## 201272007

LR-N07-0150

United States Nuclear Regulatory Commission
Document Control Desk
Washington, DC 20555
SALEM GENERATING STATION - UNIT 2
FACILITY OPERATING LICENSE NO. DPR-75
NRC DOCKET NO. 50-311

## Subject: RE-SUBMITTAL OF INSERVICE INSPECTION PROGRAM RELIEF REQUESTS S2-I2-RR-B01 AND S2-I2-RR-C01

References: (1) Letter from PSEG to NRC: "Inservice Inspection Program Relief Requests S2-I2-RR-B01 and S2-I2-RR-C01, Salem Nuclear Generating Station - Unit 2, Facility Operating License DPR-75, Docket No. 50-311," dated March 21, 2006
(2) Letter from NRC to PSEG: "Salem Nuclear Generating Station, Unit 2, Request for Additional Information, Re: Inservice Inspection Program Relief Requests," dated December 20, 2006
(3) Letter from PSEG to NRC: "Withdrawal of Inservice Inspection Program Relief Requests S2-I2-RR-B01 and S2-I2-RR-C01, Salem Nuclear Generating Station - Unit 2, Facility Operating License DPR-75, Docket No. 50-311," dated March 24, 2007

In Reference 1, PSEG Nuclear LLC (PSEG) submitted inspection relief requests S2-I2-RR-B01 and S2-I2-RR-C01 associated with the Second Ten Year Inservice Inspection (ISI) Interval for Salem Unit 2.

In Reference 2, the NRC requested additional information (RAI) related to the Reference 1 requests.

In Reference 3 PSEG withdrew relief requests S2-I2-RR-B01 and S2-I2-RR-C01 following discussion with the NRC Staff. PSEG noted in Reference 3 that the relief requests, including with responses to the Reference 2 RAils, may be re-submitted in the future.

This letter re-submits relief requests S2-I2-RR-B01 and S2-I2-RR-C01, and incorporates the responses to the Reference 2 RAls, as described below.

Pursuant to 10CFR50.55a(g)(5)(iii), PSEG Nuclear (PSEG) hereby requests NRC approval of the following requests associated with the Second Ten Year Inservice Inspection (ISI) Interval for Salem Unit 2. ISI relief requests S2-I2-RR-B01 (Attachment 1) and S2-I2-RR-C01 (Attachment 2) address examination limitations for exams performed in accordance the requirements of the American Society of Mechanical Engineering (ASME) Boiler and Pressure Vessel Code, Section XI for Class 1 and Class 2 components, respectively.

## The Salem Unit 2, Second Ten-Year Interval ISI examinations were performed in accordance with the requirements of ASME Boiler and Pressure Vessel Code Section XI 1986 Edition Article IWB-2500 to the extent practical. Coverage for certain weld examinations conducted during the Second Ten-Year Interval was less than required in ASME Section XI.

PSEG has determined that conformance with these requirements is impractical for Salem Unit 2. Information supporting this determination is provided in Attachments 1 and 2 in accordance with 10 CFR 50.55a(g)(5)(iii). Attachment 3 provides individual responses to the Reference 2 RAls, and, where applicable, describes how the RAI responses are addressed in Attachments 1 and 2, and Enclosure 1. Enclosure 1 provides supporting documentation and additional descriptive details.

If you have any questions or require additional information, please do not hesitate to contact Mr. Jamie Mallon at (610) 765-5507.

Sincerely,


Robert Braun<br>Site Vice President<br>Salem Generating Station

Attachments:

1. ISI Relief Request S2-I2-RR-B01
2. ISI Relief Request S2-I2-RR-C01
3. Response to NRC RAls

Enclosures:

1. Supporting Documentation

## Document Control Desk

CC Mr. S. Collins, Administrator - Region IU. S. Nuclear Regulatory Commission475 Allendale RoadKing of Prussia, PA 19406
Mr. R. Ennis, Licensing Project Manager - SalemU. S. Nuclear Regulatory CommissionMail Stop 08B1
Washington, DC 20555
USNRC Senior Resident Inspector - (Salem X24)
Mr. P. Mulligan, Manager IV
Bureau of Nuclear Engineering
P. O. Box 415
Trenton, NJ 08625

10 CFR 50.55a Request Number: S2-I2-RR-B01
Relief Request in Accordance with 10 CFR 50.55a(g)(5)(iii) Inservice Inspection Impracticality

> NOTE:
> Salem Unit 2 - Second Ten-Year Interval Inservice Inspection (ISI) inservice inspection examinations was conducted between May 10,1992 (start) and November 23, 2003 (end). This interval excludes 26 months and 21 days ( $6 / 8 / 95-8 / 29 / 97$ ) for an extended shutdown and cumulatively less 2 months and 1 day to coincide with end of refueling outage per IWA-2430 (d).

## ASME Code Components Affected

$$
\begin{array}{ll}
\text { Code Class } & 1 \\
\text { Reference: } & \text { IWB-2500 } \\
\text { Examination Categories: } & \text { B-A, B-B, B-D, B-F, B-J, and B-K-1 } \\
\text { Item Numbers: } & \text { See Table 1-1 } \\
\text { Description: } & \text { Volumetric and surface examinatior } \\
\text { Component Number: } & \text { See Table 1-1 }
\end{array}
$$

## Applicable Code Edition and Addenda

The code of record for the Salem Unit 2 Second ten-year ISI Program interval is Section XI of the ASME Code, 1986 Edition.

## Applicable Code Requirement

Salem Unit 2 Second Ten-Year Interval Inservice Inspection (ISI) examinations were performed in accordance with the requirements of ASME Boiler and Pressure Vessel Code Section XI, 1986 Edition Article IWB-2500 to the extent practical. Table IWB-2500-1 defines examination requirements for Class 1 components. The table contains information associated with the identification of components to be examined by nondestructive examination; this includes the applied nondestructive examination (NDE) method, acceptance standard, and extent of exam coverage and exam frequency.

In addition, 10CFR50.55a was revised effective November 22, 1999 to require expedited implementation of Appendix VIII, "Performance Demonstration for Ultrasonic Examination Systems," of the ASME Code, Section XI, 1995 Edition with the 1996 Addenda. These requirements affected both Class 1 and 2 bolting, piping system welds, and reactor pressure vessel nondestructive examinations performed after this
date. With this initiative came revised coverage calculation methodologies that further reduced the credited examination coverage of those applicable components.

ASME, Section XI, 1986 Edition, required volumetric and/or surface and visual examinations be performed upon components and welds identified within Table IWB-2500-1. The applicable exam categories for this relief request are B-A, B-B, B-D, B-F, $\mathrm{B}-\mathrm{J}$, and $\mathrm{B}-\mathrm{K}-1$. The applicable code requirements for the relevant item numbers are as follows. Please note that "essentially $100 \%$," as clarified by ASME Code Case N-460, is greater than $90 \%$ coverage of the examination volume, or surface area, as applicable.
A. Exam Category B-A Pressure Retaining Welds in Reactor Vessels

Code Requirement: Item B1.12 requires essentially $100 \%$ volumetric examination, as defined by Figure IWB-2500-2, of one longitudinal reactor pressure vessel (RPV) beltine (core region) shell weld during successive operating intervals 2 through 4 . Items B1.21 and B1.22 require essentially 100\% volumetric examination of the "accessible length" of head welds, as defined by Figure IWB-2500-3. Items B1.30 and B1.40 require essentially $100 \%$ of the shell-to-flange and closure head-to-flange welds, as defined by Figures IWB-2500-4 and -5 , respectively.
B. Exam Category B-B Pressure Retaining Welds in Vessels Other Than Reactor Vessels

Code Requirement: Items B2.11 and B2.12 require essentially $100 \%$ volumetric examination, as defined by Figures IWB-2500-1 and -2, of the circumferential shell-to-head weld and one foot of the intersecting longitudinal weld on the pressurizer.
C. Exam Category B-D Full Penetration Welds of Nozzles in Vessels- Inspection Program B

Code Requirement: Item B3.90 requires essentially $100 \%$ volumetric examination, as defined by Figures IWB-2500-7 a through d, of the reactor vessel nozzle-to-vessel welds. Items B3.120 and B3.140 require essentially $100 \%$ volumetric examination, as defined by Figures IWB-2500-7 a through d, of the nozzle inside radius sections of the pressurizer and primary side of the steam generators.
D. Exam Category B-F Pressure Retaining Dissimilar Metal Piping Welds

Code Requirement: Items B5.40 and B5.70, require essentially $100 \%$ volumetric and surface examinations, as defined by Figure IWB-2500-8 of the pressurizer relief and spray nozzle-to-safe-end welds, and steam generator short radius nozzle-to-safe-end welds.

## E. Exam Category B-J Pressure Retaining Piping Welds

Code Requirement: Items B9.11 and B9.31, require essentially $100 \%$ volumetric and surface examinations, as defined by Figures IWB-2500-8, $-9,-10$, or -11 , as applicable, for piping circumferential and branch connection welds $>4$-inch NPS. Items B9.21 and B9.40 require essentially $100 \%$ surface examinations, as defined in IWB-2500-8, of piping circumferential welds < 4 -inch NPS and socket welds. Once incorporated into NRC Regulatory Guide 1.147 Revision 12, item B9.12 piping longitudinal seam welds > 4-inch NPS were examined in accordance with the requirements of ASME Section XI Code Case N-524, Alternative Examination Requirements for Longitudinal Welds in Class 1 and 2 Piping.

## F. Exam Category B-K-1 Welded Integral Attachments

Code Requirement: Items B10.10 and B10.20 require essentially $100 \%$ surface or volumetric examinations, as defined by Figures IWB-2500-13, -14, or -15, as applicable, for integrally welded support attachments on Class 1 piping and pumps, respectively. PSEG Nuclear conducted welded integral attachment weld exams in accordance with the requirements imposed by ASME Section XI Code Case N-509, Alternative Rules for the Selection and Examination of Class 1, 2 and 3 Integrally Welded Attachments.

Table 1-1 contains detailed information related to the explanation of those components demonstrating inadequate code exam coverage extent due to inaccessibility, physical limitation, or obstruction.

## Basis for Relief:

Pursuant to 10CFR50.55a(g)(5)(iii), relief is requested from ASME XI examination requirements for the performance of the following piping and vessel welds due to exam limitations. Table 1-1 herein identifies those inservice inspection nondestructive examinations contained within the Salem Unit 2 ISI Program Long Term Plan for the second Ten-Year Interval whose NDE exams were found to be inaccessible, physically limited or partially obstructed and therefore not capable of fully meeting code coverage requirements for examination extent. Enclosure 1 provides additional descriptive details (sketches, illustrations, and/or drawings) for these components.

Subject components contained herein have received inservice inspection NDE examinations to the "extent practical" within the limitations of design, geometry and materials of construction of the components as allowed by Code. These components have also undergone necessary volumetric examination by radiography and/or surface examinations during fabrication, in accordance with approved construction/fabrication code requirements providing adequate assurance for the structural integrity of the components prior to plant operation. In addition, these components have been subjected to a visual examination for leakage after completion of each refueling outage,
which provides additional assurance that the structural integrity of the subject components is maintained.

PSEG Nuclear (PSEG) utilizes approved technical procedures written in accordance to applicable ASME Code section/paragraph criterion for area/volume requirements. Plant procedures require the documentation of the location and cause of the limitation.

## A. Exam Category B-A Pressure Retaining Welds in Reactor Vessels

See Table 1-1, attached, to identify specific component information and explanation of the limitation(s) encountered.

Full Code required coverage is impractical for the identified subject components since the Reactor Pressure Vessel (RPV) would require design modifications that would impose a significant burden to PSEG. PSEG has examined the subject components to the extent practical and has determined them to be acceptable with no observed signs of degradation. In addition, other RPV welds have been examined to the extent required by the Code and also found to be acceptable with no observed signs of degradation. Also, VT-2 visual examinations performed in conjunction with system pressure testing after each refueling outage found these welds to be acceptable with no leakage observed.
B. Exam Category B-B Pressure Retaining Welds in Vessels Other Than Reactor Vessels

See Table 1-1, attached, to identify specific component information and explanation of the limitation(s) encountered.

Full Code required coverage is impractical for the subject components since these vessels would require design modifications that would impose a significant burden to PSEG. PSEG has examined these component welds to the extent practical and determined them to be acceptable with no observed signs of degradation. In addition, other similar vessel welds have been examined to the extent required by the Code and also found to be acceptable with no observed signs of degradation. Also, VT-2 visual examinations performed in conjunction with system pressure testing after each refueling outage found these welds to be acceptable with no leakage observed.
C. Exam Category B-D Full Penetration Welds of Nozzles in Vessels- Inspection Program B

See Table 1-1, attached, to identify specific component information and explanation of the limitation(s) encountered.

Full Code required coverage is impractical for the subject components since the nozzles identified within the table would require design modifications that would
impose a significant burden to PSEG. PSEG has examined these component welds to the extent practical and determined them to be acceptable with no observed signs of degradation. In addition, other similar vessel welds have been examined to the extent required by the Code and also found to be acceptable with no observed signs of degradation. Also, VT-2 visual examinations performed in conjunction with system pressure testing after each refueling outage found these welds to be acceptable with no leakage observed.

## D \& E. Exam Category B-F and B-J Pressure Retaining Piping Welds

See Table 1-1, attached, to identify specific component information and explanation of the limitation(s) encountered.

Required Code coverage is impractical for the subject welds since the components would require design modifications that would impose a significant burden to PSEG. PSEG has examined these welds to the extent practical and determined them to be acceptable with no observed signs of degradation. In addition, other similar piping welds have been examined to the extent required by the Code and also found to be acceptable with no observed signs of degradation. Also, VT-2 visual examinations performed in conjunction with system pressure testing after each refueling outage found these welds to be acceptable with no leakage observed.

Code required volumetric examinations are conducted by ultrasonic examination from both the upstream and downstream directions of piping welds. Ultrasonic examination of certain terminal ends and structural discontinuities are considered to be impractical due to their configuration and material acoustic properties.

The EPRI Performance Demonstration Initiative (PDI) is in agreement with the NRC's September 22, 1999 Final Rule regarding single side access for piping. The Final Rule requires if access is available, austenitic steel welds shall be scanned in each of the four directions (parallel and perpendicular to the weld) where required. PDI has not been able to qualify a single side examination procedure technique that is capable of demonstrating equivalency for a two-sided examination procedure technique on austenitic piping welds. Current or past technology is not capable of reliably detecting or sizing flaws on the far side of an austenitic weld for configurations common to nuclear applications. Ultrasonic examination of ferritic steel welds requires scanning in the two axial scan directions. Circumferential scanning is required in the remaining two directions only when axial indications were noted during pre-service inspections. Coverage credit may be taken for single side exams on ferritic piping. However, for austenitic piping, a procedure must be qualified with flaws on the inaccessible side of the weld.

To demonstrate that the best available technology was applied for austenitic welds, PDI provides a best effort qualification instead of a complete single sided
qualification. PDI Performance Demonstration Qualification Summary (PDQS) austenitic piping certificates list the limitation that single side examination is performed on a best effort basis. When performing single side access of austenitic stainless steel piping welds the best available techniques are used from the accessible side of the weld, as qualified through the PDI.

When the examination area is limited to one side of an austenitic weld, examination coverage does not comply with 10CFR50.55a(b)(2)(xv)(A) or the ASME Section XI requirements and proficiency demonstrations do not comply with 10CFR50.55a(b)(2)(xvi) and full coverage credit may not be claimed. Based upon the qualification efforts of the PDI program, PSEG considers austenitic piping welds examined from a single side to be fully examined to the extent practical. This is considered true for examinations performed prior to and after the PDI in that it has been confirmed by the PDI that the configuration and material acoustic properties of austenitic piping prevents full two-sided access for examination.

## F. Exam Category B-K-1 Welded Integral Attachments

See Table 1-1, attached, to identify specific component information and explanation of the limitation(s) encountered.

Full Code required coverage is impractical for the subject welds since the integral attachment would require design modifications and would impose a significant burden to PSEG Nuclear. The piping and pumps have a permanently welded support structure that interfered with the exam upon the lower portion of the integrally welded attachments. Removal of the piping or pump support structure to access the obstructed area would result in the need to redesign the system's configuration. PSEG has examined these welds to the extent practical and determined them to be acceptable with no observed signs of degradation. In addition, other similar welds have been examined to the extent required by the Code and also found to be acceptable with no observed signs of degradation. VT-2 visual examinations performed in conjunction with system pressure testing after each refueling outage found these welds to be acceptable with no leakage observed.

## Alternative Examination

PSEG performed NDE examinations to the extent practical upon the components identified in the exam categories below using the state of the art techniques of the time and as applicable, demonstrated through the EPRI PDI Program.
A. Exam Category B-A Pressure Retaining Welds in Reactor Vessels

Where the component would not allow an ultrasonic angle beam examination from both sides of the weld, the following was performed using the best available
technology at the time and as applicable, demonstrated through the EPRI PDI program:

- Similar metal welds were examined to the extent practical using personnel and techniques qualified and demonstrated through the EPRI PDI, as applicable.
- System pressure test examinations were performed per ASME Section XI requirements.
B. Exam Category B-B Pressure Retaining Welds in Vessels Other Than Reactor Vessels

Where the component would not allow an ultrasonic angle beam examination from both sides of the weld, the following were performed using the best available technology at the time and as applicable, demonstrated through the EPRI PDI program:

- Similar metal welds were examined to the extent practical using personnel and techniques qualified and demonstrated through the EPRI PDI, as applicable.
- System pressure test examinations were performed per ASME Section XI requirements.
C. Exam Category B-D Full Penetration Welds of Nozzles in Vessels - Inspection Program B

Where the component would not allow an ultrasonic angle beam examination from both sides of the weld or upon the nozzle inner radius section, the following were performed using the best available technology at the time and as applicable, demonstrated through the EPRI PDI program:

- Similar metal welds and inner radius sections were examined to the extent practical using personnel and techniques qualified and demonstrated through the EPRI PDI, as applicable.
- System pressure test examinations were performed per ASME Section XI requirements.
D. Exam Category B-J, and B-F Pressure Retaining Piping Welds

Where the component would not allow an ultrasonic angle beam examination for axial scans (upstream and downstream), the following were performed using the best available technology at the time and as applicable, demonstrated through the EPRI PDI program:

- Similar metal welds were examined in at least one axial direction and two circumferential scans adjacent to the weld and upon the weld using personnel and techniques qualified and demonstrated through the EPRI PDI program for single sided access relating to the material type to be examined, as applicable.
- Austenitic-to-Inconel dissimilar metal welds were examined in at least one axial direction and two circumferential scans adjacent to the weld and upon the weld using personnel and techniques qualified and demonstrated through the EPRI PDI program for single sided access relating to the material type to be examined, as applicable.
- The code required surface and system pressure test examinations were performed per ASME Section XI requirements.


## F. Exam Category B-K-1 Welded Integral Attachments

These examinations were performed in accordance with the requirements of ASME Section XI 1986 Edition to the extent practical. System pressure test examinations were performed per ASME Section XI requirements.

Once approved by NRC Regulatory Guide 1.147, ASME Code Case N-568, Alternative Examination Requirements for Welded Attachments, was applied. As an alternative to the examination requirements of $\mathrm{B}-\mathrm{K}$ (pre-1995 Addenda examination Categories B-H and B-K-1), Code Case N-568 indicates examination of a welded attachment that is obstructed by a component support or portion of a component support may be limited to the accessible portion of the welded attachment. Disassembly of the component support or portion of the component support is not required.

## Applicability

This Relief Request is applicable to the following:

- Salem Unit 2 - Second Ten-Year Inservice Inspection Interval


## Precedents

As part of the submission of the Salem 2 second 10-year interval ISI program plan and associated relief requests, limitations relief requests RR-B1 and RR-C1 were submitted. In the Safety Evaluation of this submission, relief was granted for relief requests RR-B1, parts 2 through 11, and RR-C1, parts 1 through 4, for the Salem 2 second 10-year interval (Reference 1). Those components that relief was granted for are noted as such in Table 1-1 ("Relief Previously Granted" column).

Additionally similar relief requests were submitted for the first 10-year interval at Salem Unit 2 (Reference 2). Most of those welds listed in that submittal are the same as those for the second interval, with some additions. Those components for which relief was granted in the first interval are also noted in Table 1-1 ("Relief Previously Granted" column). The examinations performed in the second interval achieved equivalent or better coverage or coverage in more examination directions compared to the first 10year interval (second interval relief request submittal utilized first interval coverage).

The NRC also approved a similar request for the Salem Unit 1 second 10-year interval in Reference 3.

## References

1. "Evaluation of the Second Ten-Year Interval Inspection Program Plan and Associated Requests for Relief for Salem Generating Station, Unit 2 (TAC No. M83316)," dated October 23, 1995.
2. "Inservice Inspection - Long Term Plan, Final Relief Requests - First Interval, Salem Generating Station, Unit No. 2, Docket No. 50-311," dated September 28, 1992.
3. "Salem Nuclear Generating Station, Unit No. 1 - Relief from ASME Code Requirements Related to the Salem Inservice Inspection Program, Relief Request S1-RR-B01 and S1-RR-C01 (TAC NO. MB3811)," dated January 16, 2003.

Table 1-1
2nd Ten-Year Inservice Inspection Interval Class 1 Component NDE Exam Limitations

| Sum\# | Component ID | Description | $2^{\text {nd }}$ Interval ASME Cat | $\begin{array}{\|c} \begin{array}{c} \text { 2nd } \\ \text { Interval } \\ \text { ASME } \\ \text { Item \# } \end{array} \end{array}$ | ASME Class | System | $\begin{array}{\|c} \text { Limited } \\ \text { NDE } \\ \text { Exam } \end{array}$ | Code Coverage Achieved | Exam Date | Photol Sketch No.* | Required Examination Volume | Relief Previously Granted?** | UT Exam Type and Limitation Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 000400 | 2-RPV-3442A | LOWER SHELL AT 60 DEG. | B-A | B1.12 | 1 | RC | UT | 81\% | 4/18/02 | $\begin{gathered} 215,215 \mathrm{~A}, \\ 215 \mathrm{~B}, 216, \\ 217,218 \end{gathered}$ | IWB-2500-1 |  | UT exam was conducted using 45-degree shear and refracted longitudinal wave transducers. The exams completed were limited to approximately $81 \%$ code required coverage due to the core barrel support lugs attached to the reactor vessel shell. No unacceptable indications were noted. A system pressure test was also completed with no unacceptable indications observed. |
| 000500 | 2-RPV-3442B | LOWER SHELL AT 180 DEG. | B-A | B1.12 | 1 | RC | UT | 81\% | 4/18/02 | ```215A, 215B, 219, 220, 221, 222``` | IWB-2500-1 |  | UT exam was conducted using 45-degree shear and refracted longitudinal wave transducers. The exams completed were limited to approximately $81 \%$ code required coverage due to the core barrel support lugs attached to the reactor vessel shell. No unacceptable indications were noted. A system pressure test was also completed with no unacceptable indications observed. |
| 000600 | 2-RPV-3442C | LOWER SHELL AT 300 DEG. | B-A | B1.12 | 1 | RC | UT | 81\% | 4/18/02 | $\begin{gathered} 215 \mathrm{~A}, \\ 215 \mathrm{~B}, 223, \\ 224,225, \\ 226 \end{gathered}$ | IWB-2500-1 |  | UT exam was conducted using 45 -degree shear and refracted longitudinal wave transducers. The exams completed were limited to approximately $81 \%$ code required coverage due to the core barrel support lugs attached to the reactor vessel shell. No unacceptable indications were noted. A system pressure test was also completed with no unacceptable indications observed. |
| 002600 | 2-RPVCH-6446B | DOLLAR PLATE | B-A | B1.21 | 1 | RC | UT | 67\% | 10/28/94 | $\left\|\begin{array}{l} 45,46,47, \\ 266 \mathrm{~A}, 266 \mathrm{~B} \end{array}\right\|$ | IWB-2500-3 | YES | UT exam was conducted using 0 -, 45- and, 60-degree shear wave transducers. The exam completed was limited to $67 \%$ code required coverage due to CRD Penetrations interferences interfering with scanning. No unacceptable indications were noted. A system pressure test was also completed with no unacceptable indications observed. |
| 002000 | 2-RPVCH-1446A | MERIDIONAL WELD AT 300 DEG | B-A | B1.22 | 1 | RC | UT | 31\% | 10/28/94 | $\begin{array}{\|c\|} 33,34, \\ 266 \mathrm{~A}, 266 \mathrm{~B} \end{array}$ | IWB-2500-3 | YES | UT exam was conducted using 0 -, 45- and, 60 -degree shear and Iongitudinal wave transducers. The exam completed was limited to $31 \%$ code required coverage due to CRD Penetrations and Shroud Support Ring interferences interfering with scanning. No unacceptable indications were noted. A system pressure test was also completed with no unacceptable indications observed. |
| 002100 | 2-RPVCH-1446B | MERIDIONAL WELD AT 0 DEG. | B-A | B1.22 | 1 | RC | UT | 26\% | 10/28/94 | $\begin{gathered} 35,36, \\ 266 A, 266 B \end{gathered}$ | IWB-2500-3 | YES | UT exam was conducted using 0 -, 45- and, 60-degree shear and longitudinal wave transducers. The exam completed was limited to $26 \%$ code required coverage due to CRD Penetrations and Shroud Support Ring and Lifting Lug interferences interfering with scanning. No unacceptable indications were noted. A system pressure test was also completed with no unacceptable indications observed. |
| 002200 | 2-RPVCH-1446C | MERIDIONAL WELD AT 60 DEG. | B-A | B1.22 | 1 | RC | UT | 35\% | 10/28/94 | $\begin{gathered} 37,38, \\ 266 A, 266 B \end{gathered}$ | IWB-2500-3 | YES | UT exam was conducted using 0 -, 45 - and, 60 -degree shear and longitudinal wave transducers. The exam completed was limited to $35 \%$ code required coverage due to CRD Penetrations and Shroud Support Ring interferences interfering with scanning. No unacceptable indications were noted. A system pressure test was also completed with no unacceptable indications observed. |

* These numbers refer to Enclosure 1, Pages 1 through 343. Page numbers are in boxes in the corners of the pages.
** Relief was granted by the NRC in Reference 1 or was submitted in the Salem 2 first 10-year interval in Reference 2.

Table 1-1
2nd Ten-Year Inservice Inspection Interval Class 1 Component NDE Exam Limitations

| Sum\# | Component ID | Description | $\begin{gathered} 2^{\text {nd }} \\ \text { Interval } \\ \text { ASME } \\ \text { Cat } \end{gathered}$ | $2^{\text {nd }}$ Interval ASME Item \# | ASME Class | System | Limited NDE Exam | Code Coverage Achieved | Exam Date | Photol Sketch No.* | Required Examination Volume | Relief Previously Granted ${ }^{* *}$ | UT Exam Type and Limitation Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 002300 | 2-RPVCH-1446D | MERIDIONAL WELD AT 120 DEG | B-A | B1.22 | 1 | RC | UT | 35\% | 10/28/94 | $\begin{gathered} 39,40 \\ 266 \mathrm{~A}, 266 \mathrm{~B} \end{gathered}$ | IWB-2500-3 | YES | UT exam was conducted using 0 -, 45- and, 60-degree shear and longitudinal wave transducers. The exam completed was limited to $35 \%$ code required coverage due to CRD Penetrations and Shroud Support Ring and Lifting Lug interferences interfering with scanning. No unacceptable indications were noted. A system pressure test was also completed with no unacceptable indications observed. |
| 002400 | 2-RPVCH-1446E | MERIDIONAL WELD AT 180 DEG | B-A | B1.22 | 1 | RC | UT | 36\% | 10/28/94 | $\begin{array}{\|c\|} \hline 41,42, \\ 266 A, 266 B \end{array}$ | IWB-2500-3 | YES | UT exam was conducted using 0 -, 45 - and, 60 -degree shear and longitudinal wave transducers. The exam completed was limited to $36 \%$ code required coverage due to CRD Penetrations and Shroud Support Ring interferences interfering with scanning. No unacceptable indications were noted. A system pressure test was also completed with no unacceptable indications observed. |
| 002500 | 2-RPVCH-1446F | MERIDIONAL WELD AT 240 DEG | B-A | B1.22 | 1 | RC | UT | 54\% | 10/28/94 | $\begin{gathered} 43,44, \\ 266 \mathrm{~A}, 266 \mathrm{~B} \end{gathered}$ | IWB-2500-3 | YES | UT exam was conducted using 0 -, 45 - and, 60 -degree shear and longitudinal wave transducers. The exam completed was limited to $54 \%$ code required coverage due to CRD Penetrations and Shroud Support Ring and Lifting Lug interferences interfering with scanning. No unacceptable indications were noted. A system pressure test was also completed with no unacceptable indications observed. |
| 001300 | 2-RPV-1443A | MERIDIONAL WELD AT 270 DEG | B-A | B1.22 | 1 | RC | UT | 88\% | 4/18/02 | $\begin{array}{\|c\|} \hline 227,227 \mathrm{~A}, \\ 227 \mathrm{~B}, \\ 227 \mathrm{C}, 228, \\ 229,230, \\ 231 \end{array}$ | IWB-2500-3 |  | UT exam was conducted using 45-degree shear and longitudinal wave transducers. The exam completed was limited to $88 \%$ code required coverage due to instrumentation tubes interfering with scanning. No unacceptable indications were noted. A system pressure test was also completed with no unacceptable indications observed. |
| 001500 | 2-RPV-1443C | MERIDIONAL WELD AT 30 DEG. | B-A | B1.22 | 1 | RC | UT | 88\% | 4/18/02 | $\begin{gathered} 232,233, \\ 234,235, \\ 236 \end{gathered}$ | IWB-2500-3 | YES | UT exam was conducted using 45-degree shear and longitudinal wave transducers. The exam completed was limited to $88 \%$ code required coverage due to instrumentation tubes interfering with scanning. No unacceptable indications were noted. A system pressure test was also completed with no unacceptable indications observed. |
| 001600 | 2-RPV-1443D | MERIDIONAL WELD AT 90 DEG. | B-A | B1.22 | 1 | RC | UT | 72\% | 4/18/02 | $\begin{array}{\|c\|} \hline 227 \mathrm{~A}, \\ 227 \mathrm{~B}, \\ 227 \mathrm{C}, 237, \\ 238,239 \end{array}$ | IWB-2500-3 | YES | UT exam was conducted using 45-degree shear and longitudinal wave transducers. The exam completed was limited to $72 \%$ code required coverage due to instrumentation tubes interfering with scanning. No unacceptable indications were noted. A system pressure test was also completed with no unacceptable indications observed. |
| 002700 | 2-RPV-7442 | VESSEL TO FLANGE | B-A | B1.30 | 1 | RC | UT | 82\% | 4/18/02 |  <br> $240,240 \mathrm{~A}$, <br> 241,242, <br> 243,244, <br> 255,256, <br> 257,258, <br> 259,260, <br> 261,262, <br> $262 A, 263$, <br> 264,265 | IWB-2500-4 | YES | UT exam was conducted using 45-degree shear and longitudinal wave transducers. The exam completed was limited to $82 \%$ code required coverage due to OD configuration associated with the taper of the reactor vessel flange. No unacceptable indications were noted. A system pressure test was also completed with no unacceptable indications observed. |

* These numbers refer to Enclosure 1, Pages 1 through 343. Page numbers are in boxes in the corners of the pages.
** Relief was granted by the NRC in Reference 1 or was submitted in the Salem 2 first 10-year interval in Reference 2.

Table 1-1
2nd Ten-Year Inservice Inspection Interval Class 1 Component NDE Exam Limitations

| Sum\# | Component ID | Description | $2^{\text {nd }}$ Interval ASME Cat | $\begin{gathered} 2^{\text {nd }} \\ \text { Interval } \\ \text { ASME } \\ \text { Item \# } \end{gathered}$ | ASME Class | System | $\begin{array}{\|c} \text { Limited } \\ \text { NDE } \\ \text { Exam } \end{array}$ | Code Coverage Achieved | Exam Date | Photol Sketch No.* | Required Examination Volume | Relief Previously Granted?** | UT Exam Type and Limitation Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 002800 | 2-RPVCH-6446A | HEAD TO FLANGE | B-A | B1.40 | 1 | RC | UT | 79\% | 4/17/02 | $266,266 \mathrm{~A}$, $266 \mathrm{~B}, 267$, 268,269, $270,270 \mathrm{~A}$, 270 B, 270 C, 270 D, $270 \mathrm{E}, 270 \mathrm{~F}$, 270 G | IWB-2500-5 | YES | UT exam was conducted using 45 - and 60 -degree shear wave transducers. The exam completed was limited to $79 \%$ code required coverage due to OD configuration associated with the reactor vessel closure head and flange. No unacceptable indications were noted. A system pressure test was also completed with no unacceptable indications observed. Closure head was replaced 2R14 with monoblock design (Spring 2005). |
| 010900 | $\begin{gathered} \text { 2-PZR-CIRC } \\ \text { DUH } \end{gathered}$ | SHELL D TO UPPER HEAD | B-B | B2.11 | 1 | RC | UT | 37\% | 4/11/02 | $\begin{array}{\|c} 283,284 \\ 285,286 \\ 286 A \\ 286 B, 286 C \end{array}$ | IWB-2500-1 |  | UT exam was conducted using 45 - and 60 -degree shear wave transducers. The exam completed was limited to $37 \%$ code required coverage due to due to support ring clamped to the upper head of the pressurizer head. A total of $140^{\circ}$ of the total circumference was accessible for examination. No unacceptable indications were noted. A system pressure test was also completed with no unacceptable indications observed. |
| 010400 | 2-PZR-LONG D | LONGITUDINAL WELD SHELL D | B-B | B2.12 | 1 | RC | UT | 74\% | 9/7/96 | $\begin{gathered} 84 \mathrm{~A}, 84 \mathrm{~B}, \\ 85,86,87, \\ 88 \end{gathered}$ | IWB-2500-2 | - | UT exam was conducted using 45 - and 60 -degree shear wave transducers. The exam completed was limited to $74 \%$ code required coverage. The UT exams conducted were limited due to a permanently installed insulation support bracket. The exam was limited between $0 "$ to $9^{\prime \prime}$ with $9 "$ to 13 " being restricted due to permanently installed insulation brackets. No unacceptable indications were noted. A system pressure test was also completed with no unacceptable indications observed. |
| 011100 | 4-PSN-1231-IRS | SAFETY NOZZLE | B-D | B3.120 | 1 | RC | UT | 50\% | 9/7/96 | $\begin{gathered} 89,89 \mathrm{~A}, \\ 89 \mathrm{~B}, 90,91, \\ 92,93 \end{gathered}$ | IWB-2500-7(b) |  | UT exam was conducted using a 53 -degree shear wave transducer. The exam completed was limited to $50 \%$ code required coverage. The UT exam conducted was limited due to due to the permanent raised manufacturer ID \#'s casted to the lower head. No exam could be performed from the vessel side between $0^{\circ}$ and $180^{\circ}$ due to the raised manufacturer ID \#'s casted to the head. The exam was performed from $180^{\circ}$ to $360^{\circ}$. No unacceptable indications were noted. A system pressure test was also completed with no unacceptable indications observed. |
| 020800 | $\begin{gathered} \text { 31-STG-1220- } \\ \text { IRS } \end{gathered}$ | OUTLET NOZZLE IRS | B-D | B3.140 | 1 | RC | UT | 80\% | 10/24/94 | $\left\|\begin{array}{c} 311,312, \\ 313,313 P, \\ 313 Q, 313 R \end{array}\right\|$ | IWB-2500-7(d) | YES | UT exam was conducted using 28 - and 38 -degree refracted longitudinal wave transducers. The exam completed was limited to $80 \%$ code required coverage due to an installed insulation support ring. The exam surface is approximately 153.9 with the length of the limitation being $30^{\prime \prime}$. No exam could be performed between $15^{\prime \prime} \mathrm{ccw}$ to $15^{\prime \prime} \mathrm{cw}$ from datum zero. No unacceptable indications were noted. A system pressure test was also completed with no unacceptable indications observed. |

* These numbers refer to Enclosure 1, Pages 1 through 343. Page numbers are in boxes in the corners of the pages. ** Relief was granted by the NRC in Reference 1 or was submitted in the Salem 2 first 10-year interval in Reference 2.

Table 1-1
2nd Ten-Year Inservice Inspection Interval Class 1 Component NDE Exam Limitations

| Sum\# | Component ID | Description | $2^{\text {nd }}$ Interval ASME Cat | $\begin{gathered} 2^{\text {nd }} \\ \text { Interval } \\ \text { ASME } \\ \text { Item \# } \end{gathered}$ | ASME <br> Class | System | $\begin{gathered} \text { Limited } \\ \text { NDE } \\ \text { Exam } \end{gathered}$ | Code Coverage Achieved | Exam Date | Photol Sketch No.* | Required Examination Volume | Relief Previously Granted?** | UT Exam Type and Limitation Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 021200 | $\begin{gathered} \text { 29-STG-1220- } \\ \text { IRS } \end{gathered}$ | INLET NOZZLE | B-D | B3.140 | 1 | RC | UT | 73\% | 10/24/94 | $\begin{aligned} & 311,312, \\ & 313,313 D, \\ & 313 E, 313 F \end{aligned}$ | IWB-2500-7(d) | YES | UT exam was conducted using 28 - and 38 -degree refracted longitudinal wave transducers. The exam completed was limited to $73 \%$ code required coverage due to an installed insulation support ring. The exam surface is approximately $154^{\prime \prime}$ with the length of the limitation being $73^{\prime \prime}$. No exam was able to be performed between $24^{\prime \prime} \mathrm{ccw}$ to $15^{\prime \prime} \mathrm{cw}$ from datum zero on insulation support lug located $77{ }^{\prime \prime} \mathrm{cw}$ to $79^{\prime \prime} \mathrm{cw}$ with 2"W measurement. No unacceptable indications were noted. A system pressure test was also completed with no unacceptable indications observed. |
| 020700 | $\begin{gathered} \text { 31-STG-1230- } \\ \text { IRS } \end{gathered}$ | OUTLET NOZZLE IRS | B-D | B3.140 | 1 | RC | UT | 81\% | 5/12/99 | $\begin{gathered} 311,312, \\ 313,313 \mathrm{~S}, \\ 313 \mathrm{~T}, 313 \mathrm{U} \end{gathered}$ | IWB-2500-7(d) | YES | UT exam was conducted using 28 - and 38 -degree refracted longitudinal wave transducers. The exam completed was limited to $81 \%$ code required coverage due to an installed insulation support brackets connected to the cast head that restricted scanning. No unacceptable indications were noted. A system pressure test was also completed with no unacceptable indications observed. |
| 021100 | $\begin{gathered} \text { 29-STG-1230- } \\ \text { IRS } \end{gathered}$ | INLET NOZZLE IRS | B-D | B3.140 | 1 | RC | UT | 75\% | 5/12/99 | $\begin{gathered} 311,312, \\ 313,313 \mathrm{G}, \\ 313 \mathrm{H}, 313-1 \end{gathered}$ | IWB-2500-7(d) | YES | UT exam was conducted using 28 - and 38 -degree refracted longitudinal wave transducers. The exam completed was limited to $75 \%$ code required coverage due to an installed insulation support brackets connected to the cast head that restricted scanning. No unacceptable indications were noted. A system pressure test was also completed with no unacceptable indications observed. |
| 020600 | $\begin{gathered} 31-\text { STG- } 1240- \\ \text { IRS } \end{gathered}$ | OUTLET NOZZLE IRS | B-D | B3.140 | 1 | RC | UT | 85\% | 4/23/02 | $\begin{gathered} 311,312, \\ 313,313 \mathrm{~V}, \\ 313 \mathrm{~W}, \\ 313 \mathrm{X} \end{gathered}$ | IWB-2500-7(d) | YES | UT exam was conducted using 28 - and 38 -degree longitudinal wave transducers. The exams completed was limited to $85 \%$ code required coverage due to due to the insulation support brackets attached to the steam generators lower head that interfered with scanning. No unacceptable indications were noted. A system pressure test was also completed with no unacceptable indications observed. |
| 020900 | $\begin{aligned} & \text { 31-STG-1210- } \\ & \text { IRS } \end{aligned}$ | OUTLET NOZZLE iRS | B-D | B3.140 | 1 | RC | UT | 79\% | 4/23/02 | $\begin{gathered} 311,312, \\ 313,313 M, \\ 313 N, 313- \\ 0 \end{gathered}$ | IWB-2500-7(d) | YES | UT exam was conducted using 28 - and 38 -degree longitudinal wave transducers. The exams completed was limited to $79 \%$ code required coverage due to due to the insulation support brackets attached to the steam generators lower head that interfered with scanning. No unacceptable indications were noted. A system pressure test was also completed with no unacceptable indications observed. |
| 021000 | $\begin{gathered} \text { 29-STG-1240- } \\ \text { IRS } \end{gathered}$ | $\begin{aligned} & \text { INLET NOZZLE } \\ & \text { IRS } \end{aligned}$ | B-D | B3.140 | 1 | RC | UT | 86\% | 4/23/02 | $\begin{array}{\|l} 311,312, \\ 313,313 \mathrm{~J}, \\ 313 \mathrm{~K}, 313 \mathrm{~L} \end{array}$ | IWB-2500-7(d) | YES | UT exam was conducted using 28 - and 38 -degree longitudinal wave transducers. The exams completed was limited to $86 \%$ code required coverage due to due to the insulation support brackets attached to the steam generators lower head that interfered with scanning. No unacceptable indications were noted. A system pressure test was also completed with no unacceptable indications observed. |

*These numbers refer to Enclosure 1, Pages 1 through 343. Page numbers are in boxes in the corners of the pages. ** Relief was granted by the NRC in Reference 1 or was submitted in the Salem 2 first 10-year interval in Reference 2.

Table 1-1
2nd Ten-Year Inservice Inspection Interval Class 1 Component NDE Exam Limitations

| Sum\# | Component ID | Description |  |  | ASME | System | Limited NDE Exam | Code Coverage Achieved | $\begin{aligned} & \text { Exam } \\ & \text { Date } \end{aligned}$ | Photol Sketch No.* | Required <br> Examination <br> Volume | Relief Previously Granted 7* | UT Exam Type and Limitation Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 021300 | $\begin{aligned} & 29-\text { STG-1210- } \\ & \text { IRS } \end{aligned}$ | INLET NOZZLE iRS | B-D | B3.140 | 1 | RC | UT | 82\% | 4/23/02 | $\left\|\begin{array}{c} 311,312, \\ 313,313 A, \\ 313 B, 313 C \end{array}\right\|$ | IWB-2500-7(a) | YES | UT exam was conducted using 28 - and 38 -degree longitudinal wave transducers. The exams completed was limited to $82 \%$ code required coverage due to due to the insulation support brackets attached to the steam generators lower head that interfered with scanning. No unacceptable indications were noted. A system pressure test was also completed with no unacceptable indications observed. |
| 003600 | 29-RCN-1210 | Outlet nozzle <br> AT 338 DEG. | B-D | B3.90 | 1 | RC | M-UT | 72\% | 12/19/02 | $\begin{array}{\|c} 271,271 \mathrm{~A}, \\ 271 \mathrm{~B}, 280, \\ 281 \end{array}$ | IWB-2500-7(b) | YES | UT exam was conducted using 45 -degree shear and refracted longitudinal wave transducers. The ultrasonic examination completed was partially limited to $72 \%$ of the code required converge being achieved due to the OD configuration of the nozzle protrusion (boss) that interfered with scanning. There were no unacceptable indications observed. A system pressure test was also completed with no unacceptable indications observed. |
| 002900 | 29-RCN-1230 | OUtLET NOzZLE <br> AT 22 DEG. | B-D | B3.90 | 1 | RC | UT | 72\% | 12/19/02 | $\begin{gathered} \text { 271, } 271 \mathrm{~A}, \\ 271 \mathrm{~B}, 272, \\ 273 \end{gathered}$ | IWB-2500-7(b) | YES | UT exam was conducted using 45-degree shear refracted longitudinal wave transducers. The ultrasonic examination completed was partially limited to $72 \%$ of the code-required coverage being achieved due to the OD configuration of the nozzle protrusion (boss) that interfered with scanning. There were no unacceptable indications observed. A system pressure test was also completed with no unacceptable indications observed. |
| 003300 | 29-RCN-1220 | OUTLET NOZZLE AT 203 DEG. | B-D | B3.90 | 1 | RC | UT | 72\% | 12/19/02 | $\begin{array}{\|c} \text { 271A, } \\ 271 \mathrm{~B}, 277, \\ 278,279 \end{array}$ | IWB-2700-7(a) | YES | UT exam was conducted using 45 -degree shear and longitudinal wave transducers. The exam completed was limited to $72 \%$ code required coverage due to the OD configuration of the nozzle protrusion (boss). No unacceptable indications were noted. A system pressure test was also completed with no unacceptable indications observed. |
| 003200 | 29-RCN-1240 | OUTLET NOZzLE <br> AT 158 DEG. | B-D | B3.90 | 1 | RC | UT | 72\% | 12/19/02 | $\begin{array}{\|c} 271 \mathrm{~A}, \\ 271 \mathrm{~B}, 274, \\ 275,276 \end{array}$ | IWB-2700-7(a) | YES | UT exam was conducted using 45-degree shear and longitudinal wave transducers. The exam completed was limited to $72 \%$ code required coverage due to the OD configuration of the nozzle protrusion (boss). No unacceptable indications were noted. A system pressure test was also completed with no unacceptable indications observed. |
| 011800 | 6-PR-1205-1 | nozzle to SAFE-END | B-F | B5. 40 | 1 | RC | UT | 38\% | 10/14/00 | $\begin{gathered} 298,298 \mathrm{~A}, \\ 298 \mathrm{~B}, \\ 298 \mathrm{C}, \\ 298 \mathrm{D}, 299, \\ 300 \end{gathered}$ | IWB-2500-7(b) | YES | UT exam was conducted using 30 -degree refracted longitudinal wave transducer. The ultrasonic examination completed was partially limited to $38 \%$ of the code required converge being achieved due to the OD configuration of the nozzle to safe-end that did not lend itself to achieving full coverage from the upstream side when scanning was performed. There were no unacceptable indications observed. UT exam performed was best effort. This weld configuration does not contain Alloy 600, 82/182 weld material. A liquid penetrant examination and system pressure test were also completed with no recordable indications observed. |

* These numbers refer to Enclosure 1, Pages 1 through 343. Page numbers are in boxes in the corners of the pages.
** Relief was granted by the NRC in Reference 1 or was submitted in the Salem 2 first 10-year interval in Reference 2.

Table 1-1
2nd Ten-Year Inservice Inspection Interval Class 1 Component NDE Exam Limitations

| Sum\# | Component ID | Description |  |  | ASME Class | System | Limited NDE Exam | Code Coverage Achieved | Exam | Photol Sketch No.* | $\begin{aligned} & \text { Required } \\ & \text { Examination } \\ & \text { Volume } \end{aligned}$ | Relief Previously Granted?* | UT Exam Type and Limitation Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 011820 | 6-PR-1203-1 | $\begin{aligned} & \text { NOZZLE TO } \\ & \text { SAFE-END } \end{aligned}$ | B-F | B5.40 | 1 | RC | UT | 86\% | 4/21/99 | $\left\|\begin{array}{c} 300,301, \\ 302,302 A, \\ 302 B, 302 C \end{array}\right\|$ | IWB-2500-8 | YES | UT exam was conducted using 45 -, and 25 -degree shear and refracted longitudinal wave transducer. The exam completed was limited to $86 \%$ code required coverage due to the exam being limited by the OD configuration of the nozzle and safe-end. This weld configuration does not contain Alloy 600 82/182 weld material. No unacceptable indications were noted. A liquid penetrant test and system pressure test were also completed with no unacceptable indications observed. |
| 011830 | 4-PR-1200-1 | nozzle to SAFE-END | B-F | B5.40 | 1 | RC | UT | 84\% | 4/21/99 | $\left\|\begin{array}{c} 300,303, \\ 304,304 \mathrm{~A}, \\ 304 \mathrm{~B}, \\ 304 \mathrm{C}, 304 \mathrm{D} \end{array}\right\|$ | IWB-2500-8 | YES | UT exam was conducted using 45 -degree shear wave transducer. The exam completed was limited to $84 \%$ code required coverage due to the exam being limited by the OD configuration of the nozzle and safe-end. This weld configuration does not contain Alloy $60082 / 182$ weld material. No unacceptable indications were noted. A liquid penetrant test and system pressure test were also completed with no unacceptable indications observed. |
| 083300 | 29-RC-1210-5 | $\begin{aligned} & \text { ELBOW TO } \\ & \text { NOZZLE } \end{aligned}$ | B-F | B5.70 | 1 | RC | UT | 67\% | 10/28/94 | $\begin{gathered} 305,306, \\ 306 A, \\ 306,312, \\ 313,315 \end{gathered}$ | IWB-2500-8 | YES | UT exam was conducted using 45 -degree shear wave transducer. The exam completed was limited to $67 \%$ code required coverage due to no UT axial scan exam was performed from the upstream or the downstream side of the weld due to the elbow being fabricated from ASTM351-65 CF8M cast stainless steel whose acoustic properties is not conducive for ultrasonic examination and the OD configuration of the nozzle. A clockwise and counterclockwise exam was performed of the weld crown. No unacceptable indications were noted. A liquid penetrant exam and system pressure test were also completed with no unacceptable indications observed. |
| 070000 | 31-RC-1240-1 | NozzLe TO ELBOW | B-F | B5.70 | 1 | RC | UT | 50\% | 10/28/94 | $\begin{gathered} 312,313, \\ 315,315 \mathrm{~B}, \\ 316 \mathrm{H}, 316- \\ 1,316 \mathrm{~J} \end{gathered}$ | IWB-2500-8 | YES | UT exam was conducted using 45 -degree shear wave transducer. The exam completed was limited to $50 \%$ code required coverage due to no UT axial scan exam was performed from either the upstream or the downstream side of the weld due to the elbow being fabricated from ASTM351-65 CF8M cast stainless steel whose acoustic properties is not conducive for ultrasonic examination and the OD configuration of the nozzle. A clockwise and counterclockwise exam was performed of the weld crown. No unacceptable indications were noted. A liquid penetrant exam and system pressure test were also completed with no unacceptable indications observed. |

*These numbers refer to Enclosure 1, Pages 1 through 343 . Page numbers are in boxes in the corners of the pages.
** Relief was granted by the NRC in Reference 1 or was submitted in the Salem 2 first 10 -year interval in Reference 2.

Table 1-1
2nd Ten-Year Inservice Inspection Interval Class 1 Component NDE Exam Limitations

| Sum\# | Component ID | Description | $\begin{gathered} 2^{\text {nd }} \\ \text { Interval } \\ \text { ASME } \\ \text { Cat } \end{gathered}$ | $\begin{gathered} 2^{\text {nd }} \\ \text { Interval } \\ \text { ASME } \\ \text { Item \# } \end{gathered}$ | ASME Class | System | $\left.\begin{gathered} \text { Limited } \\ \text { NDE } \\ \text { Exam } \end{gathered} \right\rvert\,$ | Code Coverage Achieved | Exam Date | Photol Sketch No.* | Required Examination Volume | Relief Previously Granted?** | UT Exam Type and Limitation Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 072300 | 31-RC-1230-1 | $\begin{aligned} & \text { NOZZLE TO } \\ & \text { ELBOW } \end{aligned}$ | B-F | B5.70 | 1 | RC | UT | 50\% | 4/24/99 | $\begin{array}{\|c} 312,313 \\ 315,315 \mathrm{~A}, \\ 316 \mathrm{E}, 316 \mathrm{~F}, \\ 316 \mathrm{G}, 317 \end{array}$ | IWB-2500-8 | YES | UT exam was conducted using 45-degree refracted longitudinal wave transducer. The exam completed was limited to $50 \%$ code required coverage due to no UT axial scan exam was performed from either the upstream or the downstream side of the weld due to the elbow being fabricated from ASTM351-65 CF8M cast stainless steel whose acoustic properties is not conducive for ultrasonic examination and the OD configuration of the nozzle. A clockwise and counterclockwise exam was performed of the weld crown. No unacceptable indications were noted. A liquid penetrant exam and system pressure test were also completed with no unacceptable indications observed. |
| 074600 | 31-RC-1220-1 | $\begin{aligned} & \text { NOZZLE TO } \\ & \text { ELBOW } \end{aligned}$ | B-F | B5.70 | 1 | RC | UT | 50\% | 4/24/99 | $\begin{array}{\|c} 312,313, \\ 315,316 \mathrm{~A}, \\ 316 \mathrm{~B}, \\ 316 \mathrm{C}, 316 \mathrm{D} \end{array}$ | IWB-2500-8 | YES | UT exam was conducted using 45 -degree refracted longitudinal wave transducer. The exam completed was limited to $50 \%$ code required coverage due to no UT axial scan exam was performed from either the upstream or the downstream side of the weld due to the elbow being fabricated from ASTM351-65 CF8M cast stainless steel whose acoustic properties is not conducive for ultrasonic examination and the OD configuration of the nozzle. A clockwise and counterclockwise exam was performed of the weld crown. No unacceptable indications were noted. A liquid penetrant exam and system pressure test were also completed with no unacceptable indications observed. |
| 076800 | 31-RC-1210-1 | $\begin{aligned} & \text { NOZZLE TO } \\ & \text { ELBOW } \end{aligned}$ | B-F | B5.70 | 1 | RC | UT | 50\% | 4/24/99 | $\begin{gathered} \text { 315, 315B, } \\ 317,317 \mathrm{~A}, \\ 317 \mathrm{~B} \end{gathered}$ | IWB-2500-8 | YES | UT exam was conducted using 45-degree refracted longitudinal wave transducer. The exam completed was limited to $50 \%$ code required coverage due to no UT axial scan exam was performed from either the upstream or the downstream side of the weld due to the elbow being fabricated from ASTM351-65 CF8M cast stainless steel whose acoustic properties is not conducive for ultrasonic examination and the OD configuration of the nozzle. A clockwise and counterclockwise exam was performed of the weld crown. No unacceptable indications were noted. A liquid penetrant exam and system pressure test were also completed with no unacceptable indications observed. |

* These numbers refer to Enclosure 1, Pages 1 through 343. Page numbers are in boxes in the corners of the pages.
** Relief was granted by the NRC in Reference 1 or was submitted in the Salem 2 first 10-year interval in Reference 2.

Table 1-1
2nd Ten-Year Inservice Inspection Interval Class 1 Component NDE Exam Limitations

| Sum\# | Component ID | Description |  |  | ASME | System | Limited NDE Exam | Code Coverage Achieved | $\begin{aligned} & \text { Exam } \\ & \text { Date } \end{aligned}$ | Photol Sketch No.* | $\begin{aligned} & \text { Required } \\ & \text { Examination } \\ & \text { Volume } \end{aligned}$ | Relief Previously Granted?** | UT Exam Type and Limitation Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 080300 | 29-RC-1230-3 | PIPE TO PIPE | B-J | B9. 11 | 1 | RC | UT | 90\% | 4/6/93 | 1,2 | IWB-2500-8 |  | UT exam was conducted using 45-degree shear wave transducer. The ultrasonic examination completed was partially limited to $90 \%$ of the code-required coverage being achieved due to branch connections between $373 / 4^{\prime \prime}$ to 41 " and $1041 / 2^{\prime \prime}$ to $11 / 2^{\prime \prime}$ that did not lend itself to achieving full coverage from the downstream side when scanning was performed. Scanning was performed across the weld to maximize achieved Code coverage. There were no unacceptable indications observed. No unacceptable indications were noted. This weld configuration does not contain Alloy 600, 82/182-weld material. A liquid penetrant examination and system pressure test was also completed with no recordable indications observed. |
| 164000 | 10-SJ-1221-21 | ELBOW TO PIPE | B-J | B9. 11 | 1 | SJ | UT | 83\% | 4/12/93 | $\begin{gathered} 3,3 \mathrm{~A}, 3 \mathrm{~B}, \\ 3 \mathrm{C} \end{gathered}$ | IWB-2500-8 |  | UT exam was conducted using 45-degree shear wave transducer. The ultrasonic examination completed was partially limited to $83 \%$ of the achieved code required coverage being limited from $13^{\prime \prime}$ to $21^{\prime \prime}$ on upstream side due to the curvature of the shortened inner radius of the elbow. Scanning was also performed across the weld to maximize achieved code coverage. No unacceptable indications were observed. A liquid penetrant examination and system pressure test was also completed with no recordable indications observed. |
| 166000 | 8-SJ-1262-10 | PIPE TO PIPE | B-J | B9.11 | 1 | SJ | UT | 82\% | 3/27/93 | 4, 4A, 4B, 4C, 4D | IWB-2500-8 |  | UT exam was conducted using 45-degree shear wave transducer. The ultrasonic examination completed was partially limited to $82 \%$ of the achieved code required coverage being limited due to a permanently installed pipe support (9PS) that restricted scanning to approximately 1 $3 / 4^{\text {" }}$ of the upstream side of the weld. No unacceptable indications were observed. A liquid penetrant examination and system pressure test was also completed with no recordable indications observed. |
| 169450 | 8-SJ-1245-1 | $\begin{aligned} & \text { TEE TO VALVE } \\ & 24 R H 27 \end{aligned}$ | B-J | B9.11 | 1 | SJ | UT | 36\% | 4/14/93 | $\begin{aligned} & 5,6,6 \mathrm{~A}, \\ & 6 \mathrm{~B}, 6 \mathrm{C} \end{aligned}$ | IWB-2500-8 | YES | UT exam was conducted using 45-degree shear wave transducer. The ultrasonic examination completed was partially limited to $36 \%$ of the achieved code required coverage being limited due to the tee to valve configuration and the shortened radius of the tee between 9 " to $18^{\prime \prime}$ and 23" TO 4". The exam was limited on the downstream side due to the OD configuration of the valve and the upstream side of the tee. No unacceptable indications were observed. A liquid penetrant examination and system pressure test was also completed with no recordable indications observed. |

* These numbers refer to Enclosure 1, Pages 1 through 343. Page numbers are in boxes in the corners of the pages.
${ }^{* *}$ Relief was granted by the NRC in Reference 1 or was submitted in the Salem 2 first 10-year interval in Reference 2.

Table 1-1
2nd Ten-Year Inservice Inspection Interval Class 1 Component NDE Exam Limitations

| Sum\# | Component ID | Description | $2^{\text {nd }}$ Interval ASME Cat | $2^{\text {nd }}$ Interval ASME Item \# | ASME <br> Class | System | Limited NDE Exam | Code Coverage Achieved | Exam Date | Photol Sketch No.* | Required Examination Volume | Relief Previously Granted7** | UT Exam Type and Limitation Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 172500 | 6-SJ-1241-18 | ELBOW TO PIPE | B-J | B9.11 | 1 | SJ | UT | 90\% | 4/3/93 | $\begin{gathered} 7,7 A, 7 B \\ 7 C \end{gathered}$ | IWB-2500-8 |  | UT exam was conducted using 45-degree shear wave transducer. The ultrasonic examination completed was partially limited to $90 \%$ of the achieved code required coverage being limited due to close proximity of the adjacent weld \# 19 located downstream. No unacceptable indications were observed. A liquid penetrant examination and system pressure test were also completed with no recordable indications observed. |
| 076000 | 31-RC-1220-4 | ELBOW TO PIPE | B-J | B9.11 | 1 | RC | UT | 84\% | 10/27/94 | $\begin{gathered} 48,49,50, \\ 50 \mathrm{~A}, 50 \mathrm{~B}, \\ 50 \mathrm{C} \end{gathered}$ | IWB-2500-8 | YES | UT exam was performed using 45-degree shear wave transducer from the pipe side with no exam able to be conducted from the elbow side due to the elbow being fabricated from ASTM351-65 CF8M cast stainless steel whose acoustic properties is not conducive for ultrasonic examination. The exam completed was limited to $84 \%$ code required coverage. No unacceptable indications were noted. The downstream exam was limited between $55^{\prime \prime}$ to $62^{\prime \prime}$ due to a branch connection that interfered with scanning. A liquid penetrant examination and system pressure test were also completed with no unacceptable indications observed. |
| 054400 | 4-PR-1200-7 | PIPE TO TEE | B-J | B9.11 | 1 | RC | UT | 59\% | 5/3/99 | $\begin{gathered} 124,125 \\ 126 \end{gathered}$ | IWB-2500-8 |  | UT exam was conducted using 45 -degree shear and refracted longitudinal wave transducers. The exam completed was limited to $59 \%$ code required coverage due to no UT exam being able to be performed from the downstream side due to the tee to valve configuration. In addition, the exam conducted from the upstream side was limited due to the radius of the tee. Scanned across weld to maximize achieved Code coverage. No unacceptable indications were noted. A liquid penetrant test and system pressure test was also completed with no unacceptable indications observed. |
| 063000 | 4-PS-1231-20 | VALVE 2PS28 TO PIPE | B-J | B9.11 | 1 | RC | UT | 59\% | 5/17/99 | $\begin{gathered} 129,130 \\ 131,131 \mathrm{~A}, \\ 131 \mathrm{~B}, 131 \mathrm{C} \end{gathered}$ | IWB-2500-8 |  | UT exam was conducted using 45-degree shear and refracted longitudinal wave transducer. The exam completed was limited to $59 \%$ code required coverage due to the UT exam being limited due to the upstream side valve's OD configuration that restricted scanning. UT scans were performed on and across the welds in both directions. No unacceptable indications were noted. A liquid penetrant test and system pressure test was also completed with no unacceptable indications observed. |
| 063100 | 4-PS-1231-21 | PIPE TO VALVE 2PS3 | B-J | B9.11 | 1 | RC | UT | 55\% | 5/17/99 | $\begin{gathered} 132,133 \\ 134 \end{gathered}$ | IWB-2500-8 |  | UT exam was conducted using 45-degree shear and refracted longitudinal wave transducer. The exam completed was limited to $55 \%$ code required coverage due to the UT exam being limited due to the upstream side valve's OD configuration that restricted scanning. UT scans were performed on and across the welds in both directions. No unacceptable indications were noted. A liquid penetrant test and system pressure test was also completed with no unacceptable indications observed. |

* These numbers refer to Enclosure 1, Pages 1 through 343. Page numbers are in boxes in the corners of the pages.
** Relief was granted by the NRC in Reference 1 or was submitted in the Salem 2 first 10-year interval in Reference 2.

Table 1-1
2nd Ten-Year Inservice Inspection Interval Class 1 Component NDE Exam Limitations

| Sum\# | Component ID | Description | $2^{\text {nd }}$ Interval ASME Cat | $\begin{aligned} & 2^{\text {nd }} \\ & \text { Interval } \\ & \text { ASME } \\ & \text { Item \# } \end{aligned}$ | ASME Class | System | Limited NDE Exam | Code Coverage Achieved | Exam Date | Photol Sketch No.* | Required Examination Volume | Relief Previously Granted?** | UT Exam Type and Limitation Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 168200 | 8-SJ-1252-9 | PIPE TO PIPE | B-J | B9.11 | 1 | SJ | UT | 86\% | 5/8/99 | 135, 136 | IWB-2500-8 |  | UT exam was conducted using 45-degree shear and refracted longitudinal wave transducer. The exam completed was limited to $86 \%$ code required coverage due to the UT exam being limited UT exam performed due two permanently welded pipe supports located on the downstream side of the weld that restricted scanning. The two pipe supports exist at $90^{\circ}$ and $270^{\circ}$ around the pipe for a total of $12^{\prime \prime}$. UT scans were performed on and across the welds in both directions. No unacceptable indications were noted. A liquid penetrant test and system pressure test was also completed with no unacceptable indications observed. |
| 170850 | 6-SJ-1242-2 | ELBOW TO <br> VALVE 24SJ43 | B-J | B9.11 | 1 | SJ | UT | 62\% | 5/3/99 | $\begin{gathered} 137,138 \\ 139 \end{gathered}$ | IWB-2500-8 |  | UT exam was conducted using 45-degree shear and refracted longitudinal wave transducer. The exam completed was limited to $62 \%$ code required coverage due to the UT exam being limited due to the valve's OD configuration that restricted scanning. UT scans were performed on and across the welds in both directions. No unacceptable indications were noted. A liquid penetrant test and system pressure test was also completed with no unacceptable indications observed. |
| 173300 | 6-SJ-1232-12 | PIPE TO TEE | B-J | B9.11 | 1 | SJ | UT | 61\% | 5/3/99 | $\begin{gathered} 140,141, \\ 142 \end{gathered}$ | IWB-2500-8 |  | UT exam was conducted using 45-degree shear and refracted longitudinal wave transducer. The exam completed was limited to $61 \%$ code required coverage due to the UT exam being limited due to the tee's OD configuration that restricted scanning. UT scans were performed on and across the welds in both directions. No unacceptable indications were noted. A liquid penetrant test and system pressure test was also completed with no unacceptable indications observed. |
| 175600 | 6-SJ-1212-2 | VALVE 21SJ43 TO PIPE | B-J | 89.11 | 1 | SJ | UT | 61\% | 5/3/99 | 143, 144 | IWB-2500-8 |  | UT exam was conducted using 45-degree shear and refracted longitudinal wave transducer. The exam completed was limited to $61 \%$ code required coverage due to the UT exam being limited due to the valve's OD configuration that restricted scanning. UT scans were performed on and across the welds in both directions. No unacceptable indications were noted. A liquid penetrant test and system pressure test was also completed with no unacceptable indications observed. |
| 084400 | 27.5-RC-1230-1 | PUMP TO PIPE | B-J | B9.11 | 1 | RC | UT | 49\% | 10/16/00 | $\begin{gathered} 173,174, \\ 174 \mathrm{~A}, \\ 174 \mathrm{~B}, \\ 174 \mathrm{C}, 174 \mathrm{D} \end{gathered}$ | IWB-2500-8 |  | UT exam was conducted using 45 - and 60 -degree shear wave transducer. The exam completed was limited to $49 \%$ code required coverage due to the UT exam being limited due to the OD configuration of the pump nozzle and the presence of a branch connection located downstream between 101" to $3^{\prime \prime}$ that restricted scanning. A liquid penetrant test and system pressure test was also.completed with no unacceptable indications observed. |

*These numbers refer to Enclosure 1, Pages 1 through 343. Page numbers are in boxes in the corners of the pages.
** Relief was granted by the NRC in Reference 1 or was submitted in the Salem 2 first 10-year interval in Reference 2.

Table 1-1
2nd Ten-Year Inservice Inspection Interval Class 1 Component NDE Exam Limitations

| Sum\# | Component ID | Description | 2nd Interval ASME Cat | $\begin{gathered} 2^{\text {nd }} \\ \text { Interval } \\ \text { ASME } \\ \text { Item \# } \end{gathered}$ | ASME Class | System | Limited NDE Exam | Code Coverage Achieved | $\begin{aligned} & \text { Exam } \\ & \text { Date } \end{aligned}$ | Photol Sketch No.* | Required Examination Volume | Relief Previously Granted ${ }^{* *}$ | UT Exam Type and Limitation Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 174300 | 6-RH-1231-16 | ELBOW TO VALVE 23SJ156 | B-J | B9.11 | 1 | RHR | UT | 50\% | 10/18/00 | $\begin{gathered} 175,176 \\ 176 \mathrm{~A} \end{gathered}$ | IWB-2500-8 |  | UT exam was conducted using 45 -degree shear wave transducer. The exam completed was limited to $50 \%$ code required coverage due to the UT exam being limited due to the valve's OD configuration that restricted scanning. UT scans were performed on and across the welds in both directions. No unacceptable indications were noted. A liquid penetrant test and system pressure test was also completed with no unacceptable indications observed. |
| 075800 | $\begin{aligned} & \text { 31-RC-1220- } \\ & \text { 4LU-I } \end{aligned}$ | LONGITUDINAL | B-J | B9.12 | 1 | RC | UT | 0\% | 10/28/94 | $\begin{gathered} 315,315 \mathrm{C} \\ 315 \mathrm{D} \end{gathered}$ | IWB-2500-8 | YES | No UT exam was able to be conducted from the elbow side due to the elbow being fabricated from ASTM351-65 CF8M cast stainless steel whose acoustic properties is not conducive for ultrasonic examination. A PT exam of the long seam was performed in lieu of the UT exam because of the elbow's acoustic properties of the casting. No unacceptable indications were noted. A system pressure test was also completed with no unacceptable indications observed. |
| 075900 | 31-RC-1220-4LU-O | LONGITUDINAL | B-J | B9.12 | 1 | RC | UT | 0\% | 10/28/94 | $\begin{gathered} 315,315 \mathrm{E} \\ 315 \mathrm{~F} \end{gathered}$ | IWB-2500-8 | YES | No UT exam was able to be conducted from the elbow side due to the elbow being fabricated from ASTM351-65 CF8M cast stainless steel whose acoustic properties is not conducive for ultrasonic examination. A PT exam of the long seam was performed in lieu of the UT exam because of the elbow's acoustic properties of the casting. No unacceptable indications were noted. A system pressure test was also completed with no unacceptable indications observed. |
| 034500 | 3-CV-1241-13 | VALVE 2CV80 TO <br> ELBOW | B-J | B9.21 | 1 | CVC | UT | 75\% | 9/22/98 | 168, 169 | IWB-2500-8 |  | UT exam was conducted using 45 - and 70 -degree shear wave transducers. The exam completed was limited to $75 \%$ code required coverage due the upstream side of the weld due to the valve's OD configuration that interfered with scanning. Component selected as an augmented $88-08$ exam. No unacceptable indications were noted. A liquid penetrant and system pressure test was also completed with no unacceptable indications observed. |
| 036000 | 3-CV-1231-14 | PIPE TO VALVE 2CV274 | B-J | B9. 21 | 1 | CVC | UT | 75\% | 10/11/00 | $\begin{aligned} & \text { 172, 172A, } \\ & 172 \mathrm{~B}, 172 \mathrm{C} \end{aligned}$ | IWB-2500-8 |  | UT exam was conducted using 45-shear wave transducer. The exam completed was limited to $75 \%$ code required coverage due to the UT exam being limited due to the valve's OD configuration that restricted scanning. UT scans were performed on and across the welds in both directions. No unacceptable indications were noted. A liquid penetrant test and system pressure test was also completed with no unacceptable indications observed. |
| 034600 | 3-CV-1241-14 | ELBOW TO BRANCH CONNECTION | B-J | B9. 21 | 1 | CVC | UT | 75\% | 10/14/00 | 170, 171 | IWB-2500-11 | $\cdots$ | UT exam was conducted using 45 - and 70 -degree shear wave transducers. The exam completed was limited to $75 \%$ code required coverage due to the OD configuration of the branch connection that interfered with scanning. No unacceptable indications were noted. A liquid penetrant test and system pressure test was also completed with no unacceptable indications observed. |

* These numbers refer to Enclosure 1, Pages 1 through 343. Page numbers are in boxes in the corners of the pages. ** Relief was granted by the NRC in Reference 1 or was submitted in the Salem 2 first 10-year interval in Reference 2.

Table 1-1
2nd Ten-Year Inservice Inspection Interval Class 1 Component NDE Exam Limitations

| Sum\# | Component ID | Description | $2^{\text {nd }}$ Interval ASME Cat | $\begin{gathered} 2^{\text {nd }} \\ \text { Interval } \\ \text { ASME } \\ \text { Item \# } \end{gathered}$ | ASME Class | System | Limited NDE Exam | Code Coverage Achieved | Exam | Photol Sketch No.* | Required Examination Volume | Relief Previously Granted?** | UT Exam Type and Limitation Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 085000 | $\begin{gathered} 27.5-\mathrm{RC}-1230- \\ 1 \mathrm{BC}-5 \end{gathered}$ | 4 IN. BRANCH CONNECTION | B-J | B9.31 | 1 | RC | UT | 55\% | 11/7/94 | $\begin{gathered} 51,52,53 \\ 54 \end{gathered}$ | IWB-2500-8 | YES | UT exam was conducted using 45 - and 32 -degree shear wave transducers. The exam completed was limited to $55 \%$ code required coverage due to the exam being limited by a branch connection configuration. The exam was limited $11 / 2^{\prime \prime} \mathrm{W}$ measurement due to the branch connection's OD configuration that interfered with scanning. No unacceptable indications were noted. A liquid penetrant and system pressure test was also completed with no unacceptable indications observed. |
| 086800 | $\begin{gathered} 27.5-\mathrm{RC}-1210- \\ 1 \mathrm{BC}-3 \end{gathered}$ | 10 IN. BRANCH CONNECTION | B-J | B9.31 | 1 | RC | UT | 56\% | 11/7/94 | $\begin{gathered} 55,56,57 \\ 58,59 \end{gathered}$ | IWB-2500-8 | YES | UT exam was conducted using 45 - and 39 -degree shear wave transducers. The exam completed was limited to $56 \%$ code required coverage due to the exam being limited by a branch connection configuration. The exam was limited $11 / 2^{\prime \prime} \mathrm{W}$ measurement due to the branch connection's OD configuration that interfered with scanning. No unacceptable indications were noted. A liquid penetrant and system pressure test was also completed with no unacceptable indications observed. |
| 086900 | $\begin{gathered} 27.5-\mathrm{RC}-1210- \\ 1 \mathrm{BC}-4 \end{gathered}$ | 4 IN. BRANCH CONNECTION | B-J | B9.31 | 1 | RC | UT | 53\% | 11/7/94 | $\begin{gathered} 60,61,62, \\ 63 \end{gathered}$ | IWB-2500-8 | YES | UT exam was conducted using 45 - and 32 -degree shear wave transducers. The exam completed was limited to $53 \%$ code required coverage due to the exam being limited by a branct connection configuration. The exam was limited $11 / 2^{\prime \prime} \mathrm{W}$ measurement due to the branch connection's OD configuration that interfered with scanning. No unacceptable indications were noted. A liquid penetrant and system pressure test was also completed with no unacceptable indications observed. |
| 040900 | 2-CV-1275-43 | VALVE 2CV76 TO PIPE | B-J | B9-40 | 1 | CVC | UT | 50\% | 10/14/00 | $\begin{aligned} & 314,314 \mathrm{~A} \\ & 314 \mathrm{~B}, 314 \mathrm{C} \end{aligned}$ | IWB-2500-8 |  | UT exam was conducted using 45 -degree shear wave transducer. The exam completed was limited to $50 \%$ code required coverage due to the exam limited to $3 / 8^{\prime \prime} \mathrm{W}$ due to the close proximity of the downstream socket weld \# 44 being too close that interfered with scanning. Component selected as an augmented $88-08$ exam. No unacceptable indications were noted. A liquid penetrant and system pressure test was also completed with no unacceptable indications observed. |
| 041000 | 2-CV-1275-44 | PIPE TO BRANCH CONNECTION | B-J | B9-40 | 1 | CVC | UT | 50\% | 10/14/00 | $\begin{gathered} \text { 314A, } \\ 314 \mathrm{D}, \\ 314 \mathrm{E}, 316 \end{gathered}$ | IWB-2500-8 |  | UT exam was conducted using 45 -degree shear wave transducer. The exam completed was limited to $50 \%$ code required coverage due to the UT exam being limited due to $3 / 8^{\prime \prime} \mathrm{W}$ due to adjacent downstream socket weld \# 43 being too close and interfering with the scan. Component selected as an augmented 88-01 exam. No unacceptable indications were noted. A liquid penetrant test and system pressure test was also completed with no unacceptable indications observed |

[^0]Table 1-1
2nd Ten-Year Inservice Inspection Interval Class 1 Component NDE Exam Limitations

| Sum\# | Component ID | Description |  |  | ASME Class | System | Limited NDE Exam | Code Coverage Achieved | $\begin{aligned} & \text { Exam } \\ & \text { Date } \end{aligned}$ | Photol Sketch No.* | Required Examination Volume | Relief Previously Granted ${ }^{* *}$ | UT Exam Type and Limitation Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 061700 | $\left\lvert\, \begin{gathered} \text { 4-PS-1231-11PS- } \\ 1 \text { THRU } 4 \end{gathered}\right.$ | PIPE SUPPORT | B-K-1 | B10.10 | 1 | RC | PT | 50\% | 4/30/99 | 127, 128 | IWB-2500-8 |  | PT exam was conducted of this component. The PT exam was limited to $50 \%$ because of a permanently installed component support that obstructed the exam. The bottom of the pipe support weld was inaccessible due to a permanent obstruction from the fixed pipe clamp. A system pressure test was also completed with no unacceptable indications observed. |
| 251200 | $\underset{\substack{1,2,3}}{22 \text { PPP-LUGS }}$ | PUMP LUGS | B-K-1 | B10.20 | 1 | RC | PT | 67\% | 4/6/93 | 8, 9, 10, 11 | IWB-2500-15 | YES | PT exam was performed of this component. The liquid penetrant examination completed was partially limited to $67 \%$ of the achieved code required coverage being limited due to a portion of the lugs being hidden within the pump support structure. No unacceptable indications were observed. A system pressure test was also completed with no recordable indications observed. |
| 251300 | $\underset{\substack{1,2,3}}{21-\text { PMP-LUGS }}$ | PUMP LUGS | B-K-1 | B10.20 | 1 | RC | PT | 67\% | 4/6/93 | $\begin{gathered} 12,13,14 \\ 15 \end{gathered}$ | IWB-2500-15 | YES | PT exam was performed of this component. The liquid penetrant examination completed was partially limited to $67 \%$ of the achieved code required coverage being limited due to a portion of the lugs being hidden within the pump support structure. No unacceptable indications were observed. A system pressure test was also completed with no recordable indications observed. |

* These numbers refer to Enclosure 1, Pages 1 through 343. Page numbers are in boxes in the corners of the pages. ** Relief was granted by the NRC in Reference 1 or was submitted in the Salem 2 first 10-year interval in Reference 2.


# 10 CFR 50.55a Request Number: S2-I2-RR-C01 Relief Request in Accordance with 10 CFR 50.55a(g)(5)(iii) Inservice Inspection Impracticality 

| NOTE: |
| :--- | :--- |
| Salem Unit 2-Second Ten-Year Interval Inservice Inspection (ISI) inservice inspection |
| examinations was conducted between May 10, 1992 (start) and November 23, 2003 |
| (end). This interval excludes 26 months and 21 days $(6 / 8 / 95-8 / 29 / 97$ ) for an |
| extended shutdown and cumulatively less 2 months and 1 day to coincide with end of |
| refuelina outaae der IWA-2430 (d). |

## ASME Code Components Affected

| Code Class | 2 |
| :--- | :--- |
| Reference: | IWC-2500 |
| Examination Categories: | C-A, C-B, C-C, C-F-1, and C-F-2 |
| Item Numbers: | See Table 2-1 |
| Description: | Volumetric and surface examination coverage |
| Component Number: | See Table 2-1 |

## Applicable Code Edition and Addenda

The code of record for the Salem Unit 2 second 10-year ISI Program interval is Section XI of the ASME Code, 1986 Edition

## Code Requirement:

Salem Unit 2 second Ten-Year Interval Inservice Inspection (ISI) examinations were performed in accordance with the requirements of ASME Boiler and Pressure Vessel Code Section XI, 1986 Edition Article IWC-2500 to the extent practical. Table IWC-2500-1 defines examination requirements for Class 2 components. The table contains information associated with the identification of components to be examined by nondestructive examination; this includes the applied nondestructive examination (NDE) method, acceptance standard, and extent of exam coverage and exam frequency.

In addition, 10CFR50.55a was revised effective November 22, 1999 to require expedited implementation of Appendix VIII, "Performance Demonstration for Ultrasonic Examination Systems," of the ASME Code, Section XI, 1995 Edition with the 1996 Addenda. These requirements affected Class 1 and 2 bolting, piping system welds, and reactor pressure vessel nondestructive examinations performed after this date. With this initiative came revised coverage calculation methodologies that further reduced the credited examination coverage of some components.

ASME, Section XI, 1986 Edition required volumetric and/or surface and visual examinations be performed upon components and welds identified within Table IWC-2500-1. The applicable exam categories for this relief request are C-A, C-B, C-C, C-F-1 and C-F-2. The applicable code requirements for the relevant item numbers are as follows. Please note that "essentially $100 \%$," as clarified by ASME Code Case N-460, is greater than $90 \%$ coverage of the examination volume, or surface area, as applicable.

## A. Exam Category C-A Pressure Retaining Welds in Pressure Vessels

Code Requirement: Items C1.10, C1.20, and C1.30 require essentially 100\% volumetric weld examinations to be performed upon various pressure vessel shell-circumferential, head-circumferential and tubesheet-to-shell welds, respectively. The examinations may be limited to one vessel among the group of vessels performing a similar function.

## B. Exam Category C-B Pressure Retaining Nozzle Welds in Vessels

Code Requirement: Item C2.21 requires essentially $100 \%$ volumetric and surface examinations, as defined by Figures IWC-2500-4 (a) and (b), of the nozzle-toshell welds in Class 2 vessels. The examinations may be limited to one vessel among the group of vessels performing a similar function.

## C. Exam Category C-C Welded Integral Attachments

Code Requirement: Items C3.10 and C3.20 require essentially 100\% surface examinations, as defined by Figure IWC-2500-5, of integral attachments for pressure vessels and piping respectively. PSEG Nuclear (PSEG) conducted welded integral attachment weld exams in accordance with the requirements of ASME Section XI Code Case N-509, Alternative Rules for the Selection and Examination of Class 1, 2 and 3 Integrally Welded Attachments.
D. Exam Category C-F-1 and C-F-2 Pressure Retaining Piping Welds

Code Requirement: PSEG conducted Class 2 piping exams in accordance with the requirements imposed by ASME Section XI Code Case N-408 Alternative Rules for Examination of Class 2 Piping Exam Categories C-F-1 and C-F-2. This code case required surface and volumetric weld examinations be performed upon welds greater than 4 inches in diameter and 0.375 inch thickness (Items C5.10/C5.11) and greater than or equal to 2 inches in diameter but less than or equal to 4 inches (Items C5.20/C5.21). Additionally, as part of the second 10year interval inservice inspection plan, as detailed in Reference 1, PSEG committed to perform augmented volumetric examinations of a $71 / 2 \%$ sample of Class 2 welds in the containment spray system that are otherwise not selected based on wall thickness (i.e. less than 0.375 inches wall thickness). A limitation
in examination coverage of one of these augmented welds is listed in Table 2-1 (Category "A-E").

Table 2-1 contains detailed information related to the explanation of those components demonstrating inadequate code exam coverage extent due to inaccessibility, physical limitation or obstruction.

## Basis for Relief:

Pursuant to 10CFR50.55a(g)(5)(iii), relief is requested from ASME XI examination requirements for the performance of the following piping and vessel welds due to exam limitations. Table 2-1 herein identifies those inservice inspection nondestructive examinations contained within the Salem Unit 2 ISI Program Long Term Plan for the Second Ten-Year Interval whose NDE exams were found to be inaccessible, physically limited or partially obstructed and therefore not capable of fully meeting code coverage requirements for examination extent. Enclosure 1 provides additional descriptive details (sketches, illustrations, and/or drawings) for these components.

Subject components contained herein have received inservice inspection NDE examinations to the "extent practical" within the limitations of design, geometry and materials of construction of the components as allowed by Code. These components have also undergone necessary volumetric examination by radiography and/or surface examinations during fabrication, in accordance with approved construction/fabrication code requirements providing adequate assurance for the structural integrity of the components prior to plant operation. In addition, these components have been subjected to a visual examination for leakage after completion of each inspection period. This provides additional assurance that the structural integrity of the subject components is maintained.

PSEG utilizes approved technical procedures written in accordance to applicable ASME Code section/paragraph criterion for area/volume requirements. Plant procedures require the documentation of the location and cause of the limitation.

## A. Exam Category C-A Pressure Retaining Welds in Pressure Vessels

See Table 2-1, attached to identify specific component information and explanation of the limitation(s) encountered.

Full Code required coverage is impractical for the subject welds since the vessels would require design modifications that would impose a significant burden to PSEG. PSEG has examined these welds to the extent practical and determined them to be acceptable with no observed signs of degradation. In addition, other similar vessel welds have been examined to the extent required by the Code and also found to be acceptable with no observed signs of degradation. In addition, VT-2 visual examinations performed in conjunction with system pressure testing have found these welds to be acceptable with no leakage observed.

## B. Exam Category C-B Pressure Retaining Nozzle Welds in Vessels

See Table 2-1, attached to identify specific component information and explanation of the limitation(s) encountered.

Full Code required coverage is impractical for the subject welds since the vessels would require design modifications and would impose a significant burden to PSEG. PSEG has examined these welds to the extent practical and determined them to be acceptable with no observed signs of degradation. In addition, other similar vessel welds have been examined to the extent required by the Code and also found to be acceptable with no observed signs of degradation. In addition, VT-2 visual examinations performed in conjunction with system pressure testing have found these welds to be acceptable with no leakage observed.

## C. Exam Category C-C Welded Integral Attachments

See Table 2-1, attached to identify specific component information and explanation of the limitation(s) encountered.

Full Code required coverage is impractical for the subject welds since the integral attachments would require design modifications and would impose a significant burden to PSEG. PSEG has examined these welds to the extent practical and determined them to be acceptable with no observed signs of degradation. In addition, other similar welded attachments have been examined to the extent required by the Code and also found to be acceptable with no observed signs of degradation. Also, VT-2 visual examinations performed in conjunction with system pressure testing found these welds to be acceptable with no leakage observed.
D. Exam Category C-F-1 and C-F-2 Pressure Retaining Piping Welds

See Table 2-1, attached to identify specific component information and explanation of the limitation(s) encountered.

Required Code coverage is impractical for the subject welds since the piping system would require design modifications to achieve additional coverage and would impose a significant burden to PSEG. PSEG has examined these welds to the extent practical and determined them to be acceptable with no observed signs of degradation. In addition, other similar piping welds have been examined to the extent required by the Code and also found to be acceptable with no observed signs of degradation. Further, VT-2 visual examinations performed in conjunction with system pressure testing have found these welds to be acceptable with no leakage observed.

Code required volumetric examinations are conducted by ultrasonic examination from both the upstream and downstream directions of piping welds. Ultrasonic
examination of certain terminal ends and structural discontinuities are considered to be impractical due to their configuration and material acoustic properties.

The EPRI Performance Demonstration Initiative (PDI) is in agreement with the NRCs September 22, 1999 Final Rule regarding single side access for piping. The Final Rule requires that if access is available, austenitic steel weld shall be scanned in each of the four directions (parallel and perpendicular to the weld) where required. PDI has not been able to qualify a single side examination procedure technique that is capable of demonstrating equivalency for a two-sided examination procedure technique on austenitic piping welds. Current or past technology is not capable of reliably detecting or sizing flaws on the far side of an austenitic weld for configurations common to nuclear applications. Ultrasonic examination of ferritic steel welds requires scanning in the two axial scan directions. Circumferential scanning is required in the remaining two directions only when axial indications were noted during pre-service inspections. Coverage credit may be taken for single side exams on ferritic piping. However, for austenitic piping, a procedure must be qualified with flaws on the inaccessible side of the weld.

To demonstrate that the best available technology was applied to austenitic welds, PDI provides a best effort qualification instead of a complete single sided qualification. PDI Performance Demonstration Qualification Summary (PDQS) austenitic piping certificates list the limitation that single side examination is performed on a best effort basis. When performing single side access of austenitic stainless steel piping welds the best available techniques are used from the accessible side of the weld, as qualified through the PDI.

When the examination area is limited to one side of an austenitic weld, examination coverage does not comply with 10CFR50.55a(b)(2)(xv)(A) or the ASME Section XI requirements and proficiency demonstrations do not comply with 10CFR50.55a(b)(2)(xvi) and full coverage credit may not be claimed. Based upon the qualification efforts of the PDI program, PSEG considers austenitic piping welds examined from a single side to be fully examined to the extent practical. This is considered true for examinations performed prior to and after the PDI in that it has been confirmed by the PDI that the configuration and material acoustic properties of austenitic piping prevents full two-sided access for examination.

## Alternative Examination:

PSEG performed NDE examinations to the extent practical upon the components identified in the exam categories below using the state of the art techniques of the time and as applicable, demonstrated through the EPRI PDI Program.
A. Exam Category C-A Pressure Retaining Welds in Pressure Vessels

Where the component would not allow an ultrasonic angle beam examination from both sides of the weld, the following were performed using the best available technology at the time and as applicable, demonstrated through the EPRI PDI program:

- Similar metal welds, $100 \%$ of the required volume was examined to the extent practical using personnel and techniques qualified and demonstrated through the EPRI PDI, as applicable.
- The code required system pressure test examinations were performed per ASME Section XI requirements.
B. Exam Category C-B Pressure Retaining Nozzle Welds in Vessels

Where the component would not allow an ultrasonic angle beam examination from both sides of the weld, the following were performed using the best available technology at the time and as applicable, demonstrated through the EPRI PDI program:

- Similar metal welds, $100 \%$ of the required volume was examined to the extent practical using personnel and techniques qualified and demonstrated through the EPRI PDI, as applicable.
- The code required system pressure test examinations were performed per ASME Section XI requirements.
C. Exam Category C-C Welded Integral Attachments

These examinations were performed in accordance with the requirements of ASME Section XI 1986 Edition to the extent practical. System pressure test examinations were performed per ASME Section XI requirements.

Once approved by NRC Regulatory Guide 1.147, ASME Code Case N-568, Alternative Examination Requirements for Welded Attachments, was applied. As an alternative to the examination requirements of C-C and D-A (pre-1991 Addenda examination categories D-A, D-B and D-C), Code Case N-568 indicates examination of a welded attachment that is obstructed by a component support or portion of a component support may be limited to the accessible portion of the
welded attachment. Disassembly of the component support or portion of the component support is not required.
D. Exam Category C-F-1 and C-F-2 Pressure Retaining Piping Welds

Where the component would not allow an ultrasonic angle beam examination for axial scans (upstream and downstream), the following were performed using the best available technology at the time and as applicable, demonstrated through the EPRI PDI program:

- For similar metal welds, $100 \%$ of the required volume was examined by ultrasonic examination in at least one axial direction and two circumferential scans adjacent to the weld and upon the weld using personnel and techniques qualified and demonstrated through the EPRI PDI program for single sided access relating to the material type to be examined, as applicable.
- For dissimilar metal welds, $100 \%$ of the required volume was examined by ultrasonic examination in at least one axial direction and two circumferential scans adjacent to the weld and upon the weld using personnel and techniques qualified and demonstrated through the EPRI PDI program for single sided access relating to the material type to be examined, as applicable.
- The code required surface and system pressure test examinations were performed per ASME Section XI requirements.


## Applicability

This Relief Request is applicable to the following:

- Salem Unit 2 - Second Ten-Year Inservice Inspection Interval


## Precedents

As part of the submission of the Salem 2 second 10-year interval ISI program plan and associated relief requests, limitations relief requests RR-B1 and RR-C1 were submitted. In the Safety Evaluation of this submission, relief was granted for relief requests RR-B1, parts 2 through 11, and RR-C1, parts 1 through 4, for the Salem 2 second 10 -year interval (Reference 1). Those components that relief was granted for are noted as such in Table 2-1 ("Relief Previously Granted" column).

Additionally similar relief requests were submitted for the first 10-year interval at Salem Unit 2 (Reference 2). Most of those welds listed in that submittal are the same as those for the second interval, with some additions. Those components for which relief was granted in the first interval are also noted in Table 2-1 ("Relief Previously Granted"
column). The examinations performed in the second interval achieved equivalent or better coverage or coverage in more examination directions compared to the first 10year interval (second interval relief request submittal utilized first interval coverage).

The NRC also approved a similar request for the Salem Unit 1 second 10-year interval in Reference 3.

## References

1. "Evaluation of the Second Ten-Year Interval Inspection Program Plan and Associated Requests for Relief for Salem Generating Station, Unit 2 (TAC No. M83316)," dated October 23, 1995.
2. "Inservice Inspection - Long Term Plan, Final Relief Requests - First Interval, Salem Generating Station, Unit No. 2, Docket No. 50-311," dated September 28, 1992.
3. "Salem Nuclear Generating Station, Unit No. 1 - Relief from ASME Code Requirements Related to the Salem Inservice Inspection Program, Relief Request S1-RR-B01 and S1-RR-C01 (TAC NO. MB3811)," dated January 16, 2003.

Table 2-1
2nd Ten-Year Inservice Inspection Interval Class 2 Component NDE Exam Limitations

| Sum\# | Component ID | Description | $\begin{array}{\|c} 2^{\text {ND }} \\ \text { Interval } \\ \text { ASME } \\ \text { Cat } \end{array}$ | $\begin{gathered} \text { 2nd } \\ \text { Interval } \\ \text { ASME } \\ \text { Item \# } \end{gathered}$ | ASME <br> Class | System | Limited <br> NDE <br> Exam | Code Coverage Achieved | Exam | Photol Sketch No.* | Required Examination Volume | Relief Previously Granted?** | UT Exam Type and Limitation Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 700000 | 8-CS-2227-5 | VALVE 21CS2 TO PIPE | A-E | A-E<3/8 | 2 | CS | UT | 31\% | 5/8/99 | $\begin{aligned} & 338,339, \\ & 340,341, \\ & 342,343 \end{aligned}$ | $\begin{gathered} \text { WC-2500- } \\ 7(b) \end{gathered}$ |  | UT exam was conducted using a 45 - and 70 -degree shear wave transducer. The ultrasonic exam completed was limited to $31 \%$ code required coverage due to the UT exam being limited due to the valve's OD configuration that restricted scanning. UT scans were performed on and across the welds in both directions. No unacceptable indications were noted. A liquid penetrant test and system pressure test was also completed with no unacceptable indications observed. |
| 275365 | 21-RHRHEX-1 | FLANGE TO SHELL | C-A | C1.10 | 2 | RHR | UT | 79\% | 4/12/93 | $\begin{gathered} 23,24,24 \mathrm{~A} \\ 24 \mathrm{~B}, 24 \mathrm{C} \end{gathered}$ | IWC-2500-1 | YES | UT exam was conducted using 0 - and 45 -degree shear wave transducers. The ultrasonic examination completed was partially limited to $79 \%$ of the achieved code required coverage due to the inlet nozzle OD configuration between $110 "$ to $6^{n}$ and the configuration outlet nozzle OD configuration between $52^{\prime \prime}$ to $644^{\prime \prime}$. No unacceptable indications were observed. A magnetic particle (MT) and system pressure test was also completed with no recordable indications observed. |
| 275370 | 21-RHRHEX-2 | SHELL TO FLANGE | C-A | C1.10 | 2 | RHR | UT | 20\% | 4/13/93 | $\begin{gathered} 24 \mathrm{~B}, 24 \mathrm{C}, 25 \\ 25 \mathrm{~A}, 26 \end{gathered}$ | IWC-2500-1 | YES | UT exam was conducted using 0 - and 45 -degree shear wave transducers. The ultrasonic examination completed was partially limited to $20 \%$ of the achieved code required coverage due to the inlet nozzle OD configuration between 111 " to $6^{\prime \prime}$ and the configuration outlet nozzle OD configuration between $53^{\prime \prime}$ to $65^{\prime \prime}$. No exam could also be performed between $121 / 2^{\prime \prime}$ to $47^{\prime \prime}$ and $70^{\prime \prime}$ to 105 " due to the heat exchanger's support plate. No unacceptable indications were observed. A magnetic particle (MT) and system pressure test was also completed with no recordable indications observed. |
| 275240 | 2-RCF-2 | FLANGE TO SHELL | C-A | C1.10 | 2 | RC | UT | 61\% | 4/12/99 | $\begin{gathered} 145 A, 150 \\ 151,152, \\ 153,154 \end{gathered}$ | IWC-2500-1 |  | UT exam was conducted using 45 - and 70 -degree shear wave transducers. The exam completed was limited to $61 \%$ code required coverage due to the UT exam being limited due to a davit welded pad attachment connected to the reactor coolant filter that restricted scanning. UT scans were performed on and across the welds in both directions. The UT exam performed included 42.3" to $1.5,13.4^{\prime \prime}$ to $16^{\prime \prime}$ and $27.75^{\prime \prime}$ to $30.75^{\prime \prime}$. No unacceptable indications were noted. A system pressure test was also completed with no unacceptable indications observed. |
| 275210 | 2-LHEX-1 | FLANGE TO SHELL | C-A | C1.10 | 2 | CVC | UT | 42\% | 10/14/00 | $\begin{gathered} 177,178 \\ 179,180,181 \end{gathered}$ | IWC-2500-1 | YES | UT exam was conducted using 45- and 60 -degree shear and longitudinal wave transducers. The exam completed was limited to $42 \%$ code required coverage due to the exam being limited due to proximity of the nozzle and flange welds. No unacceptable indications were noted. A liquid penetrant test and system pressure test was also completed with no unacceptable indications observed. UT exam limited due to the configuration of the flange and nozzle. |

* These numbers refer to Enclosure 1, Pages 1 through 343. Page numbers are in boxes in the corners of the pages.
** Relief was granted by the NRC in Reference 1 or was submitted in the Salem 2 first 10-year interval in Reference 2.

Table 2-1
2nd Ten-Year Inservice Inspection Interval Class 2 Component NDE Exam Limitations

| Sum\# | Component ID | Description | $\begin{array}{\|c\|} \hline 2^{\mathrm{ND}} \\ \text { Interval } \\ \text { ASME } \\ \text { Cat } \end{array}$ | $2^{\text {nd }}$ Interva ASME Item \# | ASME Class | System | Limited NDE Exam | Code Coverage Achieved | Exam Date | Photol Sketch No.* | $\begin{array}{\|c} \text { Required } \\ \text { Examination } \\ \text { Volume } \end{array}$ | Relief Previously Granted?** | UT Exam Type and Limitation Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 734111 | 2CVE-18-SWIJ-1 | \#21 SEAL WATER INJECTION FILTER FLANGE TO SHELL | C-A | C1.10 | 2 | CVC | UT | 61\% | 10/29/03 | $\left\|\begin{array}{c} 324,325, \\ 326,327 \\ 328,329,330 \end{array}\right\|$ | IWC-2500-1 |  | UT exam was conducted using 70-degree refracted longitudinal wave, 0 -degree longitudinal, and 45 - and 60 -degree shear wave transducers. The exam completed was limited to $61 \%$ code required coverage due to presence of permanently installed welded attachment and identification plate that interfere with scanning. Additionally the flange configuration on the upstream side of the weld prevented axial scanning on that side. No unacceptable indications were noted. A system pressure test was also completed with no unacceptable indications observed. |
| 734112 | 2CVE-18-SWIJ-2 | \#21 SEAL WATER INJECTION FILTER SHELL TO LOWER HEAD | C-A | C1.20 | 2 | CVC | UT | 69\% | 10/29/03 | $\left\|\begin{array}{r} 331,332, \\ 333,334, \\ 335,336,337 \end{array}\right\|$ | IWC-2500-1 |  | UT exam was conducted using 0-degree longitudinal and 45- and 60 -degree shear wave transducers. The exam completed was limited to $69 \%$ code required coverage due to presence of permanently installed welded attachments and an inlet nozzle that interfere with scanning. No unacceptable indications were noted. A system pressure test was also completed with no unacceptable indications observed. |
| 275030 | 2-CVCT-2 | SHELL TO LOWER HEAD | C-A | C1.20 | 2 | CVC | UT | 71\% | 4/5/93 | $\begin{gathered} 16,17,18 \\ 18 \mathrm{~A} \end{gathered}$ | IWC-2500-1 | YES | UT exam was conducted using 45-degree shear wave transducer. The ultrasonic examination completed was partially limited to $71 \%$ of the achieved code required coverage due to four tank leg support plates welded to the vessel. No examination could be performed from $291 / 2^{\prime \prime}$ to $421 / 2^{\prime \prime}, 99^{\prime \prime}$ to $1121 / 2^{\prime \prime}, 170^{\prime \prime}$ to $183^{\prime \prime}$ and $2451 / 4^{\prime \prime}$ to 258 1/4". No unacceptable indications were observed. A system pressure test was also completed with no recordable indications observed. |
| 275230 | 2-RCF-1 | UPPER HEAD TO FLANGE | C-A | C1.20 | 2 | RC | UT | 68\% | 4/14/99 | $\begin{gathered} 145,145 \mathrm{~A}, \\ 146,147, \\ 148,149 \end{gathered}$ | IWC-2500-1 | YES | UT exam was conducted using 45 - and 70 -degree shear wave transducer. The exam completed was limited to $68 \%$ code required coverage due to the UT exam being limited due to the OD configuration of the reactor coolant filter flange and weld that restricted scanning. UT scans were performed on and across the welds in both directions. No unacceptable indications were noted. A system pressure test was also completed with no unacceptable indications observed. |
| 275250 | 2-RCF-3 | SHELL TO LOWER HEAD | C-A | C1.20 | 2 | RC | UT | 53\% | 4/12/99 | $\begin{gathered} \text { 145A, } 155 \text {, } \\ 156,157, \\ 158,159 \end{gathered}$ | IWC-2500-1 |  | UT exam was conducted using 45- and 70-degree shear wave transducer. The exam completed was limited to $53 \%$ code required coverage due to the UT exam being limited due to our tank leg support plates welded to the reactor coolant filter shell that restricted scanning. No unacceptable indications were noted. A system pressure test was also completed with no unacceptable indications observed. |

* These numbers refer to Enclosure 1, Pages 1 through 343. Page numbers are in boxes in the corners of the pages.
** Relief was granted by the NRC in Reference 1 or was submitted in the Salem 2 first 10-year interval in Reference 2.
A2-10

Table 2-1
2nd Ten-Year Inservice Inspection Interval Class 2 Component NDE Exam Limitations

| Sum\# | Component ID | Description | $\begin{gathered} 2^{\mathrm{ND}} \\ \text { Interval } \\ \text { ASME } \\ \text { Cat } \end{gathered}$ | $\begin{aligned} & 2^{\text {nd }} \\ & \text { Interval } \\ & \text { ASME } \\ & \text { Item \# } \end{aligned}$ | ASME Class | System | Limited NDE Exam | Code Coverage Achieved | Exam Date | Photol Sketch No.* | Required Examination Volume | Relief Previously Granted?** | UT Exam Type and Limitation Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 715180 | 2-BIT-A | LOWER HEAD | C-A | C1.20 | 2 | SJ | UT | 85\% | 4/19/02 | $\begin{gathered} 294,295, \\ 296,297, \\ 167 \mathrm{~A} \end{gathered}$ | IWC-2500-1 |  | UT exam was conducted using 45 - and 60 -degree shear wave transducers. The exam completed was limited to $85 \%$ code required coverage due to the UT exam being limited due to the tank support legs attached to the vessel shell restricted scanning. UT scans were performed on and across the welds in both directions. No unacceptable indications were noted. A liquid penetrant test and system pressure test was also completed with no unacceptable indications observed. |
| 272900 | 21-STG-SDUH | SHELL D TO UPPER HEAD | C-A | C1.20 | 2 | RC | UT | 87\% | 4/19/02 | $\left\lvert\, \begin{gathered} 206 \mathrm{~A}, 206 \mathrm{~B}, \\ 206 \mathrm{C}, 287, \\ 288,289, \\ 290,291,292 \end{gathered}\right.$ | IWC-2500-1 |  | UT exam was conducted using 45 - and 60 -degree shear wave transducers. The exam completed was limited to $87 \%$ code required coverage due to the insulation support plates and weided pads attached to the head that interfered with scanning from 534" to $20 ", 165^{\prime \prime}$ to $205^{\prime \prime}$ and $350^{\prime \prime}$ to $390^{\prime \prime}$. No unacceptable indications were noted. A system pressure test was also completed with no unacceptable indications observed. |
| 275310 | 2-RHE-2 | SHELL TO TUBE SHEET | C-A | C1.30 | 2 | RHR | UT | 44\% | 10/10/00 | $\begin{aligned} & 182,183, \\ & 184,185 \end{aligned}$ | IWC-2500-1 |  | UT exam was conducted using 45 -degree shear wave transducer. The exam completed was limited to $44 \%$ code required coverage due to presence of permanently installed component support connected to the regenerative heat exchanger that interferes with scanning. UT scans were performed on and across the welds in both directions. No unacceptable indications were noted. A system pressure test was also completed with no unacceptable indications observed. |
| 275320 | 2-RHE-3 | SHELL TO TUBE SHEET | C-A | C1.30 | 2 | RHR | UT | 33\% | 10/19/00 | $\begin{aligned} & 186,187 \\ & 188,189 \end{aligned}$ | IWC-2500-1 |  | UT exam was conducted using 45-degree shear wave transducer. The exam completed was limited to $33 \%$ code required coverage due to presence of permanently installed component support plate connected to the regenerative heat exchanger that interferes with scanning. UT scans were performed on and across the welds in both directions. No unacceptable indications were noted. A system pressure test was also completed with no unacceptable indications observed. |
| 715140 | 2-BIT-1 | NOZZLE TO LOWER HEAD | C-B | C2.21 | 2 | SJ | UT | 31\% | 5/15/99 | 162, 163, 164, 165, 166, 167, 167A | $\begin{aligned} & \text { IWC-2500- } \\ & 4(\mathrm{a}) \end{aligned}$ |  | UT exam was conducted using 0 -, 45- and 60-degree shear and longitudinal wave transducers. The exam completed was limited to $31 \%$ code required coverage due to the OD configuration of the nozzle that interfered with scanning. No unacceptable indications were noted. A system pressure test was also completed with no unacceptable indications observed. |

* These numbers refer to Enclosure 1, Pages 1 through 343. Page numbers are in boxes in the corners of the pages.
** Relief was granted by the NRC in Reference 1 or was submitted in the Salem 2 first 10-year interval in Reference 2.
A2-11

Table 2-1
2nd Ten-Year Inservice Inspection Interval Class 2 Component NDE Exam Limitations

| Sum\# | Component ID | Description | $\begin{array}{\|c\|} \hline 2^{\text {ND }} \\ \text { Interval } \\ \text { ASME } \\ \text { Cat } \end{array}$ | $\begin{array}{\|c\|} \hline 2^{\text {nd }} \\ \text { Interval } \\ \text { ASME } \\ \text { Item \# } \end{array}$ | ASME Class | System | Limited NDE Exam | Code <br> Coverage Achieved | Exam Date | Photol Sketch No.* | Required Examination Volume | Relief Previously Granted?** | UT Exam Type and Limitation Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 715160 | 2-BIT-2 | NOZZLE TO UPPER HEAD | C-B | C2. 21 | 2 | SJ | UT | 63\% | 4/24/02 | $\begin{gathered} \text { 167A, 167B, } \\ \text { 167C, 167D, } \\ \text { 167E, 167F, } \\ 167 \mathrm{G} \end{gathered}$ | $\begin{aligned} & \text { IWC-2500- } \\ & \text { 4(b) } \end{aligned}$ |  | UT exam was conducted using 0-degree longitudinal and 45 - and 60 -degree shear wave transducers. The exam completed was limited to $63 \%$ code required coverage due to the nozzle to upper head weld configuration that interfered with scanning. No unacceptable indications were noted. An acceptable magnetic particle surface exam was also completed with no coverage limitations. A system pressure test was also completed with no unacceptable indications observed. |
| 275400 | 21-RHRHEX- OUT | NOZZLE-TOSHELL WELD | C-B | C2. 21 | 2 | RHR | UT | 10\% | 10/16/00 | $\begin{aligned} & 190,191, \\ & 192,193, \\ & 194,195 \end{aligned}$ | $\begin{aligned} & \text { IWC-2500- } \\ & 4(\mathrm{~b}) \end{aligned}$ | YES | UT exam was conducted using 60 -degree refracted longitudinal wave and 45 - and 60 -degree shear wave transducers. The exam completed was limited to $10 \%$ code required coverage due to presence of permanently installed component support plate connected to the regenerative heat exchanger that interferes with scanning. UT scans were performed on and across the welds in both directions. No unacceptable indications were noted. A system pressure test was also completed with no unacceptable indications observed. UT exam limited due to the nozzle configuration and flange and support welds that interfere with scanning. |
| 275410 | 21-RHRHEX-IN | NOZZLE-TOSHELL WELD | C-B | C2.21 | 2 | RHR | UT | 25\% | 10/25/03 | $\begin{gathered} 305,306, \\ 307,308, \\ 309,310 \\ 310 \mathrm{~A}, 310 \mathrm{~B}, \\ 310 \mathrm{C}, 310 \mathrm{D}, \\ 310 \mathrm{E} \end{gathered}$ | $\begin{aligned} & \text { IWC-2500- } \\ & 4(\mathrm{~b}) \end{aligned}$ |  | UT exam was conducted using 45 - and 60 -degree shear wave transducers. The exam completed was limited to $25 \%$ code required coverage due to the exam being limited due to proximity of adjacent support plates and flange welds. No unacceptable indications were noted. A liquid penetrant test and system pressure test was also completed with no unacceptable indications observed. |
| 275040 | 2-CVCT-2VS- (1- <br> 8) IA | VESSEL SUPPORT INTEGRAL ATTACHMENT | C-C | C3.10 | 2 | CVC | PT | 89\% | 4/5/93 | 18, 18A, 19 | IWC-2500-5 | YES | PT exam was performed of this component. The liquid penetrant examination completed was partially limited to $89 \%$ of the achieved code required coverage being limited due to a permanently installed I beam support structure. The PT exam was unable to be performed for a 6 " length due to support leg interferences. No unacceptable indications were observed. A system pressure test was also completed with no recordable indications observed. |
| 275050 | $\begin{gathered} \text { 2-CVCT-2VS- } \\ 3 \& 4 \end{gathered}$ | VESSEL SUPPORT | C-C | C3.10 | 2 | CVC | PT | 89\% | 4/5/93 | 18, 18A, 20 | IWC-2500-5 | YES | PT exam was pefformed of this component. The liquid penetrant examination completed was partially limited to $89 \%$ of the achieved code required coverage being limited due to a permanently installed I beam support structure. The•PT exam was unable to be performed for a 6 " length due to support leg interferences. No unacceptable indications were observed. A system pressure test was also completed with no recordable indications observed. |

*These numbers refer to Enclosure 1, Pages 1 through 343. Page numbers are in boxes in the corners of the pages.
** Relief was granted by the NRC in Reference 1 or was submitted in the Salem 2 first 10-year interval in Reference 2.
A2-12

Table 2-1
2nd Ten-Year Inservice Inspection Interval Class 2 Component NDE Exam Limitations

| Sum\# | Component ID | Description | $\begin{gathered} 2^{\mathrm{ND}} \\ \text { Interval } \\ \text { ASME } \\ \text { Cat } \end{gathered}$ | $2^{\text {nd }}$ <br> Interval <br> ASME <br> Item \# | ASME <br> Class | System | Limited NDE Exam | Code Coverage Achieved | Exam Date | Photol Sketch No.* | Required Examination Volume | Relief Previously Granted?* | UT Exam Type and Limitation Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 275060 | $\begin{gathered} \text { 2-CVCT-2VS- } \\ 5 \& 6 \end{gathered}$ | VESSEL SUPPORT | C-C | C3.10 | 2 | CVC | PT | 89\% | 4/5/93 | 18, 18A, 21 | IWC-2500-5 | YES | PT exam was performed of this component. The liquid penetrant examination completed was partially limited to $89 \%$ of the achieved code required coverage being limited due to a permanently installed I beam support structure. The PT exam was unable to be performed for a $6^{\prime \prime}$ length due to support leg interferences. No unacceptable indications were observed. A system pressure test was also completed with no recordable indications observed. |
| 275070 | $\begin{gathered} \text { 2-CVCT-2VS. } \\ 788 \end{gathered}$ | VESSEL SUPPORT | C-C | C3.10 | 2 | CVC | PT | $89 \%$ | 4/5/93 | 18, 18A, 22 | IWC-2500-5 | YES | PT exam was performed of this component. The liquid penetrant examination completed was partially limited to $89 \%$ of the achieved code required coverage being limited due to a permanently installed I beam support structure. The PT exam was unable to be performed for a 6 " length due to support leg interferences. No unacceptable indications were observed. A system pressure test was also completed with no recordable indications observed. |
| 275358 | 2-RHE-1VS-1\&2 | VESSEL SUPPORT | C-C | C3.10 | 2 | RHR | PT | 50\% | 10/22/03 | 307, 308 | $\begin{aligned} & \text { IWC-2500- } \\ & 5(\mathrm{a}) \end{aligned}$ | YES | PT exam was conducted of this component. The PT exam was limited to $50 \%$ because of weld \#1 being partially inaccessible due to the permanently installed support's configuration. A system pressure test was also completed with no unacceptable indications observed. |
| 331095 | 14-BF-2211- <br> Trunnions 11PL-11 and 11PI-12 | TRUNNIONS | $\mathrm{C}-\mathrm{C}$ | C3.20 | 2 | BF | MT | 80\% | 4/12/93 | $\begin{gathered} 28,29,29 \mathrm{~A}, \\ 29 \mathrm{~B}, 29 \mathrm{C} \end{gathered}$ | $\begin{aligned} & \text { IWC-2500- } \\ & 5(\mathrm{a}) \end{aligned}$ | YES | MT exam was conducted. The exam completed was limited to $80 \%$ code required coverage being obtained due to $11 / 2$ " of the total 7 $1 / 2^{\text {" }}$ long weld not being able to be examined due to an adjacent permanent pipe support interference (11PS). No unacceptable indications were observed. A system pressure test was also completed with no recordable indications observed. |
| 330540 | $\begin{aligned} & \text { 14-BF-2231- } \\ & \text { 17PS } \end{aligned}$ | PIPE SUPPORT S22 | C-C | C3.20 | 2 | BF | MT | 50\% | 10/31/94 | $\begin{gathered} \text { 64, 65, 65A } \\ \text { 65B, 65C, } \\ 65 D \end{gathered}$ | $\begin{aligned} & \text { IWC-2500- } \\ & 5(\mathrm{a}) \end{aligned}$ | YES | MT exam was conducted of this component. The MT exam was limited to $50 \%$ because of pipe restraint in the area that prevented sufficient access to examine the weld in two directions. The MT exam of the lugs was unable to be examined from two directions due to a permanently installed restriction. A system pressure test was also completed with no unacceptable indications observed. MT exam limited due to close proximity of pipe restraint. |
| 330560 | $\begin{aligned} & \text { 14-BF-2231- } \\ & \text { 18PS } \end{aligned}$ | PIPE SUPPORT | C-C | C3.20 | 2 | BF | MT | 50\% | 10/31/94 | $\begin{array}{\|c} \text { 66, 66A, 66B, } \\ 66 \mathrm{C}, 66 \mathrm{D} ; \\ 66 \mathrm{E} \end{array}$ | $\begin{gathered} \text { IWC-2500- } \\ 5(\mathrm{a}) \end{gathered}$ | YES | MT exam was conducted of this component. The MT exam was limited to $50 \%$ because of a permanently installed pipe collar in the area that prevented sufficient access to examine the weld in two directions. The MT exam of the lugs was unable to be examined from two directions due to a permanently installed restriction. A system pressure test was also completed with no unacceptable indications observed. |

* These numbers refer to Enclosure 1, Pages 1 through 343. Page numbers are in boxes in the corners of the pages.
** Relief was granted by the NRC in Reference 1 or was submitted in the Salem 2 first 10 -year interval in Reference 2.
A2-13

Table 2-1
2nd Ten-Year Inservice Inspection Interval Class 2 Component NDE Exam Limitations

| Sum\# | Component ID | Description | $\begin{gathered} 2^{\text {ND }} \\ \text { Interval } \\ \text { ASME } \\ \text { Cat } \end{gathered}$ | $\begin{array}{\|c} \text { 2nd } \\ \text { Interval } \\ \text { ASME } \\ \text { Item \# } \end{array}$ | ASME <br> Class | System | Limited NDE Exam | Code Coverage Achieved | Exam Date | Photol Sketch No.* | Required Examination Volume | Relief Previously Granted?** | UT Exam Type and Limitation Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 381070 | $\begin{aligned} & \text { 34-MS-2241- } \\ & \text { 242PL } \end{aligned}$ | PIPE LUG 242 | C-C | C3.20 | 2 | MS | MT | 71\% | 11/11/94 | $\begin{gathered} 70,70 \mathrm{~A}, 70 \mathrm{~B}, \\ 70 \mathrm{C}, 70 \mathrm{D} \end{gathered}$ | $\begin{aligned} & \text { IWC-2500- } \\ & 5(\mathrm{a}) \end{aligned}$ | YES | MT exam was conducted of this component. The MT exam was limited to $71 \%$ because of a permanently installed beam that obstructed access to lug number 2. No exam could be performed from $111 / 2^{\prime \prime}$ to $181 / 8^{\prime \prime}$ due to the beam's proximity. The total weld length is $23^{\prime \prime}$. A complete MT exam was performed on lug number 1. A system pressure test was also completed with no unacceptable indications observed. |
| 573383 | 12-RH-2252-38PS-1\&2 | PIPE SUPPORT | C-C | C3.20 | 2 | RHR | PT | 71\% | 11/15/94 | $\begin{gathered} 80,80 \mathrm{~A}, 80 \mathrm{~B}, \\ 80 \mathrm{C}, 80 \mathrm{D}, \\ 80 \mathrm{E} \end{gathered}$ | $\begin{gathered} \text { IWC-2500- } \\ 5(\mathrm{a}) \end{gathered}$ | YES | PT exam was conducted of this component. The PT exam was limited to $71 \%$ because of a permanently installed component support that obstructed the exam. No exam could be performed from $20^{\prime \prime}$ to $28^{\prime \prime}$ due to the presence of the component support proximity. A system pressure test was also completed with no unacceptable indications observed. |
| 573387 | $\begin{aligned} & \text { 12-RH-2252- } \\ & \text { 38PS-3 } \end{aligned}$ | PIPE SUPPORT | C-C | C3.20 | 2 | RHR | PT | 71\% | 11/15/94 | $\begin{array}{\|c} 81,81 \mathrm{~A}, 81 \mathrm{~B}, \\ 81 \mathrm{C}, 81 \mathrm{D} \end{array}$ | $\begin{aligned} & \text { IWC-2500- } \\ & 5(a) \end{aligned}$ | YES | PT exam was conducted of this component. The PT exam was limited to $71 \%$ because of a permanently installed component support that obstructed the exam. No exam could be pefformed from $71 / 2^{\prime \prime}$ to $14^{\prime \prime}$ and 30 " to $361 / 2^{\prime \prime}$ due to the presence of the adjacent piping interfering with the exam. A system pressure test was also completed with no unacceptable indications observed. |
| 381120 | $\begin{gathered} \text { 32-MS-2231- } \\ \text { 1PS-2 } \end{gathered}$ | WELDED <br> INTEGRAL PIPE SUPPORT ATTACHMENT | C-C | C3.20 | 2 | MS | MT | 50\% | 1/17/96 | $\begin{gathered} 102,102 \mathrm{~A}, \\ 102 \mathrm{~B}, 102 \mathrm{C}, \\ 102 \mathrm{D} \end{gathered}$ | $\begin{aligned} & \text { IWC-2500- } \\ & 5(\mathrm{a}) \end{aligned}$ |  | MT exam was conducted of this component. The MT exam was limited to $50 \%$ because of the configuration of the lug that precluded examination of the lug in two directions. The MT exam was unable to be examined from two directions due to its configuration. There is no IWF support associated with this weld attachment. A system pressure test was also completed with no unacceptable indications observed. Component selected for MEB 3-1 Augmented Exam requirements. |
| 381220 | $\begin{gathered} \text { 32-MS-2221- } \\ \text { 1PS-2 } \end{gathered}$ | WELDED INTEGRAL PIPE SUPPORT ATTACHMENT | C-C | C3.20 | 2 | MS | MT | 50\% | 1/19/96 | 110, 110A, 110B, 110 C , 110D, 110E | $\begin{gathered} \text { IWC-2500- } \\ 5(\mathrm{a}) \end{gathered}$ |  | MT exam was conducted of this component. The MT exam was limited to $50 \%$ because of the configuration of the lug that precluded examination of the lug in two directions. The MT exam was unable to be examined from two directions due to its configuration. There is no IWF support associated with this weld attachment. A system pressure test was also completed with no unacceptable indications observed. |
| 381320 | $\begin{gathered} \text { 32-MS-2211- } \\ \text { 1PS-2 } \end{gathered}$ | WELDED <br> INTEGRAL PIPE <br> SUPPORT <br> ATTACHMENT | C-C | C3.20 | 2 | MS | MT | 50\% | 1/19/96 | $\begin{gathered} 114,114 \mathrm{~A}, \\ 114 \mathrm{~B}, 114 \mathrm{C}, \\ 114 \mathrm{D} \end{gathered}$ | $\begin{gathered} \text { IWC-2500- } \\ 5(a) \end{gathered}$ |  | MT exam was conducted of this component. The MT exam was limited to $50 \%$ because of the configuration of the lug that precluded examination of the lug in two directions. The MT exam was unable to be examined from two directions due to its configuration. There is no IWF support associated with this weld attachment. A system pressure test was also completed with no unacceptable indications observed. |

[^1]A2-14

Table 2-1
2nd Ten-Year Inservice Inspection Interval Class 2 Component NDE Exam Limitations

| Sum\# | Component ID | Description | $\begin{gathered} 2^{\mathrm{ND}} \\ \text { Interval } \\ \text { ASME } \\ \text { Cat } \end{gathered}$ | $\begin{gathered} 2^{\text {nd }} \\ \text { Interval } \\ \text { ASME } \\ \text { Item \# } \end{gathered}$ | ASME Class | System | Limited NDE Exam | Code Coverage Achieved | Exam Date | Photol Sketch No.* | Required Examination Volume | Relief Previously Granted?** | UT Exam Type and Limitation Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 381350 | 32-MS-2211- <br> 2PL-1 THRU 3 | PIPE LUG | C-C | C3.20 | 2 | MS | MT | 84\% | 1/16/96. | $\begin{gathered} 115,116 \\ 117,117 \mathrm{~A}, \\ 117 \mathrm{~B} \end{gathered}$ | $\begin{aligned} & \text { IWC-2500- } \\ & 5(\mathrm{a}) \end{aligned}$ |  | MT exam was conducted of this component. The MT exam was limited to $84 \%$ because of the configuration of the lug that precluded examination of the lug in two directions. The MT exam was unable to be examined from two directions due to its configuration. There is no IWF support associated with this weld attachment. A system pressure test was also completed with no unacceptable indications observed. |
| 573055 | $\begin{gathered} \text { 12-RH-2252-5PL- } \\ 1 \text { THRU } 6 \end{gathered}$ | PIPE LUG | C-C | C3.20 | 2 | RHR | PT | 33\% | 5/7/99 | $\begin{gathered} 318,319, \\ 320,321, \\ 321 \mathrm{~A} \end{gathered}$ | $\begin{aligned} & \text { IWC-2500- } \\ & 5(\mathrm{a}) \end{aligned}$ | YES | PT exam was conducted of this component. The PT exam was limited to $33 \%$ because the lugs 2, 3, 4, 5 due to inaccessibility. The inaccessible pipe lugs are located within a permanent piping penetration sleeve. A system pressure test was also completed with no unacceptable indications observed. |
| 330645 | $\begin{gathered} \text { 14-BF-2221-3PL- } \\ 1 \text { THRU } 8 \end{gathered}$ | 2-FWG-22-17 | C-C | C3.20 | 2 | BF | MT | 79\% | 4/6/02 | $\begin{aligned} & \text { 293, 293A, } \\ & \text { 293B, 293C, } \\ & \text { 293D, 293E, } \\ & \text { 293F, 293G } \end{aligned}$ | $\begin{aligned} & \text { IWC-2500- } \\ & 5(\mathrm{a}) \end{aligned}$ |  | MT exam was conducted of this component. The MT exam was limited to $79 \%$ because of other components in the area of the welded attachments that prevented sufficient access to examine the weld in two directions. The MT exam of the lugs was unable to be examined from two directions due to permanently installed restrictions being present. A system pressure test was also completed with no unacceptable indications observed |
| 500010 | 12-PR-2201-1 | CAP TO PIPE | C-F-1 | C5.11 | 2 | RC | UT | 78\% | 4/7/93 | $\begin{gathered} 31,31 \mathrm{~A}, 32 \\ 32 \mathrm{~A}, 32 \mathrm{~B} \end{gathered}$ | $\begin{aligned} & \text { IWC-2500- } \\ & 7(a) \end{aligned}$ | YES | UT exam was conducted using a 45-degree shear wave transducer. The exam completed was limited to $78 \%$ code required coverage. No UT exam from the downstream side or upstream side between $103 / 4^{\prime \prime}$ to $141 / 4^{\prime \prime}$ and $263 / 4^{\prime \prime}$ to $313 / 4^{\text {" }}$ due to installed pipe support. The edge of the pipe support clamp is $3 / 4^{\prime \prime}$ from the weld toe. Scanned across weld from the upstream side and. from the downstream side on weld crown only. No unacceptable indications were noted. A liquid penetrant test and system pressure test was also completed with no unacceptable indications observed. |
| 501800 | 14-RH-2212-1 | VALVE 2RH2 TO PIPE | C-F-1 | C5.11 | 2 | RHR | UT | 87\% | 11/9/94 | $\begin{gathered} 72,73,74, \\ 74 \mathrm{~A}, 74 \mathrm{~B}, \\ 74 \mathrm{C} \end{gathered}$ | $\begin{aligned} & \text { IWC-2500- } \\ & 7 \text { (b) } \end{aligned}$ | YES | UT exam was conducted using a 45-degree shear wave transducer. The exam completed was limited to $87 \%$ code required coverage due to the UT exam being limited due to the upstream side valve's OD configuration that restricted scanning. UT scans were performed on and across the welds in both directions. No unacceptable indications were noted. A liquid penetrant test and system pressure test was also completed with no unacceptable indications observed. |
| 570010 | 14-RH-2224-1 | VALVE 22SJ44 TO ELBOW | C-F-1 | C5.11 | 2 | RHR | UT | 75\% | 11/14/94 | $\begin{gathered} 75,76,77, \\ 77 \mathrm{~A}, 77 \mathrm{~B} \end{gathered}$ | $\begin{aligned} & \text { IWC-2500- } \\ & 7(\mathrm{~b}) \end{aligned}$ | YES | UT exam was conducted using a 45 -degree shear wave transducer. The exam completed was limited to $75 \%$ code required coverage due to the UT exam being limited due to the upstream side valve's OD configuration that restricted scanning. UT scans were performed on and across the welds in both directions. No unacceptable indications were noted. A liquid penetrant test and system pressure test was also completed with no unacceptable indications observed. |

*These numbers refer to Enclosure 1, Pages 1 through 343. Page numbers are in boxes in the corners of the pages.
** Relief was granted by the NRC in Reference 1 or was submitted in the Salem 2 first 10-year interval in Reference 2.
A2-15

Table 2-1
2nd Ten-Year Inservice Inspection Interval Class 2 Component NDE Exam Limitations

| Sum\# | Component ID | Description | $\begin{aligned} & 2^{\text {ND }} \\ & \text { Interval } \\ & \text { ASME } \\ & \text { Cat } \end{aligned}$ | $\begin{gathered} \text { 2nd } \\ \text { Interval } \\ \text { ASME } \\ \text { Item \# } \end{gathered}$ | ASME <br> Class | System | Limited NDE Exam | Code Coverage Achieved | Exam Date | Photol Sketch No.* | Required Examination Volume | Relief Previously Granted?* | UT Exam Type and Limitation Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 573380 | 12-RH-2252-38 | PIPE TO PIPE | C-F-1 | C5.11 | 2 | RHR | UT | 67\% | 11/15/94 | $\begin{gathered} 78,79,79 \mathrm{~A}, \\ -79 \mathrm{~B}, 79 \mathrm{C} \end{gathered}$ | $\begin{aligned} & \text { IWC-2500- } \\ & 7(\mathrm{~b}) \end{aligned}$ | YES | UT exam was conducted using a 45-degree shear wave transducer. The exam completed was limited to $67 \%$ code required coverage due to the UT exam being limited UT exam due to welded plug and close proximity of adjacent piping that impedes access to scan the examination area to achieve full coverage. No UT exam could be performed from $71 / 2^{\prime \prime}$ to $14^{\prime \prime}$ and $30^{\prime \prime}$ to $361 / 2^{\prime \prime}$ due to the proximity of adjacent piping. In addition, the downstream side scan was limited $13 / 8$ " $W$ from $3811 / 16$ " to $401 / 8^{\prime \prime}$ due to a welded plug. No unacceptable indications were noted. A liquid penetrant test and system pressure test was also completed with no unacceptable indications observed. |
| 503340 | 8-RH-2216-4R1 | FLANGE TO VALVE 21RH10 | C-F-1 | C5.11 | 2 | RHR | UT | 22\% | 5/15/96 | 122, 123 | $\begin{aligned} & \text { IWC-2500- } \\ & 7(\mathrm{~b}) \end{aligned}$ | YES | UT exam was conducted using a 45-degree shear wave transducer. The exam completed was limited to $22 \%$ code required coverage. No UT exam could be performed from either side of weld due to flange and valve OD configurations. No unacceptable indications were noted. A magnetic particle test and system pressure test was also completed with no unacceptable indications observed. |
| 502580 | 8-RH-2273-18 | VALVE 21RH12 TO TEE | C-F-1 | C5.11 | 2 | RHR | UT | 51\% | 10/5/00 | 199, 200, 201 | $\begin{aligned} & \text { IWC-2500- } \\ & 7(\mathrm{~b}) \end{aligned}$ |  | UT exam was conducted using 45 - and 70 -degree shear wave transducers. The exam completed was limited to $51 \%$ code required coverage due to the UT exam being limited due to the tee and valve's OD configurations that restricted scanning. UT scans were performed on and across the welds in both directions. No unacceptable indications were noted. A liquid penetrant test and system pressure test was also completed with no unacceptable indications observed. |
| 707130 | 4-CV-2257-1 | FLANGE TO PIPE | C-F-1 | C5.21 | 2 | CVC | UT | 86\% | 10/21/94 | 82, 83, 84 | $\begin{aligned} & \text { IWC-2500- } \\ & 7(\mathrm{~b}) \end{aligned}$ | YES | UT exam was conducted using a 45-degree shear wave transducer. The exam completed was limited to $86 \%$ code required coverage due to the UT exam being limited to the pipe side only due to the OD configuration of the flange located on the upstream side. Scanning was conducted on the weld in all directions to increase code coverage. No unacceptable indications were noted. A liquid penetrant test and system pressure test was also completed with no unacceptable indications observed. |
| 707730 | 3-CV-2257-7 | VALVE 2CV82 TO PIPE | C-F-1 | C5.21 | 2 | CVC | UT | 80\% | 10/21/94 | $\begin{gathered} 322,322 \mathrm{~A}, \\ 323 \end{gathered}$ | $\begin{aligned} & \text { IWC-2500- } \\ & 7(\mathrm{~b}) \end{aligned}$ | YES | UT exam was conducted using a 45-degree shear wave transducer. The exam completed was limited to $80 \%$ code required coverage due to the UT exam being limited due to the upstream side valve's OD configuration that restricted scanning. UT scans were performed on and across the welds in both directions. No unacceptable indications were noted. A liquid penetrant test and system pressure test was also completed with no unacceptable indications observed. |

* These numbers refer to Enclosure 1, Pages 1 through 343. Page numbers are in boxes in the corners of the pages.
** Relief was granted by the NRC in Reference 1 or was submitted in the Salem 2 first 10-year interval in Reference 2.
A2-16

Table 2-1
2nd Ten-Year Inservice Inspection Interval Class 2 Component NDE Exam Limitations

| Sum\# | Component ID | Description |  |  | ASME Class | System | Limited NDE Exam | Code Coverage Achieved | Exam Date | Photol Sketch No.* | Required Examination Volume | Relief Previously Granted?* | UT Exam Type and Limitation Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 710140 | 3-CV-2255-9 | Valve 2CV70 To | C-F-1 | C5. 21 | 2 | cvc | UT | 31\% | 5/23/99 | $\begin{gathered} \text { 160, 161, } \\ \text { 161A, 161B } \end{gathered}$ | $\underset{7(b)}{\text { IWC-250 }^{\prime}}$ |  | UT exam was conducted using 45 -, 60 - and 70 -degree shear wave transducers. The exam completed was limited to $31 \%$ code required coverage due to the UT exam being limited due to the OD configuration of the nozzle that restricted scanning. UT scans were performed on and across the welds in both directions. No unacceptable indications were noted. A liquid penetrant test and system pressure test was also completed with no unacceptable indications observed. |
| 707320 | 4-CV-2257-16 | VALVE 2CV53 TO ELBOW | C-F-1 | C5.21 | 2 | cVc | UT | 38\% | 10/20/00 | 205, 208 | $\begin{gathered} \text { IWC-2500- } \\ 7(b) \end{gathered}$ |  | UT exam was conducted using a 45 -degree shear and a 70 -degree refracted longitudinal wave transducer. The exam completed was limited to $38 \%$ code required coverage due to the UT exam being limited due to the valve's OD configuration that restricted scanning. UT scans were performed on and across the welds in both directions. No unacceptable indications were noted. A liquid penetrant test and system pressure test was also completed with no unacceptable indications observed. |
| 707620 | 3-CV-2259-14R1 | VALVE 2CV55 TO PIPE | C-F-1 | C5. 21 | 2 | CVC | UT | 39\% | 10/5/00 | $\begin{gathered} 202,203, \\ 204,206207 \end{gathered}$ | $\underset{7(\mathrm{~b})}{\mathrm{IWC}^{2500}}$ |  | UT exam was conducted using 45 - and 70 -degree shear transducers. The exam completed was limited to $39 \%$ code required coverage due to the UT exam being limited due to the valve's OD configuration that restricted scanning. UT scans were performed on and across the welds in both directions. No unacceptable indications were noted. A liquid penetrant test and system pressure test was also completed with no unacceptable indications observed. |
| 709960 | 3-CV-2256-6 | PIPE TO VALVE 2CV73 | C-F-1 | C5.21 | 2 | CVC | UT | 50\% | 10/18/00 | $\left\|\begin{array}{c} 161 \mathrm{~B}, 209, \\ 210,211,212 \end{array}\right\|$ | $\underset{7(\mathrm{~b})}{1 \mathrm{WC}-200-}$ |  | UT exam was conducted using 45 - and 70 -degree shear transducers. The exam completed was limited to $50 \%$ code required coverage due to the UT exam being limited due to the valve's OD configuration that restricted scanning. UT scans were performed on and across the welds in both directions. No unacceptable indications were noted. A liquid penetrant test and system pressure test was also completed with no unacceptable indications observed. |
| 710190 | 3-CV-2255-12 | PIPE TO Valve 2CV72 | C-F-1 | C5.21 | 2 | CVC | UT | 50\% | 10/18/00 | $\begin{gathered} 161 \mathrm{~B}, 213, \\ 214,214 \mathrm{~A}, \\ 214 \mathrm{~B} \end{gathered}$ | $\begin{gathered} \text { IWC-2500. } \\ 7(\mathrm{~b}) \end{gathered}$ |  | UT exam was conducted using 45 - and 70 -degree shear transducers. The exam completed was limited to $50 \%$ code required coverage due to the UT exam being limited due to the valve's OD configuration that restricted scanning. UT scans were performed on and across the welds in both directions. No unacceptable indications were noted. A liquid penetrant test and system pressure test was also completed with no unacceptable indications observed. |

* These numbers refer to Enclosure 1, Pages 1 through 343. Page numbers are in boxes in the corners of the pages.
** Relief was granted by the NRC in Reference 1 or was submitted in the Salem 2 first 10-year interval in Reference 2.

Table 2-1
2nd Ten-Year Inservice Inspection Interval Class 2 Component NDE Exam Limitations

| Sum\# | Component ID | Description | $\begin{array}{\|c\|} \hline 2^{\mathrm{ND}} \\ \text { Interval } \\ \text { ASME } \\ \text { Cat } \end{array}$ | $\begin{aligned} & 2^{\text {nd }} \\ & \text { Interval } \\ & \text { ASME } \\ & \text { Item \# } \end{aligned}$ | ASME <br> Class | System | Limited NDE Exam | Code Coverage Achieved | Exam Date | Photol <br> Sketch No.* | Required Examination Volume | Relief Previously Granted?** | UT Exam Type and Limitation Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 330930 | 14-BF-2211-2 | PIPE TO ELBOW | C-F-2 | C5.51 | 2 | BF | UT. | 84\% | 4/2/93 | $\begin{gathered} 27,27 \mathrm{~A}, 27 \mathrm{~B}, \\ 27 \mathrm{C}, 27 \mathrm{D}, \\ 27 \mathrm{E}, 27 \mathrm{~F} \end{gathered}$ | IWC-2500-7 | YES | UT exam was conducted using a 45-degree shear wave transducer. The ultrasonic examination completed was partially limited to $84 \%$ of the achieved code required coverage due to a permanently installed column support lug located immediately adjacent to the weld that interferes with scanning. No unacceptable indications were observed. A magnetic particle (MT) and system pressure test was also completed with no recordable indications observed. |
| 382140 | 30-MS-2211-9 | PIPE TO ELBOW | C-F-2 | C 5.51 | 2 | MS | UT | 90\% | 4/13/93 | $\begin{gathered} 30,30 \mathrm{~A}, 30 \mathrm{~B}, \\ 30 \mathrm{C} \end{gathered}$ | $\begin{aligned} & \text { IWC-2500- } \\ & 7(\mathrm{a}) \end{aligned}$ |  | UT exam was conducted using a 45-degree shear wave transducer. The exam completed was limited to $90 \%$ code required coverage from the upstream side due to a branch connection being located between $9 / 16^{\prime \prime}$ to $37 / 8^{\prime \prime}$ that limited scanning to $31 / 4^{\prime \prime}$. No unacceptable indications were noted. A magnetic particle test and system pressure test was also completed with no unacceptable indications observed. |
| 380140 | 34-MS-2241-2 | PIPE TO VALVE 24MS 167 | C-F-2 | C5.51 | 2 | MS | UT | 85\% | 11/11/94 | $\begin{aligned} & 67,67 \mathrm{~A}, 68, \\ & 68 \mathrm{~A}, 68 \mathrm{~B}, \\ & 68 \mathrm{C}, 68 \mathrm{D}, 69 \end{aligned}$ | $\begin{aligned} & \text { IWC-2500- } \\ & 7(\mathrm{~b}) \end{aligned}$ | YES | UT exam was conducted using 45 - and 32 -degree shear wave transducers. The exam completed was limited to $85 \%$ code required coverage due to the UT exam being limited to between 7 $1 / 2^{\prime \prime}$ W from $5^{\prime \prime}$ to $16^{\prime \prime}, 871 / 2^{\prime \prime}$ to $103^{\prime \prime}$ due to multiple branch connections located on the main steam header. No unacceptable indications were noted. A magnetic particle and system pressure test was also completed with no unacceptable indications observed. |
| 385510 | 6-MS-2211-13 | TEE TO PIPE | C-F-2 | C 5.51 | 2 | MS | UT | 73\% | 11/17/94 | $\left\|\begin{array}{c} 71,71 \mathrm{~A}, 71 \mathrm{~B}, \\ 71 \mathrm{C} \end{array}\right\|$ | $\begin{aligned} & \text { IWC-2500- } \\ & 7(b) \end{aligned}$ |  | UT exam was conducted using a 45-degree shear wave transducer. The exam completed was limited to $73 \%$ code required coverage due to the UT exam being limited between $81 / 2^{\prime \prime}$ to $141 / 2^{\prime \prime}$ and $20^{\prime \prime}$ to $31 / 2^{\text {" }}$ due to the OD configuration of the tee fitting's blend radius areas located on the upstream side. UT scans were performed on and across the welds in both directions. No unacceptable indications were noted. A magnetic particle and system pressure test was also completed with no unacceptable indications observed. |
| 381055 | 32-MS-2241-3 | ELBOW TO PIPE | C-F-2 | C5.51 | 2 | MS | UT | 85\% | 1/13/96 | 99, 100, 101 | $\begin{aligned} & \text { \|WB-2500- } \\ & 7(\mathrm{~b}) \end{aligned}$ |  | UT exam was conducted using a 45-degree shear wave transducer. The exam completed was limited to $85 \%$ code required coverage. The UT exam conducted was limited due to a permanently installed welded pipe support from $18^{\prime \prime}$ to 26 ". No unacceptable indications were noted. A liquid penetrant test and system pressure test was also completed with no unacceptable indications observed. Component selected for MEB 3-1 Augmented Exam requirements. |

* These numbers refer to Enclosure 1, Pages 1 through 343. Page numbers are in boxes in the corners of the pages.
** Relief was granted by the NRC in Reference 1 or was submitted in the Salem 2 first 10 -year interval in Reference 2.
A2-18

Table 2-1
2nd Ten-Year Inservice Inspection Interval Class 2 Component NDE Exam Limitations

| Sum\# | Component ID | Description | $\begin{aligned} & 2^{\text {ND }} \\ & \text { Interval } \\ & \text { ASME } \\ & \text { Cat } \end{aligned}$ | $2^{\text {nd }}$ <br> Interval ASME Item \# | ASME Class | System | Limited NDE Exam | Code Coverage Achieved | Exam Date | Photol Sketch No.* | Required Examination Volume | Relief Previously Granted?* | UT Exam Type and Limitation Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 381155 | 32-MS-2231-3 | ELBOW TO PIPE | C-F-2 | C5.51 | 2 | MS | UT | 87\% | 1/18/96 | $\begin{gathered} \text { 103, 103A } \\ 105,106 \end{gathered}$ | $\begin{aligned} & \text { IWC-2500- } \\ & 7(b) \end{aligned}$ |  | UT exam was conducted using a 45 -degree shear wave transducer. The exam completed was limited to $87 \%$ code required coverage. The UT exam conducted was limited due to a welded pipe support from $49.25^{\prime \prime}$ to $2.75^{\prime \prime}$ partially covering the upstream side of the weld. No unacceptable indications were noted. A magnetic particle test and system pressure test was also completed with no unacceptable indications observed. |
| 381175 | 34-MS-2231-1 | PIPE TO PIPE | C-F-2 | C5.51 | 2 | MS | UT | 40\% | 1/24/96 | 107, 108, 109 | $\begin{aligned} & \text { IWC-2500- } \\ & 7(b) \end{aligned}$ |  | UT exam was conducted using a 45 - and 60 -degree shear wave transducer. The exam completed was limited to $40 \%$ code required coverage. The UT exam conducted from the downstream side was limited due to a welded pipe support from $3^{\prime \prime}$ to $24^{\prime \prime}$. No unacceptable indications were noted. A magnetic particle test and system pressure test was also completed with no unacceptable indications observed. |
| 381260 | 32-MS-2221-3 | ELBOW TO PIPE | C-F-2 | C5.51 | 2 | MS | UT | 87\% | 1/20/96 | 111, 112, 113 | $\begin{aligned} & \text { IWC-2500- } \\ & 7 \text { (b) } \end{aligned}$ |  | UT exam was conducted using 0 -degree longitudinal wave and 45degree shear wave transducers. The exam completed was limited to $87 \%$ code required coverage. The UT exam conducted from the downstream and upstream sides were limited due to pads and pipe support. No unacceptable indications were noted. A magnetic particle test and system pressure test was also completed with no unacceptable indications observed. |
| 381355 | 32-MS-2211-3 | ELBOW TO PIPE | C-F-2 | C5.51 | 2 | MS | UT | 82\% | 3/13/97 | 118, 119 | $\begin{aligned} & \text { IWC-2500- } \\ & 7(\mathrm{~b}) \end{aligned}$ |  | UT exam was conducted using a 45-degree shear wave transducer. The exam completed was limited to $82 \%$ code required coverage. No UT scan was performed from the downstream side from $62.5^{\prime \prime}$ to $80.5^{\prime \prime}$ due to a permanent restraint interfering with scanning. No scan could be performed from the upstream direction from $94.5^{\prime \prime}$ to $7.5^{\prime \prime}$ due to branch connection. Also no scan could be periormed from 74.5" to $78.5^{\prime \prime}$ due to a branch connection. No unacceptable indications were noted. A magnetic particle test and system pressure test was also completed with no unacceptable indications observed. |
| 381370 | 34-MS-2211-1 | PIPE TO PIPE | C-F-2 | C5.51 | 2 | MS | UT | 51\% | 1/24/96 | 120, 121 | IWC-2500. $7 \text { (b) }$ |  | UT exam was conducted using a 45-degree shear wave transducer. The exam completed was limited to $51 \%$ code required coverage. The UT exam was performed from the upstream side and limited between $221 / 2^{\prime \prime}$ to $271 / 2^{\prime \prime}, 79^{\prime \prime}$ to $81^{\prime \prime}, 88^{\prime \prime}$ to $90^{\prime \prime}$ and $933 / 4^{\prime \prime}$ to 7 $1 / 4^{\prime \prime}$ due to seven pipe restraint bars measuring $1.45^{\prime \prime}$ for a total of $10.15^{\prime \prime}$. The restraint support partially covers the weld $360^{\circ}$. No unacceptable indications were noted. A magnetic particle test and system pressure test was also completed with no unacceptable indications observed. |

** These numbers refer to Enclosure 1, Pages 1 through 343. Page numbers are in boxes in the corners of the pages.
** Relief was granted by the NRC in Reference 1 or was submitted in the Salem 2 first 10-year interval in Reference 2.
A2-19

Table 2-1
2nd Ten-Year Inservice Inspection Interval Class 2 Component NDE Exam Limitations

| Sum\# | Component ID | Description |  |  | $\begin{aligned} & \text { ASME } \\ & \text { Class } \end{aligned}$ | System | Limited NDE Exam | Code Coverage Achieved | Exam Date | Photol Sketch No.* | Required Examination Volume | Relief Previously Granted? ${ }^{\text {4 }}$ | UT Exam Type and Limitation Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 384320 | 6-MS-2246-3 | PIPE TO VALVE 24MS9 | C-F-2 | C5.51 | 2 | MS | UT | 79\% | 10/17/00 | 196, 197, 198 | $\begin{gathered} I_{7} \mathrm{WC}-2500- \\ 7(\mathrm{~b}) \end{gathered}$ |  | UT exam was conducted using a 45 -shear wave transducer. The exam completed was limited to $79 \%$ code required coverage due to the UT exam being limited due to the valve's OD configuration that restricted scanning. UT scans were performed on and across the welds in both directions. No unacceptable indications were noted. A magnetic particle test and system pressure test was also completed with no unacceptable indications observed. |

* These numbers refer to Enclosure 1, Pages 1 through 343. Page numbers are in boxes in the corners of the pages.
** Relief was granted by the NRC in Reference 1 or was submitted in the Salem 2 first 10-year interval in Reference 2.


# RESPONSE TO REQUEST FOR ADDITIONAL INFORMATION REQUESTS FOR RELIEF REGARDING EXAMINATION COVERAGE SECOND TEN-YEAR INSERVICE INSPECTION INTERVAL SALEM NUCLEAR GENERATING STATION, UNIT NO. 2 DOCKET NO. 50-311 

On March 21, 2006, PSEG Nuclear LLC (PSEG), the licensee for the Salem Nuclear Generating Station (Salem), Unit No. 2, requested relief from certain requirements of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code (Code), Section XI, for the inservice inspection (ISI) of Class 1 and Class 2 components. PSEG stated that it had conducted examinations as part of the Second Ten-Year Interval ISI Program to the extent practical; however, coverage for certain weld examinations was less than required by the Code. The Nuclear Regulatory Commission (NRC) staff has determined that responses to the following questions are necessary in order for the staff to complete its review:

Questions on Relief Request S2-I2-RR-B01:

### 1.1 Request for Relief S2-12-RR-B01, Part B, Examination Category B-B, Pressure Retaining Welds in Vessels Other than Reactor Vessels

1.1(a) For weld 2-PZR-CIRC DUH, the information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support the determination that the inspection of this weld is limited and impractical.

## RESPONSE

Enclosure 1 provides additional information for weld 2-PZR-CIRC DUH, including the following attributes:

1. Weld cross-section
2. Material ( $S S$ or CS - to determine inspection requirement differences)
3. Thickness / weld crown
4. Obstruction(s) identified on a diagram
5. Exam area shown (highlighted) on a diagram
6. Transducer ray exit point

The Enclosure 1 page numbers for this additional information have been added to the 2 -PZR-CIRC DUH component entry in Table 1-1 of Attachment 1.

### 1.2 Request for Relief S2-I2-RR-B01, Part C, Examination Category B-D, Full Penetration Welds of Nozzles in Vessels

1.2(a) For certain nozzle welds, information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by licensee identification numbers shown below.

| 31-STG-1220-IRS | 29-STG-1230-IRS | 29-STG-1240-IRS |
| :--- | :--- | :--- |
| 29-STG-1220-IRS | 31-STG-1240-IRS | 29-STG-12R10-IRS |
| 31-STG-1230-IRS | 31-STG-12R10-IRS |  |

## RESPONSE

Enclosure 1 provides additional information for the above welds, including the following attributes:

1. Weld cross-section
2. Material (SS or CS - to determine inspection requirement differences)
3. Thickness / weld crown
4. Obstruction(s) identified on a diagram
5. Exam area shown (highlighted) on a diagram
6. Transducer ray exit point

Note that the ' R ' in weld numbers 29-STG-12R10-IRS and 31-STG-12R10-IRS is a typographical error and the weld numbers in Attachment 1 and Enclosure 1 are correct (29-STG-1210-IRS and 31-STG-1210-IRS). The Enclosure 1 page numbers for this additional information have been added to the applicable component entries in Table 11 of Attachment 1.
1.2(b) From the licensee's submittal, it appears that all welds considered in Category BD underwent a pressure test, with the exception of 29-RCN-12R10 and 29-RCN1230. Please clarify whether a pressure test was performed on these welds, and the results of the pressure test.

## RESPONSE

Like welds 29-RCN-1220 and 29-RCN-1240, welds 29-RCN-1210 and 29-RCN-1230 did receive a pressure test and the results were satisfactory. Component ID 29-RCNwas corrected in Attachment 1 Table 1-1 to be 29-RCN-1210.

### 1.3 Request for Relief S2-I2-RR-B01, Part D, Examination Category B-J and B-F. Pressure Retaining Welds in Piping and Pressure Retaining Dissimilar Metal Welds in Vessel Nozzles

1.3(a) In the licensee's submittal, Table 1 of Relief Request S2-I2-RR-B01 contains a listing of multiple limited examinations for Class 1 piping and nozzle welds that have occurred during the second 10 -year interval. The table lists ASME Code examination categories for each piping and nozzie weld prior to (B-F and B-J), and after (R-A), implementation of a risk-informed inservice inspection (RI-ISI) program. It is unclear whether the piping and nozzle weld examinations were performed under a conventional ASME Code program, or under the new RIISI program.

It is important to understand which program was used to examine each piping weld because: a) under a conventional ASME Code Section XI program, which requires a substantial population of applicable Category B-F and B-J welds to be
examined, requests for relief for limited examinations based on impracticality may be submitted per Title 10 of the Code of Federal Regulations (10 CFR), Paragraph $50.55 \mathrm{a}(\mathrm{g})(5)$ (iii), whereas, b) under a RI-ISI program, which is an existing alternative to ASME Code requirements approved by the NRC for Salem Unit No. 2, there is no method for evaluating a request for relief under 10 CFR $50.55 \mathrm{a}(\mathrm{g})(5)$ (iii).

## RESPONSE

All examinations noting limitations in the relief request submittal were performed to ASME Section XI, B-F and B-J requirements. Some risk-informed examinations were performed in the last outage of the second 10-year interval, however there were no limitations in those examinations. As the current risk-informed classification of these components does not apply to the examinations for which relief is requested, these columns were removed from Table 1-1.
1.3(b) According to Table 1, Examination Category B-F and B-J, the post ISI ASME item numbers are listed as R1.19-2, R1.20-4, or R1.20-6. According to Code Case N-577 or N-578, as applicable, for implementation of RI-ISI programs at Salem Unit No. 2, these item numbers do not appear in Table 1, Examination Category R-A. Please provide the correct designations.

## RESPONSE

As part of Salem's Service Experience and Susceptibility Review for the initial application of the EPRI risk-informed methodology, Salem assigned the degradation mechanism of External Chloride Stress Corrosion Cracking (ECSCC) to some components at both units. Code Case N-578 does not have an item number for ECSCC but N-578-1, Table 1, has the additional item numbers of R1.19 for ECSCC and R1.20 for items with no degradation mechanism applicable to them. These are the item numbers referred to in item 1.3(b). The examinations were established using the EPRI report TR-112657 Rev B-A methodology.

As the current risk-informed classification of these components does not apply to the examinations for which relief is requested, these columns were removed from Table 1-1 and 2-1.
1.3(c) For certain piping welds, information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by licensee identification numbers listed below.

## Examination Category B-F

6-PR-1205-1 29-RC-1210-5 31-RC-1220-1
6-PR-1203-1 31-RC-1240-1 31-RC-1210-1
4-PR-1200-1 31-RC-1230-1

## Examination Category B-J

| 10-SJ-1221-21 | 31-RC-1220-4 | 31-RC-1220-4LU-I | 2-CV-1275-44 |
| :--- | :--- | :--- | :--- |
| 8-SJ-1262-10 | 4-PS-1231-20 | 31-RC-1220-4LU-O |  |
| 8-SJ-1245-1 | 27.5-RC-1230-1 | 3-CV-1231-14 |  |
| 8-SJ-1241-18 | 6-RH-1231-16 | 2-CV-1275-43 |  |

## RESPONSE

Enclosure 1 provides additional information for the above welds, including the following attributes:

1. Weld cross-section
2. Material (SS or CS - to determine inspection requirement differences)
3. Thickness / weld crown
4. Obstruction(s) identified on a diagram
5. Exam area shown (highlighted) on a diagram
6. Transducer ray exit point

The Enclosure 1 page numbers for this additional information have been added to the applicable component entries in Table 1-1 of Attachment 1.

### 1.4 Request for Relief Part E, Examination Category B-G-1, Pressure Retaining Bolting, Greater than 2 Inches in Diameter.

1.4(a) Relief is being requested for certain examination requirements for Examination Category B-G-1, "Pressure Retaining Bolting Greater than 2 Inches in Diameter." However, there are no B-G-1 items listed in Table 1. Please add the appropriate Category B-G-1 items to Table 1, and include sufficient information to demonstrate impracticality, or revise the request appropriately.

## RESPONSE

There were no limitations for B-G-1 component examinations for the second interval for Salem Unit 2. The relief request was revised to remove reference to this category.

## Questions on Relief Request S2-I2-RR-C01:

### 2.1 Request of Relief S2-I2-RR-C01, Part C, Examination Category C-F-1 and C-F-2, Pressure Retaining Piping Welds

2.1(a) In the licensee's submittal, Table 1 of Relief Request S2-I2-RR-C01 contains a listing of multiple limited examinations for Class 2 piping welds that have occurred during the second 10-year interval. The table lists ASME Code examination categories for each piping weld prior to (C-F-1 and C-F-2), and after (R-A), implementation of an RI-ISI program. It is unclear whether the piping weld examinations were performed under a conventional ASME Code program, or under the new RI-ISI program.

It is important to understand which type of program each piping weld examination was performed under, because: a) under a conventional ASME Code Section XI program, which requires a substantial population of applicable Category C-F-1 and C-F-2 welds to be examined, requests for relief for limited examinations based on impracticality may be submitted per 10 CFR $50.55 \mathrm{a}(\mathrm{g})(5)$ (iii), whereas, b) under a RI-ISI program, which is an existing alternative to ASME Code requirements approved by the NRC for Salem Unit No. 2, there is no method for evaluating a request for relief under 10 CFR 50.55a(g)(5)(iii).

## RESPONSE

All examinations noting limitations in the relief request submittal were performed to ASME Section XI, C-F-1 and C-F-2 requirements. As the current risk-informed classification of these components does not apply to the examinations for which relief is requested, these columns were removed from Table 2-1.
2.1(b) For the component identified as 8-CS-2227-5, a valve-to-pipe weld, the licensee has listed this as ASME Examination Category C-F-1, Item A-E<3/8. This item number does not correspond with Table IWC-2500-1 in the 1986 Edition of the ASME Code. Please confirm that this weld is required to be examined by requirements of ASME Code, Table IWC-2500-1, Examination Category C-F-1. If so, please list the correct item designation for this weld.

## RESPONSE

This weld is not required to be examined by the requirements of ASME Code, Table IWC-2500-1, Examination Category C-F-1 as the wall thickness of the piping is less than $3 / 8$-inch (Item C5.11 is for welds greater than or equal to $3 / 8$-inch). Therefore there is no applicable item number for this weld. As part of the second 10-year interval inservice inspection plan, as detailed in Reference 1, PSEG committed to the NRC to perform augmented volumetric examinations of a $71 / 2 \%$ sample of Class 2 welds in the containment spray system that are otherwise not selected based on wall thickness (i.e. less than 0.375 inches wall thickness). This weld is part of the augmented examination population and therefore included in the submittal.
2.1(c) For certain piping welds, information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by the licensee identification numbers below.

| 8-CS-2227-5 | 12-PR-2201-1 | 14-RH-2212-1 | 14-RH-2224-1 |
| :--- | :--- | :--- | :--- |
| 12-RH-2252-38 | 3-CV-2255-9 | 3-CV-2256-6 | 3-CV-2255-12 |
| 14-BF-2211-2 | $30-\mathrm{MS}-2211-9$ | $34-\mathrm{MS}-2241-3$ | $6-\mathrm{MS}-2211-13$ |

## RESPONSE

Enclosure 1 provides additional information for the above welds, including the following attributes:

1. Weld cross-section
2. Material (SS or CS - to determine inspection requirement differences)
3. Thickness / weld crown
4. Obstruction(s) identified on a diagram
5. Exam area shown (highlighted) on a diagram
6. Transducer ray exit point

The Enclosure 1 page numbers for this additional information have been added to the applicable component entries in Table 2-1 of Attachment 2.

### 2.2 Request for Relief Part D, Examination Category C-C, Integral Attachments for Vessels, Piping, Pumps and Valves

2.2(a) For certain component attachment and support welds, information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by the licensee identification numbers below.

14-BF-2211-Trunnions 11PL-11 \& 11-PI-12 14-BF-2231-17PS
14-BF-2231-18PS 34-MS-2241-242PL
12-RH-2252-38PS-1\&2
12-RH-2252-38PS-3
32-MS-2231-1PS-2
32-MS-2221-1PS-2
32-MS-2211-1PS-2
32-MS-2211-2PL-1 thru 3
12-RH-2252-5PL-1 thru 6
14-BF-2221-3PL-1 thru 8

## RESPONSE

Enclosure 1 provides additional information for the above welds, including the following attributes:

1. Weld cross-section
2. Material (SS or CS - to determine inspection requirement differences)
3. Thickness / weld crown
4. Obstruction(s) identified on a diagram
5. Exam area shown (highlighted) on a diagram
6. Transducer ray exit point

The Enclosure 1 page numbers for this additional information have been added to the applicable component entries in Table 1 of Attachment 2.

Relief Request: S2-I2-RR-B01, S2-I2-RR-C01
Second Ten-Year Interval Inservice Inspection NDE Exam Limitations Salem Unit 2
Additional Descriptive Details (Sketches, illustrations, and/or drawings)

| 1 | 24C | 48 | 70A | 85 | 115 | 149 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 25 | 49 | 70B | 86 | 116 | 150 |
| 3 | 25A | 50 | 70C | 87 | 117 | 151 |
| 3A | 26 | 50A | 70D | 88 | 117A | 152 |
| 3B | 27 | 50B | 71 | 89 | 117B | 153 |
| 3C | 27A | 50C | 71A | 89A | 118 | 153A |
| 4 | 27B | 51 | 71B | 89B | 119 | 154 |
| 4A | 27C | 52 | 71C | 90 | 120 | 155 |
| 4B | 27D | 53 | 72 | 91 | 121 | 156 |
| 4C | 27E | 54 | 73 | 92 | 122 | 157 |
| 4D | 27F | 55 | 74 | 93 | 123 | 158 |
| 5 | 28 | 56 | 74A | 99 | 124 | 159 |
| 6 | 29 | 57 | 74B | 100 | 125 | 160 |
| 6A | 29A | 58 | 74C | 101 | . 126 | 161 |
| 6B | 29B | 59 | 75 | 102 | 127 | 161A |
| 6C | 29C | 60 | 76 | 102A | 128 | 161B |
| 7 | 30 | 61 | 77 | 102B | 129 | 162 |
| 7A | 30A | 62 | 77A | 102C | 130 | 163 |
| 7B | 30B | 63 | 77B | 102D | 131 | 164 |
| 7C | 30C | 64 | 78 | 103 | 131A | 165 |
| 8 | 31 | 65 | 79 | 103A | 131B | 166 |
| 9 | 31A | 65A | 79A | 105 | 131C | 167 |
| 10 | 32 | 65B | 79B | 106 | 132 | 167A |
| 11 | 32A | 65C | 79C | 107 | 133 | 167B |
| 12 | 32B | 65D | 80 | 108 | 134 | 167C |
| 13 | 33 | 66 | 80A | 109 | 135 | 167D |
| 14 | 34 | 66A | 80B | 110 | 136 | 167E |
| 15 | 35 | 66B | 80C | 110A | 137 | 167F |
| 16 | 36 | 66C | 80D | 110B | 138 | 167G |
| 17 | 37 | 66D | 80E | 110C | 139 | 168 |
| 18 | 38 | 66E | 81 | 110D | 140 | 169 |
| 18A | 39 | 67 | 81A | 110E | 141 | 170 |
| 19 | 40 | 67A | 81B | 111 | 142 | 171 |
| 20 | 41 | 68 | 81C | 112 | 143 | 172 |
| 21 | 42 | 68A | 81D | 113 | 144 | 172A |
| . 22 | 43 | 68B | 82 | 114 | 145 | 172B |
| 23 | 44 | 68C | 83 | 114A | 145A | 172C |
| 24 | 45 | 68D | 84 | .114B | 146 | 173 |
| 24A | 46 | 69 | 84A | 114C | 147 | 174 |
| 24B | 47 | 70 | 84B | 114D | 148 | 174A |


| 174B | 214 | 262 | 293A | 313B | 316J |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 174C | 214A | 262A | 293B | 313C | 317 |
| 174D | 214B | 263 | 293C | 313D | 317A |
| 175 | 215 | 264 | 293D | 313E | 317B |
| 176 | 215A | 265 | 293E | 313F | 318 |
| 176A | 215B | 266 | 293F | 313G | 319 |
| 177 | 216 | 266A | 293G | 313H | 320 |
| 178 | 217 | 266B | 294 | 313-I | 321 |
| 179 | 218 | 267 | 295 | 313J | 321A |
| 180 | 219 | 268 | 296 | 313K | 322 |
| 181 | 220 | 269 | 297 | 313L | 322A |
| 182 | 221 | 270 | 298 | 313M | 323 |
| 183 | 222 | 270A | 298A | 313N | 324 |
| 184 | 223 | 270B | 298B | 313-O | 325 |
| 185 | 224 | 270C | 298C | 313P | 326 |
| 186 | 225 | 270D | 298D | 313Q | 327 |
| 187 | 226 | 270E | 299 | 313R | 328 |
| 188 | 227 | 270F | 300 | 313S | 329 |
| 189 | 227A | 270G | 301 | 313T | 330 |
| 190 | 227B | 271 | 302 | 313U | 331 |
| 191 | 227C | 271A | 302A | 313V | 332 |
| 192 | 228 | 271B | 302B | 313W | 333 |
| 193 | 229 | 272 | 302C | 313X | 334 |
| 194 | 230 | 273 | 303 | 314 | 335 |
| 195 | 231 | 274 | 304 | 314A | 336 |
| 196 | 232 | 275 | 304A | 314B | 337 |
| 197 | 233 | 276 | 304B | 314C | 338 |
| 198 | 234 | 277 | 304C | 314D | 339 |
| 199 | 235 | 278 | 304D | 314E | 340 |
| 200 | 236 | 279 | 305 | 315 | 341 |
| 201 | 237 | 280 | 306 | 315A | 342 |
| 202 | 238 | 281 | 306A | 315B | 343 |
| 203 | 239 | 283 | 306B | 315C |  |
| 204 | 240 | 284 | 307 | 315D |  |
| 205 | 240A | 285 | 308 | 315E |  |
| 206 | 241 | 286 | 309 | 315F |  |
| 206A | 242 | 286A | 310 | 316 |  |
| 206B | 243 | 286B | 310A | 316A |  |
| 206C | 244 | 286C | 310B | 316B |  |
| 207 | 255 | 287 | 310C | 316C |  |
| 208 | 256 | 288 | 310D | 316D |  |
| 209 | 257 | 289 | 310E | 316E |  |
| 210 | 258 | 290 | 311 | 316F |  |
| 211 | 259 | 291 | 312 | 316G |  |
| 212 | 260 | 292 | 313 | 316H |  |
| 213 | 261 | 293 | 313A | 316-I |  |



SALEM UNIT 2 17-5502
REAGTOR COOLANT-29-RC-12.30-3
Victar Mortion III 6 apr 93
FOR cOVERAGE ONLY. $100 \%$ COUPRAGE FROM OPPOSITE SIOE.




## REQUEST FOR ADDITIONAL INFORMATION REQUEST FOR RELIEF REGARDING EXAMINATION COVERAGE <br> SECOND TEN-YEAR IN-SERVICE INSPECTION INTERVAL <br> SALEM NUCLEAR GENERATING STATION, UNIT NO. 2 <br> DOCKET NO. 50-311

QUESTION 1.3 (c) For certain piping welds, Information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by licensee identification numbers listed below.


## Comments

UT exam was performed of this component using 45 degree shear wave transducer. The ultrasonic examination completed was partially limited to $83 \%$ of the code required coverage being limited from 13" to $\mathbf{2 1 "}$ on the upstream side due to the curvature of the shortened inner radius of the elbow. Scanning was also performed across the weld to maximize achieved code coverage. No unacceptable indications were observed. A liquid penetrant examination and system pressure test was also completed with no recordabie indications observed.

Page

## Supplemental Drawing




LV $1=$ COMMON INFORMATION
LV 2 = WELD INFORMATION
LV $3=$ HANGER INFORMATION




## REQUEST FOR ADDITIONAL INFORMATION REQUEST FOR RELIEF REGARDING EXAMINATION COVERAGE SECOND TEN-YEAR IN-SERVICE INSPECTION INTERVAL SALEM NUCLEAR GENERATING STATION, UNIT NO. 2 DOCKET NO. 50-311

QUESTION $\quad 1.3$ (c) For certain piping welds, Information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by licensee identification numbers listed below.

## Summary \# 166000

Component I.D. 8-SJ-1262-10

Description Pipe to Pipe

| 1 Weld X-Section <br> 2 Material <br> 3 Thickness / weld Crown |
| :---: | :---: |


| Comments |
| ---: |
| See Attached |
| Stainless Steel |

Thickness 1.1" / Weld Crown 1.25"
$4 \quad$ Obstruction

5 Exam Area Highlighted on Drawing

| Pipe Support |  |
| :---: | :---: |
| Yes |  |

## Comments

UT exam was performed of this component using 45 degree shear wave transducer. The ultrasonic examination completed was partially limited to $82 \%$ of the code required coverage being limited due to pipe support 9 PS. that restricted scanning to approx. $13 / 4^{\prime \prime}$ of the upstream side of the weld. No unacceptable indications were observed. A liquid penetrant examination and system pressure test was also completed with no recordable indications observed.

Supplemental Drawing

Summary \#
166000
Description

Component I.D.



$$
\# H=\text { LIMITATION }
$$



| Project: $17-5502$ | Unit: SALEM UNITZ |
| :--- | ---: |
| System: SAEETY INTECTION | Weld No.: $\frac{8-5 J-1245-1}{}$ |



## REQUEST FOR ADDITIONAL INFORMATION <br> REQUEST FOR RELIEF REGARDING EXAMINATION COVERAGE SECOND TEN-YEAR IN-SERVICE INSPECTION INTERVAL SALEM NUCLEAR GENERATING STATION, UNIT NO. 2

## DOCKET NO. 50-311

QUESTION $\quad 1.3$ (c) For certain piping welds, Information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by licensee identification numbers listed below.


Comments
UT exam was performed of this component using 45 degree shear wave transducer. The ultrasonic examination completed was partially limited to $36 \%$ of the code required coverage being limited due to tee to valve configuration and shortened radius of the tee between $9^{\prime \prime}$ to $18^{\prime \prime}$ and $23^{\prime \prime}$ to $4^{\prime \prime}$ the exam was limited on the downstream side due to the OD configuration of the valve and the upstream side of the tee.. No unacceptable indications were observed. A liquid penetrant examination and system pressure test was also completed with no recordable indications observed.

Summary \#
169450
Description

Component I.D.
8-SJ-1245-1

TEE TO Valve

Page
of

Comments
The ultrasonic examination completed was partially limited to $36 \%$ of the code required coverage being limited due to tee to valve configuration and shortened radius of the tee between $9^{\prime \prime}$ to $18^{\prime \prime}$ and $23^{\prime \prime}$ to $4^{\prime \prime}$ the exam was limited on the downstream side due to the OD configuration of the valve and the upstream side of the tee.



[^2]

SWRI FORM NO. NDTR 17-135 IREV. 6/80)



## REQUEST FOR ADDITIONAL INFORMATION REQUEST FOR RELIEF REGARDING EXAMINATION COVERAGE SECOND TEN-YEAR IN-SERVICE INSPECTION INTERVAL SALEM NUCLEAR GENERATING STATION, UNIT NO. 2 DOCKET NO. 50-311

QUESTION $\quad 1.3$ (c) For certain piping welds, Information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by licensee identification numbers listed below.

| Summary \# | 172500 |  |
| :---: | :---: | :---: |
| Component I.D. | 6-SJ-1241-18 |  |
| Description | Elbow to Pipe |  |
|  |  | Comments |
| 1 | Weld X-Section | See Attached |
| 2 | Material | Stainless Steel |
| 3 | Thickness / weld Crown | Thickness .63" / Weld Crown .75" |
| 4 | Obstruction | Adjacent Weld Joint |
| 5 | Exam Area Highlighted on Drawing |  |
| 6 | Transducer ray exit point | See Attached |

## Comments

UT exam was performed of this component using 45 degree shear wave transducer. The ultrasonic examination completed was partially limited to $90 \%$ of the code required coverage being limited due to close proximity of the adjacent weld \#19 located downstream. No unacceptable indications were observed. A liquid penetrant examination and system pressure test was also completed with no recordable indications observed.

Summary \#

$$
172500
$$

Description

Component I.D.


Comments
The ultrasonic examination completed was partially limited to $90 \%$ of the code required coverage being limited due to close proximity of the adjacent weld \#19 located downstream

Sketch





## LIMITATION REPORT

Project: 17-5502
System: Reactor Coolant Pump

Unit: Salem unit z. Weld No.: 22-Pmp-Luqs $1,2,3$

## SURFACE EXAMINATIONS



## VOLUMETRIC EXAMINATIONS



- Area of no examination


NOTE: Compute in a similar manner for indications perpendicular to the weld.
Preparedby:Victor Morton Reviewedby:Vie N 11 Date: GAPR 93 Level: III Date: GARC 93 Level: IIL




## LIMITATION REPORT

| Project: $\frac{17-5502}{}$ | Unit: SALEM UNIT 2 |
| :--- | ---: |
| System: Renctor CooLAnt Pump | Weld No.: 21-PMP-LUSS $1,2,3$ |




## LIMITATION REPORT

| Project: $17-5502$ | Unit: SALEM UNIT 2 |
| :--- | ---: |
| System: C.V.C. TANK | Weld No.: 2-CVCT-2 |

## SURFACE EXAMINATIONS

Area To Be Examined (Length $\mathbf{x}$ Width - A) $\qquad$
Area Of Limitation (Length $\times$ Width - Al)
Percentage of Coverage (A - AI/A)


VOLUMETRIC EXAMINATIONS


- Area of no examination

1. Compute Area a $x 1$
2. Multiply Asa by Weld Length
3. Compute Area Not Covered
4. Multiply "a" by Weld Length
5. Percentage of Coverage

NOTE: Compute in a similar manner for indications perpendicular to the weld.
Preparedby: Vie Morton Reviewedby: Vic 17 Date: 5 Apr 93 Level: II Date: Seer 93 Level: III Page $\frac{1}{1}$ of 1




## SURFACE EXAMINATIONS

Area To Be Examined (Length x Width - A)
Area Or Limitation (Length $\times$ Width - Al)
Percentage of Coverage (A - AI/A)

A= 56.00
Al= 6.00
.89 .30

VOLUMETRIC EXAMINATIONS


1. Compute Area a 1
2. Multiply Asa by Weld Length
3. Compute Area Not Covered
4. Multiply " $a$ " by Weld Length
5. Percentage of Coverage

NOTE: Compute in a similar manner for indications perpendicular to the weld.
Preparedby: Victor Morton Reviewedby:Vie Nun 19 Date: 5 APR 93 Level: III Date: 5 APR 93 Level: II Page $\quad 1$ of 1

## LIMITATION REPORT

Project: 17-5502
System: C. V.C. Tank

Unit: Salem unit 2
Weld No.: z-cvCT-2 $\sqrt{5}$-30no4

## SURFACE EXAMINATIONS

Area To Be Examined (Length $\mathbf{x}$ Width - A) A= 56.00 Area Of Limitation (Length x Width - Al)

Percentage of Coverage (A - A1/A)
VOLUMETRIC EXAMINATIONS


1. Compute Area a $\times 1$
2. Multiply As by Weld Length

- Asa

NIB

- Vt (Volume Total)

3. Compute Area Not Covered
4. Multiply " $a$ " by Weld Length

- V1 (Volume Limited)

5. Percentage of Coverage

- (Vt - VI/Vt)


NOTE: Compute in a similar manner for indications perpendicular to the weld.
Preparedby: Victor Morton_ Reviewedby: Vie 20 Date: $S_{\text {APr } 93 \text { _Level: III _Date: } 5 \text { APR } 93 \text { _Level: III }}$ Page _1 of 1

## LIMITATION REPORT

Project: 17-5502
System: C.V.C. TANK

Unit: SALEM UNIT Z Weld No.: Z-cvet-zv5-5066

## SURFACE EXAMINATIONS

Area To Be Examined (Length $\mathbf{x}$ Width - A) A= 56.00

Area Of Limitation (Length $\times$ Width - Al)
Percentage of Coverage (A - Al/A)

AI- 6.00 - 89.30
AI= 6.00

## VOLUMETRIC EXAMINATIONS




## LIMITATION REPORT

| Project: $17-5502$ | Unit: Salem UNIT 2 |
| :--- | ---: |
| System: CVC TAnK | Weld No.: 2-CVCT -2V5-7 An os |

## SURFACE EXAMINATIONS

| Area To Be Examined (Length $x$ Width $-A)$ | A $=56.00$ |
| :--- | :--- |
| Area Of Limitation (Length $x$ Width - A1) | Al= 6.00 |
| Percentage of Coverage (A - AI/A) | $=89.30$ |

## VOLUMETRIC EXAMINATIONS



- Area of no examination


NOTE: Compute in a similar manner for indications perpendicular to the weld. Preparedby: Victor Morton Reviewedby: Vienne 22 Date:SAer93_Level: III Date: Safe 93 Level: III Page $\frac{1}{a \rightarrow \operatorname{con} 1}$ of 1


## LIMITATION REPORT

```
Project: 17-5502
System: Residual hieat Remoual
```

Unit: SALEM UNTT 2 Weld No.: 21-RHR-HEX - 1

## SURFACE EXAMINATIONS




## VOLUMETRIC EXAMINATIONS




NOTE: Compute in a similar manner for indications perpend ocular to the weld.
Prepareaby: Victor Morion _Reviewedby: Vie 24 Date:13 APR 93 Level: II Date:13APR 93 Level:IIT Page $\frac{1}{24}$






## LIMITATION REPORT

Project：17－5502
System：RHR HEAT EXCHANGER

Unit：SALEM UNIT 2
Weld No．：21－RHR－HEX－2

## SURFACE EXAMINATIONS

Area To Be Examined（Length $\mathbf{x}$ Width－A）

A－Nee


## VOLUMETRIC EXAMINATIONS



| 1．Compute Area ax l | －As | $\mathrm{N} / \mathrm{A}$ |
| :--- | :--- | :--- |
| 2．Multiply As by Weld Length | －Vt（Volume Total） | 117 |
| 3．Compute Area Not Covered | －a | 93.5 |
| 4．Multiply＂a by Weld Length | －Vi（Volume Limited） | Nl |
| 5．Percentage of Coverage | －（Vt－VI／Vt） | 20 |

NOTE：Compute in a similar manner for indications perpendicular to the weld．
Prepareaby：Victor Morton Reviewedby：Vie 26 Date： 13 APR 93 Level：III Date： 13 APR 93 Level：III

## LIMITATION REPORT

| Project:17-5502 Unit: SALEA UNiTz <br> System: FEEDWATER Weld No.: $14-$ BF-22II-z |
| :--- | ---: |

## SURFACE EXAMINATIONS

Area To Be Examined (Length $\mathbf{x}$ Width - A)
Area Of Limitation (Length x Width - Al)
Percentage of Coverage ( $\mathrm{A}-\mathrm{Al} / \mathrm{A}$ )

A= 130.7
Al- 20.6

- 84.3


## YOLUMETRIC EXAMINATIONS



- Area of no examination

| 1. Compute Area a X I | - Asq | . 92 |
| :---: | :---: | :---: |
| 2. Multiply Asq by Weld Length | - Vt (Volume Total) | 40.94 |
| 3. Compute Area Not Covered | $a$ | . 92 |
| 4. Multiply " a " by Weld Length | - VI (Volume Limited) | 6.44 |
| 5. Percentage of Coverage | - (Vt - VI/Vt) | 84.3 |
| NOTE: Compute in a similar manner for indications perpendicular to the weid. |  |  |
| Preparedby:Vietor Morton__Reviewedby: Vic Nats |  |  |
| Date:2APR 93 Level: III__Date:_2ARR 93 Level: III |  |  |



# REQUEST FOR ADDITIONAL INFORMATION REQUEST FOR RELIEF REGARDING EXAMINATION COVERAGE SECOND TEN-YEAR IN-SERVICE.INSPECTION INTERVAL SALEM NUCLEAR GENERATING STATION, UNIT NO. 2 DOCKET NO. 50-311 

QUESTION $\quad 2.1$ (c) For certain piping welds, Information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by licensee identification numbers listed below.

Summary \# 330930

Component I.D. 14-BF-2211-2

Description Pipe to Elbow


5 Exam Area Highlighted on Drawing
6 Transducer ray exit point

Comments

| See Attached |
| :---: |
| Carbon Steel |

Thickness 1.1" / Weld Crown 1.5"
Restraining Lug


See Attached

Comments
UT exam was performed of this component using 45 degree shear wave transducer. The ultrasonic examination was limited to $84 \%$ of the code required coverage being limited due to permanently installed column support lug located immediately adjacent to the weld that interferes with scanning. No unacceptable indications were obseived. A Magnetic Particle examination and system pressure test was also completed with no recordable indications observed.

Page of

Summary \#
Description

330930
Pipe to Elbow

Component I.D.

Comments
UT exam was performed of this component using 45 degree shear wave transducer. The ultrasonic examination was limited to $84 \%$ of the code required coverage being limited due to permanently installed column support lug located immediately adjacent to the weld that interferes with scanning

Sketch



SWRI FORM NO. NDTR 17-86 \{REV. 2/93\}
330930

Down Elbow $\frac{\text { FLOW }}{\frac{1}{4}}$

UP
PIPE.


SALEM UNIT 2 17-5502
(1) ROOT

FEEDWATER 14-BF-2211-2
Victor Morton III 2 apr 93
GEOMETRIC

## $O$ PSEG

 $\left[\begin{array}{l}\text { AB } \\ \text { Wha } 1 \text { GA } \\ \text { DAIE } 4 \\ \hline 12\end{array}\right]$


## LIMITATION REPORT

$\left\{\begin{array}{lr}\text { Project: } 17-5502 & \text { Unit: SALEM UNAT2 } \\ \text { System: FEEOWATER } & \text { Weld No:: } \frac{\text { IL-BF-2Z11 }}{\text { TRUNNIONS }} \\ \hline\end{array}\right.$

## SURFACE EXAMINATIONS

$\left\{\begin{array}{l}\text { Area To Be Examined (Length } x \text { Width - A) } \\ \text { Area Or Limitation (Length } \times \text { Width - AI) } \\ \text { Percentage of Coverage (A - A1/A) }\end{array}\right.$
A. 7.5 Al $=1.5$ $-80$

## VOLUMETRIC EXAMINATIONS




NOTE: Compute in a similar manner for indications perpendicular to the weld.
Preparedby: Victor Morton _Revlewedby: Vie Nat an 29 Date: 12 apR 93 Level: III Date: 12 Apr 93 Level: IIL Page 1 of 1

## REQUEST FOR ADDITIONAL INFORMATION REQUEST FOR RELIEF REGARDING EXAMINATION COVERAGE SECOND TEN-YEAR IN-SERVICE INSPECTION INTERVAL SALEM NUCLEAR GENERATING STATION, UNIT NO. 2

 DOCKET NO. 50-311QUESTION 2.2(a) For certain component attachments and support welds, Information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by licensee identification numbers listed below.

Summary \# 331095
Component I.D. 14-BF-2211-11PL11\& 11PL12

Description TRUNION

|  | Weld X-Section | Comments |
| :---: | :---: | :---: |
| 1 |  | N/A |
| 2 | Material | Carbon Steel |
| 3 | Thickness / weld Crown | UNKNOWN |
| 4 | Obstruction | 11 PIPE SUPPORT |
| 5 | Exam Area Highlighted on Drawing | Yes X No |
| 6 | Transducer ray exit point | N/A |

Comments
MT- EXAM̄ WAS CONDUCTED. THE EXAM COMPLETED WAS LIMITED TO 80\% CODE REQUIRED COVERAGE BEING OBTAINED DUE TO 1-1/2" OF THE TOTAL 7-1/2"LONG WELD NOT BEING ABLE TO BE EXAMINED DUE TO AN ADJACENT PIPE SUPPORT INTERFERENCE (11PS). NO UNACCEPTABLE INDICATIONS WERE OBSERVED. A SYSTEM PRESSURE TEST WAS ALSO COMPLETED WITH NO RECORDABLE INDICATIONS OBSERVED.
$\qquad$
Page of

# PSEG ISO SGF23-03 

PSEG Nuclear, LLC $\quad$ FIGURE: B-17 $\quad$ REVISION: 4

| ATTENTION: ANY REVISION SHAL BE MADE ONLY BY DRAWING CAED |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  |
| 4 |  | REVISED PER ORDER No. 80038023. |
| REV. | DATE |  | SALEM NUCLEAR GENERATING STATION UNIT 2 - WELD / HANGER IDENTIFICATION FIGURE SYSTEM

$\qquad$ NE: STEAM GENERATOR FEED
ANNULUS
$L V 1=$ COMMON INFORMATION




REQUEST FOR ADDITIONAL INFORMATION

## REQUEST FOR RELIEF REGARDING EXAMINATION COVERAGE

SECOND TEN-YEAR IN-SERVICE INSPECTION INTERVAL
SALEM NUCLEAR GENERATING STATION, UNIT NO. 2
DOCKET NO. 50-311
QUESTION $\quad 2.1$ (c) For certain piping welds, Information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by licensee identification numbers listed below.

Summary \# 382140

Component I.D. 30-MS-2211-9

Description Pipe to Elbow


## Comments

UT exam was performed of this component using 45 degree shear wave transducer. The ultrasonic examination was limited to $90 \%$ of the code required coverage being limited between $9 / 16^{\prime \prime}$ to $37 / 8^{\prime \prime}$ No unacceptable indications were observed. A liquid penetrant examination and system pressure test was also completed with no recordable indications observed.

Page of




## LIMITATION REPORT



## REQUEST FOR ADDITIONAL INFORMATION REQUEST FOR RELIEF REGARDING EXAMINATION COVERAGE SECOND TEN-YEAR IN-SERVICE INSPECTION INTERVAL SALEM NUCLEAR GENERATING STATION, UNIT NO. 2

QUESTION $\quad 2.1$ (c) For certain piping welds, Information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by licensee identification numbers listed below.

| Summary \# | 500010 |
| :---: | :--- |
| Component I.D. | 12-PR-2201-1 |
| Description | Cap to Pipe |


|  | Weld X-Section | Comments |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 1 |  | See Attached |  |  |
| 2 | Material | Stainless Steel |  |  |
| 3 | Thickness / weld Crown | Thickness .52" / Weld Crown N/A |  |  |
| 4 | Obstruction | Pipe Support |  |  |
| 5 | Exam Area Highlighted on Drawing | Yes ${ }^{\text {X }}$ | No\| |  |
| 6 | Transducer ray exit point | See Attached |  |  |

## Comments

UT exam was performed of this component using 45 degree shear wave transducer. The ultrasonic examination was limited to $78 \%$ of the code required coverage. No UT exam from the upstream or downstream side between $103 / 4^{\prime \prime}$ to $141 / 4^{\prime \prime}$ and $263 / 4^{\prime \prime}$ to $313 / 4^{\prime \prime}$ due to instalied pipe support. Scanned across weld from upstream side and on weld crown only on downstream side. No unacceptable indications were observed. A liquid penetrant examination and system pressure test was also completed with no recordable indications observed.

Supplemental Drawing
Summary \#
500010
Description
Cap to Pipe
Component I.D.
12-PR-2201-1
Page
of

Comments
The ultrasonic examination was limited to $78 \%$ of the code required coverage. No UT exam from the upstream or downstream side between $103 / 4^{\prime \prime}$ to $141 / 4^{\prime \prime}$ and $263 / 4^{\prime \prime}$ to $313 / 4^{\prime \prime}$ due to installed pipe support

Sketch
FLow

## LIMITATIONS

| SYSTEM: | RPV - Closure Head |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| IDENTIFICATION: 2-RPVCH-1446A |  |  |  |  |
| WELD TYPE: | Meridional Weld @ 300 deg. |  |  |  |
| Limitation Code: | 1 - CRD Penetration <br> 2 - Shroud Suppart Ring <br> 3-Lifting Lug |  |  |  |
| NUMBER | CODE | L | W | LOCATION |
| 1 | 1 | $0^{\text {a }}$ to $31 / 2^{\prime \prime}$ | $0^{\prime \prime}$ to $4^{\text {a }}$ | CW Side |
| 2 | 1 | $10^{\prime \prime}$ to $18^{\prime \prime}$ | $0^{\prime \prime}$ to $4^{\prime \prime}$ | CW Side |
| 3 | 1 | $1{ }^{1 \prime}$ to $8^{\prime \prime}$ | $5^{\prime \prime}$ - to 12" | CCW Side |
| 4 | 2 | $22^{\prime \prime}$ to $241 / 2^{\prime \prime}$ | 0 " to 19" | CW and CCW |



## LIMITATIONS

| SYSTEM: | RPV - Closure Head |  |
| :---: | :---: | :---: |
| IDENTIFICATIO | 2-RPVCH-1446B |  |
| WELD TYPE: | Meridional @ 0 deg. |  |
| Limitation Code: | 1-CRD Penetration <br> 2-Shroud Support Ring <br> 3 - Lifting Lug |  |
| NUMBER | CODE | L |
| 1 | 1 | 0" to 3" |
| 2 | 1 | $3^{\prime \prime}$ to $8^{\prime \prime}$ |
| 3 | 1 | $9^{\prime \prime}$ to 15" |
| 4 | 2 | 22" to $241 / 2^{\prime \prime}$ |
| 5 | 3 | 21" to 46" |

## W

$0^{\prime \prime}$ to $31 / 2^{\prime \prime}$
14 to $171 / 2^{\prime \prime}$
$51 / 4^{\prime \prime}$ to $101 / 4^{\prime \prime}$
$0^{\prime \prime}$ to $19^{n}$
$0^{\prime \prime}$ to $41 / 4^{\prime \prime}$

## LOCATION

CW and CCW Sides
CCW Side CCW Side

CW and CCW Sides
CW and CCW Sides

## PSE\&G:LIMITATONREPORT

PROJECT: $17-6399$
SYSTEM: - RPV Closure Head
Prepared By: Hector Dlaz LV. III

UNIT: SALEM Unit 2
WELD NO.: 2-RPVCH-1446B / merit.@ 0
Date:
11 Nov. 1994

VOLUMETRIC EXAMINATIONS


AVERAGE COVERAGE
" $A$ " volume is the wald volume.
"B' volume is the adjacent base material for a distance of $1 / 2 \mathrm{t}$ from the weld fusion line on one side (cw, cow, up, down) of the weld.
"C" volume is the adjacent base material for a distance of $1 / 2 t$ from the weld fusion line on the other side (cw, cow, up, down) of the weld.
" $D$ " and " $E$ " are the adjacent base material volumes through which the angle beams pass to cover the base material for a distance of $1 / 2 \mathrm{I}$ from the fusion line of the weld.


## LIMITATIONS

| SYSTEM: | RPV - Closure Head |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| IDENTIFICATION: 2-RPVCH-1446C |  |  |  |  |
| WELD TYPE: | Meridional Weld @ 60 deg. |  |  |  |
| Limitation Code: | 1 - CRD Penetration <br> 2 - Shroud Support Ring <br> 3-Lifting Lug |  |  |  |
| NUMBER | CODE | $L$ | w | LOCATION |
| 1 | 1 | $0^{\prime \prime}$ to $31 / 2^{*}$ | $0^{\prime \prime}$ to $31 / 2^{\text {I }}$ | CW and CCW |
| 2 | 1 | 11/1/2 to $9^{\prime \prime}$ | $8{ }^{\prime \prime}$ to $17^{\prime \prime}$ | CW Side |
| 3 | 1 | 14' to 22" | $51 / 2^{\prime \prime}$ to $12^{\prime \prime}$ | CW Side |
| 4 | 2 | 22 ${ }^{11}$ to $241 /{ }^{1}$ | $0^{\prime \prime}$ to 19" | CW and CCW |
| 5 | 1 | $10^{\prime \prime}$ to $18^{\circ}$ | $0^{\prime \prime}$ to $6^{\prime \prime}$ | CCW Side |

[^3]
## PSE\&G LIMTATIONREPORT

| PROJECT: | $17-6399$ | UNIT: | SALEM Unit 2 |
| :--- | :--- | :--- | :--- |
| SYSTEM: | RPV Closure Head |  | WELD NO.: |
| Prepared By: Hector Diaz Lv. lll | Date:. | 11 Nov. 1994 |  |

## VOLUMETRIC EXAMINATIONS

| VOLUME | ANGLE | EXAM TYPE | DIRECTION | \% COVERAGE |
| :---: | :---: | :---: | :---: | :---: |
| A | 45860 | Parallel | 2 Directions | 18.9\% |
|  | 45 \& 60 | Transverse | 2 Directions | 10.4\% |
| B | $45 \% 60$ | Parallel | 1 Direction | 59.5\% |
|  | $45 \& 60$ | Transverse | 2 Directions | 13.2\% |
| c | 45 \& 60 | Parallel | 1 Direction | 64.5\% |
|  | 45\& 60 | Transverse | 2 Directions | 13.2\% |
| abcde | 0 deg. | Lamination | N/A | 66.9\% |
| ABC | 0 deg. | Planar (weld) | $N / A$ | 36.7\% |

AVERAGE COVERAGE $\quad 35.4 \%$
"A" volume is the weld volume.
"B" volume is the adjacent base material for a distanee of $1 / 2 \mathrm{t}$ from the weld tusion line on one side (cw, ecw, up, down) of the wald.
"C" volume is the adjacert base material for a distance of $1 / 2 t$ from the weld fusion line on the other side (cw, cow, up, down) of the weld.
" $D$ " and " $E$ ' are the adjacent base material volumes through which the angle beams pass to cover the base material for a distance of $1 / 2 \mathrm{t}$ from the fusion line of the weld.


## LIMITATIONS

| SYSTEM: | RPV - Closure Head |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| IDENTIFICATION: 2-RPVCH-1446D |  |  |  |  |
| WELD TYPE: | Meridional Weld @ 120 deg. |  |  |  |
| Limitation Code: | 1 - CRD Penetration <br> 2 - Shroud Support Ring <br> 3-Lifting Lug |  |  |  |
| NUMBEE | CODE | L | w | LOCATION |
| 1 | 1 | $0^{\circ}$ to $3^{\prime \prime}$ | $0^{\prime}$ to $31 / 2^{\prime \prime}$ | CW and CCW |
| 2 | 1 | $1^{\prime \prime}$ to $8^{\prime \prime}$ | $8^{\text {a }}$ to $141 / 2^{\text {a }}$ | ccw side |
| 3 | 1 | 11' to 17" | $0^{\prime \prime}$ to $6^{\text {a }}$ | CW Side |
| 4 | 2 | 22" to 24 1/2" | $00^{\prime \prime}$ to 19' | CW and CCW |
| 5 | 3 | $21^{\prime \prime}$ to 46" | 0'to 4 1/2* | CW and CCW |



## LIMITATIONS

| SYSTEM: | RPV - Closure Head |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| IDENTIFICATION: $2-\mathrm{RPVCH}-1446 \mathrm{E}$ |  |  |  |  |
| WELD TYPE: | Meridional Weld @ 180 deg. |  |  |  |
| Limitation Code: | 1 - CRD Penetration <br> 2 - Shroud Support Ring <br> 3 - Lifting Lug |  |  |  |
| NUMBER | CODE | L | w | LOCATION |
| 1 | 1 | $0^{\prime \prime}$ to $6^{\prime \prime}$ | $0^{\prime \prime}$ to $31 / 2^{\text {n }}$ | CW and CCW |
| 2 | 1 | $0^{\prime \prime}$ to $7^{\prime \prime}$ | i3'to 17" | CW Side |
| 3 | 1 | 9" to 17" | $51 / 2$ to 12" | CCW Side |
| 4 | 2 | 22" ${ }^{\text {a }}$ to $241 / \mathbf{2}^{\text {a }}$ | O' to 19" | CW and CCW |

## PSE\&G LIMITATIONREPORT

PROSECT: 17-6399
SYSTEM: RPV Closure Head
Prepared By: Hector Diaz Lv. III

UNIT: SALEM Unit 2
WELD NO.: 2-RPVCH-1446E/merid.@ 180
Date: 11 Nov. 1994

## VOLUMETRIC EXAMINATIONS

| VOLUME | ANGLE | EXAM TYPE | DIRECTION | \% COVERAGE |
| :---: | :---: | :---: | :---: | :---: |
| A | 45 \& 60 | Parallel | 2 Directions | 19.0\% |
|  | 45 \& 60 | Transverse | 2 Directions | 44.0\% |
| B | 45 \& 60 | Parallel | 1 Direction | 36.0\% |
|  | 45 \& 60 | Transverse | 2 Directions | 45.0\% |
| c | 45 \& 60 | Parallel | 1 Direction | 36.0\% |
|  | 45 \& 60 | Transverse | 2 Directions | 45.0\% |
| ABCDE | 0 deg. | Lamination | N/A | 31.0\% |
| ABC | 0 deg. | Planar (weld) | N/A | 34.0\% |
|  |  |  | AVERAGE COVERAGE | 36.25\% |

" A " volume is the weld volume.
" $B$ " volume is the adjacent base material for a distance of $1 / 2 t$ from the weld fusion line on one side (cw, cew, up, down) of the weld.
"C" volume is the adjacant base material for a distance of $1 / 2 \mathrm{t}$ from the weld fusion line on the other side (CW, cew, up, down) of the weld.
"D" and "E" are the adjacent base material volumes through which the angle beams pass to cover the base material for a distance of $1 / 2 t$ from the tusion line of the weld.


## LIMITATIONS

| SYSTEM: | RPV - Closure Head |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| IDENTIFICATION: 2-APVCH-1446F |  |  |  |  |
| WELD TYPE: | Meridional Weld @ 240 deg. |  |  |  |
| Limitation Code: | 1 - CRD Penetration <br> 2 - Shroud Support Ring <br> 3 - Lifting Lug |  |  |  |
| NUMBER | CODE | $L$ | w | LOCATION |
| 1 | 1 | $0^{\prime \prime}$ to $4^{\prime \prime}$ | 0'to $31 / 2^{\prime \prime}$ | CW and CCW |
| 2 | 1 | 10" to 19" | O' to $51 / 2^{\prime \prime}$ | ccw Side |
| 3 | 1 | 11/2" to $81 / 2^{\prime \prime}$ | $81 / 2^{\prime \prime}$ to 19" | CW Side |
| 4 | 2 | 22" to $241 / 2^{\text {a }}$ | $0^{\prime \prime}$ to 19" | CW and CCW |
| 5 | 1 | $13^{6} 1 / 2^{\prime \prime}$ to $22^{\prime \prime}$ | $6^{\prime \prime}$ to 19" | CW Side |
| 6 | 1 | $0^{\prime \prime}$ to $4^{\prime \prime}$ | $9^{1 / 22^{\prime \prime}}$ to 17.1/2" | CCW Side |
| 7 | 3 | $21^{\prime \prime}$ to 46" | : $0^{\prime \prime}$ to $41 / 4^{\text {a }}$ | CW and CCW |



## LIMITATIONS

| SYSTEM: | RPV - Closure Head |  |
| :---: | :---: | :---: |
| IDENTIFICATION: 2-RPVCH-6446B |  |  |
| WELD TYPE: | Dollar Plate |  |
| Limitation Code: | 1 - CRD Penetration <br> 2 - Shroud Support Ring <br> 3 - Lifting Lug |  |
| NUMBER | CODE | L |
| 1 | 1 | $0^{\prime \prime}$ to 320" |
| 2 | 1 | 5 $1 / 2^{\prime \prime}$ to $101 / 2^{\prime \prime}$ |
| 3 | 1 | $151 / 2^{\text {n }}$ to $201 / 2^{-1}$ |
| 4 | 1. | 231/2" to $281 / 2^{\prime \prime}$ |
| 5 | 1 | $331 / 2^{\prime \prime}$ to $381 / 2^{\prime \prime}$ |
| 6 | 1 | $46^{\prime \prime}$ to 51 " |
| 7 | 1 | $46^{\prime \prime}$ to 51 " |
| 8 | 1 | $59^{\prime \prime}$ to $64^{\prime \prime}$ |
| 9 | 1 | $761 / 2^{\prime \prime}$ to $811 / 2^{\prime \prime}$ |
| 10 | 1 | $841 / 2^{\prime \prime}$ to $891 / 2^{\prime \prime}$ |
| 11 | 1 | $1031 / 2^{\prime \prime}$ to $1081 / 2^{\prime \prime}$ |
| 12 | 1 | $106^{\text {n }}$ to $112^{\prime \prime}$ |
| 13 | 1 | $115{ }^{\prime \prime}$ to $1211 / 2^{\prime \prime}$ |
| 14 | 1 | $1241 / 2^{\prime \prime}$ to $1301 / 2^{\prime \prime}$ |
| 15 | 1 | $1271 / 2^{\prime \prime}$ to $1341 / 2^{\prime \prime}$ |
| 16 | 1 | 139' to $146^{\text {a }}$ |
| 17 | 1 | 154" to 161" |
| 18 | 1 | 162" to $1681 / 2^{\prime \prime}$ |
| 19 | 1 | $171{ }^{\text {a }}$ to $1771 / 2^{\text {a }}$ |
| 20 | 1 | $175^{\prime \prime}$ to $181{ }^{\prime \prime}$ |

Note: "L" Measurements made stating at 0 deg position, going CCW.

| W | LOCATION |
| :---: | :---: |
| $5^{\prime \prime}$ to $19^{\prime \prime}$ | Dome Side |
| $8^{\prime \prime}$ to $19^{\prime \prime}$ | Head Side |
| $0^{\prime \prime}$ to $71 / 2^{\prime \prime}$ | Head Side |
| $0^{\prime \prime}$ to $3^{\text {n }}$ | Dome and Head Sides |
| $0^{\prime \prime}$ to 3" | Dome and Head Sides |
| $0^{\prime \prime}$ to $3^{\text {n }}$ | Dome and Head Sides |
| $11^{\prime \prime}$ to 19" | Head Side |
| $0^{\prime \prime}$ to $71 / 2^{\prime \prime}$ | Head Side |
| 0" to $3^{\prime \prime}$ | Dome and Head Sides |
| $8^{\prime \prime}$ to $19{ }^{\prime \prime}$ | Head Side |
| $0^{\prime \prime}$ to $3^{\prime \prime}$ | Dome and Head Sides |
| $10^{\prime \prime}$ to $19 \times$ | Head Side |
| $0^{\prime \prime}$ to $31 / 2^{\text {²}}$ | Head Side |
| 11" to 19" | Head Side |
| $0^{\text {in }}$ to $51 / 2^{\text {a }}$ | Head Side |
| $0^{\prime \prime}$ to $8^{\prime \prime}$ | Head Side |
| $0^{\prime \prime}$ to $8^{\prime \prime}$ | Head Side |
| $\mathrm{B}^{\prime \prime}$ to 19" | Head Side |
| $11 / 2^{\prime \prime}$ to $91 / 2^{\prime \prime}$ | Head Side |
| $14^{\prime \prime}$ to 19" | Head Side |



PSE\&G LIMITATION REPORT

| PROJECT: | 17-6399 | UNIT: | SALEM Unit 2 |
| :--- | :--- | :--- | :--- |
| SYSTEM: | RPV Closure Head |  | WELD NO.: |
| 2-RPVCH-6446B / Dollar plate weld |  |  |  |
| Prepared By: Hector Diaz Lv.lll | Date: | 20 December 1994 |  |


| VOLUME | VOLUMETRIC EXAMINATIONS |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | ANGLE | EXAM TYPE | DIRECTION | \% COVERAGE |
| A | 45 \& 60 | Parallel | 2 Directions | 22.0\% |
|  | 45 \& 60 | Transverse | 2 Directions | 79.0\% |
| B | 45 \& 60 | Paralle! | 1 Direction | 82.0\% |
|  | 45 \& 60 | Transverse | 2 Directions | 67.0\% |
| C | 45\&60 | Parallel | 1 Direction | 66.0\% |
|  | 45 \& 60 | Transverse | 2 Directions | 88.0\% |
| ABCDE | 0 deg. | Lamination | $N / A$ | 55.0\% |
| ABC | 0 deg. | Planar (weld) | $N / A$ | 80.0\% |
|  |  |  | average coverage | 67.0\% |

"A" volume is the weld volume.
" $B^{\text {" }}$ volume is the adjacent base material for a distance of $1 / 2 t$ trom the weld fusion line on one side (CW, cCw, up, down) of the weld.
"C" volume is the adjacent base material for a distance of $1 / 2 t$ trom the weld fusion line on the other side ( $\mathrm{CW}, \mathrm{cow}$, up, down) of the weld.
" $D$ " and " $E$ " are the adjacent base material volumes through which the angle beams pass to cover the base material for a distance of $1 / 2 t$ from the fusion line of the weld.




SALEM UNIT 2 17-6399
REACTOR COOLANT 31-RC-1220-4
Vietare Morton III 1 Nov 94
Fore Limitallorls only.

Elbow
Pipe


NO EXAM UP + DOWN FROM $55^{\circ}+62^{\prime \prime}$
DUE TO BRANCH CONNECTION. $=17.01 \mathrm{w}$


## REQUEST FOR ADDITIONAL INFORMATION REQUEST FOR RELIEF REGARDING EXAMINATION COVERAGE SECOND TEN-YEAR IN-SERVICE INSPECTION INTERVAL SALEM NUCLEAR GENERATING STATION, UNIT NO. 2 DOCKET NO. 50-311

QUESTION $\quad 1.3$ (c) For certain piping welds, Information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by licensee identification numbers listed below.

| Summary \# | 076000 |
| :---: | :--- |
| Component I.D. | 31-RC-1220-4 |
| Description | Elbow to Pipe |



## Comments

Ut exam was performed from the pipe side with no exam able to be conducted from elbow side due to the elbow being fabricated from ASTM351-65 CF8M cast stainless steel whose acoustic properties is not conductive for ultrasonic examination. The exam completed was limited to $84 \%$ of code required coverage. There were no unacceptable indications observed. The downstream exam was limited between $55^{\prime \prime}$ to 62" due to a branch connection that interfered with scanning. A system pressure test was also completed with no recordable indications observed.

Page of

Supplemental Drawing

Summary \#
076000
Description

Component I.D.


No Coverage in the downstream direction due to cast elbow material ASTM 351-65 CF8M additional limitation due to branch
Comments connections. Actual code coverage obtained is $73 \%$.

Sketch
ELBOW


100\% LIMATED




LV $1=$ COMMON INFORMATION
LV $2=$ WELD INFORMATION
LV $3=$ HANGER INFORMATION




MAN RUN MORNEHON
hQ

$\stackrel{N}{\sigma}$

SHLEH LHJT 2 17-6399
REACTOR LOOLANT 275-RC-1210 1BC-3
VICTOR MORTON III 8 nav 94
for Limitation

W- AREA NOT CW/LCW

```
SMLEM UNIT Z 17-6399
REACHMN COOLAIT 27.5-RC-1210 1BE-3
Vietor MORTON III L NOV 9i4
FOR COVEIRAGE ONLY. (SHEETH, 35050)
455}1/8,3/8,5/8,7/8 FROM BRANC
CONNEETION SIOE ONLY
```



# O PSEG INSPECTION SERVICES <br> Reviewed and Approved <br> 10111194 <br> n.O.E SUPERVISOR 

0



SALEM UNIT 2 17-6399
Reactor coolairt 275-RC-1210-8C4
Vietor Morton III 7 nov 94
For limitations onsly.
086900



## PSERG LIMIATION REPORT



## SURFACE EXAMINATIONS

| Area To Be Examined (length $\times$ Width $=A)$ <br> Area Of Limitation (Length $\times$ Width $=A I)$ <br> Percentage Of Coverage | $A=$ |
| :--- | :---: |
|  | $(A-A I(A)=$ |
|  | VOLUMETRIC EXAMINATIONS |

A. Axial Exams (Indications Parallel To Weld)

B. Circumferential Exams (Indications Perpendicular To Weld)

1. Compute Exam Volume (height x width x length) $=\mathrm{Vta}$
2. Compute Vol. Not Covered CW =
24.25
3. Compute CW Limitation Percentage
$(C / V+2) \times 100=23 \quad 94.97$
4. Compute Vol. Not Covered CCW
$=\mathrm{D}$
23.03
5. Compute CCW Limitation Percentage
(D $/ \mathrm{Vt} 2) \times 100=24$
94.97
C. Total Coverage
6. Compute Total Limitation Percentage
$(Z 1+Z 2+Z 3+Z 4) / 4=L \quad 47.49$
7. Compute Total Coverage

100 - L
52.51

REMARKS: $\qquad$



## REQUEST FOR ADDITIONAL INFORMATION REQUEST FOR RELIEF REGARDING EXAMINATION COVERAGE SECOND TEN-YEAR IN-SERVICE INSPECTION INTERVAL SALEM NUCLEAR GENERATING STATION, UNIT NO. 2 DOCKET NO. 50-311

$$
\begin{array}{ll}
\text { QUESTION } \quad 2.2(a) & \begin{array}{l}
\text { For certain component attachments and support welds, Information } \\
\text { submitted by the licensee is not sufficient to demonstrate impracticality. } \\
\\
\\
\text { Please submit further information in the form of drawings, sketches } \\
\text { and/or descriptions to support this evaluation for the following }
\end{array} \\
\text { components, as identified by licensee identification numbers listed below. }
\end{array}
$$



## Comments

MT exam was conducted of this component. The MT exam was limited to $50 \%$ of the code required exam due to proximity of permanent pipe restraint in close to the weld that prevented sufficient access for the weld to be examined in two directions. The lugs were examined completely in one direction and no unacceptable indications were observed. A system pressure test was also performed with no unacceptable indications observed.
$\qquad$

## Supplemental Drawing

| Summary \# | 330540 | Component I.D. | 14-BF-2231-17PS <br> Description <br> Pipe Support |
| :--- | :--- | :--- | :--- |

## Comments

The MT exam. Was limited to $50 \%$ because of a permanently installed pipe collar in the area that prevented sufficient access to examine the weld in two directions

## Sketch




ANNULUS
BIOSHIELD

4-BF-2231/4-AF-223i ETRATIO
AREA
15PL-9, $10 \rightarrow$ EL. $130^{\circ} \quad[2$ FWH-23-22

2FWH-23-21
OOPS-1 THRU 4)
23BF57


 (2PR)

 $\int_{23 B F 22}^{-2}$ SEE FIG. $4^{\prime \prime}$
 3BF 22

SECOND INTERVAL, FIRST PERIOD, SECOND OUTAGE (94RF)




REQUEST FOR ADDITIONAL INFORMATION REQUEST FOR RELIEF REGARDING EXAMINATION COVERAGE SECOND TEN-YEAR IN-SERVICE INSPECTION INTERVAL SALEM NUCLEAR GENERATING STATION, UNIT NO. 2 DOCKET NO. 50-311

QUESTION 2.2(a) For certain component attachments and support welds, Information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by licensee identification numbers listed below.

Summary \# 330560
Component I.D. 14-BF-2231-18PS

Description PIPE SUPPORT


| Comments |
| :---: |
| N/A |
| Carbon Steel |
| N/A |
| PIPE COLLAR |
|  |
| N/A |

Comments
MT exam was conducted of this component. The MT exam. Was limited to $50 \%$ because of a permanently installed pipe collar in the area that prevented sufficient access to examine the weld in two directions. The MT exam of the lugs was unable to be examined in two directions due to a permanently installed restriction. a system pressure test was also completed with no unacceptable indications observed.

## Supplemental Drawing

| Summary \# | 330560 | Component I.D. | 14-BF-2231-18PS <br> Description <br> Pipe Support |
| :--- | :--- | :--- | :--- |
|  |  | Page of |  |

## Comments

The MT exam. Was limited to $50 \%$ because of a permanently installed pipe collar in the area that prevented sufficient access to examine the weld in two directions

Sketch


SECOND INTERVAL, FIRST PERIOD, SECOND OUTAGE (94RF)

|  |  |  | SUMMARY \#: 330560 EXAMINATION SUMMARY RECORD $\quad$ SALEM NUCLEAR POWER STATION, UNIT 2 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SYSTEM/COMPONENT: LINE/SUBASSEMBLY: IDENTIFICATION: |  | FEEDWATER SYSTEM <br> 14-BF-2231 <br> 14-BF-2231-18PS |  | PIPE SUPPORT <br> RELIEF REQUEST \#: RR-C1 |  |  |  |  |
| LTP INSTRUCTIONS: EXAM LIMITED TO 50\% CODE COVERAGE, DUE TO PROXIMITY OF A PERMANENT PIPE COLLAR. RESULTS REMARKS: 94 - W.O.\#941023023 TO PERFORM NDE, LIMITATION: EXAM LIMITED TO 50\% CODE COVERAGE dUE TO PROXIMITY OF A PERMANENT PIPE COLLAR. |  |  |  |  |  |  |  |  |
| NDEMETHODININTP |  | $\begin{array}{\|l\|} \hline \text { RESULTS } \\ \text { FILE } \\ \text { NDE } \\ \text { EXAM } \\ \hline \end{array}$ | $\underset{\text { EXAM }}{\text { EXCORD }}$ | CALIBRATION | N $\begin{aligned} & \text { N } \\ & 0 \\ & \text { R }\end{aligned}$ |  | ${ }_{\text {RESOLUTION }}^{\text {RECORD }}$ |  |
| MT | VS2SSISZZ0070Q | MT | 120018 |  | $x$ |  |  |  |
|  |  |  |  |  |  |  |  |  |




SALEM UNIT 2 17-6399
MAINSTEAM 34-M5-2241-3
Victore Mortion III II nov 94
FOR COVERAGE ONLY.
380140
$\square$

## SALEM UNIT 2 MAIN STEAM HEADER




# REQUEST FOR ADDITIONAL INFORMATION REQUEST FOR RELIEF REGARDING EXAMINATION COVERAGE SECOND TEN-YEAR IN-SERVICE INSPECTION INTERVAL SALEM NUCLEAR GENERATING STATION, UNIT NO. 2 <br> DOCKET NO. 50-311 

QUESTION 2.1 (c)
For certain piping welds, Information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by licensee identification numbers listed below.

Summary\# 380140

Component I.D. $34-\mathrm{MS}-2241-2$

Description Pipe to Valve 24-MS-167


6 Transducer ray exit point


## Comments

UT exam was performed of this component using 45 and 32 degree shear wave transducer. The ultrasonic examination was limited to $85 \%$ of the code required coverage being limited between $71 / 2^{\prime \prime} \mathrm{W}$ from 5 "to $16^{\prime \prime}$ and $871 / 2^{\prime \prime}$ to $103^{\prime \prime}$ due to multiple branch connections. No unacceptable indications were observed. A magnetic particle examination and system pressure test was also completed with no recordable indications observed.

## NOTE:

Weld ID was miss labeled on data report program data base and piping lsometrics so plpe to valve 24 MS 167 weld being weld ${ }^{3} 2$ paperwork states weld 3 thls was miss labeled only on data report.

SECOND INTERVAL, FIRST PERIOD, SECOND OUTAGE (94RF)



## PSE\&G LIMITATION REPORT



## SURFACE EXAMINATIONS

NET REQUIRED
Area To Be Examined (length $\times$ Wididth $=A$ )
Her required
Area Of Limitation (Length $\times$ Whiettr $=A l$ )
$\qquad$
$A=8.75$
$A \mathrm{~A}=7.50^{\prime \prime}$ (WORT. CASE BASIS)
Percentage Of Coverage $(A-A I / A)=85.71 \%$

## VOLUMETRIC EXAMINATIONS

## A. Axial Exams (Indications Parallel To Weld)

1. Compute Exam Volume
(height $x$ width $x$ length $\rangle=\mathrm{Vt} 1$
2. Compute Vol. Not Covered Upstream
$=A$
3. Compute Upstream Limitation Percentage
$(\mathrm{A} / \mathrm{V} t 1) \times 100=\mathrm{Z} 1$
4. Compute Vol. Not Covered Downstream
$=\mathrm{B}$
5. Compute Downstream Limitation Percentage
$(\mathrm{B} / \mathrm{Vt} 1) \times 100=\mathbf{Z 2}$

B. Circumferential Exams (Indications Perpendicular To Weld)
6. Compute Exam Volume
(height x width x length $)=\mathrm{Vt} 2$
7. Compute Vol. Not Covered CW
$=C$
8. Compute CW Limitation Percentage
$(C / V t 2) \times 100=Z 3$
9. Compute Val. Not Covered CCW
$=D$
10. Compute CCW Limitation Percentage
$(\mathrm{D} / \mathrm{Vt} 2) \times 100=\mathrm{Z4}$

C. Total Coverage
11. Compute Total Limitation Percentage
$(Z 1+Z 2+Z 3+Z 4) / 4=L$


REMARKS: * THIS $1585.71 \%$ OF TUE SURFACE AREA NECESSARY TO RELIEVE $100 \%$ OETHE REQUIRED VOLUME (CALCULATED ON A WORST CASE BESTS)

| BUILDING: <br> OUTER PEN | LOCATION: <br> OUTER PEN | ELEVATIONS: <br> 108 |
| :---: | :---: | :---: | :---: |
| ATTENTION: ANY REVISION TO THIS DRAWING |  |  |
|  |  |  |
| 1 |  | SHALL BE MADE ONLY BY CAED |
| REVISED PER ORDER No. 80038023. |  |  |
| REV. | DATE | DESCRIPTION |

FOR ENLARGED DETAIL
OF NO. 24 MANIFOLD
SEE FIG. B-26.

LV $1=$ COMMON INFORMATION



## REQUEST FOR ADDITIONAL INFORMATION REQUEST FOR RELIEF REGARDING EXAMINATION COVERAGE SECOND TEN-YEAR IN-SERVICE INSPECTION INTERVAL SALEM NUCLEAR GENERATING STATION, UNIT NO. 2 DOCKET NO. 50-311

QUESTION 2.2(a) For certain component attachments and support welds, Information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by licensee identification numbers listed below.

| Summary \# | 381070 |  |
| :---: | :---: | :---: |
| Component I.D. | 34-MS-2241-242-PL |  |
| Description | PIPELUG |  |
|  |  | Comments |
| 1 | Weld X-Section | N/A |
| 2 | Material | Carbon Steel |
| 3 | Thickness / weld Crown | N/A |
| 4 | Obstruction | PERMANENT BEAM |
| 5 | Exam Area Highlighted on Drawing | Yes $\mathbf{X}$ No |
| 6 | Transducer ray exit point | N/A |

Comments
MT exam was conducted on this component. The MT exam was limited to $71 \%$ because of a permanently installed beam that obstructed access to lug \#2. No exam could performed from 11-1/2" to 18-1/8" due to the beam's proximity the total weld length is 23 ". a complete MT exam was performed on lug \#1. A system pressure test was also completed with no inaccessible indications observed.

## No Further Information Avallable

$\qquad$


LV $1=$ COMMON INFORMATION
LV $2=$ WELD INFORMATION
LV $3=$ HANGER INFORMATION

SECOND INTERVAL, FIRST PERIOD, SECOND OUTAGE (94RF)




## REQUEST FOR ADDITIONAL INFORMATION REQUEST FOR RELIEF REGARDING EXAMINATION COVERAGE SECOND TEN-YEAR IN-SERVICE INSPECTION INTERVAL SALEM NUCLEAR GENERATING STATION, UNIT NO. 2 DOCKET NO. 50-311

QUESTION $\quad 2.1$ (c) For certain piping welds, Information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by licensee identification numbers listed below.


Comments
UT exam was performed of this component using 45 degree shear wave transducer. The ultrasonic examination was limited to $73 \%$ of the code required coverage being limited between $81 / 2^{\prime \prime}$ to $141 / 2^{\prime \prime}$ and $20 "$ to $31 / 2^{\prime \prime}$ due to the OD configuration of the tee's blend radius. UT scans were performed on and across the weld in both directions No unacceptable indications were observed. A liquid penetrant examination and system pressure test was also completed with no recordable indications observed.

$L V 1=$ COMMON INFORMATION
$L V 2=$ WELD INFORMATION
LV $3=$ HANGER INFORMATION

Supplemental Drawing

| Summary \# | 385510 |
| :--- | :--- |
| Description | Tee to Pipe |

Component I.D.
6-MS-2211-13
Page of

Comments
The ultrasonic examination was limited to $73 \%$ of the code required coverage being limited between $81 / 2^{\prime \prime}$ to $141 / 2^{\prime \prime}$ and $20^{\prime \prime}$ to $31 / 2^{\prime \prime}$ due to the OD configuration of the tee's blend radius

Sketch
TEE
P. PE


DOWNSTRAM SCANLIMITED BY TEE CCIFFOUAGGA




SALEM LIJT 2. 17.6399

RESIDUAL HEAT REMOUAL
$1 L-R H-2212-1$
VICTOR MORTON TII. 9 NOV 94
For limitamons only.
501800


## REQUEST FOR ADDITIONAL INFORMATION REQUEST FOR RELIEF REGARDING EXAMINATION COVERAGE SECOND TEN-YEAR IN-SERVICE INSPECTION INTERVAL SALEM NUCLEAR GENERATING STATION, UNIT NO. 2

QUESTION $\quad 2.1$ (c) For certain piping welds, Information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by licensee identification numbers listed below.

Summary \# 501800

Component I.D. 14-RH-2212-1

Description Valve 2RH2 to Pipe

| 1 | Weld X-Section |
| :---: | :---: |
| 2 | Material |
| 3 | Thickness / weld Crown |
| 4 | Obstruction |

5 Exam Area Highlighted on Drawing
6 Transducer ray exit point

| Comments |  |  |
| :---: | :---: | :---: |
| See Attached |  |  |
| Stainless Steel |  |  |
| Thickness 1.24" / weld Crown 1.125" |  |  |
| Valve OD Contour |  |  |
| Yes $\mathrm{X}_{\mathbf{X}} \mathbf{N} \mathbf{N O} \mathbf{1}$. |  |  |
| See Attached |  |  |

## Comments

UT exam was performed of this component using 45 degree shear wave transducer. The ultrasonic examination was limited to $87 \%$ of the code required coverage being limited due to upstream side valve OD configuration that restricted scanning. UT scans were performed on and across the weld in both directions No unacceptable indications were observed. A liquid penetrant examination and system pressure test was also completed with no recordable indications observed.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Page of


Supplemental Drawing
Summary \#
501800
Component I.D.


Comments
The ultrasonic examination was limited to $87 \%$ of the code required coverage being limited due to upstream side valve OD configuration that restricted scanning.

Sketch




SALEM UNIT 2 17-6399
REsidual HEAT REMOVAL
14-5J-2224-1
Victore Morton III 14 NoV 94
For Limitations only.
570010


REQUEST FOR ADDITIONAL INFORMATION

## REQUEST FOR RELIEF REGARDING EXAMINATION COVERAGE

SECOND TEN-YEAR IN-SERVICE INSPECTION INTERVAL
SALEM NUCLEAR GENERATING STATION, UNIT NO. 2
DOCKET NO. 50-311
QUESTION 2.1 (c) For certain piping welds, Information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by licensee identification numbers listed below.

Summary \# 570010
Component I.D. 14-RH-2224-1

Description Valve 22SJ44 to Elbow

| 1 | Weld X-Section |
| :---: | :---: |
| 2 | Material |
| 3 | Thickness / weld Crown |
| 4 | Obstruction |
| 5 | Exam Area Highlighted o |

6 Transducer ray exit point

| Comments |
| :---: |
| See Attached |
| Stainless Steel |
| Thickness .52" / weld Crown .600" |
| Valve OD Contour |
|  |
| See Attached |

## Comments

UT exam was performed of this component using 45 degree shear wave transducer. The ultrasonic examination was limited to $75 \%$ of the code required coverage being limited due to upstream side valve $O D$ configuration that restricted scanning. UT scans were performed on and across the weld in both directions No unacceptable indications were observed. A liquid penetrant examination and system pressure test was also completed with no recordable indications observed.

SECOND INTERVAL, FIRST PERIOD, SECOND OUTAGE (94RF)




[^4]

# REQUEST FOR ADDITIONAL INFORMATION REQUEST FOR RELIEF REGARDING EXAMINATION COVERAGE SECOND TEN-YEAR IN-SERVICE INSPECTION INTERVAL SALEM NUCLEAR GENERATING STATION, UNIT NO. 2 DOCKET NO. 50-311 

QUESTION 2.2(a) For certain component attachments and support welds, information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by licensee identification numbers listed below.

| Summary \# | 573387 |
| :---: | :--- |
| Component I.D. | 12-RH-2252-38PS-3 |
| Description | PIPE SUPPORT |



Comments
PT exam was conducted of this component. The PT exam was limited to $71 \%$ because of a permanently installed component support that obstructed the exam. No exam could be performed from 7-1/2" to $14^{\prime \prime}$ and $30^{\prime \prime}$ to $36-1 / 2^{\prime \prime}$ due to the adjacent piping interfering with the exam. This component is located at containment penetration \# 16 and is in close proximity with other containment penetration piping. A system pressure test was also completed with no unacceptable indications observed.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


SECOND INTERVAL, FIRST PERIOD, SECOND OUTAGE (94RF)

| SUMMARY \#: 573387 EXAMINATION SUMMARY RECORD |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SYSTEM/COMPONENT: LINE/SUBASSEMBLY: IDENTIFICATION: |  | RESIDUAL HEAT REMOVAL SYSTEM$\begin{aligned} & 12-\mathrm{RH}-2252 \text { [PSE\&G \#12"-2RH1006] } \\ & 12-\mathrm{RH}-2252-38 \mathrm{PS}-3 \end{aligned}$ |  |  | PIPE SUPPORT <br> RELIEF REQUEST \#: RR-C1 |  |  |  |  |  |
| LTP INSTRUCTIONS: LIMITATION: PT EXAM IS LIMITED TO 71\% CODE COVERAGE, DUE TO THE PROXIMITY OF <br>  |  |  |  |  |  |  |  |  |  |  |
|  |  | RESULTS <br> RILEE <br> FDE <br> EXAM | EXAM RECORD | leal $\begin{aligned} & \text { CALIBRATION } \\ & \text { RECORD }\end{aligned}$ |  |  | O <br> O <br> T <br> H |  |  |  |
| PT | VS2SSISZZ0075Q | PT | 110134 |  |  | - |  | - |  |  |
|  |  |  |  |  | Date: 11/17/94 |  |  |  |  |  |


| 隼湤） 5 | 573387 |  | SwRI | LIOUID | ID PENE | TRAN | NT EXA | AMIN | NATI | ON RE | CORD |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Proasct ${ }^{\text {No：}}$ | 17－6399 |  | MiE：$S$ | $\begin{array}{r} \text { Salem Gen } \\ \text { Unit } 2 \end{array}$ | erating Statiou |  | $\begin{array}{r} \text { DATE: DAR } \\ 14 \sim \end{array}$ | $\begin{aligned} & \text { MoNith } \\ & \text { lo } \end{aligned}$ | $\begin{aligned} & -\mathrm{rERII} \\ & 94 \end{aligned}$ | $w_{0}$ LOCATI LINE DI | $\begin{aligned} & \text { WI FUSION } \\ & \text { PE SIDE } \end{aligned}$ | sheit | $1$ | 34 |
| ExMMANATION | mea ISYST／COMP |  | LIME／S | stanssewat |  |  | （IDEENIFIICAITION） |  |  | $\mathrm{L}_{0}$ Locatio |  | WELD | TrPe：（－ | ow－ |
| RESioash | Hegr Rem | Quak |  | 12－8t－2 | 2252 |  | 38 P | －3 |  | TAC |  |  | PE Suppoe |  |
| ExAMINER |  |  |  | （ Procedure |  |  | SUFFACE TEM | ${ }^{\circ} \mathrm{F}$ | PEEETR | NT TEWP 7 | themanetier | Serin mion | Mmber |  |
| TT | CKSON |  | K |  | 2－ค |  | 76 |  |  | 78 | SWRT | 187 |  |  |
| EXAMMEER |  |  |  | arar |  |  | Straface fansh |  |  |  | welo lengril |  |  |  |
| B．Ro | BERDS |  | IT | lical |  | 口n／a | Grod | and |  |  | 45\％ |  |  |  |
| Pre clener |  |  | PEA | Enetrant |  |  | Rewover |  |  |  | DEVEOPER |  |  |  |
| BRAD | SPOTCH | CECR |  | NO | SpetcA | AECR | BRMO |  | eotc | HECK | SRNO |  | POT CHECK |  |
| TYPE | 5kC－S |  |  | We | －5KL－5P |  | Tree |  | KC＝ |  | PE |  | KO－NF |  |
| BATCH No | 9460．5 |  |  | －1at ${ }^{\text {do }}$ | 92K08 |  | Bich no |  | 4t－0 | 5 K | BAICH No |  | 9， 9018 |  |
| Cemenc |  |  |  | MEE APPIED |  |  |  |  |  |  | tme APPLIED |  |  |  |
| COWPLitied |  |  |  |  | 14.56 |  | cowreted |  |  |  |  |  | 1522 |  |
|  | 1448 |  |  | ne rewioved | 1508 |  |  |  | 151 |  | TME PEND |  | 15.34 |  |
| $\begin{aligned} & \text { MDICATION } \\ & : \text { No } \end{aligned}$ | 1 |  | $\cdots$ | $\begin{aligned} & \text { LOCATION } \\ & \text { UP ORDON } \\ & \text { STRAM } \\ & \hline \end{aligned}$ |  |  |  |  |  |  |  |  |  | TIAL |
|  | Recordab | LE | INDid | ATIONS |  |  | ＊VS | 2， 5 | 5－3 | 5．22 | －6075 Pr | co． |  | e |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  | HEVIE | WED 8 | ACCE | TED IMS | ection servic |  |  |  |
|  |  |  |  |  |  |  | NOTNEE | EfNa | Assoc | iation | mewedgadappa |  |  |  |
|  |  |  |  |  |  |  | 1 duat |  |  |  | W． |  |  |  |
|  |  |  |  |  |  |  |  |  | 级 | 樶 8 |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| EXAMMATION A | ven lmatition |  |  |  | XAM FROM 2 | $2=\pi / / 2$ | $\overline{T O L=14 A}$ | $\overline{N^{\prime} \delta}$ | $\overline{m /}$ | $0702$ | $281 / 2$ | BNK |  |  |
| REVIEWED BY： | Vie Ant | $\pm$ |  | SNI LEVEL | IIII | $\begin{aligned} & \text { DTEE } \\ & 15 \mathrm{NO} \end{aligned}$ | $\text { ov } 94$ |  | $\mathrm{NeO}$ | $\begin{aligned} & \text { sixit } \\ & v^{\prime} / A \end{aligned}$ |  | ACE | 1 |  |

SWRI FORM No．NDTR 17－II（REV．6／00）






FORM 3
(Page 1 of 4)

## VESSEL VOLUMETRIC EXAMINATION COVERAGE REPORT


1.0 CAICULATE REQUIRED EXAM VOLUME FOR STRAIGHT BEAM PLANAR FLAWS

2.0 CALCULATE REQUIRED EXAM VOLUME FOR STRAIGHT LAMINAR PLANAR FLAWS

3.0 CALCULATE REQUIRED PARALLEL EXAM VOLUME FOR $45^{\circ}$ AND $65^{\circ}$ Exam height $X$ Exam width $X \quad$ Exam length $=$ Exam Volume
$\qquad$
4.0 CALCULATE REQUIRED TRANSVERSE EXAM VOLUME FOR $45^{\circ}$ AND $65^{\circ}$

| Exam height | X | Exam width X | Exam length | $=$ | Exam Volume |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | X |  |  |  |  |

5.0 CALCULATE STRAIGHT BEAM PLANAR EXAM COVERAGE
5.1 LIMITED ABOVE/CW EXAM VOLUME

| Height of <br> obstructed volume |
| :--- | | Width of |
| :--- |
| obstructed area |$\quad$| Length of |
| :--- |
| obstructed area |$\quad$| Volume with NO |
| :--- |
| exam coverage |

5.2 LIMITED BELOW/CW EXAM VOLUME

| Height of <br> obstructed volumeWidth of <br> obstructed area |
| :--- |
| Total straight beam planar exam volume not examined $=$Length of <br> obstructed area$\quad$Volume with NO <br> exam coverage |

[^5]FORM 3
(Page 2 of 4)
VESSEL VOLUMETRIC EXAMINATION COVERAGE REPORT


Salem/Hope Creek Common
Page 8 of 10

Rev. 0

FORM 3
(Page 3 of 4)
VESSEL VOLUMETRIC EXAMMNATION COVERAGE REPORT


FORM 3
(Page 4 of 4)
VESSEL VOLUMETRIC EXAMINATION COVERAGE REPORT





FORM 3
(Page 1 of 4 )

## VESSEL VOLUAETRIC EXAVINATION COVERAGE REPORT


2.0 CALCLLATE REQUIRED EXAM VOLLME FOR STRAIGHT LAMINAR PLANAR FLAWS

| Exam height | $\chi$ | Exam width | X | Exam length | $=$ | olume |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | X |  | X |  | $=$ | N/ $/$ |

3.0 CALCLIATE REQUIRED PARALIEE EXAM VOLLAIE FOR $45^{\circ}$ AND $65^{\circ}$

4.0 CALCULATE REQUTRED TRANSVERSE EXAM VOLUME FOR $45^{\circ}$ AND $65^{\circ}$

Exam height $X$ Exam width $X \quad$ Exam length $=$ Exam Volume
_ $\mathrm{X} \quad \mathrm{X}=\ldots \quad \mathrm{M} / \mathrm{A}$

## S. 0 CALCULATE STRAIGHT BEAM PLANAR EXAM COVERAGE

5.1 LMITED ABOVEICW EXAM VOLUME

| Height of <br> obsinucted volume |
| :--- |
| $\times$ | | Width of |
| :--- |
| obstructed area |$\quad$| Length of |
| :--- |
| obstructed area |$\quad$| Volume aith No |
| :--- |
| exam coierage |

### 5.2 LIMITED BELOW/CW EXAM VOLUME

| Height of <br> obstructed volume |
| :--- |
| Width of <br> obstructed area | | Length of |
| :--- |
| obstructed area |$\quad$| Volume with NO |
| :--- |
| exam coverage |

FORM 3
(Page 2 of 4)
Sum.*011100
VESSEL VOLUMETRIC EXAMMATION COVERAGE REPORT
5.3 PERCENT VOLUME EXAMINED

6.0 CALCULATE STRAIGHT BEAM LAMINAR EXAM COVERAGE
6.1 LDMTED ABOVE/CW EXAM VOLUME
$\begin{array}{ll}\begin{array}{l}\text { Height of } \\ \text { obstructed volume }\end{array} & \begin{array}{l}\text { Width of } \\ \text { obstructed area }\end{array} \\ \text { Length of } \\ \text { obstructed area }\end{array}$
Volume with No exam coverage

6.2. LMITED BELOW/CW EXAM VOLUME

| Height of <br> obsinucted volume |
| :--- | | Width of |
| :--- |
| obstructed area |$\quad$| Length of |
| :--- |
| obstructed area |$\quad$| Volume with No |
| :--- |
| exam coverage |

Total straight beam laminar exam volume not examined $=$

6.3 PERCENT VOLUME EYAIINED

7.0 CALCILATE PARALLEI $15^{\circ}$ EXAM COVERAGE
7.1 LMITED ABOVE/CW EXAM VOLUME

| Height of <br> obstructed volume |
| :--- | | Width of |
| :--- |
| obstructed area |$\quad$| Length of |
| :--- |
| obstructed area |$\quad$| Above/CW exam |
| :--- |
| volume u fth NO |
| exam coverage |

7.2 LIMTED BELOW/CCW EXAM VOLUME


FORM 3
(Page 3 of 4)

## VESSEL VOLLMETRIC EXAVINATIO.N COVERAGE REPORT

7.3 PERCENT VOLUME EXAAIINED $53^{\circ}$ / $P$

8.0 CALCULATE PARALLEL $60^{\circ}$ EXAM COVERAGE
8.1 LIMITED ABOVEICW EXAM VOLLME

| Height of | Width of <br> obstructed volume <br> obstructed area | Length of <br> obstructed area |
| :--- | :--- | :--- |

> Above/CW exam volume with NO exam coverage
_ $X$ _ $X$ _ $\quad \mathrm{N} / \mathrm{N}^{2}$

### 8.2 LAITED BELOW/CCW EXAM VOLUME

$\begin{array}{ll}\text { Height of } & \begin{array}{l}\text { Width of } \\ \text { obsinucted volume } \\ \text { obstructed area }\end{array}\end{array} \begin{aligned} & \text { Length of } \\ & \text { obstructed area }\end{aligned}$ $\ldots \mathrm{X} \quad \mathrm{X} \quad \mathrm{X}=$

Total $60^{\circ}$ parallel exam volume not examined
$=N / A$

## 8:3 PERCENT VOLLME EXAIINED



### 9.0 C.ALCLLATE TRANSVERSE $45^{\circ}$ EXAM COVERAGE

9.1 LIITED CLOCKWISE EXAM VOLUME

Height of
obsinucted volume $\begin{aligned} & \text { Width of } \\ & \text { obstructed area }\end{aligned}$


Length of obstructed area


CW exam
volume with No exam coverage

9.2 LIMITED COUNTERCLOCKWISE EXAM VOLUME


CONTAINMENT DRAIN
VALVE SUMP ROOM

| PSEG Nuclear, LLCSALEM NUCLEAR GENERATING STATIONUNIT 2 - WELD / HANGER IDENTIICATION FIGUR | FIGURE: B-65 REVISION: |
| :---: | :---: |
|  | SYSTEM: SAFETY INJECTION |
|  | -INE: 14-RH-2224, 14-RH-2214 |
|  | T |

(0) 2000 PSEGG Nidecr, LLC. ARRightis Reserved.

$$
\begin{aligned}
& \text { LV } 1=\text { COMMON INFORMATION } \\
& \operatorname{LV} 2=\text { WELD INFORMATION } \\
& \operatorname{LV} 3=H A N G E R ~ I N F O R M A T I O N ~
\end{aligned}
$$




## VOLUMETRIC EXAMINATIONS

| A. Axial Exams (Indications Parallel To Weld) |  |  |
| :---: | :---: | :---: |
| 1. Compute Exam Volume (height x | x length) $=\mathrm{Vt} 1$ | 18.46 |
| 2. Compute Vol. Not Covered Upstream | = A | 5.98 |
| 3. Compute Upstream Limitation Percentage | $(A / V+1) \times 100=21$ | 32.39 |
| 4. Compute Vol. Not Covered Downstream | $=\mathrm{B}$ | 5.98 |
| 5. Compute Downstream Limitation Percentage | $(\mathrm{B} / \mathrm{Vt} 1) \times 100=\mathbf{Z}$ | 32.39 |

B. Circumferential Exams (Indications Perpendicular To Weld)

| 1. Compute Exam Volume | (height x width x length) $=\mathrm{V}$ t2 | 22.47 |
| :---: | :---: | :---: |
| 2. Compute Vol. Not Covered CW | $=\mathrm{C}$ | 7.28 |
| 3. Compute CW Limitation Percentage | (C/Vt2) $\times 100=23$ | 32.39 |
| 4. Compute Vol. Not Covered CCW | $=\mathrm{D}$ | 7.28 |
| 5. Compute CCW Limitation Percentage | (D/Vt2) $\times 100=24$ | 32.39 |

## C. Total Coverage

1. Compute Total Limitation Percentage
$(Z 1+Z 2+Z 3+Z 4) / 4=L$
2. Compute Total Coverage
100 - L

| 32.39 |
| :--- |
| $67.61 \%$ |

REMARKS: $\qquad$


# REQUEST FOR ADDITIONAL INFORMATION <br> REQUEST FOR RELIEF REGARDING EXAMINATION COVERAGE SECOND TEN-YEAR IN-SERVICE INSPECTION INTERVAL SALEM NUCLEAR GENERATING STATION, UNIT NO. 2 

QUESTION 2.1 (c) For certain piping welds, Information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by licensee identification numbers listed below.

Summary \# 573380

Component I.D. 12-RH-2252-38

Description Pipe to Pipe


5 Exam Area Highlighted on Drawing
6 Transducer ray exit point

Comments

| See Attached |
| :---: |
| Stainless Steel |

Thickness .44" / Weld Crown 1 3/4"
Weided Plug / Proximity to adjacent weld


See Attached

Comments
UT exam was performed of this component using 45 degree shear wave transducer. The ultrasonic examination was limited to $67 \%$ of the code required coverage being limited due to welded plug and close proximity of adjacent piping that impedes access to scan the examination area to achieve full coverage. No UT exam could be performed from $71 / 2^{\prime \prime}$ to $14^{\prime \prime}$ and $30^{\prime \prime}$ to $361 / 2^{\prime \prime}$ due to the proximity of adjacent piping. In addition the downstream side scan was limited $13 / 8^{\prime \prime} \mathrm{W}$ from $3811 / 16^{\prime \prime}$ to $401 / 8^{\prime \prime}$ due to a welded plug. No unacceptable indications were observed. A liquid penetrant examination and system pressure test was also completed with no recordable indications observed.

Summary \# 573380
Description

Component I.D. Pipe to Pipe

12-RH-2252-38
Page of

The ultrasonic examination was limited to $67 \%$ of the code required coverage being limited due to welded plug and close
Comments proximity of adjacent piping that impedes access to scan

Sketch



## PSE\&G LIMITATION REPORT



## SURFACE EXAMINATIONS

Area To Be Examined (length $x$ Width $=A$ )
Area Of Limitation (Length $x$ Width $=$ Al)
Percentage Of Coverage

| $A$ | $=28.00$ |
| ---: | :--- |
| $A I$ | $=8.00$ |
| $(A-A I A)$ | $=71.43$ |

## VOLUMETRIC EXAMINATIONS

## A. Axial Exams (Indications Parallel To Weld)

1. Compute Exam Volume
(height x width x length $)=\mathrm{Vt} 1$
2. Compute Vol. Not Covered Upstream
$=A$
3. Compute Upstream Limitation Percentage
(A/Vt1) $\times 100=\mathrm{Z} 1$
4. Compute Vol. Not Covered Downstream
$=B$
5. Compute Downstream Limitation Percentage
(B/Vt1) $\times 100=\mathbf{Z 2}$

B. Circumferential Exams (Indications Perpendicular To Weld)
6. Compute Exam Volume (height $x$ width $\times$ length) $=$ Vt 2
7. Compute Val. Not Covered CW
$=C$
8. Compute CW Limitation Percentage
(C/Vt2) $\times 100=23$
9. Compute Vol. Not Covered CCW
$=\mathrm{D}$
10. Compute CCW Limitation Percentage
(D $/ \mathrm{Vt} 2) \times 100=\mathrm{Z4}$
$\qquad$

C. Total Coverage
11. Compute Total Limitation Percentage
12. Compute Total Coverage
$(Z 1+Z 2+Z 3+Z 4) / 4=L$
$100-L$


REMARKS: $\qquad$

REQUEST FOR ADDITIONAL INFORMATION REQUEST FOR RELIEF REGARDING EXAMINATION COVERAGE SECOND TEN-YEAR IN-SERVICE INSPECTION INTERVAL SALEM NUCLEAR GENERATING STATION, UNIT NO. 2 DOCKET NO. 50-311

QUESTION 2.2(a) For certain component attachments and support welds, Information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by licensee identification numbers listed below.

Summary \# 331095

Component I.D. 14-BF-2211-11PL11\& 11PL12

Description TRUNION

| 1 | Weld X-Section |
| :---: | :---: |
| 2 | Material |

3 Thickness / weld Crown

| 4 | Obstruction |
| :--- | :--- |


| 5 | Exam Area Highlighted on Drawing |
| :---: | :---: |

6 Transducer ray exit point

Comments
MT- EXAM WAS CONDUCTED. THE EXAM COMPLETED WAS LIMITED TO 80\% CODE REQUIRED COVERAGE BEING OBTAINED DUE TO 1-1/2" OF THE TOTAL 7-1/2"LONG WELD NOT BEING ABLE TO BE EXAMINED DUE TO AN ADJACENT PIPE SUPPORT INTERFERENCE (11PS). NO UNACCEPTABLE INDICATIONS WERE OBSERVED. A SYSTEM PRESSURE TEST WAS ALSO COMPLETED WITH NO RECORDABLE INDICATIONS OBSERVED.


LV $1=$ COMMON $\operatorname{INFORMATION}$
LV 2 = WELD INFORMATION
LV 3 = HANGER INFORMATION

FORM 3
(Page 4 of 4)

## VESSEL VOLUMETRIC EXAMINATION COVERAGE REPORT

$\frac{\text { Sum. Ollloo }}{9.3 \text { PERCENT VOLUME EXAMINED }}$

10.0 CALCULATE TRANSVERSE $60^{\circ}$ EXAM COVERAGE
10.1 LDITED CLOCKWTSE EXAM VOLUME
10.2 LIITED COUNTERCLOCKWISE EXAM VOLUME

| Height of <br> obstructed volume | Width of <br> obstructed area | Length of <br> obstructed area |
| :--- | :--- | :--- | | CCW exam |
| :--- |
| volume with No |
| exam coverage |

Total $60^{\circ}$ transverse exam volume not examined


### 10.3 PERCENT VOLLME EXAMTNED

| Percent Volume <br> Examined | $=100 \quad-\quad$Total $60^{\circ}$ trans vol <br> wiNo coverage |
| ---: | :--- |
|  | $=100 \quad-\quad\left\{\begin{array}{l}\text { \{ }\end{array}\right]$ |

$$
=100
$$

1

11.0 CALCULATE PERCENT OF TOTAL VOLUME EXAMDED

Examination $\quad$ Sum of Exam Volumes \%
Coverage $=$ (step 5 thru 10) /No. of exams (6)
$=* 50$ $\%$

REMARKS:

$$
\text { 米 No ExAmfrom } 0^{\circ} \text { to } 18^{\circ} \text { due to raised ID Number }
$$ And manofactors stomp. Examination perframed from $180^{\circ}$ to $360^{\circ}$ only


cw/cew LIMITATI
$.49 \times 1.1 \times 8=4 ., 1$
Exam. VOLUME 121.85
$4.31 / / 21.85 \times 100=3.54$
$3.54 \%$ cimotrsion ew/c\&e
LIMITATION UPSTEEAM
$.49 \times 1.95 \times 8=7.64$
EXPM. voLumE 96.98
$7.64 / 96.98 \times 100=7.87$
$7.87 \% \mathrm{LMITATION}$ DOWNSTRE゙AM


O IPSEG
INSPECTION SERVICES

zus $\frac{\pi}{1-13-96}$

FORM 2
(Page 1 of 1)
VOLUMETRIC PIPING EXAMINATION COVERAGE REPORT

1.0 AXIAL EXAMS (INDICATIONS PARALLEL TO WELD)

1.3 Compute Upstream Limitation Percentage
$(A / \mathrm{Vtl}) \times 100=\mathrm{Zl}$
7.87
1.4 Compute Vol. Not Covered Downstream $\rightarrow$ B $\square$
1.5 Compute Downstream Limitation Percentage
(B/Vtl) $\times 100=\mathbf{Z 2}$ $\qquad$
2.0 CIRCUMFERENIIAL EXAMS (INDICATIONS PERPENDICULAR TO WELD)

> 2.1 Compute Exam Volume $\quad$| -49 |
| :---: |
| (height $x$ width $\times$ length $)$ |
| 2.451 .5 |

2.2 Compute Vol. Not Covered CW $* * *=C$ 4.31
2.3 Compute CW Limitation Percentage ( $\mathcal{N} / \mathrm{Vt} 2$ ) $\times 100=\mathrm{Z} 3$ 3.54
2.4 Compute Vol. Not Covered CW * * * $\quad$ (
2.5 Compute CCW Limitation Percentage $\underset{(B)}{D} / \mathrm{Vt} 2) \times 100=24$ 4.31
$\qquad$
3.0 TOTAL COVERAGE
3.1 Compute Total Limitation Percentage
$(Z 1+Z 2+Z 3+Z 4) / 4=L$
$\frac{14.95}{85.05 \%}$
3.2 Compute Total Coverage 100 - L

## LIMITATION EXPLANATION / REMARKS:

* caccuntron on protlprerlle

FORM 1
(Page 1 of 1)
SURFACE EXAMINATION COVERAGE REPORT


[^6]
## REQUEST FOR ADDITIONAL INFORMATION REQUEST FOR RELIEF REGARDING EXAMINATION COVERAGE SECOND TEN-YEAR IN-SERVICE INSPECTION INTERVAL SALEM NUCLEAR GENERATING STATION, UNIT NO. 2 DOCKET NO. 50-311

QUESTION 2.2(a) For certain component attachments and support welds, Information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by licensee identification numbers listed below.

Summary \# 381120
Component I.D. 32-MS-2231-1PS-2
Description SUPPORT

|  | Weld X-Section | Comments |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 1 |  | N/A |  |  |
| 2 | Material | Carbon Steel |  |  |
| 3 | Thickness / weid Crown | N/A |  |  |
| 4 | Obstruction | LUG CONFIGURATION |  |  |
| 5 | Exam Area Highlighted on Drawing | Yes | $\mathbf{X}$ X ${ }^{\text {No }}$ | 1 |
| 6 | Transducer ray exit point | N/A |  |  |

## Comments

MT exam was conducted of this component. The MT exam was limited to $50 \%$ because of the configuration of the lug that precluded examination of the lug. in two directions. The MT was unable to be examined in two directions due to its configuration. there is no IWF support associated with this attachment. This component is located at a containment wall penetration and is limited due to inaccessibility to back portion of lugs. a system pressure test was also completed with no unacceptable indications observed. Component selected for MEB 3-1 Augmented exam requirements.


LV $1=$ COMMON INFORMATION
LV $2=$ WELD INFORMATION
LV $3=$ HANGER INFORMATION

SECOND INTERVAL, SECOND PERIOD, FIRST OUTAGE

| SUMMARY \#: 381120 |  | 96RF EXAMINATION SUMMARY RECORD EM NUCLEAR GENERATING STATION, UNI |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SYSTEM/COMPONENT: MAIN STEAM SYSTEM /PIPE SUPPORT R-210  <br> LINE/SUBASSEMBLY: $32-M S-2231$ [PSE\&G \#32"-2MS1011] RELIEF REQUEST: <br> IDENTIFICATION: $32-M S-2231-1 P S-2 ~$  |  |  |  |  |  |  |  |  |  |
| $\begin{array}{ll}\text { LTf instructions: limitation: examined (mT) } 50 \% \text { of the code required surface, due to the } \\ & \text { configuration of the lug. a-E iAw meb 3-1. no relief request required (a-e). }\end{array}$ |  |  |  |  |  |  |  |  |  |
| NDE METHOD IN LTP | PROCEDURE | RESULTS FILE <br> NDE <br> EXAMS | EXAM RECORD | CALIBRATION RECORD | N  <br> O  <br> R E <br> O  | G <br> E <br>  | O | Resolution RECORD | REMARRS |
| MT | SHRAISZz01172 | MT | 090038 | - | x | - |  | , |  |
|  |  |  |  |  |  |  |  |  |  |





zeat 381155
Q

FORM 2
(Page 1 of 1)

## VOLUMETRIC PIPING EXAMINATION COVERAGE REPORT





## PSTREAM LIMIT AKEA (ORANGE)

RHER THANTH. 1"LENGHT.
$\sqrt{1 a}$
(1) $.3 \times .54=.165 q^{\prime \prime} \times 80,125^{\prime \prime}=12,82 \mathrm{cu}^{\prime}$
(2)(.54x.85) $\div 2=, 235 q^{\prime \prime} \times 80,125^{\prime \prime}=18,43 \mathrm{ci}^{\circ}$
12.82
$\frac{18.43}{1.25 u i}$$\sum_{-103.75=30.17 \%}^{\text {TOTLL VOL IN dRANGE ALEA }}$.

ㄴ, $238 \times 80,125 \times 18.43 \mathrm{ce}$
$20.85 \% \quad 21.63^{\prime \prime}$
$\frac{30.12 \%}{0.5 \%} \frac{+31.25}{52.88 \%} \div 103.75=50.97 \%$
$\xrightarrow{\text { Frow. }}$


FORM 2
(Page I of 1)
VOLUMETRIC PIPING EXAMINATION COVERAGE REPORT


[^7]FORM 1
(Page 1 of 1)
SURFACE EXAMINATION COVERAGE REPORT


[^8]
## REQUEST FOR ADDITIONAL INFORMATION REQUEST FOR RELIEF REGARDING EXAMINATION COVERAGE SECOND TEN-YEAR IN-SERVICE INSPECTION INTERVAL SALEM NUCLEAR GENERATING STATION, UNIT NO. 2 DOCKET NO. 50-311

QUESTION 2.2(a) For certain component attachments and support welds, Information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by licensee identification numbers listed below.


Comments
MT exam was conducted of this component. The MT exam was limited to $50 \%$ because configuration of the lug that precluded examination of the lug in two directions. The MT exam was unable to be examined from two directions due to its configuration. There was no IWF support associated with this weld attachment. a system pressure test was also completed with no unacceptable indications observed.

## Supplemental Drawing

| Summary \# | 381220 | Component I.D. | 32-MS-2221-1PS-2 <br> Description <br> Pipe Support |
| :--- | :--- | :--- | :--- |
| Page | of |  |  |

Comments
The MT exam. Was limited to $50 \%$ because of a permanently installed pipe collar in the area that prevented sufficient access to examine the weld in two directions

Sketch



- SECOND INTERVAL, SECOND PERIOD, FIRST OUTAGE



PAD RUS $1 / 2$ WGDt E WRDH
勺.8 $8.53, \quad 11=8.9 \mathrm{ci}$


$10: 25-71=80.25$ LENGHT of WEL N WT EFFGCTEDBY PADS
1/2 DUER WEDGE
$0.35 \times .54 \times 80.25=15.17 \mathrm{ci}$
BOY HIOHT O $\triangle$ Y $\angle N G K T$ DFWELD MINUS PFD AREN
$8.90<i$
$+15.17 \mathrm{Cl}$
24.07 ce TOTAL LIMITATION ON CW, COW


$$
\begin{aligned}
& \text { (1.46×2.4 }=1: 1057 \\
& \text { (B) }(1.03 \times .07) \div 2=.0 .2 \\
& \text { (C) }(.25 \times .11) \div 2=101 \\
& A+B+C=1.1 .3 \times 101.25=114.41 \mathrm{~L} \\
& 1 \\
& \text { TOMLL LENS HT } \\
& \text { OF WELD }
\end{aligned}
$$

Paser INSPECTION SERVICES Reviewed and Appopesd (2l) $120 / 96$


$$
\text { 32-M5-2z21-3 Summary } 1-13-96 \text { 381260 }
$$

$$
\text { Zuns } \frac{\pi}{-15-96}
$$

$\square$

FORM 2
(Page 1 of 1 )

## VOLUMETRIC PIPING EXAMINATION COVERAGE REPORT



FORM 1
(Page 1 of 1)

## SURFACE EXAMINATION COVERAGE REPORT



Rev. 0

## REQUEST FOR ADDITIONAL INFORMATION <br> REQUEST FOR RELIEF REGARDING EXAMINATION COVERAGE SECOND TEN-YEAR IN-SERVICE INSPECTION INTERVAL SALEM NUCLEAR GENERATING STATION, UNIT NO. 2

DOCKET NO. 50-311
QUESTION 2.2(a) For certain component attachments and support welds, Information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the foliowing components, as identified by licensee identification numbers listed below.

Summary\# 381320
Component I.D. 32-MS-2211-1PS-2

Description SUPPORT


| Comments |
| :---: |
| N/A |
| Carbon Steel |
| N/A |
| LUG CONFIGURATION |
|  |
| N/A |

## Comments

MT exam was conducted of this component. The MT exam was limited to $50 \%$ because of the configuration of the lug that precluded examination of the lug in two directions. The MT was unable to be examined in two directions due to its configuration. there is no IWF support associated with this attachment. This component is located at a containment wall penetration and is limited due to inaccessibility to back portion of lugs. a system pressure test was also completed with no unacceptable indications observed. Component selected for MEB 3-1 Augmented exam requirements.

sECOND INTERVAL, SECOND PERIOD, FIRST OUTAGE



| \#\#\# | \#\#\# | \#\#\# | \#\#\# | \#\#\# | \#\#\# | \#\#\#\#\#\# | \#\#\# \#\#\# |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \#\# | \# | \# | \# | \# | \# | \# \# | \#\# \#\# |
| \# \# | \# | \# | \# | \# | \# | \# \# | \#\# \#\# |
| \# \# | \# | \# | \# | \# \# | \# \# | \#\#\# | \# \# \# |
| \# | \# \# | \# | \# | \# | \# \# | \# \# | \# \# \# |
| \# | \# \# | \# | \# |  | \# \# | \# | \# \# |
| \# | \#\# | \# | \# |  | \# \# | \# | \# |
| \#\#\# | \#\# |  |  |  | \# | \#\#\# | \#\#\# \#\#\# |

## USERID: NUWFM

DOCUMENT NUMBER: 74

PRINTED ON 6/29/2007 12:18:46 PM

| \#\#\# | \#\#\# | \#\#\# | \#\#\# | \#\#\# \#\#\# |  | \#\#\# | \#\#\#\#\# |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \#\# | \# | \# | \# | \# \# | \# | \# | \# \# |
| \# \# | \# | \# | \# | \# \# | \# |  | \# \# |
| \# \# | \# | \# | \# | \#\#\#\#\# | \# |  | \#\#\#\# |
| \# \# | \# \# | \# | \# | \# \# | \# | \#\#\# | \# \# |
| \# \# | \# \# | \# | \# | \# \# | \# | \# | \# \# |
| \# | \#\# | \# | \# | \# \# | \# | \# | \# \# |
| \#\#\# | \#\# |  |  | \#\#\# \#\#\# |  | \# | \#\#\#\#\# |

## USERID: NUHGB

## DOCUMENT NUMBER: 76

PRINTED ON 6/29/2007 12:18:49 PM

## PUBLIC SERVICE ELECTRIC AND GAS COMPANY

COMPUTATION SHEET


PUBLIC SERVICE ELECTRIC AND GAS COMPANY
REFER TO
SUBjECT 361350
FILE $\qquad$
ETMMATE $\qquad$

COMPUTATION SHEET

32-M5-2211-2PL - 1 Thru 3


FORM 1
(Page 1 of 1)

## SURFACE EXAMINATION COVERAGE REPORT



## REQUEST FOR ADDITIONAL INFORMATION REQUEST FOR RELIEF REGARDING EXAMINATION COVERAGE SECOND TEN-YEAR IN-SERVICE INSPECTION INTERVAL SALEM NUCLEAR GENERATING STATION, UNIT NO. 2 DOCKET NO. 50-311

QUESTION 2.2(a) For certain component attachments and support welds, Information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by licensee identification numbers listed below.

## Summary \# 381350

Component I.D. 32-MS-2211-2PL-1 thru 3

Description PIPE LUGS


Comments

MT exam was conducted of this component. The MT exam was limited to $84 \%$ because configuration of the lug that precluded examination of the lug in two directions. The MT exam was unable to be examined from two directions due to its configuration. There was no IWF support associated with this weld attachment. a system pressure test was also completed with no unacceptable indications observed.
$\qquad$


LV $1=$ COMMON INFORMATION
LV $2=$ WELD INFORMATION
LV $3=$ HANGER INFORMATION

FORM 2
(Page 1 of 1)

## VOLUMETRIC PIPING EXAMINATION COVERAGE REPORT




LIMITATIONS
NO SAAN IN THE DOWN STREAM PIRECTION FROM 62.5" To 80.5" (18") $18 \times 312=5.58 \times y^{\prime \prime}$
NO SAN IN THE UPSTREAM MO $3-13.97$

from the up stream scan THE UPSAREAM SCAN TOIML = $.460^{\prime \prime} \times 101.5^{n}=48.25^{\circ}{ }^{\prime \prime}$
NO SCAN IN THE UPSTREAM DIRECTION 8.992"


TOTAL $\operatorname{mos} 3.13 .97$
TOTAL LIMITAIIONS $=23.45 \mathrm{sq}{ }^{\frac{m \cdot 3 \cdot 13.9}{\prime}} 47.16 \quad 18 \%$.

- 312 sq" of COVERAGE IS OBTAINEO FROM THE DOWNSTREAM SCAN TOTAL: $.312 \times 101.5^{\prime \prime}=31.68=99^{\prime \prime}$

EXAM VOLUTME $=1.28 \mathrm{sq"}$
WELD LENGTH $=101.5^{\prime \prime}$
TOTAL WELD VOLUME $=129.92 \mathrm{sq}$ " NUMBER OF DIRECTICNS SCANNED $=2$

$$
\begin{gathered}
129.92 \mathrm{sq}{ }^{\prime \prime} \\
259.84 \mathrm{sq}
\end{gathered}
$$

Z5" ON UP STEEAN CANNU" DE $\triangle C A N R E I S$ DUE TO PIPL : NAPRATIDNS, THE REST OF THEUP STREACM WELD IS NMITED AS SHOWN IN THE DRANGE AREA PLUS THE OREEN AKEA

UP STREAM "Y" $100 \%$ LIMITATION SEEVL, BLOC E COAGEE l.0S comes rear
$1.03 \times 24^{n}=24.72 \div 103.77=23.82 \%$
$\frac{B \times H \backslash(L)}{\text { ORANGE OREEN LENGHT }}$
$100,75-24^{\prime \prime}=76.75^{\prime \prime}$ (LENGGTT UF WELD AFFECTED)

| ORANGEIGREEN AKEA $=32.2 a^{\circ}$ | $23.82 \%$ | 24,72" |
| :---: | :---: | :---: |
|  | +31.03\% | + $32.20{ }^{\prime \prime}$ |
| $(, 352.03): 2=.0105^{(3)}$ | $54.55 \%$ | 56.92 |
| $(.31 \times .6) \div 2=.15 \leq 4^{4}$ |  |  |
| .429 |  | $54.85 \%$ |

$.423 .+76.75^{\circ \prime}=32.2 c i$
$32.2 c^{i}+103,77 i^{i}=31,0.3 \%$

$$
\begin{aligned}
& \text { VOL. }
\end{aligned}
$$


$129,97 \div 43.52 \mathrm{ci}+86.45$ in AbT COUREEAPS

$$
86.45 \div 129.97<66.52 \%
$$

FORM 2
(Page 1 of 1)
VOLUMETRIC PIPLNG EXAMINATION COVERAGE REPORT



FLANGE


Th = EXAM VOLUME COVERED
$\square$ = EXAM. VOLUME NOT COVERED
(1) LIMITATION TO $8-R H-2216-4 R I$ DUE TO FLANGE TO VALVE CONFIGURATION. sum 503340
(2) UNABLE TO TAKE PROFILE OF WELD DUE TO LIMITATIONS.


FORM 2
(Page 1 of 1)

## VOLUMETRIC PIPING EXAMINATION COVERAGE REPORT



[^9]

## ut coverage plot


IIIL not examined
Examined
WELO: $4 P R-1200-7$
FICUREA: B9.11.003
Summary: 0S4400
Nominal P.pe oD: 4.0"
Beam Direction: Axial
$44^{\circ}$ RL WAVE ..... $\$$

UT COVERage plot

Pipe

not examined

Examine o
WED: 4PR-1200-7
FIGURE: B9.11.003
Summary : OS 4400
Nominal 1 Pee oD: 4.0"
Beam Direction: Cire
$43^{\circ}$ SHEAR WAVE


## VOLUMETRIC PIPING EXAMINATIONS

### 1.0 AXIAL ULTRASONIC EXAMINATIONS (Indications Parallel to the Weld)

1.1 Compute Examination Volume (Height $x$ Width $x$ Length) $=V t_{1} \quad 0.177^{\prime \prime} \times 1.4^{\prime \prime} \times 11.9^{\prime \prime}=2.95 \mathrm{cu}$. in.
1.2 Compute Volume Not Examined on Upstream Side of Weld $=A$
2.95 in. ${ }^{3}$ (Beam Direction-US)
1.3 Compute Upstream Limitation Percentage $\left(A+\mathrm{Vt}_{1}\right) \times 100=\mathrm{Z1}$

100 \% (Beam Direction-US)
1.4 Compute Volume Not Examined on Downstream Side of Weld $=B$
$0.177^{\prime \prime} \times 0.16^{\prime \prime} \times 11.9^{\prime \prime}=0.34$ in. $^{3}$
1.5 Compute Downstream Limitation Percentage $\left(B+\mathrm{Vt}_{1}\right) \times 100=\mathrm{Z} 2$
$\frac{0.34 \mathrm{in}^{3}+2.95 \mathrm{in} .^{3} \times 100=11.5 \%}{\text { (Beam Direction-DS) }}$
2.0 CIRCUMFERENTIAL ULTRASONIC EXAMINATIONS (Indications Perpendicular to the Weld)

2.2 Compute Volume Not Examined in the Clock Wise Direction $=C \quad 0.177^{n} \times 0.50^{n} \times 11.9^{n}=1.05$ in. $^{3}$
2.3 Compute Clock Wise Limitation Percentage $\left(C+V t_{2}\right) \times 100=Z 3 \quad 1.05 \mathrm{in}^{{ }^{3}}+4.00 \mathrm{in}^{3} \times 100=26.3 \%$
2.4 Compute Volume Not Examined in the Counter $C W$ Direction $=D \quad 0.177^{n} \times 0.50^{n} \times 11.9^{n}=1.05 \mathrm{in.}^{3}$
2.5 Compute Counter CW Limitation Percentage $\left(D+V t_{2}\right) \times 100=Z 4 \quad 1.05 \mathrm{in}^{3}+4.00 \mathrm{in}^{3} \times 100=26.3 \%$

### 3.0 TOTAL EXAMINATION COVERAGE OBTAINED

3.1 Compute Total Limitation Percentage (Z1 $+\mathbf{Z 2}+\mathbf{Z 3}+\mathbf{Z 4}) / 4=\mathbf{L}$
$41.0 \%$
3.2 Compute Total Coverage 100 - L $59.0 \%$

## LIMITATION EXPLANATIONIREMARKS

Limitation exists on the Tee side of the weld for the circumferential and axial examinations. See the
attached UT Coverage Plot. The 45 degree refracted longitudinal wave transducer was scanned over the
required volume from the pipe side of the weld only (one-sided examination), in order to achieve 88.5 percent coverage in the downstream axial direction. No volumetric ( $100 \%$ limitation) coverage was obtained from the upstream axial examination due to the Tee configuration. The exam volume was computed using actual OD pipe sizes and schedule wall thicknesses. The Length value is computed using the diameter at the inner one third of the pipe wall thickness.



## SH.RA-IS.ZZ-0145-1

(Page 1 of 1 )
SURFACE EXAMINATION COVERAGE REPORT


UT COVERAGE PLOT


WELD: 4-P5-1231-20
FIKURE No: B9.11.00S
Summary: 063000
Nominal OD: 4.0"
Beam Dicentan: AKIAL
$45^{\circ}$ RI WAVE (NOMINAL ANGLE) $\ddagger$ $45^{\circ}$ SHEAR WAVE (NOMINAL ANGIE)

UT COVERAGE PLOT

WIID not examines

WELD: 4-PS-1231-20
FIGURE NO: BY. 11.005
Summary: 063000
Nominal OD: 4.0"
Beam Dieecnon: CIRC
$45^{\circ}$ SHEAR WAVE (NOMINAL ANGLE)

FRAMATOME
VOLUMETRIC PIPING EXAMINATION COVERAGE REPORT

| CUSTOMER: | PSE\&G <br> SALEM UNIT-2, 10 RFO | SYSTEM: $\quad \begin{array}{ll}\text { RE } \\ & \text { PR }\end{array}$ | REACTOR COOLANT SYSTEM, PRESSURIZER SPRAY |
| :---: | :---: | :---: | :---: |
| SUMMARY NO: | : 063000 | COMPONENT ID: | $\begin{aligned} & \text { 4-PS-1231-20 } \\ & \text { VALVE 2PS28 TO PIPE WELD } \end{aligned}$ |

## VOLUMETRIC PIPING EXAMINATIONS

1.0 AXIAL ULTRASONIC EXAMINATIONS (Indications Parallel to the Weld)
1.1 Compute Examination Volume (Height $\times$ Width $x$ Length) $=\mathrm{Vt}_{1} \quad 0.177^{\prime \prime} \times 1.1^{\prime \prime} \times 11.9^{n}=2.32 \mathrm{cu}$. in.
1.2 Compute Volume Not Examined on Upstream Side of Weld $=A \quad 0.00 \mathrm{cu}$. in. (Beam Direction-US)
1.3 Compute Upstream Limitation Percentage $\left(A+\mathrm{Vt}_{1}\right) \times 100=\mathrm{Z1} \quad 0.00 \%$ (Beam Direction-US)
1.4 Compute Volume Not Examined on Downstream Side of Weld = B 2.32 in. ${ }^{3}$. (Beam Direction-DS)
1.5 Compute Downstream Limitation Percentage $\left(B+V t_{1}\right) \times 100=Z 2 \quad 100 \%$ (Beam Direction-DS)
2.0 CIRCUMFERENTIAL ULTRASONIC EXAMINATIONS (Indications Perpendicular to the Weld)
2.1 Compute Examination Volume (Height $\times$ Width $\times$ Length $)=\mathrm{Vt}_{2} \quad 0.177^{n} \times 1.6^{n} \times 11.9^{n}=3.37 \mathrm{cu}$. in.
2.2 Compute Volume Not Examined in the Clock Wise Direction $=C \quad \underline{0.177^{n} \times 0.52^{\prime \prime} \times 11.9^{\prime \prime}=1.1 \mathrm{in}^{3}}$
2.3 Compute Clock Wise Limitation Percentage $\left(C+V t_{2}\right) \times 100=Z 3 \quad 1.1$ in $^{3}+3.37$ in $^{3} \times 100=32.6 \%$
2.4 Compute Volume Not Examined in the Counter CW Direction $=\mathbf{D}$
$0.177^{\prime \prime} \times 0.52^{n} \times 11.9^{n}=1.1 \mathrm{in}^{3}$
2.5 Compute Counter CW Limitation Percentage $\left(\mathrm{D}+\mathrm{Vt}_{2}\right) \times 100=\mathrm{Z4}$
$1.1 \mathrm{in}^{3}+3.37 \mathrm{in}^{3} \times 100=32.6 \%$

### 3.0 TOTAL EXAMINATION COVERAGE OBTAINED

3.1 Compute Total Limitation Percentage $(Z 1+Z 2+Z 3+Z 4) / 4=L$
$41.3 \%$
3.2 Compute Total Coverage 100-L
$58.7 \%$

## LIMITATION EXPLANATION/REMARKS

Limitation exists on the Valve side of the weld for the circumferential and axial examinations. See the
attached UT Coverage Plot. The 45 degree refracted longitudinal wave transducer was scanned over the required volume from the pipe side of the weld only (one-sided examination), in order to achieve 100 percent coverage in the upstream axial direction. No volumetric ( $100 \%$ limitation) coverage was obtained from the downstream axial examination due to the valve configuration. The exam volume was computed using actual OD pipe sizes and schedule wall thicknesses. The Length value is computed using the diameter at the inner one third of the pipe wall thickness.


REQUEST FOR ADDITIONAL INFORMATION REQUEST FOR RELIEF REGARDING EXAMINATION COVERAGE SECOND TEN-YEAR IN-SERVICE INSPECTION INTERVAL SALEM NUCLEAR GENERATING STATION, UNIT NO. 2 DOCKET NO. 50-311

QUESTION $\quad 1.3$ (c) For certain piping welds, Information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by licensee identification numbers listed below.


| Comments |  |  |
| :---: | :---: | :---: |
| See Attached |  |  |
| Stainless Steel |  |  |
| Thickness .6"/ weld Crown .6" |  |  |
| OD contour on valve side |  |  |
| Yes $\mathbf{X}$ No |  |  |
| See Attached |  |  |

## Comments

UT exam was performed of this component using 45 degree shear refracted longitudinal wave transducer. The ultrasonic examination was limited to $59 \%$ of the code required coverage being limited due to upstream side valve OD configuration that restricted scanning. UT scans were performed on and across the weld in both directions No unacceptable indications were observed. A liquid penetrant examination and system pressure test was also completed with no recordable indications observed.

Summary \# 063000
Description 4PS-1231-20

Component I.D. Valve to Pipe
Page of

The ultrasonic examination was limited to $59 \%$ of the code required coverage being limited due to upstream side valve OD
Comments configuration that restricted scanning.

Sketch

$E \times A n B$
him: "EA

 Bestiary


LV $1=$ COMMON INFORMATION
LV 2 = WELD INFORMATION
LV 3 = HANGER INFORMATION
ut COVERAGE PLOT

not examined

$$
\begin{aligned}
& \text { WED : 4-PS-1231-21 } \\
& \text { FIGURE ND: B9.11.006 } \\
& \text { SUMmaRY: } 063100 \\
& \text { NOminal OD: } 4.0^{\prime \prime} \\
& \text { BERM DIRECTON: AXIAL } \\
& 44^{\circ} \text { RD WAVE } \\
& \$ \\
& 43^{\circ} \text { SHEAR WAVE }
\end{aligned}
$$

## UT COVERAGE PLOT



UIIID not examneo
was: 4-PS-1231.21
FILLEE No: B9.11.006
summary: 063100
Nomnar DD: 4.01
Bem Directon: Circ
$43^{\circ}$ SHEAR WAVE

|  |  | IPING EXAMINATION COVERAGE REPORT |  |
| :---: | :---: | :---: | :---: |
| CUSTOMER: | PSE\&G SALEM UNIT-2, 10 RFO | SYSTEM: $\quad$ RE | OR COOLANT SYSTEM, URIZER SPRAY |
| SUMMARY NO.: | 063100 | COMPONENT ID: | $\begin{aligned} & \text { 4-PS-1231-21 } \\ & \text { PIPE TO VALVE 2PS3 } \end{aligned}$ |

## VOLUMETRIC PIPING EXAMINATIONS

### 1.0 AXIAL ULTRASONIC EXAMINATIONS (indications Parallel to the Weld)

1.1 Compute Examination Volume (Height $\times$ Width $\times$ Length) $=V t_{1} \quad 0.177^{\prime \prime} \times 1.0^{\prime \prime} \times 11.9^{\circ}=2.10 \mathrm{cu}$. in.
1.2 Compute Volume Not Examined on Upstream Side of Weld $=A$
2.10 in. ${ }^{3}$ (Beam Direction-US)
1.3 Compute Upstream Limitation Percentage $\left(A \div V_{1}\right) \times 100=\mathrm{Z1}$
$100 \%$ (Beam Direction-US)
1.4 Compute Volume Not Examined on Downstream Side of Weld $=B$
$0.177^{\prime \prime} \times 0.176^{n} \times 11.9^{n}=0.37 \mathrm{in}^{3}$
1.5 Compute Downstream Limitation Percentage $\left(B+\mathrm{Vt}_{1}\right) \times 100=\mathrm{Z} 2$
$0.37 \mathrm{in}^{3}+2.10 \mathrm{in}^{3} \times 100=17.6 \%$ (Beam Direction-DS)

### 2.0 CIRCUMFERENTIAL ULTRASONIC EXAMINATIONS (Indications Perpendicular to the WeId)

2.1 Compute Examination Volume (Height $\times$ Width $\times$ Length) $=V_{2} \quad 0.177^{\prime \prime} \times 1.5^{\prime \prime} \times 11.9^{\prime \prime}=3.15 \mathrm{cu}$. in.
2.2 Compute Volume Not Examined in the Clock Wise Direction $=\mathrm{C}$ $0.177^{n} \times 0.47^{\prime \prime} \times 11.9^{\prime \prime}=1.0 \mathrm{in}^{3}$
2.3 Compute Clock Wise Limitation Percentage $\left(\mathrm{C}+\mathrm{Vt}_{2}\right) \times 100=\mathrm{Z} 3$
1.0 in $^{3}+3.15$ in $^{3} \times 100=31.7 \%$
2.4 Compute Volume Not Examined in the Counter CW Direction = D
$0.177^{\prime \prime} \times 0.47^{\prime \prime} \times 11.9^{n}=1.0 \mathrm{in}^{3}$
2.5 Compute Counter CW Limitation Percentage $\left(\mathrm{D}+\mathrm{Vt}_{2}\right) \times 100=\mathrm{Z4}$
$1.0 \mathrm{in}^{3}+3.15 \mathrm{in}^{3} \times 100=31.7 \%$

### 3.0 TOTAL EXAMINATION COVERAGE OBTAINED

3.1 Compute Total Limitation Percentage $(\mathbf{Z 1}+\mathbf{Z 2}+\mathbf{Z 3}+\mathbf{Z 4}) / 4=\mathbf{L}$
$45.3 \%$
3.2 Compute Total Coverage 100 - L
$54.7 \%$

## LIMITATION EXPLANATION/REMARKS

Limitation exists on the Valve side of the weld for the circumferential and axial examinations. See the
attached UT Coverage Plot. The 45 degree refracted longitudinal wave transducer was scanned over the
required volume from the pipe side of the weld only (one-sided examination), in order to achieve 54.7 percent coverage in the downstream axial direction. No volumetric ( $100 \%$ limitation) coverage was obtained from the upstream axial examination due to the valve configuration. The exam volume was computed using actual OD pipe sizes and schedule wall thicknesses. The Length value is computed using the diameter at the inner one third of the pipe wall thickness.


UT COVERAGE PLOT

$$
8-5 J-1252-9
$$


nute Exinm oestinaction Dawo St eeam owly AT 90, $6^{\circ}$ AND $270^{\circ} 6^{\prime \prime}$ TOTRC $12^{*}$ CIRE COLERAEF 100\%

WELD: 8-5J-1252-9
summary \# 168200 SALEM UNTT 2, 10 PEO $45^{-6}$ REFRACTED SKEAR

$$
I \triangle, O D, \pm D
$$

$45^{\circ}$ REFRACED LONEITA dion HALF VEE.
BEAM DIRECTION: AXIAL FIGURE No.: B9:11.020

PagE 6 of 7

## VOLUMETRIC PIPING EXAMINATIONS

1.0 AXIAL ULTRASONIC EXAMINATIONS (Indications Parallel to the Weld)
1.1 Compute Examination Volume (Height $\times$ Width $\times$ Length) $=\mathrm{Vt}_{1} \quad 0.325^{n} \times 1.8^{n} \times 21.36^{n}=12.50 \mathrm{cu}$. in.
1.2 Compute Volume Not Examined on Upstream Side of Weld $=A$ 0.00 cu . in.
1.3 Compute Upstream Limitation Percentage $\left(A+V t_{1}\right) \times 100=\mathrm{Z} 1$ $0.00 \%$
1.4 Compute Volume Not Examined on Downstream Side of Weld $=B$
$0.325^{\prime \prime} \times 1.8^{\prime \prime} \times 12.0^{\prime \prime}=7.02 \mathrm{cu}$.in.
1.5 Compute Downstream Limitation Percentage $\left(B+V t_{1}\right) \times 100=Z 2$
7.02 in. $^{3}+12.50$ in. $^{3} \times 100=56.0 \%$
2.0 CIRCUMFERENTIAL ULTRASONIC EXAMINATIONS (Indications Perpendicular to the Weld)

2.2 Compute Volume Not Examined in the Clock Wise Direction $=\mathrm{C}$ $\qquad$
2.3 Compute Clock Wise Limitation Percentage $\left(\mathrm{C}+\mathrm{Vt}_{2}\right) \times 100=\mathrm{Z} 3$ $\qquad$
2.4 Compute Volume Not Examined in the Counter CW Direction = D
0.00 cu . in.
2.5 Compute Counter CW Limitation Percentage $\left(D+V t_{2}\right) \times 100=Z 4$
$0.00 \%$

### 3.0 TOTAL EXAMINATION COVERAGE OBTAINED

3.1 Compute Total Limitation Percentage $(\mathrm{Z} 1+\mathrm{Z} 2+\mathrm{Z} 3+\mathrm{Z4}) / 4=\mathrm{L}$
$14.0 \%$
3.2 Compute Total Coverage
$100-L$
$86.0 \%$

## LIMITATION EXPLANATION/REMARKS

Limitation exists at -90 and $\sim 270$ degrees around the pipe for a total of 12 inches. See the
attached UT Coverage Plot. The 45 degree transducers were scanned over the required volume from both sides of the weld with the exception of the two obstructed areas from the permanently installed welded pipe supports on the downstream side of the weld. No limitation existed for the circumferential examinations due to the fact the permanently installed welded pipe support obstructions were located beyond the required volume. The exam volume was computed using actual $O D$ pipe sizes and schedule wall thicknesses.

The Length value is computed using the diameter at the inner one third of the pipe wall thickness.


## ut couvage Plot ciac sean

LACVE


AREA of olstancyion
CiR $\triangle$ CAN
$.5 \times .26$

WELD: 6-5J-1242-2
Summ ARY \# 170850
$65 \int 12<2-2$
SALEM LNIT 2
FIGURE NO.: B9. 11.023 DAUPDG.Gar Cis.


Page 6 of 8



## VOLUMETRIC PIPING EXAMINATIONS

1.0 AXIAL ULTRASONIC EXAMINATIONS (Indications Parallel to the Weld)
1.1 Compute Examination Volume (Height $\times$ Width $\times$ Length) $=V t_{1}$
1.2 Compute Volume Not Examined on Upstream Side of Weld $=A$
1.3 Compute Upstream Limitation Percentage $\left(A+V_{1}\right) \times 100=Z 1$
1.4 Compute Volume Not Examined on Downstream Side of Weld $=B$
1.5 Compute Downstream Limitation Percentage $\left(B+V t_{1}\right) \times 100=Z 2$
$0.255^{n} \times 1.66^{n} \times 17.6^{n}=7.45 \mathrm{cu}$. in. $0.255^{n} \times 1.66^{n} \times 17.6^{n}=7.45 \mathrm{cu}$. in. $100 \%$ (Beam Direction-US) 0.015 in. $^{3} \times 17.6^{n}=0.264 \mathrm{cu}$. in 0.264 in. $^{3}+7.45$ in $^{3} \times 100=3.54 \%$ (Beam Direction-DS)
2.0 CIRCUMFERENTIAL ULTRASONIC EXAMINATIONS (Indications Perpendicular to the Weld)
2.1 Compute Examination Volume (Height $\times$ Width $\times$ Length) $=\mathrm{Vt}_{2} \quad 0.255^{\prime \prime} \times 2.10^{\prime \prime} \times 17.6^{\prime \prime}=9.24 \mathrm{cu}$. in
2.2 Compute Volume Not Examined in the Clock Wise Direction $=\mathrm{C}$
2.3 Compute Clock Wise Limitation Percentage $\left(\mathrm{C}+\mathrm{Vt}_{2}\right) \times 100=\mathrm{Z} 3$
$0.255^{\prime \prime} \times 0.50^{\prime \prime} \times 17.6^{\prime \prime}=2.24 \mathrm{cu}$. in
2.24 in. $^{3}+9.24$ in. $^{3} \times 100=24.3 \%$
2.4 Compute Volume Not Examined in the Counter CW Direction = D
$.255^{\prime \prime} \times 0.50^{\prime \prime} \times 17.6^{n}=2.24 \mathrm{cu}$. in
2.5 Compute Counter CW Limitation Percentage $\left(D+V t_{2}\right) \times 100=Z 4 \quad \underline{2.24} \mathrm{in}^{3}+9.24 \mathrm{in}^{3} \times 100=24.3 \%$

### 3.0 TOTAL EXAMINATION COVERAGE OBTAINED

3.1 Compute Total Limitation Percentage $(Z 1+Z 2+Z 3+Z 4) / 4=L$
3.2 Compute Total Coverage
$100-L$ $38.0 \%$
$62.0 \%$

## LIMITATION EXPLANATION/REMARKS

Limitation exists on the Valve side of the weld for the circumferential and axial examinations. See the
attached UT Coverage Plot. The 45 degree shear \& RL wave transducers were scanned over the required volume from the elbow side of the weld only (one-sided examination), and 48 percent coverage was obtained in the downstream axial direction. No volumetric ( $100 \%$ limitation) coverage was obtained from the upstream axial examination due to the Valve configuration.

The exam volume was computed using actual OD pipe sizes and schedule wall thicknesses.
The Length value is computed using the diameter at the inner one third of the pipe wall thickness.

| PREPARED BY: alaviles jox | DATE: $s-19.99$ | REVIEWER: <br> A.(I) Z angenfeld | DATE: $05-19-99$ |
| :---: | :---: | :---: | :---: |
|  | $\int 5-28-98$ | ciony Mutual enine Aamentrion | PAGE 5 OF 8 |


ween No. 6-5J-1232-12
SHLEM UNit 2
summat H 173300
FIGURE NO.: B9.011.026
NOMINAL PIPE OD: 6.0"
BEAM DIRECTION: AXIAL

$$
\text { PASE } 6 \text { OF } 8
$$



Lect No. 6-5J-1232-12
sALEm UNit 2
summARy H173300
FIGURE NO.: 69.11 .026
NOMINAL PIPE OD: 6.0" BEAM DIRECTION: CIRE

PASE 7 OF 8

FRAMATOME
VOLUMETRIC PIPING EXAMINATION COVERAGE REPORT

| CUSTOMER: | PSE\&G | SYSTEM: SA | SAFETY INJECTION |
| :---: | :---: | :---: | :---: |
|  | SALEM UNIT-2, 10 RFO |  |  |
| SUMMARY NO.: | : 173300 | COMPONENT ID: | $\begin{array}{ll} \hline \text { D: } & \text { 6-SJ-1232-12 } \\ & \text { PIPE TO TEE } \end{array}$ |

## VOLUMETRIC PIPING EXAMINATIONS

1.0 AXIAL ULTRASONIC EXAMINATIONS (indications Paraliel to the Weld)
1.1 Compute Examination Volume (Height $x$ Width $\times$ Length) $=V_{t_{1}} \quad 0.255^{n} \times 2.20 \times 17.6^{n}=9.87 \mathrm{cu}$. in.
1.2 Compute Volume Not Examined on Upstream Side of Weld $=A \quad 0.255^{\prime \prime} \times 2.20^{\prime \prime} \times 17.6^{\prime \prime}=9.87 \mathrm{cu}$. in.
1.3 Compute Upstream Limitation Percentage $\left(\mathrm{A}+\mathrm{Vt}_{1}\right) \times 100=\mathrm{Z1} \quad 100 \%$ (Beam Direction-US)
1.4 Compute Volume Not Examined on Downstream Side of Weld $=B \quad 0.068$ in $^{2} \times 17.6^{n}=1.20 \mathrm{cu}$. in
1.5 Compute Downstream Limitation Percentage $\left(B+V_{1}\right) \times 100=Z 2 \quad 1.20 \mathrm{in}^{3}+9.87 \mathrm{in}^{3} \times 100=12.2 \%$ (Beam Direction-DS)
2.0 CIRCUMFERENTIAL ULTRASONIC EXAMINATIONS (Indications Perpendicular to the Weld)
2.1 Compute Examination Volume (Height $x$ Width $\times$ Length) $=\mathrm{Vt}_{2} \quad \underline{0.255^{\prime \prime}} \times 2.70 \times 17.6^{\prime \prime}=12.11 \mathrm{cu}$. in
2.2 Compute Volume Not Examined in the Clock Wise Direction $=C$
$0.255^{\text {² }} \times 0.50^{\prime \prime} \times 17.6^{\prime \prime}=2.24 \mathrm{cu}$. in
2.3 Compute Clock Wise Limitation Percentage ( $C+V_{t_{2}}$ ) $\times 100=Z 3 \quad 2.24$ in. $^{3}+9.87 \mathrm{in}^{3} \times 100=22.74 \%$
2.4 Compute Volume Not Examined in the Counter CW Direction $=\mathrm{D}$
$0.255^{\prime \prime} \times 0.50^{\prime \prime} \times 17.6^{\circ}=2.24 \mathrm{cu}$. in
2.5 Compute Counter CW Limitation Percentage ( $\mathrm{D}+\mathrm{Vt}_{2}$ ) $\times 100=\mathrm{Z4}$
2.24 in. $^{3}+9.87$ in. $^{3} \times 100=22.74 \%$

### 3.0 TOTAL EXAMINATION COVERAGE OBTAINED

3.1 Compute Total Limitation Percentage ( $\mathbf{Z 1}+\mathbf{Z 2}+\mathbf{Z 3}+\mathbf{Z 4}) / 4=\mathrm{L}$
$39.42 \%$
3.2 Compute Total Coverage 100 - L
$60.6 \%$

## LMMITATION EXPLANATION/REMARKS

Limitation exists on the Tee side of the weld for the circumferential and axial examinations. See the attached UT Coverage Plot. The 45 degree shear \& RL wave transducers were scanned over the required volume from the pipe side of the weld only (one-sided examination), and 44 percent coverage was obtained in the downstream axial direction. No volumetric ( $100 \%$ limitation) coverage was obtained from the upstream axial examination due to the Tee configuration

The exam volume was computed using actual OD pipe sizes and schedule wall thicknesses.
The Length value is computed using the diameter at the inner one third of the pipe wall thickness.


# ut courage Plot. <br> cire scan 



> WELD NA. 6-5J $1212-2$
> SUMmARY NO. 175600
> SALEM UNIT 2
> DAVID GARCIA
> $4-27-99$
> NOMINAL PIPE OD. : $6.0^{\circ}$
> FIGURE NO.:B9.11.029


## VOLUMETRIC PIPING EXAMINATIONS

### 1.0 AXIAL ULTRASONIC EXAMINATIONS (Indications Parallel to the Weld)

1.1 Compute Examination Volume (Height $\times$ Width $\times$ Length) $=V l_{1} \quad 0.255^{n \prime} \times 1.80 \times 17.6^{\prime \prime}=8.07 \mathrm{cu}$. in.
1.2 Compute Volume Not Examined on Upstream Side of Weld $=A$ 0.05 in. $^{3} \times 17.6^{n}=0.88 \mathrm{cu}$. in
1.3 Compute Upstream Limitation Percentage $\left(A+V t_{1}\right) \times 100=\mathbf{Z 1}$ 0.88 in. $.^{3}+8.07$ in. $.^{3} \times 100=10.9 \%$
1.4 Compute Volume Not Examined on Downstream Side of Weld $=B$ $0.255^{n} \times 1.80 \times 17.6^{n}=8.07 \mathrm{cu}$. in.
1.5 Compute Downstream Limitation Percentage $\left(B+V t_{1}\right) \times 100=Z 2$ $100 \%$ (Beam Direction-DS)
2.0 CIRCUMFERENTIAL ULTRASONIC EXAMINATIONS (Indications Perpendicular to the Weld)
2.1 Compute Examination Volume (Height $x$ Width $\times$ Length $)=\mathrm{Vt}_{2} \quad 0.255^{\prime \prime} \times 2.30 \times 17.6^{\prime \prime}=10.32 \mathrm{cu}$. in
2.2 Compute Volume Not Examined in the Clock Wise Direction $=\mathrm{C}$ $0.255^{n} \times 0.50^{n} \times 17.6^{n}=2.24 \mathrm{cu}$. in
2.3 Compute Clock Wise Limitation Percentage $\left(C+V t_{2}\right) \times 100=Z 3$ 2.24 in $^{3}+10.32$ in $^{3} \times 100=21.7 \%$
2.4 Compute Volume Not Examined in the Counter CW Direction $=\mathrm{D}$
$0.255^{\prime \prime} \times 0.50^{\prime \prime} \times 17.6^{\prime \prime}=2.24 \mathrm{cu}$. in
2.5 Compute Counter CW Limitation Percentage $\left(D+V t_{2}\right) \times 100=Z 4 \quad 2.24$ in. $^{3}+10.32$ in. $^{3} \times 100=21.7 \%$

### 3.0 TOTAL EXAMINATION COVERAGE OBTAINED

3.1 Compute Total Limitation Percentage $(\mathbf{Z 1}+\mathbf{Z 2}+\mathbf{Z 3}+\mathbf{Z 4}) / 4=\mathrm{L}$ $\qquad$
3.2 Compute Total Coverage 100 - L
61.42 \%

## LIMITATION EXPLANATION/REMARKS

Limitation exists on the Valve side of the weld for the circumferential and axial examinations. See the attached UT Coverage Plot. The 45 degree shear \& RL wave transducers were scanned over the required volume from the pipe side of the weld only (one-sided examination), and 45 percent coverage was obtained in the upstream axial direction. No volumetric ( $100 \%$ limitation) coverage was obtained from the downstream axial examination due to the Valve configuration. The exam volume was computed using actual OD pipe sizes and schedule wall thicknesses. The Length value is computed using the diameter atthe inner one third of the pipe wall thickness
PREPARED BY; DATE: REVIEWER:
$5-19.99$



Note-1. SKetch to scale
2. ONE SIDED EXAmination FOR Parallel examination

UT THICKNESS PROFILE

Dan Langanfeld 4-9-99

$$
\text { PAGE } 10 \text { of } 10^{145}
$$



## VESSEL VOLUMETRIC EXAMINATION COVERAGE REPORT


1.0 CALCULATE REQUIRED EXAM VOLUME FOR-STRAIGHT BEAM PLANAR FLAWS NRA

Exam height $\mathbf{X}$ Exam width $\mathbf{X}$ Exam length $=$ Exam Volume

2.0 CALCULATE REQUIRED EXAM VOLUME FOR STRAIGHT LAMINAR PLANAR FLAWS

Exam height $\mathbf{X}$ Exam width $\mathbf{X}$ Exam length $=$ Exam Volume

3.0 CALCULATE REQUIRED PARALLEL EXAM VOLUME FOR $45^{\circ}$ AND $65^{\circ} 70^{\circ}$

Exam height X Exam width X Exam length $=$ Exam Volume $0.25^{\prime \prime} \times 1.40^{\prime \prime} \times 43.9^{\prime \prime}=15.36$ cu. INChES
4.0 CALCULATE REQUIRED TRANSVERSE EXAM VOLUME FOR $45^{\circ}$ AND $65^{\circ}$ pg $\mathcal{O}^{\circ}$ Exam height $X$ Exam width $X \quad$ Exam length $=$ Exam Volume $3-30-99$ $0.25^{\prime \prime} \times 1.40^{\prime \prime} \times 43.9^{\prime \prime}=15.36$
5.0 CALCULATE-STRAIGHT BEAM PLANAR EXAM COVERAGE -NRA 5.1 LIMITED ABOVEICW EXAM VOLUME NSA

| Height of <br> obstructed volume | Width of <br> obstructed area | Length of <br> obstructed area | Volume with NO <br> exam coverage |
| :--- | :--- | :--- | :--- |

$\qquad$
-5.2- LMMITED BELOW/CW-EXAM VOLEME N/A

| Height of <br> obstructed volume | Width of <br> obstructed area | Length of <br> obstructed area | Volume with NO <br> exam coverage |
| :--- | :--- | :--- | :--- |



## SH.RA-IS.ZZ-0145-3

(Page 2 of 4)
VESSEL VOLUMETRIC EXAMINATION COVERAGE REPORT


$$
\text { Pare } 6 \text { of } 10
$$

## VESSEL VOLUMETRIC EXAMINATION COVERAGE REPORT

### 7.3 PERCENT VOLUME EXAMINED


8.1 LIMITED ABOVE/CW EXAM VOLUME


### 8.2 LIMITED BELOW/CCW EXAM VOLUME

Height of

obstructed volume \begin{tabular}{l}
Width of <br>
obstructed area

$\quad$

Length of <br>
obstructed area
\end{tabular}

> Below/CCW exam volume with NO exam coverage


Total $60^{\circ}$ parallel exam volume not examined


### 8.3 PERCENT VOLUME EXAMINED



### 9.0 CALCULATE TRANSVERSE $45^{\circ}$ EXAM COVERAGE

9.1 LIMITED CLOCKWISE EXAM VOLUME

| Height of <br> obstructed volume | Width of <br> obstructed area | Length of <br> obstructed area |
| :--- | :--- | :--- |

$0.250^{\prime \prime} \times \quad 0.90^{\prime \prime} \times \quad 43.9^{\prime \prime}=9.87$ cu. inches
9.2 LIMITED COUNTERCLOCKWISE EXAM VOLUME

(1) LIMITED FROM THE FLANGE SIDE ONLY. SCANNED FROM THE HEAD SIDE ONLY.

## SH.RA-IS.ZZ-0145-3

(Page 4 of 4)

## VESSEL VOLUMETRIC EXAMINATION COVERAGE REPORT



* PAPAIIEL AND TRANSVERSE EXAMS PERFORMED AS STATED ABOVE.


Note: 1. Sketch to Scale
2. One Sided Examination for parallel exam

UT Thickness Profile
Summary 275240


$$
\text { Page } 8 \text { of } \frac{1}{150}
$$

## SH.RA-IS.ZZ-0145-3

(Page 1 of 4)
VESSEL VOLUMETRIC EXAMINATION COVERAGE REPORT


### 1.0 CALCULATE REQUIRED EXAM VOLUME FOR STRAIGHT BEAM PLANAR

 FLAWS| Exam height | $\mathbf{X}$ Exam width | $\mathbf{X}$ | Exam length $=$ |  |
| :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{X}$ |  |  |  |

2.0 CALCULATE REQUIRED EXAM VOLUME FOR STRAIGHT LAMINAR PLANAR FLAWS

| Exam height | X | Exam width | X | Exam length $=$ |
| :--- | :--- | :--- | :--- | :--- |
|  | X |  |  |  |

3.0 CALCULATE REQUIRED PARALLEL EXAM VOLUME FOR 450 AND $65^{\circ} 70^{\circ}$

Exam height $X$ Exam width $X \quad$ Exam length $=$ Exam Volume

- $0.25^{\prime \prime} \times 1.40^{" 4} \times 13.9^{4}=136^{3}$ indues
4.0 CALCULATE REQUIRED TRANSVERSE EXAM VOLUME FOR $45^{\circ}$ AND GEe $22^{\ell}$

Exam height $\mathbf{X}$ Exam width $\mathbf{X}$ Exam length $=$ Exam Volume
$0.25^{\prime \prime} \times 1.40^{\prime \prime} \times 15.9^{4}=15.360^{3}$
5.Q-GALCULATESTRAIGHT BEAM -PLANAR EXAM COVERAGE
S.1- LAMTEE ABOVEJCW EXAM VOLUME —— NM

| Height of <br> obstructed volume | Width of <br> obstructed area | Length of <br> obstructed area | Volume with NO <br> exam coverage |
| :--- | :--- | :--- | :--- |

SH.RA-IS.ZZ-0145-3
(Page 2 of 4)
VESSEL VOLUMETRIC EXAMINATION COVERAGE REPORT



Rev. 2

SH.RA-IS.ZZ-0145-3
(Page 1 of 4)
VESSEL VOLUMETRIC EXAMINATION COVERAGE REPORT

1.0 CALCULATE REQUIRED EXAM VOLUME FOR STRAIGHT BEAM PLANAR FLAWS

| Exam height | X Exam width | X |  |
| :--- | :--- | :--- | :--- | :--- |
|  | X | $\mathrm{X} \quad$ Exam length | $=$ Exam Volume |

2.0 CALCULATE REQUIRED EXAM VOLUME FOR STRAIGHT LAMINAR PLANAR FLAWS

| Exam height | X | Exam width X | Exam length $=$ | Exam Volume |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | X |  |  |  |

3.0 CALCULATE REQUIRED PARALLEL EXAM VOLUME FOR 45a AND 650 $70^{\circ}$ 19

Exam height X Exam width X Exam length $=$ Exam Volume D.25" $\mathrm{X}-1.40^{\prime \prime} \mathrm{X} \quad 43.9^{4}=-15.36^{3}$ indues
4.0 CALCULATE REQUIRED TRANSVERSE EXAM VOLUME FOR $45^{\circ}$ AND $5^{\circ}$

Exam height X Exam width X Exam length $=$ Exam Volume $0.25^{\prime \prime} \times 1.40^{\prime \prime} \times 13.9^{4}=15.36 .0^{3}$
5.0 -CALCULATE STRALGHT BEAM PLAANAR-EXAM COVERAGE 5.1-EMMIFED ABOVE/CW EXAM YOLUME-NA

| Height of <br> obstructed volume | Width of <br> obstructed area | Length of <br> obstructed area |
| :--- | :--- | :--- | | Volume with NO |
| :--- |
| exam coverage |

## VESSEL VOLUMETRIC EXAMINATION COVERAGE REPORT


(1) Scanned from Shell Side Only.

VESSEL VOLUMETRIC EXAMINATION COVERAGE REPORT


REMARKS:
Performed $70^{\circ}$ shear wave scans from the shell side only using a $1 / 2 \mathrm{~V}$ path technique. Performed $45^{\circ}$ shear scans from the shell side only for the transverse exams. parallel and transverse exams performed as stated abers


Note: 1. Sketch to Scale
2. UT Thickness Profile
3. IIIII-Base Metal Lamination Scan


SH.RA-IS.ZZ-0145-3
(Page 1 of 4)

## VESSEL VOLUMETRIC EXAMINATION COVERAGE REPORT


3.0 CALCULATE REQUIRED PARALLEL EXAM VOLUME FOR $45^{\circ}$ AND $65 \not 24$

Exam height $\mathbf{X}$ Exam width $\mathbf{X} \quad$ Exam length $=$ Exam Volume $\underline{.250^{\prime \prime}} \mathrm{x} \quad 1.40^{\circ} \times \quad 43.9^{*}=15.36 \mathrm{cu}^{*}$
4.0 CALCULATE REQUIRED TRANSVERSE EXAM VOLUME FOR $45^{\circ}$ AND $65^{\circ}$ 14

Exam height $\mathbf{X}$ Exam width $\mathbf{X}$ Exam length $=$ Exam Volume . $250^{\prime \prime} \times 1.40^{\alpha} \times \quad 43.9^{\prime \prime}=\underline{15.36 \mathrm{cu}^{*}}$
5.0-CALEULATESTRAGIFT BEAM PEANAREXAM COVERAGE NH -5.1 LMMTED-APOVETEW EXAM-VOLUME N/A
$\begin{array}{llll}\text { Height of } & \text { Width of } & \text { Length of } & \begin{array}{l}\text { Volume with NO } \\ \text { obstructed volume }\end{array} \\ \text { obstructed area } & \text { obstructed area } & \text { exam coverage }\end{array}$


| Height of |
| :--- |
| obstructed volume |

Total straight beam planar exam volume not examined \begin{tabular}{l}
Width of <br>
obstructed area

$\quad$

Length of <br>
obstructed area

$\quad$

Volume with NO <br>
exam coverage
\end{tabular}

## SH.RA-IS.ZZ-0145-3

(Page 2 of 4)

## VESSEL VOLUMETRIC EXAMINATION COVERAGE REPORT




SH.RA-IS.ZZ-0145-3
(Page 4 of 4)
VESSEL VOLUMETRIC EXAMINATION COVERAGE REPORT




## VOLUMETRIC PIPING EXAMINATIONS

1.0 AXIAL ULTRASONIC EXAMINATIONS (Indications Parallel to the Weld)

1.2 Compute Volume Not Examined on Upstream Side of Weld $=A \quad 1.18 \mathrm{cu}$. in. (Beam Direction-US)
1.3 Compute Upstream Limitation Percentage $\left(A+\mathrm{Vt}_{1}\right) \times 100=\mathrm{Z1}$
$100 \%$ (Beam Direction-US)
1.4 Compute Volume Not Examined on Downstream Side of Weld $=B$
$0.12^{\prime \prime} \times 0.40^{\prime \prime} \times 8.73^{\prime \prime}=0.42 \mathrm{cu}$. in.
1.5 Compute Downstream Limitation Percentage $\left(B+\mathrm{Vt}_{1}\right) \times 100=\mathrm{Z2}$
0.42 in. $^{3}+1.18$ in. $^{3} \times 100=35.6 \%$ - (Beam Direction-DS)

### 2.0 CIRCUMFERENTIAL ULTRASONIC EXAMINATIONS (Indications Perpendicular to the Weld)

2.1 Compute Examination Volume (Height $x$ Width $x$ Length) $=\mathrm{Vt}_{2} \quad \underline{0.12^{n}} \times 1.625^{\prime \prime} \times 8.73^{\prime \prime}=1.70 \mathrm{cu}$. in.
2.2 Compute Volume Not Examined in the Clock Wise Direction $=\mathrm{C}$
$0.12^{\prime \prime} \times 1.125^{\prime \prime} \times 8.73^{\prime \prime}=1.18 \mathrm{cu}$. in.
2.3 Compute Clock Wise Limitation Percentage $\left(\mathrm{C}+\mathrm{Vt}_{2}\right) \times 100=\mathrm{Z} 3$
1.18 in. $^{3}+1.70$ in. $^{3} \times 100=69.4 \%$
2.4 Compute Volume Not Examined in the Counter CW Direction $=\mathrm{D}$
$0.12^{\prime \prime} \times 1.125^{\prime \prime} \times 8.73^{\prime \prime}=1.18 \mathrm{cu}$. in.
2.5 Compute Counter CW Limitation Percentage ( $\mathrm{D}+\mathrm{Vt}_{2}$ ) $\times 100=\mathrm{Z4}$
1.18 in. $^{3}+1.70$ in. $^{3} \times 100=69.4 \%$

### 3.0 TOTAL EXAMINATION COVERAGE OBTAINED

3.1 Compute Total Limitation Percentage $(\mathbf{Z 1}+\mathrm{Z} 2+\mathrm{Z} 3+\mathrm{Z4}) / 4=\mathrm{L}$
$68.6 \%$
3.2 Compute Total Coverage

100 -L
$31.4 \%$

## LIMITATION EXPLANATION/REMARKS

Limitation exists on the Valve side of the weld for the circumferential and axial examinations: See the
attached UT Coverage Plot. The 69 degree shear wave transducer was scanned over the required volume
from the pipe side of the weld only (one-sided examination), and 32.5 percent coverage was obtained
in the downstream axial direction. No volumetric ( $100 \%$ limitation) coverage was obtained from the
upstream axial examination due to the Valve configuration. The exam volume was computed using actual
OD pipe sizes and schedule wall thicknesses. The Length value is computed using the diameter one third of the pipe wall thickness.


## REQUEST FOR ADDITIONAL INFORMATION REQUEST FOR RELIEF REGARDING EXAMINATION COVERAGE SECOND TEN-YEAR IN-SERVICE INSPECTION INTERVAL SALEM NUCLEAR GENERATING STATION, UNIT NO. 2

QUESTION $\quad 2.1$ (c) For certain piping welds, Information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by licensee identification numbers listed below.

Summary \# 710140

Component I.D. 3-CV-2255-9

Description Valve 2CV70 to Pipe


6 Transducer ray exit point

Comments


## Comments

UT exam was performed of this component using 45,60 and 70 degree shear wave transducer. The ultrasonic examination was limited to $31 \%$ of the code required coverage being limited due to upstream side valve OD configuration that restricted scanning. UT scans were performed on and across the weld in both directions No unacceptable indications were observed. A liquid penetrant examination and system pressure test was also completed with no recordable indications observed.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Page of


Sacem Uruit 2
2-Bit-1 Sumonnty \#15110 UT covernge plot
Bonan LNsection Trut Mozz LE TO LOWER HEOU
AXINL SCANS



SH.RA-IS.ZZ-0145-3
(Page 1 of 4)

## VESSEL VOLUMETRIC EXAMINATION COVERAGE REPORT


1.0 CALCULATE REQUIRED EXAM VOLUME FOR STRAIGHT BEAM PLANAR FLAWS

| Exam height | X | Exam width | X | Exam length $=$ | Exam Volume |
| :--- | :--- | :--- | :--- | :--- | :--- |
| .73 | X | 2.0 | X | 241 | $=35.19$ |

2.0 CALCULATE REQUIRED EXAM VOLUME FOR STRAIGHT LAMINAR PLANAR FLAWS PERFORMED LAMINATION SCAN BUT NO VOLUMETRIC Exam height COVERAGE CALCULATED. Exam length $=$ Exam Volume
$N / A \quad X N / A \quad N \quad N \quad N / A$
3.0 CALCULATE REQUIRED PARALLEL EXAM VOLUME FOR $45^{\circ}$ AND $65^{\circ}$

| Exam height | X | Exam width | X | Exam length | $=$ Exam Volume |
| :--- | :--- | :--- | :--- | :--- | :--- |
| .73 | X | 2.0 | X | 24.1 | $=36.19$ |

4.0 CALCULATE REQUIRED TRANSVERSE EXAM VOLUME FOR $45^{\circ}$ AND $65^{\circ}$

Exam height $\mathbf{X}$ Exam width $\mathbf{X}$ Exam length $=$ Exam Volume
$.73 \times 2.0 \times 35.19$
5.0 CALCULATE STRAIGHT BEAM PLANAR EXAM COVERAGE

### 5.1 LIMITED ABOVE/CW EXAM VOLUME

| Height of |
| :--- |
| obstructed volume | | Width of |
| :--- |
| obstructed area |$\quad$| Length of |
| :--- |
| obstructed area |$\quad$| Volume with NO |
| :--- |
| exam coverage |

### 5.2 LIMITED BELOW/CW EXAM VOLUME



## SH.RA-IS.ZZ-0145-3

(Page 2 of 4)

## VESSEL VOLUMETRIC EXAMINATION COVERAGE REPORT

### 5.3 PERCENT VOLUME EXAMINED



### 6.0 CALCULATE STRAIGHT BEAM LAMINAR EXAM COVERAGE

### 6.1 LIMITED ABOVE/CW EXAM VOLUME NO COVERAGE CALCULATEO

Height of Width of Length of Volume with NO obstructed volume obstructed area obstructed area exam coverage
$N / A \quad X N / A$

6.2 LIMITED BELOW/CW EXAM VOLUME


Total straight beam laminar exam volume not examined $=$

6.3 PERCENT VOLUME EXAMINED

7.0 CALCULATE PARALLEL $45^{\circ}$ EXAM COVERAGE
7.1 LIMITED ABOVE/CW EXAM VOLUME

Height of obstructed volume. obstructed area
$.73 \quad \times \quad \times .4$
7.2 LIMITED BELOW/CCW EXAM VOLUME

Height of
obstructed obstructed volume $\begin{aligned} & \text { Width of } \\ & \text { obstructed area }\end{aligned}$
$.73 \times 2.0 \times$
Total $45^{\circ}$ parallel exam volume not examined $=42.22$

$$
42.22
$$

Above/CW exam exam coverage
$\qquad$

Below/CCW exam volume with NO exam coverage

m/Hope Creek Common $^{\text {omen }}$


## SH.RA-IS.ZZ-0145-3

(Page 3 of 4)

## VESSEL VOLUMETRIC EXAMINATION COVERAGE REPORT

### 7.3 PERCENT VOLUME EXAMINED



### 8.0 CALCULATE PARALLEL $60^{\circ}$ EXAM COVERAGE

8.1 LIMITED ABOVE/CW EXAM VOLUME

| Height of |  |
| :--- | :--- |
| obstructed volume | Width of <br> obstructed area$\quad$Length of <br> obstructed area |

O $\cdot \mathbf{X} \quad 0 \quad 0 \quad 0$

### 8.2 LIMITED BELOW/CCW EXAM VOLUME

| Height of |  |
| :--- | :--- |
| obstructed volume | Width of <br> obstructed area$\quad$ Length of |
| obstructed area |  |

. $73 \times 2.0 \times 34.1 \times 35.19$ NozzLE
Total $60^{\circ}$ parallel exam volume not examined $=35.19$

### 8.3 PERCENT VOLUME EXAMINED



| Above/CW exam |
| :--- |
| volume with NO |
| exam coverage |
| 0 |

Below/CCW exam volume with NO exam coverage

| Total $^{60} 0^{\circ}$ par. |  |  |
| :--- | :--- | :--- |
| Exam Vol |  |  |
| 70.38 | $X$ | 100 |

### 9.0 CALCULATE TRANSVERSE $45^{\circ}$ EXAM COVERAGE

9.1 LIMITED CLOCKWISE EXAM VOLUME
$\begin{array}{ll}\text { Height of } & \begin{array}{l}\text { Width of } \\ \text { obstructed } \\ \text { obstructed area }\end{array} \\ \text { obstructed area }\end{array}$ $\underline{.73}$ x $2.0 . \quad \times \quad 24.1=35.19$

### 9.2 LIMITED COUNTERCLOCKWISE EXAM VOLUME

$\begin{array}{ll}\text { Height of } & \begin{array}{l}\text { Width of } \\ \text { obstructed volume } \\ \text { obstructed area }\end{array} \quad \begin{array}{l}\text { Length of } \\ \text { obstructed area }\end{array}\end{array}$
.73 $\times 1.0 \quad \times 24.1=$
Total $45^{\circ}$ transverse exam volume not examined . =
CW exam volume with NO exam coverage

CCW exam
volume with NO exam coverage
$\frac{17.59}{52.78}$

10.0 CALCULATE TRANSVERSE $60^{\circ}$ EXAM COVERAGE
10.1 LIMITED CLOCKWISE EXAM VOLUME

Height of obsuructed volume obstructed area

Length of obstructed area

CW exam
$.73 \quad$ X $2.0 \quad$ X
$24.1=35.19$
10.2 LIMITED COUNTERCLOCKWISE EXAM VOLUME

| Height of <br> obsmucted volume <br> .73 | Width of <br> obstructed area | Length of <br> obstructed area |
| :--- | :--- | :--- |

Total $60^{\circ}$ transverse exam volume not examined
CCW exam

### 10.3 PERCENT VOLUME EXAMINED




## SECOND INTERVAL, THIRD PERIOD, FIRST OUTAGE

| SUMMARY \# : 715160 |  | O2RF EXAMINATION SUMMARY RECORDSALEM NUCLEAR GENERATING STATION, UNIT 2 |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SYSTEM <br> LINE \# COMP. <br> LTP FI | $\begin{array}{ll} 1: & \text { BORON INJ } \\ : & \text { NOZZLE-TO } \\ \text { ID. } & 2-B I T-2 \\ : G .: & B-119 \end{array}$ | CTION <br> VESSE <br> PEER | TANK L WELDS HD) |  | CONF <br> RELI <br> CAL. <br> ASME | IG <br> EF <br> BL <br> CA | REQ <br> OCK $\mathrm{T} / \mathrm{I}$ | .: <br> TEM | NOZZLE T $\mathrm{M}: \begin{aligned} & \mathrm{PL}-\mathrm{CSCL}- \\ & \mathrm{C}-\mathrm{B} \end{aligned}$ | UPPER HEAD <br> 3.0-76-SAM-R <br> C2. 21 |
| LTP INSTRUCTIONS: |  |  |  |  |  |  |  |  |  |  |
| NDE <br> METHOD <br> IN LTE | PROCEDURE | REV. | RESULTS FILE NDE EXAMS | EXAM <br> RECORD | CALIBRATION RECORD | $\begin{array}{\|l\|} \hline \mathbf{N} \\ \mathbf{O} \\ \mathbf{R} \\ \hline \end{array}$ | $\begin{gathered} G \\ E \\ \hline \\ \hline \end{gathered}$ | $\begin{aligned} & \mathrm{O} \\ & \mathrm{~T} \\ & \mathrm{H} \end{aligned}$ | RESOLUTION RECORD | REMARKS |
| $U T$ $M T$ | $\begin{aligned} & 54-I S I-130-33 \\ & 54-I S I-130-33 \end{aligned}$ | $\begin{aligned} & 33 \\ & 33 \end{aligned}$ | $\left\lvert\, \begin{aligned} & U T-0 L \\ & U T-45 S \end{aligned}\right.$ | DPO42 DPO42 | 043 | X | - | - | - | O2RF - FTI UNDER W/O\# 50029032TO PEREORM NDE. UT LIMITED TO 62.5\% OF CODE REQUIRED COVERAGE DUR TO NOZZLE AND UPPER HEAD CONEIGURATION. <br> Factory Mutual linsurance Company |
| Prepared by: <br> Reviewed by: |  |  |  |  |  | Date: 04/29/2002 |  |  |  | Total dose received while performing the required NDE examinations $\quad$ Man Mrem |

EXAMINATION SUMIMARY
FRAMATOME ANP


## FRAMATOME ANP VESSEL VOLUMETRIC EXAMINATION COVERAGE REPORT



## FRAMATOME AMP VESSEL VOLUMETRIC EXAMINATION COVERAGE REPORT

### 6.0 CALCULATE STRAIGHT BEAM LAMINAR EXAM COVERAGE

6.1 Limited above / CW exam volume

| Height of | Width of | Length of | Volume with no |
| :--- | :--- | :--- | :--- |
| Obstructed Volume | Obstructed Area | Obstructed Area | Exam Coverage |


| 0.00 | x | 0.00 | X | 0.00 | $=$ | 0.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

6.2 Limited Below / CW exam volume

| Height of Obstructed Volum |  | Width of Obstructed Area |  | Length of Obstructed Area |  | Volumewith no Exam Coverage |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00 | X | 0.00 | x | 0.00 | $=$ | 0.00 |
| Total straight beam |  | ar exam volume |  | amined | $=$ | 0.00 |

6.3 Percent Volume Examined

| Total $0^{\circ}$ vol | Total $0^{\circ}$ | Percent Volume |
| :--- | :--- | :--- |
| wiNo Coverage | Exam Volume | Examined |

100- $\left.\left\{\begin{array}{l}0.00 \\ 0.00]\end{array}\right]=100\right\}=0.00 \%$
7.0 CALCULATE PARALLEL $45^{\circ}$ EXAM COVERAGE
7.1 Limited above / CW exam volume

| Height of | Width of | Length of | Volume with no |
| :--- | :--- | :--- | :--- |
| Obstructed Volume | Obstructed Area | Obstructed Area | Exam Coverage |


| 0.73 | 2.00 | 41.50 | 60.59 |
| :---: | :---: | :---: | :---: |
| Height of | Width of | Length of | Volume with no |
| Obstructed Volume | Obstructed Area | Obstructed Area | Exam Coverace |
| Height of | Width of | Length of | Volume with no |
| Obstructed Volume | Obstructed Area | Obstructed Area | Exam Coverage |

$\underline{0.00} \times \underline{0.00} \times 0.00 \quad 0.00$
Total $45^{\circ}$ parallel exam volume not examined $=660.59$
7.3 Percent Volume Examined


FRAMATOME ANS

### 8.0 CALCULATE PARALLEL $60^{\circ}$ EXAM COVERAGE

8.1 Limited above / CW exam volume

| Height of | Width of | Length of | Above/ CW exam |
| :--- | :--- | :--- | :--- |
| Obstructed Volume | Obstructed Area | Obstructed Area | Volume with no |
| Exam Coverage |  |  |  |

$\underline{0.73} \times \underline{2.00} \times \underline{41.50}=\underline{60.59}$
8.2 Limited Below/CCW exam volume

| Height of | Width of |
| :--- | :--- |
| Obstructed Volume | Obstructed Area |


|  | Below/CCW exam |
| :--- | :--- |
| Length of | Volume with no |
| Obstructed Area | Exam Coverage |


| 0.00 | $=0.00$ |
| :--- | :--- | :--- |
| Total $60^{\circ}$ parallel exam volume not examined | 0.00 |
|  | $=0.00 .59$ |

8.3 Percent Volume Examined

| Total $60^{\circ}$ parallel | Total $60^{\circ}$ parallel | Percent Volume |
| :--- | :--- | :--- |
| Vol wiNo Coverage | Exam Volume | Examined |

$100-\{[60.591121 .18] \times 100\}=50.00 \%$

### 9.0 CALCULATE TRANSVERSE $45^{\circ}$ EXAM COVERAGE

9.1 Limited Clockwise exam volume.

| Height of | Width of | Length of | CW Exam |
| :--- | :--- | :--- | :--- |
| Obstructed Volume | Obstructed Area | Obstructed Area | Volume with no |
| Exam Coverage |  |  |  |



### 9.3 Percent Volume Examined

Total $45^{\circ}$ parallel
Total $45^{\circ}$ parallel
Exam Volume

Percent Volume Examined

$$
100-\{[0.00 / 121.18] \times 100\}=100.00 \%
$$

## FRAMATOME ANP

## VESSEL VOLUMETRIC EXAMINATION COVERAGE REPORT

### 10.0 CALCULATE TRANSVERSE $60^{\circ}$ EXAM COVERAGE

10.1 Limited Clockwise exam volume

| Limited Clockwise exam volume <br> Height of <br> Obstructed VolumeWidth of <br> Obstructed Area | Length of <br> Obstructed Area | CW exam <br> Volume with no <br> Exam Coverage |
| :--- | :--- | :--- | :--- |

10.2 Limited Counterclockwise exam volume

| Height of | Width of |
| :--- | :--- |
| Obstructed Volume | Obstructed Area |

Length of
Obstructed Area

CCW exam
Volume with no Exam Coverage

| 0.00 | x | 0.00 | X | 0.00 |
| :---: | :---: | :---: | :---: | :---: |

$=0.00$

Total 60 transverse exam volume not examined
$=0.00$
10.3 Percent Volume Examined

| Total $60^{\circ}$ Trans Vol | Total $60^{\circ}$ Trans | Percent Volume |
| :--- | :--- | :--- |
| w/NoCoverage | Exam Volume | Examined |

$100-\{[0.00]=121.18] \times 100\}=100.00 \%$

### 11.0 CALCULATE PERCENT OF TOTAL VOLUME EXAMINED

11.1 Sum of Exam Volumes \%

Steps 5 Thur 10 No. Of Exams (6) | Examination |
| :--- |
| Coverage |

[312.50 15.00$]=62.50 \%$

Scan limited by nozzle weld design. This is a set-in nozzle. No scan from the nozzle side nor on or across the weld.
$\qquad$
$\qquad$
$\qquad$
$\qquad$

| Level: II | Date: |
| :--- | :--- |
|  | 04125102 |

Factory Mutual Insurance Company

## Sw. R.I. STRAIGHT BEAM LAMINATION EXAMINATION RECORD






1.0 AXIAL ULTRASONIC EXAMINATIONS - Upstream (US) and Downstream (DS)

| 1.1 Compute Required Exam Volume (\#Angles X Height X Width X Length $=\mathrm{V}$ t1) | 1 | $\times 0.15$ | x | 1.15 | x | 8.73 | $=1.51$ | cu. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1.2 Volume Not Examined with Ultrasonic Beam Directed US = A | 0 | $\times 0.00$ | x | 0.00 | $\times$ | 0.00 | $=0.00$ | Cu. |
| 1.3 Compute Upstream Limitation Percentage $\{(\mathrm{A} / \mathrm{Vi} 1\} \times 100\}=\mathbf{Z 1}$ |  |  | 0.00\% |  |  |  |  |  |
| 1.4 Volume Not Examined with Ultrasonic Beam Directed DS $=B$ | 1 | $\times 0.15$ | x | 1.15 | x | 8.73 | $=1.51$ | cu. |
| 1.5 Compute Downstream Limitation Percentage $\{(\mathrm{B} / \mathrm{Vi1}) \mathrm{X} 100\}=\mathrm{Z} 2$ |  |  |  |  |  | 100.00 |  |  |

2.0 CIRCUMFERENTIAL ULTRASONIC EXAMINATIONS (Clockwise and Counterclockwise)
2.1 Compute Required Exam Volume (\#Angles $X$ Height $X$ Width $X$ Length $=$ V2) $1 \times 0.15 \times 1.15 \times 8.73=1.51 \quad \mathrm{cu}$.
2.2 Compute Volume Not Examined in the Clockwise Direction $=\mathrm{C}$
2.3 Compute Clockwise Limitation Percentage (C / VI2) $\times 100=\mathrm{Z3}$
2.4 Compute Volume Not Examined in the Counter CW Direction $=\mathrm{D}$
2.5 Compute Counter CW Limitation Percentage ( $\mathrm{D} / \mathrm{V} 12$ ) $\times 100=\mathbf{Z 4}$

| 1 | $x$ | 0.15 | $x$ | 1.15 | $x$ | 8.73 | $=1.51$ | Cu |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | x | 0.15 | x | 1.15 | $\times$ | 8.73 | $=0.00$ | Cu . |
|  |  | 0.00\% |  |  |  |  |  |  |
| 0 | $x$ | 0.15 | x | 1.15 | x | 8.73 | $=0.00$ | Cu . |
|  |  |  |  |  |  | 0.00\% |  |  |

3.0 TOTAL EXAMINATION COVERAGE OBTAINED
3.1 Compute Total Limitation Percentage $Z 1+Z 2+Z 3+Z 4 / 4=L$
25.00\%
3.2 Compute Total Coverage (100-L)

## LIMITATION EXPLANATION / REMARKS

ONE SIDED EXAMINATION FROM ELBOW SIDE ON AXIAL SCAN DUE TO CONFIGURATION OF BRANCH CONNECTION.



## REQUEST FOR ADDITIONAL INFORMATION REQUEST FOR RELIEF REGARDING EXAMINATION COVERAGE SECOND TEN-YEAR IN-SERVICE INSPECTION INTERVAL SALEM NUCLEAR GENERATING STATION, UNIT NO. 2 <br> DOCKET NO. 50-311

QUESTION $\quad 1.3$ (c) For certain piping welds, Information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by licensee identification numbers listed below.

| Summary \# | 036000 |  |
| :---: | :---: | :---: |
| Component I.D. | 3-CV-1231-14 |  |
| Description | Pipe to Valve 2CV74 |  |
|  |  | Comments |
| 1 | Weld X-Section | See Attached |
| 2 | Material | Stainiess Steel |
| 3 | Thickness / weld Crown | Unknown |
| 4 | Obstruction | OD contour on valve side |
| 5 | Exam Area Highlighted on Drawing | Yes $\mathbf{X I}^{\mathbf{X}}$ ( No |
| 6 | Transducer ray exit point | See Attached |

## Comments

UT exam was performed of this component using 45 degree shear wave transducer. The ultrasonic examination was limited to $75 \%$ of the code required coverage being limited due to upstream side valve $O D$ configuration that restricted scanning. UT scans were performed on and across the weld in both directions No unacceptable indications were observed. A liquid penetrant examination and system pressure test was also completed with no recordable indications observed.



LV $1=$ COMMON INFORMATION
LV 2 = WELD INFORMATION
LV $3=$ HANGER INFORMATION



## REQUEST FOR ADDITIONAL INFORMATION REQUEST FOR RELIEF REGARDING EXAMINATION COVERAGE SECOND TEN-YEAR IN-SERVICE INSPECTION INTERVAL SALEM NUCLEAR GENERATING STATION, UNIT NO. 2 DOCKET NO. 50-311

QUESTION $\quad 1.3$ (c) For certain piping welds, Information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by licensee identification numbers listed below.


Comments

Ut exam was performed of this component using 45 and 60 degree shear wave transducer. The ultrasonic examination completed was limited to $49 \%$ of the code required coverage being achieved due to the OD configuration of the pump nozzle and the presence of a branch connection located downstream between 101" to 3 " that restricted scanning. There were no unacceptable indications observed. A liquid penetrant examination and system pressure test was also completed with no recordable indications observed.

Supplemental Drawing

Summary \#
084400
Description
Pump to Pipe

Component I.D.
27
27.5-RC-1230-1

Page

Comments No examination performed in the downstream direction due to pump nozzle configuration.

Sketch



No EXAMINATION UP dUE TO NOZZLE.CONFICVEATION. LIMITED EXAMINATION DN FROM 101 "-3"L dUE TO




LV $1=$ COMMON $\operatorname{INFORMATION}$
LV 2 = WELD INFORMATION
LV $3=$ HANGER $\operatorname{INFORMATION}$




PSEG ISO RH23-02


LV $1=$ COMMON INFORMATION
(C) 2000 PSEG Nucear, LILC. Alighitls Reserved.

LV 2 = WELD INFORMATION
LV $3=$ HANGER INFORMATION


JSTOMER:
SUMMARY NO:

SALEM 2, RFO-11
SUMMARY NO:
275210
SYSTEM:
LETDOWN HEAT EXCHANGERS
COMPONENT ID:
2-LHEX-1
1.0 CALCULATE REQUIRED EXAM VOLUME FOR STRAIGHT BEAM PLANAR FLAWS
1.1 Exam Height $X$ Exam Width $X$ Exam Length $=$ Exam
$0.54 \times 1.70 \times 68.10=62.52 \mathrm{cu}$.
$\qquad$
2.0 CALCULATE REQUIRED EXAM VOLUME FOR STRAIGHT BEAM LAMINAR
2.1 Exam Height $\times$ Exam Width $\times$ Exam Length $=$ Exam
$0.54 \times 1.70 \times 68.10=62.52 \mathrm{cu}$.
3.0 CALCULATE REQUIRED PARALLEL EXAM VOLUME FOR $45^{\circ} \mathrm{AND}$
3.1 Exam Height X Exam Width X Exam Length = Exam
$0.54 \times 1.70 \times 136.20=125.03 \mathrm{cu}$.
4.0 CALCULATE REQUIRED TRANSVERSE EXAM VOLUME FOR $45^{\circ}$ AND $60^{\circ}$
4.1 Exam Height $\times$ Exam Width $\times$ Exam Length $=$ Exam
$0.54 \times 1.70 \times 136.20=125.03 \mathrm{cu}$.

### 5.0 CALCULATE STRAIGHT BEAM PLANAR EXAM COVERAGE

5.1 Limited above / CW exam volume

| Height of <br> Obstructed Volume | Width of <br> Obstructed Area | Length of <br> Obstructed Area |
| :--- | :--- | :--- | | Volume with no |
| :---: |
| Exam Coverage |

5.2 Limited Below / CW exam volume

5.3 Percent Volume Examined

| Total 0 vol | Total 0 | Percent Volume |
| :--- | :--- | :--- |
| w/No Coverage | Exam Volume | Examined |

$$
100-\{[44.13 / 62.52] \times 100\}=29.41 \%
$$



## 

## CALCULATE STRAIGHT BEAM LAMINAR EXAM COVERAGE

6.1 Limited above / CW exam volume

| Height of |
| :--- |
| Obstructed Volume | | Width of |
| :--- |
| Obstructed Area |$\quad$| Length of |
| :--- |
| Obstructed Area |$\quad$| Volume with no |
| :---: |
| Exam Coverage |

6.2 Limited Below / CW exam volume

| Height of <br> Obstructed Volume | Width of <br> Obstructed Area | Length of <br> Obstructed Area | Volume with no <br> Exam Coverage |
| :--- | :--- | :--- | :---: | :---: |
| 0.00 | 0.00 | $\times$ | 0.00 |

Total straight beam planar exam volume not examined $\qquad$
6.3 Percent Volume Examined

| Total $0^{\circ}$ vol | Total $0^{\circ}$ | Percent Volume |
| :--- | :--- | :--- |
| $w /$ No Coverage | Exam Volume | Examined |

$100 \cdot\{[62.52]=62.52] \times 100\}=0.00 \%$
7.0 CALCULATE PARALLEL $45^{\circ}$ EXAM COVERAGE
7.1 Limited above / CW exam volume

7.2 Limited Below / CCW exam volume

| Height of | Width of | Length of | Volume with no |
| :--- | :--- | :--- | :--- |
| Obstructed Volume | Obstructed Area | Obstructed Area | Exam Coverage |


| 0.54 | X | 0.35 | X | 68.10 | $=$ | 12.87 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Total $45^{\circ}$ parallel exam volume not examined

$$
=\quad 44.13
$$

7.3 Percent Volume Examined

| Total $45^{\circ}$ parallel | Total $45^{\circ}$ parallel | Percent Volume |
| :--- | :--- | :--- |
| vol w/No Coverage | Exam Volume | Examined |

$100-\{[44.13 \ldots 125.03] \times 100\}=64.71 \%$


$1 \mathrm{B.0}$ CALCULATE PARALLEL $60^{\circ}$ EXAM COVERAGE
8.1 Limited above / CW exam volume

| Height of | Width of |
| :--- | :--- |
| Obstructed Volume | Obstructed Area |

Length of
Obstructed Area

Above / CW exam
Volume with no Exam Coverage

| 0.54 | X | 0.85 | X | 68.10 | = | 31.26 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

8.2 Limited Below / CCW exam volume

| Height of | Width of |
| :--- | :--- |
| Obstructed Volume | Obstructed Area |

Length of
Obstructed Area

Below / CCW exam
Volume with no Exam Coverage

| 0.54 | X | 0.35 | X | 68.10 | = | 12.87 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Total $60^{\circ}$ parallel exam volume not examined
$=44.13$

### 8.3 Percent Volume Examined

| Total $60^{\circ}$ parallel | Total $60^{\circ}$ parallel | Percent Volume |
| :--- | :--- | :--- |
| Vol w/No Coverage | Exam Volume | Examined |

$100 \cdot\{[44.13 \quad 1 \quad 125.03] \times 100\}=64.71 \%$

### 9.0 CALCULATE TRANSVERSE $45^{\circ}$ EXAM COVERAGE

9.1 Limited Clockwise exam volume

9.2 Limited Below Counter clockwise exam volume


Total $45^{\circ}$ transverse exam volume not examined
$=\quad 93.77$
9.3 Percent Volume Examined

| Total $45^{\circ}$ parallel | Total $45^{\circ}$ parallel | Percent Volume |
| :--- | :--- | :--- |
|  | Exam Volume | Examined |

$100 \cdot\{[93.77 / 125.03] \times 100\}=25.00 \%$


11.1 Sum of Exam Volumes \%


LMMITR BY FLANGE \& NOZZIES Panerioo
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$




Sum 275310 \& 275320
REgENERATVE HEAT EKCungerR
COMPNENTS 2-RHE $2: 3$

Scanaled on the outside
Regian of nte Hanger Climp AND Plate in tik Axial aid CiRCum FERENTA/ DIRECTIANS INDICATED. DID NOU SAN IN THE 5 INCH REqION ADJiANMT To The NoEz/ES, Awial OR - Circamperential Direction.

TabENAEET REGIOA.
Dio Nor SoAnt in this Regiant SINCE HANGER CLAMP AND PLATE Prevent Half-vee Coverage and TuOENHEET PREVENtS Full-VEE AND $1 / 2$ VEE Covenagk.

3
0
0
3
3
3
3
3
長

$$
\text { son of } 2
$$



WELD LOCATION IS ARbiTRARY AND BUED AN FIGuRE IWC-2500-2

- Requires EXAM Volume : EFGH
- WELD WIDTH AC BAEL ON 1978 DATA, $\overline{A C}=1.25^{\prime \prime}$
- LOCATION of RADIUS "G" BASED ON LOSS of BACKWA11 WHEN $0.75^{\prime \prime} \mathrm{DIA}$.

- Ser back distance for $45^{\circ} \mathrm{S}$ XDucer is $0.5^{\prime \prime}$ fleam from nt of SHOE TO BEAM EXit PONT, THUS WITH SHOE BUTTED Aghaigt OAStection, BEAM Exit pair is AT point " $A$ " AS SHAWN.
- SCANNIN PERFOMEA With BEAM DIRECRED TOWARD OUTTRCection, AJ JHOWN, STARTing. $6^{\prime \prime}$. BACK AND Moving Foreurtrad until SHOE is Burred AgAINSt OBSTRUCTion.'
- SCAnNing was Not PERformed mini BEAM LOOking away from Obstacetion - WELD Coverage oNLy CINSIDERED For Volume 8DHE SINCE WELD, IS STMNLLESS STEEL.




Tubevaret Reqion．
Dio Not SoAn in tair Regian
Since Hangers Clamp and plate
Prevent half－vee Coverage ald THOESHEET PREVENTS FचIl－VEE AND $1 / 2$ VeE Coveragg．

Sum＊ 275310 \＆ 275320 REGENERATVE HEAT ExCunger COMPNENTS 2－RHE $2: 3$

Scanaled on the outjide Regian of the Hanger Clamp AND plate in tre Axial and Circumperental diretomans INDICATED．DID NoT SCAN IN THE 5 INCH REGION ADjacem To the NoEz／es，Axial or Ciecumperential Directions．

哭
客品
竕学 $\square$

PAAE 2 of 3


WELD LOCATION IS ARGITRARY ADD BHED ON FIGuRE IWC-2500-2

- Requires EXAM Volume: EFGH
- WELO WIDTH AC BATEO ON 1978 DATA, $\overline{A C}=1.25^{\prime \prime}$
- LOCATION of RADIUS" $G$ " BAJED ON LOSS of BACKW/AII WNEN $0.75^{\prime \prime}$ DI4.

- Jet bract Distance for $45^{\circ} \mathrm{s}$ xDucer is $0.5^{\prime \prime}$ Fream Frant of SHOE TO BEAM EXit PONT. THUS WINt SHOE BUTTED AGYiNTT

$D_{\text {a }}=12$ f 2 Dablecerion, BEAM Exir paint is AT Point "A" AS SHAWN.
 AJ JHawn, JTABNing 6". BACK AND Maving Foreurtrid until SHoE is Burreg Agtrivt OBJtruction.
- Saqnaing was Not PERfmemed wint Beam looking Auray from obfrouetim
- WELD Coverage only Censiogized fore Volums 8DHE SINCE WELD IS STANILESS STEEL.



| $\underset{\text { FRAMATOME }}{ }$ | PROFILE AND THICKNESS (cont.) |  |  |
| :--- | :--- | :--- | :---: |
|  | Exam Date: 10/06/00 | Summary No.: 275400 |  |
|  | Examination Method: UT |  |  |
| System: Residual Heat Removal Exc | Identification: 21-RHRHEX-OUT |  |  |



JSTOMER:
SUMMARY NO:

SALEM 2, RFO-11
SYSTEM:
RESIDUAL HEAT REMOVAL EXCHANGER
COMPONENT ID:
21-RHRHEX-OUT
1.0 CALCULATE REQUIRED EXAM VOLUME FOR STRAIGHT BEAM PLANAR FLAWS
1.1 Exam Height $\times$ Exam Width $\times$ Exam Length $=$ Exam
$0.33 \times 1.50 \times 183.00=90.58 \mathrm{cu}$.
$\qquad$
2.0 CALCULATE REQUIRED EXAM VOLUME FOR STRAIGHT BEAM LAMINAR
2.1 Exam Height $X$ Exam Width $X$ Exam Length $=$ Exam $\quad 1.00 \times 2.00 \times 102.00=204.00 \mathrm{cu}$.
3.0 CALCULATE REQUIRED PARALLEL EXAM VOLUME FOR $45^{\circ}$ AND $60^{\circ}$
3.1 Exam Height X Exam Width $X$ Exam Length $=$ Exam $\quad 0.33 \times 1.50 \times 366.00=181.17 \mathrm{cu}$.
4.0 CALCULATE REQUIRED TRANSVERSE EXAM VOLUME FOR $45^{\circ}$ AND $60^{\circ}$
4.1 Exam Height X Exam Width X Exam Length = Exam
$0.33 \times 1.50 \times 366.00=181.17 \mathrm{cu}$.
5.0 CALCULATE STRAIGHT BEAM PLANAR EXAM COVERAGE
5.1 Limited above / CW exam volume

| Height of | Width of | Length of | Volume with no |
| :--- | :--- | :--- | :--- |
| Obstructed Volume | Obstructed Area | Obstructed Area | Exam Coverage |


5.2 Limited Below / CW exam volume

| Height of | Width of | Length of | Volume with no |
| :--- | :--- | :--- | :--- |
| Obstructed Volume | Obstructed Area | Obstructed Area | Exam Coverage |


| 0.00 | $\times \frac{0.00}{0.00}$ |
| :--- | :--- |
| Total straight beam planar exam volume not examined | $=0.00$ |

### 5.3 Percent Volume Examined

| Total 0 vol | Total 0 | Percent Volume |
| :--- | :--- | :--- |
| wiNo Coverage | Exam Volume | Examined |

100

- \{L $\quad \begin{aligned} & \text { 75.49 }\end{aligned}$
$\underline{90.58]} \times 100\}=16.67 \%$


## 

### 6.0 CALCULATE STRAIGHT BEAM LAMINAR EXAM COVERAGE

6.1 Limited above / CW exam volume

6.2 Limited Below / CW exam volume

| Height of | Width of | Length of | Volume with no |
| :--- | :--- | :--- | :--- |
| Obstructed Volume | Obstructed Area | Obstructed Area | Exam Coverage |

$\underline{0.00} \times 0.00 \times 0.00 \times 0.00$
Total straight beam planar exam volume not examined $\quad=\quad 148.00$
6.3 Percent Volume Examined

| Total $0^{\circ}$ vol | Total $0^{\circ}$ | Percent Volume |
| :--- | :--- | :--- |
| $w /$ No Coverage | Exam Volume | Examined |

$100-\{[148.00 / 204.00] \times 100\}=27.45 \%$

### 7.0 CALCULATE PARALLEL $45^{\circ}$ EXAM COVERAGE

7.1 Limited above / CW exam volume

| Height of | Width of | Length of | Volume with no |
| :--- | :--- | :--- | :--- |
| Obstructed Volume | Obstrucled Area | Obstructed Area | Exam Coverage |

0.33 $\times 1.50 \times 183.00 \times 190.58$
7.2 Limited Below / CCW exam volume

7.3 Percent Volume Examined

| Total $45^{\circ}$ paraliel | Total $45^{\circ}$ parallel | Percent Volume |
| :--- | :--- | :--- |
| vol w/No Coverage | Exam Volume | Examined |

$100-\{[181.17]=181.17] \times 100\}=0.00 \%$


## 

## ס. $0 \quad$ CALCULATE PARALLEL $60^{\circ}$ EXAM COVERAGE

8.1 Limited above / CW exam volume

| Height of <br> Obstructed Volume | Width of <br> Obstructed Area | Length of <br> Obstructed Area | Above / CW exam <br> Volume with no <br> Exam Coverage |
| :--- | :--- | :--- | :--- |
| $\times 1.53$ |  |  |  |$\quad \times$| 183.00 |
| :---: |$=$| 90.58 |
| :--- |

8.2 Limited Below / CCW exam volume

| Height of | Width of | Length of |
| :--- | :--- | :--- |
| Obstructed Volume | Obstructed Area | Obstructed Area |

Below / CCW exam
Volume with no Exam Coverage
$\underline{0.33} \times 1.50 \times 183.00 \times 190.58$

Total $60^{\circ}$ parallel exam volume not examined
$=\quad 181.17$
8.3 Percent Volume Examined

| Total $60^{\circ}$ parallel | Total $60^{\circ}$ parallel | Percent Volume |
| :--- | :--- | :--- |
| Vol w/ No Coverage | Exam Volume | Examined |

$100 \cdot\{[181.17]=181.17] \times 100\}=0.00 \%$

### 9.0 CALCULATE TRANSVERSE $45^{\circ}$ EXAM COVERAGE

9.1 Limited Clockwise exam volume

9.2 Limited Below Counter clockwise exam volume

9.3 Percent Volume Examined

$$
\begin{array}{ll}
\text { Total } 45^{\circ} \text { parallel } & \text { Total } 45^{\circ} \text { parallel } \\
& \text { Exam Volume }
\end{array}
$$

Percent Volume Examined


## 







| FRAMATOME TEGHNOLOGIES | ROFILE AND THICKNESS |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Exam Date: 10/06/00 | Summary | 2580 |  |
| Site: Salem Unit 2, RFO 1 |  | Examinatio | od: UT |  |
| System: Residual Heat Removal System |  | Identification: 8-RH-2273-18 |  |  |
|  |  |  |  |  |
|  |  |  |  |  |

#  

VOLUMETRIC PIPING EXAMINATION COVERAGE REPORT TUSTOMER:

SALEM 2, RFO-11

| SALEM 2, RFO-11 |
| :---: | :---: |
| SUMMARY NO: 502580 |

SYSTEM:
RESIDUAL HEAT REMOVAL SYSTEM
COMPONENT ID:
8-RH-2273-18

## VOLUMETRIC PIPING EXAMINATIONS

1.0 AXIAL ULTRASONIC EXAMINATIONS - Upstream (US) and Downstream (DS)
1.1 Compute Required Exam Volume (\#Angles $X$ Height $X$ Width $X$ Length $=V t 1$ )

| $1 \times 0.11 \times 0.90 \times 25.13=2.49$ |
| :---: |
| $1 \times 0.11 \times 0.45 \times 25.13=1.24$ |
| $50.00 \%$ |
| $1 \times 0.11 \times 0.90 \times 25.13=2.49$ |
| $100.000 \%$ |

2.0 CIRCUMFERENTIAL ULTRASONIC EXAMINATIONS (Clockwise and Counterclockwise)

2.2 Compute Volume Not Examined In the Clociwise Direction $=\mathbf{C}$
2.3 Compute Clockwise Limitation Percentage (C /Vi2) $\times 100=\mathbf{Z 3}$
2.4 Compute Volume Not Examined in the Counter $C W$ Direction $=\mathbf{D}$
22.22\%
2.5 Compute Counter CW Limitation Percentage (D/V2) $\times 100=\mathbf{Z 4}$
22.22\%

### 3.0 TOTAL EXAMINATION COVERAGE OBTAINED

3.1 Compute Total Limitation Percentage $\mathrm{Z} 1+\mathrm{Z} 2+\mathrm{Z} 3+\mathrm{Z} 4 / 4=\mathrm{L}$
48.61\%
3.2 Compute Total Coverage ( $100-\mathrm{L}$ ) 51.39\%

## LIMITATION EXPLANATION / REMARKS

Limitation on valve side (upstream). Used 70 degree from tee side for coverage on valve side.




## 

3-CV-2259-14R1

## VOLUMETRIC PIPING EXAMINATIONS

1.0 AXIAL ULTRASONIC EXAMINATIONS - UpStream (US) and Downstream (DS)
1.1 Compute Required Exam Volume (\#Angles $X$ Height $X$ Width $X$ Length $=V t 1$ ) $1 \times 0.15 \times 1.05 \times 10.90=1.72 \quad \mathrm{cu}$.
1.2 Volume Not Examined with Ultrasonic Beam Directed US $=A$
1.3 Compute Upstream Limitation Percentage $\{(\mathrm{A} / \mathrm{V} 1) \mathrm{X} \mathbf{1 0 0 \}}=\mathrm{Z1}$
1.4 Volume Not Examined with Uitrasonic Beam Directed DS $=\mathbf{B}$
1.5 Compute Downstream Limitation Percentage $\{(\mathrm{B} / \mathrm{V} 11) \times 100\}=\mathbf{Z 2}$
$1 \times 0.15 \times 1.05 \times 10.90=1.72 \quad$ cu. 100.000\%
2.0 CIRCUMFERENTIAL ULTRASONIC EXAMINATIONS (Clockwise and Counterclockwise)


Site: Salem Unit 2, RFO 11







## 

## :USTOMER:

SALEM 2, RFO-11
SUMMARY NO:
707320

## SYSTEM:

CHEMICAL AND VOLUME CONTROL SYSTEM
COMPONENT ID:
4-CV-2257-16

## VOLUMETRIC PIPING EXAMINATIONS

1.0 AXIAL ULTRASONIC EXAMINATIONS - Upstream (US) and Downstream (DS)

1.2 Volume Not Examined with Ultrasonic Beam Directed US $=A$
1.3 Compute Upstream Limitation Percentage $\{(\mathrm{A} / \mathrm{Vti}) \times 100\}=\mathrm{Z1}$
1.4 Volume Not Examined with Uitrasonic Beam Directed DS $=\mathrm{B}$
1.5 Compute Downstream Limitation Percentage $\{(\mathrm{B} / \mathrm{Vi1}) \times 100\}=\mathbf{Z 2}$

| $1 \times 0.20 \times 1.00 \times 14.13$ | $=2.83$ | cu. |
| :---: | :---: | :---: | :---: | :---: |
| $1 \times 0.20 \times 0.50 \times 14.13$ | $=1.41$ | cu. |
| $1 \times 0.20 \times 1.00 \times 14.13$ | $=2.83$ | cu. |
| $100.000 \%$ |  |  |

2.0 CIRCUMFERENTIAL ULTRASONIC EXAMINATIONS (Ciockwise and Counterclockwise)

21 Compute Required Exam Volume (\#Angles $X$ Height $X$ Wath $X$ Length $=\mathrm{V} 2$ ) $1 \times 0.20 \times 1.00 \times 14.13=2.83 \quad \mathrm{cu}$.
22 Compute Volume Not Examined in the Clockwise Direction $=\mathbf{C}$
2.3 Compute Clockwise Limitation Percentage (C / Vi2) X $100=\mathrm{Z3}$
2.4 Compute Volume Not Examined in the Counter CW Direction $=0$
2.5 Compute Counter CW Lmitation Percentage (D/Vt2) X $100=\mathbf{Z 4}$

| $1 \times 0.20 \times 1.00 \times 14.13=2.83$ |
| ---: |
| $1 \times 0.20 \times 0.50 \times 14.13=1.41$ |
| $1 \times 0.00 \%$ |
| $1 \times 0.50 \times 14.13=1.41$ |

50.00\%
3.0 TOTAL EXAMINATION COVERAGE OBTAINED
3.1 Compute Total Limitation Percentage $\mathrm{Z1}+\mathrm{Z2}+\mathrm{Z3}+\mathrm{Z4} / 4=\mathrm{L}$

| $62.50 \%$ |
| :--- |

## LIMITATION EXPLANATION / REMARKS

LIMITATION DUE TO VALVE.
USED 60 DEGREE L FROM ELBOW SIDE FOR COVERAGE ON VALVE SIDE.




## REQUEST FOR ADDITIONAL INFORMATION REQUEST FOR RELIEF REGARDING EXAMINATION COVERAGE SECOND TEN-YEAR IN-SERVICE INSPECTION INTERVAL SALEM NUCLEAR GENERATING STATION, UNIT NO. 2 DOCKET NO. 50-311

QUESTION $\quad 2.1$ (c) For certain piping welds, Information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by licensee identification numbers listed below.

Summary \# . 709960

Component I.D. 3-CV-2256-6

Description Pipe to Valve 2CV73


Comments
UT exam was performed of this component using 45, and 70 degree shear wave transducer. The ultrasonic examination was limited to $50 \%$ of the code required coverage being limited due to downstream side valve OD configuration that restricted scanning. UT scans were performed on and across the weld in both directions No unacceptable indications were observed. A liquid penetrant examination and system pressure test was also completed with no recordable indications observed.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Page of

Supplemental Drawing

Summary \#
Description

709960
Pipe to Valve 2CV73

Component I.D.

| 3-CV-2256-6 |
| :--- | :--- |
| Page of |

Comments
The ultrasonic examination was limited to $50 \%$ of the code required coverage being limited due to downstream side valve OD configuration that restricted scanning.

Sketch




## REQUEST FOR ADDITIONAL INFORMATION REQUEST FOR RELIEF REGARDING EXAMINATION COVERAGE SECOND TEN-YEAR IN-SERVICE INSPECTION INTERVAL <br> SALEM NUCLEAR GENERATING STATION, UNIT NO. 2 <br> DOCKET NO. 50-311

QUESTION $\quad 2.1$ (c) | For certain piping welds, Information submitted by the licensee is not |
| :--- |
| sufficient to demonstrate impracticality. Please submit further information |
| in the form of drawings, sketches and/or descriptions to support this |
| evaluation for the following components, as identified by licensee |
| identification numbers listed below. |

Summary \# 710190
Component I.D. 3-CV-2255-12

Description Pipe to Valve 2CV72

| 1 | Weld X-Section |
| :---: | :---: |
| 2 | Material |
| 3 | Thickness / weld Crown |
| 4 | Obstruction |
| 5 | Exam Area Highlighted on |
| 6 | Transducer ray exit point |



## Comments

UT exam was performed of this component using 45, and 70 degree shear wave transducer. The ultrasonic examination was limited to $50 \%$ of the code required coverage being limited due to downstream side valve OD configuration that restricted scanning. UT scans were performed on and across the weld in both directions No unacceptable indications were observed. A liquid penetrant examination and system pressure test was also completed with no recordable indications observed.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Supplemental Drawing

Summary \#
Description

710190
Pipe to Valve 2CV72

Component I.D.


Comments
The ultrasonic examination was limited to $50 \%$ of the code required coverage being limited due to downstream side valve OD configuration that restricted scanning.

Sketch


TITI EXAM LOTA IN THE CW AND CCU Dicceme

WesDyne International Reactor Vessel Inservice Examination Scan Parameter Execution


SCAN AREA/AREAS OBTAINED DURING THE SCAN

| TOP LEFT | $:$ | 242.00 | 53.50 |
| :--- | :--- | :--- | :--- |
| TOP RIGHT | $:$ | 320.50 | 53.50 |
| BOTTOM LEFT | $:$ | 242.00 | 66.50 |
| BOTTOM RIGHT | $:$ | 320.50 | 66.50 |



Comments $\qquad$


USER RESPONSIBLE FOR VERIFYING REVISION. STATUS AND CHANGES VTD 1267180002 PRINTED 20050112


2158

# WesDyne International <br> Reactor Vessel Inservice Examination Scan Parameter Execution 



SCAN AREA PER THE ORIGINAL TECHNIQUES

UDRPS SCAN AREA DEFINITION AZIMUTH
(DEGREES)
TOP LEFT
TOP RIGHT
BOTTOM LEFT
BOTTOM RIGHT
55.50
64.50
55.50
64.50

ELEVATION
(IN)
260.00 260.00 318.25 318.25

SCAN AREA/AREAS OBTAINED DURING THE SCAN

| TOP LEFT | $:$ | 55.50 | 260.00 |
| :--- | :--- | :--- | :--- |
| TOP RIGHT | $:$ | 64.50 | 318.25 |
| BOTTOM LEFT | $\vdots$ | 55.50 | 318.25 |
| BOTTOM RIGHT | $:$ | 64.50 | 260.00 |


| Increment Size (in) |  | 0.50 |
| :--- | :--- | :--- |
| Number of Indexes Specified | $=29$ |  |
| Number of Indexes Completed | $=29$ |  |
| Scan Area - Original Techniques (sq in) | $=844.6$ |  |
| Scan Area - This Scan (sq in) | $=844.6$ |  |
| Scan Area - Completed (sq in) | $=844.6$ |  |
|  | Time | Date |
| Scan Started | $21: 15: 56$ | $04 / 17 / 02$ |
| Scan Completed | $21: 23: 25$ | $04 / 17 / 02$ |

> WesDyne International
> Reactor Vessel Inservice Examination Scan Parameter Execution


SCAN AREA/AREAS OBTAINED DURING THE SCAN

| TOP LEFT | $\vdots$ | 55.50 | 246.00 |
| :--- | :--- | :--- | :--- |
| TOP RIGHT | $\vdots$ | 64.50 | 260.00 |
| BOTTOM LEFT | $\vdots$ | 55.50 | 260.00 |
| BOTTOM RIGHT | $:$ | 64.50 | 246.00 |





WesDyne International
Reactor Vessel Inservice Examination Scan Parameter Execution


SCAN AREA PER THE ORIGINAI TECHNIQUES

| UDRPS SCAN AREA DEFINITION | AZIMUTH <br> (DEGREES) | ELEVATION |
| :---: | :---: | :---: | :---: |
| (IN) |  |  |

SCAN AREA/AREAS OBTAINED DURING THE SCAN

| TOP LEFT | $:$ | 175.50 | 246.00 |
| :--- | :--- | :--- | :--- |
| TOP RIGHT | $:$ | 184.50 | 260.00 |
| BOTTOM LEFT | $:$ | 175.50 | 260.00 |
| BOTTOM RIGHT | $:$ | 184.50 | 246.00 |


| Increment Size (in) | $=0.50$ |
| :--- | :--- |
| Number of Indexes Specified | $=29$ |
| Number of Indexes Completed | $=29$ |
| Scan Area - Original Techniques (sq in) | $=203.0$ |
| Scan Area - This Scan (sq in) | $=203.0$ |
| Scan Area - Completed (sq in) | $=203.0$ |
|  |  |
| Scan Started | Date |
| Scan Completed |  |

WesDyne International Reactor Vessel Inservice Examination Scan Parameter Execution


SCAN AREA/AREAS OBTAINED DURING THE SCAN

| TOP LEFT | $:$ | 175.50 | 260.00 |
| :--- | :--- | :--- | :--- |
| TOP RIGHT | $:$ | 184.50 | 318.25 |
| BOTTOM LEFT | $:$ | 175.50 | 318.25 |
| BOTTOM RIGHT | $:$ | 184.50 | 260.00 |



Comments

WesDyne International Reactor Vessel Inservice Examination Scan Parameter Execution



SCAN AREA PER THE ORIGINAL TECHNIQUES

| UDRPS SCAN AREA DEFINITION | AZIMUTH <br> (DEGREES) | ELEVATION <br> (IN) |  |
| :---: | :---: | :---: | :---: |
| TOP LEFT | $\vdots$ | 173.50 | 242.00 |
| TOP RIGHT | $\vdots$ | 186.50 | 242.00 |
| BOTTOM LEFT | $\vdots$ | 173.50 | 321.48 |
| BOTTOM RIGET | $\vdots$ | 186.50 | 321.48 |

SCAN AREA/AREAS OBTAINED DURING THE SCAN

| TOP LEFT | $:$ | 242.00 | 173.50 |
| :--- | :--- | :--- | :--- |
| TOP RIGHT | $\vdots$ | 321.48 | 173.50 |
| BOTTOM LEFT | $\vdots$ | 242.00 | 186.50 |
| BOTTOM RIGHT | $:$ | 321.48 | 186.50 |


| Increment Size (in) |  | $=0.50$ |
| :--- | :--- | :--- |
| Number of Indexes Specified |  | $=160$ |
| Number of Indexes Completed | $=158$ |  |
| Scan Area - Original Techniques (sq in) | $=1570.4$ |  |
| Scan Area - This Scan (sq in) | $=1570.4$ |  |
| Scan Area - Completed (sq in) | $=1550.8$ |  |
|  | Time | Date |
| Scan Started | $20: 02: 27$ | $04 / 17 / 02$ |
| Scan Completed | $20: 26: 24$ | $04 / 17 / 02$ |
| Robot Operator Signature |  |  |

# WesDyne International Reactor Vessel Inservice Examination Scan Parameter Execution 

```
CUSTOMER
PUBLIC SERVICE ELECTRIC & GAS
SITE ......................... SALEM - UNIT 2
OUTAGE ......................... 2R12
VESSEL TYPE ................ PWR - WESTINGHOUSE FOUR LOOP
```

```
WELD IDENTIFICATION - 2-RPV-3442C
Weld and Scan Type = SHELL LONGITUDINAL - PARALLEL SCAN
Scan Data File Name = W14-PAR-260-320a
```

SCAN AREA PER THE ORIGINAL TECHNIQUES

UDRPS SCAN AREA DEFINITION AZIMUTH

| TOP LEFT | $:$ | 295.50 | 260.00 |
| :--- | :--- | :--- | :--- |
| TOP RIGHT | $\vdots$ | 304.50 | 260.00 |
| BOTTOM LEFT | $:$ | 295.50 | 318.25 |

BOTTOM RIGHT : 304.50 318.25

SCAN AREA/AREAS OBTAINED DURING THE SCAN

| TOP LEFT | $:$ | 295.50 | 260.00 |
| :--- | :--- | :--- | :--- |
| TOP RIGHT | $\vdots$ | 304.50 | 318.25 |
| BOTTOM LEFT | $\vdots$ | 295.50 | 318.25 |
| BOTTOM RIGHT | $:$ | 304.50 | 260.00 |


| Increment Size (in) | $=0.50$ |
| :--- | :--- |
| Number of Indexes Specified | $=29$ |
| Number of Indexes Completed | $=29$ |
| Scan Area - Original Techniques (sq in) | $=844.6$ |
| Scan Area - This Scan (sq in) | $=844.6$ |
| Scan Area - Completed (sq in) | $=844.6$ |
|  | Time |
| Scan Started | Date |
| Scan Completed | $23: 00: 56$ |
|  | $23: 10: 46$ |

Robot Operator Signature
 DATE f/17/02 UT Operator Signature


```
WesDyne International
Reactor Vessel Inservice Examination Scan Parameter Execution
```



SCAN AREA/AREAS OBTAINED DURING THE SCAN

| TOP LEFT | $:$ | 295.50 | 246.00 |
| :--- | :--- | :--- | :--- |
| TOP RIGHT | $\vdots$ | 304.50 | 260.00 |
| BOTTOM LEFT | $\vdots$ | 295.50 | 260.00 |
| BOTTOM RIGHT | $:$ | 304.50 | 246.00 |


| Increment Size (in) | $=0.50$ |  |
| :--- | :--- | :--- |
| Number of Indexes Specified |  | $=29$ |
| Number of Indexes Completed |  | $=29$ |
| Scan Area - Original Techniques (sq in) | $=203.0$ |  |
| Scan Area - This Scan (sq in) | $=203.0$ |  |
| Scan Area - Completed (sq in) | $=203.0$ |  |
|  | Time | Date |
| Scan Started | $22: 50: 51$ | $04 / 17 / 02$ |
| Scan Completed | $22: 53: 52$ | $04 / 17 / 02$ |
|  |  |  |

```
WesDyne International
Reactor Vessel Inservice Examination Scan Parameter Execution
```



SCAN AREA PER THE ORIGINAL TECHNIQUES

| UDRPS SCAN AREA DEFINITION | AZIMUTH | ELEVATION |  |
| :---: | :---: | :---: | :---: |
| (DEGREES) | (IN) |  |  |
| TOP LEFT | $:$ | 293.50 | 242.00 |
| TOP RIGHT | $:$ | 306.50 | 242.00 |
| BOTTOM LEFT | $:$ | 293.50 | 321.48 |
| BOTTOM RIGHT | $:$ | 306.50 | 321.48 |

SCAN AREA/AREAS OBTAINED DURING THE SCAN

| TOP LEFT | $:$ | 246.00 | 293.50 |
| :--- | :--- | :--- | :--- |
| TOP RIGHT | $:$ | 321.00 | 306.50 |
| BOTTOM LEFT | $:$ | 246.00 | 306.50 |
| BOTTOM RIGHT | $:$ | 321.00 | 293.50 |


| Increment Size (in) | $=0.50$ |
| :--- | :--- |
| Number of Indexes Specified | $=160$ |
| Number of Indexes Completed | $=159$ |
| Scan Area - Original Techniques (sq in) | $=1570.4$ |
| Scan Area - This Scan (sq in) | $=1570.4$ |
| Scan Area - Completed (sq in) | $=1560.6$ |
|  | Time |
| Scan Started | Date |
| Scan Completed | $02: 13: 12$ |

Comments $\qquad$


WesDyne International Reactor Vessel Inservice Examination Scan Parameter Execution


SCAN AREA/AREAS OBTAINED DURING THE SCAN

| TOP LEFT | $:$ | 76.00 | 266.29 |
| :--- | :--- | :--- | :--- |
| TOP RIGHT | $:$ | 48.20 | 274.84 |
| BOTTOM LEFT | $:$ | 76.00 | 273.72 |
| BOTTOM RIGHT | $:$ | 48.20 | 265.17 |


| Increment Size (in) | $=0.50$ |
| :--- | :--- |
| Number of Indexes Specified | $=87$ |
| Number of Indexes Completed | $=87$ |
| Scan Area - Original Techniques (sq in) | $=483.3$ |
| Scan Area - This Scan (sq in) | $=483.3$ |
| Scan Area - Completed (sq in) | $=483.3$ |

Scan Started
Scan Completed

Robot Operator Signature
UT Operator Signature

Time

$$
04: 15: 34
$$

$$
04: 22: 53
$$

Date
04/17/02
04/17/02


DATE $4 / 12 / 02$




WesDyne International
Reactor Vessel Inservice Examination Scan Parameter Execution


# WesDyne International Reactor Vessel Inservice Examination Scan Parameter Execution 



SCAN AREA/AREAS OBTAINED DURING THE SCAN

| TOP LEFT | $\vdots$ | 266.38 | 75.23 |
| :--- | :--- | :--- | :--- |
| TOP RIGHT | $\vdots$ | 273.62 | 49.20 |
| BOTTOM LEFT | $\vdots$ | 266.38 | 49.20 |
| BOTTOM RIGHT | $:$ | 273.62 | 75.23 |



WesDyne International
Reactor Vessel Inservice Examination Scan Parameter Execution


SCAN AREA/AREAS OBTAINED DURING THE SCAN

| TOP LEFT | $:$ | 265.38 | 49.20 |
| :--- | :--- | :--- | :--- |
| TOP RIGHT | $:$ | 273.08 | 41.60 |
| BOTTOM LEFT | : | 265.38 | 41.60 |
| BOTTOM RIGHT | $:$ | 273.08 | 49.20 |
|  |  |  |  |
|  |  |  |  |
| TOP LEFT | 272.22 | 49.20 |  |
| TOP RIGHT | $:$ | 273.08 | 41.60 |
| BOTTOM LEFT | $:$ | 272.22 | 41.60 |
| BOTTOM RIGHT | $:$ | 273.08 | 49.20 |

Increment Size (in) $=0.50$
Number of Indexes Specified $=21$
Number of Indexes Completed $\quad \doteq 19$
Scan Area - Original Techniques (sq in) $=122.8$
Scan Area - This Scan (sq in) $=122.8$
Scan Area - Completed (sq in) $=111.1$

Scan Started
Time Date

Scan Completed

Robot Operator Signature
$04: 49: 20 \quad 04 / 17 / 02$

ITT Aerator signature




WesDyne International

## Reactor Vessel Inservice Examination Scan Parameter Execution



SCAN AREA/AREAS OBTAINED DURING THE SCAN

| TOP LEFT | $:$ | 27.63 | 55.00 |
| :--- | :--- | :--- | :--- |
| TOP RIGHT | $:$ | 35.41 | 55.00 |
| BOTTOM LEFT | $:$ | 27.63 | 40.50 |
| BOTTOM RIGHT | $:$ | 35.41 | 40.50 |


| Increment Size (in) | $=0.50$ |
| :--- | :--- |
| Number of Indexes Specified | $=18$ |
| Number of Indexes Completed | $=18$ |
| Scan Area - Original Techniques (sq in) | $=201.6$ |
| Scan Area - This Scan (sq in) | $=201.6$ |
| Scan Area - Completed (sq in) | $=201.6$ |

Scan Started
Scan Completed

$$
06: 37: 11
$$

04/17/02


> WesDyne International
> Reactor Vessel Inservice Examination Scan Parameter Execution


SCAN AREA PER THE ORIGINAL TECHNIQUES

UDRPS SCAN AREA DEFINITION

| TOP LEFT | $:$ |
| :--- | :--- |
| TOP RIGHT | $\vdots$ |
| BOTTOM LEFT |  |
| BOTTOM RIGHT |  |

AZIMUTH
(DEGREES)
26.38 33.62
25.72
34.28

MERIDINAL (DEGREES)
75.23
75.23
55.00
55.00

SCAN AREA/AREAS OBTAINED DURING THE SCAN

| TOP LEFT | $:$ | 26.38 | 75.23 |
| :--- | :--- | :--- | :--- |
| TOP RIGHT | $:$ | 33.62 | 55.00 |
| BOTTOM LEFT | $:$ | 26.38 | 55.00 |
| BOTTOM RIGHT | $:$ | 33.62 | 75.23 |



## WesDyne International Reactor Vessel Inservice Examination Scan Parameter Execution

```
CUSTOMER ..................... PUBLIC SERVICE ELECTRIC & GAS
SITE
SALEM - UNIT 2
OUTAGE .......................... 2R12
VESSEL TYPE ................. PWR - WESTINGHOUSE FOUR LOOP
```

WELD IDENTIFICATION - 2-RPV-1443C
Weld and Scan Type $=$ HEAD MERIDINAL PERPENDICULAR SCAN
Scan Data File Name = W15-MER-PRP-30A

SCAN AREA PER THE ORIGINAL TECHNIQUES

| UDRPS SCAN AREA DEFINITION | MERIDINAL <br> (DEGREES) | AZIMUTH <br> (DEGREES) |  |
| :---: | :--- | :---: | :---: |
| TOP LEFT | $:$ | 39.50 | 29.08 |
| TOP RIGHT | $\vdots$ | 39.50 | 32.65 |
| BOTTOM LEFT | $\vdots$ | 54.00 | 29.08 |
| BOTTOM RIGHT | $:$ | 54.00 | 32.65 |

SCAN AREA/AREAS OBTAINED DURING THE SCAN

| TOP LEFT | $:$ | 54.00 | 28.77 |
| :--- | :--- | :--- | :--- |
| TOP RIGHT | $\vdots$ | 39.50 | 28.44 |
| BOTTOM LEFT | $:$ | 54.00 | 33.33 |
| BOTTOM RIGHT | $:$ | 39.50 | 34.23 |



WesDyne International
Reactor Vessel Inservice Examination Scan Parameter Execution



# WesDyne International <br> Reactor Vessel Inservice Examination Scan Parameter Execution 



SCAN AREA/AREAS OBTAINED DURING THE SCAN

| TOP LEFT | $:$ | 76.00 | 86.29 |
| :--- | :--- | :--- | :--- |
| TOP RIGHT | $\vdots$ | 48.75 | 94.80 |
| BOTTOM LEFT | $\vdots$ | 76.00 | 93.72 |
| BOTTOM RIGHT | $:$ | 48.75 | 85.21 |


| Increment Size (in) | $=0.50$ |
| :--- | :--- |
| Number of Indexes Specified | $=88$ |
| Number of Indexes Completed | $=85$ |
| Scan Area - Original Techniques (sq in) | $=488.8$ |
| Scan Area - This Scan (sq in) | $=488.8$ |
| Scan Area - Completed (sq in) | $=472.2$ |

Scan Started Time Date

Scan Completed

Robot Operator Signature UT Operator Signature


# WesDyne International <br> Reactor Vessel Inservice Examination Scan Parameter Execution 



SCAN AREA/AREAS OBTAINED DURING THE SCAN

| TOP LEFT | $:$ | 86.38 | 75.23 |
| :--- | :--- | :--- | :--- |
| TOP RIGHT | $\vdots$ | 93.62 | 50.60 |
| BOTTOM LEFT | $\vdots$ | 86.38 | 50.60 |
| BOTTOM RIGHT | $:$ | 93.62 | 75.23 |





WesDyne International
Reactor Vessel Inservice Examination Scan Parameter Execution


SCAN AREA/AREAS OBTAINED DURING THE SCAN

| TOP LEFT | $:$ | 22.36 | 270.00 |
| :--- | :--- | :--- | :--- |
| TOP RIGHT | $\vdots$ | 36.05 | 315.25 |
| BOTTOM LEFT | $\vdots$ | 22.36 | 315.25 |
| BOTTOM RIGET | $:$ | 36.05 | 270.00 |



Comments

# WesDyne International <br> Reactor Vessel Inservice Examination Scan Parameter Execution 



SCAN AREA/AREAS OBTAINED DURING THE SCAN

| TOP LEFT | $:$ | 22.36 | 324.00 |
| :--- | :--- | :--- | :--- |
| TOP RIGHT | $:$ | 36.05 | 351.00 |
| BOTTOM LEFT | $:$ | 22.36 | 351.00 |
| BOTTOM RIGHT | $:$ | 36.05 | 324.00 |


| Increment Size (in) | $=0.50$ |
| :--- | :--- |
| Number of Indexes Specified | $=29$ |
| Number of Indexes Completed | $=29$ |
| Scan Area - Original Techniques (sq in) | $=580.9$ |
| Scan Area - This Scan (sq in) | $=580.9$ |
| Scan Area - Completed (sq in) | $=580.9$ |


|  | Time | Date |
| :---: | :---: | :---: |
| Scan Started |  |  |
|  | 19:35:21 | 04/18/02 |
| Scan Completed |  |  |
|  | 19:40:10 | 04/18/02 |
| Robot Operator Signature | - 10 ary | DATE |
|  | , T0.0 |  |
| UT Operator Signature | Mesa | CDATE |

Comments

WesDyne International
Reactor Vessel Inservice Examination Scan Parameter Execution


SCAN AREA/AREAS OBTAINED DURING THE SCAN

| TOP LEFT | $:$ | 22.36 | 6.00 |
| :--- | :--- | ---: | ---: |
| TOP RIGHT | $:$ | 36.05 | 34.00 |
| BOTTOM LEFT | $:$ | 22.36 | 34.00 |
| BOTTOM RIGHT | $:$ | 36.05 | 6.00 |



WesDyne International Reactor Vessel Inservice Examination Scan Parameter Execution


SCAN AREA PER THE ORIGINAL TECHNIQUES

| UDRPS SCAN AREA DEFINITION | ELEVATION | AZIMUTH |  |
| :---: | :---: | :---: | :---: |
| TOP LEFT | $:$ | 22.36 | (DEGREES) |
| TOP RIGHT | $:$ | 22.36 | 43.50 |
| BOTTOM LEFT | $:$ | 36.05 | 90.00 |
| BOTTOM RIGHT | $:$ | 36.05 | 43.50 |
|  |  |  | 90.00 |

SCAN AREA/AREAS OBTAINED DURING THE SCAN

| TOP LEFT | $:$ | 22.36 | 43.50 |
| :--- | :--- | :--- | :--- |
| TOP RIGHT | $:$ | 36.05 | 90.00 |
| BOTTOM LEFT | $:$ | 22.36 | 90.00 |
| BOTTOM RIGHT | $:$ | 36.05 | 43.50 |


| Increment Size (in) | $=0.50$ |
| :--- | :--- |
| Number of Indexes Specified | $=29$ |
| Number of Indexes Completed | $=29$ |
| Scan Area - Original Techniques (sq in) | $=1000.4$ |
| Scan Area - This Scan (sq in) | $=1000.4$ |
| Scan Area - Completed (sq in) | $=1000.4$ |

Scan Started
Time Date

Scan Completed

Robot Operator Signature UT Operator Signature


Comments $\qquad$

WesDyne International
Reactor Vessel Inservice Examination Scan Parameter Execution


SCAN AREA/AREAS OBTAINED DURING THE SCAN

| TOP LEFT | $\vdots$ | 22.36 | 90.00 |
| :--- | :--- | ---: | ---: |
| TOP RIGHT | $\vdots$ | 36.05 | 135.00 |
| BOTTOM LEFT | $\vdots$ | 22.36 | 135.00 |
| BOTTOM RIGHT | $:$ | 36.05 | 90.00 |



WesDyne International
Reactor Vessel Inservice Examination Scan Parameter Execution


WesDyne International
Reactor Vessel Inservice Examination Scan Parameter Execution


SCAN AREA/AREAS OBTAINED DURING THE SCAN

| TOP LEFT | $:$ | 22.36 | 186.50 |
| :--- | :--- | :--- | :--- |
| TOP RIGHT | $:$ | 36.05 | 215.50 |
| BOTTOM LEFT | $:$ | 22.36 | 215.50 |
| BOTTOM RIGHT | $:$ |  | 36.05 |



WesDyne International Reactor Vessel Inservice Examination Scan Parameter Execution


SCAN AREA/AREAS OBTAINED DURING THE SCAN

| TOP LEFT | $:$ | 22.36 | 223.00 |
| :--- | :--- | :--- | :--- |
| TOP RIGHT | $:$ | 36.05 | 270.00 |
| BOTTOM LEFT | $\vdots$ | 22.36 | 270.00 |
| BOTTOM RIGHT | $:$ | 36.05 | 223.00 |



WesDyne International
Reactor Vessel Inservice Examination Scan Parameter Execution


SCAN AREA/AREAS OBTAINED DURING THE SCAN

| TOP LEFT | $:$ | 5.75 | 22.36 |
| :--- | :--- | ---: | ---: |
| TOP RIGHT | $:$ | 34.75 | 22.36 |
| BOTTOM LEFT | $:$ | 5.75 | 42.08 |
| BOTTOM RIGHT | $:$ | 34.75 | 42.08 |



Comments $\qquad$

WesDyne International Reactor Vessel Inservice Examination Scan Parameter Execution


Comments $\qquad$

WesDyne International
Reactor Vessel Inservice Examination Scan Parameter Execution


SCAN AREA/AREAS OBTAINED DURING THE SCAN

| TOP LEFT | $:$ | 90.00 | 22.36 |
| :--- | :--- | ---: | ---: |
| TOP RIGHT | $\vdots$ | 136.50 | 22.36 |
| BOTTOM LEFT | $\vdots$ | 90.00 | 42.08 |
| BOTTOM RIGHT | $:$ | 136.50 | 42.08 |


| Increment Size (in) | $=0.50$ |
| :--- | :--- |
| Number of Indexes Specified | $=140$ |
| Number of Indexes Completed | $=140$ |
| Scan Area - Original Techniques (sq in) | $=1402.1$ |
| Scan Area - This Scan (sq in) | $=1402.1$ |
| Scan Area - Completed (sq in) | $=1402.1$ |
|  | Time |
| Scan Started | Date |
| Scan Completed | $21: 48: 30$ |
|  | $22: 04: 43$ |

Robot Operator Signature UT Operator Signature
 $4 / 18 / 02$ Comments $\qquad$

WesDyne International
Reactor Vessel Inservice Examination Scan Parameter Execution


SCAN AREA PER THE ORIGINAL TECHNIQUES

| UDRPS SCAN AREA DEFINITION. | AZIMUTH | ELEVATION |  |
| :---: | :---: | :---: | :---: |
| (DEGREES) | (IN) |  |  |
| TOP LEFT | $:$ | 141.50 | 22.36 |
| TOP RIGHT | $:$ | 172.50 | 22.36 |
| BOTTOM LEFT | $:$ | 141.50 | 42.08 |
| BOTTOM RIGHT | $:$ | 172.50 | 42.08 |

SCAN AREA/AREAS OBTAINED DURING THE SCAN

| TOP LEFT | $:$ | 141.50 | 22.36 |
| :--- | :--- | :--- | :--- |
| TOP RIGHT | $:$ | 172.50 | 22.36 |
| BOTTOM LEFT | $:$ | 141.50 | 42.08 |
| BOTTOM RIGHT | $:$ | 172.50 | 42.08 |

Increment Size (in)
Number of Indexes Specified $=94$
Number of Indexes Completed $=94$
Scan Area - Original Techniques (sq in) $=941.4$
Scan Area - This Scan (sq in) $=941.4$
Scan Area - Completed (sq in) $=941.4$

Scan Started
Scan Completed

Robot Operator Signature
UT Operator Signature

Time
22:11:05

22:21:55

Date
04/18/02

04/18/02


Comments


WesDyne International
Reactor Vessel Inservice Examination Scan Parameter Execution

|  | CUSTOMER . . . <br> SITE <br> OUTAGE <br> VESSEL TYPE |  | ```PUBLIC SERVICE ELECTRIC SALEM - UNIT 2 2R12 PWR-WESTINGHOUSE 4 LOOP``` | $\&$ GAS |
| :---: | :---: | :---: | :---: | :---: |
| WEID IDENFICATION - 2-RPV-7442 |  |  |  |  |
| Weld and Scan Type |  | FLANGE CIRCUMFERENTIAL PERPENDICULAR |  | SCAN |
| Scan Data File Name = |  | W1-PRP-185-214 |  |  |
| SCAN AREA PER THE ORIGINAL TECHNIQUES |  |  |  |  |
| UDRPS | SCAN AREA DEFINITION | AZIMUTH <br> (DEGREES) | ELEVATION <br> (IN) |  |
|  | TOP LEFT | 185.50 | 22.36 |  |
|  | TOP RIGHT | 214.50 | 22.36 |  |
|  | BOTTOM LEFT | 185.50 | 42.08 |  |
|  | BOTTOM RIGHT : | 214.50 | 42.08 |  |

SCAN AREA/AREAS OBTAINED DURING THE SCAN

| TOP LEFT | $:$ | 185.50 | 22.36 |
| :--- | :--- | :--- | :--- |
| TOP RIGHT | $:$ | 214.50 | 22.36 |
| BOTTOM LEFT | $:$ | 185.50 | 42.08 |
| BOTTOM RIGHT | $:$ | 214.50 | 42.08 |


| Increment Size (in) |  | $=0.50$ |
| :--- | :--- | :--- |
| Number of Indexes Specified |  | $=88$ |
| Number of Indexes Completed |  | $=88$ |
| Scan Area - Original Techniques (sq in) | $=881.3$ |  |
| Scan Area - This Scan (sq in) | $=881.3$ |  |
| Scan Area - Completed (sq in) |  | $=881.3$ |

## Scan Started

Scan Completed
Time Date

$$
22: 33: 54 \quad 04 / 18 / 02
$$

$$
\text { Robot operator Signature operator signature } 22: 44: 03
$$

Comments


WesDyne International
Reactor Vessel Inservice Examination Scan Parameter Execution


SCAN AREA/AREAS OBTAINED DURING THE SCAN

| TOP LEFT | $:$ | 221.00 | 22.36 |
| :--- | :--- | :--- | :--- |
| TOP RIGHT | $:$ | 270.00 | 22.36 |
| BOTTOM LEFT | $:$ | 221.00 | 42.08 |
| BOTTOM RIGHT | $:$ | 270.00 | 42.08 |




SCAN AREA/AREAS OBTAINED DURING THE SCAN

| TOP LEFT | $:$ | 270.00 | 22.36 |
| :--- | :--- | :--- | :--- |
| TOP RIGHT | $:$ | 317.50 | 42.08 |
| BOTTOM LEFT | $:$ | 270.00 | 42.08 |
| BOTTOM RIGHT | $:$ | 317.50 | 22.36 |



WesDyne International Reactor Vessel Inservice Examination Scan Parameter Execution

| CUSTOMER | PUBLIC SERVICE ELECTRIC \& GAS |
| :---: | :---: |
| SITE | SALEM - UNIT 2 |
| OUTAGE | 2R12 |
| VESSEL TYPE | PWR-WESTINGHOUSE 4 LOOP |

WELD IDENFICATION - 2-RPV-7442
Weld and Scan Type $=$ FLANGE CIRCUMFERENTIAL PERPENDICULLAR SCAN
Scan Data File Name $=$ W1-PRP-321-353

SCAN AREA PER THE ORIGINAL TECHNIQUES
UDRPS SCAN AREA DEFINITION AZIMUTH ELEVATION

TOP RIGHT
BOTTOM LEFT BOTTOM RIGHT
(DEGREES)
321.50 353.00 321.50 353.00
(IN)
22.36 22.36 42.08 42.08

SCAN AREA/AREAS OBTAINED DURING THE SCAN

| TOP LEFT | $:$ | 321.50 | 22.36 |
| :--- | :--- | :--- | :--- |
| TOP RIGHT | $:$ | 353.00 | 42.08 |
| BOTTOM LEFT | $:$ | 321.50 | 42.08 |
| BOTTOM RIGHT | $:$ | 353.00 | 22.36 |



Summary * 002800 RPV HD/FL6. WEL




Summary $\$ 002800$ RPV HD/Fu6. WELD


FRAMATOME ANP VESSEL VOLUMETRIC EXAMINATION COVERAGE REPORT

### 6.0 CALCULATE STRAIGHT BEAM LAMINAR EXAM COVERAGE

6.1 Limited above / CW exam volume

| Height of | Width of | Length of | Volume with no <br> Obstructed Volume |
| :--- | :--- | :--- | :--- |
| Obstructed Area | Obstructed Area | Exam Coverage |  |


6.2 Limited Below / CW exam volume

| Height of | Width of | Length of | Volume with no |
| :--- | :--- | :--- | :--- |
| Obstructed Volume | Obstructed Area | Obstructed Area | Exam Coverage |

$\underline{0.00} \times \underline{0.00} \times \underline{0.00} 0$
Total straight beam planar exam volume not examined $=0.00$

### 6.3 Percent Volume Examined

| Total $0^{\circ}$ vol | Total $0^{\circ}$ | Percent Volume |
| :--- | :--- | :--- |
| w/No Coverage | Exam Volume | Examined |

$100-\{[0.0010 .00] \times 100\}=0.00 \%$

### 7.0 CALCULATE PARALLEL $45^{\circ}$ EXAM COVERAGE

7.1 Limited above / CW exam volume

| Height of <br> Obstructed Volume | Width of <br> Obstructed Area | Length of <br> Obstructed Area | Volume with no <br> Exam Coverage |
| :--- | :--- | :--- | :--- |

$\underline{1.10} \times 1.10 \times 10.00 \quad 12.10$
7.2 Limited Below / CCW exam volume

| Height of <br> Obstructed Volume | Width of <br> Obstructed Area | Length of <br> Obstructed Area | Volume with no <br> Exam Coverage |
| :--- | :--- | :--- | :--- | :--- |

Total $45^{\circ}$ parallel exam volume not examined $=\underline{8,424.42}$
7.3 Percent Volume Examined

| Total $45^{\circ}$ parallel | Total $45^{\circ}$ parallel | Percent Volume |
| :--- | :--- | :--- |
| vol w/No Coverage | Exam Volume | Examined |

$$
\begin{aligned}
& 100-\left\{[8,424.42] \quad \begin{array}{l}
\text { 27,824.00 }] \times 100\}=69.72 \% \\
\hline 268
\end{array}\right. \\
& \text { Factory Mutual } \\
& \text { Insurance Company } \\
& \text { OETHEley, 4-25-02 }
\end{aligned}
$$

### 8.0 CALCULATE PARALLEL $60^{\circ}$ EXAM COVERAGE

8.1 Limited above / CW exam volume

| Height of <br> Obstructed Volume | Width of <br> Obstructed Area | Length of <br> Obstructed Area | Volume with no <br> Exam Coverage |
| :--- | :--- | :--- | :--- |
| 1.70 | $\times$ | 9.40 |  |$\times$| 10.00 |
| :--- | :--- |

8.2 Limited Below / CCW exam volume


Total $60^{\circ}$ parallel exam volume not examined $\quad=10,106.88$
8.3 Percent Volume Examined

| Total $60^{\circ}$ parallel | Total $60^{\circ}$ parallel | Percent Volume |
| :--- | :--- | :--- |
| Vol w/No Coverage | Exam Volume | Examined |

$100-\{[10,106.88 / \underline{27,824.00]} \times 100\}=\underline{63.68} \%$

### 9.0 CALCULATE TRANSVERSE $45^{\circ}$ EXAM COVERAGE

9.1 Limited Clockwise exam volume

9.2 Limited Below Counter clockwise exam volume

| Height of | Width of | Length of |
| :--- | :--- | :--- |
| Obstructed Volume | Obstructed Area | Obstructed Area |

CCW Exam
Volume with no
Exam Coverage
$\underline{8.00} \times 1.25 \times 185.00 \quad 1,850.00$

Total $45^{\circ}$ transverse exam volume not examined
$=3,700.00$
9.3 Percent Volume Examined

| Total $45^{\circ}$ parallel | Total $45^{\circ}$ parallel <br> Exam Volume | Percent Volume <br> Examined |
| :--- | :--- | :--- |



FRAMATOME ANP VESSEL VOLUMETRIC EXAMINATION COVERAGE REPORT

### 10.0 CALCULATE TRANSVERSE $60^{\circ}$ EXAM COVERAGE

10.1 Limited Clockwise exam volume

| Height of <br> Obstructed Volume | Width of <br> Obstructed Area | Length of <br> Obstructed Area | CW exam <br> Volumewith no <br> Exam Coverage |
| :--- | :--- | :--- | :--- |
| 8 | $\times 1.25$ | $\times$ | 185.00 |$=$| $1,850.00$ |
| :---: |

10.2 Limited Counterclockwise exam volume

| Height of | Width of |
| :--- | :--- |
| Obstructed Volume | Obstructed Area |

Length of
Obstructed Area

CCW exam Obstructed Volume Obstructed Area Obstructed Area Exam Coverage
$\underline{8.00} \times 1.25 \times 185.00 \times 1,850.00$

Total 60 transverse exam volume not examined
$=3,700.00$
10.3 Percent Volume Examined

| Total $60^{\circ}$ Trans Vol | Total $60^{\circ}$ Trans | Percent Volume |
| :--- | :--- | :--- |
| wiNoCoverage | Exam Volume | Examined |

$100-\{[3,700.00127,824.00] \times 100\}=86.70 \%$

### 11.0 CALCULATE PERCENT OF TOTAL VOLUME EXAMINED

11.1 Sum of Exam Volumes \%

Steps 5 Thur 10
No. Of Exams (6)
Examination Coverage
$[393.50 / 5.00]$
$=78.70 \quad \%$

Examination limited on upper side of weld by lifting lug. Examination limited on lower side of
weld by flange configuration. See attached coverage plots.



HEAD TO FLANGE WELD



## HEAD TO FLANGE WELD




Herorameverac mex


HEAD TO FLANGE WELD



HEAD TO FLANGE WELD
PAGE 3700





WesDyne International
Reactor Vessel Inservice Examination Scan Parameter Execution


SCAN AREA/AREAS OBTAINED DURING THE SCAN

| TOP LEFT | $:$ | 26.75 | 179.90 |
| :--- | :--- | :--- | :--- |
| TOP RIGHT | $:$ | 32.10 | 179.90 |
| BOTTOM LEFT | $:$ | 26.75 | -179.90 |
| BOTTOM RIGHT | $:$ | 32.10 | -179.90 |



Comments

WesDyne International Reactor Vessel Inservice Examination Scan Parameter Execution


SCAN AREA/AREAS OBTAINED DURING THE SCAN

| TOP LEFT | $:$ | 26.75 | 179.90 |
| :--- | :--- | :--- | :--- |
| TOP RIGHT | $:$ | 29.25 | 179.90 |
| BOTTOM LEFT | $:$ | 26.75 | -179.90 |
| BOTTOM RIGHT | $:$ | 29.25 | -179.90 |


| Increment Size (in) | $=0.50$ |
| :--- | :--- |
| Number of Indexes Specified | $=12$ |
| Number of Indexes Completed | $=6$ |
| Scan Area - Original Techniques (sq in) | $=1118.7$ |
| Scan Area - This Scan (sq in) | $=1118.7$ |
| Scan Area - Completed (sq in) | $=530.7$ |

## Scan Started

Time
16:28:14
16:32:33

Robot Operator Signature UT Operator Signature


Comments $\qquad$


WesDyne International
Reactor Vessel Inservice Examination Scan Parameter Execution


SCAN AREA/AREAS OBTAINED DURING THE SCAN

| TOP LEFT | $:$ | 26.75 | 179.90 |
| :--- | :--- | :--- | :--- |
| TOP RIGHT | $:$ | 32.10 | 179.90 |
| BOTTOM IEFT | $:$ | 26.75 | -179.90 |
| BOTTOM RIGHT | $:$ | 32.10 | -179.90 |


| Increment Size (in) | $=0.50$ |
| :--- | :--- |
| Number of Indexes Specified | $=12$ |
| Number of Indexes Completed | $=12$ |
| Scan Area - Original Techniques (sq in) | $=1118.7$ |
| Scan Area - This Scan (sq in) | $=1118.7$ |
| Scan Area - Completed (sq in) | $=1118.7$ |
|  |  |
| Scan Started | Time |
| Scan Completed | Date |
| Robot Operator Signature |  |
| UT Operator Signature |  |

Comments $\qquad$

WesDyne International
Reactor Vessel Inservice Examination Scan Parameter Execution


## SCAN AREA/AREAS OBTAINED DURING THE SCAN

| TOP LEFT | $:$ | 26.75 | 179.90 |
| :--- | :--- | :--- | :--- |
| TOP RIGHT | $:$ | 29.75 | -179.90 |
| BOTTOM LEFT | $:$ | 26.75 | -179.90 |
| BOTTOM RIGFT | $:$ | 29.75 | 179.90 |


| Increment Size (in) |  | $=0.50$ |
| :--- | :--- | :--- |
| Number of Indexes Specified | $=12$ |  |
| Number of Indexes Completed | $=7$ |  |
| Scan Area - Original Techniques (sq in) | $=1118.7$ |  |
| Scan Area - This Scan (sq in) | $=118.7$ |  |
| Scan Area - Completed (sq in) | $=624.7$ |  |
|  | Time | Date |
| Scan Started | $17: 49: 34$ | $04 / 18 / 02$ |
| Scan Completed | $17: 54: 53$ | $04 / 18 / 02$ |
| Robot Operator Signature |  |  |
| UT Operator Signature |  |  |

Comments



WesDyne International Reactor Vessel Inservice Examination Scan Parameter Execution


SCAN AREA/AREAS OBTAINED DURING THE SCAN

| TOP LEFT | $:$ | 26.75 | 179.90 |
| :--- | :--- | :--- | :--- |
| TOP RIGHT | $:$ | 32.10 | 179.90 |
| BOTTOM LEFT | $:$ | 26.75 | -179.90 |
| BOTTOM RIGHT | $:$ | 32.10 | -179.90 |


| Increment Size (in) | $=0.50$ |
| :--- | :--- |
| Number of Indexes Specified | $=12$ |
| Number of Indexes Completed | $=12$ |
| Scan Area - Original Techniques (sq in) | $=1118.7$ |
| Scan Area - This Scan (sq in) | $=1118.7$ |
| Scan Area - Completed (sq in) | $=1118.7$ |

## Scan Started

Time Date

Scan Completed
$15: 07: 10 \quad 04 / 18 / 02$
15:21:42 04/18/02

Robot Operator Signature


UT Operator Signature


Comments


WesDyne International
Reactor Vessel Inservice Examination Scan Parameter Execution


SCAN AREA PER THE ORIGINAJ TECHNIQUES

| UDRPS SCAN AREA DEFINITION | RADIUS | AZIMUTH |  |
| :---: | :---: | :---: | :---: |
|  |  | (IN) | (DEGREES) |
| START CW | $:$ | 85.44 | 179.90 |
| END CCW | $:$ | 85.44 | -179.90 |
| START CW | $:$ | 85.44 | 179.90 |
| END CCW | $:$ | 85.44 | -179.90 |

SCAN AREA/AREAS OBTAINED DURING THE SCAN

| TOP LEFT | $:$ | 26.75 | 179.90 |
| :--- | :--- | :--- | :--- |
| TOP RIGHT | $:$ | 29.75 | -179.90 |
| BOTTOM LEFT | $:$ | 26.75 | -179.90 |
| BOTTOM RIGHT | $:$ | 29.75 | 179.90 |




WesDyne International
Reactor Vessel Inservice Examination Scan Parameter Execution


SCAN AREA PER THE ORIGINAL TECHNIQUES

| UDRPS SCAN AREA DEFINITION | RADIUS | AZIMUTH |  |
| :---: | :---: | :---: | :---: |
|  |  | (IN) | (DEGREES) |
| START CW | $:$ | 85.44 | 179.90 |
| END CW | $:$ | 85.44 | -179.90 |
| START CW | $:$ | 85.44 | 179.90 |
| END CW | $:$ | 85.44 | -179.90 |

SCAN AREA/AREAS OBTAINED DURING THE SCAN

| TOP LEFT | $:$ | 26.75 | 179.90 |
| :--- | :--- | :--- | :--- |
| TOP RIGHT | $:$ | 32.10 | 179.90 |
| BOTTOM LEFT | $:$ | 26.75 | -179.90 |
| BOTTOM RIGHT | $:$ | 32.10 | -179.90 |


| Increment Size (in) | $=0.50$ |
| :--- | :--- |
| Number of Indexes Specified | $=12$ |
| Number of Indexes Completed | $=12$ |
| Scan Area - Original Techniques (sq in) | $=1118.7$ |
| Scan Area - This Scan (sq in) | $=1118.7$ |
| Scan Area - Completed (sq in) | $=1118.7$ |
|  | Time |
| Scan Started | Date |
| Scan Completed | $15: 49: 49$ |

Robot Operator Signature
 DATE 4/48/o2 UT Operator Signature


Comments $\qquad$

# FRAMATOME ANP VESSEL VOLUMETRIC EXAMINATION COVERAGE REPORT 

| cUSTOMER: |  |
| :--- | :--- |
| SALEM 2R12 | SYSTEM: |
| SUMMARY NO: 010900 | COMPONENT ID: |
|  |  |

### 1.0 CALCULATE REQUIRED EXAM VOLUME FOR STRAIGHT BEAM PLANAR FLAWS

1.1 Exam Height $\times$ Exam Width $X$ Exam Length $=$ Exam $\quad 4.50 \times 6.80 \times 290.00=8,874.00$ ruin

### 2.0 CALCULATE REQUIRED EXAM VOLUME FOR STRAIGHT BEAM LAMINAR FLAWS

2.1 Exam Height $X$ Exam Width $X$ Exam Length $=$ Exam
$0.00 \times 0.00 \times 0.00=0.00$ cu.in

### 3.0 CALCULATE REQUIRED PARALLEL EXAM VOLUME FOR $45^{\circ}$ AND $60^{\circ}$

3.1 Exam Height $\times$ Exam Width $\times$ Exam Length $=$ Exam
$4.50 \times 6.80 \times 580.00=17.748 .00 \mathrm{cuin}$
3.1 Exam Height X Exam Width X Exam Length = Exam
$\qquad$
4.0 CALCULATE REQUIRED TRANSVERSE EXAM VOLUME FOR $45^{\circ}$ AND $60^{\circ}$
4.1 Exam Height $\times$ Exam Width $X$ Exam Length $=$ Exam
$4.50 \times 6.80 \times 580.00=17,748.00$ ruin

### 5.0 CALCULATE STRAIGHT BEAM PLANAR EXAM COVERAGE

5.1 Limited above / CW exam volume

| Height of | Width of | Length of | Volume with no |
| :--- | :--- | :--- | :--- |
| Obstructed Volume | Obstructed Area | Obstructed Area | Exam Coverage |


5.2 Limited Below / CW exam volume

| Height of | Width of | Length of | Volume with no |
| :--- | :--- | :--- | :--- |
| Obstructed Volume | Obstructed Area | Obstructed Area | Exam Coverage |



Total straight beam planar exam volume not examined $\quad=\quad 5,154.75$

### 5.3 Percent Volume Examined

| Total O vol | Total 0 | Percent Volume |
| :--- | :--- | :--- |
| wiNo Coverage | Exam Volume | Examined |

$100-\{[5,154.75 / 8,874.00] \times 100\}=\underline{41.91} \%$
Factory Mutual
Insurance Company


## FRAMATOME ANP VESSEL VOLUMETRIC EXAMINATION COVERAGE REPORT

### 6.0 CALCULATE STRAIGHT BEAM LAMINAR EXAM COVERAGE

6.1 Limited above / CW exam volume

| Height of | Width of | Length of | Volume with no |
| :--- | :--- | :--- | :--- |
| Obstructed Volume | Obstructed Area | Obstructed Area | Exam Coverage |


| 0.00 | X | 0.00 | X | 0.00 | $=$ | 0.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

6.2 Limited Below / CW exam volume

| Height of | Width of | Length of | Volume with no |
| :--- | :--- | :--- | :--- |
| Obstructed Volume | Obstructed Area | Obstructed Area | Exam Coverage |

$0.00 \times 0.00 \times 0.00$
Total straight beam planar exam volume not examined
6.3 Percent Volume Examined

| Total $0^{\circ}$ vol | Total $0^{\circ}$ | Percent Volume |
| :--- | :--- | :--- |
| $w /$ No Coverage | Exam Volume | Examined |

$100-\{[0.00] \times 100\}=0.00]$

### 7.0 CALCULATE PARALLEL $45^{\circ}$ EXAM COVERAGE

7.1 Limited above / CW exam volume

| Height of Obstructed |  | Width of Obstructed Area |  | Length of Obstructed Area |  | Volumewith no Exam Coverage |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4.50 | X | 3.65 | X | 290.00 | $=$ | 4,763.25 |

7.2 Limited Below / CCW exam volume

| Height of | Width of | Length of | Volume with no |
| :--- | :--- | :--- | :--- |
| Obstructed Volume | Obstructed Area | Obstructed Area | Exam Coverage |


| 4.50 | X | 4.50 | X | 366.50 | = | 7,421.63 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Total $45^{\circ}$ parallel exam volume not examined $\quad=12,184.88$

## .7.3 Percent Volume Examined

| Total $45^{\circ}$ parallel | Total $45^{\circ}$ parallel | Percent Volume |
| :--- | :--- | :--- |
| vol w/No Coverage | Exam Volume | Examined |

$100-\{[12,184.88 / 17,748.00] \times 100\}=31.35 \%$
Factory Mutual
Insurance Company
$n u, 1$


## FRAMATOME ANP VESSEL VOLUMETRIC EXAMINATION COVERAGE REPORT

### 8.0 CALCULATE PARALLEL $60^{\circ}$ EXAM COVERAGE

8.1 Limited above / CW exam volume

8.2 Limited Below / CCW exam volume

| Height of | Width of | Length of |
| :--- | :--- | :--- |
| Obstructed Volume | Obstructed Area | Obstructed Area |

Below / CCW exam
Volume with no Exam Coverage

| 4.50 | X | 4.50 | X | 392.00 | $=$ | 7,938.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total $60^{\circ} \mathrm{pa}$ | ex | me not |  |  | $=$ | 12,622.95 |

8.3 Percent Volume Examined

| Total $60^{\circ}$ parallel <br> Vol w/No Coverage | Total $60^{\circ}$ parallel <br> Exam Volume | Percent Volume <br> Examined |
| :--- | :--- | :--- |
| $100-\{[12,622.95$ | $17.748 .00] \times 100\}=$ | 28.88 |

### 9.0 CALCULATE TRANSVERSE $45^{\circ}$ EXAM COVERAGE

9.1 Limited Clockwise exam volume

| Height of <br> Obstructed Volume | Width of <br> Obstructed Area | Length of <br> Obstructed Area | CW Exam <br> Volume with no <br> Exam Coverage |
| :--- | :--- | :--- | :--- | :--- |

9.2 Limited Below Counter clackwise exam volume

| Height of | Width of | Length of | CCW Exam |
| :--- | :--- | :--- | :--- |
| Obstructed Volume | Obstructed Area | Obstructed Area | Volumewith no |
| Exam Coverage |  |  |  |


| 4.50 | X | 4.50 | $X$ | 254.50 | $=$ | 5,153.63 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Total $45^{\circ}$ transverse exam volume not examined

$$
=\quad 10,307.25
$$

9.3 Percent Volume Examined

Total $45^{\circ}$ parallel Total $45^{\circ}$ parallel Exam Volume
$100-\{[10,307.25 / 17,748.00] \times 100\}=41.92 \%$

## Factory Mutual

 Insurance CompanyPercent Volume Examined

## FRAMATOME ANP

### 10.0 CALCULATE TRANSVERSE $60^{\circ}$ EXAM COVERAGE

10.1 Limited Clockwise exam volume

| Height of Obstructed Volume |  | Width of Obstructed Area |  | Length of Obstructed Area |  | Volume with no Exam Coverage |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4.50 | X | 4.50 | X | 254.50 | = | 5,153.63 |

10.2 Limited Counterclockwise exam volume
10.3 Percent Volume Examined

| Total $60^{\circ}$ Trans Vol | Total $60^{\circ}$ Trans | Percent Volume |
| :--- | :--- | :--- |
| w/NoCoverage | Exam Volume | Examined |

$100-\{[10,307.25 / 17,748.00] \times 100\}=41.92 \%$

### 11.0 CALCULATE PERCENT OF TOTAL VOLUME EXAMINED

11.1 Sum of Exam Volumes \%
\(\left.$$
\begin{array}{lcc}\text { Steps } 5 \text { Thur } 10 & \text { No. Of Exams (6) } & \begin{array}{l}\text { Examination } \\
\text { Coverage }\end{array}
$$ <br>
\& <br>

185.98 \& 5.00\end{array}\right]=\)| 37.20 | $\%$ |
| :--- | :--- |

The total circumferential area available for scanning was $140^{\prime \prime}$ out of the total circumference of
$290^{\prime \prime}$. Within this $140^{\prime \prime}$, the scan was limited on the head side of the weld 360 degrees by a support
ring. The distance from the indicated weld centerline to the bottom of the support ring is $\mathbf{2 . 5 0 ^ { \prime \prime }}$.
The dimensions shown in this form are not reflective of actual dimensions, however the totals used
calculate the coverages for each of the steps are accurate.


# REQUEST FOR ADDITIONAL INFORMATION REQUEST FOR RELIEF REGARDING EXAMINATION COVERAGE SECOND TEN-YEAR IN-SERVICE INSPECTION INTERVAL SALEM NUCLEAR GENERATING STATION, UNIT NO. 2 DOCKET NO. 50-311 

QUESTION 1.1 (a)
For weld 2-PZR-CIRC-DUH the information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support the determination that the inspection of this weld is limited and impractical

| Summary\# | 010900 |
| :---: | :--- |
| Component I.D. | 2-PZR-CIRC-DUH |
| Description | Shell "D" to Upper Head |

Comments

| See Attached |  |
| :---: | :---: |
| Carbon Steel / Stainless Steel Clad |  |
| Thickness 4.50" / Weld Crown 2.30" |  |
| Support Ring Clamped to Head |  |
| Yes X <br> No  <br> See Attached  |  |

## Comments

UT exam was conducted using 45 and 60 degree shear wave transducer. The exam was limited to $37 \%$ of code required coverage due to Pressurizer support ring clamped to the upper head. A total of 140 degrees of total circumference was accessible for examination. No unacceptable indications were noted. A system pressure test was also completed with no unacceptable indications observed.


## Supplemental Drawing

| Summary \# | 10900 |
| :--- | :--- |
| Description | Shell "D" to Upper Head |

Component I.D. 2-PZR-CIRC-DUH
Page of

## Comments

The exam completed was limited to $37 \%$ of code required coverage due to the Pressurizer support ring clamped to the upper head. A total of 140 degrees of the total circumference was accessible for exam.

Sketch




FRAMATOME ANP VESSEL VOLUMETRIC EXAMINATION COVERAGE REPORT

5.2 Limited Below / CW exam volume

| Height of | Width of | Length of | Volume with no |
| :--- | :--- | :--- | :--- |
| Obstructed Volume | Obstructed Area | Obstructed Area | Exam Coverage |


| 3.72 | X | 1.45 | X | 49.50 | = | 267.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Total straight beam planar exam volume not examined $=\frac{534.01}{}$
5.3 Percent Volume Examined

| Total O vol | Total 0 | Percent Volume |
| :--- | :--- | :--- |
| w/No Coverage | Exam Volume | Examined |



FRAMATOME ANP VESSEL VOLUMETRIC EXAMINATION COVERAGE REPORT
6.0 CALCULATE STRAIGHT BEAM LAMINAR EXAM COVERAGE
6.1 Limited above / CW exam volume

| Height of | Width of | Length of | Volume with no |
| :--- | :--- | :--- | :--- |
| Obstructed Volume | Obstructed Area | Obstructed Area | Exam Coverage |

$0.00 \times 0.00 \times 0.00=0.00$
6.2 Limited Below / CW exam volume


### 6.3 Percent Volume Examined

| Total $0^{\circ}$ vol | Total $0^{\circ}$ | Percent Volume |
| :--- | :--- | :--- |
| w/No Coverage | Exam Volume | Examined |

$100 \cdot\{[0.00] \times 0.00] \times 100\}=0.00 \%$

### 7.0 CALCULATE PARALLEL $45^{\circ}$ EXAM COVERAGE

7.1 Limited above / CW exam volume

| Height of Obstructed |  | Width of Obstructed Area |  | Length of Obstructed Area |  | Volume with no Exam Coverage |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3.72 | X | 3.00 | X | 96.30 | = | 1,074.71 |

7.2 Limited Below / CCW exam volume

| Height of | Width of | Length of | Volumewith no |
| :--- | :--- | :--- | :--- |
| Obstructed Volume | Obstructed Area | Obstructed Area | Exam Coverage |


| 3.72 | X | 3.00 | X | 76.75 | $=$ | 856.53 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Total $45^{\circ}$ parallel exam volume not examined $\quad=\quad 1.931 .24$
7.3 Percent Volume Examined

| Total $45^{\circ}$ parallel | Total $45^{\circ}$ parallel | Percent Volume |
| :--- | :--- | :--- |
| vol wo $\mathbf{N}$ Coverage. | Exam Volume | Examined |


MLT-DD...4-1.n.

FRAMATOME ANP VESSEL VOLUMETRIC EXAMINATION COVERAGE REPORT

### 18.0 CALCULATE PARALLEL $60^{\circ}$ EXAM COVERAGE

8.1 Limited above / CW exam volume

| Height of | Width of | Length of | Volume with no |
| :--- | :--- | :--- | :--- |
| Obstructed Volume | Obstructed Area | Obstructed Area | Exam Coverage |

3.72 $\times$ 3.00 $\times \underline{1.080 .29}$
8.2 Limited Below / CCW exam volume

| Height of | Width of | Length of | Volume with no |
| :--- | :--- | :--- | :--- |
| Obstructed Volume | Obstructed Area | Obstructed Area | Exam Coverage |


| 3.72 |  |
| :--- | :--- |
| Total $60^{\circ}$ parallel exam volume not examined | $=\frac{76.75}{856.53}$ |
|  | $=1,936.82$ |

8.3 Percent Volume Examined

| Total $60^{\circ}$ parallel | Total $60^{\circ}$ parallel | Percent Volume |
| :--- | :--- | :--- |
| Vol w/No Coverage | Exam Volume | Examined |

$100-\{[1,936.82 / 12,342.96] \times 100\}=84.31 \%$

### 9.0 CALCULATE TRANSVERSE $45^{\circ}$ EXAM COVERAGE

9.1 Limited Clockwise exam volume

9.2 Limited Below Counter clockwise exam volume

| Height of | Width of | Length of | CCW Exam |
| :--- | :--- | :--- | :--- |
| Obstructed Volume | Obstructed Area | Obstucted Area | Volume with no |
| Exam Coverage |  |  |  |


| 3.72 |  |
| :--- | :--- |
| Total $45^{\circ}$ transverse exam volume not examined | $=\frac{758.88}{68.00}$ |
|  | $=1,517.76$ |

9.3 Percent Volume Examined



FRAMATOME ANP
VESSEL VOLUMETRIC EXAMINATION COVERAGE REPORT
10.0 CALCULATE TRANSVERSE $60^{\circ}$ EXAM COVERAGE
10.1 Limited Clockwise exam volume

10.2 Limited Counterclockwise exam volume

| Height of Obstructed |  | Width of Obstructed Area |  | Length of Obstructed Area |  | Volume with no Exam Coverage |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3.72 | X | 3.00 | X | 68.00 | = | 758.88 |

Total 60 transverse exam volume not examined
$=\quad 1,517.76$
10.3 Percent Volume Examined

| Total $60^{\circ}$ Trans Vol | Total $60^{\circ}$ Trans |
| :--- | :--- |
| $w /$ NoCoverage | Exam Volume |

Percent Volume
Examined
$100-\{[1,517.76 \mid 12,342.96] \times 100\}=87.70 \%$

### 11.0 CALCULATE PERCENT OF TOTAL VOLUME EXAMINED

11.1 Sum of Exam Volumes \%

| Steps 5 Thur 10 | No. Of Exams (6) | Examination <br> Coverage |
| :--- | :---: | :---: |
|  |  |  |
| 435.42 | $5.00 \quad=$ | 87.08 |$\%$

Examination limited by insulation support plates and welded plates both sides of the weld. The
Height, Width, and Length of the obstructed areas indicated are not accurate, however the total
for each individual scan is an accumulation of the total obstructed volume for that scan.



## REQUEST FOR ADDITIONAL INFORMATION REQUEST FOR RELIEF REGARDING EXAMINATION COVERAGE SECOND TEN-YEAR IN-SERVICE INSPECTION INTERVAL SALEM NUCLEAR GENERATING STATION, UNIT NO. 2 DOCKET NO. 50-311

QUESTION 2.2(a) For certain component attachments and support welds, Information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by licensee identification numbers listed below.

| Summary\# | 330645 |
| :---: | :--- |
| Component I.D. | 14-BF-2221-3PL-1 thru 8 |
| Description | PIPE LUGS |


|  | Weld X-Section | Comments |  |
| :---: | :---: | :---: | :---: |
| 1 |  | N/A |  |
| 2 | Material | Carbon Steel |  |
| 3 | Thickness / weld Crown | N/A |  |
| 4 | Obstruction | adjacent piping |  |
| 5 | Exam Area Highlighted on Drawing | Yes $X$ | No\| |
| 6 | Transducer ray exit point | N/A |  |

## Comments

MT exam was conducted on this component. The MT exam was limited to $79 \%$ because the box beam configuration and adjacent piping in the area of the welded attachment prevented sufficient access to examine some portions of the welds in two directions. A system pressure test was also completed with no inaccessible indications observed.
$\qquad$



LV $1=$ COMMON INFORMATION
(1) 2000 PSEGG Ficter, ILC. Alligigis Reseeved.

LV 2 = WELD INFORMATION
LV $3=$ HANGER INFORMATION

SECOND INTERVAL, THIRD PERIOD, FIRST OUTAGE



A MT EXAMINATION WAS PERFORMED ON THE PIPE SUPPORT, 14-BF-2221-3PL-1 THRU 8.
THE EXAMINATION WAS PERFORMED WITH NO RECORDABLE INDICATIONS AND WAS LIMITED TO 78.5\% COVERAGE DUE TO A INACCESSABILITY. AREAS NOT EXAMINED WERE DUE TO INABILITY TO PLACE YOKE IN CORRECT ORIENTATION.
eXAMINATION WAS COMPARED TO PREVIOUS EXAMINATION DATA WITH NO SIGNIFICANT CHANGE NOTED.

Factory Mutual
insurance Company




FRAMATOME ANP VESSEL VOLUMETRIC EXAMINATION COVERAGE REPORT


# FRAMATOME ARP VESSEL VOLUMETRIC EXAMINATION COVERAGE REPORT 

## CALCULATE STRAIGHT BEAM LAMINAR EXAM COVERAGE

6.1 Limited above / CW exam volume

| Height of <br> Obstructed Volume | Width of <br> Obstructed Area | Length of <br> Obstructed Area |
| :--- | :--- | :--- | | Volume with no |
| :--- |
| Exam Coverage |

6.2 Limited Below / CW exam volume

| Height of <br> Obstructed Volume | Width of <br> Obstructed Area | Length of <br> Obstructed Area |
| :--- | :--- | :--- | | Volume with no |
| :--- |
| Exam Coverage |

6.3 Percent Volume Examined

| Total $0^{\circ}$ vol | Total $0^{\circ}$ | Percent Volume |
| :--- | :--- | :--- |
| wiNo Coverage | Exam Volume | Examined |

$100-\{[0.00] \times 0.00] \times 100\}=0.00 \%$
7.0 CALCULATE PARALLEL $45^{\circ}$ EXAM COVERAGE
7.1 Limited above / CW exam volume

7.2 Limited Below / CCW exam volume

7.3 Percent Volume Examined

| Total $45^{\circ}$ parallel | Total $45^{\circ}$ parallel | Percent Volume |
| :--- | :--- | :--- |
| vol wiNo Coverage | Exam Volume | Examined |



Insurance Company nET.DC... 4-25-02.

FRAMATOME ANP VESSEL VOLUMETRIC EXAMINATION COVERAGE REPORT

### 18.0 CALCLILATE PARALLEL $60^{\circ}$ EXAM COVERAGE

8.1 Limited above / CW exam volume

| Height of <br> Obstructed Volume | Width of <br> Obstructed Area | Length of <br> Obstructed Area | Above / CW exam <br> Volume with no <br> Exam Coverage |
| :--- | :--- | :--- | :--- |
| $\times 1.75$ |  | 4.00 |  |

8.2 Limited Below / CCW exam volume


Total $60^{\circ}$ paraliel exam volume not examined $=668.40$
8.3 Percent Volume Examined

| Total $60^{\circ}$ parallel | Total $60^{\circ}$ parallel | Percent Volume |
| :--- | :--- | :--- |
| Vol w/No Coverage | Exam Volume | Examined |

$100-\{[678.40\} 2,420.00] \times 100\}=71.97 \%$

### 9.0 CALCULATE TRANSVERSE $45^{\circ}$ EXAM COVERAGE

9.1 Limited Clockwise exam volume

| Height of | Width of | Length of | CW Exam |
| :--- | :--- | :--- | :--- |
| Obstructed Volume | Obstructed Area | Obstructed Area | Volume with no |
|  | Exam Coverage |  |  |


| $2.00 \times 2.75$ |
| :--- |$\times 1$| 32.00 |
| :--- |

9.2 Limited Below Counter clockwise exam volume

| Height of <br> Obstructed Volume | Width of <br> Obstructed Area | Length of <br> Obstructed Area | CcW Exam <br> Volume with no <br> Exam Coverage |
| :--- | :--- | :--- | :---: | :--- |
| 2.00 | 2.75 | $\times$ | 32.00 |$=$| 176.00 |
| :--- |

Total $45^{\circ}$ transverse exam volume not examined
$=352.00$

### 9.3 Percent Volume Examined

| Total $45^{\circ}$ parallel | Total $45^{\circ}$ parallel | Percent Volume <br> Exam Volume |
| :--- | :--- | :--- |
|  | Examined |  |

$$
\begin{aligned}
& \text { Factory Mutual } \\
& \text { Insurange Company }
\end{aligned}
$$



FRAMATOME AND
10.0 CALCULATE TRANSVERSE $60^{\circ}$ EXAM COVERAGE
10.1 Limited Clockwise exam volume

| Height of <br> Obstructed Volume | Width of <br> Obstructed Area |  | Length of <br> Obstructed Area | CW exam <br> Volume with no <br> Exam Coverage |
| :--- | :--- | :--- | :--- | :--- |
| $\times 1.00$ | 2.75 | 32.00 |  |  |$=$| 176.00 |
| :--- |

10.2 Limited Counterclockwise exam volume

10.3 Percent Volume Examined

$\begin{aligned} 11.0 & \\ & \\ & 11.1\end{aligned}$ SALCULATE PERCENT OF TOT Exam Volumes $\%$

$$
\left.\begin{array}{lc}
\text { Steps } 5 \text { Thur } 10 & \text { No. Of Exams (6) }
\end{array} \begin{array}{l}
\text { Examination } \\
\text { Coverage }
\end{array}\right\}
$$

SCANS LIMITED IN 4 AREAS BY TANK SUPPORT LEGS.
$\qquad$
$\qquad$
$\qquad$
$\qquad$



## REQUEST FOR ADDITIONAL INFORMATION REQUEST FOR RELIEF REGARDING EXAMINATION COVERAGE SECOND TEN-YEAR IN-SERVICE INSPECTION INTERVAL SALEM NUCLEAR GENERATING STATION, UNIT NO. 2 DOCKET NO. 50-311

QUESTION $\quad 1.3$ (c) For certain piping welds, Information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by licensee identification numbers listed below.


Comments
UT exam was performed of this component using 30 degree refracted longitudinal wave transducer. The ultrasonic examination completed was partially limited to $38 \%$ of the code required coverage being achieved due to the OD configuration of the nozzle to safe-end that did not lend itself to achieving full coverage from the upstream side when scanning was performed. There were no unacceptable indications observed. UT exam performed was best effort. This weld configuration does not contain alloy 600 , or $82 / 182$ weld material. A liquid penetrant examination and system pressure test was also completed with no recordable indications observed.

Summary \# 011800
Description Nozzle to safe-end

Component I.D.
6-PR-1205-1
Page 2 of 4

Page
2
of
4

Comments Exam limited from nozzle side. Additional limitations exist due to O.D. contour and associated lift off 360 degrees around.

Sketch


Supplemental Drawing

Summary \#
Description
Comments Exam limited from nozzle side. Additional limitations exist due to O.D. contour and associated lift off 360 degrees around



LUEUD WPRR-1205-1
SUMmary cteo

USER RESPONSIBLE FOR VERIFYING REVISION, STATUS AND CHANGES VTD 1398460001 PRINTED 20050111


# USER RESPONSIBLE FOR VERIFYING REVISION, STATUS AND CHANGES 

 VTD 1398460001 PRINTED 20050111

Summary \#011820

$$
6-P R-1203-1
$$



UT Coverage Plot
Sketch to Scale
Fig. No. B5.40.002
Nom. Component OD-6.0"
Area Not Covered


## VOLUMETRIC PIPING EXAMINATIONS

1.0 AXIAL ULTRASONIC EXAMINATIONS (indications Parallel to the Weid)
1.1 Compute Examination Volume (Height $x$ Width $x$ Length) $=V_{1} \quad 0.50^{n} \times 1.25^{n} \times 14.5^{n}=9.10^{3}$ inches
1.2 Compute Volume Not Examined on Upstream Side of Weld $=A$ $0.00^{3}$ inches
1.3 Compute Upstream Limitation Percentage $\left(\mathrm{A} \div \mathrm{V} \mathrm{t}_{1}\right) \times 100=\mathrm{Z} 1$ $0.00 \%$
1.4 Compute Volume Not Examined on Downstream Side of Weld $=B$
5.1 ${ }^{3}$ inches
1.5 Compute Downstream Limitation Percentage $\left(B+V t_{1}\right) \times 100=Z 2$ $56.0 \%$
2.0 CIRCUMFERENTIAL ULTRASONIC EXAMINATIONS (Indications Perpendicular to the Weld)
2.1 Compute Examination Volume (Height $\times$ Width $\times$ Length) $=\mathrm{Vt}_{2} \quad 0.50^{n} \times 1.75^{n} \times 14.5^{n}=12.7^{3}$ inches
2.2 Compute Volume Not Examined in the Clock Wise Direction $=\mathrm{C}$ $0.00^{3}$ inches
2.3 Compute Clock Wise Limitation Percentage $\left(\mathrm{C}+\mathrm{Vt}_{2}\right) \times 100=\mathrm{Z} 3$ $0.00 \%$
2.4 Compute Volume Not Examined in the Counter CW Direction $=\mathrm{D}$ $\qquad$
2.5 Compute Counter CW Limitation Percentage $\left(\mathrm{D}+\mathrm{Vt}_{2}\right) \times 100=\mathrm{Z4}$ $0.00 \%$

### 3.0 TOTAL EXAMINATION COVERAGE OBTAINED

3.1 Compute Total Limitation Percentage $(\mathbf{Z 1}+\mathbf{Z 2}+\mathbf{Z 3}+\mathbf{Z 4}) / 4=\mathrm{L}$ $\qquad$
3.2 Compute Total Coverage 100 - L
$86.0 \%$

## LIMITTATION EXPLANATION/REMARKS

Limitation exists on the Safe-End side of the weld for the axial examinations.
See the attached UT Coverage Plot. The 45 degree shear wave transducer was scanned
over the required volume on both sides of the weld in order to achieve 44.0 percent coverage in the
axial direction. The examination volume was computed using actual OD pipe sizes and schedule wall
thicknesses. The height value is computed using the diameter at the inner one third of the
pipe wall thickness. NOTE: ${ }^{3}$ luches DENOTES CUBIC INCHES.
PREPARED BY: DATE: REVIEWER: DATE:

## REQUEST FOR ADDITIONAL INFORMATION REQUEST FOR RELIEF REGARDING EXAMINATION COVERAGE SECOND TEN-YEAR IN-SERVICE INSPECTION INTERVAL SALEM NUCLEAR GENERATING STATION, UNIT NO. 2 <br> DOCKET NO. 50-311

QUESTION $\quad 1.3$ (c) For certain piping welds, Information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by licensee identification numbers listed below.

| Summary\# | 011820 |  |
| :---: | :---: | :---: |
| Component I.D. | 6-PR-1203-1 |  |
| Description | Nozzie to Safe-End |  |
|  |  | Comments |
| 1 | Weld X-Section | See Attached |
| 2 | Material | Stainless Steel / Carbon Steel |
| 3 | Thickness / weld Crown | See Attached |
| 4 | Obstruction | Surface Contour |
| 5 | Exam Area Highlighted on Drawing | Yes X No |
| 6 | Transducer ray exit point | See Attached |

Comments
Ut exam was performed of this component using 45 and 25 degree shear and refracted longitudinal wave transducer. The uttrasonic examination completed was limited to $86 \%$ of the code required coverage being achieved due to the OD configuration of the nozzle to safe-end There were no unacceptable indications observed. This weld configuration does not contain alloy 600 , or $82 / 182$ weld material. A liquid penetrant examination and system pressure test was also completed with no recordable indications observed.


## Supplemental Drawing

Summary \# , 011820
Description Nozzle to Safe-End

Component 1.D. 6-PR-1203-1
$\xrightarrow[\text { Page } S \text { of } S]{ }$

## Comments <br> Photo

Sketch



## LIMITATION REPORT

## SURFACE EXAMINATIONS

Area To Be Examined (Length $x$ Width - A)
Area Of Limitation (Length $x$ Width $=$ Al)
Percentage of Coverage ( A - AlTA)
$\qquad$


## VOLUMETRIC EXAMINATIONS



- Area of no examination

| 1. Compute Area a x 1 | - As | .25 |
| :--- | :--- | :--- |
| 2. Multiply As by Weld Length | $=\mathrm{Vt}$ (Volume Total) | 5.87 |
| 3. Compute Area Not Covered | -a | .04 |
| 4. Multiply "a" by Weld Length | -VI (Volume Limited) | .94 |
| 5. Percentage of Coverage | $-(\mathrm{Vt}-\mathrm{VI} / \mathrm{Vt})$ | .84 .00 |

NOTE: Compute in a similar manner for indications perpendicular to the veld.
Preparedby: Victor Morton Reviewedby: Vie Date: 9 ARR 93 Level: III Date: GAPR 93 Level: III Page_1_or 1

## REQUEST FOR ADDITIONAL INFORMATION REQUEST FOR RELIEF REGARDING EXAMINATION COVERAGE SECOND TEN-YEAR IN-SERVICE INSPECTION INTERVAL SALEM NUCLEAR GENERATING STATION, UNIT NO. 2 DOCKET NO. 50-311

QUESTION $\quad 1.3$ (c) For certain piping welds, Information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by licensee identification numbers listed below.

| Summary \# | 011830 |
| :---: | :---: |
| Component I.D. | 4-PR-1200-1 |
| Description | Nozzle to Safe-End |


| 1 | Weld X-Section | Marked |
| :---: | :---: | :---: |
| 2 | Material | Stainless Steel / Carbon Steel |
| 3 | Thickness / weld Crown | See Attached |
| 4 | Obstruction | Surface Contour |
| 5 | Exam Area Highlighted on Drawing | Yes $\mathbf{X}$ No |
| 6 | Transducer ray exit point | See Attached |

Comments
On 4/29/99 a Ut exam was performed of this component using 45 degree shear wave transducer. The ultrasonic examination completed was limited to $84 \%$ of the code required coverage being achieved due to the OD configuration of the nozzle to safe-end There were no unacceptable indications observed. This weld configuration does not contain alloy 600 , or $82 / 182$ weld material. A liquid penetrant examination and system pressure test was also completed with no recordable indications observed.

Page of


## Supplemental Drawing

| Summary \# | 011830 |
| :--- | :--- |
| Description | Nozzle to Safe-End |$\quad$ Component I.D. | 4-PR-1200-1 |
| :--- |

## Comments $\quad 16 \%$ not scanned due to safe-end contour

Sketch

Sketch


Supplemental Drawing
Summary $\#$
011830
Component I.D.


Description

Comments $\qquad$ Thickness and Contour
$\qquad$
$\qquad$

Sketch


## LIMITATION REPORT



## SURFACE EXAMINATIONS

Area To Be Examined (Length $x$ Width - A) $\qquad$
Area Of Limitation (Length $x$ Width - Al)
Percentage of Coverage (A - A1/A)


## VOLUMETRIC EXAMINATIONS



NOTE: Compute ina simitar manner for indications perpendicular to the weld:().
Preparedby: Victor Morton_Reviewedby: Vie then Date: Level: Date: Level: III

## REQUEST FOR ADDITIONAL INFORMATION

 REQUEST FOR RELIEF REGARDING EXAMINATION COVERAGE SECOND TEN-YEAR IN-SERVICE INSPECTION INTERVAL SALEM NUCLEAR GENERATING STATION, UNIT NO. 2 DOCKET NO. 50-311QUESTION $\quad 1.3$ (c) For certain piping welds, Information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by licensee identification numbers listed below.


Comments
Ut exam was performed of this component using 45 degree shear wave transducer. The ultrasonic examination completed was limited to $67 \%$ of the code required coverage being achieved due to no UT axial scan exam was performed from the upstream or the downstream side of the weld due to the elbow being fabricated from ASTM351-65 CF8M cast stainiess steel whose acoustic properties is not conductive for ultrasonic examination and the OD configuration of the nozzle A clockwise and counterclockwise exam was performed of the weld crown. There were no unacceptabie indications observed. A liquid penetrant examination and system pressure test was also completed with no recordable indications observed.
$\qquad$

Supplemental Drawing
Summary \# 083300
Component I.D.
29-RC-1210-5
Description Elbow to Nozzle
Page 2 of 4
Comments No examination from upstream or downstream




$\qquad$
$\qquad$ of $\qquad$

$\qquad$
$\qquad$ 여 $\qquad$


FRAMATOME . : VESSEL VOLUMETRIC EXAMINATION COVERAGE REPORT

| STUMER: | PSEG | SYSTEM: PHR |
| :--- | :--- | :--- |
| UMMARY NO: 275410 | COMPONENT ID: $21-$ RHRHEX IN |  |

1.0 CALCULATE REQUIRED EXAM VOLUME FOR STRAIGHT BEAM PLANAR FLAWS
1.1 Exam Height X Exam Width $X$ Exam Length $=$ Exam Volume
$x \quad x=N / A$

### 2.0 CALCULATE REQUIRED EXAM VOLUME FOR STRAIGHT BEAM LAMINAR FLAWS

2.1 Exam Height $X$ Exam Width $X$ Exam Length $=$ Exam Volume

$$
84.48 \quad 84.48
$$

3.0 CALCULATE REQUIRED PARALLEL EXAM VOLUME FOR $45^{\circ}$ AND $60^{\circ}$
3.1 Exam Height $\times$ Exam Width $X$ Exam Length $=$ Exam Volume $.33^{\circ} \times 2^{11} \times 256=168.96$ cu.i $84.48 \quad 84.48$
CALCULATE REQUIRED TRANSVERSE EXAM VOLUME FOR $45^{\circ}$ AND $60^{\circ}$
4.1 Exam Height $X$ Exam Width $X$ Exam Length $=$ Exam Volume ${ }^{.33^{\prime} \times 2^{\prime \prime} \times 256=168.96 \text { cu.i } 10}$
$\qquad$

### 5.0 CALCULATE STRAIGHT BEAM PLANAR EXAM COVERAGE

5.1 Limited above / CW exam volume

| Height of | Width of | Length of | Volume with no |
| :--- | :--- | :--- | :--- |
| Obstructed Volume | Obstructed Area | Obstructed Area | Exam Coverage |

$\qquad$
$\qquad$ X $\qquad$
$=$ $\qquad$
5.2 Limited Below / CW exam volume

| Height of | Width of | Length of | Volume with no |
| :--- | :--- | :--- | :--- |
| Obstructed Volume | Obstructed Area | Obstructed Area | Exam Coverage |

N/A $\times N / A \quad N / A \quad N / A$

Total straight beam planar exam volume not examined $\qquad$
5.3 Percent Volume Examined


FRAMATOME
VESSEL VOLUMETRIC EXAMINATION COVERAGE REPORT

### 0.0 CALCULATE STRAIGHT BEAM LAMINAR EXAM COVERAGE

6.1 Limited above / CW exam volume

| Height of | Width of | Length of | Volume with no |
| :--- | :--- | :--- | :--- |
| Obstructed Volume | Obstructed Area | Obstructed Area | Exam Coverage |

$\underline{N / A} \times \ldots+N / \Delta$
6.2 Limited Below / CW exam volume

| Height of | Width of <br> Obstructed Volume | Obstructed Area |
| :--- | :--- | :--- |$\quad$| Length of |
| :--- |
| Obstructed Area |$;$ Exame with no

$\underline{N / A} \times N / A \times N / A$

Total straight beam planar exam volume not examined $\quad=\mathrm{N} / \mathrm{A}$
6.3 Percent Volume Examined

| Total $0^{\circ}$ vol | Total $0^{\circ}$ | Percent Volume |
| :--- | :--- | :--- |
| $w /$ No Coverage | Exam Volume | Examined |

100-\{ $\left\{\begin{array}{l}\mathrm{N} / \mathrm{A} \\ \mathrm{N} / \mathrm{A}] \times 100\}=N / A \%\end{array}\right.$
7.0 CALCULATE PARALLEL $45^{\circ}$ EXAM COVERAGE
7.1 Limited envovet $\mathbf{W}$ exam volume
$\begin{array}{llll}\text { Height of } & \text { Width of } & \text { Length of } & \text { Volume with no } \\ \text { Obstructed Volume } & \text { Obstructed Area } & \text { Obstructed Area } & \text { Exam Coverage }\end{array}$
Obstructed Volume Obstructed Area Obstructed Area Exam Coverage

7.3 Percent Volume Examined

| Total $45^{\circ}$ parallel | Total $45^{\circ}$ parallel | Percent Volume |
| :--- | :--- | :--- |
| vol w/No Coverage | Exam Volume | Examined |

100-\{[63.56 $1 \xrightarrow[{84.48] \times 100\}=25} \%]{ }$


FFRAMATOME

## ס.0 CALCULATE PARALLEL $60^{\circ}$ EXAM COVERAGE

8.1 Limited arovelexam volume

| Height of | Width of | Length of | Above / CW exam |
| :--- | :--- | :--- | :--- |
| Obstructed Volume | Obstructed Area | Obstructed Area | Volume with no |
|  |  | Exam Coverage |  |



Total $60^{\circ}$ parallel exam volume not examined

8. 3 Percent Volume Examined

$$
\begin{array}{lll}
\text { Total } 60^{\circ} \text { parallel } & \text { Total } 60^{\circ} \text { parallel } & \text { Percent Volume } \\
\text { Vol wiNo Coverage } & \text { Exam Volume } & \text { Examined }
\end{array}
$$

$$
100-\{[63.86184 .48] \times 100\}=25 \%
$$

### 9.0 CALCULATE TRANSVERSE $45^{\circ}$ EXAM COVERAGE

hooking Down stream
9.1 Limited-Gterwise exam volume

| Height of | Width of | Length of |
| :--- | :--- | :--- |
| Obstructed Volume | Obstructed Area | Obstructed Area |


9.2 Limited Below.counterctockwise exam volume

| Height of | Width of | Length of | CCW Exam |
| :--- | :--- | :--- | :--- |
| Obstructed Volume | Obstructed Area | Obstructed Area | Volume with no |
| Exam Coverage |  |  |  |


| $\frac{.33^{\circ}}{} \times \frac{1.00^{\circ}}{} \times \frac{128^{\prime \prime}}{\text { Total } 45^{\circ} \text { transverse exam volume not examined }}$ | $=\frac{42.24 \text { cum. }}{}=63.36$ cu. in. |
| :--- | :--- |

9.3 Percent Volume Examined

$$
\begin{array}{lll}
\text { Total } 45^{\circ} \text { parallel } & \text { Total } 45^{\circ} \text { parallel } & \text { Percent Volume } \\
\text { Vol wiNo Coverage } & \text { Exam Volume } & \text { Examined }
\end{array}
$$

$$
100 \cdot\{[-6336 \text { ci l } 84.48 \mathrm{cy} \times 100\}=25 \%
$$

\section*{Percent Volume

## Percent Volume Examined

 Examined}CW Exam
Volume with no Exam Coverage
21.12 anime

CCW Exam
Volume with no Exam Coverage

$$
\begin{aligned}
& =42.24 \text { cum } \\
& =63.36 \text { cur. }
\end{aligned}
$$


. 0 CALCULATE TRANSVERSE $60^{\circ}$ EXAM COVERAGE

10.1 Limitedetockwise exam volume

10.2

Limited Geuntereleekuine exam volume


CCW exam
Volume with no
Exam Coverage
$\qquad$
Total 60 transverse exam volume not examined

$$
=63.36 \text { cu. in. }
$$

10.3

$$
\begin{aligned}
& \text { Percent Volume Examined } \\
& \text { Total } 60^{\circ} \text { Trans Vol Total } 60^{\circ} \text { Trans } \\
& \text { w/NoCoverage } \\
& 100-\{[21.121284 .48] \times 100\}=25 \%
\end{aligned}
$$

11.1 Sum of Exam Volumes \%


Examination
Coverage


No scan from nozzle side or on weld due to configuration.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


$w$
$\approx$



# REQUEST FOR ADDITIONAL INFORMATION REQUEST FOR RELIEF REGARDING EXAMINATION COVERAGE SECOND TEN-YEAR IN-SERVICE INSPECTION INTERVAL SALEM NUCLEAR GENERATING STATION, UNIT NO. 2 DOCKET NO. 50-311 

QUESTION $\quad 1.2$ (a) For certain nozzle welds, information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by licensee identification numbers


Comments
UT exam was conducted using 28 and 38 degree longitudinal wave transducers. The exams completed was limited to $82 \%$ code required coverage due to due to the insulation support brackets attached to the steam generators lower head that and permanent support lugs interfered with scanning. No unacceptable indications were noted. A system pressure test was also completed with no unacceptable indications observed.

## Supplemental Drawing



Comments Ultrasonic exam area limited to $82 \%$ of code required coverage due to permanent Steam Generator support lugs See Sketch below showing support lug interference with exam area
Drawing was created in order to assist in the evaluation of the request for relief regarding examination coverage only.

## Sketch



## Supplemental Drawing

| Summary \# | 021300 |
| :--- | :--- |
| Description | \#21 Cold Leg Inner Radius |

Component I.D. 29-STG-1210-IRS
Page $\quad 3$ of 3

Commentr Ultrasonic exam area limited to $82 \%$ of code required coverage due to permanent Steam Generator support lugs
See Sketch below showing support lug interference with exam area
Drawing was created in order to assist in the evaluation of the request for rellef regarding examination coverage only.

Sketch


## REQUEST FOR ADDITIONAL INFORMATION

REQUEST FOR RELIEF REGUARDING EXAMINATION COVERAGE

## SECOND TEN-YEAR INSERVICE INSPECTION INTERVAL

SALEM NUCLEAR GENERATING STATION, UNIT NO. 2
DOCKET NO. 50-311
QUESTION $\quad 1.2$ (a) For certain nozzle welds, information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by licensee identification numbers

Summary \# 021200

Component I.D. 29-STG-1220-IRS

Description \#22 Cold Leg Inner Radius

|  |  | Comments |
| :---: | :---: | :---: |
| 1 | Weld X-Section | N/A |
| 2 | Material | Carbon Steel / Income Clad |
| 3 | Thickness / weld Crown | N/A |
| 4 | Obstruction | Generator Support Lug |
| 5 | Exam Area Highlighted on Drawing | Yes $\mathbf{X}$ Nod |
| 6 | Transducer ray exit point | N/A |

Comments
UT exam was conducted using 28 and 38 degree longitudinal wave transducers. The exams completed was limited to $73 \%$ code required coverage due to due to the insulation support brackets attached to the steam generators lower head that and permenent support lugs interfered with scanning. The exam surface is approximately 154 " with the length of the limitation being $73^{\prime \prime}$. No exam was able to be performed between 24" cow to $15^{\prime \prime}$ cow from datum zero support lug located $77^{\prime \prime}$ cow to $79^{\prime \prime}$ cow with $\mathbf{2 " ~}^{\mathbf{W}}$ measurement. No unacceptable indications were noted. A system pressure test was also completed with no unacceptable indications observed.

Supplemental Drawing


Comments Ulitrasonic exam area limited to $73 \%$ of code required coverage due to permanent Steam Generator support lugs See Sketch below showing support lug interference with exam area Drawing was created in order to assist in the evaluation of the request for relief regarding examination coverage only.

Sketch


## Supplemental Drawing

| Summary \# | 021200 |
| :--- | :--- |
| Description | \#22 Cold Leg Inner Radius |

Component I.D. 29-STG-1220-IRS
Page 3 of 3

Comments Ultrasonic exam area limited to $73 \%$ of code required coverage due to permanent Steam Generator support lugs
See Sketch below showing support lug interference with exam area
Drawing was created in order to assist in the evaluation of the request for relief regarding examination coverage only.

Sketch


QUESTION $\quad 1.2$ (a) For certain nozzie welds, information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by licensee identification numbers

Summary \# 021100

Component I.D. 29-STG-1230-IRS
Description \#23 Cold Leg Inner Radius

| 1 | Weld X-Section |
| :---: | :---: |
| 2 | Material |
| 3 | Thickness / weld Crown |
| 4 | Obstruction |
| 5 | Exam Area Highlighted o |
| 6 | Transducer ray exit point |


| Comments |
| :---: |
| N/A |
| Carbon Steel / Inconel Clad |
| N/A |
| Generator Support Lug |
| Yes $\mathbf{X}$ \| No |
| N/A |

## Comments

UT exam was conducted using 28 and 38 degree longitudinal wave transducers. The exams completed was limited to $75 \%$ code required coverage due to due to the insulation support brackets attached to the steam generators lower head that and permanent support lugs interfered with scanning. No unacceptable indications were noted. A system pressure test was also completed with no unacceptable indications observed.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Supplemental Drawing



## Supplemental Drawing

| Summary \# | 021100 | Component I.D. | 29-STG-1230-IRS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Description | \#23 Cold Leg Inner Radius |  | Page |  |  |

Comment: Ultrasonic exam area limited to $75 \%$ of code required coverage due to permanent Steam Generator support lugs See Sketch below showing support lug interference with exam area
Drawing was created in order to assist in the evaluation of the request for relief regarding examination coverage only.

Sketch


QUESTION $\quad 1.2$ (a) For certain nozzle welds, information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by licensee identification numbers

Summary\# 021000

Component I.D. 29-STG-1240-IRS
Description \#24 Cold Leg Inner Radius


Comments
UT exam was conducted using 28 and 38 degree longitudinal wave transducers. The exams completed was limited to $86 \%$ code required coverage due to due to the insulation support brackets attached to the steam generators lower head that and permanent support lugs interfered with scanning. No unacceptable indications were noted. A system pressure test was also completed with no unacceptable indications observed.
$\qquad$

## Supplemental Drawing

| Summary \# | 021000 |
| :--- | :--- |
| Description | \#24 Cold Leg Inner Radius |

Component I.D. 29-STG-1240-IRS
Page 2 of 3

Comments Ultrasonic exam area limited to $86 \%$ of code required coverage due to permanent Steam Generator support lugs See Sketch below showing support lug interference with exam area
Drawing was created in order to assist in the evaluation of the request for relief regarding examination coverage only.

Sketch


## Supplemental Drawing

| Summary \# | $\mathbf{0 2 1 0 0 0}$ |
| :--- | :--- |
| Description | \#24 Cold Leg Inner Radius |

Component I.D. 29-STG-1240-IRS
Page 3 of 3

Comment: Ultrasonic exam area limited to $86 \%$ of code required coverage due to permanent Steam Generator support lugs See Sketch below showing support lug interference with exam area
Drawing was created in order to assist in the evaluation of the request for rellef regarding examination coverage only.

Sketch


# REQUEST FOR ADDITIONAL INFORMATION REQUEST FOR RELIEF REGARDING EXAMINATION COVERAGE SECOND TEN-YEAR IN-SERVICE INSPECTION INTERVAL SALEM NUCLEAR GENERATING STATION, UNIT NO. 2 DOCKET NO. 50-311 

QUESTION $\quad 1.2$ (a) For certain nozzle welds, information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by licensee identification numbers

| Summary \# | $\mathbf{0 2 0 9 0 0}$ |
| :---: | :--- |
| Component I.D. | 31-STG-1210-IRS |
| Description | \#21 Hot Leg Inner Radius |

Comments

| N/A |
| :---: |
| Carbon Steel / Inconel Clad |
| N/A |
| Generator Support Lug |
|  |
| N/A |

Comments
UT exam was conducted using 28 and 38 degree longitudinal wave transducers. The exams completed was limited to $79 \%$ code required coverage due to due to the insulation support brackets attached to the steam generators lower head that and permanent support lugs interfered with scanning. No unacceptable indications were noted. A system pressure test was also completed with no unacceptable indications abserved.
$\qquad$

## Supplemental Drawing



## Supplemental Drawing

| Summary \# | 020900 |
| :--- | :--- |
| Description | \#21 Hot Leg Inner Radius |

Component I.D. 31-STG-1210-IRS
Page $\quad 3$ of 3

Commentu Ultrasonic exam area limited to 79\% of code required coverage due to permanent Steam Generator support lugs
See Sketch below showing support lug interference with exam area
Drawing was created in order to assist in the evaluation of the request for relief regarding examination coverage oniy.

Sketch


## REQUEST FOR ADDITIONAL INFORMATION REQUEST FOR RELIEF REGARDING EXAMINATION COVERAGE SECOND TEN-YEAR IN-SERVICE INSPECTION INTERVAL SALEM NUCLEAR GENERATING STATION, UNIT NO. 2 DOCKET NO. 50-311

QUESTION $\quad 1.2$ (a) For certain nozzle welds, information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by licensee identification numbers

| Summary\# | 020800 |
| :--- | :--- |
| Component I.D. | 31-STG-1220-IRS |
| Description | \#22 Hot Leg Inner Radius |


| 1 | Weld X-Section | N/A |
| :---: | :---: | :---: |
| 2 | Material | Carbon Steel / Inconel Clad |
| 3 | Thickness / weld Crown | N/A |
| 4 | Obstruction | Generator Support Lug |
| 5 | Exam Area Highlighted on Drawing | Yes $\mathbf{X}$ No |
| 6 | Transducer ray exit point | N/A |

Comments UT exam was conducted using 28 and 38 degree refracted longitudinal wave transducers.
The exam completed was limited to $80 \%$ of code required coverage due to permanent Steam Generator support lugs. The exam surface is approximately $153.9^{\prime \prime}$ with the length of the limitation being $30^{\prime \prime}$.
No exam could be performed between $15^{\prime \prime} \mathrm{ccw}$ to $15^{\prime \prime} \mathrm{cw}$ from datum zero. No unacceptable indications were noted. A system pressure test was also completed with no unacceptable indications observed
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Page 1 of 3

Supplemental Drawing

| Summary \# | $\mathbf{0 2 0 8 0 0}$ |
| :--- | :--- |
| Description | \#22 Hot Leg Inner Radius |

Component I.D. 31-STG-1220-IRS
Page 2 of 3

Comments Ultrasonic exam area limited to $80 \%$ of code required coverage due to permanent Steam Generator support lugs See Sketch below showing support lug interference with exam area
Drawing was created in order to assist in the evaluation of the request for relief regarding examination coverage only.

Sketch


## Supplemental Drawing

| Summary \# | 020800 |
| :--- | :--- |
| Description | \#22 Hot Leg Inner Radius |

Component I.D. 31-STG-1220-IRS
Page 3 of 3

Commentr Ultrasonic exam area limited to $80 \%$ of code required coverage due to permanent Steam Generator support lugs See Sketch below showing support lug interference with exam area
Drawing was created in order to assist in the evaluation of the request for relief regarding examination coverage only.

Sketch


# REQUEST FOR ADDITIONAL INFORMATION <br> REQUEST FOR RELIEF REGARDING EXAMINATION COVERAGE <br> SECOND TEN-YEAR IN-SERVICE INSPECTION INTERVAL <br> SALEM NUCLEAR GENERATING STATION, UNIT NO. 2 <br> DOCKET NO. 50-311 

QUESTION $\quad 1.2$ (a) For certain nozzle welds, information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by licensee identification numbers

| Summary\# | 020700 |
| :---: | :--- |
| Component I.D. | 31-STG-1230-IRS |
| Description | \#23 Hot Leg Inner Radius |


| 1 | Weld X-Section | N/A |
| :---: | :---: | :---: |
| 2 | Material | Carbon Steel / Inconel Clad |
| 3 | Thickness / weld Crown | N/A |
| 4 | Obstruction | Generator Support Lug |
| 5 | Exam Area Highlighted on Drawing | Yes X No |
| 6 | Transducer ray exit point | N/A |

Comments
UT exam was conducted using 28 and 38 degree longitudinal wave transducers. The exams completed was limited to $81 \%$ code required coverage due to due to the insulation support brackets attached to the steam generators lower head that and permanent support lugs interfered with scanning. No unacceptable indications were noted. A system pressure test was also completed with no unacceptable indications observed.

Supplemental Drawing

| Summary \# | 020700 | Component I.D. |
| :---: | :---: | :---: |
| Description | \#23 Hot Leg Inner Radius |  |

Comments Ultrasonic exam area limited to $81 \%$ of code required coverage due to permanent Steam Generator support lugs See Sketch below showing support lug interference with exam area
Drawing was created in order to assist in the evaluation of the request for relief regarding examination coverage only.

Sketch


## Supplemental Drawing

| Summary \# | 020700 | Component I.D. | 31-STG-1230-IRS <br> Description <br> $\# \# 23$ Hot Leg Inner Radius |
| :--- | :--- | :--- | :--- |
|  |  | Page 3 |  |

Comment: Ulltrasonic exam area limited to $81 \%$ of code required coverage due to permanent Steam Generator support lugs See Sketch below showing support lug interference with exam area
Drawing was created in order to assist in the evaluation of the request for relief regarding examination coverage only.

Sketch


REQUEST FOR ADDITIONAL INFORMATION REQUEST FOR RELIEF REGARDING EXAMINATION COVERAGE SECOND TEN-YEAR IN-SERVICE INSPECTION INTERVAL SALEM NUCLEAR GENERATING STATION, UNIT NO. 2 DOCKET NO. 50-311

QUESTION 1.2 (a) For certain nozzle welds, information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by licensee identification numbers


| 1 | Weld $X$-Section |
| :---: | :---: |
| 2 | Material |
| 3 | Thickness / weld Crown |

4 Obstruction

5 Exam Area Highlighted on Drawing
6 Transducer ray exit point

| Comments |
| :---: |
| N/A |
| Carbon Steel / Inconel Clad |
| N/A |
| Generator Support Lug |
|  |
| N/A |

## Comments

UT exam was conducted using 28 and 38 degree longitudinal wave transducers. The exams completed was limited to $85 \%$ code required coverage due to due to the insulation support brackets attached to the steam generators lower head that and permanent support lugs interfered with scanning. No unaccaptable indications were noted. A system pressure test was also completed with no unacceptable indications observed.

## Supplemental Drawing



Comments Ultrasonic exam area limited to $85 \%$ of code required coverage due to permanent Steam Generator support lugs See Sketch below showing support lug interference with exam area
Drawing was created in order to assist in the evaluation of the request for relief regarding examination coverage only.

Sketch


## Supplemental Drawing

| Summary \# | 020600 | Component I.D. | 31-STG-1240-IRS |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Description | \#24 Hot Leg Inner Radius |  | Page | 3 of |  | 3 |

Commentrultrasonic exam area limited to $85 \%$ of code required coverage due to permanent Steam Generator support lugs See Sketch below showing support lug interference with exam area
Drawing was created in order to assist in the evaluation of the request for relief regarding examination coverage only.

Sketch


jER RESPONSIBLE FOR VERIFYING REVISION, STATUS AND CHANGES
VG RC23 0138 PRINTED 20050113


# REQUEST FOR ADDITIONAL INFORMATION <br> REQUEST FOR RELIEF REGARDING EXAMINATION COVERAGE SECOND TEN-YEAR IN-SERVICE INSPECTION INTERVAL SALEM NUCLEAR GENERATING STATION, UNIT NO. 2 <br> DOCKET NO. 50-311 

QUESTION $\quad 1.3$ (c) For certain piping welds, Information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by licensee identification numbers listed below.

Summary \# 040900

Component I.D. 2-CV-1275-43

Description Valve 2CV76 to Pipe


Comments

See Altached

Stainless Steel

Thickness .35" / Weld Crown .5"

OD contour on valve side and weld 44


See Attached

Comments

UT exam was performed of this component using 45 degree shear wave transducer. The ultrasonic examination was limited to $50 \%$ of the code required coverage being limited due to the exam limited to $3 / 8^{\prime \prime} \mathrm{W}$ due to the close proximity of the downstream socket weld \# 44 being to close that interfered with scanning. Component selected as an augmented 88-08 exam. No unacceptable indications were observed. A liquid penetrant examination and system pressure test was also completed with no recordable indications observed.
$\qquad$

Page of

Supplemental Drawing

| Summary \# | 040900 |
| :--- | :--- |
| Description | 2-CV-1275-43 |

Component I.D. $\qquad$
Page of
Comments $\quad \begin{aligned} & \text { The ultrasonic examination was limited to } 50 \% \text { of the code required coverage being limited due to exam being limited to } 3 / 8 \text { " } \mathrm{W} \\ & \text { due to the close proximity of the downstream socket weld } \# 44\end{aligned}$ due to the close proximity of the downstream socket weld \# 44 being to close and interfering with scanning.

Sketch


## REQUEST FOR ADDITIONAL INFORMATION <br> REQUEST FOR RELIEF REGARDING EXAMINATION COVERAGE <br> SECOND TEN-YEAR IN-SERVICE INSPECTION INTERVAL <br> SALEM NUCLEAR GENERATING STATION, UNIT NO. 2 <br> DOCKET NO. 50-311

QUESTION $\quad 1.3$ (c) For certain piping welds, Information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by licensee identification numbers listed below.


Comments

UT exam was performed of this component using 45 degree shear wave transducer. The ultrasonic examination was limited to $50 \%$ of the code required coverage being limited due to the exam limited to $3 / 8{ }^{\prime \prime} \mathrm{W}$ due to the close proximity of the downstream socket weld \# 43 being to close that interfered with scanning. Component selected as an augmented $88-08$ exam. No unacceptable indications were observed. A liquid penetrant examination and system pressure test was also completed with no recordable indications observed.
$\qquad$



虽

$$
\nVdash S I E
$$

USER RESPONSIBLE FOR VERIFYING REVISION, STATUS AND CHANGES JUG RC23 0027 PRINTED 20050113



# REQUEST FOR ADDITIONAL INFORMATION REQUEST FOR RELIEF REGARDING EXAMINATION COVERAGE SECOND TEN-YEAR IN-SERVICE INSPECTION INTERVAL SALEM NUCLEAR GENERATING STATION, UNIT NO. 2 DOCKET NO. 50-311 

QUESTION $\quad 1.3$ (c) For certain piping welds, Information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by licensee identification numbers listed below.


Comments
No Ut exam was able to be performed from the elbow side due to the elbow being fabricated from ASTM351-65 CF8M cast stainless steel whose acoustic properties is not conductive for ultrasonic examination. A PT exam of the long seam was performed in lieu of the UT exam because of the elbow's acoustic properties of the casting. There were no unacceptable indications observed.

Supplemental Drawing

Summary \# $\qquad$
Description

075800
Longitudinal Weld

Component I.D.
31
Page
of

Comments
No Ut exam was able to be performed from the elbow side due to the elbow being fabricated from ASTM351-65 CF8M cast stainless steel whose acoustic properties is not conductive for ultrasonic examination.

Sketch


WELD PROFILE EST:MAリ:

## REQUEST FOR ADDITIONAL INFORMATION REQUEST FOR RELIEF REGARDING EXAMINATION COVERAGE SECOND TEN-YEAR IN-SERVICE INSPECTION INTERVAL SALEM NUCLEAR GENERATING STATION, UNIT NO. 2 DOCKET NO. 50-311

QUESTION $\quad 1.3$ (c) For certain piping welds, Information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by licensee identification numbers listed below.

| Summary \# | 075900 |
| :---: | :--- |
| Component I.D. | $31-R C-1220-4 L U-O$ |
| Description | Longitudinal Weld |



Comments
No Ut exam was able to be performed from the elbow side due to the elbow being fabricated from ASTM351-65 CF8M cast stainless steel whose acoustic properties is not conductive for ultrasonic examination. A PT exam of the long seam was performed in lieu of the UT exam because of the elbow's acoustic properties of the casting. There were no unacceptable indications observed.

Summary \#
075900
Description

Component I.D.


Comments
No Ut exam was able to be performed from the elbow side due to the elbow being fabricated from ASTM351-65 CF8M cast stainless steel whose acoustic properties is not conductive for ultrasonic examination.

Sketch





QUESTION - 1.3 (c) For certain piping welds, Information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by licensee identification numbers listed below.

Summary \# 074600
Component I.D. 31-RC-1220-1
Description Nozzle to Elbow

|  | Weld X-Section | Comments |
| :---: | :---: | :---: |
| 1 |  | See Attached |
| 2 | Material | ASTM 351-65 S/S Cast / C/S |
| 3 | Thickness / weld Crown | Thickness 3" / Weld Crown 4" |
| 4 | Obstruction | Material Type \& OD Configuration |
| 5 | Exam Area Highlighted on Drawing | Yes |
| 6 | Transducer ray exit point | N/A |

Comments

Ut exam was performed of this component using 45 degree shear wave transducer. The ultrasonic examination completed was limited to $50 \%$ of the code required coverage being achieved due to no UT axial scan exam was performed from the upstream or the downstream side of the weld due to the elbow being fabricated from ASTM351-65 CF8M cast stainless steel whose acoustic properties is not conductive for ultrasonic examination and the OD configuration of the nozzle A clockwise and counterclockwise exam was performed of the weld crown. There were no unacceptable indications observed. A liquid penetrant examination and system pressure test was also completed with no recordable indications observed.
$\qquad$

$\qquad$
$\qquad$
$\qquad$

Page of

Supplemental Drawing

Summary \#
Description

074600
Nozzle to Elbow

Component I.D.
31-RC-1220-1
Page of
$\qquad$
Sketch


ASTM $351-65$ CF SM CAST STARLESS STEEL

ELBOW

$$
\begin{aligned}
& \text { AXIAL SCAN } \\
& \text { LIMITATiON }
\end{aligned}
$$



Notes: Note-1: Circumferential examination performed on the weld. The total Examination volume obtained is $\mathbf{5 0 . 0 \%}$. The total examination volume is derived from previous data. The limitations for this weld are from the nozzle configuration and from the acoustic properties of the cast stainless steel elbaw. The surface distance between the 45 degree transducer exit point and the ID notch is 2.3 inches.
Note-2: Ultrasonic thickness proflles performed with a zero degree, 4.0 megahertz, 0.50 -inch, dual element transducer calibrated with a SS step wedge.

| Examiner: Sign: | M.W. Kay L.evel: II | Date: 04/14/99 | Examiner: Sign: | $\begin{aligned} & \text { N/A } \\ & \text { FACTO }^{2} \end{aligned}$ | evel: |  | Date: |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Reviewed: Sign: | D.J. Langenferd Level: II AQ. Tamarfeld | Date: $4 /-20-99$ | ANII Rev Sign: |  |  |  |  |
| Customer: Sign: |  | Date: $4-29-99$ |  |  | 2 | of | 3 |

REQUEST FOR ADDITIONAL INFORMATION REQUEST FOR RELIEF REGARDING EXAMINATION COVERAGE SECOND TEN-YEAR IN-SERVICE-INSPECTION INTERVAL SALEM NUCLEAR GENERATING STATION, UNIT NO. 2

DOCKET NO. 50-311
QUESTION $\quad 1.3$ (c) For certain piping welds, Information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by licensee identification numbers listed below.


Comments
Ut exam was performed of this component using 45 degree shear wave transducer. The ultrasonic examination completed was limited to $50 \%$ of the code required coverage being achieved due to no UT axial scan exam was performed from the upstream or the downstream side of the weld due to the elbow being fabricated from ASTM351-65 CF8M cast stainless steel whose acoustic properties is not conductive for ultrasonic examination and the OD configuration of the nozzle A clockwise and counterclockwise exam was performed of the weld crown. There were no unacceptable indications observed. A liquid penetrant examination and system pressure test was also completed with no recordable indications observed.
$\qquad$
Page of

Supplemental Drawing

$\qquad$
Sketch


ATM $351-65$ CF 8 M CAST STAINLESS STEEL

ELBOW


AIAL SCAN LIMITATION


UT CALIBRATION DATA SHEET


Notes: Note-1: Circumferential examination performed on the weld. The total Examination volume obtained is $50.0 \%$. The total examination volume is derived from previous data. The limitations for this weld are from the nozzle
configuration and from the acoustic properties of the cast stainless steel elbow. The surface distance between the 45 degree transducer exit point and the ID notch is 2.3 inches.
Note-2: Ultrasonic thickness profiles performed with a zero degree, 4.0 megahertz, 0.50 -inch, dual element transducer calibrated with a SS step wedge.


# REQUEST FOR ADDITIONAL INFORMATION <br> REQUEST FOR RELIEF REGARDING EXAMINATION COVERAGE SECOND TEN-YEAR IN-SERVICE INSPECTION INTERVAL <br> SALEM NUCLEAR GENERATING STATION, UNIT NO. 2 <br> DOCKET NO. 50-311 

QUESTION $\quad 1.3$ (c) For certain piping welds, Information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by licensee identification numbers listed below.


## Comments

Ut exam was performed of this component using 45 degree shear wave transducer. The ultrasonic examination completed was limited to $50 \%$ of the code required coverage being achieved due to no UT axial scan exam was performed from the upstream or the downstream side of the weld due to the elbow being fabricated from ASTM351-65 CF8M cast stainless steel whose acoustic properties is not conductive for ultrasonic examination and the OD configuration of the nozzle A clockwise and counterclockwise exam was performed of the weld crown. There were no unacceptable indications observed. A liquid penetrant examination and system pressure test was also completed with no record able indications observed.

Supplemental Drawing

Summary \#
070000
Description

Component I.D.
Nozzle to Elbow

31-RC-1240-1
Page



SWRI FORM NO. NOTR 17-86 (REV. 2/931



## REQUEST FOR ADDITIONAL INFORMATION REQUEST FOR RELIEF REGARDING EXAMINATION COVERAGE SECOND TEN-YEAR IN-SERVICE INSPECTION INTERVAL SALEM NUCLEAR GENERATING STATION, UNIT NO. 2 DOCKET NO. 50-311

QUESTION $\quad 1.3$ (c) For certain piping welds, Information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by licensee identification numbers listed below.


## Comments

Ut exam was performed of this component using 45 degree shear wave transducer. The ultrasonic examination completed was limited to $50 \%$ of the code required coverage being achieved due to no UT axial scan exam was performed from the upstream or the downstream side of the weld due to the elbow being fabricated from ASTM351-65 CF8M cast stainless steel whose acoustic properties is not conductive for ultrasonic examination and the OD configuration of the nozzle A clockwise and counterclockwise exam was performed of the weld crown. There were no unacceptable indications observed. A liquid penetrant examination and system pressure test was also completed with no recordable indications observed.



# REQUEST FOR ADDITIONAL INFORMATION <br> REQUEST FOR RELIEF REGARDING EXAMINATION COVERAGE <br> SECOND TEN-YEAR IN-SERVICE INSPECTION INTERVAL <br> SALEM NUCLEAR GENERATING STATION, UNIT NO. 2 <br> DOCKET NO. 50-311 

QUESTION 2.2(a) For certain component attachments and support welds, information submitted by the licensee is not sufficient to demonstrate impracticallity. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by licensee identification numbers listed below.

| Summary \# | 573055 |
| :---: | :--- |
| Component I.D. | 12-RH-2252-5PL-1 thru 6 |
| Description | PIPE LUG |


|  |  | Comments |
| :---: | :---: | :---: |
| 1 | Weld X-Section | N/A |
| 2 | Material | Stainless Steel |
| 3 | Thickness / weld Crown | N/A |
| 4 | Obstruction | SYSTEM CONFIGURATION |
| 5 | Exam Area Highlighted on Drawing | Yes X No |
| 6 | Transducer ray exit point | N/A |

Comments
PT exam was conducted of this component. The PT exam was limited to $33 \%$ because the lugs 2,3,4,5 due to accessibility. The inaccessible pipe lugs are located within a permanent piping penetration sleeve. A system pressure test was also completed with no unacceptable indications observed.

SECOND INTERVAL, SECOND PERIOD, SECOND



A PT Examination of the Pipe Lug was performed with no recordable indications noted. No PT examination performed on Lugs 2, 3, 4 and 5 due to inaccessibilty. The inaccessible Pipe Lugs are located inside a Permanent Piping Penetration Sleeve, therefore $33.0 \%$ of the code required surface area was examined as denoted in previous data.

The PT examination results were compared to previous data.

NRI = No Recordable Indications

$\mathrm{RI}=$ Recordable Indication


LIQUID PENETRANT EXAMINATION


Remarks/Sketch (If necessary)
No recordable indications found.

Note-1: No PT examination on Lug No.'s 2, 3, 4 and 5 was performed due to inaccessibility. These Lugs are located inside a Piping Penetration Sleeve, therefore $33 \%$ of the code required surface area was examined.

Contract No. 1220721


## PSE\&G LIMITATION REPORT

## PROJECT: $17-6399$ <br> SYSTEM: Cherical Voluine Cintrol Prepared By: Victor Morten.

UNIT: SALEM 2
WELD NO. $3-c x-2257-7$

Date: $310 C T 94$

## SURFACE EXAMINATIONS

Area To Be Examined (length $\times$ Width $=$ A)
Area Of Limitation (Length $\times$ Width $=$ Al)
Percentage Of Coverage
$\qquad$


## VOLUMETRIC EXAMINATIONS

## A. Axial Exams (Indications Parallel To Weld)

1. Compute Exam Volume
2. Compute Vol. Not Covered Upstream
3. Compute Upstream Limitation Percentage
4. Compute Vol. Not Covered Downstream
5. Compute Downstream Limitation Percentage
(height x width x length) $=\mathrm{V} t 1$
$=A$
$(A / V t 1) \times 100=21$
$=B$
$(B / V t 1) \times 100=Z 2$
B. Circumferential Exams (Indications Perpendicular To Weld)
6. Compute Exam Volume
(height $x$ width $x$ length $)=V t 2$
$=\mathrm{C}$
$(C / V t 2) \times 100=Z 3$
7. Compute Vol. Not Covered CCW
8. Compute CCW Limitation Percentage
C. Total Coverage
9. Compute Total Limitation Percentage
10. Compute Total Coverage

- 

19.18
80.82

REMARKS: $\qquad$




```
SALEM UNIT Z 17-6399
cHEMIEAL VOLUME CONTROL
3-cV-2257-7
Victarz Morton .IIL 31 oct }9
For LImitatIon coverrige only.
```

PEP AREA NOT COVEAED CW/ech
N $=$ FREA NOT COVERED uP/DOWN
IIIIII = area not covereo upstifati side.
AREA ruat coverins Downstriani gloe
.-.- circumferentifl mrea

Summary No.: $\qquad$ 734111
Examiner: $\qquad$
Examiner: $\qquad$
Other: $\qquad$

Level:
Level:
$\qquad$

Level: $\qquad$

Report No.:
Page: $\qquad$ of $\qquad$


Comments:

Sketch or Photo:

SHELL


45: $60^{\circ}$ Shear Indication Plots
SUMmARY It

$$
734111
$$

HOD (1) IS ROOT GEOMETRY
IND (2) 15 CROWN GKOMFIRY
COMPONENT \#

$$
2 \text { CVE-18-SW1J-1 }
$$

IND (3) IS BKAM REDIPECTION

Report No.:
Page: $\qquad$ of
$\qquad$

Level: $\qquad$

Reviewer:
Sues Review:
ANII Review:


Date: $10 / 27 / 03$
Dale: $10=2903$ Date: MO
comments: Single Side examination due to flange configuration (For Axial Coverage)

Sketch or Phot:
(1)
(2)
(3)
(4)
(5)


SUMMARY It
734111

COMPONENT \#

$$
2 C V E-18-S \omega 1 J-1
$$

$45^{\circ}$ shear $\overline{\text { § }} 70^{\circ} \mathrm{RL}$
Coverage Plot

Flange

Thickness Readings
(1) $1.0^{\circ}$
(2) $1.0^{\circ}$
(3) $1.06^{\circ}$
(4) 1.0 "
(5) None due to Flange Configuration

$\qquad$ DREW PETERSOn $N / a$

Report No: $\qquad$
Page: $\qquad$ of $\qquad$

Leva: $\qquad$
Level: $\qquad$
Level: $\qquad$



Date: 10/28/03
Dale: $10.29+5$
Data: Mu y 1 iwis

Comments: COM PONENT \#
LIMITATION SKETCH
2CVE-18-SWIJ-1

Sketch or Photo:


NO AXIAL SCANS WERE PERFORMED ONTIC UPSTREAM SIDE OF THE WELD DUE TBTHEFLANGE COUFKGERTKN. NO SCANS WERE PERFORMED ON TH K DOWNSTREAM (SHELL) SIDE OF THE WELD IN THE AREAS WHERE THE ID. PLATE AND WELDED AHACHMWNT ARE LOCATED.

1.0 CALCULATE REQUIRED EXAM VOLUME FOR STRAIGHT BEAM PLANAR FLAWS
1.1 Exam Height X Exam Width $X$ Exam Length $=$ Exam Volume $\quad \mathbf{X} \quad \mathbf{X} \quad N / A$ cu.i
2.0 CALCULATE REQUIRED EXAM VOLUME FOR STRAIGHT BEAM LAMINAR FLAWS
2.1 Exam Height $X$ Exam Width $X$ Exam Length $=$ Exam Volume $1.0^{\prime \prime} \times 2.2^{\prime \prime} \times 34^{\prime \prime}=74.8^{\prime \prime}$ cu

### 3.0 CALCULATE REQUIRED PARALLEL EXAM VOLUME FOR $45^{\circ}$ AND-

3.1 Exam Height $\times$ Exam Width $\times$ Exam Length $=$ Exam Volume

$$
1.0^{\prime \prime} \times 2.2^{\prime \prime} \times 68^{\prime \prime}=1.49 .0^{\prime \prime} \mathrm{cu} .1
$$

149,6 149,6
CALCULATE REQUIRED TRANSVERSE EXAM VOLUME FOR $45^{\circ}$ AND. $60^{\circ}$
4.1 Exam Height $\times$ Exam Width $\times$ Exam Length $=$ Exam Volume $1.0^{\prime \prime} \times 2.2^{\prime \prime} \times 136=299.2$ cut

### 5.0 CALCULATE STRAIGHT BEAM PLANAR EXAM COVERAGE

5.1 Limited above / CW exam volume

| Height of | Width of | Length of | Volume with no |
| :--- | :--- | :--- | :--- |
| Obstructed Volume | Obstructed Area | Obstructed Area | Exam Coverage |

$\underline{N / A \quad \times \quad \times N / A \quad N / A}$
5.2 Limited Below / CW exam volume

| Height of | Width of | Length of | Volume with no |
| :--- | :--- | :--- | :--- |
| Obstructed Volume | Obstructed Area | Obstructed Area | Exam Coverage |

$\underline{N / \Delta} \times 1 / A \quad \times N / A \quad N / A$

Total straight beam planar exam volume not examined
$=\quad N / A$
5.3 Percent Volume Examined

| Total 0 vol | Total 0 | Percent Volume |
| :--- | :--- | :--- |
| wiNo Coverage | Exam Volume | Examined |

$$
100-\{[\mathrm{N} / \mathrm{A} 1 \mathrm{~N} / \mathrm{A}] \times 100\}=\mathrm{N} / \mathrm{A} \%
$$

FRAMATOME
-i. 0 CALCULATE STRAIGHT BEAM LAMINAR EXAM COVERAGE
upstream
6.1 Limited exam volume

| Height of | Width of | Length of | Volume with no |
| :--- | :--- | :--- | :--- |
| Obstructed Volume | Obstructed Area | Obstructed Area | Exam Coverage |


6.2 Limited volume

| Height of | Width of | Length of |
| :--- | :--- | :--- |
| Obstructed Volume | Obstructed Area | Obstructed Area $;$ |


| $1.0^{\circ}$ | X | .6" | X | 2 | = | $16.05{ }^{\prime \prime}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Total straight beam planar exam volume not examined
$=36.45$ curim
6.3 Percent Volume Examined

| Total $0^{\circ}$ vol | Total $0^{\circ}$ | Percent Volume |
| :--- | :--- | :--- |
| w/No Coverage | Exam Volume | Examined |

$100-\{[36.45 \mathrm{~cm} i \mathrm{in} / 74.8 \mathrm{cuiv}] \times 100\}=51.3 \%$

### 7.0 CALCULATE PARALLEL $45^{\circ}$ EXAM COVERAGE

llizetream (ccur
7.1 Limited above Culy exam volume

| Height of | Width of | Length of | Volume with no |
| :--- | :--- | :--- | :--- |
| Obstructed Volume | Obstructed Area | Obstructed Area | Exam Coverage |


7.2 Limited Below CCW)exam volume

| Height of | Width of | Length of | Volume with no |
| :--- | :--- | :--- | :--- |
| Obstructed Volume | Obstructed Area | Obstructed Area | Exam Coverage |


| $\frac{1.0^{\prime \prime}}{} \times \frac{.6^{\prime \prime}}{x-14.5^{\prime \prime}}$ | $=\frac{8.7 \mathrm{cu} \mathrm{cm}^{\prime}}{\text { Total } 45^{\circ} \text { parailel exam volume not examined }}$ |
| ---: | :--- |

7.3 Percent Volume Examined

| Total $45^{\circ}$ parallel | Total $45^{\circ}$ parallel | Percent Volume |
| :--- | :--- | :--- |
| vol w/No Coverage | Exam Volume | Examined |

$100-\{[49.5 \mathrm{cu} \mathrm{in} .1 \mathrm{149.6cu]} \mathrm{\times 100} \mathrm{\}}=\underline{66.9 \%}$

CALCULATE PARALLEL $60^{\circ}$ EXAM COVERAGE
8.1 Limited above / CW exam volume

| Height of | Width of | Length of | Above/ CW exam |
| :--- | :--- | :--- | :--- |
| Obstructed Volume | Obstructed Area | Obstructed Area | Volume with no |
|  |  | Exam Coverage |  |

$\underline{N / A} \times N / A \quad=1 / A$
8.2 Limited Below / CCW exam volume

| Height of | Width of |
| :--- | :--- |
| Obstructed Volume | Obstructed Area |

N/A $\times N / A$
Length of
Obstructed Area Obstructed Area
$\qquad$
Below / CCW exam Volume with no Exam Coverage
$\qquad$

Total $60^{\circ}$ parallel exam volume not examined $\qquad$
8.3 Percent Volume Examined

$$
\begin{array}{lll}
\text { Total } 60^{\circ} \text { parallel } & \text { Total } 60^{\circ} \text { parallel } & \text { Percent Volume } \\
\text { Vol wiNo Coverage } & \text { Exam Volume } & \text { Examined }
\end{array}
$$

$$
100-\{[N / A] N / A] \times 100\}=N / A \%
$$

### 9.0 CALCULATE TRANSVERSE $45^{\circ}$ EXAM COVERAGE

9.1 Limited exam volume
$\frac{1.0^{\prime \prime}}{} \times \frac{1.1^{\prime \prime}}{} \times 41.25^{\prime \prime}=45.375$ ans in.
9.2 Limited Below Getmaterneekwise exam volume

| Height of | Width of | Length of | Volume with no |
| :--- | :--- | :--- | :--- |
| Obstructed Volume | Obstructed Area | Obstructed Area | Exam Coverage |

$1.0^{n} \times 1.1^{\prime \prime} \times 7.25^{11}=7.975$ anime

Total $45^{\circ}$ transverse exam volume not examined

9.3 Percent Volume Examined

Total $45^{\circ}$ parallel Vol wiNo Coverage

Total $45^{\circ}$ parallel
Exam Volume

## Percent Volume Examined

FRAMATOME AN VESSEL VOLUMETRIC EXAMINATION COVERAGE REPORT
10.0

CALCULATE TRANSVERSE $60^{\circ}$ EXAM COVERAGE
Looking Downstream
10.1 Limited Clockwise exam volume

10.2 Looking upstream

Limited Gounterextern volume

Height of
Obstructed Volume

Total 60 transverse exam volume not examined
10.3 Percent Volume Examined

Volume with no
Exam Coverage
$\qquad$

$$
=53.35 \mathrm{cu} \text { in }
$$

$$
\begin{aligned}
& \text { Total } 60^{\circ} \text { Trans Vol } \\
& \text { w/NoCoverage } \\
& 100-\{[53.35 \text { en. } 1 \text {. } 149.6 \text { ain. }] \times 100\}=64.33 \% \\
& \text { Percent Volume } \\
& \text { Examined }
\end{aligned}
$$

11.1 Sum of Exam Volumes \%

101
200


$$
\left[246.86^{7_{0}} 1-4\right]=61.72 \%
$$

CCW exam

Examination
Coverage

No scan from flange side or on weld due to configuration.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$\qquad$
Summary No.: $\quad 734112$
Examiner: DREw $P$ ETAKSon
Examiner: $\qquad$
Other: $\qquad$

Level:
Level:
Level: $\qquad$

Report No.:
Page: $\qquad$ of $\qquad$
$\qquad$
$\qquad$


Comments:

Sketch or Photo:


LOWER HEAD

$45^{\circ}: 60^{\circ}$ Shear Indication Plots
SUMMARY \#
734112
IND'S (1), (3), \& (5) ARE ROOT GEOMETRY
COMPONENT:
IND'S (2)

$$
2 C V E-18-5 W 1 J-2
$$

Summary No.: $\qquad$ 734112
Exarniner: $\qquad$
Examiner: $\qquad$
Other.

Level: $\qquad$ II
Level:
Level: $\qquad$

Report No.: $\qquad$
Page: $\qquad$ of $\qquad$
$\qquad$
Sine Review.
ANII Review:
 Dale: $10 / 29 / 03$ Date: $10-29-03$ Data: HOY 11

Comments:
COMPONENT $\#$
LIMITATION SKETCH.

$$
2 \subset V^{2}-18-\text { swis-2 }
$$

Sketch or Photo:
$L_{0}$
FLANGE


NO SCANS WERE PGXFURMED ON TITHER SIDE OF THE WE RD IN THE AREAS OF THE WELDED SUPPORTS AND ON THE UPSTREAM (SHELL) SIDE DUE TO THE INLET NOZZLE. NO SCANS ON TUE WELD DUE TO THE AS WELDED CODITIDA.
$\qquad$ of
$\qquad$


Date: $10 / 27 / 03$
Date: 10.29 .03 Data: NOY 11

Comments:

Sketch or Photo:


$$
\begin{aligned}
& \text { LOWFR } \\
& \text { HEAD }
\end{aligned}
$$




SUMMARY \#

$$
734112
$$

COMPONENT 4

$$
2 C V E-18-5 W 1 J-2
$$

THiCKNESS MEASUREMeNTS
(1). $96^{\prime \prime}$
(2) $1.0^{*}$
(3) $1.1^{\prime \prime}$
(4) $1.0^{\circ}$
(5) $10^{\prime \prime}$

FRAMATOME $\therefore: \quad$ VESSEL VOLUMETRIC EXAMINATION COVERAGE REPORT STUMER: PSEC SYSTEM: CVC

SUMMARY NO: $73+112$
COMPONENT ID: 2CVE-18-5WIJ-2
1.0 CALCULATE REQUIRED EXAM VOLUME FOR STRAIGHT BEAM PLANAR FLAWS
1.1 Exam Height X Exam Width X Exam Length = Exam Volume

$$
N / A \times N / A \times N / A=N / A \text { cu i }
$$

### 2.0 CALCULATE REQUIRED EXAM VOLUME FOR STRAIGHT BEAM LAMINAR FLAWS

2.1 Exam Height $X$ Exam Width $\times$ Exam Length $=$ Exam Volume $1.0^{\prime \prime} \times 2.2^{\prime \prime} \times 34^{\prime \prime}=74.8^{\prime \prime} \mathrm{cu} . \mathrm{i}^{\prime}$
3.0 CALCULATE REQUIRED PARALLEL EXAM VOLUME FOR 459 AND $60^{\circ}$
3.1 Exam Height $X$ Exam Width $X$ Exam Length $=$ Exam Volume

$$
1.0^{\prime \prime} \times 2.2^{\prime \prime} \times 65^{\prime \prime}=149.6 \mathrm{cu.i}
$$

149.6 149.6

CALCULATE REQUIRED TRANSVERSE EXAM VOLUME FOR $45^{\circ}$ AND $60^{\circ}$
4.1 Exam Height $\times$ Exam Width $X$ Exam Length $=$ Exam Volume

$$
1.0 \times 2.2 \times 136=299.2 \mathrm{cu.i}
$$

4.1 Exam Height X Exam Wi dh X Exam Length Exam Volume $\qquad$
5.0 CALCULATE STRAIGHT BEAM PLANAR EXAM COVERAGE
5.1 Limited above / CW exam volume

| Height of | Width of | Length of | Volume with no |
| :--- | :--- | :--- | :--- |
| Obstructed Volume | Obstructed Area | Obstructed Area | Exam Coverage |

$\underline{N / A} \times N / A \quad \times N / A \quad N / A$
5.2 Limited Below / CW exam volume

| Height of | Width of | Length of | Volume with no |
| :--- | :--- | :--- | :--- |
| Obstructed Volume | Obstructed Area | Obstructed Area | Exam Coverage |



Total straight beam planar exam volume not examined

$$
=\quad \mathrm{N} / \mathrm{A}
$$

5.3 Percent Volume Examined

| Total 0 vol | Total 0 | Percent Volume |
| :--- | :--- | :--- |
| wiNo Coverage | Exam Volume | Examined |

$$
100-\{[N / A, N / A] \times 100\}=N / A \%
$$

## CALCULATE STRAIGHT BEAM LAMINAR EXAM COVERAGE

## On Weld

6.1 Limited abovelch exam volume

| Height of | Width of | Length of | Volume with no |
| :--- | :--- | :--- | :--- |
| Obstructed Volume | Obstructed Area | Obstructed Area | Exam Coverage |

$\frac{1.0^{\prime \prime}}{} \times \frac{1.2^{\prime \prime}}{x}=\frac{34^{\prime \prime}}{50.8 \mathrm{~cm} . \operatorname{in} .}$
(a) Welded Supports (both sioles) i Upstream Inlet nozzle
6.2 Limited exam volume

| Height of | Width of | Length of |
| :--- | :--- | :--- |
| Obstructed Volume | Obstructed Area | Obstructed Area $\quad$ Exame with no |
|  | Exaverage |  |



### 6.3 Percent Volume Examined

$$
\begin{array}{ll}
\text { Total } 0^{\circ} \text { vol } & \text { Total } 0^{\circ} \\
\text { w/No Coverage } & \text { Exam Volume }
\end{array}
$$

Percent Volume Examined

100-\{[45.3 cuin. I 74.8 su.im.] $\times 100\}=39.44 \%$

### 7.0 CALCULATE PARALLEL $45^{\circ}$ EXAM COVERAGE

## Upatrean cicw

7.1 Limited above (CW) exam volume

Height of Width of Length of $\quad$ Volume with no
Obstructed Volume
Obstructed Area
Obstructed Area


7.3 Percent Volume Examined

| Total $45^{\circ}$ parallel | Total $45^{\circ}$ parallel | Percent Volume |
| :--- | :--- | :--- |
| vol w/No Coverage | Exam Volume | Examined |

100-\{[3191cm.in 1 149.6 cu"] $\times 100\}=78.67 \%$

CALCULATE PARALLEL $60^{\circ}$ EXAM COVERAGE
8.1 Limited above / CW exam volume

| Height of <br> Obstructed Volume | Width of <br> Obstructed Area | Length of <br> Obstructed Area | Above/ CW exam <br> Volume with no <br> Exam Coverage |
| :--- | :--- | :--- | :--- |

8.2 Limited Below / CCW exam volume

| Height of | Width of | Length of |
| :--- | :--- | :--- |
| Obstructed Volume | Obstructed Area | Obstructed Area |


8.3 Percent Volume Examined
9.0 CALCULATE TRANSVERSE $45^{\circ}$ EXAM COVERAGE

Loot ring Downstream
9.1 Limited exam volume

|  | Width of | Length of | CW Exam |
| :--- | :--- | :--- | :--- |
| Height of | Volume with no |  |  |
| Obstructed Volume | Obstructed Area | Obstructed Area | Exam Coverage |


9.2 Limited Be ram volume

9.3 Percent Volume Examined

Total $45^{\circ}$ parallel
Vol w/ No Coverage

Total $45^{\circ}$ parallel
Exam Volume

Percent Volume Examined

100-\{[31.91cu. in. 1 149.6 cu"] $\times 100\}=78.67 \%$

FRAMATOME ANY VESSEL VOLUMETRIC EXAMINATION COVERAGE REPORT
10.0

CALCULATE TRANSVERSE $60^{\circ}$ EXAM COVERAGE
10.1 Limited Gook wise exam volume

10.2

Limited eotnterefoekwise exam volume


Total 60 transverse exam volume not examined $\quad=31,91^{\prime \prime}$
10.3 Percent Volume Examined

$$
\begin{aligned}
& \text { Total } 60^{\circ} \text { Trans Vol } \\
& \text { w/NoCoverage } \\
& \text { 100-\{[31.91anin } 149.6 \text { cuing } \times 100\}=78.67 \%
\end{aligned}
$$

CALCULATE PERCENT OF TOTAL VOLUME EXAMINED
11.1 Sum of Exam Volumes \%


No scan from nozzle side or on weld due to configuration.
$\qquad$
$\qquad$
$\qquad$
$\qquad$



## REQUEST FOR ADDITIONAL INFORMATION REQUEST FOR RELIEF REGARDING EXAMINATION COVERAGE SECOND TEN-YEAR IN-SERVICE INSPECTION INTERVAL SALEM NUCLEAR GENERATING STATION, UNIT NO. 2 <br> DOCKET NO. 50-311

QUESTION $\quad 2.1$ (c) For certain piping welds, Information submitted by the licensee is not sufficient to demonstrate impracticality. Please submit further information in the form of drawings, sketches and/or descriptions to support this evaluation for the following components, as identified by licensee identification numbers listed below.

Summary \# 700000

Component I.D. 8-CS-2227-5
Description Valve 21CS2 to Pipe

|  |  | Comments |
| :---: | :---: | :---: |
| 1 | Weld X-Section | See Attached |
| 2 | Material | Stainless Steel |
| 3 | Thickness / weld Crown | Thickness .14" / Weld Contour |
| 4 | Obstruction | OD Contour of valve 21CS2 |
| 5 | Exam Area Highlighted on Drawing | Yes $\mathbf{X I}^{\text {P }}$ No\| |
| 6 | Transducer ray exit point | N/A |

Comments
UT exam was performed of this component using 45 and 70 degree wave transducer. The ultrasonic examination was limited to $31 \%$ of the code required coverage being limited due to upstream side valve OD configuration that restricted scanning. UT scans were performed on and across the weld in both directions No unacceptable indications were observed. A liquid penetrant examination and system pressure test was also completed with no recordable indications observed.


FRAMATOME
VOLUMETRIC PIPING EXAMINATION COVERAGE REPORT


## VOLUMETRIC PIPING EXAMINATIONS

1.0 AXIAL ULTRASONIC EXAMINATIONS (Indications Parallel to the Weld)
1.1 Compute Examination Volume (Height $\times$ Width $\times$ Length) $=\mathrm{Vt}_{1} \quad \underline{0.046^{\prime \prime}} \times 0.80^{\prime \prime} \times 26.21^{\prime \prime}=0.96 \mathrm{cu}$. in.
1.2 Compute Volume Not Examined on Upstream Side of Weld $=A \quad 0.046^{\prime \prime} \times 0.475^{\prime \prime} \times 26.21^{\prime \prime}=0.57 \mathrm{cu}$. in
1.3 Compute Upstream Limitation Percentage $\left(\mathrm{A}+\mathrm{Vt}_{1}\right) \times 100=\mathrm{Z1} \quad 0.57 \mathrm{in}^{3}+0.96 \mathrm{in}^{3} \times 100=59.4 \%$
1.4 Compute Volume Not Examined on Downstream Side of Weld $=B \quad 0.046^{\prime \prime} \times 0.475^{\prime \prime} \times 26.21^{\prime \prime}=0.57 \mathrm{cu}$. in
1.5 Compute Downstream Limitation Percentage $\left(B+\mathrm{Vt}_{1}\right) \times 100=\mathrm{Z2} \frac{0.57 \mathrm{in} .^{3}+0.96 \mathrm{in}^{3} \times 100=59.4 \%}{(\text { Beam Direction-DS) }}$
2.0 CIRCUMFERENTIAL ULTRASONIC EXAMINATIONS (Indications Perpendicular to the Weld)
2.1 Compute Examination Volume (Height $x$ Width $\times$ Length $)=\mathrm{Vt}_{2} \quad 0.046^{\prime \prime} \times 1.30^{n \prime} \times 26.21^{\prime \prime}=1.57 \mathrm{cu}$. in.
2.2 Compute Volume Not Examined in the Clock Wise Direction $=C \quad 0.046^{\prime \prime} \times 0.80^{\prime \prime} \times 26.21^{11}=0.96 \mathrm{cu}$. in.
2.3 Compute Clock Wise Limitation Percentage $\left(\mathrm{C}+\mathrm{Vt}_{2}\right) \times 100=\mathrm{Z3} \quad 0.96 \mathrm{in}^{3}+1.57 \mathrm{in}^{3}{ }^{3} \times 100=61.1 \%$
2.4 Compute Volume Not Examined in the Counter CW Direction $=\mathrm{D} \quad \underline{0.046^{\prime \prime} \times 0.80^{\prime \prime} \times 26.21^{\prime \prime}=0.96 \mathrm{cu} \text {. In }}$
2.5 Compute Counter CW Limitation Percentage $\left(D+\mathrm{Vt}_{2}\right) \times 100=\mathrm{Z4} \quad 0.96 \mathrm{in}^{3}+1.57 \mathrm{in}^{3}{ }^{3} \times 100=61.1 \%$

### 3.0 TOTAL EXAMINATION COVERAGE OBTAINED

3.1 Compute Total Limitation Percentage $(\mathbf{Z 1}+\mathbf{Z 2}+\mathbf{Z 3}+\mathbf{Z 4}) / 4=\mathbf{L}$
$60.3 \%$
3.2 Compute Total Coverage

100 -L
$39.8 \%$

## LIMITATION EXPLANATION/REMARKS

Limitation exists on the Valve side of the weld for the circumferential and axial examinations. See the
attached UT Coverage Plot. The 69 degree shear wave transducer was scanned over the required volume
from the pipe side of the weld only (one-sided examination), and 40.6 percent coverage was obtained
in the upstream axial direction. The coverage obtained from the downstream axial examination was
40.6 percent (derived from the 1-1/2 V-Path technique) due to the Valve configuration. The exam volume
was computed using actual OD pipe sizes and schedule wall thicknesses. The Length value is computed
using the diameter at the inner one third of the pipe wall thickness.
PREPARED BY: DATE: REVIEWER: DATE:

PREPARED BY:
Q.9. Langfeel

DATE: REVIEWER:
05/17/99

UT COVERAGE PLot
$68^{\circ}$ Shear Wave
"1110s = Not Covered
Profile Taken at 3:00

Summary * 700000 :
Nominal $O D=8.0^{=}$
FIGURE No.: A-E<3/8. 03
WELD: 8-Cs-2227-5

Pipe

$45^{\circ}$ shear wave
III = Not Covered

Page 5 of 6


Notes: Note-1: The $\mathbf{7 0}$ degree shear wave axial examination was performed from one side of the weld due to the Valve configuration.
The total examination coverage is $39.8 \%$. See attached Examination Coverage Report.
No recordable Indications were found.
Note-2: Change Authorization SU2-99-005 was used with 54-ISI-121-01.
Note-3: Ultrasonic thickness profiles performed with a zero degree, 5.0 megaherta, $0.25-\mathrm{Inch}$, dual element transducer calibrated with a SS step wedge.



Notes: Note-1: The 45 degree shear wave circumferential examination was Ilmited due to the weld and Valve configuration.
The total examination coverage is $39.8 \%$. See attached Examination Coverage Report.
No recordable indications were found. Change Authorization SU2-99-005 was used with 54-ISI-121-01.
Note-2: A zero degree lamination examination was performed and no recordable indications were found.
Note-3: The surface distance between the 45 degree transducer exit point and the ID notch is -0.15 inches.



[^0]:    *These numbers refer to Enclosure 1, Pages 1 through 343. Page numbers are in boxes in the corners of the pages.
    ** Relief was granted by the NRC in Reference 1 or was submitted in the Salem 2 first 10 -year interval in Reference 2.

[^1]:    *These numbers refer to Enclosure 1, Pages 1 through 343. Page numbers are in boxes in the corners of the pages.
    ** Relief was granted by the NRC in Reference 1 or was submitted in the Salem 2 first 10-year interval in Reference 2.

[^2]:    LV $1=$ COMMON INFORMATION
    LV 2 = WELD INFORMATION
    LV $3=$ HANGER INFORMATION

[^3]:    002200

[^4]:    SWRI FORM No. MDTR 17-il REV. 6/901

[^5]:    Salem/Hope Creek Common

[^6]:    Salem/Hope Creek Common
    Page 5 of 10
    Rev. 0

[^7]:    Lem/Hope Creek Common

[^8]:    Salem/Hope Creek Common

[^9]:    Salem/Hope Creek Common Page 6 of 10

