RAS	142	27		U.S. NUCLE	AR REGULATORY COM	MISSION			
•			in in	the Matter of <u>AM</u>	EPCEN ENERCY	Co., UC			
			Do	ocket No. 50-024	9-UR_Official Exhibit	No. 20			1
	•				cant/Ligensee Intervenor		PLICANT'S E	XH. 20	
							AA-509-100	1	
			xelun			JA	Revision		
		·····	and the second secon	X	·]				
	- Ì		Nuclear Ac	porter/Clerk		WITHORANN			
A .				АТТ	ACHMENT	· · · · · ·	• .		KETED
					nalysis Cover Sheet				INRC
				-	Page 1 of 57			- October 1 2	2007 (10:45am)
•	D	esign Analysi	e (Major Revision)		Last Page N	lo. Attachment 5 p	age 20 of 20	1 3	
	A	nalysis No.: '	C-1302-187-E310-0	41	Revision: * 0				SECRETARY
	TI	tle: ³	Statistical Analysis o and 2006	f Drywell Vess	sel Sandbed Thicknes	ss Data 1992, 199	4, 1996,		TIONS STAFF
	E	C/ECR No.: *	06-01078		Revision: 5 0				1
	S	tation(s): '	Oyster Cr	eek	Co	mponent(s): "			
		nit No.: *	.1			· · · · · · · · · · · · · · · · · · ·			
	D	iscipline: *	Mechanic	al					
	D	escrip. Code/h	(eyword: "						
	s	alety/QA Class	s:"Q					1	
	s	ystem Code: "	187					1	
	s	tructure: 13	Drywell	Vessel			· · · · · ·		
			CONTR	OLLED DOCUM	MENT REFERENCES	6			
	. D	ocument No.:		From/To	Document No.:		From/To		
	C	-1302187-5300)-030 Rev. 0	From				. ·	
	S	E-000243-002,	Rev. 14	From					•
í.) E	CR 02-01441,	Rev. 0	From					
•••	C	-1302187-5300)-024 Rev. 1	From	· · · · ·				
		-	Analysis Safeguards In		Yes 🗌 No X	lf yes, see SY-A	A-101-106		
			Analysis contain Unveri		s? "Yes 🗌 No X	If yes, ATI/AR#:		1	
	1		alysia SUPERCEDES:				s entirety.	1	
	P	escription of I	Revision (list affected p	ages for partials): "See Summary of C	hange page (attac	ned).].	
						:			·
					PITI		17/1.100	1	
	P	reparer: *	Peter Tamburro	Малте	JAT	-	Date		
•	IN	lethod of Revi			ate Calculations (attai			1	· .
	. П	levlewer: 2	Stephen Leshnof	f	Stephen Leshu	••	12/11/06		
	R	leview Notes:	" Independent re			THE 12/15/0	Date		
			The statistical analy captured. The analy	vsis methods are con vsis results are reaso	nprehensive, thorough, and anable. The conclusions are	correct. The data was correctly derived.	correctly	<u>}</u> .	
			Checker: Kevir		There Maytet	, · ·	2/11/06		
		or External Analyses Ord	y)	<u>.</u>			1. (4	
•	E	xternal Appro		Name	Šign Na		Dale	4	
	. E	xelon Reviewe	er: ^a	•]	2
. (() H	a Cumlemor	ويستعدد والمتحد والمتحد والمتحد والمتحد والمتحد والمتحد والمحاد والمحاد والمحاد والمحاد والمحاد والمحاد والمحا	²⁵ Yes X .	No X / If ves, comp		Date	ł	
			tal Review Required?	TH		blete Attachment 3	wheel.	· ·	i.
		xelon Approv	Print				12/15/De	} .	
		J¥ Se	e Appendix 23	FOR HU-A	A-1212 REVIEWS	3. ()		•	
	•					\sim			

OCLR00019275

Template=SECY-028

		•	DOCUM	ENT NO.	
		<u> </u>	C-1302 ¹ 187	7-E310-041	
TITLE	Statistical Analysis of Drywell Vessel Sandbed Thi	ckness Data	1992, 1994, 1996	, and 2006	•
REV	SUMMARY OF CHANGE		APPROVAL	DATE	•
0				4 	•
			. I,		4
					•
					•
)				N0036 (1/99)	
				OCLR0001	

•	An	nerGen calc	ULATION SHEET		Preparer: Pete Ta 12/15/06	mburro
)		: I Analysis of Drywell Vessel Sandbed s Data 1992, 1994, 1996, and 2006	Calculation No. C-1302-187-E310-041	Rev. No. 0	System Nos. 187	Sheet 2 of 55
		Table	e of Contents			
	· [Section			Pages
•		1.0 Purpose				3
	Γ	2.0 Summary of Results				4
·	F	3.0 References	· · · · · · · · · · · · · · · · · · ·		·	9
	ŀ	4.0 Assumptions	· · · · · · · · · · · · · · · · · · ·			10
		5.0 Design Inputs		<u>-</u>	······	10
	· · •	6.0 Overall Approach and Methodolog		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
	ļ	7.0 Calculation	<u>;y</u>	·		12
		 7.1 Sandbed Locations with 49 Reading 7.2 Sandbed Locations with 7 Readings 7.3 External Inspections 7.4 Sensitivity of the Corrosion Test wite 7.5 Sensitivity Study to Determine the S Inspections 	hout the 1996 Data	rrosion Rate	with Only Four	29
	. }	8.0 Software			· · · ·	54
		0.0 Sultware	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	No of pages
		9.0 Appendices			<u> </u>	140 OF pages
		Appendix #1Bay 9 location 9D DecemberAppendix #2Bay 11 location 11A DecemberAppendix #3Bay 11 location 11C DecemberAppendix #4Bay 13 location 13A DecemberAppendix #5Bay 13 location 13D DecemberAppendix #6Bay 13 location 13D DecemberAppendix #7Bay 13 location 13D DecemberAppendix #7Bay 15 location 15D DecemberAppendix #8Bay 17 location 17D DecemberAppendix #9Bay 17 location 17D DecemberAppendix #10Bay 19 location 19A DecemberAppendix #11Bay 19 location 19B DecemberAppendix #12Bay 19 location 19D DecemberAppendix #13Bay 1 location 10D DecemberAppendix #14Bay 3 location 3D DecemberAppendix #15Bay 5 location 7D DecemberAppendix #16Bay 7 location 7D DecemberAppendix #17Bay 9 location 13 C DecemberAppendix 18Bay 13 location 15A DecemberAppendix 20Review of the 2006 106 ExterAppendix 21Sensitivity of the CorrosionAppendix 22Sensitivity Studies to Detember	ber 1992 through Oct 2006 ber 1992 through Oct 2006 r 1992 through Oct 2006 ber 1992 through Oct 2006 ber 1992 throu	96 5	Corrosion Rates	$ \begin{array}{c} 17\\ 25\\ 16\\ 31\\ 16\\ 26\\ 16\\ 26\\ 18\\ 16\\ 16\\ 16\\ 16\\ 16\\ 16\\ 16\\ 16\\ 16\\ 16$
		Appendix 23 - Independent Third Party Rev	view of Calculation		· · ·	3
		Attachment 1- 1992 UT Data			· · · · · · · · · · · · · · · · · · ·	5
		Attachment 2- 1994 UT Data	· · · · · · · · · · · · · · · · · · ·			4
	<u>.</u>	Attachment 3- 1996 UT Data	·····	· · · · · · · · · · · · · · · · · · ·		19
ì)	Attachment 4- 2006 UT Data 1R21LR-029, 030,		· · · · · · · · · · · · · · · · · · ·		5
/		Attachment 5- 1992 UT Data for First Inspection				

Preparer: Pete Tamburro 12/15/06

187

Rev. No.

0

Subject:	
	Analysis of Drywell Vessel Sandbed

Thickness Data 1992, 1994, 1996, and 2006

AmerGen

Calculation No. C-1302-187-E310-041 System Nos. Sheet

3 of 55

1.0 Purpose

The purpose of this calculation is to analyze the UT Inspection, which have been taken of the Drywell Vessel in the Sandbed Region for 1992, 1994, 1996, and 2006.

Specific objectives of this calculation are:

- 1) Determine the 1992, 1994, 1996, and 2006 mean thickness at each monitored location and compare them to acceptance criteria.
- 2) Determine the 1992, 1994, 1996, and 2006 thinnest recorded value at each monitored location and compare them to the appropriate acceptance criteria.
- 3) Statistically analyze measured thicknesses from 1992, 1994, 1996, and 2006 to determine if a statistically significant corrosion rate exists at each location,
- 4) If a statistically significant corrosion rate exists, provide a conservative projection to ensure future inspections are performed at conservative frequencies.
- 5) In addition this calculation will analyze the 106 UT data points collected in 1992 and again in 2006.

The conclusion of this calculation pertains to the Sandbed Region of the Drywell Vessel located above elevation 8' 11 1/4"which is not embedded in concrete on both sides.

Background

The inspections were performed at 19 separate locations (grids) located through-out the sandbed region. These inspections are performed from inside the drywell and are located at an elevation that corresponds to the sandbed region of the Drywell. These locations have been periodically inspected over time to determine corrosion rates. At least one grid is located in each of the 10 Drywell Sandbed Bays.

Twelve locations are each on a 6" by 6" area in which 49 separate UT readings are performed in a grid pattern on 1" centers. The grid pattern is located in the same location each time the inspection is performed within plus or minus 1/8 inch. Seven locations are each on a 1" by 6" area in which 7 separate UT readings are performed in a row pattern on 1" centers. The row pattern is located in the same location each time the inspection is performed within plus or minus 1/8 inch.

The grids with 49 readings correspond to bays that experienced the most identified corrosion prior to the repair in 1992.

In 1992, following the removal of the sand and corrosion byproducts from the sandbed region, the exterior of the Drywell Vessel was visually inspected from inside the sandbed. This inspection identified the thinnest local points in each of the 10 sandbed bays. These thinnest locations (approximately 115) were then UT inspected and documented with a single thickness value. These locations do not correspond with the 19 locations that were periodically monitored from inside the Drywell. These locations had not been re-inspected until 2006 when 106 were located and again UT inspected. These points were located using the 1992 NDE inspection data sheet maps. These UT readings were originally intended to provide a comparison to the acceptance criteria.

Preparer: Pete Tamburro 12/15/06

Subject:

Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006

AmerGen

Calculation No. C-1302-187-E310-041 Rev. No.

0

System Nos. Sh 187 4 o

s. Sheet 4 of 55

2.0 Summary of Results

Review of the 1992, 1994, 1996, and 2006 UT inspection data for all grids show that these monitored locations are experiencing no observable corrosion. These locations correspond to areas of the Sandbed Region of the Drywell Vessel that were coated in 1992 and are above the internal concrete curb and floor.

This conclusion is based on statistical testing of the mean thicknesses measured in 1992, 1994, 1996, and 2006 at each location; a point-to-point comparison of the thinnest reading measured in 2006 at each location, and sensitivity studies which have identified the minimum statistically observable rate of corrosion that would have to be present in order to have 95 percent confidence.

All measured mean and local thicknesses meet the established design basis criteria.

Sensitivity studies have identified the rates, which would be statistically observable given the limited number of inspections (four since the sandbed has been coated) and the variance of the data at the most critical location (19A).

Projections based on assumed corrosion rates corresponding to the calculated minimum statistically observable rates are used to determine the required inspection frequencies to ensure that all locations will continue to meet design basis requirements until the next scheduled inspection.

A review of the 2006 UT inspection data of 106 external locations shows all the measured local thicknesses meet the established design basis criteria. Comparison of this new data to the existing 19 locations used for corrosion monitoring leads to the conclusion that the 19 monitoring locations provide a representative sample population of Drywell Vessel in the Sandbed (see section 7.3).

The term "No Observable Corrosion" is being defined as: having "No Statistically Significant Rate of Corrosion". The actual margins remaining have considered rates based on actual differences between UT readings, which represent insignificant changes to shell thicknesses. However, to take a much more conservative approach in determining acceptable inspection frequencies for each of the locations, a sensitivity study has been performed to develop the minimum rate of corrosion that would have to exist in order to conclude with a high confidence level that in fact corrosion does exist. For the sandbed region, this approach is conservative since it includes the large standard error associated with the pre-existing surface irregularities due to corrosion of the exterior shell prior to 1992. This minimum observable rate that is defined is not indicative of an actual corrosion rate. It should also be noted that the results of this approach are significantly influenced by the amount of data used, and that additional inspection will reduce the minimum observable rate. This has been proven based on the upper drywell analysis that proved that as additional data and time were considered the actual rate (which was less than 1 mil per year) became observable.

Preparer: Pete Tamburro 12/15/06

Statistical Analysis of Drywell Vessel SandbedC-1302-187-E310-04101875 of 55Thickness Data 1992, 1994, 1996, and 2006C-1302-187-E310-04101875 of 55			Rev. No. 0	System Nos. 187	Sheet 5 of 55
---	--	--	----------------------	--------------------	-------------------------

The following table provides a breakdown of the location with the least amount of margin to the general criteria.

Table	1

Location ID	2006 Mean	Uniform Criteria	Delta	Margin Remaining
	(Inches)	(Inches)	(Inches)	Percentage
19A	0.8066	0.736	0.0706	9.6%

Evaluation of the mean thickness values of this location measured 1992, 1994, 1996 and 2006 shows that this location is experiencing negligible corrosion, approaching a rate of zero. However due to the limited amount of inspections this conclusion cannot be statistically confirmed with 95% confidence. Therefore the next inspection of this location shall be performed prior to the date in which the minimum statistically observable rate would drive the thickness to the minimum required thickness.

Table 2 - The following table provides a breakdown of the locations with the least amount of margin to local criteria.

Locatio n ID	2006 Local Reading	Local Criteria	Delta	Margin Remaining
	(Inches)	(Inches)	(Inches)	Percentage
17D/13	0.648	0.490	0.158	32%
19A/4	0.648	0.490	0.158	32%

Evaluation of these individual values measured 1992, 1994, 1996 and 2006 shows that these points are experiencing negligible corrosion, approaching a rate of zero. However due to the limited amount of inspections this conclusion cannot be statistically confirmed with 95% confidence. Therefore the next inspection of this location shall be performed prior to the date in which the minimum statistically observable rate would drive the thickness to the minimum required thickness.

Preparer: Pete Tamburro 12/15/06

Subject:

Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006

AmerGen

Calculation No. C-1302-187-E310-041 System Nos. Sheet 187

Rev. No.

0

6 of 55

2.1 Twelve Internal Locations with 49 Readings

Twelve, 49 point grid inspections have been performed in 1992, 1994, 1996 and 2006 after the sand was removed and the coating was applied in 1992. Analysis of the mean values and the thinnest 2006 reading at these locations indicate no observable corrosion during this period.

Table 3 Compilation of the 49 Point Grid Means Over Time

L	ocat	ion ID	Mean Thickness based on 1992 Inspections	Thickness based on 1994	Mean Thickness based on 1996 Inspections	2006 Mean	Uniform Criteria	Conclusions
			(Inches)	(Inches)	(Inches)	(Inches)	(Inches)	
	9	D .	1.004	0.992	1.008	0.993		No observable corrosion
	1	IA	0.825	0.820	0.830	0.822	<u> </u>	No observable corrosion
		All	0.909	0.894	0.951	0.898		No observable corrosion
1	ıc	Тор	0.970	0.982	1.042	0.958		No observable corrosion
		Bottom	0.860	0.850	0.883	0.855		No observable corrosion
	1	3A .	0.858	0.837	0.853	0.846]	No observable corrosion
	-	All	0.973	0.959	0.990	0.968		No observable corrosion
1	3D [Тор	1.055	1.037	1.059	1.047] .	No observable corrosion
		Bottom	0.906	0.895	0.933	0.904		No observable corrosion
	1	5D	1.058	1.053	1.066	1.053	0.736	No observable corrosion
		All	1.022	1.017	1.058	1.015		No observable corrosion
1	7A	Тор	1.125	1.129	1.144	1.122		No observable corrosion
		Bottom	0.942	0.934	0.997	0.935	· ·	No observable corrosion
Γ	1	7D	0.817	0.810	0.848	0.818		No observable corrosion
Γ		All	0.983	0.970	0.980	0.969		No observable corrosion
1	7/19	Тор	0.976	0.963	0.967	0.964]	No observable corrosion
		Bottom	0.989	0.975	0.990	0.972		No observable corrosion
	1	9A	0.800	0.806	0.815	0.807		No observable corrosion
]	9B	0.840	0.824	0.837	0.847]	No observable corrosion
]	9C	0.819	0.820	0.854	0.824		No observable corrosion

Locations that were previously split in two groups are shown for consistency with previous calculations.

Preparer: Pete Tamburro 12/15/06

ļ	Subject:	
	Statistical Analysis of Drywell Vessel Sandbed	C-
	Thickness Data 1992, 1994, 1996, and 2006	

AmerGen

Calculation No. -1302-187-E310-041 Rev. No.

0

7 of 55

Table 4 Compilation of the Lowest 2006 Reading in Each 49 Point Grid Over Time

Location ID/ Point	1992 Reading	1994 Reading	1996 Reading	Lowest 2006 Reading	Local Criteria	Conclusions
	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)	
9D/15	0.763	0.770	0.776	0.751		No observable corrosion
11A/20	0.677	0.677	0.668	0.669	1	No observable corrosion
11C/5	0.776	NA	1.14	0.767		No observable corrosion
13A/18	0.761	0.752	0.774	0.746		No observable corrosion
13D/49	0.824	0.811	0.822	0.821		No observable corrosion
15D/42	0.980	0.903	0.940	0.922	0.490	No observable corrosion
17A/40	0.804	0.809	0.983	0.802		No observable corrosion
17D/13	0.648	0.646	0.693	0.648]	No observable corrosion
17-19/35	0.914	0.906	0.935	0.901].	No observable corrosion
19A/4	0.659	0.650	0.680	0.648		No observable corrosion
19B/34	0.743	0.716	0.745	0.731	- - -	No observable corrosion
19C/21	0.650	0.666	0.771	0.660		No observable corrosion

2.2 Seven Locations With 7 Readings

Seven, 7 point grid inspections have been performed in 1994, 1996 and 2006 after the sand was removed and the coating was applied in 1992.

Analysis of the mean values and the thinnest 2006 reading at these locations indicate no on going corrosion during this period. This conclusion is based on the statistical "F" test of the data over time.

Preparer: Pete Tamburro 12/15/06

187

Subject:

Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006

Calculation No. C-1302-187-E310-041 Rev. No.

0

System Nos. Sheet 8 of 55

Table 5 Compilation of the 7 Point Grid Means Over Time

ID	Average Thickness based on 1992 Inspections	Average Thickness based on 1994 Inspection s	Average Thickness based on 1996 Inspections	2006 Mean	Uniform Criteria	Conclusions
	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)	
ID	1.121	1.101	1.151	1.122		No observable corrosion
3D	1.182	1.184	1.175	1.180		No observable corrosion
5D	1.182	1.168	1.173	1.185		No observable corrosion
7D	1.137	1.136	1.138	1.133	0.736	No observable corrosion
9A	1.157	1.157	1.155	1.154]	No observable corrosion
13C	1.149	1.140	1.154	1.142		No observable corrosion
15A	1.133	1.114	1.127	1.121		No observable corrosion

Table 6 Compilation of the Lowest 2006 Reading in Each 7 Point Grid Over Time

Footion	1992 Reading	1994 Reading		Lowest 2006 Reading	Local Criteria	Corrosion
	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)	
1D/1	0.889	0.879	0.881	0.881		No observable corrosion
3D/5	1.159	1.164	1.158	1.156		No observable corrosion
5 <u>D</u> /1	1.164	1.163	1.163	1.174		No observable corrosion
7D/5	+ 1.111	1.135	1.113	1.102	0.490	No observable corrosion
9A/7	1.133	1.132	1.127	1.130		No observable corrosion
13C/6	1.138	1.123	1.147	1.128] .	No observable corrosion
15A/7	1.083	1.040	1.100	1.049		No observable corrosion

AmerGen	CALCULATION SHEET		Preparer: Pete Ta 12/15/06	Imburro
tatistical Analysis of Drywell Vessel Sandbed	Calculation No. C-1302-187-E310-041	Rev. No. 0	System Nos. 187	Sheet 9 of 55
· .				
5.1 References	ct. al Analysis of Drywell Vessel Sandbed ess Data 1992, 1994, 1996, and 2006 Calculation No. C-1302-187-E310-041 Rev. No. 0 System Nos. 187 Sheet 9 of 55 eferences 1 GPUN Safety Evaluation SE-000243-002, Rev. 14 "Drywell Steel Shell Plate Thickness Reduction at the Base Sand Cushion Entrenchment Region." 2 GPUN TDR 854, Rev. 0 "Drywell Corrosion Assessment" 3 GPUN TDR 851, Rev. 0 "Drywell Corrosion Assessment" 3 GPUN TDR 851, Rev. 0 "Assessment of Oyster Creek Drywell Shell" 4 GPUN Installation Specification, 1S-328227-004, Rev 13, "Functional Requirements for Drywell Containment Vessel Thickness Examination" 5 Applied Regression Analysis, 2nd Edition, N. R. Draper & H. Smith, John Wiley and Sons 1981 6 Statistical Concepts and Methods, G.K. Bhattacharyya & R.A. Johnson, John Wiley and Sons 177 7 GPUN calculation C-1302-187-5300-005, Rev.0, "Statistical Analysis of Drywell Thickness Data Thr 12-31-88" 8 GPUN TDR 948, Rev. 1 "Statistical Analysis of Drywell Thickness Data" 9 9 Experimental Statistics, Mary Gobbons Natrella, John Wiley & Sons, 1966 Reprint (National Bureau of Standards Handbock 91) 10 Fundamental Concepts in the Design of Experiments, Charles C Hicks, Saunders College Publishing, Fort Worth, 1982 11 GPUN Calculation C-1302-187-5300-015, Rev.0, "Statistical Analysis of Drywell Thickness Data Thru 2-8-90" 13 GPUN Calculation C-1302-187-5300-015, Rev.0, "Statistical Analysis of Drywell Thickness Data Thru 424-90" 13 GPUN Calculation C-1302-187-5300-017, Rev.0, "			
APPLICE OCH CALCULATION SHEET 12/15/06 Subject: Statistical Analysis of Drywell Vessel Sandbed C-1302-187-E310-041 0 System Nos. Sheet 9 of 55 3.1 References 3.1 References 3.1 GPUN Safety Evaluation SE-000243-002, Rev. 14 "Drywell Steel Shell Plate Thickness Reduction at the Base Sand Cushion Entrenchment Region." 3.2 GPUN TDR 854, Rev. 0 "Drywell Corrosion Assessment" 3.3 GPUN TDR 854, Rev. 0 "Assessment of Oyster Creek Drywell Shell" 3.4 GPUN INTER 854, Rev. 0 "Drywell Corrosion Assessment" 3.3 GPUN TDR 854, Rev. 0 "Assessment of Oyster Creek Drywell Shell" 3.4 GPUN INTER 854, Rev. 0 "Assessment of Oyster Creek Drywell Shell" 3.4 GPUN INTER 851, Rev. 0 "Assessment of Oyster Creek Drywell Shell" 3.4 GPUN INTER 851, Rev. 0 "Assessment of Oyster Creek Drywell Shell" 3.4 GPUN INTER 851, Rev. 0 "Assessment of Oyster Creek Drywell Shell" 3.4 GPUN INTER 851, Rev. 1 "Statistical Analysis of Drywell Thickness Data" 3.6 Spatistical Concepts and Methods, G.K. Bhattacharyya & R.A. Johnson, John Wiley and Sons 1981 3.6 GPUN Taleulation C-1302-187-5300-005, Rev.0, "Statistical Analysis of Drywell Thickness Data" 3.8 GPUN TDR 948, Rev. 1 "Statistical Analysis of Drywell Thickness Data Thru 2-3.48 Handbook 10 3.10 Fundamental Concepts in the Dasign of Experiments, Charles C Hicks, Saunders College Publishing, Fort Worth, 1982 3.11 GPUN Calculation C-1302-187-5300-017, Rev.0, "Statistical Analysis of Drywell Thickness Data Thru 24-90"				
3.12 GPUN Calculation C-1302-187 Data Thru 4-24-90"		•	•	
Data Thru March 1991"			·	
Data Thru May 1991"		· ·	-	· · ·
Data Thru November 1991"		·	•	
11/02/91"		5	· · · ·	
Data Thru May 1992" 3.18 GPUN Calculation C-1302-18				
3.19 GPUN Calculation C-1302-18	7-5300-025, Rev.0, "Statistica	l Analysis o	of Drywell Thicl	kness
3.20 GPUN Calculation C-1302-18	7-5300-024, Rev.0, "OCDW P	rojected Th	ickness Data T	hru
Thickness Data Thru September	er 1994"			
	7-5300-030, Rev.0, "Statistica"	l Analysis o	of Drywell Thic	kness

Preparer: Pete Tamburro 12/15/06

OCLR00019285

Subject:	Calculation No.	Rev. No.	System Nos.	Sheet
Statistical Analysis of Drywell Vessel Sandbed	C-1302-187-E310-041	0	187	10 of 55
Thickness Data 1992, 1994, 1996, and 2006				··· ·

3.23 Practical Statistics – "Mathcad Software Version 7.0 Reference Library, Published by Mathsoft, Inc. Cambridge

3.24 AmerGen Calculation C-1302-187-E310-037, Rev. 1 Statistical Analysis of Drywell Vessel Data.

3.25 AmerGen Calculation C-1302-187-5320-024, Rev. 1 OC Drywell Ext. UT Evaluation in Sandbed"

4.0 Assumptions

AmerGen

The statistical evaluation of the UT data to determine the corrosion rate at each location is based on the following assumptions:

4.1 Characterization of the scattering of the data over each grid is such that the thickness measurements are normally distributed. If the data is not normally distributed the grid is subdivided into normally distributed subdivisions.

4.2 Once the distribution of data is found to be close to normal, the mean value of the data points is the appropriate representation of the average condition.

4.3 A decrease in the mean value of the thickness over time is representative of the corrosion.

4.4 If corrosion does not exist, the mean value of the thickness will not vary with time except for random variations in the UT measurements

4.5 If corrosion is continuing at a constant rate, the mean thickness will decrease linearly with time. In this case, linear regression analysis can be used to fit the mean thickness values for a given zone to a straight line as a function of time. The corrosion rate is equal to the slope of the line.

CALCULATION SHEET	CALC	ULA	τιον ε	SHEFT

Preparer: Pete Tamburro 12/15/06

Subject:	Calculation No.	Rev. No.	System Nos.	Sheet
Statistical Analysis of Drywell Vessel Sandbed	C-1302-187-E310-041	0	187	11 of 55
Thickness Data 1992, 1994, 1996, and 2006	· .			

5.0 Design Inputs:

AmerGen

5.1 Drywell Vessel Thickness criteria has been previously established (reference C-1302-187-5320-024) as follows:

1) General Uniform Thickness - 0.736 inches or greater.

2) If an area is less than 0.736" thick then that area shall be greater than 0.693 inches thick and shall be no larger than 6" by 6" wide. C-1302-187-5320-024 has previously dispositioned an area of this magnitude in Bay 13.

3) If an area is less than 0.693" thick then that area shall be greater than 0.490" thick and shall be no larger then 2" in diameter. C-1302-187-5320-024 calculated an acceptance criterion of .479 inches however; this evaluation is conservatively using .490 inches, which is the original GE acceptance criterion. In addition, this calculation applied this acceptance criteria over an area up to 2 1/2" in diameter. Since the UT readings were taken on 1 inch centers and the transducer size is less than 0.5 inch these readings can be characterized as less than 2 inches in diameter.

5.2 Seven core samples approximately 2" in diameter were removed from the drywell vessel shell for analysis (reference 3.1). In these locations replacement plugs were installed. Four of these removed cores are in grid locations that are part of the sandbed monitoring program. Therefore the UT data from these points are not included in the calculation.

Bay Area	Points
11A	23, 24, 30, 31
17D	15, 16, 22, 23
19A	24, 25, 31, 32
19C	20, 26, 27, 33

The following specific location/grid points have core bore plugs.

5.3 Historical data sets for 1992, 1994, 1996, and 2006 have been collected and are provided in attachments 1, 2, 3, and 4.

5.4 The 106 UT data for 2006 and 1992 external inspections are provided in attachment 5.

Preparer: Pete Tamburro 12/15/06

Rev. No.

0

Subject:

Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006

6.0 OVERALL APPROACH AND METHODOLOGY:

6.1 Definitions

6.1.1 A Normal Distribution has the following properties

- Characterized by a bell shaped curve centered on the mean.
- A value of that quantity is just as likely to lie above the mean as below it
- A value of that quantity is less likely to occur the farther it is from the mean
- Values to one side of the mean are of the same probability as values at the same distance on the other side of the mean

6.1.2 Mean thickness is the mean of valid points, which are normally distributed from the most recent UT measurements at a location.

6.1.3 Variance is the mean of the square of the difference between each data point value and the mean of the population.

6.1.4 Standard Deviation is the square root of the variance.

6.1.5 Standard Error is the standard deviation divided by the square root of the number of data points. Used to measure the dispersion in the distribution.

6.1.6 Skewness measures the relative positions of the mean, medium and mode of a distribution. In general when the skewness is close to zero, the mean, medium and mode are centered on the distribution. The closer skewness is to zero the more symmetrical the distribution. Normal distributions have skewness, which approach zero. Values with +/- 1.0 are indicative that the distribution is normally skewed.

6.6.9 Kurtosis measures the heaviness of a distribution tails. A normal distribution has a kurtosis, which approaches zero. Values with +/- 1.0 indicate that the distribution is normal.

6.1.8 Linear Regression is a linear relationship between two variables. A line with a slope and an intercept with the vertical axis can characterize the linear relationship. In this case the linear relationship is between time (which is the independent variable) and corrosion (which is the dependent variable).

6.1.9 F-Ratio is the ratio of explained variance to unexplained variance. The mean square regression (MSR) value provides an estimate of the variance explained by regression (a line with a slope). The mean square error (MSE) provides an estimate of the variance that is not explained by a straight line with a slope.

Preparer: Pete Tamburro 12/15/06

	· · · · · · · · · · · · · · · · · · ·			
Subject:	Calculation No.	Rev. No.	System Nos.	Sheet
Statistical Analysis of Drywell Vessel Sandbed	C-1302-187-E310-041	0.	187	13 of 55
Thickness Data 1992, 1994, 1996, and 2006		-		

An F-Ratio of greater than 1.0 occurs when the amount of corrosion that has occurred since the initial measurement is significant compared to the random variations, and four or more measurements have been taken. In these cases the computed corrosion rate more accurately reflects the actual corrosion rate, and there is a very high probability that the actual corrosion rate is the computed corrosion rate. The greater the F-Ratio then the lower the uncertainty in the corrosion rate (reference 3.22).

Where the F-Ratio of 1.0 or greater provides confidence in the historical corrosion rate, the F-Ratio should be 4 to 5 if the corrosion rate is to be used to predict the thickness in the future. To have a high degree of confidence in the predicted thickness, the ratio should be at least 8 or 9 (reference 3.22).

If the F-Ratio is less than 1 then no conclusions can be made that the means are best explained by a line with a slope.

6.1.10 Grand mean - when the F-Ratio test is less than 1.0 and/or the slope is positive this is the grand mean of all data.

6.1.11 Corrosion Rate – With three or more data sets and the F-Ratio test greater than 1.0 this is the slope of the regression line.

6.1.12 Upper and Lower 95% Confidence Interval – The upper and lower corrosion rate range for which there is 95% confidence that the actual rate lies within this range.

6.2 Methodology Background

AmerGen

In the mid 1980's a survey was performed of the Drywell Vessel at the Sandbed elevation. As a minimum at least one inspection location (also referred to as a grid) was selected for repeat inspection in each of the 10 Drywell Bays and permanently marked. This became the basis for the Dyrwell Thickness Monitoring Program in the Sandbed Region.

UT Inspection of locations with the most thinning (known at the time) consisted of 49 individual UT thickness readings in a 7 by 7 pattern spaced on 1 inch centers over a 6" by 6" area. These measurements were taken using a stainless steel template. The template was designed to ensure that the 7 by 7 grid is located in the same area with repeatability of a 1/16". The template has a grid pattern of 49 holes on 1 inches center that are large enough to fit the UT transducer. The sides of the template are notched to that it can be aligned with permanent field markings made at each inspection location.

Forty nine evenly spaced individual readings over a 6" be 6" area were originally selected in the mid 1980's based on statistical proof that a minimum number of 30 samples are necessary to characterize a entire population (the 6 " by 6" area) assuming the entire population is normally distributed (ref 3.7 and 3.8).

AmerGen

Preparer: Pete Tamburro 12/15/06

Subject: Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006	Calculation No. C-1302-187-E310-041	Rev. No. 0	System Nos. 187	Sheet 14 of 55

The program then performed UT inspections over time at these same locations. The corrosion rates were developed using a standard regression analysis and establishment of the 95% confidence intervals enhanced to capture increasing variance depending on the projection of ongoing corrosion and the number of inspections. This methodology is based on the following references:

- 1) Applied Regression Analysis, Second Edition, N.R. Draper & H. Smith, John Wiley and Sons 1981
- 2) Statistical Concept and Methods, G.K. Bhattacharyya & R.A. Johnson, John Wiley and Sons 1977,
- 3) Experimental Statistics, Mary Gobbons Natrella, John Wiley and Sons 1966 (Reprint National Bureau of Standards Handbook 91)
- 4) Fundamental Concepts in the Design of Experiments, Charles C Hicks, Saunders College Publishing, Fort Worth, 1982

6.3 The UT measurements within scope of this monitoring program are performed in accordance with ref. 3.4. This specification involves taking UT measurements using a template with 49 holes laid out on a 6" by 6" grid with 1" between centers on both axes or in 7 locations, 7 holes in one row laid on 1" centers. All measurements are made in the same location within 1/8" (reference 3.4).

6.3 Each 49 point data set is evaluated for missing data. Invalid points are those that are declared invalid by the UT operator or are at plug locations.

6.3 The thinnest single location in each of the grids will be trended and compared to acceptance criteria.

6.4 Data that is not normally distributed will be compared to previous calculations. In several cases the data has shown significant wear patterns. For example the top 3 rows of grid 11C are much thicker than the bottom 4 rows. Past calculations has sub divided these grids into thicker and thinner subsets based on the patterns and determined if each subset is normally distributed. Normally distributed subsets are then analyzed separately. In this calculation the same grids are subdivided into subsets to ensure consistency to past calculations. In some cases (past and present) grids are not normally distributed due a few "outlying" thinner and thicker points. In these cases the outlying points are trended separately.

amergen	CALC	ULATION SHEET	Preparer: Pete Tamburro 12/15/06			
Aligned Control (CALCULATION SHEET) 12/15/06 Ibject: Calculation No. Rev. No. System Nos. atistical Analysis of Drywell Vessel Sandbed C-1302-187-E310-041 0 187 ickness Data 1992, 1994, 1996, and 2006 C-1302-187-E310-041 0 187 5 Methodology Statistical Analysis of Drywell Vessel Sandbed No. 187 .5 Methodology .5.1 Test Matrix o demonstrate the methodology a 49 member array will be generated using the Mathcad "rnorm" anction. This function returns an array with a probability density which is normally distributed, there the size of the array (No DataCells), the target mean (µ input), and the target standard	Sheet 15 of 55					
6.5 Methodology	· · · · · · · · · · · · · · · · · · ·					
function. This function returns an	array with a probat	pility density which is norr	nally distribut	ted,	. .	
deviation σ_{input}) are input.			•	· · · ·		
The following will build a matrix of	of 49 points					
No DataCells := 49 i :=	0. No DataCells - 1	count := 7			· .	
		· · · ·		'input'		
"Cells" is shown as a 7 by 7 m	atrix		• .			
	766 761 766 75	6 741 776 773]			•	
				•	. *	
· · · · · · · · · · · · · · · · · · ·	754 776 760 78	9 771 762 761				
		4		-		
Show matrix (Cells, 7) =				• .		
Show matrix (Cells, 7) =	797 793 717 73	2 779 763 751		• •		
	797 793 717 73 777 790 781 77	2 779 763 751 5 760 767 762		• •		
	797 793 717 73 777 790 781 77 772 795 779 78	2 779 763 751 5 760 767 762 5 790 775 781	· · · · · · · · · · · · · · · · · · ·	• • •		
	797 793 717 73 777 790 781 77 772 795 779 78 ed in sections 6.5.2	2 779 763 751 5 760 767 762 5 790 775 781	· ·	· • · ·		
The above test matrix will be use	797 793 717 73 777 790 781 77 772 795 779 78 ed in sections 6.5.2 ation	2 779 763 751 5 760 767 762 5 790 775 781 through 6.5.8	by the Matho	ad functions		

 $\mu_{actual} := mean(Cells)$

 $\sigma_{actual} := Stdev(Cells)$

μ _{actual} = 774.104

 $\sigma_{actual} = 18.258$

Inspection shows that the actual mean and standard deviations are not the same as the target mean and target standard deviation which were input. This is expected since the "morm" function returns an array with a probability density which is normally distributed.

AmerGen CALCULATION SHEET Preparer: Pete Tamburro
12/15/06 Subject:
Statistical Analysis of Drywell Vessel Sandbed
Thickness Data 1992, 1994, 1996, and 2006 Calculation No.
C-1302-187-E310-041 Rev. No.
0 System Nos.
187 Sheet
16 of 55

6.5.3 Standard Error

The Standard Error is calculated using the following equation (reference 3.23). For the matrix generated in section 6.5.1

Standard error
$$:= \frac{\sigma_{actual}}{\sqrt{No_{DataCells}}}$$
 Standard error = 2.578

6.5.4 Skewness

Skewness is calculated using the following equation (reference 3.23).

For the matrix generated in section 6.5.1

Skewness :=
$$\frac{\left(N_{o}_{DataCells}\right) \cdot \Sigma \left(Cells - \mu_{actual}\right)^{3}}{\left(N_{o}_{DataCells} - 1\right) \cdot \left(N_{o}_{DataCells} - 2\right) \cdot \left(\sigma_{actual}\right)^{3}}$$

Skewness = 0.354

A skewness value close to zero is indicative of a normal distribution (reference 3.22 and 3.23)

6.5 Kurtosis

Kurtosis is calculated using the following equation (reference 3.23). For the matrix generated in section 6.5.1

Kurtosis :=
$$\frac{\text{No}_{\text{DataCells}} (\text{No}_{\text{DataCells}+1}) \cdot \overline{\Sigma} (\text{Cells} - \mu_{\text{actual}})^{4}}{(\text{No}_{\text{DataCells}-1}) \cdot (\text{No}_{\text{DataCells}-2}) \cdot (\text{No}_{\text{DataCells}-3}) \cdot (\sigma_{\text{actual}})^{4}} + \frac{3 \cdot (\text{No}_{\text{DataCells}-1})^{2}}{(\text{No}_{\text{DataCells}-2}) \cdot (\text{No}_{\text{DataCells}-3})}$$

Kurtosis = 0.262

A Kurtosis value close to zero is indicative of a normal distribution (reference 3.23)

Preparer: Pete Tamburro 12/15/06

	Subject:	Calculation No.	Rev. No.	System Nos.	Sheet
j.	Statistical Analysis of Drywell Vessel Sandbed	C-1302-187-E310-041	0	187	17 of 55
	Thickness Data 1992, 1994, 1996, and 2006				

6.5.6 Normal Probability Plot

AmerGen

An alternative method to determine whether a sample distribution approaches a normal distributio is by a normal probability plo(reference 3.22 and 3.23). In a normal plot, each data value is plottec against what its value would be if it actually came from a normal distributible expected normal values, callednormal scores, and can be estimated by first calculating the rank scores of the sorted data. The Mathcad function "sorts" sorts the "Cells" array

j := 0. last(Cells) srt := sort(Cells)

Then each data point is ranked. The array "rank" captures these rankings

$$:=j+1 \qquad \qquad rank_{j} := \frac{\sum (\overrightarrow{srt=srt_{j}}) \cdot r}{\sum \overrightarrow{srt=srt_{i}}}$$

Each rank is proportioned into the "p" array. Then based on the proportion an estimate is is calculated for the data point. TheVan der Waerden's formula is used

$$p_j := \frac{rank_j}{rows(Cells) + 1}$$

r,

The normal scores are the corresponding pth percentile points from the standard normal distribution:

$$x := 1$$
 N_Score := root cnorm(x) - (p_i), x

If a sample is normally distributed, the points of the "Normal Plot" will seem to form a nearly straight line. The plot below shows the "Normal Plot" for the matrix generated in section 6.5.1

AmerGen cai	LCI	ULATION SHEET		Preparer: Pete Ta 12/15/06	imburro
Subject: Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006		Calculation No. C-1302-187-E310-041	Rev. No. [.] 0	System Nos. 187	Sheet 18 of 55

6.5.7 Upper and Lower Confidence Values

The Upper and Lower confidence values are calculated based on .05 degree of confidence α ." (reference 3.23).

$$\alpha := .05 \qquad \qquad \mathrm{T}\alpha := \mathrm{qt}\left[\left(1-\frac{\alpha}{2}\right), 48\right]$$

Therefore for the matrix generated in section 6.1

Lower 95%Con :=
$$\mu_{actual} - T\alpha - \frac{\sigma_{actual}}{\sqrt{N_o DataCells}}$$

Upper
$$_{95\%Con} := \mu_{actual} + T\alpha \frac{\sigma_{actual}}{\sqrt{No} DataCell}$$

Lower 95%Con = 767.726

 $T\alpha = 2.011$

Upper 95%Con = 778.094

These values represent a range on the calculated mean in which there is 95% confidence. In other words, if the 49 data points were collected 100 times the calculated mean in 95 of those 100 times would be within this range.

6.5.8 Graphical Representation

Below is the distribution of the "Cells" matrix generated in section 6.5.1 sorted in one half standard deviation increments (bins) within a range from minus 3 standard deviations to plus 3 standard deviations.

The Mathcad function pnorm calculates the normal distribution curve based on a given mean and standard deviation. The actual mean and standard deviation generated in section 6.5.2 are input. The resulting plot will provide a representation of the normally distribution corresponding the the actual mean and standard deviation.

AmerGer	CALC	ULATION SHEET		Preparer: Pete Tamburro 12/15/06		
Subject: Statistical Analysis of Drywell V Thickness Data 1992, 1994, 1996	essel Sandbed , and 2006	Calculation No. C-1302-187-E310-041	Rev. No. 0	System Nos. 187	Sheet 19 of 55	•
normal _{curve0} :=pnorm(Bins ₁	$\mu_{\text{actual}}, \sigma_{\text{actual}}$	· · · · · · · · · · · · · · · · · · ·				
$normal_{curve_k} := pnorm(Bins_k)$	+1, ^{μ} actual, σ actual) -1	pnorm(Bins _k ,µ _{actual} , ^o a	ctual)	•		
The normal curve is simply a p	roportion, which is multi	plied by the number of "	Cellsº (49)		•	
normal curve := No DataCell	s ^{-normal} curve					
The following schematic shows (solid line) based on the actual (Kurtosis), the skewness (Skew and upper 95% confidence value	mean (μ_{actual}) and structures), the number of d	tandard deviation σ_{actual} ata points (No DataCells)	al), the kurto	isis		
			·			
$\mu_{actual} = 772.91$	$\sigma_{actual} = 18.047$	Standard error	= 2.578			
Skewness = 0.354	Kurtosis = 0.262	2 No DataCells =	49			• •
· ·			· .			
13	···· •		:			
10		\mathbf{X}			•	
Distribution A normal curve					·	
5			· -	· · · .	•	
				•		
			, .			
0 720	740 760	780 800 820 nts , Midpoints	840	· ·		
Lower			004		•	
Lower 95%C	on ~ 101.120	Upper 95%Con = 778.		· · .	•	•
		•				
	· · ·				· · ·	•
•				· .		

OCLR00019294

CAL	CUL	ATION	SHEET
•••=			

Preparer: Pete Tamburro 12/15/06

Subject:	Calculation No.	Rev. No.	System Nos.	Sheet
Statistical Analysis of Drywell Vessel Sandbed	C-1302-187-E310-041		187	20 of 55
Thickness Data 1992, 1994, 1996, and 2006				

6.5.9 General Summary of Corrosion Rate Assessment Methodology

AmerGen

This methodology develops a test to assess whether the trend of the means or individual points over time is indicative of corrosion. The statistical test consists of two parts. The first part is to determine if the data (either the means or individual points) is well characterized by a straight line determined by using standard linear regression modeling. The second part is a comparison of the linear regression through the data with a line defined by a prescribed slope and intercept. The slope represents the rate corrosion, and it is chosen to reflect acceptable limits. The intercept is determined by the thickness in 1992 (baseline) as the sand removal. The confidence level for the test will be 95%. The test will be referred to as the F test for Corrosion shows that the prescribed line for corrosion is within the 95% confidence bounds determined by the linear regression on the data, then a statistical projection can be made to the year 2029.

If the F test for Corrosion shows that the prescribed line for corrosion is not acceptable within the 95% confidence bounds determined by the linear regression on the data, then a conservative approach will be used, and the regression will be utilized to determine an apparent corrosion rate to establish the next inspection frequency for that location.

Two sensitivity studies will be performed. The first will determine the minimum observable corrosion rate that may exist in the 49 point grid, given the observed standard deviations of the averages and the number of observations, which are 4 in this case. For this analysis, location 19A was chosen since it is the thinnest location of the 19 grids. The second study will determine the minimum observable corrosion rate that may exist at one point within a grid, given the observed standard error for the individual points and the number of observations, which is, again, 4 in this case. For this analysis, point 4 in grid 19A was chosen since it is one of the two individual points, which are the thinnest out of the 19 grids.

6.5.9.1 Appropriateness of the Regression Model for Corrosion

General corrosion rates of a carbon steel plate over long periods of time (i.e. years) can be approximated by a straight line with a slope over time (see assumptions 4.3, 4.4 and 4.4).

This assumption has been shown to be reasonable over the life of the monitoring program. Prior to 1992 sand removal from the sandbed, the regression model was shown to accurately calculate the actual corrosion rates (reference 3.7, 3.11 through 3.21) of the vessel in the sandbed and to provide reliable projections that were used to schedule the ultimate repair (the sand removal). In addition the regression model has been shown to detect very small corrosion rates of less than 1 mil per year in the upper elevations of the drywell. In this case it took up to ten inspections over an approximate 10 years to detect these minor rates (reference 3.2, 24).

	AmerGen	CALCULATION SHEET	Preparer: Pete Tamburro 12/15/06		
1	Subject: Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006	Calculation No. C-1302-187-E310-041	Rev. No. 0	System Nos. 187	Sheet 21 of 55

6.5.9.2 "F" Test Results for Corrosion

To illustrate a case in which the location is corroding, nine 49 point matrixes will be generated with input means which are descending over time at a rate of 2 mils per year. This will illustrate the case where the population is corroding at 2 mils per year with a 20 mil standard deviation.

The nine means, standard deviations of the following simulated dates are shown below

Rate := 2.0

 $\mu_{\text{input}_d} := 775 - (\text{Rate}) \cdot (\text{Dates}_d - \text{Dates}_0)$

2008

Dates :=

 $\sigma_{\text{input}_d} := 20$ Cells_d := morm (No DataCells, μ input_d, σ input_d)

 $\mu_{\text{actual}_{d}} := \text{mean}\left(\text{Cells}_{d}\right)$

 $\sigma_{actual_d} := Stdev(Cells_d)$

d := 0.. 8

"d" is used as an index for the arrays

1.993•10³ The resulting simulated means are 1.995•10³ 770.163 20.964 1.997•10³ 769.826 20.197 1.997•103 773.738 19.8 767.08 19.57 1.999•10³ Dates = 752.938 µ actual = 17.368 $\sigma_{actual} =$ 2.002•10³ 754.346 20.289 750.331 2.004•10³ 16.007 744.589 2.006•10³ 24.804 742.622 20.188 2.008•10³

OCLR00019296

Preparer: Pete Tamburro AmerGen CALCULATION SHEET 12/15/06 Calculation No. Subject: Rev. No. System Nos. Sheet C-1302-187-E310-041 Statistical Analysis of Drywell Vessel Sandbed 22 of 55 0 187 Thickness Data 1992, 1994, 1996, and 2006

The following function simply returns the number of means ($No_{of means}$) which will be used later

No_of means := rows (μ actual)

No_of means = 9

The curve fit equation and model equation is defined for the function "yhat"

yhat $(x, y) := intercept(x, y) + slope(x, y) \cdot x$

The curve fit equation in which the date Dates is the independent variable and the measured mean thickness of the location (μ_{actual}) is the dependent variable, is then defined as the function "yhat". This function makes use of Mathcad function " intercept " which returns the intercept value of the "Best Fit" curve fit and the Mathcad function " slope " which returns the slope value of the "Best Fit" curve fit.

The Sum of Squared Error (SSE) is calculated as follows (reference 3.23). This is the variance between each actual value (mean or individual point) and what the value should be if it met the regression model.

SSE := $\sum_{i=1}^{iast(Dates)} (\mu_{actual_{i}} - yhat(Dates, \mu_{actual}))^{2}$

SSE = 125.623

The Sum of Squared Residuals (SSR) is then calculated as follows (reference 3.23). This is the difference between what the value should be if it met the regression model and what the value should be if it met the grandmean model.

SSR :=
$$\sum_{i=0}^{last(Dates)} (yhat(Dates, \mu_{actual})_{i} - mean(\mu_{actual}))^{2}$$
 SSR = 1.00510

Degrees of freedom associated with the sum of squares for residual error.

DegreeFree ss = No_of means - 2

AmerGen	CALCULATION SHEET	Preparer: Pete Tamburro 12/15/06		
Subject: Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006	Calculation No. C-1302-187-E310-041	Rev. No. 0	System Nos. 187	Sheet 23 of 55

The degrees of freedom for the sum of squares due to regression,

SSR

DegreeFree reg

MSR :=

MSR = 741.797

The MSE is the variance estimate to the regression model. The MSR is an estimate for the difference between the regression model and the grandmean. The ratio of the two gives a measure of how well the data approaches a line with slope. The larger the ratio then the better the data is represented by the regression model. For example if the MSE was very large indicating that the values significantly vary from the regression model, then the ratio would approach zero and the hypothesis that there is slope is not satisfied. Another example would be if the MSE was very large and the hypothesis that the values are very close to the regression model, then the ratio would be very large and the hypothesis that there is slope is satisfied.

$$F_{actaul} := \frac{MSR}{MSE}$$

This ratio F_{actaul}) is then compared to the "F" Distribution with the appropriate confidence factor. The Mathcad functive computes cumulative probabilities for **aF** distribution" with d1, d2 degrees of freedom at x confidence

Pictorially, pF(x, d1, d2) computes the area of the region shaded below:

The confidence factor is set at 95%

Confidence := .95

OCLR00019299

	<u>.</u>	· · ·		· · · · · · · · · · · · · · · · · · ·
Subject:	Calculation No.	Rev. No.	System Nos.	Sheet
Statistical Analysis of Drywell Vessel Sandbed	C-1302-187-E310-041	0	187	24 of 55
Thickness Data 1992, 1994, 1996, and 2006				

α **:=0.0**5

F_{critical} := qF(Confidence, DegreeFree_{reg}, DegreeFree_{ss}) F_{critical} = 5.591

The "F" ratio for 95% confidence is calculated:

AmerGen

 $\frac{F_{actaul}}{F_{critical}}$ F_{ratio} :=

F _{ratio} = 10.015

Standard error = 4.236

The "F" ratio is greater than 1.0, therefore the regression model holds for the data. The curve fit for the nine means is best explained by a curve fit with a slope.

If the F ratio is less than 1.0 then no conclusions can be made with respect to how well the data satisfies a line without slope.

Preparer: Pete Tamburro 12/15/06

Subject:	Calculation No.	Rev. No.	System Nos.	Sheet
Statistical Analysis of Drywell Vessel Sandbed	C-1302-187-E310-041	-0-	187	25 of 55
Thickness Data 1992, 1994, 1996, and 2006	· .	I .		

6.9.3 Linear Regression with 95% Confidence Intervals

Using data generated in section 6.9.2 the curve fit for linear regression is calculated by the Mathcad functions " slope " and "intercept".

 $m_s := slope (Dates , \mu_{actual}) \qquad y_b := intercept (Dates , \mu_{actual})$

 $m_s = -2.159$ $y_b = 5.077 \cdot 10^3$

The predicted curve is calculated over time where "year predict " is time (independent variable), and "Thick predict " is thickness (dependent variable).

Remaining $Pl_{life} := 23$ f := 0. Remaining $Pl_{life} - 1$ year predict $r := 1993 + f \cdot 2$

Thick predict $:= m_s \cdot year$ predict $+ y_b$

The 95% Confidence ("1- α_{t} ") curves are calculated as follows (reference 3.3)

α ;= 0.05

AmerGen

Thick actualmean := mean (Dates)

sum := $\sum_{d} (Dates_{d} - mean(Dates))^{2}$

upper f := Thick predict f ...

$$+ qt\left(1 - \frac{\alpha_{t}}{2}, No_{o} = \frac{1}{means} - 2\right)$$
 Standard error $\sqrt{1 + \frac{1}{(d+1)}} + \frac{\left(year \text{ predict } f^{-1} = 1\right)}{sum}$

lower f := Thick predict f ...

$$+ -\left[qt\left(1 - \frac{\alpha_{1}}{2}, \text{No_of}_{\text{means}} - 2\right) \text{Standard}_{\text{error}} \sqrt{1 + \frac{1}{(d+1)} + \frac{\left(\text{year}_{\text{predict}_{f}} - \text{Thick}_{\text{actualmean}}\right)^{2}}{\text{sum}}}\right]$$

OCLR00019300

Am	er(jen	CA	LCULAT	ION SHEI	ET	Preparer: 12/15/06	Pete Tambu	IITO
Subject: Statistical An Thickness Da					culation No. 2-187-E310-0		o. System		Sheet 26 of 55
				B					
	<u>.</u>			· .					
		•	·			•			
									•
Lower 95%	confiden	ce Intervals	of the curve fit of s. The Upper and lata points and th	Lower 95%					
	-						• •		
		·				· · · ·	·		
		-		•		• • •			
		To	a de						
		750	90	A				Upper 95%	,
			T	A				confidence	inter val
· · ·	11 1.1.1.		$\setminus \setminus / /$					Projected r	nean
	Thick predic	700							
•	upper		Individual					m _s = -2.159	
	lower		Inspection					n _s - 2.137	
	μ actual	650 -	means					1	
	•				Upper 95%			. / .	
· •			· · · ·		confidence	interval		· ·	
	•	600						rosion Rate	
		000					(Sie	ope)	
			· ·			·			
			1 1 -		•	1			
• •		1990	1995 2000	2005 201	D 2015	2020 202	J 5 ·		
н. 1919 - Мариян Алар					t, year predict, Dat				
			•	•		· .			
	•								
· ·				·					
								•	

OCLR00019301

Ame	rGen	CALCULATION SHEET		Preparer: Pete Tamburro 12/15/06			
	· · · · · · · · · · · · · · · · · · ·		· · · · · ·		·		
Subject:			Calculation No.	Rev. No.	Svstem Nos.	Sheet	

Subject: Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006

 Calculation No.
 Rev. No.

 C-1302-187-E310-041
 0

os. Sheet 27 of 55

187

6.9.4 Sensitivity Studies to Determine Observable Corrosion Rates

This sensitivity study will determine the minimum statistically observable corrosion rate that can exist in the 49 points grid given the observed standard deviations of the means and the number of observations which in this case is 4. This will be performed by running a series of simulations based on the results from the grid at location 19A.

This study will perform 10, 100 iteration runs for varying corrosions rates of 5, 6, 7, 8, and 9 mils per year.

The simulation will generate 49 points arrays using the Mathcad function "morm". The function "norm (m, u, SD)" - returns an array of "m" random numbers generated from a normal distribution with mean of "u" and a standard deviation of "SD".

Each iteration will generate 49 point arrays for the years 1992, 1994, 1996 and 2006.

The input to the 1992 array will be 49, the actual mean (800 mils) which was determined from the actual 1992, 19A data (reference appendix 10 page 10). and a standard deviation of 65 mils. This standard deviation is the average of the calculated standard deviations from the 1992, 1994, 1996 and 2006 data (see appendix 10 page 10). A simulated mean (for 1992) will then be calculated from the simulated 49 point array.

The input to the 1994 array will be 49, the value 800 minus the simulated rate (in mils per year) times 2 years (1994-1992) and a standard deviation of 65 mils. A simulated mean (for 1994) will then be calculated from the simulated 49 point array.

The input to the 1996 array will be 49, the value 800 minus the simulated rate (in mils per year) times 4 years (1996-1992) and a standard deviation of 65 mils. A simulated mean (for 1996) will then be calculated from the simulated 49 point array.

The input to the 2006 array will be 49, the value 800 minus the simulated rate (in mils per year) times 14 years (2006-1992) and a standard deviation of 65 mils. A simulated mean (for 2006) will then be calculated from the simulated 49 point array.

The four simulated means will then be tested for corrosion based on the methodology in section 6.5.9.2. The confidence factor for the test will be 95%. If the corrosion test is successful (the F Ratio is great than 1) then that iteration is considered a successful valid iteration.

100 iterations will be run 10 times at each of the input rates of 1, 2, 3, 4, and 5 mils per year. The resulting number of successful iterations (passes the corrosion test) will then be considered as probability of observing that rate given the 19A data.

For this case location 19A was chosen since it is the thinnest of the 19 grids.

	AmerGen	CALC	ULATION SHEET		Preparer: Pete Ta 12/15/06	amburro
]	Subject: Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006		Calculation No. C-1302-187-E310-041	Rev. No. 0	System Nos. 187	Sheet 28 of 55

Appendix 10 shows the following data for location 19A

(--)

Year	Mean (mils)	Standard Deviation (mils)
1992	800	58.6
1994	806	69.3
1996	815	67.3
2006	807	62.4

OCLR00019303

Preparer: Pete Tamburro 12/15/06

Subject:

Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006

AmerGen

Calculation No. C-1302-187-E310-041 System Nos.

187

Rev. No.

0

OCLR00019304

7.0 Calculation

7.1 Sandbed Locations with 49 Readings

7.1.1. Bay 9 location 9D December 1992 through Oct 2006

Refer to Appendix #1 for the complete calculation.

Four inspections have been performed at this location after the sand was removed and coating applied in 1992. The data collected in October 2006 is normally distributed. The mean of the 2006 data is 0.9825 inches, which meets the design basis uniform thickness requirements of 0.736". In order to be consistent with past calculations (ref. 3.20 3.21 and 3.22) this mean does not include point 15, which is thinnest point in the set.

The "F" Test results for Corrosion on the means shows as ratio of 0.029. Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on an assumed rate of 6.9 mils per year shows that this location would not reach the minimum required thickness prior to the 2029.

In addition the apparent corrosion rate was determined using the regression model (even though it does not meet the F test for Corrosion). Based on the apparent rate the conclusion can be made that the location will not corrode to less then the minimum required thickness prior to 2029.

Point 15 is the thinnest reading of the 2006 data at 0.751 inches, which meets the design basis local thickness requirements of 0.490".

The "F" Test result for Corrosion on point 15 shows a ratio of 0.03. Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on this assumed rate shows that this location would not reach the minimum required thickness prior to the 2029.

Additional calculation shows that for this point to corrode to less than the minimum required thickness by 2029 it would have to corrode at a rate of 10.8 mils per year which is not considered credible and would be observable.

7.1.2 Bay 11 location 11A December 1992 through Oct 2006 Refer to Appendix #2 for the complete calculation.

AmerGen

Preparer: Pete Tamburro 12/15/06

		<u> </u>		
Subject:	Calculation No.	Rev. No.	System Nos.	Sheet
Statistical Analysis of Drywell Vessel Sandbed	C-1302-187-E310-041	. 0	187	30 of 55
Thickness Data 1992, 1994, 1996, and 2006				

Four inspections have been performed at this location after the sand was removed and coating applied in 1992. A plug lies within this location. Four points lie over the plug (see section 5.2). Therefore points 23, 24, 30, and 31 are eliminated from the corrosion rate evaluation.

The data collected in October 2006 is normally distributed after the four points that lie over the plug are eliminated. The mean of the 2006 data is 0.8215 inches, which meets the design basis uniform thickness requirements of 0.736".

The "F" Test for Corrosion on the means shows a ratio of 0.01. Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on an assumed rate of 6.9 mils per year shows that this location would not reach the minimum required thickness prior to the 2018. Additional inspection will be required at this location prior to this year. It is expected that each added inspection will continue to reduce the uncertainties, which will eventually demonstrate that this location has sufficient margin to reach the full period of operation in 2029.

In addition the apparent corrosion rate was determined using the regression model (even though it does not meet the F test for Corrosion). Based on the apparent rate the conclusion can be made that the location will not corrode to less then the minimum required thickness prior to 2029.

Point 20 is the thinnest reading of the 2006 data at 0.669 inches, which meets the design basis local thickness requirements of 0.490".

The "F" Test result for Corrosion on point 20 shows a ratio of 0.09. Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on this assumed rate shows that this location would not reach the minimum required thickness prior to the 2029.

Additional calculation shows that for this point to corrode to less than the minimum required thickness by 2029 it would have to corrode at a rate of 7.5 mils per year which is not considered credible and would be observable.

7.1.3 Bay 11 location 11C December 1992 through Oct 2006

Refer to Appendix #3 for the complete calculation.

Four inspections have been performed at this location after the sand was removed and coating applied in 1992. The data collected in October 2006 is not normally distributed Removal of point number 5, which is much thinner, will results in a normal distribution,

AmerGen

Preparer: Pete Tamburro 12/15/06

	1			
Subject:	Calculation No.	Rev. No.	System Nos.	Sheet
Statistical Analysis of Drywell Vessel Sandbed	C-1302-187-E310-041	0	187	31 of 55
Thickness Data 1992, 1994, 1996, and 2006				

although slightly skewed. However past calculations (ref. 3.20, 3.21, and 3.22) have split this data and analyzed the top 3 rows and the bottom 4 row separately. This summary will only describe the evaluation of the entire 7 rows. Appendix 3 provides the results of the top 3 rows and the bottom 4 rows, which are consistent to the following conclusions. Point 1 was not collected due to an obstruction with the vent attachment weld.

The mean of the 2006 data is 0.8982 inches, which meets the design basis uniform thickness requirements of 0.736".

The "F" Test for Corrosion on the means shows a ratio of 0.02. Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on an assumed rate of 6.9 mils per year shows that this location would not reach the minimum required thickness prior to the 2029.

In addition the apparent corrosion rate was determined using the regression model (even though it does not meet the F test for Corrosion). Based on the apparent rate the conclusion can be made that the location will not corrode to less then the minimum required thickness prior to 2029.

Point 43 was discounted from the 1992 data in the previous calculations (reference 3.20, 3.21 and 3.22) since it was 4.3 sigma from the mean in 1992. This same point was recorded as 0.860 inches in 1994, 0.917 inches in 1996 and 0.861 inches in 2006. Therefore it was also discounted from the 1992 mean in this calculation for consistency.

Point 5 is the thinnest reading of the 2006 data at 0.767 inches, which meets the design basis local thickness requirements of 0.490".

The "F" Test result for Corrosion on point 5 shows a ratio of 0.005. Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on this assumed rate shows that this location would not reach the minimum required thickness prior to the 2029.

Additional calculation shows that for this point to corrode to less than the minimum required thickness by 2029 it would have to corrode at a rate of 11.5 mils per year which is not considered credible and would be observable.

7.1.4 Bay 13 location 13A December 1992 through Oct 2006 Refer to Appendix #4 for the complete calculation.

Preparer: Pete Tamburro 12/15/06

Sheet

32 of 55

System Nos.

187

Subject:

Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006

AmerGen

Calculation No. C-1302-187-E310-041

Rev. No.

0

Four inspections have been performed at this location after the sand was removed and coating applied in 1992. The data collected in October 2006 is approximately normally distributed. The Kurtosis indicates the distribution is slightly heavy around the mean. Point 5 is much thicker (1.046 inches) than the mean of grid. Therefore the conclusion was made that this distribution approaches normality.

The mean of the 2006 data is 0.8458 inches, which meets the design basis uniform thickness requirements of 0.736".

The "F" Test result for Corrosion on the means shows a ratio of 0.004. Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on an assumed rate of 6.9 mils per year shows that this location would not reach the minimum required thickness prior to the 2020.

Additional inspection will be required at this location prior to this year. It is expected that each added inspection will continue to reduce the uncertainties, which will eventually demonstrate that this location has sufficient margin to reach the full period of operation in 2029.

In addition the apparent corrosion rate was determined using the regression model (even though it does not meet the F test for Corrosion). Based on the apparent rate the conclusion can be made that the location will not corrode to less then the minimum required thickness prior to 2029.

The calculated 1994 mean (837mils) in this calculation is different than the same mean calculated in 1994 (827.5 mils). This is because the 1994 mean calculation eliminated four points (4, 5, 6 and 7) from in the 1994 data (reference 3.21) since they were much thicker than the remaining 1994 data points. However the 1992 and 1996 calculation did not eliminate the same four points even though some of the four points were thicker then the 1992 and 1996 data sets. Review of the 2006 data show that these points are also thicker than the remaining points. Also the 2006 data with the four points included is normally distributed. Therefore the 1994 mean was recalculated in this calculation with the 4 points included.

The calculated 1996 mean (853 mils) in this calculation is different than the same mean calculated in 1996 (843.4 mils). Thorough review of the 1996 calculation ref (3.22) and the 1996 data indicates that the correct mean for the 1996 data is actually 853 mils and not 843.4 mils. Therefore it is concluded that the 1996 calculation mistakenly documented this value. Therefore this calculation uses 853 mils for the 1996 mean.

Point 19 is the thinnest reading of the 2006 data at 0.746 inches, which meets the design basis local thickness requirements of 0.490".

Preparer: Pete Tamburro 12/15/06

		·		
Subject:	Calculation No.	Rev. No.	System Nos.	Sheet
Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006	C-1302-187-E310-041	0	187	33 of 55

The "F" Test result for Corrosion on point 19 shows a ratio of 0.044. Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on this assumed rate shows that this location would not reach the minimum required thickness prior to the 2029.

Additional calculation shows that for this point to corrode to less than the minimum required thickness by 2029 it would have to corrode at a rate of 10.7 mils per year which is not considered credible and would be observable.

7.1.5 Bay 13 location 13D December 1992 through Oct 2006

AmerGen

Refer to Appendix #5 for the complete calculation.

Four inspections have been performed at this location after the sand was removed and coating applied in 1992. The data collected in October 2006 is normally distributed. However past calculations (ref 3.20, 3.21, and 3.22) have split this data and analyzed the top 3 rows and the bottom 4 row separately. This summary will only describe the evaluation of the entire 7 rows. Appendix 5 provides the results of the top 3 rows and the bottom 4 row separate to the following conclusions.

The mean of the 2006 data is 0.9682 inches, which meets the design basis uniform thickness requirements of 0.736".

The "F" Test result for Corrosion on the means shows a ratio of 0.0005. Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on an assumed rate of 6.9 mils per year shows that this location would not reach the minimum required thickness prior to the 2029.

In addition the apparent corrosion rate was determined using the regression model (even though it does not meet the F test for Corrosion). Based on the apparent rate the conclusion can be made that the location will not corrode to less then the minimum required thickness prior to 2029.

Point 49 is the thinnest reading of the 2006 data at 0.821 inches, which meets the design basis local thickness requirements of 0.490".

The "F" Test result for No Corrosion on point 49 shows a ratio of 1.64. Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made

Ame	rGen
-----	------

Subject:
Statistical Analysis of Drywell Vessel Sandbed
Thickness Data 1992, 1994, 1996, and 2006Calculation No.
C-1302-187-E310-041Rev. No.
0System Nos.
187Sheet
34 of 55

that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on this assumed rate shows that this location would not reach the minimum required thickness prior to the 2029.

Preparer: Pete Tamburro

12/15/06

Additional calculation shows that for this point to corrode to less than the minimum required thickness by 2029 it would have to corrode at a rate of 13.8 mils per year which is not considered credible and would be observable.

7.1.6 Bay 15 location 15D December 1992 through Oct 2006

Refer to Appendix #6 for the complete calculation.

Four inspections have been performed at this location after the sand was removed and coating applied in 1992. The data collected in October 2006 is normally distributed. The mean of the 2006 data is 1.0531 inches, which meets the design basis uniform thickness requirements of 0.736".

The "F" Test result for Corrosion on the means shows a ratio of 0.012. Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on an assumed rate of 6.9 mils per year shows that this location would not reach the minimum required thickness prior to the 2029.

In addition the apparent corrosion rate was determined using the regression model (even though it does not meet the F test for Corrosion). Based on the apparent rate the conclusion can be made that the location will not corrode to less then the minimum required thickness prior to 2029.

Point 42 is the thinnest reading of the 2006 data at 0.922 inches, which meets the design basis local thickness requirements of 0.490".

The "F" Test result for Corrosion on point 42 shows a ratio of 0.02. Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on this assumed rate shows that this location would not reach the minimum required thickness prior to the 2029.

Additional calculation shows that for this point to corrode to less than the minimum required thickness by 2029 it would have to corrode at a rate of 18 mils per year which is not considered credible and would be observable.

AmerGen	CALCULATION SHEE	T	Preparer: Pete Ta 12/15/06	mburro
Subject:	Calculation No.	Rev. No.	System Nos.	Sh

Subject: Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006

Calculation No. C-1302-187-E310-041

Ω.

7.6.9 Bay 17 location 17A December 1992 through Oct 2006

Refer to Appendix #7 for the complete calculation.

Four inspections have been performed at this location after the sand was removed and coating applied in 1992. The data collected in October 2006 is not normally distributed. However past calculations (ref 3.20. 3.21, and 3.22) have split this data and analyzed the top 3 rows and the bottom 4 rows separately. These two sub sets are normally distributed. This summary will only describe the evaluation of the entire 7 rows. Appendix 7 provides the results of the top 3 rows and the bottom 4 rows, which are consistent to the following conclusions.

The mean of the 2006 data is 1.015 inches, which meets the design basis uniform thickness requirements of 0.736".

The "F" Test result for Corrosion on the means shows a ratio of 0.006. Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on this assumed rate shows that this location would not reach the minimum required thickness prior to the 2029.

In addition the apparent corrosion rate was determined using the regression model (even though it does not meet the F test for Corrosion). Based on the apparent rate the conclusion can be made that the location will not corrode to less then the minimum required thickness prior to 2029.

Point 3 was discounted from the 1996 data in the 1996 calculation (reference 3.22) since it was significantly thinner (0.672 inches) than the remaining 1996 points. This same point was recorded as 1.158 inches in 1992, 1.158 inches in 1996, and 1.154 inches in 2006. Therefore it was discounted from the 1996 mean in this calculation for consistency.

Point 40 is the thinnest reading of the 2006 data at 0.802 inches, which meets the design basis local thickness requirements of 0.490".

The "F" Test result for Corrosion on point 40 shows a ratio of 0.002. Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on this assumed rate shows that this location would not reach the minimum required thickness prior to the 2029.

Preparer: Pete Tamburro 12/15/06

Subject:	Calculation No.	Rev. No.	System Nos.	Sheet
Statistical Analysis of Drywell Vessel Sandbed	C-1302-187-E310-041	0	187	36 of 55
Thickness Data 1992, 1994, 1996, and 2006				

Additional calculation shows that for this point to corrode to less than the minimum required thickness by 2029 it would have to corrode at a rate of 13.0 mils per year which is not considered credible and would be observable.

7.1.8 Bay 17 location 17D December 1992 through Oct 2006

Refer to Appendix #8 for the complete calculation.

Four inspections have been performed at this location after the sand was removed and coating applied in 1992. A plug lies within this location. Four points lie over the plug (see section 5.2). Therefore points 15, 16, 22, and 23 are eliminated from the corrosion rate evaluation.

The data collected in October 2006 is normally distributed after the four points that lie over the plug are eliminated. The mean of the 2006 data is 0.8187 inches, which meets the design basis uniform thickness requirements of 0.736".

The calculated 1996 mean (848 mils) in this calculation is different than the same mean calculated in 1996 (845 mils). Thorough review of the 1996 calculation ref (3.22) and the 1996 data indicates that the correct mean for the 1996 data, when excluding points 15, 16, 22 and 23, is actually 848 mils and not 845 mils. Therefore it is concluded that the 1996 calculation mistakenly documented this value. Therefore this calculation uses 848 mils for the 1996 mean.

The "F" Test result for Corrosion on the means shows a ratio of 0.000007. Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on this assumed rate shows that this location would not reach the minimum required thickness prior to the 2016. Additional inspection will be required at this location prior to this year. It is expected that each added inspection will continue to reduce the uncertainties, which will eventually demonstrate that this location has sufficient margin to reach the full period of operation in 2029.

In addition the apparent corrosion rate was determined using the regression model (even though it does not meet the F test for Corrosion). Based on the apparent rate the conclusion can be made that the location will not corrode to less then the minimum required thickness prior to 2029.

Point 14 is the thinnest reading of the 2006 data at 0.648 inches, which meets the design basis local thickness requirements of 0.490".

The "F" Test result for No Corrosion on point 14 shows a ratio of 3.3. The "F" Test result for Corrosion on point 14 shows a ratio of 0.001. Sensitivity studies show that given only

Preparer: Pete Tamburro 12/15/06

			·····	· · · · · · · · · · · · · · · · · · ·
Subject:	Calculation No.	Rev. No.	System Nos.	Sheet
Statistical Analysis of Drywell Vessel Sandbed	C-1302-187-E310-041	0	187	37 of 55
Thickness Data 1992, 1994, 1996, and 2006	·			

four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on this assumed rate shows that this individual point would not reach the minimum required thickness prior to the 2016. Additional inspection will be required at this location prior to this year. It is expected that each added inspection will continue to reduce the uncertainties, which will eventually demonstrate that this location has sufficient margin to reach the full period of operation in 2029.

Additional calculation shows that for this point to corrode to less than the minimum required thickness by 2029 it would have to corrode at a rate of 6.6 mils per year which is not considered credible and would be observable.

7.1.9 Bay 17 location 17-19 December 1992 through Oct 2006

AmerGen

Refer to Appendix #9 for the complete calculation.

Four inspections have been performed at this location after the sand was removed and coating applied in 1992. The data collected in October 2006 is normally distributed. However past calculations (ref 3.20, 3.21, and 3.22) have split this data and analyzed the top 3 rows and the bottom 4 rows separately. This summary will only describe the evaluation of the entire 7 rows. Appendix 9 provides the results of the top 3 rows and the bottom 4 rows, which are consistent to the following conclusions.

The mean of the 2006 data is 0.969 inches, which meets the design basis uniform thickness requirements of 0.736".

The "F" Test result for Corrosion on the means shows a ratio of 0.068. Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on this assumed rate shows that this location would not reach the minimum required thickness prior to the 2029.

In addition the apparent corrosion rate was determined using the regression model (even though it does not meet the F test for Corrosion). Based on the apparent rate the conclusion can be made that the location will not corrode to less then the minimum required thickness prior to 2029.

The calculated 1996 mean (990.14 mils) in this calculation is different that the same mean calculated in 1996 (991.4 mils). Thorough review of the 1996 calculation ref (3.22) and the 1996 data indicates that the correct mean for the 1996 data is actually 990.14 mils and not 991.4 mils. Therefore it is concluded that the 1996 calculation mistakenly documented this value. Therefore this calculation uses 990.14 mils for the 1996 mean.

Preparer: Pete Tamburro 12/15/06

Subject: Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006	Calculation No. C-1302-187-E310-041	Rev. No. 0	System Nos. 187	Sheet 38 of 55
---	--	----------------------	--------------------	-----------------------

Point 35 is the thinnest reading of the 2006 data at 0.901 inches. Which meets the design basis local thickness requirements of 0.490".

The "F" Test result for Corrosion on point 35 shows a ratio of 0.02. The "F" Test result for Corrosion on point 14 shows a ratio of 0.001. Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on this assumed rate shows that this location would not reach the minimum required thickness prior to the 2029.

Additional calculation shows that for this point to corrode to less than the minimum required thickness by 2029 it would have to corrode at a rate of 17 mils per year which is not considered credible and would be observable.

7.1.10 Bay 19 location 19A December 1992 through Oct 2006

AmerGen

Refer to Appendix #10 for the complete calculation.

Four inspections have been performed at this location after the sand was removed and coating applied in 1992. A plug lies within this location. Four points lie over the plug (see section 5.2). Therefore points 24, 25, 31, and 32 are eliminated from the corrosion rate evaluation.

The data collected in October 2006 is normally distributed after the four points that lie over the plug are eliminated. The mean of the 2006 data is 0.8066 inches, which meets the design basis uniform thickness requirements of 0.736". This mean is the thinnest of the 19 locations.

Evaluation of the mean thickness values of this location measured 1992, 1994, 1996 and 2006 shows that this location is experiencing negligible corrosion, approaching a rate of zero. However due to the limited amount of inspections this conclusion cannot be statistically confirmed with 95% confidence. Therefore the next inspection of this location shall be performed prior to the date in which the minimum statistically the statistically observable rate would drive the thickness to the minimum required thickness.

The "F" Test result for Corrosion on the means shows a ratio of 0.004. Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on this assumed rate shows that this location would not reach the minimum required thickness prior to the 2016. Additional inspection will be required at this location prior to this year. It is expected that each added inspection will continue to

AmerGen

Preparer: Pete Tamburro 12/15/06

Subject:	Calculation No.	Rev, No.	System Nos.	Sheet
Statistical Analysis of Drywell Vessel Sandbed	C-1302-187-E310-041	0	187	39 of 55
Thickness Data 1992, 1994, 1996, and 2006				

reduce the uncertainties, which will eventually demonstrate that this location has sufficient margin to reach the full period of operation in 2029.

In addition the apparent corrosion rate was determined using the regression model (even though it does not meet the F test for Corrosion). Based on the apparent rate (which approaches zero) the conclusion can be made that the location will not corrode to less then the minimum required thickness prior to 2029.

Point 4 is the thinnest reading of the 2006 data at 0.648 inches, which meets the design basis local thickness requirements of 0.490".

The "F" Test result for Corrosion on point 4 shows a ratio of 0.02. Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on this assumed rate shows that this point would not reach the minimum required thickness prior to the 2016. Additional inspection will be required at this location prior to this year. It is expected that each added inspection will continue to reduce the uncertainties, which will eventually demonstrate that this location has sufficient margin to reach the full period of operation in 2029.

Additional calculation shows that for this point to corrode to less than the minimum required thickness by 2029 it would have to corrode at a rate of 6.6 mils per year which is not considered credible and would be observable.

7.1.11 Bay 19 location 19B December 1992 through Oct 2006

Refer to Appendix #11 for the complete calculation.

Four inspections have been performed at this location after the sand was removed and the coating was applied in 1992. The data collected in October 2006 is normally distributed. The mean of the 2006 data is 0.8475 inches, which meets the design basis uniform thickness requirements of 0.736".

The "F" Test result for Corrosion on the means shows a ratio of 0.088. Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on this assumed rate shows that this location would not reach the minimum required thickness prior to the 2022. Additional inspection will be required at this location prior to this year. It is expected that each added inspection will continue to reduce the uncertainties, which will eventually demonstrate that this location has sufficient margin to reach the full period of operation in 2029.

Preparer: Pete Tamburro 12/15/06

Subject: Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006	Calculation No. C-1302-187-E310-041	Rev. No. 0	System Nos. 187	Sheet 40 of 55
---	--	---------------	--------------------	--------------------------

In addition the apparent corrosion rate was determined using the regression model (even though it does not meet the F test for Corrosion). Based on the apparent rate the conclusion can be made that the location will not corrode to less then the minimum required thickness prior to 2029.

Point 34 is the thinnest reading of the 2006 data at 0.731 inches. Which meets the design basis local thickness requirements of 0.490".

The "F" Test result for Corrosion on point 34 shows a ratio of 0.001. Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on this assumed rate shows that this location would not reach the minimum required thickness prior to the 2029.

Additional calculation shows that for this point to corrode to less than the minimum required thickness by 2029 it would have to corrode at a rate of 10.0 mils per year which is not considered credible and would be observable.

7.1.12 Bay 19 location 19C December 1992 through Oct 2006

Refer to Appendix #11 for the complete calculation.

Four inspections have been performed at this location after the sand was removed and coating applied in 1992. A plug lies within this location. Four points lie over the plug. Therefore points 20, 26, 27, and 33 are eliminated from the corrosion rate evaluation (see section 5.2).

The data collected in October 2006 is normally distributed after the four points that lie over the plug are eliminated. The mean of the 2006 data is 0.8238 inches, which meets the design basis uniform thickness requirements of 0.736".

The calculated 1996 mean (854 mils) in this calculation is different that the same mean calculated in 1996 (848 mils). Thorough review of the 1996 calculation ref (3.22) and the 1996 data indicates that the correct mean for the 1996 data is actually 854 mils and not 848 mils. Therefore it is concluded that the 1996 calculation mistakenly documented this value. Therefore this calculation uses 854 mils for the 1996 mean.

The "F" Test result for Corrosion on the means shows a ratio of 0.000007. Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on this assumed rate shows that this location would not reach the minimum required thickness prior to the 2018. Additional

Preparer: Pete Tamburro 12/15/06

	· · · · · · · · · · · · · · · · · · ·	_	· · ·	·
Subject: Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006	Calculation No. C-1302-187-E310-041	Rev. No. 0	System Nos. 187	Sheet 41 of 55

inspection will be required at this location prior to this year. It is expected that each added inspection will continue to reduce the uncertainties, which will eventually demonstrate that this location has sufficient margin to reach the full period of operation in 2029.

In addition the apparent corrosion rate was determined using the regression model (even though it does not meet the F test for Corrosion). Based on the apparent rate the conclusion can be made that the location will not corrode to less then the minimum required thickness prior to 2029.

Point 4 is the thinnest reading of the 2006 data at 0.660 inches, which meets the design basis local thickness requirements of 0.490".

The "F" Test result for Corrosion on point 4 shows a ratio of 0.00007. Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on this assumed rate shows that this location would not reach the minimum required thickness prior to the 2029.

Additional calculation shows that for this point to corrode to less than the minimum required thickness by 2029 it would have to corrode at a rate of 6.7 mils per year which is not considered credible and would be observable.

7.2 Sandbed Locations with 7 Readings

AmerGen

7.2.1 Bay 1 location 1D December 1992 through Oct 2006 Refer to Appendix #13 for the complete calculation.

Four inspections have been performed at this location after the sand was removed and coating applied in 1992. The data is not normally distributed. Eliminating point 1 which is significantly thinner than the remaining points results in a distribution, which is almost normal. This is consistent with previous data. Past calculations discounted the thinner point and calculated a mean of the remaining 6 points. The mean of the 2006 data is 1.122 inches, which meets the design basis uniform thickness requirements of 0.736".

The "F" Test result for Corrosion on the means shows a ratio of 0.001. Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on an assumed rate of 6.9 mils per year shows that this location would not reach the minimum required thickness prior to the 2029.

Preparer: Pete Tamburro 12/15/06

	-			
Subject: Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006	Calculation No. C-1302-187-E310-041	Rev. No. 0	System Nos. 187	Sheet 42 of 55

In addition the apparent corrosion rate was determined using the regression model (even though it does not meet the F test for Corrosion). Based on the apparent rate the conclusion can be made that the location will not corrode to less then the minimum required thickness prior to 2029.

The 1996 calculation (ref. 3.22) also eliminated point 7 from the mean calculation since it was significantly thinner then the values in for the same point in other years.

Point 1 is the thinnest reading of the 2006 data at 0.881 inches, which meets the design basis local thickness requirements of 0.490".

The "F" Test result for Corrosion on point 1 shows a ratio of 0.02. Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on this assumed rate shows that this location would not reach the minimum required thickness prior to the 2029.

Additional calculation shows that for this point to corrode to less than the minimum required thickness by 2029 it would have to corrode at a rate of 16.3 mils per year which is not considered credible and would be observable.

7.2.2 Bay 3 location 3D December 1992 through Oct 2006

AmerGen

Refer to Appendix #14 for the complete calculation.

Four inspections have been performed at this location after the sand was removed and coating applied in 1992. The data is not normally distributed. The mean of the 2006 data is 1.18 inches. Which meets the design basis uniform thickness requirements of 0.736".

The "F" Test result for Corrosion on the means shows a ratio of 0.008. Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on an assumed rate of 6.9 mils per year shows that this location would not reach the minimum required thickness prior to the 2029.

In addition the apparent corrosion rate was determined using the regression model (even though it does not meet the F test for Corrosion). Based on the apparent rate the conclusion can be made that the location will not corrode to less then the minimum required thickness prior to 2029.

The calculated 1996 mean (1175 mils) in this calculation is different that the same mean calculated in 1996 (1181 mils). This is because the 1996 mean calculation eliminated point 5 from in the 1996 data (reference 3.22). However the 1992 and 1996 calculation

Preparer: Pete Tamburro 12/15/06

Sheet

43 of 55

System Nos.

187

Subject:

Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006

AmerGen

Calculation No.	Rev. No.
C-1302-187-E310-041	0

did not eliminate this point. Review of the 2006 data shows that the point 5 value is within 2 sigma of the grandmean. Therefore the 1996 mean was recalculated in this calculation with the point 5 included.

Point 5 is the thinnest reading of the 2006 data at 1.156 inches, which meets the design basis local thickness requirements of 0.490".

The "F" Test result for No Corrosion on point 5 shows a ratio of 0.08. Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on this assumed rate shows that this location would not reach the minimum required thickness prior to the 2029.

Additional calculation shows that for this point to corrode to less than the minimum required thickness by 2029 it would have to corrode at a rate of 27.8 mils per year which is not considered credible and would be observable.

7.2.3 Bay 5 location 5D December 1992 through Oct 2006

Refer to Appendix #15 for the complete calculation.

Four inspections have been performed at this location after the sand was removed and coating applied in 1992. The data is not normally distributed. This is most likely due to the low number of data points. The mean of the 2006 data is 1.185 inches, which meets the design basis uniform thickness requirements of 0.736".

The "F" Test result for Corrosion on the means shows a ratio of 0.048. Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on an assumed rate of 6.9 mils per year shows that this location would not reach the minimum required thickness prior to the 2029.

In addition the apparent corrosion rate was determined using the regression model (even though it does not meet the F test for Corrosion). Based on the apparent rate the conclusion can be made that the location will not corrode to less then the minimum required thickness prior to 2029.

Point 1 is the thinnest reading of the 2006 data at 1.174 inches, which meets the design basis local thickness requirements of 0.490".

The "F" Test for No Corrosion for point 1 shows a ratio of 0.037. The "F" test results of the 1992, 1994, 1996 and 2006 point 1 value show an "F" ratio of 0.925, which is an

AmerGen CALCULATION SHEET

Preparer: Pete Tamburro 12/15/06

	······	· ·		
Subject:	Calculation No.	Rev. No.	System Nos.	Sheet
Statistical Analysis of Drywell Vessel Sandbed	C-1302-187-E310-041	0	187	44 of 55
Thickness Data 1992, 1994, 1996, and 2006				• • •

indication that a slope might exist for this point. Review of the individual readings for each year shows the following values in each year.

Year	Point 1 Value (inches)
1992	1.164
1994	1.163
1996	1.163
2006	1.174

The variance of 10 mils between 1992 and 2006 is well within the uncertainties of the instrumentation. The curve fit of the data indicates a slightly positive slope, which is not credible. Therefore it is concluded that this individual location, which was the thinnest location recorded in 2006 is not experiencing corrosion.

Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on this assumed rate shows that this location would not reach the minimum required thickness prior to the 2029.

Additional calculation shows that for this point to corrode to less than the minimum required thickness by 2029 it would have to corrode at a rate of 28.5 mils per year which is not considered credible and would be observable.

7.2.4 Bay 7 location 7D December 1992 through Oct 2006

Refer to Appendix #16 for the complete calculation.

Four inspections have been performed at this location after the sand was removed and coating applied in 1992. The data is normally distributed. The mean of the 2006 data is 1.113 inches. Which meets the design basis uniform thickness requirements of 0.736".

The "F" Test result for Corrosion on the means shows a ratio of 0.384. Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on an assumed rate of 6.9 mils per year shows that this location would not reach the minimum required thickness prior to the 2029.

In addition the apparent corrosion rate was determined using the regression model (even though it does not meet the F test for Corrosion). Based on the apparent rate the conclusion can be made that the location will not corrode to less then the minimum required thickness prior to 2029.

Preparer: Pete Tamburro 12/15/06

Rev. No.

0

Subject:		

AmerGen

Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006 System Nos. Sheet 187 45 of 55

Point 5 is the thinnest reading of the 2006 data at 1.102 inches, which meets the design basis local thickness requirements of 0.490".

The "F" Test result for Corrosion on point 5 shows a ratio of 0.06. Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on this assumed rate shows that this location would not reach the minimum required thickness prior to the 2029.

Additional calculation shows that for this point to corrode to less than the minimum required thickness by 2029 it would have to corrode at a rate of 25.5 mils per year which is not considered credible and would be observable.

7.2.5 Bay 9 location 9A December 1992 through Oct 2006

Refer to Appendix #17 for the complete calculation.

Four inspections have been performed at this location after the sand was removed and coating applied in 1992. The data is not normally distributed. This is most likely due to the low number of data points. The mean of the 2006 data is 1.154 inches, which meets the design basis uniform thickness requirements of 0.736".

The "F" Test result for Corrosion on the means shows a ratio of 0.231. Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on an assumed rate of 6.9 mils per year shows that this location would not reach the minimum required thickness prior to the 2029.

In addition the apparent corrosion rate was determined using the regression model (even though it does not meet the F test for Corrosion). Based on the apparent rate the conclusion can be made that the location will not corrode to less then the minimum required thickness prior to 2029.

Point 7 is the thinnest reading of the 2006 data at 1.13 inches, which meets the design basis local thickness requirements of 0.490".

The "F" Test result for No Corrosion on point 7 shows a ratio of 0.26. The "F" Test result for Corrosion on point 7 shows a ratio of 0.02. Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection

Preparer: Pete Tamburro 12/15/06

Subject: Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006	Calculation No. C-1302-187-E310-041	Rev. No. 0	System Nos. 187	Sheet 46 of 55	
---	--	----------------------	--------------------	--------------------------	--

based on this assumed rate shows that this location would not reach the minimum required thickness prior to the 2029.

Additional calculation shows that for this point to corrode to less than the minimum required thickness by 2029 it would have to corrode at a rate of 26.7 mils per year which is not considered credible and would be observable.

7.2.6. Bay 13 location 13 C December 1992 through Oct 2006

AmerGen

Refer to Appendix 18 for the complete calculation.

Four inspections have been performed at this location after the sand was removed and coating applied in 1992. The data is normally distributed but skewed. The mean of the 2006 data is 1.142 inches, which meets the design basis uniform thickness requirements of 0.736".

The "F" Test result for Corrosion on the means shows a ratio of 0.01. Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on an assumed rate of 6.9 mils per year shows that this location would not reach the minimum required thickness prior to the 2029.

In addition the apparent corrosion rate was determined using the regression model (even though it does not meet the F test for Corrosion). Based on the apparent rate the conclusion can be made that the location will not corrode to less then the minimum required thickness prior to 2029.

Point 6 is the thinnest reading of the 2006 data at 1.128 inches, which meets the design basis local thickness requirements of 0.490".

The "F" Test result for Corrosion on point 6 shows a ratio of 0.00000087. Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on this assumed rate shows that this location would not reach the minimum required thickness prior to the 2029.

Additional calculation shows that for this point to corrode to less than the minimum required thickness by 2029 it would have to corrode at a rate of 26.6 mils per year which is not considered credible and would be observable.

7.2.7 Bay 15 location 15A December 1992 through Oct 2006 Refer to Appendix 19 for the complete calculation.

Preparer: Pete Tamburro 12/15/06

· · · · · · · · · · · · · · · · · · ·				
Subject:	Calculation No.	Rev. No.	System Nos.	Sheet
Statistical Analysis of Drywell Vessel Sandbed	C-1302-187-E310-041	0	187	47 of 55
Thickness Data 1992, 1994, 1996, and 2006				

Four inspections have been performed at this location after the sand was removed and coating applied in 1992. The data is normally distributed. The mean of the 2006 data is 1.121 inches, which meets the design basis uniform thickness requirements of 0.736".

The "F" Test result for Corrosion on the means shows a ratio of 0.01. Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on an assumed rate of 6.9 mils per year shows that this location would not reach the minimum required thickness prior to the 2029.

In addition the apparent corrosion rate was determined using the regression model (even though it does not meet the F test for Corrosion). Based on the apparent rate the conclusion can be made that the location will not corrode to less then the minimum required thickness prior to 2029.

Point 7 is the thinnest reading of the 2006 data at 1.049 inches, which meets the design basis local thickness requirements of 0.490".

The "F" Test result for No Corrosion on point 7 shows a ratio of 0.25. The "F" Test result for Corrosion on point 7 shows a ratio of 0.02. Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on this assumed rate shows that this location would not reach the minimum required thickness prior to the 2029.

Additional calculation shows that for this point to corrode to less than the minimum required thickness by 2029 it would have to corrode at a rate of 23.3 mils per year which is not considered credible and would be observable.

Preparer: Pete Tamburro 12/15/06

-					
	11	-	0	~1	

Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006

Calculation No. C-1302-187-E310-041

Rev. No.

0

187

Sheet

48 of 55

OCLR00019323

7.3 External Inspections

7.3.1 Background

In 1992, following the removal of the sand from the sandbed region and the removal of corrosion byproducts, the Drywell Vessel was visually inspected from the sandbed, which is outside the Drywell Vessel. This inspection identified the thinnest locations in each of the 10 sandbed bays. These thinnest locations were then UT inspected. In many cases the areas had to be slightly grounded so that the UT probe could rest flat against the surface of the vessel. The thickness values and the locations of each reading, referenced from existing welds, were recorded on a series of NDE data sheets. At each location one UT reading was performed.

In 2006, 106 readings were taken of the external portion of the Drywell Vessel from within the former sandbed region. These locations were located using the 1992 NDE Inspection Data Sheet maps. These UT readings were compared to acceptance criteria. The data is provided in Attachment 5.

7.3.2 Results

(Refer to Appendix 20)

All 106 readings were greater than the acceptance criteria of 0.49 inches even when allowing for 20 mils tolerance in uncertainty. The minimum recorded value was 0.602 inches measured at point 7 in bay 13. This point was also the thinnest point recorded in 1992.

These readings were not intended for corrosion rate trending due to uncertainties and inconsistencies between the 1992 and 2006 UT readings. These include:

a) The roughness of the inspected surfaces due to the previously corroded surface of the shell in the sandbed regions

b) The different UT technologies between 1992 and 2006

c) UT Equipment Instrument Uncertainties and

d) The poor repeatability in attempting to inspect the exact same unmarked locations over time

The 2006 and 1992 data cannot be used for developing corrosion rates by performing regression analysis, which requires at least three similar inspections over time to develop acceptable confidence factors.

AmerGen

CALCULATION SHEET

Preparer: Pete Tamburro 12/15/06

187

Subject:

Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006

Calculation No. Rev. No. C-1302-187-E310-041

0

7.3.3 Worst Case (Refer to Appendix 20)

To ensure a formal conservative evaluation, point to point comparisons were performed on all 106 points as follows.

For each reading the 2006 value was subtracted from the 1992 value and divided by 14 years (time between 1992 and 2006). Values that resulted in positive changes in metal thickness were discounted from the computation to maintain conservative results.

The resulting differences in UT readings based on point-to-point comparison vary between 0 and .0335 inches per year.

The minimum 2006 reading of all the areas was 0.602 (point 7 Bay 13) inches.

The maximum worst case localized difference between readings was found in a point-to point comparison of point 2 in bay 17. The difference in thickness at this point equates to a rate of 0.0335 inches per year, which is not considered credible given the physical limitations of the UT inspections taken from the exterior surface. These limitations include the roughness of the inspected surfaces, the different UT technologies between the 1992 and 2006, UT Equipment Instrument Uncertainties, and the repeatability due to trying to locate the exact same location over time. In addition, this point is at an elevation where the inside surface is coated and accessible for visual inspection. During the 2006 visual inspections, no degraded coating or indication of corrosion has been identified on the exterior or interior drywell shell at this point location.

However even when considering a 0.0335 inches per year rate of change (recorded on a location that is 0.681 inches thick in 2006) and applying it on the thinnest location recorded in 2006 (0.602 inches in Bay 13 point 7) and applying 0.020 inch deduction for instrumentation uncertainty this location would only reduce to 0.515 inches by 2008, which still demonstrates margin compared to the acceptance criteria of 0.49 inches.

Repeat inspection of this location in 2008 will provide additional data to confirm the very conservative nature of the above evaluation.

Preparer: Pete Tamburro 12/15/06

	· · · · · · · · · · · · · · · · · · ·			
Subject:	Calculation No.	Rev. No.	System Nos.	Sheet
Statistical Analysis of Drywell Vessel Sandbed	C-1302-187-E310-041	0	187	50 of 55
Thickness Data 1992, 1994, 1996, and 2006				•

7.3.4 Comparison of the 2006 external data to the Bounding Internal Grid 19A

Inspection of internal grid 19A has concluded it to be the most critical of the monitored sandbed locations since it has the thinnest mean. This grid has a mean 0.8066 inches with a standard deviation of 0.0623 inches. The grid is normally distributed.

A normally distributed sample allows conclusion of the entire normally distributed population from which the sample is taken. For example, in a normally distributed population, approximately 95% of the population lies within approximately plus or minus two standard deviations of the mean; and approximately 99% of the population lies within approximately plus or minus three standard deviations of the mean.

The thinnest location of the entire sandbed region was found during the exterior inspections in 1992 and 2006. This spot (0.602" in 2006) was not in an area corresponding to the internal monitored locations. However comparison of this thinnest value to the mean, standard deviation, and thinnest individual reading (0.648 inches) for location 19A shows that the monitoring program provides a representative sample population of the thicknesses of the entire sand bed region.

For example the UT transducer head is approximately 0.428 inches in diameter. The Drywell Vessel in the sandbed has approximately 700 square feet of surface area. Therefore the actual population of the sandbed region available to the transducer is in excess of 70,000, 0.428" diameter areas.

Therefore in theory if one were to sample a population that is normally distributed, with a mean of 0.8066 inches, with a standard deviation of the 0.0623 inches, and the total population was 70,000, approximately 0.5% of the population would be less than 0.648 inches, approximately 0.05% of the population would be less than 0.602 inches, and 1.9*10E-5% of the population would be less than 0.49 inches.

This theoretical model is very conservative since the majority of the sandbed has been shown to be much thicker than the critical location in 19A. However this discussion bolsters the conclusion that the monitoring of the 19 internal locations, coupled with visual inspection of the sandbed external coating, will ensure the material condition of the Drywell Vessel in the sanded regions is maintained within design basis.

An	ner	G	en

Preparer: Pete Tamburro 12/15/06

Subj	ect:

Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006

Rev. No.

0.

7.4 Sensitivity of the Corrosion Test without the 1996 Data (Refer to appendix 21).

The mean thickness values for the 1996 data are consistently greater than the 1992 and 1994 data. This has called into the question the accuracy of the 1996 UT Inspections. As result, in 2006, the Oyster Creek NDE Group investigated several potential factors that could have caused the discrepancy. These potential variables included the potential failure by contractor personnel to clean off the inspected surface prior to the inspection and the potential that the UT unit was mistakenly placed on the "High Gain" setting. However the review did not confirm that these factors were the cause.

Never the less the question remains as to whether the 1996 data should be included in the analysis documented by this calculation.

Therefore a sensitivity study of the "Corrosion" test was performed and is documented in Appendix 21. The study selected locations where the 1996 means were at least 20 mils greater than the grandmean of the grid or subset. The grandmean is the mean of the 1992, 1994, 1996 and 2006 means. The "Corrosion" test was then performed on these grids with only the 1992, 1994 and 2006 data excluding the 1996 data. The results of the study are presented in appendix 21 and are summarized in the table below.

Location	Area	"F" Ratio	"F" Ratio without	Results
		with 1996 data	1996 Data	
	All	0.004	0.00009	Negligible
11C	Тор	0.012	0.000003	Negligible
	Bottom	0.002	0.01	Negligible
13D	Bottom	0.002	0.000002	Negligible
17A	All	0.006	0.001	Negligible
1/A	Bottom	0.003	0.007	Negligible
17D	All	0.0001	0.002	Negligible
19C	All	0.0001	7.3	See Below
1D	All	0.047	0.02	Negligible

The study showed that for the "Corrosion" test, eliminating of the 1996 data results in negligible change to the "F" ratio (when compared to the criteria of 1.0); except for the 19C grid. In the 19C grid the F ratio increased significantly. However 19C the regression curve fit results in a very small positive slope, which is not credible. Even with the 1996 data the regression curve fit results in a very small positive slope.

Therefore based on these sensitivity studies it is concluded using the 1996 data will results in a negligible impact on the results of the "Corrosions Test" for Regression.

Preparer: Pete Tamburro 12/15/06

A	hiect	

Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006

Calculation No. C-1302-187-E310-041 System Nos. 187

Rev. No.

0

Sheet 52 of 55

7.5 Sensitivity Study to Determine the Statistically Observable Corrosion Rate with Only **Four Inspections**

(Refer to appendix 22).

The drywell vessel in the sandbed region is externally coated. The coating was inspected in 2006 and found to be in excellent condition. The surface inside the vessel corresponding to 19 monitored grids is internally coated. In addition, the atmosphere in the drywell is inerted with nitrogen. Therefore the actual corrosion rate on the vessel is expected to be significantly less than 1 mil per year, possibly approaching zero mils per year. However the limited number of inspections (4) and the high variance in the data (standard deviations of 60 to 100 mils) make it impossible to identify rates less than 1 mil per year at this time. The high variance is because the surface of the sandbed region on the exterior is rough due to the aggressive corrosion, which occurred prior to 1992.

For example, for sections of the drywell above the sandbed region, it took approximately 10 inspections over a period greater than 10 years to confirm with 95% confidence that corrosion rates (which were less than 1 mil per year) existed. These locations above the sandbed region have a variance, which is less than that for the sandbed region (a standard deviations of approximately 20 mils). This is because the external surface of the vessel above the sandbed region experienced a much less severe corrosion mechanism resulting in a more uniform surface.

Therefore based on the experience above the sandbed region and the greater variance in the sandbed region (3 to 4 times greater) it is not expected that these inspections will yield the expected rate (significantly less than 1 mil per year) with 95% confidence in only four inspections.

Therefore a sensitivity study was performed to determine the minimum statistically observable rates given the number of sandbed inspections and the calculated variance of the data. The methodology for the study is described in sections 6.9.4.

The study determined the minimum statistically observable corrosion rate based on the variance that can exist in the 49 point grids given the observed standard deviations and the number of observations (4). For this case grid 19A was chosen since it is the thinnest of the 19 grids.

This study performed 10 iterations of of 100 simulations each of varying corrosions rates of 5, 6, 7, 8, and 9 mils per year.

Each simulation generated 49 point arrays for 1992, 1994, 1996, and 2006. The arrays were generated using a random number generator, which simulates a normal distribution. The random number generator requires an input of the target mean value and an input for the target standard deviation.

The mean value input into the random number generator for to the 1992 array was the 1992 actual mean for location 19A (800 mils- reference appendix 10 page 10). The standard deviation

A	merGen	CALC
---	--------	------

Preparer: Pete Tamburro 12/15/06

· -						1
1	Subject:	Calculation No.	Rev. No.	System Nos.	Sheet	
1	Statistical Analysis of Drywell Vessel Sandbed	C-1302-187-E310-041	· 0	187	53 of 55	
	Thickness Data 1992, 1994, 1996, and 2006					

input into the random number generator for all arrays was 65 mils (which is an average of the calculated standard deviations from the 1992, 1994, 1996 and 2006 data (see appendix 10 page 10). The random number generator then generated 49 point arrays based on a mean of 800 mils and a standard deviation of 65 mils.

The 1994 array was generated in the same manner except the input mean was the value of 800 minus the simulated rate (in mils per year) times 2 years (1994-1992). The 1996 array was generated in the same manner except the input mean was the value of 800 minus the simulated rate (in mils per year) times 4 years (1996-1992). The 2006 array was generated in the same manner except the input mean was the value of 800 minus the simulated rate (in mils per year) times 14 years (2006-1992).

These four simulated arrays were then tested for Corrosion per section 6.9.2. This procedure was repeated 100 times for each of the simulated corrosion rates of 5, 6, 7, 8, and 9 mils per year. Corrosion rates that successfully passed the Corrosion test 95 times or more out of 100 iterations are considered the statistically observable rate. Each set of 100 iterations was repeated 10 times. Finally a refined rate of 6.9 mils per year was simulated and passed the test in the ten, 100 iterations with 95% confidence.

Results were that a 49 point grid with a standard deviation of 65 mils experiencing a corrosion rate of 6.9 mils per year can be observed 95 or more times out of 100 simulations with 95% confidence. This is a potential minimum detectable corrosion rate. The actual detectable corrosion rate is analytically indeterminate at this time and, using engineering judgment, is probably close to zero. Applying the potential minimum detectable corrosion rate is conservative and optional. The result is a manageable condition.

CALCULATION SHEET	
--------------------------	--

Preparer: Pete Tamburro 12/15/06

Subject:	Calculation No.	Rev. No.	System Nos.	Sheet
Statistical Analysis of Drywell Vessel Sandbed	C-1302-187-E310-041	0	187	54 of 55
Thickness Data 1992, 1994, 1996, and 2006				

8.0 Software

AmerGen

This calculation does not use the same software that was used in earlier calculations (reference 3.20, 3.21, and 3.22). Previous sandbed related calculations utilized the GPUN mainframe computer and the "SAS" mainframe software. The Oyster Creek Plant was sold to AmerGen in the year 2000. The GPUN Main Frame was not available to AmerGen after the year 2002. Also the "SAS" software is mainframe based is difficult to maintain. An alternative PC based software, "MATHCAD", has been chosen to perform this calculation.

Although the software has been changed the overall methodology, with minor exceptions, is the same as in previous calculation. The minor exceptions are the statistical tests that determine whether the data is normally distributed. The Mathcad routines have been successfully used in previous calculations for Upper Drywell Elevations (reference 3.24).

In addition the Excel Software was used to evaluate the 106 external UT inspection data.

AmerGen

CALCULATION SHEET

Preparer: Pete Tamburro 12/15/06

Subject: Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006	Calculation No. C-1302-187-E310-041	Rev. No. 0	System Nos. 187	Sheet 55 of 55
---	--	---------------	--------------------	--------------------------

9.0 Appendices

Appendix #1 - Bay 9 location 9D December 1992 through Oct 2006 Appendix #2 - Bay 11 location 11A December 1992 through Oct 2006 Appendix #3 - Bay 11 location 11C December 1992 through Oct 2006 Appendix #4 - Bay 13 location 13A December 1992 through Oct 2006 Appendix #5 - Bay 13 location 13D December 1992 through Oct 2006 Appendix #6 - Bay 15 location 15D December 1992 through Oct 2006 - Bay 17 location 17A December 1992 through Oct 2006 Appendix #7 Appendix #8 - Bay 17 location 17D December 1992 through Oct 2006 Appendix #9 - Bay 17 location 17-19 December 1992 through Oct 2006 Appendix #10 - Bay 19 location 19A December 1992 through Oct 2006 Appendix #11 - Bay 19 location 19B December 1992 through Oct 2006 Appendix #12 - Bay 19 location 19C December 1992 through Oct 2006 Appendix #13 - Bay 1 location 1D December 1992 through Oct 2006 Appendix #14 - Bay 3 location 3D December 1992 through Oct 2006 Appendix #15 - Bay 5 location 5D December 1992 through Oct 2006 Appendix #16 - Bay 7 location 7D December 1992 through Oct 2006 Appendix #17 - Bay 9 location 9A December 1992 through Oct 2006 Appendix 18 - Bay 13 location 13 C December 1992 through Oct 2006 Appendix 19 - Bay 15 location 15A December 1992 through Oct 2006 Appendix 20 - Review of the 2006 106 External UT inspections - Sensitivity of the Corrosion Test with out the 1996 Data Appendix 21 - Sensitivity Studies to Determine Minimum Statistically Observable Corrosion Appendix 22 Rates Appendix 23 - Independent Third Party Review of Calculation

Attachment 1- 1992 UT Data Attachment 2- 1994 UT Data Attachment 3- 1996 UT Data Attachment 4- 2006 UT Data Attachment 5- 1992 UT Data for First Inspections of Transition Elevations 23' 6" and 71' 6".

Appendix 1

C-1302-187-E310-041 Rev. No. 0

Sheet No. 1 of 16

Appendix 1 - Sandbed 9D October 2006 Data

The data shown below was collected on 10/18/06

page := READPRN("U:\MSOFFICE\Drywell Program data\OCT 2006 Data\Sandbed\SB9D.txt")

Points 49 = showcells (page , 7 , 0)

	1.005	1.056	0.985	1.133	1.132	1.136	1.101	
	0.896	0.927	1.067	1.037	0.974	1.077	1.069	
	p.751'	0.883	0.975	1.071	1.033	1.105	1.123	
Points $_{49} =$	0.885	0.993	0.949	0.984	0.995	1 .022	1.041	
	0.98	0.968	0.936	0.942	0.88	0.927	0.998	Į
	0.96	0.869	0.976	0.987	0.967	0.965	0.949	
	0:968							

Cells := convert (Points $_{49}$, 7)

No DataCells := length (Cells)

The thinnest point is point 15 which is shown below

minpoint := $\min(\text{Points}_{49})$

minpoint = 0.751

Cells := deletezero cells (Cells, No DataCells)

No DataCells := length (Cells)

C-1302-187-E310-041 Rev. No. 0

Mean and Standard Deviation $\mu_{actual} := mean(Cells) \quad \mu_{actual} = 987.612 \qquad \sigma_{actual} := Stdev(Cells) \quad \sigma_{actual} = 78.292$ Standard Error Standard Error Standard error := $\frac{\sigma_{actual}}{\sqrt{No}_{DataCells}}$ Skewness Skewness := $\frac{1}{\sqrt{No}_{DataCells} \cdot \Sigma(Cells - \mu_{actual})^3}}{(No_{DataCells} - 1) \cdot (No_{DataCells} - 2) \cdot (\sigma_{actual})^3}$ Skewness = -0.14

Kurtosis

$$Kurtosis := \frac{No DataCells \cdot (No DataCells + 1) \cdot \overline{\Sigma (Cells - \mu_{actual})^4}}{(No DataCells - 1) \cdot (No DataCells - 2) \cdot (No DataCells - 3) \cdot (\sigma_{actual})^4} Kurtosis = 0.697$$
$$+ -\frac{3 \cdot (No DataCells - 1)^2}{(No DataCells - 2) \cdot (No DataCells - 3)}$$

Normal Probability Plot

 $j := 0 \dots \text{last}(\text{Cells})$ srt := sort(Cells)

$$r_{j} := j + 1$$
 $rank_{j} := \frac{\sum (\overrightarrow{srt = srt_{j}}) \cdot r}{\sum \overrightarrow{srt = srt_{j}}}$

$$p_j := \frac{rank_j}{rows(Cells) + 1}$$

$$x := 1$$
 N_Score_j := root[cnorm(x) - (p_j), x]

C-1302-187-E310-041 Rev. No. 0

. ŧ.

Upper and Lower Confidence Values The Upper and Lower confidence values are calculated based on .05 degree of confidence "a" $T\alpha := qt\left[\left(1-\frac{\alpha}{2}\right), 48\right]$ α := .05 $T\alpha = 2.011$ o actual Lower 95%Con := $\mu_{actual} - T\alpha$. Lower 95%Con = 965.124 No DataCells σ_{actual} Upper 95% Con := $\mu_{actual} + T\alpha$ Upper $_{95\%Con} = 1.01 \cdot 10^3$ No DataCells These values represent a range on the calculated mean in which there is 95% confidence. **Graphical Representation** Distribution of the "Cells" data points are sorted in 1/2 standard deviation increments (bins) within +/- 3 standard deviations Bins := Make $bins(\mu_{actual}, \sigma_{actual})$ Distribution := hist(Bins, Cells) Dis

The mid points of the Bins are calculated

$$:= 0..11 \qquad \text{Midpoints}_{k} := \frac{(\text{Bins}_{k} + \text{Bins}_{k+1})}{2}$$

$$tribution = \begin{bmatrix} 0 \\ 1 \\ 5 \\ 6 \\ 16 \\ 6 \\ 4 \\ 6 \\ 4 \\ 0 \\ 0 \end{bmatrix}$$

normal curve₀ := pnorm (Bins₁,
$$\mu_{actual}, \sigma_{actual}$$
)
normal curve_k := pnorm (Bins_{k+1}, $\mu_{actual}, \sigma_{actual}$) - pnorm (Bins_k, $\mu_{actual}, \sigma_{actual}$)

normal curve := No DataCells · normal curve

Appendix 1

Results For 9D

The following schematic shows: the the distribution of the samples, the normal curve based on the actual mean and standard deviation, the kurtosis, the skewness, the number of data points, and the the lower and upper 95% confidence values.

The distribution is normal

C-1302-187-E310-041 Rev. No. 0

Appendix 1

Sheet No. 5 of 16

d := 0

Data from . 1992 to 2006 is retrieved.

For Dec 31 1992

page := READPRN("U:\MSOFFICE\Drywell Program data\Dec. 1992 Data\sandbed\DATA ONLY\SB9D.txt")

Points 49	:=	showcells (page, 7,0)

Points 49 !=	showcel	ls (page	,7,0)			1	D	Dates _d := Day year(12, 8, 1992)
	· .		Data				· · .	d year year,
	1.01	1.052	0.998	1.165	'1.163	1.141	1.106]
	0.96 6	0.96	0.992	1.024	0.979	1.063	1.075	
•	0.763	0.883	0.978	1.053	1.033	1.112	1.125	
Points 49 =	0.914	1.003	0.992	0.985	1	1.023	1.042	
					0,897			
	0;955	0.872	0.98	1.017	0.972	0.966	0.948	
	1.103	1.011	0.978	0.991	0.975	0.897	0.975]

nnn := convert (Points $_{49}$, 7)

No DataCells := length(nnn)

Pit $_{15_d} = nnn_{14}$

Pit $_{15} = .763$

Cells := Zero $_{one}(nnn, No_{DataCells}, 15)$

Cells := deletezero $_{cells}(Cells, No _{DataCells})$

No Cells := length(Cells)

 $\mu_{\text{measured}_d} \coloneqq \text{mean(Cells)} \quad \sigma_{\text{measured}_d} \coloneqq \text{Stdev(Cells)}$

Standard error_d

σ measured

√^{No} DataCells

C-1302-187-E310-041 Rev. No. 0

= d + 1

For 1994

Appendix 1

page := READPRN("U:\MSOFFICE\Drywell Program data\Sept.1994 Data\sandbed\DATA ONLY\SB9D.txt")

Dates_d := Day year(9, 14, 1994)

			Data		•		1 ·	
þ	1.005	1.053	0.995	1.132	1.095	1.141	1.112	
	0.921	0.956	0.999	1.027	0.983	1.06	1.077	ĺ
	0.77	0.884	0.986	1.086	1.049	1.119	1.112	
Points ₄₉ =	0.802	0.965	0.978	0.986	1.007	1.026	1.048	
	0.969	0.967	0.98	0.94	0.894	0.929	.'0 .977	ł
	⁺ 0.959	0.855	0.971	1.018	0.982	0.971	0.943	
	0.943	0.968	0.945	0.991	0.977	0.899	0.932	ļ

nnn := convert (Points $_{49}$, 7)

No DataCells := length(nnn)

Pit $_{15_d} \coloneqq \text{nnn}_{14}$

Cells := Zero $_{one}(nnn, No _{DataCells}, 15)$

Cells := deletezero _{cells} (Cells, No _{DataCells}) No _{DataCells} := length (Cells)

 $\mu_{\text{measured}_d} := mean(Cells)$

s)
$$\sigma_{\text{measured}_d} \coloneqq \text{Store}_d$$

 $\sigma_{\text{measured}_d}$ Stdev(Cells) Standard error_d := No DataCells

No DataCells := length(nnn)

 $\mu_{\text{measured}} = \begin{bmatrix} 1.004 \cdot 10^3 \\ 991.958 \end{bmatrix}$

For .1996

d := d

page := READPRN("U:\MSOFFICE\Drywell Program data\Sept.1996 Data\sandbed\DATA ONLY\SB9D.txt",] $\langle \cdot \rangle = i^{2}$

Points 49 :=	showcel	ls(page	.7.0)				Date	s _a ≔ I	Day year(9	, 16, 19	96)
49				Data	1 ,				•		
	0.965	1.022	0.985	1.133	1.149	1.136	1.141				ł
	0.878	0.978	1.073	1.021	0.992	1.095	1.116				'.
	0.776	0.836	1.078	1.086	1.044	1.125	1.113		•	1	
Points 49 =	0.944	0.967	1.011	0.998	1.004	11.02	1.083	•			
	0.941	0.939	0.937	0.939	0.942	0.931	1.018			1	
	1.018	1.018	1.018	1.058	1.029	0.966	0.952				
	0.953	0.953	0.953	0.953	0.978	0.922	0.969			•	

nm := convert(Points $_{49}, 7$)

Pit $_{15_d} \coloneqq \text{nnn}_{14}$

No DataCells := length(nnn)

Cells := Zero $_{one} (nnn, No_{DataCells}, 15)'$

Cells := deletezero cells (Cells, No DataCells)

No DataCells := length (Cells)

 $\mu_{\text{measured}_d} := \text{mean(Cells)} \sigma_{\text{measured}_d} := \text{Stdev(Cells)} \text{Standard}_{\text{error}_d} :=$

 $\mathbf{d} \coloneqq \mathbf{d} + \mathbf{1}$

For 2006

Appendix 1

page := READPRN("U:\MSOFFICE\Drywell Program data\OCT 2006 Data\Sandbed\SB9D.txt")

Points 49 := showcells(page, 7, 0)

 $Dates_d := Day_{year}(9, 23, 2006)$

			Data		· .			
	1.005	1.056	0.985	1.133	1.132	1.136	1.101	
	0.896	0.927	1.067	1.037	0.974	1.077	1.069	
	0.751	0.883	0.975	1.071	1.033	1.105	1.123	
oints 49 =	0.885	0.993	0.949	0.984	0.995	1.022	1.041	
	0.98	0.968	0.936	0.942	0.88	0.927	0.998	
i i				0.987				
	0.968	0.967	0.963	1.004	0.947	0.892	'0.943	

nnn := convert (Points $_{49}$, 7)

Pit $_{15_d} = nnn_{14}$

No DataCells := length(nnn)

Cells := Zero one $(nnn, No_{DataCells}, 15)$

Cells := deletezero cells (Cells, No DataCells)

No DataCells := length (Cells)

 $\mu_{\text{measured}_d} \coloneqq \text{mean(Cells)} \quad \sigma_{\text{measured}_d} \coloneqq \text{Stdev(Cells)}$

Appendix 1

C-1302-187-E310-041 Rev. No. 0

Sheet No. 9 of 16

•)). • •

Below are the results

$$\mu_{\text{measured}} = \begin{bmatrix} 1.004 \cdot 10^{3} \\ 991.958 \\ 1.008 \cdot 10^{3} \\ 992.542 \end{bmatrix} Dates = \begin{bmatrix} 1.993 \cdot 10^{3} \\ 1.995 \cdot 10^{3} \\ 1.995 \cdot 10^{3} \\ 1.997 \cdot 10^{3} \\ 2.007 \cdot 10^{3} \end{bmatrix}, \text{Standard}_{error} = \begin{bmatrix} 10.029 \\ 10.432 \\ 10.56 \end{bmatrix}, \text{Standard}_{error} = \begin{bmatrix} 10.029 \\ 10.432 \\ 10.56 \end{bmatrix}, \text{Standard}_{error} = \begin{bmatrix} 10.029 \\ 10.432 \\ 10.56 \end{bmatrix}, \text{Standard}_{error} = \begin{bmatrix} 10.029 \\ 10.432 \\ 10.56 \end{bmatrix}, \text{Standard}_{error} = \begin{bmatrix} 10.029 \\ 10.432 \\ 10.56 \end{bmatrix}, \text{Standard}_{error} = \begin{bmatrix} 10.029 \\ 10.432 \\ 10.56 \end{bmatrix}, \text{Standard}_{error} = \begin{bmatrix} 10.029 \\ 10.432 \\ 10.56 \end{bmatrix}, \text{Standard}_{error} = \begin{bmatrix} 10.029 \\ 10.432 \\ 10.56 \end{bmatrix}, \text{Standard}_{error} = \begin{bmatrix} 10.029 \\ 10.432 \\ 10.56 \end{bmatrix}, \text{Standard}_{error} = \begin{bmatrix} 10.029 \\ 10.432 \\ 10.56 \end{bmatrix}, \text{Standard}_{error} = \begin{bmatrix} 10.029 \\ 10.432 \\ 10.56 \end{bmatrix}, \text{Standard}_{error} = \begin{bmatrix} 10.029 \\ 10.432 \\ 10.56 \end{bmatrix}, \text{Standard}_{error} = \begin{bmatrix} 10.029 \\ 10.432 \\ 10.56 \end{bmatrix}, \text{Standard}_{error} = \begin{bmatrix} 10.029 \\ 10.432 \\ 10.56 \end{bmatrix}, \text{Standard}_{error} = \begin{bmatrix} 10.029 \\ 10.432 \\ 10.56 \end{bmatrix}, \text{Standard}_{error} = \begin{bmatrix} 10.029 \\ 10.432 \\ 10.56 \end{bmatrix}, \text{Standard}_{error} = \begin{bmatrix} 10.029 \\ 10.432 \\ 10.56 \end{bmatrix}, \text{Standard}_{error} = \begin{bmatrix} 10.029 \\ 10.432 \\ 10.56 \end{bmatrix}, \text{Standard}_{error} = \begin{bmatrix} 10.029 \\ 10.432 \\ 10.56 \end{bmatrix}, \text{Standard}_{error} = \begin{bmatrix} 10.029 \\ 10.432 \\ 10.56 \end{bmatrix}, \text{Standard}_{error} = \begin{bmatrix} 10.029 \\ 10.432 \\ 10.56 \end{bmatrix}, \text{Standard}_{error} = \begin{bmatrix} 10.029 \\ 10.432 \\ 10.56 \end{bmatrix}, \text{Standard}_{error} = \begin{bmatrix} 10.029 \\ 10.432 \\ 10.56 \end{bmatrix}, \text{Standard}_{error} = \begin{bmatrix} 10.029 \\ 10.432 \\ 10.56 \end{bmatrix}, \text{Standard}_{error} = \begin{bmatrix} 10.029 \\ 10.432 \\ 10.56 \\$$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

C-1302-187-E310-041 Rev. No. 0

The following will plot the results for the overall mean, the mean of thinner points, and the mean of thicker points

Appendix 1

 μ grand measured = 999.016 GrandStandard error = 4.004

Appendix 1

C-1302-187-E310-041 Rev. No. 0

Sheet No. 11 of 16

The F Test indicates that the regression model does not hold for the data sets. However, the slopes and 95% Confidence curve is generated for this case.

 $m_s := slope(Dates, \mu_{measured})$ $y_b := intercept(Dates, \mu_{measured})$

 $\alpha_t := 0.05$ k := 23 f := 0..'k - 1 'year predict_f := 1985 + f-2

Thick predict := m_s.year predict + y_b

Thick actualmean := mean(Dates) $sum := \sum_{i} (Dates_{d} - mean(Dates))^{2}$

For the entire grid

 $upper_f := Thick predict_f \cdots$

+
$$qt\left(1-\frac{\alpha_t}{2}, \text{Total}_{\text{means}}-2\right)$$
 StGrand err $\sqrt{1+\frac{1}{(d+1)}+\frac{(\text{year}_{\text{predict}_f}-\text{Thick}_{\text{actualmean}})^2}{\text{sum}}}$

lower, := Thick predict, ...

$$+ -\left[qt\left(1 - \frac{\alpha_{t}}{2}, \text{Total}_{\text{means}} - 2\right) \cdot \text{StGrand}_{\text{err}} \cdot \sqrt{1 + \frac{1}{(d+1)}} + \frac{\left(\frac{\text{year}_{\text{predict}_{f}} - \text{Thick}_{\text{actualmean}}\right)^{2}}{\text{sum}}\right]$$

OCLR00019341

-0.597

 $m_{e} =$

C-1302-187-E310-041 Rev. No. 0

OCLR00019342

The section below calculates what the postulated mean thickness would be if this grid were to corrode at a minimum observable rate observed in appendix 22.

Rate min_observed := 6.9

Postulated meanthickness := μ_{measured_3} - Rate min_observed (2029 - 2006)

Postulated meanthickness = 833.842	which is greater than		Tmin_gen _{SB2} = 736
	•	•	3
	?	•	

Appendix 1

C-1302-187-E310-041 Rev. No. 0

Sheet No. 13 of 16

AL.

SSR point = 178.53

The following addresses the readings at the lowest single point The F-Ratio is calculated for the point as follows

SST_{point} :=
$$\sum_{i=0}^{last(Dates)} (Pit_{15_i} - mean(Pit_{15}))^2$$
 / SST_{point} = 346

$$SSE_{point} := \sum_{i=0}^{last(Dates)} (Pit_{15_i} - yhat(Dates, Pit_{15})_i)^2$$

$$SSE_{point} = \frac{167.47}{167.47}$$

$$SSR_{point} := \sum_{i=0}^{last(Dates)^{i}} (yhat(Dates, Pit_{15})_{i} - mean(Pit_{15}))^{2}$$

$$MSE_{point} := \frac{SSE_{point}}{DegreeFree_{ss}} \qquad MSR_{point} := \frac{SSR_{point}}{DegreeFree_{reg}} \qquad MST_{point} := \frac{SST_{point}}{DegreeFree_{st}}$$
$$MSE_{point} = 83.735 \qquad MSR_{point} = 178.53 \qquad MST_{point} = 115.333$$
$$StPit_{err} := \sqrt{MSE_{point}} \qquad StPit_{err} = 9.151$$

F Test for Corrosion

2460

$$F_{actaul_Reg} := \frac{\frac{HSR point}{MSE point}}{\frac{MSE point}{MSE point}}$$
$$F_{ratio_reg} := \frac{F_{actaul_Reg}}{F_{critical_reg}}$$
$$F_{ratio_reg} = 0.115$$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

Therefore this point is not experiencing corrosion

 $m_{point} = -1.251$ y point = intercept (Dates, Pit 15) y point = $3.264 \cdot 10^3$

Appendix 1

C-1302-187-E310-041 Rev. No. 0

Sheet No. 14 of 16

The 95% Confidence curves are calculated

Pit curve $\stackrel{\prime}{:=} m_{\text{point}} \cdot year_{\text{predict}} + y_{\text{point}}$

Pit actualmean := mean(Dates)

sum := $\sum_{i} (Dates_{d} - mean(Dates))^{2}$

uppoint := Pit curve, ...

 $+ qt\left(1 - \frac{\alpha_t}{2}, \text{Total}_{\text{means}} - 2\right) \cdot \text{StPit}_{err} \cdot \sqrt{1 + \frac{1}{(d+1)} + \frac{(\text{year}_{\text{predict}_f} - \text{Pit}_{\text{actualmean}})^2}}$

 $lopoint_{f} := Pit_{curve_{f}} ...$

$$+ -\left[qt\left(1 - \frac{\alpha_{t}}{2}, \text{Total}_{\text{means}} - 2\right) \cdot \text{StPit}_{\text{err}} \cdot \sqrt{1 + \frac{1}{(d+1)}} + \frac{\left(\frac{\text{year}_{\text{predict}} - \text{Pit}_{\text{actualmean}}\right)^{2}}{\text{sum}}\right]$$

.ocal Tmin for this elevation in the Drywell $Tmin_{local} SB_{f} \approx 490$ (Ref.3.25)

Curve Fit For Pit 15 Projected to Plant End Of Life

OCLR00019344

m point =

-1.251

C-1302-187-E310-041 Rev. No. 0

Therefore based on régression model the above curve shows that this point will not corrode to below minimum required thickness by the plant end of life.

$$m_{\text{point}} := \text{slope}(\text{Dates}, \text{Pit}_{15})$$
 $m_{\text{point}} = -1.251 \text{ y}_{\text{point}} := \text{intercept}(\text{Dates}, \text{Pit}_{15}) \text{ y}_{\text{point}} = 3.264 \cdot 10^3$

The 95% Confidence curves are calculated

Pit curve := m point · year predict + y point

Pit_{actualmean} := mean(Dates) sum := $\sum_{i} (Dates_{i} - mean(Dates))^{2}$

uppoint_f := Pit curve_f ...)

+
$$qt\left(1-\frac{\alpha_t}{2}, \text{Total}_{\text{means}}-2\right)$$
 StPit err $\sqrt{1+\frac{1}{(d+1)}+\frac{(\text{year}_{\text{predict}_f}-\text{Pit}_{\text{actualmean}})^2}{\text{sum}}}$

lopoint_f := Pit curve_f ...

$$+ -\left[qt\left(1 - \frac{\alpha_{t}}{2}, \text{Total}_{\text{means}} - 2\right) \cdot \text{StPit}_{err} \cdot \sqrt{1 + \frac{1}{(d+1)} + \frac{\left(year_{\text{predict}_{f}} - \text{Pit}_{\text{actualmean}}\right)^{2}}{\text{sum}}}\right]$$

C-1302-187-E310-041 Rev. No. 0

The section below calculates what the postulated individual thickness would be if this point were to corrode at a minimum observable rate observed in appendix 22.

Rate min_observed = 6.9

Postulated thickness = Pit 153 - Rate min_observed (2029 - 2006)

Postulated thickness = 592.3 which is greater than $Tmin_local SB_3 = 490$

The section below calculates what the postulated corrosion rate necessary for the thinnest individual point to reach the local required thickness by 2029.

minpoint = 0.751

year predict_{22} = $2.029 \cdot 10^3$

 $Tmin_local SB_{22} = 490$

 $\frac{\left(1000 \text{ minpoint} - \text{Tmin_local } \text{SB}_{22}\right)}{(2005 - 2029)}$ required rate. :=

required rate. = -10.875 mils per year

C-1302-187-E310-041 Rev. No. 0

Appendix 2 - Sand Bed Elevation Bay 11A

October 2006 Data on 10/18/06

page := READPRN("U:\MSOFFICE\Drywell Program data\OCT 2006 Data\Sandbed\SB11A.txt")

Points 49 := showcells(page, 7, 0)

0.905 0.832 0.829 0.803 0.83

oints	49	=		(
-------	----	---	--	---

P

į	0.72	0.766	0.858	0.731	0.762	0.669	0,764
=	0.739	1.047	1.057	0.806	0.761	0.821	0.849
							0.817
	0.741	0.897	0.818	0.89	0.907	0.833	0.826
	0.875	0.869	0.923	0.886	0.871	0.81	0.842

0.797 0.825 0.834 0.822 0.858 0.783 0.795

Cells := convert (Points 49,7)

No DataCells := length(Cells)

0.812 0.737

For this location point 23, 24, 30, and 31 are located on a plug (reference 3.22) and have been omitted from the overall mean calculation for his location.

Cells := Zero $_{one}$ (Cells, No $_{DataCells}$, 23)

Cells := Zero one (Cells, No DataCells, 24)

Cells := Zero $_{one}(Cells, No _{DataCells}, 30)$

Cells := Zero one (Cells, No DataCells, 31)

Cells := deletezero cells (Cells, No DataCells)

The thinnest point at this location is point 20 and is shown below

minpoint := min(Points 49)

minpoint = 0.669

Sheet No. 2 of 17

Mean and Standard Deviation

$$\mu_{actual} := mean(Cells)$$

 $\mu_{actual} = 821.511$

 $\sigma_{actual} := Stdev(Cells)$

Standard error = 8.019

Skewness = -0.456

o _{actual} = 56.13

Kurtosis = -0.272

Standard Error

Standard error
$$:= \frac{\sigma_{actual}}{\sqrt{No DataCells}}$$

Skewness

Skewness :=
$$\frac{\left(\text{No}_{\text{DataCells}}\right) \cdot \overline{\Sigma} \left(\text{Cells} - \mu_{\text{actual}}\right)^{3}}{\left(\text{No}_{\text{DataCells}} - 1\right) \cdot \left(\text{No}_{\text{DataCells}} - 2\right) \cdot \left(\sigma_{\text{actual}}\right)^{3}}$$

K

Kurtosis

$$Kurtosis := \frac{No \text{ DataCells} \cdot (No \text{ DataCells} + 1) \overline{\Sigma (\text{Cells} - \mu_{\text{ actual}})^4}}{(No \text{ DataCells} - 1) \cdot (No \text{ DataCells} - 2) \cdot (No \text{ DataCells} - 3) \cdot (\sigma_{\text{ actual}})^4} \dots + \frac{3 \cdot (No \text{ DataCells} - 1)^2}{(No \text{ DataCells} - 2) \cdot (No \text{ DataCells} - 3)}.$$

٢

Sheet No. 3 of 17

Normal Probability Plot

In a normal plot, each data value is plotted against what its value would be if it actually came from a normal distribution. The expected normal values, called normal scores, and can be estimated by first calculating the rank scores of the sorted data.

j := 0.. last(Cells) srt := sort(Cells)

Then each data point is ranked. The array rank captures these ranks

rank p_j: rows(Cells)+1

The normal scores are the corresponding pth percentile points from the standard normal distribution:

x := 1 N_Score := root cnorm(x) - (p), x

Upper and Lower Confidence Values

The Upper and Lower confidence values are calculated based on .05 degree of confidence 'a"

No DataCells := length(Cells)

α

$$:= .05 T\alpha := qt \left[\left(1 - \frac{\alpha}{2} \right), \text{No DataCells} \right] T\alpha = 2.014$$

Lower 95%Con :=
$$\mu_{actual} - T\alpha - \frac{\sigma_{actual}}{\sqrt{No} DataCells}$$

Upper 95%Con := $\mu_{actual} + T\alpha_{actual}$

No DataCells

Upper 95%Con = 838.364

n

Lower 95%Con = 804.659

These values represent a range on the calculated mean in which there is 95% confidence.

Graphical Representation

Distribution of the "Cells" data points are sorted in 1/2 standard deviation increments (bins) within +/- 3 standard deviations

Bins := Make
$$bins(\mu_{actual}, \sigma_{actual})$$

Distribution := hist(Bins, Cells)
The mid points of the Bins are calculated
 $k := 0...11$ Midpoints_k := $\frac{(Bins_k + Bins_{k+1})}{2}$

The Mathcad function pnorm calculates a portion of normal distribution curve based on a given mean and standard deviation

normal $_{curve_0} := pnorm(Bins_1, \mu_{actual}, \sigma_{actual})$

normal curve, := pnorm(Bins_{k+1},
$$\mu_{actual}, \sigma_{actual}) - pnorm(Bins_{k}, \mu_{actual}, \sigma_{actual})$$

normal curve := No DataCells normal curve

xxx

C-1302-187-E310-041 Rev. No. 0

Results For Elevation Sandbed elevation Location Oct. 2006

The following schematic shows: the the distribution of the samples, the normal curve based on the actual mean and standard deviation, the kurtosis, the skewness, the number of data points, and the the lower and upper 95% confidence values. Below is the Normal Plot for the data.

 $\sigma_{actual} = 56.13$

Standard error = 8.019

Skewness = -0.456

Kurtosis = -0.272

The Normal **Probability Plot** and the Kurtosis this data is normally distributed.

d :=0

Sandbed Location 11A Trend

Data from the 1992, 1994 and 1996 is retrieved.

For 1992

Dates_d := Day_{year}(12, 8, 1992)

page := READPRN("U:\MSOFFICE\Drywell Program data\Dec. 1992 Data\sandbed\Data Oniy\SB11A.txt")

Points 49 := showcells(page, 7, 0)

Data

	0.93	0.824	0.831	0.809	0.807	0.817	0.751	
	0.816	0.827	0.834	0.823	0.851	0.787	0.799 0.764	
	0.733	0.762	0.866	0.762	0.771	0.677	0.764	
Points ₄₉ =	0.745	0.252	0.147	0.809	0.767	0.805	0.846	.
	0.841	1.082	1.111	0.886	0.881	0.901	0.778	
	0.755	0.896	0.804	0.805	0.898	0.844	0.823	
	0.847	0.9	0.902	0.924	0.923	0.828	0.884	

nnn := convert(Points 49,7)

No DataCells := length(nnn)

For this location point 23, 24, 30, and 31 are located on a plug (reference 3.22) and have been omitted from the overall mean calculation for his location.

 $\sigma_{\text{measured}_d} \coloneqq \text{Stdev(Cells)}$

nnn := Zero one (nnn, No DataCells, 23)

nnn := Zero one (nnn, No DataCells, 24)

 $nnn := Zero_{one}(nnn, No_{DataCells}, 30)$

nnn := Zero one(nnn, No DataCells, 31)

Cells := deletezero cells (nnn, No DataCells)

The thinnest point is captured

 μ measured_d := mean(Cells)

Point 20_d = Cells 19

Point 20 = 677

σ measured Standard error No DataCells

For 1994

d ≔d+1

page := READPRN("U:\MSOFFICE\Drywell Program data\Sept. 1994 Data\sandbed\Data Only\SB! IA.txt")

Dates_d := Day year(9, 14, 1994)

Points 49 := showcells(page, 7,0)

 $Points_{49} = \begin{bmatrix} 0.924 & 0.822 & 0.828 & 0.804 & 0.802 & 0.813 & 0.749 \\ 0.805 & 0.826 & 0.836 & 0.823 & 0.824 & 0.791 & 0.79 \\ 0.728 & 0.758 & 0.866 & 0.738 & 0.773 & 0.677 & 0.76 \\ 0.734 & 0.234 & 1.052 & 0.809 & 0.804 & 0.798 & 0.851 \\ 0.811 & 1.091 & 1.106 & 0.888 & 0.881 & 0.878 & 0.79 \\ 0.75 & 0.896 & 0.808 & 0.845 & 0.905 & 0.834 & 0.869 \\ 0.839 & 0.868 & 0.906 & 0.881 & 0.874 & 0.815 & 0.846 \end{bmatrix}$

Data

nnn := convert(Points $_{49}, 7$)

No DataCells := length(nnn)

For this location point 23, 24, 30, and 31 are located on a plug (reference 3.22) and have been omitted from the overall mean calculation for his location.

nnn := Zero one(nnn, No DataCells, 23)

 $nnn := Zero_{one}(nnn, No_{DataCells}, 24)$

nnn := Zero one (nnn, No DataCells, 31)

nnn := Zero one(nnn, No DataCells, 30)

Cells := deletezero cells (nnn, No DataCells)

The thinnest point is captured

Point $20_d := Cells_{19}$

 μ measured_d := mean(Cells)

 $\sigma_{\text{measured}_d} := \text{Stdev}(\text{Cells})$

For 1996

d :=d+1

page := READPRN("U:\MSOFFICE\Drywell Program data\Sept.1996 Data\sandbed\Data Only\SB11A.txt")

Dates_d := Day _{year}(9, 16, 1996)

Points 49 := showcells(page, 7, 0)

Data0.8840.8280.8240.7970.830.8060.7370.7870.8560.830.8270.8340.8450.7880.7110.7580.8560.7240.7560.6680.80.8280.8281.0430.8430.8510.8150.8140.8481.0261.1490.9050.8750.9010.7590.790.9410.8090.8920.9040.8020.80.8840.8320.8130.9340.9180.9170.917

nnn := convert(Points 49,7)

No DataCells := length(nnn)

For this location point 23, 24, 30, and 31 are located on a plug (reference 3.22) and have been omitted from the overall mean calculation for his location.

nnn := Zero one(nnn, No DataCells, 23)

nnn := Zero one (nnn, No DataCells, 24)

nnn := Zero one(nnn, No DataCells, 30) nnn := Zero one(nnn, No DataCells, 31)

Cells := deletezero cells (nnn', No DataCells)

The thinnest point is captured

Point 20d := Cells 19

 $\mu_{\text{measured}_d} := \text{mean}(\text{Cells})$

 $\sigma_{\text{measured}_d} := \text{Stdev}(\text{Cells})$

^o measured_d Standard error No DataCells

d := d + 1

For 2006

page := READPRN("U:\MSOFFICE\Drywell Program data\OCT 2006 Data\Sandbed\SB11A.txt")

Dates_d := Day year(10, 16, 2006)

Points 49 := showcells(page, 7,0)

Data

	0.905	0.832	0.829	0.803	0.83	0.812	0.737 0.795 0.764
	0.797	0.825	0.834	0.822	0.858	0.783	0.795
	0.72	0.766	0.858	0.731	0.762	0.669	0.764
Points ₄₉ =	0.739	1.047	1.057	0.806	0.761	0.821	0.849
	0.843	1.09	1.104	0.879	0.879	0.854	0.817
	0.741	0.897	0.818	0.89	0.907	0.833	0.826
	0.875	0.8 69	0.923	0.886	0.871	0.81	0.842

nnn := convert (Points 49, 7)

No DataCells := length(nnn)

For this location point 23, 24, 30, and 31 are located on a plug (reference 3.22) and have been omitted from the overall mean calculation for his location.

nnn := Zero one(nnn, No DataCells, 23)

nnn := Zero one(nnn, No DataCells, 24)

nnn := Zero one(nnn, No DataCells, 30)

nnn := Zero $_{one}(nnn, No _{DataCells}, 31)$

Cells := deletezero cells (nnn, No DataCells)

The thinnest point is captured

Point 20, = Cells 19

 $\sigma_{\text{measured}_d} \coloneqq \text{Stdev(Cells)}$

 μ measured_d := mean(Cells)

Standard error_d := $\frac{\sqrt{No} \text{ measured}_{d}}{\sqrt{No} \text{ DataCells}}$

C-1302-187-E310-041 Rev. No. 0

Below are matrices which contain the Mean, Standard Deviation, Standard Error for each date.

$$Dates = \begin{bmatrix} 1.993 \cdot 10^{3} \\ 1.995 \cdot 10^{3} \\ 1.997 \cdot 10^{3} \\ 2.007 \cdot 10^{3} \end{bmatrix}$$

$$Point_{20} = \begin{bmatrix} 677 \\ 678 \\ 668 \\ 669 \end{bmatrix}$$

$$\mu \text{ measured} = \begin{bmatrix} 825.178 \\ 820.378 \\ 829.733 \\ 821.511 \end{bmatrix}$$

$$Standard error = \begin{bmatrix} 8.176 \\ 7.669 \\ 8.698 \\ 8.019 \end{bmatrix}$$

$$\sigma \text{ measured} = \begin{bmatrix} 57.235 \\ 53.685 \\ 60.885 \\ 56.13 \end{bmatrix}$$

$$Total \text{ means} := rows(\mu \text{ measured})$$

$$Total \text{ means} = 4$$

$$SST := \sum_{i=0}^{2} \sum_{i=0}^{i} (\mu \text{ measured}_{i} - mean(\mu \text{ measured}))^{2}$$

$$SSE := \sum_{i=0}^{2} (\mu \text{ measured}_{i} - mean(\mu \text{ measured}))^{2}$$

$$SSE := 48.771$$

$$SSR := \sum_{i=0}^{2} (\gamma hat(Dates, \mu \text{ measured})_{i} - mean(\mu \text{ measured}))^{2}$$

$$SSR := 4.642$$

$$DegreeFree_{53} := Total \text{ means} - 2$$

$$DegreeFree_{reg} := 1$$

$$MSE := \frac{SSE}{DegreeFree_{55}}$$

$$MSR := \frac{SSR}{DegreeFree_{75}}$$

$$MSR := 4.642$$

$$MST := \frac{SST}{DegreeFree_{51}}$$

F Test for Corrosion

MCD

a := 0.05

$$F_{actaul_Reg} := \frac{MSR}{MSE}$$

$$F_{ratio_reg} := \frac{F_{actaul_Reg}}{F_{critical_reg}}$$

 $F_{ratio_reg} = 0.01$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

The minimum required thickness at this elevation is

(Ref. 3.25)

OCLR00019357

Plot of the grand mean and the actual means over time

 μ grand measured₀ = 824.2

To conservatively address the location, the apparent corrosion rate will be calculated and compared to the minimum required wall thickness at this elevation

f:=0.. k-1

$$m_s := slope (Dates, \mu_{measured}) \qquad m_s = -0.201$$

$$y_{b} := intercept(Dates, \mu_{measured})$$

 $y_b = 1.225 \cdot 10^3$

The 95% Confidence curves are calculated

$$k := 0.05$$
 $k := 2029 - 1985$

 $year_{predict_{f}} := 1985 + f \cdot 2$ Thick predict := $m_{s} \cdot year_{predict} + y_{b}$

Thick actualmean := mean(Dates)

sum :=
$$\sum_{i} (Dates_d - mean(Dates))^2$$

upper, := Thick predict, ...

+
$$qt\left(1-\frac{\alpha_{t}}{2}, \text{Total}_{\text{means}}-2\right)$$
 StGrand err $\sqrt{1+\frac{1}{(d+1)}+\frac{(\text{year predict}_{f}-\text{Thick}_{actualmean})}{\text{sum}}}$

lower_f := Thick predict_f ...

C-1302-187-E310-041 Rev. No. 0

m _s = 70.201

Therefore even though F-ratio does not support the regression model the above curve shows that even at the lower 95% confidence band this location will not corrode to below Drywell Vessel Minimum required thickness by the plant end of life.

The section below calculates what the postulated mean thickness would be if this grid were to corrode at a minimum observable rate observed in appendix 22.

Rate min_observed := 6.9

Postulated meanthickness := μ measured₃ - Rate min_observed (2018 - 2006)

Postulated meanthickness = 738.711

which is greater than

Tmin_gen $_{SB_3} = 736$

The following addresses the readings at the lowest single point

Point $20_d := Cells_{19}$

$$SST_{point} := \sum_{i=0}^{nast (Dates)} (P_{0int}_{20_i} - mean(P_{0int}_{20}))^2$$

SSE point :=
$$\sum_{i=0}^{last(Dates)} (Point_{20_i} - yhat(Dates, Point_{20})_i)$$

SSR point :=
$$\sum_{i=0}^{last(Dates)} (yhat(Dates, Point_{20})_{i} - mean(Point_{20}))^{2}$$

SSE _{point} = 39.009

SST _{point} = 72.75

 $MSE_{point} := \frac{SSE_{point}}{DegreeFree_{ss}} \qquad MSR_{point} := \frac{SSR_{point}}{DegreeFree_{reg}} \qquad MST_{point} := \frac{SST_{point}}{DegreeFree_{st}}$

MSE _{point} = 19.505

StPoint
$$_{err} := \sqrt{MSE_{point}}$$

StPoint
$$_{err} = 4.416$$

F Test for Corrosion

MST point = 24.25

$$F_{actaul_Reg} \coloneqq \frac{MSR_{point}}{MSE_{point}}$$

F_{ratio_reg} :=
$$\frac{F_{actaul_Reg}}{F_{critical_reg}}$$

$$F_{ratio reg} = 0.093$$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

Local Tmin for this elevation in the Drywell

Tmin_local SB, = 490

(Ref. 3.25)

Curve Fit For Point 20 Projected to Plant End Of Life

OCLR00019361

The section below calculates what the postulated individual thickness would be if this point were to corrode at a minimum observable rate observed in appendix 22.

Rate min_observed := 6.9

Postulated thickness = Point 203 - Rate min_observed (2029 - 2006)

Postulated thickness = 510.3 which is greater than $Tmin_local SB_{1} = 490$

The section below calculates what the postulated corrosion rate necessary for the thinnest individual point to reach the local required thickness by 2029.

minpoint = 0.669 $year_{predict_{22}} = 2.029 \cdot 10^3$

 $\frac{\text{Tmin_local}}{\text{SB}_{22}} = 490$

1000 minpoint - Tmin_local SB required rate. = (2005 - 2029)

required rate. = -7.458

mils per year

Appendix 3 - Sandbed 11C October 2006 Data The data shown below was collected on 10/18/06

page := READPRN("U:\MSOFFICE\Drywell Program data\Oct 2006 Data\Sandbed\SB11C.txt")

Points 49 := showcells (page , 7 , 0)

		•						
• •	0	0.771	0.803	0.912	0.767	0.858	0.886	
	1.056	1.046	0.984	1.094	1.036	1.118	1.029	
	1.073	1,113	1.002	0.935	0.942	0.888	0.853	
Points 49 =	0.837	0.836	0.79	0.874	0.834	0.846	0.838	
	0.85	0.825	0.869	0.889	0.833	0.866	0.875	
	0.856	0.84	0.864	0.829	0.872	0.876	0.844	
	0.861	0.877	0.879	0.885	0.88	0.849	0.876	

Cells := convert(Points $_{49}, 7$)

No DataCells := length(Cells)

1764. 140. U

Cells := deletezero cells (Cells, No DataCells)

No DataCells := length (Cells)

The thinnest point at this location is point 5 and is shown below

minpoint := min(Cells)

minpoint = 767

OCLR00019364

SHEET NO.

1 of 25

$$K_{\text{urtosis}} := \frac{N_{\text{o}}_{\text{DataCells}} \cdot (N_{\text{o}}_{\text{DataCells}} + 1) \cdot \overline{\Sigma} (\text{Cells} - \mu_{\text{actual}})^{4}}{\left(N_{\text{o}}_{\text{DataCells}} - 1\right) \cdot (N_{\text{o}}_{\text{DataCells}} - 2) \cdot (N_{\text{o}}_{\text{DataCells}} - 3) \cdot (\sigma_{\text{actual}})^{4}} \text{Kurtosis} = 0.406} + \frac{3 \cdot (N_{\text{o}}_{\text{DataCells}} - 1)^{2}}{(N_{\text{o}}_{\text{DataCells}} - 2) \cdot (N_{\text{o}}_{\text{DataCells}} - 3)}$$

Normal Probability Plot

j := 0 _ last(Cells) srt := sort(Cells)

$$r_{j} := j + 1 \qquad \text{rank}_{j} := \frac{\Sigma(\overrightarrow{\text{srt} = \text{srt}_{j}}) \cdot r}{\Sigma \text{srt} = \text{srt}_{j}}$$
$$p_{j} := \frac{\text{rank}_{j}}{\text{rows(Cells)} + 1}$$

x := 1 N_Score_j := root[cnorm(x) - (p_j), x]

Upper and Lower Confidence Values

The Upper and Lower confidence values are calculated based on .05 degree of confidence "a"

$$\alpha := .05 \qquad T\alpha := qt \left[\left(1 - \frac{\alpha}{2} \right), 48 \right] \qquad T\alpha = .2.011$$
Lower 95%Con := $\mu_{actual} - T\alpha \cdot \frac{\sigma_{actual}}{\sqrt{No} DataCells}$
Lower 95%Con := $\mu_{actual} + T\alpha \cdot \frac{\sigma_{actual}}{\sqrt{No} DataCells}$
Lower 95%Con = 924.339

These values represent a range on the calculated mean in which there is 95% confidence.

Graphical Representation

Jistribution of the "Cells" data points are sorted in 1/2 standard deviation increments (bins) within +/- 3 standard deviations

Bins := Make bins (
$$\mu$$
 actual, σ actual)

Distribution := hist(Bins, Cells)

The mid points of the Bins are calculated

$$Midpoints_{k} := \frac{(Bins_{k} + Bins_{k+1})}{2}$$

Distribution =
$$\begin{bmatrix} 0 \\ \frac{4}{13} \\ \frac{18}{3} \\ \frac{1}{2} \\ \frac{4}{3} \end{bmatrix}$$

0 0

 $\begin{array}{l} \operatorname{normal}_{\operatorname{curve}_{0}} \coloneqq \operatorname{pnorm}(\operatorname{Bins}_{i}, \mu_{\operatorname{actual}}, \sigma_{\operatorname{actual}}) \\ \operatorname{normal}_{\operatorname{curve}_{k}} \coloneqq \operatorname{pnorm}(\operatorname{Bins}_{k+1}, \mu_{\operatorname{actual}}, \sigma_{\operatorname{actual}}) - \operatorname{pnorm}(\operatorname{Bins}_{k}, \mu_{\operatorname{actual}}, \sigma_{\operatorname{actual}}) \end{array}$

normal curve := No DataCells · normal curve

Results For 11C

The following schematic shows: the the distribution of the samples, the normal curve based on the actual mean and standard deviation, the kurtosis, the skewness, the number of data points, and the the lower and upper 95% confidence values.

Past calculation have split this area at the top 3 rows and the bottom 4 rows (ref. 3.22) h in order to be consistent with past calculations this data will be split in two groups and analyzed. The entire data set will also be evaluated.

The two groups are named as follows:

StopCELL := 21.

low points := LOWROWS (Cells, No DataCells, StopCELL) high points := TOPROWS (Cells, 49, StopCELL)

Mean and Standard Deviation

 $\mu low_{actual} := mean(low_{points})$

 $\mu high_{actual} := mean (high_{points})$

olow actual := Stdev(low points) i ohigh actual := Stdev(high points)

Standard Error

Standardlow error := $\frac{\sigma \text{low}_{actual}}{\sqrt{\text{length}(\text{low}_{points})}}$

Standardhigh error := $\frac{\text{ohigh}_{actual}}{\sqrt{\text{length}(\text{high}_{points})}}$

Skewness

Nolow DataCells := length (low points)

Skewness _{low} := $\frac{(\text{Nolow DataCells}) \cdot \overline{\Sigma(\text{low points} - \mu \text{low actual})^3}}{(\text{Nolow DataCells} - 1) \cdot (\text{Nolow DataCells} - 2) \cdot (\sigma \text{low actual})^3}$

Nohigh DataCells := length (high points)

Skewness high := $\frac{(\text{Nohigh } \text{DataCells}) \cdot \overline{\Sigma} (\text{high } \text{points} - \mu \text{high } \text{actual})^3}{(\text{Nohigh } \text{DataCells} - 1) \cdot (\text{Nohigh } \text{DataCells} - 2) \cdot (\sigma \text{high } \text{actual})^3}$

4

Kurtosis

Appendix 3

$$\operatorname{Kurtosis}_{\text{low}} \coloneqq \frac{\operatorname{Nolow}_{\text{DataCells}} \cdot (\operatorname{Nolow}_{\text{DataCells}} + 1) \cdot \overline{\Sigma} (\operatorname{low}_{\text{points}} - \mu \operatorname{low}_{\text{actual}})^{4}}{(\operatorname{Nolow}_{\text{DataCells}} - 1) \cdot (\operatorname{Nolow}_{\text{DataCells}} - 2) \cdot (\operatorname{Nolow}_{\text{DataCells}} - 3) \cdot (\operatorname{slow}_{\text{actual}})^{4}} + \frac{3 \cdot (\operatorname{Nolow}_{\text{DataCells}} - 1)^{2}}{(\operatorname{Nolow}_{\text{DataCells}} - 2) \cdot (\operatorname{Nolow}_{\text{DataCells}} - 3)}$$

$$Kurtosis_{high} := \frac{Nohigh_{DataCells} \cdot (Nohigh_{DataCells} + 1) \cdot 2(high_{points} - \mu high_{actual})}{(Nohigh_{DataCells} - 1) \cdot (Nohigh_{DataCells} - 2) \cdot (Nohigh_{DataCells} - 3) \cdot (ohigh_{actual})}$$

$$I_{1} + -\frac{3 \cdot (Nohigh_{DataCells} - 1)^{2}}{(Nohigh_{DataCells} - 2) \cdot (Nohigh_{DataCells} - 3)}$$

Normal Probability Plot - Low points

$$1 := 0$$
 . last(low points) srt low := sort(low points)

$$L_{1} \coloneqq l + 1$$

$$\operatorname{rank}_{low_{1}} \coloneqq \frac{\sum \left(\overrightarrow{\operatorname{srt}_{low} = \operatorname{srt}_{low_{1}}} \right) \cdot L}{\sum \operatorname{srt}_{low} = \operatorname{srt}_{low_{1}}} \qquad p_{low_{1}} \coloneqq \frac{\operatorname{rank}_{low_{1}}}{\operatorname{rows}(\operatorname{low}_{points}) + 1}$$

x := 1 N_Score
$$low_1$$
 := root [cnorm(x) - $(p_{low_1}), x$]

Normal Probability Plot - High points

$$h := 0 .. last(high_{points})$$
 srt high := sort(high_{points})

$$H_{h} := h + 1$$

$$rank_{high_{h}} := \frac{\sum \left(\overrightarrow{srt_{high} = srt_{high_{h}}} \right) \cdot H}{\sum \overrightarrow{srt_{high} = srt_{high_{h}}}} p_{h}$$

$$p_{\text{high}_h} := \frac{\text{rank high}_h}{\text{rows}(\text{high points}) + 1}$$

$$x := 1$$
 N_Score high_h := root[cnorm(x) - (p_{high_h}), x]

normallow curve := Nolow DataCells · normallow curve

k = 0..11

()

 $Bins_{high} := Make_{bins} (\mu high_{actual}, \sigma high_{actual})$

Distribution high := hist $(Bins_{high}, high_{points})$

Distribution high =

0

3 2

0

 $\operatorname{Bins}_{\operatorname{high}_{k}} + \operatorname{Bins}_{\operatorname{high}_{k+1}}$ | Midpoints $high_k :=$ 2

normalhigh $_{curve_0} := pnorm(Bins_{high_1}, \mu high_{actual}, \sigma high_{actual})$

 $\operatorname{normalhigh}_{\operatorname{curve}_{k}} \coloneqq \operatorname{pnorm}\left(\operatorname{Bins}_{\operatorname{high}_{k+1}}, \operatorname{\muhigh}_{\operatorname{actual}}, \operatorname{\sigmahigh}_{\operatorname{actual}}\right) - \operatorname{pnorm}\left(\operatorname{Bins}_{\operatorname{high}_{k}}, \operatorname{\muhigh}_{\operatorname{actual}}, \operatorname{\sigmahigh}_{\operatorname{actual}}\right)$

normalhigh curve := Nohigh DataCells normalhigh curve

.1

١

Results Sandbed 11C Thicker Points

Appendix 3

The above plots indicates that the thicker areas are normally distributed.

C-1302-187-E310-041 Rev. No. 0

Sandbed 11C

Data from 1992 to 2006 is retrieved.

For Dec 31 1992

page := READPRN("U:\MSOFFICE\Drywell Program data\Dec. 1992 Data\sandbed\DATA ONLY\SB11C.txt")

Points 49 := showcells (page , 7 , 0) Data

Dates_d := Day year(12, 31, 1992)

d := 0

			Data		i i			
	0.941	0.839	0.806	0.917	0.776	0.86	0.926	ĺ
	1.105	1.044	0.997	0.975	1.076	1.12	1.045	
							0.896	
Points 49 =	0.847	0.845	0.794	0.833	-0.838 ¹	0.838	0.87	
	0,845	0.829	0.863	0.87	0.85	0.85	0.827	ļ
	0.941	0.817	0.858	0.839	0.876	0.879	0.854	
	0.603	0.893	0.905	0.901	0.913	0.877	0.845	
							1	

nnn := convert(Points 49,7) No DataCells := length(nnn)

) $nnn := Zero_{one} (nnn, No_{DataCells}, 43)$ Point 5 = 776

The thinnest point is captured $Point_{5_d} \coloneqq nnn_4$ $Point_5 = 776$ The two groups are named as follows:StopCELL := 21No Cells := length(Cells)

low points := LOWROWS (nnn, No Cells, StopCELL) high points := TOPROWS (nnn, No Cells, StopCELL) No lowCells := length (low points) No highCells := length (high points)

Cells := deletezero cells (nnn, No Cells)

 $\mu high_{measured_d} := mean(high_{points})$

 σ high measured_d := Stdev (high points)

ohigh measured

length (high points)

low points := deletezero cells (low points, No lowCells)

high points := deletezero cells (high points, No highCells)

 $\mu_{\text{measured}_d} := \text{mean}(\text{Cells})$

 μ measured = 908.83

Standardhigh error_d :=

 $\sigma_{\text{measured}_d} \coloneqq \text{Stdev(Cells)}$

Standard error_d := $\frac{1}{\sqrt{No} \text{ DataCells}}$ $\mu \text{low}_{\text{measured}_d}$:= mean(low points) $\sigma \text{low}_{\text{measured}_d}$:= Stdev(low points) $\sigma \text{low}_{\text{measured}_d}$

Standardlow
$$\operatorname{error}_{d} := \frac{d}{\sqrt{\operatorname{length}(\operatorname{low points})}}$$

Sheet No. 12 of 25

 $\mathbf{d} \coloneqq \mathbf{d} + \mathbf{1}$

For 1994

Appendix 3

or 1994

page := ŔEADPRN("U:\MSOFFICE\Drywell Program data\Sept.1994 Data\sandbed\DATA ONLY\SB11C.txt")

Points $_{49} :=$ showcells (page, 7, 0)

Dates_d := Day year(9, 26, 1994)

0 0 0 0.855 0.866 1.095 1.036 1.093 1.042 1.032 1.042 1.085 0.945 0.938 · 0.938 0.895 0.889 0.836 0.846 0.795 Points 49 = 0.828 0.833 0.843 0.869 0.837 0.823 0.842 0.873 0.872 0.822 0.879 0.836 0.862 0.824 0.872 **'0.823** 0.855 0.857 0.86 0.874 0.899 0.876 0.88 0.84 0.851

Data

nnn := convert (Points 49, 7) No DataCells := length (nnn)

The thinnest point is captured

The two groups are named as follows:

low points := LOWROWS(nnn , No Cells , StopCELL)
No lowCells := length(low points)
Cells := deletezero cells(nnn , No Cells)

low points := deletezero cells (low points, No lowCells)

 $\mu_{\text{measured}_d} := \text{mean(Cells)} \sigma_{\text{measured}_d} := \text{Stdev(Cells)}$

 $\begin{array}{l} \mu \text{high}_{\text{measured}_{d}} \coloneqq \text{mean}\left(\text{high}_{\text{points}}\right) \\ \sigma \text{high}_{\text{measured}_{d}} \coloneqq \text{Stdev}\left(\text{high}_{\text{points}}\right) \\ \end{array}$

Standardhigh $_{error_d} := \frac{\sigma_{high}_{measured_d}}{\sqrt{length(high_{points})}}$

high points := TOPROWS (nnn , No Cells , StopCELL)

No Cells := length(nnn)

Point 5_d := nnn₄

StopCELL := 21

No highCells := length (high points)

high points := deletezero cells (high points, No highCells) Standard error_d := $\frac{\sigma \text{ measured}_d}{\sqrt{\text{No DataCells}}}$ µlow measured_d := mean (low points) olow measured_d := Stdev (low points) Standardlow error_d := $\frac{\sigma \text{ low measured}_d}{\sigma \text{ low measured}_d}$

 $\sqrt{\text{length}(\text{low points})}$

For 1996 d := page := READPRN("U:\MSOFFICE\Drywell Program data\Sept.1996 Data\sandbed\DATA ONLY\SB11C.txt" Dates_d := Day year(9,23,1996) Points $_{49} :=$ showcells (page , 7 , 0) Data 1.038 0.928 1.002 0.942 1.14 1.077 1.035 1.058 1.195 1.075 1.168 1.16 1.112 0.962 1.104 1.169 0.983 0.965 0.889 1.031 0.845 0.855 0.903 0.85 0.786 0.913 0.778 0.839 Points 49 = 0.927 0.922 0.894 0.896 0.91 0.869 0.837 0.928 0.878 0.874 0.878 0.862 0.915 0.906 0.917 0.924 (0.899 0.89 0.874 0.884 0.917 No DataCells := length(nnn) nnn := convert(Points $_{49}, 7$) Point $5_d \approx nnn_4$ The thinnest point is captured The two groups are named as follows: StopCELL := 21 No Cells := length(nnn) low points := LOWROWS (nnn, No Cells, StopCELL) high points := TOPROWS (nnn, No Cells, StopCELL) No lowCells := length (low points) No highCells := length (high points) Cells := deletezero $_{cells}(nnn, No_{Cells})$ low points := deletezero cells (low points , No lowCells) high points := deletezero cells (high points', No highCells) ^o measured Standard error_d $\mu_{\text{measured}_d} \coloneqq \text{mean(Cells)} \quad \sigma_{\text{measured}_d} \coloneqq \text{Stdev(Cells)}$ No DataCells μ low measured = mean (low points) $\sigma_{\text{high}}_{\text{measured}_d} \coloneqq Stdev(\operatorname{high}_{\text{points}})$ $dow_{measured_d} := Stdev(low_{points})$ σ high measured d σ_{d}^{low} measured Standardhigh error_d := Standardlow errord := length (high points length (low points)

OCLR00019376

13 of 25

Below are the results

•					23.832	
• .	.969.667		109.211		23.365	
	982.214		87.424	Standardhigh error =	21.44	
$\mu high_{measured} =$	1.042•10 ³	σ high measured =	98.251		24.623	
	958.3		112.838			

	859.692	· · · ·	32.576		6.389
	850.25	_1	23.629	Per	4.466
µlow measured = 883.036 855.357	883.036	σlow measured ⁼	38.902	Standardlow error =	7.352
	855.357		23.008		4.348

Total means \coloneqq rows (μ_{measured}) Total means = 4

SST :=
$$\sum_{i=0}^{\text{last(Dates)}} (\mu_{\text{measured}_i} - \text{mean}(\mu_{\text{measured}}))^2$$

SST
$$low_{\mu} := \sum_{i=0}^{last(Dates)} (\mu low_{measured_{i}} - mean(\mu low_{measured}))^{2}$$

SST_{high} :=
$$\sum_{i=0}^{last(Dates)} (\mu high_{measured_i} - mean(\mu high_{measured}))^2$$

SSE :=
$$\sum_{i=0}^{\text{last}(\text{Dates})} (\mu_{\text{measured}_{i}} - \text{yhat}(\text{Dates}, \mu_{\text{measured}})_{i})^{2}$$

()

$$SSE_{low} := \sum_{i=0}^{last(Dates)} (\mu low_{measured_i} - yhat(Dates, \mu low_{measured})_i)^2$$

SSE high :=
$$\sum_{i=0}^{\text{last(Dates)}} (\mu high_{\text{measured}_i} - \mu high_{\text{measured}_i})^2$$

SSR :=
$$\sum_{i=0}^{last(Dates)} (yhat(Dates, \mu_{measured})_{i} - mean(\mu_{measured}))^{2}$$

SSR low :=
$$\sum_{i=0}^{last(Dates)} (yhat(Dates, \mu low_{measured})_{i} - mean(\mu low_{measured}))^{2}$$

SSR high :=
$$\sum_{i=0}^{last(Dates)} (yhat(Dates, \mu high_{measured})_{i} - mean(\mu high_{measured}))^{2}$$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

18 of 25

the low points

F Test for Corrosion

$$F_{actaul_Reg.low} := \frac{MSR_{low}}{MSE_{low}}$$

$$F_{critical_reg} := qF(1 - \alpha, DegreeFree_{reg}, DegreeFree_{ss})$$

$$F_{ratio_reg.low} := \frac{F_{actaul_Reg.low}}{F_{critical_reg}}$$

$$F_{ratio_reg.low} = 1.892 \times 10^{-3}$$

The conclusion can not be made that the low points best fit the regression model. The figure below provides a trend of the data and the grandmean

Test the high points

F Test for Corrosion $F_{actaul_Reg.high} := \frac{MSR_{high}}{MSE_{high}}$ $F_{critical_reg} := qF(1 - \alpha, DegreeFree_{reg}, DegreeFree_{ss})$ $F_{ratio_reg.high} := \frac{F_{actaul_Reg.high}}{F_{critical_reg}}$

$F_{ratio_reg.high} = 0.012$

herefore no conclusion can be made as to whether the data best fits the regression model. The figure lelow provides a trend of the data and the grandmean

OCLR00019382

•

The F Test indicates that the regression model does not hold for any of the data sets. However for conservatism the slopes and 95% confidence curves are generated for all three cases.

 $m_s := slope(Dates, \mu_{measured})$

 $y_b := intercept (Dates, \mu_{measured})$

 $m_{lows} := slope(Dates, \mu low_{measured})$

y lowb = intercept (Dates, µlow measured)

 $m_{highs} := slope (Dates, \mu high_{measured})$

 $y_{highb} \stackrel{!}{=} intercept (Dates, \mu high_{measured})$

 $\alpha_t := 0.05$ k := 23 f := 0.. k - 1

 $year_{predict_r} := 1985 + f \cdot 2$

Thick predict := m s year predict + y b

Thick lowpredict := m lows · year predict + y lowb

Thick highpredict := m highs year predict + y highb

Thick actualmean := mean(Dates)

$$m \coloneqq \sum_{i} (Dates_d - mean(Dates))^2$$

1

upper, := Thick predict, ...

+
$$qt\left(1 - \frac{\alpha}{2}, \text{Total}_{\text{means}} - 2\right)$$
. Standard error $\sqrt{1 + \frac{1}{(d+1)}} + \frac{\left(\frac{\text{year}_{\text{predict}_{f}} - \text{Thick}_{\text{actualmean}}\right)}{\text{sum}}$

 $lower_{f} := Thick_{predict_{f}} \cdots$

$$+ -\left[qt\left(1 - \frac{\alpha_{t}}{2}, \text{Total}_{\text{means}} - 2\right) \cdot \text{Standard}_{\text{error}} \sqrt{1 + \frac{1}{(d+1)}} + \frac{\left(\frac{\text{year}_{\text{predict}_{f}} - \text{Thick}_{\text{actualmean}}\right)^{2}}{\text{sum}}\right]$$

۰.

(Ref. 3.25)

General area Tmin for this elevation in the Drywell

For the points which are thicker

upper_f := Thick highpredict_f

+
$$qt\left(1-\frac{\alpha_{t}}{2}, \text{Total}_{\text{means}}-2\right)$$
 Standard higherror $\sqrt{1+\frac{1}{(d+1)}+\frac{(\text{year}_{\text{predict}}-\text{Thick}_{\text{actualmean}})^{2}}{\text{sum}}$

lower_f := Thick highpredict_f ...

$$-\left[\operatorname{i}_{qt}\left(1-\frac{\alpha_{t}}{2},\operatorname{Total}_{means}-2\right)\operatorname{Standard}_{higherror}\cdot\sqrt{1+\frac{1}{(d+1)}+\frac{\left(\operatorname{year}_{predict_{f}}-\operatorname{Thick}_{actualmean}\right)^{2}}{\operatorname{sum}}}\right]$$

For the points which are thinner

upper := Thick lowpredict,

+
$$qt\left(1-\frac{\alpha_{t}}{2}, \text{Total}_{\text{means}}-2\right)$$
. Standard lowerror: $\sqrt{1+\frac{1}{(d+1)}}+\frac{\left(year_{\text{predict}_{f}}-\text{Thick}_{\text{actualmean}}\right)^{2}}{sum}$

lower_f := Thick lowpredict_f ...

$$= \left[qt \left(1 - \frac{\alpha_t}{2}, \text{Total}_{\text{means}} - 2 \right) \cdot \text{Standard}_{\text{lowerror}} \cdot \sqrt{1 + \frac{1}{(d+1)} + \frac{\left(\text{year}_{\text{predict}_{f_i}} - \text{Thick}_{\text{actualmean}} \right)^2}{\text{sum}} \right]$$

The section below calculates what the postulated mean thickness would be if this grid were to corrode at a minimum observable rate observed in appendix 22.

Sheet No. 24 of 25

 $Tmin_gen_{SB_3} = 736$

 $SSE_{point} = 6.585 \cdot 10^5$

 $MST_{point} := \frac{SST_{point}}{DegreeFree_{st}}$

 $MST_{point} = 2.301 \cdot 10^5$

 $SSR_{point} = 3.194 \cdot 10^4$

Rate min_observed := 6.9

Postulated meanthickness := μ_{measured_3} - Rate min_observed (2029 - 2006)

Postulated meanthickness = 739.55 which is greater than

The following addresses the readings at the lowest single point

$$SST_{point} \coloneqq \sum_{i=0}^{last(Dates)} (Point_{5_i} - mean(Point_5))^2$$
$$SST_{point} = 6.904 \cdot 10^5$$

SSE_{point} :=
$$\sum_{i=0}^{last(Dates)} (Point_{5_i} - yhat(Dates, Point_5)_i)^2$$

)SSR_{point} :=
$$\sum_{i=0}^{last(Dates)} (yhat(Dates, Point_5)_i - mean(Point_5))^2$$

F

 $MSE_{point} := \frac{SSE_{point}}{DegreeFree_{SS}}$

Appendix 3

StPit err = $\sqrt{\text{MSE}_{point}}$

 $MSE_{point} = 3.292 \cdot 10^5$

$$MSR_{point} := \frac{SSR_{point}}{DegreeFree_{reg}}$$
$$StPit_{err} = 573.803$$

 $MSR_{point} = 3.194 \cdot 10^4$

F Test for Corrosion

actaul_Reg :=
$$\frac{\text{MSR point}}{\text{MSE point}}$$

$$F_{ratio_reg} := \frac{actau_Reg}{F_{critical_reg}}$$

 $F_{\text{ratio_reg}} = 5.241 \cdot 10^{-3}$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

Tmin_local SB, = 490

(Ref. 3.25)

The section below calculates what the postulated individual thickness would be if this point were to corrode at a minimum observable rate observed in appendix 22.

Rate min observed = 6.9

Postulated thickness := Point 5, - Rate min_observed (2029 - 2006)

Postulated thickness = 608.3 which is greater than $Tmin_local SB_3 = 490$

The section below calculates what the postulated corrosion rate necessary for the thinnest individual point to reach the local required thickness by 2029.

minpoint = 767 year predict₂₂ = $2.029 \cdot 10^3$ required rate. := $\frac{(\text{minpoint} - \text{Tmin_local}_{SB_{22}})}{(2005 - 2029)}$

required rate, = -11.542 mils pe

Tmin_local SB₂₂ = 490

mils per year

Appendix 4 - Sand Bed Elevation Bay 13A

October 2006 Data

The data shown below was collected on 10/20/06.

page := READPRN("U:\MSOFFICE\Drywell Program data\Oct 2006 Data\Sandbed\SB13A.txt")

Points $_{49} :=$ showcells (page, 7, 0)

	•							
	0.887							
	0.823	0.883	0.774	0.826	0.897	0.87	0.783	ļ
	0.76	0.913	0.798	0.823	0.746	0.759	0.768	ļ
Points 49 =	0.845	0.895	0.875	0.848	0.788	0,799	0.852	
	0.88	0.811	0.861	•0.869	0.798	0.846	0.84	I
	0.816	0.813	0.869	0.924	0.824	0.785	0.87	ļ
•	0.801	0.834	0.763	0.838	0.895	0.885	0.863	ļ
				•			-	

Cells := convert (Points $_{49}, 7$)

No DataCells := length (Cells)

The thinnest point at this location is at point 15 shown below

minpoint := min(Points 49)

minpoint = 0.746

Cells := deletezero cells (Cells, No DataCells)

Point 5 is much thicker than the mean of the rest of distribution. Therefore the distribution of the grid without this point will also be investigated:

Cells \min_{5} := Cells Cells \min_{5_4} := 0

Cells min5 := deletezero cells (Cells min5, No DataCells)

No DataCells.min5 := length (Cells min5)

= 57.413

 σ_{actual}

Mean and Standard Deviation

 $\mu_{actual} := mean(Cells)$ $\mu_{actual} = 845.796$

• •

 $\sigma_{actual} := Stdev(Cells)$

 $\sigma_{\text{actual.min5}} \coloneqq \text{Stdev}\left(\text{Cells}_{\min 5}\right)$

Standard error = 8.202

Standard error.min5 = 7.211

 $\mu_{\text{actual.min5}} := \text{mean}(\text{Cells}_{\min5})$

Standard Error

Standard error := $\frac{\sigma_{actual}}{\sqrt{N_0 DataCells}}$ Standard error.min5 := $\frac{\sigma_{actual.min5}}{\sqrt{N_0 DataCells.min5}}$

Skewness

Skewness :=
$$\frac{\left(No_{\text{DataCells}}\right) \cdot \overline{\Sigma \left(\text{Cells} - \mu_{\text{actual}}\right)^{3}}}{\left(No_{\text{DataCells}} - 1\right) \cdot \left(No_{\text{DataCells}} - 2\right) \cdot \left(\sigma_{\text{actual}}\right)^{3}}$$
Skewness = 0.745

Skewness _{min5} :=
$$\frac{(\text{No}_{\text{DataCells.min5}}) \cdot \Sigma (\text{Cells}_{\min5} - \mu_{\text{actual.min5}})^3}{(\text{No}_{\text{DataCells.min5}} - 1) \cdot (\text{No}_{\text{DataCells.min5}} - 2) \cdot (\sigma_{\text{actual.min5}})^3}_{\text{Skewness}_{\min5}} = -0.01$$

Kurtosis

$$Kurtosis := \frac{No DataCells \cdot (No DataCells + 1) \cdot \overline{\Sigma(Cells - \mu_{actual})^4}}{(No DataCells - 1) \cdot (No DataCells - 2) \cdot (No DataCells - 3) \cdot (\sigma_{actual})^4} - \frac{3 \cdot (No DataCells - 1)^2}{(No DataCells - 2) \cdot (No DataCells - 3)}$$

$$Kurtosis = 1.696$$

$$Kurtosis_{5} := \frac{No \text{ DataCells.min5} \cdot (No \text{ DataCells.min5} + 1) \cdot \Sigma (Cells \text{ min5} - \mu \text{ actual.min5})^{4}}{(No \text{ DataCells.min5} - 1) \cdot (No \text{ DataCells.min5} - 2) \cdot (No \text{ DataCells.min5} - 3) \cdot (\sigma \text{ actual.min5})^{4}} + \frac{3 \cdot (No \text{ DataCells.min5} - 1)^{2}}{(No \text{ DataCells.min5} - 2) \cdot (No \text{ DataCells.min5} - 3)}$$

$$Kurtosis_{5} = -0.748$$

Sheet No. 3 of 16

ŧ.

Normal Probability Plot

In a normal plot, each data value is plotted against what its value would be if it actually came from a normal distribution. The expected normal values, called normal scores, and can be estimated by first calculating the rank scores of the sorted data.

j := 0 .. last(Cells) srt := sort(Cells)

Then each data point is ranked. The array rank captures these ranks

$$r_j := j + 1$$
 rank $:= \frac{\sum (\overrightarrow{srt=srt_j}) \cdot r}{\sum \overrightarrow{srt=srt_j}}$

$$p_j := \frac{\operatorname{rank}_j}{\operatorname{rows}(\operatorname{Cells}) + 1}$$

The normal scores are the corresponding pth percentile points from the standard normal distribution:

x := 1 N_Score_j := root[cnorm(x) - (p_j), x]

Upper and Lower Confidence Values

The Upper and Lower confidence values are calculated based on .05 degree of confidence "a"

No DataCells := length (Cells)

α :=

.05
$$T\alpha := qt\left[\left(1-\frac{\alpha}{2}\right), No_{DataCells}\right] T\alpha = 2.01$$

^t Lower 95%Con :=
$$\mu_{actual} - T\alpha \frac{\sigma_{actual}}{\sqrt{No}_{DataCells}}$$
 Lower 95%Con = 829.314
^t Upper 95%Con := $\mu_{actual} + T\alpha \frac{\sigma_{actual}}{\sqrt{No}_{DataCells}}$ 'Upper 95%Con = 862.27

These values represent a range on the calculated mean in which there is 95% confidence.

Graphical Representation

Distribution of the "Cells" data points are sorted in 1/2 standard deviation increments (bins) within +/- 3 standard deviations

862.278

9 9

Distribution =

Bins := Make
$$bins(\mu_{actual}, \sigma_{actual})$$

Distribution := hist(Bins, Cells)

The mid points of the Bins are calculated

The Mathcad function pnorm calculates a portion of normal distribution curve based on a given mean and standard deviation

 $Midpoints_{k} := \frac{\left(Bins_{k} + Bins_{k+1}\right)}{2}$

normal curve₀ := pnorm (Bins₁,
$$\mu_{actual}, \sigma_{actual}$$
)
normal curve_k := pnorm (Bins_{k+1}, $\mu_{actual}, \sigma_{actual}$) - pnorm (Bins_k, $\mu_{actual}, \sigma_{actual}$)

normal curve := No DataCells ·normal curve

The following schematic shows: the the distribution of the samples, the normal curve based on the actual mean and standard deviation, the kurtosis, the skewness, the number of data points, and the the lower and _____ upper 95% confidence values. Below is the Normal Plot for the data.

This distribution is not normal when Point 5 (1.046 inch) is included. However when this point is excluded form the distribution the remaining grid is normal as illustrated by the Kurtosis and skewness values.

6 of 16

d := 0

Sandbed Location 13A Trend

Data from the 1992, 1994 and 1996 is retrieved.

For 1992

Dates_d := Day year(12, 8, 1992)

page := READPRN("U:\MSOFFICE\Drywell Program data\Dec. 1992 Data\sandbed\Data Only\SB13A.txt")

Points 49 := showcells (page , 7 , 0)

Data

	0.885	0.979	0.857	0.886	1.013	1.041	1.069
	0.814						
•	0.762	0.903	0.813	0.827	0.761	0.771	0.826
Points in =	0.86	0.884	0.872	0.923	0.79	0.798	0.876
	0.869	0.807	0.854	0.892	0.805	0.858	0.84
· ·	0.827	0.813	0.878	0.925	0.828	0.784	0.868
	0.815						

nm := convert (Points $_{49}$, 7)

No DataCells := length(nnn)

The thinnest point is captured

Point 18_d = nnn₁₈ Point $_{18} = 761$

Cells := deletezero cells (nnn, No DataCells)

 $\mu_{\text{measured}_d} \coloneqq \text{mean((Cells))}^{\sigma_{\text{measured}_d}} \coloneqq \text{Stdev(Cells)}$

^o measured Standard error No DataCells

≔ d + 1

1. i

For 1994

page := READPRN("U:\MSOFFICE\Drywell Program data\Sept.1994 Data\sandbed\Data Only\SB13A.txt"

Dates_d :=' Day year(9, 14, 1994) .

Points 49 := showcells (page , 7 , 0)

Data

<u>'</u>	0.869	0.842	Q.856	0.845	1,019	0.987	0.926
•	0.805	0.826	0.771	0.823	0.858	0.847	0.79
-	0.745	0.896	0.803	0.764	0.752	0.764	0.819
=	0.851	0.873	0.861	0.853	0.787	0.793	0.845
	0.868	0.793	0.849	0.877	0.799	0.847	0.83
				•			0.843
	0.84	0.834	·0.762	0.793	0.879	0.865	0.862

nnn := convert(Points $_{49}, 7$)

Points 49

No DataCells := length(nnn)

The thinnest point is captured

Point $18_d = nnn_{18}$

Cells := deletezero $_{cells}(nnn , No _{DataCells})$

 $\mu_{\text{measured}_d} \coloneqq \text{mean(Cells)} \quad \sigma_{\text{measured}_d} \coloneqq \text{Stdev(Cells)}$ Standard error_d

OCLR00019395

σ measured

No DataCells

For 1996

<u>____</u>

page := READPRN("U:\MSOFFICE\Drywell Program data\Sept.1996 Data\sandbed\Data Only\SB13'A.txt")

$$Dates_{d} := Day_{vear}(9, 16, 1996)$$

Points 49 = showcells (page , 7 , 0)

		D	ata		۰ ۰	· .	
	0.873	0.838	0.866	0.839	1.049	0.999	0.958
•	0.823	0.83	0.756	0.809	0.867	0.943	0.794
•	0.743 ·	0.897	0.838	0.769	0.774	0.778	0.809
Points 49 =	0.848	0.864	0.857	0.865	0.825	0.793	0.861
	0.893	0.859	0.851	0.878	0.794	0.843	0.821
· · ·	0.828 ⁻	0.865	0.871	0.951	0.828	0.771	0.838
	0.927	0.913	0.767	0.86	0.885	0.917	0.875

nnn := convert (Points $_{49}$, 7)

No DataCells := length(nnn)

 σ measured

√^{No} DataCells

OCLR00019396

8 of 16

d ≔ d + 1

The thinnest point is captured

Point $_{18_d} := nnn_{18}$

Standard error

Cells := deletezero cells (nnn, No DataCells)

 $\mu_{\text{measured}_d} := \text{mean(Cells)} \sigma_{\text{measured}_d} := \text{Stdev(Cells)}$

Appendix 4

For 2006

d ≔ d + 1

page := READPRN("U:\MSOFFICE\Drywell Program data\Oct 2006 Data\Sandbed\SB13A.txt")

 $Dates_{d} := Day_{year}(10, 16, 2006)$

Points 49 := showcells (page , 7, 0)

Data 0.887 0.833 0.887 0.908 1.046 0.951 0.922 0.823 0.883 0.774 0.826 0.897 0.87 0.783 0.76 0.913 0.798 0.823 0.746 0.759 0.768 0.845 0.895 0.875 0.848 0.788 0.799 0.852 Points 49 = 0.88 0.811 0.861 0.869 0.798 0.846 0.84 0.816 0.813 0.869 0.924 0.824 0.785 0.87 0.801 0.834 0.763 0.838 0.895 0.885 0.863

nnn := convert(Points $_{49}$, 7)

No DataCells := length(nnn)

The thinnest point is captured

Point 18_d := nnn₁₈

Cells := deletezero cells (nnn, No DataCells)

 $\mu_{\text{measured}_d} \coloneqq \text{mean(Cells)} \quad \sigma_{\text{measured}_d} \coloneqq \text{Stdev(Cells)}$

 $\sigma_{\text{measured}_d}$

Standard error_d :=

Below are matrices which contain the date when the data was collected, Mean, Standard Deviation, Standard Error for each date.

$$Dates = \begin{bmatrix} 1.993 \cdot 10^{3} \\ 1.995 \cdot 10^{3} \\ 1.997 \cdot 10^{3} \\ 2.007 \cdot 10^{3} \end{bmatrix}$$

$$Point_{18} = \begin{bmatrix} 761 \\ 752 \\ 774 \\ 746 \end{bmatrix}$$

$$\frac{1}{761}$$

$$\frac{1}{761}$$

$$\frac{1}{762}$$

$$\frac{1}{764}$$

$$\frac{1$$

Total means :=
$$rows(\mu_{measured})$$
 Total means = 4

$$SST := \sum_{i=0}^{last(Dates)} \left(\mu_{measured_i} - mean(\mu_{measured}) \right)^2 \qquad SST = 242.403$$

$$SSE := \sum_{i=0}^{last(Dates)} \left(\mu_{measured_i} - yhat(Dates, \mu_{measured})_i \right)^2 \qquad SSE = 229.74$$

SSR := $\sum_{i=0}^{\text{last(Dates)}} (\text{yhat}(\text{Dates}, \mu_{\text{measured}})_i - \text{mean}(\mu_{\text{measured}}))^2$ SSR = 12.614

DegreeFree_{ss} := Total_{means} - 2 DegreeFree_{reg} := 1 DegreeFree_{st} := Total_{means} - 1

$$MSE := \frac{SSE}{DegreeFree}_{ss}} \qquad MSR := \frac{SSR}{DegreeFree}_{reg}} \qquad MST := \frac{SST}{DegreeFree}_{st}}$$

F Test for Corrosion

 $F_{actaul_Reg} := \frac{MSR}{MSE}$

Appendix 4

C-1302-187-E310-041 Rev. No. 0

Sheet No. 11 of 16

$$F_{\text{critical_reg}} := qF(1 - \alpha, \text{DegreeFree}_{\text{reg}}, \text{DegreeFree}_{\text{ss}})$$

$$F_{ratio_reg} := \frac{F_{actaul_Reg}}{F_{critical_reg}}$$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

grand
$$\frac{4}{\text{measured}_i} \coloneqq \text{mean}(\mu_{\text{measured}})$$

 σ grand measured := Stdev (μ measured)

i := 0.. Total means 7

 $\frac{\sigma_{\text{grand measured}}}{\sqrt{\text{Total means}}}$

The minimum required thickness at this elevation is $Tmin_{gen} = 736$ (Ref. 3.25)

Plot of the grand mean and the actual means over time

GrandStandard error

7

To conservatively address the location, the apparent corrosion rate is calculated and compared to the minimum required wall thickness at this elevation

$$m_s := slope (Dates, \mu_{measured})$$
 $m_s = -0.331$

$$y_h := intercept(Dates, \mu_{measured}) y_h = 1.509 \cdot 10^3$$

The 95% Confidence curves are calculated

$$\alpha_{t} \coloneqq 0.05 \quad k \coloneqq 2029 - 1985 \qquad f \coloneqq 0 \cdot k - 1$$

$$y_{ear_{predict_{r}}} \coloneqq 1985 + f \cdot 2 \quad Thick_{predict} \coloneqq m_{s} \cdot y_{ear_{predict}} + y_{f}$$

Thick actualmean := mean(Dates) sum :=
$$\sum (Dates_d - mean(Dates))^2$$

upper_f := Thick predict_f ... + $qt\left(1 - \frac{\alpha}{2}, \text{Total}_{\text{means}} - 2\right)$: StGrand err $\sqrt{1 + \frac{1}{(d+1)}} + \frac{(\text{year}_{\text{predict}_{f}} - \text{Thick}_{\text{actualmean}})}{\text{sum}}$

lower_f := Thick predict_f ...

$$+ -\left[qt\left(1 - \frac{\alpha_{t}}{2}, \text{Total}_{\text{means}} - 2\right) \cdot \text{StGrand}_{err} \cdot \sqrt{1 + \frac{1}{(d+1)} + \frac{\left(\text{year}_{\text{predict}_{f}} - \text{Thick}_{\text{actualmean}}\right)^{2}}{\text{sum}}}\right]$$

Sheet No. 13 of 16

0.331

Therefore even though F-ratio does not support the regression model the above curve shows that even at the lower 95% confidence band this location will not corrode to below Drywell Vessel Minimum required thickness by the plant end of life.

The section below calculates what the postulated mean thickness would be if this grid were to corrode at a minimum observable rate observed in appendix 22.

Rate min observed = 6.9

Postulated meanthickness := μ measured, - Rate min_observed (2020 - 2006)

Postulated meanthickness = 749.196

which is greater than

 $Tmin_gen_{SB_3} = 736$

The following addresses the readings at the lowest single point

The F-Ratio is calculated for the point as follows

$$SST_{point} \coloneqq \sum_{i=0}^{last(Dates)} (Point_{18_{i}} - mean(Point_{18}))^{2}$$

$$SST_{point} \coloneqq 444.75$$

$$SSE_{point} \coloneqq \sum_{i=0}^{last(Dates)} (Point_{18_{i}} - yhat(Dates, Point_{18}))^{2}$$

$$SSE_{point} \coloneqq 317.009$$

$$SSR_{point} := \sum_{i=0}^{last(Dates)} (yhat(Dates, Point_{18})_i - mean(Point_{18}))^2 \qquad SSR_{point} = 127.741$$

$$MSE_{point} := \frac{SSE_{point}}{DegreeFree_{ss}} MSR_{point} := \frac{SSR_{point}}{DegreeFree_{reg}} MST_{point} := \frac{SST_{point}}{DegreeFree_{st}}$$

MST point = 148.25

'MSE point = 158.505

StPoint err :=
$$\sqrt{MSE_{point}}$$

StPoint err = 12.59

F Test for Corrosion

 $MSR_{point} = 127.741$

$$F_{actaul_Reg} \coloneqq \frac{MSR_{point}}{MSE_{point}}$$

ratio_reg :=
$$\frac{F_{actaul_Reg}}{F_{actaul_reg}}$$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

 $m_{point} \coloneqq slope (Dates, Point_{18}) m_{point} = -1.053$ $y_{point} \coloneqq intercept (Dates, Point_{18}) y_{point} = 2.861 \cdot 10^3$

The 95% Confidence curves are calculated

Point curve := m point · year predict + y point

uppoint_f := Point curve_f ...

Point actualmean := mean(Dates)

+ qt
$$\left(1 - \frac{\alpha_{i}}{2}, \text{Total}_{\text{means}} - 2\right)$$
 StPoint err $\sqrt{1 + \frac{1}{(d+1)}} + \frac{\left(\frac{\text{year}_{\text{predict}_{f}} - \text{Point}_{\text{actualmean}}\right)}{\text{sum}}$

sum := $\sum (Dates_d - mean(Dates))^2$

 $lopoint_f := Point_{curve_f} \cdots$

+
$$-\left[qt\left(1-\frac{\alpha_{t}}{2}, \text{Total}_{\text{means}}-2\right)\cdot\text{StPoint}_{err}\cdot\sqrt{1+\frac{1}{(d+1)}+\frac{\left(ycar_{predict_{f}}-\text{Point}_{actualmean}\right)}{sum}}\right]$$

Local Tmin for this elevation in the Drywell $Tmin_{local SB_{f}} := 490$ (Ref. 3.25)

Curve Fit For Point 18 Projected to Plant End Of Life

OCLR00019403

1.053

The section below calculates what the postulated individual thickness would be if this point were to corrode at a minimum observable rate observed in appendix 22.

Rate min_observed := 6.9

Postulated thickness := Point 18, - Rate min_observed (2029 - 2006)

year predict₂₂ = $2.029 \cdot 10^3$

Postulated thickness = 587.3 which is greater than $Tmin_local SB_3 = 490$

The section below calculates what the postulated corrosion rate necessary for the thinnest individual point to reach the local required thickness by 2029.

minpoint = 0.746

required rate. := $\frac{(1000 \cdot \text{minpoint} - \text{Tmin_local } \text{SB}_{22})}{(2005 - 2029)}$

required rate. = -10.667

Tmin_local SB22 = 490

mils per year

pendix 5- Sandbed 13D

te 2006 Data

+ data shown below was collected on 10/18/2006

page := READPRN("U:\MSOFFICE\Drywell Program data\OCT 2006 Data\Sandbed\SB13C-D.txt")),

Points 49 := showcells(page, 7, 0)

	_			-			1	
• .	1.114	1.117	1.132	1.083	1.068	1.106	1.119	
	0.95	1.041	0.999	1.061	1.007	1.117	1.1	
	0.986	0.95	0.837	0.833	0.949	1.088	1.085	
Points 49 =	1.005	0.977	0.878	0.851	0.911	0.958	0.997	
•	0.96	0.907	0.874	0.874	0.915	0.916	0.905	ŀ
	0.944	0.947	0.897	0.887	0.92	0.865	0.892	
	0.996	0.939	0.929	0.958	0.944	0.832	0.821	

Cells := convert (Points $_{49}$, 7)

.

No DataCells := length (Cells)

thinnest point at this location is point 49 shown below

minpoint := $min(Points_{49})$

minpoint = 0.821

 $Cells := deletezero_{cells} (Cells, No_{DataCells})$

No DataCells := length(Cells)

1 of 31

. 1

Ļ

Mean and Standard Deviation

 $\mu_{actual} := mean(Cells) \quad \mu_{actual} = 968.184$

 $\sigma_{actual} := Stdev(Cells) \sigma_{actual} = 90.136$

Standard Error

Standard error :=
$$\frac{\sigma_{\text{actual}}}{\sqrt{No_{\text{DataCells}}}}$$
 Standard error = 12.87

Skewness

Skewness :=
$$\frac{\left(\frac{\text{No}_{\text{DataCells}} \cdot \Sigma \left(\text{Cells} - \mu_{\text{actual}} \right)^{3}}{\left(\frac{\text{No}_{\text{DataCells}} - 1 \right) \cdot \left(\frac{\text{No}_{\text{DataCells}} - 2 \right) \cdot \left(\sigma_{\text{actual}} \right)^{3}}{\left(\sigma_{\text{actual}} \right)^{3}} \quad \text{Skewness} = 0.342$$

Kurtosis

Kurtosis :=
$$\frac{\text{No DataCells} \cdot (\text{No DataCells} + 1) \cdot \overline{\Sigma(\text{Cells} - \mu_{\text{actual}})^4}}{\left(\text{No DataCells} - 1 \right) \cdot (\text{No DataCells} - 2) \cdot (\text{No DataCells} - 3) \cdot (\sigma_{\text{actual}})^4} \text{Kurtosis} = -0.96$$
$$+ -\frac{3 \cdot (\text{No DataCells} - 1)^2}{(\text{No DataCells} - 2) \cdot (\text{No DataCells} - 3)}$$

Normal Probability Plot

i

x := 1

$$r_j := j + 1$$
 rank $:= \frac{\Sigma(\overrightarrow{srt=srt_j}) \cdot r}{\Sigma \cdot \overrightarrow{srt=srt_j}}$

$$p_j := \frac{rank_j}{rows(Cells) + 1}$$

N_Score_j := root[cnorm(x) - $(p_j), x$]

e Upper and Lower confidence values are calculated based on .05 degree of confidence "α"

$$\alpha := .05 \qquad T\alpha := qt \left[\left(1 - \frac{\alpha}{2} \right), 48 \right] \qquad T\alpha = 2.011$$
Lower 95%Con := $\mu_{actual} - T\alpha \cdot \frac{\sigma_{actual}}{\sqrt{No}_{DataCells}}$
Lower 95%Con := $\mu_{actual} + T\alpha \cdot \frac{\sigma_{actual}}{\sqrt{No}_{DataCells}}$
Upper 95%Con := $\mu_{actual} + T\alpha \cdot \frac{\sigma_{actual}}{\sqrt{No}_{DataCells}}$
Upper 95%Con = 994.074

se values represent a range on the calculated mean in which there is 95% confidence.

phical Representation

ribution of the "Cells" data points are sorted in 1/2 standard deviation increments (bins) within +/- 3 standard ations

$$mal_{curve_{0}} \coloneqq pnorm(Bins_{1}, \mu_{actual}, \sigma_{actual})$$

$$mal_{curve_{k}} \coloneqq pnorm(Bins_{k+1}, \mu_{actual}, \sigma_{actual}) - pnorm(Bins_{k}, \mu_{actual}, \sigma_{actual})$$

Results For 13D

The following schematic shows: the the distribution of the samples, the normal curve based on the actual mean and standard deviation, the kurtosis, the skewness, the number of data points, and the the lower and upper 95% confidence values.

There is a slightly thinner area of 16 points near the center of this location. Past calculations (ref. 3.22) have split this area out as a separate groups and performed analysis on both groups. In order to be consistent with past calculations this data will be split in two groups and analyzed. The entire data set will also be evaluated.

The two groups are named as follows:

Botstar := 28

Stoptop := 16

low points := LOWROWS (Cells, No DataCells, Botstar)

high points := TOPROWS(Cells, 49, Stoptop)

No lowCells := length (low points) No lowCells = 21

 $\begin{aligned} & \text{high}_{\text{points}} \coloneqq \text{Add}\left(\text{Cells}, \text{No}_{\text{DataCells}}, 19, \text{length}\left(\text{high}_{\text{points}}\right), \text{high}_{\text{points}}\right) \\ & \text{high}_{\text{points}} \coloneqq \text{Add}\left(\text{Cells}, \text{No}_{\text{DataCells}}, 20, \text{length}\left(\text{high}_{\text{points}}\right), \text{high}_{\text{points}}\right) \\ & \text{high}_{\text{points}} \coloneqq \text{Add}\left(\text{Cells}, \text{No}_{\text{DataCells}}, 21, \text{length}\left(\text{high}_{\text{points}}\right), \text{high}_{\text{points}}\right) \\ & \text{high}_{\text{points}} \coloneqq \text{Add}\left(\text{Cells}, \text{No}_{\text{DataCells}}, 22, \text{length}\left(\text{high}_{\text{points}}\right), \text{high}_{\text{points}}\right) \\ & \text{high}_{\text{points}} \coloneqq \text{Add}\left(\text{Cells}, \text{No}_{\text{DataCells}}, 22, \text{length}\left(\text{high}_{\text{points}}\right), \text{high}_{\text{points}}\right) \\ & \text{high}_{\text{points}} \coloneqq \text{Add}\left(\text{Cells}, \text{No}_{\text{DataCells}}, 27, \text{length}\left(\text{high}_{\text{points}}\right), \text{high}_{\text{points}}\right) \\ & \text{high}_{\text{points}} \coloneqq \text{Add}\left(\text{Cells}, \text{No}_{\text{DataCells}}, 28, \text{length}\left(\text{high}_{\text{points}}\right), \text{high}_{\text{points}}\right) \end{aligned}$

 $length(high_{points}) = 22$

low points := Add (Cells, No DataCells, 17, length (low points), low points)
low points := Add (Cells, No DataCells, 18, length (low points);, low points)
low points := Add (Cells, No DataCells, 23, length (low points), low points)
low points := Add (Cells, No DataCells, 24, length (low points), low points)
low points := Add (Cells, No DataCells, 25, length (low points), low points)
low points := Add (Cells, No DataCells, 25, length (low points), low points)

 $length(low_{points}) = 27$

i and Standard Deviation

 $\sigma low_{actual} := Stdev(low_{points})$

 σ high actual := Stdev (high points)

Standard Error

Standardlow error := $\frac{\sigma low_{actual}}{\sqrt{length(low_{points})}}$ Standardhigh error := $\frac{\sigma high_{actual}}{\sqrt{length(high_{points})}}$

Skewness

Nolow DataCells := length (low points)

$$\sum_{i=1}^{1} \sum_{i=1}^{1} \frac{(\text{Nolow } \text{DataCells}) \cdot \sum (\text{low } \text{points} - \mu \text{low } \text{actual})^3}{(\text{Nolow } \text{DataCells} - 1) \cdot (\text{Nolow } \text{DataCells} - 2) \cdot (\sigma \text{low } \text{actual})^3}$$

Skewness high := $\frac{\left(\text{Nohigh}_{\text{DataCells}}\right) \cdot \sum \left(\text{high}_{\text{points}} - \mu \text{high}_{\text{actual}}\right)^{3}}{\left(\text{Nohigh}_{\text{DataCells}} - 1\right) \cdot \left(\text{Nohigh}_{\text{DataCells}} - 2\right) \cdot \left(\sigma \text{high}_{\text{actual}}\right)^{3}}$

6 of 31

· . ·

Appendix 5

Kurtosis
Kurtosis
Kurtosis low :=
$$\frac{\text{Nolow DataCells} \cdot (\text{Nolow DataCells} + 1) \cdot \overline{\Sigma} (\text{low points} - \mu \text{low actual})^4}{(\text{Nolow DataCells} - 1) \cdot (\text{Nolow DataCells} - 2) \cdot (\text{Nolow DataCells} - 3) \cdot (\sigma \text{low actual})^4} + \frac{3 \cdot (\text{Nolow DataCells} - 1)^2}{(\text{Nolow DataCells} - 2) \cdot (\text{Nolow DataCells} - 3)}$$

Kurtosis high :=
$$\frac{\text{Nohigh DataCells} \cdot (\text{Nohigh DataCells} \cdot 1) \cdot \overline{\Sigma} (\text{high points} - \mu \text{high actual})^4}{(\text{Nohigh DataCells} - 1) \cdot (\text{Nohigh DataCells} + 1) \cdot \overline{\Sigma} (\text{high points} - \mu \text{high actual})^4} + \frac{3 \cdot (\text{Nohigh DataCells} - 1) \cdot (\text{Nohigh DataCells} - 2) \cdot (\text{Nohigh DataCells} - 3) \cdot (\sigma \text{high actual})^4}{(\text{Nohigh DataCells} - 1) \cdot (\text{Nohigh DataCells} - 2) \cdot (\text{Nohigh DataCells} - 3) \cdot (\sigma \text{high actual})^4} + \frac{3 \cdot (\text{Nohigh DataCells} - 1)^2 \cdot (\text{Nohigh DataCells} - 3)}{(\text{Nohigh DataCells} - 2) \cdot (\text{Nohigh DataCells} - 3)}$$

Normal Probability Plot - Low points

$$1 \coloneqq 0 \text{ ... last}(\text{low points}) \text{ srt}_{\text{low}} \coloneqq \text{sort}(\text{low points})$$

$$L_{1} \coloneqq l + 1$$

$$\operatorname{rank}_{low_{1}} \coloneqq \frac{\Sigma(\overrightarrow{\operatorname{srt}_{low} = \operatorname{srt}_{low_{1}}}) \cdot L}{\Sigma \operatorname{srt}_{low} = \operatorname{srt}_{low_{1}}} \qquad P_{low_{1}} \coloneqq \frac{\operatorname{rank}_{low_{1}}}{\operatorname{rows}(\operatorname{low}_{points}) + 1}$$

x := 1 N_Score
$$low_1$$
 := root $[cnorm(x) - (p_{low_1}), x]$

Normal Probability Plot - High points

1

x := 1

$$h := 0 .. last(high_{points}) \qquad srt_{high} := sort(high_{points})$$

$$H_{h} \coloneqq h + 1$$

$$\operatorname{rank}_{high_{h}} \coloneqq \frac{\sum \left(\overbrace{\operatorname{srt}_{high} = \operatorname{srt}_{high_{h}}}^{\longrightarrow} \right) \cdot H}{\sum \overline{\operatorname{srt}_{high} = \operatorname{srt}_{high_{h}}}} \qquad p_{high_{h}} \coloneqq \frac{\operatorname{rank}_{high_{h}}}{\operatorname{rows}(\operatorname{high}_{points}) + 1}$$

N_Score high_h := root [cnorm(x) - (p_{high_h}) , x]

Appendix 5		
------------	--	--

Graphical Representation of High Points

Bins high := Make $bins(\mu high_{actual}, \sigma high_{actual})$

Distribution $_{high} := hist (Bins_{high}, high_{points})$

k := 0..11

Distribution high =

0

0

Midpoints high $\stackrel{!}{\coloneqq} \frac{\left(\operatorname{Bins}_{\operatorname{high}_{k}} + \operatorname{Bins}_{\operatorname{high}_{k+1}}\right)}{2}$

normalhigh $_{curve_0} := pnorm(Bins_{high_1}, \mu high_{actual}, \sigma high_{actual})$

normalhigh $_{curve_k} := pnorm(Bins_{high_{k+1}}, \mu high_{actual}, \sigma high_{actual}) - pnorm(Bins_{high_k}, \mu high_{actual}, \sigma high_{actual})$

normalhigh $_{curve} := Nohigh _{DataCells} \cdot normalhigh curve$

Sheet No. 10 of 31

Results For Sandbed Location 13D Thinner point

Appendix 5

The above plots indicates that the thinner area is more normally distributed than the entire population.

Results For Sandbed Location 13D Thicker Points

The above plots indicates that the thicker areas are some what normally distributed.

d :='0

Sandbed 13D

Data from/. 1992 to 2006 is retrieved.

For Dec 31 1992

page := READPRN("U:\MSOFFICE\Drywell Program data\Dec. 1992 Data\sandbed\DATA ONLY\SB13C-D.txt")

Points 49 :=	showcel	ls(page	,7,0)		• ·		, L	Dates _d := Day _{year} (12,31,1992)
•		•	Data			· .	' ~	d year in the second
p	1.064	1.117	1.134	1.103	1.105	1.106	1.117]
	0.949	1.081	1	1.054	1.151	1.118	1.121	
Points 49 =	0.984	0.948	0.868	0.834	0.979	1.048	1.067	
Points $\frac{1}{49} =$	0.963	0.98	0.893	0.855	0.913	0.981	1.012	
1	0 .9 57	0.958	0.869	0.879	0.917	0.913	0.911	
•	0.963	0.948	0.895	0.88	0.915	0.862	0.905	
	1.016	0.918	0.927	0.92	0.918	0.825	0.824]

mm := convert (Points $_{49}$, 7)

No Cells := length(nnn)

Point
$$49_4 \approx nnn_{48}$$

Point 49 = 824

The two groups are named as follows:

Botstar := 28

Stoptop := 16

low points := LOWROWS (nnn, No DataCells, Botstar)

high points := TOPROWS (nnn, No DataCells, Stoptop)

 $high_{points} := Add(nnn, No_{DataCells}, 27, length(high_{points}), high_{points})$

high points := Add (nnn, No DataCells, 28, length (high points), high points)

 $low_{points} := Add(nnn, No_{DataCells}, 17, length(low_{points}), low_{points})$

Sheet No. 13 of 31

low points := Add (nnn, No DataCells, 18, length (low points), low points) low points := Add (nnn, No DataCells, 23, length (low points), low points)

 $low_{points} := Add (nnn, No_{DataCells}, 24, length (low_{points}), low_{points})$ $low_{points} := Add (nnn, No_{DataCells}, 25, length (low_{points}), low_{points})$ $low_{points} := Add (nnn, No_{DataCells}, 26, length (low_{points}), low_{points})$

Cells := deletezero cells (nnn ; No Cells)

 $high_{points} := deletezero_{cells} (high_{points}, length (high_{points}))$

low points := deletezero cells (low points, length (low points))

 $\mu_{\text{measured}_d} \coloneqq \text{mean(Cells.)} \quad \sigma_{\text{measured}_d} \coloneqq \text{Stdev(Cells.)}$

 $\begin{array}{l} \mu high_{measured_{d}} \coloneqq mean(high_{points}) \\ \sigma high_{measured_{d}} \coloneqq Stdev(high_{points}) \end{array}$

Standardhigh $_{error_d} := \frac{\text{ohigh measured}_d}{\sqrt{\text{length}(\text{high points})}}$

Standard $\operatorname{error}_{d} := \frac{\sigma_{\text{measured}_{d}}}{\sqrt{No_{\text{DataCells}}}}$, $\mu \operatorname{low}_{\text{measured}_{d}} := \operatorname{mean}(\operatorname{low}_{\text{points}})$ $\sigma \operatorname{low}_{\text{measured}_{d}} := \operatorname{Stdev}(\operatorname{low}_{\text{points}})$ Standardlow $\operatorname{error}_{d} := \frac{\sigma \operatorname{measured}_{d}}{\sqrt{\operatorname{length}(\operatorname{low}_{\text{points}})}}$

Sheet No. 14 of 31

OCLR00019418

For 1994

Appendix 5

page := READPRN("U:\MSOFFICE\Drywell Program data\Sept.1994 Data\sandbed\DATA ONLY\SB13C-D.txt"

Points 49 := showcells (page , 7 , 0)

Dates_d := Day _{year}(9,26,1994)

Data 1.11 1.078 1.062 1.103 1.113 1.114 0.944 1.075 0.995 1.015 1.003 1.112 1.125 0.977 0.941 0.834 0.827 0.992 1.033 1.028 Points 49 0.973 0.879 0.847 0.915 0.974 0.986 0.943 0.951 0.911 0.871 0.873 0.923 0.903 '0.889 0.875 0.915 0.938 0.942 0.894 0.859 0.877 0.956 0.911 0.922 0.924 0.918 0.825 0.811

nnn := convert (Points $_{49}$, 7)

No DataCells := length(nnn)

The two groups are named as follows:

Botstar := 28

Stoptop := 16

No Cells := length(nnn)

low points = LOWROWS (nnn, No DataCells, Botstar)

Point $49_d := nnn_{48}$

high points := TOPROWS (nnn, No DataCells, Stoptop)

 $\begin{aligned} & \text{high}_{\text{points}} \coloneqq \text{Add}\left(\text{nnn}, \text{No}_{\text{DataCells}}, 19, \text{length}\left(\text{high}_{\text{points}}\right), \text{high}_{\text{points}}\right) \\ & \text{high}_{\text{points}} \coloneqq \text{Add}\left(\text{nnn}, \text{No}_{\text{DataCells}}, 20, \text{length}\left(\text{high}_{\text{points}}\right), \text{high}_{\text{points}}\right) \end{aligned}$

 $high_{points} \coloneqq Add(nnn, No_{DataCells}, 27, length(high_{points}), high_{points})$

) high points := Add (nnn, No DataCells, 28, length (high points), high points)

low points := Add (nnn, No DataCells, 17, length (low points), low points) low points := Add (nnn, No DataCells, 18, length (low points), low points) low points := Add (nnn, No DataCells, 23, length (low points), low points) low points := Add (nnn, No DataCells, 24, length (low points), low points) low points := Add (nnn, No DataCells, 24, length (low points), low points) low points := Add (nnn, No DataCells, 25, length (low points), low points) low points := Add (nnn, No DataCells, 25, length (low points), low points)

Cells := deletezero $_{cells}(nnn, No _{Cells})$

 $high_{points} := deletezero_{cells}(high_{points}, length(high_{points}))$

low points := deletezero cells (low points, length (low points))

 $\mu_{\text{measured}_d} \coloneqq \text{mean(Cells)}$

 $\sigma_{\text{measured}_d} \coloneqq \text{Stdev(Cells)}$

Standard error_d := $\frac{\sigma_{\text{measured}_d}}{\sqrt{N_0 \text{DataCells}}}$

 $\frac{\text{plow}_{\text{measured}_{d}} \coloneqq \text{mean}(\text{low}_{\text{points}})$ $\sigma \text{low}_{\text{measured}_{d}} \coloneqq \text{Stdev}(\text{low}_{\text{points}})$

Standardlow error_d := $\frac{\sigma low measured_d}{\sqrt{length(low points)}}$

 $\begin{array}{l} \label{eq:points} \mu high_{measured_d} \coloneqq mean(high_{points}) \\ \\ \sigma high_{measured_d} \coloneqq Stdev(high_{points}) \end{array}$

Standardhigh $\operatorname{error}_{d} := -\overline{h}$

 $\frac{\sigma high_{measured_d}}{\sqrt{length(high_{points})}}$

C-1302-187-E310-041 Rev. No. 0

Sheet No. 16 of 31

d +

For 1996

page := READPRN("U:\MSOFFICE\Drywell Program data\Sept.1996 Data\sandbed\DATA ONLY\SB13C-D.txt")

Dates_d := Day year(9,23,1996) Points 49 := showcells (page , 7 , 0) Data 1.095 1.118 1.128 1.098 1.08 1.115 1.125 1(105 1.035 1.069 0,996 1.057 1.008 1.131 0.975 1.025 0.896 0.848 0.992 1.086 1.054 1.015 0.987 0.966 0.968 1.03 Points 49 = 1.032 0.942 0.936 0.94 0.875 0.926 0.961 0.959 1.005 0.965 0.94 0.988 · 0.937 0.868 Q.932 0.912 0.931 0.939 0.936 0.97 0.941 0.837 0.822

nnn := convert(Points $_{49}, 7$)

No DataCells := length(nnn)

Point 49, := nnn₄₈

The two groups are named as follows:

StopCELL ≔ 21

No Cells := length(nnn)

The two groups are named as follows:

Botstar := 28

Stoptop := 16

low points := LOWROWS (nnn, No DataCells, Botstar)

high points := TOPROWS (nnn , No DataCells , Stoptop)

 $\begin{aligned} & \text{high}_{\text{points}} \coloneqq \text{Add}\left(\text{nnn}, \text{No}_{\text{DataCells}}, 19, \text{length}\left(\text{high}_{\text{points}}\right), \text{high}_{\text{points}}\right) \\ & \text{high}_{\text{points}} \coloneqq \text{Add}\left(\text{nnn}, \text{No}_{\text{DataCells}}, 20, \text{length}\left(\text{high}_{\text{points}}\right), \text{high}_{\text{points}}\right) \end{aligned}$

high points := Add (nnn, No DataCells, 27, length (high points), high points)

 $high_{points} := Add(nnn, No_{DataCells}, 28, length(high_{points}), high_{points})$

low points := Add (nnn, No DataCells, 17, length (low points), low points)

low points := Add (nnn, No DataCells, 18, length (low points), low points) low points := Add (nnn, No DataCells, 23, length (low points), low points)

low points := Add (nnn, No DataCells, 24, length (low points), low points) low points := Add (nnn, No DataCells, 25, length (low points), low points) low points := Add (nnn, No DataCells, 26, length (low points); low points)

Cells := deletezero $_{cells}(nnn, No_{Cells})$

 $high_{points} := deletezero_{cells} (high_{points}, length (high_{points}))$

low points := deletezero cells (low points , length (low points))

 $\mu_{measured_d} := mean(Cells)$ $\sigma_{measured_d} \coloneqq Stdev(Cells)$

 $ohigh_{measured_d} \coloneqq Stdev(high_{points})$ ohigh measured Standardhigh error_d $\sqrt{\text{length}(\text{high}_{\text{points}})}$

Standard error_d No DataCells $\frac{\mu low}{measured_d} \coloneqq mean(low_{points})$ $\sigma low_{measured_d} := Stdev(low_{points})$ σlow measured Standardlow errord length (low points

σ measured

d

For 2006

page := READPRN("U:\MSOFFICE\Drywell Program data\OCT 2006 Data\Sandbed\SB13C-D.txt")

Points 49 := showcells (page , 7 , 0)

Dates_d := Day year(9,23,2006)

·	•		Data	•			
	1.114	1.117	1:132	1.083	1.068	1.106	1.119
	0.95	1.041	0.999	1.061	1.007	1.117	1.1
	0.986	0.95	0.837	0.833	1.007 0.949	1.088	1.085
oints 49 =	1.005						
	0.96 .	0.907	0.874	0.874	0.915	0.916	0.905
1.	0.944	0.947	0.897	0.887	0.92	0.865	0.892
	0.996	0.939	0.929	0.958	0.944	0.832	0.821
		• •					

nnn := convert (Points $_{49}$, 7)

No DataCells := length(nnn)

Point $_{49_d} \coloneqq nnn_{48}$

The two groups are named as follows:

Stoptop := 16

low points := LOWROWS (nnn, No DataCells, Botstar) high points := TOPROWS (nnn, No DataCells, Stoptop)

Botstar := 28

 $high_{points} := Add(nnn, No_{DataCells}, 19, length(high_{points}), high_{points}) \\ high_{points} := Add(nnn, No_{DataCells}, 20, length(high_{points}), high_{points}) \\ high_{points} := Add(nnn, No_{DataCells}, 21, length(high_{points}), high_{points}) \\ high_{points} := Add(nnn, No_{DataCells}, 22, length(high_{points}), high_{points}) \\ high_{points} := Add(nnn, No_{DataCells}, 22, length(high_{points}), high_{points}) \\ high_{points} := Add(nnn, No_{DataCells}, 27, length(high_{points}), high_{points}) \\ high_{points} := Add(nnn, No_{DataCells}, 28, length(high_{points}), high_{points}) \\ high_{points} := Add(nnn, No_{DataCells}, 17, length(low_{points}), low_{points}) \\ low_{points} := Add(nnn, No_{DataCells}, 17, length(low_{points}), low_{points})$

 $low_{points} := Add(nnn, No_{DataCells}, 18, length(low_{points}), low_{points})$

OCLR00019424

20 of 31

Total means := rows
$$(\mu_{\text{measured}})$$
 , Total means =

ST :=
$$\sum_{i=0}^{\text{last(Dates)}} (\mu_{\text{measured}_i} - \text{mean}(\mu_{\text{measured}}))^2$$

S

$$SST_{low} := \sum_{i = 0}^{last(Dates)} (\mu low_{measured_i} - mean(\mu low_{measured}))^2$$

$$SST_{high} := \sum_{i = 0}^{last(Dates)_{i}} (\mu_{high_{measured_{i}}} - mean(\mu_{high_{measured}}))^{2}$$

1

SSE :=
$$\sum_{i=0}^{last(Dates)} (\mu_{measured_i} - yhat(Dates, \mu_{measured}))^2$$

SSE low :=
$$\sum_{i=0}^{last(Dates)} (\mu low_{measured_i} - yhat(Dates, \mu low_{measured}))^2$$

SSE high :=
$$\sum_{i=0}^{last(Dates)} (\mu high_{measured_i} - yhat(Dates, \mu high_{measured})_i)$$

SSR :=
$$\sum_{i=0}^{last(Dates)} (yhat(Dates, \mu_{measured})_{i} - mean(\mu_{measured}))^{2}$$

SSR low :=
$$\sum_{i=0}^{last(Dates)} (\text{yhat}(Dates, \mu low_{measured})_{i} - mean(\mu low_{measured}))^{2}$$

SSR high :=
$$\sum_{i=0}^{last(Dates)} (yhat(Dates, \mu high_{measured})_{i} - mean(\mu high_{measured}))^{2}$$

α := 0.05

 $F_{actaul_Reg} \coloneqq \frac{MSR}{MSE}$

 $F_{critical_{reg}} := qF(1 - \alpha, DegreeFree_{reg}, DegreeFree_{ss})$

 $F_{ratio_reg} := \frac{F_{actaul_Reg}}{F_{critical_reg}}$ $F_{ratio_reg} = 5.244 \cdot 10^{-4}$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

Test the low points

F Test for Corrosion

23 of 31

d,

actaui_Reg.low MSE low

critical_reg :=
$$qF(1 - \alpha, DegreeFree_{reg}, DegreeFree_{ss})$$

$$F_{ratio_reg.low} := \frac{F_{actaul_Reg.low}}{F_{critical_reg}}$$

 $F_{ratio_{reg.low}} = 1.907 \cdot 10^{-4}$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

Test the high points

F Test for Corrosion

$$F_{actaul_Reg.high} := \frac{MSR_{high}}{MSE_{high}}$$

$$F_{critical_reg} := qF(1 - \alpha, DegreeFree_{reg}, DegreeFree_{ss})$$

$$F_{ratio_reg.high} := \frac{F_{actaul_Reg.high}}{F_{critical_reg}}$$

$$F_{ratio_reg.high} = 1.588 \cdot 10^{-3}$$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

OCLR00019428

. .

ist indicates that the regression model does not hold for any of the data sets. However, the slopes so% Confidence curves are generated for all three cases.

 $m_s := slope (Dates, \mu_{measured})$ $y_b := intercept (Dates, \mu_{measured})$

m lows := slope (Dates, µlow measured)

y lowb := intercept (Dates, µlow measured)

 $m_{\text{highs}} \coloneqq \text{slope}(\text{Dates}, \mu \text{high}_{\text{measured}})$

y highb : intercept (Dates, whigh measured)

 $a_t := 0.05$ k := 23 f := 0.. k - 1

ycar predict_f := 1985 + f.2

Thick predict := ms -year predict + yb

Thick lowpredict := m lows year predict + y lowb

Thick highpredict := m highs 'year predict + y highb

Thick actualmean := mean(Dates)

sum := $\sum_{i} (Dates_{i} - mean(Dates))^{2}$

F<u>c_the</u> entire grid

upper_f := Thick predict_f ...

$$qt\left(1-\frac{\alpha_{t}}{2}, \text{Total}_{\text{means}}-2\right)$$
-Standard error $\sqrt{1+\frac{1}{(d+1)}}+\frac{\left(\text{year}_{\text{predict}_{f}}-\text{Thick}_{\text{actualmean}}\right)}{\frac{1}{2}}$

ower_f := Thick predict_f ...

$$-\left[qt\left(1-\frac{\alpha}{2}, \text{Total}_{\text{means}}-2\right)\cdot\text{Standard}_{\text{error}}\cdot\sqrt{1+\frac{1}{(d+1)}+\frac{\left(\text{year}_{\text{predict}_{f}}-\frac{1}{2}\text{Thick}_{\text{actualmean}}\right)^{2}}{\text{sum}}\right]$$

minimum required thickness at this elevation is

Tmin_gen SB_i := 736 (Ref. 3.25)

-0.188

points which are thicker

upper_f := Thick highpredict_f

+
$$qt\left(1-\frac{\alpha_{t}}{2}, \text{Total}_{\text{means}}-2\right)$$
 Standard higherror $\sqrt{1+\frac{1}{(d+1)}+\frac{(\text{year}_{\text{predict}_{f}}-\text{Thick}_{\text{actualmean}})^{2}}$ sum

lower_f := Thick highpredict_f ...

$$+ - \left[qt \left(1 - \frac{\alpha_t}{2}, \text{Total}_{\text{means}} - 2 \right) \cdot \text{Standard}_{\text{higherror}} \cdot \sqrt{1 + \frac{1}{(d+1)}} + \frac{\left(\frac{\text{year}_{\text{predict}_f} - \text{Thick}_{\text{actualmean}} \right)^2}{\text{sum}} \right]$$

7_____ection below calculates what the postulated mean thickness would be if this grid were to corrode at a n....num observable rate observed in appendix 22.

SSE point = 98.974

 $SSR_{point} = 2.026$

MST point :=

MST point = 33.667

SST point

DegreeFree st

Rate min observed := 6.9

Postulated meanthickness := μ_{measured_3} - Rate min_observed (2029 - 2006)

Postulated meanthickness = 809.484 which is greater than Tmin_gen SB₃

following addresses the readings at the lowest single point

point :=
$$\sum_{i \neq 0}^{\text{last(Dates)}} (\text{Point}_{49_i} - \text{mean}(\text{Point}_{49}))^2$$
 SST point = 101

point :=
$$\sum_{i=0}^{last(Dates)} (Point_{49_i} - yhat(Dates, Point_{49})_i)^2$$

last(Dates)

point :=
$$\sum_{i=0}^{\infty} (\operatorname{yhat}(\operatorname{Dates}, \operatorname{Point}_{49})_i - \operatorname{mean}(\operatorname{Point}_{49}))^2$$

$$:= \frac{SSE_{point}}{DegreeFree} MSR_{point} :=$$

 $ISE_{point} = 49.487$

ISE point

StPoint err :=
$$\sqrt{MSE}$$
 point

$$MSR_{point} := \frac{SSR_{point}}{DegreeFree_{reg}}$$
$$MSR_{point} = 2.026$$
$$StPoint_{reg} = 7.035$$

F Test for Corrosion

$$F_{actaul_Reg} := \frac{MSR_{point}}{MSE_{point}}$$

$$F_{ratio_{reg}} = 2.212 \cdot 10^{-3}$$

The...rore no conclusion can be made as to whether the data best fits the regression model. The figure relow provides a trend of the data and the grandmean

di,

Therefore this point is not experiencing corrosion

 $m_{ponit} := slope (Dates, Point_{49}) m_{ponit} = 0.134$ $y_{ponit} := intercept (Dates, Point_{49}y_{ponit} = 552.333)$ The 95% Confidence curves are calculated

Point curve = m ponit year predict + y ponit

Point actualmean := mean(Dates) sum := $\sum_{i} (Dates_{d} - mean(Dates))^{2}$ upponit_f := Point curve_f ...

$$+ qt\left(1 - \frac{\alpha_t}{2}, \text{Total}_{mqans}, -\frac{1}{2}\right) \cdot \text{StPoint}_{err} \cdot \sqrt{1} + \frac{1}{(d+1)} + \frac{\left(\frac{\text{year}}{\text{predict}_f} - \frac{\text{Point}}{\text{actualmean}}\right)}{\text{sum}}$$

loponit_f := Point curve_f

$$+ -\left[qt\left(1 - \frac{\alpha_{t}}{2}, \text{Total}_{\text{means}} - 2\right) \text{StPoint}_{err} \cdot \sqrt{1 + \frac{1}{(d+1)} + \frac{\left(\text{year}_{\text{predict}_{f}} - \text{Point}_{\text{actualmean}}\right)^{2}}{\text{sum}}}\right]$$

Local Tmin for this elevation in the Drywell

 $\frac{\text{Tmin_local}}{\text{SB}_{f}} \stackrel{:= 490}{=} (\text{Ref. 3.25})$

Curve Fit For Point 49 Projected to Plant End Of Life

Therefore based on regression model the above curve shows that this point will not corrode to below minimum required thickness by the plant end of life.

The section below calculates what the postulated individual thickness would be if this point were to corrode at a minimum observable rate observed in appendix 22.

Rate min_observed := 6.9

Postulated thickness := Point 493 - Rate min_observed (2029 - 2006)

Postulated thickness = 662.3

which is greater than

Tmin_local $SB_3 = 490$

The section below calculates what the postulated corrosion rate necessary for the thinnest individual point to reach the local required thickness by 2029.

minpoint = 0.821 year predict₂₂ = $2.029 \cdot 10^3$

1000 minpoint - Tmin_local SB₂₂ required rate. (2005 - 2029)

required rate. = -13.792

Tmin_local SB₂₂ = 490

mils per year

Apendix 6

Sheet No. 1 of 16

Appendix 6 - Sand Bed Elevation Bay 15D

October 2006 Data

The data shown below was collected on 10/18/06

page := READPRN("U:\MSOFFICE\Drywell Program data\OCT 2006 Data\Sandbed\SB15D.txt")

Points $_{49}$:= showcells(page, 7, 0)

	•			•				
	1.133	1.133	· 1.133	1.141	1.145	1.145	1.144].
	1.094	1.109	1.087	1.142	1.129	1.119	1.131	
i	1.04	1.026	1.043	*1.081	1.095	1.085	1.096	İ.
49 =	0.978	0.948	0.975	1.029	1.03	1.096	1.068	
	0.976	0.969	0.977	1.069	1.013	1.067	1.041	
	0.93	0.979	1.031	1.037	1.017	1.059	1.051	
				1.031				
	•				۰.			

Cells := convert(Points $_{49}, 7$)

Points ,

No DataCells := length (Cells)

4.

The thinnest point at this location is shown below

For this location the thinnest point is number 43 (reference 3.22).

minpoint := min(Points 49)

minpoint = 0.922

Cells := deletezero $_{cells}(Cells, No_{DataCells})$

Normal Probability Plot

In a normal plot, each data value is plotted against what its value would be if it actually came from a normal distribution. The expected normal values, called normal scores, and can be estimated by first calculating the rank scores of the sorted data.

j := 0.. last(Cells) srt := sort(Cells)

Then each data point is ranked. The array rank captures these ranks

$$r_{j} := j + 1 \qquad rank_{j} := \frac{\Sigma(\overrightarrow{srt=srt_{j}}) \cdot r}{\Sigma srt=srt_{j+1}}$$

$$p_j := \frac{\operatorname{rank}_j}{\operatorname{rows}(\operatorname{Cells}) + 1}$$

The normal scores are the corresponding pth percentile points from the standard normal distribution:

x := 1 N_Score_j := root[cnorm(x) - (p_j), x]

C-1302-187-E310-041 Rev. No. 0

Sheet No. 4 of 16

Upper and Lower Confidence Values

The Upper and Lower confidence values are calculated based on .05 degree of confidence "q"

No DataCells := length (Cells)

α

$$= .05 \qquad T\alpha := qt \left[\left(1 - \frac{\alpha}{2} \right), \text{No}_{\text{DataCells}} \right] \quad T\alpha = 2.0$$

"Lower 95%Con :=
$$\mu_{actual} - T\alpha \cdot \frac{\sigma_{actual}}{\sqrt{No_{DataCells}}}$$

Upper
$$95\%$$
Con := $\mu_{actual} + T\alpha \cdot \frac{\sigma_{actual}}{\sqrt{No DataCells}}$

These values represent a range on the calculated mean in which there is 95% confidence.

Graphical Representation

Tł

Distribution of the "Cells" data points are sorted in 1/2 standard deviation increments (bins) within +/- 3 standard deviations

Lower 95%Con = $1.035 \cdot 10^3$

= 1.071•10

Upper 95%Con

Bins := Make
$$_{bins}(\mu_{actual}, \sigma_{actual})$$

Distribution := hist(Bins, Cells)
Distribution = $\frac{12}{7}$
the mid points of the Bins are calculated
 $k := 0...11$
Midpoints_k := $\frac{(Bins_k + Bins_{k+1})}{2}$

The Mathcad function pnorm calculates a portion of normal distribution curve based on a given mean and standard deviation

normal
$$_{curve_0} \coloneqq pnorm(Bins_1, \mu_{actual}, \sigma_{actual})$$

normal curve_k := pnorm (Bins_{k+1}, μ actual, σ actual) - pnorm (Bins_k, μ actual, σ actual)

normal curve ^{:= No} DataCells ^{·normal} curve

Results For Elevation Sandbed elevation Location Oct. 2006

The following schematic shows: the the distribution of the samples, the normal curve based on the actual mean and standard deviation, the kurtosis, the skewness, the number of data points, and the the lower and upper 95% confidence values. Below is the Normal Plot for the data.

C-1302-187-E310-041 Rev. No. 0

Sheet No. 6 of 16

d := 0

Sandbed Location 15D Trend

/ Data from the 1992, 1994 and 1996 is retrieved.

For 1992

Dates_d := Day year(12, 8, 1992)

page := READPRN("U:\MSOFFICE\Drywell Program data\Dec. 1992 Data\sandbed\Data Only\SB15D.txt")

Points 49 := showcells (page , 7 , 0)

-	<i>,</i> *		Data	. ·	. •		•
	1.131	1.133	1.133	1.141	1.145	1.134	1.142
1°	. 1.096	1.111	1.088	1.091	1.126	1.118	1.133
	1.066	1.031	1.048	1.067	1.094	1.079	1.09
Points 49 =	0.98	0.923	0.989	1.038	1.036	1.092	1.081
			0.894				
	0.925	1.019	1.041	1.051	1.064	1.075	1.055
	0.98	0.958	0. 9 91	1.036	1.027	1.074	1.069
				•			

nnn := convert(Points $_{49}$, 7)

No DataCells := length(nnn)

$$point_{42_d} := nnn_{42} point_{42} = 980$$

Cells := deletezero cells (nnn, No DataCells)

Apendix 6

d ≔ d + 1

For 1994

.page := READPRN("U:\MSOFFICE\Drywell Program data\Sept.1994 Data\sandbed\Data Only\SB15D.txt")

Dates_d := Day year(9, 14, 1994) .

Points 49 := showcells (page , 7 , 0)

Data

		1 .					
	1.126	1.132	1;133	1.14	1,142	1.131	1.14
· · ·	1.097	1.106	1.089	1.141	1.129	1.119	1.129
•	1.063	1.025	1.046	1.067	1.096	1.08	1.097
Points ₄₉ =	0.979	0.947	0.966	1.018	1.035	1.097	1.068
	0.973	0.971	1.001	1.05	1.05	1.066	1.029
	0.92	0.972	1.03	1.049	1.009	1.058	1.036
	0.903	0.958	1.013	1.031	1.004	1.052	1.076

nnn := convert(Points $_{49}$, 7)

No DataCells := length(nnn)

$$point_{42_d} = nnn_{42}$$

Cells := deletezero $_{cells}(mn, No _{DataCells})$

measured_d := mean(Cells)
$$\sigma_{\text{measured}_d}$$
 := Stdev(Cells) Standard error_d := $\frac{\sigma_{\text{measured}_d}}{\sqrt{N_{0,D} + \sigma_{1,D}}}$

Π.

d ≔ d + 1

For 1996

 $\left(\right)$

page := READPRN("U:\MSOFFICE\Drywell Program data\Sept.1996 Data\sandbed\Data Only\SB15D.txt")

Dates_d := Day year(9, 16, 1996)

Points $_{49} :=$ showcells (page, 7, 0)

Data 1.134 1.128 1.13 1.136 1.143 1.13 1.146 1.089 1.105 1.09 1.145 1.13 1.124 1.136 1.071 1.027 1.049 1.062 1.128 1.08 1.095 Points 49 = 0.982 0.959 1.01 1.069 1.061 1.128 1.128 0.989 0.987 1.016 1.052 1.032 1.074 1.09 0.945 0.972 1.031 1.062 1.064 1.07 1.07 0.94 0.968 0.984 1.048 1.034 1.076 1.114

nnn := convert(Points $_{49}, 7$)

 $point_{42_d} := nnn_{42}$

Cells := deletezero cells (nnn, No DataCells)

 $\mu_{\text{measured}_d} \coloneqq \text{mean(Cells}) \quad \sigma_{\text{measured}_d} \coloneqq \text{Stdev(Cells})$

o measured Standard errord No DataCells

No DataCells := length(nnn)

Apendix 6

d ≔ d + 1

For 2006

page := READPRN("U:\MSOFFICE\Drywell Program data\OCT 2006 Data\Sandbed\SB15D.txt")

Dates_d := Day $_{year}(10, 16, 2006)$

Points $_{49} :=$ showcells (page , 7, 0)

Data

1.133 1.133 1.133 1.141 1.145 1.145 1.144 1.094 1.109 1.087 1.142 1.129 1.119 1.131 1.04 1.026 1.043 1.081 1.095 1.085 1.096 0.978 0.948 0.975 1.029 1.03 1.096 1.068 Points 49 = 0.976 0.969 1.013 1.067 1.041 0.977 1.069 0.93 0.979 1.017 1.059 .1.051 1.031 1.037 0.922 0.972 1.005 1.033 1.052 0.996 1.031

nnn := convert (Points $_{49}$, 7)

No DataCells := length(nm)

point 42_d := nnn₄₂

Cells := deletezero $_{cells}(nnn, No _{DataCells})$

 $\mu_{\text{measured}_d} \coloneqq \text{mean(Cells)}$

measure No DataCells

 $\sigma_{\text{measured}_d} := \text{Stdev}(\text{Cells}) \quad \text{Standard}_{\text{error}_d}$

Sheet No. 10 of 16

Below are matrices which contain the date when the data was collected. Mean, Standard Deviation, Standard Error for each date.

$$Dates = \begin{bmatrix} 1.993 \cdot 10^{3} \\ 1.995 \cdot 10^{3} \\ 1.997 \cdot 10^{3} \\ 2.007 \cdot 10^{3} \end{bmatrix} \qquad point_{42} = \begin{bmatrix} 980 \\ 903 \\ 940 \\ 922 \end{bmatrix}$$

$$\mu_{\text{measured}} = \begin{bmatrix} 1.0577 \cdot 10^{3} \\ 1.0528 \cdot 10^{3} \\ 1.066 \cdot 10^{3} \\ 1.0531 \cdot 10^{3} \end{bmatrix} \qquad Standard_{error} = \begin{bmatrix} 8.741 \\ 9.002 \\ 8.466 \\ 8.95 \end{bmatrix}, \quad \sigma_{\text{measured}} = \begin{bmatrix} 61.188 \\ 63.017 \\ 59.263 \\ 62.649 \end{bmatrix}$$

Total means := rows (
$$\mu_{measured}$$
) Total means = 4

Apendix 6

5

$$ST := \sum_{i=0}^{last(Dates)} \left(\mu_{measured_i} - mean(\mu_{measured}) \right)^2 \qquad SST = 113.004$$

SSE :=
$$\sum_{i=0}^{last(Dates)} (\mu_{measured_i} - yhat(Dates, \mu_{measured})_i)^2$$
 SSE = 102.13

SSR :=
$$\sum_{i=0}^{last(Dates)} (yhat(Dates, \mu_{measured})_{i} - mean(\mu_{measured}))^{2}$$
 SSR = 10.872

StGrand err := \sqrt{MSE}

DegreeFree st := Total means - 1

$$MSE := \frac{SSE}{DegreeFree}_{SS}} \qquad MSR := \frac{SSR}{DegreeFree}_{reg}} \qquad MST := \frac{SST}{DegreeFree}_{S}}$$
$$MSE = 51.066 \qquad MSR = 10.872 \qquad MST = 37.668$$

StGrand err = 7.146

O

C-1302-187-E310-041 Rev. No. 0

٠

Factaul_Reg :=

MSR

MSE

d := 0.05

Apendix 6

$$F_{\text{critical_reg}} := qF(1 - \alpha, DegreeFree_{reg}, DegreeFree_{ss})$$

$$F_{\text{ratio_reg}} := \frac{F_{\text{actaul_Reg}}}{F_{\text{critical_reg}}}$$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

$$i \coloneqq 0 \dots \text{Total}_{\text{means}} - 1 \qquad \qquad \mu \text{grand}_{\text{measured}_i} \coloneqq \text{mean}(\mu_{\text{measured}})$$

$$\sigma \text{grand}_{\text{measured}} \coloneqq \text{Stdev}(\mu_{\text{measured}}) \qquad \qquad \text{GrandStandard}_{\text{error}_0} \coloneqq \frac{\sigma \text{grand}_{\text{measured}}}{\sqrt{\text{Total}_{\text{means}}}}$$

The minimum required thickness at this elevation is $Tmin_gcn_{SB_i} \approx 736$ (Ref. 3.25)

Plot of the grand mean and the actual means over time

I

To conservatively address the location, the apparent corrosion rate is calculated and compared to the minimum required wall thickness at this elevation

$$m_s := slope(Dates, \mu_{measured})$$
 $m_s = -0.307$ $y_b := intercept(Dates, \mu_{measured})$ $y_b = 1.671 \cdot 10$

k - 1

The 95% Confidence curves are calculated

$$t_{\star} := 0.05 \quad k := 2029 - 1985 \qquad f := 0$$

Thick actualmean := mean(Dates) sum := $\sum_{d} (Dates_d + mean(Dates))^2$

upper, := Thick predict, ...

+
$$qt\left(1 - \frac{\alpha_t}{2}, \text{Total}_{\text{means}} - 2\right)$$
 StGrand err $\sqrt{1 + \frac{1}{(d+1)}} + \frac{\left(\frac{\text{year}_{\text{predict}_f} - \text{Thick}_{\text{actualmean}}\right)}{\text{sum}}$

lower_f := Thick predict_f --

+ -
$$qt\left(1 - \frac{\alpha_t}{2}, \text{Total}_{\text{means}} - 2\right)$$
 StGrand err $\sqrt{1 + \frac{1}{(d+1)} + \frac{(\text{year}_{\text{predict}_f} - \text{Thick}_{\text{actualmean}})^2}{\text{sum}}}$

Apendix 6

Therefore even though F-ratio does not support the regression model the above curve shows that even at the lower 95% confidence band this location will not corrode to below Drywell Vessel Minimum required thickness by the plant end of life.

The section below calculates what the postulated mean thickness would be if this grid were to corrode at a minimum observable rate observed in appendix 22.

Rate min observed := 6.9

Postulated meanthickness := $\mu_{\text{measured}_3} - \text{Rate}_{\min_{\text{observed}}} (2029 - 2006)$

Postulated meanthickness = 894.402

which is greater than

 $Tmin_{gen} = 736$

 $SST_{point} = 3.237 \cdot 10^3$

The following addresses the readings at the lowest single point

The F-Ratio is calculated for the point as follows

SST_{point} :=
$$\sum_{i=0}^{\text{last(Dates)}} (\text{point}_{42_i} - \text{mean}(\text{point}_{42}))^2$$

$$SSE_{point} := \sum_{i=0}^{last(Dates)} (point_{42_i} - yhat(Dates, point_{42})_i)^2 \qquad SSE_{point} = 2.729 \cdot 10^3$$

$$SSR_{point} := \sum_{i=0}^{last(Dates)} (yhat(Dates, point_{42})_i - mean(point_{42}))^2 \qquad SSR_{point} = 508.213$$

$$MSE_{point} := \frac{SSE_{point}}{DegreeFree_{ss}} \qquad MSR_{point} := \frac{SSR_{point}}{DegreeFree_{reg}} \qquad MST_{point} := \frac{SST_{point}}{DegreeFree_{st}}$$
$$MST_{point} := \frac{SST_{point}}{DegreeFree_{st}} \qquad MST_{point} := \frac{SST_{point}}{DegreeFree_{st}}$$
$$MSE_{point} = 1.364 \cdot 10^{3} \qquad MSR_{point} = 508.213 \qquad MST_{point} = 1.079 \cdot 10^{3}$$
$$Stpoint_{err} := \sqrt{MSE_{point}} \qquad Stpoint_{err} = 36.936 \qquad F Test for Corrosion$$
$$F_{actaul_Reg} := \frac{MSR_{point}}{MSE_{point}} \qquad F_{ratio_reg} := \frac{F_{actaul_Reg}}{F_{critical_reg}} \qquad F_{ratio_reg} = 0.02$$

Therefore no conclusion can be made as to whether the data best fits the regression. The figure below provides a trend of the data and the grandmean

$$m_{\text{point}} \coloneqq \text{slope}(\text{Dates}, \text{point}, 42) \qquad m_{\text{point}} = -2.1 \qquad \text{y}_{\text{point}} \coloneqq \text{intercept}(\text{Dates}, \text{point}, 42) \text{ y}_{\text{point}} = 5.131 \cdot 10^{3}$$
The 95% Confidence curves are calculated
point curve $\coloneqq m_{\text{point}} \text{ year predict} + \text{ y}_{\text{point}}$
point actualmean $\coloneqq \text{mean}(\text{Dates}) \qquad \text{sum} \coloneqq \sum_{i} (\text{Dates}_{d} - \text{mean}(\text{Dates}))^{2}$
uppoint $_{a}$ curve $_{f}$ \cdots

$$+ gt \left(1 - \frac{\alpha}{2}, \text{Total}_{\text{means}} - 2\right) \cdot \text{Stpoint}_{err} \cdot \sqrt{1 + \frac{1}{(d+1)} + \frac{(\text{year predict}_{f} - \text{point}_{a} \text{ctualmean})^{2}}{\text{sum}}}$$
lopoint $_{f}$ $\coloneqq \text{point}_{curve}_{f}$ \cdots

$$+ -\left[qt\left(1 - \frac{\alpha}{2}, \text{Total}_{\text{means}} - 2\right) \cdot \text{Stpoint}_{err} \cdot \sqrt{1 + \frac{1}{(d+1)} + \frac{(\text{year predict}_{f} - \text{point}_{a} \text{ctualmean})^{2}}{\text{sum}}}$$
Local Tmin for this elevation in the Drywell
Tmin_local $_{SB_{f}} \coloneqq 490$
(Ref. 3.25)
Curve Fit For point 42 Projected to Plant End Of Life

OCLR00019450

m point =

-2.1

The section below calculates what the postulated individual thickness would be if this point were to corrode at a minimum observable rate observed in appendix 22.

Rate min_observed := 6.9

Postulated thickness := point 423 - Rate min_observed (2029 - 2006)

Postulated thickness = 763.3	which is greater than	$Tmin_{local} SB_3 = 490$

The section below calculates what the postulated corrosion rate necessary for the thinnest individual point to reach the local required thickness by 2029.

minpoint = 0.922

year predict₂₂ = $2.029 \cdot 10^3$

required rate. :=

(1000 minpoint - Tmin_local _{SB22} (2005 - 2029)

required rate. = -18

Tmin_local $SB_{22} = 490$

mils per year

OCLR00019452

Appendix 7 - Sandbed 17A October 2006 Data

The data shown below was collected on 10/18/06

page := READPRN("U:\MSOFFICE\Drywell Program data\Oct 2006 Data\Sandbed\SB17A.txt")

Points 49 := showcells (page , 7 , 0)

		•						
Points ₄₉ =	1.11	1.149	1.154	1.138	1.13	1.17	1.169	
	1.121	1.159	1.114	1.144	1.134	1.148	1.123	
	1.068							
	0.976	0.991	0.98	1.03	1.046	0.994	0.95	
	0.962	0.926	0.909	0.95	0.869	0.938	0.967	
	0.903	0.956	0.891	0.835	0.802	0.95	0.963	
	0.954	0.972 .	0.877	0.89	0.875	0.891	0.945	
						-		

Cells := convert (Points 49,7).

No DataCells := length (Cells)

The thinnest point at this location is point 40 which shown below

minpoint := min(Points 49)

minpoint = 0.802

Cells := deletezero $_{cells}(Cells, No_{DataCells})$

No DataCells := length(Cells)

APPENDIX 7
 C-1302-187-E310-041 Rev. No. 0
 Shieet No. 2 of 28

 Mean and Standard Deviation

$$\mu_{actual} := mean(Cells)$$
 $\mu_{actual} = 1.015 \cdot 10^3$
 $\sigma_{actual} := Stdev(Cells)$
 $\sigma_{actual} = 104.378$

 Standard Error
 minpoint = 0.802
 Standard error = 14.911

 Skewness
 Standard error = 14.911

 Skewness
 Skewness := $\frac{1}{\sqrt{No} DataCells} \cdot \overline{2(Cells - \mu_{actual})^3}$
 Skewness = -0.073

 Kurtosis
 := $\frac{No DataCells \cdot (No DataCells + 1) \cdot \overline{2(Cells - \mu_{actual})^4}}{(No DataCells - 1) \cdot (No DataCells + 2) \cdot (\sigma_{actual})^4}$
 Skewness = -1.266

 Kurtosis
 := $\frac{No DataCells \cdot (No DataCells + 1) \cdot \overline{2(Cells - \mu_{actual})^4}}{(No DataCells - 1) \cdot (No DataCells - 2) \cdot (No DataCells - 3) \cdot (\sigma_{actual})^4$
 Kurtosis = -1.266

 Normal Probability Plot
 j = 0. last(Cells)
 st := sort(Cells)

 $r_{j} := j + 1 \qquad \operatorname{rank}_{j} := \frac{\Sigma(\overrightarrow{\operatorname{srt}} = \operatorname{srt}_{j}) \cdot r}{\Sigma \operatorname{srt}}$ $p_{j} := \frac{\operatorname{rank}_{j}}{\operatorname{rows}(\operatorname{Cells}) + 1}$

x := 1 N_Score_j := root[cnorm(x) - (p_j), x]

()

APPENDIX 7

C-1302-187-E310-041 Rev. No. 0

Sheet No. 3 of 26

Upper and Lower Confidence Values

The Upper and Lower confidence values are calculated based on .05 degree of confidence " α "

•

$$\alpha \coloneqq .05 \qquad T\alpha \coloneqq qt \left[\left(1 - \frac{\alpha}{2} \right), 48 \right] \qquad T\alpha = 2.011$$
Lower 95%Con := $\mu_{actual} - T\alpha \cdot \frac{\sigma_{actual}}{\sqrt{No DataCells}}$
Lower 95%Con := $\mu_{actual} + T\alpha \cdot \frac{\sigma_{actual}}{\sqrt{No DataCells}}$
Upper 95%Con := $\mu_{actual} + T\alpha \cdot \frac{\sigma_{actual}}{\sqrt{No DataCells}}$
Upper 95%Con = 1.045 \cdot 10³

These values represent a range on the calculated mean in which there is 95% confidence.

Graphical Representation

Distribution of the "Cells" data points are sorted in 1/2 standard deviation increments (bins) within +/- 3 standard deviations

Bins := Make bins (
$$\mu_{actual}, \sigma_{actual}$$
)
Distribution := hist(Bins, Cells)
Distribution = $\frac{1}{1}$
 \frac

normal curve₀ := pnorm (Bins₁,
$$\mu_{actual}, \sigma_{actual}$$
)
normal curve_k := pnorm (Bins_{k+1}, $\mu_{actual}, \sigma_{actual}$) - pnorm (Bins_k, $\mu_{actual}, \sigma_{actual}$)

normal curve := No DataCells ·normal curve

Results For 17A - The following schematic shows: the the distribution of the samples, the normal curve based on the actual mean and standard deviation, the kurtosis, the skewness, the number of data points, and the the lower/and upper 95% confidence values.

The data is not normally distributed. Previous calculations have split this data set into the top 3 row and the bottom four rows. In order to be consistent with past calculations this data will be split in two groups and analyzed. The entire data set will also be evaluated.

٠ŀ

The two groups are named as follows: StopCELL := 21

1

Mean and Standard Deviation

$$\mu low_{actual} \coloneqq mean(low_{points}) \qquad \sigma low_{actual} \coloneqq Stdev(low_{points})$$

Standard Error

Standardlow error :=
$$\frac{\text{olow actual}}{\sqrt{\text{length}(\text{low points})}}$$
 Standardhigh error := $\frac{\text{ohigh actual}}{\sqrt{\text{length}(\text{high points})}}$

Skewness

Skewness low := $\frac{\left(\text{Nolow }_{\text{DataCells}}\right) \cdot \Sigma \left(\text{low }_{\text{points}} - \mu \text{low }_{\text{actual}}\right)^{3}}{\left(\text{Nolow }_{\text{DataCells}} - 1\right) \cdot \left(\text{Nolow }_{\text{DataCells}} - 2\right) \cdot \left(\sigma \text{low }_{\text{actual}}\right)^{3}}$

Nohigh DataCells := length (high points)

Skewness high :=
$$\frac{\left(\text{Nohigh}_{\text{DataCells}}\right) \cdot \overline{\Sigma} \left(\text{high}_{\text{points}} - \mu \text{high}_{\text{actual}}\right)^{3}}{\left(\text{Nohigh}_{\text{DataCells}} - 1\right) \cdot \left(\text{Nohigh}_{\text{DataCells}} - 2\right) \cdot \left(\text{ohigh}_{\text{actual}}\right)^{3}}$$

 $Kurtosis_{low} := \frac{Nolow_{DataCells} \cdot (Nolow_{DataCells} + 1) \cdot \Sigma (low_{points} - \mu low_{actual})^{4}}{(Nolow_{DataCells} - 1) \cdot (Nolow_{DataCells} - 2) \cdot (Nolow_{DataCells} - 3) \cdot (\sigma low_{actual})^{4}} + \frac{3 \cdot (Nolow_{DataCells} - 1)^{2}}{(Nolow_{DataCells} - 2) \cdot (Nolow_{DataCells} - 3)}$ $Kurtosis_{high} := \frac{Nohigh_{DataCells} \cdot (Nohigh_{DataCells} - 1) \cdot \Sigma (high_{points} - \mu high_{actual})^{4}}{(Nohigh_{DataCells} - 1) \cdot (Nohigh_{DataCells} - 2) \cdot (Nohigh_{DataCells} - 3) \cdot (\sigma high_{actual})^{4}}$ $Kurtosis_{high} := \frac{Nohigh_{DataCells} \cdot (Nohigh_{DataCells} - 1) \cdot \Sigma (high_{points} - \mu high_{actual})^{4}}{(Nohigh_{DataCells} - 1) \cdot (Nohigh_{DataCells} - 2) \cdot (Nohigh_{DataCells} - 3) \cdot (\sigma high_{actual})^{4}}$ $H_{1} := 0 - hast(how_{points}) \text{ srt}_{how_{1}} := \frac{\Sigma ((Nohigh_{DataCells} - 1)^{2} + 1) \cdot \Sigma (high_{DataCells} - 3)}{\Sigma \operatorname{srt}_{how_{1}} := \frac{\Sigma ((Nohigh_{DataCells} - 3)) \cdot \Sigma (Nohigh_{DataCells} - 3)}{\Sigma \operatorname{srt}_{how_{1}} := \frac{\Sigma ((Nohigh_{DataCells} - 3)) \cdot \Sigma (hohigh_{DataCells} - 3)}{\Sigma \operatorname{srt}_{how_{1}} := \frac{\Sigma (Nohigh_{DataCells} - 3) \cdot \Sigma (Nohigh_{DataCells} - 3)}{\Sigma \operatorname{srt}_{how_{1}} := \frac{\Sigma ((Nohigh_{DataCells} - 3)) \cdot \Sigma (Nohigh_{DataCells} - 3)}{\Sigma \operatorname{srt}_{how_{1}} := \frac{\Sigma (Nohigh_{DataCells} - 3) \cdot \Sigma (Nohigh_{DataCells} - 3)}{\Sigma \operatorname{srt}_{how_{1}} := \frac{\Sigma (Nohigh_{DataCells} - 3) \cdot \Sigma (Nohigh_{DataCells} - 3)}{\Sigma \operatorname{srt}_{how_{1}} := \frac{\Sigma (Nohigh_{DataCells} - 3) \cdot \Sigma (Nohigh_{DataCells} - 3)}{\Sigma \operatorname{srt}_{how_{1}} := \frac{\Sigma (Nohigh_{DataCells} - 3) \cdot \Sigma (Nohigh_{DataCells} - 3) \cdot \Sigma (Nohigh_{DataCells} - 3)}{\Sigma \operatorname{srt}_{how_{1}} := \frac{\Sigma (Nohigh_{DataCells} - 3) \cdot \Sigma (Nohigh_{DataCells} - 3)}{\Sigma \operatorname{srt}_{how_{1}} := \frac{\Sigma (Nohigh_{DataCells} - 3) \cdot \Sigma ($

N_Score
$$\log_{1} := root [cnorm(x) - (p_{low_1}), x]$$

Normal Probability Plot - High points

x ≔ 1

APPENDIX 7

Kurtosis

$$h := 0.. last(high_{points})$$
 srt high := sort(high_{points})

$$H_{b} \coloneqq h + 1$$

rank high_{h} \coloneqq \frac{\sum \left(\overrightarrow{\operatorname{srt} high} = \operatorname{srt} high_{b} \right) \cdot H}{\sum \operatorname{srt} high} \qquad p_{high_{b}} \coloneqq \frac{\operatorname{rank} high_{h}}{\operatorname{rows} (high_{points}) + 1}

)
$$\mathbf{x} \coloneqq \mathbf{1}$$
 N_Score $\operatorname{high}_{h} \coloneqq \operatorname{root}\left[\operatorname{cnorm}(\mathbf{x}) - \left(p_{\operatorname{high}_{h}}\right), \mathbf{x}\right]$

Upper and Lower Confidence Values $T\alpha := qt\left[\left(1-\frac{\alpha}{2}\right), 48\right]$ α := .05 $T\alpha = 2.011$ ' ^{σhigh} actual Lowerhigh 95% Con := μ high actual - T α . Nohigh DataGells ohigh actual Upperhigh 95%Con := μ high actual + Ta. Nohigh DataCells olow actual Lowerlow 95%Con := $\mu low^{i}actual - Ta$. Nolow DataCells σlow actual Upperlow 95%Con := $\mu low_{actual} + T\alpha$. Nolow DataCells **Graphical Representation of Low Points** Bins low := Make bins (plow actual, olow actual) Distribution low := hist (Bins low, low points) Distribution low The mid points of the Bins are calculated $(\operatorname{Bins}_{\operatorname{low}_k} + \operatorname{Bins}_{\operatorname{low}_k})$ Midpoints low_k := k := 0.. 11 normallow $_{curve_0} := pnorm(Bins_{low_1}, \mu low_{actual}, \sigma low_{actual})$ normallow $_{curve_k} := pnorm(Bins_{low_{k+1}}, \mu low_{actual}, \sigma low_{actual}) - pnorm(Bins_{low_k}, \mu low_{actual}, \sigma low_{actual})$

normallow curve := Nolow DataCells · normallow curve

OCLR00019458

9 5 1

0

Graphical Representation of High Points

Bins high := Make bins (µhigh actual, ohigh actual)

Distribution high := hist (Bins high, high points)

k := 0..11, Midpoints $high_k := \frac{(Bins high_k + Bins high_{k+1})}{2}$

normalhigh $_{curve_0} \coloneqq pnorm(Bins_{high_1}, \mu high_{actual}, \sigma high_{actual})$

normalhigh $\operatorname{curve}_{k} := \operatorname{pnorm}\left(\operatorname{Bins}_{\operatorname{high}_{k+1}}, \operatorname{\mu high}_{\operatorname{actual}}, \operatorname{ohigh}_{\operatorname{actual}}\right) - \operatorname{pnorm}\left(\operatorname{Bins}_{\operatorname{high}_{k}}, \operatorname{\mu high}_{\operatorname{actual}}, \operatorname{ohigh}_{\operatorname{actual}}\right)$

normalhigh curve := Nohigh DataCells ·normalhigh curve

OCLR00019459

Sheet No. 8 of 26

0

> 0 0

Distribution high =

The above plots indicates that the thinner area is more normally distributed than the entire population.

C-1302-187-E310-041 Rev. No. 0

Sheet No. 10 of 26

The above plots indicates that the thicker areas are normally distributed.

C-1302-187-E310-041 Rev. No. 0

Data from 1992 to 2006 is retrieved. d := 0 For Dec 31 1992 page := READPRN("U:\MSOFFICE\Drywell Program data\Dec. 1992 Data\sandbed\DATA ONLY\SB17A.txt" Points 49 := showcells (page , 7 , 0) Dates = Day year (12, 31, 1992) Data 1.159 1.153 1.158 1.138 ,1.127 1.169 1.167 1.121 1.155 1.121 1.143 1.125 1.151 1.12 ı۴, 1.071 1.095 1.112 1.115 1.097 1.07 1.053 1.02 0.995 0.977 1.012 1.048 1.029 0.951 Points 49 = 0.976 0.919 0.881 0.935 0.871 0.936 0.964 0,866 0.961 0.892 0.822 0.804 0.946 0.991 0.934 0.97 0.923 0.925 0.871 0.952 0.986 nnn := convert (Points $_{49}$, 7) No DataCells "= length(nnn) nnn := Zero one $(nnn, No_{DataCells}, 43)$ Point 40_d := nnn₃₉ Point $_{40} = 804$ StopCELL := 21 No Cells := length(Cells) The two groups are named as follows: low points := LOWROWS (nnn , No Cells , StopCELL) high points := TOPROWS (mnn, No Cells, StopCELL) No lowCells := length (low points) No highCells := length (high points) Cells := deletezero cells (nnn , No Cells) low points := deletezero cells (low points, No lowCells) $high_{points} := deletezero_{cells} (high_{points}, No_{highCells})$ Standard $_{error_d} := \frac{1}{\sqrt{N_o DataCells}}$ $\mu_{\text{measured}_d} \coloneqq \text{mean(Cells)}$ $\sigma_{\text{measured}_d} \coloneqq \text{Stdev}(\text{Cells})$ $\mu low_{measured_d} := mean(low_{points})$ $\sigma_{\text{high}_{\text{measured}_d}} \coloneqq \operatorname{Stdev}(\operatorname{high}_{\text{points}})$ $\sigma low_{measured_d} \coloneqq Stdev(low_{points})$ ohigh measured σ low measured Standardhigh errord := Standardlow error $= \frac{1}{\sqrt{\text{length}(\text{low points})}}$ length (high points

For 1994

page := READPRN("U:\MSOFFICE\Drywell Program data\Sept.1994 Data\sandbed\DATA ONLY\SB17A.txt")

Points 49 !=	showcells (page, 7, 0)	· ·	Dates	= Day year (9, 26,	1994)
	Data		· · ·		
	1.163 1.146 1.158	1.141 1.136	1.168 1.17	2]	
	•	1.144 1.128			•
	1.121 1.088 1.108	1.116 1.102	1.071 1.05	5	
Points 49 =	0.977 0.993 0.981	0.989 1.046	1.001 ,0.95	6	
1	0.962 0.914 0.869	0.942 0.877	0.938 0.96	2	
	0.861 0.963 0.894	0.82 0.809	0.947 '0.98	4	•
•	0.927 0.97 0.866	0.895 0.893	0.956 0.95	3]	•
			•	· ·	
nnn $:= convert(Po$	$(n_{49}, 7)$ No	DataCells := lo	ength (nnn)	•	
5	Point 40 _d := nnn ₃₉		· ·		• .
The two groups are	named as follows:	Stor	CELL := 21	No Cells	:= length(nnn)
low points := LOWROWS	(nnn , No _{Cells} , StopCEI	LL)	high points	= TOPROWS(nnn	, No Cells , StopCELL)
No lowCells := length	(low points)	•	No	highCells := length	$\left(high_{points} \right)$
Cells := deletezero cells	nnn, No Celle)	•		• •	
	ow points := deletezero	cells (low points	, No low Cells)	
	pomo	, pome		• • •	· · · · · · · · · · · · · · · · · · ·
	· · ·		nign points	= deletezero cells (h	$\operatorname{high}_{\operatorname{points}}$, No $\operatorname{highCells}$
$\mu_{\text{measured}_d} \coloneqq \text{mean(Cell)}$	lls) σ _{measured} :=	Stdev (Cells)	Standard err	$or_{d} := \frac{\sigma_{\text{measured}_{d}}}{\sqrt{No_{\text{DataCell}}}}$	i= Is
µhigh measured = n	ean(high points)	•	plow measure	$d_d \coloneqq mean(low_{poi})$	nts)
chigh _{measured} := S	•	•	olow measure	$d_{d} \coloneqq \text{Stdev}(\text{low}_{point})$	ints)
) Standardhigh error _d :=	$\frac{\text{ohigh}_{\text{measured}_d}}{\sqrt{\text{length}(\text{high}_{\text{points}})}}$		Standardlow e	olow me	
· · · · ·	V	· .	•	$\sqrt{\operatorname{length}}(\operatorname{lo})$	w _{points})

APPENDIX 7 C-1302-187-E310-041 Rev. No. 0 Sheet No. 13 of 26 For 1996 page := READPRN("U:\MSOFFICE\Drywell Program data\Sept.1996 Data\sandbed\DATA ONLY\SB17A.txt" $Dates_d := Day_{year}(9, 23, 1996)$ Points 49 := showcells (page , 7 , 0) Data 👘 1.162 0.973 0.672 1.143 1.163 1.171 1.172 1.158 1.161 1.172 1.155 1.135 1.172 1.144 1.084 1.102 1.174 1.189 1.187 1.172 1.093 Points 49 = 1.056 1.019 1.015 1.028 1.112 1.019 1.03 0.985 0.961 1.109 0.997' 0.929 0.938 1:029 0.868 1.023 1.051 0.924 0.983 0.972 1.007 1.006 1.005 0.963 0.912 ¹0.985 0.931 1.056 nnn := convert (Points $\frac{1}{49}$, 7) Point 40_d := nnni₃₉ No Cells := length(nnn) $nnn := Zero_{one}(nnn, No_{Cells}, 3)$ The two groups are named as follows: Point 3 was eliminated from the 1996 data StopCELL := 21 low points := LOWROWS (nnn , No Cells , StopCELL) high points := TOPROWS (nnn, No Cells, StopCELL) No lowCells := length (low points) No highCells := length (high points) Cells := deletezero cells (nnn, No Cells) low points := deletezero cells (low points, No lowCells) $high_{points} := deletezero_{cells} (high_{points}, No_{highCells})$ Standard error_d := $\frac{\sigma_{\text{measured}}}{\sqrt{N_0 \text{ DataCells}}}$ $\mu_{\text{measured}_d} \coloneqq \text{mean(Cells)} \quad \sigma_{\text{measured}_d} \coloneqq \text{Stdev(Cells)}$ whigh measured := mean (high points) $\mu low_{measured_d} := mean(low_{points})$ $\sigma_{\text{high}}_{\text{measured}_d} \coloneqq Stdev(\text{high}_{points})$ $\sigma low_{measured_d} \coloneqq Stdev(low_{points})$ ohigh measured Standardlow error_d := $\frac{\sigma \log measured_d}{\sqrt{\text{length}(\log points)}}$ Standardhigh error_d := length (high points)

C-1302-187-E310-041 Rev. No. 0

Sheet No. 14 of 26

:= d + 1

For 2006

APPENDIX 7

page := READPRN("U:\MSOFFICE\Drywell Program data\Oct 2006 Data\Sandbed\SB17A.txt")

Points 49 := showcells (page , 7 , 0)

Dates_d := Day year(9, 23, 2006)

		•	Data	7			
	1.11	1.149	1.154	1.138	1.13	1.17 ·	1.169
	1.121	1.159	1.114	1.144	1.134	1.148	1.123
J .	1.068	1.073	1.111	1.114	1.094	1.083	1.053
Points 49 =	0.976	0.991	0.98	1.03	1.046	0.994	0.95
	0.962	0.926	0.909	0.95	0.869	0.938	0.967
	0.903	0.956	0.891	0.835	0.802	0.95	0.963 0.945
1	0.954	0.972	0.877	0.89	0.875	0.891	10.945

mnn := convert(Points $_{49}, 7$)

No DataCells := length(nnn)

Point 40_d := nnn₃₉

The two groups are named as follows: StopCELL := 21 No Cells := length(nnn) low points := LOWROWS(nnn, No Cells, StopCELL) No lowCells := length(low points) No highCells := length(high points)

Cells := deletezero cells (nnn, No Cells)

low points := deletezero cells (low points, No lowCells)

high points := deletezero cells (high points, No highCells)

 $\mu_{\text{measured}_d} := \text{mean(Cells}) \quad \sigma_{\text{measured}_d} := \text{Stdev(Cells}) \quad \text{Standard}_{\text{error}_d} := \frac{\sigma_{\text{measured}_d}}{\sqrt{No}_{\text{DataCells}}}$

C-1302-187-E310-041 Rev. No. 0

Sheet No. 15 of 26

· Below are the results

.

.

· · ·	-		r . a	1 .		1. 4	
•		•	1.993•10 ³	1	•	•	
	•	D .	1.995•10 ³			804	•
	. · · · ·	Dates = '	1.997•10 ³		Point	809	
	. ·		2.007•10 ³		Point 40 =	983 802	
		•	ı	• •	•		
	1	1	4	1	•	i Standard _e	=
	1.022•10 ³			•	r. F	Junion of	error 12.949
11	1.017•10 ³		•	•	ł		[14.911]
μ measured =	1.058•10 ³		· · · ·		104.798		
· · · ·	1.015•10 ³	•		·.	108.306	•	· ·
. N . 1	L		•	σ measured =	90.646		
)					[104.378]		
						•	,

,	г , 1	1				7.227
	1.125•10 ³		33.118	•		6.827
	1.129•10 ³		31.283		Standardhigh error =	11.147
μ high measured =	1.144-10 ³	σ high measured =	49.851 ·			7.243
		l . I	33.194			-
•	1 122-103	I .	•			

		941.593		61.37		11.811
	•.	933.75		56.659	Standardlow error =	10.708
µlow measured =	996.893	olow measured =	56.487	Standardiow error =	10.675	
		935.429		55.725		10.531

C-1302-187-E310-041 Rev. No. 0

Total means := rows (μ measured)

,

Total means = 4

SST :=
$$\sum_{i=0}^{\text{last(Dates)}} (\mu_{\text{measured}_i} - \text{mean}(\mu_{\text{measured}}))^2$$

$$SST_{low} := \sum_{i = 0}^{last(Dates)} (\mu low_{measured_i} - mean(\mu low_{measured}))^2$$

SST high :=
$$\sum_{i=0}^{i}$$
 (µhigh measured - mean(µhigh measured))

SSE :=
$$\sum_{i=0}^{\text{last(Dates)}} (\mu_{\text{measured}_i} - \text{yhat}(\text{Dates}, \mu_{\text{measured}})_i)^2$$

$$SSE_{low} := \sum_{i=0}^{last(Dates)} (\mu low_{measured_i} - yhat(Dates, \mu low_{measured})_i)$$

$$SSE_{high} \coloneqq \sum_{i = 0}^{last(Dates)} \left(\mu high_{measured_i} - yhat \left(Dates, \mu high_{measured_i} \right)_i \right)$$

SSR :=
$$\sum_{i=0}^{\text{last(Dates)}} (\text{yhat}(\text{Dates}, \mu_{\text{measured}})_{i} - \text{mean}(\mu_{\text{measured}}))^{2}$$

SSR low :=
$$\sum_{i=0}^{last(Dates)} (phat(Dates, \mu low measured)_i - mean(\mu low measured))^2$$

$$SSR_{high} := \sum_{i = 0}^{last(Dates)} (yhat(Dates, \mu high_{measured})_{i} - mean(\mu high_{measured}))^{2}$$

C-1302-187-E310-041 Rev. No. 0

Sheet No. 17 of 26

DegreeFree ss := Total means - 2

DegreeFree reg := 1

DegreeFree st := Total means - 1

Test the means with all points

α := .05

F Test for Corrosion

 $F_{critical_reg} := qF(1 - \alpha, DegreeFree_{reg}, DegreeFree_{ss})$

$$F_{ratio_reg} := \frac{F_{actaul_Reg}}{F_{critical_reg}}$$

$$F_{ratio_reg} = 5.616 \cdot 10^{-5}$$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

C-1302-187-E310-041 Rev. No. 0

Test the low points

APPENDIX 7

F Test for Corrosion

$$F_{actaul_Reg.low} := \frac{MSR_{low}}{MSE_{low}}$$

 $F_{critical_reg} := qF(1 - \alpha, DegreeFree_{reg}, DegreeFree_{ss})$

$$F_{ratio_reg.low} := \frac{F_{actaul_Reg.low}}{F_{critical_reg}}$$

$$F_{ratio_reg.low} = 2.917 \cdot 10^{-3}$$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

Test the high points

F Test for Corrosion

 $F_{actaul_Reg.high} := \frac{MSR_{high}}{MSE_{high}}$

 $F_{critical_reg} := qF(1 - \alpha, DegreeFree_{reg}, DegreeFree_{ss})$

 $F_{ratio_reg.high} := \frac{F_{actaul_Reg.high}}{F_{critical reg}}$

 $F_{ratio_{reg.high}} = 0.013$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

C-1302-187-E310-041 Rev. No. 0

The following will plot the results for the overall mean, the mean of thinner points, and the mean of thicker points

$$i = 0$$
. Total means -1

 $\mu \text{grand}_{\text{measured}_i} \coloneqq \text{mean}(\mu_{\text{measured}})$

C

$$\sigma_{\text{grand measured}} := \text{Stdev}(\mu_{\text{measured}})$$

 σ grand lowmeasured := Stdev (μ low measured) μ lowhgrand measured := mean (μ low measured)

GrandStandard lowerror
$$: \overline{\tau} \xrightarrow{\sigma_{\text{grand lowmeasured}}} \sqrt{\text{Total means}}$$

 σ grand highmeasured := Stdev(μ high measured) μ highgrand measured := mean(μ high measured)

$$\frac{\sigma_{\text{grand high measured}}}{\sqrt{\text{Total means}}}$$

The F Test indicates that the regression model does not hold for any of the data sets. However, the slopes and 95% Confidence curves are generated for all three cases.

 $m_s := slope (Dates, \mu_{measured})$

 $y_b := intercept(Dates, \mu_{measured})$

m lows := slope (Dates, µlow measured)

 $y_{lowb} := intercept(Dates, \mu low_{measured})$

m highs := slope (Dates, whigh measured)

y highb = intercept (Dates, whigh measured)

 $\alpha_{t}^{i} := 0.05$ k := 23 f := 0.. k - 1

 $y_{ear}_{predict_{f}} \approx 1985 + f \cdot 2$

Thick predict := ms year predict + yb

Thick lowpredict := m lows year predict + y lowb

Thick highpredict = m highs \cdot year predict + y highb

Thick actualmean := mean(Dates)

sum := $\sum_{d} (Dates_d - mean(Dates))^2$

C-1302-187-E310-041 Rev. No. 0

Sheet No. 21 of 26

For the entire grid

 $upper_{f} := Thick_{predict_{f}} \cdots$

+ $qt\left(1-\frac{\alpha_{t}}{2}, Total_{means}-2\right)$ Standard error $\sqrt{1+\frac{1}{(d+1)}}$ sum

lower_f := Thick predict_f ---

uppe

(year predict, -, Thick actualmean) $\left(qt \left(1 - \frac{\alpha_t}{2} \right), \text{ Total}_{\text{means}} - 2 \right) \cdot \text{Standard}_{\text{error}} \cdot \left(1 + \frac{\alpha_t}{2} \right)$ 1 (d+1)sum

The minimum required thickness at this elevation is Tmin_gen SB; = 736 (Ref. 3.25)

> 1200 1100 Thick predict 1000 lower m μ measured ♦ Tmin_gen SB 900 800 1980 1990 2000 2010 2020 2030 year predict, year predict, year predict, Dates, year predict

> > OCLR00019472

-0.731

For the points which are thicker

upper := Thick highpredict

+ $qt\left(1-\frac{\alpha}{2}, Total_{means}-2\right)$ Standard higherror $\sqrt{1+\frac{1}{(d+1)}}+\frac{\left(year_{predict_{f}}-Thick_{actualmean}\right)^{2}}{sum}$

lower_f := Thick highpredict_f ...

$$+ - \left[\operatorname{qt} \left(1 - \frac{\alpha_{t}}{2}, \operatorname{Total}_{means} - 2 \right) \cdot \operatorname{Standard}_{higherror} \cdot \sqrt{1 + \frac{1}{(d+1)} + \frac{\left(\operatorname{year}_{predict_{f}} - \operatorname{Thick}_{actualmean} \right)^{2}}{\operatorname{sum}} \right]$$

OCLR00019473

0.522

For the points which are thinner

upper := Thick lowpredict

+
$$qt\left(1 - \frac{a_t}{2}, \text{Total}_{\text{means}} - 2\right)$$
 Standard lowerror $\sqrt{1 + \frac{1}{(d+1)}} + \frac{\left(\frac{\text{year predict}_f - \text{Thick actualmean}}{\text{sum}}\right)^2}{\text{sum}}$

lower_f := Thick lowpredict_f ...

$$+ -\left[qt\left(1 - \frac{\alpha_{t}}{2}, T_{t}otal_{means} - 2\right) \cdot Standard_{lowerror} \cdot \sqrt{1 + \frac{1}{(d+1)} + \frac{\left(year_{predict}}{sum} - \frac{Thick_{actualmean}}{sum}\right)^{2}}\right]$$

11,

Tmin_gen SB,

736

The section below calculates what the postulated mean thickness would be if this grid were to corrode at a minimum observable rate observed in appendix 22.

Rate min_observed := 6.9

Postulated meanthickness :=
$$\mu$$
 measured - Rate min observed (2029 - 2006)

Postulated meanthickness = 856.627 which is greater than

The following addresses the readings at the lowest single point

$$SST_{point} \coloneqq \sum_{i=0}^{last(Dates)} (Point_{40_i} - mean(Point_{40}))^2 \quad SST_{point} = 2.379 \cdot 10^4$$

$$SSE_{point} \coloneqq \sum_{i=0}^{last(Dates)} (Point_{40_i} - yhat(Dates, Point_{40}))^2 \quad SSE_{point} = 2.334 \cdot 10^4$$

$$Iast(Dates)$$

$$3SR_{point} := \sum_{i=0}^{\infty} \left(yhat \left(Dates, Point_{40} \right)_{i} - mean \left(Point_{40} \right) \right)^{2} \qquad SSR_{point} = 445.558$$

$$MSE_{point} := \frac{SSE_{point}}{DegreeFree_{ss}} \qquad MSR_{point} := \frac{SSR_{point}}{DegreeFree_{reg}} \qquad MST_{point} := \frac{SST_{point}}{DegreeFree_{st}}$$

$$StPoint_{err} := \sqrt{MSE_{point}} \qquad StPoint_{err} = 108.036$$

$$MSE_{point} = 1.167 \cdot 10^4 \qquad MSR_{point} = 445.558 \qquad MST_{point} = 7.93 \cdot 10^3$$

MSR point =
$$445.558$$
 MST point = $7.93 \cdot 10^3$

F Test for Corrosion

$$F_{actaul_Reg} := \frac{MSR_{point}}{MSE_{point}}$$

$$F_{ratio_reg} := \frac{F_{actaul_Reg}}{F_{critical_reg}}$$

$$F_{ratio reg} = 2.062 \cdot 10^{-5}$$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

OCLR00019475

,ŧ,

2

1.983

m point

$$m_{point} := stope(Dates, Point_{40}) m_{point} = -1.983 y_{point} := intercept(Dates, Point_{40}) y_{point} = 4.811 \cdot 10^{5}$$
The 95% Confidence curves are calculated
Point curve := m_{point} year_{predict} + y_{point}

Point actualmean := mean(Dates)

 $\operatorname{sum}' := \sum_{i} (\operatorname{Dates}_{d} - \operatorname{mean}(\operatorname{Dates}))^{2}$

uppoint_f := Point curve_f

$$qt\left(1-\frac{\alpha_{t}}{2}, \text{Total}_{means}-12\right)$$
 StPoint err $\sqrt{1+\frac{1}{(d+1)}}+\frac{(\text{year}_{predict}-\text{Point}_{actualmean})}{\text{sum}}$

 $lopoint_f := Point_{curve_f}$

$$+ -\left[qt\left(1 - \frac{\alpha_t}{2}, \text{Total}_{\text{means}} - 2\right) \cdot \text{StPoint}_{\text{err}} \cdot \sqrt{1 + \frac{1}{(d+1)}} + \frac{\left(\frac{\text{year}_{\text{predict}_f} - \text{Point}_{\text{actualmean}}\right)^2}{\text{sum}}\right]$$

Local Tmin for this elevation in the Drywell Tmin_lo

 $\frac{\text{Tmin_local}_{SB_{f}} \coloneqq 490}{(\text{Ref. 3.25})}$

Curve Fit For Point 40 Projected to Plant End Of Life

The section below calculates what the postulated individual thickness would be if this point were to corrode at a minimum observable rate of 1.7 mils per year (Appendix 22).

Rate min_observed = 6.9

Postulated thickness = Point 403 - Rate min_observed (2029 - 2006)

Postulated thickness = 643.3

which is greater than

Tmin_local $SB_3 = 490$

te section below calculates what the postulated corrosion rate necessary for the thinnest individual point to ach the local required thickness by 2029.

minpoint = 0.802

year predict_{22} = $2.029 \cdot 10^3$

Tmin_local SB₂₂ = 490

required rate. := $\frac{(1000 \cdot \text{minpoint} - \text{Tmin_local}_{SB_{22}})}{(2005 - 2029)}$

required rate. = -13

mils per year

Appendix 8 - Sand Bed Elevation Bay 17D

October 2006 Data

The data shown below was collected on 10/18/06.

page := READPRN("U:\MSOFFICE\Drywell Program data\OCT 2006 Data\Sandhed\SB17D.txt")

Points 49 := showcells (page , 7 , 0)

				0.894			
	0.806	0.802	0.717	0.806	0.736	0.756	0.648
. 1	0.998	0.823	0.752	*0.733	0.822	' 0.73	0.667
Points 49 =							
	0.814	0.841	0.85	0.816	0.852	0.856	0.869
	0.792	0.829	0.888	0.846	0.888	0.855	0.8
•	0.824	0.897	0.837	0.887	0.891	0.935	0.886

Cells := convert (Points $_{49}$, 7)

No DataCells := length(Cells)

The thinnest point at this location is point 14 which is shown below

minpoint := min(Points 49)

minpoint = 0.648

For this location point 15, 16, 22, and 23 are over a plug (refer 3.22)

Cells := Zero one (Cells, No DataCells, 15)

Cells := Zero one (Cells, No DataCells, 22)

Cells := Zero one (Cells, No DataCells, 16)

Cells := Zero $_{one}$ (Cells , No $_{DataCells}$, 23)

Cells := deletezero cells (Cells, No DataCells)

OCLR00019478

1 of 16

Ap;pendix 8

C-1302-187-E310-041 Rev. No. 0

Sheet No. 2 of 16

σ_{actual} '= 66.335

Mean and Standard Deviation

1

 $\mu_{actual} := mean(Cells)$ $\mu_{actual} = 818.6667$ $\sigma_{actual} := Stdev(Cells)$

. . .

Standard Error

minpoint = 0.648

Standard error := $\frac{\sigma_{actual}}{\sqrt{No_{DataCells}}}$ Standard error = 9.476

Skewness

Skewness :=
$$\frac{(\text{No}_{\text{DataCells}}) \cdot \overline{\Sigma(\text{Cells} - \mu_{\text{actual}})^3}}{(\text{No}_{\text{DataCells}} - 1) \cdot (\text{No}_{\text{DataCells}} - 2) \cdot (\sigma_{\text{actual}})^3} \quad \text{Skewness} = -0.576$$

Kurtosis

$$Kurtosis := \frac{\text{No DataCells} \cdot (\text{No DataCells} + 1) \cdot \overline{\Sigma} (\text{Cells} - \mu_{\text{actual}})^4}{(\text{No DataCells} - 1) \cdot (\text{No DataCells} - 2) \cdot (\text{No DataCells} - 3) \cdot (\sigma_{\text{actual}})^4} \text{Kurtosis} = -0.19$$
$$+ -\frac{3 \cdot (\text{No DataCells} - 1)^2}{(\text{No DataCells} - 2) \cdot (\text{No DataCells} - 3)}$$

Normal Probability Plot

In a normal plot, each data value is plotted against what its value would be if it actually came from a normal distribution. The expected normal values, called normal scores, and can be estimated by first calculating the rank scores of the sorted data.

j := 0 .. last(Cells) srt :=, sort(Cells)

Then each data point is ranked. The array rank captures these ranks

$$r_j := j + 1$$

 $rank_j := \frac{\sum (\overrightarrow{srt = srt_j}) \cdot r}{\sum srt = srt_{j4}}$

$$p_{j} := \frac{j}{rows(Cells) + 1}$$

The normal scores are the corresponding pth percentile points from the standard normal distribution:

$$x := 1$$
 N_Score_j := root[cnorm(x) - (p_j), x

Ap;pendix 8

C-1302-187-E310-041 Rev. No. 0

Sheet No. 4 of 16

Upper and Lower Confidence Values

The/Upper and Lower confidence values are calculated based on .05 degree of confidence "q"

No DataCells := length(Cells)

$$:= .05 \qquad T\alpha := qt \left[\left(1 - \frac{\alpha}{2} \right), \text{No DataCells} \right] \quad T\alpha = 2.014$$

^tLower_{95%}Con := $\mu_{actual} - T\alpha \frac{\sigma_{actual}}{\sqrt{N_0 DataCells}}$ Lower_{95%}Con = 798.75

Upper 95%Con :=
$$\mu_{actual}$$
 + T α $\frac{\sigma_{actual}}{\sqrt{No DataCells}}$, Upper 95%Con = 838.58

These values represent a range on the calculated mean in which there is 95% confidence.

Graphical Representation

Distribution of the "Cells" data points are sorted in 1/2 standard deviation increments (bins) within +/- 3 standard deviations

Bins := Make
$$_{bins}(\mu_{actual}, \sigma_{actual})$$

Distribution := hist(Bins, Cells)

Distribution =

The mid points of the Bins are calculated

$$:= 0..11 \qquad \text{Midpoints}_{k} := \frac{\left(\text{Bins}_{k} + \text{Bins}_{k+1}\right)}{2}$$

The Mathcad function pnorm calculates a portion of normal distribution curve based on a given mean and standard deviation

normal curve_a := pnorm(Bins₁, $\mu_{actual}, \sigma_{actual})$

normal curve_k := pnorm $(Bins_{k+1}, \mu_{actual}, \sigma_{actual}) - pnorm (Bins_{k}, \mu_{actual}, \sigma_{actual})$

normal curve := No DataCells ·normal curve

Ap;pendix 8

OCLR00019482

Results For Elevation Sandbed Elevation Location Oct. 2006

The following schematic shows: the the distribution of the samples, the normal curve based on the actual mean and standard deviation, the kurlosis, the skewness, the number of data points, and the the lower and upper 95% confidence values. Below is the Normal Plot for the data.

d := 0.

Sandbed Location 17D Trend

Data from the 1992, 1994 and 1996 is retrieved.

For 1992

Dates_d := Day year(12,8,1992)

page := READPRN("U:\MSOFFICE\Drywell Program data\Dec. 1992 Data\sandbed\Data Only\SB17D.txt")

Points 49 := showcells (page , 7 , 0)

			Data				• •	
	0.839	0.802	0.853	0.905	0.955	0.877	0.71	I
	0.804	0.802	0.71	0.806	0.737	0.762	0.648	
			0.752					ł
49 =	1.069	1.069	0.748	0.803	0.784	0.806	0.785	
	0.809	0.845	0.845	0.816	0.846	0.845	0.84	
	0.79	0.833	0.892	0.846	0.878	0.855	0.792	
	0.832	0.896	0.835	0.882	0.886	0.936	0.862	

nnn := convert(Points $_{49}, 7$)

Points

No DataCells := length(nnn)

 $point_{13_d} := nnn_{13}$ $point_{13} = 648$

For this location point 15, 16, 22, and 23 are over a plug (refer 3.22)

nnn := Zero $_{one}(nnn, No_{DataCells}, 15)$

nnn := Zero one (nnn , No DataCells , 16)

nnn := Zero $one(nnn, No_{DataCells}, 23)$

nnn := Zero one (nnn, No DataCells, 22)

 $Cells := deletezero _{cells} (nnn, No _{DataCells})$

 $\mu_{\text{measured}_d} \coloneqq \text{mean(Cells)} \quad \sigma_{\text{measured}_d} \coloneqq \text{Stdev(Cells)}$ Standard error_d

 $\frac{\sigma_{\text{measured}_d}}{\sqrt{1-\alpha_d}}$

No DataCells

Ap;pendix 8

C-1302-187-E310-041 Rev. No. 0

Sheet No. 7 of 16

d + 1

For 1994

page := READPRN("U:\MSOFFICE\Drywell Program data\Sept.1994 Data\sandbed\Data Only\SB17D.txt")

Dates := Day year (9, 14, 1994)

Points 49 := showcells (page , 7 , 0)

								. i t ,
. •		. •	E	ata	• •		•	•
1 1	0.797	0.815	0.853	0.887	0.925	0.878	0.696]
1 .	0.807	0.806	0.698	0.802	0.729	0.734	0.646	
•	1.008	0.243	0.749	0.741	0.816	0.735	0.662	
Points 49 =	1.068	1.066	d.739	0.812	0.772	0.793	0.785	'
42	0.804	0.836	0.838	0.794	0.853	0.828 ⁻	0.842	
	0.827	0.899	0.826	0.863	0.922	0.934	0.835].
	0.827	0.899	0.826	0.863	0.922	0.934	0.795 0.835] .

nnn := convert(Points $_{49}, 7$)

No DataCells := length(nnn)

point 13_d = nnn₁₃

For this location point 15, 16, 22, and 23 are over a plug (refer 3.22)

nnn := Zero one (nnn, No DataCells, 15)

nnn := Zero $_{one}(nnn, No_{DataCells}, 22)$

nnn := Zero one (nnn , No DataCells , 23)

Standard error

nnn := Zero one (nnn , No DataCells , 16)

Cells := deletezero $_{cells}(nnn, No_{DataCells})$

 $\mu_{\text{measured}_d} \coloneqq \text{mean(Cells)} \quad \sigma_{\text{measured}_d} \coloneqq \text{Stdev(Cells)}$

σ measured

No DataCells

For 1996

page := READPRN("U:\MSOFFICE\Drywell Program data\Sept.1996 Data\sandbed\Data Only\SB17D.txt")

Dates := Day year (9, 16, 1996)

Points 49 = showcells (page , 7 , 0)

Data 0.88 0.895 0.896 0.909 0.88 0.845 0.746 0.893 0.812 0.736 .0.837 0.863 0.783 0.693 0.775 1.038 0.767 0.808 0.774 0.813 0.807 0.803 1.121 Points 49 = 1.001 0.877 0.772 0.835 0.794 0.786 0.787 0.839 0.88 0.849 0.892 0.867 0.827 0.808 0.843 0.904 0.898 0.892 0.912 0.883 0.859 0.864 0.82 0.962 0.979 0.892

nnn := convert (Points $_{49}$, 7)

No DataCells := length(nnn)

 $point_{13_d} \coloneqq nnn_{13}$

For this location point 15, 16, 22, and 23 are over a plug (refer 3.22)

nnn := Zero one (nnn, No DataCells, 15)

nnn := Zero $one(nnn, No_{DataCells}, 22)$

nm \approx Zero one (nm, No DataCells, 16)

nm := Zero one (nnn, No DataCells, 23)

Cells := deletezero cells (nnn, No DataCells)

 $\mu_{\text{measured}_d} \coloneqq \text{mean(Cells)}$

 $\sigma_{\text{measured}_d} \coloneqq \text{Stdev(Cells)}$

 σ_{measured} Standard error_d: No DataCells 8 of 16

d ≔ d + 1

Ap;pendix 8

C-1302-187-E310-041 Rev. No. 0

For 2006

 $d \coloneqq d + 1$

page := READPRN("U:\MSOFFICE\Drywell Program data\OCT 2006 Data\Sandbed\SB17D.txt"

 $Dates_{d_1} = Day_{year}(10, 16, 2006)$

Points 49 := showcells (page , 7 , 0)

·	0.849	0.828'	0.861	ı 0.894	0.93	0.888	0.702
, I I	0.806	0.802	0.717	0.806	0.736	0.756	0.648.
· ·	0.998	0.823	0.752	0.733	0.822	0.73	0.667
Points 49 =	1.072	1.074	0.7,42	0.812	0.812	0.803	0.791
	0.814	0.841	0.85	0.816	0.852	• 0.856	0.869
	0.792	0.829	0.888	0.846	0.888	0.855	0.8
	0.824	0.897	0.837	0.887 [.]	0.891	0.935	0.886

nnn := convert (Points $_{49}$, 7)

$point_{13_d} \coloneqq mn_{13}$

For this location point 15, 16, 22, and 23 are over a plug (refer 3.22)

nnn := Zero one (nnn, No DataCells, 15)

nnn := Zero $_{one}(nnn , No _{DataCells}, 22)$

Cells := deletezero $_{cells}(nnn, No _{DataCells})$

 $\mu_{\text{measured}_d} \coloneqq \text{mean(Cells)} \quad \sigma_{\text{measured}_d} \coloneqq \text{Stdev(Cells)}$

nnn := Zero $one(nnn, No_{DataCells}, 16)$

nnn := Zero one (nnn, No DataCells, 23)

Standard error_d := $\frac{\sigma_{\text{measured}_d}}{\sqrt{N_0 \text{DataCells}}}$

Below are matrices which contain the date when the data was collected, Mean, Standard Deviation, Standard Extor for each date.

$$\begin{array}{c} \text{Datcs} = \left[\begin{array}{c} 1.995 \cdot 10^{3} \\ 1.997 \cdot 10^{3} \\ 2.007 \cdot 10^{3} \end{array} \right] \qquad \text{point}_{13} = \left[\begin{array}{c} 648 \\ 646 \\ 693 \\ 648 \end{array} \right] \\ \mu_{\text{measured}} \left[\begin{array}{c} 817.2222 \\ 809.8889 \\ 847.9778 \\ 818.6667 \end{array} \right] \qquad \text{Standard}_{\text{error}} = \left[\begin{array}{c} 9.214 \\ 9.448 \\ 8.983 \\ 9.476 \end{array} \right] \\ \sigma_{\text{measured}} = \left[\begin{array}{c} 64.496 \\ 66.133 \\ 62.884 \\ 66.335 \end{array} \right] \\ \end{array} \right]$$

Total means := rows (
$$\mu$$
 measured) Total means = 4

$$SST := \sum_{i=0}^{last(Dates)} \left(\mu_{measured_i} - mean(\mu_{measured}) \right)^2 \qquad SST = 847.181$$

SSE :=
$$\sum_{i=0}^{\text{last(Dates)}} (\mu_{\text{measured}_i} - \text{yhat}(\text{Dates}, \mu_{\text{measured}})_i)^2$$
 SSE = 847.126

SSR :=
$$\sum_{i=0}^{\text{last(Dates)}} (\text{yhat(Dates, } \mu_{\text{measured}})_i - \text{mean}(\mu_{\text{measured}}))^2$$
 SSR = 0.055

DegreeFree st := Total means - 2 DegreeFree reg := 1 DegreeFree st := Total means - 1

$$MSE := \frac{SSE}{DegreeFree}_{ss}} \qquad MSR := \frac{SSR}{DegreeFree}_{reg}} \qquad MST := \frac{SST}{DegreeFree}_{st}}$$
$$MSE = 423.563 \qquad MSR = 0.055 \qquad MST = 282.394$$
$$StGrand_{err} := \sqrt{MSE} \qquad StGrand_{err} = 20.581$$

11 of 16

. 1

F Test for Corrosion

α := 0.05

actaul_Reg :=
$$\frac{MSR}{MSE}$$

F

MCC

critical reg :=
$$qF(1 - \alpha, DegreeFree_{reg}, DegreeFree_{ss})$$

$$F_{ratio_reg} := \frac{F_{actaul_Reg}}{F_{critical_reg}}$$

$$F_{ratio_reg} = 6.985 \cdot 10^{-6}$$

Therefore no conclusion can be made as to whether the data best fits the regression model The figure below provides a trend of the data and the grandmean

$$i := 0$$
.. Total means -1 μ grand measured $:= mean(\mu measured)$

$$\sigma_{\text{grand measured}} := \text{Stdev}(\mu_{\text{measured}})$$
 GrandStandard error₀ := $\frac{\sigma_{\text{grand measured}}}{\sqrt{\text{Total}}}$

The minimum required thickness at this elevation is Tmin_gen SB. = 736 (Ref. 3.25)

o conservatively address the location, the apparent corrosion rate is calculated and compared to the inimum required wall thickness at this elevation

$$m_s := slope (Dates, \mu_{measured})$$
 $m_s = 0.022$ $y_b := intercept (Dates, \mu_{measured})$ $y_b = 779.89$

The 95% Confidence curves are calculated

$$\alpha_{t} := 0.05 \quad k := 2029 - 1985 \qquad f := 0...k - 1$$

year predict, = 1985 + f.2 Thick predict := m_s.year predict + y_b

Thick
$$actualmean := mean(Dates)$$
 sum $:= \sum_{i} (Dates_{d_{\tau}} mean(Dates))^2$

upper_f := Thick predict_f ...
+ qt
$$\left(1 - \frac{\alpha_t}{2}, \text{Total}_{\text{means}} - 2\right)$$
 StGrand err $\sqrt{1 + \frac{1}{(d+1)} + \frac{(\text{year predict}_f - \text{Thick actualmean})}{\text{sum}}}$

 $lower_f := Thick_{predict_f} \cdots$

$$+ -\left[qt\left(1 - \frac{\alpha_{t}}{2}, \text{Total}_{\text{means}} - 2\right) \cdot \text{StGrand}_{\text{err}} \cdot \sqrt{1 + \frac{1}{(d+1)}} + \frac{\left(\frac{\text{year}_{\text{predict}_{f}} - \text{Thick}_{\text{actualinean}}\right)^{2}}{\text{sum}}\right]$$

Therefore even though F-ratio does not support the regression model the above curve shows that even at the lower 95% confidence band this location will not corrode to below Drywell Vessel Minimum required thickness by the plant end of life.

The section below calculates what the postulated mean thickness would be if this grid were to corrode at a minimum observable rate observed in appendix 22.

Rate min_observed = 6.9

Postulated meanthickness := μ_{measured_3} - Rate min_observed (2016 - 2006)

Postulated meanthickness = 749.667

which is greater than

 $Tmin_gen SB_3 = 736$

Q.022

he following addresses the readings at the lowest single point \mathbf{v}_{i}

The F-Ratio is calculated for the point as follows

1

ř

SST_{point} :=
$$\sum_{i=0}^{last(Dates)} (point_{13_i} - mean(point_{13}))^2$$
 SST_{point} = 1.567 \cdot 10³

SSE point :=
$$\sum_{i=0}^{nat} (point_{13} - yhat (Dates, point_{13})_i)^2$$

SSR point :=
$$\sum_{i=0}^{last(Dates)} (pate(Dates, point_{13})_i - mean(point_{13}))^2$$

$$MSE_{point} := \frac{SSE_{point}}{DegreeFree_{ss}} \qquad MSR_{point} := \frac{SSR_{point}}{DegreeFree_{reg}}$$

$$Stpoint_{err} := \sqrt{MSE_{point}} \qquad Stpoint_{err} = 27.85$$

$$MSE_{point} = 775.629 \qquad MSR_{point} = 15.491$$

$$MST_{point} \coloneqq \frac{SST_{point}}{DegreeFree}_{st}$$

11,

SSE point = 1.551•10

SSR point = 15.491

14 of 16

$$MST_{point} = 522.25$$

F Test for Corrosion

$$F_{actaul_Reg} := \frac{MSR_{point}}{MSE_{point}}$$

$$F_{ratio_reg} := \frac{F_{actaul_Reg}}{F_{critical_reg}}$$

 $F_{ratio_reg} = 1.079 \cdot 10^{-5}$

Therefore no conclusion can be made as to whether the data best fits the regression model The figure below provides a trend of the data and the grandmean

 $m_{point} := slope (Dates, point_{13}) m_{point} = -0.367 y_{point} := intercept (Dates, point_{13}) y_{point} = 1.391 \cdot 10^3$ The 95% Confidence curves are calculated point curve := $m_{point} \cdot year_{predict} + y_{point}$

'point_{actualmean}' := mean(Dates) sum := $\sum_{i} (Dates_d - mean(Dates))^2$

uppoint, := point curve, ...

+
$$qt\left(1 - \frac{\alpha_t}{2}, \text{Total}_{\text{means}} - 2\right)$$
. Stpoint $err \left(1 + \frac{1}{(d+1)} + \frac{\left(\frac{\text{year}}{\text{predict}_f} - \text{point}_{\text{actualmean}}\right)^2}{\text{sum}}\right)$

lopoint_f := point curve_f ...

$$+ -\left[qt\left(1 - \frac{\alpha_{t}}{2}, \text{Total}_{\text{means}} - 2\right) \cdot \text{Stpoint}_{err} \cdot \sqrt{1 + \frac{1}{(d+1)} + \frac{\left(\text{year}_{\text{predict}_{f}} - \text{point}_{\text{actualmean}}\right)^{2}}{\text{sum}}}\right]$$

Local Tmin for this elevation in the Drywell $Tmin_{local SB_{f}} \approx 490$ (Ref. 3.25)

Curve Flt For Point 13 Projected to Plant End Of Life

OCLR00019492

m_{point} = -0.367

Sheet N 16 of 1

The section below calculates what the postulated individual thickness would be if this point were to corrode at a minimum observable rate observed in appendix 22.

Rate min_observed = 6.9

Postulated thickness := point 133 - Rate min_observed (2016-2006)

Postulated thickness = 579	which is greater than	$Tmin_local SB_3 = 490$

The section below calculates what the postulated corrosion rate necessary for the thinnest individual point to reach the local required thickness by 2029.

minpoint = 0.648 year $_{\text{predict}_{22}}$ = 2.029•10³ Tmin_local SB₂₂ = 490

required rate: $= \frac{(1000 \text{ minpoint} - \text{Tmin_local} \text{ }_{\text{SB}_{22}})}{(2005 - 2029)}$

required rate. = -6.583 mils per year

Appendix 9

C-1302-187-E310-041 Rev. No. 0

Sheet No. 1 of 26

Appendix 9 - Sandbed 17-19 October 2006 Data

The data shown below was collected on 10/18/06

page := READPRN("U:\MSOFFICE\Drywell Program data\OCT 2006 Data\Sandbed\SB17-19.txt")

- 1-

Points 49 := showcells(page, 7, 0)

		0.075						
							0.928	
	0.972	0.977	0.959	0.991	0.967	0.955	0.937	
Points ₄₉ =	0.968	0.974	1.004	0.987	0.982	0.996	0.924	
	1.022	0.959	0.963	0.974	0.993	0.985	0.952	
	0.96	0.962	0.951	0.95	0.943	0.982	0.901 1.001	
	1.001	0.994	0.952	0.929	0.917	0.962	1.001	
	0.995	1.019	1.012	0.995	1.009	0.946	1	

Cells := convert(Points 49,7)

No DataCells := length(Cells)

The thinnest point at this location is point 35 and shown below

minpoint := min(Points 49)

minpoint = 0.901

Cells := deletezero cells (Cells, No DataCells)

No DataCells := length(Cells)

(----

C-1302-187-E310-041 Rev. No. 0

Sheet No. 2 of 26

 μ actual := mean(Cells) μ actual = 969.02

 $\sigma_{actual} := Stdev(Cells) \qquad \sigma_{actual} = 27.654$

Standard Error

Standard _{error} :=
$$\frac{\sigma_{actual}}{\sqrt{No_{DataCells}}}$$
 Standard _{error} = 3.951

Skewness

Skewness :=
$$\frac{\left(N_{0} \text{ DataCells}\right) \cdot \overline{\Sigma \left(\text{Cells} - \mu_{actual}\right)^{3}}}{\left(N_{0} \text{ DataCells} - 1\right) \cdot \left(N_{0} \text{ DataCells} - 2\right) \cdot \left(\sigma_{actual}\right)^{3}}$$

Skewness = -0.182

Kurtosis

()

$$Kurtosis := \frac{\text{No DataCells} \cdot (\text{No DataCells} + 1) \cdot \overline{\Sigma (\text{Cells} - \mu_{actual})^4}}{(\text{No DataCells} - 1) \cdot (\text{No DataCells} - 2) \cdot (\text{No DataCells} - 3) \cdot (\sigma_{actual})^4} \quad \text{Kurtosis} = -0.365$$
$$+ -\frac{3 \cdot (\text{No DataCells} - 1)^2}{(\text{No DataCells} - 2) \cdot (\text{No DataCells} - 3)}$$

Normal Probability Plot

x := 1

j := 0.. last(Cells) srt := sort(Cells)

$$r_j := j + i$$
 rank_j := $\frac{\sum(srt=srt_j)}{\sum srt=srt_j}$

$$p_j := \frac{rank_j}{rows(Cells) + 1}$$

N_Score_j := root[cnorm(x) - $(p_j), x$]

Sheet No. 3 of 26

Upper and Lower Confidence Values

The Upper and Lower confidence values are calculated based on .05 degree of confidence "a"

α := .05

Lower
$$_{95\%Con} := \mu_{actual} - T\alpha \cdot \frac{\sigma_{actual}}{\sqrt{No} DataCells}$$

Upper $_{95\%Con} := \mu_{actual} + T\alpha \cdot \frac{\sigma_{actual}}{\sqrt{No} DataCells}$
Upper $_{95\%Con} := 961.077$

 $T\alpha := qt\left[\left(1-\frac{\alpha}{2}\right), 48\right]$

These values represent a range on the calculated mean in which there is 95% confidence.

Graphical Representation

Distribution of the "Cells" data points are sorted in 1/2 standard deviation increments (bins) within +/- 3 standard deviations

Bins := Make $bins(\mu_{actual}, \sigma_{actual})$

Distribution := hist(Bins, Cells)

 $T\alpha = 2.011$

The mid points of the Bins are calculated

k:=0.. 11

 $Midpoints_{k} := \frac{(Bins_{k} + Bins_{k+1})}{2}$

Distribution = 12

normal curve₀ := pnorm(Bins₁, $\mu_{actual}, \sigma_{actual}$)

normal curve_k := pnorm(Bins_{k+1}, $\mu_{actual}, \sigma_{actual}) - pnorm(Bins_k, \mu_{actual}, \sigma_{actual})$

normal curve := No DataCells normal curve

Results For Bay 17-19

The following schematic shows: the the distribution of the samples, the normal curve based on the actual mean and standard deviation, the kurtosis, the skewness, the number of data points, and the the lower and upper 95% confidence values.

This data (2006) is normally distributed. However, past calculations (ref. 3.22) have split this area out as a separate groups and performed analysis on both groups. In order to be consistent with past calculations this data will be split in two groups and analyzed. As well as the entire data set.

The two groups are named as follows: StopCELL := 21

low points := LOWROWS (Cells, No DataCells, StopCELL)

Mean and Standard Deviation

µlow actual := mean(low points)

µhigh actual := mean(high points)

ohigh actual := Stdev(high points)

olow actual := Stdev (low points)

high points := TOPROWS(Cells, 49, StopCELL)

Standard Error

Standardlow error := $\frac{\text{clow actual}}{\sqrt{\text{length}(\text{low points})}}$ Standardhigh error := $\frac{\text{chigh actual}}{\sqrt{\text{length}(\text{high points})}}$

Skewness

Nolow DataCells := length (low points)

Skewness low := $\frac{\left(\text{Nolow DataCells}\right) \cdot \Sigma \left(\text{low points} - \mu \text{low actual}\right)^{3}}{\left(\text{Nolow DataCells} - 1\right) \cdot \left(\text{Nolow DataCells} - 2\right) \cdot \left(\sigma \text{low actual}\right)^{3}}$

Nohigh DataCells := length (high points)

Skewness high := $\frac{\left(\text{Nohigh }_{\text{DataCells}}\right) \cdot \Sigma\left(\text{high }_{\text{points}} - \mu\text{high }_{\text{actual}}\right)^{3}}{\left(\text{Nohigh }_{\text{DataCells}} - 1\right) \cdot \left(\text{Nohigh }_{\text{DataCells}} - 2\right) \cdot \left(\sigma\text{high }_{\text{actual}}\right)^{3}}$

Kurtosis

$$\operatorname{Kurtosis}_{\text{low}} := \frac{\operatorname{Nolow}_{\text{DataCells}} \cdot (\operatorname{Nolow}_{\text{DataCells}+1}) \cdot \overline{\Sigma} (\operatorname{low}_{\text{points}-\mu \text{low}_{actual}})^{4}}{(\operatorname{Nolow}_{\text{DataCells}-1}) \cdot (\operatorname{Nolow}_{\text{DataCells}-2}) \cdot (\operatorname{Nolow}_{\text{DataCells}-3}) \cdot (\operatorname{clow}_{actual})^{4}} + \frac{3 \cdot (\operatorname{Nolow}_{\text{DataCells}-1})^{2}}{(\operatorname{Nolow}_{\text{DataCells}-2}) \cdot (\operatorname{Nolow}_{\text{DataCells}-3})}$$

$$Kurtosis_{high} := \frac{Nohigh_{DataCells} \cdot (Nohigh_{DataCells} + 1) \cdot \overline{\Sigma} (high_{points} - \mu high_{actual})^{4}}{(Nohigh_{DataCells} - 1) \cdot (Nohigh_{DataCells} - 2) \cdot (Nohigh_{DataCells} - 3) \cdot (\sigma high_{actual})^{4}} + \frac{3 \cdot (Nohigh_{DataCells} - 1)^{2}}{(Nohigh_{DataCells} - 2) \cdot (Nohigh_{DataCells} - 3)}$$

Normal Probability Plot - Low points

 $L_1 := 1 + 1$

х

 $i := 0.. last(low_{points})$ srt low := sort(low_points)

N_Score
$$low_1 := root[cnorm(x) - (p_{low_1}), x]$$

Normal Probability Plot - High points

x := 1

$$= 1 \qquad N_Score_{high_h} := root[cnorm(x) - (p_{high_h}), x]$$

OCLR00019499

rank high_h rows(high points) + 1 Appendix 9

Sheet No. 7 of 26

Upper and Lower Confidence Values $T\alpha := qt\left[\left(1-\frac{\alpha}{2}\right), 48\right]$ α := .05 $T\alpha = 2.011$ ohigh actual Lowerhigh 95%Con := µhigh actual - Ta-Nohigh DataCells ohigh _{actual} Upperhigh 95%Con := µhigh actual + Ta-Nohigh DataCells σlow actual Lowerlow 95%Con := µlow actual - Ta √Nolow DataCells olow actual Upperlow 95%Con := µlow actual + Ta-Nolow DataCells **Graphical Representation of Low Points** Bins low := Make bins (µlow actual, olow actual) Distribution low := hist(Bins low, low points) Distribution low = The mid points of the Bins are calculated $(\operatorname{Bins}_{\operatorname{low}_{k}} + \operatorname{Bins}_{\operatorname{low}_{k+1}})$ Midpoints low_k k≔0..11 normallow curve := pnorm (Bins low 1, µlow actual, olow actual) $\operatorname{normallow}_{\operatorname{curve}_{k}} := \operatorname{pnorm}(\operatorname{Bins}_{\operatorname{low}_{k+1}}, \operatorname{\mulow}_{\operatorname{actual}}, \operatorname{olow}_{\operatorname{actual}}) - \operatorname{pnorm}(\operatorname{Bins}_{\operatorname{low}_{k}}, \operatorname{\mulow}_{\operatorname{actual}}, \operatorname{olow}_{\operatorname{actual}})$ normallow curve := Nolow DataCells normallow curve

Distribution high =

6

Graphical Representation of High Points

Bins high := Make bins (µhigh actual, ohigh actual)

Distribution high := hist (Bins high, high points)

k := 0.. 11 Midpoints high_k := $\frac{(Bins high_k + Bins high_{k+1})}{2}$

normalhigh $_{curve_0} := pnorm(Bins_{high_1}, \mu high_{actual}, \sigma high_{actual})$ normalhigh $_{curve_k} := pnorm(Bins_{high_{k+1}}, \mu high_{actual}, \sigma high_{actual}) - pnorm(Bins_{high_k}, \mu high_{actual}, \sigma high_{actual})$

normalhigh curve := Nohigh DataCells · normalhigh curve

Results For Sandbed Bay 17/19 thinner points

The above plots indicates that the thinner area is more normally distributed than the entire population.

Results For Sandbed Bay 17/19 thinner points

The above plots indicates that the thicker areas are normally distributed.

Sheet No. 11 of 26

Data from 1992 to 2006 is retrieved.

d :=0

For Dec 31 1992

page := READPRN("U:\MSOFFICE\Drywell Program data\Dec. 1992 Data\sandbed\DATA ONLY\SB17-19.txt")

No DataCells := length(nnn)

StopCELL := 21

Points 49 := showcells(page, 7, 0)

Dates_d := Day year(12, 31, 1992)

	Uata											
1	0.958	1.007	0.954	0.934	0.959	0.957	0.964					
Points 49 =		0.977										
		0.975										
	1.01	0.958	0.957	0.979	0.991	0.985	0.956					
	0.968	0.963	0.992	0.947	0.979	0.997	0.914					
		1.012										
	1.034	1.038	1.039	1.005	1.056	0.99	1.004					
					•		-					

nnn := convert (Points $_{49}, 7$)

Point 35_d := nnn₃₄ Point 35 = 914

The two groups are named as follows:

low points := LOWROWS (nnn, No Cells, StopCELL)

No lowCells := length (low points)

Cells := deletezero cells (nnn, No Cells)

low points := deletezero cells (low points, No lowCells)

high points := deletezero cells (high points, No highCells)

^o measured

No DataCells

^{σlow} measured_d

Standardlow $\operatorname{error}_{d} := \frac{1}{\sqrt{\operatorname{length}(\operatorname{low}_{\operatorname{points}})}}$

high points := TOPROWS (nnn, No Cells, StopCELL)

No highCells := length (high points)

No Cells := length(Cells)

 μ measured_d := mean(Cells) $\sigma_{\text{measured}_d} := \text{Stdev}(\text{Cells})$ Standard error_d := $\mu high_{measured_d} := mean(high_{points})$ $\mu low_{measured_d} := mean(low_{points})$ $chigh_{measured_d} := Stdev(high_{points})$ $\sigma low_{measured_d} := Stdev(low_{points})$

ohigh measured Standardhigh $_{error_d} := \frac{1}{\sqrt{\text{length}(\text{high}_{points})}}$

Sheet No. 12 of 26

d ≔d+1

For 1994

page := READPRN("U:\MSOFFICE\Drywell Program data\Sept.1994 Data\sandbed\DATA ONLY\SB17-19.txt")

Points 49 := showcells(page, 7, 0)

Dates_d := Day year(9, 26, 1994)

	0.921	0.957	0.955	0.967	0.96	0.952	0.922	
Points ₄₉ =	0.955	0.97	0.955	1.001	0.945	0.957	0.97	
	0.982	0.977	0.991	0.993	0.969	0.995	0.933	
	1.039	0.965	0.973	0 .9 79	0.997	0.985	0.953	
	0.959	1.002	0.953	0.942	0.943	0.975	0.906	
	0.998	0.995	0.967	0.938	0.854	0.90	0.98	
	1.027	1.008	1.011	0.992	1.038	0.993	0.983	

nnn := convert (Points 49.7)

No DataCells := length(nnn)

StopCELL := 21

Point $35_d = nnn_{34}$

The two groups are named as follows:

 $low_{points} := LOWROWS(nnn, No_{Cells}, StopCELL)$

No lowCells := length (low points)

No highCells := length (high points)

high points := TOPROWS (nnn, No Cells, StopCELL)

No Cells := length(nnn)

Cells := deletezero cells (nnn, No Cells)

low points := deletezero cells (low points, No lowCells)

high points := deletezero cells (high points, No highCells)

Standard error_d := $\frac{\sigma \text{ measured}_d}{\sqrt{No \text{ DataCells}}}$

 $\mu low_{measured_d} := mean(low_{points})$

olow measured_d := Stdev(low points)

Standardlow
$$_{error_d} := \frac{\sigma low_{measured_d}}{\sqrt{length(low_{points})}}$$

 $\mu_{\text{measured}_d} := \text{mean}(\text{Cells}) \qquad \sigma_{\text{measured}_d} := \text{Stdev}(\text{Cells})$

$$\mu high_{measured_{d}} := mean(high_{points})$$
ohigh_{measured_{d}} := Stdev(high_{points})
Standardhigh_{error_{d}} := $\frac{chigh_{measured_{d}}}{\sqrt{length(high_{points})}}$

Appendix 9

C-1302-187-E310-041 Rev. No. 0

Sheet No. 13 of 26

For 1996

d := d + 1

page := READPRN("U:\MSOFFICE\Drywell Program data\Sept.1996 Data\sandbed\DATA ONLY\SB17-19.txt")

StopCELL := 21

Points $_{49}$:= showcells(page, 7, 0)

Dates_d := Day year(9,23,1996)

- 47	Data									
	0.945	0.945	0.948	0.953	0.944	0.962	0.924			
	1.001	0.979	0.955	0.99	0.961	0.959	0.939			
	0.99	0.972	1	1.012	1.016	0.994	0.926			
Points 49 =		0.954	0.959	0.983	0.991	0.983	0.974			
	0.991	0.966	0.954	0.949	0.997	1.024	0.935			
	1.053	1.037	0.953	1.01	0.957	0.983	1.008	1		
	1.028	1.043	1.003	0.989	1.033	0.943	1.009			

nnn := convert (Points $_{49}, 7$)

Ţ

Point $35_d = nnn_{34}$

The two groups are named as follows:

low points := LOWROWS (nnn, No Cells, StopCELL)

No lowCells := length (low points)

Cells := deletezero cells (nnn, No Cells)

low points := deletezero cells (low points, No lowCells)

high points := deletezero cells (high points, No highCells)

No Ceils := length(nnn)

high points := TOPROWS (nnn, No Cells, StopCELL)

No highCells := length(high points)

Standard $\operatorname{error}_{d} := \frac{\sigma \operatorname{measured}_{d}}{\sqrt{\operatorname{No} \operatorname{DataCells}}}$

 $\mu low_{measured_d} := mean(low_{points})$

 $\sigma low_{measured_d} := Stdev(low_{points})$

Standardlow $_{error_d} := \frac{_{dow measured_d}}{\sqrt{length(low points)}}$

 $\mu_{\text{measured}_d} := \text{mean}(\text{Cells}) \qquad \sigma_{\text{measured}_d} := \text{Stdev}(\text{Cells})$

 $\mu high_{measured_d} := mean(high_{points})$

 $\sigma_{\text{high}} = Stdev(high_{points})$

Standardhigh $_{error_d} := \frac{_{ohigh measured_d}}{_{\sqrt{length(high points)}}}$

Sheet No. 14 of 26

For 2006

d ≔d + i

page := READPRN("U:\MSOFFICE\Drywell Program data\OCT 2006 Data\Sandbed\SB17-19.txt")

Points 49 := showcells(page, 7, 0)

Dates_d := Day year(9, 23, 2006)

Data

	0.969	0.962	0.945	0.931	0.965	0.96	0.928]
	0.972	0.977	0.959	0 .99 1	0.967	0.955	0.928 0.937 0.924
÷.	0.968	0.974	1.004	0.987	0.982	0.99 6	0.924
Points 49 =	1.022	0.959	0.963	0.974	0.993	0.985	0.952
	0 <u>.</u> 96	0.962	0.951	0.95	0.943	0.982	0.901 1.001
	1.001	0 .99 4	0.952 [.]	0.929	0.917	0.962	1.001
	0.995	1.019	1.012	0.995	1.009	0.946	1

nnn := convert (Points 49,7)

Point $35_d = nnn_{34}$

The two groups are named as follows:

StopCELL := 21

No Cells := length(nnn)

No DataCells := length(nnn)

low points := LOWROWS (nnn, No Cells, StopCELL)

No lowCells := length (low points)

Cells := deletezero cells (nnn, No Cells)

low points := deletezero cells (low points, No lowCells)

high points := deletezero cells (high points, No highCells)

high points := TOPROWS (nnn, No Cells, StopCELL)

No highCells := length (high points)

Standard error_d := $\frac{\sigma_{\text{measured}_d}}{\sqrt{\text{No DataCells}}}$

 $\mu low_{measured_d} := mean(low_{points})$

 $\sigma_{\text{low}}_{\text{measured}_d} := Stdev(\log_{\text{points}})$

Standardlow $\operatorname{error}_{d} := \frac{\operatorname{olow}_{measured_{d}}}{\sqrt{\operatorname{length}(\operatorname{low}_{points})}}$

^{μ} measured_d := mean(Cells) σ measured_d := Stdev(Cells)

Standardhigh $error_d := \frac{\text{chigh}_{\text{measured}_d}}{\sqrt{\text{length}(\text{high}_{\text{points}})}}$

914

906

935

901

Point 35 =

	988.679		33.27		6.287
µlow measured =	974.821	-1	41.21	·	7.788
	990.143	olow measured =	32.926	Standardlow error =	6.222
	972.464		31.118		5.881

Sheet No. 16 of 26

SST :=
$$\sum_{i=0}^{last(Dates)} (\mu_{measured_i} - mean(\mu_{measured}))^2$$

SST low :=
$$\sum_{i=0}^{last(Dates)} (\mu low_{measured_i} - mean(\mu low_{measured}))^2$$

$$SST_{high} := \sum_{i=0}^{last(Dates)} (\mu high_{measured_i} - mean(\mu high_{measured}))^2$$

SSE :=
$$\sum_{i=0}^{last(Dates)} (\mu_{measured_i} - yhat(Dates, \mu_{measured}))^2$$

SSE low :=
$$\sum_{i=0}^{last(Dates)} (\mu low_{measured_i} - \mu low_{measured_i})_i^2$$

SSE high :=
$$\sum_{i=0}^{\text{last(Dates)}} (\mu high_{measured_i} - yhat(Dates, \mu high_{measured}))^2$$

SSR :=
$$\sum_{i=0}^{\text{last(Dates)}} (\text{yhat}(\text{Dates}, \mu_{\text{measured}})_i - \text{mean}(\mu_{\text{measured}}))^2$$

SSR low :=
$$\sum_{i=0}^{last(Dates)} (yhat(Dates, \mu low measured)_{i} - mean(\mu low measured))$$

SSR high :=
$$\sum_{i=0}^{last(Dates)} (yhat(Dates, \mu high_{measured})_{i} - mean(\mu high_{measured}))^{2}$$

Appendix 9

C-1302-187-E310-041 Rev. No. 0

Sheet No. 17 of 26

 $F_{critical_reg} := qF(i - \alpha, DegreeFree_{reg}, DegreeFree_{ss})$

$$F_{ratio reg} = 0.068$$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

Sheet No. 18 of 26

OCLR00019511

Test the low points

F Test for Corrosion

$$F_{actaul_Reg.low} := \frac{MSR_{low}}{MSE_{low}}$$

$$F_{critical_reg} := qF(1 - \alpha, DegreeFree_{reg}, DegreeFree_{ss})$$

$$F_{ratio_reg.low} := \frac{F_{actaul_Reg.low}}{F_{critical_reg}}$$

$$F_{ratio_reg.low} = 0.066$$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

Test the high points

F Test for Corrosion

$$F_{actaul_Reg.high} := \frac{MSR_{high}}{MSE_{high}}$$

 $F_{critical_reg} := qF(1 - \alpha, DegreeFree_{reg}, DegreeFree_{ss})$

 $F_{ratio_{reg.high}} := \frac{F_{actaul_{reg.high}}}{F_{critical_{reg}}}$

 $F_{ratio_reg.high} = 0.039$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean.

Appendix 9

C-1302-187-E310-041 Rev. No. 0

Sheet No. 20 of 26

The F Test indicates that the regression model does not hold for any of the data sets. However, the slopes and 95% Confidence curves are generated for all three cases.

 $m_s := slope(Dates, \mu_{measured})$

 $y_b := intercept(Dates, \mu_{measured})$

m lows := slope (Dates, µlow measured)

y lowb := intercept (Dates, µlow measured)

m highs := slope (Dates, µhigh measured)

y highb := intercept (Dates, uhigh measured)

 $\alpha_t := 0.05$ k := 23 f := 0.. k - 1

 $\frac{\text{year}}{\text{predict}_{f}} := 1985 + f \cdot 2$

Thick predict := m s year predict + y b

Thick lowpredict ^{:= m} lows ^{·year} predict ^{+ y} lowb

Thick highpredict ^{= m} highs ^{year} predict ^{+ y} highb

Thick actualmean := mean(Dates)

sum := $\sum_{d} (Dates_d - mean(Dates))^2$

Sheet No. 21 of 26

For the entire grid

upper, := Thick predict, ...

+ qf
$$\left(1 - \frac{\alpha_{t}}{2}, \text{Total}_{\text{means}} - 2\right)$$
. Standard error: $\sqrt{1 + \frac{1}{(d+1)} + \frac{(\text{year}_{\text{predict}_{f}} - \text{Thick}_{\text{actualmean}})^{2}}{\text{sum}}}$

lower := Thick predict, ...

$$+ -\left[qt\left(1 - \frac{\alpha_{t}}{2}, \text{Total}_{\text{means}} - 2\right) \cdot \text{Standard}_{\text{error}} \cdot \sqrt{1 + \frac{1}{(d+1)} + \frac{\left(\text{year}_{\text{predict}_{f}} - \text{Thick}_{\text{actualmean}}\right)^{2}}{\text{sum}}}\right]$$

The minimum required thickness at this elevation is

n is Tmin_gen_{SB} := 736

(Ref. 3.25)

ie points which are thicker

í

upper_f := Thick highpredict_f ...

+ qt
$$\left(1 - \frac{\alpha_t}{2}, \text{Total}_{\text{means}} - 2\right)$$
 Standard higherror $\sqrt{1 + \frac{1}{(d+1)} + \frac{(\text{year predict}_f - \text{Thick}_{\text{actual mean}})^2}{\text{sum}}}$

$$lower_{f} := Thick_{highpredict_{f}} - \frac{1}{2} + -\left[qt\left(1 - \frac{\alpha_{t}}{2}, Total_{means} - 2\right) \cdot Standard_{higherror} \cdot \sqrt{1 + \frac{1}{(d+1)} + \frac{(year_{predict_{f}} - Thick_{actual mean})}{sum}}\right]$$

OCLR00019515

22 of 26

'he points which are thinner

upperf

$$= \text{Thick}_{\text{lowpredict}_{f}} = \frac{\alpha}{2} + qt \left(1 - \frac{\alpha}{2}, \text{Total}_{\text{means}} - 2\right) \cdot \text{Standard}_{\text{lowerror}} \cdot \sqrt{1 + \frac{1}{(d+1)} + \frac{(\text{year}_{\text{predict}_{f}} - \text{Thick}_{\text{actualmean}})^{2}}{\text{sum}}}$$

lower
$$_{r}$$
 := Thick lowpredict $_{r}$ ··· + - $\left[qt\left(1-\frac{\alpha}{2}, \text{Total }_{\text{means}}-2\right)\cdot\text{Standard }_{\text{lowerror}}, \sqrt{1+\frac{1}{(d+1)}+\frac{(\text{year predict}_{r}-\text{Thick }_{\text{actualmean}})}{\text{sum}}\right)$

OCLR00019516

23 of 26

The section below calculates what the postulated mean thickness would be if this grid were to corrode at a inimum observable rate observed in appendix 22.

which is greater than

Rate min_observed = 6.9

Postulated meanthickness := μ measured₃ - Rate min_observed (2029 - 2006)

Postulated meanthickness = 810.32

Tmin_gen $_{SB_3} = 736$

he following addresses the readings at the lowest single point

$$SST_{point} := \sum_{i=0}^{last(Dates)} \left(\frac{Point_{35_i} - mean(Point_{35})}{sst_{point}} \right)^2 \qquad SST_{point} = 674$$

 ${}^{3E}_{\text{point}} := \sum_{i=0}^{\text{last(Dates)}} (\text{Point } {}_{35_i} - \text{yhat}(\text{Dates, Point } {}_{35})_i)^2$

$$\frac{\operatorname{last}(\operatorname{Dates})}{\binom{1}{i}} := \sum_{i=0}^{\operatorname{last}(\operatorname{Dates})} \left(\operatorname{yhat}(\operatorname{Dates}, \operatorname{Point}_{35})_{i} - \operatorname{mean}(\operatorname{Point}_{35})\right)^{2}$$

4SE point := SSE point DegreeFree ss

StPoint err := VMSE point

MSE point = 279.578

П

MSR point = SSR point DegreeFree reg StPoint err = 16.721 MSR point = 114.844

F_{actaul_Reg} :=
$$\frac{MSR_{point}}{MSE_{point}}$$

F_{ratio_reg} = 0.022

SSE point = 559.156

SSR point = 114.844

$$MST_{point} := \frac{SST_{point}}{DegreeFree_{st}^{1}}$$

MST point = 224.667

The section below calculates what the postulated individual thickness would be if this point were to corrode at a minimum observable rate observed in appendix 22. Rate min_observed = 6.9 Postulated thickness := Point 350 - Rate min_observed (2029-2006) Tmin_local $SB_3 = 490$ Postulated thickness = 755.3 which is greater than The section below calculates what the postulated corrosion rate necessary for the thinnest individual point to reach the local required thickness by 2029. year predict_{22} = 2.029 • 10^3 Tmin_local SB₂₂ = 490 minpoint = 0.901 $\frac{(1000 \text{ minpoint} - \text{Tmin_local } \text{SB}_{22})}{(2005 - 2029)}$ required rate. := required rate. = -17.125mils per year

Appendix 10 - Sand Bed Elevation Bay 19A

October 2006 Data

The data shown below was collected on 10/18/06.

page := READPRN("U:\MSOFFICE\Drywell Program data\OCT 2006 Data\Sandbed\SB19A.txt"

Points 49 := showcells (page , 7 , 0)

				÷.			· ·	
	0.692	0.788	0.743	0.648	0.699	0.702	0.735	•
			-				0.773	•
	0.813	0.812	0.892	0.885	0.861	. 0.792	0.806	
Points 49 =	0.916	. 0.883	0.805	1:179	0.808	0.777	0.766	
•						0:752		
• .	0.844	0.768	0.834	0.858	0.851	0.834	0.867	
	0.865	0.803	0.793	0.844	0.878	0.817	0.808	

Cells := convert (Points 49, 7)

No DataCells := length (Cells)

Cells := Zero one (Cells, No DataCells, 25)

Cells := Zero one (Cells, No DataCells, 32)

The thinnest point at this location is point 4 which shown below

minpoint := $min(Points_{49})$

minpoint = 0.648

For this location point 24, 25, 31, and 32 are over a plug (refer 3.22)

Cells := Zero one (Cells, No DataCells, 24)

Cells := Zero one (Cells, No DataCells, 31)

Cells := deletezero cells (Cells, No DataCells)

. .

17

Mean and Standard Deviation

$$\mu_{actual} := mean(Cells)$$
 $\mu_{actual} = 806.5778$ $\sigma_{actual} := Stdev(Cells)$ $\sigma_{actual} = 62.384$

'Standard Error' minpoint = 0.648

Standard error :=
$$\frac{\sigma_{\text{actual}}}{\sqrt{N_0 \text{ DataCells}}}$$
 Standard error = 8.912

Skewness

Skewness :=
$$\frac{(\text{No}_{\text{DataCells}}) \cdot \overline{\Sigma(\text{Cells} - \mu_{\text{actual}})^3}}{(\text{No}_{\text{DataCells}} - 1) \cdot (\text{No}_{\text{DataCells}} - 2) \cdot (\sigma_{\text{actual}})^3} \quad \text{Skewness} = -0.37$$

Kurtosis

$$Kurtosis := \frac{\text{No} \text{DataCells} \cdot (\text{No} \text{DataCells} + 1) \cdot \overline{\Sigma} (\text{Cells} - \mu_{\text{actual}})^4}{(\text{No} \text{DataCells} - 1) \cdot (\text{No} \text{DataCells} - 2) \cdot (\text{No} \text{DataCells} - 3) \cdot (\sigma_{\text{actual}})^4} \text{Kurtosis} = -0.572$$
$$+ -\frac{3 \cdot (\text{No} \text{DataCells} - 1)^2}{(\text{No} \text{DataCells} - 2) \cdot (\text{No} \text{DataCells} - 3)}$$

Normal Probability Plot

In a normal plot, each data value is plotted against what its value would be if it actually came from a normal distribution. The expected normal values, called normal scores, and can be estimated by first calculating the rank scores of the sorted data.

Then each data point is ranked. The array rank captures these ranks

$$r_j := j + 1$$
 rank $:= \frac{\sum (\overrightarrow{srt = srt_j}) \cdot r}{\sum srt = srt_{j_4}}$

$$p_j := \frac{rank_j}{rows(Cells) + 1}$$

The normal scores are the corresponding p th percentile points from the standard normal distribution:

$$x := 1$$
 N_Score_j := root[cnorm(x) - (p_j), x

'pper and Lower Confidence Values

The/Upper and Lower confidence values are calculated based on .05 degree of confidence "g"

No DataCells := length (Cells)

$$:= .05 \qquad T\alpha := qt\left[\left(1 - \frac{\alpha}{2}\right), \text{No DataCells}\right] T\alpha = 2.014$$

^aLower 95%Con :=
$$\mu_{actual} - T\alpha \cdot \frac{\sigma_{actual}}{\sqrt{No}_{DataCells}}$$
 Lower 95%Con = 787.847
^bUpper 95%Con := $\mu_{actual} + T\alpha \cdot \frac{\sigma_{actual}}{\sqrt{No}_{DataCells}}$

These values represent a range on the calculated mean in which there is 95% confidence.

No DataCells

Graphical Representation

Distribution of the "Cells" data points are sorted in 1/2 standard deviation increments (blns) within +/- 3 standard

Bins := Make
$$bins(\mu_{actual}, \sigma_{actual})$$

Distribution := hist(Bins, Cells)
Distribution = $\frac{1}{0}$
 $\frac{1}{0}$
 $\frac{3}{3}$
 $\frac{4}{6}$
 $\frac{6}{7}$
The mid points of the Bins are calculated
 $k := 0..11$
Midpoints_k := $\frac{(Bins_k + Bins_{k+1})}{2}$

The Mathcad function pnorm calculates a portion of normal distribution curve based on a given mean and standard deviation

0

normal curve₀ := pnorm (Bins₁,
$$\mu_{actual}, \sigma_{actual}$$
)
normal curve_k := pnorm (Bins_{k+1}, $\mu_{actual}, \sigma_{actual}$) - pnorm (Bins_k, $\mu_{actual}, \sigma_{actual}$)

normal curve := No DataCells normal curve

Results For Elevation Sandbed elevation Location Oct. 2006

The following schematic shows: the the distribution of the samples, the normal curve based on the actual mean and standard deviation, the kurtosis, the skewness, the number of data points, and the the lower and upper 95% confidence values. Below is the Normal Plot for the data.

Sandbed Location 19A Trend

For 1992

Dates_d := Day year(12,8,1992)

0.773

0.806

0.85

0.792

0.772 0.762

page := READPRN("U:\MSOFFICE\Drywell Program data\Dec. 1992 Data\sandbed\Data Only\SB19A.txt")

0.681 0.781 0.749 0.659 0.729 0.694 0.731

1.077

Points 49 := showcells (page , 7 , 0)

0.776 0.8

Data

0.81 0.778 0.82

0.886 0.888 0.803

0.872 0.864 0.273

0.859 0.766 0.844 0.848

0.864 0.802 0.803 0.844

Points	49	H

nnn := convert(Points $_{49}$, 7)

No DataCells := length(nm)

0.759 0.747 0.723

0.794

0.859

1.16 0.796 0.751 0.859

0.882 0.818

0.894

0.888 0.755 0.771 0.809

Point $4_d = nnn_3$

Point 4 = 659

For this location point 24, 25, 31, and 32 are over a plug (refer 3.22)

 $nnn := Zero_{one}(nnn, No_{DataCells}, 24)$

nnn := Zero one (nnn, No DataCells, 25)

nnn := Zero one (nnn, No DataCells, 31)

 $\operatorname{nnn} := \operatorname{Zero}_{\operatorname{one}} (\operatorname{nnn}, \operatorname{No}_{\operatorname{DataCells}}, 32)$

Cells := deletezero cells (nnn, No DataCells)

 $\mu_{\text{measured}_d} \coloneqq \text{mean(Cells)} \quad \sigma_{\text{measured}_d} \coloneqq \text{Stdev(Cells)}$

σ measured Standard error No DataCells

For 1994[.]

page := READPRN("U:\MSOFFICE\Drywell Program data\Sept.1994 Data\sandbed\Data Only\SB19A.txt"

 $Dates_{d} := Day_{year}(9, 14, 1994)$

Points 49 := showcells(page, 7, 0)

	Data								
	0 270	1 909	0 740	0.65	0 200	0 606	0 777	•	
· · ·	0.079	0.000	ų, 14q	0.05	0.722	0.090	0.727		
							0.785		
^{oints} 49 =	0.889	0.9	0.266	1.143	0.795	0.771	0.759		
							0.857	1	
	0.888	0.799	0.808	0.847	0.88	0.854	0.975	ļ	

nnn := convert (Points $_{49}, 7$)

No DataCells := length(nnn)

Point $4_d := nnn_3$

For this location point 24, 25, 31, and 32 are over a plug (refer 3.22)

nm := Zero one (nnn, No $_{DataCells}$, 24)

nnn := Zero _{one} (nnn , No _{DataCells} , 31)

Cells := deletezero $_{cells}(nnn, No _{DataCells})$

 $\mu_{\text{measured}_d} \coloneqq \text{mean(Cells)}$

 $\sigma_{\text{measured}_d} \coloneqq \text{Stdev}(\text{Cells})$

Standard error_d := $\frac{\sigma_{\text{measured}_d}}{\sqrt{No_{\text{DataCells}}}}$

nnn := Zero $one(nnn', No_{DataCells}, 25)$

nm := Zero one (nnn, No DataCells, 32)

= d + 1

.

 $\mathbf{d} \coloneqq \mathbf{d} + \mathbf{1}$

For 1996

page := READPRN("U:\MSOFFICE\Drywell Program data\Sept.1996 Data\sandbed\Data Only\SB19A.txt")

Dates_d := Day year(9, 16, 1996)

Points 49 := showcells (page , 7 , 0)

Data						:	
. [0.657	0.781	0.734	0.68	0.722	0.719	0.745
Points ₄₉ =	0 .779	0.83	0.875	0.779	0.762	0.755	0.745 0.769
	0.821	0.788	0.906	0.786	0.793	0.815	0.805
	0.892	0.889	0.898	1.159	0.789	0.713	0.833
	0.876	0.906	0.833	1.159	0.795	0.762	0.864
	0.944	0.779	0.84	0.857	0.865	0.809	0.85
	0.924	0.83	0.889	0.866	0.925	0.872	0.801

nnn := convert (Points $_{49}, 7$)

No DataCells := length(nnn)

Standard error

Point $4_d := nnn_3$

For this location point 15, 16, 22, and 23 are over a plug (refer 3.22)

nnn := Zero one(nnn, No DataCells, 24)

nnn := Zero $one(nnn, No_{DataCells}, 31)$

nnn := Zero one(nnn, No DataCells, 25)

nnn := Zero $_{One}(nnn, No_{DataCells}, 32)$

Cells := deletezero $_{cells}(nnn, No_{DataCells})$

 $\mu_{\text{measured}_d} := \text{mean(Cells)}$

 $\sigma_{\text{measured}_d} \coloneqq \text{Stdev(Cells)}$

 $\frac{\sigma_{\text{measured}_d}}{\sqrt{No} \text{DataCells}}$

page := READPRN("U:\MSOFFICE\Drywell Program data\OCT 2006 Data\Sandbed\SB19A.txt")

Dates_d := Day year(10, 16, 2006)

Points 49 := showcells (page , 7 , 0)

	•	. •	Data	• •			· .
	0.692	0.788'	0.743	0.648	0.699	0.702	0.735
1 . 1	0.807	0.774	0.845	0.736	0.747	0.724	0.773
•	0.813	0.812	0.892	0.885	0.861	0.792	0.806
Points 49 =	0.916	0.883	0.805	1.179 ·	0.808	0.777	0.766
· .	0.873	0.904	0.842	1.16	0.801	' 0.752	.0.878
	0.844	0.768	0.834	0.858	0.851	0.834	0.867
	0.865	0.803	0.793	0.844	0.878	0.817	0.808

$$\operatorname{nn} := \operatorname{convert}(\operatorname{Points}_{49}, 7)$$

Point $4_d := nnn_3$

For this location point 15, 16, 22, and 23 are over a plug (refer 3.22)

nnn := Zero _{one} (nnn , No _{DataCells} , 24)

nnn \coloneqq Zero one (nnn , No DataCeils , 31)

nnn := Zero _{one} (nnn , No _{DataCells} , 25)

nnn := Zero one $(nnn, No_{DataCells}, 32)$

Cells := deletezero $_{cells}(nnn, No_{DataCells})$

 $\mu_{\text{measured}_d} := \text{mean}(\text{Cells})$

 $\sigma_{\text{measured}_d} \coloneqq \text{Stdev(Cells)}$

Standard error_d := $\frac{\sigma_{\text{measured}_d}}{\sqrt{N_0 \text{DataCells}}}$

OCLR00019528

9 of 18

 $d \coloneqq d + 1$

11 of 18

 $F_{critical_reg} := qF(1 - \alpha, DegreeFree_{reg}, DegreeFree_{ss})$

F actaul_Reg F critical_reg F_{ratio_reg} :=

- **, '** . .

 $F_{ratio_{reg}} = 4.72 \cdot 10^{-3}$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure slow provides a trend of the data and the grandmean

i := 0.. Total means - 1
$$\mu \text{grand}_{\text{measured}_i} := \text{mean}(\mu_{\text{measured}})$$

 $\begin{array}{l} \sigma_{\text{grand measured}} := \operatorname{Stdev}(\mu_{\text{measured}}) & \operatorname{GrandStandard}_{\text{error}_{0}} := \frac{\sigma_{\text{grand measured}}}{\sqrt{\operatorname{Total}_{\text{means}}}} \\ \text{The minimum required thickness at this elevation is} & \operatorname{Tmin_gen}_{SB_{i}} := 736 & (\text{Ref. 3.25}) \end{array}$

Dates

 μ grand measured = 806.983

GrandStandard error = 3.025

2010

407.976

To conservatively address the location, the apparent corrosion rate is calculated and compared to the minimum required wall thickness at this elevation

$$m_s := slope(Dates, \mu_{measured})$$
 $m_s = 0.2$ $y_b := intercept(Dates, \mu_{measured})$ $y_b =$

The 95% Confidence curves are calculated

$$\alpha_t := 0.05 \quad k := 2029 - 1985 \qquad f := 0 ... k - 1$$

year predict_f := 1985 + f 2 Thick predict := m s year predict + y b

Thick actualmean := mean(Dates) sum :=
$$\sum_{i} (Dates_{d} - mean(Dates))^{2}$$

+
$$qt\left(1-\frac{\alpha_t}{2}, \text{Total}_{\text{means}}-2\right)$$
 StGrand err $\sqrt{1+\frac{1}{(d+1)}}+\frac{\left(\text{year}_{\text{predict}_f}-\text{Thick}_{\text{actualmean}}\right)^2}{\text{sum}_f}$

$$+ -\left[qt\left(1 - \frac{\alpha_{t}}{2}, \text{Total}_{\text{means}} - 2\right) \cdot \text{StGrand}_{\text{err}} \cdot \sqrt{1 + \frac{1}{(d+1)} + \frac{\left(\text{year}_{\text{predict}_{f}} - \text{Thick}_{\text{actualmean}}\right)^{2}}{\text{sum}}}\right]$$

Therefore even though F-ratio does not support the regression model the above curve shows that even at the lower 95% confidence band this location will not corrode to below Drywell Vessel Minimum required thickness by the plant end of life.

The section below calculates what the postulated mean thickness would be if it corrode at a minimum observable rate of LATER mils per year.

Postulated thicknessin2008 := μ_{measured_2} - Rate min_observed (2008 - 2006)

Postulated thicknessin2008 = 792.778

which is greater than

 $Tmin_{gen} SB_{1} = 736$

14 of 18

OCLR00019534

The section below calculates what the postulated mean thickness would be if this grid were to corrode at a minimum observable rate observed in appendix 22.

£

Rate min_observed := 6.9

Postulated meanthickness := μ_{measured_3} - Rate min_observed (2016 - 2006)

Postulated meanthickness = 737.578 which is greater than Tmin gen $SB_3' = 736$

The following addresses the readings at the lowest single point

The F-Ratio is calculated for the point as follows

SST_{point} :=
$$\sum_{i=0}^{last(Dates)} (Point_{4_i} - mean(Point_4))^2$$

SST_{point} = 642.75

SSE point :=
$$\sum_{i=10}^{\text{last(Dates)}} (\operatorname{Point}_{4_i} - \operatorname{yhat}(\operatorname{Dates}_{4_i} \operatorname{Point}_{4})_i)^2$$

$$SSR_{point} := \sum_{i=0}^{last(Dates)} (yhat(Dates, Point_4)_i - mean(Point_4))^2 \qquad SSR_{point} = 76.54$$

$$MSE_{point} := \frac{SSE_{point}}{DegreeFree_{ss}} \qquad MSR_{point} := \frac{SSR_{point}}{DegreeFree_{reg}} \qquad MST_{point} := \frac{SST_{point}}{DegreeFree_{st}}$$

$$MSE_{point} = 283.105$$

StPoint err
$$\coloneqq \sqrt{MSE_{point}}$$

F Test for Corrosion

 $MSR_{point} = 76.54$

$$F_{actaul_Reg} := \frac{MSR_{point}}{MSE_{point}}$$

F_{ratio_reg} :=
$$\frac{F_{actaul_Reg}}{F_{critical_reg}}$$

MST _{point} = 214.25

٠i,

SSE point =1 566.21

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

 $m_{point} := slope(Dates, Point_4)$ $m_{point} = -0.815$ $y_{point} := intercept(Dates, Point_4)$ $y_{point} = 2.287 \cdot 10^3$

The 95% Confidence curves are calculated

Point curve := m point · year predict + y point

Point actualmean := mean(Dates)

sum :=
$$\sum_{i} (Dates_d - mean(Dates))^2$$

uppoint, := Point curve, ...

+
$$qt\left(1 - \frac{\alpha_t}{2}, \text{Total}_{\text{means}} - 2\right)$$
 · StPoint err $\sqrt{1 + \frac{1}{(d+1)}} + \frac{(\text{year predict}_f - \frac{\text{Point}_{actualmean}}{1})}{\text{sum}}$

lopoint_f := Point curve_f ...

$$+ - \left[qt \left(1 - \frac{\alpha_t}{2}, \text{Total}_{\text{means}} - 2 \right) \cdot \text{StPoint}_{err} \cdot \sqrt{1 + \frac{1}{(d+1)}} + \frac{\left(\frac{\text{year}_{\text{predict}_f} - \text{Point}_{\text{actualmean}} \right)^2}{\text{sum}} \right]$$

Local Tmin for this elevation in the Drywell $Tmin_{local} SB_{f} \approx 490$ (Ref. 3.25)

Curve Fit For Point 4 Projected to Plant End Of Life

The section below calculates what the postulated individual thickness would be if this point were to corrode at a minimum observable rate observed in appendix 22.

Rate min_observed := 6.9

Postulated thicknessin2008 := Point 43 - Rate min_observed (2016 - 2006)

Postulated thicknessin2008 = 579

which is greater than

 $Tmin_local_{SB_3} = 490$

The section below calculates what the postulated corrosion rate necessary for the thinnest individual point to reach the local required thickness by 2029.

minpoint = 0.648

required rate. := $\frac{(1000 \cdot \text{minpoint} - \text{Tmin_local} \text{SB}_{22})}{(2005 - 2029)}$

year predict_{22} = $2.029 \cdot 10^3$

required rate. = -6.583

Tmin_local _{SB22} = 490

mils per year

C-1302-187-E310-041 Rev. No. 0

Sheet No. 1 of 16

Appendix 11 - Sand Bed Elevation Bay 19B

October 2006 Data

The data shown below was collected on 10/18/06

page := READPRN("U:\MSOFFICE\Drywell Program data\OCT 2006 Data\Sandbed\SB19B.txt"

Points $_{49} :=$ showcells (page, 7, 0) +

				•			
1	0.865	0.862	0.872	0.932	0.947	0.992	0.802
	0.842	0.883	0.78	0.84	0.915	0.778	0.866
	0.861	0.906	0.838	*0.898	0.974	' 0 .93	0.834
Points 49 =	0.869	0.883	0.807	0.801	0.766	0.834	0.774
	0.811	0.77	0.785	0.788	0.799	0.731	0.778
	0.828	0.78 7 :	0.885	0.891	0.934	0.834	0.738
	0.872	0.822	0.904	0.828	0.843	0.875	0.871

Cells := convert (Points 49, 7)

No DataCells := length(Cells)

Cells := deletezero cells (Cells, No DataCells)

The thinnest point at this location is point 34 which is shown below

minpoint := min(Points 49)

minpoint = 0.731

OCLR00019538

÷.

C-1302-187-E310-041 Rev. No. 0

Sheet No. 2 of 16

Mean and Standard Deviation

$$\mu_{actual} := mean(Cells) \mu$$

$$\mu_{actual} = 847.449$$

$$\sigma_{actual} := Stdev(Cells) \sigma$$

actual = 59.933

Standard Error

Standard error :=
$$\frac{\sigma_{\text{actual}}}{\sqrt{No} \text{ DataCells}}$$

Skewness

4

Skewness :=
$$\frac{(\text{No}_{\text{DataCells}}) \cdot \overline{\Sigma (\text{Cells} - \mu_{\text{actual}})^3}}{(\text{No}_{\text{DataCells}} - 1) \cdot (\text{No}_{\text{DataCells}} - 2) \cdot (\sigma_{\text{actual}})^3}$$

Skewness = 0.26

Standard error = 8:562

Kurtosis

Kuttosis :=
$$\frac{\text{No}_{\text{DataCells}} \cdot (\text{No}_{\text{DataCells}} + 1) \cdot \overline{\Sigma (\text{Cells} - \mu_{\text{actual}})^4}}{(\text{No}_{\text{DataCells}} - 1) \cdot (\text{No}_{\text{DataCells}} - 2) \cdot (\text{No}_{\text{DataCells}} - 3) \cdot (\sigma_{\text{actual}})^4} \text{ Kurtosis = -0.325} + \frac{3 \cdot (\text{No}_{\text{DataCells}} - 1)^2}{(\text{No}_{\text{DataCells}} - 2) \cdot (\text{No}_{\text{DataCells}} - 3)}$$

Sheet No. 3 of 16

Normal Probability Plot

In a normal plot, each data value is plotted against what its value would be if it actually came from a normal distribution. The expected normal values, called normal scores, and can be estimated by first calculating the rank scores of the sorted data.

j := 0.. last(Cells) srt := sort(Cells)

Then each data point is ranked. The array rank captures these ranks

$$r_{j} := j + 1 \qquad \text{rank}_{j} := \frac{\sum \left(\overrightarrow{\text{srt} = \text{srt}_{j}} \right) \cdot r}{\sum \overrightarrow{\text{srt} = \text{srt}_{j}}}$$

$$p_j := \frac{\operatorname{rank}_j}{\operatorname{rows}(\operatorname{Cells}) + 1}$$

The normal scores are the corresponding *p*th percentile points from the standard normal distribution:

 $x \coloneqq 1$ N_Score_j \coloneqq root[cnorm(x) - (p_j), x]

OCLR00019541

Upper and Lower Confidence Values

α ≔ .05 .

The Upper and Lower confidence values are calculated based on .05 degree of confidence "q"

No DataCells := length (Cells)

$$T\alpha := qt \left[\left(1 - \frac{\alpha}{2} \right), \text{ No DataCells} \right] T\alpha = 2.02$$

^tLower 95%Con := $\mu_{actual} - T\alpha - \frac{\sigma_{actual}}{\sqrt{No} DataCells}$ Lower 95%Con = 830.243

Upper 95%Con := $\mu_{actual} + T\alpha \frac{\sigma_{actual}}{\sqrt{No DataCells}}$

¹Upper 95%Con = 864.655

These values represent a range on the calculated mean in which there is 95% confidence.

Graphical Representation

Distribution of the "Cells" data points are sorted in 1/2 standard deviation increments (bins) within +/- 3 standard deviations

Bins := Make $bins(\mu_{actual}, \sigma_{actual})$

Distribution := hist(Bins, Cells)

The mid points of the Bins are calculated

$$ibution = \begin{bmatrix} 0 \\ 2 \\ 8 \\ 6 \\ 10 \\ 9 \\ 7 \\ 4 \\ 1 \\ 2 \\ 0 \end{bmatrix}$$

Distr

The Mathcad function pnorm calculates a portion of normal distribution curve based on a given mean and standard deviation

 $Midpoints_{k} := \frac{(Bins_{k} + Bins_{k+1})}{2}$

normal
$$_{\text{curve}_0} \coloneqq \text{pnorm}(\text{Bins}_1, \mu_{\text{actual}}, \sigma_{\text{actual}})$$

normal $_{\text{curve}_k} \coloneqq \text{pnorm}(\text{Bins}_{k+1}, \mu_{\text{actual}}, \sigma_{\text{actual}}) - \text{pnorm}(\text{Bins}_k, \mu_{\text{actual}}, \sigma_{\text{actual}})$

normal curve := No DataCells · normal curve

Sheet No. 5 of 16

OCLR00019542

Results For Elevation Sandbed elevation Location Oct. 2006

The following schematic shows: the the distribution of the samples, the normal curve based on the actual mean and standard deviation, the kurtosis, the skewness, the number of data points, and the the lower and upper 95% confidence values. Below is the Normal Plot for the data.

Sandbed Location 19B Trend

For 1992

Dates_d := Day year(12, 8, 1992)

page := READPRN("U:\MSOFFICE\Drywell Program data\Dec. 1992 Data\sandbed\Data Only\SB19B.txt")

Points 49 := showcells (page , 7 , 0)

•			Data		1	-	• .	
•	0.868	0.834	[,] 0.829	0.925	0.914	0.998	0.823	l
1	0.832	0.819	0.778	0.838	0.905	0.796	0.824	l
	0.865	0.867	0.821	0.879	0.915	0.85	0.876	
Points ₄₉ =	0.892	0.821	0.809	0.834	0.761	0.765	0.748	
	0.825	0.839	0.887	0.889	0.933	0.828	0.732	
	0.872	0.803	0.92	0.82	0.845	0.943	[•] 0.906	
	i							

nnn := convert (Points $_{49}$, 7)

No DataCells := length (nnn)

Cells := deletezero cells (nnn, No DataCells)

Point $_{34_d} := Cells_{33}$

Standard errord :=

 $\mu_{\text{measured}_d} \coloneqq \text{mean(Cells)} \quad \sigma_{\text{measured}_d} \coloneqq \text{Stdev(Cells)}$

OCLR00019543

Point 34 = 743

σ. measured

No DataCells

6 of 16

d :≈ 0

Sheet No. 7 of 16

d ≔ d + 1 ·

-1

For 1994

page := READPRN("U:\MSOFFICE\Drywell Program data\Sept.1994 Data\sandbed\Data Only\SB19B.txt")

Dates $= Day_{year}(9, 14, 1994)$

Points 49 := showcells (page , 7 , 0)

Data

nnn := convert (Points $_{49}$, 7)

No DataCells := length(nnn)

Cells := deletezero cells (nnn, No DataCells)

Point 34_d := Cells₃₃

 $\mu_{\text{measured}_d} \coloneqq \text{mean(Cells)} \quad \sigma_{\text{measured}_d} \coloneqq \text{Stdev(Cells)}$

o measured Standard error

No DataCells

۱.

C-1302-187-E310-041 Rev. No. 0

Slieet No. 8 of 16

 $d \coloneqq d + 1$

For 1996

page := READPRN("U:\MSOFFICE\Drywell Program data\Sept.1996 Data\sandbed\Data Only\SB19B.txt")

Dates, := Day vear (9, 16, 1996)

Points 49 := showcells (page , 7 , 0)

Data 0.91 0.834 0.843 0.964 0.91 0.793 0.788 0.835 0.821 0.777 0.848 0.916 0.776 0.83 0.933 0.882 0.818 0.898 0.912 0.845 0.803 0.754 0.826 0.795 0.796 0.713 0.744 0.83 Points 49 = 0:795 0.759 0.749 0.862 0.766 0.745 0.755 0.862 0.877 0.907 0.852 0.916 0.836 0.758 0.87 0.825 0.933 0.795 0.832 1.017 0.927

nnn := convert (Points $_{49}$, 7)

1

No DataCells := length(nnn)

Cells := deletezero cells (nnn, No DataCells)

Point $_{34_{d}} \coloneqq \text{Cells}_{33}$

 $\mu_{measured_d} := mean(Cells) \sigma_{measured_d} := Stdev(Cells) Standard_{error_d}$

o measured No DataCells

Sheet No. 9 of 16

d := d + 1

For 2006

page := READPRN("U:\MSOFFICE\Drywell Program data\OCT 2006 Data\Sandbed\SB19B.txt")

Dates_d := Day year(10, 16, 2006) '

Points 49 := showcells (page , 7 , 0)

Data

0.865 0.862 0.872 0.932 0.947 0.992 0.802 0.842 0.883 0.78. 0.84 0.915 0.778 0.866 0.861 0.906 0.838 0.898 0.974 0.93 0.834 Points 49 = 0.869 0.883 0.807 0.801 0.766 0.834 0.774 0.811 0.77 0.785 0.788 0.799 0.731 0.778 0.828 0.787 0.885 0.891 0.934 0.834 0.738 0.872 0.822 0.904 0.828 0.843 0.875 0.871

nnn := convert (Points $_{49}, 7$)

No DataCells := length(mm)

Cells := deletezero $_{cells}(nnn, No _{DataCells})$

Point 34_d := Cells₃₃

 $\mu_{\text{measured}_d} \coloneqq \text{mean(Cells)} \sigma_{\text{measured}_d} \coloneqq \text{Stdev(Cells)} \text{Standard}_{\text{error}_d}$

o measured No DataCells

Sheet No. 10 of 16

Below are matrices which contain the date when the data was collected, Mean, Standard Deviation, Standard Efror for each date.

$$Dates = \begin{bmatrix} 1.993 \cdot 10^{3} \\ 1.995 \cdot 10^{3} \\ 1.997 \cdot 10^{3} \\ 2.007 \cdot 10^{3} \end{bmatrix} Point_{34} = \begin{bmatrix} 743 \\ 716 \\ 745 \\ 731 \end{bmatrix}$$

$$\mu_{\text{ measured}} \begin{bmatrix} 839.612 \\ 824.204 \\ 837.388 \\ 847.449 \end{bmatrix} Standard_{\text{error}} = \begin{bmatrix} 8.719 \\ 7.792 \\ 9.469 \\ 8.562 \end{bmatrix}, \sigma_{\text{ measured}} = \begin{bmatrix} 61.035 \\ 54.542 \\ 66.28 \\ 59.933 \end{bmatrix}$$

$$Total_{\text{ means}} = 7 \text{ ovs}(\mu_{\text{ measured}}) Total_{\text{ means}} = 4$$

SST :=
$$\sum_{i = 0}^{\text{hast Dates }} \left(\mu_{\text{measured}_i} - \frac{\text{mean}(\mu_{\text{measured}})}{2} \right)^2$$
 SST = 279.784

SSE := $\sum_{i=0}^{\text{last(Dates)}} (\mu_{\text{measured}_i} - \text{yhat}(\text{Dates}, \mu_{\text{measured}})_i)^2$ SSE = 153.92

SSR := $\sum_{i=0}^{\text{last(Dates)}} (\text{yhat}(\text{Dates}, \mu_{\text{measured}})_{i} - \text{mean}(\mu_{\text{measured}}))^{2} \qquad \text{SSR} = 125.865$

DegreeFree ss := Total means - 2 DegreeFree reg := 1 DegreeFree st := Total means - 1

$$MSE := \frac{SSE}{DegreeFree}_{ss}$$

$$MSR := \frac{SSR}{DegreeFree}_{reg}$$

$$MST := \frac{SST}{DegreeFree}_{st}$$

$$MSE = 76.96$$

$$MSR = 125.865$$

$$MST = 93.261$$

$$StGrand_{err} := \sqrt{MSE}$$

$$StGrand_{err} = 8.773$$

1

 $y_b := intercept (Dates, \mu_{measured}) y_b = -1.25 \cdot 10^3$

To conservatively address the location, the apparent corrosion rate is calculated and compared to the minimum required wall thickness at this elevation

$$m_s \approx slope(Dates, \mu_{measured}) \qquad m_s = 1.045$$

The 95% Confidence curves are calculated

$$\alpha_{\star} := 0.05 \quad k := 2029 - 1985 \qquad f := 0, k - 1^{1}$$

Thick
$$\frac{1}{\text{actualmean}} := \text{mean(Dates)}$$
 sum := $\sum_{i} (\text{Dates}_{d-1} \text{ mean(Dates)})$

upper_f := Thick predict_f ... + qt $\left(1 - \frac{\alpha_t}{2}, \text{Total}_{\text{means}} - 2\right)$ ·StGrand err $\sqrt{1 + \frac{1}{(d+1)} + \frac{(\text{year predict}_f - \text{Thick actualmean})}{\text{sum}}}$

lower_f := Thick predict_f ...

$$+ -\left[qt\left(1 - \frac{\alpha_{t}}{2}, \text{Total}_{\text{means}} - 2\right) \cdot \text{StGrand}_{\text{err}} \cdot \sqrt{1 + \frac{1}{(d+1)}} + \frac{\left(\frac{\text{year}_{\text{predict}}}{1 - \frac{\alpha_{t}}{2}}, \text{Total}_{\text{means}}\right)^{2}}{\text{sum}}\right]$$

Therefore even though F-ratio does not support the regression model the above curve shows that even at the lower 95% confidence band this location will not corrode to below Drywell Vessel Minimum required thickness by the plant end of life.

The section below calculates what the postulated mean thickness would be if this grid were to corrode at a minimum observable rate observed in appendix 22.

Rate min_observed = 6.9

Postulated meanthickness := μ_{measured_3} - Rate min_observed (2022 - 2006)

Postulated meanthickness = 737.049

which is greater than

 $Tmin_{gen} = 736$

13 of 16

= 1,045

1

 $SSR_{point} = 6.336$

MST point :=

MST point = 178.25

SST point

DegreeFree st

The following addresses the readings at the lowest single point

$$SST_{point} := \sum_{i=0}^{last(Dates)} (Point_{34_i} - mean(Point_{34}))^2 \qquad SST_{point} = 334.7$$

$$SSE_{point} \coloneqq \sum_{i = 0}^{last(Dates)} (Point_{34_i} - yhat(Dates, Point_{34})_i)^2 \qquad SSE_{point} = 528.414$$

SSR point :=
$$\sum_{i=0}^{\text{last(Dates)}} (\text{yhat}(\text{Dates, Point }_{34})_i - \text{mean}(\text{Point }_{34}))^2$$

$$MSE_{point} \coloneqq \frac{SSE_{point}}{DegreeFree}_{ss} \qquad MSR_{point} \coloneqq$$

$$MSR_{point} = 6.336$$

StPoint
$$err = 16.254$$

SSR point

DegreeFree reg

F Test for Corrosion

$$F_{actaul_Reg} \coloneqq \frac{MSR_{point}}{MSE_{point}}$$

$$F_{ratio_reg} := \frac{F_{actaul_Reg}}{F_{critical_reg}}$$

 $F_{ratio_{reg}} = 1.295 \cdot 10^{-3}$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

 $m_{point} := slope (Dates, Point_{34}) m_{point} = -0.234 y_{point} := intercept (Dates, Point_{34}) y_{point} = 1.202 \cdot 10^3$

The 95% Confidence curves are calculated

Point curve := m point · year predict + y point

Point actualmean := mean(Dates) $sum := \sum_{d} (Dates_{d} - mean(Dates))^{2}$

uppoint, := Point curve, ...

$$qt\left(1-\frac{\alpha_{t}}{2}, \text{Total}_{\text{means}}-2\right)$$
 StPoint $err \cdot \sqrt{1+\frac{1}{(d+1)}+\frac{(\text{year}_{\text{predict}_{r}}-\text{Point}_{\text{actualmean}})}{\text{sum}}}$

lopoint_f := Point curve_f ...

+
$$-\left[qt\left(1-\frac{\alpha_{t}}{2}, \text{Total}_{\text{means}}-2\right) \cdot \text{StPoint}_{err} \cdot \sqrt{1+\frac{1}{(d+1)}+\frac{\left(\text{year}_{\text{predict}_{f}}-\text{Point}_{\text{actualmean}}\right)^{2}}{\text{sum}}}\right]$$

Local Tmin for this elevation in the Drywell

Tmin_local SB, = 490

(Ref. 3.25)

Curve Fit For Point 34 Projected to Plant End Of Life

The section below calculates what the postulated individual thickness would be if this point were to corrode at a minimum observable rate observed in appendix 22.

Rate min_observed = 6.9

Postulated thickness := Point 343 - Rate min_observed (2029 - 2006)

Postulated thickness = 572.3

year predict₂₂ = 2.029•10

(2005 - 2029)

which is greater than

 \cdot Tmin_local _{SB3} = 490

The section below calculates what the postulated corrosion rate necessary for the thinnest individual point to reach the local required thickness by 2029.

minpoint = 0.731

1000 minpoint - Tmin_local SB required rate. :=

required rate. = -10.042

Tmin_local SB₂₂ = 490

mils per year

C-1302-187-E310-041 Rev. No. 0

Sheet No 1 OF 16

Appendix 12 - Sand Bed Elevation Bay 19C

October 2006 Data

The data shown below was collected on 10/18/06

	0.809	0.768	0.862	1.059	0.968	0.961	0.92
	0.679	0.745	0.695	0.814	0.766	0.865	0.845
	0.816	0.775	0.87	0.871	0.863	, 0	0.896
$ints'_{49} =$	0.791	0.66	0.715	0.793	1.151	1.164	0.918
	0.851	0.781	0.733	0.762	0.862	0.787	0.796
	0.866	0.83	0.88	0.757	0.867	0.75	0.753
· .	0.801	0.794	0.852	0.841	0.901	0.906	0.84

Cells := convert (Points $_{49}, 7$)

No DataCells := length (Cells)

For this location no points were identified (reference 3.22).

For this location point 20, 26, 27, and 33 are over a plug (refer 3.22)

Cells := Zero $_{one}$ (Cells, No $_{DataCells}$, 20)

Cells := Zero $_{one}$ (Cells, No $_{DataCells}$, 26)

Cells := Zero one (Cells, No DataCells, 33)

Cells := Zero one (Cells, No DataCells, 27)

Cells := deletezero cells (Cells, No DataCells)

Point 30 is the thinnest

minpoint := min(Cells)

minpoint = 660

C-1302-187-E310-041 Rev. No. 0

Sheet No 2 OF 16

= 79.123

Mean and Standard Deviation

$$\mu_{\text{actual}} := \text{mean}(\text{Cells}) \qquad \mu_{\text{actual}} = 823.822 \qquad \sigma_{\text{actual}} := \text{Stdev}(\text{Cells}) \qquad \sigma_{\text{actual}}$$

Standard Error

Standard error :=
$$\frac{\sigma_{actual}}{\sqrt{N_{o}}_{DataCells}}$$

Skewness
Skewness := $\frac{1}{\sqrt{N_{o}}_{DataCells} \cdot \Sigma(Cells - \mu_{actual})^{3}}}{(N_{o}_{DataCells} - 1) \cdot (N_{o}_{DataCells} - 2) \cdot (\sigma_{actual})^{3}}$
Skewness = 0.366

Kurtosis

Kuttosis :=
$$\frac{\text{No DataCells} \cdot (\text{No DataCells} + 1) \cdot \overline{\Sigma(\text{Cells} - \mu_{actual})^{4}}}{(\text{No DataCells} - 1) \cdot (\text{No DataCells} - 2) \cdot (\text{No DataCells} - 3) \cdot (\sigma_{actual})^{4}} \text{ Kuttosis = 0.393} + -\frac{3 \cdot (\text{No DataCells} - 1)^{2}}{(\text{No DataCells} - 2) \cdot (\text{No DataCells} - 3)}$$

C-1302-187-E310-041 Rev. No. 0

Normal Probability Plot

In a normal plot, each data value is plotted against what its value would be if it actually came from a normal distribution. The expected normal values, called normal scores, and can be estimated by first calculating the rank scores of the sorted data.

j := 0.. last(Cells) srt := sort(Cells)

Then each data point is ranked. The array rank captures these ranks,

$$r_j := j + 1$$
 rank $:= \frac{\Sigma(\overrightarrow{srt=srt_j}) \cdot r}{\Sigma \overrightarrow{srt=srt_j}}$

$$p_j \coloneqq \frac{\operatorname{rank}_j}{\operatorname{rows}(\operatorname{Cells}) + 1}$$

The normal scores are the corresponding pth percentile points from the standard normal distribution:

$$x := 1$$
 N_Score_i := root cnorm(x) - (p_i), x

C-1302-187-E310-041 Rev. No. 0

Sheet No 4 OF 16

Upper and Lower Confidence Values

The/Upper and Lower confidence values are calculated based on .05 degree of confidence "a"

No DataCells := length(Cells)

$$\alpha := .05$$
 $T\alpha := qt \left[\left(1 - \frac{\alpha}{2} \right), No \text{ DataCells} \right] T\alpha = 2.014$

*Lower 95%Con := $\mu_{actual} - T\alpha \frac{\sigma_{actual}}{\sqrt{No DataCells}}$ Lower 95%Con = 800.066

$$Jpper 95\%Con := \mu_{actual} + T\alpha \frac{\sigma_{actual}}{\sqrt{No DataCells}}, Upper 95\%Con = 847.57$$

These values represent a range on the calculated mean in which there is 95% confidence.

Graphical Representation

Distribution of the "Cells" data points are sorted in 1/2 standard deviation increments (bins) within +/- 3 standard deviations

Bins := Make
$$bins(\mu_{actual}, \sigma_{actual})$$

Distribution := hist(Bins, Cells)

Distribution =

The mid points of the Bins are calculated

$$k \coloneqq 0..11 \qquad \text{Midpoints}_{k} \coloneqq \frac{\left(\text{Bins}_{k} + \text{Bins}_{k+1}\right)}{2}$$

The Mathcad function pnorm calculates a portion of normal distribution curve based on a given mean and standard deviation

normal
$$_{curve_0} := pnorm(Bins_1, \mu_{actual}, \sigma_{actual})$$

normal $_{curve_k} := pnorm(Bins_{k+1}, \mu_{actual}, \sigma_{actual}) - pnorm(Bins_k, \mu_{actual}, \sigma_{actual})$

normal curve := No DataCells normal curve

Sheet No 5 OF 16

Results For Elevation Sandbed elevation Location Oct. 2006

The following schematic shows: the the distribution of the samples, the normal curve based on the actual mean and standard deviation, the kurtosis, the skewness, the number of data points, and the the lower and upper 95% confidence values. Below is the Normal Plot for the data.

d := 0

Sandbed Location 19C Trend

Data from the 1992, 1994 and 1996 is retrieved.

For 1992

Dates_d := Day year(12, 8, 1992)

0.838

0.888

0.907

0.838

0.752

0.809

page := READPRN("U:\MSOFFICE\Drywell Program data\Dec. 1992 Data\sandbed\Data Only\SB19C.txt")

0.822 0.757 0.792 0.994 0.922 0.979 0.931

0.756

0.683 0.716 0.693 0.797 0.753 0.887

 $0.815 \quad 0.744 \quad 0.879 \quad 0.859 \quad 0.856 \quad 0.222$

0.785 0.65 0.713 0.766 1.147 1.152

0.835 0.861 0.889 0.842 0.896 0.884

0.782 0.732 0.762

Points 49 := showcells (page , 7 , 0)

0.839

0.867 0.833 0.88

Data

Points 49 =

nnn := convert(Points 49,7)

No DataCells := length(nnn)

0.859 0.791

0.852 0.736

For this location point 20, 26, 27, and 33 are over a plug (refer 3.22)

nnn := Zero one (nnn, No DataCells, 20)

nnn := Zero $one(nnn, No_{DataCells}, 26)$

nnn := Zero one (nnn, No DataCells, 33)

nnn := $Zero_{one}(nnn, No_{DataCells}, 27)$

Cells := deletezero cells (nnn, No DataCells)

minpoint := min(Cells) minpoint = 650

Point $_{21}$:= Cells Point $_{21}$ = 650

 $\mu_{\text{measured}_d} := \text{mean}(\text{Cells}) \quad \sigma_{\text{measured}_d} := \text{Stdev}(\text{Cells})$

Standard $\operatorname{error}_{d} \coloneqq \frac{\sigma_{\operatorname{measured}_{d}}}{\sqrt{\operatorname{No}_{\operatorname{DataCells}}}}$

Sheet No 7 OF 16

For 1994

d ≔ d + 1

page := READPRN("U:\MSOFFICE\Drywell Program data\Sept. 1994 Data\sandbed\Data Only\SB19C.txt")

Dates := Day year (9, 14, 1994)

0.813 0.736 0.876 0.855 0.838 0.221 0.884 Points 49 = 0.787 0.666 0.718 0.762 0.906 1.153 1.149 0.787 0.834 0.841 0.782 0.734 0.764 0.856 0.871 0.832 0.886 0.766 0.867 0.735 0.748 0.836 0.853 0.892 0.851 0.902 0.831 0.9

nnn := convert (Points $_{49}, 7$)

For this location point 20, 26, 27, and 33 are over a plug (refer 3.22)

nnn \coloneqq Zero one (nnn, No DataCells, 20)

nnn := Zero $_{one}(nnn, No_{DataCells}, 26)$

nnn := Zero one (nnn, No DataCells, 27)

nnn := Zero one(nnn, No DataCells, 33)

Cells := deletezero cells (nnn, No DataCells)

 $\mu_{\text{measured}_d} \coloneqq \text{mean(Cells)} \quad \sigma_{\text{measured}_d} \coloneqq \text{Stdev(Cells)}$

 $d \coloneqq d + 1$

For 1996

page := READPRN("U:\MSOFFICE\Drywell Program data\Sept.1996 Data\sandbed\Data Only\SB19C.txt")

Dates_d := Day year(9, 16, 1996)

Points 49 := showcells (page , 7 , 0)

		Da	ata				
•	0.949	0.836	0.892	1.11	1.017	0.998	0.935 Ĵ
Points ₄₉ =							0.866
	0.857	0.8	0.889	0.861	0.907	0.918	0.945
	0.876	0.771	0.75 ·	0.862	1.141	0.895	0.916
							0.845
	0.886	0.851	0.876	0.791	0.871	0.728	0.742
	0.854	0.854	0.905	0.839	0.926	0.856	0.834]

nnn := convert(Points $_{49}$, 7)

No DataCells = length(nnn)

For this location point 20, 26, 27, and 33 are over a plug (refer 3.22)

nnn := Zero $_{one}(nnn , No _{DataCells}, 20)$

nnn := Zero $one(nnn, No_{DataCells}, 27)$

nnn := Zero $one(nnn, No_{DataCells}, 26)$

nnn := Zero one (nnn, No DataCells, 33)

Cells := deletezero cells (nm, No DataCells)

Point $21_d := Cells_{21}$

 $\mu_{\text{measured}_d} \coloneqq \text{mean(,Cells)} \quad \sigma_{\text{measured}_d} \coloneqq \text{Stdev(Cells)}$

σ measured Standard error_d := No DataCells

C-1302-187-E310-041 Rev. No. 0

Sheet No 9 OF 16

d ≔ d + 1

For 2006

page := READPRN("U:\MSOFFICE\Drywell Program data\OCT 2006 Data\Sandbed\SB19C.txt"

Dates_{d1} := Day year(10, 16, 2006) + ·

Points 49 := showcells (page , 7, 0)

Data

0.809 0.768 0.862 1.059 0.968 0.961 0.92 0.679 0.745 0.695 0.814 0.766 0.865 0.845 0.816 0.775 0.87 0.871 0.863 0 0.896 0.791 0.66 Points 49 = 0.715 0.793 0.918 1.151 1.164 0.781 0.733 0.851 0.862 0.762 0.787 0.796 0.866 0.83 0.88 0.757 0.867 0.753 0.75 0.794 0.801 0.841 0.852 0.901 0.906 0.84

nnn := convert (Points 49,7)

No DataCells := length(nnn)

For this location point 20, 26, 27, and 33 are over a plug (refer 3.22)

nnn := Zero $one(nnn, No_{DataCells}, 20)$

nnn := Zero $one(nnn, No_{DataCells}, 26)$

nnn := Zero one (nnn, No DataCells, 33)

nnn := Zero one (nnn, No DataCells, 27)

Cells := deletezero cells (nnn, No DataCells)

Point 21_d := Cells₂₁

 $\mu_{\text{measured}_d} := \text{mean(Cells)} \quad \sigma_{\text{measured}_d} := \text{Stdev(Cells)}$

 $\sigma_{\text{measured}_d}$ Standard error No DataCells

1

Below are matrices which contain the date when the data was collected, Mean, Standard Deviation, Standard Error for each date.

$$Dates = \begin{bmatrix} i.993 \cdot 10^{3} \\ 1.995 \cdot 10^{3} \\ 1.997 \cdot 10^{3} \\ 2.007 \cdot 10^{3} \end{bmatrix} Point 21 = \begin{bmatrix} 650 \\ 666 \\ 771 \\ 660 \end{bmatrix} \sigma_{measured} = \begin{bmatrix} 77.068 \\ 73.396 \\ 82.35 \cdot \\ 79.123 \end{bmatrix}$$

$$Point 21 = \begin{bmatrix} 11.01 \\ 10.485 \\ 11.764 \\ 11.303 \end{bmatrix}$$

$$Point 21 = \begin{bmatrix} 11.01 \\ 10.485 \\ 11.764 \\ 11.303 \end{bmatrix}$$

$$Total_{measured} = \begin{bmatrix} 11.01 \\ 10.485 \\ 11.764 \\ 11.303 \end{bmatrix}$$

$$SST := \sum_{i=0}^{1} (\mu_{measured}) Total_{means} = 4$$

$$SST := \sum_{i=0}^{1} (\mu_{measured} - mean(\mu_{measured}))^{2}$$

$$SST := 821.664$$

$$SSE := \sum_{i=0}^{1} (\mu_{measured_{i}} - yhat(Dates, \mu_{measured})_{i})^{2}$$

$$SSE = 821.61$$

$$SSR := \sum_{i=0}^{1} (yhat(Dates, \mu_{measured})_{i} - mean(\mu_{measured}))^{2}$$

$$SSR = 0.054$$

$$SSR := \sum_{i=0}^{1} (yhat(Dates, \mu_{measured})_{i} - mean(\mu_{measured}))^{2}$$

$$SSR = 0.054$$

$$SSR := \sum_{i=0}^{1} (yhat(Dates, \mu_{measured})_{i} - mean(\mu_{measured}))^{2}$$

$$SSR = 0.054$$

$$SSR := \sum_{i=0}^{1} (yhat(Dates, \mu_{measured})_{i} - mean(\mu_{measured}))^{2}$$

$$SSR = 0.054$$

$$SSR := \sum_{i=0}^{1} (yhat(Dates, \mu_{measured})_{i} - mean(\mu_{measured}))^{2}$$

$$SSR = 0.054$$

$$SSR := \sum_{i=0}^{1} (yhat(Dates, \mu_{measured})_{i} - mean(\mu_{measured}))^{2}$$

$$SSR = 0.054$$

$$SSR := \sum_{i=0}^{1} (yhat(Dates, \mu_{measured})_{i} - mean(\mu_{measured}))^{2}$$

$$SSR = 0.054$$

$$SSR := 0.055$$

$$SSR := 0.054$$

$$SSR := 0.055$$

$$SSR := 0.054$$

$$SSR := 0$$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

OCLR00019563

Therefore the curve fit of the means does not have a slope and the grandmean is an accurate measure of the thickness at this location

 $i := 0... Total_{means} - 1$ $\mu grand_{measured} := mean(\mu_{measured})$

$$grand_{measured} := Stdev(\mu_{measured}), \qquad GrandStandard_{error_0} := \frac{\sigma_{grand_{measured}}}{\sqrt{Total_{means}}}$$

The minimum required thickness at this elevation is $Tmin_{sm} = 736$ (Ref. 3.25)

 $\mu grand_{measured_0} = 829.167$

GrandStandard error = 8.275

To conservatively address the location, the apparent corrosion rate is calculated and compared to the minimum required wall thickness at this elevation

$$m_s := slope (Dates, \mu_{measured}) \quad m_s = 0.022$$

$$y_{h} := intercept(Dates, \mu_{measured}) y_{h} = 786.002$$

The 95% Confidence curves are calculated

$$f := 0.05$$
 k := 2029 - 1985 $f := 0.. k - 1$

Thick
$$\frac{1}{\text{actualmean}} := \text{mean}(\text{Dates})$$
 sum $:= \sum_{i} (\text{Dates}_{d} - \text{mean}(\text{Dates}))$

 $upper_f := Thick predict_f \cdots$

+
$$qt\left(1-\frac{\alpha_t}{2}, \text{Total}_{\text{means}}-2\right)$$
 StGrand err $\sqrt{1+\frac{1}{(d+1)}+\frac{(\text{year}_{\text{predict}_f}-\text{Thick}_{\text{actualmean}})}{\text{sum}}}$

lower_f := Thick predict_f ...

$$+ -\left[qt\left(1 - \frac{\alpha_{t}}{2}, \text{Total}_{\text{means}} - 2\right) \cdot \text{StGrand}_{\text{err}} \cdot \sqrt{1 + \frac{1}{(d+1)} + \frac{\left(\text{year}_{\text{predict}_{f}} - \text{Thick}_{\text{actualmean}}\right)^{2}}{\text{sum}}}\right]$$

Therefore even though F-ratio does not support the regression model the above curve shows that even at the lower 95% confidence band this location will not corrode to below Drywell Vessel Minimum required thickness by the plant end of life.

The section below calculates what the postulated mean thickness would be if this grid were to corrode at a minimum observable rate observed in appendix 22.

Rate min observed := 6.9

Postulated meanthickness := μ measured, - Rate min_observed (2018 - 2006)

Postulated meanthickness = .741.022

which is greater than

 $Tmin_gen_{SB_3} = 736$

1

Sheet No 14 OF 16

The following addresses the readings at the lowest single point

SST_{point} :=
$$\sum_{i=0}^{last(Dates)} (Point_{21_i} - mean(Point_{21}))^2$$

SSE_{point} :=
$$\sum_{i=0}^{last(Dates)} (Point_{21_i} - yhat(Dates, Point_{21})_i)$$

$$SSR_{point} := \sum_{i=0}^{last(Dates)} (yhat(Dates, Point_{21})_{i} - mean(Point_{21}))$$

SSR

 $SSE_{point} = 9.525 \cdot 10^3$

 $SST_{point} = 9.595 \cdot 10^3$

$$MSE_{point} := \frac{SSE_{point}}{DegreeFree_{SS}} \qquad MSR_{point} := \frac{SSR_{point}}{DegreeFree_{reg}} \qquad MST_{point} := \frac{SST_{point}}{DegreeFree_{st}}$$

$$ISE_{point} = 4.763 \cdot 10^3$$

StPoint
$$_{err} := \sqrt{MSE_{point}}$$

$$IST_{point} = 3.198 \cdot 10^3$$

MSR point = 69.399

F Test for Corrosion

$$actaul_Rcg := \frac{MSR_{point}}{MSE_{point}}$$

1

 $F_{ratio_{reg}} = 7.871 \cdot 10^{-4}$

The conclusion can be made that the mean best fits the grandmean model. The grandmean ratio is greater than one. The figure below provides a trend of the data and the grandmean

OCLR00019567

C-1302-187-E310-041 Rev. No. 0

The section below calculates what the postulated individual thickness would be if this point were to corrode at a minimum observable rate observed in appendix 22.

Rate min_observed := 6.9

Postulated thickness := Point 213 - Rate min_observed (2029 - 2006)

year predict_{22} = $2.029 \cdot 10^3$

Postulated thickness = 501.3 which is greater than $Tmin_local SB_3 = 490$

The section below calculates what the postulated corrosion rate necessary for the thinnest individual point to reach the local required thickness by 2029.

minpoint = 650

required rate. := $\frac{(\text{minpoint} - \text{Tmin_local}_{SB_{22}})}{(2005 - 2029)}$

required rate. = -6.667

Tmin_local $_{SB_{22}}$ = 490

mils per year

Appendix 13 - Sand Bed Elevation Bay 1D

October 2006 Data

The data shown below was collected on 10/18/06.

page := READPRN("U:\MSOFFICE\Drywell Program data\OCT 2006 Data\Sandbed\SB1D.txt")

Points $_7$:= show7cells(page , 1 , 7 , 0)

Points $_7 = \begin{bmatrix} 0.881 & 1.156 & 1.104 & 1.124 & 1.134 & 1.093 & 1.122 \end{bmatrix}$

Cells := con7vert (Points 7, 7, 1) No DataCells := length (Cells)

Cells := Zero one (Cells, No DataCells, 1)

Cells := deletezero cells (Cells, No DataCells)

The thinnest point at this location is shown below minpoint := min(Points 7)

minpoint = 0.881

Standard error = 8.399

Sheet No. 2 of 16

Mean and Standard Deviation

$$\mu_{actual} := mean(Cells)$$
 $\mu_{actual} = 1.122 \cdot 10^3$ $\sigma_{actual} := Stdev(Cells)$ $\sigma_{actual} = 22.221$

Standard Error

Standard error :=
$$\frac{\sigma_{\text{actual}}}{\sqrt{\text{No}_{\text{DataCells}}}}$$

Skewness

Skewness :=
$$\frac{(\text{No}_{\text{DataCells}}) \cdot \overline{\Sigma(\text{Cells} - \mu_{\text{actual}})^3}}{(\text{No}_{\text{DataCells}} - 1) \cdot (\text{No}_{\text{DataCells}} - 2) \cdot (\sigma_{\text{actual}})^3}$$
 Skewness = 0.204

Kurtosis

Kuttosis :=
$$\frac{\text{No DataCells} \cdot (\text{No DataCells} + 1) \cdot \overline{\Sigma} (\text{Cells} - \mu_{\text{actual}})^4}{(\text{No DataCells} - 1) \cdot (\text{No DataCells} - 2) \cdot (\text{No DataCells} - 3) \cdot (\sigma_{\text{actual}})^4} \text{Kuttosis} = -1.261 + -\frac{3 \cdot (\text{No DataCells} - 1)^2}{(\text{No DataCells} - 2) \cdot (\text{No DataCells} - 3)}$$

C-1302-187-E310-041 Rev. No. 0

Sheet No. 3 of 16

Normal Probability Plot

In a normal plot, each data value is plotted against what its value would be if it actually came from a normal distribution. The expected normal values, called normal scores, and can be estimated by first calculating the rank scores of the sorted data.

$$j := 0$$
. last(Cells) srt := sort(Cells)

Then each data point is ranked. The array rank captures these ranks

$$r_j := j + 1$$
 rank_j := $\overbrace{\sum \text{(srt=srt_j)}}^{\text{(srt=srt_j)}}$,
 $\sum \text{(srt=srt_j)}$

$$P_j := \frac{\operatorname{rank}_j}{\operatorname{rows}(\operatorname{Cells}) + 1}$$

The normal scores are the corresponding pth percentile points from the standard normal distribution:

$$x \coloneqq 1$$
 N_Score_j \coloneqq root[cnorm(x) - (p_j), x]

C-1302-187-E310-041 Rev. No. 0

Sheet No. 4 of 16

Upper and Lower Confidence Values

The Upper and Lower confidence values are calculated based on .05 degree of confidence "q"

No DataCells := length (Cells)

$$\alpha := .05$$
 $T\alpha := qt\left[\left(1 - \frac{\alpha}{2}\right), \text{No DataCells}\right]$ $T\alpha = 2.447$

[#]Lower 95%Con := $\mu_{actual} - T\alpha \frac{\sigma_{actual}}{\sqrt{No DataCells}}$

Upper 95%Con :=
$$\mu_{actual}$$
 + Ta $\frac{\sigma_{actual}}{\sqrt{No}_{DataCells}}$

Upper 95%Con = 1.144 • 10⁵

Lower 95% con = $1.1 \cdot 10^3$

These values represent a range on the calculated mean in which there is 95% confidence.

Graphical Representation

Distribution of the "Cells" data points are sorted in 1/2 standard deviation increments (bins) within +/- 3 standard deviations

Bins := Make $bins(\mu_{actual}, \sigma_{actual})$

Distribution := hist(Bins, Cells)

Distribution =

The mid points of the Bins are calculated

 $Midpoints_{k} := \frac{\left(Bins_{k} + Bins_{k+1}\right)}{2}$

The Mathcad function pnorm calculates a portion of normal distribution curve based on a given mean and standard deviation

normal curve₀ := pnorm (Bins₁,
$$\mu_{actual}, \sigma_{actual}$$
)
normal curve_k := pnorm (Bins_{k+1}, $\mu_{actual}, \sigma_{actual}$) - pnorm (Bins_k, $\mu_{actual}, \sigma_{actual}$)

normal curve := No DataCells ·normal curve

Sheet No. 5 of 16

Results For Elevation Sandbed elevation Location Oct. 2006

The following schematic shows: the the distribution of the samples, the normal curve based on the actual mean and standard deviation, the kurtosis, the skewness, the number of data points, and the the lower and upper 95% confidence values. Below is the Normal Plot for the data.

d ≔ 0

Sandbed Location 1D Trend

For 1992

Dates_d := Day year(12, 8, 1992)

page := READPRN("U:\MSOFFICE\Drywell Program data\Dec. 1992 Data\sandbed\Data Only\SB1D.txt")

Points 7 := show7cells(page , 1 , 7 , 0)

Data

Points $7 = [0.889 \ 1.138 \ 1.112 \ 1.114 \ 1.132 \ 1.103 \ 1.126]$

nnn := $con7vert(Points_7, 7, 1)$

No DataCells := length(nnn)

Point $1_d := Points 7_0$

nnn := Zero one (nnn , No DataCells , 1)

Cells := deletezero $_{cells}(nnn, No_{DataCells})$

Point 1 = 0.889

 $\mu_{\text{measured}_d} \coloneqq \text{mean(Cells)} \quad \sigma_{\text{measured}_d} \coloneqq \text{Stdev(Cells)} \\ \text{Standard}_{\text{error}_d} \coloneqq \frac{\sigma_{\text{measured}_d}}{\sqrt{\text{No}_{\text{DataCells}}}}$

Sheet No. 7 of 16

d ≔ d + 1

For 1994

page := READPRN("U:\MSOFFICE\Drywell Program data\Sept.1994 Data\sandbed\Data Only\SB1D.txt")

 $Dates_d := Day_{year}(9, 14, 1994)$

Points 7 := show7cells(page, 1, 7, 0)

Data

Points $_7 = [0.879 \ 1.054 \ 1.105 \ 1.119 \ 1.124 \ 1.088 \ 1.118]$

nnn := $con7vert(Points_7, 7, 1)$

No DataCells := length(nnn)

Point $1_d := Points 7_0$

nnn := Zero one (nnn, No DataCells, 1)

t,

Cells := deletezero $_{cells}(nnn, No _{DataCells})$

 $\mu_{\text{measured}_d} \coloneqq \text{mean(Cells)} \quad \sigma_{\text{measured}_d} \coloneqq \text{Stdev(Cells)} \quad \text{Standard}_{\text{error}_d} \coloneqq \frac{\sigma_{\text{measured}_d}}{\sqrt{No \text{ DataCells}}}$

. .

d ≔ d + 1

page := READPRN("U:\MSOFFICE\Drywell Program data\Sept. 1996 Data\sandbed\Data Only\SB1D.txt")

Dates, = Day year (9, 16, 1996)

Points $\gamma := \text{show7cells}(\text{page}, 1, 7, 0)$

Data

Points $_7 = [0.881 \ 1.103 \ 1.178 \ 1.146 \ 1.194 \ 1.134 \ 0.881]$

nnn \coloneqq con7vert (Points 7, 7, 1)

For 1996

No DataCells := length(nnn)

Point 1_d := Points 7₀

nnn := Zero one(nnn, No DataCells, 1)

nnn := Zero one (nnn, No DataCells, 7)

Celis := deletezero cells (nnn, No DataCells)

 $\mu_{\text{measured}_d} := \text{mean}(\text{Cells}) \quad \sigma_{\text{measured}_d} := \text{Stdev}(\text{Cells}) \quad \text{Standard}_{error_d} := \frac{\sigma_{\text{measured}_d}}{\sqrt{\text{No}_{DataCells}}}$

9 of 16

A

For 2006

page := READPRN("U:\MSOFFICE\Drywell Program data\OCT 2006 Data\Sandbed\SB1D.txt")

 $Dates_{d_1} := Day_{year}(10, 16, 2006)$

Points 7 := show7cells(page , 1 , 7 , 0)

Data

Points $_7 = \begin{bmatrix} 0.881 & 1.156 & 1.104 & 1.124 & 1.134 & 1.093 & 1.122 \end{bmatrix}$

nnn := con7vert (Points 7,7,1) No DataCells := length(nnn)

Point 1_d := Points 7₀

nnn := Zero one (nnn, No DataCells, 1)

Cells := deletezero cells (nnn, No DataCells)

Point $_1 = \begin{bmatrix} 0.889\\ 0.879\\ 0.881\\ 0.881 \end{bmatrix}$

 $\mu_{\text{measured}_d} \coloneqq \text{mean(Cells)} \sigma_{\text{measured}_d} \coloneqq \text{Stdev(Cells)} \text{Standard}_{\text{error}_d}$

 $:= \frac{\sigma_{\text{measured}_d}}{\sqrt{\text{No}_{\text{DataCells}}}}$

Below are matrices which contain the date when the data was collected, Mean, Standard Deviation, Standard Error for each date.

$$Dates = \begin{bmatrix} 1.993 \cdot 10^{3} \\ 1.995 \cdot 10^{3} \\ 1.995 \cdot 10^{3} \\ 1.997 \cdot 10^{3} \\ 2.007 \cdot 10^{3} \end{bmatrix} Point_{1} = \begin{bmatrix} 0.889 \\ 0.879 \\ 0.881 \\ 0.881 \end{bmatrix}$$

$$\mu_{measured} = \begin{bmatrix} 1.12083 \cdot 10^{3} \\ 1.12083 \cdot 10^{3} \\ 1.10133 \cdot 10^{3} \\ 1.151 \cdot 10^{3} \\ 1.151 \cdot 10^{3} \\ 1.151 \cdot 10^{3} \\ 1.12217 \cdot 10^{3} \end{bmatrix} Standard_{error} = \begin{bmatrix} 5.039 \\ 1.005 \\ 13.622 \\ 8.399 \end{bmatrix}, \sigma_{measured} = \begin{bmatrix} 13.333 \\ 26.591 \\ 36.042 \\ 22.221 \end{bmatrix}$$

$$Total_{means} := rows(\mu_{measured}) Total_{means} = 4$$

$$SST := \sum_{i=0}^{1} \left(\mu_{measured_{i}} - mean(\mu_{measured}) \right)^{2} SST = 1.256 \cdot 10^{3}$$

$$SSE := \sum_{i=0}^{1} \left(\mu_{measured_{i}} - yhat(Dates, \mu_{measured}) \right)^{2} SSE = 1.242 \cdot 10^{3}$$

$$SSR := \sum_{i=0}^{1} \left(yhat(Dates, \mu_{measured})_{i} - mean(\mu_{measured})_{i} \right)^{2} SSR = 13.63$$

$$DegreeFre_{ss} := Total_{means} - 2 DegreeFree_{reg} := 1 DegreeFree_{st} := Total_{means} - 1$$

$$MSE := \frac{SSE}{DegreeFree_{ss}} + MSR := \frac{SSR}{DegreeFree_{reg}} MST := \frac{SST}{DegreeFree_{st}}$$

$$MSE = 621.213 MSR = 13.63 MST = 418.665$$

$$StGrand_{err} := \sqrt{MSE} StGrand_{err} = 24.924$$

To conservatively address the location, the apparent corrosion rate is calculated and compared to the minimum required wall thickness at this elevation

$$m_s := slope(Dates, \mu_{measured})$$
 $m_s = 0.344$ $y_b := intercept(Dates, \mu_{measured})$ $y_b = 436.885$

The 95% Confidence curves are calculated

$$x_{+} := 0.05 \ k := 2029 - 1985 \ f := 0.. k - 1^{1}$$

year predict_f := 1985 + f.2 Thick predict := m s.year predict + y b

Thick
$$_{actualmean} := mean(Dates)$$
 sum $:= \sum_{i} (Dates_{d} - mean(Dates))$

upper_f := Thick predict_f ...
+
$$qt\left(1 - \frac{\alpha_{t}}{2}, \text{Total means} - 2\right)$$
 StGrand err $\sqrt{1 + \frac{1}{(d+1)} + \frac{(\text{year predict}_{f} - \text{Thick actualmean})^{2}}{\text{sum}}}$

lower_f := Thick predict_f --

+
$$-\left[qt\left(1-\frac{\alpha_{t}}{2}, \text{Total}_{\text{means}}-2\right) \cdot \text{StGrand}_{err} \cdot \sqrt{1+\frac{1}{(d+1)}+\frac{\left(\text{year}_{\text{predict}_{f}}-\text{Thick}_{\text{actualinean}}\right)^{2}}{\text{sum}}\right]$$

Therefore even though F-ratio does not support the regression model the above curve shows that even at the lower 95% confidence band this location will not corrode to below Drywell Vessel Minimum required thickness by the plant end of life.

The section below calculates what the postulated mean thickness would be if this grid were to corrode at a minimum observable rate observed in appendix 22.

Postulated meanthickness := μ_{measured_2} - Rate min_observed (2029 - 2006)

= 963.467

Postulated meanthickness

which is greater than

 $Tmin_gen_{SB_3} = 736$

The following addresses the readings at the lowest single point

$$ST_{point} := \sum_{i=0}^{last(Dates)} (Point_{1_i} - mean(Point_1))^2 \qquad SST_{point} = 5.9 \cdot 10^{-5}.$$

SSE point :=
$$\sum_{i=0}^{last(Dates)} (Point_{1_i} - yhat(Dates, Point_1)_i)^2$$
, SSE point = 4.977 · 10⁻⁵

$$SSR_{point} := \sum_{i = 0}^{last(Dates)} (yhat(Dates, Point_1)_i - mean(Point_1))^2 \qquad SSR_{point} = 9.234 \cdot 10^{-6}$$

$$MSE_{point} := \frac{SSE_{point}}{DegreeFree_{ss}} \qquad MSR_{point} := \frac{SSR_{point}}{DegreeFree_{reg}} \qquad MST_{point} := \frac{SST_{point}}{DegreeFree_{st}}$$

$$MSE_{point} = 2.488 \cdot 10^{-5}$$

StPoint err := $\sqrt{MSE_{point}}$

2

$$MSR_{point} = 9.234 \cdot 10^{-6}$$

StPoint $_{\rm err} = 4.988 \cdot 10^{-3}$

$$MST_{point} = 1.967 \cdot 10^{-5}$$

14 of 16

F Test for Corrosion $F_{actaul_Reg} := \frac{MSR_{point}}{MSE_{point}}$

$$F_{ratio_{reg}} := \frac{F_{actaul_Reg}}{F_{critical_reg}}$$

$F_{ratio_reg} = 0.02$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

The section below calculates what the postulated individual thickness would be if this point were to corrode at a minimum observable rate observed in appendix 22.

Rate min_observed = 6.9

Postulated thickness = Point 13 1000- Rate min_observed (2029-2006)

Postulated thickness = 722.3 which is greater than $Tmin_local SB_3 = 490$

The section below calculates what the postulated corrosion rate necessary for the thinnest individual point to reach the local required thickness by 2029.

minpoint = 0.881 year $predict_{22} = 2.029 \cdot 10^3$

required rate. := $\frac{(1000 \cdot \text{minpoint} - \text{Tmin_local}_{SB_{22}})}{(2005 - 2029)}$

required rate, = -16.292 mils per year

Tmin_local SB₂₂ = 490

OCLR00019586

Appendix 14 - Sand Bed Elevation Bay 3D

October 2006 Data

The data shown below was collected on 10/18/06.

page := READPRN("U:\MSOFFICE\Drywell Program data\OCT 2006 Data\Sandbed\SB3D.txt")

Points $_7 :=$ show7cells(page, 1, 7, 0)

Points $_7 = [1.199 \ 1.189 \ 1.187 \ 1.173 \ 1.156 \ 1.187 \ 1.166]$

Cells := con7vert (Points 7, 7, 1 No DataCells := length (Cells)

Cells := deletezero cells (Cells, No DataCells)

The thinnest point at this location is shown below

minpoint := $min(Points_7)$

minpoint = 1.156

۰.

C-1302-187-E310-041 Rev. No. 0

Sheet No. 2 of 16

Mean and Standard Deviation

μ actual	:= mean(Cells)	$\mu_{actual} = 1.18 \cdot 10^3$	σ_{actual} :
	•		

Standard Error

Standard error :=
$$\frac{\sigma_{\text{actual}}}{\sqrt{No_{\text{DataCells}}}}$$

 $\sigma_{actual} = 15.054$ = Stdev(Cells)

$$\sqrt{\frac{No}{DataCells}}$$

Skewness ł.

Skewness :=
$$\frac{(\text{No }_{\text{DataCells}}) \cdot \overline{\Sigma (\text{Cells} - \mu_{\text{actual}})^3}}{(\text{No }_{\text{DataCells}} - 1) \cdot (\text{No }_{\text{DataCells}} - 2) \cdot (\sigma_{\text{actual}})^3} \qquad \text{Skewness} = -0.471$$

Kurtosis

Kuttosis :=
$$\frac{\text{No} \text{ DataCells} \cdot (\text{No} \text{ DataCells} + 1) \cdot \overline{\Sigma (\text{Cells} - \mu_{\text{actual}})^4}}{(\text{No} \text{ DataCells} - 1) \cdot (\text{No} \text{ DataCells} - 2) \cdot (\text{No} \text{ DataCells} - 3) \cdot (\sigma_{\text{ actual}})^4} \text{ Kurtosis = -0.848} + -\frac{3 \cdot (\text{No} \text{ DataCells} - 1)^2}{(\text{No} \text{ DataCells} - 2) \cdot (\text{No} \text{ DataCells} - 3)}$$

C-1302-187-E310-041 Rev. No. 0

Sheet No. 3 of 16

, ł ,

Normal Probability Plot

Pi

In a normal plot, each data value is plotted against what its value would be if it actually came from a normal distribution. The expected normal values, called normal scores, and can be estimated by first calculating the rank scores of the sorted data.

j := 0.. last(Cells) srt := sort(Cells)

Then each data point is ranked. The array rank captures these ranks (

The normal scores are the corresponding *p*th percentile points from the standard normal distribution:

 $x \coloneqq 1$ N_Score_i \coloneqq root[cnorm(x) - (p_i), x]

Sheet No. 4 of 16

Upper and Lower Confidence Values

The/Upper and Lower confidence values are calculated based on .05 degree of confidence "q"

No DataCells := length (Cells)

$$\alpha := .05$$
 $T\alpha := qt \left[\left(1 - \frac{\alpha}{2} \right), \text{No DataCells} \right] T\alpha = 2.365$

*Lower 95%Con := $\mu_{actual} - T\alpha \frac{\sigma_{actual}}{\sqrt{No DataCells}}$ Lower 95%Con = 1.166-10³

Upper 95%Con :=
$$\mu_{actual} + T\alpha \frac{\sigma_{actual}}{\sqrt{N_0 DataCells}}$$
, Upper 95%Con = 1.193•10³

These values represent a range on the calculated mean in which there is 95% confidence.

Graphical Representation

Distribution of the "Cells" data points are sorted in 1/2 standard deviation increments (bins) within +/- 3 standard deviations

Bins := Make $bins(\mu_{actual}, \sigma_{actual})$

Distribution := hist(Bins, Cells)

The mid points of the Bins are calculated

k := 0., 11

$$Midpoints_{k} := \frac{(Bins_{k} + Bins_{k})}{2}$$

		0
		0
· · · ·		1
·.	-	0
		1
Distribution =		1
	•	2
		1
		1
		0
		0

The Mathcad function pnorm calculates a portion of normal distribution curve based on a given mean and standard deviation

normal curve₀ := pnorm(Bins₁,
$$\mu_{actual}, \sigma_{actual})$$

normal curve_k := pnorm(Bins_{k+1}, $\mu_{actual}, \sigma_{actual}) - pnorm(Binsk, $\mu_{actual}, \sigma_{actual})$$

normal curve := No DataCells ·normal curve

Results For Elevation Sandbed elevation Location Oct. 2006

The following schematic shows: the the distribution of the samples, the normal curve based on the actual mean and standard deviation, the kurtosis, the skewness, the number of data points, and the the lower and upper 95% confidence values. Below is the Normal Plot for the data.

Sandbed Location 3D Trend

For 1992

Dates_d := Day year(12, 8, 1992).

page := READPRN("U:\MSOFFICE\Drywell Program data\Dec. 1992 Data\sandbed\Data Only\SB3D.txt")

Points 7 := show7cells(page, 1, 7, 0)

Data

Points $_7 = [1.198 \ 1.191 \ 1.191 \ 1.184 \ 1.159 \ 1.182 \ 1.169]$

nnn := con7vert (Points 7, 7, 1) No DataCells := length (nnn)

Cells := deletezero cells (nnn, No DataCells)

Point 5_d := Cells₄

 $\mu_{\text{measured}_d} \coloneqq \text{mean(Cells}) \xrightarrow{\sigma_{\text{measured}_d}} \coloneqq \text{Stdev(Cells})$

ev(Cells) Standard _{errord}:

σ measured

No DataCells

OCLR00019591

Sheet No. 6 of 16

:= 0

Appendix 14 C-1302-187-E310-041 Rev. No. 0

Sheet No. 7 of 16

For 1994

≔ d + 1

page := READPRN("U:\MSOFFICE\Drywell Program data\Sept. 1994 Data\sandbed\Data Only\SB3D.txt")

Dates := Day year (9, 14, 1994)

Points 7 := show7cells(page , 1 , 7 , 0)

Data

No DataCells := length(nnn)

Points $_7 = [1.194 \ 1.194 \ 1.191 \ 1.194 \ 1.164 \ 1.184 \ 1.168]$

nnn := $con7vert(Points_7, 7, 1)$

Ceils := deletezero cells (nnn, No DataCells)

Point $5_d \coloneqq Cells_4$

 $\mu_{\text{measured}_d} \coloneqq \text{mean(Cells)} \quad \sigma_{\text{measured}_d} \coloneqq \text{Stdev(Cells)}$

Sheet No. 8 of 16

For 1996

d ≔ d + 1

page := READPRN("U:\MSOFFICE\Drywell Program data\Sept.1996 Data\sandbed\Data Only\SB3D.txt")

Dates_d := Day year(9, 16, 1996)

Points $_7 :=$ show7cells(page, 1, 7, 0)

Points $_7 = [1.194 \ 1.192 \ 1.181 \ 1.139 \ 1.158 \ 1.185 \ 1.173]$

Data

nnn := con7vert (Points $_7, 7, 1$)

No DataCells := length (nnn)

Cells := deletezero cells (nnn, No DataCells)

Point $5_d := Cells_4$

 $\mu_{\text{measured}_d} := \text{mean(Cells)} \sigma_{\text{measured}_d} := \text{Stdev(Cells)}$

 σ measured Standard error √^{No} DataCells

Sheet No. 9 of 16

For 2006

 $d \coloneqq d + 1$

page := READPRN("U:\MSOFFICE\Drywell Program data\OCT 2006 Data\Sandbed\SB3D.txt")

 $Dates_{d} := Day_{year}(10, 16, 2006)$

Points 7 := show7cells(page , 1 , 7 , 0)

Data

Points $_7 = [1.199 \ 1.189 \ 1.187 \ 1.173 \ 1.156 \ 1.187 \ 1.166]$

nm := con7vert (Points 7, 7, 1)

No DataCells := length(nnn)

Cells := deletezero cells (nm, No DataCells) '

Point 5_d := Cells₄

 $\mu_{\text{measured}_d} \coloneqq \text{mean(Cells)}$

 $\sigma_{\text{measured}_d} \coloneqq \text{Stdev(Cells)} \quad \text{Standard}_{\text{error}_d} \coloneqq$

 $\frac{\sigma_{\text{measured}_d}}{\sqrt{N_o \text{DataCells}}}$

Below are matrices which contain the date when the data was collected, Mean, Standard Deviation, Standard Error for each date.

$$Dates = \begin{bmatrix} 1.993 \cdot 10^{3} \\ 1.995 \cdot 10^{3} \\ 1.997 \cdot 10^{3} \\ 2.007 \cdot 10^{3} \end{bmatrix}$$

$$Point_{5} = \begin{bmatrix} 1.159 \cdot 10^{3} \\ 1.164 \cdot 10^{3} \\ 1.158 \cdot 10^{3} \\ 1.158 \cdot 10^{3} \end{bmatrix}$$

$$\mu_{measured}^{1} = \begin{bmatrix} 1.182 \cdot 10^{3} \\ 1.184 \cdot 10^{3} \\ 1.175 \cdot 10^{3} \\ 1.18 \cdot 10^{3} \end{bmatrix}$$

$$Standard_{error} = \begin{bmatrix} 5.164 \\ 4.891 \\ 7.518 \\ 5.69 \end{bmatrix}, \sigma_{measured} = \begin{bmatrix} 13.663 \\ 12.941 \\ 19.89 \\ 15.054 \end{bmatrix}$$

$$Total_{means} := rows(\mu_{measured}) \qquad Total_{means} = 4$$

$$SST := \sum_{i=0}^{1} (\mu_{measured_{i}} - mean(\mu_{measured}))^{2} \qquad SST = 50.796$$

$$SSE := \sum_{i=0}^{1} (\mu_{measured_{i}} - yhat(Dates, \mu_{measured}))^{2} \qquad SSE = 47.157$$

$$SSR := \sum_{i=0}^{1} (yhat(Dates, \mu_{measured})_{i} - mean(\mu_{measured}))^{2} \qquad SSR = 3.639$$

$$DegreeFree_{55} := Total_{means} - 2 \qquad DegreeFree_{reg} := 1 \qquad DegreeFree_{51} := Total_{means}$$

$$MSE := \frac{SSE}{DegreeFree}_{ss}, MSR := \frac{SSR}{DegreeFree}_{reg}, MST := \frac{SST}{DegreeFree}_{st}$$

$$MSE = 23.578, MSR = 3.639, MST = 16.932$$

$$StGrand_{err} := \sqrt{MSE}, StGrand_{err} = 4.856$$

F Test for Corrosion

Sheet No. 11 of 16

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

$$i := 0$$
. Total means τ 1 μ grand measured $=$ mean $(\mu$ measured)

$$\sigma$$
grand measured := Stdev(μ measured)

GrandStandard error₀ :=
$$\frac{\sigma \text{grand measured}}{\sqrt{\text{Total means}}}$$

The minimum required thickness at this elevation is $Tmin_{gen SB} \approx 736$ (Ref. 3.25)

Plot of the grand mean and the actual means over time

Sheet No. 12 of 16

To conservatively address the location, the apparent corrosion rate is calculated and compared to the minimum required wall thickness at this elevation

$$m_s := slope (Dates, \mu_{measured}) \quad m_s = -0.178$$

$$y_b := intercept(Dates, \mu_{measured}) y_b = 1.535 \cdot 10^3$$

The 95% Confidence curves are calculated

$$\alpha_{+} \coloneqq 0.05 \quad k \coloneqq 2029 - 1985$$

$$\mathbf{f} \coloneqq \mathbf{0} \cdot \mathbf{k} - \mathbf{1}$$

sum :=

Thick actualmean := mean(Dates)

$$\sum_{i} (Dates_{d} - mean(Dates))^{2}$$

upper_f := Thick predict_f ...

+
$$qt\left(1 - \frac{\alpha_t}{2}, \text{Total}_{means} - 2\right)$$
 StGrand $err \left(1 + \frac{1}{(d+1)} + \frac{(\text{year}_{predict_f} - \text{Thick}_{actualmean})^2}{sum}\right)$

lower, := Thick predict, ...

$$+ -\left[qt\left(1 - \frac{\alpha_{t}}{2}, \text{Total}_{\text{means}} - 2\right) \cdot \text{StGrand}_{err} \cdot \sqrt{1 + \frac{1}{(d+1)}} + \frac{\left(\frac{\text{year}_{\text{predict}_{f}} - \text{Thick}_{\text{actualmean}}\right)^{2}}{\text{sum}}\right]$$

0.178

Therefore even though F-ratio does not support the regression model the above curve shows that even at the lower 95% confidence band this location will not corrode to below Drywell Vessel Minimum required thickness by the plant end of life.

The section below calculates what the postulated mean thickness would be if this grid were to corrode at a minimum observable rate observed in appendix 22.

Rate min_observed := 6.9

Postulated meanthickness := µ measured, - Rate min_observed (2029 - 2006)

Postulated meanthickness = $1.021 \cdot 10^3$

which is greater than

 $Tmin_gen_{SB_3} = 736$

Appendix 14C-1302-187-E310-041 Rev. No. 0Since No. 14 of 16The following addresses the readings at the lowest single pointFoint
$$s_1 = 0$$
Foint $s_1 = 0$ Foint $s_1 = 0$ SST point $= -34.75$ SSE $p_{oint} = -3.95$ MSR $p_{oint} = -3.95$ SSE $p_{oint} = -3.959$ MSR $p_{oint} = -3.156$ F Test for CorrosionF $a_{ciolul} Reg = \frac{MSR p_{oint}}{MSE p_{oint}}$ F $a_{ciolul} Reg = \frac{msR p_{oint}}{MSE p_{oint}}$ <

C-1302-187-E310-041 Rev. No. 0

Sheet No. 16 of 16

The section below calculates what the postulated individual thickness would be if this point were to corrode at a minimum observable rate observed in appendix 22.

Rate min_observed := 6.9

Postulated thickness := Point 53 - Rate min_observed (2029 - 2006)

Postulated thickness = 997.3

which is greater than

Tmin_local $SB_3 = 490$

The section below calculates what the postulated corrosion rate necessary for the thinnest individual point to reach the local required thickness by 2029.

minpoint = 1.156

 $\frac{(1000 \cdot \text{minpoint} - \text{Tmin}_{\text{local }SB_{22}})}{(2005 - 2029)}$ required rate. :=_

year predict₂₂ = $2.029 \cdot 10^3$

required $_{rate.} = -27.75$

Tmin_local _{SB22} = 490

mils per year

Appendix 15 - Sand Bed Elevation Bay 5D

October 2006 Data

The data shown below was collected on 10/18/06.

page := READPRN("U:\MSOFFICE\Drywell Program data\OCT 2006 Data\Sandhed\SB5D.txt")

Points $_7 :=$ show7cells(page , 1 , 7 , 0)

Points $_7 = \begin{bmatrix} 1.174 & 1.191 & 1.186 & 1.187 & 1.187 & 1.184 & 1.184 \end{bmatrix}$

Cells := con7vert (Points 7, 7, 1 No DataCells := length (Cells)

Cells := deletezero $_{cells}(Cells, No_{DataCells})$

The thinnest point is at point 1 at this location is shown below

minpoint := $\min(\text{Points }_7)$

minpoint = 1.174

OCLR00019602

Kurtosis :=
$$\frac{\text{No }_{\text{DataCells}} \cdot (\text{No }_{\text{DataCells}} + 1) \cdot \Sigma (\text{Cells} - \mu_{\text{actual}})^4}{(\text{No }_{\text{DataCells}} - 1) \cdot (\text{No }_{\text{DataCells}} - 2) \cdot (\text{No }_{\text{DataCells}} - 3) \cdot (\sigma_{\text{actual}})^4} \text{ Kurtosis} = 3.468$$
$$+ \frac{3 \cdot (\text{No }_{\text{DataCells}} - 1)^2}{(\text{No }_{\text{DataCells}} - 2) \cdot (\text{No }_{\text{DataCells}} - 3)}$$

Normal Probability Plot

In a normal plot, each data value is plotted against what its value would be if it actually came from a normal distribution. The expected normal values, called normal scores, and can be estimated by first calculating the rank scores of the sorted data.

j := 0.. last(Cells) srt := sort(Cells)

Then each data point is ranked. The array rank captures these ranks,

$$r_{j} := j + 1 \qquad \operatorname{rank}_{j} := \frac{\sum \left(\overrightarrow{\operatorname{srt} = \operatorname{srt}_{j}} \right) \cdot r}{\sum \operatorname{srt} = \operatorname{srt}_{j_{4}}}$$

$$p_j \coloneqq \frac{\operatorname{rank}_j}{\operatorname{rows}(\operatorname{Cells}) + 1}$$

The normal scores are the corresponding pth percentile points from the standard normal distribution:

 $x \coloneqq 1$ N_Score_j \coloneqq root[cnorm(x) - (p_j), x]

Upper and Lower Confidence Values

The/Upper and Lower confidence values are calculated based on .05 degree of confidence "q"

No DataCells := length (Cells)

$$\alpha := .05$$
 $T\alpha := qt\left[\left(1 - \frac{\alpha}{2}\right), \text{No}_{\text{DataCells}}\right] T\alpha = 2.365$

*Lower 95%Con := $\mu_{actual} - T\alpha \cdot \frac{\sigma_{actual}}{\sqrt{No DataCells}}$ Lower 95%Con = 1.18*10³

Uppet 95%Con :=
$$\mu_{actual} + T\alpha \frac{\sigma_{actual}}{\sqrt{N_{o}_{DataCells}}}$$

 $_{\rm Upper 95\%Con} = 1.189 \cdot 10^3$

0

0

Distribution =

These values represent a range on the calculated mean in which there is 95% confidence.

Graphical Representation

Distribution of the "Cells" data points are sorted in 1/2 standard deviation increments (bins) within +/- 3 standard deviations

Bins := Make $bins(\mu_{actual}, \sigma_{actual})$

Distribution := hist(Bins, Cells)

The mid points of the Bins are calculated

k := 0.. 11 Midpoints_k :=
$$\frac{(\text{Bins}_k + \text{Bins}_{k+1})}{2}$$

The Mathcad function pnorm calculates a portion of normal distribution curve based on a given mean and standard deviation

normal
$$_{curve_0} := pnorm(Bins_1, \mu_{actual}, \sigma_{actual})$$

normal $_{curve_k} := pnorm(Bins_{k+1}, \mu_{actual}, \sigma_{actual}) - pnorm(Bins_k, \mu_{actual}, \sigma_{actual})$

normal curve := No DataCells ·normal curve

Results For Elevation Sandbed elevation Location Oct. 2006

The following schematic shows: the the distribution of the samples, the normal curve based on the actual mean and standard deviation, the kurtosis, the skewness, the number of data points, and the the lower and upper 95% confidence values. Below is the Normal Plot for the data.

d := 0

Sandbed Location 5D Trend

For 1992 '

Dates_d := Day year(12, 8, 1992)

page := READPRN("U:\MSOFFICE\Drywell Program data\Dec. 1992 Data\sandbed\Data Only\SB5D.txt")

Points 7 := show7cells(page , 1 , 7 , 0)

Data

Points 7 = [1.164 1.22 1.167 1.185 1.183 1.174 1.178]

nm := con7vert (Points $_7$, 7, 1)

No DataCells := length(nnn)

Cells := deletezero cells (nnn, No DataCells)

Point $1_d := Cells_0$

Point $_1 = 1.164 \cdot 10^2$

 $\mu_{\text{measured}_d} := \text{mean}(\text{'Cells}) \xrightarrow{\sigma_{\text{measured}_d}} := \text{Stdev}(\text{Cells})$

Standard error_d := $\frac{\sigma_{\text{measured}_d}}{\sqrt{No \text{ DataCells}}}$

C-1302-187-E310-041 Rev. No. 0

Sheet No. 7 of 16

For 1994

d := d + 1

page := READPRN("U:\MSOFFICE\Drywell Program data\Sept.1994 Data\sandbed\Data Only\SB5D.txt")

 $Dates_{d} := Day_{year}(9, 14, 1994)$

Points 7 := show7cells(page, 1, 7, 0)

Data

Points $_7 = \begin{bmatrix} 1.163 & 1.172 & 1.155 & 1.174 & 1.171 & 1.171 & 1.173 \end{bmatrix}$

nnn := $con7vert(Points_7, 7, 1)$

No DataCells = length(nnn)

Cells := deletezero $_{cells}(nnn, No_{DataCells})$

Point 1_d := Cells₀

 $\mu_{\text{measured}_d} \coloneqq \text{mean(Cells)} \quad \sigma_{\text{measured}_d} \coloneqq \text{Stdev(Cells)} \quad \text{Standard}_{\text{error}_d} \coloneqq ...$

σ measured

No DataCells

C-1302-187-E310-041 Rev. No. 0

Sheet No. 8 of 16

 $d \coloneqq d + 1$

For 1996

page := READPRN("U:\MSOFFICE\Drywell Program data\Sept.1996 Data\sandbed\Data Only\SBSD.txt")

Dates_d := Day year(9, 16, 1996)

Points $_7 :=$ show7cells(page, 1, 7, 0)

Data

Points $\gamma = \begin{bmatrix} 1.163 & 1.18 & 1.168 & 1.178 & 1.174 & 1.17 & 1.175 \end{bmatrix}$

nnn := con7vert (Points $_7$, 7, 1)

No DataCells := length(nnn)

Cells := deletezero $_{cells}(nnn, No_{DataCells})$

 $\mu_{\text{measured}_d} \coloneqq \text{mean(Cells)} \quad \sigma_{\text{measured}_d} \coloneqq \text{Stdev(Cells)}$

Point $1_d \coloneqq Cells_0$

 $\sigma_{\text{measured}_d}$ Standard error_d ;= No DataCells

 $d \coloneqq d + 1$

4,

For 2006

page := READPRN("U:\MSOFFICE\Drywell Program data\OCT 2006 Data\Sandbed\SB5D.txt")

, Dates := Day year(10, 16, 2006)

Points 7 := show7cells(page , 1 , 7 , 0)

Data

Points 7 = [1.174 1.191 1.186 1.187 1.187 1.184 1.184]

nnn := $con7vert(Points_7, 7, 1)$

No DataCells := length(nnn)

Cells := deletezero cells (nnn, No DataCells)

Point $1_d \coloneqq Cells_0$

 $\mu_{\text{measured}_d} := \text{mean(Cells}) \quad \sigma_{\text{measured}_d} := \text{Stdev(Cells}) \quad \text{Standard}_{\text{error}_d}$

σ measured No DataCells

Below are matrices which contain the date when the data was collected, Mean, Standard Deviation, Standard Error for each date.

$$Dat^{+s} = \begin{bmatrix} 1.993 \cdot 10^{3} \\ 1.995 \cdot 10^{3} \\ 1.995 \cdot 10^{3} \\ 2.007 \cdot 10^{3} \end{bmatrix}$$

$$Point_{1} = \begin{bmatrix} 1.164 \cdot 10^{3} \\ 1.163 \cdot 10^{3} \\ 1.163 \cdot 10^{3} \\ 1.163 \cdot 10^{3} \\ 1.174 \cdot 10^{3} \end{bmatrix}$$

$$\mu_{measured}^{i} = \begin{bmatrix} 1.182 \cdot 10^{3} \\ 1.168 \cdot 10^{3} \\ 1.168 \cdot 10^{3} \\ 1.173 \cdot 10^{3} \\ 1.185 \cdot 10^{3} \end{bmatrix}$$

$$Standard_{error} = \begin{bmatrix} 7.04 \\ 2.617 \\ 2.245 \\ 1.997 \end{bmatrix}, \sigma_{measured} = \begin{bmatrix} 18.627 \\ 6.925 \\ 5.94 \\ 5.282 \end{bmatrix}$$

$$Total_{means} := rows(\mu_{measured})$$

$$Total_{means} = 4$$

$$SST := \sum_{i=0}^{last(Dates)} (\mu_{measured_{i}} - mean(\mu_{measured}))^{2}$$

$$SST = 173.362$$

last(Dates) $\left(\mu_{\text{measured}_i} - \text{yhat}\left(\text{Dates}, \mu_{\text{measured}}\right)_i\right)^2$ SSE ≔ SSE = 119.919 i =

SSR :=
$$\sum_{i=0}^{\text{last(Dates)}} (\text{yhat}(\text{Dates}, \mu_{\text{measured}})_i - \text{mean}(\mu_{\text{measured}}))^2$$
 SSR = 53.443

DegreeFree reg := 1

DegreeFree st := Total means -1

SSR SST SSE MST := MSR := MSE := DegreeFree ss DegreeFree reg DegreeFree st MSE = 59.96 MSR = 53.443 MST = 57.787

StGrand err := VMSE StGrand err = 7.743

 $i \coloneqq 0$... Total means - 1

F Test for Corrosion

$$= 0.05 \qquad F_{actaul}Reg := \frac{MSR}{MSE}$$

$$F_{critical_reg} := qF(1 - \alpha, DegreeFree_{reg}, DegreeFree_{ss})$$

.۱,

$$F_{ratio_reg} := \frac{F_{actaul_Reg}}{F_{critical_reg}}$$

$$F_{ratio_reg} = 0.048$$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

$$\mu$$
grand measured := mean(μ measured)

The minimum required thickness at this elevation is Tmin_gen SB: = 736 (Ref. 3.25)

Plot of the grand mean and the actual means over time

1

Ć

 $\mathbf{f} \coloneqq \mathbf{0} \cdot \mathbf{k} - \mathbf{1}$

To conservatively address the location, the apparent corrosion rate is calculated and compared to the minimum required wall thickness at this elevation

 $m_s := slope (Dates, \mu_{measured}) \quad m_s = 0.681$

 $y_b := intercept(Dates, \mu_{measured}) y_b = -183.458$

The 95% Confidence curves are calculated

$$x_{+} := 0.05 \quad k := 2029 - 1985$$

Thick
$$\frac{1}{\text{actualmean}} := \text{mean}(\text{Dates})$$
 sum $:= \sum_{d} (\text{Dates}_{d-T} \text{ mean}(\text{Dates}))^2$

upper := Thick predict, ...

+
$$qt\left(1-\frac{\alpha_t}{2}, \text{Total}_{\text{means}}-2\right)$$
 StGrand err $\sqrt{1+\frac{1}{(d+1)}+\frac{(\text{year}_{\text{predict}_f}-\text{Thick}_{\text{actualmean}})^2}{\text{sum}}}$

 $lower_{f} := Thick_{predict_{f}} \cdots$

$$+ -\left[qt\left(1 - \frac{\alpha_{t}}{2}, \text{Total}_{\text{means}} - 2\right) \cdot \text{StGrand}_{err} \cdot \sqrt{1 + \frac{1}{(d+1)} + \frac{\left(\text{year}_{\text{predict}_{f}} - \text{Thick}_{\text{actualmean}}\right)^{2}}{\text{sum}}}\right]$$

Q.681

Therefore even though F-ratio does not support the regression model the above curve shows that even at the lower 95% confidence band this location will not corrode to below Drywell Vessel Minimum required thickness by the plant end of life.

The section below calculates what the postulated mean thickness would be if this grid were to corrode at a minimum observable rate observed in appendix 22.

Rate min_observed = 6.9

Postulated meanthickness := μ_{measured_3} - Rate min_observed (2029 - 2006)

Postulated meanthickness = $1.026 \cdot 10^3$

which is greater than

 $Tmin_gen_{SB_3} = 736$

Sheet No. 14 of 16

The following addresses the readings at the lowest single point

Point
$$1 := Cells_0$$

1

MST point = 28.667

77.01

$$SST_{point} \coloneqq \sum_{i=0}^{last(Dates)} (Point_{1_i} - mean(Point_i))^2 \quad '$$

$$SST_{point} \equiv 86$$

$$SSE_{point} := \sum_{i=0}^{last(Dates)} (Point_{1_{i}} - yhat(Dates, Point_{1})_{i})^{2} SSE_{point} = 8.99$$

$$SSR_{point} := \sum_{i=0}^{last(Dates)} (yhat(Dates, Point_1)_i - mean(Point_1))^2 \qquad SSR_{point} =$$

$$MSE_{point} := \frac{SSE_{point}}{DegreeFree_{ss}} \qquad MSR_{point} := \frac{SSR_{point}}{DegreeFree_{reg}} \qquad MST_{point} := \frac{SST_{point}}{DegreeFree_{st}}$$

$$MSE_{point} = 4.495$$

StPoint err :=
$$\sqrt{\text{MSE}_{\text{point}}}$$

.

 $MSR_{point} = 77.01$

StPoint err = 2.12

$$F_{actaul_Reg} := \frac{MSR_{point}}{MSE_{point}}$$

$$F_{ratio_reg} := \frac{F_{actaul_Reg}}{F_{critical_reg}}$$

$$F_{ratio_reg} = 0.925$$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean and the apparent rate which is positive which is not credible.

The section below calculates what the postulated individual thickness would be if this point were to corrode at a minimum observable rate observed in appendix 22.

Rate min_observed := 6.9

Postulated thicknessin := Point 13 - Rate min_observed (2029 - 2006)

Postulated thicknessin = $1.015 \cdot 10^3$

which is greater than

Tmin_local $SB_3 = 490$

The section below calculates what the postulated corrosion rate necessary for the thinnest individual point to reach the local required thickness by 2029.

minpoint = 1.174

required rate. := $\frac{(1000 \text{ minpoint} - \text{Tmin_local } \text{SB}_{22})}{(2005 - 2029)}$

year predict₂₂ = $2.029 \cdot 10^3$

required rate. = -28.5

Tmin_local SB₂₂ = 490

mils per year

Appendix 16 - Sand Bed Elevation Bay 7D

October 2006 Data

The data shown below was collected on 10/18/08.

page := READPRN("U:\MSOFFICE\Drywell Program data\OCT 2006 Data\Sandhed\SB7D.txt")

Points 7 := show7cells(page , 1 , 7 , 0)

Points $_7 = \begin{bmatrix} 1.144 & 1.147 & 1.147 & 1.138 & 1.102 & 1.135 & 1.116 \end{bmatrix}$

Cells := con7vert (Points 7, 7, 1 No DataCells := length (Cells)

Cells := deletezero cells (Cells, No DataCells)

The thinnest point at this location is shown below

minpoint := $min(Points_7)$ minpoint = 1.102

Sheet No. 2 of 16

Mean and Standard Deviation

$$\mu_{actual} := mean(Cells)$$
 $\mu_{actual} = 1.133 \cdot 10^3$ $\sigma_{actual} := Stdev(Cells)$ $\sigma_{actual} := 17.279$

Standard Error

• .

Standard error :=
$$\frac{\sigma_{\text{actual}}}{\sqrt{No_{\text{DataCells}}}}$$

Standard error = 6.531

Skewness

Skewness :=
$$\frac{(\text{No}_{\text{DataCells}}) \cdot \overline{\Sigma(\text{Cells} - \mu_{\text{actual}})^3}}{(\text{No}_{\text{DataCells}} - 1) \cdot (\text{No}_{\text{DataCells}} - 2) \cdot (\sigma_{\text{actual}})^3} \quad \text{Skewness} = -1.186$$

Kurtosis

Kuttosis :=
$$\frac{\text{No DataCells} \cdot (\text{No DataCells} + 1) \cdot \overline{\Sigma(\text{Cells} - \mu_{\text{actual}})^4}}{(\text{No DataCells} - 1) \cdot (\text{No DataCells} - 2) \cdot (\text{No DataCells} - 3) \cdot (\sigma_{\text{actual}})^4} \text{Kuttosis} = 0.193$$
$$+ -\frac{3 \cdot (\text{No DataCells} - 1)^2}{(\text{No DataCells} - 2) \cdot (\text{No DataCells} - 3)}$$

C-1302-187-E310-041 Rev. No. 0

Sheet No. 3 of 16

Normal Probability Plot

In a normal plot, each data value is plotted against what its value would be if it actually came from a normal distribution. The expected normal values, called normal scores, and can be estimated by first calculating the rank scores of the sorted data.

j := 0.. last(Cells) srt :=, sort(Cells)

Then each data point is ranked. The array rank captures these ranks

$$\mathbf{r}_{\mathbf{j}} \coloneqq \mathbf{j} + 1 \qquad \operatorname{rank}_{\mathbf{j}} \coloneqq \frac{\Sigma\left(\overrightarrow{\operatorname{srt}}, \operatorname{srt}_{\mathbf{j}}\right) \cdot \mathbf{r}}{\Sigma \operatorname{srt}_{\mathbf{j}} = \operatorname{srt}_{\mathbf{j}}}$$

$$p_j \coloneqq \frac{\operatorname{rank}_j}{\operatorname{rows}(\operatorname{Cells}) + 1}$$

The normal scores are the corresponding *p*th percentile points from the standard normal distribution:

 $x \coloneqq 1$ N_Score_j \coloneqq root[cnorm(x) - (p_j),x]

•.

Distribution =

n

Sheet No. 4 of 16

Upper and Lower Confidence Values

The/Upper and Lower confidence values are calculated based on .05 degree of confidence "a

No DataCells := length (Cells)

$$\alpha := .05$$
 $T\alpha := qt\left[\left(1 - \frac{\alpha}{2}\right), No \text{ DataCells}\right] T\alpha = 2.36$

Lower 95%Con := $\mu_{actual} - T\alpha - \frac{\sigma_{actual}}{\sqrt{No_{DataCells}}}$ Lower 95%Con = 1.117.10³

Jppet 95%Con :=
$$\mu_{actual}$$
 + T α $\frac{\sigma_{actual}}{\sqrt{No DataCells}}$,Upper 95%Con = 1.148.10

These values represent a range on the calculated mean in which there is 95% confidence.

Graphical Representation

Distribution of the "Cells" data points are sorted in 1/2 standard deviation increments (bins) within +/- 3 standard deviations

Bins := Make bins ($\mu_{actual}, \sigma_{actual}$)

Distribution := hist(Bins, Cells)

The mid points of the Bins are calculated

$$Midpoints_{k} := \frac{(Bins_{k} + Bins_{k+1})}{2}$$

The Mathcad function pnorm calculates a portion of normal distribution curve based on a given mean and standard deviation

$$\begin{array}{l} \operatorname{normal}_{\operatorname{curve}_{0}} \coloneqq \operatorname{pnorm}\left(\operatorname{Bins}_{1}, \mu_{\operatorname{actual}}, \sigma_{\operatorname{actual}}\right) \\ \operatorname{normal}_{\operatorname{curve}_{k}} \coloneqq \operatorname{pnorm}\left(\operatorname{Bins}_{k+1}, \mu_{\operatorname{actual}}, \sigma_{\operatorname{actual}}\right) - \operatorname{pnorm}\left(\operatorname{Bins}_{k}, \mu_{\operatorname{actual}}, \sigma_{\operatorname{actual}}\right) \end{array}$$

normal curve := No DataCells .normal curve

Results For Elevation Sandbed elevation Location Oct. 2006

The following schematic shows: the the distribution of the samples, the normal curve based on the actual mean and standard deviation, the kurtosis, the skewness, the number of data points, and the the lower and upper 95% confidence values. Below is the Normal Plot for the data.

Appendix 16 C-1302-187-E310-041 Rev. No. 0 Sheet No. 6 of 16

Sandbed Location 7D Trend

For 1992

Dates_d := Day year(12, 8, 1992)

age := READPRN("U:\MSOFFICE\Drywell Program data\Dec. 1992 Data\sandbed\Data Only\SB7D.txt")

Points 7 := show7cells(page , 1 , 7 , 0)

Data

Points $_7 = [1.147 \ 1.149 \ 1.15 \ 1.15 \ 1.111 \ 1.127 \ 1.122]$

nnn := $con7vert(Points_7, 7, 1)$ No DataCells := length(nnn)

Ceils := deletezero cells (nnn, No DataCells)

Point $5_d := Cells_4$

Point $_5 = 1.111 \cdot 10^3$

 $\mu_{\text{measured}_d} := \text{mean}(\text{'Cells}) \quad \sigma_{\text{measured}_d} := \text{Stdev}(\text{ Cells})$

 $\sigma_{\text{measured}_d}$ Standard errord := No DataCells

Sheet No. 7 of 16

 $d \coloneqq d + 1$

For 1994

page := READPRN("U:\MSOFFICE\Drywell Program data\Sept.1994 Data\sandbed\Data Only\SB7D.txt"

Dates = Day year (9, 14, 1994)

Points 7 := show7cells(page, 1, 7, 0)

Data

Points $_7 = [1.143 \ 1.146 \ 1.137 \ 1.146 \ 1.135 \ 1.134 \ 1.113]$

· .'

nnn := $con7vert(Points_7, 7, 1)$

No DataCells := length(nnn)

Cells := deletezero cells (nnn, No DataCells)

Point $_{5_d} \coloneqq Cells_4$

 $\mu_{\text{measured}_d} \coloneqq \text{mean(Cells)} \quad \sigma_{\text{measured}_d} \coloneqq \text{Stdev(Cells)}$

o measured Standard error No DataCells

Appendix 16 C-1302-187-E310-041 Rev. No. 0

For 1996

Sheet No. 8 of 16

d ≔ d + 1

page := READPRN("U:\MSOFFICE\Drywell Program data\Sept.1996 Data\sandbed\Data Only\SB7D.txt")

 $Dates_d := Day_{year}(9, 16, 1996)$

Points $_7 :=$ show7cells(page, 1, 7, 0)

Data

Points $_7 = [1.152 \ 1.15 \ 1.146 \ 1.15 \ 1.113 \ 1.126 \ 1.126]$

nnn := con7vert (Points $_7$, 7, 1)

No DataCells := length(nnn)

Cells := deletezero cells (nnn , No DataCells)

Point 5_d := Cells₄

 $\mu_{\text{measured}_d} := \text{mean}(\text{Cells})$

 $\sigma_{\text{measured}_d} \coloneqq \text{Stdev}(\text{Cells})$

Standard error :=

 $:= \frac{\sigma_{\text{measured}_d}}{\sqrt{\text{No}_{\text{DataCells}}}}$

OCLR00019625.

Sheet No. 9 of 16

 $d \coloneqq d + 1$

For 2006

page := READPRN("U:\MSOFFICE\Drywell Program data\OCT 2006 Data\Sandbed\SB7D.txt")

Data

Dates_d := Day year (10, 16, 2006)

Points $_7 :=$ show7cells(page , 1 , 7 , 0)

Points $_7 = [1.144 \ 1.147 \ 1.147 \ 1.138 \ 1.102 \ 1.135 \ 1.116]$

<u>г</u>. Г.

nnn := con7vert (Points $_7$, 7, 1)

No DataCells := length (nnn)

Cells := deletezero cells(nnn, No DataCells).

Point $5_d := Cells_4$

 $\mu_{\text{measured}_d} := \text{mean(Cells}) \sigma_{\text{measured}_d} := \text{Stdev(Cells}) \text{Standard}_{\text{error}_d}$

یک i = 0

Sheet No. 10 of 16

Below are matrices which contain the date when the data was collected, Mean, Standard Deviation, Standard Error for each date.

$$\begin{aligned} & \text{Dates} = \begin{bmatrix} 1.993 \cdot 10^{3} \\ 1.995 \cdot 10^{3} \\ 1.995 \cdot 10^{3} \\ 2.007 \cdot 10^{3} \end{bmatrix} \\ & \text{Point}_{5} = \begin{bmatrix} 1.111 \cdot 10^{3} \\ 1.135 \cdot 10^{3} \\ 1.131 \cdot 10^{3} \\ 1.102 \cdot 10^{3} \end{bmatrix} \\ & \text{measured}^{1} = \begin{bmatrix} 1.137 \cdot 10^{3} \\ 1.136 \cdot 10^{3} \\ 1.138 \cdot 10^{3} \\ 1.138 \cdot 10^{3} \end{bmatrix} \\ & \text{Standard}_{error} = \begin{bmatrix} 6.137 \\ 4.319 \\ 5.902 \\ 6.531 \end{bmatrix} , \sigma \text{ measured} = \begin{bmatrix} 16.236 \\ 11.427 \\ 15.616 \\ 17.279 \end{bmatrix} \\ & \text{Total}_{means} := \text{rows}(\mu \text{ measured}) \\ & \text{Total}_{means} := 4 \\ \\ & \text{SST} := \sum_{i=0}^{i} (\mu \text{ measured}_{i} - \text{mean}(\mu \text{ measured}))^{2} \\ & \text{SST} = 13.592 \\ & \text{SSE} := \sum_{i=0}^{i} (\mu \text{ measured}_{i} - \text{yhat}(\text{Dates}, \mu \text{ measured})_{i})^{2} \\ & \text{SSE} = 2.987 \end{aligned}$$

SSR := $\sum_{i=0}^{last(Dates)} (yhat(Dates, \mu_{measured})_i - mean(\mu_{measured}))^2$ SSR = 10.605

DegreeFree ss := Total means - 2 DegreeFree reg := 1 DegreeFree st := Total means - 1

$MSE := \frac{SSE}{DegreeFree} $	$MSR := \frac{SSR}{DegreeFree}_{reg}$	MST := <u> SST</u> DegreeFree _{st}
MSE = 1.494	MSR = 10.605	MST = 4.531
StGrand err := \sqrt{MSE}	StGrand _{err} = 1.222	

Sheet No.

Sheet No. 12 of 16

To conservatively address the location, the apparent corrosion rate is calculated and compared to the minimum required wall thickness at this elevation

$$m_s := slope (Dates, \mu_{measured}) \quad m_s = -0.303$$

$$y_b := intercept(Dates, \mu_{measured}) y_b = 1.742 \cdot 10^{-10}$$

The 95% Confidence curves are calculated

$$x_t := 0.05 \quad k := 2029 - 1985 \qquad f := 0 ... k$$

year predict, = 1985 + f.2 Thick predict := m_s year predict + y_b

Thick
$$_{actualmean}^{\dagger} := mean(Dates)$$
 sum $:= \sum_{i} (Dates_{d \tau} mean(Dates))^{2}$

upper, := Thick predict, ...

+
$$qt\left(1-\frac{\alpha_{t}}{2}, \text{Total}_{\text{means}}-2\right)$$
 StGrand err $\sqrt{1+\frac{1}{(d+1)}+\frac{(\text{year}_{\text{predict}_{f}}-\text{Thick}_{\text{actualmean}})^{2}}{1+\frac{1}{(d+1)}}$

lower, := Thick predict, ...

$$+ -\left[qt\left(1 - \frac{\alpha_{t}}{2}, \text{Total}_{\text{means}} - 2\right) \cdot \text{StGrand}_{\text{err}} \cdot \sqrt{1 + \frac{1}{(d+1)} + \frac{\left(\text{year}_{\text{predict}_{f}} - \text{Thick}_{\text{actualmean}}\right)^{2}}{\text{sum}}}\right]$$

Sheet No. 13 of 16

-0.303

Therefore even though F-ratio does not support the regression model the above curve shows that even at the lower 95% confidence band this location will not corrode to below Drywell Vessel Minimum required thickness by the plant end of life.

The section below calculates what the postulated mean thickness would be if this grid were to corrode at a minimum observable rate observed in appendix 22.

Rate min observed := 6.9

Postulated meanthickness := μ_{measured_3} - Rate min_observed (2029 - 2006)

Postulated meanthickness = 974.014

which is greater than

Tmin_gen SB, = 736

1

۲.

Sheet No. 14 of 16

SSR point = 214.276

MST point = 196.25

The following addresses the readings at the lowest single point

SST_{point} :=
$$\sum_{i=0}^{last(Dates)} (Point_{5_i} - mean(Point_5))^2$$
 SST_{point} = 588.75
last(Dates)

$$SE_{point} := \sum_{i = 0}^{\infty} (Point_{5_i} - yhat(Dates, Point_5)_i)^2 . SSE_{point} = 374.474$$

SSR point :=
$$\sum_{i=0}^{last(Dates)} (yhat(Dates, Point_5)_i - mean(Point_5))^2$$

$$MSE_{point} := \frac{SSE_{point}}{DegreeFree}_{ss} \qquad MSR_{point} := \frac{SSR_{point}}{DegreeFree}_{reg} \qquad MST_{point} := \frac{SST_{point}}{DegreeFree}_{ss}$$

Ĺ

MSR_{point} = 214.276

F Test for Corrosion

actaul_Reg :=
$$\frac{MSR_{point}}{MSE_{point}}$$

$$F_{ratio_reg} := \frac{F_{actaul_Reg}}{F_{critical_reg}}$$

 $F_{ratio_reg} = 0.062$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

Sheet No. 15 of 16

Sheet No. 16 of 16

The section below calculates what the postulated individual thickness would be if this point were to corrode at a minimum observable rate observed in appendix 22.

Rate min_observed = 6.9

Postulated thicknessin := Point 5, - Rate min_observed (2029 - 2006)

Postulated thicknessin = 943.3

which is greater than

Tmin_local $SB_3 = 490$

The section below calculates what the postulated corrosion rate necessary for the thinnest individual point to reach the local required thickness by 2029.

minpoint = 1.102

 $year_{predict_{22}} = 2.029 \cdot 10^3$

required rate. := $\frac{(1000 \text{ minpoint} - \text{Tmin_local}_{SB_{22}})}{(2005 - 2029)}$

required rate. = -25.5

Tmin_local SB₂₂ = 490

mils per year

Appendix 17 - Sand Bed Elevation Bay 9A

October 2006 Data

The data shown below was collected on 10/18/06.

page := READPRN("U:\MSOFFICE\Drywell Program data\OCT 2006 Data\Sandbed\SB9A.txt")

Points 7 := show7cells(page, 1, 7, 0)

Points $_7 = \begin{bmatrix} 1.158 & 1.159 & 1.162 & 1.159 & 1.153 & 1.13 \end{bmatrix}$

Cells := con7vert (Points 7, 7, 1 No DataCells := length (Cells)

Cells := deletezero cells (Cells, No DataCells)

The thinnest point at this location is shown below

minpoint := $\min(\text{Points } 7)$

minpoint = 1.13

1

.

C-1302-187-E310-041 Rev. No. 0

Sheet No. 2 of 16

Mean and Standard Deviation

$\mu_{actual} := mean(Cells)$	$\mu_{\text{actual}} = 1.154 \cdot 10^3$	$\sigma_{actual} := Stdev(Cells)$	$\sigma_{actual} = 11.041$
4			

'Standard Error

Standard error :=
$$\frac{\sigma_{\text{actual}}}{\sqrt{N_{o} D_{ata}Cells}}$$
 Standard error = 4.173

Skewness

Skewness :=
$$\frac{(\text{No}_{\text{DataCells}}) \cdot \overline{\Sigma(\text{Cells} - \mu_{\text{actual}})^3}}{(\text{No}_{\text{DataCells}} - 1) \cdot (\text{No}_{\text{DataCells}} - 2) \cdot (\sigma_{\text{actual}})^3} \quad \text{Skewness} = -2.341$$

Kurtosis

$$Kuttosis := \frac{No DataCells \cdot (No DataCells + 1) \cdot \overline{\Sigma(Cells - \mu_{actual})^4}}{(No DataCells - 1) \cdot (No DataCells - 2) \cdot (No DataCells - 3) \cdot (\sigma_{actual})^4} Kuttosis = 5.687$$
$$+ -\frac{3 \cdot (No DataCells - 1)^2}{(No DataCells - 2) \cdot (No DataCells - 3)}$$

C-1302-187-E310-041 Rev. No. 0

Sheet No. 3 of 16

Normal Probability Plot

In a normal plot, each data value is plotted against what its value would be if it actually came from a normal distribution. The expected normal values, called normal scores, and can be estimated by first calculating the rank scores of the sorted data.

j := 0 .. last(Cells) srt := sort(Cells)

Then each data point is ranked. The array rank captures these ranks in

$$r_j := j + 1$$
 rank $\sum_{j \in I} \frac{\sum (\overrightarrow{srt = srt_j}) \cdot r}{\sum srt = srt_{j \in I}}$

$$p_j \coloneqq \frac{\operatorname{rank}_j}{\operatorname{rows}(\operatorname{Cells}) + 1}$$

The normal scores are the corresponding pth percentile points from the standard normal distribution:

$$x := 1$$
 N_Score_j := root[cnorm(x) - (p_j), x]

Upper and Lower Confidence Values

The/Upper and Lower confidence values are calculated based on .05 degree of confidence "q"

No DataCells := length (Cells)

$$a := .05$$
 $T\alpha := qt\left[\left(1-\frac{\alpha}{2}\right), No_{DataCells}\right]$ $T\alpha = 2.365$

Lower 95%Con :=
$$\mu_{actual} - T\alpha - \frac{\sigma_{actual}}{\sqrt{No} DataCells}$$

Upper 95%Con :=
$$\mu_{actual} + T\alpha \frac{\sigma_{actual}}{\sqrt{No} DataCells}$$

Upper 95%Con = 1.164•10³

Distribution =

 $Lower_{95\%Con} = 1.144 \cdot 10^3$

These values represent a range on the calculated mean in which there is 95% confidence.

Graphical Representation

Distribution of the "Cells" data points are sorted in 1/2 standard deviation increments (bins) within +/- 3 standard deviations

Bins := Make $bins(\mu_{actual}, \sigma_{actual})$

Distribution := hist(Bins, Cells)

The mid points of the Bins are calculated

k := 0..11

$$\text{Midpoints}_{k} := \frac{\left(\text{Bins}_{k} + \text{Bins}_{k+1}\right)}{2}$$

The Mathcad function pnorm calculates a portion of normal distribution curve based on a given mean and standard deviation

normal curve₀ := pnorm(Bins₁,
$$\mu_{actual}, \sigma_{actual})$$

normal curve_k := pnorm(Bins_{k+1}, $\mu_{actual}, \sigma_{actual}) - pnorm(Binsk, $\mu_{actual}, \sigma_{actual})$$

normal curve := No DataCells normal curve

1

Results For Elevation Sandbed elevation Location Oct. 2006

The following schematic shows: the the distribution of the samples, the normal curve based on the actual mean and standard deviation, the kurtosis, the skewness, the number of data points, and the the lower and upper 95% confidence values. Below is the Normal Plot for the data.

d := 0

Sandbed Location 9A Trend

For 1992

Dates_d := Day year(12, 8, 1992)

page := READPRN("U:\MSOFFICE\Drywell Program data\Dec. 1992 Data\sandbed\Data Only\SB9A.txt")

Points $_7 :=$ show?cells(page , 1 , 7 , 0)

Data

Points $_7 = [1.162 \ 1.161 \ 1.164 \ 1.162 \ 1.161 \ 1.157 \ 1.133]$

nnn := con7vert (Points $_7, 7, 1$)

No DataCells := length(nnn)

Cells := deletezero $_{cells}(nnn, No _{DataCells})$

Point $7_d := Cells_6$

Point $_7 = 1.133 \cdot 10^3$

C-1302-187-E310-041 Rev. No. 0

Sheet No. 7 of 16

For 1994

d ≔ d + 1 ·

page := READPRN("U:\MSOFFICE\Drywell Program data\Sept.1994 Data\sandbed\Data Only\SB9A.txt"

Dates ;= Day year (9, 14, 1994)

Points 7 := show7cells(page, 1, 7, 0)

Data

Points $_7 = [1.162 \ 1.164 \ 1.168 \ 1.163 \ 1.157 \ 1.155 \ 1.132]$

nnn := con7vert (Points $_7$, 7, 1)

No_DataCells := length(nnn)

Cells := deletezero $_{cells}(nnn, No _{DataCells})$

Point 7, := Cells₆

 $\mu_{measured_d} := mean(Cells) \sigma_{measured_d} := Stdev(Cells)$

measured Standard error No DataCells

C-1302-187-E310-041 Rev. No. 0

Sheet No. 8 of 16

 $\mathbf{d} \coloneqq \mathbf{d} + \mathbf{1}$

For 1996

page := READPRN("U:\MSOFFICE\Drywell Program data\Sept.1996 Data\sandbed\Data Only\SB9A.txt")

Dates_d := Day year(9, 16, 1996)

Points 7 := show7cells(page , 1 , 7 , 0)

Data

Points $\gamma = \begin{bmatrix} 1.163 & 1.161 & 1.162 & 1.159 & 1.159 & 1.153 & 1.127 \end{bmatrix}$

nnn := $con7vert(Points_7, 7, 1)$

No DataCells := length(nnn)

Cells := deletezero cells (nnn, No DataCells)

Point 7_d := Cells₆

 $\mu_{\text{measured}_d} \coloneqq \text{mean(Cells)} \quad \sigma_{\text{measured}_d} \coloneqq \text{Stdev(Cells)}$

^o measured Standard error_d := No.DataCells

C-1302-187-E310-041 Rev. No. 0

Sheet No. 9 of 16

 $\mathbf{d} \coloneqq \mathbf{d} \neq \mathbf{1}$

For 2006

page := READPRN("U:\MSOFFICE\Drywell Program data\OCT 2006 Data\Sandbed\SB9A.txt")

Dates_d, = Day year(10, 16, 2006)

Points 7 := show7cells(page , 1 , 7 , 0)

Points $_7 = \begin{bmatrix} 1.158 & 1.159 & 1.162 & 1.159 & 1.159 & 1.153 & 1.13 \end{bmatrix}$

Data

nnn := $con7vert(Points_7, 7, 1)$

No DataCells := length(nnn)

Cells := deletezero $_{cells}(nnn, No _{DataCells})$

Point $_{7_d} \coloneqq \text{Cells}_6$

 $\mu_{\text{measured}_d} := \text{mean(Cells)} \quad \sigma_{\text{measured}_d} := \text{Stdev(Cells)} \quad \text{Standard}_{\text{error}_d} := \frac{\sigma_{\text{measured}_d}}{\sqrt{No_{\text{DataCells}}}}$

Below are matrices which contain the date when the data was collected, Mean, Standard Deviation, Standard Error for each date.

$$Dates = \begin{bmatrix} 1.993 \cdot 10^{3} \\ 1.995 \cdot 10^{3} \\ 1.997 \cdot 10^{3} \\ 2.007 \cdot 10^{3} \end{bmatrix}$$

$$Point_{7} = \begin{bmatrix} 1.133 \cdot 10^{3} \\ 1.132 \cdot 10^{3} \\ 1.127 \cdot 10^{3} \\ 1.13 \cdot 10^{3} \end{bmatrix}$$

$$\mu_{measured} = \begin{bmatrix} 1.157 \cdot 10^{3} \\ 1.157 \cdot 10^{3} \\ 1.155 \cdot 10^{3} \\ 1.155 \cdot 10^{3} \\ 1.155 \cdot 10^{3} \\ 1.154 \cdot 10^{3} \end{bmatrix}$$

$$Standard_{error} = \begin{bmatrix} 4.102 \\ 4.524 \\ 4.803 \\ 4.173 \end{bmatrix}, \sigma_{measured} = \begin{bmatrix} 10.854 \\ 11.968 \\ 12.707 \\ 11.041 \end{bmatrix}$$

$$Total_{means} := rows(\mu_{measured})$$

SST :=
$$\sum_{i=0}^{\text{last(Dates)}} (\mu_{\text{measured}_i} - \text{mean}(\mu_{\text{measured}}))^2$$
 SST = 7.158

SSE :=
$$\sum_{i=0}^{last(Dates)} (\mu_{measured_i} - yhat(Dates, \mu_{measured})_i)^2$$
 SSE = 2.28

SSR :=
$$\sum_{i=0}^{last(Dates)} (yhat(Dates, \mu_{measured})_i - mean(\mu_{measured}))^2$$
 SSR = 4.878

DegreeFree ss := Total means - 2 DegreeFree reg := 1 DegreeFree st := Total means - 1

$$MSE := \frac{SSE}{DegreeFree}_{SS}} \qquad MSR := \frac{SSR}{DegreeFree}_{reg}} \qquad MST := \frac{SST}{DegreeFree}_{ST}}$$
$$MSE = 1.14 \qquad MSR = 4.878 \qquad MST = 2.386$$

StGrand
$$_{err} := \sqrt{MSE}$$
 StGrand $_{err} = 1.068$

C-1302-187-E310-041 Rev. No. 0

Sheet No. 11 of 16

α := 0.05

Appendix 17

 $F_{critical_reg} := qF(1 - \alpha, DegreeFree_{reg}, DegreeFree_{ss})_i$

 $F_{ratio_reg} := \frac{F_{actaul_Reg}}{F_{critical_reg}}$

 $F_{ratio_reg} = 0.231$

.1.

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

 $i := 0... Total_{means} - 1$ $\mu grand_{measured_i} := mean(\mu_{measured})$

 $\sigma_{\text{grand measured}} := \text{Stdev}(\mu_{\text{measured}})$ GrandStandard $e_{\text{rror}_0} := \frac{\sigma_{\text{grand measured}}}{\sqrt{\text{Total means}}}$

The minimum required thickness at this elevation is $Tmin_gen_{SB_i} = 736$ (Ref. 3.25) Plot of the grand mean and the actual means over time

 μ grand measured₀ = 1.156 • 10^{.3} GrandStandard error = 0.772

т

C-1302-187-E310-041 Rev. No. 0

Sheet No. 12 of 16

To conservatively address the location, the apparent corrosion rate is calculated and compared to the minimum required wall thickness at this elevation

$$m_s := slope (Dates, \mu_{measured}) \qquad m_s = -0.206$$

 $y_b := intercept(Dates, \mu_{measured}) y_b = 1.567 \cdot 10^3$

The 95% Confidence curves are calculated

$$\alpha_t := 0.05 \ k := 2029 - 1985 \qquad f := 0 ... k - 1^t$$

Thick
$$actualmean := mean(Dates)$$
 sum $:= \sum_{d = 1}^{\infty} (Dates_{d = 1} mean(Dates))^2$

upper_f := Thick predict_f ... + qt $\left(1 - \frac{\alpha}{2}, \text{Total}_{\text{means}} - 2\right)$ ·StGrand err $\sqrt{1 + \frac{1}{(d+1)}} + \frac{\left(\frac{\text{year}_{\text{predict}_{f}} - \text{Thick}_{\text{actualmean}}\right)}{\text{sum}}$

lower := Thick predict, ...

$$+ -\left[qt\left(1 - \frac{\alpha_{t}}{2}, \text{Total}_{\text{means}} - 2\right) \cdot \text{StGrand}_{\text{err}} \cdot \sqrt{1 + \frac{1}{(d+1)} + \frac{\left(\frac{\text{year}_{\text{predict}_{f}} - \text{Thick}_{\text{actualmean}}\right)^{2}}{\text{sum}}}\right]$$

Therefore even though F-ratio does not support the regression model the above curve shows that even at the lower 95% confidence band this location will not corrode to below Drywell Vessel Minimum required thickness by the plant end of life.

The section below calculates what the postulated mean thickness would be if this grid were to corrode at a minimum observable rate observed in appendix 22.

Rate min_observed := 6.9

Postulated meanthickness := $\mu_{\text{measured}_3} - \text{Rate}_{\min_{\text{observed}}} \cdot (2029 - 2006)$

Postulated meanthickness = 995.586

which is greater than

 $Tmin_gen_{SB_2} = 736$

Appendix 17 .

1

١.

 $SST_{point} =$

21

MST point

 $MST_{point} = 7$

 $SSE_{point} = 18.349$

 $SSR_{point} = 2.651$

SST point

DegreeFree st

Sheet No. 14 of 16

The following addresses the readings at the lowest single point

SST_{point} :=
$$\sum_{i=0}^{last(Dates)} (Point_{7_i} - mean(Point_7))^2$$

SSE point :=
$$\sum_{i=0}^{last(Dates)} (Point_{7_i} - yhat(Dates, Point_{7})_i)^2$$

SSR_{point} :=
$$\sum_{i=0}^{\text{last(Dates)}} (\text{yhat}(\text{Dates, Point}_7)_i - \text{mean}(\text{Point}_7))^2$$

$$MSE_{point} \coloneqq \frac{SSE_{point}}{DegreeFree} N$$

$$MSR_{point} := \frac{SSR_{point}}{DegreeFree_{reg}}$$

SSR point

۰λ

StPoint err :=
$$\sqrt{\text{MSE}_{\text{point}}}$$

$$MSR_{point} = 2.651$$

$$F_{actaul_Reg} := \frac{MSR_{point}}{MSE_{point}}$$

$$F_{ratio_reg} := \frac{F_{actaul_Reg}}{F_{critical_reg}}$$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

OCLR00019648

. ,

C-1302-187-E310-041 Rev. No. 0

Sheet No. 16 of 16

The section below calculates what the postulated individual thickness would be if this point were to corrode at a minimum observable rate observed in appendix 22.

Rate min_observed = 6.9

Postulated thickness := Point 7, - Rate min_observed (2029-2006)

Postulated thickness = 971.3

which is greater than

Tmin_local SB₃ = 490

mils per year

The section below calculates what the postulated corrosion rate necessary for the thinnest individual point to reach the local required thickness by 2029.

minpoint = 1.13 $year_{predict_{22}} = 2.029 \cdot 10^3$

 $Tmin_{local SB_{22}} = 490$

required rate. = -26.667

required rate. := $\frac{(1000 \text{ minpoint} - \text{Tmin_local } \text{SB}_{22})}{(2005 - 2029)}$

Appendix 18 - Sand Bed Elevation Bay 13C

October 2006 Data

The data shown below was collected on 10/18/06.

page := READPRN("U:\MSOFFICE\Drywell Program data\OCT 2006 Data\Sandbed\SB13c.txt")

Points $_7 :=$ show7cells(page , 1 , 7 , 0)

Points $_7 = [1.146 \ 1.148 \ 1.148 \ 1.149 \ 1.144 \ 1.128 \ 1.134]$

Cells := con7vert (Points 7, 7, 1) No DataCells := length (Cells)

 $Cells := deletezero_{cells} (Cells, No_{DataCells})$

The thinnest point at this location is shown below

minpoint := min(Points $_7$)

minpoint = 1.128

1

.

C-1302-187-E310-041 Rev. No. 0

Sheet No. 2 of 16

Mean and Standard Deviation

$$\mu'_{\text{actual}} := \text{mean(Cells})$$
 $\mu_{\text{actual}} = 1.142 \cdot 10^3$ $\sigma_{\text{actual}} := \text{Stdev(Cells})$ $\sigma_{\text{actual}} = 8.162$

Standard Error

Standard _{error} :=
$$\frac{\sigma_{actual}}{\sqrt{N_0 DataCells}}$$
 Standard _{error} = 3.085

Skewness

Skewness :=
$$\frac{(\text{No}_{\text{DataCells}}) \cdot \overline{\Sigma (\text{Celis} - \mu_{\text{actual}})^3}}{(\text{No}_{\text{DataCells}} - 1) \cdot (\text{No}_{\text{DataCells}} - 2) \cdot (\sigma_{\text{actual}})^3} \quad \text{Skewness} = -1.255$$

Kurtosis

$$Kuttosis := \frac{No DataCells \cdot (No DataCells + 1) \cdot \overline{\Sigma(Cells - \mu_{actual})^4}}{(No DataCells - ^1) \cdot (No DataCells - 2) \cdot (No DataCells - 3) \cdot (\sigma_{actual})^4} Kuttosis = 0.104 + -\frac{3 \cdot (No DataCells - 1)^2}{(No DataCells - 2) \cdot (No DataCells - 3)}$$

C-1302-187-E310-041' Rev. No. 0

Normal Probability Plot

In a normal plot, each data value is plotted against what its value would be if it actually came from a normal distribution. The expected normal values, called normal scores, and can be estimated by first calculating the rank scores of the sorted data.

j := 0.. last(Cells) srt :=, sort(Cells)

Then each data point is ranked. The array rank captures these ranks

$$r_j := j + 1$$
 $rank_j := \overbrace{\Sigma (srt=srt_j) \cdot r}^{\Sigma (srt=srt_j) \cdot r}$

$$p_j := \frac{\operatorname{rank}_j}{\operatorname{rows}(\operatorname{Cells}) + 1}$$

The normal scores are the corresponding pth percentile points from the standard normal distribution:

x := 1 N_Score_j := root[cnorm(x) - (p_j), x]

OCLR00019652

C-1302-187-E310-041 Rev. No. 0

Sheet No. 4 of 16

Upper and Lower Confidence Values

The Upper and Lower confidence values are calculated based on .05 degree of confidence "q"

No DataCells := length(Cells)

$$:= .05 \qquad T\alpha := qt\left[\left(1-\frac{\alpha}{2}\right), \text{No}_{\text{DataCells}}\right] \quad T\alpha = 2.365$$

^tLower 95%Con := $\mu_{actual} - T\alpha \cdot \frac{\sigma_{actual}}{\sqrt{No_{DataCells}}}$ Lower 95%Con = 1.135 • 10³

Upper 95%Con := $\mu_{actual} + T\alpha - \frac{\sigma_{actual}}{\sqrt{No} DataCells}$

Upper $_{95\%Con} = 1.15 \cdot 10^3$

Distribution =

These values represent a range on the calculated mean in which there is 95% confidence.

Graphical Representation

Distribution of the "Cells" data points are sorted in 1/2 standard deviation increments (bins) within +/- 3 standard deviations

Bins := Make
$$bins(\mu_{actual}, \sigma_{actual})$$

Distribution := hist(Bins, Cells)

The mid points of the Bins are calculated

The Mathcad function pnorm calculates a portion of normal distribution curve based on a given mean and standard deviation

$$\begin{array}{l} \operatorname{normal}_{\operatorname{curve}_{0}} \coloneqq \operatorname{pnorm}(\operatorname{Bins}_{1}, \mu_{\operatorname{actual}}, \sigma_{\operatorname{actual}}) \\ \operatorname{normal}_{\operatorname{curve}_{k}} \coloneqq \operatorname{pnorm}(\operatorname{Bins}_{k+1}, \mu_{\operatorname{actual}}, \sigma_{\operatorname{actual}}) - \operatorname{pnorm}(\operatorname{Bins}_{k}, \mu_{\operatorname{actual}}, \sigma_{\operatorname{actual}}) \end{array}$$

normal curve := No DataCells ·normal curve

Sheet No. 5 of 16

Results For Elevation Sandbed elevation Location Oct. 2006

The following schematic shows: the the distribution of the samples, the normal curve based on the actual mean and standard deviation, the kurtosis, the skewness, the number of data points, and the the lower and upper 95% confidence values. Below is the Normal Plot for the data.

Sheet No. 6 of 16

d := 0

Sandbed Location 13C Trend

For 1992 ·

 $Dates_d := Day_{year}(12, 8, 1992)$

page := READPRN("U:\MSOFFICE\Drywell Program data\Dec. 1992 Data\sandbed\Data Only\SB13C.txt")

Points 7 := show7cells(page , 1 , 7 , 0)

Data

Points $_7 = \begin{bmatrix} 1.148 & 1.151 & 1.151 & 1.153 & 1.149 & 1.138 & 1.152 \end{bmatrix}$

nnn := $con7vert(Points_7, 7, 1)$ No DataCells := length(nnn)

Cells := deletezero $_{cells}(nnn, No _{DataCells})$

 $point_{6_d} := Cells_5$

 $point_6 = 1.138 \cdot 10^3$

_ d ≔ d + 1

,۱,

For 1994

page := READPRN("U:\MSOFFICE\Drywell Program data\Sept.1994 Data\sandbed\Data Only\SB13C.txt")

Dates_d := Day'year'(9, 14, 1994)

Points $_7 :=$ show7cells(page , 1 , 7 , 0)

Data

Points $7 = \begin{bmatrix} 1.147 & 1.147 & 1.146 & 1.147 & 1.128 & 1.123 & 1.139 \end{bmatrix}$

nnn := $con7vert(Points_7, 7, 1)$

No DataCells := length (nm)

Cells := deletezero cells (nnn, No DataCells) point 6_d := Cells₅

 $\mu_{\text{measured}_d} := \text{mean(Cells)} \quad \sigma_{\text{measured}_d} := \text{Stdev(Cells)} \quad \text{Standard}_{\text{error}_d} := \frac{\sigma_{\text{measured}_d}}{\sqrt{No}_{\text{DataCells}}}$

1

Sheet No. 8 of 16

For 1996

d ≔ d + 1

page := READPRN("U:\MSOFFICE\Drywell Program data\Sept.1996 Data\sandbed\Data Only\SB13C.txt")

 $Dates_{d} := Day_{year}(9, 16, 1996)$

Points 7 := show7cells(page, 1, 7, 0)

Data

Points $_7 = \begin{bmatrix} 1.157 & 1.151 & 1.157 & 1.169 & 1.156 & 1.147 & 1.143 \end{bmatrix}$

 $nnn := con7vert(Points_7, 7, 1)$.

No DataCells := length(nnn)

Cells := deletezero $_{cells}(nnn, No_{DataCells})$

 $\mu_{measured_d} := mean(Cells) \sigma_{measured_d} := Stdev(Cells) Standard_{error_d} := -$

 $\frac{\sigma_{\text{measured}_d}}{\sqrt{\text{No}_{\text{DataCells}}}}$

 $d \coloneqq d + 1$

For 2006

page := READPRN("U:\MSOFFICE\Drywell Program data\OCT 2006 Data\Sandbed\SB13C.txt")

Dates, := Day $_{year}(10, 16, 2006)$

Points 7 := show7cells(page, 1, 7, 0)

Data

Points $_7 = [1.146 \ 1.148 \ 1.148 \ 1.149 \ 1.144 \ 1.128 \ 1.134]$

nnn := $con7vert(Points_7, 7, 1)$

No DataCells := length(nnn)

Cells := deletezero $_{cells}(nm, No_{DataCells})$

 $point_{6_d} := Cells_5$

 $\mu_{\text{measured}_{d}} \coloneqq \text{mean(Cells)} \quad \sigma_{\text{measured}_{1}d} \coloneqq \text{Stdev(Cells)} \quad \text{Standard}_{\text{error}_{d}} \coloneqq \frac{\sigma_{\text{measured}_{d}}}{\sqrt{No} \text{DataCells}}$

Below are matrices which contain the date when the data was collected, Mean, Standard Deviation, Standard Error for each date.

$$Dates = \begin{bmatrix} 1.993 \cdot 10^{3} \\ 1.995 \cdot 10^{3} \\ 1.997 \cdot 10^{3} \\ 2.007 \cdot 10^{3} \end{bmatrix} \qquad point_{6} = \begin{bmatrix} 1.138 \cdot 10^{3} \\ 1.123 \cdot 10^{3} \\ 1.147 \cdot 10^{3} \\ 1.128 \cdot 10^{3} \end{bmatrix}$$
$$\mu_{measured} = \begin{bmatrix} 1.149 \cdot 10^{3} \\ 1.14 \cdot 10^{3} \\ 1.154 \cdot 10^{3} \\ 1.142 \cdot 10^{3} \end{bmatrix} \qquad Standard_{error} = \begin{bmatrix} 1.92 \\ 3.829 \\ 3.183 \\ 3.085 \end{bmatrix}, \sigma_{measured} = \begin{bmatrix} 5.08 \\ 10.13 \\ 8.42 \\ 8.162 \end{bmatrix}$$

Total means = 4 Total means := $rows(\mu_{measured})$

SST :=
$$\sum_{i=0}^{last(Dates)} (\mu_{measured_i} - mean(\mu_{measured}))^2$$
 SST = 130.57

SSE :=
$$\sum_{i=0}^{\text{last(Dates)}} (\mu_{\text{measured}_i} - \text{yhat}(\text{Dates}, \mu_{\text{measured}})_i)^2$$
 SSE = 119.869

last (Dates) $\left(yhat\left(Dates, \mu_{measured}\right)_{i} - mean\left(\mu_{measured}\right)\right)^{2}$ $\sum_{i=0}^{i=0}$ SSR = 10.702 SSR ≔

$$MSE := \frac{SSE}{DegreeFree}_{ss} + MSR := \frac{SSR}{DegreeFree}_{reg}} MST := \frac{SST}{DegreeFree}_{st}$$

$$MSE = 59.935 MSR = 10.702 MST = 43.524$$

$$StGrand_{err} := \sqrt{MSE} StGrand_{err} = 7.742$$

F Test for Corrosion

d := 0.05

i := 0.. Total means - 1

Sheet No. 11 of 16

$$^{\circ}$$
 critical_reg
ratio_reg = 9.646 $\cdot 10^{-3}$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

$$\mu grand_{measured} := mean(\mu_{measured})$$

$$\sigma$$
grand measured := Stdev (μ measured) GrandStandard error₀ := $\frac{\sigma$ grand measured}{\sqrt{Total means}}

m

To conservatively address the location, the apparent corrosion rate is calculated and compared to the minimum required wall thickness at this elevation

$$_{s} := slope(Dates, \mu_{measured})$$
 $m_{s} = -0.305$ $y_{b} := intercept(Dates, \mu_{measured})$ $y_{b} = 1.755 \cdot 10^{3}$

The 95% Confidence curves are calculated

$$x_{+} := 0.05 \quad k := 2029 - 1985 \qquad f := 0 ... k - 1$$

Thick actualmean := mean(Dates) sum :=
$$\sum_{i} (Dates_d + mean(Dates))$$

 $upper_{f} := Thick_{predict_{f}} \cdots$

+
$$qt\left(1-\frac{\alpha_{t}}{2}, \text{Total}_{\text{means}}-2\right)$$
 StGrand $err \cdot \sqrt{1+\frac{1}{(d+1)}+\frac{(year_{\text{predict}_{f}}-\text{Thick}_{\text{actualmean}})^{2}}{sum}}$

 $lower_{f} := Thick_{predict_{f}} \cdots$

$$+ -\left[qt\left(1 - \frac{\alpha_{t}}{2}, \text{Total}_{\text{means}} - 2\right) \cdot \text{StGrand}_{\text{err}} \cdot \sqrt{1 + \frac{1}{(d+1)} + \frac{\left(\text{year}_{\text{predict}_{f}} - \text{Thick}_{\text{actualmean}}\right)^{2}}{\text{sum}}}\right]$$

Therefore even though F-ratio does not support the regression model the above curve shows that even at the lower 95% confidence band this location will not corrode to below Drywell Vessel Minimum required thickness by the plant end of life.

The section below calculates what the postulated mean thickness would be if this grid were to corrode at a minimum observable rate observed in appendix 22.

Rate min_observed := 6.9

Postulated meanthickness := μ_{measured_3} - Rate min_observed (2029 - 2006)

Postulated meanthickness = 983.729

which is greater than

 $Tmin_gen_{SB_3} = 736$

C-1302-187-E310-041 Rev. No. 0

Sheet No. 14 of 16

$$point_{6_d} \coloneqq Cells_6$$

$$SST_{point} := \sum_{i=0}^{i=0} (point_{6_i} - mean(point_6))^2$$

$$SSE_{point} := \sum_{i=0}^{last(Dates)} (point_{6_i} - yhat(Dates, point_6)_i)^2$$

$$SST_{point} = 297$$

$$SSR_{point} \models \sum_{i=0}^{last(Dates)} (yhat(Dates, point_6)_i - mean(point_6))^2 \qquad SSR_{point} = 2.289 \cdot 10^{-3}$$

$$MSE_{point} := \frac{SSE_{point}}{DegreeFree_{ss}} \qquad MSR_{point} := \frac{SSR_{point}}{DegreeFree_{reg}} \qquad MST_{point} := \frac{SST_{point}}{DegreeFree_{st}}$$

$$MSR_{point} = 2.289 \cdot 10^{-3} \qquad MST_{point} = 99$$

Stpoint
$$err := \sqrt{MSE_{point}}$$

MSE point = 148.499

Stpoint err = 12.186

$$F_{actaul_Reg} := \frac{MSR_{point}}{MSE_{point}}$$

F ratio_reg :=
$$\frac{F_{actaul_Reg}}{F_{critical_reg}}$$

$$F_{ratio reg} = 8.327 \cdot 10^{-7}$$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

$$m_{\text{point}} \coloneqq \text{slope} (\text{Dates, point } 6)_{m_{\text{point}}} = 4.456 \cdot 10^{-5} \text{ y}_{\text{point}}$$

nt := intercept (Dates, point 6)
$$y_{point} = 1.127 \cdot 10^3$$

C-1302-187-E310-041 Rev. No. 0

Sheet No. 15 of 16

The 95% Confidence curves are calculated

point curve := m point · year predict + y point

'point actualmean' := mean(Dates)

sum := $\sum_{i} (Dates_d - mean(Dates))^2$

 $uppoint_f := point_{curve_f}$

+
$$qt\left(1 - \frac{\alpha_{t}}{2}, \text{Total}_{means} - 2\right)$$
 Stpoint err $\sqrt{1 + \frac{1}{(d+1)}} + \frac{\left(\text{year}_{predict_{f}} - \text{point}_{actualmean}\right)}{\text{sum}}$

lopoint_f := point curve, ...

+
$$-\left[qt\left(1-\frac{\alpha_t}{2}, \text{Total}_{\text{means}}-2\right) \cdot \text{Stpoint}_{\text{err}} \cdot \sqrt{1+\frac{1}{(d+1)}+\frac{\left(\text{year}_{\text{predict}_f}-\text{point}_{\text{actualmean}}\right)^2}{\text{sum}}}\right]$$

Local Tmin for this elevation in the Drywell

 $\frac{\text{Tmin_local}}{\text{SB}_{f}} \coloneqq 490$ (Ref. 3.25)

Curve Fit For Point 6 Projected to Plant End Of Life

C-1302-187-E310-041 Rev. No. 0

Sheet No. 16 of 16

The section below calculates what the postulated individual thickness would be if this point were to corrode at a minimum observable rate observed in appendix 22.

Rate min_observed := 6.9

Postulated thickness := point 6_3 - Rate min_observed (2029 - 2006)

Postulated thickness = 975.3

which is greater than

Tmin_local $_{SB_3} = 490$

The section below calculates what the postulated corrosion rate necessary for the thinnest individual point to reach the local required thickness by 2029.

minpoint = 1.128 year predict₂₂ = 2.029•10³ Tmin_local _{SB₂₂} = 490 required rate. := $\frac{(1000 \text{ minpoint} - \text{Tmin_local } \text{SB}_{22})}{(2005 - 2029)}$ required rate. = -26.583 mils per year

C-1302-187-E310-041 Rev. No. 0

J.

Appendix 19 - Sand Bed Elevation Bay 15A

October 2006 Data

The data shown below was collected on 10/18/06.

page := READPRN("U:\MSOFFICE\Drywell Program data\OCT 2006 Data\Sandbed\SB15A.txt"

Points 7 := show7cells(page , 1 , 7 , 0)

Points $_7 = [1.18 \ 1.129 \ 1.136 \ 1.129 \ 1.146 \ 1.077 \ 1.049]$

Cells := con7vert (Points 7, 7, 1) No DataCells := length (Cells)

Cells := deletezero cells (Cells, No DataCells)

The thinnest point at this location is shown below

minpoint := $min(Points_7)$

minpoint = 1.049

Sheet No. 2 of 14

Mean and Standard Deviation

$$\mu_{actual} := mean(Ceils)$$
 $\mu_{actual} = 1.121 \cdot 10^3$ $\sigma_{actual} := Stdev(Ceils)$ $\sigma_{actual} = 43.93$

Standard Error

۰.

Standard _{error} :=
$$\frac{\sigma_{\text{actual}}}{\sqrt{N_0 DataCells}}$$
 Standard _{error} = 16.604

Skewness

Skewness :=
$$\frac{(\text{No}_{\text{DataCells}}) \cdot \overline{\Sigma(\text{Cells} - \mu_{\text{actual}})^3}}{(\text{No}_{\text{DataCells}} - 1) \cdot (\text{No}_{\text{DataCells}} - 2) \cdot (\sigma_{\text{actual}})^3}$$
 Skewness = -0.628

Kurtosis

()

Kultosis :=
$$\frac{\text{No DataCells} \cdot (\text{No DataCells} + 1) \cdot \overline{\Sigma(\text{Cells} - \mu_{actual})^4}}{(\text{No DataCells} - 1) \cdot (\text{No DataCells} - 2) \cdot (\text{No DataCells} - 3) \cdot (\sigma_{actual})^4} \text{ Kurtosis} = -4.623 \cdot 10^{-3} + -\frac{3 \cdot (\text{No DataCells} - 1)^2}{(\text{No DataCells} - 2) \cdot (\text{No DataCells} - 3)}$$

Sheet No. 3 of 14

Normal Probability Plot

In a normal plot, each data value is plotted against what its value would be if it actually came from a normal distribution. The expected normal values, called normal scores, and can be estimated by first calculating the rank scores of the sorted data.

j := 0.. last(Cells) srt := sort(Cells)

Then each data point is ranked. The array rank captures these ranks!

$$\mathbf{r}_{j} := \mathbf{j} + \mathbf{1}$$
 rank $:= \frac{\Sigma(\overrightarrow{\mathsf{srt}=\mathsf{srt}_{j}}) \cdot \mathbf{r}}{\Sigma \overrightarrow{\mathsf{srt}=\mathsf{srt}_{j}}}$

$$p_j := \frac{\operatorname{rank}_j}{\operatorname{rows}(\operatorname{Cells}) + 1}$$

The normal scores are the corresponding pth percentile points from the standard normal distribution:

x := 1 N_Score_j := root[cnorm(x) - (p_j), x]

Sheet No. 4 of 14

Upper and Lower Confidence Values

The Upper and Lower confidence values are calculated based on .05 degree of confidence "a"

No DataCells := length (Cells)

α 🖙

.05
$$T\alpha := qt\left[\left(1-\frac{\alpha}{2}\right), \text{No DataCells}\right] T\alpha = 2.365$$

Lower 95%Con :=
$$\mu_{actual} - T\alpha \cdot \frac{\sigma_{actual}}{\sqrt{No_{DataCells}}}$$
 Lower 95%Con = 1.082 • 10³

Upper 95%Con :=
$$\mu_{actual}$$
 + T $\alpha - \frac{\sigma_{actual}}{\sqrt{No DataCells}}$

 $Upper_{95\%Con} = 1.16 \cdot 10^3$

Distribution =

These values represent a range on the calculated mean in which there is 95% confidence.

Graphical Representation

Distribution of the "Cells" data points are sorted in 1/2 standard deviation increments (bins) within +/- 3 standard deviations

Bins := Make $bins(\mu_{actual}, \sigma_{actual})$

Distribution := hist(Bins, Cells)

The mid points of the Bins are calculated

The Mathcad function pnorm calculates a portion of normal distribution curve based on a given mean and standard deviation

 $Midpoints_{k} := \frac{\left(Bins_{k} + Bins_{k+1}\right)}{2}$

normal curve₀ := pnorm(Bins₁, $\mu_{actual}, \sigma_{actual})$ normal curve_k := pnorm(Bins_{k+1}, $\mu_{actual}, \sigma_{actual}) - pnorm(Bins_k, <math>\mu_{actual}, \sigma_{actual})$

normal curve := No DataCells ·normal curve

C-1302-187-E310-041 Rev. No. 0

Sheet No. 5 of 14

1

Results For Elevation Sandbed elevation Location Oct. 2006

The following schematic shows: the the distribution of the samples, the normal curve based on the actual mean and standard deviation, the kurtosis, the skewness, the number of data points, and the the lower and upper 95% confidence values. Below is the Normal Plot for the data.

Sheet No. 6 of

d ≔ 0

Sandbed Location 15A Trend

Data from the 1992, 1994 and 1996 (ref calcs) is retrieved Point 19.

For 1992

Dates := Day year(12, 8, 1992)

page := READPRN("U:\MSOFFICE\Drywell Program data\Dec. 1992 Data\sandbed\Data Only\SB15A.txt")

Points 7 := show7cells(page, 1, 7, 0)

Data

Points $_7 = [1.139 \ 1.145 \ 1.166 \ 1.162 \ 1.136 \ 1.102 \ 1.083]$

nnn := con7vert(Points 7, 7, 1) No $_{DataCells}$:= length(nnn)

Cells := deletezero $_{cells}(nnn, No_{DataCells})$

Point $7_d := \text{Cells}_6$

 $\mu_{\text{measured}_d} \coloneqq mean(Cells)$ $\sigma_{\text{measured}_d} \coloneqq Stdev(Cells)$

Point $_7 = 1.083 \cdot 10^3$ σ measured Standard errord

No DataCells

For 1994

 $d \coloneqq d + 1$

page := READPRN("U:\MSOFFICE\Drywell Program data\Sept.1994 Data\sandbed\Data Only\SB15A.txt")

Dates, := Day year(9, 14, 1994)

Points $_7 :=$ show7cells(page, 1, 7, 0)

Data

Points $\gamma = \begin{bmatrix} 1.142 & 1.142 & 1.14 & 1.134 & 1.138 & 1.064 & 1.04 \end{bmatrix}$

nnn := $con7vert(Points_7, 7, 1)$

No DataCells := length(nnn)

 $Cells := deletezero cells (nnn, No DataCells) Point 7_d := Cells_6$

 $\mu_{\text{measured}_d} := \text{mean(Cells)} \quad \sigma_{\text{measured}_d} := \text{Stdev(Cells)}$

Point $_7 = \begin{bmatrix} 1.083 \cdot 10^3 \\ 1.043 \cdot 10^3 \end{bmatrix}$ Standard error_d := $\frac{\sigma_{\text{measured}_d}}{\sqrt{N_o_{\text{DataCells}}}}$

Sheet No. 7 of 14

đ

1.083•10³

1.04•10³

 $d \coloneqq d + 1$

Point 7 =

For 1996

page := READPRN("U:\MSOFFICE\Drywell Program data\Sept.1996 Data\sandbed\Data Only\SB15A.txt")

$$Dates_d := Day_{year}(9, 16, 1996)$$

Points $_7 :=$ show7cells(page, 1, 7, 0)

Data

Points
$$_7 = \begin{bmatrix} 1.141 & 1.152 & 1.136 & 1.132 & 1.152 & 1.076 & 1.1 \end{bmatrix}$$

Point $7_d := Cells_6$

$$\mu_{\text{measured}_d} := \text{mean(Cells}) \quad \sigma_{\text{measured}_d} := \text{Stdev(Cells}) \quad \text{Standard}_{\text{error}_d} := \frac{\sigma_{\text{measured}_d}}{\sqrt{No} \text{ DataCells}}$$

For 2006

page := READPRN("U:\MSOFFICE\Drywell Program data\OCT 2006 Data\Sandbed\SB15A.txt")

Dates_d := Day year(10, 16, 2006)

Points $_7 :=$ show7cells(page , 1 , 7 , 0)

Data

Points $_7 = [1.18 \ 1.129 \ 1.136 \ 1.129 \ 1.146 \ 1.077 \ 1.049]$

nnn := $con7vert(Points_7, 7, 1)$

Cells := deletezero $_{cells}(nnn, No_{DataCells})$

 $\mu_{measured_{d}} := mean(Cells) \sigma_{measured_{d}} := Stdev(Cells) Standard_{error_{d}} :=$

Sheet No. 8 of 14

Below are matrices which contain the date when the data was collected, Mean, Standard Deviation, Standard Error for each date.

7

-

$$\begin{bmatrix} 1.993 \cdot 10^{3} \\ 1.995 \cdot 10^{3} \\ 1.995 \cdot 10^{3} \\ 1.997 \cdot 10^{3} \\ 2.007 \cdot 10^{3} \end{bmatrix} \qquad Point _{7} = \begin{bmatrix} 1.083 \cdot 10^{3} \\ 1.04 \cdot 10^{3} \\ 1.14 \cdot 10^{3} \\ 1.049 \cdot 10^{3} \end{bmatrix}$$

$$\mu_{measured} = \begin{bmatrix} 1.133 \cdot 10^{3} \\ 1.114 \cdot 10^{3} \\ 1.121 \cdot 10^{3} \end{bmatrix} \qquad Standard_{error} = \begin{bmatrix} 11.526 \\ 16.327 \\ 10.781 \\ 16.604 \end{bmatrix}, \quad \sigma_{measured} = \begin{bmatrix} 30.494 \\ 43.196 \\ 22.525 \\ 43.93 \end{bmatrix}$$

$$Total_{means} := rows(\mu_{measured}) \qquad Total_{means} = 4$$

$$SST := \sum_{i=0}^{i} \sum_{j=0}^{i} (\mu_{measured_{1}} - mean(\mu_{measured}))^{2} \qquad SST = 199.388$$

$$SSE := \sum_{i=0}^{i} (\mu_{measured_{1}} - yhat(Dates, \mu_{measured}))^{2} \qquad SSE = 180.532$$

$$SSR := \sum_{i=0}^{i} (yhat(Dates, \mu_{measured_{1}} - mean(\mu_{measured}))^{2} \qquad SSR = 18.856$$

$$DegreeFree_{ss} := Total_{means} - 2 \qquad DegreeFree_{reg} := 1 \qquad DegreeFree_{st} := Total_{means} - 1$$

$$MSE := \frac{SSE}{DegreeFree_{ss}} \qquad MSR := \frac{SSR}{DegreeFree_{reg}} \qquad MST := \frac{SST}{DegreeFree_{st}}$$

$$MSE = 90.266 \qquad MSR = 18.856 \qquad MST = 66.463$$

$$StGrand_{err} := \sqrt{MSE} \qquad StGrand_{err} = 9.501$$

C-1302-187-E310-041 Rev. No. 0

F Test for Corrosion

α := ,0.05

 $F_{actaul_Reg} := \frac{MSR}{MSE}$ $F_{critical_reg} := qF(1 - \alpha, DegreeFree_{reg}, DegreeFree_{ss})$ $F_{ratio_reg} := \frac{F_{actaul_Reg}}{F_{critical_reg}}$

F_{ratio_reg} = 0.011

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

$$i := 0$$
. Total means -1 $\mu grand measured_i := mean(\mu_measured)$
 $\sigma grand measured := Stdev(\mu_measured)$ GrandStandard error $:= \frac{\sigma grand measured}{\sigma grand measured}$

error₀

1.1

The minimum required thickness at this elevation is $Tmin_{gen} SB_i := 736$ (Ref. 3.25)

Plot of the grand mean and the actual means over time

Total means

1

C-1302-187-E310-041 Rev. No. 0

Sheet No. 10 of 14

To conservatively address the location, the apparent corrosion rate is calculated and compared to the minimum required wall thickness at this elevation

$$m_s := slope(Dates, \mu_{measured})$$
 $m_s = -0.404$ $y_b := intercept(Dates, \mu_{measured})$ $y_b = 1.932 \cdot 10^{-10}$

The 95% Confidence curves are calculated

$$x_t := 0.05 \ k := 2029 - 1985 \ f := 0... k - 1$$

year predict_f := 1985 + f.2 Thick predict := m_s year predict + y_b

Thick actualmean := mean(Dates)

sum :=
$$\sum_{i} (Dates_d - mean(Dates))^2$$

upper := Thick predict, ...

+ qt
$$\left(1 - \frac{\alpha_{t}}{2}, \text{Total}_{\text{means}} - 2\right)$$
·StGrand err. $\sqrt{1 + \frac{1}{(d+1)} + \frac{(\text{year}_{\text{predict}_{f}} - \text{Thick}_{\text{actualmean}})}{\text{sum}}}$

lower_f := Thick predict_f ...

$$+ -\left[qt\left(1 - \frac{\alpha_{t}}{2}, \text{Total}_{\text{means}} - 2\right) \cdot \text{StGrand}_{\text{err}} \cdot \sqrt{1 + \frac{1}{(d+1)} + \frac{\left(\text{year}_{\text{predict}_{f}} - \text{Thick}_{\text{actualmean}}\right)^{2}}{\text{sum}}}\right]$$

Therefore even though F-ratio does not support the regression model the above curve shows that even at the lower 95% confidence band this location will not corrode to below Drywell Vessel Minimum required thickness by the plant end of life.

The section below calculates what the postulated mean thickness would be if this grid 'were to corrode at a minimum observable rate observed in appendix 22.

Rate min_observed = 6.9

Postulated meanthickness := $\mu_{\text{measured}_3} - \text{Rate}_{\min_{\text{observed}}}$ (2029 - 2006)

Postulated meanthickness = 962.157

which is greater than

 $Tmin_{gen} SB_2 = 736$

1

C-1302-187-E310-041 Rev. No. 0

Sheet No. 12 of 14

The following addresses the readings at the lowest single point

SST_{point} :=
$$\sum_{i=0}^{\text{last}(\text{Dates})} (\text{Point}_{7_i} - \text{mean}(\text{Point}_7))^2$$

SE_{point} :=
$$\sum_{i=0}^{\text{last}(\text{Dates})} (\text{Point } 7_i - \text{yhat}(\text{Dates}, \text{Point } 7)_i)^2$$

 $SST_{point} = 2.394 \cdot 10^3$

$$SSE_{point} = 2.074 \cdot 10$$

$$SSR_{point} := \sum_{i'=0}^{last(Dates)} (yhat(Dates, Point_7)_i - mean(Point_7))^2 \qquad SSR_{point} = 319.786$$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

C-1302-187-E310-041 Rev. No. 0

The section below calculates what the postulated individual thickness would be if this point were to corrode at a minimum observable rate observed in appendix 22.

Rate min_observed = 6.9

Postulated thickness := Point 73 - Rate min_observed (2029 - 2006)

Postulated thickness = 890.3

which is greater than

Tmin_local $_{SB_3} = 490$

The section below calculates what the postulated corrosion rate necessary for the thinnest individual point to reach the local required thickness by 2029.

minpoint = 1.049 $year_{predict_{22}} = 2.029 \cdot 10^3$

 $\frac{\left(1000 \text{ minpoint} - \text{Tmin_local } \text{SB}_{22}\right)}{(2005 - 2029)}$

required rate. :=.

required rate. = -23.292

Tmin_local SB₂₂ = 490

mils per year

C-1302-187-E310-041 Appendix 20

Page 1 of 12

	ber of		eviewd								· .
Point	S	 No furth 	ner	Data und	er						•
Spec	ified	action		Review	IR		Data Poir	nt Sat	Ċommen	its ·	. ·
1	23		23		0		r.	23'			
3	8	•	ʻ 8	, · · · ·	0		•	8	1		•
5	8		. 8	·	0	•		8			
7	7		5	i .	0			5	•	. •	
9	10	•	10)	0			10	•	•	. 1
11	8		8	, I	. 0			8	. ·		ł
13	19	•	15	j -	0.			15			
15	11		10)	0			10			
17 🐪	11	• •	10) .	0		· · ·	10	•	_	• •
19	10	•	1 9)	0			9			
	. '	· •	1 C	· ·	. •		· · · •				
1	Spec 1 3 5 7 9 11 13 15 17	Specified 1 23 3 8 5 8 7 7 9 10 11 8 13 19 15 11 17 11	Specified action 1 23 3 8 5 8 7 7 9 10 11 8 13 19 15 11 17 11	Specified action 1 23 23 3 8 8 5 8 8 7 7 5 9 10 10 11 8 8 13 19 15 15 11 10 17 11 10	Specified action Review 1 23 23 3 8 8' 5 8 8 7 7 5 9 10 10 11 8 8 13 19 15 15 11 10 17 11 10	Specified action Review IR 1 23 23 0 3 8 8' 0 5 8 8 0 7 7 5 0 9 10 10 0 11 8 8 0 13 19 15 0 15 11 10 0 17 11 10 0	Specified action Review IR 1 23 0 3 8 0 3 8 0 5 8 0 5 5 8 8 0 9 10 10 0 9 10 10 0 11 8 8 0 13 19 15 0 15 11 10 0 17 11 10 0 17 11 10 10 10	Specified action Review IR Data Point 1 23 23 0 0 0 3 8 8 0 0 0 5 8 8 0 0 0 7 7 5 0 0 9 10 10 0 0 11 8 8 0 1 13 19 15 0 1 15 11 10 0 1 17 11 10 0 1	Specified action Review IR Data Point Sate 1 23 0 23' 0 23' 3 8 8' 0 8 8 6 8 7 7 5 0 5 5 9 10 10 0 10 10 10 10 10 10 10 10 10 15 15 15 15 15 15 10	Specified action Review IR Data Point Sat Comment 1 23 0 23' 0 23' 3 8 0 8' 0 8' 5 8 8' 0 8' 6' 7 7 5 0 5' 6' 9 10 10 0 10' 6' 6' 11 8 8 0 8' 6'	Specified action Review IR Data Point Sat Comments 1 23 23 0 23' 3 8 0 8' 0 5 8 0 8' 0 7 7 5 0 5' 9 10 10 0 10' 11 8 8 0 8' 13 19 15 0 15' 15 11 10 0 10' 17 11 10 0 10'

Total	115	106	106	•
			 :	
Highest rate	•	0.0335		

Thinnest reading

0.602

Projected thickness in 2008 based on the above corrosion rate and a 20 uncertainly

0.515

·.	Less than 0.736 in			Under Inside Concrete	Under Inside Floor	Under Wetted Concrete	/	- 		2006	Delta	Sat	- Non Sat
Point	1992	Vertical	Hortzontal				1992 vaiue	Cntena	NDE Data Sheet	value	Deita	Gdi	NUN GAL
	1 Yes	D16	R30	Yes			0.72	0.598	1R21LR-022	0.71	0.010	Yes	· · ·
	2 Yes	D22	R17	Yes	•		0.716	0.598	1R21LR-022	0.69	0.026	Yes	
	3 Yes	D23	L3	Yes			0.705	0.598	1R21LR-022	0.665	0.040	Yes	
	4	D24	L33	Yes	•	•	0.76	0.598	1R21LR-022	0.738	0.022	Yes	
	5 Yes	D24	L45	Yes			0.71	0.598	1R21LR-022	0.68	0.030	Yes	
	6	D48	R16	Yes	Yes	Yes	0.76	0.598	1R21LR-022	0.731	0.029	Yes	
	7 Yes	D39	R5	Yes	Yes	Yes	0.7	0.598	1R21LR-022	0.669	0.031	Yes	
	8	D48	R0	Yes	Yes	Yes	0.805	0.698	1R21LR-022	0.783	0.022	Yes	
	9	D36	L38	Yes	Yes		0.805	0.598	1R21LR-022	0.754	0.051	Yes	
	10	D16	R23	Yes			0.839	0.598	1R21LR-022	0.824	0.015	Yes	
	11 Yes	D23	R12		•		0.714	0.598	1R21LR-022	0.711	0.003	Yes	
	12 Yes	D24	L5 .				0,724	0.598	1R21LR-022	0.722	0.002	Yes	
	13	D24	L40				0.792	0.598	1R21LR-022	0.719	0.073	Yes	•
•	14	D2	R35		•		1.147	0.598	1R21LR-022	1.157	-0.010	Yes	
	15	D8	L51				1.156	0.598	1R21LR-022	1,16	-0.004	Yes	
	16	D50	R40	Yes	Yes	Yes	0.796	0.598	1R21LR-022	0.795	0.001	Yes	
	17	D48	R16	Yes	Yes	Yes	0.86	0.598	1R21LR-022	0.846	0.014	Yes	
	18	D38	L2 .	Yes	Yes		0.917	0.598	1R21LR-022	0.899	0.018	Yes	
	19	D38	L24	Yes	Yes		0.89	0.598	1R21LR-022	0.865	0.028	Yes	
	20	D18	R13				0.965	0.598	1R21LR-022	Ö.912	0.053	Yes	
	21 Yes	D24	R15	•			0.726	0.598	1R21LR-022	0.712	0.014	Yes	
	22	D32	R13	Yes	Yes		0.852	0.598	1R21LR-022	0.854	-0.002	Yes	
	23	D48	R15	Yes	Yes	Yes	0.85	0.598	1R21LR-022	0.828	0.022	Yes -	
		Data obtai	ined from Sheets 92-072-12						•		0.021		•
		NDE Data	Sheets 92-072-18	page 1 of 1	•				•	Max Delta	0.073	н . Г	
-	· ·	NUC Uata	Sheets 92-072-19	ibe8e igij	•					Rate	0.005	i	

Min 2006 Thickness Value 0.665

2

oint	0.736 in 1992	Vertical .	Horizontal	Inside Concrete	Inside Floor	Wetted Concrete	1992 value Cr	iterla	NDE Data sheet	2006 Value	Delta Sat	Non Sat
	1 ·	D5	R63				0.795	0.598	92-072-14 page 1 of 1	0,795	5 0.000 Yes	
	2	D9	R50				1		92-072-14 page 1 of 1	0.999	0.001 Yes	
	3.	D9	R33				0.857	0.598	92-072-14 page 1 of 1	0.85	5 0.007 Yes	
	4	D13	L5		•		0.898	0.598	92-072-14 page 1 of 1	0.903	-0.005 Yes	
	5	D15	L8	Yes			0.823	0.598	92-072-14 page 1 of 1	0.819	0.004 Yes	
	6	D15	L56	Yes			0.968	0.598	92-072-14 page 1 of 1	0.972	2 -0.004 Yes	÷
	7	D17	R4 *1	Yes			0.826	0.598	92-072-14 page 1 of 1	0.816	6 0.010 Yes	
	8	D24	L6*1	Yes		۰.	0.78	0.598	92-072-14 page 1 of 1	0.764	0.016 Yes	
)ata oh	tained from				•		· · ·				0.004	

	Rate	· (0.000.0
Min 2006 Thicknes	s Value	(- 0.764

	. Less tha 0.736 in		· · · ·	Under Inside	Under Inside Floor	Under Wetted			• *	2006		•	
Point	1992	Vertical	Horizontal	Concrete	Inside Floor	Concrete	1992 value Crite	eria	NDE Data sheet	Value	Delta	Sat	Non Sat
	1	D40	R13 *1	Yes	Yes	Yes	0.97	0.598	- 1R21LR-019	0.948	0.02	2 Yes	
	2	D42	R3 *1	Yes	Yes	Yes	1.04	0.598	1R21LR-019	0.955	0.08	5 Yes	
	3	D44	R10 *1	Yes	Yes	Yes	1.02	0.598	1R21LR-019	0.989	0.03	1 Yes	
	4	D44	R/L7 *1 *2	Yes	Yes	Yes	0.97	0.598	1R21LR-019	0.948	0.02	2 Yes	
	5.	D46	R/L11 *1 *2	Yes	Yes	Yes	0.89	0.598	1R21LR-019	0.88	0.01	0 Yes	
	6	D44	L4	Yes	Yes	Yes	1.06	0.598	1R21LR-019	0.981	0.07	'9 Yes	
	7	D48	L24	Yes	Yes	Yes	0.99	0.598	1R21LR-019	0.974	0.01	6 Yes	
	8	D46	L28	Yes	Yes	Yes	1.01	0.598	1R21LR-019	1.007	0.00	3 Yes	
			• •				¢				0.03	4	
	obtained from Data Sheets 9		age 1 of 1		·. ·		·.		• •	Max Delta	0.08	5	
			to the right of t		•	hi er leð ef i	المع سماط		·.	Rate	0.00	6	
216	e onginal data		t clear as to wh e NDE shall ve		-	jat or leit of l	ula wald.		Min 2008 Thickn	ess Value	0.8	18	

OCLR00027876

	Less than 0.736 In	•	• •	Under Inside	Under Inside	Under Wetted				2006	•		
Point	1992	Vertical	Horizontal	Concrete	Floor	Concrete	1992 value Crite	ría	NDE Data sheet	Value D	elta Sa	at 🛛	Non Set
	1	D21	R39	Yes			0.92	0.598	92-072-20 Page 1 fo 1	Not Located		,	• •
	2	D21	R32	Yes	• .		1.016		92-072-20 Page 1 fo 2	Not Located			
	3	D10	R20				0.984	0.598	92-072-20 Page 1 fo 3-	0.964	0.020 Ye	:5	1. K.
	4	D10	R10				1.04	0.598	92-072-20 Page 1 fo 4	1.04	0.000 Ye	es	. •
	5	D21	L6	Yes			1.03	0.598	92-072-20 Page 1 fo 5	1.003	0.027 Ye	29	
	6	D10	L23	Yes			1.045	0.598	92-072-20 Page 1 fo 6	- 1.023	0.022 Ye	98	
	7	D21	L12				1	0.598	92-072-20 Page 1 fo 7	1.003	-0.003 Ye	25 .	-
			ب د د								0.013		

Data obtained from NDE Data Sheets 92-072-20 page 1 of 1

Max Delta 0.027

0.00193

0.964

5

Min 2006 Thickness Value_

Rate

• .	Less than 0.736 in			Under Inside	Under Inside	Under Wetted	• .		-	2006	•		• •
Point	1992	Vertical	Horizontal	Concrete	Floor	Concrete	1992 value Crite	ana	NDE Data sheet	Value	Delta	Sat	Non Sat
	1	D21	R32	Yes			0.96	0.598	92-072-22 Page 1 fo 1	0.968	-0.008	Yes	
	2	D12	R17				0.94	0.598	92-072-22 Page 1 fo 2	0.934	0.006	Yes	
	3	D18	R8	Yes			0.994	0.598	92-072-22 Page 1 fo 3	0.989	0.005	Yeş	
	4 ·	D21	R17	Yes			1.02	0.598	92-072-22 Page 1 fo 4	. 1.016	0.004	Yes	
	5	D36	L4	Yes	Yes		0.985	0.598	92-072-22 Page 1 fo 5	0.964	0.021	Yes	
	6 ·	D16	L30	Yes			0.82	0.598	92-072-22 Page 1 fo 6	0.802	0.018	Yes	
	7	D18	L35*	Yes			0.825	0,598	92-072-22 Page 1 fo 7	0.82	0.005	Yes	
•	8	D22	L45*	Yes	Yes	Yes	0.791	0.598	92-072-22 Page 1 fo 8	0.781	0.010	Yes	
	9	D15	L53				0.832	0.598	92-072-22 Page 1 fo 9	0,823	0.009	Yes	
1	0.	D32	L8	Yes			0.98	0.598	92-072-22 Page 1 fo 1	0.955	0.025	Yes	
									~		0.009		• •
Data obta	ained from												

Data obtained from NDE Data Sheets 92-072-22 page 1 of 1	•	· · · ·		Max Delta	0.025	
* estimated from data sheet 92-072-09 page 1 of 1				Rate	0.00179	
		 N	Ain 2006 Thickness	Value	0.781	

Deint	Less than 0.736 in		l la da a da l	Under Inside	Under Inside	Under Wetted		ia NDE Data sheet	2006 Value	Delta S	Sat -	Non Sat	
Point	1992	Vertical	Horizontal	Concrete	Floor	Concrete	1992 value Crite		value	Dena	al	NUI Gat	·
• .	1 Yes	D20	R29.	Yes			0.705).598 92-072-10 page 1 of 1	0.7	0.005 \	es i		
	2	D25	R32	Yes			0.77).598 92-072-10 page 1 of 1	0.76	0.010 እ	'es		
	3	D21	L4	Yes			0.832	0.598 92-072-10 page 1 of 2	0.83	0.002 \	es .	· *	
	4	D24	L6	Yes			0.755).598 92-072-10 page 1 of 3	0.751	0.004	es		
, .	5	D32	L14	Yes	Yes		0.831).598 92-072-10 page 1 of 4	0.823	0.008 1	fes .		•
	6.	D27	L22	Yes	Yes		0.8).598 92-072-10 page 1 of 5	0.756	0.044	íes 🛛	2	
	7	D31	R20 '	Yes	Yes		0.831).598 92-072-10 page 1 of 6	0.817	0.014 \	'es		
	8	D40	R13	Yes	Yes	Yes	0.85).598 92-072-10 page 1 of 7	0.825	0.025 \	'es	·	

Data obtained from NDE Data Sheets 92-072-10 page 1 of 1

...................

OCLR00027878

.598 92-072-10 page 1 of 6 .598 92-072-10 page 1 of 7		0.014 Yes 0.025 Yes	
· .	•	0.014	
	Max Delta	0.044	

7

	` 	Rate	0.00314.
			• '
Min 2	006 Thickness	Value	0.7

2006 Thickness Valu	16	

	Less than 0.736 in			Under Inside	Under Inside	Under Wetled		-	2006		•
Point	1992	Vertical	Horizontal	Concrete	Floor	Concrete	1992 value Criteria	NDE Data sheet	Value	Delta Sa	nt Non Sat
	1 Yes	U1	R45				0.672 0.59	8 92-072-24 page 1 of 2	Not Locate	d	· .
	2 Yes	U1	R38				0.729 0.59	8 92-072-24 page 1 of 3	Not Locate	d ·	*
	3	D21	R48	Yes			0.941 0.59	8 92-072-24 page 1 of 4	0.923	0.018 Ye	es
	4 -	D12	R36	Yes	· .	. •	0.915 0.59	8 92-072-24 page 1 of 5	0.873	0.042 Ye	19
	5 Yes	D21	R6	Yes			0.718 0.59	8 92-072-24 page 1 of 6	0.708	0.010 Ye	99
	6 Yes	D24	L8	Yes			0.655 0.59	8 92-072-24 page 1 of 7	0.658	-0.003 Ye	3
•	7 Yes	D17	L23	Yes			0.618 0.59	8 92-072-24 page 1 of 8	0.602	0.016 Ye	es
1 A.	8 Yes	D24	L20	Yes				8 92-072-24 page 1 of 9		0.014 Ye	s
	9	D28	R41	Yes	Yes			8 92-072-24 page 1 of 1			
	10 Yes	D28	R12	Yes	Yes			8 92-072-24 page 1 of 1		-0.013 Ye	S
· ·	11 Yes	D28	L15	Yes	Yes			8 92-072-24 page 1 of 12		0.016 Ye	35
	12	D28	L23			•		8 92-072-24 page 1 of 1			-
	13	D18	D40		•			8 92-072-24 page 1 of 1		0.118 Ye	
	14	D18	R8			•		8 92-072-24 page 1 of 1		-0.002 Ye	
	15 Yes	D20	L9					8 92-072-24 page 1 of 1			
	16	D20	L29		•			8 92-072-24 page 1 of 1			
	17	D9	R38	•		•		8 92-072-24 page 1 of 1			
	18	D22	R38					8 92-072-24 page 1 of 1			
-	19	D37	R38	Yes				8 92-072-24 page 1 of 2			s

Data obtained from NDE Data Sheets 92-072-24 page 1 of 2 0.017

.

	Max Delta	0.118
	Rate	0.00843
Min 2006 Thickness Va	lue	0.602

	Less than 0.736 in	•		Under Inside	Under Inside	Under Wetted		•	2006	•	-	
Point	1992	Vertical	Horizontal	Coricrete	Floor	Concrete	1992 value Criteria	NDE Data Sheet	Value	Delta	Sat	Non Sat
	1	D12	R26				0.786 0.5	- 598 1R21LR-015	0.779	0.007	Yes	
	2	D22	R24	Yes			0.829 0.5	598 1R21LR-015	0.798	0.031	Yes	
	3	D33	R17	Yes	Yes		0.932 0.5	598 1R21LR-015	0.935	-0.003	Yes	•
	4	D33	R7	Yes	•		0.795 0.	598 1R21LR-015	0.791	0.004	Yes	
	5	D26	L3	Yes	Yes		0,85 0.	598 1R21LR-015	0.855	-0.005	Yes	
	6	D6	L8-		•		0.794 0.5	598 1R21LR-015	0.787	0.007	Yes	-
	7	D24	L17	Yes			0.808 0.5	598 1R21LR-015	0.805	0.003	Yes	• *
	8	D24	L36	Yes			0.77 · 0.5	598 1R21LR-015	0.76	0.010	Yes	
e.	9 Yes	D36	L40	Yes	Yes		0.722 0.5	598 1R21LR-015	0.749	-0.027	Yes	
	10	D24	L48	Yes			0.86 0.5	598 1R21LR-015	0.852	0.008	Yes	
	11	D24	L65	Yes			0.825 0.4	598 1R21LR-015	0.843	-0.018	Yes	
	. •				. .			·		• 0.002	· •	

Data obtained from NDE Data Sheets 92-072-21 page 1 of 1

OCLR00027880

Min 2006 Thickness Value 0.749

Rate

Max Delta

- ^{0.031}

0.00221

_	Less than 0.736 In	· · ·		Under Inside	Under Inside	Under Wetted			·	· · · ·	• ,		
Point	1992	Vertical	Horizontal	Concrete	Floor	Concrete	1992 value Criter	a	NDE Data sheet	2006 Value	Delta	Sat	Non Sal
	1	D30	R52	Yes			0.916 ().598	1R21LR-021	0.909	0.007	Yes	
	2	D12	R42	:			1.15 ().598	1R21LR-021	0.681	0.469	Yes	· •
	3	D32	R28	Yes	Yes		.0.898 ().598	1R21LR-021	0.894	0.004	Yes	
	4	D52	R30	Yes	Yes	Yes	0.951 ().598	1R21LR-021	0.963	-0.012	Yes	
	5 .	D36	R12	Yes	Yes		0.913 0).598	1R21LR-021	0.822	0.091	Yes	
	6	D52	L6	Yes	Yes	Yes	0.992 0).598	1R21LR-021	0.909	0.083	Yes	
	7	D36	L26	Yes	Yes		0.97 ().598	1R21LR-021	0.97	0.000	Yes	
	8	D52	L40	Yes	Yes	Yes	0.99 ().598	1R21LR-021	0.96	0.030	Yes	
	9 Yes	D27	R30	Yes			0.72 ().598	1R21LR-021	0.97	-0.250	Yes	
	10	D26	R11	Yes			0.83 ().598	1R21LR-021	0.844	-0.014	Yes	
	11	D21	R12	Yes			0.76 ().598	1R21LR-021	Not Located	•		

Data obtained from NDE Data Sheets 92-072-08 page 1 of 1 0.041

0.681

· 10

Max Delta	0.469	
Rate -	D.03350	

Min 2006 Thickness Value

C-1302-187-E310-041 Appendix 20 11

0.00557

0,738

Rate

Min 2006 Thickness Value

BAY 19

Point	Less than 0.736 in 1992	Vertical	Horizontal	Under Inside Concrete	Under Inside Floor	Under Wetted Concrete	1992 value		Criteria	NDE Data sheet	2006 Value	Delta	Sat	Non Sat
	,	V CI GOGI	·	00101010	1.00	0010101010	TODE TUNC		Oniona		2000 10.00			
	1	D30	R70	Yes	•			0.932	0.598	1R21LR-020	0.904	0.028	Yes	
	2	D52	R66	Yes	Yes	Yes		0,924	0.598	1R21LR-020	0.921	0.003	Yes	
	3	D33	R49	Yes	Yes			0.955	0.598	1R21LR-020	0.932	0.023	Yes	
	4	D32	R11	Yes	Yes		· .	0.94	0.598	1R21LR-020	Not Located			
	5	D53	R2	Yes	Yes	Yes		0.95	0.598	1R21LR-020	0.932	0.018	Yes	
	6	D52	L65	Yes	Yes	Yes		0.86	0.598	1R21LR-020	Not Located			
	7	D39	L12	Yes .	Yes	Yes		0.969	0.598	1R21LR-020	0.891	0.078	Yes	
	8	D16	R63	Yes				0.793	0.598	1R21LR-020	0.745	i	Yes	
	9	D18	R12	Yes			•	0.776	0.598	1R21LR-020	0.78	-0.004	Yes	;
	10	D19	RO	Yes				0.79	0.598	1R21LR-020	0.791	-0.001	Yes	
	1 1	D20	L18				N/A		0.598	1R21LR-020	0.738	i .	Yes	
	ained from											0.021		
	a Sheets 92- a Sheets 92-				· .						Max Delta	0.078		

C
70
0
Q
0
N
ñ
õ
Ň

Q

Assuming a normal distribution shown above over the the entire population, the percentage of the population with a local area less than 0.648 inches is estimated below.

 $100 \cdot \text{pnorm}(648, \mu_{\text{actual}}, \sigma_{\text{actual}}) = 0.5511 \mathcal{B}$ ercent

Assuming a normal distribution shown above over the the entire population, the percentage of the population with a local area less than 0.602 inches is estimated below.

100 pnorm $(602, \mu_{actual}, \sigma_{actual}) = 0.052020$ ercent

Assuming a normal distribution shown above over the the entire population, the percentage of the population with a local area less than 0.490 inches is estimated below.

OCLR00027883

 $100 \cdot \text{pnorm}(490, \mu_{\text{actual}}, \sigma_{\text{actual}}) = 1.940824 \cdot 10^{\circ} \text{Percent}$

OCLR00027884

Provints 49 := showcells(page, 7, 0)
Data
Data
Data
Data
Points 49 := showcells(page, 7, 0)
Data
Points 49 :=
$$\begin{pmatrix} 0.941 & 0.839 & 0.806 & 0.917 & 0.776 & 0.86 & 0.926 \\ 1.05 & 1.044 & 0.997 & 0.975 & 1.076 & 1.12 & 1.045 \\ 1.091 & 1.175 & 1.018 & 0.942 & 0.94 & 0.674 & 0.896 \\ 0.847 & 0.845 & 0.794 & 0.833 & 0.838 & 0.837 & 0.85 & 0.827 \\ 0.941 & 0.817 & 0.858 & 0.839 & 0.856 & 0.877 & 0.845 \\ 0.603 & 0.893 & 0.905 & 0.901 & 0.913 & 0.877 & 0.845 \\ 0.603 & 0.897 & 0.877 & 0.845 \\ 0.603 & 0.897 & 0.897 & 0.877 & 0.845 \\ 0.603 & 0.897 & 0.897 & 0.877 & 0.845 \\ 0.603 & 0.897 & 0.877 & 0.845 \\ 0.603 & 0.897 & 0.897 & 0.877 & 0.845 \\ 0.603 & 0.897 & 0.877 & 0.845 \\ 0.603 & 0.897 & 0.877 & 0.845 \\ 0.603 & 0.897 & 0.877 & 0.845 \\ 0.603 & 0.897 & 0.877 & 0.845 \\ 0.603 & 0.897 & 0.877 & 0.845 \\ 0.603 & 0.897 & 0.877 & 0.845 \\ 0.603 & 0.897 & 0.877 & 0.877 & 0.845 \\ 0.603 & 0.897 & 0.877 & 0.877 & 0.877 & 0.877 & 0.$$

Appendix 21 - Location 11C Sensitivity Study without 1996 data The data shown below was collected on 10/18/06

Sandbed 11C

For Dec 31 1992

page := READPRN("U:\MSOFFICE\Drywell Program data\Dec. 1992 Data\sandbed\DATA ONLY\SB11C.txt")

C-1302-187-E310-041 Rev. No. 0

Sheet No.

d ≔0

Appendix 21 ,

Ĺ

For 1994

d := d + 1

No Cells := length(nnn)

high points := TOPROWS (nnn, No Cells, StopCELL)

No highCells := length (high points)

 $high_{points} := deletezero_{cells}(high_{points}, No_{highCells})$

olow measured

length (low points)

 $\sigma_{\text{measured}_d}$

No DataCells

 μ measured = mean (low points)

 $\sigma low_{measured_d} := Stdev(low_{points})$

page := READPRN("U:\MSOFFICE\Drywell Program data\Sept.1994 Data\sandbed\DATA ONLY\SB11C.txt")

Points 49 := showcells(page, 7, 0)

 $Dates_d := Day_{year}(9, 26, 1994)$

			•				
	0	0	0	0	0	0.855	0.866]
	0	0	1.042	1.095	1.036	1.093	0.866 1.032
	1.042	1.085	0.945	0.938	0.938	0.895	0.889
Points ₄₉ =	0.836	0.846	0.795	0.828	0.833	0.843	0.869
	0.823	0.842	0.873	0.872	0.837	0.822	0.879
							0.823
	0.86	0.874	0.899	0.876	0.88	0.84	0.851

Data

nnn := convert (Points 49,7)

No DataCells := length(nnn)

The thinnest point is captured

Point 5_d := nnn₄

StopCELL := 21

Standard error

Standardlow errord :=

The two groups are named as follows:

low points := LOWROWS (nnn, No Cells, StopCELL) No lowCells := length (low points) Cells := deletezero cells (nnn, No Cells)

low points := deletezero cells (low points, No lowCells)

 $\mu high_{measured_d} := mean(high_{points})$

ohigh measured := Stdev (high points)

Standardhigh $_{error_d} := \frac{_{ohigh measured_d}}{\sqrt{_{length}(high points)}}$

Sheet No. 3 of

page := READPRN("U	:\MSOFFICE\I	<i></i>			ct 2006 I	Data\San	dbed\SB	HC.RC)			
· · · ·			-					(10,18,2)	06)		•
Points $_{49} = \begin{bmatrix} 1.056 & 1.073 & 1.073 & 1.073 & 1.073 & 1.073 & 1.0837 & 0.837 & 0.856 & 0.856 & 0.856 & 0.856 & 0.861 & 0.856 & 0.861 & 0.856 & 0.861 & 0.856 & 0.861 & 0.856 & 0.861 & 0.856 & 0.861 & 0.856 & 0.861 & 0.856 & 0.861 & 0.856 & 0.861 & 0.856 & 0.$						d .	year	, ,	,		
	-	Data									
•		0.803			•	1	•				
	1.056 1.046										
- .		1.002				1					
Points $49 =$	1			0.834		1					
		0.869		0.855				•	÷ •.		
x	0.850 0.84					0.876					÷
· · · · · · · · · · · · · · · · · · ·					51415		•				
	-						^{NO} DataC	cells ^{:= len}	gth(nnn)		
					^{1t} 5 _d ^{:= r}						
The two groups are	e named as fo	llows:		· S	topCEL	L:=21		No Co	lls := leng	gth(nnn)	
No lowCells := length(low points)	StopCEL	L)		hig	-		lls := lengt	^{1, No} Cell h(high _{po}		LL)
No _{lowCells} := length(Cells := deletezero _{cells} (n	low points)			^{ow} point	_{ts} , ^{No} lo	Nc wCells)	⁹ highCe	lls := lengt	h(high _{pc}	ints)	
No _{lowCells} := length(Cells := deletezero _{cells} (n	^{low} points) mn, No Cells)			ow point	_{ts} , ^{No} lo	Nc wCells)	⁹ highCe	•.	h(high _{pc}	ints)	
No _{lowCells} := length(Cells := deletezero _{cells} (n	^{low} points) mn, No Cells)			^{ow} point	_{ts} , ^{No} lo	Nc wCells)	⁹ highCe	lls := lengt	h(high _{pc}	ints)	
No _{lowCells} := length(Cells := deletezero _{cells} (n	^{low} points) mn, No Cells)			^{ow} point	_{ts} , ^{No} lo	Nc wCells)	⁹ highCe	_{lls} := lengt zero _{cells} (h(high _{pc} high _{poin}	ints)	
No _{lowCells} := length(Cells := deletezero _{cells} (n	low _{points}) nn, ^{No} Cells) low _{points} := d	eletezero	o cells (K	-	ts, ^{No} lo hig	Nc owCells) th _{points}) highCe := delete	lls := lengt zero cells(^σ measur	h (high _{pc} high _{poin} ^{ed} a	ints)	
No _{lowCells} := length(Cells := deletezero _{cells} (n	low _{points}) nn, ^{No} Cells) low _{points} := d		o cells (K	-	ts, ^{No} lo hig	Nc wCells)) highCe := delete	_{lls} := lengt zero _{cells} (h (high _{pc} high _{poin} ^{ed} a	ints)	
No _{lowCells} := length (Cells := deletezero _{cells} (n μ measured _d := mean(Ce	low _{points}) mn, No _{Cells}) low _{points} := d ells) σ _{ma}	eletezero casured _d	o cells (K	-	ts ^{, No} lo hig S	Nc owCells) th points tandard e) highCe := delete: mor _d ;=-	^o measur	h(high _{po} high _{poin} ed _d Cells	ints)	
No _{lowCells} := length(Cells := deletezero _{cells} (n	low _{points}) mn, No _{Cells}) low _{points} := d ells) σ _{ma}	eletezero casured _d	o cells (K	-	ts ^{, No} lo hig S	Nc owCells) th points tandard e) highCe := delete: mor _d ;=-	lls := lengt zero cells(^σ measur	h(high _{po} high _{poin} ed _d Cells	ints)	
No lowCells := length (Cells := deletezero cells (n μ measured _d := mean(Ce μ high measured _d := m	low _{points}) mn, No _{Cells}) low _{points} := d ells) σ _{ma} eean(high _{point}	eletezero casured _d	o cells (K	-	ts ^{, No} lo hig Σ μlow	No owCells) th points tandard e) highCe := delete mor _d :=	$\frac{\sigma_{\text{measure}}}{\sqrt{No \text{ Data}}}$	h (high _{po} high _{poin} ed _d Cells	ints)	
No _{lowCells} := length (Cells := deletezero _{cells} (n μ measured _d := mean(Ce	low _{points}) mn, No _{Cells}) low _{points} := d ells) σ _{ma} eean(high _{point}	eletezero casured _d	o cells (K	-	ts ^{, No} lo hig Σ μlow	No owCells) th points tandard e) highCe := delete mor _d :=	^o measur	h (high _{po} high _{poin} ed _d Cells	ints)	
No lowCells := length (Cells := deletezero cells (m μ measured := mean(Ce μ high measured := m ohigh measured := St	low points) ann, No Cells) low points := d ells) o ma mean(high point tdev (high point o thigh	eletezero easured _d s) s)	o cells (K	-	ts ^{, No} lo hig Σ μlow	No owCells) th points tandard e) highCe := delete mor _d :=	$\frac{\sigma_{\text{measur}}}{\sqrt{N^{O} \text{Data}}}$	h (high _{po} high _{poin} ed _d Cells sints)	ints)	
No lowCells := length (Cells := deletezero cells (n μ measured _d := mean(Ce μ high measured _d := m	low points) unn, No Cells) low points := d ells) o ma lean(high point tdev (high point ohigh meas	eletezero casured _d s) s)	o cells (K	-	_{ts} , No _{lo} hig Σ μlow σlow	No owCells) th points tandard e ' measure) highCe := delete mor _d := me ed _d := std ed _d := std	$\frac{\sigma_{\text{measure}}}{\sqrt{No \text{ Data}}}$ an(low polev (low polev for the second sec	h (high _{pc} high poin ed _d Cells ints) pints)	ints)	
No lowCells := length (Cells := deletezero cells (m μ measured _d := mean(Ce μ high measured _d := m ohigh measured _d := St	low points) ann, No Cells) low points := d ells) o ma mean(high point tdev (high point o thigh	eletezero casured _d s) s)	o cells (K	-	_{ts} , No _{lo} hig Σ μlow σlow	No owCells) th points tandard e) highCe := delete mor _d := me ed _d := std ed _d := std	$\frac{\sigma_{\text{measur}}}{\sqrt{N^{O} \text{Data}}}$	h (high _{pc} high poin ed _d Cells ints) pints)	ints)	

 $\left(\cdot \right)$

C-1302-187-E310-041 Rev. No. 0

Total means $:= rows(\mu measured)$

$$SST := \sum_{i=0}^{last(Dates)} (\mu_{measured_i} - mean(\mu_{measured}))^2$$

$$SST_{low} := \sum_{i=0}^{last(Dates)} (\mu_{low}_{measured_i} - mean(\mu_{low}_{measured}))^2$$

$$SST_{high} \coloneqq \sum_{i=0}^{last(Dates)} (\mu high_{measured_{i}} - mean(\mu high_{measured}))^{2}$$
$$SSE \coloneqq \sum_{i=0}^{last(Dates)} (\mu_{measured_{i}} - yhat(Dates, \mu_{measured}))^{2}$$

SSE low :=
$$\sum_{i=0}^{last(Dates)} (\mu low_{measured_i} - yhat(Dates, \mu low_{measured}))^2$$

SSE high :=
$$\sum_{i=0}^{last(Dates)} (\mu high_{measured_i} - yhat(Dates, \mu high_{measured}))^2$$

SSR :=
$$\sum_{i=0}^{last(Dates)} (yhat(Dates, \mu_{measured})_{i} - mean(\mu_{measured}))^{2}$$

SSR low :=
$$\sum_{i=0}^{last(Dates)} (yhat(Dates, \mu low measured)_i - mean(\mu low measured))^2$$

$$SSR_{high} := \sum_{i=0}^{last(Dates)} (yhat(Dates, \mu high_{measured})_{i} - mean(\mu high_{measured}))^{2}$$

DegreeFree ss = Total means - 2 DegreeFree reg = 1

DegreeFree st = Total means - 1

OCLR00027888

Test the low points

F Test for Corrosion

F_{actaul_Reg.low} := <u>MSR_{low}</u> MSE_{low}

Test the high points

F Test for Corrosion

$$F_{actaul_Reg.high} := \frac{MSR high}{MSE high}$$

 $F_{critical_reg} := qF(1 - \alpha, DegreeFree_{reg}, DegreeFree_{ss})$

F_{ratio_reg.high} := Factaul_Reg.high F_{critical_reg}

 $F_{ratio_reg.high} = 9.952 \cdot 10^{-3}$

OCLR00027891

Appendix 21 - Location 13D Sensitivity Study without 1996 data. The data shown below was collected on 10/18/06

Sandbed 13D

Data from . 1992 to 2006 is retrieved.

For Dec 31 1992

page := READPRN("U:\MSOFFICE\Drywell Program data\Dec. 1992 Data\sandbed\DATA ONLY\SB13C-D.txt")

Points 49 := showcells(page, 7, 0)

Dates_d := Day year(12,31,1992)

d:=0

	-						
	1.064	1.117	1.134	1.103	1.105	1.106	1.117]
	0.949	1.081	1	1.054	1.151	1.118	1.121
	0.984	0.948	0.868	0.834	0.979	1.048	1.067
Points 49 =	0.963	0.98	0.893	0.855	0.913	0.981	1.012
Points ₄₉ =	0.957	0.958	0.869	0.879	0.917	0.913	0.911
	0.963	0.948	0.895	0.88	0.915	0.862	0.905
	1.016	0.918	0.927	0.92	0.918	0.825	0.824

Data

nnn := convert (Points 49, 7)

Point 49 = 824

No Cells = length(nnn)

Point $49_d = nnn_{48}$

47

Botstar := 28

The two groups are named as follows:

Stoptop := 16

high points := TOPROWS (nnn, No DataCells, Stoptop)

low points := LOWROWS (nnn, No DataCells, Botstar)

high points := Add(nnn, No DataCells, 19, length(high points), high points) high points := Add(nnn, No DataCells, 20, length(high points), high points)

high points := Add(nnn, No DataCells, 21, length(high points), high points) high points := Add(nnn, No DataCells, 22, length(high points), high points)

high points := Add(nnn, No DataCells, 27, length(high points), high points)

high points := Add (nnn, No DataCells, 28, length (high points), high points)

Sheet No.

low points := Add(nnn, No DataCells, 17, length(low points), low points)
low points := Add(nnn, No DataCells, 18, length(low points), low points)
low points := Add(nnn, No DataCells, 23, length(low points), low points)
low points := Add(nnn, No DataCells, 24, length(low points), low points)
low points := Add(nnn, No DataCells, 25, length(low points), low points)
low points := Add(nnn, No DataCells, 26, length(low points), low points)

Cells := deletezero $_{cells}(nnn, No _{Cells})$

high points := deletezero cells (high points, length (high points))

low points := deletezero cells (low points, length (low points))

 $\mu_{\text{measured}_d} := \text{mean}(\text{Cells}) \qquad \sigma_{\text{measured}_d} := \text{Stdev}(\text{Cells})$

 $\mu high_{measured_d} := mean(high_{points})$ $\sigma high_{measured_d} := Stdev(high_{points})$ $Standardhigh_{error_d} := \frac{\sigma high_{measured_d}}{\sqrt{length(high_{points})}}$

Standard $\operatorname{error}_{d} := \frac{\sigma \operatorname{measured}_{d}}{\sqrt{\operatorname{No} \operatorname{DataCells}}}$ $\mu \operatorname{low} \operatorname{measured}_{d} := \operatorname{mean}(\operatorname{low} \operatorname{points})$ $\sigma \operatorname{low} \operatorname{measured}_{d} := \operatorname{Stdev}(\operatorname{low} \operatorname{points})$ Standardlow $\operatorname{error}_{d} := \frac{\sigma \operatorname{low} \operatorname{measured}_{d}}{\sqrt{\operatorname{length}(\operatorname{low} \operatorname{points})}}$

Sheet No.

OCLR00027893

d ≔d+ l

For 1994

page := READPRN("U:\MSOFFICE\Drywell Program data\Sept.1994 Data\sandbed\DATA ONLY\SB13C-D.txt")

Points 49 := showcells(page, 7, 0)

Dates_d := Day year(9, 26, 1994)

Data

	•							÷
1	1.1	1.114	1.11	1.078	1.062	1.103	1.113	
	0.944	1.075	0.995	1.015	1.003	1.112	1.125	
	0.977	0.941	0.834	0.827	0.992	1.033	1.028	
Points 49 =	0.943	0.973	0.879	0.847	0.915	0.974	0.986	•
	0.951	0.911	0.871	0.873	0.923	0.903	0.889	
	0.938	0.942	0.894	0.875	0.915	0.859	0.877	
	0.956	0.911	0.922	0.924	0.918	0.825	.0.811	

nnn := convert (Points $_{49}, 7$)

No DataCells := length(nnn)

Botstar := 28

Point 49_d := nnn₄₈

No Cells := length(nnn)

The two groups are named as follows:

.

Stoptop := 16

low points := LOWROWS (nnn, No DataCells, Botstar)

high points := TOPROWS (nnn, No DataCells, Stoptop)

high points := Add(nnn, No DataCells, 19, length(high points), high points) high points := Add(nnn, No DataCells, 20, length(high points), high points) high points := Add(nnn, No DataCells, 21, length(high points), high points) high points := Add(nnn, No DataCells, 22, length(high points), high points) high points := Add(nnn, No DataCells, 27, length(high points), high points) high points := Add(nnn, No DataCells, 27, length(high points), high points) high points := Add(nnn, No DataCells, 28, length(high points), high points)

Sheet No.

low points := Add(nnn, No DataCells, 17, length(low points), low points)
low points := Add(nnn, No DataCells, 18, length(low points), low points)
low points := Add(nnn, No DataCells, 23, length(low points), low points)
low points := Add(nnn, No DataCells, 24, length(low points), low points)

low points := Add(nnn, No DataCells, 25, length(low points), low points) low points := Add(nnn, No DataCells, 26, length(low points), low points)

Cells := deletezero $_{cells}(nnn, No _{Cells})$

high _{points} := deletezero _{cells}(high _{points}, length(high _{points})) low _{points} := deletezero _{cells}(low _{points}, length(low _{points}))

 μ_{measured_d} := mean(Cells) $\sigma_{\text{measured}_d}$:= Stdev(Cells)

 $\mu high_{measured_d} := mean(high_{points})$

 $ohigh_{measured_d} := Stdev(high_{points})$

Standardhigh $_{error_d} := \frac{_{digh measured_d}}{\sqrt{length(high points)}}$

OCLR00027894

 $\sigma_{\text{measured}_d}$

No DataCells

 $\sigma low_{measured_d}$

length (low points)

 μ low measured_d := mean(low points)

 $\sigma low_{measured_d} := Stdev(low_{points})$

Standard error

Standardlow errord :=

C-1302-187-E310-041 Rev. No. 0

For 2006

d ≔d+1

page := READPRN("U:\MSOFFICE\Drywell Program data\OCT 2006 Data\Sandbed\SB13C-D.txt")

Points 49 := showcells(page, 7, 0)

 $Dates_d := Day_{year}(9, 23, 2006)$

Data 1.132 1.083 1.068 1.106 1.119 1.114 0.95 0 999 1.061 1.007 1.1 0.986 0.95 0.837 1.085 0.833 0.949 1.088 Points 49 = 1.005 0.977 0.878 0.851 0.911 0.958 0.997 0.916 0.96 0.874 0.905 0.915 0.907 0.874 0.944 0.947 0.897 0.887 0.92 0.865 0.892 0.939 0.929 0.958 0.944 0.832 0.821 0.996

No DataCells := length(nnn)

Botstar := 28

nnn := convert (Points 49, 7)

Point $49_d = nnn_{48}$

The two groups are named as follows:

high points := TOPROWS (nnn, No DataCells, Stoptop)

Stoptop := 16

low points := LOWROWS (nnn, No DataCells, Botstar)

high points := Add(nnn, No DataCells, 19, length(high points), high points) high points := Add(nnn, No DataCells, 20, length(high points), high points) high points := Add(nnn, No DataCells, 21, length(high points), high points) high points := Add(nnn, No DataCells, 22, length(high points), high points) high points := Add(nnn, No DataCells, 27, length(high points), high points) high points := Add(nnn, No DataCells, 27, length(high points), high points) high points := Add(nnn, No DataCells, 28, length(high points), high points) high points := Add(nnn, No DataCells, 28, length(high points), high points) high points := Add(nnn, No DataCells, 17, length(low points), low points)

low points := Add(nnn, No DataCells, 18, length(low points), low points)

low points := Add(nnn, No DataCells, 23, length(low points), low points) low points := Add(nnn, No DataCells, 24, length(low points), low points) low points := Add(nnn, No DataCells, 25, length(low points), low points) low points := Add(nnn, No DataCells, 26, length(low points), low points)

Cells := deletezero cells (nnn, No Cells)

 μ measured_d := mean(Cells)

high points := deletezero cells (high points, length (high points))

low points := deletezero cells (low points, length (low points))

 $\sigma_{\text{measured}_d} \coloneqq \text{Stdev(Cells)}$

o measured Standard error_d := √^{No} DataCells

 μ low measured_d := mean(low points) olow measured_d := Stdev(low points)

olow measured Standardlow error_d length (low points)

 μ high measured_d := mean(high points) $ohigh_{measured_d} := Stdev(high_{points})$ ohigh measured

Standardhigh $\operatorname{error}_{d} := \frac{1}{\sqrt{\operatorname{length}(\operatorname{high}_{\operatorname{points}})}}$

OCLR00027896

Sheet No. of

17

C-1302-187-E310-041 Rev. No. 0

Sheet No. of

σ measured

93.149 88.766

90.136

 $\mu_{\text{measured}} = \begin{bmatrix} 972.755 \\ 958.898 \\ 968.184 \end{bmatrix}$

. • · · ·	906.037		46.682		8.984	
μ low measured =	894.926	clow measured =	42.624	Standardlow error =	8.203	
· · ·	904.037		46.499		8.949	

Total means := $rows(\mu measured)$

Total means = 3

SST :=
$$\sum_{i=0}^{last(Dates)} (\mu_{measured_i} - mean(\mu_{measured}))^2$$

SST $_{low}$:= $\sum_{i=0}^{last(Dates)} (\mu_{low}_{measured_i} - mean(\mu_{low}_{measured}))^2$

SST high :=
$$\sum_{i=0}^{last(Dates)} (\mu high_{measured_i} - mean(\mu high_{measured}))^2$$

SSE :=
$$\sum_{i=0}^{last(Dates)} (\mu_{measured_i} - yhat(Dates, \mu_{measured}))^2$$

SSE low :=
$$\sum_{i=0}^{last(Dates)} (\mu low_{measured_i} - yhat(Dates, \mu low_{measured}))^2$$

$$SSE_{high} \coloneqq \sum_{i=0}^{last(Dates)} (\mu high_{measured_i} - yhat(Dates, \mu high_{measured_i}))$$

SSR :=
$$\sum_{i=0}^{last(Dates)} (yhat(Dates, \mu_{measured})_{i} - mean(\mu_{measured}))^{2}$$

SSR low :=
$$\sum_{i=0}^{last(Dates)} (yhat(Dates, \mu low_{measured})_i - mean(\mu low_{measured}))^2$$

F Test for Corrosion

α := 0.05

 $F_{actaul_Reg} := \frac{MSR}{MSE}$

 $F_{critical_reg} := qF(1 - \alpha, DegreeFree_{reg}, DegreeFree_{ss})$

F ratio_reg := F actaul_Reg F critical_reg ratio_reg = 3.736•10

Test the low points

F Test for Corrosion

Sheet No. 17 of

 $F_{critical_reg} := qF(1 - \alpha, DegreeFree_{reg}, DegreeFree_{ss})$

Test the high points

F Test for Corrosion

 $F_{actaul_Reg.high} := \frac{MSR_{high}}{MSE_{high}}$

 $F_{critical_reg} := qF(1 - \alpha, DegreeFree_{reg}, DegreeFree_{ss})$

 $F_{ratio_reg.high} = \frac{F_{actaul_Reg.high}}{F_{critical_reg}}$ $F_{ratio_reg.high} = 2.024 \cdot 10^{-5}$

Appendix 21 - Location 17A Sensitivity Study without 1996 data d :=0 The data shown below was collected on 10/18/06 For Dec 31 1992 page := READPRN("U:\MSOFFICE\Drywell Program data\Dec. 1992 Data\sandbed\DATA ONLY\SB17A.txt") Points 49 := showcells(page, 7, 0) Dates_d := Day year(12, 31, 1992) Data 1.159 1.153 1.158 1.138 1.127 1.169 1.167 1.121 1.155 1.121 1.143 1.125 1.151 1.12 1.071 1.095 1.112 1.115 1.097 1.07 1.053 1.02 0.995 0.977 1.012 1.048 1.029 0.951 Points 49 = 0.976 0.919 0.881 0.935 0.871 0.936 0.964 0.866 0.961 0.892 0.822 0.804 0.946 0.991 0.934 0.97 0.923 0.925 0.871 0.952 0.986 nnn := convert(Points 49, 7) No DataCells := length(nnn) nnn := Zero one(nnn; No DataCells, 43)Point 40_d := nnn₃₉ Point $_{40} = 804$ No Cells := length(Cells) StopCELL := 21 The two groups are named as follows: low points := LOWROWS (nnn, No Cells, StopCELL) high points := TOPROWS (nnn, No Cells, StopCELL) No lowCells := length (low points) No highCells := length (high points) Cells := deletezero cells (nnn, No Cells) low points := deletezero cells (low points, No lowCells) high points := deletezero cells (high points, No highCells) Standard error_d := $\frac{\sigma_{\text{measured}_d}}{\sqrt{No_{\text{DataCells}}}}$ ^{μ} measured_d := mean(Cells) $\sigma_{\text{measured}_d} := \text{Stdev}(\text{Cells})$ µhigh measured_d := mean(high points) $\mu low_{measured_d} := mean(low_{points})$ ohigh measured_d := Stdev(high points) $dow_{measured_d} := Stdev(low_{points})$ ohigh measured diow measured Standardlow $error_d := \sqrt{length(low points)}$

APPENDIX 21

C-1302-187-E310-041 Rev. No. 0

d := d + 1

For 1994

page := READPRN("U:\MSOFFICE\Drywell Program data\Sept.1994 Data\sandbed\DATA ONLY\SB17A.txt")

Points 49 := showcells(page, 7, 0)

Dates_d := Day year (9, 26, 1994)

Data

	1.163	1.146	1.158 1.122 1.108	1.141	1.136	1.168	1.172
	1.122	1.155	1.122	1.144	1.128	1.157	1.133
	1.121	1.088	1.108	1.116	1.102	1.071	1.055
Points ₄₉ =	0.977	0.993	0.981	0.989	1.046	1.001	0:956
	0.962	0.914	0.869	0.942	0.877	0.938	0.962
	0.861	0.963	0.894	0.82	0.809	0.947	0.984
Points ₄₉ =	0.927	0.9 7	0.866	0.895	0.893	0.956	0.953

nnn := convert (Points 49,7)

No DataCells != length(nnn)

Point $40_d = nnn_{39}$

The two groups are named as follows: StopCELL := 21 No Cells := length(nnn) low points := LOWROWS (nnn, No Cells, StopCELL) high points := TOPROWS (nnn, No Cells, StopCELL)

No lowCells := length (low points)

Cells := deletezero $_{cells}(nnn, No _{Cells})$

low points := deletezero cells (low points, No lowCells)

high points := deletezero cells (high points, No highCells)

σ measured

No DataCells

 $\sigma low measured_d$

length (low points)

No highCells := length(high points)

 $\mu_{\text{measured}_d} := \text{mean(Cells)}$ Standard error_d $\sigma_{\text{measured}_d} := \text{Stdev}(\text{Cells})$

µhigh measured_d := mean(high points) $\mu low measured_d := mean(low points)$ $ohigh_{measured_d} := Stdev(high_{points})$ σ low measured := Stdev (low points) ohigh measured d Standardhigh error_d: Standardlow errord length (high points)

APPENDIX 21

C-1302-187-E310-041 Rev. No. 0

Sheet No. スン

d := d + 1

For 2006

page := READPRN("U:\MSOFFICE\Drywell Program data\Oct 2006 Data\Sandbed\SB17A.txt")

Points 49 := showcells(page, 7,0)

Dates_d := Day year (9, 23, 2006)

Data							
1	1.11	1.149	1.154	1.138	1.13	1.17	1.169
:	1.121	1.159	1.114	1.144	1.134	1.148	1.123
Points 49 =	1.068	1.073	1.111	1.114	1.094	1.083	1.053
	0.976	0.99 1	0.98	1.03	1.046	0.994	0.95
	0.962	0.926	0.909	0.95	0.869	0.938	0.967
	0.903	0.956	0.891	0.835	0.802	0.95	0.963
	0.954	0.972	0.877	0.89	0.875	0.891	0.945

nnn := convert (Points 49,7)

No DataCells := length(nnn)

Point 40_d := nnn₃₉

 The two groups are named as follows:
 StopCELL := 21
 No Cells := length(nnn)

 low points := LOWROWS(nnn, No Cells, StopCELL)
 high points := TOPROWS(nnn, No Cells, StopCELL)

 No lowCells := length(low points)
 No highCells := length(high points)

Cells := deletezero $_{cells}(nnn, No _{Cells})$

low points := deletezero cells (low points, No lowCells)

high points := deletezero cells (high points, No highCells)

σ measured Standard errord := $\sigma_{\text{measured}_d} := \text{Stdev}(\text{Cells})$ μ measured_d := mean(Cells) No DataCells $\mu high_{measured_d} := mean(high_{points})$ μ low measured := mean (low points) $ohigh_{measured_d} := Stdev(high_{points})$ clow measured_d := Stdev(low points) ohigh measured d σ low measured d Standardhigh errord Standardiow errord length (high points) length (low points)

()Below are the results 1.993•10³ 1.995•10³ Dates = 804 Point $_{40} = 809$ 2.007•10³ 802 14.971 15.472 14.911 Standard error $\begin{bmatrix} 1.022 \cdot 10^3 \\ 1.017 \cdot 10^3 \\ 1.015 \cdot 10^3 \end{bmatrix}$ μ measured = 104.798 108.306 104.378 σ measured ³ 7.227 6.827 7.243 $\mu high_{measured} = \begin{bmatrix} 1.125 \cdot 10^3 \\ 1.129 \cdot 10^3 \\ 1.122 \cdot 10^3 \end{bmatrix}$ ohigh measured = $\begin{bmatrix} 33.118 \\ 31.283 \\ 33.194 \end{bmatrix}$ Standardhigh error = 941.593 $\sigma low_{measured} = \begin{bmatrix} 61.37 \\ 56.659 \\ 55.725 \end{bmatrix}$ Standardlow $_{error} = \begin{bmatrix} 11.811 \\ 10.708 \\ 10.531 \end{bmatrix}$ 933.75 µlow measured = 935.429

Sheet No. 22 of

Total means := rows (μ measured)

Total means = 3

SST :=
$$\sum_{i=0}^{last(Dates)} (\mu_{measured_i} - mean(\mu_{measured}))^2$$

SST low :=
$$\sum_{i=0}^{last(Dates)} (\mu low_{measured_i} - mean(\mu low_{measured}))$$

$$SST_{high} := \sum_{i=0}^{last(Dates)} \left(\mu high_{measured_{1}} - mean(\mu high_{measured}) \right)^{2}$$

SSE :=
$$\sum_{i=0}^{\text{last(Dates)}} (\mu_{\text{measured}_i} - \text{yhat}(\text{Dates}, \mu_{\text{measured}})_i)^2$$

SSE low :=
$$\sum_{i=0}^{\text{last(Dates)}} (\mu \text{low}_{\text{measured}_i} - \text{yhat}(\text{Dates}, \mu \text{low}_{\text{measured}})_i)^2$$

SSE high :=
$$\sum_{i=0}^{last(Dates)} (\mu high_{measured_i} - yhat(Dates, \mu high_{measured}))^2$$

SSR := $\sum_{i=0}^{last(Dates)} (yhat(Dates, \mu_{measured})_i - mean(\mu_{measured}))^2$

lact(Dates)

OCLR00027905

APPENDIX 21

C-1302-187-E310-041 Rev. No. 0

Sheet No. 2 3 of

SSR high :=
$$\sum_{i=0}^{last(Dates)} (yhat(Dates, \mu high_{measured})_i - mean(\mu high_{measured}))^2$$

DegreeFree ss := Total means -2

DegreeFree reg := 1 DegreeFree

DegreeFree st := Total means - 1

$$MST := \frac{SST}{DegreeFree_{st}} \qquad MST_{low} := \frac{SST_{low}}{DegreeFree_{st}} \qquad MST_{high} := \frac{SST_{high}}{DegreeFree_{st}}$$

Test the means with all points

 $F_{ratio_{GM}} := \frac{F_{actaul_{Gradnmean}}}{F_{critical_{GM}}}$

F Test for No Corrosion

1

F Test for Corrosion

Factaul_Gradnmean
$$:= \frac{MST}{MSR}$$
 $\alpha := 0.05$

$$\alpha := 0.05$$
 F actaul_Reg := $\frac{MSR}{MSE}$

 $F_{critical_{GM}} := qF(1 - \alpha, DegreeFree_{reg}, DegreeFree_{st})$

$$F_{critical_reg} := qF(1 - \alpha, DegreeFree_{reg}, DegreeFree_{ss})$$

$$F_{ratio_reg} := \frac{F_{actaul_Reg}}{F_{critical_reg}}$$

Sheet No. 24°

 $F_{ratio} GM = 0.04$

 $F_{ratio_{reg}} = 0.012$

Therefore no conclusion can be made as to whether the data best fits the regression model or the grandmean model. However the grandmean ratio is significantly greater than the regression ratio indicating a line without a slope may be the a better fit. The figure below provides a trend of the data and the grandmean

Test the low points

F Test for No Corrosion

Factaul_Gradnmean.low := MST low MSR low

 $F_{actaul_Reg.low} := \frac{MSR_{low}}{MSE_{low}}$

F Test for Corrosion

 $F_{critical_GM} := qF(1 - \alpha, DegreeFree_{reg}, DegreeFree_{st})$

 $F_{ratio_GM.low} := \frac{F_{actaul_Gradnmean.low}}{F_{critical_GM}}$ $F_{ratio_GM.low} = 0.152$

F_{ratio_reg.low} := F_{actaul_Reg.low} F_{critical_reg}

 $F_{critical_reg} := qF(1 - \alpha, DegreeFree_{reg}, DegreeFree_{ss})$

F ratio_reg.low = 1.34-10

The conclusion can be made that the low points best fit the grandmean model. The grandmean ratio is greater than one. The figure below provides a trend of the data and the grandmean

Test the high points

F Test for No Corrosion

F Test for Corrosion

F actaul_Gradnmean.high MSR high

 $F_{actaul_Reg.high} := \frac{MSR_{high}}{MSE_{high}}$

 $F_{critical_GM} := qF(1 - \alpha, DegreeFree_{reg}, DegreeFree_{st})$

F_{ratio_GM.high} := F_{critical_GM}

F ratio_GM.high = 0.049

 $F_{critical_reg} := qF(1 - \alpha, DegreeFree_{reg}, DegreeFree_{ss})$

F_{ratio_reg.high} := Factaul_Reg.high F_{critical_reg} $F_{ratio_{reg.high}} = 7.492 \cdot 10^{-3}$

Therefore no conclusion can be made as to whether the data best fits the regression model or the grandmean model. However the grandmean ratio is significantly greater than the regression ratio indicating a line without a slope may be the a better fit. The figure below provides a trend of the data and the grandmean

OCLR00027907

C-1302-187-E310-041 Rev. No. 0

d :=0

Appendix 21 - Location 17D Sensitivity Study without 1996 data The data shown below was collected on 10/18/06

For 1992

Dates_d := Day year(12, 8, 1992)

page := READPRN("U:\MSOFFICE\Drywell Program data\Dec. 1992 Data\sandbed\Data Only\SB17D.txt")

Points 49 := showcells(page, 7, 0)

Data

0.839	0.802	0.853	0.905	0.955	0.877	0.71
0.804	0.802	0.71	0.806	0.737	0.762	0.648
1.029	0.814	0.752	0.802	0.819	0.737	0.668
1.069	1.069	0.748	0.803	0.784	0.806	0.785
0.809	0.845	0.845	0.816	0.846	0.845	0.84
0.79	0.833	0.892	0.846	0.878	0.855	0.792
0.832	0.896	0.835	0.882	0.886	0.936	0.862
	0.804 1.029 1.069 0.809 0.79	0.8040.8021.0290.8141.0691.0690.8090.8450.790.833	0.8040.8020.711.0290.8140.7521.0691.0690.7480.8090.8450.8450.790.8330.892	0.804 0.802 0.71 0.806 1.029 0.814 0.752 0.802 1.069 1.069 0.748 0.803 0.809 0.845 0.845 0.816 0.79 0.833 0.892 0.846	0.804 0.802 0.71 0.806 0.737 1.029 0.814 0.752 0.802 0.819 1.069 1.069 0.748 0.803 0.784 0.809 0.845 0.845 0.816 0.846 0.79 0.833 0.892 0.846 0.878	0.839 0.802 0.853 0.905 0.955 0.877 0.804 0.802 0.71 0.806 0.737 0.762 1.029 0.814 0.752 0.802 0.819 0.737 1.069 1.069 0.748 0.803 0.784 0.806 0.809 0.845 0.845 0.816 0.846 0.845 0.79 0.833 0.892 0.846 0.878 0.855 0.832 0.896 0.835 0.882 0.886 0.936

nnn := convert (Points 49,7)

1

No DataCells := length(nnn)

point $13_d = nnn_{13}$

point ₁₃ = 648

For this location point 15, 16, 22, and 23 are over a plug (refer 3.22)

nnn := Zero one(nnn, No DataCells, 15)

nnn := Zero $_{one}(nnn, No _{DataCells}, 16)$

nnn := Zero $_{one}(nnn, No _{DataCells}, 23)$

nnn := Zero $_{one}(nnn, No _{DataCells}, 22)$

Cells := deletezero cells (nnn, No DataCells)

 μ measured_d := mean(Cells) σ measured_d := Stdev(Cells)

Standard error_d := $\frac{\sigma_{\text{measured}_d}}{\sqrt{No_{\text{DataCells}}}}$

. 1

C-1302-187-E310-041 Rev. No. 0

Sheet No.

d := d + 1

For 1994

page := READPRN("U:\MSOFFICE\Drywell Program data\Sept.1994 Data\sandbed\Data Only\SB17D.txt")

Dates := Day year (9, 14, 1994)

Points 49 := showcells(page, 7, 0)

Data

 $Points_{49} = \begin{bmatrix} 0.797 & 0.815 & 0.853 & 0.887 & 0.925 & 0.878 & 0.696 \\ 0.807 & 0.806 & 0.698 & 0.802 & 0.729 & 0.734 & 0.646 \\ 1.008 & 0.243 & 0.749 & 0.741 & 0.816 & 0.735 & 0.662 \\ 1.068 & 1.066 & 0.739 & 0.812 & 0.772 & 0.793 & 0.785 \\ 0.804 & 0.836 & 0.838 & 0.794 & 0.853 & 0.828 & 0.842 \\ 0.79 & 0.825 & 0.885 & 0.847 & 0.872 & 0.853 & 0.795 \\ 0.827 & 0.899 & 0.826 & 0.863 & 0.922 & 0.934 & 0.835 \end{bmatrix}$

nnn := convert (Points $_{49}, 7$).

No DataCells := length(nnn)

point $13_d = nnn_{13}$

For this location point 15, 16, 22, and 23 are over a plug (refer 3.22)

nnn := Zero one(nnn, No DataCells, 15)

nnn := Zero one(nnn, No DataCells, 22)

nnn := Zero one(nnn, No DataCells, 16)

nnn := Zero $_{one}(nnn, No _{DataCells}, 23)$

Cells := deletezero cells (nnn, No DataCells)

 μ measured_d := mean(Cells)

 $\sigma_{\text{measured}_d} := \text{Stdev(Cells)}$

^o measured, Standard errord No DataCells

d := d + 1

Sheet No. 27

of

For 2006

page := READPRN("U:\MSOFFICE\Drywell Program data\OCT 2006 Data\Sandbed\SB17D.txt")

Dates_d := Day year(10, 16, 2006)

Points 49 := showcells(page, 7, 0)

Data

							0.702
	0.806	0.802	0.717	0.806	0.736	0.756	0.648
							0.667
Points 49 =	1.072	1.074	0.742	0.812	0.812	0.803	0.791
· .	0.814	0.841	0.85	0.816	0.852	0.856	0.869
	0.792	0.829	0.888	0.846	0.888	0.855	0.8
	0.824	0.897	0.837	0.887	0.891	0.935	0.886

nnn := convert(Points 49, 7)

point 13_d = nnn₁₃

For this location point 15, 16, 22, and 23 are over a plug (refer 3.22)

nnn := Zero one (nnn, No DataCells, 15)

nnn := Zero one(nnn, No DataCells, 16)

nnn := Zero one (nnn, No DataCelis, 23)

nnn := Zero one(nnn, No DataCells, 22)

Cells := deletezero cells (nnn, No DataCells)

 $\mu_{\text{measured}_d} := \text{mean(Cells)}$

 $\sigma_{\text{measured}_d} := \text{Stdev}(\text{Cells})$

 σ measured Standard errord := No DataCells

Below are matrices which contain the date when the data was collected, Mean, Standard Deviation, Standard Error for each date.

Dates =
$$\begin{bmatrix} 1.993 \cdot 10^3 \\ 1.995 \cdot 10^3 \\ 2.007 \cdot 10^3 \end{bmatrix}$$
 point $_{13} = \begin{bmatrix} .648 \\ .646 \\ .648 \end{bmatrix}$

$$\mu_{\text{measured}} = \begin{bmatrix} 817.2222\\ 809.8889\\ 818.6667 \end{bmatrix}$$
 Standard error =
$$\begin{bmatrix} 9.214\\ 9.448\\ 9.476 \end{bmatrix}$$
 $\sigma_{\text{measured}} = \begin{bmatrix} 64.496\\ 66.133\\ 66.335 \end{bmatrix}$

Total means := rows (μ measured)

SST :=
$$\sum_{i=0}^{last(Dates)} (\mu_{measured_i} - mean(\mu_{measured}))^2$$

SST = 44.305

SSE :=
$$\sum_{i=0}^{last(Dates)} (\mu_{measured_i} - yhat(Dates, \mu_{measured}))^2$$
.

SSR :=
$$\sum_{i=0}^{last(Dates)} (yhat(Dates, \mu_{measured})_{i} - mean(\mu_{measured}))^{2}$$

MSR :=

DegreeFree ss := Total means - 2

SSE

DegreeFree ss

MSE :=

SSR

DegreeFree reg

. .

SSR = 12.51

DegreeFree st := Total means - 1

MST := SST DegreeFree st

C-1302-187-E310-041 Rev. No. 0

OCLR00027912

MSE = 31.795

StGrand err := √MSE

MSR = 12.51

MST = 22.152

StGrand err = 5.639

F Test for Corrosion

α := 0.05

F_{actaul_Reg} := <u>MSR</u> MSE

 $F_{critical_reg} := qF(1 - \alpha, DegreeFree_{reg}, DegreeFree_{ss})$

Appendix 21 - Location 19C Sensitivity Study without 1996 data The data shown below was collected on 10/18/06

d :=0

Data from the 1992, 1994 and 1996 is retrieved.

Dates_d := Day year(12, 8, 1992)

page := READPRN("U:\MSOFFICE\Drywell Program data\Dec. 1992 Data\sandbed\Data Only\SB19C.txt")

Points 49 := showcells(page, 7,0)

For 1992

Data

	0.822	0.757	0.792	0.994	0.922	0.979	0.931
	0.683	0.716	0.693	0.797	0.753	0.887	0.838
	0.815	0.744	0.879	0.859	0.856	0.222	0.888
Points 49 =	0.785	0.65	0.713	0.766	1.147	1.152	0.907
	0.839	0.782	0.732	0.762	0.859	0.791	0.838
	0.867	0.833	0.88	0 .75 Ģ	0.852	0.736	0.752
Points ₄₉ =	0.835	0.861	0.889	0.842	0.896	0.884	0.809

nnn := convert (Points $_{49}, 7$)

No DataCells := length(nnn)

For this location point 20, 26, 27, and 33 are over a plug (refer 3.22)

nnn := Zero one(nnn, No DataCells, 20)

nnn := Zero one(nnn, No DataCells, 26)

nnn := Zero $_{one}(nnn, No _{DataCells}, 33)$

nnn := Zero one (nnn, No DataCells, 27)

Cells := deletezero $_{cells}(nnn, No _{DataCells})$

minpoint := min(Cells)

minpoint = 650

 $Point_{2l_d} := Cells_{2l} Point_{2l} = 650$

^{μ} measured_d := mean(Cells)

 $\sigma_{\text{measured}_d} := \text{Stdev(Cells)}$

' measured_d Standard errord := No DataCells

C-1302-187-E310-041 Rev. No. 0

Sheet No 31

For 1994

d := d + 1

page := READPRN("U:\MSOFFICE\Drywell Program data\Sept.1994 Data\sandbed\Data Only\SB19C.txt")

Dates_d := Day year(9, 14, 1994)

Points 49 := showcells(page, 7, 0)

Data

 $Points_{49} = \begin{bmatrix} 0.816 & 0.757 & 0.82 & 0.979 & 0.904 & 0.952 & 0.917 \\ 0.677 & 0.738 & 0.694 & 0.798 & 0.762 & 0.897 & 0.831 \\ 0.813 & 0.736 & 0.876 & 0.855 & 0.838 & 0.221 & 0.884 \\ 0.787 & 0.666 & 0.718 & 0.762 & 1.153 & 1.149 & 0.906 \\ 0.841 & 0.782 & 0.734 & 0.764 & 0.856 & 0.787 & 0.834 \\ 0.871 & 0.832 & 0.886 & 0.766 & 0.867 & 0.735 & 0.748 \\ 0.836 & 0.853 & 0.892 & 0.851 & 0.9 & 0.902 & 0.831 \end{bmatrix}$

nnn := convert (Points 49,7)

No DataCells := length(nnn)

For this location point 20, 26, 27, and 33 are over a plug (refer 3.22)

nnn := Zero $_{one}(nnn, No _{DataCells}, 20)$

nnn := Zero one(nnn, No DataCells, 26)

nnn := Zero one(nnn, No DataCells, 33)

nnn := Zero one(nnn, No DataCells, 27)

Cells := deletezero cells (nnn, No DataCells)

Point 21_d := Cells₂₁

^o measured_d Standard error No DataCells

OCLR00027914

 $\mu_{\text{measured}_d} := \text{mean(Cells)} \qquad \sigma_{\text{measured}_d} := \text{Stdev(Cells)}$

C-1302-187-E310-041 Rev. No. 0

Sheet No OF 7 L

d := d + 1

For 2006

page := READPRN("U:\MSOFFICE\Drywell Program data\OCT 2006 Data\Sandbed\SB19C.txt")

Dates_d := Day year (10, 16, 2006)

0.896

Points 49 := showcells(page, 7, 0)

Data 0.809 0.768 0.862 1.059 0.968 0.961 0.92 0.679 0.745 0.695 0.814 0.766 0.865 0.845 $0.816 \quad 0.775 \quad 0.87 \quad 0.871 \quad 0.863 \quad 0$ Points 49 = 0.791 0.66 0.715 0.793 1.151 1.164 0.918

0.851 0.781 0.733 0.762 0.862 0.787 0.796 0.866 0.83 0.88 0.753 0.757 0.867 0.75 0.801 0.794 0.852 0.841 0.901 0.906 0.84

nnn := convert(Points 49,7)

No DataCells := length(nnn)

For this location point 20, 26, 27, and 33 are over a plug (refer 3.22)

 $nnn := Zero_{one}(nnn, No_{DataCells}, 20)$

nnn := Zero $_{one}(nnn, No _{DataCells}, 27)$

Cells := deletezero cells (nnn, No DataCells)

Point 21_d := Cells₂₁

⁶ measured, Standard errord : $\sigma_{\text{measured}_d} := \text{Stdev}(\text{Cells})$ No DataCells

 $nnn := Zero_{one}(nnn, No_{DataCells}, 26)$

nnn := Zero $_{one}(nnn, No _{DataCells}, 33)$

 μ measured_d := mean(Cells)

Sheet No 0F 37

Below are matrices which contain the date when the data was collected, Mean, Standard Deviation, Standard Error for each date.

Below are matrices which contain the date when the data was collected, Mean, Standard Deviation, Standard Error for each date.

Dates =
$$\begin{bmatrix} 1.993 \cdot 10^{3} \\ 1.995 \cdot 10^{3} \\ 2.007 \cdot 10^{3} \end{bmatrix}$$
 Point 21 = $\begin{bmatrix} 650 \\ 666 \\ 660 \end{bmatrix}$
 $\mu_{\text{measured}} = \begin{bmatrix} 819.156 \\ 819.889 \\ 823.822 \end{bmatrix}$ Standard error = $\begin{bmatrix} 11.01 \\ 10.485 \\ 11.303 \end{bmatrix}$ $\sigma_{\text{measured}} = \begin{bmatrix} 77.068 \\ 73.396 \\ 79.123 \end{bmatrix}$

Total means := rows (μ measured)

Total means = 3

SST :=
$$\sum_{i=0}^{last(Dates)} (\mu_{measured_i} - mean(\mu_{measured}))^2$$

SSE :=
$$\sum_{i=0}^{last(Dates)} (\mu_{measured_i} - yhat(Dates, \mu_{measured}))^2$$

SR :=
$$\sum_{i=0}^{\text{last(Dates)}} (\text{yhat}(\text{Dates}, \mu_{\text{measured}})_{i} - \text{mean}(\mu_{\text{measured}}))$$

SSR = 12.585

SSE = 0.011

DegreeFree reg := 1

MSE := SSE DegreeFree ss

MSE = 0.011

MSR = 12.585

DegreeFree st := Total means - 1

 $MST := \frac{SST}{DegreeFree}_{st}$

MST = 6.298

2

C-1302-187-E310-041 Rev. No. 0

F Test for Corrosion

 $F_{actaul_Reg} := \frac{MSR}{MSE}$

α **:=**0.05

 $F_{critical_{reg}} := qF(1 - \alpha, DegreeFree_{reg}, DegreeFree_{ss})$

Fratio_reg = Factaul_Reg Fcritical_reg F ratio_reg = 7.263

The conclusion can be made that the mean best fits the grandmean model.

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

Therefore the curve fit of the means does not have a slope and the grandmean is an accurate measure of the thickness at this location

i =0.. Total means - 1

 $\mu \text{grand}_{\text{measured}_i} := \text{mean}(\mu_{\text{measured}})$

GrandStandard $\operatorname{error}_{0} \coloneqq \frac{\operatorname{\sigma grand}_{\text{measured}}}{\sqrt{\operatorname{Total}_{\text{means}}}}$ σ grand measured := Stdev(μ measured) The minimum required thickness at this elevation is Tmin_gen SB; =736 (Ref. 3.25)

^µ measured 820 × × × 800 µgrand measured Tmin_gen SB 780 -

Plot of the grand mean and the actual means over time

()

C-1302-187-E310-041 Rev. No. 0

To conservatively address the location, the apparent corrosion rate is calculated and compared to the minimum required wall thickness at this elevation

$$m_s := slope(Dates, \mu_{measured})$$
 $m_s = 0.333$ $y_b := intercept(Dates, \mu_{measured})$ $y_b = 156.275$

f := 0.. k - 1

The 95% Confidence curves are calculated

year predict_f := 1985 + f.2 Thick predict := m_s year predict + y_b

sum :=
$$\sum_{d} (Dates_{d} - mean(Dates))^{2}$$

upper_f := Thick predict_f ...

+
$$qt\left(1-\frac{\alpha_t}{2}, \text{Total}_{\text{means}}-2\right)$$
 StGrand err $\sqrt{1+\frac{1}{(d+1)}+\frac{\left(year_{\text{predict}_f}-\text{Thick}_{\text{actualmean}}\right)^2}{sum}}$

lower_f := Thick predict_f ...

$$+ - \left[qt\left(1 - \frac{\alpha_{t}}{2}, \text{Total}_{means} - 2\right) \cdot \text{StGrand}_{err} \cdot \sqrt{1 + \frac{1}{(d+1)} + \frac{\left(\text{year}_{predict_{f}} - \text{Thick}_{actualmean}\right)^{2}}{\text{sum}}}\right]$$

Sheet No 39

OCLR00027921

Therefore even though F-ratio does not support the regression model the above curve shows that even at the lower 95% confidence band this location will not corrode to below Drywell Vessel Minimum required thickness by the plant end of life.

Appendix 21 - Location 1D Sensitivity Study without 1996 data The data shown below was collected on 10/18/06

d ≔0

For 1992

Dates_d := Day year(12, 8, 1992)

page := READPRN("U:\MSOFFICE\Drywell Program data\Dec. 1992 Data\sandbed\Data Only\SB1D.txt")

Points 7 := show7cells(page, 1,7,0)

Data

Points $_7 = [0.889 \ 1.138 \ 1.112 \ 1.114 \ 1.132 \ 1.103 \ 1.126]$

nnn := con7vert(Points 7, 7, 1)

No DataCells := length(nnn)

Point 1d := Points 70

nnn := Zero $_{one}(nnn, No _{DataCells}, 1)$

Cells := deletezero cells (nnn, No DataCells)

Point 1 = 0.889

 $\mu_{\text{measured}_d} := \text{mean(Cells)}$

 $\sigma_{\text{measured}_d} := \text{Stdev}(\text{Cells})$

 σ measured Standard error No DataCells

C-1302-187-E310-041 Rev. No. 0

Sheet No. 4 (j

For 1994

d ≔d+1

page := READPRN("U:\MSOFFICE\Drywell Program data\Sept.1994 Data\sandbed\Data Only\SB iD.txt")

Dates_d := Day year(9, 14, 1994)

Points 7 := show7cells(page, 1,7,0)

Data

Points $_7 = [0.879 \ 1.054 \ 1.105 \ 1.119 \ 1.124 \ 1.088 \ 1.118]$

nnn := con7vert(Points $_7, 7, 1$)

No DataCells := length(nnn)

Point $1_d = Points 7_0$

nnn := Zero $_{one}(nnn, No _{DataCells}, 1)$

Celis := deletezero celis (nnn, No DataCells)

 μ measured_d := mean(Cells)

 $\sigma_{\text{measured}_d} := \text{Stdev}(\text{Cells})$

Standard error_d := $\frac{\sigma_{\text{measured}_d}}{\sqrt{No_{\text{DataCells}}}}$

C-1302-187-E310-041 Rev. No. 0

Sheet No. 41 of

d ≔d+1

For 2006

page := READPRN("U:\MSOFFICE\Drywell Program data\OCT 2006 Data\Sandbed\SB1D.txt")

Dates_d := Day year(10, 16, 2006)

Points 7 := show7cells(page, 1,7,0)

Data

Points $_7 = [0.881 \ 1.156 \ 1.104 \ 1.124 \ 1.134 \ 1.093 \ 1.122]$

nnn := $con7vert(Points_7, 7, 1)$

No DataCells := length(nnn)

Point 1d := Points 70

nnn := Zero one (nnn, No DataCells, 0)

Cells := deletezero cells (nnn, No DataCells)

Point $_{1} = \begin{bmatrix} 0.889 \\ 0.879 \\ 0.881 \end{bmatrix}$

 $\mu_{\text{measured}_d} := \text{mean}(\text{Cells})$

 $\sigma_{\text{measured}_d} := \text{Stdev}(\text{Cells})$

OCLR00027924

 σ measured_d

No DataCells

Standard errord

C-1302-187-E310-041 Rev. No. 0

Sheet No. of \mathcal{U}_7

Below are matrices which contain the date when the data was collected, Mean, Standard Deviation, Standard Error for each date.

$$Dates = \begin{bmatrix} 1.992 \cdot 10^{3} \\ 1.995 \cdot 10^{3} \\ 2.007 \cdot 10^{3} \end{bmatrix} Point_{1} = \begin{bmatrix} 0.889 \\ 0.879 \\ 0.881 \end{bmatrix}$$

$$\mu \text{ measured} = \begin{bmatrix} 1.12083 \cdot 10^{3} \\ 1.0133 \cdot 10^{3} \\ 1.03771 \cdot 10^{3} \end{bmatrix} Standard error = \begin{bmatrix} 5.039 \\ 10.05 \\ 35.295 \end{bmatrix} \sigma \text{ measured} = \begin{bmatrix} 13.333 \\ 26.591 \\ 93.382 \end{bmatrix}$$

$$Total_{means} := rowa(\mu_{measured}) Total_{means} = 3$$

$$SST := \sum_{i=0}^{L} (\mu_{measured_{i}} - mean(\mu_{measured}))^{2}$$

$$SSE := \frac{131.284}{L}$$

$$DegreeFree_{55} = MSR := \frac{SSR}{DegreeFree_{75}}$$

$$MSE := 131.284$$

$$MSR := 131.284$$

$$MSR = 422.916$$

$$MST := 277.1$$

$$StGrand_{err} := \sqrt{MSE}$$

$$StGrand_{err} := 11.458$$

Sheet No. 43 ^{of} 47

Appendix 21

α := 0.05

1

F Test for Corrosion

$F_{actaul_Reg} = \frac{MSR}{MSE}$

 $F_{critical_reg} := qF(1 - \alpha, DegreeFree_{reg}, DegreeFree_{ss})$

 $F_{ratio_{reg}} := \frac{F_{actaul_Reg}}{F_{critical_reg}}$

(

ł

C-1302-187-E310-041 Rev. 0 Sheet 1 of 4

. . .

	Sheet 1 of 4	
The following Mathcad Program (Iterate means) is used to p	perform the simulation for successful corrosion test for the mean r	ates.
rate means (Target Rate, # 1992, o input, Total means, It) :=	li⊷0	· · ·
means (~ Kate", 1992" input	Succesful _{Ftest} ←0	
	while i <it< td=""><td></td></it<>	
	DegreeFree se Total means - 2	
	DegreeFree reg - 1	· .
	Date ₀ - 1992	
	Date, - 1994	
	Date1996	· ·
· · ·	Date ₄ 2006	
	Confidence-0.95	• · · ·
	F _{critical} ~ qF(Confidence, DegreeFree _{reg} , DegreeFree _{se})	· ·
	j⊷0	· · ·
	for observe 0., Total means -1	
	$\left\ \begin{bmatrix} \mu_{in_j} \leftarrow \mu_{1992} - \left[\left(\text{Target}_{Rate} \right) \left(\text{Date}_j - \text{Date}_0 \right) \right] \right\ $	
	Cells _i \leftarrow morm(49, $\mu_{in_i}, \sigma_{input}$)	· · ·
	$\mu_{\text{test}_{j}} \leftarrow \text{mean}(\text{Cells}_{j})$	
	$j \leftarrow j + 1$ last(Date)	
	SSE $\leftarrow \sum_{k=1}^{1} \left(\mu_{\text{test}_{k}} - \text{yhat}(\text{Date}, \mu_{\text{test}})_{k} \right)^{2}$	
	k=0	
·	iast(Date)	
	SSR+- $\sum_{k} \left(\text{yhat}(\text{Date}, \mu_{test})_{k} - \text{mean}(\mu_{test}) \right)^{2}$	
	$k \approx 0$ SSE	
	$MSE \leftarrow \frac{SOL}{DegreeFree} se}$	
	MSRSSR	
	DegreeFree reg	
	F _{actaul} MSR MSE	· ·
	$F_{ratio} - \frac{F_{actaul}}{F_{critical}}$	
	critical .	
	$m \leftarrow slope(Date, \mu_{test})$	
	$($ Succesful _{Ftest} \leftarrow Succesful _{Ftest} $+ 1)$ if F _{ratio} > 1 $i \leftarrow i + 1$	
	Succesful Ftest	
	Pilest	
		. · · ·

C-1302-187-E310-041 Rev. 0 Sheet 2 of 4

function required the following inputs: the target corrosion rate (Target Rate), the 1992 calculated mean (μ_{1992}), the target indard deviation (σ_{input}), the number of inspections (Total means) and the number of iteration (It).

For each iteration

The function generates 49 point arrays using the Mathcad function "morm". The function "norm(49, μ_{in} , σ_{input})" - returns an array of "49" random numbers generated from a normal distribution with mean of " μ_{in} " and and a standard deviation of " σ_{input} "

Each iteration will generate 49 point arrays for the years 1992, 1994, 1996 and 2006.

The input to the 1992 array will be 49, the actual mean (800 mils) which was determined from the actual 1992, 19A data (reference appendix 10 page 10). and a target standard deviation of σ_{input} (65 mils). This target standard deviation is the average the of calculated standard deviations from the 1992, 1994, 1996 and 2006 data (see appendix 10 page 10). A simulated mean (for 1992) will then be calculated from the simulated 49 point array.

The input to the 1994 array will be 49, the valve μ_{1992} minus the target rate (in mils per year) times 2 (years; 1994-1992) and a standard deviation of 65 mils. A simulated mean (for 1994) will then be calculated from the simulated 49 point array.

The input to the 1996 array will be 49, the valve μ_{1992} minus the target rate (in mils per year) times 4 (years; 1996-1992) and a standard deviation of 65 mils. A simulated mean (for 1996) will then be calculated from the simulated 49 point array.

The input to the 2006 array will be 49, the valve μ_{1992} minus the target rate (In mils per year) times 14 (years; 2006-1992) a standard deviation of 65 mils. A simulated mean (for 2006) will then be calculated from the simulated 49 point array.

le four simulated means are tested for corrosion based on the methodology in section 6.5.9.2. The confidence factor for the test will be 95%. If the corrosion test is successful (the F Ratio is great than 1) then that iteration is be consider a successful valid iteration and the term Successful Ftest is increased by 1.

End of iteration

100 iterations are run at each of the input rates of 5, 6, 7, 8, and 9 mils per year. The resulting number of successful (passes the corrosion test) iterations will then be considered as probability of observing that rate given the 19A data.

The following Mathcad Program (run_10_time(times, rate, σ_{input} , dates, It, tolerance) runs the Iterate means program 10 times and returns an array (Sim) which documents the number of successful "F test" in each of the 10, 100 iteration simulations.

Runs(Target Rate, $\mu_{1992}, \sigma_{input}, Inspections, It) := Goodtest - 0$

for test $\in 0...9$ for test $\in 0...9$ $xx \leftarrow Iterate_{means}(Target_{Rate}, \mu_{1992}, \sigma_{input}, Inspections, It)$ Goodtest $j \leftarrow xx$ $j \leftarrow j + 1$ Goodtest

C-1302-187-E310-041 Rev. 0 Sheet 3 of 4

The results of the simulations are shown below using the following inputs

	σ _{input} := 65	Inspections := 4	Iterations := 100
1774	mpar		•

The simulation for 5 mils per year is input below Target Rate := 5.

	5	77
	10.00	73
		78
	1.13	85
Runs (Target Rate, $\mu_{1992}, \sigma_{input}$, Inspections, Iterations) =		79
	10.000	84

The simulation for 6 mils per year is input below

Target Rate := 6.

OCLR00027929

Runs (Target Rate, $\mu_{1992}, \sigma_{input}$, Inspections, Iterations) =

The simulation for 7 mils per year is input below

Target Rate := 7.

Runs(Target Rate, μ 1992, σ input, Inspections, Iterations) =

C-1302-187-E310-041 Rev. 0 Sheet 4 of 4

The simulation for 8 mils per year is input below	Target Rate := 8.
	99 99
Runs (Target Rate, ^µ 1992, ^σ input, Inspections, Iterations)	55
	98 98 98
	999 999

The simulation for 9 mils per year is input below

Target Rate := 9.

·		· ·		0 100
· ·	•			99
· · · ·	•		:	100 99
Runs(Targe	^t Rate ^µ 1992	, ^o input, Inspec	tions, Iterations) =	1442
	· .	•		100 · • 99
	·	-		100
· · ·	· · · · · · · · · · · · · · · · · · ·	•	•	98
. ·				100

Therefore the observable rate that passes the corrosion test more that 95 times in 100 iterations approaches 7 mils per year. Defining a more precise rate of 6.9 mils per year satisfies the tests.

The simulation for 6.9 mils per year is input below

Target Rate = 6.9

97 100 96

96

Runs (Target Rate, $\mu_{1992}, \sigma_{input}$, Inspections, Iterations) =

C-1302-187-E310-041 Rex O Append: x 23 INC NEERS Page 1 of 2 3

December 12, 2006

Mr. Francis H. Ray AmerGen Energy Company, LLC Oyster Creek Nuclear Generating Station U.S. Route #9 Forked River, New Jersey 08731-0388

Subject:

Oyster Creek NGS Independent Technical Review of Drywall Thickness Monitoring Program Ultrasonic Test Results

References :

(a) AmerGen Calculation C-1302-187-E310-041, "Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996 and 2006," Revision 0, December 8, 2006

(b) AmerGen Calculation C-1302-187-E310-037, "Statistical Analysis of Drywell Vessel Thickness Data," Revision 3, December 11, 2006

Dear Mr. Ray:

In accordance with your request, MPR has performed a detailed technical review of the reference calculations that cover the statistical evaluation of Oyster Creek drywell ultrasonic thickness measurements taken over the period from 1990 to 2006. The calculations report the current mean thickness and projected corrosion rate of ultrasonic test locations in the sandbed region and in areas at higher elevations.

Based on our review of the two calculations, we conclude the following:

- AmerGen has shown that all areas of the drywell monitored by ultrasonic test meet minimum wall thickness requirements with margin.
- In areas of the drywell demonstrating statistically significant corrosion rates, the observed rates are small, less than 1 mil per year.
- Methods used by AmerGen to estimate corrosion rates in areas with limited statistics and no observable corrosion (in a statistical sense) are very conservative, and the required inspection intervals based on these rates are conservative.
- All inputs to the calculations are accurate, assumptions are conservative, and results are used correctly.

320 KING STREET

ALEXANDRIA, VA 22314-3230

703-519-0200

FAX: 703-519-0224

htlp://www.mpr.com

Mr. Francis H. Ray

We note that the calculations could be made less conservative and observed corrosion rates could be estimated more accurately if individual locations in each grid array used for ultrasonic testing are tracked separately over time, rather than tracking the mean thickness over time for each array. Corrosion rates at individual locations could then be determined, and an average rate computed for the array of data. Upper bound rate data could also be determined. These refinements should be incorporated in future statistical evaluations of the ultrasonic test data.

- 2 -

Finally, we note that ultrasonic testing of wall thickness in the sandbed area above the concrete floor inside the drywell is probably not necessary, since the drywell can be examined both inside and outside for evidence of coating failure or corrosion. If no evidence of coating failure or corrosion is observed, ultrasonic tests are redundant.

Overall, we concur that the reference calculations are complete and conservative. Please call if you have any questions or comments on this letter.

Sincerely yours,

J. E. Nestell

cc: Pete Tamburo, Oyster Creek

C-1307-187-E312-041 Arv. 0 Appendix 23 Pose 2 of 2

D. Gary Harlow, Ph.D. 149 W. Langhorne Ave. Bethlehem, PA 18017 610-758-4127 (office) 610-758-6224 (fax) dgh0@lehigh.edu

December 15, 2006

Mr. Peter Tamburro Exelon Corporation

Dear Pete:

I have reviewed the methodology described in section 6.5.9.4 and Appendix 12 of AmerGen Cal caution C-1302-187-E310-037 Rev.3. I find the methodology consistent with standard statistical methods. The conclusions based on the methodology are accurate and reasonable.

C-1302-187-E310-041 Rev. 0 Appendix 23 Ocse 3 of 5

OCLR00027933

I have also reviewed the methodology described section 6.5.9.4, section 7.5, and Appendix 22 of AmerGen Cal caution C-1302-187-E310-041 Rev.0. I find the methodology consistent with standard statistical methods. The conclusions based on the methodology are accurate and reasonable.

Sincerely,

Diffarlow

D.G. Harlow Professor of Mechanical Engineering and Mechanics

Nuclear **Sketch Form** Övätör Craak - CC C-1307-187-E310-041 Component: D/W LINEAR ATTACHMENT / Data Sheet No.: 91-719-08 Lacation: INSIDE ON TRINMENT NA Hev. N/A Drawing No.: PAGE 2 OF DRAWING ELEV. 13 BAY 13D -- 51. 13 BAY 15D 1.064 1.117 1.134 1.103 1.105 1.106 1.117 0.949 1.081.01.00 1.054 1.151 1.118 1.121 1.131 1.133 1.133 1.141 1.145 1.134 1.142 3 0.984 0.948 0.868 0.834 0.979 1.048 1.067 23 1.096 1.111.1.088 1.091 1.126 1.118 1.133 4 0.963 0.980 0.893 0.855 0.913 0.981 1.012 1.066 1.031 1.048 1.067 1.094 1.079 1.090 0.980 0.923 0.989 1.038 1.036 1.092 1.081 5 0.957 0.958 0.869 0.879 0.917 0.913 0.911 6 0.963 0.948 0,895 0.880 0.915 0.862 0.905 0.990 0.985 0.894 1.054 1.048 1.065 1.091 7 1.016 0.918 0.927 0.920 0.918 0.825 0.824 0.924 1.019 1.041 1.051 1.064 1.075 1.055 0.980 0.958 0.991 1.036 1.027 1.074 1.069 ELEV. 13 BAY ITD ELEV. 13 BAY ITA B 1.159 1.153 1.158 1.138 1.127 1.169 1.167 0.839 0.802 0.853 0.905 0.955 0.877 0.710; 1.121 1.155.1.121 1.143 1.125 1.151 1.120 0.804 0.802.0.710 0.806 0.737 0.762 0.648 1.071 1.095 1.112 1.115 1.097 1.070 1.053 1.020 0.995 0.977 1.012 1.048 1.029 0.951 0.976 0.919 0.881 0.935 0.871 0.936 0.964 1.029 0.814 0.752 0.802 0.819 0.737 0,668 1.069 1.069 0.748 0.803 0.784 0.806 0.785 0.809 0.845 0.845 0.816 0.846 0.845 0.840 0.865 0.961 0.892 0.822 0.804 0.946 0.991 0.790 0.833 0.892 0.846 0.878 0.855 0.792 0.934 0.970 0.923 0.925 0.871 0.952 0.986 0.832 0.896 0.835 0.882 0.886 0.936 0.862 Prepared by: STAN MCCAULLE Tille: ADE Date: 15 Reviewed by: Level: 77 Date: Page 3 of 5 NDE Request No... 91-119 A0001025 7-84

CI Nuclear Öystöt Creek - OC Sketch Form C-1307-187-E310-041 That LINER Component: Data Sheet No.: 91-119-08 ATTACHMENT / Location: IN SIDE CONTAIN MENT MA Drawing No.: NA Rev. DAAWING PAGE SOF S ELEV. 11 ELEV. 11 STRIP-1D STRIP 9A ABCDEF 6 0.889 1.136 1.112 1.144 1.132 1.103 1.126 ABCDEFG 1.162 1.161 1.164 1.162 1.161 1.157 1.133 ELEY 11 A STRIP-3D B C D E F G ELEV. I / 1.198 1.191 1.191 1.184 1.159 1.182 1.169 STRIP 13C A B C D E F G / 1.148 1.151 1.151 1.153 1.149 1.138 1.152 ELEN. 11 STRIP-5D ELEV. II STRIPISA ABCDEFG / 1.164 1.220 1.167 1.185 1.183 1.174 1.178 ABCDEFG 1.139 1.145 1.166 1.162 1.136 1.102 1.083 ELEN. II STRIP. 7D ABCDEFG / 1.147 1.149 1.150 1.150 1.111 1.127 1.122 Prepared by: SEAN MCCAULLEY This: NDE/ISI Date: 12 - 8-92 ralmur Reviewed by: Level: Dete: 12/11/92 Page 5_of 5 NDE Request No.: 91-119 A0001025 7.8

OCLR00027937

Nuclear

 \bigcirc

ment.					· · · · · · · · · · · · · · · · · · ·			_		1307-18 FFACHN					Stch Fa
	Dlw	LIN	FR					-				-	: 91-	119-1	2
on: E				WSIDE	CON	TAINME	NT	-	· •	AGE _2	OF	-	NI	A H	iev. N/A
ING		BAY-	9D			1/	· .				DN	U . 15	A (,
<u>_A</u>			• ·	Ē	E_	G	•		A .	B	P.A.	/). D	E	F	G
.005	1.053	0.995	1.132	1.095	1.141	1.112		1=	0.869	0.842	0.856	0.845	1.019	0.987	0.926
•921 770	0.956	0.999	1.027	0.983	1.060	1.077		S.	0.805	0.826	0.771	0.823	0.858	0.847	0.790
.802	0.965	0.978	0.986	1.007	1.026	1.048									
.969	0.967	0.980	0.940	0.894	0.929	0.977									
.959	0.855	0.971	1.018	0.982	0.971	0.943									
.943	0.968	0.945	0.991	0.977	0.899	0.932									
	÷	0	U. 11N		./						RNU	121		/	
Å	R		• • •	· 5**	V _	C.			• •	Ŕ					•
	و مر مر مر مر مل خو مر					•				و مل حب حد جو خو خ	ين جي جلة تحة جي وله ج	ه سد هم هد خبر خبر ج	، خدة جين حيَّنَ هذا الله ه	دے سے بائد میں بچ	G
.734	(0.234)	1.052	0.809	0.773	0.798	0.851									
.750	0.896	0.808	0.845	0.905	0.834	0.869		6-	0.938	0.942	0.894	0.875	0.915	0.859	0.877
.839	0.868	0.906	0.881	0.874	0.815	0.846		7.	0.956	0.911	0.922	0.924	0.918	0.825	0.811
	PLUG	RN	0-11C	\checkmark	· .				•		BAY-	15 D	V.		• ;
A -	B	بر د	D	E	۶	G			<u>A</u>	<u></u> B	<u> </u>	D	<u> </u>	<u> </u>	G
EMPTY	Y EMPTY	EMPT	Y EMPT	Y EMPTY	0.85	5 0.886	•	1-	1.126	1.132	1.133	1.140	1.142	1.131	1.140
EMPTY	Y EMPTY	1.042	2 1.09	5 1,036	5 1.09	3 1.032									
1.043	2 1.085	0.94	5 0.93	B 0.938	3 0.89	5 0.889	, •	-							
edbγ:	E, P. <p< td=""><td>ECHT</td><td>in</td><td>1- 6. J</td><td>1-</td><td></td><td></td><td>· · · · · · · · · · · · · · · · · · ·</td><td>•</td><td>Title:</td><td>L-II</td><td>•</td><td></td><td>Date: 9.</td><td>-<u></u></td></p<>	ECHT	in	1- 6. J	1-			· · · · · · · · · · · · · · · · · · ·	•	Title:	L-II	•		Date: 9.	- <u></u>
ed by:	71 2	In The	\mathcal{N}^{μ}		T	Level.	Dale: 4	9/17	/94	Page _	the second s	NDE	Request		
	A .005 .921 .770 .802 .969 .959 .943 .959 .943 .924 .805 .728 .811 .728 .839 .734 .811 .750 .839 .734 .811 .750 .839 .839 .839 .839 .839 .839 .839 .839	A β .005 1.053 .921 0.956 .770 0.884 .802 0.965 .969 0.967 .959 0.855 .943 0.968 .924 0.822 .805 0.826 .728 0.758 .734 0.234 .811 1.091 .750 0.896 .839 0.868 .740 .234 .811 1.091 .750 0.896 .839 0.868 .740 .346 .839 0.868 .839 0.868 .839 0.868 .839 0.868 .823 0.842 0.836 0.846 0.823 0.842 0.855 0.836 0.860 0.874 dby: E, P, SP	$\begin{array}{c cccccc} & & & & & & & & & & & & & & & & $	BAY - 9D $A B C D$ $.005 1.053 0.995 1.132$ $.921 0.956 0.999 1.027$ $.770 0.884 0.986 1.086$ $.802 0.965 0.978 0.986$ $.969 0.967 0.980 0.940$ $.959 0.855 0.971 1.018$ $.943 0.968 0.945 0.991$ $BAY - 1 A$ $A B C D$ $.924 0.822 0.828 0.804$ $.805 0.826 0.836 0.823$ $.728 0.758 0.866 0.738$ $.734 (0.234) 1.052 0.809$ $.811 1.091 1.106 0.888$ $.750 0.896 0.808 0.845$ $.839 0.868 0.906 0.881$ $PLUG BAY - 1 C$ $A B C D$ $EMPTY EMPTY EM$	BAY - 9D $A B C D E$ $.005 1.053 0.995 1.132 1.095$ $.921 0.956 0.999 1.027 0.983$ $.770 0.884 0.986 1.086 1.049$ $.802 0.965 0.978 0.986 1.007$ $.969 0.967 0.980 0.940 0.894$ $.959 0.855 0.971 1.018 0.982$ $.943 0.968 0.945 0.991 0.977$ $BAY - 1 A$ $A B C D E$ $.924 0.822 0.828 0.804 0.802$ $.805 0.826 0.836 0.823 0.824$ $.728 0.758 0.866 0.738 0.773$ $.734 (0.234) 1.052 0.809 0.804$ $.811 1.091 1.106 0.888 0.881$ $.750 0.896 0.808 0.845 0.905$ $.839 0.868 0.906 0.881 0.874$ $PLUG BAY - 1 C$ $A B C D E$ $EMPTY EMPTY EM$	BAY-9D $A B C D F F$ $.005 1.053 0.995 1.132 1.095 1.141$ $.921 0.956 0.999 1.027 0.983 1.060$ $.770 0.884 0.986 1.086 1.049 1.119$ $.802 0.965 0.978 0.986 1.007 1.026$ $.969 0.967 0.980 0.940 0.894 0.929$ $.959 0.855 0.971 1.018 0.982 0.971$ $.943 0.968 0.945 0.991 0.977 0.899$ $BAY-1 A$ $A B C D F F$ $.924 0.822 0.828 0.804 0.802 0.813$ $.805 0.826 0.836 0.823 0.824 0.791$ $.728 0.758 0.866 0.738 0.773 0.677$ $.734 (0.234) 1.052 0.809 0.804 0.798$ $.811 1.091 1.106 0.888 0.881 0.878$ $.750 0.896 0.808 0.845 0.905 0.834$ $.839 0.868 0.906 0.881 0.874 0.815$ $PLUG BAY-1 C$ $A B C D F F$ $EMPTY EMPTY EMPTY EMPTY EMPTY 0.855 EMPTY EMPTY 1.042 1.095 1.036 1.091 1.042 1.085 0.945 0.938 0.938 0.890 0.836 0.846 0.795 0.828 0.833 0.844 0.823 0.842 0.873 0.872 0.837 0.82 0.855 0.836 0.862 0.824 0.872 0.855 0.860 0.874 0.899 0.876 0.880 0.844$	BAY-YD $A B C D F F G$ $005 1.053 0.995 1.132 1.095 1.141 1.112$ $921 0.956 0.999 1.027 0.983 1.060 1.077$ $770 0.884 0.986 1.086 1.049 1.119 1.112$ $802 0.965 0.978 0.986 1.007 1.026 1.048$ $969 0.967 0.980 0.940 0.894 0.929 0.977$ $959 0.855 0.971 1.018 0.982 0.971 0.943$ $943 0.968 0.945 0.991 0.977 0.899 0.932$ $BAY-I A$ $A B C D E F G$ $924 0.822 0.828 0.804 0.802 0.813 0.749$ $805 0.826 0.836 0.823 0.824 0.791 0.790$ $728 0.758 0.866 0.738 0.773 0.677 0.760$ $734 0.234 1.052 0.809 0.804 0.798 0.851$ $811 1.091 1.106 0.888 0.881 0.878 0.790$ $750 0.896 0.808 0.845 0.905 0.834 0.869$ $839 0.868 0.906 0.881 0.874 0.815 0.846$ $PLUG BAY-I C$ $A B C D E F G$ $EMPTY EMPTY EMPTY EMPTY EMPTY 0.855 0.886 EMPTY EMPTY EMPTY EMPTY 0.855 0.886 EMPTY EMPTY 1.042 1.095 1.036 1.093 1.032 1.042 1.085 0.945 0.938 0.938 0.833 0.843 0.869 0.836 0.846 0.795 0.824 0.872 0.857 0.829 0.836 0.846 0.795 0.824 0.872 0.857 0.829 0.855 0.836 0.845 0.938 0.938 0.845 0.889 0.836 0.846 0.795 0.828 0.833 0.843 0.869 0.836 0.846 0.795 0.824 0.872 0.857 0.823 0.855 0.836 0.862 0.824 0.872 0.857 0.823 0.860 0.874 0.899 0.876 0.880 0.840 0.851$	$\frac{A + B}{B} + C + D + E + F + G$ $\frac{A + B}{B} + C + D + E + F + G$ $\frac{100511053099511.132109511.14111.112}{109210.9560.999110270.983106011.077}$ $\frac{100510.9560.999110270.983106011.077}{1006011.077}$ $\frac{1007}{100000000000000000000000000000000$	$\frac{BAY-9D}{A} = \frac{B}{B} = \frac{C}{C} = \frac{D}{B} = \frac{F}{F} = \frac{F}{G}$ $0.005 \ 1.053 \ 0.995 \ 1.132 \ 1.095 \ 1.141 \ 1.112 \ 1.921 \ 0.956 \ 0.999 \ 1.027 \ 0.983 \ 1.060 \ 1.077 \ 2.921 \ 0.956 \ 0.999 \ 1.027 \ 0.983 \ 1.060 \ 1.077 \ 2.921 \ 0.956 \ 0.999 \ 1.027 \ 0.983 \ 1.060 \ 1.077 \ 2.921 \ 0.956 \ 0.999 \ 0.986 \ 1.007 \ 1.026 \ 1.048 \ 4.969 \ 0.967 \ 0.980 \ 0.940 \ 0.894 \ 0.929 \ 0.977 \ 5.959 \ 0.855 \ 0.971 \ 1.018 \ 0.982 \ 0.971 \ 0.943 \ 4.969 \ 0.968 \ 0.945 \ 0.991 \ 0.977 \ 0.899 \ 0.932 \ 7.943 \ 0.968 \ 0.945 \ 0.991 \ 0.977 \ 0.899 \ 0.932 \ 7.943 \ 0.968 \ 0.945 \ 0.991 \ 0.977 \ 0.899 \ 0.932 \ 7.943 \ 0.968 \ 0.945 \ 0.991 \ 0.977 \ 0.899 \ 0.932 \ 7.943 \ 0.968 \ 0.945 \ 0.991 \ 0.977 \ 0.899 \ 0.932 \ 7.943 \ 0.968 \ 0.945 \ 0.823 \ 0.826 \ 0.826 \ 0.826 \ 0.826 \ 0.839 \ 0.846 \ 0.798 \ 0.825 \ 0.826 \ 0.839 \ 0.846 \ 0.795 \ 0.826 \ 0.839 \ 0.846 \ 0.795 \ 0.826 \ 0.839 \ 0.846 \ 0.795 \ 0.826 \ 0.839 \ 0.846 \ 0.795 \ 0.826 \ 0.839 \ 0.846 \ 0.795 \ 0.826 \ 0.839 \ 0.846 \ 0.795 \ 0.826 \ 0.839 \ 0.846 \ 0.795 \ 0.826 \ 0.839 \ 0.846 \ 0.795 \ 0.826 \ 0.839 \ 0.846 \ 0.795 \ 0.826 \ 0.839 \ 0.846 \ 0.795 \ 0.826 \ 0.839 \ 0.846 \ 0.795 \ 0.826 \ 0.839 \ 0.845 \ 0.846 \ 0.795 \ 0.826 \ 0.846 \ 0.846 \ 0.795 \ 0.846 \ 0.846 \ 0.846 \ 0.795 \ 0.846 \ 0.846 \ 0.846 \ 0.795 \ 0.846 \ 0.846 \ 0.846 \ 0.846 \ 0.846 \ 0.846 \ 0.846 \ 0.846 \ 0.846 \ 0.846 \ 0.846 \ 0.846 \ 0.846 \ 0.846 \ 0.846 \ 0.846 \ 0.846 \ 0.846 \ 0$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{BAY - YJ}{BAY - YJ} = \frac{BAY - YJ}{BAY - YJ} = BA$

₫	oc		7	ilea Mi] 0	THE	R					·.	.'	•	\	, ,				ATT	AC	HM	ENI	310 7 <u>0</u>	:	1	:C	h Fo)rm	ı (wi	th g	ric
omp	onent	:	D	la	5	21	υĒ	5		•											PA	GE	~	Ur	4	•			91-	. 77	9-1	2	
ocat	ion:	ELZ			•	υ-				\mathcal{I})D	E	c	207	TAN	UML	50	<u> </u>										بہ ا	/A	`	Rev.:	NI	2
İraw								•				1							•						0	λIJ	-19			Ţ			
				B		BA	<u> </u>		`	E			-		;		ļ		ŀ		<u>A</u>		B		ردا د	<u>я</u> .7.	- / -] . 79	<u></u> А.	E		F	G	, r
·1-	1.1	63	1.1	146	1.	158	1.	141	. 1	.130	5 1	1.10	- 68	1.:	172		1												.722				
S-	1.1	22	1:1	155	1.	122	1.	144	1	.128	3 1	.1	57	1.:	133														.743				
9+ 1-	1.1	21	1.0	088	1,	108	1.	116		.10	2 1	0	71	1.(055		•												.796 .795				
5.	0.9	62	0.2	933 914	0.	869	0.	989	2 T	. 041 . 87	ע 7 ער כ	1.9'	JB DT	0.1	950 962														.793				
	0.8																												.852				
	0.9																Ì		7-	0.8	88	0.	799	0.		1 .		0	.880	0.	854	0.9	17
1					1		····		_		•••••			. <u>.</u> .		· "					:					20		Ţ	1.			••••	
	••••••••••••••••••••••••••••••••••••••	• •	• •		• •	BA	'Y-	171	D		••••	L					• ••		•	-		- 		···)	3A'	/-: ;	19E	×	 1	i			
	·			R			- -	Ð	· ···· ·																				_	:.			
•		<u> </u>		<u></u>						- <u>-</u> -			. ·	: G					:		A	•	B		C:	1	D	1	E		F	. (;-
7-	0.7	97 - 07 -	0.1	815	0.	853	0.	887	0	.92	50	.8	78	0.1	696		•	1											.897		.868		
3.	1.0	07 08 (0.0	243	0.	749	.0	711	. U	91/ 91/	5 0)./. \ 7	34 75	0.0	640 667	• • •													.857				
4.	1.0	68	1.0	066	i o i	739	ŏ.	812	0	.772).7	93	0.1	785														.752				
5-	0.8	04	0.8	336	0.	838	0.	794	0	. 85:	3 0	.8	28	0.4	842														.807				
6.	0.7	90	0.8	325	0.	885	0.	847	0	.87:	2.Ç	.8	53	0.'	795														.931				
	0.8		,		0.	826	0.	.863	0	92	ເຼັ	.9	34	0.	B35				7-	0.8	363	0.	817	0	930	0	.821	. 0	.853	; 0 ,	.893	0.8	54
		•••••	P 2			17-	19		2.1	TA	<u>/</u> /			·····					· ·			-		Г	2 1 4	,	190		1	/	· • -		
1				:		•			1	1 4							ļ	i			;	-			J.A. 1		170				•.		
	<u></u> A												-	G	<u>.</u>		÷.	• [- :	÷.		A_"	· · · ·	ß		C	- 1-	\mathcal{D}	1	E		F	. (3
	0.9																• •												.904				
	0.9															. :	1 												.762				
2- 4-	0.9	20 0	7.9 7 0	65	0.	991 072	0.	993	0.	969 007	0 0	- 99	35 25	0.9	333		•												.838				
5-	0.9	59	L.C	02	ŏ.	953	Ö.	942	0.	.943	i õ	.97	75	0.9	906		·	:	_		-								.856				
6.	0.99	98 ().9	95	0.	967	0.	938	0.	834	Ō	.96	50	0.9	80		:												.867				
7-	1.0:	27 3	L.O	08	1.	011	0.	992	1	.038	Ģ	. 99	93.	0.9	983		•												.900				
epa	red by	: 70	., <i>P</i> .	56	EC	HT	· · ·	Th	1.	<u>,</u>	g.	_	1.	·	i			. <u></u> .		•		Title);	1.	Ĩ.		·			. []	Date:	9.14.	.9
evier	wed by		5	19	<u></u>	1/-	7	<i>///</i>	<u></u>	<u></u>	P	-	1 iou	 	10	T		ate:	9/1	1/00	2				of_4			: 0/					
a de la companya de l		-	_	·M	4	m	<u> </u>				-			<u> </u>	1			aiçi	1	<u>77/</u>		17	aye.	~	تبداد			- 176	equest		<u>· //</u> ·	<u>- // 9</u>	

.

OCLR00027939

.

		n (with grid 9 - 12
<u> </u>		Rev.: N/A
Drawing		<u> </u>
5T R IP - ID representation in the second	<u>57 RIP-</u> 9A	
ABCDFFGG		F
4- 0.879 1.054 1.105 1.119 1.124 1.088 1.118 4-	1.162 1.164 1.168 1.163 1.157 1.	100 I.I.
	·····	
A B C D E F G	5TRIP-13C	•
4- 1.194 1.194 1.191 1.194 1.164 1.184 1.168	A B C D F	FG
	· 1.147 1.147 1.146 1.147 1.128 1	.123 1.13
37 R/P 5 D	5TRIP-15A V	
A B C D E F G		
4-1.163 1.172 1.155 1.174 1.171 1.171 1.173	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	F G
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		
STRIP 7D		
A B C D E F C		
4- 1.143 1.146 1.137 1.146 1.135 1.134 1.113		* :
	C-1307-187-E310-041	
	ATTACHMENT 2	-
	PAGE 4 OF 4	
		•
Prepared by: R.P. SPECHT DAL. G. Sul-	Titles	
		Date: 9-14-91
Reviewed by:	Page <u>4</u> of <u>4</u> NDE Request No	n: 41-119

REPORT # IRZILR-001 Pylor5

General Electric File Name:	N/A
Oýster Creek Ultrasonic Thickness Measurement Date:	10/18/2006
Rendering Ourage - Train	ER-AA-335-004
Page 1 of 5 Specification:	IS-328227-004
kaminer: Matt Wilson Might Level: It instrument Type: Panametrics	
Examiner: Leslie Richter	25409
Transducer Type: DV 506 Serial #: 072561 Size: 0.438" Freq: 5 Mhz	Angle: 0°
Transducer Cable Type: Panametrics Length: 5' Couplant: Soundsafe Batch No:	19620
Calibration Block Type: C/S Step Wedge Block Number. CAL-STEP-088	
SYSTEM CALIBRATION	•
INSTRUMENT SETTINGS Initial Cal. Time Calibration Checks Final Cal. Time	•
Coarse Range: 2.0" 10:00 See Data See Data 14:32	· · · · · · · · · · · · · · · · · · ·
Coarse Delay: N/A Calibrated Sweep Range = 0.300" inches to 1.500" Inches	
Delay Calib: N/A Thermometer: 246647 Comp. Temp: 72° Block Temp:	81°
Range Calib: N/A W/O Number: R2090917	
Instrument Freq. N/A Total Crew Dose Drywell Containment Vessel Thickness Examinatio	n.
Gain: 67 db mr Internal UT inspections.	
1	
emplate aligned to V Stamps.	
emplate aligned to V Stamps.	
ickness readings teken at holes	
located in template	000
ATTACHMENT 4 300000	000
PAGE / OF 5 40000	2004
Location ID 9D Bay 9 Elev. 11'3" 50000	000
	000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	000
2 0.898 0.527 1.007 1.037 0.374 1.077 1.009	<u> </u>
3 0.751 0.883 0.975 1.071 1.033 1.105 1.123	
4 0.885 0.993 0.949 0.984 0.995 1.022 1.041 5 0.980 0.968 0.936 0.942 0.680 0.927 0.998 Callbration Check: 10:15	
6 0.980 0.869 0.976 0.987 0.967 0.966 0.949 Tscr. AVG.	
7 0.968 0.967 0.963 1.004 0.947 0.892 0.943 .628 0.988	
Location ID 11A Bay 11 Elev. 11'3" COMMENTS:	
A B C D E F G Core Plug located at C04, C05, B04	4, B05.
1 0.905 0.832 0.829 0.803 0.830 0.812 0.737	
2 0.797 0.825 0.834 0.822 0.858 0.783 0.795	1
3 0.720 0.765 0.858 0.731 0.762 0.669 0.764	
4 0.739 1.047 1.057 0.806 0.761 0.821 0.849 5 0.843 1.090 1.104 0.879 0.879 0.864 0.817 Calibration Check: 10:32	
	• •
7 0.875 0.869 0.923 0.886 0.871 0.810 0.842 .628 0.846	
COMMENTS: File Specific Comments located to right of readings. Location ID 11C: The following template holes were painted onto the plate using the template. The readings taken with the template removed. This was done due to the Drywell Vent Attachment weld obstructing the tem A through G, Row 2 A through C, Row 7 C through D.	
0- 1 of Albiall it 10-26-06	•
Exerci L II MAMalhit 10-26-06	
Exacut I AMAlhit 10-26-06	
Reviewed by: Lee Stone den 555 Level II Date 10/18/20	06

IRZILR-COI Py Zor 5	IRT	• .							•
File Name: N/A								ctric	General Ele
Date: 10/18/2006	ment	easure			sonic	Untra			Oyster Cre
UT Procedure: ER-AA-335-004	·		Sheet	Data]	1R21		Refueling C
Grid Procedure: IS-328227-004						l	5	2 of	Page
on Check: 10:48	Calibration	11'3"	Elev.	11	Bay	c	11		Locati
ITS: A01 obstructed due to D.W		G	F	Ē	D	C	B	A	
ment weld. B01 reading taken adjacent to		0.886	0.858	0.767	0.912	0.803	0.771	OBST.	1
	D.W. attachment	1.029	1.118	1.036	1.094	0.984	1.046	1.056	2
mis adove.	See Comments	0.853	0.888	0.942	0.935	1.002	1.113	1.073	3
		0.838	0.846	0.834	0.874	0.790	0.836	0.837	4
. AVG.	Tacr,	0.875 0.844	0.866	0.833	0.889	0.869	0.825	0.850	5
	.628	0.876	0.849	0.880	0.885	0.879	0.840	0.856	<u> </u>
		0.010	0.040	0.000	1 0.000	0.070	0.011	10.0011	
on Check: 11:02	Calibration	11' 3"	Elev.	13	Bay	A	13	on ID	Locat
	· · · ·	G	F	E	D	C	B	A	
		0.922	0.951	1.046	0.909	0.687	0.833	0.887	1
		0.783	U.870	0.897	0.826	0.774	0.883	0.823	2
		0.768	0.759	0.746	0.823	0.798	0.913	0.760	3
		0.862	0.798	0.788	0.848	0.875	0.895	0.845	4
AVG.	Tacr.	0.840	0.846	0.824	0.924	0.861	0.811	0.880	<u>5</u> 6
	.628	0.863	0.885	0.895	0.838	0.763	0.834	0.801	7
								1 0.001	
on Check: 11:16	Calibration	11' 3"	Elev.	13	Bay		13	on ID	Locati
4		G	F	E		C	B	A	
		1.119	1.108	1.068	1.083	1.132	1.117	1.114	_1
- 2 7		1.100	1.117	1.007 0.949	1.061 0.833	0.899	1.041	0.960	2
		0.997	0.958	0.911	0.851	0.878	0.977	1.005	3
	· · ·	0.905	0.916	0.915	0.874	0.874	0.907	0.960	5
AVG. W 2	Tscr.	0.892	0.865	0.920	0.887	0.897	0.947	0.944	6
0.968 5 3	.628	0.821	0.832	0.944	0.968	0.929	0.939	0.996	7
O-1307-187-E310-041	Collbration	11' 3"	Elan	15	Base	<u> </u>	161	- 18 1	Locati
	Cambration	G	Elev. F	E	Bay D	C	8		Locau
V T		1.144	1.145	1.145	1.141	1.133	1.133	1.133	1
		1.131	1.119	1.129	1.142	1.087	1.109	1.094	2
		1.098	1.085	1.095	1.081	1.043	1.026	1.040	3
		1.068	1.096	1.030	1.029	0.975	0.948	0.978	
AVG.	Тасг.	1.041 1.051	1.067	1.013 1.017	1.069	0.977 1.031	0.969	0.976	5
	.628	1.052	1.033	1.005	1.031	0.996	0.972	0.930	6
								1 010201	
on Check: 11:43	Calibration	11'3"	Elev.	17	Bay		17/	on ID	Locati
•		G	F	E	D	C	B	A	
		1.169	1.170	1.130	1.138	1.154	1.149	1.110	1
· · · ·		1.123	1.148	1.134	1.144	1.114	1.159 1.073	1.121	2
	: _	1.053 0.950	1.083 0.994	1.094	1.114 1.030	1.111 0.980	0.991	1.068 0.976	3
	-	0.987	0.938	0.869	0.950	0.909	0.926	0.962	<u>4</u> 5
AVG.	Tacr.	0.963	0.950	0.802	0.835	0.891	0.966	0.903	6
	.628	0.945	0.891	0.875	0.890	0.877	0.972	0.954	7
7-(7)(10-72-06				A 15	, fi				
Date 10/19/2002	ll Da	Level		1,1	Matth	n	Matt Wilso	ined by I	From
Date 10/18/2006	and the second se	Level	· · · · · · · · · · · · · · · · · · ·				Leslie Rich		
Date 10/18/2006		Level					Lee Stone		
Date 10/18/2006									

IRZILR-DOIR 30F5

•											
eneral Elec	ctric		1114		Thisles					File Name:	N/A
yster Cree	k		Juitras	SONIC			easure	ment		Date:	10/18/2006
efueling O	utage -	1R21]		Data	Sheet				T Procedure:	ER-AA-335-004
Page 3	of	5								Specification:	IS-328227-004
Locatio	n ID	17		Bay	17	Elev.	11'3"	Callb	ration Ch	eck: 11:59	
	A	B	C	D	E	F	G		MENTS:		
1	0.849	0.828	0.861	0.894	0.930	0.888	0.702	Core	Plug locate	d at A03, A04 a	and 803, 804.
2	0.806	0.802	0.717	0.806	0.736	0.756	0.648				l l
3	0.998	0.823	0.752	0.733	0.822	0.730	0.667				
4	1.072	1.074	0.742	0.812	0.812	0.803	0.791				
5	0.814	0,841	0.850	0.816	0.852	0.858	0.869	L			
6	0.792	0.829	0.888	0.848	0.888	0.855	0.600	T	всг.	AVG.	
7	0.824	0.897	0.837	0.887	0.891	0.935	0.586				
										•	
Locatic	on ID	17/		Bay	17	Elev.	11'3"	Call			
	A	8	C	D	E	F	G				
1	0.969	0.962	0.945	0.931	0.965	0.960	0.928			C-1307-	187-E310-04
2	0.972	0.977	0.959	0.991	0.967	0.955	0.937				IMENT <u>4</u>
3	0.968	0.974	1.004	0.987	0,982	0.996	0.924				
4	1.022	0.969	0.963	0.874	0.993	0.985	0.952	•		PAGE	<u>3</u> of
5	0.960	0.962	0.951	0.950	0.943	0.982	0.901				
8	1.001	0.994	0.952	0.929	0.917	0.962	1.001		BCT.	AVG.	
7	0.995	1.019	1.012	0.995	1.009	0.946	1.000		528	0.969	
Locatio	on ID	19		Bay	19	Elev.	11' 3"	Callb	ration Ch	eck: 12:26	
·	A	B	C	D	٤	F	G	COM	MENTS:		
1	0.692	0.788	0.743	0.648	0.699	0.702	0.735				and CD4, C05.
2	0.807	0.774	0,845	0.736	0.747	0.724	0.773				· · · ·
3	0.813	0.812	0.892	0.885	0.861	0.792	0.806				
4	0.916	0.883	0.805	1.179	0.808	0.777	0.766				
5	0.873	0.904	0.842	1.160	0.801	0.752	0.878				
6	0.844	0.768	0.834	0.858	0.851	0.834	0.867		BCI,	AVG.	
7	0.865	0.803	0.793	0.844	0.878	0.817	0.808		528	0.822	
											· · ·
Locatic		19		Bay	19	Elev.	11' 3"	Callb	ration Ch	eck: 12:39	· ·
	Ι Α	B	C	D	E	F	G			•	
1	0.865	0.862	0.872	0.932	0.947	0.992	0.802				
2	0.842	0.883	0.780	0.840	0.915	0.778	0.866	i.			·
3	0.861	0.906	0.838	0.898	0.974	0.930	0.834		•		
4	0.889	0.883	0.807	0.801	0.766	0.834	0.774				
5	0.811	0.770	0.785	0.788	0.799	0.731	0.778				
6	0.828	0.787	0.885	0.891	0.934	0.834	0.738		BCI.	AVG.	
7	0.872	0.822	0.904	0.828	0.843	0.876	0.871	.(328	0.847	l
Locatio	- 10 1	19		Bay	19	Elev.	11'3"	Callb	ration Ch	eck: 12:53	· ·
LUCAUO	and the second se	B	Ċ	D D	E	F					
	A						G		MENTS:		
1	0.809	0.768	0.862	1.059	0.968	0.961	0.920				G03, G04. F03
2	0.679	0.745	0.695	0.814	0.765	0.865	0.845			o surface cond	
3	0.816	0.775	0.870	0.871	0.863	Obst	0.896	1 ⁴⁰¹⁻⁴	vur taken o	on Vertical Web	u.
4	0.791	0.660	0.715	0.793	1.151	1.164	0.918				
5	0.851	0.781	0.733	0.762	0.862	0.787	0.796			1 1/2	
and the second line of the secon	0.866	0.830	0.880	0.757	0.867	0.750	0.753		BC F.	AVG.	
6		0.794	0.852	0.841	0.901	0.908	0.840	ļ,	628	0.839	
ward and the second second second second second second second second second second second second second second	0.801		•	.1	\$.				· · ·	- F.I	26-26-06
6	0.001			875	.~n	•				· /1	M 10.70-04
6	[0.001]			ب. الله	11/						
6 7		Matt Wilso	n_ /	Matt	Julso-	·	Level	11	Date	10/18	/2006
6 7 ;cxam	ined by			Matt	Julzo-	 	•		•		and the second second second second second second second second second second second second second second secon
6 7 cxam Exam	ined by	Matt Wilso Leslle Rich Lee Stone	nter	Matt	Julzo-	· · · · · · · · · · · · · · · · · · ·	Level Level Level	<u> </u>	Date Date Date	10/18	/2006

•						•		۰.		IRZILR-0	01- Rg 4	OF
General Elec	ctric		1							File Name:	N/A	
Oyster Cree			Ultra	sonic	Thickn	iess M	easure	ment		Date:	10/18/200	6
Refueling O		1R21]		Data	Sheet			υ	T Procedure:	ER-AA-335-	004
Page 4	of	5					•			Specification:	IS-328227-0	04
			ر محمد المحمد ا			ابر استدر بین ا			ي في أحد الحد العد العد العد العد العد العد العد الع		· .	
Locatio		11		Bay	1_1	Elev.	11' 3"	Calib	ration Ch	eck: 13:05		· •
	A	8	C	D	E	F	G	1		•		4
1	0.881	1.156	1.104	1.124	1.134	1.093	1.122					1
									scr. 628	AVG. 1.088		1
ł .									020	1.000	•	
						•	•				•	
									· .		•	
ľ		· .							•			
							•					1
Locatio	n ID	30)	Bay	3	Elev.	11'3"	Callb	ration Ch	eck: 13:14		
·	A	В	C	D	E	F	G			· · · ·		1
1	1.199	1.189	1.187	1.173	1.156	1.187	1.166					1
	· .								scr.	AVG.		
				•			•.		628	1.180		ч ^н [
	•			•			•				•	.
			•									
1	: .					•		•				
									•			
Locatio	n ID	50)	Bay		Elev.	11'3"	Callb	ration Ch	Pck: 13:23		
	A	В	C	D	E	F	G					
1	1.174	1.191	1.186	1.187	1.187	1.184	1.184					
					: :		<u> </u>	T	BCT.	AVG.		
E.									528	1.185		
····		· .										
						•						
		÷.										· •
								,				
Locatio	n ID	70		Bay	7	Elev.	11'3"	Callb	ation Chi	ck: 13:31		- 1
Locado	A	B	C	D	E	F	G	Cumpi				
4	1.144	1.147	1.147	1.138	1.102	1.135	1.116					
	<u>اد النبية معيما مي</u>							Ta	scr.	AVG.		
					•			.6	28	1.133	•	
												1. I
14 A.			•	· · ·		·	•					
					· · · ·			•				
Location		9A		Bay	9	Elev.	11'3"	Calibr	ation Che	ck: 13:40		
Loongo	A	В	C	D	Ē	F	G	CEND		CR. 10.40		
	1.158	1.159	1.162	1.159	1.159	1.153	1.130		•			
	. 0							Ts	icr.	AVG.		
									28	1.164		
		<u> </u>			0.044					أدير محدة محدد		
			·.	87-E31		1 A.						
		AT	ГАСНЫ	AENT .	Ŧ							1
			GE 4								•	
				. V F . ./		1. J						
				1	1-1		•			mm	10-20-06	
Even	nod biel	Mott Mileon		1.#11	11		المريم ا	18	D -4-		000	
		Matt Wilson		MALL	<u>/* ///~</u>	<u> </u>	Level	<u> </u>	Date_	10/18/2		
		Leslie Rich	ier /	12			Level		Date_	10/18/2		1 -
Review	red by:	Lee Stone	<u></u>		,	-	Level	11	Date	10/18/2	006	

Description Distribution Distribution </th <th>Seneral Ele</th> <th>ctric</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>File Name:</th> <th>N/A</th>	Seneral Ele	ctric								File Name:	N/A
Refueling Outage - 1R21 Data Sheet UT Procedure: ER-AA-335-004 Page 5 of 5 Data Sheet UT Procedure: ER-AA-335-004 Location ID 13C Bay 13 Elev. 11° 3° Calibration Check: 13:48 A B C D E F G 1 1.146 1.148 1.149 1.144 1.128 1.134 Tscr. AVG.					sonic	INICKN	ess m	easure	ment	Date:	10/18/2006
Page 5 of 5 Specification: IS-328227-004 Location ID 13C Bay 13 Elev. 11° 3° Calibration Check: 13:48 A B C D E F G 1 1.146 1.148 1.149 1.144 1.128 1.134 Tscr. AVG.			1R21]		Data	Sheet			UT Procedure:	ER-AA-335-004
Location ID 13C Bay 13 Elev. 11' 3" Calibration Check: 13:48 A B C D E F G 1 1.146 1.148 1.149 1.144 1.128 1.134 Tscr. AVG.			-	1				· ·		Specification:	IS-328227-004
	1	A	В	C	D	E	F	G			• • •
.628 1.142	-										•
	•••								.628	1.142	
	•	•						• •		. •	
	•					•					

Locati	on ID	15	A	Bay	15	Elev.		Calibration C	heck: 14:00
	A	B	C	D	E	F	G	;	· · ·
1	1.180	1.129	1.136	1.129	1.146	1.077	1.049		
				··· <u> </u>				Tscr.	AVG,
			•					.628	1.121

C-1307-187-E310-041 ATTACHMENT ¥ PAGE S OF S

	A			7171 10-20.00	
Examined by Matt Wilson	MAtust	Level II	Date	10/18/2006	·.
Examined by Leslie Richter	Alt	Level II	Date	10/18/2006	•
Reviewed by: Lee Stone	La state	Level II	Date	10/18/2006	

									Pg loF	
and the state			•			Na anti-			File Name:	N/A
eneral Electric		1114-0		Thicks	iess Me		moné			
yster Creek		Uitra	SULIC			asure	ment		Date:	10/22/2008
efueling Outage -	1R21			Data	Sheet		. .	l	JT Procedure:	ER-AA-335-004
Page 1 of	2				-t		.	L	Specification	IS-328227-004
xaminer: Leslie F	Richter	Zh-		·	Level:	· N	Instrume			rics 37DL Plus
baminer: N/A	<u> </u>		1		Level:	N/A	Instrume			124909
ransducer Type:	D795		Serial #:	the second second second second second second second second second second second second second second second s	4012	Size:	0.200"	Freq:	5 Mhz	Angle: 0*
ransducer Cable T			ength: 5		Couplant: Number:		Soundsa		Batch No:	19620
alibration Block Ty	pe: 0/5 Ste	p weage		DIUCK	Number.		12-0125-		L	<u> </u>
				SYST	EM CALIB	RATION				
INSTRUMENT S	ETTINGS	Initial C	al. Time	0101	Calibration		·	Final	Cal. Time	
Coarse Range			:59	12	3:00		:30	منب يشتر وجماليك	14:30	
Coarse Delay			ted Sweep				es to	1.500"	Inches	· · · · · · · · · · · · · · · · · · ·
Delay Calib		Thermon			5647		Temp:	82*	Block [†] Temp:	· 79°
Range Calib			lumber:		88926				· ·	· •
Instrument Freq.	And the owner of the owner of the owner of the owner of the owner of the owner of the owner of the owner of the	the second second second second second second second second second second second second second second second s	ew Dose	C201	3477Drywe				ness Examina	tion.
Gein			mr .		Mc 10.22			IT inspect		• • •
Damping	N/A	.t					-			· ·
Reject	N/A				Bay - 1	•				
Filter	N/A				Day - 1		, i			
	•	•								
	·						•			•
	1	A		(1	2-2-12-22-22			ince interview.		· · · · · · · · · · · · · · · · · · ·
	Point			tical		Horb			Think	
BAY	Point Number			tical ation		Horb Loca			Think	· · ·
BAY									T hi-1	<u> </u>
BAY										•
BAY									c.1307	7-187-E310
BAY									C-1307	7-187-E310
BAY									C-1307	CHMENT ≥
BAY								and a second second second second second second second second second second second second second second second	C-1307	7-187-E310 CHMENT S E L OF 20
BAY		See		ation	ations and	Loca			C-1307	CHMENT ≥
BAY		See		ation	ations and	Loca			C-1307	CHMENT ≥
BAY		See		ation		Loca			C-1307	CHMENT ≥
BAY		See		ation		Loca			C-1307	CHMENT ≥
				ation	dings .	Loca			C-1307	CHMENT ≥
BAY				ation		Loca			C-1307	CHMENT ≥
				ation	lings	Loca			C-1307 ATTAC PAGI	CHMENT ≥
				ation	dings .	Loca			C-1307	CHMENT ≥
				ation	lings	Loca			C-1307 ATTAC PAGI	CHMENT ≥
				ation	dings	Loca			C-1307 ATTAC PAGI	CHMENT ≥
				ation	dings	Loca			C-1307 ATTAC PAGI	CHMENT ≥
				ation		Loca			C-1307 ATTAC PAGI	CHMENT ≥
				ation	dings	Loca			C-1307 ATTAC PAGI	CHMENT ≥

	Point	Vertical	Horizontal	1992 value	2006 Volue	Commonia
·	Font	venicar	Horizonital	1992 Value	Value	Comments
	<u> </u> 1	D16	R27	0.720	0.710	
		D22	R17	0.716	0.690	
		D23	L3	0.705	0.665	
	4		L33	0.760	0,738	
	5	D24	L45	0.710	0.680	
		D48	R19	0.760	0.731	
		D39	R7	0,700	0.669	<u>}</u>
		D48	RO	0.805	0.783	
وي ما تا معند الله ا		D36	L38	0.805	0.754	
		D16	R23	0.839	0.824	
		D23	R12	0.714	0.711	
		D24	L5	0.724	0.722	
		D24	L40	0.792	0.719	
		D2	R35	1.147	1.157	
		D8	L51	1,156		A state of the second
		D50	R40	0.796	0.795	
		D40	R16	0.860	0.846	
	18	D38	L2	0.917	0.899	
		D38	L24	0.890	0.865	
		D18	R13	0.965	0.912	· · · · · · · · · · · · · · · · · · ·
	21	D24	R15	0.726	0.712	
		D32	R13	0.852	0.854	
		D48	R15	0.850	0.828	Г <u></u>

Data obtained from

NDE Data Sheets 92-072-12 page 1 of 1

NDE Data Sheets 92-072-18 page 1 of 1

NDE Data Sheets 92-072-19 page 1 of 1

All horizonal measurements taken 13" to the right of the centerline of the reinforcement ring (Boss). All vertical measurements taken from bottom of vent nozzle at the 13" reference line. Surface roughness prohibited characterization of all readings. 5-1307-187-E3 ATTACHMENT

Note: Per discussion with Engineering, single point readings were taken in lieu of 6, based on surface curvature.

10-22-06

1R21 LR - 012

Pg lof 2

General Elec	tric		1							File Name:	N/A	<u> </u>
Oyster Cree			Ultrase	onic '	Thick	ness Me	easure	ement		Date:	10/20/2006	
'efueling O		1R21				Sheet				T Procedure:	ER-AA-335-00	_
		2	1 .		Data	Ollect	•	•	<u>→</u>	Specification	IS-328227-00	
Page 1		and the second se	Cott R.E			Level:		Instrume	r Type		trics 37DL Plus	
Examiner. Examiner:	Scott Er		1000 15.0	DILALO	<u>م</u>	Level:	N/A	Instrume			1120708	
Transducer	_	D7908	Is	erial #:	33	8302	Size:	0.200*		7.5 Mhz	Angle: 0°	
Transducer						Couplant		Soundsa	la contractore	Batch No:	19620	<u> </u>
Calibration I					Block	Number:		AL-STEP-			10020	
Galibration							<u> </u>			.		
					SYST	EM CALIB	RATION	•			• •	
INSTRU	MENT SE	TTINGS	Initial Cal	. Time		Calibration			Final	Cal. Time	· · · · · · · · · · · · · · · · · · ·	
	Range:	2.0"	22:0	5	1	N/A		/A		23:50		
	e Delay:	N/A	Calibrated	d Sweep	Range =	0.500"	Inch	es to	1.500"	Inches		
Dela	ay Calib:	N/A	Thermome	ter:	24	6647	Comp.	Temp:	78*	Block Temp:	75°	
Rang	je Calib:	N/A	W/O Nur	m ber:	C20	13477			:			
Instrume	ent Freq.	N/A	Total Crev			Drywe				ness Examin	ation.	
	Gain:	54 db	<u> </u>	<u>r</u>			E	ixternal L	IT inspect	iona.		
C	amping:	N/A										·
	Reject	' N/A				Bay - 3					• .	
	Filter:	N/A			• •	<u></u>				-	·	
		•									•.	. '
			Tree with the second second									
		Point			tical		Horiz			Thickness		
	BAY	Number		LOC	ation		Loca			Reading		
			inen han. Gebeuren			》在"当我生动"的 计学者 1997年3月						
:			1910									
			建設設定			日本						
				•						o 4207.	187-E310-	n 41
					,							
			See A	Hacher	i for i or	cations an	d Thickn				IMENT 5	
	·		Jeen			dings		1639		PAGE	💆 OF 🔄	
· · ·										·		
					•							
		·				•						-
							· · · ·					
									科药物			
							i				•	
					·						• •	
							<u></u>		-121-122/A		-	
			1.25		<u> </u>				The Constant	····		
	{		ne malandese All second second			1						
			1948 - 178 1944 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 1946 - 19	<u> </u>					2. 3 - 3 - 3 - 3 - 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5			
· · · · ·						1.	•			· · · · · · · ·		
¥								·			· .	1
COMMENT	'S: N/A		1									-1
			· .			· ·						
			•		÷.,							
•									1			
<u>, 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 199</u>		· · · · · · · · · · · · · · · · · · ·	·				21	<u>M'all</u>	Li	亚 10-22	-06	
			<							······································		
Review	ed by: I	ee Stone	du -		~	•	Level	11	Date	10/19/	2006	
										· · · · · · · · · · · · · · · · · · ·		

BAY	3	· · ·
•		

	Point	Vertical	Horizontal	1992 value	2006 Value	Comments
•••	·					
· · · · ·		1 D16	R63	0.795	0.795	N/A
		2 D18	R48	1	0.999	
	1	3 D17	R33	0.857	0.850	
		4 D13	L5	0.898	0.903	
		5 D25	L8	0.823	0.819	
·		6 D15	L56	0.968	0.972	
		7 D29	R4	0.826	.0.816	
		8 D34	L4	0.78	0.764	_k

Data obtained from

OCLR00027949

NDE Data Sheets 92-072-14 page 1 of 1 Note: Per discussion with Engineering, single point readings were taken in lieu of 6, based on surface curvature.

C-1307-187-E310-041

ATTACHMENT

22

R-00/J

200

S

h SI

Ħ

6

KEPORT # IRZILR-019 Pg lof Z

				_					· · · · · · · · · · · · · · · · · · ·	T ¹⁰ C 1	1114
eneral Elec	ctric		1.11.4		1. ? - ?				 	File Name:	N/A
ster Cree	k		Ultraso			ness Me	asure	ement		Date:	10/20/2006
efueling O	utage -	1R21	ļ		Data	Sheet	· ·		U	T Procedure:	ER-AA-335-004
Page 1	. –	2					•		1	Specification	IS-328227-004
	Leslie R	ichter	that			Level:	13	Instrume	nt Type:	Panamet	rics 37DL Plua
aminer:	N/A					Level:	N/A	Instrume	nt No:	03	1124909
ansducer	Туре:	D795		erial #:	10	4012	Size:	0.200"	Freq:	5 Mhz	Angle: 0°
ansducer	Cable Ty	pe: Panam	etrics Leng	nth: 5'	,	Couplant		Soundsa	ife	Batch No:	19620
alibration I	Block Typ	e: C/S Ste	p Wedge		Block	Number:	C/	L-STEP-	136	·	
•					SYST		RATION				
INSTRUI	MENT SE	TTINGS	Initial Cal.	Time	•	Calibration	Checks		Final	Cal. Time	
	Range:		15:38	5	1	5:51	16:	45		17:28	
	e Delay:		Calibrated	Sweep I	Range =	D.500"	Inch	es to	1.500"	Inches	
	ay Calib:	N/A	Thermomet	er:	24	6647	Comp.	Temp:	82°	Block Temp:	76°
	ge Calib:		W/O Num	nber:	C20	013477					
Instrume	ent Freq.	N/A	Total Crew	Dose		Drywel				iness Examina	tion.
	Gain:	72 db	· m	:	_		E	xternal L	T Inspect	ions.	
C)amping:	N/A									
	Reject:	• N/A	1 [Bay - 5		_			
	Filter.	N/A					·	······			
		•		_							
										· · · ·	· · · .
		Point		Verti			Horiz			Thickness	
	BAY	Number		Loca	lion		Loca	tion		Reading	
	· · · ·							ן _ ו		-	
						CG-052-3	<u>.</u>	<u> </u>		0-1307-18	7-E310-04
•								<u></u>			ENT S
			2014 2012 - 131 	{		1000		 _		ATTACH	
			-19-90 - 2 + 1 - 12 - 12 - 19-90 - 2 + 1 - 12 - 12					<u> </u>	ST. PROPERTY FT	DAGE 5	NE I
									4-3-4-7-20-2010	· · ·	
									オケジキャ		¥
			See Al	ttached		cations and	I Thickn	IESS			
					Rea	adings		1 - F			
	_	·			·						
			1990 (1994 (1994)	· · · · · · · · · · · · · · · · · · ·		States at	- <u>.</u>	· · · · · · · · · · · · · · · · · · ·	Arran and a failed	<u> </u>	
· .	·					17836.44 1993 - 1994		╂────┤			
								 		<u> </u>	
		·				155-1				[
1 A. 1											
• .					·						
			1.1			1. 2. 14					
	·		5								
	, i i										
								l			_
			<u> </u>	<u> </u>	· · · · · · · · · · · · · · · · · · ·						
OMMENT	15: N/A		•		•						
	•									. *	•
									· ·	;	
<u>۱</u> .		Υ.				. •		m	mall	il in	- 10-22-06
1								• · l			
1 						*1					

۰.

Point Vertical Horizontal 1992 value 2006 Value Comments * 1 D38 R12 0.97 0.948 up .97 dn .97 * 2 D38 R7 1.04 0.955 Rough surface - up .99 dn .99 * 3 D42 R10 1.02 0.989 up 1.0 dn 1.04	
* 2 D38 R7 1.04 0.955 Rough surface - up .99 dn .99 * 3 D42 R10 1.02 0.989 up 1.0 dn 1.04	
* 2 D38 R7 1.04 0.955 Rough surface - up .99 dn .99 * 3 D42 R10 1.02 0.989 up 1.0 dn 1.04	
* 3 D42 R10 1.02 0.989 up 1.0 dn 1.04	
* 4 D41 - L7 - 0.97 0.948 Rough surface, also dished	
* 5 D42 L11 0.89 0.88 Rough surface	
** 6 D47 R5 1.06 0.981 up 1.018 dn 1.014	
** 7 D48 L18 0.99 0.974 Rough surface left .99 right N/A	
** 8 D46 L31 1.01 1.007 Rough surface	

C-1307-187-E310-04

ATTACHMENT

Note: up, dn, left & right readings were taken 1/8" from recorded 2006 value reading. Rough surface limited taking additional readings. Reference above.

* =Vertical and horizontal measurements taken from top of coating on long seam 62" to right ** =Vertical and horizontal measurements taken from bottom of nozzle at 6 o'clock position Reference NDE Data Sheets 92-072-16 page 1 of 1

1 - Reference off the weld 62" to the right of the centerline of the bay.

6 5

122168-019

BAY 5

2 The original data sheet is not clear as to whether this point is to the right or left of the weld. Therefore NDE shall verify this dimension.

Note: per discussion with Engineering, single point readings were taken in lieu of 6, based on surface curvature.

10-20-06

IRZILR-005 . Pg i er 2

General Ele	ctric		1							File Na	me:	N/A	
Oyster Cree			Ultra	sonic	Thickn	ess M	easure	ement			ate:	10/19/20	06
		1R21	1	-		Sheet				JT Proced		ER-AA-335	-
Refueling O		2	1.		Dala	Oncer				Specifica			
Page						Lough				·····		IS-328227	
Examiner:	Lee Sto	né du		>		Level: Level:	II N/A	Instrume	ent Type:	Pan	ametric 03112	s 37DL Ph	18
Examiner.	N/A	D705		Serial #:	1103	2	Size:	0.200	<u> </u>	5 Mhz			<u></u>
Transducer		D795 /pe: Panam	otrice i		5.	Couplant	Size:	Soundsa	Freq:	Batch No		Angle:	
Transducer	Cable 1	pe: C/S Ste	n Wedne	engur. c		lumber.	C	AL-STEP-		Datch NU	• • • • •	19620)
Cellbration	DIDCK 19		p weago		Dioor				103	<u>L</u>			
			۰. م		SYSTE		RATION			·		1	
INSTRU	MENT SI	ETTINGS		al. Time		Calibration	Checks		the second second second second second second second second second second second second second second second s	Cal. Time			
Coars	e Range:	5.0"		:20		/A·	N	<u>/A</u>		15:10			
	se Delay:				p Range =	0.500"	Inch	es to	1.500"	Inches	1		
	ay Calib:		Thermon	neter:	246		Comp.	Temp:	72°	Block Ter	np:	74•	
Ran	ge Calib:	N/A		lumber:	C201					· ·			
Instrum	ent Freq.	N/A		ew Dose		Drywe			ssel Thick		minatio	n. ,	
	Gain:	67 db		mr		1	E	External L	IT inspect	lons.			
5	Damping:	N/A	•						• •		1		
· · · · · · · · ·	Reject:	N/A		· ·		Bay - 7						·	
	Filter:	N/A]			Juj - 1		•		•			
							-	•				<u> </u>	<u>_</u> '
•		Point	部には	Ve	rtical		Horiz						
	BAY [:]	Number		Loc	atio n		Loca	ation					
			記述用語な										
								i		C.1	307.	187-E3	10-
•							 	ļ					
			的资料型							AI	IACE	IMENT	2
						•				P	AGE	, OF	
								ļ	THE SEC				•
			See	Attache	d for Loca	tions an	d Thickn	ess					
					Read	ings							
	·					•		: j			_		
				-							_	·	·.
							•						
						出版新							
								· · · ·	「日本日本海				
					<u>`</u>	1977.8.8		 	- 1:4 E - 1	· · · ·			
								<u> </u>				•	
									19-52-51				
. 1				i		1250 5							· ' ·
· · · •			2305.1			14.1			17. C. A.				
I			1413672					· · · · ·				•	
ł	ł				f	<u> </u>	·				_		•
L		6			ŀ	tiza (k. j.)		ł	658955				
OMMENT	S. NH	-					· · · · · · · · · · · · · · · · · · ·			<u> </u>			
CINRIEN	ارد مکر ارد مک	PECTION	PERFO	EMED	IAW E	NUINEEX	INC. N	RET TH	n l	۰.			
1	C (N) 20	FF. REV	14 A	RAFT	NAVE 1	c-22 - n	6 - U	1-E-11					
	KE				-mm 1		÷			,			
1. A										alliL		-	<u> </u>
•													
·									7171	am	C <u>14</u>	10-22-	00
		(imberly W		·	· · · · ·	<u></u>	Level	· · · ·	Date				00

BAY 7

·,					2006	
	Point	Vertical	Horizontal	1992 value	Value	Comments
					· ·	-
		1 D21	R39	0.92	N/A	Could not locate area
		2 D21	R32	1.016	N/A	Could not locate area
		3 D10	R20	0.984	0.964	up/dn ranged from 0.956 to 0.980
		4 D10	R10	1.04	1.04	NA
·····		5 D21	L6	1.03	1.003	up/dn ranged from 1.000 to 1.049
		6 D10	L23	1.045	1.023	up/dn ranged from 1.020 to 1.052
		7 D21	L12	1		up/dn ranged from 1.002 to 1.026

えぼ

ATTACHMENT

-1307-187-E310-04

Data obtained from NDE Data Sheets 92-072-20 page 1 of 1 Note: up, dn readings were taken 1/8" from recorded 2006 value reading.

du Stons

10-19-2006

IRZILR-006 Rg lof 2

Seneral Ele			Ultras	sonic	Thickn	iess Me	asure	ement	1	Date:	10/19/200
Refueling O		1R21	1		Data	Sheet				T Procedure:	ER-AA-335-
		2	1	•	Duid	011000	•	· .	,	Specification	IS-328227-
Page	Coold E	rickson	#2	Encol		Level:	11	Unetrum	ent Type:		rics 37DL Plu
Examiner:	N/A		1000	CALLAN		Level:	N/A	Instrum			1120708
ransducer		D7908		Serial #:	338	302	Size:		Freq:	7.5 Mhz ,	Angle: (
monducer	Cable T	pe: Panan				Couplant	020.	Sounds		Batch No:	19620
alibration	Block Ty	pe: C/S Ste	b Wedge		Block	lumber:	Ć.	AL-STEP-			13020
					L				<u> </u>	I	·
•	. •				SYSTI		RATION	1		•	
INSTRU	MENT S	ETTINGS	Initial C	al. Time		Calibration			Final	Cal. Time	
	e Range:		22	:05	N	/A		/A		23:50	
	se Delay:	the second second second second second second second second second second second second second second second s	Calibra	led Sweep	o Range =	0.500"	Inch	es to	1.500"	Inches	
De	ay Calib:	N/A	Thermon	neter.	246	737	Comp.	Temp:	74° ·	Block Temp:	72°
	ge Calib:		A second s	lumber:	C201	3477			<u>.</u>		
Instrum	ent Freq.	N/A		ew Dose		Drywe				ness Exemina	tion.
	Gain			mr			1	External L	JT inspect	lona.	
	Damping:	N/A		· .		•			•	·	
•	Reject		1			Bay - 9			i .		
	Filter.	. N/A		L		<u> </u>	· · · · · · · · · · · · · · · · · · ·		ļ		
<u> </u>											
		<u></u>	000000000000000000000000000000000000000			-		<u> </u>			
		Point			tical atlon			zonal	_		
	BAY	Number	100000000		anon		LOCI	ation	-	-1307-18	
								<u> </u>	1	TTACHM	ENT S
								1		PAGE 9	OF
			和影響							- 	
•	1					新新新福					
			j .				·				
	· · ·		4				3				
	 		See	Attache	d for Loc	ations and	i Thick	1858			
			· · · · ·			lings			1617 (C)		
			1			• · ·					•
]								•
· .									建築の		
								ļ		· · ·	
		· · · · ·						 			
						053-024-000 372-00-00-00	· · · · ·	 	NEW BOARD		
		· · ·				1.12			1000		•
			for the second					1		-	
			2556634								
			和在地								
	·				· · ·	28 E.					
	L		1.1.1.1.			A					
OMMEN	TO NIA										
	i G. (N/A		•						•		
· ·						•					
· · ·						•		21	d'aller	Litt	10-77-0
			•	•							
· · ·					 						

BAY	9
-----	---

	Point	Vertical	Horizontal	1992 value	2006 Value	·	Comments	
		1 D29	R32	0.96	0.968	NA	-	
		2 D18	R17	0.94	0.934		-	
. •		3 D20	R8	0.994	0.989			•
		4 D27	R15	1.02	1.016	•		
	•	5 D35	L5	0.985	0.964			
•		6 D13	L30	0.82	0.802	· ·		
يعيديو ويكار بزيز إسا		7 D16	L35	0.825	0.82		4	
والمراجع المراجع		8 D21	L38	0.791	0.781		_ ÷ _	
		9 D20	L53	0.832	0.823	,		•
		10 D30	L8	0.98	0.955		· · ·	•

C-1307-187-E31

Ş

202

900-

. حجر

2 07 2

, , , , , , , , , , , , , ,

-22-06

PAGE 10 OF

Data obtained from

NDE Data Sheets 92-072-22 page 1 of 1

Note: per discussion with Engineering, single point readings were taken in lieu of 6, based on surface curvature.

neral Ele	ctric									File Name:	NA
ster Cree]Ultras	onic	Thick	ness Me	asur	ement		' Date:	10/20/2008
fueling O		1R21) .		Data	Sheet			ι	JT Procedure:	ER-AA-335-004
Page 1		2	1	•						Specification	IS-328227-004
aminer:		McNabb	An		-	Level:	. 11	Instrume	ent Type:	Paname	rics 37DL Plus
aminer:	N/A					Level:	N/A	Instrume		, 03	1124909
nsducer	Type:	D795		Serial #:	10	4010	Size:	0.200*	Freq:	5 Mhz	Angle: 0°
		pe: Panam		ngth: 5	5'	Couplant		Soundsa		Batch No:	19620
libration	Block Ty	e: C/S Ste	p Wedge		Block	Number:	C	AL-STEP-	080	· · ·	
								•			
			1 1 1 1 0	1. 77	SYST	EM CALIB		<u> </u>			
-		TTINGS	Initial Ca			Calibration			Final	Cal. Time 5:15	
	e Range:	and the second se			p Range =	N/A 0.500"		<u>I/A</u>	1.500"	the second second second second second second second second second second second second second second second s	
	se Delay:	the second second second second second second second second second second second second second second second s	Thermom	_		6534		Tomm	74°	Inches Block Temp:	
	ay Calib: ge Calib:	the second second second second second second second second second second second second second second second s	W/O NL		_	13477	Comp	. Temp:		Trantor Leuter	72*
	ent Freq.	and the second se	Total Cre	the state of the s			ll Conta	Inment Ve	sel Thic	kness Examina	tion.
	Gain:	58 db			8	1			JT inspect		ł
1	Damping:					• •				1	,
	Reject:		l•			Bay - 11			1.		
	Fifter:		1 · L			uay - 11		i			
						•			-	·	
•			1857-0-1-17-0-1-1-1-1			And by torning the		•		·	
		Point			rtical ation			zonal			•
	BAY	Number	1227724A	Loc	ation		LOC	ation			
	 						··	+			7-E310-041
					•			+		ATTACHN	
			部で変換			の記念を行				PAGE 4	OF
						14-36-56				FC	
										ł	
					ŕ						
			See	Attache	d for Lo	cations and	1 Thick	ness			
				•	Rea	dings					· · ·
							•	1			· · ·
			· · ·	•							
	 					200000	·····	T			
			20040-012-02 2007-02-02		· · · · · · · · · · · · · · · · · · ·	276-287-297				· · · · ·	
· .						ACTION OF THE					•
							•	<u>}</u>			. ·
								†	a sur tur	<u> </u>	
. 1								t{	0.000	<u>}</u> {	
· 1								t1		jI	
• •	├ {	[†		<u> </u>	
			1.7 S A 2					11		╞╾╍╌╌┛┫	
								†		┠┛	· ·
·	K								<u></u>		· .
MMENT	TS: N/A										
			•								
			•				•			•	· · · ·
			·							1	• •
								in in	1 Cast 5	1 2 - 77	40
								·M	n aan	LIT	10-22-06

BAY 11

 Point	Vertical	Horizontal	1992 value	2006 Value	Comments
-	1 D20	R29	0.705	0.700	NA
	2 D25	R32	0.77	0.760	
 	3 D21	L4	0.832	0.830	
	4 D24	L6	0.755	0.751	
	5 D32	L14	0.831	0.823	
	6 D27	L22	0.8	0.756	
	7 D31	R20	0.831	0.817	
	8 D40	R13	0.85	0.825	

Data obtained from .

OCLR00027957

NDE Data Sheets 92-072-10 page 1 of 1

Note: per discussion with Engineering, single point readings were taken in lieu of 6, based on surface curvature.

1K21LR-008

P3 2 07

4

C-1307-187-E3 ATTACHMENT PAGE / OF

								. /	IRZIL,	R-010	Rg lor 2
General Ele	ctric			· · · · · ·						File Name:	N/A
Oyster Cree			Ultras	sonic	Thickn	ess Me	easure	ment		Date:	10/19/2006
Refueling O		1R21	Data Sheet							UT Procedure:	ER-AA-335-004
Page 1		2	1	Data Sheet						Specification	IS-328227-004
Examiner.	Scott Er		LOU R	Eard	6	Level:	. 11	Instrume	ent Type:		trics 37DL Plus
Examiner.	N/A					Level:	N/A	Instrumé			1120708
Transducer	Type:	D79 9		Serial #:	· 104	044	Size:	0.312"	Freq:	5 Mhz	Angle: 0°
Transducer	Cable Ty	pe: Panam	etrics Le	ength: 5		Couplant		Soundsa		Batch No:	04120B
Calibration I	Block Typ	e: C/S Ste	p Wedge	•	Block N	umber:	· C/	L-STEP-	109	<u> </u>	
• ,					SYSTE	M CALIB	RATION			. •	F
INSTRU	MENT SE	TTINGS	Initial C			Calibration			Final	Cal. Time	
	a Range:	5.0*	3:				<u>N</u>		4 500	4:15	
	e Delay:	<u>N/A</u>			Range =	0.500"		es to'	1.500 [#]	Inches	
	ay Calib: ge Calib:	N/A N/A	Thermom W/O N		246 C201		Comp.	i emp:	12	Block Temp:	· 70°
Instrume		N/A	Total Cr		0201		li Contai	nment Ve	ssel Thic	kness Examina	tion.
, monante	Gain:	51 db		mr		1			IT inspec		•
C	Damping:	N/A	+	<u> </u>	·			-	_	1	· · ·
	Reject:	N/A]		P	lay - 13	1				· .
	Filter.	N/A]		-4 	ay - 10	·	•			· •
				•		•		•			. •
		Point			tical ation		Horiz Loca				
	BAY	Number	ABLICAS GRADS	. LOC	811011		LUCA	I	÷		
										C-1307-40	
									· .	ATTAOUN	7-E310-041
							<u> </u>	 	·.	ATTACHM	ENT S
			建设合成化的					L	(Paralanas	PAGE 13	OF
						•					<i>،</i>
		ł								i i i i i i i i i i i i i i i i i i i	
			See	Attache	d for Loca		i Thickn	es s			
		·			Read	ings				F	
											· .
· · ·			2013-340 A	<u>.</u>						<u> </u>	
	┝───┦			f							
			a Santak			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1					• .
- I						31. (A)					
	 		No.								
	┝╾╍╌╍╋					5-5-5 36-7 -5-5 5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-5-					
			ور برو می مرد می ای برو بالا در با							<u> </u>	
•								······			
COMMENT	IS: N/A		:						-		
•		· .		•	· .				1. 1	/	
).								mini	achil	- C III 10	-22-06
					· ·						
			1								

• 1

.•

4

BAY 13

				F	2006	
	Point	Vertical	Horizontal	1992 value	Value	Comments
	and the second se	U1	R45	0.672		Could not locate area
	and a state of the	U1	R38	0.729		Could not locate area
		D21	R48	0.941	0.923	•
		D12	R36	0.915	0.873	
	5	D21	R6	0.718	0.708	
•	6	D24	L8	0.655	0.658	
	7	D17	L23	0.618	0.602	
· .	8	D24	L20	0.718	0.704	
	9	D28	R41	0.924	0.915	
	10	D28	R12	0.728	0.741	
	11	D28	L15	0.685	0.669	
	12	D28 ·	L23	0.885	0.886	1
	13	D18	D40	0.932	0.814	
	14	D18.	R8	0.868	0.870	
	15	D20	L9	0.683	0.666	
	16	D20	L29	0.829	0.814	
	17	D9	R38	0.807	N/A	Could not locate area
	18	D22	R38	0.825	N/A	Could not locate area -
	and the second sec	D37	R38	0.912	0.916	والالبان ويسترج ويعفاني فتتلج فالزوف الأري التفري وبالتاريخ والمتحدث والمستر ومحتنا والمحت والمحت والمحتا والم

Data obtained from

NDE Data Sheets 92-072-24 page 1 of 2

Note: per discussion with Engineering, single point readings were taken in lieu of 6, based on surface curvature.

MHall i II-10-22-06

ATTACHMENT PAGE 4 OF

C-1307-187-E310-0

1221

LR-010-

PS 2 or

V

1R21 LR-015 Rg 10F 2

General Elec	ctric									File Name:	N/A
Oyster Cree		Ultrasonic Thickness Measurement							Date:	10/20/2006	
Lefueling Or	_	1R21	1		· .	Sheet		T Procedure:	ER-AA-335-004		
Page 1		2	1 .	. 1					1	Specification	IS-328227-004
		lson Ma	Hall			Level:		Instrume	nt Typer		trics 37DL Plus
	N/A	ison yra	AVUS			Levet	N/A	Instrume		يعتدا أستعلقه فالتقاري ويتهديه	1124709
Examiner: Transducer		D795		Serial #:	1103	3008	Size:	0.200"		5 Mhz	Angle: 0*
Transducer	Cable Ty	pe: Panam	etrics L			Couplant:		Soundsa		Batch No:	19620
Calibration E	Block Typ	e: C/S Step	p Wedge		Block N	lumber.	CA	L-STEP-	088		
Camprender					<u></u>					.	
		•			SYSTE	EM CALIB	RATION			· ·	
INSTRU	MENT SE	TTINGS	Initial C	al. Time		Calibration	Checks		Final	Cal. Time	1
Coarse	e Range:	5.0"):30		:10	12:	33		13:05	•
	e Delay:			and the second second second second second second second second second second second second second second second	Range =	0.500"	Inch	es to	1.500"	Inches	
	ay Calib:		Thermon			484	Comp.	Temp:	82*	Block Temp:	76°
	ge Calib:	and the second se		lumber:	C201	3477					
Instrume	ent Freq.	N/A	t marine	ew Dose	· .	Drywe	il Contați	ment Ve	ssel Thici	ness Examina	ation,
	Gain:	67 db		mr			E	xærnar U	IT inspect	10 18.	
)amping:	N/A	! .			• • • • • • • • • • • • • • • • • • •		· · · · · · · · · · · · · · · · · · ·		•	
· · · · · · · · · · · · · · · · · · ·	Reject:				E	3ay - 15	5 .				
	Filter.	N/A		Ļ			·			••	
								• •			
	·····	Point		Ve	tical		Horiz				
•	BAY	Number			ation	S STAN	Loca				
•	DAI	Number				1. 1/2/			C	1307-187	-E310-041
···.									-		· ·
- 1					· · · · · · · · · · · · · · · · · · ·	34.00				TTACHME	
1 .					<u> </u>	197-24-191	·			PAGE 15	.
			15.61.5					ŀ			
									5 A 1 6 6 4		
			See	Attache	d for Loca	ations an	d Thickn	es s	381 5- <u>1</u> 4		•
					Read	lings			が非常なな	· · · · · · · · · · · · · · · · · · ·	
					•	·			教務部署部		
								1. I			
						244334				·	
	┝╼╼╼┨		1 3 4 5 12 14 14 14 14 14 14 14 14 14 14 14 14 14								•
			12 12 10	f							
			1997 (j						1 - A & A & A		
											. •
COMMENT	S: N/A										
COMMENT	S: N/A										
COMMENT	S: N/A										
COMMENT	S: N/A										
COMMENT	S: N/A									LII (0	22-06
							Level			LII (0	22-060

BAY	15
-----	----

					2006	· · · · · · · · · · · · · · · · · · ·
	Point	Vertical	Horizontal	1992 value	Value	Comments
			. ·	·		
	1	D12	R26	0.786	0,779	0.711 to 0.779
	2	D22	R21	0.829	0,798	0.777 to 0.798
	3	D33	R17	0.932	0.935	
	4	D30	R7	0.795	0.791	
	5	D26	L3	0.85	0.855	0.817 to 0.855
•••	6	D6	L8	0.794	0.787	0.715 to 0.787
	7	D26	L18	0.808	0,805	
a an an an an an an an an an an an an an	8	D20	L36	0.77	0.760	
	.9	D36	L44	0.722	0.749	0.720 to 0.749
	10	D24	L48	0.86	0.852	0.837 to 0.852
	11	D24	L65	0.825	0.843	0.798 to 0.843

Data obtained from

NDE Data Sheets 92-072-21 page 1 of 1 Note: scanned 0.25" area around recorded 2006 value number - see comments for ranges.

IRZILR-015 S 2 0 ħ

·N

C-1307-187-E310-041 ATTACHMENT

eneral Electric								-	City Alexand	N/A
			· _						File Name	
yster Creek		Ultrasonic Thickness Measurement							Date	10/19/2006
efueling Outage -	1R21	· ·		Data	Sheet				JT Procedure	ER-AA-335-004
Page 1 of	2							Specification	IS-328227-004	
xaminer: Matt Wi	Ison //lax	TULL			Level:	. 11	Instrume	nt Type:		etrics 37DL Plus
xaminer: N/A	filler.				Level:	N/A	Instrume			31124709
ransducer Type:	D795		Serial #:	104	010	Size:	0.200*	Freq:	5 Mhz	Angle: 0°
ransducer Cable T		etrics Le	ngth: 5	3	Couplant		Soundsa		Batch No:	19620
alibration Block Ty				Block I	Number:	Č/	AL-STEP-	088		
		•								•
•			•	SYST	E m calib	RATION				
INSTRUMENT S	ETTINGS	Initial Ca	al. Time		Calibration	Checks		Final	Cal. Time	
Coarse Range:	5.0"	15:	36	N	I/A	N	/A		17:18	
Coarse Delay:				o Range =	0.500"	Inch	es to	1.500"	Inches	•
Delay Calib:	N/A	Thermom	eter.	246	6534	Comp.	Temp:	82°	Block Temp:	78*
Range Calib:	N/A	W/O N	umber:	C20	13477				•	
Instrument Freq.	. N/A	Total Cr	ew Dose		Drywe				kness Examir	ation.
Gain			<u>mr</u>		. 1	E	External L	IT inspect	lions.	.*
Damping	N/A	i,							. 1	
Reject	. N/A	ľ í		1	3ay - 17	7		ł		
Filter	N/A			· .	Jay - 11		<u>`.</u>]		
				. •	·					
	Point		Ve	tical	22,868-5	Hort				
BAY	Point Number			rtical ation		Hort Loc		·		
BAY								C	2-1307-18	37-E310-041
BAY									C-1307-18 Attachi	87-E310-041
BAY									аттасны	NENT S
BAY					的管理部				5-1307-18 Аттасни Раде (Д	NENT S
BAY	Number								аттасны	NENT S
BAY	Number				的管理部				ATTACHN PAGE []	NENT S
BAY	Number				的管理部			1	ATTACHN PAGE []	NENT S
BAY	Number			ation	的管理部	Loci			ATTACHN PAGE []	AENT S
BAY	Number			ation		Loci			ATTACHN PAGE []	AENT S
BAY	Number			ation	ations an	Loci			ATTACHN PAGE []	AENT S
BAY	Number			ation	ations an	Loci			ATTACHN PAGE []	AENT S
BAY	Number			ation	ations an	Loci			ATTACHN PAGE []	AENT S
BAY	Number	Se o		ation	ations an	Loci			ATTACHN PAGE []	AENT S
BAY	Number	Se o		ation	ations an	Loci			ATTACHN PAGE []	AENT S
BAY	Number	Se o		ation	ations and dings	Loci			ATTACHN PAGE []	AENT S
BAY	Number	Se o		ation	ations and dings	Loci			ATTACHN PAGE []	AENT S
BAY	Number	See .		ation	ations an dings	Loci			ATTACHN PAGE []	AENT S
BAY	Number	Se o		ation	ations and dings	Loci			ATTACHN PAGE []	AENT S
BAY	Number	See .		ation	ations and Ings	Loci			ATTACHN PAGE []	AENT S
BAY	Number	See .		ation	ations an dings	Loci			ATTACHN PAGE []	AENT S

Note: measurement from vent pipe CL to floor 60" 2006 Point Horizontal 1992 value Value Comments Vertical 0.916 0.909 1|D12 **R50** 0.681 up .705 dn .663 2 D9 R40 1.150 0.898 3**D**16 **R26** 0.894 4 D34 **R24** 0.951 0.963 5 D6 R20 0.913 0.822 6 D17 **R7** 0.992 0.909 L14 --7**D**18 0.970 0.970 0,990 8 D34 L46 0.960 9 D21 129 0.720 0.970 10 D3 12 0.830 0.844 11 N/A N/A Ñ/A N/A

PAGE 🗘 OF

ATTACHMENT

OCLR00027963

Note: Down measurements taken from bottom of boss which is 18" below vent line. Locations 8,9, & 3 look to be un-prepped flat areas of the original surface,

All left, right measurements taken from 8" left of liner long seam

Data obtained from

NDE Data Sheets 92-072-08 page 1 of 1

Note: Per discussion with Engineering, single point readings were taken in lieu of 6, based on surface curvature.

Matthew El Julian 10-19-2006

eneral Ele	ctric		1.	היינקראי באיניראל אייני			······			File Name:	FZ NVA
in the second second second second second second second second second second second second second second second			111+12	sonic	Thickn	ess M	Pasur	ment		Date:	10/22/2006
yster Cree				501110		Sheet	Jaguit	ment			ER-AA-335-004
efueling O		1R21	-		Dara	JIEGI			u	JT Procedure:	
Page 1		2	itter	2.10		Level:		lingt		Specification	15-328227-004
aminer.	Matt Wi		Aller	aue		Level:	N/A	Instrume			ics 37DL Plus
caminer.		D795		Serial #.	104	L	Size:	0.200*	Freq:	5 Mhz ·	Angle: 0°
		pe: Panan	netrics L			Couplant:		Soundsa	the second second second second second second second second second second second second second second second s	Batch No:	19620
		be: C/S Ste			Block N			L-STEP-	088		
			<u></u>			•				••••••••••••••••••••••••••••••••••••••	· ·
					SYSTE	M CALIB	RATION				
INSTRU	MENT SE	TTINGS		Cal. Time		Calibration	_			Cal. Time	
	e Range:	5.0"		1:26	15:		· · N		L	16:09	
	e Delay:	N/A	-		p Range =	0.500*	Inch		1.500*	Inches	
	ay Calib:	N/A	Thermor			534 8926 Sar	Comp.	Temp:	82"	Block Temp:	82°
	ge Calib:	N/A		Number: rew Dose				ment Ve	Real Thick	iness Examinat	100
Instrume	Gain:	67 db		mr	C201597				T inspect		
D)amping:	N/A			L						
	Reject	' N/A	1		ío.	av 10	<u> </u>			•	•
	Filter.	N/A]		C	Bay - 19	· · ·				
			-							•	• •
·				_		Maria de la Carta da Carta		-		· . ·	
		Point			tical ation		Horiz				
	BAY	Number	in the second	LOC	auvii	NASASANA ANA MENANG ANA	Loca	ř.			
-								t .	C-1	1307-187-1	E310-041
			SE TO		·.			Ľ		TACHMEN	
						15 J.L.		-			
	┝───┨		Service Co	L				Ļ	P	AGE 🆧 OF	•
• • •								ł			
							•	ł			м. С
1			See	Attache	d for Loca		d Thickn	es s			•
					Read	ings	•				
								1			
		1									
· I			新闻: 1		ľ	1.5					
]			1						47 1 3 m 1		
]	<u> </u>		<u>. (.)</u> (<u> </u>			·				
· •	<u> </u>										• .
· · · F						-10073703		li			· .
ŀ						S. 49.5					
			Children I.			wa ila			84. Jan		
										·	• • •
				<u> </u>	<u> </u>	2. X		<u>[</u> .	. <u>.</u> .		:
E		<u></u>		·····							
MMENT	S: N/A				•		-		· .		
OMMENT	'S: N/A		-								
OMMENT	'S: N/A		•			•	-		~		
OMMENT	S: N/A		•						0,	A LEAM	
MMENT	s: N/A						-		Sto.	R.M.C.	10-72-06

Ĺ

- 182122-018 W 20-12-0 22 N

BAY 19

					2006	
• • .	Point	Vertical	Horizontal	1992 value	Value	Comments
		ŀ				
		1 D30	R60	0.932		up .897 dn .867
	•	2 D52	R58	0.924	0.921	up .850 dn .907
		3 D33 -	R40	0.955	0.932	up .894 dn .905
		4 D32	R11	0.94	N/A	Could not locate area
·		5 D31	R3	0.95	0.932	up .883 dn .897
-		6 D52	L65	0.86	N/A	Could not locate area
		7 D54	L10	0.969	. 0.891	up .821 dn .912
		8 D16	R64 ·	0.793/0.953 ***	0.745	up .721 dn .747
		9 D18	R12 .	0.776	0.780	up .728 dn .745
	1	0 D19	R0	0.79	0.791	up .736 dn .846
	1	1 20D	L18	N/A		up .738 dn .712

C-1307-187-E310-04 121 ATTACHMENT PAGE 20 OF

JCLR00027965

Data obtained from

NDE Data Sheets 92-072-05 page 1 of 1

NDE Data Sheets 92-072-07 page 1 of 1

Note: Per discussion with Engineering, single point readings were taken in lieu of 6, based on surface curvature.

*** - This value is not clear form the original datasheet -NDE to verify this value.

Note: per discussion with Engineering, single point readings were taken in lieu of 6, based on surface curvature.

Mothen Welson 10/22/06