Safety Analysis Report for the F-294 Transport Package

IN/TR 9301 F294 (4)
Part 2 of 2

Science Advancing Health

CONTENTS

CHAPTER 3 - THERMAL EVALUATION 1
3.1 DISCUSSION 1
3.1.1 Thermal Design Features 1
3.1.2 Normal conditions of transport - steady state temperatures of F-294. 2
3.1.3 Hypothetical Accident conditions of transport - temperatures of F-294 in thermal test. 2
3.1.4 Decay heat load. 3
3.2 SUMMARY OF THERMAL PROPERTIES OF MATERIALS 3
3.3 Technical Specifications of Components 6
3.4 THERMAL Evaluation For NORMal CONDItIONS OF TRANSPORT 6
3.4.1 Thermal Model. 6
3.4.2 Maximum Temperatures. 9
3.4.3 Minimum Temperatures 10
3.4.4 Maximum Internal Pressure 10
3.4.4.1 Cavity of F-294 10
3.4.4.2 C-188 Assembly 10
3.4.5 Maximum Thermal Stresses. 11
3.4.6 Evaluation of the Package performance for Normal Conditions of Transport. 11
3.5 Hypothetical Accident Thermal Evaluation 12
3.5.1 Thermal Model. 12
3.5.1.1 Analytical Thermal Model 12
3.5.1. 2 Test Thermal Model. 12
3.5.2 Package Conditions and Environment. 12
3.5.3 Package Temperatures 13
3.5.4 Maximum Internal Pressures. 13
3.5.4.1 Cavity of F-294 13
3.5.4.2 C-188 Assembly 14
3.5.5 Maximum Thermal Stresses. 14
3.5.6 Evaluation of Package Performance for the Hypothetical Accident Thermal Conditions 14
3.5.6.1 C-188 Sealed Source 14
3.5.6.2 The Containment System. 15
3.5.6.3 Shielding in the Container and the Plug. 15
3.6 APPENDICES 18
Appendix 3.6.1 List of References for Chapter 3. 1
Appendix 3.6.2 Normal Thermal Tests of the F-294 Package with the F-313 Source Carrier. 1
Sub-Appendix 3.6.2.1 Test \# 5.1.10, Normal Thermal Test Prior to the Drop. 13
Sub-Appendix 3.6.2.2 Test \# 5.3.10, Normal Thermal Testing After the Drop 27
Appendix 3.6.3 Steady State Heat Transfer in the Cavity of F-294 Package 1
Appendix 3.6.4 Finite Element Analysis of the F-294 with the F-313 Source Carrier. 1
Sub-Appendix 3.6.4.1 COSMOSM Element Descriptions [15]. 31
Sub-Appendix 3.6.4.2 Radiation Shape Factors 43
Sub-Appendix 3.6.4.3 Derivation of Heat Transfer Coefficients 65
Sub-Appendix 3.6.4.4 COSMOS /M Input and Output Files 69
Appendix 3.6.5 Kaowool Product Information 1
Appendix 3.6.6 Normal Thermal Tests of the F-294 Package with the F-457 Source Carrier 1
Appendix 3.6.7 Finite Element analysis of the f-294 with the F-457 Source Carrier 1
CHAPTER 4 - CONTAINMENT 1
4.1 COntainment Boundary 1
4.1.I Containment Vessel. 1
4.1.2 Containment Penetration 1
4.1.3 Seals and Welds 2
4.1.3.1 Seals 2
4.1.3.2 Welds 2
4.1.4 Closure 2
4.2 Requirements for Normal Conditions of Transport 2
4.2.1 Release of Radioactive Material 3
4.2.2 Pressurization of Containment System 3
4.2.2.1 Maximum Internal Pressure 4
4.2.3 Stress Analysis of closure plug and inner shell assembly 4
4.2.3.1 Closure Plug Bolted Joint 4
4.2.3.2 Inner Shell Assembly 5
4.2.4 Coolant Contamination 6
4.2.5 Coolant Loss 7
4.3 CONTAINMENT REQUIREMENTS FOR HYPOTHETICAL ACCIDENT CONDITIONS. 7
4.3.1 Pressurization of Containment System 8
4.3.1.1 Maximum Internal Pressure 8
4.3.2 Stress Analysis of Closure Plug and Inner Shell Assembly 9
4.3.2.1 Closure Plug Bolted Joint 9
4.3.2.2 Inner Shell Assembly 10
4.3.3 Impact of the puncture test 12
4.3.4 Impact of the water immersion test 12
4.3.5 Fission Gas Products 13
4.3.6 Release of Contents 13
4.4 APPENDICES 13
Appendix 4.4.1 List of References for Chapter 4 1
Appendix 4.4.2 C-188 certificates 1
Appendix 4.4.3 Stress Analysis of the Containment System Subject to Normal Conditions of Transport of $\mathrm{F}-294$ 1
Appendix 4.4.4 C-188 Structural Integrity Under Normal Conditions of Transport of F-294 1
Appendix 4.4.5 C-188 Structural Integrity Under Hypothetical Accident Conditions of Transport (HACOT) of F-294 1
Appendix 4.4.6 Stress Analysis of the Containment System Subject to Hypothetical Accident Conditions of Transport of F-294 1
Appendix 4.4.7 F-294 Prototype Container Testing: Drop Test Data Relevant to the Containment System. 1
CRAPTER 5 - SHIELDING EVALUATION 1
5.1 Discussion and Results 1
5.2 Source Specification 5
5.3 Model Specification 5
5.3.I Description of the radial and Axial Shielding Configuration 5
5.3.2 Shield Regional Densities 5
5.4 Shielding Evaluation 6
5.4.1 Shielding evaluation off-294 PACKAGE in normal conditions of transport (NCOT) 6
5.4.2 Shielding evaluation off-294 PACKAGE under hypothetical conditions of transport (HACOT) 7
5.4.3 impact of the all stainless steel crack shield versus steel-encased-lead crack shield. 7
5.5 APPENDICES 10
Appendix 5.5.1 List of References for Chapter 5 1
Appendix 5.5.2 Pre-Drop Radiation Survey, 1
Appendix 5.5.3 Post-Drop Radiation Survey 1
Appendix 5.5.4 Converting Exposure to Dose Equivalent 1
Appendix 5.5.5 Exposure Rate Constant for ${ }^{60} \mathrm{Co}$ 1
Appendix 5.5.6 Typical Microshield Output. 1
Appendix 5.5.7 Shielding Evaluation for the Hypothetical Accident Thermal Conditions 1
Appendix 5.5.8 Worst-case Estimate of the Increase in External Radiation Fields for the Re-designed Crack Shield Assembly 1
CHAPTER 6 - CRITICALITY 1

Contents

CHAPTER 7 - OPERATING PROCEDURES 1
7.1 Procedures for Loading the Package 1
7.1.1 Purpose 1
7.1.2 Scope 2
7.1.3 Compliance and Responsibility 2
7.1.4 Transferring F-294 Empty Packaging From the Irradiator Site to the Pool 2
7.1.5 Underwater Loading of C-188s 3
7.1.6 Perform the Cavity Water Flush Test Procedure 4
7.1.6.1 Notifying MDS Nordion of Deficiencies 5
7.1.7 Preparation for Shipment of Loaded F-294 5
7.1.8 Instructions for Securing the Package on Road Vehicles 7
7.1.9 Additional Instructions 7
7.1.10 Loading Procedure 7
7.2 Procedures for Unloading the Package 12
7.2.1 Purpase 12
7.2.2 Scope 12
7.2.3 Compliance and Responsibility 12
7.2.4 Receipt of F-294 Transport Package 12
7.2.4.1 Visual Inspection 12
7.2.4.2 Surface Wipe Test 13
7.2.4.3 Radiation Survey 13
7.2.4.4 Perform the Cavity Water Flush Test Procedure 13
7.2.4.5 Notifying MDS Nordion of Deficiencies 15
7.2.5 Transfer of Loaded F-294 Package to the Bottom of Source Storage Pool. 15
7.2.5.1 Transfer F-294 from Outside to Inside the Irradiator Building. 15
7.2.6 Emergency Action Following a Suspected Radiation Incident 15
7.2.7 Unloading Procedure 16
7.3 Preparation of an Empty Package for Transport 16
7.3.1 Purpose 16
7.3.2 Scope 16
7.3.3 Compliance and Responsibility 16
7.3.4 Operations on the Empty F-294 Transport Packaging 16
7.3.5 Instructions for Securing the Empty F-294 on Road Vehicles 17
7.3.6 Additional Instructions 17
7.3.7 Operating Procedure 17
7.4 REFERENCES 18
CHAPTER 8 - ACCEPTANCE TESTS AND MAINTENANCE PROGRAM 1
8.1 ACCEPTANCE TESTS 1
8.1.1 Visual Inspection. 1
8.1.2 Structural and Pressure Tests. 1
8.1.3 Leak Tests 1
8.1.4 Component Tests. 2
8.1.4.1 Valves, Rupture Discs, and Fluid Transfer Devices 2
8.1.4.2 Gaskets 2
8.1.4.3 Miscellaneous 2
8.1.5 Tests for Shielding Integrity 2
8.1.6 Thermal Acceptance Tests 3
8.1.6.1 Discussion of Test Setup 3
8.1.6.2 Test Procedure 3
8.1.6.3 Acceptance Criteria 3
8.2 MAINTENANCE PROGRAM 5
8.2.1 Structural and Pressure Tests 5
8.2.2 Leak Tests 5
8.2.3 Subsystem Maintenance 5
8.2.4 Valves, Rupture Discs, and Gaskets on the Containment Vessel 5
8.2.4.1 Gaskets for Containment System (F-294 Inner Shell Assembly) 5
8.2.5 Shielding 5
8.2.6 Thermal 6
8.2.7 Miscellaneous 6
8.3 APPENDICES 6
Appendix 8.3.1 MDS Nordion Procedure for Radiation Integrity of New Shipping Containers 1
Appendix 8.3.2 MDS Nordion Radioactive Material Transport Packaging Inspection and Maintenance Procedure I
Appendix 8.3.3 MDS Nordion Procedure for F-294 Steady State Thermal Test. 1
Appendix 8.3.4 MDS Nordion Procedure for Helium Leak Test of F-294 Cavity 1
CHAPTER 9 - QUALITY ASSURANCE 1
9.1 QUALITY ASSURANCE PROGRAM AT MDS NORDION 1
9.2 Manufacturing History Of The F-294 1
9.2.1 Prototype F-294. 1
9.3 APPENDICES 1
Appendix 9.3.1 Quality Assurance Program at AECL Commercial Products in 1981. 1
Appendix 9.3.2 Quality Assurance Program at MDS Nordion Since 1992. 1
CHAPTER 10 - ABILITY OF THE F-294 TRANSPORT PACKAGE TO MEET THE REQUIREMENTS OF TS-R-1 1
10.1 GENERAL INFORMATION 2
10.2 StRUCTURAL Evaluation 2
10.3 Thermal Evaluation 2

Chapter 3 - Thermal Evaluation

3.1 DISCUSSION

3.1.1 THERMAL DESIGN FEATURES

There are three significant thermal design features of the F-294 package.

1. Fins

On the external surface of the container, with the exception of the shield plug, fins are welded to the container shell to augment heat transfer during steady state normal conditions of transport. The fins also double as impact limiting devices for absorbing the energy during the hypothetical drop tests.

2. Fireshields

All of the exposed surface of the lead-shielded cask is surrounded by fireshields or localised thermal protection. These fireshields are constructed from thermal insulating materials enclosed within steel. There are five distinct thermal protection devices:

1. The top fireshield: 1 in. "Kaowool" thermal insulation is sandwiched between two mild steel plates; the top plate is 0.5 in. thick and the bottom plate is 0.25 in. thick. The top fireshield is integral with the crush shield assembly. The surface area of the top fireshield is $707 \mathrm{im}^{2}$.
2. The cylindrical fireshield: 1 in . "Kaowool" is sandwiched between two cylinders of mild steel; the inner cylinder is $44.875 \mathrm{in}$. OD, 0.25 in . thick, 48 in . high; the outer cylinder is 47.375 in . $\mathrm{OD}, 0.25 \mathrm{in}$. thick, 48 in . high. The surface area of the cylindrical fireshield is $6786 \mathrm{in}^{2}$):
3. The bottom fireshield: 1 in. ceramic fibre insulation is sandwiched between upper and lower mild steel plates of the skid. The upper plate of the skid is 0.5 in. thick $x 44 \mathrm{in}$. wide $\times 44 \mathrm{in}$. long, the lower plate of the skid is 0.5 in . thick $\mathbf{x} 44 \mathrm{in}$. wide $\times 44 \mathrm{in}$. long. The surface area of the bottom fireshield is 1,764 in 2.
4. The top corner of the lead shielded cask has been modified. The primary conical shell is surrounded by a secondary conical shell. The space between the primary and secondary conical shell is filled with 0.375 in. thick thermal insulation. The surface area of the top corner thermal protection is $940 \mathrm{in}^{2}$.
5. The bottom corner of the lead shielded cask has been modified. The primary tori-spherical shell is surrounded by a secondary tori-spherical shell. The space between the primary and secondary torispherical shells is filled with 0.375 in. thick thermal insulation. The surface area of the bottom corner thermal protection is $970 \mathrm{in}^{2}$.
The total area of thermal protection around the F-294 cask is $11,167 \mathrm{in}^{2}$.
The "Kaowool ${ }^{11}$ blankets, protecting the lead-shielded container and plug, have low thermal conductivity ($.025 \mathrm{Btu} / \mathrm{hr}-\mathrm{ft} .{ }^{\circ} \mathrm{F}$) and high service temperature $\left(3,200^{\circ} \mathrm{F}\right)$, making them ideally suited for use as an insulating material in the packaging.

The ceramic fibre insulation provides the protection to the bottom of the lead shielded container.The low thermal conductivity of ceramic fibre insulation ($0.227 \mathrm{Btu} / \mathrm{hr}-\mathrm{ft} .{ }^{\circ} \mathrm{F}$) and its high service temperature $\left(2500^{\circ} \mathrm{F}\right.$) (Ref. [1]) make it ideally suited for use as an insulating material in the packaging.
Other steel components of the packaging serve to protect the "Kaowool" blankets against damage from puncture, impact and water.

[^0]
3. Lead/Steel Interface Resistance

The F-294 packaging has some features that work to the advantage of maintaining its shielding integrity. In particular, there exists a contact thermal resistance between the lead and steel interface (thermally equivalent to a gap of 0.020 in . of air). This resistance adds to the heat protection to temperatures of about $620^{\circ} \mathrm{F}$. This feature, however, is not part of the design; it is the result of the manufacturing process. (See Transnucleaire [Ref. 12, pp 170-171]; pages attached in Chapter 2, Appendix 2.10.10.)

In the steady state heat transfer analysis, this interface coefficient is taken into consideration. However, in the subsequent hypothetical fire test thermal analysis, this interface coefficient has been ignored. From the viewpoint of the F-294 lead melt, this combination provides a worst case scenario.

3.1.2 NORMAL CONDITIONS OF TRANSPORT - STEADY STATE TEMPERATURES OF F-294

If an F-294 package containing 360 kCi of $\mathrm{C}-60(5.57 \mathrm{~kW}$ decay heat load) was subjected to the environment described in 10 CFR 71 SS 71.71 (c) (1), Normal Conditions of Transport - Heat, the temperature of the lead shield would be estimated to be:

1) In the container body: Based on the finite element method (FEM) thermal analysis of the F-294 package with the $\mathrm{F}-313$ source carrier, the maximum temperature of lead is $360^{\circ} \mathrm{F}\left(181^{\circ} \mathrm{C}\right)$ at node 146 (mid-height of cavity). Although the FEM thermal analysis of the F-294 package with the F-457 source carrier resulted in higher maximum temperatures, the permissible maximum temperature will remain the same when the loading procedure (Appendix 3.6.7) is followed.
2) In the shield plug: Based on the FEM thermal analysis of the F-294 package with the F-313 source carrier, the maximum temperature of lead is $385^{\circ} \mathrm{F}\left(196^{\circ} \mathrm{C}\right)$ at node 501 (bottom of closure plug). Although the FEM thermal analysis of the F-294 package with the F-457 source carrier resulted in higher maximum temperatures, the permissible maximum temperature will remain the same when the loading procedure (Appendix 3.6.7) is followed.

At these temperatures, the integrity of the lead shielding will not be impaired. (Refer to Chapter 3, Appendix 3.6.4.)

3.1.3 HYPOTHETICAL ACCIDENT CONDITIONS OF TRANSPORT TEMPERATURES OF F-294 IN THERMAL TEST

If the F-294 package were subjected to the environment described in 10 CFR 71 SS 71.73 (c) (4), Hypothetical Accident Conditions - Thermal, the estimated worst case temperature of the lead shield is about $300^{\circ} \mathrm{C}$. This is based on a number of conservative assumptions.

Steady state finite element analysis of the F-294 has shown good agreement between measured and calculated temperatures. Extrapolation of this model to the maximum activity has shown no significant effect on the shielding and containment systems.
Transient analysis using the same model has shown the F-294 to complete the regulatory fire test without the initiation of lead melt. Parametric studies have shown this to be true under a variety of modeling conditions. In all cases, peak lead temperatures were found to be significantly less than the melting point, particularly in light of the conservative assumptions used in the model. A maximum temperature of $303^{\circ} \mathrm{C}$ was observed. The maximum increase in lead temperature was found to be about $200^{\circ} \mathrm{C}$ during the fire transient.

The conservative assumptions used in this model have a significant effect on this result. It is estimated that the effect of the contact resistance decreases the maximum lead temperatures by about $50^{\circ} \mathrm{C}$. Furthermore, an additional temperature decrease of between $10-30^{\circ} \mathrm{C}$ could be expected by the specification of a more realistic heat transfer coefficient in the interspace between the fireshield and the shielding vessel.

These findings, combined with the significant amount of energy required to effect a phase change in lead, indicates a substantial margin of safety in the design. It is submitted that the F-294 meets the thermal requirements of the regulations under the normal and hypothetical accident conditions of transport.

See Appendix 3.6.4 for details.

3.1.4 DECAY HEAT LOAD

The F-294 has a capacity of 360 kCi of cobalt- 60 . Using 15.47 watts per kilo-curie conversion coefficient, the total decay heat generated is $5,569.2$ watts, rounded to 5.57 kilowatts.

3.2 SUMMARY OF THERMAL PROPERTIES OF MATERIALS

The general thermal properties of the materials used in the F-294 packaging are given in Table 3.2-T1.

The thermal properties as a function of temperature are given in Tables 3.2-T2, 3.2-T3, 3.2-T4, and 3.2-T5 respectively.

Table 3.2-T1
General Thermal Properties of F-294 Materials

Material	Density (ib/ft ${ }^{3}$ Ref]	Conductivity (BTU/hr-ft-9F) Ref.	Specific Heat (Btu/b. -6 F) Refil	Melting Point (e) \&Ref.
ASTM A-36	489 [7]	25 [7]	. 113 [7]	2,600 [8]
ASTM A-240 Type 304	488 [6]	9.4 [6]	. 11 [6]	2,500 [9]
ASTM A-511 Type 316L	488 [6]	9.4 [6]	. 11 [6]	2,550 [9]
Lead Pure 99.94\%	710 [7]	20 [7]	. 031 [7]	620 [2]
Kaowool	6 [5]	. 025 [5]	. 255 [5]	3,200[5]
Transite	100	0.224	0.2	2,500 [1]

References for Table 3.2-T1, see Appendix 3.6.1.

Table 3.2-T2
Thermal Conductivity Values of the Packaging Materials (Btu/ft.-hr- ${ }^{\circ} \mathrm{F}$)

Temp. (9)	ss304 [6]	Mild Steel [6]	Air [23]	Kaowool [5]	Transite [1]
0	8.10	32.6	0.013	0.013	0.225
100	8.70	31.3	0.015	0.0167	0.227
200	9.3	30.2	0.017	0.0184	0.229
300	9.8	29.0	0.019	0.0208	0.231
400	10.4	27.8	0.021	0.0235	0.233
500	10.9	26.8	0.023	0.0306	0.236
600	11.3	25.7	0.025	0.0358	0.238
700	11.8	24.7	0.027	0.0427	0.240
800	12.2	23.5	0.029	0.0508	0.242
1000	13.2	21.6	0.032	0.0681	0.246
1500	15.3	17.0	0.040	0.1213	0.257

Table 3.2-T3
Specific Heat Values of Packaging Materials (Btu/lb.m- ${ }^{\circ} \mathrm{F}$)

Temperature (C)	304 Stainless [23]	Mild Steel [10]*	Air [23]	Kaowoolt ${ }^{\text {a }}$	Transite ${ }^{\text {b }}$
0	0.110	0.108	0.25	0.25	0.20
100	0.113	0.113			
200	0.117				
300	0.120				
400	0.123				
500	0.127				
600	0.130				
700	0.133				
800	0.137				
1000	$0.143^{\text {c }}$				
1500	0.160				

Notes:

a Assumed constant with temperature and represents the average value of air from $0^{\circ} \mathrm{F}$ to $1,000^{\circ} \mathrm{F}$.
b Assumed constant with temperature.
c Extrapolated below $200^{\circ} \mathrm{F}$ and above $800^{\circ} \mathrm{F}$.

Table 3.2-T4
Density Values ($\mathrm{lb} . / \mathrm{ft}{ }^{3}$) of Packaging Materials
(Assumed constant with temperature)

304 Stainless steel	Mild steel	Air	Kaowool	Transite
494	489	0.0766	6	100

Table 3.2-T5
Lead Thermal Properties from Ref. [2].

Temperature (F)	Thermal Conductivity (Btu/tL-hr- ${ }^{\circ}$)	Specific Heat ${ }^{+}{ }^{2}$ (Btunb.m- -)	Density, $(\mathrm{b} . \mathrm{m} / \mathrm{ft}$.)
0	20.26	0.0304	708
212	19.60	0.0315	
392	18.60	0.0325	
572	17.90	0.0338	
620	-	0.0340	
621	17.88	$1.478^{\text {a }}$	
631		$1.478^{\text { }}$	
632		0.0330	
712		0.0338	
752	9.2		
784	-		
932	9.00	:	
1112	8.70	\cdots	

Notes:

a The latent heat of fusion of $11.27 \mathrm{Btu} / \mathrm{lb}$. is arbitrarily spread over an $8^{\circ} \mathrm{F}$ range to account for melting with an equivalent specific heat. Thus, if any nodal temperature of an element reaches $621^{\circ} \mathrm{F}$, melting has begun. If all nodal temperatures of an element reach or exceed $629^{\circ} \mathrm{F}$, the element of lead has completely melted.

3.3 TECHNICAL SPECIFICATIONS OF COMPONENTS

MDS Nordion
Specification Number

IN/DS 0757 F294
IN/PR 0030 J1100

IN/TS 0146 J 1100

Title and Scope

Technical Specification for the F-294 Transport Packaging.
Technical Specification for the C-188 Sealed Source - Part I Inactive Components and Assembly. (Ref. [24]).
Technical Specification for the C-188 Sealed Source - Part II Active Components and Assembly. (Ref: [25]).

3.4 THERMAL EVALUATION FOR NORMAL CONDITIONS OF TRANSPORT

3.4.1 THERMAL MODEL

The actual steady state temperature measurements of the F-294 package with an F-313 source carrier, with 374,428 curies of cobalt-60 are reported in Chapter 3, Appendix 3.6.2. Figure 3.4-F1 depicts the actual temperature measurements of F-294 package with 374,428 curies of cobalt-60. The finite element thermal analysis of the F-294/F-313 thermal model, using COSMOS software code, is presented in Chapter 3, Appendix 3.6.4. In addition, the Finite Element Method (FEM) model was validated using measured temperature data for the case of an undeformed F-294/F-313 containing 374,428 Ci of Co-60.
The actual steady state temperature measurements of the F-294 package with an F-457 source carrier, with 376,000 curies of cobalt- 60 are reported in Chapter 3, Appendix 3.6.6. The finite element thermal analysis of the F-294/F-457 thermal model, using ANSYS software code, is presented in Chapter 3, Appendix 3.6.7. In addition, the Finite Element Method (FEM) model was validated using measured temperature data for the case of an undeformed F-294/F-457 containing $376,000 \mathrm{Ci}$ of $\mathrm{Co}-60$. Based on the validated FEM model, a loading procedure was developed and is presented in Chapter 3, Appendix 3.6.7.
The temperature data resulting from employing these two (2) methods of thermal evaluation are presented in Table 3.4-T1. The marginal differences in the listed temperatures are due to the thermal test load of $374,428 \mathrm{Ci}$, while the FEM model used $360,000 \mathrm{Ci}$. In the subsequent analysis, the higher of the temperatures resulting from either the test load or the FEM model is used.
C-188 sealed sources used in the F-294 package have been modeled in one-dimensional heat transfer analysis presented in Chapter 3, Appendix 3.6.3. In this analysis, the C-188 temperatures are estimated to be $830^{\circ} \mathrm{F}$ with the ambient of $100^{\circ} \mathrm{F}$. The highest measured C-188 temperature was $824^{\circ} \mathrm{F}$. Therefore, the one dimensional thermal model predicts the $\mathbf{C}-188$ temperature fairly accurately.
In the F-294, for the maximum lead temperature, the FEM model predicts $358^{\circ} \mathrm{F}\left(181^{\circ} \mathrm{C}\right)$ maximum lead temperature in the main body. In the F-294 closure plug, the FEM model predicts $385^{\circ} \mathrm{F}\left(196^{\circ} \mathrm{C}\right)$ maximum lead temperature and a surface temperature of $420^{\circ} \mathrm{F}\left(215^{\circ} \mathrm{C}\right)$ at the bottom of the plug.
Table 3.4-T2 column 3 lists the measured surface temperatures of an F -294 package containing $374,428 \mathrm{Ci}$ of $\mathrm{Co}-60$. The maximum temperature is $74^{\circ} \mathrm{C}\left(165^{\circ} \mathrm{F}\right)$ at top of the lift lug fin. As this temperature exceeds $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$ but is less than $85^{\circ} \mathrm{C}\left(185^{\circ} \mathrm{F}\right)$, the regulations require the $\mathrm{F}-294$ to be transported as an "exclusive use" shipment. (See 10 CFR 71.43 g).)

Table 3.4-T1
Steady State Temperature Distribution of the F-294/F-313 Configuration

	Test	Test ${ }^{2}$	FEM^{3}	Node
External surface of package:				
Ambient	$38^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$38^{\circ} \mathrm{C}$	400
Bottom of ext cyl. Fireshield	$43^{\circ} \mathrm{C}$	$21^{\circ} \mathrm{C}$	$45^{\circ} \mathrm{C}$	373
Middle of ext. cyl. Fireshield	$48^{\circ} \mathrm{C}$	$26^{\circ} \mathrm{C}$	$44^{\circ} \mathrm{C}$	251
Top of ext cyl. Fireshield	$58^{\circ} \mathrm{C}$	$36^{\circ} \mathrm{C}$	$49^{\circ} \mathrm{C}$	315
Bottom of fin (air), entrance to chimney	$45^{\circ} \mathrm{C}$	$23^{\circ} \mathrm{C}$	N/A	-
Top of crush shield (air), exit from chimney	$66^{\circ} \mathrm{C}$	$44^{\circ} \mathrm{C}$	N/A	-
Top of the lift lug	$75^{\circ} \mathrm{C}$	$53^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$	709
Top crush shield/fireshield, upper surface, centre	$62^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$51^{\circ} \mathrm{C}$	85
Top crush shield/fireshield, upper surface, midway centre/edge	$62^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$51^{\circ} \mathrm{C}$	88
Top crush shield/fireshield, upper surface, edge	$6^{6}{ }^{\circ} \mathrm{C}$	$43^{\circ} \mathrm{C}$	$52^{\circ} \mathrm{C}$	295
Crush shield, fin bottom	$49^{\circ} \mathrm{C}$	$48^{\circ} \mathrm{C}$	N/A	-
Main shield plug (top surface)	$134^{\circ} \mathrm{C}$	$112^{\circ} \mathrm{C}$	$149^{\circ} \mathrm{C}$	40
Container fin (root)	$129^{\circ} \mathrm{C}$	$107^{\circ} \mathrm{C}$	$117^{\circ} \mathrm{C}$	185
Container fin (tip)	N/A	N/A	$100^{\circ} \mathrm{C}$	702
Container wall, conical surface (primary shell),	N/A	N/A	$81^{\circ} \mathrm{C}$	717
Container wall, conical surface (secondary shell)	N/A	N/A	$131{ }^{\circ} \mathrm{C}$	118
Container wall, mid-level	$129^{\circ} \mathrm{C}$	$107^{\circ} \mathrm{C}$	$117^{\circ} \mathrm{C}$	185
Container wall, bottom (primary shell)	N/A	N/A	$96^{\circ} \mathrm{C}$	215
Container wall, bottom (secondary shell)	N/A	N/A	$83^{\circ} \mathrm{C}$	732
Section through the shielding of the container: mid-level				
Outer wall (external - mid level)	$129^{\circ} \mathrm{C}$	$107^{\circ} \mathrm{C}$	$117^{\circ} \mathrm{C}$	185
Outer wall (internal - mid level)	N/A	N/A	$118^{\circ} \mathrm{C}$	173
Lead shielding (outside radius)	N/A	N/A	$152^{\circ} \mathrm{C}$	673
Lead shielding, average	N/A	N/A	N/A	-
Lead shielding (inside radius)	N/A	N/A	$181^{\circ} \mathrm{C}$	141
Cavity wall (outside radius)	N/A	N/A	$181^{\circ} \mathrm{C}$	141
Cavity wall (inside radius)	$197^{\circ} \mathrm{C}$	$175^{\circ} \mathrm{C}$	$181^{\circ} \mathrm{C}$	146
Cavity bottom	N/A	N/A	$172^{\circ} \mathrm{C}$	136
C-188: One ring Only: SN 59532	$440^{\circ} \mathrm{C}$	$417^{\circ} \mathrm{C}$	N/A	-
C-188: One ring Only: SN 59475	$438^{\circ} \mathrm{C}$	$415^{\circ} \mathrm{C}$	N/A	-
Bottom of the main shield plug	$222^{\circ} \mathrm{C}$	$200^{\circ} \mathrm{C}$	$215^{\circ} \mathrm{C}$	17

Notes:
${ }^{1}$ Corrected for Ambient, Measurement Errors and Solar Heat, see Chapter 3, Appendix 3.6 .2 for details.
${ }^{2}$ Measured Test data, see Chapter 3, Appendix 3.6 .2 for details (374,428 Ci; 5.766 kW)
${ }^{3}$ Finite Element Model (FEM) heat transfer model, see Chapter 3, Appendix 3.6.4 for details.

Figure 3.4-F1
Prior to the drop tests, F-294/F-313 Steady State Temperature Measured Data ($374,428 \mathrm{Ci} ; 5.766 \mathrm{~kW}$ loading)

Table 3.4-T2
Temperature of Accessible Surface of the F-294/F-313 Package (374,428 Ci: $5.766 \mathbf{k W}$)

Location on F-294 Container	Test Temp. $C \mathrm{C}$	Test ${ }^{2}$ Temp. (C)
Bottom of ext. cyl. fireshield	21	42
Middle of ext. cyl. fireshield	26	47
Top of ext. cyl. fireshield	36.	57
Bottom of fin (air) Entrance to chimney	23	44
Top of crush shield (air) Exit from the chimney	43	64
Top of the lift lug	53	74
Top crush shield/fire shield - upper surface, centre - upper surface, midway centre/edge upper surface, edge	$\begin{aligned} & 40 \\ & 40 \\ & 43 \end{aligned}$	$\begin{aligned} & 61 \\ & 61 \\ & 64 \\ & \hline \end{aligned}$
Crush shield, fin bottom	48	69
Ambient	20	38

${ }^{1}$ Actual Thermal Test Data: See Chapter 3, Appendix 3.6.2
${ }^{2}$ Thermal test data corrected for 1) Ambient 2) Total Measurement Errors

3.4.2 MAXIMUM TEMPERATURES

For $\mathbf{3 6 0 , 0 0 0}$ curies of cobalt-60 as the radioactive contents, the highest temperatures of the F-294 packaging are listed in the Table 3.4-T3:

Table 3.4-T3
Maximum Temperatures of Designated F-294 components or Locations

Location/Description	Temperature
Ambient	$100^{\circ} \mathrm{F}\left(38^{\circ} \mathrm{C}\right)$
Outside upper surface of the crush shield	$149^{\circ} \mathrm{F}\left(65^{\circ} \mathrm{C}\right)$
Outside upper surface of the shield plug	$273^{\circ} \mathrm{F}\left(134^{\circ} \mathrm{C}\right)$
Outside, fireshield, mid height	$118^{\circ} \mathrm{F}\left(48^{\circ} \mathrm{C}\right)$
Outside, container, mid height	$264^{\circ} \mathrm{F}\left(129^{\circ} \mathrm{C}\right)$
Container, top of lift lug	$167^{\circ} \mathrm{F}\left(75^{\circ} \mathrm{C}\right)$
Cavity, underneath the plug	$432^{\circ} \mathrm{F}\left(222^{\circ} \mathrm{C}\right)$
Cavity, mid-height	$387^{\circ} \mathrm{F}\left(197^{\circ} \mathrm{C}\right)$
Cavity, bottom (Node 136 from FEM model)	$342^{\circ} \mathrm{F}\left(172^{\circ} \mathrm{C}\right)$
C-188	$824^{\circ} \mathrm{F}\left(440^{\circ} \mathrm{C}\right)$
Container, lead (Node 141 from FEM model $)$	$358^{\circ} \mathrm{F}\left(181^{\circ} \mathrm{C}\right)$
Shield plug, lead (Node 501 from FEM model $)$	$385^{\circ} \mathrm{F}\left(196^{\circ} \mathrm{C}\right)$

The temperatures listed in Table 3.4-T3 are inclusive of three correction factors:

1. Ambient Temperature Correction Factor of $\left(38^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}\right)=18^{\circ} \mathrm{C}$
2. Total Measurement Errors: $\pm 3^{\circ} \mathrm{C}$ for temperature range up to $300^{\circ} \mathrm{C}$ and $\pm 4^{\circ} \mathrm{C}$ for temperature range up to $450^{\circ} \mathrm{C}$.
3. Solar Heat Correction Factor of $1^{\circ} \mathrm{C}$ for cask temperatures only.
4. FEM model is described in Appendix 3.6.4.

For package temperatures when subjected to a hot environment $\left(130^{\circ} \mathrm{F}\right), 30^{\circ} \mathrm{F}$ should be added to the temperatures listed above.

Based on the loading procedure presented in Chapter 3, Appendix 3.6.7, temperatures of the various F-294 components or locations will be the same for both the F-313 and F-457 source carriers.

3.4.3 MINIMUM TEMPERATURES

As there is no minimum activity specified, a minimum temperature of $-40^{\circ} \mathrm{F}$ has been chosen as per requirements of 10 CFR 71.

3.4.4 MAXIMUM INTERNAL PRESSURE

3.4.4.1 Cavity of F-294

In the cavity of F-294, the pressure build up is as follows:
$\mathrm{T}_{1} \quad$ Ambient temperature of cavity prior to source loading $=70^{\circ} \mathrm{F}$
$P_{1} \quad=$ Pressure of the cavity prior to source loading $=14.7$ psia
$\mathrm{T}_{2}=$ Temperature of the cavity after source loading $=387^{\circ} \mathrm{F}$
$=$ Average of (C-188 temperature and cavity wall temperature.)
$=(824+387) / 2=605.5^{\circ} \mathrm{F}$
$\mathrm{P}_{2} \quad=$ Pressure of the cavity after source loading $=$? (unknown) psia
$P_{2}=P_{1} \times\left[T_{2}+460\right] /\left[T_{1}+460\right]$
$=14.7 \times[605.5+460] /[70+460]$
$=14.7 \times 1,066 / 530$
$=29.6 \mathrm{psia}$
$=14.9 \mathrm{psig}$.
$\approx 16 \mathrm{psig}$ (Design).
Therefore, the cavity of the F-294 in normal conditions of transport is at 16 psig and average temperature of $606^{\circ} \mathrm{F}$. The pressure and temperature will be the same for both the F-313 and F-457 source carriers.

3.4.4.2 C-188 Assembly

In the C-188 assembly, the pressure build up is as follows:
$\mathrm{T}_{1} \quad=$ Ambient temperature of $\mathrm{C}-188$ prior to loading in $\mathrm{F}-294=70^{\circ} \mathrm{F}$
$\mathrm{P}_{1} \quad=$ Pressure of $\mathrm{C}-188$ prior to loading in F-294 $=14.7 \mathrm{psia}$
$\mathrm{T}_{2}=$ Maximum Temperature of C-188 after loading in $\mathrm{F}-294=842^{\circ} \mathrm{F}$

$$
\begin{aligned}
\mathrm{P}_{2} \quad & =\text { Pressure of C-188 after loading in } \mathrm{F}-294=? \text { (unknown) psia } \\
\mathrm{P}_{2} \quad & =\mathrm{P}_{1} \times\left[\mathrm{T}_{2}+460\right] /\left[\mathrm{T}_{1}+460\right] \\
& =14.7 \times[842+460] / 770+460] \\
& =14.7 \times 1,302 / 530 \\
& =36.1 \text { psia } \\
& =21.4 \text { psig. } \\
& \approx 22 \text { psig (Design). }
\end{aligned}
$$

During normal conditions of transport of C-188 capsules in the F-294, the C-188 has an internal pressure of 22 psig and a maximum temperature of $842^{\circ} \mathrm{F}$.

3.4.5 MAXIMUM THERMAL STRESSES

The maximum thermal stresses during the normal conditions of transport would arise from the temperature distribution given in section 3.4.2 above.

3.4.6 EVALUATION OF THE PACKAGE PERFORMANCE FOR NORMAL CONDITIONS OF TRANSPORT

Table 3.4-T4 lists the various materials used in the F-294 package with the corresponding expected and allowable temperatures.

Table 3.4-T4
List of Materials used in F-294 and their Temperature Compatibility

2material			\% Alowable		Whatiocation
	min	max	min	max	.
ASTM A-36	-40	150	-40	650^{2}	fireshield sheathing
AISI CR 1020	-40	150	-40	650^{2}	crush shield
ASTM A-240 ss304L	-40	400	-40	1,200	container envelope
ASTM A-240 ss304L	-40	400	-40	1,200	closure plug envelope
ASTM A-511 ss316L	-40	950	-40	1,200	C-188 encapsulation
Lead	-40	350	-40	620	lead shielding
"Kaowool"	-40	150	-40	3200	thermal insulation
"Hastelloy"	-40	400	-40	1200	cavity bottom

*ASME Section VIII, Division I Tables for material properties, indicate that temperatures of up to $650^{\circ} \mathrm{F}$ do not seriously affect the material strength of mild steels.

Temperature sensitive materials used in the MDS Nordion F-294 package are the lead gamma shield, which melts at $621^{\circ} \mathrm{F}$, and the stainless steel outer structure of the C-188 sealed source. The neoprene rubber seals (used on the closure plug bolted joint and the drainline cap joint) have a temperature limit of $300^{\circ} \mathrm{F}$ but loss of either of these seals is not critical as containment is provided by the Special Form $\mathrm{C}-188$ sealed sources. The Co-60 material is double encapsulated within the structure of the capsules. The C-188 sealed source has been demonstrated to meet Special Form requirements and, in particular, the $1472^{\circ} \mathrm{F}\left(800^{\circ} \mathrm{C}\right)$ temperature test.

The inner shell assembly and the lid (closure plug) of the lead-shielded cask is defined as the containment system of the F-294 package. Therefore, from the viewpoint of the integrity of the materials subject to temperature in Normal Conditions Of Transport (NCOT) of F-294, the containment is sound in NCOT. Finally, 10 CFR \# 71.43(g) requires that the temperature limit for non-exclusive external surface use is $122^{\circ} \mathrm{F}$, and $185^{\circ} \mathrm{F}$ maximum for exclusive use. These limits apply for all accessible external surfaces when the package is in the shade and the external ambient is $100^{\circ} \mathrm{F}$. As the accessible surface temperatures of F-294 exceed $122^{\circ} \mathrm{F}\left(50^{\circ} \mathrm{C}\right)$, the F-294 will be transported as exclusive use shipment (see Chapter 7).

3.5 HYPOTHETICAL ACCIDENT THERMAL EVALUATION

3.5.1 THERMAL MODEL

3.5.1.1 Analytical Thermal Model

The thermal response of a F-294 package to a hypothetical accident is evaluated with Finite Element Method (FEM) models which are described in Appendices 3.6.4 and 3.6.7. The first step was to validate the FEM steady state model by comparing its output to the results obtained during the 374 kCi and 376 kCi of Co-60 tests. The 2 nd step was to run "validated" FEM, steady state model at 360 kCi of Co-60 decay heat, with corrections for a $38^{\circ} \mathrm{C}$ ambient condition. The output from $2 n d$ step became the input (i.e., initial temperatures) for the 0.5 hour fire test, transient thermal analysis case of the same package.

The FEM model predicts that solar insolation will increase internal temperatures by $2^{\circ} \mathrm{F}\left(1^{\circ} \mathrm{C}\right)$.

3.5.1.2 Test Thermal Model

The analysis of the F-294 under the conditions of the regulatory fire test has been carried out analytically and is summarized in Appendices 3.6.4 and 3.6.7. Conservative assumptions are used throughout the analysis. It is concluded that there is a large margin of safety with regard to lead melt.

3.5.2 PACKAGE CONDITIONS AND ENVIRONMENT

Prior to the drop and puncture tests, there is about $11,200 \mathrm{in}^{2}$ of thermal protection as summarized below:

Location	Insulated Area (in ${ }^{2}$)
Top Fireshield	707
Radial Fireshield	6,786
Bottom Fireshield	1,764
Top Comer of Shielding Vessel	940
Bottom Corner of Shielding Vessel	970
Total Thermal Protection	11,167

The analysis in Chapter 2, section 2.7 has shown that there will be loss of $\leq 0.3 \%$ of the total thermal protection area. For all practical purposes, this is considered no loss of thermal protection. The cylindrical fireshield, the bottom fixed skid and the top crush shield were all fully retained after the F-294 drop tests. However, approximately $800 \mathrm{in}^{2}$ of the total thermal protection area of the F-294 after the drop tests was crushed. The most significant damage was to the top-side corner of the cylindrical fireshield. There was also damage around the puncture pin impacted zones of the F-294.

The effect of crushing on the performance of Kaowool is considered in Appendix 3.6.4. The thermal conductivity of the entire $11,200 \mathrm{in}^{2}$ area was increased by a factor of 2 relative to steady state conditions. It was found that this effect was small in comparison with the effects of convection and radiation within the fin enclosure. Therefore, the damage to the thermal protection is considered to be insignificant.

3.5.3 PACKAGE TEMPERATURES

The results of the transient analyses are summarized in Appendix 3.6.4. Temperature histories for selected nodes are plotted in this Appendix. The maximum lead temperature was found to be $303{ }^{\circ} \mathrm{C}$ at 30 minutes from the start of the fire. This temperature was observed at the base of the main body.

The model used a series of conservative assumptions. In spite of these assumptions, a substantial margin of safety relative to the $327^{\circ} \mathrm{C}$ melting point of lead was observed. See Table $3.5-\mathrm{Tl}$ for lead and steel temperatures of the selected nodes of the F-294 thermal model depicted in Figure 3.5-F1.
The magnitude of the conservative factors used in the analysis is discussed in Appendix 3.6.4. The most significant of these are the assumptions of zero contact resistance at the start of the fire and unimpeded flow of hot gases over the shielding vessel.

These findings, combined with the significant amount of energy required to cause lead melt indicates a substantial margin of safety in the design. It is submitted that the F-294 meets the thermal requirements of the regulations under the normal and hypothetical accident conditions of transport.

3.5.4 MAXIMUM INTERNAL PRESSURES

The normal operating pressure and temperature of the F-294 cavity is 16 psig and $606^{\circ} \mathrm{F}$. The cavity wall of the F-294 is at $387^{\circ} \mathrm{F}$.

When the F-294 is subjected to a hypothetical thermal test, the temperature of the cavity and the sealed source will be as follows:

1. maximum cavity wall temperature during thermal test $=500^{\circ} \mathrm{F}\left(260^{\circ} \mathrm{C}\right)$
2. cavity wall temperature during $\mathrm{NCOT}=387^{\circ} \mathrm{F}$
3. maximum sealed source temperature during NCOT (F-294/F-457) $=842^{\circ} \mathrm{F}$

The source temperature during the thermal test will be:

$$
\mathrm{TS}_{\mathrm{C}-188}=842+500-387=941^{\circ} \mathrm{F}=955^{\circ} \mathrm{F}
$$

The average temperature of the cavity, during the thermal test, is:

$$
\begin{aligned}
\mathbf{T C}_{\text {AVG }, \mathrm{CAVITY}} & =\left(\text { TS }_{\mathbf{C}_{-188}}+\text { TC }_{\text {FRE, }}^{\text {CAVTY }}\right) \\
& =(955+500) / 2 \\
& =728^{\circ} \mathrm{F}
\end{aligned}
$$

3.5.4.1 Cavity of F-294

In the cavity of the F-294, the pressure build up is as follows:

$$
\begin{aligned}
\mathrm{T}_{1} & =\text { Average Temperature of F-294 Cavity in NCOT }=606^{\circ} \mathrm{F} \\
\mathrm{P}_{1} & =\text { Pressure of the cavity in NCOT }=29.6 \text { psia } \\
\mathrm{T}_{2} & =\text { Average Temperature of the cavity after fire test }=728^{\circ} \mathrm{F} \\
\mathbf{P}_{2} & =\text { Pressure of the cavity after fire test }=? \text { (unknown) psia } \\
\mathrm{P}_{2} & =\mathrm{P}_{1} \times\left[\mathrm{T}_{2}+460\right] /\left[\mathrm{T}_{1}+460\right] \\
& =29.6 \times[728+460] /[606+460] \\
& =29.6 \times 1,188 / 1,066 \\
& =33.0 \text { psia } \\
& =18.3 \text { psig. } \\
& =20 \text { psig (design). }
\end{aligned}
$$

Therefore the cavity of F-294 in accident conditions of transport is at 20 psig and average temperature of $721^{\circ} \mathrm{F}$

3.5.4.2 C-188 Assembly

In the C-188 assembly, the pressure build up is as follows:

$$
\begin{array}{ll}
\mathrm{T}_{1} & =\text { Temperature of } \mathrm{C}-188 \text { in underwater pool }=70^{\circ} \mathrm{F} \\
\mathrm{P}_{1} & =\text { Internal Pressure of C-188 in underwater pool }=14.7 \mathrm{psia} \\
\mathrm{~T}_{2} & =\text { Temperature of } \mathrm{C}-188 \text { in HACOT of } \mathrm{F}-294=955^{\circ} \mathrm{F} \\
\mathrm{P}_{2} & =\text { Pressure of C-188 in HACOT of F-294 }=? \text { (unknown) psia } \\
\mathrm{P}_{2} & =\mathrm{P}_{1} \times\left[\mathrm{T}_{2}+460\right] /\left[\mathrm{T}_{1}+460\right] \\
& =14.7 \times[955+460] /[70+460] \\
& =14.7 \times 1,415 / 530 \\
& =39.25 \text { psia } \\
& =24.5 \mathrm{psig} . \\
& =27 \mathrm{psig} \text { (design) }
\end{array}
$$

During accident conditions of transport, the C-188 has an internal pressure of 27 psig and maximum temperature of $955^{\circ} \mathrm{F}$.

3.5.5 MAXIMUM THERMAL STRESSES

The maximum thermal stresses will occur at 30 minutes from the start of the fire test, when the exterior temperatures have reached a maximum and the internal temperatures are still rising. These temperatures are presented in Appendix 3.6.4 as a time history graph of the selected stainless steel and lead nodes.

3.5.6 EVALUATION OF PACKAGE PERFORMANCE FOR THE HYPOTHETICAL ACCIDENT THERMAL CONDITIONS

3.5.6.1 C-188 Sealed Source

The maximum temperature of the $\mathrm{C}-188$, during the hypothetical thermal test, is $955^{\circ} \mathrm{F}$. As the $\mathrm{C}-188$ is certified as Special Form and has been tested successfully to $800^{\circ} \mathrm{C}\left(1,472^{\circ} \mathrm{F}\right)$, the integrity of the C - 188 is sound.

The C-188 temperature in the hypothetical thermal test is $940^{\circ} \mathrm{F}$ which is less than the melting point of ss316L $\left(2300^{\circ} \mathrm{F}\right)$. Therefore, the ss316L encapsulation shall not melt.

As the $\mathrm{C}-188$ is free to expand, the thermal stresses are insignificant. The maximum growth from $70^{\circ} \mathrm{F}$ to $940^{\circ} \mathrm{F}$ is

$$
\begin{aligned}
\delta \quad & =L_{\text {O,C-188 }} \times \alpha \times\left(955^{\circ} \mathrm{F}-70^{\circ} \mathrm{F}\right) \\
& =17.777 \times 10.5 \mathrm{E}-6 \times(955-70) \\
& =0.17 \mathrm{in} .
\end{aligned}
$$

The amount of free room between the underside of the shield plug and the top of the C-188 in the F-313 or F-457 source carrier is 1.0 in . As thermal growth of $\delta=0.17 \mathrm{in}$. is less than this clearance, during the hypothetical thermal test the C-188 capsules shall expand freely. Consequently, as there is no restraint, there are no significant thermal stresses in the outer body of the C-188.
A stress analysis of C-188 under internal pressures is carried out in Chapter 4, Appendix 4.4.5. The results are recaptured here.

Due to internal pressure of 27 psig in the C-188 during HACOT of F-294,

1. the hoop stress in the tube away from joint $=192 \mathrm{psi}$
2. the hoop stress in the tube at the joint $=288 \mathrm{psi}$
3. the bending stress in the end cap $=5 \mathrm{psi}$.

Based on yield stress of 15,000 psi for ss 316 L at $955^{\circ} \mathrm{F}, \mathrm{C}-188$ has a Safety Factor of 42 and Margin of Safety of 41.

Based on the above arguments, the integrity of the Special Form sealed source C-188 is sound.

3.5.6.2 The Containment System

The inner shell assembly and the lid (closure plug) of the F-294 lead shielded cask is defined as the containment system of F-294 package. The stress analysis of the containment system subject to hypothetical accident conditions of transport of F-294 is presented in Chapter 4, Appendix 4.4.6. It is demonstrated that:

1. as $\mathrm{C}-188$ is certified Special Form RAM and provides leak tight containment AND
2. as the closure plug (the shielding) is retained over the inner shell assembly which houses the cobalt-60 C-188 sealed sources,
F-294 does meet the HACOT containment system requirements (10 CFR 71.51 (a) (2)).

3.5.6.3 Shielding in the Container and the Plug

For 360,000 curies of cobalt-60, the thermal model calculates no lead melt. Consequently there is no loss of lead shielding from the F-294.
Therefore, the integrity of lead shielding of the F-294 is sound.

Figure 3.5.-F1
Node Numbers of F-294 Thermal Model

Table 3.5-T1
Maximum Temperatures of Selected Lead and Steel Nodes of F-294 Thermal Model in a Fire Test

Node	Approximate Location of Lead Node	Maximim	Time
17	Top Plug, Bottom Steel Surface	277	120
1	Top Plug, Lower Lead/Steel Interface	277	112
13	Top Plug, Upper Lead/Steel Interface	242	86
40	Top Plug, Top Steel Surface	244	30
55	Lower Steel Surface of Upper Fireshield	492	30
85	Upper Steel Surface of Upper Fireshield	666	30
146	Cavity Wall, Steel at Midheight	263	70
141	Cavity Wall, Inner Lead/Steel Interface, at Midheight	263	76
173	Cavity Wall, Outer Lead Steel Interface, at Midheight	257	30
185	Steel Outer Wall of Shield, at Midheight	288	30
226	Inner Steel Surface of Radial Fireshield, at Midheight	456	30
251	Outer Steel Surface of Radial Fireshield, at Midheight	783	30
136	Bottom Steel Surface of Cavity, at Centreline	259	69
133	Bottom of Shield, Upper LeadSteel Interface	256	63
190	Bottom of Shield, Lower Lead/Steel Interface	244	30
208	Bottom Steel Surface of Shield	274	30
319	Inner Steel Surface of Bottom Fireshield	387	30
328	Outer Steel Surface of Bottom Fireshield	610	30

* Time equals zero at the start of the fire test.

3.6 APPENDICES

This section contains the following appendices.

Appendix 3.6.1 List of References for Chapter 3

Appendix 3.6.2 Normal Thermal Tests of the F-294 Package with the F-313 source carrier
Appendix 3.6.3 Steady State Heat Transfer in the Cavity of F-294 Package
Appendix 3.6.4 Finite Element Analysis of the F-294 with the F-313 source carrier
Appendix 3.6.5 Properties of Kaowool
Appendix 3.6.6 Normal Thermal Test of the F-294 package with the F-457 source carrier Appendix 3.6.7 F-294 Loading Finite Element analysis

APPENDIX 3.6.1

List of References for Chapter 3

[1] T. Baumeister, E. A. Avallone, T. Baumeister III, (Editors), Mark's Standard Handbook for Mechanical Engineers, McGraw-Hill Book Company, 8th edition, 1978.
[2] Lead Industries Association, Lead in Modern Industry, New York City, New York, 1952, p.184.
[3] USNRC Regulatory Guide 7.8
[4] Timoshenko, S, \& Young, D. H., Elements of Strengths of Materials, 4th ed., D. Van Nostrand Company, Inc., London 1962.
[5] Babcock and Wilcox Company Limited, Kaowool Ceramic Fibre Proctuct Catalog.
[6] Chapman, Alan J., Heat Transfer, 3rd edition, Macmillan Publishing Company, Inc., New York, 1974, p. 578 for 18 -8 steel.
[7] Reference 6, p. 576.
[8] Reference 1, pp.6-17.
[9] Shappert, L.B., Cask Designers Guide, ORNL-NISC-68, p.84, Table 2.6
[10] Holman, J.P., Heat Transfer, 5th edition, Mcgraw Hill Book Co., New York, 1981.
[11] Chu, Rod, "Self-absorption in Teletherapy and Irradiator ${ }^{60} \mathrm{Co}$ Sources", Atomic Energy of Canada Limited- Commercial Products. Paper presented at the 16th Annual Meeting of the American Nuclear Society, Los Angeles, California, July 1,1970.
[12] E7515. \# Euratom contract No. 024-65-ECIC Transnucleaire \#. "Report on the implications of the tests requirements for type B packagings and a study of practical solutions"; Transnucleaire, Paris, France, Part II, pp.187-322.
[13] Gubareff, G.G., Janssen, J.E. \& Torborg, R.H., Thermal Radiation Properties Survey, 2nd Edition. Honeywell Research Center, Minneapolis, Minnesota.
[14] McAdams, W. H., Heat Transmission, 3rd edition, McGraw-Hill, pp
[15] Structural Research and Analysis Corporation, COSMOS/M User's Guide (Revision 1.75), SRAC, Santa Monica, California, May 1993.
[16] Browne, E., Firestone, R.B., Tables of Radioactive Isotopes, John Wiley and Sons, New York, 1986.
[17] Perr,y R.H., Green, P. W. \& Maloney, J. O., Perry's Chemical Engineer's Handbook, 6th Edition, McGraw Hill Book Co., New York, 1984.
[18] Transite catalogue, John Mansville Corp.
[19] Siegel, R. \& Howell, J. R., Thermal Radiation Heat Transfer, McGraw Hill Book Co., New York, 1972.
[20] Naraghi, M.H.N., Chung, B.T.F., "Radiation Configuration Factors between Discs and a Class of Axisymmetric Bodies", American Society of Mechanical Engineers, Paper no. 81-HT-56.
[21] 10 CFR, Chapter 1, Part 71 - Packaging and Transportation of Radioactive Material, 1-1-91 Edition.
[22] IAEA Safety Standard, Safety Series No. 6, Regulations for the Safe Transport of Radioactive Material, 1985 Edition (as Amended 1990).
[23] Society of Automotive Engineers, Inc., (SAE), Aerospace Applied Thermodynamics Manual, 485 Lexington Ave., New York, N.Y., Published Feb. 1960, Revised Jan 1962 (Library of Congress catalog card No. 60-13450).
[24] Nordion Document,IN/PR 0030 J1 100, Technical Specification for the C-188 Sealed Source Part I Inactive Components and Assembly.
[25] Nordion Document,IN/TS 0146 J1100,Technical Specification for the C-188 Sealed Source Part II Active Components and Assembly.

APPENDIX 3.6.2
 Normal Thermal Tests of the F-294 Package with the F-313 Source Carrier

CONTENTS

1. INTRODUCTION 3
2. THERMAL TESTS CONDUCTED PRIOR TO THE F-294 DROP TESTS 3
2.1 TEST RESULTS OF THERMAL TEST CONDUCTED PRIOR TO THE F-294 DROP TESTS 3
2.1.1 Highest Temperature 3
2.1.2 Lowest Temperature 4
3. THERMAL TESTS CONDUCTED AFTER THE F-294 DROP TESTS 4
3.1 TEST RESULTS OF THERMAL TEST CONDUCTED AFTER THE F-294 DROP TESTS 4
3.1.I Highest Temperature 4
3.1.2 Lowest Temperature 5
4. TEMPERATURE MEASUREMIENT ERRORS 5
5. TEMPERATURE INFORMATION FOR THERMAL TEST PRIOR TO THE F-294 DROP TESTS 6
5.1 Temperature of Accessible Surface of the F-294 Package 6
5.2 Package Temperatures. 7
6. TEMPERATURE INFORMATION FOR THERMAL TEST AFTER THE F-294 DROP TESTS. 8
6.1 TEMPERATURE OF THE F-294 PaCKAGE 8
7. CONCLUSIONS 9
SUB-APPENDIX:3.6.2.1 TEST \# 5.1.10, NORMAL THERMAL TEST PRIOR TO TEE DROP 13
SUB-APPENDIX 3.6.2.2 TEST \# 5.3.10, NORMAL THERMAL TESTING AFTER THE DROP 27

This page left blank intentionally.

1. INTRODUCTION

Extensive steady state normal thermal tests were carried out using a full scale F-294 test packaging and using actual C-188 cobalt-60 sealed sources. This appendix provides the thermal test data for thermal tests conducted on the F-294 before the F-294 drop tests and after the F-294 drop tests. All the thermal tests were conducted under shade conditions (i.e., a closed building). The measurement errors are identified and their magnitude is estimated.
The temperature data is converted into temperature information with appropriate consideration given to factors like ambient temperatures, measurement errors and shade or solar conditions.

2. THERMAL TESTS CONDUCTED PRIOR TO THE F-294 DROP TESTS

The details of the steady state, normal thermal tests conducted prior to the F-294 drop tests are given in Sub-Appendix 3.6.2.1.
The F-294 Shipping Package was subjected to normal thermal testing when loaded with Co-60 as outlined in The Procedure for Steady State Thermal Test IN/OP 0597 F294. Four tests (cases) were carried out on the four different configurations.

Test \#1: F-294 with fireshield and crush shield, no added insulation
Test \#2: F-294 without fireshield or crush shield, no added insulation
Test \#3: F-294 without fireshield or crush shield, with added insulation
Test \#4: F-294 with fireshield and crush shield, with added insulation.
The decay heat load was equivalent to forty (40), full scale active C-188 cobalt-60 sources. The C-188 capsules were loaded in a single ring within an F-313 source carrier. The curies used at the start and finish of the pre-drop thermal test are as follows:

1. At the start: 1998 Jan $06-375,510$ curies (5.782 kW)
2. At the finish: 1998 Jan $14-374,428$ curies (5.766 kW)

The F-294 cavity was purged with argon. Therefore the F-294 cavity environment was argon.

2.1 TEST RESULTS OF THERMAL TEST CONDUCTED PRIOR TO THE F-294 DROP TESTS

The details of the test temperature data are given in Sub-Appendix 3.6.2.1. Selective temperature data is recaptured as per Tables 3.6.2-T1 and 3.6.2-T2.

2.1.1 Highest Temperature

The highest temperature of the following designated location/components are based on Test \#4 (F -294 with fireshield and crush shield, with added insulation) is as per Table 3.6.2-T1.

Table 3.6.2-T1
Highest Temperature of the Designated F-294 Locations in Test \#4 (F-294 with Fireshield and Crush Shield, With Added Insulation)

Item	Lemperature (C)	
1	C-188	417
2	Cavity wall	175
3	Underside of the F-294 closure plug	200
4	Top of the F-294 closure plug	112
5	Mid height of the F-294 external container wall	107
6	Top of lift lug fin (most accessible surface)	53
7	Ambient	$20^{\circ} \mathrm{C}$

2.1.2 Lowest Temperature

The lowest temperature of the following designated location/components are based on Test \#2 (F-294 without fireshield and crush shield, without added insulation) as per Table 3.6.2-T2.

Table 3.6.2-T2
Lowest Temperature of the F-294 Location/Components (Test \# 2: F-294 Without Fireshield and Crush Shield, No Added Insulation)

Item	Location	Temperature (\mathbf{C} C)
1	C-188	386
2	Cavity wall	158
3	Underside of the F-294 closure plug	179
4	Top of the F-294 closure plug	101
5	Mid height of the F-294 external container wall	90
6	Ambient	23

3. THERMAL TESTS CONDUCTED AFTER THE F-294 DROP TESTS

The F-294 test packaging was subjected to eight (8) drop tests conducted on February 25, 1998 at Chalk River Laboratory, AECL, Chalk River, Ontario, Canada. After the drop tests, the F-294 Shipping Package was subjected to the normal thermal testing as outlined in The Procedure for Steady State Thermal Test IN/OP 0597. Post-drop thermal tests on F-294 were carried out between March 171998 and March 241998 in the Industrial Operations building, MDS Nordion, Ottawa, Ontario, Canada. The droptested F-294 was loaded by the same technician. The four tests (cases) were again carried out on the four different configurations.

Test \#1: F-294 with fireshield and crush shield, no added insulation
Test \#2: F-294 without fireshield or crush shield, no added insulation
Test \#3: F-294 without fireshield or crush shield, with added insulation
Test \#4: F-294 with fireshield and crush shield, with added insulation
The decay heat load was simulated using quantity forty (40), full scale active C-188 cobalt-60 sources. The C-188's were loaded in a single ring within F-313 source carrier. These C-188 sources were the same ones used in the pre-drop thermal test. The curies used at the start and finish of the post-drop thermal test are as follows:

1. at the start: 1998 March $17-366,160$ curies (5.638 kW)
2. at the finish: 1998 March $24-365,237$ curies (5.624 kW)

The F-294 cavity was purged with argon. Therefore the F-294 cavity environment was argon.

3.1 TEST RESULTS OF THERMAL TEST CONDUCTED AFTER THE F-294 DROP TESTS

The details of the test temperature data are given in the Sub-Appendix 3.6.2.2. Selective temperature data is re-captured as per Tables 3.6.2-T3 and 3.6.2-T4.

3.1.1 Highest Temperature

The highest temperatures of the following designated location/components are based on Test \#4 (F-294 with fireshield and crush shield, with added insulation) as per Table 3.6.2-T3.

Table 3.6.2-T3
Highest Temperature of the designated F-294 Locations in Test \#4 (F-294 With Fireshield and Crush Shield, With Added Insulation)

	Then	Temperature\|
Item	Location	(C)
1	C-188	413
2	Cavity wall	193
3	Underside of the F-294 closure plug	222
4	Top of the F-294 closure plug	111
5	Mid height of the F-294 external container wall	110
6	Top of lift lug fin (most accessible surface)	56
7	Ambient	23

3.1.2 Lowest Temperature

The lowest temperature, of the following designated location /components are based on Test \# 1 (F-294 without fireshield and crush shield, no added insulation.) is as per Table 3.6.2-T4.

Table 3.6.2-T4
Lowest Temperature of the Designated F-294 Locations in Test \#1 (F-294 Without Fireshield and Crush Shield, Without Added Insulation)

Item	Temperature	
1	C-188	Location
2	Cavity wall	368
3	Underside of the F-294 closure plug	167
4	Top of the F-294 closure plug	206
5	Mid height of the F-294 external container wall	87
6	Ambient	91

4. TEMPERATURE MEASUREMENT ERRORS

The details of the temperature instrumentation, calibration etc. are given in Sub-Appendices 3.6.2.1 and 3.6.2.2.

The temperature measurement errors are made up of three major factors:

1. The accuracy of thermocouple wire (type K) $\pm 2.2^{\circ} \mathrm{C}$ or $\pm 0.75 \%$ whichever is greater.
2. The accuracy of readout instrumentation (Omega Temperature Logger, Fluke Temperature Reader, Omega Temperature Reader) $\pm 2.0^{\circ} \mathrm{C}$
3. The accuracy of thermo-couple junction, connection to the F-294 components, estimated \pm $0.5^{\circ} \mathrm{C}$
Based on these individual accuracies, the total measurement error $(\Delta \theta)$ is estimated as follows:
1) For temperature range up to $300^{\circ} \mathrm{C}$:

$$
\begin{aligned}
\Delta \theta & = \pm \sqrt{ }\left[(t / \mathrm{c} \text { error })^{2}+(\text { readout instrument error })^{2}+(\text { connection error })^{2}\right. \\
& = \pm \sqrt{ }\left[(2.25)^{2}+(2)^{2}+(0.5)^{2}\right. \\
& = \pm \sqrt{ }[9.09 \\
& = \pm 3.05 \\
& = \pm 3^{\circ} \mathrm{C}
\end{aligned}
$$

2) For temperature range between $>300^{\circ} \mathrm{C}$ and $\leq 450^{\circ} \mathrm{C}$:
$\Delta \theta= \pm \sqrt{ }\left[(t / \mathrm{c} \text { error })^{2}+(\text { readout instrument error) })^{2}+(\text { connection error })^{2}\right]$
$= \pm \sqrt{ }\left[(3.375)^{2}+(2)^{2}+(0.5)^{2}\right]$
$= \pm \sqrt{ }[15.64]$
$= \pm 3.95$
$= \pm 4^{\circ} \mathrm{C}$

5. TEMPERATURE INFORMATION FOR THERMAL TEST PRIOR TO THE F-294 DROP TESTS

5.1 TEMPERATURE OF ACCESSIBLE SURFACE OF THE F-294 PACKAGE

For $374,428 \mathrm{Ci}$ of cobalt- $60(5.766 \mathrm{~kW})$, Table 3.6.2-T5, column 3 lists the maximum temperatures of the external surface of the F-294 container in the shade inclusive of:

1. ambient temperature correction factor $\left(38^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}\right)$
2. total measurement error of $\pm 3^{\circ} \mathrm{C}$.

The highest temperature of the accessible surface of the $\mathrm{F}-294$ package is $74^{\circ} \mathrm{C}\left(165^{\circ} \mathrm{F}\right)$, at lift lug location.
The temperature credit, as a result of using a higher test source (at start of thermal test prior to the F-294 drop test program $375,510 \mathrm{kCi}$ of cobalt-60 [Jan 06, 1998] and at end of thermal test prior to the F-294 drop test program $374,428 \mathrm{kCi}$ of cobalt- 60 [Jan 14, 1998]) versus the license capacity of 360 kCi of cobalt-60, has been ignored.

Table 3.6.2-T5
Temperature of Accessible Surface of the F-294 Package (374,428 Ci: 5.766 kW)

Location on F-294 Container	Test ${ }^{1}$ Temp. (C)	Test ${ }^{2}$ Temp. (C)
Bottom of ext. cyl. fireshield	21	42
Middle of ext. cyl. fireshield	26	47
Top of ext. cyl. fireshield	36	57
Bottom of fin (air)	23	44
Entrance to chimney	43	64
Top of crush shield (air) Exit from the chimney	53	74
Top of the lift lug	40	61
Top crush shield/fire shield	40	61
upper surface, centre	43	64
upper surface, midway centre/edge	48	69
upper surface, edge	20	38
Crush shield, fin bottom		
Ambient		

[^1]
5.2 PACKAGE TEMPERATURES

The temperature of the following designated location/components of F-294, based on Test \#4 (F-294 with fireshield and crush shield, with added insulation) are as per Table 3.6.2-T6. For $374,428 \mathrm{Ci}$ of cobalt-60 (5.766 kW), Table 3.6.2-T6, column 4, lists the maximum temperatures of the F-294 container in the shade inclusive of:

1. ambient temperature correction factor $\left(38^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}\right)$
2. total measurement error of $\pm 3^{\circ} \mathrm{C}$ or $\pm 4^{\circ} \mathrm{C}$ depending on the temperature range.

Figure 3.6.2-F1 shows the temperatures for the normal steady state thermal test of the F-294, prior to the drop test, using 374,428 Ci of cobalt-60 (5.766 kW).

Table 3.6.2-T6
Temperature of the F-294 Package, Prior to the Drop Test of F-294

Cbannel	Location	Test $14{ }^{\circ} \mathrm{C}$)	Test 14 corrected (C)
1	C-188 source, midpoint of $\sin 59432$	397	419
2	C-188 source, midpoint of s/n 59475	417	439
3	C-188 source, midpoint of s/n 59532	415	437
4	Underside of shielding plug, adjacent to ventline exit hole	200	221
5	Cavity wall, at vertical midpoint, on side of drainline	175	196
6	Cavity wall, at vertical midpoint, on opposite side of drainline	172	193
7	Container wall, between the fins, upper section	106	127
78	Container wall, between the fins, upper section, top of insulation	71	92
8	Ambient, at elevation even with cavity midpoint	20	38
9	Top center of upper crush shield	40	61
10	Air temperature between fins of crush shield, side of drainline	44	65
11	Container wall, between the fins, midsection	107	128
12	Container wall, adjacent to drainline	92	113
12a	Container wall, adjacent to drainline, top of insulation	N/A	N/A
13	Underside of container, center	31	52
14	Top center of shielding plug	112	133
15	Top of crush shield, equidistant between center and outside edge of plate	40	61
16	Top of crush shield, outside edge of plate	43	64
17	Air temperature, top edge of fireshield, side of drainline	41	62
18	Air temperature, lower edge of fireshield, side of drainline	23	44
19	Top of donut ring on crush shield	40	61
20	Lower edge of fireshield, side of drainline	21	42
21	Midpoint of fireshield, side of drainline	26	47
22	Upper edge of fireshield, side of drainline	36	57
23	Lower donut ring on crush shield, side of drainline	48	69
24	Top of lifting lug fin, opposite side of drainline	53	74
25	Ambient, approximately one meter above container	29	50

6. TEMPERATURE INFORMATION FOR THERMAL TEST AFTER THE F-294 DROP TESTS

Details of the steady state, normal thermal test of the drop tested F-294 are given in Sub-Appendix 3.6.2.2. When these tests were carried out, the punctured zones (openings in the fireshield) were taped over with aluminum tape in order to cut down the air bypass. This results in the cask and package temperatures being conservative.

6.1 TEMPERATURE OF THE F-294 PACKAGE

For $365,237 \mathrm{Ci}$ of cobalt-60 (5.624 kW), Table 3.6.2-T7, column 4 lists the maximum temperatures of the external surface of the F-294 container in the shade inclusive of:

1. ambient temperature correction factor $\left(38^{\circ} \mathrm{C}-23^{\circ} \mathrm{C}\right)$
2. total measurement error of $\pm 3^{\circ} \mathrm{C}$ or $\pm 4^{\circ} \mathrm{C}$, depending on the temperature range.

Figures 3.6.2-F2 and 3.6.2-F3 show the temperatures, for normal steady state thermal test of F-294, after the drop test, using $365,237 \mathrm{Ci}$ of cobalt- 60 (5.624 kW).

Table 3.6.2-T7
Temperature of the F-294 Package, After the F-294 Drop Tests (365,237 Ci: 5.624kW)

Channel	Location	Test\#4 $\stackrel{C}{C}$	Test $\# 4$ corrected ${ }^{\circ} \mathrm{C}$
1	C-188 source, midpoint of s/n 59532	381	400
2	C-188 source, midpoint of $\sin 59475$	413	432
3	Underside of shielding plug, adjacent to ventline exit hole	222	240
4	Cavity wall midheight, in line with damaged lift lug \#4	186	204
5	Cavity wall midheight on the side opposite the drainline	191	209
6	Cavity wall midheight on the same side as the drainline	193	211
7	Container wall between the fins, middle section, in line with drainline	108	126
8	Ambient, at elevation even with cavity midpoint	23	38
9	Top center of shielding plug	111	129
10	Ambient, approximately one meter above top of container	29	47
11	Top of lift lug \#2	56	74
12	Container wall, lower section, adjacent to the drainline	96	114
13	Underside of container, center, middle of indentation from puncture pin	35	53
14	Container wall, upper section, under damaged fins, mid-way between lift lugs \#1 and \#2 (damage zone \#2)	111	129
15	Container wall, middle section, mid-way between lift lugs \#1 and \#2 (damage zone \#2)	110	128
16	Container wall, lower section, mid-way between lift lugs \#1 and \#2 (damage zone \#2)	99	117
17	Air temperature, top edge of fireshield, in line with drainline	52	70
18	Air temperature, lower edge of fireshield, in line with drainline	32	50
19	Air temperature, upper section, between damaged fins near lift lug \#4	54	72
20	Container wall, middle section; under fin folded over from puncture pin, near lift lug \#4	104	122
21	Container wall, upper section, in line with drainline.	111	129
22	Top of damaged lift lug \#4	64	82
23	Top of insulation, over t/ \# 21	79	97
24	Top of insulation, over t/c \#12	71	89
25	Inoperative	n/a	n/a

Channel	Location	$\begin{gathered} \text { Testy4 } \\ \hline \mathrm{CO} \end{gathered}$	Test $\# 4$ corrected ${ }^{\circ} \mathrm{C}$
26	Container wall, upper section, adjacent to damaged lift lug \#4 (on reinforcing pad)	109	127
27	Air temperature, lower section, between damaged fins, near lift lug \#4	23	41
28	Container wall, upper section, adjacent to damaged lift lug \#4 (other side of fin from t / C \#26)	111	129
29	Top of insulation, over t/c \#26	87	105
30	Top of insulation, lower section, next to lift lug \#4	64	82
31	Top center of crush shield	45	63
32	Top of crush shield, equidistant between center and outside edge of plate, in line with lift lug \#2	43	61
33	Top of crush shield, outside edge of plate, in line with lift lug \#2	40	58
34	Top edge of fireshield, in line with drainline	35	53
35	Mid-height of fireshield, in line with drainline	29	47
36	Bottom edge of fire shield, in line with drainline	27	45
37	Air temperature, between damaged fins of crush shield, in line with drainline	47	65
38	Top of upper donut ning on crush shield, in line with lift lug \#2	46	64
39	Top of lower donut ring on crush shield, in line with lift lug \#2	57	75
40	Top of fireshield, puncture pin damaged zone \#1, near lift lug \#4	42	60
41	Top of fireshield, near lift lug \#2	37	55
42	Top of insulation, upper section, between fins of damage zone \#2	79	97
43	Top of insulation, lower section, between fins of damaged zone \#2	65	83

7. CONCLUSIONS

7.1 With the F-294 package in the shade, the highest C-188 temperature is $439^{\circ} \mathrm{C}\left(822.2^{\circ} \mathrm{F}\right)$ based on ambient temperature of $38^{\circ} \mathrm{C}\left(100^{\circ} \mathrm{F}\right)$. The solar heat load is expected to raise the cask temperatures by $1^{\circ} \mathrm{C}$. Therefore, the highest $\mathrm{C}-188$ temperature is $440^{\circ} \mathrm{C}\left(824^{\circ} \mathrm{F}\right)$ based on ambient temperature of $38^{\circ} \mathrm{C}\left(100^{\circ} \mathrm{F}\right)$.
7.2 The highest temperature of the most accessible surface of the package (i.e., top of the lift lug) is $74^{\circ} \mathrm{C}\left(165^{\circ} \mathrm{F}\right)$.
7.3 In general, the cask temperatures of the drop-tested F-294 were marginally higher than the pre-drop-tested F-294.
7.4 Steady state temperatures following the drop test will not result in any damage to the shielding or containment systems.

Figure 3.6.2-F1
Temperatures for Normal Steady State Thermal Test of F-294 Prior to the Drop Test, using 374,428 Ci of Cobalt-60 (5,766 kW)

T/C ${ }^{3} 3$ - $\mathrm{C}-188$ tEmperature $\left(415^{\circ} \mathrm{C}\right)$, NOT SHOWN. IN THIS PLANE

Figure 3.6.2-F2
Temperatures for Normal Steady State Thermal Test of F-294 After the Drop Test, using $365,237 \mathrm{Ci}$ of Cobalt- 60 (5.624 kW) (Plane of Drainline section)
-(10) $29^{\circ} \mathrm{C}$

Figure 3.6.2-F3
Temperatures for Normal Steady State Thermal Test of F-294 After the Drop Test, using $\mathbf{3 6 5 , 2 3 7} \mathbf{C i}$ of Cobalt- $60(5,624 \mathrm{~kW}$) (Away from the Plane of Drainline section)

SUB-APPENDIX 3.6.2.1
 Test \# 5.1.10, Normal Thermal Test Prior to the Drop

5.10 TEST \#5.1.10 - Normal Thermal Test Prior to the Drop

\#1

Test \#
5.1.10, as per test plan document IN/QA 1368 F294 (1), F-294 Regulatory Tests Normal Thermal Test Prior to the Drop
Date test conducted January 6, 1998

\#2 Person conducting the test/procedure
D. Whitby conducted the test.

\#2.1 Introduction

The F-294 Shipping Package was subjected to normal thermal testing when loaded with Co-60 as outlined in The Procedure for Steady State Thermal Test IN/OP 0597 F294. The F-294 was loaded by Ed Psutka of Industrial Operations, and the thermal testing was carried out by Greg Chupick the Industrial Operations Monitor, and Dave Whitby of Industrial QC. Four tests were carried out on the four different configurations.

Test \#1: F-294 with fireshield and crush shield, no added insulation
Test \#2: F-294 without fireshield or crush shield, no added insulation
Test \#3: F-294 without fireshield or crush shield, with added insulation
Test \#4: F-294 with fireshield and crush shield, with added insulation

\#2.2 Instrumentation

Calibrated type K thermocouples were used through out the thermal test, with two 10 -channel digital readers. The Omega Temperature Logger OM-302, number 6-810-021 was last calibrated September 1997 with a quoted accuracy of $\pm 2^{\circ} \mathrm{C}$. It is due for re-calibration September 1998. The Fluke digital reader model 2166A, number 6-810-022 was last calibrated October 1997 with a quoted accuracy of $\pm 0.5 \%$; it is due for re-calibration October 1998.
The thermocouples comprised of certified Type K wire. A sample was calibrated by Site Operating Systems \& Technical Services to confirm its performance. The samples were tested from $0^{\circ} \mathrm{C}$, up to $600^{\circ} \mathrm{C}$; all points tested were within $\pm 2.2^{\circ} \mathrm{C}$, or $\pm 0.75 \%$ of reading, whichever was greater (see Tables 2.10.12-T4 and 2.10.12-T5). The thermocouples each had a flame fusion junction which could be mounted on to the container wall using thermal paste, high temperature aluminum adhesive tape, and/or duct tape.

\#2.3 Thermocouple Placement within F-294 Cavity

The F-294 Flask was prepared for thermal tests prior to loading. Three thermocouples were mounted on $1 / 2$ in. square stainless steel flat plate; two were in turn tack welded on to the cavity wall, in line with the drainline, radially opposed to each other and axially on the cavity center line. The third was mounted on to the underside of container plug, adjacent to the vent line exit hole. The wire for the three thermocouples was routed out the F-294 plug vent line to Type K connectors.

Thermocouples were also mounted actively on to three of the C-188 sources using hose clamps for a secure contact. The position of the thermocouples were approximately at the center of the sources; the Source Technician then placed these sources ($\mathrm{s} / \mathrm{n} 59475$, $\mathrm{s} / \mathrm{n} 59432$ and $\mathrm{s} / \mathrm{n} 59532$) within the F-313 cage assembly as shown on the Loading Diagram (see Figure 3.6.2.1-F1). The thermocouple wire was routed through the drainline to Type K connectors.

\#2.4 Source Loading

The F-294 was loaded with 375,510 curies Cobalt-60 on January 06, 1998 in the form of forty (40) C-188 sealed sources, as per the loading diagram attached (see Figure 3.6.2.1-F1). The loading was done as any typical preparation for shipment, in Cell 06 within Industrial Operations, MDS Nordion, Ottawa, complete with a cavity argon purge and the plug fasteners torqued to $100 \mathrm{ft}-\mathrm{lb}$. A neoprene gasket was used to seal the cavity.
The loaded container was removed from Cell 06 and placed in the shipping bay. The thermocouples were mounted on to the container as listed in Table 3.6.2.1-T3 and shown in Figure 3.6.2.1-F2. The container was allowed to attain steady state overnight. Steady state was assumed after two similar successive readings, one hour apart.

\#2.5 Measurements

Temperatures were recorded for each location on January 07, 1998 (see Table 3.6.2.1-T4).
The fireshield and the upper crushshield were disassembled with the appropriate thermocouples being removed from their position on January 07. The container was allowed to attain steady state over night, and the readings were recorded on just the F-294 container on January 8, 1998 (see Table 3.6.2.1-T5).

One-half-inch Kaowool insulation strips were cut and taped on to the upper and lower sections as per instructions from V. Shah (see Figures 2.10.12-F3 and 2.10.12-F4) on January 12. The container was allowed to attain steady state over night, and the temperature readings were then recorded on January 13, 1998 (see Table 3.6.2.1-T6).
The fireshield and upper crush shield were assembled into place and the appropriate additional thermocouples were fixed into position after Test 3 on January 13. After attaining steady state, temperature readings were recorded on January 14, 1998 (see Table 3.6.2.1-T7).

\#2.6 Observations

The loading of the F-294 occurred late in the afternoon of January 06, 1998 and not all thermocouples had been applied by the end of the day's shift; consequently, some thermocouples had to be applied the next morning, and temperature data prior to thermal steady state was not recorded as outlined in procedure IN/OP 0597 F294 section 4.9.
The performance of the adhesive tape used to fasten the thermocouples against the container surfaces was not as good as expected when the container attained its higher temperatures. With the removal of the fireshield just prior to Test \#2 (Table 3.6.2.1-T8), some of the thermocouples had visibly lifted away from the container surface. It was not evident during the testing, as these thermocouples were inaccessible and hidden from view under the fireshield. As a result, the following values are suspected to be low:

Test \#1, channels 11, 12 and 13.
Test \#2, channel 7.

Conclusions

1. Four cases (tests) were carried out as follows:

Test \#1: F-294 with fireshield and crush shield, no added insulation
Test \#2: F-294 without fireshield and crush shield, no added insulation
Test \#3: F-294 without fireshield and crush shield, with added insulation
Test \#4: F-294 with fireshield and crush shield, with added insulation
2. The decay heat load was simulated using quantity forty (40), full scale active C-188 cobalt-60 sources. The C-188s were loaded in a single ring within an F-313 source carrier. The curies used at the start and finish of the pre-drop thermal test are as follows:

1. at the start: 1998 Jan $06-375,510$ curies (5.782 kW)
2. at the finish: 1998 Jan $14-374,428$ curies (5.766 kW)
3. The F-294 cavity was purged with argon. Therefore, the F-294 cavity environment was argon.
4. It is estimated that the time required for the temperature to reach equilibrium is $\mathbf{2 4}$ hours based on Test \#1.
5. The highest temperatures of the F-294 designated location/components (based on Test \#4, F-294 with fireshield and crush shield, with added insulation) are as per table below.

Item	Location	\qquad
1	C-188	417
2	cavity wall	175
3	underside of the F-294 closure plug	200
4	top of the F-294 closure plug	112
5	mid height of the F-294 external container wall	107
6	top of lift lug fin (most accessible surface)	53
7	ambient	20

6. The lowest temperatures of the following designated location/components (based on Case 2, F-294 without fireshield and crush shield, without added insulation), are as per table below.

Item	Location	Temperature (C)
1	C-188	386
2	Cavity wall	158
3	Underside of the F-294 closure plug	- 179
4	Top of the F-294 closure plug	101
5	Mid height of the F-294 external container wall	90
6	Ambient	23

\#4

Personnel

	Name	Title
Test prepared by:	D. Whitby	Industrial Quality Control
Reviewed by:	G. Chupick	Industrial Monitor, Decontamination Services
Approved by:	V. Shah	Package Engineering

Table 3.6.2.1-T1
Instrument Lab Work Report and Data Table, Thermocouple Sample \#1

Table 3.6.2.1-T2
Instrument Lab Work Report and Data Table, Thermocouple Sample \#2

Table3.6.2.1-T3
Thermocouple Locations

Channel	
1	C-188 source, midpoint of $\mathrm{s} / \mathrm{n} 59432$
2	C-188 source, midpoint of s/n 59475
3	C-188 source, midpoint of $\mathrm{s} / \mathrm{n} 59532$
4	Underside of shielding plug, adjacent to ventline exit hole
5	Cavity wall, at vertical midpoint, on side of drainline
6	Cavity wall, at vertical midpoint, on opposite side of drainline
7	Container wall, between the fins, upper section
8	Ambient, at elevation even with cavity midpoint
9	Top center of upper crush shield
10	Air temperature between fins of crush shield, side of drainline
11	Container wall, between the fins, midsection
12	Container wall, adjacent to drainline
13	Underside of container, center
14	Top center of shielding plug
15	Top of crush shield, equidistant between center and outside edge of plate
16	Top of crush shield, outside edge of plate
17	Air temperature, top edge of fireshield, side of drainline
18	Air temperature, lower edge of fireshield, side of drainline
19	Top of donut ring on crush shield
20	Lower edge of fireshield, side of drainline
21	Midpoint of fireshield, side of drainline
22	Upper edge of fireshield, side of drainline
23	Lower donut ring on crush shield, side of drainline
24	Top of lifting lug fin, opposite side of drainline
25	Ambient, approximately one meter above container

Table 3.6.2.1-T4
Test \#1 - Temperatures Recorded at Location of each Thermocouple F-294 with Fireshield and Crush Shield in Place, no Extra Insulation

Wrachannel ${ }^{\text {Cuta }}$	Temperature (${ }^{\text {C }}$)
1	387
2	409
3	406
4	181
5	165
6	161
7	94
8	23
9	42
10	42
11	86*
12	63*
13	24*
14	104
15	39
16	41
17	44
18	25
19	37
20	25
21	25
22	35
23	44

* Suspect reading, see Observations.

Table 3.6.2.1-T5
Test \#2 - Temperatures Recorded at Location of each Thermocouple F-294 with Fireshield and Crush Shield Removed, No Extra Insulation

W - Channel -	Temperature (${ }^{\circ}$)
1	386
2	409
3	406
4	179
5	162
6	158
7	78*
8	23
9	
10	
11	90
12	66
13	32
14	101
15	
16	
17	
18	
19	
20	
21	
22	
23	

* Suspect reading, see Observations.

Table 3.6.2.1-T6
Test \#3 - Temperatures Recorded at Location of each Thermocouple with Fireshield and Crush Shield Removed (With Extra Insulation)

Wurw Chamel ${ }^{\text {a }}$	
1	394
2	414
3	412
4	193
5	169
6	166
7	96
7a	61 (top of insulation) above \#7
8	21
9	
10	\cdots
11	97
12	92
12a	65 (top of insulation) above \#12
13	32
14	104
15	
16	
17	26
18	25
19	
20	
21	. $0 . .$.
22	
23	$\cdots \cdots$
24	43
25	34

Table 3.6.2.1-T7
Test \#4 - Temperatures Recorded at Location of each Thermocouple F-294 with Fireshield and Crush Shield in Place, With Extra Insulation

W, Channel	
1	397
2	417
3	415
4	200
5	175
6	172
7	106
7a	71 (top of insulation above \#7
8	20
9	40
10	44
11	107
12	92
13	31
14	112
15	40
16	43
17	41
18	23
19	40
20	21
21	26
22	36
23	48
24	53
25	29

Figure 3.6.2.1-F1
F-294 Loading Diagram

Figure 3.6.2.1-F2
Thermocouple Locations on F-294

Figure 3.6.2.1-F3
F-294 Bottom Corner, Extra Thermal Insulation (1/2 in. Kaowool)

Figure 3.6.2.1-F4
F-294 Top Corner, Extra Thermal Insulation (1/2 in. Kaowool)

SUB-APPENDIX 3.6.2.2
 Test \# 5.3.10, Normal Thermal Testing After the Drop

TEST \#5.3.10 - Normal Thermal Test After the Drop

\#1 Test \# 5.3.10 as per test plan document IN/QA 1368 F294 (1) Normal Thermal Test After the Drop
Date test conducted: March 17 to 24, 1998
Person(s) who conducted the test/procedure
Ed Psutka, Industrial Operations
Greg Chupick, Industrial Operations Monitor
Dave Whitby, Industrial Quality Control

Test Details

The F-294 test packaging was subjected to eight (8) drop tests conducted on February 25, 1998 at Chalk River Laboratory, AECL, Chalk River, Ontario, Canada. After the drop tests, the F-294 Shipping Package was subjected to the same normal thermal testing after the drop test as was performed prior to the drop test when loaded with Co-60 as outlined in The Procedure for Steady State Thermal Test IN/OP 0597. The drop-tested F-294 was loaded by the same technician, Ed Psutka of Industrial Operations, and the thermal testing was carried out by Greg Chupick, the Industrial Operations Monitor, and Dave Whitby of Industrial Quality Control. The same four tests were again carried out on the four different configurations.

Test \#1: F-294 with fireshield and crush shield, no added insulation
Test \#2: F-294 without fireshield or crush shield, no added insulation
Test \#3: F-294 without fireshield or crush shield, with added insulation
Test \#4: F-294 with fireshield and crush shield, with added insulation

\#3.1 Instrumentation

All the instrumentation used on the pre-drop thermal test was also used on the post-drop test. A third temperature reader was used due to the higher number of thermocouple locations on the droptested F-294. The following instrumentation was used.

Instrument	Make	Model	Cal. Date	Accuracy	Nordion No.
Temperature Logger	Omega	OM-302	1997 Sept.	$\pm 2^{\circ} \mathrm{C}$	$6-810-021$
Temperature Reader	Fluke	2166 A	1997 Oct.	$\pm 0.5 \%$	$6-810-022$
Temperature Reader	Omega	650	1998 Feb.	$\pm 1^{\circ} \mathrm{C}$	$6-810-013$
Thermocouple wire Type K	Omega	HH-K-20	1998 Jan.	$\pm 2.2^{\circ} \mathrm{C}$ or $\pm 0.75 \%$	n/a

The thermocouples each had a flame fusion junction that could be mounted on the container wall. The method of affixing the thermocouples onto the container was improved over the pre-drop thermal test. Each thermocouple junction was fusion welded onto a stainless steel flat plate, approximately $1 / 2 \mathrm{in}$. square and approximately 0.030 in . thick which, in turn, was tack welded directly on to the container wall.

The F-294 flask was prepared for thermal tests prior to loading just as the pre-drop test, except with an additional thermocouple located in the cavity. Two thermocouples were mounted on the cavity wall, in line with the drainline, radially opposed to each other and axially on the cavity center line. A third thermocouple was mounted in line with the most damaged area of the F-294, near lift lug \#4 (see Figure 3.6.2.2-F1). A fourth thermocouple was mounted on the underside of the container plug, adjacent to the vent line exit hole. The wire for the four thermocouples was routed out the F -294 plug vent line to Type K connectors.

Thermocouples were also mounted actively onto the same three C-188 sources, using hose clamps for a secure contact. The thermocouples were positioned at approximately the center of the sources; the Source Technician then placed these sources (s / n 's $59475,59432,59532$) within the F-313 cage assembly as shown on the Loading Diagram attached (see Figure 3.6.2.2-F3). The thermocouple wire was routed through the drainline to Type K connectors.

\#3.2 Source Loading in Cell 06

The F-294 was loaded 1998 March 17 with the same sources in the same loading configuration as the pre-drop thermal test. The activity for that date was 366,160 curies Cobalt-60, as per the loading diagram attached (see Figure 3.6.2.2-F3). The loading was done as any typical preparation for shipment, complete with a cavity argon purge and the plug fasteners torqued to $100 \mathrm{ft} .-\mathrm{lb}$. in Cell 06 within Industrial Operations, MDS Nordion, Ottawa.

The loaded container was removed from Cell 06 and placed in the shipping bay. The thermocouples were mounted on the container as listed in Table 3.6.2.2-T1 and shown in Figure 3.6.2.2-F4. Some additional thermocouples were mounted onto the damaged areas of the container (see Figures 3.6.2.2-F1 and 3.6.2.2-F2).

\#4 Actual Thermal Tests

\#4.1 Test \#1 - Fireshield and Crush Shield Removed

The F-294 was loaded at approximately 13:00 on 1998 March 17; after preparation, temperature readings were acquired at 14:20 and successive readings were taken to demonstrate a thermal steady state condition up to 1998 March 19 (see Test \#1, Table 3.6.2.2-T2 and Figure 3.6.2.2-F5).

\#4.2 Test \#2 - Fireshield and Crush Shield in Place

The fireshield and the upper crush shield, which had been damaged during the drop test, had to be cut from the container assembly prior to loading. The fireshield was cut into three segments and the more damaged crush shield had to have some fins flame cut for removal.

To re-assemble the fireshield in place, the lower edge was fastened normally while the upper area was strapped together. The seams were taped to prevent air flow between the segments. The puncture holes on the fireshield were also taped to prevent air flow bypass. The crushshield was set in place on top of the container, although it could not be fastened down. As the crushshield was propped up by the lifting eye welded on top of the plug, we had to cut out an elliptical hole approximately $4 \mathrm{in}$.x 6 in. so that the crush shield would seat as close as possible to the top of the container. This hole was taped so that there would not be any bypass of air flow. Temperature readings were taken on March 19 through to March 20 (see Test \#2, Table 3.6.2.2-T3).

\#4.3 Test \#3 - Fireshield and Crush Shield Removed - Insulated

One-half-inch Kaowool insulation strips were cut and taped on to the upper and lower sections, as per instructions from V . Shah on March 20. Temperature readings were then recorded from March 20 and again on March 23 (see Test \#3, Table 3.6.2.2-T4).

Test \$4 - Fireshield and Crush Shield in Place - Insulated

The fireshield and upper crush shield were assembled into place as in Test \#2 and the appropriate additional thermocouples were tacked into position after Test \#3 on March 23. Temperature readings were recorded through to March 24 (see Test \#4, Table 3.6.2.2-T5).

Observations
The thermocouple mounted on $\mathrm{C}-188 \mathrm{~s} / \mathrm{n} 59432$ must have broken during the loading procedure as it was not operating properly afterward; therefore this thermocouple was not allocated to a channel during the testing.
Position 5 on the Omega 650 temperature reader, which corresponds with channel 25, was inoperative and was not used for these tests.
Based on Test \#1, it appears that temperature equilibrium is reached in approximately 24 hours from the start of the test.

The highest temperature readings are shown in Table 3.6.2.2-T6.

Conclusions

1. Four cases (tests) were carried out as follows:

Test \#1: F-294 without fireshield and crush shield, no added insulation
Test \#2: F-294 with fireshield and crush shield, no added insulation
Test \#3: F-294 without fireshield and crush shield, with added insulation
Test \#4: F-294 with fireshield and crush shield, with added insulation
2. The decay heat load was simulated using quantity forty (40), full-scale active C-188 cobalt-60 sources. The C-188 capsules were loaded in a single ring within the F-313 source carrier. These C-188 sources were the same ones used in the pre-drop thermal test. The curies used at the start and finish of the post-drop thermal test are as follows:

- at the start: 1998 March $17-366,160$ curies (5.638 kW)
- at the finish: 1998 March 24-365,237 curies (5.624 kW)

3. The F-294 cavity was purged with argon. Therefore the F-294 cavity environment was argon.
4. It is estimated that the time required for the temperature to reach equilibrium is $\mathbf{2 4}$ hours, based on Test \#1.
5. The highest temperatures of the following designated location/components are based on Test \#4 (F-294 with fireshield and crushshield, with added insulation) are as per table below.

Item	Location	Temperature (${ }^{\circ}$ C)
1	C-188	413
2	Cavity wall	193
3	Underside of the F-294 closure plug	222
4	Top of the F-294 closure plug	111
5	Mid height of the F-294 external container wall	110
6	Top of lift lug fin (most accessible surface)	56
7	Ambient	23

6. The lowest temperatures of the following designated location/components are based on Case 1 (F-294 without fireshield and crushshield, without added insulation) are as per table below.

Item	Location	Temperature C \mathbf{C})
1	C-188	368
2	Cavity wall	167
3	Underside of the F-294 closure plug	206
4	Top of the F-294 closure plug	87
5	Mid height of the F-294 extemal container wall	91
6	Ambient	25

Personnel

	Name	Title
Test prepared by:	D. Whitby	Industrial Quality Control
Reviewed by:	G. Chupick	Industrial Monitor, Decontamination Services
Approved by:	V. Shah	Package Engineering

Table 3.6.2.2-T1
Thermocouple Locations

Channel	
1	C-188 source, midpoint of s/n 59532
2	C-188 source, midpoint of $\sin 59475$
3	Underside of shielding plug, adjacent to ventline exit hole
4	Cavity wall midheight, in line with damaged lift lug ${ }^{4} 4$
5	Cavity wall midheight on the side opposite the drainline
6	Cavity wall midheight on the same side as the drainline
7	Container wall between the fins, middle section, in line with drainline
8	Ambient, at elevation even with cavity midpoint
9	Top center of shielding plug
10	Ambient, approximately one meter above top of container
11	Top of lift lug \#2
12	Container wall, lower section, adjacent to the drainline
13	Underside of container, center; middle of indentation from puncture pin
14	Container wall, upper section, under damaged fins, mid-way between lift lugs \#1 and \#2 (damage zone \#2)
15	Container wall, middle section, mid-way between lift lugs \#1 and \#2 (damage zone \#2)
16	Container wall, lower section, mid-way between lift lugs \#1 and \#2 (damage zone \#2)
17	Air temperature, top edge of fireshield, in line with drainline
18	Air temperature, lower edge of fireshield, in line with drainline
19	Air temperature, upper section, between damaged fins near lift lug \#4
20	Container wall, middle section; under fin folded over from puncture pin, near lift lug \#4
21	Container wall, upper section, in line with drainline.
22	Top of damaged lift lug \#4
23	Top of insulation, over t/c \#21
24	Top of insulation, over t/c \#12
25	Inoperative
26	Container wall, upper section, adjacent to damaged lift lug \#4 (on reinforcing pad)
27	Air temperature, lower section, between damaged fins, near lift lug \#4
28	Container wall, upper section, adjacent to damaged lift lug \#4 (other side of fin from $1 / \mathrm{c}$ \$26)
29	Top of insulation, over t/ \#26
30	Top of insulation, lower section, next to lift lug \#4
31	Top center of crush shield
32	Top of crush shield, equidistant between center and outside edge of plate, in line with lift lug \#2
33	Top of crush shield, outside edge of plate, in line with lift lug \#2
34	Top edge of fireshield, in line with drainline
35	Mid-height of fireshield, in line with drainline
36	Bottom edge of fire shield, in line with drainline
37	Air temperature, between damaged fins of crush shield, in line with drainline
38	Top of upper donut ring on crush shield, in line with lift lug \$2
39	Top of lower donut ring on crush shield, in line with lift lug \#2
40	Top of fireshield, puncture pin damaged zone \#1, near lift lug \#4
41	Top of fireshield, near lift lug \#2
42	Top of insulation, upper section, between fins of damage zone \#2
43	Top of insulation, lower section, between fins of damage zone \#2

Chapter 3

Table 3.6.2.2-T2
Test \#1 - Recorded Temperatures
(No Insulation, Crush Shield and Fireshield Removed)

Channel	98/03/17																	98/03/19	
	14:20	15:00	15:30	16:00	16:30	17:00	17:30	18:00	18:30	19:00	8:30	10:00	11:00	12:00	13:00	14:00	15:45	8:45	10:50
1		357	358	359	359	359	360	360	359	360	368	367	367	368	368	368	368	368	368
2		398	400	400	400	400	399	399	399	398	404	404	404	405	405	405	405	405	405
3		167	171	174	178	181	183	186	188	189	204	205	206	204	206	204	206	206	206
4		128	132	136	139	143	146	148	150	152	167	167	167	167	168	168	168	167	167
5		144	149	151	153	155	157	158	159	161	173	173	173	173	174	174	174	174	174
6		138	142	146	149	152	155	157	159	161	174	174	175	175	175	175	175	175	175
7		48	53	57	61	64	67	71	73	76	90	90	90	91	91	91	91	91	91
8		24	24	24	25	25	24	25	25	24	25	24	24	25	25	25	25	23	25
9		42	46	49	53	56	62	63	67	69	83	87	88	88	86	85	83	85	87
10		26	27	27	29	28	28	32	30	31	33	31	29	28	31	33	32	30	29
11	25	26	27	29	30	31	32	33	34	35	41	41	41	41	42	41	41	41	41
12	33	40	45	48	52	55	58	60	62	64	77	77	77	77	77	77	78	77	77
13	22	22	23	23	24	24	25	26	26	27	32	32	33	33	33	33	33	33	33
14	37	43	48	52	55	58	62	64	66	68	83	84	84	84	85	85	84	84	84
15	41	50	54	59	62	66	69	72	73	75	91	91	91	92	92	92	91	91	
16	31	38	42	45	48	51	54	57	58	60	74	75	75	75	76	75	76	74	75
17	24	26	26	27	27	28	28	28	28	29	31	31	31	31	31	32	31	31	31
18	22	22	22	22	23	23	23	23	23	23	24	23	23	24	24	24	28	28	28
19	24	28	29	30	31	31	32	32	33	34	36	38	38	38	37	38	39	38	39
20	41	49	54	58	62	65	68	71	73	75	88	88	89	89	89	89	89	89	88
21		42	46	50	53	56	59	61	62	64	77	78	78	78	78	78	77	77	77
22		27	29	30	32	34	35	36	37	38	44	44	45	45	-	45	45	44	45
23		42																	
24		22											.						
25		43																	
26		42	46	49	53	56	59	62	63	65	80	80	80	82	81	81	80	80	80
27		22	26	27	27	28	29	30	31	31	25	25	25	25	25	26	26	26	26
28		43	48	52	55	58	61	63	65	67	82	82	82	80	83	83	83	82	83

Table 3.6.2.2-T3
Test \#2, Recorded Temperatures
(No Insulation, with Crush Shield and Fireshield)

Channel	98/03/19]t		Mrexthen 98103120 ,			
	16:00	17:00	8:45	9:45	11:00	11:50
1	371	371	373	373	372	372
2	406	406	407	407.	407	407
3	209	209	212	212	212	212
4	169	170	172	172	172	172
5	173	174	176	176	176	175
6	178	178	181	180	180	179
7	94	95	97	97	97	97
8	24	24	24	23	24	23
9	98	98	103	102	103	102
10	28	27	28	26	25	25
11	51	52	53	53	53	53
12	68	67	68	69	68	68
13	32	32	32	31	31	31
14	91	92	94	94	94	94
15	95	95	97	97	97	96
16	61	59	63	63	65	61
17	51	51	52	51	51	51
18	33	33	36	34	34	36
19	50	50	50	50	50	50
20	87	88	89	89	89	88
21	86	86	88	87	88	88
22	57	56	57	56	57	57

Channel	-98/03/19		W84+x 98/03/20			
	16:00	17:00	8:45	9:45	11:00	11:50
. 23	-	-	-	-	-	
24	-	-	-	-	-	
25	-	-	-	-	-	
26	89	90	92	92	92	92
27	24	24	24	18	24	23
28	91	92	94	94	94	94
29	-	-	-	-	-	-
30	-	-	-	-	-	-
31	42	42	43	43	43	43
32	39	39	40	40	40	40
33	40	40	41	41	41	41
34	34	34	34	34	34	34
35	29.	29	29	29	29	29
36	28	29	28	27	28	28
37	46	46	47	45	47	47
38	43	44	44	44	44	44
39	57	58	59	58	. 58	58
40	38	39	39	39	39	39
41	37	37.	37	37	37	37
42	-	-	-	-	-	-
43	-	-	-	-	-	-

Table 3.6.2.2-T4
Test \#3, Recorded Temperatures
(With Insulation, Crush Shield and Fireshield Removed)

Channel	, 98/03/20		98/03/23
	15:30	16:30	9:30
1	373	374	377
2	408	408	411
3	211	211	213
4	174	175	179
5	181	182	187
6	182	183	187
7	96	97	102
8	24	24	24
9	92	91	93
10	27	28	26
11	45	45	46
12	89	91	96
13	33	34	37
14	96	97	100
15	97	99	103
16	90	92	98
17	32	33	33
18	28	29	28
19	41	42	43
20	96	98	102
21	96	97	100
22	48	48	n / r

Channel	$98 / 03 / 20$		$98 / 03 / 23$
	$15: 30$	$16: 30$	$9: 30$
23	66	66	64
24	70	72	75
25			
26	93	94	97
27	27	27	28
28	95	96	99
29	71	72	71
30	67	73	78
31			
32			
33			
34			
35			
36			
37			
38			
39	40	40	40
40			
41			
42	65	66	66
43	65	67	73

Table 3.6.2.2-T5
Test \#4, Recorded Temperatures (With Insulation, Crush Shield and Fireshield)

Channel	+ $+98 / 03 / 23$ - प				98/03/24]	
	11:15	13:05	15:10	16:50	8:20	9:15
1	378	379	379	379	381	381
2	411	411	412	412	413	413
3	213	215	218	218	221	222
4	181	182	183	184	186	186
5	187	187	188	189	191	191
6	188	189	-191	191	193	193
7	104	105	106	107	109	108
8	24	23	23	23	23	23
9	99	103	106	108	110	111
10	28	28	28	31	27	29
11	50	53	55	56	56	56
12	94	94	94	95	96	96
13	37	36	35	35	36	35
14	102	105	108	109	111	111
15	105	107	108	109	111	110
16	97	97	97	98	99	99
17	49	51	52	53	53	52
18	32	33	32	33	33	32
19	52	53	53	54	54	54
20	101	101	102	103	104	104
21	102	106	108	109	111	111
22	57	61	62		63	64

Channel					98/03/24,	
	11:15	13:05	15:10	16:50	8:20	9:15
23	73	75	76	78	79	79
24	= 72	71.	70	71	70	71
25						
26	100	103	105	106	109.	109
27.	24	24	24	25	24	23
28	102	106	108	109	111	111
29	82	84	80	86	87	87
30	63	61	61	63	64	64
31	31	42	44	45	45	45
32	30	41	42	43	43	43
33	31	39	40	41	41	40
34	31	34	34	35	34	35
35	27	29	29	29	29	29
36	27	27	27	28	27	27
37	44	46	47	47	48	47
38	35	44	45	46	46	46
39	50	54	56	56	56	57
40	38	41	41	42	42	42
41	32	36	36	37	37	37
42	72	75	76	77	78	79
43	74	72	73	70	74	65
			.			

Table 3.6.2.2-T6 Thermocouple Location with Highest Temperature Readings

	Location	Final Temperature (${ }^{\circ} \mathrm{C}$)			
Channel		$\begin{aligned} & \text { Test } \\ & \quad \# 1 \end{aligned}$	Test \#2	$\begin{gathered} \text { Test } \\ \# 3 \end{gathered}$	$\begin{array}{r} \text { Test } \\ H 4 \\ \hline \end{array}$
1	C-188 source, midpoint of s/a 59532	368	372	377	381
2	C-188 source, midpoint of s/n 59475	405	407	$411{ }^{\circ}$	413
3	Underside of shielding plug, adjacent to ventline exit hole	206	212	213	222
4	Cavity wall midheight, in line with damaged lift lug \#4	167	172	179	186
5	Cavity wall midheight on the side opposite the drainline	174	175	187	191
6	Cavity wall midheight on the same side as the drainline	175	179	187	193
7	Container wall between the fins, middle section, in line with drainline	91	97	102	108
8	Ambient, at elevation even with cavity midpoint	25	23	24	23
9	Top center of shielding plug	87	102	93	111
10	Ambient, approximately one meter above top of container	29	25	26	29
11	Top of lift lug \#2	41	53	46	56
12	Container wall, lower section, adjacent to the drainline	77	68	96	96
13	Underside of container, center, middle of indentation from puncture pin	33	31	37	35
14	Container wall, upper section, under damaged fins, mid-way between lift lugs \#1 and \#2 (damage zone \#2)	84	94	100	111
15	Container wall, middle section, mid-way between lift lugs \#1 and \#2 (damage zone \#2)	91	96	103	110
16	Container wall, lower section, mid-way between lift lugs \#1 and \#2 (damage zone \#2)	75	61	98	99
17	Air temperature, top edge of fireshield, in line with drainline	31	51	33	52
18	Air temperature, lower edge of fireshield, in line with drainline	28	36	28	32
19	Air temperature, upper section, between damaged fins near lift lug \#4	39	50	43	54
20	Container wall, middle section; under fin folded over from puncture pin, near lift lug \#4	88	88	102	104
21	Container wall, upper section, in line with drainline.	77	88	100	111
22	Top of damaged lift lug \#4	45	57	n / r	64
23	Top of insulation, over t/c \#21	n/a	n/a	64	79
24	Top of insulation, over t/c \#12	n/a	n/a	75	71
25	Inoperative	n/a	n/a	n/a	n/a
26	Container wall, upper section, adjacent to damaged lift lug \#4 (on reinforcing pad)	80	92	97	109
27	Air temperature, lower section, between damaged fins, near lift lug \#4	26	23	28	23
28	Container wall, upper section, adjacent to damaged lift lug \#4 (other side of fin from t/c \#26)	83	94	99	111
29	Top of insulation, over t/c \#26	n/a	n/a	71	87
30	Top of insulation, lower section, next to lift lug \#4	n/a	n/a	78	64
31	Top center of crush shield	n/a	43	n/a	45
32	Top of crush shield, equidistant between center and outside edge of plate, in line with lift lug \#2	n/a	40	n/a	43
33	Top of crush shield, outside edge of plate, in line with lift lug \#2	n/a	41	n/a	40
34	Top edge of fireshield, in line with drainline	n/a	34	n/a	35
35	Mid-height of fireshield, in line with drainline	n/a	29	n/a	29
36	Bottom edge of fire shield, in line with drainline	n/a	28	n/a	27
37	Air temperature, between damaged fins of crush shield, in line with drainline	n/a	47	n/a	47
38	Top of upper donut ring on crush shield, in line with lift lug \#2	n/a	44	n/a	46
39	Top of lower donut ring on crush shield, in line with lift lug \#2	n/a	58	40	57
40	Top of fireshield, puncture pin damaged zone \#1, near lift lug \#4	n/a	39	n/a	42
41	Top of fireshield, near lift lug \#2	n/a	37	n/a	37
42	Top of insulation, upper section, between fins of damage zone \#2	n/a	n/a	66	79
43	Top of insulation, lower section, between fins of damaged zone \#2	n/a	n/a	73	65

Figure 3.6.2.2-F1
Digital Photo: Locations and Identifications of Damaged Zone \#1
(G:IQAIQCPPHOTOSV4F294.BMP)

Figure 3.6.2.2-F2
Digital Photo: Locations and Identifications of Damaged Zone \#2
(G:IQAIQCTPHOTOSI3F294.BMP)

Figure 3.6.2.2-F3
Loading Diagram of F-294 and Locations of Thermocouples in the F-294 Cavity

Figure 3.6.2.2-F4
Thermocouple Locations (plane through drainline)

Figure 3.6.2.2-F5
Thermocouple Locations (other planes)

Figure 3.6.2.2-F6
Test \#1 Temperature $\boldsymbol{v s}$ Time - Plot of Selected Thermocouples

APPENDIX 3.6.3
 Steady State Heat Transfer in the Cavity of F-294 Package

1. INTRODUCTION

Present regulations do not place a limit on the maximum temperature of a cobalt-60 radioactive source capsule during transport. What they do require is that, under normal conditions of transport, the radioactive material released from the containment vessel be limited to the amounts specified in the regulations. Under hypothetical accident conditions some activity release, up to specified regulatory limits, may be permitted. It is therefore prudent to keep the source encapsulation temperatures as low as possible. For the C-188 double encapsulated cobalt-60 source capsule, the outer ss316L encapsulation is considered part of the containment system. The C-188 has been certified as Special Form Radioactive Material and consequently has met the $800^{\circ} \mathrm{C}\left(1,472^{\circ} \mathrm{F}\right)$ thermal test for Special Form Radioactive Materials to IAEA SS 6 - 1985 Edition (Ref. [17]). See Chapter 4, Appendix 4.4.2.
Temperature calculations of C-188 source capsules loaded in one (1) ring of holes of the F-313 source holder in the F-294 cavity are presented here.

2. DEFINITION OF PROBLEM

The C-188 cobalt-60 sources are loaded in a F-313 source holder within 11.5 in. diameter of the F-294 cavity. The source holder is loaded with 40 sources in the outermost (1st) ring of holes only. Heat in the cavity is the result of

1. attenuation of gamma rays within the source capsule (self-attenuation)
2. capsule to capsule (mutual attenuation)
3. capsule to source holder material (mutual attenuation)

Two methods are employed to calculate the maximum ss316L cladding temperature required to transfer heat generated within the cavity. From Chapter 3, Appendix 3.6.2, the measured cavity wall temperature is $175^{\circ} \mathrm{C}\left(347{ }^{\circ} \mathrm{F}\right)$ with an ambient of $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$. The cavity wall temperature of $193^{\circ} \mathrm{C}\left(379{ }^{\circ} \mathrm{F}\right)$ at an ambient of $38^{\circ} \mathrm{C}\left(100^{\circ} \mathrm{F}\right)$ is used in the thermal calculations. This value is not corrected for temperature measurement errors and solar heat load.

In method \#1, the 40 source capsules are modeled as an equivalent tubular heat source. The heat is transferred from only the outer surface of the "equivalent" tubular source to the F-294 cavity wall.

In method \#2, the heat transfer from one single source capsule within $11: 5$ in. diameter cavity is considered. The radiation heat exchange between one source capsule and the cavity wall is estimated based on view factors.

In both methods, it is assumed that the heat is transferred from the source capsule to the cylindrical wall of the cavity; credit, due to the heat exchange at the top (between top end cap and the shield plug bottom face) and at the bottom (between the bottom end cap and the cavity bottom face), has been ignored.

3. METHOD \#1 - ESTIMATE TEMPERATURE OF SOURCE OUTER ENCAPSULATION

Step \#1 Thermal model

See Figure 3.6.3-F1, Figure 3.6.3-F3 and Figure 3.6.3-F4 for thermal model, geometrical and other data of the cavity and source capsules.

Step \#2 Heat load $\mathbf{Q}_{\text {load }}$

For source holder loaded with source capsules in the 1st ring only, the heat load in the cavity is approximately 35% of the total heat load [Ref. 11].
Therefore

$$
\begin{aligned}
\mathrm{Q}_{\text {load }} & =0.35 \times 360 \mathrm{kCi} \times 15.47 \mathrm{~W} / \mathrm{kCi} \times 3.413 \mathrm{Btu} / \mathrm{h} / \mathrm{W} \\
& =6,653 \mathrm{Btu} / \mathrm{h}
\end{aligned}
$$

Step \#3 Heat transfer coefficients
For turbulent range of the natural convection heat transfer mode, McAdams (Ref. [14]) recommends for air environment, heat transfer coefficient h_{c} :
$\mathrm{h}_{\mathrm{c}} \quad=0.19(\Delta \mathrm{~T})^{0.333}$
where
$\Delta \mathrm{T}=$ temperature difference across the boundary layer, surface temperature - ambient temperature.

Step \#4 Heat transport by convection, $\mathbf{Q}_{\mathbf{e}}$

Heat transport by convection, Q_{c}
$\mathrm{Q}_{\mathrm{c}}=\mathrm{U}_{1} \times \mathrm{A}_{1} \times\left(\mathrm{T}_{3}-\mathrm{T}_{1}\right)$
where
$\mathrm{U}_{1}=$ overall heat transfer coefficient based on bare cavity wall surface area $-\mathrm{Btu} / \mathrm{h}-\mathrm{ft}^{2}{ }^{\circ}{ }^{\circ} \mathrm{F}$
$\mathrm{A}_{1}=$ the bare, unfinned cavity wall effective surface area $-\mathrm{ft}^{2}$
$\mathrm{T}_{3}=$ temperature of the 1 st ring of $\mathrm{C}-188$ sources $-{ }^{\circ} \mathrm{F}$
$\mathrm{T}_{1} \quad=$ cavity wall temperature $=379{ }^{\circ} \mathrm{F}$
$\mathrm{Q}_{\mathrm{c}} \quad=$ amount of heat transferred by convection - Btu/h.
The overall heat transfer coefficient is evaluated as follows:
$1 / U_{1}=1 / h_{c 32} \times A_{1} / A_{3}+1 / h_{c 21}$
where
$h_{h_{32}} \quad=$ convective h.t.c. across boundary layer between 3 and 2.
$\mathrm{h}_{\mathrm{c} 21}=$ convective h.t.c. across boundary layer between 2 and 1.
$\mathrm{A}_{1} \quad=$ surface area of bare cavity wall
$A_{3} \quad=$ equivalent area of outside surface area of 1st ring of sources
Find an equivalent annulus representing $40, \mathrm{C}-188$ capsules in a ring.
\#1. Cross sectional area of 40 C -188 capsules

$$
\mathrm{AX} 40=40 \times \pi \times 0.380^{2} / 4=4.537 \mathrm{in}^{2}
$$

\#2. Cross sectional area of equivalent annulus.

$$
\begin{aligned}
\operatorname{AXAN} & =\pi / 4\left[(\mathrm{PCD}+2 \Delta)^{2}-(\mathrm{PCD}-2 \Delta)^{2}\right] \\
& =\pi / 4\left[(10+2 \Delta)^{2}-(10-2 \Delta)^{2}\right] \\
& =62.84 \Delta
\end{aligned}
$$

\#3. Set AX40-AXAN and determine Δ
$4.537=62.84 \Delta$
$\Delta \quad=0.072 \mathrm{in}$.
\#4. Equivalent source annulus.

$$
\begin{aligned}
& \mathrm{OD}=\mathrm{PCD}+2 \Delta=10+2 \times 0.072=10.144 \mathrm{in} . \\
& \mathrm{DD} \quad=\mathrm{PCD}-2 \Delta \quad=10-2 \times 0.072=9.856 \mathrm{in} .
\end{aligned}
$$

\#5. \quad Verify AXAN $=$ AX40
AXAN $=\pi / 4 \times\left(10.144^{2}-9.856^{2}\right)=4.524$ in 2
Reasonable accuracy.
Initialization:

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{s}} \quad=830^{\circ} \mathrm{F} \\
& \mathrm{~T}_{\mathrm{c}} \quad=379^{\circ} \mathrm{F}
\end{aligned}
$$

Mean temperature, $\mathrm{T}_{\mathrm{m}}=\left(\mathrm{T}_{\mathrm{s}}+\mathrm{T}_{\mathrm{c}}\right) / 2=(830+379) / 2=604.5^{\circ} \mathrm{F}$

$$
\begin{aligned}
& h_{c 32}=0.19(830-604.5)^{0.333}=1.154 \\
& h_{c 21} \quad=0.19(604.5-379)^{0.333}=1.154
\end{aligned}
$$

$\mathrm{A}_{1}=\pi \times 11.5 \times 19.75 / 144=4.95 \mathrm{ft}^{2}$
$\mathrm{A}_{3}=\pi \times 10.144 \times 17.777 / 144=3.93 \mathrm{ft}^{2}$
$1 / \mathrm{U} 1=1 / \mathrm{hc} 32 \times[\mathrm{A} 1 / \mathrm{A} 3]+1 / \mathrm{hc} 21$
$=1 / 1.154 \times[4.95 / 3.93]+1 / 1.154$
$\mathrm{U}_{1}=0.510 \mathrm{Btu} / \mathrm{h}-\mathrm{ft}^{2}-9 \mathrm{~F}$
Therefore

$$
\begin{aligned}
\mathbf{Q}_{c} \quad & =\mathrm{U}_{1} \times \mathrm{A}_{1} \times\left(\mathrm{T}_{3}-\mathrm{T}_{1}\right) \\
& =0.510 \times 4.95 \times(830-379) \\
& =1,138 \mathrm{Btu} / \mathrm{h}
\end{aligned}
$$

Step \#5Radiant heat exchange between "tubular" source and cavity wall

$$
Q_{R} \quad=\sigma A_{3}\left[1 /\left\{\left(1 / \varepsilon_{3}+A_{3} / A_{1}\left(1 / \varepsilon_{1}-1\right)\right\}\right]\left[T_{3}^{4}-T_{1}^{4}\right]\right.
$$

where
$\varepsilon_{3} \quad=$ emissivity of ss 316 L source surface $=0.6$
$\varepsilon_{1}=$ emissivity of ss 304 cavity surface $=0.42$
$\mathrm{T}_{3}=$ source Initialization temperature $=\mathrm{T}_{\mathrm{s}}=830^{\circ} \mathrm{F}=1290^{\circ} \mathrm{R}$
$\mathrm{T}_{1} \quad=$ cavity wall temperature $=\mathrm{T}_{\mathrm{c}}=379^{\circ} \mathrm{F}=839^{\circ} \mathrm{R}$
$\sigma \quad=$ Boltzmann's constant $=0.1713 \times 10^{-8} \mathrm{Btu} / \mathrm{h}-\mathrm{ft}^{2}{ }^{2}-\mathrm{R}$
$\mathrm{Q}_{\mathrm{R}} \quad=\sigma \mathrm{A}_{3}\left[1 /\left\{\left(1 / \varepsilon_{3}+\mathrm{A}_{3} / \mathrm{A}_{1}\left(1 / \varepsilon_{1}-1\right)\right\}\right]\left[\mathrm{T}_{3}{ }^{4}-\mathrm{T}_{1}^{4}\right]\right.$
$=0.1713 \times 3.93[1 /\{1 / 0.6+3.93 / 4.95(1 / 0.42-1)\}]\left[12.9^{4}-8.39^{4}\right]$
$=0.1713 \times 3.93 \times 0.361 \times 22,737$.
$=5,525 \mathrm{Btu} / \mathrm{h}$
Step \#6Heat transferred

$$
\begin{aligned}
\mathrm{Q}_{T} & =\mathrm{Q}_{\mathrm{R}}+\mathrm{Q}_{\mathrm{c}} \\
& =5,525+1,138 \\
& =6,663 \mathrm{Btw} / \mathrm{h}
\end{aligned}
$$

Step \#7 Reconcliation

Since the heat transferred Q_{T} of 6,663 Btu/h is marginally just greater than $\mathrm{Q}_{\text {boed }}$ of 6,653 Btu/h, the Initialization temperature of $\mathrm{T}_{3}=830^{\circ} \mathrm{F}$ is correct. Therefore, the $\mathrm{C}-188$ source temperature shall be at $830^{\circ} \mathrm{F}$ in normal conditions of transport of F -294 for 360 kCi case.

4. METHOD \#2-HEAT TRANSFER FROM ONE SINGLE SOURCE CAPSULE TO THE CAVITY WALL

Effective thermal radiating surface
Effective thermal radiating surface is readily determined for the case of one C-188 source in the F-294 cavity because all elements of capsule radiating surface (a_{1}) see only the surrounding cold cavity wall heat sink and no element of the source capsule surface can see an equally hot surface where mutual exchange of radiation would accomplish no net heat transfer. The familiar heat exchange equation is:
$Q_{R}=\sigma A_{3} \varepsilon_{3} \alpha\left[T_{3}{ }^{4}-T_{1}{ }^{4}\right]$
where
$\mathrm{T}_{3} \quad=$ temperature of source surface
T_{1} = temperature of sink surface
$A_{3} \quad=$ surface area of one source capsule
$\sigma \quad=$ Boltzmann's constant
$\varepsilon_{3} \quad=0.6 \mathrm{ss} 316 \mathrm{~L}$, emissivity of source capsule surface
$\alpha \quad=$ view factor estimated graphically as shown in Figure 3.6.3-F2.
In Figure 3.6.3-F2, angles of unobstructed view from the source capsule centre to the cavity wall are estimated.

Step \#1 Heat load from one source capsule: $\mathbf{3 6 0} \mathbf{k C i}$ for $\mathbf{q t y}=\mathbf{4 0 , ~ C - 1 8 8 ~ c a p s u l e s ~}$

Therefore, we have 9.0 kCi per C-188 source capsule.

$$
\begin{aligned}
\mathrm{Q}_{\text {toad }, 1} & =0.35 \times 9.0 \mathrm{kCi} \times 15.47 \mathrm{~W} / \mathrm{kCi} \times 3.413 \mathrm{Btu} / \mathrm{h} / \mathrm{W} \\
& =166.3 \mathrm{Btu} / \mathrm{h}
\end{aligned}
$$

Step \#2 Source capsule surface area A

$$
\mathrm{A}_{3} \quad=\pi \times 0.380 \times 17.777 / 144=0.147 \mathrm{ft}^{2}
$$

Step \#3 View factor: $\alpha=0.6$ from Figure 3.6.3-F2
Step \#4 Initialization: $\mathrm{T}_{\mathbf{z}}=\mathbf{8 3 0}{ }^{\circ} \mathrm{F}\left(1,290^{\circ} \mathrm{R}\right), \mathrm{T}_{\mathbf{c}}=379^{\circ} \mathrm{F}\left(839^{\circ} \mathrm{R}\right)$
Step \#5 Radiant heat exchange

$$
\begin{aligned}
\mathrm{Q}_{\mathrm{R}} & =\sigma \mathrm{A}_{3} \varepsilon_{3} \alpha\left[\mathrm{~T}_{3}^{4}-\mathrm{T}_{1}^{4}\right] \\
& =0.1713 \times 0.147 \times 0.6 \times 0.6\left[12.90^{4}-8.39^{4}\right] \\
& =206 . \mathrm{Btw} / \mathrm{h}
\end{aligned}
$$

Step \# 6 Convective heat exchange
$\mathrm{Q}_{\mathrm{c}} \quad=\mathrm{UA}_{3}\left(\mathrm{~T}_{3}-\mathrm{T}_{1}\right)$
where
$\mathrm{Q}_{\mathrm{c}} \quad=$ heat transfer by convection Btu/h
U = overall heat transfer coefficient between the source capsule surface and the cavity wall surface $=0.510$ (same as calculated in section 3, step \#4)
$\mathrm{T}_{3}=$ source surface temperature ${ }^{\circ} \mathrm{F}$
$\mathrm{T}_{1} \quad=$ cavity wall temperature ${ }^{\circ} \mathrm{F}$
$\mathrm{Q}_{\mathrm{c}} \quad=\mathrm{UX} \mathrm{A}_{3} \times\left(\mathrm{T}_{3}-\mathrm{T}_{1}\right)$
$=0.510 \times 0.147 \times(830-379)$
$=33.8 \mathrm{Btu} / \mathrm{h}$

Step \#7 Reconciliation

$$
\begin{aligned}
Q_{T} & =Q_{R}+Q_{c} \\
& =206 .+33.8 \mathrm{Btu} / \mathrm{h} \\
& =239.8 \mathrm{Btu} / \mathrm{h}
\end{aligned}
$$

Since the heat transferred Q_{T} of $239.8 \mathrm{Btu} / \mathrm{h}$ is greater than $\mathrm{Q}_{\text {hood }, 1}$ of $166.3 \mathrm{Btu} / \mathrm{h}$, the initialization temperature of $\mathrm{T}_{1}=830^{\circ} \mathrm{F}$ is high. Reiterate with a better value.

Step \#82nd computational cycle

With
$\mathrm{T}_{\mathrm{s}} \quad=750^{\circ} \mathrm{F}=\mathrm{T}_{3}$
$\mathrm{Q}_{\mathrm{R}}=149.4 \mathrm{Btu} / \mathrm{h}$
$Q_{c}=26 . B t u / h$
$Q_{T} \quad=Q_{R}+Q_{c}$
$=149.4+26$
$=175.4 \mathrm{Btw} / \mathrm{h}$
Since the heat transferred Q_{r} of 175.4 Btu/h is marginally just greater than $Q_{\text {boed, }}$ of 166.3 . Btu/h, the temperature of $\mathrm{T}_{3}=750^{\circ} \mathrm{F}$ converges.

5. CONCLUSIONS

5.1 For 360 kCi of cobalt-60 in F-294 cavity, equally distributed in quantity $=40, \mathrm{C}$-188s, in one ring of holes in an F-313 source holder:

1. C-188 source temperature of $830^{\circ} \mathrm{F}$ is calculated based on method \#1.
2. $\mathrm{C}-188$ source temperature of $750^{\circ} \mathrm{F}$ is calculated based on method \#2.

In method \#2, the estimation of view factor α is rather high. In reality, the path of C-188 to the cavity wall is obscured by the F-313 source holder support rods. Method \#1 is considered more accurate of the two methods as it considers the emissivity of the cavity wall.
5.2 As per Chapter 3, Appendix 3.6.3, the measured temperature of C-188 source, based on 374,428 Ci of cobalt-60 in the cavity of F-294 purged with argon; is $824^{\circ} \mathrm{F}$ at an ambient of $100^{\circ} \mathrm{F}$.
5.3 C-188 source temperature measurements ($824^{\circ} \mathrm{F}$) validates the analytical method \#1 to estimate the C-188 source temperature ($830^{\circ} \mathrm{F}$). The analytical method $\# 2$ under-predicts the $\mathrm{C}-188$ source temperature $\left(750^{\circ} \mathrm{F}\right)$.

Figure 3.6.3-F1
Cavity Heat Transfer - Geometry, Data, Temperature Distribution

Figure 3.6.3-F2
Radiant Window for 40, C-188 Capsules in 11.5 in. Diameter Cavity

Figure 3.6.3-F3
Thermal Model for One (1) or Two (2) Rings of C-188s in the F-294 Cavity

Figure 3.6.3-F4

Equivalent Annulus of 1st Ring of C-188s

all sources rae NOT SHOWN

APPENDIX 3.6.4
 Finite Element Analysis of the F-294
 with the F-313 Source Carrier

CONTENTS

1 INTRODUCTION 3
2 DESCRIPTION OF THE MODEL 3
2.1 GEOMETRY 3
2.2 Thermal Parameters 3
3 VALIDATION OF THE MODEL 9
4 STEADY STATE ANALYSIS AT 360 KCL OF CO-60 10
4.1 Application of the Solar Heat Load 11
5 TRANSIENT RESPONSE TO THE FIRE TEST 12
6 DISCUSSION 13
6.1 Influence of the Contact Resistance. 13
6.2 Effect of Convective Heat Transfer Coefficient 13
6.3 Effect of The Latent Heat Of Fusion For Lead 14
6.4 Effect of Decreased Thermal Protection Resulting from a Drop Test. 14
6.5 Effects of Increased Radiation to the Environment 14
7 SUMMARY 15
SUB-APPENDIX 3.6.4.1 COSMOS/M ELEMENT DESCRIPTIONS [15] 31
SUB-APPENDIX 3.6.4.2 RADIATION SHAPE FACTORS 43
SUB-APPENDIX 3.6.4.3 DERIVATION OF HEAT TRANSFER COEFFICIENTS 65
SUB-APPENDIX 3.6.4.4 COSMOS /M INPUT AND OUTPUT FILES 69

This page left blank intentionally.

1 INTRODUCTION

This appendix describes the thermal performance of the F-294 transport package with the F-313 source carrier before, during and after the regulatory fire test. Analysis is done using the COSMOS/M finite element package.[15]

The package has a maximum activity of 360 kCi of $\mathrm{Co}-60$. In sections 2 and 3 , the model is described and validated using the results of a test loading at 375.5 kCi . The fourth and fifth sections apply the model to the case of a 360 kCi load of Co-60.

Section 6 includes various parametric studies to establish the sensitivity of the results to the main assumptions of the model.

2 DESCRIPTION OF THE MODEL

The F-294 is shown in Figure 3.6.4-F1. Modeling assumptions fall into two categories; geometrical and thermal parameters. These assumptions are discussed below.
A brief description of the elements used in the analysis is found in Sub-appendix 1. SI units are used in the analysis. However, where applicable, conversion factors are provided.

2.1 GEOMETRY

The model is shown in Figure 3.6.4-F2. The following is assumed:
a) The model includes elements made up of stainless steel, mild steel, lead, kaowool, transite and air. The material distribution is shown in Figures 3.6.4-F3.
b) The package has axial symmetry. This effectively reduces this to a two-dimensional problem. (PLANE2D elements are used.) This assumption requires the fin elements to be treated differently from the remaining elements. (See material property set 6, Figure 3.6.4-F3.)
The fins account for $\mathbf{1 2 \%}$ of the radial area. There is three-dimensional heat transfer between them and the main body of the shield, the external fireshields and the environment. The various heat transfer paths are shown in Figure 3.6.4-F4.
In order to properly account for conduction heat input, the density and thermal conductivity of the fin material are decreased to 12% of values for stainless steel. This ensures that the two dimensional transient heat flow equation is satisfied. In order to account for convection and radiation effects, heat transfer from the fin surfaces is explicitly modeled using convection and radiation links. (See CLINK and RLINK elements in Sub-appendix 1.)
c) The top plug sits on a neoprene gasket retained in the main body. The air gap between the top plug and the main body is assumed to be 0.0016 m (0.0625 in).
c) The base of the F-294 is dished. This geometry is simulated using straight lines as shown in Figure 3.6.4-F5.

2.2 THERMAL PARAMETERS

The following assumptions relate to the thermal characteristics of the unit.
a) The decay of Co-60 generates 2504 keV of photon energy and 96 keV of continuous radiation.[16] Thus, each kCi of $\mathrm{Co}-60$ generates 15.4 W of heat, as demonstrated below:

$$
\frac{1000 C_{i}}{1 \mathrm{kCi}}{ }^{*} 3.7 E 10 \frac{\mathrm{dis} / \mathrm{s}^{*}}{\mathrm{Ci}} \cdot 2600 \mathrm{keV}^{*}{ }^{*} 1.602 \mathrm{E}-16 \frac{\mathrm{~J}}{\mathrm{keV}}{ }^{*} \frac{\mathrm{~W}}{\mathrm{~J} / \mathrm{s}}=15.4 \frac{\mathrm{~W}}{\mathrm{kCi}}
$$

b) The self attenuation of the capsule results in lower radiation fields in the axial dimension and higher radial fields. This effect is demonstrated in Figure 3.6.4-F6. As most of this radiation is converted to heat energy it is important to account for the difference in heat generation rate between the top plug and the main body. In the analysis, it is conservatively assumed that 80% of the heat is generated radially and that the remaining 20% of the heat is distributed evenly between the top plug and the bottom of the main body. The conservative nature of this assumption is demonstrated by the relatively high top plug top surface temperature calculated in section 3.0 relative to the measured top plug surface temperature.

It is further assumed that this heat is generated in the first steel and lead elements in the path of the emitted radiation. For the top plug only, it is necessary to model the heat generated in the steel elements separately from the lead elements. (See assumption h.) The resultant heat generation rates are given in Table 3.6.4-T1. The heated elements are shown in Figure 3.6.4-F7.

Table 3.6.4-T1
Element Heat Generation Rates

Affected Elements	Location	Heat Generation Rate (W/kCi/m)
1,2,3	TOP PLUG (steel)	262.7
10,11,12,13	TOP PLUG (lead)	170.1
53, 54, 59, 60	BOTTOM	226.8
37, 55, 56, 57, 58, 61, 62, 63, 64	SIDE	387.4

c) For the normal conditions of transport, the air between the fireshield and main body is heated as it rises. Experiments have shown the temperature increase to be $21^{\circ} \mathrm{C}$ between the entrance and the exit (see section 3). In the steady state analysis, three discrete air temperatures are used:

- For convective heat transfer at the bottom of the main body, the air temperature is assumed to be $38^{\circ} \mathrm{C}$. The affected areas are the lower fireshield, and the lower horizontal and dished surface of the main body. Node 400 is arbitrarily located in space as shown in Figure 3.6.4-F8 and is assigned a constant temperature of either $38^{\circ} \mathrm{C}$ or $800^{\circ} \mathrm{C}$. The latter temperature is only used during the fire test.
- For convective heat transfer from the radial fireshield and from the vertical and upper conical section of the main body, the air temperature is assumed to increase to $48^{\circ} \mathrm{C}$. Node 401 is arbitrarily located in space as shown in Figure 3.6.4-F8 and is assigned a constant temperature of either $48^{\circ} \mathrm{C}$ or $800^{\circ} \mathrm{C}$. The latter temperature is only used during the fire test.
- For convection from the top plug, the air temperature is assumed to increase to $55^{\circ} \mathrm{C}$. Node 402 is arbitrarily located in space as shown in Figure 3.6.4-F8 and is assigned a constant temperature of either $55^{\circ} \mathrm{C}$ or $800^{\circ} \mathrm{C}$.
For the validation run, these node temperatures are set to $23^{\circ} \mathrm{C}, 33^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$ respectively.
d) Heat transfer between the top plug and the main body is assumed to be by conduction through air, and by radiation. Conduction is modeled using the one dimensional TRUS2D elements (see Subappendix 1). The elements are assigned cross sectional areas using the algorithm of Figure 3.6.4F9. Radiation effects are modeled using radiation links between the same nodes. Shape factors are set to one.
e) Radiation effects in the regions enclosed by the fireshield are modeled using radiation links (see RLINK elements in Sub-appendix 1). These elements are shown in Figure 3.6.4-F11 and are connected to node 400.
Use of RLINKS requires shape factors, radiating surface areas and emissivities to be assigned. Shape factors are calculated as described in Sub-appendix 2. Surface areas for specific nodes are assigned as described in Figure 3.6.4-F9. All internal surfaces are assigned an emissivity of 0.8.
f) Heat transfer from the surface of the shielding vessel is via convection and radiation. Fin effects are considered by explicitly modeling the convection and radiation paths from the surface of the shield and from the fins. Convection effects from these surfaces are modeled using convection links (see CLINK elements in Sub-appendix 1). Surface nodes are connected to either node 400, 401 or 402, depending on their location (see assumption c).
For these surfaces, the convection heat transfer coefficient is set to $6.5 \mathrm{~W} / \mathrm{m}^{20} \mathrm{C}$. This value is chosen to match measured surface temperatures (see section 3). The analysis of Sub-appendix 3 shows this value to be reasonable,
g) Radiation and convection boundary conditions are assigned to the outside surfaces of the fireshield. The heat transfer coefficients are taken to be $1.6 \mathrm{~W} / \mathrm{m}^{2 \circ} \mathrm{C}, 1.0 \mathrm{~W} / \mathrm{m}^{20} \mathrm{C}$ and $4.0 \mathrm{~W} / \mathrm{m}^{20} \mathrm{C}$ for the outer radial surface, the bottom surface of the fireshield and the upper surface of the top fireshield respectively. (See Sub-appendix 3.) For the radiation boundary conditions, the emissivities and shape factors are conservatively set to 1 .
h) For steady state analyses, a contact resistance equivalent to 0.5 mm (0.020 in) of air is inserted between the lead and the external stainless steel shell. This value is based on reference [12] and matches experimental results. Positioning this contact resistance at the outside surface maximizes internal steady state temperatures as all of the heat is generated within the additional thermal resistance.
A contact resistance equivalent to $1 \mathrm{~mm}(0.040 \mathrm{in})$ of air is introduced between the base of the top plug and the lead. This value is chosen to match the experimental results and represents the relatively poor bond between the lead and the stainless steel encountered during manufacturing. The lead shielding is poured from the base of the top plug and hence bonding cannot be assured. Section 3 shows that these contact resistances yield internal and external temperatures that most accurately reflect the experimental results.
For transient analyses, this contact resistance is removed and a perfect thermal bond is assumed. This is an extremely conservative assumption.
Including the contact resistance in the model results in a realistic assessment of package temperatures under steady state conditions. In spite of the fact that this contact resistance does not disappear at the start of the regulatory fire, it is removed. The resultant additional heat input during the fire test results in lead temperatures that are higher than what would be expected during a real fire.
i) Variations in heat capacity are allowed for the lead elements only. Values of the specific heat for the materials other than lead are listed in Table 3.6.4-T2. The variation in the thermal capacity of lead is shown in Table 3.6.4-T3.
The latent heat of fusion for lead is modeled by spreading it over an arbitrary $5^{\circ} \mathrm{C}$ temperature range above the melting point $\left(327^{\circ} \mathrm{C}\right)$. This is shown schematically in Figure 3.6.4-F10. The shaded area under the curve represents the latent heat of fusion ($24,750 \mathrm{~J} / \mathrm{kg}$). [17]
It should be noted here that lead melt was not a factor in these analyses. All cases showed a substantial margin of safety regarding the onset of melting.
j) Variations in thermal conductivity with temperature were allowed for the stainless steel, lead and kaowool components (see Table 3.6.4-T4). For lead, thermal conductivities are taken from
reference [17] and for stainless steel, the thermal conductivity is found from the relations described in Table 3.6.4-T4.

Table 3.6.4-T2
Specific Heat of Materials used in the F-294

Material	Specific Heat (J/kg'C)	Specific Heat (Btulb. ${ }^{\circ}{ }^{\circ}$)	Reference
Stainless Steel	460	0.11	[10]
Air	1060	0.25	[10]
Transite	837	0.20	[1]
Kaowool	1060	0.25	Assumed equal to air
Mild Steel	465	0.11	[10]

Table 3.6.4-T3
Variation of Thermal Capacity of Lead

Temperature (C)	Specific Heat $\left(\mathrm{Jkg}^{\circ} \mathrm{C}\right)$	Specific Heat (Btu/b) ${ }_{\mathrm{m}}{ }^{\circ}$ F
≤-23	127	0.031
27	129	0.031
127	132	0.032
227	136	0.033
327	142	0.034
328	6188	1.478
331	6188	1.478
≥ 332	159	0.038

NOTE: For temperatures up to $327^{\circ} \mathrm{C}$, values come from reference [17]. Values between 327 and $332^{\circ} \mathrm{C}$ include the latent heat of fusion. For temperatures above $332^{\circ} \mathrm{C}$, a constant specific heat is assumed based on a tabulated value at $371^{\circ} \mathrm{C}$ in reference [1].

Table 3.6.4-T4
Variation of Thermal Conductivity with Temperature

Temperature (C) 1 Fl	$\begin{aligned} & \text { Stainless Steel } \\ & \left(W_{1 m}{ }^{\circ} \mathrm{C}\right) \end{aligned}$	(W/mod	Kaowool (W/mC)
≤ 27		35	\cdots
≤ 38	14.0		$\begin{gathered} 0.029 \\ \text { (extrapolated) } \end{gathered}$
100	15.1		$\begin{gathered} 0.032 \\ \text { (extrapolated) } \end{gathered}$
123		34	
149 [300]	17.0		$\begin{gathered} .036 \\ \text { (extrapolated) } \end{gathered}$
204 [400]	18.0		0.048
227		33	
260 [500]	18.9		0.053
316 [600]	19.6		0.062
327		31	
371 [700]	20.4	.	0.074
427 [800]	21.1		0.088
527		19	
538 [1000]	22.8		0.118
727		22	
816 [1500]	26.5		0.210
927 [1700]	26.5 (assumed)	24	0.248

NOTES:

1) Thermal conductivities of type 304 stainless steel are taken from reference [6].
2) Thermal conductivities of lead are taken from reference [17].
3) Thermal conductivities of kaowool are taken from reference [5].
4) $\quad 1 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}=0.5778 \mathrm{Btu} / \mathrm{h} / \mathrm{t} / \rho \mathrm{F}$.
k) Air elements are assumed to have a constant thermal conductivity of $0.0224 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$.[10]. Transite elements were assigned a constant thermal conductivity of $0.389 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$.[1]. Mild steel elements were assigned a thermal conductivity of $64.1 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C} .[10]$. Fin elements were assigned a constant thermal conductivity of $2.4 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}$.
5) The densities of the materials used in the F-294 are summarized in Table 3.6.4-T5.
m) The stainless steel crack shield is welded to the top plug along its inner and outer circumference. Heat transfer between this shield and the top plug is simulated by inserting a $0.5 \mathrm{~mm}(.020 \mathrm{in}$.) air gap between the plug body and the shielding ring. TRUS2D elements are used to connect the applicable nodes on both surfaces. The conduction area for these elements is taken to be the product of the weld size ($3 / 8 \mathrm{in}$) and circumference. Thermal radiation across this gap was modeled using radiation links with a shape factor of 1. (See RLINK elements in Sub-appendix 1.)

Table 3.6.4-T5
Densities of Materials used in the F-294

Material	Density $(\mathrm{kg} / \mathrm{m})$	Density $(\mathrm{mb} . \mathrm{ft})^{2}$	Reference
Stainless Steel	7800	487	$[10]$
Lead	11373	710	$[10]$
Air	1.2	0.07	$[10]$
Transite	1600	100	$[18]$
Kaowool	96	6	$[5]$
Mild Steel	7800	487	$[10]$

3 VALIDATION OF THE MODEL

Figure 3.6.4-F11 shows steady state temperature measurements taken on an F-294 prototype. The unit was loaded with 375.5 kCi of $\mathrm{Co}-60$ and its temperatures were measured. Table 3.6.4-T6 lists the results.

Table 3.6.4-T6
Steady State Temperature Measurements

Thermocouple Location [COSMOSM Node Number]	Test (C)	WherencosMO nocontact resistance	SMM (C) Including contact resistance
Ambient	23	23	23
Air temperature at entrance to fireshield	23	-	-
Air temperature at exit from fireshield	44	-	-
Average of two diametrically opposed thermocouples at midheight of cavity [Node 146]	174	137	172
Bottom surface of top plug at centreline [Node 17]	200	167	208
Bottom of cavity [Node 136]	-	126	162
Top of fin [Node 709]	53	54	55
Top comer of shield, below insulation [Node 118]	106	107	120
Top comer of shield, above insulation [Node 717]	71	77	78
Bottom comder of shield, below insulation [Node 215 and N185, interpolated]	92	92	101
Top of upper fireshield at centreline [Node 85]	40	36	36
Midheight of radial fireshield [Node 251]	25	29	29
Top surface of top plug at centreline [Node 40]	107	134	138
Midheight of external surface of the shielding vessel [Node 185]	107	106	105

The COSMOS/M model was applied to this case using the model described in section 2. The results are shown in Table 3.6.4-T6, for a range of contact resistance values. The reasonable agreement between the predicted and measured temperatures shows that the use of the contact resistance most accurately models the temperature distribution in the shielding vessel. It also shows that the use of a heat transfer coefficient of $6.5 \mathrm{~W} / \mathrm{m}^{20} \mathrm{C}$ yields realistic results for shield surface, fin surface and fireshield surface temperatures.

The basic input and output files for this case are found in Sub-appendix 4.

4 STEADY STATE ANALYSIS AT 360 KCI OF CO-60

The input file for this case can be found in Sub-appendix 4. The following results are taken from the output file found in Sub-appendix 4. The locations of the tabulated nodes are found in Figure 3.6.4-F12. This case assumes a contact resistance.

Table 3.6.4-T7
Shielding Vessel External Temperatures (Steady State, 360 kCi, With Contact Resistance)

Node	Temp.(C)	Node	Temp. (C)	Node	Temp. (C)
40	149	714	94	731	70
49	144	717	91	732	83
50	143	114	112	210	91
54	142	185	117	208	109

Table 3.6.4-T8
Top Plug Internal Temperatures (Steady State, 360 kCi,With Contact Resistance)

Node	Temp. (C)
17	215
1	215
4	197
16	160
513	172
13	153

Table 3.6.4-T9
Main Body Internal Temperatures (Steady State, 360 kCi, With Contact Resistance)

Node	Temp. (C)	Node	Temp. (C)	Node	Temp. (C)
98	141	692^{*}	139	673^{*}	152
93	174	192	92	173	118
146	181	600^{*}	138	613^{*}	147
138	169	200	96	113	113
136	172	667^{*}	137	605^{*}	145
690^{*}	142	167	129	105	123
190	109				

[^2]Table 3.6.4-T10
Fireshield Internal and External Temperatures (Steady State, 360 kCi ,With Contact Resistance)

Internal			External
Node	Temp CC	Node	Temp(C)
55	54	85	51
58	53	88	51
301	52	295	52
306	49	315	49
230	50	255	46
226	48	251	44
364	46	373	45
345	57	335	57
350	60	359	58
319	64	328	59

4.1 APPLICATION OF THE SOLAR HEAT LOAD

Figure 3.6.4-F13 shows the elements that were subjected to the solar heat flux. The input and output files for this case are INSOL8.INP and SS360SUN.TEM and can be found in Sub-appendix 4.

The elemental heat flux was based on the assumption that all of the solar heat load is concentrated on the radial and upper fireshields. The heat flux on the top surface was increased from $800 \mathrm{~W} / \mathrm{m}^{2}$ to $2000 \mathrm{~W} / \mathrm{m}^{2}$ as the solar flux is applied over a radius of $0.381 \mathrm{~m}(15 \mathrm{in})$ instead of $602 \mathrm{~m}(2311 / 16 \mathrm{in})$ (see Figure 3.6.4-F1). Similarly, the regulatory heat flux for the radial fireshield was increased from $400 \mathrm{~W} / \mathrm{m}^{2}$ to $500 \mathrm{~W} / \mathrm{m}^{2}$ to account for the fact the solar flux is applied over a height of 1.23 m (48.5 in) (see Figure 3.6.4-F1).

The absorbtivity of the surface was conservatively set to 1 .
The results show no appreciable change in the temperature of the inner shielding vessel. Temperatures are all within 1 or $2^{\circ} \mathrm{C}$ of the values listed in Tables 3.6.4-T7 through 3.6.4-T9. Thus, there is no effect on the shielding or containment systems.
These results can be explained by the fact the fireshields are thermally isolated from the main body of the F-294. Furthermore, they are insulated, and do not pass heat through to internal surfaces. Therefore, most of the incident heat is absorbed by the outer steel layer and convected and radiated back to the environment.
This method of analysis considerably overestimates the external surface temperatures. A more realistic means of establishing maximum surface temperatures comes from applying the regulatory heat flux of $800 \mathrm{~W} / \mathrm{m}^{2}$ to the upper surface and $400 \mathrm{~W} / \mathrm{m}^{2}$ to the side. Under these conditions, surface temperatures on the upper fireshield are found to range between 105 and $115^{\circ} \mathrm{C}$. Surface temperatures on the radial fireshield are found to range between $87^{\circ} \mathrm{C}$ and $115^{\circ} \mathrm{C}$.

5 TRANSIENT RESPONSE TO THE FIRE TEST

The input file used for the analysis is called FIRE12.INP and can be found in Sub-appendix 4. This file applies a 30 minute $800^{\circ} \mathrm{C}$ fire followed by a 100 minute cooldown period. In most cases 100 minutes of cooling was sufficient to allow all lead temperatures to reach their maximum values. However, subsequent parametric analyses required 120 minutes of cooling before internal temperatures began to decrease.

The convection heat transfer coefficient between the outside of the fireshield and the shielding vessel is set to $12 \mathrm{~W} / \mathrm{m}^{20} \mathrm{C}$ and is justified in Sub-appendix 3 . The external surfaces of the inner shielding vessel are also assumed to have the same heat transfer coefficient. This assumption is extremely conservative as the fireshield and fins provide a barrier to the free flow of gases over the shielding vessel. However, since it is difficult to quantify this effect, it is assumed that they do not impede the flow of gas.
The initial temperatures are the temperatures of section $4(360 \mathrm{kCi}$, With Contact Resistance). The contact resistance was set to zero at the start of the fire, thus resulting in maximum heat input during the fire.
The temperature histories for the selected lead nodes are plotted in Figures 3.6.4-F14 through 3.6.4-F16. The maximum lead temperature was found to be $303^{\circ} \mathrm{C}$ at node 192, at the end of the fire test. This is substantially less than $327^{\circ} \mathrm{C}$, the melting point of lead.

Table 3.6.4-T11
Maximum Lead Temperatures During/After the Fire

[^3]
6 DISCUSSION

This section examines the effects of selected modeling assumptions on the thermal performance of the F-294. The results are compared to the basic case of section 5 . Additionally, the relative margin of safety as a result of these conservative modeling assumptions is estimated.

6.1 INFLUENCE OF THE CONTACT RESISTANCE

Ignoring the effect of the contact resistance between the lead and the stainless steel is extremely conservative. The results of Table 3.6.4-T6 show that, in practice, a contact resistance exists between the lead and steel interfaces. Ignoring this effect considerably underpredicts steady state temperatures within the F-294 shield, typically by $30^{\circ} \mathrm{C}$ at the inner cavity.

The analysis of section 5 assumes that the contact resistance disappears at the start of the fire. Therefore, it is of interest to determine what the effect of the contact resistance could be if it was assumed to be constant throughout the hypothetical fire and the subsequent cooldown period.
The results of this study show typical maximum lead temperatures of $245^{\circ} \mathrm{C}$ [Node 141] in the main body and $257^{\circ} \mathrm{C}$ [Node 501] in the top plug. This can be compared with the maximum lead temperature of 303 ${ }^{\circ} \mathrm{C}$ [Node 182] and $258^{\circ} \mathrm{C}$ respectively.
The main effect of introducing the contact resistance is to lower maximum lead temperatures near the outside boundary of the shielding vessel. It also delays the onset of the maximum temperature. In the main body, the maximum lead temperature is reached 102 minutes after the start of the fire and is due to the effect of decay heat once temperature gradients in the main body have stabilized. In the top plug the effect is similar. However, the relatively low mass of the plug compared to the main body makes this effect less significant.

Based on these results, the incremental margin of safety due to the contact resistance is estimated to be $50^{\circ} \mathrm{C}$.

6.2 EFFECT OF CONVECTIVE HEAT TRANSFER COEFFICIENT

As discussed earlier, the value of the heat transfer coefficient for the shielding vessel was set to $12 \mathrm{~W} / \mathrm{m}^{20} \mathrm{C}$. This value is based on the free flow of gases over the external surface of the fireshield. No account was taken for the fireshield as a barrier to the flow of hot gases. In practice, the heat transfer coefficient to the shielding vessel is lower.
Under steady state conditions, the heat transfer coefficient was $6.5 \mathrm{~W} / \mathrm{m}^{20} \mathrm{C}$. It is of interest to determine what the effect of a more realistic heat transfer coefficient would be. Therefore, the analysis was repeated using a heat transfer coefficient of $12 \mathrm{~W} / \mathrm{m}^{20} \mathrm{C}$ for external surfaces and $9.5 \mathrm{~W} / \mathrm{m}^{2 \circ} \mathrm{C}$ for the shielding vessel. (This value is simply the mean of the steady state and fire heat transfer coefficients.)

The maximum external lead temperature was found to be $276^{\circ} \mathrm{C}$ at node 192 and the maximum internal lead temperature was found to be about $251^{\circ} \mathrm{C}$ at node 141 . This can be compared with the values of 303 and $260^{\circ} \mathrm{C}$ previously calculated. The effects on the top plug were less pronounced, with maximum temperatures of about $253^{\circ} \mathrm{C}$, compared to $258^{\circ} \mathrm{C}$. In all cases, there remained a large margin relative to the $327^{\circ} \mathrm{C}$ melting point of lead.
Based on these results, the incremental margin of safety is estimated to be $30^{\circ} \mathrm{C}$ in the main body and $10^{\circ} \mathrm{C}$ in the top plug.

6.3 EFFECT OF THE LATENT HEAT OF FUSION FOR LEAD

The highest temperature in the main body was found to be $303^{\circ} \mathrm{C}$ at node 192 . The initial temperature at this node was $92^{\circ} \mathrm{C}$. Thus, there was a $211{ }^{\circ} \mathrm{C}$ increase in lead temperature at this location.
Let us assume that there is a single hot spot on the package and that a maximum of $3.5 \mathrm{~cm}(1.4 \mathrm{in})$ of lead. (See chapter 5.) It is of interest to determine how much heat would be required to cause a hemispherical mass of lead to melt.

The total mass of lead present in the 3.5 cm radius hemisphere is:

$$
\mathrm{m}=\rho \mathrm{V}=11.3 \mathrm{~g} / \mathrm{cm}^{3} *\left(4 / 6 \pi^{*} 3.5^{3}\right)=1014 \mathrm{~g}=1 \mathrm{~kg}
$$

The energy required to increase the temperature of this mass of lead by the calculated $211^{\circ} \mathrm{C}$ is:

$$
\mathrm{Q}=\mathrm{mC}_{\mathrm{p}} \Delta \mathrm{~T}=1 \mathrm{~kg} * 132 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C} * 211^{\circ} \mathrm{C}=27,850 \mathrm{~J}
$$

Similarly the heat required to bring this mass of lead from $303{ }^{\circ} \mathrm{C}$ to $327^{\circ} \mathrm{C}$, the melting point of lead, is:

$$
\mathrm{Q}=1 \mathrm{~kg} * 132 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C} * 24^{\circ} \mathrm{C}=3,200 \mathrm{~J}
$$

Finally, the heat required to cause this mass to melt is:
$\mathrm{Q}=1 \mathrm{~kg} * 24,750 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}=24,750 \mathrm{~J}$
Thus, the total heat energy required to cause the melting of a 1 kg mass of lead located at the hottest node is $55,800 \mathrm{~J}$. The total energy absorbed by this mass during the fire test is $27,850 \mathrm{~J}$. Therefore, about 50% of the total heat energy required to cause this mass of lead to melt was input during the fire. Therefore, the high latent heat of fusion of lead provides a significant additional margin of safety.

6.4 EFFECT OF DECREASED THERMAL PROTECTION RESULTING FROM A DROP TEST

The effect of impaired thermal protection was simulated by doubling the thermal conductivity of the kaowool insulation. In essence, its density was assumed to decrease to less than $3 \mathrm{lb} / \mathrm{ft} .^{3}$ The initial temperatures calculated in the base case were used as inputs to the fire test. This is justified by the assumption that accidental damage to the kaowool occurs after steady state temperatures have been reached, and that the fire starts immediately after the incident.
Comparison of the results shows little difference. This indicates that the heat transferred through the fireshield and to the main body is small in comparison with the effects of radiation and convection to the environment.

6.5 EFFECTS OF INCREASED RADIATION TO THE ENVIRONMENT

In order to simulate the effects of increased radiation to the environment, all nodes connected to the environment had their emissivities increased from 0.8 to 1.0 . This simulates a 25% increase in radiation heat transfer from the environment to the shielding vessel during the fire.
The results show an increase in lead temperatures for the nodes closest to the environment. However, the effect is typically 1 or $2^{\circ} \mathrm{C}$. This result is expected as most of the heat transferred to the shield is due to convection. Direct radiation is absorbed by the intervening fins and the external fireshield.

7 SUMMARY

Steady state finite element analysis of the F-294 has shown good agreement between measured and calculated temperatures. Extrapolation of this model to the maximum activity has shown no significant effect on the shielding and containment systems.
Transient analysis using the same model has shown the F-294 to complete the regulatory fire test without the initiation of lead melt. Parametric studies have shown this to be true under a variety of modeling conditions. In all cases, peak lead temperatures were found to be significantly less than the melting point, particularly in light of the conservative assumptions used in the model. A maximum temperature of $303^{\circ} \mathrm{C}$ was observed. The maximum increase in lead temperature was found to be about $200^{\circ} \mathrm{C}$ during the fire transient.

The conservative assumptions used in this model have a significant effect on this result. It is estimated that the effect of the contact resistance provides an additional $50^{\circ} \mathrm{C}$ margin of safety and that between $10-30^{\circ} \mathrm{C}$ could be gained by specifying a more realistic heat transfer coefficient in the interspace between the fireshield and the shielding vessel.
These findings, combined with the significant amount of energy required to effect a phase change in lead, indicates a substantial margin of safety in the design. It is submitted that the F-294 meets the thermal requirements of the regulations under the normal and hypothetical accident conditions of transport.

Figure 3.6.4-F1
The F-294 Transport Packaging Engineering Information Drawing F629401-001 (Sheets 1 to 5)

FIGURE WITHHELD UNDER 10 CFR 2.390

FIGURE WITHHELD UNDER 10 CFR 2.390

FIGURE WITHHELD UNDER 10 CFR 2.390

FIGURE WITHHELD UNDER 10 CFR 2.390

FIGURE WITHHELD UNDER 10 CFR 2.390

Figure 3.6.4-F2 COSMOS/M Model Geometry

\Longrightarrow

Figure 3.6.4-F3
Material Distribution

Figure 3.6.4-F4
Heat Transfer Paths to the Main Body

AVAILABLE AREA FOR CONDUCTION INTO THE SHIELDING VESSEL IS 12% OF THE CYLINDRICAL AREA. THE REMAINING B8\% OF THE SURFACE AREA HAS HEAT INPUT VIA CONDUCTIONIRADIATION

ENVIRONMENT TEMPERATURE IS $800^{\circ} \mathrm{C}$ DURING THE FIRE

Figure 3.6.4-F5
Modelling the Base of the F-294

Figure 3.6.4-F6
Field Distribution Around a Sealed Source

Figure 3.6.4-F7
Boundary Conditions and Heat Generation

Figure 3.6.4-F8

Radiation and Convection Elements (RLINKS and CLINKS)

RLINKS
TO NODE 400

CLINKS TO NODES

400, 401 AND 402

Figure 3.6.4-F9
Calculation of Nodal Areas

Node \mathbf{B} is assigned an area equal to the area between points B_{A} and $\mathrm{B}_{\mathbf{C}}$.

Figure 3.6.4-F10
Lead Thermal Capacity

Figure 3.6.4-F11
Temperature Measurements of an F-294 Prototype Loaded with $375.5 \mathrm{kCi} \mathbf{C o}-60$

T/C $23-\mathrm{C}-188$ TEMPERATURE $\left(415^{\circ} \mathrm{C}\right)$. NOT SHOWN IN THIS PLANE

Figure 3.6.4-F12
Node Numbers

NOTE: Underlined node number is within the contact resistance

Figure 3.6.4-F13
Insolation Heat Load

$\Downarrow \Downarrow \Downarrow \Downarrow \Downarrow \downarrow \downarrow$ TTT

$$
\begin{aligned}
\Downarrow & =2000 \mathrm{~W} / \mathrm{m}^{2} \\
\Leftarrow & =500 \mathrm{~W} / \mathrm{m}^{2}
\end{aligned}
$$

Figure 3.6.4-F14
Lead Temperatures in the Top Plug

Figure 3.6.4-F15
Lead Temperatures at the Upper Half of the Main Body

Figure 3.6.4-F16
Lead Temperatures at the Lower Half of the Main Body

This page left blank intentionally.

SUb-APPENDIX 3.6.4.1 COSMOS/M ELEMENT DESCRIPTIONS [15]

4.1 LINEAR 2-D SPAR/TRUSS (element_name =TRUSS2D)

General Description:

TRUSS2D is a 2-node uniaxial element for two dimensional stractural and thermal models. All elements have to be defined in the $X-Y$ plane as shown in Figure 4-1. Only two translational degrees of freedom per node are considered for sructural analysis. Temperature is the only degree of freedom for the thermal module.

Special Features:

Buckling, inplane loading .

Default Element Coordinate System (ECS $=-1$):

The nodal input partern shown in Figure 4-1 specifies the direction of the element axis. The x-axis goes from the first node to the second. The element y-axis is perpendicular to the x-axis and lies in the $X-Y$ plane.

Element Group Options:

Op. 1 to Op. 4: Unused options for this element
Op. 5: Use default value (Linear elastic material type)
Op. 6: Use default value (Small displacement formularion)
Op. 7: Use default value (Material creep is not considered)

Real Constants:

r1 = Cross-sectional area

Material Properties:

EX E Modulus of elasticity
KX = Themal condnerivity
ALPX $=$ Coefficient of thermal expansion
C $\quad=$ Specific heat
DENS $=$ Deasity
DAMP = Material Damping coefficient
ECONX = Elecrical condictivity (thermal analysis only)

Element Loadings:

Thermal
Gravitational

Output Results:

Forces and stresses are available in the element coordinate system.

XY: Giobal Cartesian Coordinate System
xy: Elemen Coordinate System
Flgure 4-1. 2-D TRUSS

4.7 LINEAR 2-D 4- to 8-NODE PLANE STRESS, PLANE STRAIN AND BODY OF REVOLUTION (element_name $=$ PLANE2D)

General Description:

PLANE2D is a 4- to 8-node two dimensional element for plane stress, plane stain, or axisymmerric structural and thermal probiems. All elements have to be defined in the X-Y plane. Axisymmerric structures have to be modeled in the positive X half plane, in which X represents the radial dircetion and Y refers to the axis of symmery. Only two translational degrees of freedom per node are considered for structural analysis. One degree of freedom. representing temperature, is used for the thermal module.

The nodal inpur patuern is shown in Figure 4-12 for an 8-node elementillustrating its local node numbering. The element however can be used with $4-108$-nodes by issuing zeros (0) at the location of missing nodes during the element connectivity definition (EL command). Triangular shaped elements can also be considered. In his case, the third and fourth nodes (in case of 4 -node elements) and the chird, fourth and sevench nodes (in case of 5-to 8-node clements) will be assigned the same global node number, as shown in Figure 4-12. Bodh clockwise and counter-clockwise node numbering are allowed.

Special Features:

Buckling, Inplane Loading, Fluid-solid interaction, Adaprive P-Method for the 8-node structural elements (polynomial degrees up to 10)

Default Element Coordinate System (ECSm -1):

The element x-axis goes from the first node so the second, and the clement y-axis is nomal wo the x-axis toward the fourth node.

Element Group Options:

Op. 1:
$=0$; Structural or thermal element (default)
$=1 ; 4$-node incompressible fluid element
For strucural or thermal clements ($\mathrm{Op}, 1=0$), the other options are:

```
    Op.2: (See Footnote 1)
    =0;Reducedintegration
    = 1; QM6 incomparible element; full integration for 8-node elements (default)
    =2; Full inregration
    =3; Unrelated option fos this type of analysis
    Op.3:
    =0; Plane Stress (default)
    =1; Axisymmerric (a one radian sector is considered, thus loads for a one radian
        sector should be applied)
    =2 ; Plane Strain
```

Op.4:
= 0 ; Stresses calculated in global Cartesian coordinate system
$=1$; Suesses calculated in the defined local elemert coordinate system
Op. 5: Use default value (Linear elastic material).
Op. 6: Use default value (Small displacement formulation)
Op. 7: Use default value (Material Creep is not considered)
For fluid elements (O p. $1=1$), the other oprions are:
Op. 2: Unused Oprion
Op. 3:
$=1$; Axisymmerric
$=2$; Plane Strain (default)
Op. 4 to Op. 7: Unused options for this element

Real Constants:

r1 $=$ Thickness (only for plane stress analysis)
r2 $=$ Material angle (β)
The material angle is measured with respect to the element cocrdinate systern. as shown in Figure 4-12.

Material Properties:

For structural or thermal elements (Op. $1=0$)
(See Figure 4-12 for material directions)
EX $=$ Modulus of elasticity in the 1st material direction
$E Y=$ Modulus of elasticity in the 2nd material direction
EZ $\quad 3$. Modulus of elasticity in the global Z-direction
KX = Themal conductivity in the global X-direction
KY $=$ Thermal conductivity in the global Y-direction
$K Z=$ Themal conductivity in the global \mathbf{Z}-direction
NUXY = Poisson's ratio relating the lst and 2nd material directions (strain in the 2nd direction due to unit strain along the 1st direction)
NUYZ $=$ Poisson's ratio relating the $2 n d$ material direction and global Z-direction (strain in the Z-direction due to unit strain along the 2nd direction)
NUXZ $=$ Poisson's ratio relacing the lst material direction and global Z-direction (strain in the Z-direction due to unit strain along the lst direction)
C $=$ Specific hear
$A L P X=$ Coefficient of thermal expansion in the 1st material direction
ALPY $=$ Coefficient of themal exparsion in the 2nd material direction
ALPZ $=$ Coefficient of thermal exparsion in the giobal 2 -direction
GXY = Shear modulus relating the ist and 2nd material directions
DENS = Density
DAMP = Material damping coefficient
ECONX = Electrical conductivity (thermal analysis only)

Note:
The element is assigned orthotropic material properties if at least one of the following conditions is satisfieci:

1. Moduli of elasticinies in two directions are defined and are unequal.
2. Poisson's ratio in two planes are defined and are unequal.
3. Thermal coefficients in two directions are defined and are unequal.
4. Thermal conductivity in two directions are defined and are unequal.

The following condition has to be sanisfied for proper representation of arthotropic properties in the $i^{\text {th }}$ and j? material directions:

$$
\frac{v_{i j}}{E_{i}}=\frac{v_{i j}}{E_{j}}
$$

Where $V_{i j}, \mathrm{Ef}_{\mathrm{i}}$ and Ej_{j} are provided as input and $\mathrm{Vji}^{\mathrm{i}}$ is calculated intermally by the program.

For fluid elements (0 p. $1=1$)
EX = Fluid ciastic (bulik) modulus
GXY $=10^{-19} \mathrm{EX}$; an arbitrarily small number to give element some shear stability

Element Loadings:

Thermal
Gravisational
Pressure (applied normal to elemient faces)

Output Results:

Stress components including the von Mises stress are available at all nodes and the center of the clement in either global or element coordinate directions.
Principal suresses may also be optionally requested at the element center (see A_STRESS command in the ANALYSIS menu).
For fiuid oprion, pressure is printed at the center of each element.
-Referencees:
K. J. Bathe, E. L. Wilson and R. Iding, "NONSAP - A Sturtural Analysis Program for Staric and Dynamic Response of Nonlinear Systems," SESM Report Number 74-3, University of California-Berkeley, 1974.
R. D. Cook, "Concepts and Applications of Finite Element Analysis," Second Edition. John Wiley \& Sons, 1981.

Footnote 1: Numerical Integration

1. Reduced Integration

For 4-node elements:
2×2 Gauss integration for bending terms
1×1 Gauss integration for shear terms
Overcomes parasitic shear effects; handles nearly incompressible marerials; not available for orthorropic models.

For 8-node elements:
2×2 Gauss integration for bending terms
2×2 Gauss integration for shear tems
2. QM6 (A vailable for 4-node elements only)
2×2 Gauss integration for all terms including the effect of bubble functions which insroduce additional internal degrees of freedom.
Overcomes parasinic shear effects, handles nearly incompressible materials, in general more stable with better accuracy, but more costly in terms of solution ime.

3. Full Integration

For 4-node elements:
2×2 Gauss integrarion for all terms.
Fastest and simplest solution option, does not overcome parasitic shear effects.
For 8-node elements:
3×3 Gauss integration for all terms.

XY: Giobal Cartesiar Coofdinate System $x y$: Eement Coordinate System
0: Face Numbers for Pressure Appication (postive when epplied hrward)
Figure 4-12. 2-0 Eement

4.48 THERMAL RADIAFION LINK (element_name = RLINK)

General Description:

RLINK is a 2 -node element to model the heat flow between two nodes due to radiarion. One degree of freedom for each node is used in two-ar three-dimensional thermal models.
The nodal input pattem for this element is shown in Figure 4-86. The two nodes may or may not be coincident. Temperarure boundary condition must be specified at the node which is not directly connected to the model. This teraperature boundary condirion represents the radiation source temperanure.

Special Features: (None)

Element Group Options: (None)

Real Constants:

r1 3 Area of the radianing surface
r2 $=$ View factor
r3 = Emissivity
r4 $=$ Stefan-Boltaman constant

Material Properties: (None)
Element Loadings:
Thermal

Output Results:

Heat flow due to radiation is available for each element.

Figure 4-86. Radiafion LInk
4.49 THERMAL CONVECTION LINK (element_name = CLINK)

General Description:

CLINK is a 2 -node element to model the heat flow due to convection between two nodes. One degree of freedom per node is used in two-or three-dimensional themal models.
The rodal input pattern for this element is shown in Figure 4-87. The two nodes may or may not be coincident. Temperature boundary conditions must be specified at the node which is not directly connected to the model. This temperaure boundary condition represents the convection source temperature.
Special Features: (None)
Element Group Options: (None)

Real Constants:

r1 = Aren of the convection surface

Material Properties:

$\mathrm{HC}=$ Film coefficient

Element Loadings:

Thermal

Output Results:

Hear flow due to convection is available for each element.

This page left blank intentionally.

SUB-APPENDIX 3.6.4.2
 Radiation Shape Factors

S2.1.0 SHAPE FACTORS FOR CONCENTRIC CYLINDERS OF EQUAL LENGTH

The basic case of two concentric cylinders is shown in Figure S2.1. Shape factors F_{2-1} and F_{2-2} for this case are given by Siegel and Howell:[19]

$$
\left.\begin{array}{l}
F_{2-I}=\frac{1}{R}-\frac{1}{\pi R}\left\{\cos ^{-1}\left(\frac{B}{A}\right)-\frac{1}{2 L}\left[\sqrt{(A+2)^{2}-4 R^{2}} \cos ^{-1}\left(\frac{B}{R A}\right)+B \sin ^{-1}\left(\frac{1}{R}\right)-\frac{\pi A}{2}\right]\right\} \\
F_{2-2}
\end{array}=1-\frac{1}{R}+\frac{2}{\pi R} \tan ^{-1}\left(\frac{2 \sqrt{R^{2}-1}}{L}\right)\right]\left[\begin{array}{l}
-\frac{L}{2 \pi R}\left[\frac{\sqrt{4 R^{2}+L^{2}}}{L \sin ^{-1}}\left[\frac{4\left(R^{2}-1\right)+\left(L^{2} / R^{2}\right)\left(R^{2}-1\right)}{L^{2}+4\left(R^{2}-1\right)}\right]\right. \\
\\
\left.-\sin ^{-1}\left(\frac{R^{2}-2}{R^{2}}\right)+\frac{\pi}{2}\left(\frac{\sqrt{4 R^{2}+L^{2}}}{L}-1\right)\right] \\
\text { where: } \quad \begin{array}{rl}
R & =\mathrm{r}_{2} / \mathrm{r}_{1} \\
\mathrm{~L} & =1 / \mathrm{r}_{1} \\
\mathrm{~A} & =\mathrm{L}^{2}+\mathrm{R}^{2}-1 \\
\mathrm{~B} & =\mathrm{L}^{2}-\mathrm{R}^{2}+1
\end{array}
\end{array}\right.
$$

Using shape factor algebra, the following expressions can be derived:

$$
\begin{aligned}
& F_{2 \cdot 3}=F_{2-4}=\left(1-F_{2-1}-F_{2-2}\right) / 2 \\
& F_{1-2}=\left(A_{2} / A_{1}\right) F_{2-1} \\
& F_{1-3}=F_{1,4}=\left(1-F_{1-2}\right) / 2 \\
& F_{4-1}=F_{3-1}=\left(A_{1} / A_{3}\right) F_{1-3} \\
& F_{4-2}=F_{3-2}=\left(A_{2} / A_{3}\right) F_{2-3} \\
& F_{4-3}=F_{34}=1-F_{3-1}-F_{3-2}
\end{aligned}
$$

It is somewhat more practical to generate shape factors for the geometry shown in Figure S2.2. The cases listed in Table S 2.1 can be calculated using the general cases shown above. For example, shape factor $F_{2 b-3 b}$ can be evaluated using the above equations with $r_{1}=r_{4}, r_{2}=r_{b}$ and $1=l_{b}$.

Figure $\mathbf{S 2 . 1}$

Basic Case: Concentric Cylinder with Closed Ends

Figure $\mathbf{S 2 . 2}$
The 2x2 Concentric Cylinder

$r_{0}=$ outer radius of inner cylinder
$r_{a}=$ outer radius of annulus 3a [or 4a)
$r_{b}=$ inner radius of outer cylinder

Table S2.1
Basic Shape Factors Applied to the 2×2 Cylinder

Shape Factor	- Case Considered,	ri		\% 1 14]
$F_{2 a 2 b-1 a, 1 b} ; F_{2 a, 2 b-2 a, 2 b ;}$ $F_{2,20,30,3,36} ; F_{1,16,1 b-2,2 b ;}$ $F_{1 a, 1 b-3 a, 3 ;} ; F_{3 a, 3 b-12,1 b ;}$ $F_{3 a, 3 b-2,22 ;} ; F_{3 a, 3 b-4,4 b ;}$ $F_{4,4,4 b-12,1 b ;} F_{4,4}, 4-2 a, 2 b ;$ $F_{42,46-3 a, 3 b}$	Combined cylinder	r_{0}	rb	$\mathrm{la}_{4}+\mathrm{l}_{6}$
	Upper cylinder	r_{0}	r_{b}	4
$F_{2 b-1 b} ; F_{2 b-2 b} ; F_{2 b-3 a b b b} ;$ $F_{1 b-2 b} ; F_{1 b-3 c, 3 b ;} ;$ $F_{3 a, 3 b-16} ; F_{3 a, 3 b-2 b}$	Lower cylinder	r_{0}	r_{b}	4
$F_{1 a, 1 b-4 ;} ; F_{1 a, 1 b-3 a} ; F_{32,-1 a, 1 b} ; F_{3-1,1 b} ; F_{42-3 a} ;$	Inner cylinder	r_{0}	r_{5}	$\mathrm{l}_{4}+\mathrm{l}_{6}$
$\begin{gathered} F_{2 a, 2 b-3 b} ; F_{2 a 2 b b-4 b} ; F_{3 b-2 a, 2 b} ; \\ F_{3 b-4 b} ; F_{4 b-2 a 2 b ;} ; F_{4 b-3 b} \end{gathered}$	Outer cylinder	r	r_{b}	$\mathrm{l}_{0}+\mathrm{l}_{6}$
$F_{12,4 a} ; F_{40-1 a}$	Upper inner cylinder	r_{0}	r_{a}	1.
$F_{16-3 \mathrm{a}} ; \mathrm{F}_{3 \mathrm{a}-1 \mathrm{l}}$	Lower inner cylinder	r_{0}	r	l_{6}
$\mathrm{F}_{2 \times-46} ; \mathrm{F}_{46-2 \mathrm{~s}}$	Upper outer cylinder	ra	rb	1.
$F_{26-36} ; F_{3 b-2 b}$	Lower outer cylinder	r_{1}	r_{b}	L_{6}

Other cases must also be calculated using shape factor algebra and, in particular, the following relations:

$$
\begin{array}{lr}
A_{i} F_{i j}=A_{y} F_{j-i} & \text { (RECIPROCITY) } \\
F_{i-j, k}=F_{i j}+F_{j-k} & \text { (ADDITIVE RELATION) } \\
A_{i j} F_{i j-k}=A_{i} F_{i j}+A_{y} F_{j-k} & \text { (CONSERVATION) } \\
\sum_{j} F_{i j}=1 \text { for any single value of } i & \text { (CLOSURE) }
\end{array}
$$

The remaining shape factors were calculated using the four shape factor relations listed above in combination with the cases listed in Table S2.1.

It is useful to consider a numerical example. Consider the case $\mathrm{r}_{\mathrm{o}}=1, \mathrm{r}_{\mathrm{a}}=2, \mathrm{r}_{\mathrm{b}}=3, \mathrm{~L}_{\mathrm{a}}=1$ and $\mathrm{L}_{\mathrm{b}}=2$. Figure S2.3 shows the results calculated for the cases in Table S2.1. Figure S2.4 shows how these cases were manipulated to yield the matrix of shape factors for this configuration.

Figure $\mathbf{S 2 . 3}$

Calculated Basic Shape Factors

GENERAL GASE FOR 2×2 CYLINDER

$\begin{array}{r} t a= \\ b= \\ 1=1 a+B= \end{array}$	$\begin{aligned} & 1.0000 \\ & 2.0000 \\ & 3.0000 \end{aligned}$	$\begin{aligned} & r= \\ & x= \\ & b= \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	SEE NEXT PAGE FOR SHAPE FACTOR SUMMARY	
FOR THE CASES IN THIS BOX: (Combined Cytinder)				$\begin{aligned} & \text { F2a.2b-1a.1b= } \\ & \text { F2a.2b.2a } 2 \mathrm{~b}= \end{aligned}$	$\begin{aligned} & 0.2012 \\ & 0.2819 \end{aligned}$
$R=$ rato	3.0000	A1a. $1 \mathrm{bl}=$	18.8498	F2a,2b-3a,3b=	0.2584
	3.0000	A2a, $2 \mathrm{~b}=$	58.5487	F1a, 1b-2a,2bi	0.6037
A.	17.0000	A3, $36=$	25.1327	F1a, $7 \mathrm{~b}-3 \mathrm{a}, 3 \mathrm{be}=$	0.1982
$8=$	1.0000	A4a.4b $=$	25.1327	F3s,3b-4a, 1b $=$	0.1488
				F3a,3b-2a.2be	0.5815
				F3n,3b-4a,4b=	0.2699
				F.4a.4b-1a.3b=	0.1486
-				F4a.4b-2a.2be	0.5815
				F4a,4b-323bm	0.2699

FOR THE CASES IN THiS 80X:(Upper Cydnder,ro.r.ia)				F2a-1ax	0.0925
				F2a-23=	0.1172
$\left\{\begin{array}{l} R=\text { rtho }= \\ L=\operatorname{late}= \end{array}\right.$	3.0000	A1a $=$	6.2832 .	F2a-4, 4 b $=$	0.3952
	1.0000	A23 =	18.8498	F1a-2a=	0.2774
A $=$$8=$	9.0000	A4a.4b =	25.1327	Fia-4a,4ba	0.3613
	-7.0000			F4a.40-18=	0.0803
				F4a,4b-2am	0.2964

				Phant F2-1a=	0.2323
R = rato =	20000	A1a $=$	6.2832	PhantF2a-2a= PhardF2-4g=	0.1377 0.3150
	1.0000	Pham Az =	12.5684	PhantF1a-2=	0.4845
$A=$	4.0000	A4a =	9.4248	F1a-4g:	0.2677
$B=$	-20000			F43-180	0.1785

FOR THE CASES IN THIS 80X(brner Cyincerro,ra,				Phantom 2-12.15	0.3850
				Phantom $2-2$	0.2882
R= rato =	2.0000	A1a.fb =	18.8498	Phantom 2-3a	0.1830
$\mathrm{L}=410 \mathrm{~F}$	3.0000	A3a $=$	9.4248	Phantom tasb-2	0.7715
$8=$	12.0000	A4s =	9.4248	F1a,1b-4a	0.1142
	8.0000	Phamt $A 2=$	37.6594	F43-1a,1ba	0.2285
				F1a,1b-3: $=$	0.1142
				F3a-1a,1b=	0.2285
				F3a-4a=	0.1194
				F4-312	0.1894

FOR THE CASES IN THIS BOX:(Outer Cylindgr, ra.fok)				Phant F2a,2b-1=	0.5073
				PhF2a.2b-2a.2b=	0.1697
$R=$ rota $=$	1.5000	Prantit $=$	37.6591	F2a,2b-3bm	0.1815
$\mathrm{L}=$ ufta	1.5000	A2a,2b $=$	56.5487	F2a.2b-4b	0.1815
$A=$	3.5000	$30=A 40=$	15.7080	F4b-2a,2bs	0.5814
$8=$	1.0000			F3b-2a.2b=	0.5814
				PhF4a, 1b-3b=	0.1198
				F3b-4b	0.1317
				F4b-3b $=$	0.1317

THIS 8OX:(Lower Outer Cytander.ra.ro.m)				Phard F2-10:	0.4408
$\mathrm{R}=\mathrm{take}=$	1.5000	Phamal $=$	25.1327	PhantF2a-2am F2b 3 ba	0.1309 0.2142
$L=$ blea $=$	1.0000	$A 2 b=$	37.6991	F3b-2b $=$	0.5140
$A=$ $B=$	$\begin{array}{r} 2.2500 \\ -0.2500 \end{array}$	$A 36 \mathrm{~b}=$	15.7080		

Figure S2.4
Matrix of Shape Factors for 2×2 Concentric Cylinders

S2.2.0 SHAPE FACTORS FOR CONCENTRIC PARALLEL DISKS

The basic case of two concentric parallel disks is shown in Figure S2.5. The shape factor for this case is given by:[19]

$$
F_{a-b}=\frac{1}{2}\left[X-\sqrt{\left.X^{2}-4\left(\frac{R_{b}^{2}}{R_{a}^{2}}\right)\right]}\right.
$$

where:

$$
\begin{aligned}
X & =1+\frac{1+R_{b}^{2}}{R_{a}^{2}} \\
\mathrm{R}_{\mathrm{a}} & =\mathrm{r}_{\mathrm{r}} / \mathrm{h} \text { and } \mathrm{R}_{\mathrm{b}}=\mathrm{r}_{\mathrm{b}} / \mathrm{h}
\end{aligned}
$$

Shape factor algebra is used to derive the following relations:

$$
\begin{aligned}
& F_{b e}=\left(A_{d} / A_{b}\right) * F_{a b} \\
& F_{b c}=1-F_{b e} \\
& F_{c b}=\left(A_{b} / A_{c}\right) F_{b c}
\end{aligned}
$$

where \mathbf{c} represents all other surfaces.
Again, it is more practical to subdivide this geometry as shown in Figure S2.6. The cases listed in Table S2.2 can be calculated with the general relations listed above.

Figure S2.5
Basic Case: Concentric Parallel Disks

Figure S2.6
2x2 Disks

$$
\begin{aligned}
& r_{1}=\text { outer radius of lower inner disk } \\
& r_{2}=r_{4}=\text { outer radius of cylinder } \\
& r_{3}=\text { outer radius of upper inner disk } \\
& h_{1}=\text { total height }=h_{5}+h_{6}
\end{aligned}
$$

Table S2. 2
Basic Shape Factors Applied to the 2×2 Disk

W, Shape Factor ,	Whense Considered	-	th	h,
$\begin{gathered} F_{1,2-3 ;-4 ;} F_{1,2-5,6 ;} \\ F_{3,4-1,2 ;} ; F_{3,4,4,6 ;} \\ F_{5,-1,2 ;} F_{5,6-6,4 ;} \\ F_{5,6,6,6} \end{gathered}$	Combined cylinder	r_{2}	5_{4}	$\mathrm{h}_{5}+\mathrm{h}_{6}$
$\mathrm{F}_{3,4-4} ; \mathrm{F}_{5-3,4 ;} ; \mathrm{F}_{5-5}$	Upper cylinder	r_{2}	${ }_{4}$	$\mathrm{h}_{\text {s }}$
$F_{1,26 ;} ; F_{6-1,2} ; \mathrm{F}_{66}$	Lower cylinder	r_{2}	r_{4}	h_{6}
$\mathrm{F}_{1-3} ; \mathrm{F}_{3-1}$	Inner disks to each other	r_{1}	r_{3}	$\mathrm{h}_{5}+\mathrm{h}_{6}$
$F_{1,2-3} ; F_{3-1,2} ; F_{3-5,6 ;} ; F_{5,6-3}$	Entire lower disk to inner upper disk	r_{2}	r_{3}	$\mathrm{h}_{5}+\mathrm{h}_{6}$
$F_{1-3,4} ; F_{3,-1} ; F_{1-5,6} ; F_{5,6-1}$	Inner lower disk to entire upper disk	r_{1}	r_{4}	$\mathrm{h}_{5}+\mathrm{h}_{6}$
$F_{1-6} ; F_{6-1}$	Lower cylinder	r_{1}	r_{2}	h_{6}
$\mathrm{F}_{3-5} ; \mathrm{F}_{5-3}$	Upper outer cylinder	r_{2}	r_{3}	h_{5}

It is useful to consider a numerical example. Consider the case $\mathrm{r}_{1}=1, \mathrm{r}_{2}=3, \mathrm{r}_{3}=2, \mathrm{r}_{4}=3, \mathrm{~h}_{5}=1$ and $\boldsymbol{h}_{6}=2$. Figure $\mathbf{S} 2.7$ shows the results calculated for the cases in Table S2.2. Figure S2.8 shows how these cases were manipulated to yield the matrix of shape factors for this configuration.

Figure S2.7
Calculated Basic Shape Factors (2×2 disk)

GENERAL CASE FOR 2×2 PARALLEL DISKS WTH IA I I2

Figure S2.8
Matrix of Shape Factors for the 2x2 Disk

SUMMARY OF SHAPE FACTORS:

$\begin{array}{r} 19= \\ 12= \\ 13= \\ 14=12= \end{array}$	$\begin{aligned} & \mathrm{h} 5= \\ & \mathrm{h} 6= \\ & \mathrm{ht}= \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$		$\begin{aligned} & A 1= \\ & A 2= \\ & A 3= \\ & A 4= \end{aligned}$	$\begin{array}{r} 3.1416 \\ 25.1327 \\ 12.5664 \\ 15.7080 \end{array}$	
F1. $1=$	0.000	F2-1 $=$	0.000	F1.2-	$=$	0.000
F1-2 2 =	0.000	F2-2 ${ }^{\text {\% }}$	0.000	F1,2-		0.000
F1. 3 =	0.292	F2-3 $=0$	0.186	F1,2-		0.198
F1. $4=$	0.194	F2-4 50	0.183	F1.2-		0.184
F1-5 =	0.489	F2. 5 = ${ }^{\text {cos }}$	0.531	F1.2-		0.138
F1. $6=$	0.325	- F2-6 $=$	0.600	F1,2-6		0.481
F1-1,2=	0.000	F2-1,2 =	0.000	F1,2-	2 =	0.000
Fi- $3,4=$	0.486	F2. 3.4 =	0.369	F1.2-		0.382
F1-5.6 =	0.514	F2-5.6 =	0.631	F1.2-	6=	0.618
	2.000		2.000			2000
F3-1 $=$	0.073	F4. 1 =	0.039	F3,4		0.054
F3-2 $=$	0.372	F4- $2=$	0.293	F3,4-2	=	0.328
F3-3 $=$	0.000	F4-3=	0.000	F3,4-		0.000
F3-4=	0.000	F4-4e	0.000	F3,4-4		0.000
F3-5=	0.151	F4. $5=0$	0.387	F3,4-		0.282
F3-6 $=$	0.403	F4-6 =	0.281	F3,4-6		0.336
F3-1.2 =	0.445	F4-1.2 =	0.331	F3,4-	2 =	0.382
F3-3.4 =	0.000	F4-3.4 =	0.000	F3.4-	. $4=$	0.000
F3. $5.6=$	0.655	F4-5.6 =	0.659	F3,4-	6=	0.818
	2000		2.000			2000
F5-1 $=$	0.032	F6-1 $=$	0.027	F5,6-		0.029
F5-2 2 \%	0.176	F6-2 $=$	0.333	F5,6-2		0.280
F5-3 $=$	0.101	F6-3. ${ }^{\text {c }}$	0.134	F5,6-		0.123
F5-4 4 =	0.323	F6-4=	0.117	F5,6-		0.185
F5-5 =	0.153	F6-5 5 =	0.109	F5,6-	$={ }^{\infty}$	0.123
F5-6 =	0.217	F6. $6=$	0.279	F5,6.	$=\infty$	0.259
F5-1,2 =	0.206	F6. 1.2 =	0.380	F5,6.	$2=$	0.309
F5-3.4 =	0.424	F6-3.4 =	0.252	F5,6-	.4 $=$	0.309
F5- $5.6 \times$	0.370	F6-5.6 =	0.388	F5,6.	. $6=$	0.382
	2000		2.200			2.000
means this is taken directhy from page A of this spreadsheet means that subtraction used to calculate this shape factor based on mears thal reclprocity was used based on \square no features means that cosure was used tased on other information in that column means that closure was based on that row						

S2.3.0 SHAPE FACTORS FOR 6 SIDED ENCLOSURES

The general case for the internal surfaces of a cube is shown in Figure S2.9. The cases that yield basic shape factor data are shown in Figures S2.10 and S2.11. The equations shown in these figures combined with shape factor algebra yield the relevant results.

Figure S2.9
Shape Factor Geometry for Enclosures

Opposite surfaces are denated'. For example, surface 1' is opposite surface 1 .

Figure S2.10
Shape Factor for Parallel Plates

Identical. parallel, directly opposed rec:angles.
$X=\frac{a}{c} \quad Y=\frac{b}{c}$

$$
\begin{aligned}
F_{1-2}= & \frac{2}{\pi X Y}\left\{\ln \left[\frac{\left(1-X^{2}\right)\left(1-Y^{2}\right)}{1+X^{2}+Y^{2}}\right]^{\frac{1}{2}}+X \sqrt{1 \div Y^{2}} \tan -\frac{X}{\sqrt{1+Y^{2}}}\right. \\
& +\gamma V \overline{\left.1-X^{2} \tan ^{-1} \frac{Y}{\sqrt{1-X^{2}}}-X \tan ^{-1} X-Y \tan ^{-1} Y\right\}}
\end{aligned}
$$

Figure $\mathbf{S 2 . 1 1}$
Shape Factor for Perpendicular Attached Plates

Two finite rectangles of same length，having one common edge， and at an angie of 90° to each other．

$$
B=\frac{h}{T} \quad W=\frac{W}{l}
$$

$$
\begin{aligned}
& F_{i-2}=\frac{1}{W H}\left(W \tan ^{-1} \frac{1}{W}+H^{2} \tan ^{-8} \frac{1}{H}-\sqrt{H^{2}+W^{2}} \tan ^{-2} \frac{1}{\sqrt{H^{2}+W^{2}}}\right. \\
& \left.+ \pm \ln \left\{\left[\frac{\left(1+W^{2} K 1+H^{2}\right)}{\left(1+W^{2}+H^{2}\right)}\right]\left[\frac{\left.W^{2} 1+W^{2}+H^{2}\right)}{\left.\left(1+W^{2}\right)^{W^{2}}+K^{2}\right)}\right]^{\nabla^{2}}\left[\frac{E^{2}\left(1+H^{2}+W^{2}\right)}{\left(1+E^{2}\left(E^{2}+W^{2}\right)\right.}\right]^{2}\right\}\right)
\end{aligned}
$$

Figure $\mathbf{S 2 . 1 2}$
Typical Calculations（Enclosures）
stape factor estentations for tive inner turtaces of an enctosed bor

F1－1E	0.0318	F2－1 ${ }^{1}$	0.0272	F379	0.0548	． 84×4	0.0248	F12－345	E．0002
F1－2	0.1110	F20＇t．	0.1888	F32	0.1012	F－2	0.7834	F93－2\％	0.5791
F1＊5	0.0001	F2\％${ }^{\circ}$	0.000	P3s ${ }^{\text {P }}$	0.0001	F45	0.0000	F34－12：	6． 2818
P140	80001	F－4］	00002	F20］	0.002	F4an	0.0003	F2413：	0.4272
Frat	0.0165	F209	．0．0062	P3－18	0.0183	P4－3	0,0092	FOS ${ }^{\text {a }}$	400001
F1abi	0.0253	F20	0.0451	F3b	0.0333	F4bs	00542	Fels	0.4818
Prace	4.1422	F2－c	0.0157	Fres	0.0318	Prete	0.0105	Fol3	0.1630
－find	0.0812	126	0.2774	F30d	0.0434	F4d ${ }^{\text {a }}$	0,0828	Fo3．${ }^{\text {a }}$	0.0000
F1－1 ${ }^{\text {E }}$	0.0185	724＊＊＊	0.0082	F3na	B，0000		0.0000		
F1－5	0.0237	F2bin	0.0452	F3b ${ }^{\circ}$	0,0001		00001		
Ficte	0.1418	（12－c）${ }^{\text {a }}$	0.0157	F3c］	0.4907	R4RE）	0.0004		
FTat	1032	F2dy	08288	F3－TE	0.0075	F4，${ }^{\text {a }}$	0.4989		
E1da	0.0217	P2dis	0.0241	F3－15	0.0184	F64t	0.0218		
F1H5	0,0000	F2－15	0.0000	F350	0.0000	Fixe	0.0000	，	
	0.3007	F2戒第	0.0445		0.1775	F4n边	0.0343		
	0.0002	$82+5$	0.0000	13W－	0.0032	F4N＝	0.0007		
F80	0.114	［2Pa	0.0288	［3F｜	0.0108	R4＊	0.0238		
F17	0.0000	F2F	110000	F3ip	0.0000	F4－7	0.0000		
F95	0.0092	F2，	0.1800	F2m0	0.0087	－F4Er	0.0756		
Frave	010000	F2HE	0.0001	F3N＝	0.0000	F4W＝	0.0009		
Suma	1，0000	SUME	18000	cunt	1.0000	Suns	1.0000		

F－12	0.0283	Fbis	0.0106	Fols	Q． 8819	Falit	0.0979
骨－20	0.0435	F\％－2	0.0776	P－2\％	6.0731	Forer	0.25097
Fins	4.1000	F3－3：	0.0000	Fors	0.0000	Fitsiz	0.0000
－F2，	Q，0001	F9－4	0.4001	Foply	0.0001	Fdis	0.0001
－P\％－17	6.2317	Fb－t	0.0185	Fer ${ }^{14}$	0.0607	FdSth	0.0127
F－75	0.0758	Fb－2 $=$	0.3150	Fcrat	0.0518	F－F－3＇	0.1010
F－3\％	8 ± 000	Fb－3＇	0.0000	FC3\％	0．1000	F4－33	Q．t000
F74	0.0001	Fb－4\％	0.0001	Fc－43	0.0001	PGEE	0.0008
FF－4	0.0769	Fber	0.0228	Fe－t	0.0398	Fdats	0．0138
F－b＇s	0.0221	F1b－bis	0.1875	Febue	0.0562	Fdty	0.1050
Fect	6，0601	FP－C）	0.0208	feet	0.1042	Fines	0.0317
	0.0050	Ftodis	0.1657	Fedr	0.1294	Fd－0	0.2800
Fata	0.2503	Fols	0.0315	FCly	0.0407	Pdis	0.0176
Trin	0.0000	FbIE	0.0000	Fefin	0.0000	Pdit $=$	0.0000
FStin	0.016	Fb－mis	0.0243	Fate	0.2059	P4－3	0.0434
Fown	0.0000	Pbwe	0.0000	Fown	0.0001	Pody	0.0007
F｜\％	0.0039	FOFE	40981	Ferm	0.0038	Fors	0.0260
F50	0.0000	Fbrin	0.0000	Fedn	0.0000	FOFP	0.0000
Prome	000087	F0－17	0.0093	Foinie	0.0102	Fd－tim	0.1809
Fown	6．4000	FbWe	20000	Few	0.0000	Pdye	0.0001
－gunis	1．0000	SuMa	1.0000	SUM	1.0000	sunn	1.0000

F＋1	0.0182	Fins	0.0154	Finde	0.1598	Fivis	0.0083
F20］	0.0824	F\％2：	0.0745	F－2x	0.0939	Fin2	0.0778
Ftrys	0.0000	F33	0.0000	Frine	0.0001	Finge	0.0018
FFi／E	0.0001	FF－4	0.0001	Fixas	0.0001	Finde	0.0002
F－6｜	0.2164	Fiolit	0.1292		0.0281	Fin隹	0.0230
F42	0.0851	－${ }^{\text {F－2 }}$	0.0685	F－20	0.0921	Furze	0.0316
F63	0.10002	Fio3？	0.0028	Fins	0.0000	FWe 3	0.0001
Fite	0.0001	Fixty	0.0002	Fray	0.0001	Fivale	0.0001
Fram	0.1218	Fitan	0.0181	F－Fay	0.0108	Fiber	0.0047
FH03	0.0827	Fiobe	00508	F－ibs	0.0346	Finder	0.0405
Fier	0.0300	Fite	0.0533	Frem	0.8398	Fines	0.0223
Fios	0.0523	F\％or	08012	F70］	0.0863	Fiver	0.0642
F10	0.1217	F－9\％	0.4970	管学年	0.0198	Finctis	0.0008
Fibt	4.0827	F4by	0.0002		cout	Funos	0.0001
Fict	0.0300	Fi－ca	0.0012	F－ram	0.1384	Fure	0.4978
Fiof	0.0574	FForm	0.0001	Fm－6	0.0664	Find ${ }^{\text {a }}$	0.0003
FW	6.0282	Fink	0.0269	F年t	0.0241	Fink	0.0230
Fitime	0.0000	F190	0.6000	［70173	0．0000	Fi＋F｜	10000
Patiry	0.0364	Fintira	00348	FT－开3	． 0.3488	FFiper	0.0388
Fink	0.0000	Fiver	20001	Fintra	0.0001	Finkre	0.0001
8ume	1.0000	sumb	1.0000	Suma	1．0000	suma	4.0000

S2.5.0 RESULTS

The results of these calculations are summarized in Table S2.3.
Table S2.3
Nodal Areas and Shape Factors

Real Constant Set	Area (mirad)	Shape Factor,	Wrom Noderts	Wrutho Node
100	0.00068	0.072	40	49
101	0.00068	0.056	40	55
102	0.00068	0.306	40	56
103	0.00068	0.250	40	57
104	0.00068	0.141	40	58
105	0.00068	0.084	40	59
106	0.00068	0.030	40	301
107	0.00068	0.034	40	400
108	0.00068	0.027	40	435
109	0.00571	0.115	41	49
110	0.00571	0.037	41	55
111	0.00571	0.249	41	56
112	0.00571	0.274	41	57
113	0.00571	0.167	41	58
114	0.00571	0.100	41	59
115	0.00571	0.003	41	301
116	0.00571	0.055	41	435
117	0.00523	0.145	35	49
118	0.00523	0.019	35	55
119	0.00523	0.169	35	56
120	0.00523	0.275	35	57
121	0.00523	0.123	35	58
122	0.00523	0.269	35	435
123	0.00370	0.071	435	49
124	0.00370	0.016	435	55
125	0.00370	0.115	435	56
126	0.00370	0.096	435	57
127	0.00370	0.051	435	58
128	0.00370	0.039	435	59
129	0.00370	0.017	435	301
130	0.00370	0.129	435	400
131	0.00980	0.015	49	55
132	0.00980	0.129	49	56
133	0.00980	0.169	49	57
134	0.00980	0.125	49	58
135	0.00980	0.075	49	59

Chapter 3

Real Constant Set	C. Aren (m²/rad) ${ }^{\text {a }}$	S Shape Factor 4	Wersm Node	Whtronode ${ }^{\text {Then }}$
136	0.00980	0.025	49	301
137	0.00980	0.124	49	400
138	0.01290	0.035	50	45
139	0.01290	0.049	50	54
140	0.01290	0.003	50	55
141	0.01290	0.039	50	56
142	0.01290	0.122	50	57
143	0.01290	0.173	50	58
144	0.01290	0.164	50	59
145	0.01290	0.059	50	301
146	0.01290	0.099	50	400
147	0.00550	0.289	445	45
148	0.00550	0.113	445	54
149	0.00550	0.009	445	58
150	0.00550	0.082	445	59
151	0.00550	0.052	445	301
152	0.00550	0.028	445	400
153	0.00590	0.103	45	58
154	0.00590	0.200	45	59
155	0.00590	0.084	45	301
156	0.00590	0.039	45	400
157	0.01610	0.024	54	57
158	0.01610	0.092	54	58
159	0.01610	0.056	54	59
160	0.01610	0.044	54	301
161	0.01610	0.089	54	400
162	0.01610	0.038	54	306
163	0.00980	0.034	713	710
164	0.00980	0.018	713	711
165	0.00980	0.030	713	59
166	0.00980	0.043	713	58
167	0.00980	0.388	713	54
168	0.00980	0.054	$\cdots 713$	728
169	0.00980	0.023	713	715
170	0.00980	0.058	713	301
171	0.00980	0.005	713	727
172	0.00980	0.005	713	709
173	0.00980	0.011	713	400
174	0.02090	0.061	712	713
175	0.02090	0.037	712	710
176	0.02090	0.016	712	711
177	0.02090	0.032	712	59
178	0.02090	0.069	712	58

Real Constant Set	Area (mirad)	Shape Factor	From Node	
179	0.02090	0.209	712	54
180	0.02090	0.077	712	728
181	0.02090	0.077	712	301
182	0.02090	0.005	712	727
183	0.02090	0.007	712	709
184	0.02090	0.053	712	715
185	0.02090	0.012	712	400
186	0.02090	0.002	712	306
187	0.07660	0.029	714	58
188	0.07660	0.010	714	59
189	0.07660	0.011	714	713
190	0.07660	0.042	714	712
191	0.07660	0.051	714	727
192	0.07660	0.007	714	306
193	0.07660	0.010	714	264
194	0.07660	0.005	714	711
195	0.07660	0.016	714	710
196	0.07660	0.125	714	728
197	0.07660	0.020	714	708
198	0.07660	0.036	714	709
199	0.07660	0.030	714	400
200	0.07660	0.081	714	301
201	0.07660	0.041	714	54
202	0.06090	0.060	715	706
203	0.06090	0.040	715	707
204	0.06090	0.035	715	708
205	0.06090	0.033	715	727
206	0.06090	0.017	715	709
207	0.06090	0.030	715	260
208	0.06090	0.017	715	262
209	0.06090	0.011	715	264
210	0.06090	0.013	715	306
211	0.06090	0.158	715	714
212	0.06090	0.043	715	728
213	0.06090	0.063	715	400
214	0.09330	0.014	716	258
215	0.09330	0.021	716	260
216	0.09330	0.019	716	262
217	0.09330	0.014	716	264
218	0.09330	0.012	716	306
219	0.09330	0.027	716	705
220	0.09330	0.038	716	706
221	0.09330	0.062	716	707

Chapter 3

R Real Constant Set	R Area ($\mathrm{m}^{2} / \mathrm{rad}$)	WhapeFactor	Wh From Node	
222	0.09330	0.031	716	708
223	0.09330	0.018	716	727
224	0.09330	0.054	716	400
225	0.09330	0.105	716	715
226	0.09330	0.042	716	714
227	0.08690	0.023	717	230
228	0.08690	0.013	717	258
229	0.08690	0.030	717	260
230	0.08690	0.029	717	262
231	0.08690	0.015	717	264
232	0.08690	0.004	717	306
233	0.08690	0.045	717	704
234	0.08690	0.032	717	705
235	0.08690	0.069	717	706
236	0.08690	0.047	717	707
237	0.08690	0.016	717	708
238	0.08690	0.007	717	709
239	0.08690	0.111	717	716
240	0.08690	0.014	717	715
241	0.08690	0.029	717	400
242	0.05590	0.025	718	707
243	0.05590	0.050	718	706
244	0.05590	0.068	718	705
245	0.05590	0.079	718	704
246	0.05590	0.064	718	230
247	0.05590	0.057	718	258
248	0.05590	0.048	718	260
249.	0.05590	0.118	718	717
250	0.05590	0.029	718	400
251	0.12050	0.051	114	718
252	0.12050	0.008	114	717
253	0.12050	0.013	114	706
254	0.12050	0.025	114	705
255	0.12050	0.110	114	704
256	0.12050	0.030	114	703
257	0.12050	0.003	114	222
258	0.12050	0.004	114	226
259	0.12050	0.039	114	228
260	0.12050	0.152	114	230
261	0.12050	0.019	114	258
262	0.12050	0.023	114	260
263	0.12050	0.015	114	400
264	0.12050	0.051	114	187

Real Constant Set	Area $\left(\mathrm{m}^{2} / \mathrm{rad}\right)$)	Shape Factor	From Node	Whronode
265	0.17440	0.028	187	704
266	0.17440	0.138	187	703
267	0.17440	0.030	187	702
268	0.17440	0.004	187	224
269	0.17440	0.045	187	226
270	0.17440	0.184	187	228
271	0.17440	0.047	187	230
272	0.17440	0.002	187	258
273	0.17440	0.007	187	400
274	0.17440	0.043	187	185
275	0.19010	0.028	185	703
276	0.19010	0.142	185	702
277	0.19010	0.028	185	701
278	0.19010	0.003	185	222
279	0.19010	0.042	185	224
280	0.19010	0.191	185	226
281	0.19010	0.042	185	228
282	0.19010	0.001	185	400
283	0.16340	0.047	183	226
284	0.16340	0.054	183	185
285	0.16340	0.034	183	702
286	0.16340	0.003	183	364
287	0.16340	0.174	183	224
288	0.16340	0.040	183	737
289	0.16340	0.028	183	736
290	0.16340	0.007	183	700
291	0.16340	0.007	183	222
292	0.16340	0.129	183	701
293	0.04850	0.092	164	224
294	0.04850	0.070	164	701
295	0.04850	0.130	164	183
296	0.04850	0.005	164	345
297	0.04850	0.004	164	344
298	0.04850	0.022	164	700
299	0.04850	0.003	164	364
300	0.04850	0.029	164	222
301	0.04850	0.137	164	737
302	0.04850	0.102	164	736
303	0.28700	0.005	731	183
304	0.28700	0.005	731	164
305	0.28700	0.026	731	737
306	0.28700	0.015	731	736
307	0.28700	0.033	731	364

Wreal Constant Set	Area ($\left.\mathrm{m}^{2} / \mathrm{rad}\right)$ (4)	TShape Factor ${ }^{\text {P }}$	From Node,	Whanto
308	0.28700	0.082	731	222
309	0.28700	0.019	731	400
310	0.28700	0.060	731	700
311	0.28700	0.005	731	321
312	0.28700	0.021	731	345
313	0.28700	0.113	731	344
314	0.28700	0.045	731	350
315	0.28700	0.024	731	730
316	0.05510	0.091	730	222
317	0.05510	0.007	730	364
318	0.05510	0.047	730	700
319	0.05510	0.005	730	344
320	0.05510	0.005	730	345
321	0.05510	0.004	730	400
322	0.05510	0.076	730	164
323	0.05510	0.088	730	736
324	0.05510	0.197	730	737
325	0.05510	0.030	730	183
326	0.05510	0.020	730	701
327	0.05510	0.036	730	224
328	0.13000	0.006	732	400
329	0.13000	0.182	732	350
330	0.13000	0.071	732	344
331	0.13000	0.018	732	321
332	0.13000	0.005	732	364
333	0.13000	0.002	732	700
334	0.13000	0.003	732	345
335	0.13000	0.118	732	731
336	0.04880	0.049	736	701
337	0.04880	0.038	736	224
338	0.04880	0.004	736	702
339	0.04880	0.001	736	226
340	0.04880	0.308	736	737
341	0.04880	0.037	-736	222
342	0.04880	0.001	736	364
343	0.08920	0.029	210	344
344	0.08920	0.064	210	350
345	0.08920	0.008	210	732
346	0.08920	0.278	210	321
347	0.08920	0.002	210	731
348	0.08920	0.085	210	211
349	0.09190	0.081	211	321
350	0.09190	0.176	211	350

Chapter 3

Real Constant Set	Area ($\mathrm{m}^{2} / \mathrm{rad}$)	Shape Factor	From Node.	Wht To Node ${ }^{\text {Why }}$
351	0.09190	0.017	211	320
352	0.09190	0.130	211	732
353	0.09190	0.014	211	731
354	0.09190	0.020	211	344
355	0.09190	0.003	211	364
356	0.09190	0.003	211	400
357	0.01370	0.061	209	210
358	0.01370	0.454	209	320
359	0.01370	0.207	209	321
360	0.01370	0.004	209	319
361	0.01370	0.005	209	208
362	0.00032	0.056	208	319
363	0.01830	0.006	320	208
364	0.01830	0.106	320	321
365	0.01830	0.169	320	210
366	0.01830	0.008	320	319
367	0.08010	0.063	321	350
368	0.08010	0.005	321	344
369	0.14330	0.065	350	344
370	0.14330	0.002	350	345
371	0.14330	0.003	350	400
372	0.14330	0.003	350	364
373	0.14330	0.006	350	222
374	0.14330	0.004	350	700
375	0.14160	0.043	344	345
376	0.14160	0.057	344	400
377	0.14160	0.028	344	364
378	0.14160	0.020	344	222
379	0.14160	0.023	344	700
380	0.14160	0.005	344	736
381	0.14160	0.003	344	737
382	0.03700	0.295	345	400
383	0.03700	0.044	345	364
384	0.03700	0.023	345	222
385	0.03700	0.059	345	700
386	0.05790	0.248	700	222
387	0.05790	0.106	700	364
388	0.05790	0.027	700	736
389	0.05790	0.024	700	737
390	0.05790	0.005	700	701
391	0.05790	0.013	700	224
392	0.05790	0.030	700	400
393	0.09260	0.002	701	222

Chapter 3

Real Constant Set ${ }^{\text {a }}$	Wrea (mi/rad)	Shaperactor ${ }^{\text {St }}$	- From Node	Whemronoderys
394	0.09260	0.312	701	224
395	0.09260	0.042	701	702
396	0.09260	0.027	701	226
397	0.09260	0.003	701	703
398	0.09260	0.001	701	228
399	0.09260	0.025	701	737
400	0.10760	0.023	702	224
401	0.10760	0.310	702	226
402	0.10760	0.025	702	228
403	0.10760	0.037	702	703
404	0.09870	0.025	703	226
405	0.09870	0.038	703	704
406	0.09870	0.005	703	705
407	0.09870	0.306	703	228
408	0.09870	0.024	703	230
409	0.06820	0.035	704	228
410	0.06820	0.031	704	705
411	0.06820	0.299	704	230
412	0.06820	0.022	704	258
413	0.06820	0.011	704	706
414	0.06820	0.006	704	707
415	0.03980	0.064	705	230
416	0.03980	0.101	705	706
417	0.03980	0.016	705	707
418	0.03980	0.011	705	708
419	0.03980	0.182	705	258
420	0.03980	0.052	705	260
421	0.03980	0.005	705	262
422	0.07700	0.040	706	258
423	0.07700	0.011	706	230
424	0.07700	0.096	706	707
425	0.07700	0.170	706	260
426	0.07700	0.035	706	262
427	0.07700	0.113	706	708
428	0.07700	0.005	706	709
429	0.08540	0.046	707	260
430	0.08540	0.128	707	708
431	0.08540	0.010	707	709
432	0.08540	0.005	707	258
433	0.08540	0.140	707	262
434	0.08540	0.031	707	264
435	0.08540	0.006	707	306
436	0.08540	0.013	707	400

Real Constant Set	F Area (mirad)	Shape Factor,	Q FromNode ${ }^{\text {a }}$	WxtuTo Ngde
437	0.04000	0.019	262	400
438	0.05360	0.031	708	400
439	0.05360	0.015	708	301
440	0.05360	0.044	708	306
441	0.05360	0.111	708	264
442	0.05360	0.049	708	262
443	0.05360	0.007	708	260
444	0.07750	0.005	709	262
445	0.07750	0.084	709	708
446	0.07750	0.010	709	264
447	0.07750	0.453	709	400
448	0.07750	0.118	709	727
449	0.02310	0.039	264	400
450	0.02310	0.028	264	301
451	0.03380	0.129	306	709
452	0.03380	0.028	306	301
453	0.03380	0.091	306	400
454	0.01580	0.002	710	306
455	0.01580	0.176	710	400
456	0.01580	0.003	710	59
457	0.01580	0.051	710	58
458	0.01580	0.163	710	54
459	0.01580	0.106	710	50
460	0.01580	0.123	710	728
461	0.01580	0.062	710	727
462	0.00760	0.061	711	710
463	0.00760	0.004	711	59
464	0.00760	0.006	711	301
465	0.00760	0.172	711	400
466	0.00760	0.227	711	54
467	0.00760	0.037	711	58
468	0.00760	0.193	711	50
469	0.00760	0.082	711	728
470	0.00760	0.008	711	727
471	0.00760	0.005	711	709
472	0.07330	0.024	727	301
473	0.07330	0.081	727	400
474	0.07330	0.033	727	264
475	0.07330	0.105	727	708
476	0.07330	0.155	727	306
477	0.07750	0.003	728	59
478	0.07750	0.007	728	301
479	0.07750	0.034	728	727

E Real Constant Set,	4 Area ($\left.{ }^{2} / \mathrm{rat}\right)$ ded	Shape Factor	Wefrom Node	Wrterto Nodextry
480	0.07750	0.054	728	709
481	0.07750	0.303	728	400
482	0.07750	0.016	728	708
483	0.07750	0.008	728	264
484	0.07750	0.006	728	306
485	0.07750	0.087	728	50
486	0.07750	0.016	728	54
487	0.00070	0.039	55	400
488	0.00570	0.042	56	400
489	0.01130	0.052	57	400
490	0.01610	0.085	58	400
491	0.02330	0.189	59	400
492	0.01550	0.420	301	400
497	0.00610	1.000	35	435
498	0.00740	1.000	45	445
595	0.01410	1.000	20	94
596	0.01460	1.000	28	100
597	0.02130	1.000	30	101
598	0.01390	1.000	32	102

This page left blank intentionally.

SUB-APPENDIX 3.6.4.3 Derivation of Heat Transfer Coefficients

The heat transfer coefficients used in the analysis were chosen to match the empirical results. This appendix demonstrates that the values used are reasonable in comparison with approximate relations for air. It also calculates bounding values for the heat transfer coefficient for a cylinder in a fire environment.
For all steady state calculations, the temperatures of the applicable surfaces are taken from the file SS360.TEM, which is found in Subappendix 4.

HEATED SURFACES FACING UPWARD

There are three surfaces that fall into this category. They are the top surface of the upper fireshield, the top surface of the top plug and the top surface of the lower fireshield.
For heated surfaces facing upward, Holman suggests the following simplified relation for the turbulent flow of air.[10]

$$
h=1.43 \Delta T^{0.333}
$$

where:

$$
\begin{array}{ll}
\mathrm{h} & =\text { the heat transfer coefficient }\left(\mathrm{W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}\right) \\
\Delta \mathrm{T} & =\text { temperature difference in }{ }^{\circ} \mathrm{C}
\end{array}
$$

Substituting in the appropriate temperatures from the results of the steady state calculations yields the following results:

Location		(Why $\left.{ }^{2} \mathrm{C}\right)$ 3.4
Upper surface of top fireshield	13	3.4
Top surface of the top plug	111	6.9

HEATED SURFACES FACING DOWNWARD

For a heated horizontal plate facing downward, Holman suggests:[10]

$$
h=0.61\left(\frac{\Delta T}{L^{2}}\right)^{0.2}
$$

Substituting in the appropriate temperatures from the results of the steady state calculations yields the following results:

Location	L (m)	ΔT (C)	$\left(h^{h}{ }^{2} \mathrm{C}\right.$
Bottom surface of the bottom fireshield	1.12	21	1

CYLINDRICAL SURFACES

The outer surface of the main body and the outer surface of the radial fireshield are the only cylindrical surfaces on the package. It is necessary to calculate the heat transfer coefficient for both surfaces using the assumption that they are unfinned. The case of an unfinned vertical cylinder is considered by Holman [10]. For this case, the heat transfer coefficient is approximated by:

$$
h=0.95(\Delta T)^{0.333}
$$

Substituting in the appropriate temperatures from the results of the steady state calculations yields the following results:

Location	$\|$$\Delta \mathbf{T}$ $\mathbf{C C})$	
Outer surface of radial fireshield	7	1.8

FIN ENCLOSURE

The flow of air in the fin enclosure can be approximated by a rectangular duct with dimensions of 4.25 in $(0.108 \mathrm{~m}) \times 3.5$ in $(0.089 \mathrm{~m})$. The hydraulic diameter of this duct, d , is given by:

$$
\mathrm{d}=\frac{4^{*} \text { AREA }}{\text { PERIMETER }}=\frac{4(0.108)(0.089)}{2(0.0108+0.089)}=0.1 \mathrm{~m}
$$

For the following calculations, the properties of air are taken at 300 K from reference [10]. The relevant property values are:

Property	Value
Specific Heat, C_{p}	$1006 \mathrm{~J} / \mathrm{kgK}$
Dynamic Viscosity, μ	$1.85 \mathrm{E}-5 \mathrm{~kg} / \mathrm{ms}$
Thermal Conductibity, k	$0.026 \mathrm{~W} / \mathrm{mK}$
Prandtl number, Pr	0.708
density, ρ	$1.18 \mathrm{~kg} / \mathrm{m}^{3}$

During the test loading of the F-294, the air temperature rise was found to be $21^{\circ} \mathrm{C}$. (See Section 3 of Appendix 3.6.4.) If it is assumed that all of the decay heat from the flask is divided equally between the 36 fin enclosures, each enclosure would dissipate:

$$
\mathrm{Q}=360 \mathrm{kCi} * 15.4 \mathrm{~W} / \mathrm{kCi}=154 \mathrm{~W} \text { per enclosure }
$$

$$
36
$$

which is equal to the heat gained by the air. Thus, the mass flow of air is:

$$
m=\frac{Q}{C_{p} \Delta T}=\frac{154}{1006(21)}=0.0073 \mathrm{~kg} / \mathrm{s}
$$

From which the velocity of $0.64 \mathrm{~m} / \mathrm{s}$ can be calculated.

This leads to a Reynolds number of.

$$
\operatorname{Re}=\frac{\mathrm{qud}_{\mathrm{u}}^{\mu}}{\mu}=\frac{1.18(0.64)(0.1)}{1.85 \mathrm{E}-5}=4100
$$

which indicates that the flow is turbulent.
For smooth pipes, Holman suggests the following relationship for the Nusselt number, Nu:[10]

$$
\mathrm{Nu}=\mathrm{hd} / \mathrm{k}=0.023 \operatorname{Re}^{0.8} \mathrm{Pr}^{0.4}=0.023(4100)^{0.8}(.708)^{0.4}=15.6
$$

From which the value of the heat transfer coefficient can be calculated:

$$
h=0.025(15.0) / 0.1=4 \mathrm{~W} / \mathrm{m}^{20} \mathrm{C}
$$

For a rough tube, Holman quotes the following relationship for the Stanton Number, St [10]

$$
S t=\frac{h}{\rho C_{p} \mathbf{u}}=\frac{\mathbf{f}}{8 \operatorname{Pr}^{0667}}
$$

where f is the friction factor. Assuming a relative roughness of 0.05 , leads to a value of 0.075 for the friction factor [10]. Thus, the value of the heat transfer coefficent for a rough pipe is:

$$
\mathrm{h}=\frac{\rho \mathrm{C}_{p} \text { uf }}{8 \mathrm{Pr}^{0.667}}=\frac{0.075(1.2)(1006)(0.64)}{8(0.0708)^{0.657}}=9.1 \mathrm{~W} / \mathrm{m}^{20} \mathrm{C}
$$

A value of $6.5 \mathrm{~W} / \mathrm{m}^{20} \mathrm{C}$ is used in the analysis, and is reasonable because it is bounded by these two extreme values for pipes.

HEAT TRANSFER COEFFICIENT DURING THE FIRE TEST

The F-294 can be approximated as a cylinder. For the purposes of modelling the heat transfer coefficients, it is conservatively assumed that the heat transfer coefficients for the inner shielding vessel are the same as the values for the outer fireshield. The flow of the hot gases across the shielding vessel takes place at a velocity of $6.1 \mathrm{~m} / \mathrm{s}$ ($20 \mathrm{ft} / \mathrm{s}$).
This assumption is extremely conservative as the fireshield and fins provide a barrier to the free flow of gases over the shielding vessel. However, since it is difficult to quantify this effect, it is assumed that they do not impede the flow of gas.

From Holman[10], the heat transfer coefficient takes the form:

$$
\mathrm{h}=\mathrm{k} / \mathrm{d} * \mathrm{C}(\mathrm{ud} / v)^{\mathrm{P}} \mathrm{Pr}^{0333}
$$

where: d is the diameter of the fireshield $=1.2 \mathrm{~m}$
C, n are constants that depend on the Reynolds number ($u d / v$)
$k=$ thermal conductivity of the fluid
$v=$ kinematic viscosity of the fluid
Pr $=$ Prandtl number for the fluid
$\mathbf{u}=$ free stream velocity
The property values of k, v and Pr are evaluated at the film temperature, which is defined as the mean of the wall and free stream fluid temperatures.

At the start of the fire, the wall temperature is $42^{\circ} \mathrm{C}$ at the midheight of the shielding vessel. The film temperature is, therefore, $421^{\circ} \mathrm{C}$ and, from Holman[10], the property values are $\mathrm{k}=0.0520 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}, v=6.5 \mathrm{E}-5 \mathrm{~m}^{2} / \mathrm{s}$ and $\operatorname{Pr}=0.684$. This yields a Reynolds number of about 100,000 . At this value of Re, the constants C and n are 0.0266 and 0.805 respectively.[10] Substituting in the diameter of the outer fireshield (1.2 m) yields a heat transfer coefficient of:

$$
h=\frac{1.2(0.0266)\left(6.1^{*} 1.2 / 6.5 \mathrm{E}-5\right)^{0.005}}{0.0520} .685^{0.333}=11.5 \mathrm{~W} / \mathrm{m}^{2} \mathrm{C}
$$

A value of $12 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$ is used in the analysis.

SUB-APPENDIX 3.6.4.4 COSMOS /M Input and Output Files

1.0 OVERVIEW

This sub-appendix includes all of the input files used in the analyses and includes the output files for the steady state cases. Each of the input files (*.INP) perform different tasks as describe in Table S4.1. In order to complete an analysis, the files are run in the order shown in Table S4.2.

Table S4.1
Input/Output File Names and Descriptions

INPUT FILES	Description	Page
F294GEOM.INP	Inputs geometry of the F294	69
GAPON.INP	Adds a contact resistance between lead and stainless steel	93
GAPOFF.INP	Removes contact resistance between lead and stainless steel	95
TESTBND.INP	Inputs boundary conditions for tested case (steady state)	96
360BND.INP	Inputs boundary conditions for regulatory conditions (steady state)	99
FIRE12.INP	Inputs boundary conditions for hypothetical accident conditions	102
INSOL8.INP	Applies insolation heat load	103
OUTPUT. FILES		104
SSTEST.TEM	Output of Validation Case	108
SS360.TEM	Output for 360 kCi case with regulatory ambient conditions and contact resistance	112
SS360SUN.TEM	Output for 360 kCi case with regulatory ambient conditions, conservative insolation heat load and contact resistance	116
360SUN2.TEM	Output for 360 kCi case with regulatory ambient conditions, realistic insolation heat load and contact resistance	120
UNBOND.TEM	Output for 360 kCi case with regulatory ambient conditions and no contact resistance	

Table S4. 2
Input Files for the Various Analyses

1.	Validation Case - No Contact Resistance
	294GEOM.INP
	TESTBND.INP
2.	Validation Case - with Contact Resistance
	294GEOM.INP
	GAPON.INP
	TESTBND.INP
	Steady State Analysis (360 kCi, with Contact Resistance)
	294GEOM.INP
	GAPON.INP
	360BND.INP
	Fire Test (360 kCi, Contact Resistance Removed at Start of Fire)
	294GEOM.INP
	GAPON.INP
	360BND.INP
	GAPOFF.INP
	FIRE12.INP
	Insolation Heat Load
	294GEOM.INP
	GAPON.INP
	360BND.INP
	INSOL8.INP

2.0 FILE 294GEOM.INP

TITLE, F294 geometry (FILE F294geom.INP)
C* Element definitions
EGROUP, 1, PLANE2D, 0, 1, 1, 0, 0, 0, 0,
EGROUP, 2, CLINK, $0,0,0,0,0,0,0$,
EGROUP, 3, RLINK, $0,0,0,0,0,0,0$,
EGROUP, 4, TRUSS2D, $0,0,0,0,0,0,0,0$,
c* Real constants
RCONST, 1, 1, 1, 2, 1.0,0.0,
C* Areas for conduction links from plug to main body
RCONST, 4, 587, 1, 2, . 0055, 1
RCONST, 4,588,1,2, 0099,1
RCONST, 4, 589, 1, 2, . 0182,1
RCONST, 4, 590, 1,2, .0213,1
RCONST, 4,591, 1, 2, .0146,1
RCONST, 4, 592,1,2,.0141,1
C* Areas for conduction links from crack shield to plug
RCONST, 4, 593,1,2, .00097,1
RCONST,4,594,1,2,.00142,1
C* Keypoint definitions
PT, 1, 0, $-0.0032,0$
PT,2,0,0.0127,0,
PT, 3,0,0.0381,0,
PT, 4, 0, 0.0508,0,
PT, 5, 0, 0.1524, 0,
PT, 6,0,0.1651,0,
PT, 7, 0, 0.45085,0,
PT, $8,0,0.47625,0$,
PT, 9, 0,0.973138,0,
PT, 10, 0,0.985838,0,
PT,11,0,1.265238,0,
PT, $12,0,1,328738,0$,
PT, 13, 0,1.47638,0,
PT, 14, 0,1.48273,0,
PT, 15, 0, 1.50813,0,
PT,16,0,1.5272,0,
PT, 17,0.563563,0.1334,0,
PT, 18, 0.0508,0.1524,0,
PT, 19, 0.14605, 0.47625,0,
PT, 20,0.14605,0.97155,0,
PT, 21, $0.15875,0.45085,0$,
PT, 22,0.15875,0.95885,0,
PT, 23,0.18669,0.973138,0,
PT, 24, 0.1778,0.985838,0,
PT, 25, 0.1778,1.265238,0,
PT, 26, 0.200819,0.95885,0,
PT, 27,0.187833,0.97155,0,
PT, 28, 0.18669,1.27794,0,
PT, 29, 0.1524, 1.328738, 0,
PT, 30,0.1524,1.37795,0,
PT, 31,0.223838,1.328738,0,
PT, 32,0.223838,1.37795,0,
PT, 33, 0.200819,1.2271,0,
PT, 34, 0.3233,1.2271,0,
PT, 35, 0.4445,1.0172,0,
PT, $36,0.4445,0.2415,0$,
PT, 37,0.1867,0.1651,0,
PT, 38,0.1905,0.1524,0,
PT, 39, 0.4572,0.2314,0,
PT, 40, 0.4572,1.0207,0,
PT, 41,0.3380,1.2271,0,

PT, 42,0.3096,1.27635,0,
PT, 43,0.187833,1.27635,0, PT, 44,0.27305,1.27794,0, PT, 45, 0.27305, 1.328738,0, PT, 46, 0.274638, 1.27635,0, PT, 47,0.231236,1.27794,0, PT, 49,0.381,1.5272,0, PT, 50, 0.5588,0.0508,0, PT, 51, 0.3683,1.50813,0, PT, 52,0.3683,1.48273,0, PT, 53,.3683,1.5272,0,
PT, 54, 0.563563, 0.1143, 0, PT, 55, 0.563563,1.3452,0, PT,56,0.5699,0.1143,0, PT, 57,0.5699,1.3452,0, PT, 58, 0.595313, 0.1143,0, PT, 59, 0.595313, 1.3452,0, PT, 60,0.601663,0.1143,0, PT, 61,0.601663,1.3452,0, PT, 62, 0.52705, $\mathbf{- 0 . 0 0 3 2 , 0 \text { , } , ~ (1) ~}$ PT, 63, 0.52705,0.0127,0, PT, 64, 0.52705, 0.0381,0, PT, 65,0.52705,0.0508,0, PT, 66, 0.5588, -0.0032,0, PT, 67,.3683,1.47638,0, PT,68,.118533,1.26524,0, PT; 69,.200819,.405,0, PT, 70,0,.405,0, PT, 71, .09525, . 1651, 0, PT, 72,.1905,.0508,0, PT, 73, $5588, .12065,0$, PT, 74, .563563, 1.0214, 0, PT, 75,.5699,1.0214,0, PT, 76,.595313,1.0214,0, PT, 77,.601663,1.0214,0, PT, 78, .5588,1.0214,0, PT, 80, .381, 1.47638, 0, PT, 81, .381, 1.48273,0, PT, 82, .381, 1.50813,0, PT, 83,.5588,1.3272,0, PT, 84, .563563,1.3272,0, PT, 85, .5699,1.3272,0, PT, 86, .595313,1.3272,0, PT, 87, .601663,1.3272,0, PT, 88, 5699,0.1334,0, PT, 89, .595313, 0.1334,0, PT, 90, .601663, 0.1334,0, PT, 91,.1905,.0381,0, PT, 92,.1905,.0127,0, PT, 93, .1905, -0.0032, 0, PT, 94, .5588, .0381,0, PT, 95,.5588,.0127,0,
VIEW, 0, 0, 1, 0,
SCALE, 0 ,
C* Material property set $1=$ stainless
MPROR, 1, DENS, 7800.,
MPROP, 1, C, 460,
C* set variation of k with respect to temperature
CURDEF, TEMP, 1, 1, -273, 14.0, 38, 14.0, 100, 15.1,149, 17.0, 204, 18.0, 260, 18.9 CURDEF, TEMP, 1, 6, 316, 19.6, 371,20.4,427,21.1,538,22.8,816,26.5,927,26.5 ACTSET,TP,1,
C* assign value of 1 to $K X$ as this value gets multiplied by curve 1 MPROP,1, KX, 1.000,

ACTSET, TP, 0 ,
c* Material property set 2 i lead
MPROP, 2, DENS, 11373.,
C* set variation of C with respect to temperature
CURDEF, TEMP, 9, 1, $-23,127,27,129,127,132,227,136,327,142$
CURDEF, TEMP, 9, 6, 328,6188,331,6188,332,159,1000,159
ACTSET,TP,9,
MPROP, 2, C,1.0000,
ACTSET,TP, 0 ,
C* set variation of k with respect to temperature
CURDEF, TEMP, 2, 1, -273, 35, -27, 35, 123, 34, 227, 33, 327, 31
CURDEF, TEMP, 2, 6, 527, 19, 727, 22, 927, 24
ACTSET, TP, 2 ,
MPROP, 2, KX, 1.0000 ,
ACTSET,TP, 0 ,
C* Material property set 3 = air
MPROP, 3, DENS, 1.2,
MPROP, 3, C, 1060,
MPROP, 3, KX, . 0224 ,
C* Material property set $4=$ transite
MPROP, 4, DENS, $1600 .$,
MPROP, $4, \mathrm{C}, 837$.
MPROP, 4, KX, 0.389,
C* Material property set 5 = kaowool
MPROP,5,DENS,96,
MPROP, 5, C, 1060 ,
C* set variation of k with temperature
CURDEF, TEMP, 4, 1, -273,.029, 38,.029,100,.032,149,.036,204,.048
CURDEF, TEMP, $4,6,260, .053,316, .062,371, .074,427, .088,538, .118$
CURDEF,TEMP,4,11,816,.210,927,.248,
ACTSET,TP, 4,
MPROP,5,KX,1.0,
ACTSET,TP, 0 ,
C* Material property set $6=$ stainless fins used 12% of
C* k and density for continuity in 2 D heat transf eq'n
C* $k=0.12(20)=2.4$, density $=0.12(7800)=940, C$ unchanged
MPROP, 6, DENS,940..
MPROP, 6, C,460,
MPROP, 6, KX, 2.4,
C* Material property set 7 = mild steel
MPROR, 7, DENS, 7800.,
MPROR, 7, C, 465,
MPROP,7,KX,64.1,
C* Material property set 8 = convection htc used for conv links
C* Air values used for other parameters
MPROP, 8, DENS,1.2,
MPROP, $8, \mathrm{C}, 1060$,
MPROP, 8, KX, . 0224 ,
MPROP, 8, HC, 6.5
C* Start of mesh generation
SF4PT,1,10,24,25,11,0,
SF4PT, 2, 9, 23, 24, 10,0,
SF4PT, 3, 24, 23,28, 25,0,
ACTSET, EG, 1,
ACTSET, RC, 1,
ACTSET,MP,2,
M_SF,1,1,1,4,3,3,1,2, ACTSET,MP, 1,
MSF, $2,2,1,4,3,1,1,1$, M SF, 3, 3, 1, 4, 1, 3, 1,2, SF4PT,4,68,25,28,29,0, $\mathrm{M} S \mathrm{~S}, 4,4,1,4,1,1,1,1$, SF4PT,5,11,68,29,12,0,

```
SF4PT,6,29,28,47,31,0,
SF4PT,7,29,31,32,30,0,
SF4PT, 8,47,44,45,31,0,
ACTSET,MP,1
M_SF,5,5,1,4,2,1,1,1,
M-SF,6,6,1,4,1,1,1,1,
ACTSET,MP,1,
M_SF,7,7,1,4,1,1,1,1,
ACTSET,MP,1,
M_SF,8,8,1,4,1,1,1,1,
SF4PT,9,13,67,52,14,0,
SF4PT,10,14,52,51,15,0,
SF4PT,11,15,51,53,16,0,
ACTSET,MP,7,
M_SF,9,9,1,4,5,1,1,1,
ACTSET,MP,5,
M_SF,10,10,1,4,5,1,1,1,
ACTSET,MP,7,
M_SF,11,11,1,4,5,1,1,1,
S\overline{F4PT,12,22,26,27,20,0,}
SF4PT,13,26,33,43,27,0,
ACTSET,MP,1,
M_SF,12,12,1,4,1,1,1,1,
M-SF,13,13,1,4,3,1,2,1,
SF4PT, 14,33,34,46,43,0,
SF4PT, 15, 34,41,42,46,0,
ACTSET,MP,1
M_SF,14,14,1,4,2,1,1,1,
M_SF, 15,15,1,4,1,1,1,1,
SF4PT, 16,35,40,41,34,0,
M_SF,16,16,1,4,1,3,1,2,
SF4PT,17,26,35,34,33,0,
ACTSET,MP,2,
M_SF,17,17,1,4,2,3,1,2,
SF4PT,18,7,21,19,8,0,
SF4PT,19,21,22,20,19,0,
SF4PT,20,70,69,21,7,0,
SF4PT, 21,69,26,22,21,0,
SF4PT, 22,69,36,35,26,0,
SF4PT, 23,6,37,69,70,0,
SF3PT, 24,37,36,69,0,
SF4PT, 25,36,39,40,35,0,
ACTSET,MP,1,
M_SF,18,18,1,4,2,1,1,1,
M_SF,19,19,1,4,4,1,1,1,
ACTSET,MP,2,
M_SF,20,20,1,4,2,1,1,1,
M_SF,21,21,1,4,4,1,1,1,
M-SF,22,22,1,4,2,4,1,1,
ACTSET,MP,1
M_SF,25,25,1,4,1,4,1,1,
ACTSET,MP,2
M_SF,23,23,1,4,2,2,1,1,
M_SF,24,24,1,4,2,2,1,1,
SF4PT, 26,5,38,37,6,0,
SF4PT, 30,38,39,36,37,0,
SF4PT, 36,17, 88,75,74,0,
SF4PT, 37,88,89,76,75,0,
SF4PT, 38,89,90,77,76,0,
ACTSET,MP,1,
M_SF,26,26,1,4,2,1,1,1,
M_SF,30,30,1,4,2,1,1,1,
ACTSET,MP,7,
```

M_SF, 36, 36, 1, 4, 1, 5, 1,1, Ā̄TSET,MP,5,
M_SF, 37, 37,1,4,1,5,1,1, ACTSSET, MP, 7,
M_SF, $38,38,1,4,1,5,1,1$, SF4PT, 39, 74,75, 85, 84,0, SF4PT, 40,75,76,86,85,0, SF4PT,41,76,77,87,86,0, SF4PT, 44,51,82,49,53,0, SF4PT, 45,52,81,82,51,0, SF4PT,46,67, 80,81,52,0, ACTSET, MP, 7,
M_SF,39,39,1,4,1,5,1,2, ACTSET,MP,5,
MSF, $40,40,1,4,1,5,1,2$, ACTSET, MP, 7 ,
M_SF, 41, 41,1,4,1,5,1,2, ACTSET,MP, 7,
M_SF, 44, 44, 1, 4, 1, 1, 1,1, ACTSET,MP,7,
M_SF, $45,45,1,4,1,1,1,1$, ACTSET, MP, 7,
M_SF, $46,46,1,4,1,1,1,1$, SF4PT, $50,84,85,57,55,0$, SF4PT,51,85,86,59,57,0, SF4PT,52, $86,87,61,59,0$, ACTSET, MP, 7 ,
M_SF, $50,50,1,4,1,1,1,1$, ACTSET, MP, 7 ,
M SF, 51,51, $1,4,1,1,1,1$, ACTSET,MP, 7,
M_SF,52,52,1,4,1,1,1,1, SF4PT,53,3,91,72,4,0,
SF4PT,54,2,92,91,3,0,
SF4PT, 55, 1, 93, 92,2,0,
ACTSET, MP, 7,
M_SF,53,53,1,4,2,1,1,1, ACTSET, MP, 4,
M_SF, 54, 54, 1, 4, 2, 1, 1, 1, ACTSET, MP, 7,
M_SF,55,55,1,4,2,1,1,1, SF4PT,59,62,66,95,63,0, SF4PT, 60,63,95,94,64,0, SF4PT, 61, 64,94,50,65,0, SF4PT, 62, 91, 64,65,72,0, SF4PT, 63, 92, 63, 64, 91,0, SF4PT, 64, 93,62,63,92,0, ACTSET,MP, 7,
M_SF,59,59,1,4,1,1,1,1, ACTSSET,MP,7,
MSF, $60,60,1,4,1,1,1,1$, ACTSET, MP, 7,
M_SF, 61, 61, 1, 4, 1, 1, 1, 1, ACTSSET,MP,7,
M_SF, $62,62,1,4,2,1,1,1$, ACTSET,MP,4,
MSF, $63,63,1,4,2,1,1,1$, ACTSET, MP, 7,
M_SF, 64, 64,1,4,2,1,1,1, ACTSET,MP, 7
SF4PT, 66,54,56,88,17,0, SF4PT,67,56,58,89,88,0, SF4PT, 68,58,60,90,89,0,

M_SF, $66,68,1,4,1,1,1,1$, NMERGE, 1, 900, 1, 0.0001, 0, 1, 0, C* Clean up mesh geometry NMODIFY, 97,97,1, 0, .200819,1.12817,0, NMODIFY, 128, 128, 1, 0, .291016,1.12817,0, NMODIFY, 9, 9, 1, 0,0,1.12817,0, NMODIFY, 10, 10, 1, 0, .05926667,1.12817,0, NMODIFY,11,11,1,0, .1185333,1.12817,0, NMODIFY, 12, 12, 1, 0, . 1778, 1.12817, 0, NMODIFY, 30, 30,1,0,.18669,1.12817,0, NMODIFY, 101, 101, 1, 0, .187833,1.12817,0, NMODIFY,28, 28,1,0, 18669,1.04913,0, NMODIFY, $96,96,1,0, .200819,1.049139696,0$, NMODIFY, 100,100,1,0,.187833,1.04913,0, NMODIFY,116,116,1,0,.4301,1.0679,0, NMODIFY, 125, 125, 1, 0, .3103, 1.04913,0, NMODIFY,142,142,1,0,.15875,.820387,0, NMODIFY,147,147,1,0,.14605,.820387,0, NMODIFY,187,187,1,0,.4572,.818436,0, NMODIFY, 41, 41, 1, 0, .07366, 1.32874, 0, NMODIFY,57,57,1,0,.1524,1.47638,0, NMODIFY, 63, 63,1,0,.1524,1.48273,0, NMODIFY, 75, 75, 1, 0, 1524,1.50813,0, NMODIFY, 87, 87, 1, 0, .1524, 1.5272,0, NMODIFY, $56,56,1,0, .07366,1,47638,0$, NMODIFY, 62,62,1,0,.07366,1.48273,0, NMODIFY, 74, 74, 1, 0,.07366, $1.50813,0$, NMODIFY, 86, 86,1,0,.07366,1.5272,0, NMODIFY,58,58,1,0,.223838,1.47638,0, NMODIFY, 64, 64,1,0, 223838,1.48273,0, NMODIFY, 76, 76,1,0, 223838,1.50813,0, NMODIFY, 88, 88,7,0,.223838,1.5272,0, NMODIFY, 172,172,1,0,.32266, .6662,0, NMODIFY, 173, 173, 1, 0, .4445,.6662,0, NMODIFY, 185,185,1,0,.4572,.6662,0, NMODIFY,175,175,1,0,.32266,.8204,0, NMODIFY,176,176,1,0,.4445,.8204, 0, NMODIFY,187,187,1,0,.4572,.8204,0, NMODIFY,228,228,1,0,.5636,.8204,0, NMODIFY,229,229,1,0,.5699,.8204,0, NMODIFY, 241, 241,1,0, .5953, .8204,0, NMODIFY, 253,253,1,0,.6017,.8204,0, NMODIFY, 224, 224,1, 0, .5636,. 4316,0, NMODIFY,225,225,1,0,.5699,.4316,0, NMODIFY, 237, 237, 1, 0, .5953, .4316, 0, NMODIFY, 249, 249, 1, 0, .6017,. 4316, 0, NMODIFY, 222,222,1,0, .5636, .2148,0, NMODIFY, 223, 223, 1, 0, .5699, .2148,0, NMODIFY, 235, 235,1,0, .5953, .2148,0, NMODIFY, 247, 247,1,0, .6017, .2148, 0, NMODIFY, 258,258,1,0,.5636,1.068,0, NMODIFY, 259, 259, 1, 0, .5699,1.068,0, NMODIFY, 271, 271, 1, 0, .5953,1.068, 0, NMODIFY, 283, 283, 1, 0, .6017,1.068,0, NMODIFY, 260, 260, 1, 0, .5636,1.1339,0, NMODIFY, 261, 261, 1, 0, .5699,1.1339,0, NMODIFY,273,273,1,0, 5953,1.1339,0, NMODIFY,285,285,1,0, 6017,1.1339,0, NMODIFY, 262,262,1,0, 5636,1.2271,0, NMODIFY, 263,263,1,0, 5699,1.2271,0, NMODIFY,275, 275, 1, 0, .5953,1.2271,0, NMODIFY,287,287,1,0,.6017,1.2271,0, NMODIFY, $264,264,1,0, .5636,1.2764,0$,

```
NMODIFY,265,265,1,0,.5699,1.2764,0,
NMODIFY,277,277,1,0,.5953,1.2764,0,
NMODIFY,289,289,1,0,.6017,1.2764,0,
C* Nodes below cavity
NMODIFY,137,137,1,0,.0508,.47625,0,
NMODIFY,134,134,1,0,.0508,.45085,0,
NMODIFY,150,150,1,0,.0508,.40500,0,
NMODIFY,194,194,1,0,.0508,.28505,0,
NMODIFY,191,191,1,0,.0508,.16510,0,
NMODIFY,209,209,1,0,.0508,.15240,0,
NMODIFY,320,320,1,0,.0508,.05080,0,
NMODIFY, 317,317,1,0,.0508,.03810,0,
NMODIFY, 323,323,1,0,.0508,.01270,0,
NMODIFY,329,329,1,0,.0508,-.0032,0,
C* Nodes on lower fireshield
NMODIFY,359,359,1,0,.318, -.0032,0,
NMODIFY, 353,353,1,0,.318,.0127,0,
NMODIFY, 347,347,1,0,.318,.0381,0,
NMODIFY,350,350,1,0,.318,.0508,0,
C* Define node 400 as the environment at 38 C, 401 at 48 C and 402
C* at 55 C for steady state conditions. Nodes are separated so that
C* different boundary conditions appear in plots.
ND,400,1,0.8,0
NTND,400,38,400,1,
ND, 401,1,0.9,0
NTND,401,48,401,1,
ND,402,1,1.0,0
NTND,402,55,402,1,
C* Insert nodes for gap elements between crack shield and top plug
ND,435,0.1524,1.32924,0, ,.,.,.,
ND,445,0.22384,1.32924,0,....,.,
C* Generate fin nodes
ND,700,.5588,.2148,0,0,0,0,0,0,0,
ND, 701,.5588,.4316,0,0,0,0,0,0,0,
ND,702,.5588, 6662,0,0,0,0,0,0,0,
ND,703,.5588,.8204,0,0,0,0,0,0,0,
ND, 704,.5588,1.0214,0,0,0,0,0,0,0,
ND,705,.5588,1.0680,0,0,0,0,0,0,0,
ND,706,.5588,1.1339,0,0,0,0,0,0,0,
ND, 707, .5588,1.22714,0,0,0,0,0,0,0,
ND,708,.5588,1,27635,0,0,0,0,0,0,0,
ND, 709,.5588,1,4,0,0,0,0,0,0,0,
ND,710,.3,1.4,0,0,0,0,0,0,0,
ND,711,.27464,1.4,0,0,0,0,0,0,0,
ND, 712,.3,1.293,0,0,0,0,0,0,0,
ND,713,.2746,1.293,0,0,0,0,0,0,0,
ND,714,.3257,1,293,0,0,0,0,0,0,0,
ND,715,.3353,1.27635,0,0,0,0,0,0,0,
ND,716,.3637,1.22714,0,0,0,0,0,0,0,
ND,717,.4176,1.1339,0,0,0,0,0,0,0,
ND,718,.4556,1.0680,0,0,0,0,0,0,0,
ND,719,.4364,1.0569,0,0,0,0,0,0,0,
ND,720,.4383,1.0727,0,0,0,0,0,0,0,
ND,721,.4029,1.1339,0,0,0,0,0,0,0,
ND, 722,.3490,1.22714,0,0,0,0,0,0,0,
ND,723,.3206,1.27635,0,0,0,0,0,0,0,
ND,724,.3073,1.2803,0,0,0,0,0,0,0,
ND,725,.31834,1.2803,0,0,0,0,0,0,0,
ND, 726,.2746,1.2803,0,0,0,0,0,0,0,
ND,727,.5588,1.293,0,0,0,0,0,0,0,
ND,728,.3257,1.4,0,0,0,0,0,0,0,
C*
NMODIFY,203,203,1,0,.323,.28505,0,
```

```
NMODIFY, 166, 166,1,0, .323,.405,0,
ND, \(168, .4445, .32,0,0,0,0,0,0,0\),
ND, 165, . 4445, . \(3327,0,0,0,0,0,0,0\),
ND, 164, . \(4572, .3327,0,0,0,0,0,0,0\),
ND, \(163, .4572, .32,0,0,0,0,0,0,0\),
ND, 211, . \(31167, .18829,0,0,0,0,0,0,0\),
ND, 730,.4794,.3327,0,0,0,0,0,0,0,
ND, \(732, .3180, .1670,0,0,0,0,0,0,0\),
ND, 733, . \(32656, .18277,0,0,0,0,0,0,0\),
ND, \(733, .4667, .22428,0,0,0,0,0,0,0\),
ND, 731, . 4794, .21481, 0, 0, 0, 0, 0, 0, 0,
ND, \(733, .32656, .18277,0,0,0,0,0,0,0\),
ND, 734,.4667, . \(22428,0,0,0,0,0,0,0\),
ND, 735, .4667, . 320, 0, 0, 0, 0, 0, 0, 0,
ND, 736, \(5588, .3327,0,0,0,0,0,0,0\),
ND, 737, \(5636, .3327,0,0,0,0,0,0,0\),
ND, 738, .5699, .3327, 0, 0, 0, 0, 0, 0, 0,
ND, 739, \(5953, .3327,0,0,0,0,0,0,0\),
ND, 740, .6017, . \(3327,0,0,0,0,0,0,0\),
ND, 170, . 4445, \(4316,0,0,0,0,0,0,0\),
ND, 183, . 4572, . 4316, 0, 0, 0, 0, 0, 0, 0,
C* Radiation links
ACTSET,MP, 3
ACTSET,EG, 3
```



```
\(\begin{array}{lrr}\text { EL, CR, } 2, & 40,1,400 \\ \text { RCONST, 3, } & 108,1,4,0.0007,0.027,0.8,5.669 E-8\end{array}\)
EL, CR, 2, 40 , 435
RCONST, 3, \(109,1,4,0.0057,0.115,0.8,5.669 \mathrm{E}-8\)
EL, ,CR, 2, 41 , 49
RCONST, 3, \(110,1,4,0.0057,0.037,0.8,5.669 \mathrm{E}-8\)
EL, CR, 2, 41 , 55
RCONST,3, \(111,1,4,0.0057,0.249,0.8,5.669 \mathrm{E}-8\)
EL, CR, 2, 41 , 56
RCONST, 3, \(112,1,4,0.0057,0.274,0.8,5.669 E-8\)
EL, CR, 2, 41 , 57
RCONST, 3, \(113,1,4,0.0057,0.167,0.8,5.669 \mathrm{E}-8\)
EL, CR, 2, 41 , 58
RCONST, 3, \(114,1,4,0.0057,0.100,0.8,5.669 \mathrm{E}-8\)
EL, ,CR, 2, 41 , 59
RCONST, 3, \(115,1,4,0.0057,0.003,0.8,5.669 \mathrm{E}-8\)
EL, ,CR, 2, 41 , 301
RCONST, 3, \(116,1,4,0.0057,0.055,0.8,5.669 \mathrm{E}-8\)
EL, CR, 2, 41 , 435
RCONST, 3, \(117,1,4,0.0052,0.145,0.8,5.669 \mathrm{E}-8\)
EL, , CR, , 2, 35 , 49
RCONST, 3, \(118,1,4,0.0052,0.019,0.8,5.669 \mathrm{E}-8\)
EL, CR, 2, 35 , 55
RCONST, 3, \(119,1,4,0.0052,0.169,0.8,5.669 \mathrm{E}-8\)
```

$E L, ~ C R, ~, 2,$	35 120	,1,	56 0.0052	. 0.275	,0.8,5.669E-8
EL, , CR, 2 ,	35		57		
RCONST, 3 ,	121	, 1,4,	0.0052	. 0.123	,0.8,5.669E-8
EL, , CR, 2 ,	35		58		
RCONST, 3,	123	,1,4,	0.0037	. 0.071	,0.8,5.669E-8
EL, , CR, , 2,	435		49		
RCONST, 3 ,	124	. 1	0.0037	. 0.01	.0.8,5.669E-8
EL, , CR, , 2,	435		55		
RCONST, 3 ,	125	, 1	0.0037	.0.11	69E-
EL, , CR, 2 ,	435		56		
RCONST,3,	126	. 1	0.0037	. 0.096	,0.8,5.669E-8
EL, , CR, 2 ,	435		57		
RCONST, 3 ,	127	. 1,	0.0037	. 0.051	-8
EL, CR, , 2,	435		58		
RCONST, 3,	128	, 1	0.0037	. 0.039	.0.8,5.669E-8
EL, , CR, 2 ,	435		59		
RCONST, 3 ,	129	. 1	0.0037	. 0.017	,0.8,5.669E-8
EL, , CR, , 2 ,	435		301		
RCONST, 3,	130	. 1	0.0037	. 0.129	,0.8,5.669E-8
EL, , CR, , 2,	435		400		
RCONST, 3,	131	, 1	0.0098	. 0.015	,0.8,5.669E-8
EL, , CR, 2 ,	49		55		
RCONST, 3 ,	132	, 1,4,	0.0098	. 0.129	,0.8,5.669E-8
EL, , CR, ,2,	49		56		
RCONST, 3,	133	. 1	0.0098	. 0.169	69E-8
EL, , CR, 2 ,	49		57		
RCONST, 3,	134	, 1,4,	0.0098	. 0.125	-8
EL, , CR, ,2,	49		58		
RCONST, 3,	135	. 1	0.0098	, 0.075	69E-8
EL, , CR, 2 ,	49		59		
RCONST, 3 ,	136	. 1	0.0098	. 0.025	,0.8,5.669E-8
EL, , CR, , 2 ,	49		301.		
RCONST, 3,	137	, 1	0.0098	. 0.124	,0.8,5.669E-8
EL, , CR, , 2 ,	49		400		
RCONST, 3 ,	138	, 1,4.	0.0129	. 0.035	-8
EL, , CR, 2,	50		45		
RCONST, 3,	139	. 1	0.0129	. 0.049	69E-8
EL, , CR, 2,	50		54		
RCONST, 3 ,	140	, 1,	0.0129	. 0.003	59E-8
EL, , CR, , 2 ,	50		55		
RCONST, 3,	141	. 1	0.0129	. 0.039	9E-8
EL, , CR, , 2 ,	50		56		
RCONST, 3,	142	.1,4,	0.0129	. 0.12	E-8
EL, , CR, , 2 ,	50		57		
RCONST, 3,	143	, 1	0129	. 0.17	-8
- EL, , CR, ,2,	50		58		
RCONST,3,	144	, 1,4,	0.0129	, 0.16	,0.8,5.669E-8
EL, , CR, ,2,	50		59.		
RCONST, 3 ,	145	, 1,4,	0.0129	. 0.059	,0.8,5.669E-8
EL, , CR, ,2,	50		301		
RCONST, 3,	146	,1,4,	0.0129	. 0.099	.0.8,5.669E-8
EL, , CR, , 2,	50		400		
RCONST, 3,	148	, 1,4,	0.0055	.0.11	,0.8,5.669E-8
EL, , CR, ,2,	445		54		
RCONST, 3,	149	, 1,4,	0.0055	. 0.009	,0.8,5.669E-8
EL, , CR, , 2,	445		58		
RCONST, 3 ,	150	,1,4,	0.0055	, 0.082	,0.8,5.669E-8
EL, , CR, 2 ,	445		59		
RCONST,3,	151	, 1,4,	0.0055	. 0.052	,0.8,5.669E-8
EL, , CR, ,2,	445		301		
RCONST, 3 ,	152	, 1,4,	0.0055	. 0.028	,0.8,5.669E-8
EL, , CR, , 2,	445		400		

RCONST, 3,	153	, 1,4,	0.0059	. 0.103	,0.8,5.669E-8
EL, , CR, , 2,	45		58		
RCONST, 3 ,	154	, 1,4	0.0059	. 0.200	,0.8,5.669E-8
EL, , CR, , 2,	45		59		
RCONST, 3 ,	155	, 1,4,	0.0059	, 0.084	.0.8,5.669E-8
EL, , CR, , 2,	45		301		
RCONST, 3 ,	156	, 1,4,	0.0059	, 0.039	,0.8,5.669E-8
EL, , CR, , 2,	45		400		
RCONST, 3 ,	157	.1,	0.0161	, 0.024	,0.8,5.669E-8
EL, , CR, , 2,	54		57		
RCONST, 3,	158	, 1,4,	0.0161	, 0.092	,0.8,5.669E-8
EL, , CR, , 2,	54		58		
RCONST, 3 ,	159	, 1,4,	0.0161	. 0.056	, 0.8,5.669E-8
EL, , CR, 2 ,	54		59		
RCONST, 3,	160	, 1,4,	0.0161	. 0.044	, 0.8,5.669E-8
EL, , CR, 2 ,	54		301		
RCONST, 3 ,	161	, 1,4,	0.0161	. 0.089	, 0.8,5.669E-8
EL, , CR, , 2,	54		400		
RCONST, 3,	162	, 1,4,	0.0161	. 0.038	, 0.8,5.669E-8
EL, , CR, ${ }^{\text {2, }}$	54		306		
RCONST, 3 ,	163	,1,4,	0.0098	, 0.034	69E-8
EL, , CR, , 2 ,	713		710		
RCONST, 3 ,	164	, 1,4,	0.0098	, 0.018	.0.8,5.669E-8
EL, , CR, , 2,	713		711		
RCONST, 3,	165	.1,4,	0.0098	, 0.030	.0.8,5.669E-8
EL, , CR, , 2,	713		59		
RCONST, 3,	166	, 1,4,	0.0098	, 0.043	,0.8,5.669E-8
EL, , CR, ${ }^{\text {2, }}$	713		58		
RCONST, 3,	167	, 1,4,	0.0098	, 0.388	,0.8,5.669E-8
EL, , CR, , 2,	713		54		
RCONST, 3,	168	, 1,4,	0.0098	. 0.054	, 0.8,5.669E-8
EL, , CR, , 2,	713		728		
RCONST, 3 ,	169	, 1,4,	0.0098	, 0.023	,0.8,5.669E-8
EL, , CR, , 2 ,	713		715		
RCONST, 3 ,	170	,1,4,	0.0098	, 0.058	,0.8,5.669E-8
EL, , CR, , 2 ,	713		301		
RCONST, 3 ,	171	,1,4,	0.0098	. 0.005	,0.8,5.669E-8
EL, , CR, , 2 ,	713		727		
RCONST, 3,	172	, 1,4,	0.0098	. 0.005	.0.8,5.669E-8
EL, , CR, , 2,	713		709		
RCONST, 3 ,	173	, 1,4,	0.0098	, 0.011	.0.8,5.669E-8
EL, , CR, , 2,	713		400		
RCONST, 3,	174	,1,4,	0.0209	. 0.061	,0.8,5.669E-8
EL, , CR, , 2,	712		713		
RCONST, 3,	175	, 1,4,	0.0209	. 0.037	,0.8,5.669E-8
EL, , CR, , 2,	712		710		
RCONST, 3,	176	,1,4,	0.0209	,0.016	,0.8,5.669E-8
EL, , CR, , 2 ,	712		711		
RCONST, 3 ,	177	, 1,4,	0.0209	, 0.032	,0.8,5.669E-8
EL, , CR, , 2,	712		59		
RCONST, 3 ,	178	, 1,4,	0.0209	. 0.069	,0.8,5.669E-8
EL, , CR, , 2,	712		58		
RCONST, 3 ,	179	,1,4,	0.0209	. 0.209	,0.8,5.669E-8
EL, , CR, , 2,	712		54		
RCONST, 3 ,	180	, 1,4,	0.0209	. 0.077	,0.8,5.669E-8
EL, , CR, , 2 ,	712		728		
RCONST, 3,	181	, 1,4,	0.0209	,0.077	,0.8,5.669E-8
EL, , CR, ${ }^{2}$,	712		301		
RCONST, 3,	182	, 1,4,	0.0209	. 0.005	,0.8,5.669E-8
EL, , CR, , 2 ,	712		727		
RCONST, 3 ,	183	,1,4,	0.0209	. 0.007	,0.8,5.669E-8
EL, , CR, , 2,	712		709		
RCONST, 3 ,	184	1,4	0.0209	0.053	0.8,5.669E-8

EL, , CR, , 2 ,	712		715		
RCONST, 3 ,	185	.1,4,	0.0209	. 0.012	,0.8,5.669E-8
EL, , CR, , 2 ,	712		400		
RCONST, 3 ,	186	, 1,4	0.0209	. 0.002	.0.8,5.669E-8
EL, , CR, , 2,	712		306		
RCONST, 3,	187	.1,4,	0.0766	. 0.029	,0.8,5.669E-8
EL, , CR, 2 ,	714		58		
RCONST,3,	188	, 1,4,	0.0766	. 0.010	E-8
EL, , CR, 2 ,	714		59		
RCONST, 3,	189	, 1,4,	0.0766	+0.011	,0.8,5.669E-8
EL, , CR, 2 ,	714		713		
RCONST,3,	190	, 1,	0.0766	. 0.042	-8
EL, , CR, 2 ,	714		712		
RCONST, 3 ,	191	.1,	0.0766	,0.051	69E-8
EL, , CR, 2 ,	714		727		
RCONST, 3,	192	. 1	0.0766	, 0.007	,0.8,5.669E-8
EL, , CR, ${ }^{2}$,	714		306		
RCONST,3,	193	, 1,4,	0.0766	. 0.010	,0.8,5.669E-8
EL, , CR, 2 ,	714		264		
RCONST, 3 ,	194	, 1	0.0766	. 0.005	,0.8,5.669E-8
EL, , CR, , 2 ,	714		711		
RCONST, 3 ,	195	, 1,4,	0.0766	, 0.016	-8
EL, , CR, 2 ,	714		710		
RCONST, 3,	196	, 1,4,	0.0766	. 0.125	69E-8
EL, , CR, 2 ,	714		728		
RCONST.3,	197	, 1	0.0766	. 0.020	.8,5.669E-8
EL, , CR, 2 ,	714		708		
RCONST, 3 ,	198	, 1,4,	0.0766	,0.036	8,5.669E-8
EL, , CR, 2 ,	714		709		
RCONST, 3 ,	199		0.0766	. 0.030	69E-8
EL, , CR, ${ }^{\text {, }}$,	714		400		
RCONST, 3,	200		0.0766	,0.081	69E-8
EL, , CR, , 2,	714		301		
RCONST,3,	201	, 1,4,	0.0766	, 0.041	-8
EL, , CR, , 2 ,	714		54		
RCONST, 3,	202	, 1,4,	0.0609	, 0.060	.8,5.669E-8
EL, , CR, 2 ,	715		706		
RCONST, 3 ,	203	.1,4,	0.0609	. 0.040	69E-8
EL, , CR, 2 ,	715		707		
RCONST, 3 ,	204		. 0609	, 0.035	69E-8
EL, , CR, , 2,	715		708		
RCONST, 3,	205	.1,4,	0.0609	. 0.033	.8,5.669E-8
EL, , CR, , 2 ,	715		727		
RCONST, 3 ,	206	.1,4,	. 0609	. 0.017	-8
EL, , CR, ${ }^{2}$,	715		709		
RCONST, 3 ,	207	.1,4.	0.0609	. 0.030	,0.8,5.669E-8
EL, , CR, ,2,	715		260		
RCONST, 3 ,	208	, 1,4,	0.0609	, 0.017	,0.8,5.669E-8
EL, CR, 2 ,	715		262		
RCONST,3,	209	.1,4,	0.0609	. 0.01	.8,5.669E-8
EL, , CR, , 2,	715		264		
RCONST, 3 ,	210	,1,4,	0.0609	. 0.013	,0.8,5.669E-8
EL, , CR, , 2,	715		306		
RCONST, 3 ,	211	.1.4.	0.0609	. 0.158	,0.8,5.669E-8
EL, , CR, , 2,	715		714		
RCONST, 3 ,	212	, 1,4,	0.0609	. 0.043	,0.8,5.669E-8
EL, , CR, 2 ,	715		728		
RCONST, 3,	213	, 1,4,	0.0609	.0,063	,0.8,5.669E-8
EL, CR, , 2,	715		400		
RCONST, 3 ,	214	, 1,4,	0.0933	. 0.014	,0.8,5.669E-8
EL, , CR, , 2 ,	716		258		
RCONST, 3 ,	215	, 1,4,	0.0933	. 0.021	,0.8,5.669E-8
EL, , CR, , 2 ,	716		260		

RCONST, 3,	216	, 1,4	0.0933	. 0.019	,0.8,5.669E-8
EL, , CR, , 2 ,	716		262		
RCONST, 3,	217	,1,4,	0.0933	. 0.014	,0.8,5.669E-8
EL, , CR, , 2	716		264		
RCONST, 3 ,	218	, 1,4	0.0933	, 0.012	,0.8,5.669E-8
EL, , CR, , 2 ,	716		306		
RCONST, 3,	219	, 1,	0.0933	. 0.027	,0.8,5.669E-8
EL, , CR, , 2 ,	716		705		
RCONST, 3 ,	220	, 1,4	0.0933	. 0.038	.0.8,5.669E-8
EL, , CR, , 2 ,	716		706		
RCONST, 3 ,	221	, 1,	0.0933	. 0.062	,0.8,5.669E-8
EL, , CR, , 2 ,	716		707		
RCONST, 3 ,	222	, 1,	0.0933	. 0.031	,0.8,5.669E-8
EL, , CR, , 2 ,	716		708		
RCONST, 3 ,	223	,1,	0.0933	, 0.018	.0.8,5.669E-8
EL, , CR, , 2 ,	716		727		
RCONST, 3,	224	.1,	0.0933	. 0.054	,0.8,5.669E-8
EL, , CR, , 2,	716		400		
RCONST, 3,	225	, 1,	0.0933	. 0.105	.0.8,5.669E-8
EL, , CR, , 2 ,	716		715		
RCONST, 3 ,	226	, 1,	0.0933	. 0.042	,0.8,5.669E-8
EL, , CR, , 2 ,	716		714		
RCONST, 3 ,	227	, 1,	0.0869	. 0.023	,0.8,5.669E-8
EL, , CR, , 2,	717		230		
RCONST, 3 ,	228	, 1,	0.0869	. 0.013	,0.8,5.669E-8
EL, , CR, , 2,	717		258		
RCONST, 3,	229	, 1,	0.0869	, 0.030	.0.8,5.669E-8
EL, , CR, , 2,	717		260		
RCONST, 3,	230	, 1, 4	0.0869	. 0.029	.0.8,5.669E-8
EL, , CR, , 2,	717		262		
RCONST, 3,	231	, 1	0.0869	. 0.015	.0.8,5.669E-8
EL, , CR, , 2 ,	717		264		
RCONST, 3 ,	232	, 1	0.0869	. 0.004	,0.8,5.669E-8
EL, , CR, , 2,	717		306		
RCONST, 3 ,	233	, 1	0.0869	, 0.045	,0.8,5.669E-8
EL, , CR, , 2,	717		704		
RCONST, 3 ,	234	, 1,	0.0869	, 0.032	,0.8,5.669E-8
EL, , CR, , 2,	717		705		
RCONST, 3 ,	235	, 1, 4	0.0869	, 0.069	,0.8,5.669E-8
EL, , CR, , 2 ,	717		706		
RCONST, 3,	236	, 1,	0.0869	. 0.047	,0.8,5.669E-8
EL, , CR, , 2 ,	717		707		
RCONST, 3,	237	,1,4,	0.0869	. 0.016	,0.8,5.669E-8
EL, , CR, , 2,	717		708		
RCONST, 3 ,	238	,1,4,	0.0869	, 0.007	,0.8,5.669E-8
EL, , CR, , 2,	717		709		
RCONST, 3,	239	,1,4,	0.0869	, 0.111	69E-8
EL, , CR, , 2 ,	717		716		
RCONST, 3,	240	, 1,4.	0.0869	. 0.014	.0.8,5.669E-8
EL, , CR, , 2 ,	717		715		
RCONST, 3,	241	,1,4,	0.0869	, 0.029	,0.8,5.669E-8
EL, , CR, , 2 ,	717		400		
RCONST, 3 ,	242.	, 1,4,	0.0559	. 0.025	,0.8,5.669E-8
EL, , CR, , 2 ,	718		707		
RCONST, 3,	243	,1,4,	0.0559	, 0.050	,0.8,5.669E-8
EL, , CR, , 2 ,	718		706		
RCONST, 3 ,	244	, 1,4,	0.0559	. 0.068	,0.8,5.669E-8
EL, , CR, , 2 ,	718		705		
RCONST, 3 ,	245	, 1,4,	0.0559	. 0.079	,0.8,5.669E-8
EL, , CR, , 2 ,	718		704		
RCONST, 3,	246	, 1,4,	0.0559	, 0.064	,0.8,5.669E-8
EL, , CR, 2 ,	718		230		
RCONST, 3,	247	, 1	0.0559	, 0.05	8,5.669E

EL, , CR, , 2,	718		258		
RCONST, 3 ,	248	, 1.4,	0.0559	. 0.048	.0.8,5.669E-8
EL, , CR, 2 ,	718		260		
RCONST, 3	249	, 1,4,	0.0559	. 0.118	.0.8,5.669E-8
EL, , CR, , 2 ,	718		717		
RCONST, 3	250	,1,4,	0.0559	. 0.029	,0.8,5.669E-8
EL, , CR, , 2 ,	718		400		
RCONST, 3 ,	251	. 1	0.1205	. 051	E-8
EL, , CR, , 2 ,	114		718		
RCONST, 3 ,	252	. 1	0.1205	. 0.008	,0.8,5.669E-8
EL, , CR, 2 ,	114		717		
RCONST, 3 ,	253		0.1205	, 0.013	69E-8
EL, , CR, 2,	114		706		
RCONST, 3 ,	254		0.1205	. 0.025	$69 \mathrm{E}-8$
EL, , CR, ,2,	114		705		
RCONST, 3 ,	255	, 1	0.1205	. 0.110	,0.8,5.669E-8
EL, , CR, , 2 ,	114		704		
RCONST, 3,	256	.1,4.	0.1205	. 0.030	,0.8,5.669E-8
EL, , CR, 2 ,	114		703		
RCONST, 3,	257	, 1	0.1205	,0.003	E-8
EL, , CR, 2	114		222		
RCONST, 3 ,	258	. 1	0.1205	, 0.004	-8
EL, , CR, , 2 ,	114		226		
RCONST, 3,	259	. 1	0.1205	. 0.039	69E-8
EL, , CR, , 2 ,	114		228		
RCONST, 3,	260	. 1	0.1205	. 0.152	.8,5.669E-8
EL, , CR, 2 ,	114		230		
RCONST, 3,	261	, 1	0.1205	. 0.019	,0.8,5.669E-8
EL, , CR, , 2,	114		258		
RCONST, 3 ,	262	.1,4,	0.1205	, 0.023	-8
EL, , CR, , 2 ,	114		260		
RCONST, 3,	263	. 1	0.1205	. 0.01	69E-8
EL, , CR, 2 ,	114		400		
RCONST; 3,	264	.1.	0.1205	.0.051	-8
EL, , CR, 2,	114		187		
RCONST, 3,	265	, 1,4,	0.1744	, 0.028	669E-8
EL, , CR, 2 ,	187		704		
RCONST, 3,	266	.1,4,	0.1744	, 0.13	69E-8
EL, , CR, , 2,	187		703		
RCONST, 3,	267	, 1,4,	0.1744	. 0.030	.0.8,5.669E-8
EL, , CR, 2 ,	187		702		
RCONST, 3 ,	268	,1,4,	0.1744	, 0.004	0.8,5.669E-8
EL, , CR, 2 ,	187		224		
RCONST, 3 ,	269	,1,4,	0.1744	, 0.045	,0.8,5.669E-8
EL, $\mathrm{CR}^{\text {, , 2, }}$	187		226		
RCONST, 3 ,	270	, 1,4,	0.1744	, 0.184	.0.8,5.669E-8
EL, , CR, , 2,	187		228		
RCONST, 3 ,	271	.1,4,	0.1744	. 0.047	,0.8,5.669E-8
EL, , CR, 2 ,	187		230		
RCONST, 3 ,	272	. 1,4,	0.1744	. 0.002	,0.8,5.669E-8
EL, , CR, 2 ,	187		258		
RCONST, 3,	273	.1,4,	0.1744	. 0.007	.0.8,5.669E-8
EL, $\mathrm{CR}^{\text {, , 2, }}$	187		400		
RCONST, 3 ,	274	, 1,4,	0.1744	. 0.043	,0.8,5.669E-8
EL, , CR, ,2,	187		185		
RCONST, 3,	275	,1,4,	0.1901	. 0.028	,0.8,5.669E-8
EL, , CR, 2 ,	185		703		
RCONST, 3 ,	276	, 1,4,	0.1901	. 0.142	.0.8,5.669E-8
EL, , CR, , 2,	185		702		
RCONST, 3 ,	277	.1,4,	0.1901	. 0.028	,0.8,5.669E-8
EL, , CR, 2 ,	185		701		
RCONST, 3,	278	.1,4,	0.1901	. 0.003	,0.8,5.669E-8
EL, , CR, , 2,	185		222		

RCONST, 3,	279	, 1	0.1901	2	-8
EL, , CR, , 2,	185		224		
RCONST, 3 ,	280	. 1	0.1901	. 0.191	,0.8,5.669E-8
EL, , CR, , 2,	185		226		
RCONST, 3,	281	,1,4,	0.1901	. 0.042	-8
EL, , CR, , 2 ,	185		228		
RCONST, 3	282	, 1,4,	0.1901	, 0.001	8
EL, , CR, , 2 ,	185		400		
RCONST, 3	283	, 1,4,	0.1634	, 0.047	69E-8
EL, , CR, , 2,	183		226		
RCONST, 3	284	. 1	0.1634	, 0.054	-8
EL, , CR, , 2,	183		185		
RCONST, 3 ,	285	, 1,4,	0.1634	,0.034	-8
EL, , CR, 2 ,	183		702		
RCONST, 3 ,	286	, 1,4,	0.1634	,0.003	-8
EL, , CR, , 2,	183		364		
RCONST, 3	287	, 1.4,	0.1634	, 0.174	69E-8
EL, , CR, , 2,	183		224		
RCONST, 3 ,	288	, 1	0.1634	. 0.040	-8
EL, , CR, 2 ,	183		737		
RCONST, 3 ,	289	, 1,4	0.1634	. 0.028	69E-8
EL, , CR, , 2,	183		736		
RCONST, 3 ,	290	, 1	0.1634	, 0.007	69E-8
EL, , CR, 2 ,	183		700		
RCONST, 3 ,	291	. 1	0.1634	, 0.00	69E-8
EL, , CR, , 2,	183		222		
RCONST, 3,	292	, 1	0.1634	. 0.129	69E-8
EL, , CR, , 2,	183		701		
RCONST, 3,	293	, 1	0.0485	. 0.09	,0.8,5.669E-8
EL, , CR, , 2 ,	164		224		
RCONST, 3 ,	294	, 1,4,	0.0485	. 0.070	,0.8,5.669E-8
EL, , CR, , 2 ,	164		701		
RCONST, 3 ,	295	, 1,4,	0.0485	, 0.130	69E-8
EL, , CR, , 2,	164		183		
RCONST, 3 ,	296	.1,4,	0.0485	. 0	-8
EL, , CR, 2 ,	164		345		
RCONST, 3,	297	, 1,4,	0.0485	,0.004	,0.8,5.669E-8
EL, CR, , 2,	164		344		
RCONST, 3,	298	, 1, 4,	0.0485	, 0.02	-8
EL, , CR, , 2,	164		700		
RCONST, 3 ,	299	, 1,4,	0.0485	, 0.003	,0.8,5.669E-8
EL, , CR, , 2,	164		364		
RCONST, 3,	300	.1,4,	0.0485	, 0.02	,0.8,5.669E-8
EL, , CR, 2 ,	164		222		
RCONST, 3,	301	, 1,4,	0.0485	. 0.137	69E-8
EL, , CR, 2 ,	164		737		
RCONST, 3 ,	302	, 1,4,	0.0485	, 0.102	,0.8,5.669E-8
EL, , CR, ,2,	164		736		
RCONST, 3 ,	303	, 1,4,	0.2870	. 0.005	,0.8,5.669E-8
EL, , CR, ,2,	731		183		
RCONST, 3,	304	, 1,4,	0.2870	. 0.005	69E-8
EL, , CR, , 2,	731		164		
RCONST, 3 ,	305	, 1,4,	0.2870	, 0.026	,0.8,5.669E-8
EL, , CR, , 2,	731		737		
RCONST, 3,	306	.1,4,	0.2870	, 0.015	,0.8,5.669E-8
EL, , CR, , 2,	731		736		
RCONST, 3,	307	, 1,4,	0.2870	, 0.033	.0.8,5.669E-8
EL, , CR, 2,	731		364		
RCONST, 3 ,	308	, 1, 4,	0.2870	, 0.082	,0.8,5.669E-8
EL, CR, , 2 ,	731		222		
RCONST, 3 ,	309	, 1,4,	0.2870	. 0.019	,0.8,5.669E-8
EL, , CR, , 2 ,	731		400		
RCONST, 3,	310	, 1,4,	0.2870	. 0.060	,0.8,5.669E-8

EL, , CR, , 2,	731		700		
RCONST,3,	311	, 1,4,	0.2870	. 0.005	, 0.8,5.669E-8
EL, , CR, , 2 ,	731		321		
RCONST, 3 ,	312	.1,4,	0.2870	. 0.021	,0.8,5.669E-8
EL, , CR, ${ }^{2}$,	731		345		
RCONST, 3 ,	313	, 1,4,	0.2870	, 0.113	,0.8,5.669E-8
EL, , CR, 2 ,	731		344		
RCONST, 3 ,	314	, 1,4,	0.2870	, 0.045	, 0.8,5.669E-8
EL, , CR, ,2,	731		350		
RCONST, 3,	315	, 1	0.2870	. 0.024	-8
EL, , CR, 2 ,	731		730		
RCONST, 3,	316		0.0551	. 0.091	,0.8,5.669E-8
EL, , CR, 2 ,	730		222		
RCONST, 3 ,	317	, 1,4,	0.0551	. 0.007	,0.8,5.669E-8
EL, , CR, , 2,	730		364		
RCONST, 3,	318	, 1,4,	0.0551	, 0.047	69E-8
EL, , CR, 2 ,	730		700		
RCONST, 3 ,	319	, 1,4,	0.0551	. 0.005	,0.8,5.669E-8
EL, , CR, 2 ,	730		344		
RCONST, 3,	320	, 1,4,	0.0551	. 0.005	8
EL, , CR, 2,	730		345		
RCONST, 3 ,	321	, 1	0.0551	. 0.004	-8
EL, , CR, 2 ,	730		400		
RCONST, 3,	322	, 1	0.0551	, 0.07	69E-8
EL, , CR, 2 ,	730		164		
RCONST, 3 ,	323	, 1,	0.0551	. 0.088	, 0.8,5.669E-8
EL, , CR, 2 ,	730		736		
RCONST, 3 ,	324	.1,	0.0551	. 0.197	,0.8,5.669E-8
EL, , CR, 2 ,	730		737		
RCONST.3,	325	. 1	0.0551	, 0.030	,0.8,5.669E-8
EL, , CR, 2 ,	730		183		
RCONST, 3,	326	, 1,4,	0.0551	. 0.020	-8
EL, , CR, 2 ,	730		701		
RCONST, 3,	327	,1,4.	0.0551	. 0.036	,0.8,5.669E-8
EL, , CR, , 2,	730		224		
RCONST, 3 ,	328	, 1,4,	0.1300	. 0.006	.0.8,5.669E-8
EL, $\mathrm{CR}_{1}, 2$,	732		400		
RCONST, 3 ,	329	.1,4,	0.1300	, 0.182	,0.8,5.669E-8
EL, , CR, 2 ,	732		350		
RCONST,3,	330	, 1,4,	0.1300	, 0.07	,0.8,5.669E-8
EL, ${ }^{\text {che }}$, 2 ,	732		344		
RCONST, 3 ,	331	,1,4,	0.1300	. 0.018	,0.8,5.669E-8
EL, CR, , 2,	732		321		
RCONST, 3 ,	332	, 1,4,	0.1300	, 0.005	,0.8,5.669E-8
EL, CR, 2,	732		364		
RCONST,3,	333	.1,4,	0.1300	, 0.002	.0.8,5.669E-8
EL, , CR, , 2 ,	732		700		
RCONST, 3 ,	334	.1,4,	0.1300	. 0.003	,0.8,5.669E-8
EL, , CR, ,2,	732		345		
RCONST, 3 ,	335	.1,4,	0.1300	. 0.118	,0.8,5.669E-8
EL, , CR, ,2,	732		731		
RCONST,3,	336	, 1, 4,	0.0488	. 0.049	.0.8,5.669E-8
EL, , CR, , 2,	736		701		
RCONST, 3,	337	,1,4,	0.0488	. 0.038	,0.8,5.669E-8
EL, , CR, ,2,	736		224		
RCONST, 3 ,	338	, 1,4,	0.0488	. 0.004	, 0.8,5.669E-8
EL, , CR, 2 ,	736		702		
RCONST,3,	339	, 1,4,	0.0488	. 0.001	,0.8,5.669E-8
EL, , CR, ,2,	736		226		
RCONST, 3,	340	, 1,4,	0.0488	. 0.308	, 0.8,5.669E-8
EL, , CR, 2 ,	736		737		
RCONST, 3 ,	341	, 1,4,	0.0488	.0.037	,0.8,5.669E-8
EL, CR, 2,	736		222		

RCONST, 3,	342	.1,4,	0.0488	,0.001	-8
EL, , CR, 2 ,	736		364		
RCONST, 3 ,	343	,1,4,	0.0892	, 0.029	,0.8,5.669E-8
EL, , CR, 2 ,	210		344		
RCONST, 3 ,	344	, 1, 4,	0.0892	, 0.064	,0.8,5.669E-8
EL, , CR, , 2,	210		350		
RCONST, 3,	345	, 1,4,	0.0892	. 0.008	,0.8,5.669E-8
EL, , CR, 2 ,	210		732		
RCONST, 3 ,	346	.1,4,	0.0892	, 0.278	,0.8,5.669E-8
EL, , CR, , 2,	210		321		
RCONST, 3,	347	, 1,4,	0.0892	. 0.002	,0.8,5.669E-8
EL, , CR, , 2,	210		731		
RCONST, 3,	348	, 1,4,	0.0892	, 0.085	,0.8,5.669E-8
EL, , CR, , 2 ,	210		211		
RCONST, 3,	349	, 1,4,	0.0919	. 0.081	,0.3,5.669E-8
EL, , CR, , 2 ,	211		321		
RCONST, 3,	350	, 1,4	0.0919	,0.176	,0.8,5.669E-8
EL, , CR, , 2,	211		350		
RCONST, 3 ,	351	, 1	0.0919	, 0	69E-8
EL, , CR, , 2,	211		320		
RCONST, 3 ,	352	, 1	0.0919	.0.130	69E-8
EL, , CR, , 2,	211		732		
RCONST, 3 ,	353	, 1,4,	0.0919	, 0.014	,0.8,5.669E-8
EL, , CR, , 2,	211		731		
RCONST, 3 ,	354	, 1,4,	0.0919	. 0.020	,0.8,5.669玉-8
EL, , CR, , 2,	211		344		
RCONST, 3 ,	355	, 1,4,	0.0919	. 0.003	,0.8,5.669E-8
EL, , CR, 2 ,	211		364		
RCONST, 3 ,	356	, 1,4,	0.0919	. 0.003	-8
EL, , CR, , 2,	211		400		
RCONST, 3,	357	, 1,4,	0.0137	, 0.061	69E-8
EL, , CR, 2 ,	209		210		
RCONST, 3,	358	, 1,4,	0.0137	, 0.454	69E-8
EL, , CR, , 2,	209		320		
RCONST, 3 ,	359	, 1,	0.0137	, 0.20	69E-8
EL, , CR, , 2,	209		321		
RCONST, 3 ,	360	, 1,4,	0.0137	,0.004	,0.8,5.669E-8
EL, , CR, , 2 ,	209		319		
RCONST, 3 ,	361	, 1,4,	0.0137	. 0.005	,0.8,5.669E-8
EL, , CR, , 2 ,	209		208		
RCONST, 3 ,	362	, 1,4,	0.0003	. 0.056	,0.8,5.669E-8
EL, , CR, , 2,	208		319		
RCONST, 3 ,	363	, 1,4,	0.0183	. 0.006	,0.8,5.669E-8
EL, , CR, , 2 ,	320		208		
RCONST, 3 ,	364	, 1,4,	0.0183	. 0.106	,0.8,5.669E-8
EL, $\mathrm{CR}, \mathrm{l}, 2$,	320		321		
RCONST, 3 ,	365	, 1,4,	0.0183	.0.169	69E-8
EL, , CR, , 2 ,	320		210		
RCONST, 3,	366	, 1,4,	0.0183	, 0.008	,0.8,5.669E-8
EL, , CR, , 2,	320		319		
RCONST, 3,	367	, 1,4,	0.0801	, 0.063	,0.8,5.669E-8
EL, , CR, 2 ,	321		350		
RCONST, 3,	368	,1,4,	0.0801	. 0.005	,0.8,5.669E-8
EL, , CR, , 2,	321		344		
RCONST, 3 ,	369	, 1,4,	0.1433	. 0.065	,0.8,5.669E-8
EL, , CR, , 2,	350		344		
RCONST, 3,	370	, 1,4,	0.1433	, 0.002	,0.8,5.669E-8
EL, , CR, 2 ,	350		345		
RCONST, 3,	371	.1,4,	0.1433	,0.003	,0.8,5.669E-8
EL, , CR, , 2 ,	350		400		
RCONST, 3,	372	,1,4,	0.1433	. 0.003	,0.8,5.669E-8
EL, , CR, 2 ,	350		364		
RCONST, 3,	373	, 1,4	0.1433	. 0.006	8,5.669E-8

EL, , CR, 2 ,	350		222		
RCONST, 3 ,	374	.1,4,	0.1433	. 0.004	,0.8,5.669E-8
EL, , CR, , 2 ,	350		700		
RCONST, 3 ,	375	, 1,4,	0.1416	. 0.043	,0.8,5.669E-8
EL, , CR, , 2,	344		345		
RCONST, 3 ,	376	, 1,4,	0.1416	. 0.057	,0.8,5.669E-8
EL, , CR, , 2 ,	344		400		
RCONST, 3 ,	377	.1,4,	0.1416	. 0.028	8
EL, , CR, ,2,	344		364		
RCONST, 3 ,	378	, 1,4,	0.1416	. 0.020	,0.8,5.669E-8
EL, , CR, 2 ,	344		222		
RCONST, 3 ,	379	, 1,4,	0.1416	. 0.023	.0.8,5.669E-8
EL, , CR, 2 ,	344		700		
RCONST, 3 ,	380	, 1,4,	0.1416	. 0.005	,0.8,5.669E-8
EL, , CR, ,2,	344		736		
RCONST, 3 ,	381	, 1,4,	0.1416	.0.003	,0.8,5.669E-8
EL, , CR, ,2,	344		737		
RCONST, 3 ,	382	.1,4,	0.0370	.0.295	,0.8,5.669E-8
EL, , CR, 2 ,	345		400		
RCONST,3,	383	.1,4.	0.0370	. 0.044	, 0.8,5.669E-8
EL, , CR, , 2 ,	345		364		
RCONST, 3 ,	384	. 1	0.0370	, 0.02	.0.8,5.669E-8
EL, , CR, , 2,	345		222		
RCONST,3,	385	, 1	0.0370	,0.059	9E-8
EL, , CR, 2 ,	345		700		
RCONST, 3 ,	386	. 1	0.0579	. 0.248	,0.8,5.669E-8
EL, , CR, 2 ,	700		222		
RCONST, 3 ,	387	. 1	0.0579	.0.106	,0.8,5.669E-8
EL, , CR, , 2,	700		364		
RCONST, 3 ,	388	. 1	0.0579	,0.027	,0.8,5.669E-8
EL, , CR, ,2,	700		736		
RCONST, 3 ,	389	, 1,4,	0.0579	. 0.024	,0.8,5.669E-8
EL, , CR, , 2,	700		737		
RCONST, 3 ,	390	. 1,4,	0.0579	, 0.005	,0.8,5.669E-8
EL, , CR, 2 ,	700		701		
RCONST, 3 ,	391	.1,4,	0.0579	. 0.013	,0.8,5.669E-8
EL, , CR, , 2 ,	700		224		
RCONST, 3 ,	392	.1,4,	0.0579	. 0.030	,0.8,5.669E-8
EL, , CR, , 2,	700		400		
RCONST, 3 ,	393	, 1,4.	0.0926	. 0.002	69E-8
EL, , CR, , 2,	701		222		
RCONST, 3 ,	394	, 1,4,	0.0926	, 0.312	69E-8
EL, , CR, , 2,	701		224		
RCONST, 3 ,	395	, 1,4,	0.0926	, 0.042	,0.8,5.669E-8
EL, , CR, , 2 ,	701		702		
RCONST,3,	396	, 1,4,	0.0926	. 0.027	,0.8,5.669E-8
EL, , CR, ,2,	701		226		
RCONST, 3 ,	397	, 1,4,	0.0926	. 0.003	,0.8,5.669E-8
EL, , CR, , 2,	701		703		
RCONST,3,	398	,1,4,	0.0926	. 0.001	,0.8,5.669E-8
EL, , CR, , 2 ,	701		228		
RCONST, 3 ,	399	, 1,4,	0.0926	,0.025	,0.B,5.669E-8
EL, , CR, ,2,	701		737		
RCONST, 3 ,	400	, 1,4,	0.1076	,0.023	,0.8,5.669E-8
EL, , CR, , 2 ,	702		224		
RCONST, 3 ,	401	, 1,4,	0.1076	. 0.310	,0.8,5.669E-8
EL, , CR, , 2,	702		226		
RCONST, 3 ,	402	,1,4,	0.1076	. 0.025	, 0.8,5.669E-8
EL, , CR, 2,	702		228		
RCONST,3,	403	.1,4,	0.1076	. 0.037	,0.8,5.669E-8
EL, , CR, , 2,	702		703		
RCONST, 3 ,	404	.1,4.	0.0987	. 0.025	,0.8,5.669E-8
EL, , CR, , 2,	703		226		

RCONST, 3,	405	, 1,4,	0.0987	, 0.038	-8
EL, , CR, , 2,	703		704		
RCONST, 3 ,	406	, 1,4,	0.0987	. 0.005	.0.8,5.669E-8
EL, , CR, ,2,	703		705		
RCONST, 3 ,	407	, 1,4,	0.0987	,0.306	,0.8,5.669E-8
EL, , CR, , 2 ,	703		228		
RCONST, 3 ,	408	, 1	0.0987	, 0.024	-8
EL, CR, , 2 ,	703		230		
RCONST, 3 ,	409	. 1	0.0682	. 0.03	-8
EL, , CR, , 2 ,	704		228		
RCONST, 3,	410	, 1	0.0682	. 0.03	-8
EL, , CR, , 2 ,	704		705		
RCONST, 3 ,	411	, 1	0.0682	. 0.299	.0.8,5.669E-8
EL, , CR, ,2,	704		230		
RCONST, 3,	412	,1,4,	0.0682	, 0.02	,0.8,5.669E-8
EL, , CR, , 2,	704		258		
RCONST, 3 ,	413	, 1	0.0682	. 0	8
EL, , CR, ,2,	704		706		
RCONST, 3 ,	414	, 1	0.0682	. 0.006	,0.8,5.669E-8
EL, , CR, , 2,	704		707		
RCONST, 3,	415	, 1	0.0398	. 0.064	-8
EL, , CR, , 2	705		230		
RCONST, 3,	416	. 1	0.0398	. 0	-8
EL, , CR, ,2,	705		706		
RCONST, 3,	417	, 1	0.0398	,	69E-8
EL, , CR, 2 ,	705		707		
RCONST, 3,	418	, 1,	0.0398	. 0	,0.8,5.669E-8
EL, , CR, , 2 ,	705		708		
RCONST, 3,	419	. 1	0.0398	.0.182	,0.8,5.669E-8
EL, , CR, , 2 ,	705		258		
RCONST, 3 ,	420	, 1,4,	0.0398	. 0.05	,0.8,5.669E-8
EL, , CR, ,2,	705		260		
RCONST, 3,	421	, 1	0.0398	. 0.00	-8
EL, , CR, , 2 ,	705		262		
RCONST, 3,	422	,1,4	0.0770	. 0.040	.0.8,5.669E-8
EL, , CR, , 2,	706		258		
RCONST, 3,	423	. 1	0.0770	. 0	-8
EL, , CR, , 2 ,	706		230		
RCONST, 3 ,	424		0.0770	. 0	8
EL, , CR, , 2 ,	706		707		
RCONST, 3,	425	, 1	0.0770	, 0	-8
EL, , CR, , 2,	706		260		
RCONST, 3,	426	. 1	0.0770	. 0.03	,0.8,5.669E-8
EL, , CR, ,2,	706		262		
RCONST, 3 ,	427	, 1,4,	0.0770	. 0.113	,0.8,5.669E-8
EL, , CR, , 2 ,	706		708		
RCONST, 3,	428	, 1,4,	0.0770	. 0.005	-8
EL, , CR, , 2 ,	706		709		
RCONST, 3 ,	429	, 1,4,	0.0854	. 0.046	-8
EL, , CR, 2 ,	707		260		
RCONST, 3,	430	, 1,4,	0.0854	. 0.128	-8
EL, , CR, , 2,	707		708		
RCONST, 3,	431	, 1	0.0854	, 0.01	69E-8
EL, , CR, , 2,	707		709		
RCONST, 3,	432	,1,4,	0.0854	. 0.005	,0.8,5.669E-8
EL, , CR, 2 ,	707		258		
RCONST, 3 ,	433	,1,4,	0.0854	, 0.140	-8
EL, , CR, , 2 ,	707		262		
RCONST, 3,	434	.1,4,	0.0854	, 0.031	,0.8,5.669E-8
EL, , CR, 2 ,	707		264		
RCONST, 3 ,	435	.1,4,	0.0854	. 0.006	,0.8,5.669E-8
EL, , CR, , 2 ,	707		306		
RCONST, 3,	436	, 1,4,	0.0854	. 0.013	,0.8,5.669E-8

EL, , CR, , 2,	707		400		
RCONST, 3 ,	437	,1,4,	0.0400	. 0.019	,0.8,5.669E-8
EL, , CR, ${ }^{2}$,	262		400		
RCONST, 3 ,	438	,1,4,	0.0536	, 0.031	,0.8,5.669E-8
EL, , CR, , 2,	708		400		
RCONST,3,	439	, 1,4,	0.0536	. 0.015	.0.8,5.669E-8
EL, , CR, , 2 ,	708		301		
RCONST, 3,	440	, 1	0.0536	,	-8
EL, , CR, , 2,	708		306		
RCONST, 3 ,	441	, 1,4,	0.0536	, 0.111	-8
EL, , CR, , 2 ,	708		264		
RCONST, 3 ,	442	, 1	0.0536	. 0.049	-8
EL, , CR, , 2 ,	708		262		
RCONST, 3,	443		0.0536	. 0.007	669E-8
EL, , CR, 2 ,	708		260		
RCONST, 3 ,	444	, 1,4,	0.0775	.0.005	,0.8,5.669E-8
EL, , CR, 2 ,	709		262		
RCONST, 3,	445	,1,4,	0.0775	,0.084	,0.8,5.669E-8
EL, , CR, , 2,	709		708		
RCONST, 3 ,	446	.1,4,	0.0775	. 0.010	,0.8,5.669E-8
EL, , CR, 2 ,	709		264		
RCONST, 3,	447	.1,4,	0.0775	. 0.453	-8
EL, , CR, 2 ,	709		400		
RCONST, 3 ,	448	, 1,4,	0.0775	. 0.118	,0.8,5.669E-8
EL, , CR,, 2,	709		727		
RCONST, 3 ,	449	.1,4,	0.0231	. 0.039	,0.8,5.669E-8
EL, , CR, 2 ,	264		400		
RCONST, 3,	450	.1,4,	0.0231	. 0.028	,0.8,5.669E-8
EL, CR, 2 ,	264		301		
RCONST, 3,	451		0.0338	;0.129	,0.8,5.669E-8
EL, , CR, 2 ,	306		709		
RCONST, 3,	452		0.0338	. 0.028	;0.8,5.669E-8
EL, , CR, , 2 ,	306		301		
RCONST; 3 ,	453	, 1,4,	0.0338	, 0.091	,0.8,5.669E-8
EL, , CR, ${ }_{\text {, }}$,	306		400		
RCONST, 3,	454		0.0158	. 0.002	69E-8
EL, , CR, , 2,	710		306		
RCONST,3,	455	, 1,4,	0.0158	.0.176	,0.8,5.669E-8
EL, , CR, , 2,	710		400		
RCONST, 3 ,	456	.1,4,	0.0158	. 0.003	E-8
EL, , CR, 2 ,	710		59		
RCONST, 3 ,	457	.1,4,	0.0158	.0.051	8,5.669E-8
EL, , CR, , 2 ,	710		58		
RCONST,3,	458	,1,4,	0.0158	,0.163	-8
EL, , CR, , 2,	710		54		
RCONST, 3 ,	459	, 1,4,	0.0158	.0.106	.0.8,5.669E-8
EL, , CR, , 2,	710		50		
RCONST, 3 ,	460	,1,4,	0.0158	.0.123	,0.8,5.669E-8
EL, , CR, , 2 ,	710		728		
RCONST, 3 ,	461	, 1,4,	0.0158	, 0.062	.0.8,5.669E-8
EL, , CR,, 2,	710		727		
RCONST, 3 ,	462	, 1,4,	0.0076	. 0.061	669E-8
EL, , CR, , 2 ,	711		710		
RCONST, 3 ,	463	,1,4,	0.0076	. 0.004	0.8,5.669E-8
EL, , CR, , 2 ,	711		59		
RCONST, 3 ,	464	,1,4,	0.0076	. 0.006	,0.8,5.669E-8
EL, , CR, , 2 ,	711		301		
RCONST,3,	465	, 1,4,	0.0076	. 0.172	,0.8,5.669E-8
EL, , CR, , 2,	711		400		
RCONST, 3 ,	466	, 1,4,	0.0076	. 0.227	.0.8,5.669E-8
EL, , CR, , 2,	711		54		
RCONST, 3 ,	467	, 1,4,	0.0076	. 0.037	,0.8,5.669E-8
EL, , CR, , 2 ,	711		58		

RCONST, 3,	468	, 1, 4,	0.0076	. 0.193	.0.8,5.669E-8
EL, , CR, , 2 ,	711		50		
RCONST, 3,	469	, 1,4,	0.0076	, 0.082	.0.8,5.669E-8
EL, , CR, , 2 ,	711		728		
RCONST, 3,	470	.1,4,	0.0076	, 0.008	,0.8,5.669E-8
EL, , CR, , 2,	711		727		
RCONST, 3,	471	, 1,4,	0.0076	. 0.005	,0.8,5.669E-8
EL, , CR, , 2,	711		709		
RCONST, 3,	472	, 1,4,	0.0733	. 0.024	,0.8,5.669E-8
EL, , CR, , 2,	727		301		
RCONST, 3,	473	, 1,4,	0.0733	. 0.081	.0.8,5.669E-8
EL, , CR, 2 ,	727		400		
RCONST, 3,	474	, 1,4,	0.0733	, 0.033	.0.8,5.669E-8
EL, , CR, , 2,	727		264		
RCONST, 3,	475	, 1,4,	0.0733	,0.105	.0.8,5.669E-8
EL, , CR, , 2 ,	727		708		
RCONST, 3,	476	, 1,4,	0.0733	, 0.155	.0.8,5.669E-8
EL, , CR, , 2,	727		306		
RCONST, 3,	477	.1,4,	0.0775	. 0.003	,0.8,5.669E-8
EL, , CR, , 2,	728		59		
RCONST, 3,	478	.1,4,	0.0775	. 0.007	,0.8,5.669E-8
EL, , CR, , 2,	728		301		
RCONST, 3,	479	,1,4,	0.0775	. 0.034	,0.8,5.669E-8
EL, , CR, 2 ,	728		727		
RCONST, 3,	480	, 1,4,	0.0775	. 0.054	,0.8,5.669E-8
EL, , CR, , 2 ,	728		709		
RCONST, 3 ,	481	, 1,4,	0.0775	,0.303	.0.8,5.669E-8
EL, , CR, 2 ,	728		400		
RCONST, 3 ,	482	, 1,4,	0.0775	,0.016	.0.8,5.669E-8
EL, , CR, , 2,	728		708		
RCONST, 3,	483	, 1,4,	0.0775	, 0.008	.0.8,5.669E-8
EL, , CR, 2 ,	728		264		
RCONST, 3,	484	.1,4,	0.0775	, 0.006	.0.8,5.669E-8
EL, , CR, , 2 ,	728		306		
RCONST, 3,	485	.1,4,	0.0775	. 0.087	.0.8,5.669E-8
EL, , CR, ,2,	728		50		
RCONST, 3,	486	, 1,4,	0.0775	. 0.016	,0.8,5.669E-8
EL, , CR, , 2,	728		54		
RCONST, 3 ,	487	, 1,4,	0.0007	. 0.039	,0.8,5.669E-8
EL, , CR, ,2,	55		400		
RCONST, 3 ,	488	, 1,4,	0.0057	. 0.042	,0.8,5.669E-8
EL, , CR, ,2,	56		400		
RCONST, 3,	489	.1,4,	0.0113	. 0.052	,0.8,5.669E-8
EL, , CR, 2 ,	57		400		
RCONST, 3,	490	, 1,4,	0.0161	, 0.085	.0.8,5.669E-8
EL, , CR, , 2 ,	58		400		
RCONST, 3,	491	, 1,4,	0.0233	. 0.189	.0.8,5.669E-8
EL, , CR, , 2 ,	59		400		
RCONST, 3,	492	, 1,4,	0.0155	. 0.420	,0.8,5.669E-8
EL, , CR, , 2 ,	301		400		
C* Start	Of $\mathbf{C O}$	nvect	on link	s	
ACTSET, EG,					
ACTSET, MP,					
RCONST, 2 ,	700	, 1,1,	0.0003		
EL, , CR, 2 ,	208		400		
RCONST, 2 ,	701	, 1,1,	0.0137		
EL, , CR, 2 ,	209		400		
RCONST, 2 ,	702	, 1,1,	0.0892		
EL, , CR, 2 ,	210		400		
RCONST, 2 ,	703	, 1,1,	0.0919		
EL, , CR, , 2,	211		400		
RCONST, 2 ,	704	,1,1,	0.1300		
EL, , CR, , 2,	732		400		

RCONST, 2 ,	$705.1,1$,	0.2870
EL, , CR, ${ }^{2}$,	731	401
RCONST, 2 ,	706, 1,1,	0.0551
EL, , CR, , 2 ,	730	401
RCONST, 2,	707,1,1,	0.0485
EL, , CR, , 2 ,	164	401
RCONST, 2 ,	708, 1,1,	0.1634
EL, , CR, 2 ,	183	401
RCONST, 2 ,	709,1,1,	0.1901
EL, , CR, , 2 ,	185	401
RCONST, 2,	710,1,1,	0.1744
EL, , CR, , 2 ,	187	401
RCONST, 2 ,	711, 1, 1,	0.1205
EL, , CR, ${ }^{2}$,	114	402
RCONST, 2 ,	712,1,1,	0.0559
EL, , CR, , 2 ,	718	402
RCONST, 2 ,	713,1,1,	0.0869
EL, , CR, , 2 ,	717	402
RCONST, 2 ,	$714,1,1$,	0.0933
EL, , CR, , 2,	716	402
RCONST, 2 ,	$715.1,1$,	0.0609
EL, , CR, 2 ,	715	402
RCONST, 2 ,	$716,1,1$,	0.0209
EL, , CR, , 2,	712	402
RCONST, 2 ,	$717,1,1$,	0.0098
EL, , CR, 2 ,	713	402
RCONST, 2 ,	$718,1,1$,	0.0766
EL, , CR, 2 ,	714	402
RCONST, 2 ,	$719,1,1$	0.0003
EL, , CR, 2 ,	319	400
RCONST, 2 ,	720,1,1	0.0183
EL, , CR, , 2 ,	320	400
RCONST, 2 ,	$721,1,1$	0.0801
EL, ${ }^{\text {c }}$ CR, , 2 ,	321	400
RCONST, 2 ,	722, 1,1.	0.1433
EL, , CR, , 2 ,	350	400
RCONST, 2,	723,1,1,	0.1416
EL, $\mathrm{CR}_{\text {, } 2, ~}^{244}$,	400	
RCONST,2, $724,1,1,0.0370$		
EL, CR,2, 345,	400	
RCONST,2, $725,1,1,0.0579$		
EL,CR,2, 700 ,	401	
RCONST,2, $726,1,1,0.0488$		
EL, CR, 2, 736 ,	401	
RCONST,2, $727,1,1,0.0926$		
EL,CR,2, 701 , 401		
RCONST,2, $728,1,1,0.1076$		
EL, ${ }^{\text {cher, }}$, 702 ,	401	
RCONST,2, $729,1,1,0.0987$		
EL, CR, 2, 703, 401		
RCONST,2, $730,1,1,0.0682$		
EL,CR,2, 704 ,	402	
RCONST,2, $731,1,1,0.0398$		
EL,,CR,2, 705, 402		
RCONST,2, $732,1,1,0.0770$		
EL, ${ }^{\text {ch, }}$, 706 ,	, 402	
RCONST,2, 733	3,1,1, 0.0854	
EL, CR,,2, 707 ,	402	

RCONST,2, $734,1,1,0.0536$
EL,,CR,2, 708, 402
RCONST,2, $735,1,1,0.0733$
EL,,CR,,2, 727, 402
RCONST,2, $736,1,1,0.0775$
EL,,CR,2, 709, 402
RCONST,2, $737,1,1,0.0775$
EL,,CR,,2, 728 , 402
RCONST,2, $738,1,1,0.0158$
EL,,CR,2, 710, 402
RCONST,2, $739,1,1,0.0076$
EL,,CR,,2,711 , 402
C*
ACTSET,EG, 1
ACTSET,RC,1
ACTSET,MP, 2
EL,83,SF, 0,4,195,203,166,151,0,0,0,0,0,0,
EL,66,SF, $0,4,166,168,170,169,0,0,0,0,0,0$,
EL,82,SF,0,4,200,167,168,203,0,0,0,0,0,0,
EL,84,SF,0,4,203,165,168,166,0,0,0,0,0,0,
EL,84,SF,0,4,203,168,165,166,0,0,0,0,0,0,
EL,66,SF,0,4,166,165,170,169,0,0,0,0,0,0,
ACTSET,MP,1,
ACTSET,RC,1,
ACTSET,EG,1,
EL,73,SF,0,4,167,181,163,168,0,0,0,0,0,0,
EL,631,SF,0,4,168,163,164,165,0,0,0,0,0,0,
EL,632,SF, $0,4,165,164,183,170,0,0,0,0,0,0$,
EL,87,SF,0,4,210,211,200,192,0,0,0,0,0,0,
EL,633,SF,0,4,211,215,200,200,0,0,0,0,0,0,
EL,634,SF,0,4,211,732,733,215,0,0,0,0,0,0,
EL,635,SF,0,4,732,731,734,733,0,0,0,0,0,0,
EL,636,SF,0,4,731,730,735,734,0,0,0,0,0,0,
EL,637,SF, $0,4,730,164,163,735,0,0,0,0,0,0$,
ACTSET,MP,5,
ACTSET,RC,1,
ACTSET,EG,1,
EL,641,SF, $0,4,733,734,181,215,0,0,0,0,0,0$,
EL,642,SF, $0,4,181,734,735,163,0,0,0,0,0,0$,
EL,95,SF,0,4,223,235,739,738,0,0,0,0,0,0,
EL,643,SF,0,4,738,739,237,225,0,0,0,0,0,0,
ACTSET,MP,7,
EL,90,SF,0,4,222,223,738,737,0,0,0,0,0,0,
EL, $100, S F, 0,4,235,247,740,739,0,0,0,0,0,0$,
EL,644,SF, $0,4,737,738,225,224,0,0,0,0,0,0$,
EL, $645, S F, 0,4,739,740,249,237,0,0,0,0,0,0$,
C* Conduction elements between plug and main body
ACTSET,MP, 3
ACTSET,EG,4
ACTSET,RC,587
EL,,CR,,2,52,108

ACTSET,RC,588

EL,,CR,2,46,107
ACTSET,RC,589
EL,CR,,2,32,102
ACTSET,RC,590
EL,CR,,2,30,101
ACTSET,RC,591
EL,CR,2,28,100
ACTSET,RC,592
EL,,CR,2,20,94
C* Radiation links between plug and main body. Assign $\mathrm{SF}=1$
ACTSET,EG,3
RCONST, $3,595,1,4,0.0141,1.0,0.8,5.669 \mathrm{E}-8$
EL,,CR,2, 20 , 94
RCONST, $3,596,1,4,0.0146,1.0,0.8,5.669 \mathrm{E}-8$
EL,,CR,2, 28 , 100
RCONST,3, $597,1,4,0.0213,1.0,0.8,5.669 \mathrm{E}-8$
EL,,CR,2, 30 , 101
RCONST,3; $598,1,4,0.0139,1.0,0.8,5.669 \mathrm{E}-8$
EL,,CR,2, 32 , 102
C* Modify crack shield element
ACTSET,EG,1
ACTSET,MP,1
ACTSET,RC,1
EL,20,SF, $0,4,435,445,50,49,0$,
C^{*} Add conduction and radiation links for crack shield
ACTSET,EG, 4
ACTSET,MP, 1
ACTSET,RC,593
EL,,CR,,2,35,435
ACTSET,RC,594
EL,,CR,,2,45,445
ACTSET,EG,3,
ACTSET,MP,3,
RCONST, $3,497,1,4,0061,1.0,8,5.669 \mathrm{E}-8$,
EL,676,CR, $0,2,35,435,0,0,0,0,0,0$,
RCONST, $3,498,1,4,0074,1.0,8,5.669 \mathrm{E}-8$,
EL,677,CR,0,2,45,445,0,0,0,0,0,0,
ACTSET,EG,1,
ACTSET,MP,3,
ACTSET,RC,1,
EL,,SF, $0,4,35,45,445,435,0,0,0,0,0,0$,
C* Generate fin elements
ACTSET,EG,1,
ACTSET,RC,1,
ACTSET,MP,6,
EL, 600, SF, $, 4,420,321,210,209,0,0,0,0,0,0$,
EL,601,SF, $0,4,321,350,732,210,0,0,0,0,0,0$,
EL,602,SF, $0,4,350,344,731,732,0,0,0,0,0,0$,
EL,603,SF, $0,4,344,345,700,731,0,0,0,0,0,0$,
EL,604,SF,0,4,731,700,736,730,0,0,0,0,0,0,

EL, $605, S F, 0,4,701,702,185,183,0,0,0,0,0,0$, EL,606,SF, 0,4,702,703,187,185,0,0,0,0,0,0, EL,607,SF,0,4,703,704,114,187,0,0,0,0,0,0, EL,608,SF,0,4,114,704,705,718,0,0,0,0,0,0, EL,609,SF,0,4,718,705,706,717,0,0,0,0,0,0, EL,610,SF,0,4,717,706,707,716,0,0,0,0,0,0, EL,611,SF,0,4,716,707,708,715,0,0,0,0,0,0, EL,612,SF,0,4,715,708,709,714,0,0,0,0,0,0, EL,612,SF,0,4,715,708,727,714,0,0,0,0,0,0, EL,613,SF, 0,4,714,727,709,728,0,0,0,0,0,0, EL,614,SF, $0,4,712,714,728,710,0,0,0,0,0,0$, EL, $615, S F, 0,4,713,712,710,711,0,0,0,0,0,0$, EL,638,SF,0,4,164,730,183,183,0,0,0,0,0,0, EL,639,SF,0,4,730,736,701,183,0,0,0,0,0,0, EL,640,SF,0,4,732,211,210,210,0,0,0,0,0,0, c* Generate kaowool shield elements ACTSET,MP,1, EL,616,SF,0,4,719,718,720,116,0,0,0,0,0,0, EL,617,SF,0,4,720,718,717,721,0,0,0,0,0,0, EL,618,SF,0,4,721,717,716,722,0,0,0,0,0,0, EL,619,SF,0,4,722,716,715,723,0,0,0,0,0,0, EL,620,SF,0,4,723,715,714,725,0,0,0,0,0,0, EL,621,SF,0,4,724,725,714,712,0,0,0,0,0,0, EL,622,SF, 0,4,726,724,712,713,0,0,0,0,0,0, EL,623,SF,0,4,108,112,724,726,0,0,0,0,0,0, ACTSET,MP,5,
EL,624,SF, 0,4, 116,720,721,118,0,0,0,0,0,0, EL,625,SF, $0,4,118,721,722,110,0,0,0,0,0,0$, EL,626,SF, $0,4,110,722,723,112,0,0,0,0,0,0$, EL,627,SF,0,4,112,723,725,724,0,0,0,0,0,0,
C* Fix stainless elements on cone
ACTSET,MP,1
EL,44,SF,0,4,113,114,719,115,0,0,0,0,0,0, EL,628,SF,0,4,719,116,115,115,0,0,0,0,0,0,

3.0 FILE GAPON.INP

Chapter 3

$C * E L, 61, S F, 0,4,151,156,640,635,0$,
$C * E L, 62, S F, 0,4,156,157,641,640,0$, C*EL, 63, SF, 0, 4, 157, 158, 642, 641, 0, $C * E L, 64, S F, 0,4,158,92,91,642,0$,
C* Gap plane2d elements

ACTSET, MP, 3

EL, , SF, 0, 4, 190, 191, 691, 690,0,
EL, ,SF, 0, 4, 191, 192, 692,691,0,
EL, ,SF, 0, 4, 192, 200,600,692,0, EL, , SF, 0, 4, 200, 167, 667, 600, 0, EL, ,SF, 0, 4, 167, 168, 668, 667,0, EL, ,SF, $0,4,168,165,665,668,0$, EL, ,SF, 0, 4, 165, 170, 670, 665,0, EL, ,SF, 0, 4, 170, 173, 673, 670,0, EL, ,SF, $0,4,173,176,676,673,0$, EL, ,SF, 0,4,176,113,613,676,0, EL, $, \mathrm{SF}, 0,4,113,115,615,613,0$, EL, , SF, $0,4,115,117,617,615,0$, EL, , SF, 0, 4, 117, 105, 605, 617,0, EL, ,SF, 0, 4, 105, 104, 604, 605, 0, EL, ,SF, 0, 4, 604, 104, 98, 98, 0, EL, ,SF, $0,4,15,515,16,16,0$, EL, , SF, 0, 4, 14, 15, 515,514,0, EL, , SF, $0,4,14,13,513,514,0$, C* Base of top plug elements EL, , SF, 0, 4, 1, 2, 502,501, 0, EL, ,SF, 0, 4, 2, 3,503,502,0, EL, $, \mathrm{SF}, 0,4,3,503,4,4,0$, C* Radial elements C*EL, ,SF, 0, 4, 633, 634, 134, 133,0, C*EL, ,SF, 0, 4, 634, 635, 135, 134, 0, C*EL, ,SF, 0, 4, 635, 640, 140, 135, 0, C*EL, , SF, 0, 4, 640, 641, 141,140,0, C*EL, ,SF, 0, 4, 641, 642,142,141,0, $C * E L, S F, 0,4,142,642,91,91,0$,

4.0 FILE GAPOFF.INP

C* File gapoff.inp
C* Modify appropriate elements, note gap is now lead
ACTSET,EG, 1
ACTSET,MP, 2
ACTSET, RC, 1
EL, 7, SF, 0, 4, 9, 10,514,513,0,
EL, $8,8 \mathrm{~F}, 0,4,10,11,515,514,0$,
EL, $9,8 \mathrm{~F}, 0,4,11,12,16,515,0$,
$E L, 51, S F, 0,4,97,128,604,98,0$,
EL, $52, S F, 0,4,128,617,605,604,0$,
EL, 50, SF, 0, 4, 125, 615, 617,128,0,
EL, 48, SF, $0,4,122,613,615,125,0$,
EL, 72, SF, 0, 4, 175,676,613,122,0,
EL, 70, SF, 0, 4, 172, 673, 676,175,0,
EL, 68, SF, 0, 4, 169, 670,673,172,0,
EL, 66, $6 \mathrm{~F}, 0,4,166,665,670,169,0$,
EL, 84, SF, 0, 4, 203, 668,665,166,0,
EL, 82, SF, 0, 4, 600,667,668,203,0,
EL, 81, $5 \mathcal{F}, 0,4,692,600,203,195,0$,
EL, 78, SF, 0, 4, 691, 692, 195, 294,0,
EL, 77, $8 \mathrm{~F}, 0,4,690,691,194,193,0$,
c* Gap plane2d elements
ACTSET,MP, 2
EL, 679, SF, 0, 4, 190, 191,691,690,0,
EL, 680, SF, 0, 4, 191, 192, 692,691,0,
$E L, 681, S F, 0,4,192,200,600,692,0$,
EL, 682, $6 \mathrm{~F}, 0,4,200,167,667,600,0$,
EL, 683, $5 \mathrm{~F}, 0,4,167,168,668,667,0$,
EL, 684, $8 \mathrm{~F}, 0,4,168,165,665,668,0$,
EL, 685, SF, 0,4,165,170,670,665,0,
EL, 686, SF, 0, 4, 170, 173,673,670,0,
EL, 687, SF, 0,4,173,176,676,673,0,
EL, 688, SF, 0,4, 176, 113, 613,676,0,
EL, 689, $5 \mathrm{~F}, 0,4,113,115,615,613,0$,
$\mathrm{EL}, 690, \mathrm{SF}, 0,4,115,117,617,615,0$,
EL, 691, SF, 0, 4, 117, 105, 605,617,0,
EL, 692, SF, 0, 4, 105, 104, 604, 605,0,
EL, 693, SF, 0,4, 604, 104, 98, 98,0,
EL, 694, $8 \mathrm{~F}, 0,4,15,515,16,16,0$,
EL, 695, SF, 0,4,14,15,515,514,0,
EL, $696, \mathrm{SF}, 0,4,14,13,513,514,0$,

5.0 FILE TESTBND.INP

TITLE, F294 STEADY STATE CALCS (VALIDATION OF MEASUREMENT, FILE TESTBND.INP)
C* This file inserts boundary conditions based on the environment
C* present during the steady state thermal test prior to the drop.
C* Specification of heat load and convection boundary conditions
C* Based on 375.5 kCi and ambient temp of 23 C
C* Top gets 10% of heat gen, $1 / 3$ in steel, $2 / 3$ in lead
QEL, 10,94600,13,1,
QEL, 1, 61250,3,1,
C* Bottom gets 10 \% of heat gen
QEL,53,85163,54,1,
QEL,59,85163,60,1,
C* Radial gets 80% of heat gen
QEL, 37,145468,37,1,
QEL,55,145468,58,1,
QEL, 61,145468,64,1,
C* Opper Eireshield, Ingide aurfaces see 40 C
CEL, 22, 6.5,40,1,26,1,0,
CEL, 121, $6,5,40,1,121,1,0$,
CEL, 32, 4. 0, 29, 3, 36, 1, 0,
CEL, 119, 4.0,29,3,119,1,0,
CEL, 119, 6.5,40,2,121,1,0
C* Radial fireshield, inside surfaces see 33 C except for exit
CEL, 89,6.5,33,4,93,1,0,
CEL, 104, 6.5, 40, 4, 108,1,0,
CEL, 644, 6.5,33,4,644,1,0,
CEL, 122, 6.5, 40,3,124,1,0,
CEL, 122, 6.5,40,4,122,1,0,
CEL, 114, 1.6,23,2,118,1,0,
CEL, $545,1.6,23,2,645,1,0$,
CEL, 99, 1.6,23,2,103,1,0,
CEL, 140, 1.6,23,1,142,1,0,
CEL, 140, 1.6,23,4,140,1,0,
CEL, 124,1.6,23,2,142,18,0,
C* Lower fireshield
C* CEL, 125,5,5,23,3,126,1,0,
CBL, 129,1.0,23,1,130,1,0,
CEL, 131, 1.0,23,2,133,1,0,
CEL, 131, 1. $0,23,1,131,1,0$,
CEL, 138,1.0,23,1,139,1,0,
C* Top plug, air temp of 40 C assumed
CEI, 20, 8.0, 40,2,21,1,0,
CEL, 20, 8.0, 40,3,21,1,0,
CEL, 20, 8, 0, 40,4,20,1,0,
CEL, 17, 8.0, 40,3,18,1,0,
C* Radiation boundary conditions based on 23 C
C* Radiation links
ACTSET,MP, 3
ACTSET,EG, 3
RCONST, 3, $900,1,4,0.0007,1.0,0.8,5.669 \mathrm{~B}-8$
RL, CR, 2, 85 , 400
RCONST, 3, $901,1,4,0.0057,1.0,0.8,5.669 \mathrm{~B}-8$
BL, CR, 2, 86,400
RCONST, 3, $902,1,4,0.0113,1.0,0.8,5.569 \mathrm{~B}-8$
EL, CR, 2, 87 , 400
RCONST, 3, $903,1,4,0.0159,1.0,0.8,5.669 \mathrm{~B}-8$

EL, , CR, 2 ,	88		400		
RCONST, 3 ,	904	.1,4,	0.0214	. 1.0	,0.8,5.669E-8
EL, , CR, 2 ,	B9		400		
RCONST, 3 ,	905	.1.4,	0.0158	, 1.0	.0.8,5.669z-8
EL, , CR, 2 ,	90		400		
RCONST, 3 ,	906	.1,4,	0.0060	.1 .0	.0.8,5.669E-8
EL, ${ }^{\text {cher }}$, 2 ,	295		400		
RCONST, 3 ,	907	.1,4,	0.0085	.1 .0	,0.8,5.669E-8
EL, , CR, 2 ,	293		400		
RCONST, 3.	908	, 1,4,	0.0059	. 1.0	.0.8,5.669E-8
EL, , CR, ${ }^{2}$,	297.		400		
RCONST, 3 ,	909	.1,4,	0.0061	. 1.0	,0.8,5.669E-8
EL, , CR, 2 ,	301		400		
RCONST, 3 ,	910	, 1,4,	0.0158	.1.0	,0.8,5.669E-8
EL, , CR, 2 ,	60		400		
RCONST, 3 ,	911	.1.4.	0.0018	. 1.0	-0.8,5.669E-8
EL, $\mathrm{CR}_{\text {, , }} \mathbf{2}$,	306		400		
RCONST, 3 ,	912	.1,4,	0.0091	. 1.0	.0.8,5.669E-8
EL, , CR, 2 .	307		400		
RCONST, 3 ,	913	.1,4,	0.0094	. 1.0	,0.8,5.669E-8
EL, , CR, 2 ,	311		400		
RCONST, 3 ,	914	, 1,4,	0.0073	. 1.0	,0.8.5.669E-8
EL, , CR, 2 ,	315		400		
RCONST, 3 ,	915	.1,4,	0.0207	. 1.0	,0.8,5.669E-8
EL, , CR, 2 ,	291		400		
RCONST, 3.	916	, 1,4,	0.0301	. 1.0	.0.8,5.669E-8
EL, , CR, 2 ,	289		400		
RCONST,3,	917	.1,4,	0.0429	. 1.0	,0.8,5.669E-8
EL, , CR, 2 ,	287		400		
RCONST, 3 ,	918	.1,4,	0.0478	. 1.0	,0.8,5.669E-8
EL, , CR, , 2,	285		400		
RCONST, 3 ,	919	.1,4,	0.0339	. 1.0	,0.8,5.6698-8
EL, , CR, 2 ,	283		400		
RCONST, 3 ,	920	.1,4;	0.0745	. 1.0	,0.8,5.669E-8
EL, , CR, 2 ,	255		400		
RCONST,3,	921	.1,4.	0.1068	. 1.0	.0.8.5.669E-8
EL, , CR, ${ }^{\text {2, }}$	253		400		
RCONST, 3 ,	923	,1,4,	0.1170	. 1.0	.0.8,5.669E-8
EL, , CR, ${ }^{\text {2, }}$	251		400		
RCONST, 3 ,	924	.1,4.	0.1003	. 1.0	,0.8,5.669E-8
EL, , CR, 2 ,	249		400		
RCONST, 3 ,	925	, 1,4,	0.0652	. 1.0	.0.8,5.669E-8
EL, CR, 2 ,	740		400		
RCONST, 3 ,	926	,1,4,	0.0600	. 2.0	.0.6.5.669E-8
EL, $\mathrm{CR}_{6}, 2$.	247		400		
RCONST, 3 ,	927	,1,4,	0.0302	. 1.0	.0.8,5.669E-8
EL, , CR, 2 ,	245		400		
RCONST, 3.	928	, 1,4,	0.0077	. 1.0	.0.8,5.669E-8
EL, ${ }^{\text {c }}$ CR, 2 ,	373		400		
RCONST, 3 ,	929.	.1,4,	0.0094	. 1.0	.0.8,5.669E-8
EL, , CR, , 2 ,	369		400		
RCONST, 3 ,	930	,1,4,	0.0091	. 1.0	,0.8,5.669E-8
EL, , CR, 2 ,	365		400		
RCONST, 3 ,	931.	, 1,4,	0.0018	.1.0	,0.8,5.669E-8
EL, , CR, 2 ,	364		400		
RCONST, 3.	932 ,	,2.4.	0.0003	.1.0	.0.8,5.669E-8
EL, , CR, 2 ,	328		400		

```
RCONST,3, 933,1,4, 0.0070,1.0,0.8,5.669B-8
EL,,CR,,2, 329 , 400
RCONST,3, 934,1,4, 0.0251,1.0,0.8,5.669R-8
EL,,CR,,2, 330, 400
RCONST,3, 935,1,4, 0.0570,1.0,0.8,5.669F-8
EL,,CR,,2, 359, 400
RCONST,3, 936,1,4, 0.0581,1.0,0.8,5.669]-8
EL,,CR,,2, 334, 400
RCONST,3, 937,1,4, 0.0132,1.0,0.8,5.669%-8
EL, CR,,2, 335 , 400
RCONST,3, 938,1,4, 0.0115,1.0,0.8,5.669B-8
EL,,CR,,2, 337, 400
RCONST,3, 939,1,4, 0.0142 ,1.0,0.8,5.6691-8
EL,,CR,,2, 341 , 400
C* Define node 400 as the environment at 23 C, 401 at 33 C and 402
C* at 40 C for steady state condltions. Nodes are separated so that
C* different boundary conditions appear in plots.
NIND,400,23,400,1,
NTND, 401,33,401,1,
NTND,402,40,402,1,
A_THERMAL, S,0.001,1,1,20,
```


6.0 FILE 360BND.INP

TITLE,F294 STEADY STATE CALCS (FILE 360BND. INP)
C* This Eile inserts boundary conditions based on the environment
C* present during the steady state thermal test prior to the drop.
C* Specification of heat load and convection boundary conditions
C* Based on 360 kCi and ambient temp of 38 C
C* Top gets 10 \% of heat gen, $1 / 3$ in steel, $2 / 3$ in lead
QEL,10,90695,13.1,
QEL,1,58722,3,1,
C* Bottom gets 10 \% of heat gen
QEL,53,81648,54,1,
QEL,59,81648,60,1,
C* Radial geta 80 of heat gen
QEL, 37,139463.37,1,
QEL,55,139463,58,1,
QEL, 61,139463,64,1,
C* Upper fireshield, inside surfaces see 55 C
CEL, 22,6.5,55,1,26,1,0,
CEL, 121, $6.5,55,1,121,1,0$,
CEL, $32,4,0,44,3,36,1,0$,
CEL, 119,4,0,44,3,119,1,0,
CEL, 119,6.5,55,2,121,1,0
C* Radial fireshield, inside aurfaces see 33 C except for exit
CEL , 89, 6.5,48,4,93,1,0,
CEL, 104, 6.5,55,4,108,1,0,
CEL, 644,6.5,48,4,644,1,0,
CES, 122, 6.5,55,3,124,1,0,
CEL, 122, 6.5,55, 4, 122, 1,0,
CEL, 114,1.6,38,2,118,1,0,
CEI, 645,1.6,38,2,645,1,0,
CEL, $99,1.6,38,2,103,1,0$,
CEL, 140,1,6,38,1,142,1,0,
CEL, 140, 1.6,38, 4, 140,1,0,
CEL, 124,1.6,38,2,142,18,0,
C* Lower fireshield
C* CEL, 125,6,5,38,3,126,1,0,
CEL, 129, 1.0,38,1,130,1,0,
CEL, 131,1,0,38,2,133,1,0,
CEL, 131,1.0,38,1,131,1,0,
CEL , 138,1.0,38,1,139,1,0,
C* Top plug, air temp of 55 C assumed
CEL, 20, 8.0,55,2,21,1,0,
CEL, 20, 8,0,55,3,21,1,0,
CEL, 20,8.0,55,4,20,1,0,
CEI, 17, 8, 0, 55, 3, 18, 1,0,
C* Radiation boundary conditions based on 38 C
C* Radiation links
ACTSET,MP, 3
ACTSET,EG, 3
RCONST,3, $900,1,4,0.0007,1.0,0.8,5.6698-8$
EL, ,CR, 2, 85 , 400
RCONST,3, $901,1,4,0.0057$, 1.0,0.8,5.669E-8
EL, CR, 2, 86 , 400
RCONST,3, $902,1,4,0.0113,1.0,0.8,5.669 \mathrm{E}-8$
EL, ,CR, 2, 87 , 400
RCONST, 3, $903,1,4,0.0159,1.0,0.8,5.669 \mathrm{E}-8$

```
EL,,CR,.2, 88, 400
RCONST,3, 904,1,4, 0.0214,1.0,0.8,5.669B-8
EL,,CR,.2, 89, 400
RCONST,3, 905,1,4, 0.0158,1.0,0.8,5.669%-8
EL,,CR,,2, 90 , 400
RCONST,3, 906 ,1,4, 0.0050,1.0,0.8,5.669B-8
EL,,CR,,2, 295, 400
RCONST,3, 907, 1,4, 0.0085 ,1.0,0.8,5.669B-8
EL,,CR,,2, 293, 400
RCONST,3, 908,1,4, 0.0059,1.0,0.8,5.669B-8
EL,,CR,,2, 297, 400
RCONST,3, 909,1,4, 0.0061 ,1.0 ,0.8,5.569B-8
EL,,CR,,2, 301, 400
RCONST,3, 910,1,4, 0.0158
EL,,CR,,2, 60, 400
RCONST,3, 911,1,4, 0.0018,1.0,0.8,5.6698-8
EL,,CR,.2, 306, 400
RCONST,3, 912,1,4, 0.0091
EL,,CR,,2, 307, 400
RCONST,3, 913,1,4, 0.0094
EL,,CR,,2, 311, 400
RCONST,3, 914,1,4, 0.0073,1.0,0.8,5.659B-8
EL,,CR,,2, 315, 400
RCONST,3, 915,1,4, 0.0207,1.0,0.8,5.659E-8
EL,,CR,,2, 291 , 400
RCONST,3, 916,1,4, 0.0301
EL,,CR,,2, 289, 400
RCONST,3, 917,1,4, 0.0429,1.0,0.8,5.669E-8
EL,,CR,.2, 287 , 400
RCONST,3, 918,1,4, 0.0478
EL,,CR,,2, 285 , 400
RCONST,3, 919,1,4, 0.0339
EL,,CR,,2, 283, 400
RCONST,3, 920,1,4, 0.0745
BL,,CR,,2, 255 , 400
RCONST,3, 921,1,4, 0.1068
EL,,CR,,2, 253 , 400
RCONST,3, 923,1,4, 0.1170
BL,,CR,,2, 251, 400
RCONST,3, 924,1,4, 0.1003
BL,,CR,.2, 249, 400
RCONST,3, 925,1,4, 0.0652
EL,,CR,,2, 740, 400
RCONST,3, 926,1,4, 0.0600
BL,,CR,,2, 247 , 400
RCONST,3, }927,1,4,0.030
EL,,CR,,2, 245 , 400
RCONST,3, 928,1,4, 0.0077,1.0,0.8,5.6698-8
EL,,CR,,2, 373 , 400
RCONST,3, 929,1,4, 0.0094,1.0,0.8,5.669B-8
EL,,CR,,2, 369 , 400
RCONST,3, 930,1,4, 0.0091,1.0,0.8,5.669R-8
EL,,CR,,2, 365, 400
RCONST,3, 931,1,4, 0.0018,1.0,0.8,5.6698-8
EL,,CR,,2, 364, 400
RCONST,3, 932,1,4, 0.0003,1.0,0.8,5.669%-8
BL,,CR,,2, 328 , 400
,1.0,0.8,5.669R-8
,1.0,0.8,5.659%-8
.1.0 ,0.8,5.659R-8
.1.0 ,0.8,5.669R-8
.1.0,0.8,5.669R-8
,1.0,0.8,5.669%-8
.1.0,0.8,5.669%-8
.1.0,0.8,5.669%-8
.1.0,0.8,5.669%-8
,1.0 ,0.8,5.669%-8
.1.0,0.8,5.669B-8
,1.0,0.8,5.669R-8
```

```
RCONST,3, 933,1,4, 0.0070,1.0,0.8,5.669E-8
EL,,CR,,2, 329 , 400
RCONST,3, }934,1,4,0.0251,1.0,0.8,5.669E-
EI,,CR,,2, 330. 400
RCONST,3, 935,1,4,0.0570,1.0,0.8,5.669E-8
EL,,CR,,2, 359, 400
RCONST,3, 936,1,4, 0.0581,1.0,0.8,5.669E-8
EL,,CR,,2, 334 , 400
RCONST,3, 937, 1,4, 0.0132,1.0,0.8,5.669E-8
EL,,CR,,2, 335, 400
RCONST,3, 938,1,4, 0.0115, 1.0,0.8,5.669E-8
EL,,CR,,2, 337, 400
RCONST,3, 939,1,4, 0.0142,1.0 ,0.8,5.669E-8
EL,,CR,,2, 341 , 400
C* Define node 400 as the enviromment at 38 C, 401 at 48 C and 402
C* at 55 C for steady state condltions. Nodes are separated so that
C* different boundary conditions appear in plots.
NTND,400,38,400,1,
NTND,401,48,401,1,
NTND,402,55,402,1,
A_THERMAL,5,0.001,1,1,20.
```


7.0 FILE FIRE12.INP

TITLE, F294 TRANSIENT ANALYSIS - case $h=12$
TEMPINIT, 1
CLS:
EPLOT;
MPROP, $8, \mathrm{HC}, 12.0$
C* Set time curves for ambient temperatura
CURDEF, TIME, 5, 1, 0, 800, 1800, 800, 1800.01, 38, 100000, 38
CURDEF, TIME, 6, 1, 0, 800, 1800, 800, 1800.01, 48, 100000, 48
CURDEF, TIME, 7, 1, 0, 800,1800, 800,1800.01,55,100000,55
C* Set node 400,401,402 temperature to 1
ACTSET, TC, 5
NTND, 400, 1, 400,1,
ACTSET,TC, 0
ACTSET, TC, 6
NTND, 401, 1, 401,1,
ACTSET,TC, 0
ACTSET,TC, 7
NTMD, 402, 1, 402,1,
ACTSET,TC, 0
C* Modify external convection boundary conditions
C* Uppar fireshield
CEL, 22, 12. 0, 1, 1, 26, 1, 7,
CEL, 121, 12.0,1,1,121,1,7,
CEL, 32, 12.0,1,3,36,1,5,
CEL, 119, 12.0,1,3,119,1,5,
CEL, 119, 12. 0, 1, 2, 121, 1,5
C* Radial fireshield
CKL, 89, 12.0,1,4,93,1,5,
CEL, 104, 12.0,1,4,108,1,6,
CEL, $644,12.0,1,4,644,1,6$,
CEL, 122, 12.0,1,3, 124, 1, 7,
CEL, 122, 12.0,1, 4, 122,1,7,
CEL, 114, 12.0,1,2,118,1,5,
CEL, 645, 12.0,1,2,645,1,5,
CEL, $99,12.0,1,2,103,1,5$,
CEL, 140, 12.0,1,1,142,1,5,
CEL, 140, 12.0,1, 4, 140,1,5,
CEL, 124, 12. 0, 1, 2, 142, 18,5,
C* Lowar fireshield
CEL, 129, 12.0,1,1,130,1,5,
CEL, 131, 12.0,1,2,133,1,5,
CEL, 131, 12.0,1,1,131,1,5,
CEL , 138, 12.0,1,1,139,1,5,
C* Top plug
CES, 20,12.0,1,2,21,1,7,
CEL, 20, 12, 0, 1, 3, 21, 1,7,
CEL, 20, 12.0,1,4,20,1,7,
CEI, 17, 12.0,1,3,18,1,7,
C*
A_PFETHERMAI, T, 2,0.001,20,1,
TIMES,0,9000,60,

8.0 FILE INSOL8.INP

C* File INSOLB.INP
C* This file requires $294 G E O M, G A P O N, 360 \mathrm{BND}$ to be run before it. C* Apply the solar heat flux TITLE, F294 STEADY STATE WITE INSOLATION CONSIDERED EXEL, 32, 2000,3,36,1, HXEL, 119,2000,3,119,1, EXEL, 124,500,2,124,1, HXEL,114,500,2,118,1, EXEL, $99,500,2,103,1$, EXELL, 645,500,2,645,1, HXEL, 142,500,2,142,1, ESELPROP, EG, 1,1,1,1, CLS, 1, EPLOT: EXPLOT:

9.0 SSTEST.TEM

Licensed to:NORDION INTERNAT


```
1-
    structural Research and Analysis Co HSTAR 1.75 5/28/1998 Page 1
SSTBST2 F294 STEADY STATE CALCS (VALIDATIONOFNEASUREMENT PILETESTBND.INP
```

 Temperatures at time step \(=1\) Time \(=0.00000 \mathrm{E}+00\))
 Number of equilibrium iterations in time step (1) \(=3\)
 Sode Temperature Node Temperature Node Temperature
 | 1 | 207.65 | 2 | 205.56 | 3 | 199.85 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 4 | 189.28 | 5 | 183.03 | 6 | 182.97 |
| 7 | 183.06 | 8 | 182.38 | 9 | 173.04 |

SOLUTIONTIMELOG

Licensed to: NORDION INTERNAT

Temperatures at time step $=1$ Time $=0.00000 \mathrm{~F}+00$) Number of equilibrium iterations in time step (1) $=3$

Node	Temperature	Node	Temperature	Node	Temperature
1	214.90	2	212.89	3	207.43
4	197.33	5	191.34	6	191.28
7	191.36	8	190.71	9	181.75

Input phase $=$ 9.0
Assemblage of matrices $=$ 3.0
Triangularization of conductivity matrix $=$ 0.0
Solution of equations $=$ 0.0
Miscellaneous calculations = 1.0
TOTALSOLUTIONTIME $=$ 13.0

11.0 SS360SUN.TEM

Licensed to: NORDION INTERRNAT

 ss360sunf294 STRADY STATE WITH INSOLATION CONSIDERED
Temperatures at.time step $=1$ Time $=0.00000 \mathrm{~s}+00$)
Number of equilibrium iterations in time step $(1)=4$
Node Temperature Node Temperature Node Temperature

1	215.18	2	213.17	3	207.70
4	197.60	5	191.64	6	191.57
7	191.65	8	190.99	9	182.05

 SOITTIONTIME YOG
Input phase - 9.0
Assemblage of matrices $=$ 4.0
Triangularization of conductivity matrix $=$ 0.0
Solution of equations $=$ 0.0
Miscellaneous calculations * 1.0
TOTALSOLTTIONTIME $=$ 14.0

12.0 SS360SUN2.TEM

Licensed to:NORDION INTERNAT

Temperatures at time step $=1 \quad$ Time $=0.00000 \mathrm{~s}+00)$
Number of equilibrium iterations in time step $(1)=3$

Node Temperature Node Temperature Node Temperature

1	214.96	2	212.96	3	207.49
4	197.39	5	191.41	6	191.35
7	191.43	8	190.77	9	181.81

Chapter 3

Input phase $=$ 9.0
Assemblage of matrices $=$ 3.0
Triangularization of conductivity matrix $=$

$$
0.0
$$

Solution of equations$=$0.0
Miscellaneous calculations $=$ 0.0
TOTALSOLTTIONTIME $=$
12.0

13.0 UNBOND.TEM

Licensed to: NORDION INTERKAT

Structural Research and Analyais Co HSTAR 1.75 5/28/1998 Page 1 UNBOND 7294 STEADY STATE CALCS (VALIDATIONOFMEASUREMENT PILETESTEND.INP Temperatures at time step $=1$ Time $=0.00000 \mathrm{~F}+00$) Number of equilibrium iterations in time step (1) $=3$

Node Temperature Node Temperature Node Temperature

1	166.27	2	166.03	3	165.47
4	164.61	5	160.84	6	160.60
7	160.06	8	159.14	9	150.80
10	150.49	11	149.77	12	149.03

13	138.95	14	138.09	15	136.33	
16	133.12	17	166.66	18	166.45	
19	165.73	20	165.18	28	158.72	
30	148.87	32	130.45	35	126.26	
40	133.63	41	133.18	45	121.50	
46	121.24	49	120.22	50	119.99	
52	118.65	54	117.85	55	38.212	
56	38.113	57	37.889	58	37.576	
59	37.145	60	36.560	61	38.211	
62	38.111	63	37.888	64	37.575	
65	37.146	66	36.553	73	35.631	
74	35.684	75	35.782	76	35.923	
77	36.112	78	36.386	85	35.623	
86	35.680	87	35.778	88	35.917	
89	36.112	90	36.364	91	130.95	
92	124.14	93	131.91	94	124.95	
96	114.03	97	109.23	105.44		
100	114.45	101	110.03	102	103.81	
104	103.58	105	102.99	107	102.31	
108	95.548	110	103.61	112	92.326	
113	103.38	114	102.02	115	103.91	
116	101.77	117	106.51	118	106.60	
122	110.80	125	109.85	128	107.28	
133	124.48	134	124.14	135	121.22	
136	126.19	137	125.35	138	124.26	
140	132.92	141	137.07	142	136.31	
145	134.91	146	137.88	147	136.73	
149	119.63	150	119.40	151	113.18	
156	125.59	157	131.25	158	131.44	
163	92.203	164	91.283	165	93.517	
166	103.39	167	94.698	168	94.016	
169	108.03	170	98.838	172	115.25	
173	107.22	175	115.68	176	107.66	
181	95.770	183	97.861	185	105.86	
187	106.39	190	95.146	191	94.257	
192	89.898	193	103.56	194	103.18	
195	99.638	200	89.846		203	96.392
208	95.662	209	92.763	210	88.219	
211	85.293	215	87.884	220	30.450	

Structural Research and Analysis Co ESTAR 1.75 5/28/1998 Page 2 UNBOND F294 STEADY STATE CALCS (VALIDATIONOFMEASUREMENT FILETESTBND.INP

221	30.445	222	31.159	223	31.159
224	32.311	225	32.311	226	33.038
227	33.038	228	33.604	229	33.604
230	34.795	231	34.795	233	30.327
235	29.796	237	29.080	239	29.134
241	29.584	243	30.707	245	30.323
247	29.796	249	29.079	251	29.133
253	29.584	255	30.706	258	35.143
259	35.141	260	35.377	261	35.376
262	35.218	263	35.215	264	34.886
265	34.887	266	34.354	267	34.344
271	31.078	273	31.678	275	32.709
277	33.361	279	34.137	283	31.077

 SOLUTIONTIME LOG

Input phase	E	7.0
Assemblage of matrices	$=$	3.0
Triangularization of conductivity matrix	-	0.0
Solution of equations	\%	0.0
Miscellaneous calculations	\pm	1.0

APPENDIX 3.6.5 KaOWOOL Product Information

Kaowool Ceramic Fiber Product $\mathrm{C} \equiv: 3 \mathrm{a}$

Blanket

BeW Kaowool ceramic fiber is the basic fiber from which the Kaowool family has grown. The raw material is kaolin, a naturally occurring, high purity. alumina-silica fireclay. Kaowool has a melting point of 3200F, a normal use limit of 2300F, but can be used at even higher temperatures in certain applications. BeW Kaowool has fiber lengths up to 10 in., average lengths of 4 in . These long fibers, thoroughly interlaced in the production process. provide Kaowool blanket. bulk. and strip products with unsurpassed strength without the addition of a binder system. Other forms are processed from basic Kaowool ceramic fiber.

BaW Kaowool blanket contains no organic binder. Bianket will not contaminate furnace atmospheres or emit offensive odors. Available in nominal densities of: 3.4.6 and 8 lb cu ft. Width: 24 in. and 48 in. Length: 24 tt.

Thickness

BaW Kaowool blankets are manufactured in the following thicknesses for the indicated density:

Physical Properties:

Kaowool ceramic fiber is a highly efficient insulator. Kaowool's low shot content gives more usable fiber for your insuiating dollar. Kaowool's longer fibers give it the high tensile strength and resiliency to withstand vibration and physical abuse. Kaowool is self-supporting-will not separate. sag or settle. Kaowool has low thermal conductivity, low heat storage. and is extremely resistant to thermal shock. Color ... White Fiber Diameter 2.8 microns (average) Fiber Length $4^{\prime \prime}$ (average) (to 10") Specific Gravity Specific Heat at 1800 F mean Tensile Strength. Fiber Tensile Modulus. Fiber Use Limits:

Continuous . . 2300 F
Single Application 3000 F
Melting Point $\quad 3200$ F
Hardness
6-MOH's scale
700-Knoop's scale-100 gr, loading

Sound absorption coefficient (S.A.C.)
vs. frequency for BaW Kaowool Blanket. One-inch thickness at density indicated by numbers on curves.

PRESSURE DROP ACROSS KAOWOOL BLANKETS

Chemical Properties:

BaW Kaowool ceramic fibers possess excellent resistance to chemical attack. Exceptions are hydrofiuoric acid, phosphoric acid and strong alkalies. Kaowool is unaffected by oil or water. Thermal and physical properties are restored after drying.

BaW KAOWOOL BLANKET.THERMAL CONDUCTIVITY AT VARIOUS DENSITIES

Blanket

Typical Applications

High Temperature insulation:

Annealing furnaces

Boiler combustion chambers and heat exchangers, oilfired
Catalytic muffiers and automotive afterbumers
Gas turbines
Fans
Laboratory ovens
Steam valves of headers and steam separators
Thin wall kilns-back-up
Water and steam tubes-back-up
Petroleum catalytic crackers
Protection on Water-cooled Risers and Cross-over RailsReheating furnaces
Oven Linings
Superheater seals
Wrapping Pipe and Tubing afterWelding for Stress Relieving
Fumace Repair
Acoustical Service for Missiles, Rockets, and Jet Aircraft
Cryogenic Vessel Fire Protection
Furnace Door Cover and Linings
Expansion Joint Packing
High temperature filters

Kaowool Ceramic Fiber Preduzt Eata:

Appendix 3.6.6
 Normal Thermal Tests of the F-294 Package wITH THE F-457 SOURCE CARRIER

Report for F-294 Steady State Thermal Test S/N: F294-03

Thermal Test

TABLE OF CONTENTS

1. INTRODUCTION
2. EQUIPMENT USED
3. THERMOCOUPLE PLACEMENT WITHIN F-294 CAVITY
4. SOURCE LOADING
5. MEASUREMENTS
6. OBSERVATIONS
7. REFERENCES
8. APPENDIX 1: Raw temperature data.
9. APPENDIX 2: Source loading diagram.

LIST OF FIGURES

FIGURES

1

TITLE
Thermocouple locations on the F-294-03 package.

LIST OF CHARTS

CHARTS
1

TITLE
Temperature versus Time Plot using the Temperature Recording Data.

LIST OF TABLES

TABLE
1
2

TITLE
Maximum recorded temperature of test using the Temperature Recording Unit.
Thermocouple location v/s Read-out channels (As per Figure 1).

Steady State Thermal Test of F-294 s/n 3

1. Introduction

The steady state thermal test was performed according to procedure IN/OP 0597 F294 (2). The F-294-03 Shipping package was subjected to normal thermal testing when loaded with Co-60 as outlined in The Procedure for Steady State Thermal Test IN/OP 0597 F294 (2). The F294-03 was loaded by Greg Chateauvert (Cobalt Operations Technician), and the thermal testing was preformed by Benjamin Prieur (Industrial Quality Control). One thermal test configuration was used: F-294-03 loaded with eighty (80) sources in the modified source cage design. F-294-03 didn't include the crushshield and fireshield.
Start date of test: 2000-October-26
End date of test: 2000-October-27

2. Equipment Used

Calibrated type K thermocouples and wires were used throughout the thermal test, with one 20 channel digital thermometer readers. The Keithley 2000-20 multimeter, serial number: 6-445-137 was last calibrated on February 2000 with a quoted accuracy of $+/-2^{\circ} \mathrm{C}$, it is due for re-calibration on February 162001.

3. Thermocouple Placement within F-294 Cavity

The F-294 assembly was prepared for thermal tests prior to loading. Two thermocouples were mounted on $1 / 2$ " square stainless steel flat plates; two were in turn tack welded on to the cavity wall, in line with the drainline, radially opposed to each other and axially on the cavity center line. Two cavity wall thermocouple wires were then routed through the drainline to Type K connectors

The third was mounted on to the underside of the container plug, adjacent to the vent line exit hole. Thermocouples were also mounted on to two of the C-188 sources using screw clamps for a secure contact. The position of the thermocouples were approximately at the center of the sources; Greg Chateauvert (Source Technician) then placed these sources ($s / n 70167, \operatorname{s} / \mathrm{n} 70292$) within the modified cage assembly. The thermocouple wires were then routed through the drainline to Type K connectors. The wire for the three thermocouples (bottom plug + $2 \mathrm{C}-188$) was routed out the F-294 plug vent line to Type K connectors.

Table 2 represents the F-294 thermocouple locations versus the read-out channels.

4. Source Loading

The F-294 was loaded with 376 kilo curies of Co 60 on 2000-October-26 in the form of eighty (80) C-188 sealed sources. The loading was done as a typical preparation for shipment, in Cell 06 within Cobalt Operations, MDS Nordion, Kanata. The loaded container was removed from Cell 06 and placed in the shipping bay. The container was installed on the shipping skid. The thermocouples were mounted on to the container as shown in (Figure 1). The package was allowed to attain steady state overnight. Steady state is assumed after three or more successive numerically equal readings. The temperature readings were recorded every five minutes.

5. Measurements

Start Date: 2000-October-26
Temperature readings were recorded every five minutes, the test was performed on the package not including the crushshield and fireshield.
The table below (Table 1) represents the highest temperature readings recorded using Temperature Recording Unit during entire thermal test.

Table 1, Maximum Recorded Temperature of test using the Temperature Recording Unit.

Channel	Location	Temperature (${ }^{\circ} \mathrm{C}$)
1	Top of plug external face, near plug lift lug	102
2	C-188, close to drainline cap	458
4	Bottom of plug in the cavity	23
5	Cavity wall, close to drainline cap	239
6	Cavity wall, away from drainline cap	226
7	Container external wall, top (between two fins)	52
9	C-188, away from drainline cap	467
11	Container external wall, close to drainline cap (between two fins)	95
12	Container external wall, under drainline cap	64
13	Underside, center of F-294 skid	29

Chart 1 represents the temperature versus time of each thermocouple reading taken using the Temperature Recording Unit over the entire duration of the thermal test. This chart outlines the increase in temperature in the beginning and shows the settling of the temperature near the end.
Note: Series on chart is known as the actual channel on temperature reader.

Chart 1. Temperature versus Time Plot using the Temperature Recording Unit.

TEMPERATURE VERSUS TIME PLOT

Table 2, Thermocouple Location v/s Read-out Channels

Instrument: Temperature Recording Unit, serial number: 6-445-137.

Thermocouple Number	Channel Number	Thermocouple Identification on F-294-03
1	1	Top of plug external face, near plug lift lug
2	2	C-188, close to drainline cap
4	4	Bottom of plug in the cavity
5	5	Cavity wall, close to drainline cap
6	6	Cavity wall, away from drainline cap
7	7	Container external wall, top (between two fins)
9	9	C-188, away from drainline cap
11	11	Container external wall, close to drainline cap (between two fins)
12	12	Container external wall, under drainline cap
13	13	Underside, center of F-294 skid

6. Observations

On the Temperature versus Time Plot, channel 2; thermocouple located on the C-188 close to drainline, the temperature profile from the start isn't as predicted. A gradual temperature profile was expected, what was measured was an irregular rise in temperature trend. This profile could have been caused by a malfunction in the connection between the thermocouple wire and source c-clamp. There was most likely a temporary break in the connection. Channel 4; thermocouple located on the bottom of plug in the cavity, the recorded temperature readings are below the expected readings. This was most likely due to a short in the thermocouple wire before entering the F-294-03 container, this might have been caused during the loading of the container when the wires were pulled through the plug.

7. References

Ref.[1]: IN/OP 0597 F294 (2): Procedure for the F-294 steady state thermal test.
Ref.[2]: CO-QC/OP-0023 (1): Operating procedure for Temperature Recording Unit set-up. (In-process)

Figure 1, Thermocouple locations on the F-294-03 package.

TIME Chan. 1 Chan. 2 Chan. 3 Chan. 4 Chan. 5 Chan. 6 Chan. 7 Chan. 8 Chan. 9 $13 \cdot 42 \cdot 03 \quad 3933667 \quad 327.0319 \quad 9.90 E+37$ $\begin{array}{llllll}13: 47: 16 & 40.86523 & 388.6468 & 9.90 \mathrm{E}+37 & 23.07093 & 181.7974 \\ 13: 52 \cdot 28 & 41.26023 & 389.4997 & 9.90 \mathrm{E}+37 & 23.0045 & 183.0771\end{array}$ 13:57:40 42.17644 14:02:53 43.21495 14:08:05 44.08134 14:13:18 45.73342 14:18:30 46.32848 14:23:42 46.53796 14:28:55 47.06256 14:34:07 48.42837 14:39:19 49.7303 14:44:32 50.43347 14:49:44 51.02397 14:54:57 51.8228 15:00:09 52.0599 15:05:21 53.53775 15:10:34 53.80824 15:15:46 55.18738 15:20:58 55.5345 15:26:11 56.30651 15:31:23 57.51224 15:36:36 57.30842 15:41:48 58.48324 15:47:00 59.12335 15:52:13 59.04871 15:57:25 60.36555 16:02:37 61.13935 16:07:50 60.52205 16:13:02 61.13337 16:18:14 63.33477 16:23:27 64.13642 16:28:39 64.47777 16:33:52 65.61815 16:39:04 65.76498 16:44:16 66.53117 16:49:29 67.05325 16:54:41 67.76933 16:59:53 68.19118 17:05:06 68.96669 17:10:18 69.52826 17:15:31 69.90771 17:20:43 70.63101 17:25:55 71.19623 17:31:08 71.67383 17:36:20 72.50666 17:41:32 72.69197 17:46:45 73.22195 17:51:57 73.69263 17:57:10 74.32545 18:02:22 74.003924 18:07:34 75.21112 18:12:47 75.53469 18:17:59 76.95815 18:23:11 77.0647 $\begin{array}{lllll}378.4741 & 755.2851 & 22.9805 & 184.2519\end{array}$ $\begin{array}{llllll}379.0655 & 9.90 \mathrm{E}+37 & 22.97268 & 185.4667\end{array}$ $\begin{array}{llll}379.8018 & -186.632 & 22.9576 & 186.58\end{array}$ $\begin{array}{lllllll}380.5557 & 9.90 \mathrm{E}+37 & 22.97025 & 187.6945\end{array}$ $\begin{array}{llllll}381.1859 & 9.90 \mathrm{E}+37 & 22.95187 & 188.7716\end{array}$ 381.7203 9.90E+37 22.92171189 .8529 $\begin{array}{lllll}382.3568 & 9.90 \mathrm{E}+37 & 22.82306 & 190.7611\end{array}$ $380.3191 \quad 789.4195 \quad 22.8061 \quad 191.6837$ $\begin{array}{llll}380.9102 & 9.90 E+37 & 22.86937 & 192.6524\end{array}$ $\begin{array}{llllll}431.3914 & 77.76009 & 22.87427 & 193.8479\end{array}$ $432.0196 \quad 9.90 \mathrm{E}+37 \quad 22.86318 \quad 194.6788$ $432.5416823 .8852 \quad 22.71556 \quad 195.4761$ $\begin{array}{llllllll}433.0185 & 9.90 E+37 & 22.72689 & 196.2961\end{array}$ $433.71341327 .189 \quad 22.70975 \quad 197.1326$ 434.1899 9.90E+37 22.64656 197.9858 $434.6975 \quad 9.90 \mathrm{E}+3722.58838198 .8128$ $\begin{array}{llll}435.0388 & 9.90 E+37 & 22.62221 & 199.6028\end{array}$ $435.4495 \quad 9.90 E+37 \quad 22.68786 \quad 200.6001$ 436.0673 9.90E+37 $22.77907 \quad 201.3109$ $436.5641 \quad 9.90 \mathrm{E}+37 \quad 22.8091 \quad 202.0463$ 437.0116 9.90E +3722.74211202 .6842 437.3561 9.90E+37 22.71918203 .4656 $\begin{array}{lllll}437.8583 & 9.90 \mathrm{E}+37 & 22.71023 & 204.1143\end{array}$ $438.1846 \quad 739.9277 \quad 22.71725 \quad 204.763$ $438.6662 \quad 526.6906 \quad 22.79351 \quad 205.4513$ $\begin{array}{lllll}439.0298 & 9.90 E+37 & 22.82568 & 206.1228\end{array}$ $\begin{array}{lllll}439.4241 & 9.90 E+37 & 22.71069 & 206.6822\end{array}$ $\begin{array}{llllll}439.7077 & 9.90 E+37 & 22.62655 & 207.2888\end{array}$ 440.0301 9.90E+37 $22.62449 \quad 207.8709$ $440.38269 .90 E+3722.68406 \quad 209.0619$ $440.7161 \quad 9.90 E+37 \quad 22.7814 \quad 209.6581$ $\begin{array}{llllll}441.132 & -156.611 & 22.8084 & 210.1773\end{array}$ $441.2987 \quad 786.9534 \quad 22.69858 \quad 210.688$ $\begin{array}{llllll}441.5798 & 580.8346 & 22.6164 & 211.1981\end{array}$ $\begin{array}{lllll}441.8542 & 9.90 E+37 & 22.56106 & 211.7078\end{array}$ $442.2555 \quad 9.90 \mathrm{E}+37 \quad 22.58337 \quad 212.641$ $442.4944 \quad 9.90 E+37 \quad 22.61816 \quad 213.1262$ 442.7661 9.90E+37 $22.63172 \quad 213.6587$ 443.1119 978.9708 $22.69504 \quad 214.1287$ $\begin{array}{llllll}443.4372 & 9.90 \mathrm{E}+37 & 22.69352 & 214.6173\end{array}$ $\begin{array}{lllll}443.8971 & 9.90 \mathrm{E}+37 & 22.70827 & 215.5455\end{array}$ $444.1224 \quad 197.986 \quad 22.68486 \quad 216.0912$ $\begin{array}{llll}444.4364 & 9.90 \mathrm{E}+37 & 22.67905 & 216.529\end{array}$ $\begin{array}{llllll}444.6712 & -156.585 & 22.68395 & 216.9639\end{array}$ $444.9698-34.492 \quad 22.66389 \quad 217.3847$ $\begin{array}{llllll}445.126 & 9.90 \mathrm{E}+37 & 22.71551 & 217.8451\end{array}$ 445.4839 9.90E+37 $22.72611 \quad 218.2566$ 445.649 9.90E+37 22.76919218 .6696 $\begin{array}{llll}445.9451 & 9.90 \mathrm{E}+37 & 22.73407 & 219.0515\end{array}$ $\begin{array}{lllllll}446.1509 & 9.90 E+37 & 22.76268 & 219.4669\end{array}$ $\begin{array}{rrrr}168.197 & 28.33856 & 9.90 \mathrm{E}+37 & 434.6583 \\ 169.3088 & 28.43475 & 9.90 \mathrm{E}+37 & 435.9276 \\ 170.7799 & 28.93221 & 9.90 \mathrm{E}+37 & 437.0807\end{array}$ $\begin{array}{lllll}171.955 & 29.28829 & 199.7651 & 438.0292\end{array}$ $\begin{array}{llllll}172.9476 & 29.50016 & 9.90 E+37 & 438.9137\end{array}$ $174.188630 .099449 .90 \mathrm{E}+37439.6887$ $\begin{array}{llllll}175.1361 & 29.846 & 9.90 \mathrm{E}+37 & 440.3947\end{array}$ $176.194430 .54742 \quad 9.90 \mathrm{E}+37441.0736$ $177.306830 .808489 .90 \mathrm{E}+37441.7646$ 178.144730 .48324 9.90E+37 442.2988 $179.0776 \quad 31.3192$ 9.90E+37 442.9058 $179.9382 \quad 31.39173$ 9.90E+37 443.4503 $\begin{array}{llllll}180.8565 & 31.92979 & 9.90 E+37 & 444.0244\end{array}$ 181.766932 .53102 9.90E+37 444.4956 182.511831 .63838 9.90E+37 444.9652 $\begin{array}{llllllll}183.2488 & 32.74204 & 9.90 \mathrm{E}+37 & 445.5384\end{array}$ 184.154933 .07645454 .1419446 .0152 $185.0005 \quad 32.12848$ 9.90E+37 446.4703 185.772533 .35992 9.90E+37 446.8754 $186.5214 \quad 33.3913$ 9.90E+37 447.2501 187.224234 .12751 9.90E+37 447.6162 $188.0695 \quad 34.53329$ 9.90E+37 448.1029 $\begin{array}{lllll}188.7453 & 35.12717 & 9.90 E+37 & 448.551\end{array}$ $189.528934 .62836 \quad 9.90 \mathrm{E}+37449.0072$ $190.291534 .936119 .90 \mathrm{E}+37449.3322$ 190.824535 .49636 9.90E+37 449.6865 $191.4648 \quad 36.276941099 .299450 .0178$ $\begin{array}{llllll}192.2551 & 36.4026 & 935.4537 & 450.3861\end{array}$ 192.707936 .40104130 .3377450 .6787 $\begin{array}{lllllllll}193.4345 & 36.83081 & 9.90 E+37 & 450.999\end{array}$ 193.836137 .32827 9.90E+37 451.2843 $194.4376 \quad 37.1098$ 9.90E+37 451.5663 $195.0791 \quad 37.259169 .90 \mathrm{E}+37 \quad 451.879$ 195.782337 .13239 9.90E+37 452.1797 $196.489937 .30874 \quad 9.90 \mathrm{E}+37452.4687$ 196.944738 .38551358 .7594452 .6921 197.454937 .99429 9.90E +37452.9918 $198.0071 \quad 38.7157$ 9.90E+37 453.203 $198.5068 \quad 38.29427$ 9.90E+37 453.4634 198.915738 .44651 9.90E +37453.7641 $199.5742 \quad 39.5365$ 9.90E+37 453.9104 199.984639 .03629392 .2758454 .2142 200.555939 .45257 9.90E+37 454.4599 $200.9322 \quad 40.37528 \quad 1248.258454 .6841$ $201.3957 \quad 39.73795 \quad 9.90 \mathrm{E}+37 \quad 454.944$ $201.927740 .61573 \quad 9.90 \mathrm{E}+37455.1809$ $202.477 \quad 40.78558$ 9.90E+37 455.346 $202.7788 \quad 40.50495$ 9.90E+37 455.5984 203.421841 .40869238 .6054455 .7627 203.801541 .63795388 .2537456 .0123 204.278840 .67963 9.90E +37456.2034 204.654341 .14826 9.90E+37 456.4083 205.001242 .28543 9.00E+37 456.6001 $205.4269 \quad 41.4083 \quad 492.1684 \quad 456.8185$ $446.3898 \quad 9.90 \mathrm{E}+37 \quad 22.7413 \quad 219.8257$

TIME 18:28:24 18:33:36 18:38:49 18:44:01 18:49:13 79.16386 18:54:26 18:59:38 $\quad 80.83776$ 19:04:50 81.0117 19:10:03 80.89646 19:15:15 81.45679 19:20:28 81.92458 19:25:40 82.0498 19:30:52 82.37124 19:36:05 82.69825 19:41:17 83.29418 19:46:30 82.76065 19:51:42 83.33191 19:56:54 83.47214 20:02:07 84.57838 20:07:19 85.03128 20:12:31 85.47637 20:17:44 85.43365 20:22:56 84.84773 20:28:08 85.93832 20:33:21 86.52321 20:38:33 86.75303 20:43:45 86.71299 20:48:58 87.7464 20:54:10 87.33041 20:59:22 87.94565 21:04:35 88.13629 21:09:47 88.43305 21:15:00 88.59717 21:20:12 89.18038 21:25:24 89.40434 21:30:37 89.45825 21:35:49 89.87607 21:41:01 89.9302 21:46:14 90.17135 21:51:26 90.64072 21:56:38 90.77468 22:01:51 90.77625 22:07:03 90.80539 22:12:15 91.05305 22:17:28 91.21034 22:22:40 91.24914 22:27:53 92.05481 22:33:05 92.51796 22:38:17 92.31083 22:43:29 92.57419 22:48:42 92.90678 22:53:54 92.68994 22:59:07 92.93157 23:04:19 92.82227 23:09:31 92.96295 23:14:44 93.87308

Chan. 2 Chan. 3 Chan. 4 $446.5146 \quad 9.90 \mathrm{E}+37 \quad 22.80572$ $446.8271 \quad 9.90 \mathrm{E}+37 \quad 22.82225$ 447.0357 9.90E+37 22.85622 $447.248 \quad 273.6139 \quad 22.8458$ $447.38181321 .353 \quad 22.83029$ 447.6959849 .900722 .82595 $447.9321 \quad 9.90 E+37 \quad 22.83184$ $448.1688 \quad 9.90 E+37 \quad 22.81456$ $448.2517 \quad 9.90 \mathrm{E}+37 \quad 22.81869$ 448.4194 9.90E+37 22.79188 $448.6349 \quad 9.90 \mathrm{E}+37 \quad 22.80958$ $448.8403 \quad 9.90 \mathrm{E}+37 \quad 22.80605$ $449.0042435 .1463 \quad 22.8173$ $\begin{array}{llll}449.1576 & 1365.422 & 22.82335\end{array}$ $449.4859 \quad 9.90 \mathrm{E}+37 \quad 22.80591$ $449.7088 \quad 9.90 \mathrm{E}+37 \quad 22.80677$ $449.7633 \quad 9.90 \mathrm{E}+37 \quad 22.81422$ $450.0045 \quad 9.90 \mathrm{E}+37 \quad 22.79397$ 450.2053 9.90E+37 22.73712 $450.3621 \quad 367.156222 .74018$ $450.5843889 .9282 \quad 22.69274$ 450.7708 9.90E+37 22.70056 450.9226473 .092422 .72435 450.9483 9.90E+37 22.72968 $451.2207 \quad 274.2777 \quad 22.72646$ 451.3094 9.90E+37 22.72116 $451.4909 \quad 567.6375 \quad 22.71695$ $451.6635 \quad 9.90 \mathrm{E}+37 \quad 22.7487$. $451.76623 .92445 \quad 22.76027$ $451.9039 \quad 9.90 \mathrm{E}+37 \quad 22.7645$ 228.6137 $\begin{array}{lllll}452.0112 & 9.90 \mathrm{E}+37 & 22.70886 & 228.814\end{array}$ $452.1989 \quad 9.90 E+37 \quad 22.75427 \quad 229.0426$ $452.3938 \quad 9.90 \mathrm{E}+37 \quad 22.74728$ $\begin{array}{lllll}452.5244 & 9.90 \mathrm{E}+37 & 22.72528 & 229.4923\end{array}$ $452.5397 \quad 9.90 \mathrm{E}+37 \quad 22.74278 \quad 229.6414$ $\begin{array}{lllll}452.7635 & 9.90 E+37 & 22.7199 & 229.8423\end{array}$ 452.8515 9.90E +3722.67209 452.8602 9.90E $+37 \quad 22.66536$ $453.061 \quad 9.90 \mathrm{E}+37 \quad 22.64072$ $453.18969 .90 \mathrm{E}+37 \quad 22.62703$ $453.3446 \quad 9.90 E+37 \quad 22.62923$ $453.4016 \quad 9.90 \mathrm{E}+37 \quad 22.61527$ 453.5091 9.90E+37 22.62154 453.6154 9.90E+37 22.61983 $453.72549 .90 \mathrm{E}+37 \quad 22.61372$ $453.7656 \quad 9.90 \mathrm{E}+37 \quad 22.62869$ 453.8718 9.90E $+37 \quad 22.6412$ $454.0563 \quad 31.27616 \quad 22.67937$ $454.1349-67.3432 \quad 22.69268$ $454.2285 \quad$ 日. $90 \mathrm{E}+37 \quad 22.67305$ $454.3239 .90 \mathrm{E}+3722.66708$ $454.346 \quad 9.90 \mathrm{E}+37 \quad 22.63574$ $454.4971 \quad 1203.604 \quad 22.64581 \quad 232.8164$ $454.49379 .90 \mathrm{E}+3722.63464$ $454.59 \quad 9.90 E+37 \quad 22.66619$ $454.6737 \quad 9.90 \mathrm{E}+37 \quad 22.62861$ 222.8216209 223.2653209

Chan. 5 Chan. 6
Chan. 6 Chan. 7
Chan. 7 Chan. 8 Chan. 8 220.2167206 .38794164833 $\begin{array}{llllll}220.5732 & 206.6537 & 42.39388 & 443.4588 & 457.3557\end{array}$ $220.9679207 .135441 .58425 \quad 9.90 E+37457.6112$ $\begin{array}{llllll}221.2864 & 207.5047 & 41.61598 & 954.5844 & 457.8247\end{array}$
$221.605 \quad 207.9006 \quad 42.29902 \quad 9.90 \mathrm{E}+37 \quad 457.9142$ $\begin{array}{lllllll}221.9923 & 208.1358 & 42.01976 & 497.9308 & 458.1113\end{array}$ $\begin{array}{lllllll}222.3336 & 208.4177 & 42.15599 & 12.84289 & 458.2798\end{array}$ $222.6203 \quad 208.872142 .51439 \quad 9.90 \mathrm{E}+37 \quad 458.4476$ 209.2208 42.01808 $9.90 \mathrm{E}+37$ 458.6394 223.564142 .3242 9.90E+37 458.7671 $\begin{array}{llllll}223.8732 & 210.205 & 42.38253 & 9.90 E+37 & 459.0958\end{array}$ $\begin{array}{llllll}224.1914 & 210.4929 & 42.44024 & -198.346 & 459.2227\end{array}$ $\begin{array}{lllll}224.4798 & 210.8245 & 42.84472 & 9.90 \mathrm{E}+37 & 459.466\end{array}$ $\begin{array}{lllllll}224.7783 & 211.2559 & 42.81351 & 85.09417 & 459.634\end{array}$ $\begin{array}{llllll}225.0369 & 211.5516 & 43.17795 & 9.90 \mathrm{E}+37 & 459.7984\end{array}$ $\begin{array}{lllll}225.3195 & 211.7528 & 43.11562 & 9.90 \mathrm{E}+37 & 459.9201\end{array}$ $\begin{array}{lllll}225.5962 & 212.0161 & 43.21403 & 9.90 E+37 & 460.1032\end{array}$ $\begin{array}{llllll}225.8503 & 212.4796 & 44.09972 & 9.90 E+37 & 460.2541\end{array}$ $\begin{array}{llllll}226.1451 & 212.6326 & 45.05805 & 9.90 E+37 & 460.4151\end{array}$ $\begin{array}{lllllll}226.3597 & 213.1359 & 44.73707 & 488.4797 & 460.5218\end{array}$ 226.635213 .2975 226.9059213 .4873 $44.47351 \quad 317.7883 \quad 460.575$ $44.3638 \quad 9.90 \mathrm{E}+37 \quad 460.7577$ 44.64707 9.90E+37 460.883 45.22181131 .386461 .0423 $45.55349 \quad 9.90 E+37461.1617$ $44.92534 \quad 9.90 E+37 \quad 461.3287$ 45.15642 9.90E +37461.4379 $44.93667 \quad 533.7129 \quad 461.5592$ $44.77902 \quad 973.8268 \quad 461.6283$ 45.09173 9.90E +37461.7362 $45.86153 \quad 266.6363461 .8805$ $45.20078 \quad 9.90 E+37 \quad 461.9755$ 45.19983120 .7105462 .0964 $45.89818 \quad 9.90 \mathrm{E}+37 \quad 462.2465$ $46.790839 .90 \mathrm{E}+37462.3452$ $46.56936 \quad 1318.433 \quad 462.3815$ $46.99194 \quad 9.90 E+37 \quad 462.4925$ 46.28615 9.90E+37 462.5786 $47.722859 .90 E+37462.7258$ $47.8656 \quad 9.90 \mathrm{E}+37 \quad 462.7637$ $46.92242 \quad 9.90 \mathrm{E}+37462.8293$ $47.505539 .90 \mathrm{E}+37462.9466$ 47.57941 9.90E+37 463.0235 $46.73553 \quad 9.90 E+37 \quad 463.1088$ 47.19407 9.90E+37 463.1895 $47.587149 .90 E+37463.2831$ $47.075 \quad 742.9988 \quad 463.3613$ $47.25214 \quad 738.2338 \quad 463.481$
$48.43023 \quad 9.90 \mathrm{E}+37 \quad 463.5029$ $48.4569 \quad 9.90 E+37 \quad 463.6359$ $48.76919 .90 E+37463.6672$ $48.53065 \quad 9.90 E+37463.7358$ $47.27188 \quad 9.90 \mathrm{E}+37463.7998$ $\begin{array}{lllll}233.1164 & 219.8068 & 48.66576 & 9.90 E+37 & 463.9272 \\ 233.2423 & 220.0293 & 48.47205 & 9.90 E+37 & 463.9652\end{array}$

TIME
23:19:56 23:25:08 23:30:21 23:35:33 23:40:46 23:45:58 23:51:10 23:56:23 0:01:35 0:06:47 95.8198 0:12:00 95.20828 0:17:12 95.38137 0:22:25 96.17625 0:27:37 96.73559 0:32:49 96.12883 0:38:02 96.12665 0:43:14 96.43893 0:48:26 96.37957 0:53:39 96.34834 0:58:51 96.32259 1:04:04 96.77367 1:09:16 96.84686 1:14:28 97.09561 1:19:41 96.94737 1:24:53 97.09545 1:30:05 96.26392 1:35:18 96.8422 1:40:30 97.65625 1:45:43 98.06435 1:50:55 97.77847 1:56:07 97.73028 2:01:20 97.58206 2:06:32 97.66934 2:11:44 98.32601 2:16:57 98.12813 2:22:09 98.17265 2:27:21 98.45117 2:32:34 98.07402 2:37:46 99.53962 2:42:58 98.39812 2:48:11 97.89642 2:53:23 98.28548 2:58:36 99.23971 3:03:48 98.44304 3:09:00 $\quad 98.1187$ 3:14:13 98.85009 3:19:25 99.26742 3:24:37 99.57268 3:29:50 98.93909 3:35:02 98.35656 3:40:15 99.51239 3:45:27 99.34212 3:50:39 100.0301 3:55:52 99.2475 4:01:04 100.0104
$\begin{array}{llllllll}4: 06: 16 & 100.455 & 457.5671 & 9.90 E+37 & 22.68141 & 237.9049\end{array}$

Chan. 2 Chan. 3 Chan. 4 Chan 5 $454.8871278 .9048 \quad 22.6524 \quad 233.3961$ $454.9263 \quad 9.90 \mathrm{E}+37 \quad 22.68628 \quad 233.5399$ $455.01019 .90 \mathrm{E}+37 \quad 22.70479 \quad 233.6554$ $455.0897 \quad 674.4219 \quad 22.6817 \quad 233.7885$ $455.2401 \quad 9.90 \mathrm{E}+37 \quad 22.70755 \quad 233.9032$ $455.22819 .90 E+37 \quad 22.68307 \quad 234.0301$ $455.2776 \quad 9.90 \mathrm{E}+37 \quad 22.69981 \quad 234.1309$ $455.46339 .90 \mathrm{E}+3722.69052$ 455.5032 9.90E+37 22.66451 455.5097 9.90E $+37 \quad 22.62885$ 455.617 9.90E $+37 \quad 22.6723$ 455.6259 9.90E +3722.66705 $455.71429 .90 E+3722.64798$ 455.7731 9.90E+37 22.66836 $455.8329 \quad 431.5493 \quad 22.6771$ 455.9367 9.90E+37 22.72228 $455.9593 \quad 9.90 \mathrm{E}+37 \quad 22.67742$ 456.0193 9.90E+37 22.64514 $456.0897 \quad 9.90 \mathrm{E}+37 \quad 22.64918$ $456.1708 \quad 285.002 \quad 22.64798$ $456.1928 \quad 9.90 E+37 \quad 22.67734$ $456.2705492 .9518 \quad 22.66201$ $456.3432 \quad 9.90 \mathrm{E}+37 \quad 22.65687$ 456.3642 9.90E+37 22.66469 $456.4129 \quad 9.90 \mathrm{E}+37 \quad 22.66279$ 456.5141 9.90E+37 22.65505 456.578 9.90E +3722.65864 $456.5396 \quad 9.90 E+37 \quad 22.65074$ $456.4927 \quad 599.8374 \quad 22.6506$ 456.6216 905.0429 22.63298 456.6765 9.90E+37 22.62253 456.7133 9.90E+37 22.63196 456.7779 9.90E+37 22.62687 $456.8233163 .2741 \quad 22.62092$ 456.8547 9.90E+37 22.63239 456.8971 0.90E+37 22.66351 456.9821463 .616922 .63933 456.9596 9.90E+37 22.68521 $457.0119 .90 \mathrm{E}+37 \quad 22.74878 \quad 237.0288$ $\begin{array}{llll}457.0618 & 9.90 E+37 & 22.7398 & 237.1355\end{array}$ $457.0831-119.101 \quad 22.70412 \quad 237.1632$ $457.1273 \quad 9.90 E+37 \quad 22.71042 \quad 237.2309$ $\begin{array}{llll}457.2663 & 9.90 \mathrm{E}+37 & 22.6899 & 237.298\end{array}$ $457.1933 \quad 9.90 \mathrm{E}+37 \quad 22.69935 \quad 237.3425$ $457.3168 \quad 9.90 E+37 \quad 22.72644 \quad 237.4312$ $457.33041078 .066 \quad 22.74701 \quad 237.4795$ $457.3821 \quad 9.90 \mathrm{E}+37 \quad 22.74363 \quad 237.5443$ $457.4043 \quad 9.90 \mathrm{E}+37 \quad 22.76608 \quad 237.5786$ $457.4651 \quad 9.90 E+37 \quad 22.75416 \quad 237.6376$ $\begin{array}{lllll}457.4395 & 9.90 E+37 & 22.74805 & 237.6762\end{array}$ $\begin{array}{lllll}457.4646 & 9.90 \mathrm{E}+37 & 22.76528 & 237.7136\end{array}$ $\begin{array}{lllll}457.517 & 9.90 \mathrm{E}+37 & 22.75429 & 237.7826\end{array}$ $457.6101 \quad 9.90 E+37 \quad 22.74594 \quad 237.8464$ $457.6189 \quad 9.90 E+37 \quad 22.72853 \quad 237.8633$ $457.5896 \quad 803.165422 .68395 \quad 237.883$

Chan. 6 $220.123347 .66831 \quad 9.90 \mathrm{E}+37$ $220.380447 .27125 \quad 5.416735$ $220.331547 .85469 \quad 9.90 \mathrm{E}+37$ $220.531647 .29635 \quad 596.028$ 220.744947 .87282 9.90E+37 $220.716347 .86035 \quad 910.0894$ $220.897947 .47688 \quad 9.90 E+37$ 221.021148 .05305 9.90E+37 $221.170349 .07219 \quad 283.3543$ $\begin{array}{lllll}221.1728 & 47.85451 & 1131.384 & 464.6018\end{array}$ $221.4309 \quad 48.61674 \quad 9.90 \mathrm{E}+37 \quad 464.6705$ $\begin{array}{lllll}221.3817 & 47.86325 & 9.90 E+37 & 464.7004\end{array}$ $221.5731 \quad 47.8522 \quad 9.90 \mathrm{E}+37 \quad 464.8224$ $\begin{array}{lllll}221.7048 & 48.40183 & 9.90 \mathrm{E}+37 & 464.8415\end{array}$ $\begin{array}{llll}221.8193 & 47.72967 & 1305.385 & 464.861\end{array}$ $221.9413 \quad 47.74717 \quad 9.90 \mathrm{E}+37 \quad 464.9223$ $221.967447 .75342 \quad 9.90 E+37 \quad 464.9256$ 222.11248 .55251 9.90E +37465.0188 222.183447 .70827 9.90E +37465.0377 $\begin{array}{lllll}222.2481 & 48.58052 & -101.229 & 465.1091\end{array}$ $222.3566 \quad 49.58917 \quad 9.90 \mathrm{E}+37 \quad 465.2123$ $222.576449 .845259 .90 E+37 \quad 465.1886$ $222.6166 \quad 49.05079 \quad 882.3858 \quad 465.2334$ $222.6686 \quad 49.13676 \quad 9.90 E+37 \quad 465.2838$ $\begin{array}{lllll}222.9848 & 50.3776 & 9.90 \mathrm{E}+37 & 465.3038\end{array}$ $\begin{array}{lllll}222.9232 & 48.26954 & 1276.631 & 465.343\end{array}$ $222.9753 \quad 49.83791 \quad 9.90 \mathrm{E}+37 \quad 465.4046$ $222.9409 \quad 49.81522 \quad 9.90 E+37 \quad 465.434$ $\begin{array}{lllll}223.0784 & 49.22206 & 987.9853 & 465.516\end{array}$ $223.047849 .36217-49.2154465 .4843$ $223.161449 .27145 \quad 9.90 \mathrm{E}+37 \quad 465.5479$ $223.3325 \quad 49.165 \quad 9.90 \mathrm{E}+37 \quad 465.5701$ $223.372 \quad 48.40663 \quad 9.90 \mathrm{E}+37 \quad 465.5748$ $223.388 \quad 49.83724 \quad 9.90 \mathrm{E}+37 \quad 465.73$ $223.6163 \quad 50.72088 \quad 9.90 \mathrm{E}+37 \quad 465.7062$ $223.5947 \quad 49.19981 \quad 199.2563 \quad 465.7561$ $223.627450 .60896-169.482 \quad 465.69$ $223.6971 \quad 47.89997 \quad 9.90 E+37 \quad 465.7364$ $223.773 \quad 48.74278 \quad 9.80 \mathrm{E}+37 \quad 465.8195$ $223.7743-49.03646 \quad 9.90 E+37 \quad 465.8745$ $\begin{array}{llllll}223.8563 & 48.71309 & 4.827201 & 465.8432\end{array}$ $223.8707 \cdot 48.67462 \quad 9.90 E+37 \quad 465.924$ $224.2093 \quad 48.71019 \quad 9.90 \mathrm{E}+37 \quad 465.9969$ $224.282148 .91912 \quad 9.90 E+37 \quad 466.0072$ $\begin{array}{llllll}224.0759 & 47.6315 & 9.90 E+37 & 466.0338\end{array}$ $224.351148 .41714 \quad 675.7146 \quad 466.1377$ $\begin{array}{llll}224.2558 & 48.23272 & 9.90 \mathrm{E}+37 \quad 466.1146\end{array}$ $\begin{array}{lllll}224.4491 & 48.91237 & 9.90 E+37 & 466.1722\end{array}$ $224.3915 \quad 48.55659 \quad 9.90 E+37 \quad 466.1893$ $224.37248 .91283 \quad 9.90 \mathrm{E}+37 \quad 466.1764$ $\begin{array}{lllll}224.4282 & 48.78756 & 1058.284 & 466.2151\end{array}$ $224.6614 \quad 49.69205 \quad 9.90 \mathrm{E}+37 \quad 466.2546$ $224.5576 \quad 48.48175 \quad 9.90 \mathrm{E}+37 \quad 466.2872$ $224.559448 .75629 \quad 9.90 \mathrm{E}+37 \quad 466.2362$ $\begin{array}{lllll}224.7278 & 49.12351 & 9.90 E+37 & 466.3045\end{array}$ $224.7379 \quad 50.56864 \quad 9.90 \mathrm{E}+37 \quad 466.3081$

Chan. 9
464.0355
464.1333 464.2283 464.2181 464.3187 464.3441 464.4519 464.4837 464.564
465.9256 65.7561
465.69
465.924
465.9969
466.1764
466.2151
466.2546
466.2872
466.2362
466.3045

	Chan. 1		Chan 3		Chan 5	Chan. 6	Chan. 7	Chan 8	
4:11:2								823.8788	
4:16:4	100.	457.59	1148	22.72	238.	224.	49.1	9.8	466.338
4:21:5	100.3646	457.727	9.90	22.74	238.	224.	48.42	9.90	72
4:27:06	99.33	457.7079	8.90	22.7	238.	224.8987	49.	9.9	466.3795
4:32:18	100.013	457.78	9.90	22.7151	238.1	224.759	49.361	9.90	466.4324
4:37:31	99.8155	457.83	9.90E	22.7482	238.2	224.993	49.4321	9.90	466.4726
2:4	100.6	仡	9.9	22.7473	238.25	224.95	48		9
4:47:5	100.238	457.8282	9.90E	22.746	238.27	225.184	48.6747	9.90	466.4901
4:53:08	99	457.8	8.90	22.77765	238.317	225.050	48.5617	8.9	466.5258
4:58:20	100.3001	457.8	364.767	22.76	238	225.090	49.0286	219.	466.5833
5:03:32	98.7702	457.9077	9.90E+37	22.7972	838.4	225.21	48.20	8.9	466.5646
5:08:45	99.0072	457.94	9.90E+	22.801	238.44	225.297	48.2441	102	466
5:13:57	100	57.960	9.9	22.75518	238.4	22	49.34	9.90E+37	466.6068
5:19:10	100.0	457.87	682.	22.76013	88.4	225.	48.4	1.	46
5:24:22	100.3	457.9772	9.90	22.75062	238.5	225.3	49.56	9.9	466.669
5:29:34	99.7357	457.998	9.90	22.77476	238.5	225	49.6221	9.90	486.6906
5:34:47	100.231	457.9767	9.90	22.7583	238.5	225	49.0	957	466.7377
5:39:59	99.76	458.0213	9.90	22.73268	238.	225	48.66	9.90	466.668
5:45:12	100.3	458.0622	9.90	22.7099	238.6	225.2	48.73	9.90	466.7196
5:50:24	100	458.0741	9.90 E	71	238	225.367	50.4881	9.90	
55:3	100.501	458.152	1128.70	757	238.717	225.504	48.9	990.5	15
6:00:49	101.	458.181	9.90E+	22.7825	238.7558	225.4288	48.963	9.90E+37	466.7954
6:06:01	100.8	458.	543.36	22.8227	238.781	225.39	48.94162	1082.043	466.7753
6:11:13	100.	458.0912	644.687	22.8	238.7868	225.499	48.9573	-134.059	466.813
6:16:26	101.	458.	9.90E+3	2.76	238.8103	225.451	49.5253	$9.90 \mathrm{E}+37$	466.9133
6:21:38	100.5382	458.1634	9.90E+3	22.715	238.8477	225.675	48.628	9.90E+37	1
6:26:51	100.1	458.2682	9.90E+3	22.7	238.8717	225.7816	48.9735	$9.90 \mathrm{E}+37$	
6:32:03	100.3969	458.2	9.90E+37	22.71	238.	225.562	48.98	9.90E+37	17
6:37:15	100.3	458.	9.90E+3	22.73	238	225.566	49.3	256.4163	
6:42:28	100.4	458.2	9.90E+37	22.75	238	225.540	48.6	OE+	466
6:47:40	101.162	458.2543	9.90E+37	22.76	238.	225.776	49.9039	41.93	466.8243
6:5	101.1497	458.289	9.90E+37	2.7	238.	225.611	50.8	9.90E+37	66.8577
6:5	101.1068	458.208	9.90E+37	22.7	239	225.6137	49.1	867.367	66
7:03	100.4747	458.3272	9.90E	22.7	239.	225.7257	50.83403	$9.90 \mathrm{E}+37$	466.
7:08	101.7549	458.2	325.049	22.7	239.088	225.6048	49.12812	9.80E+37	66.8238
7:13:42	101.9937	458.2608	9.90E+37	22.7950	239.1023	225.69	49.89109	9.90E+37	466.789
7:18:54	101.3	458.236	9.90E	22.82	239.107	225.732	49.0395	$9.90 \mathrm{E}+37$	466.864
24:07	100	458.257	1025.56	22.79225	239.1208	225.769	48.96718	9.90E+37	466.8982
7:29:19	101.2523	458.258	9.90E+3	22.7622	239.129	225.578	49.9734	9.90E+37	466.817
7:34:31	100.8	458.307	9.90E+37	22.72	239.17	225.709	50.06323	9.90E+37	466.
7:39:44	100.9739	458.297	9.80E+37	22.75095	239.1744	225.7564	51.7616	9.90E+37	466.8576
7:44:56	101.0401	458.4137	9.90E+37	22.76287	239.1903	225.8007	50.56802	9.90E+37	466.8926
7:50:08	100.3072	458	$9.90 \mathrm{E}+37$	22.7484	239.	225.7624	50.78827	9.90E+37	466.9201
55	102		9.8	22.	239	225.	51	9.90	66

13:47:16	9.9	47	28	23.	9.9	9.9	94.87942	458.0742	
13:52:28	9.9	48.	28.7	23	27	$9.90 E+37$	9.90	9.90E+37	
13:57:40	9.9	49.5		23.	9.90	136	1121	400.7836	-47.6556
14:02:53	9.90	50	29.54	23.2852	$9.90 \mathrm{E}+$	90E	-180.7	8,	.90E+3
14:08:05	9.8	51.2	29.83386	. 2	526.	644.7138	888.	9.	73.7024
	9.9	51	29.79824	23.20195	90	$9.90 \mathrm{E}+37$	9.90E+37	9.90E+37	4.95806
	9.9	52	30	23.1	$9.90 \mathrm{E}+37$			-181.581	
				23.1					

TIME Chan. 10 Chan. 11 Chan. 12 14:28:55 9.90E+37 $54.43465 \quad 31.51137$ 14:34:07 9.90E $+37 \quad 55.22774 \quad 32.03976$ 14:39:19 9.90E+37 $54.78818 \quad 32.05445$ 14:44:32 9.90E+37 $56.03351 \quad 32.71389$ 14:49:44 9.90E+37 $56.6012 \quad 33.12209$ 14:54:57 9.90E+37 $58.1377 \quad 33.58659$ 15:00:09 $\quad 1276.64 \quad 58.78156 \quad 34.12859$ 15:05:21 9.90E+37 59.4554434 .40198 15:10:34 9.90E+37 60.50765 34.58253 15:15:46 9.90E+37 60.8681435 .58995 15:20:58 68.66839 61.6011635 .94145 15:26:11 9.90E+37 $62.24159 \quad 36.34783$ 15:31:23 $9.90 \mathrm{E}+37 \quad 61.14131 \quad 36.49074$ 15:36:36 9.90E+37 $63.35453 \quad 37.16279$ 15:41:48 $59.15469 \quad 64.07105 \quad 37.65626$ 15:47:00 9.90E+37 64.6157938 .03852 15:52:13 9.90E+37 $65.15472 \quad 38.44451$ 15:57:25 9.90E+37 65.64446 $\quad 38.86028$ 16:02:37 9.90E+37 $65.3981 \quad 39.14986$ 16:07:50 373.068966 .8414439 .62938 16:13:02 9.90E+37 67.5301240 .07997 16:18:14 9.90E+37 $67.52113 \quad 40.30453$ 16:23:27 9.90E+37 68.40624 40.62524 16:28:39 9.90E+37 67.0913541 .41056 16:33:52 9.90E+37 66.91341 41.71095 16:39:04 9.90E+37 $68.44168 \quad 42.02011$ 16:44:16 9.90E+37 $70.21869 \quad 42.34039$ 16:49:29 9.90E+37 70.6030442 .62687 16:54:41 9.90E+37 $71.21463 \quad 43.12076$ 16:59:53 9.90E+37 $71.56268 \quad 43.3973$ 17:05:06 9.90E $+37 \quad 72.07408 \quad 43.82141$ 17:10:18 9.90E+37 $72.78125 \quad 44.12574$ 17:15:31 $808.2056 \quad 71.9 \quad 44.37138$ 17:20:43 $1198.088 \quad 71.48477 \quad 44.80042$ 17:25:55 9.90E+37 $73.52897 \quad 45.15629$ 17:31:08 9.90E+37 $73.12379 \quad 45.55415$ 17:36:20 9.90E+37 $74.82666 \quad 45.8558$ 17:41:32 9.90E+37 $73.91438 \quad 46.17179$ 17:46:45 9.90E+37 $74.0987 \quad 46.54004$ 17:51:57 9.90E+37 $75.93908 \quad 46.83242$ $\begin{array}{lllll}17: 57: 10 & 9.90 E+37 & 76.33896 & 47.30171\end{array}$ 18:02:22 9.90E+37 $75.04726 \quad 47.51909$ 18:07:34 $-77.2166 \quad 75.46409 \quad 47.93493$ 18:12:47 9.90E+37 $77.3795 \quad 48.18302$ 18:17:59 9.90E $+37 \quad 75.97508 \quad 48.70325$ 18:23:11 410.161375 .8571148 .93643 18:28:24 $404.3249 \quad 76.4456 \quad 49.22239$ 18:33:36 $\quad 747.835 \quad 76.58094 \quad 49.65469$ 18:38:49 984.1155 $77.09637 \quad 49.83018$ 18:44:01 $9.90 \mathrm{E}+37 \quad 77.45543 \quad 50.14163$ 18:49:13 9.90E+37 $77.83207 \quad 50.33401$ 18:54:26 $\quad 479.61 \quad 77.7761 \quad 50.8849$ 18:59:38 $9.90 \mathrm{E}+37 \quad 77.74491 \quad 50.99273$ 19:04:50 $9.90 E+37 \quad 78.10128 \quad 51.23102$ 19:10:03 9.90E+37 $78.87667 \quad 51.33954$ 19:15:15 9.90E+37 $78.64395 \quad 51.85759$

Chan. 13 Chan. 14 Chan. 15 Chan. 16 Chan. 17 Chan. 18 $23.05808 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad-173.039 \quad 9.90 \mathrm{E}+37$ $\begin{array}{lllllll}23.00903 & 9.90 E+37 & 1180.559 & 482.7172 & -31.6123 & 184.2522\end{array}$ $\begin{array}{lllllllll}23.04155 & 668.6898 & 218.4094 & 9.90 \mathrm{E}+37 & 9.90 \mathrm{E}+37 & -49.1876\end{array}$ $\begin{array}{llllllll}22.98305 & 844.9425 & 881.1498 & 845.4702 & 230.9071 & -32.9755\end{array}$ $22.9478479 .0312585 .3959719 .7866 \quad 238.379 \quad 9.90 \mathrm{E}+37$ $\begin{array}{lllllll}22.8642 & -100.335 & 150.2712 & 453.0296 & 188.1789 & 9.90 \mathrm{E}+37\end{array}$ 22.8777 9.90E+37 $9.90 E+37 \quad 9.90 E+37-131.134 \quad 9.90 E+37$ $\begin{array}{lllllll}22.89377 & 1285.221 & 1225.839 & 869.6637 & 242.0944 & -90.4409\end{array}$ $\begin{array}{lllllll}22.93647 & 9.90 \mathrm{E}+37 & 9.80 \mathrm{E}+37 & 9.90 \mathrm{E}+37 & 9.90 \mathrm{E}+37 & 47.42754\end{array}$ $22.9478 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad-184.83 \quad 74.21939 \quad 9.90 \mathrm{E}+37$ $\begin{array}{lllllll}22.89281 & 9.90 \mathrm{E}+37 & 9.90 \mathrm{E}+37 & 655.5554 & 30.36684 & 19.94254\end{array}$ $22.804949 .90 E+37 \quad 9.90 E+37 \quad 9.90 E+37 \quad 9.90 E+37 \quad 204.4222$ $22.929299 .90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37$ $\begin{array}{lllllllll}22.91475 & 116.1885 & 274.0038 & 544.3284 & 249.53 & 9.90 E+37\end{array}$ $22.93399 .90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37$ 9.90E+37 $\begin{array}{llllllll}22.89723 & 9.90 E+37 & 9.90 E+37 & 621.0635 & 19.28629 & 74.19667\end{array}$ $22.88191 \quad 168.132 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 98.45406$ $22.92835 \quad 9.90 E+37 \quad 9.90 E+37 \quad 9.90 E+37 \quad 9.90 E+37 \quad-31.3712$ $22.982849 .90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37-46.8126$ $\begin{array}{llllllll}23.00925 & 9.90 \mathrm{E}+37 & 9.90 \mathrm{E}+37 & 677.0603 & 39.69584 & -12.6541\end{array}$ $22.99267 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37$ $23.004219 .90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37$ $\begin{array}{lllllll}23.0415 & -39.6459 & 150.258 & 460.3241 & 164.2221 & 9.90 E+37\end{array}$ $\begin{array}{lllllll}23.09384 & 1217.458 & 1180.224 & 877.1291 & 215.8954 & -43.6376\end{array}$ $\begin{array}{llllllll}23.14637 & 9.90 E+37 & 9.90 E+37 & 52.30661 & 76.43556 & 9.90 E+37\end{array}$ $\begin{array}{llllllll}23.19617 & 856.128 & 884.903 & 849.2484 & 331.2347 & -181.68\end{array}$ $\begin{array}{lllllll}23.22427 & 1195.327 & 1150.27 & 883.3955 & 253.2401 & -107.113\end{array}$ $\begin{array}{llllllll}23.23696 & 550.1571 & 137.9294 & 9.90 \mathrm{E}+37 & 9.90 \mathrm{E}+37 & -100.666\end{array}$ $\begin{array}{llllllll}23.27131 & 636.7228 & 204.5739 & 9.90 E+37 & 9.90 E+37 & 91.16672\end{array}$ $\begin{array}{llllllll}23.3106 & 9.90 \mathrm{E}+37 & 9.90 \mathrm{E}+37 & 1191.315 & 367.3076 & 26.97178\end{array}$ $\begin{array}{lllllll}23.38451 & -80.4968 & 113.099 & 513.3029 & 387.524 & -20.5061\end{array}$ $\begin{array}{llllllll}23.43278 & 962.2759 & 424.6017 & -105.501 & 9.90 E+37 & 165.3173\end{array}$ $\begin{array}{llllllll}23.51348 & 9.90 \mathrm{E}+37 & 9.90 \mathrm{E}+37 & 1070.782 & 307.0578 & 80.24718\end{array}$ $\begin{array}{lllllll}23.55166 & 9.90 \mathrm{E}+37 & 9.90 \mathrm{E}+37 & 9.90 \mathrm{E}+37 & 9.90 \mathrm{E}+37 & 9.90 \mathrm{E}+37\end{array}$ $\begin{array}{llllllll}23.64686 & 9.90 E+37 & 1279.32 & 483.9004 & -37.4621 & 151.5062\end{array}$
$\begin{array}{llllllll}23.682 & -118.558 & 93.59707 & 506.207 & 410.7236 & 20.40867\end{array}$ $\begin{array}{lllllll}23.72893 & 9.90 E+37 & 9.90 E+37 & 227.0078 & 299.8394 & -28.4795\end{array}$ $23.805819 .90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37$ $\begin{array}{lllllll}23.85821 & 1066.182 & 1058.291 & 1034.554 & 430.5471 & -32.5408\end{array}$ $23.93056 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37$ $23.982239 .90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 5.264826$ $\begin{array}{llllllll}24.03416 & -52.8143 & 142.7517 & 457.5327 & 166.7338 & 9.90 E+37\end{array}$ $24.09999 .90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37$ $\begin{array}{lllllll}24.1655 & 9.90 E+37 & 1108.891 & 406.7407 & -74.5252 & 180.4438\end{array}$ $24.215919 .90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 33.90231$ $24.259369 .90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37-161.746$ $\begin{array}{llllllll}24.34578 & 9.90 \mathrm{E}+37 & 9.90 \mathrm{E}+37 & 919.4784 & 220.912 & -108.147\end{array}$ $\begin{array}{llllllll}24.40101 & 9.90 \mathrm{E}+37 & 9.90 \mathrm{E}+37 & 848.1053 & 142.9138 & 17.88613\end{array}$ $24.40095 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad-93.9523$ $24.44955 \quad 9.90 E+37 \quad 9.90 E+37: 9.90 E+37 \quad 9.90 E+37-58.7812$ $\begin{array}{llllllll}24.52021 & 823.0128 & 336.0638 & 9.90 E+37 & 9.90 E+37 & 147.7511\end{array}$ $\begin{array}{llllllll}24.53422 & 1207.76 & 1157.05 & 840.8729 & 202.0508 & 15.81185\end{array}$ $\begin{array}{llllllll}24.6092 & 9.90 \mathrm{E}+37 & 9.90 \mathrm{E}+37 & 9.90 \mathrm{E}+37 & 9.90 \mathrm{E}+37 & -26.4794\end{array}$ $24.67606 \quad 9.90 E+37 \quad 9.90 E+37 \quad 567.7944 \quad-17.2235 \quad 77.82596$ $\begin{array}{lllllll}24.71699 & 9.90 E+37 & 9.90 E+37 & 9.90 E+37 & 9.90 E+37 & -63.3597\end{array}$ $\begin{array}{lllllll}24.78805 & 9.90 E+37 & 912.1878 & 256.9403 & -171.661 & 134.0522\end{array}$

TIME Chan. 10 Chan. 11 19:20:28 9.90E+37 19:25:40 9.90E+37 19:30:52 1308.285 19:36:05 9.90E+37 19:41:17 909.7673 19:46:30 9.90E+37 19:51:42 172.8731 19:56:54 9.90E+37 81.06103 20:02:07 9.90E+37 81.01071 20:07:19 9.90E+37 82.96769 20:12:31 9.90E+37 81.90752 20:17:44 9.90E+37 81.91556 20:22:56 9.90E+37 81.89411 20:28:08 9.90E+37 82.78521 20:33:21 $9.90 \mathrm{E}+37 \quad 83.47735$ 20:38:33 365.9557 84.63776 20:43:45 9.90E+37 82.37092 20:48:58 9.90E+37 82.50048 20:54:10 9.90E+37 83.52684 20:59:22 $1319.896 \quad 83.2352$ 21:04:35 9.90E+37 82.73036 21:09:47 699.998785 .88874 21:15:00 9.90E+37 82.68557 21:20:12 9.90E+37 84.19315 21:25:24 $1119.301 \quad 85.67696$ 21:30:37 9.90E+37 86.89553 21:35:49 9.90E+37 86.84247 21:41:01 9.90E+37 86.54607 21:46:14 9.90E $+37 \quad 86.4206$ 21:51:26 9.90E+37 87.36676 21:56:38 394.651688 .11237 22:01:51 9.90E+37 85.41002 22:07:03 9.90E+37 88.1474 22:12:15 $431.5832 \quad 88.4343$ 22:17:28 9.90E+37 88.45318 22:22:40 9.90E+37 86.66481 22:27:53 9.90E+37 87.48332 22:33:05 9.90E+37 87.27094 22:38:17 9.90E+37 87.11428 22:43:29 $\quad 394.6545 \quad 87.77685$ 22:48:42 9.90E+37 89.16071 22:53:54 9.90E+37 88.14334 22:59:07 9.90E+37 89.15523 23:04:19 9.90E+37 88.31001 23:09:31 $752.815 \quad 89.67849$ 23:14:44 9.90E+37 88.94506 23:19:56 9.90E+37 87.94224 23:25:08 9.90E+37 87.7066 23:30:21 9.90E+37 88.44978 23:35:33 9.90E+37 87.90513 23:40:46 9.90E+37 88.53466 23:45:58 99.2758488 .67698 23:51:10 9.90E+37 88.08097 23:56:23 9.90E+37 88.09573 0:01:35 9.90E+37 90.99572 0:06:47 9.90E+37 89.46209

TIME Chan. 10 Chan. 11 Chan. 12 0:12:00 9.90E+37 90.51624 $0: 17: 12 \quad 9.90 \mathrm{E}+37 \quad 89.16253$ 0:22:25 9.90E+37 88.70131 0:27:37 9.90E+37 88.17395 60.8 0:32:49 9.90E+37 $87.882 \quad 61.1905$ 0:38:02 9.90E+37 87.72012 0:43:14 9.90E+37 89.1102 0:48:26 9.90E+37 91.01268 0:53:39 9.90E+37 $89.9271 \quad 61.31431$ 0:58:51 9.90E+37 89.46933 61.49101 1:04:04 220.7531 91.56296 61.48644 1:09:16 $9.90 \mathrm{E}+37$ 91.51991 1:14:28 $503.9046 \quad 91.69815$ 1:19:41 9.90E+37 90.07605 1:24:53 9.90E+37 92.04541 1:30:05 854.3718 90.30669 1:35:18 $448.2042 \quad 92.39975$ 1:40:30 9.90E+37 90.70883 1:45:43 9.90E+37 89.45887 1:50:55 $9.90 \mathrm{E}+3792.03393$ 1:56:07 9.90E+37 90.46365 2:01:20 $531.027 \quad 91.5311$ 2:06:32 9.90E+37 90.28896 2:11:44 9.90E+37 90.96505 2:16:57 9.90E+37 92.95689 2:22:09 9.90E+37 90.50564 2:27:21 9.90E+37 92.14927 2:32:34 9.90E+37 89.77164 2:37:46 $9.90 \mathrm{E}+3790.79962$ 2:42:58 9.90E+37 90.11653 2:48:11 9.90E+37 $90.58423 \quad 6$ 2:53:23 9.90E+37 $89.88591 \quad 62.6664$ 2:58:36 9.90E+37 90.14153 63.05196 3:03:48 9.90E+37 $90.64863 \quad 62.9529$ 3:09:00 9.90E+37 90.35976 3:14:13 253.4076 90.22251 3:19:25 9.90E+37 90.97216 3:24:37 $1252.497 \quad 90.67076 \quad 6$ $3: 29: 50 \quad 1356.561 \quad 90.90119$ 3:35:02 9.90E+37 90.82537 6 3:40:15 $2.217591 \quad 90.84943$ 3:45:27 9.90E+37 91.76766 3:50:39 $\quad 9.90 \mathrm{E}+37 \quad 89.57693$ 3:55:52 9.90E+37 90.71445 4:01:04 9.90E+37 90.81471 4:06:16 $327.4607 \quad 92.58481$ 4:11:29 9.90E+37 90.1041 4:16:41 9.90E+37 91.30812 4:21:54 9.90E+37 90.69302 4:27:06 9.90E+37 92.98874 4:32:18 $334.7071 \quad 92.538736$ 4:37:31 $782.0598 \quad 91.47254$ 4:42:43 9.90E+37 90.5699263 .46783 4:47:55 9.90E+37 91.62034 63.72786 4:53:08 $\quad 1051.73 \quad 91.49282 \quad 63.57217$ 4:58:20 9.90E+37 90.7824963 .95151

Chan. 12
60.74128 60.75863 60.87998 60.86871
61.1905
61.14771 61.38572 61.289762 61.48328 61.54784 61.56123 61.70835 61.72555 61.80869 61.79636

Chan. 13 27.6077 Chan. 14 Chan. 15 Chan. 16 Chan. 17 Chan. 18 $\begin{array}{llllll}.6077 & 9.90 E+37 & 9.90 E+37 & 351.5439 & 235.8853 & -184.504\end{array}$ $27.67389 .90 \mathrm{E}+379.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37-131.906$ $\begin{array}{lllllll}27.66267 & 9.90 E+37 & 1223.976 & 443.6073 & -30.7816 & 141.4962\end{array}$ $\begin{array}{lllllll}27.72125 & 9.90 E+37 & 1235.643 & 467.3192 & -20.2677 & 191.7917\end{array}$ $27.77646 \quad 9.90 E+37 \quad 9.90 E+37 \quad 9.90 E+37 \quad 9.90 E+37 \quad 65.41649$ $27.785829 .90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad-199.474$ $\begin{array}{lllllll}27.76944 & 9.90 E+37 & 1338.025 & 519.3676 & -7.92682 & 119.2421\end{array}$ $27.848319 .90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37-141.708$ $27.885319 .90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 56.26504 \quad-47.6442 \quad 9.90 \mathrm{E}+37$ $\begin{array}{lllllll}27.87174 & 726.175 & 780.8368 & 918.9104 & 418.6542 & -72.2072\end{array}$ $27.936369 .90 E+37 \quad 9.90 E+37 \quad 9.90 E+37 \quad 9.90 E+37 \quad 9.90 E+37$ $\begin{array}{lllllllll}27.96456 & 9.90 E+37 & 801.7451 & 174.3001 & 9.90 E+37 & 70.55815\end{array}$ $27.96638 \quad 9.90 E+37 \quad 9.90 E+37 \quad 938.8976 \quad 269.2484-44.9226$ $28.0316163 .10609 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37$ $28.06859 .90 E+37 \quad 9.90 E+37 \quad 75.4039282 .830319 .90 E+37$ $28.07315 \quad 9.90 E+37 \quad 9.90 E+37 \quad 818.7439 \quad 120.6284 \quad 11.90666$ $28.15226 \quad 9.90 E+37 \quad 9.90 E+37 \quad 9.90 E+37 \quad 9.90 E+37 \quad 9.90 E+37$ $28.10851760 .0802 \quad 299.7593 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 7.659934$ $28.13889 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 43.74763$ $\begin{array}{lllllll}28.19646 & 341.924 & 461.2406 & 628.6343 & 237.131 & 9.90 \mathrm{E}+37\end{array}$ $28.1921 \quad 9.90 E+37 \quad 1307.332 \quad 501.6254-102.134-196.311$ 28.19941 9.90E+37 9.90E+37 9.90E+37 9.90E+37 -115.863 $28.25869 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37$ $\begin{array}{llllllll}28.29763 & 152.7509 & 300.8175 & 532.5221 & 184.3903 & 9.90 \mathrm{E}+37\end{array}$ $\begin{array}{llllllll}28.34382 & 761.0806 & 303.4099 & 9.90 \mathrm{E}+37 & 9.90 \mathrm{E}+37 & -67.9459\end{array}$ $28.33041 \quad 9.90 E+37 \quad 9.90 E+37 \quad 9.90 E+37 \quad 9.90 E+37-146.346$ $\begin{array}{llllllll}28.40555 & 382.7152 & 489.6665 & 644.9352 & 252.0091 & -166.466\end{array}$ $28.33362 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37$ $28.37917 \quad 9.90 E+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad-163.541$ $28.353729 .90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37-6.35118$ $28.35856 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad-196.419$ $28.37429 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad-23.9246 \quad 9.90 \mathrm{E}+37$ $\begin{array}{lllllll}28.4032 & 9.90 E+37 & 9.90 \mathrm{E}+37 & 654.364 & 42.18432 & 104.553\end{array}$ $\begin{array}{lllllll}28.43945 & 9.90 E+37 & 1026.648 & 362.5173 & -108.404 & 146.5043\end{array}$ $28.40755 \quad 9.90 E+37 \quad 9.90 E+37 \quad 9.90 E+37-15.8489 \quad 9.90 E+37$ $\begin{array}{lllllll}28.41767 & 9.90 E+37 & 9.90 E+37 & 890.7697 & 162.9581 & 47.724\end{array}$ $28.45693 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad-167.254 \quad 9.90 \mathrm{E}+37$ $28.41744 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37$ $28.478349 .90 E+37 \quad 9.90 E+37 \quad 9.90 E+37 \quad 9.90 E+37 \quad 9.90 E+37$ $28.468349 .90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37$ $\begin{array}{llllllll}28.48241 & 9.90 E+37 & 9.90 E+37 & 795.692 & 109.5957 & 80.24905\end{array}$ $28.46235 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37-11.5453$ $\begin{array}{llllllllllll}28.49474 & 9.90 E+37 & 840.0636 & 210.8765 & 9.90 E+37 & 92.37977\end{array}$ $\begin{array}{llllllll}28.55209 & 9.90 E+37 & 9.90 E+37 & 587.8982 & 15.47197 & 135.2938\end{array}$ $28.56752-149.745 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 151.5073$ $\begin{array}{llllllll}28.57961 & 9.90 E+37 & 9.90 E+37 & 9.90 E+37 & 9.90 E+37 & 9.90 E+37\end{array}$ $\begin{array}{lllllll}28.56934 & 1076.748 & 1067.504 & 882.7975 & 298.5475 & -49.6232\end{array}$ $\begin{array}{lllllll}28.58164 & 121.7376 & 9.90 E+37 & 9.90 E+37 & 9.90 E+37 & 86.31501\end{array}$ $\begin{array}{lllllll}28.57749 & 1349.191 & 636.5186 & 43.9093 & 9.90 E+37 & 145.255\end{array}$ $\begin{array}{llllllll}28.62125 & 9.90 E+37 & 9.90 E+37 & 621.0678 & 30.43163 & 110.6544\end{array}$ $28.63378 \quad 9.90 E+37 \quad 9.90 E+37 \quad 9.90 E+37 \quad 9.90 E+37 \quad 9.90 E+37$ $28.67375 \quad 9.90 E+37 \quad 9.90 E+37 \quad 9.90 E+37 \quad-120.92 \quad 9.90 E+37$ $28.58413 \quad 9.90 E+37 \quad 9.90 E+37 \quad 9.90 E+37 \quad-153.389 \quad 9.90 E+37$ $\begin{array}{lllllll}28.61187 & 799.2256 & 846.1762 & 819.252 & 229.6608 & -141.178\end{array}$ $28.63322 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37 \quad 9.90 \mathrm{E}+37$ $\begin{array}{lllllll}28.64592 & 1187.074 & 1124.68 & 806.1958 & 154.1684 & -136.252\end{array}$

	9.9	90.	63.	28.5	9.9	9.	9.9	(1)	-38.2231
08:4	-19	90.901	63.	28.64	9.90	9.90	897.91	5	-4.56272
3:5	9.90E+37	91.325	63.	28.602	9.90E	9.90	-29.9	99.5	9.90
19:10	814.7082	90.32606	63.66	28.58	9.80	9.90E	1180.03	405.54	-3.66476
5:24:22	0.90E+37	90.7335	63.651	28.704	9.90E	1105.192	363.7167	-89.86	124.1558
29:3	9.90E+37	91.1724	63.546	28.6811	9.90E	9.90E	32.47	-66.2	8.90
34:47	9.90 E	91.56513	63.904	28.7332	9.90E	9.90E+	9.90E+37	9.90	8.559032
39:59	9.90 E	1.145	63.6860	28.6570	9.90E+	9.90E+37	$9.90 \mathrm{E}+37$	9.90	-108.391
45:12	9.90E	90.796	63.7300	28.6615	9.90E+	9.90E+3	9.90E+37	9.90	121.2578
50:2	9.90	93.92403	63.6432	28.7182	$9.90 \mathrm{E}+37$	780.129	222.1	-158	169.0916
5:55:36	9.90 E	91.2473	63.801	28.687	296.2	-152	9.90E	9.90	-67.9377
6:00:49	9.90	91.	64	28.67	9.9	9.90E+37	9.90	9.9	131
6:06:01	9.9	00.94	64.1165	28.6	12.9403	9.90E+37	9.90	9.9	17.7
6:11:13	9.90	91.4796	63.876	28.	9.	9.90	102	29	-35.759
6:16:26	9.90E	93.1775	63.71491	28	$9.90 \mathrm{E}+3$	9.90	574.8806	20.99811	142.7496
6:21:38	9.90	91.	63.8303	28.71705	9.90E+3	9.90	583.	16.	154.0033
6:26:51	9.90	91.2	63.9016	28.7663	9.9	9.9	705.	79.	5.125634
6:32:03	9.90	89.8	63	8.77	9.9	9.90	514.63	2.7	156
6:37:15	9.90	90.7	63.	8.7	9.9	9.90E	956.	269	-2.7956
42:28	9.90E+37	90.	63.81503	28.7	9.90	9.90 E	9.90	9.90	9.
6:47:40	9.90E+37	91.78	63.8324	28.7	9.90	9.90 E	9.90 E	9.90E+37	46.4247
:52	443.4662	93.791	63.	28.85	9.90	9.90E+	9.90 E	9.90	9.90E+37
58:05	170.746	92.259	63.947	28.81	9.90 E	9.90E+37	825.56	110.813	-14.0072
03:17	9.90E+37	92.5016	63.8363	28.91168	9.90E+37	0.90E+37	9.90E+	9.90E	-6.33814
7:08:29	9.90E+37	90.0865	63.93313	28.82278	-39.152	172.882	452.0	48.7973	9.90E+37
13:42	9.90E+3	91.94097	64.0272	28.8547	9.90E+37	9.90E+37	$9.90 \mathrm{E}+37$	-164.53	9.90E+37
18:54	9.90E+37	91.08777	63.9173	28.89202	1327.18	606.842	5.164655	-83.065	325.0451
7:24:07	834.9072	91.42145	63.92229	28.86123	$9.90 \mathrm{E}+3$	$9.90 \mathrm{E}+37$	1161.817	342.083	-85.9469
7:29:19	$9.90 \mathrm{E}+37$	82.35735	64.00958	28.8654	$9.90 \mathrm{E}+37$	9.90E+3	9.90E+37	9.90E+37	-117.276
7:34:31	166.0982	93.64989	63.86738	28.93631	$9.90 \mathrm{E}+3$	9.90E+37	862.9099	145.4181	53.93817
7:39:44	9.90E+37	92.8919	63.84651	28.9781	802.052	351.70	-159.41	9.90E+37	144.0085
7:44:56	9.90E+37	92.61006	64.00126	28.9943	9.90E+3	$9.90 \mathrm{E}+3$	9.90E+37	-53.277	9.90E+37
7:50:08	$9.90 \mathrm{E}+37$	93.6185	63.95921	29.05376	$9.90 \mathrm{E}+37$	$9.90 \mathrm{E}+37$	9.90E+37	9.90E+37	135.438
55	37	94.	63.	29.	9.90E	9.90E+	796.926	-105	-19

TIME	Chan.19	Chan. 20
13:42:03	$9.90 \mathrm{E}+37$	$9.90 \mathrm{E}+37$
13:47.16	$9.90 \mathrm{E}+37$	$9.90 \mathrm{E}+37$
13:52:28	333.6758	145.4285
13:57:40	$9.90 \mathrm{E}+37$	90.0057
14:02:53	$9.90 \mathrm{E}+37$	$9.90 \mathrm{E}+37$
14:08:05	$9.90 \mathrm{E}+37$	-49.1627
14:13:18	6.57368	$9.90 \mathrm{E}+37$
14:18:30	430.4224	447.4488
14:23:42	$9.90 \mathrm{E}+37$	$9.90 \mathrm{E}+37$
14:28:55	$9.90 \mathrm{E}+37$	$9.90 \mathrm{E}+37$
14:34:07	432.7924	444.727
14:39:19	252.2577	198.2717
14:44:32	120.4897	443.4772
14:49:44	$9.90 \mathrm{E}+37$	63.28344
14:54:57	$9.90 \mathrm{E}+37$	-52.0218
1:00:09	$9.80 \mathrm{E}+37$	$9.90 \mathrm{E}+37$
15:05:21	-89.311	280.1392
15:10:34	225.8351	-35.2469
15:15:46	$9.90 \mathrm{E}+37$	$9.90 \mathrm{E}+37$

ME	9	Chan. 20
15:20:58	204.4224	423.3078
15:26:11	-76.1808	$9.90 \mathrm{E}+37$
15:31:23	9.90E+37	9.90E+37
15:36:36	9.90E+37	-70.8859
15:41:48	9.90E+37	$9.90 \mathrm{E}+37$
15:47:00	280.133	409.2714
15:52:13	238.2049	-8.75055
15:57:25	-115.864	9.90E+37
16:02:37	-51.8587	9.90E+37
16:07:50	200.6315	428.2707
16:13:02	$9.90 \mathrm{E}+37$	$9.90 \mathrm{E}+37$
16:18:14	$9.90 \mathrm{E}+37$	9.90E+37
16:23:27	$9.90 \mathrm{E}+37$	-45.0436
16:28:39	28.97476	365.9631
16:33:52	9.90E+37	9.90E+37
16:39:04	9.90E+37	-63.5458
16:44:16	-87.7595	258.0156
16:49:29	140.1453	20.40645
16:54:41	299.1637	136.6922
16:59:53	130.3335	426.8258
17:05:06	8.90E+37	-75.419
17:10:18	377.5213	207.5966
17:15:31	223.2653	464.8021
17:20:43	9.90E+37	9.90E+37
17:25:55	411.357	432.1034
17:31:08	9.90E+37	9.90E+37
17:36:20	9.90E+37	9.90E+37
17:41:32	9.90E+37	9.90E+37
17:46:45	-90.92	219.5002
17:51:57	9.90E+37	9.90E+37
17:57:10	-40.7083	9.90E+37
18:02:22	$9.90 \mathrm{E}+37$	1.323548
18:07:34	$9.90 \mathrm{E}+37$	$9.90 \mathrm{E}+37$
18:12:47	433.9615	410.4988
18:17:59	119.5076	9.90E+37
18:23:11	$9.90 \mathrm{E}+37$	9.90E+37
18:28:24	-138.518	220.753
18:33:36	182.9677	442.2012
18:38:49	$9.90 \mathrm{E}+37$	$9.90 \mathrm{E}+37$
18:44:01	-39.3338	$9.90 \mathrm{E}+37$
18:49:13	385.7938	282.4062
18:54:26	154.0017	431.5823
18:59:38	-56.1407	9.90E+37
19:04:50	310.5328	417.1889
19:10:03	9.90E+37	9.90E+37
19:15:15	399.4323	399.5644
19:20:28	76.82088	-176.417
19:25:40	-112.57	259.2457
19:30:52	9.90E+37	130.3321
19:36:05	182.9616	463.6087
19:41:17	104.5464	399.4274
19:46:30	121.5516	9.80E+37
19:51:42	-126.763	$9.90 \mathrm{E}+37$
19:56:54	294.5518	187.1224
20:02:07	-79.7509	9.90E+37
20:07:19	$9.90 \mathrm{E}+37$	-136.575

TIME	Chan. 19	C
1:04:04	9.90E+37	9.90E+37
1:09:16	340.7248	394.1066
1:14:28	-135.774	193.0577
1:19:41	24.70086	9.90E+37
1:24:53	9.90E+37	9.90E+37
1:30:05	154.003	377.4857
1:35:18	9.90E+37	9.90E+37
1:40:30	263.6905	211.5851
1:45:43	241.8025	-6.18752
1:50:55	9.90E+37	-47.828
1:56:07	60.829	311.1963
2:01:20	$9.90 \mathrm{E}+37$	9.80E+37
2:06:32	$9.90 \mathrm{E}+37$	$9.90 \mathrm{E}+37$
2:11:44	9.90E+37	-2.50961
2:16:57	200.3083	172.0714
2:22:09	9.90E+37	9.90E+37
2:27:21	9.90E+37	46.19627
2:32:34	9.90E+37	9.90E+37
2:37:46	9.90E+37	$9.90 \mathrm{E}+37$
2:42:58	164.8682	-33.8878
2:48:11	9.90E+37	$9.90 E+37$
2:53:23	9.90E+37	9.90E+37
2:58:36	298.3902	439.3564
3:03:48	377.933	319.6595
3:09:00	9.90E+37	$9.90 E+37$
3:14:13	179.187	422.676
3:19:25	9.90E+37	$9.90 E+37$
3:24:37	9.90E+37	$9.90 \mathrm{E}+37$
3:29:50	$9.90 \mathrm{E}+37$	$9.90 E+37$
3:35:02	9.90E+37	9.90E+37
3:40:15	236.9709	473.0928
3:45:27	-1.05871	9.90E+37
3:50:39	341.9254	302.7239
3:55:52	347.9442	428.045
4:01:04	163.4474	$9.90 E+37$
4:06:16	9.90E+37	9.90E+37
4:11:29	-166.768	186.7568
4:16:41	265.6987	76.77322
4:21:54	333.0237	141.6652
4:27:06	308.1192	473.8925
4:32:18	9.90E+37	9.90E+37
4:37:31	9.90E+37	9.90E+37
4:42:43	9.90E+37	9.90E+37
4:47:55	9.90E+37	124.1604
4:53:08	9.90E+37	9.90E+37
4:58:20	-136.565	240.6997
5:03:32	-173.85	9.90E+37
5:08:45	46.20014	383.9125
5:13:57	9.90E+37	9.90E+37
5:19:10	-49.2094	270.3202
5:24:22	339.5204	396.4843
5:29:34	9.90E+37	$9.90 \mathrm{E}+37$
5:34:47	-6.18417	9.90E+37
5:39:59	9.90E+37	9.90E+37
5:45:12	84.0425	9.90E+37
5:50:24	389.8836	346.853

TIME	Chan.19	Chan. 20
$5: 55: 36$	219.3499	148.98
$6: 00: 49$	234.5093	-102.133
$6: 06: 01$	219.07	11.63444
$6: 11: 13$	1.331064	349.1531
$6: 16: 26$	346.7373	431.7585
$6: 21: 38$	363.5617	478.4366
$6: 26: 51$	165.3151	364.2075
$6: 32: 03$	365.9624	464.3015
$6: 37: 15$	-12.8096	321.4262
$6: 42: 28$	$9.90 \mathrm{E}+37$	$9.90 \mathrm{E}+37$
$6: 47: 40$	116.4232	$9.90 \mathrm{E}+37$
$6: 52: 52$	$9.90 \mathrm{E}+37$	$9.90 \mathrm{E}+37$
$6: 58: 05$	129.1044	429.2144
$7: 03: 17$	59.34816	$9.90 \mathrm{E}+37$
$7: 08: 29$	$9.90 \mathrm{E}+37$	37.60661
$7: 13: 42$	$9.90 \mathrm{E}+37$	$9.90 \mathrm{E}+37$
$7: 18: 54$	357.6666	46.35142
$7: 24: 07$	-123.289	253.0872
$7: 29: 19$	$9.90 \mathrm{E}+37$	$9.90 \mathrm{E}+37$
$7: 34: 31$	166.5794	506.2083
$7: 39: 44$	298.3096	118.1755
$7: 44: 56$	$9.90 \mathrm{E}+37$	$9.90 \mathrm{E}+37$
$7: 50: 08$	$9.90 \mathrm{E}+37$	$9.90 \mathrm{E}+37$
$7: 55: 21$	150.2632	323.2498

$41 \sim$ focu C.
Rest N 12000 Ci
Alic low Cerrrié Soce rees fiom fos.cas. EKCEPT FOR 5 MARKEES wita A Dor ro los UE9 W IfTCH IS STorbe Th Frowt OF THE QUPARENTINE TIGBCE.

DECAYED TO: 31-0ct-00

$\begin{aligned} & \text { CAP } \\ & \text { TYPE } \end{aligned}$	$\underset{\#}{\text { SERIAL }}$	$\begin{aligned} & \text { STOR } \\ & \text { LOC } \\ & \hline \end{aligned}$	ORG. [R\#	Inner Type	$\begin{gathered} \text { Fabrication } \\ \text { W.O\# } \end{gathered}$	$\begin{gathered} \text { ETUR } \\ \text { P/S } \end{gathered}$	RETURN	$\begin{aligned} & \text { MEA } \\ & \text { URIES } \end{aligned}$	URED DATE	DECAYE CI/C-18	ECAYED CISIUg	COMMENTS
C-188	5065	13-W	151	C195 Inners	453278188.28	64025	01-Oct-97	8,050	16-Deo-77	395.3	24.7	F294 Test NC698019
C-188	5111	13-W	151	C195 inners	453278188.28	64025	01-0ct-97	8,851	16-Jan-78	439.6	27.5	F294 Test NC698019
C-188	5112	13W	151	C195 ${ }^{\text {mpers }}$	$453278188-28$	64025	01-00t-97	8,851	10-van 78	439.6	27.5	F294 Test NC698019
C-188	5113	13-W	151	C195 1 mers	4532781888	04025	01-0ct-97	8,851	16, Van 78	439.6	27.5	F294 Test NC696019
C-188	5114	13-W	151	C185 inmers	4532781888 -28	64025	01-0ct-97	8,851	10-van 78	439.6	27.5	F294 Test NC698019
C-188	5115	13.W	151	C195 inners	453278188.28	84025	01-0ct-97	8,851	16-Jan-78	439.6	27.5	F294 Test NC696018
C. 188	5116	13-W	151	C195 Inmers	453278188.28	64025	01-00t-97	8,851	10-Jan78	439.6	27.5	F294 Test NC698018
C.488	5117	13-W	151	C195 inmers	453278188.28	64025	01-00t-97	8,851	16-ant78	439.6	27.5	F294 Test NC698019
C-188	5119	13-W	151	C195 ${ }^{\text {mmers }}$	453278188.28	64025	01-0ct-97	8,851	16-Jan-78	439.6	27.5	F294 Test NC698019
C-188	5120	13-W	151	C185 1 mers	$453278188-28$	64025	01-0ct-97	8,920	16Vant 78	443.0	27.7	F294 Test NC696019
C-188	5124	13-W	151	C195 inners	$453278188-28$	44025	01-0ct-97	8,856	17Jan-78	44.0	27.5	F294 Test NC096019
C-188	5125	13.W	151	C195 ${ }^{\text {inmers }}$	$453278188-28$	04025	01-0cte9	8,856	17Jan-78	440.0	27.5	F294 Test NC698019
C-188	5128	13-W	151	C195 inners	453 278188.28	64025	$01-0 \mathrm{ct-97}$	8,858	17-ant78	440.0	27.5	F294 Test NC698019
C-188	5127	13-W	151	C195 inners	453278 188-28	64025	01-0ct-97	8,858	17-Jan-78	440.0	27.5	F294 Test NC650019
C-188	5128	13-W	151	C195 inmers	453278188.28	64025	01-0cte97	8,856	17Jan-78	440.0	27.5	F294 Test NC696019
C-188	5129	13-W	151	C195 mmers	$453278188-28$	64025	01-0ct-97	8,856	17山an-78	440.0	27.5	F294 Test NC696019
C-188	5131	13-W	151	C195 inmers	453278188828	64025	$010 \mathrm{Oct-97}$	8,858	17-Jan-78	440.0	27.5	F294 Test NC698019
C-188	5132	13-W	151	C195 mmers	$453278188-28$	04025	01-00t-97	8,856	17Jan78	44.0	27.5	F294 Test NC698019
c-188	5133	13-W	151	C195 inmers	453278188.28	04025	01-0ct-97	8,521	17 Jan-78	422.3	26.5	F294 Test NC698019
C-188	5134	13-W	151	C195 Immers	4532781888	64025	01-0x-97	8,521	17.Jan-78	423.3	28.5	F294 Test NC098019
C-188	5135	13-W	151	C185 inmer	453279188.28	64025	01-0cte9	8,521	17Jan 78	423.3	28.5	F294 Test NC096018
c-188	5138	13-W	151	C195 mmers	$453278188-28$	64025	01-0ct-97	8,521	17Jan-78	423.3	28.5	F294 Test NC696019
C-188	5137	13-W	154	C195 1 mers	$453278188-28$	64025	01-0ct-97	8,521	17-Jan78	423.3	26.5	F294 Test NC696019
C-188	5138	13.W	151	C195 inmer	453278188828	64025	$01-0 \mathrm{ct}-97$	8,521	17-Jan-78	423.3	26.5	F294 Test NC698019
C-188	5139	13-W	151	C195 inmer	453278188828	6402	01-0ct-97	8,521	17Jan-78	423.3	26.5	F294 Test NC698019
C-188	5140	13.W	151	C195 1 mer	453278188.28	64025	01-0ct-97	8,521	17-Jan-78	423.3	26.5	F294 Test NC698019
C-188	5141	13-W	151	C195 mmers	$453278188-28$	6402	01-0ct-97	851	17Jan-78	4228	26.4	F294 Test NC690019
C-188	5142	13W	151	C195 inmers	453278188.28	6402	$01-0 \mathrm{ct}-97$	8510	17/5an78	4228	26.4	F294 Test NC696019
C-188	5143	13-W	151	C195 inmers	453278188.28	64025	01-0ct-97	8,298	17-Jan-78	4122	25.8	F294 Test NC696019
C-188	5144	13-W	151	C195 fmers	453278188.28	64025	01-0ct-97	8,298	17-Jan-78	4122	25.8	F294 Test NC696019
C-188	5145	13W	151	C195 imers	453278188828	64025	01-Oct-97	8,298	17لan-78	4122	25.8	F294 Test NC696019
C-188	5147	13-W	151	C195 mners	$453278188-28$	04025	01-0ct-97	8,298	17Jan-78	4122	25.8	F294 Test NC696019
C-188	5148	13-W	151	C195 hm mers	453278188.28	64025	01-0cti97	8,298	17Jan-78	4122	25.8	F294 Test NC696019
C-188	5149	13.W	151	C195 mmers	$453278188-28$	64025	01-0ct-97	8,298	17-Jan-78	4122	25.8	F294 Test NC696019
C-188	5150	13-W	151	C195 mmers	453278188828	84025	01-0ct-97	8,151	17Jam.78	405.0	25.3	F294 Test NC698019
C-188	5151	13-W	151	C195 mmers	4532781888	64025	01-0ct-97	8,151	17Jan78	405.0	25.3	F294 Test NC690019
C.188	5152	13-W	151	C195 ${ }^{\text {mmers }}$	453278188.28	64025	01-0ct-97	8,151	17Jan-78	405.0	25.3	F294 Test NC696019
c-188	5153	13W	151	C195 inmers	$453278188-28$	64025	01-0ct-97	8,151	17Jan-78	405.0	25.3	F294 Test NC696019
c-488	5154	13.W	151	C195 inmers	45327918828	84025	01-0t-97	8,151	17Jan-78	405.0	25.3	F294 Test NC659019
C-188	55	13-W	51	C185 mmers	$453278188-21$	64025	010 Octar	${ }^{8} 8151$	17	40	25.3	F294 Test NC698019

C-188	5156	13-W	151	C995 inners	$453278188-28$	64025	01-0ct-07	8,951	17لJan-78	405.0	25.3	F294 Test NC690019
C-188	5157	13-W	151	C195 inmers	453278 188-28	64025	01-0ct-97	7,970	17-tan-78	395.9	24.7	F294 Test NC690019
C-188	5158	13-W	451	C195 inners	453278 188-28	64025	01-Oct-77	7,970	17-Jan-78	395.9	24.7	F294 Test NC696019
C-188	5159	13-W	151	C195 inners	$453278188-28$	64025	01-0ct-97	7,970	17Jan-78	395.9	24.7	F294 Test NC696019
C-188	5160	13-W	151	C195 Inners	$453278188-28$	84025	01-0ct-97	7,970	17-Jan-78	395.9	24.7	F294 Test NC693019
C-188	5181	13-W	151	C105 inmers	$453278188-28$	84025	01-0ct-97	7,970	17-Jan-78	395.9	24.7	F294 Test NC696019
C-188	5188	13-W	151	C105 inners	453278 188-28	64025	01-0ct-97	7,865	23-Jan-78	398.6	24.8	F294 Test NC696019
C-180	4842	13-UE9	69	C-195 inners	453-273-188-25	04811	98/10/14	10,525	12-Aug-77	493.9	30.9	F294 Test NC698019
C-188	4993	13-UE9	69	C-195 inmers	453-273-188-26	64811	98/10/14	10,380	10-0ct-77	497.6	31.1	F294 Test NC696019
C-188	5067	13-UE9	69	C-195 inners	453-273-188-28	04811	981014	9,728	16-Jan-78	483.1	30.2	F294 Test NC696019
C-188	5088	13-UE9	69	C-195 Inners	453-273-188-28	64811	98/10/14	9,728	16-Jan-78	483.1	30.2	F294 Test NC690019
C-188	5069	13-UE9	69	C-195 mners	453-273-188-28	64811	98/10/44	9,728	18-Jan-78	483.1	30.2	F294 Test NC696019

APPENDIX 3.6.7
 Finite Element analysis of the f-294 WITH THE F-457 SOURCE CARRIER
 IN/TR 1801 F294 (1)

F-294 Loading Finite Element Analysis

SIgnatures

Approved by:

Date: Of NOVZO

Document History

This document contains information proprietary to MOS Nordion Inc. Any disclosure or use of this intormation or any reprocurction of this document other than the specified purpose for which in is intended is expressly prohibited except as MDS Nordion may otherwise agree in writing. NOTE: The portion of this text affected by changes is indicated by a vertical line in the mangin.

F-294 Loading Finite Element Analysis

TABLE OF CONTENTS

1. INTRODUCTION 3
2. F-294 ANALYSIS 3
2.1 F-294 Finite Element Model 3
2.2 F-294 Model Verification 4
2.2.1 Test 1 -F-294 Model Verification 4
2.2.2 Test 2 - F-294 Model Verification 4
2.3 F-294 Loading Configuration with Double Row Cage (F-457) 5
3. CONCLUSION 6
4. REFERENCES 6
APPENDIX A - ANSYS INPUT FILES A-1
APPENDIX B - CONVECTION COEFFICIENT CALCULATION B-1

F-294 Loading Finite Element Analysis

1. INTRODUCTION

This report presents the finite element analysis of the F-294 transport container used to determine the cobalt loading configuration for the container.

The F-294 transport package is licensed to carry 360 kCi of cobalt-60. The cobalt-60, encapsulated in stainless steel or Zircaloy, must be loaded into the cavity of the containers such that the maximum surface temperature of the outermost encapsulation does not exceed the stainless steel sensitization temperature of $482^{\circ} \mathrm{C}$ as per Reference [1]. The cobalt "pencils", arranged in circular rows, are held in stainless steel carriers similar to that shown in Figure 1.

For the F-294 container, the allowable loading configuration is currently limited to a single row of pencils. This loading configuration was experimentally tested to ensure the sensitization temperature was not exceeded. To increase the utility of the F-294 container, it is desired to add a second row of pencils to the carrier.

To accomplish the above task, a finite element model was developed and verified based on past experimental results. The results of the finite element analyses and the subsequent loading configuration for the container are presented here.

2. F-294 ANALYSIS

2.1 F-294 Finite Element Model

A two-dimensional model of a cross-section of the F-294 cavity was created using the ANSYS finite element software, as shown in Figure 2 and listed in Appendix A. The model is parametric in that the following variables can be changed as required by the user:

- Diameter of cavity and thickness of steel on the inside of the container,
- Outside diameter of container and thickness of steel on outside of container,
- Lead to steel bonding equivalent air gap on inside and outside of container,
- Inner diameter of fire shield,
- Outer diameter of fire shield,
- Thickness of inner and outer fire shield steel sheet,
- Number and thickness of fins on container,
- Number, arrangement (number of rows and angle), diameter and activity of pencils inside the cavity,
- All material properties, and
- Heat transfer coefficients and emissivities of heat transfer surfaces.

Material properties for the lead, steel and air were taken from Reference [2], while the properties for the kaowool were taken from Reference [3].

On the inside and outside of the container, the radiation heat transfer was modeled by radiation matrices calculated by ANSYS. The radiating surfaces are defined and where necessary (on the outside of the container) a remote node is specified to effect the heat balance. Emissivity values for the surfaces were taken from Reference [2]. The convection across the air gaps on the inside of the container was modeled by adjusting the conduction heat transfer coefficients until the heat balance matched experimental data, as will be discussed in Section 2.2. The convection heat transfer coefficient on the outside of the container was calculated as in Appendix B.

F-294 Loading Finite Element Analysis

2.2 F-294 Model Verification

Several of the parameters discussed in Section 2.1 required adjustment for the model to accurately reflect the heat transfer in the package. Specifically, the adjusted parameters were:

- Lead to steel bonding equivalent air gap on inside and outside of container,
- Heat conductance (modeling conduction and convection) inside the cavity, and
- Heat conductance (modeling conduction and convection) in the fin enclosure.

These parameters were determined by comparing the results of the numerical model to two tests previously performed on actual F-294 containers, where the containers were loaded to capacity with cobalt-60. In both of these tests the containers were instrumented with thermocouples such that the temperature distribution throughout the container was determined for a maximum load of cobalt-60.

2.2.1 Test 1 - F-294 Model Verification

This loading test of the F-294 was performed for the F-294 Safety Analysis Report (SAR) submission for the licensing of the package to the 1985 IAEA regulation [4]. The F-294 was loaded as shown in Figure 3 and the maximum steady state temperatures were recorded as in Table 1.

The parameters in the model were adjusted so that the maximum pencil temperature in the model matched the maximum pencil temperature recorded in the test. To achieve a proper heat balance in the container the temperature on the inside of the fire shield had to be specified. This value was set to $50^{\circ} \mathrm{C}$ as measured in the test. The resulting calculated temperatures in the model are compared to the test temperatures in Table 1. The temperature distribution in the model is shown in Figure 4.

To determine the sensitivity of the model to the temperature specified on the inside of the fire shield, the model was also run with this temperature set to $100^{\circ} \mathrm{C}$ with all other parameters identical to the previous run. The calculated temperatures in the two cases are compared in Table 1. The outer temperatures increase approximately linearly with the set temperature. The inner cavity and maximum pencil temperatures increase by $25^{\circ} \mathrm{C}$, since the air in the cavity has a low thermal conductivity and insulates the pencils from the outside effects. The actual temperature on the inside of the fire shield is not expected to exceed $70^{\circ} \mathrm{C}$, based on comparison with the temperature measured on the container between the fins (Table 1). Therefore, an increment of approximately $10^{\circ} \mathrm{C}[(70-$ $50) /(100-50) * 25=10]$ was incorporated into the safety margin for the maximum allowable temperature in the cavity, as discussed in Section 2.3.

2.2.2 Test 2 - F-294 Model Verification

This loading test of the F-294 was performed for the testing of the F-457 two-row cage as documented in the thermal test report [5]. The F-294 was loaded as shown in Figure 5 and the maximum steady state temperatures recorded as in Table 2.

The parameters set from Section 2.2.1 were used for this run. The resulting calculated temperatures are compared to the test temperatures in Table 2. The measured and tested temperatures compare favorably, especially the maximum pencil temperature.

2.3 F-294 Loading Configuration with Double Row Cage (F-457)

The ultimate purpose of the model developed in Section 2.2 was to determine the allowable loading configurations for the double row F-457 cage in the F-294 as shown in Figure 1. The thermal tests performed on the package (Section 2.2.2) showed that if the double row cage were to be loaded incorrectly, the temperature in the F-294 cavity could potentially exceed the sensitization temperature of $482^{\circ} \mathrm{C}$. Using the model developed in Section 2.2, various loading combinations were tried to determine the allowable loading in the cage to ensure the temperatures in the cavity remain below the sensitization temperature.

To be conservative the maximum allowable temperature in the cavity for the loading combinations was taken as $450^{\circ} \mathrm{C}$. This maximum temperature was determined as follows;

Sensitization temperature			$\begin{aligned} & 482^{\circ} \mathrm{C} \\ & \text { minus } \end{aligned}$
Ambient Regulations to Ambient Test	(38-22)	=	$16^{\circ} \mathrm{C}$
			minus
Insolation Load as per SAR [4]		$=$	$5^{\circ} \mathrm{C}$
			minus
Safety Margin for Modeling Inaccuracies		$=$	$11^{\circ} \mathrm{C}$
			$450{ }^{\circ} \mathrm{C}$

It was assumed that the outer ring of the F-457 cage would be filled first. Therefore, the outer ring was loaded to capacity with sources of a certain activity, while the activity of the sources on the fully loaded inner ring were adjusted until the maximum temperature inside the cavity was equal to or just below $450^{\circ} \mathrm{C}$.

The pencil activities in the outer and inner rings are listed in Table 3 and plotted in Figure 6. From this table we can see that the maximum pencil activity on the inner ring is restricted by the maximum allowable curie content for the package. Therefore, for most configurations, the maximum allowable pencil activity on the inside ring can be calculated from the following formula.

Maximum Allowable Pencil
Activity on Inner Ring (kCi)

If an actual loading scenario cannot be handled using the above guideline, a more detailed analysis of the loading configuration can be performed by Package Engineering using the model presented in this report.

IN/TR 1801 F294 (1)

F-294 Loading Finite Element Analysis

3. CONCLUSION

The loading configuration guidelines for the F-294 transport package were determined from a numerical model as follows:

F-294 with F-457 Source Cage Transport Package Loading Guidelines

Maximum Allowable Pencil
Activity on Inner Ring (kCi)

4. REFERENCES

1. MDS Nordion Technical Specification, "Recommended Operating Conditions for MDS Nordion C-199 Cobalt-60 Sources to be Used in Wet Source Storage Gamma Irradiators", IN/TS 1234 C188 (3), 5 May 2001.
2. Incropera, Frank P., DeWitt, David P., "Fundamentals of Heat and Mass Transfer, Second Edition, John Wiley \& Sons, 1985.
3. Kaowool Product Catalogue.
4. MDS Nordion Technical Report, "Safety Analysis Report for F-294 Transport Package", IN/TR 9301 F294 (3), 2 March 2000.
5. MDS Nordion Industrial Quality Control Report, "Report for F-294 Steady State Thermal Test S/N: F294-03", May 2000.

IN/TR 1801 F294 (1)

F-294 Loading Finite Element Analysis

Table 4-1 - F-294 Test 1, Temperature Comparison

Location	ANSYS Nodé	$50^{\circ} \mathrm{C}$ Inside Fireshield (${ }^{\circ} \mathrm{C}$)	$\text { Temperatures (} C \text {) }$	$100^{\circ} \mathrm{C}$ Inside Fireshleld (c)
Outside Fireshield	12056	28	26	40
Inside Fireshield	10657	50	-	100
Outside Container Between Fins	- 10220	85	107	133
Cavity Wall	741	189	175	238
Maximum Source Temperature	-	419	417	444

Table 4-2 - F-294 Test 2, Temperature Comparison

Location	ANSYS Node	$50^{\circ} \mathrm{C}$ inslde Fireshleld (${ }^{\circ}$ C)	Temperatures (${ }^{\circ} \mathrm{C}$)
Outside Fireshield	12542	28	29
Inside Fireshleld	11144	50	-
Outside Container Between Fins	10707	85	95
Cavity Wall	1281	191	226
Maximum Source Temperature	-	465	467

Figure 1
Typical Source Cage Construction

F-294 Loading Finite Element Analysis

Figure 2
F-294 ANSYS Finite Element Model

INTR 1801 F294 (1)
F-294 Loading Finite Element Analysis

Figure 3
F-294 Loading Diagram for Verification Test 1

INTR 1801 F294 (1)

F-294 Loading Finite Element Analysis

Figure 4
Temperature Distribution in F-294 Test 1 Model

Figure 5
F-294 Loading Diagram for Verification Test 2

F-294 Loading Finite Element Analysis

Figure 6
Outer Versus Inner Ring Loading for F-294

APPENDIXA ANSYS Input Files

```
I ANSYS Input File for Internal Temperature of Cage Pencils
I For F-294 Transport Package with 376 kCi Cobalt in fully
I loaded single ring F-313 cage.
l Test 1
101.08.15 JRR
I
prep7
I command variables
I
*AFUN,DEG I use degrees for angular functions
|
I Input Variables
NR=11 number of rows in cage (1 or 2)
NP1 = 40 I number of pencils in row 1 (outer row)
NP2 = 0
DR1 = 0.2540 t row 2 diameter (m)
WPC = 0.01537 I Watts/Cl for Isotope
I
l activity of pencils in curies - repeat as required for all positions
I first subscript is row number, second is pencil number
AC11 = 12100 & AC12 = 10610 $ AC13 = 10630 & AC14 =
12300 $ AC15 = 960
AC16 = 12350 $ AC17 = 11040 & AC18 = 10870 $ AC 19 =
12361 $ AC110 = 960
AC111 = 12350 $ AC112 = 10640$ AC113 = 10830$ AC114 =
12290 $ AC115 = 960
AC116 = 12270 $ AC117 = 10720 $ AC118 = 10650 $ AC119 =
12350 $ AC120 = 960
AC121 = 12360 $ AC122 = 10610 $ AC123 = 10640 $ AC124 =
12340 $ AC125 = 960
AC126 = 12230 $ AC127 = 10610 $ AC128 = 10650 $ AC129 z
12360 $ AC130 = 960
AC131 = 12290$ AC132 = 10610$ AC133 = 10740$ AC134=
12360 $ AC135 = 960
AC136 = 12300$ AC137 = 10630$ AC138 = 10620 $ AC139 =
12120$ AC140 = 960
I total heat input to calculate lead heat generation contribution
TOTHT =AC11+AC12+AC13+AC14+AC15+AC16
TOTHT = TOTHT+AC17+AC18+AC19+AC110+AC111+AC112
TOTHT =
TOTHT+AC113+AC114+AC115+AC116+AC1117+AC118
TOTHT =
TOTHT+AC119+AC120+AC121+AC122+AC123+AC124
TOTHT =
TOTHT+AC125+AC126+AC127+AC128+AC129+AC130
TOTHT =
TOTHT+AC131+AC132+AC133+AC134+AC135+AC136
TOTHT = TOTHT+AC137+AC138+AC139+AC140
I
I angle to pencils from theta =0 - repeat as required for ell
positions
I first subscript is row number, second is pencil number
AN11 =0 $ AN12 = 9$ AN13 = 18 $ AN14 = 27 $ AN15 = 36
AN16 = 45 $ AN17 =54 $ AN18 =63 $ AN19 = 72 $ AN110 = 81
AN111= 90 $ AN112 = 99 $ AN113 = 108 $ AN114 = 117$
AN115 = 126
AN116 = 135$ AN117 = 144 $ AN118=153 $ AN119=162$
AN120 = 171
I ANSYS Input File for Internal Temperature of Cage Pencils I For F-294 Transport Package with 376 kCi Cobalt in fully I loaded single ring F-313 cage.
ITest 1
101.08.15 JRR
prep7
I command variables
1
1
I Input Variables

\(N P 2=0\)
DR1 \(=0.2540\) t row 2 diameter ( m )
WPC \(=0.01537 \mathrm{I}\) Walts/Cl for Isotope
I
acivity of pencils in curies - repeat as required tor all positions
Ifirst subscript is row number, second is pencil number
\(12300 \$\) AC15 \(=960\)
\(A C 16=12350 \$ A C 17=11040 \$ A C 18=10870 \$ A C 19=\)
\(12361 \$\) AC110 = 960
\(A C 111=12350 \$\) AC112 \(=10640 \$\) AC113 \(=10830 \$\) AC114 \(=\)
\(A C 116=12270\) \$ AC117 \(=10720 \$\) AC118 \(=10650 \$\) AC119 \(=\)
12350 \$ AC120 = 960
\(A C 121=12360 \$ A C 122=10610 \$ A C 123=10640 \$ A C 124=\)
\(12340 \$ \mathrm{AC} 125=960\)
\(A C 126=12230\) \$ AC127 \(=10610 \$\) AC128 \(=10650 \$\) AC129 \(=\)
\(A C 131=12290 \$ A C 132=10610 \$ A C 133=10740 \$ A C 134=\)
12360 \$ AC135 = 960
12120 \$ AC140 = 960
I total heat input to calculata lead heat generation contribution
寝 \(=\) AC11+AC12+AC13+AC14+AC15+AC16
TOTHT \(=\) TOTHT+AC17+AC18+AC19+AC110+AC111+AC112
TOTHT+AC113+AC114+AC115+AC116+AC117+AC118 TOTHT =
TOTHT+AC119+AC120+AC121+AC122+AC123+AC124 TOTHT =
(125+AC126+AC127+AC128+AC129+AC130
TOTHT +AC131+AC132+AC133+AC134+AC135+AC136
TOTHT \(=\) TOTHT \(+A C 137+A C 138+A C 139+A C 140\)
1
angle to pencils from theta \(=0\) - repeat as required for ell positions
I first subscript is row number, second is pencil number
AN11 \(=0 \$\) AN12 \(=9 \$\) AN13 \(=18 \$\) AN14 \(=27 \$\) AN15 \(=36\)
\(A N 111=90 \$\) AN112 \(=99\) \$ AN113 = \(108 \$\) AN114 \(=117 \$\)
AN116 \(=135\) \$ AN117 \(=144 \$\) AN118 \(=153\) \$ AN1 \(19=162 \$\)
\(A N 120=171\)
```

```
AN121=180$ AN122 = 189 $ AN123 = 198$ AN124=207 $
AN125 = 216
AN126 = 225$ AN127 = 234$ AN128=243$ AN129=252$
AN130 = 261
AN131 = 270 $ AN132 = 279 $ AN133 =288$ AN134 = 297 $
AN135 = 306
AN136 = 315$ AN137 = 324$ AN138=333$ AN139 = 342 $
AN140 = 351
I
PD =0.0148 I penci diameter (m)
CD =0.2921 I cavity diameter (m)
CWALLL = 0.01 I cavity wall thickness (m)
CEQV = 0.0008 I equlvalent air gap for lead-steel resistance at
cavity (m)
FWALL = 0.01 I container wall thickness (m)
FEQV = 0.0008 I equivalent alr gap for lead-steel resistance at
container (m)
FOD = 0.9144 ! container outside diameter (m)
SID = 1.1240 I fre shield inner diameter (m)
SOD = 1.2035 1 fre shield outside diameter (m)
SWALL =0.01 I fre shield steel wall thickness (m)
FINOD = 1.1176! fin outside diameter (m)
FINTK = 0.01 I fin thickness (m)
FINNM = 36 I number of fins
I
AT = 20 1 ambient temperature (C)
PE = 0.33 I pencil emissivity
CE = 0.27 I cavity emissivity
FEE = 0.8 I fin enclosure emissivity
FE =0.8 ! container outside emissivity
CH}=0.09 I cavity convective k coefficien
FEH=4.0 ! fin enclosure convective k coefficient
FH = 3.0 I container outside heat transfer coefficient (W/m2C)
I
I calculations based on input data
|
FINAN1 = 360/FINNM
FINAN2 = ASIN((FINTK/2)/FOD)
I create keypoints at center of circles
csys,1
I
I circle center keypoints
k,1,0,0
k,2,DR1/2,AN11 $ k,3,DR1/2,AN12 $k,4,DR1/2,AN13 $
k,5,DR1/2,AN14 $ k,6,DR1/2,AN15
k,7,DR1/2,AN16 $ k,B,DR1/2,AN17 $ k,9,DR1/2,AN18 $
k,10,DR1/2,AN19 $ k,11,DR1/2,AN110
k,12,DR1/2,AN111 $k,13,DR1/2,AN112 $k,14,DR1/2,AN113 $
k,15,DR1/2,AN114 $ k,16,DR1/2,AN115
k,17,DR1/2,AN116 $ k,18,DR1/2,AN117 $k,19,DR1/2,AN118 $
k,20,DR1/2,AN119 $ k,21,DR1/2,AN120
k,22,DR1/2,AN121 $k,23,DR1/2,AN122 $ k,24,DR1/2,AN123 $
k,25,DR1/2,AN124 5k,26,DR1/2,AN125
k,27,DR1/2,AN126 $k,28,DR1/2,AN127 $k,29,OR1/2,AN128 $
k,30,DR1/2,AN129 $ k,31,DR1/2,AN130
k,32,DR1/2,AN131 $ k,33,DR1/2,AN132 $ k,34,DR1/2,AN133 $
k,35,DR1/2,AN134 $ k,36,DR1/2,AN135
k,37,DR1/2,AN136 $k,38,DR1/2,AN137 $k,39,DR1/2,AN138 $
k,40,DR1/2,AN139 $k,41,DR1/2,AN140
l
```

```
Ifin key points
k,100,FOD/2.-FINAN2
*REPEAT,FINNM,2,0,FINAN1
k,101,FOD/2,FINAN2
*REPEAT,FINNM,2,0,FINAN1
k,200,FINOD/2,-FINAN2
*REPEAT,FINNM,2,0,FINAN1
k,201,FINOD/2,FINAN2
*REPEAT,FINNM,2,0,FINAN1
I
I create circes at each keypoint
circle,1,CD/2
circle,1,CD/2+CWALL
circle,1,CD/2+CWALL+CEQV
circle,1,FOD/2-FWALL-FEQV
circle,1,FOD/2-FWALL
circle,1,FOD/2
circle,1,SID/2
circle,1,SID/2+SWALL
circle,1,SOD/2-SWALL
circle,1,SOD/2
circle,2,PD/2
*REPEAT,(NP1+NP2),1,0
l
I create circle areas
al,1,2,3,4
*REPEAT,(10+NP1+NP2),4,4,4,4
I
I subtract circles to form sections
asel,s,area,,1
asel,a,area,,11,(10+NP1+NP2)
asba,1,all,keep,keep
allse!
asba,2,1,keep,keep
*REPEAT,9,1,1
I
l create areas for fins
8,100,101,201,200
*REPEAT,FINNM,2,2,2,2
I
I subtract fin areas from area (10+NP1+NP2+7)
asel,s,area,(10+NP1+NP2+7)
asel,a,area,(10+NP1+NP2+11),(10+NP1+NP2+11+FINNM-1)
asba,(10+NP1+NP2+7,all,keep,keep
allse!
I
I add fin areas to area (10+NP1+NP2+6)
asel,s,area,(10+NP1+NP2+6)
asel,a,area,(10+NP1+NP2+11),(10+NP1+NP2+11+FINNM-1)
eadd,a|
allse!
I
I material properties
| material property set I = stainless
mp,kxx, 1,16.3
1 material property set 2 = lead
mp,koc,2,35
I material property set 3 = lead-steel contact at fin end.
mp,kox,3,.0224,
I material property set 4 = air in cavity
mp,box,4,CH
I material property set 5 = alr in fin enclosure
mp,kox,5,FEH
I material property set 6 = kaowool
mp,10c,6,0.054
I pendil emissivity
mp,emis,7,PE
```

I cavity emissivity
mp,emis,8,CE
I fin enclosure emissivity
mp,emis,9,FEE
I outside container emissivity
mp,emis,10,FE
I material property set 11 = lead-steel contact at cavity
mp,kox,11,.0224*8,
1
I mesh araas
1
et, 1,55 I element type $1=$ plane 55 themal $2-\mathrm{d}$
type, 1
1
1 sources
mat, 1
real, 1
esize, 0.005
amesh, $11, \mathrm{NP} 1+\mathrm{NP} 2+10$
! air inner cavity
mat 4
rea! 2
amesh,NP1+NP2+11
I cavity wall
mat, 1
real, 3
amesh, NP1+NP2+12
! lead-steel bond at cavity
mat, 11
real,4
amesh, NP1+NP2+13
1 lead
mat, 2
real,5
esize,0.02
amesh,NP1+NP2+14
I lead-steel bond at outside
mat, 3
real, 6
amesh, NP1+NP2+15
loutside shell and fins
mat, 1
real, 7
amesh,NP1+NP2+FINNM+22
Ifin enclosure
mat,5
real, 8
amesh,NP1+NP2+FINNM+21
I inside fire shield stee!
mat, 1
real,9
amesh,NP1+NP2+18
Inside fire shield kaowool
mat, 6
real, 10
amesh, NP^{2} +NP2+19
Ioutside fire shield steel
mat, 1
real, 11
amesh,NP1+NP2+20
1
icreate radiation enclosures
I cavity enclosure
et,2,32
type,2
real, 12
mat 7
ksel,s,loc,x,0,CD/2-0.01

asel,s,area,,26
allsel, below,area
esel,r,type,. 1
bfe,all,hgen, AC116*WPC/PA
asel,s,area, 27
allsel,below,area
esel,r,type,,1
bfe, all,hgen, AC117"WPC/PA
asel,s,area,28
allsel,below,area
esel,r,type,,1
bfe, all,hgen, AC118*WPC/PA
asel,s,area,,29
allsel,below,area
esel,r,type, 1
bfe,ell,hgen,AC119*WPC/PA
esel,s,area, 30
allsel,below,area
esel, ritype,, 1
bfe,all,hgen, AC120*WPCPPA
asel,s,area,31
allsel,below,area
esel,r,type,, 1
bfe,all,hgen, AC121*WPC/PA
asel,s,area, 32
allsel,below,area
esel, r,type, 1
bfe, all,hgen, AC122*WPC/PA
asel, s,anea, 33
allsel,below,area
esel,ritype,. 1
bfe,all,hgen,,AC123*WPC/PA
asel,s,area,34
allse!, below, area
esel,r,type., 1
bfe,all,hgen,,AC124*WPC/PA
asel,s,area,,35
allsel,below,area
esel,r,type.,1
bfe,all,hgen,AC125*WPC/PA
asel,s,area, 36
allsel,below, area
esel,r,type, 1
bfe, all,hgen, $A C 126{ }^{*}$ WPC/PA
asei,s,area,,37
allsel,below,area
esel,r,type., 1
bfe, all,hgen, AC127*WPC/PA
asel,s,area, 38
allsel,below, area
esel,r,type., 1
bfe, all,hgen, AC128*WPC/PA
asel,s,area,39
allse!,below,area
esel,r,type, 1
bfe, all,hgen, AC129*WPC/PA
asel,s,area, 40
allsel,below,area
esel,r,type., 1
bfe,all,hgen,AC130*WPC/PA
asel,s,area, 41
allsel,below,area
esel,ritype., 1
bfe, all,hgen, AC131*WPC/PA
asel,s,area,,42
allsel,below,area
esel,r,type,, 1
bfe,all,hgen, AC132*WPC/PA
asel,8,area, 43
allsel,below,area
esel,r,type.,1
bfe, all,hgen,AC133*WPCIPA
asel,s,area, 44
allsel,below,area
esel,r,type,,1
bfe, all,hgen, AC134*WPC/PA
asel,s,area, 45
allsel,below,area
esel,r,type, 1
bfe,all,hgen, AC135*WPCIPA
asel,s,area,,46
allsel,below,area
esel,r,type,,1
bfe,all,hgen, AC136*WPC/PA
esel,s,area, 47
allsel, below,area
esel,r,type, 1
bfe, all,hgen.,AC137*WPC/PA
asel,s,area,,48
allsel,below,area
esel,ritype, 1
bfe,all,hgen,,AC138*WPC/PA
asel,s,area,49
allsel, below, area
esel,r,type, 1
bfe,all,hgen,_AC139+WPC/PA
esel,s,area, 50
allsel,below,area
esel,r,type,1 1
bfe, all,hgen, AC140*WPC/PA
I apply remaining heat generation to lead
I lead area including
1 attentuation factor $=1.5$
I ($2 / 3$ rds heat in lead ($1 / 1.5$) - 1/3rd of heat in pencils)
I radial distribution factor $=1.43$
I (only 70\% of heat is radial (1/1.43)-30\% axial)
LA $=\left(\left(3.1416^{*}(\text { FOD/2 })^{*}\right.\right.$ (FOD/2))-
$\left.\left(3.1416^{*}(C D / 2)^{*}(C D / 2)\right)\right)^{*} 1.5^{*} 1.43$
esel,s,mat,2
nelem
esel,r,type., 1
bfe,all,hgen.,TOTHT"WPCMA
allse!
save
I remove link32s, set ambient temp and run
find
Isolve
csys, 1
nsel,s,loc,x,sid/2
d,all,temp,50
allse!
esel,u,real,,12,14
d,9999999,temp_AT
lnsrch,on
solve
nsel,s,loc, x, sid/2
d, all,temp,100
allse!
esel,u,real, 12,14
solve
fini
texit,save

F-294 Loading Finite Element Analysis

I ANSYS Input File for Internal Temperature of Cage Pencils
I For F-294 Transport Package with 376 kCl Cobalt in fully I loaded double ing F-457 cage.
1 Test 2
101.08.15 JRR

1
/prep7
I command variables
I
*AFUN,DEG I use degrees for angular functions
1
1 Input Variables
1
NR $=21$ number of rows in cage (1 or 2)
NP1 $=40$ I number of pencils in row 1 (outer row)
NP2 $=40$ I number of pencils in row 2 (inner row)
DR1 $=0.2254$ I row 1 diameter (m)
DR2 $=0.2540$ I row 2 diameter (m)
WPC $=0.01537$ I Watts/Cl for Isotope
1
I activity of pencils in curies - repeat as required for all positions
I first subscript is row number, second is pencil number
AC11 $=7509 \$ \mathrm{AC12}=500 \$ \mathrm{AC13}=12662 \$ \mathrm{AC14}=500 \$$
AC15 $=500$
AC16 $=12662 \$$ AC17 $=500 \$$ AC18 $=500 \$$ AC19 $=12714 \$$
AC110 $=500$
$A C 111=500 \$ \mathrm{AC112}=12796 \$ \mathrm{AC113}=500 \$ \mathrm{AC114}=500 \$$
$A C 115=12803$
AC116 $=500 \$$ AC117 $=500 \$$ AC118 $=12803 \$$ AC119 $=500 \$$
$A C 120=500$
AC121 $=12847 \$$ AC122 $=500 \$$ AC123 $=500 \$$ AC124 $=$
$12885 \$$ AC125 $=500$
AC126 $=500 \$$ AC127 $=12121 \$$ AC128 $=500 \$$ AC129 $=500 \$$
AC130 $=12444$
$A C 131=500 \$ \mathrm{AC132}=500 \$ \mathrm{AC133}=12716 \$ \mathrm{AC134}=500 \$$
AC135 $=500$
$A C 136=12723 \$ A C 137=500 \$ A C 138=500 \$$ AC139 =
$12738 \$ A C 140=500$
1
AC21 $=12618$ \$ AC22 $=500 \$$ AC23 $=500 \$$ AC24 $=12615 \$$
$A C 25=500$
AC26 =500\$AC27=12632\$AC28=500\$AC29=500\$
AC210 $=12655$
AC211 $=500 \$$ AC212 $=500 \$$ AC213 $=12699 \$$ AC214 $=500 \$$
AC215 $=500$
$A C 216=12714 \$ \mathrm{AC217}=500 \$ \mathrm{AC} 218=500 \$ \mathrm{AC219}=$
12803 \$ AC220 = 500
$A C 221=500 \$ \mathrm{AC222}=12936 \$ \mathrm{AC223}=500 \$ \mathrm{AC224}=500 \$$
AC225 = 12595
$A C 226=500 \$$ AC227 $=500 \$$ AC228 $=12595 \$$ AC229 $=500 \$$
AC230 $=500$
AC231 $=12610 \$$ AC232 $=500 \$$ AC233 $=500 \$$ AC234 $=$
$12632 \$$ AC235 $=500$
$A C 236=500 \$ \mathrm{AC237}=12640 \$ \mathrm{AC} 238=500 \$ \mathrm{AC239}=500 \$$
AC240 = 12885
I total heat inpur to calculate lead heat generation contribution
TOTHT $=A C 11+A C 12+A C 13+A C 14+A C 15+A C 16$
TOTHT $=$ TOTHT $+A C 17+A C 18+A C 19+A C 110+A C 111+A C 112$

TOTHT =

TOTHT+AC113+AC114+AC115+AC116+AC117+AC118 TOTHT =
TOTHT $+A C 119+A C 120+A C 121+A C 122+A C 123+A C 124$
TOTHT =
TOTHT $+A C 125+A C 126+A C 127+A C 128+A C 129+A C 130$ TOTHT =
TOTHT + AC131+AC132+AC133+AC134+AC135+AC136
TOTHT $=$ TOTHT+AC137+AC138+AC139+AC140

TOTHT $=$ TOTHT + AC21 + AC22 + AC23 $+A C 24+A C 25+A C 26$
TOTHT $=$ TOTHT $+A C 27+A C 28+A C 29+A C 210+A C 211+A C 212$
TOTHT $=$
TOTHT+AC213+AC214+AC215+AC216+AC217+AC218
TOTHT =
TOTHT+AC219+AC220+AC221+AC222+AC223+AC224
TOTHT =
TOTHT+AC225+AC226+AC227+AC228+AC229+AC230
TOTHT $=$
TOTHT+AC231+AC232+AC233+AC234+AC235+AC236
TOTHT $=$ TOTHT $+A C 237+A C 238+A C 239+A C 240$
1
I angle to penclis from theta $=0$ - repeat as required for all postions
I first subscript is row number, second is pencil number
AN11 $=0 \$$ AN $12=9 \$$ AN $13=18 \$$ AN $14=27 \$$ AN15 $=36$
AN16 $=45 \$$ AN17 $=54 \$$ AN18 $=63 \$$ AN19 $=72 \$$ AN110 $=81$
AN111 $=90 \$$ AN112 $=99 \$$ AN113 $=108 \$$ AN114 $=117 \$$
AN115 $=126$
AN116 $=135 \$$ AN117 $=144 \$$ AN118 $=153 \$$ AN119 $=162 \$$
AN120 $=171$
AN121 $=180 \$$ AN122 $=189 \$$ AN123 $=198 \$$ AN124 $=207 \$$
AN125 $=216$
AN126 = 225 \$ AN127 $=234 \$$ AN128 = 243 \$ AN129 = 252 \$
AN130 $=261$
AN131 $=\mathbf{2 7 0}$ \$ AN132 $=\mathbf{2 7 9}$ \$ AN133 $=\mathbf{2 8 8}$ \$ AN134 $=297 \$$
AN135 = 306
AN136 $=315 \$$ AN137 $=324 \$$ AN138 $=333 \$$ AN139 $=342 \$$
AN140 $=351$
1
PINC $=4.5$
AN21 $=0+$ PINC $\$$ AN22 $=9+$ PINC $\$$ AN23 $=18+$ PINC $\$$ AN24
$=27+$ PINC $\$$ AN25 $=36+$ PINC
AN26 $=45+$ PINC $\$$ AN $27=54+$ PINC $\$$ AN28 $=63+$ PINC $\$$
AN29 = 72+PINC $\$$ AN210 $=81+$ PINC
AN211 $=90+$ PINC $\$$ AN212 $=99+$ PINC $\$$ AN213 $=108+$ PINC $\$$
AN214 $=117+$ PINC $\$$ AN215 $=126+$ PINC
AN216 $=135+$ PINC $\$$ AN217 $=144+$ PINC $\$$ AN218 $=$
$153+$ PINC $\$$ AN219 $=162+$ PINC $\$$ AN220 $=171+$ PINC
AN221 $=180+$ PINC $\$$ AN222 $=189+$ PINC $\$$ AN223 $=$
$198+$ PINC $\$$ AN224 $=207+$ PINC $\$$ AN225 $=216+$ PINC
AN226 = 225+PINC $\$$ AN227 $=234+$ PINC $\$$ AN228 =
$243+$ PINC $\$$ AN229 $=252+$ PINC $\$$ AN230 $=261+$ PINC
AN231 $=270+$ PINC $\$$ AN232 $=279+$ PINC $\$$ AN233 $=$
$288+$ PINC $\$$ AN234 $=287+$ PINC $\$$ AN235 $=306+$ PINC
AN236 $=315+$ PINC $\$$ AN237 $=324+$ PINC $\$$ AN238 $=$
$333+$ PINC $\$$ AN239 $=342+$ PINC $\$$ AN240 $=351+$ PINC
1
$\mathrm{PD}=0.0148 \mathrm{I}$ pencil dlameter (m)
$C D=0.2921$ I cavity diameter (m)
CWALL $=0.01$ I cavity wall thickness (m)
CEQV $=0.0008$ l equivalent alr gap for lead-steel resistance at cavity (m)
FWALL $=0.01$ l container wall thickness (m)
FEQV $=0.0008$ l equivalent air gap for lead-steel resistance at container (m)
FOD $=0.9144$ I container outside diameter (m)
SID $=1.1240!$ fire shield inner diameter (m)
$S O D=1.2035$! fre shield outside diameter (m)
SWALL $=0.01$ I fire shield steel wall thickness (m)
FINOD $=1.11761$ fin outside diameter (m)
FINTK $=0.01$! fin thickness (m)
FINNM $=36$ I number of fins
1
$A T=201$ amblent temperature (C)
PE $=0.33$ ipencil emissivity
CE $=0.27$ I cavity emissivity
FEE $=0.8$! fin enclosure emissivity

F-294 Loading Finite Element Analysis

FE $=0.8$ I container outside emisskity
$\mathrm{CH}=0.08$ I cavity convective k coefficient
FEH $=4.01$ If enclosure convective k coefficient
FH = 3.0 1 container outside heat transfer coefficient (W/m2C) 1
I calcutations based on input data
FINAN1 $=360 /$ FINNM
FINAN2 = ASIN((FINTK/2)/FOD)
1 create keypoints at center of circles csys, 1

1
I circle center keyponts
k,1,0,0
k,2,DR1/2,AN11 $\$ k, 3, D R 1 / 2, A N 12 \$ k, 4, D R 1 / 2, A N 13 \$$
$k, 5, D R 1 / 2, A N 14 \$ k, 6, D R 1 / 2, A N 15$
$k, 7$, DR1/2,AN16 $\$ k, 8, D R 1 / 2$, AN17 $\$ k, 9, D R 1 / 2, A N 18 \$$
k,10,DR1/2,AN19 \$ k,11,DR1/2,AN110
k,12,DR1/2,AN111 $\$ k, 13, D R 1 / 2, A N 112 \$ k, 14, D R 1 / 2, A N 113 \$$
k, 15,DR1/2,AN114 \$k,16,DR1/2,AN115
k, 17,DR1/2,AN116 $\$ k, 18$, DR1/2,AN117 \$ k, 19,DR1/2,AN1 18 \$
k,20,DR1/2,AN119 \$ k,21,DR1/2,AN120
k,22,DR1/2,AN121 \$k,23,DR1/2,AN122 \$ k,24,DR1/2,AN123 \$ k,25,DR1/2,AN124 \$k,26,DR1/2,AN125
k,27,DR1/2,AN126 $\$ k, 28$, DR1/2,AN127 $\$ k, 29, D R 1 / 2$, AN128 $\$$
k,30,DR1/2,AN129 $\$$ k,31,DR1/2,AN130
k,32,DR1/2,AN131 \$k,33,DR1/2,AN132 \$ k,34,DR1/2,AN133 \$
k,35,DR1/2,AN134 \$ k,36,DR1/2,AN135
k,37,DR1/2,AN136 \$k,38,DR1/2,AN137 \$ k,39,DR1/2,AN138 \$
k,40,DR1/2,AN139 \$ k,41,DR1/2,AN140
k,42,DR2/2,AN21 \$ k, 43,DR2/2,AN22 \$ k,44,DR2/2,AN23 \$
k,45,DR2/2,AN24 \$k,46,DR2/2,AN25
k,47,DR2/2,AN26 $\$ k, 48$, DR2/2,AN27 $\$ k, 49$, DR2/2,AN28 \$
k,50,DR2/2,AN29 $\$ k, 51$, DR2/2,AN210
k,52,DR2/2,AN211 \$k,53,DR2/2,AN212 \$ k,54,DR2/2,AN213 \$ k,55,DR2/2,AN214 \$k,56,DR2/2,AN215
k,57,DR22,AN216 $\$ k, 58$, DR2 2, AN 217 \$ $k, 59, D R 2 / 2, A N 218 \$$
$k, 60, \mathrm{DR} 2 / 2, \mathrm{AN} 219$ \$ $k, 61$, DR2/2,AN220
k,62,DR22,AN221 \$k,63,DR2 2 ,AN222 $\$ k, 64, D R 2 / 2, A N 223 \$$
k,65,DR2/2,AN224 § k,66,DR22,AN225
k,67,DR2/2,AN226 \$ k,68,DR222,AN227 \$ k,69,DR2/2,AN228 \$
k,70,DR2/2,AN229 \$ k,71,DR2/2,AN230
k,72,DR2/2,AN231 \$k,73,DR2/2,AN232 \$ k,74,DR2/2,AN233 \$
k,75,DR2/2,AN234 \$k,76,DR22,AN235
k,77,DR2/2,AN236 \$k,78,DR2/2,AN237 \$ k,79,DR2/2,AN238 \$
k,80,DR2/2,AN239 \$ k,81,DR2/2,AN240
Ifin key points
k,100,FOD/2,FINAN2
*REPEAT,FINNM, 2,0, FINAN1
k,101,FOD/2,FINAN2
*REPEAT,FINNM, 2,0,FINAN1
k,200,FINOD/2,-FINAN2
*REPEAT,FINNM,2,0,FINAN1
k,201,FINOD/2,FINAN2
*REPEAT,FINNM, 2,0,FINAN1
1
I create circles at each keypoint
circle, $1, \mathrm{CD} / 2$
circle, $1, \mathrm{CD} / 2+\mathrm{CWALL}$
circle, 1,CD/2+CWALL+CEQV
circle, 1,FODR-FWALL-FEQV
circle, 1,FOD/2-FWALL
circle, 1, FOD/2
circle, $1, \mathrm{SID} / 2$
circle,1,SID/2+SWALL
circle, 1,SOD/2-SWALL
circle, 1,SOD/2
circle,2,PD/2
*REPEAT,(NP1+NP2),1,0

1
I create circle areas
al, 1,2,3,4
*REPEAT,(10+NP1+NP2),4,4,4,4
1
I subtract circles to form sections
asel, s,area, 1
asel,e,area,,11,(10+NP1+NP2)
asba, 1, हll,keep,keep
allsa!
asba,2,1, keep,keep
*REPEAT,9,1,1
1
I create areas for fins
8,100,101,201,200
*REPEAT,FINNM,2,2,2,2
1
I subtract fin areas from area ($10+$ NP1 + NP2 +7)
asel, s, area ,, $(10+\mathrm{NP} 1+\mathrm{NP} 2+7$)
asel, ,a,area,,(10+NP1+NP2+11).(10+NP1+NP2+11+FINNM-1)
asba,(10+NP1+NP2+7),all,,keep,keep
allse!
1
I add fin areas to area ($10+\mathrm{NP1}+\mathrm{NP2} 2+6$)
asel, , , area, (10+NP1+NP2+6)
asel,, area,,($10+$ NP1+NP2+11),($10+$ NP1+NP2 $+11+$ FINNM -1$)$
aadd, ell
allsel
$!$
I material properties
I material property set $1=$ stainless
mp,lcx, 1,16.3
1 material property set 2 = lead
mp,1oco,2,35
1 material property set $3=$ lead-steel contact at fin encl.
mp,10cx,3,0224,
1 material property set $\mathbf{4} \mathbf{z}$ air in cavity
mp, $\mathrm{koc}, 4, \mathrm{CH}$
I material property set $5=$ air in fin enclosure
mp,loc, 5, FEH
1 material property set $\mathbf{6}=$ kaowool
mp,10x,6,0,054
I pencil emissivity
mp,emis,7,PE
I cavity emissivity
mp,emis,8,CE
Ifin enclosure emissivity
mp,emis,9,FEE
I outside container emissivity
mp,emis,10,FE
I material property set $11=$ lead-steel contact at cavity
mp, $\mathrm{kcx}, 11, .0224^{48}$,
I mesh areas
1
et, 1,55 I element type $1=$ plane 55 thermal 2-d
type, 1
I sources
mat, 1
real, 1
esize, 0.005
amesh. 11,NP1 + NP2 +10
1 air inner cavity
mat, 4
real, 2
amesh, $\mathrm{NP} 1+\mathrm{NP} 2+11$
| cavity wal|
mat, 1

F-294 Loading Finite Element Analysis

real, 3	
amesh, NP1+NP2+12	I create node for outside radiation
I lead-steel bond at cavity	n,9999999,SOD
mat, 11	
real, 4	1 create radiation matrices
amesh, $\mathrm{NP} 1+\mathrm{NP2+13}$	fini
t lead	taux 12
mat, 2	emis,7,PE
real, 5	emis,8,CE
esize,0.02	emis, 9, FEE
amesh,NP1+NP2+14	emis, 10,FE
I lead-steel bond at outside	stef,5.7e-8
mat, 3	geom, 1
real, 6	vespe, 0
amesh,NP1+NP2+15	esel,s,real, 12
1 outside shell and fins	nelem
mat, 1	write,rad1
real, 7	esel, s , real, 13
amesh,NP1+NP2+FINNM +22	nelem
1 fin enclosure	write,rad2
mat,5	space,9999999
real, 8	esel,s,real,,14
amesh,NP1+NP2+FINNM+21	nelem
Inside fire shield steel	nsel, , , node , 9999999
mat, 1	write, red3
real,9	allse!
amesh,NP1+NP2+18	fini
I Inside fire shield kaowool	prep7
mat, 6	et,3,50,1
real, 10	type,3
amesh,NP1+NP2+19	real, 15
1 outside fire shield steel	se,rad1
mat, 1	se,rad2
real, 11	se,rad3
amesh,NP1+NP2+20	1
1)	allse!
1 create radiation enclosures	tofist,273 I offset for input in degrees C
1 cavity enclosure	save
et,2,32	I apply convection on outside surface
type,2	esel,r,real, 14
real, 12	nelem
mat, 7	eall
ksel,s,1oc,x,0,CD/2-0.01	sf,all,conv,FH,AT
lslk,s,1	I apply heat generation rates to pencils
Imesh,ell	I pencll area including
lreverse,all	1 attentuation factor $=3.0$
mat, 8	1 ($1 / 3$ rd of heat in pencils (1/3.0)-2/3rds in lead)
ksel, ,s,loc,x,CD/2	1 length factor $=0.432$
Islk, s, 1	1 (17 inch active pencil lendth/39.37 inch per meter)
Imesh,all	I radial distribution factor $=1.43$
1 fin enclosure	$!$ (only 70% of heat is radial ($1 / 1.43$) -30\% axial)
real, 13	$\mathrm{PA}=\left(3.1416^{*}(\mathrm{PD} / 2)^{*}(\mathrm{PD} / 2)\right)^{*} 0.432^{*} 3.0 * 1.43$
mat,9	asel, s,area,,11
asel, s,area,,NP1+NP2+FINNM+21	allsel, below,area
allsel,below,area	esel,r,type, 1
Imesh,all	bfe,all,hgen, AC11*WPC/PA
ksel,s,loc, x, FOD/2	asel, s,area, 12
lsik,s,1	allsel,below,area
Ireverse,all	esel,r,type,1
1 outside fireshield	bfe,all, hgen, AC12*WPC/PA
real,14	asel, s ,area, 13
mat, 10	allsel,below,area
ksel,s,loc,x,SOD/2	esel,r,type,1
lsik,s, 1	bfe,all, hgen, AC13*WPC/PA
Imesh,all	asel, , ,area,,14
lreverse,all	allsel, below,area
1	esel,r,type,1
allsel	bfe,sll,hgen, AC14*WPC/PA

asel,s,area, 15
alisel,below,area esel,r,type., 1
bfe,all,hgen, AC15*WPC/PA
asel,s,area,,16
allsel,below,area esel,r,type,, 1
bfe, all, hgen,,AC16"WPC/PA
asel,s,area., 17
allse!,below,area
ese!,r,type,. 1
bfe,ell,hgen,,AC17*WPC/PA
asel,s,area,,18
allsel,below,area
esel,r,type, 1
bfe,all,hgen,AC18*WPC/PA
asel,s,area., 19
allsel,below,area
esel,r,type, 1
bfe, all,hgen, AC19*WPC/PA
asel,, , area, 20
allsel,below,area
esel,r,type, 1
bfe, all,hgen, AC110WPC/PA
asel,s,area,21
allsel,below,area
esel,r,type., 1
bfe,all,hgen, AC111"WPC/PA
asel,, ,area, 22
allsel,below,area
esel,r,type., 1
bfe,all,hgen, AC112*WPC/PA
esel,, ,erea, 23
allsel,below,area
esel,r,type,,1
bfe,all, igen, AC113*WPC/PA
asel,s,area, 24
allsel,below,area
esel,r,type, 1
bfe,all,hgen, AC114*WPC/PA
asel,s,area,,25
allsel,below,area
esel,r,type,. 1
bfe,all,hgen, $A C 115^{\circ}$ WPC/PA
asel,s,area, 26
allsel,below,area
esel,r,type, 1
bfe,all,hgen, AC116WPC/PA
asel, 8, area, 27
allsel,below,area
esel,r,type,,1
bfe,all,hgen, AC117"WPC/PA
asel,, , area, 28
allsel,below,area
esel,r,type,,1
bfe, all,hgen, AC118*WPC/PA
asel,s,area, 29
allsel,below,area
esel,r,type, 1
bfe,all, hgen, AC119*WPC/PA
asel,s,area, 30
allsel,below,area
esel,r,type,1 1
bfe,all,hgen, ,AC120WPC/PA
asel,s,area, 31
allsel,below,area
esel,r,type,, 1
bfe,all,hgen, AC121 WPC/PA
asel,s,area, 32
alsel,below, area
esel,r,type, 1
bfe,all,hgen,,AC122*WPC/PA
asel,s,,area, 33
allsel,below,area
esel,r,type,1
bfe,ell, hgen, $A C 123^{*}$ WPC/PA
asel, s,area, 34
allsel,below,area
esel,r,type,,1
bfe,all,hgen,AC124*WPC/PA
asel,, ,area,,35
allsel,below,area esel,r,type,,1
bfe, all,hgen, AC125*WPC/PA
asel, $\mathbf{5 , \text { area, } , 3 6}$
allsel,below,area
esel,r,type,,1
bfe, all, hgen, AC126*WPC/PA
asel,s,area, 37
allsel,below,area
esel,r,type,. 1
bfe,all,hgen, AC127*WPC/PA
.asel, s,area, 38
allsel,below,area
esel,r,type., 1
bfe,all,hgen, AC128*WPC/PA
asel, s, area, 39
allsel,below,area
esel, r,type,. 1
bfe, all,hgen, AC129*WPC/PA
asel,,s,area, 40
allse!,below, area
esel, r,type,, 1
bfe,all,hgen, AC130"WPC/PA
asel,s,area, 41
allsel,below,area
esel,r,type,,1
bfe, all,hgen, AC131WPC/PA
asel, , ,area, 42
allsel,below,area
esel,r,type,.1
bfe, all, hgen, AC132*WPC/PA
asel, s, area, 43
allsel,below,area
esel,r,type.,1
bfe,all,hgen, AC133*WPC/PA
asel,s,area,,44
allsel,below,area
esel, r,type,1
bfeallthgen, AC134"WPC/PA
asel,,,,area, 45
allsel,below, area
esel,r,type,, 1
bfe, all,hgen, AC135*WPC/PA
asel,s,area,, 46
allsel,below,area
esel,r,type,1
bfe,all,hgen,AC136"WPC/PA
asel, , , area., 47
allsel,below,area
esel,, ,type,, 1
bfe, all, hgen, AC137*WPC/PA
asel, ,s,area,,48
allsel, below,area
esel, r,type., 1
bfe,all,hgen, AC138*WPC/PA
asel,, ,area, ,49
allsel,below,area
esel,ritype,1
bfe,all,ngen,,AC139*WPC/PA
asel,s,area, 50
allsel,below,area
esel,r,type,. 1
bfe, all,hgen,AC140*WPC/PA
1
asel,s,area, 51
allsel,below,area
esel,r,type., 1
bfe, all,hgen, AC21*WPC/PA
esel,s,area,52
allse!,below,area
esel,r,type, 1
bfe, all,hgen,,AC22"WPC/PA
asel,, s,area, 53
allsel,below,area
esel,r,type., 1
bfe, all,hgen, AC23WPC/PA
asel,s,area, 54
allsel,below,area
esel,r,type, 1
bfe,all,hgen, AC24"WPC/PA
asel,s,area,,55
allsel,below,area
esel,r,type., 1
bfe,all,hgen, AC25"WPC/PA
asel,s,area,,56
allsel,below,area
esel,r,type., 1
bfe,all,hgen,,AC26*WPC/PA
asel,s,area,,57
allsel,below, area
esel,r,type,,1
bfe,all,hgen, AC27*WPC/PA
asel,,s,area,,58
allsel,below,area
esel,r,type,, 1
bfe, all, hgen, AC28*WPC/PA
asel, , ,area, 59
allsel,below,area
esel, ,type,. 1
bfe, all,hgen, AC29"WPC/PA
asel,s,area, 60
allsel,below,area
esel,r,type., 1
bfe,all,hgen, AC210*WPC/PA
asel,s,area,, 61
allsel,below,area
esel,ritype,, 1
bfe,all,hgen, AC211*WPC/PA
asel,s,area,. 62
allsel,below,area
osel,r,type,, 1
bfe,all,hgen,AC212*WPC/PA
asel,s,area, 63
allsel,below,area esel,ritype,, 1
bfe,all,hgen, AC213*WPC/PA
asel,s,area,,64
allsel,below,area
esel,r,type,,1
bfe, all,hgen, AC214 WPC/PA
asel,s, area,,65
allsel,below,area
esel,r,type,1
bfe,all,hgen, AC215*WPC/PA
asel,s,area,,66
allsel,below,area
esel,r,type., 1
bfe,all,hgen, AC216*WPC/PA
esel,s,area, 67
allsel,below,area
esel,r,type., 1
bfe,all,hgen, AC217*WPCIPA
asel,s,area,,68
allsel,below, area

- esel,r,type., 1
bfe, all, hgen, AC218*WPC/PA
asel,s,area, 69
allsel,below,area
esel,r,type., 1
bfe,all,hgen,,AC219*WPC/PA
asel,s,area, 70
allsel,below,area
esel,r,type,1
bfe,all,hgen, AC220*WPC/PA
asel,s,area,, 71
allsel,below,area
esel,r,type,,1
bfe, all,hgen, AC221*WPC/PA
asel,8,area,72
aflsel,below,area
esel,r,type,. 1
bfe,all,hgen, AC222*WPCIPA
asel,s,area, 73
allse!,below,area
esel,r,type.. 1
bfe, all, hgen, AC223 WPC/PA
asel,8,area,74
allsel,below,area
esel,r,type., 1
bfe,all, hgen, AC224mWPC/PA
asel,s,area, 75
allsel,below,area
esel,ritype,,1
bfe,all,hgen, AC225*WPC/PA
asel,s,area, 76
allsel,below,area

esel,r,type,1

bfe, all,hgen, AC226*WPC/PA
asel,s,area, 77
allsel,below,area
esel,r,type., 1
bfe,all,hgen, AC227 WPC/PA
asel,s,area, 78
allsel,below,area
esel,r,type,, 1
bfe, all,hgen, AC228 WPC/PA
asel,s,area, 79
allsel,below,area
esel,r,type,it
bfe, all,hgen, AC229*WPC/PA
asel,s,area,,80
allsel,below,area
esel, r,type.. 1
bfe,all,hgen,AC230 WPC/PA
asel,s,area, 81
allsel,below,area
esel, r,type., 1
bfe, all,hgen, AC231*WPC/PA
asel,s,area, 82
allsel,below, area
esel,r,type., 1

IN/TR 1801 F294 (1)

F-294 Loading Finite Element Analysis

bfe,all,hgen,,AC232*WPC/PA
asel,s,area,, 83
allse!,below,area
esel,r.type,, 1
bfe,all,hgen, AC233*WPC/PA
asels,area,, 84
allsel,below,area
esel,r,type, 1
bre,all, hgen, AC234*WPC/PA
asel, 8, area, 85
allsel,below,area

esel,r,type,. 1

be,all,hgen, AC235WPC/PA
esel,s,area, 86
allsel,below,area
esel,r,type., 1
be, all,hgen, AC236*WPC/PA

asel,s,area,,87

allsel,below,area
esel,r,type,, 4
bfe,all,hgen, AC237*WPC/PA
asel,s,area, 88
allsel,below,area
esel,r,type,,1
bfe,all,hgen, AC238*WPC/PA
asel,s,area,,89
allsel,below,area
esel,r,type., 1
bfe,all,hgen, AC239*WPC/PA

asel,s,area,,90

allsel,below,area

esel,r,type., 1

bfe,all, hgen,AC240*WPC/PA
t apply remaining heat generation to lead
I lead area including
1 attentuation factor $=1.5$
I (2/3rds heat in lead ($1 / 1.5$) - $1 / 3$ rd of heat in pencils)
1 radial distribution factor $=1.43$
I (only $\mathbf{7 0 \%}$ of heat is radial (1/1.43) - 30% axial)
LA $=\left(\left(3.1416^{*}(\text { FOD } / 2)^{*}(\right.\right.$ FOD/2 $\left.)\right)$)
$\left.\left(3.1416^{*}(C D / 2)^{*}(C D / 2)\right)\right)^{*} 1.5^{*} 1.43$
esel,s,mat;2
nelem
esel,r.type., 1
bfe,all,hgen.,TOTHT*WPC/LA
allsel
save
I
I remove link32s, set amblent temp and run
1
fini
Isolve
csys, 1
nsel,s,loc, x, sid/2
d,all,temp, 50
allsel
esel,u,real,12,14
d,9999999,temp_AT
insrchion
solve
finl
lexit,save

F-294 Loading Finite Element Analysis

APPENDIX B Convection Coefficient Calculation

The outside fireshield of the F-294 is a cylinder. The flow of air over the outside of the fireshield is assumed to take place at a velocity of $0.5 \mathrm{~m} / \mathrm{s}$ - close to stagnant air.

From Reference [2], the heat transfer coefficient takes the form:

$$
\mathrm{h}=\mathrm{k} / \mathrm{D} * \mathrm{C}(\mathrm{uD} / N)^{\mathrm{m}} \mathrm{Pr}^{0.333}
$$

where: \quad| D is the diameter of the fireshield $=0.9144 \mathrm{~m}$ |
| :--- |
| C, m are constants that depend on the Reynolds number ($u \mathrm{D} / v$) |
| $\mathrm{k}=$ thermal conductivity of the fluid |
| $\mathrm{v}=$ kinematic viscosity of the fluid |
| $\mathrm{Pr}=$ Prandtl number for the fluid |
| $\mathbf{u}=$ free stream velocity |

The property values of k, v and Pr are evaluated at the film temperature, which is defined as the mean of the wall and free stream fluid temperatures, approximately $27^{\circ} \mathrm{C}$ or 300 K . From Reference [2], the property values are $\mathrm{k}=0.0263 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}, v=15.89 \mathrm{E}-6 \mathrm{~m}^{2} / \mathrm{s}$ and $\mathrm{Pr}=0.707$. This yields a Reynolds number of about 30,000 . At this value of Re , the constants C and m are 0.193 and 0.618 , respectively. Substituting in the diameter of the fireshield $(0.9144 \mathrm{~m})$ yields a heat transfer coefficient of:

$$
\mathrm{h}=\frac{0.0263(0.193)\left(0.5^{*} 0.9144 / 15.89 \mathrm{E}-6\right)^{0.618} .707^{0.333}}{0.9144}=2.8 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}
$$

A value of $3 \mathrm{~W} / \mathrm{m}^{20} \mathrm{C}$ is used in the analysis.

[^0]: 1 "Kaowool is a tradename for a ceramic fibre blanket made by Babcock and Wilcox.

[^1]: ${ }^{1}$ Actual Thermal Test Data: See Chapter 3, Sub-Appendix 3.6.2.1
 ${ }^{2}$ Thermal test data corrected for 1) Ambient 2) Total Measurement Errors

[^2]: * denotes a lead node which includes the effect of contact resistance. See Figure 3.6.4-F14 for node locations.

[^3]: * Time equals zero at the start of the fire test.

