U.S. NUCLEAR REGULATORY COMMISSION

In the Matter of AMFRCELI FUSERGY CO., LLC Docket No 500-0219-LR Official Exhibit No. 20
OFFERED by APplicantitigensee Intervenor APPLICANTS EXC. 20 Exelün

ATTACHMENT I.

Design Analysis Cover Sheet

Page 1 of 57

Table of Contents

Section	Pages
1.0 Purpose	3
2.0 Summary of Results	4
3.0 References	9
4.0 Assumptions	10
5.0 Design Inputs	11
6.0 Overall Approach and Methodology	12
7.0 Calculation 7.1 Sandbed Locations with 49 Readings 7.2 Sandbed Locations with 7 Readings 7.3 External Inspections 7.4 Sensitivity of the Corrosion Test without the 1996 Data 7.5 Sensitivity Study to Determine the Statistically Observable Corrosion Rate with Only Four Inspections	29
8.0 Software	54
	No of pages
9.0 Appendices	
Appendix \#1 - Bay 9 location 9D December 1992 through Oct 2006	16
Appendix \#2 - Bay 11 location 11A December 1992 through Oct 2006	17
Appendix \#3 - Bay 11 location 11C December 1992 through Oct 2006	25
Appendix \#4 - Bay 13 location 13A December 1992 through Oct 2006	16
Appendix \#5 - Bay 13 location 13D December 1992 through Oct 2006	31
Appendix \#6 - Bay 15 location 15D Decermber 1992 through Oct 2006	16
Appendix \#7 - Bay 17 location 17A December 1992 through Oct 2006	26
Appendix \#8 - Bay 17 location 17D December 1992 through Oct 2006	16
Appendix \#9 - Bay 17 location 17-19 December 1992 through Oct 2006	26
Appendix \#10-Bay 19 location 19A December 1992 through Oct 2006	18
Appendix \#1.1- Bay 19 location 19B December 1992 through Oct 2006	16
Appendix \#12 - Bay 19 location 19C December 1992 through Oct 2006	16
Appendix \#13-Bay 1 location ID December 1992 through Oct 2006	16
Appendix \#14-Bay 3 location 3D December 1992 through Oct 2006	16
Appendix \#15-Bay 5 location SD December 1992 through Oct 2006	16
Appendix \#16-Bay 7 location 7D December 1992 through Oct 2006	16
Appendix \#17-Bay 9 location.9A December 1992 through Oct 2006	16
Appendix 18 - Bay 13 location 13 C December 1992 through Oct 2006	16
Appendix 19 - Bay 15 location 15A December 1992 through Oct 2006	
Appendix 20 - Review of the 2006106 External UT inspections.	$27-12$
Appendix 21 - Sensitivity of the Corrosion Test with out the 1996 Data	
Appendix 22 - Sensitivity Studies to Determine Minimum Statistically Observable Corrosion Rates Appendix 23 - Independent Third Party Review of Calculation	$\begin{array}{ll} 4 \\ 3 \end{array}$
Attachment 1-1992 UT Data	5
Attachment 2-1994 UT Data	4
Attachment 3-1996 UT Data	19
Attachment 4-2006 UT Data IR21LR-029, 030, 033 and 034.	5
Attachment 5-1992 UT Data for First Inspections of Transition Elevations 23' 6 " and 71' 6 '.	20

Subject: Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006	Calculation No. C-1302-187-E310-041	Rev. No: 0	System Nos. 187	Sheet 3 of 55

1.0 Purpose

The purpose of this calculation is to analyze the UT Inspection, which have been taken of the Drywell Vessel in the Sandbed Region for 1992, 1994, 1996, and 2006.

Specific objectives of this calculation are:

1) Determine the $1992,1994,1996$, and 2006 mean thickness at each monitored location and compare them to acceptance criteria.
2) Determine the 1992, 1994, 1996, and 2006 thinnest recorded value at each monitored location and compare them to the appropriate acceptance criteria.
3) Statistically analyze measured thicknesses from 1992, 1994, 1996, and 2006 to determine if a statistically significant corrosion rate exists at each location,
4) If a statistically significant corrosion rate exists, provide a conservative projection to ensure future inspections are performed at conservative frequencies.
5) In addition this calculation will analyze the 106 UT data points collected in 1992 and again in 2006.

The conclusion of this calculation pertains to the Sandbed Region of the Drywell Vessel located above elevation $8^{\prime} 111 / 4$ "which is not embedded in concrete on both sides.

Background

The inspections were performed at 19 separate locations (grids) located through-out the sandbed region. These inspections are performed from inside the drywell and are located at an elevation that corresponds to the sandbed region of the Drywell. These locations have been periodically inspected over time to determine corrosion rates. At least one grid is located in each of the 10 Drywell Sandbed Bays.

Twelve locations are each on a 6 " by 6 " area in which 49 separate UT readings are performed in a grid pattern on $l^{\prime \prime}$ centers. The grid pattern is located in the same location each time the inspection is performed within plus or minus $1 / 8$ inch. Seven locations are each on a 1 " by 6 " area in which 7 separate UT readings are performed in a row pattern on 1" centers. The row pattern is located in the same location each time the inspection is performed within plus or minus $1 / 8$ inch.

The grids with 49 readings correspond to bays that experienced the most identified corrosion prior to the repair in 1992.

In 1992, following the removal of the sand and corrosion byproducts from the sandbed region, the exterior of the Drywell Vessel was visually inspected from inside the sandbed. This inspection identified the thinnest local points in each of the 10 sandbed bays. These thinnest locations (approximately 115) were then UT inspected and documented with a single thickness value. These locations do not correspond with the 19 locations that were periodically monitored from inside the Drywell. These locations had not been re-inspected until 2006 when 106 were located and again UT inspected. These points were located using the 1992 NDE inspection data sheet maps. These UT readings were originally intended to provide a comparison to the acceptance criteria.

AmerGen

Calculation No.	Rev. No.	System Nos.	Sheet C-1302-187-E310-041 0

2.0 Summary of Results

Review of the 1992, 1994, 1996, and 2006 UT inspection data for all grids show that these monitored locations are experiencing no observable corrosion. These locations correspond to areas of the Sandbed Region of the Drywell Vessel that were coated in 1992 and are above the internal concrete curb and floor.

This conclusion is based on statistical testing of the mean thicknesses measured in 1992, 1994, 1996, and 2006 at each location; a point-to-point comparison of the thinnest reading measured in 2006 at each lucation, and sensitivity studies which have identified the minimum statistically observable rate of corrosion that would have to be present in order to have 95 percent confidence.

All measured mean and local thicknesses meet the established design basis criteria.
Sensitivity studies have identified the rates, which would be statistically observable given the limited number of inspections (four since the sandbed has been coated) and the variance of the data at the most critical location (19A).

Projections based on assumed corrosion rates corresponding to the calculated minimum statistically observable rates are used to determine the required inspection frequencies to ensure that all locations will continue to meet design basis requirements until the next scheduled inspection.

A review of the 2006 UT inspection data of 106 extemal locations shows all the measured local thicknesses meet the established design basis criteria. Comparison of this new data to the existing 19 locations used for corrosion monitoring leads to the conclusion that the 19 monitoring locations provide a representative sample population of Drywell Vessel in the Sandbed (see section 7.3).

The term "No Observable Corrosion". is being defined as: having "No Statistically Significant Rate of Corrosion". The actual margins remaining have considered rates based on actual differences between UT readings, which represent insignificant changes to shell thicknesses. However, to take a much more conservative approach in determining acceptable inspection frequencies for each of the locations, a sensitivity study has been performed to develop the minimum rate of corrosion that would have to exist in order to conclude with a high confidence level that in fact corrosion does exist. For the sandbed region, this approach is conservative since it includes the large standard error associated with the pre-existing surface irregularities due to corrosion of the exterior shell prior to 1992. This minimum observable rate that is defined is not indicative of an actual corrosion rate. It should also be noted that the results of this approach are significantly influenced by the amount of data used, and that additional inspection will reduce the minimum observable rate. This has been proven based on the upper drywell analysis that proved that as additional data and time were considered the actual rate (which was less than 1 mil per year) became observable.

	CALCULATION SHEET		Preparer: Pete Tamburro$12 / 15 / 06$	
Subject: Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006	Calculation No. C-1302-187-E310-041	Rev. No. 0	System Nos. 187	Sheet 5 of 55

The following table provides a breakdown of the location with the least amount of margin to the general criteria.

Table 1

Location ID	2006 Mean	Uniform Criteria	Delta	Margin Remaining
	(Inches)	(Inches)	(Inches)	Percentage
19 A	0.8066	0.736	0.0706	9.6%

Evaluation of the mean thickness values of this location measured 1992, 1994, 1996 and 2006 shows that this location is experiencing negligible corrosion, approaching a rate of zero. However due to the limited amount of inspections this conclusion cannot be statistically confirmed with 95% confidence. Therefore the next inspection of this location shall be performed prior to the date in which the minimum statistically observable rate would drive the thickness to the minimum required thickness.

Table 2 - The following table provides a breakdown of the locations with the least amount of margin to local criteria.

Locatio n ID	2006 Local Reading	Local Criteria	Delta	Margin Remaining
	(Inches)	(Inches)	(Inches)	Percentage
$17 \mathrm{D} / 13$	0.648	0.490	0.158	32%
$19 \mathrm{~A} / 4$	0.648	0.490	0.158	32%

Evaluation of these individual values measured 1992, 1994, 1996 and 2006 shows that these points are experiencing negligible corrosion, approaching a rate of zero. However due to the limited amount of inspections this conclusion cannot be statistically confirmed with 95% confidence. Therefore the next inspection of this location shall be performed prior to the date in which the minimum statistically observable rate would drive the thickness to the minimum required thickness.

Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006

Calculation No.	Rev. No. 0	System Nos. C-1302-187-E310-041	Sheet 6 of 55

2.1 Twelve Internal Locations with 49 Readings

Twelve, 49 point grid inspections have been performed in 1992, 1994, 1996 and 2006 after the sand was removed and the coating was applied in 1992. Analysis of the mean values and the thinnest 2006 reading at these locations indicate no observable corrosion during this period.

Table 3 Compilation of the 49 Point Grid Means Over Time

Locations that were previously split in two groups are shown for consistency with previous calculations.

	CALCULATION SHEET		Preparer: Pete Tamburro$12 / 15 / 06$	
Subject: Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006	Calculation No. C-1302-187-E310-041	Rev. No. 0	System Nos. 187	Sheet 7 of 55

Table 4 Compilation of the Lowest 2006 Reading in Each 49 Point Grid Over Time

Location ID/Point	1992 Reading	1994 Reading	1996 Reading	Lowest 2006 Reading	Local Criteria	Corclusions
	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)	
9D/ 15	0.763	0.770	0.776	0.751	0.490	No observable corrosion
11A/20	0.677	0.677	0.668	0.669		No observable corrosion
11C/5	0.776 .	NA	1.14	0.767		No observable corrosion
13A/18	0.761	0.752	0.774	0.746		No observable corrosion
13D/49	0.824	0.811	0.822	0.821		No observable corrosion
15D/42	0.980	0.903	0.940	0.922		No observable corrosion
17A/40	0.804	0.809	0.983	0.802		No observable corrosion
17D/13	0.648	0.646	0.693	0.648		No observable corrosion
17-19/35	0.914	0.906	0.935	0.901		No observable corrosion
19A/4	0.659	0.650	0.680	0.648		No observabie corrosion
198/34	0.743	0.716	0.745	0.731		No observable corrosion
19C/21	0.650	0.666	0.771	0.660		No observable corrosion

2.2 Seven Locations With 7 Readings

Seven, 7 point grid inspections have been performed in 1994, 1996 and 2006 after the sand was removed and the coating was applied in 1992.

Analysis of the mean values and the thinnest 2006 reading at these locations indicate no on going corrosion during this period. This conclusion is based on the statistical " F " test of the data over time.

	CALCULATION SHEET		Preparer: Pete Tamburro 12/15/06	
Subject: Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006	Calculation No. C-1302-187-E310-041	Rev. No. 0	System Nos. 187	Sheet 8 of 55

Table 5 Compilation of the 7 Point Grid Means Over Time

Location ID	Average Thickness based on 1992 Inspections	Average Thickness based on 1994 Inspection s	Average Thickness based on 1996 Inspections	2006 Mean	Uniform Criteria	Conclusions
	(Inches)	(Inches)	(Inches)	(Inches)	(fnches)	
ID	1.121	1.101	1.151	1.122		No observable corrosion
3D	1.182	1.184	1.175	1.180		No observable corrosion
5D	1.182	1.168	1.173	1.185		No observable corrosion
7D	1.137	1.136	1.138	1.133		No observable corrosion
9A	1.157	1.157	1.155	1.154		No observable corrosion
13C	1.149	1.140	1.154	1.142		No observable corrosion
15A	1.133	1.114	1.127	1.121		No observable corrosion

Table 6 Compilation of the Lowest 2006 Reading in Each 7 Point Grid Over Time

Location ID/Point	1992 Reading	$\begin{array}{\|l\|} \hline 1994 \\ \text { Reading } \end{array}$	$\begin{aligned} & 1996 \\ & \text { Reading } \end{aligned}$	Lowest 2006 Reading	Local Criteria	Corrosion
	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)	
1D/1	0.889	0.879	0.881	0.881	0.490	No observable corrosion
3D/5	1.159	1.164	1.158	1.156		No observable corrosion
5D/1	1.164	1.163	1.163	1.174		No observable corrosion
7D/5	1.111	1.135	1.113	1.102		No observable corrosion
9A/7	1.133	1.132	1.127	1.130		No observable corrosion
13C/6	1.138	1.123	1.147	1.128		No observable corrosion
15A/7	1.083	1.040	1.100	1.049		No observable corrosion

AMn \% \% ${ }^{\text {an }}$	CALCULATION SHEET		Preparer: Pete Tamburro 12/15/06	
Subject: Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006	Calculation No. C-1302-187-E310-041	Rev. No. 0	System Nos. 187	Sheet 9 of 55

3.1 References

3.1 GPUN Safety Evaluation SE-000243-002, Rev. 14 "Drywell Steel Shell Plate Thickness Reduction at the Base Sand Cushion Entrenchment Region."
3.2 GPUN TDR 854, Rev. 0 "Drywell Corrosion Assessment"
3.3 GPUN TDR 851, Rev. 0 "Assessment of Oyster Creek Drywell Shell"
3.4 GPUN Installation Specification, IS-328227-004, Rev 13, "Functional Requirements for Drywell Containment Vessel Thickness Examination".
3.5 Applied Regression Analysis, $?^{\text {nd }}$ Edition, N. R. Draper \& H. Smith, John Wiley and Sons 1981
3.6 Statistical Concepts and Methods, G.K. Bhattacharyya \& R.A. Johnson, John Wiley and Sons

1977
3.7 GPUN calculation C-1302-187-5300-005, Rev.0, "Statistical Analysis of Drywell Thickness Data Thru 12-31-88"
3.8 GPUN TDR 948, Rev. 1 "Statistical Analysis of Drywell Thickness Data"
3.9 Experimental Statistics, Mary Gobbons Natrella, John Wiley \& Sons, 1966 Reprint (National Bureau of Standards Handbook 91)
3.10 Fundamental Concepts in the Design of Experiments, Charles C Hicks, Saunders College Publishing, Fort Worth, 1982
3.11 GPUN Calculation C-1302-187-5300-008, Rev.0, "Statistical Analysis of Drywell Thickness Data Thru 2-8-90"
3.12 GPUN Calculation C-1302-187-5300-011, Rev.1, "Statistical Analysis of Drywell Thickness Data Thru 4-24-90"
3.13 GPUN Calculation C-1302-187-5300-015, Rev.0, "Statistical Analysis of Drywell Thickness Data Thru March 1991"
3.14 GPUN Calculation C-1302-187-5300-017, Rev.0, "Statistical Analysis of Drywell Thickness Data Thru May 1991"
3.15 GPUN Calculation C-1302-187-5300-019, Rev.0, "Statistical Analysis of Drywell Thickness Data Thru November 1991"
3.16 GPUN Calculation C-1302-187-5300-020, Rev.0, "OCDW Projected Thickness Data Thru 11/02/91"
3.17 GPUN Calculation C-1302-187-5300-021, Rev.0, "Statistical Analysis of Drywell Thickness Data Thru May 1992"
3.18 GPUN Calculation C-1302-187-5300-022, Rev.0, "OCDW Projected Thickness Data Thru 5/31/92"
3.19 GPUN Calculation C-1302-187-5300-025, Rev.0, "Statistical Analysis of Drywell Thickness Data Thru December 1992"
3.20 GPUN Calculation C-1302-187-5300-024, Rev.0, "OCDW Projected Thickness Data Thru 12/8/92"
3.21 GPUN Calculation C-1302-187-5300-028, Rev.0, "OCDW Statistical Analysis of Drywell Thickness Data Thru September 1994"
3.22 GPUN Calculation C-1302-187-5300-030, Rev.0, "Statistical Analysis of Drywell Thickness Data Thru September 1996"

Subject: Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006	Calculation No. C-1302-187-E310-041	Rev, No. 0	System Nos. 187	Sheet 10 of 55

3.23 Practical Statistics - "Mathcad Software Version 7.0 Reference Library, Published by Mathsoft, Inc. Cambridge
3.24 AmerGen Calculation C-1302-187-E310-037, Rev. 1 Statistical Analysis of Drywell Vessel Data.
3.25 AmerGen Calculation C-1302-187-5320-024, Rev. 1 OC Drywell Ext. UT Evaluation in Sandbed"

4.0 Assumptions

The statistical evaluation of the UT data to determine the corrosion rate at each location is based on the following assumptions:
4.1 Characterization of the scattering of the data over each grid is such that the thickness measurements are normally distributed. If the data is not normally distributed the grid is subdivided into normally distributed subdivisions.
4.2 Once the distribution of data is found to be close to normal, the mean value of the data points is the appropriate representation of the average condition.
4.3 A decrease in the mean value of the thickness over time is representative of the corrosion.
4.4 If corrosion does not exist, the mean value of the thickness will not vary with time except for random variations in the UT measurements
4.5 If corrosion is continuing at a constant rate, the mean thickness will decrease linearly with time. In this case, linear regression analysis can be used to fit the mean thickness values for a given zone to a straight line as a function of time. The corrosion rate is equal to the slope of the line.

Subject: Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006	Calculation No. C-1302-187-E310-041	Rev. No. 0	System Nos. 187	Sheet 11 of 55

5.0 Design Inputs:

5.1 Drywell Vessel Thickness criteria has been previously established (reference C-1302-187-5320024) as follows:

1) General Uniform Thickness - 0.736 inches or greater.
2) If an area is less than $0.736^{\prime \prime}$ thick then that area shall be greater than 0.693 inches thick and shall be no larger than $6^{\prime \prime}$ by 6 " wide. C-1302-187-5320-024 has previously dispositioned an area of this magnitude in Bay 13.
3) If an area is less than $0.693^{\prime \prime}$ thick then that area shall be greater than $0.490^{\prime \prime}$ thick and shall be no larger then 2 " in diameter. C-1302-187-5320-024 calculated an acceptance criterion of .479 inches however; this evaluation is conservatively using .490 inches, which is the original GE acceptance criterion. In addition, this calculation applied this acceptance criteria over an area up to $21 / 2^{\prime \prime}$ in diameter. Since the UT readings were taken on 1 inch centers and the transducer size is less than 0.5 inch these readings can be characterized as less than 2 inches in diameter.
5.2 Seven core samples approximately 2 " in diameter were removed from the drywell vessel sheil for analysis (reference 3.1). In these locations replacement plugs were installed. Four of these removed cores are in grid locations that are part of the sandbed monitoring program. Therefore the UT data from these points are not included in the calculation.

The following specific location/grid points have core bore plugs.

Bay Area	Points
11A	$23,24,30,31$
17D	$15,16,22,23$
19A	$24,25,31,32$
19 C	$20 ; 26,27,33$

5.3 Historical data sets for 1992, 1994, 1996, and 2006 have been collected and are provided in attachments $1,2,3$, and 4.
5.4 The 106 UT data for 2006 and 1992 external inspections are provided in attachment 5.

AmerGen

Subject:	Calculation No.	Rev. No.	System Nos.	Sheet
Statistical Analysis of Drywell Vessel Sandbed				
Thickness Data 1992, 1994, 1996, and 2006	C-1302-187-E310-041	0	187	

6.0 OVERALL APPROACH AND METHODOLOGY:

6.1 Definitions

6.1.1 A Normal Distribution has the following properties

- Characterized by a bell shaped curve centered on the mean.
- A value of that quantity is just as likely to lie above the mean as below it
- A value of that quantity is less likely to occur the farther it is from the mean
- Values to one side of the mean are of the same probability as values at the same distance on the other side of the mean
6.1.2 Mean thickness is the mean of valid points, which are normally distributed from the most recent UT measurements at a location.
6.1.3 Variance is the mean of the square of the difference between each data point value and the mean of the population.
6.1.4 Standard Deviation is the square root of the variance.
6.1.5 Standard Error is the standard deviation divided by the square root of the number of data points. Used to measure the dispersion in the distribution.
6.1.6 Skewness measures the relative positions of the mean, medium and mode of a distribution. In general when the skewness is close to zero, the mean, medium and mode are centered on the distribution. The closer skewness is to zero the more symmetrical the distribution. Normal distributions have skewness, which approach zero. Values with $+/-1.0$ are indicative that the distribution is normally skewed.
6.6.9 Kurtosis measures the heaviness of a distribution tails. A normal distribution has a kurtosis, which approaches zero. Values with $+/-1.0$ indicate that the distribution is normal.
6.1.8 Linear Regression is a linear relationship between two variables. A line with a slope and an intercept with the vertical axis can characterize the linear relationship. In this case the linear relationship is between time (which is the independent variable) and corrosion (which is the dependent variable).
6.1.9 F-Ratio is the ratio of explained variance to unexplained variance. The mean square regression (MSR) value provides an estimate of the variance explained by regression (a line with a slope). The mean square error (MSE) provides an estimate of the variance that is not explained by a straight line with a slope.

	CALCULATION SHEET	Preparer: Pete Tamburro 12/15/06		
Subject: Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006	Calculation No. C-1302-187-E310-041	$\begin{gathered} \text { Rev. No. } \\ 0 \end{gathered}$	System Nos. 187	Sheet 13 of 55

An F-Ratio of greater than 1.0 occurs when the amount of corrosion that has occurred since the initial measurement is significant compared to the random variations, and four or more measurements have been taken. In these cases the computed corrosion rate more accurately reflects the actual corrosion rate, and there is a very high probability that the actual corrosion rate is the computed corrosion rate. The greater the F-Ratio then the lower the uncertainty in the corrosion rate (reference 3.22).

Where the F-Ratio of 1.0 or greater provides confidence in the historical corrosion rate, the F Ratio should be 4 to 5 if the corrosion rate is to be used to predict the thickness in the future. To have a high degree of confidence in the predicted thickness, the ratio should be at least 8 or 9 (reference 3.22).

If the F-Ratio is less than 1 then no conclusions can be made that the means are best explained by a line with a slope.
6.1.10 Grand mean - when the F-Ratio test is less than 1.0 and/or the slope is positive this is the grand mean of all data.
6.1.11 Corrosion Rate - With three or more data sets and the F-Ratio test greater than 1.0 this is the slope of the regression line.
6.1.12 Upper and Lower 95\% Confidence Interval - The upper and lower corrosion rate range for which there is 95% confidence that the actual rate lies within this range.

6.2 Methodology Background

In the mid 1980's a survey was performed of the Drywell Vessel at the Sandbed elevation. As a minimum at least one inspection location (also referred to as a grid) was selected for repeat inspection in each of the 10 Drywell Bays and permanently marked. This became the basis for the Dyrwell Thickness Monitoring Program in the Sandbed Region.

UT Inspection of locations with the most thinning (known at the time) consisted of 49 individual UT thickness readings in a 7 by 7 pattern spaced on 1 inch centers over a 6 " by 6 " area. These measurements were taken using a stainless steel template. The template was designed to ensure that the 7 by 7 grid is located in the same area with repeatability of a $1 / 16^{\prime \prime}$. The template has a grid pattem of 49 holes on 1 inches center that are large enough to fit the UT transducer. The sides of the template are notched to that it can be aligned with permanent field markings made at each inspection location.

Forty nine evenly spaced individual readings over a 6 " be 6 " area were originally selected in the mid 1980's based on statistical proof that a minimum number of 30 samples are necessary to characterize a entire population (the 6 "by 6 " area) assuming the entire population is normally distributed (ref 3.7 and 3.8).

	CALCULATION SHEET		Preparer: Pete Tamburro 12/15/06	
Subject: Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006	$\begin{aligned} & \text { Calculation No. } \\ & \text { C-1302-187-E310-041 } \end{aligned}$	Rev. No. 0	System Nos. 187	Sheet 14 of 55

The program then performed UT inspections over time at these same locations. The corrosion rates were developed using a standard regression analysis and establishment of the 95% confidence intervals enhanced to capture increasing variance depending on the projection of ongoing corrosion and the number of inspections. This methodology is based on the following references:

1) Applied Regression Analysis, Second Edition, N.R. Draper \& H. Smith, John Wiley and Sons 1981
2) Statistical Concept and Methods, G.K. Bhattacharyya \& R.A. Johnson, John Wiley and Sons 1977,
3) Experimental Statistics, Mary Gobbons Natrella, John Wiley and Sons 1966 (Reprint National Bureau of Standards Handbook 91)
4) Fundamental Concepts in the Designi of Experiments, Charles C Hicks, Saunders College Publishing, Fort Worth, 1982
6.3 The UT measurements within scope of this monitoring program are performed in accordance with ref. 3.4. This specification involves taking UT measurements using a template with 49 holes laid out on a $6^{\prime \prime}$ by $6^{\prime \prime}$ grid with $1^{\prime \prime}$ between centers on both axes or in 7 locations, 7 holes in one row laid on 1" centers. All measurements are made in the same location within $1 / 8$ " (reference 3.4).
6.3 Each 49 point data set is evaluated for missing data. Invalid points are those that are declared invalid by the UT operator or are at plug locations.
6.3 The thinnest single location in each of the grids will be trended and compared to acceptance criteria.
6.4 Data that is not normally distributed will be compared to previous calculations. In several cases the data has shown significant wear patterns. For example the top 3 rows of grid 11C are much thicker than the bottom 4 rows. Past calculations has sub divided these grids into thicker and thinner subsets based on the patterns and determined if each subset is normally distributed. Normally distributed subsets are then analyzed separately. In this calculation the same grids are subdivided into subsets to ensure consistency to past calculations. In some cases (past and present) grids are not normally distributed due a few "outlying" thinner and thicker points. In these cases the outlying points are trended separately.

	CALCULATION SHEET	Preparer: Pete Tamburio 12/15/06		
Subject: Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006	$\begin{gathered} \text { Calculation No. } \\ \text { C-1302-187-E310-041 } \end{gathered}$	Rev. No. 0	System Nos. 187	Sheet 15 of 55

6.5 Methodology

6.5.1 Test Matrix

To demonstrate the methodology a 49 member array will be generated using the Mathcad "rnorm" function. This function returns an array with a probability density which is normally distributed, where the size of the array (No DataCells), the target mean ($\mu_{\text {input }}$), and the target standard deviation $\dot{\sigma}_{\text {input }}$) are input.

The following will build a matrix of 49 points

$$
\text { No DataCells }:=49 \quad i:=0 . \text { No DataCells }-1 \quad \text { count }:=7
$$

The array "Cells" is generated by Mathcad with the target mean ($\mu_{\text {input }}$) and standard deviation $\cdot \sigma$ input)

$$
\mu_{\text {input }}:=775^{\circ} \quad \sigma_{\text {input }}:=20 \quad \text { Cells }:=\text { morm }\left(\text { No DataCells, }{ }^{\mu} \text { input } \sigma_{\text {input }}\right)
$$

"Cells" is shown as a 7 by 7 matrix

$$
\text { Show matrix Cells, } 7)=\left[\begin{array}{ccccccc}
766 & 761 & 766 & 756 & 741 & 776 & 773 \\
786 & 819 & 791 & 795 & 792 & 793 & 788 \\
754 & 776 & 760 & 789 & 771 & 762 & 761 \\
765 & 786 & 770 & 777 & 800 & 761 & 775 \\
797 & 793 & 717 & 732 & 779 & 763 & 751 \\
777 & 790 & 781 & 775 & 760 & 767 & 762 \\
772 & 795 & 779 & 785 & 790 & 775 & 781
\end{array}\right]
$$

The above test matrix will be used in sections 6.5.2 through 6.5.8

6.5.2 Mean and Standard Deviation

The actual mean and standard deviation are calculated for the matrix "Cells". by the Mathcad functions "mean" and "Stdev".

Therefore for the matrix generated in section 6.5.1

$$
\begin{array}{lll}
\left.\mu_{\text {actual }}:=\text { mean(Cells }\right) & & \sigma_{\text {actual }}:=\operatorname{Stdev}(\text { Cells }) \\
\mu_{\text {actual }}=774.104 & & \sigma_{\text {actual }}=18.258
\end{array}
$$

Inspection shows that the actual mean and standard deviations are not the same as the target mean and target standard deviation which were input. This is expected since the "rnorm" furiction returns an array with a probability density which is normally distributed.

	CALCULATION SHEET		Preparer: Pete Tamburro 12/15/06	
Subject: Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006	$\begin{aligned} & \text { Calculation No. } \\ & \text { C-1302-187-E310-041 } \end{aligned}$	Rev. No. 0	System Nos. 187	Sheet 16 of 55

6.5.3 Standard Error

The Standard Error is calculated using the following equation (reference 3.23).
For the matrix generated in section 6.5.1

$$
\text { Standard error }:=\frac{\sigma_{\text {actual }}}{\sqrt{\text { No DataCells }}} . \quad \text { Standard }_{\text {error }}=2.578
$$

6:5.4 Skewness

Skewness is calculated using the following equation (reference 3.23).
For the matrix generated in section 6.5:1
Skewness $:=\frac{\left(\text { No }_{\text {DataCells }}\right) \cdot \overline{\sum\left(\text { Cells } \mu_{\text {actual }}\right)^{3}}}{\left({\left.\text { No }{ }_{\text {DataCells }}-1\right) \cdot\left(\text { No }_{\text {DataCells }}-2\right) \cdot\left(\sigma_{\text {actual }}\right)^{3}}_{\quad} \quad \text { Skewness }=0.354\right.}$
A skewness value close to zero is indicative of a normal distribution (reference 3.22 and 3.23)
6.5 Kurtosis

Kurtosis is calculated using the following equation (reference 3.23).
For the matrix generated in section 6.5.1

Kurtosis $=0.262$
A Kurtosis value close to zero is indicative of a normal distribution (reference 3.23)

 CALCULATION SHEET

Subject: Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006	Calculation No.	Rev. No.	System Nos.	Sheet
C-1302-187-E310-041	0	187	17 of 55	

6.5.6 Normal Probability Plot

An alternative method to determine whether a sample distribution approaches a normal distributio is by a normal probability plo(reference 3.22 and 3.23). In a normal plot, each data value is plottec against what its value would be if it actually came from a normal distributibhe expected normal values, c:llednormal scores, and can be estimated by first calculating the rank scores of the sorted data. The Mathcad function "sorts" sorts the "Cells" array

$$
\mathrm{j}:=0 . \text { last(Cells) } \quad \text { srt }:=\text { sort (Cells })
$$

Then each data point is ranked. The array "rank" captures these rankings

$$
r_{j}:=j+1 \quad \operatorname{rank}_{j}:=\frac{\sum \overrightarrow{\left(\overrightarrow{s t t=s r t_{j}}\right)} \cdot \overrightarrow{\sum_{s r t=s t_{j}}^{j}}}{\sqrt[r]{ }}
$$

Each rank is proportioned into the " p " array. Then based on the proportion an estimate is is calculated for the data point. TheVan der Waerden's formula is used

$$
P_{\mathrm{j}}:=\frac{\text { rank }_{\mathrm{j}}}{\operatorname{rows}(\text { Cells })+1}
$$

The normal scores are the correspondingth percentile points from the standard normal distribution:

$$
x:=1 \quad \text { N_Score } e_{j}:=\operatorname{root}\left[\operatorname{cnorm}(x)-\left(p_{j}\right), x\right]
$$

If a sample is normally distributed, the points of the "Normal Plot" will seem to form a nearly straight line. The plot below shows the "Normal Plot" for the matrix generated in section 6.5.1

Subject:

Statistical Analysis of Drywell Vessel Sandbed
Thickness Data 1992, 1994, 1996, and 2006

Calculation No.
C-1302-187-E310-041

Rev. No. System Nos.
Sheet
18 of 55

6:5.7 Upper and Lower Confidence Values

The Upper and Lower confidence values are caiculated based on . 05 degree of confidence α." (reference 3.23).

$$
\alpha:=.05 \quad T \alpha:=q t\left[\left(1-\frac{\alpha}{2}\right), 48\right] \quad T \alpha=2.011
$$

Therefore for the matrix generated in section 6.1

$$
\begin{array}{lc}
\text { Lower }_{95 \% \text { Con }}:=\mu_{\text {actual }}-\mathrm{T} \alpha \cdot \frac{\sigma_{\text {actual }}}{\sqrt{\text { No DataCells }}} & \text { Lower }_{95 \% \text { Con }}=767.726 \\
\text { Upper } 95 \% \text { Con }:=\mu_{\text {actual }}+\mathrm{T} \alpha \cdot \frac{\sigma_{\text {actual }}}{\sqrt{\text { No DataCells }}} \quad & \text { Upper } 95 \% \text { Con }=778.094
\end{array}
$$

These values represent a range on the calculated mean in which there is 95% confidence. In other words, if the 49 data points were collected 100 times the calculated mean in 95 of those 100 times would be within this range.

6.5.8 Graphical Representation

Below is the distribution of the "Cells" matrix generated in section 6.5.1 sorted in one half standard deviation increments (bins) within a range from minus 3 standard deviations to plus 3 standard deviations.

The Mathcad function pnorm calculates the normal distribution curve based on a given mean and standard deviation. The actual mean and standard deviation generated in section 6.5 .2 are input. The resulting plot will provide a representation of the normally distribution corresponding the the actual mean and standard deviation.

AmerGen

Rev. No.
System Nos.
187
Sheet 19 of 55

$$
\begin{aligned}
& \text { normal }_{\text {curve }_{0}}:=\operatorname{pnorm}\left(\text { Bins }_{1}, \mu_{\text {actual }}, \sigma_{\text {actual }}\right) \\
& \text { normal }_{\text {curve }_{k}}:=\operatorname{pnorm}\left(\text { Bins }_{k+1}, \mu_{\text {actual }}, \sigma_{\text {actual }}\right)-\operatorname{pnorm}^{\left(\text {Bins }_{k}, \mu_{\text {actual }}, \sigma_{\text {actual }}\right)}
\end{aligned}
$$

The normal curve is simply a proportion, which is multiplied by the number of ${ }^{\circ} \mathrm{Cells}{ }^{\mathrm{n}}$ (49)

$$
\text { normal curve }:=\text { No }_{\text {DataCells }}{ }^{\text {normal }} \text { curve }
$$

The following schematic shows: the actual distribution of the samples (the bars), the normal curve (solid line) based on the actual mean ($\mu_{\text {actual }}$) and standard deviation $\sigma_{\text {actual }}$), the kurtosis (Kurtosis), the skewness (Skewness), the number of data points (No DataCells), and the the lower and upper 95% confidence values Lower 95% Con, Upper 95% Con).

$$
\mu_{\text {actual }}=772.91 \quad \sigma_{\text {actual }}=18.047 \quad \text { Standard }_{\text {error }}=2.578
$$

Skewness $=0.354$
Kurtosis $=0.262$
${ }^{\text {No }}{ }_{\text {DataCells }}=49$
-

CALCULATION SHEET $\quad \begin{aligned} & \text { Preparer: } P \text { Pete Tamburro } \\ & 12 / 15 / 06\end{aligned}$				
Subject: Statistical Analysis of.Drywell Vessel Sandbed Thickness Data 1992, 1994. 1996, and 2006	$\begin{aligned} & \text { Calculation No. } \\ & \text { C-1302-187-E310-041 } \end{aligned}$	Rev. No. 0	System Nos. 187	Sheet 20 of 55

6.5.9 General Summary of Corrosion Rate Assessment Methodology

This methodology develops a test to assess whether the trend of the means or individual points over time is indicative of corrosion. The statistical test consists of two parts. The first part is to determine if the data (either the means or individual points) is well characterized by a straight line determined by using standard linear regression modeling. The second part is a comparison of the linear regression through the data with a line defined by a prescribed slope and intercept. The slope represents the rate corrosion, and it is chosen to reflect acceptable limits. The intercept is determined by the thickness in 1992 (baseline) as the sand removal. The confidence level for the test will be 95%. The test will be referred to as the F test for Corrosion. If the F test for Corrosion shows that the prescribed line for comosion is within the 95% confidence bounds determined by the linear regression on the data, then a statistical projection can be made to the year 2029.

If the F test for Corrosion shows that the prescribed line for corrosion is not acceptable within the 95% confidence bounds determined by the linear regression on the data, then a conservative approach will be used, and the regression will be utilized to determine an apparent corrosion rate to establish the next inspection frequency for that location.

Two sensitivity studies will be performed. The first will determine the minimum observable corrosion rate that may exist in the 49 point grid, given the observed standard deviations of the averages and the number of observations, which are 4 in this case. For this analysis, location 19A was chosen since it is the thimest location of the 19 grids. The second study will determine the minimum observable corrosion rate that may exist at one point within a grid, given the observed standard error for the individual points and the number of observations, which is, again, 4 in this case. For this analysis, point 4 in grid 19A was chosen since it is one of the two individual points, which are the thinnest out of the 19 grids.

6.5.9.1 Appropriateness of the Regression Model for Corrosion

General corrosion rates of a carbon steel plate over long periods of time (i.e. years) can be approximated by a straight line with a slope over time (see assumptions 4.3, 4.4 and 4.4).

This assumption has been shown to be reasonable over the life of the monitoring program. Prior to 1992 sand removal from the sandbed, the regression model was shown to accurately calculate the actual corrosion rates (reference 3.7, 3.11 through 3.21) of the vessel in the sandbed and to provide reliable projections that were used to schedule the ultimate repair (the sand removal). In addition the regression model has been shown to detect very small corrosion rates of less than 1 mil per year in the upper elevations of the drywell. In this case it took up to ten inspections over an approximate 10 years to detect these minor rates (reference 3.2.24).

	CALCULATION SHEET		Preparer: Pete Tamburro12/15/06	
Subject: Statistical Analysis of Dry well Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006	Calculation No. C-1302-187-E310-041	Rev. No. 0	System Nos. 187	Sheet 21 of 55

6.5.9.2 'F"' Test Results for Corrosion

To illustrate a case in which the location is corroding, nine 49 point matrixes will be generated with input means which are descending over time at a raie of 2 mils per year. This will illustrate the case where the population is corroding at 2 mils per year with a 20 mil standard deviation.

The nine means, standard deviations of the following simulated dates are shown below
Dates $:=$

1993
1995
1996.5
1997
1999.4
2002
2004
2006
2008

The resulting simulated means are

$$
\mu_{\text {actual }}=\left[\begin{array}{l}
770.163 \\
769.826 \\
773.738 \\
767.08 \\
752.938 \\
754.346 \\
750.331 \\
744.589 \\
742.622
\end{array}\right] \quad \therefore \quad \sigma_{\text {actual }}=\left[\begin{array}{l}
20.964 \\
20.197 \\
19.8 \\
19.57 \\
17.368 \\
20.289 \\
16.007 \\
24.804 \\
20.188
\end{array}\right]
$$

$$
\text { Dates }=\left[\begin{array}{c}
1.993 \cdot 10^{3} \\
1.995 \cdot 10^{3} \\
1.997 \cdot 10^{3} \\
1.997 \cdot 10^{3} \\
1.999 \cdot 10^{3} \\
2.002 \cdot 10^{3} \\
2.004 \cdot 10^{3} \\
2.006 \cdot 10^{3} \\
2.008 \cdot 10^{3}
\end{array}\right]
$$

$$
\begin{aligned}
& \text { Rate : }=2.0 \\
& \mu_{\text {input }}^{d}:=775-(\text { Rate }) \cdot\left(\text { Dates }_{d}-\text { Dates }_{0}\right) \\
& \sigma_{\text {input }}^{d}:=20 \quad \text { Cells }_{d}:=\operatorname{rnorm}\left({ }^{N o} \text { DataCells }, \mu \text { input }{ }_{d}, \sigma_{\text {input }}^{d}\right. \text {) } \\
& \mu_{\text {actual }}^{d}:=\text { mean }\left(\text { Cells }_{d}\right) \quad \sigma_{\text {actual }}^{d} \text { }:=\operatorname{Stdev}\left(\text { Cells }_{d}\right)
\end{aligned}
$$

AmerGen

Subject:
Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006

Calculation No.

C-1302-187-E310-041

Rev. No.
System Nos
187

Sheet 22 of 55

The following function simply returns the number of means (No_of means) which will be used later

$$
\text { No_of means }:=\text { rows }\left(\mu_{\text {actual }}\right) \quad \text { No_of means }=9
$$

The curve fit equation and model equation is defined for the function "yhat"

```
yhat (x,y):= intercept(x,y)+\operatorname{slope(x,y)\cdotx}
```

The curve fit equation in which the date 'Dates) is the independent variable and the measured mean thickness of the location ($\mu_{\text {actual }}$) is the dependent variable, is then defined as the function "yhat". This function makes use of Mathcad function " intercept" which retums the intercept value of the "Best Fit" curve fit and the Mathcad function " slope " which returns the slope value of the "Best Fit" curve fit.

The Sum of Squared Error (SSE) is calculated as follows (reference 3.23). This is the variance between each actual value (mean or individual point) and what the value should be if it met the regression model.

$$
\text { SSE }:=\sum_{i=0}^{\text {last(Dates })}\left(\mu_{\text {actual }}^{i} 1-\text { yhat }\left(\text { Dates }, \dot{\mu}_{\text {actual }}\right)_{i}\right)^{2}
$$

$$
\mathrm{SSE}=125.623
$$

The Sum of Squared Residuals (SSR) is then calculated as follows (reference 3.23). This is the difference between what the value should be if it met the regression model and what the value should be if it met the grandmean model.

Degrees of freedom associated with the sum of squares for residual error.

$$
\text { DegreeFree }_{\text {ss }}:=\text { No_of }_{\text {means }}-2
$$

AmerGen

Subject:
Statistical Analysis of Drywell Vessel Sandbed
Thickness Data 1992, 1994, 1996, and 2006

Calculation No.
C-1302-187-E310-041

Rev. No. 0	System Nos. 187	Sheet 23 of 55

The degrees of freedom for the sum of squares due to regression;

DegrecFree $_{\text {reg }}:=1$	
SSE	
MSE: $\overline{\text { DegreeFree }_{\text {ss }}}$	$\mathrm{MSE}=7.519$
Standard error $:=\sqrt{\text { MSE }}$	Standard error $=2.742$
MSR:= SSR	
- DegreeFree ${ }_{\text {reg }}$	$\mathrm{MSR}=741.797$

The MSE is the variance estimate to the regression model. The MSR is an estimate for the difference between the regression model and the grandmean. The ratio of the two gives a measure of how well the data approaches a line with slope. The larger the ratio then the better the data is represented by the regression model. For example if the MSE was very large indicating that the values significantly. vary from the regression model, then the ratio would approach zero and the hypothesis that there is slope is not satisfied. Another example would be if the MSE was very small indicating that the values are very close to the regression model, then the ratio would be very large and the hypothesis that there is slope is satisfied.
$F_{\text {actaul }}:=\frac{M S R}{M S E}$
This ratio $\mathrm{F}_{\text {actaul }}$) is then compared to the " F " Distribution with the appropriate confidence factor. The Mathcad functiqF computes cumulative probabilities for $\mathrm{d} \boldsymbol{\mathrm { F }}$ distribution" with $\mathrm{d} 1, \mathrm{~d} 2$ degrees of freedom at x confidence

Pictorially, $\mathrm{pF}(\mathrm{x}, \mathrm{d} 1, \mathrm{~d} 2)$ computes the area of the region shaded below:

X

The confidence factor is set at 95%

	CALCULATION SHEET		Preparer: Pete Tamburro 12/15/06	
Subject: Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006	$\begin{gathered} \text { Calculation No. } \\ \text { C-1302-187-E310-041 } \end{gathered}$	$\begin{gathered} \text { Rev. No. } \\ 0 \end{gathered}$	System Nos. 187	Sheet 24 of 55

$\alpha:=0.05$
$F_{\text {critical }}:=q F\left(\right.$ Confidence DegreeFree $_{\text {reg }}$ DegreeFree $\left._{\text {ss }}\right) \quad F_{\text {critical }}=5.591$

The " F " ratio for 95% confidence is calculated:
$F_{\text {ratio }}:=\frac{F_{\text {actaul }}}{F_{\text {critical }}}$
$F_{\text {ratio }}=10.015$
Standard $_{\text {error }}=4.236$
The " F " ratio is greater than 1.0 , therefore the regression model holds for the data. The curve fit for the nine means is best explained by a curve fit with a slope.

If the F ratio is less than 1.0 then no conclusions can be made with respect to how well the data satisfies a line without slope.

Subject: Statistical Analysis of Drywall Vessel Sandbed Thickness Data 1992; 1994, 1996, and 2006	Calculation No. C-1302-187-E310-041	Rev. No. 0	System Nos. 187	Sheet 25 of 55

6.9.3 Linear Regression with 95\% Confidence Intervals

Using data generated in section 6.9.2 the curve fit for linear regression is calculated by the Math cad functions" slope " and "intercept".

$$
\begin{gathered}
\left.\mathrm{m}_{\mathrm{s}}:=\text { slope (Dates, } \mu_{\text {actual })} \quad y_{b}:=\text { intercept (Dates }, \mu_{\text {actual }}\right) \\
\mathrm{m}_{\mathrm{s}}=-2.159
\end{gathered}
$$

The predicted curve is calculated over time where ${ }^{n}$. year predict ${ }^{\text {a }}$ is time (independent variable), and "Thick predict " is thickness (dependent variable).

Remaining Pl_life $:=23 \quad \mathrm{f}:=0$.. Remaining Pl_life -1 year predict $_{\mathrm{f}}:=1993+\mathbf{f} \cdot \mathbf{2}$

Thick predict $:=m_{s} \cdot$ year predict $+y_{b}$
The 95% Confidence ("1- $\alpha_{t}{ }^{4}$) curves are calculated as follows (reference 3.3)

$$
\alpha_{t}:=0.05
$$

$$
\text { Thick actualmean }:=\text { mean (Dates) }
$$

$$
\text { sum }:=\sum_{\mathbf{d}}\left(\text { Dates }_{d}-\text { mean }(\text { Dates })\right)^{2}
$$

upper $_{f}:=$ Thick $_{\text {predict }}^{f}{ }^{\ldots}$

$$
+q t\left(1-\frac{\alpha_{t}}{2}, \text { No_of means }-2\right) \cdot \text { Standard error } \cdot \sqrt{1+\frac{1}{(d+1)}+\frac{\left(\text { year predict }_{f}-\text { Thick actualmean }\right)^{2}}{\text { sum }}}
$$

lower $_{f}:=$ Thick predict ${ }_{f} \ldots$

$$
+-\left[q t\left(1-\frac{\alpha}{2}, \text { No_ of means }-2\right) \cdot \text { Standard error } \cdot \sqrt{1+\frac{1}{(d+1)}+\frac{\left(\text { year } \text { predict }_{f}-\text { Thick actualmean }\right)^{2}}{\text { sum }}}\right]
$$

	CALCULATION SHEET		Preparer: Pete Tamburro 12/15/06	
Subject: Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006	$\begin{aligned} & \text { Calculation No. } \\ & \text { C-1302-187-E3!O-041. } \end{aligned}$	Rev. No. 0	System Nos. 187	Sheet 26 of 55

Therefore the following is a plot of the curve fit of the data generated in section 6.9.2 and the Uppei and Lower 95\% confidence Intervals. The Upper and Lower 95\% Confidence Intervals are the two curves shown below which bound the data points and the curve fit.

Amercen

CALCULATION SHEET

Statistical Analysis of Drywell Vessel Sandbed
Thickness Data 1992, 1994, 1996, and 2006

Calculation No.	Rev. No.	System Nos.	Sheet
C-1302-187-E310-041	0	187	27 of 55.

6.9.4 Sensitivity Studies to Determine Observable Corrosion Rates

This sensitivity study will determine the minimum statistically observable corrosion rate that can exist in the 49 points grid given the observed standard deviations of the means and the number of observations which in this case is 4 . This will be performed by running a series of simulations based on the results from the grid at location 19A.

This study will peiform 10,100 iteration runs for varying corrosions rates of $5,6,7,8$, and 9 mils per year.

The simulation will generate 49 points arrays using the Mathcad function "morm".
The function "norm ($m, u, S D$)" - returns an array of " m " random numbers generated from a normal distribution with mean of " u " and a standard deviation of "SD".

Each iteration will generate 49 point arrays for the years 1992, 1994, 1996 and 2006.
The input to the 1992 array will be 49 , the actual mean (800 mils) which was determined from the actual 1992, 19A data (reference appendix 10 page 10). and a standard deviation of 65 mils. This standard deviation is the average of the calculated standard deviations from the 1992, 1994, 1996 and 2006 data (see appendix 10 page 10). A simulated mean (for 1992) will then be calculated from the simulated 49 point array.

The input to the 1994 array will be 49 , the value 800 minus the simulated rate (in mils per year) times 2 years (1994-1992) and a standard deviation of 65 mils. A simulated mean (for 1994) will then be calculated from the simulated 49 point array.

The input to the 1996 array will be 49 , the value 800 minus the simulated rate (in mils per year) times 4 years (1996-1992) and a standard deviation of 65 mils. A simulated mean (for 1996) will then be calculated from the simulated 49 point array.

The input to the 2006 array will be 49 , the value 800 minus the simulated rate (in mils per year) times 14 years (2006-1992) and a standard deviation of 65 mils. A simulated mean (for 2006) will then be calculated from the simulated 49 point array.

The four simulated means will then be tested for corrosion based on the methodology in section 6.5.9.2. The confidence factor for the test will be 95%. If the corrosion test is successful (the F Ratio is great than 1) then that iteration is considered a successful valid iteration.

100 iterations will be run 10 times at each of the input rates of $1,2,3,4$, and 5 mils per year. The

* resulting number of successful iterations (passes the corrosion test) will then be considered as probability of observing that rate given the 19A data.

For this case location 19A was chosen since it is the thinnest of the 19 grids.

	CALCULATION SHEET		Preparer: Pete Tamburro 12/15/06	
Subject: Statistical Analysis of Drywell. Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006	$\begin{aligned} & \text { Calculation No. } \\ & \text { C-1302-187-E310-041 } \end{aligned}$	$\begin{gathered} \text { Rev. No. } \\ 0 \end{gathered}$	System Nos. 187	Sheet 28 of 55

Appendix 10 shows the following data for location 19A

Year	Mean (mils)	Standard Deviation (mils)	
1992	800	58.6	
1994	806	69.3	
1996	815	67.3	
2006	807	62.4	

	CALCULATION SHEET		Preparer: Pete Tamburro 12/15/06	
Subject: Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006	$\begin{gathered} \text { Calculation No. } \\ \text { C-1302-187-E310-041 } \end{gathered}$	$\begin{gathered} \text { Rev. No. } \\ 0 \end{gathered}$	System Nos. 187	Sheet 29 of 55

7.0 Calculation

7.1 Sandbed Locations with 49 Readings

7.1.1. Bay 9 location 9D December 1992 through Oct 2006

Refer to Appendix \#1 for the complete calculation.
Four inspections have been performed at this location after the sand was removed and coating applied in 1992. The data collected in October 2006 is normally distributed. The mean of the 2006 data is 0.9825 inches, which meets the design basis uniform thickness requirements of $0.736^{\prime \prime}$. In order to be consistent with past calculations (ref. 3.20 3.21 and 3.22) this mean does not include point 15 , which is thinnest point in the set.

The " F " Test results for Corrosion on the means shows as ratio of 0.029 . Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on an assumed rate of 6.9 mils per year shows that this location would not reach the minimum required thickness prior to the 2029.

In addition the apparent corrosion rate was determined using the regression model (even though it does not meet the F test for Corrosion). Based on the apparent rate the conclusion can be made that the location will not corrode to less then the minimum required thickness prior to 2029.

Point 15 is the thinnest reading of the 2006 data at 0.751 inches, which meets the design basis local thickness requirements of $0.490^{\prime \prime}$.

The " F " Test result for Corrosion on point 15 shows a ratio of 0.03 . Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on this assumed rate shows that this location would not reach the minimum required thickness prior to the 2029.

Additional calculation shows that for this point to corrode to less than the minimum required thickness by 2029 it would have to corrode at a rate of 10.8 mils per year which is not considered credible and would be observable.

7.1.2 Bay 11 location 11A December 1992 through Oct 2006

Refer to Appendix \#2 for the complete calculation.

	CALCULATION SHEET		Preparer: Pete Tamburio 12/15/06	
Subject: Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006	$\begin{aligned} & \text { Calculation No. } \\ & \text { C-1302-187-E310-041 } \end{aligned}$	Rev. No. 0	System Nos. 187	Sheet 30 of 55

Four inspections have been performed at this location after the sand was removed and coating applied in 1992. A plug lies within this location. Four points lie over the plug (see section 5.2). Therefore points 23,24,30, and 31 are eliminated from the corrosion rate evaluation.

The data collected in October 2006 is normally distributed after the four points that lie over the plug are eliminated. The mean of the 2006 data is 0.8215 inches, which meets the design basis uniform thickness requirements of $0.736^{\prime \prime}$.

The " F " Test for Corrosion on the means shows a ratio of 0.01. Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on an assumed rate of 6.9 mils per year shows that this location would not reach the minimum required thickness prior to the 2018. Additional inspection will be required at this location prior to this year. It is expected that each added inspection will: continue to reduce the uncertainties, which will eventually demonstrate that this location has sufficient margin to reach the full period of operation in 2029.

In addition the apparent corrosion rate was determined using the regression model (even though it does not meet the F test for Corrosion). Based on the apparent rate the conclusion can be made that the location will not corrode to less then the minimum required thickness prior to 2029.

Point 20 is the thinnest reading of the 2006 data at 0.669 inches, which meets the design basis local thickness requirements of $0.490^{\prime \prime}$.

The " F " Test result for Corrosion on point 20 shows a ratio of 0.09 . Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on this assumed rate shows that this location would not reach the minimum required thickness prior to the 2029.

Additional calculation shows that for this point to corrode to less than the minimum required thickness by 2029 it would have to corrode at a rate of 7.5 mils per year which is not considered credible and would be observable.

7.1.3 Bay 11 location 11C December 1992 through Oct 2006

Refer to Appendix \#3 for the complete calculation.
Four inspections have been performed at this location after the sand was removed and coating applied in 1992. The data collected in October 2006 is not normally distributed Removal of point number 5, which is much thinner, will results in a normal distribution,

Subject: Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006	Calculation No.	Rev. No.	System Nos.	Sheet
C-1302-187-E310-041	0	187	31 of 55.	

although slightly skewed. However past calculations (ref. 3.20, 3.21, and 3.22) have split this data and analyzed the top 3 rows and the bottom 4 row separately. This summary will only describe the evaluation of the entire 7 rows. Appendix 3 provides the results of the top 3 rows and the bottom 4 rows, which are consistent to the following conclusions. Point 1 was not collected due to an obstruction with the vent attachment weld.

The mean of the 2006 data is 0.8982 inches, which meets the design basis uniform thickness requirements of $0.736^{\prime \prime}$.

The " F " Test for Corrosion on the means shows a ratio of 0.02 . Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on an assumed rate of 6.9 mils per year shows that this location would not reach the minimum required thickness prior to the 2029.

In addition the apparent corrosion rate was determined using the regression model (even though it does not meet the F test for Corrosion). Based on the apparent rate the conclusion can be made that the location will not corrode to less then the minimum required thickness prior to 2029.

Point 43 was discounted from the 1992 data in the previous calculations (reference 3.20, 3.21 and 3.22) since it was 4.3 sigma from the mean in 1992. This same point was recorded as 0.860 inches in 1994, 0.917 inches in 1996 and 0.861 inches in 2006. Therefore it was also discounted from the 1992 mean in this calculation for consistency.

Point 5 is the thinnest reading of the 2006 data at 0.767 inches, which meets the design basis local thickness requirements of $0.490^{\prime \prime}$.

The " F " Test result for Corrosion on point 5 shows a ratio of 0.005 . Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on this assumed rate shows that this location would not reach the minimum required thickness prior to the 2029.

Additional calculation shows that for this point to corrode to less than the minimum required thickness by 2029 it would have to corrode at a rate of 11.5 mils per year which is not considered credible and would be observable.
Calculation No.
C-1302-187-E310-041
Rev. No.

System Nos.
187

Sheet

 32 of 55Four inspections have been performed at this location after the sand was removed and coating applied in 1992. The data collected in October 2006 is approximately normally distributed. The Kurtosis indicates the distribution is slightly heavy around the mean. Point 5 is much thicker (1.046 inches) than the mean of grid. Therefore the conclusion was made that this distribution approaches normality.

The mean of the 2006 data is 0.8458 inches, which meets the design basis uniform thickness requirements of 0.736 ".

The " F " Test result for Corrosion on the means shows a ratio of 0.004 . Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on an assumed rate of 6.9 mils per year shows that this location would not reach the minimum required thickness prior to the 2020.

Additional inspection will be required at this location prior to this year. It is expected that each added inspection will continue to reduce the uncertainties, which will eventually demonstrate that this location has sufficient margin to reach the full period of operation in 2029.

In addition the apparent corrosion rate was determined using the regression model (even though it does not meet the F test for Corrosion). Based on the apparent rate the conclusion can be made that the location will not conrode to less then the minimum required thickness prior to 2029.

The calculated 1994 mean (837 mils) in this calculation is different than the same mean calculated in 1994 (827.5 mils). This is because the 1994 mean calculation eliminated four points (4,5,6 and 7) from in the 1994 data (reference 3.21) since they were much thicker than the remaining 1994 data points. However the 1992 and 1996 calculation did not eliminate the same four points even though some of the four points were thicker then the 1992 and 1996 data sets. Review of the 2006 data show that these points are also thicker than the remaining points. Also the 2006 data with the four points included is normally distributed. Therefore the 1994 mean was recalculated in this calculation with the 4 points included.

The calculated 1996 mean (853 mils) in this calculation is different than the same mean calculated in 1996 (843.4 mils). Thorough review of the 1996 calculation ref (3.22) and the 1996 data indicates that the correct mean for the 1996 data is actually 853 mils and not 843.4 mils. Therefore it is concluded that the 1996 calculation mistakenly documented this value. Therefore this calculation uses 853 mils for the 1996 mean.

Point 19 is the thinnest reading of the 2006 data at 0.746 inches, which meets the design basis local thickness requirements of $0.490^{\prime \prime}$.

HMnc) \% CH	CALCULATION SHEET		Preparer: Pete Tamburro 12/15/06	
Subject: Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006	Calculation No. C-1302-187-E310-041	Rev. No. 0	System Nos. 187	$\begin{aligned} & \text { Sheet } \\ & 33 \text { of } 55 \end{aligned}$

The " F " Test result for Corrosion on point 19 shows a ratio of 0.044 . Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on this assumed rate shows that this location would not reach the minimum required thickness prior to the 2029.

Additional calculation shows that for this point to corrode to less than the minimum required thickness by 2029 it would have to corrode at a rate of 10.7 mils per year which is not considered credible and would be observable.

7.1.5 Bay 13 location 13D December 1992 through Oct 2006

Refer to Appendix \#5 for the complete calculation.
Four inspections have been performed at this location after the sand was removed and coating applied in 1992. The data collected in October 2006 is normally distributed. However past calculations (ref 3.20, 3.21, and 3.22) have split this data and analyzed the top 3 rows and the bottom 4 row separately. This summary will only describe the evaluation of the entire 7 rows. Appendix 5 provides the results of the top 3 rows and the bottom 4 rows, which are consistent to the following conclusions.

The mean of the 2006 data is 0.9682 inches, which meets the design basis uniform thickness requirements of 0.736 ".

The " F " Test result for Corrosion on the means shows a ratio of 0.0005 . Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on an assumed rate of 6.9 mils per year shows that this location would not reach the minimum required thickness prior to the 2029.

In addition the apparent corrosion rate was determined using the regression model (even though it does not meet the F test for Corrosion). Based on the apparent rate the conclusion can be made that the location will not corrode to less then the minimum required thickness prior to 2029.

Point 49 is the thinnest reading of the 2006 data at 0.821 inches, which meets the design basis local thickness requirements of $0.490^{\prime \prime}$.

The " F " Test result for No Corrosion on point 49 shows a ratio of 1.64 . Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made

	CALCULATION SHEET		Preparer: Pete Tamburro 12/15/06	
Subject: Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006	Calculation No. C-1302-187-E310-041	$\begin{array}{\|c} \text { Rev. No. } \\ 0 . \end{array}$	System Nos. 187	$\begin{aligned} & \text { Sheet } \\ & 34 \text { of } 55 \end{aligned}$

that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on this assumed rate shows that this location would not reach the minimum required thickness prior to the 2029.

Additional calculation shows that for this point to corrode to less than the minimum required thickness by 2029 it would have to corrode at a rate of 13.8 mils per year which is not considered credible and would be observable.

7.1.6 Bay 15 location 15D December 1992 through Oct 2006

Refer to Appendix \#6 for the complete calculation.
Four inspections have been performed at this location after the sand was removed and coating applied in 1992. The data collected in October 2006 is normally distributed. The mean of the 2006 data is 1.0531 inches, which meets the design basis uniform thickness requirements of $0.736^{\prime \prime}$.

The " F " Test result for Corrosion on the means shows a ratio of 0.012 . Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on an assumed rate of 6.9 mils per year shows that this location would not reach the minimum required thickness prior to the 2029.

In addition the apparent corrosion rate was determined using the regression model (even though it does not meet the F test for Corrosion). Based on the apparent rate the conclusion can be made that the location will not corrode to less then the minimum required thickness prior to 2029.

Point 42 is the thinnest reading of the 2006 data at 0.922 inches, which meets the design basis local thickness requirements of $0.490^{\prime \prime}$.

The " F " Test result for Corrosion on point 42 shows a ratio of 0.02 . Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of $6: 9$ mils per year. Projection based on this assumed rate shows that this location would not reach the minimum required thickness prior to the 2029.

Additional calculation shows that for this point to corrode to less than the minimum required thickness by 2029 it would have to corrode at a rate of 18 mils per year which is not considered credible and would be observable.

	CALCULATION SHEET		Preparer: Pete Tamburro 12/15/06	
Subject: Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006	Calculation No. C-I302-187-E310-041	Rev. No. 0	System Nos. 187	Sheet 35 of 55

7.6.9 Bay 17 location 17A December 1992 through Oct 2006
 Refer to Appendix \#7 for the complete calculation:

Four inspections have been performed at this location after the sand was removed and coating applied in 1992. The data collected in October 2006 is not normally distributed. However past calculations (ref 3.20. 3.21, and 3.22) have split this data and analyzed the top 3 rows and the bottom 4 rows separately. These two sub sets are normally distributed. This summary will only describe the evaluation of the entire 7 rows. Appendix 7 provides the results of the top 3 rows and the bottom 4 rows, which are consistent to the following conclusions.

The mean of the 2006 data is 1.015 inches, which meets the design basis uniform thickness requirements of $0.736^{\prime \prime}$.

The " F " Test result for Corrosion on the means shows a ratio of 0.006 . Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on this assumed rate shows that this location would not reach the minimum required thickness prior to the 2029.

In addition the apparent corrosion rate was determined using the regression model (even though it does not meet the F test for Corrosion). Based on the apparent rate the conclusion can be made that the location will riot corrode to less then the minimum required thickness prior to 2029.

Point 3 was discounted from the 1996 data in the 1996 calculation (reference 3.22) since it was significantly thinner (0.672 inches) than the remaining 1996 points. This same point was recorded as 1.158 inches in 1992, 1.158 inches in 1996, and 1.154 inches in 2006. Therefore it was discounted from the 1996 mean in this calculation for consistency.

Point 40 is the thinnest reading of the 2006 data at 0.802 inches, which meets the design basis local thickness requirements of $0.490^{\prime \prime}$.

The "F" Test result for Corrosion on point 40 shows a ratio of 0.002 . Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on this assumed rate shows that this location would not reach the minimum required thickness prior to the 2029.

Hranay ${ }^{\text {Mer }}$	CALCULATION SHEET		Preparer: Pete Tamburro 12/15/06	
Subject: Statistical Analysis of Drywell Vessel Sandbed Thickness Data. 1992, 1994, 1996, and 2006	$\begin{gathered} \text { Caiculation No. } \\ \text { C-1302-187-E310-041 } \end{gathered}$	$\begin{gathered} \text { Rev. No. } \\ 0 \end{gathered}$	System Nos. 187	$\begin{aligned} & \text { Sheet } \\ & 36 \text { of } 55 \end{aligned}$

Additional calculation shows that for this point to corrode to less than the minimum required thickness by 2029 it would have to corrode at a rate of 13.0 mils per year which is not considered credible and would be observable.

7.1.8 Bay 17 location 17D December 1992 through Oct 2006

Refer to Appendix \#8 for the complete calculation.
Four inspections have been performed at this location after the sand was removed and coating applied in 1992. A plug lies within this location. Four points lie over the plug (see section 5.2). Therefore points $15,16,22$, and 23 are eliminated from the corrosion rate evaluation.

The data collected in October 2006 is normally distributed after the four points that lie over the plug are eliminated. The mean of the 2006 data is 0.8187 inches, which meets the design basis uniform thickness requirements of $0.736^{\prime \prime}$.

The calculated 1996 mean (848 mils) in this calculation is different than the same mean calculated in 1996 (845 mils). Thorough review of the 1996 calculation ref (3.22) and the 1996 data indicates that the correct mean for the 1996 data, when excluding points 15,16 , 22 and 23, is actually 848 mils and not 845 mils. Therefore it is concluded that the 1996 calculation mistakenly documented this value. Therefore this calculation uses 848 mils for the 1996 mean.

The " F " Test result for Corrosion on the means shows a ratio of 0.000007 . Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on this assumed rate shows that this location would not reach the minimum required thickness prior to the 2016. Additional inspection will be required at this location prior to this year. It is expected that each added inspection will continue to reduce the uncertainties, which will eventually demonstrate that this location has sufficient margin to reach the full period of operation in 2029.

In addition the apparent corrosion rate was determined using the regression model (even though it does not meet the F test for Corrosion). Based on the apparent rate the conclusion can be made that the location will not corrode to less then the minimum required thickness prior to 2029.

Point 14 is the thinnest reading of the 2006 data at 0.648 inches, which meets the design basis local thickness requirements of 0.490 ".

The " F " Test result for No Corrosion on point 14 shows a ratio of 3.3. The " F " Test result for Corrosion on point 14 shows a ratio of 0.001 . Sensitivity studies show that given only

FAncara	CALCULATION SHEET		Preparer: Pete Tamburio$12 / 15 / 06$	
Subject: Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006	$\begin{aligned} & \text { Calculation No. } \\ & \text { C-1302-187-E310-041 } \end{aligned}$	Rev. No. 0	System Nos. 187	Sheet 37 of 55

four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on this assumed rate shows that this individual point would not reach the minimum required thickness prior to the 2016. Additional inspection will be required at this location prior to this year. It is expected that each added inspection will continue to reduce the uncertainties, which will eventually demonstrate that this location has sufficient margin to reach the full period of operation in 2029.

Additional calculation shows that for this point to corrode to less than the minimum required thickness by 2029 it would have to corrode at a rate of 6.6 mils per year which is not considered credible and would be observable.

7.1.9 Bay 17 location 17-19 December 1992 through Oct 2006

Refer to Appendix \#9 for the complete calculation.
Four inspections have been performed at this location after the sand was removed and coating applied in 1992. The data collected in October 2006 is normally distributed. However past calculations (ref 3.20, 3.21, and 3.22) have split this data and analyzed the top 3 rows and the bottom 4 rows separately. This summary will only describe the evaluation of the entire 7 rows. Appendix 9 provides the results of the top 3 rows and the bottom 4 rows, which are consistent to the following conclusions.

The mean of the 2006 data is 0.969 inches, which meets the design basis uniform thickness requirements of 0.736 ".

The " F " Test result for Corrosion on the means shows a ratio of 0.068 . Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on this assumed rate shows that this location would not reach the minimum required thickness prior to the 2029.

In addition the apparent corrosion rate was determined using the regression model (even though it does not meet the F test for Corrosion). Based on the apparent rate the conclusion can be made that the location will not corrode to less then the minimum required thickness prior to 2029.

The calculated 1996 mean (990.14 mils) in this calculation is different that the same mean calculated in 1996 (991.4 mils). Thorough review of the 1996 calculation ref (3.22) and the 1996 data indicates that the correct mean for the 1996 data is actually 990.14 mils and not 991.4 mils. Therefore it is concluded that the 1996 calculation mistakenly documented this value. Therefore this calculation uses 990.14 mils for the 1996 mean.

| CALCULATION SHEET | Preparer:
 $12 / 15 / 06$ | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Subete Tamburro | | | | |
| Statistical Analysis of Drywell Vessel Sandbed
 Thickness Data 1992, 1994, 1996, and 2006 | Calculation No.
 C-1302-187-E3 10-041 | Rev. No.
 0 | System Nos.
 187 | Sheet
 38 of 55 |

Point 35 is the thinnest reading of the 2006 data at 0.901 inches. Which meets the design basis local thickness requirements of $0.490^{\prime \prime}$.

The " F " Test result for Corrosion on point 35 shows a ratio of 0.02 . The " F " Test result for Corrosion on point 14 shows a ratio of 0.001 . Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on this assumed rate shows that this location would not reach the minimum required thickness prior to the 2029.

Additional calculation shows that for this point to corrode to less than the minimum required thickness by 2029 it would have to corrode at a rate of 17 mils per year which is not considered credible and would be observable.

7.1.10 Bay 19 location 19A December 1992 through Oct 2006

Refer to Appendix \#10 for the complete calculation.
Four inspections have been performed at this location after the sand was removed and coating applied in 1992. A plug lies within this location. Four points lie over the plug (see section 5.2). Therefore points $24,25,31$, and 32 are eliminated from the corrosion rate evaluation.

The data collected in October 2006 is normally distributed after the four points that lie over the plug are eliminated. The mean of the 2006 data is 0.8066 inches, which meets the design basis uniform thickness requirements of 0.736 ". This mean is the thinnest of the 19 locations.

Evaluation of the mean thickness values of this location measured 1992, 1994, 1996 and 2006 shows that this location is experiencing negligible corrosion; approaching a rate of zero. However due to the limited amount of inspections this conclusion cannot be statistically confirmed with 95% confidence. Therefore the next inspection of this

- location shall be performed prior to the date in which the minimum statistically the statistically observable rate would drive the thickness to the minimum required thickness.

The " F " Test result for Corrosion on the means shows a ratio of 0.004 . Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on this assumed rate shows that this location would not reach the minimum required thickness prior to the 2016. Additional inspection will be required at this location prior to this year. It is expected that each added inspection will continue to

AmerGen

 CALCULATION SHEETStatistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006

Calculation No.
C-1302-187-E310-041

Rev, No.	System Nos.	Sheet
$\mathbf{0}$	187	39 of 55

reduce the uncertainties, which will eventually demonstrate that this location has sufficient margin to reach the full period of operation in 2029.

In addition the apparent corrosion rate was determined using the regression model (even though it does not meet the F test for Corrosion). Based on the apparent rate (which approaches zero) the conclusion can be made that the location will not corrode to less then the minimum required thickness prior to 2029.

Point 4 is the thinnest reading of the 2006 data at 0.648 inches, which meets the design basis local thickness requirements of $0.490^{\prime \prime}$.

The " F " Test result for Corrosion on point 4 shows a ratio of 0.02 . Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on this assumed rate shows that this point would not reach the minimum required thickness prior to the 2016. Additional inspection will be required at this location prior to this year. It is expected that each added inspection will continue to reduce the uncertainties, which will eventually demonstrate that this location has sufficient margin to reach the full period of operation in 2029.

Additional calculation shows that for this point to corrode to less than the minimum required thickness by 2029 it would have to corrode at a rate of 6.6 mils per year which is not considered credible and would be observable.

7.1.11 Bay 19 location 19B December 1992 through Oct 2006

Refer to Appendix \#11 for the complete calculation.
Four inspections have been performed at this location after the sand was removed and the coating was applied in 1992. The data collected in October 2006 is normally distributed. The mean of the 2006 data is 0.8475 inches, which meets the design basis uniform thickness requirements of $0.736^{\prime \prime}$.

The " F " Test result for Corrosion on the means shows a ratio of 0.088 . Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on this assumed rate shows that this location would not reach the minimum required thickness prior to the 2022. Additional inspection will be required at this location prior to this year. It is expected that each added inspection will continue to reduce the uncertainties, which will eventually demonstrate that this location has sufficient margin to reach the full period of operation in 2029.

Subject:	Calculation No.	Rev. No.	System Nos.	Sheet 40 of 55 Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006

In addition the apparent corrosion rate was determined using the regression model (even though it does not meet the F test for Corrosion). Based on the apparent rate the conclusion can be made that the location will not corrode to less then the minimum required thickness prior to 2029.

Point 34 is the thinnest reading of the 2006 data at 0.731 inches. Which meets the design basis local thickness requirements of $0.490^{\prime \prime}$.

The " F " Test result for Corrosion on point 34 shows a ratio of 0.001 . Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on this assumed rate shows that this location would not reach the minimum required thickness prior to the 2029.

Additional calculation shows that for this point to corrode to less than the minimum required thickness by 2029 it would have to corrode at a rate of 10.0 mils per year which is not considered credible and would be observable.

7.1.12 Bay 19 location 19C December 1992 through Oct 2006

Refer to Appendix \#11 for the complete calculation.
Four inspections have been performed at this location after the sand was removed and coating applied in 1992. A plug lies within this location. Four points lie over the plug. Therefore points $20,26,27$, and 33 are eliminated from the corrosion rate evaluation (see section 5.2).

The data collected in October 2006 is normally distributed after the four points that lie over the plug are eliminated. The mean of the 2006 data is 0.8238 inches, which meets the design basis uniform thickness requirements of $0.736^{\prime \prime}$.

The calculated 1996 mean (854 mils) in this calculation is different that the same mean calculated in 1996 (848 mils). Thorough review of the 1996 calculation ref (3.22) and the 1996 data indicates that the correct mean for the 1996 data is actually 854 mils and not 848 mils. Therefore it is concluded that the 1996 calculation mistakenly documented this value. Therefore this calculation uses 854 mils for the 1996 mean.

The " F " Test result for Corrosion on the means shows a ratio of 0.000007 . Sensitivity' studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on this assumed rate shows that this location would not reach the minimum required thickness prior to the 2018. Additional

	CALCULATION SHEET		Preparer: Pete Tamburro 12/15/06	
Subject: Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006	Calculation No. C-1302-187-E310-041	Rev. No. 0	System Nos. 187	Sheet 41 of 55

inspection will be required at this location prior to this year. It is expected that each added inspection will continue to reduce the uncertainties, which will eventually demonstrate that this location has sufficient margin to reach the full period of operation in 2029.

In addition the apparent corrosion rate was determined using the regression model (even though it does not meet the F test for Corrosion). Based on the apparent rate the conclusion can be made that the location will not corrode to less then the minimum required thickness prior to 2029.

Point 4 is the thinnest reading of the 2006 data at 0.660 inches, which meets the design basis local thickness requirements of $0.490^{\prime \prime}$.

The " F " Test result for Corrosion on point 4 shows a ratio of 0.00007 . Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on this assumed rate shows that this location would not reach the minimum required thickness prior to the 2029.

Additional calculation shows that for this point to corrode to less than the minimum required thickness by 2029 it would have to corrode at a rate of 6.7 mils per year which is not considered credible and would be observable.

7.2 Sandbed Locations with 7 Readings

7.2.1 Bay 1 location 1D December 1992 through Oct 2006

Refer to Appendix \#13 for the complete calculation.
Four inspections have been performed at this location after the sand was removed and coating applied in 1992. The data is not normally distributed. Eliminating point 1 which is significantly thinner than the remaining points results in a distribution, which is almost normal. This is consistent with previous data. Past calculations discounted the thinner point and calculated a mean of the remaining 6 points. The mean of the 2006 data is 1.122 inches, which meets the design basis uniform thickness requirements of 0.736 ".

The " F " Test result for Corrosion on the means shows a ratio of 0.001 . Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on an assumed rate of 6.9 mils per year shows that this location would not reach the minimum required thickness prior to the 2029.

	CALCULATION SHEET		Preparer: Pete Tamburro 12/15/06	
Subject: Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006	Calculation No. C-1302-187-E310-041	$\begin{gathered} \text { Rev. No. } \\ 0 \end{gathered}$	System Nos. 187	Sheet 42 of 55

In addition the apparent corrosion rate was determined using the regression model (even though it does not meet the F test for Corrosion). Based on the apparent rate the conclusion can be made that the location will not corrode to less then the minimum required thickness prior to 2029.

The 1996 calculation (ref. 3.22) also eliminated point 7 from the mean calculation since it was significantly thinner then the values in for the same point in other years.

Point 1 is the thinnest reading of the 2006 data at 0.881 inches, which meets the design basis local thickness requirements of $0.490^{\prime \prime}$.

The " F " Test result for Corrosion on point 1 shows a ratio of 0.02 . Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on this assumed rate shows that this location would not reach the minimum required thickness prior to the 2029.

Additional calculation shows that for this point to corrode to less than the minimum required thickness by 2029 it would have to corrode at a rate of 16.3 mils per year which is not considered credible and would be observable.

7.2.2 Bay 3 location 3D December 1992 through Oct 2006

Refer to Appendix \#14 for the complete calculation.
Four inspections have been performed at this location after the sand was removed and coating applied in 1992. The data is not normally distributed. The mean of the 2006 data is 1.18 inches. Which meets the design basis uniform thickness requirements of 0.736".

The " F " Test result for Corrosion on the means shows a ratio of 0.008 . Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on an assumed rate of 6.9 mils per year shows that this location would not reach the minimum required thickness prior to the 2029.

In addition the apparent corrosion rate was determined using the regression model (even though it does not meet the F test for Corrosion). Based on the apparent rate the conclusion can be made that the location will not corrode to less then the minimum required thickness prior to 2029.

The calculated 1996 mean (1175 mils) in this calculation is different that the same mean calculated in 1996 (1181 mils). This is because the 1996 mean calculation eliminated point 5 from in the 1996 data (reference 3.22). However the 1992 and 1996 calculation

Subject: Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006	Calculation No. C-1302-187-E310-041	Rev. No.	System Nos.	Sheet

did not eliminate this point. Review of the 2006 data shows that the point 5 value is within 2 sigma of the grandmean. Therefore the 1996 mean was recalculated in this calculation with the point 5 included.

Point 5 is the thinnest reading of the 2006 data at 1.156 inches, which meets the design basis local thickness requirements of $0.490^{\prime \prime}$.

The " F " Test result for No Corrosion on puint 5 shows a ratio of 0.08 . Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on this assumed rate shows that this location would not reach the minimum required thickness prior to the 2029.

Additional calculation shows that for this point to corrode to less than the minimum required thickness by 2029 it would have to corrode at a rate of 27.8 mils per year which is not considered credible and would be observable.

7.2.3 Bay 5 location 5D December 1992 through Oct 2006

Refer to Appendix \#1.5 for the complete calculation.
Four inspections have been performed at this location after the sand was removed and coating applied in 1992. The data is not normally distributed. This is most likely due to the low number of data points. The mean of the 2006 data is 1.185 inches, which meets the design basis uniform thickness requirements of $0.736^{\prime \prime}$.

The " F " Test result for Corrosion on the means shows a ratio of 0.048 . Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on an assumed rate of 6.9 mils per year shows that this location would not reach the minimum required thickness prior to the 2029.

In addition the apparent corrosion rate was determined using the regression model (even though it does not meet the F test for Corrosion). Based on the apparent rate the conclusion can be made that the location will not corrode to less then the minimum required thickness prior to 2029.

Point 1 is the thinnest reading of the 2006 data at 1.174 inches, which meets the design basis local thickness requirements of $0.490^{\prime \prime}$.

The " F " Test for No Corrosion for point 1 shows a ratio of 0.037 . The " F " test results of the 1992, 1994, 1996 and 2006 point 1 value show an " F " ratio of 0.925 , which is an
Calculation No.
C-1302-187-E310-041

Rev. No. ${ }^{\text {System Nos. }}$
Sheet 44 of 55
indication that a slope might exist for this point. Review of the individual readings for each year shows the following values in each year.

Year	Point 1 Value (inches)
1992	1.164
1994	1.163
1996	1.163
2006	1.174

The variance of 10 mils between 1992 and 2006 is well within the uncertainties of the instrumentation. The curve fit of the data indicates a slightly positive slope, which is not credible. Therefore it is concluded that this individual location, which was the thinnest location recorded in 2006 is not experiencing corrosion.

Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6:9 mils per year. Projection based on this assumed rate shows that this location would not reach the minimum required thickness prior to the 2029.

Additional calculation shows that for this point to corrode to less than the minimum required thickness by 2029 it would have to corrode at a rate of 28.5 mils per year which is not considered credible and would be observable.

7.2.4 Bay 7 location 7D December 1992 through Oct 2006

 Refer to Appendix \#16 for the complete calculation.Four inspections have been performed at this location after the sand was removed and coating applied in 1992. The data is normally distributed. The mean of the 2006 data is 1.113 inches. Which meets the design basis uniform thickness requirements of 0.736".

The " F " Test result for Corrosion on the means shows a ratio of 0.384 . Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on an assumed rate of 6.9 mils per year shows that this location would not reach the minimum required thickness prior to the 2029.

In addition the apparent corrosion rate was determined using the regression model (even though it does not meet the F test for Corrosion). Based on the apparent rate the conclusion can be made that the location will not corrode to less then the minimum required thickness prior to 2029.

	CALCULATION SHEET		Preparer: Pete Tamburro$12 / 15 / 06$	
Subject: Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006	Calculation No. C-1302-187-E3I0-041	$\begin{gathered} \text { Rev. No. } \\ 0 \end{gathered}$	System Nos. 187	Sheet 45 of 55

Point 5 is the thinnest reading of the 2006 data at 1.102 inches, which meets the design basis local thickness requirements of $0.490^{\prime \prime}$.

The " F " Test result for Corrosion on point 5 shows a ratio of 0.06 . Sensitivity studies shov that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on this assumed rate shows that this location would not reach the minimum required thickness prior to the 2029.

Additional calculation shows that for this point to corrode to less than the minimum required thickness by 2029 it would have to corrode at a rate of 25.5 mils per year which is not considered credible and would be observable.

7.2.5 Bay 9 location 9A December 1992 through Oct 2006

Refer to Appendix \#17 for the complete calculation.
Four inspections have been performed at this location after the sand was removed and coating applied in 1992. The data is not normally distributed. This is most likely due to the low number of data points. The mean of the 2006 data is 1.154 inches, which meets the design basis uniform thickness requirements of $0.736^{\prime \prime}$.

The " F " Test result for Corrosion on the means shows a ratio of 0.231 . Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 jterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on an assumed rate of 6.9 mils per year shows that this location would not reach the minimum required thickness prior to the 2029.

In addition the apparent corrosion rate was determined using the regression model (even though it does not meet the F test for Corrosion). Based on the apparent rate the conclusion can be made that the location will not corrode to less then the minimum required thickness prior to 2029.

Point 7 is the thinnest reading of the 2006 data at 1.13 inches, which meets the design basis local thickness requirements of $0.490^{\prime \prime}$.

The "F" Test result for No Corrosion on point 7 shows a ratio of 0.26. The "F" Test result for Corrosion on point 7 shows a ratio of 0.02 . Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection
$\left.\left.\begin{array}{|l|c|c|c|c|}\hline \text { Subject: } & \text { Calculation No. } & \text { Rev. No. } & \text { System Nos. } & \text { Sheet } \\ \text { Statistical Analysis of Drywell Vessel Sandbed } \\ \text { Thickness Data 1992, 1994, 1996, and 2006 }\end{array} \quad \begin{array}{c}187\end{array}\right] \begin{array}{c}\text { C-1302-187-E310-041 }\end{array}\right)$
based on this assumed rate shows that this location would not reach the minimum required thickness prior to the 2029.

Additional calculation shows that for this point to corrode to less than the minimum required thickness by 2029 it would have to corrode at a rate of 26.7 mils per year which is not considered credible and would be observable.
7.2.6. Bay 13 location 13 C December 1992 through Oct 2006

- Refer to Appendix 18 for the complete calculation.

Four inspections have been performed at this location after the sand was removed and coating applied in 1992. The data is normally distributed but skewed. The mean of the 2006 data is 1.142 inches, which meets the design basis uniform thickness requirements of 0.736 ".

The " F " Test result for Corrosion on the means shows a ratio of 0.01 . Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on an assumed rate of 6.9 mils per year shows that this location would not reach the minimum required thickness prior to the 2029.

In addition the apparent corrosion rate was determined using the regression model (even though it does not meet the F test for Corrosion). Based on the apparent rate the conclusion can be made that the location will not comode to less then the minimum required thickness prior to 2029.

Point 6 is the thinnest reading of the 2006 data at 1.128 inches, which meets the design basis local thickness requirements of $0.490^{\prime \prime}$.

The "F" Test result for Corrosion on point 6 shows a ratio of 0.00000087 . Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on this assumed rate shows that this location would not reach the minimum required thickness prior to the 2029.

Additional calculation shows that for this point to corrode to less than the minimum required thickness by 2029 it would have to corrode at a rate of 26.6 mils per year which is not considered credible and would be observable.

7.2.7 Bay 15 location 15A. December 1992 through Oct 2006

Refer to Appendix 19 for the complete calculation.

	CALCULATION SHEET		Preparer: Pete Tamburio 12/15/06	
Subject: Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006	Calculation No. C-1302-187-E310-041	Rev. No. 0	System Nos. 187	Sheet 47 of 55

Four inspections have been performed at this location after the sand was removed and coating applied in 1992. The data is normally distributed. The mean of the 2006 data is 1.121 inches, which meets the design basis uniform thickness requirements of 0.736 ".

The " F " Test result for Corrosion on the means shows a ratio of 0.01. Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be obseryed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on an assumed rate of 6.9 mils per year shows that this location would not reach the minimum required thickness prior to the 2029.

In addition the apparent corrosion rate was determined using the regression model (even though it does not meet the F test for Corrosion). Based on the apparent rate the conclusion can be made that the location will not corrode to less then the minimum required thickness prior to 2029.

Point 7 is the thinnest reading of the 2006 data at 1.049 inches, which meets the design basis local thickness requirements of $0.490^{\prime \prime}$.

The " F " Test result for No Corrosion on point 7 shows a ratio of 0.25 . The " F " Test result for Corrosion on point 7 shows a ratio of 0.02 . Sensitivity studies show that given only four inspections, a rate of 6.9 mils per year would be observed 95 times or more out of 100 iterations (see appendix 22). Therefore the conclusion is made that the mean rate for this location is less than the statistically observable rate of 6.9 mils per year. Projection based on this assumed rate shows that this location would not reach the minimum required thickness prior to the 2029.

Additional calculation shows that for this point to corrode to less than the minimum required thickness by 2029 it would have to corrode at a rate of 23.3 mils per year which is not considered credible and would be observable.

CALCULATION SHEET

Calculation No.	Rev. No.	System Nos.	Sheet
C-1302-187-E310-041	0	187	48 of 55

7.3 External Inspections

7.3.1 Background

In 1992, following the removal of the sand from the sandbed region and the removal of corrosion byproducts, the Drywell Vessel was visually inspected from the sandbed, which is outside the Drywell Vessel. This inspection identified the thinnest locations in each of the 10 sandbed bays. These thinnest locations were then UT inspected. In many cases the areas had to be slightly grounded so that the UT probe could rest flat against the surface of the vessel. The thickness values and the locations of each reading, referenced from existing welds, were recorded on a series of NDE data sheets. At each location one UT reading was performed.

In 2006, 106 readings were taken of the external portion of the Drywell Vessel from within the former sandbed region. These locations were located using the 1992 NDE Inspection Data Sheet maps. These UT readings were compared to acceptance criteria. The data is provided in Attachment 5.

7.3.2 Results

(Refer to Appendix 20)
All 106 readings were greater than the acceptance criteria of 0.49 inches even when allowing for 20 mils tolerance in uncertainty. The minimum recorded value was 0.602 inches measured at point 7 in bay 13. This point was also the thinnest point recorded in 1992.

These readings were not intended for corrosion rate trending due to uncertainties and inconsistencies between the 1992 and 2006 UT readings. These include:
a) The roughness of the inspected surfaces due to the previously corroded surface of the shell in the sandbed regions
b) The different UT technologies between 1992 and 2006
c) UT Equipment Instrument Uncertainties and
d) The poor repeatability in attempting to inspect the exact same unmarked locations over time

The 2006 and 1992 data cannot be used for developing corrosion rates by performing regression analysis, which requires at least three similar inspections over time to develop acceptable confidence factors.

	CALCULATION SHEET		Preparer: Pete Tamburro$12 / 15 / 06$	
Subject: Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006	Calculation No. C-1302-187-E310-041	Rev. No. 0	System Nos. 187	Sheet 49 of 55

7.3.3 Worst Case

(Refer to Appendix 20)
To ensure a formal conservative evaluation, point to point comparisons were performed on all 106 points as follows.

For each reading the 2006 value was subtracted from the : 992 value and divided by 14 years (time between 1992 and 2006). Values that resulted in positive changes in metal thickness were discounted from the computation to maintain conservative results.

The resulting differences in UT readings based on point-to-point comparison vary between 0 and .0335 inches per year.

The minimum 2006 reading of all the areas was 0.602 (point 7 Bay 13) inches.
The maximum worst case localized difference between readings was found in a point-to point comparison of point 2 in bay 17. The difference in thickness at this point equates to a rate of 0.0335 inches per year, which is not considered credible given the physical limitations of the UT inspections taken from the exterior surface. These limitations include the roughness of the inspected surfaces, the different UT technologies between the 1992 and 2006, UT Equipment Instrument Uncertainties, and the repeatability due to trying to locate the exact same location over time. In addition, this point is at an elevation where the inside surface is coated and accessible for visual inspection. During the 2006 visual inspections, no degraded coating or indication of corrosion has been identified on the exterior or interior drywell shell at this point location.

However even when considering a 0.0335 inches per year rate of change (recorded on a location that is 0.681 inches thick in 2006) and applying it on the thinnest location recorded in 2006 (0.602 inches in Bay 13 point 7) and applying 0.020 inch deduction for instrumentation uncertainty this location would only reduce to 0.515 inches by 2008, which still demonstrates margin compared to the acceptance criteria of 0.49 inches.

Repeat inspection of this location in 2008 will provide additional data to confirm the very conservative nature of the above evaluation:

Subject: Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006	Caiculation No.	Rev. No.	System Nos.	Sheet
C-1302-187-E310-041	0			
50 of 55				

7.3.4 Comparison of the 2006 external data to the Bounding Internal Grid 19A Inspection of internal grid 19A has concluded it to be the most critical of the monitored sandbed locations since it has the thinnest mean. This grid has a mean 0.8066 inches with a standard deviation of 0.0623 inches. The grid is normally distributed.

A normally distributed sample allows conclusion of the entire normally distributed population from which the sample is taken. For example, in a normally distributed population, approximately 95% of the population lies within approximately plus or minus two standard deviations of the mean; and approximately 99% of the population lies within approximately plus or minus three standard deviations of the mean.

The thinnest location of the entire sandbed region was found during the exterior inspections in 1992 and 2006. This spot (0.602 " in 2006) was not in an area corresponding to the internal monitored locations. However comparison of this thinnest value to the mean, standard deviation, and thinnest individual reading (0.648 inches) for location 19A shows that the monitoring program provides a representative sample population of the thicknesses of the entire sand bed region.

For example the UT transducer head is approximately 0.428 inches in diameter. The Drywell Vessel in the sandbed has approximately 700 square feet of surface area. Therefore the actual population of the sandbed region available to the transducer is in excess of $70,000,0.428^{\prime \prime}$ diameter areas.

Therefore in theory if one were to sample a population that is normally distributed, with a mean of 0.8066 inches, with a standard deviation of the 0.0623 inches, and the total population was 70,000 , approximately 0.5% of the population would be less than 0.648 inches, approximately 0.05% of the population would be less than 0.602 inches, and $1.9^{*} 10 \mathrm{E}-5 \%$ of the population would be less than 0.49 inches.

This theoretical model is very conservative since the majority of the sandbed has been shown to be much thicker than the critical location in 19A. However this discussion bolsters the conclusion that the monitoring of the 19 intemal locations, coupled with visual inspection of the sandbed external coating, will ensure the material condition of the Drywell Vessel in the sanded regions is maintained within design basis.

	CALCULATION SHEET		Preparer: Pete Tamburro 12/15/06	
Subject: Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006	Calculation No. C-1302-187-E310-041	Rev. No. 0	System Nos. 187	$\begin{aligned} & \text { Sheet } \\ & 51 \text { of } 55 \end{aligned}$

7.4 Sensitivity of the Corrosion Test without the 1996 Data

(Refer to appendix 21).
The mean thickness values for the 1996 data are consistently greater than the 1992 and 1994 data. This has called into the question the accuracy of the 1996 UT Inspectinns. As result, in 2006, the Oyster Creek NDE Group investigated several potential factors that could have caused the discrepancy. These potential variables included the potential failure by contractor personnel to clean off the inspected surface prior to the inspection and the potential that the UT unit was mistakenly placed on the "High Gain" setting. However the review did not confirm that these factors were the cause.

Never the less the question remains as to whether the 1996 data should be included in the analysis documented by this calculation.

Therefore a sensitivity study of the "Corrosion" test was performed and is documented in Appendix 21. The study selected locations where the 1996 means were at least 20 mils greater than the grandmean of the grid or subset. The grandmean is the mean of the 1992; 1994, 1996 and 2006 means. The "Corrosion" test was then performed on these grids with only the 1992, 1994 and 2006 data excluding the 1996 data. The results of the study are presented in appendix 21 and are summarized in the table below.

Location	Area	"F" Ratio with 1996 data	"F" Ratio without 1996 Data	Results
11 C	All	0.004	0.00009	Negligible
	Top	0.012	0.000003	Negligible
	Bottom	0.002	0.01	Negligible
13D	Bottom	0.002	0.00000	Negligible
17A	All	0.006	0.001	Negligible
	Bottom	0.003	0.007	Negligible
17D	All	0.0001	0.002	Negligible
19C	All	0.0001	7.3	See Below
1D	All	0.047	0.02	Negligible

The study showed that for the "Corrosion" test, eliminating of the 1996 data results in negligible change to the " F " ratio (when compared to the criteria of 1.0); except for the 19C grid. In the 19 C grid the F ratio increased significantly. However 19 C the regression curve fit results in a very small positive slope, which is not credible. Even with the 1996 data the regression curve fit results in a very small positive slope.

Therefore based on these sensitivity studies it is concluded using the 1996 data will results in a negligible impact on the results of the "Corrosions Test" for Regression.

	CALCULATION SHEET		Preparer: Pete Tamburro$12 / 15 / 06$	
Subject: Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006	Calculation No. C-1302-187-E310-041	$\begin{gathered} \text { Rev. No. } \\ 0 \end{gathered}$	System Nos. 187	Sheet 52 of 55

7.5 Sensitivity Study to Determine the Statistically Observable Corrosion Rate with Only

Four Inspections

(Refer to appendix 22).

The drywell vessel in the sandbed region is extemally coated. The coating was inspected in 2006 and found to be in excellent condition. The surface inside the vessel corresponding to 19 monitored grids is internally coated. In addition, the atmosphere in the drywell is inerted with nitrogen. Therefore the actual corrosion rate on the vessel is expected to be significantly less than 1 mil per year, possibly approaching zero mils per year. However the limited number of inspections (4) and the high variance in the data (standard deviations of 60 to 100 mils) make it impossible to identify rates less than 1 mil per year at this time. The high variance is because the surface of the sandbed region on the exterior is rough due to the aggressive corrosion, which occurred prior to 1992.

For example, for sections of the drywell above the sandbed region, it took approximately 10 inspections over a period greater than 10 years to confirm with 95% confidence that corrosion rates (which were less than 1 mil per year) existed. These locations above the sandbed region have a variance, which is less than that for the sandbed region (a standard deviations of approximately 20 mils). This is because the external surface of the vessel above the sandbed region experienced a much less severe corrosion mechanism resulting in a more uniform surface.

Therefore based on the experience above the sandbed region and the greater variance in the sandbed region (3 to 4 times greater) it is not expected that these inspections will yield the expected rate (significantly less than 1 mil per year) with 95% confidence in only four inspections.

Therefore a sensitivity study was performed to determine the minimum statistically observable rates given the number of sandbed inspections and the calculated variance of the data. The methodology for the study is described in sections 6.9.4.

The study determined the minimum statistically observable corrosion rate based on the variance that can exist in the 49 point grids given the observed standard deviations and the number of observations (4). For this case grid 19A was chosen since it is the thinnest of the 19 grids.

This study performed 10 iterations of of 100 simulations each of varying corrosions rates of 5,6 , 7,8 , and 9 mils per year.

Each simulation generated 49 point arrays for $1992,1994,1996$, and 2006. The arrays were generated using a random number generator, which simulates a normal distribution. The random number generator requires an input of the target mean value and an input for the target standard deviation.

The mean value input into the random number generator for to the 1992 array was the 1992 actual mean for location 19A (800 mils- reference appendix 10 page 10). The standard deviation
$\left.\begin{array}{|l|c|c|c|c|}\hline \text { Subject: } & \text { Caiculation No. } & \text { Rev. No. } & \text { System Nos. } \\ \text { Statistical Analysis of Drywell Vessel Sandbed } \\ \text { Thickness Data 1992, 1994, 1996, and 2006 }\end{array} \quad \begin{array}{c}\text { Sheet } \\ \text { C-1302-187-E310-041 }\end{array}\right)$
input into the random number generator for all arrays was 65 mils (which is an average of the calculated standard deviations from the 1992, 1994, 1996 and 2006 data (see appendix 10 page 10). The random number generator then generated 49 point arrays based on a mean of 800 mils and a standard deviation of 65 mils.

The 1994 array was generated in the same manner except the input mean was the value of 800 minus the simulated rate (in mils per year) times 2 years (1994-1992). The 1996 array was generated in the same manner except the input mean was the value of 800 minus the simulated rate (in mils per year) times 4 years (1996-1992). The 2006 array was generated in the same manner except the input mean was the value of 800 minus the simulated rate (in mils per year). times 14 years (2006-1992).

These four simulated arrays were then tested for Corrosion per section 6.9.2. This procedure was repeated 100 times for each of the simulated corrosion rates of $5,6,7,8$, and 9 mils per year. Corrosion rates that successfully passed the Corrosion test 95 times or more out of 100 iterations are considered the statistically observable rate. Each set of 100 iterations was repeated 10 times. Finally a refined rate of 6.9 mils per year was simulated and passed the test in the ten, 100 iterations with 95% confidence.

Results were that a 49 point grid with a standard deviation of 65 mils experiencing a corrosion rate of 6.9 mils per year can be observed 95 or more times out of 100 simulations with 95% confidence. This is a potential minimum detectable corrosion rate. The actual detectable corrosion rate is analytically indeterminate at this time and, using engineering judgment, is probably close to zero. Applying the potential minimum detectable corrosion rate is conservative and optional. The result is a manageable condition.

Subject:
Statistical Analysis of Drywell Vessel Sandbed

| Calculation No. |
| :---: | :---: | :---: | :---: |
| C-1302-187-E310-041 | | Rev. No. |
| :---: |
| 0 | | System Nos. |
| :---: |
| 187 | | Sheet |
| :---: |
| 54 of 55 |

8.0 Software

This calculation does not use the same software that was used in earlier calculations (reference 3.20 , 3.21, and 3.22). Previous sandbed related calculations utilized the GPUN mainframe computer and the "SAS" mainframe software. The Oyster Creek Plant was sold to AmerGen in the year 2000. The GPUN Main Frame was not available to A merGen after the year 2002. Also the "SAS" software is mainframe based is difficult to maintain. An alternative PC based software, "MATHCAD", has been chosen to perform this calculation.

Although the software has been changed the overall methodology, with minor exceptions, is the same as in previous calculation. The minor exceptions are the statistical tests that determine whether the data is normally distributed. The Mathcad routines have been successfully used in previous calculations for Upper Drywell Elevations (reference 3.24).

In addition the Excel Software was used to evaluate the 106 external UT inspection data.

	CALCULATION SHEET		Preparer: Pete Tamburro 12/15/06	
Subject: Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996, and 2006	Calculation No. C-1302-187-E310-041	Rev. No. 0	System Nos. 187	Sheet 55 of 55

9.0 Appendices

Appendix \#1 - Bay 9 location 9D December 1992 through Oct 2006
Appendix \#2 - Bay 11 location 11A December 1992 through Oct 2006
Appendix \#3 - Bay 11 location 11C December 1992 through Oct 2006
Appendix \#4 - Bay 13 location 13A December 1992 through Oct 2006
Appendix \#5 - Bay 13 location 13D December 1992 through Oct 2006
Appendix \#6 - Bay 15 location 15D December 1992 through Oct 2006
Appendix \#7 - Bay 17 location 17A December 1992 through Oct 2006
Appendix \#8 - Bay 17 location 17D December 1992 through Oct 2006
Appendix \#9 - Bay 17 location 17-19 December 1992 through Oct 2006
Appendix \#10 - Bay 19 location 19A December 1992 through Oct 2006
Appendix \#11 - Bay 19 location 19B December 1992 through Oct 2006
Appendix \#12 - Bay 19 location 19C December 1992 through Oct 2006
Appendix \#13 - Bay 1 location 1D December 1992 through Oct 2006
Appendix \#14 - Bay 3 location 3D December 1992 through Oct 2006
Appendix \#15 - Bay 5 location 5D December 1992 through Oct 2006
Appendix \#16 - Bay 7 location 7D December 1992 through Oct 2006
Appendix \#17-Bay 9 location 9A December 1992 through Oct 2006
Appendix 18 -Bay 13 location 13 C December 1992 through Oct 2006
Appendix 19 - Bay 15 location 15A December 1992 through Oct 2006
Appendix 20 - Review of the 2006106 External UT inspections
Appendix 21 - Sensitivity of the Corrosion Test with out the 1996 Data
Appendix 22 - Sensitivity Studies to Determine Minimum Statistically Observable Corrosion
Rates
Appendix 23 - Independent Third Party Review of Calculation

Attachment 1-1992 UT Data
Attachment 2-1994 UT Data
Attachment 3-1996 UT Data
Attachment 4-2006 UT Data
Attachment 5-1992 UT Data for First Inspections of Transition Elevations 23' 6" and 71' 6".

Appendix 1 - Sandbed 9D

 October 2006. DataThe data shown below was collected on 10/18/06
page $:=$ READPRN("U:MSOFFICELDrywell Program data)OCT 2006 DatalSandbedISB9D.txt".)

Points $49:=$ showcells (page , 7,0)
Points $_{49}=\left[\begin{array}{lllllll}1.005 & 1.056 & 0.985 & 1.133 & 1.132 & 1.136 & 1.101 \\ 0.896 & 0.927 & 1.067 & 1.037 & 0.974 & 1.077 & 1.069 \\ 0.751^{\prime} & 0.883 & 0.975 & 1.071 & 1.033 & 1.105 & 1.123 \\ 0.885 & 0.993 & 0.949 & 0.984 & 0.995 & -.022 & 1.041 \\ 0.98 & 0.968 & 0.936 & 0.942 & 0.88 & 0.927 & 0.998 \\ 0.96 & 0.869 & 0.976 & 0.987 & .0 .967 & 0.965 & 0.949 \\ 0.968 & 0.967 & 0.963 & 1.004 & 0.947 & 0.892 & 0.943\end{array}\right]$

Cells := convert(Points 49,7)
${ }^{\text {No }}{ }_{\text {DataCells }}:=$ length (Cells)

The thinnest point is point 15 which is shown below

$$
\operatorname{minpoint}:=\min \left(\text { Points }_{49}\right)
$$

$$
\begin{aligned}
& \ddots^{\prime} \\
& \text { minpoint }=0.751
\end{aligned}
$$

Cells := deletezero cells (Cells, No DataCells)
${ }^{\text {No }}{ }_{\text {DataCells }}:=$ length(Cells)

Mean and Standard Deviation

Standar'd Error

Skewness

Skewness $:=\frac{1 \cdot\left(\text { No }_{\text {DataCells }}\right) \cdot \overline{\Sigma\left(\text { Cells }-\mu_{\text {actual }}\right)^{3}}}{\left(\text { No DataCells }^{\prime}-1\right) \cdot\left(\text { No }_{\text {DataCells }}-2\right) \cdot\left(\sigma_{\text {actual }}\right)^{3}}$
Skewness $=-0.14$

Kurtosis

$$
\begin{aligned}
& \text { Kurtosis }:=\frac{\text { No DataCells } \cdot\left(\text { No }_{\text {DataCells }}+1\right) \cdot \overrightarrow{\Sigma\left(\text { Cells }-\mu_{\text {actual }}\right)^{4}}}{\left({ }^{\text {No }}{ }_{\text {DataCells }}-1\right) \cdot\left(\text { No }_{\text {DataCells }}-2\right) \cdot\left(\text { No }_{\text {DataCells }}-3\right) \cdot\left(\sigma_{\text {actual }}\right)^{4}} \text { Kurtosis }=0.697 \\
& +-\frac{3 \cdot\left(\text { No }_{\text {DataCells }}-1\right)^{2}}{\left(\text { No }_{\text {DataCells }}-2\right) \cdot\left({ }^{\text {No }} \text { DataCells }-3\right)}
\end{aligned}
$$

Normal Probability Plot

$$
\begin{aligned}
& \mathbf{j}:=0 \text {.. last (Cells) stt }:=\text { sort (Cells) } \\
& \cdot r_{j}:=j+1 \quad \operatorname{rank}_{j}:=\frac{\sum \overrightarrow{\left(\overrightarrow{s t I=s t t_{j}}\right) \cdot r}}{\sum \overrightarrow{s r t=s r t_{j}}} \\
& p_{j}:=\frac{\text { rank }_{j}^{\prime}}{\text { rows (Cells })+1} \\
& x:=1 \quad N \text { Score }_{j}:=\operatorname{root}\left[\operatorname{cnorm}(x)-\left(p_{j}\right) ; x\right]
\end{aligned}
$$

Upper and Lower Confidence Values

The Upper and Lower confidence values are calculated based on . 05 degree of confidence " α "

$$
\begin{aligned}
& \alpha:=.05 \quad \mathrm{~T} \alpha:=\mathrm{qt}\left[\left(1-\frac{\alpha}{2}\right), 48\right] \quad, \quad \mathrm{T} \alpha=2.011 \\
& \text { Lower } 95 \% \text { Con }:=\mu_{\text {actual }}-\text { Ta. } \frac{\sigma_{\text {actual }}}{\sqrt{\mathrm{No}_{\text {DataCells }}}} \quad \text { Lower } 95 \% \mathrm{Con}_{1}=965.124 \\
& \text { Upper } 95 \% \text { Con }:=\mu_{\text {actual }}+\frac{\mathrm{T} \alpha}{\sigma_{\text {actual }}} \frac{1}{\sqrt{\text { No DataCells }}} \quad \text { Upper } 95 \% \text { Con }=1.01 \cdot 10^{3}
\end{aligned}
$$

These values represent a range on the calculated mean in which there is 95% confidence.

Graphical Representation

Jistribution of the "Cells" data points are sorted in 1/2-standard deviation increments (bins) within $+/-3$ standard deviations

```
            Bins \(:=\) Make bins \(\left(\mu_{\text {actual }}, \sigma_{3}^{\text {actual }}\right)\)
            Distribution := hist(Bins , Cells)
The mid points of the Bins are calculated
\(k:=0 . .11 \quad\) Midpoints \(_{k}:=\frac{\left(\text { Bins }_{k}+\text { Bins }_{k+1}\right)}{2}\)
```



```
normal curve \({ }_{0}:=\operatorname{pnorm}\left(\right.\) Bins \(\left._{1}, \mu_{\text {actual }}, \sigma_{\text {actual }}\right)\)
normal \(_{\text {curve }}^{k}:=\operatorname{pnorm}\left(\right.\) Bins \(\left._{k+1}, \mu_{\text {actual }}, \sigma_{\text {actual }}\right)-\) pnorm \(\left(\right.\) Bins \(\left._{k}, \mu_{\text {actual }}, \sigma_{\text {actual }}\right)\)
normal curve \(:={ }^{\text {No }}\) DataCells \(\cdot\) normal curve
```


Results For 9D

The following schematic shows: the the distribution of the samples, the normal curve based on the actual mean and standard deviation, the kurtosis, the skewness, the number of data points, and the the lower and upper 95\% confidence values.

Data Distribution

The distribution is normal

Appendix 1

Data from. 1992 to 2006 is retrieved.

$$
\begin{aligned}
& 1 \\
& d:=0
\end{aligned}
$$

For Dec 311992

page := READPRN("U:MMSOFFICEEDrywell Program dataWec. 1992 DatalsandbedDATA ONLYSB9D.txt")
Points 49 := showcells(page , 7,0)
Data

Points ${ }_{49}=\left[\begin{array}{lllllll}1.01 & 1.052 & 0.998 & 1.165 & 1.163 & 1.141 & 1.106 \\ 0.966 & 0.96 & 0.992 & 1.024 & 0.979 & 1.063 & 1.075 \\ 0.763 & 0.883 & 0.978 & 1.053 & 1.033 & 1.112 & 1.125 \\ 0.914 & 1.003 & 0.992 & 0.985 & 1 & 1.023 & 1.042 \\ 1.034 & 0.9691 & 0.921 & 0.94 & 0.897 & 0.927 & 1.01 \\ 0.955 & 0.872 & 0.98 & 1.017 & 0.972 & 0.966 & 0.948 \\ 1.103 & 1.011 & 0.978 & 0.991 & 0.975 & 0.897 & 0.975\end{array}\right]$ No DataCells $:=$ length(nnn)

$$
\text { Pit }_{15}:=\mathrm{nnn}_{14}
$$

$$
\text { Pit }_{15}=763
$$

$$
\begin{aligned}
& \text { Cells : }=\text { Zero }_{\text {one }}(\mathrm{nnn}, \text { No DataCells } ; 15) \\
& \text { Cells }:=\text { deletezero cells (Cells, }{ }^{\mathrm{No}} \text { DataCells) } \\
& \text { No Cells := length(Cells) } \\
& \mu_{\text {measured }}^{d}:=\operatorname{mean}(\text { Cells }) \quad \sigma_{\text {measured }}^{d}:=\operatorname{Stdev(Cells)} \quad S_{i t a n d a r d_{\text {error }}^{d}}:=\frac{\sigma_{\text {measured }_{d}}}{\sqrt{\text { No DataCells }}}
\end{aligned}
$$

$$
d:=d+1
$$

For 1994
page $:=$ READPRN("U:LMSOFFICEIDrywell Program datalSept. 1994 DatalsandbedDATA ONLYSB9D.txt")
Points 49 := showcells(page , 7, 0)
Dates $_{d}:=$ Day $_{\text {year }}(9,14,1994)$
Data

$$
\text { nan }:=\text { convert }\left(\text { Points }_{49}, 7\right) \quad \text { No }_{\text {DataCells }}:=\text { length }(\operatorname{mnn})
$$

$$
{ }^{\text {No }}{ }_{\text {DataCells }}:=\text { length (nne) }
$$

$$
\text { Pit }_{15}:=\operatorname{nnn}_{14}
$$

$$
\begin{aligned}
& \text { Cells := Zero one (in, No DataCells, 15) } \\
& \text { Cells }:=\text { deletezero cells (Cells, No DataCells) } \\
& \text { No DataCells := length(Cells) } \\
& \mu_{\text {measured }}^{d .}:=\operatorname{mean}(\text { Cells }) \quad \sigma_{\text {measured }}^{d}:=\operatorname{Stdev}(\text { Cells }) \quad \text { Standard }_{\text {error }}:=\frac{\sigma_{\text {measured }}^{d}}{} \\
& \mu_{\text {measured }}=\left[\begin{array}{l}
1.004 \cdot 10^{3} \\
991.958
\end{array}\right]
\end{aligned}
$$

Sheet No.

For 1996

$$
d:=d+1
$$

page := READPRN("U:LMSOFFICEDDrywell Program datalSept. 1996 DatalsandbedDDATA ONLYTSB9D.txt"I)
Points $_{49}:=$ showcells $($ page $, 7,0)$ Data \quad Dates $_{d}:=\operatorname{Day}_{\text {year }}(9,16,1996)$.
Points ${ }_{49}=\left[\begin{array}{ccccccc}0.965 & 1.022 & 0.985 & 1.133 & 1.149 & 1.136 & 1.141 \\ 0.878 & 0.978 & 1.073 & 1.021 & 0.992 & 1.095 & 1.116 \\ 0.776 & 0.836 & 1.078 & 1.086 & 1.044 & 1.125 & 1.113 \\ 0.944 & 0.967 & 1.011 & 0.998 & 1.004 & 11.02 & 1.083 \\ 0.941 & 0.939 & 0.937 & 0.939 & 0.942 . & 0.931 & 1.018 \\ 1.018 & 1.018 & 1.018 & 1.058 & 1.029 & 0.966 & 0.952 \\ 0.953 & 0.953 & 0.953 & 0.953 & 0.978 & 0.922 & 0.969\end{array}\right]$.
n nn: $=$ convert $\left(\right.$ Points $_{49}, 7$)

$$
\text { Pit } \left._{15_{d}}:=\operatorname{nnn}_{14} \quad \text { No DataCells }:=\text { length(} n n n\right)
$$

$$
\begin{aligned}
& \text { Cells := Zero one (nnn, No DataCells , 15).' } \\
& \text { Cells }:=\text { deletezero cells (Cells, No DataCells) } \\
& \left.{ }^{\text {No }}{ }_{\text {DataCellis }}:=\text { length(Cells }\right) \\
& \mu_{\text {measured }_{d}}:=\operatorname{mean}(\text { Cells }) \quad \sigma_{\text {measured }_{d}}:=\operatorname{Stdev}\left(\text { Cells) } \quad \text { Standard } \text { error }_{d}:=\frac{\sigma_{\text {measured }}^{d}}{}\right.
\end{aligned}
$$

```
For }200
                                    d:= d+i
            \prime
            page := READPRN( "U:LMSOFFICEIDrywell Program datalOCT 2006 DatalSandbedSSB9D.txt" )
            Points }49:== showcells( page, 7,0)
                            Dates }:=\mp@subsup{\mathrm{ Day year }}{(9,23,2006)}{d
                                    Data
```



```
            nnn := convert(Points 49,7)
                    Pit 15d}:= n\Omegan14 No DataCells := length(n)n
```

$$
\begin{aligned}
& \text { 1 Cells }:=\text { Zero one (nnn, No DataCells }, 15) \\
& \text { Cells := deletezero cells (Cells, No DataCells) } \\
& { }^{\text {No }} \text { DataCells }:=\text { length(Cells) } \\
& \mu_{\text {measured }_{d}}:=\operatorname{mean}(\text { Cells }) \quad \sigma_{\text {measured }_{d}}:=\operatorname{Stdev}(\text { Cells })
\end{aligned}
$$

Below are the results

$$
\begin{aligned}
& \text { Pit }{ }_{15}=\left[\begin{array}{c}
763 \\
770 \\
776 \\
751
\end{array}\right] \quad \begin{array}{c}
\text { o measured }
\end{array}=\left[\begin{array}{c}
70.202 \\
72.276 \\
73.163 \\
71.022
\end{array}\right] . \\
& \text { Total means }:=\text { rows }\left(\mu_{\text {measured }}^{1}\right)^{\prime} \quad \text { Total means } \bar{\sim} \mathbf{1}^{\prime} \\
& \operatorname{SST}:=\sum_{i=0}^{\text {last(Dates })}\left(\mu_{\text {measured }_{i}}-\text { mean }\left(\mu_{\text {measured }}\right)\right)^{2} \\
& \text { SSE }:=\sum_{i=0}^{\text {last(Dates })}\left(\mu_{\text {measured }_{i}}-\text { yhat }\left(\text { Dates , } \mu_{\text {measured }}\right)_{i}\right)^{2} \\
& \text { SSR }:=\sum_{i=0}^{\text {last(Dates })}\left(\text { yhat }\left(\text { Dates }, \mu_{\text {measured }}\right)_{i}-\text { mean }\left(\mu_{\text {measured }}\right)\right)^{2} \\
& \text { DegreeFree }_{\text {ss }}:=\text { Total means }^{-2} \text { DegreeFree }_{\text {reg }}:=1 \text {. DegreeFree }{ }_{\text {st }}:=\text { Total means }-1 \\
& \text { MSE }:=\frac{\text { SSE }}{\text { DegreeFree }_{\text {sS }}} \quad \text { MSR }:=\frac{\text { SSR }}{\text { DegreeFree }_{\text {reg }}} \quad \text { MST }:=\frac{\text { SST }}{\text { DegreeFree }_{\text {st }}} \\
& \mathrm{MSE}=75.83 \\
& M S R=40.724 \quad . \quad . \quad M S T=64.128 \\
& \text { StGrand }_{\text {err }}:=\sqrt{\text { MSE }}
\end{aligned}
$$

$$
\begin{aligned}
& F_{\text {ratio_reg }}:=\frac{F_{\text {actaul_Reg }}}{F_{\text {critical_reg }}} \\
& F_{\text {ratio_reg }}=0.029
\end{aligned}
$$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

Appendix 1

C-1302-187-E310-041 Rev. No. 0

The following will plot the results for the overall mean, the mean of thinner points, and the mean of thicker points

$$
\text { i }:=0 . . \text { Total means }-1
$$

$\mu_{\text {grand }}^{\text {measured }} ;=\operatorname{mean}\left(\mu_{\text {measured }}\right) \quad$. ogrand measured $:=\operatorname{Stdev}\left(\mu_{\text {measured }}\right)$

The minimum required thickness at this elevation is. $\mathrm{Tmin}^{\operatorname{gen}} \mathrm{SB}_{\mathbf{i}}:=736$ (Ref. 3.25) 1.1

The F Test indicates that the regression model does not hold for the data sets. However, the slopes and 95\% Confidence curve is generated for this case.

$$
\text { Thick predict }:=m_{s} \cdot \text { year }_{\text {predict }}+y_{b}
$$

$$
\text { Thick actualmean }:=\text { mean(Dates) }
$$

$$
\left.\operatorname{sum}:=\sum_{i}\left(\text { Dates }_{d}-\text { mean (Dates }\right)\right)_{1}^{\frac{1}{2}}
$$

For the entire grid
upper $_{\mathrm{f}}:=$ Thick $_{\text {predict }}^{f} \stackrel{\text {.. }}{ }$.

$$
+q t\left(1-\frac{\alpha_{t}}{2}, \text { Total means }-2\right) \cdot \text { StGrand } e r r^{*} \cdot \sqrt{1+\frac{1}{(d+1)}+\frac{\left(\text { year }_{\text {predict }}^{f}-\text { Thick }_{\text {actualmean }}\right)^{2}}{\text { sum }}}
$$

lower $_{f}:=$ Thick $_{\text {predict }}^{f}$...

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{s}}:=\operatorname{slope}\left(\text { Dates }, \mu_{\text {measured }}\right) \\
& \mathrm{y}_{\mathrm{b}}:=\text { intercept(Dates, } \mu_{\text {measured }} \text {) } \\
& \alpha_{t}:=0.05 \quad k:=23 \quad f:=0 . . \mathrm{k}-1 \text { ' }^{\prime} \text { year }_{\text {predict }}:=1985+\mathrm{f}-2
\end{aligned}
$$

The section below calculates what the postulated mean thickness would be if this grid were to corrode at a minimum observable rate observed in appendix 22.

$$
\begin{gathered}
\text { Rate } \text { min_observed }:=6.9 \\
\text { Postulated meanthickness }:=\mu_{\text {measured }_{3}}-\text { Rate }_{\text {min_observed }} \cdot(2029-2006)
\end{gathered}
$$

Postulated meanthickness $=833.842$ which is greater than
Timin_gen $_{\mathrm{SB}_{3}}=736$

The following addresses the readings at the lowest single point
The F-Ratio is calculated for the point as follows
$\operatorname{SSR}_{\text {point }}:=\sum_{i=0}^{\text {last(Dates })^{\prime}}\left(\text { yhat }^{\prime}\left(\text { Dates , Pit }_{15}\right)_{i}-\text { mean }\left(\text { Pit }_{15}\right)\right)^{2}$
SSR $_{\text {point }} \mp 178.53$

$\mathrm{MSE}_{\text {point }}=83.735$
$\mathrm{MSR}_{\text {point }} \doteq 178.53$
$\mathrm{MST}_{\text {point }}=115.333$

$$
S_{\text {PTit }}^{\text {err }}: ~:=\sqrt{\text { MSE }_{\text {point }}}
$$

$$
\mathrm{StPit}_{\mathrm{err}}=9.151
$$

F Test for Corrosion

$$
F_{\text {actaul_Reg }}:=\frac{\text { MSR }_{\text {point }}}{\mathrm{MSE}_{\text {point }}}
$$

$$
F_{\text {ratio_reg }}:=\frac{F_{\text {actaul_Reg }}}{F_{\text {critical_reg }}}
$$

$$
\mathrm{F}_{\text {ratio_reg }}=0.115
$$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

Therefore this point is not experiencing corrosion

$$
\left.m_{\text {point }}:=\text { slope (Dates, Pit } 15\right) \quad m_{\text {point }}=-1.251 y_{\text {point }}:=\text { intercept }(\text { Dates, Pit } 15) \quad y_{\text {point }}=3.264 \cdot 10^{3}
$$

$$
\begin{aligned}
& \text { SST point }:=\sum_{i=0}^{\text {last(Dates) }}\left(\text { Pit }_{15_{i}}-\text { mean }\left(\text { Pit }_{15}\right)\right)^{2} \\
& \operatorname{SST}_{\text {point }}=3 \dot{46} \\
& \text { SSE }_{\text {point }}:=\sum_{i=0}^{\text {last(Dates })}\left(\text { Pit }_{15}-\text { yhat }\left(\text { Dates }, \text { Pit }_{i 15}\right)_{i}\right)^{2} \\
& \operatorname{SSE}_{\text {point }}=167.47
\end{aligned}
$$

C-1302-187-E310-041 Rev. No. 0

The 95% Confidence curves are calculated
Pit curve $^{!}=m_{\text {point }} \cdot$ year predict $+y_{\text {point }}$
$P_{i t}$ actualmean $:=$ mean(Dates $) \quad$ sum $:=\sum_{i}\left(\right.$ Dates $_{d}-$ mean(Dates $\left.)\right)^{2}$
uppoint $_{f}:=$ Pit $_{\text {curve }_{f}}$ -
1

$$
\left.+-\left[q t\left(1-\frac{\alpha_{t}}{2}, \text { Total }_{\text {means }}-2\right) \cdot \text { StPit }_{\text {err }} \cdot \sqrt{\left.1+\frac{1}{(d+1)}+\frac{\left(\text { year }_{\text {predict }}^{f}\right. \text { - Pit actualinean }}{}\right)^{2}}\right)\right]
$$

Therefore based on regression model the above curve shows that this point will not corrode to below minimum required thickness by the plant end of life.

$$
\left.\mathrm{m}_{\text {point }}:=\text { slope (Dates, Pit } 15\right) \quad \mathrm{m}_{\text {point }}=-1.251 \mathrm{y}_{\text {point }}:=\text { intercept (Dates, Pit } 15 \text {) } y_{\text {point }}=3.264 \cdot 10^{3}
$$

The 95% Confidence curves are calculated.

Pit $_{\text {curve }}:=m_{\text {point }} \cdot$ year $_{\text {predict }}+y_{\text {point }}$

$$
1, \quad 1
$$

$$
\operatorname{lopoint}_{f}:=\text { Pit }_{\text {curve }_{f}} \ldots
$$

$$
+-\left[q t\left(1-\frac{\alpha_{t}}{2}, \text { Total means }^{2}-2\right) \cdot \text { StPit }_{\text {err }} \cdot \sqrt{1+\frac{1}{(d+1)}+\frac{\left(\text { year }_{\text {predict }}^{f}-\text { Pit }_{\text {actualmean }}\right)^{2}}{\text { sum }}}\right]
$$

$$
\begin{aligned}
& \text { Pit actualmean }:=\text { mean(Dates) } \\
& \text { uppoint }_{f}:=\text { Pit curve }_{f} \cdots \text { । } \\
& \operatorname{sum}:=\sum_{i_{i}}\left(\text { Dates }_{i}-\operatorname{mean}(\text { Dates })\right)^{2} \\
& +q t\left(1-\frac{\alpha_{t}}{2}, \text { Total }_{\text {means }}-2\right) \cdot \text { StPit }_{\text {err }}^{\cdot} \sqrt{1+\frac{1}{(d+1)}+\frac{\text { (year }_{\text {predict } \left._{f}-\text { Pit }_{\text {actualmean }}\right)^{2}}^{\text {sum }}}{1}}
\end{aligned}
$$

The section below calculates what the postulated individual thickness would be if this point were to corrode at a minimum observable rate observed in appendix 22.

The section below calculates what the postulated corrosion rate necessary for the thinnest individual point to reach the local required thickness by 2029.

$$
\begin{aligned}
& \text { minpoint }=0.751 \quad \text { year } \text { predict }_{22}=2.029 \cdot 10^{3} \quad \text { Tmin_local }_{S B_{22}}=490 \\
& \text { required }_{\text {rate. }}:=\frac{\left(1000 \cdot \text { minpoint }- \text { Tmin_local } \mathrm{SB}_{22}\right)}{(2005-2029)} \\
& \text { required }_{i} \text { rate. }=-10.875 \text { mils per year }
\end{aligned}
$$

Appendix 2 - Sand Bed Elevation Bay 11A

October 2006 Data on 10/18/06
page := READPRN("U:MMSOFFICEIDrywell Program datalOCT 2006 DatalSandbedlSBIIA.txt")
Points $49:=$ showcells(page, 7,0)
Points $_{49}=\left[\begin{array}{lllllll}0.905 & 0.832 & 0.829 & 0.803 & 0.83 & 0.812 & 0.737 \\ 0.797 & 0.825 & 0.834 & 0.822 & 0.858 & 0.783 & 0.795 \\ 0.72 & 0.766 & 0.858 & 0.731 & 0.762 & 0.669 & 0.764 \\ 0.739 & 1.047 & 1.057 & 0.806 & 0.761 & 0.821 & 0.849 \\ 0.843 & 1.09 & 1.104 & 0.879 & 0.879 & 0.854 & 0.817 \\ 0.741 & 0.897 & 0.818 & 0.89 & 0.907 & 0.833 & 0.826 \\ 0.875 & 0.869 & 0.923 & 0.886 & 0.871 & 0.81 & 0.842\end{array}\right]$

Cells := convert(Points 49,7)
${ }^{\text {No }}$ DataCells $:=$ length(Cells)

For this location point 23, 24, 30, and 31 are located on a plug (reference 3.22) and have been omitted from the overall mean calculation for his location.

$$
\begin{aligned}
& \text { Cells }:=\text { Zero one (Cells, No DataCells, 23) Cells }:=\text { Zero one (Cells, No DataCells, 24) } \\
& \text { Cells }:=\text { Zero }_{\text {one }}(\text { Cells, No DataCells, } 30) \quad \text { Cells }:=\text { Zero one }^{\text {on }} \text { (Cells, No DataCells, 31) } \\
& \text { Cells }:=\text { deletezero cells (Cells, No DataCells) }
\end{aligned}
$$

The thinnest point at this location is point 20 and is shown below

```
minpoint:=min(Points 49)
    minpoint =0.669
```


Mean and Standard Deviation

$\mu_{\text {actual }}:=$ mean(Cells $) \quad \mu_{\text {actual }}=821.511 \quad \sigma_{\text {actual }}:=\operatorname{Stdev}($ Cells $) \quad \sigma_{\text {actual }}=56.13$

Standard Error

Standard $_{\text {error }}=8.019$

Skewness

Kurtosis

$$
\begin{aligned}
\text { Kurtosis }:= & \frac{\text { No }_{\text {DataCells }} \cdot\left(\text { No }_{\text {DataCells }}+1\right) \cdot \overline{\Sigma\left(\text { Cells }-\mu_{\text {actual }}\right)^{4}}}{\left(\text { No }_{\text {DataCells }}-1\right) \cdot\left(\text { No DataCells }^{-2}\right) \cdot\left(\text { No }_{\text {DataCells }}-3\right) \cdot\left(\sigma_{\text {actual }}\right)^{4}} \quad \text { Kurtosis }=-0.272 \\
& +-\frac{3 \cdot(\text { No DataCells }-1)^{2}}{\left(\text { No }_{\text {DataCells }}-2\right) \cdot\left(\text { No }_{\text {DataCells }}-3\right)} \quad .
\end{aligned}
$$

Normal Probability Plot

In a normal plot, each data value is plotted against what its value would be if it actually came from a normal distribution. The expected normal values, called normal scores, and can be estimated by first calculating the rank scores of the sorted data.

$$
\mathrm{j}:=0 . . \text { last(Cells) } \quad \text { sit }:=\text { sort(Cells) }
$$

Then each data point is ranked. The array rank captures these ranks

$$
\begin{aligned}
& p_{\mathrm{j}}:=\frac{\text { rank }_{\mathrm{j}}}{\text { rows(Cells) }+1}
\end{aligned}
$$

The normal scores are the corresponding p th percentile points from the standard normal distribution:

$$
x:=1 \quad \text { N_Score } ;=\operatorname{root}\left[\operatorname{cnorm}(x)-\left(p_{j}\right), x\right]
$$

Upper and Lower Contidence Values

The Upper and Lower confidence values are calculated based on .05 degree of confidence " α "

```
\({ }^{\text {No }}\) DataCells \(:=\) length(Cells)
```

$$
\alpha:=.05 \quad \mathrm{~T} \alpha:=\mathrm{q}\left[\left(1-\frac{\alpha}{2}\right), \text { No }^{\text {DataCells }}\right] \quad \mathrm{T} \alpha=2.014
$$

These values represent a range on the calculated mean in which there is 95% confidence.

Graphical Representation

Distribution of the "Cells" data points are sorted in $1 / 2$ standard deviation increments (bins) within $+/-3$ standard deviations

$$
\begin{aligned}
& \text { Bins }:=\text { Make }_{\operatorname{bins}}(\mu \text { actual }, \sigma \text { actual }) \\
& \text { Distribution }:=\text { hist }(\text { Bins }, \text { Cells })
\end{aligned}
$$

The mid points of the Bins are calculated

$$
\mathrm{k}:=0.11 \quad \text { Midpoints }_{\mathrm{k}}:=\frac{\left(\text { Bins }_{\mathrm{k}}+\text { Bins }_{\mathrm{k}+1}\right)}{2}
$$

The Mathcad function pnorm calculates a portion of normal distribution curve based on a given mean and standard deviation

$$
\begin{aligned}
& \text { normal } \left.\text { curve }_{0}:=\text { pnorm(} \text { Bins }_{1}, \mu \text { actual }, \sigma \text { actual }\right) \\
& \text { normal }_{\text {curve }}:=\operatorname{pnorm}\left(\text { Bins }_{k+1}, \mu_{\text {actual }}, \sigma_{\text {actual }}\right)-\text { pnorm }\left(\text { Bins }_{k}, \mu_{\text {actual }}, \sigma_{\text {actual }}\right) \\
& \text { normal curve }:={ }^{\text {No }} \text { DataCells }^{\text {normal }} \text { curve }
\end{aligned}
$$

Results For Elevation Sandbed elevation Location Oct. 2006

The following schematic shows: the the distribution of the samples, the normal curve based on the actual mean and standard deviation, the kurtosis, the skewness, the number of data points, and the the lower and upper 95% confidence values. Below is the Normal Plot for the data.

Data Distribution

$\mu_{\text {actual }}=821.511$
$\sigma_{\text {actual }}=56.13$
Standard $_{\text {error }}=8.019$
Skewness $=-0.456$
Kurtosis $=-0.272$

Normal Probability Plot

The Normal Probablity Plot and the Kurtosis this data is normally distributed.

Sandbed Location 11A Trend

d:=0
Data from the 1992, 1994 and 1996 is retrieved.

For 1992

$$
\text { Dates }_{d}:=\text { Day }_{\text {year }}(12,8,1992)
$$

page := READPRN("U:MSOFFICEEDrywell Prograrn dataWec. 1992 DatalsandbedWata Only\SB\|A.txt")

Points $49:=$ showcells(page, 7,0)

$$
\begin{aligned}
& \text { Data } \\
& \quad \text { Points } 49=\left[\begin{array}{lllllll}
0.93 & 0.824 & 0.831 & 0.809 & 0.807 & 0.817 & 0.751 \\
0.816 & 0.827 & 0.834 & 0.823 & 0.851 & 0.787 & 0.799 \\
0.733 & 0.762 & 0.866 & 0.762 & 0.771 & 0.677 & 0.764 \\
0.745 & 0.252 & 0.147 & 0.809 & 0.767 & 0.805 & 0.846 \\
0.841 & 1.082 & 1.111 & 0.886 & 0.881 & 0.901 & 0.778 \\
0.755 & 0.896 & 0.804 & 0.805 & 0.898 & 0.844 & 0.823 \\
0.847 & 0.9 & 0.902 & 0.924 & 0.923 & 0.828 & 0.884
\end{array}\right] \\
& \quad \\
& \text { nnn := convert(Points } 49,7) \quad
\end{aligned}
$$

For this location point 23,24,30, and 31 are located on a plug (reference 3.22) and have been omitted from the overall mean calculation for his location.

$$
\begin{aligned}
& \text { nnn }:=\text { Zero one (nnn, No DataCells, 23) . nnn }:=\text { Zero one (nnn, No DataCells, 24) } \\
& n \mathrm{nn}:=\text { Zero one }_{\text {onn }} \text { (nno DataCells }{ }^{30} \text {) } \\
& \text { nn }:=\text { Zero one (nnn, No DataCells' } 31 \text {) } \\
& \text { Cells := deletezero cells(nnn, No DataCells) } \\
& \text { The thinnest point is captured } \\
& \text { Point }_{20}:=\text { Cells }_{19} \quad \text { Point }_{20}=677 \\
& \mu_{\text {measured }}^{d}:=\text { mean(Cells) } \quad \sigma_{\text {measured }}^{d}:=\operatorname{Stdev}(\text { Cells })
\end{aligned}
$$

page :=READPRN("U:MSOFFICEDDrywell Program datalSept. 1994 DatalsandbedData OnlylSB 11 A.txt")

$$
\text { Dates }_{d}:=\text { Day }_{\text {year }}(9,14,1994)
$$

Points $49:=$ showcells(page, 7,0)

$$
\begin{aligned}
& \text { Data } \\
& \text { nnn:= convert(Points 49:7) } \\
& { }^{\text {No }} \text { DataCells }:=\text { length(nnn) }
\end{aligned}
$$

For this location point $23,24,30$, and 31 are located on a plug (reference 3.22) and have been omitted from the overall mean calculation for his location.

$$
\begin{aligned}
& \text { nnn :=Zero one }\left(\mathrm{mnn}^{\mathrm{No}}{ }^{\mathrm{No}} \text { DataCells; }{ }^{23}\right. \text {) } \\
& \cdot n n n:=\text { Zero one }_{\text {one }}(\mathrm{nnn}, \text { No } \text { DataCells }, 24 \text {) } \\
& \text { nnn :=Zero one (nnn, No DataCells }{ }^{30} \text {) } \\
& \text { nnn }:=\text { Zero one (nnn, No DataCells, } 31 \text {) } \\
& \text { Cells := deletezero cells (nnn, No DataCells) } \\
& \text { The thinnest point is captured Point } 20_{d}:=\text { Cells }_{19} \\
& \mu_{\text {measured }_{d}}:=\text { mean(Cells) } \quad \sigma_{\text {measured }_{d}}:=\operatorname{Sidev}(\text { Cells }) \quad \text { Standard }_{\text {enror }}^{d} \boldsymbol{}:=\frac{\sigma^{\text {measured }_{d}}}{\sqrt{\text { No DataCells }}}
\end{aligned}
$$

```
        For }199
    d:=d+1
page :=READPRN("U:WMSOFFICELDrywell Program datalSept.1996 DatalsandbedData Only\SB1IA.txt")
```



```
Points 49:= showcells(page, 7,0)
Points \(49=\left[\begin{array}{lllllll}0.884 & 0.828 & 0.824 & 0.797 & 0.83 & 0.806 & 0.737 \\ 0.787 & 0.856 & 0.83 & 0.827 & 0.834 & 0.845 & 0.788 \\ 0.711 & 0.758 & 0.856 & 0.724 & 0.756 & 0.668 & 0.8 \\ 0.828 & 0.828 & 1.043 & 0.843 & 0.851 & 0.815 & 0.814 \\ 0.848 & 1.026 & 1.149 & 0.905 & 0.875 & 0.901 & 0.759 \\ 0.79 & 0.941 & 0.809 & 0.892 & 0.904 & 0.802 & 0.8 \\ 0.884 & 0.832 & 0.813 & 0.934 & 0.918 & 0.917 & 0.917\end{array}\right]\)
nnn:= convert(Points 49,7)
No DataCells:= length(nnn)
```

For this location point 23, 24, 30, and 31 are located on a plug (reference 3.22) and have been omitted from the overall mean calculation for his location.

$$
\begin{array}{ll}
\text { nnn }:=\text { Zero one }(\text { nnn, No DataCells,23) } & \text { nnn }:=\text { Zero one (nnn, No DataCells, 24) } \\
\text { nnn }:=\text { Zero one }(\text { nnn, No DataCells, 30 }) & \text { nnn }:=\text { Zero one (nnn, No DataCells, } 31)
\end{array}
$$

Cells := deletezero cells ($\mathrm{nnn}^{\text {² }}$, No ${ }^{\text {DataCells }) ~}$

The thinnest point is captured . Point $2_{d}:=$ Cells $_{19}$
$\mu_{\text {measured }_{d}}:=$ mean(Cells) $\quad \sigma_{\text {measured }_{d}}:=\operatorname{Stdev}(\mathrm{Cells})$

For 2006
$d:=d+1$
page :=READPRN("U:MSOFFICEIDrywell Program datalOCT 2006 DatalSandbedISB11A.txt")

$$
\text { Dates }_{d}:=\text { Day }_{\text {year }}(10,16,2006)
$$

Points 49 := showcells(page, 7,0)
Points $_{49}=\left[\begin{array}{lllllll}0.8 \\ 0.905 & 0.832 & 0.829 & 0.803 & 0.83 & 0.812 & 0.737 \\ 0.797 & 0.825 & 0.834 & 0.822 & 0.858 & 0.783 & 0.795 \\ 0.72 & 0.766 & 0.858 & 0.731 & 0.762 & 0.669 & 0.764 \\ 0.739 & 1.047 & 1.057 & 0.806 & 0.761 & 0.821 & 0.849 \\ 0.843 & 1.09 & 1.104 & 0.879 & 0.879 & 0.854 & 0.817 \\ 0.741 & 0.897 & 0.818 & 0.89 & 0.907 & 0.833 & 0.826 \\ 0.875 & 0.869 & 0.923 & 0.886 & 0.871 & 0.81 & 0.842\end{array}\right]$
nnn $:=$ convert (Points 49.7)

$$
\text { No DataCells }:=\text { length }(\mathrm{mnn})
$$

For this location point 23, 24, 30, and 31 are located on a plug (reference 3.22) and have been omitted from the overall mean calculation for his location.

$$
\begin{aligned}
& n n n:=\text { Zero one (nnn, No DataCells, }{ }^{23} \text {) } \\
& \text { nnn :=Zero one(nnn, No DataCells, }{ }^{24} \text {) } \\
& \mathrm{nnn}:=\text { Zero one }_{\text {onn }}\left(\mathrm{nnn}, \text { No DataCells, }{ }^{30}\right. \text {) } \\
& \text { nnn :=Zero one (nnn, No DataCells, 31) } \\
& \text { Cells := deletezero cells (nin, No DataCells) } \\
& \text { The thinnest point is captured } \\
& \text { Point } 20_{\mathrm{d}}:=\text { Cells }_{19} \\
& \mu_{\text {measured }}^{d}:=\text { mean(Cells) } \quad \sigma_{\text {measured }_{d}}:=\operatorname{Stdev}(\text { Cells }) \\
& \text { Standard error }:=\frac{\sigma_{d} \text { measured }_{d}}{\sqrt{\text { No DataCells }}}
\end{aligned}
$$

Below are matrices which contain the Mean, Standard Deviation, Standard Error for each date.

$$
\text { Dates }=\left[\begin{array}{c}
1.993 \cdot 10^{3} \\
1.995 \cdot 10^{3} \\
1.997 \cdot 10^{3} \\
2.007 \cdot 10^{3}
\end{array}\right] \quad \text { Point } 20=\left[\begin{array}{c}
677 \\
677 \\
668 \\
669
\end{array}\right]
$$

$$
\mu_{\text {measured }}=\left[\begin{array}{c}
825.178 \\
820.378 \\
829.733 \\
821.511
\end{array}\right] \quad \text { Standard error }=\left[\begin{array}{c}
8.176 \\
7.669 \\
8.698 \\
8.019
\end{array}\right] \quad \sigma_{\text {measured }}=\left[\begin{array}{c}
57.235 \\
53.685 \\
60.885 \\
56.13
\end{array}\right]
$$

$$
\text { Total means }:=\text { rows }(\mu \text { measured }) \quad \text { Total means }=4
$$

$$
\text { MSS }:=\frac{\text { SSE }}{\text { DegreeFree }_{\text {sS }}} \quad \text { MSS }:=\frac{\text { SSR }}{\text { DegreeFree }_{\text {reg }}} \quad \text { MST }:=\frac{\text { SST }}{\text { DegreeFree }_{\text {st }}}
$$

$$
\text { MSS }=24.385
$$

$$
\mathrm{MSR}=4.642
$$

$$
M S T=17.804
$$

$$
\text { StGrand } \mathrm{err}:=\sqrt{\text { MSE }} \quad \text { StGrand } \mathrm{err}=4.938
$$

$$
\begin{aligned}
& \text { SST }:=\sum_{i=0}^{\text {last(Dates })}\left(\mu_{\text {measured }}^{i}-\operatorname{mean}\left(\mu_{\text {measured }}\right)\right)^{2} \\
& \text { SST }=53.413 \\
& \text { SSE: }=\sum_{i=0}^{\text {last(Dates })}\left(\mu_{\text {measured }}^{i}-\text { chat }\left(\text { Dates }, \mu_{\text {measured }}\right)_{i}\right)^{2} \quad \text { SSE }=48.771 \\
& \operatorname{SSR}:=\sum_{i=0}^{\text {last(Dates })}\left(\text { chat }\left(\text { Dates, } \mu_{\text {measured }}\right)_{i}-\text { mean }\left(\mu_{\text {measured }}\right)\right)^{2} \quad \text { SSR }=4.642 \\
& \text { DegreeFree }_{\text {ss }}:=\text { Total means }^{-2} \quad \text { DegreeFree }_{\text {reg }}:=1 \quad \text { DegreeFree }_{\text {st }}:=\text { Total means }^{-1}
\end{aligned}
$$

F Test for Corrosion

$$
\begin{aligned}
a:=0.05 \quad & F_{\text {actaul_Reg }}:=\frac{M S R}{M S E} \\
& F_{\text {critical_reg }}:=q F\left(1-a, \text { DegreeFree }_{\text {reg }},\right. \text { DegreeFree } \\
& F_{\text {rsitio_reg }}:=\frac{\dot{F}_{\text {actaul_Reg }}}{F_{\text {critical_reg }}} \\
& F_{\text {ratio_reg }}=0.01
\end{aligned}
$$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

$$
i:=0 . . \text { Total }_{\text {means }}-1 \quad \text { Hgrand measured } i=\text { mean }(\mu \text { measured })
$$

Plot of the grand mean and the actual means over time

To conservatively address the location, the apparent corrosion rate will be calculated and compared to the minimum required wall thickness at this elevation

$$
\left.\left.\mathrm{m}_{\mathrm{s}}:=\text { slope(Dates, } \mu_{\text {measured }}\right) \quad \mathrm{m}_{\mathrm{s}}=-0.201 \quad \mathrm{y}_{\mathrm{b}}:=\text { intercept(Dates, } \mu_{\text {measured }}\right) \quad \mathrm{y}_{\mathrm{b}}=1.225 \cdot 10^{3}
$$

The 95\% Confidence curves are calculated

$$
\begin{aligned}
& \alpha_{t}:=0.05 \quad \mathrm{k}:=2029-1985 \\
& \text { year }_{\text {predict }}:=1985+\mathrm{f} \cdot 2 \quad \text { Thick predict }:=\mathrm{m}_{\mathrm{f}} \cdot \text { year }_{\text {predict }}+y_{b} \\
& \text { Thick } \left.\left._{\text {actualmean }}:=\text { mean(Dates }\right) \quad \text { sum }:=\sum_{i}\left(\text { Dates }_{d}-\text { mean(Dates }\right)\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
\text { upper }_{\mathrm{f}}:= & {\text { Thick } \text { predict }_{\mathrm{f}} \cdots} \\
& +\left(\mathrm{qt}\left(1-\frac{\alpha_{t}}{2}, \text { Total }_{\text {means }}-2\right) \cdot \text { StGrand }_{\text {err }} \cdot \sqrt{1+\frac{1}{(d+1)}+\frac{\left(\text { year predict }- \text { Thick }_{\text {actualmean }}\right)^{2}}{\text { sum }}}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { lower }_{\mathrm{r}}:=\text { Thick }_{\text {predict }} \times \\
& +-\left[q \mathrm{q}\left(1-\frac{\alpha_{t}}{2}, \text { Total means }^{-2}\right) \cdot \text { StGrand }_{\text {ert }} \cdot \sqrt{1+\frac{1}{(d+1)}+\frac{\left(\text { year predict }_{f}-\text { Thick actualmean }^{2}\right.}{\text { sum }}}\right]
\end{aligned}
$$

Location Curve Fit Projected to Plant End Of Life

Therefore even though F-ratio does not support the regression model the above curve shows that even at the lower 95% confldence band this location will not corrode to below Drywell Vessel Minimum required thickness by the plant end of life.

The section below calculates what the postulated mean thickness would be if this grid were to corrode at a minimum observable rate observed in appendix 22.

$$
\begin{gathered}
\text { Rate }_{\text {min_observed }}:=6.9 \\
\text { Postulated meanthickness }:=\mu_{\text {measured }_{3}}-\text { Rate }_{\text {min_observed }}(2018-2006)
\end{gathered}
$$

Postulated meanthickness $=738.711$
which is greater than

$$
\mathrm{Tmin}_{:} \mathrm{gen}_{\mathrm{SB}_{3}}=736
$$

The following addresses the readings at the lowest single point

$$
\begin{aligned}
& \text { Point }{ }_{20}:=\text { Cells }_{19} \\
& \text { SST }_{\text {point }}:=\sum_{i=0}^{\text {last(Dates })}\left(\text { Point }_{20}-\text { mean }(\text { Point } 20)\right)^{2} \quad \quad \text { SST point }=72.75 \\
& \text { SSE point }:=\sum_{i=0}^{\text {last(Dates }}\left(\text { Point }_{20_{i}}-\text { yhat }(\text { Dates }, \text { Point } 20)_{i}\right)^{2} \quad \text { SSE } \text { point }^{2}=39.009 \\
& \operatorname{SSR}_{\text {point }}:=\sum_{i=0}^{\text {last(Dates })}\left(\text { yhat }(\text { Dates, Point } 20)_{1}-\operatorname{mean}(\text { Point } 20)\right)^{2} \quad S_{\text {PR }} \quad 33.741 \\
& \text { MSE }_{\text {point }}:=\frac{\text { SSE }_{\text {point }}}{\text { DegreeFree }_{\text {ss }}} \quad \text { MSR }_{\text {point }}:=\frac{\text { SSR }_{\text {point }}}{\text { DegreeFree }_{\text {reg }}} \quad \quad \text { MST }_{\text {point }}:=\frac{\text { SST }_{\text {point }}}{\text { Degreefree }_{\text {st }}} \\
& \begin{array}{ll}
\text { MSE }_{\text {point }}=19.505 & \text { MSR }_{\text {point }}=33.741 \\
\text { StPoint ert }:=\sqrt{\text { MSE }_{\text {point }}} & \text { StPoint err }=4.416
\end{array}
\end{aligned}
$$

F Test for Corrosion
$F_{\text {actaul_Reg }}:=\frac{\text { MSR }_{\text {point }}}{\text { MSE }_{\text {point }}}$
$F_{\text {ratio_reg }}:=\frac{F_{\text {actaul_Reg }}}{F_{\text {critical_reg }}}$
$F_{\text {ratio_reg }}=0.093$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

Local Tmin for this elevation in the Drywell :. Tmin_local $\mathrm{SB}_{\mathbf{f}}:=490$
(Ref. 3.25)

Curve Fit For Point 20 Projected to Plant End Of Life

Therefore based on regression model the above curve shows that this point will not corrode to below minimum required thickness by the plant end of life.

$$
\left.m_{\text {point }}:=\text { slope(Dates, Point } 20\right) \quad m_{\text {point }}=-0.541 \quad y_{\text {point }}:=\text { intercept }(\text { Dates, Point } 20) \quad y_{\text {point }}=1.754 \cdot 10^{3}
$$

The 95% Confidence curves are calculated
Pit $_{\text {curve }}:=\mathrm{m}_{\text {point }}$-year predict $+\mathrm{y}_{\text {point }}$

Pit $_{\text {actualmean }}:=$ mean(Dates $) \quad$ sum $:-\sum_{i}\left(\text { Dates }_{d}-\text { mean }(\text { Dates })\right)^{2}$
uppoint $_{f}:=$ Pit $_{\text {curve }_{\mathrm{f}} \ldots}$

$$
+\mathrm{qt}\left(1-\frac{\alpha_{t}}{2}, \text { Total }_{\text {means }}-2\right) \cdot \text { StPoint } \text { err } \sqrt{1+\frac{1}{(d+1)}+\frac{\left(\text { year }_{\text {. predict }}^{f}\right.}{}-\text { Pit actualmean }^{2}} \text { sum }^{(d)}
$$

lopoint $_{f}:=$ Pit $_{\text {curve }}^{f}, \ldots$

The section below calculates what the postulated individual thickness would be if this point were to corrode at a minimum observable rate observed in appendix 22.

The section below calculates what the postulated corrosion rate necessary for the thinnest individual point to , reach the local required thickness by 2029.

$$
\begin{aligned}
& \text { minpoint }=0.669 \quad \text { Tmin_local }_{S_{22}}=490 \\
& \text { required rate. }:=\frac{\left(1000 \cdot \text { pinpoint }_{22}-T_{\min }^{\perp} \text { local } S_{22}\right)}{(2005-2029)}, \quad \text { required }_{\text {rate. }}=-7.458 \quad \text { mils per year }
\end{aligned}
$$

Appendix 3 -Sandbed 11C
October 2006 Data
The data shown below was collected on 10/18/06

Cells $:=$ convert (Points 49,7)

$$
\text { No DataCells }:=\text { length (Cells) }
$$

Cells $:={\text { deletezero cells }\left(\text { Cells , No }{ }_{\text {DataCells }}\right) \cdot}^{\prime} \quad$ No DataCells $:=$ length (Cells $)$

The thinnest point at this location is point 5 and is shown below

```
minpoint := min(Cells)
```

 minpoint \(=767\)
 Mean and Standard Deviation

Standard Error

Standard error $:=\frac{\sigma_{\text {actual }}}{\sqrt{\text { No DataCells }}} \quad \quad$ Standard $_{\text {error }}=12.976$

Skewness

$$
\text { Skewness }:=\frac{1\left(\text { No }_{\text {DataCells }}\right) \cdot \overrightarrow{\Sigma\left(\text { Cells }-\mu_{\text {actual }}\right)^{3}}}{\left({ }^{\text {No }}{ }_{\text {DataCells }}-1\right) \cdot\left(\text { No }_{\text {DataCells }}-2\right) \cdot\left(\sigma_{\text {actual }}\right)^{3}} \quad \text { Skewness }=1.149
$$

Kurtosis

Normal Probability Plot

$$
\mathbf{j}:=0 \text {. last(Cells) . st }:=\operatorname{sort}(\text { Cells })
$$

$$
r_{j}:=j+1 \quad \operatorname{rank}_{j}:=\frac{\sum(\overrightarrow{\operatorname{srt}=\mathrm{srt}}) \cdot \mathrm{r}}{\overline{\sum s t=s t_{j}}}
$$

$$
p_{j}:=\frac{\text { rank }_{j}^{\prime}}{\operatorname{rows}(\text { Cells })+1}
$$

\because

$$
x:=1 \quad \text { N_Score }_{j}:=\operatorname{root}\left[\operatorname{cnorm}(x)-\left(p_{j}\right), x\right]
$$

$$
\begin{align*}
& \text { Kurtosis }:=\frac{\text { No }_{\text {DataCells }} \cdot\left(\text { No }_{\text {DataCells }}+1\right) \cdot \overline{\Sigma\left(\text { Cells }-\mu_{\text {actual }}\right)^{4}}}{(\text { No DataCells }-1) \cdot\left(\text { No }_{\text {DataCells }}-2\right) \cdot\left(\text { No }_{\text {DataCells }}-3\right) \cdot\left(\sigma_{\text {actual }}\right)^{4}} \text { Kurtosis }=0.406 \\
& +-\frac{3 \cdot\left(\text { No }_{\text {DataCells }}-1\right)^{2}}{\left({ }^{\text {No DataCells }}-2\right) \cdot(\text { No DataCells }-3)}
\end{align*}
$$

Upper and Lower Confidence Values
The Upper and Lower confidence values are calculated based on . 05 degree of confidence " α "

$$
\begin{aligned}
& \alpha:=.05 \quad \mathrm{~T} \alpha:=\mathrm{q}\left[\left[\left(1-\frac{\alpha}{2}\right), 48\right] \quad, \quad \mathrm{T} \alpha=2.011\right. \\
& \text { Lower } 95 \% \text { Con }:=\mu_{\text {actual }}-\text { T } \alpha \cdot \frac{\sigma_{\text {actual }}}{\sqrt{\text { No DataCells }} \quad, \quad \text { Lower } 95 \% \text { Con }{ }^{\prime}=872.161 .} \\
& \text { Upper } 95 \% \text { Con }:=\mu_{\text {actual }}+T \alpha \cdot \frac{\sigma_{\text {actual }}}{\sqrt{N_{\text {DataCells }}}} \quad \text {, }{ }_{1} \text { Upper }_{95 \% \text { Con }}=924.339
\end{aligned}
$$

These values represent a range on the calculated mean in which there is 95%, confidence.

Graphical Representation

distribution of the "Cells" data points are sorted in $1 / 2$ standard deviation increments (bins) within $+/-3$ standard deviations

Distribution := hist(Bins, Cells)

The mid points of the Bins are calculated

$$
k:=0 . .11 \quad \text { Midpoints }_{k}:=\frac{\left(\text { Bins }_{k}+\text { Bins }_{k+1}\right)}{2}
$$


```
normal \(^{\text {curve }}{ }_{0}:=\operatorname{pnorm}\left(\right.\) Bins \(\left._{1}, \mu_{\text {actual }}, \sigma_{\text {actual }}\right)\)
normal \(_{\text {curve }}:=\operatorname{pnorm}_{\mathrm{k}}\left(\right.\) Bins \(\left._{\mathrm{k}+1}, \mu_{\text {actual }}, \dot{\sigma}_{\text {actual }}\right)-\) prom \(\left(\right.\) Bins \(\left._{\mathrm{k}}, \mu_{\text {actual }}, \sigma_{\text {actual }}\right)\)
```

i j normal curve $:=$ No DataCells ${ }^{\text {normal }}$ curve

Results For 11 C

The following schematic shows: the the distribution of the samples, the normal curve based on the actual mean and standard deviation, the kurtosis, the skewness, the number of data points, and the the lower and upper 95% confidence values.

Data Distribution

Normal Probability Plot

Past calculation have split this area at the top 3 rows and the bottom 4 rows (ref. 3.22) h In order to be consistent with past calculations this data will be split in two groups and analyzed. The entire data set will also be evaluated.

The two groups are'named as follows: StopCELL := 21 .

$\mu l o w_{\text {actual }}:=$ mean(Jow points $) \quad$. . olow actual $:==$ Stdev (low points)
μ high actual $:=\operatorname{mean}\left(\right.$ high points $\left._{1}\right)$.

Standard Error

Skewness

Nolow DataCells $:=$ length(low paints)
Skewness low $:=\frac{(\text { Nolow DataCells }) \cdot \Sigma\left(\text { low points }-\mu_{\text {low }}^{\text {actual }}\right)^{3}}{(\text { Nolow DataCells }-1) \cdot(\text { Nolow DataCells }-2) \cdot\left(\text { olow }_{\text {actual }}\right)^{3}}$

Nohigh DataCells $:=$ length (high points)

Skewness $_{\text {high }}:=\frac{(\text { Nohigh DataCells }) \cdot \Sigma\left(\text { high points }-\mu \text { high actual }^{3}\right)^{3}}{(\text { Nohigh DataCells }-1) \cdot(\text { Nohigh DataCells }-2) \cdot(\text { ohigh actual })^{3}}$

Kurtosis

$$
\begin{aligned}
& +\frac{3 \cdot(\text { Nolow DataCells }-1)^{2}}{(\text { Nolow DataCells }-2) \cdot(\text { Nolow DataCells }-3)}
\end{aligned}
$$

$$
\begin{aligned}
& 1+-\frac{3 \cdot\left(\text { Nohigh }_{\text {DataCells }}-1\right)^{2}}{\left(\text { Nohigh }_{\text {DataCells }}-2\right) \cdot\left(\text { Nöhigh DataCells }-3_{1}\right)}
\end{aligned}
$$

Normal Probabillty Plot - Low points

$$
\begin{aligned}
& 1:=0 \text {.: last(low points) srt low }:=\text { sort(low points) } \\
& \mathbf{L}_{1}:=1+1
\end{aligned}
$$

$$
\begin{aligned}
& x:=1 \quad \text { N_Score }_{\text {low }}:=\operatorname{root}\left[\operatorname{cnorm}(x)-\left(p_{\text {low }_{1}}\right), x\right]
\end{aligned}
$$

Normal Probabllity Plot - High points

$$
\begin{aligned}
& x:=1 \quad \text { N_Score } \text { high }_{h}:=\operatorname{root}\left[\operatorname{cnorm}(x)-\left(p_{\text {high }_{h}}\right), x\right]
\end{aligned}
$$

Upper and Lower Confidence Values

$$
\begin{aligned}
& \alpha:=.05 \quad \mathrm{~T} \alpha:=\mathrm{qt}\left[\left(1-\frac{\alpha}{2}\right) ; 48\right] \quad \mathrm{T} \alpha=2.011 \\
& \text { Lowerhigh }_{95 \% \text { Con }}:=\mu \text { high }_{\text {actual }}-\text { T } \alpha \cdot \frac{\text { ohigh }_{\text {actual }}}{\sqrt{\text { Nohigh DataCells }}} \\
& \text { Upperhigh } 95 \% \text { Con }:=\mu h_{i g h} \text { actual }+\mathrm{T} \alpha \cdot \frac{\sigma \operatorname{chigh}_{\text {actual }}}{\sqrt{\text { Nohigh DataCells }}} \\
& \text { Lowerlow } 95 \% \text { Con }:=\mu_{\text {low }}^{\text {actual }}{ }^{\prime}-\mathrm{T}^{\prime} \alpha \cdot \frac{\text { olow actual }^{\text {' }}}{\sqrt{\text { Nolow DataCells }^{\prime}}} . \\
& \text { Upperlow } 95 \% \text { Con }:=\mu l o w ~ a c t u a l ~+T \alpha \cdot \frac{\text { olow actual }}{\sqrt{\text { Nolow DataCells }}}
\end{aligned}
$$

Graphical Representation of Low Points

$$
\begin{aligned}
& \text { Bins }{ }_{\text {low }}:=\text { Make }_{\text {bins }}\left(\mu_{\text {low }}^{\text {actual }} \text {, olow actual }\right) \\
& \text { Distribution low } \left.:=\text { hist (Bins }{ }_{\text {low }} \text {, low points }\right) \\
& \text { The mid points of the Bins are calculated }
\end{aligned}
$$

$k:=0 . .11$

$$
\text { Midpoints }_{\text {low }_{k}}:=\frac{\left(\text { Bins }_{\text {low }_{k}}+\text { Bins }_{\text {low }_{k+1}}\right)}{2}
$$

normallow $_{\text {curve }_{0}}:=\operatorname{pnom}\left(\right.$ Bins $_{\text {low }_{1}, \text { How }_{\text {actual }} \text {, olow }}^{\text {actual }}$)

normallow $_{\text {curve }}:=$ Nolow $^{\text {DataCells }} \cdot$ normallow curve

Graphical Representation of High Points

Bins $_{\text {high }}:=$ Make $_{\text {bins }}\left(\mu_{\text {high }}^{\text {actual }}\right.$, ohigh $\left.{ }_{\text {actual }}\right)$

- Distribution high $:=$ hist (Bins high , high points)
i
$\mathbf{k}:=0 . .11 \quad 1$ Midpoints $_{\text {high }_{k}}:=\frac{\left(\text { Bins }_{\text {high }_{k}+\text { Bins }_{\text {high }}^{k}+1}\right)}{2} \quad$,

normalhigh curve ${ }_{0}:=$ pnorm(Bins high $_{1}$, whigh actual , ohigh actual).

normalhigh $_{\text {curve }}:=$ Nohigh $^{\text {DataCells }}$ - normalhigh curve

Results For Sandbed 11C Thinner Points

The above plots indicates that the thinner area is more normally distributed than the entire population.

C-1302-187-E310-04t Rev. No. 0

Sheet No.

 10 of 25Results Sandbed 11C Thicker Points

\rightarrow
The above plots indicates that the thicker areas are normally distributed.

Sandbed 11C

$$
\text { Data from } 1982 \text { to } 2006 \text { is retrieved. } \quad \text {, }:=0
$$

For Dec 311992
page $:=$ READPRN("U:LMSOFFICELDrywell Program dataWec. 1992 DatalsandbediDATA ONLYMSB11C.bxt")

Points $_{49}:=$ showcells(page $, 7,0$)

			Data'				
	0.94	0.839	0.806	0.917	0.776	0.86	0.926°
	1.10	1.044.	0.997	0.975	1.076	1.12	1.045
	1.09	1.175	1.018	0.942	0.94	0.874	0.896
Points $_{49}=$	0.84	0.845	0.794	0.833	. 0.838	0.838	0.87
	0,84	'0.829	0.863	0.87	0.85	0.85	0.827
	0.94	0.817	0.858	0.839	0.876	0.879	0.854
	0.60	0.893	0.905	0.901	0.913	0.877	0.845

nnn $:=$ convert (Points 49.7) No DataCells $:=\operatorname{length}(n n n) \quad$ nnn $:=$ Zero one (ninn, No DataCells, 43$)^{\prime}$
The thinnest point is captured

$$
\text { Point } 5_{d}:=\min _{4} \quad . \quad \text { Point } 5=776
$$

The two groups are named as follows:

$$
\text { StopCELL }:=2 i \quad \text { No Cells }:=\text { length(Cells })
$$

$$
\begin{aligned}
& { }^{\text {low }} \text { points }:=\text { LOWROWS (nnn, No Cells }, \text { StopCELL) }: \quad \text { high }_{\text {points }}:=\text { TOPROWS (nnn, No Cells } ; \text { StopCELL) }{ }^{\prime} \\
& { }^{\text {No }}{ }_{\text {lowCeils }}:=\text { length (low points } \text {) } \\
& \text { Cells }:=\text { deletezero cells (nnn, No Cells) } \\
& \text { low points }:=\text { deletezero cells (low points, No lowCells) }
\end{aligned}
$$

$$
\begin{aligned}
& \mu_{\text {measured }}^{d}:=\operatorname{mean}(\text { Cells }) \\
& \mu_{\text {measured }}=908.83 \quad \sigma_{\text {measured }}:=\operatorname{Stdev}(\text { Cells }) \\
& \text { Standard }_{\text {error }}^{d}: \quad:=\frac{\sigma \text { measured }}{d} \\
& \mu_{\text {high }}^{\text {measured }}{ }_{d}:=\text { mean (high points) } \\
& \text { ohigh measured }_{d}:=\operatorname{Stdev} \text { (high points) } \\
& \text { Standardhigh } \text { error }_{d}:=\frac{\text { ohigh }_{\text {measured }_{d}}}{\sqrt{\text { length(high points) }}} \\
& \mu_{\text {low }}^{\text {measured }}{ }_{d}:=\text { mean (low }_{\text {points }} \text {) } \\
& \text { olow. measured }_{d}:=\operatorname{Stdev} \text { (low points) } \\
& \text { Standardlow } \left._{\text {error }}^{d} \text { }:=\frac{\text { olow }_{\text {measured }}^{d}}{}\right)
\end{aligned}
$$

For 1994

$$
d:=d+1
$$

page $:=$ READPRN("U:MMSOFFICEUDrywell Program datalSept. 1994 ' DatalsandbedMDȦTA ONLYISBIIC.txt")
Points 49 := showcells (page , 7, 0)
Dates $_{d}:=$ Day $_{\text {year }}(9,26,1994$.
Data
${ }^{*}$ Points $49=\left[\begin{array}{lllllll}0 & 0 & 0 & 0 & 0 & 0.855 & 0.866 \\ 0 & 0 & 1.042 & 1.095 & 1.036 & 1.093 & 1.032 \\ 1.042 & 1.085 & 0.945 & 0.938 & -0.938 & 0.895 & 0.889 \\ 0.836 & 0.846 & 0.795 & 0.828 & 0.833 & 0.843 & 0.869 \\ 0.823 & 0.842 & 0.873 & 0.872 & 0.837 & 0.822 & 0.879 \\ 0.855 & 0.836 & 0.862 & 0.824 & 0.872 & 0.857 & 0.823 \\ 0.86 & 0.874 & 0.899 & 0.876 & 0.88 & 0.84 & 0.851\end{array}\right]$.
nnn $:=$ convert $\left(\right.$ Points $\left._{49}, 7\right) \quad$ No DataCells $:=$ length(nnn)

$$
\text { The thinnest point is captured } \quad \text { Point }_{5_{d}}:=\mathrm{nnn}_{4}
$$

The two groups are named as follows:

$$
\begin{aligned}
& \text { low points }:=\text { LOWROWS (nnn, No Cells, StopCELL) } \\
& \text { No lowCells }:=\text { length (low points) } \\
& \text { Cells }:=\text { deletezero cells (mn , No Cells) } \\
& \text { low points }:=\text { deletezero cells (low points, No lowCells) }
\end{aligned}
$$

$$
\text { Standard }_{\text {error }}^{d} \text { }:=\frac{\sigma_{\text {measured }}^{d}}{} \sqrt{{ }^{\text {No DataCells }}}
$$

$\mu_{\text {measured }_{d}}:=$ mean(Cells $) \quad \sigma_{\text {measured }_{d}}:=\operatorname{Stdev(Cells)\quad \text {Standard}\text {error}_{d}:=\frac {\sigma _{\text {measured}}^{d}}{}} \sqrt{\text { No DataCells }}$
jhigh $_{\text {measured }}^{d}$ $:=$ mean(high points)

StopCELL := $21 \quad$ No Cells $:=$ length (nnn $)$
high points $:=$ TOPROWS (nnn ; No Cells, StopCELL $)$
${ }^{\text {No }}{ }_{\text {highCells }}:=$ length (high points)

$$
\text { How }_{\text {measured }}^{d} \text { }:=\text { mean }\left(\text { low }_{\text {points }}\right)
$$

ohigh measured ${ }_{d}:=\operatorname{Stdev}\left(\right.$ high $\left._{\text {points }}\right)$

$$
\text { olow }_{\text {measured }}^{d} \text { }:=\operatorname{Sidev}(\text { low points })
$$

Standardhigh $_{\text {error }_{\text {d. }}}:=\frac{\text { ohigh }_{\text {measured }_{d}}}{\sqrt{\text { length }_{\text {(high }}^{\text {points }} \text {) }}}$

$$
\text { Standardlow }_{\text {error }}^{d} 1:=\frac{\text { olow measured }_{d}}{\sqrt{\text { length }^{\text {(low points })}}}
$$

$$
\text { high }_{\text {points }}:=\text { deletezero cells (high points } \text { No highCells) }
$$

$$
d:=d+1
$$

page $:=$ READPRN("U:IMSOFFICELDrÿwell Program datalSept. 1996 DatalsandbedDATA ONLYMSB11C.txt")

```
            Points \(_{49}:=\) showcells (page, 7, 0)
                                    Dates \(_{d}:=\operatorname{Day}_{\text {year }}(9,23,1996)\)
```

Points $_{49}=\left[\begin{array}{lllllll}1.038 & 0.928 & 1.002 & 0.942 & 1.14 & 1.077 & 1.035 \\ 1.058 & 1.195 & 1.075 & 1.168 & 1.16 & 1.112 & 0.962 \\ 1.031 & 1.104 & 1.169 & 0.983 & 0.965 & 0.889 & 0.845 \\ 0.855 & 0.903 & 0.85 & 0.786 & 0.913 & 0.778 & 0.839 \\ 0.869 & 0.927 & 0.922 & 0.894 & 0.896 & 0.91 & 0.837 \\ 0.928 & 0.878 & 0.874 & 0.878 & 0.862 & 0.915 & 0.906 \\ 0.917 & 0.924 & 10.899 & 0.89 & 0.874 & 0.884 & 0.917\end{array}\right]$.

nnn $:=$ convert $(\text { Points } 49,7)^{1} \quad{ }^{\text {No }}{ }^{\text {DataCells }}:=\cdot$ length (nnn)

The thinnest point is captured \quad Point $5_{d}:=n n n_{4}$
The two groups are named as follows:
low $_{\text {points }}:=$ LOWROWS (nnn, No Cells, StopCELL $)$
$\mathrm{No}_{\text {lowCells }}:=$ length (low points)
Cells := deletezero cells (nnn, No Cells)

high $_{\text {points }}:=$ deletezero cells (high points $^{\prime}$, No higbCells)
$\mu_{\text {measured }_{d}}:=\operatorname{mean}($ Cells $) \quad \sigma_{\text {measured }_{d}}:=\operatorname{Stdev}\left(\right.$ Cells) \quad Standard $_{\text {error }_{d}}:=\frac{\sigma_{\text {measured }_{d}}^{\sqrt{\text { No DataCells }}}}{\sqrt{\text { D }}}$
μ high measured ${ }_{d}:=$ mean(high points)
ohigh $_{\text {measured }_{d}}:=\operatorname{Stdev}\left(\right.$ high $\left._{\text {points }}\right)$.
Standardhigh $\left._{\text {error }}^{d .}:=\frac{\text { ohigh }_{\text {measured }}^{d}}{}\right)$
.$^{\text {How }}$ measured $_{d}:=$ mean(low points)
olow $_{\text {measured }}^{d}$:= Stdev(low points)
Standardlow $_{\text {exror }}^{d}:=\frac{\text { olow measured }_{d}}{\sqrt{\text { length(low points) }}}$
page := READPRN("U:MSOFFICEDDrywell Program datalOct 2006 DatalSandbedSB'l 1C.ttx")

$$
\text { Points }_{49}:=\text { showcells }(\text { page }, 7,0) \quad \text { Dates }_{d}:=\text { Day }_{\text {year }}(10,18,2006)
$$

Cells $:=$ deletézero cells (nn, No Cells)

$$
\left.\mu_{\text {measured }_{d}}:=\text { mean(Cells }\right) \quad \sigma_{\text {measured }_{d}}:=\operatorname{Stdev}(\text { Cells }) \quad \text { Standard }_{\text {error }}^{d} 0:=\frac{{ }^{\sigma} \text { measured }_{d}}{\sqrt{\text { No DataCells }}}
$$

$$
\text { uhigh measured }:=\text { mean(high points })
$$

$$
\text { ohigh }_{\text {measured }}^{d} \text { }:=\text { Stdev (high points) }
$$

$$
\text { Standardhigh error }:=\frac{\text { ohigh measured }_{d}}{\sqrt{\text { length } \left.^{\text {(high }} \text { points }\right)}}
$$

$$
\begin{aligned}
& \mu \text { low measured }_{d}:=\operatorname{mean}\left(\text { low points }^{\text {(}}\right. \\
& \text { olow }_{\text {measured }}^{d} \text { := Stdev (low points) } \\
& \text { Standardlow }_{\text {error }}^{\mathbf{d}} \text { }:=\frac{\text { olow }_{\text {measured }}^{\mathbf{d}}}{}{ }_{\sqrt{\text { length }\left(\text { low }_{\text {points }}\right)}}
\end{aligned}
$$

$$
\begin{aligned}
& { }^{\text {low }} \text { points }:=\text { deletezero }^{\text {cells }} \text { (low points },{ }^{\text {No }}{ }_{\text {lowCells }} \text {) } \\
& \text { high }_{\text {points }}:=\text { deletezero cells (high points } \text {, No highCells) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { nnn }:=\text { convert (Points } 49,7 \text {) } \quad \text { No DataCells }:=\text { length (nnn) } \\
& \text { The thinnest point is captured . Point } 5_{A}:=\pi n n_{4} \\
& \text { The two groups are named as follows: } \\
& \text { low }_{\text {points }}: \doteq=\text { LOWROWS (nm, No Cells }, \text { StopCELL) } \\
& { }^{\text {No }} \text { lowCells }:=\text { length (low points) } \\
& \text { StopCELL :=21 No Cells }:=\text { length (nno) } \\
& \text { high }_{\text {points }}:=\text { TOPROWS (nmm, No Cells, StopCELL) } \\
& { }^{\text {No }}{ }_{\text {highCells }}:=\text { length (high points) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Data } \\
& \text { The two groups are named as follows: } \\
& \text { low }_{\text {points }}: \doteq=\text { LOWROWS (nm, No Cells }, \text { StopCELL) } \\
& { }^{\text {No }} \text { lowCells }:=\text { length (low points) }
\end{aligned}
$$

Below are the results

$$
\operatorname{SST}_{\text {low }_{V}}:=\sum_{i=0}^{\operatorname{last}(\text { Dates })}\left(\text { slow }_{\text {measured }_{i}}-\operatorname{mean}(\text { slow measured })\right)^{2}
$$

$$
\left.\operatorname{SST}_{\text {high }}:=\sum_{\cdot i=0}^{\operatorname{last}(D a t e s)}\left(\text { High }_{\text {measured }_{i}}-\text { mean }^{1} \mu_{\text {high }} \text { measured }^{\prime}\right)\right)^{2}
$$

$$
\operatorname{SSE}:=\sum_{i=0}^{\operatorname{last}(\text { Dates })}\left(\mu_{\text {measured }_{i}}-\text { yhat }\left(\text { Dates }, \mu_{\text {measured }}\right)_{i}\right)^{2}
$$

$$
\left.\operatorname{SSE}_{\text {low }}:=\sum_{i=0}^{\text {last(Dates })}\left(\text { Mow }_{i} \text { measured }_{i}-\text { yhat }^{(\text {Dates }, \mu l o w ~ m e a s u r e d ~}\right)_{i}\right)^{2}
$$

$$
S S E_{\text {high }}:=\sum_{i=0}^{\text {last }(\text { Dates })}\left(\mu h i g h_{\text {measured }_{i}}-\text { ghat }^{(\text {Dates }, \mu h i g h} \text { measured }_{i}\right)^{2}
$$

$$
S S R:=\sum_{i=0}^{\text {last(Dates })}\left(\text { yhat }\left(\text { Dates }, \mu_{\text {measured }}\right)_{i}-\text { mean }\left(\mu_{\text {measured }}\right)\right)^{2}
$$

$$
\operatorname{SSR}_{\text {low }}:=\sum_{i=0}^{\operatorname{last}(\text { Dates })}\left(\text { yhat }(\text { Dates , flow measured })_{i}-\text { mean }^{1}(\text { low measured })\right)^{2}
$$

$$
\operatorname{SSR}_{\text {high }}:=\sum_{i=0}^{\text {last(Dates })}\left(\operatorname{yhat}\left(\text { Dates }, \mu_{\text {high }} \text { measured }\right)_{i}-\text { mean }\left(\mu \text { high }_{\text {measured }}\right)\right)^{2}
$$

$$
\begin{aligned}
& \because \\
& \text { Total means }:=\operatorname{rows}\left(\mu_{\text {measured }}\right) \quad \text { Total means }=4 \\
& \mathrm{SST}:=\sum_{i=0}^{\operatorname{last}(\text { Dates })},\left(\mu_{\text {measured }_{i}}-\operatorname{mean}\left(\mu_{\text {measured }}\right)\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { DegreeFree }_{\text {ss }}:=\text { Total }_{\text {means }}-2 \quad \text { DegreeFree }_{\text {reg }}:=1 \\
& \text { DegreeFree }_{\text {st }}:=\text { Total means }_{-1}^{-1} \\
& \mathrm{MSE}:=\frac{\text { SSE }}{\text { DegreeFree }_{\text {sS }}} \quad \text { MSg }_{\text {low }}:=\frac{\text { SSE }_{\text {low }}}{\text { DegreeFree }_{\text {ss }}} \quad \cdot \mathrm{MSE}_{\text {high }}:=\frac{\text { SSE }_{\text {high }}}{\text { DegreeFree }_{\text {ss }}} .
\end{aligned}
$$

$$
\text { MST }_{1}=\frac{\text { SST }}{\text { DegrecFree }_{\text {st }}} \quad \text { MST }_{\text {low }}:=\frac{\text { SST }_{\text {low }}}{\text { DegreeFree }_{\text {st }}} \quad \text { MST }_{\text {high }}:=\frac{\text { SST }_{\text {high }}}{\text { DegreeFree }_{\text {st }}}
$$

Test the means with all points

F Test for Corrosion

$$
\begin{aligned}
& \alpha:=0.05 \quad F_{\text {actaul_Reg }}:=\frac{\text { MR }}{M S E} \\
& \dot{F}_{\text {critical_reg }}:=\mathrm{qF}\left(1-\alpha, \text { DegreeFree }_{\text {reg }}, \text { DegreeFree }_{\text {ss }}\right) \\
& F_{\text {ratio_reg }}:=\frac{F_{\text {actaul_Reg }}}{F_{\text {critical_reg }}} . \\
& { }^{\prime} \mathrm{F}_{\text {ratio_reg }}=4.446 \cdot 10^{-3}
\end{aligned}
$$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure
the low points


```
\(F_{\text {ratio_reg.low }}:=\frac{F_{\text {actaul_Reg.low }}}{: F_{\text {critical_reg }}}\)
\(\stackrel{L}{\text { ratio_reg.low }}^{\prime}=1.892 \cdot 10^{-3}\)
```

The conclusion can not be made that the low points best fit the regression model. The figure below provides a trend of the data and the grandmean.

Test the high points

```
F Test for Corrosion
\(\mathrm{F}_{\text {actaul_Reg.high }}:=\frac{\text { MSR }_{\text {high }}}{\text { MSE }_{\text {high }}}\)
\(F_{\text {critical_reg }}:=\mathbf{q F}\left(1-\alpha\right.\), DegreeFree \(_{\text {reg }}\), DegreeFree \(\left._{\text {ss }}\right)\)
\(F_{\text {ratio_reg.high }}:=\frac{F_{\text {actaul_Reg.high }}}{F_{\text {critical_reg }}}\)
\(F_{\text {ratio_reg.high }}=0.012\)
```

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure relow provides a trend of the data and the grandmean
icwing will plot the results for the overall mean, the mean of thinner points, and the meari of thicker
ii. ! ,

$$
\mathrm{i}:=0 . . \text { Total }_{\text {means }}-1
$$

,μ grand measured $:=\operatorname{mean}\left(\mu_{\text {measured }}\right) \quad$. ogrand measured $:=\operatorname{Stdev}\left(\mu_{\text {measured }}\right)$.

$$
\text { GrandStandard }_{\text {error }}:=\frac{\sigma^{\text {grand }} \text { measured }}{\sqrt{\text { Total means }}}
$$

$$
\text { ogrand }_{\text {powmeasured }}:=\operatorname{Stdev}(\mu \text { low measured }) \quad \mu \text { lowhgrand } \text { measured }_{j}:=\text { mean }(\mu \mathrm{low} \text { measured })
$$

θ minimum required thickness at this elevation is ${\operatorname{Tmin} _\operatorname{gen}_{\mathrm{SB}_{\mathrm{i}}}:=736 \text { (Ref. 3.25) }}_{\text {(R) }}$ (

The F Test indicates that the regression model does not hold for any of the data sets. However for .conservatism the slopes and 95% confidence curves are generated for all three cases:

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{s}}:=\operatorname{slope}\left(\begin{array}{c}
1 \\
\text { Dates }, ~
\end{array} \mu_{\text {measured }}\right) \\
& y_{b}:=\operatorname{intercept}\left(\text { Dates , } \mu_{\text {measured }}\right) \\
& \left.\left.\mathrm{m}_{\text {lows }}:=\text { slope (Dates, } \mu_{\text {low }}^{\text {measured }}\right) \quad y_{\text {lowb }}:=\text { intercept (Dates, , How } \text { measured }\right) \\
& m_{\text {highs }}:=\text { slope (Dates, } \mu \text { high measured) } \quad \quad y_{\text {highb }}: \frac{1}{1} \text { intercept (Dates, } \mu \text { high measured) } \\
& 1 \\
& \alpha_{t}:=0.05 \quad k:=23 \quad f:=0 . . k-1 \\
& \text { year }_{\text {predict }}^{f} \text { : }:=1985+\mathbf{f}-2 \\
& \text { Thick }{ }_{\text {predict }}:=\mathrm{m}_{\mathrm{s}} \cdot \mathrm{year} \text { predict }+\mathrm{y}_{\mathrm{b}} \\
& \text { Thick lowpredict }:=m_{\text {lows }} \text { •year }{ }_{\text {predict }}+\mathrm{y}_{\text {lowb }} \ldots \text {. } \\
& \text { Thick highpredict }:=\mathrm{m}_{\text {highs }} \cdot \text { year }_{\text {predict }}+\dot{y}_{\text {highb }} \\
& \text { Thick actualmean }:=\text { mean(Dates) } \\
& \operatorname{sum}:=\sum_{i}\left(\text { Dates }_{\mathrm{d}}-\operatorname{mean}(\text { Dates })\right)^{2}
\end{aligned}
$$

For the entire grid
upper $_{f}:=$ Thick $_{\text {predict }}^{f}$...
$1+q t\left(1-\frac{\alpha_{t}}{2}\right.$, Total $\left._{\text {means }}-2\right) \cdot$ Standard $_{\text {error }} \cdot \sqrt{1+\frac{1}{(d+1)}+\frac{\left(\text { year }_{\text {predict }}^{f}-\text { Thick actualmean }\right)^{2}}{\text { sum }}}$
lower $_{\mathrm{f}}:=$ Thick $_{\text {predict }}^{\mathrm{f}}$...
$+-\left[q t\left(1-\frac{\alpha_{t}}{2}\right.\right.$, Total means $\left.^{+}-2\right) \cdot$ Standard $_{\text {error }} \cdot\left[1+\frac{1}{(d+1)}+\frac{\left(\text { year }_{\left.\text {predict }_{f}-\text { Thick }_{\text {actualmean }}\right)^{2}}^{\text {sum }}\right.}{}\right]$
1

General area Tmin for this elevation in the Drywell
(Ref. 3.25)


```
upper 
```

$$
+q t\left(1-\frac{\alpha_{t}}{2}, \text { Total means }_{\because}-2\right) \cdot \text { Standard }_{\text {higherror }} \sqrt{1+\frac{1}{(d+1)}+\frac{\left(\text { year }_{\text {predict }}^{f}-\text { Thick }_{\text {actualmean }}\right)^{2}}{\text { sum }}}
$$

$$
\text { lower }_{f}:=\text { Thick }_{\text {highpredict }}^{f} \text {... }
$$

$$
+-\left[1 \cdot\left(1-\frac{\alpha_{t}}{2}, \text { Total means }^{-2}\right) \cdot \text { Standard }_{\text {higherror }} \cdot \sqrt{\left.1+\frac{1}{(d+1)}+\frac{\left(\text { year }_{\text {predict } \left._{f}-\text { Thick }_{\text {actualmean }}\right)^{2}}^{\text {sum }}\right.}{}\right]}\right.
$$

For the points which are thinner

$$
\begin{aligned}
& \text { upper }_{f}:=\text { Thick }^{\prime}{ }^{\prime} \text { owpredict }{ }_{f} \ldots
\end{aligned}
$$

$$
\begin{aligned}
& \text { lower }_{f}:=\text { Thick }^{\text {lowpredict }_{f}}{ }^{\ldots}
\end{aligned}
$$

The section below calculates what the postulated mean thickness would be if this grid were to corrode at a minimum observable rate observed in appendix 22.

$$
\text { Rate }_{\text {min_observed }}:=6.9
$$

$$
\text { Postulated meanthickness }:=\mu_{\text {measured }_{3}}-\text { Rate }_{\text {min_observed }} \cdot(2029-2006 .)
$$

Postulated meanthickness $=739.55$
which is greater than
Tmin_gen SB $_{3}=736$
The following addresses the readings at the lowest single point

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

$$
\begin{aligned}
& \text { SST }_{\text {point }}:=\sum_{i=0}^{\text {last(Dates })}\left(\text { Point }_{5_{i}}-\operatorname{mean}\left(\text { Point }_{5}\right)\right)^{2} . \quad \text { SST }_{\text {point }}=6.904=10^{5} \\
& \text { SSE }_{\text {point }}:=\sum_{i=0}^{\text {last (Dates }^{\prime}}\left(\text { Point }_{5_{i}}-\text { yhat }(\text { Dates, Point } 5)_{i}\right)^{2} \quad S_{\text {point }}=6.585 \cdot 10^{5} \\
& \left(\int_{\text {PSR }}:=\sum_{i=0}^{\text {last(Dates })}\left(\text { yhat }(\text { Dates }, \text { Point } 5)_{i}-\operatorname{mean}(\text { Point } 5)\right)^{2} \quad \operatorname{SSR}_{\text {point }}=3.194 \cdot 10^{4}\right. \\
& \text { MSE }_{\text {point }}:=\frac{\text { SSE }_{\text {point }}}{\text { DegreeFree }_{\text {ss }}} \quad \text { MSR }_{\text {point }}:=\frac{\text { SSR }_{\text {point }}}{\text { DegreeFree }_{\text {reg }}} \quad \text { MST } \text { point }:=\frac{\text { SST }_{\text {point }}}{\text { DegreeFree }_{\text {st }}} \\
& \text { StPit }_{\text {err }}:=\sqrt{\text { MSE }_{\text {point }}} \quad \text { StPit }_{\text {err }}=573.803 \\
& \text { MSE }_{\text {point }}=3.292 \cdot 10^{5} \quad \text { MSR }_{\text {point }}=3.194 \cdot 10^{4} \quad \therefore \quad \operatorname{MST}_{\text {point }}=2.301 \cdot 10^{5} \\
& \text { F Test for Corrosion } \\
& F_{\text {actaul_Reg }}:=\frac{\text { MSR }_{\text {point }}}{\text { MSE }_{\text {point }}} \\
& \text {, } F_{\text {ratio_reg }}:=\frac{F_{\text {actaul_Reg }}}{F_{\text {critical_reg }}} \\
& F_{\text {ratio_reg }}=5.241 \cdot 10^{-3}
\end{aligned}
$$

Local Tmin for this elevation in the Drywell Tmin_local $\mathrm{SB}_{f}:=490$
(Ref. 3.25)
Curve Fit For Point 5 Projected to Plant End Of Life

The section below calculates what the postulated individual thickness would be if this point were to corrode at a minimum observable rate observed in appendix 22.

$$
\text { Rate min_observed }:=6.9
$$

Postulated thickness $:=$ Point $_{5_{3}}-$ Rate min_observed $(2029-2006)$
Postulated thickness $=608.3 \quad$ which is greater than . Tmin_local $\mathbf{S B}_{3}=490$

The section below calculates what the postulated corrosion rate necessary for the thinnest individual point to reach the local required thickness by 2029.

$$
\text { minpoint }=767 \quad \text { year }_{\text {predict }_{22}}=2.029 \cdot 10^{3} \quad \mathrm{Tmin}_{2} \text { local } \mathrm{SB}_{\underline{2}}=490
$$

required $_{\text {rate. }}:=\frac{\left(\text { minpoint-Tmin_local } \mathrm{SB}_{22}\right)}{(2005-2029)}$

$$
\text { required }_{\text {rate. }}=-11.542 \quad \text { mils per year }
$$

Appendix 4 - Sand Bed Elevation Bay 13A

October 2006 Data
The data shown below was collected on 10/20/06.
page $:=$ READPRN("U:UViSOFFICEIDrywell Program datalOct 2006 DatalSandbedSB13A.txt")

	0.887	0.833	0.887	0.908	1.046	0.951	0.922
	0.823	0.883	0.774	0.826	0.897	0.87	0.783
1.1	0.76	0.913	0.798	0,823	0.746	0.759	0.768
Points $49=$	0.845	0.895	0.875	0.848	0.788	0,799	0.852
	0.88	0.811	0.861	- 0.869	0.798	0.846	0.84
	0.816	0.813	0.869	0.924	. 0.824	0.785	0.87
	0.801	0.834	0.763	0.838	0.895	0.885	0.863

$$
\text { Cells }:=\text { convert }\left(\text { Points }_{49}, 7\right)
$$

$$
{ }^{\text {No }} \text { DataCells }:=\text { length (Cells) }
$$

The thinnest point at this location is at point 15 shown below

$$
\text { minpoint }:=\min \left(\text { Points }_{49}\right) \quad \ddots_{\text {minpoint }}^{\prime}=0.746
$$

$$
\text { Cells }:=\text { deletezero cells (Cells, No DataCells) }
$$

Point 5 is much thicker than the mean of the rest of distribution. Therefore the distribution of the grid without this point will also be investigated:

$$
\begin{aligned}
& \text { Cells }_{\text {min5 }}:=\text { Cells } \\
& \text { Cells }_{\text {min5 }_{4}}:=0 \\
& \text { Cells }_{\text {min } 5}:=\text { deletezero }^{\text {cells }}\left(\text { Cells }_{\text {min5 }}\right. \text {, No DataCells) } \\
& \text { No } \text { DataCells.min5 }:=\text { length(Cells }_{\text {min5 }} \text {) }
\end{aligned}
$$

Mean and Standard Deviation

$$
\begin{aligned}
& \mu_{\text {actual }}:=\operatorname{mean}(\text { Cells }) \quad \mu_{\text {actual }}=845.796 \quad \sigma_{\text {actual }}:=\operatorname{Stdev(\text {Cellis})} \quad \sigma_{\text {actual }}=57.413 \\
& \mu_{\text {actual.mins }}:=\operatorname{mean}(\text { Cells } \operatorname{min5}) \\
& \text { Standard Error }
\end{aligned}
$$

$$
\text { Standard }_{\text {error }}:=\frac{\sigma_{\text {actual }}}{\sqrt{\text { No DataCells }}}
$$

$$
\text { Standard error }=8.202
$$

$$
\text { Standard elror.min5 }:=\frac{\sigma_{\text {actual.min5 }}}{\sqrt{\text { No } \text { DataCells.min } 5}}
$$

$$
S_{\text {Standard }} \text { errormins }=7.211
$$

Skewness

Kurtosis

$$
\begin{aligned}
& \text { Kurtosis }:=\frac{\text { No }_{\text {DataCells }} \cdot\left({ }^{\text {No }} \text { DataCells }+1\right) \cdot \overrightarrow{\Sigma\left(\text { Cells }-\mu_{\text {actual }}\right)^{4}}}{\left(\text { No }_{\text {DataCells }}-1\right) \cdot(\text { No DataCells }-2) \cdot\left(\text { No }_{\text {DataCells }}-3\right) \cdot\left(\sigma_{\text {actual }}\right)^{4}} \cdots \\
& +-\frac{3 \cdot\left(\text { No }_{\text {DataCells }}-1\right)^{2}}{\left({ }^{\text {No }}{ }_{\text {DataCells }}-2\right) \cdot\left({ }^{\text {No }} \text { DataCells }-3\right)} \quad \text { Kurtosis }=1.696
\end{aligned}
$$

$$
\begin{aligned}
& 3 \cdot\left(\text { No }_{\text {DataCells.min5 }}-1\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Skewness }:=\frac{\left(\text { No }_{\text {DataCells }}\right) \cdot \Sigma \overrightarrow{\left(\text { Cells }-\mu_{\text {actual }}\right)^{3}}}{\left({ }^{\text {No }} \text { DataCells }-1\right) \cdot\left({ }^{\text {No }}{ }_{\text {DataCells }}-2\right) \cdot\left(\sigma_{\text {actual }}\right)^{3}} \cdot \text { Skewness }=0.745 \\
& \text { Skewness }_{\min 5}:=\frac{\left(\text { No }_{\text {DataCells.min5 }}\right) \cdot \sum \overrightarrow{\left(\text { Cells }_{\min 5}-\mu_{\text {actual.min5 }}\right)^{3}}}{\left(\text { No }_{\text {DataCells.min5 }}-1\right) \cdot\left(\text { No }_{\text {DataCells.mins }}-2\right) \cdot\left(\sigma_{\text {actual.min5 }}\right)^{3}} \text { Skewness }_{\min 5}=-0.011
\end{aligned}
$$

Normal Probability Plot

In a normal plot, each data value is plotted against what its value would be if it actually came from a normal distribution. The expected normal values, called normal scores, and can be . estimated by first calculating the rank scores of the sorted data.

$$
\mathbf{j}:=0 \text {.. last (Cells) } \quad \text { srt }:=\text { sort (Cells })
$$

Then each data point is ranked. The array rank captures these ranks! .

$$
\begin{aligned}
& r_{j}:=j+1 \quad \operatorname{rank}_{j}:=\frac{\left.\sum \overrightarrow{(\overrightarrow{s r t=} \overrightarrow{s r t}}\right) \cdot r}{\sum \overrightarrow{s_{j}=\mathbf{s r t}_{j}}{ }^{4}}, \\
& p_{j}:=\frac{\text { rank }_{j}}{\operatorname{rows}(\text { Cells })+1}
\end{aligned}
$$

The normal scores are the corresponding p th percentile points from the standard normal distribution:

$$
x:=1 \quad \text { N_Score }:=\operatorname{root}\left[\operatorname{cnorm}(x)-\left(p_{j}\right), x\right]
$$

Upper and Lower Confidence Values

The Upper and Lower confidence values are calculated based on . 05 degree of confidence " α "
${ }^{\text {No }}$ DataCells := length(Cells)

$$
\alpha:=.05
$$

$\mathrm{T} \alpha:=\mathrm{qt}\left[\left(1-\frac{\alpha}{2}\right)\right.$, No DataCells $] \mathrm{T} \alpha=2.01$

$$
\begin{aligned}
& { }^{r} \text { Lower }_{95 \% \text { Con }}:=\mu_{\text {actual }}-\mathrm{T} \alpha \cdot \frac{\sigma_{\text {actual }}}{\sqrt{\text { No }_{\text {DataCells }}}} \quad \quad \text { Lower }_{95 \% \text { Con }}=.829 .314 \\
& \text { Upper } 95 \% \text { Con }:=\mu_{\text {actual }}+T \alpha \frac{\sigma_{\text {actual }}}{\sqrt{\text { No DataCells }}} \quad . \quad \text { Upper } 95 \% \text { Con }=862.278
\end{aligned}
$$

These values represent a range on the calculated mean in which there is 95% confidence.

Graphical Representation

Distribution of the "Cells" data points are sorted in $1 / 2$ standard deviation increments (bins) within $+/-3$ standard deviations

$$
\begin{aligned}
& \text { Bins }:=\text { Make bins }\left(\mu_{\text {actual }}, \sigma_{\text {actual }}\right) \\
& \text { Distribution }:=\text { hist(Bins }, \text { Cells })
\end{aligned}
$$

The mid points of the Bins are calculated

The Mathcad function pnorm calculates a portion of normal distribution curve based on a given mean and standard deviation

```
normal \(_{\text {curve }}:=\operatorname{pnorm}\left(\right.\) Bins \(\left._{1}, \mu_{\text {actual }}, \sigma_{\text {actual }}\right)\)
\(n^{\text {normal }}\) curve \(_{k}:=\operatorname{pnorm}\left(\right.\) Bins \(\left._{k+1}, \mu_{\text {actual }}, \sigma_{\text {actual }}\right)-\operatorname{pnorm}\left(\right.\) Bins \(\left._{k}, \mu_{\text {actual }}, \sigma_{\text {actual }}\right)\)
    normal curve \(:=\) No DataCells \(\cdot\) normal curve
```

Results For Elevation Sandbed elevation Location Oct. 2006
The following schematic shows: the the distribution of the samples, the normal curve based on the actual mean and standard deviation, the kurtosis, the skewness, the number of data points, and the the lower and . upper 95% confidence values. Below is the Normal Plot for the data.
Data Distribution
$\mu_{\text {actual }}=.845 .796$
$\sigma_{\text {actual }}=57.413$
I_{4}
${ }^{\prime}$ Standard $_{\text {error }}=8.202$
Skewness $=0.745$
Kurtosis $_{5}=-0.748$
Lower 95% Con $=829.314 \quad \therefore$ Upper 95% Con $=862.278$
Normal Probability Plot

This distribution is not normal when Point 5 (1.046 inch) is included. However when this point is excluded form the distribution the remaining grid is normal as illustrated by the Kurtosis and skewness values.

Sandbed Location 13A Trend
1 $:=0$
Data from the 1992, 1994 and 1996 is retrieved.

For 1992
Dates $_{d}:=$ Day $_{\text {year }}(12,8,1992)$
page : $=$ READPRN("U:WSOFFICELDrywell Program datalDec. 1992 DatalsandbedWata OnlylSB13A.txt")

- Points 49 := showcells(page, 7, 0)

$$
\begin{aligned}
& \mathrm{nm}:=\text { convert (Points } 49,7) \quad \text { No DataCells }:=\text { length (nnn) } \\
& \text { The thinnest point is captured . Poimt } 18_{\mathrm{d}}:=\mathrm{nnn}_{18} \quad \text { Point } 18=761 \\
& \text { Cells }:=\text { deletezero cells (nnn, No DataCells) } \\
& \mu_{\text {measured }_{d}}:=\text { mean(iCells) } \quad \sigma_{\text {measured }_{d}}:=\operatorname{Stdev}(\text { Cells }) \quad \text { Standard }_{\text {error }}^{d} \quad:=\frac{\sigma_{\text {measured }}^{d}}{}
\end{aligned}
$$

Dates $_{\text {d }}:=$ PDay $_{\text {year }}(9,14,1994)$
Points 49 := showcells(page , 7,0)

Data

1.1	0.869	0.842	Q8856	0.845	1.019	0.987	0.926
	0.805	0.826	0.791	0.823	0.858	0.847	0.79
	0.745	0.896	0.803	0.764	0.752	0.764	0.819
Points $49=$	0.851	0.873	0.861	0.853	0.787	0.793	0.845
	0.868	0.793	0.849	0.877	0.799	0.847	0.83
	0.822	0.798	0.866	0.918	0.825°	0.775	0.843
	0.84	0.834	$\cdot 0.762$	0.793	0.879	0.865	0.862

nnn $:=$ convert (Points 49,7$) \quad$ No DataCells $:=$ length ($n \mathrm{nn}$)

The thinnest point is captured \quad Point $18_{d}:=\mathrm{nnn}_{18}$

$$
\begin{aligned}
& \text { Cells := deletezero cells (nnn , No DataCells) }
\end{aligned}
$$

```
    For }199
                d := d+1
page := READPRN( "U:WMSOFFICELDrywell Programn datalSept.1996 DatalsandbedWata OnlylSBI3'A.txt" )
```

 Dates \(_{\mathrm{d} .}:=\) Day \(_{\text {year }}(9,16,1996)\)
 Points \(_{49}\) := showcells(page , 7, 0)

nan :='convert (Points 49,7)
No DataCells := length (nme
$1{ }^{\prime}$
The thinnest point is captured
,
Point $18_{d}:=\operatorname{mnn}_{18}$
Cells := deletezero cells (nnn, No DataCells)

Sheet No.
9 of 16
page : = READPRN("U:MSOFFICEWrywell Program datalOct 2006 DatalSandbedSB13A.txt")

$$
, \text { Dates }_{\mathrm{d}}:=\text { Day year }(10,16,2006)
$$

Points 49 := showcells (page, 7,0)

Data

1	0.887	0.833	- 0.887	0.908	1.046	0.951	0.922
	0.823	0.883	0.774	0.826	0.897	0.87	0.783
	0.76	0.913	0.798	0.823	0.746	0.759	0.768
Points $49=$	0.845	0.895	0.875	0.848	0.788	0.799	0.852
	0.88	0.811	0.861	0.869	0.798	0.846	0.84
	0.816	0.813	0.869	0.924	0.824	0.785	0.87
	0.801	0.834	0.763	0.838	0.895	0.885	0.863

nin : $=$ convert (Points 49,7)

$$
\text { No DataCells }:=\text { length (nnn) }
$$

it The thinnest point is captured

$$
\text { Point }{ }_{18}:=\operatorname{mnn}_{18}
$$

Cells := deletezero cells (nnn, No DataCells)
$\mu_{\text {measured }_{d}}:=\operatorname{mean}($ Cells $) \quad \sigma_{\text {measured }}^{d}:=\operatorname{Stdev}($ Cells $) \quad$ Standard $_{\text {error }}^{d}:=\frac{\sigma_{\text {measured }}^{d}}{}$

Below are matrices which contain the date when the data was collected, Mean, Standard Deviation, Standard Erjor for each date.

$$
\text { Dates }=\left[\begin{array}{c}
1.993 \cdot 10^{3} \\
1.995 \cdot 10^{3} \\
1.997 \cdot 10^{3} \\
2.007 \cdot 10^{3}
\end{array}\right] \quad \text { Point } 18=\left[\begin{array}{c}
761 \\
752 \\
774 \\
746
\end{array}\right]
$$

$$
\mu_{\text {measured }}^{1}=\left[\begin{array}{c}
857.612 \\
837.041 \\
853.061 \\
845.796
\end{array}\right] \quad \text { Standard }_{\text {error }}=\left[\begin{array}{c}
9.554 \\
7.763 \\
8.831 \\
8.202
\end{array}\right], \quad \sigma_{\text {measured }}=\left[\begin{array}{c}
66.876 \\
54.344 \\
61.819 \\
57.413
\end{array}\right] .
$$

$$
\text { Total means }:=\text { rows }\left(\mu_{\text {measured }}\right) \quad \because \quad \text { Total means }=4
$$

$$
\text { SST }:=\sum_{i=0}^{\operatorname{last}(\text { Dates })}\left(\mu_{\text {measured }_{i}}-\operatorname{mean}\left(\mu_{\text {measured }}\right)\right)^{2} \quad \quad \text { SST }=242.403
$$

last(Dates)

$$
\operatorname{SSE}:=\sum_{i=0}^{\text {last(Dates })}\left(\mu_{\text {measured }_{i}}-\text { yhat }\left(\text { Dates }, \mathrm{H}_{\text {measured }}\right)_{i}\right)^{2} \quad \text { SSE }=229.789
$$

$$
\operatorname{SSR}:=\sum_{i=0}^{\text {last(Dates })}\left(\text { yhat }\left(\text { Dates, } \mu_{\text {measured }}\right)_{i}-\text { mean }\left(\mu_{\text {measured }}\right)\right)^{2} \quad \operatorname{SSR}=12.614
$$

$$
\text { DegreeFree }_{\text {ss }}:=\text { Total means } \quad 2 \quad \text { DegreeFree }_{\text {reg }}:=1 \quad \text { DegreeFree }_{\text {st }}:=\text { Total means }-1
$$

$$
\text { MSE }:=\frac{\text { SSE }}{\text { DegreeFree }_{\text {ss }}} \quad \quad \text { MSR }:=\frac{\text { SSR }}{\text { DegreeFree }_{\text {reg }}} \quad \text { MST }:=\frac{\text { SST }}{\text { DegreeFree }_{\text {st }}}
$$

$$
\text { StGrand }_{\text {err }}:=\sqrt{\text { MSE }}, \quad \text { StGrand }_{\text {err }}=10.719
$$

F Test for Corrosion

$$
\alpha:=0.05 \quad F_{\text {actaul_Reg }}:=\frac{\text { MSR }}{\text { MSE }}
$$

$$
\begin{aligned}
& F_{، \text { rcritical_reg }}:=q F\left(1-\alpha, \text { DegreeFree }_{\text {reg }}, \text { DegraeFred ss }_{\text {ss }}\right) \\
& F_{\text {ratio_reg }}:=\frac{F_{\text {actaul_Reg }}}{F_{\text {critical_reg }}} \\
& F_{\text {ratio_reg }}=5.93 \bullet 10^{-9}
\end{aligned}
$$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

Plot of the grand mean and the actual means over time

To conservatively address the location, the apparent corrosion rate is calculated and compared to the minimum required wall thickness at this elevation

$$
\left.m_{s}:=\text { slope (Dates, } \mu_{\text {measured }}\right) \quad m_{s}=-0.331 \quad y_{b}:=\text { intercept }\left(\text { Dates } ; \mu_{\text {measured }}\right) . y_{b}=1.509 \cdot 10^{3}
$$

1
The 95\% Confidence curves are calculated

$$
\alpha_{t}:=0.05 \mathrm{k}:=2029-1985 \quad \quad f:=0 . . k-1
$$

p

$$
\text { year }_{\text {predict }_{f}}:=1985+\mathrm{f} \cdot 2 \text { Thick predict }:=\mathrm{m}_{\mathrm{s}} \cdot \text { year }_{\text {predict }}+\mathrm{y}_{\mathrm{b}}
$$

1.

$$
\text { upper }_{f}:=\text { Thick }_{\text {predict }}^{f} \text {... }
$$

$$
+q t\left(1-\frac{\alpha_{t}}{2}, \text { Total means }^{2} 2\right): \text { StGrand }_{\text {err }} \cdot \sqrt{1+\frac{1}{(d+1)}+\frac{\left(\text { year }_{\text {predict }}^{f}-\text { Thick actualmean }\right)^{2}}{\text { sum }}}
$$

$$
\text { lower }_{f}:=\text { Thick }_{\text {predict }_{f}} . .
$$

$$
+-\left[q t\left(1-\frac{\alpha_{t}}{2}, \text { Total means }-2\right) \cdot \text { StGrand } e r^{\cdot} \cdot \sqrt{1+\frac{1}{(d+1)}+\frac{\left(\text { year predict }_{\mathrm{f}}-\text { Thick } \text { actuaimean }^{2}\right.}{\text { sum }}}\right]
$$

Therefore even though F-ratio does not support the regression madel the above curve shows that even at the lower 95% confidence band this location will not corrode to below Drywell Vessel Minimum required thickness by the plant end of life.

The section below calculates what the postulated mean thickness would be if this grid were to corrode at a minimum observable rate observed in appendix 22.

$$
\text { Rate min_observed }:=6.9
$$

Postulated meanthickness $:=\mu_{\text {measured }_{3}}-$ Rate min observed $(2020-2006)$ -
Postulated meanthickness $=749.196 \quad$ which is greater than \quad Tmin_gen $\mathrm{SB}_{3}=736$

The following addresses the readings at the lowest single point
1
The F-Ratio is calculated for the point as follows

$$
\text { SST }_{\text {point }}:=\sum_{i=0}^{\text {last(Dates })}\left(\text { Point }_{18_{i}}-\operatorname{mean}(\text { Point } 18)\right)^{2} \quad, \quad \text { SST }_{\text {point }}=444.75
$$

F Test for Corrosion

$$
F_{\text {actaul_Reg }}:=\frac{\text { MSR }_{\text {point }}}{\text { MSE }_{\text {point }}}
$$

$$
F_{\text {ratio_reg }}:=\frac{F_{\text {actaul_Reg }}}{F_{\text {critical_reg }}}
$$

$$
F_{\text {ratio_reg }}=0.044
$$

$$
\begin{aligned}
& \operatorname{SSE}_{\text {point }}:=\sum_{i=0}^{\text {last(Dates }}\left(\text { Point }_{18}-\text { yhat }(\text { Dates }, \text { Point } 18)_{i}\right)^{2} \quad \therefore \quad \operatorname{SSE}_{\text {point }}=317.009 \\
& \left.\operatorname{SSR} \text { point }:=\sum_{i=0}^{\text {last(Dates })}(\text { yhat (Dates , Point } 18)_{i}-\operatorname{mean}(\text { Point } 18)\right)^{2} \quad \text { SSR }_{\text {point }}=127.741 \\
& \text { MSE }_{\text {point }}:=\frac{\text { SSE }_{\text {point }}}{\text { DegreeFree }_{\text {ss }}} \quad \text { MSR }_{\text {point }}:=\frac{\text { SSR }_{\text {point }}}{\text { DegreeFree }_{\text {reg }}} \quad \quad \text { MST }_{\text {point }}:=\frac{\text { SST }_{\text {point }}}{\text { DegreeFree }_{\text {st }}} \\
& 1 \quad 1 \\
& \mathrm{MSE}_{\text {point }}=158.505 \quad \mathrm{MSR}_{\text {point }}=127.741 \quad \cdot \quad . \mathrm{MST}_{\text {point }}=148.25 \\
& \text { StPoint }_{\text {err }}:=\sqrt{\text { MSE }_{\text {point }}} \quad \text { StPoint }_{\text {err }}=12.59
\end{aligned}
$$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure beloy provides a trend of the data and the grandmean

$$
\left.\left.m_{\text {point }}:=\text { slope (Dates , Point } 18\right) m_{\text {point }}=-1.053 \text { y } y_{\text {point }}:=\text { intercept (Dates, Point } 18\right) y_{\text {point }}=2.861 \cdot 10^{3}
$$

'The 95\% Confidence curves are calculated

$$
\begin{aligned}
& \text { Point curve }^{:=m_{\text {point }} \cdot \text { year }_{\text {predict }}+y_{\text {point }}} \\
& \text { Point } \left._{\text {actualmean }}:=\text { mean(Dates }\right)
\end{aligned} \quad \text { sum }:=\sum_{i}\left(\text { Dates }_{d}-\operatorname{mean}(\text { Dates })\right)^{2} .
$$

$$
\text { uppoint }_{f}:=\text { Point }_{\text {curve }_{f}} \cdots
$$

$$
I+q t\left(1-\frac{\alpha_{i}}{2}, \text { Total means }-2\right) \cdot \text { StPoint }_{\text {err }} \sqrt{\left.1+\frac{1}{(d+1)}+\frac{\left(\text { year }_{\text {predict }}^{r}\right.}{}-\text { Point }_{\text {actualmean }}\right)^{2}} \text { sum }
$$

$$
\text { lopoint }_{f}:=\text { Point }_{f} \text { curve }_{f} \ldots
$$

$$
+-\left[q t\left(1-\frac{\alpha_{t}}{2}, \text { Total }_{\text {means }}-2\right) \cdot \text { StPoint }_{\text {err }} \cdot \sqrt{\left.1+\frac{1}{(d+1)}+\frac{\left(\text { year predict }^{f}-\text { Point }_{\text {actualmean }}\right)^{2}}{\text { sum }}\right]}\right]
$$

Local Tmin for this elevation in the Drywell \quad Tmin_local SB $_{\mathbf{r}}:=490$
(Ref. 3.25)
Curve Fit For Point 18 Projected to Plant End Of Life

The section below calculates what the postulated individual thickness would be if this point were to corrode at a minimum observable rate observed in appendix 22.

The section below calculates what the postulated corrosion rate necessary for the thinnest individual polnt to reach the local required thickness by 2029.

$$
\text { required rate. }:=\frac{\left(1000 \cdot \text { minpoint }-\mathrm{Tmin} _ \text {local } \mathrm{SB}_{22}\right)}{(2005-2029)} \quad \text { required }_{\text {rate. }}=-10.667 \quad \text { mils per year }
$$

$$
\begin{aligned}
& \text { Rate }_{\text {min_observed }}:=6.9 \\
& \text { Postulated thickness }:=\text { Point } 18 \text { - Rate } \text { min_observed } \text { (2029-2006) } \\
& \text { Postulated thickness }=587.3 \\
& \text { which is greater than } \\
& \text { Tmin_local } \mathrm{SB}_{3}=490
\end{aligned}
$$

pendix 5-Sandbed 13D
te ; 2006 Data
z data shown below was collected on 10/18/2006

```
page :== READPRN( "U:LMSOFFICELDrywell Program datalOCT 2006 DatalSandbedISB13C-D.txt" ),
                                    Points.49:= showcells(page , 7, 0)
Points \(49=\left[\begin{array}{llllllll}1.114 & 1.117 & 1.132 & 1.083 & 1.068 & 1.106 & 1.119^{\prime} \\ 0.95 & 1.041 & 0.999 & 1.061 & 1.007 & 1.117 & 1.1 \\ 0.986 & 0.95 & 0.837 & 0.833 & 0.949 & 1.088 & 1.085 \\ 1.005 & 0.977 & 0.878 & 0.851 & 0.911 & 0.958 & 0.997 \\ 0.96 & 0.907 & 0.874 & 0.874 & 0.915 & 0.916 & 0.905 \\ 0.944 & 0.947 & 0.897 & 0.887 & 0.92 & 0.865 & 0.892 \\ 0.996 & 0.939 & 0.929 & 0.958 & 0.944 & 0.832 & 0.821\end{array}\right]\)
Cells := convert(Points 49,7) No DataCells := length(Cells)
thinnest point at this location is point 49 shown below
\[
\text { minpoint }:=\min (\text { Points } 49) \quad \text { minpoint }=0.821
\]
Cells := deletezero cells(Cells, No DataCells)
No DataCells := length(Cells)
```

Mean and Standard Deviation
$\mu_{\text {actual }}:=\operatorname{mean}($ Cells $) \quad \mu_{\text {actual }}=968.184 \quad \quad \sigma_{\text {actual }}:=\operatorname{Stdev}(\operatorname{Cells}) \quad \sigma_{\text {actual }}=90.136$

Standa'd Error

Standard $_{\text {error }}:=\frac{\sigma_{\text {actual }}}{\sqrt{\text { No DataCells }}}$

$$
\text { Standard }_{\text {error }}=12.877
$$

Skewness
Skewness $:=\frac{{ }^{\prime}(\text { No DataCells }) \cdot \stackrel{\sum\left(\text { Cells }-\mu_{\text {actual }}\right)^{3}}{\left(\text { No }_{\text {DataCelis }}-1\right) \cdot\left(\text { No }_{\text {DataCells }}-2\right) \cdot\left(\sigma_{\text {actual }}\right)^{3}} \quad \text { Skewness }=0.342}{}$

Kurtosis

$$
\begin{aligned}
& +-\frac{3 \cdot\left(\text { No }^{\text {DataCells }}-1\right)^{2}}{\left(\text { No DataCells }^{2}-2\right) \cdot\left(\text { No DataCells }^{-3}\right)}
\end{aligned}
$$

Normal Probability Plot

$$
\begin{aligned}
& j:=0 \text {. last(Cells) st }:=\operatorname{sort}(\text { Cells }) \\
& r_{j}:=j+1 \quad \text { rank }:=\frac{\sum \overline{\left(\overrightarrow{s r t=s t t_{j}}\right)} \cdot r}{\sum \overrightarrow{s t t=s r t_{j}}} \\
& p_{j}:=\frac{\text { rank }_{j}!}{\text { rows (Cells })+1} \\
& x:=1 \quad N_{1} S_{i c o r e}^{j}:=\operatorname{root}\left[\operatorname{cromm}(x)-\left(p_{j}\right), x\right]
\end{aligned}
$$

ad Lower Confidence Values

\ni Upper and Lower confidence values are calculated based on .05 degree of confidence " α "

se values represent a range on the calculated mean in which there is 95% confidence.
phical Representation
ribution of the "Cells" data points are sorted in $1 / 2$ standard deviation increments (bins) within $+/-3$ standard ations

Results For 13D

The following, schematic shows: the the distribution of the samples, the normal curve based on the actual mean and standard deviation, the kurtosis, the skewness, the number of data points, and the the lowerand upper 95% confidence values.

There is a slightly thinner area of 16 points near the center of this location. Past calculations (ref. 3.22) have split this area out as a separate groups and performed analysis on both groups. In order to be consistent with past calculations this data will be split in two groups and analyzed. The entire data set will also be evaluated.

The two groups are named as follows: , Stoptop :=16 Botstar :=28

$$
\begin{aligned}
& \text { high }_{\text {points }}:=\text { Add (Cells, No DataCells } ; 22 \text {, length (} \text { high }_{\text {points }} \text {) , high }{ }_{\text {points }} \text {) } \\
& \text { high } \left._{\text {points }}:=\text { Add (Cells , No DataCells }, 27 \text {, length (} \text { high }_{\text {points }} \text {) , high points }\right) \\
& \text { high } \left.\left._{\text {points }}:=\text { Add (Cells , No DataCells }, 28 \text {, length (high }{ }_{\text {points }}\right), \text { high }_{\text {points }}\right) \\
& \text { length. }\left(\text { high }_{\text {points }}\right)=22 \\
& { }^{\text {low }} \text { points }:=\text { Add (Cells },{ }^{\text {No }} \text { DataCells }, 17 \text {, Iength (low points), low points) } \\
& \text { low } \left._{\text {points }}:=\text { Add (Cells , No DataCells } ; 18 \text {, length (low points) }{ }^{\text {m }} \text {, low points }\right) \\
& \text { low points }:=\text { Add (Cells , No DataCells }, 23 \text {, length(low points }) \text {, low points) } \\
& \text { low }_{\text {points }}:=\text { Add (Cells , No DataCells , } 24 \text {, length(} \text { low points } \text {, low points) } \\
& \text { low } \left._{\text {points }}:=\text { Add (Cells , No DataCells }, 25 \text {, length(low points), low points }\right) \\
& \text { low points }:=\text { Add (Cells , No DataCells }, 26, \text { length(low points), low points) } \\
& \text { length }\left(\text { low }_{\text {points }}\right)=27
\end{aligned}
$$

and Standard Deviation
$\mu^{l o w}$ actual $:=$ mean(${ }^{\text {low }}$ points $)$
$\mu_{\text {high }}^{\text {actual }}:$
Standard Error

$$
\text { Hhigh }_{\text {actual }}:=\text { mean' }^{\prime}\left(\text { high }_{\text {points }}\right)
$$

$$
\begin{aligned}
& \text { olow }_{\text {actual }}:=\operatorname{Stdev}(\text { low points }) \\
& \text { ohigh actual }:=\operatorname{Stdev}\left(\text { high }_{\text {points }}\right)
\end{aligned}
$$

Standard Error

Skewness

Nolow DataCells $:=$ length (low ${ }_{\text {points }}$)

Skewness high $:=\frac{\left(\text { Nohigh }_{\text {DataCells }}\right) \cdot \Sigma \overline{\left(\text { ligh }_{\text {points }}-\mu \text { high }_{\text {actual }}\right)^{3}}}{\left(\text { Nohigh }_{\text {DataCells }}-1\right) \cdot\left(\text { Nohigh }_{\text {DataCells }}-2\right) \cdot(\text { ohigh actual })^{3}}$

Kurtosis

Normal Probability Plot - Low points

Normal Probability Plot - High points

$$
\text { (j }:=1 \quad \text { N_Score } \operatorname{high}_{h}:=\operatorname{root}\left[\operatorname{cnorm}(x)-\left(p_{\text {high}_{h}}\right), x\right]
$$

$$
\begin{aligned}
& h:=0 \text {.. last(high points) stt high }:=\text { sort (high points) }
\end{aligned}
$$

$$
\begin{aligned}
& 1:=0 \text {. last(low points) srt low }:=\operatorname{sort}\left(\text { low }_{\text {points }}\right) \\
& L_{1}:=1+1
\end{aligned}
$$

$$
\begin{aligned}
& P_{\text {low }}:=\frac{\text { rank }_{\text {low }}^{1}}{} \text { rows }(\text { low points })+1, \\
& x:=1 \quad N_{-} \text {Score }_{\text {low }}:=\operatorname{root}\left[\operatorname{cnorm}(x)-\left(p_{\text {low }_{1}}\right), x\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { Kurtosis }{ }_{\text {low }}:=\frac{1 \text { Nolow DataCells } \cdot(\text { Nolow DataCells }+1) \cdot \overline{\Sigma\left(\text { low }_{\text {points }}-\mu \text { low }_{\text {actual }}\right)^{4}}}{(\text { Nolow DataCells }-1) \cdot(\text { Nolow DataCells }-2) \cdot(\text { Nolow DataCells }-3)^{4} \cdot\left(\text { olow }_{\text {actual }}\right)} \ldots \\
& +-\frac{3 \cdot\left(\text { Nolow }^{\text {DataCells }}-1\right)^{2}}{(\text { Nolow DataCells }-2) \cdot(\text { Nolow DataCells }-3)}
\end{aligned}
$$

$$
\begin{aligned}
& +-\frac{\left.1^{3 \cdot\left(\text { Nohigh }^{\prime}\right.} \text { DataCells }-1\right)^{2}}{\left(\text { Nohigh }_{\text {DataCells }}-2\right) \cdot(\text { Nohigh DataCells }-3)}
\end{aligned}
$$

Upper and Lower Confidence Values

$\alpha:=.05 \quad \therefore \quad \mathrm{~T} \alpha:=\mathrm{qt}\left[\left(1-\frac{\alpha}{2}\right), 48\right] \quad \mathrm{T} \alpha=2.011$
Lowerhigh $_{95 \% \text { Con }}:=\operatorname{lhigh}_{\text {actual }}-\mathrm{T} \alpha \cdot \frac{\text { ohigh }_{\text {actual }}}{\sqrt{\text { Nohigh DataCells }}}$

Upperlow $_{95 \% \text { Con }}:=\mu_{\text {low }}^{\text {actual }}+\mathrm{T} \alpha \cdot \frac{\text { olow }_{\text {actual }}}{\sqrt{\text { Nolow }_{\text {DataCells }}}}$

Graphical Representation of Low Points

normallow $_{\text {curve }}^{0}$:= pnorm(Bins $_{1}$ low $_{1}$, Hlow actual , olow actual $)$

nomaliow curve $:=$ Nolow DataCells ${ }^{\text {normallow }}$ curve

Results For Sandbed Location 13D Thinner point

$$
\text { , . Lowerlow } 95 \% \text { Con }=886.045 \quad \text { Upperlow }_{95 \% \text { Con }}=922.029
$$

The above plots indicates that the thinner area is more normally distributed than the entire population.

Results For Sandbed Location 13D Thicker Points

The above plots indicates that the thicker areas are some what normally distributed.

Sandbed 13D

Data from. 1992 to 2006 is retrieved.

$$
\mathrm{d}:==^{\prime} 0
$$

For Dec 311992

$$
\text { page := READPRN("U:MMSOFFICEIDrywell Program datalDec. } 1992 \text { DatalsandbedIDATA ONLYSB13C-D.oxt") }
$$

$$
\text { Points } 49:=\text { showcells (page , } 7,0 \text {) }
$$

Data
Points \quad A. $=\left[\begin{array}{lllllll}1.064 & 1.117 & 1.134 & 1.103 & 1.105 & 1.106 & 1.117 \\ 0.949 & 1.081 & 1 & 1.054 & 1.151 & 1.118 & 1.121 \\ 0.984 & 0.948 & 0.868 & 0.834 & 0.979 & 1.048 & 1.067 \\ 0.963 & 0.98 & 0.893 & 0.855 & 0.913 & 0.981 & 1.012 \\ 0.957 & 0.958 & 0.869 & 0.879 & 0.917 & 0.913 & 0.911 \\ 0.963 & 0.948 & 0.895 & 0.88 & 0.915 & 0.862 & 0.905 \\ 1.016 & 0.918 & 0.927 & 0.92 & 0.918 & 0.825 & 0.824\end{array}\right]$

$$
\begin{array}{rlr}
\text { mn }:=\text { convert (Points } 49,7) & \text { No Cells }:=\text { length(nnn) } \\
\text { Point }_{49}:=\text { nnn }_{48} & \text { Point } 49=824
\end{array}
$$

high $_{\text {points }}:=$ Add ($n \mathrm{mn}$, No DataCells, 19, length (high points), high ${ }_{\text {points }}$)
high points $:=$ Add (nmn , No DataCells, 20, length $^{\left.\left(\text {high }_{\text {points }}\right), \text { high }_{\text {points }}\right) ~}$
high $_{\text {points }}:=$ Add (nnn , No DataCells, 21 , length (high points) , high points)
high points $:=$ Add (nnn , No DataCells, 22, length $^{\left.\left(\text {high }_{\text {points }}\right), \text { high }_{\text {points }}\right) ~}$
high $_{\text {points }}:=A d d\left(\right.$ nnn, No DataCells, 27, length $^{\left.\left(\text {high }_{\text {points }}\right), \text { high }_{\text {points }}\right)}$
high $_{\text {points }}:=$ Add (nnn , No DataCells, 28, length (high $_{\text {points }}$) , high points $)$
low points $^{:=} \operatorname{Add}(\mathrm{nnn}$, No DataCells, 17 , length (low points), low points)

```
    low points := Add (nnn, No DataCells, 18, length(low points), low points)
    low points := Add(nnn, No DataCells, 23, length(low points), low points)
    low points :=Add (nnn, No DataCells, 24, length(low points), low'points)
    low points := Add(nnn, No DataCells, 25, length(low points), low points)
    low points := Add (nnn, No DataCells , 26, length(low points), low points)
    Cells := deletezero cells(nnn;No Cells)
    high points := deletezero cells(high points, length(high points))
    low points := deletezero cells(low points, length(low points))
    |
```



```
        \muhigh measured := mean(high points) . . .. . .low measured amemen(low points)
        \sigmahigh measured d}:=S\mathrm{ Stdev(high points) Glow measured }:= Stdev(low points
        Standardhigh errord}:=\frac{\mathrm{ ohigh measured d}}{\sqrt{}{\mathrm{ length(high points)}}
        Standardlow eirord}:=\frac{\mp@subsup{\sigmalow}{\mathrm{ measured }}{d}}{\sqrt{}{\mathrm{ length(low points)}}
```

For 1994
page $:=$ READPRN("U:LMSOFFICELDrywell Program datalSept. 1994 DatalsandbedIDATA ONLYISB13C-D.txt")
Points ${ }_{49}:=$ showcells(page , 7,0)
Dates $_{d}:=$ Day year $^{(9,26 ; 1994)}$
Data

nnn $:=$ convert (Points 49,7 . No DataCells $:=$ length (nnn)

$$
\text { Point }_{49}:=\mathrm{nnn}_{48} \quad \text { No Cells }:=\text { length }(\mathrm{nnn})
$$

The two groups are named as follows: Botstar $:=28$. Stoptop $:=16$

$$
\begin{aligned}
& { }^{\text {low }}{ }_{\text {points }}^{\prime}:=\text { LOWROWS (nmn , No DataCells }, \text { Botstar) } \quad \text { high points }:=\text { TOPROWS (nnn, No DataCells }, \text { Stoptop) } \\
& \text { high points } \left.:=\operatorname{Add}\left(\mathrm{nnn}, \text { No }_{\text {DataCells }}, 19 \text {, length (high }{ }_{\text {points }}\right), \text { high }_{\text {points }}\right) \\
& \text { high points }:=\operatorname{Add}(\text { nnn , No DataCells }, 20 \text {, length (high points) , high points) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { high }_{\text {points }}:=\text { Add (nnn , No } \text { DataCells } \text { 22, length(high points) , high points). } \\
& \text { high points }:=\text { Add (nnn , No DataCells }, 27, \text { length(high points), high points) } \\
& \text { (high points } \left.:=\operatorname{Add}\left(n n n, \text { No }_{\text {DataCells }}, 28, \text { length (high points) }\right) \text { high points }\right)
\end{aligned}
$$

```
low points := Add (nin, No DataCells, 17, length(low points), low points)
low points:= Add(nnn, No DataCells, 18, length(low points), low points)
low points}:= Add (nin, No DataCells, 23, length(low points), low points) (%
low points := Add (nnn, No DataCells, 24, length(low points), low points)
low
low points := Add (nmn, No DataCells, 26, length(low points),"low points)
    Cells := deletezero cells(nnn, No Cells).
    high points := delctezero cells(high points, length (high points))
    low points := deletezero cells (low points, length(low points ))
```

 \(\mu_{\text {measured }_{d}}:=\operatorname{mean}(\) Cells \() \quad \sigma_{\text {measured }_{d}}:=\operatorname{Stdev}(\) Cells \() \quad\) Standard \(_{\text {error }}^{d}\) \(:=\frac{\sigma_{\text {measured }}^{d}}{\sqrt{\text { No DataCells }}}\)
 $$
\begin{aligned}
& \mu \text { high }_{\text {measured }}^{d} \text { := mean(high points) } \\
& \text { ohigh }_{\text {measured }}^{d}:=S t d e v\left(\text { high }_{\text {points }}\right) \\
& \text { Standardhigh error }:=\frac{\text { ohigh }_{\mathrm{d}} \text { measured }_{\mathrm{d}}}{\sqrt{\text { length (high points })}} \\
& \mu_{\text {low }}^{\text {measured }}{ }_{d}:=\text { mean(} \text { low }_{\text {points }} \text {) } \\
& \text { olow } \text { measured }_{d}:=\operatorname{Stdev} \text { (low points) } \\
& \text { Standardlow }_{\text {error }}^{d}:=\frac{\text { olow measured }_{d}}{\sqrt{\text { length (low points } \text {) }}}
\end{aligned}
$$

Sheet No. 16 of 31

For 1996

$$
d:=d+1
$$

page := READPRN("U:MMSOFFICELDrywell Program datalSept 1996 DatalsandbedWATA ONLYSBB13C-D.txt")

$$
\text { Point }{ }_{49}:=n n n_{48}
$$

() The two groups are named as follows:

StopCELL : $=21$
${ }^{\text {No }}{ }_{\text {Cells }}:=$ length (in)

$$
\begin{aligned}
& \text { The two groups are named as follows: Botstar }:=28 \quad \text { Stoptop }:=16 \\
& \text { low points }:=\text { LOWROWS (nan, No DataCells } \text {, Botstar) } \quad \text { high }_{\text {points. }}:=\text { TOPROWS (inn , No DataCells , Stoptop) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { high } \left._{\text {points }}:=\text { Add (in },{ }^{\text {No }}{ }_{\text {DataCells }}, 19, \text { length (high points) }\right) \text { high points) } \\
& \text { high points }^{:=A d d}\left(\operatorname{mn}, \text { No DataCells }, 20, \text { length (high points) } \text {, high }_{\text {points }}\right. \text {) } \\
& \text { high points }^{:=} \text {Add (in, No DataCells }, 21 \text {, length (high points) , high points) } \\
& \text { high } \left._{\text {points }}:=\operatorname{Add}\left(\mathrm{nnn}, \mathrm{No}_{\text {DataCells }}, 22 \text {, length (high points }\right), \text { high }_{\text {points }}\right) . \\
& \text { high } \left._{\text {points }}:=\operatorname{Add}\left(\mathrm{nnn}, \text { No }{ }^{\text {DataCells }}, 27, \text { length (high points) }\right) \text { high }{ }_{\text {points }}\right) \\
& \text { high } \left._{\text {points }}:=\text { Add (in, No }{ }_{\text {DataCells }}, 28 \text {, length (high points) } \text {, high points }\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { (low points }:=\operatorname{Add}\left(\mathrm{nm}, \text { No }_{\text {DataCells }}, 17, \text { length }\left(\text { low }_{\text {points }}\right) \text {, low points }\right) \\
& \text { low }_{\text {points }}:=\text { Add }\left(\mathrm{nnn}, \mathrm{No}_{\text {DataCelis }} ; 18, \text { length }\left(\text { low }_{\text {points }}\right), \text { low }_{\text {points }}\right) \\
& \text { low }_{\text {points }}:=\text { Add (nnn }, \mathrm{No}_{\text {DataCells }}, 23 \text {, length (low points), low points) } \\
& { }^{\text {low }}{ }_{\text {points }}:=\dot{\text { Add }}\left(\mathrm{nnm}^{\mathrm{No}}{ }_{\text {DataCells }}, 24, \text { length }\left(\text { low }_{\text {points }}\right), \text { low }_{\text {points }}\right) \\
& { }^{\text {low }} \text { points }:=\text { Add (nnn, No DataCells }, 25 \text {, length (} \text { low }_{\text {points }} \text {), low points) } \\
& \left.{ }^{\text {low }}{ }_{\text {points }}:=\text { Add (nnn }, \text { No }_{\text {DataCells }} \cdot 126 \text {, lengtit (low points }\right): \text { low }_{\text {points }} \text {) } \\
& \text { Cells := deletezero cells (nnn, No Cells) } \\
& \text { high }_{\text {points }}:=\text { deletezero }_{\text {cells }}\left(\text { high }_{\text {points }} \text {, length (} \text { high }_{\text {points }}\right) \text {) } \\
& { }^{\text {low }} \text { points }:=\text { deletezero }^{\text {cells }}\left({ }^{\text {low }} \text { points }, \text { length }\left({ }^{\text {low }} \text { points }\right)\right) \\
& \mu_{\text {measured }_{d}}:=\operatorname{mean}(\text { Cells }) \quad \sigma_{\text {measured }_{d}}:=\operatorname{Stdev}(\text { Ceils }) \quad \text { Slandard }_{\text {error }_{d}}:=\frac{{ }^{\sigma} \text { measured }_{d}}{\sqrt{\text { No DataCells }}} \\
& \text { Hhigh }_{\text {measured }_{d}}:=\operatorname{mean}^{\left(\text {high }_{\text {points }}\right) .} \\
& \text { orhigh }_{\text {measured }}^{d} \text { }:=S t d e v\left(\text { high }_{\text {points }}\right) \\
& \text { Standardhigh }_{\text {error }_{d}}:=\frac{\text { ohigh }_{\text {measured }_{d}}}{\sqrt{\text { length } \left.\text { high }_{\text {points }}\right)}}
\end{aligned}
$$

$$
\text { Points } 49:=\text { showcells (page , 7, 0) } \quad \text { Dates }_{d}:=\ddot{\text { Day }} \text { year }(9,23,2006)
$$

mn $:=$ convert $($ Points 49,7$) \quad$ No DataCells $:=\operatorname{length}(\dot{i n n})$

$$
\text { Point } 49_{d}:=\pi n n_{48}
$$

The two groups are named as follows: Botstar :=28 : Stoptap := 16

$$
\begin{aligned}
& { }^{\text {low }} \text { points }:=\text { LOWROWS(nnn, No DataCells }, \text { Botstar) . . high }{ }_{\text {points }}:=\text { TOPROWS (nan, No DataCells, Stoptop) } \\
& \text { high }_{\text {points }}:=\text { Add (} n n n, \text { No }_{\text {DataCells }}, 19, \text { length }^{\left.\left(\text {high }_{\text {points }}\right), \text { high }_{\text {points }}\right)} \\
& \text { high points } \left.\left.:=\text { Add (in , No DataCells, } 20, \text { length (high }{ }_{\text {points }}\right), \text { high }_{\text {points }}\right) \\
& \text { high points }:=\operatorname{Add}(\mathrm{nnn}, \text { No DataCells }, 21 \text {, length (high points) , high points }) \\
& \text { high }_{\text {points }}:=\text { Add (min , No DataCells }, 22, \text { length (high }{ }_{\text {points }} \text {), high points) } \\
& \text { high points }:=\text { Add (min No DataCells, } 27 \text {, length (high points), high points) } \\
& \text { high }_{\text {points }} \vdots=\operatorname{Add}\left(\mathrm{nnn}, \mathrm{No}_{\text {DataCells }}, 28\right. \text {, length (high points) , high points) } \\
& \left.\backslash \text { low }_{\text {points }}:=\text { Add (in , No DataCells }, 17, \text { length (low points), low points }\right) \\
& \text { low } \left._{\text {points }}:=\text { Add (in, No DataCells }, 18 \text {, length(low points), low points }\right)
\end{aligned}
$$

\cdots

$$
\begin{aligned}
& \text { low } \left.\left._{\text {points }}:=\text { Add (nm , No DataCells, } 23 \text {, length (low points }\right) \text {, low points }\right) \\
& \text { low points }:=\text { Add (nnn , No DataCell's , 24, length (low points), low points) } \\
& \left.{ }^{\text {low }} \text { points }:=\operatorname{Add}\left(\mathrm{mnn}^{\text {, No }}{ }_{\text {DataCelis }}, 25, \text { length (low points }\right),{ }^{\text {low }} \text { points }\right) \\
& { }^{\text {low }} \text { points }:=\text { Add (} n m, \text { No DataCells }, 26 \text {, length (low points), low points) } \\
& \text { Cells := deletezero cells (nnn, No Cells) } \\
& \text { high }_{\text {points }}:=\text { deletezero }^{\text {cells }}\left({ }^{\prime} \text { high }_{\text {points }} \text {, length(} \text { high }_{\text {points }}\right) \text {). } \\
& { }^{\text {low }} \text { points }:=\text { deletezero cells }\left({ }^{\text {low }} \text { points } \text {, length }\left({ }^{\text {low }} \text { points }\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Uhigh }_{\text {measured }}^{d} \text { := mean (high }{ }_{\text {points }} \text {) } \\
& \sigma_{\text {ohigh }}^{\text {measured }}{ }_{d}:=\operatorname{Stdev}\left(\text { high }_{\text {points }}\right) \\
& \text { Standardhigh }_{\text {error }}:=\frac{\text { ohigh measured }_{d}}{\sqrt{\text { length }\left(\text { high }_{\text {points }}\right)}} \\
& \text { How }_{\text {measured }}^{d} \text { := mean (low poiñts) } \\
& \text { olow }_{\text {measured }}^{d} \text { }:=\operatorname{Stdev}\left(\text { low }_{\text {points }}\right)
\end{aligned}
$$

$$
\text { Dates }=\left[\begin{array}{c}
1.993 \cdot 10^{3} \\
1.995 \cdot 10^{3} \\
1.997 \cdot 10^{3} \\
2.007 \cdot 10^{3}
\end{array}\right]
$$

1
uigh $\left.\left.{ }_{\text {measured }}=\left[\begin{array}{c}1.055 \cdot 10^{3} \\ 1.037 \cdot 10^{3} \\ 1.059 \cdot 10^{3} \\ 1.047 \cdot 10^{3}\end{array}\right] \quad \begin{array}{c}\text { ohigh }\end{array}\right] \quad \begin{array}{c}66.239 \\ 63.573 \\ 52.578 \\ 64.111\end{array}\right]$
Standardhigh error $=\left[\begin{array}{l}14.122 \\ 13.554 \\ 11.21 \\ 13.99\end{array}\right]$

Llow $_{\text {measured }}=\left[\begin{array}{l}906.037 \\ 894.926 \\ 933 \\ 904.037\end{array}\right] \stackrel{\text { olow }}{\text { measured }}=\left[\begin{array}{l}46.682 \\ 42.624 \\ 49.767 \\ 46.499\end{array}\right] \quad$ Standardlow $_{\text {error }}=\left[\begin{array}{l}8.984 \\ 8.203 \\ 9.578 \\ 8.949\end{array}\right]$

$$
\begin{aligned}
& \text { Total }_{\text {means }}:=\text { rows }\left(\mu_{\text {measured }}\right) \quad \text { " Total means }=4 \\
& \text { SST }:=\sum_{i=0}^{\text {last(Dates })}\left(\mu_{\text {measured }_{i}}-\text { mean }\left(\mu_{\text {measured }}\right)\right)^{2}!\quad i^{\prime} \\
& \text { SST }_{\text {low }}:=\sum_{i=0}^{\text {last(Dates })}\left(\text { Hlow measured }_{i}-\text { mean }^{\left.\left(\mu_{\text {low }}^{\text {measured }}\right)\right)^{2} .}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { SSE }:=\sum_{i=0 .}^{\operatorname{last}(\text { Dates })}\left(\mu_{\text {measured }}-\text { yhat }\left(\text { Dates }, \mu_{\text {measured }}\right)_{i}\right)^{2} . \\
& \operatorname{SSE}_{\text {low }}:=\sum_{i=0}^{\text {last(Dates })}\left(\operatorname{\mu low}_{\text {measured }}^{i}-\text { yhat }\left(\text { Datés , } \mathrm{\mu low}_{\text {measured }}\right)_{i}\right)^{2} \\
& S S E_{\text {high }}:=\sum_{i=0}^{\text {last(Dates) }}\left(\mu^{\text {high }} \text { measured }_{i}-\text { yhat }^{\left.\left(\text {Dates }, \mu \text { high }_{\text {measured }}\right)_{i}\right)^{2}}\right. \\
& \operatorname{SSR}:=\sum_{i=0}^{\operatorname{last}(\text { Dates })}\left(\text { yhat }\left(\text { Dates }, \mu_{\text {measured }}\right)_{i}-\text { mean }\left(\mu_{\text {measured }}\right)\right)^{2} \\
& \operatorname{SSR}_{\text {low }}:=\sum_{i=0}^{\text {last(Dates })}\left(\text { yhat }(\text { Dates , } \text {,low measured })_{i}-\text { mean }(\text { Hlow measured })\right)^{2} \\
& \operatorname{SSR}_{\text {high }}:=\sum_{i=0}^{\text {last(Dates })}\left(\text { yhat }(\text { Dates , } \mu \text { high measured })_{i}-\text { mean }(\text { Hhigh measured })\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { DegreeFree }_{\text {ss }}:=\text { Total means }-2 \\
& \text { DegreeFree }_{\text {reg }}:=1 \\
& \text { DegreeFree }_{\text {st }}:=\text { Total means }-1
\end{aligned}
$$

- \quad Standard error $^{\prime}:=\sqrt{\mathrm{MSE}} \quad$ Standard $_{\text {lowerror }}:=\sqrt{\mathrm{MSE}_{\text {low }}} \quad$ Standard higherror $:=\sqrt{\text { MSS }_{\text {high }}}$

$$
\text { MST }:=\frac{\text { SST }^{\text {DegreeFree }_{\text {st }}}}{\text { MST }_{\text {low }}}:=\frac{\text { SST }_{\text {low }}}{\text { DegreeFree }_{\text {st }}} \quad \text { MST high }:=\frac{\text { SST }_{\text {high }}}{\text { DegreeFree }_{\text {st }}}
$$

Test the means with all points

> F Test for Corrosion
> $\alpha:=0.05$
> $F_{\text {actaul_Reg }}:=\frac{\text { MSg }}{M S E}$
> $F_{\text {critical_reg }}:=q F\left(1-\alpha\right.$, DegreeFree $_{\text {reg }}$, DegreeFree $\left._{\text {ss }}\right)$
> $F_{\text {matio_reg }}:=\frac{F_{\text {actaul_Reg }}}{F_{\text {critical_reg }}}$
> $F_{\text {ratio_reg }}=5.244 \cdot 10^{-4}$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

Test the low points

F Test for Corrosion

F_...............: $=\underline{\text { MSR }_{\text {low }}}$

```
- actau_keg.iuw MSE low
\(F_{\text {critical_reg }}:=\mathbf{q F}\left(1-\alpha\right.\), DegreeFree \(_{\text {reg }} ;\) DegreeFree \(\left._{s s}\right)\)
\(F_{\text {ratio_reg.low }}:=\frac{F_{\text {actaul_Reg.low }}}{F_{\text {critical_reg }}} \quad .1,11\)
\(F_{\text {ratio_reg.low }} \overline{\text { i }} 1.907 \cdot 10^{-4}\)
, \(\quad F_{\text {critical_reg }}:=\mathbf{q F}\left(1-\alpha\right.\), DegreeFree \(_{\text {reg }} ;\) DegreeFree \(\left._{s s}\right)\)
```


Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data, and the grandmean I

Test the high points -

F Test for Corrosion

$$
\begin{aligned}
& F_{\text {actaul_Reg.high }}:=\frac{M_{\text {Migh }}}{M_{\text {hSE }}^{\text {high }}} \\
& F_{\text {critical_reg }}:=q F\left(1-\alpha, \text { DegreeFree }_{\text {reg }}, \text { DegreeFree }_{s s}\right) \\
& F_{\text {ratio_reg.high }}:=\frac{F_{\text {actaul_Reg.high }}}{F_{\text {critical_reg }}} \\
& F_{\text {ratio_reg.high }}=1.588 \cdot 10^{-3} .
\end{aligned}
$$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

The following will plot the results for the overall mean, the mean of thinrier points, and the mean of thicker points

$$
\mathrm{i}:=\dot{0} . . \text { Total means }-1
$$

$$
\mu_{\text {grand }} \text { measured }_{i}:=\text { mean }\left(\mu_{\text {measured }}\right) \quad \text { ogrand } \text { measured }:=\operatorname{Stdev}\left(\mu_{\text {measured }}\right)
$$

$$
\begin{aligned}
& \text { GrandStandard error }:=\frac{\text { ogrand measured }}{\sqrt{\text { Total means }}} .
\end{aligned}
$$

ist indicates that the regression model does not hold for any of the data sets. However, the slopes d $y 0 \%$ Confidence curves are generated for all three cases.

```
\(m_{s}:=. \operatorname{slope}\left(\right.\) Dates \(\left.^{\prime} \mu_{\text {measured }}\right)\)
\(\mathbf{y}_{\mathbf{b}}:=\) intercept (Dater, \(\left.\mu_{\text {measured }}\right)\)
```



```
    \(\alpha_{t}:=0.05 \quad k:=23 \quad f:=0 . k-1\)
    ycar \(_{\text {predict }}:=1985+\mathbf{f} \cdot \mathbf{2}\)
    Thick predict \(:=m_{s} \cdot\) year \(_{\text {predict. }}+y_{b}\)
    Thick lowpredict \(:=\mathrm{m}_{\text {lows }} \cdot\) year \({ }_{\text {predict }}+\mathrm{y}_{\text {lowb }} \therefore\).'
    Thick highpredic̣t \(:=m_{\text {highs }} \cdot\) year \(_{\text {predict }}+y_{\text {highb }}\)
    Thick actualmean \(:=\) mean(Dates)
    sum \(:=\sum_{i}\left(\right.\) Dates \(_{d}-\operatorname{mean}(\text { Dates } j)^{2}\)
```

Ff-He entire grid

$$
\left.\begin{array}{rl}
\text { upper }_{f}:= & \text { Thick }_{\text {predict }}^{f}
\end{array}\right] .
$$

$$
\text { ower }_{\mathrm{f}}:=\text { Thick }_{\mathrm{r}} \text { predict }_{\mathrm{f}} \ldots
$$

$$
\text { minimum required thickness at this elevation is } \mathrm{Tmin}^{\operatorname{gen}} \mathrm{SB}_{\mathbf{i}}:=736 \quad \text { (Ref. 3.25) }
$$

$=$ = points which are thicker
upper $_{f}:=$ Thick $_{\text {highpredict }}^{f} \boldsymbol{*}$...

$$
+q t\left(1-\frac{\alpha_{t}}{2}, \text { Total mears }-2\right) \cdot \text { Standard } \text { higherror }^{1+\frac{1}{(d+1)}+\frac{\left(\text { year }_{\text {predict }}-\text { Thick } \text { actualmean }\right)^{2}}{\text { sum }}}
$$

lower $_{\boldsymbol{f}}:=$ Thick $_{\text {highpredict }}^{\boldsymbol{f}}$...

$+-\left[\begin{array}{l}\left.q t\left(1-\frac{\alpha_{t}}{2}, \text { Total means }-2\right) \cdot \text { Standard } \text { higherror }^{\prime} \cdot \sqrt{1+\frac{1}{(d+1)}+\frac{\left(\text { year }_{\text {predict }}-\text { Thick }_{\text {actualmean }}\right)^{2}}{\text { sum }}}\right]\end{array}\right.$

For the points which are thinner.
upper $_{f}:=$ Thick $^{\text {' }}{ }^{\text {lowpredict }}{ }_{f} \cdots$

$$
+q t\left(1-\frac{\alpha_{t}}{2}, \text { Total means }^{-2}\right) \cdot \text { Standard lowerror } \sqrt{1+\frac{1}{(d+1)}+\frac{\left(\text { year predict }_{f}-\text { Thick acfualmean }\right)^{2}}{\text { sum }}: 1}
$$

$$
\text { lower }_{f}:=\text { Thick }_{\text {lowpredict }}^{f} \text {... }
$$

$$
+-\left[q t\left(1-\frac{\alpha_{t}}{12}, \text { Total means }^{1}-2\right) \cdot \text { Standard }{ }_{\text {Ipwerror }}^{1} \sqrt{\left.1+\frac{1}{(d+1)}+\frac{\left(\text { year }_{\text {predict } \left._{4}-\text { Thick }_{\text {acfualmean }}\right)^{2}}^{1}\right.}{\text { sum }}\right]}\right.
$$

F- jection below calculates what the postulated mean thickness would be if this grid were to corrode at a n... .num observable rate observed in appendix 22.

$$
\text { Rate min_observed }:=6.9
$$

\therefore Postulated meanthickness $:=\dot{\mu}_{\text {measured }_{3}}-$ Rate $_{\text {min_observed }} \cdot(2029-2006)$.
Postulated meanthickness $=809.484$. which is greater than \quad Tmin_gen $\mathbf{S B}_{\mathbf{3}}=736$
following addresses the readings at the lowest single point

F Test for Corrosion

$$
F_{\text {actaul Reg }}:=\frac{\text { MSR }_{\text {point }}}{\text { MSE }_{\text {point }}}
$$

$$
F_{\text {ratio_reg }}:=\frac{F_{\text {actaul_Reg }}}{F_{\text {critical_reg }}}
$$

$$
F_{\text {ratio_reg }}=2.212 \cdot 10^{-3}
$$

hit. .iore no conclusion can be made as to whether the data best fits the regression model. The figure relow provides a trend of the data and the grandmean

Therefore this point is not experiencing corrosion
$m_{\text {ponit }}:=\operatorname{slope}($ Dates, Point 49$) m_{\text {ponit }}=0.134 \quad y_{\text {ponit }}:=$ intercept (Dates , Point ${ }_{49} y_{\text {ponit }}=552.333$.
The 95% Confidence curves are calculated
Point $_{\text {curve }}:=m_{\text {ponit }}$ year predict $+y_{\text {ponit }}$
Point actualmean $:=\operatorname{mean}($ Dates $) \quad$ sumi $:=\sum_{i}\left(\text { Dates }_{d}-\operatorname{mean}(\text { Dates })\right)^{2}$
upponit $_{\mathrm{f}}:=$ Point $^{\text {curve }}{ }_{f} \ldots$
loponit $_{\mathbf{f}}:=$ Point $_{\text {curve }}^{\mathrm{f}}$...

$$
+-\left[q\left(1-\frac{\alpha_{t}}{2}, \text { Total means }-2\right) \cdot \text { StPoint } e^{*} \cdot \sqrt{\left.1+\frac{1}{(d+1)}+\frac{\left(\text { year }_{\text {predict }}-\text { Point }_{\text {actualmean }}\right)^{2}}{\text { sum }}\right]}\right.
$$

Local Tmin for this elevation in the Drywell Tmin_local SB $_{\mathbf{f}}:=490$
(Ref. 3.25)

Therefore based on regression model the above curve shows that this point will not corrode to below minimum required thickness by the plant end of life.

The section below calculates what the postulated individual thickness would be if this point were to corrode at a minimum observable rate observed in appendix 22.
Rate $_{\text {min_observed }}:=6.9$
Postulated $_{\text {thickness }}:=$ Point $_{49_{3}-\text { Rate }_{\text {min_observed }}(2029-2006)}$
Postulated $_{\text {thickness }}=662.3 \quad$ which is greater than \quad Tmin_local $_{\mathrm{SB}_{3}}=490$

The section below calculates what the postulated corrosion rate necessary for the thinnest individual point to reach the local required thickness by 2029.

$$
\begin{gathered}
\text { minpoint }=0.821 \quad \text { Tmin_local }_{S B_{22}}=490 \\
\text { required rate. }:=\frac{\left(1000 \text { minpoint }- \text { Tmin_local }_{22}=2.029 \cdot 10^{3} \text { SB }_{22}\right)}{(2005-2029)} \quad \text { required }_{\text {rate. }}=-13.792 \text { mils per year } .
\end{gathered}
$$

Appendix 6 - Sand Bed Elevation Bay 15D

October 2006 Data
The data shown below was collected on 10/18/06

Points $_{49}:=$ showcells $($ page $, 7,0)$.
Points $_{49}=\left[\begin{array}{lllllll}1.133 & 1.133 & 1.133 & 1.141 & 1.145 & 1.145 & 1.144 \\ 1.094 & 1.109 & 1.087 & 1.142 & 1.129 & 1.119 & .1 .131 \\ 1.04 & 1.026 & 1.043 & 1.081 & 1.095 & 1.085 & 1.096 \\ 0.978 & 0.948 & 0.975 & 1.029 & 1.03 & 1.096 & 1.068 \\ 0.976 & 0.969 & 0.977 & 1.069 & 1.013 & 1.067 & 1.041 \\ 0.93 & 0.979 & 1.031 & 1.037 & 1.017 & 1.059 & 1.051 \\ 0.922 & 0.972 & 0.996 & 1.031 & 1.005 & 1.033 & 1.052\end{array}\right]$

$$
\text { Cells }:=\text { convert }(\text { Points } 49.7)
$$

$$
{ }^{\text {No }} \text { DataCells }:=\text { leagth(Cells) }
$$

The thinnest point at this location is shown below

For this location the thinnest point is number 43 (reference 3.22).

$$
\text { minpoint }:=\min (\text { Points } 49) \quad \text { minpoint }=0.922
$$

Cells := deletezero cells (Cells , No DataCells)

Apendix 6

Mean and Standard Deviation

$$
\left.\mu_{\text {actual }}:=\text { mean (Cells }\right) \quad \mu_{\text {actual }}=1.0531 \cdot 10^{3} \quad \sigma_{\text {actual }}:=\operatorname{Stdev}(\operatorname{Cells}) \quad \sigma_{\text {actual }}=62.649
$$

'Standard Error

Skewness

Kurtosis

$$
\begin{aligned}
\text { Kuttosis }:= & \frac{\text { No DataCells } \cdot(\text { No DataCells }+1) \cdot \overrightarrow{\Sigma\left(\text { Cells }-\mu_{\text {actual }}\right)^{4}}}{(\text { No DataCells }-1) \cdot(\text { No DataCells }-2) \cdot(\text { No DataCells }-3) \cdot\left(\sigma_{\text {actual }}\right)^{4}} \text { Kurtosis }=-0.898 \\
& +\frac{3 \cdot(\text { No DataCells }-1)^{2}}{(\text { No DataCells }-2) \cdot(\text { No DataCells }-3)}
\end{aligned}
$$

Normal Probability Plot

In a normal plot, each data value is plotted against what its value would be if it actually came from a normal distribution. The expected normal values, called normal scores, and can be estimated by first calculating the rank scores of the sorted data.

```
j := 0.. last(Cells) stt :=: sort(Cells)
```

Then each data point is ranked. The array rank captures these ranks :

$$
\begin{aligned}
& 1 \\
& p_{j}:=\frac{\text { rank }}{\text { rows(Cells })+1}
\end{aligned}
$$

The normal scores are the corresponding p th percentile points from the standard normal distribution:

$$
x:=1 \quad \text { N_Score }_{j}:=\text { root }\left[\operatorname{crorm}(x)-\left(p_{j}\right), x\right]
$$

Upper and Lower Confidence Values
The'Upper and Lower confidence values are calculated based on .05 degree of confidence " $\boldsymbol{q}^{\prime \prime}$

$$
\begin{aligned}
& \text { No DataCells := length(Cells) } \\
& \alpha:=.05 . \quad T \alpha:=q t\left[\left(1-\frac{\alpha}{2}\right),{ }^{\text {No }}{ }_{\text {DataCells }}\right] T \alpha=2.01 \\
& { }^{\text {L }} \text { Lower } 95 \% \text { Con }:=\mu_{\text {actual }}-\mathrm{T} \alpha \frac{\sigma_{\text {actual }}}{\sqrt{\text { No DataCells }}} \quad \text { Lower } 95 \% \operatorname{Con}=1.035 \cdot 10^{3} \\
& \text { Uppet }_{95 \% \text { Con }}:=\mu_{\text {actual }}+T \alpha \cdot \frac{\sigma_{\text {actual }}}{\sqrt{\text { No DataCells }}} \quad \text { Upper } 95 \% \text { Con }=1.071 \cdot 10^{3}
\end{aligned}
$$

These values represent a range on the calculated mean in which there is 95% confidence.

Graphical Representation

Distribution of the "Cells" data points are sorted in $1 / 2$ standard deviation increments (bins) within $+/-3$ standard deviations

. . .		0
$\text { Bins }:=\text { Make bins }\left(\mu_{\text {actual }}, \sigma_{\text {actual }}\right)$		$\frac{1}{2}$
- . .		7
Distribution := hist(Bins , Cells)		4
. . . .	Distribation $=$	12
The mid points of the Bins are calculated		5
		7
		11
$k:=0.11 \quad$ Midpoints $:=\underline{\left(\text { Bins }_{k}+\text { Bins }_{j+1}\right)}$	- .	0
Midpoints $_{\mathbf{k}}:=\frac{2}{2}$		0
		0

The Mathcad function pnorm calculates a portion of normal distribution curve based on a given mean and standard deviation

$$
\begin{aligned}
\text { normal }_{\text {curve }}^{0}
\end{aligned}:=\text { pnorm }\left(\text { Bins }_{1}, \mu_{\text {actual }}, \sigma_{\text {actual }}\right) .
$$

Results For Elevation Sandbed elevation Location Oct. 2006

The following schematic shows: the the distribution of the samples, the normal curve based on the actual mean and standard deviation, the kurtosis, the skewness, the number of data points, and the the lower and upper 95% confidence values. Below is the Normal Plot for the data.

Data Distribution

Normal Probability Plot

The Normal Probability Plot and the Kurtosis this data is normally distributed.

Data from the 1992, 1994 and 1996 is retrieved.

```
For }199
\mp@subsup{Dates }{d}{\prime}:= Day year (12,8,1992)
```

page := READPRN("U:UMSOFFICEIDrywèll Program dataWec. 1992 DatalsandbedWata OnlylSB15D.txt")
Points 49 := showcells (page , 7,0)
1 Data
$\left.\begin{array}{lllll}1.133 & 1.141 & 1.145 & 1.134 & 1.142 \\ 1.088 & 1.091 & 1.126 & 1.118 & 1.133 \\ 1.048 & 1.067 & 1.094 & 1.079 & 1.09 \\ 0.989 & 1.038 & 1.036 & 1.092 & 1.081 \\ 0.894 & 1.054 & 1.048 & 1.065 & 1.091 \\ 1.041 & 1.051 & 1.064 & 1.075 & 1.055 \\ 0.991 & 1.036 & 1.027 & 1.074 & 1.069\end{array}\right]$
nin $:=$ convert (Points 49,7$) \quad$ No DataCells $:=$ length (nnn)
1
point $42_{d}:=\pi n n_{42} \quad$ point ${ }_{42}=980$
Cells := deletezero cells (nnn, No DataCells)
$\mu_{\text {measured }_{d}}:=\operatorname{mean(Cells)} \quad \sigma_{\text {measured }}^{d}:=\operatorname{Stdev}($ Cells $) \quad{\text { Standard } \text { error }_{d}}:=\frac{\sigma_{\text {measured }_{d}}}{\sqrt{\text { No DataCells }}}$
page := REÁPRN("U:LMSOFFICEDDrywell Program datalSept. 1994 DatalsandbediData OnlyiSB15D.txt")
Dates $_{d}:=1$ Day $_{\text {year }}(9,14,1994)$.
Points $49:=$ showcells (page , 7, 0)Data

11.	1.126	1.132	1.133,	1.14	1,142	1.131	1.14
	1.097	1.106	1.089	1.141	1.129	1.119	1.129
	1.063	1.025	1.046	1.067	1.096	1.08	1.097
Points ${ }_{49}=$	0.979	0.947	0.966	1.018	1.035	1.097	1.068
	0.973	0.971	1.001	1.05	1.05	1.066	1.029
	0.92	0.972	1.03	1.049	1.009	1.058	1.036
	0.903	0.958	1.013	1.031	1.004	1.052	1.076

 nnn \(:=\) convert (Points 49,7) No DataCells \(:=\) length(ninn)
 point \(4_{d}:=n a n_{42}\)
 Cells \(:=\) deletezero cells (nno No DataCells)
 \(\mu_{\text {measured }}^{d} 1:=\operatorname{mean}(\) Cells \() \cdot \sigma_{\text {measured }}^{d}:=\operatorname{Stdev}(\) Cells \()\)

For 1996

```
page := READPRN( "U:MMSOFFICELDrywell Program datalSept. }1996\mathrm{ DatalsandbedWata Only\SB15D.txt" )
```

 Dates \(_{d}:=\) Day \(_{\text {year }}(9,16,1996)\)
 Points 49 := showcells(page , 7,0)

Data

$$
\text { nnn:= convert (Points } 49,7)
$$

No DataCells := length (mmn)

$$
\text { point }_{42_{\mathrm{d}}}:=\mathrm{nnn}_{42}
$$

$$
\text { Cells }:=\text { deletezero cells (nnn, No DataCells) }
$$

$$
\mu_{\text {measured }_{d}}:=\text { mean(Cells) } \sigma_{\text {measured }_{d}}:=\operatorname{Stdev}(\text { Cells }) \quad S \text { tandard error } d=\frac{\sigma_{d} \text { measured }_{d}}{\sqrt{\text { No DataCells }}}
$$

page :=,READPRN("U:MMSOFFICEDDrywell Program datalOCT 2006 DatalSandbedISB15D.tx")

Points 49 := showcells (page , 7,0)

Data

1	1.133	1.133	1.133	1.141	1.145	1.145	1.144
	1.094	1.109	1.087	1.142	1.129	1.119	1.131
	1.04	1.026	1.043	1.081	1.095	1.085	1.096
Points $49=$	0.978	0.948	0.975	1.029	1.03	1.096	1.068
	0.976	0.969	0.977	1.069	1.013	1.067	1:041
	0.93	0.979	1.031	1.037	1.017	1.059	1.051
	0.922	0.972	0.996	1.031	1.005	1.033	1.052

nan: $=$ convert (Points 49,7)
No DataCells $:=$ length(nmn)

$$
\text { point }_{42}:=\operatorname{mnn}_{42}
$$

Cells := deletezero cells (nmn , No DataCells)
$\mu_{\text {measured }_{d}}:=\operatorname{mean}($ Cells $) \quad \sigma_{\text {measured }_{d}}:=\operatorname{Stdev}\left(\right.$ Cells) \quad Standard error ${ }_{d}:=\frac{\sigma_{\text {measured }}^{d}}{}$

Below are matrices which contain the date when the data was collected, Mean, Standard Deviation, Standard Efror for each date.

$$
\begin{aligned}
& \text { Dates }=\left[\begin{array}{c}
1.993 \cdot 10^{3} \\
1.995 \cdot 10^{3} \\
1.997 \cdot 10^{3} \\
2.007 \cdot 10^{3}
\end{array}\right] \\
& \text { point }_{42}=\left[\begin{array}{l}
980 \\
903 \\
940 \\
922
\end{array}\right] . \\
& \mu_{\text {measured }}^{\prime}=\left[\begin{array}{c}
1.0577 \cdot 10^{3} \\
1.0528 \cdot 10^{3} \\
1.066 \cdot 10^{3} \\
1.0531 \cdot 10^{3}
\end{array}\right] \quad \text { Standard }{ }_{\text {error }}=\left[\begin{array}{c}
8.741 \\
9.002 \\
8.466 \\
8.95
\end{array}\right], \quad \sigma_{\text {measured }}=\left[\begin{array}{c}
61.18 \dot{8} \\
63.017 \\
59.263 \\
62.649
\end{array}\right] \\
& \text { Total }_{\text {means }}:=\text { rows }\left(\mu_{\text {measured }}\right) \quad \text { Total means }=4 \\
& \text { SST }:=\sum_{i=0}^{\text {last (Dates })}\left(\mu_{\text {measured }_{i}}-\text { mean }\left(\mu_{\text {measured }}\right)\right)^{2} \quad \text { SST }=113.004 \\
& \text { SSE }:=\sum_{i=0}^{\text {last }(\text { Dates })}\left(\mu_{\text {measured }}^{i}-\text { yhat }\left(\text { Dates }, \mu_{\text {measured }}\right)_{i}\right)^{2} \\
& \operatorname{SSR}:=\sum_{i=0}^{\text {last } \text { Dates })}\left(\text { yhat }\left(\text { Dates }, \mu_{\text {measured }}\right)_{i}-\text { mean }\left(\mu_{\text {measured }}\right)\right)^{2} \quad \operatorname{SSR}=10.872 \\
& \text { DegreeFree }_{\text {ss }}:=\text { Total }_{\text {means }}-2 \quad \text { DegreeFree }_{\text {reg }}:=1 \quad \text { DegreeFree }_{\text {st }}:=\text { Total }_{\text {means }}-1 \\
& \text { MSE }:=\frac{\text { SSE }}{\text { DegreeFrec }_{\text {SS }}} \quad \text { MSR }:=\frac{\text { SSR }}{\text { DegreeFree }_{\text {reg }}} \quad \text { MST }:=\frac{\text { SST }}{\text { DegreeFree }_{\text {St }}} \\
& \mathrm{MSE}=51.066 \\
& M S R=10.872 \\
& \mathrm{MST}=37.668 \\
& \text { StGrand err }^{:=} \sqrt{\text { MSE }} \quad \text { StGrand }{ }_{\text {err }}=7.146
\end{aligned}
$$

$$
1 . \quad \because
$$

Therefore no conclusion can be made as to whether the data best fits the regression model: The figure below provides a trend of the data and the grandmean
$i:=0$. Total means -1
$\mu_{\text {grand }}$ measured $_{i}=$ mean $\left(\mu_{\text {measured }}\right)$
Ogrand measured $:=\operatorname{Stdev}\left(\mu_{\text {measured }}\right) \quad$ GrandStandard error $_{0}:=\frac{1 \text { ogrand measured }}{\sqrt{\text { Total means }}}$
The minimurn required thickness at this elevation is $\operatorname{Tmin} _$gen $_{\mathrm{SB}_{\mathrm{i}}}:=736 \quad$ (Ref. 3.25)
Plot of the grand mean and the actual means over time

$$
\begin{aligned}
& \text { F Test for Corrosion } \\
& \alpha:=0.05 . \quad . F_{\text {actaul_Reg }}:=\frac{\text { MSR }}{\text { MSE }}
\end{aligned}
$$

$$
\begin{aligned}
& F_{\text {ratio_reg }}=0.012
\end{aligned}
$$

To conservatively address the location, the apparent corrosion rate is calculated and compared to the minimum required wall thickness at this elevation

$$
m_{s}:=\operatorname{slope}\left(\text { Dates }, \mu_{\text {measured }}\right) \quad m_{s}=-0.307 \quad y_{b}:=\text { intercept }\left(\text { Dates }, \mu_{\text {measured }}\right) y_{b}=1.671 \cdot 10^{3}
$$

The 95\% Confidence curves are calculated

$$
\text { upper }_{f}:=\text { Thick }_{\text {predict }_{f}} \cdots
$$

$$
1 \quad+q t\left(1-\frac{\alpha_{t}}{2}, \text { Total means }-2\right) \cdot \text { StGrand }_{\text {err }} \cdot \sqrt{1+\frac{1}{(d+1)}+\frac{\left(\text { year }_{\text {predict } \left._{f}-\text { Thick actualmean }\right)^{2}}^{\text {sum }}\right.}{\text { sum }}}
$$

$$
\text { lower }_{f}:=\text { Thick }_{\text {predict }}^{f}, \ldots
$$

$$
+-\left[q t\left(1-\frac{\dot{\alpha}_{t}}{2}, \text { Total means }-2\right) \cdot \text { StGrand }_{\text {err }} \cdot \sqrt{1+\frac{1}{(d+1)}+\frac{\left(\text { year predict }_{t}-\text { Thick actualmean }^{2}\right.}{2}}\right]
$$

$$
\begin{aligned}
& \alpha_{t}:=0.05 \quad \mathrm{k}:=2029-1985 \\
& \mathrm{f}:=0 . \mathrm{k}-\mathrm{B} \\
& \text { year }_{\text {predict }}:=1985+\mathrm{f} \cdot 2 \text { Thick }_{\mathrm{p}}:=\mathrm{m}_{\mathrm{s}} \cdot \text { year }_{\text {predict }}+\mathrm{y}_{\mathrm{b}} \\
& \text { Thick } \left.{ }_{\text {actualmean }}^{1 .}:=\operatorname{mean}(\text { Dates }) \quad \text { sum }:=\sum_{i}\left(\text { Dates }_{d}+\text { meann(Dates }\right)\right)^{2}
\end{aligned}
$$

Therefore even though F-ratio does not support the regression model the above curve shows that even at the lower 95% confidence band this location will not corrode to below Drywell Vessel Minimum required thickness by the plant end of life.

The section below calculates what the postulated mean thickness would be if this grid were to corrode at a minimum observable rate observed in appendix 22.

$$
\begin{gathered}
\text { Pate } \text { min_observed }^{:=6.9} \\
\text { Postulated meanthickness }:=\mu_{\text {measured }_{3}}-\text { Rate }_{\text {min_observed }} \cdot(2029-2006) \\
\text { Postulated meanthickness }=894.402 \quad \text { which is greater than } \quad \text { Tmin_gen } \text { SB }_{3}=736
\end{gathered}
$$

The following addresses the readings at the lowest single point 1

The F-Ratio is calculated for the point as follows

$$
\text { SST }_{\text {point }}:=\sum_{i=0}^{\text {last(Dates })}\left(\text { point }_{42_{i}}-\operatorname{mean}\left(\text { point }_{42}\right)\right)^{2}, \quad S^{2} \quad S_{\text {point }}=3.237 \bullet 10^{3}
$$

$$
\begin{aligned}
& \operatorname{SSE}_{\text {point }}:=\sum_{i=0}^{\text {last(Dates })}\left(\text { point }_{42_{i}}-\text { yhat }\left(\text { Dates }, \text { point }_{42}\right)_{i}\right)^{2} \quad \therefore \quad \operatorname{SSE}_{\text {point }}=2.729 \bullet 10^{3} \\
& \operatorname{SSR}_{\text {point }}:=\sum_{i=0}^{\text {last }(\text { Dates })}\left(\text { yhat }(\text { Dates, point } 42)_{i}-\operatorname{mean}\left(\text { point }_{42}\right)\right)^{2} \cdot \quad \text { SSR }_{\text {point }}=508.213 \\
& \text { MSE }_{\text {point }}:=\frac{\text { SSE }_{\text {point }}}{\text { DegreeFree }_{\text {SS }}} \quad \text { MSR }_{\text {point }}:=\frac{\text { SSR }_{\text {point }}}{\text { DegreeFree }_{\text {reg }}} \quad \quad \text { MST }_{\text {point }}:=\frac{\text { SST }_{\text {point }}}{\text { DegreeFree }_{\text {st }}} \\
& \text { ' } \\
& \text { MSE }_{\text {point }}=1.364 \cdot 10^{3} \quad \text { MSR }_{\text {point }}=508.213 \quad . \quad \text { MST }_{\text {point }}=1.079 \cdot 10^{3} \\
& \text { Stpoint }_{\text {err }}:=\sqrt{\text { MSE }_{\text {point }}} \quad \ddots \text { Stpoint }_{\text {err }}=36.936
\end{aligned}
$$

F Test for Corrosion

$$
\begin{aligned}
& \mathbf{F}_{\text {actaul_Reg }}:=\frac{M_{\text {MSR }}^{\text {point }}}{} \\
& \mathbf{F}_{\text {ratio_reg }}:=\frac{F_{\text {point }}}{F_{\text {actaul_Reg }}} \\
& \mathbf{F}_{\text {critical_reg }} \\
& =0.02
\end{aligned}
$$

Therefore no conclusion can be made as to whether the data best fits the regression. The figure below provides a trend of the data and the grandmean

$$
\left.m_{\text {point }}:=\text { slope(Dates, point } 42\right) m_{\text {point }}=-2.1 \quad y_{\text {point }}:=\text { intercept }\left(\text { Dates , point }_{42}\right) y_{\text {poipt }}=5.131 \cdot 10^{3}
$$

The 95% Confidence curves are calculated

$$
\begin{aligned}
& { }_{1}^{\text {point }}{ }_{\text {curve }}:=m_{i} \text { point } \cdot \text { year }_{\text {predict }}+y_{\text {point }} \\
& \text { point } \left._{\text {actualmean }}:=\text { mean(Dates }\right) \\
& \text { sum } \left.:=\sum_{i}\left(\text { Dates }_{d}-\text { mean(Dates }\right)\right)^{2}
\end{aligned}
$$

$$
\text { uppoint }_{f}:=\text { point }_{\text {curve }_{f}} \cdots
$$

$$
+\mathrm{gt}\left(1-\frac{\alpha_{t}}{2}, \text { Total }_{\text {means }}-2\right) \cdot \text { Stpoint } \text { err }^{*} \sqrt{1+\frac{1}{(d+1)}+\frac{\left(\text { year }_{\text {predict }_{f}-\text { point }}^{\text {actualmean }}\right)^{2}}{\text { sum }}}
$$

$$
\text { lopoint }_{f}:=\text { point }_{\text {cupve }_{f}} \cdots
$$

$$
\begin{equation*}
\text { Local Tmin for this elevation in the Drywell } \quad \text { Tmin_local }_{\mathrm{SB}_{f}}:=490 \tag{Ref.3.25}
\end{equation*}
$$

Curve Fit For point 42 Projected to Plant End Of Life

The section below calculates what the postulated individual thickness would be if this point were to corrode at a minimum observable rate observed in appendix 22.

$$
\begin{aligned}
& \qquad \text { Rate }_{\text {min_observed }}:=6.9 \\
& \text { Postulated thickness }:=\text { point }_{\mathbf{4 2}_{3}} \text { - Rate } \text { min_observed }(2029-2006) \\
& \text { Postulated thickness }=763.3 \quad \text { which is greater than } \quad \text { Tmin_local }_{\text {SB }_{3}=490}
\end{aligned}
$$

The section below calculates what the postulated corrosion rate necessary for the thinnest individual point to reach the local required thickness by 2029.

$$
\text { minpoint }=0.922 \quad \text { year }_{\text {predict }}^{22} \text { }=2.029-10^{3} \quad \text { Tmin_local } S_{22}=490
$$

required $_{\text {rate. }}:=\frac{\left(1000 \cdot \text { minpoint }- \text { Tmin_local } \mathrm{SB}_{22}\right)}{(2005-2029)}$

$$
\text { required }_{\text {rate. }}=-18 \quad \text { mils per year }
$$

Appendix 7-Sandbed 17A October 2006 Data.

The data shown below was collected on 10/18/06

$$
\text { Cells }:=\text { convert }(\text { Points } 49.7) \quad \text { No DataCells }:=\text { length (Cells })
$$

The thinnest point at this location is point 40 which shown below

$$
\text { minpoint }:=\min \left(\text { Points }_{49}\right)
$$

$$
\text { minpoint }=0.802
$$

Cells := deletezero cells (Cells, No DataCells)

No DataCells := length(Cells)

Mean and Standard Deviation

$\mu_{\text {actual }}:=$ mean(Cells $) \quad \mu_{\text {actual }}=1.015 \cdot 10^{3} \quad \sigma_{\text {actual }}:=\operatorname{Stdev}($ Cells $) \quad \sigma_{\text {actual }}=104.378 \quad{ }^{\prime}$

Standard Error

$\dot{\text { Standard }}_{\text {error }}:=\frac{\sigma_{\text {actual }}}{\sqrt{\text { No DataCells }}}$
Standard ${ }_{\text {error }}=14.911$

Skewness
Skewness $:=\frac{{ }^{\prime}\left(\text { No }_{\text {DataCells }}\right) \cdot \Sigma \overrightarrow{\left(\text { Cells }-\mu_{\text {actual }}\right)^{3}}}{\left({ }^{\text {No }}{ }_{\text {DataCells }}-1\right) \cdot\left(\text { No }_{\text {DataCells }}-2\right) \cdot\left(\sigma_{\text {actual }}\right)^{3}} \quad$ Skewness $=-0.073$

Kurtosis

T

$$
\begin{aligned}
& \text { Kurtosis }:=\frac{\mathrm{No}_{\text {DataCells }} \cdot\left({ }^{(N o} \text { DataCells }+1\right) \cdot \overrightarrow{\Sigma\left(\text { Cells }-\mu_{\text {actual }}\right)^{4}}}{\left(\mathrm{No}_{\text {DataCells }}-1\right) \cdot\left({ }^{\text {No }}{ }_{\text {DataCells }}-2\right) \cdot\left({ }^{\text {No }}{ }_{\text {DataCells }}-3\right) \cdot\left(\sigma_{\text {actual }}\right)^{4}} \text { Kurtosis }=-1.266 \\
& +-\frac{3 \cdot\left(\text { No }_{\text {DataCells }}-1\right)^{2}}{\left(\text { No DataCells }^{-2}\right) \cdot(\text { No DataCells }-3)}
\end{aligned}
$$

Normal Probability Plot

$$
\begin{aligned}
& \mathrm{j}:=0 . \mathrm{last}(\text { Cells }) \quad \text { stt }:=\operatorname{sort}(\text { Cells }) \\
& r_{j}:=j+1 \quad \operatorname{rank}_{j}:=\frac{\overline{\sum\left(\overrightarrow{s t t=s t_{j}}\right)} \cdot r}{\sum \overrightarrow{s r t=s r_{j}}} \\
& p_{j}:=\frac{\text { rank }_{j}{ }^{\prime}}{\text { rows(Cells })+.1} \\
& x:=1 \quad N_{S} \text { Score }_{j}:=\operatorname{root}\left[\operatorname{cnom}(x)-\left(P_{j}\right), x\right]
\end{aligned}
$$

Upper and Lower Confidence Values

The Upper and Lower confidence values are calculated based on . 05 degree of confidence " α "

$$
\begin{aligned}
& \alpha:=.05 \quad T \alpha^{\prime}:=q t\left[\left(1-\frac{\alpha}{2}\right), 48\right] \quad \begin{array}{c}
T \alpha=2.011
\end{array} \\
& \text { Lowér } 95 \% \text { Con }:=\mu_{\text {actual }}-\text { T } \alpha \cdot \frac{\sigma_{\text {actual }}}{\sqrt{\text { No DataCells }}} \quad \text {, Lower } 95 \% \text { Con }_{4}=985.346
\end{aligned}
$$

These values represent a range on the calculated mean in which there is 95% confidence.

Graphical Representation

Tistribution of the "Cells" data points are sorted in $1 / 2$ standard deviation increments (bins) within $+/-3$ standard deviations

$$
\begin{aligned}
& \text { Bins }:=\text { Make bins }\left(\mu_{\text {actual }}, \dot{\sigma}_{\text {actual }}\right) \\
& \text { Distribution }:=\text { hist(Bins , Cells })
\end{aligned}
$$

The mid points of the Bins are calculated

$$
k:=0.11 \quad \text { Midpoints }_{k}:=\frac{\left(\text { Bins }_{k}+\text { Bins }_{k+1}\right)}{2}
$$

normal $_{\text {curve }}:=\operatorname{pnom}\left(\right.$ Bins $\left._{k+1}, \mu_{\text {actual }}, \sigma_{\text {actual }}\right)-\operatorname{pnorm}\left(\right.$ Bins $\left._{k}, \mu_{\text {actual }}, \sigma_{\text {actual }}\right)$

$$
\text { normal }_{\text {curve }}:=N^{\text {No }} \text { DataCells } \text { normal curve }
$$

Results For 17A - The following schematic shows: the the distribution of the samples, the normal curve based on the actual mean and standard deviation, the kurtosis, the skewness, the number of data points, and the the lowerland upper 95\% confidence values.

Data Distribution

(1) The data is not normally distributed. Previous calculations have split this data set into the top 3 row and the bottom four rows. In order to be consistent with past calculations this data will be split in two groups and arialyzed. The entire data set will also be evaluated.

The two groups are named as follows:" StopCELL := 21

Skewness

Nolow DataCells := length (low points)
Skewness $_{\text {low }}:=\frac{\left(\text { Nolow }_{\text {DataCells }}\right) \cdot \overline{\left(\text { low }_{\text {points }}-\mu \text { low }_{\text {actual }}\right)^{3}}}{(\text { Nolow DataCells }-1) \cdot(\text { Nolow DataCells }-2) \cdot\left(\text { olow }_{\text {actual }}\right)^{3}}$

Nohigh DataCells := length (high points)

Skewness high $:=\frac{\left(\text { Nohigh }_{\text {DataCells }}\right) \cdot \overline{\Sigma\left(\text { high points }-\mu_{\text {high }}^{\text {actual }}\right)^{3}}}{\left(\text { Nohigh }_{\text {DataCells }}-1\right) \cdot\left(\text { Nohigh }_{\text {DataCells }}-2\right) \cdot\left(\text { ohigh }_{\text {actual }}\right)^{3}}$

Kurtosis

Normal Probabillity Plot - Low points

$$
1:=0 . . \text { last }\left(\text { low }_{\text {points }}\right) \text { srt low }:=\operatorname{sort}(\text { low points })
$$

1

$$
L_{1}:=1+1
$$

$$
p_{\text {low }_{1}}:=\frac{\text { rank }_{\text {low }}^{1}}{}
$$

$$
x:=1 \quad \text { N_Score } \operatorname{low}_{1}:=\operatorname{root}\left[\operatorname{cnorm}(x)-\left(p_{\text {low }_{1}}\right), x\right]
$$

Normal Probability Plot - High points

$h:=0$.. last (high points) sit high $:=$ sort (high points $)$

(j) $x:=1 \quad$ N_Score $_{\text {high }_{h}}:=\operatorname{root}\left[\operatorname{cnorm}(x)-\left(p_{\text {high }_{h}}\right), x\right]$

$$
\begin{aligned}
& \text { Kurtoosis }_{\text {low }}:=\frac{\text { Nolow DataCells } \cdot(\text { Nolow DataCells }+1) \cdot \overrightarrow{\sum\left(\text { low points }-\mu_{\text {pow actual }}\right)^{4}}}{(\text { Nolow DataCells }-1) \cdot(\text { Nolow DataCells }-2) \cdot(\text { Nolow DataCells }-3) \cdot\left(\text { olow }_{\text {actual }}\right)^{4}} \\
& 3 \cdot(\text { Nolow } \text { DataCells }-1)^{2} \\
& +-\frac{(\text { Nolow DataCells }-2) \cdot(\text { Nolow DataCells }-3)}{\left({ }^{-}\right)} \\
& \text {Kurtosis }_{\text {high }}^{\rho}:=\frac{\text { Nohigh }_{\text {DataCells }} \cdot\left(\text { Nohigh }_{\text {DataCells }}+1\right) \cdot \overrightarrow{\left(\text { high }_{\text {points }}-\mu_{\text {Migh }}^{\text {actual }}\right)^{4}}}{\left(\text { Nohigh }_{\text {DataCells }}-1\right) \cdot\left(\text { Nohigh }_{\text {DataCells }}-2\right) \cdot(\text { Nohigh DataCells }-3) \cdot\left(\text { ohigh }_{\text {actual }}\right)^{4}} \ldots \\
& 1+-\frac{3 \cdot\left(\text { Nohigh }_{\text {DataCells }}-1\right)^{2}}{\left(\text { Nohigh }_{\text {DataCells }}-2\right) \cdot\left(\text { Nohigh }_{\text {DataCells }}-3_{i}\right)}
\end{aligned}
$$

Upper and Lower Confidence Values

$$
\begin{aligned}
& \alpha:=.05 \quad \mathrm{~T} \alpha=\mathrm{qt}\left[\left(1-\frac{\alpha}{2}\right) ; 48\right] \quad . \mathrm{T} \alpha=2.011 \\
& \text { Lowerhigh } 95 \% \text { Con }:=\mu_{\text {high }}^{\text {actual }}-\mathrm{T} \alpha \cdot \frac{\text { ohigh }_{\text {actual }}}{\sqrt{\text { Nóhigh DataCells }}} \\
& \text { Upperhigh }_{95 \% \text { Con }}:=\mu_{\text {high }}^{\text {actual }}+\mathrm{T} \alpha \cdot \frac{\text { ohigh }_{\text {actual }}}{\sqrt{\text { Nohigh DataCells }}} \\
& \text { Lowerlow } 95 \% \text { Con }:=\mu_{\text {low }}{ }_{\text {actual }}-\mathrm{T} \alpha \cdot \frac{\text { olow actual }^{\sqrt{\text { Nolow DataCells }}}}{} \\
& \text { Upperlow } 95 \% \text { Con }:=\mu^{\mu l o w} \text { actual }+\mathrm{T} \alpha \cdot \frac{\text { olow }_{\text {actual }}}{\sqrt{\text { Nolow DataCells }}}
\end{aligned}
$$

Graphical Representation of Low Points


```
normallow curve \(_{0}:=\) pnorm \(^{\left(\text {Bins }_{\text {low }_{1}} \text {, }{ }^{\text {How }}{ }_{\text {actual }} \text {, olow }{ }_{\text {actual }}\right) ~}\)
```


normallow curve $:=$ Nolow $^{\text {DataCells }}{ }^{\text {normallow }}$ curve

Stieet No. 8 of 26

Graphical Representation of High Points

$$
\begin{aligned}
& \text { Bins }_{\text {high }}:=\text { Make }_{\text {bins }}\left(\mu_{\text {high }}^{\text {actual }}, \text { orhigh }_{\text {actual }}\right) \\
& \text { Distribution }_{\text {high }}:=\operatorname{hist}^{\left(\text {Bins }_{\text {high }}, \text { high }_{\text {points }}\right)}
\end{aligned}
$$

$$
\left.\therefore k:=0 . .11 \cdot, \text { Midpoints }_{\text {high }_{k}}:=\frac{\left(\text { Bins }_{\text {high }}^{\mathrm{k}}\right.}{}+\text { Bins }_{\text {high }}^{\mathrm{k}+1} \text {) }\right),
$$

$$
\text { normalhigh curve }:=\text { Nohigh DataCells normalhigh curve }
$$

$$
1
$$

Results For 17A Thicker Points

The above plots indicates that the thicker areas are normally distributed.

Data from 1992 to 2006 is retrieved.

$$
\mathrm{d}:=0
$$

For Dec 311992
page $:=$ READPRN("U:MSOFFICELDrywell Program datalDec. 1992 DatalsandbedDATA ONLYSB17A.txt")

The two groups are named as follows:
StopCELL :=21 No Cells $:=$ length(Cells)
${ }^{\text {low }}$ points $:=$ LOWROWS (nnn , No Cells, StopCELL $) \quad$ high points $:=$ TOPROWS (nmn , No Cells , StopCELL)

$$
\left.\mu_{\text {measured }_{d}}:=\text { mean(Cells }\right) \quad \sigma_{\text {measured }_{d}}:=\operatorname{Stdev}(\text { Cells }) \quad \text { Standard }_{\text {error }}^{d}:=\frac{\sigma_{\text {measured }_{d}}}{\sqrt{\text { No DataCells }}}
$$

$$
\begin{aligned}
& \mu^{\mu} \text { high }_{\text {measured }}^{d} \text { := mean(} \text { high }_{\text {points }} \text {) } \\
& \text { Ohigh }_{\text {measured }}^{d} \boldsymbol{}:=\operatorname{Stdev}\left(\text { high }_{\text {points }}\right) \\
& \text { Standardhigh error }:=\frac{\text { ohigh }_{\mathrm{d}} \text { measured }{ }_{\mathrm{d}}}{\sqrt{\text { length (high points) }}} \\
& \text { plow } \left._{\text {measured }}^{d} \text { := mean(low points }\right) \\
& \text { olow }_{\text {measured }}^{d} \text { }:=\operatorname{Stdev}\left(\text { low }_{\text {points }}\right) \\
& \text { Standardlow }_{\text {error }}^{\mathrm{d}}:=\frac{\text { olow }_{\text {measured }}^{\mathrm{d}}}{}: \frac{\sqrt{\text { length (low points) }}}{\sqrt{\text { (low }}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { No lowCells }:=\text { length (low }_{\text {points }} \text {) } \\
& \text { Cells := deletezero cells (nnn , No Cells) } \\
& \text { low points }:=\text { deletezero cells (low points, No lowCells) } \\
& \text { high }_{\text {points }}:=\text { deletezero }^{\text {cells }} \text { (high points }{ }^{\text {, No }} \text { highCells) }
\end{aligned}
$$

For 1994

$$
d:=d+1
$$

page := READPRN("U:MMSOFFICELDrywell Program datalSept. 1994 DatalsandbedWATA ONLYSBB17A.txt")
$1 \quad$ Points $49!=$ showcells (page, 7,0)
Dates $_{d}:=$ Day $_{\text {year }}(9.26,1994)$

Data
Points ${ }_{4} 9=\left[\begin{array}{lllllll}1.163 & 1.146 & 1.158 & 1.141 & 1.136 & 1.168 & 1.172 \\ 1.122 & 1.155 & 1.122 & 1.144 & 1.128 & 1.157 & 1.133 \\ 1.121 & 1.088 & 1.108 & 1.116 & 1.102 & 1.071 & 1.055 \\ 0.977 & 0.993 & 0.981 & 0.989 & 1.046 & 1.001 & 0.956 \\ 0.962 & 0.914 & 0.869 & 0.942 & 0.877 & 0.938 & 0.962 \\ 0.861 & 0.963 & 0.894 & 0.82 & 0.809 & 0.947 & 0.984 \\ 0.927 & 0.97 & 0.866 & 0.895 & 0.893 & 0.956 & 0.953\end{array}\right]$.

$$
\text { nnn }:=\text { convert }(\text { Points } 49,7) \quad \text { No DataCells }:=\text { length (non })
$$

$$
\text { Point }_{40_{d}}:=n n n_{39}
$$

The two groups are named as follows:

$$
\text { StopCELL }:=21 \quad \text { No Cells }:=\text { length }(\mathrm{mn})
$$

$$
\begin{array}{ll}
\text { low points }:=\text { LowROWS (nnn , No Cells }, \text { StopCELL }) & \text { high } \left._{\text {points }}:=\text { TOPROWS (nnn , No Cells }, \text { StopCELL }\right) \\
\text { No } \text { lowCells }:=\text { length (low points) } & \\
\end{array}
$$

Cells := deletezero cells (nnn, No Cells)

$$
\text { low }_{\text {points }}:=\text { deletezero }^{\text {cells }}\left({ }^{\text {low }} \text { points, }{ }^{\text {No }} \text { lowCells }\right)
$$

$$
\text { high points }^{:=\text {deletezero }^{\text {cells }}(\text { high points } \text {, No highCells }) ~}
$$

$$
\mu_{\text {measured }_{d}}:=\text { mean(Cells) } \quad \sigma_{\text {measured }_{d}}:=\operatorname{Stdev}(\text { Cells }) \quad \text { Standard error }{ }_{d}:=\frac{\sigma_{\text {measured }}^{d}}{\sqrt{\text { No DataCells }}}
$$

$$
\left.\mu_{\text {high }}^{\text {measured }_{d}}:=\text { mean (high points }\right)
$$

$$
\text { ohigh }_{\text {measured }}^{d}:=\operatorname{Stdev}\left(\text { high }_{\text {points }}\right)
$$

$$
\text { Standardhigh }_{\text {error }}^{d}:=\frac{\text { ohigh measured }_{d}}{\sqrt{\text { length (high points })}}
$$

$$
\begin{aligned}
& { }^{\mu l o w} \text { measured }_{d}:=\text { mean (low points } \text {) } \\
& \text { olow } \text { measured }_{d}:=\dot{\operatorname{Stdev}}\left(\text { low }_{\text {points }}\right) \\
& \text { Standardlow }_{\text {error }}^{d} \text { : }:=\frac{\text { olow measured }_{d}}{\sqrt{\text { length(low. points) }}}
\end{aligned}
$$

For 1996

$$
d:=d+1
$$

page $:=$ READPRN("U:MSOFFICEDPrywell Program datalSept. 1996 DatalsandbedWATA ONLYSB17A.txt")

nin $:=$ convert (Points 49,7)
Point $\mathbf{4 0}_{\mathbf{d}}:=\mathrm{nmin}_{39}$

$$
\begin{gathered}
\text { No Cells }:=\text { length(nnn) } \\
\vdots \\
\quad \text { nnn }:=\text { Zero one }^{\prime}(\text { nnn , No Cells }, 3)
\end{gathered}
$$

The two groups are named as follows:
Point 3 was eliminated from the 1996 data

StopCELL := 21

$$
\begin{gathered}
\text { low } \left._{\text {points }}:=\text { LOWROWS (nnn , No Cells }, \text { StopCELL }\right) \\
\\
\text { No } \left._{\text {lowCells }}:=\text { length (}{ }^{\text {low }} \text { points }\right)
\end{gathered}
$$

$$
\begin{gathered}
\text { high }_{\text {points }}:=\text { TOPROWS (nnn, No Cells , StopCELL) ' } \\
\text { No }_{\text {highCells }}:=\text { length }^{\left(\text {high }_{\text {points }}\right)}
\end{gathered}
$$

Cells := deletezero cells (nmi, No Cells)

$$
\text { low } \left._{\text {points }}:=\text { deletezero cells }{ }^{\text {low }} \text { points, No }{ }_{\text {low Cells }}\right)
$$

$$
\text { high points }^{:=} \text {deletezero cells }\left(\text { high }_{\text {points }},{ }^{\text {No }} \text { highCelis }\right)
$$

$\mu_{\text {measured }_{d}}:=\operatorname{mean}($ Cells $) \quad \sigma_{\text {measured }_{d}}:=\operatorname{Stdev}($ Cells $) \quad$ Standard $_{\text {error }}:=\frac{\sigma_{d} \text { measured }_{d}}{\sqrt{\text { No DataCells }}}$

$$
\begin{aligned}
& \mu_{\text {high measured }}^{d}:=\text { mean (high points } \text {) } \\
& \text { ohigh }_{\text {measured }}^{d}:=\operatorname{Stdev}\left(\text { high }_{\text {points }}\right) \\
& {\text { Standardhigh } \text { error }_{d}:=\frac{\text { ohigh }_{\text {measured }}^{d}}{}}_{\sqrt{\text { length }^{\text {high } \left._{\text {points }}\right)}}}^{\text {. }} \\
& \mu_{\text {measured }}^{d}:=\text { mean (low points) }^{\text {low }} \\
& \text { olow }_{\text {measured }_{d}}:=\operatorname{Stdev} \text { (low } \text { points } \text {) } \\
& \text { Standardlow }_{\text {error }}^{\mathrm{d}}: \quad: \frac{\text { olow measured }}{\mathrm{d}} \text {. }
\end{aligned}
$$

For 2006

$$
d:=d+1
$$

$$
\begin{aligned}
\text { page } & \left.:=\text { READPRN("U:LMSOFFICELDrywell Program datalOct } 2006 \text { DatalSandhedISB17A.txt") }^{\text {Points }} 49:=\text { showcells (page, } 7,0\right) \\
& \text { Dates }:=\text { Day }_{\text {dear }}(9 ; 23,2006)
\end{aligned}
$$

			Data	\therefore			
	1.11	1.149	1.154	1.138	1.13	1.17	1.169
	1.121	1.159	. 1.114	1.144	1.134	1.148	1.123
1	1.068	1.073	1.111	1.114	1.094	1.083	1.053
- Points $49=$	0.976	0.991	0.98	1.03	1.046	0.994	0.95
	0.962	0.926	0.909	0.95	0.869	0.938	0.967
1	0.903	0.956	0.891	0.835	0.802	0.95	'0.963
	0.954	0.972	0.877	0.89	0.875	0.891	10.945
	1						
$\mathrm{mn}:=$ convert(Points 49,7)							

$$
\text { No DataCells }:=\text { length }(\mathrm{nnn})
$$

$$
\text { Point }_{40}:=n n n_{39}
$$

The two groups are named as follows:

$$
\text { low }_{\text {points }}:=\text { LOWROWS }(n n n, \text { No Cells, StopCELL })
$$

$$
\text { No low'Cells : }=\text { length }\left(\text { low }_{\text {points }}\right)
$$

StopCELL : $=21 \quad$ No Cells $:=$ length (nnn)
high points $^{:}:=$TOPROWS (nmi, No Cells, StopCELL)
${ }^{\text {No }}{ }_{\text {highCells }}:=$ length $\left(\right.$ high $\left._{\text {points }}\right)$

$$
\text { Cells }:=\text { deletezero cells }\left(\mathrm{nnn}, \mathrm{No}^{\text {Cells }}\right)
$$

$$
\text { low }_{\text {points }}:=\text { deletezero cells (low points }{ }^{\text {No }} \text { lowCells) }
$$

$$
\text { high points } \left.:=\text { deletezero cells (high points, }{ }^{\text {No }} \text { highCells }\right)
$$

high $_{\text {points }}:=$ deletezero $_{\text {cells }}$ (high points, ${ }^{\text {No }}$ highCells)

$$
\left.\mu_{\text {measured }_{d}}:=\text { mean(Cells }\right) \quad \sigma_{\text {measured }_{d}}:=\operatorname{Stdev}\left(\text { Cells) } \quad \text { Standard }_{\text {enrord }}:=\frac{\sigma_{\text {measured }_{d}}}{\sqrt{\text { No DataCells }}}\right.
$$

$$
\text { uhigh } \left._{\text {measured }}^{d} \text { := mean (high points }\right)
$$

$$
\text { ohigh }_{\text {measured }}^{d} \text { := Stdev (high points) }
$$

$$
\begin{aligned}
& \text { How }_{\text {measured }}^{d}:=\text { mean }\left(l^{l o w} \text { points }\right) \\
& \text { olow }_{\text {measured }}^{d}
\end{aligned}=\operatorname{Stdev}(\text { low points })
$$

$$
\text { Standardhigh }_{\text {error }_{d}}:=\frac{\text { ohigh }_{\text {measured }_{d}}}{\sqrt{\text { lengih }^{\left(\text {high }_{\text {points }}\right)}}}
$$

$$
\text { Standardlow error }:=\frac{\text { olow }_{\mathrm{d}} \text { measured }}{\mathrm{d}} \text { }
$$

$$
\text { SSE }:=\sum_{i=0}^{\text {last(Dates })} \cdot\left(\mu_{\text {measured }_{i}}-\text { yhat }\left(\text { Dates }, \mu_{\text {measured }}\right)_{i}\right)^{2}
$$

$$
S S E_{\text {high }}:=\sum_{i=0}^{\text {last (Dates })}\left(\text { high }_{\text {measured }}^{i} \text { - ghat }(\text { Dates }, \text { high measured })_{i}\right)^{2}
$$

$$
\operatorname{SSR}:=\sum_{i=0}^{\text {last }(\text { Dates })}\left(\operatorname{yhat}\left(\text { Dates }, \mu_{\text {measured }}\right)_{i}-\text { mean }\left(\mu_{\text {measured }}\right)\right)^{2}
$$

$$
\operatorname{SSR}_{\text {low }}:=\sum_{i=0}^{\text {last(Dates })}\left(\text { hat }^{\prime}(\text { Dates, , How measured })_{i}-\text { mean }(\text { How measured })\right)^{2}
$$

$$
\begin{aligned}
& \text { Total means }:=\operatorname{rows}\left(\mu_{\text {measured }}\right) \quad \text { Total }_{\text {means }}=4 \\
& \text { SST }:=\sum_{i=0}^{\text {last(Dates })} \cdot\left(\mu_{\text {measured }}^{i}{ }^{-} \text {mean }\left(\mu_{\text {measured }}\right)\right)^{2} \\
& \text { SST }_{\text {low }}:=\sum_{i=0}^{\text {last(Dates })}\left(\text { slow }_{\text {measured }}^{i} 10 \text { mean }\left(\text { How }_{\text {measured }}\right)\right)^{2}
\end{aligned}
$$

DegreeFree $_{\text {ss }}:=$ Total means $_{1}-2$ DegreeFree $_{\text {reg }}:=1$
DegreeFree $_{\text {st }}:=$ Total means $^{-1}$

MSS: $:=\frac{\text { SSE }}{\text { DegreeFree }_{\text {ss }}} \quad$ MSS $_{\text {low }}:=\frac{{ }^{\prime} \text { SSE }_{\text {low }}^{1}}{\text { Degreefree }_{\text {ss }}} \quad \ddots \quad$ MSE $_{\text {high }}:=\frac{\text { SSE }_{\text {high }}}{\text { DegreeFree }_{\text {ss }}} \quad$,

$M S R:=\frac{\text { SSR }}{\text { DegreaFree }_{\text {reg }}} \quad$ MSS $_{\text {low }}:=\frac{\text { SSR }_{\text {low }}}{\text { DegreeFree }_{\text {reg }}} \quad \vdots \quad$ MSR $_{\text {high }}:=\frac{\text { SSR }_{\text {high }}}{\text { DegrecFree }_{\text {reg }}}$.
T

$$
\text { MST }:=\frac{\text { SST }}{\text { DegreeFree }_{\text {st }}} \quad \text { MST }_{\text {low }}:=\frac{\text { SST }_{\text {low }}}{\text { DegreeFree }_{\text {st }}^{\prime}} \quad \text { MST }_{\text {high }}:=\frac{\text { SST }_{\text {high }}}{\text { DegreeFree }_{\text {st }}}
$$

Test the means with all points

F Test for Corrosion

$$
\begin{aligned}
& \alpha:=.05 \quad F_{\text {actaul_Reg }}:=\frac{\text { MR }}{M S E} . \\
& F_{\text {critical_reg }}:=\mathbf{q F}\left(1-\alpha, \text { DegreeFree }_{\text {reg }}, \text { DegreeFree }_{s s}\right) \\
& F_{\text {ratio_reg }}:=\frac{F_{\text {actaul_Reg }}}{F_{\text {critical_reg }}} \\
& F_{\text {ratio_reg }}=5.616 \cdot 10^{-3}
\end{aligned}
$$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

Test the low points

F Test for Corrosion
$1 \quad 1$

$$
\mathrm{F}_{\text {actaul_Reg.low }}:=\frac{\mathrm{MSR}_{\text {low }}}{\operatorname{MSE}_{\text {low }}}
$$

$$
F_{\text {critical_reg }}:=\mathbf{q F}\left(1-\alpha, \text { DegreeFree }_{\text {reg }}, \text { DegreeFree }_{\text {ss }}\right)
$$

$$
F_{\text {ratio_reg.low }}:=\frac{F_{\text {actaul_Reg.low }}}{F_{\text {critical_reg }}}
$$

$$
F_{\text {ratio_reg.low }}=2.917 \cdot 10^{-3}
$$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

Test the high points
F Test for Corrosion

$$
\mathbf{F}_{\text {actaul_Reg.high }}:=\frac{\mathrm{MSR}_{\text {high }}}{\mathrm{MSE}_{\text {high }}}
$$

$$
F_{\text {critical_reg }}:=. q F\left(1-\alpha, \text { DegreeFree }_{\text {reg }}, \text { DegreeFree }_{s s}\right)
$$

$$
F_{\text {ratio_reghigh }}:=\frac{F_{\text {actaul_Reg.high }}}{F_{\text {critical_reg }}}
$$

$$
\mathbf{F}_{\text {ratio_reg.high }}=0.013
$$

Therefore no conclusion can be made as to whether the data best fits the regression model: The figure below provides a trend of the data and the grandmean

The following will plot the results for the overall mean, the mean of thinner points, and the mean of thicker points

The F Test indicates that the regression model does not hold for any of the data sets. However, the slopes and 95% Cpnfidence curves are generated for all three cases.

```
\(\mathrm{m}_{\mathrm{s}}:=\operatorname{slope}\left(\right.\) Dates, \(\mu_{\text {measured }}\) )
\(\mathbf{y}_{\mathbf{b}}:=\) intercept (Dates,\(\mu_{\text {measured }}\) )
\(\mathrm{m}_{\text {lows }}:=\operatorname{slope}\left(\right.\) Dates , \(\mu \mathrm{low}\) measured) \(\quad y_{\text {lowb }}:=\) intercept (Dates, plow measured)
```



```
    11
\(\alpha_{t}^{\prime}:=0.05 \quad k:=23 \quad f:=0 . . k-1\)
year predict \(:=1985+\mathrm{f} .2\)
```

Thick predict $:=\mathrm{m}_{\mathrm{s}} \cdot$ year $_{\text {predict }}+\mathrm{y}_{\mathrm{b}}$
Thick lowpredict $:=m_{\text {lows }}$ year predict $+y_{\text {lowb }}$
Thick highpredict $:=m_{\text {highs }} \cdot{ }^{\text {year }}$ predict $+y_{\text {highb }}$
Thick actualmean := mean(Dates)
$\operatorname{sum}:=\sum_{i}\left(\text { Dates }_{d}-\operatorname{mean}(\text { Dates })\right)^{2}$

APPENDIX 7.

For the entire grid
upper $_{f}:=$ Thick $_{\text {predict }}^{f}$...

$$
+q t\left(1-\frac{\alpha_{t}}{2}, \text { Total means }-2\right) \cdot \text { Standard error } \cdot \sqrt{1+\frac{1}{(d+1)}+\frac{\left(\text { year }_{\text {predict }}-\text { Thick }_{\text {actualmean }}\right)^{2}}{\text { sum }} .1}
$$

lower $_{f}:=$ Thick $_{\text {predict }}^{f} \ldots$

$$
+-\left[q\left(1-\frac{\alpha_{t}}{2}, \text { Total means }-2\right) \cdot \text { Standard error } \cdot \sqrt{\left.1+\frac{1}{(d+1)}+\frac{\left(\text { year }_{\text {predict }}-1 \text { thick actualmean }\right)^{2}}{\text { 'sum }}\right]}\right.
$$

For the points which are thicker

$$
\begin{aligned}
& \text { upper }:=\text { Thick highpredict }_{f} \cdots \\
& \quad+\left(1-\frac{\alpha_{t}}{2}, \text { Total means }-2\right) \cdot \text { Standard }_{\text {higherror }} \cdot \sqrt{1+\frac{1}{(d+1)}+\frac{\left(\text { year }_{\text {predict }}-\text { Thick }_{\text {actualmean }}\right)^{2}}{\text { sum }}}
\end{aligned}
$$

lower $_{f}:=$ Thick $_{\text {highpredict }}^{f}$...

$$
+-\left[1 \cdot\left(1-\frac{\alpha_{t}}{2}, \text { Total means }^{1}-2\right) \cdot \text { Standard }_{\text {higherror }} \cdot \sqrt{\left.1+\frac{1}{(d+1)}+\frac{\left(\text { year }_{\text {predict }_{f}}-\text { Thick actualmean }^{2}\right.}{\text { sum }}\right]}\right.
$$

For the points which are thinner

$$
\begin{aligned}
& \text { upper }_{\mathrm{r}}:=\text { Thick }_{\text {lowpredict }}^{\mathrm{f}} \text {. }{ }^{\text {. }}
\end{aligned}
$$

$$
\begin{aligned}
& \text { lower }_{f}:=\text { Thick }_{\text {lowpredict }}^{f} \text {... } \\
& +-\left[q t\left(1-\frac{\alpha_{t}}{2}, \text { Total }_{\text {means }}^{1}-2\right) \cdot \text { Standard lowerror } \cdot \sqrt{\left.1+\frac{1}{(d+1)}+\frac{\left(\text { year }_{\text {predict }}-\text { Thick }_{\text {actualmean }}\right)^{2}}{\text { sum }}\right]}\right. \text {. } \\
& \text { • }
\end{aligned}
$$

The section below calculates what the postulated mean thickness would be if this grid were to corrode at a minimum observable rate observed in appendix 22.

$$
\text { Rate }_{\text {min_observed }}:=6.9
$$

The following addresses the readings at the lowest single point

$$
\begin{aligned}
& \text { SST }_{\text {point }}:=\sum_{i=0}^{\text {last(Dates })}\left(\text { Point }_{40_{i}}-\text { mean }(\text { Point } 40)\right)^{2} \cdot \text { SST }_{\text {point }}=2.379 \cdot 10^{4} \\
& \text { SSE }_{\text {point }}:=\sum_{i=0}^{\text {last (bates })}\left(\text { Point }_{40_{i}-\text { yhat }}(\text { Dates , Point } 40)_{i}\right)^{2} \\
& S S E_{\text {point }}=2.334 \cdot 10^{4} \\
& \left.3 S R_{\text {point }}:=\sum_{i=0}^{\text {last(Dates })}(\text { yhat (Dates , Point } 40)_{i}-\text { mean }(\text { Point } 40)\right)^{2} \quad \text { SSR }_{\text {point }}=445.558 \\
& \text { MSE }_{\text {point }}:=\frac{\text { SSE }_{\text {point }}}{\text { DegrecFree }_{\text {SS }}} \quad \operatorname{MSR}_{\text {point }}:=\frac{\text { SSR }_{\text {point }}}{\text { DegreeFree }_{\text {reg }}} \quad \text { MST }_{\text {point }}:=\frac{\text { SST }_{\text {point }}}{\text { DegrecFree }_{\text {st }}} \\
& \text { StPoint }_{\text {err }}:=\sqrt{\text { MSE }_{\text {point }}} \quad \text { StPoint }_{\text {err }}=108.036 \\
& \text { MSE }_{\text {point }}=1.167 \cdot 10^{4} \quad \text { MSR }_{\text {point }}=445.558 \quad \operatorname{MST}_{\text {point }}=7.93 \cdot 10^{3} \\
& \text { F Test for Corrosion } \\
& F_{\text {actaul_Reg }}:=\frac{\text { MSR }_{\text {point }}}{\text { MSE }_{\text {point }}} \\
& F_{\text {ratio_reg }}:=\frac{F_{\text {actaul_Reg }}}{F_{\text {critical_reg }}} \\
& F_{\text {ratio_reg }}=2.062 \cdot 10^{-3}
\end{aligned}
$$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

$$
\left.\left.m_{\text {point }}:=\text { slope (Dates, Point } 40\right) m_{\text {point }}=-1.983 y_{\text {point }}:=\text { intercept (Dates, Point } 40\right) y_{\text {point }}=4.811 \cdot 10^{3}
$$

The 95\% Confidence curves are calculated

$$
\begin{aligned}
& \text { Point curve }:=m_{\text {point }} \cdot y^{\text {ear }} \text { predict }+y_{\text {point }}, \\
& \text { Point actualmean } \left.:=\text { mean(Dates }) \quad \text { sum }^{\prime}:=\sum_{i}\left(\text { Dates }_{d}-\text { mean (Dates }\right)\right)^{2}
\end{aligned}
$$

$$
\text { uppoint }_{f}:=\text { Point }_{\text {curve }}^{f} .
$$

$$
+q t\left(1-\frac{\alpha_{t}}{2}, \text { Total means }^{-12}\right) \cdot \text { StPoint }_{\text {err }} \cdot \sqrt{1_{1}+\frac{1}{(d+1)}+\frac{\left(\text { year predict }_{f}-\text { Point }_{\text {actualmean }}\right)^{2}}{\ldots \text { sum }},}
$$

$$
\text { lopoint }_{\mathbf{r}}:=\text { Point }_{\text {curve }}^{f} \ldots
$$

$$
+-\left[q t\left(1-\frac{\alpha_{t}}{2}, \text { Total means }-2\right) \cdot \text { StPoint }_{\text {err }} \sqrt{\left.1+\frac{1}{(d+1)}+\frac{\left(\text { year }_{\text {predict } \left._{f}-\text { Point }_{\text {actualmean }}\right)^{2}}^{\text {sum }}\right.}{}\right]}\right.
$$

Local $T_{m i n}$ for this elevation in the Drywall \quad Tmin_local $_{\mathbf{S B}_{\mathbf{f}}}:=490$.

Tho section below calculates what the postulated individual thickness would be if this point were to corrode at a minimum observable rate of 1.7 mils per year (Appendix 22).

```
    Rate min_observed \(:=6.9\)
    Postulated thickness \(:=\) Point 40 - Rate min_observed \((2029-2006)\)
Postulated thickness \(=643.3 \quad\) which is greater than \(\quad T_{\text {min_local }} \mathrm{SB}_{3}=490\)
```

1e section below calculates what the postulated corrosion rate necessary for the thinnest individual point to ach the local required thickness by 2029.

$$
\text { minpoint }=0.802 \quad \text { year }_{\text {predict }_{22}}=2.029 \cdot 10^{3} \quad \text { Tmin_local }_{\text {SB }_{22}}=490
$$

required rate. $:=\frac{\left(1000 \text { minpoint }- \text { Tmin_local } \mathrm{SB}_{22}\right)}{(2005-2029)}$

$$
\text { required rate. }=-13 \quad \text { mils per year }
$$

Appendix 8 - Sand Bed Elevation Bay 17D

October 2006 Data

1
The data shown below was collected on 10/18/06.

```
page := READPRN("U:\MSOFFICEDrywell Program datalOCT 2006 DatalSandyedSB17D.txt" )
```

Points 49 := showcells (page , 7,0)
Points $^{\prime}{ }^{\prime} \quad 1=\left[\begin{array}{ccccccc}0.849 & 0.828 & 0.861 & 0.894 & 0.93 & 0.888 & 0.702 \\ 0.806 & 0.802 & 0.717 & 0.8 p 6 & 0.736 & 0.756 & 0.648 \\ 1 & =.998 & 0.823 & 0.752 & 0.733 & 0.822 & 0.73 \\ 1.072 & 1.074 & 0.742 & 0.867 \\ 0.814 & 0.841 & 0.85 & 0.812 & 0.816 & 0.853 & 0.0 .8 \\ 0.792 & 0.829 & 0.888 & 0.846 & 0.888 & 0.855 & 0.8 \\ 0.824 & 0.897 & 0.837 & 0.887 & 0.891 & 0.935 & 0.886\end{array}\right]$

Cells := convert $\left(\right.$ Points $_{49}, 7$)
No DataCells := length(Cells)
The thinnest point at this location is point 14 which is shown below

$$
\text { minpoint }:=\min (\text { Points. } 49)
$$

$$
\text { minpoint }=0.648
$$

For this location point 15, 16, 22, and 23 are over a plug (refer 3.22)

$$
\begin{aligned}
& \text { Cells := Zero one (Cells, No DataCells, 15) } \\
& \text { Cells := Zero one (Cells, No DataCells , 22) } \\
& \text { Cells }:=\text { deletezero cells (Cells , No DataCells) } \\
& \text { Cells := Zero one (Cells, }{ }^{\text {No }}{ }_{\text {DataCells }}, 16 \text {) } \\
& \text { Cells := } \text { Zero }_{\text {one }}\left(\text { Cells }^{\text {, No }}{ }_{\text {DataCells }}, 23\right)
\end{aligned}
$$

Sheet No.

Mean and Standard Deviation

'Standard Error'

$$
\text { minpoint }=0.648
$$

Standard $_{\text {error }}:=\frac{\sigma_{\text {actual }}}{\sqrt{\text { No DataCells }}}$

Skewness
1
Skewness $:=\frac{\left(\text { No }_{\text {DataCells }}\right) \cdot \Sigma \overrightarrow{\left(\text { Cells }-\mu_{\text {actual }}\right)^{3}}}{(\text { No DataCells }-1) \cdot\left(\text { No }_{\text {DataCells }}-2\right) \cdot\left(\sigma_{\text {actual }}\right)^{3}} \quad$ Skewness $=-0.576$

Kurtosis

$$
\begin{aligned}
\text { Kuttosis }:= & \frac{\text { No }_{\text {DataCells }} \cdot\left({ }^{\text {No }}{ }_{\text {DataCells }}+1\right) \cdot \overline{\Sigma\left(\text { Cells }-\mu_{\text {actual }}\right)^{4}}}{\left({ }^{\text {No }}{ }_{\text {DataCells }}-1\right) \cdot(\text { No DataCells }-2) \cdot(\text { No DataCells }-3) \cdot\left(\sigma_{\text {actual }}\right)^{4}} \text { Kuitosis }=-0.19 \\
& +-\frac{3 \cdot(\text { No DataCells }-1)^{2}}{\left(\text { No }_{\text {DataCells }}-2\right) \cdot\left(\text { No }_{\text {DataCells }}-3\right)}
\end{aligned}
$$

Normal Probability Plot

In a normal plot, each data value is plotted against what its value would be if it actually came from a normal distribution. The expected normal values, called normal scores, and can be estimated by first calculating the rank scores of the sorted data.

Then each data point is ranked. The array rank captures these ranksi

$$
\begin{aligned}
& r_{j}:=j+1 \quad \operatorname{rank}_{j}:=\frac{\sum(\overrightarrow{(\overrightarrow{s r t=s r t})}) \cdot r}{\sum \overrightarrow{s_{j}=\mathrm{srt}_{j 4}}} \\
& 1 \\
& p_{j}:=\frac{\text { rank }_{\mathrm{j}}}{\text { rows (Cells })+1}
\end{aligned}
$$

The normal scores are the corresponding p th percentile points from the standard normal distribution:

$$
x:=1 \quad N_{-} \text {Score }_{j}:=\operatorname{root}\left[\operatorname{cnorm}(x)-\left(p_{j}\right), x\right]
$$

Upper and Lower Confidence Values

The'Upper and Lower confidence values are calculated based on .05 degree of confidence " $q^{\prime \prime}$ "

$$
\text { No DataCells := length (Cells })
$$

$$
\alpha:=.05 . \quad \mathrm{T} \alpha:=\mathrm{qt}\left[\left(1-\frac{\alpha}{2}\right),{ }^{\text {No }} \text { DataCells }\right] \mathrm{T} \alpha=2.014
$$

$$
\begin{aligned}
& { }^{\text {L Lower }} 95 \% \text { Con }:=\mu_{\text {actual }}-\mathrm{T} \alpha \cdot \frac{\sigma_{\text {actual }}}{\sqrt{\text { No DataCells. }}} \quad \quad \text { Lower } 95 \% \text { Con }=798.75 \\
& \stackrel{U}{\text { Uppet }}_{95 \% \text { Con }}:=\mu_{\text {actual }}+\mathrm{T} \alpha \cdot \frac{\sigma_{\text {actual }}}{\sqrt{\text { No DataCells }}} \quad . \quad \text { Upper }_{95 \% \text { Con }}=838.583
\end{aligned}
$$

These values represent a range on the calculated mean in which there is 95% confidence.

Graphical Representation

Distribution of the "Cells" data points are sorted in $1 / 2$ standard deviation increments (bins) within $+/-3$ standard deviations

The Mathcad function pnorm calculates a portion of normal distribution curve based on a given mean and standard deviation

$$
\begin{aligned}
& \text { normal curve } 0 \text { : pnorm (} \text { Bins }_{1}, \mu_{\text {actual }}, \sigma_{\text {actual }} \text {) } \\
& \text { normal }_{\text {curve }}:=\operatorname{pnorm}\left(\text { Bins }_{k+1}, \mu_{\text {actual }}, \sigma_{\text {actual }}\right)-\text { pnorm }\left(\text { Bins }_{k}, \mu_{\text {actual }}, \sigma_{\text {actual }}\right) \text {. } \\
& \text { normal curve }:=\text { No }_{\text {DataCells }} \text {-normal curve }
\end{aligned}
$$

Results For Elevation Sandbed Elevation Location Oct. 2006

The following schematic shows: the the distribution of the samples, the normal curve based on the actual mean and standard deviation, the kurtosis, the skewness, the number of data points, and the the lower and upper 95% confiderice values. Below is the Normal Plot for the data.

Sandbed Location 17D Trend

Data from the 1992, 1994 and 1996 is retrieved.
$\mathrm{d}:=0$.

For 1992

Dates $_{\mathrm{d}}:=$ Day $_{\text {year }}(12,8,1992)$
page := READPRN("U:MSOFFICELDrywell Program dataWec. 1992 DatalsandbedData OnlyISB17D.txt")

$$
\begin{aligned}
& \text { Points } 49 \text { := showcells(page , 7, 0) } \\
& \text { Data } \\
& \text { Points }_{49}=\left[\begin{array}{lllllll}
0.839 & 0.802 & 0.853 & 0.905 & 0.9 \uparrow 5 & 0.877 & 0.71 \\
0.804 & 0.802 & 0.71 & 0.806 & 0.737 & 0.762 & 0.648 \\
1.029 & 0.814 & 0.752 & 0.802 & 0.819 & 0.737 & 0.668 \\
1.069 & 1.069 & 0.748 & 0.803 & 0.784 & 0.806 & 0.785 \\
0.809 & 0.845 & 0.845 & 0.816 & 0.846 & 0.845 & 0.84 \\
0.79 & 0.833 & 0.892 & 0.846 & 0.878 & 0.855 & 0.792 \\
0.832 & 0.896 & 0.835 & 0.882 & 0.886 & 0.936 & 0.862
\end{array}\right] \\
& \text { nnn }:=\text { convert (Points } 49,7 \text {) } \\
& \text { No DataCells := length (nnn) } \\
& \text { point } 13_{d}:=\operatorname{mnn}_{13} \\
& \text { point }{ }_{13}=648
\end{aligned}
$$

For this location point 15, 16, 22, and 23 are over a plug (refer 3.22)

$$
\begin{aligned}
& \text { nins:= Zero one (nnn, No DataCells }, 15 \text {) } \\
& \text { mn := Zero one (nnn, No DataCells, 16) } \\
& \text { nnm := Zero one (nnn, No DataCells, 22) } \\
& \text { nnn := Zero one (nnn, No DataCells, }{ }^{23} \text {) } \\
& \text { Cells }:=\text { deletezero cells (nnn, No DataCells) } \\
& \mu_{\text {measured }_{d}}:=\operatorname{mean}(\text { Cells }) \quad \sigma_{\text {measured }}^{d}:=\operatorname{Stdev}(\text { Cells }) \\
& \text { Standard }_{\text {error }}:=\frac{\sigma_{d} \text { measured }_{d}}{\sqrt{\text { No DataCells }} .}
\end{aligned}
$$

page := READ́PRN("U:IMSOFFFICELDrywell Program datalSept. 1994 DatalsandbedLData OnlylSB17D:pxt")

For this location point 15, 16, 22, and 23 are over a plug (refer 3.22)

$$
\begin{aligned}
& \text { nnn := Zero one (inn, No DataCells, } 15 \text {) } \\
& \text { nmi:= Zero one (nnd , No DataCells , 16) } \\
& \text { nnn }:=\text { Zero one (nnn, No DataCells }, 22 \text {) } \\
& \text { non := Zero one (nnn, No DataCells }, 23 \text {) } \\
& \text { Cells := deletezero cells (nnn, No DataCells) } \\
& \left.\mu_{\text {measured }_{d}}:=\text { mean(Cells }\right) \quad \sigma_{\text {measured }_{d}}:=\operatorname{Stdev}(\text { Cells }) \quad \text { Standard } \text { error }_{d}:=\frac{\sigma \text { measured }_{d}}{\sqrt{\text { No DataCells }}}
\end{aligned}
$$

For 1996
page $:=$ READPRN("U:IMSOFFICEDDrywell Program datalSept. 1996 DatalsandbedData OnlyISB17D.txt")

$$
\text { Dates }_{d}:=\operatorname{Day}_{\text {year }}(9,16,1996)
$$

Points $49:=$ showcells (page $, 7,0$) $\quad 1$

Data

Points $49=\left[\begin{array}{lllllll}0.88 & 0.895 & 0.896 & 0.909 & 0.88 & 0.845 & 0.746 \\ 0.893 & 0.812 & 0.736 & .0 .837 & 0.863 & 0.783 & 0.693 \\ 0.775 & 1.038 & 0.767 & 0.808 & 0.774 & 0.813 & 0.807 \\ 0.803 & 1.121 & 1.001 & 0.772 & 0.835 & 0.877 & 0.794 \\ 0.786 & 0.787 & 0.839 & 0.88 & 0.849 & 0.892 & 0.867 \\ 0.827 & 0.808 & 0.843 & 0.904 & 0.898 & 0.892 & 0.912 \\ 0.883 & 0.859 & 0.864 & 0.82 & 0.892 & 0.962 & 0.979\end{array}\right]$

$$
\operatorname{nnn}:=\text { convert }(\text { Points } 49,7)
$$

$$
{ }^{\text {No }} \text { DataCells }:=\text { length }(\mathrm{nnn})
$$

$$
\text { point } 13_{d}:=\mathrm{nnn}_{13}
$$

For this location point 15, 16, 22, and 23 are over a plug (refer 3.22)

$$
\begin{aligned}
& \operatorname{nnn}:=\text { Zero one }^{(n n n}, \text { No DataCells, 15) } \\
& \text { nnn }:=\text { Zero one }(\mathrm{nnn}, \text { No DataCells, } 22)
\end{aligned}
$$

$$
\text { nrm }:=\text { Zero one }\left(\mathrm{nm}, \text { No }{ }^{\text {DataCeils }}, 16\right)
$$

mnn :=: Zero one (inn , No DataCells , 23)

$$
\text { Cells }:=\text { deletezero cells (nmn, No DataCells) }
$$

For 2006

$$
d:=d+1
$$

page $:=$ READPRN("U:WMSOFFICEDDrywell Program datalOCT 2006 DatalSandbedSB17D.txt")

$$
\text { Dates }_{d_{1}}:=\text { Day year }(10,16,2006)
$$

Points $49:=$ showcells (page $, 7,0$)

Data

	[0.849	0.828	0.861	0.894	0.93	0.888	0.702
11	0.806	0.802	0.717	0.806	0.736	0.756	0.648
	0.998	0.823	0.752	0.733	0.822	0.73	0.667
Points $49=$	1.072	1.074	0.742	0.812	0.812	0.803	0.791
	0.814	0.841	0.85	0.816	0.852	0.856	. 0.869
	0.792	0.829	0.888	0.846	0.888	0.855	0.8
	0.824	0.897	0.837	0.887	0.891	0.935	0.886

nno: $=$ convert (Points 49,7)

$$
\text { point }{ }_{13}:=m n_{13}
$$

For this location point 15, 16, 22, and 23 are over a plug (refer 3.22)

$$
\begin{aligned}
& \text { nm := Zero one (nim, No DataCells , 15) } \\
& \text { nnn := Zero one (nnn; No DataCells ; 16) } \\
& \text { nnn := Zero one (nnn , No DataCells }, 22 \text {) } \\
& \text { mn }:=\mathrm{Zerr}_{\text {one }}\left(\mathrm{nnn}, \mathrm{No}_{\text {DataCells }}, 23\right. \text {) } \\
& \text { Cells : = deletezero cells (nnn, No DataCells) } \\
& \mu_{\text {measured }_{d}}:=\operatorname{mean}(\text { Cells }) \quad \sigma_{\text {measured }_{d}}:=\operatorname{Stdev}(\text { Cells }) \quad \text { Standard error } d:=\frac{\sigma_{d} \text { measured }_{d}}{\sqrt{\text { No DataCells }}}
\end{aligned}
$$

Below are matrices which contain the date when the data was collected, Mean, Standard Deviation, Standard Eltor for each date.

Dates $=\left[\begin{array}{c}1.993 \cdot 10^{3} \\ 1.995 \cdot 10^{3} \\ 1.997 \cdot 10^{3} \\ 2.007 \cdot 10^{3}\end{array}\right] . \quad . \quad$ point ${ }_{13}=\left[\begin{array}{c}648 \\ 646 \\ 693 \\ 648\end{array}\right]$.
$\mu_{\text {measured }}^{\prime}=\left[\begin{array}{c}817.2222 \\ .809 .8889 \\ 847.9778 \\ 818.6667\end{array}\right] \quad$ Standard $_{\text {error }}=\left[\begin{array}{c}9.214 \\ 9.448 \\ 8.983 \\ 9.476\end{array}\right], \quad \sigma_{\text {measured }}=\left[\begin{array}{c}64.496 \\ 66.133 \\ 62.884 \\ 66.335\end{array}\right]$.

Total $_{\text {means }}:=\operatorname{rows}\left(\mu_{\text {measured }}\right) \quad$ Total means $=4$

$$
\begin{gathered}
\text { SST }:=\sum_{i=0}^{\text {last }(\text { Dates })}\left(\mu \text { measured }_{i}-\text { mean }\left(\mu_{\text {measured }}\right)\right)^{2} \quad \text { SST }=847.181 \\
\text { SSE } \left.:=\sum_{i=0}^{\text {last (Dates })}\left(\mu_{\text {measured }_{i}-\text { yhat }(D a t e s, ~} \mu_{\text {measured }}\right)_{i}\right)^{2} \quad \text { SSE }=847.126
\end{gathered}
$$

$$
\operatorname{SSR}:=\sum_{i=0}^{\text {last }(\text { Dates })}\left(\text { yhat }\left(\text { Dates }, \mu_{\text {measured }}\right)_{i}-\text { mean }\left(\mu_{\text {measured }}\right)\right)^{2} \quad \operatorname{SSR}=0.055
$$

$$
\text { Degreefree }_{\text {ss }}:=\text { Total }_{\text {means }}-2 \quad \text { DegreeFree }_{\text {reg }}:=1 \quad . \quad \text { DegreeFree }_{\text {st }}:=\text { Total means }-1
$$

$$
\text { MSE }:=\frac{\text { SSE }}{\text { DegreeFree }_{\text {sS }}} \quad \text { MSR }:=\frac{\text { SSR }}{\text { DegreeFree }_{\text {reg }}} \quad \text { MST }:=\frac{\text { SST }}{\text { DegreeFree }_{\text {st }}}
$$

$$
\text { MSE }=423.563
$$

$$
M S R=0.055 \quad M S T=282.394
$$

$$
\text { StGrand }_{\mathrm{err}}:=\sqrt{\mathrm{MSE}} \quad \text { StGrand }_{\mathrm{err}}=20.581
$$

FTest for Corrosion

$\alpha:=0.05$

$$
F_{\text {actaul_Reg }}^{\prime}:=\frac{\text { MSR }}{M S E}
$$

Therefore no conclusion can be made as to whether the data best fits the regression model The figure \quad, below provides a trend of the data and the grandmean

$$
F_{\text {ratio_reg }}=6.985 \cdot 10^{-6}
$$

$i:=0 .$. Total means $\stackrel{1}{-1} \quad$ Hgrand $_{\text {measured }}^{i}:=\operatorname{mean}\left(\mu_{1}\right.$ measured $)$
ogrand measured $:=\operatorname{Stdev}\left(\mu_{\text {measured }}\right) \quad$ GrandStandard ${ }_{\text {error }}:=\frac{\text { ogrand measured }}{\sqrt{\text { Total means }}}$
The minimum required thickness at this elevation is. $T_{m i n}$ gen $\mathrm{SB}_{\mathbf{i}}:=736$ (Ref. 3.25)

- 0 conservatively address the location, the apparent corrosion rate is calculated and compared to the inimum required wall thickness at this elevation

$$
\left.m_{s}:=\operatorname{slope}\left(\text { Dates }, \mu_{\text {measured }}\right) \quad m_{s}=0.022 \quad y_{b}:=\text { intercept (Dates, } \mu_{\text {measured }}\right) y_{b}=779.89
$$

,
The 95\% Confidence curves are calculated

$$
\text { upper }_{f}:=\text { Thick }_{\text {predict }}^{f} \ldots
$$

$$
{ }_{i} \quad+\operatorname{qt}\left(1-\frac{\alpha_{t}}{2}, \text { Total means }-2\right) \cdot \text { StGrand }_{\text {err }} \cdot \sqrt{1+\frac{1}{(d+1)}+\frac{\left(\text { year }_{\text {predict }_{f}-\text { Thick actualmean }}\right)^{2}}{\text { sum }}}
$$

$$
\begin{aligned}
& \text { lower }_{f}:=\text { Thick }_{\text {predict }}^{f} \ldots \\
& +-\left[q t\left(1-\frac{\alpha_{t}}{2}, \text { Total means }-2 \cdot\right) \cdot \text { StGrand } e \pi r \cdot \sqrt{1+\frac{1}{(d+1)}+\frac{\left(\text { year }_{\text {predict }_{f}}-\text { Thick }_{\text {actualinean }}\right)^{2}}{\text { sum }}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \alpha_{t}:=0.05 \mathrm{k}:=2029-.1985 \quad f:=0 . . \mathrm{k}-\mathbf{1}^{1} \\
& \text { year }_{\text {predict }}:=1985+\mathrm{f} \cdot 2 \text { Thick predict }:=\mathrm{m}_{\mathrm{s}} \cdot \text { year }_{\text {predict }}+y_{\mathrm{b}} \\
& \left.{ }^{\prime} \text { Thick }_{\text {actualmean }}^{\prime}:=\operatorname{mean}(\text { Dates }) \quad \text { sum }:=\sum_{i}\left(\text { Dates }_{d} \uparrow \text { mean(Dates }\right)\right)^{2}
\end{aligned}
$$

Therefore even though F-ratio does not support the regression model the above curve shows that even at the lower 95% confidence band this loc̣ation will not corrode to below. Drywell Vessel Minimum required thickness by the plant end of life.

The section below calculates what the postulated mean thickness would be if this grid were to corrode at a minimum observable rate observed in appendlx 22.

$$
\text { Rate }_{\text {min_observed }}:=6.9
$$

Postulated $_{\text {meanthickness }}:=\mu_{\text {measured }_{3}}-$ Rate min_observed (2016-2006)

$$
\text { Tmin_gen } \mathrm{SB}_{3}=736
$$

he following addresses the readings at the lowest single point

The F-Ratio is calculated for the point as follows

$$
\begin{aligned}
& \operatorname{SST}_{\text {point }}:=\sum_{i=0}^{\text {last(Dates })}\left(\operatorname{point}_{13_{i}} \perp \operatorname{mean}\left(\text { point }_{1} 13\right)\right)^{2} \quad \operatorname{SST}_{\text {point }}=1.567 \cdot 10^{3} \\
& \left.\operatorname{SSE}_{\text {point }}:=\sum_{i=0}^{\text {last(Dates })}\left(\text { point }_{13}-\text { yhat (Dates, point } 13\right)_{i}\right)^{2} \\
& 1.1 \\
& \mathrm{SSE}_{\text {point }}=1.551 \cdot 10^{3} \\
& \text { SSR } \left.\text { point }^{:=} \sum_{i=0}^{\text {last(Dates })}(\text { yhat (Dates , point } 13)_{i}^{\prime}-\text { mean }(\text { point } 13)\right)^{2} \\
& \mathrm{SSR}_{\text {point }}=15.491
\end{aligned}
$$

F Test for Corrosion

$$
\begin{aligned}
& F_{\text {actaul_Reg }}:=\frac{M_{\cdot} \text { MSE }_{\text {point }}^{\text {point }}}{} \\
& F_{\text {ratio_reg }}:=\frac{\mathcal{F}_{\text {actaul_Reg }}}{F_{\text {critical_reg }}} \\
& F_{\text {ratio_reg }}=1.079 \cdot 10^{-3}
\end{aligned}
$$

Therefore no conclusion can be made as to whether the dala best fits the regression model The figure below provides a trend of the data and the grandmean

$m_{\text {point }}^{\prime}:=\operatorname{slope}($ Dates, point 13$) m_{\text {point }}=-0.367 y_{\text {point }}:=\dot{\text { intercept }}$ (Dates, point $\left.{ }_{13}\right) \dot{y_{\text {point }}=1.391 \cdot 10^{3}}$
The 95% Confidence curves are calculated
-
point $_{\text {curve }}:=m_{\text {point }} \cdot$ year $_{\text {predict }}+y_{\text {point }}$
${ }^{\prime}$ point $_{\text {actualmean }}^{\prime}:=\operatorname{mean}($ Dates $) \quad$ sum $:=\sum_{i}\left(\right.$ Dates $_{d}-$ mean (Dates $\left.)\right)^{2}$
uppoint $_{r}:=$ point $_{\text {curve }}^{r} \boldsymbol{} \ldots$

$$
+q t\left(1-\frac{\alpha_{t}}{2}, \text { Total means }^{\circ}-2\right) \cdot \text { Stpoint }_{\text {err }} \cdot \sqrt{1+\frac{1}{(d+1)}+\frac{\left(\text { year }_{\text {predict }}^{f}-\text { point actualmean }\right)^{2}}{\text { sum }}}
$$

lopoint $_{f}:=$ point $_{\text {curve }}^{f}{ }^{\cdots}$

$$
+-\left[q t\left(1-\frac{\alpha_{t}}{2}, \text { Total means }^{\prime}-2\right) \cdot \text { Stpoint } \mathrm{er} \cdot \sqrt{1+\frac{1}{(d+1)}+\frac{\left(\text { year predict }_{\mathrm{r}}-\text { point }_{\text {actualmean }}\right)^{2}}{\text { sum }}}\right]
$$

Local Tmin for this elevation in the Drywell \quad Tmin_local $_{\text {SB }_{f}}:=490$
(Ref. 3.25)

Curve Fit For Point 13 Projected to Plant End Of Life

The section below calculates what the postulated individual thickness would be if this point were to corrode at a minlmum observable rate observed in appendix 22.

$$
\begin{aligned}
& \qquad \text { Rate min_observed }=6.9 \\
& \text { Postulated thickness }:=\text { point }_{13_{3}} \text { - Rate min_observed }(2016-2006) \\
& \text { Postulated }_{\text {thickness }}=579 \quad \text { which is greater than } \quad \text { Tmin_local }_{\mathrm{SB}_{3}}=490
\end{aligned}
$$

The section below calculates what the postulated corrosion rate necessary for the thinnest individual point to reach the local required thickness by 2029.

$$
\begin{aligned}
& \text { minpoint }=0.648 \quad \text { year } \text { predict }_{22}=2.029 \cdot 10^{3} \quad \text { Tmin_local }_{S_{22}}=490 \\
& \text { required rate. }:=\frac{\left(1000 \cdot \text { minpoint }- \text { Tmin_local } \mathrm{SB}_{22}\right)}{(2005-2029)} \\
& \text { required rate. }=-6.583 \quad \text { mils per year }
\end{aligned}
$$

Appendix 9 - Sandbed 17-19 October 2006 Data

The data shown below was collected on 10/18/06

```
page := READPRN("U:MSOFFICELDryweil Program datalOCT 2006 DatalSandbedISB17-19.txt" )
                    Points 49:= showcelis(page, 7,0)
Points \(49=\left[\begin{array}{lllllll}0.969 & 0.962 & 0.945 & 0.931 & 0.965 & 0.96 & 0.928 \\ 0.972 & 0.977 & 0.959 & 0.991 & 0.967 & 0.955 & 0.937 \\ 0.968 & 0.974 & 1.004 & 0.987 & 0.982 & 0.996 & 0.924 \\ 1.022 & 0.959 & 0.963 & 0.974 & 0.993 & 0.985 & 0.952 \\ 0.96 & 0.962 & 0.951 & 0.95 & 0.943 & 0.982 & 0.901 \\ 1.001 & 0.994 & 0.952 & 0.929 & 0.917 & 0.962 & 1.001 \\ 0.995 & 1.019 & 1.012 & 0.995 & 1.009 & 0.946 & 1\end{array}\right]\).
    Cells := convert(Points 49,7)
    No DataCells:= length(Cells)
```

The thinnest point at this location is point 35 and shown below

$$
\text { minpoint }:=\min (\text { Points } 49) \quad \text { minpoint }=0.901
$$

Cells $:=$ deletezero cells (Cells, ${ }^{\text {No }}$ DataCells)
${ }^{\text {No }}$ DataCells $:=$ length(Cells)

Mean and Standard Deviation

$$
\mu_{\text {actual }}:=\text { mean }(\text { Cells }) \cdot \mu_{\text {actual }}=969.02 \quad \sigma_{\text {actual }}:=\operatorname{Stdev}(\text { Cells }) \quad \sigma_{\text {actual }}=27.654
$$

Standard Error

Skewness
Skewness $:=\frac{\left(\text { No }_{\text {DataCells }}\right) \cdot \overline{\Sigma\left(\text { Cells }-\mu_{\text {actual }}\right)^{3}}}{\left(\text { No }_{\text {DataCells }}-1\right) \cdot\left(\text { No }_{\text {DataCells }}-2\right) \cdot\left(\sigma_{\text {actual }}\right)^{3}} \quad$ Skewness $=-0.182$

Kurtosis

13

$$
\begin{aligned}
\text { Kurtosis }:= & \frac{\text { No }_{\text {DataCells }} \cdot\left(\text { No }_{\text {DataCells }}+1\right) \cdot \overrightarrow{\Sigma\left(\text { Cells }-\mu_{\text {actual }}\right)^{4}}}{\left(\text { No }_{\text {DataCells }}-1\right) \cdot\left(\text { No }_{\text {DataCells }}-2\right) \cdot\left(\text { No }_{\text {DataCells }}-3\right) \cdot\left(\sigma_{\text {actual }}\right)^{4}} \cdots \quad \text { Kurtosis }=-0.365 \\
& +\frac{3 \cdot(\text { No DataCells }-1)^{2}}{\left(\text { No DataCells }^{-2}\right) \cdot(\text { No DataCells }-3)}
\end{aligned}
$$

Normal Probability Plot

$$
\begin{aligned}
& \mathrm{j}:=0 . \text { last(Cells) set }:=\text { sort(Cells) } \\
& r_{j}:=j+1 \quad \operatorname{rank}_{j}:=\frac{\sum \overline{\left(\overrightarrow{s r l=s r t_{j}}\right)} \cdot r}{\sum \overrightarrow{s r i=s t t_{j}}} \\
& p_{j}:=\frac{\text { rank }_{j}}{\text { rows(Cells })+1} \\
& x:=1 \quad N_{-} \operatorname{Score}, j:=\operatorname{root}\left[\operatorname{cnorm}(x)-\left(p_{j}\right), x\right]
\end{aligned}
$$

Upper and Lower Confidence Values

The Upper and Lower confidence values are calculated based on . 05 degree of confidence " α "

$$
\begin{gathered}
\alpha:=.05 \quad T \alpha:=\mathrm{q}\left[\left(1-\frac{\alpha}{2}\right), 48\right] \quad \mathrm{T} \alpha=2.01 \mathrm{~s} \\
\text { Lower } 95 \% \text { Con }:=\mu_{\text {actual }}-\mathrm{T} \alpha \cdot \frac{\sigma_{\text {actual }}}{\sqrt{\text { No DataCells }}} \\
\text { Upper } 95 \% \text { Con }:=\mu_{\text {actual }}+\mathrm{T} \alpha \cdot \frac{\sigma_{\text {actual }}}{\sqrt{\text { No DataCells }}}
\end{gathered} \quad \text { Lower } 95 \% \text { Con }=961.077 .
$$

These values represent a range on the calculated mean in which there is 95% confidence.

Graphical Representation

Distribution of the "Cells" data points are sorted in $1 / 2$ standard deviation increments (bins) within $+/-3$ standard deviations

$$
\text { Bins }:=\text { Make bins }\left(\mu_{\text {actual }}, \sigma_{\text {actual }}\right)
$$

Distribution := hist(Bins, Cells)

The mid points of the Bins are calculated

$$
k:=0.11 \quad \text { Midpoints }_{k}:=\frac{\left(\text { Bins }_{k}+\text { Bins }_{k+1}\right)}{2}
$$


```
normal curve \(\left.{ }_{0}:=\operatorname{pnorm}^{\left(\text {Bins }_{1}, \mu \text { actual }, ~\right.} \sigma_{\text {actual }}\right)\)
    \({ }^{\text {normal }}\) curve \(_{k}:=\) pnorm \(\left(\right.\) Bins \(\left._{k+1}, \mu_{\text {actual }}, \sigma_{\text {actual }}\right)-\operatorname{pnorm}\left(\right.\) Bins \(\left._{k}, \mu_{\text {actual }}, \sigma_{\text {actual }}\right)\)
    normal curve \(:={ }^{\text {No }}\) DataCells \(^{\text {normal }}\) curve
```


Results For Bay 17-19

The following schematic shows: the the distribution of the samples, the normal curve based on the actual mean and standard deviation, the kurtosis, the skewness, the number of data points, and the the lower and upper 95% confidence values.

Data Distribution

This data (2006) is normally distributed. However, past calculations (ref. 3.22) have split this area out as a separate groups and performed analysis on both groups. In order to be consistent with past calculations this data will be split in two groups and analyzed. As well as the entire data set.

The two groups are named as follows: . StopCELL :=21
low points $:=$ LOWROWS(Cells, No DataCells, StopCELL) $\quad \operatorname{high}_{\text {points }}:=$ TOPROWS(Cells, 49, StopCELL)

Mean and Standard Deviation

$$
\begin{array}{ll}
\left.\mu l_{\text {actual }}:=\text { mean }^{(l o w}{ }_{\text {points }}\right) & \text { olow actual }:=\operatorname{Stdev}(\text { low points }) \\
\left.\mu \text { high }_{\text {actual }}:=\text { mean(high points }\right) & \quad \text { ohigh }_{\text {actual }}:=\operatorname{Stdev}\left(\text { high }_{\text {points }}\right)
\end{array}
$$

Standard Error

Skewness

Nolow DataCells := length(low points)

Nohigh DataCells := length(high points)

Skewness $_{\text {high }}:=\frac{(\text { Nohigh DataCells }) \cdot \overline{\sum\left(\text { high points }-\mu \text { high }_{3} \text { actual }\right)^{3}}}{\left(\text { Nohigh }_{\text {DataCells }}-1\right) \cdot(\text { Nohigh DataCells }-2) \cdot\left(\text { ohigh actual }^{3}\right)^{3}}$

Kurtosis

$$
\begin{aligned}
& \text { Kurtosis }{ }_{\text {low }}:=\frac{\text { Nolow DataCells } \cdot\left(\text { Nolow }_{\text {DataCells }}+1\right) \cdot \overrightarrow{\Sigma\left(\text { low }_{\text {points }}-\mu \text { low }_{\text {actual }}\right)^{4}}}{\left(\text { Nolow }_{\text {DataCells }}-1\right) \cdot\left(\text { Nolow }_{\text {DataCells }}-2\right) \cdot\left(\text { Nolow }_{\text {DataCells }}-3\right) \cdot\left(\text { Olow }_{\text {actual }}\right)^{4}} \ldots \\
& +-\frac{3:\left(\text { Nolow }_{\text {DataCells }}-1\right)^{2}}{\left(\text { Nolow }_{\text {DataCells }}-2\right) \cdot\left(\text { Nolow }_{\text {DataCells }}-3\right)} \\
& K_{\text {Krtosis }}^{\text {high }}:=\frac{\text { Nohigh }_{\text {DataCells }} \cdot\left(\text { Nohigh }_{\text {DataCells }}+1\right) \cdot \overline{\Sigma\left(\text { high }_{\text {points }}-\text { uhigh }_{\text {actual }}\right)^{4}}}{\left(\text { Nohigh }_{\text {DataCelis }}-1\right) \cdot\left(\text { Nohigh }_{\text {DataCells }}-2\right) \cdot\left(\text { Nohigh }_{\text {DataCells }}-3\right) \cdot\left(\text { ohigh }_{\text {actual }}\right)^{4}} \\
& +-\frac{3 \cdot\left(\text { Nohigh }_{\text {DataCells }}-1\right)^{2}}{\left(\text { Nohigh }_{\text {DataCells }}-2\right) \cdot\left(\text { Nohigh }^{\text {DataCells }}-3\right)}
\end{aligned}
$$

Normal Probability Plot - Low points

$$
\begin{aligned}
& 1:=0 \text {.. last(low points) sit low }:=\text { sort(low points). } \\
& L_{1}:=1+1
\end{aligned}
$$

$$
\begin{aligned}
& P_{\text {low }_{1}}:=\frac{\text { rank } \text { low }_{1}}{\text { rows }(\text { low points })+1} \\
& x:=1 \quad \text { N_Score }_{\text {low }}:=\operatorname{root}\left[\operatorname{cnorm}(x)-\left(p_{\text {low }}^{1}\right), x\right]
\end{aligned}
$$

Normal Probability Plot - High points

$$
\begin{aligned}
& h:=0 . \text { last(high points) } \quad \text { sit high }:=\text { sort }^{\text {(high }} \text { points) }
\end{aligned}
$$

$x:=1$

$$
\text { N_Score }_{\text {high }_{h}}:=\operatorname{root}\left[\operatorname{cnorm}(x)-\left(p_{\text {high }_{h}}\right), x\right]
$$

Upper and Lower Confidence Values

$$
\begin{aligned}
& \alpha:=.05 \quad T \alpha:=q\left[\left(1-\frac{\alpha}{2}\right), 48\right] \quad T \alpha=2.011 \\
& \text { Lowerhigh } 95 \% \text { Con }:=\mu \text { high }_{\text {actual }}-\mathrm{T} \alpha \cdot \frac{\text { ohigh }_{\text {actual }}}{\sqrt{\text { Nohigh DataCells }}} \\
& \text { Uppernigh } 95 \% \text { Con }:=\mu \text { high }_{\text {actual }}+\mathrm{T} \alpha \frac{\text { ohigh actual }}{\sqrt{\text { Nohigh DataCells }}} \\
& \text { Lowerlow } 95 \% \text { Con }:=\mu \mathrm{low} \text { actual }-\mathrm{T} \alpha \frac{\text { olow }_{\text {actual }}}{\sqrt{\text { Nolow DataCells }}} \\
& \text { Upperlow } 95 \% \text { Con }:=\mu \mathrm{low} \text { actual }+\mathrm{Ta} \frac{\text { olow }_{\text {actual }}}{\sqrt{\text { Nolow DataCells }}}
\end{aligned}
$$

Graphical Representation of Low Points

normallow $_{\text {curve }_{0}}:=$ pnorm(Bins low $_{1},{ }^{\text {, }}$ low actual, olow ${ }^{\text {actual }}$)

normallow curve $:=$ Nolow DataCells normallow curve

Results For Sandbed Bay 17/19 thinner points

The above plots indicates that the thinner area is more normally distributed than the entire population.

Results For Sandbed Bay 17/19 thinner points

The above plots indicates that the thicker areas are normally distributed.

Data from 1992 to 2006 is retrieved
For Dec 311992
page :=READPRN("U:WSOFFICEDDrywell Program datalDec. 1992 DatalsandbedWATA ONLYYSBI7-19.txt")

Points $_{49}$	$:=$ showcells(page, 7,0)
Data	
$\therefore \quad$ Points 49	$=\left[\begin{array}{lllllll}0.958 & 1.007 & 0.954 & 0.934 & 0.959 & 0.957 & 0.964 \\ 0.982 & 0.977 & 0.968 & 0.992 & 0.96 & 1.001 & 0.969 \\ 0.978 & 0.975 & 1.004 & 0.985 & 0.984 & 1.03 & 0.959 \\ 1.01 & 0.958 & 0.957 & 0.979 & 0.991 & 0.985 & 0.956 \\ 0.968 & 0.963 & 0.992 & 0.947 & 0.979 & 0.997 & 0.914 \\ 1.045 & 1.012 & 0.968 & 0.974 & 0.958 & 0.97 & 0.994 \\ 1.034 & 1.038 & 1.039 & 1.005 & 1.056 & 0.99 & 1.004\end{array}\right]$

$\operatorname{nnn}:=$ convert $($ Points 49,7). No DataCells $:=$ length(nnn)

$$
\text { Point } 35_{d}:=\text { nn }_{34} \quad \text { Point } 35=914
$$

The two groups are named as follows:
StopCELLL: 21
No Cells := length(Cells)

$$
\begin{aligned}
& { }^{\text {low }} \text { points }:=\text { LOWROWS(nnn, No } \text { Cells } \text {, StopCELL) } \quad \text { high points }:=\text { TOPROWS(nnn, No Cells, StopCELL) } \\
& \text { No }{ }_{\text {low Cells }}:=\text { length(low points) } \quad \text { No highCells }:=\text { length(high points) } \\
& \text { Cells : = deletezero cells (nnn, No Cells) } \\
& \text { low points : }=\text { deletezero cells (low points, No IowCells) } \\
& \text { high poinis }:=\text { deletezero }_{\text {cells }}\left({ }^{(h i g h} \text { points, }{ }^{N o}\right. \text { highCells) }
\end{aligned}
$$

$\mu_{\text {measured }_{d}}:=$ mean(Cells) $^{\text {measured }_{d}}:=\operatorname{Stdev(Cells)} \quad \sigma_{\text {mandard }_{\text {error }}^{d}}:=\frac{\sigma_{\text {measured }}^{d}}{} \sqrt{\text { No DataCells }}$

$$
\begin{aligned}
& \text { رhigh measured }{ }_{d}:=\text { mean }^{\left(h_{i g h}\right.} \text { points } \text {) } \\
& \text { ohigh measured }_{d}:=\operatorname{Stdev}(\text { high points }) \quad \because \quad \text { olow measured } d:=\operatorname{Stdev}(\text { low points }) \\
& \text { Standardhigh } \left._{\text {error }}^{d}:=\frac{\text { othigh }_{\text {measured }}^{d}}{}\right) \\
& \mu \text { low measured }{ }_{d}=\text { mean(low points) } \\
& \text { Standardlow } \left._{\text {error }}^{d}: ~=\frac{\text { olow }_{\text {measured }}^{d}}{}\right)(\sqrt{\text { length(low points) }}
\end{aligned}
$$

$$
d:=d+1
$$

For 1994
page $:=$ READPRN("U:MSOFFICEIDrywell Program dataLSept 1994 DatalsandbedDATA ONLYSB17-19.txt")
Points $49:=$ showcells(page, 7,0) \quad Dates $_{d}:=$ Day $_{\text {year }^{(9,26,1994)}}$
Data
Points $_{49}=\left[\begin{array}{lllllll}0.921 & 0.957 & 0.955 & 0.967 & 0.96 & 0.952 & 0.922 \\ 0.955 & 0.97 & 0.955 & 1.001 & 0.945 & 0.957 & 0.97 \\ 0.982 & 0.977 & 0.991 & 0.993 & 0.969 & 0.995 & 0.933 \\ 1.039 & 0.965 & 0.973 & 0.979 & 0.997 & 0.985 & 0.953 \\ 0.959 & 1.002 & 0.953 & 0.942 & 0.943 & 0.975 & 0.906 \\ 0.998 & 0.995 & 0.967 & 0.938 & 0.834 & 0.96 & 0.98 \\ 1.027 & 1.008 & 1.011 & 0.992 & 1.038 & 0.993 & 0.983\end{array}\right]$
$\operatorname{nnn}:=$ convert $($ Points 49.7$) \quad$ No DataCells $:=\operatorname{length}(\mathrm{nnn})$

$$
\text { Point }_{35_{d}}:=n n n_{34}
$$

The two groups are named as follows:
StopCELL:=21

$$
{ }^{\text {No }} \text { Cells }:=\text { length }(n n n)
$$

$$
\begin{aligned}
& { }^{\text {low }} \text { points }:=\text { LOWROWS(nnn, No Cells, StopCELL) } \\
& \text { No }_{\text {lowCells }}:=\text { length }^{\left(\text {low }_{\text {points }}\right)} \\
& \text { high }_{\text {points }}:=\text { TOPROWS(nnn, No Cells, StopCELL) } \\
& \text { No } \left.{ }_{\text {highCells }}:=\text { length(high points }\right) \\
& \text { Cells :=deletezero cells (nnn, No Cells) } \\
& \text { low points }:=\text { deletezero cells (low points }{ }^{\text {No }} \text { lowCells) } \\
& \text { high points }:=\text { deletezero }^{\text {cells (high }} \text { points, }{ }^{\text {No }} \text { highCells) }
\end{aligned}
$$

$\mu_{\text {high }}^{\text {measured }}{ }_{d}:=$ mean (high points)
ohigh measured $_{d}:=\operatorname{Stdev}\left(\right.$ high points $^{\text {(}}$)
Standardhigh $\left._{\text {error }}^{d}:=\frac{\text { ohigh }_{\text {measured }}^{d}}{}\right)$

$$
\begin{aligned}
& \mu \text { low }_{\text {measured }}^{d} \text { }:=\text { mean(low points } \text {) } \\
& \text { olow } \text { measured }_{d}:=\operatorname{Stdev}\left(\text { low }_{\text {points }}\right) \\
& \text { Standardlow }_{\text {error }}^{d}:=\frac{\text { olow measured }_{d}}{\sqrt{\text { length(low points) }}}
\end{aligned}
$$

page :=READPRN("U:LMSOFFICEIDrywell Program datalSept. 1996 DatalsandbedWATA ONLYSB17-19.xt")

$$
\begin{aligned}
& \text { Points } 49:=\text { showcells(page, } 7,0 \text {) } \\
& \text { Dates }_{d}:=\text { Day }_{\text {year }}(9,23,1996) \\
& \text { Data } \\
& \text { nṇ }:=\text { convert(Points } 49,7 \text {) } \\
& \text { Point } 3_{\mathrm{d}}:=\mathrm{nnn} \mathrm{n}_{34} \\
& \text { The two groups are named as follows: } \\
& \text { StopCELL }:=21 \quad \text { No Cells }:=\text { length }(n n n) \\
& \text { low points }:=\text { LOWROWS(nnn, No Cells, StopCELL) } \\
& \text { No lowCells := length(low points) } \\
& \text { high } \left._{\text {points }}:=\text { TOPROWS (nnn, No Cells, StopCELL }\right) \\
& \text { No highCells := length(high points) } \\
& \text { Cells }:=\text { deletezero cells (nnn, No Cells) } \\
& { }^{\text {low }} \text { points }:=\text { deletezero cells (low points }{ }^{\text {No }} \text { lowCells) }
\end{aligned}
$$

$$
\begin{aligned}
& \mu_{\text {measured }_{d}}:=\text { mean(Cells) } \quad \sigma_{\text {measured }_{d}}:=\operatorname{Stdev}(\text { Cells }) \quad \text { Standard error }:=\frac{\sigma_{d} \text { measured }_{d}}{\sqrt{\text { No DataCells }}} \\
& \mu_{\text {high }}^{\text {measured }_{d}}:=\text { mean (high points } \text {) } \\
& \text { ohigh measured }_{d}:=\operatorname{Stdev}\left(\text { high points }^{\text {(}}\right. \\
& \left.\mu \text { low } \text { measured }_{d}:=\text { mean }^{\text {(low }} \text { points }\right) \\
& \text { olow measured }{ }_{d}:=\operatorname{Stdev}\left(\text { low }_{\text {points }}\right) \\
& \text { Standardhigh }_{\text {error }}^{d}:=\frac{\text { ohigh measured }_{d}}{\sqrt{\text { length(high points) }}} \\
& \text { Standardlow }_{\text {error }}^{d} \text { }:=\frac{\text { olow measured }_{d}}{\sqrt{\text { length }^{\text {(low points })}}}
\end{aligned}
$$

Points 49 :=showcells(page, 7,0)
Dates $_{d}:=$ Day $_{\text {year }}(9,23,2006)$
Data
Points $49=\left[\begin{array}{lllllll}0.969 & 0.962 & 0.945 & 0.931 & 0.965 & 0.96 & 0.928 \\ 0.972 & 0.977 & 0.959 & 0.991 & 0.967 & 0.955 & 0.937 \\ 0.968 & 0.974 & 1.004 & 0.987 & 0.982 & 0.996 & 0.924 \\ 1.022 & 0.959 & 0.963 & 0.974 & 0.993 & 0.985 & 0.952 \\ 0.96 & 0.962 & 0.951 & 0.95 & 0.943 & 0.982 & 0.901 \\ 1.001 & 0.994 & 0.952 & 0.929 & 0.917 & 0.962 & 1.001 \\ 0.995 & 1.019 & 1.012 & 0.995 & 1.009 & 0.946 & 1\end{array}\right]$.
nnn: = convert(Points 49,7)

$$
\text { Point } 35_{d}:=\operatorname{nnn}_{34}
$$

The two groups are named as follows:
low points $:=$ LOWROWS(nnn, No Cells, StopCEIL $)$

$$
\text { No lowCells }:=\text { length(low points) }
$$

No DataCells := length(nnn)

StopCELL : $=21$
${ }^{\text {No }}$ Cells $:=$ length (inn)
${ }^{N o}{ }_{\text {highCells }}:=$ length(high points)
Cells := deletezero cells(nnn, No Cells)

$$
{ }^{\text {low }} \text { points }:=\text { deletezero }_{\text {cells }}\left({ }^{\text {low }} \text { points, }{ }^{\text {No }} \text { lowCells }\right)
$$

$$
\text { high points }:=\text { deletezero }_{\text {cells }}\left(\text { high }_{\text {points }},{ }^{\text {No }}\right. \text { highCells) }
$$

$$
\left.\mu_{\text {measured }_{d}}:=\text { mean(Cells }\right)^{\sigma_{\text {measured }_{d}}:=\operatorname{Stdev}(\text { Cells }) \quad \text { Standard error }:=\frac{\sigma_{d} \text { measured }_{d}}{\sqrt{{ }^{\text {No DataCells }}}} \text {. }}
$$

$$
\text { uhigh measured } \left.:=\text { mean }_{d}\left(\text { high }_{\text {points }}\right) \quad \mu \text { low measured }_{d}:=\text { mean(low points }\right)
$$

$$
\text { ohigh }_{\text {measured }_{d}}:=\operatorname{Stdev}\left(\text { high }_{\text {points }}\right)
$$

$$
\text { olow measured }_{d}:=\operatorname{Stdev}\left(\text { low }_{\text {points }}\right)
$$

$$
{\text { Standardhigh } \text { error }_{d}:=\frac{\text { ohigh measured }_{d}}{\sqrt{\text { length } \left.^{\text {high }} \text { points }\right)}}}_{\text {. }}
$$

$$
\text { Standardlow }_{\text {error }_{d}}:=\frac{\text { olow measured }_{d}}{\sqrt{\text { length(low points) }}}
$$

Below are the results

$$
\text { Dates }=\left[\begin{array}{l}
1.993 \cdot 10^{3} \\
1.995 \cdot 10^{3} \\
1.997 \cdot 10^{3} \\
2.007 \cdot 10^{3}
\end{array}\right]
$$

\pm

Standardhigh error $=\left[\begin{array}{l}4.819 \\ 4.86 \\ 6.028 \\ 4.827\end{array}\right]$

Hlow measured $=\left[\begin{array}{l}988.679 \\ 974.821 \\ 990.143 \\ 972.464\end{array}\right]$
olow measured $=\left[\begin{array}{l}33.27 \\ 41.21 \\ 32.926 \\ 31.118\end{array}\right]: \quad$ Standardlow error $=\left[\begin{array}{l}6.287 \\ 7.788 \\ 6.222 \\ 5.881\end{array}\right]$

$$
\begin{aligned}
& \text { Total }_{\text {means }}:=\text { rows }\left(\mu_{\text {measured }}\right) \quad \text { Total } \text { means }=4 \\
& \operatorname{SST}:=\sum_{i=0}^{\text {last(Dates })}\left(\mu_{\text {measured }_{i}}-\text { mean }\left(\mu_{\text {measured }}\right)\right)^{2} . \\
& \text { SST }_{\text {low }}:=\sum_{i=0}^{\text {last(Dates })}\left(\text { Hlow }_{\text {measured }_{i}}-\text { mean }^{\left.\left(\text {Hlow }_{\text {measured }}\right)\right)^{2}}\right. \\
& \operatorname{SST}_{\text {high }}:=\sum_{i=0}^{\text {last }(\text { Dates })}\left(\mu \text { high }_{\text {measured }}^{i} \text { - mean }\left(\mu \text { high }_{\text {measured }}\right)\right)^{2} . \\
& \text { SSE }:=\sum_{i=0}^{\text {last(Dates })}\left(\mu_{\text {measured }_{i}}-\text { yhat }\left(\text { Dates, } \mu_{\text {measured }}\right)_{i}\right)^{2} \\
& \mathrm{SSE}_{\text {low }}:=\sum_{i=0}^{\text {last(Dates })}\left(\operatorname{llow}_{\text {measured }}^{1}-\text { yhat }\left(\text { Dates, } \mu \text { low }^{\text {measured }}\right)_{i}\right)^{2} \\
& \text { SSE } \text { high }:=\sum_{i=0}^{\text {last(Dates })}\left(\text { hhigh measured }_{i}-\text { yhat }(\text { Dates, } \mu \text { high measured })_{i}\right)^{2} \\
& \text { SSR }:=\sum_{i=0}^{\text {last(Dates })}\left(\text { yhat }\left(\text { Dates }, \mu_{\text {measured }}\right)_{i}-\text { mean }\left(\mu_{\text {measured }}\right)\right)^{2} \\
& \text { SSR low } \left.:=\sum_{i=0}^{\text {last(Dates })}\left(\text { yhat }\left(\text { Dates }, ~ \mu l o w ~ m e a s u r e d ~_{i}\right)_{i}-\text { mean }^{\text {(} \mu \text { low }} \text { measured }\right)\right)^{2} \\
& \text { SSR }_{\text {high }}:=\sum_{i=0}^{\text {last(Dates })}\left(\text { yhat }(\text { Dates, } \mu \text { high measured })_{i}-\text { mean }(\mu \text { high measured })\right)^{2}
\end{aligned}
$$

DegreeFree $_{\text {ss }}:=$ Total means $^{-2} \quad$ DegreeFree $_{\text {reg }}:=1 \quad$ DegreeFree $_{\text {st }}:=$ Total means $^{-1}$

MST $_{\text {low }}:=\frac{\text { SST }_{\text {low }}}{\text { DegreeFree }_{\text {st }}}$
MST $_{\text {high }}:=\frac{\text { SST }_{\text {high }}}{\text { DegreeFree }_{\text {st }}}$

Test the means with all points
F Test for Corrosion

$$
\begin{aligned}
& \alpha:=0.05 \quad F_{\text {actail_Reg }}:=\frac{M S R}{M S E} \\
& F_{\text {critical_reg }}:=q F\left(1-\alpha, \text { DegreeFree }_{\text {reg }}\right. \text { DegreeFree } \\
&5 s) \\
& F_{\text {ratio_reg }}:=\frac{F_{\text {actaul_Reg }}}{F_{\text {critical_reg }}} \\
& F_{\text {ratio_reg }}=0.068
\end{aligned}
$$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

Test the low points

F Test for Corrosion

$$
\begin{aligned}
& F_{\text {actaul_Reg.low }}:=\frac{M_{\text {MSR }}^{\text {low }}}{} \\
& F_{\text {critical_reg }}:=q F\left(1-\alpha, \text { DegreeFree }_{\text {reg }}, \text { DegreeFree }_{\text {ss }}\right) \\
& F_{\text {ratio_reg.low }}:=\frac{F_{\text {actaul_Reg.low }}}{F_{\text {critical_reg }}} \\
& F_{\text {ratio_reg.low }}=0.066
\end{aligned}
$$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

Test the high points

F Test for Corrosion

$$
\begin{aligned}
& F_{\text {actaul_Reg.high }}:=\frac{M S R_{\text {high }}}{M_{S E}} \\
& F_{\text {high }} \\
& F_{\text {ratitical_reg }}:=q F\left(1-\alpha, \text { DegreeFree }_{\text {regigh }}:=\frac{F_{\text {actaul_Reg.high }}}{F_{\text {critical_reg }}}\right. \\
& F_{\text {ratio_reg.high }}=0.039
\end{aligned}
$$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean.

The following will plot the results for the overall mean, the mean of thinner points, and the mean of thicker points

$$
\begin{aligned}
& \mu \text { grand } \text { measured }_{0}=975.628 \\
& \text { mean }(\mu \mathrm{low} \\
& \text { measured })=981.527
\end{aligned}
$$

$$
\text { GrandStanidard error }=3.631
$$

$$
\text { mean }(\mu \text { high measured })=967.762 \quad \text { GrandStandard higherror }=2.898
$$

$$
\begin{aligned}
& \mathrm{i}:=0 . \text { Total }_{\text {means }}-1 \\
& \mu \text { grand measured }:=\text { mean }\left(\mu_{\text {measured }}\right) \quad \quad \text { grand measured }:=\operatorname{Stdev}\left(\mu_{\text {measured }}\right) \\
& \text { GrandStandard error }:=\frac{\text { grand measured }}{\sqrt{\text { Total means }}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { GrandStandard }_{\text {lowerror }}:=\frac{\text { grand }_{\text {lowineasured }}}{\sqrt{\text { Total means }}} \\
& \text { grand highmeasured }:=\operatorname{Stdev}(\mu \text { high measured }) \quad \mu \text { highgrand measured } ;=\text { mean(} \mu \text { high measured) } \\
& \text { GrandStandard higherror }:=\frac{\text { grand highmeasured }}{\sqrt{\text { Total means }}}
\end{aligned}
$$

The F Test indicates that the regression model does not hold for any of the data sets. However, the slopes and 95% Confidence curves are generated for all three cases.

$$
\begin{aligned}
& m_{\mathrm{s}}:=\text { slope(Dates, } \mu_{\text {measured }} \text {) } \\
& y_{b}:=\text { intercept(Dates, } \mu_{\text {measured }} \text {) } \\
& \left.\left.\mathrm{m}_{\text {lows }}:=\text { slope(Dates }, \mu \text { low } \text { measured }\right) \quad y_{\text {lowb }}:=\text { intercept(Dates, } \mu \text { low measured }\right) \\
& \left.m_{\text {highs }}:=\operatorname{slope}(\text { Dates, } \mu \text { high measured }) \quad y_{\text {highb }}:=\text { intercept(Dates, } \mu \text { high measured }\right) \\
& \alpha_{t}:=0.05 \quad k:=23 \quad f:=0 . . k-1 \\
& \text { year } \text { predict }_{\text {f }}:=1985+\mathrm{f} \cdot 2 \\
& \text { Thick }{ }_{\text {predict }}:=m_{s} \text {-year }{ }_{\text {predict }}+y_{b} \\
& \text { Thick }{ }_{\text {lowpredict }}:=\mathrm{m}_{\text {lows }} \cdot \text { year }_{\text {predict }}+\mathrm{y}_{\text {lowb }} \\
& \text { Thick highpredict }:=\mathrm{m}_{\text {highs }} \text { year predict }+\mathrm{y}_{\text {highb }} \\
& \text { Thick } \text { actualmean }^{:=}=\text {mean(Dates) } \\
& \text { sum } \left.:=\sum_{\mathbf{i}}\left(\text { Dates }_{d}-\text { mean(Dates }\right)\right)^{2}
\end{aligned}
$$

For the entire grid

$$
\begin{aligned}
& \text { upper }_{f}:=\text { Thick }_{\text {predict }}^{f} \text {. } \\
& +q\left(1-\frac{\alpha_{t}}{2}, \text { Total means }-2\right) \cdot \text { Standard }_{\text {error }} \cdot \sqrt{\left.1+\frac{1}{(d+1)}+\frac{\left(\text { year }_{\text {predict }}^{f}\right.}{}-\text { Thick }_{\text {actualmean }}\right)^{2}} \text { sum } \\
& \text { lower }_{f}:=\text { Thick }_{\text {predict }}^{f} \text {... } \\
& +-\left[q t\left(1-\frac{\alpha_{t}}{2}, \text { Total means }^{-2}\right) \cdot \text { Standard }_{\text {error }} \cdot \sqrt{\left.1+\frac{1}{(d+1)}+\frac{\left(\text { year }_{\text {predict } \left._{f}-\text { Thick }_{\text {actualmean }}\right)^{2}}^{\text {sum }}\right.}{}\right]}\right.
\end{aligned}
$$

The minimum required thickness at this elevation is ${\operatorname{Tmin} _ \text {gen }_{\mathrm{SB}_{i}}:=736 \quad \text { (Ref. 3.25) }}_{\text {) }}$

i ie points which are thicker
upper $_{f}:=$ Thick $_{\text {highpredict }}^{f}$...

$$
+\mathrm{qt}\left(1-\frac{\alpha_{t}}{2}, \text { Total means }-2\right) \cdot \text { Standard }_{\text {higherror }} \sqrt{\left.1+\frac{1}{(d+1)}+\frac{\left(\text { year }_{\text {predict }}^{\mathrm{f}}\right.}{}-\text { Thick }_{\text {actualmean }}\right)^{2}} \text { sum }
$$

lower $_{f}:=$ Thick $_{\text {highpredict }}^{f}{ }_{f}{ }^{\ldots}$
$+-\left[q t\left(1-\frac{a_{t}}{2}\right.\right.$, Total means -2$) \cdot$ Standard $\left._{\text {higherror }} \cdot \sqrt{1+\frac{1}{(d+1)}+\frac{\left(\text { year }_{\text {predict }}^{f}-\text { Thick actualmean }\right)^{2}}{2}}\right]$

\int he points which are thinner
upper $_{f}:=$ Thick $^{\text {lowpredict }} \ldots$
$+q t\left(1-\frac{\alpha_{t}}{2}\right.$, Total means $\left.^{-2}\right) \cdot$ Standard ${ }_{\text {lowerror }} \cdot \sqrt{1+\frac{1}{(d+1)}+\frac{\left(\text { year predict }_{f}-\text { Thick }_{\text {actualmean }}\right)^{2}}{\text { sum }}}$
lower $_{f}:=$ Thick $_{\text {lowpredict }}^{f}$...

The section below calculates what the postulated mean thickness would be if thls grid were to corrode at a inimum observable rate observed in appendix 22.

$$
\text { Rate }_{\text {min_observed }}:=6.9
$$

Postulated meanthickness $:=\mu_{\text {measured }_{3}}-$ Rate $_{\text {min_observed }}$ (2029-2006)
Postulated meanthickness $=810.32$ which is greater than $\quad T_{\text {min_gen }} \mathrm{SB}_{3}=736$
te following addresses the readings at the lowest single point

$$
\begin{aligned}
& \text { iE point }:=\sum_{i=0}^{\text {last(Dates })}\left(\text { Point }_{35_{i}}-\text { yhat }(\text { Dates }, \text { Point } 35)_{i}\right)^{2} \quad S S E_{\text {point }}=559.156 \\
& \mathrm{R}_{\text {maint }}:=\sum_{i=0}^{\text {last(Dates })}\left(\text { yhat }(\text { Dates , Point } 35)_{i}-\text { mean }(\text { Point } 35)\right)^{2} \quad \text { SSR }_{\text {point }}=114.844 \\
& \text { ASE } \text { point }^{:=} \text {SSE }_{\text {point }} \text { DegreeFree }_{\text {SS }} \quad \quad \text { MSR }_{\text {point }}:=\frac{\text { SSR }_{\text {point }}}{\text { DegreeFree }_{\text {reg }}} \quad \quad \text { MST }_{\text {point }}:=\frac{\text { SST }_{\text {point }}}{\text { DegreeFTee }_{\text {st }}{ }^{1}} \\
& \text { StPoint } e r r=\sqrt{\text { MSE }_{\text {point }}} \quad \text { StPoint }_{\text {err }}=16.721 \\
& \mathrm{MSE}_{\text {point }}=\mathbf{2 7 9 . 5 7 8} \quad \mathrm{MSR}_{\text {point }}=114.844 \quad \mathrm{MST}_{\text {point }}=\mathbf{2 2 4 . 6 6 7} \\
& \text { F Test for Corrosion } \\
& \mathrm{F}_{\text {actaul_Reg }}:=\frac{\mathrm{MSR}_{\text {point }}}{\mathrm{MSE}_{\text {point }}} \\
& F_{\text {ratio_reg }}:=\frac{F_{\text {actaul_Reg }}}{F_{\text {critical_reg }}} \\
& F_{\text {ratio_reg }}=0.022
\end{aligned}
$$

II pre no conclusion can be made as to whether the data best fits the regression model. The figure
 reicurprovides a trend of the data and the grandmean

$$
m_{\text {point }}:=\text { slope }(\text { Dates }, \text { Point } 35) . \quad m_{\text {point }}=-1.007 \quad y_{\text {point }}:=\text { intercept }(\text { Dates, Point } 35) \quad y_{\text {point }}=2.925 \cdot 10^{3}
$$

The 95\% Confidence curves are calculated
Point curve $:=m_{\text {point }}$ year predict $+y_{\text {point }}$

$$
\begin{aligned}
& \text { Point actualmean } \left.:=\text { mean(Dates } \quad . \quad \text { sumn }:=\sum_{i}\left(\text { Dates }_{d}-\text { mean(Dates }\right)\right)^{2} \\
& \text { uppoint }:=\text { Point }_{\text {curve }}^{f}, \ldots \\
& +q t\left(1-\frac{\alpha_{t}}{2}, \text { Total means }^{2}\right) \cdot \text { StPoint } \text { err } \sqrt{1+\frac{1}{(d+1)}+\frac{\left(\text { year predict }_{f}-\text { Point actualmean }^{2}\right)^{2}}{\text { sum }}} \\
& \text { lopoint }_{f}:=\text { Point }_{\text {curve }}^{f} \text {... }
\end{aligned}
$$

Local Tmin for this elevation in the Drywell \quad Tmin_local $\mathrm{SB}_{\mathbf{f}}:=490$
(Ref. 3.25)

Curve Fit For Point 35 Projected to Plant End Of Life

The section below calculates what the postulated individual thickness would be if this point were to corrode at a minimum observable rate observed in appendix 22.

$$
\begin{aligned}
& \text { Rate min_observed }:=6.9 \\
& \text { Postulated thickness }:=\text { Point }_{35_{0}-\text { Rate }}^{\text {min_observed }} \text { (2029-2006) } \\
& \text { Postulated } \text { thickness }=755.3 \quad \text { which is greater than } \quad \text { Tmin_local } \text { SB }_{3}=490
\end{aligned}
$$

The section below calculates what the postulated corrosion rate necessary for the thinnest individual point to reach the local required thickness by 2029.
minpoint $=0.901 \quad$ year predict $_{22}=2.029 \cdot 10^{3} \quad$ Tmin_local $_{S B S_{22}}=490$
required rate. $:=\frac{\left(1000 \text { minpoint-Tmin_local } \mathrm{SB}_{22}\right)}{(2005-2029)}$ required rate. $=-17.125$ mils per year

Appendix 10 - Sand Bed Elevation Bay 19A

October 2006 Data
The data shown below was collected on 10/18/06.

```
page := READPRN("U:MMSOFFICELDrywell Program datal'OCT 2006 DatalSandbedSB19A.tor" ;) '
```

 Points \(_{49}:=\) show'cells (page , 7,0)
 Points ${ }_{49}=\left[\begin{array}{lllllll}0.692 & 0.788 & 0.743 & 0.648 & 0.699 & 0.702 & 0.735 \\ 0.807 & 0.774 & 0.845 & 0.736 & 0.747 & 0.724 & 0.773 \\ 0.813 & 0.812 & 0.892 & 0.885 & 0.861 & .0 .792 & 0.806 \\ 1.916 & 0.883 & 0.805 & 1: 179 & 0.808 & 0.777 & 0.766 \\ 0.973 & 0.904 & 0.842 & 1.16 & 0.801 & 0.752 & 0.878 \\ 0.844 & 0.768 & 0.834 & 0.858 & 0.851 & 0.834 & 0.867 \\ 0.865 & 0.803 & 0.793 & 0.844 & 0.878 & 0.817 & 0.808\end{array}\right]$.

$$
\text { Cells := convert (Points } 49,7) \quad{ }^{\text {No }} \text { DataCells }:=\text { length(Cells) }
$$

The thinnest point at this location is point 4 which shown below

$$
\operatorname{minpoint}:=\min \left(\text { Points }_{49}\right) \quad \because{ }^{\prime} \quad \operatorname{minpoint}=0.648
$$

For this location point 24, 25,31, and 32 are over a plug (refer 3.22)

$$
\begin{aligned}
& \text { Cells := Zero one (Cells, No DataCells : }{ }^{24} \text {) } \\
& \text { Cells := Zero one (Cells, No DataCells, 31) } \\
& \text { Cells := Zero one (Cells, No DataCells, 25) } \\
& \text { Cells := Zero one (Cells, No DataCells , }{ }^{32} \text {) } \\
& \text { Cells := deletezero cells (Cells, No DataCells) }
\end{aligned}
$$

Mean and Standard Deviation

'Standard Error \quad minpoint $=0.648$

Standard $_{\text {error }}:=\frac{\sigma_{\text {actual }}}{\sqrt{{ }^{\text {No }} \text { DataCells }}}$

$$
\text { Standard }_{\text {error }}=8: 912
$$

Skewness
Skewness $:=\frac{(\text { No DataCells }) \cdot \overline{\left(\text { Cells }-\mu_{\text {actual }}\right)^{3}}}{\left(\text { No }_{\text {DataCells }}-1\right):\left(\text { No }_{\text {DataCells }}-2\right) \cdot\left(\sigma_{\text {actual }}\right)^{3}} \quad$ Skewness $=-0.377$

Kurtosis

$$
\begin{aligned}
\text { Kuftosis }:= & \frac{\text { No }_{\text {DataCells }} \cdot\left({ }^{\text {No }}{ }_{\text {DataCells }}+1\right) \cdot \overline{\sum\left(\text { Cells }-\mu_{\text {actual }}\right)^{4}}}{\left(\text { No }_{\text {DataCells }}-1\right) \cdot(\text { No DataCells }-2) \cdot(\text { No DataCells }-3) \cdot\left(\sigma_{\text {actual }}\right)^{4}} \text { Kurtosis }=-0.572 \\
& +-\frac{3 \cdot(\text { No DataCells }-1)^{2}}{\left(\text { No }_{\text {DataCells }}-2\right) \cdot(\text { No DataCells }-3)}
\end{aligned}
$$

3 of 18

Normal Probability Plot

In a normal plot, each data value is plotted against what its value would be if it actually came from a normal distribution. The expected normal values, called normal scores, and can be estimated by first calculating the rank scores of the sorted data.

$$
j:=0 . \text { last(Cells }) \quad \text { srt }:=\text { sort (Cells) }
$$

Then each data point is ranked. The array rank captures these ranksi

$$
r_{j}:=j+1 \quad \operatorname{rank}_{j}:=\frac{\sum \overrightarrow{\left(\overrightarrow{s r t=s r t_{j}}\right) \cdot r}}{\sum \overrightarrow{s r t=s t_{j}}}
$$

$$
p_{j}:=\frac{\text { rank }_{j}}{\text { rows }(\text { Cells })+1}
$$

The normal scores are the corresponding p th percentile points from the standard normal distribution:

$$
x:=1 \quad N_{S} \text { Scorer }_{i}:=\operatorname{root}\left[\operatorname{cnorm}(x)-\left(p_{j}\right), x\right]
$$

'pper and Lower Confidence Values

The'Upper and Lower confidence values are calculated based on . 05 degree of confidence " $\chi^{\text {" }}$

$$
\begin{aligned}
& \text { No }_{\text {DataCells }}:=\text { length(Cells) } \\
& \\
& \quad \alpha:=.05 \quad \text { T } \alpha:=\mathrm{qt}\left[\left(1-\frac{\alpha}{2}\right),{ }^{\text {No }} \text { DataCells }\right] \mathrm{T} \alpha=2.014
\end{aligned}
$$

$$
\text { Uppet }_{95 \% \text { Con }}:=\mu_{\text {actual }}+\mathrm{T} \alpha \frac{\sigma_{\text {actual }}}{\sqrt{\text { No DataCells }}}
$$

These values represent a range on the calculated mean in which there is 95% confidence.

Graphical Representation

Distribution of the "Cells" data points are sorted in $1 / 2$ standard deviation increments (bins) within $+/-3$ standard eviations

The Mathcad function pnorm calculates a portion of normal distribution curve based on a given mean and standard deviation

Results For Elevation Sandbed elevation Location Oct. 2006

"
The following schematic shows: the the distribution of the samples, the normal curve based on the actual mean and standard deviation, the kurtosis, the skewness, the number of data points, and the the lower and upper 95% confidence values. Below is the Normal Plot for the data.

Normal Probability Plot

$$
\mathrm{d}:=0
$$

For 1992 '
Dates $_{d}:=$ Day $_{\text {year }}(12,8,1992)$
page := READPRN("U:MSOFFICELDrywell Program dataUDec. 1992 DatalsandbedData OnlylSB19A.txt")
p Points $49:=$ showcells(page , 7, 0)

$$
\text { nnn }:=\text { convert }(\text { Points } 49,7) \quad \text { No DataCells }:=\text { length }(\mathrm{nmm})
$$

$$
\text { Point }_{4}:=\operatorname{nnn}_{3}
$$

$$
\text { Point }_{4}=659
$$

For this location point 24, 25,31, and 32 are over a plug (refer 3.22)

$$
\begin{aligned}
& \text { ninin }:=\text { Zero one }^{\text {(nnn , No }} \text { DataCells }, 24 \text {) } \\
& \text { mn }:=\text { Zero one }^{\text {(nmm }, ~ N o ~ D a t a C e l l s ~}, 25 \text {) } \\
& \text { nnn := Żero one (nnn, No DataCells }, 31 \text {) } \\
& \text { nnn }:=\text { Zero one (mnn, No DataCells, 32) } \\
& \text { Cells := deletezero cells (nnn, No DataCells) } \\
& \mu_{\text {measured }_{d}}:=\text { mean(Cells) } \sigma_{\text {measured }_{d}}:=\operatorname{Stdev}(\text { Cells }) \quad . \quad \text { Standard } \text { error }_{d}:=\frac{\sigma_{\text {measured }_{d}}}{\sqrt{\text { No DataCells }}}
\end{aligned}
$$

For 1994
4

$$
d:=d+1
$$

page $:=$ READPRN("U:IMSOFFICEDDrywell Program datalSept. 1994 DatalsandbedData OnlylSB19A.txt")

$$
\text { Pates }_{d}:=\text { Day year }_{1}(9,14,1994) .
$$

Points $_{49}:=$ showcells(page", 7,0)

For this location point 24, 25, 31, and 32 are over a plug (refer 3.22)

$$
\begin{aligned}
& \text { nmn := Zero one (inn , No DataCells , 24) } \\
& \mathrm{nm}:=\text { Zero one (nnn , No DataCells, 31) } \\
& \text { ninn := Zero one (nmi, No DataCells, 25) } \\
& \text { nnm: }=\text { Zero one (nnn, No }{ }^{\text {DataCells }} \text {, } 32 \text {) } \\
& \text { Cells := deletezero cells (nnn, No DataCells) } \\
& \mu_{\text {measured }_{d}}:=\operatorname{mean}(\text { Cells }) \quad \sigma_{\text {measured }_{d}}:=\operatorname{Stdev}(\text { Cells }) \quad \text { Standard }_{\text {error }}^{d}:=\frac{\sigma_{\text {measured }}^{d}}{\sqrt{\text { No DataCells }}}
\end{aligned}
$$

```
%
    For 1996
                                    d:= d+1
page := READPRN("U:MSOFFICELDrywell Program data\Sept.1996 Datalsandbed\Data Only\SB19A.txt")
                                    \mp@subsup{Dates d}{d}{:= Day year (9, 16,1996)}
                    Points 49:= showcells(page,7,0) '
    H
    1.
                . Points 49 = [lllllll
                nnn := convert(Points 49,7)
                                    No DataCells := length(nmn)
    Point 4}\mp@subsup{4}{d}{}:= nnn_
```

For this location point 15, 16, 22, and 23 are over a plug (refer 3.22)

$$
\begin{aligned}
& \text { nin }:=\text { Zero one (nnn, No DataCells }, 24 \text {) } \\
& \text { nnn }:=\text { Zero one (ninn, No DataCells, 31) } \\
& \text { nin }:=\text { Zero one (nnn, No DataCells }, 25) \\
& \text { nnn }:=\text { Zero one (nnn, No DataCells , 32) } \\
& \text { Cells := deletezero cells (mnn, No DataCells) } \\
& \mu_{\text {measured }_{d}}:=\operatorname{mean}\left(\text { Cells) } \quad \sigma_{\text {measured }}^{d}:=\operatorname{Stdev}(\text { Cells }) \quad . \text { Standard }_{\text {error }_{d}}:=\frac{\sigma_{\text {measured }}^{d}}{\sqrt{\text { No DataCells }}}\right.
\end{aligned}
$$

$$
d:=d+1
$$

page := READPRN("U:MMSOFFICELDrywell Program datalOCT 2006 DatalSandbedSBB19A.txt")

$$
\text { ninn }:=\text { convert (Points } 49.7 \text {) }
$$

$$
\text { Point }_{4}:=n n n_{3}
$$

For this location point 15, 16, 22, and 23 are over a plug (refer 3.22)

$$
\begin{aligned}
& \text { nnn := Zero one (nnn, No DataCells } \cdot 24 \text {) } \\
& \text { nnn := Zero one (nnn, No DataCells , 25) } \\
& \text { ninn }:=\text { Zero one (nnn, No DataCells , 31) } \\
& \text { nm := Zero one (nnn, No DataCells , 32.) } \\
& \text { Cells := deletezero cells (nnn, No DataCells) } \\
& \mu_{\text {measured }_{d}}:=\operatorname{mean}(\text { Cells }) \quad \sigma_{\text {measured }_{d}}:=\operatorname{Stdev}(\text { Cells }) \quad \text { Standard } \text { error }_{d}:=\frac{\sigma_{\text {measured }}^{d}}{}
\end{aligned}
$$

Below are matrices which contain the date when the data was collected, Mean, Standard Deviation, Standard Erpor for each date.

$$
\begin{aligned}
& \mu_{\text {measured }}=\left[\begin{array}{l}
800.1778 \\
806.2667 \\
814.9111 \\
806.5778
\end{array}\right] \\
& \text { Standard error }=\left[\begin{array}{c}
8.366 \\
9.903 \\
9.615 \\
8.912
\end{array}\right] \\
& \text { Total } \text { means }^{:=} \text {rows }\left(\mu_{\text {measured }}\right) \quad \text { Total }_{\text {means }}=4 \\
& \text { SST }:=\sum_{i=0}^{\text {last(Dates })}\left(\mu_{\text {measured }}^{i} \text { - mean }\left(\mu_{\text {measured }}\right)\right)^{2} \quad \operatorname{SST}=109.843
\end{aligned}
$$

$$
\begin{aligned}
& \text { DegreeFree }_{\text {ss }}:=\text { Total means }^{-2} \quad \text { DegreeFree }_{\text {reg }}:=1 \quad \text { DegreeFree }_{\text {st }}:=\text { Total means }-1 \\
& \text { MSE }:=\frac{\text { SSE }}{\text { DegreeFree }_{\text {sS }}} \quad \text { MSR }:=\frac{\text { SSR }}{\text { DegreeFree }_{\text {reg }}} \quad \text { MST }:=\frac{\text { SST }}{\text { DegreeFree }_{\text {st }}} \\
& \text { MSE }=52.623 \\
& \text { MSR }=4.598 \quad \text { MST }=36.614 \\
& \text { StGrand err }^{:=} \sqrt{\mathrm{MSE}} \quad 1 \quad \text { StGrand }_{\text {err }}=7.254
\end{aligned}
$$

F Test for Corrosion

$$
\alpha:=0.05 \quad F_{\text {actaul_Reg }}:=\frac{\text { MSR }}{\text { MSE }}
$$

1 .
$F_{\text {critical_reg }}:=\mathrm{qF}\left(1-\alpha\right.$, DegreeFree $_{\text {reg }}$, DegreeFree $\left._{\text {ss }}\right)$
$F_{\text {ratio_reg }}:=\frac{F_{\text {actaul_Reg }}}{F_{\text {critical_reg }}}$

$1,1 \cdot 1 \quad 1 \quad 1 \quad 1$

I

Therefore no conclusion can be made as to whether the data best fits the regression model :The figure llow provides a trend of the data and the grandmean - i

1. $\quad i:=0$. Tbtal $_{\text {means }}-1 \quad \mu_{\text {grand }}^{\text {measured }}: 1:=\dot{\text { mean }}\left(\mu_{\text {measured }}\right)$

1 . Plot of the grand mean and the açual means òver time

To conservatively address the location, the apparent corrosion rate is calculated and compared to the minimum required wall thickness at, this elevation

$$
\left.\left.\mathrm{m}_{\mathrm{s}}:=\text { slope(Dates }, \mu_{\text {measured }}\right) \quad \mathrm{m}_{\mathrm{s}}=0.2 \quad \quad \mathrm{y}_{\mathrm{b}}:=\text { intercept (Dates }, \mu_{\text {measured }}\right) y_{b}=407.976
$$

The 95% Confidence curves are calculated
upper $_{f}:=$ Thick predict $_{\mathbf{r}} \ldots$

$$
+q t\left(1-\frac{\alpha}{2}, \text { Total means }-2\right) \cdot \text { StGrand }_{1} \cdot \sqrt{1+\frac{1}{(d+1)}+\frac{(\text { year predict }- \text { Thick actualmean })^{2}}{\text { sum }} .}
$$

$$
\text { lower }_{f}:=\text { Thick }_{\text {predict }}^{f}
$$

$$
+-\left[q t\left(1-\frac{\alpha_{t}}{2}, \text { Total means }^{2}-2\right) \cdot \text { StGrand }_{\text {mrr }} \cdot \sqrt{\left.1+\frac{1}{(d+1)}+\frac{\left(\text { year predict }_{f}-\text { Thick }_{\text {actualmean }}\right)^{2}}{\text { sum }}\right]}\right]
$$

$$
\begin{aligned}
& \alpha_{t}:=0.05 k:=2029-1985 \ldots \quad f:=0 . . k-1
\end{aligned}
$$

$$
\begin{aligned}
& .1 . \quad . \\
& 1 \\
& \text { Thick actuslmean } \left.:=\operatorname{mean}(\text { Dates }) \quad \text { sum } \cdot:=\sum_{i}\left(\text { Dates }_{d}-\text { mean }_{1} \text { Dates. }\right)\right)^{2}
\end{aligned}
$$

Location Curve Fit Projected to Plant End Of Life

Therefore even though F-ratio does not support the regression model the above curve shows that even at the lower 95% confidence band this location will not corrode to below Drywell Vessel Minimum required thickness by the plant end of life.

The section below calculates what the postulated mean thickness would be if it corrode at a minimum observable rate of LATER mils per year.

$$
\text { Rate }_{\text {min_observed }}:=6.9
$$

Postulated thicknessin2008 $:=\mu_{\text {measured }_{3}}-$ Rate $_{\text {min_observed }} \cdot(2008$ - 2006)

Postulated thicknessin2008 $=792.778$ which is greater than Tmin_gen $\mathrm{SB}_{\mathbf{3}}=736$

Sheet No.

The section below caiculates what the postulated mean thickness would be if this grid were to corrode at a minimum observable rate observed in appendix 22.

The following addresses the readings at the lowest single point
The F-Ratio is calculated for the point as follows

F Test for Corrosion

$$
F_{\text {actaul_Reg }}:=\frac{\text { MSR }_{\text {point }}}{\text { MSE }_{\text {point }}}
$$

$$
F_{\text {ratio_reg }}:=\frac{F_{\text {actaul_Reg }}}{\mathbf{F}_{\text {critical_reg }}}
$$

$$
F_{\text {ratio_reg }}=0.015
$$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean
$m_{\text {point }}:=\operatorname{slopt}($ Dates, Point 4$\left.) . m_{\text {point }}=-0.815 y_{\text {point }}:=\operatorname{intercept(Dates,~Point} 4\right) y_{\text {point }}=2.287 \circ \ddot{10}^{3}$
The 95\% Confidence curves are calculated

Point curve $:=m_{\text {point }} \cdot{ }^{\text {year }}$ predict $+y_{\text {point }}$
Point $_{\text {actualmean }}:=$ mean(Dates $) \quad$ sum $:=\sum_{i}\left(\text { Dates }_{d}-\operatorname{mean}(\text { Dates })\right)^{2}$
uppoint $_{f}:=$ Point $_{\text {curve }_{f}} \cdots$

$$
+q t\left(1-\frac{\alpha_{t}}{2}, \text { Total means }_{\prime}^{\prime}-2\right) \cdot \text { StPoint }_{\text {err }}^{\prime} \cdot \sqrt[1]{1+\frac{1}{(d+1)}+\frac{\left(\text { year predict }_{r}-\text { Point }_{\text {actualmean }}\right)^{2}}{\text { sum }}}
$$

lopoint $_{\mathrm{f}}:=$ Point $_{\text {curve }}^{\mathrm{f}}$...

Local Tmin for this elevation in the Drywell
Tmin_local $\mathrm{SB}_{\mathrm{f}}:=490$
(Ref. 3.25)
Curve Fit For Point 4 Projected to Plant End Of Life

The section below calculates what the postulated individual thickness would be if this point were to corrode at a minimum observable rate observed in appendix 22.

Rate $_{\min _ \text {observed }}:=6.9$
Postulated thicknessin2008: $=$ Point $_{4}{ }_{3}-$ Rate $_{\text {min_observed }} \cdot(2016$ - 2006)
Postulated thicknessin2008 $=579$
Which is greater than
Tmin_{2} local $\mathrm{SB}_{3}=490$

The section below calculates what the postulated corrosion rate necessary for the thinnest individual point to reach the local required thickness by 2029.

$$
\begin{aligned}
& \text { minpoint }=0.648 \quad \text { year }_{\text {predict }_{22}=2.029-10^{3}} \quad \text { Tmin_local }_{S B B_{22}}=490 . \\
& \text { required rate. }:=\frac{\left(1000 \text { minpoint }- \text { Tmin_local } \mathrm{SB}_{22}\right)}{(2005-2029)} \quad \text { required }_{\text {rate. }}=-6.583 \quad \text { mils per year }
\end{aligned}
$$

Appendix 11 - Sand Bed Elevation Bay 19B

October 2006 Data

The data shown below was collected on 10/18/06
page := READPRN("U:LMSOFFICEEDrywell Program datalOCT 2006 DatalSandbedSB19B.ext").

Points $_{49}:=$ showcells (page , 7; 0)

$$
\mathcal{P o i n t s}_{49}=\left[\begin{array}{ccccccc}
0.865 & 0.862 & 0.872 & 0.932 & 0.947 & 0.992 & 0.802 \\
0.842 & 0.883 & 0.78 & 0.84 & 0.915 & 0.778 & 0.866 \\
0.861 & 0.906 & 0.838 & 0.898 & 0.974 & 0.93 & 0.834 \\
0.869 & 0.883 & 0.807 & 0.801 & 0.766 & 0.834 & 0.774 \\
0.811 & 0.77 & 0.785 & 0.788 & 0.799 & 0.731 & 0.778 \\
0.828 & 0.787 & 0.885 & 0.891 & 0.934 & 0.834 & 0.738 \\
0.872 & 0.822 & 0.904 & 0.828 & 0.843 & 0.875 & 0.871
\end{array}\right] .
$$

Cells : $=$ convert $\left(\right.$ Points $_{49}, 7$)
${ }^{\text {No }}$ DataCells $:=$ length(Cells)

Cells := deletezero cells (Cells, No DataCells)
The thinnest point at this location is point 34 which is shown below

$$
\text { minpoint }:=\min (\text { Points } 49) \quad \text { minpoint }=0.731
$$

Mean and Standard Deviation

'Standard Error

Standard $_{\text {error }}:=\frac{\sigma_{\text {actual }}}{\sqrt{\text { No DataCells }}}$

Skewness

Kurtosis

$$
\begin{aligned}
\text { Kuttosís }:= & \frac{\text { No DataCells } \cdot\left({ }^{\text {No DataCells }}+1\right) \cdot \overline{\Sigma\left(\text { Cells }-\mu_{\text {actual }}\right)^{4}}}{\left({\text { No } \left.{ }_{\text {DataCells }}-1\right) \cdot(\text { No DataCells }-2) \cdot(\text { No DataCells }-3) \cdot\left(\sigma_{\text {actual }}\right)^{4}}^{\text {Kurtosis }}=-0.325\right.} \\
& +-\frac{3 \cdot(\text { No DataCells }-1)^{2}}{(\text { No DataCells }-2) \cdot(\text { No DataCells }-3)}
\end{aligned}
$$

Normal Probability Plot

In a normal plot, each data value is plotted against what its value would be if it actually came from a normal distribution. The expected normal values, called normal scores, and can be estimated by first calculating the rank scores of the sorted data.

$$
\mathrm{j}:=\dot{0} . . \text { last (Cells }) \quad \text { stt }:=\text { sort (Cells) }
$$

Then each data point is ranked. The array rank captures these ranks:

$$
\begin{aligned}
& r_{j}:=j+1 \quad \operatorname{rank}_{j}:=\frac{\sum \overrightarrow{\left(\overrightarrow{s r t=s t_{j}}\right) \cdot r}}{\sum \overrightarrow{s t=\overrightarrow{s t}_{j n}}} \\
& p_{j}:=\frac{\text { rank }_{j}}{\operatorname{rows}(\text { Cells })+1} \\
& \frac{\text { rank }_{j}}{\text { Cells })+1}
\end{aligned}
$$

The normal scores are the corresponding p th percentile points from the standard' normal distribution:

$$
x:=1 \quad \text { N_Score }_{j}:=\operatorname{root}\left[\operatorname{cnorm}(x)-\left(P_{j}\right), x\right]
$$

Upper and Lower Confidence Values
The-Upper and Lower confidence values are calculated based on 05 degree of confidence " $\boldsymbol{q}^{\prime \prime}$
No DataCells : = length (Cells)

$$
\alpha:=.05 . \quad \mathrm{T} \alpha:=\mathrm{q}\left[\left(1-\frac{\alpha}{2}\right), \mathrm{No}_{\text {DataCelis }}\right] \mathrm{T} \dot{\alpha}=2.01
$$

These values represent a range on the calculated mean in which there is 95% confidence.

Graphical Representation

Distribution of the "Cells" data points are sorted in $1 / 2$ standard deviation increments (bins) within $+1-3$ standard deviations

The Mathcad function pnorm calculates a portion of normal distribution curve based on a given mean and standard deviatipn

$$
\begin{aligned}
& \text { normal }_{\text {curve }}^{0}
\end{aligned}:=\operatorname{pnorm}\left(\text { Bins }_{1}, \mu_{\text {actual }}, \sigma_{\text {actual }}\right) .
$$

$$
\begin{aligned}
& \text { "Lower } 95 \% \text { Con }:=\mu_{\text {actual }}-\mathrm{T} \alpha \cdot \frac{\sigma_{\text {actual }}}{\sqrt{\text { No DataCells }}} \quad \quad \text { Lower } 95 \% \text { Con }=830.243
\end{aligned}
$$

Results For Elevation Sandbed elevation Location Oct. 2006

The following schematic shows: the the distribution of the samples, the normal curve based on the actual mean and standard deviation, the kurtosis, the skewness, the number of data points, and the the lower and upper 95% confidence values. Below is the Normal Plot for the data.

Data Distribution

Normal Probability Plot

Sandbed Location 19B Trend

"

$$
\cdot \quad . \quad . \quad . d:=0
$$

For 1992

$$
\text { Dates }_{d}:=\text { Day year }(12,8,1992)
$$

page : := READPRN("U:MSOFFICEDrywell Program datalDec. 1992 DatalsandbedVata OnlylSB19B.txt")

* Points $49:=$ showcells(page , 7,0)

$$
\text { Point } 34=743
$$

$$
\left.\mu_{\text {measured }_{d}}:=\text { mean(Cells }\right) \quad \sigma_{\text {measured }}^{d}:=\text { Stdev(Cells) }
$$

Standard $_{\text {error }}^{d}$ $:=\frac{\sigma_{\text {measured }}^{d}}{}$

$$
\begin{aligned}
& \text { Data } \\
& 11 \\
& \text { nnn := convert(Points } 49,7 \text {) } \\
& { }^{\text {No }} \text { DataCells }:=\text { length (nnn) } \\
& 1 \\
& \text { Cells : }=\text { deletezero cells (nnn, No DataCells) } \\
& \text { Point }{ }_{34}:=\text { Cells }_{33}
\end{aligned}
$$

page := READPRN("U:MMSOFFICEDDrywell Program datalSept. 1994 DatalsandbedData OnlylSB19B.txt")

Data

111	0.864	0.831	0.831	0.918	0.897	0.868	0.796
	0.829	0.816	0.775	0.834	0.857	0.77	0.827
	0.866	0.866	0.819	0.85	0.914	0.847	0.801
Points $49=$	0.811	0.815	0.75	. 0.845	0.752	0.769	0.754
	0.782	0.764	0.783	0.778	0.807	0.716	0.689
	0.825	0.785	0.883	0.888	0.931	0.818	0.745
	0.863	0.817	0.93	0.821	0.853	0.893	0.843

1
nnn $:=\operatorname{convert}\left(\right.$ Points $\left._{49}, 7\right)$

$$
\text { No DataCells }:=\text { length }(n n n)
$$

$$
\begin{gathered}
\text { Cells } \left.:={\text { deletezero cells }\left(\mathrm{nnn}, \text { No }_{\text {DataCells }}\right) \quad \text { Point }_{34}:=\text { Cells }_{33}}_{\mu_{\text {measured }}^{d}}:=\text { mean(Cells }\right) \quad \sigma_{\text {measured }_{d}}:=\operatorname{Stdev(Cells)} \quad \text { Standard } \text { error }_{d}:=\frac{\sigma_{\text {measured }}^{d}}{\sqrt{\text { No }_{\text {DataCells }}}}
\end{gathered}
$$

```
    For 1996
page := READPRN( "U:MMSOFFICEDrywell Program datalSept.1996 DatalsandbedData'OnlylSB19B.txt" )
```

 \(d:=d+1\)
 Dates \(_{d_{1}}:=\operatorname{Day}_{\text {year }}(9,16,1996)\)
 Points \(_{49}:=\) showcells (page , 7, 0) i

page := READPRN("U:MSOFFICELDrywell Program datalOCT 2006 DatalSandbedSB19B.txt")
Dates $_{d}:=$ Day $_{\text {year }}(10,16,2006)^{\prime}$
Points 49 := showcells (page, 7,0)

Data

1	0.865	0.862	0.872	0.932	0.947	0.992	0.802
	0.842	0.883	0.78.	0.84	0.915	0.778	0.866
	0.861	0.906	0.838	0.898	0.974	0.93	0.834
Points ${ }_{49}=$	0.869	0.883	0.807	0.801	0.766	0.834	0.774
	0.811	0.77	0.785	0.788	0.799	0.731	- 0.778
	0.828	0.787	0.885	0.891	0.934	0.834	0.738
	0.872	0.822	0.904	0.828	0.843	0.875	0.871

$\operatorname{nnn}:=$ convert (Points 49,7)
No DataCells := length (mm)

Cells := deletezero cells (nnn, No DataCells)

$$
\text { Point }_{34}:=\text { Cells }_{33}
$$

$$
\mu_{\text {measured }_{d}}:=\operatorname{mean}(\text { Cells }) \quad \sigma_{\text {measured }}^{d}:=\operatorname{Stdev}(\text { Cells }) \quad \text { Standard } \text { error }_{d}:=\frac{\sigma_{\text {measured }}^{d}}{}
$$

Below are matrices which contain the date when the data was collected, Mean, Standard Dequiation, Standard Etror for each date.

$$
\begin{aligned}
& \text { Dates }=\left[\begin{array}{c}
1.993 \cdot 10^{3} \\
1.995 \cdot 10^{3} \\
1.997 \cdot 10^{3} \\
2.007 \cdot 10^{3}
\end{array}\right] \\
& \\
& \mu_{\text {measured }}=\left[\begin{array}{c}
743 \\
716 \\
745 \\
731
\end{array}\right] \\
& {\left[\begin{array}{l}
839.612 \\
824.204 \\
837.388 \\
847.449
\end{array}\right]}
\end{aligned}
$$

$$
\text { Total means }^{:=} \text {rows }\left(\mu_{\text {measured }}\right) \quad \text { Total means }=4
$$

$$
\begin{aligned}
& \text { SST }:=\sum_{i=0}^{\text {last }(\text { Dates })}\left(\mu_{\text {measured }_{i}}-\text { mean }\left(\mu_{\text {measured }}\right)\right)^{2} \quad \text { SST }=279.784 \\
& \text { SSE }:=\sum_{i=0}^{\operatorname{last}(\text { Dates })}\left(\mu_{\text {measured } \left._{i}-\operatorname{yhat}\left(\text { Dates }, \mu_{\text {measired }}\right)_{i}\right)^{2}} \quad \text { SSE }=153.92\right.
\end{aligned}
$$

$$
\operatorname{SSR}:=\sum_{i=0}^{\text {last(Dates })}\left(\text { yhat }\left(\text { Dates, } \mu_{\text {measured }}\right)_{i}-\text { mean }\left(\mu_{\text {measured }}\right)\right)^{2} \quad \operatorname{SSR}=125.865
$$

$$
\dot{\text { DegreeFree }}_{\text {ss }}:=\text { Total means }-2 \quad \text { DegreeFree }_{\text {reg }}:=1 \quad \text { DegreeFree }_{\text {st }}:=\text { Total }_{\text {means }}-1
$$

$$
\text { MSE }:=\frac{: \text { SSE }}{\text { DegreeFree }_{\text {ss }}}{ }^{\prime} \quad \text { MSR }:=\frac{\text { SSR }}{\text { DegreeFree }_{\text {reg }}} \quad \text { MST }:=\frac{\text { SST }}{\text { DegreeFree }_{\text {st }}}
$$

$$
\text { MSE }=76.96
$$

$$
\operatorname{StGrand}_{\mathrm{err}}:=\sqrt{\mathrm{MSE}} \quad \quad \text { StGrand err }=8.773
$$

$$
\begin{aligned}
& \alpha:=0.05 \\
& { }^{\prime}{ }^{\prime} \text { actaul_Reg }:=\frac{\text { MSR }}{\text { MSE }} \\
& F_{\text {critical_reg }}:=q F\left(1-\alpha, \text { DegreeFree }_{\text {reg }}, \text { DegreeFree }_{\text {ss }}\right) \cdot \\
& F_{\text {ratio_reg }}:=\frac{F_{\text {actaul_Reg }}}{F_{\text {critical_reg }}^{\prime}} \\
& F_{\text {ratio_reg }}=0.088 \\
& F_{\text {actaul_Reg }}:=\frac{\text { MSR }}{\text { MSE }}
\end{aligned}
$$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmear

ogrand measured $:=\operatorname{Stdev}\left(\mu_{\text {measured }}\right) \quad$ GrandStandard error $_{0}:=\frac{\text { ogrand measured }}{\sqrt{\text { Total means }}}$
The minimum required thickness at this elevation is $\mathrm{Tmin}^{\operatorname{gen}} \mathrm{SB}_{\mathbf{i}}:=736 \quad$ (Ref. 3.25)

Plot of the grand mean and the actual means over time

To conservatively address the location, the apparent corrosion rate is calculated and compared to the minimum required wall thickness at this elevation

$$
\left.m_{s}:=\operatorname{slope}\left(\text { Dates }, \mu_{\text {measured }}\right) \quad m_{s}=1.045 \quad y_{b}:=\text { intercept (Dates }, \mu_{\text {measured }}\right) y_{b}=-1.25 \cdot 10^{3}
$$

The 95\% Confidence curves are calculated

$$
\text { upper }_{f}:=\text { Thick }_{\text {predict }}^{f} \ldots
$$

$$
\text { lower }_{f}:=\text { Thick }_{r} \text { predict }_{f} \cdots
$$

$$
+-\left[q t\left(1-\frac{\alpha_{t}}{2}, \text { Total means }-2\right) \cdot \text { StGrand }_{\text {err }} \cdot \sqrt{1+\frac{1}{(d+1)}+\frac{\left(\text { year }_{\text {predict }_{f}}-\text { Thick actualmean }^{2}\right.}{\text { sum }}}\right]
$$

$$
\begin{aligned}
& \alpha_{t}:=0.05 \mathrm{k}:=2029-1985 \quad f:=0 . . k-1 \\
& \text {, } \\
& \text { year }_{\text {predict }_{f}}:=1985+\mathrm{f} \cdot 2 \text { Thick }_{\text {predict }}:=\mathrm{m}_{\mathrm{s}} \text {-year }{ }_{\text {predict }}+y_{b} \\
& \text { Thick }{ }_{\text {actualmean }}^{\prime}:=\operatorname{mean}(\text { Dates }) \quad \text { sum }:=\sum_{i}\left(\text { Dates }_{d}+\operatorname{mean}(\text { Dates })\right)^{2}
\end{aligned}
$$

Therefore even though F-ratio does not support the regression model the above curve shows that even at the lower 95% confidence band this location will not corrode to below Drywell Vessel Minimum required thickness by the plant end of life.

The section below calculates what the postulated mean thickness would be if this grid were to corrode at a minimum observable rate observed in appendix 22.

$$
\text { Rate }_{\text {min_observed }}:=6.9
$$

Postulated $_{\text {meanthickness }}:=\mu_{\text {measured }_{3}}-$ Rate $_{\min }$ observed $\cdot(2022$ - 2006)

Postulated $_{\text {meanthickness }}=737.049$
which is greater than

$$
\operatorname{Tmin} \operatorname{gen} \mathrm{SB}_{3}=736
$$

The following addresses the readings at the lowest single point -

$$
\begin{aligned}
& \text { SSE } \left._{\text {point }}:=\sum_{i=0}^{\text {last(Dates })} \cdot\left(\text { Point }_{34}-\text { yhat (Dates, Point } 34\right\rangle_{i}\right)^{2} \quad: \quad \text { SSE }_{\text {point }}=528.414 \\
& i \\
& \operatorname{SSR}_{\text {point }}:=\sum_{i=0}^{\text {last(Dates })}\left(\text { yhat }(\text { Dates }, \text { Point } 34)_{i}-\text { mean }(\text { Point } 34)\right)^{2} \quad \text { SSR }_{\text {point }}=6.336 \\
& \text { MSE }_{\text {point }}:=\frac{\text { SSE }_{\text {point }}}{\text { DegreeFree }_{\text {ss }}} \quad \text { MSR }_{\text {point }}:=\frac{\text { SSR }_{\text {point }}}{\text { DegreeFree }_{\text {reg }}} \quad \quad \text { MST point }:=\frac{\text { SST }_{\text {point }}}{\text { DegreeFree }_{\text {st }}} \\
& 1 \\
& \text { MSE }_{\text {point }}=264.207 \quad \text { MSR }_{\text {point }}=6.336 \quad \text { MST }_{\text {point }}=178.25 \\
& \text { StPoint }_{\text {err }}:=\sqrt{\text { MSE }_{\text {point }}} . \\
& \text { StPoint }_{\text {ert }}=16.254 \\
& \text { F Test for Corrosion } \\
& F_{\text {actaul_Reg }}:=\frac{\text { MSR }_{\text {point }}}{\text { MSE }_{\text {point }}} \\
& F_{\text {ratio_reg }}:=\frac{F_{\text {actaul_Reg }}}{F_{\text {critical_reg }}} \\
& F_{\text {ratio_reg }}=1.295 \cdot 10^{-3}
\end{aligned}
$$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean
 The 95% Confidence curves are calculated

Point curve $:=m_{\text {point }} \cdot{ }^{\text {year }}$ predict $+y_{\text {point }}$
${ }^{\prime}$ Point actualmean $^{\prime}:=\operatorname{mean}($ Dates $) \quad$ sum $:=\sum_{j}\left(\text { Dates }_{d}-\text { mean }(\text { Dates })\right)^{2}$
uppoint $_{\mathrm{f}}:=$ Point $_{\text {curve }}{ }_{\mathrm{f}} \ldots$

Local Tmin for this elevation in the Drywall Tmin_local $\mathrm{SB}_{\mathrm{f}}:=490$
(Ref. 3.25)

Curve Fit For Point 34 Projected to Plant End Of Life

The section below calculates what the postulated individual thickness would be if this point were to corrode at a minimum observable rate observed in appendix 22.

$$
\begin{aligned}
& \text { Rate }_{\text {min_observed }}:=6.9 \\
& \text { Postulated }_{\text {thickness }}:=\text { Point }_{34_{3}}-\text { Rate }_{\text {min_observed }} \cdot(2029-2006) \\
& \text { Postulated }_{\text {thickness }}=572.3 \quad \text { which is greater than } \quad \cdots \text { Tmin_local }_{S_{3}}=490
\end{aligned}
$$

The section below calculates what the postulated corrosion rate necessary for the thinnest individual point to reach the local required thickness by 2029.

$$
\begin{aligned}
& \text { minpoint }=0.731 \quad \text { year } \text { predict }_{22}=2.029 \because 10^{3} \quad \text { Tmin_local }_{S_{32}}=490
\end{aligned}
$$

$$
\begin{aligned}
& \text { required }_{\text {rate. }}=-10.042 \quad \text { mils per year }
\end{aligned}
$$

Appendix 12 - Sand Bed Elevation Bay 19C

October 2006 Data

The data shown below was collected on 10/18/06
page := READPRN("U:LMSOFFICELDrywell Program datalOCT 2006 DatalSandbedUSB19C.txt")
Points 49 := show cells(page , 7,0)
Points $_{49}=\left[\begin{array}{lllllll}0.809 & 0.768 & 0.862 & 1.059 & 0.968 & 0.961 & 0.92 \\ 0.679 & 0.745 & 0.695 & 0.814 & 0.766 & 0.865 & 0.845 \\ 0.816 & 0.775 & 0.87 & 0.871 & 0.863 & 0 & 0.896 \\ 0.791 & 0.66 & 0.715 & 0.793 & 1.151 & 1.164 & 0.918 \\ 0.851 & 0.781 & 0.733 & 0.762 & 0.862 & 0.787 & 0.796 \\ 0.866 & 0.83 & 0.88 & 0.757 & 0.867 & 0.75 & 0.753 \\ 0.801 & 0.794 & 0.852 & 0.841 & 0.901 & 0.906 & 0.84\end{array}\right]$.

Cells := convert (Points 49,7)
${ }^{\text {No }}$ DataCells $:=$ length(Cells)

For this location no points were identified (reference 3.22).

For this location point 20,26,27, and 33 are over' a plug (refer 3.22)

$$
\begin{aligned}
& \text { Cells := Zero one (Cells, No DataCells, 20) } \\
& \text { Cells := Zero one (Cells, No DataCells, 26) } \\
& \text { Cells := Zero one (Cells, No DataCells , 27) } \\
& \text { Cells := Zero one (Cells, No DataCells , 33) } \\
& \text { Cells }:=\text { deletezero cells (Cells, No DataCells) }
\end{aligned}
$$

Point 30 is the thinnest

$$
\text { minpoint }:=\min (\text { Cells }) \quad \text { minpoint }=660
$$

Mean and Standard Deviation

Standard Error

Standard $_{\text {enror }}:=\frac{\sigma_{\text {actual }}}{\sqrt{\text { No DataCells }}}$

Skewness

Skewness $:=\frac{\left({ }^{(N o}{ }_{\text {DataCells }}\right) \cdot \Sigma\left({\left.\overline{\Sigma(\text { Cells }}-\mu_{\text {actual }}\right)^{3}}_{\left(\text {No }_{\text {DataCells }}-1\right) \cdot\left(\text { No }_{\text {DataCells }}-2\right) \cdot\left(\sigma_{\text {actual }}\right)^{3}} \quad \text { Skewness }=0.366\right.}{}$

Kurtosis

$$
\begin{aligned}
\text { Kuttosis : }= & \frac{\text { No }_{\text {DataCells }} \cdot\left(\text { No }_{\text {DataCells }}+1\right) \cdot \overrightarrow{\Sigma\left(\text { Cells }-\mu_{\text {actual }}\right)^{4}}}{(\text { No DataCells }-1) \cdot\left(\text { No }_{\text {DataCells }}-2\right) \cdot(\text { No DataCells }-3) \cdot\left(\sigma_{\text {actual }}\right)^{4}} \text { Kurtosis }=0.393 \\
& +-\frac{3 \cdot(\text { No DataCells }-1)^{2}}{(\text { No DataCells }-2) \cdot\left({ }^{\text {No } \left.{ }_{\text {DataCells }}-3\right)}\right.}
\end{aligned}
$$

Normal Probability Plot

In a normal plot, each data value is plotted against what its value would be if it actually came from a normal distribution. The expected normal values, called normal scores, and can be estimated by first calculating the rank scores of the sorted data.

$$
\mathrm{j}:=0 . \text { last(Cells }) \quad \text { srt }:=\text { sort Cells })
$$

Then each data point is ranked. The array rank captures these ranks,

$$
\begin{aligned}
& 1 \\
& P_{j}:=\frac{\text { rank }}{\operatorname{rows}(\text { Cells })+1}
\end{aligned}
$$

The normal scores are the corresponding p th percentile points from the standard normal distribution:

$$
x:=1 \quad N_{-} \text {Scorere }_{j}:=\operatorname{root}\left[\operatorname{cnorm}(x)-\left(p_{j}\right), x\right]
$$

Upper and Lower Confidence Values

The亿Upper and Lower confidence values are calculated based on 05 degree of confidence " $\alpha^{\prime \prime}$

$$
\text { No DataCells }:=\text { length (Cells })
$$

$$
\alpha:=.05 . \quad \text { Ta }:=\mathrm{qt}\left[\left(1-\frac{\alpha}{2}\right), \text { No DataCells }\right] \quad \mathrm{T} \dot{\alpha}=2.014
$$

$$
\text { Uppet }_{95 \% \text { Con }}:=\mu_{\text {actual }}+T \alpha \cdot \frac{\sigma_{\text {actual }}}{\sqrt{\text { No DataCells }}} \quad \quad \text {,Upper } 95 \% \text { Con }=847.578
$$

These values represent a range on the calculated mean in which there is $\mathbf{9 5 \%}$ confidence.

Graphical Representation

Distribution of the "Cells" data points are sorted in $1 / 2$ standard deviation increments (bins) within $+/-3$ standard deviations

The Mathcad function pnorm calculates a portion of normal distribution curve based on a given mean and standard deviatipn

$$
\begin{aligned}
& \text { normal }_{\text {curve }_{0}}:=\operatorname{pnorm}\left(\text { Bins }_{1}, \mu_{\text {actual }}, \sigma_{\text {actual }}\right) \\
& \text { normal }_{\text {curve }_{k}}:=\operatorname{pnorm}\left(\text { Bins }_{k+1}, \mu_{\text {actual }}, \sigma_{\text {actual }}\right)-\operatorname{pnorm}\left(\text { Bins }_{k}, \mu_{\text {actual }}, \sigma_{\text {actual }}\right) \\
& \text { normal }_{\text {curve }}:=\text { No DataCells } \cdot \text { normal }_{\text {curve }}
\end{aligned}
$$

Results For Elevation Sandbed elevation Location Oct. 2006

The following schematic shows: the the distribution of the samples, the normal curve based on the actual mean and standard deviation, the kurtosis, the skewness, the number of data points, and the the lower and upper 95% confidenice values. Below is the Normal Plot for the data.

Data Distribution

Normal Probability Plot

The Normal Probability Plot and the Kurtosis this data is normally distributed.

Sandbed Location 19C Trend

Data from the 1992, 1994 and 1996 is retrieved.

For 1992

$$
\text { Dates }_{d}:=\text { Day year }(12,8,1992)
$$

page := READPRN("U:MSOFFICELDrywell Program dataWec. 1992 DatalsandbedUata OnlyISB19C.txt")

$$
\text { Points } 49 \text { := showcells(page , } 7,0 \text {) }
$$

$$
\begin{aligned}
& \text { Data } \\
& \text { 1. } \quad{ }^{\quad} \quad \text {. } \quad\left[\begin{array}{lllllll}
0.822 & 0.757 & 0.792 & 0.994 & 0.972 & 0.979 & 0.931 \\
0.683 & 0.716 & 0.693 & 0.797 & 0.753 & 0.887 & 0.838 \\
0.815 & 0.744 & 0.879 & 0.859 & 0.856 & 0.222 & 0.888 \\
0.785 & 0.65 & 0.713 & 0.766 & 1.147 & 1.152 & 0.907 \\
0.839 & 0.782 & 0.732 & 0.762 & 0.859 & 0.791 & 0.838 \\
0.867 & 0.833 & 0.88 & 0.756 & 0.852 & 0.736 & 0.752 \\
0.835 & 0.861 & 0.889 & 0.842 & 0.896 & 0.884 & 0.809
\end{array}\right] \\
& \operatorname{man}:=\text { convert (Points } 49,7 \text {) } \\
& \text { No DataCells := length (nnn) }
\end{aligned}
$$

1.

For this location point 20,26,27, and 33 are over a plug (refer 3.22)

$$
\begin{aligned}
& n m:=\text { Zero one }^{\text {(nnn , No DataCells }}, 20 \text {) } \\
& \text { nnn }:=\text { Zero one }^{\text {(nnn }, ~ N o ~ D a t a C e l l s ~}, 26 \text {) } \\
& \text { nnn }:=\text { Żero one (nnn, No DataCells }, 27) \quad \text { nnn }:=\text { Zero one }^{\text {(nnn , No DataCells }} \text {, 33) } \\
& \text { Cells }:=\text { deletezero cells (} n n n, \text { No DataCells) } \\
& \text { minpoint }:=\min (\text { Cells }) \quad \text { minpoint }=650 \\
& \text { Point } \text { 21 }_{d}:=\text { Cells }_{\mathbf{z}} \text { Point } 21=650 \\
& \left.\mu_{\text {measured }_{d}}:=\text { mean(Cells }\right) \quad \sigma_{\text {measured }_{d}}:=\operatorname{Stdev}(\text { Cells }) \\
& \text { Standard }_{\text {error }}^{d}:=\frac{\sigma_{\text {measured }}}{\sqrt{\text { No DataCells }}} .
\end{aligned}
$$

page := READPRRN("U:IMSOFFICEDDrywell Program datalSept 1994 DatalsandbedData OnlylSB19C.txt")

Dates $_{\mathrm{d}}^{\mathrm{d}}:=1$ Day $_{\text {year }}(9,14,1994)$

Points 49 := showcells(page, 7,0)

Data

$$
\begin{aligned}
& \text { mnn }:=\text { convert (Points } 49.7) \quad \text { No DataCells }:=\text { length (nnn) }
\end{aligned}
$$

For this location point $2 \dot{0}, 26,27$, and 33 are over a plug (refer 3.22)

$$
\begin{aligned}
& \text { nin := Zero one (nnn, No DataCells , 20) } \\
& \text { nnn }:=\text { Zero one (nnn , No DataCells, 26) } \\
& \left.n n:=\text { Zero one }^{(n n n, ~ N o ~ D a t a C e l l s ~}, 27\right) \quad \text { nnn }:=\text { Zero one (nnn, No DataCells , 33) } \\
& \text { Cells := deletezero cells (nnn, No DataCells) } \\
& \text { Point }{ }_{21} \text { d }:=\text { Cells }_{21} \\
& \mu_{\text {measured }_{d}}:=\text { mean(Cells) } \quad \sigma_{\text {measured }_{d}}:=\operatorname{Stdev}(\text { Cells }) \quad \text { Standard } \text { error }_{d}:=\frac{\sigma_{\text {measured }_{d}}^{\sqrt{\text { No DataCells }}}}{\text {. }}
\end{aligned}
$$

$$
\text { Points } 49:=\text { showcells(page }, 7,0 \text {) }
$$

$$
\text { Dates }_{d}:=\text { Day year }(9,16,1996)
$$

```
/ 
page := READPRN( "U:\MSOFFICEWrywell Program datalSept.1996 DatalsandbedWata OnlylSB19C.txt" )
```

For 1996
$\mathrm{d}:=\mathrm{d}+1$

$$
\prime
$$

$\operatorname{Points}_{49}=\left[\right.$| | Data | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0.949 | 0.836 | 0.892 | 1.11 | 1.017 | 0.998 | 0.935 |
| 0.85 | 0.701 | 0.752 | 0.781 | 0.755 | 0.944 | 0.866 |
| 0.857 | 0.8 | 0.889 | 0.861 | 0.907 | 0.918 | 0.945 |
| 0.876 | 0.771 | 0.75 | 0.862 | 1.141 | 0.895 | 0.916 |
| 0.744 | 0.802 | 0.772 | 0.758 | 0.87 | 0.867 | 0.845 |
| 0.886 | 0.851 | 0.876 | 0.791 | 0.871 | 0.728 | 0.742 |
| 0.854 | 0.854 | 0.905 | 0.839 | 0.926 | 0.856 | 0.834 |$]$

mnn $:=$ convert (Points 49,7)
${ }^{\text {No }}{ }_{\text {DataCells }}:=$ length $^{\mathrm{nnn}}$)

For this location point 20,26,27, and 33 are over a plug (refer 3.22)
1

$$
\begin{aligned}
& \mathrm{nm}:=\text { Zero one }\left(\mathrm{nmn}, \text { No }{ }_{\text {DataCells }}, 20\right) \\
& \text { nnn := Zero one (inn, No DataCells, 26) } \\
& \text { nnn := Zero one (nnn, No DataCells , 27.) } \\
& \operatorname{nin}:=\text { Zero one }^{(n m n},{ }^{\text {No }} \text {. DataCells }, 33 \text {) } \\
& \text { Cells := deletezero cells (nmm, No DataCells) } \\
& \text { Point }_{21}:=\text { Cells }_{\mathbf{2 1}} \\
& \mu_{\text {measured }_{d}}:=\operatorname{mean(1Cells)} \quad \sigma_{\text {measured }_{d}}:=\operatorname{Stdev}(\text { Cells }) \quad \text { Standard }_{\text {error }}^{d} \boldsymbol{}:=\frac{\sigma_{\text {measured }}^{d}}{\sqrt{\text { No DataCells }}}
\end{aligned}
$$

$$
\mathrm{d}:=\mathrm{d}+1
$$

page $:=$ READPRN('U:MSOFFICELDrywell Program datalOCT 2006 DatalSandbedISB19C:txt")

$$
\text { Dates }_{d}:=\text { Day year }(10,16,2006)
$$

$$
\text { Points } 49:=\operatorname{showcells}(\text { page } ; 7,0)
$$

Data

1.1	10.809	0.768	0.862	1.059	0.968	0.961	0.92
	0.679	0.745	0.695	0.814	0.766	0.865	0.845
	0.816	0.775	0.87	0.871	0.863	0	0.896
Points $49=$	0.791	0.66	0.415	0.793	1.151	. 1.164	- 0.918
	0.851	0.781	0.733	0.762	0.862	0.787	$\bigcirc .796$
	0.866	0.83	0.88	0.757	0.867	0.75	0.753
	0.801	0.794	0.852	0.841	0.901	0.906	0.84

nnn := convert $\left(\right.$ Points $\left._{49}, 7\right)$
No $_{\text {DataCells }}:=$ length (nnn)
For this location point 20, 26, 27, and 33 are over a plug (refer 3.22)

$$
\begin{aligned}
& \text { nnn := Zero one (nmn, No DataCells, 20) } \\
& \text { nnn := Zero one (nnn, No DataCells }, 26 \text {) } \\
& \text { nnn := Zero one (nnn , No DataCells }, 27 \text {) } \\
& \text { nnn := Zero one (nnn , No DataCeils, } 33 \text {) } \\
& \text { Cells }:=\text { deletezero cells (inn, No DataCells) } \\
& \text { Point } 21_{d}:=\text { Cells }_{21} \\
& \left.\mu_{\text {measured }_{d}}:=\text { mean(Cells }\right) \quad \sigma_{\text {measured }_{d}}:=\operatorname{Stdev}(\text { Cells }) \quad \text { Standard }_{\text {error }}^{d}:=\frac{\sigma_{\text {measured }}^{d}}{}
\end{aligned}
$$

Below are matrices which contain the date when the data was collected, Mean, Standard Deviation, Standard Error for each date.

 $\operatorname{SSR}:=\sum_{i=0}^{\prime \operatorname{last}(\text { Dates })}\left(\text { yhat }\left(\text { Dates }, \mu_{\text {measured }}\right)_{i}-\operatorname{mean}\left(\mu_{\text {measured }}\right)\right)^{2} \quad$ SSR $=0.054$

$$
\begin{aligned}
& \text { DegreeFree }_{s s}:=\text { Total means } \text { m }^{2} \quad \text { DegreeFree }_{\text {reg }}:=1 \quad \text { DegreeFree }{ }_{\text {st }}:=\text { Total means }-1 \\
& \text { MSE }:=\frac{\text { SSE }}{\text { DegreeFree }_{\text {ss }}} \quad \text { MSR }:=\frac{\text { SSR }}{\text { DegreeFree }_{\text {reg }}} \quad \text { MST }:=\frac{\text { SST }}{\text { DegreeFree }_{\text {st }}} \\
& \mathrm{MSE}=410.805 \\
& \mathrm{MSR}=0.054 \\
& \text { MST }=\mathbf{2 7 3 . 8 8 8} \\
& \text { StGrand }_{\text {err }}:=\sqrt{\text { MSE }} \quad \text { StGrand }_{\text {err }}=20.268
\end{aligned}
$$

F Test for Corrosion

$$
\begin{aligned}
\alpha:=0.05 & F_{\text {actaul_Reg }}:=\frac{M S R}{M S E} \quad F_{\text {critical_reg }}:=q F\left(1-\alpha, \text { DegreeFree }_{\text {reg }}, \text { DegreeFree }_{\text {ss }}\right) \\
& F_{\text {ratio_reg }}:=\frac{F_{\text {actaul_Reg }}}{F_{\text {critical_reg }}} \quad F_{\text {ratio_reg }}=7.076 * 10^{-6}
\end{aligned}
$$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

Therefore the curve fit of the means does not have a slope and the grandmean is an accurate measure of the thickness at this location. i

$$
\text { i }:=0 . . \text { Total medans }-1 \quad, \quad \text {, } \quad \text { grand } \text { measured }_{i}:=\text { mean }\left(\mu_{\text {measured }}\right)
$$

ogrand measured $:=\operatorname{Stdev}\left(\mu_{\text {measured }}\right) . \quad$ GrandStandard $_{\text {error }}^{0} 0:=\frac{\text { ogrand mepsured }}{\sqrt{\text { Total means }}}$
The minimum required thickness at this elevation is Tmin_gen $_{\mathrm{SB}_{\mathrm{i}}}:=736$ (Ref. 3.25)

To conservatively address the location, the apparent corrosion rate is calculated and compared to the minimum required wall thickness at this elevation

$$
\lambda
$$

$$
\mathrm{m}_{\mathrm{s}}:=\operatorname{slope}\left(\text { Dates }, \mu_{\text {measured }}\right) \quad \mathrm{m}_{\mathrm{s}}=0.022 \quad \mathrm{y}_{\mathrm{b}}:=\text { intercept }\left(\text { Dates }, \mu_{\text {measured }}\right) \mathrm{y}_{\mathrm{b}}=786.002
$$

The 95% Confidence curves are calculated

$$
\text { upper }_{i}:=\text { Thick }_{\text {predict }_{f}} \cdots
$$

$$
i^{1}+\operatorname{qt}\left(1-\frac{\alpha_{t}}{2}, \text { Total }_{\text {means }}-2\right) \cdot \text { StGrand }_{\text {err }} \sqrt{1+\frac{1}{(d+1)}+\frac{\left(\text { year }_{\text {predict } \left._{f}-\text { Thick }_{\text {actualmean }}\right)^{2}}^{\text {sum }}\right.}{\text { sum }}}
$$

$$
\text { lower }_{f}:=\text { Thick }_{\text {predict }}^{f} \text {... }
$$

$$
+-\left[q t\left(1-\frac{\alpha_{t}}{2}, \text { Total means }-2\right) \cdot \text { StGrand }{ }_{\text {err }} \cdot \sqrt{\left.1+\frac{1}{(d+1)}+\frac{\left(\text { year }_{\text {predict } \left._{f}-\text { Thick }_{\text {actualimean }}\right)^{2}}^{\text {sum }}\right.}{}\right]}\right. \text {. }
$$

$$
\begin{aligned}
& \alpha_{t}:=0.05 \mathrm{k}:=2029-1985 \quad f:=0 . . \mathrm{k}-1 \\
& { }^{1} \text { year }_{\text {predict }_{f}}:=1985+\mathrm{f} \cdot 2 \text { Thick predict }:=\mathrm{m}_{\mathrm{s}} \cdot \text { year }_{\text {predict }}+\mathrm{y}_{\mathrm{b}} \\
& \text { Thick } \left.{ }_{\text {actualmean }}^{1 .}:=\operatorname{mean}(\text { Dates }) \quad \operatorname{sim}:=\sum_{i}\left(\text { Dates }_{d}+\text { mean(Dates }\right)\right)^{2}
\end{aligned}
$$

Therefore even though F-ratio does not support the regression model the above curve shows that even at the lower 95\% confidence band this location will not corrode to below Drywell Vessel Minimum reguired thickness by the plant end of life.

The section below calculates what the postulated mean thickness would be if this grid were to corrode at a minimum observable rate observed in appendix 22.

$$
\begin{aligned}
& \text { Rate min_observed }:=6.9 \\
& \text { Postulated meanthickness }:=\mu_{\text {measured }_{3}}-\text { Rate min_observed }^{(2018-2006)} \\
& \text { Postulated meanthickness }=.741 .022 \quad \text { which is greater than }
\end{aligned}
$$

The following addresses the readings at the lowest single point /

$$
\operatorname{SSR}_{\text {point }}:=\sum_{i=0}^{\text {last(Dates })}\left(\operatorname{yhat}(\text { Dates , Point } 21)_{i}-\operatorname{mean}\left(\text { Point }_{21}\right)\right)^{2} \quad \operatorname{SSR}_{\text {point }}=69.399
$$

$$
\text { MSE }_{\text {point }}:=\frac{\text { SSE }_{\text {point }}}{\text { DegreeFree }_{\text {ss }}} \quad \text { MSR }_{\text {point }}:=\frac{\text { SSR }_{\text {point }}}{\text { DegreeFree }_{\text {reg }}} \quad \text { MST }_{\text {point }}:=\frac{\text { SST }_{\text {point }}}{\text { DegreeFree }_{\text {st }}}
$$

$$
\text { MSE }_{\text {point }}=4.763 \cdot 10^{3}: \quad \text { MSR }_{\text {point }}=69.399 \quad ; \quad \text { MST }_{\text {point }}=3.198 \cdot 10^{3}
$$

$$
\text { StPoint }_{\text {err }}:=\sqrt{\text { MSE }_{\text {point }}} \quad \therefore \quad \text { StPoint }_{\mathrm{err}}=69.012
$$

F Test for Corrosion

$$
\begin{gathered}
F_{\text {actaul_Reg }}:=\frac{\text { MSR }_{\text {point }}}{\text { MSE }_{\text {point }}} \\
\therefore \\
F_{\text {ratio_reg }}:=\frac{F_{\text {actaul_Reg }}}{F_{\text {critical_reg }}} \\
F_{\text {ratio_reg }}=7.871 \cdot 10^{-4}
\end{gathered}
$$

The conclusion can be made that the mean best fits the grandmean model. The grandmean ratio is greater than one. The figure below provides a trend of the data and the grandmean

$$
m_{\text {point }}:=\text { slope(Dates, Point 21) } m_{\text {point }}=-0.776 y_{\text {point }}:=\text { intercept (Dates, Point } 21 \text {) } y_{\text {point }}=2.237 \cdot 10^{3}
$$

The 95\% Confidence curves are calculated
${ }_{1 \text { Point }}^{\text {curve }}:=m_{\text {point }} \cdot$ year $_{\text {predict }}+y_{\text {point }}$

$$
\text { Point } \left.{ }_{\text {actualmean }}:=\operatorname{mean}(\text { Dates }) . \quad \text { sum }:=\sum_{i}\left(\text { Dates }_{d}-\text { mean (Dates }\right)\right)^{2}
$$

$$
\begin{equation*}
\text { Local Tmin for this elevation in the Drywell } \quad \text { Tmin_local } \mathrm{SB}_{f}:=490 \tag{Ref.2.35}
\end{equation*}
$$

The section below calculates what the postulated individual thickness would be if this point were to corrode at a minimum observable rate observed in appendix 22.

The section below calculates what the postulated corrosion rate necessary for the thinnest individual point to reach the local required thickness by 2029.

$$
\text { minpoint }=650 \quad \text { year } \text { predict }_{22}=2.029 \cdot 10^{3} \quad \text { Tmin_local } \text { SB }_{22}=490
$$

required $_{\text {rate. }}:=\frac{\left(\operatorname{minpoint}-\mathrm{Tmin}_{-} \mathrm{local} \mathrm{SB}_{22}\right)}{(2005-2029)}$
required $_{\text {rate. }}=-6.667 \quad$ mils per year

Appendix 13 - Sand Bed Elevation Bay 1D

October 2006 Data
The data shown below was collected on 10/18/06.

Appendix 13

Mean and Standard Deviation

$$
\left.\mu_{\text {actual }}:=\text { mean(Cells }\right) \quad \mu_{\text {actual }}=1.122 \cdot 10^{3} \quad \sigma_{\text {actual }}:=\operatorname{Stdev}(\text { Cells }) \quad \sigma_{\text {actual }}=22.221
$$

Standard Error'

$$
\text { Standard error }:=\frac{\sigma_{\text {actual }}}{\sqrt{\text { No DataCells }}}
$$

$$
\text { Standard }_{\text {error }}=8.399
$$

Skewness

Skewness $:=\frac{1}{\left.\left({ }^{\left({ }^{N o} \text { DataCells }\right.} \text { DataCells }\right) \cdot 1\right) \cdot\left({ }^{\sum\left(\text { Cells }-\mu_{\text {actual }}\right)^{3}}\right.}{ }^{1}{\text { DataCells }-2) \cdot\left(\sigma_{\text {actual }}\right)^{3}}^{1}$ Skewness $=0.204$

Kurtosis

$$
\begin{aligned}
& \text { Kuttosis }:=\frac{\text { No DataCells }^{\prime} \cdot\left(\text { No DataCells }^{\prime}+1\right) \cdot \overrightarrow{\Sigma\left(\text { Cells }-\mu_{\text {actual }}\right)^{4}}}{\left(\text { No }_{\text {DataCells }}-1\right) \cdot\left(\text { No DataCells }^{1}-2\right) \cdot(\text { No DataCells }-3) \cdot\left(\sigma_{\text {actual }}\right)^{4}} \text { Kurtosis }=-1.261 \\
& +-\frac{3 \cdot(\text { No DataCells }-1)^{2}}{\left(\text { No }_{\text {DataCells }}-2\right) \cdot(\text { No DataCells }-3)}
\end{aligned}
$$

Normal Probability Plot

In a normal plot, each data value is plotted against what its value would be if it actually came from a normal distribution. The expected normal values, called normal scores, and can be estimated by first calculating the rank scores of the sorted data.

$$
j:=0 . \text { last(Cells) st t }: z \text {, sort(Cells) }
$$

Then each data point is ranked. The array rank captures these ranks:

$$
\begin{aligned}
& r_{j}:=j+1 \quad \text { rank }:=\frac{\sum \overline{\left(\overrightarrow{s t=s r t_{j}}\right) \cdot r}}{\sqrt{\sum s r i=\mathrm{srt}_{j}},} \\
& 1 \\
& 1 \\
& p_{j}:=\frac{\text { rank }_{j}}{\text { rows(Cells })+1} \\
& \text {. }
\end{aligned}
$$

The normal scores are the corresponding p th percentile points from the standard normal distribution:

$$
x:=1 \quad \text { N_Score } e_{j}:=\operatorname{root}\left[\operatorname{cnorm}(x)-\left(p_{j}\right), x\right]
$$

Upper and Lower Confidence Values
The Upper and Lower confidence values are calculated based on .05 degree of confidence " q "

$$
\text { Uppet }_{95 \% \text { Con }}:=\mu_{\text {actual }}+\mathrm{T} \alpha \cdot \frac{\sigma_{\text {actual }}}{\sqrt{{ }^{\text {No }} \text { DataCells }}} \quad \quad{ }_{\text {UUpper }} 95 \% \text { Con }=1.144 \bullet 10^{3}
$$

These values represent a range on the calculated mean in which there is 95% confidence.

Graphical Representation

Distribution of the "Cells" data points are sorted in $1 / 2$ standard deviation increments (bins) within $+/-3$ standard deviations

$$
\begin{aligned}
& \text { (Bins }:=\text { Make }_{\text {bins }}\left(\mu_{\text {actual }}, \sigma_{\text {actual }}\right) \\
& \text { Distribution }:=\text { hist(Bins , Cells }) \\
& \text { The mid points of the Bins are calculated } \\
& k:=0.11 \quad \text { Midpoints }:=\frac{\left(\text { Bins }_{k}+\text { Bins }_{k+1}\right)}{2}
\end{aligned}
$$

The Mathcad function pnorm calculates a portion of normal distribution curve based on a given mean and standard deviation

```
normal curve \(0:=\operatorname{pnom}\left(\right.\) Bins \(\left._{1} ; \mu_{\text {actual }}, \sigma_{\text {actual }}\right)\)
normal \(_{\text {curve }}=\operatorname{pnorm}\left(\right.\) Bins \(\left._{k+1}, \mu_{\text {actual }}, \sigma_{\text {actual }}\right)-\operatorname{pnorm}\left(\right.\) Bins \(\left._{k}, \mu_{\text {actual }}, \sigma_{\text {actual }}\right)\)
normal \(_{\text {curve }}:=\) No DataCells \(\cdot\) normal curve
```

$$
\begin{aligned}
& \left.{ }^{\text {No }} \text { DataCells }:=\text { length(Cells }\right) \\
& \alpha:=05 . \quad T \alpha:=q t\left[\left(1-\frac{\alpha}{2}\right) ; \text { No }_{\text {DataCells }}\right] \quad T \dot{\alpha}=2.447
\end{aligned}
$$

Results For Elevation Sandbed elevation Location Oct. 2006

The following schematic shows: the the distribulion of the samples, the normal curve based on the actual mean and standard deviation, the kurtosis, the skewness, the number of data points, and the the lower and upper 95% confidence values. Below is the Normal Plot for the data.

Data Distribution

Normal Probability Plot

The Normal Probability Plot and the Kurtosis this data is normally distributed.

```
Appendix 13
                                    C-1302-187-E310-041 Rev. No. 0
                                    Sheet No.
                                    6 of }1
    Sandbed Location 1D Trend
    . ! . . . . d:= 0
    For 1992
    \mp@subsup{Dates d}{d}{:= Day year (12, 8, 1992)}
page := READPRN( "U:UMSOFFICELDrywell Program dataDec. 1992 DatalsandbediData Only\SB1D.txt")
Points 7:= show7cells(page , 1, 7,0)
M,
```


$$
\left.\mu_{\text {measured }_{d}}:=\text { mean(Cells }\right) \quad \sigma_{\text {measured }_{d}}:=\operatorname{Stdev}(\text { Celis }) \quad \text { Standard }_{\text {error }_{d}}:=\frac{\sigma_{\text {measured }_{d}}}{\sqrt{\text { No DataCells }_{s}}}
$$


```
    For }199
                                    d:= d+1
page := READPRN("U:IMSOFFICELDrywell Program datalSept.1996 DatalsandbediData OnlylSB1D.txt" )
                                    Dates d:= Day year (9,16,1996)
                    Points 7 :* show7cells(.page;1,7,0)
```



```
            nnn:= con7vert (Points 7,7,1)
                                    No DataCells := length(nmn)
            Point }\mp@subsup{1}{d}{}:=\mp@subsup{=}{\mathrm{ Points }}{7
                                    nm,= Zero one(nns, No DataCells il)
                                    nnn:= Zero one (nnn, No DataCells, T)
    Cells:= dejetezero cells (nnn, No DataCells)
```


$$
d:=d+1
$$

page := READPRN("U:MSOFFICELDrywell Program datalOCT 2006 DatalSandbedISBID.xxt")

$$
\text { Dates }_{d_{1}}:=\text { Day year }(10,16,2006){ }^{\prime}
$$

Points $7:=$ show7cells(page $, 1,7,0$)

Data

$\mathrm{nnn}:=$ con7vert (Points $7,7,1$). No. DataCells $:=$ length(nnn)
Point $]_{d}:=$ Points $_{7_{0}}$

$$
\text { nind }:=\text { Zero }_{\text {one }}(\text { nnn }, \text { No DataCells }, 1)
$$

Cells := deletezero cells (nnn, No DataCells)

$$
\text { Point }_{1}=\left[\begin{array}{l}
0.889 \\
0.879 \\
0.881 \\
0.881
\end{array}\right]
$$

$$
\mu_{\text {measured }_{d}}:=\operatorname{mean}(\text { Cells }) \quad \sigma_{\text {measured }_{d}}:=\operatorname{Stdev}(\text { Cells }) \quad \text { Standard }_{\text {error }}^{d}: ~:=\frac{\sigma_{\text {measured }}^{d}}{}
$$

Below are matrices which contain the date when the data was collected, Mean, Standard Dequiation, Standard Efror for each date.

$$
\text { SSR }:=\sum_{i=0}^{\text {last(Dates })}\left(\text { yhat }\left(\text { Dates }, \mu_{\text {measured }}\right)_{i}-\operatorname{mean}\left(\mu_{\text {measured }}\right)\right)^{2} \quad \text { SSR }=13.63
$$

$$
\text { DegreeFree }_{\text {ss }}:=\text { Total means }-2 \quad \text { DegreeFree }_{\text {reg }}:=1 \quad \text { DegreeFree }_{\text {st }}:=\text { Total means }-1
$$

$$
\cdot \mathrm{MSE}:=\frac{\mathrm{SSE}}{\text { DegreeFree }_{\text {SS }}} \quad \text { MSR }:=\frac{\text { SSR }}{\text { DegreeFree }_{\text {reg }}} \quad \text { MST }:=\frac{\text { SST }}{\text { DegreeFree }_{\text {st }}}
$$

$$
\mathrm{MSE}=\dot{621.213}
$$

$$
\mathrm{MSR}=13.63
$$

$$
\text { MST }=418.685
$$

$$
\text { StGrand err }:=\sqrt{M S E} \quad \text { StGrand }_{\text {err }}=24.924
$$

$$
\begin{aligned}
& \text { Dates }=\left[\begin{array}{c}
1.993 \cdot 10^{3} \\
1.995 \cdot 10^{3} \\
1.997 \cdot 10^{3} \\
2.007 \cdot 10^{3}
\end{array}\right] \\
& \text { Yoint }{ }_{1}=\left[\begin{array}{l}
0.889 \\
0.879 \\
0.881 \\
0.881
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { Total means }^{=}=\text {rows }\left(\mu_{\text {measured }}\right) . \quad \text { Total }_{\text {means }}=4 \\
& \text { SST }:=\sum_{i=0}^{\text {last(Dates })}\left(\mu_{\text {measured }_{i}}-\operatorname{mean}\left(\mu_{\text {measured }}\right)\right)^{2} \quad \text { SST }=1.256=10^{3} \\
& \text { 1 last(Dates) } \\
& \text { SSE }:=\sum_{i=0}^{\text {last(Dates })}\left(\mu_{\text {measured }_{i}}-\text { yhat }\left(\text { Dates, } \dot{\mu}_{\text {measured }}\right)_{i}\right)^{2} \quad \text { SSE }=1.242 \cdot 10^{3}
\end{aligned}
$$

F Test for Corrosion

$$
\begin{aligned}
\alpha^{\prime}:=0.05, & F_{\text {actaul_Reg }}:=\frac{\text { MSR }}{\text { MSE }} \\
& F_{\text {critical_reg }}:=\mathrm{qF}(1-, \alpha, \\
& F_{\text {ratio_reg }}:=\frac{F_{\text {actaul_Reg }}}{F_{\text {critical_reg }}} \\
& F_{\text {ratio_reg }}=1.185 \cdot 10^{-3}
\end{aligned}
$$

$$
F_{\text {critical_reg }}:=\mathbf{~ F F}\left(1-\alpha, \text { DegreeFree }_{\text {reg }}, \text { DegreeFree }_{\text {ss }}\right)^{\prime}, 1,1
$$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure 1 below provides a trend of the data and the grandmean
j $:=0$. Total $_{\text {ṃeans }}-1 \quad$ Hgrand meakured $_{i}:=\operatorname{mean}\left(\mu_{\text {measured }}^{\prime}\right)$
ogrand measured $:=\operatorname{Stdey}\left(\mu_{\text {measured }}\right) \quad \quad$ GrandStandard $_{\text {error }}^{0}:=\frac{\text { Ogrand measured }}{\sqrt{\text { Total means }}}$
The minimum required thickness at this elevation is Tmin gen $\mathrm{SB}_{\mathrm{i}}:=736 \quad$ (Ref. 2.35)

To conservatively address the location, the apparent corrosion rate is calculated and compared to the minimum required wall thickness at this elevation
/

$$
\left.m_{s}:=\operatorname{slope}\left(\text { Dates , } \mu_{\text {measured }}\right) . m_{s}=0.344 \quad y_{b}:=\text { intercept (Dates, } \mu_{\text {measured }}\right) y_{b}=436.885
$$

1
The 95\% Confidence curves are calculated

$$
\alpha_{t}:=0.05 \mathrm{k}:=2029-1985 \quad f:=0 . \mathrm{k}-1
$$

$$
\text { " year } \text { predict }_{f}:=1985+\dot{f} \cdot 2 \text { Thick predict }:=m_{\mathrm{s}} \cdot \text { year }_{\text {predict }}+y_{\mathrm{b}}
$$

$$
\text { Thick } \left.{ }_{\text {actualmean }}^{1}:=\text { mean(Dates }\right) \quad \operatorname{sim}:=\sum_{i}\left(\text { Dates }_{d} \tau \operatorname{mean}(\text { Dates })\right)^{2}
$$

$$
\text { upper }_{f}:=\text { Thick }_{\text {predict }}^{f} \ldots
$$

$$
1 \quad+q t\left(1-\frac{\alpha_{t}}{2}, \text { Total means }-2\right) \cdot \text { StGrand }_{\text {err }} \cdot \sqrt{1+\frac{1}{(d+1)}+\frac{\left(\text { year predict }_{f}-\text { Thick }_{\text {actualmean }}\right)^{2}}{\text { sum }}}
$$

$$
\text { lower }_{f}:=\text { Thick }_{f} \text { predict }_{f}-
$$

$$
+-\left[q t\left(1-\frac{\alpha_{t}}{2}, \text { Total means }-2\right) \cdot \text { StGrand }_{\text {err }} \cdot \sqrt{\left.1+\frac{1}{(d+1)}+\frac{\left(\text { year }_{\text {predict } \left._{f}-\text { Thick }_{\text {actualimean }}\right)^{2}}^{\text {sum }}\right.}{}\right]}\right.
$$

Therefore even though F-ratio does not support the regression model the above curve shows that even at the lower 95% confidence band this location will not corrode to below Drywell Vessel Minimum required thickness by the plant end of life.

The section below calculates what the postulated mean thickness would be if this grid were to corrode at a iminimum observable rate observed in appendix 22.

$$
\text { Rate }_{\min \text { _observed }}:=6.9
$$

Postulated meanthickness $:=\mu_{\text {measured }_{3}}$ - Rate min_observed $(2029$ - 2006)

Postulated meanthickness $=963.467$
which is greater than
Tmin_gen $\mathrm{SB}_{3}=736$

The following addresses the readings at the lowest single point

$$
\text { SST }_{\text {point }}:=\sum_{i=0}^{\text {last(Dates })}\left(\text { Point }_{1_{i}}-\operatorname{mean}\left(\text { Point }_{1}\right)\right)^{2} \quad . \quad \text { SST }_{\text {point }}=5.9 \cdot 10^{-5}
$$

$$
\text { SSE }_{\text {point }}:=\sum_{i=0}^{\text {last(Dates })}\left(\text { Point }_{1_{i}}-\text { yhat }(\text { Dates }, \text { Point })_{i}\right)^{2}, \text { SSE }_{\text {point }}=4.977 \cdot 10^{-5}
$$

$$
\operatorname{SSR}_{\text {point }}:=\sum_{i=0}^{\operatorname{last}(\text { Dates })}\left(\text { yhat }(\text { Dates , Point })_{i}-\operatorname{mean}\left(\text { Point }_{1}\right)\right)^{2} \quad \operatorname{SSR}_{\text {point }}=9.234 \circ 10^{6}
$$

$$
\text { MSE }_{\text {point }}:=\frac{\text { SSE }_{\text {point }}}{\text { DegreeFree }_{\text {ss }}} \quad \text { MSR }_{\text {point }}:=\frac{\text { SSR }_{\text {point }}{ }^{\prime}}{\text { DegreeFree }_{\text {reg }}} \quad \text { MST }_{\text {point }}:=\frac{\text { SST }_{\text {point }}}{\text { DegreeFree }_{\text {st }}}
$$

$$
\mathrm{MSE}_{\text {point }}=2.488 \cdot 10^{-5} \quad \mathrm{MSR}_{\text {point }}=9.234 \cdot 10^{-6} \quad \mathrm{MST}_{\text {point }}=1.967 \cdot 10^{-5}
$$

$$
\text { StPoint err }:=\sqrt{\text { MSE }_{\text {point }}} \quad \text { StPoint err }=4.988 \cdot 10^{-3}
$$

$$
\begin{gathered}
\text { F Test for Corrosion } \\
\dot{F}_{\text {actaul_Reg }}:=\frac{\text { MSR }_{\text {point }}}{\text { MSE }_{\text {point }}} \\
F_{\text {ratio_reg }}:=\frac{\mathbf{F}_{\text {actaul_Reg }}}{\mathbf{F}_{\text {critical_reg }}} \\
\mathbf{F}_{\text {ratio_reg }}=0.02
\end{gathered}
$$

Therefore no conclusion caln be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

$$
\mathrm{m}_{\text {point }}:=\operatorname{slope}(\text { Dates }, \text { Point } 1) \mathrm{m}_{\text {point }}=-2.83 \cdot 10^{-4} \cdot y_{\text {point }}:=\operatorname{intercept}^{(\text {Dates }, \text { Poiry point }}=1.448
$$

Point curve $:=\mathbf{m}_{\text {point }} \cdot$ year predict $+y^{\prime}$ point

$$
\text { Point actualmean } \left.:=\text { mean(Dates }) \quad . \quad \text { sum }:=\sum_{i}^{+1}\left(\text { Dates }_{d}^{\prime}-\text { mean (Dates }\right)\right)_{i}^{2}
$$

$$
\text { uppoint }_{f}:=\text { Point }_{\text {curve }} \quad \cdots
$$

$$
\text { lopoint }_{\mathbf{f}}:=\text { Point }^{\text {curve }} \text { ' } \cdots
$$

$$
\begin{aligned}
& =\text { Point curve, } \cdots \\
& +-\left[q t\left(1-\frac{a_{t}}{2}, \text { Total means }-2\right) \cdot \text { StPoint } \text { err } \cdot\left(1+\frac{1}{(d+1)}+\frac{\left(\text { year predict }_{f}-\text { Point actualmean }^{\prime}\right)^{2}}{\text { sum }}\right]\right.
\end{aligned}
$$

$$
\begin{equation*}
\text { Local Tmin for this elevation in the Drywell } \quad \text { Tmin_local } \mathrm{SB}_{\mathrm{f}}:=490 \tag{Ref.3.25}
\end{equation*}
$$

Curve Fit For Point 1 Projected to Plant End Of Life

The section below calculates what the postulated individual thickness would be if this point were to corrode at a minimum observable rate observed in appendix 22.

$$
\begin{aligned}
& \text { Rate min_observed }:=6.9 \\
& \text { Postulated thickness }:=\text { Point }_{1_{3}} \cdot 1000-\text { Rate min_observed }(2029-2006) \\
& \text { Postulated thickness }=722.3 \quad \text { which is greater than } \quad \text { Tmin_local } \text { SB }_{3}=490
\end{aligned}
$$

The section below calculates what the postulated corrosion rate necessary for the thinnest individual point to reach the local required thickness by 2029.

$$
\begin{aligned}
& \text { minpoint }=0.881 \quad \text { year }_{\text {predict }_{22}=2.029 \cdot 10^{3}}^{(2005-2029)} \quad \text { Tmin_local }_{S B_{22}}=490 \\
& \text { required }_{\text {rate. }}:=\frac{\left(1000 \cdot \text { minpoint }- \text { Tmin_local } S B_{22}\right)}{(\quad \text { required }} \text { rate. }=-16.292 \text { mils per year }
\end{aligned}
$$

Mean and Standard Deviation

```
\mu
```


'Standard Error'

1

$$
\text { Standard }_{\text {error }}=5: 69
$$

Skewness

Skewness $:=\frac{1}{\left.\left({ }^{\text {No }}{ }_{\text {DataCells }}-1\right) \cdot\left({ }^{\text {Do }} \text { DataCells }\right) \cdot \overline{\left(\text { Cellls }-\mu_{\text {actual }}\right)^{3}} \quad \cdots\right) \cdot\left(\sigma_{\text {actual }}\right)^{3}} \quad$ Skewness $=-0.471$

Kurtosis

$$
\begin{aligned}
& \text { Kuttosis }:=\frac{{ }^{\text {No }} \text { DataCells } \cdot\left({ }^{\text {No }} \text { DataCells }+1\right) \cdot \overrightarrow{\Sigma\left(\text { Cells }-\mu_{\text {actual }}\right)^{4}}}{\left({ }^{\text {No }} \text { DataCells }-1\right) \cdot\left({ }^{\text {No }}{ }_{\text {DataCells }}-2\right) \cdot\left({ }^{\text {No }}{ }_{\text {DataCells }}-3\right) \cdot\left(\sigma_{\text {actual }}\right)^{4}} \text { Kurtosis }=-0.848 \\
& +-\frac{3 \cdot(\text { No DataCells }-1)^{2}}{\left(\text { No }_{\text {DataCells }}-2\right) \cdot(\text { No DataCells }-3)}
\end{aligned}
$$

Normal Probability Plot

In a normal plot, each data value is plotted against what its value would be if it actually came from a normal distribution. The expected normal values, called normal scores, and can be estimated by first calculating the rank scores of the sorted data:

$$
\mathrm{j}:=\dot{0} . . \text { last(Cells }) \quad \text { srt }:=\text { sort (Cells) }
$$

Then each data point is ranked. The amay rank captures these ranks;

$$
\begin{aligned}
& p_{j}:=\frac{\text { rank }_{j}}{\text { rows }(\text { Cells })+1}
\end{aligned}
$$

The normal scores are the corresponding p th percentile points from the standard normal distribution:

$$
x:=1 \quad N_{1} \text { Score }_{j}:=\operatorname{root}\left[\operatorname{cnom}(x)-\left(p_{j}\right), x\right]
$$

Upper and Lower Confidence Values

The'Upper and Lower confidence values are calculated based on . 05 degree of confidence " α "

$$
\begin{aligned}
& \text { No DataCells }:=\text { length(Cells) } \\
& \\
& \qquad \begin{array}{cc}
\alpha:=.05 \quad \mathrm{~T} \alpha:=\mathrm{qt}\left[\left(1-\frac{\alpha}{2}\right), \text { No }_{\text {DataCells }}\right] \mathrm{T} \dot{\alpha}=2.365
\end{array}
\end{aligned}
$$

$$
\text { -Lower } 95 \% \text { Con }:=\mu_{\text {actual }}-T \alpha: \frac{\sigma_{\text {actual }}}{\sqrt{\text { No DataCells }}} \quad \text { Lower } 95 \% \text { Con }=1.166 \cdot 10^{3}
$$

$$
\text { Uppet } 95 \% \text { Con }:=\mu_{\text {actual }}+\mathrm{T} a: \frac{\sigma_{\text {actual }}}{\sqrt{\text { No DataCells }}} \quad \text { Upper } 95 \% \text { Con }=1.193 \cdot 10^{3} .
$$

These values represent a range on the calculated mean in which there is 95% confidence.

Graphical Representation

Distribution of the "Cells" data points are sorted in $1 / 2$ standard deviation increments (bins) within $+/-3$ standard deviations
. Bins $:=$ Make bins $\left(\mu_{\text {actual }}, \sigma_{\text {actual }}\right)$
Distribution $:=$ hist (Bins, Cells $)$
The mid points of the Bins are calculated
$k:=0.11 \quad$

The Mathcad function pnorm calculates a portion of normal distribution curve based on a given mean and standard deviatipn

$$
\begin{aligned}
& \text { normal }_{\text {curve }}^{0}
\end{aligned}:=\operatorname{pnorm}\left(\text { Bins }_{1} ; \mu_{\text {actual }}, \sigma_{\text {actual }}\right) .
$$

Results For Elevation Sandbed elevation Location Oct. 2006

The following schematic shows: the the distribution of the samples, the normal curve based on the actual mean and standard deviation, the kurtosis, the skewness, the number of data points, and the the lower and: upper 95% confidence values. Below is the Normal Plot for the data.
Data Distribution

Kurtosis $=-0.848$

$$
\text { Lower } 95 \% \text { Con }=1.166 \bullet 10^{3} \quad \text { Upper }_{95 \% \text { Con }}=1.193 \bullet 10^{3}
$$

Normal Probability Plot

The Normal
Probability Plot and the Kurtosis this data is normally distributed:

```
Appendix 14
                                    C-1302-187-E310-041 Rev. No. 0
```

Sheet No. 6 of 16

Sandbed Location 3D Trend

```
For 1992
\[
\text { Dates }_{d}:=\text { Day year }(12,8,1992) .
\]
page := READPRN( "U:IMSOFFICELDrywell Program datatDec. 1992 DatalsandbedData OnlylSB3D.txt" )
Points \(7:=\) sliow 7 cells(page \(, 1,7,0\) )
\[
\eta
\]
```



```
1
I
\[
\text { Ppints } y=\left[\begin{array}{lllllll}
1.198 & 1.191 & 1.191 & 1.184 & 1.159 & 1.182 & 1.169
\end{array}\right]
\]
\[
\text { nnn :=con7vert (Points } 7,7,1) \quad{ }^{\text {No }} \text { DataCells : }=\text { length (nnn) }
\]
\[
\text { Cells := deletezero cells (mnn , No DataCells). Point } 5_{d}:=\text { Cells }_{4}
\]
\[
\mu_{\text {measured }_{d}}:=\text { mean( Cells) } \quad \sigma_{\text {measured }}^{d}:=\operatorname{Stdev}(\text { Cells }) . \quad \text { Standard }_{\text {error }}:=\frac{\sigma_{\text {measured }}^{d}}{\sqrt{\text { No DataCells }}}
\]
\[
\begin{aligned}
& \cdot 1 \\
& \text { 1 } \mathrm{d}:=0 \text {. }
\end{aligned}
\]
```

For 1994 . 4 , \quad d $:=\mathbf{d}+1$.
page := READPRN("U:TMSOFFICEDTywell Program datalSept. 1994 DatalsandbedData OnlyISB3D.txi")

Points $7:=$ show $7 \mathrm{cells}($ page $, 1,7,0)$ r

I, ',
Data

$$
\begin{array}{lll}
י: & & 1 \\
& 1 & 1
\end{array}
$$

$$
\text { Points }_{7}=\left[\begin{array}{lllllll}
1.194 & 1.194 & 1.191 & 1.194 & 1.164 & 1.184 & 1.168
\end{array}\right]
$$

$\mathrm{nnn}:=\operatorname{con} 7 \mathrm{vert}($ Points $7,7,1$)
${ }^{\text {No }}$ DataCells $:=$ length (nnn)

Cells := deletezero cells (nnn , No DataCells)

$$
\text { Point } s_{d}:=\text { Cells }_{4}
$$

$$
\mu_{\text {measured }_{d}}:=\operatorname{mean}(\text { Cells }) \quad \sigma_{\text {measured }_{d}}:=\operatorname{Stdev}(\text { Cells }) \quad \text { Standard }_{\text {error }}^{d}:=\frac{\sigma_{\text {measured }}^{d}}{\sqrt{\text { No DataCells }}}
$$

```
Appendix }1
page := READPRN( "U:MMSOFFICELDrywell Program datalSept.1996 DatalsandbedData OnlylSB3D.dxt" )
                                    \mp@subsup{Dates d}{d}{:= Day year (9, 16, 1996)}
```

$$
\text { Points } 7:=\text { show7cells(page }, 1,7,0)
$$

Data

$$
1
$$

$$
1
$$

$$
\text { Points }_{7}=\left[\begin{array}{lllllll}
1.194 & 1.192 & 1.181 & 1.139 & 1.158 & 1.185 & 1.173
\end{array}\right]
$$

$$
\text { nnn }:=\operatorname{con} 7 v e r t(\text { Points } 7,7,1)
$$

$$
\text { No DataCells }:=\text { length(nnn) }
$$

$$
1
$$

$$
\text { Cells }:=\text { deletezero cells (nnn, No DataCells) }
$$

$$
\text { Point }_{5}:=\text { Cells }_{4}
$$

$$
\mu_{\text {measured }}:=\operatorname{mean}(\text { Cells }) \quad \sigma_{\text {measured }}:=\operatorname{Stdev}(\text { Cells }) \quad \text { Standard }_{d} \text { error }_{d}:=\frac{\sigma_{\text {measured }}^{d}}{\sqrt{\text { No DataCells }}}
$$

Below are matrices which contain the date when the data was collected, Mean, Standard Deqviation, Standard Efror for each date.

$$
\text { SST }:=\sum_{i=0}^{\text {lasi(Dates })}\left(\mu_{\text {measured }_{i}}-\text { mean }\left(\mu_{\text {measured }}\right)\right)^{2} \quad \text { SST }=50.796
$$

- last (Dates)

$$
\operatorname{SSE}:=\sum_{i=0}^{\text {last }(\text { Dates })}\left(\mu_{\text {measured }}-\text { yhat }\left(\text { Dates }, \mu_{\text {measured }}\right)_{i}\right)^{2} \quad \quad \text { SSE }=47.157
$$

$$
\text { SSR }:=\sum_{i=0}^{\operatorname{last}(\text { Dates })}\left(\text { yhat }\left(\text { Dates }, \mu_{\text {measured }}\right)_{i}-\operatorname{mean}\left(\mu_{\text {measured }}\right)\right)^{2} \quad \text { SSR }=3.639
$$

$$
\text { DegreeFree }_{\text {ss }}:=\text { Total means }-2 . \text { DegreeFree }_{\text {reg }}:=1 \quad \text { DegreeFree }_{\text {st }}:=\text { Total }_{\text {means }}-1
$$

$$
\text { MSE }:=\frac{\text { SSE }}{\text { DegreeFree }_{\text {ss }}} ; \quad \text { MSR }:=\frac{\text { SSR }}{\text { Degreefree }_{\text {reg }}} \quad \text { MST }:=\frac{\text { SST }}{\text { DegreeFree }_{\text {st }}}
$$

$$
\mathrm{MSE}=23.578
$$

$$
\text { MSR }=3.639
$$

$$
M S T=16.932
$$

$$
\dot{\text { StGrand }}_{\mathrm{err}}:=\sqrt{\mathrm{MSE}} \quad \text { StGrand }_{\mathrm{err}}=4.856
$$

F Test for Corrosion

$$
\begin{aligned}
& \text { Dates }=\left[\begin{array}{c}
1.993 \cdot 10^{3} \\
1.995 \cdot 10^{3} \\
1.997 \cdot 10^{3} \\
2.007 \cdot 10^{3}
\end{array}\right] \\
& \text { Point }_{5}=\left[\begin{array}{c}
1.159 \cdot 10^{3} \\
1.164 \cdot 10^{3} \\
1.158 \cdot 10^{3} \\
1.156 \cdot 10^{3}
\end{array}\right] \\
& \mu_{\text {measured }}{ }^{\prime}=\left[\begin{array}{c}
1.182 \cdot 10^{3} \\
1.184 \cdot 10^{3} \\
1.175 \cdot 10^{3} \\
1.18 \cdot 10^{3}
\end{array}\right] \\
& \text { Standard }_{\text {error }}=\left[\begin{array}{c}
5.164 \\
4.891 \\
7.518 \\
5.69
\end{array}\right], \quad \sigma_{\text {measured }}=\left[\begin{array}{l}
13.663 \\
12.941 \\
19.89 \\
15.054 .
\end{array}\right] \\
& \text { Total means }:=\text { rows }\left(\mu_{\text {measured }}\right) \quad \text { Total means }=4
\end{aligned}
$$

$$
\begin{aligned}
& \alpha:=0.05 \quad, \quad F_{\text {actaul_Reg }}:=\frac{\text { MSR }}{\text { MSE }} \\
& F_{\text {critical_reg }}:=\mathrm{qF}\left(1-\alpha, \text { DegreeFree }_{\text {reg }}, \text { DegreeFree }_{\text {ss }}\right) \\
& ' F_{\text {ratio_reg }}:=\frac{F_{\text {cactat_Reg }}}{F_{\text {critical_reg }}} \quad . \quad \ddots \quad . \quad \ddots, \\
& F_{\text {ratio_reg }}=8.337 \cdot 10^{-3} . \\
& .1 .
\end{aligned}
$$

Therefore no conclusion can be made as to whether thie data best fits the regression model. The figure below provides a trend of the data and the grandmean

Plot of the grand mean and the actual means over time

To conservatively address the location, the apparent corrosion rate is calculated and compared to the minimum required wall thickness at this elevation

$$
\left.\mathrm{m}_{\mathrm{s}}:=\text { slope (Dates, } \mu_{\text {measured }}\right) \quad \mathrm{m}_{\mathrm{s}}=-0.178 \quad \mathrm{y}_{\mathrm{b}}:=\text { intercept }\left(\text { Dates, } \mu_{\text {measured }}\right) y_{b}=1.535 \cdot 10^{3}
$$

,
The 95\% Confidence curves are calculated

$$
\text { upper }_{f}:=\text { Thick }_{\text {predict }_{f}} \ldots
$$

$$
11 \times \frac{2}{2}, \text { means }
$$

$$
1
$$

$$
+q t\left(1-\frac{\alpha_{t}}{2}, \text { Total }_{\text {means }}-2\right) \cdot \text { StGrand }_{\text {err }} \sqrt{1+\frac{1}{(d+1)}+\frac{\left(\text { year predict }_{r}-\text { Thick actualmean }^{2}\right.}{\text { sum }}}
$$

$$
\text { lower }_{f}:=\text { Thick }_{f} \text { predict }_{f} \cdots
$$

$$
+-\left[q t\left(1-\frac{\alpha_{i}}{2}, \text { Total means }-2\right) \cdot \text { StGrand } \text { err } \cdot \sqrt{1+\frac{1}{(d+1)}+\frac{\left(\text { year }_{\text {predict }}-\text { Thick }_{\text {actualimean }}\right)^{2}}{\text { sum }}}\right]
$$

$$
\begin{aligned}
& \alpha_{t}:=0.05 k:=2029-1985 \quad f:=0 . k-1^{\prime} \\
& \text { year }_{\text {predict }}:=1985+\mathrm{f} \cdot 2 \text { Thick }{ }_{\text {predict }}:=\mathrm{m}_{\mathrm{s}} \cdot \text { year }_{\text {predict }}+\mathrm{y}_{\mathrm{b}} \\
& \text { Thick }{ }_{\text {actualmean }}^{1}:=\operatorname{mean}(\text { Dates }) \quad \text { sum }:=\sum_{i}\left(\text { Dates }_{d}+\operatorname{mean}(\text { Dates })\right)^{2}
\end{aligned}
$$

Therefore even though F-ratio does not support the regression model the above curve shows that even at the lower 95% confidence band this location will not corrode to below Drywell Vessel Minimum required thickness by the plant end of life.

The section below calculates what the postulated mean thickness would be if this grid were to corrode at a minimum observable rate observed in appendix 22.

$$
\begin{aligned}
& \text { Rate min_observed }:=6.9 \\
& \text { Postulated meanthickness }:=\mu_{\text {measured }}^{3}
\end{aligned}-\text { Rate min_observed }(2029-2006) \quad \text { which is greater than } \quad \text { Tmin_gen } \text { SB }_{3}=736
$$

The following addresses the readings at the lowest single point

$$
\begin{aligned}
& \text { • } \\
& \text { Point }_{5_{d}}:=\text { Cells }_{4} \text {, } \\
& \text {; } \operatorname{SST}_{\text {point }}:=, \sum_{i=0}^{\text {last(Dates })} \cdot\left(\text { Point }_{5_{i}}-\text { mean }(\text { Point } 5)\right)^{2} \\
& \text { SST }_{\text {point }}=34.75 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { MSE }_{\text {point }}:=\frac{\text { SSE }_{\text {point }}}{\text { DegrecFree }_{\text {s }}} \quad \text { MSR }_{\text {point }}:=\frac{\text { SSR }_{\text {point }}}{\text { DegreeFree }_{\text {reg }}} \quad \quad \text { MST point }:=\frac{\text { SST }_{\text {point }}}{\text { DegreeFree }_{\text {st }}} \\
& \mathrm{MSE}_{\text {point }}=9.959 \\
& \mathrm{MSR}_{\text {point }}=14.833 \\
& \text {. MST } \text { point }^{\circ}=11.583^{\circ} \\
& \text { StPoint err }:=\sqrt{\text { MSE }_{\text {.point }}} \\
& \text { StPoint err }=3.156
\end{aligned}
$$

F Test for Corrosion

$$
\begin{aligned}
& F_{\text {actaul_Reg }}:=\frac{M_{\text {point }}}{M_{\text {point }}} \\
& F_{\text {ratio_reg }}:=\frac{F_{\text {actaul_Reg }}}{F_{\text {critical_reg }}} \\
& F_{\text {ratio_reg }}=0.08
\end{aligned}
$$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

$$
\left.m_{\text {point }}^{\prime}:=\operatorname{slope}(\text { Dates , Point } 5) m_{\text {point }}=-0.359 y_{\text {point }}:=\dot{\text { intercept }}{ }^{\prime} \text { Dates, Point } 5\right) \dot{y}_{\text {point }}=1.876 \cdot 10^{3}
$$

The 95% Confidence curves are calculated
Point $_{\text {curve }}:=m_{\text {point }} \cdot$ year $_{\text {predict }}+y_{\text {point }}$

uppoint $_{f}:=$ Point $_{\text {curve }}^{f}$...

1
lopoint $_{f}:=$ Point $_{\text {curve }} \quad \cdots$

$$
+-\left[\operatorname{qt}\left(1-\frac{\alpha_{t}}{2}, \text { Total }_{\text {means }}-2\right) \cdot \text { StPoint } \text { err }^{\text {curve }_{r}} \cdot \sqrt{1+\frac{1}{(d+1)}+\frac{\left(\text { year predict }- \text { Point }_{\text {actuabmean }}\right)^{2}}{\text { sum }}}\right]
$$

Local Tmin for this elevation in the Drywell
Tmin_local $\mathrm{SB}_{\mathrm{f}}:=490$
(Ref. 3.25)

Curve Fit For Point 5 Projected to Plant End Of Llfe

The section below calculates what the postulated individual thickness would be if this point were to corrode at a minimum observable rate observed in appendix 22.

$$
\text { Rate }_{\text {min_observed }}:=6.9
$$

$$
\begin{aligned}
& \text { Postulated thickness :=Point } 5_{3}-\text { Rate }_{\text {min_observed }}(2029-2006) \\
& \text { Postulated thickness }=997.3 \quad \text { which is greater than } \quad \text { Tmin_local }_{\mathrm{SB}_{3}=490}
\end{aligned}
$$

The section below calculates what the postulated corrosion rate necessary for the thinnest individual point to reach the local required thickness by 2029.
minpoint $=1.156 \quad$ year predict $_{22}=2.029 \cdot 10^{3} \quad$ Tmin_local $_{S_{22}}=490$
required ${ }_{\text {rate. }}:=\frac{\left(1000 \cdot \text { minpoint }- \text { Tmin_local } \mathrm{SB}_{22}\right)}{(2005-2029)}$
required rate. $=-27.75 \quad$ mils per year

Appendix 15 - Sand Bed Elevation Bay 5D

October 2006 Data

The data shown below was'collected on 10/18/06.
page $:=$ READPRN("U:MSOFFICEDTywell Program datalOCT 2006 DatalSandhedSB5D.txt")

The thinnest point is at point 1 at this location is shown below

$$
\begin{aligned}
& \text { minpoint }:=\min \left(\text { Points }_{7}\right) \\
& \text { minpoint }=1.174
\end{aligned}
$$

Mean and Standard Deviation

'Standard Error

Skewness

Skewness $:=\frac{1,\left({ }^{(N o} \text { DataCells }\right) \cdot \Gamma\left(\text { Cells }-\mu_{\text {actual }}\right)^{3}}{\left(\text { No }_{\text {DataCells }}-1\right) \cdot(\text { No DataCells }-2) \cdot\left(\sigma_{\text {achual }}\right)^{3}} \quad$ Skewness $=-1.514$

Kurtosis

$$
\begin{aligned}
\text { Kurtosis }:= & \left.\frac{\text { No }_{\text {DataCells }} \cdot\left({ }^{\text {No }}\right. \text { DataCells }}{}+1\right) \cdot \overline{\left(\text { Nolls }-\mu_{\text {actual }}\right)^{4}} \\
& +-\frac{3 \cdot\left(\text { No }^{\text {DataCells }}-1\right) \cdot\left(\text { No }_{\text {DataCells }}-2\right) \cdot\left(\text { No }_{\text {DataCells }}-3\right) \cdot\left(\sigma_{\text {actual }}\right)^{4}}{(\text { No DataCells }-2) \cdot\left(\text { No }_{\text {DataCells }}-3\right)}
\end{aligned}
$$

Normal Probability Plot

In a normal plot, each data value is plotted against what its value would be if it actually came from a normal distribution. The expected normal values, called normal scores, and can be estimated by first calculating the rank scores of the sorted data.

$$
j:=0 . . \text { last(Cells }) \quad \text { srt }:=\text { sort (Cells) }
$$

Then each data point is ranked. The array rank captures these ranks,

$$
\begin{aligned}
& r_{j}:=\mathrm{j}+1 \quad \operatorname{rank}_{\mathrm{j}}:=\frac{\sum \overrightarrow{\sum \overrightarrow{\left(\mathrm{srt}=\mathrm{str}_{\mathrm{j}}\right)} \cdot \mathrm{r}}}{\sum \overrightarrow{\mathrm{srt}=\mathrm{str}_{\mathrm{j}},}} \\
& p_{j}:=\frac{\text { rank }_{j}}{\text { rows }(\text { Cells })+1}
\end{aligned}
$$

The normal scores are the corresponding p th percentile points from the standard normal distribution:

$$
x:=1 \quad N_{2} \text { Score }_{j}:=\operatorname{root}\left[\operatorname{cnorm}(x)-\left(p_{j}\right) \cdot x\right]
$$

Upper and Lower Confidence Values

ThedUpper and Lower confidence values are calculated based on .05 degree of confidence " α "
No DataCells := length(Cells)

$$
\alpha:=.05 . \quad T \alpha:=q\left[\left(1-\frac{\alpha}{2}\right),{ }^{\text {No }} \text { DataCells }\right] \quad T \alpha=2.365
$$

$$
\text { MLower } 95 \% \text { Con }:=\mu_{\text {actual }}-\mathrm{T} \alpha \cdot \frac{\sigma_{\text {actual }}}{\sqrt{\text { No DataCells }}} \quad \text { Lower } 95 \% \text { Con }=1.18-10^{3}
$$

$$
\text { Uppet } 95 \% \text { Con }:=\mu_{\text {actual }}+\mathrm{T} \alpha \cdot \frac{\sigma_{\text {actual }}}{\sqrt{\text { No DataCells }}} \quad \text { UUPper }_{95 \% \text { Con }}=1.189 \cdot 10^{3}
$$

These values represent a range on the calculated mean in which there is 95% confidence.

Graphical Representation

Distribution of the "Cells" data points are sorted in $1 / 2$ standard deviation increments (bins) within $+/-3$ standard deviations

The Mathcad function pnorm calculates a portion of normal distribution curve based on a given mean and standard deviation

$$
\begin{aligned}
& \text { normal }_{\text {curve }}^{0}
\end{aligned}:=\operatorname{pnorm}\left(\text { Bins }_{1}, \mu_{\text {actual }}, \sigma_{\text {actual }}\right) .
$$

Reșults För Elevation Sandbed elevation Location Oct. 2006

The following schematic shows: the the distribution of the samples, the normal curve based on the actual mean and standard deviation, the kurtosis, the skewness, the number of data points, and the the lower and " upper 95% confidence values. . Below is the Normal Plot for the data.

Data Distribution

Normal Probability Plot

The Normal
Probability Plot and the Kurtosis this data is normally distributed.

```
Appendix 15
                    C-1302-187-E310-041 Rev.No. 0
                    Sheet No.
                        I.
                        Sandbed Location 5D Trend
                / : . . . . .=0
                    For 1992 '
                        \mp@subsup{Dates d}{d}{:= Day year (12, 8, 1992)}
page. := READPRN( "U:\MSOFFICELDrywell Program dataWec. 1992 DatalsandbedWata OnlySB5D.txt" )
" Points 7:= show7cells( page,1, 7,0)
                                    Data
    1
                nnn := con7vert(Points 7, 7,1) No DataCells := length( nnn)
    I
    1
    Cells := deletezero cells(ninn, No DataCelis)
    Point 1}\mp@subsup{|}{d}{}:=\mp@subsup{\mathrm{ Cells}}{0}{
    Point j = 1.164-10 2
        \mu}\mp@subsup{\mathrm{ measured d}}{d}{}:=\mathrm{ mean('Cells) }\mp@subsup{\sigma}{\mp@subsup{\mathrm{ measured d}}{d}{\prime}}{==Stdev(Cells). Standard errord
```

1
page := READPRN("U:LMSOFFICELDrywell Program datalSept. 1994 DatalsandbedData OnlylSB5D.txi") Dates $_{\text {d }}:=1$ Day year $(9,14,1994)$.

Points $7:=$ show 7 cells (page , $1,7,0$)

Data

$$
\text { Points } 7=\left[\begin{array}{lllllll}
1.163 & 1.172 & 1.155 & 1.174 & 1.171 & 1.171 & 1.173
\end{array}\right]
$$

$$
\begin{aligned}
& \text { nnn := con7vert (Points } 7,7,1 \text {) } \\
& \text { No DataCells }:=\text { length(nnn) } \\
& \text { Cells := deletezero cells (nnn, No DataCells) } \\
& \text { Point } 1_{d}:=\text { Cells }_{0}
\end{aligned}
$$

```
Appendix 15

\section*{1}
```

For 1996

```
page':= READPRN( "U:MMSOFFICELDrywell Program datalSept.1996 DatalsandbedWata Only\SBSD.txt" )
```

page':= READPRN("U:MMSOFFICELDrywell Program datalSept.1996 DatalsandbedWata Only\SBSD.txt")
Dates d, := Day year! (9, 16, 1996)
Points 7:= show7cells(page, 1,7,0) '

 l
 Data
 nm}:= con7vert(Points 7,7,1
 No DataCells := length(mnn)
 |
 $$
\text { Cells }:=\text { deletezero cells (nnn, No DataCells) }
$$

$$
\text { . . Point } \mathbf{1}_{\mathrm{d}}:=\text { Cells }_{\mathbf{0}}
$$

$$
\mu_{\text {measured }_{d}}:=\text { mean(Cells) } \quad \sigma_{\text {measured }_{d}}:=\operatorname{Stdev}(\text { Cells }) \quad \text { Standard }_{\text {error }_{d}}:=\frac{\sigma_{\text {measured }_{d}}}{\sqrt{\text { No DataCells }}}
$$

```
page \(:=\) READPRN( "U:MSOFFICElDrywell Program datalOCT 2006 DatalSandbedSB5D.txt" )
\[
\text { , Dates }{ }_{f}:=\text { Day year }(10,16,2006)
\]

Points \(7:=\) show 7 cells( page \(, 1,7,0\) )
- Data

\[
\text { nnn }:=\text { con7vert }(\text { Points } 7,7,1) \quad \text { No DataCells }:=\text { length }(\mathrm{nnn})
\]
\[
\text { Cells }:=\text { deletezero cells }(\mathrm{nmn}, \text { No DataCelis })^{\prime}
\]
\[
\text { Point }_{d}:=\text { Cells }_{0}
\]
\[
\mu_{\text {measured }_{d}}:=\text { mean( Cells) } \quad \sigma_{\text {measured }_{d}}:=\operatorname{Stdev}(\text { Cells }) \quad \text { Standard } \text { emror }_{d}:=\frac{\sigma_{\text {measured }_{d}}}{\sqrt{\text { No DataCells }}}
\]

Below are matrices which contain the date when the data was collected, Mean, Standard Deviation, Standard Efror for each date.
\[
\text { SSE }:=\sum_{i=0}^{\text {last(Dates })}\left(\mu_{\text {measured }}^{i}-\text { yhat }\left(\text { Dates }, \mu_{\text {measured }}\right)_{i}\right)^{2}
\]
\[
S S E=119.919
\]
\[
\text { SSR }:=\sum_{i=0}^{\text {last( Dates })}\left(\text { yhat }\left(\text { Dates }, \mu_{\text {measured }}\right)_{i}-\text { mean }\left(\mu_{\text {measured }}\right)\right)^{2} . \quad \text { SSR }=53.443
\]
\[
\text { DegreeFree }_{\text {ss }}:=\text { Total means }-2 \quad \text { DegreeFree }_{\text {reg }}:=1 \quad \text { DegreeFree }_{\text {st }}:=\text { Total }_{\text {means }}-1
\]
\[
\text { MSE }: \left.=\frac{\text { SSE }}{\text { DegreeFree }_{\text {ss }}} \quad \right\rvert\, \quad \text { MSR }:=\frac{\text { SSR }}{\text { DegreeFree }_{\text {reg }}} \quad \text { MST }:=\frac{\text { SST }}{\text { DegreeFree }_{\text {st }}}
\]
\[
\text { MSE }=59.96
\]
\[
M S R=53.443 \quad \text { MST }=57.787
\]

StGrand \(_{\text {eIr }}:=\sqrt{\text { MSE }} \quad\) StGrand \(_{\text {err }}=7.743\)
\[
\begin{aligned}
& \text { Dates }=\left[\begin{array}{c}
1.993 \cdot 10^{3} \\
1 \\
1.995 \cdot 10^{3} \\
1.997 \cdot 10^{3} \\
2.007 \cdot 10^{3}
\end{array}\right] \\
& \text { Point } 1=\left[\begin{array}{c}
1.164 \cdot 10^{3} \\
1.163 \cdot 10^{3} \\
1.163 \cdot 10_{1}^{3} \\
1.174 \cdot 10^{3}
\end{array}\right] \\
& \mu_{\text {measured }}=\left[\begin{array}{c}
1.182 \cdot 10^{3} \\
\cdot \\
1.168 \cdot 10^{3} \\
1.173 \cdot 10^{3} \\
1 \\
1.185 \cdot 10^{3}
\end{array}\right] \quad \text { Standard }_{\text {.error }}=\left[\begin{array}{c}
7.04 \\
2.617 \\
2.245 \\
1.997
\end{array}\right], \quad \sigma_{\text {measured }}=\left[\begin{array}{l}
18.627 \\
6.925 \\
5.94 \\
5.282
\end{array}\right] \\
& \text { Total means }:=\text { rows }\left(\mu_{\text {measured }}\right) \quad \text { Total }_{\text {means }}=4
\end{aligned}
\]

\section*{F Test for Corrosion}
"
\(\alpha:=0.05 . \quad F_{\text {actaul_Reg }}:=\frac{\text { MSR }}{M S E}\)
- \(\mathrm{F}_{\text {critical_reg }}:=\mathrm{qF}\left(1_{1}-\alpha, \text { DegreeFree }_{\text {reg }}, \text { DegreeFree }_{\mathrm{ts}}\right)^{\prime}\)
\(F_{\text {ratio_reg }}:=\frac{F_{\text {actaul_Reg }}}{F_{\text {critical_reg }} .}\).
\(F_{\text {ratio_reg }}=0.048\)
Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

ogrand measured \(:=\operatorname{Stdev}\left(\mu_{\text {measured }}\right) \quad \because \quad\) GrandStandard \(_{\text {error }}^{0} 0:=\frac{\text { ogrand measured }}{\sqrt{\text { Total means }}}\)



To conservatively address the location, the apparent corrosion rate is calculated and compared to the minimum required wall thickness at this elevation
\[
1
\]
\[
m_{\mathbf{s}}:=\operatorname{slope}\left(\text { Dates }, \mu_{\text {measured }}\right) \quad m_{s}=0.681 \quad y_{b}:=\operatorname{intercept}\left(\text { Dates }, \mu_{\text {measured }}\right) y_{b}=-183.458
\]

1
The \(95 \%\) Confidence curves are calculated
\[
\text { upper }_{f}:=\text { Thick }_{\text {predict }_{f}} \ldots
\]
\[
!\quad+\operatorname{qt}\left(1-\frac{\alpha_{t}}{2}, \text { Total means }^{-2}\right) \cdot \text { StGrand } \mathrm{err} \cdot \sqrt{1+\frac{1}{(d+1)}+\frac{\left(\text { year }_{\text {predict }}^{f}-\text { Thick }_{\text {actualmean }}\right)^{2}}{\text { sum }}}
\]
\[
\text { lower }_{f}:=\text { Thick }_{p} \text { predict }_{f} \ldots
\]
\[
+-\left[q t\left(1-\frac{\alpha_{t}}{2}, \text { Total means }-2\right) \cdot \text { StGrand } \text { err } \cdot \sqrt{1+\frac{1}{(d+1)}+\frac{\left(\text { year predict }_{f}-\text { Thick }_{\text {actualmean }}\right)^{2}}{\text { sum }}}\right]
\]
\[
\begin{aligned}
& \alpha_{\mathbf{t}}:=0.05 \mathrm{k}:=2029-1985 \quad f:=0 . . \mathrm{k}-1 . \\
& \text { year }_{\text {predict }}^{f}:=1985+\mathrm{f} \cdot 2 \text { Thick predict }:=\mathrm{m}_{\mathrm{s}} \cdot \text { year predict }+\mathrm{y}_{\mathrm{b}} \\
& \text { Thick } \left.\left.{ }_{\text {actualmean }}^{\prime}:=\text { mean( Dates }\right) \quad \text { sum }:=\sum_{i}\left(\text { Dates }_{d} r \text { mean(Dates }\right)\right)^{2}
\end{aligned}
\]


Therefore even though F-ratio does not support the regression model the above curve shows that even at the lower \(95 \%\) confidence band this location will not corrode to below Drywell Vessel Minimum required thickness by the plant end of life.

The section below calculates what the postulated mean thickness would be if this grid were to corrode at a minimum observable rate observed in appendix 22.
\[
\text { Rate min_observed }=6.9
\]
\[
\begin{aligned}
& \text { Postulated meanthickness }:=\mu_{\text {measured }_{3}}-\text { Rate }_{\text {min_observed }} \cdot(2029-2006) \\
& \text { Postulated }_{\text {meanthickness }}=1.026 \cdot 10^{3} \quad \text { which is greater than } \quad \text { Tmin_gen }_{\text {SB }_{3}=736}
\end{aligned}
\]

The following addresses the readings at the lowest single point
Point \(_{\mathbf{1}_{\mathbf{d}}}:=\) Cells \(_{\mathbf{0}}\)
\[
\text { SST }_{\text {point }}:=\sum_{i=0}^{\text {last( Dates })}\left(\text { Point }_{1_{i}}-\text { mean }(\text { Point } 1)\right)^{2} \quad{ }^{\prime} \quad \text { SST }_{\text {point }}=86 .
\]
\[
d_{1} \quad \cdot
\]
\[
\operatorname{SSE}_{\text {point }}:=\sum_{i=0}^{\text {last }(\text { Dates })}\left(\text { Point }_{1_{i}}-\text { yhat }(\text { Dates , Point } 1)_{i}\right)^{2}
\]
\[
\operatorname{SSE}_{\text {point }}^{\prime}=8.99
\]
\[
1
\]
\[
\operatorname{SSR}_{\text {point }}:=\sum_{i=0}^{\text {last( Dates })}\left(\text { yhat }\left(\text { Dates }, \text { Point }_{1}\right)_{i}^{\prime}-\operatorname{mean}(\text { Point } 1)\right)^{2} \quad \operatorname{SSR}_{\text {point }}=77.01
\]
\[
\text { MSE }_{\text {point }}:=\frac{\text { SSE }_{\text {point }}}{\text { DegreeFree }_{\text {Ss }}} \quad \text { MSR }_{\text {point }}:=\frac{\text { SSR }_{\text {point }}}{\text { DegreeFree }_{\text {reg }}} \quad . \quad \text { MST }_{\text {point }}:=\frac{\text { SST }_{\text {point }}}{\text { DegreeFree }_{\text {st }}}
\]
\[
\text { MSE }_{\text {point }}=4.495 \quad \text { MSR }_{\text {point }}^{\circ}=77.01 \quad \text { MST }_{\text {point }}=28.667
\]
\[
\text { StPoint err }:=\sqrt{\text { MSE point }^{\text {StPoint }} \text { err }}=2.12
\]

F Test for Corrosion
\[
\begin{aligned}
& \mathbf{F}_{\text {actaul_Reg }}:=\frac{\text { MSR }_{\text {point }}}{\text { MSE }_{\text {point }}} \\
& F_{\text {ratio_reg }}:=\frac{F_{\text {actaul_Reg }}}{F_{\text {critical_reg }}} \\
& F_{\text {ratio_reg }}=0.925
\end{aligned}
\]

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean and the apparent rate which is positive which is not credible.
\[
\text { Local Tmin for this elevation in the Drywell } \quad \text { Tmin local } \mathrm{SB}_{f}:=490
\]
(Ref. 3.25)

\section*{Curve Fit For Point 1 Projected to Plant End Of Life}

\[
\begin{aligned}
& \begin{array}{l}
\text { m } \left._{\text {point }}:=\text { slope(Dates }, \text { Point }_{1}\right) \quad m_{\text {point }}=0.817 \quad y_{\text {point }}:={ }_{\text {intercept (Dates, Point }}^{1} \text { ) } y_{\text {point }}=-466.893 \\
\text { Thie } 95 \% \text { Confidence curves are calculated }
\end{array} \\
& \text { Point curve }:=m_{\text {point }} \cdot \text { year }_{\text {predict }}+y_{\text {point }} \\
& \text { Point actualmean } \left.:=\text { mean(Dates }) \quad \text { sum }:=\sum_{i}\left(\text { Dates }_{d}-\text { mean (Dates }\right)\right)^{2} \\
& \text { uppoint }_{f}:=\text { Point }_{\text {curve }}^{f} \text {... } \\
& +q t\left(1-\frac{\alpha_{t}}{2}, \text { Total means }-2\right) \cdot \text { StPoint } \text { err }^{*} \sqrt{1+\frac{1}{(d+1)}+\frac{\left(\text { year predict }- \text { Point actualmean }^{2}\right.}{\text { sum }}} \\
& \text { lopoint }_{f}!=\text { Point }_{\text {curve }}^{f} \ldots \\
& +-\left[\mathbf{q t}\left(1-\frac{\alpha_{t}}{2}, \text { Total }_{\text {means }}-2\right) \cdot \text { StPoint } \text { err }^{1} \sqrt{1+\frac{1}{(d+1)}+\frac{\left(\text { year }_{\text {predict }}^{f}-\text { Point }_{\text {actualmean }}\right)^{2}}{\text { sum }}}\right]
\end{aligned}
\]

The section below calculates what the postulated individual thickness would be if this point were to corrode at a minimum observable rate observed in appendix 22.
\[
\begin{aligned}
& \qquad \begin{array}{l}
\text { Rate min_observed }^{:=6.9} \\
\text { Postulated }_{\text {thicknessin }}:=\text { Point }_{1_{3}}-\text { Rate }_{\text {min_observed }}(2029-2006) \\
\text { Postulated }_{\text {thicknessin }}=1.015 \cdot 10^{3} \quad \text { which is greater than } \quad \text { Tmin_local }^{3} \quad \mathrm{SB}_{3}=490
\end{array}
\end{aligned}
\]

The section below calculates what the postulated corrosion rate necessary for the thinnest individual point to reach the local required thickness by 2029.
\[
\begin{aligned}
& \text { minpoint }=1.174 \quad \text { year } \text { predict }_{22}=2.029 \bullet 10^{3} \quad \text { Tmin_local } \text { SB }_{22}=490 \\
& \text { required rate. }:=\frac{\left(1000 \cdot \text { minpoint }- \text { Tmin_local } \mathrm{SB}_{22}\right)}{(2005-2029)} \quad \text { required } \quad \text { rate. }=-28.5 \quad \text { mils per year }
\end{aligned}
\]

\section*{Appendix 16 - Sand Bed Elevation Bay 7D}

\section*{October 2006 Data}
The data shown below was collected on 10/18/06.
page := READPRN( "U:MSOFFICELDrywell Program datalOCT 2006 DataSandbedSB7D.txt" )
page := READPRN( "U:MSOFFICELDrywell Program datalOCT 2006 DataSandbedSB7D.txt" )
Points 7 := show7cells(page ,1,7,0)
Points 7 := show7cells(page ,1,7,0)


Cells:= con7vert(Points j, 7, 1 No DataCells := length(Cells)
Cells:= con7vert(Points j, 7, 1 No DataCells := length(Cells)
Cells \(:=\) deletezero \(^{i}\) cells (Cells, No DataCells)
The thinnest point at this location is shown below
\[
\begin{aligned}
& \text { minpoint }:=\min \left(\text { Points }_{7}\right) \\
& \text { minpoint }=1.102
\end{aligned}
\]

\section*{Appendix 16}

C-1302-187-E310-041 Rev. No. 0
Stieet No. 2 of 16

\section*{Mean and Standard Deviation}


\section*{'Standard Error}


\section*{Skewness}

Skewness \(:=\frac{\left({ }^{(N o} \text { DataCells }\right) \cdot \overline{\sum\left(\text { Cells }-\mu_{\text {actual }}\right)^{3}}}{\left({ }^{\text {No }} \text { DataCells }-1\right) \cdot\left({ }^{\text {No }}{ }_{\text {DataCells }}-2\right) \cdot\left(\sigma_{\text {actual }}\right)^{3}} \quad\) Skewness \(=-1.186\)

\section*{Kurtosis}
\[
\begin{aligned}
& \text { Kurtosis : }:\left.\frac{\text { No }_{\text {DataCells }} \cdot\left({ }^{\text {No }}{ }_{\text {DataCells }}+1\right) \cdot \overrightarrow{\Sigma\left(\text { Cells }-\mu_{\text {actual }}\right)^{4}}}{\left({ }^{\text {No }}\right. \text { DataCells }}-1\right) \cdot\left(\text { No }_{\text {DataCells }}-2\right) \cdot\left({ }^{\text {No }} \text { DataCells }-3\right) \cdot\left(\sigma_{\text {actual }}\right)^{4} \\
& \text { Kurtosis }=0.193 \\
&+-\frac{3 \cdot\left(\text { No }_{\text {DataCells }}-1\right)^{2}}{(\text { No DataCells }-2) \cdot(\text { No DataCells }-3)}
\end{aligned}
\]

\section*{Normal Probability Plot}

In a normal plot, each data value is plotted against what its value would be if it actually came from a normal distribution. The expected normal values, called normal scores, and can be estimated by frst calculating the rank scores of the sorted data.
\[
\mathrm{j}:=0 . \text { last( Cells }) \quad \text { srt }:=, \text { sort( Cells ) }
\]

Then each data point is ranked. The array rank captures these ranks,
\[
\begin{aligned}
& p_{j}:=\frac{\text { rank }_{j}}{\text { rows (Cells })+1}
\end{aligned}
\]

The normal scores are the corresponding pth percentile points from the standard normal distribution:
\[
x:=1 \quad N_{-} \text {Score }_{j}:=\operatorname{root}\left[\operatorname{cnorm}(x)-\left(p_{j}\right), x\right]
\]

Shieet No. 4 of 16

\section*{Upper and Lower Confidence Values}

The \Upper and Lower confidence values are calculated based on . 05 degree of confidence " \(q^{\text {" }}\)
```

No DataCells := length(Cells)

```
\[
\alpha:=.05 \quad \mathrm{~T} \alpha:=\mathrm{qt}\left[\left(1-\frac{\alpha}{2}\right),{ }^{\text {No }} \text { DataCells }\right] \quad \mathrm{T} \alpha=2.365
\]



These values represent a range on the calculated mean in which there is \(95 \%\) confidence.

\section*{Graphical Representation}

Distributlon of the "Cells" data points are sorted in \(1 / 2\) standard deviation increments (bins) within \(+/-3\) standard deviations


The Mathcad function pnorm calculates a portion of normal distribution curve based on a given mean and standard deviatipn
\[
\begin{aligned}
& \text { normal }_{\text {curve }}^{0}
\end{aligned}:=\operatorname{pnom}\left(\text { Bins }_{1}, \mu_{\text {actual }}, \sigma_{\text {actual }}\right) .
\]

\section*{Results For Elevation Sandbed elevation Location Oct. 2006}

The foilowing schematic shows: the the distribution of the samples, the normal curve based on the actual mean and standard deviation, the kuriosis, the skewness, the number of data points, and the the lower and upper \(95 \%\) confldence values. Below is the Normal Plot for the data.


Normal Probability Plot


\title{
Sandbed Location 7D Trend
}

page : : = READPRN( "U:MSOFFICEDrywell Program datalDec. 1092 DatalsandbedWata OnlylSB7D.txit")

                                    Points 7 := show 7 cells( page , 1, 7, 0)
                                Data
                            \(1.122]\)

Sheet No.
7 of 16

For 1994
\(d:=d+1\)
.page := REAbPRN( "U:MSOFFICELDywell Program datalSept. 1994 DatalsandbedWata OnlylSB7D.xat" )
                    Dates \(_{\mathrm{d}}: \dot{\mathrm{F}}\) Day year \(^{(9,14,1994)}\).
                            Points \(7:=\) show7cells(page , 1, 7,0 )
                        Data
                                    \(1, \quad 1\),


\[
\text { Points } 7=\left[\begin{array}{lllllll}
1.143 & 1.146 & 1.137 & 1.146 & 1.135 & 1.134 & 1.113
\end{array}\right]
\]
\[
\text { nnn }:=\text { con7vert }(\text { Points } 7,7,1)
\]
\[
\text { No DataCells }:=\text { length (nm) }
\]
Cells := deletezero cells (nnn, No DataCells)
\[
\text { Point }_{5_{d}}:=\text { Cells }_{4}
\]

page := READPRN( "U:MMSOFFICELDrywell Program datalOCT 2006 DatalSandbedISBTD.txt" )


Points \(7:=\) show7cells(page, \(1,7,0\) )
- Data

\[
\text { Points } 7=\left[\begin{array}{lllllll}
1.144 & 1.147 & 1.147 & 1.138 & 1.102 & 1.135 & 1.116
\end{array}\right]
\]
nan \(:=\) con7vert (Points \(7,7,1\) )
\({ }^{\text {No }}\) DataCells \(:=\) length (nnn)

Cells \(:=\) deletezero cells (nnn, No DataCells). Point \(5_{d}:=\) Cells \(_{4}\)
\(\mu_{\text {measured }_{d}}:=\) mean(Cells) \(\quad \sigma_{\text {measured }_{d}}:=\operatorname{Stdev}(\) Cells \() \quad\) Standard \({ }_{\text {error }}^{d} \quad:=\frac{\sigma_{\text {measured }_{d}}}{\sqrt{\text { No DataCells }}}\)

Below are matrices which contain the date when the data was collected, Mean, Standard Deviation, Standard . Etfor for each date.
\[
\text { Dates }=\left[\begin{array}{c}
1.993 \cdot 10^{3} \\
1.995 \cdot 10^{3} \\
1.997 \cdot 10^{3} \\
2.007 \cdot 10^{3}
\end{array}\right] \quad . \quad \text { Point }_{5}=\left[\begin{array}{c}
1.111 \cdot 10^{3} \\
1.135 \cdot 10^{3} \\
1.113 \cdot 10^{3} \\
1 \\
1.102 \cdot 10^{3}
\end{array}\right]
\]
\[
\mu_{\text {measured }}^{\prime}=\left[\begin{array}{c}
1.137 \cdot 10^{3} \\
1.136 \cdot 10^{3} \\
1.138 \cdot 10^{3} \\
1.133 \cdot 10^{3}
\end{array}\right] \quad \text { Standard }_{\text {error }}=\left[\begin{array}{l}
6.137 \\
4.319 \\
5.902 \\
6.531
\end{array}\right], \quad \sigma_{\text {measured }}=\left[\begin{array}{c}
16.236 \\
11.427 \\
15.616 \\
17.279 .
\end{array}\right]
\]
\[
\text { Total means }:=\text { rows }\left(\mu_{\text {measured }}\right) \quad \text { Total }_{\text {means }}=4
\]
\[
\text { SST }:=\sum_{i=0}^{\text {last }(\text { Dates })}\left(\mu_{\text {measured } \left._{i}-\operatorname{mean}\left(\mu_{\text {measured }}\right)\right)^{2} \quad \quad . \operatorname{SST}=13.592}\right.
\]
\[
!
\]
last( Dates )
\[
\operatorname{SSE}:=\sum_{i=0}^{\text {last (Dates })}\left(\mu_{\text {measured }}-\text { yhat }\left(\text { Dates }, \mu_{\text {measured }}\right)_{i}\right)^{2} \quad \quad \text { SSE }=2.987
\]
\[
\text { SSR := } \sum_{i=0}^{\text {last(Dates })}\left(\text { yhat }\left(\text { Dates }, \mu_{\text {measured }}\right)_{i}-\text { mean }\left(\mu_{\text {measured }}\right)\right)^{2} \quad \operatorname{SSR}=10.605
\]
\[
\text { DegreeFree }_{\text {ss }}:=\text { Total means }-2 \quad \text { DegreeFree }_{\text {reg }}:=1 \quad . \text { DegreeFree }_{\text {st }}:=\text { Total means }-1
\]
\[
\text { MSE }:=\frac{\text { SSE }}{\text { DegreeFree }_{\text {sS }}}+\quad \text { MSR }:=\frac{\text { SSR }}{\text { DegreeFree }_{\text {reg }}} \quad \text { MST }:=\frac{\text { SST }}{\text { DegrecFree }_{\text {st }}}
\]
\[
\text { MSE }=1.494
\]
\[
M S R=10.605
\]
\[
\text { MST }=4.531
\]
\[
\text { StGrand }_{\text {enr }}:=\sqrt{\text { MSE }}
\]
\[
\text { StGrand }_{\text {err }}=1.222
\]

F Test for Corrosion
\[
\begin{aligned}
& \text { " } \alpha:=0.05 \quad F_{\text {actaul_Reg }}:=\frac{M_{M S R}}{M^{\prime}} \\
& \mathrm{F}_{\text {critical_reg }}:=\mathrm{qF}\left(1-\alpha, \text { Degreefree }_{\text {reg }}, \text { DegreeFree }_{\mathrm{s}} . \mathrm{I}^{\prime}\right. \\
& \mathbf{F}_{\text {ratio_reg }}^{\prime}=\frac{\mathbf{F}_{\text {actaul_Reg }}}{\mathbf{F}_{\text {critical_reg }}} \therefore \quad \therefore \quad \ddots^{\prime} \quad . \quad: 1 \\
& \mathrm{~F}_{\text {ratio reg }}=0.384
\end{aligned}
\]

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean
\[
\begin{aligned}
& \text { GrandStandard }_{\text {error }}^{0}{ }^{\prime}:=\frac{\text { ogrand measured }}{}, .
\end{aligned}
\]

The minimum required thickness at this elevation is. \(\mathrm{Tmin}^{\operatorname{gen}} \mathrm{SB}_{\mathrm{i}}:=736\). (Ref. 3.25)

Plot of the grand mean and the actual means over time


To conservatively address the location, the apparent corrosion rate is calculated and compared to the minimum required wall thickness at this elevation
\[
\left.m_{s}:=\operatorname{slope}\left(\text { Dates }, \mu_{\text {measured }}\right) \quad m_{s}=-0.303 \quad y_{b}:=\text { intercept (Dates }, \mu_{\text {measured }}\right) y_{b}=1.742 \cdot 10^{3} .
\]

The \(95 \%\) Confidence curves are calculated
\[
\text { upper }_{f}:=\text { Thick }_{\text {predict }_{f}} \ldots
\]
\[
1+q t\left(1-\frac{\alpha_{t}}{2}, \text { Total }_{\text {means }}-2\right) \cdot \text { StGrand }_{\text {err }} \sqrt{1+\frac{1}{(d+1)}+\frac{\left(\text { year }_{\text {predict } \left._{f}-\text { Thick }_{\text {actualmean }}\right)^{2}}^{\text {sum }}\right.}{} \text {. }}
\]
\[
\cdot
\]
\[
\begin{aligned}
& \text { lower }_{f}:=\text { Thick }_{\text {predict }}^{f} \text {... } \\
& +-\left[q t\left(1-\frac{\alpha_{t}}{2}, \text { Total means }^{2}-2\right) \cdot \text { StGrand }_{\text {err }}^{\cdot} \sqrt{\left.1+\frac{1}{(d+1)}+\frac{\left(\text { year }_{\text {predict } \left._{f}-\text { Thick }_{\text {actualmean }}\right)^{2}}^{\text {sum }}\right.}{}\right]}\right.
\end{aligned}
\]
\[
\begin{aligned}
& \alpha_{t}:=0.05 \mathrm{k}:=2029-1985 \quad f:=0 . . k-1 \\
& \text { " year } \text { predict }_{f}:=1985+\mathrm{f} \cdot 2 \text { Thick } \text { predict }:=\mathrm{mi}_{\mathrm{s}} \cdot \text { year }_{\text {predict }}+\mathrm{y}_{\mathrm{b}} \\
& \text { Thick }{ }_{\text {actualmean }}^{1}:=\operatorname{mean}(\text { Dates }) \quad \operatorname{sim}:=\sum_{i}\left(\text { Dates }_{d} \tau \operatorname{mean}(\text { Dates })\right)^{2}
\end{aligned}
\]


Therefore even though F-ratio does not support the regression model the above curve shows that even at the lower \(95 \%\) confidence band this location will not corrode to below Drywell Vessel Minimum required thickness by the plant end of life.

The section below calculates what the postulated mean thickness would be if this grid were to corrode at a minimum observable rate observed in appendix 22.


The following addresses the readings at the lowest single point

\[
\left.\operatorname{SSR}_{\text {point }}:=\sum_{i=0}^{1 \cdot}\left(\text { yhat }^{\text {last(Dates })} \text {, Point } 5\right)_{i}-\operatorname{mean}\left(\text { Point }_{5}\right)\right)^{2} \quad \operatorname{SSR}_{\text {point }}=214.276
\]
\[
\text { MSE }_{\text {point }}:=\frac{\text { SSE }_{\text {point }}}{\text { DegreéFree }_{\text {sS }}} \quad \text { MSR }_{\text {point }}:=\frac{\text { SSR }_{\text {point }}}{\text { DegreeFree }_{\text {reg }}} \quad \text { MST }_{\text {point }}:=\frac{\text { SST }_{\text {point }}}{\text { DegreeFree }_{\text {st }}}
\]
\[
\mathrm{MSE}_{\text {point }}=\cdot 187.237 \quad \mathrm{MSR}_{\text {point }}=214.276 \quad \mathrm{MST}_{\text {point }}=196.25
\]

F Test for Corrosion
\[
\dot{F}_{\text {actaul_Reg }}:=\frac{\text { MSR }_{\text {point }}}{\text { MSE }_{\text {point }}}
\]
\[
\dot{F}_{\text {ratio_reg }}:=\frac{\mathbf{F}_{\text {actaul_Reg }}}{\mathbf{F}_{\text {critical_reg }}}
\]
\[
F_{\text {ratio_reg }}=0.062
\]

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean
\[
\left.m_{\text {point }}:=\text { slope (Dates, Point } 5\right) m_{\text {point }}=-1.363 y_{\text {point }}:=\text { intercept }\left(\text { Dates }, \text { Point }_{5}\right) y_{\text {point }}=3.839 \cdot 10^{3}
\]

The 95\% Confidence curves are calculated
\[
\text { Point curve }:=m_{\text {point }} \cdot \text { year predict }+y_{\text {point }}
\]
\[
\text { Point }_{\text {actualmean }}:=\operatorname{mean}(\text { Dates }) \quad, \quad \text { sum }:=\sum_{i}^{\prime}\left(\text { Dates }_{d}^{\prime}-\operatorname{mean}(\text { Dates })\right)^{2}
\]

Local Tmin for this elevation in the Drywell . Tmin_local \(\mathrm{SB}_{\mathrm{f}}:=490\)
(Ref. 3.25)
Curve Fit For Point 5 Projected to Plant End Of Life

\[
\begin{aligned}
& \text { uppoint }:=\text { Point }_{\text {curve }}^{f} \text {... }
\end{aligned}
\]
\[
\begin{aligned}
& +-\left[q t\left(1-\frac{\alpha_{t}}{2}, \text { Total }_{\text {means }}-2\right) \cdot \text { StPoint }_{\text {err }} \cdot \sqrt{1+\frac{1}{(d+1)}+\frac{1^{\prime}}{\left(\text { year }_{\text {predict }_{f}^{\prime}-\text { Point actualmean }}\right)^{2}}{ }^{2}}\right]
\end{aligned}
\]

The section below calculates what the postulated individual thickness would be if this point were to corrode at a minimum observable rate observed in appendix 22.
\[
\begin{aligned}
& \text { Rate min_observed }:=6.9 \\
& \text { Postulated thicknessin }:=\text { Point }_{5_{3}}-\text { Rate }_{\text {min_observed }} \cdot(2029-2006) \\
& \text { Postulated }_{\text {thicknessin }}=943.3 \quad \text { which is greater than } \quad \text { Tmin_local }_{\text {SB }_{3}=490}
\end{aligned}
\]

The section below calculates what the postulated corrosion rate necessary for the thinnest individual point to reach the local required thickness by 2029.
minpoint \(=1.102\)
year predict \(_{22}=2.029 \cdot 10^{3}\)
Tmin_local \(\mathrm{SB}_{22}=490\)
required \({ }_{\text {rate. }}:=\frac{\left(1000 \cdot \text { minpoint }- \text { Tmin_iocal } \mathrm{SB}_{22}\right)}{(2005-2029)}\)
\[
\text { required rate. }=-25.5 \quad \text { mils per year }
\]


Mean and Standard Deviation
\[
\left.\mu_{\text {actual }}^{\prime}:=\text { mean( Cells }\right) \quad \mu_{\text {actual }}=1.154 \cdot 10^{3} \quad \sigma_{\text {actual }}:=\operatorname{Stdev}(\text { Cells }) \quad \sigma_{\text {actual }}=11.041
\]
'Standard Error'

Standard error \(:=\frac{\sigma_{\text {actual }}}{\sqrt{{ }^{\text {No }} \text { DataCells }}}\)
\[
\text { Standard }_{\text {error }}=4.173
\]

\section*{Skewness}

Skewness \(:=\frac{1}{(\text { No DataCells }-1) \cdot(\text { No DataCells }) \cdot \sqrt{\left(\text { Cells }-\mu_{\text {actual }}\right)^{3}}} \quad 1\)

\section*{Kurtosis}
\[
\begin{aligned}
\text { Kuttosis }:= & \frac{\text { No DataCells } \cdot\left({ }^{\text {No DataCells }}+1\right) \cdot \overline{\Sigma\left(\text { Cells }-\mu_{\text {actual }}\right)^{4}}}{\left({ }^{\text {No }}{ }_{\text {DataCells }}-1\right) \cdot\left({ }^{\text {No DataCells }}-2\right) \cdot(\text { No DataCells }-3) \cdot\left(\sigma_{\text {actual }}\right)^{4}} \text { Kurtosis }=5.687 \\
& +-\frac{3 \cdot(\text { No DataCells }-1)^{2}}{(\text { No DataCells }-2) \cdot(\text { No DataCells }-3)}
\end{aligned}
\]

\section*{Normal Probability Plot}

In a normal plot, each data value is plotted against what its value would be if it actually came from a normal distribution. The expected normal values, called normal scores, and can be estimated by first calculating the rank scores of the sorted data.
\[
j:=0 . . \text { last (Cells) } \quad \text { st }:=\text {, sort (Cells })
\]

Then each data point is ranked. The array rank captures these ranks
\[
r_{j}:=j+1 \quad \operatorname{rank}_{j}:=\frac{\sum \overrightarrow{(\overrightarrow{s r t=s r t})} \cdot r}{\sum \overrightarrow{\mathrm{srt}=\mathrm{srt}},}
\]

1
\[
P_{j}:=\frac{\text { rank }_{j}}{\text { rows (Cells })+1}
\]

The normal scores are the corresponding \(p\) th percentile points from the standard normal distribution:
\[
x:=1 \quad N_{-} \text {Score }_{j}:=\operatorname{root}\left[\operatorname{morm}(x)-\left(P_{j}\right), x\right]
\]

\section*{Upper and Lower Confidence Values}

The'Upper and Lower confidence values are calculated based on .05 degree of confidence " \(q\) "
\[
\begin{aligned}
{ }^{\text {No }}{ }_{\text {DataCells }} & :=\text { length( Cells }) \\
& \alpha:=.05 . \quad \mathrm{T} \alpha:=\mathrm{qt}\left[\left(1-\frac{\alpha}{2}\right),{ }^{\text {No }} \text { DataCells }\right] \mathrm{T} \dot{\alpha}=2.365
\end{aligned}
\]
\[
{ }^{\text {Lower }} 95 \% \text { Con }:=\mu_{\text {actual }}-T \alpha \cdot \frac{\sigma_{\text {actual }}}{\sqrt{\text { No DataCells. }}} \quad \text { Lower } 95 \% \text { Con }=1.144 \bullet 10^{3}
\]
\[
\text { Uppet }_{95 \% \mathrm{Con}}:=\mu_{\text {actual }}+\mathrm{T} \alpha \frac{\sigma_{\text {actual }}}{\sqrt{\text { No }{ }_{\text {DataCells }}}} \quad \text {, Upper } 95 \% \text { Con }^{\prime}=1.164 \cdot 10^{3} .
\]

These values represent a range on the calculated mean in which there is \(95 \%\) confidence.

\section*{Graphical Representation}

Distribution of the "Cells" data points are sorted in \(1 / 2\) standard deviation increments (bins) within \(+/-3\) standard deviations


The Mathcad function pnorm calculates a portion of normal distribution curve based on a given mean and standard deviatipn
\[
\begin{aligned}
& \text { normal }_{\text {curve }_{0}}:=\operatorname{pnom}\left(\text { Bins }_{1}, \mu_{\text {actual }}, \sigma_{\text {actual }}\right) \\
& \text { normal }_{\text {curve }_{k}}:=\operatorname{pnorm}\left(\text { Bins }_{k+1}, \mu_{\text {actual }}, \sigma_{\text {actual }}\right)-\operatorname{pnorm}\left(\text { Bins }_{k}, \mu_{\text {actual }}, \sigma_{\text {actual }}\right) . \\
& \text { normal }{ }_{\text {curve }}:=\text { No DataCells } \cdot \text { normal }^{\text {curve }}
\end{aligned}
\]

\section*{Results For Elevation Sandbed elevation Location Oct. 2006}

The following schematic shows: the the distribution of the samples, the normal curve based on the actual mean and standard deviation, the kurtosis, the skewness, the number of data points, and the the lower and" upper \(95 \%\) confidence values. Below is the Normal Plot for the data.

Data Distribution


Lower \(95 \%\) Coṇ \(=1.144 \cdot 10^{3} \quad\) Upper \(95 \%\) Con \(=1.164 \cdot 10^{3}\)
Normal Probability Plot

```

Appendix 17
C-1302-187-E310-041 Rev. No. 0

```

Sheet No. 6 of 16

Sandbed Location 9A Trend 1

\section*{For 1992}
```

 Dates d
 page := READPRN("U:UMSOFFICEDDrywell Program datalDec.1992 DatalsandbedNData OnlyISB9A.txt")
|
Points 7:= show7cells(page , 1, 7, 0)
1
Data
l
nnn := con7vert(Points 7,7,1) No DataCells := length(mnn)
l
I
Cells:= deletezero cells (nnin, No DataCells)
Point 7d := Cells}\mp@subsup{}{6}{
Point}7=1.133\cdot10 3'
\mu}\mp@subsup{\mathrm{ measured d}}{d}{}:=\mp@subsup{m}{\mathrm{ mean(Cells) }}{\mp@subsup{\sigma}{\mathrm{ measured d}}{d}}:=\operatorname{Stdev(Cells)

```
page := READPRN( "U:MMSOFTICEDDrywell Program datalSept. 1994 DatalsandbediData OnlyiSB9A.txi")


Data
1, '

\(\operatorname{nnn}:=\operatorname{con} 7 v e r t(\) Points \(7,7,1)\)
No \({ }^{\text {DataCells }}:=\) length ( nnn )

Cells := deletezero cells (nnn, No DataCelis)
\[
\text { Point }_{7_{d}}:=\text { Cells }_{6}
\]
\[
\mu_{\text {measured }_{d}}:=\text { mean( Cells) } \quad \sigma_{\text {measured }_{d}}:=\operatorname{Stdev}(\text { Cells }) \quad \text { Standard error }:=\frac{\sigma_{d} \text { measured }_{d}}{\sqrt{\text { No DataCells }}}
\]

\section*{For 1996}
\[
\text { Dates }_{d}:=\text { Day }_{\text {year }}(9,16,1996)
\]
\[
\text { Points } 7 \text { := show7cells( page , } 1,7,0 \text { ) } \quad 1
\]
```

 Data
 Points \(_{7}=\left[\begin{array}{lllllll}1.163 & 1.161 & 1.162 & 1.159 & 1.159 & 1.153 & 1.127\end{array}\right]\)
    ```
                nnn := con7vert (Points \(7,7,1\) )
                        \({ }^{\text {No }}\) DataCells \(:=\) length(nnn)
    .
    Cells \(:=\) deletezero cells (nnn; No DataCells)
                                    Point \(7_{d}:=\) Cells \(_{6}\)
\(\mu_{\text {measured }_{d}}:=\operatorname{mean}(\) Cells \() \quad \sigma_{\text {measured }_{d}}:=\operatorname{Stdev}(\) Cells \() \quad S_{\text {tandard }}\) error \(_{d}:=\frac{\sigma_{\text {measured }}^{d}}{}\)

\section*{For 2006}
\[
\begin{aligned}
& 1 \\
& d:= \\
& d+1
\end{aligned}
\]

4
page := READPRN( "U:WMSOFFICEDrywell Program datalOCT 2006 DatalSandbedUSB9A.txt" )
\[
\text { Dates }_{d_{1}}:=\text { Day }_{\text {year }}(10,16,2006)
\]

Points 7 := show7cells(page , 1, 7,0)

Data

\[
\text { nnn }:=\text { con7vert }(\text { Points } 7,7,1) \quad \text { No } \text { DataCells }:=\text { length }(\mathrm{nnn})
\]

Cells : \(=\) deletezero cells (nnn , No DataCells)
\[
\text { Point }_{7_{d}}:=\text { Cells }_{6}
\]
\[
\mu_{\text {measured }_{d}}:=\text { mean(Cells) } \quad \sigma_{\text {measured }_{d}}:=\operatorname{Stdev}\left(\text { Cells) } \text { Standard }_{\text {error }}^{d}:=\frac{\sigma_{\text {measured }}^{d}}{}\right.
\]

Below are matrices which contain the date when the data was collected, Mean, Standard Deviation, Standard Efror for each date.
\[
\operatorname{SST}:=\sum_{i=0}^{\operatorname{last}(\text { Dates })}\left(\mu_{\text {measured }_{i}}-\text { mean }\left(\mu_{\text {measured }}\right)\right)^{2} \quad \cdots \quad \text { SST }=7.158
\]
\[
\text { SSR }:=\sum_{i=0}^{\operatorname{last}(\text { Dates })}\left(\text { yhat }\left(\text { Dates, } \mu_{\text {measured }}\right)_{i}-\text { mean }\left(\mu_{\text {measured }}\right)\right)^{2} \quad \operatorname{SSR}=4.878
\]
\[
\text { DegreeFree }_{\text {ss }}:=\text { Total means }_{\prime}-2 \quad \text { DegreeFree }_{\text {reg }}:=1 . \quad \text { DegreeFree }_{\text {st }}:=\text { Total means }-1
\]
\[
\text { MSE }:=\frac{\text { SSE }}{\text { DegreeFree }_{\text {sS }}} \quad \text { MSR }:=\frac{\text { SSR }}{\text { DegreeFree }_{\text {reg }}} \quad \text { MST }:=\frac{\text { SST }}{\text { DegreeFree }_{\text {st }}}
\]
\[
\mathrm{MSE}=1.14
\]
\[
\mathrm{MSR}=4.878
\]
\[
\text { MST }=2.386
\]
\[
\text { StGrand }_{\mathrm{err}}:=\sqrt{\mathrm{MSE}} \quad \quad \text { StGrand }_{\mathrm{err}}=1.068
\]
\[
\begin{aligned}
& \text { Dates }=\left[\begin{array}{c}
1.993 \cdot 10^{3} \\
1.995 \cdot 10^{3} \\
1.997 \cdot 10^{3} \\
2.007 \cdot 10^{3}
\end{array}\right] \\
& \text { Point } 7=\left[\begin{array}{c}
1.133 \cdot 10^{3} \\
1.132 \cdot 10^{3} \\
1.127 \cdot 10_{\mathrm{r}}^{3} \\
1.13 \cdot 10^{3}
\end{array}\right] \text {. } \\
& \mu_{\text {measured }}=\left[\begin{array}{c}
1.157 \cdot 10^{3} \\
1.157 \cdot 10^{3} \\
1.155 \cdot 10^{3} \\
1 \\
1.154 \cdot 10^{3}
\end{array}\right] \quad \text { Standard } \quad \text { error }=\left[\begin{array}{c}
4.102 \\
4.524 \\
4.803 \\
4.173
\end{array}\right], \ldots \sigma_{\text {measured }}=\left[\begin{array}{c}
10.854 \\
11.968 \\
12.707 \\
1.041
\end{array}\right] \\
& \text { Total }_{\text {means }}:=\text { rows }\left(\mu_{\text {measured }}\right) \quad \text { Total } \text { means }=4
\end{aligned}
\]
\[
\begin{aligned}
& \alpha:=0.05 \quad{ }^{\prime}{ }_{\text {actaul_Reg }}:=\frac{\text { MSR }}{\text { MSE }} \\
& \dot{F}_{\text {critical_reg }}:=\mathrm{qF}\left(1-\alpha, \text { DegreeFree }_{\text {reg }}, \text { DegreeFree }_{s s}\right) \text { i. } \\
& F_{\text {ratio_reg }}:=\frac{F_{\text {actaul_Reg }}}{F_{\text {rcritical_reg }}} \\
& F_{\text {ratio_reg }}=0.231 \\
& 1, \quad \text { ' }
\end{aligned}
\]

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the dapta and the grandmean
\(i:=0 .\). Total means \(^{\prime}-1 \quad \cdot \quad\) Hgrand measured \(i=\operatorname{mean}\left(\mu_{\text {measured }}\right)\)
\(\operatorname{agrand}_{\text {measured }}:=\operatorname{Stdev}\left(\mu_{\text {measured }}\right) \quad\) GrandStandard \(_{\text {error }_{0}}:=\frac{\text { ogrand measured }}{\sqrt{\text { Total means }}}\)
The minimum required thickness at this elevation is \(\operatorname{Tmin}\) _gen \(_{\mathrm{SB}_{\mathrm{i}}}:=736\). (Ref. 3.25)
Plot of the grand.mean and the actual means over time


To conservatively address the location, the apparent corrosion rate is calculated and compared to the minimum required wall thickness at this elevation
\[
\mathrm{m}_{\mathrm{s}}:=\operatorname{slope}\left(\text { Dates }, \mu_{\text {measured }}\right) \quad \mathrm{m}_{\mathrm{s}}=-0.206 \quad \mathrm{y}_{\mathrm{b}}:=\text { intercept. }\left(\text { Dates }, \mu_{\text {measured }}\right) \mathrm{y}_{\mathrm{b}}=1.567 \bullet 10^{3} \text {. }
\]

1
The \(95 \%\) Confidence curves are calculated
\[
\alpha_{t}:=0.05 \mathrm{k}:=2029-1985 \quad f:=0 . . k-1
\]
\[
\text { year predict }:=1985+\mathbf{f}-2 \text { Thick }_{\text {predict }}:=\mathrm{m}_{\mathrm{s}} \cdot \text { year }_{\text {predict }}+y_{\mathrm{b}}
\]
\[
\text { Thick } \left.\left.{ }_{\text {actualmean }}^{i}:=\text { mean(Dates }\right) \quad \text { surn }:=\sum_{i}\left(\text { Dates }_{d}+\text { mean(Dates }\right)\right)^{2}
\]
\[
\text { upper }_{f}:=\text { Thick }_{\text {predict }}^{f} \text {... }
\]
\[
, 1+q t\left(1-\frac{\alpha_{t}}{2}, \text { Total means }-2\right) \cdot \text { StGrand }_{\text {err }} \cdot \sqrt{\left.1+\frac{1}{(d+1)}+\frac{\left(\text { year }_{\text {predict }}^{f}\right.}{}-\text { Thick }_{\text {actualmean }}\right)^{2}} \text { sum }_{1}
\]
\[
\text { lower }_{f}:=\text { Thick }_{\text {predict }}^{f}, \cdots
\]
\[
+-\left[q t\left(1-\frac{\alpha_{t}}{2}, \text { Total means }-2\right) \cdot \text { StGrand }_{\text {err }} \cdot \sqrt{1+\frac{1}{(d+1)}+\frac{\left(\text { year }_{\text {predict }}-\text { Thick }_{\text {actualmean }}\right)^{2}}{\text { sum }}}\right]
\]


Therefore even though F-ratio does not support the regression model the above curve shows that even at the lower \(95 \%\) confidence band this location will not corrode to below Drywell Vessel Minimum required thickness by the plant end of life.

The section below calculates what the postulated mean thickness would be if this grid were to corrode at a minimum observable rate observed in appendix 22.
\[
\text { Rate }_{\min \_ \text {observed }}:=6.9
\]

Postulated meanthickness \(:=\mu_{\text {measured }}^{3}\) - Rate min_observed \((2029-2006)\)

Postulated \(_{\text {meanthickness }}=995.586\)
which is greater than
\[
\text { Tmin_gen } \mathrm{SB}_{3}=736
\]

The following addresses the readings at the lowest single point 1
\(\operatorname{SST}_{\text {point }}:=\sum_{i=0}^{\text {last(Dates })}\left(\right.\) Point \(_{\left.7_{i}-\operatorname{mean}(\text { Point } 7)\right)^{2} \quad \text { SST }_{\text {point }}=21}\)
\[
\begin{aligned}
& \operatorname{SSE}_{\text {point }}^{\prime}:=\sum_{i=0}^{\text {last(Dates })}\left(\text { Point }_{7_{i}}-\text { yhat }(\text { Dates }, \text { Point } 7)_{i}\right)^{2} \\
& \text { SSE } \text { point }=18.349 \\
& \operatorname{SSR}_{\text {point }}:=\sum_{i=0}^{\text {last( Dates })}\left(\text { yhat }(\text { Dates , Point } 7)_{i}-\operatorname{mean}(\text { Point } 7)\right)^{2} \quad \quad \text { SSR }_{\text {point }}=2.651 \\
& \text { MSE }_{\text {point }}:=\frac{\text { SSE }_{\text {point }}}{\text { DegreeFree }_{\text {s. }}} \quad \text { MSR }_{\text {point }}:=\frac{\text { SSR }_{\text {point }}}{\text { DegreeFree }_{\text {reg }}} \quad \text { MST }_{\text {point }}:=\frac{\text { SST }_{\text {point }}}{\text { DegreeFree }_{\text {st }}} \\
& 1
\end{aligned}
\]

F Test for Corrosion
\[
\begin{aligned}
& \mathbf{F}_{\text {actaul_Reg }}:=\frac{\text { MSR }_{\text {point }}}{\text { MSE }_{\text {point }}} \\
& 1 \quad \mathbf{F}_{\text {ratio_reg }}:=\frac{F_{\text {actaul_Reg }}}{F_{\text {critical_reg }}} \\
& \quad \\
& F_{\text {ratio_reg }}=0.016
\end{aligned}
\]

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean
\[
\mathrm{m}_{\text {point }}:=\text { slope }(\text { Dates }, \text { Point } 7) \mathrm{m}_{\text {point }}=-0.152 y_{\text {point }}:=\text { intercept }\left(\text { Dates, Point }{ }_{7}\right) y_{\text {point }}=1.433 \cdot 10^{3}
\]

The \(95 \%\) Confidence curves are calculated
\({ }_{1}\) Point \(_{\text {curve }}:=m_{\text {point }}{ }^{\text {year }}{ }_{\text {predict }}+{ }^{y}\) point
Point actualmean \(:=\) mean(Dates ) \(\quad\) sum \(:=\sum_{i}\left(\text { Dates }_{d}-\operatorname{mean}(\text { Dates })\right)^{2}\)
. uppojnt \({ }_{f}:=\) Point \(_{\text {curve }}^{f}{ }^{\text {. }}\)
\[
+q t\left(1-\frac{\alpha_{t}}{2}, \text { Total }_{\text {means }}-2\right) \cdot \text { StPoint }_{\text {err }} \cdot \sqrt{1+\frac{1}{\left(\frac{d}{d}+1\right)}+\frac{\left(\text { year }_{\text {predict } \left._{r}-\text { Point }_{\text {actualmean }}\right)^{2}}^{\text {sum }}\right.}{\text { sum }} \text {. }}
\]
lopoint \(_{\mathrm{r}}\) := Point curve \(_{\mathrm{f}} .\).
\(+-\left[q t\left(1-\frac{\alpha_{t}}{2}\right.\right.\), Total means -2\() \cdot\) StPoint \(_{\text {err }} \cdot \sqrt{\left.1+\frac{1}{(d+1)}+\frac{\left(\text { year }_{\left.\text {predict }_{f}-\text { Point }_{\text {actualmean }}\right)^{2}}^{\text {sum }}\right.}{}\right]}\)
\[
\text { Local Tmin for this elevation in the Drywell } \quad \text { Tmin_local }_{\mathrm{SB}_{\mathrm{f}}}:=490
\]
(Ref. 3.25)

Curve Fit For Point 7 Projected to Plant End Of Life


The section below calculates what the postulated individual thickness would be if this point were to corrode at a minimum observable rate observed in appendix 22.
\[
\begin{aligned}
& {\text { Rate } \text { min_observed }:=6.9^{\circ}}^{\text {Postulated }_{\text {thickness }}:=\text { Point }_{7_{3}}-\text { Rate }_{\min \text { _observed }}(2029-2006)} \\
& \text { Postulated }_{\text {thickness }}=971.3 \quad \text { which is greater than } \quad \text { Tmin_local }_{\mathrm{SB}_{3}}=490
\end{aligned}
\]

The section below calculates what the postulated corrosion rate necessary for the thinnest individual point to reach the local required thickness by 2029.
\[
\begin{aligned}
& \text { minpoint }=1.13 \quad \text { year }_{\text {predict }_{22}=2.029 \cdot 10^{3}} \quad \text { Tmin_local }_{S B B_{22}}=490 \\
& \text { required rate. }:=\frac{\left(1000 \cdot \text { minpoint } \text { Tmin_local } \text { SB }_{22}\right)}{(2005-2029)} \quad \text { required rate. }=-26.667
\end{aligned}
\]

\section*{Sheet No.}

\section*{Appendix 18 - Sand Bed Elevation Bay 13C}

\section*{October 2006 Data}

The data shown below was collected on 10/18/06.


Cells \(:=\) deletezero cells (Cells , No DataCells)

The thinnest point at this location is shown below
minpoint \(:=\min (\) Points 7 )
minpoint \(=1.128\)

\section*{Mean and Standard Deviation}
```

\mu

```

\section*{'Standard Error'}
\[
\dot{\text { Standard }}_{\text {error }}:=\frac{\sigma_{\text {actual }}}{\sqrt{\text { No DataCells }}}
\]
```

 Standard \(_{\text {error }}=3.085\)
    ```

\section*{Skewness}


\section*{Kurtosis}
\[
\begin{aligned}
\text { Kuttosis }:= & \frac{\text { No DataCells } \cdot\left({ }^{\text {No }} \text { DataCells }+1\right) \cdot \overrightarrow{\Sigma\left(\text { Cells }-\mu_{\text {actual }}\right)^{4}}}{\left(\text { No }_{\text {DataCells }}-{ }^{\text {i } 1}\right) \cdot\left(\text { No }_{\text {DataCells }}-2\right) \cdot(\text { No DataCells }-3) \cdot\left(\sigma_{\text {actual }}\right)^{4}} \text { Kurtosis }=0.104 \\
& +-\frac{3 \cdot\left(\text { No }_{\text {DataCells }}-1\right)^{2}}{\left(\text { No }_{\text {DataCells }}-2\right) \cdot\left(\text { No }_{\text {DataCells }}-3\right)}
\end{aligned}
\]

\section*{Normal Probability Plot}

In a normal plot, each data value is plotted against what its value would be if it actually came from a normal distribution. The expected normal values, called normal scores, and can be estimated by first calculating the rank scores of the sorted data.


Then each data point is ranked. The array rank captures these ranks \({ }^{\text {. }}\)
\[
\begin{aligned}
& p_{j}:=\frac{\text { rank }_{j}}{\operatorname{rows}(\text { Cells })+1} \\
& \frac{\text { rank }_{j}}{\text { Cells })+1}
\end{aligned}
\]


The normal scores are the corresponding \(p\) th percentile points from the standard normal distribution:
\[
x:=1 \quad N_{-S c o r e}^{j}:=\operatorname{soot}\left[\operatorname{crorm}(x)-\left(P_{j}\right), x\right]
\]

\section*{Üpper and Lower Confidence Values}

The'Upper and Lower confidence values are calculated based on . 05 degree of confidence " \(q\) "
\[
\left.{ }^{\text {No }}{ }_{\text {DataCeils }}:=\text { length( Cells }\right)
\]
\[
\begin{aligned}
& \alpha:=.05 . \quad \mathrm{T} \alpha:=\mathrm{qt}\left[\left(1-\frac{\alpha}{2}\right),{ }^{\text {No }}{ }_{\text {DataCells }}\right] \quad \mathrm{T} \dot{\alpha}=2.365 \\
& { }^{\text {Lower }} 95 \% \text { Con }:=\mu_{\text {actual }}-\mathrm{T} \alpha \cdot \frac{\sigma_{\text {actual }}}{\sqrt{{ }^{\text {No }}{ }_{\text {DataCells }}}} \quad \text { Lower }{ }_{95 \% \text { Con }}=1.135 \cdot 1^{3}{ }^{3} \\
& { }^{\prime} \text { Uppet }_{95 \% \text { Con }}:=\mu_{\text {actual }}+T \alpha \cdot \frac{\sigma_{\text {actual }}}{\sqrt{\text { No }_{\text {DataCells }}}} \quad \quad \text { Upper }_{95 \% \text { Con }}=1.15 \cdot 10^{3}
\end{aligned}
\]

These values represent a range on the calculated mean in which there is \(95 \%\) confidence.

\section*{Graphical Representation}

Distribution of the "Cells" data points are sorted in \(1 / 2\) standard deviation increments (bins) within \(+\boldsymbol{j}-3\) standard deviations
\[
\begin{aligned}
& \text { Bins }:=\text { Make }_{\text {bins }}\left(\mu_{\text {actual }}, \sigma_{\text {actual }}\right) \\
& \text { Distribution }:=\text { hist (Bins }, \text { Cells })
\end{aligned}
\]

The mid points of the Bins are calculated
\[
\mathrm{k}:=0 . .11 \quad \text { Midpoints }_{k}:=\frac{\left(\text { Bins }_{\mathbf{k}}+\text { Bins }_{\mathrm{k}+1}\right)}{2}
\]


The Mathcad function pnorm calculates a portion of normal distribution curve based on a given mean and standard deviation
\[
\begin{aligned}
& \text { normal }_{\text {curve }_{0}}:=\operatorname{pnorm}\left(\text { Bins }_{1}, \mu_{\text {actual }}, \sigma_{\text {actual }}\right) \\
& \text { normal }_{\text {curve }_{k}}:=\operatorname{pnorm}\left(\text { Bins }_{k+1}, \mu_{\text {actual }}, \sigma_{\text {actual }}\right)-\operatorname{pnorm}\left(\text { Bins }_{k}, \mu_{\text {actual }}, \sigma_{\text {actual }}\right) \\
& \text { normal curve }
\end{aligned}=\text { No DataCells }^{\text {normal curve }} \text {. }
\]

\section*{Results For Elevation Sandbed elevation Location Oct. 2006}

The following schematic showis: the the distribution of the samples, the normal curve based on the actual mean and standard deviation, the kurtosis, the skewness, the number of data points, and the the lower and upper \(95 \%\) confidence values. Below is the Normal Plot for the data.
\[
\quad . \quad 1 \quad 1 \quad 1 .
\]

Data Distribution

Lower \(95 \%\) Con \(=1.135 \cdot 10^{3}\)

Upper \(_{95 \% \text { Con }}=1.15 \cdot 10^{3}\)

Normal Probability Plot


\section*{Sandbed Location 13C Trend}
```

/

* d := 0
For 1992 '
Dates d
page := READPRN("U:WMSOFFICEWrywell Program dataWec. 1,992 DatalsandbedWata Only\SB13C.txt")
Points }7:=\mathrm{ show7cells(page , 1, 7, 0)
Data

```

```

 nnn := con7vert(Points 7, 7, 1) No DataCells := length(nmm)
 Cells := deletezero cells (nnn , No DataCells.) point 6
    ```


```

For }199
page $:=$ READPRN("U:WMSOFFICELDrywell Program datalSept 1994 DatalsandbedWata OnlyiSB13C.txt")
Dates $_{d}:=$ Day $^{\prime}$ year $^{\prime}(9,14,1994) \ldots$.
Points $7:=$ show 7 cells(page , $1,7,0$)
Data
Poinfs $\left._{7}=1 \begin{array}{lrrrrrr} & \cdot & 1.147 & 1.147 & 1.146 & 1.147 & 1.128 \\ 1.123 & 1.139\end{array}\right]$
$+$
$\operatorname{nnn}:=\operatorname{con} 7 v e r t\left(\right.$ Points $\left._{7}, 7,1\right)$
No DataCells $:=$ length' $^{\prime} \mathrm{nm}$)
Cells $:=$ deletezero $_{\text {cells }}\left(\mathrm{nnn}\right.$, No $\left.^{\text {DataCells }}\right) \quad$ point $_{6_{d}}:=$ Cells $_{5}$

For 1996
1
For 1996
page := READPRN("U:MSOFFICELDrywell Program datalSept. 1996 DatalsandbedWata OnlylSB13'C.txt")

$$
\text { Dates }_{\text {d. }}:=\operatorname{Day}_{\text {year }}(9,16,1996)
$$

Points 7 := show 7 cells (page , $1,7,0$)
Data

1

$$
\begin{aligned}
& \text { Points }_{7}=\left[\begin{array}{lllllll}
1.157 & 1.151 & 1.157 & 1.169 & 1.156 & 1.147 & 1.143
\end{array}\right] \\
& \operatorname{mnn}:=\operatorname{con} 7 \text { vert (Points } 7,7,1 \text {) } \\
& \text { - No DataCells }:=\text { length (in) } \\
& \text { Cells }:=\text { deletezero cells (in , No DataCells) } \\
& \mu_{1} \text { measured }_{d}:=\text { mean(Cells) } \quad \sigma_{\text {measured }_{d}}:=\operatorname{Stdev}(\text { Cells }) \quad \text { Standard }_{\text {error }}^{d} \boldsymbol{}:=\frac{\sigma_{\text {measured }_{d}}}{\sqrt{\text { No DataCells }}}
\end{aligned}
$$

For 2006

page := READPRN("U:IMSOFFICEIDrywell Program datalOCT 2006 DatalSandbed\SB13C.txt")

$$
\text { , Dates }:=\text { Day year }_{\text {yea }}(10,16,2006)
$$

Points $7:=$ show 7 cells (page $1,7,0$)
Data . I, '.

$$
\text { Points } 7_{7}=\left[\begin{array}{llllll}
1.146 \cdot 1.148 \cdot & 1.148 & 1.149 & 1.144 & 1.128 & 1.134
\end{array}\right]
$$

$$
\text { nnn }:=\text { con7vert (Points } 7,7,1 \text {) }
$$

$$
\text { No } \left.^{\prime} \text { DataCells }:=\text { length(} n n n\right)
$$

Cells := deletezero cells (nm, No DataCells)
$\mu_{\text {measured }_{d}}:=\operatorname{mean}($ Cells $) \quad \sigma_{\text {measured }}^{d}:=\operatorname{Stdev}($ Cells $) \quad . \quad$ Standard error $_{d}:=\frac{\sigma_{\text {measured }}^{d}}{\sqrt{\mathrm{No}^{\text {DataCells }}}} \quad$.

Below are matrices which contain the date when the data was collected, Mean, Standard Deviation, Standard Error for each date.

$$
\text { SSR }:=\sum_{i=0}^{\text {last(Dates })}\left(\text { yhat }\left(\text { Dates }, \mu_{\text {measured }}\right)_{i}-\operatorname{mean}\left(\mu_{\text {measured }}\right)\right)^{2} \quad \text { SSR }=10.702
$$

$$
\text { DegreeFree }_{s s}:=\text { Total }_{\text {means }}-2 \quad \cdot \text { DegreeFree }_{\text {reg }}:=1 \quad \text { DegreeFree }_{\text {st }}:=\text { Total means }-1
$$

$$
\text { MSE }:=\frac{\text { SSE }}{\text { DegreeFree }_{\text {ss }}} \quad \text { I MSR }:=\frac{\text { SSR }}{\text { DegreeFree }_{\text {reg }}} \quad \text { MST }:=\frac{\text { SST }}{\text { DegreeFree }_{\text {st }}}
$$

$$
\mathrm{MSE}=59.935
$$

$$
\text { MSR }=10.702 \quad \text { MST }=43.524
$$

$$
\text { StGrand }_{\mathrm{err}}:=\sqrt{\mathrm{MSE}} \quad \text { StGrand }_{\text {err }}=7.742
$$

$$
\begin{aligned}
& \text { F Test for Corrosion } \\
& d:=0.05 \quad . F_{\text {actaul_Reg }}:=\frac{\text { MSR }}{\text { MSE }}
\end{aligned}
$$

$$
\begin{aligned}
& F_{\text {ratio_reg }}:=\frac{F_{\text {lactaul_Reg }}}{F_{\text {critical_reg }}} \\
& F_{\text {ratio_reg }}=9.646 \cdot 10^{-\dot{3}} \\
& \text { • }
\end{aligned}
$$

Therefore no conclusion can be made as to whether the, data best fits the regression model. The figure below provides a trend of the data and the grandmean

$$
\begin{aligned}
& \mathrm{i}:=0 . . \text { Total means }-1 \quad \mu_{\text {grand }}^{\text {measured }_{i}}:=\operatorname{mean}\left(\mu_{\text {measured }}\right) \\
& \text { ogrand measured }:=\operatorname{Stdev}\left(\mu_{\text {measured }}\right) \quad \text { GrandStandard } \text { crror }_{0}:=\frac{\text { ogrand measured }}{\sqrt{\text { Total means }}} \\
& \text { The minimum required thickness at this elevation is Tmin_gen } \text { SB }_{1}:=736 \quad \text { (Ref. 3.25) }
\end{aligned}
$$

Plot of the grand mean and the actual means over time

To conservatively address the location, the apparent corrosion rate is calculated and compared to the minirgum required wall thickness at this elevation

$$
\left.\mathrm{m}_{\mathrm{s}}:=\text { slope (Dates }, \mu_{\text {measured }}\right) \quad \mathrm{m}_{\mathrm{s}}=-0.305 \quad \mathrm{y}_{\mathrm{b}}:=\text { intercept }\left(\text { Dates }, \mu_{\text {measured }}\right) y_{b}=1.755 \cdot 10^{3}
$$

The 95\% Confidence curves are calculated

$$
\alpha_{t}:=0.05 \mathrm{k}:=2029-1985 \quad f:=0 . . \mathrm{k}-1
$$

1
-

$$
\text { year predict }_{\mathrm{f}}:=1985+\mathrm{f} \cdot 2 \text { Thick }_{\text {predict }}:=\mathrm{m}_{\mathrm{s}} \cdot \text { year predict }+\mathrm{y}_{\mathbf{b}}
$$

$$
\text { Thick } \left.\left.{ }_{\text {actualmean }}:=\text { mean(Dates }\right) \quad \text { sum }:=\sum_{i}\left(\text { Dates }_{d} \perp \text { mean(Dates }\right)\right)^{2}
$$

$$
\text { upper }_{\mathrm{f}}:=\text { Thick }_{\text {predict }_{\mathrm{f}}} . .
$$

$$
\text { lower }_{f}:=\text { Thick }_{\text {predict }}^{f} \ldots
$$

$$
+-\left[q t\left(1-\frac{\alpha_{t}}{2}, \text { Total means }-2\right) \cdot \text { StGrand err } \cdot \sqrt{\left.1+\frac{1}{(d+1)}+\frac{\left(\text { year }_{\text {predict }}^{f}-\text { Thick }_{\text {actualmean }}\right)^{2}}{\text { sum }}\right]}\right.
$$

Therefore even though F-ratio does not support the regression model the above curve shows that even at the lower 95% confidence band this location will not corrode to below Drywell Vessel Minimum required thickness by the plant end of life.

The section below calculates what the postulated mean thickness would be if this grid were to corrode at a minimum observable rate observed in appendix 22.

$$
\begin{gathered}
\text { Rate min_observed }:=6.9 \\
\text { Postulated }_{\text {meanthickness }}:=\mu_{\text {measured }_{3}}-\text { Rate }_{\text {min_observed }} \cdot(2029-2006)
\end{gathered}
$$

Postulated meanthickness $=983.729$
which is greater than

$$
\text { Tmingen } \mathrm{SB}_{3}=736
$$

The following addresses the readings at the lowest single point -

$$
\text { point }_{6_{d}}:=\text { Cells }_{6}
$$

$$
\begin{aligned}
& \text { SST }_{\text {point }}:=\sum_{\substack{i=n \\
\text { last(Dates })}}\left(\text { point }_{6_{i}}-\text { mean }\left(\text { point }_{6}\right)\right)^{2} \quad \text { SST }_{\text {point }}=297 \\
& \text { SSE }_{\text {point }}:=\sum_{i=0}^{\text {last (Dates })}\left(\text { point }_{6_{i}}-\text { yhat }\left(\text { Dates , point }_{6}\right)_{i}\right)^{2} \quad . \quad \text { SSE }_{\text {point }}=296.998
\end{aligned}
$$

$$
\text { SSR }_{\text {point }}^{\prime}=\sum_{i=0}^{\text {last(Dates })}\left(\text { yhat } \left({\text { Dates , point } \left.6)_{i}-\operatorname{mean}\left(\text { point }_{6}\right)\right)^{2} \quad \text { SSR }_{\text {point }}=2: 289 \cdot 10^{-3}}^{\prime}\right.\right.
$$

$$
\text { MSE }_{\text {point }}:=\frac{\text { SSE }_{\text {point }}}{\text { DegreeFree }_{\text {ss }}} \quad \text { MSR }_{\text {point }}:=\frac{\text { SSR }_{\text {point }}}{\text { DegreeFree }_{\text {reg }}} \quad \text { MST }_{\text {point }}:=\frac{\text { SST }_{\text {point }}}{\text { DegrecFrec }_{\text {st }}}
$$

$$
\mathrm{MSE}_{\text {point }}=148.499 \quad . \quad \mathrm{MSR}_{\text {point }}=2.289 \cdot 10^{-3} \quad \mathrm{MST}_{\text {point }}=99
$$

$$
i^{\prime}
$$

$$
\text { Stpoint err }:=\sqrt{\text { MSE }_{\text {point }}} \quad \text { Stpoint ers }=12.186
$$

F Test for Corrosion

$$
\begin{aligned}
& F_{\text {actaul_Reg }}:=\frac{\text { MSR }_{\text {point }}}{\text { MSE point }} \\
& F_{\text {ratio_reg }}:=\frac{F_{\text {actaul_Reg }}}{F_{\text {critical_reg }}} \\
& F_{\text {ratio_reg }}=8.327 \cdot 10^{-7}
\end{aligned}
$$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

$$
\left.m_{\text {point }}:=\text { slope }(\text { Dates , point } 6)_{m_{\text {point }}}=4.456 \cdot 10-y_{\text {point }}:=\text { intercept (Dates, point } 6\right) y_{\text {point }}=1.127 \cdot 10^{3}
$$

The 95\% Confidence curves are calculated

$$
\begin{aligned}
& \text { point } \left._{\text {curve }}:=m_{\text {point }} \cdot \text { year }_{\text {predict }+y_{\text {point }}} \begin{array}{l}
\text { point } \left.{ }_{\text {actualmean' }}:=\text { mean(Dates }\right)
\end{array} \quad \text { sum }:=\sum_{i}\left(\text { Dates }_{d}-\text { mean (Dates }\right)\right)^{2}
\end{aligned}
$$

$$
\text { uppoint }_{f}:=\text { point }^{\text {curve }_{f}} \ldots
$$

$$
+\operatorname{qt}\left(1-\frac{\alpha_{t}}{2}, \text { Total means }-2\right) \cdot \text { Stpoint } e r \cdot \sqrt{1+\frac{1}{(d+1)}+\frac{(\text { year predict }- \text { point actualmean })^{2}}{\text { sum }}}
$$

$$
1
$$

lopoint $_{f}:=$ point $_{\text {curve }}^{f}$...

$$
+-\left[\mathrm{qt}\left(1-\frac{\alpha_{t}}{2}, \text { Total means }-2\right) \cdot \text { Stpoint }_{\text {err }} \cdot \sqrt{\left.1+\frac{1}{(d+1)}+\frac{\left(\text { year }_{\text {predict }_{f}}-\text { point }_{\text {actualmean }}\right)^{2}}{\text { sum }}\right]}\right.
$$

Local Tmin for this elevation in the Drywell Tmin_local $\mathrm{SB}_{f}:=490$
(Ref. 3.25)

The section below calculates what the postulated individual thickness would be if this point were to corrode at a minimum observable rate observed in appendix 22.

$$
\begin{aligned}
& \text { Rate min_observed }:=6.9 \\
& \text { Postulated thickness }:=\text { point }_{6_{3}}-\text { Rate }_{\text {min_observed }}(2029-2006) \\
& \text { Postulated } \text { thickness }=975.3
\end{aligned} \quad \text { which is greater than } \quad \text { Tmin_local } \mathrm{SB}_{3}=490
$$

The section below calculates what the postulated corrosion rate necessary for the thinnest individual point to reach the local required thickness by 2029.

$$
\begin{aligned}
& \text { minpoint }=1.128 \quad \text { year } \text { predict }_{22}=2.029 \cdot 10^{3} \quad \text { Tmin_local }_{S B_{22}}=490 \\
& \text { required } \text { rate. }:=\frac{\left(1000 \text { minpoint }- \text { Tmin_local }^{\left.S B_{22}\right)}\right.}{(2005-2029)} \quad \text { required }{ }_{\text {rate }}=-26.583 \quad \text { mils per year }
\end{aligned}
$$

Mean and Standard Deviation

'Standard Error'

Standard $_{\mu}$ eror $:=\frac{\sigma_{\text {actual }}}{\sqrt{\text { No DataCells }}}$
1
Standard $_{\text {error }}=16.604$

Skewness

11
Skewness $:=\frac{(\text { No DataCells }) \cdot \Sigma \overrightarrow{\left(\text { Cells }-\mu_{\text {actual }}\right)^{3}}}{\left({ }^{\text {No }}{ }_{\text {DataCells }}-1\right) \cdot\left({ }^{\text {No }} \text { DataCells }-2\right) \cdot\left(\sigma_{\text {actual }}\right)^{3}} \quad$ Skewness $=-0.628$

Kurtosis

$$
\begin{aligned}
& \text { Kuftosis }:\left.\frac{\text { No DataCells }^{\prime} \cdot\left({ }^{\text {No }}\right. \text { DataCells }}{}+1\right) \cdot \overline{\Sigma\left(\text { Cells }-\mu_{\text {actual }}\right)^{4}} \\
&\left(\text { No }_{\text {DataCells }}-1\right) \cdot\left({ }^{\text {No }}{ }_{\text {DataCells }}-2\right) \cdot(\text { No DataCells }-3) \cdot\left(\sigma_{\text {actual }}\right)^{4} \\
&+-\frac{3 \cdot(\text { No DataCells }-1)^{2}}{(\text { No DataCells }-2) \cdot(\text { No DataCells }-3)}=-4.623 \cdot 10^{-3}
\end{aligned}
$$

Normal Probability Plot

In a normal plot, each data value is plotted against what its value would be if it actually came from a normal distribution. The expected normal values, called normal scores, and can be. estimated by first calculating the rank scores of the sorted data.

$$
\mathrm{j}:=0 \text {.. last(Cells) } \quad \text { stt }:=\operatorname{sort}(\text { Cells }) \quad: \quad, \quad,
$$

Then each data point is ranked. The array rank captures these ranks ${ }^{\prime}$.

$$
A_{1} \quad \vdots
$$

The normal scores are the corresponding p th percentile points from the standard normal distribution:

$$
x:=1 \quad \text { N_Score }_{j}:=\operatorname{root}\left[\operatorname{cnorm}(x)-\left(p_{j}\right), x\right]
$$

$$
\begin{aligned}
& \mathrm{r}_{\mathrm{j}}:=\mathrm{j}+1 \quad \operatorname{rank}_{\mathrm{j}}:=\frac{\sum \overline{\left(\overrightarrow{\left.\mathrm{srf}=\mathrm{srf}_{\mathrm{i}}\right)} \cdot \mathrm{r}\right.}}{\Sigma \overrightarrow{\Sigma \mathrm{st}=\mathrm{srt}_{\mathrm{j}}},} \\
& 1 \\
& p_{j}:=\frac{\text { rank }_{j}}{\operatorname{rows}(\text { Cells })+1}
\end{aligned}
$$

Upper and Lower Confidence Values

Thé Upper and Lower confidence values are calculated based on . 05 degree of confidence " α "

$$
\begin{aligned}
&\text { No DataCells }:=\text { length(Cells }) \\
& 1 \\
& \alpha:=.05 \quad T \alpha:=\mathrm{q*}\left[\left(1-\frac{\alpha}{2}\right), \text { No DataCells }\right] \mathrm{T} \alpha=2.365
\end{aligned}
$$

$$
\begin{aligned}
& { }^{7} \text { Lower } 95 \% \text { Con }:=\mu_{\text {actual }}-T \alpha \cdot \frac{\sigma_{\text {actual }}}{\sqrt{\text { No DataCells' }}} \quad \\
& \\
& \text { Upper }_{95 \% \text { Con }}:=\mu_{\text {actual }}+T \alpha \cdot \frac{\sigma_{\text {actual }}}{\sqrt{\text { No DataCells }}} \quad \text { Lower } 95 \% \text { Con }=1.082 \cdot 10^{3}
\end{aligned} \quad \text { 'Upper } 95 \% \text { Con }=1.16 \cdot 10^{3}
$$

These values represent a range on the calculated mean in which there is 95% confidence.

Graphical Representation

Distribution of the "Cells" data points are sorted in $1 / 2$ standard deviation increments (bins) within $+/-3$ standard deviations

The Mathcad function pnorm calculates a portion of normal distribution curve based on a given mean and standard deviation

$$
\begin{aligned}
& \text { normal curve } e_{0}:=\operatorname{pnorm}\left(\text { Bins }_{1}, \mu_{\text {actual }}, \sigma_{\text {actual }}\right) \\
& \text { normal } \text { curve }_{k}:=\operatorname{pnorm}\left(\text { Bins }_{k+1}, \mu_{\text {actual }}, \sigma_{\text {actual }}\right)-\operatorname{pnorm}^{\left(\text {Bins }_{k}, \mu_{\text {actual }}, \sigma_{\text {actual }}\right)} \\
& \text { normal curve } \\
& :={ }^{\text {No }} \text { DataCells } \text { normal curve }
\end{aligned}
$$

Results For Elevation Sandbed elevation Location Oct. 2006

'

The following schematic shows: the the distribution of the samples, the normal curve based on the actual mean and standard deviation, the kurtosis, the skewness, the number of data points, and the the lower and upper 95% confidence values. Below is the Normal Plot for the data.

Lower 95% Con $=1.082 \cdot 10^{3} \quad$ Upper 95% Con $=1.16 \cdot 10^{3}$

Normal Probability Plot

The Normal Probability Plot and the Kurtosis this data is normally distributed.

Sandbed Location 15A Trend

Data from the 1992, 1994 and 1996 (ref calcs) is retrieved Point 19 .

$$
\text { For } 1992 \text {. } \quad \dot{\text { Dates }}_{\mathrm{d}}:=\text { Day }_{\text {year }}(12,8,1992)
$$

page $:=$ READPRN("U:LMSOFFICEDDrywell Program datalDec. 1992 DatalsandbedWata OnlyISB1SA.txt")
Points $7:=$ show $7 \mathrm{cells}($ page $, 1,7,0)$
ψ

Data

Points $_{7}=\left[\begin{array}{lllllll}1.139 & 1.145 & 1.166 & 1.162 & 1.136 & 1.102 & 1.083\end{array}\right]$
1
$\operatorname{nn}:=\operatorname{con} 7$ vert (Points $7,7,1) \quad$ No DataCells $:=1$ length (nnn)
Cells $:=$ deletezero $_{\text {cells }}\left({ }^{n n n},{ }^{\text {No }}{ }^{\text {DataCells }}\right.$)

$$
\text { Point }_{7_{d}}:=\text { Cells }_{6}
$$

$$
\text { Point }{ }_{7}=1.083 \cdot 10^{3}
$$

$\mu_{\text {measured }_{d}}:=$ mean(Cells $) \quad \sigma_{\text {measured }_{d}}:=\operatorname{Stdev}($ Cells $)$

.For 1994

$$
d:=d+1
$$

page $:=$ READPRN("U:WSOFFICEDDrywell Program datalSept 1994 DatalsandbedData OnlylSB15A.txt")

$$
\text { Dates }_{d}:=\text { Day year }(9,14,1994)
$$

Points 7 := show 7cells(page $, 1,7,0)$

$$
\begin{aligned}
& \text { Data } \\
& \text { Points }_{7}=\left[\begin{array}{lllllll}
1.142 & 1.142 & 1.14 & 1.134 & 1.138 & 1.064 & 1.04
\end{array}\right] \\
& \text { nnn }:=\text { con7vert (Points } 7,7,1) \quad \text { No DataCells }:=\text { length (non })
\end{aligned}
$$

$$
\begin{aligned}
& \mu_{\text {measured }_{d}} ;=\operatorname{mean}(\text { Cells }) \quad \sigma_{\text {measured }_{d}}:=\operatorname{Stdev}(\text { Cells }) \quad \text { Standard }_{\text {error }}^{d}:=\frac{\sigma_{\text {measured }}}{\sqrt{\text { No DataCells }}}
\end{aligned}
$$

For 1996
1
(1 , $1 . d:=d+1$
page $:=$ READPRN("U:MSOFFICEVDrywell Program datalSept. 1996 DatalsandbedWata OnlylSB15A.txt" .)

Points $7_{7}=\left[\begin{array}{lllllll}1.141 & 1.152 & 1.136 & 1.132 & 1.152 & 1.076 & 1.1\end{array}\right]$;
$\operatorname{nnn}:=\underset{1}{\operatorname{con} 7 v e r t}\left(\right.$ Points $\left._{7}, 7,1\right)$ No DataCells $:=$ length (nnm)
Cells $:=$ deletezero $_{\text {cells }}\left(\text { nnn }^{\text {No }}{ }^{\text {DataCells }}\right)^{\text {Point }} 7_{d}:=$ Cells $_{6}$
Point $7=\left[\begin{array}{l}1.083 \cdot 10^{3} \\ 1.04 \cdot 10^{3} \\ 1.1 \cdot 10^{3}\end{array}\right]$
$\mu_{\text {measured }_{d}}:=\operatorname{mean}($ Cells $) \quad \sigma_{\text {measured }_{d}}:=\operatorname{Stdev}($ Cells $) \quad S_{\text {Standard }}$ error $_{d}:=\frac{\sigma^{\text {measured }_{d}}}{\sqrt{\text { No DataCells }}}$

For 2006

$$
d:=d+11
$$

page := READPRN("U:WSOFFICELDrywell Program datalOCT 2006 DatalSandbedSB15A.txt")

$$
\text { Dates }_{d}:=\text { Day year }_{\text {ye }}(10,16,2006)
$$

Points 7 := show7cells(page, 1, 7, 0)

Data

Points $_{7}=\left[\begin{array}{llllll}1.18 & 1.129 & 1.136 & 1.129 & 1.146 & 1.077 \\ 1.049\end{array}\right]$
nnn := con7vert(Points $7,7,1$)
${ }^{\text {No }}$ DataCells $:=$ length ($n \mathrm{nn}$)

Cells := deletezero cells (nnn, No DataCells)

$$
\text { Point }_{7}:=\text { Cells }_{6}
$$

$$
\left.\mu_{\text {measured }_{d}}:=\text { mean(Cells }\right): \sigma_{\text {measured }_{d}}:=\operatorname{Stdev}(\text { Cells }) \quad \text { Standard }_{\text {error }_{d}}:=\frac{\sigma_{\text {measured }_{d}}}{\sqrt{\text { No DataCells }}}
$$

Below are matrices which contain the date when the data was collected, Mean, Standard Deviation, Standard Efror for each date.

$$
\begin{aligned}
& \text { Dates }=\left[\begin{array}{c}
1.993 \cdot 10^{3} \\
1.995 \cdot 10^{3} \\
1.997 \cdot 10^{3} \\
2.007 \cdot 10^{3}
\end{array}\right] \\
& \text { Point }{ }_{7}=\left[\begin{array}{l}
1.083 \cdot 10^{3} \\
1.04 \cdot 10^{3} \\
1.1 \cdot 10^{3} \\
1.049 \cdot 10^{3}
\end{array}\right] \\
& \mu_{\text {measured }}^{\prime}=\left[\begin{array}{c}
1.133 \cdot 10^{3} \\
1.114 \bullet 10^{3} \\
1.127 \bullet 10^{3} \\
1.2
\end{array}\right] \quad \text { Standard } \quad \text { error }=\left[\begin{array}{c}
11.526 \\
16.327 \\
10.781 \\
16.604
\end{array}\right], \quad \sigma_{\text {measured }}=\left[\begin{array}{c}
30.494 \\
43.196 \\
28.525 \\
43.93
\end{array}\right] \\
& \text { Total }_{\text {means }}:=\text { rows }\left(\mu_{\text {measured }}\right) \quad \text { Total }_{\text {means }}=4 \\
& \text { SST }:=\sum_{i=0}^{\text {last(Dates })}\left(\mu_{\text {measured }_{i}}-\text { mean }\left(\mu_{\text {measured }}\right)\right)^{2} \\
& \text { SST }=199.388 \\
& \text { SSE }:=\sum_{i=0}^{\operatorname{last}(\text { Dates })}\left(\mu_{\text {measured }_{i}}-\text { yhat }\left(\text { Dates }, \mu_{\text {measured }}\right)_{i}\right)^{2} \quad \text { SSE }=180.532 \\
& \operatorname{SSR}: \approx \sum_{i=0}^{\operatorname{last}(\text { Dates })}\left(\text { yhat }\left(\text { Dates }, \mu_{\text {measured }}\right)_{i}-\operatorname{mean}\left(\mu_{\text {measured }}\right)\right)^{2} \cdot \quad \operatorname{SSR}=18.856 \\
& \text { DegreeFree }_{\text {ss }}:=\text { Total means }^{-2} \quad \text { DegreeFree }_{\text {reg }}:=1 \quad \text { DegreeFree }_{\text {st }}:=\text { Total means }-1 \\
& \text { MSE }:=\frac{\text { SSE }}{\text { DegreeFree }_{\text {Ss }}} \quad: \quad \text { MSR }:=\frac{\text { SSR }}{\text { DegreeFree }_{\text {reg }}} \quad \text { MST }:=\frac{\text { SST }}{\text { DegreeFree }_{\text {st }}} \\
& \mathrm{MSE}=90.266 \\
& \mathrm{MSR}=18.856 \quad \mathrm{MST}=66.463 \\
& \text { StGrand }_{\mathrm{err}}:=\sqrt{\mathrm{MSE}} \text {. . } \mathrm{StGrand}_{\mathrm{err}}=9.501
\end{aligned}
$$

F Test for Corrosion

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean,

$$
i:=0 . \text { Total }_{\text {means }}-1 \quad 1 \quad 1 \quad \mu_{\text {grand }}^{\text {measured }_{i}}:=\operatorname{mean}\left(\mu_{\text {measured }}\right)
$$

$$
\text { ogrand }_{\text {measured }}:=\operatorname{Stdev}\left(\mu_{\text {measured }}\right) \quad \text { GrandStandard }_{\text {error }}^{0}:=\frac{\text { ogrand measured }}{\sqrt{\text { Total means }}}
$$

$$
\text { The minimum required thickness at this elevation is } \operatorname{Tmin}_{\mathrm{men}_{\mathrm{g}}} \mathrm{SB}_{\mathrm{i}}:=736 \quad \text { (Ref. 3.25) }
$$

Plot of the grand mean and the actual means over time

$$
\begin{aligned}
& \alpha:=, 0.05 \quad F_{\text {actaul_Reg }}:=\frac{\text { MSR }}{\text { MSE }} \\
& F_{\text {critical_reg }}:=q F\left(1-\alpha, \text { DegreeFree }_{\text {reg }}, \text { DegreeFree }_{s s}\right) \\
& F_{\text {ratio_reg }}:=\frac{F_{\text {actaul_Reg }}}{F_{\text {critical_reg }}} \\
& F_{\text {ratio reg }}=0.011 \quad \therefore \quad \text { II, } \quad \text {, }
\end{aligned}
$$

To conservatively address the location, the apparent corrosion rate is calculated and compared to the minimum required wall thickness at this elevation

$$
m_{s}:=\operatorname{slope}\left(\text { Dates }, \mu_{\text {measured }}\right) \quad m_{s .}=-0.404 \quad y_{b}:=\text { intercept }\left(\text { Dates }, \mu_{\text {measured }}\right) y_{b}=1.932 \cdot 10^{3}
$$

The 95\% Confidence curves are calculated

$$
\alpha_{t}:=0.05 k:=2029-1985 \quad f:=0 . . k-1^{\prime}
$$

$$
\text { year }_{\text {predict }_{f}}:=1985+\mathrm{f} \cdot 2 \text { Thick }_{\text {predict }}:=\mathrm{m}_{\mathrm{s}} \cdot \text { year }_{\text {predict }}+\mathrm{y}_{\mathrm{b}}
$$

$$
\text { Thick }{ }_{\text {actualmean }}^{\prime}:=\operatorname{mean}(\text { Dates }) \quad \operatorname{sim}:=\sum_{i}\left(\text { Datẹ }_{d}+\text { mean }(\text { Dates })\right)^{2}
$$

$$
\begin{aligned}
& \text { upper }_{f}:=\text { Thick }_{\text {predict }}^{f} \text {... } \\
& 1^{1}+q t\left(i-\frac{\alpha_{t}}{2} ; \text { Total means }-2\right) \cdot \text { StGrand }_{\text {err }} \cdot \sqrt{1+\frac{1}{(d+1)}+\frac{\left(\text { year predict }_{f}-\text { Thick }_{\text {actualmean }}\right)^{2}}{\text { sum }}} \\
& \text { lower }_{f}:=\text { Thick }_{\text {predict }}^{f} \text {... } \\
& +-\left[q t\left(1-\frac{\alpha_{t}}{2}, \text { Total means }-2\right) \cdot \text { StGrand }_{\mathrm{err}} \cdot \sqrt{\left.1+\frac{1}{(d+1)}+\frac{\left(\text { year predict }_{\mathrm{f}}-\text { Thick actualmean }^{2}\right.}{\text { sum }}\right]}\right.
\end{aligned}
$$

Therefore even though F-ratio does not support the regression model the above curve shows that even at the lower 95% confidence band this location will not corrode to below Drywell Vessel Minimum required thickness by the plant end of life.

The section below calculates what the postulated mean thickness would be if this grid 'were to corrode at a minimum observable rate observed in appendix 22.

$$
\begin{gathered}
\text { Rate }_{\min _ \text {observed }}:=6.9 \\
\text { Postulated }_{\text {meanthickness }}:=\mu_{\text {measured }_{3}}-\text { Rate }_{\text {min_observed }} \cdot(2029-2006)
\end{gathered}
$$

Postulated meanthickness $=962.157$
which is greater than
Tmin_gen $\mathrm{SB}_{3}=736$

The following addresses the readings at the lowest single point -

$$
\operatorname{SSR}_{\text {point }}:=\sum_{i^{\prime}=0}^{\text {last(Dates })}\left(\text { yhat }(\text { Dates , Point } 7)_{i}-\operatorname{mean}\left(\text { Point }_{7}\right)\right)^{2} \quad \operatorname{SSR}_{\text {point }}=319.786
$$

$$
\mathrm{MSE}_{\text {point }}=1.037 \cdot 10^{3} \quad \mathrm{MSR}_{\text {point }}=319.786
$$

$$
\text { MST }_{\text {point }}=798
$$

$$
\text { StPoint }_{\text {err }}:=\sqrt{\text { MSE }_{\text {point }}}
$$

$$
\text { StPoint }_{\text {err }}=32.204
$$

F Test for Corrosion

$$
\begin{aligned}
& F_{\text {actaul_Reg }}:=\frac{M_{\text {MSR }}^{\text {point }}}{} \\
& M_{\text {point }} \\
& F_{\text {ratio_reg }}:=\frac{F_{\text {actaul_Reg }}}{F_{\text {critical_reg }}} \\
& F_{\text {ratio_reg }}=0.017
\end{aligned}
$$

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

$$
\begin{aligned}
& \operatorname{SST}_{\text {point }}:=\sum_{i=0}^{\text {last(Dates) }}\left(\text { Point }_{7_{i}}-\text { mean }(\text { Point } 7)\right)^{2} \\
& \mathrm{SST}_{\text {point }}=2.394 \cdot 10^{3} \\
& \text { SSE }_{\text {point }}:=\sum_{i=0}^{\text {last(Dates })}\left(\text { Point }_{7}-\text { yhat }(\text { Dates , Point } 7)_{i}\right)^{2} \\
& \text { SSE } \text { point }=2.074 \cdot 10^{3}
\end{aligned}
$$

$$
m_{\text {point }}:=\operatorname{slope}\left(\text { Dates }, \text { Point } 7^{7}\right) m_{\text {point }}=-1.666 y_{\text {point }}:=\text { intercept.(Dates, Ppint } 7 \text {) } y_{\text {point }}=4.395 \cdot 10^{3}
$$

The 95\% Confidence curves are calculated

$$
\begin{aligned}
& \text { Point curve }:=m_{\text {point }} \text { year } \text { predict }+y_{\text {point }} \\
& \text { Point actualmean } \left.:=\text { mean(Dates }) \quad, \quad \text { sum }:=\sum_{i}^{\prime}\left(\text { Dates }_{d}^{\prime}-\text { mean(Dates }\right)\right)^{\prime} \\
& \text { uppoint }_{\mathrm{f}}:=\text { Point }_{\text {curve }}^{\mathrm{f}} \text {.. } \\
& +q t\left(1-\frac{\alpha_{t}}{2}, \text { Total means }-2\right) \cdot \text { stPoint }^{\text {errt }_{1}} \sqrt{1+\frac{1}{(d+1)}+\frac{\left(\text { year predict }_{f}^{\prime}-\text { Point }_{\text {actualmean }}\right)^{2}}{\text { supp }}} \\
& \text { lopoint }_{f}:=\text { Point }_{\text {curve }}^{f}{ }^{\prime} \text {... } \\
& +-\left[\operatorname{qt}\left(1-\frac{\alpha_{t}}{2}, \text { Total means }-2\right) \cdot \text { StPönt }_{\text {err }} \cdot \sqrt{1+\frac{1}{(d+1)}+\frac{\left(\text { year }_{\text {predict }}^{f}-\text { Point }_{\text {actualmean }}\right)^{2}}{\text { sum }}}\right]
\end{aligned}
$$

Local Tmin for this elevation in the Drywell \quad Tmin_local $\mathrm{SB}_{\mathrm{f}}:=490$
(Ref. 3.25)
Curve Fit For Point 19 Projected to Plant End Of Life

The section below calculates what the postulated individual thickness would be if this point were to corrode at a minimum observable rate observed in appendix 22.

Rate min_observed $:=6.9$

$$
\text { Postulated thickness }:=\text { Point } 7_{3}-\text { Rate min_observed }(2029-2006)
$$

$$
\text { Postulated } \text { thickness }=890.3
$$

which is greater than
Tmin_local $\mathrm{SB}_{3}=490$

The section below calculates what the postulated corrosion rate necessary for the thinnest individual point to reach the local required thickness by 2029.

$$
\begin{aligned}
& \text { minpoint }=1.049 \quad \text { year } \text { predict }_{22}=2.029010^{3} \quad \text { Tmin_local }_{S B_{22}}=490 \\
& \text { required rate. }:=\frac{\left(1000 \text { minpoint }- \text { Tmin_local }^{S B_{22}}\right)}{(2005-2029)} \quad \text { required }_{\text {rate. }}=-23.292 \quad \text { mils per year }
\end{aligned}
$$

BAY 1

| Point | Less than 0.736 in 1992 | Vertical | Hortzontal | Under Inside Concrete | Under Inside Floor | Under Wettad Concrete | 1892 value | Critaria | NDE Data Sheet | $\begin{aligned} & 2006 \\ & \text { Value } \end{aligned}$ | Delta Sat | Non Sat |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1 Yes | D16 | R30 | Yes | | | 0.72 | 0.598 | 1R21LR-022 | 0.71 | 0.010 Yes | |
| | 2 Yes | D22 | R17 | Yes | | | 0.716 | 0.598 | 1R21LR-022 | 0.69 | 0.026 Yes | |
| | 3 Yes | D23 | L3 | Yes | . | | 0.705 | 0.598 | 1R21LR-022 | 0.665 | 0.040 Yes | |
| | 4 | D24 | L33 | Yes | | - | 0.76 | 0.598 | 1R21LR-022 | 0.738 | 0.022 Yes | |
| | 5 Yes | D24 | L45 | Yes | | | 0.71 | 0.598 | 1R21LR-022 | 0.68 | 0.030 Yes | |
| | 6 | D48 | R16 | Yes | Yes | Yes | 0.76 | 0.598 | 1R21LR-022 | 0.731 | 0.029 Yes | |
| | 7 Yes | D39 | R5 | Yes | Yes | Yes | 0.7 | 0.588 | 1R21LR-022 | 0.669 | 0.031 Yes | |
| | 8 | D48 | R0 | Yes | Yes | Yes | 0.805 | 0.698 | 1R21LR-022 | 0.783 | 0.022 Yes | |
| | 9 | D36 | L38 | Yes | Yes | | 0.805 | 0.598 | 1R21LR-022 | 0.754 | 0.051 Yes | |
| | 10 | D16 | R23 | Yes | | | 0.839 | 0.598 | 1R21LR-022 | 0.824 | 0.015 Yes | |
| | 11 Yes | D23 | $R 12$ | | | | 0.714 | 0.598 | 1R21LR-022 | 0.711 | 0.003 Yes | |
| | 12 Yes . | D24 | L5 | | | | 0.724 | 0.598 | 1R21LR-022 | 0.722 | 0.002 Yes. | |
| | 13 | D24 | L40 | | | | 0.792 | 0.598 | 1R21LR-022 | 0.719 | 0.073 Yes | |
| | 14. | D2 | R35 | | - | | 1.147 | 0.598 | 1R21LR-022 | 1.157 | -0.010 Yes | |
| | 15 | D8 | L51 | | | | 1.156 | 0.598 | 1R21LR-022 | 1.16 | -0.004 Yes | |
| | 16 | D50 | R40 | Yes | Yes | Yes | 0.796 | 0.598 | 1R21LR-022 | 0.795 | 0.001 Yes | |
| | 17 | D48 | R19 | Yes | Yes | Yes | 0.86 | 0.598 | 1R21LR-022 | 0.846 | 0.014 Yes | |
| | 18 | D38 | 12. | Yes | Yes | | 0.917 | 0.598 | 1R21LR-022 | 0.899 | 0.018 Yes | |
| | 19 | D38 | L24 | Yes | Yes | | 0.89 | 0.598 | 1R21LR-022 | 0.865 | 0.025 Yes | |
| | 20 | D18 | R13 | | | | 0.965 | 0.698 | 1R21LR-022 | 0.912 | 0.053 Yes | |
| | 21 Yes | D24 | R15 | | | | 0.726 | 0.598 | 1R21LR-022 | 0.712 | 0.014 Yes | |
| | 22 | D32 | R13 | Yes | Yes | | 0.862 | 0.598 | 1R21LR-022 | 0.854 | -0.002 Yas | |
| | 23 | D48 | R15 | Yes | Yes | Yes | 0.85 | 0.598 | 1R21LR-022 | 0.828 | 0.022 Yes | |
| | | Data oblalned from | | | | | | | | 0.021 | | |
| | | NDE Data Sheels 92-072-12 page 1 of 9 | | | | | | | | Max Dalta | | |
| | | NDE Data Shaels 92-072-18 page 1 of 1 | | | | | | | | | 0.073 | |
| | | NDE Dala Sheets 92-072-19 page 1 of 1 | | | | | | | | | | |
| | | | | | | | | | | Rate | 0.005 | |
| | | . | | | | | | | Min 2006 Thickness Value | | 0.665 | |

C-1302-to:- .0-041

Appendix 20

BAY 3

Appendix 20

BAY 7

BAY 9

BAY 11

Appendix 20

BAY 13

C-1302-18; $\quad .0-041$

9
Appendix 20

BAY 15

Min 2006 Thickness Value

BAY 17

BAY 19

C-1302-187-E310-041

"Appendix 20 Page 12 of 12

Assuming a normal distribution shown above over the the entire population, the percentage of the population with a local area less than 0.648 inches is estimated below.
$100 \cdot \operatorname{pnom}\left(648, \mu_{\text {actual }}, \sigma_{\text {actual }}\right)=0.5511$ fłercent
Assuming a normal distribution shown above over the the entire population, the percentage of the population. with a local area less than 0.602 inches is estimated below.
$100 \cdot \operatorname{pnorm}\left(602, \mu_{\text {actual }} \cdot \sigma_{\text {actual }}\right)=0.05202$ Percent

Assuming a normal distribution shown above over the the entire population, the percentage of the population with a local area less than 0.490 inches is estimated below.
$100 \cdot \operatorname{pnorm}\left(490, \mu_{\text {actual }}, \sigma_{\text {actual }}\right)=1.940824 \cdot 10$ Percent

Appendix 21 - Location 11C Sensitivity Study without 1996 data
Sandbed 110 The data shown below was collected on 10/18/06

$$
d:=0
$$

For Dec 311992

page :=READPRN("U:MMSOFFICELDrywell Program datalDec. 1992 DatalsandbedIDATA ONLYSBIIC.txt")
Points 49 := showcells(page, 7,0)
Data
Dates $_{\mathrm{d}}:=$ Day $_{\text {year }}(12,31,1992)$
Points $_{49}=\left[\begin{array}{lllllll}0.941 & 0.839 & 0.806 & 0.917 & 0.776 & 0.86 & 0.926 \\ 1.105 & 1.044 & 0.997 & 0.975 & 1.076 & 1.12 & 1.045 \\ 1.091 & 1.175 & 1.018 & 0.942 & 0.94 & 0.874 & 0.896 \\ 0.847 & 0.845 & 0.794 & 0.833 & 0.838 & 0.838 & 0.87 \\ 0.845 & 0.829 & 0.863 & 0.87 & 0.85 & 0.85 & 0.827 \\ 0.941 & 0.817 & 0.858 & 0.839 & 0.876 & 0.879 & 0.854 \\ 0.603 & 0.893 & 0.905 & 0.901 & 0.913 & 0.877 & 0.845\end{array}\right]$
nnn :=convert(Points 49.7) No DataCells $:=$ length(nmn) \quad nnn $:=$ Zero one (nnn, No DataCells ${ }^{43}$)
The thinnest point is captured

$$
\text { Point }_{5_{d}}:=\operatorname{nnn}_{4} \quad \text { Point }{ }_{5}=776
$$

The two groups are named as follows:
StopCELL $:=21 \quad$ No Cells $:=$ length(Cells)

$$
\begin{aligned}
& \text { low points : }=\text { LOWROWS(nnn, No Cells }{ }^{\text {StopCELL }} \text {) } \\
& \text { No }{ }_{\text {lowCells }}:=\text { length(low points) } \\
& \text { high points }:=\text { TOPROWS(nnn, No Ceils }{ }^{\text {StopCELL }} \text {) } \\
& \text { Ceils := deietezero cells (nnn, No Cells) } \\
& { }^{\text {low }} \text { points }:=\text { deletezero }^{\text {cells }} \text { (low points, }{ }^{\text {No }} \text { lowCells) } \\
& \text { high points }:=\text { deletezero cells (} \text { high }_{\text {points, }}{ }^{\text {No }} \text { highCells) } \\
& \mu_{\text {measured }_{d}}:=\text { mean(Cells) } \\
& \mu_{\text {measured }}=908.83 \quad \sigma_{\text {measured }_{d}}:=\operatorname{Stdev}(\text { Cells }) \quad \text { Standard }_{\text {error }_{d}}:=\frac{\sigma_{\text {measured }_{d}}}{\sqrt{\text { No DataCells }}} \\
& \left.\mu_{\text {high }}^{\text {measured }_{d}}:=\text { mean(high }_{\text {points }}\right) \\
& \text { Hlow }_{\text {measured }}^{d} \text { := mean(low points) } \\
& \text { ohigh }_{\text {measured }}^{d} \text { :=Stdev(high points) } \\
& \text { olow }_{\text {measured }}^{d} \text { :=Stdev(low points) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Standardlow }_{\text {error }}^{d} \text { }:=\frac{\text { olow measured }_{d}}{\sqrt{\text { length(low points) }}}
\end{aligned}
$$

Sheet No.
page :=READPRN("U:MSOFFICEUDrywell Program datalSept. 1994 DatalsandbedDATA ONLYSB1IC.txt")
Points $49:=$ showcells $($ page $, 7,0) \quad$ Dates $_{d}:=$ Day $_{\text {year }}(9,26,1994)$
Points $49=\left[\begin{array}{lllllll}0 & 0 & 0 & 0 & 0 & 0.855 & 0.866 \\ 0 & 0 & 1.042 & 1.095 & 1.036 & 1.093 & 1.032 \\ 1.042 & 1.085 & 0.945 & 0.938 & 0.938 & 0.895 & 0.889 \\ 0.836 & 0.846 & 0.795 & 0.828 & 0.833 & 0.843 & 0.869 \\ 0.823 & 0.842 & 0.873 & 0.872 & 0.837 & 0.822 & 0.879 \\ 0.855 & 0.836 & 0.862 & 0.824 & 0.872 & 0.857 & 0.823 \\ 0.86 & 0.874 & 0.899 & 0.876 & 0.88 & 0.84 & 0.851\end{array}\right]$
nni := convert (Points 49,7$) \quad$ No DataCells $:=$ length (nnn)
The thinnest point is captured \quad Point $5_{d}:=$ nin $_{4}$

The two groups are named as follows:
${ }^{\text {low }}$ points $:=$ LOWROWS(nnn, ${ }^{\text {No }}$ Cells, StopCELL $)$
No lowCells := length(low points)
Cells := deletezero cells (nnn, No Cells)

$$
\begin{aligned}
& \text { low points := deletezero cells (low points, No lowCells) } \\
& \mu_{\text {measured }_{d}}:=\text { mean(Cells) } \quad \sigma_{\text {measured }_{d}}:=\operatorname{Stojev}(\text { Cells }) \\
& \mu \text { high }_{\text {measured }}^{d} \text { := mean(} \text { high }_{\text {points }} \text {) } \\
& \text { ohigh measured }{ }_{d}:=\operatorname{Stdev} \text { (high points) } \\
& {\text { Standardhigh } \text { error }_{d}:=\frac{\text { ohigh }_{\text {measured }}^{d}}{}}_{\sqrt{\text { length(high points) }}}^{\text {(}} \\
& \text { low points := deletezero cells (low points, }{ }^{\text {No }} \text { lowCells) }
\end{aligned}
$$

StopCELL :=21
No Cells: $=$ length (nnn)
high points := TOPROWS(nnn, No Cells'StopCELL)
${ }^{N o}$ highCells $:=$ length(high points)

$$
\text { high points }:=\text { deletezero }^{\text {cells }}\left({ }^{\text {high }} \text { points, No highCells }\right)
$$

$$
\text { Standard }_{\text {error }}^{d}: ~:=\frac{\sigma_{\text {measured }}^{d}}{}
$$

$$
\text { How measured }{ }_{d}:=\text { mean(low points) }
$$

$$
\text { olow }_{\text {measured }_{d}}:=\operatorname{Sidev}(\text { low points })
$$

$$
\text { Standardlow } \text { error }_{d}:=\frac{\text { clow measured }_{d}}{\sqrt{\text { length(low points) }}}
$$

page $:=$ READPRN("U:IMSOFFICEDDrywell Program datalOct 2006 DatalSandbedSSB1 1C.txt")
Points 49 := showcells(page, 7,0)
Dates $_{d}:=$ Day $_{\text {year }(10,18,2006)}$

Points $_{49}=\left[\right.$| Data | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0.771 | 0.803 | 0.912 | 0.767 | 0.858 | 0.886 |
| 1.056 | 1.046 | 0.984 | 1.094 | 1.036 | 1.118 | 1.029 |
| 1.073 | 1.113 | 1.002 | 0.935 | 0.942 | 0.888 | 0.853 |
| 0.837 | 0.836 | 0.79 | 0.874 | 0.834 | 0.846 | 0.838 |
| 0.85 | 0.825 | 0.869 | 0.889 | 0.833 | 0.866 | 0.875 |
| 0.856 | 0.84 | 0.864 | 0.829 | 0.872 | 0.876 | 0.844 |
| 0.861 | 0.877 | 0.879 | 0.885 | 0.88 | 0.849 | 0.876 |$]$

$$
\text { nun }:=\text { convert }(\text { Points } 49,7) \quad \text { No DataCells }:=\text { length }(n n n)
$$

The thinnest point is captured
The two groups are named as follows:

$$
\begin{aligned}
& \text { low points :=LOWROWS(nnn, No Cells, StopCELL) } \\
& \text { No lowCells := length(low points) }
\end{aligned}
$$

$$
\begin{array}{ll}
\text { Point } 5_{A}:=\pi n n_{4} & \text { No } \text { Cells }:=\text { length (mn) }
\end{array}
$$

$$
\begin{gathered}
\text { high points }:=\text { TOPROWS (in, No Cells, StopCELL }) \\
\text { No highCells }:=\text { length(high points) }
\end{gathered}
$$

$$
\begin{aligned}
& \text { low points: }:=\text { deletezero cells (low points, No lowCells) } \\
& \text { high points }:=\text { deletezero }^{\text {cells }} \text { (} \text { high points }^{\text {, No }} \text { highCells) }
\end{aligned}
$$

$\mu_{\text {measured }_{d}}:=$ mean(Cells) $\quad \sigma_{\text {measured }_{d}}:=\operatorname{Stdev(Cells)} \quad$ Standard $_{\text {error }}^{d}:=\frac{\sigma^{\text {measured }_{d}}}{\sqrt{\text { No DataCells }}}$

$$
\begin{aligned}
& \text { "high measured }{ }_{d}:=\text { mean }^{\left(\text {high }_{\text {points }}\right)} \\
& \text { high }_{\text {measured }}^{d} \text { := Stdev(high points) } \\
& \mu \text { low measured }{ }_{d}:=\text { mean(low }_{\text {points }} \text {) } \\
& \text { slow }_{\text {measured }_{d}}:=\operatorname{Stdev}\left(\text { low }_{\text {points }}\right) \\
& \text { Standardhigh error }_{d}:=\frac{\text { high measured }_{d}}{\sqrt{\text { length(high points } \text { (}}} \\
& \text { Standardlow } \left._{\text {error }_{d}}:=\frac{\text { slow }_{\text {measured }}^{d}}{}\right)(\sqrt{\text { length(low points } \text { (}}
\end{aligned}
$$

Sheet No.

Below are the results

$$
\text { Dates }=\left[\begin{array}{l}
1.993 \cdot 10^{3} \\
1.995 \cdot 10^{3} \\
2.007 \cdot 10^{3}
\end{array}\right] \quad \text { Point } 5=\left[\begin{array}{l}
776 \\
0 \\
767
\end{array}\right]
$$

$$
\text { Standard }_{\text {error }}=\left[\begin{array}{l}
13.414 \\
11.742 \\
12.843
\end{array}\right]
$$

$\mu_{\text {measured }}=\left[\begin{array}{l}908.83 \\ 894.238 \\ 898.25\end{array}\right]$

$$
\sigma_{\text {measured }}=\left[\begin{array}{l}
93.897 \\
82.191 \\
89.898
\end{array}\right]
$$

Hhigh measured $=\left[\begin{array}{l}969.667 \\ 982.214 \\ 958.3\end{array}\right] . \quad$ ohigh measured $=\left[\begin{array}{l}109.211 \\ 87.424 \\ 112.838\end{array}\right] \quad$ Standardhigh $_{\text {error }}=\left[\begin{array}{l}23.832 \\ 23.365 \\ 24.623\end{array}\right]$
μ low measured $=\left[\begin{array}{l}859.692 \\ 850.25 \\ 855.357\end{array}\right]$
olow measured $=\left[\begin{array}{l}32.576 \\ 23.629 \\ 23.008\end{array}\right]$
Standardlow $_{\text {error }}=\left[\begin{array}{l}6.389 \\ 4.466 \\ 4.348\end{array}\right]$

Total means $:=$ rows $(\mu$ measured $) \quad$ Total means $=3$

SST $:=\sum_{i=0}^{\text {last(Dates })}\left(\mu_{\text {measured }}-\text { mean }\left(\mu_{\text {measured }}\right)\right)^{2}$
SST $_{\text {low }}:=\sum_{i=0}^{\text {last(Dates })}\left(\mu \text { low measured }_{i}-\text { mean }\left(\mu_{\text {low }} \text { measured }\right)\right)^{2}$

SST $_{\text {high }}:=\sum_{i=0}^{\text {last(Dates })}\left(\mu\right.$ high $_{\text {measured }_{i}}-\operatorname{mean}^{\left.\left(\mu \text { high }_{\text {measured }}\right)\right)^{2}, ~}$
SSE $:=\sum_{i=0}^{\text {last }(\text { Dates })}\left(\mu_{\text {measured }}^{i}-\text { yhat }\left(\text { Dates }, \mu_{\text {measured }}\right)_{i}\right)^{2}$

SSE $\left._{\text {low }}:=\sum_{i=0}^{\text {last(Dates })}\left(\text { Hlow }_{\text {measured }_{i}}-\text { yhat }^{\left(\text {Dates }^{,} \mu_{\text {low }}^{\text {measured }}\right.}\right)_{i}\right)^{2}$
$\operatorname{SSE}_{\text {high }}:=\sum_{i=0}^{\text {last(Dates) }}\left(\right.$ hhigh measured $_{i}-$ yhat $^{\left.\text {(Dates, } \mu \text { high measured })_{i}\right)^{2}}$

SSR $:=\sum_{i=0}^{\text {last(Dates })} \cdot\left(\text { yhat }\left(\text { Dates, } \mu_{\text {measured }}\right)_{i}-\operatorname{mean}\left(\mu_{\text {measured }}\right)\right)^{2}$
SSR low $:=\sum_{i=0}^{\text {last(Dates) }}\left(\text { yhat }\left({\left.\text { Dates, }, \mu \text { low }_{\text {measured }}\right)_{i}-\text { mean }(\mu \mathrm{low}}_{\text {measured })}\right)\right)^{2}$.
$S S R_{\text {high }}:=\sum_{i=0}^{\text {last(Dates })}\left(\text { yhat }(\text { Dates, } \mu \text { high measured })_{i}-\text { mean }(\mu \text { high measured })\right)^{2}$
DegreeFree $_{\text {ss }}:=$ Total $_{\text {means }}-2$
DegreeFree $_{\text {reg }}:=1$
DegreeFree $_{\text {st }}:=$ Total $_{\text {means }}-1$

$$
\text { MSE }^{:}=\frac{\text { SSE }}{\text { DegreeFree }_{s \mathrm{~s}}} \quad \text { MSE }_{\text {low }}:=\frac{\text { SSE }_{\text {low }}}{\text { DegreeFree }_{\text {sS }}} \quad \text { MSE }_{\text {high }}:=\frac{\text { SSE }_{\text {high }}}{\text { Degrec:Free; }_{\text {ss }}}
$$

Standard error $:=\sqrt{\text { MSE }} \quad$ Standard lowerror $:=\sqrt{\text { MSE }_{\text {low }}} \quad$ Standard higherror $:=\sqrt{\text { MSE }_{\text {high }}}$

$$
\dot{M S T}:=\frac{\text { SST }}{\text { DegreeFree }_{\text {st }}} \quad \text { MST }_{\text {low }}:=\frac{\text { SST }_{\text {low }}}{\text { DegreFFree }_{\text {st }}} \quad . \text { MST }_{\text {high }}:=\frac{\text { SST }_{\text {high }}}{\text { DegreeFree }_{\text {st }}}
$$

Test the means with all points

$$
\begin{aligned}
& \text { F Test for:Corrosion } \\
& \alpha:=0.05 \quad F_{\text {actaul_Reg }}:=\frac{\text { MSR }}{M S E} \\
& F_{\text {critical_reg }}:=q \mathrm{~F}\left(1-\alpha, \text { Degre:Frel }_{\text {reg }} \text {, DegreeFree }{ }_{\text {ss }}\right) \\
& \begin{array}{c}
F_{\text {ratio_reg }}=\frac{F_{\text {actaul_Reg }}}{F_{\text {critical_reg }}} \\
F_{\text {ratio_reg }}=9.322-10^{-4}
\end{array}
\end{aligned}
$$

Test the low points

F Test for Corrosion

$\mathrm{F}_{\text {actaul_Reg.low }}:=\frac{\text { MSR }_{\text {low }}}{\text { MSE }_{\text {low }}}$
$F_{\text {critical_reg }}:=\mathrm{qF}\left(1-\alpha\right.$, DegreeFree $_{\text {reg }}$, DegreeFree $\left.{ }_{s S}\right)$

Test the high points

F Test for Corrosion
$\mathrm{F}_{\text {actaul_Reg.high }}:=\frac{\text { MSR }_{\text {high }}}{\text { MSE }_{\text {high }}}$
$F_{\text {critical_reg }}:=q F\left(1-\alpha\right.$, DegreeFree $_{\text {reg }}$, DegreeFree $\left._{\text {ss }}\right)$

Appendix 21 -Location 13D Sensitivity Study without 1996 data The data shown below was collected on 10/18/06

Sandbed 13D-

Data from 1992 to 2006 is retrieved. $d:=0$
For Dec 311992
page :=READPRN("U:IMSOFFICEDrywell Program dataLDec. 1992 DatalsandbedWATA ONLYSB13C-D.txt")
Points $_{49}:=$ showcells(page, 7,0)
Data
Dates $_{d}:=$ Day $_{\text {year }}(12,31,1992)$
Points $49=\left[\begin{array}{lllllll}1.064 & 1.117 & 1.134 & 1.103 & 1.105 & 1.106 & 1.117 \\ 0.949 & 1.081 & 1 & 1.054 & 1.151 & 1.118 & 1.121 \\ 0.984 & 0.948 & 0.868 & 0.834 & 0.979 & 1.048 & 1.067 \\ 0.963 & 0.98 & 0.893 & 0.855 & 0.913 & 0.981 & 1.012 \\ 0.957 & 0.958 & 0.869 & 0.879 & 0.917 & 0.913 & 0.911 \\ 0.963 & 0.948 & 0.895 & 0.88 & 0.915 & 0.862 & 0.905 \\ 1.016 & 0.918 & 0.927 & 0.92 & 0.918 & 0.825 & 0.824\end{array}\right]$
mn $:=$ convert(Points 49,7) No Cells $:=$ length(nmn)
Point $4_{d}:=$ nan $_{48} \quad$ Point $_{49}=824$

The two groups are named as follows: Botstar $:=28$ Stoptop: $:=16$
${ }^{\text {low }}$ points $^{:=\text {LOWROWS(nnn, No DataCells, Botstar) } \quad \text { high points }:=\text { TOPROWS(nnn, No DataCells' Stoptop) }}$
high $_{\text {points }}:=$ Add (an, No DataCells, 19 , length(high points), high points)
high points $:=\operatorname{Add}\left(n n, N^{\text {No }}\right.$ DataCells, 20 , length(high points), high points)
high points $:=\operatorname{Add}(n n n$, No DataCells, 21 , length(high points), high points)
high paints $:=$ Add (an, No DataCells, 22 , length(high points), high points)
high points $:=$ Add (mn, No DataCells, 27 , length(high points), high points)
high $_{\text {points }}:=$ Add (an, No DataCells, 28 , length(high points), high points)
low points $:=$ Add(nmn, No DataCells, 18, length(low points), low points)
${ }^{\text {low }}$ points $:=$ Add (nne, No DataCells, 23 , length(low points), low points)
low points $:=$ Add $\left(\mathrm{nnn}\right.$, No DataCells 24, length(low points), ${ }^{\text {low }}$ points $)$
low points $:=$ Add (nne, No DataCells, 25 , length(low points), low points)
low $_{\text {points }}:=\mathrm{Add}\left(\mathrm{nnn}, \mathrm{No}_{\text {DataCells }}\right.$, 26 , length(low points), low points)

```
    Cells \(:=\) deletezero cells (mn, No Cells)
    high points \(:=\) deletezero cells (high points , length( high points))
    low points := deletezero cells (low points, length( low points \()\) )
    \(\mu_{\text {measured }_{d}}:=\) mean(Cells) \(\quad \sigma_{\text {measured }}^{d}\) \(:=\operatorname{Stdev}(C e l l s)\)
    high measured \(d_{d}:=\) mean(high points \() \quad ~ \mu l o w ~_{\text {measured }}^{d}:=\) mean (low \(_{\text {points }}\) )
    high measured \(:=\operatorname{Stdev}\left(\right.\) high points \(_{d} \quad \quad\) alow measured \(d=\operatorname{Stdev}\) (low points)
        Standardhigh error \(_{d}:=\frac{\text { Thigh measured }_{d}}{\sqrt{\text { length }^{\text {(high points }} \text { ) }}}\)
```

```
\[
\begin{aligned}
& \text { Standard error }:=\frac{\sigma_{d} \text { measured }_{d}}{\sqrt{\text { No DataCells }}} \\
& \text { slow }_{\text {measured }}^{d} \text { := mean(low points) } \\
& \text { slow }_{\text {measured }_{d}}:=\operatorname{Stdev} \text { (low points) } \\
& \text { Standardlow error }:=\frac{\text { slow measured }_{d}}{\sqrt{\text { length(low points) }}}
\end{aligned}
\]
```

For 1994
page $:=$ READPRN("U:LMSOFFICEDDrywell Program datalSept. 1994 DatalsandbedDATA ONLYYSB13C-D.txt")
Points $49:=$ showcells(page, 7,0)
Dates $_{d}:=$ Day $_{\text {year }}(9,26,1994)$
Data
Points $_{49}=\left[\begin{array}{lllllll}1.1 & 1.114 & 1.11 & 1.078 & 1.062 & 1.103 & 1.113 \\ 0.944 & 1.075 & 0.995 & 1.015 & 1.003 & 1.112 & 1.125 \\ 0.977 & 0.941 & 0.834 & 0.827 & 0.992 & 1.033 & 1.028 \\ 0.943 & 0.973 & 0.879 & 0.847 & 0.915 & 0.974 & 0.986 \\ 0.951 & 0.911 & 0.871 & 0.873 & 0.923 & 0.903 & 0.889 \\ 0.938 & 0.942 & 0.894 & 0.875 & 0.915 & 0.859 & 0.877 \\ 0.956 & 0.911 & 0.922 & 0.924 & 0.918 & 0.825 & 0.811\end{array}\right]$
nnn := convert(Points 49,7) No DataCells $:=$ length(nnn)

$$
\text { Point }_{49}:=\operatorname{nnn}_{48} \quad \text { No Cells }:=\text { length }(n n n)
$$

The two groups are named as follows: Botstar $:=28 \quad$ Stoptop $:=16$
Iow $_{\text {points }}:=$ LOWROWS (nnn, No DataCells, Botstar) \quad high points $:=$ TOPROWS (nnn, No DataCells ${ }^{\prime}$ Stoptop)
high $_{\text {points }}:=\operatorname{Add}($ inn, No DataCells, 19 , length(high points), high points $)$
high points $:=\operatorname{Add}\left(\mathrm{nnn}, \mathrm{No}^{\text {D }}\right.$ DataCells, 20 , length(high points), high points)
high points $:=$ Add(nnn, No DataCells, 21 , length(high points), high points)
high points $:=$ Add(nnn, No DataCells, 22 , length(high points), high points)
high $_{\text {points }}:=$ Add(ninn, No DataCells, 27 , length(high points) , high points)
high $_{\text {points }}:=$ Add(nnn, No DataCells ${ }^{28}$, length(high points), high points)

```
```

low $_{\text {points }}:=$ Add (In, No DataCells, 17, length(low points), low points)
low points $:=$ Add (nan, No DataCells, 18, length(low points), low points)
${ }^{\text {low }}$ points $:=\operatorname{Add}\left(\mathrm{nnn}\right.$, No $_{\text {DataCells }}$, 23, length(low points), ${ }^{\text {low }}$ points $)$
low points $:=$ Add(ninn, No DataCells, 24, length(low points), low points)
${ }^{\text {low }}$ points $:=\operatorname{Add}($ mn, No DataCells, 25 , length(low points), low points $)$
${ }^{\text {low }}{ }_{\text {points }}:=\operatorname{Add}\left(\mathrm{nnn}\right.$, No $_{\text {DataCells }}, 26$, length(low points) \cdot low points $)$

```
    Cells := deletezero cells (mn, No Cells)
    high \(_{\text {points }}:=\) deletezero cells (high points, length( high points \()\) )
    \({ }^{\text {low }}\) points \(:=\) deletezero cells \(\left({ }^{\text {low }}\right.\) points, length(low points))
    \(\mu_{\text {measured }_{d}}:=\operatorname{mean}(C e l l s) \quad \sigma_{\text {measured }_{d}}:=\operatorname{Stdev(Cells)} \quad\) Standard \(_{\text {error }}^{d}:=\frac{\sigma^{\text {measured }_{d}}}{\sqrt{\text { No DataCells }}}\)
    high measured \(d_{d}:=\) mean(high \(_{\text {points }}\) )
    ohigh measured \(:=S t d e v\left(\right.\) high points) \(\left._{d}\right)\)
    Standardhigh error \(_{d}:=\frac{\text { ohigh measured }_{d}}{\sqrt{\text { length( high }{ }_{\text {points }} \text { ) }}}\)
\[
\begin{aligned}
& \mu_{\text {low measured }}^{d}:=\text { mean(low points) }^{\text {Glow measured }}:=\operatorname{Stdev}\left(\text { low }_{\mathrm{d}}\right. \text { points) } \\
& \text { Standardlow }_{\text {error }}^{d}: \\
& \text { alow measured }{ }_{d} \\
& \sqrt{\text { length(low points) }}
\end{aligned}
\]
```

For 2006
d:=d+1
page := READPRN("U:IMSOFFICEWDrywell Program datalOCT 2006 DatalSandbedSB13C-D.txt")
Points 49:= showcells(page, 7,0) . Dates d:= Day year (9, 23,2006)
Data
Points 49 [[lllllll

```

```

 Point 499:= nnn}4
 The two groups are named as follows: Botstar :=28 Stoptop := 16
 low points :=LOWROWS(nnn, No DataCells, Botstar) : . high points :=TOPROWS(nnn, No DataCells, Stoptop)
 high points :=Add(nnn,No DataCells, 19, length(high points), high points)
high points:=Add(nnn, No DataCells, 20, length(high points), high points)
high points:=Add(nnn,No DataCells, 21, length(high points), high points)
high points := Add(nnn,No DataCells'22, length(high points); high points)
high points:=Add(nnn,No DataCells, 27, length(high points), high points)
high points: : Add(nnn, No DataCells, 28, length(high points), high points)
low points :=Add(nnn, No DataCells, 17, length(low points), low points)
low points :=Add(ninn, No DataCells, 18, length(low points), low points)

```
```

 low points :=Add(nnn, No DataCells, \({ }^{23}\), length(low points), low points)
 low points \(:=\) Add(nnn, No DataCells, 24 , length(low points), low points)
 low points \(:=\) Add(nnn, No DataCells' 25 , length(low points), low points)
 low points \(:=\) Add(nnn, No DataCells, 26 , length(low points), low points)
    ```
    Cells \(:=\) deletezero cells (nnn, No Cells)
    high points \(:=\) deletezero cells (high points, length(high points \()\) )
    \({ }^{\text {low }}\) points \(:=\) deletezero cells (low points \({ }^{\text {length }(\text { low }}\) points \()\) )
    \(\mu_{\text {measured }_{d}}:=\) mean(Cells) \(\quad \sigma_{\text {measured }_{d}}:=\operatorname{Stdev}(\) Cells \() \quad\) Standard error \(_{d}:=\frac{\sigma_{\text {measured }_{d}}}{\sqrt{\text { No DataCells }}}\)
        uhigh measured \({ }_{d}:=\) mean (high \(_{\text {points }}\) )
        ohigh measured \({ }_{d}:=\operatorname{Stdev}\) (high points)
        Standardhigh \(_{\text {error }}^{d}:=\frac{\text { ohigh }_{\text {measured }}^{d}}{}:=\frac{\sqrt{\text { length(high points) }}}{\text { ( }}\)
\[
\begin{aligned}
& \text { Hlow }_{\text {measured }}^{d} \text { := mean(low points) } \\
& \text { olow }_{\text {measured }_{d}}:=\operatorname{Stdev}\left(\text { low }_{\text {points }}\right) \\
& \text { Standardlow }_{\text {error }}^{d} \text { : }=\frac{\text { olow measured }_{d}}{\sqrt{\text { length(low points) }}}
\end{aligned}
\]

\section*{Below are the results}
\[
\begin{aligned}
& \text { Dates }=\left[\begin{array}{c}
1.993 \cdot 10^{3} \\
1.995 \cdot 10^{3} \\
2.007 \cdot 10^{3}
\end{array}\right] \quad \text { Point } 49=\left[\begin{array}{l}
824 \\
811 \\
821
\end{array}\right] \\
& \text { Standard error }=\left[\begin{array}{l}
13.307 \\
12.681 \\
12.877
\end{array}\right] \\
& \mathcal{A}_{\text {measured }}=\left[\begin{array}{l}
972.755 \\
958.898 \\
968.184
\end{array}\right] \\
& \sigma_{\text {measured }}=\left[\begin{array}{l}
93.149 \\
88.766 \\
90.136
\end{array}\right] \\
& \text { uhigh } \underset{\text { measured }}{ }=\left[\begin{array}{c}
1.055 \cdot 10^{3} \\
1.037 \cdot 10^{3} \\
1.047 \cdot 10^{3}
\end{array}\right] \quad \text { ohigh }_{\text {measured }}=\left[\begin{array}{c}
66.239 \\
63.573 \\
64.111
\end{array}\right] \quad \text { Standardhigh error }=\left[\begin{array}{l}
14.122 \\
13.554 \\
13.99
\end{array}\right] \\
& \text { Hlow measured }=\left[\begin{array}{c}
906.037 \\
894.926 \\
904.037
\end{array}\right] \quad \text { olow measured }=\left[\begin{array}{c}
46.682 \\
42.624 \\
46.499
\end{array}\right] \quad \text { Standardlow }_{\text {error }}=\left[\begin{array}{l}
8.984 \\
8.203 \\
8.949
\end{array}\right]
\end{aligned}
\]
\[
\text { Total }_{\text {means }}:=\text { rows }\left(\mu_{\text {measured }}\right) \quad \text { Total }_{\text {means }}=3
\]
\[
\text { SSE }:=\sum_{i=0}^{\text {last(Dates })}\left(\mu_{\text {measured }}^{i}-\text { yhat }\left(\text { Dates, } \mu_{\text {measured }}\right)_{1}\right)^{2}
\]
\[
\operatorname{SSE}_{\text {low }}:=\sum_{i=0}^{\text {last(Dates })}\left(\mu \text { low } \text { measured }_{i}-\text { ghat }\left(\text { Dates }, \mu \text { low }^{\text {measured }}\right)_{i}\right)^{2}
\]
\[
\text { SSR }:=\sum_{i=0}^{\text {last(Dates }}\left(\text { yhat }\left(\text { Dates }, \mu_{\text {measured }}\right)_{i}-\text { mean }\left(\mu_{\text {measured }}\right)\right)^{2}
\]
\[
\left.\operatorname{SSR}_{\text {low }}:=\sum_{i=0}^{\text {last(Dates }}\left(\text { shat }(\text { Dates, } \mu \text { low measured })_{i}-\text { mean }^{(\mu l o w} \text { measured }\right)\right)^{2}
\]
\[
\begin{aligned}
& \text { SST }:=\sum_{i=0}^{\text {last(Dates })}\left(\mu_{\text {measured }_{i}}-\text { mean }\left(\mu_{\text {measured }}\right)\right)^{2} \\
& \text { SST } \left.{ }_{\text {low }}:=\sum_{i=0}^{\text {last(Dates) }}\left(\mu^{\text {low }} \text { measured }_{i}-\text { mean }^{\left(\mu_{\text {low }}\right.} \text { measured }\right)\right)^{2} \\
& \text { SST } \text { high }:=\sum_{i=0}^{\text {last(Dates })}\left(\mu \text { high measured }_{i}-\text { mean }^{\left.\left(\mu \text { high }_{\text {measured }}\right)\right)^{2} .}\right.
\end{aligned}
\]


Test the means with all points

\section*{F Test for Corrosion}
\[
\alpha:=0.05 \text {. } F_{\text {actaul_Reg }}:=\frac{\text { MSR }}{M S E}
\]
\[
F_{\text {critical_reg }}:=q F\left(1-\alpha, \text { DegreeFree }_{\text {reg. }} \text { DegreeFree }_{s s}\right)
\]


F Test for Corrosion


Test the high points

\section*{F Test for Corrosion}


Appendix 21 - Location 17A Sensitivity Study without 1996 data \(d:=0\) The data shown below was collected on 10/18/06

\section*{For Dec 311992}
page :=READPRN("U:UMSOFFICEDrywell Program datalDec. 1992 DatalsandbedDATA ONLYSB17A.txt" )

\[
\text { Point } 40_{\mathrm{d}}:=\mathrm{nnn}_{39} \quad \text { Point } 40=804
\]

The two groups are named as follows
\[
\text { StopCELL }:=21 \quad \text { No Cells }:=\text { length( Cells) }
\]
\[
\begin{aligned}
& \text { low points }:=\text { LOWROWS(nnn, No Cells, StopCELL) } \quad \text { high points }:=\text { TOPROWS(nnn, No Cells, StopCELLL) } \\
& \text { No lowCells }:=\text { length(low points) } \\
& { }^{N o}{ }_{\text {highCells }}:=\text { length (high points } \text { ) } \\
& \text { Cells := deletezero cells (nm, No Cells) } \\
& { }^{\mu l o w} \text { measured }_{d}:=\text { mean(low points) } \\
& \text { slow }_{\text {measured }}^{d} \text { :=Stdev(low points) } \\
& \text { Standardlow }_{\text {error }}^{d} \text { }:=\frac{\text { slow measured }_{d}}{\sqrt{\text { length (low points) }}}
\end{aligned}
\]

For 1994
.page :=READPRN("U:LMSOFFICELDrywell Program datalSept. 1994 DatalsandbedDATA ONLYSB17A.txt")
\[
\text { Points } 49:=\text { showcells( page, } 7,0) \quad \text { Dates }_{d}:=\text { Day }_{\text {year }}(9,26,1994)
\]
\begin{tabular}{rl}
\multicolumn{8}{c}{ Data } \\
\(\quad\) Points \(_{49}\) & \(=\left[\begin{array}{lllllll}1.163 & 1.146 & 1.158 & 1.141 & 1.136 & 1.168 & 1.172 \\
1.122 & 1.155 & 1.122 & 1.144 & 1.128 & 1.157 & 1.133 \\
1.121 & 1.088 & 1.108 & 1.116 & 1.102 & 1.071 & 1.055 \\
0.977 & 0.993 & 0.981 & 0.989 & 1.046 & 1.001 & 0.956 \\
0.962 & 0.914 & 0.869 & 0.942 & 0.877 & 0.938 & 0.962 \\
0.861 & 0.963 & 0.894 & 0.82 & 0.809 & 0.947 & 0.984 \\
0.927 & 0.97 & 0.866 & 0.895 & 0.893 & 0.956 & 0.953\end{array}\right]\).
\end{tabular}
\[
\text { nnn }:=\text { convert (Points } 49,7) \quad \text { No DataCells }:=\text { length }(n n n)
\]
\[
\text { Point }_{40}:=\operatorname{nnn}_{39}
\]

The two groups are named as follows:
low points \(:=\) LOWROWS(nnn, No Cells, StopCELL)
\(\mathrm{No}_{\text {lowCells }}:=\) length(low points)

StopCELL :=21
high points \(:=\) TOPROWS (nnn, No Cells, StopCELL \()\)

No highCells \(^{:=}\)length(high points)

Cells := deletezero cells (nnn, No Cells)
low points := deletezero cells(low points, No lowCells)
high points \(:=\) deletezero cells (high points, \({ }^{\text {No }}{ }_{\text {highCells }}\) )

\(\mu\) high measured \({ }_{d}:=\) mean(high points)
\(\mu \mathrm{low}\) measured \(_{d}:=\) mean(low points)
ohigh measured \({ }_{d}:=S t d e v\left(\right.\) high \(\left._{\text {points }}\right)\) olow measured \(d_{d}:=\operatorname{Stdev}(\) low points \()\)
Standardhigh \(_{\text {error }}^{d}\) \(\left.:=\frac{\text { ohigh }_{\text {measured }}^{d}}{}\right)\)


Data
Points \(_{49}=\left[\begin{array}{lllllll}1.11 & 1.149 & 1.154 & 1.138 & 1.13 & 1.17 & 1.169 \\ 1.121 & 1.159 & 1.114 & 1.144 & 1.134 & 1.148 & 1.123 \\ 1.068 & 1.073 & 1.111 & 1.114 & 1.094 & 1.083 & 1.053 \\ 0.976 & 0.991 & 0.98 & 1.03 & 1.046 & 0.994 & 0.95 \\ 0.962 & 0.926 & 0.909 & 0.95 & 0.869 & 0.938 & 0.967 \\ 0.903 & 0.956 & 0.891 & 0.835 & 0.802 & 0.95 & 0.963 \\ 0.954 & 0.972 & 0.877 & 0.89 & 0.875 & 0.891 & 0.945\end{array}\right]\)
nnn := convert(Points 49,7 )
\[
\text { No DataCells }:=\text { length(nnin) }
\]
\[
\text { Point }_{40}:=\mathrm{mnn}_{39}
\]

The two groups are named as follows:
\[
\begin{aligned}
& \text { low }_{\text {points }}:=\text { LOWROWS(nnn, No Cells StopCELLL) } \\
& { }^{\text {No }} \text { lowCells }:=\text { length(low points) }
\end{aligned}
\]
\[
\text { StopCElL }:=21 \quad \text { No Cells }:=\text { length(nnn) }
\]
\[
\text { high points }:=\text { TOPROWS(nnn; No Cells }, \text { StopCELL })
\]
\[
N_{\text {highCells }}:=\text { length(high points) }
\]
Cells \(:=\) deletezero cells (nnn, No Cells)
                low \(_{\text {points }}:=\) deletezero cells (low points, No lowCells)
                        high points \(:=\) deletezero cells (high points \({ }^{\text {No }}\) highCells)
    \(\mu_{\text {measured }_{d}}:=\) mean(Cells) \(^{\sigma_{\text {measured }_{d}}:=S t d e v(\text { Cells }) \quad S t a n d a r d_{\text {error }}^{d}}:=\frac{\sigma^{\text {measured }_{d}}}{\sqrt{\text { No DataCells }}}\)
    \(\mu\) high \(_{\text {measured }}^{d}\) \(:=\) mean(high points)
    ohigh measured \({ }_{d}:=\operatorname{Stdev}\left(\right.\) high \(\left._{\text {points }}\right)\)
    Standardhigh \(_{\text {error }}^{d}: ~=\frac{\text { ohigh }^{\text {measured }_{d}}}{\sqrt{\text { length (high points }}}\)
\[
\begin{aligned}
& \mu l o w_{\text {measured }_{d}}:=\text { mean(low points) }^{\text {olow measured }}:=\text { Stdev(low points) } \\
& \text { Standardlow }_{d} \text { error }_{d}:=\frac{\text { olow measured }_{d}}{\sqrt{\text { length(low points) }}}
\end{aligned}
\]

Sheet No. \(21^{\text {of }}\)

Below are the results
\[
\text { Dates }=\left[\begin{array}{l}
1.993 \cdot 10^{3} \\
1.995 \cdot 10^{3} \\
2.007 \cdot 10^{3}
\end{array}\right] \quad \quad \text { Point } 40=\left[\begin{array}{l}
804 \\
809 \\
802
\end{array}\right]
\]
\(\mu_{\text {measured }}=\left[\begin{array}{c}1.022 \cdot 10^{3} \\ 1.017 \cdot 10^{3} \\ 1.015 \cdot 10^{3}\end{array}\right]\)
\[
\text { Standard }_{\text {error }}=\left[\begin{array}{l}
14.971 \\
15.472 \\
14.911
\end{array}\right]
\]
\[
\sigma_{\text {measured }}=\left[\begin{array}{l}
104.798 \\
108.306 \\
104.378
\end{array}\right]
\]
\(\mu\) high measured \(=\left[\begin{array}{l}1.125 \cdot 10^{3} \\ 1.129 \cdot 10^{3} \\ 1.122 \cdot 10^{3}\end{array}\right]\) ohigh measured \(=\left[\begin{array}{l}33.118 \\ 31.283 \\ 33.194\end{array}\right]\)
Standardhigh \(_{\text {error }}=\left[\begin{array}{l}7.227 \\ 6.827 \\ 7.243\end{array}\right]\)
\(\mu_{\text {low }}\) measured \(=\left[\begin{array}{l}941.593 \\ 933.75 \\ 935.429\end{array}\right]\)
Slow measured \(=\left[\begin{array}{c}61.37 \\ 56.659 \\ 55.725\end{array}\right]\)
Standardlow \(_{\text {error }}=\left[\begin{array}{c}11.811 \\ 10.708 \\ 10.531\end{array}\right]\)
\[
\text { Total means }:=\text { rows }\left(\mu_{\text {measured }}\right) \quad \text { Total means }=3
\]
\[
\begin{aligned}
& \text { SST }:=\sum_{i=0}^{\text {last(Dates })}\left(\mu_{\text {measured }}^{i}-\text { mean }\left(\mu_{\text {measured }}\right)\right)^{2} . \\
& \text { SST }_{\text {low }}:=\sum_{i=0}^{\text {last(Dates })} \cdot\left(\text { Hlow }_{\text {measured }_{i}} \text { - mean }^{\left.\left(\mu \text { low }_{\text {measured }}\right)\right)^{2}}\right. \\
& S S T_{\text {high }}:=\sum_{i=0}^{\text {last(Dates) }}\left(\mu \text { high }_{\text {measured }_{i}}-\text { mean }^{\left.\left(\mu \text { high }_{\text {measured }}\right)\right)^{2}}\right.
\end{aligned}
\]
\[
\begin{aligned}
& \text { SSE }:=\sum_{i=0}^{\text {last(Dates })}\left(\mu_{\text {measured }}-\operatorname{yhat}\left(\text { Dates, } \mu_{\text {measured }}\right)_{i}\right)^{2} \\
& \text { SSE }{ }_{\text {low }}:=\sum_{i=0}^{\text {last(Dates) }}\left(\text { Hlow }_{\text {measured }_{i}}-\text { yhat }\left(\text { Dates, } \mu_{\text {low }}^{\text {measured }}\right)_{i}\right)^{2} \\
& \text { SSE }_{\text {high }}:=\sum_{i=0}^{\text {last(Dates })}\left(\mu \text { high measured }_{i}-\text { yhat }\left(\text { Dates, } \mu \text { high }_{\text {measured }}\right)_{i}\right)^{2} \\
& S S R:=\sum_{i=0}^{\text {last(Dates })}\left(\text { yhat }\left(\text { Dates }, \mu_{\text {measured }}\right)_{i}-\text { mean }\left(\mu_{\text {measured }}\right)\right)^{2}
\end{aligned}
\]
\[
\begin{aligned}
& \operatorname{SSR}_{\text {low }}:=\sum_{i=0}^{\text {iasunnaw, }}\left(\text { yhat }(\text { Dates, } \mu \text { low measured })_{i}-\text { mean }(\mu \text { low measured })\right)^{2} \\
& \operatorname{SSR}_{\text {high }}:=\sum_{i=0}^{\text {last(Dates })}\left(\text { yhat } \left({\text { Dates } \left.\left., \mu \text { high }_{\text {measured }}\right)_{i}-\text { mean }\left(\mu \text { high }_{\text {measured }}\right)\right)^{2}}^{2}\right.\right.
\end{aligned}
\]
\[
\text { DegreeFree }_{\text {ss }}:=\text { Total means }^{-2} \quad \text { DegreeFree }_{\text {reg }}:=1 \quad \text { DegreeFree }_{\text {st }}:=\text { Total means }^{-1}
\]
\[
\text { MSE }:=\frac{\text { SSE }}{\text { DegreeFree }_{\text {ss }}} \quad \text { MSE }_{\text {low }}:=\frac{\text { SSE }_{\text {low }}}{\text { DegreeFree }_{\text {sS }}} \quad \text { MSE }_{\text {high }}:=\frac{\text { SSE }_{\text {high }}}{\text { DegreeFree }_{\text {ss }}}
\]
\[
\text { Standard }_{\text {error }}:=\sqrt{\text { MSE }} \quad . \quad \text { Standard }_{\text {lowerror }}:=\sqrt{\mathrm{MSE}_{\text {low }}} \quad \text { Standard }_{\text {higherror }}:=\sqrt{\text { MSE }_{\text {high }}}
\]
\[
\text { MST }:=\frac{\text { SST }}{\text { DegreeFree }_{\text {st }}} \quad \text { MST }_{\text {low }}:=\frac{\text { SST }_{\text {low }}}{\text { DegreeFree }_{\text {st }}} \quad \text { MST }_{\text {high }}:=\frac{\text { SST }_{\text {high }}}{\text { DegreeFree }_{\text {st }}}
\]

\section*{Test the means with all points}

\section*{F Test for No Corrosion}

\section*{F Test for Corrosion}
\(F_{\text {actaul_Gradnmean }}:=\frac{M S T}{M S R} \quad \alpha:=0.05 \quad F_{\text {actaul } \_ \text {Reg }}:=\frac{\text { MSR }}{M S E}\)
\(F_{\text {critical_GM }}:=q F\left(1-\alpha\right.\), DegreeFree \(_{\text {reg }}\), DegreeFree \(\left._{s t}\right) \quad F_{\text {critical_reg }}:=q F\left(1-\alpha\right.\), DegreeFree \(_{\text {reg, }}\), DegreeFree \(\left._{s s}\right)\)
\(F_{\text {ratio_GM }}:=\frac{F_{\text {actaul_Gradnmean }}}{F_{\text {critical_GM }}}\)
\(F_{\text {ratio_reg }}:=\frac{F_{\text {actaul_Reg }}}{F_{\text {critical_reg }}}\)
\[
\mathrm{F}_{\text {ratio_GM }}=0.04
\]


Therefore no conclusion can be made as to whether the data best fits the regression model or the grandmean model. However the grandmean ratio is significantly greater than the regression ratio indicating a line without a slope may be the a better fit. The figure below provides a trend of the data and the grandmean

\section*{Test the low points}
\[
\begin{aligned}
& \text { F Test for No Corrosion F Test for Corrosion } \\
& F_{\text {actaul_Gradnmean.low }}:=\frac{\text { MST }_{\text {low }}}{\text { MSR }_{\text {low }}} \quad \quad F_{\text {actaul_Reg.low }}:=\frac{\text { MSR }_{\text {low }}}{\text { MSE }_{\text {low }}} \\
& F_{\text {critical_GM }}:=q F\left(1-\alpha, \text { DegreeFree }_{\text {reg, }} \text { DegreeFree }_{s t}\right) \quad F_{\text {critical_reg }}:=q F\left(1-\alpha, \text { DegreeFree }_{\text {reg, }} \text { DegreeFree }_{\text {ss }}\right) \\
& F_{\text {ratio_GM.low }}:=\frac{F_{\text {actaul_Gradnmean.low }}}{F_{\text {critical_GM }}} \\
& F_{\text {ratio_GM.low }}=0.152 \\
& \text { The conclusion can be made that the low points best fit the grandmean onodel The grandmean ratio is } \\
& \text { greater than one. The figure below provides a trend of the data and the grandmean }
\end{aligned}
\]

\section*{Test the high points}

\section*{F Test for No Corrosion}
\[
F_{\text {ratio_GM.high }}:=\frac{F_{\text {actaul_Gradnmean.high }}}{F_{\text {critical_GM }}}
\]
\[
F_{\text {ratio_GM.high }}=0.049
\]

Therefore no conclusion can be made as to whether the data best fits the regression model or the grandmean model. However the grandmean ratio is significantly greater than the regression ratio indicating a line without a slope may be the a better fit. The figure below provides a trend of the data and the grandmean
\[
\begin{aligned}
& F_{\text {actaul_Gradnmean_high }}:=\frac{\text { MST }_{\text {high }}}{\text { MSR }_{\text {high }}} \quad F_{\text {actaul_Reg.high }}:=\frac{\text { MSR }_{\text {high }}}{\text { MSE }_{\text {high }}} \\
& F_{\text {critical_GM }}:=q F\left(1-\alpha, \text { DegreeFree }_{\text {reg }} . \text { DegreeFree }_{s t}\right) . F_{\text {critical_reg }}:=q F\left(1-\alpha, \text { DegreeFree }_{\text {reg, }} \text {, DegreeFree }{ }_{s s}\right)
\end{aligned}
\]

\section*{Appendix 21 - Locatlon 17D Sensitlvity Study without 1996 data} The data shown below was collected on 10/18/06
\[
d:=0
\]

For 1992
\[
\text { Dates }_{d}:=\text { Day }_{\text {year }}(12,8,1992)
\]
page :=READPRN( "U:IMSOFFICEDrywell Program dataDec. 1992 DataisandbedData OnlyISB17D.txt" )

Points 49 : \(=\) showcells(page, 7,0)
\[
\begin{aligned}
& \text { Data } \\
& \text { nnn := convert(Points 49, 7) } \\
& { }^{\text {No }}{ }_{\text {DataCells }}:=\text { length(nnn) } \\
& \text { point } 13_{d}: \operatorname{man}_{13} \\
& \text { point }{ }_{13}=648
\end{aligned}
\]

For this location point 15, 16, 22, and 23 are over a plug (refer 3.22)
\[
\begin{align*}
& \text { nnn }:=\text { Zero one (nnin, No DataCelis, } 15 \text { ) }  \tag{15}\\
& \text { nnn :=Zero one (nnn, No DataCells, 22) } \\
& \text { Cells }:=\text { deletezero }_{\text {cells }}\left({ }^{(n n n, ~}{ }^{\mathrm{No}}\right. \text { DataCells) } \\
& \mu_{\text {measured }_{d}}:=\text { mean(Cells) } \quad \sigma_{\text {measured }_{d}}:=\operatorname{Stdev}(\text { Cells }) \quad \quad \text { Standard } \text { enror }_{d}:=\frac{\sigma_{\text {measured }_{d}}^{\sqrt{\text { No }_{\text {DataCells }}}}}{\text {. }} \\
& \text { nnn }:=\text { Zero one }\left({ }^{n n n, ~ N o ~} \text { DataCells }{ }^{16}\right. \text { ) } \\
& \text { nnn := Zero one(nnn, No DataCells, 23) }
\end{align*}
\]
page :=READPRN( "U:IMSOFFICEDDrywell Program datalSept. 1994 DatalsandbedData OnlylSB17D.txt" )
\[
\text { Dates }_{d}:=\text { Day }_{\text {year }}(9,14,1994)
\]

Points \(49:=\) showcells(page, 7,0)
\[
\begin{gathered}
\text { Data } \\
\text { Points } 49=\left[\begin{array}{lllllll}
0.797 & 0.815 & 0.853 & 0.887 & 0.925 & 0.878 & 0.696 \\
0.807 & 0.806 & 0.698 & 0.802 & 0.729 & 0.734 & 0.646 \\
1.008 & 0.243 & 0.749 & 0.741 & 0.816 & 0.735 & 0.662 \\
1.068 & 1.066 & 0.739 & 0.812 & 0.772 & 0.793 & 0.785 \\
0.804 & 0.836 & 0.838 & 0.794 & 0.853 & 0.828 & 0.842 \\
0.79 & 0.825 & 0.885 & 0.847 & 0.872 & 0.853 & 0.795 \\
0.827 & 0.899 & 0.826 & 0.863 & 0.922 & 0.934 & 0.835
\end{array}\right] \\
\text { nnn }:=\text { convert(Points } 49,7 \text { ). } \\
\text { point }{ }_{13}:=\mathrm{nnn}_{13}
\end{gathered}
\]

For thls location point 15, 16, 22, and. 23 are over a plug (refer 3.22)
\[
\begin{aligned}
& \text { nna :=Zero one(nnn, No DataCells, 15) } \\
& \text { nnn :=Zero one(nnn, No DataCells, }{ }^{22} \text { ) } \\
& \text { nin }:=\text { Zero one (nnn; No DataCells, }^{\text {, }} 16 \text { ) } \\
& \text { nnn }:=\text { Zero one (nnn, No DataCells, }{ }^{23} \text { ) } \\
& \text { Cells := deletezero cells (nnn, No DataCells) } \\
& \mu_{\text {measured }_{d}}:=\text { mean(Cells) } \quad \sigma_{\text {measured }_{d}}:=\operatorname{Stdev}(C e l l s) \\
& \text { Standard }_{\text {error }_{d}}:=\frac{{ }^{\sigma} \text { measured }_{d}}{\sqrt{\text { No DataCells }}}
\end{aligned}
\]
    page \(:=\) READPRN("U:IMSOFFICEDDrywell Program datalOCT 2006 DatalSandbedSSB17D.txt" )
                                    Dates \(_{d}:=\) Day year \((10,16,2006)\)
                Points 49 := showcells(page, 7,0)

\section*{Data}
Points \(_{49}=\left[\begin{array}{lllllll}0.849 & 0.828 & 0.861 & 0.894 & 0.93 & 0.888 & 0.702 \\ 0.806 & 0.802 & 0.717 & 0.806 & 0.736 & 0.756 & 0.648 \\ 0.998 & 0.823 & 0.752 & 0.733 & 0.822 & 0.73 & 0.667 \\ 1.072 & 1.074 & 0.742 & 0.812 & 0.812 & 0.803 & 0.791 \\ 0.814 & 0.841 & 0.85 & 0.816 & 0.852 & 0.856 & 0.869 \\ 0.792 & 0.829 & 0.888 & 0.846 & 0.888 & 0.855 & 0.8 \\ 0.824 & 0.897 & 0.837 & 0.887 & 0.891 & 0.935 & 0.886\end{array}\right]\)
nan := convert( Points 49,7 )
\[
\text { point } 13_{\mathrm{d}}:=\mathrm{nnn}_{13}
\]

For this location point 15, 16, 22, and 23 are over a plug (refer 3.22)
\[
\begin{aligned}
& \text { in }:=\text { Zero }_{\text {one }}(\text { man, No } \text { DataCells } \text {, } 15 \text { ) } \\
& \text { nan :=Zero one( }{ }^{(m n, N o} \text { DataCells, 22) } \\
& \text { Cells := deletezero cells (in, No DataCells) }
\end{aligned}
\]

Below are matrices which contain the date when the data was collected, Mean, Standard Deviation, Standard Error for each date.
\[
\text { Dates }=\left[\begin{array}{c}
1.993 \cdot 10^{3} \\
1.995 \cdot 10^{3} \\
2.007 \cdot 10^{3}
\end{array}\right] \quad \text { point } 13=\left[\begin{array}{c}
648 \\
646 \\
648
\end{array}\right]
\]
\(\mu_{\text {measured }}=\left[\begin{array}{c}817.2222 \\ 809.8889 \\ 818.6667\end{array}\right] \quad\) Standard error \(=\left[\begin{array}{l}9.214 \\ 9.448 \\ 9.476\end{array}\right] \quad \sigma_{\text {measured }}=\left[\begin{array}{l}64.496 \\ 66.133 \\ 66.335\end{array}\right]\)

Total means \(:=\) rows \((\mu\) measured \() \quad\) Total means \(=3\)
\[
\begin{aligned}
& \text { SST }:=\sum_{i=0}^{\text {last(Dates })}\left(\mu_{\text {measured }}-\text { mean }\left(\mu_{\text {measured }}\right)\right)^{2} \\
& \text { SST }=44.305 \\
& \text { SSE }:=\sum_{i=0}^{\text {last(Dates })}\left(\mu_{\text {measured }}-\operatorname{yhat}\left(\text { Dates }, \mu_{\text {measured }}\right)_{i}\right)^{2} \quad \quad \text { SSE }=31.795 \\
& \operatorname{SSR}:=\sum_{i=0}^{\text {last(Dates })}\left(\operatorname{yhat}\left(\text { Dates, } \mu_{\text {measured }}\right)_{1}-\operatorname{mean}\left(\mu_{\text {measured }}\right)\right)^{2} \quad \text { SSR }=12.51 \\
& \begin{array}{l}
\text { DegreeFree }_{\text {ss }}:=\text { Total means }^{-2} \quad \text { DegreeFree }_{\text {reg }}:=1 \quad \text { DegreeFree }_{\text {st }}:=\text { Total }^{\text {MSg }}:=\frac{\text { SSE }}{\text { DegreeFree }_{\text {ss }}} \quad \text { MR }:=\frac{\text { SSR }}{\text { DegreeFree }_{\text {reg }}} \quad \text { MST }:=\frac{\text { SST }}{\text { DegreeFree }_{\text {st }}}
\end{array}
\end{aligned}
\]

StGrand \(_{\text {err }}:=\sqrt{\text { MSE }}\)
StGrand \(_{\mathrm{err}}=5.639\)

\section*{F Test for Corrosion}
\(\alpha:=0.05 \quad F_{\text {actaul_Reg }}:=\frac{\text { MSR }}{M S E}\)
\(F_{\text {critical_reg }}:=\mathrm{qF}\left(1-\alpha\right.\), DegreeFree \(_{\text {reg }}\) DegreeFree \(\left._{s s}\right)\)
\(F_{\text {ratio_reg }}=\frac{F_{\text {actaul_Reg }}}{F_{\text {critical_reg }}}\)
\(F_{\text {ratio_reg }}=2.437 \cdot 10^{-3}\)

Appendx 21-Location 19C Sensitivity Study without 1996 data The data shown below was collected on 10/18/06
d:=0

Dala from the 1992, 1994 and 1996 is retrieved.
\[
\text { Dates }_{d}:=\text { Day year }^{(12,8,1992)}
\]
page \(:=\) READPRN( "U:IMSOFFICEIDrywell Program datalDec. 1992 DatalsandbedData OnlylSB19C.txt" )
\[
\text { Points } 49:=\text { showcells(page, } 7,0)
\]

For 1992
Points \(49=\left[\begin{array}{lllllll}0.822 & 0.757 & 0.792 & 0.994 & 0.922 & 0.979 & 0.931 \\ 0.683 & 0.716 & 0.693 & 0.797 & 0.753 & 0.887 & 0.838 \\ 0.815 & 0.744 & 0.879 & 0.859 & 0.856 & 0.222 & 0.888 \\ 0.785 & 0.65 & 0.713 & 0.766 & 1.147 & 1.152 & 0.907 \\ 0.839 & 0.782 & 0.732 & 0.762 & 0.859 & 0.791 & 0.838 \\ 0.867 & 0.833 & 0.88 & 0.756 & 0.852 & 0.736 & 0.752 \\ 0.835 & 0.861 & 0.889 & 0.842 & 0.896 & 0.884 & 0.809\end{array}\right]\)
\(\operatorname{nin}:=\) convert \((\) Points 49,7\()\)
\[
\text { No DataCells }:=\text { length(nnn) }
\]

For this location point 20, 26, 27, and 33 are over a plug (refer 3.22)
\[
\begin{aligned}
& \text { nnn :=Zero one(nnn, No DataCells, 20) } \\
& \text { nnn }:=\text { Zero one (nnn, No DataCells, 27) } \\
& \text { Cells := deletezero cells (nnn, No DataCells) } \\
& n n n:=\text { Zero one (nnn, No DataCells, } 26 \text { ) } \\
& \text { man :=Zero one(nnn, No DataCells, } 33 \text { ) } \\
& \text { minpoint }:=\min (\text { Cells }) \quad \text { minpoint }=650 \\
& \text { Point } 211^{d}:=\text { Cells }_{21} \text { Point } 21=650 \\
& \mu_{\text {measured }_{d}:=\text { mean(Cells) } \quad \sigma_{\text {measured }_{d}}:=\operatorname{Stdev}(\text { Cells })} \quad \text { Standard } \text { error }_{d}:=\frac{\sigma^{\text {measured }_{d}}}{\sqrt{\text { No DataCells }}}
\end{aligned}
\]

For 1994
page :=READPRN("U:MSOFFICEDDrywell Program datalSept. 1994 DatalsandbedData OnlylSB19C.txt")
Dates \(_{d}:=\) Day \(_{\text {year }}(9,14,1994)\)

Points 49 := showcells(page, 7,0)

Data
Points \(_{49}=\left[\begin{array}{lllllll}0.816 & 0.757 & 0.82 & 0.979 & 0.904 & 0.952 & 0.917 \\ 0.677 & 0.738 & 0.694 & 0.798 & 0.762 & 0.897 & 0.831 \\ 0.813 & 0.736 & 0.876 & 0.855 & 0.838 & 0.221 & 0.884 \\ 0.787 & 0.666 & 0.718 & 0.762 & 1.153 & 1.149 & 0.906 \\ 0.841 & 0.782 & 0.734 & 0.764 & 0.856 & 0.787 & 0.834 \\ 0.871 & 0.832 & 0.886 & 0.766 & 0.867 & 0.735 & 0.748 \\ 0.836 & 0.853 & 0.892 & 0.851 & 0.9 & 0.902 & 0.831\end{array}\right]\).
nnn \(:=\) convert (Points 49,7 ) No DataCells \(:=\) length(nnn)
For this location point 20,26,27, and 33 are over a plug (refer 3.22)
\[
\begin{aligned}
& \text { nnn :=Zero one (nnn, No DataCells, 20) } \\
& \text { nnn }:=\text { Zero one (nnn, No DataCells, }{ }^{27} \text { ) } \\
& \text { nnn:=Zero one (nnn, No } \text { DataCells }^{26} \text { ) } \\
& \text { nnn :=Zero one(nnn, No DataCells, }{ }^{33} \text { ) } \\
& \text { Cells }:=\text { deletezero cells (nnn, No DataCells) } \\
& \text { Point } 21_{d}:=\text { Cells }_{21} \\
& \mu_{\text {measured }_{d}}:=\operatorname{mean}(C e l l s) \quad \sigma_{\text {measured }_{d}}:=\operatorname{Sidev}(\text { Cells }) \quad \text { Standard } \text { error }_{d}:=\frac{\sigma^{\text {measured }_{d}}}{\sqrt{\text { No DataCells }}}
\end{aligned}
\]
page := READPRN("U:LMSOFFICEIDrywell Program datalOCT 2006 DatalSandbedSB19C.txt" )
Dates \(_{d}:=\) Day \(_{\text {year }}(10 ; 16,2006)\)

Points 49 := showcells(page, 7,0)

Data
Points \(_{49}=\left[\begin{array}{lllllll}0.809 & 0.768 & 0.862 & 1.059 & 0.968 & 0.961 & 0.92 \\ 0.679 & 0.745 & 0.695 & 0.814 & 0.766 & 0.865 & 0.845 \\ 0.816 & 0.775 & 0.87 & 0.871 & 0.863 & 0 & 0.896 \\ 0.791 & 0.66 & 0.715 & 0.793 & 1.151 & 1.164 & 0.918 \\ 0.851 & 0.781 & 0.733 & 0.762 & 0.862 & 0.787 & 0.796 \\ 0.866 & 0.83 & 0.88 & 0.757 & 0.867 & 0.75 & 0.753 \\ 0.801 & 0.794 & 0.852 & 0.841 & 0.901 & 0.906 & 0.84\end{array}\right]\)
nnn \(:=\) convert(Points 49,7 )
No DataCells := length(nnn)
For this location point 20,26,27, and 33 are over a plug (refer 3.22)
\[
\begin{aligned}
& \text { mnn }:=\text { Zero }_{\text {one }}(\text { nnn, No DataCells, 20) } \\
& \text { nnn :=Zero one(nnn, No DataCelss }{ }^{27} \text { ) } \\
& \text { Cells :=deletezero cells (nnn, No DataCells) } \\
& \text { Point }_{21}:=\text { Cells }_{21} \\
& \mu_{\text {measured }_{d}}:=\text { mean(Cells) } \quad \sigma_{\text {measured }_{d}}:=\operatorname{Stdev}(\text { Cells }) \quad \text { Standard } \text { error }_{d}:=\frac{\sigma^{\text {measured }_{d}}}{\sqrt{\text { No DataCells }}}
\end{aligned}
\]

Below are matrices which contain the date when the data was collected, Mean, Standard Deviation, Standard Error for each date.
\[
\begin{aligned}
& \text { Dates }=\left[\begin{array}{l}
1.993 \cdot 10^{3} \\
1.995 \cdot 10^{3} \\
2.007 \cdot 10^{3}
\end{array}\right] \quad \text { Point } 21=\left[\begin{array}{l}
650 \\
666 \\
660
\end{array}\right] \\
& \mu_{\text {measured }}=\left[\begin{array}{l}
819.156 \\
819.889 \\
823.822
\end{array}\right] \quad \text { Standard } \text { error }=\left[\begin{array}{l}
11.01 \\
10.485 \\
11.303
\end{array}\right] \quad \sigma_{\text {measured }}=\left[\begin{array}{l}
77.068 \\
73.396 \\
79.123
\end{array}\right] \\
& \text { Total means }:=\text { rows }(\mu \text { measured }) \quad \text { Total means }=3 \\
& \operatorname{SST}:=\sum_{i=0}^{\operatorname{last}(\text { Dates })}\left(\mu_{\text {measured }}-\text { mean }\left(\mu_{\text {measured }}\right)\right)^{2} \\
& \text { SSE }:=\sum_{i=0}^{\text {last(Dates) }}\left(\mu_{\text {measured }}^{i}-\text { yhat }\left(\text { Dates }, \mu_{\text {measured }}\right)_{i}\right)^{2} \\
& S S E=0.011 \\
& \operatorname{SSR}:=\sum_{i=0}^{\operatorname{last}(\text { Dates })}\left(\text { yhat }(\text { Dates }, \mu \text { measured })_{i}-\operatorname{mean}(\mu \text { measured })\right)^{2} \quad S S R=12.585
\end{aligned}
\]
\begin{tabular}{|c|c|c|}
\hline DegreeFree \(_{\text {ss }}:=\) Total means -2 & DegreeFree \(_{\text {reg }}:=1\) & DegreePree \({ }_{\text {st }}:=\) Total means \(^{-1}\) \\
\hline MSE = SSE & MSR \(=\quad\) SSR & SST \\
\hline Degreefree ss & DegreeFree reg & DegreeFree \(_{\text {st }}\) \\
\hline \(\mathrm{MSE}=0.011\) & MSR \(=12.585\) & MST \(=6.298\) \\
\hline StGrand \(_{\text {er }}:=\sqrt{\text { MSE }}\) & StGrand \(_{\text {err }}=0.104\) & \\
\hline
\end{tabular}

Below are matrices which contain the date when the data was collected, Mean, Standard Deviation, Standard Error for each date.
\[
\begin{aligned}
& \text { Dates }=\left[\begin{array}{l}
1.993 \bullet 10^{3} \\
1.995 \bullet 10^{3} \\
2.007 \bullet 10^{3}
\end{array}\right] \\
& \\
& \mu_{\text {measured }}=\left[\begin{array}{l}
819.156 \\
819.889 \\
823.822
\end{array}\right] \quad \text { Point } 21=\left[\begin{array}{l}
650 \\
666 \\
660
\end{array}\right] \\
& \because \quad \text { Standard error }=\left[\begin{array}{l}
11.01 \\
10.485 \\
11.303
\end{array}\right] \quad \sigma_{\text {measured }}=\left[\begin{array}{l}
77.068 \\
73.396 \\
79.123
\end{array}\right] \\
& \text { Total means }:=\text { rows }(\mu \text { measured })
\end{aligned}
\]
\[
\text { SST }:=\sum_{i=0}^{\text {last(Dates })}\left(\mu_{\text {measured }}-\text { mean }\left(\mu_{\text {measured }}\right)\right)^{2}
\]
\[
\text { SSE }:=\sum_{i=0}^{\text {last }(D a t e s)}\left(\mu_{\text {measured }_{i}}-\text { yhat }\left(\text { Dates, } \mu_{\text {measured }}\right)_{i}\right)^{2}
\]
\[
\operatorname{SSE}=0.011
\]
\[
\text { SSR }:=\sum_{i=0}^{\text {last(Dates })}\left(\text { yhat }\left(\text { Dates }, \mu_{\text {measured }}\right)_{i}-\text { mean }(\mu \text { measured })\right)^{2} \quad \text { SSR }=12.585
\]

\section*{F Test for Corrosion}
\[
\alpha:=0.05 \quad F_{\text {actaul_Reg }}:=\frac{\text { MSR }}{\text { MSE }}
\]
\[
F_{\text {critical_reg }}:=q F\left(1-\alpha_{,} \text {DegreeFree }_{\text {reg }}, \text { DegreeFiee }_{s s}\right)
\]
\[
F_{\text {ratio_reg }}:=\frac{F_{\text {actaul_Reg }}}{F_{\text {criticel_reg }}}
\]
\[
F_{\text {ratio_reg }}=7.263
\]

The conclusion can be made that the mean best fits the grandmean model.

Therefore no conclusion can be made as to whether the data best fits the regression model. The figure below provides a trend of the data and the grandmean

Therefore the curve fit of the means does not have a slope and the grandmean is an accurate measure of the thickness at this location
\[
\mathrm{i}:=0 . \text { Total }_{\text {means }}-1 \quad \text {. } \quad \text { ugrand measured },:=\text { mean }(\mu \text { measured })
\]
ogrand measured \(:=\operatorname{Stdev}\left(\mu_{\text {measured }}\right) \quad \quad G r a n d S t a n d a r d ~ e r r o r_{0}:=\frac{\text { ogrand measured }}{\sqrt{\text { Total means }}}\)
The minimum required thickness at this elevation is \(T_{\text {min_gen }} \mathrm{SB}_{1}:=736 \quad\) (Ref. 3.25)

Plot of the grand mean and the actual means over time



To conservatively address the location, the apparent corrosion rate is calculated and compared to the
minimum required wall thickness at this elevation minimum required wall thickness at this elevation
\[
\left.m_{s}:=\text { slope }\left(\text { Dates, } \mu_{\text {measured }}\right) \quad m_{s}=0.333 \quad y_{b}:=\text { intercept(Dates, } \mu_{\text {measured }}\right) . \quad y_{b}=156.275
\]

The 95\% Confidence curves are calculated
\[
\begin{aligned}
& \alpha_{t}:=0.05 \quad \mathrm{f}:=2029-1985 \\
& \text { year }_{\text {predict }}:=1985+\mathrm{f} \cdot 2 . \text { Thick }_{\text {predict }}:=\mathrm{m}_{\mathrm{s}} \cdot \text { year }_{\text {predict }}+y_{\mathrm{b}} \\
& \text { Thick } \left._{\text {actualmean }}:=\text { mean(Dates }\right) \quad \text { sum }:=\sum_{\mathrm{i}}\left(\text { Dates }_{\mathrm{d}}-\text { mean }(\text { Dates })\right)^{2}
\end{aligned}
\]
upper \(_{f}:=\) Thick \(_{\text {predict }}^{f} \ldots\)
\[
+q t\left(1-\frac{\alpha_{t}}{2}, \text { Total }_{\text {means }}-2\right) \cdot \text { StGrand }_{\text {err }} \cdot \sqrt{\left.1+\frac{1}{(d+1)}+\frac{\left(\text { year }_{\text {predict }}^{f}\right.}{}-\text { Thick }_{\text {actualmean }}\right)^{2}}
\]
\[
\begin{aligned}
\text { lower }_{f}:= & \text { Thick }_{\text {predict }_{f} \ldots} \\
& +-\left[\left(1-\left(1-\frac{\alpha_{t}}{2}, \text { Total means }-2\right) \cdot \text { StGrand }_{\text {err }} \cdot \sqrt{\left.1+\frac{1}{(d+1)}+\frac{\left(\text { year }_{\text {predict }_{f}}-\text { Thick }_{\text {actualmean }}\right)^{2}}{\text { sum }}\right]}\right.\right.
\end{aligned}
\]

\section*{Location Curve Fit Projected to Plant End Of Life}


Therefore even though F-ratio does not support the regression model the above curve shows that even at the lower \(95 \%\) confidence band this location will not corrode to below Drywell Vessel Minimum required thickness by the plant end of life.

Appendix 21 - Location 1D Sensitivity Study without 1996 data The data shown below was collected on 10/18/06
\[
d:=0
\]

For 1992
\[
\text { Dates }_{d}:=\text { Day year }^{(12,8,1992)}
\]
page :=READPRN( "U:MMSOFFICE1Drywell Program dataiDec. 1992 DatalsandbedData OnlylSB1D.txt")
\[
\text { Points }_{7}:=\text { show } 7 \text { cells( page, } 1,7,0 \text { ) }
\]

\section*{Data}
Points \(_{7}=\left[\begin{array}{lllllll}0.889 & 1.138 & 1.112 & 1.114 & 1.132 & 1.103 & 1.126\end{array}\right]\)
\[
\text { nan := convert (Points } 7,7,1)
\]
\[
\text { No DataCells }:=\text { length }(\mathrm{nnn})
\]

Point \({ }_{1_{d}}:=\) Points \(_{7_{0}}\)
\[
\text { mn }:=\text { Zero }_{\text {one }}\left(\text { in, No } \text { DataCells }^{\prime} 1\right)
\]

Cells := deletezero cells (inn, No DataCells)
\[
\mu_{\text {measured }_{d}:=\text { mean(Cells) } \quad \sigma_{\text {measured }_{d}}:=\text { Stdev(Cells) }}^{\text {Point } i=0.889} \quad \text { Standard } \text { error }_{d}:=\frac{\sigma_{\text {measured }_{d}}}{\sqrt{\text { No } \text { DataCells }}}
\]

Dates \(_{d}:=\) Day \(_{\text {year }}(9,14,1994)\)

Points 7 := show7cells(page, 1,7,0)

\section*{Data}
\[
\text { Points } 7=\left[\begin{array}{lllllll}
0.879 & 1.054 & 1.105 & 1.119 & 1.124 & 1.088 & 1.118
\end{array}\right]
\]
nna \(:=\operatorname{con} 7\) vert(Points \(7,7,1\) )
No DataCells \(:=\) length ( \(n n n\) )
\[
\text { Point } 1_{\mathrm{d}}:=\text { Points } 7_{\mathrm{o}}
\]
\[
\mathrm{nnn}:=\text { Zero one }\left(\text { (nn, No DataCells }{ }^{1}\right)
\]
\(\mu_{\text {measured }_{d}}:=\) mean(Cells) \(\quad \sigma_{\text {measured }_{d}}:=\operatorname{Stdev}(\) Cells \() \quad\) Standard \(_{\text {error }}^{d}:=\frac{{ }^{0} \text { measured }_{d}}{\sqrt{\text { No DataCells }}}\)
page :=READPRN("U:IMSOFFICEIDrywell Program datalOCT 2006 DatalSandbedISBID.txt" )
\[
\text { Dates }_{d}:=\text { Day }_{\text {year }}(10,16,2006)
\]

Points 7 := show7cells(page, 1,7,0)

\section*{Data}

Points \(_{7}=\left[\begin{array}{lllllll}0.881 & 1.156 & 1.104 & 1.124 & 1.134 & 1.093 & 1.122\end{array}\right]\)
nnn :=con7vert(Points \(7,7,1) \quad\) No DataCells \(:=\) length(nnn)
\[
\text { Point }_{1_{d}}:=\text { Points }_{7_{0}}
\]
\[
\text { nnn }:=\text { Zero one }(\mathrm{nnn}, \text { No DataCells, } 0)
\]
\&

Cells : \(=\) deletezero cells (nnn, No DataCells)
\[
\text { Point }_{1}=\left[\begin{array}{l}
0.889 \\
0.879 \\
0.881
\end{array}\right]
\]
\(\mu_{\text {measured }_{d}}:=\operatorname{mean(Cells)} \quad \sigma_{\text {measured }_{d}}:=\operatorname{Stdev(Cells)} \quad\) Standard \(_{\text {error }}^{d}: ~:=\frac{\sigma_{\text {measured }}^{d}}{}\)

Below are matrices which contain the date when the data was collected, Mean, Standard Deviation, Standard Error for each date.
\[
\begin{aligned}
& \text { Dates }=\left[\begin{array}{c}
1.993 \cdot 10^{3} \\
1.995 \cdot 10^{3} \\
2.007 \cdot 10^{3}
\end{array}\right] \quad . \quad \text { Point }_{1}=\left[\begin{array}{l}
0.889 \\
0.879 \\
0.881
\end{array}\right] \\
& \mu_{\text {measured }}=\left[\begin{array}{l}
1.12083 \cdot 10^{3} \\
1.10133 \cdot 10^{3} \\
1.08771 \cdot 10^{3}
\end{array}\right] \quad \text { Standard } \quad \text { error }=\left[\begin{array}{l}
5.039 \\
10.05 \\
35.295
\end{array}\right] \quad \sigma_{\text {measured }}=\left[\begin{array}{l}
13.333 \\
26.591 \\
93.382
\end{array}\right] \\
& \text { Total means }:=\text { rows }\left(\mu_{\text {measured }}\right) \quad \operatorname{Total}_{\text {means }}=3 \\
& \text { SST }:=\sum_{i=0_{i}}^{\text {last(Dates })}\left(\mu_{\text {measured }_{i}}-\text { mean }\left(\mu_{\text {measured }}\right)\right)^{2} \\
& \text { SSE }:=\sum_{i=0}^{\text {last(Dates) }}\left(\mu_{\text {measured }}^{i}-\text { chat }\left(\text { Dates }, \mu_{\text {measured }}\right)_{i}\right)^{2} \\
& \text { SSR }:=\sum_{i=0}^{\text {last(Dates })}\left(\text { chat }\left(\text { Dates, } \mu_{\text {measured }}\right)_{i}-\operatorname{mean}(\mu \text { measured })\right)^{2} \quad . \quad \text { SSR }=422.916 \\
& \text { DegreeFree }_{\text {ss }}:=\text { Total means }^{-2} \quad \text { DegreeFree }_{\text {reg }}:=1 \quad \text { DegreeFree }_{\text {st }}:=\text { Total means }^{-1} \\
& \text { MSg }:=\frac{\text { SSE }}{\text { DegreeFree }_{\text {sS }}} \quad \text { MSg }:=\frac{\text { SSR }}{\text { DegreeFree }_{\text {reg }}} \quad \text { MST }:=\frac{\text { SST }}{\text { DegreeFree }_{\text {st }}} . \\
& \mathrm{MSE}=131.284 \\
& \text { MR }=422.916 \\
& \text { MST }=277.1 \\
& \text { Strand }_{\text {err }}:=\sqrt{\text { MSg }} \quad \text { Strand }_{\text {err }}=11.458
\end{aligned}
\]

\section*{F Test for Corrosion}
\[
\begin{aligned}
& \alpha:=0.05 \quad F_{\text {actaul_Reg }}:=\frac{M S R}{M S E} \\
& F_{\text {critical_reg }}:=q F\left(1-\alpha, \text { Degreefree }_{\text {reg }}, \text { DegreeFree }_{\text {ss }}\right) \\
& F_{\text {ratio_reg }}:=\frac{F_{\text {actaul_Reg }}}{F_{\text {critical_reg }}} \\
& F_{\text {ratio_reg }}=0.02
\end{aligned}
\]

Tha following Mathcad Program (Iterate means \({ }^{\text {}}\) ) is used to perform the simulation for successfut corrosion fest for the mean rates.

function required the following inputs: the target corrosion rate (Target \({ }_{\text {Rate }}\) ), the 1992 calculated mean ( \(\mu\) 1992), the target ( ndard deviation ( \(\sigma_{\text {input }}\) ), the number of inspections (Total means) arid the number of iteration (It).

For each iteration
The function generates 49 point arrays using the Mathcad function "morm". The function "norm( \(\left.49, \mu_{\text {in }}, \sigma_{\text {input }}\right)^{1}\) - returns an array of " \(49^{\circ}\) random numbers generated from a normal distribution with mean of " \(\mu_{\text {in }}\) " and and a standard deviation of " \(\alpha\) input \(\because\).

Each iteration will generate 49 point arrays for the years 1992, 1994, 1996 and 2006.
The input to the 1992 array will be 49 , the actual mean ( 800 mils) which was determined from the actual 1992, 19A data (reference appendix 10 page 10). and a target standard deviation of \(\sigma_{\text {input }}(65\) mils). This target standard deviation is the average the of calculated standard deviations from the 1992, 1994, 1996 and 2006 data (see appendix 10 page 10). A simulated mean (for 1992) will then be calculated from the simulated 49 point array.

The input to the 1994 array will be 49, the valve \(\mu 1992\) minus the target rate (in mils per year) times 2 (years; 1994-1992) and a standard deviation of 65 mils. A simulated mean (for 1994) will then be calculated from the simulated 49 point array.

The input to the 1996 array will be 49, the valve \(\mu_{1992}\) minus the target rate (in mils per year) times 4 (years; 1996-1992) and a standard deviation of 65 mils. A simulated mean (for 1996) will then be calculated from the simulated 49 point array.

The input to the 2006 array will be 49, the valve \(\mu 1992\) minus the target rate (In mils per year) times 14 (years; 2006-1992)
a standard deviation of 65 mils. A simulated mean (for 2006) will then be calculated from the simulated 49 point array.
( le four simulated means are tested for corrosion based on the methodology in section 6.5.9.2. The confidence factor for the test will be \(95 \%\). If the corrosion test is successful (the \(F\) Ratio is great than 1) then that iteration is be consider a successful valid iteration and the term Succesful Ftest is increased by 1.

End of iteration
100 iterations are run at each of the input rates of \(5,6,7,8\), and 9 mils per year. The resulting number of successful (passes the corrosion test) iterations will then be considered as probability of observing that rate given the 19A data.

The following Mathcad Program (run_10_time(times, rate, \(\sigma_{\text {input }}\), dates, It, tolerance) runs the Iterate means program 10 times and returns an array (Sim) which documents the number of successful " \(F\) test" in each of the 10, 100 iteration simulations.


\section*{Appendix 22}

C-1302-187-E310-041 Rev. 0
Sheet 3 of 4
The results of the simulations are shown below using the following inputs
\(1992:=800 \sigma_{\text {input }}:=65 \quad\) Inspections \(:=4 \quad\) The simulation for 5 mils per year is input below \(:=100\)

Target Rate \(:=5\).


The simulation for 6 mils per year is input below
\[
\text { Target }_{\text {Rate }}:=6 .
\]


The simulation for 7 mils per year is input below \(\operatorname{Target~}_{\text {Rate }}:=7\).


The simulation for 8 mils per year is input below
\[
\text { Target }_{\text {Rate }}:=8 .
\]
\begin{tabular}{|c|c|}
\hline &  \\
\hline & \\
\hline - : & 99 \\
\hline \(\because\) & 笅96 \\
\hline & 99 \\
\hline Runs (Target Rate \(\mu^{\mu} 1992,{ }^{\text {a }}\) input, Inspections, Iterations) & 99 \\
\hline & 98 \\
\hline & 98 \\
\hline . & 98 \\
\hline : & 裪99 \\
\hline & 99 \\
\hline
\end{tabular}

The simulation for 9 mils per year is input below
\[
\text { Target }_{\text {Rate }}:=9
\]


Therefore the observable rate that passes the corrosion test more that 95 times in 100 iterations approaches 7 mils per year. Defining a more precise rate of 6.9 mils per year satisfies the tests.
\[
\text { The simulation for } 6.9 \text { mils per year is input below } \quad \text { Target }_{\text {Rate }}:=6.9
\]



December 12, 2006

\author{
Mr. Francis H. Ray
}

AmerGen Energy Company, LLC
Oyster Creek Nuclear Generating Station
U.S. Route \#9

Forked River, New Jersey 08731-0388
Subject: Oyster Creek NGS Independent Technical Review of Drywall Thickness Monitoring Program Ultrasonic Test Results

References : (a) AmerGen Calculation C-1302-187-E310-041, "Statistical Analysis of Drywell Vessel Sandbed Thickness Data 1992, 1994, 1996 and 2006," Revision 0, December 8, 2006
(b) AmerGen Calculation C-1302-187-E310-037, "Statistical Analysis of Drywell Vessel Thickness Data," Revision 3, December 11, 2006

Dear Mr. Ray:
In accordance with your request, MPR has performed a detailed technical review of the reference calculations that cover the statistical evaluation of Oyster Creek drywell ultrasonic thickness measurements taken over the period from 1990 to 2006. The calculations report the current mean thickness and projected corrosion rate of ultrasonic test locations in the sandbed region and in areas at higher elevations.

Based on our review of the two calculations, we conclude the following:
- AmerGen has shown that all areas of the drywell monitored by ultrasonic test meet minimum wall thickness requirements with margin.
- In areas of the drywell demonstrating statistically significant corrosion rates, the observed rates are small, less than 1 mil per year.
- Methods used by AmerGen to estimate corrosion rates in areas with limited statistics and no observable corrosion (in a statistical sense) are very conservative, and the required inspection intervals based on these rates are conservative.
- All inputs to the calculations are accurate, assumptions are conservative, and results are used correctly.

We note that the calculations could be made less conservative and observed corrosion rates could be estimated more accurately if individual locations in each grid array used for ultrasonic testing are tracked separately over time, rather than tracking the mean thickness over time for each array. Corrosion rates at individual locations could then be determined, and an average rate computed for the array of data. Upper bound rate data could also be determined. These refinements should be incorporated in future statistical evaluations of the ultrasonic test data.

Finally, we note that ultrasonic testing of wall thickness in the sandbed area above the concrete floor inside the drywell is probably not necessary, since the drywell can be examined both inside and outside for evidence of coating failure or corrosion. If no evidence of coating failure or corrosion is observed, ultrasonic tests are redundant.

Overall, we concur that the reference calculations are complete and conservative. Please call if you have any questions or comments on this letter.
\[
\int_{\text {J. E. Nestell }}^{\text {Sincerely yours, }}
\]
cc: Pete Tamburo, Oyster Creek

D. Gary Harlow, Ph.D.

149 W. Langhome Ave.
Bethlehem, PA 18017
610-758-4127 (office)
610-758-6224 (fax)
dgh0@lehigh.edu
December 15, 2006


Mr. Peter Tamburro
Exelon Corporation

\section*{Dear Pete:}

I have reviewed the methodology described in section 6.5.9.4 and Appendix 12 of AmerGen Cal caution C-1302-187-E310-037 Rev.3. I find the methodology consistent with standard statistical methods. The conclusions based on the methodology are accurate and reasonable.

I have also reviewed the methodology described section 6.5.9.4, section 7.5, and Appendix 22 of AmerGen Cal caution C-1302-187-E310-041 Rev.0. I find the methodology consistent with standard statistical methods. The conclusions based on the methodology are accurate and reasonable.

Sincerely.
DYfurlow
D.G. Harlow

Professor of Mechanical Engineering and Mechanics


\section*{Era Nuclear}

Gystior Cbak - DC
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Compornen: D/W LINEAR} \\
\hline Lagallon: & HSTDE CONTHENENT \\
\hline \multicolumn{2}{|l|}{BAhMing} \\
\hline A &  \\
\hline \[
\begin{aligned}
& 2 \\
& 20 \\
& 0.0 .0949
\end{aligned}
\] &  \\
\hline  &  \\
\hline \% \({ }^{4} 0.963\) &  \\
\hline ¢ \({ }^{6} 0.956\) &  \\
\hline
\end{tabular}

\section*{ELEV. 13 BAY/7A}
\(\begin{array}{llllllll}1.159 & 1.153 & 1.158 & 1.138 & 1.127 & 1.169 & 1.167 \\ 1.121 & 1.155 .1 .121 & 1.143 & 1.125 & 1.151 & 1.130\end{array}\)
\(\begin{array}{llllllll}1.159 & 1.153 & 1.158 & 1.138 & 1.127 & 1.169 & 1.167 \\ 1.121 & 1.155 .1 .121 & 1.143 & 1.125 & 1.151 & 1.130\end{array}\)
\(\begin{array}{llllllll}1.121 & 1.155 \cdot 1.121 & 1.143 & 1.125 & 1.151 & 1.120 \\ 1.071 & 1.095 & 1.112 & 1.115 & 1.097 & 1.070 & 1.053\end{array}\) 1.0711 .0951 .1121 .1151 .0971 .0701 .053 \(1.020 \quad 0.995 \quad 0.9771 .0121 .04811 .0290 .951\) \(\begin{array}{llllllll}0.976 & 0.919 & 0.881 & 0.935 & 0.871 & 0.936 & 0.964 \\ 0.866 & 0.951 & 0.892 & 0.822 & 0.804 & 0.946 & 0.991\end{array}\) \(\begin{array}{llllllll}0.866 & 0.961 & 0.892 & 0.822 & 0.804 & 0.946 & 0.991 \\ 0.934 & 0.970 & 0.923 & 0.925 & 0.871 & 0.952 & 0.986\end{array}\)

Sketch Form
```

C-1307-187-E310-041 ATTACHMENT /
PAGE 3 OF -

-2	Data Sheel No.: $\quad 9 /-719-08$	
	Drawing No.: $\quad \mathrm{N} / 9$	Rav. N/g

```




\title{
CRE Nuclear
}

Oyster Creek - QC
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Component D/W LINER} \\
\hline \multicolumn{3}{|l|}{Location: ELEVATION \(13{ }^{\prime}\)} & INSID & \multicolumn{3}{|l|}{CONTALMMENT} \\
\hline DRAWING & BAY & -9D & & & \(V\) & \\
\hline A & \(B \quad C\) & D & & & G & \\
\hline 1-1.005 & 51.0530 .995 & 1.132 & 1.095 & 1.141 & 1.112 & \\
\hline 2. 0.921 & 10.9560 .999 & 1.027 & 0.983 & 1.060 & 1.077 & \\
\hline 3. 0.770 & 00.8840 .986 & 1.086 & 1.049 & 1.119 & 1.112 & \\
\hline 4-0.802 & \(20.965 \quad 0.978\) & 0.986 & 1.007 & 1.026 & 1.048 & \\
\hline 5. 0.969 & 90.9670 .980 & 0.940 & 0.894 & 0.929 & 0.977 & \\
\hline 6.0 .959
7 & \(\begin{array}{lll}9 & 0.855 & 0.971\end{array}\) & 1.018 & 0.982 & 0.971 & 0.943 & \\
\hline 7. 0.943 & 30.9680 .945 & 0.991 & 0.977 & 0.899 & 0.932 & \\
\hline
\end{tabular}

1. EMPTY EMPTY EMPTY EMPTY EMPTY 0.8550 .886 - EMPTY EMPTY 1.0421 .0951 .0361 .0931 .032 3. \(1.0421 .085 \quad 0.945 \quad 0.938 \quad 0.938 \quad 0.895 \quad 0.889\) \(\begin{array}{llllllllll}4 & 0.836 & 0.846 & 0.795 & 0.828 & 0.833 & 0.843 & 0.869\end{array}\) 5. \(0.8230 .8420 .8730 .8720 .8370 .822 \quad 0.879\) 6. \(0.8550 .8360 .8620 .824 \quad 0.8720 .857 \quad 0.823\) \(\begin{array}{llllllllllllll}7-10.860 & 0.874 & 0.899 & 0.876 & 0.880 & 0.840 & 0.851\end{array}\)
ch Form (with grid)


\(1-0.6790 .8080 .7480 .650 \quad 0.7220 .696 .0 .727\) 2. 0.7780 .7670 .8200 .7390 .7430 .7230 .766 3. \(0.770 .70 .7940 .8850 .7560 .796 \quad 0.8330 .785\) \(4-0.8890 .900(0.266) 1.1430 .7950 .7710 .759\) 5. 0.8680 .8620 .2531 .1610 .7930 .7630 .861 6- \(0.9450 .7670 .8140 .8700 .8520 .880 \quad 0.857\) \(7.0 .8880 .799 \quad 0.808 \quad 0.847 \quad 0.8800 .8540 .975\)

1. 0.8640 .8310 .8310 .9180 .8970 .8680 .796 2. 0.8290 .8160 .7750 .8340 .8570 .7700 .827 \(3 \cdot 0.8660 .8660 .8190 .8500 .9140 .8470 .801\) 4- 0.8110 .8150 .7500 .8450 .7520 .7690 .754 5. \(0.7820 .7640 .7830 .778 \quad 0.8070 .7160 .689\) 6. \(0.8250 .7850 .8830 .888 \quad 0.9310 .8180 .745\) \(7-0.8630 .8170 .930 \quad 0.8210 .8530 .8930 .843\)


\(\begin{array}{lllllllll}-0.816 & 0.757 & 0.820 & 0.979 & 0.904 & 0.952 & 0.917\end{array}\) 2. \(0.6770 .7380 .694 \quad 0.798 \quad 0.762 \quad 0.897 \quad 0.831\) 3. \(0.8130 .736 \cdot 0.8760 .855 \quad 0.838 \quad 0.221 .0 .884\) 4. 0.787 . \(0.6660 .718 \quad 0.7621 .1531 .149 \quad 0.906\) 5. \(0.0 .8410 .7820 .734 \quad 0.764 \quad 0.856 \quad 0.787 \quad 0.834\)
\(\begin{array}{llllllllllll}6- & 0.871 & 0.832 & 0.886 & 0.766 & 0.867 & 0.735 & 0.748\end{array}\)
\(\begin{array}{llllllllllll}7-0.836 & 0.853 & 0.892 & 0.851 & 0.900 & 0.902 & 0.831\end{array}\)




1RZILR-COI Pg 2a0. 5


IR2ILR-001R 3 OF 5





\section*{C-1307-187-E310-041}

ATTACHMENT L
PAGE \(\not \subset\) of -
\begin{tabular}{|c|c|c|c|c|c|}
\hline Examined by Matt Wilson & Hattwiln & Level & 11 & Date & N(2) \({ }^{\prime} 10-20-06\)
101812008 \\
\hline Examined by Leslie Richter & \(2 \times 2\) & Level & 11 & Date & 10/18/2006 \\
\hline Reviewed by. Lee Stone & \(\underline{\square}\) & Level. & II & Date & 10/18/2006 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{General Electric} & \multirow[t]{4}{*}{Ultrasonic Thickness Heasurement Data Sheet} & Fibe Name: & N/A \\
\hline Oystar Creek & & & Date: & 10/18/2008 \\
\hline Refueling Outage - & 1R21 & & UT Procedure: & ER-A4-335-004 \\
\hline Page 5 of & 5 & & Specification: & 15-328227-004 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Location Ib} & \multicolumn{2}{|c|}{736} & \multirow[t]{2}{*}{\[
\frac{\mathrm{Bay}}{\mathrm{D}}
\]} & \multirow[t]{2}{*}{\[
\frac{13}{E}
\]} & \multirow[t]{2}{*}{\[
\frac{\text { Elev. }}{F}
\]} & \multirow[t]{2}{*}{\[
\frac{11^{\circ} 3^{11}}{6}
\]} & \multicolumn{2}{|l|}{Callbratlon Chack: 13:48} \\
\hline & A & B & C & & & & & & \\
\hline \multirow[t]{3}{*}{1} & 1.148 & 1.148 & 1.148 & 1.140 & 1.144 & 1.128 & 1.134 & & \\
\hline & & & & & & & & T8Cr. & AVG. \\
\hline & & & & & & & & . 628 & 1.142 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Location 15} & \multicolumn{2}{|c|}{16A} & \multirow[t]{2}{*}{\[
\frac{B a y}{D}
\]} & \multirow[t]{2}{*}{\[
\frac{15}{E}
\]} & \multirow[t]{2}{*}{\[
\frac{\text { Elov }}{F}
\]} & \multirow[b]{3}{*}{\[
\frac{G}{1.048}
\]} & \multicolumn{2}{|l|}{Callbration Check: 14:00} \\
\hline & A & B & C & & & & & - & \\
\hline 1 & 1.180 & 1.128 & 1.135 & 1.129 & 1.146 & 1.077 & & & \\
\hline \multicolumn{8}{|c|}{\multirow[t]{2}{*}{9.1 .180 .1 .120}} & TBCf. & AVG, \\
\hline & & & & & & & & . 628 & 1.121 \\
\hline
\end{tabular}


\section*{C-1307-187-E310-044}

ATTACHMENT Y
PAGES OF \(\frac{5}{5}\)

IR21LR-022 'P9 lof 2


LAY 1


Data obtained from
NDE Data Sheets 92-072-12 page 1 of 1
NDE Data Sheets 92-072-18 page 1 of 1
NDE Data Sheets 92-072-19 page 1 of 1
All horizonal measurements. taken \(13^{\prime \prime}\) to the right of the centerline of the reinforcement ring (Boss).
All vertical measurements taken from bottom of vent nozzle at the 13 " reference line.
Surface roughness prohibited characterization of all readings.
Note: Per discussion with Engineering, single point readings were taken in lieu of 6, based on surface curvature.

\[
\mid R 21 C R-012 \quad P_{g} \text { loF } 2
\]


BAY 3

.Data obtained from
NDE Data Sheets 92-072-14 page 1 of 1
Note: Per discussion with Engineering, single point readings were taken in lieu of 6, based on surface curvature:

KEROR H IRZILR-OIG
Pg lof 2


\section*{BAY 5}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Point & Vertical & Horizontal & 1992 value & \[
\begin{aligned}
& 2006 \\
& \text { Value }
\end{aligned}
\] & Comments \\
\hline * & 1 & D38 & R12 & 0.97 & 0.948 & Up 97 dn .97 \\
\hline * & 2 & D38 & R7 & 1.04 & 0.955 & Rough surface - up . 99 dn .99 \\
\hline * & 3 & D42 & R10 & 1.02 & 0.989 & up 1.0 dn 1.04 \\
\hline * & 4 & D41 & L7 & 0.97 & 0.948 & Rough surface, also dished \\
\hline * & 5 & D42 & L11. & 0.89 & 0.88 & Rough surface \\
\hline ** & 6 & D47 & R5 & 1.06 & 0.981 & up 1.018 dn 1.014 \\
\hline ** & 7 & D48 & L18 & 0.99 & 0.974 & Rough surface left . 99 right N/A \\
\hline ** & 8 & D46 & L31 & 1.01 & 1.007 & Rough surface \\
\hline
\end{tabular}

Note: up, dn, left \& right readings were taken 1/8" from recorded 2006 value reading.
Rough surface limited taking additional readings. Reference above.
* =Vertical and horizontal measurements taken from top of coating on long seam 62" to right
** \(=\) Vertical and horizontal measurements taken from bottom of nozzle at 6 o'clock position Reference NDE Data Sheets 92-072-16 page 1 of 1

1 - Reference off the weld 62 to the right of the centerline of the bay.
2 The original data sheet is not clear as to whether this point is to the right or left of the weld. Therefore NDE shall verify this dimension.


Note: per discussion with Engineēring, single point readings were taken in lieu of 6, based on surface curvature.

\[
10-20-00
\]
\[
|R 2| \angle R-005 \cdot P_{5} \cdot i a 2
\]


BAY 7
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline : & Point & Vertical & Horizontal & 1992 value & \[
\begin{aligned}
& 2006 \\
& \text { Value }
\end{aligned}
\] & Comments \\
\hline & & & & & & - \\
\hline & 1 & D21 & R39 & 0.92 & N/A & Could not locate area \\
\hline & 2 & D21 & R32 & 1.016 & N/A & Could not locate area \\
\hline & 3 & D10 & R20 & 0.984 & 0.964 & up/din ranged from 0.956 to 0.980 \\
\hline & 4 & D.10 & R10 & 1.04 & 1.04 & N/A \\
\hline & 5 & D21 & L6. & 1.03 & 1.003 & up/dn ranged from 1.000 to 1.049 \\
\hline & 6 & D10 & \(\underline{L 23}\) & 1.045 & 1.023 & up/din ranged from 1.020 to 1.052 \\
\hline & 7 & D21 & L12 & 1 & 1.003 & up/dn ranged from 1.002 to 1.026 \\
\hline
\end{tabular}

Data obtained from
NDE Data Sheets 92-072-20 page 1 of 1
Note: up, din readings were taken \(1 / 8^{\prime \prime}\) from recorded 2006 value reading.

\[
1 R 2 / \angle R \text {-OQ6 Ps lof } 2
\]



\section*{C-1307-187-E310-041 ATTACHMENT 5} PAGE \(q\) OF -

\section*{COMMENTS: N/A}


BAY 9
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Point & Vertical & Horizontal & 1992 value & \[
\begin{gathered}
2006 \\
\text { Value }
\end{gathered}
\] & & Comments \\
\hline & & & & & & & \\
\hline & 1 & D29. & R32 & 0.96 & 0.968 & N/A & \\
\hline & 2 & D18 & R17 & 0.94 & 0.934 & & \\
\hline & 3 & D20 & R8 & 0.994 & 0.989 & & \\
\hline & 4 & D27 & R15 & 1.02 & 1.016 & & \\
\hline & 5 & D35 & L5 & 0.985 & 0.964 & & \\
\hline & 6 & D13 & L30 & 0:82 & 0.802 & & \\
\hline & 7 & D16 & L.35 & 0.825 & 0.82 & & \\
\hline & 8 & D21 & L38 & 0.791 & 0.781 & & - \\
\hline & 9 & D20 & L53 & 0.832 & 0.823 & & \\
\hline & 10 & D30 & L8 & 0.98 & 0.955 & \(\checkmark\) & \\
\hline
\end{tabular}

Data obtained from
NDE Data Sheets 92-072-22 page 1 of 1
Note: per discussion with Engineering, single point readings were taken in lieu of 6, based on surface curvature.




C-1307-187-E310-041
PAGE \(H^{(1)}\) OF -


COMMENTS: N/A


BAY 11


Data obtained from .
NDE Data Sheets 92-072-10 page 1 of 1
Note: per discussion with Engineering, single point readings were taken in lieu of 6, based on surface curvature.
nexpe < III 10-22-04
\[
\text { R2ILR-010. Pg } \quad 10=2
\]


\section*{BAY 13}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Point V & Vertical & Horizontal & 1992 valus & \[
\begin{aligned}
& 2006 \\
& \text { Value }
\end{aligned}
\] & Comments \\
\hline & 1 & 01 & R45 & 0.672 & N/A & Could not locate area \\
\hline & 2 & U1 & R38 & 0.729 & N/A & Could not locate area \\
\hline & 3 & D21 & R48 & 0.941 & 0.923 & \\
\hline & 4 & D12 & R36 & 0.915 & 0.873 & \\
\hline & 5 & D21 & 126 & 0.718 & 0.708 & \\
\hline & 6 & D24 & L8 & 0.655 & 0.658 & \\
\hline & 7 & D17 & L23 & 0.818 & 0.602 & \\
\hline & 8 & D24 & L20 & 0.718 & 0.704 & \\
\hline & 9 & D28 & R41 & 0.924 & 0.915 & \\
\hline & 10 & D28 & R12 & 0.728 & 0.741 & \\
\hline & 11 & D28 & L15 & 0.685 & 0.669 & \\
\hline & 12 & D28 & 123 & 0.885 & 0.886 & \\
\hline & 13 & D18 & D40 & 0.932 & 0.814 & \\
\hline & 14 & D18. & R8 & 0.868 & 0.870 & \\
\hline & 15 & D20 & L9 & 0.683 & 0.666 & \\
\hline & 16 & D20 & 129 & 0.829 & 0.814 & \\
\hline & 17 & D9 & R38 & 0.807 & N/A & Could not locate area \\
\hline & 18 & D22 & R38 & 0.825 & N/A & Could not locate area \\
\hline & 19 & D37 & R38 & 0.812 & 0.916 & \\
\hline
\end{tabular}

Data obtained from
NDE Data Sheets 92-072-24 page 1 of 2
Note: per discussion with Engineering, single. point readings were taken in lieu of 6, based on surface curvature.

R2|CR-015 Pg lor 2


\section*{BAY 15}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & Point & Vertical & Horizontal & 1992 value & \[
\begin{aligned}
& 2006 \\
& \text { Value }
\end{aligned}
\] & Comments \\
\hline & & & & & \(\because\) & \\
\hline & 1 & D12. & R26 & 0.786 & 0.779 & 0.711 to 0.779 \\
\hline & 2 & D22 & R21 & 0.829 & 0.798 & 0.777 to 0.798 \\
\hline & 3 & D33 & R17 & 0.932 & 0.935 & \\
\hline & 4 & D30 & R7 & 0.795 & 0.791 & - \\
\hline & 5 & D26 & L3 & 0.85 & 0.855 & 0.817 to 0.855 \\
\hline & 6 & D6 & L8. & 0.794 & 0.787 & 0.715 to 0.787 \\
\hline & 7 & D26 & L18 & 0.808 & 0.805 & \\
\hline & 8 & D20 & L36 & 0.77 & 0.760 & \\
\hline & . 9 & D36 & L44 & 0.722 & 0.749 & 0.720 to 0.749 \\
\hline & 10 & 024 & L48 & 0.86 & 0.852 & 0.837 to 0.852 \\
\hline & 11. & D24 & L65 & 0.825 & 0.843 & 0.798 to 0.843 \\
\hline
\end{tabular}

Data obtained from
NDE Data Sheets 92-072-21 page 1 of 1 :
Note: scanned \(0.25^{\prime \prime}\) area around recorded 2006 value number - see comments for ranges.

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{General Electric} & \multirow{4}{*}{Ultrasonic Thickness Measurement Data Sheet} & File Name: & NA \\
\hline \multicolumn{2}{|l|}{Oyster Creek} & & Date: & 1019/2009 \\
\hline Tėueling Outage - & 1.R21 & & UT Procedure: & ER-AA-335-004 \\
\hline Page 1 of & 2 & & Specification & 15-328227-004 \\
\hline
\end{tabular}

\begin{tabular}{|l|l|l|l|l|}
\hline Calibration Block Type: C/S Step Wedge & Block Number: CALSTEP-088 & \\
\hline
\end{tabular}
SYSTEM CALIBRATION

\begin{tabular}{|c|c|c|c|c|c|}
\hline BAY & Polnt Number &  & Vertical Location &  & Horizoni Location \\
\hline & &  & &  & \\
\hline & &  & &  & \\
\hline & &  & &  & \\
\hline & . & Eutadis & &  & \\
\hline & &  & & E50, & \\
\hline
\end{tabular}
C-1307-187-E310.041 ATTACHMENT S

一 10 § 30vd
S LNBWHOVLIV
－t6－0トC3－L8ト－208ト－9
\[
\text { BAY } 17
\]
－Note：measurement from vent pipe CL to floor 60＂


Note：Down measurements taken from bottom of boss which is 18＂below vent line．
Locations \(8,9, \& 3\) look to be un－prepped flat areas of the original surface．
All left，right measurements taken from 8 ＂left of liner long seam
Data obtained from
NDE Data Sheets 92－072－08 page 1 of 1
Note：Per discussion with Engineering，single point readings were taken in lieu of 6，based on surface curvature．

Mathesincuitam 10－19－2006


\section*{BAY 19}


Data obtained from
NDE Data Sheets 92-072-05 page 1 of 1
NDE Data Sheets 92-072-07 page 1 of 1
Note: Per discussion with Engineering, single point readings were taken in lieu of 6; based on surface curvature.
** - This value is not clear form the original datasheet -NDE to verify this value.
Note: per discussion with Engineering, single point readings were taken in lieu of 6, based on surface curvature.

Mother Cutin -10122/06```

