. The structural design and fabrication of the DSS includes structural margins of safety for those SSCs important to nuclear criticality safety. The applicant has demonstrated adequate structural safety for the handling, packaging, transfer, and storage under normal, off-normal, and accident conditions.
 - F3.4 The applicant has met the requirements of 10 CFR 72.236(I), "Specific Requirements for Spent Fuel Storage Cask Approval." The design analysis and submitted bases for evaluation acceptably demonstrate that the cask and other systems important to safety will reasonably maintain confinement of radioactive material under normal, off-normal, and credible accident conditions.
 - F3.5 The applicant has met the requirements of 10 CFR 72.236 with regard to inclusion of the following provisions in the structural design:
 - Design, Fabrication, Erection, and Testing to Acceptable Quality Standards.
 - Adequate Structural Protection Against Environmental Conditions and Natural Phenomena, Fires, and Explosions.
 - Appropriate Inspection, Maintenance, and Testing.
 - Adequate Accessibility in Emergencies.
 - A Confinement Barrier that Acceptably Protects the Cladding During Storage.

4136 4137 4139 Systems. 4140 4141 Structural Designs that are Compatible with Retrievability of SNF. 4142 4143 F3.6 The Applicant has met the specific requirements of 10 CFR 72.236(g) and (h) as 4144 they apply to the structural design for spent fuel storage cask approval. The cask system structural design acceptably provides for the following required 4145 4146 provisions: 4147 4148 Storage of the Spent Fuel for a Minimum Required Years. 4149 4150 Compatibility with Wet or Dry Loading and Unloading Facilities. 4151 4152 The reviewer should provide a summary statement similar to the following: 4153 4154 "The staff concludes that the structural properties of the structures, systems, and 4155 components of the [cask designation] are in compliance with 10 CFR Part 72, and that 4156 the applicable design and acceptance criteria have been satisfied. The evaluation of the 4157 structural properties provides reasonable assurance that the [cask designation] will allow safe storage of SNF for a licensed (certified) life of vears. This finding is reached 4158 on the basis of a review that considered the regulation itself, appropriate regulatory 4159 4160 guides, applicable codes and standards, and accepted engineering practices." 4161 4162 3.7 **Designations and Descriptions of Loads** 4163 4164 Definitions of terms used in the following table are as accepted by the NRC. Many definitions 4165 are expanded with their intended applications more fully described and implemented than in the 4166 referenced sources. 4167 4168 Tables 3-2 and 3-3 do not apply to the analysis of confinement casks and other components designed in accordance with Section III of the ASME B&PV Code. 4169 4170 4171 Capacities ("S" and "U" terms) and demands (factored or unfactored loads may be loads, forces, 4172 moments, or stresses caused by such loads. Usage must be consistent among the terms used 4173 in the load combination. Units of force, rather than mass, are to be used for loads. 4174 4175 Definitions of terms used in the load combination expressions for reinforced concrete and steel 4176 are derived from ANSI 57.9, ACI 349, AISC specifications, or another source. Where used in an 4177 expression related to steel analysis, definitions derived from ACI 349 are not limited in 4178 application to reinforced concrete analyses. 4179 4180 The load combinations defined on the basis of allowable stress apply to total stresses (that is, 4181 combined primary and secondary stresses). The load and stress factors do not change if secondary stresses are included. 4182

Structures that are Compatible with Appropriate Monitoring

4183

4138

	Table 3-2 Loads and Their Descriptions			
Symbol	Capacity or Load Term	Capacity or Load (or Demand) Description		
S	Steel ASD strength	Strength of a steel section, member, or connection computed in accordance with the "allowable stress method" of the AISC "Specification for Structural Steel Buildings."		
Sv	Steel ASD shear strength	Shear strength of a section, member, or connection computed in accordance with the "allowable stress method" of the AISC "Specification for Structural Steel Buildings."		
Us	Steel plastic strength	Strength (capacity) of a steel section, member, or connection computed in accordance with the "plastic strength method" of the AISC "Specification for Structural Steel Buildings."		
Uc	reinforced concrete available strength	Minimum available strength (capacity) of reinforced concrete section, member, or embedment to meet the load combination, calculated in accordance with the requirements and assumptions of ACI 349 and, after application of the strength reduction factor, Ø, as defined and prescribed at §9.2, "Design Strength," of ACI 349. If strength may be reduced during the design life by differential settlement, creep, or shrinkage, those effects shall be incorporated in the dead load, D (instead of by subtraction from minimum available strength) reinforced concrete footing and foundation sections whose demand loads are dominated by the maximum soil reaction may be designed and evaluated using U _f .		
U _f	Strength of foundation sections	Minimum available strength of reinforced concrete footing and foundation sections whose demand loads are dominated by the maximum soil reaction, and after the strength reduction factor, \emptyset , as defined and prescribed at §9.3, "Design Strength," of ACI 349 is applied. Structural elements interface with columns, walls, grade beams, or footings and foundations should be evaluated by using load factors and load combinations for U _c . These interface elements include anchor bolts and other embedments, dowels, lugs, keys, and reinforcing extended into the footing or foundation.		
Ug	Soil reaction or pile capacity	Minimum available soil reaction or pile capacity is determined by foundation analysis (expressed in a SAR for approval of a cask system as a required minimum for the cask system design). U _g is derived using the same load factors and load combinations as shown for determination of U _c .		
O/S	Overturning/ sliding resistance	Required minimum available resistance capacity of structural unit against both overturning or sliding. Capacities for resistance of overturning and sliding are checked against the factored load combination separately, although the minimum margins of safety may occur concurrently. O/S is not determined by strength capacities of structural elements. Stress or strength demands resulting from an overturning or sliding situation are evaluated in load combinations involving S, S _v , U _s , U _c , and U _f .		

Table 3-2 Loads and Their Descriptions			
Symbol	Capacity or Load Term	Capacity or Load (or Demand) Description	
	All loads used in combination	If any load reduces the effects of the combination of the other loads and that load would always be present in the condition of the specific load combination, the net coefficient (factor) for that load shall be taken as 0.90. If the load may not always be present, the coefficient for that load shall be taken as zero. Each load that may not always be present in the load combinations is to be varied from 0 to 100 percent to simulate the most adverse loading conditions (to the extent of proving that the lowest margins of safety have been determined).	
D	Dead load	Dead load of the structure and attachments including permanently installed equipment and piping. The weight and static pressure of stored fluids may be included as dead loads when these are accurately known or enveloped by conservative estimates. Loads resulting from differential settlement, creep, and/or shrinkage, if they produce the most adverse loading conditions, are included in dead load. If differential settlement, creep, or shrinkage would reduce the combined loads, it shall be neglected. D includes the weight of soil vertically over a footing or foundation for the purposes of determining U_g , U_f , and O/S. Regardless of the load combination factor applied, D is to be varied by +5 percent if that produces the most adverse loading condition.	
L	Live loads	Live loads, including equipment (such as a loaded storage cask) and piping not permanently installed, and all loads other than dead loads that might be experienced that are not separately identified and used in the load combination, and that are applicable to the situation addressed by the load combination. Typically includes the gravity and operational loads associated with handling equipment and routine snow, rain, ice, and wind loads, and normal and off-normal impacts of equipment. Loads attributable to piping and equipment reactions are included. Depending on the case being analyzed, may include normal or off-normal events not separately identified, as may be caused by handling (not including drop), equipment or instrument malfunction, negligence, and other man-made or natural causes. Live loads attributable to casks with stored fuel need only be varied by credible increments of loading of an individual cask. Live loads attributable to multiple casks should be varied for the presence and positioning of one or more cask(s), as necessary and varied to determine the lowest margins of safety.	

	Table 3-2 Loads and Their Descriptions			
Symbol	Capacity or Load Term	Capacity or Load (or Demand) Description		
L	Live load for precast structures before final integration in-place	Live loads for precast structures shall consider all loading and restraint conditions from initial fabrication to completion of the structure including form removal, storage, transportation, and erection. The NRC is concerned with analysis of loading of reinforced concrete structures before use to the extent that the structures should not have suffered hidden damage from construction live loads, thereby jeopardizing the capacity of the structures when in use. If the damage would be visibly obvious before installation, analysis of capacity versus pre-completion demands is not required.		
DB	"Design-basis" (accident- level) loads	Design-basis loads are controlling bounds for the following external event estimates:		
		(1) Extreme credible natural events to be used for deriving design bases that consider historical data or rated parameters, physical data, or analysis of upper limits of the physical processes involved.		
		(2) Extreme credible external man-induced events used for deriving design bases on the basis of analysis of human activity in the region taking into account the site characteristics and associated risks.		
		Design-basis loads include credible accidents and extreme natural phenomena. Presumption of concurrent independent accidents or severe natural phenomena producing compounding design-basis loads is not required. Capacity to resist design basis loads can be assumed to be that of a structure that has not been degraded by previous design basis loads unless prior significant degradation in structural capacity may credibly occur and remain undetected.		
Т	Thermal loads	Thermal loads, including loads associated with "normal" condition temperatures, temperature distributions, and thermal gradients within the structure; expansions and contractions of components; and restraints to expansions and contractions with the exception of thermal loads that are separately identified and used in the load combination. Thermal loads shall presume that all loaded fuel has the maximum thermal output allowed at time of initial loading in the cask system. Thermal loads shall be determined for the most severe of both steady-state and accident conditions. For multiple cask storage facilities, thermal loads shall be determined for the worst-case loadings on potentially critical sections (e.g., all in place, only one cask in place, alternating casks in place).		

Table 3-2 Loads and Their Descriptions			
Symbol	Capacity or Load Term	Capacity or Load (or Demand) Description	
Ta	Accident- level thermal loads	Thermal loads produced directly or as a result of <i>off-normal or design-basis</i> accidents, fires, or natural phenomena. [Note: Although off-normal and design-basis thermal loads are treated the same in the load combinations, there is a distinction between off-normal and design-basis temperature limits for concrete. Off-normal temperature limits are the same as for "normal" conditions.] For multiple cask storage facilities, thermal loads shall be determined for the worst-case loadings on potentially critical sections.	
A	Accident loads	Loads attributable to the direct and secondary effects of an off- normal or design-basis accident as could result from an explosion, crash, drop, impact, collapse, gross negligence, or other man-induced occurrences; or from severe natural phenomena not separately defined. Loads attributable to direct and secondary effects may be assumed to be nonconcurrent unless they might be additive. The capacity for resistance to the demand resulting from secondary effects would be that residual capacity following any degradation caused by the direct effect.	
Н	Lateral soil pressure	Loads caused by lateral soil pressure as would exist in normal, off-normal, or design-basis conditions corresponding to the load combination in which used. H includes lateral pressure resulting from ground water, the weight of the earth, and loads external to the structure transmitted to the structure by lateral earth pressure (not including earthquake loads, which are included in E, see below). H does not include soil reaction associated with attempted lateral movement of the structure or structural element in contact with the earth.	
G	Loads attributable to soil reaction	Used only in load combinations for footing and foundation structural sections for which demand is limited by the soil reactions. G represents loads attributable to the maximum soil reaction (horizontal (passive pressure limit) and vertical (soil or pile bearing limit) that would exist in normal, off-normal, or design-basis conditions corresponding to the load combination used. G is a function of U_g (i.e., G = f (U_g)).	
W	Wind loads	Wind loads produced by normal and off-normal maximum winds. Pressure resulting from wind and with consideration of wind velocity, structure configuration, location, height above ground, gusting, importance to safety, and elevation may be calculated as provided by ASCE 7.	

Table 3-2 Loads and Their Descriptions			
Symbol	Capacity or Load Term	Capacity or Load (or Demand) Description	
Wt	Tornado loads	Loads attributable to wind pressure and wind-generated missiles caused by the design-basis tornado or design-basis wind (for sites where design-basis wind rather than tornado produces the most severe pressure and missile loads). Pressure resulting from wind velocity and elevation may be calculated as provided for these factors in ASCE 7. Tornado wind velocity or pressure does not have to be increased for structure importance, gusting, location, height above ground, or importance to safety (these do apply for design-basis wind).	
E	Earthquake loads	Loads attributable to the direct and secondary effects of the design earthquake or off-normal flood, including flooding caused by severe and extreme natural phenomena (e.g., seiches, tsunamis, storm surges), dam failure, fire suppression, and other accidents.	

4185

41863.7.1Load Combinations for Steel and Reinforced Concrete Non-Confinement4187Structures

4188

4189 The reinforced concrete structure load combinations apply to reinforced concrete structures important to safety that are not within the scope of ACI 359 (ASME B&PV Code, Section III, 4190 Division 2). The load combinations apply to steel structures important to safety that are not 4191 within the scope of the ASME B&PV Code, Section III, Division 1. The NRC accepts, but does 4192 4193 not require use of these load combinations for steel and reinforced concrete structures that are not important to safety. The NRC accepts steel analyses that reflect allowable stress design or 4194 plastic strength design. Steel load combinations may be determined on the basis of the set of 4195 4196 load combination expressions involving either "S" or "U_s."

4197

Table 3-3 Load Combinations for Steel and Reinforced Concrete Non-Confinement Structures

Load Combination	Acceptance Criteria		
Reinforced Concrete Structures — Normal Events and Conditions			
U _c > 1.4 D + 1.7 L	Capacity/demand >1.00 for all sections.		
U _c > 1.4 D + 1.7 (L + H)	Capacity/demand >1.00 for all sections.		
Reinforced Concrete Structures — Off-Normal Events and Conditions			
U _c > 1.05 D + 1.275 (L + H + T)	Capacity/demand >1.00 for all sections.		
U _c > 1.05 D + 1.275 (L + H + T + W)	Capacity/demand >1.00 for all sections.		
Reinforced Concrete Structures — Accidents and Conditions			
$U_c > D + L + H + T + (E \text{ or } F)$	Capacity/demand >1.00 for all sections.		

Table 3-3 Load Combinations for Steel and Reinforced Concrete Non-Confinement Structures

Load Combination	Acceptance Criteria			
U _c > D + L + H + T + A	Capacity/demand >1.00 for all sections. An overturning accident for a cask in transfer or in separate storage on a pad is to be assumed unless more severe overturning also occurs as a result of a natural phenomenon.			
$U_c > D + L + H + T_a$	Capacity/demand >1.00 for all sections.			
U _c > D + L + H + T + W _t	The load combination (capacity/demand >1.00 for all sections) shall be satisfied without missile loadings. Missile loadings are additive (concurrent) to the loads caused by the wind pressure and other loads; however, local damage may be permitted at the area of impact if there will be no loss of intended function of any structure important to safety.			
Reinforced Concrete Footings/Fo	undations — Normal Events and Conditions			
$U_f > D + (L + G)$	Capacity/demand >1.00 for all sections. For footing and foundation sections with load limited by soil reaction.			
U _f > D + (L + H+ G)	Capacity/demand >1.00 for all sections. For footing and foundation sections with load limited by soil reaction.			
Reinforced Concrete Footings/Foundations — Off-Normal Events and Conditions				
$U_{f} > D + (L + H + T + G)$	Capacity/demand >1.00 for all sections. For footing and foundation sections with load limited by soil reaction.			
$U_{f} > D + (L + H + T + W + G)$	Capacity/demand >1.00 for all sections. For footing and foundation sections with load limited by soil reaction.			
Reinforced Concrete Footings/Fo	undations — Accident-Level Events and Conditions			
U _f > D + L + H + T + E + G	Capacity/demand >1.00 for all sections. For footing and foundation sections with load limited by soil reaction.			
U _f > D + L + H + T + A + G	Capacity/demand >1.00 for all sections. For footing and foundation sections with load limited by soil reaction.			
$U_{f} > D + L + H + T_{a} + G$	Capacity/demand >1.00 for all sections. For footing and foundation sections with load limited by soil reaction.			
$U_{f} > D + L + H + T + W_{t} + G$	Capacity/demand >1.00 for all sections. For footing and foundation sections with load limited by soil reaction.			
U _f > D + L + H + T + F + G	Capacity/demand >1.00 for all sections. For footing and foundation sections with load limited by soil reaction.			
Steel Structures Allowable Stress	Design — Normal Events and Conditions			
(S and S_v) > D + L	Factored strength/demand >1.00 for all sections.			
$(S and S_v) > D + L + H$	Factored strength /demand >1.00 for all sections.			

Table 3-3 Load Combinations for Steel and Reinforced Concrete Non-Confinement Structures

Load Combination	Acceptance Criteria			
Steel Structures Allowable Stress Design — Off-Normal Events and Conditions				
1.3 (S and S_v) > D + L + H + W	Factored strength /demand >1.00 for all sections.			
1.5 S > D + L + H + T + W	Factored strength/demand >1.00 for all sections. Thermal loads may be neglected when analysis shows that they are secondary and self-limiting in nature, and when the material is ductile.			
1.4 S _v > D + L + H + T + W	Factored strength/demand >1.00 for all sections. Thermal loads may be neglected when analysis shows that they are secondary and self-limiting in nature, and when the material is ductile.			
Steel Structures Allowable Stress D	esign — Accidents and Conditions			
1.6 S > D + L + H + T + (E or W _t or F)	Factored strength/demand >1.00 for all sections. Thermal loads may be neglected when analysis shows that they are secondary and self-limiting in nature, and when the material is ductile.			
1.4 $S_v > D + L + H + T +$ (E or W _t or F)	Factored strength (allowable stress design)/demand >1.00 for all sections. Thermal loads may be neglected when analysis shows that they are secondary and self-limiting in nature, and when the material is ductile.			
1.7 S > D + L + H + T + A	Factored strength/demand >1.00 for all sections. Thermal loads may be neglected when analysis shows that they are secondary and self-limiting in nature, and when the material is ductile.			
1.4 S _v > D + L + H + T + A	Factored strength/demand >1.00 for all sections. Thermal loads may be neglected when analysis shows that they are secondary and self-limiting in nature, and when the material is ductile.			
1.7 S > D + L + H + T _a	Factored strength/demand >1.00 for all sections.			
$1.4 \text{ S}_{v} > \text{D} + \text{L} + \text{H} + \text{T}_{a}$	Factored strength/demand >1.00 for all sections.			
Steel Structures Plastic Strength De	sign — Normal Events and Conditions			
U _s > 1.7 (D + L)	Plastic capacity/demand >1.00 for all sections.			
U _s > 1.7 (D + L + H)	Plastic capacity/demand >1.00 for all sections.			
Steel Structures Plastic Strength Design — Off-Normal Events and Conditions				
U _s > 1.3 (D + L + H + W)	Plastic capacity/demand >1.00 for all sections.			
U _s > 1.3 (D + L + H + T + W)	Plastic capacity/demand >1.00 for all sections. Thermal loads may be neglected when analysis shows that they are secondary and self-limiting in nature, and when the material is ductile.			

Table 3-3 Load Combinations for Steel and Reinforced Concrete Non-Confinement Structures

Load Combination	Acceptance Criteria			
Steel Structures Plastic Strength Design — Accidents and Conditions				
U _s > 1.1 (D + L + H + T + (E or W _t or F))	Plastic capacity/demand >1.00 for all sections. Thermal loads may be neglected when analysis shows that they are secondary and self-limiting in nature, and when the material is ductile. The load combination (capacity/demand >1.00 for all sections) shall be satisfied without missile loadings. Missile loadings are additive (concurrent) to the loads caused by the wind pressure and other loads; however, local damage may be permitted at the area of impact if there will be no loss of intended function of any structure important to safety.			
U _s > 1.1 (D + L + H + T + A)	Plastic capacity/demand >1.00 for all sections. An overturning accident for a cask in transfer or in separate storage on a pad is to be assumed unless more severe overturning also occurs as a result of a natural phenomenon. Thermal loads may be neglected when analysis shows that they are secondary and self-limiting in nature, and when the material is ductile.			
$U_{s} > 1.1 (D + L + H + T_{a})$	Plastic capacity/demand >1.00 for all sections.			
Overturning and Sliding — Normal and Off-Normal Events and Conditions				
O/S ≥ 1.5 (D + H)	Capacity/demand \ge 1.00 for structure to be satisfied for both overturning and sliding.			
Overturning and Sliding — Accidents and Conditions				
O/S ≥ 1.1 (D + H + E)	Capacity/demand ≥ 1.00 for structure to be satisfied for both overturning and sliding.			
$O/S \ge 1.1 (D + H + W_t)$	Capacity/demand ≥1.00 for structure to be satisfied for both overturning and sliding.			

4200 APPENDIX 3A - COMPUTATIONAL MODELING SOFTWARE 4201

4202 **Technical Review Guidance:** 4203

4205

4212

4216

4217

4218 4219

4220 4221

4222 4223

4224

4225 4226

4227

4234

4236

4243

4204 <u>Computational Modeling Software (CMS) Application</u>

The staff does not endorse the use of any specific type or code vendor of CMS. Any appropriate CMS application could be used for analyses of cask or package components; however, for any CMS to demonstrate that a particular cask design satisfies regulatory requirements, adequate validation of that CMS must be demonstrated by the applicant. Descriptions of CMS validations can be contained within a given application or incorporated by reference.

4213 The reviewer should verify that the following information is provided in the SAR or related 4214 documentation (such as proprietary calculation packages or benchmark reports): 4215

- (1) details of the methodology used to assemble the computational models and the theoretical basis of the program used;
- a description of benchmarking against other codes or validation of the CMS against applicable published data or other technically qualified and relevant data that is appropriately documented;
 - (3) standardized verification problems analyzed using the CMS, including comparison of theoretically predicted results with the results of the CMS; and
 - (4) release version and applicable platforms.

4228 Once the information described above has been docketed, it need not be submitted with each 4229 subsequent application, but can be referred to in subsequent SARs or related documents. If an 4230 applicant changes their analysis methodology or changes the type or vendor of the CMS used, 4231 the applicant should submit either a revision of previously submitted information or include a 4232 clear explanation of the methodology changes, and their effects on the analysis in question, in 4233 subsequent SAR submittals.

4235 <u>Modeling Techniques and Practices</u>

4237 Modeling techniques and practices used by applicants may need to be verified to demonstrate
4238 adequacy of the model.
4239

The reviewer should verify that the CMS and the options used by the applicant are appropriate for adequately capturing the behavior of a cask, package, or any components.

4244 Relevant input and results files or an equivalent detailed model description and output should be
4245 submitted with the original application.
4246

Analysis input files should be submitted in an electronic format that would most easily allow the solution to be executed by the staff, should the staff desire to do so. In-depth review of CMS models is most easily done with input files that contain individual commands used to develop the model and apply the various

- 4251boundary conditions; therefore, a text input file format (versus database format)4252is preferred.
- Input files should be annotated in a way that clearly demonstrates the process
 behind building and solving models developed using CMS. A well annotated
 input file will expedite staff review and preclude the need for further clarification
 questions by the staff.
- 4259
 Appropriate electronic media should be used for submitting case and support files.

4262 <u>Computer Model Development</u> 4263

4253

4258

4261

4269

4273

4280

The reviewer should verify that the computer model used for the analysis is adequately described, either in the SAR or in other documentation, is geometrically representative of the cask design being analyzed, has addressed how material and manufacturing uncertainties might affect the analysis, has appropriate boundary conditions, and has no significant analysis errors.

- The reviewer should verify that the model description includes an adequate basis
 for the selection of parameters and/or components used in the analysis model
 (e.g., why was a particular element type applied in the analysis model?)
- The reviewer should verify that models sufficiently represent cask or package geometry and that adequate justification is provided for simplifications used.
 Models created with CMS are often simplified to reduce computer processing time. Models can often omit geometric details or use homogenized or smeared material properties to represent complex geometry or material combinations and still retain analytic accuracy.
- The reviewer should verify that the applicant has discussed how manufacturing and/or assembly tolerances and contact resistances will affect the analyses that have been conducted, if at all, in both the structural and thermal disciplines. The reviewer should also verify that the applicant has described how tolerances and/or contact resistances are accounted for, if applicable, in the cask or package analysis models that are submitted for review.
- 4288 The reviewer should verify that the applicant has provided a general discussion • of how error, warning, or advisory messages generated by the software affect the 4289 4290 analysis result (if applicable). When processing a computer model developed using CMS, the software will frequently provide error, warning, or advisory 4291 4292 messages indicating a possible problem with the model that may or may not be 4293 sufficient to terminate processing. If the error/warning function has been 4294 disabled during processing, an explanation of why this is appropriate should be 4295 provided. 4296
- The reviewer should verify that, within the specific disciplines, the dimensions and physical units used in the models developed are clearly labeled and mutually consistent. The fundamental units of time, mass, and length should be clearly identified. All other physical units derived must be consistent with the basic units adopted. For example, if the unit of length is the millimeter (mm), time in

4302milliseconds (ms), and mass in gram (g), then, the mechanical force will have4303units of Newton (N), energy in milliJoule (mJ), and stress in megapascal (MPa).4304Verify that the input parameters are expressed in the units as assigned. If an4305applicant chooses not to adopt this uniformity of units, the appropriate conversion4306must be applied prior to processing input into CMS. Similar assurances must be4307provided for the output for the analysis solution.

4309 <u>Computer Model Validation</u> 4310

- 4311
 4312
 4312
 4313
 4313
 4314
 The reviewer should verify that model validation done with applicable experiments or testing is properly documented and appropriate references are provided.
- 4315 The reviewer should ensure that if the applicant takes credit for modeling • conservatisms, those conservatisms have been demonstrated through validation 4316 of the model or analysis methodology. For example, accounting for certain 4317 conditions that occur during the hypothetical accident condition (HAC) fire, such 4318 as combustion of materials, the turbulent flow of hot gasses in the pool fire 4319 environment, and material anomalies that may manifest themselves in a fire can 4320 4321 be done with specialized CMS codes (specifically, coupled CFD-FEA codes such as Sandia National Lab's CAFÉ code), high performance computer hardware and 4322 extended compute times. Each of these conditions can be treated in a 4323 4324 conservative fashion using standard CMS; however, validation of the CMS against actual data (such as open pool fire test data or material combustion 4325 4326 data), to demonstrate the applicability of the CMS under the HAC fire, for a 4327 configuration similar to that which is being modeled, would be necessary. 4328
- 4329 Justification of Bounding Conditions/Scenario for Model Analysis

The applicant must determine the most damaging orientation and worst-case conditions for a
given design and document how the analytic model was configured for the scenario.

4334 The reviewer should verify that the applicant provided sufficient justification for selecting the 4335 most damaging orientation and worst-case conditions.

4336 4337 4338

4346

4330

Description of Boundary Conditions and Assumptions

- The reviewer should verify, as necessary, that boundary conditions and assumptions are addressed in the textual description included in the SAR or other documents (e.g., emissivity values, absorptivity values, convective coefficients, radiation view factors, symmetry planes, and rigid surfaces). This information should be presented in either tabular form or in a complete textual manner. Justifications and bases for such items should also be included in the 4345
- Values or quantities indicating performance enhancements, i.e., increasing material conductivity values to mimic internal convection or substantially reduced design load factors (DLFs) reflecting an unusually high degree of impact damping, should be accompanied with justifications and should be closely reviewed and independently verified, if needed, by staff.

4353	Documentati	on of Material Properties
4354 4355 4356	As needed, t	he reviewer should assess that:
4357 4358 4359	(1)	units for material properties are consistent throughout the individual SAR chapters.
4360 4361	(2)	material properties for all applicable temperature ranges are included.
4362 4363 4364 4365	(3)	references to materials used by the CMS application and specific material properties based on geometry (e.g., conductivity in the X, Y and Z directions), are listed in the SAR or related documents.
4366 4367	Description c	of Model Assembly
4367 4368 4369 4370 4371 4372 4373	•	The reviewer should verify that the types of elements used in the model are listed in the SAR, preferably in tabular format, along with the corresponding materials or components in which they are used in the analysis model. (i.e., the reviewer should quickly be able to discern what elements and materials are associated with specific components of the analysis model.)
4373 4374 4375 4376 4377	٠	The reviewer should verify that a sufficient explanation of the logic behind the creation of each specific computer model is provided, for effective confirmatory calculations to be performed.
4378 4379 4380 4381 4382 4383 4384	•	The reviewer should verify that the applicant has provided annotated input files (as appendices to the SAR or in related documents), that clearly outline the various steps in building the computer models submitted. If input files are not provided or do not adequately describe model assembly, the applicant should provide an adequate explanation of how computer models were assembled using the CMS in the appropriate SAR chapters or related documents.
4385	Loads and Ti	ime Steps
4386 4387 4388 4389 4390 4391 4392	•	The reviewer should verify that loads, load combinations, and, if used by the analytical code, the load steps utilized in the computer model are clearly explained by the applicant. The staff should evaluate all loads, how they are placed on the computer models, load combinations, and if used, the time steps applied in the analysis.
4392 4393 4394 4395 4396	•	The reviewer should verify that the time steps specified for the solution of the analysis are sufficiently small to accurately capture the behavior of the structures, systems, or components being modeled.
4390 4397 4398 4399 4400	•	The reviewer should verify that incremental time steps (or sub-steps) are adequately converged. Information of convergence may be obtained from the output generated by the execution of the analysis solution.

- 4401 <u>Sensitivity Studies</u>
- 4402

4416

4421

4422

4423

4425

4403 The discussion of sensitivity studies should be included in the general Computer Model 4404 Development discussion, as noted above, with relevant references to examples included in the 4405 SAR or related documents. 4406

- 4407 The reviewer should verify that the applicant has completed sensitivity studies for • 4408 relevant CMS modeling parameters. This includes element type and mesh 4409 density, load step size, interfacing gaps or contact friction, material models and model parameters selection, and property interpolation, if applicable. 4410 For 4411 example, a mesh sensitivity study should be conducted not only for mesh density 4412 but also for mesh density/refinement in areas of thermal or structural concern or 4413 where performance of the material is crucial, such as seal areas, lid bolts, etc. A 4414 mesh sensitivity is also needed to make sure the analysis results are mesh 4415 independent.
- The reviewer should verify that the results of applicable sensitivity studies are clearly described in the SAR or related documentation and can be independently verified, if necessary.
 - The reviewer should verify that the applicant's documentation includes at least a brief discussion of the different models used in their mesh sensitivity studies.

4424 Results of the Analysis

- The reviewer should verify that the SAR, or related document(s), include all relevant results (tabular and computer plots) for applicable load cases and load combinations evaluated for design code compliance, and that all governing results (stresses/deformation) are clearly identified in the tables and on plots.
- The reviewer should verify that results are consistent throughout the SAR, and that the correct results are used in calculations of other cask or package performance parameters (e.g., calculated temperatures used in the internal pressure calculation should be verified).

4 THERMAL EVALUATION

4436 4437

4439

4449

4438 **4.1 Review Objective**

The thermal review ensures that the cask and fuel material temperatures of the dry storage system (DSS) will remain within the allowable values or criteria for normal, off-normal, and accident conditions. This objective includes confirmation that the temperatures of the fuel cladding (fission product barrier) will be maintained throughout the storage period to protect the cladding against degradation that could lead to gross rupture. Also confirmed is the use by the applicant of acceptable analytical and/or testing methods in the Safety Analysis Report (SAR) when evaluating the DSS thermal design.

4448 **4.2** Areas of Review

4450 As defined in Section 4.5, "Review Procedures," a comprehensive thermal evaluation should 4451 encompass the following areas of review:

- 44524453Decay Heat Removal System445444544455Material and Design Limits44564457Thermal Loads and Environmental Conditions44584459Analytical Methods, Models, and Calculations44604461Configuration
- 4462 Material Properties
- 4463 Boundary Conditions
- 4464Computer Codes4465Temperature Calculations
- 4465 Temperature Calculations 4466 Pressure Analysis
- 4467 Confirmatory Analysis
- 4468 4469

4470

4.3 Regulatory Requirements

This section presents a summary matrix of the portions of the U.S. Code of Federal Regulations (CFR) Part 72, "Licensing Requirements for the Independent Storage of Spent Nuclear Fuel, High-Level Radioactive Waste, and Greater Than Class C Waste," Title 10, "Energy" (10 CFR Part 72) that are relevant to the review areas addressed by this chapter. The NRC staff reviewer should be familiar with the regulatory language in these sections. Table 4-1 matches the relevant regulatory requirements associated with this chapter to the areas of review.

4479

Table 4-1 Relationship of Regulations and Areas of Review

	10 CFR Part 72 Regulations		
Area of Review	72.122 (h)(1), (l)	72.236 (b), (f), (g), (h)	
Decay Heat Removal Systems	•	•	
Material and Design Limits		•	
Thermal Loads and Environmental Conditions	•	•	
Analytical Methods, Models, and Calculations	•	•	

4481 **4.4 Acceptance Criteria**

4482 4483

4484

4492

4494

4496

4480

4.4.1 Decay Heat Removal System

The applicant must provide a detailed description of the proposed cask heat removal system and its passive cooling characteristics. All major components are to be clearly identified and their contribution to heat-removal from the fuel thoroughly explained. The mechanism of heat removal (i.e., conduction, convection, radiation) for each component should also be discussed.

4490 Evidence must be provided by the applicant that the decay heat removal system will operate 4491 reliably under normal and loading conditions.

4493 All instrumentation used to monitor cask thermal performance should also be described.

4495 4.4.2 Material and Design Limits

4497 Cask components and fuel materials should be maintained between their minimum and 4498 maximum temperature limits for normal, loading, off-normal, and accident-level conditions to 4499 enable all components to perform their intended safety function. 4500

4501 To guarantee cladding integrity of zirconium-based alloys, the maximum calculated fuel cladding 4502 temperature should not exceed 400°C (752°F) for normal conditions of storage and short-term 4503 loading operations, including cask drying and backfilling. A higher temperature limit may ONLY be used for low burnup spent nuclear fuel (SNF) (less than 45 GWd/MTU), as long as the 4504 4505 applicant can demonstrate that the best estimate cladding hoop stress is equal to or less than 90 MPa (13.1 ksi) for the temperature limit that is proposed. During loading operations, 4506 repeated thermal cycling should be limited to less than 10 cycles, with cladding temperature 4507 4508 variations more than 65°C (149°F). For off-normal and accident conditions, the maximum 4509 zirconium based cladding temperature should not exceed 570°C (1058°F).

4510

4511 To guarantee stainless steel cladding integrity, the maximum calculated fuel cladding 4512 temperature should not exceed 570°C (1058°F) for off-normal and accident conditions and the 4513 maximum calculated fuel cladding temperature should not exceed 400°C (752°F) for normal 4514 conditions of storage and short-term loading operations, including cask drying and backfilling.

4515

The applicant must clearly identify the operational temperature limits for all important-to-safety component materials under normal, loading, unloading, off-normal and accident-level conditions. The applicant shall provide reliable basis for all the temperature limits.

The maximum internal pressure of the fuel container should remain within its design pressures for normal, off-normal, and accident-level conditions assuming rupture of 1 percent, 10 percent, and 100 percent of the fuel rods, respectively. Assumptions for pressure calculations include release of 100 percent of the initial fill gas and 30 percent of the fission product gases generated within the fuel rods during operation.

The applicant must clearly identify the design pressure limits for the fuel container under normal,
off-normal and accident-level conditions.

45294.4.3Thermal Loads and Environmental Conditions4530

Identification and justification of the design basis thermal load must be made by the applicant as
well as the insolation and ambient temperature assumptions used as boundary conditions for
the normal, loading, off-normal, and accident scenarios.

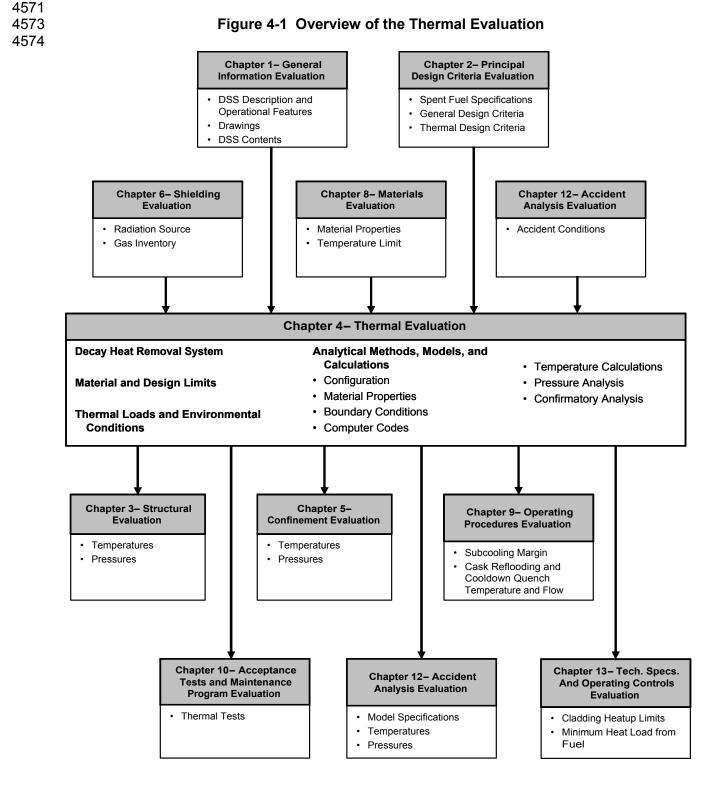
45354.4.4Analytical Methods, Models, and Calculations4536

The applicant shall present a thermal analysis that clearly demonstrates the storage system's ability to manage design heat loads and have the various materials and components remain within temperature limits. The analysis shall be conducted for normal, loading, draindown/reflood, off-normal, and accident-level conditions. Resulting temperature profile and internal pressure information are necessary to support the structural analysis (Chapter 3) and the confinement analysis (Chapter 5) of the SAR.

4543

4544 The applicant shall specify the analytical methods used in the thermal evaluations including any computational modeling software, (i.e., heat transfer or computational fluid dynamics computer 4545 4546 analysis codes) and shall discuss the basis for the parameters and options selected for the 4547 analysis. All models should be clearly described. Material thermal properties for all cask 4548 components shall be provided and justified. The applicant must discuss, quantify, and report in the SAR any conservatism associated with the proposed thermal models. The level of detail of 4549 4550 the discussion should be comparable with sections of the SAR that describes the analytical 4551 thermal models. A table of results should be provided in the SAR showing how the associated conservatisms affect the safety parameters (e.g. calculated peak cladding temperature, 4552 confinement seal temperatures, etc.). The table of results must be supported with fully 4553 4554 documented analytical models and calculations.

4555


The computer codes used in the thermal evaluation should be well-verified and validated. The applicant must provide acceptable basis (e.g., benchmark efforts, published results) for the accuracy of the chosen computer code(s) and justification for its use in the proposed evaluation. A discussion of the resulting level of convergence and conservatism achieved as a function of the modeling options (e.g., meshing, time-differencing) must be provided by the applicant.

4562 To facilitate confirmatory analyses, electronic copies of the most significant input and output 4563 files should be provided. Further guidance on the review of analytical methods, models, and

calculations provided to the staff for review is provided in Appendix 3A, "Computational Modeling Software." 4564 4565 4566

4567 4.5 **Review Procedures**

Figure 4-1 presents an overview of the evaluation process and can be used as a guide to assist in coordinating with other review disciplines.

Design features and acceptance criteria, initially presented in SAR Chapter 1, "General 4575 Information," and Chapter 2, "Principal Design Criteria," should be reviewed for additional insight 4576 4577 about the thermal models that are being presented. Reviewers should examine the appropriateness of the proposed heat loads and environmental conditions. Modeling details 4578 such as simulation options, simplifications, and accuracy of results should be assessed. The 4579 DSS is to be analyzed under normal, loading, off-normal, and accident scenarios. If necessary, 4580 4581 the resulting temperature distributions and internal pressures calculated in the SAR should be confirmed in order to verify compliance with design criteria and regulatory requirements. 4582 4583

4584 One of the most important results of the DSS thermal evaluation is confirmation that the fuel 4585 cladding temperature will remain below a specified limit to prevent unacceptable degradation 4586 during storage.

4587

4588 Thermal performance of the cask under accident conditions is also evaluated in accordance 4589 with Chapter 12, "Accident Analyses Evaluation," of this SRP, as appropriate, in the overall 4590 accident analyses presented in the SAR. 4591

In conducting a comprehensive thermal evaluation, reviewers should perform the established
review procedures, as applicable, for each of the following areas of review.

4595 4.5.1 Decay Heat Removal System (HIGH Priority)

The reviewer should examine the description of the DSS presented in SAR Chapter 1, "General Information Evaluation" as supplemented by the additional information provided in SAR Chapter 4, "Thermal Evaluation." These two sources of information should be consistent and supplementary. In addition to the material compositions, the dimensions of the cask components and SNF assemblies are to be clearly indicated. All drawings, figures, and tables should be sufficiently detailed to support in-depth staff evaluation.

4603

4596

4604 The applicant's analysis should include the description of the significant thermal design features 4605 and operating characteristics of all pertinent DSS components and subsystems. Design features typically include the cask body, thermal fins, shielding materials, fuel baskets, heat 4606 transfer disks, confinement seals, drain and vent ports, and external pressure relief devices for 4607 4608 the case of transfer casks, among others. The reviewer should verify that the thermal design features will adequately perform their intended safety functions during normal, loading, off-4609 4610 normal, and accident-level conditions. All thermal design features should be passive. Applicants have requested temporary external forced cooling of cask systems during loading 4611 4612 operations or as a Technical Specification action statement during transfer operations. Such 4613 requests need to be examined by the staff to ensure that they meet the original intent of the 4614 regulations; that cask systems remain passively cooled during normal operations.

4615

4616 Any instrumentation used to monitor cask thermal performance should also be described by the 4617 applicant in sufficient detail to support in-depth staff evaluation. The monitoring instrumentation 4618 components should have a safety classification (presented in SAR Chapter 2, "Principal Design Criteria Evaluation") commensurate with their function and should be fully justified. Applicable 4619 4620 operating controls and criteria, such as temperature criteria and surveillance requirements, should be clearly indicated in SAR Chapter 13, "Technical Specifications and Operational 4621 4622 Controls and Limits" discussed in the Safety Evaluation Report (SER), and included in the 4623 Certificate of Compliance (CoC), as appropriate.

4625 **4.5.2** Material and Design Limits (Priority - as indicated)

4626 4627 (MEDIUM Priority) One of the most important results of the thermal evaluation is the 4628 confirmation that the fuel cladding temperature is sufficiently low to prevent cladding damage or 4629 potential failure during storage. Section 4.4.2, "Material and Design Limits," of this SRP 4630 identifies the criteria for cladding temperature limits. The application must clearly agree with 4631 these criteria.

- (MEDIUM Priority) During licensing reviews, the thermal reviewer should ensure that either of 4633 4634 the following criteria are used: (1) the maximum calculated temperatures for normal conditions 4635 of storage and for fuel loading operations do not exceed 400°C (752°F), or (2) the maximum 4636 calculated temperatures for normal conditions of storage do not exceed 400°C (752°) and that 4637 the materials reviewer has verified that the best estimate cladding hoop stress is less than 90 4638 MPa (13.1 ksi) for the maximum allowable temperature specified by the applicant for short-term fuel loading. If the applicants use the latter approach, the thermal reviewer will verify that the 4639 4640 materials reviewer has verified that the cladding hoop stresses are less than 90 MPa (13.1 ksi) 4641 for each fuel assembly type (e.g., 14x14, 17x17, 9x9, etc.) proposed for storage. Cladding 4642 oxide thickness used to compute hoop stress should be evaluated by the materials reviewer. 4643 Since the hoop stress is dependent on the rod internal pressure, cladding geometry, and the 4644 temperature of the gases inside the rod, the staff will verify that the applicant has calculated the 4645 best estimate hoop stress corresponding to the rod internal pressure of the highest burnup fuel 4646 assemblies of the specific type of assembly. 4647
- 4648 (MEDIUM Priority) To limit the amount of SNF that could be released from the cladding under
 4649 off-normal conditions or accidents, the maximum calculated cladding temperatures should be
 4650 maintained below 570°C (1058°F).
 4651
- 4652 (MEDIUM bolted closure/LOW welded closure) The reviewer should verify that temperature 4653 restrictions (upper and lower allowable limits) on all components important to safety (e.g., 4654 confinement, shielding, subcriticality, heat removal) during normal, loading, off-normal, and 4655 accident scenarios are clearly identified in the application and that the predicted thermal 4656 behavior of the entire DSS is indeed within the specified limits. The thermal reviewer should 4657 confirm with the assigned materials reviewer the acceptability of all proposed temperature limits. 4658
- 4659 (LOW Priority) The maximum internal pressure of the fuel container should remain within its 4660 design limits for normal, off-normal, and accident-level conditions assuming rupture of 1 4661 percent, 10 percent, and 100 percent of the fuel rods, respectively. The thermal reviewer 4662 should confirm with the assigned structural reviewer the acceptability of the proposed design 4663 pressure limits.
- 4664

- (HIGH Priority) Any operating scenario (loading or unloading) that results on a time-dependent
 limiting condition (e.g., number of hours allowed for vacuum drying before fuel cladding
 temperature reaches its allowable limit) should also be addressed in Chapter 13, "Technical
 Specifications and Operating Controls and Limits Evaluation," of the SRP and should be
 included as a limiting condition for operation (e.g., technical specification) in the CoC, as
 appropriate.
- 4671

4672 **4.5.3** Thermal Loads and Environmental Conditions (Priority - as indicated)

4673
4674 (LOW Priority) The reviewer should examine the specification for the design-basis fuel decay
4675 heat presented in SAR Chapter 2, "Principal Design Criteria Evaluation" and ensure that this
4676 decay heat is consistent with the specified fuel types, burnups, enrichments and cooling times, if
4677 included. Some applications, however, may provide a bounding decay heat load (kW/assembly)
4678 without specifying details about the SNF (design, enrichment, cooling time).

4679

4680 (LOW Priority) The axial distribution for the decay heat sources should also be discussed by the 4681 applicant with clear justification for a bounding approach. The reviewer should expect a 4682 somewhat flat-at-the center axial distribution with a peak-to-average value in the range of 1.1 to 4683 1.2, tapering towards both ends.

4684

(MEDIUM Priority) In general, the NRC staff accepts insolation values presented in 10 CFR Part
71 for 10 CFR Part 72 applications. Because of the large thermal inertia of a storage cask, the
insolation values listed in 10 CFR Part 71.71 may be averaged over a 24-hour day assuming
steady-state conditions.

4690 (MEDIUM Priority) The reviewer should verify that the ambient temperatures used for normal
4691 and off-normal condition evaluations do indeed bound the available historical temperature data
4692 for any suggested storage site (current or future). The National Oceanic Atmospheric
4693 Administration (NOAA) National Climatic Data Center provides temperature statistics for many
4694 American cities and regions. (http://www.ncdc.noaa.gov/oa/ncdc.html).

4696 (MEDIUM Priority) Loading and unloading evaluations should be established on the basis of the
 4697 SNF pool's technical specification maximum temperature limit (typically 46°C (115°F)).

4698

4700

4699 4.5.4 Analytical Methods, Models, and Calculations (MEDIUM Priority)

4701 For cask system components in which material properties and performance vary with 4702 temperature, the reviewer should examine the assumptions used in determining temperature 4703 maxima, minima, gradients, and differences for the cask system, as well as review the assumptions used to determine fuel cladding temperatures. The assumed temperature 4704 4705 changes over time should result in the bounding conditions for the structural analysis. The calculated temperatures in the various cask system components should be compared to the 4706 4707 limiting temperature criteria for the appropriate materials. Ferritic materials are subject to failure 4708 by brittle fracture at low temperatures. The reviewer should verify the assumed low 4709 temperatures for cask system handling operations for consistency with material properties. 4710 Ambient temperature restrictions may be appropriate for cask handling operations. Any limiting 4711 conditions regarding ambient temperatures should be addressed in SAR Chapter 13, as well as SER Chapter 13, "Technical Specifications and Operating Controls and Limits Evaluation," and 4712 4713 should be included as a limiting condition for operation (e.g., technical specification) in the CoC, 4714 as appropriate.

4715

4716 Analysis for accident-level ("design-basis") temperatures should not be considered to envelop 4717 the analysis of normal or off-normal temperatures. The acceptance criteria for normal and off-4718 normal temperature demands for structural capacity will differ. Therefore, all three conditions 4719 should be analyzed. In addition, the duration over which accident temperature conditions may 4720 exist should be evaluated.

4722 4.5.4.1 Configuration (HIGH Priority)

4723

The reviewer should verify that any model used in the thermal evaluation is clearly described. Separate models and submodels may be used for the evaluation of different conditions (normal storage, loading, off-normal situations, and accidents). Coordination with the structural review is necessary to evaluate any damage that may result from accidents or natural phenomena events. All models should be shown as conservative.

4729

4737

4730 Examination by the reviewer of the sketches or figures of all models ensures their proper use in 4731 the thermal calculations and verifies that the dimensions and materials are consistent with those 4732 in the drawings of the actual cask, as presented in SAR Chapter 1, "General Information 4733 Evaluation". If possible, the reviewer should examine the computer input files to verify 4734 consistency with the model sketches and engineering drawings. Differences between the actual 4735 cask configuration and the model should be identified, and the model should be shown to be 4736 conservative.

4738 Particular attention during the review should be paid to gaps between cask components. 4739 Tolerances should be considered so that the thermal resistance of each gap is treated conservatively. Gases (e.g., air, helium) assumed to be present in the gap shall be described 4740 4741 and justified. If a specific gas other than air in the cask cavity or gaps between cask 4742 components is relied upon for heat removal, the reviewer should verify that the applicant shows 4743 that the gas is retained and that the gas is not diluted by other gases having lower thermal 4744 conductivities during the entire storage period. For cask components that are important to heat removal, manufacturing techniques for joining components, surface roughness, contact 4745 4746 pressures, and gap conductance values should be adequately described and justified. 4747

The reviewer should verify that decay heat generated in the SNF is limited to the active fuel region of the assemblies. The model should specifically account for the peaking in the central region or provide another conservative approach. Heat from any other stored component (e.g., control rods), if applicable, should also be distributed appropriately. In addition, the positions of heat sources relative to other cask components should be identified.

The application should address the thermal interaction among casks in an array by using a view
factor less than unity. Generally, this will result in an operating control and limit in SAR Chapter
13 that imposes a minimum spacing between storage casks.

- 4757
 4758 Coordination with the structural reviewer is necessary to ensure that the applicant has analyzed
 4759 situations that may produce the worst-case cask loads. The greatest gradients and loadings
 4760 caused by thermal expansion may occur with casks in alternative storage or in temporary
 4761 handling positions.
- 4762

4763 The heat transfer processes used in the analysis should be examined. Conduction and 4764 radiation are typically defined as the primary heat transfer mechanisms within the cask itself. In narrow regions of any orientation, little or no convective heat transfer will occur, and only 4765 conduction through the gas filled void spaces is assumed. Larger gas volume regions can 4766 4767 experience a significant level of convective heat transfer. The staff suggests that the applicant 4768 demonstrate the existence of convection in the larger gas regions and quantify the contribution of convection heat transfer to the overall removal of heat from the package. Traditionally, the 4769 4770 staff has maintained that natural convection in enclosed cavities should be validated through 4771 sufficient CFD calculations or physical experiments.

- 4773 4.5.4.1.1 General Guidance on Computational Fluid Dynamics Analyses (HIGH Priority)
- 4774

4775 Since the computational resources necessary to fully resolve flow between individual fuel pins in 4776 a cask model with numerous fuel assemblies would be enormous, one acceptable approach 4777 would be to treat fuel assemblies as a porous media for applications seeking to credit heat 4778 removal from fuel via internal convection. The reviewer should verify that any CFD approach 4779 utilizes realistic or bounding flow friction factors in the porous media representation of the fuel, 4780 and that friction factors are obtained for each of the limiting fuel assembly types sought as 4781 approved contents for the cask.

4782

An acceptable approach to calculate the friction factors would be to perform a computational fluid dynamics (CFD) analysis for each type of fuel assembly for the expected operating conditions (pressure and average gas temperature). From the detailed CFD analysis of a single fuel assembly, wall shear stresses should be obtained separately for bare fuel rods and for fuel rods and associated grid straps. The friction factor shall be calculated based on the wall shear stress method.

4789

The reviewer should evaluate the method used to obtain the friction factors and ensure that the obtained values are realistic or bounding for the intended fuel assembly types. Also, since the friction factor is generally very sensitive to the geometric information (dimensions) and fuel assembly configuration, the reviewer should verify this information by reviewing the fuel assembly design drawings provided by the applicant.

For ventilated spent fuel storage systems (a canister containing the fuel within an outer overpack), the mesh spacing (computational cell size) and density between an overpack liner and canister outer shell wall play an important role when selecting a turbulence model for the air flow through this annular gap.

4801 The near-wall modeling significantly impacts the fidelity of numerical solutions, inasmuch as 4802 walls are the main source of flow mean vorticity and turbulence. After all, it is in the near-wall 4803 region that the solution variables have large gradients, and the transport of momentum and other scalar variables occurs more vigorously. Therefore accurate representation of the flow in 4804 4805 the near-wall region determines a successful prediction of wall-bounded turbulent flows. When 4806 dealing with wall effects on the flow usually two modeling options are available to the analyst. The first one is the use of the semi-empirical formulas called "standard wall functions" which are 4807 4808 used to bridge the viscosity-affected region between the wall and the fully-turbulent core region. Generally a uniform mesh would be used when these wall functions are invoked. The use of 4809 4810 wall functions obviates the need to modify the turbulence models to account for the presence of 4811 the wall. This modeling approach is usually applicable to flows with high Reynolds number. In 4812 the second approach, the viscosity-affected region is resolved with a mesh all the way to the 4813 wall, including the viscous sublayer. This type of approach is referred to as "near wall 4814 modeling" approach. The dimensionless distance between the wall and the cell center near the wall (y+) for the mesh used for this case should generally be around 1. Guidance on how to 4815 apply any of these modeling approaches should be provided in the CFD program 4816 documentation used in the application. Any modeling approach taken should be fully justified 4817 4818 and validated.

4819

To properly characterize the flow (internal, external, annular, etc.), Reynolds number estimates shall be made using velocities from initial runs for the cooling air in the annulus and helium fill inside the canister. Reynolds number above 3000 based on the channel hydraulic diameter are above the critical Reynolds number of 2300 for internal flows, characterizing the flow in the 4824 transitional range between the laminar and turbulent zone. Since these are buoyancy driven 4825 flows, both the Grashof (Gr) number based on the hydraulic diameter of the channel and the 4826 modified Grashof number defined as Graetz number (Gz = Gr * W/H), where W and H are the 4827 width and height of the air channel,should also be calculated to properly characterize the 4828 annular flow. On the other hand, buoyancy driven helium flow, cooling the inside of the canister, 4829 generally would be laminar based on both the Grashof and the Reynolds numbers due to higher 4830 kinematic viscosities, and low achieved velocities within the canister.

4831

Actual SNF properties and uncertainties (e.g., friction factors, crud and oxide buildup,
eccentricities, non-uniform axial and radial decay heat profiles) should also be addressed.
Applicants must avoid using an effective thermal conductivity for the cover gas (e.g., helium) in
lieu of a specific convection model.

4836

4861

If applicable, the applicant should evaluate the added heat from components stored with the
SNF assemblies (e.g., control rods, fuel channels, etc.). This would ultimately affect the
maximum predicted cladding temperature.

4841 4.5.4.1.2 General Guidance on Application of Effective Conductivity Models (MEDIUM
4842 Priority)
4843

In addition to a CFD method utilizing a porous media, fuel assemblies may be modeled as a homogenous region using an effective thermal conductivity (this is a typical approach when utilizing a finite element analysis approach). The manner in which effective conductivity is determined for each fuel assembly should be examined by the reviewer. Guidance on effective thermal conductivity of the fuel is presented in Section 4.5.4.2, "Material Properties."

4850 Use of effective thermal conductivity coefficients for regions within the confinement cask other than the fuel (e.g., gaps) may overestimate heat transfer. If effective thermal conductivity is 4851 used in this manner, the reviewer should verify that the same values have been determined 4852 4853 from test data, or CFD submodels, or other appropriate sources that are representative of 4854 similar geometry, materials, temperatures, and heat fluxes used in current application. The reviewer should pay particular attention to the effective thermal conductivity of neutron shield 4855 4856 regions, such as those embedded within thermal fins. Voids or gaps typically exist as a result of 4857 either tolerances or shrinkage, and should be considered in calculating effective thermal conductivity. Also, the applicant should pay particular attention to the values assumed for 4858 4859 surface emissivities and view factors, as well as the manner used to account for radiation heat 4860 transfer in determining the effective thermal conductivities.

4862 4.5.4.2 Material Properties (MEDIUM Priority) 4863

4864 The reviewer should coordinate with the materials discipline to verify that the material compositions and thermal properties are provided for all components used in the calculational 4865 4866 model that the thermal properties used in the safety analysis are appropriate, and that potential degradation of materials over their service life has been evaluated. 4867 Temperature and anisotropic dependencies of thermal properties should be considered. If regional thermal 4868 4869 properties are determined from a combination of individual materials, the manner in which these 4870 effective properties are calculated should be fully described and justified. 4871

4872 If the thermal model is axisymmetric or three-dimensional, the longitudinal thermal conductivity
4873 should generally be limited to the conductivity of the cladding (weighted by its fractional area)
4874 within the fuel assembly. Gaps between fuel pellets and cracks in the pellets themselves can

result in a considerable uncertainty regarding the contribution of the fuel to longitudinal heat
transfer. High-burnup effects should also be considered in determining the fuel region effective
thermal conductivity.

4879 4.5.4.3 Boundary Conditions (Priority - as indicated)

4881 (MEDIUM Priority) The reviewer should verify that the applicant identifies boundary conditions 4882 for normal, loading, off-normal, and accident conditions. The required boundary conditions 4883 include the decay heat rate from each fuel assembly and the external conditions on the cask 4884 surface. The peak power factor for a fuel assembly should be specified and the peak linear 4885 power ("peaking factor") of a fuel assembly should be stated for a given active fuel length. 4886

- 4887 (MEDIUM Priority) The boundary conditions on the cask surface depend on the environment surrounding the cask. Consequently, the temperature of the environment should be specified 4888 4889 for all simulated conditions, as should the incident and absorbed insolation. The mechanisms and models for dissipating the absorbed insolation and decay heat from the surface of the cask 4890 to the environment should also be identified and described. The mechanisms for transferring 4891 heat from the cask surface usually consist of natural (free) convection and thermal radiation. A 4892 heat balance on the surface of the cask should be conducted and the results presented in the 4893 4894 applicant's SAR. 4895
- 4896 (LOW Priority) The initial temperature distribution of the storage cask system before a fire 4897 accident should be established on the basis of the hottest temperature distribution during 4898 normal or off-normal storage conditions. The duration and flame temperature of the fire should 4899 be specified, as should gas velocities and flame emissivity. The flame and cask surface 4900 emissivities specified in 10 CFR 71.73(c)(4) for a hypothetical accident test of transportation 4901 packages are satisfactory for use with regard to a fire accident involving a storage cask. 4902
- 4903 (LOW Priority) The applicant should identify and describe the mechanisms and models for 4904 coupling the fire energy to the cask surface. These mechanisms include forced convection in 4905 relation to the flame velocity (5 to 15 m/s, or about 16 to 49 ft/s) as well as thermal radiation. In 4906 addition, justification of the convection coefficients during the fire should be provided. Natural 4907 convection coefficients are not appropriate; as such coefficients imply downward gas flow 4908 adjacent to relatively cool cask walls. In general, for the fire condition, buoyant, upward flow, 4909 driven by hot gasses, will dominate. The orientation of the cask should also be considered.
- 4910

4880

4911 (LOW Priority) Following the fire, the cask is subject to insolation and content decay heat while
4912 being cooled by natural convection and thermal radiation to the environment. The applicant
4913 should identify the post-fire conditions of the cask, including any changes in surface conditions
4914 and/or geometry that may affect radiation and convection heat losses. Identification and
4915 description of the models used for the analysis of the post-fire processes should also be
4916 provided by the applicant.

4918 4.5.4.4 Computer Codes (HIGH Priority)

4920 The reviewer should verify that the applicant has provided information on any computer-based 4921 modeling as described in Appendix A to Chapter 3.0, "Structural Evaluation," and review the 4922 thermal analysis submitted by the applicant in accordance with the Appendix.

4924 4.5.4.5 Temperature Calculations (Priority – as indicated)

4925 (MEDIUM - bolted closure/LOW - welded closure) The application should include a table that 4926 lists the maximum and minimum temperatures of all components important to safety under 4927 4928 normal, loading, off-normal, and accident-level conditions. This table should specify the 4929 operating temperature range for each component. The reviewer should verify that temperatures 4930 have been calculated for key components and that they do not exceed the allowable range for each. Justification shall be provided in the application for any material important to safety that 4931 exceeds acceptable temperature ranges. If compliance with minimum temperature criteria 4932 4933 relies on a specific minimum heat load from the fuel, such heat load shall be quantified and included as an operating control and a technical specification criterion in SAR Chapter 13. 4934

4935

4936 (MEDIUM Priority) The reviewer should pay particular attention to the maximum temperature of
4937 the cladding. These temperature limits are discussed in Section 4.4.2, "Material and Design
4938 Limits," with review guidance presented in Section 4.5.2, "Material and Design Limits."

4939 4940 (MEDIUM Priority) Some storage systems rely upon natural circulation of air through internal 4941 passages to remove heat from the stored confinement canister. For storage systems with 4942 internal air flow passages, blockage of inlet and/or outlet flow is an accident situation that should 4943 be evaluated. Total blockage of all inlets and outlets may result in fuel heatup, which has been assumed to approach adiabatic conditions. To ensure that blockages do not go undetected for 4944 4945 significant periods, the NRC has required objective evidence that inlet and outlet flows are not 4946 obstructed. Consequently, for these types of storage systems, the NRC has accepted periodic visual inspection of the vents coupled with temperature measurements to verify proper thermal 4947 4948 performance and detect flow blockages. The inspections should take place within an interval 4949 that will allow sufficient time for corrective actions to be taken before the accident temperature is 4950 reached. The inspection interval should be more frequent than the time interval required for the 4951 fuel to heatup to the established accident temperature criteria, assuming a total blockage of all 4952 inlets and outlets.

4953

4954 (MEDIUM Priority) The review of the heatup calculations should specifically address any assumptions regarding limiting components and quasi-steady state responses. 4955 The initial 4956 ambient temperature for the heatup calculations should bound the maximum "normal condition" 4957 temperature. The resulting heatup time history should be included in the SAR documentation, 4958 and should support the proposed inspection and monitoring intervals. This information is also 4959 useful in developing contingency operation procedures, since it indicates the available time in which to take corrective actions before the fuel accident temperature criteria may be exceeded. 4960 4961

- (HIGH Priority) Some storage systems may use a transfer cask to move the loaded confinement
 canister from the fuel handling building to the independent spent fuel storage installation (ISFSI)
 site. When the canister is within the transfer cask, the rate of cooling is typically less than for
 normal operation. Therefore, fuel cladding temperatures are expected to be higher than for
 normal storage conditions.
- 4967

(HIGH Priority) The reviewer should examine the temperature distribution calculations for the
canister inside the transfer cask and verify that heat transfer through gap regions has been
treated in a conservative manner, and that material properties and dimensions of the transfer
cask are consistent with the design data defined in the SAR documentation. The initial ambient
temperature should be the maximum "normal condition" temperature. Cask preparation for
storage or unloading operations may include situations in which the canister is evacuated while
it is in the transfer cask. If the fuel cladding temperature calculation is based on heatup over a

limited time period for cask drying operations, the reviewer should verify that limiting conditions
for the operations have been imposed in the technical specifications. Such limiting conditions
should ensure that the temperature will remain acceptable during the operations, and that
normal cooling will begin before the temperature criterion is exceeded.

4980 (HIGH Priority) During wet fuel transfer operations, the liquid in the fuel canister should not be 4981 permitted to boil. This practice avoids uncontrolled pressures on the canister and the connected dewatering, purging, and recharging system(s), unacceptable discharge of liquids which may be 4982 providing radiation shielding, and a potentially unacceptable reduction in the safety margin. The 4983 4984 reviewer should ensure that to prevent any of the above conditions, an adequate subcooling margin is identified in both the SAR and corresponding operating procedures to prevent boiling. 4985 4986 This margin may be cask-specific, depending on the design of the fuel basket and key 4987 assumptions used in the criticality analysis. The reviewer should ensure that the applicant 4988 reviews the heatup and time-to-boil calculations and assesses whether any technical 4989 specification or limiting conditions for operation are needed. Heatup calculations should be established on the basis of the SNF pool's technical specification maximum temperature limit 4990 4991 (typically 46°C (115°F)).

4992 4993 (HIGH Priority) For unloading operations, the thermal reviewer should ensure that the applicant 4994 evaluates temperature and pressure calculations supporting procedural steps presented in SAR Chapter 9, "Operating Procedures Evaluation," for cask cooldown and reflooding of the cask 4995 4996 internals. To ensure that the cask does not overpressurize and that the fuel assemblies are not 4997 subjected to excess thermal stresses, the applicant's analysis should specify and justify the appropriate temperature and flow rate of the guench fluid, assuming maximum fuel cladding 4998 temperatures in the unloading configuration. This analysis should also be referenced in Chapter 4999 12, "Accident Analyses Evaluation," of the SAR as having been considered in the development 5000 5001 of thermal models for the unloading procedures, and be included, as appropriate, in the 5002 technical specifications The thermal reviewer should provide thermal profiles to the materials reviewer so that latter can determine if the applicant has adequately addressed the issue of fuel 5003 5004 rod response to a reflood incident in Chapter 8, "Materials Evaluation". 5005

(LOW Priority) The most extreme thermal conditions may result from credible ambient temperatures, temperature-time histories, an adjacent fire, or any off-normal or design-basis event (DBE) resulting in blockage of ventilation passages. The worst-case structural loads may occur at temperatures lower than those of design-basis accidents (DBAs) or natural phenomena since load combination expressions effectively require greater safety factors for normal and offnormal analyses than for any DBE. Typically, fire has been the worst-case accident thermal condition for storage systems without internal air flow passages.

- (LOW Priority) The burning of fuel and other combustibles associated with vehicles involved in
 transfer operations should, at a minimum, be presumed to be a DBE with the cask in the most
 exposed situation during transfer or loading into storage. Fire parameters included in 10 CFR
 71.73 have been accepted for characterizing the heat transfer during the in-storage fire.
 However, a bounding analysis that limits the fuel source thus limits the length of the fire (e.g., by
 limiting the source to the fuel in the transporter) has also been accepted.
- 5021 (LOW Priority) Some structures, systems, and components (SSC) may experience the most 5022 severe conditions if exposure to high temperatures is followed by dousing with water (such as 5023 rain or fire suppression activities). A small amount of exterior concrete spalling may result from 5024 a fire, the application of fire suppression water, rain on heated surfaces or other high-5025 temperature condition. The damage from these events is readily detectable and appropriate

5026 recovery or corrective measures may be presumed. Therefore, the loss of such a small amount 5027 of shielding material is not expected to cause a storage system to exceed the regulatory 5028 requirements in 10 CFR 72.106 and need not be estimated or evaluated in the SAR. The NRC 5029 accepts that concrete temperatures may exceed the temperature criteria of American Concrete 5030 Institute (ACI) 349 for accidents if the temperatures result from a fire. In that case, corrective 5031 action may be required for continued safe storage. 5032

5033 (LOW Priority) The methods that are acceptable for analyzing and reviewing the consequences 5034 of a fire depend upon the duration of the fire and the margin between the predicted 5035 temperatures and the actual thermal limits of the components. A fire of sufficient duration, or 5036 one in which material temperatures are close to the criteria of their acceptable operational 5037 range, will require a detailed model of the cask and its contents. Cask system components 5038 (e.g., the neutron shield) may be assumed to be intact at the start of the fire. 5039

5040 (LOW Priority) If a cask tipover is a credible accident, the reviewer should verify that the 5041 applicant has evaluated the effect on cask and fuel temperatures in the new configuration. An 5042 analysis may be warranted when a significant portion of heat removal capability is attributed to 5043 internal convection if a change in orientation of that cask may have a significant effect.

5044 5045

5046

4.5.4.6 Pressure Analysis (LOW Priority)

Pressure calculations should be performed using the ideal gas law (i.e., PV = nRT where P is pressure, V is volume, n is the number of moles of a gas, R is a constant for a given gas, and T is the absolute temperature) and summing the partial pressures of each of the gas constituents in the cask cavity. The application should identify the method and all assumptions used in the pressure analysis, including the determination of the fission gas inventory.

5053 It is necessary to consider the temperature distribution of all components within the cask cavity 5054 and the cavity walls in calculating the gas pressure in the cavity. For the fire accident analysis, 5055 the application should identify the maximum gas temperature reached during the post-fire 5056 accident phase, explain the method used to determine the average gas temperature, and 5057 specify the time in the accident at which the peak gas temperature is attained. 5058

5059 This pressure also depends on the free volume in the cask cavity, the amount (moles) of cover 5060 gas (helium) in the cavity, and the amount of gases released from ruptured fuel pins. The free 5061 volume calculation should be reviewed to determine if all components internal to the cask cavity 5062 (e.g., fuel assemblies, basket, structural supports, spacer disks, reactor control components) 5063 have been properly considered. 5064

5065 The NRC accepts that normal conditions occur with less than 1 percent of the fuel rods failed, 5066 off-normal conditions occur with up to 10 percent of the fuel rods ruptured, and 100 percent of 5067 the fuel rods will have ruptured following a DBE. The NRC also accepts that a minimum of 5068 100 percent of the fill gas and 30 percent of the significant radioactive gases (e.g., ³H, Kr, and 5069 Xe) within a ruptured fuel rod is available for release into the cask cavity.

5070

5071 Under the conditions where any of the cask component temperatures are close (within 5 5072 percent) to their limiting values during an accident or the Maximum Normal Operating Pressure 5073 (MNOP) is within 10 percent of its design basis pressure, or any other special conditions, the 5074 applicant should consider, by analysis, the potential impact of the fission gas in the canister to 5075 the cask component temperature limits and the cask internal pressurization. 5076 5077 The reviewer should coordinate with the structural reviewer to verify that the confinement 5078 pressure of the cask is within its design limits for normal and accident conditions.

5079 5080

5081

4.5.4.7 Confirmatory Analysis (HIGH Priority)

5082 Reviewers may need to perform a confirmatory analysis of the thermal performance of the cask 5083 SSCs identified as important to safety. Confirmatory analyses are recommended where 5084 margins between the calculated temperatures and prescribed component temperature limits are 5085 small, where particularly complex thermal analyses are submitted by applicants, or where the 5086 applicant is submitting a new thermal methodology or analysis approach. 5087

- 5088 The application should be reviewed to ensure that the applicant made the correct assumptions 5089 and provided the correct input, and that the output is consistent with established physical 5090 (thermal) behavior. These results should specifically include steady-state temperature 5091 distributions, local heat balances, temperatures reached and temperature distributions within 5092 any reinforced concrete SSCs, and cask cavity pressures for the bounding ambient 5093 temperatures. 5094
- To provide the most reliable confirmation, confirmatory analysis should, to the degree possible, use a different thermal analysis method than that used by the applicant. The code used for the confirmatory analysis may be the same as or different from that used by the applicant. Regardless, a review of the applicant's analytical approach and analysis models should be considered part of the overall confirmatory analysis. Similar confirmation of accident temperatures (e.g., during a fire) should be performed, as applicable to the SAR analysis.
- 5102 If a full confirmatory analysis is not deemed necessary, the minimum confirmatory review should include verifying that key design parameters have been appropriately determined and correctly 5103 expressed as input into the computer program(s) used for the thermal analysis. Key parameters 5104 5105 include proper dimensions, material properties (including surface emissivities and view factors 5106 for radiation), and definition of heat sources. A heat balance at the outer surface of the cask should be performed to verify that the heat from the SNF and insolance, balance that removed 5107 by convection and radiation. Correlations for the heat transfer coefficient should then be 5108 5109 assessed to confirm that they are appropriate for the existing storage conditions. 5110 temperature of the cask's inner surface should be estimated by calculating the temperature distribution across the cask body with simple heat balance approximations. 5111 Finally, the 5112 difference between the cask's inner surface temperature and the maximum cladding temperature should be compared with that of similar casks and baskets reviewed in previous 5113 5114 SARs.
- 5115 5116 As discussed above, a more detailed confirmatory analysis may be required, and could include 5117 a model of a portion of the cask or basket to ensure that the SAR results are realistic and 5118 conservative. A more extensive confirmatory analysis may involve the full geometry of the cask, 5119 with relevant component details, to determine temperature distributions in the cask system.
 - 5120
 - Additional guidance on review of analytical models and conduct of confirmatory analyses can be
 found in Appendix 3A, "Computational Modeling Software."
 - 5124 As an alternative to a confirmatory analysis, the applicant may be required to perform design-5125 verification testing of an as-built cask or properly scaled mock-up system (when applicable) to 5126 confirm the thermal analyses presented in the SAR. Such testing may include verifying gap 5127 conductance values assumed in modeling thermal resistance. The test conditions,

5128 configuration, and type and location of instrumentation used, if any, should be sufficiently 5129 described in SAR Chapter 10, "Acceptance Criteria and Maintenance."

5131 **4.6 Evaluation Findings**

5130

5132

5133 The reviewer should review the 10 CFR Part 72 acceptance criteria and provide a summary 5134 statement for each. These statements should be similar to the following model: 5135

- 5136F4.1Structures, systems, and components (SSCs) important to safety are described5137in sufficient detail in Chapters _____ of the SAR to enable an evaluation of their5138thermal effectiveness.5139cask SSCs important to safety remain within their
- 51405141F4.2The [cask designation] is designed with a heat-removal capability having5142verifiability and reliability consistent with its importance to safety. The cask is5143designed to provide adequate heat removal capacity without active cooling5144systems.5145
- 5146F4.3The spent fuel cladding is protected against degradation leading to gross5147ruptures by maintaining the cladding temperature for _______--year cooled fuel5148below ______°C (_____°F) in an [applicable gas] environment. Protection of the5149cladding against degradation is expected to allow ready retrieval of spent fuel for5150further processing or disposal.
- 5152 The reviewer should provide a summary statement similar to the following:

5153
5154 "The staff concludes that the thermal design of the [cask designation] is in compliance
5155 with 10 CFR Part 72, and that the applicable design and acceptance criteria have been
5156 satisfied. The evaluation of the thermal design provides reasonable assurance that the
5157 [cask designation] will allow safe storage of spent fuel for a licensed (certified) life of
5158 years. This finding is reached on the basis of a review that considered the regulation
5159 itself, appropriate regulatory guides, applicable codes and standards, and accepted
5160 engineering practices."

5 CONFINEMENT EVALUATION

5161 5162

5164

5163 5.1 Review Objective

5165 In this portion of the dry storage system (DSS) review, the U.S. Nuclear Regulatory Commission 5166 (NRC) evaluates the confinement features and capabilities of the proposed cask system. In 5167 conducting this evaluation, the NRC staff seeks to ensure that radiological releases to the 5168 environment will be within the limits established by the regulations and that the spent fuel 5169 cladding and fuel assemblies will be sufficiently protected during storage against degradation 5170 that might otherwise lead to gross ruptures. 5171

5172 **5.2 Areas of Review**

5173

5174 This chapter of the DSS Standard Review Plan (SRP) provides guidance for use in evaluating 5175 the design and analysis of the proposed cask confinement system for normal, off-normal, and accident conditions. This evaluation includes a more detailed assessment of the confinement-5176 5177 related design features and criteria initially presented in Chapters 1, "General Information Evaluation" and 2, "Principal Design Criteria Evaluation" of the applicant's Safety Analysis 5178 5179 Report (SAR), as well as the proposed confinement monitoring capability, if applicable. In 5180 addition, the NRC staff assesses the potential releases of radionuclides associated with spent fuel by independently estimating their potential leakage to the environment and the subsequent 5181 5182 impact on a hypothetical individual located at or beyond the controlled area boundary. 5183

As prescribed in U.S. Code of Federal Regulations (CFR) Part 72, "Licensing Requirements for the Independent Storage of Spent Nuclear Fuel and High-Level Radioactive Waste," Title 10, "Energy" (10 CFR Part 72), the regulatory requirements for doses at and beyond the controlled area boundary include both the direct dose and that from an estimated release of radionuclides to the atmosphere (based on the tested leak tightness of the confinement). Thus, an overall assessment of the compliance of the proposed DSS with these regulatory limits is deferred to Chapter 11, "Radiation Protection Evaluation," of this SRP. In addition, the performance of the

- cask confinement system under accident-level conditions, as evaluated in this chapter, may also
 be addressed in the overall accident analyses as discussed in Chapter 12, "Accident Analyses
 Evaluation," of this SRP.
- 5195 As described in SRP Section 5.5, "Review Procedures," a comprehensive confinement 5196 evaluation should encompass the following areas of review:
- 5197 5198 5199

5200

5201 5202

5203

5205

5208

5209

Confinement Design Characteristics

- Design Criteria Design Features
- Confinement Monitoring Capability
- 5204 Nuclides with Potential for Release
- 5206Confinement Analyses5207Normal Conditions
 - Normal Conditions Off-Normal Conditions (Anticipated Occurrences) Design Basis Accident Conditions (Including Natural Phenomenon Events)
- 5210 5211 Supplemental Information

5212

5213 5.3 Regulatory Requirements

5214 5215 This section presents a summary matrix of the portions of 10 CFR Part 72 that are relevant to 5216 the review areas addressed by this chapter. The NRC staff reviewer should read the exact 5217 referenced regulatory language. Table 5-1 matches the relevant regulatory requirements 5218 associated with this chapter to the areas of review.

5219

Table 5-1 Relationship of Regulations and Areas of Review			
	10 CFR Part 72 Regulations		
Areas of Review	72.104 (a)	72.122(a), (b)(1), (h)(1), (4), (i)	72.236 (d), (e), (i), (j), (l)
Confinement Design Characteristics		•	•
Confinement Monitoring Capability		•	
Nuclides with Potential for Release	•		•
Confinement Analyses	•	●	•

5220 5221 5222

5226

5.4 Acceptance Criteria

5223 In general, the DSS confinement evaluation seeks to ensure that the proposed design fulfills the 5224 following acceptance criteria that the NRC staff considers to be minimally acceptable to meet 5225 the confinement requirements of 10 CFR Part 72.

5227 5.4.1 Confinement Design Characteristics

5228
5229 The design should provide redundant sealing of the confinement boundary (10 CFR 72.236(e)).
5230 Typically, this means that field closures of the confinement boundary should either have two
5231 seal welds or two metallic O-ring seals.
5232

5233 The confinement design should be consistent with the regulatory requirements as well as the applicant's "General Design Criteria" reviewed in Chapter 2, "Principal Design Criteria 5234 5235 Evaluation," of this SRP. The NRC staff has previously accepted construction of the primary 5236 confinement barrier in conformance with the American Society of Mechanical Engineers (ASME) 5237 Boiler and Pressure Vessel (B&PV) Code, Section III, "Rules for Construction of Nuclear Facility 5238 Components," Division 1, Subsections NB or NC. This code defines the standards for all aspects of construction including materials, design, fabrication, examination, testing, inspection, 5239 5240 and certification required in the manufacture and installation of components. In such instances, 5241 the staff has relied upon Section III to define the minimum acceptable margin of safety. 5242 Therefore, the applicant must fully document and completely justify any deviations from the 5243 specifications of Section III. In some cases, after careful and deliberate consideration, the staff has made exceptions to this requirement. In addition, the ASME has published in 2005 Division 5244

5245 3 to Section III which is written specifically for Containments for the Transportation and Storage 5246 of Spent Nuclear Fuel and is considered to be the governing code for this component, but has 5247 not yet been reviewed and endorsed by the NRC. 5248

5249 The design must provide a nonreactive environment to protect fuel assemblies against fuel cladding degradation, which might otherwise lead to gross rupture (PNL, 1987). Measures for 5250 5251 providing a nonreactive environment within the confinement cask typically include drying and backfilling with a nonreactive cover gas (such as helium). Experimental data have not 5252 demonstrated an acceptably low oxidation rate for UO₂ spent fuel over the 20-year licensing 5253 5254 period to permit safe storage in an air atmosphere during dry storage. Therefore, to reduce the potential for fuel oxidation and subsequent cladding failure, an inert atmosphere (e.g., helium 5255 cover gas) has been used for storing UO₂ spent fuel in a dry environment. See Chapter 9, 5256 5257 "Operating Procedures Evaluation," of this SRP for more detailed information on the cover gas filling process. Note that other fuel types, such as graphite fuels for the high-temperature gas-5258 cooled reactors (HTGRs), may not exhibit the same oxidation reactions as UO₂ fuels and, 5259 therefore, may not require an inert atmosphere. Applicants proposing to use atmospheres other 5260 than inert gas should discuss how the fuel and cladding will be protected from oxidation. 5261

5263 5.4.2 Confinement Monitoring Capability

5264 5265 The reviewer should ensure the application describes the proposed monitoring capability and/or surveillance plans for mechanical closure seals. In instances involving welded closures, the 5266 5267 staff has previously accepted that no closure monitoring system is required. This practice is consistent with the fact that other welded joints in the confinement system are not monitored. 5268 since the initial staff review ensures the integrity of the confinement boundary for the licensing 5269 5270 period. Typical surveillances include checking for blockage of the air vents or temperature 5271 monitoring. 5272

5273 To show compliance with the requirement for continuous monitoring, 10 CFR Part 72.122(h)(4), 5274 cask vendors have proposed, and the staff has accepted, routine surveillance programs and 5275 active instrumentation to meet the continuous monitoring requirements. 5276

5277 5.4.3 Nuclides with Potential for Release

5278 5279 The applicant must estimate the maximum credible quantity of radionuclides with potential for 5280 release to the environment. The radionuclides potentially available for release to the 5281 environment are based on the radiological source term evaluation presented in Chapter 6, 5282 "Shielding Evaluation," of this SRP. 5283

52845.4.4Confinement Analyses

5285

5262

5286 The application should specify the maximum allowed leakage rates for the total primary 5287 confinement boundary and redundant seals. Applicants frequently display this information in 5288 tabular form including the leakage rate of each seal. The maximum allowed leakage rate is the 5289 "as tested" leak rate measured by the leak test performed on the cask field closure. Generally, 5290 as discussed below, the allowable leakage rate must be evaluated for its radiological 5291 consequences and its effect on maintaining an inert atmosphere within the cask. However, the 5292 analyses discussed below are unnecessary¹ for storage casks including its closure lid that are

¹ For casks that are demonstrated to be leak tight, the review procedures discussed in Sections 5.5.3 and 5.5.4 are not applicable.

designed and tested to be "leak tight" as defined in the American National Standards Institute
(ANSI), Institute for Nuclear Materials Management's "American National Standard for Leakage
Tests on Packages for Shipment of Radioactive Materials" (ANSI N14.5-1997).

- The analysis of potential releases should be consistent with the methods described in ANSI N14.5-1997 (ANSI, 1997).
- During normal operations and anticipated occurrences, dose calculations based on the allowable leakage rate must demonstrate that the annual dose equivalent to any real individual who is located beyond the controlled area does not exceed the limits given in 10 CFR 72.104(a).
- For any design-basis accident, dose calculations based on the allowable leakage rate must demonstrate that an individual at the boundary or beyond the nearest boundary of the controlled area does not receive a dose that exceeds the limits given in 10 CFR 72.106(b)-(discussed further in Chapter 12, "Accident Analyses Evaluation")
 - The analysis of potential releases must demonstrate that an inert atmosphere will be maintained within the cask during the storage lifetime.
 - For casks that employ a pressurized inert gas to facilitate internal natural convection heat transfer, the analysis of potential releases must demonstrate that the pressurized atmosphere will be maintained within the cask during the storage lifetime.

53195.4.5Supplemental Information5320

5321 The reviewer should ensure all supportive information or documentation that justifies 5322 assumptions or analytical procedures is provided in the application. 5323

5324 **5.5 Review Procedures** 5325

5326 Figure 5-1 presents an overview of the evaluation process for coordination with other review 5327 disciplines. 5328

53295.5.1Confinement Design Characteristics (MEDIUM Priority)5330

- 5331 5.5.1.1 Design Criteria 5332
- 5333 The reviewer should examine the principal design criteria presented in SAR Chapter 2 as well 5334 as any additional detail provided in SAR Chapter 5, "Confinement."
- 5335

5310 5311

5312

5313 5314

5315

5316

5317

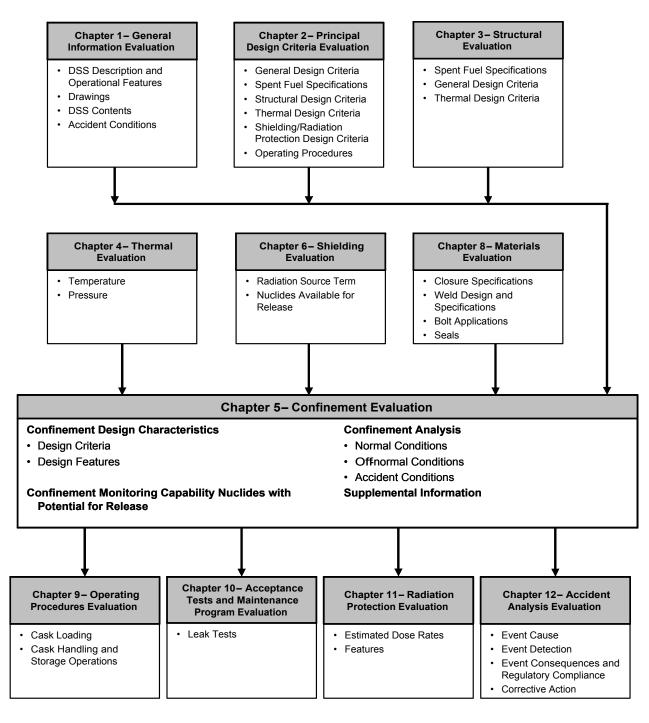


Figure 5-1 Overview of the Confinement Evaluation

5340 5.5.1.2 Design Features

5341

5346

The reviewer should examine the general description of the cask presented in SAR Chapter 1, "General Description," as well as any additional information provided in SAR Chapter 5, "Confinement Evaluation". All drawings, figures, and tables describing confinement features should be sufficiently detailed to stand alone.

5347 The reviewer should verify that the applicant has clearly identified the confinement boundaries. 5348 This identification should include the confinement vessel, its penetrations, valves, seals, welds, 5349 and closure devices, and corresponding information concerning the redundant sealing. 5350

5351 The reviewer should verify that the design and procedures provide for drying and evacuation of 5352 the cask interior as part of the loading operations. Also, the reviewer should verify that the 5353 confinement design is acceptable for the pressures that may be experienced during normal, off-5354 normal and accident conditions. 5355

5356 The reviewer should verify that, on completion of cask loading, the gas fill of the cask interior is 5357 at a pressure level that is expected to maintain a nonreactive environment and heat transfer 5358 capabilities for at least the 20-year storage life of the cask interior under both normal and off-5359 normal conditions and events. This verification can include pressure testing, seal monitoring, and maintenance for casks with seals that are not welded if these are included in Chapter 13, 5360 "Technical Specifications and Operating Controls and Limits Evaluation," of this SRP as 5361 5362 conditions of use. Acceptance tests for pressure testing are described in Section 10.5.1.1, "Structural/Pressure Tests," of this SRP. The NRC has previously accepted specification of an 5363 overpressure of approximately 14 kPa (~2 psig) and cask leak testing as conditions of use for 5364 5365 satisfying this requirement. However, this general rule is not applicable to those designs that 5366 employ a pressurized content (i.e., to several atmospheres) to facilitate natural circulation 5367 cooling within the canister

5368

5383

5384 5385

5386

5387

5369 The reviewer should coordinate with the structural and materials disciplines respectively 5370 reviewing Chapter 3, "Structural Evaluation," and Chapter 8, "Materials Evaluation," of this SRP to ensure that the applicant has provided proper specifications for all welds and, if applicable, 5371 that the bolt torque for closure devices is adequate and properly specified. If applicable, the 5372 5373 reviewer should verify the capability of the seal to maintain long-term closure. Because of the performance requirements over the 20-year license period, the reviewer should evaluate the 5374 5375 potential for seal deterioration associated with bolted closures. The NRC staff has previously accepted only metallic seals for the primary confinement. This review should be coordinated 5376 5377 with the thermal discipline to ensure that the operational temperature range for the seals 5378 (specified by the manufacturer) will not be exceeded. 5379

5380 The staff has concluded that welded canisters can be used as a confinement system provided 5381 that the following design/qualification guidance is met: 5382

- The canister is constructed from austenitic stainless steel.
- The canister closure welds meet the guidance of Section 8.5.2.3, "Weld Design and Specifications," of this SRP.
- 5388•The canister maintains its confinement integrity during normal conditions,5389anticipated occurrences, and credible accidents and natural phenomena as5390required in 10 CFR Part 72.

- 5391
 5392
 The canister shell has been helium leak tested prior its loading as required by 10 CFR 72.236(i). This test demonstrates that the canister is free of defects that could lead to a leakage rate greater than the design basis leakage rate which could result in doses at the control area boundary in excess of the regulatory limits.
 5397
- Records documenting the fabrication and closure welding of canisters shall comply with the provisions of 10 CFR Part 72.174, "Quality Assurance Records" and SRP Section 8.5.2.3. Records storage should comply with ANSI N45.2.9, "Requirements for Collection, Storage, and Maintenance of Quality Assurance Records for Nuclear Power Plants."
 - Activities related to inspection, evaluation, documentation of fabrication, and closure welding of canisters shall be performed in accordance with a NRC-approved quality assurance program as required in 10 CFR Part 72, Subpart G, "Quality Assurance."

5409 The qualification standards discussed above provide a sufficient alternative to the fabrication, 5410 periodic, and pre-shipment leak-testing requirements of ANSI 14.5 for the final closure welds. 5411

54125.5.2Confinement Monitoring Capability (LOW Priority)5413

5414 The NRC staff has found that casks closed entirely by welding do not require seal monitoring. 5415 However, for casks with bolted closures, the staff has found that a seal monitoring system is 5416 required to adequately demonstrate that seals can function to limit releases and maintain a 5417 helium atmosphere in the cask for the term of the 10 CFR Part 72 general license. A seal 5418 monitoring system, combined with periodic surveillance, enables the licensee to determine 5419 when to take corrective action to maintain safe storage conditions.

5420

5404

5405

5406

5407

5408

5421 Although the details of the monitoring system may vary, the general design approach has been 5422 to pressurize the region between the redundant seals with a nonreactive gas to a pressure 5423 greater than that of the cask cavity and the atmosphere. The monitoring system is leak tested to the same leak rate as the confinement boundary. Installed instrumentation is routinely 5424 5425 checked per surveillance requirements. A decrease in pressure between these seals indicates 5426 that the nonreactive gas is leaking either into the cask cavity or out to the atmosphere. For 5427 normal operations, radioactive material should not be able to leak to the atmosphere; hence, 5428 this design allows for detecting a faulty seal without radiological consequence. Note that the 5429 volume between the redundant seals should be pressurized using a nonreactive gas, thereby 5430 preventing contamination of the interior cover gas.

5431

5432 The staff has accepted monitoring systems as not important to safety and classified them as 5433 Category B under the guidelines of NUREG/CR-6407, "Classification of Transportation Packaging and Dry Spent Fuel Storage System Components According to Importance to Safety 5434 5435 (INEL-95/0551)." Although its function is to monitor confinement seal integrity, the failure of the 5436 monitoring system alone does not result in a gross release of radioactive material. It is termed 5437 as not important to safety since most of the associated hardware have not met the important to 5438 safety programmatic controls, like design, or procurement. Consequently, the monitoring 5439 system for bolted closures need not be designed to the same requirements as the confinement 5440 boundary (i.e., ASME Section III).

5442 Dependant on the monitoring system design, there could be a lag time before the monitoring 5443 system indicates a postulated degraded seal leakage condition. Degraded seal leakage is 5444 leakage greater than the tested rate that is not identified within a few monitoring system 5445 surveillance cycles. The occurrence of a degraded seal without detection is considered a 5446 "latent" condition and should be presumed to exist concurrently with other off-normal and 5447 design-basis events (see Section 2.5.2.2, "External Conditions," of this SRP). Note that once 5448 the degraded seal condition is detected, the cask user will initiate corrective actions. 5449

- 5450 For the "latent" condition, the monitoring system boundary would remain intact and this 5451 condition would be bounded by the off-normal analysis. If the monitoring system would not maintain integrity under design-basis accident conditions, additional safety analysis may be 5452 5453 necessary. The staff recognizes that the possibility of a degraded seal condition is small and 5454 that the possibility of a degraded seal condition concurrent with a design-basis event that 5455 breaches the monitoring system pressure boundary is very remote. However, these 5456 probabilities have not been quantified. To address this concern, the staff accepts a 5457 demonstration that the dose consequences of this event are within the limits of 5458 10 CFR 72.106(b).
- 5459 5460 The reviewer should examine the specified pressure of the gas in the monitored region to verify 5461 that it is higher than both the cask cavity and the atmosphere. The reviewer should coordinate 5462 with the structural and thermal reviewers associated with Chapters 3 and 4 of this SRP to verify 5463 the pressure in the cask cavity. 5464
- 5465 The reviewer should examine the applicant's analysis to verify that the total volume of gas in the cavity is such that normal seal leakage will not cause all of the gas to escape over the lifetime of 5466 5467 the cask. The proposed maximum leakage rate should be based on the confinement evaluation described in Sections 5.5.3 and 5.5.4 of this SRP. The maximum allowable leakage rate should 5468 5469 be specified as a minimum acceptance test criterion in SAR Chapter 9. "Acceptance Criteria 5470 and Maintenance Program," and Chapter 13, "Technical Specifications and Operating Controls 5471 and Limits Evaluation," even though the actual leakage rate of the seals is expected to be 5472 significantly lower.
- 5473 5474 For redundant welded closures, the reviewer should ensure that the applicant has provided 5475 adequate justification that the welds have been sufficiently designed, fabricated, tested and 5476 examined to ensure that the weld will behave similarly to the adjacent parent material of the 5477 cask.
- 5479 The reviewer should verify that any leakage test, monitoring, or surveillance conditions are 5480 appropriately specified in SAR Chapter 10 "Acceptance Tests and Maintenance Program 5481 Evaluation"; Chapter 12, "Accident Analyses"; Chapter 13, "Technical Specifications and 5482 Operational Controls and Limits Evaluation"; and/or the Certificate of Compliance (CoC).
- 5483 5484

5478

5.5.3 Nuclides with Potential for Release (LOW Priority)

- 5485
 5486 The quantities of radioactive nuclides are often presented in the SAR Chapter 6, "Shielding
 5487 Evaluation," since they are generally determined during the evaluation of gamma and neutron
 5488 source terms in the shielding analysis. The reviewer should coordinate with the shielding
 5489 discipline to verify that the applicant has adequately developed the source term.
- 5490
- 5491 For determination of the radionuclide inventory available for release, the NRC staff has 5492 accepted, as a minimum for the analysis, the activity from the ⁶⁰Co in the crud, the activity from

iodine, fission products that contribute greater than 0.1 percent of design basis fuel activity, and
actinide activity that contributes greater than 0.01 percent of the design basis activity. In some
cases, the applicant may have to consider additional radioactive nuclides, depending upon the
specific analysis. The total activity of the design basis fuel should be based on the cask design
loading that yields the bounding radionuclide inventory (considering initial enrichment, burnup,
and cool time).

5500 The staff has determined that, as a minimum, the fractions of radioactive materials available for release from spent nuclear fuel (SNF), provided in Table 5-2 for pressurized-water reactor 5501 5502 (PWR) fuel and boiling-water reactor (BWR) fuel for normal, anticipated occurrences (offnormal) and accident-level conditions, should be used in the confinement analysis to 5503 5504 demonstrate compliance with 10 CFR Part 72. These fractions account for radionuclides 5505 trapped in the fuel matrix and radionuclides that exist in a chemical or physical form that is not releasable to the environment under credible normal, off-normal, and accident-level conditions. 5506 5507 Other release fractions may be used in the analysis provided the applicant properly justifies the basis for their usage. For example, the staff has accepted, with adequate justification, reduction 5508 5509 of the mass fraction of fuel fines that can be released from the cask. Also, for the applicant to utilize the release fractions in Table 5-2, the reviewer should ensure that the condition of the fuel 5510 5511 described in the SAR is bounded by the experimental data presented in NUREG/CR-6487. 5512 Specifically, this experimental data is based on the release from a single breach of one fuel rod and this data should not be used for spent fuel described as damaged. 5513

5514 5515 Fuel rods that are classified as damaged due to a preloading cladding breach may not have a driving force for the release of particulate from the rod under normal or off-normal conditions, 5516 providing the canister is not pressurized. However, under an impact accident damaged fuel 5517 rods might release additional fuel fines to the fracture of the fuel, especially the rim region in 5518 5519 high burnup fuel. In addition, some canisters may be pressurized to several atmospheres and 5520 cask blowdown could also affect releases. Each applicant should establish release fractions for damaged fuel based on applicable physical data and other analyses appropriate for the specific 5521 5522 type of fuel, accident impacts, and damaged condition of DSS. Alternatively, a leak-tight 5523 confinement boundary may be specified to preclude the release analyses of damaged fuel. 5524

5526 The staff has accepted the rod breakage fractions in Section 4.5.4.6, "Pressure Analysis," of this SRP for the confinement evaluations. It is important to recognize that confinement boundary 5527 5528 failure under design basis normal or accident-level conditions is not acceptable. Confinement boundary structural integrity during design basis conditions is confirmed by the structural 5529 analysis. The confinement analyses demonstrate that, at the measured leakage rates and 5530 5531 assumed nominal meteorological conditions, the requirements of 10 CFR 72.104(a) and 5532 10 CFR 72.106(b) can be met. Each independent spent fuel storage installation (ISFSI), whether it is a site-specific or general license, is also required to have a site-specific 5533 5534 confinement analysis and dose assessment to demonstrate compliance with these regulations.

5535

Table 5-2 Fractions of Radioactive Materials Available for Release from Spent Fuel ^a		
Variable	Fractions Available for Release ^b	
	PWR and BWR Fuel	

	Normal and Off- normal Conditions	Design Basis Accident Conditions
Fraction of Fuel Rods Assumed to Fail	0.01 (normal) 0.10 (off-normal)	1
Fraction of Gases Released Due to a Cladding Breach, f_G^C	0.3	0.3
Fraction of Volatiles Released Due to a Cladding Breach, ${f_V}^C$	2 x 10 ⁻⁴	2 x 10 ⁻⁴
Mass Fraction of Fuel Released as Fines Due to Cladding Breach, f_F	3 x 10 ⁻⁵	3 x 10 ⁻⁵
Fraction of Crud that Spalls Off Cladding, f_c	0.15 ^d	1.0 ^d

a Values in this table are taken from NUREG/CR-6487.

b Except for Co-60, only failed fuel rods contribute significantly to the release. Total fraction of radionuclides available for release should be multiplied by the fraction of fuel rods assumed to have failed.

c In accordance with NUREG/CR-6487, gases species include H-3, I-129, Kr-81, Kr-85, and Xe-127; volatile species include Cs-134, Cs-135, Cs-137, Ru-103, Ru-106, Sr-89, and Sr-90.

d The source of radioactivity in crud is Co-60 on fuel rods. At the time of discharge from the reactor, the specific activity, S_c , is estimated to be 140 μ Ci/cm² for PWRs and 1254 μ Ci/cm² for BWRs. Total Co-60 activity is this estimate times the total surface area of all rods in the cask (Sandoval, et al., 1991). Decay of Co-60 to determine activity at the minimum time before loading is acceptable.

5.5.4 Confinement Analyses (MEDIUM Priority)

The reviewer should examine the applicant's confinement analysis and the resulting doses for the normal, off-normal, and accident conditions at the controlled area boundary.

The analysis typically includes the following common elements:

- Calculation of the specific activity (Ci/cm³) for each radioactive isotope in the cask cavity based on rod breakage fractions, release fractions, isotopic inventory, and cavity free volume.
 - Using the <u>tested</u> leak rate and conditions during testing as input parameters, calculation of the adjusted maximum seal leakage rates (cm³/s) under normal, off-normal, and accident conditions (e.g., temperatures and pressures).
 - Calculation of isotope specific leak rates (Q_i-Ci/s) by multiplying the isotope specific activity by the maximum seal leakage rates for normal, off-normal, and accident conditions.
- Determination of doses to the whole body, thyroid, other critical organs, lens of 6 the eye, and skin from inhalation and immersion exposures at the controlled area 7 boundary (considering atmospheric dispersion factors $-\chi/Q$).

5569 The application should specify maximum allowable "as tested" seal leakage rates as a 5570 Technical Specification, as discussed in SRP Chapter 13. Guidance on the calculations of the 5571 specific activity for each isotope in the cask and the maximum allowable helium seal leakage 5572 rates for normal, off-normal, and accident-level conditions can be found in NUREG/CR-6487, 5573 "Containment Analysis for Type B Packages Used to Transport Various Contents" (Anderson,
5574 1996), and ANSI N14.5-1997. The minimum distance between the casks and the distance to
5575 the controlled area boundary is generally also a design criterion; however, 10 CFR 72.106(b)
5576 requires this distance to be at least 100m from the ISFSI.

For the dose calculations, the NRC staff has accepted the use of either an adult breathing rate 5577 (BR) of 2.5x10⁻⁴ m³/s (8.8x10⁻³ ft³/s), as specified in Regulatory Guide (RG) 1.109, "Calculations" 5578 5579 of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50 Appendix I," or a worker breathing rate of 3.3x10⁻⁴ 5580 m³/s (1.2x10⁻² ft³/s), as specified in the U.S. Environmental Protection Agency (EPA) Guidance 5581 5582 Report No. 11, "Limiting Values of Radionuclide Intake and Air Concentration and Dose Conversion Factors for Inhalation, Submersion, and Ingestion" (EPA, 1988). The dose 5583 5584 conversion factors (DCF) in EPA Guidance Report No. 11 for the whole body, critical organs, 5585 and thyroid doses from inhalation should be used in the calculation. The bounding DCFs from EPA Report No. 11 should be used for each isotope unless the applicant justifies an alternate 5586 5587 value. The staff is not accepting weighting or normalization of the dose conversion factors. For each isotope, the committed effective dose equivalent (CEDE_i - for the internal whole body 5588 5589 dose) or the committed dose equivalent (CDE_i - for the internal organ dose) are calculated as 5590 follows:

5592CEDE_i or CDE_i (in mrem per year for normal/off-normal or mrem per accident)5593= Q_i * DCF_i * χ /Q * BR * Duration * conversion factor (The conversion factor, if5594required, converts the input units into the desired form [CEDE_i or CDE_i] in mrem5595per year for normal/off-normal or mrem per accident).5596

5597 For the contributions to the whole body, thyroid, critical organs, and skin doses from immersion 5598 (external) exposure, the DCFs in EPA Guidance Report No. 12, "External Exposure to 5599 Radionuclides in Air, Water, and Soil" (EPA, 1993), should be used. Again, the NRC staff is not 5600 accepting weighting or normalization of the dose conversion factors.

5602 The deep dose equivalent (DDE_i - for the external whole body) and the shallow dose equivalent 5603 (SDE_i - for the skin dose) are calculated as follows: 5604

- DDE_i or SDE_i (in mrem per year for normal/off-normal or mrem per accident) = $Q_i * DCF_i * \chi/Q * Duration * conversion factor²$
- 5608 The total effective dose equivalent, TEDE = Σ CEDE_i + Σ DDE_i
- 5609 For a given organ, the total organ dose equivalent, TODE = Σ CDE_i + Σ DDE_i
- 5610 The total skin dose equivalent SDE = Σ SDE_i
- 5611

5591

5601

5605

5606 5607

5612 Compliance with the lens dose equivalent (LDE) limit is achieved if the sum of the SDE and the 5613 TEDE does not exceed 0.15 Sv (15 rem). This approach is consistent with guidance in the 5614 Publication 26 of International Commission on Radiological Protection (ICRP), "Statement from 5615 the 1980 Meeting of the ICRP" (ICRP, 1980) and as specified in SRP Chapter 11, "Radiation 5616 Protection Evaluation."

5617

5618 In general, the staff evaluates analyses for normal, off-normal, and accident-level conditions. 5619

² The conversion factor, if required, converts the input units into the desired form, e.g., mrem/year.

5620 Normal Conditions 5.5.4.1

5621

5637

5647

5622 For normal conditions, a bounding exposure duration assumes that an individual is present at the controlled area boundary for one full year (8,760 hours). An alternative exposure duration 5623 5624 may be considered by the staff if the applicant provides justification. 5625

5626 Because any potential release resulting from seal leakage would typically occur over a 5627 substantial period of time, the staff accepts (for applications for certificates) calculation of the atmospheric dispersion factors (χ/Q) according to RG 1.145, "Atmospheric Dispersion Models 5628 5629 for Potential Accident Consequence Assessments at Nuclear Power Plants," assuming D-stability diffusion and a wind speed of 5 m/s (16 ft/s). 5630

5631 5632 For the likely case of an ISFSI with multiple casks, the doses need to be assessed for a hypothetical array of casks during normal conditions according to Section 2.5.3.4, 5633 "Shielding/Confinement/Radiation Protection," of this SRP. Therefore, the staff anticipates that 5634 the resulting doses from a single cask will be a small fraction of the limits prescribed in 5635 5636 10 CFR 72.104(a) to accommodate the array and the external direct dose.

5638 Note: If the region between redundant, confinement boundary, mechanical seals is maintained 5639 at a pressure greater than the cask cavity, the monitoring system boundaries are tested to a 5640 leakage rate equal to the confinement boundary, the pressure is routinely checked, and the instrumentation is verified to be operable in accordance with a Technical Specification 5641 5642 Surveillance Requirement, the NRC staff has accepted that no discernible leakage is credible. 5643 Therefore, calculations of dose to the whole body, thyroid, and critical organs at the controlled 5644 area boundary from atmospheric releases during normal conditions would not be required. 5645

5646 5.5.4.2 **Off-Normal Conditions (Anticipated Occurrences)**

5648 For off-normal conditions, the bounding exposure duration and atmospheric dispersion factors (χ/Q) are the same as those discussed above for normal conditions. 5649 5650

5651 To demonstrate compliance with 10 CFR 72.104(a), the staff accepts whole body, thyroid, and 5652 critical organ dose calculations for releases from a single cask. However, the dose contribution from cask leakage should also be a fraction of the limits specified in 10 CFR 72.104(a) since the 5653 doses from other radiation sources are added to this contribution. 5654 5655

5.5.4.3 5656 Design-Basis Accident Conditions (Including Natural Phenomenon Events) 5657

5658 For accident-level conditions, the duration of the release is assumed to be 30 days (720 hours). 5659 A bounding exposure duration assumes that an individual is also present at the controlled area 5660 boundary for 30 days. This time period is the same as that used to demonstrate compliance for reactor facilities licensed per 10 CFR 50 and provides good defense in depth since recovery 5661 5662 actions to limit releases are not expected to exceed 30 days.

5664 For accident-level conditions, the staff has accepted calculation of the atmospheric dispersion factors (χ/Q) of RG 1.145 or RG 1.25, "Assumptions Used for Evaluating the Potential 5665 5666 Radiological Consequences of a Fuel Handling Accident in the Fuel Handling and Storage Facility for Boiling and Pressurized Water Reactors," on the basis of F-stability diffusion and a 5667 5668 wind speed of 1 m/s (3.3 ft/s).

5669

5670 To demonstrate compliance with 10 CFR 72.106(b), the staff accepts whole body, thyroid, 5671 critical organ, and skin dose calculations for releases of radionuclides from a single cask.

5673 5.5.5 Supplemental Information 5674

5675 The reviewer should ensure that all supportive information or documentation has been provided 5676 or is readily available. This includes, but is not limited to, justification of assumptions or 5677 analytical procedures, test results, photographs, computer program descriptions, input and 5678 output, and applicable pages from referenced documents. Reviewers should request any 5679 additional information needed to complete the review. 5680

5681 **5.6 Evaluation Findings**

5672

5682

5690

5691 5692

5693 5694

5695

5696 5697 5698

5699

5700

5701

5707

5712

5683 The reviewer should examine the 10 CFR Part 72 acceptance criteria and provide a summary 5684 statement for each. These statements should be similar to the following model: 5685

- 5686F5.1Chapter(s) _____ of the SAR describe(s) confinement structures, systems, and5687components (SSCs) important to safety in sufficient detail in to permit evaluation5688of their effectiveness.56895689
 - F5.2 The design of the (cask designation) adequately protects the spent fuel cladding against degradation that might otherwise lead to gross ruptures. Chapter 4, Thermal Evaluation" of the safety evaluation report (SER) discusses the relevant temperature considerations.
 - F5.3 The design of the (cask designation) provides redundant sealing of the confinement system closure joints by _____.
 - F5.4 The confinement system is monitored with a _____ monitoring system as discussed above (if applicable). No instrumentation is required to remain operational under accident conditions.
- 5702F5.5The quantity of radioactive nuclides postulated to be released to the environment5703has been assessed as discussed above. In Chapter 11, "Radiation Protection5704Evaluation" of the SER, the dose from these releases will be added to the direct5705dose to show that the (cask designation) satisfies the regulatory requirements of570610 CFR 72.104(a) and 10 CFR 72.106(b).
- 5708F5.6The cask confinement system has been evaluated (by appropriate tests or by
other means acceptable to the NRC) to demonstrate that it will reasonably
maintain confinement of radioactive material under normal, off-normal, and
credible accident conditions.
- 5713 A summary statement similar to the following should be made: 5714

5715 "The staff concludes that the design of the confinement system of the (cask designation)
5716 is in compliance with 10 CFR Part 72 and that the applicable design and acceptance
5717 criteria have been satisfied. The evaluation of the confinement system design provides
5718 reasonable assurance that the (cask designation) will allow safe storage of spent fuel.
5719 This finding is reached on the basis of a review that considered the regulation itself,

5720appropriate regulatory guides, applicable codes and standards, the applicant's analysis5721and the staff's confirmatory analysis, and accepted engineering practices."

6 SHIELDING EVALUATION

5722 5723

5735

5724 **6.1 Objective** 5725

5726 The shielding review evaluates whether the proposed shielding features provide adequate 5727 protection against direct radiation from the dry storage system (DSS) contents. The shielding 5728 features should limit the dose to the operating staff and members of the public so that the dose 5729 remains within regulatory requirements during normal operating, off-normal, and design-basis 5730 accident (DBA) conditions. The review seeks to ensure that the shielding design is sufficient 5731 and reasonably capable of meeting the operational dose requirements of 10 CFR 72.104 and 5732 72.106 in accordance with 10 CFR 72.236(d).

5734 6.2 Areas of Review

5736 This chapter of the DSS Standard Review Plan (SRP) provides guidance for use in evaluating 5737 the shielding features of the proposed cask system. As defined in Section 6.5, "Review 5738 Procedures," the shielding evaluation may encompass the following areas of review:

- 5739 5740 Shielding Design Description 5741 Design Criteria **Design Features** 5742 5743 5744 Radiation Source Definition Gamma Source 5745 5746 Neutron Source 5747 5748 Shielding Model Specification 5749 Configuration of Shielding and Source 5750 Material Properties 5751 5752 Shielding Analyses **Computer Codes** 5753 Flux-to-Dose-Rate Conversion 5754 5755 Dose Rates 5756 **Confirmatory Analysis** 5757 5758 Supplementary Information 5759 Shielding model description 5760 Computer model input and output 5761 5762 As prescribed in 10 CFR Part 72, the regulatory requirements for doses at and beyond the 5763 controlled area boundary include both direct radiation and radionuclides in effluents. An overall assessment of the compliance of the proposed DSS with these regulatory limits is contained in 5764 5765 Chapter 11, "Radiation Protection Evaluation," of this SRP. 5766
- 5767 In order to ensure that the shielding design of the DSS meets the regulatory requirements as 5768 defined in 10 CFR Part 72, the applicant should also include information in the SAR regarding 5769 the technical specifications which are necessary for the DSS system to meet the dose rate limits 5770 at the controlled area boundary (See Chapter 13).
- 5771

5772 In addition, the applicant should demonstrate that the system design, uses, and operating 5773 procedures follow the ALARA Principle.

5775 6.3 Regulatory Requirements

5777 10 CFR Part 72 requires that spent fuel storage and handling systems be designed with 5778 adequate shielding to provide sufficient radiation protection under normal, off-normal, and accident-level conditions. The DSS application should describe the design principle and 5779 functional features of the shielding structures, systems, and components (SSCs) important to 5780 5781 safety in sufficient detail to allow the U.S. Nuclear Regulatory Commission (NRC) staff to thoroughly evaluate their effectiveness. It is the responsibility of the vendor and the facility 5782 owner to analyze such SSCs with the objective of assessing the impact of direct radiation doses 5783 5784 and effluent releases to the environment on public health and safety. The reviewers should verify the applicant's evaluations through review of the applicant's model, or confirmatory 5785 analyses or independent modeling analysis. In addition, SSCs important to safety should be 5786 designed to withstand the effects of both credible accidents and severe natural phenomena 5787 5788 without impairing their capability to perform their safety functions.

5790 This section presents a summary matrix of the portions of 10 CFR Part 72 that are relevant to 5791 the review areas addressed by this chapter. The NRC staff reviewer should read the exact 5792 referenced regulatory language. The NRC staff reviewer should verify the association of 5793 regulatory requirements with the areas of review presented in the matrix to ensure that no 5794 requirements are overlooked as a result of unique design features. Table 6-1 matches the 5795 regulatory requirements associated with this chapter to the areas of review.

5796

5789

5774

5776

	_			
Areas of Review	10 CFR Part 72 Regulations			
	72.104(a)	72.106(b)	72.122(b), (c)	72.236(d)
Shielding Design Description			•	•
Radiation Source Definition	•	•	•	•
Shielding Model Specification	•	•	•	•
Shielding Analyses	•	•	•	•

Table 6-1 Relationship of Regulations and Areas of Review

5797

5798 6.4 Acceptance Criteria

5799

5800 Several technical and licensing factors should be considered during the shielding evaluation of 5801 the proposed DSS. First, 10 CFR Part 72 states regulatory dose limits in terms of annual sitespecific doses for normal conditions and total absorbed dose from accident conditions. 5802 5803 Because the regulations do not specify cask dose rates (such as package dose rates in 10 CFR Part 71), site-specific factors will have to be considered at each ISFSI when determining 5804 compliance with the dose limits in 10 CFR 72.104 and 10 CFR 72.106. These site-specific 5805 5806 factors include the geometric arrangement of storage cask arrays, topography, distances to dose receptors, exposure times of dose receptors, actual spent nuclear fuel (SNF) loading 5807

5808 patterns in each storage cask, and dose contributions from other surrounding fuel cycle facilities. Because all of these potential site-specific factors at various sites cannot be fully 5809 5810 considered in the safety analysis report (SAR) for a DSS design, the regulations in 10 CFR 72.236(d) only require that a demonstration of the shielding design is sufficient to 5811 satisfy 10 CFR 72.104 and 72.106. The general licensee DSS user is required by 5812 10 CFR 72.212 to consider its site-specific factors and ultimately demonstrate compliance with 5813 5814 10 CFR 72.104. Therefore, the acceptance criteria for DSS shielding seek to define standard analyses for single casks, and a generic array of casks, to demonstrate a sufficient shielding 5815 design. In addition, the acceptance criteria seek to establish acceptable dose rate levels 5816 5817 surrounding each DSS and acceptable dose calculation methodologies for further use by 5818 general licensees.

5819

5827

5828 5829

5830

5831 5832

5833

5834

5820 In general, the DSS shielding evaluation should provide reasonable assurance that the 5821 proposed design fulfills the following acceptance criteria: 5822

- 58231.The radiation shielding features of the proposed DSS are sufficient for it to meet5824the radiation dose requirements in 10 CFR 72.104(a) and 72.106(b). The5825applicant demonstrates this with:5826
 - a. A shielding analysis of the surrounding dose rates that contribute to occupational exposure and off-site doses at large distances (for a single storage and transfer cask with bounding fuel source terms at various cask locations), and
 - b. A shielding analysis of a single cask and a generic array of casks at large distances.
- 58352.The shielding features of and the radiations emitted by the cask, in conjunction5836with its proposed operating procedures presented in Chapter 9, "Operating5837Procedures," of the SAR, are consistent with a well-established "as low as is5838reasonably achievable" (ALARA) program for activities in and around the storage5839site.5840
- 5841 3. Radiation shielding and confinement features must be sufficient to meet the requirements in 10 CFR 72.106. 10 CFR 72.106(b) states: 5842 "Anv individual 5843 located on or beyond the nearest boundary of the controlled area may not receive from any design basis accident the more limiting of a total effective dose 5844 equivalent [TEDE] of 0.05 Sv (5 rem), or the sum of the deep dose equivalent 5845 5846 [DDE] and the committed dose equivalent [CDE] to any individual organ or tissue 5847 (other than the lens of the eye) of 0.5 Sv (50 rem). The lens dose equivalent [LDE] may not exceed 0.15 Sv (15 rem) and the shallow dose equivalent [SDE] 5848 to skin or any extremity shall not exceed 0.5 Sv (50 rem)." 5849 5850
 - 4. The proposed shielding features should demonstrate that the DSS is capable of meeting the regulatory requirements prescribed in 10 CFR Part 20.

5853
5854 The following sections provide additional guidance on acceptance criteria for each area of
5855 review for acceptability of SAR informational content and the details and method of evaluation of
5856 the proposed shielding features.

5857

5851

58586.4.1Shielding Design Description

5860 6.4.1.1 Design Criteria

5859

5880

5881 5882

5883

5884 5885

5886 5887

5888

5889 5890

5891

5892

5861 5862 The requirements of 10 CFR 72.104 provide dose criteria for the members of the public. 5863 Chapter 2, "Principal Design Criteria," of the SAR should specify the criteria that have been 5864 used as a basis for protection against direct radiation. Design criteria should include the 5865 identification of maximum dose rates and should also be specified for occupancy areas and 5866 correlated with occupancy duration and distance to radiation sources. An estimate of collective 5867 doses (person-rem per year) should be provided for each occupancy area under various 5868 operations (see Chapter 11, "Radiation Protection Evaluation" of this SRP). 5869

5870 The design should consider the ALARA principle. The reviewer should note that it is the 5871 responsibility of the general licensee using the DSS design to develop detailed procedures that 5872 incorporate the ALARA objectives of its site-specific radiation protection program. Further 5873 information on ALARA considerations is contained in the Radiation Protection Chapter. 5874

5875 6.4.1.2 Design Features 5876

5877 The SAR should describe the use of shielding to reduce direct radiation dose rates, and may 5878 consider the following: 5879

- Self-shielding provided by the radioactive material being stored;
 - Gamma and neutron shielding provided by the structural and nonstructural materials forming the walls and ends of the cask;
 - Neutron capture provided by borated materials incorporated into the cask;
- Shielding provided by the temporary placement of water into the cask system during loading and unloading procedures; and
 - Shielding provided by temporary placement of equipment and portable shields on and around the cask during loading and unloading procedures.

58936.4.2Radiation Source Definition5894

The SAR should describe each type of contained radiation source used as a basis for shield design calculations. For spent nuclear fuels, the source terms in particles/s or MeV/s should be described in form of either group structure or a continuous function of energy. For non-fuel hardware, source in Curies or Becquerel is acceptable. For contents other than fuel or non-fuel hardware components, isotopic composition and photon yields for each constituent should be specified. For confinement evaluation purposes, the physical and chemical form, source geometry, radionuclide content, and estimated radiation source strength should be described.

5903 The energy group structure from the source term calculation should correspond to that of the 5904 cross-section set of the shielding calculation. The computer methodology or database 5905 application used to compute source term strength should be specified. 5906

5907 6.4.2.1 Gamma Sources

5908

6-4

5909 The SAR should specify gamma source terms for both spent fuel and activated materials. For 5910 spent nuclear fuels, the source terms should be described in a format that is compatible with 5911 shielding calculation input, typically in the form of photons/s or MeV/s per energy bin. For 5912 assembly hardware and non-fuel hardware, source terms specified by an amount of ⁶⁰Co 5913 activity (in Curies or Becquerel) are acceptable. For contents other than fuel or non-fuel 5914 hardware components, isotopic composition and photon yields for each constituent should be 5915 specified. A tabulated form of the radiological characteristics is acceptable.

5916

5922

5927

5929

5932

5945

5947

5952

5917 The SAR should include a discussion of energetic radiations created by nuclear reactions such 5918 as (n,γ) in the packaging materials and the contents The SAR should also provide source term 5919 descriptions for induced radioactivity and the bases (assumptions and analytical methods) used 5920 for their estimation. Alternatively, the SAR may describe the bases for excluding induced 5921 radioactivity source terms.

5923 6.4.2.2 Neutron Sources 5924

5925 The SAR should describe the neutron source terms and tabulate the neutron yield by energy 5926 group and the bases used to determine the source terms.

59286.4.3Shielding Model Specification

5930 The application should include information in the SAR relative to materials and arrangements of 5931 all SSCs important to safety.

5933 6.4.3.1 Configuration of Shielding and Source 5934

5935 The SAR should describe the geometric arrangement of shielding and include illustrations that 5936 identify the spatial relationships among sources, shielding, and design dose rate locations. The SAR should clearly indicate the physical dimensions of sources and shielding materials. The 5937 5938 SAR should also identify penetrations, voids, or irregular geometries that provide potential paths 5939 for gamma or neutron streaming. These potential streaming paths should be clearly identifiable on submitted drawings. The SAR should describe design features used to minimize streaming 5940 5941 through these penetrations. 5942

- 5943 The SAR should clearly state any differences between shielding features during normal or off-5944 normal conditions and accident-level conditions.
- 5946 6.4.3.2 Material Properties

5948 The shielding reviewer should consult with the materials reviewer to assure that the SAR 5949 adequately describes the composition and geometry of the shielding materials. 5950

59516.4.4Shielding Analyses

5953 The SAR should describe the computer codes, version, computational models, data, and 5954 assumptions with their bases used in evaluating shielding effectiveness, and should provide 5955 dose rate estimates for areas of concern. The reviewer should perform confirmatory 5956 calculations, as necessary, to verify the results of the applicant's shielding analyses. 5957

5958 6.4.4.1 Computer Codes

5960 The SAR should identify the computer codes and models used in evaluating shielding for each significant radiation source identified in Section 6.4.2, "Radiation Source Definition," and 5961 reference the appropriate documentation. For each computer code used, test problem solutions 5962 that demonstrate substantial similarity to solutions from other sources (hand calculations, 5963 published literature results, etc.) should be provided. A summary should be provided in the 5964 SAR that compares the test problem solutions in either graphical or numeric form. These 5965 solutions may be referenced and need not be submitted in the SAR if the references are widely 5966 available or have been previously submitted to the NRC for the same computer code and 5967 5968 version.

5969

5970 The SAR should clearly present the data used as input for computational purposes and identify 5971 any differences between actual material properties or physical dimensions and those used in 5972 the analytical method (e.g., for simplifying the computational process). The applicant should defend any simplifications and assumptions by showing that the approach used will result in 5973 5974 conservative (bounding) estimates.

- 5975 5976 The SAR should address calculational error in computer codes for both radiological and thermal source terms. Because validation data are relatively limited for burnups above 45 GWd/MTU 5977 (i.e., high burnup fuel), the SAR should numerically specify source term uncertainties for high 5978 5979 burnup fuels. 5980
- 5981 The SAR should determine whether source term values with uncertainties should be applied to 5982 the shielding, thermal, and confinement analyses, instead of nominal calculated values. In this determination, the SAR may consider: (1) other conservative assumptions and design margins 5983 in the respective analyses; (2) the maximum fuel assembly heat loads; (3) the maximum gamma 5984 5985 and neutron dose rates; and (4) any measurable temperature or dose rate limitations proposed 5986 in the technical specifications. 5987
- 5988 A representative computer code input file used in the shielding computation performed for the 5989 DSS should be included in the SAR.
- 5990 5991

5992

6.4.4.2 Flux-to-Dose-Rate Conversion

5993 The basis for the flux-to-dose-rate conversion in the shielding analysis should be stated in the SAR, including conversions that are done by a computer code using its own data library. The 5994 5995 SAR should include a table that shows the one to one conversion factor for each energy group of the cask specific source term spectrum. The NRC accepts flux-to-dose-rate conversion 5996 5997 factors in American National Standards Institute/American Nuclear Society Standard 6.1.1-1977 5998 (ANSI/ANS-6.1.1-1977). 5999

- 6000 6.4.4.3 Dose Rates
- 6001
- 6002 The SAR evaluation of shielding effectiveness should include calculated or estimated dose rates 6003 in representative areas around the DSS. The dose rate calculations should account for such 6004 factors as a minimum distance no less than100m (328 ft.), contributions from radionuclide 6005 releases, and other significant factors. These criteria are identified and evaluated in the radiation protection evaluation described in Chapter 11 of this SRP. The criteria below relate 6006 6007 primarily to the completeness of information provided in the SAR.
- 6008
- 6009 The SAR should clearly indicate the physical locations on and around the casks for which dose 6010 rate calculations have been performed. These locations should include points on or in the

6011 immediate vicinity of cask surfaces where workers will perform operations during loading, 6012 retrieval, handling, and any projected maintenance and surveillance. For storage casks with 6013 internal labyrinthine air flow passages, the SAR should include dose rate estimates for the air 6014 inlets and air outlets using a computer code appropriate for streaming calculations. The SAR 6015 should identify points that have the highest calculated dose rates.

6016

The SAR should include dose rate estimates for all onsite areas at which workers will be exposed to elevated dose rates. Dose rates within restricted areas should be calculated in enough detail to estimate doses received by workers performing ISFSI operations and off-site doses at large distances. This should be demonstrated with a standard dose-versus-distance curve or table for a single cask and for a generic DSS array.

6022 6023 The SAR should calculate the dose rate from the cask surface for off-normal events and DBA 6024 conditions to ensure compliance with 10 CFR 72.104(a) and 72.106(b), respectively. The 6025 computational model used for these calculations should be consistent with the expected 6026 condition of the cask after the event. 6027

60286.5Review Procedures6029

Figure 6-1 presents an overview of the evaluation process and can be used as a guide to assist
in coordinating with other review disciplines.

60336.5.1Shielding Design Description6034

6035 6.5.1.1 Design Criteria (MEDIUM Priority)

6036 6037 Dose rates at the cask surface and in the vicinity of a loaded cask may vary during storage, 6038 transfer, and in-storage activities. While 10 CFR Part 72 establishes dose requirements only for ISFSIs, it does not impose specific dose rate limits on the individual casks. Storage cask dose 6039 6040 rates from 20 to 400 mrem/hour have been accepted in previous Part 72 evaluations. 6041 Acceptable dose rates depend on a number of factors such as the geometry of the storage array, the time workers will routinely spend in the storage array for activities like monitoring or 6042 6043 maintenance, the proximity to other areas frequently occupied by workers, and the proximity to 6044 the controlled area boundary or other public access areas. The dose requirements are based on 10 CFR 20.1201 for the total expected exposure to workers during anticipated DSS 6045 6046 operations, and 10 CFR 72.104 for members of the public who are located beyond the controlled area (i.e., assumed to be at the closest boundary but, in accordance with 10CFR 6047 6048 72.106(b), at least 100m from the storage cask).

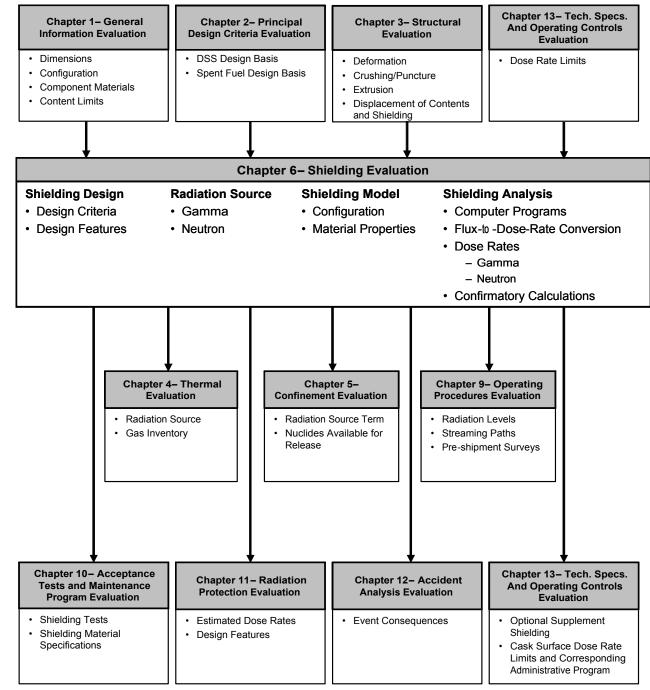


Figure 6-1 Overview of the Shielding Evaluation

6054 The shielding reviewer should coordinate with the review of SRP Chapter 2, "Principal Design 6055 Criteria Evaluation," as well as review any additional shielding-related criteria. The reviewer should also refer to SRP Chapter 9, "Operating Procedures Evaluation," to consider any 6056 expected operating procedures that would require close proximity to the cask such as cask 6057 equipment that should be monitored or serviced frequently. However, the evaluated dose rates 6058 at the side of the same cask should be reviewed to ensure that the ALARA principles are either 6059 6060 engineered into the design or evoked by specific operating procedures in Chapter 9, "Operating Procedures Evaluation" of the SAR. 6061

6062 6063

6064

6.5.1.2 Design Features (HIGH Priority)

The reviewer should be familiar with the general description of the DSS presented in Chapter 1, "General Description," of the SAR, as well as any additional information provided in Chapter 6, "Shielding Evaluation," of the SAR. All drawings, figures, and tables describing shielding features should be sufficiently detailed to allow the staff to perform an in-depth evaluation.

60706.5.2Radiation Source Definition (HIGH Priority)

6071

6069

6072 Burnup, cooling time, initial uranium loading, and initial enrichment are parameters that affect 6073 the total source term of SNF. The reviewer should examine the description of the design-basis fuel in Chapter 2, "Principal Design Criteria" of the SAR to verify that the applicant calculated the 6074 6075 bounding source term. The review confirms that the applicant examined all fuel designs and 6076 burnup conditions for which the cask system is to be certified, to ensure that the bounding fuel type and values are used. Particular attention should be devoted to the combined effects of 6077 gamma and neutron source terms as a function of fuel burnup, cooling times, and enrichment. 6078 6079 In many cases, there is no single specific enrichment-burnup combination and cooling time that bounds all potential cask loadings (see the analysis presented in NUREG/CR-6716). Variations 6080 in fuel assembly type play a secondary role for pressurized-water reactor (PWR) fuel. For 6081 boiling-water reactor (BWR) fuel, void fractions and channel sizes may affect the strengths of 6082 6083 neutron and gamma sources. For a cask that contains spent fuel assemblies with irradiated 6084 burnable poison rod assemblies (BPRAs), a potential large effect is from activated component hardware (mainly activated cobalt in steel). Again, NUREG/CR-6716 demonstrates that for 6085 6086 BPRA designs containing stainless steel, the impact on the gamma dose rate can be large. 6087

The design-basis radiation source term should be based on a saturation value for activation of
cobalt impurities or on cobalt activation from a specified maximum burnup and minimum cool
time. The reviewer should consider other activation products, as appropriate. These values
should be bounded by those listed in the Technical Specifications.

6093 6.5.2.1 Initial Enrichment 6094

The specifications in Chapter 2, "Principal Design Criteria" of the SAR should indicate the 6095 6096 maximum fuel enrichment used in the criticality analysis. For shielding evaluations, however, 6097 the neutron source term increases considerably with lower initial enrichment for a given burnup. As present in Section 3.4.1.2 of NUREG/CR-6716, as the initial enrichment decreases, the fuel 6098 6099 is exposed to a larger neutron fluence to achieve the same burnup. The larger neutron fluence generates larger actinide content which results in larger neutron source term and secondary 6100 gamma source term as illustrated in NUREG/CR-6716, Section 3.4.1.2. Consequently, the SAR 6101 6102 should specify the minimum initial enrichment as an operating control and limit for cask use, or 6103 justify the use of a neutron source term, in the shielding analysis, that specifically bounds the 6104 neutron sources for fuel assemblies to be placed in the cask. Because average initial

- 6105 enrichments typically increase with increasing burnup within the spent fuel population, the latter 6106 option may be used if the applicant uses low enrichments that bound the historical enrichments 6107 for fuels at the proposed burnups. However, the staff should not attempt to use specific source 6108 terms as bases for establishing operating controls and limits for cask use because these are not 6109 readily inspectable parameters. The fuel assembly initial enrichment, burnup, and cooling time 6110 are more appropriate for use as loading controls and limits.
- 6111 6112

6113

6.5.2.2 Computer Codes for Radiation Source Definition

The reviewer should verify that the applicant determines the source terms using a computer code, such as ORIGEN-S (e.g., as a SAS2 sequence of Oak Ridge National Laboratory's [ORNL] "SCALE" computer code package) that is well benchmarked and recognized and widely used by the industry. If a vendor proprietary code is used, the reviewer should check the code validation and verification records and procedures, preferably with sample testing problems.

6119

6120 The reviewer should ensure that appropriate descriptive information, including validation and 6121 verification status, and reference documentation has been provided. The reviewer also should determine if the computer code is suitable for determining the source terms and it has been 6122 6123 correctly used. Area of Applicability (AOA) is an important aspect. The reviewer should pay 6124 particular attention to AOA to verify if the application falls into the parameter ranges that the code is validated. The reviewer should determine whether the computer code is appropriately 6125 6126 applied and the SAR includes verification that the chosen cross-section library is appropriate for 6127 the fuel specifications being considered. Many libraries are not appropriate for a burnup 6128 exceeding 45,000 MWd/MTU because validation data are limited at high burnups. 6129

- The reviewer should verify that the applicant has adequately addressed calculational error and uncertainties of the computer codes used to determine source terms for the thermal, shielding, and confinement analyses. The reviewer should consider: (1) other conservative assumptions and design margins in the analyses; (2) the maximum fuel assembly heat loads; (3) the maximum gamma and neutron dose rates (including relative contributions to total); and (4) any measurable temperature or dose rate limits proposed for the technical specifications.
- 6136

When reviewing the source term calculations, the reviewer should also consider the factor that
nuclide importance changes in high burnup fuels as a function of burnup and validation data.
The data for benchmarking the calculations and computer codes is limited at high burnups.
Additional data and information on high burnup source term issues are provided in several
NRC-sponsored studies (DeHart, 1996; Hermann, 1998; NUREG/CR-6700, NUREG/CR-6701,
NUREG/CR-6798.)

6143

6144 6.5.2.3 Gamma Source

6145

6146 The reviewer should verify that the applicant specified gamma source terms as a function of 6147 energy for both the spent fuel and activated hardware. If the energy group structure from the 6148 source term calculation differs from that of the cross-section set of the shielding calculation, the applicant may need to regroup the photons. Regrouping can be accomplished by using the 6149 6150 nuclide activities from the source term calculation as input to a simple decay computer code with a variable group structure. Some applicants will convert from one structure to another 6151 using simple interpolation. In general, only gammas with energies from approximately 0.8 to 2.5 6152 MeV will contribute significantly to the dose rate through typical types of shielding; thus, 6153 6154 regrouping outside this range is of a lesser importance. The reviewer should determine whether

6155 the source terms are specified per assembly, per total assemblies, or per metric ton, and ensure 6156 that the total source is correctly used in the shielding evaluation.

6157

Determining source terms for fuel assembly hardware is generally not as straightforward as for 6158 the SNF due to cobalt contained in the fuel assembly hardware. The potential impact on the 6159 gamma dose rate could be very large during the cooling times in which ⁶⁰Co is the dominant 6160 6161 gamma ray source (up to about 50 years) (NUREG/CR-6716). In particular, steel clad fuel potentially increases the cask dose rate by more than an order of magnitude over that from 6162 conventional Zircalov clad fuel. The stainless steel in the BPRAs was assumed to have a 6163 6164 nominal cobalt impurity level of 800 ppm, a value associated with older assembly designs. As presented in NUREG/CR-6716, the largest potential effect from assemblies residing in a cask 6165 6166 that contains irradiated BPRAs is from activated component hardware (mainly activated cobalt 6167 in steel). For BPRA designs containing stainless steel, the impact on the gamma dose rate can 6168 be large. The effort devoted to reviewing this calculation should be based on the contribution of 6169 these terms to the dose rates presented in the shielding evaluation. Also, it should be noted 6170 whether or not the cask is intended to contain special hardware, such as control assemblies or 6171 shrouds, and ensured that source terms from these components are included, if applicable. The reviewer should confer with the Chapter 2, "Principal Design Criteria Evaluation" review team to 6172 6173 make this determination.

6174

Depending on the cask design, neutron interactions may result in the production of high energy
gammas near the cask surface. If this source term is not treated by the shielding analysis
computer code, the reviewer should verify that it is determined by other appropriate means.

6178

As part of the source term determination, the reviewer should verify that the applicant calculates the quantities of certain nuclides (e.g., ⁸⁵Kr, ³H, and ¹²⁹I) for use in analyzing doses from the release of radioactive material during postulated accidents in later sections of the SAR. These calculations are typically presented in Chapter 5, "Confinement," of the SAR with the shielding reviewer, in coordination with the confinement reviewer, verifying the information.

6185 6.5.2.4 Neutron Source

6186 6187 The reviewer should verify that the neutron source term is expressed as a function of energy. 6188 The neutron source will generally result from both spontaneous fission and alpha-n reactions in 6189 the fuel. Depending on the method used to determine these source terms, the applicant may 6190 need to independently determine in the SAR, the energy group structure. This analysis is often accomplished by selecting the nuclide with the largest contribution to spontaneous fission (e.g., 6191 ²⁴⁴Cm) and using that spectrum for all neutrons, since the contribution from alpha-neutron 6192 6193 reactions is generally small. For SNF with cooling times less than 5 years, the analysis should address the spectra of ²⁴²Cm and ²⁵²Cf. 6194

6195

6196 The specification of a minimum initial enrichment may be a necessary basis for defining the 6197 allowed contents. The reviewer should verify that the assumed minimum enrichments bounds 6198 all assemblies proposed for the casks in the application. Specific limits are needed for inclusion in the Certificate of Compliance (CoC). Lower enriched fuel, irradiated to the same burnup as 6199 6200 higher enriched fuel, produces a higher neutron source. Consequently, the reviewer should verify that Chapter 13, "Technical Specifications and Operational Controls and Limits 6201 6202 Evaluation," of the SAR specifies the minimum initial enrichment as an operating control and 6203 limit for cask use. Alternately, the applicant should specifically justify the use of a neutron 6204 source term, in the shielding analysis, that bounds the neutron sources for fuel assemblies to be 6205 placed in the cask. An applicant may demonstrate that the assumed enrichment(s) bound the

6206 proposed fuel population except for possible outliers in the SNF population. This is acceptable 6207 if the SAR specifically requires each user to verify minimum enrichment with the Final SAR 6208 values, and if there are specific dose rate limits in the technical specifications. The applicant 6209 and the staff should not attempt to establish specific source terms as the operating controls and 6210 limits for cask use.

6211

6213

6226

6228

- 6212 6.5.2.5 Other Parameters Affecting the Source Term
- 6214 The reviewer should ensure the SAR contains specific information concerning reactor 6215 operations that affects the source term. Several NRC technical reports (specifically, NUREG/CR-6716, but also NUREG/CR-6700, NUREG/CR-6701, and NUREG/CR-6798) 6216 6217 discuss the potential affects of other parameters not typically included as a shielding technical 6218 specification (e.g., moderator soluble boron concentrations, maximum poison loading, minimum moderator density (for BWR fuels), and maximum specific power). For example, the net impact 6219 6220 of moderator density on cask dose rates is expected to be low for PWR fuels. However, the reviewer should be aware that the axial variation in moderator density in BWR cores can have a 6221 measurable effect on the axial dose rate profile of a BWR spent fuel assembly. The dose rate 6222 may increase near the top of the assemblies where the moderator density was the lowest. This 6223 is particularly important for neutron sources because reduced moderator density will harden 6224 6225 neutron spectrum and hence induce more actinide production.

6227 6.5.3 Shielding Model Specification (HIGH Priority)

- 6229 The reviewer should verify that the applicant adequately describes the models that were used in the shielding evaluation for storage under normal, off-normal, and accident-level conditions. For 6230 6231 example, if the cask has an external neutron shield, it should be determined whether the cask would be damaged by a tipover accident or degraded in a fire. Applicants should assume liquid, 6232 6233 polyesters, or other resin neutron shields are not present after an accident, unless justification is made that they remain intact. The reviewer should confirm this analysis with the structural and 6234 6235 thermal evaluation reviews of Chapter 3, "Structural Evaluation," and Chapter 4, "Thermal 6236 Evaluation," of the SAR, as appropriate. The reviewer should also confirm that the shielding assumptions made in dose rate calculations, for both occupational workers and the public, are 6237 6238 consistent with the design criteria and design drawings.
- 6240 6.5.3.1 Configuration of the Shielding and Source 6241
- The reviewer should examine the sketches or figures that indicate how the shielding design of the canister, storage overpack, and transfer cask is modeled. The reviewer should verify that the model dimensions and materials are consistent with those specified in the cask drawings presented in Chapter 1, "General Information Evaluation" of the SAR. Voids, streaming paths, and irregular geometries should be accounted for or otherwise treated in a conservative manner. In addition, the reviewer should verify that the applicant clearly states the differences, if any, between normal, off-normal, and accident-level conditions.
- 6249

6239

The reviewer should verify that the applicant properly modeled the source term locations for both spent fuel and structural support regions (i.e., fuel assembly hardware). In some cases, the fuel and basket materials may be homogenized within the fuel region to facilitate the shielding calculations. The reviewer should watch for cases when homogenization may not be appropriate. For example, homogenization should not be used in neutron dose calculations when significant neutron multiplication can result from moderated neutrons (i.e., when significant amounts of moderating materials are present such as when the cask is flooded). 6257 Similarly, homogenization should not be used in configurations where significant radiation 6258 streaming can occur between the basket components.

6259
6260 If the applicant has requested storage of damaged fuel assemblies, ensure that the applicant
6261 has adequately described the proposed damage assemblies. If the fuel assemblies are
6262 damaged to the extent that reconfiguration of the fuel into a geometry different from intact fuel
6263 assemblies can occur, ensure that the applicant provides appropriate close assessments for
6264 normal, off-normal and accident conditions.

6266 SNF typically has a cosine shape burnup profile along its axial length. If axial peaking appears to be significant, the reviewer should verify that the applicant has appropriately accounted for 6267 6268 the condition. Typically, fuel gamma source terms vary proportionally with axial burnup. Fuel 6269 neutron source terms vary exponentially by a power of 4.0 to 4.2 (NUREG/CR-6802, "Recommendations for Shielding Evaluations for Transport & Storage Packages") with axial 6270 6271 burnup (NUREG/CR-6801, "Recommendations for Addressing Axial Burnup in PWR Burnup Credit Analyses"). In addition, the structural support regions (e.g., top and bottom end pieces 6272 6273 and plenum) of the assembly should be correctly positioned relative to the SNF. These support regions may be individually homogenized with the basket materials when particle streaming 6274 through the gaps between basket components is not an issue. Generally, however, at least 6275 6276 three source regions (i.e., fuel and top/bottom assembly hardware) are necessary. Some canisters may also employ fuel spacers to center the SNF inside the canister. 6277 6278

6279 The reviewer should verify that the SAR shows or adequately describes the locations selected for the various dose calculations. The reviewer should ensure that these dose points are 6280 representative of all locations relevant to radiation protection issues. The reviewer should pay 6281 6282 particular attention to dose rates from streaming paths to which occupational workers would be exposed (e.g., at vent/drain port covers, lid bolts, air vents, etc.). The shielding end points 6283 should be noted as well (such as lead in the cask wall in relation to the assembly hardware and 6284 6285 use of fuel spacers to center the fuel). See Section 6.5.4.3 for additional information regarding 6286 the selection of locations for dose calculations.

6287 6288

6289

6305

6.5.3.2

Material Properties

The reviewer should verify that the SAR provides information concerning compositions and densities for all materials used in the calculation model. For nonstandard materials, such as neutron shields, Chapter 10 of the SAR, "Acceptance Tests and Maintenance Program Evaluation," should also reference the source of the data and indicate validation criteria. Many shielding computer codes allow the densities to be input directly in g/cm³. If input is required in atoms/barn-cm the reviewer should pay particular attention to the conversion.

The shielding reviewer should ensure that the elemental composition and density of shielding materials are conservatively adjusted in the shielding analyses to account for any degradation from aging, high temperature, accumulated radiation exposure, and manufacturing tolerances. The shielding reviewer should coordinate with the materials reviewer to obtain reasonable assurance that any degradation that may occur will not impact the safe performance of the shielding materials for the term proposed in the CoC application.

- 6304 6.5.4 Shielding Analyses
- 6306 6.5.4.1 Computer Codes (MEDIUM Priority) 6307

6308 The reviewer should evaluate the computer codes or programs used for the shielding analysis. There are several recognized computer codes widely used for shielding analysis. These include 6309 computer codes that use Monte Carlo, deterministic transport, and point-kernel techniques for 6310 6311 problem solution. The point-kernel technique is generally appropriate only for gammas since 6312 casks typically do not contain sufficient hydrogenous material to apply removal cross-sections 6313 for neutrons. It is also important for the reviewer to assess whether the number of dimensions 6314 of the computer code being applied for the shielding analysis is appropriate for the dose rates 6315 being calculated. Typically, NRC staff does not accept the use of one-dimensional codes for 6316 calculations other than shielding designs with simple cylindrical geometries. At the least, a two-6317 dimensional calculation is generally necessary. One-dimensional computer codes provide little information about off-axis locations and streaming paths that may be significant to determining 6318 6319 occupational exposure. Even a two-dimensional calculation may not be adequate for 6320 determining any streaming paths if the modeled configuration is not properly established. These considerations in applying a particular computer code also apply to the computation of 6321 6322 dose rates at the end of storage confinement casks. In some cases, the applicant will use the flux output from a deep-penetration shielding code as input to a large distance, skyshine code. 6323 6324 The reviewer should verify that the use and interface of these codes are appropriate.

6326 The reviewer should be aware that the applicants often use transport or point-kernel methods to 6327 calculate neutron and/or gamma importance functions (unit of (mrem/hr)/(particle/s-cm²)). Multiplying the importance functions by a neutron and gamma source term-per-unit length yields 6328 6329 dose rates on the surface of the cask. Using the neutron and gamma importance functions, the 6330 applicant could determine the minimum cooling time required to meet both a decay heat limit and any technical specification at the maximum dose rate limit on the side of the cask. The 6331 reviewer, however, should pay close attention to the applicability of the importance function to 6332 6333 the actual cask content, and geometry of contents and shielding.

6334

6325

A valuable primer on shielding computer codes and analysis techniques has been published byEPRI (Broadhead, 1995).

6337

6338 The computer codes given below have been previously applied for DSS source and shielding analysis in applications reviewed by the NRC. However, their previous use does not constitute 6339 6340 generic NRC approval and, as presented above, the reviewer is cautioned that these computer 6341 codes can produce errors when used incorrectly. Specifically, care should be taken to ensure 6342 any streaming paths in the cask are appropriately determined with multi-dimensional computer 6343 codes under normal, off-normal, and accident-level conditions. The reviewer should also determine that the SAR has specified design control measures that will ensure the quality of 6344 6345 computer codes used for shield analysis.

6346 6347 The source of the computer codes given below vary from government sources, such as the 6348 Radiation Safety Information Computational Center³ (RSICC) and other U.S. Department of Energy (DOE) national laboratories, to commercial shielding computer codes. It is also 6349 6350 important for the reviewer to be aware that due to proliferation and security concerns, access to specific U.S. government-sponsored computer code packages may be restricted and special 6351 permission may be required when granting their use to the applicant. The applicant should use 6352 6353 a computer code version that is demonstrated to be adequate for the analysis and is valid for the particular computational platform used to perform the analysis. 6354 Computer codes are 6355 periodically updated to be compatible with the latest operating system, correct errors found in

³ Radiation Safety Information Computational Center, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee, 37831-6362 and on the Internet at http://www-rsicc.ornl.gov.

6356 prior versions, or incorporate updated methodologies. The reviewer should also consider 6357 whether additional confirmatory assessments and review are needed to validate the shielding 6358 predictions by an applicant that uses older or unsupported codes, especially in cases where 6359 NRC may have updated codes and no longer have the capability to directly examine 6360 unsupported code models from the applicant. 6361

- 6362 The computer codes previously applied for DSS source and shielding analyses include:
- MicroSkyshine (air-scattering computer code);

6363

6365

6368

6372

6376

6377 6378 6379

6380 6381 6382

6383 6384

6385 6386

6389

6393

6399

6402

6404

- MORSE (Monte Carlo multigroup three-dimensional neutron and gamma transport computer code);
- MCBEND (Monte Carlo multigroup three-dimensional neutron and gamma transport computer code similar to MORSE developed by the United Kingdom (UK) National Radiation Protection Board (NRPB));
- MCNP (Monte Carlo n-particle transport computer code maintained by Los Alamos National Laboratory (LANL));
 - RANKERN (three-dimensional point kernel gamma transport shielding computer code similar to QAD-CGGP);
 - SCALE (a modular computer code system for performing standardized computer analyses for licensing evaluation maintained for the NRC by ORNL);
 - SKYSHINE-II (air-scattering computer code); and
 - STREAMING (computer code for calculation of attenuation of a gamma flux incident on a variety of shielding penetrations, such as ducts and voids).

6387 Some other shielding computer code packages available through RSICC which have potential 6388 application to DSS sources include:

- DOORS3.2 (one-, two-, and three-dimensional discrete ordinates neutron/photon transport code system that includes ANISN for one-dimensional, DORT for twodimensional, and TORT for three-dimensional analysis maintained by ORNL).
- DANTSYS (a code system maintained by the Los Alamos National Laboratory (LANL) that provides discrete ordinates solutions to the neutral particle transport equation that include ONEDANT for one-dimensional, TWODANT for twodimensional, and THREEDANT for three-dimensional multigroup discreteordinate transport analysis.

6400 Some of the above computer codes have been modified or improved to perform adjoint 6401 calculations. Examples of the computer codes with adjoint capability are as follows:

- DORT (part of the DOORS3.2 computer code package),
- A³MCNP (Automated Adjoint Accelerated MCNP),

6406 6407 MCBEND. •

6408 6409 The reviewer should verify that the SAR describes each of the numerical models of the 6410 computer codes used in the shielding evaluation. For each computer code used, the reviewer 6411 should ensure that an approved, validated, and verified version of the computer code is being 6412 applied by verifying that the following information has been provided in the SAR:

- 6413 6414 6415
- The author, source, and dated version;
- 6416 A description of the numerical model applied in the computer code and the extent • 6417 and limitation of its application; and
- 6418 6419 Either (1) the evaluation of computer code solutions to a series of test problems. • 6420 demonstrating substantial similarity to solutions obtained from hand calculations, analytical results published in the literature, acceptable experimental tests, a 6421 6422 similar computer code, or benchmark problems; or (2) the specification of 6423 publically available references for commonly used and well-established codes 6424 (e.g. SCALE and MCNP) that demonstrate validation.. 6425

6426 The reviewer should examine the solution comparisons provided by the SAR and determine 6427 whether satisfactory agreement of computer and test solutions (or resolution of deviations) is 6428 evident. Ideally (though not a requirement), the computer code used for evaluation of shielded storage containers should have been validated with actual dose rate measurements from similar 6429 6430 or prototypical SNF or high-level waste storage systems. 6431

- 6432 6.5.4.2 Flux-to-Dose-Rate Conversion (MEDIUM Priority)
- 6433

6443

6434 The shielding analysis computer code may perform flux-to-dose-rate conversion using its own 6435 data library. For the conversions, the NRC accepts the use of ANSI/ANS 6.1.1-1977. While this standard was revised in 1991, the NRC has not adopted the methodology given in ANSI/ANS 6436 6.1.1-1991 principally for two reasons. First, the 10 CFR Part 20 radiation protection 6437 6438 requirements are based on fluence-to-dose conversions that are essentially the same as those 6.1.1-1977, and are conservative relative to of 6439 defined by ANSI/ANS those 6440 ANSI/ANS 6.1.1-1991. Second, neutron dose rates determined on the basis of conversions 6441 performed according to ANSI/ANS 6.1.1-1991 may be significantly lower than those determined on the basis of 10 CFR Part 20 or ANSI/ANS 6.1.1-1977. 6442

6444 6.5.4.3 Dose Rates (MEDIUM Priority)

6445 6446 On the basis of experience, comparison to similar systems, or scoping calculations, the reviewer 6447 should make an initial assessment of whether the dose rates appear reasonable and whether their variation with location is consistent with the geometry and shielding characteristics of the 6448 6449 cask system. The following guidance pertains to the selection of points at which the dose rates 6450 should be calculated. 6451

6452 For normal and off-normal conditions, the applicant should indicate the dose rate at all locations accessible to occupational personnel during cask loading, transport to the ISFSI, and 6453 6454 maintenance and surveillance operations. Generally, these locations include points at or near various cask components and in the immediate vicinity of the cask. Example of locations 6455 6456 include vent areas, trunnion areas, peak side of the cask, peak top of the cask, the canister-gap

region, and the bottom of the transfer cask. The applicant should also calculate the dose rates
at a distance of 1m from these locations because they typically contribute to occupational
exposures.

The application for a cask design is required by 10 CFR 72.236(d) to demonstrate that the shielding and confinement features of the cask are sufficient to meet the requirements in 10 CFR 72.104 for any real individual. The real individual is an individual at or beyond the controlled area, For example, a real individual may be anyone living, working, or recreating close to the facility for a significant portion of the year. The dose to any real individual must not exceed the limits specified in 10 CFR 72.104 from both the storage facility and other surrounding fuel cycle activities.

6468

6503

6469 However, for approval of a cask design, the applicant should evaluate the shielding and confinement features of a single cask and a theoretical array of casks, assuming design-basis 6470 6471 source terms and full-time occupancy. The applicant should also provide analyses to facilitate future site-specific evaluations for each general ISFSI licensee. The single cask analysis should 6472 6473 identify the minimum distance that is required to meet the dose rates in 10 CFR 72.104. Past applications have shown this distance to be typically within 200m (656 ft.) of the cask. The 6474 applicant should include a dose rate versus distance curve for a single cask to facilitate a site-6475 6476 specific evaluation for general licensees. To satisfy 10 CFR 72.106(b), dose evaluations should be determined at a minimum of 100m (328 ft.) distance to the closest boundary of the controlled 6477 6478 area. However, the applicant may use a longer distance, provided that the longer distance is 6479 made a condition of use. 6480

The applicant should also include a dose rate-versus-distance curve for a theoretical cask array.
The theoretical cask array should consist of at least 20 storage casks (typically in a 2x10 array),
and may account for shadowing effect among casks.

6485 It is important to note that the general ISFSI licensee is permitted to use distance or additional 6486 engineering features, such as berms, or both, to mitigate doses to real individuals near the site. 6487 If such features are used in the cask SAR evaluations, they should be included in the system 6488 and described in the CoC. In addition, the SAR should determine the degree to which the 6489 normal condition dose rates could change for the identified off-normal conditions. 6490

As required by 10 CFR 72.212(b)(2)(i)(C), a general licensee must perform a written evaluation to demonstrate that the dose limits in 10 CFR 72.104 are met. An evaluation similar to that for a site-specific ISFSI should be performed. The licensee may use information provided in the cask SAR, as well as site specific information to perform the evaluation. Evaluations performed by the general ISFSI licensee are not reviewed for approval by NRC; however, they are subject to NRC inspection and must be recorded and maintained by the general licensee.

- 6498 The general licensee should establish measures in the radiological protection program, 6499 environmental monitoring program, and/or operating procedures to identify and reevaluate 6500 potential increases in exposure to the real individuals. Compliance with the dose limits in 6501 10 CFR 72.104 will be verified by the environmental monitoring program with direct radiation 6502 measurements and/or effluent measurements, as appropriate.
- 6504 The reviewer should review the technical specifications of Chapter 13 of this SRP to ensure 6505 appropriate requirements are addressed in the technical specifications of the cask. In addition, 6506 the degree to which the normal condition dose rates could change for the identified off-normal

6507 conditions should be verified. The need for additional calculations should be indicated in the6508 Safety Evaluation Report (SER) and in the conditions set forth in the CoC.

If the above dose rate criteria are satisfied, NRC accepts that the direct-dose regulatory
requirements can also be satisfied, although the exact details needed to comply with these
limitations will vary from ISFSI site to site. Therefore, the SAR needs to address such
requirements only in general terms. Detailed calculations need not be presented if Chapter 13
of the SAR, "Technical Specifications and Operational Controls and Limits Evaluation," assigns
ultimate compliance responsibilities to the ISFSI site licensee.

In addition, the applicant should calculate the dose rate at 100m (328 ft.) from the cask surface
for accident-level conditions to assist in demonstrating the design is sufficient to meet the
requirements of 10 CFR 72.106. The model used for these calculations should be consistent
with the expected condition of the cask after an accident or natural event.

The potential reconfiguration of damaged fuel within the damaged-fuel can, if applicable, must be analyzed to demonstrate that the cask/fuel meet the dose limits of normal and design basis events of storage. The shielding analysis should assume a worst case or bounding configuration of the canned fuel.

6527 6.5.4.4 Confirmatory Calculations (HIGH Priority)

6528

6534 6535

6536

6537 6538

6539

6540 6541

6542

6543 6544

6545 6546 6547

6548

6549

6550

6551

6552

The reviewer should independently evaluate the dose rates in the vicinity of the cask for normal,
off-normal, and accident-level conditions. In determining the level of effort appropriate for these
calculations, the reviewer should consider the following factors:

- the degree of sophistication in the SAR analysis;
 - a comparison of SAR dose rates with those of similar casks that have previously been reviewed, if applicable;
 - the typical variation in dose rates expected between different computer codes and cross-section sets;
 - the fact that actual dose rates will be monitored and limited by the requirements of 10 CFR Part 20;
 - the restrictions to be placed on the DSS operations or the limits to be placed on dose rates, as documented affecting the CoC and/or technical specifications.
 - the applicant's experience in using the methods and computer codes in previous submittals;
 - the use of new, or previously reviewed, computational methods or computer codes; and,
- the inclusion in the design of any significant departures from previous cask
 system designs (e.g., unusual shield geometry, new types of materials, or
 different source terms).

At a minimum, the review should include examination of the applicant's input to the computer code used for the shielding analysis. The reviewer should verify use of proper dimensions, material properties, and an appropriate cross-section set. In addition, the reviewer should independently evaluate the use of gamma and neutron source terms.

6562 If a more detailed review is required (e.g., a new and not previously reviewed shielding 6563 computer code), the reviewer should independently confirm the dose rates to ensure that the SAR results are reasonable and conservative. As previously noted, the use of a simple 6564 computer code for neutron calculations often does not provide results with sufficient accuracy 6565 6566 and confidence. An extensive and more detailed evaluation may be necessary if large uncertainties are suspected. To the degree possible, the use of a different shielding computer 6567 code with a different analytical technique and cross-section set from that of the SAR analysis 6568 6569 will usually provide a more independent evaluation. 6570

A good reference regarding the treatment of uncertainty in thick-shielded cask analyses is the Electric Power Research Institute's "Evaluation of Shielding Analysis Methods in Spent Fuel Cask Environments," published in 1995 (Broadhead, 1995).

6575 6.5.5 Supplemental Information 6576

6577 Supplemental information can include copies of applicable references (especially if a reference 6578 is not generally available to the reviewer), computer code descriptions, input and output files, 6579 and any other information that the applicant deems necessary. Likewise, the reviewer should 6580 request any additional information needed to complete the review process.

6582 6.6 Evaluation Findings

6574

6581

6583

6592

6593 6594

6595

6602

6584 The reviewer should review the 10 CFR Part 72 acceptance criteria and provide a summary 6585 statement for each. These statements should be similar to the following model: 6586

- 6587F6.1Section(s) ______ of the SAR describe(s) shielding structures, systems, and6588components (SSCs) important to safety in sufficient detail to allow evaluation of6589their effectiveness. The reviewer should cite specific drawings that are used to6590define the SSCs for shielding.6591
 - F6.2 Section(s) _____ of the SAR demonstrate the radiation shielding features are sufficient to meet the radiation protection requirements of 10 CFR Part 20, 10 CFR 72.104 and 10 CFR 72.106.
- 6596F6.3Operational restrictions to meet dose and ALARA requirements in 10 CFR6597Part 20, 10 CFR 72.104, and 10 CFR 72.106 are the responsibility of the site6598licensee. The [cask designation] shielding features are designed to assist in6599meeting these requirements.
- 6601 A summary statement similar to the following should be made:

"The staff concludes that the design of the shielding system of the [cask designation] is
in compliance with 10 CFR Part 72 and that the applicable design and acceptance
criteria have been satisfied. The evaluation of the shielding system design provides
reasonable assurance that the [cask designation] will allow safe storage of spent fuel in
accordance with 10 CFR 72.236(d). This finding is reached on the basis of a review that

6608considered the regulation itself, appropriate regulatory guides, applicable codes and6609standards, and accepted engineering practices.

7 CRITICALITY EVALUATION

6610 6611

6613

6612 7.1 Review Objective

The criticality review and evaluation ensures that spent nuclear fuel (SNF) to be placed into the dry storage system (DSS) remains subcritical under normal, off-normal, and accident conditions involving handling, packaging, transfer, and storage. The criticality review is designed to fulfill the strategic outcome of no inadvertent criticality events, part of the strategic goal of safety described in the agency's strategic plan (NUREG-1614).

6620 7.2 Areas of Review

This portion of the DSS review evaluates the criticality design and analysis related to SNF
handling, packaging, transfer, and storage procedures for normal, off-normal, and accident
conditions. Consequently, this chapter of the DSS Standard Review Plan (SRP) provides
guidance for use in conducting a comprehensive criticality evaluation that may encompass any
or all of the following areas of review:

6627 6628

6631

6632

6633 6634

6635

6636

6637

6650 6651

6652

Criticality Design Criteria and Features

- 6629 6630 Fuel Specification
 - Non-Fuel Hardware
 - Fuel Condition
 - Model Specification Configuration
 - Material Properties

6638 Criticality Analysis

- 6639Computer Codes6640Multiplication Factor6641Benchmark Comparisons
- 6642 6643 **Burnup Credit**
- 6644Limits for the Licensing Basis6645Code Validation6646Licensing-Basis Model Assumptions6647Loading Curve6648Assigned Burnup Loading Value
- 6649 Estimate of Additional Reactivity Margin

Supplemental Information

6653 7.3 Regulatory Requirements

SNF storage systems must be designed to remain subcritical unless at least two unlikely
independent events occur. Moreover, the SNF cask must be designed to remain subcritical
under all credible conditions. Regulations specific to nuclear criticality safety of the cask system
are specified below. Normal and accident conditions to be considered are also identified in U.S.
Code of Federal Regulations (CFR) Part 72, "Licensing Requirements for the Independent
Storage of Spent Nuclear Fuel and High-Level Radioactive Waste," Title 10, "Energy" (10 CFR)

6661 Part 72). The reviewer should read the exact regulatory language. Table 7-1 matches the 6662 relevant regulatory requirements associated with this chapter to the areas of review.

6663

Table 7-1 Relationship of Regulations and Areas of Review					
	10 CFR Part 72 Regulations				
Areas of Review	72.124	72.236(a)	72.236(b), (c), (g), (h), (m),		
Criticality Design Criteria and Features	•	•	•		
Fuel Specification	•	•			
Model Specification	•	•	•		
Criticality Analysis	•	•	•		
Burnup Credit	•	•			

6664

6669 6670

6671

6672 6673 6674

6675 6676

6677 6678

6665 **7.4 Acceptance Criteria** 6666

6667 In general, the DSS criticality evaluation seeks to ensure that a subcritical condition is 6668 maintained for the given design by fulfilling the following acceptance criteria:

- The effective neutron multiplication factor, k_{eff}, including all biases and uncertainties at a 95-percent confidence level, should not exceed 0.95 under all credible normal, off-normal, and accident-level conditions.
- At least two unlikely, independent, and concurrent or sequential changes to the conditions essential to criticality safety, under normal, off-normal, and accident-level conditions would need to occur before an accidental criticality is deemed to be possible (i.e., double contingency principle).
- 6679 When practicable, criticality safety of the design should be established on the • basis of favorable geometry, permanently fixed neutron-absorbing materials 6680 6681 (poisons), or both. Where solid neutron-absorbing materials are used, the design 6682 should provide for a positive means to verify their continued efficacy during the storage period. The neutron-absorbing materials' continued efficacy may be 6683 confirmed by a demonstration or analysis before use, showing that significant 6684 degradation of these materials cannot occur over the life of the facility. 6685 6686
- Criticality safety of the cask system should not rely on credit for more than 75
 percent of the neutron poison material in fixed neutron absorbers when subject to
 standard acceptance tests. For greater credit allowance, special, comprehensive
 fabrication tests capable of verifying the presence and uniformity of the neutron
 absorber are needed.

66937.5Review Procedures

6694 6695 The interrelationship of the criticality evaluation review with other disciplines is shown in Figure 6696 7-1. The figure shows that this review draws upon information from the general information 6697 section as well as information reviewed or developed for the design criteria, structural, and 6698 operating procedures evaluations. Information collected or developed during the review of this 6699 chapter is useful in the evaluation of the materials, operating procedures, acceptance tests and 6700 maintenance program, accident analysis, and technical specifications and operating controls for 6701 the DSS.

6702

6703 The reviewer should examine the criticality design features and criteria in SAR Chapter 1, "General Information," and SAR Chapter 2, "Principal Design Criteria," in addition to SAR 6704 6705 Chapter 7, "Criticality Evaluation," for any additional details concerning criticality design features and criteria. The reviewer should assess the bounding specifications for the SNF and assure 6706 6707 consistency with the models used by the applicant in the criticality analyses. The reviewer 6708 should verify that criticality safety considerations under normal, off-normal, and accident-level 6709 conditions are addressed by the applicant and that the cask system design complies with 6710 10 CFR Part 72. In addition, the reviewer should verify that the criticality calculations determine 6711 the highest k_{eff} that might occur for all loading states under normal, off-normal, and accident 6712 conditions involving handling, packaging, transfer, and storage. To the extent practicable, the use of independent methods to perform any keff calculations by the reviewer should be pursued 6713 6714 to evaluate the applicant's design.

6715

6717

6716

7.5.1 Criticality Design Criteria and Features (HIGH Priority)

The reviewer should examine the principal criticality design criteria presented in SAR Chapter 2 as well as any related details provided in SAR Chapter 7, "Criticality Evaluation". The general cask description presented in SAR Chapter 1 should be examined for any relevant information. The information in Chapter 7 of the SAR should be verified to be consistent with the information in SAR Chapters 1 and 2. The reviewer should verify that all descriptions, drawings, figures, and tables are sufficiently detailed to support an in-depth staff evaluation.

6724

6725 The criticality design of the cask relies on the general dimensions of the cask components and 6726 the spacing of the fuel assemblies. The criticality design also often relies on neutron poisons. These may be in the form of fixed poisons in the basket structure, which may be used together 6727 6728 with flux traps, and/or soluble poisons in the water of the SNF pool. During loading and 6729 unloading operations, NRC staff accepts the use of borated water as a means of criticality 6730 control if the applicant specifies a minimum boron content and strict controls are established to 6731 ensure that the minimum required boron concentration is maintained. This condition in turn 6732 becomes an operating control and limit in SAR Chapter 13, and in the Technical Specification 6733 (TS). The SER should also discuss these operating controls. Other design features significant 6734 to the criticality design, such as important basket dimensions that control the spacing of the fuel 6735 assemblies should also be included in the TS. These dimensions may be a minimum pitch for 6736 the basket cells or a minimum flux trap width.

6737

If borated water is used for criticality control during loading and unloading operations, administrative controls and/or design features should be implemented to ensure that accidental flooding with unborated water cannot occur, or the criticality evaluation should consider accidental flooding with unborated water. If the cask is also intended for transport, borated water should not be relied upon for criticality control. Borated water and any other liquids are not acceptable as a means of criticality control for a cask in dry storage.

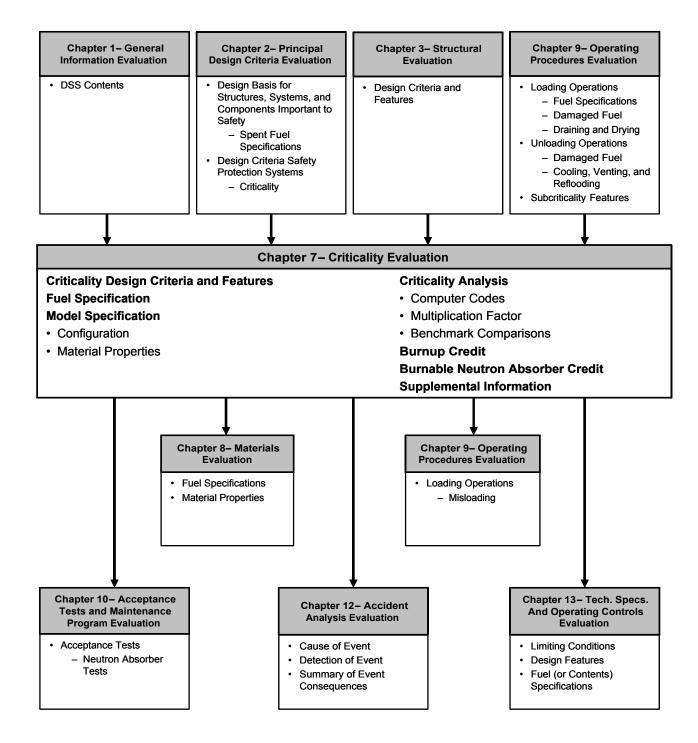


Figure 7-1 Overview of Criticality Evaluation

6749 This includes use of any credit in the criticality analysis for the presence of a liquid that may provide neutron shielding (and is external to the fuel basket); however, its presence and most 6750 6751 reactive density should be assumed if it increases keff. Also, if more than one certified or licensed basket design of the same supplier could fit in the cask; the type of basket to be used 6752 with the cask should be stamped in a location on the cask system in a way that allows for easy 6753 6754 identification of the basket. Thus, a licensee using the cask system will be able to easily verify 6755 the appropriateness of the fuel contents to be loaded in the basket.

6757 7.5.2 Fuel Specification (HIGH Priority)

6758

6756

6759 The reviewer should examine the specifications for the ranges or types of SNF that will be stored in the cask as presented in SAR Chapters 1, "General Information Evaluation" and 2, 6760 6761 "Principal Design Criteria Evaluation" as well as any related information provided in SAR Chapter 7,"Criticality Evaluation". The SNF specifications given in Chapter 7 of the SAR should 6762 6763 be consistent with, or bound, the specifications given in SAR Chapters 1 and 2 and in the TS. The reviewer should also, keeping in mind that some specifications are more important than 6764 6765 others, identify the specifications that are keys to criticality safety and verify that these are appropriately captured in the TS. NUREG-1745 provides a listing of some fuel specifications 6766 6767 that may be keys to maintaining the system subcritical.

6768

6769 Of primary interest is the type of fuel assemblies and maximum fuel enrichment that should be 6770 specified and used in the criticality calculations. Some boiling-water reactors (BWR) use 6771 multiple fuel pin enrichments, in which case the criticality calculations should use the maximum 6772 fuel pin enrichment present. Depending upon the fuel design, an applicant may propose use of assembly averaged or lattice averaged enrichments. This may be acceptable if the applicant 6773 6774 can demonstrate that the applicant's averaging technique is technically defensible and, for the criticality calculation, produces realistic or conservative results. Because of the natural uranium 6775 6776 blankets present in many BWR designs, use of an assembly-averaged enrichment that includes the blankets is not normally considered appropriate or conservative for BWR fuel. 6777

6778

6779 Another parameter of interest is the fuel density assumed in the analysis. The value of the fuel 6780 density used in the calculations should be justified to be realistic or conservative.

6781

6782 Although the burnup of the fuel affects its reactivity, many criticality analyses have assumed the cask to be loaded with fresh fuel (the fresh fuel assumption). Alternatively, the NRC staff has 6783 6784 provided guidance for limited burnup credit for intact fuel. This guidance is currently limited to burnup credit available from actinide compositions associated with UO₂ fuel of 5.0 wt percent or 6785 less enrichment that has been irradiated in a PWR to an assembly-average burnup value not 6786 6787 exceeding 50 GWD/MTU and cooled out-of-reactor for a time period between 1 and 40 years. 6788 Guidance regarding the review of a criticality analysis that involves burnup credit is provided in 6789 Section 7.5.5. Specifications for the fuel that will be stored in the cask, including those important for burnup credit, if applicable, should be included in Chapter 13, "Technical 6790 6791 Specifications and Operational Controls and Limits Evaluation" of both the SAR and SER, with 6792 those specifications determined to be key to criticality safety also explicitly listed in the Technical Specifications. 6793

6794

6795 For analyses that use the fresh fuel assumption, inadvertent loading of the cask with 6796 unirradiated fuel is not a major concern. However, inadvertent loading of the cask with unirradiated fuel is a major concern for casks that rely on criticality analyses that use burnup 6797 6798 credit. Therefore, detailed loading procedures for these casks will need to include steps to prevent misloading of unirradiated fuel. Regardless of which analysis is used, detailed loading 6799

6800 procedures may need to include steps to prevent misloading if fuel exceeding the design basis 6801 for the DSS is present in the pool at the time of loading.

6802

6803 Because casks are typically designed to store many types and configurations of fuel assemblies, the applicant should demonstrate that criticality requirements are satisfied for the 6804 most reactive case. A determination of which fuel is bounding in a criticality analysis depends 6805 6806 on many factors and usually requires examination of several types of fuel assemblies and compositions. The design-basis fuel has often been the Westinghouse 17x17 optimized fuel 6807 assembly (OFA); however, this will not be the case for all cask designs because of cask-specific 6808 6809 effects on reactivity. Therefore, the applicant should demonstrate and reviewers should verify that the fuel assembly used as the design basis is the most reactive for the specific cask design. 6810 Chapter 1, "General Information Evaluation" of the SAR and Chapter 13, "Technical 6811 6812 Specifications and Operation Controls and Limits Evaluation" of the SER should either clearly 6813 indicate the design-basis assemblies or reference the SAR chapter in which they are identified. 6814

6815 7.5.2.1 Non-Fuel Hardware

6816 6817 Some fuel assemblies may also have non-fuel components that are positioned or operated 6818 within the envelope of the fuel assembly during reactor operation that an applicant may seek to 6819 store with the assemblies in the cask. These items include PWR control assemblies such as Rod Cluster Control Assemblies (RCCAs), Control Element Assemblies (CEAs), Burnable 6820 Poison Rod Assemblies (BPRAs) and Axial Power Shaping Rods (APSRs). Applicants may 6821 6822 also seek approval of storage of fuel assemblies with other items that extend into an assembly's active fuel region, such as stainless steel rod inserts used to displace water in PWR assembly 6823 6824 quide tube dashpots. For applications that propose to load assemblies containing non-fuel 6825 hardware, ensure that the analysis considers the effects of both inclusion and neglect of nonfuel hardware on system reactivity. If the application relies on the presence of the non-fuel 6826 hardware to meet the subcritical criterion, verify that the non-fuel hardware will remain in place 6827 6828 under all normal and design basis conditions.

6829

6845

6847

6830 Generally, staff does not allow reliance on, or credit for, fuel-related burnable neutron absorbers. This restriction includes residual neutron-absorbing material remaining in the non-6831 fuel hardware loaded with an assembly. However, credit for any negative reactivity for this latter 6832 6833 absorbing material may be accepted if: (1) the remaining absorbing material content is established through physical measurement, where a sufficient margin of safety is included 6834 6835 commensurate with the uncertainty in the method of measurement, (2) the axial distribution of the poison depletion is adequately determined with appropriate margin for uncertainties, and 6836 (3) adequate structural integrity and placement of the non-fuel hardware under accident 6837 6838 conditions is demonstrated. Ensure that the fuel specifications, described in Chapter 13, 6839 "Technical Specifications and Operation Controls and Limits Evaluation" of both the SAR and 6840 SER, include the important details about the non-fuel hardware to be stored with the fuel 6841 assemblies and the associated residual neutron absorbing material, with those details key to 6842 criticality safety included in the TS, as appropriate. Also, verify that operating procedures are 6843 established that ensure that non-fuel hardware loaded with assemblies meets the approved specifications as well as remains in position. 6844

6846 7.5.2.2 Fuel Condition

6848 Determine if the applicant has included any specifications regarding the fuel condition. To date, 6849 a number of applications have requested approval for storage of fuel that is damaged as well as 6850 intact, or undamaged. The reviewer should consult the most current staff guidance for detailed

descriptions regarding what constitutes damaged, undamaged and intact fuel (e.g., 6851 Sections 8.4.17.2 and 8.6 of this SRP or more recent guidance). This guidance gives the 6852 applicant the latitude to define fuel with defects (such as missing rods but not loose rods or 6853 debris) as undamaged fuel as long as the fuel can meet all the fuel specific or system related 6854 6855 functions. For purposes of the criticality function, undamaged fuel is fuel that: (1) is in the form 6856 of an assembly, (2) has structural and material properties such that the assembly can withstand 6857 normal and design basis events while maintaining its geometric configuration and (3) has had any damaged or missing fuel rods replaced with solid dummy rods that displace an equal 6858 amount of water as the original rods. Fuel that cannot meet these criteria is considered to be 6859 6860 damaged. However, a fuel assembly with missing fuel rods may be considered undamaged fuel if analyses are performed that show the criterion for subcriticality will be met with the fuel rods 6861 6862 missina.

6863

6864 A fuel assembly that is classified as damaged must be placed in a damaged fuel canister, or in 6865 an acceptable alternative, for loading into the cask. For a cask that is also intended for transport, it must be kept in mind that the more severe conditions of transport may require 6866 6867 re-analysis of assemblies classified as undamaged under storage-only conditions prior to transport. Specifications concerning the condition of the fuel to be stored in the cask and the 6868 loading of damaged fuel, as applicable, should be included in Chapter 13, "Technical 6869 6870 Specifications and Operation Controls and Limits Evaluation" of both the SAR and SER and in 6871 the Certificate of Compliance (in the TS). 6872

The reviewer should verify that the criticality analysis addresses the conditions of the fuel to be stored in the cask system. Analyses for cask systems designed to store damaged fuel should bound the configuration of the damaged fuel assemblies under all credible normal and design basis conditions. For example, some analyses have performed calculations that model the damaged fuel as arrays of bare fuel rods (i.e., the cladding is assumed to be completely removed) having an optimized rod pitch.

68807.5.3Model Specification (HIGH Priority)

6881
6882 Manufacturing and fabrication tolerances should be specified, and the reviewer should verify
6883 that the applicant used the most reactive combination of tolerances, within the ranges of their
6884 acceptable values, in the cask system model.

6886 7.5.3.1 Configuration

The reviewer should verify that the model used in the criticality evaluation is adequately described for normal, off-normal, and accident conditions. The reviewer should also coordinate with the structural, materials, and thermal reviewers to understand any damage that could result from accident or natural phenomena events.

6892

6887

6879

The reviewer should examine the sketches or figures of the model used for criticality calculations. The reviewer should verify that the dimensions and materials of the model are consistent with the engineering drawings. Differences between the actual cask configuration and the models should be identified, and the models should be shown to be conservative. Substitution of end sections and support structures of the fuel with ordinary water is a common and usually conservative practice in criticality analysis. However, substitution with borated water is typically not conservative. Any such substitutions should be justified.

- Tolerances for poison material dimensions and/or concentrations should be defined, and the most reactive conditions should be used in the criticality analysis. In addition, the analysis should identify all important design conditions and then address these conditions for potential variations during normal, off-normal, and accident-level conditions.
- 6905 6906 The reviewer should verify that the applicant has considered deviations from nominal design 6907 configurations. The evaluation of k_{eff} should not be limited to a model in which all of the fuel 6908 bundles are neatly centered in each basket compartment with the center line of the basket 6909 coincident with the center line of the cask. For example, a cask with steel confinement and lead 6910 shielding may have a higher k_{eff} when the basket and fuel assemblies are positioned as close as 6911 possible to the lead. However, in some designs, the most reactive configuration may be when 6912 all fuel assemblies are shifted toward the center of the basket.
- 6913

6914 In addition to a fully flooded cask, the SAR should address configurations in which the cask is 6915 filled with partial density water or is partially filled with water (borated, if applicable) and the remainder of the cask is filled with steam consisting of ordinary water at partial density. These 6916 6917 configurations are considered to be possible during loading and unloading operations. The SAR should also consider the possibility of preferential or uneven flooding within the cask, if such a 6918 scenario is credible for the given cask design (e.g., because of blockage in small flow or drain 6919 6920 paths). In particular, the reviewer should watch for situations where there is water in the fuel regions but not in the flux traps, if applicable. Cask designs for which this type of flooding is 6921 credible are generally unacceptable. The SAR should also consider flooding in the fuel rod 6922 6923 pellet-to-clad gap regions with unborated water. Above all, the analysis must demonstrate that the cask remains subcritical for all credible conditions of moderation. 6924 6925

- 6926 The reviewer should examine whether the applicant has prepared a heterogeneous model of 6927 each fuel rod or has homogenized the entire fuel assembly. With current computational 6928 capabilities, homogenization is now an uncommon practice and should not be used. 6929
- 6930 7.5.3.2 Material Properties
- 6931 6932 The reviewer should verify that the compositions and densities are provided for all materials 6933 used in the calculational model. The applicant should also cite, in the SAR Chapter 8, 6934 "Materials Evaluation", the source of all materials data, particularly the data for fuel and poison 6935 materials. In coordination with the materials reviewer, the criticality reviewer should determine 6936 the acceptability of the sources of data that are important to the criticality safety function of the cask. The criticality reviewer should, in coordination with the materials reviewer, ensure that the 6937 6938 applicant addressed the validation of the poison concentration in the acceptance testing 6939 discussion in SAR Chapter 10, "Acceptance Tests and Maintenance Program Evaluation." 6940 Criticality computer codes generally will allow the densities to be input directly in units of g/cm³ 6941 or units of atoms/barn-cm. In either case, the reviewer should pay attention to the final value 6942 used directly by the code. Also, the reviewer should confirm that the analysis does not take 6943 credit for more than the minimum amount of neutron absorber verified by the acceptance 6944 testing, subject to the criteria in Section 7.4.
- 6945

Among other specifications, 10 CFR Part 72 requires that a positive means to verify the continued efficacy of solid neutron-absorbing materials should be provided when these materials are used. The criticality reviewer should verify that the neutron flux from the irradiated fuel results in a negligible depletion of poison material over the storage period, In coordination with the materials and structural reviewers, the criticality reviewer should ensure that the applicant demonstrates that the required acceptance testing of the poisons during fabrication (specified in SAR Chapter10, "Acceptance Tests and Maintenance Program Evaluation") has
been satisfactorily specified, and by analysis or demonstration, the applicant has shown the
poison material's durability and resistance to degradation during the storage period.

- 6955
- 6956 6957

6958 The neutron flux used for this analysis should be the maximum that may be produced by 6959 feasible loadings of irradiated or unirradiated fuel. The reviewer should coordinate review of the applicant's acceptance testing and assessment of the poison material's durability with the 6960 6961 materials reviewer to verify that the applicant provides a valid and accurate demonstration of the absorber material's continued efficacy. Consideration should be given to the effects of physical 6962 6963 and chemical actions as well as irradiation (gamma and neutron). There may be other ways to 6964 provide positive means of verifying the neutron absorber's continued efficacy. For applications that propose an alternative method, the reviewer should verify that the proposed method is 6965 6966 reasonable (considering any effects on meeting confinement, shielding, or other system design criteria) and valid and accurate in demonstrating the absorber's continued efficacy. 6967

696869697.5.4Criticality Analysis (Priority as indicated)6970

6971 7.5.4.1 Computer Codes

6972 6973 (MEDIUM Priority) Both Monte Carlo and deterministic computer codes may be used for 6974 criticality calculations. Monte Carlo computer codes are better suited to three-dimensional geometry and, therefore, are more widely used to evaluate spent fuel cask designs. The most 6975 frequently used Monte Carlo codes are SCALE/KENO (ORNL, 2005), MCNP (MCNP5, 2003), 6976 6977 and MONK (AEA Technology, 2001). All three codes permit the use of either multigroup or continuous cross sections. The reviewer should determine that the applicant has used a 6978 6979 computer code that is appropriate for the particular application and has used that code correctly. 6980

6981 (LOW Priority) The reviewer should determine whether the applicant has chosen an acceptable 6982 set of cross sections. Cross sections may be distributed with the criticality computer codes or developed independently from another source. The applicant should provide or reference the 6983 6984 source of cross-section data. For user-generated cross sections, the applicant should specify 6985 the method used to obtain the actual data employed in the criticality analysis. For multigroup calculations, the neutron flux spectrum used to construct the group cross sections should be 6986 6987 similar to that of the cask. If a multigroup treatment is used, the reviewer should ensure the applicant has appropriately considered the neutron spectrum of the cask. In addition to 6988 selecting a cross-section set collapsed with an appropriate flux spectrum, a more detailed 6989 processing of the energy-group cross sections is required to properly account for resonance 6990 6991 absorption and self-shielding. The use of multigroup KENO as part of the CSAS sequences in 6992 SCALE will directly enable appropriate cross-section processing. Some cross-section sets include data for fissile and fertile nuclides (based on a potential scattering cross section, s_n) that 6993 6994 can be input by the user. If the applicant has used a stand-alone version of KENO, the reviewer 6995 should ensure that potential scattering has been properly considered. Furthermore, information has been published concerning problems with some cross-section libraries once commonly 6996 6997 distributed with SCALE/KENO. One library, the "working-format" library, was used for calculations of the code manual's sample problems but is not intended for criticality calculations 6998 6999 of actual systems (IN 91-26, 1991). Another library, the SCALE 123-group library, has demonstrated inadequacies for non-thermalized, highly enriched systems (NUREG/CR-6328, 7000 7001 1995). 7002

MEDIUM Priority) The reviewer should pay particular attention to the proper selection of scattering cross section data for important compounds that may be in the system. Use of a free atom cross section for nuclides in a compound may not adequately account for the scattering effects of atoms bound in molecules and lattices. This misrepresentation can cause the underprediction of k_{eff} , particularly in the case of a well moderated system where energetic up scattering plays a significant role in the neutronics of the system.

7010 (MEDIUM Priority) For analyses of a cask model with separate regions of water and steam, the use of a multigroup cross-section set raises additional concerns. The reviewer should verify 7011 7012 that the applicant has addressed the differences in the flux spectra in the two regions. If the 7013 results of these calculations indicate that keff is close to 0.95, additional independent calculations 7014 using a different code and/or cross-section library (a library derived from a different cross-7015 section database if possible and appropriate) may be helpful. The reviewer should also closely 7016 examine the applicant's benchmark analysis to verify the applicability of the critical experiments 7017 considered.

7018

7020

7019 7.5.4.2 Multiplication Factor

7021 (MEDIUM Priority) The reviewer should examine the results and discussion of the k_{eff} 7022 calculations for the storage cask. The reviewer should verify that the calculations determine the 7023 highest k_{eff} that might occur during all operational states under normal, off-normal and accident 7024 conditions. Sensitivity parametric analyses may be used to provide the required demonstration 7025 that the highest k_{eff} with a confidence level of 95 percent has been determined. Variations in the 7026 results caused by differences in the models and sensitivity analyses should be explained and 7027 found to be reasonable.

7029 (MEDIUM Priority) For Monte Carlo calculations, the reviewer should assess if the number of 7030 neutron histories and convergence criteria are appropriate. As the number of neutron histories increases, the mean value for k_{eff} should approach a fixed value, and the standard deviation 7031 7032 associated with each mean value should decrease. Depending on the code used by the 7033 applicant, a number of diagnostic calculations are generally available to demonstrate adequate convergence and statistical variation. For deterministic codes, a convergence limit is often 7034 7035 prescribed in the input. The selection of a proper convergence limit and the achievement of this 7036 limit should be described and demonstrated in either the SAR or supporting criticality 7037 calculations. When burnup credit is included in the criticality analysis, the reviewer needs to be 7038 sure that proper neutron sampling and convergence have been achieved because the flux will 7039 be concentrated in the low burned ends of the fuel assemblies. 7040

7041 (HIGH Priority) Because of the importance and complexity of the criticality evaluation, 7042 independent calculations should be performed to ensure that the most reactive conditions have 7043 been addressed, the reported k_{eff} is conservative and the applicant has appropriately modeled 7044 the storage cask geometry and materials. In deciding the level of effort necessary to perform 7045 independent confirmatory calculations, the reviewer should consider the following factors: 7046 (1) the calculation method (computer code) used by the applicant, (2) uniqueness and complexity of the design and analysis, (3) the degree of conservatism in the applicant's 7047 assumptions and analyses, and (4) the extent of the margin between the calculated result and 7048 the acceptance criterion of $k_{eff} \leq 0.95$. As with any design and review, a small margin below the 7049 7050 acceptance criterion and/or a small degree of conservatism may necessitate a more extensive 7051 staff analysis.

7053 (HIGH Priority) The reviewer should develop a model that is independent of the applicant's 7054 model. If the reported k_{eff} for the most reactive case is substantially lower than the acceptance 7055 criterion of 0.95, a simple model known to produce very bounding results may be all that is 7056 necessary for the independent calculations. 7057

7058 (HIGH Priority) If possible and appropriate, the reviewer should perform the independent 7059 calculations with a computer code different from that used by the applicant. Likewise, use of a 7060 different cross-section set, derived from a different cross-section database where possible and appropriate (e.g., ENDF/B, JEF, JENDL, UKNDL, etc.), can provide a more independent 7061 7062 confirmation. The continuous energy (CE) cross sections created for use with KENO in the SCALE code system are generated by the AMPX processing code rather than the more widely 7063 7064 used NJOY code. Even though some cross section libraries may not have fully independent 7065 data bases because they are all derived from ENDF/B data, the CE library in SCALE still can 7066 provide some level of independence and is useful for checking computations performed with 7067 libraries which were generated by using NJOY. The reviewer should describe the staff's 7068 independent analysis and the analysis general results and conclusions in the SER. 7069

(HIGH Priority) Although a k_{eff} of 0.95 or lower meets the acceptance criterion, the reviewer should watch for design features or content specifications where small changes could result in large changes in the value of k_{eff} . When the value of k_{eff} is highly sensitive to system parameters that could vary, the acceptable k_{eff} limit may need to be reduced below 0.95. When establishing a k_{eff} limit below 0.95, the reviewer should consider the degree of sensitivity to system parameter changes and the likelihood and extent of potential parameter variations.

7077 7.5.4.3 Benchmark Comparisons (HIGH Priority)

7078

7087

7079 Computer codes for criticality calculations should be benchmarked against critical experiments. 7080 A thorough comparison provides justification for the validity of the computer code, its use for a specific hardware configuration, the neutron cross sections used in the analysis, and 7081 7082 consistency in modeling by the analyst. Ultimately the benchmarking process establishes a bias 7083 and uncertainty for the particular application of the code (using the benchmark results for calculations performed by another analyst does not address this last issue) . The calculated keff 7084 7085 of the cask should then be adjusted to include the appropriate biases and uncertainties from the 7086 benchmark calculations.

The reviewer should examine the general description of the benchmark comparisons. This examination includes verifying that the analysis of the experiments used the same computer code, computer system, cross-section data, modeling methods, and code options that were used to calculate the cask system k_{eff} values.

7093 The reviewer should also closely examine the applicant's benchmark analysis to determine 7094 whether the benchmark experiments are relevant to the actual cask design. No critical 7095 benchmark experiment will precisely match the fissile material, moderation, neutron poisoning, 7096 and configuration in the actual cask. However, the applicant can perform a proper benchmark analysis by selecting experiments that adequately represent cask and fuel features and 7097 7098 parameters that are important to reactivity. Key features and parameters that should be 7099 considered in selecting appropriate critical experiments include the type of fuel, enrichment, 7100 hydrogen-to-uranium (H/U) ratio (dependent largely on rod diameter and pitch), reflector 7101 material, neutron energy spectrum, and poisoning material and placement. The applicant 7102 should justify, and the reviewer should verify, the suitability of the critical experiments chosen to 7103 benchmark the criticality code and calculations. Techniques such as the sensitivity/uncertainty method developed by Oak Ridge National Laboratory (ORNL/TM-2005/39, 2005) can be helpful
when assessing the applicability of the critical experiments used to benchmark the design
analysis. UCID-21830 (Lloyd, 1990), the "International Handbook on Evaluated Criticality
Safety Benchmark Experiments," (NSC,NEA, 9/2003) and NUREG/CR-6361 provide information
on benchmark experiments that may apply to the cask being analyzed.

- 7110 The reviewer needs to assess whether the applicant analyzed a sufficient number of appropriate 7111 benchmark experiments and how the results of these benchmark calculations have been converted to a bias for the cask calculations. Simply averaging the biases from a number of 7112 7113 benchmark calculations typically is not sufficient, such as when one benchmark yields results 7114 that are significantly different from the others, the number of experiments is limited, or 7115 benchmarks that over-predict k_{eff} are included. In addition, benchmark comparisons should be 7116 checked for bias trends with respect to parameter variations (such as pitch-to-rod-diameter 7117 ratio, assembly separation, reflector material, neutron absorber material, etc.). A Lawrence 7118 Livermore National Laboratory (LLNL) (Lloyd, 1990) and NUREG/CR-6361 provide some 7119 guidance, but other methods, when adequately explained, have also been considered 7120 appropriate.
- 7121

For Monte Carlo codes, the statistical uncertainties of both benchmark and cask calculations also need to be addressed. The uncertainties should be applied to at least the 95-percent confidence level. As a general rule, if the acceptability of the result depends on these rather small differences, the reviewer should question the overall degree of conservatism of the calculations. Considering the current availability of computer resources, a sufficient number of neutron histories can readily be used so that the treatment of these uncertainties should not significantly affect the results.

7129

The reviewer should verify that only biases that increase k_{eff} have been applied. For example, if the benchmark calculation for a critical experiment results in a neutron multiplication that is greater than unity, it should not be used in a manner that would reduce the k_{eff} calculated for the cask. Only corrections that increase k_{eff} should be applied to preserve conservatism.

7134

The reviewer may have already performed a number of benchmark calculations applicable to storage casks and may have a reasonable estimation of the bias to be applied to the independent calculation of the cask. If such is not the case, or if the acceptability depends on small bias differences, the reviewer again needs to determine whether sufficient conservatism has been applied to the calculations.

- 7141 7.5.5 Burnup Credit (HIGH Priority)
- 7142

7143 Unirradiated reactor fuel has a well-specified nuclide composition that provides a straightforward 7144 and bounding approach to the criticality safety analysis of transport and storage casks. As the 7145 fuel is irradiated in the reactor, the nuclide composition changes and, ignoring the presence of 7146 burnable poisons, this composition change will cause the reactivity of the fuel to decrease. 7147 Allowance in the criticality safety analysis for the decrease in fuel reactivity resulting from 7148 irradiation is typically termed burnup credit.

7149

The following guidance (Sections 7.5.5.1 to 7.5.5.6) is applicable to fuel that is classified as undamaged fuel and is expected, based upon engineering evaluations, to remain undamaged under off-normal and accident-level conditions. If burnup credit is requested for mildly damaged fuel (basically undamaged and not debris; i.e., damaged fuel that has the same geometric form and structural integrity as undamaged fuel), this guidance may be applied, as appropriate, while accounting for uncertainties that can be associated with the damaged fuel, to establish an
isotopic inventory and assumed fuel configuration for normal and accident conditions that bound
the uncertainties.

7159 7.5.5.1 Limits for the Licensing Basis

7161 Available data supports allowance for burnup credit where the licensing safety analysis is based on actinide compositions associated with UO₂ fuel of an initial enrichment up to 5.0 wt. percent 7162 in Uranium-235 irradiated in a PWR to an assembly-average burnup value up to 50 GWd/MTU 7163 7164 and cooled out-of-reactor for a time period between 1 and 40 years. The range of available measured assay data for irradiated UO₂ fuel indicates that an extension of the licensing basis 7165 7166 beyond 5.0 wt. percent enrichment is not warranted. Even within this range of parameters, the 7167 reviewer needs to exercise care in assessing whether the analytical methods and assumptions 7168 used are appropriate, especially near the ends of the range. Use of actinide compositions 7169 associated with burnup values or cooling times outside these specifications should be 7170 accompanied by the measurement data and/or justified extrapolation techniques necessary to 7171 adequately extend the isotopic validation and quantify or bound the bias and uncertainty.

7173 7.5.5.2 Code Validation

7174 7175 The computational methodologies used for predicting the actinide compositions and determining the k_{eff} should be properly validated. Bias and uncertainties associated with predicting the 7176 7177 actinide compositions should be determined from benchmarks of applicable fuel assay measurements. Bias and uncertainties associated with the calculation of keep should be derived 7178 7179 from benchmark experiments that closely represent the important features of the cask design 7180 and SNF contents. The particular set of nuclides used to determine the keff value should be limited to that established in the validation process. The licensing-basis safety analysis should 7181 7182 utilize bias and uncertainty values that can be justified as bounding based on the quantity and 7183 quality of the experimental data. Particular consideration should be given to bias uncertainties 7184 arising from the lack of critical experiments that are highly prototypical of SNF in a cask.

7185 7186

7187

7160

7172

7.5.5.3 Licensing-Basis Model Assumptions

The actinide compositions used to determine a value of k_{eff} for the licensing safety basis (as described in SRP Section 7.5.5.1) should be calculated using fuel design and in-reactor operating parameter values that appropriately encompass the range of design and operating conditions for the proposed contents. The calculation of the k_{eff} value should be performed using cask models, appropriate analysis assumptions, and code inputs that allow adequate representation of the physics. The following should be of particular concern: 7194

- The need to account for and effectively model the axial and horizontal variation of the burnup within a SNF assembly (e.g., the selection of the axial burnup profiles, number of axial material zones, etc.).
- 7198 7199

7200

• The need to consider the potential for increased reactivity due to the presence of burnable absorbers or control rods (fully or partially inserted) during irradiation.

The axial burnup profile database in RSICC's Data Package DLC-201 (Cacciapouti, 1997)
provides a source of realistic, representative data that can be used for establishing a profile to
use in the licensing-basis safety analysis. However, care should be taken to select a profile that

will encompass the range of potential k_{eff} values for the proposed contents, particularly near the upper end of the ranges described in SRP Section 7.5.5.1.

7207

7208 A licensing-basis modeling assumption where the assemblies are exposed during irradiation to the maximum (neutron absorber) loading of burnable poison rods for the maximum burnup is an 7209 appropriate analysis assumption that encompasses all assemblies that may or may not have 7210 7211 been exposed to burnable absorbers (NUREG/CR-6761). Such an assumption in the licensingbasis safety analysis should also encompass the impact of exposure to fully inserted or partially 7212 inserted control rods in typical domestic PWR operations (NUREG/CR-6759). Assemblies that 7213 7214 are exposed to atypical insertions of poison rods (e.g., full control rod, CEA, RCCA, or APSR 7215 insertion for one full cycle of reactor operation) or that include integral poison rods (e.g., integral fuel burnable absorbers - IFBAs (see the study in NUREG/CR-6760)) or poisons coated on 7216 7217 pellets should not be loaded unless the safety analysis explicitly considers such operational 7218 conditions. If the assumption on burnable poison rod exposure is less than the maximum for 7219 which overall burnup credit is requested, then a justification commensurate with the selected 7220 value should be provided (e.g., the lower the value, the greater the need to support the assumption with available data and/or indicate how administrative controls will prevent a 7221 7222 misload of an assembly exposed beyond the assumed value). 7223

7224 7.5.5.4 Loading Curve 7225

A loading curve shows the minimum allowable assembly burnup as a function of initial enrichment; fuel assemblies with greater burnup values may be loaded in the cask. Separate loading curves should be established for each set of applicable licensing conditions. For example, a separate loading curve should be provided for each minimum cooling time to be considered in the cask loading. The applicability of the loading curve to bound various fuel types or burnable absorber loadings should be justified. To limit the opportunity for misloading, only one loading curve should be used for each cask loading.

7234 7.5.5.5 Assigned Burnup Loading Value

Administrative procedures should be established to ensure that the cask will be loaded with fuel that is within the specifications of the approved contents. The administrative procedures should include a measurement that confirms the reactor record for each assembly. Procedures that confirm the reactor records using measurement of a sampling of the fuel assemblies will be considered if a database of measured data is provided to justify the adequacy of the procedure in comparison to procedures that measure each assembly.

7242

The measurement technique may be calibrated to the reactor records for a representative set of assemblies. For confirmation of assembly reactor burnup record(s), the measurement should provide agreement within a 95-percent confidence interval based on the measurement uncertainty. The assembly burnup value to be used for loading acceptance (termed the assigned burnup loading value) should be the confirmed reactor record value as adjusted by reducing the record value by a combination of the uncertainties in the record value and the measurement.

7251 7.5.5.6 Estimate of Additional Reactivity Margin 7252

The available experimental database relevant to use of burnup credit in the safety analysis of a PWR cask is not as extensive as the database available to support licensing with the unirradiated fuel assumption. The process of assuring that appropriate values and conditions 7256 have been applied in the safety analysis is also more difficult. For example, there may be 7257 uncertainties that are not directly evaluated in the modeling or validation processes for actinideonly burnup credit (e.g., k_{eff} validation uncertainties caused by a lack of critical experiments with 7258 either actinide compositions that match those in SNF or material distributions that represent the 7259 more reactive ends of SNF). Also, there may be potential uncertainties in the models that 7260 7261 calculate the licensing-basis actinide inventories (e.g., caused by any outlier assemblies with 7262 higher-than-modeled reactivity such as may be caused by prolonged use of control rod insertion during irradiation, axial profiles not encompassed by the data in RSICC's Data Package 7263 DLC-201 [Cacciapouti, 1997], or exposure to unanticipated operating conditions that increase 7264 7265 reactivity). While the applicant should make every effort to identify and appropriately address these potential uncertainties explicitly, data limitations may make it difficult to quantify these 7266 uncertainties precisely and assure that they are adequately bounded. Decisions on the 7267 7268 adequacy of the safety analysis relevant to these difficult-to-quantify uncertainties are more straightforward if design-specific analyses are provided that estimate the additional reactivity 7269 margins available from absorber nuclides (fission products and actinides) not included in the 7270 7271 licensing safety basis (as described in SRP Section 7.5.5.1). The reviewer should assess the estimated reactivity margins to determine their adequacy for offsetting any potential 7272 uncertainties introduced by the type of effects discussed above. 7273 7274

7275 **7.5.6** Supplemental Information

The reviewer should ensure that all supportive information or documentation is provided. This may include, but not be limited to, justification of assumptions or analytical procedures, test results, photographs, computer program descriptions, input/output, and applicable pages from referenced documents. In addition, the SAR should include a list of fuel designs with the acceptable parametric limits and the maximum enrichments for which the criticality analysis is valid. The reviewer should request any additional information needed to complete the review.

7284 **7.6 Evaluation Findings** 7285

7283

7289

7290 7291

7292 7293

7294

7295

7296

7297 7298

7299

7300

7301

7302 7303

The reviewer should review the 10 CFR Part 72 acceptance criteria and provide a summary
statement for each. These statements should be substantially as follows:

- F7.1 Structures, systems, and components important to criticality safety are described in sufficient detail in Chapters ______ of the SAR to enable an evaluation of their effectiveness.
- F7.2 The _____ cask and its spent fuel transfer systems are designed to be subcritical under all credible conditions.
- F7.3 The criticality design is based on favorable geometry, fixed neutron poisons, and soluble poisons of the spent fuel pool [as applicable]. An appraisal of the fixed neutron poisons has shown that they will remain effective for the term requested in the CoC application and there is no credible way for the fixed neutron poisons to significantly degrade during the requested term in the CoC application; therefore, there is no need to provide a positive means to verify their continued efficacy as required by 10 CFR 72.124(b).
- 7304F7.4The analysis and evaluation of the criticality design and performance have
demonstrated that the cask will enable the storage of spent fuel for the term
requested in the CoC application.

7308 The reviewer should provide a summary statement similar to the following:

"The staff concludes that the criticality design features for the [cask designation] are in
compliance with 10 CFR Part 72, as exempted [if applicable], and that the applicable
design and acceptance criteria have been satisfied. The evaluation of the criticality
design provides reasonable assurance that the [cask designation] will allow safe storage
of spent fuel. This finding is reached on the basis of a review that considered the
regulation itself, appropriate regulatory guides, applicable codes and standards, and
accepted engineering practices."

8 MATERIALS EVALUATION

7317 7318

7331

7332

7333

7338

7339

7340 7341

7342 7343

7344

7345

7353

7319 **8.1 Review Objective** 7320

The materials review ensures adequate material performance of components important to safety of a dry cask storage system (DSS), including the spent fuel canister or cask, under normal, off-normal, and accident-level conditions. To ensure an adequate margin of safety in the design basis of the DSS, the reviewer should obtain reasonable assurance that:

- The physical, chemical, and mechanical properties of materials for components important to safety (ITS) meet their service requirements including normal, offnormal, and accident-level conditions, and that the mechanical properties are Code accepted values.
 - Materials for components ITS have sufficient requirements to control the quality of the production, fabrication, and test activities.
- Materials for ITS components are selected to accommodate the effects of, and to
 be compatible with, the independent spent fuel storage installation (ISFSI) site
 characteristics, environmental conditions, and duration of the license period.
 - The spent nuclear fuel (SNF) cladding is protected from gross rupture and from conditions that could lead to fuel redistribution.
 - The DSS is designed to maintain the spent fuel in a readily retrievable condition.
 - Other materials which support or protect ITS components (such as coatings) are suitable for the application.

In reviewing the materials, the reviewer should consider the sources of information for the physical and mechanical properties of the materials used in the DSS construction and those materials which are part of the spent fuel payload. These material properties should be considered against both static and dynamic loadings for normal, off-normal, accident conditions, and other phenomena such as corrosion. The material properties and characteristics needed to satisfy these functional safety requirements should be maintained and are applicable over the complete licensing period.

7354 Preferred materials information sources are U.S. industry consensus codes, standards, and 7355 specifications. The applicability and acceptability of all other sources, such as manufacturer's 7356 test data and handbooks, should be reviewed. The reviewer should also examine published articles, research reports, and texts as sources of information concerning material performance. 7357 7358 Foreign standards (and codes) may be acceptable on a case by case basis. The applicant 7359 should provide complete documentation supporting the use of the foreign standard and show 7360 that the foreign standard is equivalent to a comparable US standard (e.g. ASME, ASTM, etc.), 7361 or otherwise sufficient for its intended use. The staff may need to review foreign standards in greater depth, depending on the familiarity with the standard and applicability of the standard to 7362 7363 the proposed DSS design

- **8.2** Areas of Review

The materials evaluation encompasses the following listed areas of review. The various materials engineering related topics requiring review may be addressed in different chapters of the SAR. However, the review guidance for all materials engineering related topics are provided in this chapter of the SRP.

73717372 Areas for materials review:

7373	
7374	General
7375	
7376	Cask Design/Materials
7377	Environmental Conditions
7378	Engineering Drawings
7379	
7380	Materials Selection
7381	
7382	Applicable Codes and Standards and Alternatives to the Code
7383	Material Properties
7384	Alternative or Substitute Materials (ITS components)
7385	Copper bearing or other weathering steels or other corrosion control measures
7386	for coastal ISFSI locations
7387	Weld Design, Inspection
7388	Bolt Applications
7389	Coatings
7390	Neutron Shielding Materials
7391	Gamma shielding
7392	Neutron Poison Materials for Criticality Control
7393	Concrete and Reinforcing Steel
7394	Seals
7394	
	Low Temperature Ductility of Ferritic Steels
7396 7397	Creep Properties/Analyses
	Corrosion
7398	Corrosion
7399	Corregion Desistance
7400	Corrosion Resistance
7401	Galvanic/Chemical/Radiolytic Reactions of Fuel with Canister Internals
7402	Ole deline a laste quite / Free l
7403	Cladding Integrity/Fuel
7404	Fuel Durp up
7405	Fuel Burn-up
7406	Cladding Temperature Limits
7407	Damaged Fuel Definition
7408	
7409	Operational Issues (see Operating Procedures Chapter of SAR)
7410	
7411	Hydrogen gas monitoring/mitigation
7412	Preventing oxidation of fuel during loading/unloading operations which can lead
7413	to Rod Splitting
7414	

7415 **Examination and Testing** (see Acceptance Test Chapter of SAR) 7416 7417 Helium leakage testing of canister welds Periodic Inspections 7418 7419 7420 Code Case Acceptability 7421 7422 Refer to Regulatory Guide 1.193 7423 7424 8.3 **Regulatory Requirements** 7425

This section presents a summary matrix of the portions of U.S. Code of Federal Regulations (CFR) Part 72, "Licensing Requirements for the Independent Storage of Spent Nuclear Fuel and High-Level Radioactive Waste," Title 10, "Energy" (10 CFR Part 72) relevant to the review areas addressed by this chapter. The U.S. Nuclear Regulatory Commission (NRC) staff reviewer should read the exact referenced regulatory language. Table 8-1 matches the relevant regulatory requirements associated with this chapter to the areas of review.

7432

Table 8-1 Relationship of 10 CFR Part 72 Regulations and Areas of Review								
		10 CFR	Part 72 Reg	egulations				
Chapter 8 Areas of Review	72.104(a)	72.106(b)	72.122 (a), (b), (c)	72.122 (h)(1), (i), (l)	72.124			
General								
Materials Selection	•	•	٠		•			
Corrosive Reactions								
Cladding Integrity				•				

7433

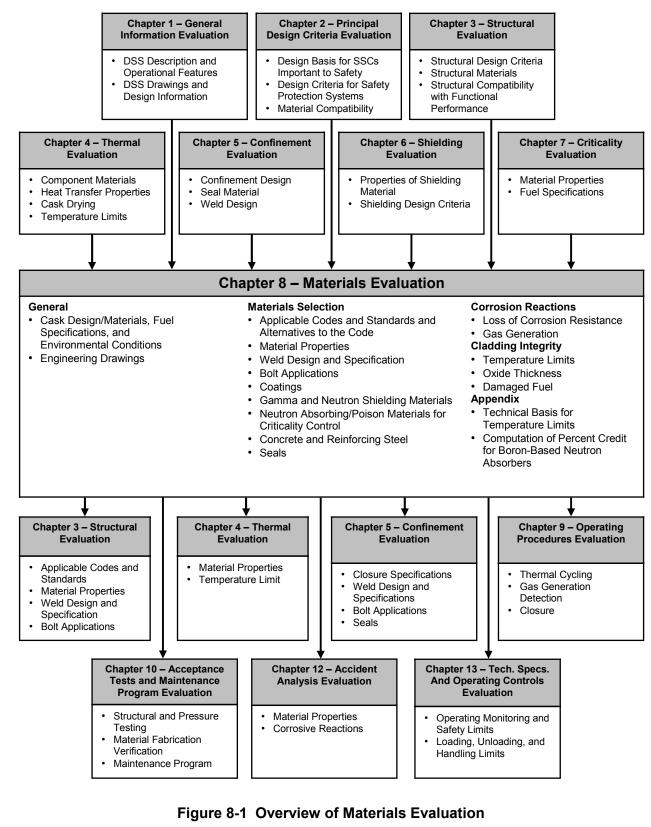
Chapter 8	10 CFR Part 72 Regulations					
Areas of Review	72.236(g)	72.236(h)	72.236(i)	72.236(m)		
General				•		
Materials Selection	•		•	•		
Corrosive Reactions		•				
Cladding Integrity				•		

7434

7435 8.4 Review Procedures and Acceptance Criteria

7436

7437 Metallic materials are primarily assumed in this guidance. The interrelationship of the materials7438 evaluation review with other disciplines is shown in Figure 8-1.


7439

74408.4.1General Review Considerations (HIGH Priority)7441

The reviewer should survey the SAR and design drawings (generally SAR Chapters 1 and 2) to identify the various materials issues that may be associated with the specific design proposal in

- the application. The reviewer should also examine the criticality, shielding, confinement, and
 thermal chapters to identify cross-cutting issues that should be coordinated among the technical
 disciplines.
- The reviewer should examine the following Technical Specification (TS) items to verify its
 proposal by the applicant and understand the specific limits, design requirements, and operating
 constraints proposed by the applicant.:
- 7451
- 7452
- 7453 Maximum fuel burn-up
- 7454 Maximum cladding temperature
- 7455 Definition of damaged fuel
- 7456 Code of record and alternatives to specific Code requirements
- 7457 Specification/requirements for alternative materials for ITS components
- 7458 Manufacture and testing of neutron poison material(s) for criticality control
- 7459 Hydrogen monitoring/mitigation during wet loading/unloading
- 7460 Helium leakage testing of confinement and cover welds
- 7461 Maintaining inert atmosphere during canister draining/flooding to prevent oxidation
- 7462 Use of Code Case N-595 (not acceptable)
- 7463Use of copper bearing or weathering steel for structural steel components at coastal7464marine ISFSI sites (or other corrosion mitigation measures)
- 7465 Operational controls to maintain cladding temperature limits
- 7466 Low Temperature Ductility of Ferritic Steels
- 7467 Damaged fuel definitions
- 7468 Materials acceptance testing
- 7469 Design temperature for aluminum components used in the fuel basket or canister interior 7470 (creep issues)
- 7470 (creep
- 7472

74798.4.2Codes and Standards (HIGH Priority)7480

7481 8.4.2.1 Usage and Endorsement 7482

Codes (or "construction codes") govern which materials may be used and how they may be
employed. Standards detail how a material is produced and establishes chemical and material
property requirements. All ASME materials are a subset of AWS and ASTM materials.
However, not all ASTM materials are endorsed for use by the ASME or other codes which may
be used for canister design.

7488

The SAR must identify applicable codes and standards used in the design, selection, and use of
materials. For important-to-safety (ITS) components, U.S. industry consensus codes and
standards such as ASME, AWS, ANSI, ACI, and ASTM should be specified.

Foreign <u>codes and standards</u> are generally NOT acceptable for ITS components/materials and would only be approved on a case-by-case basis. However, foreign-produced <u>materials</u> which comply with U.S. codes and standards are acceptable.

7497 ITS components subject to ASME Section III jurisdiction, typically confinement boundary and
7498 fuel basket, are normally ASME Section II materials. ITS attachments to the confinement
7499 boundary, as well as structural components of the overpack, may be ASME or ASTM materials,
7500 depending on the code of record for the component. For non-ASME ITS components, ASTM
7501 materials may be used.
7502

- Non-ITS items can be specified by generic names such as "stainless steel", "aluminum," "carbon
 steel," etc., as appropriate for the application.
- Proprietary materials which are ITS (specifically neutron poisons) must be described adequately in SAR Chapter 8, "Materials" to permit the staff to make a safety finding. The governing quality assurance and quality control (QA/QC) documents, key manufacturing procedures, and key testing protocols for proprietary materials should be incorporated by reference into the TS. Limited changes to the materials composition, performance, or manufacturing methods may be
- allowed if the changes satisfy the criteria of 10 CFR 72.48.
- 7512

Polymeric neutron shielding materials, which are usually proprietary, are not considered
important-to-safety (ITS) materials. Thus no TS reference to these materials is warranted.

7516 8.4.2.2 Code Case Use/Acceptability 7517

Review any referenced ASME Code cases against Regulatory Guide 1.193 for acceptability.
Note that Code Case N-595 (any revision) has been found unacceptable to the staff per
RG 1.193.

7522 **8.4.3** Environment (Priority – as indicated)

7523
7524 (MEDIUM Priority) Generally, the ISFSI site with associated storage canisters are subjected
7525 (long-term) to a mild atmospheric environment. Twenty or more years of ISFSI operational
7526 experience has verified that no significant corrosion issues generally exist during storage.
7527 However, note whether or not the site or potential site is a coastal marine location. Additional
7528 corrosion prevention measures may be applied when the ISFSI is located in a coastal marine

environment. Detailed review guidance is provided in 8.4.6 Coastal Marine ISFSI Sites–Material Selections.

7531
7532 (LOW Priority) Underground structures require additional consideration due to soil corrosion
7533 issues. Additional guidance is provided in 8.4.14.3 Omission of Reinforcement.

(LOW Priority) Fuel loading/unloading conditions assume a borated, demineralized water
environment at temperatures up to the boiling point. Experience with the conventional stainless
steel and aluminum construction canister internals have verified no significant corrosion of fuel
canister ITS components occur during the limited duration of a fuel loading/unloading operation.
Pool water is buffered to a pH of about 8.5 to limit corrosion.

7540 7541

7542

8.4.4 Drawings (MEDIUM Priority)

Licensing drawings usually appear in SAR Chapters 1 or 2. Examine the drawings and drawing notes for material specifications and alternatives. Ensure any materials substitutes are adequately specified, either on the drawing or in the SAR. ITS component material substitutes must appear in the TS.

75488.4.5Material Properties (MEDIUM Priority)7549

7550 8.4.5.1 Structural Properties 7551

7552 The intent of this portion of the materials evaluation is to determine the acceptability of all material properties that have a structural role in confinement system structures and other 7553 7554 structures important to safety (e.g., the basket, impact limiters, and shielding) and non-safety. The material properties and characteristics need to be applicable over the term requested in the 7555 CoC application. The reviewer should analyze the potential for corrosion and ensure that the 7556 7557 applicant established and used appropriate corrosion allowances for the structural analyses. 7558 The range of some materials components properties may have to be evaluated over the range 7559 of life cycle conditions experienced during cask fabrication, loading, emplacement, storage, 7560 transfer, retrieval, unloading, and decontamination.

7561

7562 The information provided on structural materials must be consistent with the application of accepted design criteria, codes, standards, and specifications selected for the storage cask 7563 system and as described in this chapter and Chapter 3, "Structural Evaluation" of this SRP. 7564 7565 Materials and material properties used for the design and construction of these safety-related structures should comply with the applicable codes and standards identified in Section 7566 7567 3.5.2.2 (i). For example, if the applicant elects to use design criteria from Section III of the 7568 ASME B&PV Code, the materials selected for the cask must be consistent with those allowed 7569 by the ASME Code subsection related to design. Acceptable requirements include the ASME adopted specifications given in Section II, Part A, "Ferrous Metals;" Part B, "Nonferrous Metals;" 7570 Part C, "Welding Rods, Electrodes, and Filler Metals;" and Part D, "Properties." The review of 7571 7572 structural materials should be coordinated with the structural discipline.

7573

A list of all materials used and the proposed service conditions for those materials during loading, storage, and unloading is a useful aid during the review. These tables provide various types of information that the reviewer needs from an application to aid in determining the suitability of the materials for the structural evaluation. The tables include the name and safety classification of each component part of the DSS and, where applicable, the function, the material specification(s) to which it is produced, and the nominal values for structural parameters. The tabulation should include all materials used for components with an importantto-safety function (e.g., confinement, transfer, criticality control, shielding). Information in this
table can aid the reviewer to formulate the types of performance-related questions that are
important for each component of a storage system.

7585 The SAR documentation should fully define the structural materials used for components 7586 important to safety. The reviewer may find it useful to tabulate the major structural materials to facilitate the review. The following information could be tabulated: specification number, grade, 7587 type, and class of the material, nominal composition, product form, yield strength, tensile 7588 7589 strength, and notes about the materials, etc. The SAR should identify properties related to structural performance and resistance or response to thermal, radiation, or other applicable 7590 environments that may impact structural performance. The structural and material disciplines 7591 7592 should coordinate their reviews as appropriate for these components. 7593

The completeness, accuracy, and acceptability of the identification and stated properties of the safety-related materials should be reviewed. In reviewing the structural materials, the reviewer should consider the sources of information; properties used in the structural evaluation and suitability for term requested in the CoC application. The reviewer should verify that the SAR clearly references acceptable sources of all material properties.

Examine the SAR adopted material properties for ITS component materials and ensure ASME Section II, Part D, properties and stresses are employed. The longstanding staff position (developed by NRR) regarding material properties is that ASME Code values must be used. Use of certified material test report (CMTR) values of UTS, yield, etc., is generally not permissible. Use of CMTR values is at risk of being non-conservative because samples may be taken at a portion of the ingot, billet, or forging that have optimum materials properties during certification.

7608 8.4.5.2 Thermal Materials

7609

7610 The materials reviewer should coordinate with the thermal reviewer to determine the materials properties of the materials important to the thermal analysis. The material compositions and 7611 7612 thermal properties such as thermal conductivity, thermal expansion, specific heat, and heat 7613 capacity should be verified as a function of the temperature over the range the components are to operate, for all components used in the safety analysis. Verify the change in these material 7614 7615 properties due to potential degradation of materials over their service life has been evaluated by 7616 the applicant. Temperature and anisotropic dependencies of thermal properties should be 7617 considered. 7618

7619 8.4.6 Coastal Marine ISFSI Sites–Material Selections (MEDIUM Priority)

7620

At coastal marine locations, the heavy salt drift can significantly accelerate the normally slight atmospheric corrosion rate to unacceptable values of some canister storage module designs, such as those that employ carbon steel structural elements inside the canister storage module. Experience has shown ordinary grades of structural steel (such as A-36) withstand the nominally dry interior environment of the canister overpack very well over a 20 year operational period.

For such cases, the reviewer must verify that the corrosion allowance specified is adequate for the 20 to 40 year CoC period of the canister. Corrosion rates for carbon steel in air may be found in corrosion references such as Corrosion Engineering by Fontana and Greene, <u>Corrosion Data Survey</u> by the National Association of Corrosion Engineers (NACE), <u>Corrosion</u>
 <u>and Corrosion Control</u> by Uhlig, and the publications of the NASA Kennedy Space Center
 Corrosion Technology Laboratory. For exposures to coastal marine atmospheres, the corrosion
 rate data from the Kennedy Space Center Corrosion Technology Laboratory appears to be
 bounding for any location in the continental United States.

7637 To address the increased atmospheric corrosion rates found at coastal marine (salt water) sites, 7638 some applicants have specified the use of 0.20%, minimum, copper-bearing steels, or, "weathering steels" such as Cor-Ten. The Kennedy Space Flight Center has collected data 7639 7640 which has demonstrated the benefit of copper-bearing and weathering steels for significantly 7641 reducing corrosion at coastal marine sites. Therefore, for coastal marine ISFSI sites, the use of copper-bearing steels (containing a minimum of 0.20 percent copper), or weathering steels, may 7642 7643 be necessary. Such steels are covered by ASTM A-242 and A-588, and supplemental 7644 requirements to ASTM A-36, and/or other specifications. 7645

7646 Other corrosion control measures may be employed, provided adequate documentation is 7647 supplied to demonstrate efficacy.

Coatings may be specified to alleviate the coastal atmospheric corrosion issue. However,
unless supporting data is available to demonstrate the predicted coating life, the coating must
be periodically inspected and maintained.

7652 7653

7656

7660

7661

7662

7663

7664 7665

7666

7648

76538.4.7Weld Design/Inspection (MEDIUM Priority)7654

7655 8.4.7.1 Welding Codes–Background Discussion

7657 The nationally recognized codes which have been used for spent fuel canister construction
7658 include:
7659

- ASME B&PV Code, Section III, "Rules for Construction of Nuclear Facility Components," Division 1.
 - AWS D1.1 (current edition), "Structural Welding Code-Steel."
 - AWS D1.6 (current edition), "Structural Welding Code-Stainless Steel."

The ASME B&PV Code Section III contains the design requirements for nuclear systems at a
 commercial nuclear power plant. It contains sections governing the design of welded nuclear
 components in the plant.

AWS D1.1 is the structural welding code for carbon steel structures such as bridges and steelframed buildings.

7673

The NRC staff accepts the use of the ASME B&PV Code, Section III, as the preferred construction code for storage casks. Some older cask designs used the AWS D1.1 Code. Note, the various construction codes (e.g., ASME Sections I, III, or VIII, and AWS D1.1) differ from one another in their requirements for materials and welding procedures, because each code is specialized with a particular application in mind.

7680 The ASME <u>construction codes</u> are supplemented by "supporting codes" which detail how 7681 special processes such as welding and nondestructive examination (NDE) are to be qualified and executed. ASME B&PV Code Section IX, "Welding and Brazing Qualifications" details the
requirements for specifying and qualifying a welding procedure and for testing and qualifying
welders. ASME B&PV Code Section V, "Nondestructive Examination," supports the various
ASME construction codes by detailing the required qualifications for NDE examiners and the
requirements and methods for performing the types of NDE specified by the various
construction codes.

Standard welding and NDE symbols may be found in AWS A2.4 (latest edition), "Symbols for
Welding, Brazing, and Nondestructive Testing," to aid interpretation of such symbols found on
the drawings submitted with the SAR.

- 7693 Technical specification items related to the welds and testing are discussed separately.
- 7695 8.4.7.2 Weld Design and Testing 7696

7694

Verify that the canister confinement welds are full penetration welds. Inspection of these welds must follow the ASME Code requirements of full volumetric examination [radiographic testing (RT) or ultrasonic testing (UT)] and a surface examination [liquid penetrant testing (PT), for austenitic stainless steel canisters]. A hydrostatic or pneumatic test is also required by the Code.

- Stainless steel fillet welds can only be inspected by PT. Volumetric inspection of fillet welds isnot feasible.
- 7705 7706 Due to the relatively benign operating conditions in storage, imposition of specific weld filler 7707 metals or use/prohibition of certain welding processes is not presently necessary. Sensitization
 - metals, or use/prohibition of certain welding processes is not presently necessary.
 of the stainless steel is not an issue. Hence, solution annealing is unnecessary.
 - A shop helium leakage test, using ANSI N14.5 testing standards, must be performed to
 demonstrate that the entire canister or cask confinement body is free of defects that could lead
 - to a leakage rate greater than the allowable design basis leakage rate specified in the
 - confinement analyses. The requirements for the helium leakage test should be specified in the CoC to meet the requirements of 10 CFR 72.236(i) and (I). For bolted closure casks the entire
 - 7714 CoC to meet the requirements of 10 CFR 72.236(j) and (l). For bolted closure casks the entire 7715 confinement boundary should be similarly helium leak tested and pressure tested. The
 - 7716 confinement boundary should be tested at the fabrication shop, with only a leakage test
 - performed on the bolted lid closure seals (including drain and vent port seals) tested in-field by
 - the cask user. The lid-to-shell welds and vent ports should be fabricated and helium leakage
 - tested in accordance with the guidance of Section 8.4.20, as applicable. The staff should notethat only lid-to-shell welds are within the scope of leak testing exceptions specified in 8.4.20.
 - tractorily ind-to-shell werds are within the scope of leak testing exceptions specified in 8.4.20.
 - The entire confinement boundary should be pressure tested hydrostatically or pneumatically to
 125 or 110 percent of the design pressure, respectively. The test pressure should be
 maintained for a minimum of 10 minutes prior to initiation of a visual examination for leakage,
 per the ASME Code.

Following the application of the test pressure for the required time, all joints, connections, and
regions of high stress, such as regions around openings and thickness transition sections,
should be visually examined for leakage. This visual examination shall be performed in
accordance with ASME Code requirements and shall be performed at a pressure equal to or
greater than the design pressure or three-fourths of the test pressure. This pressure test and

visual examination applies to both the canister body constructed at a fabrication facility and thelid-to-shell welds fabricated and closed in the field by a Part 72 licensee.

7732 If pressure testing is performed only in the field, the visual examination of the portions of the 7733 canister shell may be impractical due to its inaccessibility inside the transfer cask. The 7734 application should discuss the proposed operations and reasons for inaccessibility for visual examination. Due to the inability to perform the visual examination of inaccessible portions of 7735 7736 the canister welds during the field ASME Code hydrostatic test, staff has accepted the results from the shop helium leakage test applied under ANSI-N14.5 standards. The exception and 7737 7738 basis should be listed in the table of ASME code exceptions in the Certificate of Compliance 7739 (CoC). 7740

- After the canister is loaded and lids welded, the confinement welds are pressure tested and helium leakage rate tested as further detailed in section 8.4.20.
- 77448.4.7.3Lid Welds and Closure Welds

7745

7749

7750 7751

7752 7753

7754

7755

7756 7757 7758

7759

7760 7761

7762

7763 7764

7765

7776

The staff should verify the cask design is in compliance with Section 8.9 of this SRP or as
follows:

- This guidance only applies to canisters of all-welded construction, fabricated from austenitic stainless steel, and employing redundant welds for the confinement closure.
- The welded canister (i.e., the confinement boundary) must be leak tested in accordance with ANSI N14.5-1997, except as specified by this guidance. The exemption for leak testing only applies to the closure welds that are typically made in the field and all other welds should be leak tested.
 - "Structures, systems, and components important to safety must be designed to withstand postulated accidents" (10 CFR 72.122(b)).
- Records documenting the lid welds shall comply with the provisions of 10 CFR Part 72.174, "Quality Assurance Records" or with NQA-1, "Quality Assurance Requirements for Nuclear Facility Applications," depending upon the stardard in effect at the time of licensing.
- Activities related to inspection, evaluation, documentation of fabrication, and lid
 welding shall be performed in accordance with an NRC-approved quality
 assurance program as required in 10 CFR Part 72, Subpart G, "Quality
 Assurance."
- A redundant sealing of the canister is required by 10 CFR 72.236(e). One of the redundant
 seals in a welded canister design will involve a structural weld. The structural lid weld joint will
 be a full or partial penetration groove weld.
- 7775 Carbon and Alloy Steel Cask Designs

The reviewer should verify the applicant has considered all the closure lid weld material and technique improvements that accrued from previous DSS design and fabrication experience. For example, the reviewer should refer to the technical evaluation in NRC Confirmatory Action Letter 97-7-001, 1998 (ADAMS ML 060620420). Some of the DSS improvements resulting fromthat action include:

7782 7783 • Shell plates made from low sulfur, calcium-treated, vacuum-degassed steel. 7784 7785 • Application of minimum 93°C (200°F) preheat. 7786 7787 Use of low-hydrogen electrodes. • 7788 7789 Low carbon equivalent base metals and weld metals. • 7790 7791 • Magnetic particle examination (MT) of the root pass. 7792 7793 Maintenance of preheat as a postheat treatment for a minimum of one hour. • 7794 7795 Minimum of two-hour delay after postheat before performing final volumetric ٠ 7796 NDE. 7797 7798 UT examine the structural lid weld in accordance with ASME Section III, D1, NB method and 7799 acceptance criteria requirements 7800 Progressive surface examinations, utilizing a PT or magnetic particle testing (MT), are permitted only if unusual design and loading conditions exist. In addition, a stress-reduction factor of 0.8 7801 is imposed on the weld strength of the closure joint to account for imperfections or flaws that 7802 7803 may have been missed by progressive surface examinations. The weld design should be 7804 approved by the NRC on a case-by-case basis.

7806 8.4.7.4 Austenitic Stainless and Nickel-Base Alloy Steels Cask Design 7807

NDE of the large structural lid-to-shell weld designs fabricated from austenitic materials may be volumetric UT or multi-pass PT examined. A multi-pass PT is defined as performing a PT inspection of every pre-calculated intermediate weld deposit depth (layer) between the root and final weld layers.

- 7813 Use ASME Section III, Division 1, Subsection NB (Section III, D1, NB) requirements for UT and
 7814 PT inspection method and acceptance criteria.
 7815
- 7816 A multiple-pass PT examination may be utilized in lieu of UT inspection and is performed as 7817 follows: Note: Impose a stress reduction factor of 0.8 for weld strength.
- 7818

7823

7829

7830 7831

7832 7833

7834

- 7819
 7820
 7820
 7820
 7821
 7821
 7821
 7821
 7822
 7822
 7822
 7824
 7826
 7826
 7827
 7827
 7828
 7829
 7829
 7829
 7829
 7820
 7820
 7820
 7820
 7821
 7821
 7821
 7822
 7822
 7822
 7822
 7824
 7825
 7826
 7826
 7827
 7827
 7827
 7828
 7829
 7829
 7829
 7820
 7820
 7820
 7820
 7821
 7821
 7821
 7821
 7822
 7822
 7822
 7822
 7824
 7824
 7825
 7825
 7826
 7826
 7826
 7827
 7827
 7827
 7827
 7828
 7828
 7829
 7829
 7829
 7820
 7820
 7820
 7820
 7820
 7821
 7821
 7821
 7821
 7821
 7821
 7822
 7822
 7822
 7822
 7821
 7821
 7821
 7821
 7822
 7822
 7822
 7821
 7821
 7821
 7821
 7821
 7821
 7821
 7822
 7822
 7822
 7822
 7822
 7822
 7824
 7824
 7825
 7825
 7826
 7826
 7826
 7826
 7827
 7826
 7827
 7827
 7826
 7827
 7827
 7827
 7828
 7828
 7829
 7829
 7829
 7829
 7820
 7820
 7820
 7820
 7820
 7820
 7820
 7820
 7820
 7820
 7820
 7820
 7820
 7820
 7820
 7820
 7820
 7820</l
- 2. Establish the maximum allowable intermediate weld deposit depth (layer)/required in-process PT inspection interval by using the critical flaw depth calculated in Step 1. Note: Lessons learned suggest that the critical flaw depth for many structural lid welds is 3/8-inch.
 - 3. PT the root layer, every intermediate layer established in Step 2 and the final weld layer. It is assumed that the root layer is single pass. If the root layer is multi-pass, calculate the critical flaw depth (Step 1) to establish the maximum allowable intermediate weld deposit depth (layer)/required in-process PT interval. Assume a surface connected flaw when calculating the critical flaw depth for a multi-pass root layer.
- The applicant's evaluation of the critical flaw size using the above methodology should be
 reviewed based on service temperature, dynamic fracture toughness and critical design stress
 parameters as specified in ASME Section XI, D1.
- 7838 7839

78408.4.8Galvanic/Corrosive Reactions (LOW Priority)7841

7842 8.4.8.1 Environmental considerations 7843

The reviewer can find operational issues associated with hydrogen generation and guidance for evaluating galvanic or corrosive reactions in NRC Bulletin 96-04 (1996). The should confirm the DSS will perform adequately under the operating environments expected (e.g., short-term loading/unloading or long-term storage) for the duration of the license period such that no adverse galvanic or corrosive reactions occur between the canister materials, fuel payload, and the operating environments.

7850 7851

7852

8.4.8.2 Canister Contents

The staff has previously reviewed a number of non-fuel hardware components and materials for compliance with 10 CFR 72.120(d), meaning, compatibility with a canister interior composed of stainless steel and aluminum components. These components are various neutron source assemblies, burnable poison rod assemblies (BPRAs), thimble plug devices, and other types of control elements. The staff has found the following materials to be acceptable for storage when
the canister is constructed of stainless steel with stainless steel and aluminum basket
components:

Neutron source materials composed of stainless steel or zirconium alloy cladding containing:
antimony-beryllium, americium-beryllium, plutonium-beryllium, polonium-beryllium, and
californium. Exposure of these various contents to the wet loading and dry storage environment
was assessed and found to be satisfactory.

7866 Control elements composed of zircaloy or stainless steel cladding containing: boron carbide, 7867 borosilicate glass, silver-indium-cadmium alloy, or thorium oxide. Exposure of these various 7868 contents to the wet loading and dry storage environment was assessed and found to be 7869 satisfactory.

7870

7898

7904

78718.4.9Creep Behavior of Aluminum Components (HIGH Priority)

Aluminum based metal matrix composites and aluminum / boron carbide laminates (e.g. Boral
tm) are employed for all presently utilized neutron poison materials. Also, aluminum
components are frequently part of the spent fuel basket. More recent designs have specified
ever higher design temperatures for the fuel basket components in order to accommodate
higher loading densities and higher burn-up fuel. This trend has pushed the various aluminum
components well into creep regime operating temperatures.

- Review the design maximum temperatures and stress for any aluminum components and verify
 a creep analysis has been performed if any structural load bearing aluminum components
 operate at a design temperature above approximately 200°F.
- 7883 In the event temperatures exceed the ASME Section II nominal 400°F temperature limit for 7884 aluminum, other sources for creep data must be examined. One previously cited reference for this information is: D.W. Wilson, J.W. Freeman and H.R. Voorhees, Creep-Rupture testing of 7885 Aluminum Alloys to 100,000 Hours, First Progress Report, Prepared for the Metal Properties 7886 7887 Council, New York, November 1969. The staff makes no judgment as to the acceptability of this reference. This is because the designs reviewed through the time of this writing have had 7888 7889 design stresses (on the order of tens of PSI) which were substantially below the creep-rupture stresses provided in the referenced report. None-the-less, an assessment of creep deformation 7890 7891 over a 20 to 40 year CoC period should be part of the design calculations. 7892
- Borated aluminum neutron poison materials must be considered on a case-by-case basis if they
 are subjected to structural load bearing beyond their own dead-weight loads. This is due to
 their inherently low ductility and generally unknown creep properties.
- 78978.4.10Bolt Applications (MEDIUM Priority)
- If threaded fasteners are employed for ITS components, verify the bolt material(s) have
 adequate resistance to corrosion and brittle fracture and a coefficient of thermal expansion
 similar to the materials being bolted together.
- 79038.4.11Protective Coatings (LOW Priority)

7905 Coatings in DSSs are used primarily as corrosion barriers or to facilitate decontamination. They 7906 may have additional roles, such as improving the heat rejection capability by increasing the 7907 emissivity of cask internal components. Protective coatings are occasionally specified for carbon steel components. Coatings are not ITS components. The structures or components
 that the coatings are applied to are generally ITS component. No coating should be credited for
 protecting the substrate material or extending the useful life of the substrate material unless a
 periodic coating inspection and maintenance program is required for the coating.

7912

7913 The staff has established this section to alleviate confusion regarding coatings on cask 7914 components. Coatings generally have a low safety significance with the exception of coating 7915 issues that may result in adverse chemical or galvanic reactions. Typically, the detailed 7916 guidance in this section is not generally subject to further confirmation as part of the review. 7917 However, there may be instances in which unique or innovative coatings are specified by the applicant to perform a specific function unique to the cask system. In these instances, the 7918 7919 reviewer may use discretion in implementing the detailed review guidance in this section. This 7920 section outlines methods and procedures for appropriately assessing coatings. Within the 7921 assessment several areas are covered in detail including the scope of the coating application, 7922 type of coating system, surface preparation methods, applicable coating repair techniques, and 7923 coatings qualification testing. 7924

7925 8.4.11.1 Review Guidance 7926

The reviewer should determine the appropriateness of the coating(s) for the intended application by reviewing the coating specification for each protective coating that is applied to an important to safety component. A specification that describes the scope of the work, required materials, the coating's purpose, and key coating procedures, should ensure that the appropriate and compatible coatings have been selected by the DSS designers. A coating specification should include the following: 7933

- Scope of coating application;
- Type of coating system;
- Surface preparation methods;
- Coating application method;
- Applicable coating repair techniques;
- Coatings qualification testing, as applicable.7940
- 7941 8.4.11.2 Scope of Coating Application 7942

The coating specification should identify the purpose of the coating, a list of the components to be coated, and a description of the expected environmental conditions (e.g., expected conditions during loading, unloading, and dry storage).

The reviewer should verify that the coatings will not react with the cask internal components and contents and will remain adherent and inert when exposed to the various environments of a SNF cask. The most prevalent, potentially degrading environments include the immersion in borated SNF pool water during loading and unloading operations, and high-temperature and high-radiation (including neutrons) environments encountered during vacuum drying evolutions and long-term storage.

7954 8.4.11.3 Coating Selection

7955
7956 The reviewer should verify that the coating specification identifies the manufacturer's name, the
7957 type of primers and topcoat(s) comprising the coating system, and the minimum and maximum
7958 dry coating thickness(es). Due to the unique nature of coating properties, and coating

application techniques, the manufacturer's literature may be the only source of information on
the particular coating.

The reviewer should verify that the coating selected for cask components is capable of withstanding the intended service conditions over the design service life. Failures can be prevented by ensuring that the selection and the application of the coating is controlled by adhering to the coating manufacturer's recommendations.

7967 8.4.11.4 Surface Preparation

The reviewer should verify that the coating specification identifies whether solvent or abrasive
cleaning methods should be used to prepare surfaces prior to coating application. This
information should ensure that proper surface preparation techniques can be implemented
during cask fabrication.

The reviewer should confirm that the specified type and degree of surface cleaning and the required surface profile meet the coating manufacturer's specification. Any deviations from the manufacturer's standards for surface preparation must be supported by appropriate tests that demonstrate acceptable coating performance under all design conditions.

7979 8.4.11.5 Coating Repairs

7980

7995

7996 7997

7998 7999

8000

8001 8002

8003 8004

The reviewer should verify that the coating specification identifies the general requirements for repairing damage to the coating. This information will assist the reviewer in evaluating the effects of repairs on the integrity of the coating and whether the designated repair methods could be implemented during or after cask fabrication.

The reviewer should examine the design to determine whether the structure is assembled before or after its various parts are coated. If a complex structure is to be coated after assembly, it is very important that the consequences of a potential coating failure be analyzed to determine whether other cask functions or component features could be compromised by the failure. 7991

The consequences of coating failure depend on the type of coating and service environment,
and may include the following:

- Partial and/or complete coating failure that alters the corrosion resistance of DSS structural and shielding components (primarily during loading/unloading operations).
 - Partial and/or complete coating failure that alters the emissivity and heat transfer of basket components.
- Particulates (cloudiness) that form in SNF pool water or cask during loading or unloading that may affect such operations.
- Aggressive or reactive chemical species that form and consequently impact the performance of other cask components during long-term exposure to radiation (e.g., gamma and neutron).

8-16

8009 8.4.11.6 Coating Qualification Testing

8010

8011 Coatings used on cask external surfaces may have been selected upon the basis of their performance requirements and exposure conditions. The applicant may have used related 8012 8013 industrial conditions as a documented guide or basis for coating selection without performing 8014 further laboratory tests.

8015 8016 Any coating (including paints or plating) used inside a DSS must have been tested to 8017 demonstrate the coatings performance under all conditions of loading and storage. The 8018 conditions evaluated should include exposure to radiation, high temperature during vacuum drying and storage, and immersion during loading, unloading and transfer operations. The 8019 8020 coating must be demonstrated to remain intact and inert for the full duration of the DSS design 8021 life.

- 8022 8023
 - There are a number of standardized ASTM tests for coatings performance. In reviewing ASTM 8024 (or other) tests used to qualify coatings for service in storage casks, consideration should be 8025 given to the applicability of a test to the service conditions. 8026

8027 Planning, execution, and interpretation of coating gualification tests must be performed by a 8028 gualified coatings engineer (e.g., certified by the National Association of Corrosion Engineers). 8029 The reviewer should ensure that appropriate, gualified expertise has been employed by the 8030 applicant for any coatings qualification program. 8031

- 8032 The reviewer should verify that the coating specification includes a description of the coating 8033 qualifications testing program, as applicable. The following information, which is important to 8034 qualifying a coating, includes, but is not limited to: 8035
- 8036 The size and shape of samples used for the coating tests, as well as the type of • material(s), and a description and results of any tests conducted on partial or full-8037 8038 size production mock-ups. 8039
- 8040 The test sample surface preparation method(s) and expected or measured • 8041 surface profile. Sample surface preparation should be performed in accordance 8042 with written production procedures, using the same equipment, materials, and 8043 gualified personnel as intended for production coating. Inspection methods and 8044 acceptance criteria should be included. 8045
- 8046 Application method(s) and measured control parameters, including records of • temperature and humidity, cure cycle and times, and any other monitoring or 8047 acceptance tests such as dry film thickness, hardness, and adhesion. 8048 The 8049 methods and parameters should be employed in accordance with written 8050 production procedures using the same equipment, methods, materials, and 8051 qualified personnel. 8052
- 8053 A test plan description which clearly describes the rationale for and the types and 8054 sequences of all coating qualification tests, lab protocols, numbers of samples, 8055 inspection methods, and acceptance criteria. Raw test results should be tabulated or otherwise presented. The test plan should include: (1) laboratory 8056 8057 coupons for demonstrating coating suitability/qualification; and (2) partial or full 8058 size production mock-up tests that demonstrate that the selected coating can be 8059 applied successfully to real production parts under production shop conditions to

8060give reasonable assurance that field performance will meet laboratory, test-8061based expectations.

An interpretation and discussion of the test program results by a certified coatings engineer. This evaluation should examine, at a minimum, the coating performance against the specific tests and the overall requirements for coating performance. The overall program must be assessed as to whether it is likely to be an effective predictor of actual performance. A recommendation for the use of the coating, with specific restrictions, if any, must be included.

8070 The application should also include general requirements applying to all tests:

- Test durations for immersion must equal or exceed the combined maximum design (or technical specification) durations for loading and vacuum drying.
- An evaluation of any observed gasses, bubbles or other evidence that a gas was produced during the test. Coatings that produce flammable gas require a mitigation program to prevent burnable or explosive gas concentrations during all phases of cask operations.

8080 8.4.12 Neutron Shielding (MEDIUM Priority)

8082 8.4.12.1 Neutron Shielding Materials

Concrete, steel, uranium, and lead typically serve as gamma shields. Boron-filled polymers are
sometimes used for neutron shielding materials (as opposed to neutron poisons used to control
criticality). Although dose limits are calculated at the site boundary, not the canister surface,
these materials are considered ITS, in order to meet the regulatory requirements of
72.126(a)(6). NUREG/CR-6407 specifically designates neutron shielding materials as ITS
Category B.

8090

8062

8071 8072

8073 8074 8075

8076

8077 8078

8079

8081

8083

References for all materials used, including nonstandard materials (e.g., proprietary neutron
shield material), should be provided for the source of the material composition and density data
along with validation of the data. The SAR should also describe the geometry of the shielding
materials.

8095

In-service performance monitoring of these materials is performed during the required periodic
 radiation surveys. Should a decline in the shielding effectiveness be detected, there is ample
 time and opportunity for engineering evaluation and corrective action. Therefore, the
 qualification and acceptance testing of neutron shielding materials should not be required in the
 Sonly characteristics directly related

8101

The SAR should describe the composition of shielding materials and geometries. References for all materials used, including nonstandard materials (e.g., proprietary neutron shield material), should be provided for the source of the material composition and density data along with validation of the data.

- 8107 8.4.12.2 Assessing Previously Unreviewed (New) Neutron Shielding Materials
- 8109 Should a new material be introduced, review may proceed as follows:
- 8110

8111 The reviewer should confirm that temperature-sensitive (e.g., polymeric) neutron shielding materials will not be subject to temperatures at or above their design limits during normal 8112 The reviewer should determine whether the applicant properly examined the 8113 conditions. potential for shielding material to experience changes in material densities at temperature 8114 extremes. For example, elevated temperatures may reduce hydrogen content through loss of 8115 water in concrete or other hydrogenous shielding materials. 8116

8117 8118

8123

8124 8125

8126 8127

8128

8129

- With respect to polymeric neutron shields, the reviewer should verify that the application: 8119
- 8120 Describes the test(s) demonstrating the neutron-absorbing ability of the shield • 8121 material. 8122
 - Describes the testing program and provides data and evaluations that • demonstrate the thermal stability of the resin over its design life while at the upper end of the design temperature range.
 - Describes the nature of any temperature-induced degradation and its effect(s) on ٠ neutron shield performance.
- Describes what provisions exist in the neutron shield design to assure that 8130 • excessive neutron streaming will not occur as a result of shrinkage under 8131 8132 conditions of extreme cold. This description is required because polymers 8133 generally have a relatively large coefficient of thermal expansion when compared to metals. 8134 8135
- 8136 Describes any changes or substitutions made to the shield material formulation. • 8137 For such changes, describes how they were tested and how that data correlated with the original test data regarding neutron absorption, thermal stability, and 8138 handling properties during mixing and pouring or casting. 8139 8140
- Describes the acceptance tests conducted to verify any filled channels used on 8141 ٠ production casks did not have significant voids or defects that could lead to 8142 8143 greater than calculated dose rates.
- 8144 8145 * Describe the materials ability to withstand the combined aging effects of heat and 8146 radiation field.

8148 The potential for shielding material to experience changes in material properties at temperature extremes should be described in the SAR. Temperature sensitivities of shielding materials 8149 8150 should be referenced. The SAR should also address degradation from aging, accumulated radiation exposure, and manufacturing tolerances. Twenty years of operational experience has 8151 not resulted in any noticeable decline in the performance of previously accepted materials, as 8152 verified by examination of periodic radiation survey results on the ISFSI pads at Surry and 8153 8154 Robinson sites.

8155

8147

8.4.13 **Criticality Control (HIGH Priority)** 8156 8157

8158 U.S. Nuclear Regulatory Commission (NRC) staff reviewer should read 72.104(a), 72.106(b), 8159 72.124, and 72.236(g).

Qualification testing is conducted to ensure that (1) the material used will have sufficient durability for the application for which it has been designed, (2) the physical characteristics of the components of the absorber materials will meet the design requirements, and (3) the uniformity of the distribution of ¹⁰B is sufficient to meet the requirements of the applications for which the absorber materials will be used. Materials that have passed the qualification tests must be acceptance tested (See Chapter 10 of this SRP) for use in systems to be used in storage or transportation of nuclear fuel.

8168 8169

8.4.13.1 Neutron-Absorbing/Poison Materials

8170 8171 Various boron containing materials are used in the nuclear industry as neutron absorbers. 8172 Since these materials are used in storage containers for fissile materials, the materials should 8173 have excellent physical and chemical stability, including a high resistance to radiation and corrosion. Further, these materials should experience no reduction in effectiveness under 8174 8175 normal/off-normal and accident-level conditions of storage. Neutron absorbers can consist of alloys of boron compounds with aluminum or steel in the form of sheets, plates, rods, liners, and 8176 pellets. Likewise, neutron absorbers can consist of a core containing mixed aluminum and 8177 boron carbide (B_4C) particles, clad on both sides with aluminum (a composite). 8178

8179

The neutron absorber material must be demonstrated to be adequately durable for the service conditions of the application. These assurances are usually obtained during qualification testing of the material. In addition, acceptance tests (see Chapter 10 of this SRP) are performed on samples from each production run of the material. This procedure will ensure the properties for the plates or other shapes produced are in compliance with the specifications and requirements of the application. The uniformity of the distribution of ¹⁰B may be addressed in both the qualification and the acceptance tests.

For all boron-containing absorber materials, the reviewer should verify the SAR, with its supporting documentation, describes the absorber material's chemical composition, physical and mechanical properties, fabrication process, and minimum poison content. The manufacturer's data sheet should be submitted to supplement the above information. In the case of absorber plates or sheets, the minimum poison content should be specified as an areal density (e.g., milligrams of ¹⁰B per cm²).

8194

For all boron-containing absorber materials, the reviewer should verify that the SAR, with its supporting documentation, describes the absorber material's chemical composition, physical and mechanical properties, fabrication process, and minimum poison content. If the applicant intends to uses an absorber material with a specific trade name, the manufacturer's data sheet should be submitted to supplement the above information. In the case of absorber plates or sheets, the minimum poison content should be specified as an areal density (e.g., milligrams of ¹⁰B per cm²).

- 8202 8203
- 8204 8.4.13.2 Computation of Percent Credit for Boron-Based Neutron Absorbers 8205

This section illustrates one method used by the materials reviewers to compute the level of credit to be allowed for 1/v neutron absorber materials, such as boron or lithium, in the criticality safety analysis of packages for storing fissile materials, including fresh and SNF. The computation of the allowed level of credit uses the results of neutron attenuation measurements performed on samples of the absorber material placed in a beam of thermal neutrons. 8211 8212 Where such validation uncertainties exist, an upper limit of 90 percent credit is applied to boronbased solid absorbers, meaning that the material is computationally modeled as containing only 8213 90 percent of the ¹⁰B shown to be present. The staff has concluded that limiting the poison 8214 credit to 90 percent adequately accounts for the uncertainties arising in extrapolating the 8215 validation for boron-based absorber materials. Other remedies, beyond the scope of this 8216 guidance, may be necessary in addressing the potentially more complex neutron-spectral 8217 8218 effects and validation uncertainties encountered with materials based on non-1/v-absorbers such as cadmium or gadolinium. The current guidance applies only to 1/v absorbers such as 8219 boron or lithium. 8220

8221

8236

8240

8245

8250

8222 Neutron channeling has been shown to occur in a commercial product that uses coarse 8223 particles of natural B_4C dispersed in an aluminum matrix. For one material, neutron channeling 8224 effects reduced the measured attenuation of thermal neutrons by about 18 percent. Therefore, 8225 whenever uncertainty due to these materials factors exists in a product, it may be necessary to 8226 measure the neutron attenuation for that product to assess the expected material performance in service. Thus, in addition to the 90-percent limit on poison credit that is used to offset 8227 validation uncertainties, an additional penalty must be considered for material heterogeneity 8228 effects and uncertainties. In the absence of a fully documented understanding of non-8229 uniformities and channeling effects in a heterogeneous absorber material, the staff recommends 8230 8231 that the poison credit should continue to be limited to 75 percent. 8232

A neutron absorber material is formulated to meet or exceed the neutron absorption effect computed to be required for a given service application. This guidance can be used to extend the range of credit for heterogeneous absorber materials from 75 to 90 percent, as follows:

- Material for which data is presented to show the measured attenuation for 8238 thermal neutrons to be at or above the acceptance attenuation (A_a), is given the 8239 full credit of 90 percent.
- Material for which data is presented to show the measured attenuation for thermal neutrons to be at levels between 75 and 100 percent of the acceptance attenuation (A_a) is given a fraction of the 90 percent credit allowed for fully effective absorber material.
- Material for which data is presented to show the measured attenuation for
 thermal neutrons to be at or below 75 percent of the acceptance attenuation (A_a)
 is not approved for use at any level of credit; the process used to produce such
 material is judged to be unsuitable.

8251 The sampling, testing, and reporting of results shall be conducted according to the 8252 specifications given in ASTM standard C1671-7.

8253

- 8254 The applicable credit can be calculated by the following method. Using the following definitions:
 - A = neutron attenuation, a measured value taken on a given absorber material in a beam of thermal neutrons with fixed energy spectrum. A is assumed to be normally distributed with mean μ and standard deviation σ .

- A_a = A_a = acceptance value of neutron attenuation, based on a qualified homogeneous absorber standard such as ZrB₂, or a heterogeneous calibration standard that is traceable to nationally recognized standards, or calibrated with a monoenergetic neutron beam to the known cross section of boron-10. Calibration standards should be evaluated at 111 percent (i.e., 1/0.90) of the poison density assumed in the criticality computational model.
- A_{t1} = attenuation tolerance limit, a statistic of the data
- n = number of coupon measures of attenuation
- P = probability
- μ = true mean of A

x bar = estimate of μ

- σ = true standard deviation of A
- S = estimate of σ
- C_p = exact number of standard deviations required at probability P
- K_p = tolerance coefficient that is substituted for C_p when μ and σ are estimated by x bar and S, respectively
- γ = confidence level

8256

8261

8264

8266 8267

8268 8269

8270

8275

- 8257The attenuation data can be used to bound the probability P that the value of neutron8258attenuation A at an arbitrary location on the material is greater than the acceptance attenuation8259Aa. This is done by computing an attenuation tolerance limit, Att, such that, with 95-percent8260confidence, the probability is less than 0.05 that A < Att.</td>
- Let P = 0.95 and γ = 0.95. Compute A₁₁ = (X bar K_PS), where K_P = f(P, n, γ). The value of K_P may be found in a table of one-sided tolerance coefficients for a normal distribution.
- 8265 If $A_{t1} \ge A_{a}$, then 90 percent credit is given.
 - If $A_{t1} < A_{a}$, then compute the fractional credit from 0.75 to 0.90 as follows:

Fractional Credit = $0.30 + 0.6(A_{t1} / A_a)$.

8271 If the computed fractional credit is less than 0.75, the process is regarded as unsuitable and 8272 should be given no credit. 8273

8274 8.4.13.3 Qualifying the Neutron Absorber Material Fabrication Process

Not including neutron attenuation, in past reviews the staff has accepted the following
qualification testing:

- 8279 1) Mechanical testing to ensure that the neutron poison material is structurally sound, even
 if the absorber is not used for structural purposes.
 8281
- 8282 In the past, the staff has accepted ASTM B 557 06 tensile testing of samples which demonstrated:
- 8284
 8285
 8286
 8287
 8288
 8287
 8288
 8287
 8288
 - 8-22

8289 Alternatively, the staff has accepted ASTM E 290 – 97a bend tests, with a 90° bend 8290 without failure as the passing criteria. 8291 8292 8293 2) Porosity measurements to ensure that the corrosion resistance (which is directly linked 8294 to hydrogen generation in the spent fuel pool) of the neutron poison material is 8295 maintained, and that the general structural characteristics of the material are controlled. 8296 8297 The methodology for porosity is up to the discretion of the applicant. Limits on both the 8298 total porosity of the material, and the "open" or "interconnected" porosity of the material 8299 should be explicitly stated in the Technical Specifications. Excluding Boral[™], the total 8300 open porosity of the neutron poison material should be limited to 0.5 volume percent or 8301 less. 8302 8303 3) In general the conditions of spent fuel loading, unloading, and storage do not require 8304 qualification testing to demonstrate resistance to thermal, radiation, or corrosion induced 8305 degradation if the neutron absorber is only made of boron carbide and an aluminum alloy meeting ASTM chemical requirements for the 1000 or 6000 series of aluminum. 8306 8307 Other aluminum alloys (particularly those which are not heat-treatable) may also be 8308 acceptable to the staff without qualification testing. Porosity measurements on the neutron poison material should not be waived, regardless of the aluminum alloy used in 8309 8310 the neutron absorber, however, 8311 8312 4) A sufficient number of samples should be used to measure the thermal conductivity of the neutron poison material at room and elevated temperature. Reviewers should be 8313 8314 aware that clad neutron poison materials are thermally anisotropic. 8315 8316 5) For clad materials, a test demonstrating resistance to blistering during the drving process should be included in the qualifying tests. In the past the staff has accepted 8317 8318 testing where: 8319 8320 Samples of clad materials are soaked in either pure or borated water for 24 hours and 8321 then insertion into a preheated oven at approximately 825°F for a minimum of 24 hours. 8322 The samples are then visually inspected for blistering and delamination before 8323 undergoing gualifying mechanical testing. 8324 8325 8326 Significant, additional gualifying tests should be conducted for structural neutron poisons. 8327 Mechanical and thermal tests should include, tensile testing, impact testing (or K_{IC} 8328 measurements), creep testing, and (if applicable) mechanical testing of weldments. 8329 8330 Samples of neutron poison material should also be examined [i.e., the use of transmission 8331 electron microscopy (TEM) or scanning electron microscopy (SEM)] for the following changes: 8332 Redistribution or loss of boron. 8333 • 8334 8335 Dimensional changes (material instability). ٠ 8336 8337 • Cracking, spalling, or debonding of the matrix from the boron-containing particles. 8338 8339

- Weight changes caused by leaching, dissolution, corrosion, wear, or off-gassing.
 - Embrittlement.
 - Chemical changes such as oxidation or hydriding.
- 8344 8345 8346 8347

8371

8374

8341 8342

8343

• Molecular decomposition of the material as a result of radiation (radiolysis).

Coupons should be taken so as to be representative of the neutron poison material. To the extent practical, test locations on coupons should be stratified to minimize errors due to location or position within the coupon. Some suggested locations should include the ends, corners, centers, and irregular locations. These locations represent the most likely areas to contain variances in thickness. Adequate numbers of samples should be taken from components (i.e., plate, rod, etc.) produced from a lot to obtain a good representation. A lot is defined as all plates from a single billet. Overall, the coupons should be a representative sample of the material.

8356 For containers that will be loaded or unloaded in a SNF pool or similar environment, the 8357 reviewer should verify the absorber material has been evaluated or tested for environmental and 8358 galvanic interactions and the generation of hydrogen in the pool environment. If environmental 8359 testing is employed, the test conditions (time, temperature) should equal or exceed those 8360 expected for loading, unloading, and transfer operations. For environmental tests, the absorber 8361 materials should be coupled to dissimilar metals, as may be appropriate to the application. The 8362 environment may be borated or deionized water, as appropriate. The evaluation should also consider the effects of any residual pool water remaining in the container after removal from the 8363 8364 pool.

8366 Generally, for common engineering materials, an evaluation based upon consultation of a 8367 corrosion reference (galvanic series) should suffice for pool loading/unloading situations. 8368

8369 The reviewer should note the applicant must take appropriate measures to assess the strength 8370 or ductility of the material, depending on the structural requirements of the application.

Acceptance testing of the fabricated materials is discussed in Chapter 10, "Acceptance Tests and Maintenance Program Evaluation," of this SRP.

83758.4.14Concrete and Reinforcing Steel (LOW Priority)8376

- 8377 8.4.14.1 Embedment Materials 8378
- 8379 The materials discipline should review the material to be used for embedments, inserts, 8380 conduits, pipes, or other items embedded in the concrete. Embedments must satisfy the 8381 requirements of the code used in designing the reinforced concrete structure in which they are 8382 embedded (e.g., ACI 359, ACI 349, or ACI 318). Zinc, zinc rich coatings, zinc-clad materials, and aluminum should not be used for any embedded objects in structures designed to ACI 349 8383 or ACI 359 that will be in contact with wet concrete, because of the potential for concrete 8384 8385 degradation from an adverse chemical reaction Embedments and attachments are considered 8386 to include components cast or grouted into the reinforced concrete structure, inserts, embedded 8387 pipes, conduits, or lightning protection and grounding systems.
- 8388
- Unless otherwise specified in this SRP, steel structural attachments must comply with the appropriate requirements of ACI-349.

8409 8410

8411

8392 8.4.14.2 Concrete Temperature Limits

The NRC accepts the use of ACI 318 for the design and material specifications for reinforced
concrete structures subject to NRC approval, but are not important to safety. If ACI 349 is used
for design of such structures, the NRC accepts the use of ACI 318 for construction. The NRC
also accepts the following criteria as an alternative to the temperature requirements of ACI 349
Section A.4, but only for the specified use and temperature ranges:

- 8400
 8401
 8401
 8402
 8403
 1. Concrete temperatures in general or local areas are a maximum of 93°C (200°F) in normal or off-normal conditions and/or occurrences, no tests are needed to prove capability for elevated temperatures or reduced concrete strength.
- 84042.If concrete temperatures in general or local areas exceed 93°C (200°F) but are8405less than 149°C (300°F), no tests are required to prove capability for elevated8406temperatures or reduced concrete strength if Type II cement is used and8407temperature appropriate aggregates are used. The following criteria for fine and8408coarse aggregates are acceptable:
 - Satisfy ASTM C33 requirements and requirements references in ACI 349 for aggregates, and
- 8412
 8413 Have a demonstrated coefficient of thermal expansion (tangent in temperature range of 20-38°C (70-100°F) no greater than 11x10⁻⁶
 8415 mm/mm/°C (6x10⁻⁶ in./in./°F), or be one of the following materials: limestone, dolomite, marble, basalt, granite, gabbro, or rhyolite.
- If concrete temperatures in general or local areas under normal or off-normal conditions do not exceed 107°C (225°F), the requirements of 1 and 2 (above) apply to the coarse aggregate. Fine aggregate that meets 1 (above) and is also composed of quartz sands or sandstone sands may be used in place of 2 (above) and be in compliance.
- 8424 8.4.14.3 Omission of Reinforcement 8425

Frequently, designers specify the omission of reinforcing steel ("rebar") in concrete aboveground structures which have the purpose of gamma shielding only. This is acceptable since it is to avoid the inadvertent formation of voids in the concrete due to the presence of the rebar, which can act to block the aggregate in the concrete from filling all intended areas.

8430

8431 Concrete applied around buried steel structures should be reinforced to alleviate shrinkage
8432 crack propagation. Concrete alleviates soil corrosion by creating a beneficial chemical buffering
8433 effect (high pH) around the steel. Cracks allow groundwater plus electrolyte intrusion which
8434 reduces the effectiveness of the concrete protective barrier.

8435

8436 **8.4.15 Seals** 8437

Applicants for spent fuel storage canisters with metallic seals generally rely on seal manufacturer's data to determine the maximum service temperatures for seals. Seals that may potentially be exposed to high temperature may not have been tested by independent laboratories (such as NIST and Factory Mutual). Due to the importance of the integrity of the 8442 seals, laboratory test results or data sheets that reference independent test results should be 8443 included in applications, if available.

8445 8.4.15.1 Metallic Seals (MEDIUM Priority)

Bolted lid canisters employ redundant metallic seals as part of the confinement boundary. These seals are ITS components. The primary materials issue is the temperature resistance of the seal spring material. Generally this is a nickel-base alloy with excellent temperature and creep resistance. The seal cover material may be soft aluminum or silver. Aluminum faced seals have failed in service due to corrosion from inadvertent rainwater intrusion. Substitution of silver alloy faced seals appears to have alleviated the susceptibility of mechanical seals to this corrosion-induced failure mechanism.

8454 8455

8456

8444

8446

8.4.15.2 Elastomeric Seals (LOW Priority)

Bolted lid canister designs may also employ a weather cover to preclude rainwater from the confinement boundary seals. These weather covers may be sealed against the weather with an elastomeric seal such as Viton. As such, these seals may be susceptible to thermally and radiation induced aging (hardening). Consequently, a replacement program may be warranted if the heat or radiation exposure is sufficient. Guidance as to radiation or thermal resistance is usually obtainable from the seal manufacturer. Elastomeric seals have never been ITS components in storage canisters.

8464

8465 Radiation will generally cause polymerization of elastomers to an extent that would adversely 8466 affect the performance when the dose reaches 10^5 Gy (10^7 rads). For higher dose rate 8467 environments, elastomer O-rings should not be specified. The use of fluorcarbons, which are 8468 known to be particularly susceptible to radiation damage, should be restricted if the expected 8469 dose exceeds 100 Gy (10^4 rads).

8470

The reviewer should verify O-ring seals do not reach their maximum operating temperature limit during normal and off-normal conditions of storage. The O-ring manufacturer's data sheets specifying temperature and radiation tolerances should be included in the SAR.

8474

The materials discipline should review the applicant's evaluation demonstrating the minimum normal operating temperature (usually -40°F) will neither fail the O-ring seal by brittle fracture nor stiffen the O-ring (loose elasticity) to an extent that prevents the seal from meeting its service requirements.

8479

The reviewer should verify that under the environmental conditions expected in storage service,
O-ring seals will not chemically react or decompose in a manner that would significantly affect
other components of the DSS.

84848.4.16Low Temperature Ductility and Fracture Control of Ferritic Steels8485(MEDIUM Priority)8486

Regulatory Guides 7.11 and 7.12 specify acceptable ferritic steels for low temperature service
where good toughness is required. Metals having a face-centered cubic crystal structure such
as austenitic stainless steels, remain tough and ductile to very low temperatures and are not a
concern in this regard. Toughness testing (e.g., Charpy impact) of welds is governed by ASME
Section III, as supported by Section IX..

For designs that specify ferritic steels other than those listed in Reg. Guides 7.11 and 7.12, the Reg. Guide specifies the types of tests and data needed to qualify a material. Those tests and data include dynamic fracture toughness and nil-ductility or fracture appearance transition temperature test data. Toughness testing (e.g., Charpy impact) of welds is governed by ASME Section III, as supported by Section IX.

8499 8.4.17 Cladding

8500

8507

8516

8517

8518 8519

8520 8521

8522

8523 8524 8525

8526 8527

(MEDIUM Priority) This guidance will allow all commercial spent fuel that is currently licensed by
the Nuclear Regulatory Commission (NRC) for commercial power plant operations to be stored
in accordance with the regulations contained in 10 CFR Part 72. However, cask vendors'
requests for the storage of spent fuel with burnup levels in excess of those levels licensed by
the Office of Nuclear Reactor Regulation (NRR), or for cladding materials not licensed by NRR,
may require additional justifications by the applicant.

8508 The most important issues regarding spent fuel and cladding that must be considered are: 8509

- The maximum cladding temperature during loading/unloading operations and normal conditions of storage. For high burn-up fuel, defined as any fuel with a burn-up greater than 45GWd/MTU, the maximum allowable cladding temperature limit is 400°C. For materials analyses, an appropriate maximum fuel burn-up is to be specified as the peak rod average.
 - Compatibility of fuel bundle materials and non-fuel component materials such as burnable poison rod assemblies (BPRAs) with the loading/unloading environment and the cask interior components. Refer to the separate discussion of this in Section 8.4.8.1.
 - The fuel is maintained in a water or inert environment during loading/unloading operations to prevent excessive oxidation of fuel pellets. This is discussed in more detail in Section 8.7 of this SRP.
 - A definition of damaged fuel is adequate for the intended fuel load and fuel with more severe damage (if any) is precluded from loading.
- 8528 8.4.17.1 Cladding Temperature Limits (MEDIUM Priority) 8529

8530 The requirements of 10 CFR 72.122(h)(1) seek to ensure safe fuel storage and handling and to minimize post-operational safety problems with respect to the removal of the fuel from storage. 8531 8532 In accordance with this regulation, the spent fuel cladding must be protected during storage against degradation that leads to gross rupture of the fuel and must be otherwise confined such 8533 that degradation of the fuel during storage will not pose operational problems with respect to its 8534 removal from storage. Additionally, 10 CFR 72.122(I) and 72.236(m) require that the storage 8535 system be designed to allow ready retrieval of the spent fuel from the storage system for further 8536 8537 processing or disposal. 8538

- 8539 Spent fuel storage casks and systems must be designed to meet four safety objectives: 8540
- Ensure doses from the spent fuel in the casks and systems are less than limits prescribed in the regulations.
- 8543

8550 8551

8564 8565

8566 8567

8568

8569

8570

8571

8544

- Maintain subcriticality under all credible conditions.
- Ensure there is adequate confinement and containment of the spent fuel under all credible conditions of storage.
 - Allow the ready retrieval of the spent fuel from the storage systems.

The acceptance criteria below and review procedures are designed to provide reasonable assurance the spent fuel is maintained in the configuration analyzed in the storage SARs. These criteria are applicable to all commercial spent fuel burnup levels and cladding materials. In order to assure integrity of the cladding material, the following criteria should be met: 8556

- For all fuel burnups (low and high), the maximum calculated fuel cladding temperature should not exceed 400°C (752°F) for normal conditions of storage and short-term loading operations (e.g., drying, backfilling with inert gas, and transfer of the cask to the storage pad). However, for low burnup fuel, a higher short-term temperature limit may be used, if the applicant can show by calculation the best estimate cladding hoop stress is equal to or less than 90 MPa (13,053 psi) for the temperature limit proposed.
 - During loading operations, repeated thermal cycling (repeated heatup/cooldown cycles) may occur but should be limited to less than 10 cycles, where cladding temperature variations are more than 65°C (117°F) each.
 - For off-normal and accident conditions, the maximum cladding temperature should not exceed 570°C (1058°F).

6572 Given the conservatism used in calculating peak clad temperatures for low burnup fuel, the staff has reasonable assurance that storage cask systems which use the 570°C temperature limit for low burnup fuel loading operations will continue to perform as expected when the casks were originally certified. Therefore, there is no need to require the licensees of storage-only or dualpurpose cask systems to repackage spent fuel loaded using the 570°C temperature limit.

The maximum allowable temperature should be based upon the peak rod temperature, not the average rod temperature. By employing the peak rod temperature, only a small fraction of the rods will experience the temperature and stress conditions that could lead to the formation of radial hydrides during normal conditions of storage.

8582

8577

8583 High burnup fuel (i.e., fuel with burnups generally exceeding 45 GWd/MTU) may have cladding walls that have become relatively thin from in-reactor formation of oxides or zirconium hydride. 8584 8585 For design basis accidents, where the structural integrity of the cladding is evaluated, the applicant should specify the maximum cladding oxide thickness and the expected thickness of 8586 8587 the hydride layer (or rim). Cladding stress calculations should use an effective cladding thickness that is reduced by those amounts. The reviewer should verify that the applicant has 8588 used a value of cladding oxide thickness that is justified by the use of oxide thickness 8589 8590 measurements, computer codes validated using experimentally measured oxide thickness data, or other means that the staff finds appropriate. Note that oxidation may not be of a uniform 8591 8592 thickness along the axial length of the fuel rods.

- Since the hoop stress is dependent on the rod internal pressure, cladding geometry, and the temperature of the gases inside the rod, the staff will verify that the applicant has calculated the best estimate hoop stress corresponding to the rod internal pressure of the highest burnup fuel assemblies of the specific type of assembly.
- 8598
- The intent of the thermal cycling acceptance criteria is to prevent licensees from applying cask drying, loading and transfer operations that could inadvertently enhance an undesirable hydride reorientation to form radial hydrides. Accordingly, these criteria pertain only to periods of fuel loading and transfer operations of the casks to the storage pads.
- In general, the materials reviewer should coordinate with the structural reviewer to assure the
 spent fuel is maintained in the configuration analyzed in the Safety Analysis Reports (SARs) in
 order to meet the objectives described above.
- The materials reviewer should coordinate with the thermal reviewer to assure the temperature criteria stated above are met. If higher peak temperatures are proposed by the applicant, additional justification for the higher temperatures must be supplied.
- This guidance will allow all commercial spent fuel that is currently licensed by the Nuclear Regulatory Commission (NRC) for commercial power plant operations to be stored in accordance with the regulations contained in 10 CFR Part 72. However, cask vendors' requests for the storage of spent fuel with burnup levels in excess of those levels licensed by the Office of Nuclear Reactor Regulation (NRR), or for cladding materials not licensed by NRR, may require additional justifications by the applicant.
- 8618
- 8619 Background justification for these temperature limits can be found in Sec 8.8 of this SRP. 8620
- 8621 8.4.17.2 Fuel Classification (HIGH Priority) 8622
- The staff should verify that the definitions below are used in the SAR, and where appropriate are also included in the CoC.
- Spent Nuclear Fuel (SNF) See 10 CFR Part 72.3 for definition. This term has been used in the
 nuclear industry, at different times, to mean the fuel pellets, the rod, or entire fuel assembly.
 Unless specifically modified, the term will refer to both the rods and fuel assembly.
- 8630 Damaged SNF Any fuel rod or fuel assembly that cannot fulfill its fuel-specific or system-8631 related functions.
- 8633 Undamaged SNF SNF that can meet all fuel-specific and system-related functions. As 8634 shown in Figure 8-2, undamaged fuel may be breached. Fuel assembly classified as 8635 undamaged SNF may have "assembly defects."
- 8636

- Breached spent fuel rod Spent fuel rod with cladding defects that permit the release of gas
 from the interior of the fuel rod. A breached spent fuel rod may also have cladding defects
 sufficient to permit the release of fuel particulate. A breach may be limited to a pinhole leak,
 hairline crack, or may be a gross breach.
- Pinhole leaks or hairline cracks Minor cladding defects that will not permit significant release of particulate matter from the spent fuel rod, and therefore present a minimal as low-as-is-

reasonably-achievable concern, during fuel handling operations. (See discussion of gross defects for size concerns.)

8646
8647 Grossly breached spent fuel rod - A subset of breached rods. A breach in spent fuel cladding
8648 that is larger than a pinhole leak or a hairline crack. An acceptable examination for a gross
8649 breach is a visual examination that has the capability to determine the fuel pellet surface may be
8650 seen through the breached portion of the cladding. Alternatively, review of reactor operating
8651 records may provide evidence of the presence of heavy metal isotopes indicating that a fuel rod
8652 is grossly breached. (See discussion for size concerns.)

- Intact SNF Any fuel that can fulfill all fuel-specific and system-related functions, and that is not
 breached. Note that all intact SNF is undamaged, but not all undamaged fuel is intact, since
 under most situations, breached spent fuel rods that are not grossly breached will be considered
 undamaged.
- Can for Damaged Fuel A metal enclosure that is sized to confine one damaged spent fuel
 assembly. A fuel can for damaged spent fuel with damaged spent-fuel assembly contents must
 satisfy fuel-specific and system-related functions for undamaged SNF required by the applicable
 regulations.
- Assembly Defect Any change in the physical as-built condition of the assembly with the exception of normal in-reactor changes such as elongation from irradiation growth or assembly bow. Examples of assembly defects: (a) missing rods; (b) broken or missing grids or grid straps (spacers); and (c) missing or broken grid springs, etc. An assembly with a defect is damaged only if it can't meet its fuel-specific and system-related functions required by the applicable regulations.
- A fuel-specific regulation a characteristic or performance requirement of the fuel specifically named in the applicable Code of Federal Regulations (CFR). These are regulations that specify capabilities that the spent nuclear fuel (SNF) must have. Examples include 10 CFR 72.122(h)(1) and 10 CFR 72.122(l).
- A system-related regulation a performance requirement placed on the fuel so that the storage system can meet its regulatory requirements. Examples include 10 CFR 72.122(h)(5) and 10 CFR 72.124(a)..
- 8679 8680 Prev

Previous definitions of damaged fuel have identified specific characteristics of the fuel that 8681 classify it as damaged, irrespective of whether the fuel is being stored or transported and 8682 independent of the design of the storage or transportation system. The current staff position is 8683 that damaged fuel is defined in terms of the characteristics needed to perform the fuel-specific 8684 and system-related functions. The materials properties, and possibly the physical condition, of a fuel rod or assembly can be altered during irradiation or storage. If this alteration is large 8685 8686 enough to prevent the fuel or assembly from performing its fuel-specific or system-related functions during storage, then the fuel assembly is considered damaged. 8687 8688

- 8689 To determine whether a fuel assembly is undamaged, the following should be stated in the 8690 SAR: 8691
- The functions the applicant has imposed on the fuel rods and assembly by either fuel
 specific or system-related functions to meet a regulatory requirement for the designated
 phase (storage, transportation, or both);

- 8695
 8696 2) The mechanisms of change (alteration mechanisms) or the characteristics of the fuel
 8697 that could potentially cause the fuel to fail to meet its fuel-specific or system-related
 8698 functions;
 8699
- An acceptable analysis showing that the fuel with the designated characteristics will
 meet the fuel-specific and system-related functions when the mechanisms considered in
 item #2, above, are evaluated; and
- 4) The physical characteristics of the fuel, based on item #3, above, that could cause the fuel or assembly to be classified as "damaged."

8722 8723

8724 8725

8726 8727

8728 8729

8730

8731

8732

8733 8734

8735

8736 8737

8738

8739

8740

8741

8742

8706 8707 A "default" definition of damaged SNF, derived from ANSI N14.33-2005, is provided for those that do not want to perform the assessment outlined in item numbers 1 through 4 above. The 8708 8709 default definition, however, may not take full advantage of the flexibility of the performancebased definition of damaged fuel provided in this guidance. This default definition may be more 8710 8711 restrictive than necessary, depending on the design of the storage or transportation cask. For example, the default definition of damaged SNF indicates that SNF must be classified as 8712 damaged if an individual fuel rod is missing from an assembly. However, if an analysis shows 8713 8714 that all fuel-specific and system-related functions will be met (e.g., subcriticality will be maintained, that the SNF assembly will be retrievable and that the structural properties of the 8715 assembly are not compromised by the missing rod) the assembly may be classified as 8716 8717 undamaged. An alternative default definition of damaged Spent Nuclear Fuel (SNF) is: SNF assemblies must be classified as damaged if any one of the following conditions exist: 8718 8719

- 8720 On removal of SNF selected for dry storage or transport from the spent fuel pool, any of the 8721 following apply:
 - There is visible deformation of the rods in the SNF assembly. Note: This is not referring to the uniform bowing that occurs in the reactor. This refers to bowing that significantly opens up the lattice spacing.
 - Individual fuel rods are missing from the assembly. Note: The assembly may be reclassified as intact if a dummy rod that displaces a volume equal to, or greater than, the original fuel rod, is placed in the empty rod location.
 - The SNF assembly has missing, displaced, or damaged structural components such that either:
 - a. Radiological and/or criticality safety is adversely affected (e.g., significantly changed rod pitch).
 - b. The assembly cannot be handled by normal means (i.e., crane and grapple).
 - Reactor operating records (or other records) indicate that the SNF assembly contains fuel rods with gross breaches.
- The SNF assembly is no longer in the form of an intact fuel bundle (e.g., consists of, or contains, debris such, as loose fuel pellets or rod segments).

Additional background and examples of defining damaged fuel can be found in Section 8.6 of this SRP.

- 8748
- 8749 8.4.17.3 Reflood Analysis (HIGH Priority) 8750

8751 The NRC accepts that the total stress on the cladding is maintained below the material's 8752 minimum yield stress. The total stress includes the thermal stress combined with the cladding hoop stress from internal rod pressure and the rod-gas plenum temperature. The analysis also 8753 should account for high burnup effects on the fuel (e.g., waterside corrosion, high internal rod 8754 8755 pressure) and minimum manufacturing wall thickness. Other assembly components should also be examined in a similar manner. Engineering judgment, combined with relevant industry 8756 operational experience with unloading SNF from transportation and storage casks, may support 8757 8758 the basis for limits on quench fluid temperature and flow rate. This review should be coordinated with the thermal reviewer. 8759

8760

8761 8.4.18 Prevention of Oxidation Damage During Loading of Fuel (MEDIUM Priority) 8762

The guidance in this section is only applicable to irradiated LWR fuel or other uranium oxide based fuel. The reviewer should make sure that the oxidation of other types of fuels during loading is evaluated. The information given in this section and Section 8.7 of this SRP may not be applicable to other fuel types. The characteristics of those fuel types must be considered when evaluating their analysis.

8768

8769 Once the fuel rods are placed inside of the storage cask and water is removed to a level that exposes any part of the rods to a gaseous atmosphere, reasonable assurance the spent fuel 8770 8771 cladding will be protected against splitting due to fuel oxidation might occur must be demonstrated. If oxidation occurred, it may lead to loss of retrievability, or to a configuration not 8772 adequately analyzed for radiation dose rates or criticality safety. Further, the release of fuel 8773 8774 fines or grain-sized powder into the inner cask environment from ruptured fuel may be a 8775 condition outside the licensing basis for the cask system. Three possible options exist to 8776 address the potential for and consequences of fuel oxidation: 8777

- 8778 1. Maintain the fuel rods in an appropriate environment such as Ar, N2, or He to prevent
 8779 oxidation.
 8780
- 8781 2. Assure there are not any cladding breaches (including hairline cracks and pinhole leaks)
 8782 in the fuel pin sections that will be exposed to an oxidizing atmosphere. This can be
 8783 done by a review of records (for example, sipping records) or 100 percent eddy current
 8784 inspection of assemblies.
- 8786 3. Determine the time-at-temperature profile of the rods while they are exposed to an oxidizing atmosphere and calculate the expected oxidation to determine if a gross 8787 breach would occur. The analysis should indicate the time required to incubate the 8788 splitting process will not be exceeded. Such an analysis would have to address 8789 expected differences in characteristics between the fuel to be loaded and the fuel tested 8790 8791 to determine the basis for the analysis. Conversely, the maximum allowable temperature of the rods could be limited to the temperature that calculations show 8792 cladding splitting will not be expected to occur. Such evaluations must incorporate the 8793 effects of uncertainty in the data base. Calculation of the possibility of cladding splitting, 8794 8795 is fraught with all the uncertainties discussed above. Lowering the maximum allowable temperature may impose an economic penalty by limiting the heat load in the cask. The 8796

selection of the methodology used to address this issue is up to the applicant. The use
of a non-oxidizing atmosphere in the fuel canister to prevent fuel oxidation is one method
accepted by the staff to address the issue.

If Option 3 is chosen, the materials reviewer should coordinate with the thermal reviewer to 8801 determine that the operating procedures, technical specification, and associated licensing 8802 8803 documentation, as submitted by the applicants, provide a supportable analysis of the potential for cladding splitting, should fuel rods be exposed to an oxidizing gaseous atmosphere. For fuel 8804 with burnup below ~45 GWd/MTU and Zircaloy cladding, the time-at-temperature (TT) curves 8805 8806 developed to date (R.E. Einziger and R.V. Strain, "Oxidation of Spent Fuel at Between 250° and 360°C," EPRI Report NP-4524, 1986, for example) can be used to determine the allowable 8807 exposure duration to an oxidizing atmosphere if the fuel temperature is known, or conversely 8808 8809 the maximum allowable temperature if the exposure time is known. For example, using Figure 3-9 of the above reference, at 360°C one would expect to incur splitting between 2 and 8810 8811 10 hours. On the other hand, if one expected to stay at temperature for 100 hours then the fuel temperature should be kept below 290°C. 8812

8813

Additional information on oxidation of damaged fuel can be found in Section 8.7 of this SRP. Please refer to this reference for additional detail and background.

8817 8.4.19 Flammable Gas Generation (MEDIUM Priority)

8818

8816

8819 The reviewer should assume the generation of hydrogen or other gases during wet 8820 loading/unloading operations occurs. Field experience has amply demonstrated that any 8821 canister design employing aluminum components as part of the fuel basket construction will 8822 have a propensity to generate hydrogen. Efforts to passivate the aluminum components have 8823 proven inadequate to eliminate the generation of hydrogen. The use of zinc, zinc-rich coatings, 8824 or zinc-clad materials (e.g., galvanized steel) in particular, is known to generate potentially large 8825 quantities of hydrogen gas during wet-loading in SFP.

8826

8833

8837

8838 8839 8840

8841

Consequently, the reviewer should verify the operating procedures contain adequate guidance
for detecting the presence of hydrogen and preventing the ignition of combustible gases during
cask loading and unloading operations. These procedures must be incorporated by reference
into the TS.

8832 8.4.20 Canister Closure Welds Testing (MEDIUM Priority)

Helium leakage testing of the entire confinement boundary is performed to demonstrate compatibility with the design basis leak rate, and ensures that: 8836

- the fuel payload is protected from the deleterious oxidizing effects of moisture by excluding intrusion of such,
 - the helium inerting gas will remain in the canister in sufficient amount over the license period, and
- the helium gas heat transfer medium will remain in sufficient quantity over the
 license period to assure the cladding temperatures are controlled at safe levels.

This guidance addresses all welds associated with the redundant closures of a spent fuel canister and describes how each individual closure weld must be considered from the overall

8848 design and testing standpoint. It only applies to canisters of all-welded construction, fabricated 8849 from austenitic stainless steel, employing redundant welds for the confinement closure.

The staff should verify that the cask design under review is in compliance with the guidance of
this document. In order for any closure weld to be exempt from the helium leak testing to
demonstrate compliance with 10 CFR 72.236, the staff should verify all of the following
conditions are satisfied:

8855

8859

8860 8861

8862 8863

8868 8869

8870

8871 8872

8873

8877

8878 8879 8880

8881 8882

8883 8884

8885 8886

8893

- The welded canister (i.e., the confinement boundary) must be leak tested in accordance with ANSI N14.5-1997, except as specified by this guidance.
 - Closure welds must conform with the guidance of this SRP, as appropriate.
 - "Structures, systems, and components important to safety must be designed to withstand postulated accidents." [10 CFR 72.122(b)(1)].
- Records documenting the lid welds shall comply with the provisions of 10 CFR
 Part 72.174, "Quality Assurance Records." Records storage should comply with
 ANSI N45.2.9, "Requirements for Collection, Storage, and Maintenance of
 Quality Assurance Records for Nuclear Power Plants."
 - Activities related to inspection, evaluation, documentation of fabrication, and lid welding shall be performed in accordance with an NRC-approved quality assurance program as required in 10 CFR Part 72, Subpart G, "Quality Assurance."

8874 In addition for exemption of large multi-pass welds from helium leak testing the following must
8875 be satisfied.
8876

- (1) The weld must be multi-pass, with a minimum weld depth comprised of at least 3 distinct weld layers.
- (2) Each layer of weld may be composed of one or more adjacent weld beads.
- (3) The layer must be complete across the width of the weld joint.
- (4) If only 3 weld layers comprise the full thickness of the weld, each layer must be PT examined.
- For more than 3 weld layers, not all weld layers need be PT examined. The maximum weld deposit depth allowed before a PT examination is necessary is based upon flaw-tolerance calculations in accordance with Section 8.9 of this SRP. Note: This criteria does not supersede the flaw acceptance criteria of any construction code. Instead, this criteria is used to establish the maximum allowable weld deposit depth before an in-process PT examination is necessary.
- 8894 (6) Regardless of conditions (4) or (5) above, at least 3 different weld layers must be examined, e.g., the root pass, a mid-layer, and the cover pass.
 8896
- 8897(7)The weld cannot have been executed under conditions where the root pass8898might have been subjected to pressurization from the helium fill in the canister

itself. Credit may not be taken for closure valves, quick-disconnects, or similar.
It is assumed that mechanical closure devices (e.g., a valve or quick-disconnect)
permit helium leaks. Practical experience has shown such leaks occur and have
been responsible for causing leak paths through the weld. Consequently, welds
potentially subjected to helium pressure (by way of leakage through a
mechanical closure device) during the welding process must be subsequently
helium leak tested.

8907 Other closure issues the materials reviewer should evaluate are: Hydrostatic Testing, ASME 8908 Code Case N-595-4, and the limiting root pass criteria for the weld. 8909

8910 Closure welds must be hydrostatically or pneumatically tested in accordance with ASME Code
8911 Section III requirements to the extent practicable. The two designs discussed in Section 8.9 of
8912 this SRP meet this criteria.
8913

ASME Code Case N-595-4 is not endorsed by the NRC staff, per Regulatory Guide (RG) 1.193 and consequently is not permitted as an alternative to the Code requirements. 8916

Cask lid welding is governed in part by the limiting flaw size analysis. The welding method described herein controls the depth of weld deposit for the intermediate passes before the required PT examination is performed. However, the root pass thickness is not addressed by this guidance, as a single layer root pass was assumed. Occasionally, multi-layer root passes are employed to smooth the weld surface to avoid false positives from the PT. 8922

A multi-layer root pass is acceptable provided the same method of limiting the weld deposit depth is followed as for the intermediate weld passes. Stress analysts should note that the intermediate layer critical flaw size calculation assumes a buried flaw, not a surface connected flaw. For the root pass calculation, a surface connected flaw must be assumed. This will result in a smaller critical flaw size, and, consequently a smaller permissible weld deposit thickness before a PT exam is considered necessary.

8929

8906

The staff should verify that if the licensee desires to use a thicker root pass, they must limit the amount of weld deposit to the ratio of the fracture toughness K values (or, J values) for the different flaw types (buried K divided by surface K) multiplied by the maximum depth. This will limit the depth of the root pass to the critical flaw size for a surface connected flaw. Thus, if a licensee desires to use a thicker weld deposit for the root pass, then a limiting flaw size analysis establishes a structural basis.

8936

The staff recognizes that for stainless steel, K, or even J, is not entirely correct for evaluating failure in austenitic stainless steel due to the large capacity for plastic deformation. Generally the result is failure due to net section stress, not fracture. However, the stress intensity ratio suggested above is acceptable for this purpose.

8941

8942 The regulatory requirements governing this review are: 10 CFR 72 122(a), 72.122(h)(5), 8943 72.104(a), 72.106(b), 72.236(d), 72.236(e), 72.236(j), and 72.236(l). 8944

8945 Please refer to the additional information in Section 8.9 of this SRP to supplement the review 8946 criteria. 8947

8948 8.4.21 Periodic Inspections (LOW Priority)

8949

Review the SAR operations and acceptance testing chapters for appropriate periodic inspection
programs which may be included for the purpose of monitoring materials conditions or
performance. Some cask vendors are now anticipating future license renewal for the designs
and are incorporating into the SAR the currently specified limited inspections that are required
as part of a license renewal application.

- A one-time inspection of normally inaccessible portions of the canister exterior for unanticipated corrosion or other degradation. A single canister (or several) may be selected based upon engineering criteria such as longest time in service, hottest operating temperature, etc. and used to "bound" other canisters of that type of material of construction.
 - The periodic (usually monthly) ISFSI radiation survey results should be reviewed to determine if any significant degradation of any neutron shielding material (if used) has occurred.

8966 8.5 Evaluation Findings

8961 8962

8963

8964 8965

8967

8972

8973 8974

8975

8976 8977

8978 8979

8980

8981 8982

8983

8984 8985

8986 8987 8988

8989

8990

8991 8992

8968 The evaluation findings are prepared by the reviewer on satisfaction of the regulatory 8969 requirements of Section 8.3. The reviewer should examine these requirements and provide a 8970 summary statement for each. These statements should be similar to the following examples: 8971

- F8.1 Section(s) _____ of the SAR adequately describe(s) the materials used for SSCs important to safety and the suitability of those materials for their intended functions in sufficient detail to evaluate their effectiveness.
- F8.2 The applicant has met the requirements of 10 CFR 72.122(a). The material properties of SSCs important to safety conform to quality standards commensurate with their safety function.
- F8.3 The applicant has met the requirements of 10 CFR 72.104(a), 72.106(b), and 72.124. Materials used for criticality control and shielding are adequately designed and specified to perform their intended function.
 - F8.4 The applicant has met the requirements of 10 CFR 72.122(h)(1) and 72.236(h). The design of the DSS and the selection of materials adequately protects the SNF cladding against degradation that might otherwise lead to damaged fuel.
 - F8.5 The applicant has met the requirements of 10 CFR 72.236(h) and 72.236(m). The material properties of SSCs important to safety will be maintained during normal, off-normal, and accident conditions of operation so the SNF can be readily retrieved without posing operational safety problems.
- 8993F8.6The applicant has met the requirements of 10 CFR 72.236(g). The material8994properties of SSCs important to safety will be maintained during all conditions of8995operation so the SNF can be safely stored for the minimum required years and8996maintenance can be conducted as required.8997
- 8998F8.7The applicant has met the requirements of 10 CFR 72.236(h).The [cask8999designation] employs materials that are compatible with wet and dry SNF loading

9004

and unloading operations and facilities. These materials should not degrade over time or react with one another during any conditions of storage.

9003 The reviewer should provide a summary statement similar to the following:

9005"The staff concludes the material properties of the structures, systems, and components9006of the [cask designation] is in compliance with 10 CFR Part 72, and that the applicable9007design and acceptance criteria have been satisfied. The evaluation of the material9008properties provides reasonable assurance the [cask designation] will allow safe storage9009of SNF for a licensed (certified) life of _____ years. This finding is reached on the basis9010of a review that considered the regulation itself, appropriate regulatory guides, applicable9011codes and standards, and accepted engineering practices."

9012 9013 9014

8.6 Supplemental Information for Methods for Classifying Fuel (HIGH Priority)

9015 A. Grossly Breached SNF Cladding 9016

The regulations in 10 CFR 72.122(h) state "The spent fuel cladding must be protected during storage against degradation that leads to gross ruptures or the fuel must be otherwise confined such that degradation of the fuel during storage will not pose operational safety problems with respect to its removal from storage."

- 9022 In dry cask storage and transportation systems, a gross cladding breach should be considered as any cladding breach that could lead to the release of fuel particulate greater than the average 9023 9024 size fuel fragment. A pellet is ~1.1 centimeters in diameter in 15 x 15 Pressurized-Water 9025 Reactor (PWR) assemblies. Pellets from a Boiling-Water Reactor (BWR) are somewhat larger, and those from 17 x 17 PWR assemblies are somewhat smaller. The pellet's length is slightly 9026 longer than its diameter. During the first cycle of irradiation in-reactor, the pellet fragments into 9027 9028 25-35 smaller interlocked pieces, plus a small amount of finer powder, due to, pellet-to-pellet 9029 abrasion. When the rod breaches, about 0.1 gram of this fine powder may be carried out of the 9030 fuel rod at the breach site. Modeling the fragments as either spherical- or pie-shaped pieces indicates that a cladding-crack width of at least 2-3 millimeters would be required to release a 9031 9032 fragment. Hence, gross breaches should be considered to be any cladding breach greater than 9033 1 millimeter.
- 9034

9035 A review of reactor operating records, ultrasonic testing, and sipping (if done in a timely fashion) can be used to classify rods as unbreached or, breached. Evidence of only gaseous or volatile 9036 decay products (no heavy metals) in the reactor coolant system is accepted as evidence that a 9037 9038 cladding breach is no larger than a pinhole leak or hairline crack. Records that show the 9039 presence of heavy metal isotopes that are characteristic of fuel release in the reactor coolant 9040 system indicate gross breaches in the cladding. Likewise, visual examination may also be used to determine if a cladding breach is gross, if the breached rod can be positively identified. 9041 9042 Because cladding openings larger than 1 millimeter should expose the fuel pellet to visual 9043 sighting, visual examination of the breached rod can be used to determine if a breach is gross. 9044 However, visual examination is not an acceptable method of confirming intact (undamaged) fuel 9045 for assemblies that have indicated leakage.

9046

9047 It should be noted, however, that undamaged spent-fuel rods with pinhole leaks and/or hairline
9048 cracks will expose the fuel pellets to the canister or cask atmosphere. If that atmosphere is
9049 oxidizing, then the fuel pellet may oxidize and expand, placing stress on the cladding. The
9050 expansion may eventually cause a large split in the cladding, resulting in spent fuel that must be

9051 classified as damaged (for storage and possibly also for transportation) due to gross breaches in the cladding. Since fuel oxidation and cladding splitting follow Arrhenius time-at-temperature 9052 behavior, fuel rods with pinholes or hairline cracks that are exposed to an oxidizing atmosphere 9053 may experience this type of additional cladding damage. Section 8.7 of this SRP, 9054 "Supplemental Information for Potential Rod Splitting Due to Exposure to an Oxidizing 9055 Atmosphere During Short-Term Cask Loading Operations in LWR or other Uranium Oxide 9056 9057 Based Fuel," provides information regarding prevention of this phenomenon. Before handling undamaged rods with pinhole leaks and/or hairline cracks in an oxidizing atmosphere, the 9058 potential fuel and cladding degradation at the temperature of interest for the duration of the 9059 9060 process should be assessed. 9061

9062 B. Fuel Assembly with Defects

9063

Damage under this guidance refers to alterations of the fuel assembly that prevent it from fulfilling its fuel-specific or system-related functions. Defects such as dents in rods, bent or missing structural members, small cracks in structural members, missing rods, etc., need not be considered damaged if the applicant can show that the fuel assembly with these defects still fulfils its fuel-specific and system-related functions. This may be done using calculations based on approved codes, situation-specific data, or reasoned engineering arguments.

- 9070 9071 C. Ca
- 9071 C. Canning Damaged Fuel 9072
- 9073 Spent fuel that has been classified as damaged for storage must be placed in a can designed for damaged fuel, or in an acceptable alternative. The purpose of a can designed for damaged 9074 9075 fuel is to (1) confine gross fuel particles, debris, or damaged assemblies to a known volume 9076 within the cask; (2) to demonstrate that compliance with the criticality, shielding, thermal, and structural requirements are met; and (3) permit normal handling and retrieval from the cask. 9077 9078 The can designed for damaged fuel may need to contain neutron-absorbing materials, if results 9079 of the criticality safety analysis depend on the neutron absorber to meet the requirements of 9080 10 CFR 72.124(a).
- 9081

9083

9082 D. Relationship of Spent Fuel Populations

The applicant will designate the population of spent fuel for which the cask system was designed (e.g., type of fuel, minimum cooling time, burnup limitations, arrays, manufacturers, cladding types, etc.). This population may contain breached rods. Some of these breached rods may be grossly breached. It may also contain assemblies with defects, such as missing rods, missing grid spacers, or damaged spacers. The populations of breached rods, grossly breached rods, and assemblies with defects are determined by in-reactor behavior and exreactor handling.

9091

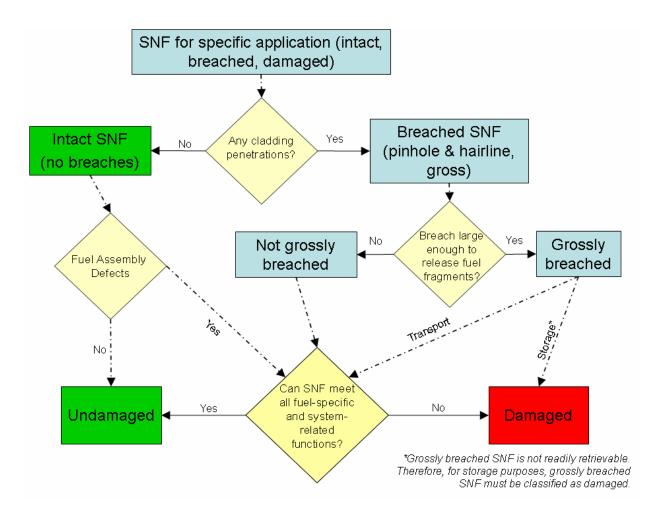
9092 Each of these populations must be classified as damaged or undamaged after the storage or 9093 transportation system has been designated. For example, an applicant might propose the use 9094 of air as a cover gas in its design of a storage cask. The applicant might also propose this cask for use in storing spent fuel with cladding breaches that are hairline cracks or pinhole leaks. 9095 9096 However, if the spent fuel in the cask will operate at a sufficiently high temperature for a long enough time, then oxidation of fuel pellets in breached rods could occur resulting in gross 9097 breaches. If this is the case, the breached spent fuel should be considered damaged because 9098 9099 grossly breached rods do not meet the requirements of 10 CFR 72.122(h)(1). If an inert 9100 atmosphere was used instead of air, only grossly breached rods would be considered damaged for storage. This concept is illustrated in Figure 8-2, "Relationship of Spent Fuel Populations." 9101

- 9102
- 9103 Example of Methodology

9104
9105 The following example is given to illustrate the general methodology. This is only an example of
9106 the methodology and should not be construed as approved characterization of damaged fuel.

- 9107 9108
- 9108 9109 9110

9111


Figure 8-2 Relationship of Spent Fuel Populations

9112 <u>Example of Methodology</u>:

9113
9114 Situation - The vendor of a dual-purpose cask wants to store and transport low-burnup PWR
9115 fuel in an inert atmosphere and within the temperature limits recommended in Section 8.4.17.1.
9116 The vendor wants to store assemblies having rods with breaches containing only pinholes or
9117 hairline cracks, and assemblies having one or more outer grid straps with defects at three or
9118 more grid locations without canning them. The vendor is only applying for a storage license at
9119 this time but wants to be reasonably certain that the fuel will also be transportable.

- 9120
- 9121 Activity Storage of Spent Fuel
- 9122

Fuel-specific or system-related functions imposed on rods and assemblies - 10 CFR
72.122(h)(1), regarding gross ruptures, and 10 CFR 72.122(l), concerning retrievability, must be
met for storage. 10 CFR 71.55(d), requiring the system to remain subcritical and unchanged
during normal transport, must be met. The vendor believes that all the remaining system
requirements, except for the subcriticality requirement, can be met, without imposing any
limitations on the fuel, if the fuel is within the bounds stated in the situation.

9130 Mechanisms - There are no mechanisms for the pinhole leaks and hairline cracks to evolve into 9131 gross breaches since the atmosphere is inert and the temperature is controlled. To be 9132 retrievable, the assemblies with missing grid straps must be able to withstand design basis 9133 events in a storage cask. Since the applicant also wants these assemblies to be considered 9134 undamaged for transportation, the behavior of the assemblies under both normal and 9135 hypothetical accident transportation conditions in 10 CFR Part 71 must be evaluated. For 9136 example, for normal transportation conditions, the applicant must show that the assemblies with the most missing grid straps in the worst locations can withstand both normal vibration and a 9137 9138 one-foot drop and remain in their original physical configuration. Additionally, for hypothetical 9139 accident conditions, the analysis must indicate, among other things, that the system will meet shielding and subcriticality requirements when placed under the mechanical and thermal loads 9140 9141 specified in 10 CFR Part 71.

- 9142
- Analysis The applicant conducts an analysis to satisfactorily demonstrate that the assembly
 with three missing grid straps in the worst configuration remains intact for 1) normal
 transportation conditions; 2) cask tip-over; and 3) regulatory accident conditions. Further
 acceptable analysis indicates that all the system-related regulations are met, if the fuel with the
 characteristic limitations (as noted in Characteristics section below), stays structurally intact.
- 9149 Characteristics Assemblies containing breached rods with up to three grid straps missing will 9150 be considered undamaged for the purposes of storage. Analysis shows that these assemblies

9151 could probably also be considered undamaged for transportation, but fuel with these characteristics will be evaluated and approved as part of a later application for the transportation 9152 9153 cask certification. 9154

9155 8.7 Supplemental Information for Potential Rod Splitting Due to Exposure to an Oxidizing Atmosphere During Short-Term Cask Loading Operations in LWR or 9156 9157 Other Uranium Oxide Based Fuel (MEDIUM Priority)

9158

9159 The definition of undamaged fuel includes fuel rods containing no cladding defects greater than 9160 pinhole leaks or hairline cracks. During the cask water removal process parts of, or all of, the fuel rods will be exposed to a gaseous atmosphere. If the gaseous atmosphere is oxidizing, 9161 oxidation of fuel pellets or fuel fragments can occur if a cladding breach exists (such as a 9162 9163 pinhole). Oxidation may occur rapidly and cause significant swelling of fuel pellets and fragments, which could result in gross fuel cladding breaches if the time-at-elevated-9164 9165 temperature after water removal is excessive.

9166 9167

Fuel Oxidation and Cladding Splitting 8.7.1

9168

9169 Irradiated uranium dioxide exposed to an oxidizing atmosphere will eventually oxidize to U_3O_8 . 9170 The time it takes to oxidize is a function of temperature that follows an Arrhenius function and burnup. However, at temperatures that may be expected for some spent fuel, this reaction can 9171 9172 occur within a matter of hours.

9173

9174 The grain boundaries of irradiated fuel are highly populated with voids and gas bubbles. Initially the grain boundaries are oxidized to U_4O_9 resulting in a slight matrix shrinkage and further 9175 9176 opening of the pellet structure. Oxidation then proceeds into the grain until there is complete transformation of the grains to U₄O₉ [Einziger, 1992]. The grains remain in this phase for a 9177 9178 temperature dependent duration until the fuel resumes oxidizing to the U_3O_8 state. 9179 transformation to U_3O_8 occurs with ~33 percent lattice expansion that breaks the ceramic 9180 fragment structure into grain sized particles. At higher temperatures, the two transformations 9181 occur so rapidly that they are difficult to distinguish. The mechanism of oxidation in irradiated fuel appears to be different than in unirradiated fuel where U₃O₇ is formed and oxidation 9182 proceeds from the fragment surface and not down the grain boundaries. This mechanistic 9183 9184 change occurs between ~10 and 30 Gwd/MTU. 9185

9186 When the UO_2 is in the form of a fuel rod, the expansion of the fuel, when it transforms to U_3O_8 , 9187 induces a circumferential stress in the cladding. Due to the swelling of the fuel, the process is 9188 usually initially localized to the original cladding crack site. The cladding strains due to this 9189 stress range from 2-6 percent before the initial crack starts to propagate along the rod. The 9190 incubation time to initiate the propagation and the rate of propagation have an Arrhenius 9191 temperature dependence. Axial propagation, spiral propagation and a combination of the 9192 modes that result in splitting have been observed in PWR rods [Einziger, 1986].

9194 8.7.2 Data Base

9195

9193

9196 The data base for oxidation was developed mostly in the 1980s in the US, Canada, England, 9197 and Germany. The data can usually appear in four forms: 1) O/M ratio (ratio of oxygen to metal content of the oxide) vs. time, 2) time to the UO2.4 plateau vs. time, 3) cladding splitting 9198 incubation vs. time, and 4) cladding splitting rate vs. time. Some later work was done by the 9199 9200 Japanese on the effects of oxygen depletion [Nakamura, 1995], and most recently work is ongoing by the French primarily on MOX fuel. Much of the work was done on unirradiated fuel. All 9201

9202 the work on cladding splitting was done in the early 1980s by the US [Einziger, 1984, 1986; Johnson, 1984] and Canadians [Novak, 1984; Boase, 1977] and is limited. Recently DOE 9203 [Bechtel, 2005] has issued an analysis of the oxidation issue in relationship to handling of 9204 potentially breached fuel in their proposed handling facility at the repository. This analysis 9205 depends on variables such as the gap between the fuel and the cladding, and burnup in a 9206 manner that is currently under technical review. In total, this research has shown that there are 9207 9208 a number of variables that can affect the rates at which the fuel oxidizes and the cladding splits: 9209 burnup, moisture content of the air, cladding material, and type of initial defect. 9210

9211 The DOE developed a model for fuel oxidation and cladding splitting [Bechtel, 2005] for use 9212 during long durations at the Yucca Mountain facility that tries to account for the fuel-to-cladding 9213 gap and burnup of the fuel. The gap is the as-measured cold gap and does not account for the 9214 closing of the gap due to differential thermal expansion of the cladding and fuel material, which could be calculated. There are inadequate data to verify correctness of the DOE model. Plots 9215 9216 in the Einziger document [Einziger, 1986] present actual data and comparisons with the data taken by other researchers at 30 GWd/MTU. The gap closure is implicitly accounted for in the 9217 9218 measurements of splitting. However, no burnup effects can be inferred from this data.

- 9219 9220 No oxidation or cladding splitting studies have been conducted on fuel with burnup greater than 9221 45 GWd/MTU. Data between 30 and 45 GWd/MTU, shows a decrease in the oxidation rate due 9222 to the presence of certain actinides and fission products that are burned into the fuel. There is 9223 no reason that this should not continue at higher burnups, but the strength of the effect may 9224 change with burnup. Higher burnup fuel (>55 GWd/MTU) forms an external rim on the pellets that consists of very fine grains (1 micron). As indicated earlier, the oxidation process is a grain 9225 boundary effect. The fuel pellet must be divided into two regions for the purpose of oxidation 9226 9227 analysis; the center of the pellet where the grains have grown slightly, and the rim. While the rate of the oxidation may decrease with burnup, the total amount of fuel that is oxidized may 9228 9229 increase due to a much greater intergranular surface area in the rim region. The DOE model 9230 [Bechtel, 2005] uses a linear decrease in oxidation with burnup but this has, as yet, not been 9231 substantiated. A burnup effect is supported by Hanson's analysis [Hanson, 1998] of Einziger 9232 and Cook's data from the NRC whole-rod tests in which defect propagation was observed to 9233 occur earlier at the defects at the lower end of the rod where the burnup was lower.
- 9234

9235 Studies using a low partial pressure of water vapor in air have not shown any dependence of 9236 the oxidation rate on the moisture content of the air [Ferry, 2005]. On the other hand, there are 9237 some studies that have shown a large increase in the oxidation rate when the moisture content is above 50 percent of the dew point. Oxidation in a 100 percent steam atmosphere is a 9238 9239 different process. There are also studies that indicate that the oxidation rate will decrease if the 9240 oxygen content in the atmosphere drops into the range of a few torr or less [Nakamura, 1995]. 9241 It does not appear that there is an effect of oxygen content at higher oxygen levels but the data 9242 is sparse. 9243

- 9244 Oxidation studies on fuel, with few exceptions, have been conducted on LWR fuel [Einziger, 9245 1986; Johnson, 1984]. However, the UO2 matrix is essentially the same in both PWR and BWR 9246 fuel. At the higher burnups, oxidation behavior may vary slightly as the actinide and fission 9247 product burn-in varies. The effect of the process on the splitting of the cladding may vary 9248 considerably due to the difference in gap size between the cladding types, and the thicker 9249 cladding in BWR rods.
- 9250
- The limited cladding splitting studies have been conducted on Zircaloy clad PWR [Einziger,
 1984, 1986; Johnson, 1984] and CANDU fuel. Defects were put in the fuel either by an SCC

9253 (stress corrosion cracking) process producing small sharp holes more typical of those found in reactor initiated SCC and by drilling that produced a larger duller hole. Most of the defects used 9254 9255 in the studies were of the latter type. No measurements were made in cladding above 30 GWd/MTU. Very few data points were measured to determine the splitting rate; therefore, 9256 the time to start splitting has to be determined by interpolation. As a result, there is large 9257 uncertainty in both measurements. No measurements have been made on other alloy types 9258 9259 (e.g., M5 and Zirlo) or at higher burnups where the cladding may be more brittle. Fuel oxidation would introduce uncertainties for fuel performance and fuel retrievability. 9260

9261 9262

92638.8Supplemental Information for Background justification for Cladding Temperature9264Considerations for the Storage of Spent Fuel (MEDIUM Priority)9265

9266 8.8.1 Basis for Guidance

9267 9268 Creep is the dominant mechanism for cladding deformation under normal conditions of storage. 9269 The relatively high temperatures, differential pressures, and corresponding hoop stress on the cladding will result in permanent creep deformation of the cladding over time. 9270 Several 9271 laboratory programs have demonstrated that spent fuel has significant creep capacity even after 9272 15 years of dry cask storage. Einziger, et al., [2003] reported that irradiated Surry-2 PWR fuel rods (35.7 GWd/MTU) that were stored for 15 years at an initial temperature of 350°C (with 9273 temperatures reaching as high as 415°C for up to 72 hours) experienced thermal creep, which 9274 9275 was estimated to be less than 0.1 percent. Post-storage creep tests were conducted to assess the residual creep capacity of the Surry-2 fuel rods. One-rod segment experienced a creep 9276 strain of 0.92 percent without rupture at 380°C and 220 MPa in 1820 hours (75.8 days). A 9277 9278 different rod segment was tested at 400°C and 190 MPa for 1873 hours (78 days) followed by 693 hours (28.9 days) at 400°C and 250 MPa, and experienced a creep strain of more than 9279 9280 5 percent without failure [Tsai, 2002]. Profilometry measurements on that fuel rod indicated that the creep deformation was uniform around the circumference of the cladding with no signs of 9281 9282 localized bulging, which can be a precursor for rupture. A report of the literature [Beyer, 2001] 9283 also indicates that some spent fuel cladding can accommodate creep strains of 2.87.5 percent at temperatures between 390 and 420°C and hoop stresses between 225 and 390 MPa. Other 9284 significant contributions to the understanding of the effects of creep on spent fuel cladding can 9285 9286 be found in several references [Einziger, et al., 1982; Rashid, et al., 2000; Hendricks, 2001; Rashid and Dunham, 2001; Machiels, 2002]. In general, these data and analyses support the 9287 9288 conclusions that (1) deformation caused by creep will proceed slowly over time and will decrease the rod pressure, (2) the decreasing cladding temperature also decreases the hoop 9289 stress, and this too will slow the creep rate so that during later stages of dry storage, further 9290 9291 creep deformation will become exceedingly small, and (3) in the unlikely event that a breach of 9292 the cladding due to creep occurs, it is believed that this will not result in gross rupture. 9293

Based on these conclusions, the staff has reasonable assurance that creep under normal conditions of storage will not cause gross rupture of the cladding and that the geometric configuration of the spent fuel will be preserved provided that the maximum cladding temperature does not exceed 400°C (752°F). As discussed below, this temperature will also limit the amount of radially oriented hydrides that may form under normal conditions of storage.

The effects of normal conditions of storage (i.e., the decaying temperature and hoop stress on the cladding with time) can affect the metallurgical condition of spent fuel cladding containing significant amounts of hydrogen (e.g., spent fuel with high burnup levels). As the burnup level of the fuel increases beyond 45 GWd/MTU during reactor operation, the thickness of the oxide

layer on the cladding increases. With increasing oxidation during reactor operation, the 9304 9305 cladding absorbs more hydrogen. As discussed in Garde, et al., [1996], Chung and Kassner 9306 [1997], and Newman [1986], high burnup fuels tend to have relatively higher concentrations of hydrogen in the cladding. The hydrogen is present in the cladding predominantly as zirconium 9307 hydride precipitates, or particles. After the fuel is removed from the reactor, the zirconium 9308 hydrides are generally elongated and oriented circumferentially and are predominantly present 9309 9310 in the outer rim of the cladding. At elevated temperatures, a percentage of the zirconium hydrides will dissolve, and under decreasing temperatures, zirconium hydrides will precipitate, 9311 9312 or re-form.

9313

9314 The materials phenomenon of hydride reorientation in zirconium-based alloys usually involves 9315 the dissolution of hydrides and the formation of zirconium-hydrides oriented perpendicular to the 9316 hoop stress (also referred to as radially oriented or radial hydrides) [Chung, 2000]. This occurs 9317 under sufficiently high hoop stresses along with the decrease in solubility of hydrogen that 9318 accompanies decreasing temperatures. The extent of the formation of radially oriented hydrides is a function of many parameters including the solubility of hydrogen in irradiated cladding 9319 9320 material, cladding temperature, hoop stress, cooling rate, hydrogen concentration, thermal cycling, and materials characteristics. Among these parameters, the formation of radial 9321 hydrides is highly dependent on the hoop stress in the cladding. Data obtained from irradiated 9322 9323 cladding [Einziger and Kohli, 1984; Cappelaere, et al., 2001; and, Goll, et al., 2001] indicate that 9324 stresses greater than 120 MPa (17.4 ksi) are required to initiate the formation of radial hydrides. 9325 Other data obtained from unirradiated zirconium-based cladding materials [Kese, 1998] indicate 9326 that radial hydrides can form at stresses as low as 90 MPa. Therefore, until the effects of reorientation are better understood, the hoop stress on the cladding should be controlled to 9327 9328 preclude the formation of radially oriented hydrides. 9329

9330 In general, a temperature limit of 400°C that is specified for normal conditions of storage and for 9331 short-term fuel loading and Part 72 storage operations (which includes drying, backfilling with 9332 inert gas, and transfer of the cask to the storage pad) will limit cladding hoop stresses and limit 9333 the amount of soluble hydrogen available to form radial hydrides. The use of a 400°C 9334 temperature limit for normal conditions of storage and for short-term fuel loading and storage 9335 operations will simplify the calculations in SARs while assuring that hydride reorientation will be 9336 minimized.

9337

9338 For low burnup fuel, a higher temperature limit may be used for short-term fuel loading and 9339 storage operations only, as long as the applicant can demonstrate that the best estimate cladding hoop stresses are equal to or less than 90 MPa for the temperature limit that is 9340 9341 justified. For example, if the calculated best estimate hoop stress is equal to 90 MPa at 540°C. 9342 then 540°C is the maximum allowable temperature for loading operations. In this example, 9343 570°C is not the maximum allowable temperature limit. If the applicant can show that the best 9344 estimate hoop stress is less than or equal to 90 MPa at 570°C, then 570°C is the maximum 9345 allowable temperature. For some fuel types, short-term fuel loading and storage operation 9346 temperature limits as high as 570°C (1058°F) should be justified by the applicant. The materials 9347 reviewer should coordinate with the thermal reviewer to assure that either of the following criteria are used: (1) for low and high burnup fuel, the maximum calculated temperatures for 9348 9349 normal conditions of storage and for fuel loading operations do not exceed 400°C, or (2) for low 9350 burnup fuel, a higher temperature limit may be used for loading and transfer operations, if the best estimate cladding hoop stress is less than 90 MPa for the temperature specified by the 9351 9352 applicant. If the applicants use the latter approach, the materials reviewer should verify that the 9353 cladding hoop stresses are less than 90 MPa for each fuel assembly type (e.g., 14x14, 17x17, 9x9. etc.) proposed for storage. Since the hoop stress is dependent on the rod internal 9354

9355 pressure, cladding geometry, and the temperature of the gases inside the rod, the materials reviewer should coordinate with the thermal reviewer to verify that the applicant has calculated 9356 the best estimate hoop stress corresponding to the rod internal pressure of the highest burnup 9357 fuel assemblies of the specific type of assembly. It should be noted that during normal 9358 conditions of storage there will be a range of cladding temperatures that are less than the 9359 maximum allowable cladding temperature of 400°C, and this leads to a range of the internal rod 9360 9361 pressures and the cladding hoop stresses, in any one storage cask. In general, the maximum allowable temperature will be 400°C or the maximum allowable temperature specified and 9362 supported (as discussed above) by the applicant. The maximum allowable temperature should 9363 9364 be based upon the **peak** rod temperature, not the average rod temperature. By employing the peak rod temperature, only a small fraction of the rods will experience the temperature and 9365 9366 stress conditions that could lead to the formation of radial hydrides during normal conditions of 9367 storage. 9368

- 9369 It also has been observed and reported that thermal cycling (repeated heatup/cooldown cycles) can enhance the amount of hydrogen that eventually re-precipitates in the form of radial 9370 9371 hydrides [Kammenzind, et al., 2000]. The extent of the formation of radial hydrides is dependent on many factors including the maximum temperature, change in temperature, 9372 9373 number of thermal cycles, applied stress, hydrogen concentration, and solubility of hydrogen in 9374 the material. Kammenzind, et al., [2000] indicates that the formation of radial hydrides in spent fuel cladding can be minimized by restricting the change in cladding temperatures to less than 9375 65°C and minimizing the number of cycles to less than 10. The 65°C temperature limit is based 9376 9377 upon the temperature drop required to obtain the degree of supersaturation required for the 9378 precipitation of hydrides in a short thermal cycle.
- 9379

9380 For short-term accidents and short-term off-normal conditions that lead to an increase in temperature of the cladding, the dominant cladding failure mechanism is expected to be creep 9381 9382 (stress rupture) of the cladding. To limit the amount of spent fuel that could be released from the cladding under off-normal conditions or accidents, the materials reviewer should coordinate 9383 9384 with the thermal reviewer to verify that the maximum calculated cladding temperatures are 9385 maintained below 570°C (1058°F). The basis for using 570°C is established by the creep tests conducted on irradiated Zircaloy-4 rods [Einziger, et al., 1982]. 9386 The results from these experiments indicated that no cladding ruptures were observed for test times of 30 and 73 days. 9387 9388

9389 **8.8.2 Review Guidance** 9390

9391 Prior to this guidance the short-term cladding temperature limit applicable to fuel loading 9392 operations was 570°C. All storage casks were certified using this limit. The current guidance to 9393 maintain cladding temperatures less than 400°C during fuel loading operations put into question 9394 whether the licensees who use certified storage casks (certified for fuel having average assembly burnups less than 45 GWd/MTU) would have to change their loading procedures and 9395 Technical Specifications to comply with this new temperature limit. Based on staff's evaluation, 9396 9397 it is expected that fuel assemblies with burnups less than 45 GWd/MTU are not likely to have a 9398 significant amount of hydride reorientation due to limited hydride content. Further, most of the low burnup fuel has hoop stresses below 90 MPa. Even if hydride reorientation occurred during 9399 storage, the network of reoriented hydrides is not expected to be extensive enough in low 9400 9401 burnup fuel to cause fuel rod failures. 9402

Given the conservatism used in calculating peak clad temperatures for low burnup fuel, the staff has reasonable assurance that storage cask systems which use the 570°C temperature limit for low burnup fuel loading operations will continue to perform as expected when the casks were 9406 originally certified. Therefore, there is no need to require the licensees of storage-only or dualpurpose cask systems to repackage spent fuel that was loaded using the 570°C temperature 9407 limit. Nevertheless, the 400°C limit is intended, with exceptions as stated above, to be generally 9408 applicable to all future loadings. Therefore, licensees are not required to modify their Technical 9409 Specifications or fuel loading procedures (i.e., vacuum drying) to meet the new 400°C limit for 9410 9411 loading low burnup fuel into storage casks previously certified with the 570°C limit. Note that for 9412 future amendments to certified designs, the applicants may be required to comply with the 9413 400°C temperature limit as discussed above.

9415 8.8.3 References

9414

9416

- 9417Beyer, 2001Beyer, C.E., Letter from C.E. Beyer, Pacific Northwest National
Laboratory, to K. Gruss, 2001.94199420NRC, 2001Transmittal of "Update of CSFM Methodology for Determining
- 9420NRC, 2001Transmittal of Opdate of CSFM Methodology for Determining9421Temperature Limits for Spent Fuel Dry Storage in Inert Gas."9422November 27, 2001.9423
- Cappelare, et al., 2001
 Cappelaere, R. Limon, T. Bredel, P. Herter, D. Gilbon, S. Allegre, P. Bouffioux and J.P. Mardon. 2001. "Long Term Behaviour of the Spent Fuel Cladding in Dry Storage Conditions." 8th International Conference on Radioactive Waste Management and Environmental Remediation. October 2001. Bruges, Belgium.
- 9430 Chung, et al., 1997
 9431 Chung, H.M. and T.F. Kassner. "Cladding Metallurgy and Fracture Behavior During Reactivity-Initiated Accidents at High Burnup." Proceedings of the International Topical Meeting on Light Water Reactor Fuel Performance. American Nuclear Society. March 2-6, 1997. Portland, Oregon. 1997.
- 9436Chung, 2000Chung, H.M."Fundamental Metallurgical Aspects of Axial9437Splitting in Zircaloy Cladding." Proceedings of the International9438Topical Meeting on Light Water Reactor Fuel Performance.9439American Nuclear Society. April 10-13, 2000. Park City, UT.94402000.
- 9442Einziger, 1984Einziger, R.E. and R. Kohli. "Low Temperature Rupture Behavior9443of Zircaloy-Clad Pressurized Water Reactor Spent Fuel Rods9444under Dry Storage Conditions." Nuclear Technology, v. 67,9445p. 107. 1984.
- 9447Einziger, et al., 1982Einziger, R.E., S.D. Atkin, D.E. Stellbrecht, and V. Pasupathi.9448"High Temperature Postirradiation Materials Performance of Spent9449Pressurized Water Reactor Fuel Rods Under Dry Storage9450Conditions." Nuclear Technology, v. 57, p. 65. 1982.
- 9452Einziger, et al., 2003Einziger, R.E., H.C. Tsia, M.C. Billone, and B.A. Hilton. 2003.9453"Examination of Spent Fuel Rods After 15 Years in Dry Storage."9454NUREG/CR-6831, ANL-03/17, September 2003.

9451

9456 9457 9458 9459 9460 9461 9462	Garde, et al., 1996	Garde, S.M., G.P. Smith, and R.C. Pirek. "Effects of Hydride Precipitate Localization and Neutron Fluence on the Ductility of Irradiated Zircaloy-4." <i>Zirconium in the Nuclear Industry: Eleventh</i> <i>International Symposium</i> . ASTM STP 1295. E.R. Bradley and G.P. Sabol, Eds. American Society for Testing and Materials. p. 407. 1996.				
9463 9464 9465	Goll, et al., 2001	Goll, W., H. Spilker and E.H. Toscano. "Short-Term Creep and Rupture Tests on High Burnup Fuel Rod Cladding." Journal of Nuclear Materials, v. 289, p. 247. 2001.				
9466 9467 9468 9469 9470 9471 9472 9473	Kammenzind, et al., 2000	Kammenzind, B.F., B.M. Berquist, and R. Bajaj. "The Long- Range Migration of Hydrogen Through Zircaloy in Response to Tensile and Compressive Stress Gradients." <i>Zirconium in the</i> <i>Nuclear Industry: Twelfth International Symposium</i> . ASTM STP 1354. G.P. Sabol and G.D. Moan, Eds. American Society for Testing and Materials. pp. 196-233. 2000.				
9473 9474 9475 9476	Kese, 1998	Kese, K. "Hydride Re-Orientation in Zircaloy and its Effect on the Tensile Properties." SKI Report 98:32. 1998.				
9470 9477 9478 9479 9480	Hendricks, 2001	Letter from L. Hendricks, NEI, to M.W. Hodges, NRC. Subject: Transmittal of Responses to the NRC Request for Additional Information on storage of high burnup fuel. August 16, 2001.				
9480 9481 9482 9483 9484	Machiels, 2002	Machiels, "Regulatory Applications Lessons Learned Industry Perspective." NEI Dry Storage Information Forum. Naples, FL. May 15-16, 2002.				
9485 9486 9487 9488	Newman, 1986	Newman, W., "The Hot Cell Examination of Oconee Fuel Rods After Five Cycles of Irradiation," DOE/ET/34212 50, Babcock & Wilcox, Lynchburg, Virginia. 1986.				
9489 9490 9491 9492	Rashid, et al., 2000	Rashid, R., D.J. Sunderland, and R.O. Montgomery. "Creep as the Limiting Mechanism for Spent Fuel Dry Storage - Progress Report." EPRI TR-1001207. 2000.				
9493 9493 9494 9495 9496	Rashid, et al., 2001	Rashid Y.R. and R.S. Dunham. "Creep Modeling and Analysis Methodology for Spent Fuel in Dry Storage." EPRI TR-1003135. 2001.				
9497 9498 9499 9500	Tsai, 2002	Tsai, H.C. Letter to K. Gruss, NUREG, Subject: "A Recent Result on Thermal Creep of Surry Cladding After 15-y Dry Cask Storage," ANL, July 11, 2002.				
9501 9502 9503	8.9 Supplemental Information for the Design and Testing of Lid Welds on Austenitic Stainless Steel Canisters as Confinement Boundary for Spent Fuel Storage (MEDIUM Priority)					
9504 9505 9506	8.9.1 Basis for the Review					

9507 10 CFR 72.236(e) states: "The spent fuel storage cask [note: also called "canister"] must be 9508 designed to provide redundant sealing of confinement systems." For a bolted lid canister 9509 design, the staff has accepted a dual seal arrangement as meeting the intent of this regulation. 9510 For a welded canister design, the staff has accepted closure designs employing redundant lids 9511 or covers, each with independent field welds. Thus, for either closure type, bolted or welded, a 9512 potential leak path must breach two independent seals or welds, sequentially, before the 9513 confinement system would be compromised.

9514

9515 The construction codes specify the types of non-destructive examinations (NDE) required for the confinement boundary during canister fabrication and loading operations. In addition to the 9516 code required NDE, a helium leakage test of the confinement boundary is considered necessary 9517 9518 to satisfy regulatory requirements. Whereas bolted lid canister designs incorporate a helium 9519 monitoring system during storage, the welded closure designs must rely on weld integrity to assure continued confinement effectiveness. Consequently, at least one of the redundant 9520 9521 welded closures must be helium leak tested per the method of ANSI N 14.5, with one exception 9522 permitted.

9523

9550

9552

9524 When the large, multi-pass weld joining the canister shell to the structural lid of an austenitic stainless steel spent fuel canister is executed and examined consistent with the guidance 9525 9526 provided herein, the staff has reasonable assurance that no flaws of significant size will exist such that they could impair the structural strength or confinement capability of this weld. For a 9527 spent nuclear fuel canister, such a flaw would be the result of improper fabrication or welding 9528 9529 technique, as service-induced flaws under normal and off-normal conditions of storage are not credible. Any such fabrication flaw would be reasonably detectable during the in-process and 9530 post-weld examination techniques described herein. 9531 9532

Based on evaluation, these described techniques should detect any such flaw which could lead to a failure or credible leakage of radioactive material. Therefore, the staff believes that there is reasonable assurance that no credible leakage of radioactive material would occur through the structural lid to canister shell weld of an austenitic stainless steel canister, and that helium leakage testing of this specific weld is unnecessary provided the weld is executed and examined in accordance with the methods described herein.

9540 Conversely, it is the staff position that other welds associated with the lid assemblies of spent 9541 fuel canisters must be subject to the helium leak test of ANSI N 14.5, in addition to the ASME 9542 Code required pressure test and surface NDE in order to demonstrate compliance with 9543 10 CFR 72.236. 9544

Note the criteria outlined above does not supercede the flaw acceptance criteria of any
construction code. Instead, this criteria is used to establish the maximum allowable weld
deposit depth before an in-process penetrant test (PT) examination is required.

9549 **8.9.2 Helium Leak Test**

9551 The helium leak test was established to provide assurance that:

9553
 No leakage occurred after the closure welds of the cask system were executed.
 9554
 9555
 9556
 No leakage occurred after the closure welds of the cask system were executed.
 This was viewed as necessary since no active or passive methods are employed to confirm or monitor the presence of helium within an all-welded spent fuel canister over its licensed lifetime. "No leakage" in this case means measured

- 9557leak rate performed per ANSI N14.5, at a predetermined sensitivity that shows9558hypothetical doses would not exceed 10 CFR Part 72 limits.
 - If the weld(s) meets the criteria of ANSI N14.5, the staff has assurance that radio nuclide leakage would not exceed the regulatory dose limits in 10 CFR Parts 72.104 and 72.106.
 - No oxygen in-leakage could occur, thereby assuring the presence of the inert helium atmosphere which prevents oxidation and corrosion induced degradation of the spent fuel assemblies and enhances cooling of the spent fuel.
- 9568 Helium Leak-Testing of the Confinement Boundary

9570 The redundant weld requirement for the confinement system closure creates two closure 9571 boundaries. The staff should verify that at least one of the redundant boundaries is helium leak 9572 tested, or, some closure welds leak tested and the remaining closure welds of the same 9573 boundary designed so that the "large weld" exemption criteria of this guidance are met. <u>Only</u> a 9574 boundary which is testable or excluded from testing, per this guidance, should be considered 9575 the confinement boundary of the redundant closures. Refer to Figures 8-3 and 8-9 and the 9576 following narrative for application of this criteria to two currently approved designs:

9577

9595

9559 9560

9561

9562 9563 9564

9565

9566 9567

9569

9578 Leak Testing a Single Lid With Cover Plate Design – Figure 8-3 9579

9580 In Figure 8-3, the dotted line marked (1) defines one closure boundary. Starting on the left side 9581 of the sketch, the closure boundary can be traced from the canister wall, up through the large, 9582 multi-pass weld joining the canister wall to the heavy section, combined shield and structural lid. 9583 The boundary continues through the lid to the small weld joining the heavy lid to the vent-and-9584 drain port closure plate, and back to the heavy lid again. The remainder of the boundary (and 9585 sketch) is assumed to be symmetrical with or similar to the half-sketch portion that is shown, for 9586 all cases.

- 9588 This boundary demonstrates confinement integrity by means of the large weld exemption 9589 criteria for one weld and by helium leak testing the small cover plate weld. 9590
- The large, canister-shell-to-lid weld is exempted from the helium leak test. This is because the canister shell to lid weld is a large, multi-pass weld meeting the flaw tolerance and other appropriate portions of this guidance. Note that this weld is executed prior to filling the canister with helium (excluding purging/welding gas).
- Before the remaining welds of this first closure boundary are executed, the canister is drained, dried, purged, and filled with helium to the design operating pressure. The helium line connection is closed off and the cover plate fitted and welded into place. Since the cover plate weld may have potentially been pressurized from underneath due to assumed leakage from the closure valve, it must be helium leak tested in accordance with the methods described in ANSI N14.5-1997. If there are other cover plates and welds, they would also be helium leak tested.
- 9603 This completes the first closure boundary. Note again that one weld was exempted from the 9604 helium leak test by the design criteria. The other weld was leak tested. Thus, this closure 9605 boundary demonstrates compliance with regulatory requirements and is consistent with the staff 9606 guidance by ensuring at least one of the two redundant closure boundaries is leak tested or

9607 exempted from leak testing by conformance with the large-weld exemption guidance. This 9608 boundary thus also qualifies as the confinement boundary.

9609

9610 The second boundary, delineated by line 2, can be traced from the canister wall on the left side 9611 of the sketch up through the cover plate fillet weld joining the canister wall to the structural lid 9612 cover plate. The boundary continues through the cover plate to the fillet weld joining the cover 9613 plate to the canister lid. The weld joining the cover plate to the canister wall and lid cannot be helium leak tested since there is no feasible means to do so. However, since the first closure 9614 boundary, delineated by line 1, was tested (or exempted thru design), the need to helium leak 9615 9616 test at least one of the closure boundaries has been satisfied. Since this second boundary does not meet all the criteria for a confinement boundary, it may not be designated as the 9617 9618 confinement boundary. The first closure is thereby the confinement boundary in this design, as 9619 it meets all the applicable criteria for a confinement boundary.

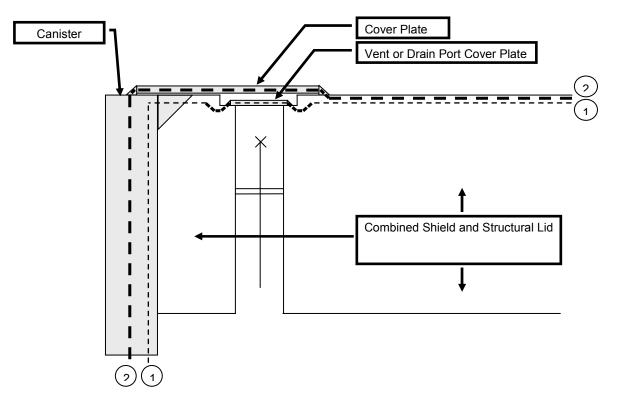
9620

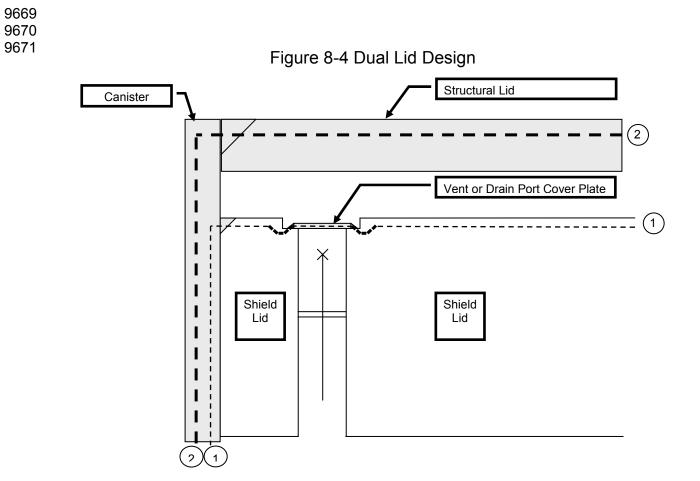
9622

9621 Leak Testing a Dual Lid Design – Figure 8-4

9623 In Figure 8-4 of this SRP, the dotted line marked (1) defines one of the redundant closure 9624 boundaries. It may be traced from the canister wall on the left side of the sketch. The boundary 9625 proceeds through the partial penetration weld joining the canister wall to the shield lid and into 9626 the shield lid. It continues through the small fillet weld joining the vent/drain port cover plate, the 9627 cover plate, and back through the same fillet weld to the shield lid.

- This closure boundary may satisfy the leak test guidance by several methods, depending on details of the weld design. The canister shell to shield lid weld may be designed several ways. The weld may be a small seal weld which would necessitate subsequent helium leak testing. Conversely, it could be a large, multi-pass weld consistent with the guidance described herein. In that case, the weld would qualify for the leak test exemption. Either way, note that this weld (canister to shield lid weld) is executed prior to filling and pressurizing the canister with helium (use of purge or backing gas for welding operations is not considered filling or pressurizing).
- 9637 Next, the canister is drained, dried, purged, and filled with helium to the design operating
 9638 pressure. The helium line connection is closed off. The cover plate is fitted and welded into
 9639 place. Since this weld may potentially be pressurized from underneath due to assumed leakage
 9640 through the closure valve, it must be helium leak tested regardless of weld size (thickness).
- This completes the first closure boundary. Note that one weld was either tested, or, exempted from the helium leak test by the design criteria. The other weld was leak tested. Thus, this closure boundary demonstrates compliance with regulatory requirements and is consistent with staff guidance by ensuring at least one of the two redundant closures is leak tested or exempted by conformance to this guidance. This closure may therefore be designated as the confinement boundary.
- 9648 The secondary boundary, delineated by line 2 in sketch B, can be traced from the canister wall 9649 on the left side of the sketch up through the canister wall-to-structural lid weld and into the 9650 structural lid.
- 9651


9652 The weld joining the canister wall and structural lid cannot be helium leak tested because 9653 helium is not present. Note, however, that this weld complies by design with the criteria 9654 described herein due to its size, structural requirements and weld examination requirements of 9655 the governing construction code.


9656

9657 In this case, the second closure also qualifies for designation as the confinement boundary 9658 because the single large weld involved may be exempted from the helium leak test. In this 9659 design, the designer therefore has the freedom to designate either of the redundant closures as 9660 the confinement boundary. Only one of the two closures is designated as the confinement 9661 boundary.

- 9662 9663
- 9663 9664
- 9665
- 9666
- 9667
- 9668

9 OPERATING PROCEDURES EVALUATION

9672 9673

9675

9674 9.1 Review Objective

9676 The operating procedures review ensures that the applicant's safety analysis report (SAR) 9677 presents acceptable operating sequences, guidance, and generic procedures for the key 9678 operations shown in Section 9.2, "Areas of Review." The review also ensures that the SAR 9679 incorporates and is compatible with the applicable operating control limits in the technical 9680 specifications.

9681

9682 The operating sequences described in the SAR should provide an effective basis for the 9683 development of the more detailed operating and test procedures by the cask user when 9684 preparing and implementing detailed site-specific procedures. The NRC normally inspects 9685 selected site-specific procedures. Such procedures are important aspects of the site's radiation 9686 protection program and allow the cask user to safely store spent nuclear fuel (SNF).

- 9688 This chapter applies to all discipline reviews. Figure 1-1 presents an overview of the evaluation 9689 process and can be used as a guide to assist in coordinating with other review disciplines.
- 9690

9704

9713

9714

9716 9717

9687

9691 **9.2 Areas of Review** 9692

9693 This chapter of the dry storage system (DSS) Standard Review Plan (SRP) provides guidance 9694 in evaluating the applicant's general operating sequences and generic procedures related to cask operations. Within each area of cask operations, the NRC staff assesses the effectiveness 9695 9696 of the applicant's generic procedures on a technical and safety basis for the subsequent 9697 development of detailed operating procedures. As required by U.S. Code of Federal Regulations (CFR) Part 72, "Licensing Requirements for the Independent Storage of Spent 9698 Nuclear Fuel and High-Level Radioactive Waste," Title 10, "Energy" (10 CFR Part 72) 72.234(f), 9699 9700 these procedures are to be provided to each cask user for the subsequent preparation and 9701 implementation of detailed site-specific procedures by the cask system user acting under a 9702 general license. Areas of review addressed in this chapter include the following: 9703

Loading Operations

9705	Fuel Specifications
9706	Damaged Fuel
9707	Subcriticality Features

- 9708 ALARA
- 9709 Offsite Release
- 9710 Draining and Drying
- 9711 Filling and Pressurization
- 9712 Welding and Sealing
 - Administrative Programs
- 9715 Cask Handling and Storage Operations
 - Cask Unloading

9718	Damaged Fuel
9719	Cooling, Venting, and Reflooding
9720	Fuel Crud
9721	ALARA
9722	Offsite Release

9724 9.3 Regulatory Requirements

9725
9726 This section presents a summary matrix of the portions of 10 CFR Part 72 that are relevant to
9727 the review areas addressed by this chapter. The NRC staff reviewer should read the exact
9728 referenced regulatory language. Table 9-1 matches the relevant regulatory requirements
9729 associated with this chapter to the areas of review.

9730

Table 9-1 Relationship of Regulations and Areas of Review								
	10 CFR Part 72 Regulations							
Areas of Review	72.104(b)	72.122(f), (h)(1), (l)	72.212 (b) (9)	72.234 (f)	72.236 (c)	72.236(h), (i)		
Cask Loading Operations	•		•	•	•	•		
Cask Handling and Storage Operations	•	•	•	•		•		
Cask Unloading		•	•	•		•		

9731 9732

9.4 Acceptance Criteria

9733

9734 Chapter 9, "Operating Procedures Evaluation," of the SAR should identify and describe the 9735 sequence of significant operations and actions that are important to safety for cask loading, 9736 cask handling, storage operations, and cask unloading. A sufficient level of detail is needed in 9737 Chapter 9 of the SAR for the reviewer to conclude that operating procedures will adequately 9738 protect health and minimize danger to life or property, protect the fuel from significant damage 9739 or degradation, and provide for the safe performance of tasks and DSS operations.

9740

9741 This portion of the DSS review seeks to ensure that the generic procedure descriptions and 9742 operational sequences described in the SAR include the following information: 9743

- Major operating procedures should apply to the principal activities expected to occur during dry storage. The expected scope of activities for the SAR operating procedure descriptions is previously described in Section 9.2 as well as Chapter 8 of Regulatory Guide (RG) 3.61, "Standard Format and Content for a Topical Safety Analysis Report for a Spent Fuel Dry Storage Cask." Operating procedure descriptions should be submitted to address the cask design features and planned operations.
- 9751
 9752 Operating procedure descriptions should identify measures to control processes and mitigate potential hazards that may be present during planned normal operations. Section 9.5, "Review Procedures," in this chapter discusses previously identified processes and potential hazards.

operating controls and limits described in the cask system's Technical 9758 Specifications provided in Chapter 13, "Technical Specifications and Operating 9759 Controls and Limits Evaluation," of the SAR. 9760 9761 9762 Operating procedure descriptions should reflect planning to ensure that • operations will fulfill the following acceptance criteria: 9763 9764 9765 Occupational radiation exposures will remain as low as is reasonably achievable (ALARA). 9766 9767 9768 Effective measures will be taken to preclude potential unplanned and uncontrolled releases of radioactive materials. 9769 9770 Offsite dose rates will be maintained within the limits of 10 CFR Part 20 9771 9772 and 10 CFR 72.104 for normal operations, and 10 CFR 72.106 for 9773 accident-level conditions. 9774 9775 In addition, the operating procedure descriptions should support and be 9776 consistent with the bases used to estimate radiation exposures and total doses as defined in Chapter 11, "Radiation Protection Evaluation," of this SRP. 9777 9778 9779 Operating procedure descriptions should include provisions for the following • activities: 9780 9781 Testing, surveillance, and monitoring of the stored material and casks 9782 during storage and loading and unloading operations. 9783 9784 Contingency actions triggered by inspections, checks, observations, 9785 instrument readings, and so forth. Some of these may involve off-normal 9786 conditions addressed in Chapter 12, "Accident Analyses Evaluation," of 9787 9788 the SAR. 9789 9.4.1 9790 Cask Loading 9791 9792 In addition to the acceptance criteria above, additional acceptance criteria for cask loading are 9793 as follows: 9794 9795 The operating procedure descriptions should facilitate reducing the amount of • water vapor and oxidizing material within the confinement cask to an acceptable 9796 level to protect the SNF cladding against degradation that might otherwise lead 9797 9798 to gross ruptures. 9799 9800 Operating procedures should specify methods for placing damaged fuel in a • damaged-fuel can prior to loading into a cask, if applicable. 9801 9802 9.4.2 9803 **Cask Handling and Storage Operations** 9804 9805 In addition to the acceptance criteria stated above, operating procedure descriptions should 9806 include provisions for maintenance of casks and cask functions during storage.

Operating procedure descriptions should ensure conformance with the applicable

9807

9757

•

9808 9.4.3 Cask Unloading

9810 In addition to the acceptance criteria stated above, operating procedures should facilitate ready 9811 retrieval of SNF stored in a storage cask.

9813 9.5 Review Procedures

9815 Introduction (MEDIUM Priority)

9817 The interrelationship of the operating procedures evaluation with other disciplines is shown in
9818 Figure 9-1.
9819

9820 The review procedures described in this section are presented in a format intended to facilitate 9821 an independent review. Even though several individuals may actually be tasked with preparing 9822 the chapter of the safety evaluation report (SER) related to operating procedures, all review 9823 team members should examine the operating procedure descriptions presented in the SAR. If 9824 the descriptions included in the SAR are not sufficiently detailed to allow a complete evaluation 9825 concerning fulfillment of the acceptance criteria, reviewers should request additional information 9826 from the applicant.

9827

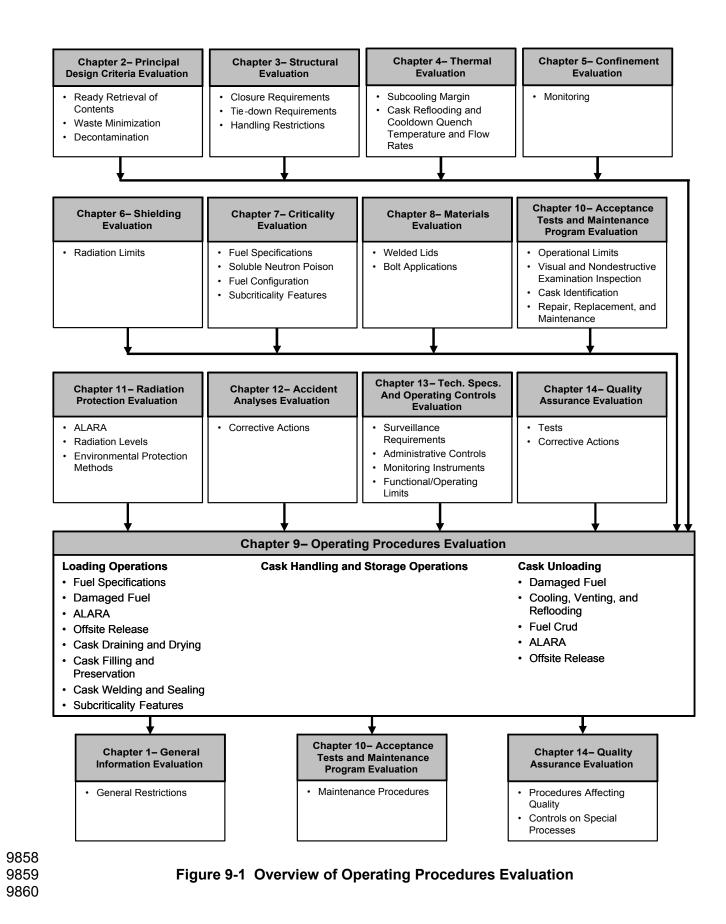
9809

9812

9814

9816

The operating procedure sequences are described in Chapter 9 of the SAR, and the direct dose
rate information in Chapter 6, "Shielding Evaluation," of the SAR is used to assess compliance
with radiation protection requirements in Chapter 11 of the SAR. The reviewer should verify that
the evaluation of Chapter 9 of the SAR is coordinated with the shielding and radiation protection
evaluations covered in Chapters 6, "Shielding Evaluation" and 11, "Radiation Protection
Evaluation," of this SRP.


9834

In addition, the following review procedures are based on the assumption that the ISFSI operations are at a reactor facility licensed under 10 CFR Part 50, "Domestic Licensing of Production and Utilization Facilities," and that loading and unloading activities will be performed in the facility's SNF pool. Review procedures for dry fuel transfers and/or ISFSI operations at sites away from a reactor will be developed at a later date, if necessary.

9841 Reviewers should be familiar with ANSI/ANS 57.9, "Design Criteria for an Independent Spent 9842 Fuel Storage Installation (Dry Type)," which applies to DSS operating procedures. Background 9843 information is available in NUREG/CR-4775, "Guide for Preparing Operating Procedures for Shipping Packages," which provides guidance on preparing operating procedures for shipping 9844 packages. Although NUREG/CR-4775 specifically addresses 10 CFR Part 71, most of the 9845 9846 guidance can be adapted for storage casks that are governed by 10 CFR Part 72. 9847 Consequently, reviewers should be familiar with this information before initiating the DSS 9848 operating procedures review.

9849

9850 Since many of the detailed procedures may be developed by facilities licensed under 10 CFR Part 50 or 72, further background information on site-specific procedure requirements may be 9851 found in RG 1.33, "Quality Assurance Program Requirements (Operation)," and its associated 9852 9853 standard ANSI/ANS 3.2. Reviewers of Chapter 9, "Operating procedures Evaluation" of the SAR should also be familiar with Chapter 11, "Conduct of Operations Evaluation," of NUREG-9854 1567, "Standard Review Plan for Spent Fuel Dry Storage Facilities." Specifically, Section 9855 11.4.3, "Normal Operations," in NUREG-1567 provides NRC review acceptance criteria for 9856 9857 facility-developed procedures.

9-5

In general, reviewers should perform the following steps in the process of evaluating all of theoperating procedure descriptions and operational sequences provided in the SAR.

9863 9864

9865

9866

9867

9868 9869

9870

9877 9878

9879

9880 9881

9882

- Verify that the proposed operating procedure descriptions incorporate and are compatible with the applicable operating limits and controls in Chapter 13, "Technical Specifications and Operational Controls and Limits Evaluation" of the SAR. Coordinate with the review of operating controls and limits, as described in Chapter 13, "Technical Specifications and Operating Controls and Limits Evaluation," of this SRP.
- 9871
 Ensure that the proposed operating procedure descriptions properly consider the prevention of hydrogen gas generation from any cause (including the reaction of zinc primer coating with acidic pool water, radiolysis, or other causes). Prevention of hydrogen generation or adequate purging of hydrogen is essential during loading and unloading operations that involve seal welding, seal cutting, grinding, or other 9876
 - Determine whether the descriptions include appropriate precautions to minimize occupational radiation exposures in accordance with ALARA principles and the limits given in 10 CFR Part 20, as mandated by 72.126(a)(5). Provisions may include use of remotely controlled equipment, monitoring, and use of portable shielding.
- 9883 Verify that the operating procedure descriptions include a general listing of the major 9884 tools and equipment needed to support ISFSI loading, storage, and unloading 9885 operations (including those at the pool facility). The descriptions should also address installation, use, and removal of the cask and fuel, tools, and equipment. In addition, 9886 9887 the descriptions should describe any specialized tools and equipment in sufficient detail to enable users to understand their function. Examples include lifting yokes, 9888 9889 transporter equipment, welding and cutting equipment, and vacuum drying equipment. The use of any such equipment that is classified as being important to 9890 safety is subject to approval as part of the application review. Such equipment 9891 9892 should be identified and described in detail, its performance characteristics should be defined, and the design should be evaluated. 9893 9894
- 9895 In addition to these generic review procedures, all disciplines should evaluate each of the 9896 specific areas of operating procedure review as described in the following subsections. 9897
- 98989.5.1Cask Loading (Priority as indicated)9899
- 9900 (MEDIUM Priority) The operating procedure descriptions in the SAR should present the activities sequentially in the anticipated order of performance. The generic procedures in 9901 Chapter 9, "Operating Procedures Evaluation" of the SAR should be reviewed to ensure that 9902 they include appropriate key prerequisite, preparation, and receipt inspection activities to be 9903 The reviewer should verify that tests, inspections, 9904 accomplished before cask loading. 9905 verifications, and cleaning procedures required in preparation for cask loading are specified. In 9906 addition, where applicable, the reviewer should verify that the procedure descriptions include 9907 actions needed to ensure that any fluids such as shield water and primary coolants fill their 9908 respective cavities according to design specifications.

- 9910 Fuel Specifications (MEDIUM Priority)
- 9911

The reviewer should verify that the loading procedure description appropriately addresses the 9912 SNF specifications (e.g., burnup, cooling period, source terms, heat generation, cladding 9913 9914 damage, associated non-fuel hardware, etc.) in Chapter 2, "Principal Design Criteria," and 9915 Chapter 13, "Technical Specifications and Operation Controls and Limits Evaluation" of the 9916 SAR. For cask systems relying upon burnup credit, the loading procedure description should 9917 include verification that assemblies selected for loading meet the specifications for assembly 9918 operational history and the loading curve as well as include performance of measurements to 9919 confirm assembly burnup values. Depending on the types and specifications of fuel assemblies 9920 stored in the reactor SNF pool, detailed site-specific procedures may be necessary to ensure 9921 that all fuel loaded in the cask meets the fuel specifications for the cask design. These 9922 procedures can be evaluated only on a site-specific basis and will generally be evaluated 9923 through inspections rather than during the licensing review. The SAR should indicate, however, 9924 that such procedures may be necessary.

9925

9927

9926 Damaged Fuel (MEDIUM Priority)

9928 The reviewer should verify that the SAR includes appropriate measures for the loading of 9929 damaged fuel, if damaged fuel is included in the proposed cask contents. Chapter 2, "Principal Design Criteria Evaluation," and Chapter 8, "Materials Evaluation," of this SRP provide criteria 9930 for the storage of damaged fuel. Information in Section 8.6, "Supplemental Information for 9931 9932 Methods for Classifying Fuel," of this SRP should be used to identify the conditions that 9933 determine when SNF is to be classified as damaged fuel. Section 8.4.17.2 of this SRP should 9934 be reviewed to determine the classification, documentation, and special handling requirements 9935 for damaged fuel and determine if operating procedures address these requirements.

- 9936
- 9937 Subcriticality Features (MEDIUM Priority)
- 9938

9939 Where applicable, the reviewer should verify that the procedure descriptions include the use of 9940 features important to criticality safety that may require installation by the DSS user. Such items 9941 include fuel spacers and items (e.g., blocks) used to prevent loading of contents in selected 9942 basket locations. The procedure descriptions should include installation, or verification of the 9943 installation, of these items prior to cask loading for casks that rely upon these features in the 9944 criticality analysis. Additionally, the procedure descriptions should include verification, in 9945 accordance with Technical Specification requirements, of the minimum soluble boron level 9946 necessary for cask loading for casks requiring soluble boron to meet subcriticality. 9947

- 9948 ALARA (LOW Priority)
- 9949

9950 The reviewer should verify that the procedure descriptions incorporate ALARA principles and practices. These may include provisions to perform radiological surveys as well as exposure 9951 9952 and contamination control measures, temporary shielding, and suggested caution statements 9953 related to actions that could change radiological conditions. In addition, the reviewer should verify that any recommended surveys incorporate the applicable operating controls and limits 9954 9955 described in Chapter 13, "Technical Specifications and Operating Controls and Limits Evaluation" of the SAR. 9956

- 9957
- 9958 Offsite Release (LOW Priority)
- 9959

9960 Where applicable, the reviewer should verify that the SAR describes methods to minimize offsite 9961 releases such as decontamination, filtered ventilation, temporary containments (tents), and so 9962 forth. The procedure descriptions should also provide for minimizing generation of radioactive 9963 waste.

9964

9965 <u>Draining and Drying</u> (MEDIUM Priority) 9966

9967 The reviewer should evaluate the descriptions related to methods for use in draining and drying 9968 the cask for ISFSI operations at a reactor facility or at sites away from a reactor with a transfer 9969 pool. In particular, the descriptions should clearly describe the procedures for removing water 9970 vapor and oxidizing material to an acceptable level, and the reviewer should assess whether 9971 those procedures are appropriate.

9972

9973 The NRC staff has accepted vacuum drying methods comparable to those recommended in 9974 PNL-6365 (Knoll, 1987). This report evaluates the effects of oxidizing impurities on the dry storage of light-water reactor (LWR) fuel and recommends limiting the maximum quantity of 9975 oxidizing gasses (such as O_2 , CO_2^4 , and CO) to a total of 1 gram-mole per cask. This 9976 corresponds to a concentration of 0.25 volume percent of the total gases for a 7.0m³ (about 9977 247 ft³) cask gas volume at a pressure of about 0.15 MPa (1.5 atm) at 300°K (80.3°F). This 9978 9979 1 gram-mole limit reduces the amount of oxidants below levels where any cladding degradation 9980 is expected. Moisture removal is inherent in the vacuum drying process, and levels at or below those evaluated in PNL-6365 (about 0.43 gram-mole H₂O) are expected if adequate vacuum 9981 9982 drying is performed. 9983

If alternative methods other than vacuum drying are used (such as forced helium recirculation),
the reviewer should ensure that additional analyses or tests are provided to sufficiently justify
that cover gas moisture and impurity levels as specified in Chapter 9, "Operating Procedures
Evaluation" of the SAR are met and will not result in unacceptable cladding degradation.

9989 The following examples illustrate the accepted methods for cask draining and drying in 9990 accordance with the recommendations of PNL-6365 (Knoll, 1987): 9991

- 9992 • The cask should be drained of as much water as practicable and evacuated to less than or equal to 4.0E-04 MPa (4 millibar, 3.0 mm Hg or Torr). After 9993 9994 evacuation, adequate moisture removal should be verified by maintaining a 9995 constant pressure over a period of about 30 minutes without vacuum pump operation (or the vacuum pump is running but it is isolated from the cask with its 9996 9997 suction vented to atmosphere). The cask is then backfilled with an inert gas 9998 (e.g., helium) for applicable pressure and leak testing. Care should be taken to 9999 preserve the purity of the cover gas and, after backfilling, cover gas purity should 10000 be verified by sampling. 10001
- The procedures should reflect the potential for blockage of the evacuation system or masking of defects in the cladding of non-intact rods, as a result of icing during evacuation. Icing can occur from the cooling effects of water vaporization and system depressurization during evacuation. Icing is more likely to occur in the evacuation system lines than in the cask because of decay heat from the fuel. A staged draw down or other means of preventing ice blockage of

⁴ Can be broken down by radiolysis.

- 10008the cask evacuation path may be used (e.g., measurement of cask pressure not10009involving the line through which the cask is evacuated).
- 10010The procedures should specify a suitable inert cover gas (such as helium) with a10011quality specification that ensures a known maximum percentage of impurities to10012minimize the source of potentially oxidizing impurity gases and vapors and10013adequately remove contaminants from the cask.
- The process should provide for repetition of the evacuation and repressurization cycles if the cask interior is opened to an oxidizing atmosphere following the evacuation and repressurization cycles (as may occur in conjunction with remedial welding, seal repairs, etc.).

10020 Reviewers should ensure that the drying specifications are consistent with the proposed 10021 operating controls and limits described in the technical specifications provided in Chapter 13 of 10022 the SAR. In addition, reviewers should assess the need for any additional technical 10023 specifications.

10025 <u>Welding and Sealing</u> (HIGH Priority)

10026 10027 Structural and materials disciplines should coordinate their review of welded lids as described in Section 8.4.7, "Weld Design/Inspection," of this SRP for application of the proper weld joint, 10028 welding procedures, and non-destructive examination methods (NDE) to ensure the appropriate 10029 10030 operating procedures are in place and acceptable. Reviewers should verify that procedures are acceptable for NDE and welding of the closure welds. While the NRC accepts progressive 10031 10032 surface examinations utilizing dye penetrant testing (PT) or magnetic particle (MT) examination, 10033 it is only permitted if unusual design or loading conditions exist. In addition, if a PT or MT examination is used, a stress-reduction-factor of 0.8 is imposed on the weld strength for the 10034 10035 reasons presented in Section 8.4.7.3. The SAR should also ensure ALARA principles are followed and include acceptable provisions for correcting weld defects and any additional drying 10036 10037 and purging that may be necessary.

10038

10014

10039 The reviewer should verify that provisions for placing and tightening any closure bolts, such as 10040 those associated with concrete casks, are consistent with information presented in Chapters 2, 3, and 10 of the SAR that address applicable design criteria, structural evaluation, and the 10041 10042 acceptance tests and maintenance program, respectively. The materials discipline should 10043 ensure that the closure bolts satisfy the conditions given in Section 8.4.10, "Bolt Applications," of 10044 this SRP. The SAR should specify the torque required to properly seal the closure lid. The inner seal should be tested using a helium leak test with the interior of the cask pressurized as 10045 previously described. The outer seal should also be tested using a helium leak test with the 10046 between-seal volume pressurized as required by the respective subsection of the ASME B&PV 10047 10048 Code, Section III.

- 10049
- 10050 <u>Filling and Pressurization</u> (LOW Priority) 10051

The reviewer should verify that the procedure recommendations address steps to fill and pressurize the cask with inert gas such as helium with a known maximum percentage of impurities. The operating procedures should state that the filling and pressurization (or evacuation and backfill) process be repeated if the cask cavity is exposed to the atmosphere. Also, the reviewer should ensure that the procedure recommendations include the requirements in Chapter 13, "Technical Specifications and Operation Controls and Limits Evaluation" of the SAR.

10060 The SAR should specify the leak rate criteria (e.g., total leakage, leakage per closure, 10061 sensitivities of tests, etc.), and the reviewer should verify that these criteria are consistent with those presented in Chapters 2, 9, and 13 of the SAR. In addition, the reviewer should assess 10062 10063 the general methods of leak testing (e.g., pressure rise, mass spectrometry) as they apply to the 10064 leak rate being tested. Particular attention should be paid to the possible use of quick-10065 disconnect fittings for draining and filling operations. Although no credit is usually taken for these devices as part of the confinement boundary, their presence can negate the results of the 10066 leak test, and the SAR should provide guidance regarding their use. In addition, the guidelines 10067 10068 presented in the SAR should note that leak testing is in accordance with ANSI N14.5, "Radioactive Materials – Leakage Tests on Packages for Shipment." 10069

10070 10071 The reviewer should ensure that the SAR presents applicable pressure testing criteria (e.g., test 10072 pressure, hold periods, inspections) and that these criteria are consistent with those presented

in Chapter 9 of the SAR.

10073 10074

10083

10089

10090 10091

10092

10093 10094

10095

10075 Administrative Programs (HIGH Priority)

10076 10077 The applicant may request that one or more administrative programs be approved by the NRC 10078 in lieu of the requirements set forth in Section 9.5.1 above for offsite releases, draining and 10079 drying, filling and pressurization, and welding and sealing. Requirements for such 10080 administrative programs are provided in NUREG-1745, "Standard Format and Content for 10081 Technical Specifications for 10 CFR Part 72 Cask Certificates of Compliance," and are 10082 summarized in this section.

- The applicant may request the NRC approve an administrative program for offsite releases. In this case, the reviewer should verify that the SAR describes a Radioactive Effluent Control Program and related operating procedures that shall be established, implemented, and maintained to:
 - Implement the requirements of 10 CFR 72.126.
 - Limit the surface contamination and verification of meeting those limits prior to removal of the cask from the Part 50 structure.
 - Limit the leakage rate and verification of meeting those limits prior to removal of the cask from the Part 50 structure.
- 10096 10097 10098
- Show compliance with the requirements of 10 CFR 72.104 and 72.106.

10099 In addition, the applicant may request the NRC approve an administrative program for cask 10100 loading. In this case, the reviewer should verify that the SAR requirements are implemented for loading fuel and components into the cask and preparing the cask for storage. 10101 The 10102 requirements of the program for loading and preparing the cask should be completed prior to 10103 removing the cask from the 10 CFR Part 50 structure. (Items 1, 5, and 6 below are associated 10104 with requirements that will remain in the technical specifications; however, the process for 10105 establishing the specified action limit may be moved to this administrative program if a method of evaluation acceptable to the NRC is presented in the SAR. Items 2, 3, and 4 have been 10106 10107 relocated from the Limiting Conditions of Operations [LCO] section to this administrative program because it is felt that NRC-approved methods of evaluation will be relatively easy to 10108 develop. If appropriate methods are not presented in the SAR, these items will retain LCOs.) 10109

10117

10121

10122

10123

10124

10125 10126

10130

10131 10132

10133 10134

10135

At a minimum, the cask-loading program shall establish criteria that need to be verified to address SAR commitments and regulatory requirements for:

- 101141.Vacuum drying times and pressures, or forced helium drying criteria,, to assure10115that the short-term fuel temperature limits are not violated and the cask is10116adequately dry.
- 101182.Inerting pressure and purity to assure adequate heat transfer and corrosion10119control.10120
 - 3. Leak testing to assure adequate cask integrity and consistency with the offsite dose analysis.
 - 4. Surface dose rates to identify significant problems with shielding fabrication, gross misloads, and verify consistency with the offsite dose analysis.
- 101275.Ambient and pool water temperature to assure adequate subcriticality and
material ductility.10128material ductility.10129
 - 6. SNF pool boron concentration to verify the acceptable subcriticality margin.
 - Clad oxidation thickness for high-burnup fuel in accordance with SRP Chapter 8, :Materials Evaluation" or other NRC-approved methodology if high-burnup fuel is included in the contents.

10136 The program shall include compensatory measures and appropriate completion times if the 10137 program requirements are not met. 10138

101399.5.2Cask Handling and Storage Operations (LOW Priority)

10140 10141 The reviewer should examine the recommendations associated with procedures necessary to transfer the cask to the storage location. The reviewer should pay particular attention to 10142 10143 ensuring that all accident events applicable to such transfer are bounded by the design events analyzed in Chapters 2, "Principal design Criteria", 3, "Structural Evaluation" and 12, "Accident 10144 10145 Analyses Evaluation" of the SAR. This includes procedures to be specified in the SAR for use after a design-basis accident for testing the effectiveness of the shielding. The structural and 10146 thermal disciplines should coordinate their review to ensure that all conditions for lifting and 10147 10148 handling methods are bounded by the evaluations in their respective Chapters 3 and 4 of the 10149 SAR. There may be technical specifications associated with cask transfer operations such as 10150 restricting lift heights and environmental conditions (e.g., high/low temperatures, etc.) requiring 10151 coordination with the review in Chapter 13, "Technical Specifications and Operating Controls 10152 and Limits Evaluation," of this SRP.

10153

10154 The reviewer should verify that the procedure recommendations discuss the inspection, 10155 surveillance, and maintenance requirements that are applicable during ISFSI storage. 10156 Surveillance and monitoring requirements should also be included in Chapter 13 of the SAR, 10157 and maintenance should be included in Chapter 10 of the SAR. Reviewers should note that if 10158 the confinement vessel closure is bolted, the NRC staff generally requires that the successful 10159 operation of the seals be demonstrated with an initial leak test and a monitoring system and/or a

- 10160 surveillance program as discussed in Chapter 10, "Acceptance Tests and Maintenance Program10161 Evaluation," of this SRP.
- 10162
- 10163 The shielding and radiation protection reviewers should verify that proposed procedures give 10164 due consideration to maintaining doses ALARA during cask handling and storage operations. 10165

10166 The applicant may request that an ISFSI Operations Program be approved by the NRC. 10167 Requirements for such an administrative program are provided in NUREG-1745. The reviewer 10168 should verify that such a program establishes criteria for:

10169 10170 10171

10172

10173 10174 10175

10176 10177

- Minimum cask center-to-center spacing.
- Pad parameters (i.e., pad thickness, concrete strength, soil modulus, reinforcement, etc.) that are consistent with the SAR analysis.
- Maximum lifting heights for the cask system to ensure that the gravity load limits are met for the design-basis events.

101789.5.3Cask Unloading (Priority – as indicated)10179

10180 (LOW Priority) The reviewer should verify that the SAR adequately describes the necessary unloading procedure recommendations. The unloading procedure descriptions should present 10181 the activities sequentially in the anticipated order of performance, including those key 10182 prerequisite and preparation tasks that must be accomplished before cask unloading. Where 10183 applicable, the reviewer should verify that the procedure guidance ensures that any fluids, such 10184 10185 as shield or borated water, fill their respective cavities according to design specifications. Additionally, for casks that require borated water to maintain subcriticality, the reviewer should 10186 ensure that the procedure guidance includes verification that the water to be used for cask 10187 reflood meets the minimum soluble boron content required by the Technical Specifications. 10188

10189

10198

10201 10202

10203

10204 10205

10206

10190 <u>Damaged Fuel</u> (LOW Priority) 10191

10192 The SAR should include appropriate additional measures for the potential presence of damaged 10193 fuel. Procedures should be designed to maximize worker protection from unanticipated 10194 radiation exposures or contaminants due to damaged fuel in accordance with ALARA principles 10195 and, to the maximum extent possible, prevent any uncontrolled releases to the environment. 10196 The following points outline the relevant safety concerns and an acceptable approach to 10197 address damaged fuel contingencies in cask unloading:

- 10199•The procedure descriptions should provide for fuel unloading under normal
conditions.
 - The unloading process should ensure that the fuel can be safely unloaded with regard to structural, criticality, thermal, and radiation protection considerations. This includes the provision for safe maintenance of the fuel and cask while any additional measures needed to address suspected damaged fuel are planned and implemented.
- 10207
 10208 The unloading process should reflect the potential for damaged fuel and changing radiological conditions.
 10210

10211The process should include measures to check for and detect damaged fuel10212conditions (such as atmosphere samples) before opening the cask. (Note that10213fuel oxidation resulting from exposure to air at temperatures typical for dry10214storage is a known form of fuel degradation. Therefore, the presence of air in a10215cask designed to maintain an inert atmosphere indicates that the fuel may be10216degraded. The detection of fission gases is another indicator that the fuel may10217be degraded.)

10219 The process may establish sample result thresholds above which damaged fuel is suspected. 10220 Other technically sound methods may be used to check for potential air leakage paths. Such 10221 methods may include designs that monitor cask internal pressure or seal integrity and alert the 10222 licensee to a problem before oxidation could occur. However, this method may not address 10223 detection of potential fuel degradation resulting from other mechanisms (such as a cask drop 10224 accident).

- If the sample indicates normal conditions, the normal unloading process should be followed.
- 10229 • If damaged fuel is suspected or found, the procedure description should stipulate that additional measures, appropriate for the specific conditions that include the 10230 canning of the damaged fuel, are to be planned, reviewed, and approved by the 10231 designated approval authority and implemented to minimize exposures to 10232 workers and radiological releases to the environment. 10233 These additional measures may include provision of filters, respiratory protection, and other 10234 methods to control releases and exposures in accordance with ALARA. 10235 10236
- 10237 <u>Cooling, Venting, and Reflooding</u> (LOW Priority) 10238

10218

10226

10227

10228

10252

10253

10254

10239 The reviewer should verify that the SAR describes applicable operational measures to control 10240 cask cooling, venting, and reflooding (when appropriate). Also, the reviewer should verify that 10241 these measures are consistent with the results of the structural, materials, and thermal 10242 evaluations in the SAR, respectively. Cask cooling, venting, and reflooding should not result in 10243 damage to the fuel. Operational measures may include external cooling of the confinement 10244 cask for initial temperature reduction, restricting reflood flow rates to control and limit internal 10245 cask pressure from steam formation, and limiting cooldown rates.

10247 Special attention should be devoted to reviews in this area since analysis of existing designs 10248 have predicted fuel temperatures during storage and transfer in excess of 533.15°K (500°F) for 10249 design-basis heat loads. Operational controls may be required to address the following 10250 potential effects during a cooldown and reflood evolution: 10251

- Cask pressurization may occur as a result of steam formation as reflood water contacts hot surfaces.
- Excessive cooling rates may cause fuel cladding and fuel rod component damage and release of radioactive material as a result of stress (thermal, internal pressure, etc.) beyond material strengths (see SRP Section 8.4.17.1, "Cladding Temperature Limits").

- 10260 Excessive cooling rates may induce thermal stress that causes gross • 10261 deformation of the fuel assembly components and subsequent binding with the 10262 basket.
- 10263 10264
- 10265
- 10266 10267
- Cask supply and vent line failures from inadequate design for pressure and temperature could result in radiological exposures and personnel hazards (e.g., steam burns).

10268 Fuel Crud (LOW Priority) 10269

٠

10270 The reviewer should verify that the procedure descriptions include contingencies for protection 10271 from fuel crud particulate material. Appendix E of ANSI/ANS 57.9 provides a short discussion of crud with respect to dry transfer systems. The unloading procedures should alert cask users to 10272 wait until any loose particles have settled and to slowly move the fuel assemblies to minimize 10273 10274 crud dispersion in the SNF pool. Experience with wet unloading of boiling-water reactor (BWR) 10275 fuel after transportation has involved handling significant amounts of crud. This fine crud, which includes ⁶⁰Co and ⁵⁵Fe, will remain suspended in water or air for extended periods. The dry 10276 10277 cask reflood process, during unloading of BWR fuel, has the potential to disperse crud into the 10278 fuel transfer pool and the pool area atmosphere, thereby creating airborne exposure and 10279 personnel contamination hazards. By contrast, no significant crud dispersal problems have 10280 been observed in handling pressurized-water reactor (PWR) fuel due to differences in the characteristics of crud on this type of fuel. 10281

10282

10283 ALARA (LOW Priority)

10284

10285 The reviewer should verify that the procedure descriptions incorporate ALARA principles and These may include provisions to perform radiological surveys, exposure and 10286 practices. 10287 contamination control measures, temporary shielding, and suggested caution statements related to specific actions that could change radiological conditions. The reviewer should verify 10288 10289 that any recommended surveys incorporate the applicable operating controls and limits 10290 described in Chapter 13, "Technical Specifications and Operation Controls and Limits Evaluation" of the SAR. 10291

10292 10293

10294

Offsite Release (LOW Priority)

10295 Where applicable, the reviewer should verify that the SAR describes methods such as filtered 10296 ventilation, decontamination, or temporary containments to minimize offsite releases. The procedures should also provide for minimizing generation of radioactive waste. 10297 10298

- 10299 Administrative Programs (HIGH Priority)
- 10300

10301 The applicant may request that the NRC approve an administrative program for cask unloading. NUREG-1745 provides requirements for such an administrative program. The reviewer should 10302 10303 verify the proposed administrative program meets the requirements summarized in

- 10304
- 10305

10306 9.6 **Evaluation Findings** 10307

Section 9.5.1 of this SRP.

10308 The reviewer should examine the 10 CFR Part 72 acceptance criteria and provide a summary statement for each. These statements should be similar to the following model, as applicable: 10309 10310

10311F9.1The [cask designation] is compatible with [wet/dry] loading and unloading.10312General procedure descriptions for these operations are summarized in10313Chapter(s) ______ of the applicant's safety analysis report (SAR). Detailed10314procedures will need to be developed and evaluated on a site-specific basis.10315

10316

10317

10318

10322 10323

10324

10325

10326 10327

10328 10329

10330 10331

10332

10333

10334

10335 10336

10337

10338

10340

- F9.2 The [welded/bolted lids or other features] of the cask allow ready retrieval of the spent fuel for further processing or disposal as required.
- 10319F9.3The smooth surface [or other feature] of the cask is designed to facilitate10320decontamination. Only routine decontamination will be necessary after the cask10321is removed from the spent fuel pool.
 - F9.4 No significant radioactive waste is generated during operations associated with the independent spent fuel storage installation (ISFSI). Contaminated water from the spent fuel pool will be governed by the 10 CFR Part 50 license conditions.
 - F9.5 No significant radioactive effluents are produced during storage. Any radioactive effluents generated during the cask loading will be governed by the 10 CFR Part 50 license conditions.
 - F9.6 The content of the general operating procedures described in the SAR are adequate to protect health and minimize damage to life and property. Detailed procedures will need to be developed and approved on a site-specific basis.
 - F9.7 The radiation protection chapter of this SER assesses the operational restrictions to meet the limits of 10 CFR Part 20. Additional site-specific restrictions may also be established by the site licensee.
- 10339 The reviewer should provide a summary statement similar to the following:

10341 "The staff concludes that the generic procedures and guidance for the operation of the 10342 [cask designation] are in compliance with 10 CFR Part 72 and that the applicable 10343 acceptance criteria have been satisfied. The evaluation of the operating procedure 10344 descriptions provided in the SAR offers reasonable assurance that the cask will enable 10345 safe storage of spent fuel. This finding is based on a review that considered the 10346 regulations, appropriate regulatory guides, applicable codes and standards, and 10347 accepted practices."

10351

10 ACCEPTANCE TESTS AND MAINTENANCE PROGRAM EVALUATION

10350 **10.1 Review Objective**

10352 The acceptance tests and maintenance program review ensures that the applicant's Safety 10353 Analysis Report (SAR) includes the appropriate acceptance tests and maintenance programs 10354 for the system. A clear, specific listing of these commitments will help avoid ambiguities 10355 concerning design, fabrication, and operational testing requirements when the U.S. Nuclear 10356 Regulatory Commission (NRC) staff conducts subsequent inspections. Acceptance tests may 10357 also be described in the applicable chapter of this Standard Review Plan (SRP).

10359 **10.2 Areas of Review**

10360

10371

10361 This chapter of the dry storage system (DSS) SRP provides guidance for use in evaluating the 10362 acceptance tests and maintenance programs outlined in the SAR. The acceptance tests 10363 demonstrate that the cask has been fabricated in accordance with the design criteria and that 10364 the initial operation of the cask complies with regulatory requirements. The maintenance 10365 program describes actions that the licensee needs to implement during the storage period to 10366 ensure that the cask performs its intended functions.

As defined in Section 10.5, "Review Procedures," a comprehensive evaluation *may* encompass
the following acceptance tests and maintenance programs:

Acceptance Tests

10371	Acceptance resis
10372	Structural/Pressure Tests
10373	Leak Tests
10374	Visual and Nondestructive Examination Inspections
10375	Shielding Tests
10376	Neutron Absorber Tests
10377	Thermal Tests
10378	Cask Identification
10379	
10380	Maintenance Program
10381	Inspection

- 10382 Tests
- 10383 Repair, Replacement, and Maintenance

10385 **10.3 Regulatory Requirements**

10386

10384

10387 This section presents a summary matrix of the portions of U.S. Code of Federal Regulations 10388 (CFR), Part 72, "Licensing Requirements for the Independent Storage of Spent Nuclear Fuel 10389 High-Level Radioactive Waste and Reactor-Related Greater Than Class C Waste," Title 10, 10390 "Energy" (10 CFR Part 72) that are relevant to the review areas addressed by this chapter. The 10391 NRC staff reviewer should read the exact referenced regulatory language. Table 10-1 matches 10392 the relevant regulatory requirements associated with this chapter to the areas of review 10393 identified in the previous section.

10394

Table 10-1 Relationship of Regulations and Areas of Review								
	10 CFR Part 72 Regulations							
Areas of Review	72.82 (d)	72.122 (a), (f)	72.124 (b)	72.162	72.212 (b)(8)	72.232 (b)	72.236 (c)	72.236 (g), (j), (k), (l)
Acceptance Tests	•	•	•	•		•		•
Maintenance Program	•	•						•
Design Verification	•	•			•	•	•	•

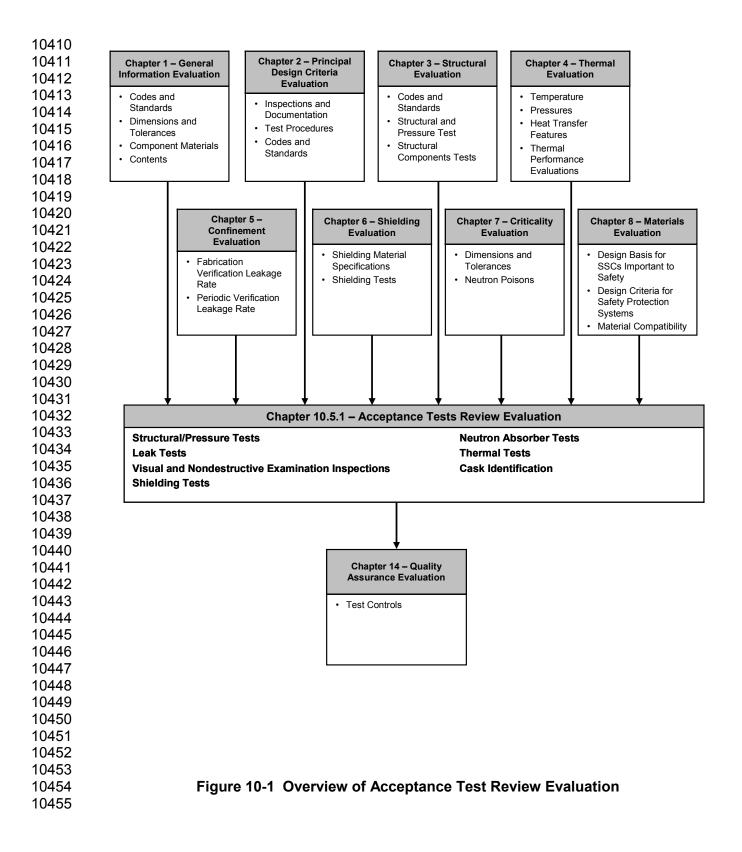
10.4 Acceptance Criteria

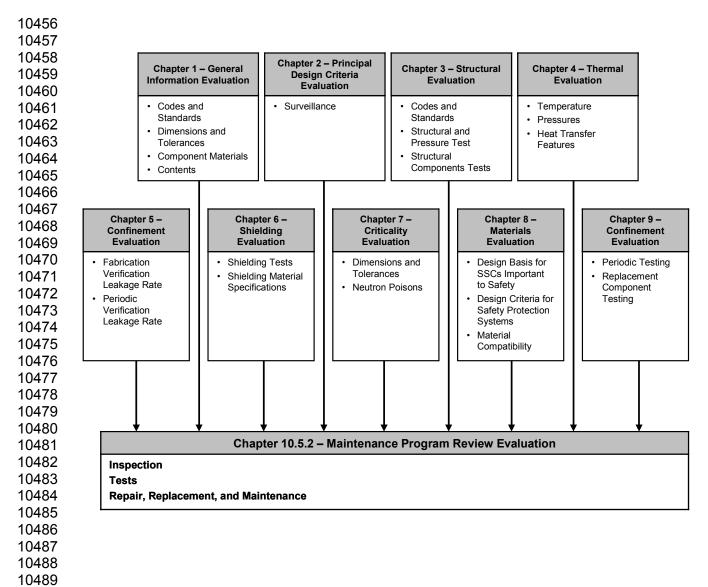
10398 In general, the acceptance tests and maintenance programs outlined in the SAR should cite 10399 appropriate authoritative codes and standards. The staff has previously accepted the following 10400 as the regulatory basis for the design, fabrication, inspection, and testing of DSS components:

10400

System/Component	Acceptable Regulatory Basis*				
Confinement System	 American Society of Mechanical Engineers (ASME), "Boiler and Pressure Vessel (B&PV) Code," Section III, Division 1, 2007 "American National Standard for Radioactive Materials – 				
	Leakage Tests on Packages for Shipment" (ANSI N14.5)				
Confinement Internals (e.g., basket)	ASME B&PV Code, Section III, Subsection NG				
Metal Cask Overpack	ASME B&PV Code, Section VIII				
Concrete Cask Overpack	 American Concrete Institute (ACI), "Code Requirements for Structural Concrete" (ACI-318), "Code Requirements for Nuclear Safety Related Concrete" (ACI-349), as appropriate 				
Other Metal Structures	ASME B&PV Code, Section III, Subsection NF				
	 American Institute of Steel Construction (AISC), "Manual of Steel Construction" 				
* The SAR should clearly identify any exceptions to the listed codes and standards (see SRP Chapter 13, "Technical Specifications and Operating Controls and Limits Evaluation").					

10402 10403


10404


10.5 Review Procedures

10405 Introduction

10406
10407 Figures 10-1 and 10-2 present an overview of the evaluation process and can be used as a
10408 guide to assist in coordinating with the review disciplines.

10409

Figure 10-2 Overview of Maintenance Program Review Evaluation

10492 The review procedures described in this section are presented in a format intended to facilitate 10493 a single, independent review. Although one or more individual(s) may be tasked with preparing the corresponding section of the safety evaluation report (SER) related to the proposed 10494 acceptance tests and maintenance program, all review team members should examine the 10495 related information presented in the SAR. Information in the SAR related to the acceptance 10496 tests may be located in the chapters related to specific disciplines (e.g. SAR Chapter 4, 10497 "Thermal Evaluation") and/or in SAR Chapter 10, "Acceptance Tests and Maintenance 10498 Program." Reviewers should devote special attention to those tests (or the lack of tests) that 10499 affect their functional area of review. If the descriptions included in the SAR are not sufficiently 10500 10501 detailed to allow a complete evaluation concerning fulfillment of the acceptance criteria, reviewers should request additional information from the applicant. 10502 10503

- In general, applicants commit to design, construct, and test the system under review to the codes and standards identified in SAR Chapter 2, "Principal Design Criteria." The NRC does not generally review specific test and maintenance procedures as part of the licensing process; however, the applicant is expected to describe (in the SAR) certain elements of the proposed test and maintenance programs. The staff may inspect selected portions of test procedures as part of its onsite activities.
- 10511 The following subsections provide *representative examples* of test and maintenance program 10512 elements that should be subject to licensing review. If included in the SAR, each of these tests 10513 and maintenance elements should be reviewed to ensure that the applicant has identified the 10514 purpose of the test, explained the proposed test method (including any applicable standard to 10515 which the test will be performed), defined the acceptance criteria and bases for the test, and 10516 described the actions to be taken if the acceptance criteria are not satisfied.
- 1051810.5.1Acceptance Tests (Priority as indicated)10519

10520 The following guidance is presented on the basis of tests deemed acceptable by the staff in 10521 previous SAR reviews. The guidance is based on operational experience and the knowledge 10522 from past licensing reviews. Alternative tests and criteria may be used if the SAR provides 10523 appropriate explanation and adequate justification. Additional tests and criteria may be needed, 10524 depending on the operational experience and uniqueness of the design proposal. 10525

10526 10.5.1.1 Structural/Pressure Tests

10527

10528 (MEDIUM Priority) Lifting trunnions should be fabricated and tested in accordance with ANSI N14.6, "American National Standard for Radioactive Materials-Special Lifting Devices for 10529 10530 Shipping Containers Weighing 10,000 pounds (4,500 Kilograms) or More." Site-specific details 10531 of the pool and lifting procedures may enable the cask to be considered a non-critical load, as defined by this standard. Generally, however, the cask is considered a critical load during its 10532 10533 handling in the pool. Consequently, trunnion testing should be performed at a minimum of 150 percent of the maximum service load, if redundant lifting is employed or 300 percent of the 10534 service load if non-redundant lifting applies. These load tests should be performed to ensure 10535 that the trunnions and cask are conservatively constructed and provide an adequate margin of 10536 10537 safety when filled with SNF. Trunnion load testing should also be performed annually for the transfer cask and at least one year before use for the storage cask. Load testing of integral 10538 trunnions is not required once the loaded storage cask has been placed on the pad. 10539 Restrictions on cask lifting resulting from these tests should be included in Chapter 13, 10540 10541 "Technical Specifications and Operating Controls and Limits Evaluation," of the SAR and the related SER prepared by the NRC staff. SAR Chapter 10, "Acceptance Tests and Maintenance 10542

Program Evaluation" should explicitly state the testing values. Periodical NDE, in lieu of annual
load tests, is acceptable for the trunnion provided that other conditions as specified in ANSI
N14.6 are also met.

10547 (MEDIUM Priority) The entire confinement boundary should be pressure tested hydrostatically or pneumatically to 125 or 110 percent of the design pressure, respectively. The pressure test 10548 10549 should be performed in accordance with governing code associated with the confinement boundary, which typically has been ASME B&PV Code, Section III, Division 1, Subsection NB or 10550 NC. The test pressure should be maintained for a minimum of 10 minutes, after which a visual 10551 10552 inspection should be performed to detect any leakage. SAR Chapter 10, "Acceptance tests and Maintenance Program Evaluation" should clearly specify the hydrostatic and pneumatic test 10553 pressures. The helium leakage test, per ANSI 14.5 is not considered as a substitute for the 10554 10555 Code required pressure test, and conversely, the Code pressure test is not a substitute for the 10556 helium leakage test. If a shop pressure test isn't performed and only a field pressure test is 10557 performed after the first closure weld is made, the staff has accepted the shop helium leakage test as meeting the pressure test acceptance criteria of no leakage for the shell welds since they 10558 10559 are generally inaccessible in the field.

10561 (LOW Priority) Some casks contain a neutron shielding material that may off-gas at higher 10562 temperatures. Such material is usually contained inside a thin steel shell to prevent loss of mass and provide protection from minor accidents and natural phenomenon events. Rupture 10563 10564 disks or relief valves are generally provided to prevent catastrophic failure of this shell. The 10565 shell should be tested to 125 percent of the rupture disk burst pressure, which is usually equivalent to 125 percent of the shell design pressure. The SAR should clearly specify the 10566 burst pressure for the rupture disk, along with its coincident burst temperature and tolerance on 10567 10568 burst pressure. 10569

10560

10570 (HIGH Priority) Some cask designs use ferritic steels that are subject to brittle fracture failures at low temperature. ASME B&PV Code, Section II, Part A, contains procedures for testing ferritic 10571 10572 steel used in low temperature applications. NUREG/CR-1815, "Recommendations for 10573 Protecting Against Failure by Brittle Fracture in Ferritic Steel Shipping Containers Up to Four Inches Thick," provides staff guidance concerning materials and thickness ranges subject to 10574 brittle fracture testing. On the basis of guidance in NUREG/CR-1815, Section 5.1.1, the NRC 10575 10576 established two methods for identifying suitable materials: 10577

- The nil-ductility transition (NDT) temperature must be determined by either direct measurement, (American Society for Testing and Materials' (ASTM) "Method of Conducting Drop Weight Test to Determine Nil-ductility Transition Temperature for Ferritic Steel" [ASTM E-208]) or indirect measurement ("Dynamic Tear Testing of Metallic Materials" [ASTM E-604]), and the minimum operating temperature of the steel must be specified as 28°C (50°F) higher than the NDT.
- 10585 The NRC staff accepts ASME Charpy testing procedures for verification of the • material's minimum absorbed energy. Acceptable energy absorption values and 10586 test temperatures of Charpy, V-Notch impact tests are listed in the ASME B&PV 10587 10588 Code, Section II, SA-20, "Specifications for General Requirements for Steel Plates for Pressure Vessels" Table A1.15. Coordinate with the thermal review 10589 10590 (Chapter 4 of this SRP) to ensure that the applicant selected the correct 10591 temperatures for the tests and that the SAR specifies the method of testing. 10592

10593 For casks with ferritic steel walls thicker than 102 mm (4 in.), the guidance provided in 10594 NUREG/CR-3826, "Recommendations for Protecting Against Failure by Brittle Fracture in 10595 Ferritic Steel Shipping Containers Greater than Four Inches Thick," should be followed. 10596

10597 10.5.1.2 Leak Tests (MEDIUM Priority)

10599 The licensee should perform leak tests on all confinement boundaries except as excluded in Chapter 8, "Materials Evaluation" - Section 8.9.2, which only applies to the closure welds 10600 typically made in the field. For all-welded cask confinements, the NRC staff has, with adequate 10601 10602 justification, considered it acceptable for licensees to omit leak testing of the second cask closure weld and the seal welds for the closure plates of the purge and vent valves (if not 10603 10604 potentially pressurized at the time of welding). For such cases, leak testing must show that the 10605 inner closure weld meets the leakage limits. A fabrication leak test should be performed on every canister in the shop to ensure that the tested leakage rate is compatible with the 10606 10607 regulatory dose limits at the controlled area boundary, 10 CFR 72.236(d), (i), and (j).

Leakage criteria in units of Pa.m³/s or reference cm³/s must be at least as restrictive as those specified in the principal design criteria (in SAR Chapter 2). The SAR should also indicate the general testing methods (e.g., pressure increase, mass spectrometer) and required sensitivities. If cask closure depends on more than one seal (e.g., lid, vent port, drain port), the leakage criteria should ensure that the total leakage is within the design requirements. Leak testing should be conducted in accordance with ANSI N14.5.

10615

10608

10598

10616 10.5.1.3 Visual and Nondestructive Examination Inspections 10617

(HIGH Priority) Reviewers should verify the applicant's commitment to fabricate and examine
cask components in accordance with an accepted design standard such as ASME B&PV Code,
Section III or VIII. These sections define the examination requirements mentioned in Section II,
"Materials Specifications and Properties"; Section V, "NDE Specifications and Procedures"; and
Section IX, "Qualification Standard for Welding and Brazing Procedures, Welders, Brazers, and
Welding and Brazing Operators." The following guidance assumes that the ASME B&PV Code
is applicable to the cask being reviewed.

10625

10626 (HIGH Priority) The nondestructive examination (NDE) of weldments must be well-characterized on drawings, using standard NDE symbols and/or notations (see American Welding Society's 10627 10628 (AWS) "Standard Symbols for Welding, Brazing, and Nondestructive Examination" [AWS A2.4]). Each fabricator should be required to establish and document a detailed, written weld inspection 10629 plan in accordance with an approved quality assurance (QA) program that complies with 10630 10631 10 CFR Part 72, Subpart G. The inspection plan should include visual (VT), dye penetrant (PT), 10632 magnetic particle (MT), ultrasonic (UT), and radiographic (RT) examinations, as applicable. The inspection plan should identify welds to be examined, the examination sequence, type of 10633 10634 examination, and the appropriate acceptance criteria as defined by either the ASME B&PV Code, or an alternative approach proposed and justified by the applicant. Inspection personnel 10635 10636 should be gualified, in accordance with the current revision of the American Society for Nondestructive Testing's (SNT) "Personnel Qualification and Certification in Nondestructive 10637 Testing" (SNT-TC-1A), as specified by the ASME B&PV Code. All weld-related NDE should be 10638 performed in accordance with written and approved procedures. Fabrication controls and 10639 specifications should be in-place and field tested to prevent post-welding operations (such as 10640 grinding) from compromising the design requirements (such as wall thickness). 10641

(HIGH Priority) Confinement boundary non-closure welds should meet the requirements of
ASME B&PV Code, Section III, Division 1, Subsections NB or NC, Article NB/NC-5200,
"Required Examination of Welds for Fabrication and Preservice Baseline." This section requires
volumetric examination and either PT or MT for all Category A and most Category B or
Category C welded joints in vessels, and longitudinal or full penetration welded joints in other
components. The ASME-approved specifications for RT, UT, PT, and MT are detailed in ASME
B&PV Code, Section V, Articles 2, 4, 6, and 7, respectively.

10650

10658

10691

10651 (HIGH Priority) Acceptance standards for nondestructive testing should be in accordance with 10652 ASME B&PV Code, Section III, Division 1, Subsection NB or NC -5300. Testers should reject 10653 unacceptable imperfections (such as a crack, a zone of incomplete fusion or penetration, 10654 elongated indications with lengths greater than specified limits, and rounded indications in 10655 excess of the limits in ASME B&PV Code, Section III, Division 1, Appendix VI). Repaired welds 10656 should be reexamined in accordance with the original examination method and associated 10657 acceptance criteria.

10659 (HIGH Priority) For confinement welds that cannot be volumetrically examined using RT, the 10660 licensee may use 100 percent UT. The ASME-approved UT specifications are detailed in 10661 ASME B&PV Code, Section V, Article 4. Acceptance criteria should be defined in accordance 10662 with ASME B&PV Code, Section III, Division 1, Subsection NB or NC-5330, "Ultrasonic 10663 Acceptance Standards." Cracks, lack of fusion, or incomplete penetration are unacceptable, 10664 regardless of length.

10666 (HIGH Priority) The NRC has accepted multiple surface examinations of welds, combined with 10667 helium leak tests for inspecting the final redundant seal welded closures. 10668

10669 (HIGH Priority) For confinement internals, the licensee should perform all NDE testing in 10670 accordance with ASME B&PV Code, Section III, Division 1, Subsection NG. 10671

10672 (LOW Priority) Nonconfinement welds (which exclude welds of confinement internals) should 10673 meet the requirements of ASME B&PV Code, Section III, Subsection NF, or Section VIII, Division 1, as applicable. The required volumetric examination of welds is either RT or UT, as 10674 discussed in ASME B&PV Code, Section III, NF-5200, and Section VIII, UW-11. 10675 The 10676 appropriate specifications from ASME B&PV Code, Section V, are invoked in Article 2 for RT and in Article 5 for UT. Acceptance standards for RT are detailed in ASME B&PV Code, 10677 10678 Section III, Subsection NF, NF-5320, "Radiographic Acceptance Standards," and for UT in NF-5330, "Ultrasonic Acceptance Standards." For Section VIII weldments, RT acceptance 10679 criteria should be in accordance with ASME B&PV Code, Section VIII, Division 1, UW-51, and 10680 10681 the repair of unacceptable defects should be in accordance with UW-38. Repaired welds 10682 should be reexamined in accordance with the original acceptance criteria. 10683

10684 (LOW Priority) Nonconfinement welds that cannot be examined using RT should undergo UT in 10685 accordance with ASME B&PV Code, Section V, Article 4. Acceptance criteria should be in 10686 accordance with ASME B&PV Code, Section VIII, Division 1, UW-53 and Appendix 12, and the 10687 repair of unacceptable defects should be in accordance with UW-38. Repaired welds should be 10688 reexamined in accordance with the original examination methods and associated acceptance 10689 criteria. If applicable, the SAR should also justify the rationale for not requiring RT examination 10690 of these welds.

10692 (LOW Priority) Nonconfinement welds for cask system components that are designed and 10693 fabricated in accordance with ASME B&PV Code, Section III, that cannot be examined using RT

- or UT should undergo PT or MT examination in accordance with ASME B&PV Code, Section V,
 Articles 6 and 7, respectively. Acceptance criteria should be in accordance with Articles
 NF-5350 and NF-5340, respectively. Repaired welds should be reexamined in accordance with
 the original acceptance criteria. If applicable, the SAR should also justify the rationale for not
 requiring volumetric inspection techniques (RT or UT) for these welds.
- 10700 (Low Priority) Nonconfinement welds may also be welded, repaired and examined in
 10701 accordance with AWS D1.1, Structural Welding Code Steel, D1.3, Structural Welding Code –
 10702 Sheet Steel and D1.6, Structural Welding Code Stainless Steel. Use of these standards shall
 10703 be called out on the licensing drawings.
- 10705 (LOW Priority) Finished surfaces of the cask should be visually examined in accordance with 10706 the ASME B&PV Code Section V, Article 9. For welds examined using VT, the acceptance 10707 criteria should be in accordance with ASME B&PV Code, Section VIII, Division 1, UW-35 and 10708 UW-36, or NF-5360, "Acceptance Standards for Visual Examination of Welds."
- 10709 10710 (HIGH for confinement/LOW for non-confinement) The licensee should use PT to detect 10711 discontinuities (such as cracks, seams, laps, laminations, and porosity) that open to the surface of nonporous metals. PT should be performed in accordance with ASME B&PV Code, 10712 10713 Section V, Article 6. Acceptance criteria for PT examination of confinement welds should be in accordance with ASME B&PV Code, Section III, Subsection NB/NC, Article NB/NC-5350. 10714 10715 Repair procedures should be in accordance with NB/NC-4450 of the ASME B&PV Code, 10716 Section III. Acceptance criteria for PT examination of nonconfinement welds should be in accordance with ASME B&PV Code, Section VIII, Division 1, Appendix 8, or NF-5350, "Liquid 10717 Penetrant Acceptance Standards." Repair procedures should be in accordance with ASME 10718 10719 B&PV Code, Section III or NF-2500, "Examination and Repair of Material," and NF-4450, 10720 "Repair of Weld Material Defects."
- 10721 10722

- 10.5.1.4 Shielding Tests (LOW Priority)
- 10723
 10724 The materials that comprise the DSS should sufficiently maintain their physical and mechanical
 10725 properties during all conditions of operations. DSS gamma shielding materials (e.g., lead)
 10726 should not experience slumping or loss of shielding effectiveness to an extent that compromises
 10727 safety. The shield should perform its intended function throughout the licensed service period.
- 10729 DSS materials used for neutron absorption should be designed to perform their safety function 10730 without degradation, gas release, or physical alteration for the full term of the license. Tests are 10731 required to ensure these conditions are met. 10732
- 10733 Tests of the effectiveness of both the gamma and neutron shielding may be required if, for 10734 example, the cask contains a poured lead shield or a special neutron absorbing material. In 10735 such instances, the SAR should describe any scanning or probing with an auxiliary source for 10736 the purpose of characterizing the shielding. This shield testing should be done for every cask 10737 that uses poured shielding material, to demonstrate proper fabrication in accordance with the 10738 design drawings. Alternatively, the applicant may propose an alternate testing program for 10739 fabricated casks with appropriate justification.
- 10741 Dose measurements of loaded SNF, in leu of an auxillary source, may be used to verify 10742 shielding effectiveness with appropriate scanning of the shield and appropriate testing program 10743 that considers the actual source strength of the loaded contents..
- 10744

- 10745 10.5.1.5 Neutron Absorber Tests (HIGH Priority)
- 10746

curon Absorber rests (morri honty)

Neutron absorber materials require both qualification and acceptance testing to provide
assurance that the control of criticality by absorbing thermal neutrons will be assured in systems
designed for nuclear fuel storage, transportation or both. Both qualification and acceptance
testing are in general as described in ASTM Designation C1671, "Standard Practice for
Qualification and Acceptance of Boron Based Metallic Neutron Absorbers for Nuclear Criticality
Control for Dry Storage Systems and Transportation Packaging."

10754 Acceptance tests are used to ensure that material properties for plates and other shapes produced in a given production run are in compliance with the materials requirements of the 10755 10756 application. In one sense, acceptance tests verify that the material of a given production run 10757 has yielded products that have been shown to be like the products that were used in the gualification testing. Acceptance tests are used to ensure that the production process is 10758 10759 operating in a satisfactory manner, and they use statistical data for selected measurable parameters. For all boron-containing absorber materials, acceptance tests should (a) verify ¹⁰B 10760 10761 content and uniformity, (b) require visual examinations to establish only acceptable levels of defects are present from cracks, porosity, blisters, or foreign inclusions, and (c) make 10762 dimensional (e.g., plate thickness which is important to the areal density). 10763 10764

Some materials may obtain 100 percent credit for the amount of ¹⁰B that is shown to be present 10765 in the absorber materials. This level of credit is sometimes called 90 percent credit because the 10766 10767 credit level refers to a manner in which K-effective calculations are conducted and in these 10768 calculations, any absorber is given a 10 percent penalty before being used in the calculation. 10769 Likewise other materials that are given only 82 percent credit are called materials with 10770 75 percent credit. For purposes of obtaining high levels (100 percent) of credit, the amount of ¹⁰B, which is the absorber species, is assessed in boron-containing absorber materials using 10771 10772 neutron attenuation testing.

10773

10774 Neutron attenuation tests are calibrated using appropriate standards such as those based on 10775 (coated with) zirconium diboride (ZrB₂) plates to ensure the accuracy of the measured values. Approved substitutes may be used for the attenuation tests. These include tests such as 10776 chemical analysis, provided that (1) both the neutron attenuation tests and the alternative tests 10777 10778 have at least the sensitivity of tests specified in C-1671 and (2) the alternate form of testing is regularly bench marked against calibrated neutron attenuation tests. Chemical analyses should 10779 also include spectrochemical analysis for material impurity levels and ¹⁰B content. Uniformity is 10780 assessed using statistical sampling techniques that ensure that the entire plate of material and 10781 all plates in a lot meet a 95/95 criterion, which means that a test result has a 95 percent 10782 likelihood of containing the minimum required amount of ¹⁰B and that this is known at the 95 10783 10784 percent confidence level. 10785

10786 The reviewer should confirm that the calculation of minimum poison content (e.g., poison areal 10787 density) conservatively accounts for tolerance limits on material density, poison concentration, 10788 and component dimensions. It is noted that thickness tolerances on rolled plates, sheets or shape are typically on the order of ± 10 percent. The acceptance testing should provide a 10789 10790 representative sampling of coupons for plates or sheets from a given lot. Statistical sampling 10791 can be used to the extent practical, using test locations on a coupon that will account for local 10792 variations or anomalies within the coupon and hence within the plates represented by the 10793 coupon. Adequate numbers of samples should be taken to ensure the confidence level required 10794 for the application.

- 10796 <u>Acceptance Testing of Fabricated Materials for 75-Percent Boron Credit</u> 10797
- 10798 For multi-phase absorber materials analyzed with 75-percent poison credit (or less) the reviewer 10799 should confirm that acceptance testing is consistent with the following: 10800
 - The effective ¹⁰B content should be verified from plate coupons by either (a) neutron attenuation testing, or (b) chemical assay to determine boron content with mass spectrometric analysis for isotopic composition.
- Sufficient coupons should be taken for acceptance testing to justify the level of credit given. Rejection of a coupon should result in rejection of the plate from which it is taken. Sampling may be reduced to lesser percentages of the coupons taken (e.g., to 50 percent of all coupons) after acceptance of all coupons in the first 25 percent of the lot. A rejection during reduced inspection should invoke a 100 percent inspection for coupons from that lot.
- 10811 10812 10813

10801 10802

10803

10804

• A visual examination of all plates for defects should be conducted.

10814 Acceptance Testing for Greater Than 75 Percent Boron Credit

10816 For acceptance testing of borated absorbers at levels of poison credit beyond 75 percent, the 10817 extent of the acceptance testing and inspection is enhanced. Some of the data helpful in 10818 meeting the guidance in C-1671 Sec 5.3.4 are as follows: 10819

- The effective ¹⁰B content is verified by neutron attenuation testing of coupons.
 An adequate number of coupons should be acceptance tested for each lot of materials to statistically demonstrate that the 95/95 criterion is satisfied for the minimum required ¹⁰B content. The minimum areal density is specified in the SAR. Note that if the coupon from a plate fails the single neutron attenuation measurement, the associated plate is rejected unless acceptable alternative testing is done with acceptable results.
- 10828 Sufficient coupons should be taken to satisfy the 95/95 criterion. For example, • coupons are taken from at least every other plate unless justification for fewer is 10829 10830 given. Measurements are made on samples taken from 100 percent of all coupons. Rejection of a coupon should result in rejection of the plate. Sampling 10831 may be reduced to 50 percent of all coupons after acceptance of all coupons in 10832 the first 25 percent of the lot. A rejection during reduced inspection should 10833 invoke a return to 100 percent inspection for that lot. 10834 10835
- 10836 A statistical analysis of the neutron attenuation results should be performed by • 10837 the applicant for all plates in a lot. This analysis shall show that the lot meets the 10838 95/95 criterion. That is, using a one-sided tolerance limit factor for a normal 10839 distribution with at least 95 percent probability, the areal density is greater than or 10840 equal to the specified minimum value with 95 percent confidence level. Failure to meet this acceptance criterion of this statistical analysis shall result in rejection of 10841 the entire lot for use at the 100 percent (90 percent credit in K-effective 10842 calculations). Applicants may choose to convert all areal densities determined by 10843 neutron attenuation to a volume density by dividing by the thickness of the 10844 The one side tolerance limit of volume density with 95 percent 10845 coupon. probability and 95 percent confidence may then be determined. The minimum 10846

10847specified value of the areal density may be divided by the 95/95 lower tolerance10848limit of ¹⁰B volume density to arrive at the minimum plate thickness. Hence, all10849plates which have any locations thinner than this minimum shall be rejected, and10850those equal to or thicker may be accepted.

- 10851 10852 10853
- A visual examination of all plates for defects should be verified.

10854 The reviewer should refer to Section 8.4.13.2 of this SRP regarding how to compute per level of credit.

10856 10857

10.5.1.6

Thermal Tests (LOW Priority)

10858 10859 Depending on the details of the cask design and the ability to determine its heat removal 10860 capability through thermal analysis, testing may be required to verify cask performance. The 10861 applicant should establish acceptance criteria on the basis of the conditions of the test (e.g., test 10862 heat loading, ambient conditions). SAR Chapter 4, "Thermal Evaluation," should discuss the 10863 correlation between test performance and actual loading conditions to avoid ambiguous or 10864 unreviewed analysis after the test data are obtained.

- 10865
- 10866 10.5.1.7 Cask Identification (LOW Priority) 10867

10868 The vendor/licensee must mark the cask with a model number, unique identification number, 10869 and empty weight. Generally this information will appear on a data plate, which should be 10870 detailed in one of the drawings included in SAR Chapter 1, "General Description." In addition, 10871 the vendor/licensee should mark the exterior of shielding casks or other structures that may hold 10872 the confinement cask while it is in storage. This marking should provide a unique, permanent, 10873 and visible number to permit identification of the cask stored therein.

10874

10879

10881

1087510.5.2Maintenance Program (LOW Priority)10876

10877 Storage casks are typically designed as passive units requiring minimal maintenance. The SAR should address the following areas, as applicable:

10880 10.5.2.1 Inspection

Usually, the cask has at least one monitoring system (e.g., pressure, temperature, dosimetry).
The SAR should discuss how such systems will be used to provide information regarding
possible off-normal events and what surveillance actions may be necessary to ensure that these
systems function properly. Detailed procedures will be developed and implemented by the
licensee at the site.

10887

10894

10888 The SAR should describe routine periodic visual surface and weld inspections, which should be 10889 limited to the readily accessible surfaces (i.e., the exterior surface of the storage cask and all 10890 surfaces of empty transfer casks). In addition, the SAR should discuss inspection of lifting and 10891 rotating trunnion load-bearing surfaces.

10893 10.5.2.2 Tests

10895 The SAR should describe any periodic tests of DSS components or calibration of monitoring 10896 instrumentation, as well as periodic tests to verify shielding, thermal, and confinement 10897 capabilities. The applicant should otherwise justify that aging and degradation of materials related to the shielding, confinement, and thermal designs are not credible during the licensed
period of the DSS. The SAR should also describe procedures for any applicable periodic
testing of neutron poison effectiveness. As an alternative to the licensee's periodic testing of
neutron poison effectiveness, the applicant may show continued poison effectiveness in the
manner described in Section 7.5.3.2 of this SRP. The qualification tests of the poison material,
discussed in Section 8.4.13.3 of this SRP, may also be useful in showing the material's
continued effectiveness.

10906 In addition, the SAR should discuss any routine testing of support systems (e.g., vacuum drying, 10907 helium backfill, and leak testing equipment).

10908

10920

10934

10939

10945

10905

10909 10.5.2.3 Repair, Replacement, and Maintenance 10910

10911 The SAR should discuss the repair and replacement of cask components, as may be required 10912 during the lifetime of the storage and transfer casks. This discussion should include methods of 10913 repair or replacement, testing procedures, and acceptance criteria. The SAR should also 10914 describe procedures for routine maintenance (such as lubrication and re-application of corrosion 10915 inhibiting materials in the event of scratches) through the expiration of the service life of the 10916 equipment. Such information is also often included in SAR Chapter 12, "Accident Analyses," 10917 which describes actions to be taken following an off-normal event or accident-level condition. 10918

10919 **10.6 Evaluation Findings**

10921 The 10 CFR Part 72 acceptance criteria should be reviewed with a summary statement 10922 provided for each. These statements should be similar to the following model, as applicable: 10923

- 10924F10.1Chapter(s) _____ of the SAR describe(s) the applicant's proposed program for10925preoperational testing and initial operations of the (cask designation).10926Chapter(s) _____ discuss the proposed maintenance program.10927
- 10928F10.2Structures, systems, and components (SSCs) important to safety will be10929designed, fabricated, erected, tested, and maintained to quality standards10930commensurate with the importance to safety of the function they are intended to10931perform. Chapter _____ of the SAR identifies the safety importance of SSCs, and10932Chapter(s) ______ present(s) the applicable standards for their design,10933fabrication, and testing.
- 10935F10.3The applicant/licensee will examine and/or test the (cask designation) to ensure10936that it does not exhibit any defects that could significantly reduce its confinement10937effectiveness. Chapter(s) _____ of the SAR describe(s) this inspection and10938testing.
- 10940F10.4The applicant/licensee will mark the cask with a data plate indicating its model10941number, unique identification number, and empty weight. Drawing _____ in10942SAR Chapter ____ illustrates and/or describes this data plate.10943
- 10944 The reviewer should provide a summary statement similar to the following:

10946"The staff concludes that the acceptance tests and maintenance program for the (cask10947designation) are in compliance with 10 CFR Part 72 and that the applicable acceptance10948criteria have been satisfied. The evaluation of the acceptance tests and maintenance

- 10949program provides reasonable assurance that the cask will allow safe storage of10950throughout its licensed or certified term. This finding is reached on the basis of a review10951that considered the regulation itself, appropriate regulatory guides, applicable codes and10952standards, and accepted practices."
- 10953

10954	
10955	11 RADIATION PROTECTION EVALUATION
10956	
10957	11.1 Review Objective
10958	-
10959	This chapter describes the radiation protection evaluation requirements and considerations of
10960	the proposed dry storage system (DSS). As used here, radiation protection refers to
10961	organizational, design, and operational elements that are primarily intended to limit radiation
10962	exposures from normal operations and anticipated occurrences. The evaluation of the
10963	radiological consequences for accidents is addressed in Chapter 12, "Accident Analyses
10964	Evaluation" of this SRP.
10965	
10966	The primary objectives of the radiation protection evaluation are to determine whether the
10967	design features and proposed operations meet the following criteria:
10968	Second
10969	• the proposed DSS radiation protection features meet the U.S. Nuclear
10970	Regulatory Commission (NRC) design criteria for direct radiation;
10971	
10972	• the applicant has proposed engineering features and operating procedures for
10973	the DSS that will ensure occupational exposures will remain ALARA; and
10974	
10975	• the radiation doses to the general public will meet regulatory standards during
10976	both normal conditions and anticipated occurrences.
10977	ľ
10978	In independent spent fuel storage installation (ISFSI) operations, the major mode of radiation
10979	exposure associated with spent nuclear fuel (SNF) storage cask handling is from direct
10980	radiation. Because of the cask design requirements, radionuclides are not expected to be
10981	released from the cask during either normal operations or design-basis accidents (DBAs).
10982	
10983	11.2 Areas of Review
10984	
10985	This chapter of the DSS Standard Review Plan (SRP) provides guidance for use in evaluating
10986	the radiation protection capabilities of the proposed cask system. The following outline shows
10987	the areas of review addressed in Section 11.4, "Acceptance Criteria," and Section 11.5, "Review
10988	Procedures," that may be encompassed in a comprehensive radiation protection review:
10989	
10990	Radiation Protection Design Criteria and Features
10991	
10992	Occupational Exposures
10993	
10994	Exposures at or Beyond the Controlled Area Boundary
10995	Normal Conditions
10996	Accident Conditions and Natural Phenomenon Events
10997	AL A D A
10998	ALARA
10999	Design Considerations
11000	Engineering Controls and Procedures
11001	

11002 **11.3 Regulatory Requirements**

11003

11004 This section presents a summary matrix of the portions of U.S. Code of Federal Regulations 11005 (CFR) Parts 20 and 72 that are relevant to the review areas addressed by this chapter. The 11006 NRC staff reviewer should read the exact referenced regulatory language. Virtually the entire 11007 contents of 10 CFR 20 "Standards for Protection Against Radiation" are also applicable to this 11008 review. Tables 11-1 and 11-2 match the relevant regulatory requirements associated with this 11009 chapter to the areas of review identified in the previous section.

11010

Table	11-1 R	elations	hip of 1	0 CFR P	art 20 R	egulatio	ons and	Areas o	f Reviev	V		
	10 CFR Part 20 Regulations											
Areas of Review	20.1101	20.1201 (a)	20.1207	20.1208	20.1301 (a), (b), (d)	20.1302 (a)	20.1406	20.1501 (a)(1)	20.1701	20.1702		
Radiation Protection Design Criteria and Features	•						•	•	•	•		
Occupational Exposures	•	•	•	•				•		•		
Exposures at or Beyond the Controlled Area Boundary	•				•	•		•				
ALARA	•						•	•		•		

11011 11012

11012

11013

Table 11-2 Relationship of 10 CFR Part 72 Regulations and Areas of Review									
Areas of Daview	10 CFR Part 72 Regulations								
Areas of Review	72.104(a)	72.104(b)	72.126(a)	72.236(d)					
Radiation Protection Design Criteria and Features			•	•					
Occupational Exposures									
Exposures at or Beyond the Controlled Area Boundary	•			•					
ALARA		•	•	•					

11015 **11.4 Acceptance Criteria**

11016

11023

11017 This section describes the acceptance criteria used for review of radiation protection features of 11018 and programs proposed for use with a DSS. These criteria are organized according to the 11019 areas of review specified in Section 11.2 of this chapter. The reviewer should note that some 11020 overlap exists between acceptance criteria for radiation protection and those related to Chapter 11021 5, "Confinement Evaluation," and Chapter 6, "Shielding Evaluation," of this SRP; therefore, the 11022 reviews of the chapters should be coordinated.

11024**11.4.1Radiation Protection Design Criteria and Features**11025

Limitations on dose rates associated with direct radiation from the cask are established on the basis of the shielding and confinement evaluations to satisfy the regulatory requirements for dose limits to individuals located beyond the controlled area boundary (10 CFR 72.104).

11030 **11.4.2 Occupational Exposures**

11031
11032 Estimated dose rates should be provided in Chapter 6, "Shielding Evaluation," of the Safety
11033 Analysis Report (SAR) for representative points within the restricted areas as well as at or
11034 beyond the perimeter of the controlled area. The radiation protection review includes a dose
11035 assessment that incorporates findings of the shielding review, as applicable. Individual and
11036 collective doses should be calculated.

All individual doses to workers should be well below the dose limits specified in 1039 10 CFR 20.1201. Collective doses should be consistent with the objectives contained in a wellstructured ALARA program. The information provided by the applicant should allow for the determination of compliance with these criteria. To assess the applicant's occupational dose calculations, the reviewer should check such things as the number of workers specified for a task and the time specified for performing the task being reasonable.

11045**11.4.3Exposures at or Beyond the Controlled Area Boundary**

11047 a. Normal Conditions:

For normal operations and anticipated occurrences, the estimated dose to any real individual located at or beyond the controlled area boundary may not exceed the following values specified in 10 CFR 72.104(a):

11052

11046

11048

Whole body	0.25 mSv/yr (25 mrem/yr)
Thyroid	0.75 mSv/yr (75 mrem/yr)
Other organ	0.25 mSv/yr (25 mrem/yr)

11053

11054 11055

For purposes of the DSS review, the calculated doses must include both direct radiation and any planned discharges of radioactive material.

- 11057 b. Accident and Natural Phenomenon Events:
- 11058
- 11059 11060

Radiation shielding and confinement features should be provided sufficient to meet the requirements of 10 CFR 72.106(b). Any individual located on or beyond the nearest boundary of the controlled area may not receive the following dose from any DBA:

11061 11062

11064

11066

11070

11071

11072 11073

11074 11075

11077

11083

The more limiting of				
TEDE or	0.05 Sv (5 rem)			
Sum of the DDE and the CDE to any individual organ or tissue (other than the lens of the eye)	0.5 Sv (50 rem)			
Lens of the eye	0.15 Sv (15 rem)			
Shallow Dose Equivalent (SDE) to skin or any extremity	0.5 Sv (50 rem)			

11065 **11.4.4 ALARA**

11067 For any new design or design change, the ALARA discussion should demonstrate how the 11068 design or design change 11069

- accounted for radiation protection, technological, and economic considerations; and
- to the extent practicable, employed engineering controls and procedures that were founded upon sound radiation protection principles.

11076 11.5 Review Procedures

11078 The interrelationship of the radiation protection review with other disciplines is shown in 11079 Figure 11-1. 11080

11081**11.5.1**Radiation Protection Design Criteria and Features for the Transfer Cask11082and Storage Cask (MEDIUM Priority)

11084 The reviewer should read the general description and functional features of the cask presented 11085 in Chapter 1, "General Description," of the SAR. In addition, Chapter 2, "Principal Design 11086 Criteria," of the applicant's SAR should be reviewed as well as any additional detail regarding 11087 radiation protection provided in the Shielding and Confinement chapters of the SAR. If not 11088 previously discussed, the following additional criteria should be presented in Chapter 11, 11089 Radiation Protection, of the SAR.

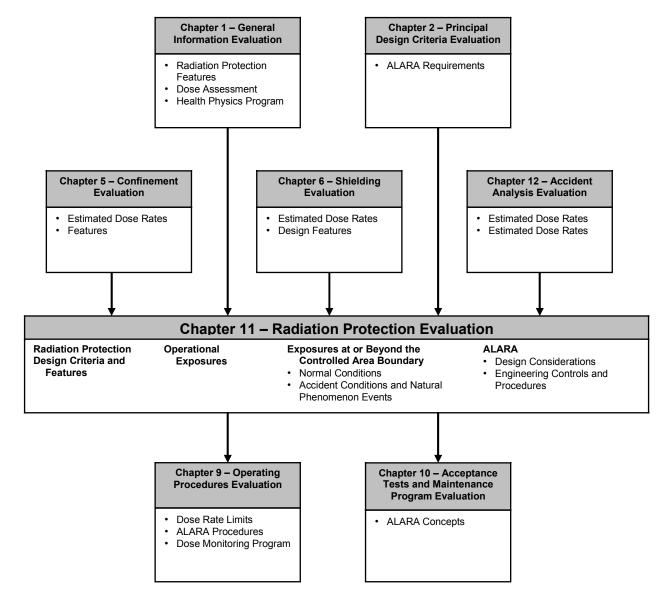


Figure 11-1 Overview of the Radiation Protection Evaluation

- 11096The cask system design should satisfy ALARA and other occupational exposure11097•11098requirements of 10 CFR Part 20, and
- The sum of the doses from direct radiation and from release of radioactive materials to the atmosphere should satisfy the requirements of 10 CFR 72.104(a) and 72.106(b). Because of the stringent design requirements for SNF cask systems, the release of radionuclides into the atmosphere is expected to be insignificant under both normal and accident conditions. Direct radiation is the major mode of exposure.
- 11107 11.5.2 Occupational Exposures (MEDIUM Priority)

11108 11109 The reviewer should analyze Chapter 9, "Operating Procedures," of the SAR and direct radiation dose calculations in Chapter 6, "Shielding Evaluation" of the SAR. These data should 11110 be used in Chapter 11, "Radiation Protection" of the SAR to estimate the doses received by 11111 occupational personnel, during cask loading and transfer to the ISFSI. 11112 Any significant differences from these doses that may occur during cask retrieval and unloading should be 11113 identified. In addition, the reviewer should verify that the applicant presents similar dose 11114 11115 estimates for periodic or routine maintenance as well as surveillance activities. These estimates 11116 may require additional assumptions concerning adjacent casks for a typical storage 11117 configuration.

11118

11099

11119 The reviewer should verify that the applicant presents the rationale used to justify the bases for various exposure times, personnel locations relative to the casks (including hot spots), number 11120 11121 of personnel required, and appropriate gamma and neutron dose rates. In addition, the reviewer should verify that the calculated doses are consistent with these estimates. The actual 11122 11123 operations will be performed under an active dose-monitoring program that further ensures compliance with the requirements of 10 CFR Part 20. Regulatory Guide (RG) 8.34, "Monitoring 11124 Criteria and Methods to Calculate Occupational Radiation Doses," which was developed to 11125 11126 implement revisions to 10 CFR Part 20, can be used to determine the acceptability of the applicant's occupational exposure evaluation and monitoring recommendations. 11127

11128 11129

11130

11.5.3 Exposures at or Beyond the Controlled Area Boundary (MEDIUM Priority)

11131 As required by 10 CFR 72.236(d), the application must demonstrate that the shielding and confinement features of the cask are sufficient to meet the requirements for real individuals in 11132 10 CFR 72.104, and for DBA conditions in 10 CFR 72.106. These demonstrations in the 11133 application facilitate future site-specific evaluations for each general ISFSI licensee. The real 11134 individual is an individual at or beyond the controlled area. Dose to any real individual must not 11135 exceed the limits specified in 10 CFR 72.104 from both the storage facility and other 11136 surrounding fuel cycle activities. For example, a real individual may be anyone living, working, 11137 or recreating close to the facility for a significant portion of the year. 11138

11139

However, for approval of a cask design, the reviewer should ensure that the applicant evaluates the shielding and confinement features of a single cask and a theoretical array of casks, assuming design-basis source terms and full-time occupancy. Supplemental shielding that may be used at an ISFSI to meet the exposure requirements to a real individual should also be appropriately evaluated. The reviewer should coordinate the review of supplemental shielding with the Chapter 13, "Technical Specifications and Operating Controls and Limits Evaluation," of this SRP review.

11149

11148 11.5.3.1 Normal Conditions

11150 The single-cask analysis should identify the minimum distance that is required to meet the dose rates in 10 CFR 72.104. Past applications have shown this distance to be typically within 200m 11151 11152 of the cask. A dose rate versus distance curve for a single cask should be included to facilitate 11153 site-specific evaluations for general ISFSI licensees. To satisfy section 10 CFR 72.106(b), dose evaluations should be determined at a minimum of 100m (328 ft) distance to the closest 11154 boundary of the controlled area. However, the applicant may use a longer distance provided 11155 11156 that the longer distance is made a condition of use. In addition, the SAR should determine the degree to which the normal condition dose rates could change for the identified off-normal 11157 11158 conditions.

11159

11160 The reviewer should verify that the applicant includes a dose rate versus distance curve in its 11161 evaluation of offsite dose for a hypothetical cask array. The theoretical cask array should 11162 consist of at least 20 storage casks (2x10 array), and the analysis may include the effect of 11163 shielding among casks in the array. The reviewer should examine predicted dose rates and 11164 compare them to the dose rates from previously approved casks, and any associated annual 11165 doses that have been observed for the casks at existing ISFSIs.

11166

11167 It is important to note that the general ISFSI licensee is permitted to use either distance 11168 between the ISFSI and the controlled area boundary or engineered features (supplemental 11169 shielding) such as berms to mitigate doses to real individuals near the site. The SAR needs to provide sufficient information to support informed choices on the part of the general licensee. If 11170 11171 the SAR analyses were performed for the minimum 100-meter distance and did not use any 11172 additional shielding, and the projected dose at 100 meters exceeded the regulatory limits, the reviewer should verify that the application contains a justification for how a general licensee 11173 could reasonably meet the requirements of Section 72.104. If the dose versus distance curves 11174 11175 for the single cask and hypothetical array in the SAR were only evaluated at distances greater 11176 than 100 m, or assumed some engineered feature, then the CoC should contain a condition of 11177 use to that effect.

11178

An example of such a condition may be similar to the following: "The use of this system may require more than the minimum 100-meter distance between the ISFSI and the controlled area boundary, or engineered features (i.e., berms or shield walls), or both to ensure the dose limits in 10 CFR 72.104 can be met. In cases where engineered features are used to ensure that the requirements of 10 CFR 72.104(a) are met, such features are to be considered important to safety [ITS] and must be evaluated to determine the applicable [QA] category."

- 11186 If an engineered feature is used in the SAR evaluations, then that feature is to be considered to 11187 be part of the system. As such, it should be described in the CoC.
- 11188

As required by 72.212(b)(2)(i)(C), a general licensee must perform a written evaluation to demonstrate that the requirements of 72.104 are met. An evaluation similar to that for a sitespecific ISFSI should be performed. The licensee may use information provided in the cask SAR as well as site-specific information to perform the evaluation. Evaluations performed by the general ISFSI licensee are not submitted to NRC for approval; however, they are subject to NRC inspection and should be recorded and maintained by the general licensee.

- 11195
- 11196 The general licensee should establish measures in the radiological protection program, 11197 environmental monitoring program, and/or operating procedures to identify and re-evaluate

11198 potential increases in exposure to the real individuals. Compliance with the dose limits in 10 CFR 72.104 will be verified by the environmental monitoring program with direct radiation 11199 measurements and/or effluent measurements, as appropriate. 11200 11201

11202 Accident Conditions and Natural Phenomenon Events 11.5.3.2

11203 11204 The direct dose rate associated with accident conditions at the boundary of the controlled area should be reviewed as discussed in Chapter 6, "Shielding Evaluation," of this SRP. Also, the 11205 dose rate resulting from accidental release of radionuclides, as presented in Chapter 5, 11206 11207 "Confinement Evaluation," of this SRP, should be reviewed. The accident-related radionuclide 11208 release dose should account for both air and liquid pathways as appropriate. In addition, the 11209 reviewer should verify that the applicant has evaluated the source terms for both SNF fission 11210 product and cask surface contamination. The sum of these should satisfy the requirements of 11211 10 CFR 72.106(b). For purposes of demonstrating compliance with 10 CFR 72.106(b) and evaluation against the Environmental Protection Agency Protective Action Guides in the Manual 11212 of Protective Action Guides and Protective Actions for Nuclear Incidents (EPA 410R-92-001), 11213 the skin, extremities, and the lens of the eye may be considered separately from other organs. 11214

11216 As noted in Chapter 6, "Shielding Evaluation," of this SRP, the time-integrated dose at the 11217 boundary of the controlled area may be small. Consequently, the reviewer should verify that the applicant estimates the doses at 100m (328 ft.) from the storage location to the nearest 11218 boundary of the controlled area unless the SAR specifies a greater minimum distance that is 11219 11220 also made a condition of use for the proposed DSS. Alternatively, applicants may depict dose estimation using a curve showing dose versus distance from an assumed array of casks. 11221 11222

11223 ALARA (MEDIUM Priority) 11.5.4

11225 Further information on ALARA can be found in RG 8.8, "Information Relevant to Ensuring that 11226 Occupational Radiation Exposures at Nuclear Power Stations Will Be As Low As is Reasonably 11227 Achievable," and RG 8.10, "Operating Philosophy for Maintaining Occupational Radiation 11228 Exposures As Low As is Reasonably Achievable."

11230 **Design Considerations** 11.5.4.1

11231 11232 The cask design features should be reviewed to ensure that the features for which credit is 11233 taken in radiation protection analyses are clearly identified on the drawings. Also, the reviewer should ensure the application includes commitments to implement those features that have 11234 been credited in analyses to show compliance with regulatory requirements or ALARA goals. 11235 The reviewer should coordinate with the reviewers of SRP Chapters 5, "Confinement 11236 11237 Evaluation" and 6, "Shielding Evaluation."

11238

11215

11224

11229

- 11239 11.5.4.2 Procedures and Engineering Controls
- 11240

11241 The reviewer should determine that the descriptions of proposed DSS operations adequately demonstrate that ALARA principles have been incorporated into operational procedures and 11242 engineering controls. The reviewer should ensure that plans and procedures have been 11243 developed in accordance with applicable requirements and guidance. 11244 11245

11246 **11.6** Evaluation Findings

Evaluation findings are prepared by the reviewer upon determination that the regulatory requirements related to radiation protection as identified in Section 11.3 of this chapter have been satisfied. Some of these determinations can be made only after evaluating the results of reviews performed under other chapters of this SRP. If the documentation submitted with the application fully supports positive findings for each of the regulatory requirements, the statements of findings should be similar to the following:

- 11255F11.1The [cask designation] provides radiation shielding and confinement features that11256are sufficient to meet the requirements of 10 CFR 72.104 and 72.106.
 - F11.2 The design and operating procedures of the [cask designation] provide acceptable means for controlling and limiting occupational radiation exposures within the limits given in 10 CFR 20 and for meeting the objective of maintaining exposures ALARA.

11263 A summary statement similar to the following should be made:

11257 11258

11259

11260

11261

11262

11264

"The staff concludes that the design of the radiation protection system of the [cask designation] is in compliance with 10 CFR Part 72 and that the applicable design and acceptance criteria have been satisfied. The evaluation of the radiation protection system design provides reasonable assurance that the [cask designation] will allow safe storage of SNF. This finding is reached on the basis of a review that considered the regulation itself, appropriate regulatory guides, applicable codes and standards, and accepted health physics practices."

11272	
11273	12 ACCIDENT ANALYSES EVALUATION
11274	
11275	12.1 Review Objective
11276	
11277	In this portion of the dry storage system (DSS) review, the U.S. Nuclear Regulatory Commission
11278	(NRC) evaluates the applicant's identification and analysis of hazards as well as the summary
11279	analysis of system responses to both off-normal and accident or design-basis events.
11280	
11281	Normal conditions are the intended operations, planned events, and environmental conditions,
11282	that are known or reasonably expected to occur with high frequency during storage operations.
11283	Officiency and a second and a second and the second and the second secon
11284	Off-normal events are those man-made events or natural phenomena expected to occur with
11285	moderate frequency or once per calendar year. ANSI/ANS 57.9 refers to these events as
11286	Design Event II.
11287	Design basis assident events are considered to ensurinfrance with if even during the lifetime of
11288	Design-basis accident events are considered to occur infrequently, if ever, during the lifetime of
11289	the facility. ANSI/ANS 57.9-92 subdivides this class of accidents into two categories – Design
11290	Events III and IV. Design Event III is a set of infrequent events that could be expected to occur during the lifetime of a DSS, and Design Event IV is a set of events that establishes a
11291 11292	during the lifetime of a DSS, and Design Event IV is a set of events that establishes a conservative design basis for structures, systems, and components (SSC) important to safety.
11292	The effects of natural phenomena such as earthquakes, tornadoes, hurricanes, floods, tsunami,
11293	and seiches, with severity frequencies consistent with Design Event III and IV, are considered to
11294	be design-basis accident events, in addition to design-basis man-made events.
11295	
11290	This review ensures that the applicant has conducted thorough accident analyses as reflected
11298	by the following factors:
11299	by the following factors.
11300	Identified all credible accidents.
11301	 Provided complete information in the safety analysis report (SAR).
11302	 Analyzed the safety performance of the cask system in each review area.
11303	 Fulfilled all applicable regulatory requirements.
11304	
11305	12.2 Areas of Review
11306	
11307	This portion of the DSS review evaluates the applicant's identification and analysis of hazards
11308	with particular emphasis on the safety performance of the cask system under off-normal events
11309	and conditions, and accident or design-basis events. Consequently, this chapter of the DSS
11310	Standard Review Plan (SRP) provides guidance for use in reviewing the applicant's
11311	identification and analysis of hazards as well as the summary analysis of system responses. A
11312	comprehensive accident analysis evaluation may encompass the following areas of review:
11313	
11314	Cause of the Event
11315	Detection of the Event
11316	Summary of Event Consequences and Regulatory Compliance
11317	Corrective Course of Action
11318	
11319	12.3 Regulatory Requirements
11320	
11221	This social procents a summary matrix of the participa of U.S. Cada of Eddard Degulations

11321 This section presents a summary matrix of the portions of U.S. Code of Federal Regulations 11322 (CFR), Part 72, "Licensing Requirements for the Independent Storage of Spent Nuclear Fuel and High-Level Radioactive Waste," Title 10, "Energy" (10 CFR Part 72) that are relevant to the
review areas addressed by this chapter. The NRC staff reviewer should read the exact
referenced regulatory language. Table 12-1 matches the relevant regulatory requirements
associated with this chapter to the areas of review identified in the previous section.

11327

۲ ۱	Table 12-1	Relationsh	ip of Regulations and Ar	eas of Revie	9W							
Areas of	10 CFR Part 72 Regulations											
Review	72.104 (a)	72.106 (b)	72.122(b)(1),(3), (d), (g), (h)(4), (i), (l)	72.124(a)	72.236(c), (d), (l)							
Cause of the Event			•									
Detection of the Event			•	•								
Summary of Event Consequences and Regulatory Compliance	•	•	•	•	•							
Corrective Course of Action			•									

11328 11329

9 12.4 Acceptance Criteria

11330

Accidents and natural phenomena events may share common regulatory and design limits.
 Consequently, the following sections sometimes refer to these scenarios collectively as accident
 conditions.

- 11334
 By contrast, off-normal conditions (anticipated occurrences) are distinguished, in part, from accidents or natural phenomena by the appropriate regulatory guidance and design criteria. For example, the radiation dose from an off-normal event must not exceed the limits specified in 10 CFR Part 20, "Standards for Protection Against Radiation," and 10 CFR 72.104(a), whereas the radiation dose from an accident or natural phenomenon must not exceed the specifications of 10 CFR 72.106(b). Accident conditions may also have different allowable structural criteria.
- 11341

11342 In general, this portion of the DSS review seeks to ensure that the DSS design and the
applicant's hazard identification and analyses of related system responses fulfill the following
acceptance criteria:

1134612.4.1Dose Limits for Off-Normal Events

11347 11348 During normal operations and off-normal conditions, the requirements specified in 10 CFR 11349 Part 20 must be met. In addition, the annual dose equivalent to any individual located beyond 11350 the controlled area must not exceed 0.25 mSv (25 mrem) to the whole body, 0.75 mSv 11351 (75 mrem) to the thyroid, and 0.25 mSv (25 mrem) to any other organ as a result of exposure to 11352 the following sources (10 CFR 72.104):

- Planned discharges to the general environment of radioactive materials (with the exception of radon and its decay products).
 - Direct radiation from operations of the ISFSI.
 - Any other cumulative radiation from uranium fuel cycle operations (i.e., nuclear power plant) in the affected area.

1136212.4.2Dose Limit for Design-Basis Accidents

The dose from any credible design basis accident to any individual located on or beyond the nearest boundary of the controlled area may not exceed the limits specified in 10 CFR 72.106. Specifically, these are: the more limiting of a total effective dose equivalent of 0.05 Sv (5 rem), or the sum of the deep dose equivalent to and the committed dose equivalent to any individual organ or tissue (other than the lens of the eye) of 0.5 Sv (50 rem); a lens dose equivalent of 0.15 SV (15 rem); and a shallow dose equivalent to skin or any extremity of 0.5 Sv (50 rem).

11371 **12.4.3 Criticality**

11356 11357

11358 11359

11360 11361

11363

11370

11372

11386

11373 The spent nuclear fuel (SNF) must be maintained in a subcritical condition under credible 11374 conditions (i.e., k_{eff}, including all biases and uncertainties, equal to or less than 0.95). At least 11375 two unlikely, independent, and concurrent or sequential changes in the conditions essential to 11376 nuclear criticality safety should occur before a nuclear criticality accident is deemed to be 11377 possible (double contingency).

11379 **12.4.4 Confinement** 11380

11381 The cask and its systems important to safety must be evaluated using appropriate tests or by 11382 other means acceptable to the NRC to demonstrate that they will reasonably maintain 11383 confinement of radioactive material under credible accident conditions.

11385 12.4.5 Recovery and Retrievability

11387 Recovery is the capability to return the stored radioactive material to a safe condition after an 11388 accident event without endangering public health and safety. This generally means ensuring 11389 that any potential release of radioactive materials to the environment or radiation exposures is 11390 not in excess of the limits in 10 CFR Part 20 during post accident recovery operations.

Retrievability is specified in 10 CFR 72.122(I) and requires that storage systems must be designed to allow ready retrieval of spent fuel, high-level radioactive waste, and reactor-related GTCC waste for further processing or disposal. Ready retrieval is the ability to move a canister containing spent fuel to either a transportation package or to a location where the spent fuel can be removed. Ready retrieval also means maintaining the ability to handle individual or canned spent fuel assemblies by the use of normal means. Retrievability applies to normal conditions and off-normal events, and not to design-basis accident events.

11400 **12.4.6** Instrumentation

11402 The SAR must identify all instruments and control systems that must remain operational under 11403 accident conditions.

11404

11399

11405 **12.5 Review Procedures**

11406

11407 Introduction

11408

11411 11412 11413

Figure 12-1 presents an overview of the evaluation process and can be used as a guide to assist in coordinating between the review disciplines.

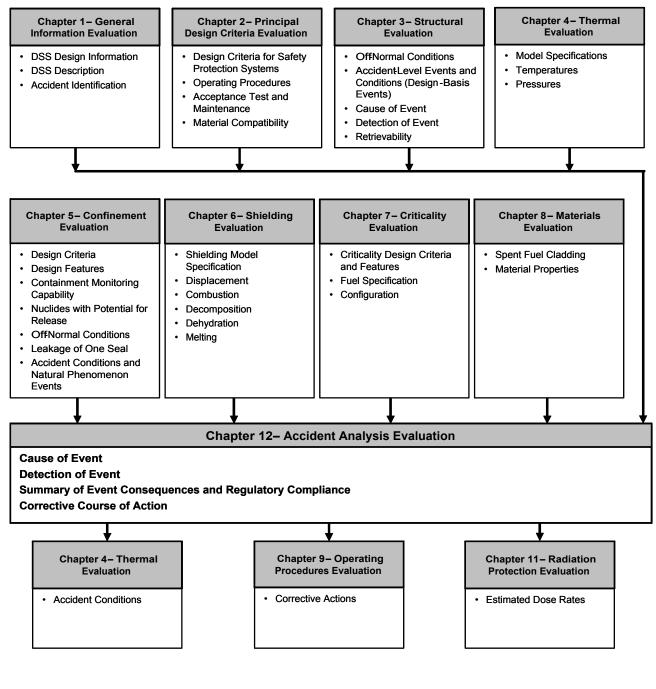


Figure 12-1 Overview of Accident Analysis Evaluation

The review procedures presented here describe general procedures for reviewing a DSS submittal. The review procedures in Chapter 15 of NUREG-1567, "Standard Review Plan for Spent Fuel Dry Storage Facilities," provide more detailed procedures and, where applicable, may be used as a guide to supplement the review procedures presented herein.

11419

11429

11420 The off-normal conditions, accidents, and natural phenomena events identified in SAR Chapter 2, "Principal Design Criteria" should be reviewed by all disciplines, especially those 11421 accidents with potential consequences resulting in the failure of the confinement boundary. Off-11422 11423 normal conditions should be evaluated against the requirements of 10 CFR 72.104. Accidents and natural phenomena events should be evaluated against the requirements of 10 CFR 72.106 11424 11425 and 72.122(b). Recovery methods or the need for overpacks or dry transfer systems to 11426 maintain safe storage conditions would then not be considered and evaluated as part of the NRC approval process. For each type of event, this discussion should include the applicant's 11427 11428 evaluation of the following areas, as applicable.

1143012.5.1Cause of the Event (MEDIUM Priority)11431

The cause of the accident should be described. The description should include the chain of events that leads to the credible accident condition and any bounding conditions.

1143512.5.2Detection of the Event (MEDIUM Priority)11436

11437 The licensee may detect an event through surveillance programs or monitoring instrumentation 11438 and alarms. Surveillance programs and monitoring instrumentation and alarms should have 11439 reasonable flexibility to allow for the identification of an accident condition or noncompliance 11440 situation that has not been previously considered in the SAR. The method of detection will be 11441 intuitively obvious for some events, whereas other events (e.g., fuel rod rupture) may remain 11442 undetected for a significant period of time.

11443

11444 DSS monitoring equipment (such as a pressure monitoring system) are classified as not 11445 important to safety, but are classified as Category B under the guideline of NUREG/CR-6407, 11446 "Classification of Transportation." Reviewers should refer to Chapter 5, "Confinement 11447 Evaluation," of this SRP.

1144912.5.3Summary of Event Consequences and Regulatory Compliance11450(MEDIUM PRIORITY)

11451

The applicant should address event consequences in each functional area corresponding to earlier chapters of the SAR (i.e., structural, thermal, shielding, criticality, confinement, materials, and radiation protection). This discussion should refer back to each SAR chapter in which the individual consequences are evaluated in detail. The applicant should provide a summary of the accident dose calculations and show that the consequences comply with the applicable regulatory criteria. For off-normal conditions, the applicant should demonstrate compliance with Part 20 as well as Part 72.

11459

11460**12.5.4**Corrective Course of Action (MEDIUM Priority)11461

11462 The applicant should identify what action(s), if any, would be necessary to recover from the 11463 event. If various courses of action are possible, the applicant should present a discussion 11464 concerning the selection of the most appropriate action. Because the fuel must be readily retrievable, returning the cask to the fuel handling building and reloading the SNF into a new cask is a viable option. If corrective courses of action are to be included in operating procedures or administrative programs, then the applicable sections of SAR Chapter 9, "Operating Procedures," should be referenced.

12.6 Evaluation Findings

11472 Review the 10 CFR Part 72 acceptance criteria and provide a summary statement for each. 11473 These statements should be similar to the following model:

- F12.1 Structures, systems, and components of the [cask designation] are adequate to prevent accidents and to mitigate the consequences of accidents and natural phenomena events that do occur.
- 11479F12.2The spacing of casks, discussed in Chapter ______ of the safety evaluation11480report (SER) and included as an operating limit in Chapter 13, "Technical11481Specifications and Operation Controls and Limits Evaluation" of the SAR will11482ensure accessibility of the equipment and services required for emergency11483response.
 - F12.3 Table ______ of the SER lists the Technical Specifications for the [cask system designation]. These Technical Specifications are further discussed in Chapter _____ of the SER.
 - F12.4 The applicant has evaluated the [cask designation] to demonstrate that it will reasonably maintain confinement of radioactive material under credible accident conditions.
 - F12.5 An accident or natural phenomena event will not preclude the ready retrieval of SNF for further processing or disposal.
- 11496 F12.6 The SNF will be maintained in a subcritical condition under accident conditions.
 - F12.7 Neither off-normal nor accident conditions will result in a dose to an individual outside the controlled area that exceeds the limits of 10 CFR 72.104(a) or 72.106(b), respectively.
 - F12.8 No instruments or control systems are required to remain operational under accident conditions [as applicable].
- 11505 The reviewer should provide a summary statement similar to the following:
- "The staff concludes that the accident design criteria for the [DSS designation] are in compliance with 10 CFR Part 72, and the accident design and acceptance criteria have been satisfied. The applicant's accident evaluation of the cask adequately demonstrates that it will provide for safe storage of SNF during credible accident situations. This finding is reached on the basis of a review that considered independent confirmatory calculations, the regulation itself, appropriate regulatory guides, applicable codes and standards, and accepted engineering practices."

13 TECHNICAL SPECIFICATIONS AND OPERATING CONTROLS AND LIMITS EVALUATION

11517 11518

11519

13.1 Review Objective

11520 The technical specifications and operating controls and limits review ensures that the operating 11521 controls and limits or the technical specifications, including their bases and justification, meet the requirements of the U.S. Code of Federal Regulations (CFR), Part 72, "Licensing 11522 Requirements for the Independent Storage of Spent Nuclear Fuel, High-Level Radioactive 11523 11524 Waste and Reactor-Related Greater Than Class C Waste," Title 10, "Energy" (10 CFR Part 72). This evaluation is based on information that the applicant presents in Safety Analysis Report 11525 (SAR) Chapter 13, "Technical Specifications and Operation Controls and Limits Evaluation" as 11526 11527 well as accepted practices and the applicant's commitments discussed in other chapters of the SAR or in correspondence subsequent to submission of the application. The NRC staff should 11528 also describe in the Safety Evaluation Report (SER) any additional operating controls and limits 11529 that the staff deems necessary and has added them, as appropriate, to the cask system's 11530 11531 Technical Specifications.

11532

11533 For simplicity in defining the acceptance criteria and review procedures, the term "technical specifications" may be considered synonymous with "operating controls and limits." 11534 The technical specifications define the conditions that are deemed necessary for safe dry storage 11535 Specifically, they define operating limits and controls, monitoring 11536 system (DSS) use. 11537 instruments and control settings, surveillance requirements, design features, and administrative controls that ensure safe operation of the DSS. As such, these technical specifications are 11538 included in a DSS Certificate of Compliance (CoC). Each specification should be clearly 11539 11540 documented and justified in the technical review sections of the SAR and the associated SER as necessary for safe DSS operation. 11541

11542

11543 If a reviewer determines that a design feature, content specification, analytical assumption, 11544 operating assumption, limiting condition of operation, element of reactor programmatic controls, 11545 or other SAR item is important and should not be changed without NRC staff approval, then it should be further evaluated and considered as a potential CoC condition or technical 11546 specification. The reviewer should consider, in part, risk-insights, safety margins, operational 11547 11548 experience, defense-in-depth considerations, design novelty, and other issues that are unique to each proposed design. The reviewer should also implement the guidance in this chapter for 11549 11550 establishing such conditions and technical specifications in the CoC. 11551

11552 13.2 Areas of Review

11553

This chapter of the DSS Standard Review Plan (SRP) provides guidance for use in evaluating the technical specifications that the applicant deems necessary for safe use of the proposed DSS system. As defined in Section 13.5, "Review Procedures," a comprehensive review of the proposed technical specifications would assess the applicant's compliance with the regulations to provide a level of control commensurate with that specified by 10 CFR 72.234 and 72.236. These requirements represent the following areas of review:

- 1156011561Functional/Operating Limits, Monitoring Instruments, and Limiting Control11562Settings11563
- 11564 *Limiting Conditions*
- 11565

11571

11573

- Surveillance Requirements
- 11568 **Design Features** 11569

11570Administrative Controls

11572 13.3 Regulatory Requirements

11574 This section presents a summary matrix of the portions of 10 CFR Part 72 that are relevant to 11575 the review areas addressed by this chapter. The U.S. Nuclear Regulatory Commission (NRC) 11576 staff reviewer should read the exact referenced regulatory language. Table 13-1 matches the 11577 relevant regulatory requirements associated with this chapter to the areas of review identified in 11578 the previous section.

11579

Table 13-1 Relationship of Regulations and Areas of Review										
	10 CFR Part 72 Requirements									
		72.236								
Areas of Review	72.234 (a)	(a)	(b)	(c)	(d)	(e), (f), (h)	(g)	(i)	(j)	(I)
Functional/Operating Limits, Monitoring Instruments, and Limiting Control Settings	•	•		•	•					•
Limiting Conditions	•	•		•	•					•
Surveillance Requirements	•				•		٠		•	
Design Features	•		•		•	٠	٠	•		•
Administrative Controls	•	•			•			•		•

. .

11580 11581

13.4 Acceptance Criteria

11582

11583 The reviewer should verify that the applicant identifies proposed technical specifications 11584 necessary to maintain subcriticality, confinement, shielding, heat removal, and structural 11585 integrity under normal, off-normal, and accident-level conditions. In addition, the reviewer should ensure that the applicant identifies the basis for each of the proposed technical 11586 11587 specifications by reference to the analysis in the SAR. The NRC staff can use NUREG-1745, "Standard Format and Content for Technical Specifications for 10 CFR Part 72 Cask Certificates 11588 of Compliance," as an appropriate template in the review of the technical specifications. 11589 However, the staff may impose alternative technical specifications to NUREG-1745 guidance, 11590 based on operational experience, and the Office of General Counsel legal interpretations that 11591 have been made since issuance of NUREG-1745. 11592

1159413.4.1Functional/Operating Limits, Monitoring Instruments, and Limiting Control11595Settings

11596
11597 Acceptance criteria for functional and operating limits, monitoring instruments, and limiting
11598 control settings include limits placed on fuel, waste handling, and storage conditions to protect
11599 the integrity of the fuel and container, to protect the employees against occupational exposures,
11600 and to guard against the uncontrolled release of radioactive materials.

11602 **13.4.2** Limiting Conditions

11603

11609

11611

11601

Acceptance criteria for functional and operating limits, monitoring instruments, and limiting control settings include limits placed on fuel, waste handling, and storage conditions to protect the integrity of the fuel and container, to protect the employees against occupational exposures, and to guard against the uncontrolled release of radioactive materials. Acceptance criteria for limiting conditions are the lowest levels required for safe operation.

1161013.4.3Surveillance Requirements

Acceptance criteria for establishing surveillance requirements include the frequency and scope of surveillance requirements to verify performance and availability of structures, systems, and components (SSCs) important to safety, and the verification of the bases for the proposed limiting conditions.

11616 11617

11618

13.4.4 Design Features

Acceptance criteria for design features include commitments to specified codes. The condition or technical specification should also describe a process to address deviations from the applicable codes that may be necessary. In such cases, the licensee should request an alternative to the requirements of the applicable code from the NRC. If the staff finds that the deviation does not adversely impact safety, it may authorize the requested alternative in writing.

11625 Currently, there is an existing code for the design and construction of metallic nuclear fuel 11626 storage casks and the document is identified as Subsection WC of Division 3 of Section III of 11627 the ASME Boiler and Pressure Vessel Code. This was first issued as the 2005 addenda to the 2004 Code. The current Code edition is 2007. As of February 2008, NRC staff had not taken a 11628 11629 position regarding the acceptability of this document. In the past, Division 1 of the ASME B&PV 11630 Code had been used by NRC staff allowing alternatives to some provisions of that document which were judged to not be applicable to spent nuclear fuel storage casks. Early SNF dry 11631 storage licenses and certificates of compliance were issued without documenting which specific 11632 11633 alternatives to ASME B&PV Code, Section III, were approved. Poor quality assurance practices during design and fabrication sometimes led to significant deviations from the Code without 11634 11635 appropriate certificate holder design review or NRC review and approval. Therefore, the applicant should document commitments to ASME B&PV Code, Section III, with proposed 11636 11637 alternatives in the application.

11638

Likewise the NRC should document these commitments in the 10 CFR Part 72 licenses, certificates of compliance, or technical specifications and its approval of the proposed alternatives in the SER. Also, the NRC should include a statement (in the CoC or technical specifications) that refers the reader to the SAR and applicable SERs for any alternatives to the codes. In addition, to ensure that similar problems do not exist in other areas, all other codes and standards applied to components important to safety should be identified in the SAR and should be included in the CoC or technical specifications. Figure 13-1 presents an example of aprovision for allowing alternatives to applicable codes.

#.#.# Codes and Standards The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel (B&PV) Code, Section III, 1992 Edition with Addenda through 1994 is the governing Code for the storage system. #.#.#.# Design Alternatives to Codes, Standards, and Criteria Table #-# lists all approved alternatives for the design of the DSS. #.#.#.# Construction/Fabrication Alternatives to Codes, Standards, and Criteria Proposed alternatives to ASME B&PV Code Section III, 1992 Edition with Addenda through 1994, including alternatives referenced in Section 4.3.1, may be used when authorized by the Director of the Office of Nuclear Material Safety and Safeguards or designee.

The proposal to the NRC must demonstrate that the alternatives would provide an acceptable level of quality and safety, or that compliance with the specified requirements of ASME B&PV Code, Section III, 1992 Edition with Addenda through 1994 would result in hardship or unusual difficulty without a compensating increase in the level of quality and safety.

Figure 13-1 Provision Example

11651 In addition, acceptance criteria for design features include specifications important to criticality safety. Where criticality analyses rely upon the condition that the assemblies' active fuel length 11652 remains within the cask region containing the solid neutron absorbers, the applicant should 11653 commit to ensuring the cask features fulfill this analysis assumption. One common method is 11654 11655 the installation of fuel spacers, upper and/or lower spacers as needed, to maintain the assemblies' position under all credible conditions. The minimum Boron-10 content of the solid 11656 11657 neutron absorbers is another important design feature specification together with the qualification and acceptance testing method for ensuring the neutron absorbers meet the 11658 11659 required minimum Boron-10 content throughout the absorber material. The proximity of fuel 11660 assemblies to each other also affects the cask's reactivity, generally with reactivity increasing as the assemblies are brought closer together; therefore, a minimum dimension(s) between 11661 adjacent assembly locations is specified. This dimension may be a minimum flux trap width or a 11662 minimum fuel cell pitch. These design parameters and commitments should also be included in 11663 the license, certificate of compliance, or technical specifications. 11664

11665

11647 11648 11649

1166713.4.5Administrative Control

Acceptance criteria for administrative controls include organizational and management
procedures, recordkeeping, review and audit systems, and reporting necessary to ensure that
the DSS is managed in a safe and reliable manner. Administrative action that must be taken in
the event of noncompliance with a limit or condition should be specified.

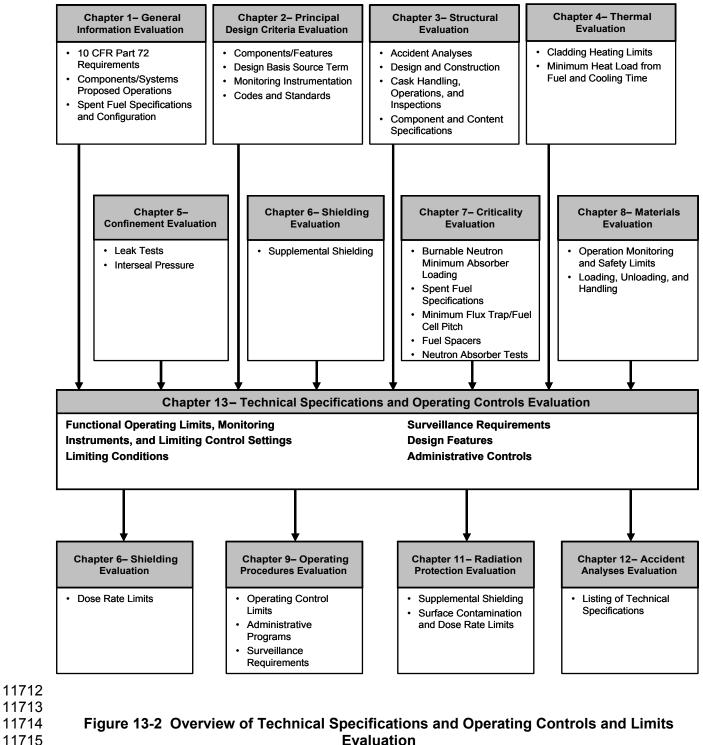
11674 13.5 Review Procedures (HIGH Priority)

11675

11673

11676 Figure 13-2 presents an overview of the evaluation process and can be used as a guide to 11677 assist in coordinating between review disciplines.

11678


11679 Reviewers should evaluate each chapter of the SAR with the goal of establishing the technical 11680 specifications. The variability of designs and operations makes it impossible to define each instance for which a technical specification is necessary. For this reason, it is important that the 11681 NRC staff conduct a coordinated, detailed, and thorough evaluation of each technical section of 11682 the SAR. Reviewers should note all instances in which the SAR either makes an assumption or 11683 11684 imposes a condition that should be identified as a technical specification. Reviewers should 11685 also note any instances in which the SAR requests alternatives or exemptions from regulatory requirements, or other conditions that the reviewer identifies as an operational limit or condition. 11686 11687 Such limits and exemptions should be clearly identified and documented in SAR Chapter 13. 11688 "Technical Specifications and Operation Controls and Limits Evaluation".

11689

11690 The various technical disciplines should review the results of their specific evaluations and 11691 compare their list of technical specifications to those identified by the applicant. The NRC staff should ensure that the conditions for use, as evaluated and approved by the technical 11692 11693 reviewers, complement one another and are not contradictory. In addition, the staff will 11694 coordinate the resolution of any disputed condition, limit, or specification. The staff is 11695 responsible for identifying any unique specifications (e.g., administrative) that may not be 11696 covered in the technical sections, although input may be solicited from the technical reviewers 11697 regarding any topic. 11698

All reviewers should be familiar with the technical specifications of similar cask designs previously approved by the NRC staff. For example, the staff has previously approved cask designs and issued technical specifications regarding a variety of items including, but not limited to, the following examples:

- 11704
 General requirements
 11705
 operating procedures, question
 - General requirements and conditions regarding site-specific parameters, operating procedures, quality assurance, heavy loads, training, etc.
 - 11707 11708
- A preoperational training exercise and demonstration of most cask operations including loading, sealing, and drying (using mockups as appropriate); placement in storage; and return of fuel to the SNF pool.
- 11709 11710 11711

- 11718 Specifications for the SNF to be stored in the cask, including, but not limited to, the type of SNF (i.e., boiling water reactor [BWR], pressurized water reactor 11719 11720 [PWR], or both), the minimum and maximum allowable enrichments of the fuel before irradiation, maximum burnup (i.e., megawatt-days/MTU), the minimum 11721 acceptable cooling time of the SNF before storage in the cask, the maximum 11722 heat designed to be dissipated, the maximum SNF loading limit, the maximum 11723 11724 neutron and gamma source terms, condition of the SNF (i.e., intact assembly or consolidated fuel rods, allowable cladding condition), associated non-fuel 11725 hardware, and physical parameters (e.g., length, width, depth, weight, etc.). The 11726 reviewer should be aware that additional SNF specifications regarding 11727 operational history parameters (e.g., average moderator temperature, average 11728 11729 in-core soluble boron concentrations, and operations under control rod banks or 11730 with control rod insertion) will need to be included in the technical specifications for cask systems relying on burnup credit 11731 11732
- Criticality controls such as cask water boron concentrations, minimum flux trap/fuel cell pitch, use of fuel spacers, minimum neutron absorber loading, and neutron absorber tests.
- The inerting atmosphere requirements during vacuum drying and helium backfill parameters.
 - Cask handling restrictions such as lift height limits and ambient temperature (high/low) conditions.
 - Confinement barrier requirements such as helium leak rate limits.
 - Thermal performance parameters such as maximum temperatures or deltatemperatures.
 - Radiological controls such as radiation dose rates and contamination limits.
 - Cask array and/or spacing limits for thermal performance and radiological considerations.
 - Definition of damaged fuel
 - Code of record and alternatives to specific Code requirements
 - Specification/requirements for alternative materials for ITS components
- Manufacture and testing of neutron poison material(s) for criticality control
- Hydrogen monitoring/mitigation during wet loading/unloading
- Maintaining inert atmosphere during canister draining/flooding to prevent oxidation
- Use of copper bearing or weathering steel for structural steel components at coastal marine ISFSI sites (or other corrosion mitigation measures)
 - Operational controls to maintain cladding temperature limits
 - Low Temperature Ductility of Ferritic Steels

11765 All disciplines should coordinate their review of the proposed technical specifications to assure 11766 the operational limitations are measurable and inspectible. Other topics may include:

11767

11739

11740

11741 11742 11743

11744 11745

11746 11747 11748

11749

11750

11751

11752 11753

11754

11755

11761

11762

- 11768 11769
- 11770 •
- Frequency and scope proposed for the surveillance requirements.
- 11771
- 11772 11773
- 11774 11775

Administrative action that must be taken in the event of noncompliance with a • limit or condition.

Administrative controls that include organization and administrative systems and

procedures, record-keeping, review, and audit systems required to ensure that

11776 11777 The reviewer should verify that the applicant includes a written description in a condition to the CoC or technical specification that documents the codes to which the applicant has committed. 11778 In addition, the condition or technical specification should describe a process to address any 11779 deviations from the ASME B&PV Code or other codes that may be needed. Likewise, the 11780 reviewer should verify that these commitments are documented in the 10 CFR Part 72 CoC or 11781 technical specifications. A list of proposed alternatives to code requirements should also be 11782 provided in the SAR. This list should be revised as necessary to reflect all NRC-authorized 11783 11784 alternatives.

the DSS is managed in a safe and reliable manner.

11786 NUREG-1745 provides a recommended format for use by applicants in presenting technical specifications. However, this format may not be applicable to all controls. Since the basis for 11787 the control may be extensively discussed in earlier chapters of the SAR, the applicant may use 11788 an abbreviated format in SAR Chapter 13. 11789 11790

11791 Reviewers should ensure that all necessary technical specifications are explicitly delineated in 11792 SER Chapter 13, "Technical Specifications and Operating Controls and Limits Evaluation," and 11793 in the CoC. These delineations typically restate the technical specifications defined in the SAR but may be modified or supplemented as the staff deems appropriate. Reviewers should also 11794 11795 ensure that limits and exemptions requested by the applicant are clearly identified and documented in the SER. The staff may prepare a separate table or appendix for SER 11796 Chapter 13 to explicitly designate the technical specifications that are applicable to the cask. 11797 11798 Applicable drawings from the SAR should be identified by number and revision. 11799

11800 13.6 **Evaluation Findings**

11801

11802 NRC staff reviewers prepare evaluation findings regarding satisfaction of the regulatory 11803 requirements related to technical specifications. Evaluation findings developed or included in all SER sections relating to technical specifications are also listed in this section. 11804 These 11805 statements should be similar to the following model: 11806

11807 F13.1 The staff concludes that the conditions for use for [DSS name] identify necessary technical specifications to satisfy 10 CFR Part 72 and that the applicable 11808 acceptance criteria have been satisfied. The proposed technical specifications 11809 provide reasonable assurance that the DSS will allow safe storage of SNF. This 11810 finding is based on the regulation itself, appropriate regulatory guides, applicable 11811 codes and standards, and accepted practices. The technical specifications 11812 identified by the applicant include the following: [Reviewer to specify]. 11813 11814

11815 The reviewer should provide a summary statement similar to the following: 11816

11817 "The proposed technical specifications provide reasonable assurance that the cask will allow safe storage of spent fuel. This finding is reached on the basis of a review that 11818

11819considered the regulation itself, appropriate regulatory guides, applicable codes and11820standards, and accepted practices."

11823

11825

14 QUALITY ASSURANCE EVALUATION

11824 14.1 **Review Objective**

11826 The objective of the review is to determine whether the applicant for a dry storage system (DSS) 11827 certificate has submitted a quality assurance (QA) program description (QAPD) that demonstrates that the applicant's QA program complies with the requirements of 10 CFR Part 11828 72, Subpart G (Part 72), "Quality Assurance." 11829

11830

11840

11842

11831 The basis for that determination is developed from an evaluation of the applicant's high level 11832 QAPD against the criteria provided in Section 14.4, Review Procedures below, Part 72, and any 11833 associated information found in the Federal Register since the last rulemaking has been completed, as applicable. (Note: The scope of review does not include actual procedures and 11834 11835 instructions that implement the QA program, but may be described in the QAPD).

11836 11837 Determination of compliance for the applicant's QA program occurs during NRC inspection activities where implementation of the QA plan is evaluated. (Note: The scope of an inspection 11838 11839 does include actual procedures and instructions that implement the QA program).

11841 14.2 Areas of Review

11843 This SRP provides guidance for use by a reviewer to perform an evaluation of a QAPD in terms of the 18 criteria defined in 10 CFR Part 72, Subpart G and Section 14.4, "Review Procedures" 11844 below, and the Federal Register, as applicable. 11845 11846

11847 14.3 **Regulatory Requirements**

11848 This section identifies the reviewer's need to review the exact regulatory language found in 11849 11850 Part 72 relevant to quality assurance as applied to a DSS. Refer to Subpart G -Quality 11851 Assurance of 10 CFR Part 72.

11853 14.4 Acceptance Criteria

11854

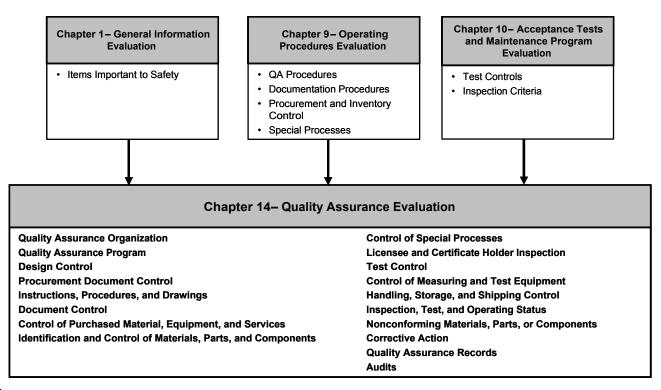
11852

11855 The acceptance criteria below reflect the 18 quality criteria of Part 72, Subpart G. These criteria 11856 are presented in the form of descriptions of information to be included in the applicant's QAPD. For each criterion shown in Sections 14.5.1 through 14.5.18 of this SRP, examples of measures 11857 have been provided which may assist the reviewer in determining if the QAPD indicates that it 11858 11859 meets the applicable criterion. For each of the activities and items identified as important to 11860 safety, the applicant should identify the applicable QA programmatic elements and include, as 11861 applicable, provisions for meeting each of the following guality criteria itemized in Section 14.5.

11862 11863

14.5 **Review Procedures (All items in this section are HIGH Priority)** 11864

11865 The purpose of the review is to obtain reasonable assurance that the applicant has developed 11866 and described a QA program for design, fabrication, construction, testing, operations, 11867 modification, and decommissioning activities associated with important-to-safety DSS systems, 11868 structures and components (SSCs).


11869

11870 It is important that the applicant's QAPD and associated portions of the safety analysis report (SAR) provide sufficient detail to enable the reviewer to assess that the applicant has committed 11871

to comply with the program and the QA program complies with the applicable requirements of
10 CFR Part 72, Subpart G. If the reviewer determines that sufficient detail does not exist in the
QAPD, the reviewer should refer to Section 14.6, Evaluation Findings for further direction. If the
QAPD indicates commitment to follow certain standards, codes, etc., then the reviewer should
consider the commitments as an integral part of the QA program.

- 11878 The reviewer should recognize that application for QA program approval may either be separate from the SAR or may exist as a section in the applicant's SAR. Since it is possible that some 11879 aspects of the QA program are described in various portions of the application (the SAR or a 11880 11881 submittal separate from the SAR) the reviewer should consider these aspects when evaluating the program against the acceptance criteria of Section 14.4. Therefore, if possible, the QAPD 11882 evaluation should be coordinated with other aspects of the DSS review. Such coordination will 11883 11884 allow reviewers to derive a more accurate and complete assessment of the applicant's level of 11885 commitment to the overall QA program, the selection of guality criteria and guality levels, and 11886 the proposed implementation methods.
- 11887 11888 The applicant's QA program may be structured to apply QA measures and controls to all activities and items in proportion to their importance to safety, commonly referred to as a graded 11889 approach. A graded approach for the application of QA should be described in the QAPD by 11890 11891 adequately assigning appropriate grading classifications and providing an associated justification. However, an applicant may choose to apply the highest level of QA and control to 11892 all activities and items. The QA program should identify the activities and items that are 11893 11894 important to safety and the degree of their importance. For application of a graded approach, the highly important-to-safety activities and items must have a high level of control, while those 11895 11896 less important may have a lower level of control. If the QA program is graded, the staff should 11897 be able to conclude that the structure of the graded program is acceptable and that the highest levels of QA are applied to those SSCs that are most important to safety. 11898 In making determinations about the application of QA to those SSCs that are listed in the description as 11899 11900 important to safety, the reviewer of the QA program description should coordinate with the 11901 appropriate NRC project manager and associated technical staff to compare those SSCs 11902 described in other portions of the applicant's submittal.
- 11903

- 11904 If after review, the reviewer finds the QAPD acceptable, the acceptance of the evaluation should 11905 be documented in the Safety Evaluation Report (SER) for QAPDs submitted as part of a SAR. If the applicant's QAPD was submitted prior to the applicant's SAR submittal, the acceptance of 11906 11907 the evaluation should be documented in a letter to the applicant and if possible included in the SER at a later time. In either case, the documentation of the review should include the basis for 11908 acceptance as noted in the example in Section 14.6 Evaluation Findings. 11909 Anv 11910 recommendations for modifications in the application that are required before the application 11911 can be accepted should be addressed by referring to Section 14.6 for initiation of a request for 11912 additional information (RAI).
- 11913
- 11914 Figure 14-1 presents an overview of the evaluation process and can be used as a guide to 11915 assist in coordinating with other review disciplines.
- 11916
- 11917

11920 11921

11923

11936

11940

11943

Figure 14-1 Quality Assurance Evaluation

11922 14.5.1 Quality Assurance Organization

11924 The QAPD should describe the structure, interrelationships, and areas of functional 11925 responsibility and authority for all organizational elements that will perform activities related to 11926 quality and safety. The following are examples of areas/items that may be addressed to support 11927 implementation of the quality criteria: 11928

- 11929 a. Measures to retain and exercise responsibility for the QA program. The assignment of responsibility for the overall QA program in no degree relieves line management of their responsibility for the achievement of quality.
 11932
- 11933b.Measures to identify and describe the QA functions performed by the applicant's QA11934organization or delegated to other organizations that will provide controls to ensure11935implementation of the applicable elements of the QA criteria.
- 11937c.Measures to provide clear management controls and effective lines of communication11938should exist between the applicant's QA organizations and suppliers to ensure proper11939direction of the QA program and resolution of QA problems.
- 11941d.Measures to identify onsite and offsite organizational elements that will function under11942the purview of the QA program and the lines of responsibility.
- 11944e.Measures to ensure that high-level management is responsible for documenting and11945promulgating the applicant's QA policies, goals, and objectives, and this management11946level should maintain a continuing involvement in QA matters. The application should

- 11947also describe the lines of communication between intermediate levels of management11948and between this position and the Manager (or Director) of QA.
- 11950f.Measures to designate a position that retains overall authority and responsibility for the11951QA program.
- 11953
11954g.Measures to provide authority and independence of the individual responsible for
managing the QA program should be such that he or she can direct and control the
organization's QA program, effectively ensure conformance to quality requirements, and
remain sufficiently independent of undue influences and responsibilities of schedules
and costs. In addition, measures to have this individual report to at least the same
organizational level as the highest line manager directly responsible for performing
activities affecting quality.
- 11961h.Measures for individuals or groups responsible for defining and controlling the content of11962the QA program and related manuals to have appropriate organizational position and11963authority, as should the management level responsible for final review and approval.
- 11965 I. Measures describing the qualification requirements for the principal QA management
 11966 positions so as to demonstrate management and technical competence commensurate
 11967 with the responsibilities of these positions.
- 11969j.Measures to ensure conformance to established requirements be verified by individuals11970or groups who do not have direct responsibility for performing the work being verified.11971The quality control function may be part of the line organization provided that the QA11972organization performs periodic surveillance to confirm sufficient independence from the11973individuals who performed the activities.
- k. Persons and organizations performing QA functions should have direct access to management levels that will ensure accomplishment of quality-affecting activities. These individuals should have sufficient authority and organizational freedom to perform their QA functions effectively and without reservation. In addition, they should be able to identify quality problems; initiate, recommend, or provide solutions through designated channels; and verify implementation of solutions.
- 11982I.Designated QA individuals or organizations should have the responsibility and authority,11983delineated in writing, to stop unsatisfactory work and control further processing, delivery,11984or installation of nonconforming material. In addition, the application should describe11985how stop-work requests will be initiated and completed.
- 11987m.Measures to determine the extent of QA controls to be determined by the QA staff in
combination with the line staff and to depend upon the specific activity or item complexity
and level of importance to safety.
- 11990

11952

11960

11964

11974

1199114.5.2Quality Assurance Program11992

11993 The QAPD should provide acceptable evidence that the applicant's proposed QA program will 11994 be well-documented, planned, implemented, and maintained to provide the appropriate level of 11995 control over activities and SSCs consistent with their relative importance to safety. The 11996 following are examples of areas/items that may be addressed to support implementation of the 11997 quality criteria:

- 11998 a. Measures used to ensure that the QA program meets applicable acceptance criteria.
- 12000 12001 b. Measures for management to regularly assess the effectiveness of the QA program. In addition, measures for management (above and beyond the QA organization) to 12002 regularly assess the scope, status, adequacy, and compliance of the QA program to the 12003 requirements of 10 CFR Part 72. Measures to provide for management's frequent 12004 contact with program status through reports, meetings, and audits as well as 12005 performance of a periodic assessment that is planned and documented with corrective 12006 12007 action identified and tracked.
- 12009 c. Measures used to ensure that trained, qualified personnel within the organization will be
 12010 assigned to determine that functions delegated to contractors are properly
 12011 accomplished.
- 12013 d. Summarizations of the corporate QA policies, goals, and objectives and establishment of
 12014 a meaningful channel for transmittal of these policies, goals, and objectives down
 12015 through the levels of management.
 12016
- 12017e.Measures to designate responsibilities for implementing the major activities addressed in
the QA manuals.
- 12020 f. Measures to control the distribution of the QA manuals and revisions. 12021

12019

- 12022 g. Measures for communicating to all responsible organizations and individuals that 12023 policies, QA manuals, and procedures are mandatory requirements. 12024
- h. Measures to provide a comprehensive listing of QA procedures, plus a matrix of these
 procedures cross-referenced to each of the QA criteria, to demonstrate that the QA
 program will be fully implemented by documented procedures.
- 12029 I. Identification of the structures, systems, and components (SSCs) that are important to safety and how they will be controlled by the QA program.
 12031
- 12032 j. Measures for review and documents to show agreement with the QA program provisions12033 of its suppliers to ensure implementation of a program meeting the QA criteria.
- 12035 k. Measures for the resolution of disputes involving quality arising from a difference of opinion between QA/Quality Control (QC) personnel and personnel from other departments (engineering, procurement, manufacturing, etc.).
 12038
- 12039 I. Measures for indoctrination, training, and qualification programs that fulfill the following
 criteria:
 12041
- Personnel responsible for performing activities affecting quality should be instructed as to the purpose, scope, and implementation of the quality-related manuals, instructions, and procedures.
- Personnel performing activities affecting quality should be trained and qualified in
 the principles and techniques of the activities being performed.

by retraining, reexamining, and re-certifying. 12051 12052 Preparation and maintenance of documentation of completed training and • 12053 qualification. 12054 12055 Qualification of personnel in accordance with accepted codes and standards. ٠ 12056 12057 14.5.3 **Design Control** 12058 12059 The QAPD should describe the approach that the applicant will use to define, control, and verify the design and development of the DSS. The following are examples of areas/items that may 12060 be addressed to support implementation of the quality criteria: 12061 12062 12063 Measures to carry out design activities in a planned, controlled, and orderly manner. a. 12064 12065 Measures to correctly translate the applicable regulatory requirements and design bases b. 12066 into specifications, drawings, written procedures, and instructions. 12067 Measures to describe how the applicant will specify quality standards in the design 12068 C. documents and control deviations and changes from these quality standards. 12069 12070 12071 Measures to describe how the applicant will review designs to ensure that design d. characteristics can be controlled, inspected, and tested and that inspection and test 12072 12073 criteria are identified. 12074

Maintenance of the proficiency of personnel performing quality-affecting activities

12049

12050

- 12075 Measures to describe how the applicant will establish both internal and external design e. interface controls. These controls should include review, approval, release, distribution, 12076 12077 and revision of documents involving design interfaces with participating design 12078 organizations. 12079
- 12080 Measures to describe how they will properly select and perform design verification f. 12081 processes such as design reviews, alternative calculations, or qualification testing. When a test program is to be used to verify the adequacy of a design, the measures 12082 should be developed to describe how they will use a qualification test of a prototype unit 12083 12084 under adverse design conditions. 12085
- 12086 Design verification constitutes confirmation that the design of the SSC is suitable for its g. intended purpose. Measures to ensure design verifications are completed by an 12087 individual with a level of skill at least equal to that of the original designer, recognizing 12088 12089 design checking can be performed by a less experienced person. (As an example, design checking, which should also be performed, includes confirmation of the numerical 12090 accuracy of computations and the accuracy of data input to computer codes. 12091 Confirmation that the correct computer code has been used is part of design 12092 verification.) Measures to describe how design verification will be performed by persons 12093 other than those performing design checking. In addition, measures to include how 12094 individuals or groups responsible for design verification will not include the original 12095 designer and normally not include the designer's immediate supervisor. 12096 12097

- h. Measures to ensure design and specification changes are subject to the same design controls and the same or equivalent approvals that were applicable to the original design.
 12101
- 12102 I. Measures to ensure the documentation of all errors and deficiencies in the design or the design process that could adversely affect SSCs important to safety. In addition, the applicant should provide measures for adequate corrective action, including root cause evaluation of significant errors and deficiencies, to preclude repetition.
- j. Before selecting materials, parts, and equipment that are standard, commercial (off-the-shelf), or have been previously approved for a different application, measures should be provided to review the suitability of any materials, parts, and equipment for the intended application.
 12111
- 12112 k. Measures to provide written procedures to identify and control the authority and responsibilities of all individuals or groups responsible for design reviews and other design verification activities.
 12115
- 12116 I. Measures that include the use of valid industry standards and specifications for the selection of suitable materials, parts, equipment, and processes for SSCs that are important to safety.
 12119

1212014.5.4Procurement Document Control12121

- Documents used to procure SSCs or services should include or reference applicable design bases and other requirements necessary to ensure adequate quality. The following are examples of areas/items that may be addressed to support implementation of the quality criteria:
- 12127a.Measures to establish procedures that clearly delineate the sequence of actions to be
accomplished in the preparation, review, approval, and control of procurement
documents.
- b. Measures to ensure that qualified personnel review and concur with the adequacy of quality requirements stated in procurement documents. These measures should also ensure that the quality requirements are correctly stated, inspectible, and controllable; there are adequate acceptance and rejection criteria; and the procurement document has been prepared, reviewed, and approved in accordance with QA program requirements.
- 12138 c. Measures to document the review and approval of procurement documents before they
 12139 are released, and the documentation should be available for verification.
 12140
- 12141 d. Procurement documents should identify the applicable QA requirements that should be compiled and described in the supplier's QA program. In addition, the applicant should review and concur with the supplier's QA program.
- 12145e.Measures to ensure procurement documents contain or reference the regulatory12146requirements, design bases, and other technical requirements.

12147

12130

12137

- f. Measures to ensure procurement documents identify the documentation (e.g., drawings, specifications, procedures, inspection and fabrication plans, inspection and test records, personnel and procedure qualifications, and chemical and physical test results of material) to be prepared, maintained, and submitted to the purchaser for review and approval.
- 12154 g. Measures to ensure procurement documents identify records to be retained, controlled,
 12155 and maintained by the supplier and those records to be delivered to the purchaser
 12156 before use or installation of the hardware.
 12157
- h. Measures to ensure procurement documents specify the procuring agency's right of access to the supplier's facilities and records for source inspection and audit.
 12160
- 12161 I. Measures to ensure that changes and revisions to procurement documents are subject to the same or equivalent review and approval as the original documents.

12164 **14.5.5** Instructions, Procedures, and Drawings

The QAPD should define the applicant's proposed procedures for ensuring that activities affecting quality will be prescribed by, and performed in accordance with, documented instructions, procedures, or drawings of a type appropriate for the circumstances. The following are examples of areas/items that may be addressed to support implementation of the quality criteria:

- 12172 a. Measures to ensure activities affecting quality are prescribed and accomplished in accordance with documented instructions, procedures, or drawings.
 12174
- b. Measures to establish provisions that clearly delineate the sequence of actions to be accomplished in the preparation, review, approval, and control of instructions, procedures, and drawings.
 12178
- 12179 c. Measures to ensure instructions, procedures, and drawings specify the methods for complying with each of the applicable QA criteria.
 12181
- 12182 d. Measures to ensure instructions, procedures, and drawings include quantitative acceptance criteria (such as dimensions, tolerances, and operating limits) as well as qualitative acceptance criteria (such as workmanship samples) as verification that activities important to safety have been satisfactorily accomplished.
- 12187 e. Measures to ensure the QA organization reviews and concurs with the procedures,
 12188 drawings, and specifications related to inspection plans, tests, calibrations, and special
 12189 processes as well as any subsequent changes to these documents.

12191 **14.5.6 Document Control**

12193 The QAPD should define the applicant's proposed procedures for preparing, issuing, and 12194 revising documents that specify quality requirements or prescribe activities affecting quality. 12195 The following are examples of areas/items that may be addressed to support implementation of 12196 the quality criteria:

12197

12190

12192

12163

- a. The QAPD should identify all documents to be controlled under this subsection. As a minimum, this should include design specifications; design and fabrication drawings; procurement documents; QA manuals; design criteria documents; fabrication, inspection, and testing instructions; and test procedures.
- 12203b.Measures to ensure establishment of procedures to control the review, approval, and12204issuance of documents and changes thereto before release to ensure that the12205documents are adequate and applicable quality requirements are stated.
- 12207 c. Measures to ensure establishment of provisions to identify individuals or groups 12208 responsible for reviewing, approving, and issuing documents and revisions thereto. 12209

12215

12228

12233

12239

12243

12244 12245

- 12210d.Measures to ensure document revisions receive review and approval by the same
organizations that performed the original review and approval or by other qualified
responsible organizations designated by the applicant.
- 12213 e. Measures to ensure that approved changes be included in instructions, procedures, drawings, and other documents before the change is implemented.
- f. Measures to ensure the control of obsolete or superseded documents to prevent inadvertent use.
 12218
- 12219 g. Measures to ensure documents are available at the location where the activity is 12220 performed. 12221
- h. Measures to ensure establishment of a master list (or equivalent) to identify the current revision number of instructions, procedures, specifications, drawings, and procurement documents. In addition, measures to ensure updating of the list and distribution of it to predetermined, responsible personnel to preclude use of superseded documents.

12227 **14.5.7** Control of Purchased Material, Equipment, and Services

12229 The QAPD should define the applicant's proposed procedures for controlling purchased 12230 material, equipment, and services to ensure conformance with specified requirements. The 12231 following are examples of areas/items that may be addressed to support implementation of the 12232 quality criteria:

- a. Measures to ensure qualified personnel evaluate the supplier's capability to provide services and products of acceptable quality before the award of the procurement order or contract. In addition, measures to ensure QA and engineering groups participate in the evaluation of those suppliers providing critical items and services important to safety, and the applicant should define the responsibilities for each group's participation.
- b. Measures to ensure evaluation of suppliers on the basis of one or more of the following
 criteria:
 - The supplier's capability to comply with the elements of the QA criteria that are applicable to the type of material, equipment, or service being procured.
- Review of previous records and performance of suppliers who have provided similar articles or services of the type being procured.

- A survey of the supplier's facilities and QA program to assess the capability to supply a product that meets applicable design, manufacturing, and quality requirements.
- 12253 c. Measures to ensure documentation and filing of the results of supplier evaluations.

12254

12260

12265

12271 12272

12273 12274

12275 12276

12277

12278

12279

12283

12286

12289 12290

12291

12292

- 12255d.Measures to ensure planning and performing adequate surveillance of suppliers during12256fabrication, inspection, testing, and shipment of materials, equipment, and components12257in accordance with written procedures to ensure conformance to the purchase order12258requirements. In addition the measures should ensure that the procedures provide the12259following information:
- Instructions that specify the characteristics or processes to be witnessed, inspected or verified, and accepted; the method of surveillance and the extent of documentation required; and those responsible for implementing these instructions.
- Procedures for audits and surveillance to ensure that the supplier complies with
 the quality requirements (surveillance should be performed for SSCs for which
 verification of procurement requirements cannot be determined upon receipt).
- 12270 e. Measures to ensure the supplier furnish the following records to the purchaser:
 - Documentation that identifies the purchased material or equipment and the specific procurement requirements (e.g., codes, standards, and specifications) met by the items.
 - Documentation that identifies any procurement requirements that have not been met and a description of any nonconformances designated "accept as is" or "repair."
- 12280 f. Measures to describe the proposed procedures for reviewing and accepting these 12281 documents and, as a minimum, to ensure that this review and acceptance will be 12282 undertaken by a responsible QA individual.
- 12284 g. Measures to ensure the conduct periodic audits, independent inspections, or tests to ensure the validity of the suppliers' certificates of conformance.
- 12287 h. Measures to ensure the performance of a receiving inspection of the supplier-furnished material, equipment, and services to ensure fulfillment of the following criteria:
 - The material, component, or equipment should be properly identified in a manner that corresponds with the identification on the purchasing and receiving documentation.
- Material, components, equipment, and acceptance records should be inspected and judged acceptable in accordance with predetermined inspection instructions before installation or use.

- Inspection records or certificates of conformance attesting to the acceptance of material, components, and equipment should be available before installation or use.
 - Items accepted and released should be identified as to their inspection status before they are forwarded to a controlled storage area or released for installation or further work.
- 12305
 12306 i. Measures to assess the effectiveness of suppliers' quality controls at intervals consistent
 12307 with the importance to safety, complexity, and quantity of the SSCs procured.
 12308
- 1230914.5.8Identification and Control of Materials, Parts, and Components12310

12311 The QAPD should define the applicant's proposed provisions for identifying and controlling 12312 materials, parts, and components to ensure that incorrect or defective SSCs are not used. The 12313 following are examples of areas/items that may be addressed to support implementation of the 12314 quality criteria: 12315

- 12316 a. Measures to establish procedures to identify and control materials, parts, and components (including partially fabricated subassemblies).
 12318
- 12319b.Measures to determine identification requirements during generation of specifications12320and design drawings.
- 12322 c. Measures to ensure that identification will be maintained either on the item or on records
 12323 traceable to the item to preclude use of incorrect or defective items.
 12324
- 12325d.Measures to ensure Identification of materials and parts of important-to-safety items are12326traceable to the appropriate documentation (such as drawings, specifications, purchase12327orders, manufacturing and inspection documents, deviation reports, and physical and12328chemical mill test reports).
- 12330 e. Measures to ensure the location and method of identification does not affect the fit,
 12331 function, or quality of the item being identified.
 12332
- 12333 f. Measures to verify and document the correct identification of all materials, parts, and components before releasing them for fabrication, assembly, shipping, and installation.

1233614.5.9Control of Special Processes12337

12338 The QAPD should describe the controls that the applicant will establish to ensure the 12339 acceptability of special processes (such as welding, heat treatment, nondestructive testing, and 12340 chemical cleaning) and that the proposed controls are performed by qualified personnel using 12341 qualified procedures and equipment. The following are examples of areas/items that may be 12342 addressed to support implementation of the quality criteria: 12343

- 12344a.Measures to establish procedures to control special processes (such as welding, heat12345treating, nondestructive testing, and cleaning) for which direct inspection is generally12346impossible or disadvantageous. In addition, the applicant should provide a listing of12347these special processes.
- 12348

12301 12302

12303 12304

12321

12329

- 12349 b. Measures to qualify procedures, equipment, and personnel connected with special 12350 processes in accordance with applicable codes, standards, and specifications.
- 12352 c. Measures to ensure qualified personnel perform special processes in accordance with 12353 written process sheets (or the equivalent) with recorded evidence of verification.
- 12355 d. Measures to establish, file, and keep current qualification records of procedures, equipment, and personnel associated with special processes.
 12357

12358 14.5.10 Licensee Inspection

12351

12354

12359

12375

12376 12377

12378 12379 12380

12381 12382

12383 12384

12385 12386

12389

12360 The QAPD should define the applicant's proposed provisions for inspection of activities affecting 12361 quality to verify conformance with instructions, procedures, and drawings. The following are 12362 examples of areas/items that may be addressed to support implementation of the quality 12363 criteria:

- 12365 a. Measures to establish, document, and conduct an inspection program that effectively
 12366 verifies conformance of quality-affecting activities with requirements in accordance with
 written, controlled procedures.
- b. Measures to ensure inspection personnel are sufficiently independent from the individuals performing the activities being inspected.
 12371
- 12372 c. Measures to ensure inspection procedures, instructions, and check lists provide the
 following details:
 12374
 - Identification of characteristics and activities to be inspected.
 - Identification of the individuals or groups responsible for performing the inspection operation.
 - Acceptance and rejection criteria.
 - A description of the method of inspection.
 - Procedures for recording evidence of completing and verifying a manufacturing, inspection, or test operation.
- 12387•Identification of the recording inspector or data recorder and the results of the
inspection operation.
- 12390 d. Measures to ensure the use of inspection procedures or instructions with the necessary drawings and specifications when performing inspection operations.
 12392
- e. Measures to qualify inspectors in accordance with applicable codes, standards, and company training programs and in addition keeping inspector's qualifications and certifications current.
 12396
- 12397f.Measures to inspect modifications, repairs, and replacements in accordance with the
original design and inspection requirements or acceptable alternatives.

- 12400g.Measures to establish provisions that identify mandatory inspection hold points for
witnessing by a designated inspector.
- h. Measures to identify the individuals or groups who will perform receiving and process
 verification inspections, and should demonstrate that these individuals or groups have
 sufficient independence and qualifications.
- 12407 I. Measures to establish provisions for indirect control by monitoring processing methods, equipment, and personnel if direct inspection is not possible.
 12409

12410 **14.5.11 Test Control**

12402

12411

12424

12425

12426 12427

12428

12430 12431

12432 12433

12434 12435

12436

12441

12443

12412 The QAPD should define the applicant's proposed provisions for tests to verify that SSCs 12413 conform to specified requirements and will perform satisfactorily in service. The following are 12414 examples of areas/items that may be addressed to support implementation of the quality 12415 criteria: 12416

- 12417 a. Measures to establish, document, and conduct a test program to demonstrate that the
 12418 item will perform satisfactorily in service in accordance with written, controlled
 12419 procedures.
 12420
- b. Measures to ensure written test procedures incorporate or reference the following information:
 12423
 - Requirements and acceptance limits contained in applicable design and procurement documents.
 - Instructions for performing the test.
- Test prerequisites.
 - Mandatory inspection hold points.
 - Acceptance and rejection criteria.
 - Methods of documenting or recording test data results.
- 12437 c. Measures to ensure a qualified, responsible individual or group document test results
 12438 and evaluate their acceptability. When practicable, the measures should ensure testing
 12439 of the SSC occurs under conditions that will be present during normal and anticipated
 12440 off-normal operations.

12442 **14.5.12 Control of Measuring and Test Equipment**

12444 The QAPD should define the applicant's proposed provisions to ensure that tools, gauges, 12445 instruments, and other measuring and testing devices are properly identified, controlled, 12446 calibrated, and adjusted at specified intervals. The following are examples of areas/items that 12447 may be addressed to support implementation of the quality criteria: 12448

12449a.Measures to ensure documented procedures describe the calibration technique and
frequency, maintenance, and control of all measuring and test equipment (instruments,

- 12451tools, gauges, fixtures, reference and transfer standards, and nondestructive test12452equipment) that will be used in the measurement, inspection, and monitoring of SSCs12453that are important to safety.
- 12455b.Measures to ensure measuring and test equipment are identified and traceable to the
calibration test data.
- 12458 c. Measures to ensure the use of labels, tags, or documents for measuring and test
 12459 equipment to indicate the date of the next scheduled calibration and to provide
 12460 traceability to calibration test data.
- 12462d.Measures to calibrate measuring and test instruments at specified intervals on the basis12463of the required accuracy, precision, purpose, degree of usage, stability characteristics,12464and other conditions that could affect the accuracy of the measurements.
- 12466 e. Measures to assess the validity of previous inspections when measuring and test
 12467 equipment is found to be out of calibration. In addition, measures should also be
 12468 provided to document the assessment and take control of the out of calibration
 12469 equipment.
- 12471 f. Measures to document and maintain the complete status of all items under the 12472 calibration system. 12473
- 12474g.Measures to ensure reference and transfer standards are traceable to nationally12475recognized standards; where national standards do not exist, the applicant should12476establish provisions to document the basis for calibration.

1247814.5.13Handling, Storage, and Shipping Control12479

12454

12457

12465

12477

12495

12480 The QAPD should define the applicant's proposed provisions to control the handling, storage, 12481 shipping, cleaning, and preservation of SSCs in accordance with work and inspection 12482 instructions to prevent damage, loss, and deterioration. The following are examples of 12483 areas/items that may be addressed to support implementation of the quality criteria: 12484

- 12485 a. Measures to establish and accomplish special handling, preservation, storage, cleaning, packaging, and shipping requirements in accordance with predetermined work and inspection instructions.
 12488
- b. Measures to control the cleaning, handling, storage, packaging, shipping, and preservation of materials, components, and systems in accordance with design and specification requirements to preclude damage, loss, or deterioration by environmental conditions (such as temperature or humidity).

12494 **14.5.14** Inspection, Test, and Operating Status

12496 The QAPD should define the applicant's proposed provisions to control the inspection, test, and 12497 operating status of SSCs to prevent inadvertent use or bypassing of inspections and tests. The 12498 following are examples of areas/items that may be addressed to support implementation of the 12499 quality criteria: 12500

12501 a. Measures to know the inspection and test status of items throughout fabrication.

- 12502
 12503 b. Measures to establish procedures to control the application and removal of inspection and welding stamps and operating status indicators (such as tags, markings, labels, and stamps).
 12506
- 12507c.Measures to ensure procedures under the cognizance of the QA organization controls12508the bypassing of required inspections, tests, and other critical operations.
- d. Measures to specify the organization responsible for documenting the status of nonconforming, inoperative, or malfunctioning SSCs and identifying the item to prevent inadvertent use.
 12513

12514 **14.5.15** Nonconforming Materials, Parts, or Components 12515

12509

12519

12534

12544

12550

- 12516 The QAPD should define the applicant's proposed provisions to control the use or disposition of 12517 nonconforming materials, parts, or components. The following are examples of areas/items that 12518 may be addressed to support implementation of the quality criteria:
- a. Measures to establish procedures to control the identification, documentation, tracking, segregation, review, disposition, and notification of affected organizations regarding nonconforming materials, parts, components, services, or activities.
- b. Measures to provide for adequate documentation to identify nonconforming items and describe the nonconformance, its disposition, and the related inspection requirements.
 The measures should also provide for adequate documentation and include signature approval of the disposition.
- 12529 c. Measures to establish provisions to identify those individuals or groups with the
 12530 responsibility and authority for the disposition and closeout of nonconformance.
 12531
- 12532d.Measures to ensure nonconforming items are segregated from acceptable items and
identified as discrepant until properly dispositioned and closed out.
- e. Measures to verify the acceptability of reworked or repaired materials, parts, and SSCs
 by re-inspecting and retesting the item as originally inspected and tested or by using a
 method that is at least equal to the original inspection and testing method. In addition,
 the measures should provide for documentation of the relevant inspection, testing,
 rework, and repair procedures.
- 12541f.Measures to ensure nonconformance reports designated "accept as is" or "repair" are12542made part of the inspection records and forwarded with the hardware to the customer for12543review and assessment.
- 12545 g. Measures to periodically analyze nonconformance reports to show quality trends and help identify root causes of nonconformance. Significant results should be reported to responsible management for review and assessment.

12549 **14.5.16 Corrective Action**

12551 The QAPD should define the applicant's proposed provisions to ensure that conditions adverse 12552 to quality are promptly identified and corrected, and that measures are taken to preclude recurrence. The following are examples of areas/items that may be addressed to support
implementation of the quality criteria:

- 12556a.Measures to evaluate conditions adverse to quality (such as nonconformance, failures,
malfunctions, deficiencies, deviations, and defective material and equipment) in
accordance with established procedures to assess the need for corrective action.12559
- 12560 b. Measures to initiate corrective action to preclude recurrence of a condition identified as adverse to quality.
 12562
- 12563 c. Measures to conduct follow-up activities to verify proper implementation of corrective actions and close out the corrective action documentation in a timely manner.
 12565
- 12566d.Measures to document significant conditions adverse to quality, as well as the root12567causes of the conditions, and the corrective actions taken to remedy the and preclude12568recurrence of the conditions. In addition, this information should be reported to12569cognizant levels of management for review and assessment.

12571 **14.5.17 Quality Assurance Records**

12570

12572

12589

12591

12573 The SAR should define the applicant's proposed provisions for identifying, retaining, retrieving, 12574 and maintaining records that document evidence of the control of quality for activities and SSCs 12575 important to safety. The following are examples of areas/items that may be addressed to 12576 support implementation of the quality criteria: 12577

- 12578a.Measures to define the scope of the records program such that sufficient records will be
maintained to provide documentary evidence of the quality of items and activities
affecting quality. To minimize the retention of unnecessary records, the records program
should list records to be retained by "type of data" rather than by record title.12582
- b. Measures to ensure that QA records include operating logs; results of reviews, inspections, tests, audits, and material analyses; monitoring of work performance; qualification of personnel, procedures, and equipment; and other documentation such as drawings, specifications, procurement documents, calibration procedures and reports, design review and peer review reports, nonconformance reports, and corrective action reports.
- 12590 c. Measures to ensure records are identified and retrievable.
- 12592 d. Measures to ensure requirements and responsibilities for record creation, transmittal, retention (such as duration, location, fire protection, and assigned responsibilities), and maintenance subsequent to completion of work are consistent with applicable codes, standards, and procurement documents.
 12596
- 12597e.Measures to ensure inspection and test records contain the following information, where
applicable:
- 12599
 12600
 A description of the type of observation.
 12601
 The date and results of the inspection or test.
 12602
 Information related to conditions adverse to quality.
 12603
 Identification of the inspector or data recorder.

- Evidence as to the acceptability of the results.
- Action taken to resolve any noted discrepancies.
- 1260612607f.12608Measures to ensure record storage facilities are constructed, located, and secured to12608prevent destruction of the records by fire, flood, theft, and deterioration by environmental12609conditions (such as temperature or humidity). In addition, the facilities are to be12610maintained by, or under the control of, the licensee throughout the life of the DSS or the12611individual product.

12613 **14.5.18** Audits

12612

12614

12619

12623

12631

12635

12636

12637 12638

12639

12644

12649

12615 The QAPD should define the applicant's proposed provisions for planning and scheduling audits 12616 to verify compliance with all aspects of the QA program, and to determine the effectiveness of 12617 the overall program. The following are examples of areas/items that may be addressed to 12618 support implementation of the quality criteria:

- 12620a.Measures to perform audits in accordance with written procedures or checklists;12621qualified personnel tasked with performing these audits should not have direct12622responsibility for the achievement of quality in the areas being audited.
- b. Measures to ensure audit results are documented and reviewed with management having responsibility in the area audited.
 12626
- 12627c.Measures to establish provisions for responsible management to undertake appropriate12628corrective action as a follow-up to audit reports. In addition, the measures should12629ensure auditing organizations schedule and conduct appropriate follow-up to ensure that12630the corrective action is effectively accomplished.
- 12632 d. Measures to perform both technical and QA programmatic audits to achieve the 12633 following objectives: 12634
 - Provide a comprehensive independent verification and evaluation of procedures and activities affecting quality.
 - Verify and evaluate suppliers' QA programs, procedures, and activities.
- 12640e.Measures to ensure audits are led by appropriately qualified and certified audit12641personnel from the QA organization. The measures should also ensure that the audit12642team membership include personnel (not necessarily QA organization personnel) having12643technical expertise in the areas being audited.
- 12645f.Measures to schedule regular audits on the basis of the status and importance to safety12646of the activities being audited. The measures should also address that audits be12647initiated early enough to ensure effective QA during design, procurement, and12648contracting activities.
- 12650g.Measures to analyze and trend audit deficiency data as well as ensuring resultant12651reports, indicating quality trends and the effectiveness of the QA program, should be
given to management for review, assessment, corrective action, and follow-up.12653
 - 14-17

h. Measures to ensure that audits objectively assess the effectiveness and proper implementation of the QA program and should address the technical adequacy of the activities being conducted.
12657

12658 I. Measures to establish provisions requiring the performance of audits in all areas to 12659 which the requirements of the QA program apply.

12661 **14.6 Evaluation Findings**

12660

12662

12671

12673

12678

12679

12680 12681

12682

12683 12684

12689

12663 If the reviewer determines that the applicant's QAPD does not adequately address the Part 72 requirements, a request for additional information (RAI) must be prepared and submitted to the 12664 12665 Project Manager to be forwarded to the applicant for resolution and response to the NRC. If the 12666 reviewer concludes that information provided with the application, along with additional information provided in response to NRC RAI(s), shows that the QA program description meets 12667 the acceptance requirements referenced in Section 14.4, findings of the following type should 12668 be included in the staff's SER or in a letter to the applicant, if the applicant's QA program 12669 12670 description was submitted separate from a SAR.

12672 (finding numbering is for convenience in referencing within the FSRP and SER):

12674 F14.1 Based upon a review and evaluation of the QA program description contained in the 12675 Safety Analysis Report or applicant's submittal (identified by date and any other pertinent 12676 identifiers) for a DSS, the staff concludes that: 12677

- The licensee's description of the QA program indicates requirements, procedures, and controls that, when properly implemented, should comply with the requirements of 10 CFR 72, Subpart G.
- The licensee's description of the QA program covers activities affecting SSCs important to safety as identified in the Safety Analysis Report.
- The licensee's description of the QA program describes organizations and persons performing QA functions indicating that sufficient independence and authority should exist to perform their functions without undue influence from those directly responsible for costs and schedules.
- The licensee's description of the QA program is in compliance with applicable
 NRC regulations and industry standards, and the acceptance of the QA program
 description by NRC allows implementation of the associated QA program for the
 (specify: design, fabrication and construction, operation, decommissioning)
 phases of the installation's life cycle.

12695 12696	APPENDIX A CONSOLIDATED REFERENCES
12690	AFFENDIX A CONSOLIDATED REFERENCES
12698	A.1 U.S. Nuclear Regulatory Commission (NRC) Documents Cited
12699	
12700 12701	A.1.1 U.S. Code of Federal Regulations (CFR), Title 10, "Energy"
12702 12703 12704	Part 2, "Rules of Practice for Domestic Licensing Proceedings and Issuance of Orders," August 15, 1991.
12705 12706	Part 20, "Standards for Protection Against Radiation," September 11, 1988.
12707 12708	Part 50, "Domestic Licensing of Production and Utilization Facilities," August 15, 1991.
12709 12710 12711	Part 71, "Packaging and Transportation of Radioactive Material," Appendix H, Quality Assurance, September 28, 1995.
12712 12713 12714	Part 72, "Licensing Requirements for the Independent Storage of Spent Nuclear Fuel, High- Level Radioactive Waste, and Reactor-Related Greater Than Class C Waste," January 1, 2001.
12715 12716	Part 73, "Physical Protection of Plants and Materials," December 28, 1973.
12717 12718	Part 100, "Reactor Site Criteria," January 10, 1997.
12719 12720 12721	Part 961, "Standard Contract for Disposal of Spent Nuclear Fuel and/or High Level Radioactive Waste," April 18, 1983.
12722 12723	A.1.2 Regulatory Guides (RG)
12724 12725 12726 12727	RG 1.25, "Assumptions Used for Evaluating the Potential Radiological Consequences of a Fuel Handling Accident in the Fuel Handling and Storage Facility for Boiling and Pressurized Water Reactors," March 1972.
12728 12729 12730 12731	RG 1.26, "Quality Group Classification and Standards for Water-, Steam-, and Radioactive-Waste-Containing Components of Nuclear Power Plants," Revision 4, March 2007, ML070290283.
12732 12733	RG 1.29, "Seismic Design Classification," Revision 4, March 2007, ML070310052.
12734 12735 12736	RG 1.33, "Quality Assurance Program Requirements (Operation)," Revision 3, February 1978, ML0037399.
12737 12738 12739	RG 1.59, "Design Basis Floods for Nuclear Power Plants," Revision 2, August 1977 with Errata of 7/30/1980, ML003740388.
12740 12741 12742	RG 1.60, "Design Response Spectra for Seismic Design of Nuclear Power Plants," Revision 1, December 1973. ML003740207.
12743 12744 12745	RG 1.61, "Damping Values for Seismic Design of Nuclear Power Plants," Revision 1, March 2007, ML070260029.

RG 1.76, "Design Basis Tornado and Tornado Missiles for Nuclear Power Plants," Revision 1, 12746 March 2007, ML070360253. 12747 12748 12749 RG 1.86, "Termination of Operating Licenses for Nuclear Reactors," June 1974, ML003740243. 12750 12751 RG 1.92, "Combining Modal Responses and Spatial Components in Seismic Response 12752 Analysis," Revision 2, July 2006, ML053250475. 12753 12754 RG 1.102, "Flood Protection for Nuclear Power Plants," Revision 1, September 1976, 12755 ML003740308. 12756 12757 RG 1.109, "Calculations of Annual Doses to Man from Routine Releases of Reactor Effluents for 12758 the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I," Revision 1, October 12759 1977, ML003740384. 12760 12761 RG 1.117, "Tornado Design Classification," Revision 1, April 1978, ML003739346. 12762 12763 RG 1.136, "Design Limits, Loading Combinations, Materials, Construction, and Testing of Concrete Containments," Revision 3, March 2007, ML070310045. 12764 12765 12766 RG 1.142, "Safety-Related Concrete Structures for Nuclear Power Plants (Other than Reactor 12767 Vessels and Containments)," Revision 2, November 30, 2001, ML013100274. 12768 12769 RG 1.143, "Design Guidance for Radioactive Waste Management Systems, Structures, and Components Installed in Light-Water-Cooled Nuclear Power Plants," Revision 2, November 12770 12771 2001, ML013100305. 12772 12773 RG 1.145, "Atmospheric Dispersion Models for Potential Accident Consequence Assessments at Nuclear Power Plants," February 1989, ML003740205. 12774 12775 12776 RG 1.183. "Alternative Radiological Source Terms for Evaluating Design Basis Accidents at Nuclear Power Plants," Revision 0, July 2000, ML003716792. 12777 12778 12779 RG 1.193, "ASME Code Cases Not Approved for Use," Revision 2, October 2007, 12780 ML072470294. 12781 12782 RG 3.60, "Design of an Independent Spent Fuel Storage Installation (Dry Storage)," 12783 March 1997, ML003739501. 12784 12785 RG 3.61, "Standard Format and Content for a Topical Safety Analysis Report for a Spent Fuel 12786 Dry Storage Cask," February 1989, ML003739511. 12787 12788 RG 7.11, "Fracture Toughness Criteria of Base Material for Ferritic Steel Shipping Cask 12789 Containment Vessels with a Maximum Wall Thickness of 4 Inches," Revision 0, June 1991, ML003739413. 12790 12791 12792 RG 7.12, "Fracture Toughness Criteria of Base Material for Ferritic Steel Shipping Cask Containment Vessels with a Wall Thickness Greater Than 4 Inches, But Not Exceeding 12793 12794 12 Inches," Revision 0, June 1991, ML003739424. 12795

- 12796 RG 8.5, "Criticality and Other Interior Evaluation Signals, Revision 1, March 1981, 12797 ML003739454.
- 12798
 12799 RG 8.8, "Information Relevant to Ensuring that Occupational Radiation Exposures at Nuclear
 12800 Power Stations Will Be as Low as Reasonably Achievable," June 2001.
- 12802 RG 8.10, "Operating Philosophy for Maintaining Occupational Radiation Exposures as Low as is 12803 Reasonably Achievable," September 1975, ML003739563.
- 12805 RG 8.25, "Air Sampling in the Workplace," Revision 1, June 1992, ML003739616.
- 12807 RG 8.34, "Monitoring Criteria and Methods to Calculate Occupational Radiation Doses," 12808 July 1992, ML003739502.
- 12810 RG 8.36, "Radiation Dose to the Embryo/Fetus," July 1992, ML003739548.
- 12812 **A.1.3 NUREG**

12804

12806

12809

12811

12813

12815

12818

12820

12825

12827

12830

12833

- 12814 NUREG-0612, "Control of Heavy Loads at Power Plants," July 1980.
- 12816 NUREG-0800, "Standard Review Plan for the Review of Safety Analysis Reports for Nuclear 12817 Power Plants," March, 2007.
- 12819 NUREG-1567, "Standard Review Plan for Spent Fuel Dry Storage Facilities," March 2000.
- NUREG-1571, "Information Handbook on Independent Spent Fuel Storage Installations,"
 Raddatz, M.G. and Waters, M.D., December 1995.
- 12824 NUREG-1614, "Strategic Plan, FY2004 FY2009," Volume 3, August 2004.
- 12826 NUREG-1727, "NMSS Decommissioning Standard Review Plan," September 2000.
- NUREG-1745, "Standard Format and Content for Technical Specifications for 10 CFR Part 72Cask Certificates of Compliance," June 2001.
- 12831 NUREG-1864, "A Pilot Probabilistic Risk Assessment of a Dry Cask Storage System at a 12832 Nuclear Power Plant," March 2007

12834 **A.1.4 NUREG/CR**

- 12835
 12836 NUREG/CR-1815, "Recommendations for Protecting Against Failure by Brittle Fracture in
 12837 Ferritic Steel Shipping Containers Up to Four Inches Thick," LLNL, June 1981.
- 12838
- NUREG/CR-3826, "Recommendations for Protecting Against Failure by Brittle Fracture in
 Ferretic Steel Shipping Containers Greater than Four Inches Thick," LLNL, July 1994.
- NUREG/CR-4554, "SCANS (Shipping Cask Analysis System): A Microcomputer Based Analysis
 System for Shipping Cask Design Review," LLNL, March 1998.
- 12845 NUREG/CR-4775, "Guide for Preparing Operating Procedures for Shipping Packages," 12846 UCID-20820, July 1988.

12850

12860

12867

12871

12881

12888

- 12848 NUREG/CR-5502, "Engineering Drawings for 10 CFR Part 71 Package Approval," Lawrence 12849 Livermore National Laboratory (LLNL), May 1998.
- NUREG/CR-6007, "Stress Analysis of Closure Bolts for Shipping Casks," Kaiser Engineering,
 January 1993.
- NUREG/CR-6242, "CASKS (Computer Analysis of Storage Casks): A Microcomputer-Based
 Analysis System for Storage Cask Design Review," Lawrence Livermore National Laboratory
 (LLNL), February 1995.
- 12858 NUREG/CR-6322, "Buckling Analysis of Spent Fuel Basket", UCRL-ID-119697, LLNL, 12859 May 1995.
- 12861 NUREG/CR-6328, "Adequacy of the 123-Group Cross-Section Library for Criticality Analyses of 12862 Water-Moderated Uranium Systems," ORNL/TM-12970, ORNL, August 1995.
- 12863
 12864 NUREG/CR-6361, "Criticality Benchmark Guide for Light-Water-Reactor Fuel in Transportation
 12865 and Storage Packages." ORNL/TM-13211, U.S. Nuclear Regulatory Commission (NRC), ORNL,
 12866 March 1997.
- NUREG/CR-6407, "Classification of Transportation Packaging and Dry Spent Fuel Storage
 System Components According to Importance to Safety," INEL-95/0551, Idaho National
 Engineering Laboratory (INEL), February 1996.
- 12872 NUREG/CR-6487, "Containment Analysis for Type B Packages Used to Transport Various
 12873 Contents," (LLNL), November 1996.
 12874
- NUREG/CR-6608, "Summary and Evaluation of Low-Velocity Impact Tests of Solid Steel Billet
 onto Concrete Pad," Lawrence Livermore National Laboratory, February 1998.
- NUREG/CR-6700, "Nuclide Importance to Criticality Safety, Decay Heating, and Source Terms
 Related to Transport and Interim Storage of High-Burnup LWR Fuel," ORNL/TM-2000/284,
 ORNL, January 2001.
- NUREG/CR-6701, "Review of Technical Issues Related to Predicting Isotopic Compositions and
 Source Terms for High-Burnup LWR Fuel," ORNL/TM-2000/277, ORNL, January 2001.
- 12885 NUREG/CR-6716, "Recommendations on Fuel Parameters for Standard Technical 12886 Specifications for Spent Fuel Storage Casks," ORNL/TM-2000/385, Oak Ridge National 12887 Laboratory (ORNL), March 2001.
- 12889 NUREG/CR-6759, "Parametric Study of the Effect of Control Rods for PWR Burnup Credit," 12890 ORNL/TM-2001/69, ORNL, February 2002.
- 12891
 12892 NUREG/CR-6760, "Study of the Effect of Integral Burnable Absorbers for PWR Burnup Credit,"
 12893 ORNL/TM-2000/321, ORNL, March 2002.
- NUREG/CR-6761, "Parametric Study of the Effect of Burnable Poison Rods for PWR Burnup
 Credit," ORNL/TM-2000/373, ORNL, March 2002.
 - A-4

- 12898 NUREG/CR-6798, "Isotopic Analysis of High-Burnup PWR Spent Fuel Samples From the 12899 Takahama-3 Reactor," ORNL/TM-2001/259, ORNL, January 2003.
- 12900

12911

12917

12919

12927

12930

12933

12939

12943

- NUREG/CR-6801, "Recommendations for Addressing Axial Burnup in PWR Burnup Credit
 Analyses," March 2003.
- 12904 NUREG/CR-6802, "Recommendations for Shielding Evaluations for Transport & Storage 12905 Packages," May 2003.
- NUREG/CR-6835, "Effects of Fuel Failure on Criticality Safety and Radiation Dose for Spent
 Fuel Casks," ORNL/TM-2002/255, ORNL, September 2003.

12910 A.1.5 Other NRC Publications

- 12912 "Movement of Heavy Loads Over Spent Fuel, Over Fuel in the Reactor Core, or Over Safety
 12913 Related Equipment," NRC Bulletin 96-02, April 11, 1996.
 12914
- 12915 "Chemical, Galvanic, or Other Reactions in Spent Fuel Storage and Transportation Casks," 12916 NRC Bulletin 96-04, July 1996.
- 12918 Confirmatory Action Letter 97-7-001, July 22, 1998.
- Information Notice No. 91-26, "Potential Nonconservative Errors in the Working Format HansenRoach Cross Section Set Provided with the KENO and SCALE Codes," April 15, 1991.
- Tang, David T., et al., "NRC Staff Technical Approach for Spent Fuel Storage Cask Drop and
 Tipover Accident Analysis," Spent Fuel Project Office, 1997.

12926 A.2 Codes, Standards, and Specifications

- 12928 American Concrete Institute (ACI), "Code Requirements for Nuclear Safety-Related Concrete 12929 Structures and Commentary," ACI 349-06/349R-06, 2006.
- 12931 – "Building Code Requirements for Structural Plain Concrete and Commentary," 12932 ACI 318-05/310R-05 with Errata of 0/11/05, 2005.
- 12934 – "Building Code Requirements for Masonry Structures, and Commentary," ACI 530-05,
 12935 2005.
 12936
- 12937 American Society of Mechanical Engineers (ASME), "Cases of ASME Boiler and Pressure 12938 Vessel Code," Code Case N-595-4, 2004.
- American Society of Mechanical Engineers, Boiler and Pressure Vessel (B&PV) Code, "Specification for Welding Rods, Electrodes and Filler Metals," Section II, "Materials" - Part C, 2001.
- 12944 – Section III, "Rules for Construction of Nuclear Facility Components," 2007.
- 12945 Division 1 General Requirements for Division 1 and Division 2; Subsection NB through 12946 NH, and Appendices.
- 12947 Division 2 Code for Concrete Containment (Also known as ACI 359-07).

12948 Division 3 - Containment for Transportation and Storage of Spent Nuclear Fuel and High Level Radioactive Material and Waste. 12949 12950 12951 - - ASME B&PV Code, Section V, "Nondestructive Examination Specifications and 12952 Procedures." 12953 12954 --- ASME B&PV Code, Section VIII, Division 3, "Alternative Rules for the Construction of High 12955 Pressure Vessels," 2001. 12956 - - ASME B&PV Code, Section IX, "Qualification Standard for Welding and Brazing 12957 Procedures, Welders, Brazers, and Welding and Brazing Operators." 12958 12959 - - - ASME B&PV Code, Section XI, "Rules for Inservice Inspection of Nuclear Power Plant 12960 Components," 2001. 12961 12962 American Institute of Steel Construction (AISC), "Code of Standard Practice for Steel Buildings 12963 12964 and Bridges," March 2005. 12965 12966 --- "Specification for Structural Steel Buildings," March 2005. 12967 12968 ANSI/American Nuclear Society (ANS), "Design Criteria for an Independent Spent Fuel Storage Installation (Dry Storage Type)," ANSI/ANS 57.9-1992-R2000, 2000. 12969 12970 12971 --- "Neutron and Gamma-Ray Flux-to-Dose Conversion Factors," ANSI/ANS-6.1.1, 1977. 12972 12973 --- "Neutron and Gamma-Ray Flux-to-Dose Conversion Factors," ANSI/ANS-6.1.1, 1991. 12974 12975 - - - "Nuclear Criticality Safety in Operations with Fissionable Material Outside Reactors," 12976 ANSI/ANS-8.1, 1998. 12977 12978 - - - "Administrative Controls and Quality Assurance for the Operational Phase of Nuclear Power Plants," ANSI/ANS 3.2. 12979 12980 12981 ANSI, Institute for Nuclear Materials Management, "American National Standard for Leakage Tests on Packages for Shipment of Radioactive Materials," ANSI N14.5, 1997. 12982 12983 - - - "American National Standards for Radioactive Materials-Special Lifting Devices for 12984 Shipping Containers Weighing 10,000 Pounds (4500 Kilograms) or More," ANSI N14.6-1986, 12985 12986 1986. 12987 12988 – – "Characterizing Damaged Spent Nuclear Fuel for the Purpose of Storage and Transport," ANSI N14.33-2005. 12989 12990 12991 ANSI/American Nuclear Society (ANS), "Requirements for Collection, Storage, and Maintenance of Quality Assurance for Nuclear Power Plants," ANSI/ASME N45.2.9-1979. 12992 12993 12994 ANSI/ANS, "Nuclear Facilities - Steel Safety Related Structures for Design Fabrication and Erection," N690. 12995 12996 12997 ANSI/ASME B16.34, "Valves Flanged, Threaded and Welding End." 12998

12999 13000	ANSI/ASME B31.1, "Power Piping."
13001 13002	ANSI/ASME B96.1, "Specification for Welded Aluminum-Alloy Field-Erected Storage Tanks."
13003 13004	ANSI/ASME NQA-1, "Quality Assurance Program for Nuclear Facilities."
13005 13006	ANSI/ASME NQA-2, "Quality Assurance Requirements for Nuclear Facilities."
13007 13008 13009	American Petroleum Institute (API), "Recommended Rules for Design and Construction of Large Welded, Low-Pressure Storage Tanks," API 620, February 2002.
13010 13011 13012	American Society of Civil Engineers (ASCE), "Minimum Design Loads for Buildings and Other Structures," ASCE 7-05, 2005.
13012 13013 13014	– – – "Seismic Analysis of Safety-Related Nuclear Structures," ASCE 4-98, 2002.
13015 13016 13017 13018	American Society for Testing and Materials International (ASTM), "Draft 17-Guide for Evaluation of Materials Used in Extended Service of Interim Spent Nuclear Fuel Dry Storage Systems," October 2002.
13019 13020 13021 13022	– – "Standard Practice for Prediction of the Long-Term Behavior of Waste Package Materials Including Waste Forms Used in the Geologic Disposal of High-Level Nuclear Waste," C1174-97, 2003.
13023 13024 13025 13026	– – "Standard Practice for Qualification and Acceptance of Boron Based Metal Neutron Absorbers for Nuclear Criticality Control for Dry Storage Systems and Transportation Packaging," C1671.
13027 13028 13029	 – – "Standard Test Method for Dynamic Tear Testing of Metallic Materials," ASTM E604-83, 2002.
13030 13031 13032	 – – "Standard Test Method of Conducting Drop-Weight Test to Determine Nil-Ductility Transition Temperature of Ferritic Steels," ASTM E208-95a, 2000.
13032 13033 13034	– – – "Standard Specification for Concrete Aggregates," C 33, 2002.
13035 13036 13037	American Water Works Association (AWWA), "Welded Steel Tanks for Water Storage," AWWA D100.
13038 13039 13040	American Welding Society (AWS), "Standard Symbols for Welding, Brazing, and Nondestructive Examination," AWS A2.4 (Latest Edition).
13041 13042	– – – "Structural Welding Code-Steel," AWS D1.1/D1.1M-2002, 2002.
13043 13044 13045	International Commission on Radiological Protection (ICRP), "Statement from the 1980 Meeting of the ICRO," ICRP Publication 26, Pergammon Press, New York, New York, 1980.
13046 13047	International Conference Council (ICC), "International Building Code (IBC)," 2006.
13048 13049	American Society for Nondestructive Testing (SNT), "Personnel Qualification and Certification in Nondestructive Testing," SNT-TC-1A.

13051 A.3 Other Government Agencies

13052
13053 Environmental Protection Agency, "Manual of Protective Action Guides and Protective Actions
13054 for Nuclear Incidents," EPA 410R-92-001.
13055

13056 – – – "Manual of Protective Action Guides and Protective Actions for Nuclear Incidents,"
 13057 EPA 410-R-92-001, May 1992.
 13058

13059 – – – "External Exposure to Radionuclides in Air, Water, and Soil," EPA Guidance Report
13060 No. 12, 1993.
13061

13062 Newman, L.W., "The Hot Cell Examination of Oconee Fuel Rods After Five Cycles of 13063 Irradiation," DOE/ET/34212-50, U.S. Department of Energy (DOE), 1986. 13064

13065 U.S. Department of Energy (DOE), "Criticality Safety Good Practices Program Guide for DOE 13066 Nonreactor Nuclear Facilities," DOE G 421.1-1, August 25, 1999.

Nuclear Science Committee, Nuclear Energy Agency, "International Handbook of Evaluated
Criticality Safety Benchmark Experiments," NEA/NSC/DOC(95)03, September 2003. (This
document is updated and published annually in CD-ROM format).

13072 A.4 Technical Reports

AEA Technology, "MONK - A Monte Carlo Program for Nuclear Criticality Safety and Reactor
Physics Analyses, User Guide for Version 8," ANSWERS/MONK(98)6, June 1991. Issued
through the ANSWERS Software Service.

ANSYS, Inc., "ANSYS Basic Analysis Procedures Guide," Fourth Edition, ANSYS Release 5.6,November 1999.

13080

13067

13071

13073

Bechtel, "Commercial Spent Nuclear Fuel Handling in Air Study," 000-30R-MGR0-00700000000, March 2005.

13084 Beyer, C.E., Letter from C.E. Beyer, Pacific Northwest National Laboratory, to K. Gruss, 2001. 13085

Boase, D.G. and T.T. Vandergraaf, "The Canadian Spent Fuel Storage Canister: Some
Materials Aspects," Nucl. Techol., 32, 60, (1977).

13089 Bjorkman & Moore, *Influence of ISFSI Design Parameters on the Seismic Response of Dry* 13090 *Storage Casks*, 2001.

13091

Bjorkman, et al., Seismic Analysis of Plant Hatch ISFSI Pad and Stability Assessment of Dry
Casks, 2000.

Broadhead, B.L., et al., "Evaluating of Shielding Analysis Methods in Spent Fuel Cask Bround Environments," EPRI TR-104329, Electric Power Research Institute (EPRI), Palo Alto, California, May 1995.

13098

13099Cacciapouti, R.J., and S. Van Volkinburg. "Axial Burnup Profile Database for Pressurized Water13100Reactors." YAEC-1937. May 1997. Available as Data Package DLC-201 from the Radiation

13101 Safety Information Computational Center at Oak Ridge National Laboratory (ORNL). 13102 http://www-rsicc.ornl.gov/ORDER.html. 13103 13104 Cappelaere, R. Limon, T. Bredel, P. Herter, D. Gilbon, S. Allegre, P. Bouffioux and J.P. 13105 Mardon. "Long Term Behaviour of the Spent Fuel Cladding in Dry Storage Conditions." 13106 8th International Conference on Radioactive Waste Management and Environmental 13107 Remediation. October 2001. Bruges, Belgium. 13108 13109 Chung, H.M. and T.F. Kassner. "Cladding Metallurgy and Fracture Behavior During 13110 Reactivity-Initiated Accidents at High Burnup." Proceedings of the International Topical Meeting on Light Water Reactor Fuel Performance. American Nuclear Society. 13111 13112 March 2-6, 1997. Portland, Oregon. 1997. 13113 13114 Chung, H.M. "Fundamental Metallurgical Aspects of Axial Splitting in Zircalov Cladding." 13115 Proceedings of the International Topical Meeting on Light Water Reactor Fuel Performance. American Nuclear Society. April 10-13, 2000. Park City, UT. 2000. 13116 13117 13118 Chun, R., Witte, M., and Schartz, M., "Dynamic Impact Effects on Spent Fuel Assemblies," 13119 UCID-21246, LLNL, October 20, 1987. 13120 Cottrell, W.B., and Savolainen, A.W., "U.S. Reactor Containment Technology," ORNL-NSIC-5, 13121 13122 Volume 1, Chapter 6, ORNL, August 1965. 13123 Cunningham, M.E., E.R. Gilbert, A.B. Johnson, and M.A. McKinnon, "Evaluation of Expected 13124 13125 Behavior of LWR Stainless Steel-Clad Fuel in Long-Term Dry Storage," EPRI TR-106440. 13126 April 1996. 13127 13128 DeHart, M.D. and O.W. Hermann, "An Extension of the Validation of SCALE (SAS2H) Isotopic 13129 Prediction for PWR Spent Fuel," ORNL/TM-13317, ORNL, September 1996. 13130 Eckerman, K.F. and J.C. Ryman, "External Exposure to Radionuclides in Air, Water, and Soil," 13131 13132 Federal Guidance Report No. 12, EPA 402-R-93-081, ORNL, September 1993. 13133 13134 Einziger, R.E., et al., "Examination of Spent Fuel Rods After 15 Years in Dry Storage," Argonne 13135 National Laboratory (ANL), 2002. 13136 13137 Einziger, R. E., et al., "High Temperature Postirradiation Materials Performance of Spent 13138 Pressurized Water Reactor Fuel Rods Under Dry Storage Conditions," Nuclear Technology, 13139 v. 57, p. 65, 1982. 13140 13141 Einziger, R.E. and R. Kohli, "Low Temperature Rupture Behavior of Zircaloy-Clad Pressurized 13142 Water Reactor Spent Fuel Rods under Dry Storage Conditions," Nuclear Technology, v. 67, 13143 p. 107, 1984. 13144 Einziger, R.E. and J.A. Cook, "LWR Spent Fuel Dry Storage Behavior at 229°C," HEDLTME 13145 13146 84-17, NUREG/CR-3708, Hanford Engineering Development Laboratory (Aug 1984). 13147 Einziger, R.E. and R.V. Strain, "Oxidation of Spent Fuel at Between 250° and 360°C." EPRI 13148 13149 Report NP-4524, 1986. 13150 13151

13152 Einziger, R.E., L.E. Thomas, H.V. Buchanan, and R.B. Stout, "Oxidation of Spent Fuel in Air at 175 to 195°C," J Nucl. Mater., 190, p53., (1992). 13153 13154 13155 Federal Registry (FR), "List of Approved Spent Fuel Storage Casks: Holtec HI-STORM 100 Addition," Vol. 65, No. 84, pg. 25241, May 1, 2000. 13156 13157 13158 Ferry, C, et al. - Synthesis on the Spent Fuel Long Term Evolution, Rapport 13159 CEA-R6084, (2005). 13160 13161 Fontana, M.G. and N.D. Greene, *Corrosion Engineering*, McGraw Hill, 1978. 13162 13163 Gao, J., "Modeling of Neutron Attenuation Properties of Boron-Aluminum Shielding Materials," 13164 Masters Dissertation, University of Virginia, August 1997. 13165 13166 Garde, A.M., et al., "Effects of Hydride Precipitate Localization and Neutron Fluence on the Ductility of Irradiated Zircaloy-4," Zirconium in the Nuclear Industry: Eleventh International 13167 13168 Symposium, ASTM STP 1295, American Society for Testing and Materials (ASTM), 1996. 13169 13170 Goll, W., et al., "Short-Term Creep and Rupture Tests on High Burnup Fuel Rod Cladding," 13171 Journal of Nuclear Materials," v. 289, p. 247, 2001. 13172 13173 Hanson, B.D., 1998, "The Burnup Dependence of Light Water Reactor Spent Fuel Oxidation," 13174 PNNL-11929, Richland, Washington, Pacific Northwest National Laboratory. TIC: 238459. 13175 13176 Hermann, O.W. and M.D. DeHart, "Validation of SCALE (SAS2H) Isotopic Predictions for BWR 13177 Spent Fuel," ORNL/TM-13315, ORNL, September 1998. 13178 13179 Hoerner, S.F., Fluid-Dynamics Drag, Hoerner Fluid Dynamics, 1965. 13180 13181 Johnson, A.B., et al., "Exposure of Breached BWR Fuel Rods at 325°C to Air and Argon," 13182 Proc. NRC Workshop on Spent Fuel/Cladding Reaction During Dry Storage, 13183 Gaithersburg, Maryland, Aug 1983, NUREG/CR-0049, D. REISENWEAVER, Ed., S. Nuclear Regulatory Commission (1984). 13184 13185 13186 Kammenzind, B.F., et al., "The Long-Range Migration of Hydrogen Through Zircaloy in 13187 Response to Tensile and Compressive Stress Gradients," Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM STP 1354, G.P. Sabol and G.D. Moan, Eds., 13188 13189 American Society for Testing and Materials, pp. 196-233, 2000. 13190 13191 Kennedy, R.P., Review of Procedures for the Analysis and Design of Concrete Structures to 13192 Resist Missile Impact Effects, Holmes and Narver, Inc., September 1975. 13193 13194 Kese, K., "Hydride Re-Orientation in Zircaloy and its Effect on the Tensile Properties," SKI Report 98:32, 1998. 13195 13196 13197 Knoll, R.W., et al., "Evaluation of Cover Gas Impurities and Their Effects on the Dry Storage of 13198 LWR Spent Fuel," PNL-6365, DE88 003983, PNNL, November 1987. 13199 13200 Lloyd, W.R., "Determination and Application of Bias Values in the Criticality Evaluation of 13201 Storage Cask Designs," UCID-21830, LLNL, January 1990. 13202

13203 Manteufel, R.D. and Todreas, N.E., "Effective Thermal Conductivity and Edge Configuration 13204 Model for Spent Fuel Assembly," Nuclear Technology, Vol. 105, pp. 421-440, March 1994. 13205 13206 Machiels, "Regulatory Applications Lessons Learned -- Industry Perspective." NEI Dry 13207 Storage Information Forum. Naples, FL. May 15-16, 2002. 13208 13209 MCNP5, "MCNP – A General Monte Carlo N-Particle Transport Code, Version 5; Volume II: 13210 User's Guide," LA-CP-03-0245, Los Alamos National Laboratory, April 2003. 13211 13212 Nakamura, J., T. Otomo, T. Kikuchi, and S. Kawasaki, "Oxidation of Fuel Rods under 13213 Dry Storage Condition," J Nuc. Sci. Tech., 32, [4], p321, (April 1995). 13214 13215 National Association of Corrosion Engineers (NACE), Corrosion Data Survey, 1985. 13216 13217 Novak, J., and I.J. Hastings, "Post-Irradiation Behavior of Defected UO2 in Air at 220250°C," Proc. NRC Workshop on Spent Fuel/Cladding Reaction During Dry Storage, Gaithersburg, 13218 13219 Maryland, Aug. 1983, NUREG/CR-0049, D. REISENWEAVER, Ed., S. Nuclear 13220 Regulatory Commission (1984). 13221 13222 NRC. Subject: Transmittal of "Update of CSFM Methodology for Determining Temperature 13223 Limits for Spent Fuel Dry Storage in Inert Gas," November 27, 2001. 13224 13225 NRC Inspection Manual, Inspection Procedure 60851, "Design Control for ISFSI Components," 13226 ML0037287650. 13227 13228 Oak Ridge National Laboratory, "SCALE: A Modular Code System for Performing Standardized Computer Analyses for Licensing Evaluation," ORNL/TM-2005/39, Version 5, Vols. I-III, 13229 13230 April 2005. Available from Radiation Safety Information Computational Center at Oak Ridge 13231 National Laboratory as CCC-725. 13232 13233 Pacific Northwest Laboratory (PNL), "Evaluation of Cover Gas Impurities and Their Effects on the Dry Storage of LWR Spent Fuel," PNL-6365, November 1987. 13234 13235 13236 Parks, C.V., et al., "Assessment of Shielding Analysis Methods, Codes, and Data for Spent Fuel 13237 Transport/Storage Applications," ORNL/CSD/TM-246, ORNL, July 1988. 13238 13239 Rashid, Y.R. and R.S. Dunham, "Creep Modeling and Analysis Methodology for Spent Fuel in 13240 Dry Storage," TR-1003135, EPRI, 2000. 13241 13242 Rashid, Y.R., et al., "Creep as the Limiting Mechanism for Spent Fuel Dry Storage-Progress 13243 Report," EPRI TR-1001207, EPRI, 2000. 13244 13245 Roark, R.J., Formulas for Stress and Strain, McGraw Hill, 1965. 13246 13247 Sandoval, R.P., et al., "Estimate of CRUD Contribution to Shipping Cask Containment 13248 Requirements," SAND88-1358, TTC-0811, UC-71, SNL, January 1991. 13249 13250 Stokley, J.R., and D.H. Williamson, "Structural Integrity of Spent Nuclear Fuel Storage Casks 13251 Subjected to Drop," Nuclear Technology, Volume 114, Number 1, April 1996. 13252

- 13253 TRW Environmental Safety Systems, Inc. (TRW), "DOE Characteristics Database, User Manual 13254 for the CDB-R," November 16, 1992.
- 13255

13270

13272

13280

13285

13256 Uhlig, H.H., *Corrosion and Corrosion Control*, Wiley & Sons, Inc., 1985. 13257

13258 Wilson, D.W., et al., "Creep-Rupture Testing of Aluminum Alloys to 100,000 Hours, First 13259 Progress Report," Prepared for the Metal Properties Council, New York, November, 1969.

13261 A.5 Correspondence

13262
13263 Beyer, C.E., PNNL, letter to K. Gruss, NRC, November 27, 2001, Subject: Transmittal of
"Update of CSFM Methodology for Determining Temperature Limits for Spent Fuel Dry Storage
13265 Inert Gas," November 27, 2001.

Hendricks, L., Nuclear Energy Institute (NEI), letter to M.W. Hodges, NRC, Subject: Transmittal
of Responses to the NRC Request for Additional Information on Storage of High Burnup Fuel,
August 16, 2001.

13271 NRC Confirmatory Action Letter 97-7-001, 1998 (ADAMS ML060620420).

13273 Tsai, H.C. letter to K. Gruss, NRC, Subject: "A Recent Result on Thermal Creep of Surry 13274 Cladding after 15-y Dry Cask Storage," ANL, July 11, 2002. 13275

13276 Transnuclear (TN) Standardized NUHOMS Amendment 10 RAI Response, Docket No. 72-1004,
13277 November 7, 2007.
13278

13279 A.6 Conference Proceedings

Cappelaere, C., R. Limon, T. Bredel, P. Herter, D. Gilbon, S. Allegre, P. Bouffioux and J.P.
Mardon. 2001, "Long Term Behavior of the Spent Fuel Cladding in Dry Storage Conditions," 8th
International Conference on Radioactive Waste Management and Environmental Remediation,
Bruges, Belgium, October 2001.

13286 Chung, H.M. and T.F. Kassner, "Cladding Metallurgy and Fracture Behavior During Reactivity13287 Initiated Accidents at High Burnup," Proceedings of the International Topical Meeting on Light
13288 Water Reactor Fuel Performance. American Nuclear Society, Portland, OR, March 2-6, 1997.
13289

13290 Chung, H.M., "Fundamental Metallurgical Aspects of Axial Splitting in Zircaloy Cladding," Park
13291 City, Utah, Proceedings of the International Topical Meeting on Light Water Reactor Fuel
13292 Performance, American Nuclear Society, Park City, Utah, April 10-13, 2000.
13293

13294 Machiels, A., "Regulatory Applications Lessons Learned – Industry Perspective," NEI Dry 13295 Storage Information Forum, Naples, Florida, May 15-16, 2002.

1329613297APPENDIX BPROCESS FOR PRIORITIZING THE STANDARD REVIEW PLAN13298FOR DRY STORAGE SYSTEMS

13300 **B.1** Introduction 13301

13299

13309

13319

13320 13321

13322

13323 13324

13325

13326 13327

13328 13329

13330

13302 The purpose of this appendix is to describe the process used for prioritizing the review 13303 procedures contained in this NUREG. The application of this process, which is based upon 13304 determining relative importance, has resulted in assigning priorities of HIGH, MEDIUM or LOW 13305 to each of the review procedures in the SRPs. These priorities are intended to help focus staff 13306 review resources on those review procedures which are considered to be the most effective and 13307 important to worker and public safety. They are not, however, intended to relieve applicants of 13308 responsibility to comply with all requirements associated with dry cask storage licensing.

13310 In 1995 the Commission issued a policy statement on the use of probabilistic risk assessment methods in all regulatory activities (60 FRN 42622, dated August 16, 1995). This policy 13311 statement has led to the development and application of "risk-informed" approaches in various 13312 13313 regulatory areas. Specifically, a "risk-informed" approach represents a philosophy where risk insights are considered together with other factors to establish requirements that better focus 13314 licensee and regulatory attention on design and operational issues commensurate with their 13315 importance to safety. In general, "Risk-informed" approaches lie between "risk-based" and 13316 13317 purely deterministic approaches, and are intended to: 13318

- Allow consideration of a broader set of challenges to safety;
- Provide a means for prioritizing these challenges based on risk significance, operating experience and / or engineering judgment;
- Facilitate an integrated consideration of a broader set of factors (i.e., defense-in-depth, human reliability) to defend against these challenges;
- Explicitly identify and quantify sources of uncertainty in the analysis; and
- Provide a means to test the sensitivity of the results to key assumptions.

13331 Where appropriate, a risk-informed regulatory approach can also be used to reduce 13332 unnecessary conservatism in purely deterministic approaches, or can be used to identify areas 13333 with insufficient conservatism in deterministic analyses and provide the basis for additional 13334 requirements or regulatory actions.

13335

Prioritizing the various elements of the licensing review of an applicant's submittal, by noting areas in the SRP review procedures of higher and lower importance, can also be viewed as an identification of the review areas that have more or less value (i.e., effectiveness and importance to safety). Therefore, by focusing review resources on areas of the review that are the most effective and safety significant, efficiency can also be improved.

13341 **B.2** Scope, Approach and Process Description 13342

13343 **B.2.1 Scope** 13344

13345 The scope of the SRP prioritizing effort includes all SRP sections. Within each of these 13346 sections, only the review procedures were prioritized. The regulatory requirements and their 13347 acceptance criteria contained in each section were not prioritized, since these need to be met 13348 regardless of the priority of its corresponding review procedure.

13349 13350 **B.2.2 Approach**

13357

13358

13361 13362

13363

13364 13365

13366

13367

13378

13379 13380

13381

13382 13383

13384 13385 13386

13387 13388

13351
13352 The approach used in developing the prioritization process is a graded approach that combines
13353 risk insights with deterministic considerations and operating experience. It is directed to assess
13354 the relative value of performing each review procedure and results in a qualitative prioritization
13355 considering:
13356

- 1) The likelihood of the applicant's non-compliance with a review procedure in the SRP.
- 133592)The perceived "value added" provided by the NRC review of a given SRP procedural13360step.
 - 3) The potential consequence if the non-compliance were to remain undetected and uncorrected.
 - 4) The impact on defense-in-depth if the non-compliance remains undetected, assuming the review procedure being prioritized was related to a defense-in-depth item.

13368 The risk insights are those associated with risk to workers as well as risk to the public.

The prioritization was done on a generic basis (i.e., no specific dry cask design being considered) using the SRP review procedures identified for prioritization. However, it is always possible that a design being reviewed will have such unique features (e.g., new material, new configurations) that the prioritization needs to be revisited. This can be done on a case-by-case basis by reapplying this process on an actual application.

- 13375 Finally, in developing the prioritization approach and process, certain assumptions were 13376 developed. These assumptions included: 13377
 - The cost of correcting a non-compliance was not a factor included in the process.
 - The time and resources required to perform a review procedure were not factors included in the process.
 - Dose thresholds used in this process were consistent with thresholds established in 10 CFR 20 and 10 CFR 72.104.
 - The "value added" by the review was consistent with the current review level of effort and staff experience.
 - Items to be prioritized were chosen such that overlap between them is minimized.

• All other requirements, except those included in the specific SRP review procedure being prioritized, were assumed to be satisfied.

13393 13394 **B.2.3** Process Description

The process was applied to each technical discipline area in the SRP. The process was implemented by the NRC staff reviewers responsible for that discipline (i.e., multiple reviewers participated in the prioritization of each review procedure, and the final priority was developed based upon a consensus among the reviewers). The process involved looking at each SRP review procedure paragraph (or group of paragraphs) in each technical discipline area, and asking a structured set of questions. These questions addressed:

- What is the likelihood of the applicant not meeting the requirement(s) contained in the SRP review procedure being prioritized (need for staff review)?
- What is perceived value added by the staff review (i.e. likelihood of identifying a noncompliance for a given review procedure).
- What is the potential consequence to public and/or worker radiological safety if the requirement(s) remain unmet?
- What is the impact on defense-in-depth, if any, if the review procedure remains unmet?

13414 The answers to the above questions were based upon the judgment of the NRC staff reviewers 13415 who participated in the prioritization process. This judgment reflected the reviewer's experience 13416 with current and previous applications and their views regarding potential future problems. 13417

13418 NUREG-1864, "A Pilot Probabilistic Risk Assessment of a Dry Cask Storage System at a Nuclear Power Plant" was previously developed to assess the risk to the public of a specific dry 13419 storage system at a boiling water reactor site to postulated events. The PRA information was 13420 13421 not explicitly used in this SRP prioritization because it was limited in scope and assumed that the cask was properly designed, constructed and tested. Furthermore, the PRA did not address 13422 the factors listed in Table B-1 and B-2. It only assessed the risk during cask use from external 13423 13424 hazards (e.g., fire) and operational errors (e.g., cask drop). Some of these accident sequences were also outside the scope of regulatory accidents typically evaluated under Part 72 for 13425 certified cask systems. In summary, the prioritized review procedures in the SRP address cask 13426 design, construction and testing, operations, and performance under normal and accident 13427 13428 conditions to verify compliance with 10 CFR Part 72.

13429

13395

13403

13404

13405 13406

13407 13408 13409

13410 13411 13412

13413

13430 The steps the reviewers took in prioritizing each SRP review procedure were the following. 13431 First, the answers to the first two questions were qualitatively determined using a 5 tier 13432 gualitative ranking. Second, the answer to the third question was gualitatively determined using 13433 a 3-tier qualitative ranking system. The ranking systems are defined in Tables B-1, B-2 and B-3. The quantitative values used in Tables B-1, B-2 and B-3 are intended to serve as guidance 13434 13435 in the selection of the appropriate qualitative ranking and reflect conservative estimates so as to provide a margin to account for uncertainties. The gualitative rankings resulting from Tables B-13436 13437 1, B-2 and B-3 were then assigned point values as shown in Table B-4. The point values corresponding to the qualitative rankings from Tables B-1, B-2 and B-3 were added together 13438 and, using the guidance described in Table B-4, an overall gualitative risk component of the 13439 13440 prioritization (High, Medium or Low) was determined. The reason the scores from Tables B-1,

B-2 and B-3 were added is that each is a reflection of the importance of the NRC staff performing the review procedure being prioritized. Finally, the answer to the last question (defense-in-depth) was qualitatively determined using a 3-tier scale (High, Medium or Low) following the guidance contained in Table B-5 and Attachment 2 and the reviewer's expert opinion.

13446

13447 The result was a risk-informed prioritization and, if applicable, a defense-in-depth prioritization ranking. The final prioritization for the SRP review procedure was the overall risk ranking and, if 13448 also related to defense-in-depth, a weighed combination of these two, with the weights 13449 13450 determined by the NRC staff. These weights were determined for each review procedure prioritized and used only for that respective item (i.e., the importance of risk versus defense-in-13451 13452 depth may vary from item to item). Attachment 1 to this appendix lists the detailed steps 13453 associated with implementing the prioritization process that was used in assessing the priority of 13454 each SRP review procedure. Attachment 2 provides a more detailed discussion on defense-in-13455 depth. Attachment 3 provides an example of the documentation and major considerations associated with implementation of the process for one specific review procedure. 13456

13458 B.3 SRP Priority Designation and Implications

13459
13460 Upon completion of the prioritization process, the priority (HIGH, MEDIUM or LOW) associated
13461 with each review procedure has been indicated in the SRP at the beginning of each paragraph
13462 in the review procedures.

13463 13464

13457

The prioritized procedures are intended to ensure that reviews are adequately focused on areas that have the most significant impact on safety and compliance with regulatory limits. It is important to remember that the priority designations were developed on a generic basis and may need to be adjusted depending upon the characteristics of specific applications. It is the responsibility of the individual reviewer to assess the design and determine the ultimate rigor needed to make a safety determination, with reasonable assurance, in each review area.

13471

Finally it should be noted that a low or medium priority review procedure does not mean an application is exempted from any associated regulatory requirement, design requirement, or safety analyses that is expected within the review objectives and acceptance criteria.

13475 13476

Table B-1 Likelihood of Applicant's Non-Compliance with the SRP Review Procedure

Likelihood of Not Meeting the Requirements	Description
Very High	Qualitative: Likely to occur. Quantitative: P > 0.5
High	Qualitative: Probably will occur. Quantitative: 0.1 < P < 0.5
Medium	Qualitative: May occur. Quantitative: 0.03 < P < 0.1
Low	Qualitative: Unlikely to occur. Quantitative: 0.01 < P < 0.03
Very Low	Qualitative: Occurrence improbable. Quantitative: P < 0.01

13478 13479 13480	P = Probability			
13480 13481 13482	Table B-2 Potential "Valve Added" through the NRC Review Process			
	Likelihood that the NRC Review of Specific Review Procedure Step N Identify a Non-Compliance			
	Very High	Qualitative: Likely to occur. Quantitative: P > 0.5		
	High	Qualitative: Probably will occur. Quantitative: 0.1 < P < 0.5		
	Medium	Qualitative: May occur. Quantitative: 0.03 < P < 0.1		
	Low	Qualitative: Unlikely to occur. Quantitative: 0.01 < P < 0.03		
	Very Low	Qualitative: Not probable. Quantitative: P< 0.01		
13483	P = Probability			
13484	-			
13485 13486 13487	Table B-3 Potential Impact if the Non-Compliance were to remain uncorrected			
	Increase in Risk (Likelihood and / or Consequence) if Requirements Remain Unmet	Description		
	High	Qualitative: Likely to occur or significant consequences.		
		Quantitative: >10 ⁻³ /yr* or >25 rem to worker or > 1 rem to public.		
	Medium	Qualitative: May occur or moderate consequences.		
		Quantitative: $<10^{-3}$ /yr but $>10^{-5}$ /yr** or 5 -25 rem to worker or 0.1 rem - 1 rem to public.		
	Low	Qualitative: Occurrence improbable or minimal consequences.		
		Quantitative: < 10 ⁻⁵ /yr or less than 10 CFR 20 dose limits for workers and the public.		
13488 13489 13490 13491	 * 10⁻³/yr corresponds to the likelihood of an event that could occur in one or more casks over a 20 year life of 50 casks. ** 10⁻⁵/yr corresponds to the likelihood of an event that could occur in one or more casks over a 20 year life of 5000 casks (i.e., 50 at each of 100 operating reactors). 			
13491 13492 13493 13494				

B-5

13495 13496 13497 13498 13499 13500 13501	Numerical values for each quali	Table B-4 Overall Risk Ranking Itative risk designation for Tables B-1, B-2 and B-3 are assigned only assigns values of 1 through 3):
	Very High	4
	High	3
	Medium	2
	Low	1
	Very Low	0
13502		0
13502 13503 13504 13505	 For each SRP review procedure, the qualitative scores from Tables B-1, B-2 and B-3 a and a combined qualitative score is determined as follows: 	
	High	9 - 11
	Medium	6 -8
	Low	1 - 5
13506 13507 13508 13509		

13528

13537

13541

13542 13543

13544

13545 13546

13547

Table B-5 Defense-in-Depth Ranking

13512 Defense-in-depth has long been a key element of the NRC's safety philosophy. It is intended to ensure that the accomplishment of key safety functions is not dependent upon a single element 13513 13514 of design, construction, maintenance or operation. In effect, defense-in-depth is used to provide one or more additional measures to back up the front line safety measures, to provide additional 13515 13516 assurance that key safety functions will be accomplished. Traditional defense-in-depth measures for reactors have included items such as confinement, containment, redundant and 13517 13518 diverse means of decay heat removal and emergency evacuation plans. For DSS, examples of 13519 measures associated with defense-in-depth are discussed in Attachment B-2. Defense-in-depth measures are generally decided upon using deterministic considerations (i.e., engineering 13520 13521 judgment) regarding the importance of the safety function and the potential uncertainties that 13522 could affect its performance. 13523

With respect to prioritizing the review procedures in this SRP, a review procedure can be considered associated with defense-in-depth if it is related to providing a backup to the front line of defense (e.g., confinement is generally considered a defense-in-depth measure since it provides a backup to cladding integrity).

13529 Defense-in-depth measures are not intended to detract from the importance of front line safety measures. Defense-in-depth measures are intended to provide additional assurance so the 13530 13531 safety function can be accomplished. It is not the intent of defense-in-depth to reduce the 13532 importance of the front line safety measures since, if their importance were reduced, the importance of the NRC staff review associated with those measures could also be reduced. 13533 13534 which could affect the reliability or performance of the front line safety measures. This could 13535 leave the defense-in-depth measures as the primary means of performing the safety functions, 13536 instead of being the backup.

13538 If failure to perform the review procedure could impact defense-in-depth (assuming the front line
13539 safety measure has failed) and has:
13540

- a low likelihood and/or consequence, then the paragraph should be prioritized as "LOW."
 - a medium likelihood and/or consequence, then the paragraph should be prioritized as "MEDIUM."
 - a high likelihood and/or consequence, then the paragraph should be prioritized "HIGH."

13548 Likelihood and consequence are defined in Table B-3.

13551		Attachment B-1
13552 13553		Process Steps to Prioritize SRP Review Procedures
13554 13555 13556 13557 13558 13559	review	ollowing steps should be followed in prioritizing each review procedure. Multiple staff vers in each technical area should participate in the prioritization so as to arrive at a nsus on the priority. The checklist at the end of this attachment can be used to document step.
13560 13561 13562 13563	1.	Identify the SRP review procedures to be prioritized, with a focus on the requirements that the review procedure is checking. This will result in individual paragraphs (or groups of paragraphs) being prioritized as separate items.
13564 13565 13566 13567 13568 13569	2.	Estimate the likelihood that the requirement related to the SRP review procedure will not be met by the applicant by choosing the appropriate likelihood range from Table B-1 (Likelihood of Applicant's Non-Compliance with the SRP Review Procedure). This estimate can be affected by several factors, including the experience of the applicant, the novelty of the technology used in the application, the difficulty level of meeting the requirement, the applicant's quality assurance program, etc.
13570 13571 13572 13573 13574 13575		The rankings listed in Table B-1 are arranged to provide more staff review effort where it is determined that the applicant is less likely to meet the review procedure. Conversely, where it is felt that the applicant will meet the review procedure, less staff effort would be required.
13576 13577 13578 13579 13580 13581	3.	Estimate the likelihood that if the requirement is not met, this fact will be discovered by performing the SRP review procedure. This is done by choosing the appropriate likelihood range from Table B-2 (Likelihood that the NRC Review Would Identify the Non-Compliance, Given that it Exists). This factor may be relatively high, however, there may be review procedures that have varying degrees of implementation.
13582 13583 13584 13585 13586		The rankings listed in Table B-2 are arranged to continue to provide a high level of staff effort in areas where the staff review has typically identified problems. Conversely, where historical staff review efforts have not identified problems, that level of staff effort is minimized.
13587 13588 13589 13590 13591	4.	Estimate the potential radiological risk to public and worker safety if the requirement were to remain unmet. It is recognized that this is not a trivial task and that no complete probabilistic risk assessment (PRA) is available for dry casks or ISFSIs. The following was intended to aid the prioritizer with this assessment:
13592 13593 13594 13595 13596 13597 13598 13599 13600 13601		• Consider potential event sequences or a set of event sequences, such that the dose to the most exposed person from these sequences include the bulk of the dose from all possible sequences. The premise here is that every possible sequence of events has some likelihood of occurring and results in some dose to workers and the public. Some sequences are very likely and result in very little dose, others are very unlikely and result in very large dose, etc. The prioritizer should use experience in considering the sequence(s) that have the highest risk to the most exposed person. This is equivalent to answering the following questions:

13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625	5.	 What can happen? (i.e., what can go wrong?) How likely is it that that will happen? If it does happen, what are the consequences? Using Table B-3 Potential Impact if a Non-Compliance is not identified, determine the corresponding range of increased likelihood or dose. This range corresponds with the likelihoods and / or consequences for the dominant sequences. The rankings listed in Table B-3 are weighted to devote more staff resources to the review procedures that are viewed to be more risk significant and less staff resources to those that are viewed to be less risk significant. The prioritizer now has three qualitative rankings corresponding to: Likelihood of the applicant not meeting the requirements. Likelihood that the NRC Review would find the discrepancy, given that it exists. Potential consequences if the requirements remain unmet. Using these three rankings, determine the overall qualitative risk-ranking (High, Medium or Low) for this review procedure by adding the numerical values assigned to each qualitative ranking and the guidance in Table B-4. Using Table B-5, assess the applicability and impact on defense-in-depth, if any, if the
13625 13626 13627 13628 13629	0.	SRP review procedure is not met. Defense-in-depth consists of a number of elements as discussed in Attachment 2 and will not be applicable to all review procedures. If applicable, this step results in a High / Medium / Low qualitative ranking.
13630 13631 13632 13633 13634 13635 13636 13637	7.	There is now a qualitative ranking and, if applicable, a qualitative defense-in-depth ranking. The method of combining these scores reflects the relative importance given to risk versus defense-in-depth. Judgment must be used to integrate these two rankings into a single ranking applicable to the SRP review procedure. This integration is done by weighing the two rankings using weights determined by the NRC reviewers. The weights are determined for each review procedure being prioritized and used for that procedure only.
13638 13639 13640 13641 13642 13643	8.	A prioritization process checklist is to be filled out for each paragraph (or group of paragraphs) prioritized, so as to document the basis for the priorities assigned to each review procedure. This checklist is shown on the following page and Attachment B-3 provides an example of a completed checklist for a specific review procedure.

Prioritization Process Checklist

SCORE	COMMENTS
1 1	
N/A	

13651	Attachment B-2
13652 13653 13654	Defense-in-Depth (DID)
13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665	Defense-in-depth has long been a key element of NRC's safety philosophy. It is intended to ensure that the accomplishment of key safety functions is not dependent upon a single element of design, construction, maintenance or operation. In effect, defense-in-depth is used to compensate for uncertainties by employing one or more additional measures to back up the front line safety measures, thus providing additional assurance that key safety functions will be performed. Traditional defense-in-depth measures for reactors have included items such as confinement, containment, redundant and diverse means of decay heat removal and emergency evacuation plans. Defense-in-depth measures are generally decided upon using deterministic considerations (i.e., engineering judgment) regarding the importance of the safety function and the potential uncertainties that could affect its performance.
13666 13667 13668 13669 13670 13671	In the dry cask SRP prioritization, each paragraph (or group of paragraphs) to be prioritized, would be examined individually from a DID perspective to determine if that paragraph (or group of paragraphs) is related to defense-in-depth. If so, and if the paragraph is not met, a determination would then be made as to whether or not a defense-in-depth measure could be compromised and the risk significance.
13672 13673 13674 13675	To determine if a defense-in-depth measure could be compromised, it is first necessary to decide what are defense-in-depth measures? To help make this decision, the following guidance was used.
13676 13677 13678 13679 13680	• A defense-in-depth measure is any design feature or action that is required by the SRP as a backup measure to the front line safety measures. This ensures that, if the front line safety measure is lost, the backup measure is present to perform that safety function.
13681 13682	DSS defense-in-depth measures may include:
13683 13684	 Confinement System (2nd barrier to fuel clad integrity);
13685 13686	Operating Controls and Monitoring
13687 13688	 Non-mechanistic and bounding event analyses (to mitigate site-specific uncertainties).
13689 13690 13691	SRP review procedures that relate to items that can be considered defense-in-depth should receive a DID ranking.
13692 13693 13694 13695	If the SRP paragraph (or group of paragraphs) being prioritized is related to a measure that meets the above guidance, then it would be evaluated as a defense-in-depth measure and prioritized as follows:
13696 13697 13698 13699	 If the failure of the front line and DID measures relative to the issue identified in the SRP review procedure would result in a low likelihood and / or consequence, then the paragraph should be prioritized as "LOW."

If the failure of the front line and DID measures *relative to the issue identified in the SRP* 13701
 13702
 13703
 If the failure of the front line and DID measures *relative to the issue identified in the SRP* 13704
 If the failure of the front line and DID measures *relative to the issue identified in the SRP* 13705

- If the failure of the front line and DID measures *relative to the issue identified in the SRP* 13705
 13706
 If the failure of the front line and DID measures *relative to the issue identified in the SRP* 13706
- 13707
- 13708 Risk and consequence are defined in Table B-3.

13709
13710 It should be noted that defense-in-depth measures are not intended to detract from the
13711 importance of front line safety measures. Defense-in-depth measures are intended to provide
13712 additional assurance so the safety function can be accomplished.

13723

13724

Attachment B-3

13716 This attachment provides an example of a completed prioritization checklist to illustrate the level 13717 of documentation and major considerations associated with the prioritization of each specific 13718 review procedure. The review procedure used in the example is Section 4.5.4.7 "Confirmatory 13719 Analysis" in Chapter 4 "Thermal Evaluation" of NUREG-1536. A total of three staff reviewers 13720 participated in the prioritization of Chapter 4 and the prioritization input and outcome reflects a 13721 consensus among the reviewers.

Prioritization Process Checklist

Chapter: 4 - "Thermal Evaluation"			Paragraph Number: 4.5.4.7	
STE		SCORE	COMMENTS	
1. Identify the SR to be prioritized.	P procedure	N/A	Done by reviewers.	
2. Likelihood tha will not be met (T		L	Applicant provides calculations using generally accepted analytical tools.	
3. Likelihood tha will find discrepa (Table B-2).		Н	Staff provides a thorough review.	
4. Risk if require met (Table B-3).	nent is not	Н	Fuel cladding (i.e., first line-of-defense for fission product retention) could fail thermal analysis is incorrect.	
5. Determine con value (Table B-4).		М	L (1) + H (3) + H (3) = 7 (MEDIUM)	
6. Determine defevente value (Table B-5),		Н	Provides independent check (i.e., second line-of-defense) as backup to front line staff review of applicant's submittal.	
7. Determine rela risk and defense- values determine and 6 above).	in-depth	DID > Risk	DID is more important than risk since i has the potential to uncover applicant staff review errors and can provide additional insights for probing the valid of the applicant's analysis.	

STEP	SCORE	COMMENTS
8. Overall priority (Combine risk and defense-in-depth values).	Н	DID controls final priority.

13728

13729

APPENDIX C INTERIM STAFF GUIDANCE (ISG) INCORPORATED INTO NUREG-1536 Revision 1

ISG # & Rev.	Title	NUREG 1536 Revision 1 Status
ISG 1 Rev. 2	Damaged Fuel	Added
ISG 2 Rev. 1	Fuel Retrievability	Added
ISG 3	Post Accident Recovery and Compliance with 10 CFR 72.122(I)	Added
ISG 4 Rev. 1	Cask Closure Weld Inspections	Superseded by ISGs 15 and 18
ISG 5 Rev. 1	Confinement Evaluation	Added
ISG 6	Establishing Minimum Initial Enrichment for the Bounding Design Basis Fuel Assembly(s)	Added
ISG 7	Potential Generic Issue Concerning Cask Heat Transfer in a Transportation Accident	Added
ISG 8 Rev. 2	Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport and Storage Casks	Added
ISG 9 Rev. 1	Storage of Components Associated with Fuel Assemblies	Added
ISG 10 Rev. 1	Alternatives to the ASME Code	Added
ISG 11 Rev. 3	Cladding Considerations for the Transportation and Storage of Spent Fuel	Added
ISG 12 Rev. 1	Buckling of Irradiated Fuel Under Bottom End Drop Conditions	Added
ISG 13	Real Individual	Added
ISG 14	Supplemental Shielding	Added
ISG 15	Materials Evaluation	Added
ISG 16	Emergency Planning	NA
ISG 17	Interim Storage of Greater Than Class C Waste	NA
ISG 18 Rev. 1	The Design & Testing of Lid Welds on Austenitic Stainless Steel Canisters as Confinement Boundary for Spent Fuel Storage	Added
ISG 19	Moderator Exclusion Under Hypothetical Accident Conditions and Demonstrating Subcriticality of Spent Fuel Under the Requirements of 10 CFR 71.55(e)	NA
ISG 20	Transportation Package Design Changes Authorized Under 10 CFR Part 71 Without Prior NRC Approval	NA
ISG 21	Use of Computational Modeling Software	Added

ISG # & Rev.	Title	NUREG 1536 Revision 1 Status
ISG 22	Potential Rod Splitting Due to Exposure to an Oxidizing Atmosphere During Short-Term Cask Loading Operations in LWR or Other Uranium Oxide Based Fuel	Added
ISG 23 (Draft)	Draft - Application of ASTM Standard Practice C1671-07 when performing technical reviews of spent fuel storage and transportation packaging licensing actions	Not Added
ISG 24 (Draft)	Reserved	N/A
ISG 25 (Draft)	Draft - Pressure and Helium Leakage Testing of the Confinement Boundary of Spent Fuel Storage Casks	Added
ISG 26 (Draft)	Reserved	N/A

13733 13734 13735 13736	APPENDIX D PUBLIC COMMENTS RECEIVED AND THEIR DISPOSITION
13737 13738 13739 13740	The purpose of this appendix is to list all the public comments received on NUREG-1536 "Standard Review Plan for Spent Fuel Storage Systems at a General License Facility," Revision 1A. The NRC issued NUREG-1536, Revision 1A (ML 090500630) for public comment on April 15, 2009 for a 90 day period and received comments from the following two sources:
13741 13742 13743 13744	 NEI, Nuclear Energy Institute, letter to Mr. Ron Parkhill, USNRC, dated July 14, 2009 (ML 091970430) NAC International, email from Mr. Tony Patko to Mr. Ron Parkhill, USNRC, dated July 15, 2009 (ML 092020356)
13745 13746 13747 13748	The staff's resolution and any associated changes to the standard review plan are listed for each comment. Note that all line numbers listed in the attached table refer to the line numbering of Revision 1A of NUREG-1536.
13749 13750 13751	
13752 13753 13754 13755	
13756 13757 13758 13759	
13760 13761 13762	
13763 13764 13765 13766	
13767 13768	

13779	
13780	

NUREG-1536 Public Comments and Resolution

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
NEI 1	General	The SRP discusses the	The staff recognizes the policy	Chapter 13 is clarified to state:
		content of the Technical	statement for operating reactors.	
		Specifications in numerous	The staff also notes that site-	If a reviewer determines that a
		locations. While the NRC does	specific operating reactors are	design feature, content
		not have a policy statement on	different than certified dry cask	specification, analytical
		technical specifications for dry	systems. Reactors represent an	assumption, operating
		cask storage systems, the	inherently higher risk from	assumption, limiting condition of
		NRC Final Policy Statement	accidents, and maintain several	operation, elements of reactor
		on Technical Specification	active systems and active	programmatic controls, or othe
		Improvements for Nuclear	monitoring of key performance	SAR item is important and
		Power Reactors, as published	parameters during operations,	should not be changed without
		in the Federal Register at 58	Reactor technical specifications	NRC staff approval, then it
		FR 39132, July 22, 1993,	(TS) are established to ensure	should be further evaluated and
		provides useful guidance. The	these functions are maintained in	considered as a potential CoC
		Final Policy Statement	order to ensure adequate	condition or technical
		discusses, in the Background,	containment, reactivity control and	specification. The reviewer
		the trend towards adding	thermal hydraulic control of the	should consider, in part, risk-
		information to the Technical	system during operations.	insights, safety margins,
		Specifications by stating:		operational experience, defens
		" since 1969 there has	Dry storage casks are passive in	in-depth considerations, design
		been a trend towards	nature, and do not typically rely	novelty, and other issues that
		including in technical	upon multiple active safety systems	are unique to each proposed
		specifications not only	to mitigate events during storage	design. The reviewer should
		those requirements derived	operations. Instead they rely on	also implement the guidance in
		from the analyses and	passive design features and	this chapter for establishing suc
		evaluation included in the	administrative controls to assure	conditions and technical
		plant's safety analysis	criticality safety, confinement	specifications in the CoC.
		report but also essentially	safety, and cladding protection	
		all other NRC requirements	during normal, off-normal, and	
		governing the operation of	accident conditions. The staff	
		nuclear power plants In	considers TS to be valuable, in	
		the Commission's view,	part, to assure the most important	
		this has diverted both NRC	fabrication, design features,	

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		staff and licensee attention	contents, and operations of the	
		from the more important	system are appropriately controlled	
		requirements in these	among the diversity of site users,	
		documents to the extent	to mitigate the likelihood and	
		that it has resulted in an	consequences of potential off-	
		adverse but unquantifiable impact on safety."	normal and accident conditions.	
			The dry cask storage certificate	
		The Final Policy Statement	includes a condition which	
		also stated:	specifies TS. These control the	
		"The purpose of Technical	fabrication, safe use, and operation	
		Specifications is to impose	of the dry cask system during	
		those conditions or	loading, transfer, and passive	
		limitations upon reactor	storage. This is consistent with the	
		operation necessary to	Commission's policy statement	
		obviate the possibility of an	published in Federal Register, 58	
		abnormal situation or event	FR 39132, July 22, 1993.	
		giving rise to an immediate		
		threat to the public health	The staff also believes the format	
		and safety by identifying	typically employed for DCSS TS is	
		those features that are of	amenable to the use by general	
		controlling importance to	licensees into assuring safe use	
		safety and establishing on	and operation. Several factors	
		them certain conditions of	may influence the content of TS.	
		operation which cannot be	Chapter 13 is revised to clarify	
		changed without prior Commission approval."	theses factors.	
			The staff finally notes that NEI has	
		A similar philosophy where	identified this as a future issue to	
		only those items that have a	be discussed between the NEI dry	
		direct nexus to the protection	storage task force and NRC	
		of the public health and safety	requested to discuss concerns with	
		from an immediate threat are	cask TS in a separate interaction	
		included in the Technical	with NRC (see ML093310122). If	
		specifications should be	a new philosophy were adopted,	

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		adopted. The guidance to the staff in the draft SRP in regards to Technical Specifications should be revised accordingly.	or generic changes were made to dry cask technical specifications, then the standard review plan may be subject to future revision to implement any associated guidance with the changes.	
NEI 2	General/RP	The document should state throughout that for canister- based systems the "confinement cask" is the welded canister assembly.	The SRP is written to apply to both bolted casks as well as to welded canister systems. The term confinement cask applies to both the bolted cask, as well as, welded canister. SRP Section 5.5.1.2. specifies the design and qualification guidance for a welded canister to qualify as a confinement boundary	No Change
NEI 3	General/RP	In a number of locations, the guidance gets into specifying the details of the ASME Code and other codes. Unless NRC does not accept what the codes require, the guidance should avoid repeating the code details and simply refer to the code at a higher level (e.g., "Section III, Subsection NB").	Specific guidance is provided in certain instances to avoid misunderstanding and possible conflicting interpretations. The specific guidance also assists reviewers in focusing on important elements of the ASME Code with respect to the associated review objectives.	No Change
NEI 4	General/RP	Renumbering the chapters in the SRP may create confusion during future licensing actions where the SRP chapters will not coincide with the SAR chapters. Please consider restoring the current SRP revision chapter numbering	This revision of the SRP included the addition of a new Materials chapter and the deletion of the Decommissioning chapter which affected the numbering of many of the chapters. New certificate requests may follow the new format, and amendments to an	No Change

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		sequence.	existing certificate may follow the format as licensed. However, NRC intends to revise associated Regulatory Guides that specify acceptable content and format of certificate applications. The revised draft regulatory guides will also be issued for public comment.	
NEI 5/RP	34	The statement that ISGs were developed to address changes in requirements differs from the definition of ISGs provided at line 660. This statement should be consistent with line 660 to avoid implying that ISGs impose new requirements as could be interpreted by the current wording.	The staff agrees the wording should be more consistent and the SRP is revised as appropriate. The statements were not intended to imply that ISGs impose new regulatory requirements, because the SRP is only for guidance to staff.	Changed abstract to state; "These ISGs were developed to clarify important aspects of regulatory requirements, reflect lessons learned and evolving technology, and document detailed technical positions." Also changed the second sentence of the ISG definition accordingly.
NEI 7 CRIT	542/Crit	Editorial: Change "term" to "terms."	Agree with comment	Changed to "terms".
NEI 8/RP	542 791 1259 4522 4993 6853	Change "containment" to "confinement" to use more storage-specific language.	Agree with comment	Changed these lines to state confinement in lieu of containment.
NEI 9/CRIT	541-542 8319- 8320/Crit	It is not clear why peak rod average burnup is included in this definition and later in the SRP. Assembly average burnup is typically used for specifying allowable contents and should be sufficient	Agree with comment that assembly average is typically used for specifying allowable contents. In addition, the peak rod average burnup is a parameter considered in the fuel integrity analyses in the materials review.	Definition changed to indicate that assembly average burnup is used for assessing allowable content, and that peak rod average burnup is specified for assessing fuel cladding integrity in the materials review. Similar exception added to Section

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
				8.4.17.
NEI 10/MAT	605-606	Revise definition to account for a DFC that could contain less than one assembly (e.g. failed rod basket with 50 rods vs. 264 for an assembly) or more than one assembly for a consolidated rod can. Suggest "A metal enclosure to confine damaged spent fuel. A damaged fuel can with its damaged spent fuel contents must satisfy"	This is the definition currently in ISG-1 Rev 2. Because the ISG also applies to the transportation SRPs, the definition will be maintained for consistency at this time. However, this does not preclude an applicant proposing the use and evaluation of a DFC that may contain fuel rods that are more or less than that associated with one fuel assembly.	No change
NEI 11/STR	667-669	 a) M.O.S. is not "identical" to F.O.S. b) "M.O.S" in the first set of parentheses should be "F.O.S." c) Line 669: delete the first occurrence "-1", 	Agree with comment. Margin of safety was restated in the document as suggested.	Text changed to: "This term may be defined, through a factor of safety, f.s. = capacity/demand, as MofS = F.S. (capacity /demand) -1 (with minimum acceptable MofS > 0.0
NEI 12/CRIT	684/Crit	In the 2 nd sentence, add "neutron" between "high" and "absorption."	Agree with comment.	Revised to "high neutron absorption"
NEI 13/CRIT	687/Crit	Suggest deleting "and transporting" because this SRP is exclusively for storage.	Agree with comment.	Definition changed to eliminate reference to "transportation" or "storage".
NEI 14/MAT	720	A definition is provided for BPRA at line 532 but definitions are not provided for control element assemblies (CEAs) or thimble plug assemblies (TPAs).	Agree with Comment	The definition section was revised to include Added definitions for CEA and TPA.
NEI 15/SH	740/Shielding	While preferential loading is currently used for thermal	Agree with comment.	Definiton changed to: A non-uniform loading

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		loading, it is also used for dose		configuration of spent fuel
		reduction and could be used in		assemblies within a dry storage
		the future for other reasons		system that is typically
		(e.g., criticality control). This definition should be more		specified by assigning a fuel zone designation to each
		flexible.		basket cell, and specifying
				limiting nuclear and physical
				parameters of SNF assemblies
				that can be loaded into each
				zone. Preferential loading is
				often used as a means to
				optimize allowable SNF
				parameters (e.g. burnup,
				cooling time, decay heat), while
				satisfying the shielding, criticality, and thermal
				performance objectives of the
				cask system.
NEI 16/MAT	748-752	The definition of "Ready	Agree with comment. ISG-2, Rev 1	Changed definitions to include
		Retrievability" is incorrect and	was issued as final on February 22,	Retrievability, Ready Retrieval
		inconsistent with Section	2010 (ML100550817). The ISG	Normal Means, and Recovery:
		12.4.5 (lines 11208 – 11219)	considered and addressed public	
		of the SRP and draft ISG-2	stakeholder comments. This SRP	<u>"Retrievability -</u> In accordance
		Rev 1 which has been issued by the NRC for comment. The	has been administratively updated to incorporate Rev 1 of ISG-2	with 10 CFR 72.122(I), storage systems must be designed to
		first sentence of this definition	Definitions for "ready retrieval" and	allow ready retrieval of spent
		is the definition of recovery not	"normal means" have been added	fuel, high-level radioactive
		retrievability. This definition	in accordance with the ISG-2 Rev.	waste, and reactor-related
		should be revised and a	1 guidance. The definition for	GTCC waste for further
		definition for "recovery" should	"retrievability" is changed to be	processing or disposal.
		be added.	consistent with the language of 10	
			CFR 72.122(I). A definition for	
			"recovery" has been added.	Ready retrieval -The ability to
			The SRP is also revised to use	move a canister containing spent fuel to either a
				שישרות ועבו נט בונוופו מ

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
			consistent terminology for retrievability and ready retrieval in sections 1, 2, 8, and 12. The term "ready retrievability" has been change to "retrievability" or "ready retrieval" as appropriate	transportation package or to a location where the spent fuel can be removed. Ready retrieval also means maintaining the ability to handle individual or canned spent fuel assemblies by the use of normal means.
				Normal means - The ability to move a fuel assembly and its contents by the use of a crane and grapple used to move undamaged assemblies at the point of cask loading. The addition of special tooling or modifications to the assembly to make the assembly suitable for lifting by crane and grapple does not preclude the assembly as being considered moveable by normal means
				<u>Recovery</u> - The capability to return the stored radioactive material to a safe condition after an accident event without endangering public health and safety. This generally means ensuring that any potential release of radioactive materials to the environment or radiation exposures is not in excess of the limits in 10 CFR Part 20

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
				operations."
NEI 17/SH	810/Shielding	Clarify this definition to say that the supplemental shielding is only ITS if it is credited in the 72.104 dose analysis.	Agree with comment.	Changed to: Supplemental shielding shall be deemed as component(s) important to safety and be specified in the Technical Specifications as a condition for use of the system as designed, if credited in the shielding and radiation protection analyses analyses for meeting 72.104(a) or 72.106(b) requirements.
NEI 18/PM&MAT	892-895 2358-2359 6623-6625 7261-7266 7286 7318-7319 7413-7414 7456-7457 11350-11351 11366 11454-11461 11513-11516 11521-11523 11527-11597	The bases for what requirements should be in the CoC or TS provided in these sections are vague, subjective, not risk-informed, and not consistent with practice in NRR (i.e., Part 50 TS). Examples: a) "Any aspect of the design or procedures that the NRC determines should not be changed" (892-895) b) "preclude the possibility of damage to the structure or damage to the confined nuclear material" (2358-2359) c) "any technical aspect of the design which is deemed critical to nuclear safety" (7318-7319) d) whatever "the staff deems necessary" (11350 – 11351)	See resolution to NEI1 Technical specifications are part of the CoC, and specific guidance remains important for limiting parameters or procedures in these areas to ensure safety of the system during normal operations and accident conditions. There is a diversity of dry cask storage technologies, which employ different types of design features and analytical methodologies to ensure safety with different safety margins calculated within each discipline. Cask technologies continue to evolve with innovative, first-of-a- kind approaches to ensure confinement, shielding, and criticality safety. In addition,	See changes described for NEI1.

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		e) "a reviewer deems an item	vendors have proposed a diversity	
		so important" (11366)	of TS in terms of scope and format	
		Given that these casks are	to both assure that safety is	
		loaded and operated at NRC-	maintained and to satisfy specific	
		licensed Part 50 facilities, we	operational needs of general	
		suggest SFST adopt a	licensees.	
		function-based, risk-informed		
		set of criteria for what	All of these factors have	
		information belongs in the CoC	contributed to the diversity of TS	
		and TS, similar to 10 CFR	formats; as well as some of the	
		50.36(c) for power reactors,	generality specified for TS in the	
		recognizing the passive design	SRP guidance.	
		and operation of storage casks		
		and modules.	The staff recognizes that if applied	
		In general, the TS should only	correctly 72.48 may be used to	
		cover operational items under	evaluate if NRC approval is needed	
		the user's control for	for changes. However,	
		implementation, and only	72.48(c)(1)(B) itself, recognizes the	
		critical design features under	role of certificate conditions and TS	
		the control of the CoC holder,	in limiting design changes without	
		similar to those in the "Design	NRC approval. These certificate	
		Features" section of Part 50	conditions and TS areas	
		TS.	established at the discretion of	
		Examples of information not	NRC.	
		appropriate for inclusion in TS:		
		fuel basket dimensions (line	The staff finally notes that NEI has	
		6624); alternate materials and	identified this as a future issue to	
		other material requirements	be discussed between the NEI dry	
		(7261-7266, 7456-7457);	storage task force and NRC (see	
		QA/QC documents,	ML093310122). If a new	
		procedures, and test protocols	philosophy were adopted or	
		for neutron absorbers (7413-	generic changes were made to dry	
		7414); ASME Code	cask technical specifications, then	
		information (11454-11461),	the standard review plan may be	
		and training (11521-11523).	subject to future revision to	

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		Including this information only in the FSAR is appropriate based on risk. 72.48 provides adequate controls for determining whether prior NRC approval is required for changes to these items, and the QA program adequately addresses training and manufacturing. It is also a poor practice from a human factors standpoint to incorporate portions of the FSAR into the CoC by reference.	implement any associated guidance with any change. Further resolution of this issue through the SRP comment resolution process would not be practical at this time.	
NEI 19/MAT	1255	Suggest the word "removed" instead of "retrieved". The damaged fuel container is used to assist in placing and removing damaged fuel from the canister.	Agree with comment.	The last sentence in Section 1.5.1 was modified to "Therefore, the reviewer should verify that the application contains a description of how the damaged fuel would be canned, the characteristics of the can, and the means by which the can would be inserted into and removed from the cask."
NEI 20/RP	1259 11524	Editorial: Add "and Limits" to the title of Chapter 13.	Agree with comment	Changed these lines to: "and Limits"

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
	11527			
NEI 21/CRIT	1540-1541/Crit	The operational history parameters need to be reasonable values assumed in the depletion calculations and not bounding values the user must verify that their reactor history meets	When using burnup credit, the fuel must be confirmed to meet the bounds of the operational history parameters assumed in the analysis or these parameters must be shown to be sufficiently bounding over the full range of fuel to be authorized for loading. NUREG/CR-6716 provides-results on a study of the importance of and the sensitivity of K-effective to changes in some major parameters. Section 7.5.5.3 of the SRP provides additional guidance	No change.
			regarding bounding assumptions.	
NEI 22/MAT	1552-1553	Delete this bullet. "Inerting atmosphere requirements" is not an SNF specification and the maximum number of fuel assemblies is specified two bullets prior.	Agree with comment.	Removed bullet
NEI 23	1154-1155	Based on the elimination of the SAR chapter on decommissioning, consider deleting the sentence regarding the planned decommissioning process.	Agree with comment.	Deleted the following sentence: "Additionally, a discussion should be included of the planned decommissioning process."
NEI 24/MAT	1253	These lines are inconsistent	Agree with Comment.	See changes in NEI 16.
	1600-1601	with Section 12.4.5. of the		
	2139	draft SRP (lines 11215-11219)	See response to NEI 16. Section	The SRP is revised to use
	2204	and other portions of the SRP	12.4.5 is also clarified to discuss	consistent terminology for
	2337-2338	which state that retrievability in	the applicability of recovery and	retrievability and ready retrieval

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
Comment	SRP Location 2401 (flowchart box for Chapter 12) 2508-2512 3037 3053 8803 9075 11314	Summary of Comment 10CFR72.122(10CFR72.122 (I) applies only to normal and off-normal conditions and not accident conditions. These lines are also inconsistent ISG-2 Revision 0 and draft ISG-2 Revision 1. Reference to retrievability should be removed in discussions of accident conditions throughout the SRP.	Resolution retrievibility. Retreivability applies to normal and off-normal events, and not design basis accidents. The meaning of normal condition, off-normal events and design-basis accidents, in this context, are further clarified in Section 12.1	Changes to SRP in sections 1, 2, 8, and 12. The term "ready retrievability" has been change to "retrievability" or "ready retrieval," as appropriate. Other referenced guidance for off-normal and design-basis events have been clarified with distinguishing terminology such as "retrievability or "recovery", as applicable. Section 12.1 has been revised to include "Normal conditions are the intended operations, planned events, and environmental conditions, that are known or reasonably expected to occur with high frequency during storage operations. Off-normal events are those man-made events or natural phenomena expected to occur with moderate frequency or once per calendar year. ANSI/ANS 57.9 refers to these events as Design Event II."
NEI 25/RP	1374	Since the NRC is currently working on rulemaking that would change the licensed	Agree with Comment	Changed Section 1.5.5 to remove the specific time period and referenced the regulation

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		lifetime of a cask, it is suggested that a reference to the 20 year limit be removed here and throughout the document and that a reference to the regulation be provided insteadprovided instead.		where appropriate. Also similarly changed Section 2.4.3.1, Section 3.6 F3.6, and Section 8.5 F8.6.
NEI 26/MAT	1704	Identifying the fuel vendor is not pertinent to the review and should be deleted.	It is necessary to distinguish the fuel vendor so that staff can distinguish between the many different types of fuel assembly variations that exist and whose materials properties are not identical.	No change.
NEI 28/RP	1913-1917	This paragraph is inconsistent with ISG-5 (for metal casks) and ISG-18 for welded canisters. Non-mechanistic confinement boundary failures are no longer part of the cask design and licensing basis.	Agree with comment	Removed the following Sentence: "Nevertheless, for assessment purposes and to demonstrate the overall safety of the storage cask system, the NRC staff considers that the DSS should be evaluated for the effects of a confinement boundary failure.
NEI 29/RP	1992	Editorial: Change "" to ."	Agree with comment	Changed as stated in comment
NEI 30/RP	2041	Change "SNF retrieval" to "retrievability".	Agree with comment	Changed as stated in comment
NEI 31/RP	2110	Change "retrieval capability" to "retrievability".	Agree with comment	Changed as stated in comment
NEI 32/STR	2271-2280	ANSI/ANS-57.9 is outdated and not germane to many of today's commercial spent fuel systems. Other than the design event classifications, care should be used in	The use of ANSI/ANS-57.9 is broader than just event classifications. Each applicant should evaluate and justify the applicability of ANSI/ANS-57.9 to its proposed DSS.	Revised the words, "the cask system structures," to read, "the ISFSI dry storage systems" in Section 3.4.2

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		referring to this standard for today's DSS designs.	The reference to the review standard is reworded to be consistent with current terminology in the structural review chapter.	
NEI 33/STR	2278-2280	Editorial: The last sentence of this paragraph does not appear to be grammatically correct.	Agree with comment	Changed sentence to read: The loadings defined in American Society of Civil Engineers, "Minimum Design Loads for Buildings and Other Structures," (ASCE 7) can be used when load combinations are considered on the basis of ANSI/ANS-57.9.
NEI 34/STR	2308, 2626 3085, 3501	Some inconsistency is noted regarding the specified Code years When referring to the ASME code, no code year was mentioned. However, when referring to a non-ASME code, a code year was mentioned. For example, line 2308, IBC code (2006), line 2626, ASTM C33 (2002), line 3085, ANSI/ANS-57.9 (1992), line 3501, ACI 349 (2006). To avoid confusion and permit appropriate flexibility for the applicant, the code year should not be mentioned in the review plan	Specific guidance regarding codes year is provided in certain instances to avoid misunderstanding and possible conflicting interpretations. However, this does not preclude an applicant from proposing the use of alternate codes or code years with appropriate justification.	No Change
NEI 35/STR	2340, 2713	Regarding Line 2340, "This position does not necessarily require that all confinement system and other structures	The NRC staff agrees that the design analysis, in accordance with provisions in Section III of the ASME Code, does not restrict use	The entire paragraph beginning in the second paragraph in Section 3.5.1.4 ii.(1) was changed to, "Consistent with

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		important to safety survive all	of linear-material properties. To	the provisions of ASME Code,
		design-basis accident and	ensure clarity, the paragraph	Section III, Appendix F,
		extreme natural phenomena	beginning in Line 3168 was	inelastic material properties
		without any permanent	rewritten to recognize the potential	may be used for the storage
		deformation or other damage"	inelastic structural behavior for the	cask design analysis evaluation
		and Line 2713, "The system	ASME Code, Section III, Appendix	for accident loads. The SAR
		should not experience any	F accident load conditions.	should identify the sources
		permanent deformation or loss		used for the inelastic material
		of safety function capability		properties."
		during normal or off-normal		
		operation conditions.		
		However, the system may experience some permanent		
		deformation, but no loss of		
		safety function capability, in		
		response to an accident"		
		please consider the following:		
		Based on the above		
		discussion, elastic-plastic		
		analysis should be allowed to		
		analyze the accident load;		
		however, Line 3168, "to be		
		consistent with the provision in		
		Section III of the ASME code,		
		the analysis should use linear		
		material properties. For		
		materials that do not serve in		
		structural capacity (such as		
		shielding materials), inelastic material properties may be		
		used for cask components that		
		are not stress-limited and		
		respond inelastically to the		
		load conditions for storage		
	1	isaa oonaniono ioi storage		

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		casks" implies that only elastic analysis can be used unless you use strain limited criteria. In the past NRC has accepted the use of elastic-plastic properties for all the accident load analyses and stress limited criteria are used per ASME Appendix F.		
NEI 36/STR	2357-2362	The first sentence of this paragraph seems to indicate that TSs should be in place to preclude possibility of damage to the structure or the confined material during cask handling and operations. The second sentence of the same paragraph seems to indicate that TS should describe the actions and inspections to be conducted upon occurrence of "events" that may cause such damage. These two statements appear to be contradicting each other.	In the unlikely event of cask damage resulting from cask handling and/or operation, the second sentence discusses actions and inspections that should be conducted to ensure that the cask is secured in a safe configuration.	No change
NEI 37/RP	2380	Editorial: Add a blank line between lines 2379 and 2380	Agree with comment	Changed as stated in comment
NEI 38/STR	2612-2640	This section seems to imply that the alternate concrete temperatures described apply only to the steel-lined concrete confinement cask system designed to ACI 359. Similar concrete temperature provisions have been	The text explicitly states that the temperature limits presented as an exception to Section CC-3340 of ACI 359 are temperature limits that apply as an alternative to ACI 349, A.4. The inclusion of steel-lined concrete confinement cask systems is an additional	No Change

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		accepted for the NUHOMS HSM type concrete structure designed to ACI 349.	configuration in which alternative temperature requirements can be employed, not the sole configuration for their use.	
NEI 39/STR	2621, 8210	Add ASTM C150 as the standard specification for Type II cement.	Agree with comment	Changed to the following: Satisfy ASTM C33, Satisfy ASTM C150, ("Standard SpecficationSpecification for Portland Cement") requirements and other requirements referenced in ACI 349 for cement. Have demonstrated
NEI 40/STR	2627	Delete "2002" (edition year of ASTM C33)	Agree with comment	Rewrite "Satisfy ASTM C33, ("Standard Specification for Concrete Aggregates") requirements
NEI 41/MAT	2729 2735 5908 8889	Change "retrieval" to "unloading" or "removal" as applicable.	These lines discuss normal condition operations, so retrieval is the correct word choice for each case, and is essentially synomynous with "unloading" or "removal" in the context it is used.	No change
NEI 42/STR	2879-2882	The passage: "The SAR should identify the maximum response determined. That response should be sufficiently low such that while damage may occur, it would not impair the capability of the component to perform its safety functions" is not clear. What, specifically, is meant by	In the context of structural analysis for the explosive overpressure, the generalized term, "maximum response," generally means to include pressure induced maximum stresses at critical cask locations and governing structural performance modes for the cask components important to safety. This is added to the SRP to provide	Add the following to the end of second paragraph in Section 3.5.1.4 i. (3) (e): The maximum response includes pressure-induced maximum stresses at critical cask locations and governing structural performance modes for the cask components

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		"maximum response"?	clarity.	important to safety.
NEI 43/STR	2885	The third paragraph of the current SRP version has been deleted in this proposed revision to NUREG 1536. The deleted paragraph accepted the fire parameters from Part 71 as a basis for characterizing the fire during storage. Additionally, it accepted spalling of concrete due to fire without further evaluation. It also accepted concrete temperatures that exceeded ACI 349 limits as long as corrective actions are taken for continued safe storage. The revised version does not provide guidance on the structural assessment to fire event. Suggest restoring this paragraph.	Partially agree with comment. The deleted paragraph contains the lead sentence, "The NRC has accepted the fire parameters included in 10 CFR Part 71 as the basis for characterizing the heat transfer associated with fire during storage." This may or may not be conservative for the fire accident evaluation in a licensee's Part 72.212 site parameter report. To preserve the evaluation bases discussed in the original paragraph, only the lead sentence of the paragraph, which refers to Part 71 transportation provisions, will be deleted.	At the end of the second last paragraph of Section 3.5.1.4 i. (3) (c), reinstated the following sentences: "Spalling of concrete that may result from a fire is generally considered acceptable and need not be estimated or evaluated. Such damage is readily detectable, and appropriate recovery or corrective measures may be presumed. The NRC accepts concrete temperatures that exceed the temperature limits of ACI349 for accidents, providing that the temperatures result from a fire. However, corrective actions may need to be taken for continued safe storage.
NEI 44/STR	2962	Line 2962 states that consequences of floods such as damage to access routes, temporary blockage of ventilation passages, etc. "should be identified in the CoC so that a general licensee will be able to consider these factors when sitting an ISFSI". This is a general site characterization issue more appropriate to be addressed in the 10 CFR 72.212 Report.	Flood consequences, such as temporary but prolonged blockage of ventilation passages, may adversely affect thermal performance of the cask system. The staff agrees with the comment that evaluation of whether design- basis floods are bounded by floods analyzed in the certified cask system is a site-specific 72.212 characterization issue. Evaluation of additional flood consequences is generally at the discretion of cask	Replace the word, "should" with the word, "may."

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		Generic flooding depth and moving water limits the DSS is designed for should be described in the SAR and the CoC.	vendors.	
NEI 45/STR	3083-3103	Lines 3085-3103 deal with the response of the storage system sitting on a flexible pad and subjected to earthquake loads. It requires that the flexibility of the pad be taken into consideration in the seismic analysis. This is not an appropriate requirement for a system that is licensed to be used under a general license where the system design is based on a design response spectra (e.g. a RG 1.60 response spectra) anchored to a defined maximum acceleration for the horizontal directions and a maximum acceleration in the vertical direction. Each particular user is to ensure as part of their 72.212 evaluation that the system as qualified is adequate for each particular site considering the characteristics of the pad and its response when coupled with the underlying supporting media.	The section of the document provides guidance to staff regarding the ISFSI seismic analysis and for reviewing calculations that show a cask will not tipover or drop during a seismic event.	No change
NEI 46/STR	3106, 12537	RG 1.60 imposes excessive	RG 1.60 provides general guidance	No change

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		conservatism for seismic evaluations. RG 1.60 should be replaced by NUREG/CR- 6728 and also NUREG/CR- 6865.	for generating design response spectra and has not been replaced by the cited NUREG reports.	
NEI 47/STR	3139-3140	The term "confinement casks" is confusing. Should this be "confinement boundary"?	Agree with comment	Changed "confinement casks" to "the confinement boundary of the cask".
NEI 48/STR	3153	In the previous paragraph, Subsection NB is used to define stress qualification for the confinement boundary, which is a pressure retaining boundary. In the paragraph including line 3153 it does not clearly state that the basket is a non pressure retaining boundary, and that the applicant should use Subsection NG. Need to state that Subsection NG is acceptable, or the reader is left to believe that Subsection NB applies to non pressure boundary baskets. It should also confirm that Appendix F is applicable for use with Subsection NG.	Agree with comment. To provide clarity, a sentence to recognize the code requirements for the basket is added.	Add a 2 nd sentence to Section 3.5.1.4 ii, 3 rd paragraph which reads: "For the fuel basket, Subsection NG of the Code applies."
NEI 49/STR	3168	Although not a change from the existing version of NUREG 1536, this paragraph appears to imply that Section III analysis should be only linear elastic. This section should be clarified to allow elastic-plastic	See response to NEI Comment 35 regarding use of inelastic material properties. The strain-based criteria are not recognized by the ASME Code or other applicable standards.	See response to NEI Comment 35 for the first part of the comment on using inelastic properties. No change with respect to strain-based criteria.

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		and other non-linear analysis as permitted by the Code. It should state that Subsection NB and Subsection NG do permit the use of Appendix F which does permit the use of inelastic properties for components which serve as the pressure boundary or also non-pressure boundary applications, such as baskets. It should also state that strain- based criteria can be employed for energy-limited accident conditions, provided the applicant provides such basis for its use.	Recognizing that the SRP provides review guidance for broad base, common subjects. An applicant, however, may propose, the NRC staff may consider the use of other acceptance criteria, such as strain- based criteria, only on a case by case basis with appropriate justification. The staff may review alternate strain-based proposals in greater depth depending on the applicability and experience with the criteria to the proposed DSS design.	
NEI 50/STR	3171	In many applications for drop conditions, it should be acceptable to use strain-rate- sensitive properties. Appendix F permits their use. Need to include "strain rate properties, which needs the appropriate references."	As worded, the SRP does not preclude use of strain-rate- sensitive material properties for design analysis of cask drop conditions.	No change
NEI 51/STR	3315	Editorial: Delete either "for" or "of."	Agree with the comment.	Deleted the word, "of."
NEI 52/STR	3321-3338	Please clarify the trunnion design stress criteria used to compare the stress at the trunnion connection with the cask body at that interface. Regarding Line 3338, "the applicant should evaluate the stresses and forces in the	The SRP provides guidance for implementing the ANSI/ANS N14.6 stress design factors evaluation by recognizing that the maximum bending stress occurs at the base of the trunnion. Implicit in this evaluation is a classical strength of materials approach to calculate the	Changed second to last sentence in Section 3.5.1.4.ii.(3)(c) to read, "If other assumptions, including ASME Section III stress limits by the finite element design analysis and slight material yielding at localized regions,

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		trunnion connections with cask body", since the cask body is typically designed per ASME Code Section NB, the NB stress criteria should be used instead of yield and tensile strength. Please clarify.	maximum average shear over the trunnion cross section. In the case of a loaded cask consisting of the transfer cask, as a special lifting device, and the loaded enclosure vessel in which the basket and its fuel assemblies are emplaced, the SRP provides that the applicant should evaluate the stresses and forces in the trunnion connections with the cask body and in the cask body near the trunnions. The Line 3336 statement will be revised to recognize potential localized materials yielding also in accordance with the ANSI/ANS N14.6 provisions for stress design	are considered, the applicant should provide adequate justifications"
NEI 53/STR	3380	Section 3.5.2 "Other System Components Important to Safety" does not contain the alternate concrete temperatures as listed in Lines 2612-2640 for the steel-lined concrete confinement cask structure.	factors. Agree with comment. The temperature limit alternative listed from 2607-2640 and 8196-8227 is added to Section 3.5.2 for consistency	Incorporated text from the referenced sections as well as the revision from NEI Comment 39 into Section 3.5.2
NEI 54/STR	3747	"Appendix C" should read Appendix F for the version year of the ACI 349 that is described in Line 3501.	Agree with comment	Changed as stated in comment
NEI 55/STR	3758	Editorial: "30 ksi" should be "3 ksi." Also, should the example list include a maximum compressive strength because that value is a limit for drop	Agree with comment. The NRC staff notes that the cask tipover analysis generally places a limit on the maximum concrete compressive strength of the cask	In Section 3.5.2.3 i. (3) changed fifth bullet, "30 ksi," to read, "3 ksi." Additionally, revise the entire sentence to read, "Upper limit (60 ksi, 4219

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		and tipover analyses?	storage pad. To ensure that the analyzed configuration remains applicable in a general licensee's Part 72.212 site parameters evaluation report, an upper limit on the maximum compressive strength should be reported.	kgf/cm2) on the specified yield strength of reinforcement, lower limit (3 ksi, 211 kgf/cm2) on concrete specified compressive strength (f"c), and upper limit on concrete strength, as analyzed and specified for the ISFSI cask storage pads.
NEI 56/TH	4182-4184/JS	The sentence regarding delivery of electronic media is guidance for the applicant rather than the staff and as such should it may be more appropriate in another document.	Agree with comment.	Deleted sentence: "It should be noted that electronic media should be delivered to the appropriate SFST staff directly, if possible, as electronic media sent to the NRC Document Control Desk may be damaged during security screening."
NEI 57/TH	4302/JS	The discussion about annotation of input files is too broad. It may be important for the reviewer to see and perhaps use the applicant's files, but it is not necessary to understand all aspects of the input files. Some of these files come from Journal files or Log files which are generated by the program. It is not feasible to add comments to these files. Open ended statements such as adding "annotation" leads to vague expectations by the reviewer for the need of such documentation.	Well documented input files expedite the review since it is easier for the reviewer to verify that analysis files are consistent with the design information provided in the SAR. If it is not feasible to add comments to some files, then, as indicated in the SRP, "the applicant should provide an adequate explanation of how computer models were assembled using the CMS in the appropriate SAR chapters or related documents."	No change
NEI 58/TH	4313-4315/JS	Delete these lines. The level of review described here	The level of review depends on the complexity of the application,	No change

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		seems to be beyond an audit review and more like a third party validation of the computer analysis. It is the responsibility of the applicant's QA program to ensure that the analyses are performed correctly.	including the uniqueness of new designs and safety margins. The guidance also reflects previous NRC licensing review experience in identifying insufficient analyses, (performed under applicant's QA program) in these areas of computational analyses.	
NEI 59/TH	4332/JS	Clarify or delete "mesh type."	Agree with comment.	Changed first bullet, first two sentences of Appendix 3A, under Sensitivity Studies to: "The reviewer should verify that the applicant has completed sensitivity studies for relevant CMS modeling parameters. This includes element type and mesh density, load"
NEI60/TH	4335-4336/JS	A mesh sensitivity study is not required when stress linearization is being used for primary loading. Such detailed studies should be restricted to fatigue evaluations at stress discontinuities.	A mesh sensitivity is required to make sure the analysis results are mesh independent.	Added sentence at end for first bullet of Appendix 3A, under Sensitivity Studies to: "A mesh sensitivity is required to make sure the analysis results are mesh independent".
NEI 61/TH	4349/JS	Delete "plots." Including plots of <u>all</u> results generates an enormous amount of unneeded data in the FSAR.	As stated in the SRP, the SAR or related documents should include <u>all relevant</u> results (including plots).	No change
NEI 62/TH	4411/JS	The guidance stating that the decay heat removal system should operate reliably under off-normal and accident conditions is inappropriate given that some of the abnormal and accident	Agree with comment.	Revised SRP to state: "Evidence must be provided by the applicant that the decay heat removal system will operate reliably under normal and loading conditions."

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		conditions themselves involve impairment or loss of the decay heat removal system (e.g., blocked air ducts).		
NEI 63/TH	4551/JS	In item (2), it appears that this is an option addressing when fuel cladding temperature <u>does</u> exceed 400°C (i.e., delete "not"). Please clarify.	Agree with comment. For low burnup fuel the maximum allowable peak cladding temperature may be higher than 400°C as long as the hoop stress is less than 90 MPa, as indicated in the SRP.	Review Revised SRP to state: "(2) the maximum calculated temperatures for normal conditions of storage do exceed 400°C (752°) and"
NEI 64/TH	4469-4471/JS	Clarification should be provided for "address, quantify and report the degree of conservatism associated with the proposed models and the resulting safety margin." This statement is vague. It is unclear what the specific information is requested and to what level of detail.	Agree with comment	Changed last sentence in 2 nd paragraph of Section 4.4.4 to read: "The applicant must discuss, quantify, and report in the SAR any conservatism associated with the proposed thermal models. The level of detail of the discussion should be comparable with sections of the SAR that describe the analytical thermal models. A table of results should be provided in the SAR showing how the associated conservatisms affect the safety parameters (e.g. calculated peak cladding temperature, confinement seal temperatures, etc.). The table of results must be supported with fully documented analytical models and calculations"
NEI 65/TH	4580/JS	Editorial: Change "on" to "in."	Agree with comment.	Changed as stated in comment.
NEI 66/TH	4612/JS	Editorial: add a closing parentheses at the end of the	Agree with comment.	Changed to read: "SNF pool's technical specification

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		sentence		maximum temperature limit (typically 46°C) (115°F)."
NEI 67/TH	4686-4687/JS	Delete this sentence. It does not appear to add value to the review guidance. Alternatively, clarify why this is only applicable to horizontal basket designs.	Partially agree with comment. Internal natural convection however should be verified through physical experiments or use of validated CFD codes.	Changed last sentence in Section 4.5.4.1 to read: "Traditionally, the staff has maintained that natural convection in enclosed cavities should be validated through robust CFD calculations or physical experiments."
NEI 68/TH	4768-4770/JS	The SRP requires test data for each thermal effective conductivity. Are correlations from handbooks which are based on test data acceptable? Is test data still a requirement if a CFD sub- model is used to calculate the effective conductivity as specified in Line 4686 to 4687? It is recommended that "from test data" be changed to "from test data, or CFD sub- models, or other appropriate sources"	Agree with comment.	Changed 2 nd sentence, 2 nd paragraph of Section 4.5.4.1.2 SRP to read: ""If effective thermal conductivity is used in this manner, the reviewer should verify that the same values have been determined from test data, or CFD submodels, or other appropriate sources that are representative of similar geometry, materials, temperatures, and heat fluxes used in current application."
NEI 69/TH	4678-4681/JS	Limiting convection to the outer surface of the cask contradicts already-approved designs that credit convection inside the fuel canister. This is clearly permissible with appropriate justification.	Agree with comment.	Deleted the following sentence from SRP: "Convection by natural circulation should be limited to that between the external surface of the cask and the ambient environment."
NEI 70/TH	4687/JS	Delete the word "robust." Words like this are vague and subjective, allowing each	Partially agree with comment. This guidance is intended to advise the reviewer that CFD calculations are	Replaced the word "robust" with the word "sufficient"

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		reviewer to apply his or her personal definition of "robust" in their review and generate RAIs if the model is not "robust" enough.	not trivial and many times are subjective to errors if not used adequately.	
NEI 71/TH	4742/JS	Editorial: Delete misplaced closing parentheses in this line	Agree with comment.	Changed this line to read: "width and height of the air channel." Removed parenthesis after "air channel" and punctuated this phrase with commas.
NEI 72/TH	5041/JS	Allowance should be made for a properly scaled mock-up instead of an "as-built cask system" to confirm the thermal analysis.	Agree with comment. Design verification testing could be achieved by using as-built cask system or mock-up system	Changed 1 st sentence of last paragraph in Section 4.5.4.7 to read: "As an alternative to a confirmatory analysis, the applicant may be required to perform design-verification testing of an as-built cask or properly scaled mock-up system (when applicable) to confirm the thermal analyses presented in the SAR."
NEI 73/RP	5185-5187	Delete or clarify this sentence. No such "periodic surveillance program" has "typically" been required or performed for stainless steel welded canister confinement systems. Periodic surveillance of the confinement boundary, if any, should only be required case- specifically, if the particular design features of the confinement system require it. Inspections of the air vents or	Agree with comment.	Replaced subject sentence with the following: "This practice is consistent with the fact that other welded joints in the confinement system are not monitored since the initial staff review ensures the integrity of the confinement boundary for the licensing period. Typical surveillances include checking for blockage of the air vents or temperature monitoring depending on the specific

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		temperature monitoring have been accepted as the sole periodic surveillance.		design."
NEI 74/RP	5347-5348	The statement that the monitoring systems are not important to safety <u>and</u> classified as Category B (an ITS class) does not appear to be consistent.	Monitoring systems are not specifically mentioned in NUREG/CR-6407 "Classification of Transportation Packaging and Dry Spent Fuel Storage System Components According to Importance to Safety". ISG-5 which was incorporated into the revised SRP, mentions that monitoring systems are a Classification Category B because as stated in Table 2, a Category B component is one whose failure in conjunction with the failure of an additional item, like the containment boundary seal, could result in an unsafe condition (potential release of radioactive material). It is termed as not important to safety since most of the associated hardware have not met the important to safety programmatic controls, like design, or procurement.	Added "It is termed as not important to safety since most of the associated hardware have not met the important to safety programmatic controls, like design, or procurement" to the 3 rd paragraph before the last sentence of Section 5.5.2
NEI 75/RP	5384	Editorial: Change "Review" to "Evaluation."	Agree with comment	Changed as stated in comment
NEI 76/MAT	5413-5426	This paragraph does not appear to be consistent with ISG-5 and ISG-18 and would only apply to non-welded- canister type confinement systems. Based on	If the canister is welded and tested to be leaktight then the size of the source term is immaterial for determining a release. The staff agrees that fuel rods that	Added to end of the 3 rd paragraph in Section 5.5.3: Fuel rods that are classified as damaged due to a preloading cladding breach may not have
		NUREG/CR-6397, damaged	are classified as damaged due to a	a pressurized fuel rod driving

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		fuel would not have a driving	preloading cladding breach may	force for the release of
		force to release fines form	not have a pressurized fuel rod	particulate from the rod under
		from the fuel matrix. What is	driving force for the release of	off-normal events and design
		the technical or safety issue of	particulates from the rod.	basis events. However, under
		concern? What factors are	However, under an impact	an impact accident, damaged
		suggested for damaged fuel?	accident, damaged fuel rods might	fuel rods might release
			release additional fuel fines due to	additional fuel fines due to the
			the fracture of the fuel, especially in	fracture of the fuel, especially
			the rim region of high burnup fuel.	the in the rim region of high
			In addition, some canisters may be	burnup fuel. In addition, some
			pressurized to several	canisters may be pressurized to
			atmospheres and cask blowdown	several atmospheres and cask
			may also affect release fractions.	blowdown could also affect
			Each applicant should establish	releases fractions. Each
			release fractions for damaged fuel	applicant should establish
			based on applicable physical data	release fractions for damaged
			and other analyses appropriate for	fuel based on applicable
			the specific type of fuel, damaged	physical data and other
			condition, and accident conditions.	analyses appropriate for the
			This will be clarified in Section	specific type of fuel, accident
			5.5.3.	impacts, and damaged
				condition of DSS. Alternatively,
			Alternatively, a leak-tight	a leak-tight confinement
			confinement boundary may be	boundary may be specified to
			specified to preclude the release	preclude the release analyses
			analyses of damaged fuel.	of damaged fuel.
			Also, see resolution to NAC 5426.	
NEI 77/SH	5800-	"radionuclide content, and	This guidance is provided to	Replaced the 2nd sentence in
	5801/Shielding	estimated radiation source	evaluate source terms of different	Section 6.4.2 which begins with
		strength in Becquerel's,	types of contents, for both the	"The physical and chemical
		should be described": This	shielding and confinement	form," with the following:
		appears to be a new	analyses. The SRP is revised to	
		expectation from the NRC. It is	clarify this guidance.	"For spent nuclear fuels, the
		not clear what the basis of this		source terms in particles/s or

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		request is as radiation source		MeV/s per energy bin should be
		strength in Ci or Bq is not		described in form of either
		clearly related to		group structure or a continuous
		gamma/neutron source		function of energy. For non-
		strength (e.g. beta emitters).		fuel hardware, source in Curies
				or Becquerel is acceptable. For contents other than fuel or non-
				fuel hardware components,
				isotopic composition and
				photon yields for each
				constituent should be specified.
				For confinement evaluation
				purposes, the physical and
				chemical form, source
				geometry, radionuclide content,
				and estimated radiation source
				strength should be described."
NEI 78/SH	5809-	"characteristics for each	The guidance is intended for	Replaced the 1 st paragraph of
	5810/Shielding	gamma-ray source type should	different types of contents in the	Section 6.4.2.1 with the
	50 TO/Officiality	be provided, including isotopic	shielding and areas of review.	following: statements.
		composition, and photon		lene migi etatementei
		yields": Is a tabulation of spent	Isotopic concentrations are	"The SAR should specify
		fuel isotopics requested here?	needed because the input file, as	gamma source terms for both
		If so, for what purpose?	described in the SRP, is typically a	spent fuel and activated
		Typically, inputs into depletion	representative input and not	materials. For spent nuclear
		analysis are provided, but not	necessarily bounding. For cases in	fuels, the source terms should
		isotopics of depleted materials.	which the source terms are not	be described in a format that is
			derived from a depletion	compatible with shielding
			calculation, the applicant should	calculation input, typically in the
			provide isotopic concentration and	form of photons/s or MeV/s per energy bin. For assembly
			photon yields.	hardware and non-fuel
			The SRP is revised to clarify this	hardware, source terms should
			guidance.	be specified by 60 Co activity (in

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
				Curies or Becquerel). For contents other than fuel or non- fuel hardware components, isotopic composition and photon yields for each constituent should be specified. A tabulated form of the radiological characteristics is acceptable."
NEI 79/SH	5813- 5814/Shielding	Within gamma source description "describe extent to which radioactivity may be induced by interactions involving neutron originating in the stored materials": If this implies n-gamma reactions, then the current SRP version is clearer. If activation is to be considered for decommissioning, that should be clarified.	Agree with comment	Replaced with the following statement: "The SAR should include discussion of energetic radiations created by nuclear reactions such as (n, γ) in the packaging materials and the contents."
NEI 80/SH	5868- 5870/Shielding	Shielding analyses do not need to be "bounding analyses." Applicants need only provide representative dose rates to demonstrate reasonable assurance that the system is capable of meeting the offsite dose limits or 72.104 for an entire ISFSI. (See line 5723 and subsequent text.)	Shielding analyses should provide the bounding dose rates and demonstrate that the system is capable of meeting the requirements of 72.104 and 72.106. The bounding doses rates should be based on the design basis loadings that are defined through the applicant by maximum burnups, minimum cooling times, and minimum enrichments.	No Change

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
Comment NEI 81/SH	SRP Location 5873- 5882/Shielding	Summary of Comment High burnup fuel has been licensed for storage on several dockets. There is no indication that high burnup fuel produces substantially high dose rates due to limited validation data. If limited data is available it leaves an open ended question as to how to specify uncertainties. "Conservative assumptions" and "design margins" are not defined, leaving it up to each reviewer when, and how much, in uncertainties to apply. There is no correlation as to how maximum fuel assembly heat load is related to uncertainties - low heat capacity /minimal shield system may be affected by low fuel assembly heat load, and vice versa.	Resolution Fuel assembly with higher burnup will produce higher gamma and neutron sources. The gamma source increases linearly proportional to burnup and the neutron source increases proportional to the fourth power of burnup. It is expected that the magnitude of uncertainities in exposure rates and decay heats would propogate proportionally in the same manner. There exist biases and uncertainties in the computer model and input data. These errors, bias, and uncertainties are in general not quantified if the computer code and models are not benchmarked and validated against experimental data. The NRC recognizes that the nuclear industry has not developed experimental data for the high burnup fuel that is proposed for storage. NRC has traditionally allowed applicants to use isotopic codes beyond their validated range. However, some applicants have applied penalties to assure these un-quantified uncertaintities are sufficiently considered for high burnup fuel source term and decay heat predictions. The penalty	Changes to SRP No Change

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
			reasonable uncertainties in both gamma radiation, neutron radiation, and decay heat source terms. The magnitude of uncertainties in these three source terms may be significantly different at high burnups.	
			Alternatively, the applicant may propose measurement programs in the technical specifications that directly monitor shielding and thermal performance (e.g., cladding temperatures,, and detect abnormalities that could result from unaccounted uncertainties in the source term predictions.	
			Regarding the uniformity of the practice among the staff on the additional safety margin, the Criticality Safety and Dose Assessment branch of SFST has working groups to share review experience and develop consensus. The staff is in general aware of the common practice.	
NEI 82/SH	5968/Shielding	Editorial: Incorrect spelling of "Principle."	Agree with comment	Changed as stated in comment
NEI 83/SH	5996/Shielding	Editorial: Figure 6-2 is missing from the document.	Agree with comment	In Section 6.5.2.1 Replaced the words: "in Figure 6-2 (reproduced from NUREG/CR- 6716)" with:

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
NEI 84/SH	6003- 6004/Shielding	"applicant and the staff should not attempt to establish specific source terms as operating control and limits for cask use.": If this is true, why does the SRP focus in the Section 6.4.2 on curie content and isotopic description of the spent fuel? For Cobalt-60 dominated hardware sources, a source term may be more appropriate than other limits (e.g., mass, exposure, cool time).	The focus of this requirement is different from that of Section 6.4.2. The requirement here is for consideration of the cask operations. Fuel assembly initial enrichment, burnup, and cooling time are the readily usable and inspectable parameters for cask operation. Source terms would be additional parameters that are caluculated from enrichment, burnup, and cooling time.	The larger neutron fluence generates a larger actinide content which results in larger neutron source term and secondary gamma source term as illustrated in NUREG/CR- 6716, Section 3.4.1.2. Replaced last sentence in Section 6.5.2.2 with the words "However, the applicant limits for cask use" with: However, the staff should not attempt to use specific source terms as bases for establishing operating controls and limits for cask use because these are not readily inspectable parameters. The fuel assembly initial enrichment, burnup, and cooling time are more appropriate for use as loading
NEI 85/SH	6036/Shielding	Editorial: add a closing	Agree with comment	controls and limits. Changed as stated
NEI 86/SH	6449- 6450/Shielding	parenthesis. "homogenization should not be used in neutron dose calculation when significant neutron multiplication can result from moderated neutrons": While not changed from the current SRP, it should be noted that standard, NRC-approved,	Although this assumption has been acceptable in many applications, there may be instances where homogenization may not be appropriate.	No change

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		practice is to homogenize the rod lattice in shielding calculations (not necessarily homogenizing basket structure into the fuel region).		
NEI 87/SH	6188/Shielding	Incorrect spelling of the word "Evaluation"	Agree with comment	Changed as stated in comment
NEI 88/SH	6221- 6222/Shielding	Review staff should recognize that importance functions may also be produced with Monte Carlo, point-kernel and transport codes.	Agree with comment.	Replaced the 1 st sentence of the 2 nd paragraph in Section 6.5.4.1 with the following: "The reviewer should be aware that the applicants often use transport or point-kernel methods to calculate neutron and/or gamma importance functions (unit of mrem/hr/particle/s-cm)." Added the following statement to the end of the 2 nd paragraph in Section 6.5.4.1 "The reviewer, however, should pay close attention to the applicability of the importance function to the actual cask content and geometry of contents and shielding."
NEI 89	6246- 6248/Shielding	"The applicant should use the latest released computer code version that is valid for the particular computational platform used to perform the analysis.": This item in	Partially agree with comment. The staff would prefer models to be based on latest released computer code versions because NRC typically upgrades its shielding computer codes on a regular	Replaced the sentence with: "The applicant should use a computer code version that is demonstrated to be adequate for the analysis and is valid for the particular computational
		particular has been discussed	schedule with code vendor	platform used to perform the

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		with NRC staff as a significant issue. A licensed code for the same type of application should not require a code version change simply because the code developer has issued a new version. Use of different code versions within one or more applications is difficult to reconcile and potentially leads to unnecessary confusion. Such burdens should only be borne by the applicant if a significant safety issue has been identified with the previous code version. Typical new release code versions tend to contain a certain amount of bugs that get resolved through user feedback to code originator. While it could be postulated that newer code provide more "accurate" results, but if the previous version was found to be acceptable for system approval with no safety issues identified, why should applicants be required to change? The goal per draft SRP Section 6.4 is to provide reasonable assurance that system will meet limits. This is also inconsistent with how	upgrades. However, computer codes used for shielding analyses do not necessarily need to be updated to the most recent version. The applicant should demonstrate that use of a code version, that is no longer supported by a vendor, is valid for the specific analysis, and also that the code has been properly maintained in accordance with the requirements contained in 10 CFR Part 72, "Subpart G- Quality Assurance." The SRP is revised to clarify this guidance. The letter, dated July 2, 2009, from Mr. Raymond Lorson to Mr. Steven P. Kraft (ADAMS: ML0918802633) provides the regulatory basis and detailed explanations for this requirement. The applicant's quality assurance program should also be capable of identifying and addressing "bugs" in cases in which they chose to use new codes for their shielding analyses.	analysis. The staff should also consider if additional confirmatory assessments and review is needed to validate the shielding predictions by an applicant that uses older or unsupported codes, especially in cases were NRC may have upgraded codes and no longer have the capability to directly examine unsupported code models from the applicant."

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		NRR deals with updated codes (e.g., ASME Code).		
NEI 90	6302- 6309/Shielding	"by verifying that the following information has been provided in the SAR The computer code solutions to a series of test problems": The draft SRP revision does not contain the previous SRP statement "that these solutions may be referenced, and need not be submitted in the SAR". This change would add a substantial amount of information to the SAR without any safety benefit as the referenced documents, per current SRP, should be public information and/or have been previously submitted to NRC.	Agree with comment	Added to the second bullet the following words; "Or the specification of publically available references for commonly used and well- established codes (e.g. SCALE and MCNP) that demonstrate validation.
NEI 91/CRIT	6578/Crit	This implies that only boron can be employed as a fixed absorber. It is recommended that "boron" be changed to "neutron poison material"	Agree with comment.	Changed to specify "neutron poison material"
NEI 92/CRIT	6739/Crit	Neither Section 8.5.4.3 nor Attachment 8-3 exists in the document.	Agree with comment.	The citations to other parts of the SRP are corrected.
NEI 93/CRIT	7099-7104/Crit	This section requires explicit analyses of atypical control rod insertion while Section 7.5.5.6 (lines 7138-7157) discusses margin to cover higher-than-	Agree with comment.	The following statement is inserted in Section 7.5.5.6: "While the applicant should make every effort to identify and appropriately address

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		modeled reactivity due to control rod insertion. These two sections appear to conflict. Please clarify what is required in the design basis calculations.		these potential uncertainties explicitly, data limitations may make it difficult to quantify these uncertainties precisely and assure that they are adequately bounded."
NEI 94/CRIT	7102-7104/Crit	These lines explicitly require the analysis of integral fuel burnable absorbers. However, there are NUREG/CR reports that provide guidance on when these absorbers need to be considered in the analysis. These lines should be revised accordingly.	Agree with comment.	A reference to NUREG/CR- 6760 is added to last paragraph of Section 7.5.5.3.
NEI 95/MAT	7242 7390	"Foreign standards are not generally acceptable" What is the basis for this statement? For non-ASME code applications, there are many recognized standards essentially equivalent to ASTM, such as Euronorm, JIS, etc. The applicant should be able to use foreign standards with appropriate justification.	Agree with comment. The applicant must provide an analysis that shows the foreign standard is equivalent to a comparable US standard, or otherwise sufficient for its intended use. The staff may review foreign standards in greater depth depending on the familiarity and applicability of the standard to the proposed DSS design.	Changed wording in Section 8.1, 3 rd paragraph and Section 8.4.2.1, 3 rd paragraph to state Foreign standards (and codes) may be acceptable on a case- by-case basis. The applicant should provide complete documentation supporting the use of the foreign standard and show that the foreign standard is equivalent to a comparable US standard (e.g. ASME, ASTM, etc.), or otherwise sufficient for its intended use. The staff may need to review foreign standards in greater depth, depending on the familiarity with the standard and applicability of the standard to

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
				the proposed DSS design.
NEI 96/MAT	7248	The Chapter 8 convention of indicating with an asterisk the items that should be addressed in the Technical Specifications is not used in any other chapter. All of the chapters should be consistent and not use this convention.	Agree with comment. The convention is removed. The specification of review areas that should be considered for Technical Specifications is clarified in the text of Chapters 8 and 13.	Section 8.4.1 and 13.5 were revised to clarify items that should be considered in the technical specifications.
NEI 97/MAT	7266 7554-7564	Replace "weathering steel" with "0.20% copper steel" or "carbon steel with a minimum copper content of 0.20%". Also, add "salt water" to "coastal marine sites". The term "weathering steel" applies to a class of low-alloy steels that contain small amounts of such alloying elements as Cr, Ni, P, Si and Cu. These steels are covered by ASTM A242 and A588. Also "copper bearing steel" should be generalized to allow for other appropriate measures to control corrosion.	Agree with comment	Changed Section 8.4.6 to: To address the increased atmospheric corrosion rates found at coastal marine (salt water) sites, some applicants have specified the use of 0.20%, minimum, copper- bearing steels, or, "weathering steels" such as Cor-Ten. The Kennedy Space Flight Center has collected data which has demonstrated the benefit of copper-bearing and weathering steels for significantly reducing corrosion at coastal marine sites. Therefore, for coastal marine ISFSI sites, the use of copper-bearing steels (containing a minimum of 0.20 percent copper), or weathering steels, may be necessary. Such steels are covered by ASTM A-242 and A-588, and supplemental requirements to ASTM A-36, and/or other

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
				specifications. Other corrosion control measures may be employed, provided adequate documentation is supplied to demonstrate efficacy.
NEI 98/MAT	7317-7321	This paragraph should be deleted for several reasons. The portion of the sentence stating that the body of the SAR "is not enforceable" is incorrect. Users must comply with the Part 72 cask SAR unless a change, appropriately reviewed and authorized under the provisions of 10 CFR 72.48, is performed. If not, NRC enforcement action may be taken. In addition, using this logic as the basis for putting information in the CoC or TS is flawed because it is not risk-informed, is too subjective, and dilutes the CoC holder's and licensee's ability to implement changes that meet the criteria of §72.48. Moreover, this increases the NRC's need to spend resources reviewing changes to the CoC that are not risk- or safety-significant.	Partially agree with the comment. General licensees and cask vendors have authority to change an FSAR under the requirements of 10 CFR 72.48. If 10 CFR 72.48 is not performed correctly, the NRC may take enforcement action. The term "enforceable" was a term intended to distinguish the difference between enforcement taken directly against violation of a CoC condition, versus enforcement taken against violation 72.48 for performing an inappropriate change (not a violation against the FSAR itself). Enforcement action may only be taken for violation of regulatory requirements, license/CoC (including TS which are appendices to the CoC) conditions, and NRC Orders. The staff recognizes that if applied correctly 72.48 may be used to evaluate if NRC approval is needed	See response to NEI 18. This paragraph was removed.

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
			for changes. However, 72.48(c)(1)(B) itself, recognizes the role of certificate conditions and TS in limiting design changes without NRC approval. These certificate conditions and TS are established at the discretion of NRC for design features, operations, and contents that should not be changed without additional NRC licensing review	
NEI 99/MAT	7334	 a) Amendments are not "completely new designs." New designs are submitted as a new CoCs. This statement should be revised. b) Use of the term "beware" is derogatory in that it implies the applicants are trying to sneak changes through the NRC without them being noticed. Please revise. 	 a) Although some modified designs have been submitted for NRC review as new certificate applications, other modified designs which represent new, major design components such as canisters, storage overacks, and transfer casks have been submitted as CoC amendment requests. The staff will revise the phrase to clarify this issue. b) The statement is not intended to be derogatory towards vendors. Given past review experience, each vendor has used unique styles and formats in their amendment requests, including the integration of new analyses into existing FSARs, and the demarcation of textual changes and 72.48 changes. It has been challenging for the staff in some cases to understand exactly what information is new and has 	Section 8.4.1 was changed to begin as follows: "The reviewer should survey the SAR and design drawings (generally SAR Chapters 1 and 2) to identify the various materials issues that may be associated with the specific design proposal in the application. The reviewer should also examine the criticality, shielding, confinement, and thermal chapters to identify cross-cutting issues that should be coordinated among the technical disciplines. The reviewer should examine the following Technical Specification (TS) items to verify its proposal by the applicant and understand the specific limits, design requirements, and operating constraints proposed by the

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
			changed since the last version of the FSAR was formally reviewed by staff in a previous licensing actions. In some cases, new or removed information has not been properly identified, or was ambiguous to the staff, in SAR change pages submitted during the review process. Given this experience, the purpose of the statement is meant to caution the reviewer to not overlook all potential changes in an amendment request, and ensure there is a clear understanding of the changes being requested for approval. However, the statement is revised for clarity and moved to the Introduction of the SRP for generic application to all disciplines.	applicant."
NEI 100/MAT	7338-7345	This paragraph should be deleted for a couple of reasons. It is incorrect to state that things previously approved and outside the scope of the amendment request are subject to review again. This is contrary to good regulatory practice and re- reviewing approved information could create a contradiction with a previous staff SER. In addition, the sentence in lines 7341 and	Amendments such as content and design changes, are founded upon the design and methodologies previously reviewed by NRC. Compliance of a DSS are often based on the performance of the contents, canister, and overpack as a system. As a result, portions of these designs and methodologies in the SAR may be re-examined as part of good regulatory practice to ensure the new amendment proposal meets Part 72 requirements.	Removed the subject paragraph and added the following to the Introduction as the fifth paragraph under Review Process: Some amendments such as content and design changes, are founded upon the design and methodologies previously reviewed by NRC for that system. Evaluation of amendment changes to a DSS are often based on the

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		7342 could be viewed as		performance of the contents,
		derogatory towards both the	It is not the intent of the staff to re-	canister, and overpacks as an
		NRC project management and	examine designs previously	integrated system. As a result,
		the applicant.	approved in a CoC for re-approval.	portions of previously approved
			However, an amendment audit	components, contents, or
			review may from time to time	methodologies in the SAR may
			detect deficiencies or errors that	be re-examined to ensure that
			were not identified during a	the new system under the
			previous audit review. It should be	amendment proposal meets
			noted that it is the primary responsibility of the cask vendor to	Part 72 requirements. During the audit review of an
			ensure such errors do not exist.	amendment, the staff may
				occasionally find errors or other
			Also, new information regarding	safety questions that affect part
			operational experience or new	of the previously approved
			phenomena may come to light	design. The staff may need to
			which requires NRC consideration,	review that part of the SAR and
			in order to assure the design	ask questions to assure the
			remains safe and compliant with	design remains safe and
			applicable regulations. However,	compliant with applicable
			the statement is revised to clarify	regulations. The questions
			this issue and is moved to the	should be limited to
			Introduction of the SRP for generic	understanding and resolving
			application to all disciplines.	the specific technical issue, and should consider past
			Issues involving the licensing	precedents, regulatory
			process (line 7341) and	guidance, and risk significance,
			interactions are appropriately	as appropriate. The staff
			described in internal operating	should also consider other
			procedures for NRC staff.	processes (e.g. inspections,
			Therefore, this discussion is	enforcement actions, generic
			eliminated from the SRP.	issue program, etc) to resolve
				these potential type of safety
				questions with a previously
	l			approved design

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
NEI 101/MAT	7362-7263	"copper bearing structural carbon steel" should be generalized to allow for other appropriate measures to control corrosion. Also, it seems inappropriate to single out one DSS design in review quidance.	Agree with comment	Changed this line in Section 8.4.1 to: "Use of copper bearing or weathering steel for structural steel components at coastal marine ISFSI sites (or other corrosion mitigation measures)."
NEI 102/MAT	7382	This should read "All ASME materials are a subset of AWS and ASTM materials"	Agree with comment	Changed as stated in comment
NEI 103/MAT	7394	The statement that all ITS materials are typically ASME II materials is not correct. That is only true of components subject to ASME Section III jurisdiction, typically confinement boundary and fuel basket. ITS attachments to the confinement boundary, as well as structural components of the overpack, are likely not ASME section II materials; for non-ASME ITS components, ASTM materials can be used.	Agree with comment	Changed 4 th paragraph in Section 8.4.2.1 to: ITS components subject to ASME Section III jurisdiction, typically confinement boundary and fuel basket, are normally ASME Section II materials. ITS attachments to the confinement boundary, as well as structural components of the overpack, may be ASME or ASTM materials, depending on the code of record for the component. For non-ASME ITS components, ASTM materials may be used.
NEI 104/MAT	7400	Non-ITS materials specified to ASTM. This is not correct. According to Reg Guide 7.10, Appendix A, ITS Category B must be used in accordance with rigorous specifications;	Agree with comment	Changed 5 th paragraph in Section 8.4.2.1 to: Non-ITS items can be specified by generic names such as "stainless steel", "aluminum,"

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		ITS Category C need not. Therefore, it is correct to state that ITS A and B should be specified to ASTM, ASME, or equivalent standards; ITS Category C, and non-ITS items can be specified by generic names such as "stainless steel", "aluminum," "carbon steel," etc., as appropriate for the application.		"carbon steel," etc., as appropriate for the application.
NEI 105/MAT	7408	Editorial: Delete. This line repeats lines 7391-7392.	Agree with comment	Changed as stated in comment
NEI 106/MAT	7411-7412	No changes in neutron absorbers without NRC review. This is not correct; changes should be acceptable with appropriate review or testing by the certificate holder, with only select critical limiting characteristics included in the TS. 72.48 provides adequate change control for these items given the risk of dry cask storage operations.	Agree with comment	Changed 6 th paragraph in Section 8.4.2.1 to: Proprietary materials which are ITS (specifically neutron poisons) must be described adequately in SAR Chapter 8, "Materials" to permit the staff to make a safety finding. The governing quality assurance and quality control (QA/QC) documents, key manufacturing procedures, and key testing protocols for proprietary materials should be incorporated by reference into the TS. Limited changes to the materials composition, performance, or manufacturing methods may be allowed if the changes satisfy the criteria of 10 CFR 72.48.

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
NEI 107/MAT	7420-7425	Editorial: This information repeats prior information.	Agree with comment	Deleted subject lines:.
NEI 108/MAT	7470-7471	Remove "transportation" as transfer is already listed. Remove "retrieval". In this context it is the same as unloading.	All of the terms in this sentence are applicable to the storage activity except "transportation"	Removed "transportation" from the sentence.
NEI 109/MAT	7515-7518	The information pertaining to steel producers is unnecessary for review guidance and should be deleted. If it is retained, at a minimum delete the last sentence regarding "defeating" a steel producer and clarify who is meant by "steel producers."	Agree with comment. The information pertaining to steel producers was meant to reflect lessons learned in past evaluations of steel certification. However, the language is clarified to only reflect the use of ASME Code values and CMTR values.	Replaced the last sentence in 6 th paragraph of Section 8.4.5.1 with: "Examine the SAR adopted material properties for ITS component materials and ensure ASME Section II, Part D, properties and stresses are employed. The staff position (developed by NRR) regarding material properties is that ASME Code values must be used. Use of certified material test report (CMTR) values of UTS, yield, etc., is generally not permissible. Use of CMTR values is at risk of being non- conservative because samples may be taken at a portion of the ingot, billet, or forging that have optimum materials properties during certification. "

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
NEI 110/MAT	7520-7523	This paragraph appears to be an editorial opinion and serves no value as review guidance. Delete.	Agree with comment.	Paragraph removed.
NEI 111/MAT	7554-7557	References to specific dry storage vendors are typically not appropriate in the SRP. Please consider revising this section. If reference to a vendor is appropriate, the corporate name should be used rather than abbreviations. Therefore, change TN to Transnuclear, Inc.	Agree with comment.	Revised to remove vendor names
NEI 112/MAT	7562-7564	What is the basis for no credit for coatings unless periodically inspected? Thermal spray Al- Zn coatings and hot dip galvanizing are widely used in marine applications, and are much more predictable than paint with respect to adhesion.	Without supporting data to demonstrate predicted coating life, monitoring is needed to assure intended performance. The guidance is revised to clarify this information.	Changed last paragraph in Section 8.4.6 to: Coatings may be specified to alleviate the coastal atmospheric corrosion issue. The coating must be periodically inspected and maintained, unless supporting data is available to demonstrate a predicted coating life.
NEI 113/MAT	7577	It is recommended that "AWS D1.6 (current edition), "Structural Welding Code – Stainless Steel" be added to this list of codes.	Agree with comment	Add "AWS D1.6 (current edition) Structural Welding Code-Stainless Steel," to Section 8.4.7.1, Welding Codes.
NEI 114/MAT	7608	The full penetration welds should only apply to the confinement boundary of the canister. In some designs the	Agree with comment	Changed first sentence in Section 8.4.7.2 to: Verify that the canister confinement welds are full penetration welds.

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		bottom closure weld is not a confinement boundary weld. For non-confinement boundary welds, other design should be acceptable. Please clarify		
NEI 115/MAT	7621-7622 8465	"helium leakage test is performed of the entire shell" – Please clarify that this testing only applies to the confinement pressure boundary (i.e., not attachment shell welds).	Agree with comment, except that Line 8465 is not applicable to this comment. The NRC has also issued draft ISG-25 "Pressure Testing of Confinement Boundaries" This guidance has been administratively incorporated into the SRP, which addresses this comment.	Revise Section 8.4.7.2 to incorporate the technical review guidance of draft ISG-25.
NEI 116/MAT	7621-7622	What is the basis for requiring a helium leakage test? The confinement boundary is designed in accordance with ASME Section NB, NC, or ND. The Code includes pressure tests to confirm pressure boundary integrity. If this is sufficient for high pressure vessels and piping systems in a power plant, it should be acceptable for a confinement boundary given the relative risk and service conditions.	See response to NEI Comment 115. Pressure tests, examinations, and leakage tests serve different functions. The volumetric and surface examinations of welds ensure geometric compatibility with the design requirements, but can only detect flaws down to a certain size. The ASME Code pressure test provides additional assurance that the component has been properly fabricated by stressing the component to a minimum Code required loading. The helium leakage test ensures there are no flaws or leak paths that could result in significant release of the helium	See response to NEI Comment 115.

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
			and radioactive content to the environment. The weld non- destructive examinations, ASME Code pressure test, and helium leakage test are not considered equivalent substitutes for each other. The regulations mentioned in the text (i.e. 72.236 (d), (j), and (l)) provide the regulatory basis for the helium leakage rate test. Designing a component in accordance with ASME Code does not ensure that it is fabricated to prevent small potential gaseous leaks.	
			Section 8.4.7.2 is updated to clarify guidance for leakage tests and to administratively incorporate the guidance of draft ISG-25. Sections 10.5.1.1 and 10.5.1.2 also capture this guidance.	
NEI 117/MAT	7624-7625	Not all of these tests (e.g., hydrostatic or pneumatic) are performed in the fabrication shop. Testing is in accordance with the design code. No additional review guidance is necessary. Shop helium testing would be an additional commitment beyond what the design code requires. Please clarify.	The helium leakage test provides assurance there are no flaws or leak paths that could result in significant release of the helium and radioactive contents to the environment. It is required to demonstrate compliance with 10CFR 72.236 (d), (j), & (I).The Code required pressure test ensures fabrication integrity of the component, but it does not ensure prevention of small gas leaks. Meeting Code requirements for	Section 8.4.7.2 has been updated to incorporate the guidance of draft ISG-25. Refer to response to NEI Comments 115 and 116.

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
			pressure testing does not ensure meeting regulatory requirements for helium leakage rate testing. He leakage testing derives from Part 72, not ASME. Also refer to Sections 10.5.1.1 and 10.5.1.2 that capture this guidance for pressure testing and leak testing, respectively.	
NEI 118/MAT	7630	Editorial: Add "as" after "or."	Agree with comment	Changed as stated in comment
NEI 119/MAT	7641	Editorial: Change "designedto" to "designed to."	Agree with comment	Changed as stated in comment
NEI 120/MAT	7646	The N45.2 series has been replaced by NQA-1. Suggest referring to both for older commitments and newer commitments to the QA code.	Agree with comment	Changed the 2 nd sentence of the fourth bullet in Section 8.4.7.3 to: Records documenting the lid welds shall comply with the provisions of 10 CFR Part 72.174, "Quality Assurance Records" or with NQA-1, "Quality Assurance Requirements for Nuclear Facility Applications," depending upon the standard in effect at the time of licensing.
NEI 121/MAT	7697-7701	For stainless steel canisters and welding, this is too limiting. The J-integral method to evaluation flaw size is used, which limits the size of a single weld pass. In order to be consistent with line 7682, it should explicitly state that the applicant can use J-integral methodology incorporating	Agree with Comment	Revised Section 8.4.7.4 to identify the use of either ultrasonic or multi-pass liquid penetrant examination for the structural lid-to-shell weld. Guidance is also provided on determining critical crack size including use of J-integral or net section stress methods.

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		plasticity for ductile weld materials such as stainless steel.		
NEI 122/MAT	7700	The canister is designed per ASME Section III, Division 1, Subsection NB, not Division 3. Has Division 3 been endorsed by NRC? If so, both Division 3 and Division 1 should be discussed. If not, reference to Division 3 should be deleted.	Agree with comment. Division 3 has not yet been endorsed by NRC.	Changed Division 3 to read "Division 1," in Section 8.4.7.4
NEI 123/MAT	7715	Delete "Pursuant to NRC to Bulletin 96-04 (1996)." This language implies regulatory requirements are contained in the bulletin. An NRC bulletin is a request for information at a particular point in time. It is not something to be referenced as a source of information upon which to base a review of an application. The SRP should stand alone and refer to regulations and approved guidance only.	Partially agree with comment. An NRC Bulletin is not a regulatory requirement. Bulletin 96-04 addressees the potential for chemical, galvanic, or other reactions among the materials of a spent fuel storage cask, to assure no adverse reactions exist. This guidance is still applicable to the certification of DSS in order to meet the regulatory requirements of 10 CFR Part 72. The SRP is revised to clarify that the Bulletin may be used for guidance.	Changed to read: "The reviewer can find operational issues associated with hydrogen generation and guidance for evaluating galvanic or corrosive reactions in NRC Bulletin 96-04 (1996). Also, The reviewer should confirm the DSS will perform adequately under the operating environments expected (e.g., short-term loading/unloading or long-term storage) for the duration of the license period such that no adverse galvanic or corrosive reactions occur between the canister materials, fuel payload, and the operating environments."
NEI 124/MAT	7743	The statement that aluminum- based metal matrix composites are employed for	Agree with comment	Replaced with: Aluminum based metal matrix composites and aluminum / boron carbide

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		all presently utilized neutron poison materials is incorrect. Boral, for example, is used through the industry and is not a metal-matrix composite.		laminates (e.g. Boral [™]) are employed for all presently utilized neutron poison materials.
NEI 125/MAT	7750 7763	Analysis of creep for all aluminum based structural materials, including those only supporting dead weight – "any kind of loading." There is no sound basis for requiring a creep review of materials that have no structural function except bearing accident loads through their thickness, and supporting their own dead weight during normal storage.	Gap analysis can change drastically if aluminum components creep and increase basket gap.	Changed 1 st sentence of 2 nd paragraph of Section 8.4.9 to: Review the design maximum temperatures and stress for any aluminum components and verify a creep analysis has been performed if any structural load bearing aluminum components operate at a design temperature above approximately 200F.
NEI 126/MAT	7724 7824 7881	This section is entitled "Exterior Protective Coatings" but lines 7824 and 7881 refer to interior coatings.	Agree with comment. The section is applicable to both interior and exterior coatings.	Title of Section 8.4.11 is revised to the title Protective Coatings.
NEI 127/MAT	7772	Exterior coatings. Scope and level of review for this area appears excessive and inconsistent with the "low priority" given. This should be reduced to specifying the generic coating systems that are acceptable, with surface preparation and paint application in accordance with manufacturer's instructions. Specifying the manufacturer and submitting the paint technical data sheets requiring	Partially agree with comment. With the exception of coating issues that may result in adverse chemical or galvanic reactions described in NRC Bulletin 96-04, coatings are generally a low priority item with low safety significance. In these instances, most of the guidance in this section is not applicable. However, instances may exist in which unique or innovative coatings are specified by the applicant to perform a specific function unique to the cask system.	Section 8.4.11 is revised to include "Coatings generally have a low safety significance with the exception of coating issues that may result in adverse chemical or galvanic reactions. Typically, the detailed guidance in this section is not generally subject to further confirmation as part of the review. However, there may be instances in which unique or innovative coatings are specified by the applicant to

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		qualification testing (lines 7881) are overly burdensome given the low risk.	In these instances, the reviewer may use discretion in implementing the detailed guidance in this section.	perform a specific function unique to the cask system. In these instances, the reviewer may use discretion in implementing the detailed review guidance in this section.
NEI 128/MAT	7824-7825	It is not necessary to include the coating manufacturer's technical literature in the SAR. The critical characteristics of the coating material are what is important and should be sufficient. The supplier should be free to use whatever coating material and manufacturer that has these characteristics for the service conditions.	See response to NEI 127. Most coatings have unique properties and application steps. Often the characteristics of the coating and coating performance are dependent on the precise steps that were taken to apply the coating.	See response to NEI 127. Deleted "The coating manufacturer's technical literature for all coatings specified for cask interiors must be submitted in the SAR for staff review". Add "Due to the unique nature of coating properties, and coating application techniques, the manufacturer's literature may be the only source of information on the particular coating.
NEI 129/MAT	7832-7942	Delete Sections 8.4.11.4 through 8.4.11.6. Surface preparation coating repairs, and coating qualification testing are all details not necessary for the staff to review. These attributes of the coating system are dictated by the coating manufacturer or the CoC holder for the particular coating material and service conditions. Appropriate surface preparation, repairs and qualification testing are all adequately governed by the	See response to NEI 127	See response to NEI 127

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		CoC holder's or licensee's coating specification and procedures developed under the applicable QA program and the coating manufacturer's requirements. All of the above is subject to NRC inspection for verification of compliance.		
NEI 130/MAT	7882-7884	It appears that this sentence is written for paints and does not account for the possibility of plating as a coating.	The statements in this paragraph are applicable to any coating, including paints or plating.	Phrase "(including paints or plating)" was added to sentence.
NEI 131/MAT	7950	The statement that neutron shielding materials are not ITS appears to conflict with NUREG/CR-6407, which specifies that shielding materials are ITS Category B. Please clarify.	Agee with comment	Paragraph 8.4.12.1 "Neutron Shielding Materials" was revised to indicate that shielding materials are ITS. Staff also noted that the qualification and acceptance testing of neutron shielding materials should not be required in the TS. Only characteristics directly related to performance (e.g., composition and density) of the neutron shielding material should be specified in the TS.
NEI 132/MAT	7963	The first sentence in this line is unnecessary. Delete.	Agree with comment	Changed as stated in comment
NEI 133/MAT	8021	Impurity limits may or may not be established as a result of qualification testing; that is not the main purpose of qualification testing.	Agree with comment	Deleted the following: "Qualification tests would be useful in establishing that the impurity concentration limits for borated absorbers are not

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
				exceeded. Agreement on these limits can be done by agreement between buyer and seller."
NEI 134/MAT	8008	Editorial: "Surrey" should be "Surry."	Agree with comment	Changed as stated in comment
NEI 135/MAT	8048	Submittal of manufacturer's data sheet for neutron absorber is only applicable if the applicant is proposing a trade name product. Add "as applicable" at the end of the sentence.	Agree with comment	Replaced; "The manufacturer's data sheet should be submitted to supplement the above information" with the following; "If the applicant intends to use an absorber material with a specific trade name, the manufacturer's data sheet should be submitted to supplement the above information."
NEI 136/MAT	8103	ZrB2 standard: All standards are a compromise of some kind: homogeneous standards like ZrB2 must be paired with aluminum sheets to simulate the scattering by aluminum in the neutron absorber; scattering by carbon in boron carbide is generally not simulated. Non-homogeneous standards that have a very fine uniform dispersion of the boron-containing phase are only an approximation of the homogeneous material assumed in the criticality	Agree with comment	Changed to: Aa = acceptance value of neutron attenuation, based on a qualified homogeneous absorber standard such as ZrB2, or a heterogeneous calibration standard that is traceable to nationally recognized standards, or calibrated with a monoenergetic neutron beam to the known cross section of boron-10. Calibration standards should be evaluated at 111 percent (i.e., 1/0.90) of the poison density assumed in the criticality

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		safety calculations, but they get the appropriate aluminum and carbon scattering. Therefore, change "a qualified homogeneous standard such as ZrB2" to "a calibrated standard that is either homogeneous, such as ZrB2, or that has a very fine and uniform dispersion of boron such that it approximates homogeneity."		computational model.
NEI 137/MAT	8110	P=0.999: Previously the staff has accepted P=0.95 and should continue to do so considering all the conservatisms involved (e.g. keff ≤ 0.95, the 90% maximum credit for boron 10).	Agree with comment	Changed; "Let P = 0.99 and γ = 0.95." To: "Let P = 0.95 and γ = 0.95.":
NEI 138/MAT	8122	Quantitative measures (porosity testing, tensile testing, etc.) are now preferred over qualitative examination (TEM, SEM). Metallic/ceramic systems are generally accepted as not susceptible to radiation damage from gammas or from neutrons at the fluences encountered in dry storage.	Agree with comment	Replaced first two paragraphs of Section 8.4.13.3 with a detailed description of the qualification testing previously accepted by the staff. Also added qualification tests needed to be performed on structural neutron poisons.
NEI 139/MAT	8155	A sample from every other piece is too prescriptive for a standard review plan; according to ASTM C1671, random or systematic	Agree with comment	Changed: "Adequate numbers of samples should be taken from every other component" to "Adequate numbers of samples

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		sampling should be applied.		should be taken from components"
NEI 140/MAT	8156-8157	Lot definition based on billet may not be appropriate for material from small billets; allow alternate definitions that are uniform for sampling purposes.	Agree with comment	Removed the sentence defining 'lot.'
NEI 141/MAT	8186	Please delete the following sentence "Zinc, zinc rich coatings, zinc-clad materials, and aluminum should not be used for any embedded objects that will be in contact with wet concrete, because of the potential for concrete degradation from an adverse chemical reaction". Zinc galvanized reinforcing steel and zinc plated/galvanized embedded lifting devices are common and widely used in the concrete industry. Even though chemical reaction between the zinc and water in concrete may occur at any age, this reaction is not proven to have any adverse impact on concrete. Note that Section 3.5.3.8 of ACI 318-08 allows the use of galvanized reinforcing steel per ASTM A 767.	ACI 349 Section R3.5.3 States: "Deformed reinforcement—Zinc used in the galvanizing process may negatively react with alkaline materials commonly found in concrete. In addition, potential galvanic corrosion with other embedded metals, as well as hydrogen generation and potential for hydrogen embrittlement, suggest that such coatings may be detrimental. Research conducted by Sergi et al.3.1 concluded that zinc coatings provide little value in providing long-term protection of reinforcing steel, and cautionary statements in ACI 201.2R3.2 support this position. These industry concerns have prompted ACI Committee 349 to prohibit the use of zinc coatings on reinforcing steel in nuclear safety- related structures until adequate data justifying its use can be reviewed."	Changed the sentence to: "Zinc, zinc rich coatings, zinc- clad materials, and aluminum should not be used for any embedded objects in structures <u>designed to ACI 349 or ACI 359</u> that will be in contact with wet concrete, because of the potential for concrete degradation from an adverse chemical reaction"

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
NEI 142/MAT	8202	Editorial: Change "used" to "use."	Agree with comment	Changed as stated in comment
NEI 143/MAT	8228-8229	Delete this sentence. Requirements for water-to- cement ratios and air content (mainly controlled by the use of air entraining admixtures), which are based on the severity of the anticipated exposure of concrete, are provided in ACI 349/318. The w/c ratio and air content are design requirements and not fabrication details.	Agree with comment	Deleted as stated in comment
NEI 144/MAT	8301-8303	Samples normally taken in HAZ, same weld thickness and materials of construction, etc.: This area needs clarification. Testing is done per ASME Section III and Section IX. Weld thickness relation to the thickness of the design weld is governed by Section IX. Impact testing is required of the base metal (NX-2300 and the weld metal (NX-2400), but not the HAZ. Weld qualifications are performed using materials of the same class (P-number), but not necessarily the same material and grade as that used in construction.	Agree with comment	Replaced sentence with: Metals having a face-centered cubic crystal structure such as austenitic stainless steels, remain tough and ductile to very low temperatures and are not a concern in this regard. Added as separate following paragraph: Toughness testing (e.g., Charpy impact) of welds is governed by ASME Section III, as supported by Section IX.
NEI 145/MAT	8319-8320	Specifying peak rod burnup is inconsistent with past practice,	See response to NEI Comment 9	Changed as noted in NEI Comment 9

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		which has been to specify assembly average burnup.		
NEI 146/MAT	8358-8359	The text refers to "the following Part 72 regulations" yet no regulations are discussed in the text that follows.	Agree with Comment.	The 3 rd paragraph in Section 8.4.17.1 was removed. The 1 st sentence in the following paragraph was modified to read "The acceptance criteria below and review procedures…"
NEI 147/MAT	8453	Delete "and retrieval" since this is covered by fuel handling	Agree with Comment	Changed as stated in comment
NEI 148/MAT	8567-8568	The text states that this review should be coordinated with the materials reviewer. The guidance in this section is specifically for the materials reviewer. Please clarify.	Agree with Comment	Revised to clarify coordination with thermal reviewer.
NEI 149/MAT	8593-8595	Delete the last sentence of this paragraph. It is opinion, not review guidance.	Agree with Comment	Changed as stated in comment
NEI 150/MAT	8636	Replace the word "dangerous" with "large" or "significant."	Agree with Comment	The term "dangerous" was changed to "large"
NEI 151/MAT	8645-8656	Helium testing of the entire confinement boundary is not necessary. Confinement boundary welds are volumetrically tested in the fabrication shop and the entire vessel is pressure tested after loading. Both the inspections and testing are performed per the ASME Section III Code. Additional testing beyond what the ASME Code requires should not be necessary. Please revise.	See response to NEI Comment 116. The ASME Code non destructive examinations and pressure test are performed for different reasons than the helium leak rate test which assures no significant radiological leakage.	No Change

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
NEI 152/MAT	8726	RG 1.183 should be RG 1.193.	Agree with comment	Changed as stated in comment
NEI 153/MAT	8914-8956	References to Part 71 regulations do not appear appropriate in these lines. Please revise accordingly.	Agree with comment	Removed sentence that mentions Part 71. Also, under the definition of damaged fuel, transportation was similarly removed.
NEI 154/MAT	8990-9013	Editorial: The numerals in the compound names should be subscripts to be consistent with the convention in other portions of the SRP. Please revise.	Agree with comment	All chemical formulas in the paragraph were changed to be written in subscripted form, not U4O9 but U_4O_9
NEI 155/MAT	9077 9271	Sections 8.7.3 and 8.8.3 should be removed and the references moved to the consolidated references in Appendix A to be consistent with the treatment of references in other chapters and to eliminate duplicate references (e.g. line 9089 and line 12923).	Agree with comment	Delete Sections 8.7.3 and 8.8.3. Integrate references into Appendix A and eliminate redundancy
NEI 156/MAT	9090	Editorial: The reference incorrectly lists the upper temperature as 400. The correct value is 360 as listed in line 12923.	Agree with comment	Changed as stated in comment
NEI 157/MAT	9231-9232	The limit could be interpreted as the limit in any one cycle is 65°C. It needs to explicitly state that the 65°C range can be exceeded but for less or equal to 10 cycles.	This paragraph provides support for SRP Section 4.4.2, which discusses thermal cycling.	No change
NEI 158/RP	9518 9520	Editorial: Sketches A and B should more appropriately be	Agree with comment	Sketches A and B have been redesignated as Figure 8-3 and

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		listed as Figures and the references to the sketches appropriately revised.		Figure 8-4, respectively. The list of Figures has been revised to include them.
NEI 159/RP	9518 9520	Information was removed from the sketches when they were incorporated from ISG-18 Rev. 1 (e.g. identification of cover plate and vent and drain port cover plate). This information should be restored.	Agree with comment	Changed as stated in Comment
NEI 160/RP	9737	Suggest changing "use and operation" to "function". The cask vendor may not offer all of these specialized tools or require a particular tool to be used to accomplish a task. The user needs to understand the intended function for them to purchase the equipment needed to accomplish the task.	The SRP provides examples of the specialized equipment and tools with enough detail for the staff to understand their use and operation (i.e. lifting yokes, transporter equipment, welding and cutting equipment and vacuum equipment). If their use and operation was changed to function, then the prior named examples would be sufficient since their name is self descriptive. The staff should review the description of how this specialized equipment is used and operated with the DSS, as stated in the SRP.	No Change
NEI 161/QA	9752	Delete "receipt inspection activities." Receipt inspection is a separate QA function not related to the operations described in Chapter 9.	Agree with comment	Delete the words: "receipt inspection" from the activities listed
NEI 162/CRIT	7124-7125 9767- 9768/Crit	Delete references to performing measurements to confirm assembly burnup values. Reactor records have	At this time, current guidance on implementing burnup credit recommends a measurement to confirm the record value for	No change

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		repeatedly shown to be reliable for performing core reloads and to estimate boron concentration and rod position for reactor startup. They should be equally sufficient to validate assembly burnup for cask loading, a much lower risk activity.	burnup. Current analytical methods for in-core operations calculate burnup as an intermediate value which is not separately and independently verified.	
NEI 163/TH	9847-9848/JS	Delete the requirement to re- evacuate and re-backfill. The necessary helium purity can be obtained with a single backfill of high enough purity. More generally, care should be taken in using the PNL document referenced because it is over 20 years old. Cask operations have changed in that time. For example, one current cask vendor dries the canister without the use of vacuum. We realize these are examples, but the reviewer should understand that the reference document is out of date.	Agree with comment.	Deleted the following sentence from the SRP: "The cask is then re-evacuated and re- backfilled with inert gas before final closure." Section 9.5.1 is clarified to recognize forced helium drying.
NEI 166/SH	9973- 9974/Shielding	Delete this item. Dose rates do not belong in TS and do not verify proper loading of the cask.	Surface dose rate measurements are a parameter used to verify cask fabrication and operation. It is a measureable parameter during deployment of the cask onto the storage pad. Measurements may not detect all types of fabrication errors, but it provides a means for	The guidance in Section 9.5.1 was revised to clarify the measurement of surface dose rates.

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
			identifying potentially serious problems with the loaded contents and cask shielding system.	
NEI 167/RP	10343	Editorial: Change "i.e." to "e.g."	Agree with comment	Changed as stated in comment
NEI 168/RP	10345	Editorial: Delete close parentheses after "Program" and move the period inside the close quotation.	Agree with comment	Changed as stated in comment
NEI 169/RP	10366-10367	The "basis of tests deemed acceptable" should be from regulations or something more definitive and stable than prior staff acceptance.	10CFR72.82, Inspections and Tests, Paragraph (d) states: "Each licensee shall perform, or permit the Commission to perform, such tests as the Commission deems appropriate or necessary for the administrator of the regulations in this part". As such the regulations state the basis for performing the test as those deemed appropriate. The guidance also is specified to address unforeseen design proposals and considers the operational experience and precedent from previous licensing of licensing actions of storage casks	Section 10.5.1 revised to state: The following guidance is presented on the basis of tests deemed acceptable by the staff in previous SAR reviews. The guidance is based on operational experience and the knowledge from past licensing reviews. Alternative tests and criteria may be used if the SAR provides appropriate explanation and adequate justification. Additional tests and criteria may be needed, depending on the operational experience and uniqueness of the design proposal.
NEI 170/STR	10381-10382	Recurring trunnion load tests for transfer casks is not consistent with ANSI N14.6, which permits NDE to be performed periodically rather than load testing.	The guidance for the load tests recognize the lifting trunnion test provisions in accordance with ANSI N14.6. As such, periodical NDE, in lieu of annual load tests, is acceptable for the trunnion provided that other conditions as specified in ANSI N14.6 are also	Added the following sentence to the 1 st paragraph in Section10.5.1.1: Periodical NDE, in lieu of annual load tests, is acceptable for the trunnion provided that other conditions as specified in ANSI N14.6 are also met.

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
			met	
NEI 171/MAT	10418-10433	Please clarify the guidance pertaining to testing. Clarification should include ASME Code concurrence that fracture testing is not required for material with wall thicknesses of less than 5/8 inch.	NUREG/CR-1815 "Recommendations for Protecting Against Failure by Brittle Fracture in Ferritic Steel Shipping Containers Up to Four Inches Thick" RG-7.11, ASME Code for Transport Packages and DOE guidance all establish fracture toughness testing for 3/16-inch and thicker material. Therefore, FT testing is required below 5/8-inch to down to 3/16-inch, unless other justification is provided.	Changed the last sentence in the 4 th paragraph of Section 10.5.1.1 to read as follows: NUREG/CR-1815, "Recommendations for Protecting Against Failure by Brittle Fracture in Ferritic Steel Shipping Containers Up to Four Inches Thick," provides staff guidance concerning materials and thickness ranges subject to brittle fracture testing. On the basis of guidance in NUREG/CR-1815, Section 5.1.1, the NRC established two methods for identifying suitable materials.
NEI 172/QA	10476-10479	Delete the sentence pertaining to inspection personnel qualifications. This is something governed by the QA program and outside the scope of a cask design review. At a minimum, delete "the current revision of." The fabricator should not be forced to adopt the most recent revision of SNT-TC-1A to qualify personnel if a different code or older version of SNT- TC-1A is acceptable within their QA program. If and when to adopt a later Code should be at their discretion.	Partially agree with comment. The reference is appropriate but is changed from "current" to "appropriate" version.	Deleted "current revision" and replace it with "appropriate revision" in referring to SNT- TC-1A

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
NEI 173/MAT	10513-10516	Why specify the particular NDE method if the Code does that? Suggest deleting this detail. Also, AWS should be offered as an acceptable weld code for non-confinement boundary welds.	Agree with comment regarding AWS. Specific guidance on the Code requirements is provided to avoid misunderstanding and possible conflicting interpretations. In addition, the specific guidance assists reviewers in focusing on important elements of the NDE methods with respect to the associated review objectives.	Added the following after the last non-confinement weld paragraph in Section 10.5.1.3: "(LOW Priority)Non- confinement welds may also be welded, repaired and examined in accordance with AWS D1.1, Structural Welding Code – Steel, D1.3, Structural Welding Code – Sheet Steel and D1.6, Structural Welding Code – Stainless Steel. Use of these standards shall be called out on the licensing drawings."
NEI 174/SH	10576-10577	Delete these lines. Dose rate measurements of every cask after SNF is loaded are of little value in determining whether the design criteria have been satisfied because the shielding analyses are extremely conservative. Users will perform appropriate dose rate measurements on the loaded casks as a part of their Radiation Protection Program and ALARA procedures.	Partially agree with comment. The guidance is revised to indicate that dose measurements of loaded SNF, in lieu of an auxiliary source, may be used to verify shielding effectiveness with appropriate scanning of the shield and appropriate consideration of the actual source strength of the loaded contents.	Revise Section 10.5.1.4 to include: Dose measurements of loaded SNF, in lieu of an auxiliary source, may be used to verify shielding effectiveness with appropriate scanning of the shield and appropriate testing program that considers the actual source strength of the loaded contents.
NEI 175/SH	10588-10597 and 10620-10629	Duplicated paragraphs.	Agree with comment	Deleted 5 th paragraph in Section 10.5.1.5.
NEI 176/RP	10613	Editorial: "bench marked" should be "benchmarked" (one word).	Agree with comment	Changed as stated in comment
NEI 177/SH	10741	Clarify "periodic tests to verify	Aging and degradation of shielding	Section 10.5.2.2 is revised to

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		shielding and thermal capabilities." Such tests are usually not necessary for passively cooled systems beyond periodic checks of the air vents. Also, there are no credible age-related means to degrade shielding. Such tests should only be required if the particular cask design has unique features or active components requiring such tests.	materials may be a credible phenomenon. Degradations of components, such as cracks on concrete over-pack, corrosions of steel components, are examples that may impair their shielding capabilities. The applicant should otherwise justify that aging of materials related to the shielding, confinement, and thermal designs are not credible during the licensed period of the DSS.	clarify that justification is required to eliminate shielding, confinement, and thermal tests.
NEI 178/RAD	10955	Delete "including minors." Minors are not part of the working staff at power plants subject to occupational exposure.	Agree with comment. In the event, , that a minor is present in an occupational capacity at a licensee's facility, that licensee is responsible for ensuring that the requirements of 10 CFR 20 are met. Similarly, the applicant does not need to address the dose to the embryo/fetus of a declared pregnant worker.	In the 1 st paragraph of Section 11.5.2, delete the phrase "including minors," from the text. In the 2 nd paragraph of Section 11.5.2, delete the entire sentence beginning: 'Exposure to the embryo/fetus'
NEI 179/RAD	10956	Delete "retrieval and".	The regulations (in 10 CFR 72.236(h)) require that the spent fuel storage cask be compatible with both wet and dry loading and unloading facilities. It is reasonable to expect that fuel cannot be unloaded without first retrieving the storage cask from the storage location. The potential exists for there to be differences in the radiological conditions	No Change

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
			encountered in retrieving and unloading fuel from an ISFSI as compared to loading and emplacing the casks. The applicant should consider the possible differences in radiological conditions and provide dose estimates if any differences are expected to be significant.	
NEI 180/RAD	11003-11005	The value of applicants calculating and NRC approving dose versus distance from a hypothetical ISFSI is of questionable value in the application because of the arbitrary nature of: the number of casks, the arrangement of the casks on the ISFSI, the distance to the site boundary, and the cask contents. Licensees are required to perform a 72.104 dose analysis for their particular ISFSI by 72.212.	The application should demonstrate that there is reasonable assurance that the requirements of 10 CFR 72.234(a) will be met by the proposed system. One of these requirements is presented in 10 CFR 72.236(d) which indicate that shielding and confinement features must be sufficient to meet the requirements of sections 72.104 and 72.106. The applicant must demonstrate the proposed system is capable of meeting these requirements. Past review experience has shown that the dose rate versus distance calculation for a standardized array has been beneficial in confirming these requirements.	Replaced 2 nd paragraph in Section 11.5.3.1 with the following: The reviewer should verify that the applicant includes a dose rate versus distance curve in its evaluation of offsite dose for a hypothetical cask array. The theoretical cask array should consist of at least 20 storage casks (2x10 array), and the analysis may include the effect of shielding among casks in the array. The reviewer should examine predicted dose rates and compare them to the dose rates from previously approved casks, and any associated annual doses that have been observed for the casks at existing ISFSIs.
NEI 181/RAD	11007-11018	As only hypothetical array and single cask are evaluated, it is not clear when features would be required to show	As indicated in response to the previous comment, staff must be able to have reasonable assurance that shielding and confinement	Moved the sentence "In addition, the SAR should determine the degree to which the normal condition dose rates

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		compliance with regulations	features for a proposed dry storage	could change for the identified
		and should be included in the	system are sufficient for users of	off-normal conditions" to the
		conditions of cask use.	the system to design ISFSIs that	end of the first paragraph in
		Specific distance and shielding	can meet the requirements of	Section 11.5.3.1.
		options and inclusion of such	Sections 72.104 and 72.106. If the	
		limitations in the CoC are not	dose requirements of Section	Replaced the text from the 3 rd
		consistent with the 72.212	72.104 can be met at the minimum	and 4 th paragraphs in Section
		evaluation that a site would do	distance specified in the	11.5.3.1 with the following:
		to establish compliance with	regulations (100 meters, specified	
		the requirements.	in Section 72.106(b)) for a single	It is important to note that the
			cask and the hypothetical array	general ISFSI licensee is
			described in this section of the	permitted to use either distance
			SRP, the staff considers there is	between the ISFSI and the
			reasonable assurance that the	controlled area boundary or
			regulatory requirements will be	engineered features
			met. If additional distance or	(supplemental shielding) such
			shielding is needed to meet the	as berms to mitigate doses to
			dose limits beyond the controlled	real individuals near the site.
			area boundary for either the single	The SAR needs to provide
			cask or the proposed hypothetical	sufficient information to support
			array, then staff needs some basis	informed choices on the part of
			on which to make its determination.	the general licensee. If the SAR
			The applicant should provide a	analyses were performed for
			justification for how a general	the minimum 100 meter
			licensee could reasonably meet the	distance and did not use any
			requirements of Section 72.104.	additional shielding, and the
			Including a shielding or distance	projected dose at 100 meters
			requirement in the CoC conditions	exceeded the regulatory limits,
			of use would only be needed if the	the reviewer should verify that
			applicant chose to use either or	the application contains a
			both of these as a basis for its SAR	justification for how a general
			evaluations and did not provide a	licensee could reasonably meet
			SAR analysis without the added	the requirements of Section
			distance or shielding. Site-specific	72.104. If the dose versus
			features, or extra distance or	distance curves for the single

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
Comment	SRP Location	Summary of Comment	Resolution additional shielding that a general licensee chooses to evaluate and/or implement to further reduce doses outside the controlled area boundary are not included as limitations in the CoC, but are included in the site's 72.212 evaluation.	Changes to SRP cask and hypothetical array in the SAR were only evaluated at distances greater than 100 m, or assumed some engineered feature, then the CoC should contain a condition of use to that effect. An example of such a condition may be similar to the following: "The use of this system may require more than the minimum 100-meter distance between the ISFSI and the controlled area boundary, or engineered features (i.e., berms or shield walls), or both to ensure the dose limits in 10 CFR 72.104 can be met. In cases where engineered features are used to ensure that the requirements of 10 CFR 72.104(a) are met, such features are to be considered important to safety [ITS] and must be evaluated to determine the applicable [QA] category."
				to be part of the system. As such, it should be described in the CoC.
NEI 182/RP	11265-11266	Clarify this statement. Not all	Agree with comment and changed	Changed this sentence to:

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		DSS monitoring equipment is ITS. It is only ITS if it meets the definition of ITS in the NUREG based on its design function. Suggest: "DSS monitoring equipment is classified in accordance with NUREG/CR-6407" This also conflicts with lines 1678 and 5347.	to be consistent with Lines 5347 and 1678. Pressure monitoring systems are not ITS because they cannot withstand the design basis loadings, nor are they required to be procured in accordance with ITS practices. Their failure does not result in an unsafe condition, but their failure in combination with another failure (e.g. confinement seal) could result in an unsafe condition which makes it a Category B item under the guidelines of NUREG/CR-6407.	"DSS monitoring equipment (such as a pressure monitoring system) are classified as not important to safety, but are classified as Category B under the guidelines of NUREG/CR- 6407, 'Classification of Transportation Packaging and Dry Spent Fuel Storage System Components According to Importance to Safety (INEL- 95/0551)' since they aren't designed nor procured under the same requirements as the confinement boundary, but whose failure in combination with another failure could result in an unsafe condition."
NEI 183	11364-11368	What is the purpose of capitalizing this text?	The statement is meant to caution the reviewer about terms and conditions of the CoC and technical specifications. The capitalization is removed from the text.	Revised the paragraph as follows (no capitalization): If a reviewer determines that a design feature, content feature, analytical assumption, operating assumption, control, limiting condition of operation, program or other SAR item is important and should not be changed without NRC staff approval, then it should be further evaluated and considered as a potential CoC condition or technical specification. The reviewer should further consider the

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
NEI 184/RP	11440-11452	Most of the text about the Code in this paragraph is of	The referenced paragraph presents the current and historical basis for the use of the ASME Code for DSS	guidance in this chapter for establishing conditions and technical specifications in the CoC. Only the terms and conditions of the CoC, including the attached technical specifications and drawings, are legally enforceable. If a reviewer deems an item so important that it should not be changed without NRC staff approval, the item should either be included directly in the CoC terms, conditions or technical specifications. No Change
		limited value. Suggest replacing this with simpler guidance that states the applicant should state the applicable design codes, sections, subsections, as appropriate, and any alternatives to the code being implemented.	as guidance for the staff.	
NEI 185/RP	11460	Editorial: Add "s" to the end of "specification."	Agree with comment	Changed as stated in comment
NEI 186/RP	11588	Editorial: Change "12" to "13."	Agree with comment	Changed as stated in comment
NEI 187/RP	12723-12724	ISG-15 should not be listed in the reference section since it has been incorporated into this document. Other ISGs are not listed in the reference section.	Agree with comment	Changed as stated in comment
NEI 188/RP	13025	Editorial: Change "to" to "10."	Agree with comment	Changed as stated in comment

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
NEI 189/RP	13158	Editorial: Insert a close parenthesis at the end of this line.	Agree with comment	Changed as stated in comment
NEI 190/RP	13237	Editorial: Change 'uncorrectd" to "uncorrected."	Agree with comment	Changed as stated in comment
NEI 191/RP	13475	Editorial: Change "austentic" to "austenitic."	Agree with comment	Changed as stated in comment
NEI 192/RP	13475	With regard to ISG 12, the status block states that a new revision is pending. This is inappropriate information for the SRP. In addition, a pending revision to this ISG has not been announced by NRC, yet draft revisions to ISG-2 and ISG-23 have been issued by NRC and are not noted in this appendix.	Agree with comment	Deleted "new revision pending"
NAC/Risk	General	The Draft NUREG-1536 does not appear to reflect NRC's position on risk based regulations. It appears to be too prescriptive in areas that have little to no impact on safety Reconsider detailed prescription of requirements that are covered by other regulations, measurements and controls, e.g., shielding design, related computer verification, measurements required during loading operations, measurements on	NRC staff is not revising the Part 72 regulatory requirements as part of the update to this SRP. Some Part 72 regulations are prescriptive and others are performance based. In addition, the NRC does not endorse a risk-based approach, but rather a risk-informed approach as delineated in SECY-98-144. The SRP is being revised to risk-inform, or risk prioritize the review guidance used to verify that the established Part 72 regulations are met. The areas of review in the SRP have been prioritized considering the potential relative risk impact of not meeting the	To clarify the approach that the staff is using to prioritize the review procedures sections of this SRP and eliminate any confusion with a more classical quantitative PRA approach, the text has been modified to generally substitute "prioritized" for "risking informing" when referring to the review procedures. Attachment B also has been similarly modified.

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		loaded casks for site operations to manage site boundary dose. Technical Specification material should be limited to system operational limits that the licensee must meet and not repeat regulatory requirements or include material property and test requirements addressed by Quality Assurance requirements. Technical specifications should not be used as a control on the licensee use of	requirements. It provides guidance that reduces the intensity of the review for low risk areas. It is in this sense of focusing staff attention on areas important to safety that the SRP is risk- informed. In fact, this is the NRC definition of risk-informed. Also see response to NEI 18 regarding Technical Specifications.	
NAC/ RP	1914-1917	72.48 revisions. "Nevertheless, for assessment purposes and to demonstrate the DSS should be evaluated for effects of a confinement boundary failure." This is not duplicated in confinement SRP discussion. Evaluation of the effect of a confinement boundary failure is not a standard evaluation set for current licensed systems (ISG-5). Nonmechanistic failure should not be a system analysis requirement. This imposed analysis is beyond regulation requirements.	See NEI Comment 28	See NEI Comment 28

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
NAC/STR	3106, 12537	Imposes excessive conservatism for seismic evaluations. RG 1.60 should be replaced by NUREG/CR-6728 and also NUREG/CR-6865.	See NEI Comment 46.	See NEI Comment 46
NAC/ RP	3139-3140	"Confinement casks" is poor terminology. It should read: "for the confinement boundary of the cask."	Agree with comment	Changed as stated in comment
NAC/STR	3153	In the previous paragraph, Subsection NB is used to define stress qualification for the confinement boundary, which is a pressure retaining boundary. In this paragraph, it does not clearly state that the basket is a nonpressure- retaining boundary and that the applicant should use Subsection NG. Need to state that Subsection NG is acceptable or else the reader is left to believe that Subsection NB applies to nonpressure boundary baskets. It should confirm that Appendix F is applicable for use with Subsection NG.	See NEI Comment 48	See NEI C0omment 48
NAC/STR	3168	Includes excessive conservatism that is not	The strain-based criteria are not recognized by the ASME Code or	No change

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		consistent physical testing.	other applicable standards. The	
			NRC staff may consider use of	
		It should state that Subsection	other acceptance criteria on a	
		NB and Subsection NG permit	case-by-case basis.	
		the use of Appendix F, which		
		does permit the use of		
		inelastic properties for		
		components that serve as the		
		pressure boundary or also		
		non-pressure boundary		
		applications, such as baskets. It should also state that strain		
		base criteria can be employed		
		for energy limited accident		
		conditions, provided the		
		applicant provides such basis		
		for its use."		
NAC/STR	3171	In many applications for drop	The SRP does not preclude use of	No change
	0.111	conditions, it should be	strain-rate-sensitive material	
		acceptable to strain rate	properties for design analysis of	
		sensitive properties. Appendix	cask drop conditions	
		F permits its use.	·	
		Need to include "strain rate		
		properties, which need the		
		appropriate references."		
	4202			
NAC/TH	4302	Annotation of input files. It is	See NEI Comment 57	See NEI Comment 57
		important to be able to use the		
		applicant's files. It is not		
		necessary to understand all aspects of the input files.		
		Some of these files come from		
		Journal files or Log files which		
		are generated by the program.		

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		It is not feasible to add comments to these files. Open-ended statements such as adding "annotation" lead to overstatement by the reviewer for the need of such documentation.		
NAC/TH	4313	Annotation of the load steps. This would lead to excessive documentation in the computer solutions. 4311-4315 should be removed. It is the responsibility of the applicant's QA program to ensure that the analyses are performed correctly.	See NEI Comment 58	See NEI Comment 58
NAC/TH	4332	Sensitivity study on mesh type. Lack of clarity. "Mesh type" should be removed. It is not clear.	See NEI Comment 59	See NEI Comment 59

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
NAC/TH	4335-4336	Mesh study. Not required when stress linearization is being used for primary loading. Such detailed studies should be restricted to fatigue evaluations at stress discontinuities. Remove these lines. Too subjective, allowing the reviewer to specify detailed mesh studies for any part of the model he so desires.	See NEI Comment	See NEI Comment 60
NAC/TH	4349	Including plots of the results. Generates extra data to be included in the SAR, while it is not needed. Remove "plots" from line 4349.	See NEI Comment 61	See NEI Comment 61
NAC/TH	4680	Exclusion of natural convection internal to the canister. Too restrictive for convection designs. It states: "should be limited tothe external surface" This is an unacceptable statement that will be taken by the reviewer that internal convection cannot be used without some excessive burden of proof provided by the applicant. Remove line 4680. There is sufficient test data to confirm that convection internal to the canister is acceptable.	See NEI Comment 69	See NEI Comment 69
NAC/TH	4687/JS	Convection. What does "robust" mean? This allows the	See NEI Comment 71	See NEI Comment 71

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		reviewer to apply his personal definition of "robustness" to the applicant's analyses. Remove "robust" from Line 4687.		
NAC/RP	5185	Confinement Monitoring Capability. Welded closure seal. "However, the lack of a closure monitoring system has typically been coupled with a periodic surveillance program that would enable the licensee to take timely and appropriate corrective actions" Dry cask storage systems have been approved without a closure weld seal monitoring system, as within the storage cask, surveillance of the closure weld is not feasible. Temperature monitoring and/or visual surveillance of the air cooling vents is a standard part of concrete cask (welded canister) licensing.	See NEI Comment 73	See NEI Comment 73

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
NAC/RP	5426	Table 5-2, Release Fractions. "should not be used for spent fuel described as damaged." Based on NUREG/CR-6497, damaged fuel would not have a driving force to release fines from the matrix. What is the postulated issue here? Is there data available to NRC that indicates a safety concern? Provide additional guidance and describe what factors are suggested for damaged fuel.	There is lack of data regarding the release fractions from damaged fuel, which makes this a safety issue. The data available does not apply to damaged fuel but rather to a single breach of one fuel rod. Compounding the issue is that many of the storage canisters are pressurized with helium to aid in the heat removed of larger thermal payloads. Without compelling factual information and data regarding the release fractions associated with damaged fuel, the staff does not feel there is not adequate evidence to generically make assumptions regarding release fractions associated with potential types of damaged fuel. Therefore, a leaktight confinement boundary is the recommended accepted practice to ensure radiological safety for damaged fuel, without additional data and analyses from the applicant.	See NEI Comment 76.
NAC/SH	5799-5801	Radiation Source Definition. "radionuclide content, and estimated radiation source strength in Becquerels, should be described" New requirement. Provide clarification as to what the basis of this request is, as radiation source strength in Ci	See NEI Comment 77.	See NEI Comment 77.

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		or Bq is not clearly related to gamma/neutron source strength (e.g. beta emitters).		
NAC/SH	5809-5810	Radiation Source Definition (Gamma Sources) "characteristics for each gamma-ray source type should be provided, including isotopic composition, and photon yields" Is a tabulation of spent fuel isotopics requested here? If so, to what purpose? Typically, inputs into depletion analysis are provided, but not isotopics of depleted materials. Clarify requirement if a tabulation of spent fuel isotopics is requested and describe purpose	See NEI Comment 78	See NEI Comment 78
NAC/SH	5813-5814	Radiation Source Definition (Gamma Sources) Within gamma source description, "describe the extent to which radioactivity may be induced by interactions involving neutrons originating in the stored materials" If this implies n-gamma reactions, then the current SRP version is clearer If activation is to be considered for decommissioning, that should be clarified.	See NEI Comment 79	See NEI Comment 79

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
NAC/SH	5868-5870	Shielding Analyses (Computer Codes) "The applicant should defend any simplifications and assumptions by showing that the approach used will result in conservative (bounding) estimates." Clarify if results need to be bounding or "provide reasonable assurance" as stated in Section 6.4, Line 5723: "Reasonable assurance that the proposed design fulfills the acceptance criteria "	See NEI Comment 80.	See NEI Comment 80
NAC/SH	5873-5874	Shielding Analyses (Computer Codes) "SAR should numerically specify source term uncertainties for high burnup fuels" in combination with "validation data is relatively limited for burnup above 45 GWd/MTU." High burnup fuel is licensed and in storage. No indication that substantial dose effects occurred. If limited data is available it leaves an open ended question as to how to specify uncertainties. Conservative assumption and desired design margins are not defined, leaving it up to each reviewer when, and how much, in uncertainties to	See NEI Comment 81.	See NEI Comment 81.

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		apply. Provide correlation why maximum fuel assembly heat load is related to uncertainties. Low heat capacity/minimal shield system may be affected by low fuel assembly heat load and vice versa		
NAC/SH	6003-6004	Radiation Source Definition (Initial Enrichment) "Applicant and the staff should not attempt to establish specific source terms as operating control and limits for cask use." If that is the case, why does the SRP focus in the Section 6.4.2 on curie content and isotopic description of the spent fuel? For Cobalt-60 dominated hardware sources, a source term may be more appropriate than other limits (e.g., mass, exposure, cool time).	See NEI Comment 84	See NEI Comment 84
NAC/SH	6149-6150	Shielding Model Specification (Configuration of the Shielding and Source) "homogenization should not be used in neutron dose calculation when significant neutron multiplication can result from moderated neutrons" While not changed from	See NEI Comment 84	See NEI Comment 84

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		current SRP statement, it should be noted that standard practice is to homogenize the rod lattice in shielding calculations (not necessarily homogenizing basket structure into the fuel region). Provide additional guidance and/or justification why the standard practice of homogenizing the rod lattice in shielding calculations should not be used.		
NAC/SH	6221-6222	Shielding Analyses (Computer Codes) "The reviewer should be aware that often adjoint calculations are performed by the applicant importance functions" Review staff should recognize that importance functions may also be produced with Monte Carlo, point-kernel and transport codes. Include importance functions produced with Monte Carlo, point-kernel and transport codes	See NEI Comment 88	See NEI Comment 88

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
NAC/SH	<u>6246-6248</u>	Summary of Comment Shielding Analyses (Computer Codes) "The applicant should use the latest released computer code version that is valid for the particular computational platform used to perform the analysis." This item in particular has been discussed with NRC staff as a significant issue. Licensed code for same type of application should not require code version change unless safety issue has been identified. Continual use of different code version within an application is difficult to reconcile and potentially leads to unnecessary confusion. Typical new release code versions tend to contain a certain amount of bugs that get resolved through user feedback to code originator. Could be interpreted that a newer code provides more "accurate" result; but as previous version was found to be acceptable for system approval, there should be no requirement for change. The goal per draft SRP Section 6.4 is to provide reasonable	See NEI Comment 89	See NEI Comment 89

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		assurance that system will meet limits.		
NAC/SH	6302-6309	Shielding Analyses (Computer Codes) "by verifying that the following information has been provided in the SAR The computer code solutions to a series of test problems" Draft SRP does not contain the previous SRP statement "that these solutions may be referenced, and need not be submitted in the SAR". This change would add a substantial amount of information to the SAR without any safety benefit, as the referenced documents, per current SRP, should be public information and/or have been previously submitted to NRC. Adopt current SRP verbiage and add: "These solutions may be referenced but need not be submitted in the SAR."	See NEI Comment 90	See NEI Comment 90

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
NAC/MAT	7697	Methodology to Evaluation Flaw Size For stainless steel casks and welding, this is too limiting. NAC uses the J-integral method to evaluate flaw size which limits the size of a single weld pass. In order to be consistent with 7682, it should explicitly state that the applicant can use J integral methodology based incorporating plasticity for ductile weld materials such as stainless steel.	See NEI Comment 121	See NEI Comment 121
NAC/MAT	9131-9232	Fuel Temperature Range Limits This could be interpreted as the limit in any one cycle of fuel temperature is limited to 65°C. It needs to explicitly state that the 65°C range can be exceeded, but for less or equal to 10 cycles.	See NEI Comment 157	See NEI Comment 157
NAC/MAT	10418-10433	Charpy Test Requirements. Use of carbon steel less than 5/8 inch thickness. NRC's position/guidance should be stated. Clarification should include ASME Code concurrence that fracture testing is not required for material with wall thicknesses of less than 5/8 inch	See NEI Comment 171	See NEI Comment 171

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
NAC/SH+Rad	11007	Exposures at or Beyond the Controlled Area Boundary (Normal Conditions) Focus added on "additional engineering features and distance from array." As only hypothetical array and single cask are evaluated, it is not clear when features would be required to show compliance with regulations and should be included in the conditions of cask use. Specific distance and shielding options and inclusion of such limitations in the CoC do not seem to be consistent with the 72.212 evaluation that a site would do to establish compliance with the requirements. Further guidance is required	See NEI Comment 181	.See NEI Comment 181
NRC Clarification	1445, 1507, 1659, 1682, 1701, 2501, 4533, 4590, 5094, 5249, 6066, 6648, 9993, 11242,	Corrected the typo for the word "Principal"	Correct typo.	Change SRP as indicated
NRC Clarification	5765	Deleted the word "rate". Deleted the words "for occupational exposure and".	Revise the statement to make it more accurate.	Changed SRP as indicated

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
NRC Clarification	5793	Deleted the words "placed"	Revise the statement to make it more accurate.	Changed SRP as indicated.
NRC Clarification	5873	Changed the verb "is" to "are"	Correct typo	Changed SRP as indicated
NRC Clarification	5880	Deleted the word "each"	Correct grammar error	Changed SRP as indicated
NRC Clarification	5908	Deleted the word "operations"	Delete redundant word	Changed SRP as indicated
NRC Clarification	5915	Replaced the word "functions" with "operations"	Revise the statement to make the meaning clearer	Changed SRP as indicated
NRC Clarification	5960	Changed the words "5" to "6"	Correct typo.	Changed SRP as indicated
NRC Clarification	5977	Corrected the typo for the word "Principal"	Correct typo.	Changed SRP as indicated
NRC Clarification	5999	Corrected the typo for the word "Principal"	Correct typo.	Changed SRP as indicated
NRC Clarification	6018	Changed "fall" to "falls"	Correct typo	Changed SRP as indicated
NRC Clarification	6103	Added verb "are" between "there" and "specific"	Correct typo.	Changed SRP as indicated
NRC Clarification	6230	Changed "ORNL" to "EPRI"	Correct typo.	Changed SRP as indicated
NRC Clarification	6373-6379	Modified line 6373 to add the following words between "to use" and "additional …": "distance or" Modified line 6374 to add the following words between "berms," and "to mitigate": "or both,"	Revised the statement to make them more accurate and consistent with staff's response to NEI's Comment 181	Changed SRP as indicated

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
		Modify line 6375 to replace the		
		words "to show compliance		
		with the regulations" with		
		"evaluations"		
		Modify line 6376 to replace the		
		words "cask conditions for		
		use" with "system and		
		described in the CoC"		
NRC Clarification	6405	Changed "1m (3.3ft)" to "100m (328 ft)"	Corrected typo.	Changed SRP as indicated
NRC	6408	Delete the word	Revised the statement to make it	Change SRP as indicatedSee
Clarification		"phenomenon"	consistent with 10 CFR 72.92.	NEI Comment 84.Change SRP as indicated
NRC	8643	Changed priority of Section	Change was result of on going	Added "(MEDIUM Priority)"
Clarification		8.4.20 to Medium from Low	industry practice of omitting leak testing at fabrication facility	after Section 8.4.20 heading.
NRC	10976-10979	This sentence mis-states what	Reword the sentence so that it	Replaced the first sentence of
Clarification		is required by the regulation.	correctly reflects the regulatory	the first paragraph in Section
			requirement.	11.5.3 with the following text:
				As required by 10 CFR
				72.236(d), the application must
				demonstrate that the shielding
				and confinement features of the
				cask are sufficient to meet the
				requirements for real
				individuals in 10 CFR 72.104,
				and for DBA conditions in 10 CFR 72.106. These
				demonstrations in the
				application facilitate future site-
				specific evaluations for each
				general ISFSI licensee.
NRC	10980	Added the word "boundary"	Revised the statement to make the	Changed SRP as indicated

Comment	SRP Location	Summary of Comment	Resolution	Changes to SRP
Clarification		after "controlled area"	meaning clearer	
NRC Clarification	6863,6864,6993, 6994,7005, 7098,7100	Editorial corrections are needed to make the citation for references compatible with the format of the Consolidated References in Appendix A.	Comment implemented.See NEI Comment 86.Correct typo.	Changes to the reference citations were made in the lines indicated to be compatible with the format in Appendix A.

13781 13782 13783