010001

SOUTHWEST RESEARCH INSTITUTE NUCLEAR PROJECT CLIENT: Division 20 TASK ORDER: 051219-5 SRR: 28420 SDG: 271245 CASE: L. Yang VTSR: December 16, 2005 PROJECT#: 06002.01.322

FINAL REPORT

Lab Name: Southwest Research Institute

Lab Code: SwRI

Matrix: Liquid

Task Order: 051219-5

Method: ICP SW846 6010B

	Lab	Potassium	Sodium
Client ID	Sample ID	Result (mg/L)	Result (mg/L)
Prep Blank	PBW-M20H1	<1.50	<1.50
Lab Control	LCSW-M20H1	99.4	98.0
True Value		100	100
Recovery		99.4%	98.0%
Cond.A-130°C 12/9/05	271245	<1.50	2.35
Duplicate result	271245	<1.50	2.64
RPD		0.00%	11.6%
Spike result	271245	103	105
Spike added		100	100
Recovery		103%	103%
Cond.A-150°C 12/12/05	271246	<1.50	<1.50
Cond.A-180°C 12/13/05	271247	3.64	4.09
Cond.A-210°C 12/15/05	271248	13.2	20.4
Cond.A-230°C 12/15/05	271249	27.3	23.9

Reporting Limit:

1.50 mg/L

1.50 mg/L

Page 1 of 2 This report may not be reproduced except in its entirety without the written approval of SwRI.

010002

Client: Division 20

Date Received: 12/16/05

Project No.: 06002.01.322

SRR: 28420

Lab Name: Southwest Research Institute

Lab Code: SwRI

Matrix: Solid

Task Order: 051219-5

Method: ICP SW846 6010B

	Lab	Potassium	Sodium
Client ID	Sample ID	Result (mg/Kg)	Result (mg/Kg)
Prep Blank	PBW-M19E2	<30.0	<30.0
Lab Control	LCSW-M19E2	1960	1950
True Value		2000	2000
Recovery		98.0%	97.5%
Sol.A-230°C 12/15/05	271250	154000	170000
Duplicate result	271250	152000	173000
RPD		1.31%	1.75%
Spike result	271250	157000	169000
Spike added		1905	1905
Recovery		157%	-52.5%

Reporting Limit:

30.0 mg/Kg

30.0 mg/Kg

Page 2 of 2 This report may not be reproduced except in its entirety without the written approval of SwRI.

Client: Division 20 Date Received: 12/16/05 Project No.: 06002.01.322 SRR: 28420

Lab Name: Southwest Research Institute

Lab Code: SwRI

Matrix: Liquid

Lab System ID: 271245

Method: IC - EPA 300

Sample ID Cond.A-130°C 12/9/05

Client: Division 20

Date Received: 12/16/05

Project No.: 06002.01.322

SRR: 28420

Task Order: 051219-5

	.Sample Result	Reporting Limit
Analysis	(mg/L)	(mg/L)
Bromide	<0.1	0.1
Chloride	0.681	0.1
Fluoride	0.112	0.1
Nitrate-N	0.396	0.1
Nitrite-N	1.23	0.1
Phosphate-P	<0.1	0.1
Sulfate	<0.1	0.1

Page 1 of 15 This report may not be reproduced except in its entirety without the written approval of SwRI.

٠

SOUTHWEST RESEARCH INSTITUTEDUPLICATE SUMMARY010005

Sample ID Cond.A-130°C 12/9/05 Client: Division 20 Date Received: 12/16/05 Project No.: 06002.01.322 SRR: 28420 Task Order: 051219-5

	Sample Result	Duplicate Result	
Analysis	(mg/L)	(mg/L)	RPD
Bromide	<0.1	<0.1	0.00%
Chloride	0.681	0.934	31.3%
Fluoride	0.112	0.113	0.89%
Nitrate-N	0.396	0.411	3.72%
Nitrite-N	1.23	1.22	0.82%
Phosphate-P	<0.1	<0.1	0.00%
Sulfate	<0.1	<0.1	0.00%

Lab Name: Southwest Research Institute

Lab Code: SwRI

Matrix: Liquid

Lab System ID: 271245

Method: IC - EPA 300

Page 2 of 15 This report may not be reproduced except in its entirety without the written approval of SwRI.

SOUTHWEST RESEARCH INSTITUTE MATRIX SPIKE SUMMARY 010006

Sample ID Cond.A-130°C 12/9/05 Client: Division 20 Date Received: 12/16/05 Project No.: 06002.01.322 SRR: 28420 Task Order: 051219-5

	Sample Result	Spike Result	Spike Added	
Analysis	(mg/L)	(mg/L)	(mg/L)	Recovery
Bromide	<0.1	4.05	4.00	101%
Chloride	0.681	2.59	2.00	95.5%
Fluoride	0.112	0.860	1.00	74.8%
Nitrate-N	0.396	1.20	0.904	88.9%
Nitrite-N	1.23	2.73	1.59	94.3%
Phosphate-P	<0.1	1.92	1.91	101%
Sulfate	<0.1	4.03	4.00	101%

Lab Name: Southwest Research Institute

Lab Code: SwRI

Matrix: Liquid

Lab System ID: 271245

Method: IC - EPA 300

Page 3 of 15 This report may not be reproduced except in its entirety without the written approval of SwRI.

010007

Sample ID
Cond.A-150°C 12/12/05

Lab Name: Southwest Research Institute

Lab Code: SwRI

Matrix: Liquid

Lab System ID: 271246

Method: IC - EPA 300

Client: Division 20

Date Received: 12/16/05

Project No.: 06002.01.322

SRR: 28420

Task Order: 051219-5

	Sample Result	Reporting Limit
Analysis	(mg/L)	(mg/L)
Bromide	<0.1	0.1
Chloride	0.358	0.1
Fluoride	0.118	0.1
Nitrate-N	0.450	0.1
Nitrite-N	0.330	0.1
Phosphate-P	<0.1	0.1
Sulfate	<0.1	0.1

Lab Name: Southwest Research Institute

Lab Code: SwRI

Matrix: Liquid

Lab System ID: 271247

Method: IC - EPA 300

Sample ID Cond.A-180°C 12/13/05

Client: Division 20

Date Received: 12/16/05

Project No.: 06002.01.322

SRR: 28420

Task Order: 051219-5

	Sample Result	Reporting Limit
Analysis	(mg/L)	(mg/L)
Bromide	<0.1	0.1
Chloride	1.58	0.1
Fluoride	0.155	0.1
Nitrate-N	8.69	0.1
Nitrite-N	1.33	0.1
Phosphate-P	0.596	0.1
Sulfate	<0.1	0.1

Page 5 of 15 This report may not be reproduced except in its entirety without the written approval of SwRI.

Lab Name: Southwest Research Institute

Lab Code: SwRI

Matrix: Liquid

Lab System ID: 271248

Method: IC - EPA 300

Sample ID Cond.A-210°C 12/15/05 Client: Division 20 Date Received: 12/16/05 Project No.: 06002.01.322 SRR: 28420

Task Order: 051219-5

A	Sample Result	Reporting Limit
Analysis	(mg/L)	(mg/L)
Bromide	<2	2
Chloride	116	2
Fluoride	2.19	2
Nitrate-N	204	2
Nitrite-N	2.37	2
Phosphate-P	2.47	2
Sulfate	<2	2

Page 6 of 15 This report may not be reproduced except in its entirety without the written approval of SwRI.

Lab Name: Southwest Research Institute

Lab Code: SwRI

Matrix: Liquid

Lab System ID: 271249

Method: IC - EPA 300

Sample ID

Cond.A-230°C 12/15/05

Client: Division 20

Date Received: 12/16/05

Project No.: 06002.01.322

SRR: 28420

Task Order: 051219-5

	Sample Result	Reporting Limit
Analysis	(mg/L)	(mg/L)
Bromide	13.7	2
Chloride	420	10
Fluoride	2.29	2
Nitrate-N	310	2
Nitrite-N	3.42	2
Phosphate-P	3.98	2
Sulfate	<2	2

Page 7 of 15 This report may not be reproduced except in its entirety without the written approval of SwRI.

010011

Sample ID
Sol.A-230°C 12/15/05
Client: Division 20
Date Received: 12/16/05
Project No.: 06002.01.322
SRR: 28420
Task Order: 051219-5

Lab Name: Southwest Research Institute

Lab Code: SwRI

Matrix: Solid

Lab System ID: 271250

Method: IC - EPA 300

	Sample Result	Reporting Limit
Analysis	(mg/Kg)	(mg/Kg)
Bromide	<981	981
Chloride	108000	1960
Fluoride	<981	981
Nitrate-N	107000	1960
Nitrite-N	<981	981
Phosphate-P	18300	981
Sulfate	<981	981

SOUTHWEST RESEARCH INSTITUTE DUPLICATE SUMMARY 010012

Sample ID
Sol.A-230°C 12/15/05
Client: Division 20
Date Received: 12/16/05
Project No.: 06002.01.322
SRR: 28420
Task Order: 051219-5

Analysis	Sample Result (mg/Kg)	Duplicate Result (mg/Kg)	RPD
Bromide	<981	<892	0.00%
Chloride	108000	110000	1.83%
Fluoride	<981	<981	0.00%
Nitrate-N	107000	107000	0.00%
Nitrite-N	<981	<892	0.00%
Phosphate-P	18300	18700	2.16%
Sulfate	<981	<892	0.00%

Lab Name: Southwest Research Institute

Lab Code: SwRI

Matrix: Solid

Lab System ID: 271250

Method: IC - EPA 300

Page 9 of 15 This report may not be reproduced except in its entirety without the written approval of SwRI.

SOUTHWEST RESEARCH INSTITUTE MATRIX SPIKE SUMMARY

010013

Sample ID
Sol.A-230°C 12/15/05
Client: Division 20
Date Received: 12/16/05
Project No.: 06002.01.322
SRR: 28420
Task Order: 051219-5

	Sample Result	Spike Result	Spike Added	
Analysis	(mg/Kg)	(mg/Kg)	(mg/Kg)	Recovery
Bromide	<981	19900	19600	102%
Chloride	108000	137000	19600	148%
Fluoride	<981	4400	4900	89.8%
Nitrate-N	107000	116000	8858	102%
Nitrite-N	<981	7590	7800	97.3%
Phosphate-P	18300	28200	9340	106%
Sulfate	<981	19400	19600	99.0%

Lab Name: Southwest Research Institute

Lab Code: SwRI

Matrix: Solid

Lab System ID: 271250

Method: IC - EPA 300

Page 10 of 15 This report may not be reproduced except in its entirety without the written approval of SwRI.

SOUTHWEST RESEARCH INSTITUTE LABORATORY CONTROL SAMPLE 010014

Sample ID	
LCSW - 12/20/05	
Olivety Division 00	_
Client: Division 20	

Date Received: NA

Project No.: 06002.01.322

SRR: 28420

Task Order: 051219-5

	Sample Result	True Value	
Analysis	(mg/L)	(mg/L)	Recovery
Bromide	391	400	97.8%
Chloride	200	200	100%
Fluoride	95.0	100	95.0%
Nitrate-N	83.2	90.4	92.0%
Nitrite-N	153	159	96.2%
Phosphate-P	188	191	98.4%
Sulfate	388	400	97.0%

NA- Not Applicable.

Page 11 of 15 This report may not be reproduced except in its entirety without the written approval of SwRI.

Lab Name: Southwest Research Institute

Lab Code: SwRI

Matrix: Liquid

Lab System ID: NA

Method: IC - EPA 300

SOUTHWEST RESEARCH INSTITUTE LABORATORY CONTROL SAMPLE

010015

	Sample ID LCSW - 12/21/05
Lab Name: Southwest Research Institute	Client: Division 20
Lab Code: SwRI	Date Received: NA
Matrix: Liquid	Project No.: 06002.01.322
Lab System ID: NA	SRR: 28420
Method: IC - EPA 300	Task Order: 051219-5

	Sample Result	True Value	
Analysis	(mg/L)	(mg/L)	Recovery
Bromide	402	400	101%
Chloride	204	200	102%
Fluoride	95.8	100	95.8%
Nitrate-N	86.1	90.4	95.2%
Nitrite-N	155	159	97.5%
Phosphate-P	194	191	102%
Sulfate	396	400	99.0%

NA- Not Applicable.

Page 12 of 15 This report may not be reproduced except in its entirety without the written approval of SwRI.

SOUTHWEST RESEARCH INSTITUTE BLANK SUMMARY

010016

	Sample ID	
	PBW - M19E3	
-		

Client: Division 20

Date Received: NA

Project No.: 06002.01.322

SRR: 28420

Task Order: 051219-5

Analysis	Sample Result (mg/Kg)	Reporting Limit (mg/Kg)
Bromide	<10	10
Chloride	<10	10
Fluoride	<10	10
Nitrate-N	<10	10
Nitrite-N	<10	10
Phosphate-P	<10	10
Sulfate	<10	10

NA- Not Applicable.

Page 13 of 15 This report may not be reproduced except in its entirety without the written approval of SwRI.

Lab Name: Southwest Research Institute

Lab Code: SwRI

Matrix: Solid

Lab System ID: NA

Method: IC - EPA 300

SOUTHWEST RESEARCH INSTITUTE BLANK SUMMARY

010017

	Sample ID
	PBW - 12/20/05
Client:	Division 20

Date Received: NA

Project No.: 06002.01.322

SRR: 28420

Task Order: 051219-5

	Sample Result	Reporting Limit
Analysis	(mg/L)	(mg/L)
Bromide	<0.1	0.1
Chloride	<0.1	0.1
Fluoride	<0.1	0.1
Nitrate-N	<0.1	0.1
Nitrite-N	<0.1	0.1
Phosphate-P	<0.1	0.1
Sulfate	<0.1	0.1

NA- Not Applicable.

Page 14 of 15 This report may not be reproduced except in its entirety without the written approval of SwRI.

Lab Name: Southwest Research Institute

Lab Code: SwRI

Matrix: Liquid

Lab System ID: NA

Method: IC - EPA 300

SOUTHWEST RESEARCH INSTITUTE BLANK SUMMARY 010018

Sample ID
PBW - 12/21/05
Client: Division 20
Date Received: NA
Project No.: 06002.01.322
SRR: 28420
Task Order: 051219-5

Lab Name: Southwest Research Institute

Lab Code: SwRI

Matrix: Liquid

Lab System ID: NA

Method: IC - EPA 300

Analysis	Sample Result (mg/L)	Reporting Limit (mg/L)
Bromide	<0.1	0.1
Chloride	<0.1	0.1
Fluoride	<0.1	0.1
Nitrate-N	<0.1	0.1
Nitrite-N	<0.1	0.1
Phosphate-P	<0.1	0.1
Sulfate	<0.1	0.1

NA- Not Applicable.

.

Page 15 of 15 This report may not be reproduced except in its entirety without the written approval of SwRI.

010019

SOUTHWEST RESEARCH INSTITUTE NUCLEAR PROJECT CLIENT: Division 20 TASK ORDER: 051219-5 SRR: 28420 SDG: 271245 CASE: L. Yang VTSR: December 16, 2005 PROJECT#: 06002.01.322

Task Orders/01-QPP-015

Laboratory Task Order

TO #: 051219-5 Revision: 0

Southwest Research Institute

SDG: 271245 VTSR: 12/16/05 CASE: CNWRA SRR #'s: 28420 Client(s): Div. 20 Project(s): 06002.01.322 Manager(s): SPIES, RADONNA To PM: 12/22/05 To QA: 12/27/05 To Client: 12/29/05

DIVISION 20 - CNWRA. 1-WEEK TAT. Using 6-day TAT for PM/preliminary, 11-day TAT for DRG/QAU; 13-day TAT hardcopy; subject to change. Work is 10 CFR 50 Appendix B, 10 CFR Part 21, contact MARK EHNSTROM (ext. 3530) or CHARLIE BUTCHER (ext. 5928, pager 271-5172) or JO ANN BOYD (ext. 2169) BEFORE STARTING ANY WORK ON THIS TASK ORDER. ** NOTE ** Somewhere on your data, please make a notation indicating WHO and WHEN Mark Ehnstrom or Charlie Butcher or Jo Ann Boyd were contacted. This will help facilitate the final package to QA. SIX samples received for NO3, CL, by IC analyses and Na an K by ICP analysis. Point of Contact is LIETAI YANG (x2483, lietai.yang@swri.org). CONTACT PM WITH ANY ADDITIONAL QUESTIONS.

Documents Related to this task order: 20500[COC 28420]

Test: DIG-MISCACIDS			-lolding: 180 d	ays from CED		
Section: META	LPREP	L	Digestion Mis	cellaneous Acids		Cnt: 1
System ID	Туре	Cont	Matrix	Customer ID	CED	Method Date
271250		1	Solid	Cond.A-230 °C 12/15/05	15 Dec 05	13 Jun 06

Test: DIL-DILUTION Section: METALPREP		F	Holding: 28 days fro Prep, Dilution				Cnt:
System ID	Туре	Cont	Matrix	Customer ID	17	CED	Method Date
271245		1	Liquid	Cond.A-130 °C 12/9/05 🖌	7	09 Dec 05	06 Jan 06
271246		1	Liquid	Cond.A-150 °C 12/12/05	,	12 Dec 05	09 Jan 06
271247		1	Liquid	Cond.A-180 °C 12/13/05	/	13 Dec 05	10 Jan 06
271248		1	Liquid	Cond.A-210 °C 12/15/05 -	,	15 Dec 05	12 Jan 06
271249		1	Liquid	Cond.A-230 °C 12/15/05	/	15 Dec 05	12 Jan 06

Test: IC-SWRI Section: WETCHEM		8	lolding: 28 days f		- Chloride and Nitrate		2 - C		Cnt: 6
System ID	Туре	Cont	Matrix		Customer ID		CED	Method D)ate
271245		1	Liquid	Cond.A-130 °C	12/9/05	09	Dec 05	06 Jan	06
271246		1	Liquid	Cond.A-150 °C	12/12/05	12	Dec 05	09 Jan	06
271247		1	Liquid	Cond.A-180 °C	12/13/05	13	Dec 05	10 Jan	06
271248		1	Liquid	Cond.A-210 °C	12/15/05	15	Dec 05	12 Jan	06
271249		1	Liquid	Cond.A-230 °C	12/15/05	15	Dec 05	12 Jan	06
271250		1	Solid	Cond.A-230 °C	12/15/05	15	Dec 05	12 Jan	06

Test: ICP-SWRI Section: METALS		i i i i i i i i i i i i i i i i i i i							
System ID Type	Cont	Matrix	Customer ID		CED		Meth	nod D	ate
271245	1	Liquid	Cond.A-130 °C 12/9/05	09	Dec	05	07	Jun	06
271246	1	Liquid	Cond.A-150 °C 12/12/05	12	Dec	05	10	Jun	06
271247	1	Liquid	Cond.A-180 °C 12/13/05	13	Dec	05	11	Jun	06
271248	1	Liquid	Cond.A-210 °C 12/15/05	15	Dec	05	13	Jun	06
271249	1	Liquid	Cond.A-230 °C 12/15/05	15	Dec	05	13	Jun	06

Southwest Research Institute

Laboratory Task Order TO #: 051219-5 Revision: 0

SDG: 2	271245
VTSR:	12/16/05
CASE:	CNWRA

SRR #'s: 28420 Client(s): Div. 20 Project(s): 06002.01.322 Manager(s): SPIES, RADONNA To PM: 12/22/05 To QA: 12/27/05 To Client: 12/29/05

System ID Type Co	nt Matrix	Customer ID	CED	Method Date
271250 1	Solid	Cond.A-230 °C 12/15/05	15 Dec 05	13 Jun 06

Southwest Research Institute

Project: Case #: Client: 06002.01.322 L. Yang Div. 20

Samples were hand delivered intact at 22.0 °C

Sample Receipt

Notes

Sample Receipt Number: 28420

VTSR: 12/16/05

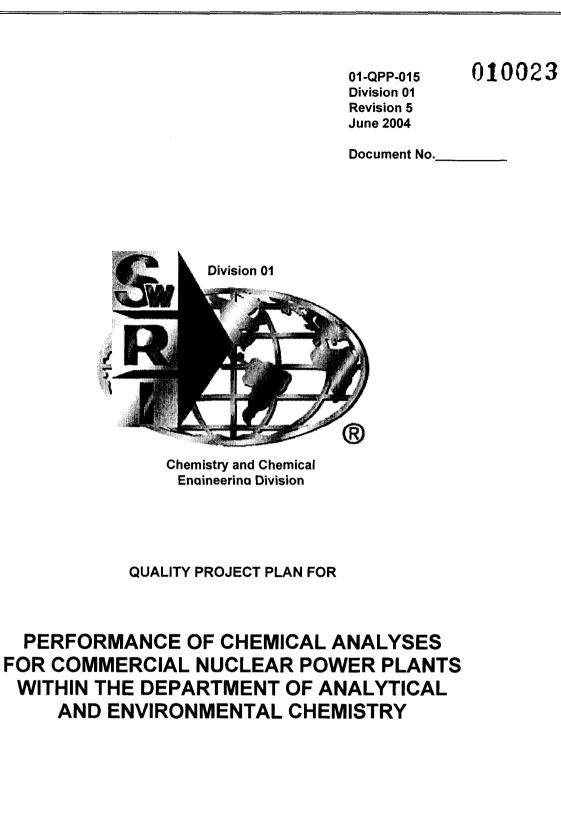
Time: 14:45:00

Client: Div.

SR#: 28424 Milling

FRM-002

ver (11/18/2005)


Manager: SPIES, RADONNA Logged in by: Dino.Roman Creation Date: 12/16/05

010022

#: L. Yang ht: Div. 20

Parameters: Analysis/see Task Order. See chain of custody as part of the SRR system for more information. Contact R. Spies at X3242 for questions. ** Dino Roman Dec 16 2005 4:50PM *** System ID Customer ID CED Matrix Containers Special Regs. 271245 Cond.A-130 °C 12/9/05 12/09/05 Liquid 1 271246 Cond.A-150 °C 12/12/05 12/12/05 Liquid 1 271247 Cond.A-180 °C 12/13/05 12/13/05 Liquid 1 271248 Cond.A-210 °C 12/15/05 12/15/05 Liquid 1 271249 Cond.A-230 °C 12/15/05 12/15/05 Liquid 1 271250 Cond.A-230 °C 12/15/05 12/15/05 Solid 1 Containers: 6 Samples: 6 These documents are associated with this receipt: 20500[COC 28420] Thermometer: 027 Temperature: 22.0

Page Printed: 22 Dec 2005 15:28:14

_ _ _ _ _

SOUTHWEST RESEARCH INSTITUTE Chemistry and Chemical Engineering Division 6220 CULEBRA ROAD, SAN ANTONIO, TEXAS 78238 CHEMISTRY AND CHEMICAL ENGINEERING DIVISION Division 01 Quality Project Plan 01-QPP-015 Division 01 Rev 5/June 2004 Page i

QUALITY PROJECT PLAN FOR PERFORMANCE OF CHEMICAL ANALYSES FOR COMMERCIAL NUCLEAR POWER PLANTS WITHIN THE DEPARTMENT OF ANALYTICAL AND ENVIONMENTAL CHEMISTRY

SwRI AUTHORIZATION SIGNATORIES

This is to certify that this Quality Project Plan of Southwest Research Institute (SwRI) has been reviewed and approved by the following personnel:

JO ANN BOYD

(210) 522-2169

Quality Assurance Manager

REZA KARIMI (210) 522-2412 Director, Department of Analytical and Environmental Chemistry

MICHAEL G. MACNAUGHTON (210) 522-5162 Vice President, Chemistry and Chemical Engineering Division

CHRISTOPHER HOSSON Quality Assurance Engineer

(210) 522-5838

DATE

/DATE

CHEMISTRY AND CHEMICAL ENGINEERING DIVISION Division 01 Quality Project Plan

010025

01-QPP-015 Division 01 Rev 5/June 2004 Page ii

TABLE OF CONTENTS

Page

1.0 INTRODUCTION							
2.0	SCOPE		1				
3.0	REFER	RENCES	1				
4.0	APPLIC	CABLE SECTIONS OF SWRI PROGRAM QUALITY PLAN (PQP-NUCLEAR)	1				
	4.1	Indoctrination and Training	1				
	4.2	Qualification of Personnel					
	4.3	Design Control					
	4.4	Right of Access	2				
	4.5	Control of Supplier-Generated Documents	2				
	4.6	Acceptance of Services Only	3				
	4.7	Commercial Grade Items					
	4.8	Inspection					
	4.9	Inspection and Testing					
	4.10	Handling, Storage, Packaging, Preservation, and Delivery					
	4.11	Quality Assurance Records					
	4.12	10 CFR, Part 21					
	4.13	Certified Test Report					
	4.13	Valid Documents List					
	4.14		1				
5.0	нізтоі	RY OF REVISIONS	7				

010026

CHEMISTRY AND CHEMICAL ENGINEERING DIVISION Division 01 Quality Project Plan 01-QPP-015 Division 01 Rev 5/June 2004 Page 1 of 7

PERFORMANCE OF CHEMICAL ANALYSES FOR COMMERCIAL NUCLEAR POWER PLANTS WITHIN THE DEPARTMENT OF ANALYTICAL AND ENVIRONMENTAL CHEMISTRY

1.0 INTRODUCTION

This Quality Project Plan (QPP) defines the Quality Assurance (QA) program requirements for personnel providing the chemical analyses for commercial nuclear power plants. Southwest Research Institute (SwRI) *Program Quality Plan (PQP-Nuclear), Nuclear Services* shall implement the QA requirements. Project activities controlled by the PQP-Nuclear shall be accomplished as specified by the appropriate sections of **01-QAP-004**, *Quality Assurance Plan for Analytical and Environmental Services* and/or nationally recognized testing methods as specified on individual purchase orders. This QPP shall be applied to all projects initiated for nuclear utilities in the Department of Analytical and Environmental Chemistry. If, as a result of complexity, duration, or other factors, it is determined that a unique, project-specific quality plan is required, the project QAE shall notify the Project Manager and a project-specific quality plan shall be generated in accordance with **SOP-01-4.2.1**, *Preparation and Revision of Documented Procedures*.

2.0 SCOPE

This Quality Project Plan shall be applied to the chemical analyses performed for commercial nuclear power plants by the Department of Analytical and Environmental Chemistry within the Chemistry and Chemical Engineering Division. Although the majority of the work performed for nuclear facilities resides within the Department of Analytical and Environmental Chemistry, other departments within the division may utilize this Quality Project Plan as deemed necessary when nuclear projects are conducted.

3.0 REFERENCES

- 3.1 SwRI Quality System Manual 2000
- 3.2 10 CFR 50, Appendix B, ASME NQA-1
- 3.3 SwRI Program Quality Plan (PQP-Nuclear), Nuclear Services
- 3.4 01-QAP-004, Quality Assurance Plan for Analytical and Environmental Services

4.0 APPLICABLE SECTIONS OF SWRI PROGRAM QUALITY PLAN (PQP-NUCLEAR)

4.1 Indoctrination and Training

4.1.1 Personnel performing duties affecting quality shall receive quality training to the *SwRI Program Quality Plan (PQP-Nuclear), Nuclear Services* prior to performing any work on projects for nuclear utilities. This training will be conducted either by Institute Quality Systems (IQS) or Division 01 Quality Assurance personnel and documentation shall be evident in the personnel training files maintained in Division

01 Quality Assurance.

4.1.2 Indoctrination and training of personnel shall be conducted in accordance with **SOP-01-6.2.1**, *Qualification and Training*.

4.2 Qualification of Personnel

- 4.2.1 Testing personnel shall be designated as qualified to perform applicable project activities as specified in **SOP-01-6.2.1**, *Qualification and Training*.
- 4.2.2 During the performance of each testing process, testing personnel shall have access to the necessary documented procedures, i.e., QPP, QAP, Task Order, Division Quality System Standard Operating Procedures (SOPs), and applicable test/analytical procedures (TAPs) available for ready reference.
- 4.2.3 Any person who has not performed testing activities associated with any particular method being used for nuclear utilities projects for a period of one year shall be reevaluated prior to the conduct of the test.
- 4.2.4 Quality Assurance personnel witnessing the testing process for nuclear utilities shall have documented evidence of qualifications maintained by Institute Quality Systems or Division 01 Quality Assurance.

4.3 Design Control

Not applicable to activities conducted within the Department of Analytical and Environmental Chemistry.

4.4 Right of Access

- 4.4.1 Procurement documents shall provide for access to the suppliers' facilities and records for surveillance, inspection, or audit by SwRI and clients.
- 4.4.2 Where appropriate, quality clause **Q32** shall be noted on the procurement documents to indicate that right of access for inspection and surveillance of activities associated with the order shall be afforded to SwRI and clients.

4.5 Control of Supplier-Generated Documents

- 4.5.1 Client documents shall be controlled in accordance with **SOP-01-4.2.1**, *Preparation* and *Revision of Documented Procedures*. These procedures provide the requirements for the preparation, review, approval, issue, distribution, and revision of documents controlled by the Chemistry and Chemical Engineering Division.
- 4.5.2 Documents may be controlled as Plans or Work Instructions and shall be accessible through the Division Intranet link, *Contract Requirements* as PDF files.
- 4.5.3 Nationally recognized test methods shall be of the most current issue or as specified in the purchase order. Task orders shall identify the applicable test methods to be used on the nuclear project.

010028

CHEMISTRY AND CHEMICAL ENGINEERING DIVISION Division 01 Quality Project Plan

01-QPP-015 Division 01 Rev 5/June 2004 Page 3 of 7

4.6 Acceptance of Services Only

Not applicable to activities conducted within the Department of Analytical and Environmental Chemistry.

4.7 Commercial Grade Items

- 4.7.1 Where an item is to be incorporated into a test or deliverable to a client, and that item is not subject to design or specification requirements that are unique to nuclear facilities, used in applications other then nuclear facilities, and procured from the supplier on the specifications set forth in the manufacturers' published product and description, the item shall be considered "commercial grade".
- 4.7.2 Chemical reagents and standards used for testing purposes shall be ordered to specific chemical grades and certificates of analysis shall be required with each lot.
- 4.7.3 Controls for procurement planning, supplier selection, supplier performance evaluation, and acceptance of procured items and services other than chemical reagents and standards shall be as identified in **SOP-01-7.4.1**, *Purchasing*, and any referenced document within that procedure.
- 4.7.4 Receipt inspection of chemical reagents, standards, and test items for use on nuclear safety-related projects shall be performed by department personnel and documented on the *SwRI Receipt Traveler* or **FRM-109**, *Item Receipt Report*, as specified in **SOP-01-8.2.4**, *Monitoring and Measurement*. Any discrepancy such as a damaged container or container label shall be documented on the form and the client shall be contacted for disposition.
- 4.7.5 Prior or acceptance of a commercial grade item, the receipt inspection shall determine the following:
 - (a) Damage was not sustained during shipment;
 - (b) The item has satisfied the specified acceptance criteria; and
 - (c) Specified documentation, as applicable to the item, was received and is acceptable.
- 4.7.6 Receipt inspection of chemical reagents and standards shall also consist of verification of chemical type, grade, container integrity, certificate of analysis, and shelf life, where applicable. Upon acceptance of chemical reagents and standards, the containers shall be labeled with the following:
 - (a) Chemical name;
 - (b) Chemical grade;
 - (c) Lot code;

010029

CHEMISTRY AND CHEMICAL ENGINEERING DIVISION Division 01 Quality Project Plan

01-QPP-015 Division 01 Rev 5/June 2004 Page 4 of 7

- (d) Date received; and
- (e) Shelf life, when applicable.
- 4.7.7 Expired shelf life items shall not be used for testing purposes.
- 4.7.8 Lot codes of chemical reagents and standards used during equipment standardization and testing shall be recorded on the individual testing data sheets to provide traceability.
- 4.7.9 Samples supplied to SwRI for testing shall be received by the Sample Custodian and logged into the laboratory logbook. Sample documentation and sample custody shall be maintained in accordance with TAP-01-0407-001, Sample Receipt Inspection, and TAP-01-0407-035, Organic and Inorganic Sample Security.
- 4.7.10 Samples supplied to SwRI for testing shall be labeled with the following:
 - (a) Sample control number;
 - (b) Purchase order number;
 - (c) Purchase order line item number, as applicable;
 - (d) Task order number;
 - (e) Nuclear QA label; and
 - (f) Sample retention date, when applicable.
- 4.7.11 In the event that samples are damaged upon receipt, a *Sample Discrepancy Record* shall be generated from the Division Intranet.
- 4.7.12 The testing task order shall list the project number, tests required, test methods required, and shall be labeled *Nuclear Quality*.
- 4.7.13 Identification and traceability shall be maintained in accordance with **SOP-01-7.5.1**, *Item Identification and Traceability*.

CHEMISTRY AND CHEMICAL ENGINEERING DIVISION Division 01 Quality Project Plan

01-QPP-015 Division 01 Rev 5/June 2004 Page 5 of 7

4.8 Inspection

- 4.8.1 Inspection for acceptance shall be performed by qualified persons other than those who conduct or directly supervise the work being inspected.
- 4.8.2 Institute Quality System (IQS) personnel shall perform surveillance activities as required to ensure compliance with the contract and this Quality Project Plan. Specific areas in which IQS may perform surveillance activities include, but are not limited to, the following:
 - (a) Receiving inspection and labeling of chemical reagents, standards, and testing samples;
 - (b) Testing processes;
 - (c) Calibration and major equipment;
 - (d) Sample and record retention; and
 - (e) Test records.

4.9 Inspection and Testing

- 4.9.1 Required tests for acceptance shall be conducted under appropriate environmental conditions using the tools and equipment necessary to conduct the test in a manner to fulfill test requirements and acceptance criteria.
- 4.9.2 Tests shall be conducted, controlled, and verified in accordance with **SOP-01-8.2.4**, *Monitoring and Measurement*.
- 4.9.3 Controls for measuring and test equipment shall be as specified in **SOP-01-7.6.1**, *Control of Measuring and Test Equipment.*
- 4.9.4 Controls for identification, segregation, reporting, and resolution of nonconforming items and conditions shall be as specified in **SOP-01-8.3.1**, *Nonconformance Reporting*.

4.10 Handling, Storage, Packaging, Preservation, and Delivery

- 4.10.1 Controls for handling, storage, packaging, preservation, and delivery of items are identified in **SOP-01-7.5.3**, *Handling, Storage, Packaging, Protection, and Delivery of Items.*
- 4.10.2 Samples specified on the purchase order to be returned to the client shall be prepared and packaged as specified on the purchase order. Each package shall be marked legibly and indelibly with the purchase order/release number and line item number(s) relevant to the package.

01-QPP-015 Division 01 Rev 5/June 2004 Page 6 of 7

4.11 Quality Assurance Records

- 4.11.1 Quality assurance records shall furnish documentary evidence that items or activities meet specified quality requirements. Documents that ensure this evidence include TAP-01-0407-014, *Inventory of Case File Purges*, and SOP-01-4.2.4, *Storage and Maintenance of Quality Records*. These documents and this QPP ensure that QA records shall be legible, identifiable, retrievable, and maintained in dual storage.
- 4.11.2 Records shall be traceable to associated items and activities and shall accurately reflect the work accomplished or information required.
- 4.11.3 Documents shall be considered valid records only if stamped, initialed or signed and dated by authorized personnel or otherwise authenticated.
- 4.11.4 Records of test analyses performed by the Department of Analytical and Environmental Chemistry are classified as *nonpermanent* and shall be retained for a minimum of five years. Nonpermanent records are those required to show evidence that an activity was performed in accordance with the applicable requirements, but need not be retained for the life of the item. Based on the use of the final data, the client shall be responsible for determining and implementing permanent storage requirements.
- 4.11.5 In order to satisfy duplicate storage requirements, one copy of the QA record shall maintained by the Project Manager in Building 70 and a separate copy shall be maintained in the Division Quality Assurance Archives in Building 201. Storage requirements shall be as stated in **SOP-01-4.2.4**, *Storage and Maintenance of Quality Records*, to ensure protection against the risk of damage or destruction.

4.12 10 CFR, Part 21

- 4.12.1 SwRI procurement documents shall include requirements for reporting and approving disposition of supplier nonconformances and, when required, compliance to 10 CFR, Part 21.
- 4.12.2 The Manager of Institute Quality Assurance or Director of Institute Quality Systems shall determine if a nonconforming condition is reportable under 10 CFR, Part 21, and initiate reporting and condition in accordance with the SwRI Operating Policies and Procedures (OPP). Safety hazards or defects that could create a substantial safety hazard shall be reported. Substantial safety hazard means a loss of safety function to the extent that there is a major reduction in the degree of protection provided to public health and safety.

4.13 Certified Test Report

The Project Manager and Institute Quality Assurance Manager as complying with all contractual requirements shall certify test reports. The certified test report shall reference the purchase order/release number, the test methods performed, and the purchase

01-QPP-015 Division 01 Rev 5/June 2004 Page 7 of 7

order/release line item number.

4.14 Valid Documents List

The Department of Analytical and Environmental Chemistry task order shall specify all applicable documents and appropriate document revision level for each document. The task order shall then serve as the Valid Documents List (VDL) for each individual project.

5.0 HISTORY OF REVISIONS

Versions 0 through 3 of this plan are maintained on record in Division 01 Quality Assurance.

Revision 4

Title of document changed from the Standard Project Quality Plan SPQP-CH/AN to Quality Project Plan, QPP-015

Extensive revision to comply with Project Quality Plan PQP-Nuclear, *Nuclear Services*, which replaces SwRI NQAPM, *Nuclear Quality Assurance Program Manual*.

Revision 5

Revised 4.1.1 to include designated Division 01 QA staff to conduct pertinent nuclear training sessions to the SwRI Program Quality Plan (PQP-Nuclear), *Nuclear Services* Revised step 4.2.4 to include Division QA as an entity along with IQS, to maintain documented evidence of qualifications

QA GRAP

Southwest Research Institute[®]

PERSONNEL SIGNATURE SHEET FOR PLANS

010033

I have read, and understand the document listed below. By affixing my signature below, I am aware that I am responsible for abiding by and following the requirements identified in the plan specified below. If I become aware of any deviations from this document, I will inform my supervisor.

QPP-015, Performance of Chemical Analyses for Commercial Nuclear Power Plants within the Dept of Analytical & Environmental Chemistry (Rev 5/June 04)

(Document Title a	nd Number)	
Printed Name Signature	Date	Extension
On 14 Tinch David A. ANED Roger Presin Logu Presan Jeansette Char ain Jeweith Have ANTHER A. SAUCEOA Gonthit face Joe MORIN Dine Roman Priscilla Brockhouse Public field MARCARE + ACEVEDO M. Aa de MARCARE + ACEVEDO M. Aa de MARCARE + ACEVEDO M. Aa de	6/7/04 6/7/04 6/7/04 6/7/04	<u>3682</u> (65 <u>69</u> (<u>5896</u> (<u>9192502</u> 792

Supervisor's/Manager's Signatures

The personnel whose signatures appear above have been trained and certified in the contents of this document:

FRM-131 (Rev 2/Aug 03)

Southwest Research Institute®

PERSONNEL SIGNATURE SHEET FOR PLANS

I have read, and understand the document listed below. By affixing my signature below, I am aware that I am responsible for abiding by and following the requirements identified in the plan specified below. If I become aware of any deviations from this document, I will inform my supervisor.

QPP-015, Performance of Chemical Analyses for Commercial Nuclear Power Plants within the Dept of Analytical & Environmental Chemistry (Rev 5/June 04)

	(Document Tit	le and Number)	
Printed Name	Signature	Date	Extension
hobert M. AcostA Pamela R.P Charles K Carturiy	iccini Damle	2000 06/04/0 2000 01/00 Truth 06/04/00	x 2167
SHRODOHA QUARA	+ + brt		<u> </u>
		······	
			·
	<u> </u>		

Supervisor's/Manager's Signatures

The personnel whose signatures appear above have been trained and certified in the contents of this document:

FRM-131 (Rev 2/Aug 03)

METALS / Inwa / Wetchem

Southwest Research Institute®

010035

PERSONNEL SIGNATURE SHEET FOR PLANS

I have read, and understand the document listed below. By affixing my signature below, I am aware that I am responsible for abiding by and following the requirements identified in the plan specified below. If I become aware of any deviations from this document, I will inform my supervisor.

QPP-015, Performance of Chemical Analyses for Commercial Nuclear Power Plants within the Dept of Analytical & Environmental Chemistry (Rev 5/June 04)

	(Document Title and Number)						
Printed Name	Signature	Date	Extension				
RadonnaSpie	s Boner	6/14/04	<u>× 3242</u>				
Valerie Destesus Carolina Orduna	Corduna	<u>06/14/04</u> 121/04	<u>x 3129</u> 3146				
DARian HARRIS Jackie Ranger	Alary R	6-21-04	3320				
Michael Havdy (upper 4. Magger	6/21/04 6/21/04	<u>5792</u> 6079				
JAMES 1005	April Jan	21-JUNE-2004 06/21/04	<u>-2487</u> _5897_				
Khaled Ednisi John Wilks	Solm Willy	6-21-04	6630 V-01 2536				
Bernie VillAsenore Daniel Pamanez	Daniel Raming	6-21-04	x 2762 X3867				
Terence Obrien	TerraOhu	6/21/04	x 3066				

Supervisor's/Manager's Signatures

The personnel whose signatures appear above have been trained and certified in the contents of this document:

6-21-04 5428 - Mike Dam

FRM-131 (Rev 2/Aug 03)

SOUTHWEST RESEARCH INSTITUTE NUCLEAR PROJECT CLIENT: Division 20 TASK ORDER: 051219-5 SRR: 28420 SDG: 271245 CASE: L. Yang VTSR: December 16, 2005 PROJECT#: 06002.01.322

Chain of Custody/Login Paperwork

																e	20500
Shipper Name/ Address								SAMPLE LIST/CHAIN OF CUSTODY Southwest Research Institute Chemistry and Chemical Engineering Division 6220 Culebra Road San Antonio, Texas 78238-5166 Client Purchase Order/Other ID Site/Zone ID						Requested Turnaround: 2 Weeks 3 Weeks Other: 1 Sweeks SwRI Contact			
													3	ile/20ne			
Client	Lietai	Yang,	Piv	. A	\circ		06002.01.322.1.20 Analyses Requested										
		Sample Collection Date ((mm/dd/yy)	Sample Collection Time	Matrix Type	Sample Type	# of Containers											REMARKSPreservation $a = HCI \text{ to } pH < 2$ $b = HNO_3 \text{ to } pH < 2$ $c = H_2SO_4 \text{ to } pH < 2$ $d = NaOH \text{ to } pH > 12$ $e = Cool (4^{\circ}C \pm 2^{\circ}C)$ $f = Other (specify)$
Can	nple ID d. A- 130° C	1	S	2	<u></u>	#	Na	K	Q	Noz	-						
12	2/9/05	12.19/05				-	10.	n n					1.			-	
12 Con	112/05 d.A-180°C JOS d.A-210°C	12/12/05	<u>.</u>	┼╂			+										
12/13 Con	d. A-210°C	12/13/05									-			1.			
Con	2/15/05 a.A-230°C 2/15/05 .A-230°C 2/15/05	12/15/05		1													
Sol	2./15/05 . A - 230° C	12/15/05		Sa			+				-						
	2/15/05	12/15/05		204							-						
							1										
	·····									1	-		-	-			
<u> </u>	<u> </u>								-	1							
Mat	trix Types:		ple Types			I	Relinqu	ished by (Print/Signa	ature)		λ			Date	Time	SwRI Project#:
1	Air Biota		Duplicate - Equipme	nt Rins	sate				etin		ng	7.1	ro		12/16/03		
D -	Dust	ES -	- Environm	ental S	Sample	e	Receive	ed by (Prin	nt/Signatur	e)	0				Date	Time	Received by SwRI Lab: (Signature)
	Emission/Stack	FD -	- Field Blar - Field Dup	olicate			-			-4					Date	Time	-1(1)/1
	Product - Solid		– Matrix Sp) – Matrix S		Dup		Relinqu	isned by (Print/Signa	ature)					Dulo		
S -	Soil		- Trip Blan		-												Date Time
Т-	D – Sediment Tissue						Receive	ed by (Prir	nt/Signatur	e)					Date	Time	Samples Disposed:
	- Water • - Wipe			-													Date Time
	mp: 02 7 2	The	rm #: 02	7											Date	Time	
	PL	٢					Relinqu	iished by i	(Print/Sign	ature)					Dale		Samples Disposed by:
	12/16/0										÷						

SAMPLE LOG-IN SHEET

Lab Name Page 1 of 1 Southwest Research Institute Log-in Date Received By (Print Name) 12/16/2005 DINO ROMAN lowello for Received By (Signatur) Sample Delivery Group No. SAS Number Case Number N1 A L. Yang Remarks 06002.01.322 Remarks: Corresponding Condition of Sample Shipment, etc Assigned Lab # EPA Sample # Sample Tag # Present/Absent* 1 Custody Seal(s) Cond.A-130 °C None 271245 Intact Intact/Broken 12/9/05 Cond.A-150 °C 271246 Intact None N/A 12/12/05 Custody Seal Nos. 2 Cond.A-180 °C None 271247 Intact 12/13/05 Cond.A-210 °C None 271248 Intact resent Absent* 3 Chain-of Custody Records 12/15/05 Cond.A-230 °C 271249 Intact Traffic Reports Present Absent None 4 or Packing Lists 12/15/05 Airbill/Sticker Airbill 5 Cond.A-230 °C None 271250 Intact resent Absent* 12/15/05 HAND DELIVERED Airbill No 6 Present Absent 7 Sample Tags Listed Not listed on Sample Tag Numbers Chain of Custody Intact/Broken*/ Sample Condition 8 Leaking 22.0C Cooler Temperature g Does Information (es)No* 10 on custody records, traffic reports, and sample tags agree? 12/16/2005 11. Date Received at Lab Time Received 14:45:00 12 Sample Transfer P action Fractio norg Area # Area # Lbinet By Βv DINO ROMAN On On 12/16/2005 * Contact SMQ and attack record of resolution Logbook No gample Receipt (28420) Reviewed By Section 2.fr Logbook Page No. $\sqrt{5653}$ Date 91.0

FORM DC-1

OLMO4.2

010039

SOUTHWEST RESEARCH INSTITUTE NUCLEAR PROJECT CLIENT: Division 20 TASK ORDER: 051219-5 SRR: 28420 SDG: 271245 CASE: L. Yang VTSR: December 16, 2005 PROJECT#: 06002.01.322

Copies of Login Book

Sample Login Book Dec 16, 2005

010040

SwRI Login Area Division 1

Sample Receipt: 28420 VTSR Date: Dec 16, 2005		Project: 0600 VTSR Time:		Client: Div. 20 Manager: SPIES, RADONNA				
System ID	Customer Sample ID				Matrix			
271245	Cond.A-130 °C 12/9/05				Liquid			
271246	Cond.A-150 °C 12/12/05				Liquid			
271247	Cond.A-180 °C 12/13/05				Liquid			
271248	Cond.A-210 °C 12/15/05		·	·····	Liquid			
271249	Cond.A-230 °C 12/15/05				Liquid			
271250	Cond.A-230 °C 12/15/05			· · · · · · · · · · · · · · · · · · ·	Solid			

Number of samples for today: 20

Number of Containers for today: 21

Page Number: 5653 (section 2 of 2)

Version (12/25/2005)

Printed: Feb 7 2006 3:01PM

SOUTHWEST RESEARCH INSTITUTE NUCLEAR PROJECT CLIENT: Division 20 TASK ORDER: 051219-5 SRR: 28420 SDG: 271245 CASE: L. Yang VTSR: December 16, 2005 PROJECT#: 06002.01.322

RAW DATA

271250 for K 82.407 ug/mlx df 20x 50ml = 153830 mg/kg A 12-21-05-Project No. 06002.01.322 0.5357a = 154000 wg | Kg Date Time Prep. Page 62-230, 62-232 Sample ID Element Result Qual (C) Qual (Q) Units RL %RPD %Recovery TV mg/kg () sigwt Dilution Calc RL rl ug/ml 30 K 766 30.0 U mg/kg 0.300 2.587680386 2.59 30 0.025876804 12/20/05 2:27 PM 1 Na589 30.0 U 30 mg/kg 0.300 -13.48247749 -13.5 1 30 -0.134824775 12/20/05 2:27 PM K 766 1960 30 mg/kg 98.0% 2000 0.300 1959.590931 1960 1 19.59590931 12/20/05 2:29 PM 30 Na589 1950 30 mg/kg 2000 1949.830739 97.5% 0.300 1950 1 30 19.49830739 12/20/05 2:29 PM K 766 154000 \checkmark 560 153830,1356 154000 mg/kg 0.300 82.40680362 12/20/05 2:32 PM 20 560.015 Na589 170000 mg/kg 560 0.300 169905,4443 170000 20 560.015 91.0183465 12/20/05 2:32 PM K 766 152000 553 mg/kg 1.3% 0.300 152301.8387 152000 20 553.097 82.60851731 12/20/05 2:34 PM Na589 173000 553 1.7% mg/kg 0.300 173181.6923 173000 93.93374988 12/20/05 2:34 PM 20 553.097 K 766 157000 572 N mg/kg 157.5% 1905 0.300 156843.9354 157000 20 571.537 82.32738172 12/20/05 2:36 PM Na589 169000 N 572 1905 0.300 mg/kg -52.5% 168524.0003 169000 88.45824774 12/20/05 2:36 PM 20 571.537 K 766 1.50 U mg/L 1.5 0.300 0.425194146 0.425 1 1.5 0.085038829 12/20/05 2:46 PM Na589 1.50 U mg/L 1.5 0.300 -0.731607848 -0.732 1 -0.14632157 12/20/05 2:46 PM 1.5 K 766 99.4 mg/L 1.5 99.4% 100 0.300 99.35311786 99.4 1 19.87062357 12/20/05 2:47 PM 1.5 Na589 98.0 1.5 mg/L 98.0% 100 0.300 97.99195422 98 1 1.5 19.59839084 12/20/05 2:47 PM

271245	K 766	1.50 U	mg/L	1.5		0.300	1.458639654	4 46	4	4 5	0.004707004	40/00/05	0.50 014
								1.46	1	1.5	0.291727931	12/20/05	2:50 PM
271245	Na589	2.35	mg/L	1.5		0.300	2.348163824	2.35	1	1.5	0.469632765	12/20/05	2:50 PM
271245d	K_766	1.50 U	mg/L	1.5 0.09	%	0.300	0.593565757	0.594	1	1.5	0.118713151	12/20/05	2:52 PM
271245d	Na589	2.64	mg/L	1.5 11.69	%	0.300	2.643286561	2.64	1	1.5	0.528657312	12/20/05	2:52 PM
271245s	K_766	103	mg/L	1.5	103.0%	100 0.300	102.7917761	103	1	1.5	20.55835522	12/20/05	2:54 PM
271245s	Na589	105	mg/L	1.5	102.7%	100 0.300	104.6209652	105	1	1.5	20.92419304	12/20/05	2:54 PM
271246	K_766	1.50 U	mg/L	1.5		0.300	-0.201005435	-0.201	1	1.5	-0.040201087	12/20/05	2:57 PM
271246	Na589	1.50 U	mg/L	1.5		0.300	0.782959918	0.783	1	1.5	0.156591984	12/20/05	2:57 PM
271247	K_766	3.64	mg/L	1.5		0.300	3.639588681	3.64	1	1.5	0.727917736	12/20/05	3:00 PM
271247	Na589	4.09	mg/L	1.5		0.300	4.091738125	4.09	1	1.5	0.818347625	12/20/05	3:00 PM
271248	K_766	13.2	mg/L	1.5		0.300	13.17232105	13.2	1	1.5	2.63446421	12/20/05	3:03 PM
271248	Na589	20.4	mg/L	1.5		0.300	20.41835341	20.4	1	1.5	4.083670682	12/20/05	3:03 PM
271249	K_766	27.3	mg/L	1.5		0.300	27.30924636	27.3	1	1.5	5.461849273		
271249	Na589	23.9	mg/L	1.5		0.300	23.91196635	23.9	1	1.5		•. • •	

271249 for Na 4,7824 wg/ml X 5ml = 23.9 mg/L

DIV. 20

TO#051219-5

pbw-M19E2

pbw-M19E2

lcsw-M19E2

Icsw-M19E2

271250

271250

271250d

271250d

271250s

271250s

pbw-M20H1

pbw-M20H1

lcsw-M20H1

lcsw-M20H1

Harry 010042

200.7 TAP No. 01-0406-028 Rev2/Mar02

6010B TAP No. 01-0406-130 Rev4/Oct05

QC STD. ID's CCV<u>ostres)</u> CRI<u>ctrol</u> ICSA<u>csmo</u>) ICSAB<u>osmiz</u>

ICP CAL.STD. 010043 ID's Stdo<u>agnes 1</u> Std1 osmol Std2 Std3 Std4 Std5 -Std6

Kna

Other

PROJ. NO. PI	ROJECT TO#	DATE	MATRIX	LOGBK PG
06002.01.322 0	NY. 20 USIZ193	1270.05	Solid	62-230
				62 232

INSTRUMENT: Spectro FILENAME: 05122013

Je 12-20-05

File converted to wsl?

010044

VOLUTION by Micro-Active Australia Pty Ltd 2:03:18 PM December 20, 2005

eep last result visible enabled ... tarting run ... reating high priority queue entries ... ACKGROUND CORRECTED INTENSITIES dentity 1 : BLK_SC Identity 2 : Type : STD eight : 1.0000 Volume : 1.00 Printed : 1:59:04 PM December 20, 2005 K_766 Na589 Sc361 # 1 23.0 129.0 3942.0 # 2 20.0 104.0 3850.0 21.5 ean 116.5 3896.0 D 17.7 2.1 65.1 RSD 9.9 15.2 1.7 NTENSITIES dentity 1 : BLK_SC Identity 2 : Type : STD eight : 1.0000 Volume : 1.00 Printed : 1:59:04 PM December 20, 2005 K 766 Na589 Sc361 # 1 0.0 0.0 3942.0 # 2 0.0 0.0 3850.0 0.0 0.0 3896.0 ean D 0.0 0.0 65.1 RSD 8.2 13.5 1.7 ACKGROUND CORRECTED INTENSITIES dentity 1 : CLP_STD1_SC Identity 2 : Type : STD eight : 1.0000 Volume : 1.00 Printed : 2:01:56 PM December 20, 2005 K_766 Na589 # 1 3915.5 21784.0 # 2 3795.5 21292.0 3855.5 21538.0 ean D 84.9 347.9 RSD 2.2 1.6 **ITENSITIES** ientity 1 : CLP_STD1_SC Identity 2 : Type : STD ight : 1.0000 Volume : 1.00 Printed : 2:01:56 PM December 20, 2005 K_766 Na589 F 1 1.0 5.6 ₿ 2 1.0 5.7 5.7 1.0 ?an) 0.0 0.0 ≥SD 0.1 0.4

12-20-05

lor i

VOLUTION by Micro-Active Australia Pty Ltd 2:11:48 PM December 20, 2005 010045

ACKGROUND CORRECTED INTENSITIES dentity 1 : CLP_CCV_SC Identity 2 : Type : CV eight : 1.0000 Volume : 1.00 Printed : 2:04:48 PM December 20, 2005

	K_766	Na589	Sc	Sc361
F 1	1616.0	13239.5	3867.0	3867.0
# 2	1580.0	12981.5	3797.0	37 97.0
ean	1598.0	13110.5	3832.0	3832.0
þ	25.5	182.4	49.5	49.5
RSD	1.6	1.4	1.3	1.3

PPARENT CONCENTRATIONS dentity 1 : CLP_CCV_SC Identity 2 : Type : CV eight : 1.0000 Volume : 1.00 Printed : 2:04:48 PM December 20, 2005

	K_766	Na589	Sc	Sc361
	ppm	ppm		ppm
1	20.4467	30.1176	3867.000	99.2545
12	20.3586	30.0747	3797.000	97.4550
ean	20.4026	30.0962	3832.000	98.3548
) 3	0.0623	0.0303	49.497	1.2724
RSD	0.3054	0.1007	1.292	1.2937

ecking calibration verification ... lentity 1 : CLP_CCV_SC Identity 2 : port name Low limit Value High limit 766 18.000 20.403 22.000 1589 27.000 30.096 33.000 CKGROUND CORRECTED INTENSITIES entity 1 : Calibration blank Identity 2 : Type : CB ight : 1.0000 Volume : 1.00 Printed : 2:08:40 PM December 20, 2005

	K_766	Na589	Sc	Sc361
1	26.0	168.0	3813.0	3813.Ø
2	31.0	113.0	3815.0	3815.0
an	28.5	140.5	3814.0	3814.0
	3.5	38.9	1.4	1.4
SD	12.4	27.7	0.0	0.0

PARENT CONCENTRATIONS entity 1 : Calibration blank Identity 2 : Type : CB ight : 1.0000 Volume : 1.00 Printed : 2:08:40 PM December 20, 2005

	K_766	Na589	Sc	Sc361
	ppm	ppm		ppm
1	0.0645	0.1256	3813.000	97.8663
2	0.1293 L	-0.0025	3815.000	97.9177
an	0.0969	0.0616	3814.000	97.8920
	0.0458	0.0906	1.414	0.0364
SD	47.30 32	147.1811	0.037	0.0371

ecking calibration blank ... T.J. . L.J.L.. A

0.097 (766 0.250 la589 0.250 0.062 ic361 0.000 97.892 010046 ACKGROUND CORRECTED INTENSITIES VOLUTION by Micro-Active Australia Pty Ltd 2:17:48 PM December 20, 2005 dentity 1 : CRI Identity 2 : Type : CV eight : 1.0000 Volume : 1.00 Printed : 2:11:34 PM December 20, 2005 K 766 Na589 Sc Sc361 # 1 13.5 104.0 3841.0 3841.0 # 2 25.5 110.0 3735.0 3735.0 19.5 107.0 3788.0 3788.0 lean 8.5 4.2 75.0 75.0 D: RSD 43.5 4.0 2.0 2.0 PPARENT CONCENTRATIONS dentity 1 : CRI Identity 2 : Type : CV eight : 1.0000 Volume : 1.00 Printed : 2:11:34 PM December 20, 2005 K_766 Na589 Sc361 Sc ppm ppm ppm # 1 -0.0994 L -0.0251 3841.000 98.5861 L # 2 0.0649 L -0.0040 3735.000 95.8612 -0.0172 L -0.0145 97.2237 ean L 3788.000 D 0.1161 0.0149 74.953 1.9268 RSD 674.1171 102.4728 1.979 1.9818 hecking calibration verification ... Identity 2 : dentity 1 : CRI Low limit Value High limit eport name 0.900 -0.017 766 1.100 Failed a589 0.900 -0.015 1.100 Failed ACKGROUND CORRECTED INTENSITIES dentity 1 : ICSA Identity 2 : Type : INTRF eight : 1.0000 Volume : 1.00 Printed : 2:14:26 PM December 20, 2005 K 766 Na589 Sc Sc361 # 1 28.5 100.5 3749.0 3749.0 # 2 18.5 107.5 3692.0 3692.0 23.5 104.0 3720.5 3720.5 ean D 4.9 40.3 40.3 7.1 RSD 30.1 4.8 1.1 1.1 PPARENT CONCENTRATIONS dentity 1 : ICSA Identity 2 : Type : INTRF eight : 1.0000 Volume : 1.00 Printed : 2:14:26 PM December 20, 2005 K_766 Na589 Sc361 Sc ppm ppm DDR 0.1033 L -0.0275 3749.000 96.2211 # 1 #2 L -0.0252 L -0.0070 3692.000 94.7558 0.0391 L -0.0172 3720.500 95.4884 ean 0.0908 0.0145 40.305 1.0361 D RSD 232.5337 84.1750 1.083 1.0851 ACKGROUND CORRECTED INTENSITIES dentity 1 : ICSAB Identity 2 : Type : ICSAB eight : 1.0000 Volume : 1.00 Printed : 2:17:18 PM December 20, 2005

# 1 # 2	34.0 16.0	99.0 133.0	3712.0 3694.0	3712.0 3694.0			
ean VOLUTIC	25.0 N by Micro-A	116.0 Active Austr	3703.0 alia Pty Ltd		B PM December	20, 2005	010047
D RSD	12.7 50.9	24.0 20.7	12.7 0.3	12.7 0.3			
PPARENT	CONCENTRATI	ONS					
			: Type : IC Printed : 2		December 20,	2005	
	K_766	Na589	Sc	Sc361			
	ppm A 1005 I	ppm A ADAZ	0710 000	ppm			
#1 #2 L	-0.0589	-0.0287 0.0541	3694.000	95.2699 94.8072			
ean	0.0608	0.0127	3703.000	95.0386			
D		0.0586		0.3272			
RSD	278.2549	459.9975	0.344	0.3443			
	interferenc 1 : ICSAB						
		limit		yh limit			
_766		0.000	0.061		Failed		
3589 NGKGDOU		0.000	0.013	0.000	Failed		
	ND CORRECTED		s ty 2: Type	• CV			
			Printed : 2		December 20,	2005	
	K_766	Na589	Sc	Sc361			
F 1	1572.0	13153.5	3849.5	3849.5			
12	1571.0	12889.5	3773.5	3773.5			
en :	1571.5	13021.5	3811.5	3811.5			
) ISD	0.7 0.0	186.7 1.4	53.7 1.4	53.7 1.4			
			1.4	1.4			
	CONCENTRATI		ty 2: Type	• • CV			
			Printed : 2		December 20,	2005	
	K_766	Na589	Sc	Sc361			
÷ 1	ppm 19.9741	ppm 30.0575	3849.500	ppm 98.8046			
2	20.3688	30.0473	3773.500	96.8509			
an	20.1715	30.0524	3811.500	97.8278			
•	0.2791	0.0072	53.740	1.3815			
:SD	1.3835	0.0239	1.410	1.4122			
• •							
	calibration 1 : CLP_CCV						
port na		_	•	h limit			
766		18.000	20.171	22.000			
589 CKGROUI	ND CORRECTED	27.000	30.052	33.000			
			⊃ Identity 2 :	Type :	СВ		
			Printed : 2			2005	
	K_766	Na589	Sc	Sc361			
•	10.0		000+ A				

lean		1	2.5		107.0	. 3	8862.5		3862.5							
SD			9.2		12.0		40.3		40.3							
(RSD			3.5		11.2		1.0		1.0						010	048
SVOLU:	TION	by M	icro	o-Act	ive Aus	tralia	Pty Li	tđ	2:29:5	0 PM	Decei	mber	20,	2005	OT0	040
PPAR	ENT (CONCE	NTRA		15											
						k Iden	tity 2	2:	Type :	СВ						
									25:04 PM		ember	20,	2005	5		
		K_7	66		Na589		Sc		Sc361							
			pm		ppm				ppm							
# 1 # 2	L L	-0.0			-0.0019		1.000		99.8715							
* 2	Ļ	-0.1	שסכ	Ь	-0.0374	383	4.000		98.4062			•				
lean	L	-0.1			-0.0197		2.500		99.1388							
D		0.1			0.0251		0.305		1.0361							
RSD	1	.02.2	571	1	.27.4653		1.043		1.0451							
hecki	Da c	alih	rəti	on h	lank											
					on blan		ntity	2 :								
eport					DL	Value	-									
_766					0.250	-0.	114									•
a589					0.250		020									
c361	00000		nnam		0.000		139									
-					NTENSIT		ng67.	-770	Type :	CAME						
									17:56 PM			20	2005	z		
erduc	••		5 1	0101	e . 1.0	U FIIN	ceu :	212	./:J0 FH	Dece	annet.	20,	200	J		
		K_76	56		Na589		Sc		Sc361							
# 1			1.0		83.0		9 94.0		3994.0							
# 2		17	7.0		34.0	3	936.0		3936.0							
ean			4.0		58.5	3	965.0		3965.0							
D	. N		9.9		34.6		41.0		41.0							
RSD		4	1.2		59.2		1.0		1.0							
PPARE	NT C	ONCE	TRA	TION	S											
									Type :							
eight	: 1	. 0000	0 V	olum	e : 1.00	0 Prin	ted :	2:2	27:56 PM	Dece	ember	20,	2005	5		
		K_76	56		Na589		Sc		Sc361							
		PI	m	_	ppm				ppm							
# 1									.02.5193							
#2	L	-0.05	995	L	-0.1887	393	6.000	H 1	01.0283							
ean					-0.1348											
D					0.0762				1.0543							
RSD	4	66.42	248		56.5161		1.034		1.0359							
					NTENSITI											
									Type :			~~				
≥ight	: 1	. 0000) V	olum	e : 1.00) Prin	ted :	2:2	9:40 PM	Dece	mber	20,	2005	i		
		K_76			Na589		Sc		Sc361							
1					8808.5				3939.5							
12		1574	. 5		8747.5	3	943.5		3943.5							
en :					8778 . 0		941.5		3941.5							
)			.1		43.1		2.8		2.8							
tSD .		ଥ	. 4		0.5		0.1		0.1							
104001		ามกอน	1171D A 7	PT MI	2											

-				••			
eight :	1.0000	Volume : 1.00	Printed : 2	2:29:40 PM	December 20,	2005	
	K_766	Na589	Sc	Sc361			
	ppm	ppm		ppm			010010
VOLUTIO		ro-Active Austr	alia Pty Ltd	• . •	2 PM December	20, 2005	010049
# 1	19.668	9 19.5770	3939.500 H	101 1183			
# 2	19.522		3943.500 H				
lean	19.595						
SD VDCD	0.103		2.828	0.0727			
RSD	0. 526'	7 0.5708	0.072	0.0719			
ACKGROUI		CTED INTENSITIE	S				
dentity	1 : 2712	250 df20 Ident	ity 2 : pg62-	230 Type	: SAMPLE		
eight :	1.0000	Volume : 1.00	Printed : 2	2:32:46 PM	December 20,	2005	
	K 766	Na589	Sc	Sc361			
# 1	6484.0		3888.0	3888.0			
# 2	6346.0		3806.0	3806.0			
	_						
ean	6415.0		3847.0	3847.0			
D	97.6		58.0	58.0			
RSD	1.5	5 1.2	1.5	1.5			
PPARENT	CONCENTI	RATIONS			,		
		250 df20 Ident	ity 2 : pa62-	230 Type	: SAMPLE		
		Volume : 1.00				2005	
	4 844		~	-			
	K_766		Sc	Sc361			
#1 H	ppm 82.4149		2000 000	ppm oo 7012			
# 1 H # 2 H	82. 4145		3888.000 3806.000	99.7943 97.6864			
	82.4068		3847.000	98.7404			
D	0.0115		57.983	1.4906			
RSD	0.0140	0.3449	1.507	1.5096			
ACKGROUŇ		CTED INTENSITIE	S				
		250d df20 Iden					
≥ight :	1.0000	Volume : 1.00	Printed : 2	:34:30 PM	December 20,	2005	
	K_766	Na589	Sc	Sc361			
¥ 1	6525.5		3901.5				
2	6591.5			3945.5			
	6220 5	5 41647.5	3923.5	3923.5			
≥an)		7 357.8		3923.5			
? ?SD	- <u>-</u> 0.7			0.8			
				_			
	CONCENTR			000 -			
		250d df20 Iden [.] Volume : 1.00				2005	
		. JAAME , LIUU			statuter 20,	2000	
	K_766		Sc	Sc361			
	ppm			ppm			
		2 H 93.8897					
2 H	82.3608	H 93.9778	3945.500 H	101.2725			
an H	82.6085	i H 93.9337	3923. 500 H	100.7069			
)		0.0623					
SD	0.0817	0.0663	0.793	0.7942			
CRGDOIN		TED THRENCTET P	-				
IUNUNUN	D CORREC	TED INTENSITIES					

Interesting to the state of the second state o

		K_766	Na589	Sc	Sc361						
# 1		6596.0	39592.5	3968.0	3968 . Ø						
# 2		6538.0	39229.5	3916.0	3916 . 0						
VOLU	TIO	N by Micro-A	ctive Austr	alia Pty Ltd	2:43:24	4 PM Decem	nber 2	0, 200)5	04000	-
										01005	50
ean		6567.0	39411.0	3942.0	3942.0						
D		41.0	256.7	36.8	36.8						
RSD		0.6	0.7	0.9	0.9						
		CONCENTRATI			000		•				
				tity 2 : pg62 Printed : 2				005			
ergn		1.0000 /01	.ume . 1.00	iiinced . z		December	20, 2	000			
		K_766	Na589	Sc	Sc361						
		ppm	ppm		ppm						
# 1				3968.000 H	101.8509		Pa				
# 2 ·	Н	82.5074 H	88.6348	3916.000 H	100.5141		ал (¹				
ean	μ	82.3274 H	88.4582	3942.000 H	101.1825						
D	**	0.2546	0.2497	36.770	0.9452						
RSD		0.3093	0.2823	0.933	0.9342						
			INTENSITIE								
				ty 2 : Type		_					
eigh	t:	1.0000 Vol	ume : 1.00	Printed : 2	::39:20 PM	December	20, 2	005			
		K_766	Na589	Sc	Sc361						
# 1		1581.5	13031.0	3836.5	3836.5						
# 2		1562.5	12991.0	3820.5	3820.5				1		
					2.000 1.000						-
ean		1572.0	13011.0	3828.5	3828.5						
D		13.4	28.3	11.3	11.3						
RSD		0.9	0.2	0.3	0.3						
PPARI	ENT	CONCENTRATI	ONS								
				ty 2 : Type	: CV						
				Printed : 2		December	20, 2	005			
		VBCC	N-500	2	-						
		K_766	Na589	Sc	Sc361						
# 1		ppm 20.1655	ppm 29.8769	3836.500	ppm 98.4704						
# 2		20.0045	29.9102	3820.500	98.0591						
ean		20.0850	29.8935	3828.500	98.2648						
D .		0.1138	0.0236	11.314	0.2908						
RSD		0.5668	0.0788	0.296	0.2960						
					•						
heck	ina	calibration	verificatio	n							
	-		_SC Ident:								
eport				•	h limit						
766			18.000	20.085	22.000						
a589			27.000	29.894	33.000						
			INTENSITIE		m	CD					
				Identity 2 : Printed : 2			20 2	005			
-râu (T. 0000 101	UNG : T. AA	iiinteu : Z		recembel	20, 2	963			
		K_766	Na589	Sc	Sc361						
ŧ 1		36.5	105.5	3882.0	3882.0						
2		32.5	101.5	3818.0	3818.0						
		<u> </u>		0000 0							
ean		34.5	103.5	3850.0	3850.0						
r i		., 0		46 3	<u> </u>						

APPARENT CONCENTRATIONS dentity 1 : Calibration blank Identity 2 : Type : CB 2:48:18 PM December 20, 2005 010051 leight : 1.0000 Volume : 1.00 Printed : 2:43:12 PM December 20, 2005 VOLUTION by Micro-Active Australia Pty Ltd K 766 Na589 Sc Sc361 ppm ppm ppm # 1 0.1926 L -0.0242 3882.000 99.6401 # 2 0.1484 L -0.0294 3818.000 97.9949 -0.0268 3850.000 0.1705 L 98.8175 ean D 0.0312 0.0037 45.255 1.1634 RSD 18.3016 13.8555 1.175 1.1773 hecking calibration blank ... Identity 2 : dentity 1 : Calibration blank Value eport name CRDL 766 0.250 0.171 a589 0.250 -0.027 c361 0.000 98.817 ACKGROUND CORRECTED INTENSITIES dentity 1 : pbw-M20H1 Identity 2 : Type : SAMPLE eight : 1.0000 Volume : 1.00 Printed : 2:46:06 PM December 20, 2005 K 766 Na589 Sc361 Sc # 1 41.0 58.5 4226.0 4226.0 # 2 20.0 54.5 4197.0 4197.0 30.5 56.5 4211.5 4211.5 ean D 20.5 14.8 2.8 20.5 RSD 48.7 5.0 0.5 0.5 PPARENT CONCENTRATIONS ientity 1 : pbw-M20H1 Identity 2 : Type : SAMPLE eight : 1.0000 Volume : 1.00 Printed : 2:46:06 PM December 20, 2005 K_766 Na589 Sc Sc361 ppm ppm ppm ¥ 1 0.2074 L -0.1425 4226.000 H 108.4833 12 L -0.0373 L -0.1501 4197.000 H 107.7378 ean? 0.0850 L -0.1463 4211.500 H 108.1105) 0.1731 0.0054 20.506 0.5271 **₹SD** 203.5255 3.6770 0.487 0.4876 **ICKGROUND CORRECTED INTENSITIES** lentity 1 : lcsw-M20H1 Identity 2 : Type : SAMPLE ight: 1.0000 Volume: 1.00 Printed: 2:47:48 PM December 20, 2005 K_766 Na589 Sc Sc361 F 1 1594.0 8845.0 3921.5 3921.5 + 2 1577.0 8626.0 3883.5 3883.5 1585.5 8735.5 3902.5 3902.5 lan 12.0 154.9 26.9 26.9 0.8 :SD 0.7 0.7 1.8 PARENT CONCENTRATIONS entity 1 : 1csv-M20H1 Identity 2 : Type : SAMPLE ight : 1.0000 Volume : 1.00 Printed : 2:47:48 PM December 20, 2005

~ ~~

# 1	19.8805	19.7507	3921 500 1	H 100.6555				
# 2	19.8607	19.4461	3883.500	99.6787				
		100 1001	0000.000	55.0,07				
lean	19.8706	19. 5984	3902.500	H 100.1671				
		Active Austra			B PM Dece	mher	20. 2005	010052
			,,					
SD	0.0140	0.2154	26.870	0.6907				
RSD	0.0706	1.0989	0.689	0.6896				
BACKGROUI	ND CORRECTE	D INTENSITIES	3					
-		Identity 2						
leight :	1.0000 Vo	lume : 1.00	Printed :	2:50:56 PM	December	20,	2005	
	K_766	Na589	Sc	Sc361				
# 1	42.5	314.5	3831.5	3831.5				
# 2	44.5	317.5	3799.5	3799.5				
lean	43.5	316.0	3815.5	3815.5				
D	1.4	2.1	22.6	22.6				
RSD	3.3	0.7	0.6	0.6				
	CONCENTRAT							
-		Identity 2	••					
eight :	1.0000 Vo.	lume : 1.00	Printed :	2:50:56 PM	December	20,	2005	
	K_766	Na589	Sc	Sc361				
	ppm	ppm		ppm				
# 1	0.2764	0.4631	3831.500	98.3419				
# 2	0.3071	0.4762	3799.500	97.5193				
ean	0.2917		3815.500	97.9306				
D	0.0217	0.0093	22.627	0.5817				
RSD	7.4489	1.9787	0.593	0.5940				
		D INTENSITIES		1. S.				
		d Identity 2						
eight :	1.0000 Vo.	lume : 1.00	Printed :	2:52:40 PM	December	20,	2005	
	K_766	Na589	Sc	Sc361				
# 1	32.5	338.5						
# 2	29.5	362.5	3912.5	3912.5				
ean	31.0	350.5						
D	2.1	17.0	7.1	7.1				
RSD	6.8	4.8	0.2	0.2				
	CONCENTRATI							
		i Identity 2						
eight :	1.0000 Vol	lume : 1.00	Printed :	2:52:40 PM	December	20,	2005	
	K_766	Na589	Sc	Sc361				
-	ppm	ppm		ppm				
# 1	0.1372		3922.500 H					
# 2	0.1002	0.5569	3912.500 H	100.4242				
	A	A 5007	0010 500 "	100				
ean	0.1187	0.5287	3917.500 H					
	0.0261	0.0399	7.071	0.1818				
RSD	22.0201	7.5430	0.180	0.1808				
		INTENSITIES						
		Identity 2			• ·			
eight : .	1.0000 Vol	ume : 1.00	Printed :	2:54:24 PM	December	20,	2005	
			_	— – –				
L.	K_766	Na589	Sc	Sc361				
- 1	1601 5	0000 A	3050 M	7050 A				

		· •								
lean	1624.5		3866.5	3866.5						
SD	4.2									
RSD	0.3		0.3						010053	
VOLUTIO	N by Micr	ro-Active Austr	alia Pty Lt	d 3:03:16	B PM Dece	mber	20,	2005		
PPARENT	CONCENTR	RATIONS								
		245s Identity	2: Type	: SAMPLE			1.1			
		Volume : 1.00			December	20,	2005	5		
			_							
	K_766	Na589	Sc	Sc361						
# 1	ppm 20.5603		3859.000	ppm 99.0488						
# 2	20.5564		3874.000	99.4344						
lean	20.5584		3866.500	v						
D DCD		0.4054		0.2727						
RSD	0.0133	3 1.9376	0.274	0.2747						
		TED INTENSITIE								
		46 Identity 2								
eight :	1.0000	Volume : 1.00	Printed :	2:57:16 PM	December	20,	2005	5		
-	K_766	Na589	Sc	Sc361						
# 1	13. S	i 175.5	3848.0	3848.0						
# 2	22.5	i 188.5	3809.0	3809.0						
	10 0	102.0	2020 5	2020 5						
ean D	18.0 6.4		3828.5 27.6	3828.5 27.6						
RSD	35.4		0.7	0.7						
	CONCENTR		_							
•		46 Identity 2	••		D	20	200			
eignt :	1.0000	Volume : 1.00	Printea :	2:57:16 Ph	December	20,	2003			
	K_766	Na589	Sc	Sc361						
	ppm	ppm		ppm						
# 1 L	-0.0997		3848.000	98.7661						
# 2	0.0193	0.1738	3809.000	97.7635						
ean L	-0.0402	0.1566	3828.500	98.2648						
D	0.0841		27.577	0.7089						
RSD	209.1993	15.5480	0.720	0.7214						
ACKGROUN	D CORREC	TED INTENSITIES	3							
		47 Identity 2		SAMPLE						
eight :	1.0000	Volume : 1.00	Printed :	3:00:14 PM	December	20,	2005	5		
	K_766	Na589	Sc	Sc361						
# 1	77.0									
#2	77.0		3806.5	3806.5						
				-						
ean D	77.0 0.0		3812.0 7.8	3812.0 7.8						
RSD	0.0 0.0		0. 2	7.8 0.2						
			0.2	012						
	CONCENTR			CAMPLE						
		47 Identity 2 Volume : 1.00			December	20.	2005	5		
+ى						,		_		
	K_766	Na589	Sc	Sc361						
u 1	ppm 0 7265	ppm 0.7947	3817.500	ppm oz oozo						
* 1	0.7265		3817.500	97.9820						
1										

lean	0.7279	0.8183	3812.000	97.8406					
SD .	0.0020	0.0335	7.778	0.2000					
RSD	0.2807	4.0921	0.204	0.2044				0400-	
SVOLUTION	by Micro-	Active Austra	lia Pty Lt	d 3:09:18	B PM Decen	nber 2	20, 2005	01005	4
ACKGROUNI	O CORRECTE	ED INTENSITIES	5						
		B Identity 2							
leight : 1	1.0000 Va	olume : 1.00	Printed :	3:03:06 PM	December	20, 2	2005		
# 1	K_766 228.5	Na589 1905.0	Sc 3861.0	Sc361 3861.0					
# 1 # 2	228.5	1855.0	3811.0	3811.0					
				00000					
lean	225.0	1880.0	3836.0	3836.0					
ID IRSD	4.9 2.2	35.4 1.9	35.4 0.9	35.4 0.9					
NJU	<i>L. L</i>	1. 5	U. J	U. 9					
	CONCENTRAT			CANDLE					
		B Identity 2 blume : 1.00			December	20 1	005		
erdur i T		TAME : 1.00	ilinted :	OTECTIC TH	December	20, 4			
	K_766	Na589	Sc	Sc361					
"	ppm D ccoo	ppm	0061 000	ppm					
# 1. # 2	2.6608 2.6082	4.1132 4.0542	3861.000 3811.000	99.1003 97.8149					
* 2	2.0002	7.0372	3011.000	57.0145					
ean	2.6345	4.0837	3836.000	98.4576					
D	0.0372	0.0417	35.355	0.9089					
RSD	1.4111	1.0213	0.922	0.9231					
ACKGROUND	CORRECTE	D INTENSITIES	i de la construcción de la constru N						
) Identity 2							
eight : 1	0000 Vo	olume : 1.00	Printed :	3:06:00 PM	December	20, 2	2005		
	K_766	Na589	Sc	Sc361					
# 1	446.0	2229.5	3853.5	3853.5					
# 2	441.0	2132.5	3814.5	3814.5					
ean	443.5	2181.0	3834.0	3834.0					
D	3.5	68.6	27.6	27.6					
RSD	0.8	3.1	0.7	0.7					
PPARENT C	ONCENTRAT	IONS							
dentity 1	: 271249	Identity 2							
eight : 1	.0000 Vo	lume : 1.00	Printed :	3:06:00 PM	December	20, 2	2005		
	K_766	Na589	Sc	Sc361					
	ppm	ppm		ppm					
# 1	5.4650		3853.500	98.9075					
#2	5.4587	4.6958	3814.500	97.9049					
ean	5.4618	4.7824	3834.000	98.4062					
D	0.0045	0.1225	27.577	0.7089					
RSD	0.0818	2.5605	0.719	0.7204					
		D INTENSITIES							
		V_SC Identit							
eight : 1.	.0000 Vo	lume : 1.00	Printed :	3:08:52 PM	December	20, 2	2005		
	K_766	Na589	Sc	Sc361					
¥ 1	1544.0	12968.5	3832.5	3832.5					
¢ 2	1542.0	12799.5	3775.5	3775.5					
	1545 A	1000A A	2004 Q	2004 A					
		TOUR A		·JUIAA (A					

RSD 0.1 0.9 1.1 1.1

PPARENT CONCENTRATIONS dentity 1 : CLP_CCV_SC Identity 2 : Type : CV VOLUTION by Micro-Active Australia Pty Ltd 3:15:48 PM December 20, 2005

010055

eight : 1.0000 Volume : 1.00 Printed : 3:08:52 PM December 20, 2005

	K_766	Na589	Sc	Sc361
	ppm	ppm		ppm
# 1	19.7017	29.7636	3832.500	98.3676
# 2	19.9770	29.8197	3775.500	96.9023
ean	19.8394	29.7917	3804.000	97.6350
D	0.1947	0.0397	40.305	1.0361
RSD	0.9812	0.1332	1.060	1.0612

hecking calibration verification ... dentity 1 : CLP_CCV_SC Identity 2 : eport name Low limit Value High limit _766 18.000 19.839 22.000 a589 27.000 29.792 33.000 ACKGROUND CORRECTED INTENSITIES dentity 1 : Calibration blank Identity 2 : Type : CB eight : 1.0000 Volume : 1.00 Printed : 3:12:44 PM December 20, 2005

	K_766	Na589	Sc	Sc361
# 1	18.5	58.0	3834.0	3834.0
#2	11.5	108.0	3796.0	3796.0
ean	15.0	83.0	3815.0	3815.0
D	4.9	35.4	26.9	26.9
RSD	33.0	42.6	0.7	0.7

PPARENT CONCENTRATIONS

fentity 1 : Calibration blank Identity 2 : Type : CB ∋ight : 1.0000 Volume : 1.00 Printed : 3:12:44 PM December 20, 2005

		K_766	Na589	Sc	Sc361
		ppm	ppm		ppm
1	L	-0.0344 L	-0.1311	3834.000	98.4062
2	L	-0.1234 L	-0.0129	3796.000	97.4 293
an	L	- 0.0 789 L	-0.0720	3815.000	97.9177
		0.0630	0.0836	26.870	0.6907
SD		79.8051	116.1204	0.704	0.7054

ecking calibration blank ... lentity 1 : Calibration blank Identity 2 : port name Value CRDL 766 0.250 -0.079 1589 0.250 -0.072 :361 0.000 97.918 CKGROUND CORRECTED INTENSITIES entity 1 : CRI Identity 2 : Type : CV ight : 1.0000 Volume : 1.00 Printed : 3:15:36 PM December 20, 2005 Na589 K_766 Sc Sc361 9 0 2022 5 2022 6 90 0

1	0.0	90.0	2833.3	3833.3
2	18.0	109.0	3747.5	3747.5
an	13.0	9 9. 5	3790.5	3790.5
	- •	10.4	<u> </u>	

PPARENT CONCENTRATIONS dentity 1 : CRI Identity 2 : Type : CV eight : 1.0000 Volume : 1.00 Printed : 3:15:36 PM December 20, 2005 WOLUTION by Micro-Active Australia Pty Ltd 3:21:48 PM December 20, 2005 010056

		K_766	Na589	Sc	Sc361
		ppm	ppm		ppm
# 1	L	-0.1701 L	-0.0570	3833.500	98.3933
# 2	L	-0.0355 L	-0.0072	3747.500	96.1825
ean	L	-0.1028 L	-0.0321	3790.500	97.2879
D		0.0952	0.0352	60.811	1.5633
RSD		92.6351	109.5342	1.604	1.6068

hecking calibration verification ... dentity 1 : CRI Identity 2 : Value eport name Low limit High limit 766 0.900 -0.103 1.100 Failed a589 0.900 -0.032 1.100 Failed ACKGROUND CORRECTED INTENSITIES dentity 1 : ICSA Identity 2 : Type : INTRF eight : 1.0000 Volume : 1.00 Printed : 3:18:30 PM December 20, 2005 K 766 Na589 Sc Sc361 # 1 17.5 95.5 3722.5 3722.5 # 2 24.5 83.5 3710.5 3710.5 3716.5 ean 21.0 89.5 3716.5

D4.98.58.58.5RSD23.69.50.20.2

PPARENT CONCENTRATIONS dentity 1 : ICSA Identity 2 : Type : INTRF eight : 1.0000 Volume : 1.00 Printed : 3:18:30 PM December 20, 2005

		K_766	Na589	Sc	Sc361
		ppm	ppm		ppm
# 1	L	-0.0405 L	-0.0377	3722.500	95.5398
# 2		0.0538 L	-0.0657	3710.500	95.2314
ean		0.0066 L	-0.0517	3716.500	95.3856
D		0.0667	0.0198	8.485	0.2181
RSD		1007.0489	38.2635	0.228	0.2287

ACKGROUND CORRECTED INTENSITIES dentity 1 : ICSAB Identity 2 : Type : ICSAB eight : 1.0000 Volume : 1.00 Printed : 3:21:22 PM December 20, 2005

#1 #2	K_766 22.5 26.5	Na589 85.5 91.5	Sc 3729.0 3632.0	Sc361 3729.0 3632.0
ean	24.5	88.5	3680.5	3680.5
D	2.8	4.2	68.6	68.6
RSD	11.5	4.8	1.9	1.9

PPARENT CONCENTRATIONS dentity 1 : ICSAB Identity 2 : Type : ICSAB eight : 1.0000 Volume : 1.00 Printed : 3:21:22 PM December 20, 2005

K_766	Na589	Sc	Sc361
~~~	***		ກກກ

# 2	0.0881 L	-0.0418	3632.000	93.2134			
lean		-0.0518		94.4602		· · ·	
SD	0.0443	0.0142		1.7632			010057
SVOLUTION	I by Micro-A	ctive Austr	alia Pty Ltd	3:29:20	0 PM Decemb	er 20, 2005	
RSD	77.8601	27 <b>. 40</b> 76	1.864	1.8666			
	<pre>interferenc 1 : ICSAB</pre>						
leport na				gh limit			
[766		0.000	0.057	-	Failed		
la589			-0.052		Failed		
ACKGROUN	ID CORRECTED						
dentity	1 : CLP_CCV	_SC Identi	.ty 2 : Typ	e : CV			
leight :	1.0000 Vol	ume : 1.00	Printed :	3:25:14 PM	December 2	0, 2005	
	K_766	Na589	Sc	Sc361			
# 1	1558.0						
# 2	1538.0	12804.5	3781.5	3781.5			
lean	1548.0	12935.0	3813.5	3813.5			
iD D	14.1	184.6					
RSD	0.9	1.4	1.2	1.2			
PPARENT	CONCENTRATI	ONS					
			ty 2: Typ	e:CV			
			Printed :		December 2	0, 2005	
	K_766	Na589	Sc	Sc361			
	ppm	ppm		ppm			·
# 1	19.8147		3845.500	98.7018			
# 2	19.8924	29.7837	3781.500	97.0566			
ean	19.8536	29.8348	3813.500	97.8792			
D	0.0550	0.0723	45.255	1.1634			
RSD	0.2769	0.2422	1.187	1.1886			
becking	calibration	verificati	00				
	1 : CLP CCV						
eport na			•	gh limit			
_766		18.000	19.854	22.000			
a589		27.000	29.835	33.000			
	D CORRECTED				<b>CD</b>		
			Identity 2 Printed 1			3 3005	
erdur :	1.000 001	ume : 1.00	Printed :	2:72:16 LU	vecember 20	U, ∠UU⊃	
	K_766	Na589	Sc	Sc361	<b>,</b>		
¥ 1	34.5	125.0	3878.5	3878.5			
# 2	38.5	86.0	3759.5	3759.5			
ean -	36.5	105.5	3819.0	3819.0			
D	2.8	27.6	84.1	84.1			
RSD	7.7	26.1	2.2	2.2			
	CONCENTRATIO		• • • • •	<u>ب</u>			
			Identity 2				
≥ight : )	r. Nona Aoli	ime : 1.00	Printed : 3	3:29:10 PM	December 20	0, 2005	
	K_766	Na589	Sc	Sc361			
	ppm A 1674	ppm a apac	0000 500	ppm oo sea:			
F 1 - ~	0.1674	0.0206	3878.500	99.5501			

Mean	0.2008 L	-0.0209	3819.000	98.0206
SD	0.0472	0.0587	84.146	2.1631
(RSD	23.4953	281.4103	2.203	2.2068

EVOLUTION by Micro-Active Australia Pty Ltd 3:39:48 PM December 20, 2005

Checking cal:	ibration blank		
[dentity 1 :	Calibration blank	Identity 2	:
leport name	CRDL	Value	
(_766	0.250	0.201	
la589	0.250	-0.021	
ic361	0.000	98.021	

.

SOUTHWEST RESEARCH INSTITUTE SAN ANTONIO, TEXAS 78228		BOOK / PAGI	<u> </u>	230
CLIENT(S): DIV. 20			<u> </u>	010050
TASK ORDER(S): 051219-5		s): 271245		010059
PROJECT NO(S): 06002.01.	522			
/ETHOD:3005A3050B3050B-7.5		60A//40A	HCIO₄H(	JIO ₄ /H ₂ SO ₄
Microwave Fusion Teflon Rock				
/ATRIX: WaterSoilBiotaSolid NSTRUMENT: GFAAICP_/_ICP-MS			. <u> </u>	
NSTRUMENT: GFAAICF_//CF-MS ACID INORG #: HNO₃# <u>S4&amp;¥</u> HCI#				H_O_#
NTERNAL STD: <u>Sc</u> @ 10 PPMBe @ 10				
Oven/Hotplate/ Block /D:Ten				
		••••••••••••••••••••••••••••••••••••••		
SAMPLE IDENTIFICATION	pH WT (g)		<u>. (mL)</u>	lan bahar dan sebagai kan s Kan sebagai kan s
PBW-M1962			0	
LCSW-MIGEZ *	- (2.52)			
271250	0.5357		<u> </u>	
1 d 2712505*#	0.5249		<u> </u>	
2112303**	C^ 324 1	¥		· · · · · · · · · · · · · · · · · · ·
			5197 Jak	a106
* Spiked Inl. and *	+ SOOND Sprike			p. 4/06)
Balance # 12				
Aippet Kê 12/19/05				
pipette :				
200 Jul TMK-2				
500 TMFS				
- wt. 0.5g into a centrifuge	a second se	block for	Jonin	
- added 2ml HNO3 heat on - Adj- Wolume to some y	N/DI-water	NIOCK FOY	John	
Adj- Wolding to some				
· · · · · · · · · · · · · · · · · · ·				
	an a		•	
		N.F.		
	2-19-03 1			·
				CATION:
			S	56 B5
PREPARED BY: Klub E		ATE: 17 -16	-0 5	
		ATE: 12-19 ATE: 12-20	-05	
EVIEWED BY: B_Ju	<u> </u>	AIE:		
DISPOSAL INT/DATE/LOC:			• •	

FRM-191 (Rev 4/Jan 05)

### TRACE METALS PREPARATORY LABORATORY DIGESTION LOG

SOUTHWEST RESEARCH INSTITUTE SAN ANTONIO, TEXAS 78228

BOOK / PAGE:

62 232

IT(S): Div. 20	/	<u></u>				006
ORDER(S): 151212-5		SDG	G(S): <u>27</u>	1245		·
ECT NO(S): 06002 .01. 3					· · · · · · · · · · · · · · · · · · ·	
IOD:3005A3050B3050B-						4
waveFusionTeflonR	ockOTHER	dilutu	uns_			
IX: WaterSoilBiotaS	olidLiquid	TCLP Ext_	_OTHER_			
IUMENT: GFAAICP_						
INORG #: HNO3# 54-64 HC	1# 54 76_H2S	O ₄ #	HCIO4#	<u> </u>	E#H₂O	2#
NAL STD: Sc @ 10 PPMBe	@ 10 PPMS	OURCE: 🛫		1G# 5404	EXP: 10/1/06_AM	T: <u>50ul</u>
Hotplate/ Block ID: ~/A	Temperature (	°C):N/K	+			
Sample Identification	df	WT(g)	I.V.(ml)	F.V.(ml)		
		vvr(g)	1. V.(111)	r.v.(nu)		
- PBW-M20H1			5	5		
- LCSW-L15H1*	1		5	5		
_ 271245	5	5	1	5		
271245d	6		1	5		
271245s*	5		1	5		
271246	5	the second s	1	5 5		
- 271248	5		1	5		
_ 271249	5		1	5		
- *20uL ICAL-1 Spex#5288 ex PBW&LCSW are prepared a	•	0₃/ 5% HCL	· · · · · · · · · · · · · · · · · · ·	-		
<b>-</b>	•	0₃/ 5% HCL				
<b>-</b>	•	0₃/ 5% HCL	<u> </u>			
<b>-</b>	•	03/5% HCL	>			
<b>-</b>	as 10mls 1%HNC	D ₃ / 5% HCL	>			
<b>-</b>	•	D ₃ / 5% HCL	>			
<b>-</b>	as 10mls 1%HNC	D ₃ / 5% HCL	>			
<b>-</b>	as 10mls 1%HNC	D ₃ / 5% HCL	>			
<b>-</b>	as 10mls 1%HNC	D ₃ / 5% HCL	>			Chune
<b>-</b>	as 10mls 1%HNC	D ₃ / 5% HCL	>		Contracted + Mary Cha	
<b>-</b>	as 10mls 1%HNC	D ₃ / 5% HCL	>		+ Mary Ehr	stom
<b>-</b>	as 10mls 1%HNC	D ₃ / 5% HCL	>		+ Mary Ely 12-19-05 2	Az pm
<b>-</b>	as 10mls 1%HNC	D ₃ / 5% HCL	>		+ Mary Ely 12-19-05 2	sion
<b>-</b>	as 10mls 1%HNC	D ₃ / 5% HCL	>		+ Mary Ely 12-19-05 2	Az pm
<b>-</b>	as 10mls 1%HNC	D ₃ / 5% HCL	>		+ Mary Ely 12-19-05 2	Az pm
<b>-</b>	as 10mls 1%HNC	D ₃ / 5% HCL			+ Mary Elw 17-19-45 2 2017	Az pm
<b>-</b>	as 10mls 1%HNC	D ₃ / 5% HCL			+ Mary Ely 17-19-05 2 DE 17 LOCATION:	Az pm
<b>-</b>	as 10mls 1%HNC	D ₃ / 5% HCL			+ Mary Elw 17-19-45 2 2017	Az pm
PBW&LCSW are prepared a	as 10mls 1%HNC			2 - 70-05	+ Mary Ehu 17-19-45 2 17-19-45 2 17 17 17 17 17 17 17 17 17	Az pm
<b>-</b>	as 10mls 1%HNC		DATE:1	2-21-05	+ Mary Ela 17-19-05 2 17-19-05 2 17 17 17 17 17 17 17 17 17 17	Az pm

FRM-191 (Rev 4/Jan 05)

BOOK PAGE 19 232

#### SOUTHWEST RESEARCH INSTITUTE®

6220 Culebra Rd San Antonio, Texas 78228

### 010061

SPECTRO ICP DAILY LOG

DATE_12-20-05

ANALYST

POWER:_

5200

FLOWS:

AUX_40 Coolant (a) Mass Flow Controller 586

CURRENT	PROPOSED	
5136	5151	Na
4771	4789	Fe
4960	4978	Sr

QC PREP DATE:	
CCV/ICV	osmel
CRI	Osme)
ICSA	052001
ICSAB	05712

CLP_STD1_SC	osmol
CLP_STD2_SC	
CLP_STD3_SC	1125
CLP_STD4_SC	di
CLP_STD5_SC	Z I
BLK_SC	052401

FILE	CLIENT	TO#	PROJECT NO.	METHOD	PREP PAGE
057220	CH2M-LU-G	051214-8/	11543.12.006	200.7	62-223
051220A	DN 20	057219-5	06007.01.322	60103	62-230/232
		A	10 ¹¹		
		1º			
	T				
				·	

COMMENTS:

MAINTENANCE:

OTHER:

Cleaned Torch: _ YES Changed Pump Tubing: YES Cleaned Optics: _ YES

YES Polished Optics:

Odura

**REVIEWED BY:** 

DATE: 12/21/05

FRM-285 (Rev 1/Apr 03) Page 1 of 2

#### ICP Calibration Blank/ICB/CCB Solution

ID: BLK- US MO	Λ	010062
Date Prepared: 12-1-05	Prepared By:	
Make up as needed in 1000ml volumetric flask.		
Added 10 ml HNO3 INORG #: 5455		
Added 50 ml HCL INORG #:		
Added 1000ul of 10000ppm Sc (INORG. VEN	T.) EXP. Date: <u>5-1-06</u> IN	NORG #: <u>5175</u>
ICP Calibration Blank/ICB/C	CB Solution	
ID: BLK-		
Date Prepared:	Prepared By:	
Make up as needed in 1000ml volumetric flask.		
Added 10 ml HNO3 INORG #:		. ·
Added 50 ml HCL INORG #:		
Added 1000ul of 10000ppm Sc (INORG. VEN	T.) EXP. Date:IN	NORG #:
		•
ICP Calibration Blank/ICB/C	CB Solution	
ID: BLK-		
Date Prepared:	Prepared By:	
Make up as needed in 1000ml volumetric flask.		
Added 10 ml HNO3 INORG #:		· ·
Added 50 ml HCL INORG #:		
Added 1000ul of 10000ppm Sc (INORG. VEN	T.) EXP. Date:IN	IORG #:
ICP Calibration Blank/ICB/C	CB Solution	
ID: BLK-		
Date Prepared:	Prepared By:	
Make up as needed in 1000ml volumetric flask.		<u></u>
Added 10 ml HNO3 INORG #:	•	
Added 50 ml HCL_INORG #:		
Added 1000ul of 10000ppm Sc (INORG. VENT	.) EXP. Date:IN	ORG #:

FRM-296 (Rev 0/May 02)

#### **ICP ICV/CCV SOLUTION**

010063

CCV-	05	mo	l
------	----	----	---

Date Prepared: 17	2-1-05	Prepared By:	D
HNO3 INORG #:	455	HCI INORG #:	5422

Make up as needed in 1000ml volumetric flask in 1% HNO3 AND 5% HCl.

Element	Std Conc	Amt added	Check	Source	Inorg #	Stock Conc	Exp Date
	(ppm)					(ppm)	
Sc	10	1ml		INORGVENT	5175	10000	5-1-06
В	5	5ml		SPEX	4966	1000	1-15-06
Li	5	5ml	/	SPEX	53Z7	1000	8-15-06
Мо	5	5ml		SPEX	5326	1000	8-15-06
Р	5	5ml		SPEX	5280	1000	6-30-06
Si	5	5ml		SPEX	5038	1000	2-28-06
Ti	5	5ml	/	SPEX	5040	1000	2-28-06
Sr	5	5ml	/	SPEX	5246	1000	5-30-06
Sn	5	5ml		SPEX	5037	1000	2-24-06
Bi	5	5ml		SPEX	5432	1000	10-15-06
La	5	5ml	/	SPEX	5325	1000	8-15-06
Y	5	5ml		SPEX	5431	1000	10-15-06
Pd	1	1ml		SPEX	4967	1000	1-15-06
S	1	1mi		SPEX	5296	1000	7-15-06
Th	1	1ml		SPEX	5358	1000	8-30-06
U	1	1ml		SPEX	5279	1000	6-30-06
W	1	1ml		SPEX	5314	1000	7-30-06
Zr	5	5ml	/	SPEX	5039	1000	2-28-06
Na	10	1ml	/	SPEX	4998	10000	1-30-06
ICV-2A	vary	10ml	/	SPEX	5429	mix	10-15-06
ICV-2B	vary	1ml	-	SPEX	5430	mix	10-15-06
ICV-2C	vary	10mì	/	SPEX	5428	mix	10-15-06

Expiration Date: 1-15-06

FRM-297 (Rev 0/May 02) ICP Calibration Standards

Prepared By:

Date Prepared: 12-1-05

HNO3 INORG #: 5455

HCI INORG #: 5422

Make up as needed in 500 ml volumetric flasks in 1% HNO3 and 5% HCI.

Prepared	Standard	Element	Std Conc	Added	Check	Source	INORG #	Stock Conc	Exp Date
	Name		(ppm)	ml				(ppm)	
								10000	in rol
	STD1-	Al	50	2.50		INORVENT	5405	10000	10-1-06 Z-106
		Ca	50	2.50	/	INORVENT	4988		3-106
	5TD1-	Fe	50	2.50		INORVENT	5044	10000	12-1-06
رىد.	05	к	50	2.50	V	INORVENT	5471	10000	
12	÷	Mg	25	1.25		INORVENT	5312	10000	8-1-06
1.		Na	50	2.50	1,	INORVENT	5310	10000	8-1-06
		Li	10	5.00		INORVENT	5244	1000	6-126
		Sc	10	0.500		INORVENT	5175	10000	13-100
							- 20	1000	7 1 11
· · ·	STD2-	Ba	10	5.00		INORVENT	5027	1000	3-106
/		Be	5	2.50		INORVENT	5253	1000	6-1-16
105	and the	Cr	10	5.00	1	INORVENT	5470	1000	12-1-16
12-1-05	USNUN	Cu	10	5.00		INORVENT	5049	1000	3-1-16
1.		Ni	10	5.00			5043	1000	3-1-06
		Sc	10	0.500		INORVENT	5175	10000	13-1-00
						WORKENT.		1000	3-1-06
	STD3-	Cd	10	5.00		INORVENT	5041	1000	3-1-06
12-1-15	05mel	Co	10	5.00		INORVENT	5044	1000	
حكر	mel	Mn	10	5.00		INORVENT	4989	1000	12-1-06
11	105	<u> </u>	10	5.00		INORVENT	5472	1000	1-1-06
		Zn	10	5.00		INORVENT	4915	10000	5-1-26
		Sc	10	0.500	~	INORVENT	5175	10000	3-1-00
				1 00	L	INCOVENT	5406	1000	10-1-06
	STD4-	Ag	2	1.00		INORVENT	4987	1000	2-1-06
		As	10	5.00		INORVENT		1000	6-1-06
12-1-05	osmul	Pb	10	5.00			5255	1000	3-1-06
الله ال	, with	Sb	10	5.00		INORVENT	1 6212	1000	8-1-0
12	07	Se	10	5.00		INORVENT	4990	1000	2-106
•		TL	10	5.00		INORVENT	5175	10000	5-106
		Sc	10	0.500		INUNVENT	<u>  &gt;   T &gt;</u>	10000	<u> </u>
						INORVENT	5047	1000	3-1-06
	STD5-	В	10	5.00		INORVENT		1000	3-1-06
		Mo	10	5.00		INORVENT	5050	1000	6-1-06
		Р	10	5.00		INORVENT	5046	1000	3-1-06
2	1.0	Si	10	5.00		INORVENT	5474	1000	12-1-06
	osmel	Ti	10	5.00		INORVENT	5243	1000	6-106
12/1005	0'	Sr	10	5.00		INORVENT	5275	1000	5-1-01
1.		Sn	10	5.00		INORVENT	5174-5304	1000	8-1-0
•		Bi	5	2.50		INORVENT	5175	10000	5-1-00
		Sc	10	0.500			<u></u>	10000	
		ļ	+	5.00		INORVENT	5407	1000	10-1-09
	STD6-	La	10	5.00	$\vdash$	INORVENT	5310	10000	8-1-06
	1	Na	1	0.05		INORVENT	5045	1000	3-1-06
	.	Pd	10	5.00	+	INORVENT	4417	1000	1-1-06
حلار	05000	S	10	5.00	17	INORVENT	5469	1000	12-1-06
1	1.000	Th	10	5.00		INORVENT	5408	1000	16-1-00
16	05	U	10	5.00		INORVENT		1000	8-1-06
		W	5	2.50	<u>↓ ~ ~</u>		5308	1000	3-1-16
	1	Ŷ	10	5.00		INORVENT	5000	1000	870
		Zr	10	5.00					

Expiration Dates: STD1: マーノーンム ST STD2: マーノーンム ST STD3: ノーノーンム ST

STD4: 2 -1-06

STD5: 2-1-06

STD6: 1-1-06

FRM-299

	5		Dan A- 212210		<ul> <li>Second and a second s</li> </ul>		Method: TAP Sig Fig:	01-0406	-042 Rev
System ID	Analyte	Conc. mg/L	Weight g	FV ml	RESULT mg/Kg	Qual	DL	τv	%REC %RPD
									and and a second se Second second second Second second
PBW-M19E3	Fluoride	0.000	1.0	50	10	U	10		
PBW-M19E3	Chloride	0.037	1.0	50	10		10	<u> </u>	10065
PBW-M19E3	Nitrite-N	0.000	1.0	50	10		10		
PBW-M19E3	Bromide	0.000	1.0	50	10		10		
PBW-M19E3	Nitrate-N	0.000	1.0	50	10		10		
PBW-M19E3	Phosphate-P	0.092	1.0	50	10	U	10		
PBW-M19E3	Sulfate	0.000	1.0	50	10	U	10		
271250	Fluoride	0.000	1.0194	50	981	U	981		
271250	Chloride	2211.305	1.0194	50	108000		1960		
271250	Nitrite-N	0.000	1.0194	50	981	U	981		
271250	Bromide	0.000	1.0194	50	981	U	981		
271250	Nitrate-N	2176.692	1.0194	50	107000		1960		
271250	Phosphate-P	373.608	1.0194	50	18300		981		
271250	Sulfate	0.000	1.0194	50	981	U	981		
271250D	Fluoride	0.000	1.0194	50	981	U	981	· · · · · · · · · · · · · · · · · · ·	0.00%
271250D	Chloride	2464.516	1.1208	50	110000		1780		1.83%
271250D	Nitrite-N	0.000	1.1208	50	892	U	892		0 2,9.50%
271250D	Bromide	0.000	1.1208	50	892	U	892		0%9.50%
271250D	Nitrate-N	2392.584	1.1208	50	107000		1780		0.00%
271250D	Phosphate-P	419.901	1.1208	50	18700		892		2.16%
271250D	Sulfate	0.000	1.1208	50	892	υ	892		() 2,9.50%
271250S	Fluoride	89.699	1.0194	50	4400		981	4900	89.8%
271250S	Chloride	2802.948	1.0194	50	137000		1960	19600	148%
271250S	Nitrite-N	154.646	1.0194	50	7590		981	7800	97.3%
271250S	Bromide	406.635	1.0194	50	19900		981	19600	102%
271250S	Nitrate-N	2358.152	1.0194	50	116000		1960	8858	102%
271250S	Phosphate-P	574.656	1.0194	50	28200		981	9340	106%
271250S	Sulfate	396.393	1.0194	50	19400		981	19600	99.0%

### TRACE METALS PREPARATORY LABORATORY DIGESTION LOG

SOUTHWEST RESEARCH INSTITUTE SAN ANTONIO, TEXAS 78228

BOOK / PAGE: 62 231

CLIENT(S): $D_{1V} = ZO$			<u></u>		
ASK ORDER(S): 051219-5		SDG	i(S):_2717	245	010066
ROJECT NO(S): 06002. 01. 322		_			
IETHOD:3005A3050B3050B-7.5 MicrowaveFusionTeflonRock IATRIX: WaterSoilBiotaSolid_	3010A_ OTHEF Liquid_	R <u>water</u> TCLPExt_		·····	HClO4/H2SO4
	-				<u> </u>
CID INORG #: HNO₃# <i>N/A</i> HCI# NTERNAL STD: Sc	• •				
				,CX	· ·
Dven/Hotplate/ Block ID: <u>)/ A</u> Te	poidlu				
SAMPLE IDENTIFICATION	pH	WT (g)	I.V. (mL)	F.V. (mL)	
PBW-MIGE3		`		50	
27/250	<b>}</b>	1.0194		<b>└── / `</b> ──	<b>_</b>
d	<b></b>	1.1208		<i>\</i> /	<u> </u>
	<u> </u>				+
with to internet and		ah.	·		+
ut: 19 into a centrite adj: volume to 50ml	Lin / n	to see dow	, ,		<b>*</b> • • • • • • • • • • • • • • • • • • •
may withere to some		NO WEARY			1
		an a fair an a fair an			
			- The Barry ( ) was a start of the first residence of the Barry in the start of the Barry in the start of the Barry in the start of the		
	<u> </u>			ļ	<b>\</b>
	i	├			{
	╂╾───┧				<u></u>
	<u> </u>	-19-05 K	~	· · ·	<u> </u>
					1
	1 1				
			•		
				•••	
	<u> </u>				
	<u> </u>				
	┟───┤				LOCATION:
····					SG BS
REPARED BY KO. D.D.C.		<b>`</b>	DATE 12~	19-0	
REPARED BY: <u>Kelfe</u>			DATE: <u>12~</u> DATE: ^{17_}	20-05	
		<u> </u>	DATE:	د	
SPOSAL INT/DATE/LOC:					

FRM-191 (Rev 4/Jan 05)

#### Div 20 06002.01.322 TO# 051219-5

									k					

Date		and the develop of the property of	Conc.	RESULT			01 0400	%REC
Analyzed	System ID	Analyte	mg/L	mg/L	Qual	DL	TV	%RPD
12/21/05	271245	Fluoride	0.112	0.112		0.1		
12/21/05	271245	Chloride	0.681	0.681		0.1		
12/21/05	271245	Nitrite-N	1.231	1.23		0.1		
12/21/05	271245	Bromide	0.000	0.1	U	0.1		
12/21/05	271245	Nitrate-N	0.396	0.396		0.1		
12/21/05	271245	Phosphate-P	0.000	0.1	U	0.1		
12/21/05	271245	Sulfate	0.063	0.1		0.1		
12/21/05	271245D	Fluoride	0.113	0.113		0.1		0.89%
12/21/05	271245D	Chloride	0.934	0.934		0.1		31.3%
12/21/05	271245D	Nitrite-N	1.216	1.22		0.1		0.82%
12/21/05	271245D	Bromide	0.000	0.1	11	0.1		0.00%
12/21/05	271245D	Nitrate-N	0.411	0.411	<u> </u>	0.1		3.72%
12/21/05	271245D	Phosphate-P	0.000		U	0.1		0.00%
12/21/05	271245D	Sulfate	0.000	0.1		0.1		0.00%
12/21/05	271245S	Fluoride	0.860	0.860	0	0.1	1	74.8%
12/21/05	271245S	Chloride	2.593	2.59		0.1	2	95.5%
12/21/05	2712455 271245S	Nitrite-N	2.393	2.39		0.1	1.59	94.3%
12/21/05	2712455 271245S	Bromide	4.049	4.05		0.1	4	101%
12/21/05	2712455 271245S	Nitrate-N	1.204	4.05		0.1	0.904	88.9%
12/21/05	2712455 271245S	1	1.918	1.20		0.1	<u> </u>	101%
		Phosphate-P				0.1	<u> </u>	101%
12/21/05	271245S	Sulfate	4.025	4.03			4	10176
12/21/05	271246	Fluoride	0.118	0.118		0.1	· · ·	
12/21/05	271246	Chloride	0.358	0.358		0.1		
12/21/05	271246	Nitrite-N	0.330	0.330		0.1		
12/21/05	271246	Bromide	0.000	0.1	U	0.1		
12/21/05	271246	Nitrate-N	0.450	0.450		0.1		
12/21/05	271246	Phosphate-P	0.066	0.1		0.1		L
12/21/05	271246	Sulfate	0.059	0.1	U	0.1		
12/21/05	271247	Fluoride	0.155	0.155	. <u></u>	0.1		
12/21/05	271247	Chloride	1.582	1.58		0.1		
12/21/05	271247	Nitrite-N	1.331	1.33		0.1		
12/21/05	271247	Bromide	0.080	0.1	U	0.1		
12/21/05	271247	Nitrate-N	8.687	8.69		0.1		
	271247	Phosphate-P	0.596	0.596		0.1		L
12/21/05	271247	Sulfate	0.098	0.1	U	0.1		
12/20/05	271248	Fluoride	2.187	2.19		2		
12/20/05	271248	Chloride	115.655	116		2		
12/20/05	271248	Nitrite-N	2.372	2.37		2		
12/20/05	271248	Bromide	0.000	2	U	2		
12/20/05	271248	Nitrate-N	203.821	204		2		
12/20/05	271248	Phosphate-P	2.468	2.47		2		
12/20/05	271248	Sulfate	0.776	2	U	2		
12/20/05	271249	Fluoride	2.286	2.29		2		
12/21/05	271249	Chloride	420.050	420		10		
12/20/05	271249	Nitrite-N	3.422	3.42		2		
12/20/05	271249	Bromide	13.703	13.7		2		
12/20/05	271249	Nitrate-N	310.009	310		2		
12/20/05	271249	Phosphate-P	3.984	3.98		2	6 G	
12/20/05	271249	Sulfate	0.000		U	2		
			5.000					
	[ <b>I</b>	۹ <u>ــــــــــــــــــــــــــــــــــــ</u>						الممسينين المسيني

Div 20 06002.01.322 TO# 051219-5

### 010068

	10# 051219-					TAP#:	01-0406-0	
Date			Conc.	RESULT			<b>-</b>	%REC %RPD
Analyzed	System ID	Analyte	mg/L	mg/L	Qual	DL	TV	
							100	95.0%
12/20/05	ICV (LCS)	Fluoride	94.985	95		0	200	100%
	ICV (LCS)	Chloride	199.707	200		0.1	159	96.2%
	ICV (LCS)	Nitrite-N	152.990	153		0.1	400	97.8%
	ICV (LCS)	Bromide	390.662	391		0.1	90.4	92.0%
	ICV (LCS)	Nitrate-N	83.191	83.2		0.1	90.4	98.4%
	ICV (LCS)	Phosphate-P	187.544	188		0.1		97.0%
	ICV (LCS)	Sulfate	388.074	388		0.1		51.070
	ICB (PB)	Fluoride	0.000	0.1		0.1		
	ICB (PB)	Chloride	0.000			0.1		
	ICB (PB)	Nitrite-N	0.000			0.1		
	ICB (PB)	Bromide	0.000		_	0.1		
	ICB (PB)	Nitrate-N	0.000			0.1		
	ICB (PB)	Phosphate-P	0.000			0.1		
	ICB (PB)	Sulfate	0.000		U	0.1		97.9%
12/20/05		Fluoride	97.883			0.1		
12/20/05		Chloride	210.028			0.1		
12/20/05		Nitrite-N	157.699			0.1		
12/20/05		Bromide	401.414			0.1		
12/20/05		Nitrate-N	84.881			0.1		
12/20/05		Phosphate-P	189.168		_	0.1		
12/20/05		Sulfate	390.957	7 391	1	0.1		97.8%
12/20/05		Fluoride	0.000	) 0.1	1 U	0.		
12/20/0		Chloride	0.036	6 0. ⁻	1 U	0.	the second se	
12/20/0		Nitrite-N	0.000	0.1	1 U	0.		
12/20/0		Bromide	0.000		1 U	0.		
12/20/0		Nitrate-N	0.000		1 U	0.		
12/20/0		Phosphate-P	0.076	<b>6</b> 0.	1 U	0.	and the second	
12/20/0		Sulfate	0.00		1 U	0.		
12/20/0		Fluoride	99.62		6	0.		
12/20/0		Chloride	207.72		8	0.		
12/20/0		Nitrite-N	155.01		5	0.		
12/20/0		Bromide	399.98		0	0.		
12/20/0		Nitrate-N	85.11		1	0	.1 90.	
		Phosphate-P	190.90			0		
12/20/0		Sulfate	394.74			0	.1 40	0 98.89
		Fluoride	0.00	_	1 U	0	.1	
	5 CCB	Chloride	0.03		1 U	0	.1	
		Nitrite-N	0.00		.1 U	0	.1	
		Bromide	0.00		.1 U	0	.1	
		Nitrate-N	0.00		.1 U	0	.1	
		Phosphate-P	0.00	-	.1 U	0	.1	
	D5 CCB	Sulfate	0.09	-	.1 U	0	.1	
	D5 CCB		95.82				0 10	00 95.8
	05 ICV (LCS)	Fluoride	203.58		)4	0		00 102
	05 ICV (LCS)	Chloride	154.92		55			59 97.5
	05 ICV (LCS)	Nitrite-N	401.73	and the second design of the s	02			00 100.5
	05 ICV (LCS)	Bromide	86.07					.4 95.2
	05 ICV (LCS)	Nitrate-N	193.64		94			91 101.6
	05 ICV (LCS)	Phosphate-P	396.2		96			00 99.0
	05 ICV (LCS)	Sulfate			).1 U		).1	
	05 ICB (PB)	Fluoride	0.0		).1 U		D.1	
	05 ICB (PB)	Chloride			).1 U		0.1	
	05 ICB (PB)	Nitrite-N	0.0		).1 U		D.1	
12/21/	05 ICB (PB)	Bromide	0.0		0.110			

U = Undetected

### Div 20 06002.01.322 TO# 051219-5

			Analy	st: RS	S
		11221386-8	å a. 1939-90-83	d: 300	All Colores i
			Sig F	n shining sa	
ļ		20.28.198.0		-	_
1	<mark>\P</mark> #	: U1	1-040t	5-042 I	Kev. 4

	TO# 051219-	5				TAP#:	Sig Fig: 01-0406-0	
Date Analyzed	System ID	Analyte	Conc. mg/L	RESULT mg/L	Qual	DL	TV	%REC %RPD
12/21/05	ICB (PB)	Nitrate-N	0.000	0.1	υ	0.1		魏帝国来于马马。 
12/21/05		Phosphate-P	0.000	0.1	υ	0.1		
12/21/05	ICB (PB)	Sulfate	0.000	0.1	U	0.1		
12/21/05	CCV	Fluoride	97.459	97.5		0.1	100	97.5%
12/21/05	CCV	Chloride	206.748	207		0.1	200	104%
12/21/05	CCV	Nitrite-N	156.139	156		0.1	159	98.1%
12/21/05	CCV	Bromide	407.268	407		0.1	400	102%
12/21/05	CCV	Nitrate-N	86.900	86.9		0.1	90.4	96.1%
12/21/05	CCV	Phosphate-P	193.094	193		0.1	191	101%
12/21/05		Sulfate	401.138	401		0.1	400	100%
12/21/05	ССВ	Fluoride	0.000	0.1	U	0.1		
12/21/05	ССВ	Chloride	0.035	0.1	U	0.1		
12/21/05	ССВ	Nitrite-N	0.000	0.1	U	0.1		
12/21/05	ССВ	Bromide	0.000	0.1	U	0.1		
12/21/05	ССВ	Nitrate-N	0.000	0.1	U	0.1		
12/21/05	ССВ	Phosphate-P	0.000	0.1	U	0.1		
12/21/05	ССВ	Sulfate	0.000	0.1	U	0.1		
							·····	

#### Schedule File: C:\PeakNet\schedule\21DEC05.sch

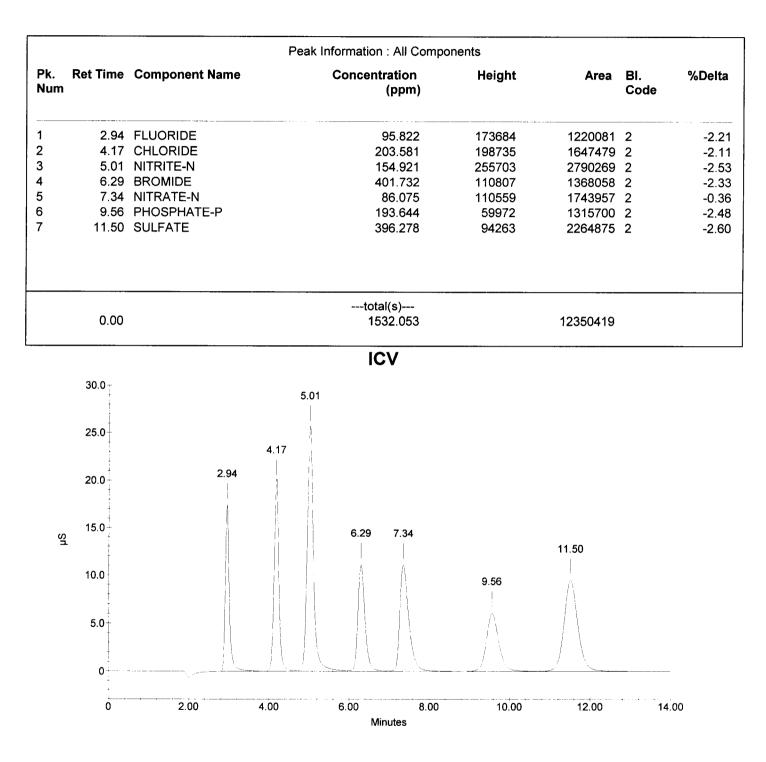
Line	Sample	Sample Type	Level	Method	Data File	Dilution
1 2	ICV ICB	Sample Sample		anions051116.met anions051116.met	051220_a001.dxd 051220_002.dxd	
3	271245	Sample		anions051116.met	051220_003.dxd	1 010070
4 5	271245D 271245S	Sample Sample		anions051116.met anions051116.met	051220_004.dxd 051220_005.dxd	1 1
6 7	271246 271247	Sample Sample		anions051116.met anions051116.met	051220_006.dxd 051220_007.dxd	1
8	271249 DF100	Sample		anions051116.met	051220_008.dxd	100
9 10	271250 DF200 271250D DF200	Sample Sample		anions051116.met anions051116.met	051220_009.dxd 051220_010.dxd	200 200
11 12	271250S DF200 CCV	Sample Sample		anions051116.met anions051116.met	051220_011.dxd 051220_012.dxd	200 20
13	CCB	Sample		anions051116.met	051220_013.dxd	1

Default Method Path: C:\PEAKNET\METHOD Default Data Path: C:\PEAKNET\DATA\051221 Comment: DIV 20 06002.01.322 TO#051219-5

XELUANT - 17.0 uS

1.0 mM SODIUM BICARBONATE (INORG #2626) & 3.5 mM SI\ODIUM CARBONATE (INORG#3757)

ICV Sources:


- 1) SPEX LOT#28-164AS (INORG#5467) F = 100 mg/L CI = 200 mg/L Br = 400 mg/L NO3N = 90.4 mg/L PO4P = 191 mg/L SO4 = 400 mg/L 2) 128-01-IC5
  - NO2N 159 mg/L

R Spies 12/21/05

Sample Name : ICV Dilution Factor : 20.00 Injection Number : 1 Data File Name : c:\peaknet\data\051221\051220_A001.DXD Method File Name : c:\peaknet\method\anions051116.met Schedule File Name : c:\peaknet\schedule\21dec05.sch

Date Time Collected : 12/21/05 3:40:15 PM System Name : Dx-500 Detector Name : Conductivity Detector Column Type : AS14-SN#018097 AG14-#019940 System Operator : RSPIES

010071



Page 1 of 1

Current Date : 12/21/05 Current Time : 15:56:4 Date Time Collected : 12/21/05 3:56:55 PM System Name : Dx-500 Detector Name : Conductivity Detector Column Type : AS14-SN#018097 AG14-#0199 **①10072** System Operator : RSPIES

Peak Information : All Components											
Pk.   Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta				
1		CHLORIDE CHLORIDE NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P SULFATE	0.047 0.047	346 346	2585 2585	1 1	-2.1 -2.1				
	0.00		total(s) 0.093		5170						
			ICB								
	30.0										
	25.0										
	20.0										
(0)	15.0										
Sц	-										
	10.0										
	5.0										
	ļ	4.17									

: PeakNet 5.1

ò

2.00

Page 1 of 1

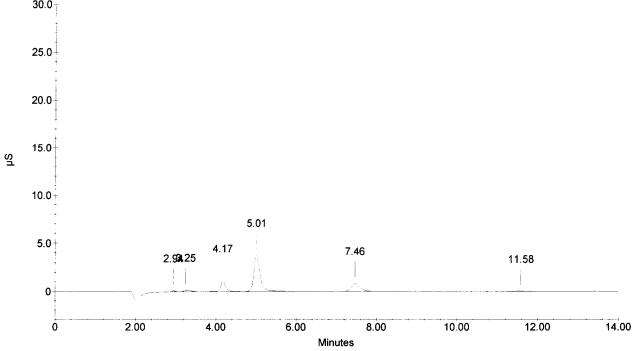
Minutes

8.00

10.00

12.00

6.00


4.00

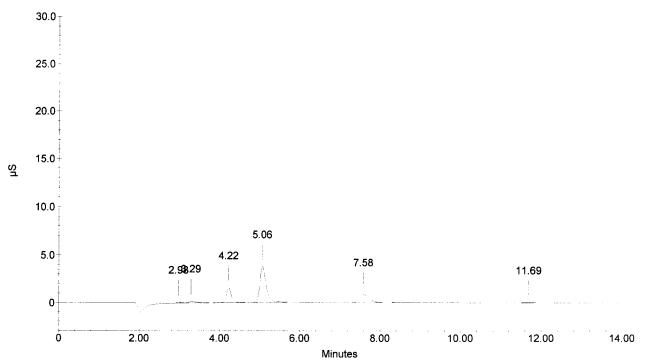
14.00

Sample Name : 271245 Dilution Factor : 1.00 Injection Number : 3 Data File Name : c:\peaknet\data\051221\051220_003.DXD Method File Name : c:\peaknet\method\anions051116.met Schedule File Name : c:\peaknet\schedule\21dec05.sch Date Time Collected : 12/21/05 4:13:37 PM System Name : Dx-500 Detector Name : Conductivity Detector Column Type : AS14-SN#018097 AG14-#019940 System Operator : RSPIES

010073

			Peak Information : All Compon	ents			
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	Bl. Code	%Deita
1	2.94	FLUORIDE	0.112 /	870	4819	1	-2.2
3	4.17	CHLORIDE	0.681	11022	98857		-2.1
4	5.01	NITRITE-N BROMIDE	1.231	37376	416733	2	-2.53
5	7.46	NITRATE-N PHOSPHATE-P	0.396	8173	126518	1	1.2
6	11.58	SULFATE	0.063 🗸	227	4440	1	-1.92
			totol(o)				
	0.00		total(s) 2.483		651368		
		······································	271245				
	30.0⊤						

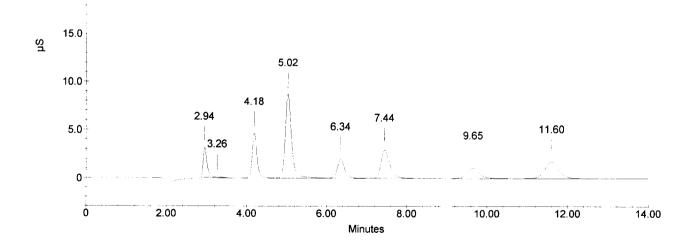



: PeakNet 5.1

Page 1 of 1

Current Date : 12/21/05 Current Time : 16:30:1 Sample Name : 271245D Dilution Factor : 1.00 Injection Number : 4 Data File Name : c:\peaknet\data\051221\051220_004.DXD Method File Name : c:\peaknet\method\anions051116.met Schedule File Name : c:\peaknet\schedule\21dec05.sch Date Time Collected : 12/21/05 4:30:21 PM System Name : Dx-500 Detector Name : Conductivity Detector Column Type : AS14-SN#018097 AG14-#019940 System Operator : RSPIES

## 010074


			Peak Information : All Compor	ents			
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1	2.98	FLUORIDE	0.113 🗸	881	4874	1	-0.89
3	4.22	CHLORIDE	0.934 🗸	15838	137557		-0.86
4	5.06	NITRITE-N BROMIDE	1.216	37084	411071	1	-1.49
5	7.58	NITRATE-N PHOSPHATE-P	0.411	8203	132648	1	2.89
6	11.69	SULFATE	0.077 🗸	249	5891	1	-1.02
<u></u>	0.00		total(s) 2.750		692041		
			271245D				

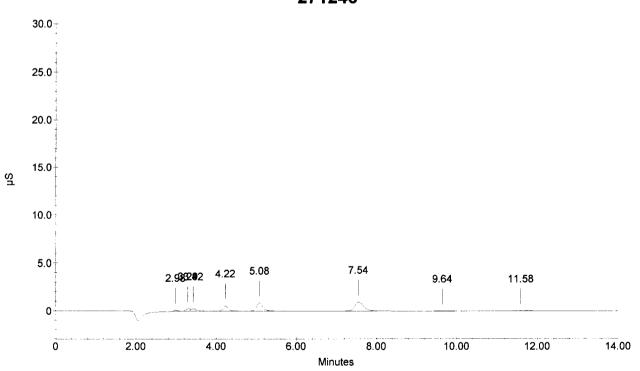


Sample Name : 271245S Dilution Factor : 1.00 Injection Number : 5 Data File Name : c:\peaknet\data\051221\051220_005.DXD Method File Name : c:\peaknet\method\anions051116.met Schedule File Name : c:\peaknet\schedule\21dec05.sch Date Time Collected : 12/21/05 4:47:04 PM System Name : Dx-500 Detector Name : Conductivity Detector Column Type : AS14-SN#018097 AG14-#019940 System Operator : RSPIES

010075

			Peak Information : All Compon	ents			
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1	2.94	FLUORIDE	0.860 /	29562	197867	3	-2.21
3	4.18	CHLORIDE	2.593	46101	394007		-1.80
4	5.02	NITRITE-N	2.727	86592	956281	2	-2.27
5	6.34	BROMIDE	4.049	19899	254494	2	-1.50
6	7.44	NITRATE-N	1.204	28896	453724		0.90
7	9.65	PHOSPHATE-P	1.918	10758	242629	1	-1.53
8	11.60	SULFATE	4.025 V	17355	428036	1	-1.8
			total(s)				
	0.00		17.376		2927038		
			271245S		······································		
	30.0						
	Į						
	25.0-						

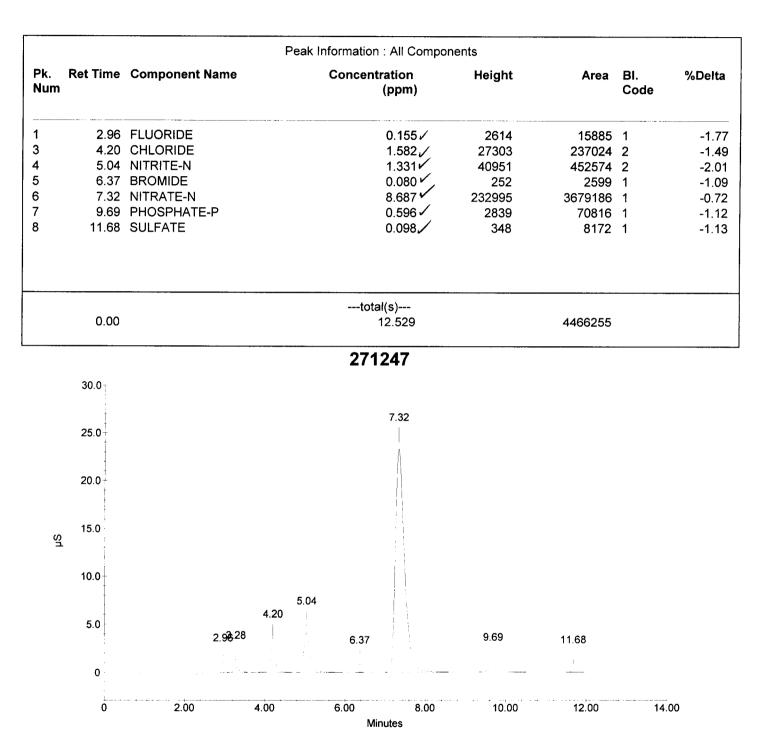



20.0

Page 1 of 1

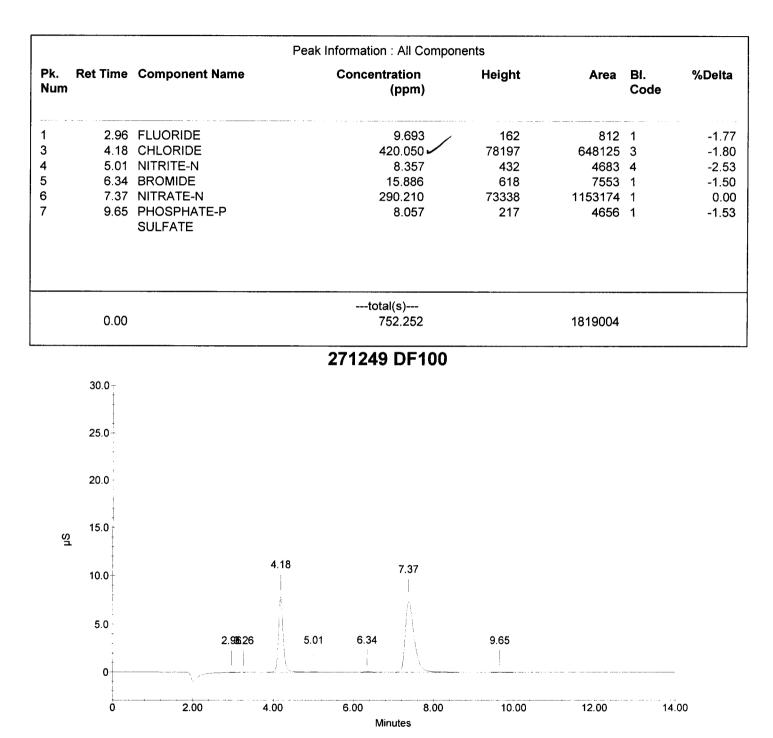
Current Date : 12/21/05 Current Time : 17:03:3 Sample Name : 271246 Dilution Factor : 1.00 Injection Number : 6 Data File Name : c:\peaknet\data\051221\051220_006.DXD Method File Name : c:\peaknet\method\anions051116.met Schedule File Name : c:\peaknet\schedule\21dec05.sch Date Time Collected : 12/21/05 5:03:48 PM System Name : Dx-500 Detector Name : Conductivity Detector Column Type : AS14-SN#018097 AG14-#019940 System Operator : RSPIES

010076


			Peak Information : All Compon	ents			
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Deita
1	2.98	FLUORIDE	0.118 V	1083	6259	1	-0.89
4	4.22	CHLORIDE	0.358 🗸	5558	49760	1	-0.86
5	5.08	NITRITE-N BROMIDE	0.330	8622	92836	1	-1.23
6	7.54	NITRATE-N	0.450	9422	148291	1	2.35
7	9.64	PHOSPHATE-P	0.066	119	2752	1	-1.67
8	11.58	SULFATE	0.059 🖌	168	4011	1	-1.92
	0.00		total(s) 1.380		303909		19 - 7 - 7 - 8 <b>11 - 7</b> 007 <b>-</b> 7
<del></del>	0.00				303909		



Page 1 of I


Sample Name : 271247 Dilution Factor : 1.00 Injection Number : 7 Data File Name : c:\peaknet\data\051221\051220_007.DXD Method File Name : c:\peaknet\method\anions051116.met Schedule File Name : c:\peaknet\schedule\21dec05.sch Date Time Collected : 12/21/05 5:20:31 PM System Name : Dx-500 Detector Name : Conductivity Detector Column Type : AS14-SN#018097 AG14-#019940 System Operator : RSPIES

010077



Page 1 of 1

Current Date : 12/21/05 Current Time : 17:37:0 Sample Name : 271249 DF100 Dilution Factor : 100.00 Injection Number : 8 Data File Name : c:\peaknet\data\051221\051220_008.DXD Method File Name : c:\peaknet\method\anions051116.met Schedule File Name : c:\peaknet\schedule\21dec05.sch Date Time Collected : 12/21/05 5:37:16 PM System Name : Dx-500 Detector Name : Conductivity Detector Column Type : AS14-SN#018097 AG14-#019940 System Operator : RSPIES



Page 1 of 1

Current Date : 12/21/05 Current Time : 17:53:5 Sample Name : 271250 DF200 Dilution Factor : 200.00 Injection Number : 9 Data File Name : c:\peaknet\data\051221\051220_009.DXD Method File Name : c:\peaknet\method\anions051116.met Schedule File Name : c:\peaknet\schedule\21dec05.sch Date Time Collected : 12/21/05 5:53:59 PM System Name : Dx-500 010079 Detector Name : Conductivity Detector 010079 Column Type : AS14-SN#018097 AG14-#019940 System Operator : RSPIES

Peak Information : All Components Pk. Ret Time Component Name Concentration Height BI. %Delta Area Num (ppm) Code 1 4.20 CHLORIDE 2211.305 223421 1802373 1 -1.49 1 4.20 CHLORIDE 2211.305 223421 1802373 1 -1.49 **NITRITE-N** BROMIDE 2 7.32 NITRATE-N 2176.692 287296 4705904 2 -0 72 3 9.70 PHOSPHATE-P 372.744 10425 235523 2 -0.99 SULFATE ---total(s)---0.00 6972.045 8546172 271250 DF200 30.0 4.20 25.0 20.0 15.0 ŝ 10.0 5.0 9.70

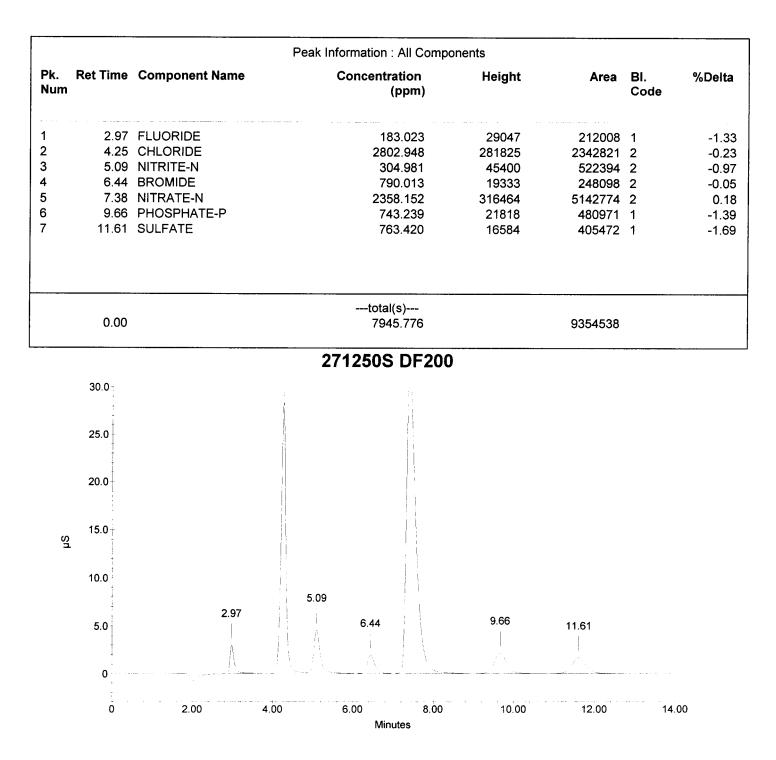
0 0 2.00 4.00 6.00 8.00 10.00 12.00 14.00 Minutes

Page 1 of 1

Current Date : 12/21/05 Current Time : 18:10:3 Sample Name : 271250D DF200 Dilution Factor : 200.00 Injection Number : 10 Data File Name : c:\peaknet\data\051221\051220_010.DXD Method File Name : c:\peaknet\method\anions051116.met Schedule File Name : c:\peaknet\schedule\21dec05.sch

Date Time Collected : 12/21/05 6:10:41 PM System Name : Dx-500 010080 Detector Name : Conductivity Detector Column Type : AS14-SN#018097 AG14-#019940 System Operator : RSPIES

Peak Information : All Components Pk. **Ret Time** Component Name Concentration Height Area BI. %Delta Num (ppm) Code 1 4.20 CHLORIDE 2464.516 247514 2030095 1 -1.49 1 4.20 CHLORIDE 2464.516 247514 2030095 1 -1.49 NITRITE-N BROMIDE 2 7.28 NITRATE-N 2392.584 324996 5226562 2 -1.27 3 9.65 PHOSPHATE-P 413.717 11649 262379 2 -1.53 SULFATE ---total(s)---0.00 7735.333 9549131 271250D DF200 30.0 4.20 25.0 20.0 15.0 Ч 10.0 5.0 9.65

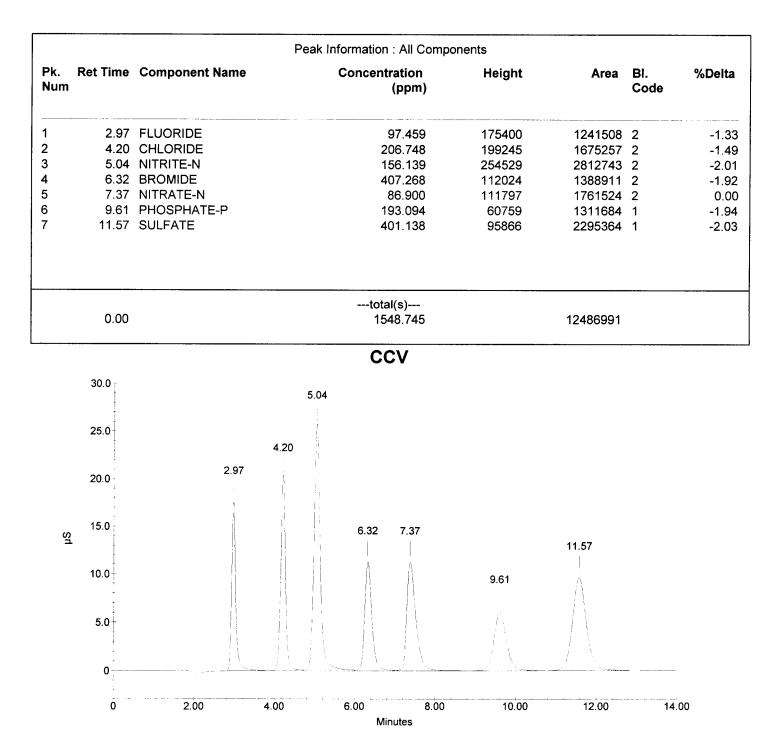

0 0 2.00 4.00 6.00 8.00 10.00 12.00 14.00 Minutes

: PeakNet 5.1

Page 1 of 1

Current Date : 12/21/05 Current Time : 18:27:1 Sample Name : 271250S DF200 Dilution Factor : 200.00 Injection Number : 11 Data File Name : c:\peaknet\data\051221\051220_011.DXD Method File Name : c:\peaknet\method\anions051116.met Schedule File Name : c:\peaknet\schedule\21dec05.sch

Date Time Collected : 12/21/05 6:27:25 PM System Name : Dx-500 010081 Detector Name : Conductivity Detector Column Type : AS14-SN#018097 AG14-#019940 System Operator : RSPIES

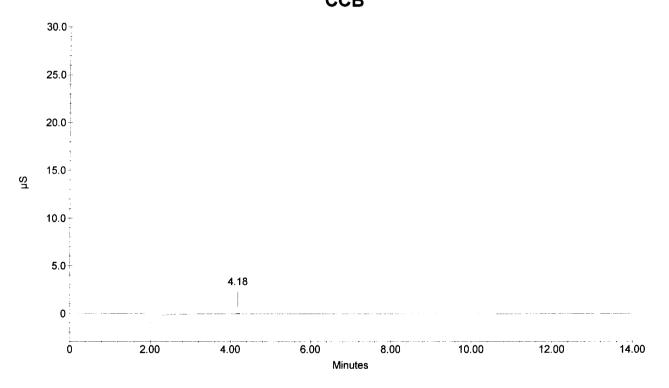



: PeakNet 5.1

Page 1 of 1

Current Date : 12/21/05 Current Time : 18:43:5 Sample Name : CCV Dilution Factor : 20.00 Injection Number : 12 Data File Name : c:\peaknet\data\051221\051220_012.DXD Method File Name : c:\peaknet\method\anions051116.met Schedule File Name : c:\peaknet\schedule\21dec05.sch

Date Time Collected : 12/21/05 6:44:07 PM System Name : Dx-500 010082 Detector Name : Conductivity Detector Column Type : AS14-SN#018097 AG14-#019940 System Operator : RSPIES




Page 1 of 1

Current Date : 12/21/05 Current Time : 19:00:4 Sample Name : CCB Dilution Factor : 1.00 Injection Number : 13 Data File Name : c:\peaknet\data\051221\051220_013.DXD Method File Name : c:\peaknet\method\anions051116.met Schedule File Name : c:\peaknet\schedule\21dec05.sch Date Time Collected : 12/21/05 7:00:50 PM System Name : Dx-500 O Detector Name : Conductivity Detector Column Type : AS14-SN#018097 AG14-#019940 System Operator : RSPIES

010083

			Peak Information : All Compo	onents			
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Deita
1		CHLORIDE	0.035	122	892		-1.80
1	4.18	CHLORIDE NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P SULFATE	0.035	122	892	1	-1.80
	0.00	·	total(s) 0.071		1784		
	····		ССВ				



Page 1 of 1

Current Date : 12/21/05 Current Time : 19:17:2 Schedule File: C:\PeakNet\schedule\20DEC05.sch

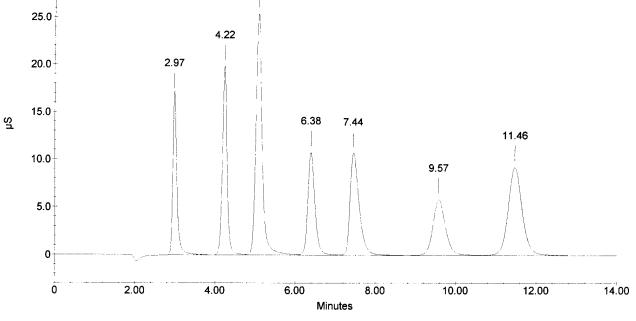
Line	Sample	Sample Type	Level	Method	Data File	Dilution	
1 2 3 4 5 6 7 8	ICV ICB 271245 DF20 271245D DF20 271245S DF20 271246 DF20 271246 DF20 271247 DF20 271248 DF20	Sample Sample Sample Sample Sample Sample Sample Sample	Level	anions051116.met anions051116.met anions051116.met anions051116.met anions051116.met anions051116.met anions051116.met anions051116.met	051215_001.dxd 051215_002.dxd 051215_003.dxd 051215_004.dxd 051215_005.dxd 051215_006.dxd 051215_007.dxd 051215_008.dxd	20	10084
9 10 11 12 13 14 15 16 17	271249 DF20 PBW-M19E3 271250 DF100 271250D DF100 CCV CCB 271250S DF100 CCV CCB	Sample Sample Sample Sample Sample Sample Sample Sample Sample		anions051116.met anions051116.met anions051116.met anions051116.met anions051116.met anions051116.met anions051116.met anions051116.met anions051116.met	051215_009.dxd 051215_010.dxd 051215_011.dxd 051215_012.dxd 051215_013.dxd 051215_014.dxd 051215_015.dxd 051215_016.dxd 051215_017.dxd	20 1 100 20 1 100 20 1	

Default Method Path: C:\PEAKNET\METHOD Default Data Path: C:\PEAKNET\DATA\051220 Comment: DIV 20 06002.01.322 TO#051219-5

Y - ELUANT - 17.0 uS

1.0 mM SODIUM BICARBONATE (INORG #2626) & 3.5 mM SI\ODIUM CARBONATE (INORG#3757)

ICV Sources:


 SPEX LOT#28-164AS (INORG#5467) F = 100 mg/L CI = 200 mg/L Br = 400 mg/L NO3N = 90.4 mg/L PO4P = 191 mg/L SO4 = 400 mg/L
 2) 128-01-IC5 NO2N 159 mg/L

RSpris 17/20/05

Sample Name : ICV Dilution Factor: 20.00 Injection Number: 1 Data File Name : c:\peaknet\data\051220\051215_001.DXD Method File Name : c:\peaknet\method\anions051116.met Schedule File Name : c:\peaknet\schedule\20dec05.sch

Date Time Collected : 12/20/05 6:05:45 PM 010085 System Name : Dx-500 Detector Name : Conductivity Detector Column Type : AS14-SN#018097 AG14-#019940 System Operator : RSPIES

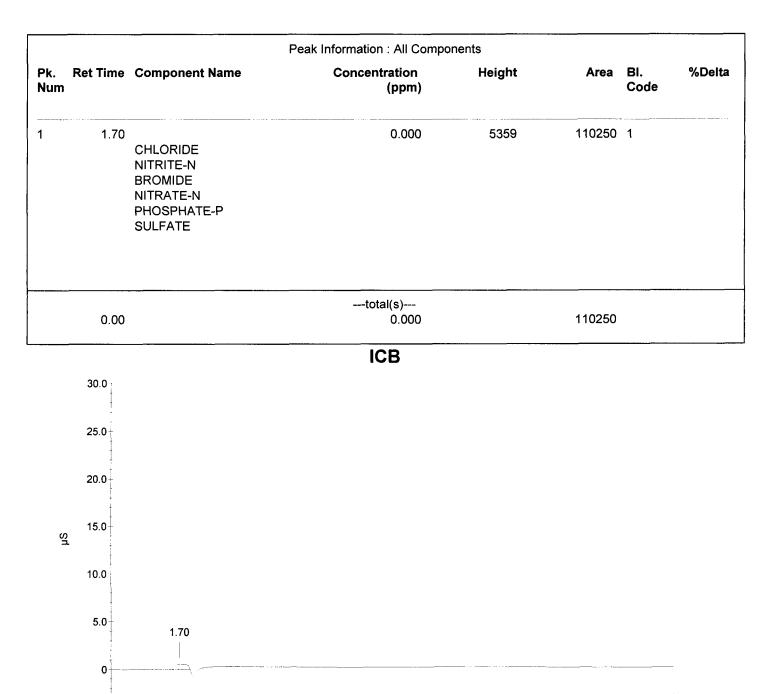
Peak Information : All Components Pk. **Ret Time** Component Name Concentration Height Area BI. %Delta Num (ppm) Code 1 2.97 FLUORIDE 94.985 168166 1209138 2 -1.33 2 4.22 CHLORIDE 199.707 197963 1613594 2 -0.86 3 5.08 NITRITE-N 152.990 253747 2754649 2 -1.23 6.38 BROMIDE 390.662 107140 1326554 2 -0.88 7.44 NITRATE-N 83.191 105894 1682600 2 0.90 9.57 PHOSPHATE-P 187.544 57676 1271206 2 -2.35 11.46 SULFATE 388.074 91910 2213583 2 -2.94 ---total(s)----0.00 1497.154 12071325 **ICV** 30.0 5.08 25.0 4.22 2.97 20.0 15.0



: PeakNet 5.1

4

5


6

7

Page 1 of 1

Current Date : 12/20/05 Current Time : 18:22:1

Sample Name : ICB Dilution Factor : 1.00 Injection Number : 2 Data File Name : c:\peaknet\data\051220\051215_002.DXD Method File Name : c:\peaknet\method\anions051116.met Schedule File Name : c:\peaknet\schedule\20dec05.sch Date Time Collected : 12/20/05 6:22:26 PM System Name : Dx-500 Detector Name : Conductivity Detector Column Type : AS14-SN#018097 AG14-#019940 System Operator : RSPIES



: PeakNet 5.1

ò

2.00

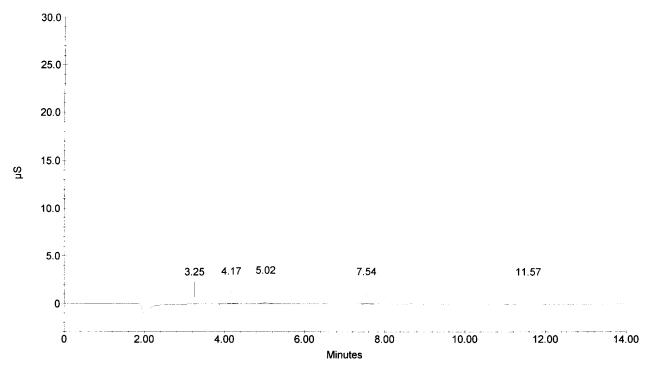
Minutes

8.00

10.00

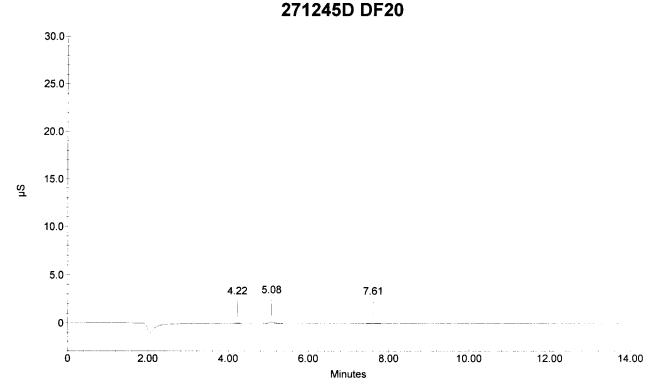
6.00

4.00


14.00

12.00

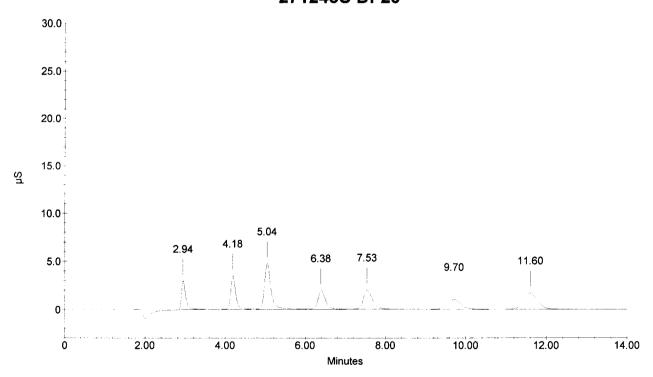
Sample Name : 271245 DF20 Dilution Factor : 20.00 Injection Number : 3 Data File Name : c:\peaknet\data\051220\051215_003.DXD Method File Name : c:\peaknet\method\anions051116.met Schedule File Name : c:\peaknet\schedule\20dec05.sch Date Time Collected : 12/20/05 6:39:08 PM 010087 System Name : Dx-500 Detector Name : Conductivity Detector Column Type : AS14-SN#018097 AG14-#019940 System Operator : RSPIES


			Peak Information : All Compo	onents			
Pk. Num		Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1	3.25	FLUORIDE	1.911	73	462	1	7.97
2	4.17	CHLORIDE	1.594	741	7609	1	-2.11
3	5.02	NITRITE-N BROMIDE	2.460	1717	18812	1	-2.27
4	7.54	NITRATE-N PHOSPHATE-P	1.879	376	5353	1	2.35
5	11.57	SULFATE	0.729	107	1640	1	-2.03
	0.00		total(s)				
	0.00		8.574		33876		





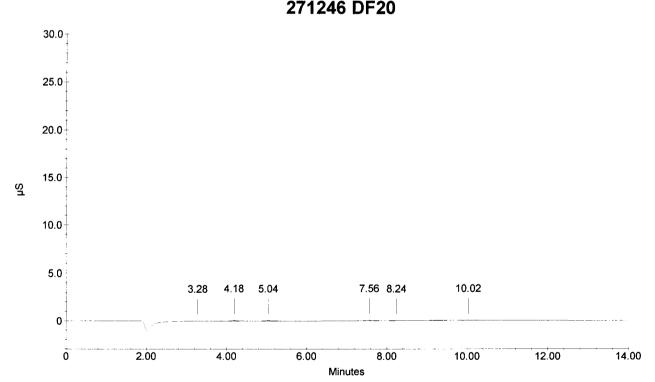
Sample Name : 271245D DF20 Dilution Factor : 20.00 Injection Number : 4 Data File Name : c:\peaknet\data\051220\051215_004.DXD Method File Name : c:\peaknet\method\anions051116.met Schedule File Name : c:\peaknet\schedule\20dec05.sch Date Time Collected : 12/20/05 6:55:50 PM 010088 System Name : Dx-500 Detector Name : Conductivity Detector Column Type : AS14-SN#018097 AG14-#019940 System Operator : RSPIES


			Peak Information : All Compo	onents			
Pk. Num		Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1	4.22	CHLORIDE	1.191	564	4560	1	-0.86
1	4.22	CHLORIDE	1.191	564	4560	1	-0.86
2	5.08	NITRITE-N BROMIDE	2.411	1711	17923	1	-1.23
3	7.61	NITRATE-N PHOSPHATE-P SULFATE	1.872	361	5209	1	3.26
	0.00		total(s) 6.665		32252	- ,	



Page 1 of 1

Current Date : 12/20/05 Current Time : 19:12:2 Sample Name : 271245S DF20 Dilution Factor : 20.00 Injection Number : 5 Data File Name : c:\peaknet\data\051220\051215_005.DXD Method File Name : c:\peaknet\method\anions051116.met Schedule File Name : c:\peaknet\schedule\20dec05.sch Date Time Collected : 12/20/05 7:12:32 PM System Name : Dx-500 Detector Name : Conductivity Detector Column Type : AS14-SN#018097 AG14-#019940 System Operator : RSPIES

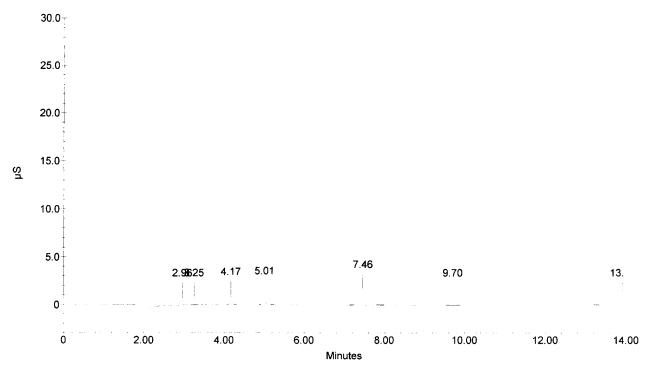

Peak Information : All Components										
ame Concentration (ppm)	Height	Area	BI. Code	%Delta						
18.015	29215	208300	1	-2.21						
40.360	34796	304521	2	-1.80						
32.583	47363	559952	2	-2.01						
86.001	19408	270679	2	-0.88						
17.990	20117	329965	2	2.17						
P 36.938	10287	233320	2	-0.99						
78.707	17064	418296	2	-1.81						
total(s)										
310.594		2325033								
		310.594	310.594 2325033							



Page 1 of 1

Current Date : 12/20/05 Current Time : 19:29:0 Sample Name : 271246 DF20 Dilution Factor : 20.00 Injection Number : 6 Data File Name : c:\peaknet\data\051220\051215_006.DXD Method File Name : c:\peaknet\method\anions051116.met Schedule File Name : c:\peaknet\schedule\20dec05.sch Date Time Collected : 12/20/05 7:29:15 PM System Name : Dx-500 Detector Name : Conductivity Detector Column Type : AS14-SN#018097 AG14-#019940 System Operator : RSPIES

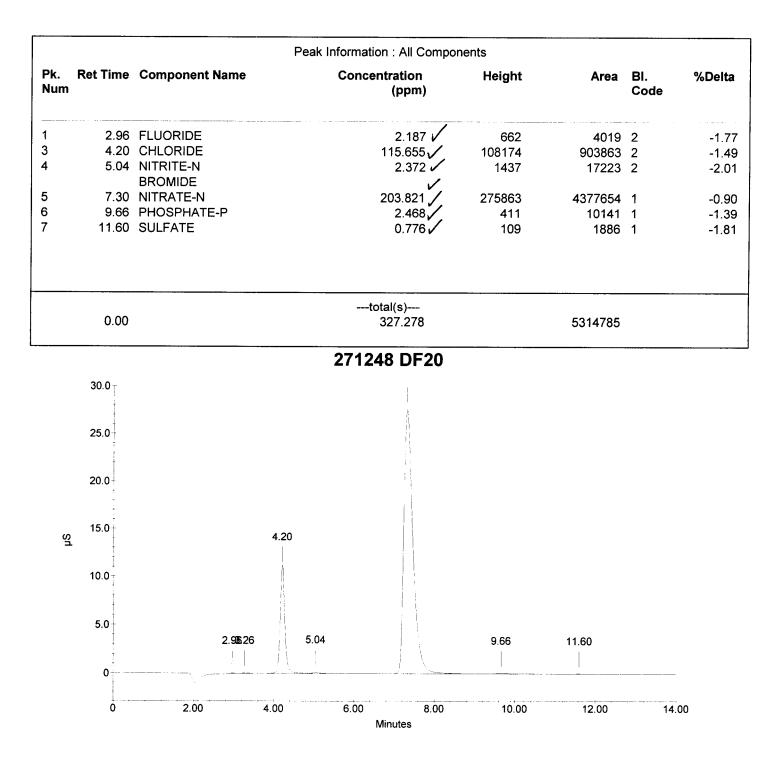
			Peak Information : All Compo	onents			
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1	3.28	FLUORIDE	1.977	108	1312	1	8.86
2	4.18	CHLORIDE	1.299	484	5372	1	-1.80
3	5.04	NITRITE-N BROMIDE	1.657	429	4421	1	-2.01
4	7.56	NITRATE-N	1.930	430	6388	1	2.53
6	10.02	PHOSPHATE-P SULFATE	2.654	185	11334	2	2.28
	0.00		total(s) 9.517		28827		
			074046 DE00				




Sample Name : 271247 DF20 Dilution Factor : 20.00 Injection Number : 7 Data File Name : c:\peaknet\data\051220\051215_007.DXD Method File Name : c:\peaknet\method\anions051116.met Schedule File Name : c:\peaknet\schedule\20dec05.sch

Date Time Collected : 12/20/05 7:46:00 PM System Name : Dx-500 Detector Name : Conductivity Detector 010091 Column Type : AS14-SN#018097 AG14-#019940 System Operator : RSPIES

Peak Information : All Components									
Ret Time	Component Name	Concentration (ppm)	Height	Area	Bl. Code	%Delta			
2.96	FLUORIDE	1.896	67	267	1	-1.77			
4.17	CHLORIDE	2.084	1352			-2.11			
5.01	NITRITE-N BROMIDE	2.632	2100	21893	1	-2.53			
7.46	NITRATE-N	8.747	9100	143290	1	1.27			
9.70	PHOSPHATE-P SULFATE	1.451	174	3631	1	-0.99			
0.00		total(s) 16.810		180394					
	2.96 4.17 5.01 7.46 9.70	BROMIDE 7.46 NITRATE-N 9.70 PHOSPHATE-P SULFATE	Ret TimeComponent NameConcentration (ppm)2.96FLUORIDE1.8964.17CHLORIDE2.0845.01NITRITE-N2.632BROMIDE8.7477.46NITRATE-N8.7479.70PHOSPHATE-P1.451SULFATEtotal(s)	Ret Time         Component Name         Concentration (ppm)         Height           2.96         FLUORIDE         1.896         67           4.17         CHLORIDE         2.084         1352           5.01         NITRITE-N         2.632         2100           BROMIDE         8.747         9100           9.70         PHOSPHATE-P         1.451         174           SULFATE        total(s)        total(s)	Ret Time         Component Name         Concentration (ppm)         Height         Area           2.96         FLUORIDE         1.896         67         267           4.17         CHLORIDE         2.084         1352         11313           5.01         NITRITE-N         2.632         2100         21893           BROMIDE         8.747         9100         143290           9.70         PHOSPHATE-P         1.451         174         3631           SULFATE        total(s)        total(s)	Ret Time         Component Name         Concentration (ppm)         Height         Area         BI. Code           2.96         FLUORIDE         1.896         67         267         1           4.17         CHLORIDE         2.084         1352         11313         1           5.01         NITRITE-N         2.632         2100         21893         1           BROMIDE         8.747         9100         143290         1           9.70         PHOSPHATE-P         1.451         174         3631         1           SULFATE        total(s)        total(s)        total(s)        total(s)        total(s)			






: PeakNet 5,1

Page 1 of 1

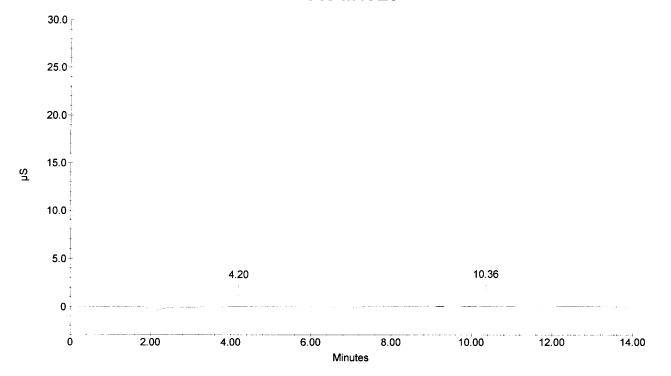
Current Date : 12/20/05 Current Time : 20:02:3 Sample Name : 271248 DF20 Dilution Factor : 20.00 Injection Number : 8 Data File Name : c:\peaknet\data\051220\051215_008.DXD Method File Name : c:\peaknet\method\anions051116.met Schedule File Name : c:\peaknet\schedule\20dec05.sch Date Time Collected : 12/20/05 8:02:42 PM 010092 System Name : Dx-500 010092 Detector Name : Conductivity Detector Column Type : AS14-SN#018097 AG14-#019940 System Operator : RSPIES



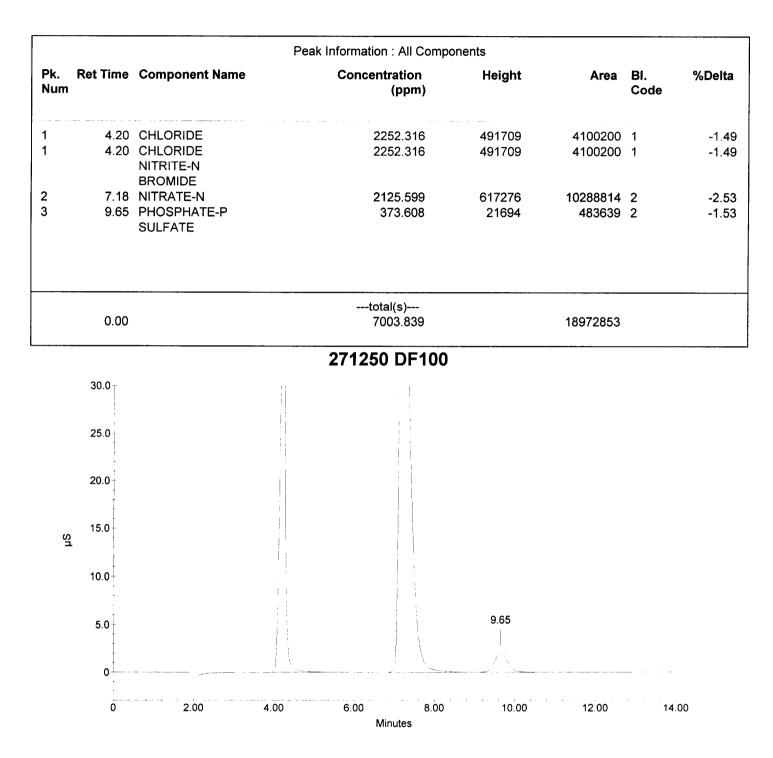
Page 1 of 1

Current Date : 12/20/05 Current Time : 20:19:1 Sample Name : 271249 DF20 Dilution Factor : 20.00 Injection Number : 9 Data File Name : c:\peaknet\data\051220\051215_009.DXD Method File Name : c:\peaknet\method\anions051116.met Schedule File Name : c:\peaknet\schedule\20dec05.sch Date Time Collected : 12/20/05 8:19:24 PM System Name : Dx-500 010093 Detector Name : Conductivity Detector Column Type : AS14-SN#018097 AG14-#019940 System Operator : RSPIES

**Peak Information : All Components** Pk. **Ret Time** Component Name Concentration Height BI. %Delta Area Num (ppm) Code 1 2.97 FLUORIDE 2.286 🗸 866 5295 1 -1.33 3 4.28 CHLORIDE 443.557 490844 4021363 3 0.39 3.422 4 5.09 NITRITE-N 2808 36034 4 -0.97 13.703 🗸 5 6.45 BROMIDE 3247 40512 1 0.16 310.009 🖌 6 7.36 NITRATE-N 428779 7017803 1 -0.18 3.984 🗸 7 9.76 PHOSPHATE-P 879 19860 1 -0.44 SULFATE ---total(s)---0.00 776.961 11140867 271249 DF20 30.0 -25.0-20.0 15.0 ъ 10.0 5.0 5.09 6.45 2.937.29 9.76 0 õ 12.00 2.00 4.00 6.00 8.00 10.00 14.00

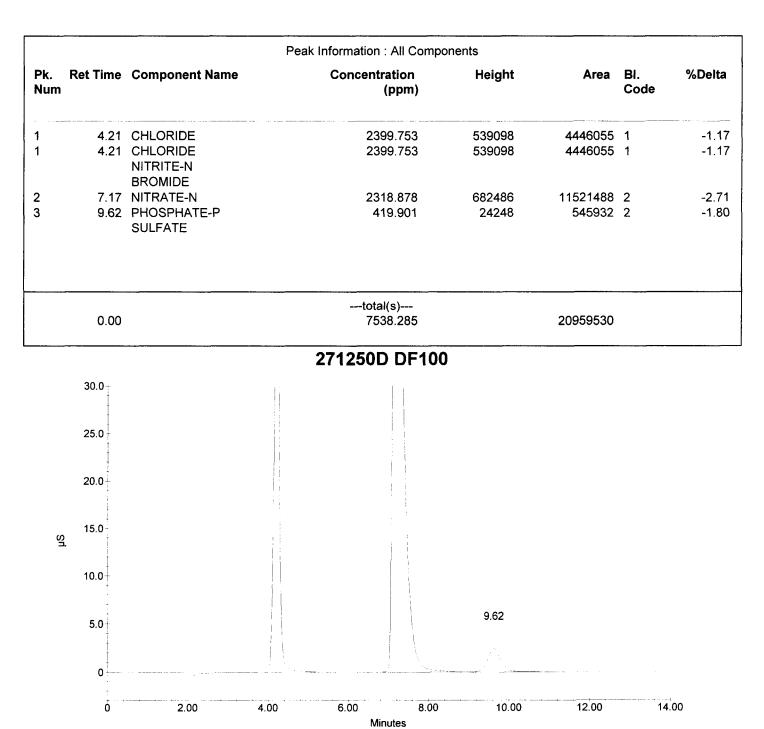

Minutes

Sample Name : PBW-M19E3 Dilution Factor : 1.00 Injection Number : 10 Data File Name : c:\peaknet\data\051220\051215_010.DXD Method File Name : c:\peaknet\method\anions051116.met Schedule File Name : c:\peaknet\schedule\20dec05.sch

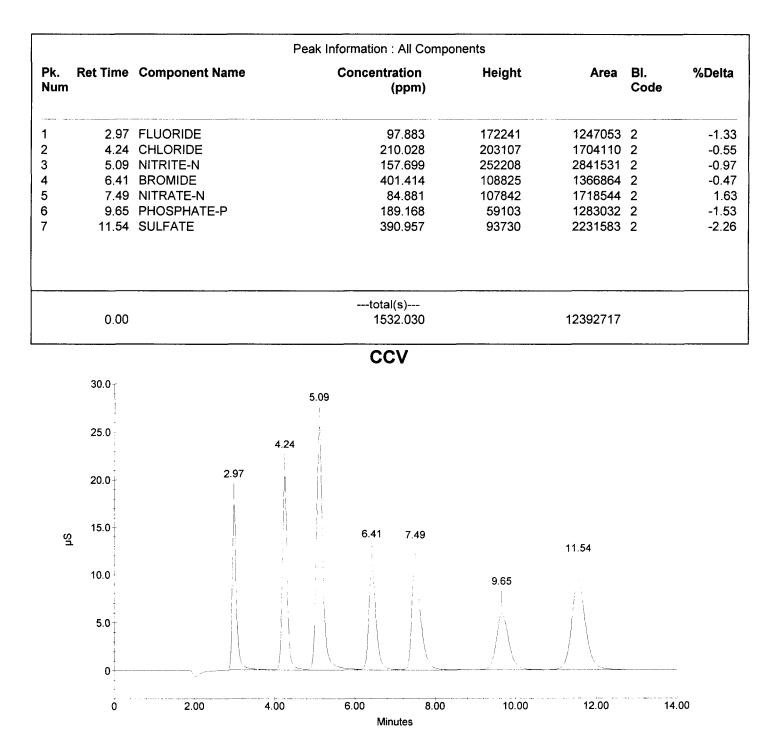

Date Time Collected : 12/20/05 8:36:08 PM System Name : Dx-500 Detector Name : Conductivity Detector Column Type : AS14-SN#018097 AG14-#019940 System Operator : RSPIES

			Peak Information : All Compo	onents		Peak Information : All Components										
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	Bl. Code	%Delta									
1	4.20	CHLORIDE	0.037	157	1148	1	-1.49									
1	4.20	CHLORIDE NITRITE-N BROMIDE NITRATE-N	0.037	157	1148		-1.49									
2	10.36	PHOSPHATE-P SULFATE	0.092	91	6061	1	5.68									
	0.00		total(s) 0.166		8357	<u></u>										

**PBW-M19E3** 



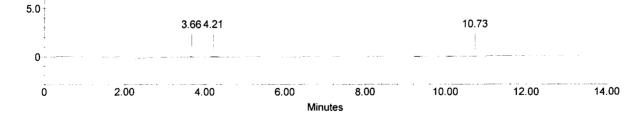

Sample Name : 271250 DF100 Dilution Factor : 100.00 Injection Number : 11 Data File Name : c:\peaknet\data\051220\051215_011.DXD Method File Name : c:\peaknet\method\anions051116.met Schedule File Name : c:\peaknet\schedule\20dec05.sch Date Time Collected : 12/20/05 8:52:50 PM 010095 System Name : Dx-500 Detector Name : Conductivity Detector Column Type : AS14-SN#018097 AG14-#019940 System Operator : RSPIES




Sample Name : 271250D DF100 Dilution Factor : 100.00 Injection Number : 12 Data File Name : c:\peaknet\data\051220\051215_012.DXD Method File Name : c:\peaknet\method\anions051116.met Schedule File Name : c:\peaknet\schedule\20dec05.sch Date Time Collected : 12/20/05 9:09:31 PM System Name : Dx-500 **D** Detector Name : Conductivity Detector Column Type : AS14-SN#018097 AG14-#019940 System Operator : RSPIES





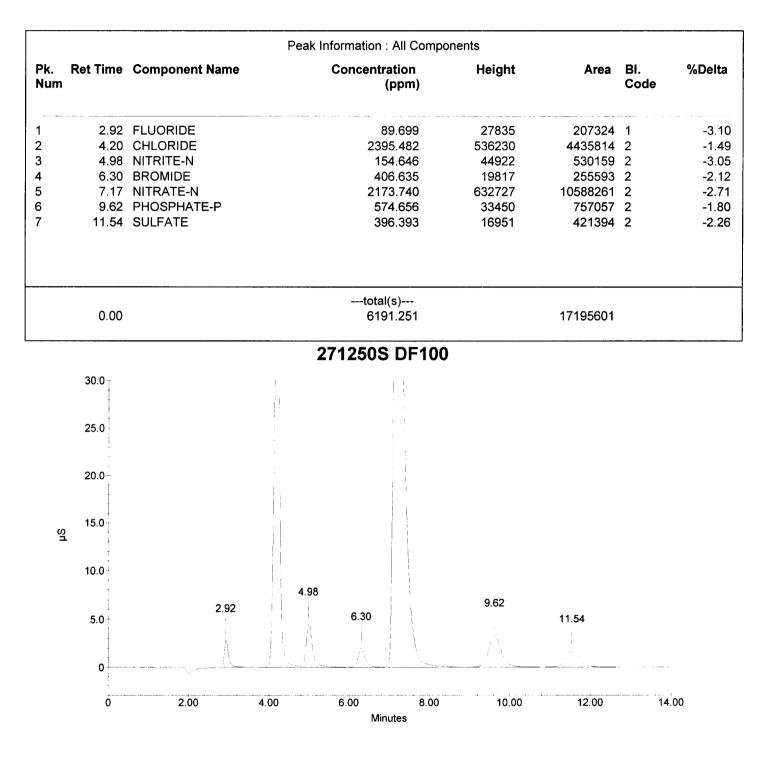

Sample Name : CCV Dilution Factor : 20.00 Injection Number : 13 Data File Name : c:\peaknet\data\051220\051215_013.DXD Method File Name : c:\peaknet\method\anions051116.met Schedule File Name : c:\peaknet\schedule\20dec05.sch Date Time Collected : 12/20/05 9:26:15 PM System Name : Dx-500 Detector Name : Conductivity Detector Column Type : AS14-SN#018097 AG14-#019940 System Operator : RSPIES 010097



Page 1 of 1

Current Date : 12/20/05 Current Time : 21:42:4 Sample Name : CCB Dilution Factor : 1.00 Injection Number : 14 Data File Name : c:\peaknet\data\051220\051215_014.DXD Method File Name : c:\peaknet\method\anions051116.met Schedule File Name : c:\peaknet\schedule\20dec05.sch Date Time Collected : 12/20/05 9:42:58 PM System Name : Dx-500 Detector Name : Conductivity Detector Column Type : AS14-SN#018097 AG14-#019940 System Operator : RSPIES 010098

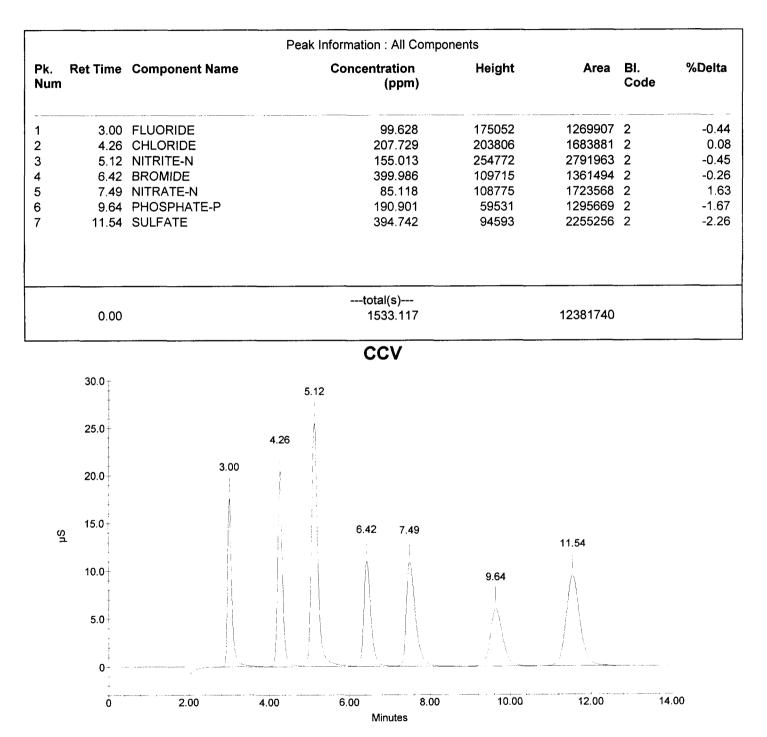
			Peak Information : All Compo	onents			
Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1	3.66		0.000	76	887	1	
2	4.21	CHLORIDE NITRITE-N BROMIDE NITRATE-N	0.036	148	986	1	-1.17
3	10.73	PHOSPHATE-P SULFATE	0.076	64	4021	1	9.49
			total(s)				
	0.00		0.112		5894		
			ССВ	<u></u>	· · · · · · · · · · · · · · · · · · ·		
	30.0 <u>;</u>						
	-						
	25.0						
	20.0↓ ↓						
	15.0+						
пS							
	10.0						
	+						




: PeakNet 5.1

Page 1 of 1

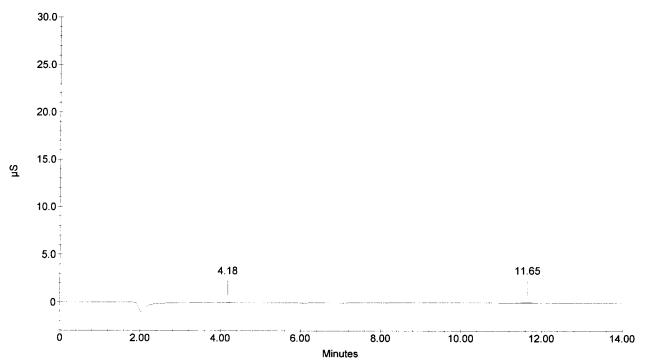
Current Date : 12/20/05 Current Time : 21:59:3 Sample Name : 271250S DF100 Dilution Factor : 100.00 Injection Number : 15 Data File Name : c:\peaknet\data\051220\051215_015.DXD Method File Name : c:\peaknet\method\anions051116.met Schedule File Name : c:\peaknet\schedule\20dec05.sch Date Time Collected : 12/20/05 9:59:41 PM System Name : Dx-500 Detector Name : Conductivity Detector Column Type : AS14-SN#018097 AG14-#019940 System Operator : RSPIES


010099



Page 1 of 1

Current Date : 12/20/05 Current Time : 22:16:1 Sample Name : CCV Dilution Factor : 20.00 Injection Number : 16 Data File Name : c:\peaknet\data\051220\051215_016.DXD Method File Name : c:\peaknet\method\anions051116.met Schedule File Name : c:\peaknet\schedule\20dec05.sch Date Time Collected : 12/20/05 10:16:23 PM System Name : Dx-500 Detector Name : Conductivity Detector Column Type : AS14-SN#018097 AG14-#019940 System Operator : RSPIES


010100

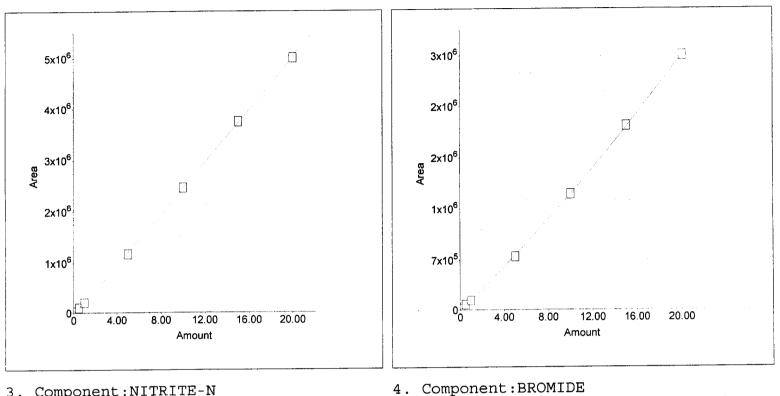


Sample Name : CCB Dilution Factor : 1.00 Injection Number : 17 Data File Name : ...\051215_017.DXD Method File Name : c:\peaknet\method\anions051116.met Schedule File Name : c:\peaknet\schedule\20dec05.sch Date Time Collected : 12/20/05 10:33:07 PM System Name : Dx-500 Detector Name : Conductivity Detector Column Type : AS14-SN#018097 AG14-#019940 System Operator : RSPIES

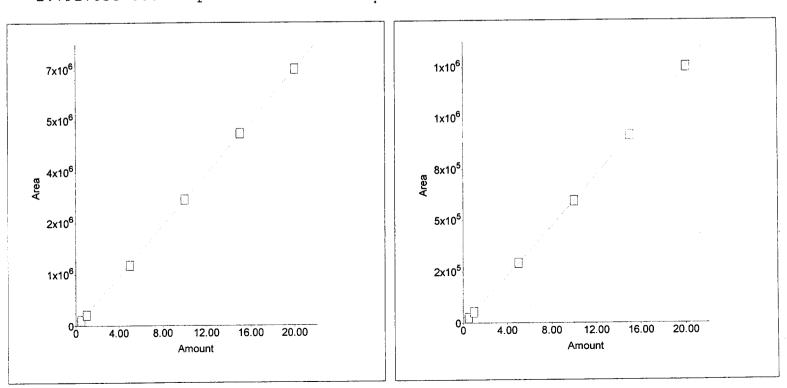
## 010101

lime Com	nponent Name	• • •				
		Concentration (ppm)	Height	Area	BI. Code	%Delta
4.18 CHL	ORIDE	0.038	170	1331	1	-1.80
NITF BRC NITF	RITE-N DMIDE RATE-N	0.038	170	1331	1	-1.80
		0.090	325	7275	1	-1.35
0.00		total(s) 0.166		9937	. <u></u>	
	4.18 CHL NITF BRC NITF PHC 1.65 SUL	4.18 CHLORIDE 4.18 CHLORIDE NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P 1.65 SULFATE	4.18 CHLORIDE 0.038 NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P 1.65 SULFATE 0.090 total(s)	4.18 CHLORIDE 0.038 170 NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P 1.65 SULFATE 0.090 325 total(s)	4.18 CHLORIDE 0.038 170 1331 NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P 1.65 SULFATE 0.090 325 7275 total(s)	4.18 CHLORIDE 0.038 170 1331 1 NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P 1.65 SULFATE 0.090 325 7275 1 total(s)



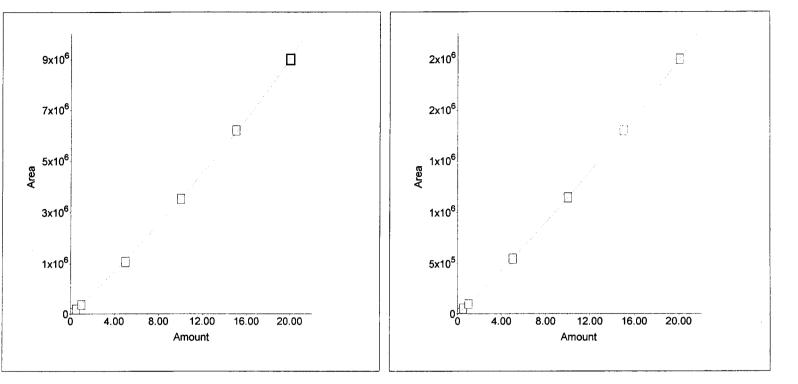

: PeakNet 5.1

Page 1 of 1

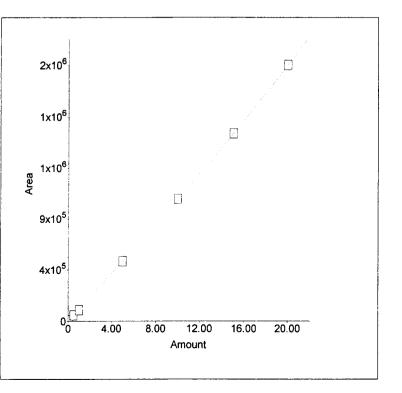

Current Date : 12/22/05 Current Time : 12:18:2 3.879166e-006*Resp+0.09377

Updated:11/16/05 8:31:50 PM Total:7

```
2. Component:CHLORIDE
Standard:External Fit Type:Quadratic
Origin:Include Calibration:Area
r<sup>2</sup>=0.999891
Amt=-2.750837e-013*Resp<sup>2</sup>+
6.613910e-006*Resp+0.0294010102
```




- 3. Component:NITRITE-N
  Standard:External Fit Type:Quadratic
  Origin:Include Calibration:Area
  r²=0.999912
  Amt=-1.467710e-014*Resp²+
  2.791785e-006*Resp+0.0705
- Standard:External Fit Type:Quadratic Origin:Include Calibration:Area r²=0.999989 Amt=-9.942909e-013*Resp²+ 1.601506e-005*Resp+0.03796



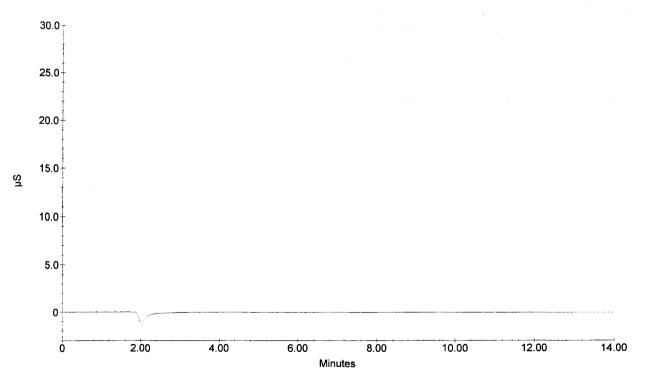

```
5. Component:NITRATE-N
Standard:External Fit Type:Quadratic
Origin:Include Calibration:Area
r<sup>2</sup>=0.999840
Amt=-4.254071e-014*Resp<sup>2</sup>+
2.495793e-006*Resp+0.08058
```

6. Component:PHOSPHATE-P
Standard:External Fit Type:Quadratic
Origin:Include Calibration:Area
r²=0.999980
Amt=-3.703917e-013*Resp²+
7.812696e-006*Resp+0.0442
010103



7. Component:SULFATE
Standard:External Fit Type:Quadratic
Origin:Include Calibration:Area
r²=0.999987
Amt=-3.352536e-013*Resp²+
9.498428e-006*Resp+0.02088

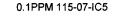


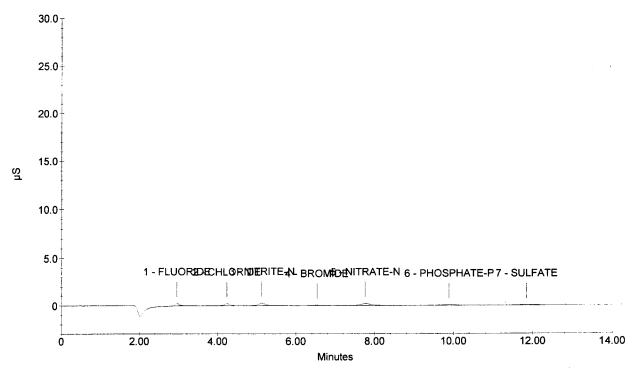

PeakNet 5.1

Sample Name : 0PPM 115-08-IC5 Dilution Factor : 1.00 Injection Number : 1 Data File Name : c:\peaknet\data\051116\051116_A001.DXD Method File Name : c:\peaknet\method\anions051116.met Schedule File Name : c:\peaknet\schedule\051116.sch

Date Time Collected : 11/16/05 6:05:05 PM Date Time Updated : 11/16/05 6:21:37 PM System Name : Dx-500 Detector Name : Conductivity Detector Column Type : AS14-SN#018097 AG14-#019940 System Operator : RSPIES

010104


Peak Information : All Components					
Peak Number	Peak Retention Time	Component Name	Concentration, ppm (ppm)	Peak Area	Peak Height
0	0.00	(null) CHLORIDE NITRITE-N BROMIDE NITRATE-N PHOSPHATE-P SULFATE	0.00	0	0




0PPM 115-08-IC5

Sample Name : 0.1PPM 115-07-IC5 Dilution Factor : 1.00 Injection Number : 2 Data File Name : c:\peaknet\data\051116\051116_002.DXD Method File Name : c:\peaknet\method\anions051116.met Schedule File Name : c:\peaknet\schedule\051116.sch Date Time Collected : 11/16/05 6:21:46 PM Date Time Updated : 11/16/05 6:38:19 PM System Name : Dx-500 Detector Name : Conductivity Detector Column Type : AS14-SN#018097 AG14-#019940 System Operator : RSPIES 010105

	Peak Information : All Components					
Peak Number	Peak Retention Time	Component Name	Concentration, ppm (ppm)	Peak Area	Peak Height	
	2.96	FLUORIDE	0.10	16520	2524	
2	4.24	CHLORIDE	0.10	17650	2073	
3	5.13	NITRITE-N	0.10	28123	2547	
4	6.53	BROMIDE	0.10	4650	389	
5	7.76	NITRATE-N	0.10	33559	2009	
6	9.89	PHOSPHATE-P	0.10	8257	398	
7	11.85	SULFATE	0.10	9941	454	

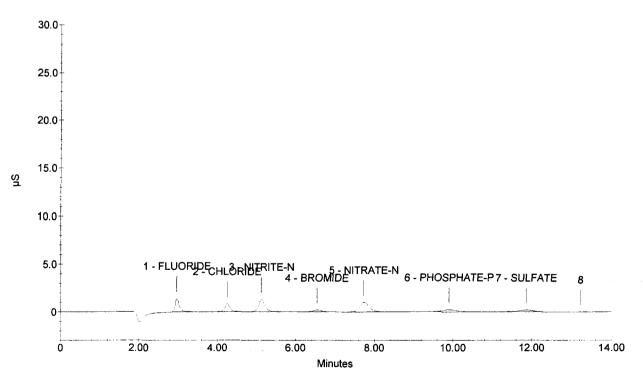




Sample Name : 0.5PPM 115-06-IC5 Dilution Factor : 1.00 Injection Number : 3 Data File Name : c:\peaknet\data\051116\051116_003.DXD Method File Name : c:\peaknet\method\anions051116.met Schedule File Name : c:\peaknet\schedule\051116.sch 
 Date Time Collected : 11/16/05 6:38:30 PM

 Date Time Updated : 11/16/05 6:55:02 PM

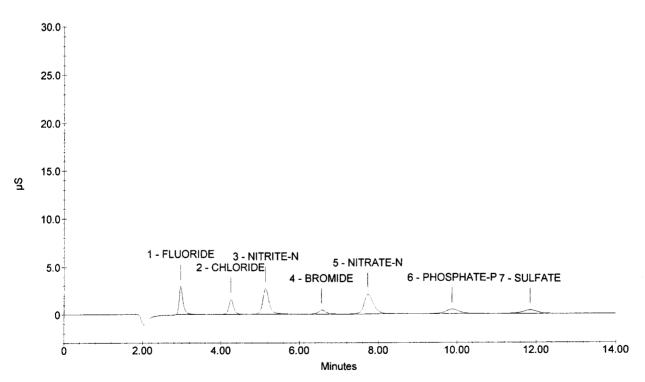
 System Name : Dx-500


 Detector Name : Conductivity Detector

 Column Type : AS14-SN#018097 AG14-#019940

 System Operator : RSPIES

 **010106**

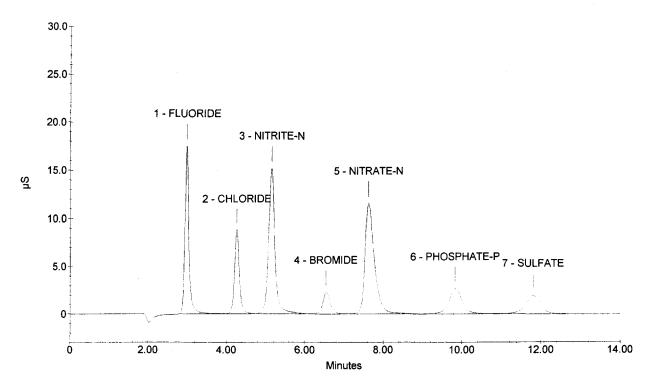

	Peak Information : All Components					
Peak Number	Peak Retention Time	Component Name	Concentration, ppm (ppm)	Peak Area	Peak Height	
1	2.97	FLUORIDE	0.50	99544	14197	
2	4.25	CHLORIDE	0.50	78285	8650	
3	5.13	NITRITE-N	0.50	152069	13151	
4	6.54	BROMIDE	0.50	27286	2090	
5	7.73	NITRATE-N	0.50	171023	10083	
6	9.90	PHOSPHATE-P	0.50	60420	2366	
7	11.86	SULFATE	0.50	52492	1948	



0.5PPM 115-06-IC5

Sample Name : 1PPM 115-05-IC5 Dilution Factor : 1.00 Injection Number : 4 Data File Name : c:\peaknet\data\051116\051116_004.DXD Method File Name : c:\peaknet\method\anions051116.met Schedule File Name : c:\peaknet\schedule\051116.sch Date Time Collected : 11/16/05 6:55:12 PM Date Time Updated : 11/16/05 7:11:46 PM System Name : Dx-500 Detector Name : Conductivity Detector Column Type : AS14-SN#018097 AG14-#019940 System Operator : RSPIES 010107

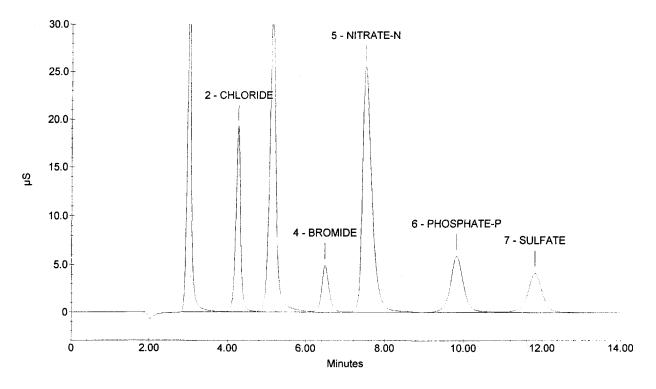
	Peak Information : All Components					
Peak Number	Peak Retention Time	Component Name	Concentration, ppm (ppm)	Peak Area	Peak Height	
1	2.97	FLUORIDE	1.00	214439	29828	
2	4.25	CHLORIDE	1.00	140340	15915	
3	5.14	NITRITE-N	1.00	310951	27027	
4	6.56	BROMIDE	1.00	57817	4266	
5	7.73	NITRATE-N	1.00	346267	20417	
6	9.88	PHOSPHATE-P	1.00	115938	4806	
7	11.85	SULFATE	1.00	97911	3769	




1PPM 115-05-IC5

Sample Name : 5PPM 115-04-IC5 Dilution Factor : 1.00 Injection Number : 5 Data File Name : c:\peaknet\data\051116\051116_005.DXD Method File Name : c:\peaknet\method\anions051116.met Schedule File Name : c:\peaknet\schedule\051116.sch Date Time Collected : 11/16/05 7:12:06 PM Date Time Updated : 11/16/05 7:28:39 PM System Name : Dx-500 Detector Name : Conductivity Detector Column Type : AS14-SN#018097 AG14-#019940 System Operator : RSPIES 010108

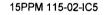
	Peak Information : All Components					
Peak Number	Peak Retention Time	Component Name	Concentration, ppm (ppm)	Peak Area	Peak Height	
1	2.98	FLUORIDE	5.00	1240719	174788	
2	4.25	CHLORIDE	5.00	755822	86741	
3	5.14	NITRITE-N	5.00	1739855	151536	
4	6.53	BROMIDE	5.00	317492	23072	
5	7.61	NITRATE-N	5.00	1968165	115546	
6	9.82	PHOSPHATE-P	5.00	650857	26746	
7	11.80	SULFATE	5.00	533476	19943	

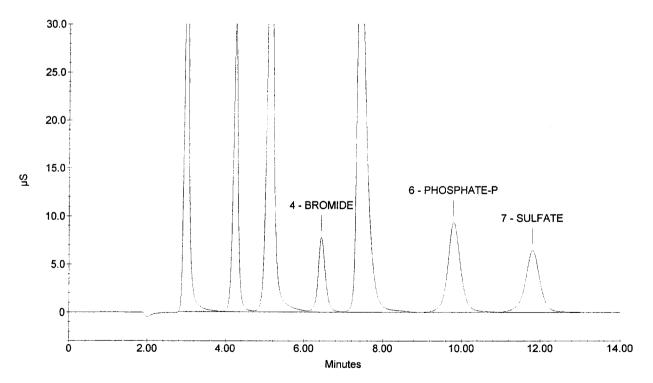





Sample Name : 10PPM 115-03-IC5 Dilution Factor : 1.00 Injection Number : 6 Data File Name : c:\peaknet\data\051116\051116_006.DXD Method File Name : c:\peaknet\method\anions051116.met Schedule File Name : c:\peaknet\schedule\051116.sch Date Time Collected : 11/16/05 7:28:58 PM Date Time Updated : 11/16/05 7:45:31 PM System Name : Dx-500 Detector Name : Conductivity Detector Column Type : AS14-SN#018097 AG14-#019940 System Operator : RSPIES 010109

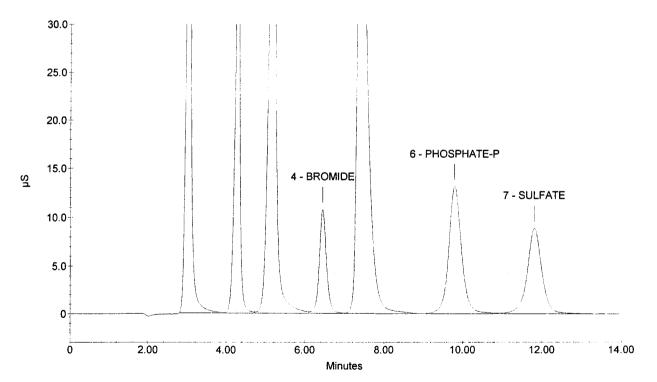
Peak Information : All Components					
Peak Number	Peak Retention Time	Component Name	Concentration, ppm (ppm)	Peak Area	Peak Height
1	2.98	FLUORIDE	10.00	2603044	355519
2	4.25	CHLORIDE	10.00	1613190	191194
3	5.13	NITRITE-N	10.00	3634302	316599
4	6.48	BROMIDE	10.00	647461	49126
5	7.49	NITRATE-N	10.00	4292412	254592
6	9.82	PHOSPHATE-P	10.00	1360845	58433
7	11.81	SULFATE	10.00	1091194	41534




Sample Name : 15PPM 115-02-IC5 Dilution Factor : 1.00 Injection Number : 7 Data File Name : c:\peaknet\data\051116\051116_007.DXD Method File Name : c:\peaknet\method\anions051116.met Schedule File Name : c:\peaknet\schedule\051116.sch Date Time Collected : 11/16/05 7:45:53 PM Date Time Updated : 11/16/05 8:02:25 PM System Name : Dx-500 Detector Name : Conductivity Detector Column Type : AS14-SN#018097 AG14-#019940 System Operator : RSPIES

010110


Peak Information : All Components					
Peak Number	Peak Retention Time	Component Name	Concentration, ppm (ppm)	Peak Area	Peak Height
1	3.00	FLUORIDE	15.00	3965828	524280
2	4.25	CHLORIDE	15.00	2555092	299420
3	5.13	NITRITE-N	15.00	5542814	470296
4	6.44	BROMIDE	15.00	9959 <b>94</b>	77442
5	7.41	NITRATE-N	15.00	6827190	402276
6	9.80	PHOSPHATE-P	15.00	2136334	93257
7	11.80	SULFATE	15.00	1680094	64281





Sample Name : 20PPM 115-01-IC5 Dilution Factor : 1.00 Injection Number : 8 Data File Name : c:\peaknet\data\051116\051116_008.DXD Method File Name : c:\peaknet\method\anions051116.met Schedule File Name : c:\peaknet\schedule\051116.sch Date Time Collected : 11/16/05 8:02:35 PM Date Time Updated : 11/16/05 8:19:09 PM System Name : Dx-500 Detector Name : Conductivity Detector Column Type : AS14-SN#018097 AG14-#019940 System Operator : RSPIES 010111

**Peak Information : All Components Peak Number Peak Retention Peak Height Component Name** Concentration, Peak Area Time ppm (ppm) 1 3.01 **FLUORIDE** 20.00 5289226 665312 2 4.26 CHLORIDE 20.00 3528116 402942 3 5.14 **NITRITE-N** 20.00 7408735 598708 4 6.44 20.00 BROMIDE 1361527 107400 5 7.37 NITRATE-N 20.00 9490085 545948 6 9.80 PHOSPHATE-P 20.00 131230 2969974 7 88474 11.81 SULFATE 20.00 2286449

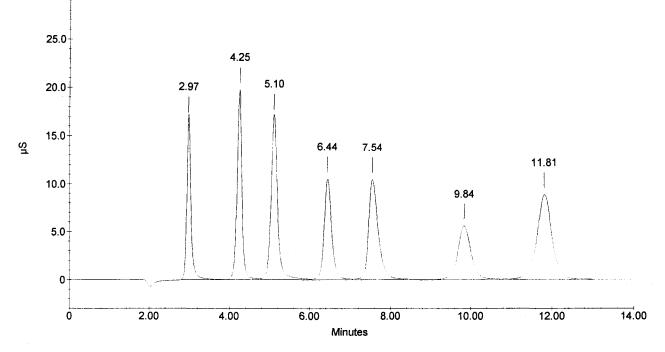


20PPM 115-01-IC5

 Sample Name : ICV
 Date Time Collected : 11/16

 Dilution Factor : 20.00
 System Name : Dx-500

 Injection Number : 9
 Detector Name : Conductivit


 Data File Name : ...\051116_009.DXD
 Column Type : AS14-SN#01

 Method File Name : C:\PeakNet\method\ANIONS051116.met
 System Operator : RSPIES

 Schedule File Name : c:\peaknet\schedule\051116.sch
 System Operator : RSPIES

Date Time Collected : 11/16/05 8:19:33 PM System Name : Dx-500 Detector Name : Conductivity Detector Column Type : AS14-SN#018097 AG14-#019940 112 System Operator : RSPIES

Pk. Num	Ret Time	Component Name	Concentration (ppm)	Height	Area	BI. Code	%Delta
1	2.97	FLUORIDE	96.141	167051	1224254	2	-1.33
2	4.25	CHLORIDE	204.683	197471	1657137	2	-0.23
3	5.10	NITRITE-N	109.072	169893	1948137	2	-0.71
4	6.44	BROMIDE	402.064	105103	1369309	2	-0.05
5	7.54	NITRATE-N	86.221	104327	1747068	2	2.35
6	9.84	PHOSPHATE-P	192.414	55866	1306716	2	0.37
7	11.81	SULFATE	400.058	88555	2288583	2	0.00
			total(s)				
	0.00		1490.653		11541204		
			ICV	·			



Page 1 of 1

Current Date : 11/16/05 Current Time : 21:10:3 Sample Name : ICB Dilution Factor : 1.00 Injection Number : 10 Data File Name : c:\peaknet\data\051116\051116_010.DXD Method File Name : c:\peaknet\method\anions051116.met Schedule File Name : c:\peaknet\schedule\051116.sch Date Time Collected : 11/16/05 8:36:25 PM System Name : Dx-500 Detector Name : Conductivity Detector Column Type : AS14-SN#018097 AG14-#019940 System Operator : RSPIES

### 010113

			Peak Information : A	All Compone	ents			
Pk. F Num	Ret Time	Component Name	Concentrat (p	ion pm)	Height	Area	Bl. Code	%Delta
1	3.36		0	.000	43	429	1	
		CHLORIDE NITRITE-N						
		BROMIDE NITRATE-N						
		PHOSPHATE-P SULFATE						
u			total(s	)				
	0.00		0.	.000		429		
			ICB	}				
	30.0 _Ţ							,
	25.0							
	20.0							
	÷							
SI	15.0							
_	10.0							
	10.0							
	5.0							
	ļ	3.36						
	0 <u> </u>		HA					
	Ĺ 0	2.00 4.00	6.00	8.00	10.00	12.00	14.(	20

Page 1 of 1

15 Diluted to 10ml DI H20.

115-01-105 20ppm Anions

Work continued from Page

Anions

Fluorde

10 Bromide

ploride NitnteN

O Nitratin Phosphatip

Sulfate

PROJECT NO. NA -115 BOOK NO. 1Ch * inforrect en try 010114 Inong# Exp. Std vol, ml Std. Conc; mg/L

1950 1/15/2006 5076 * 4153/30/06 5275 6/30/06 4957 4951 1/15/2006 1/15/06 4952 1/15/06 4953 7/30/06 5305

ppendorts 7700 J 1000 J 200 1 Eppendorf Logback Located in Lab 47.

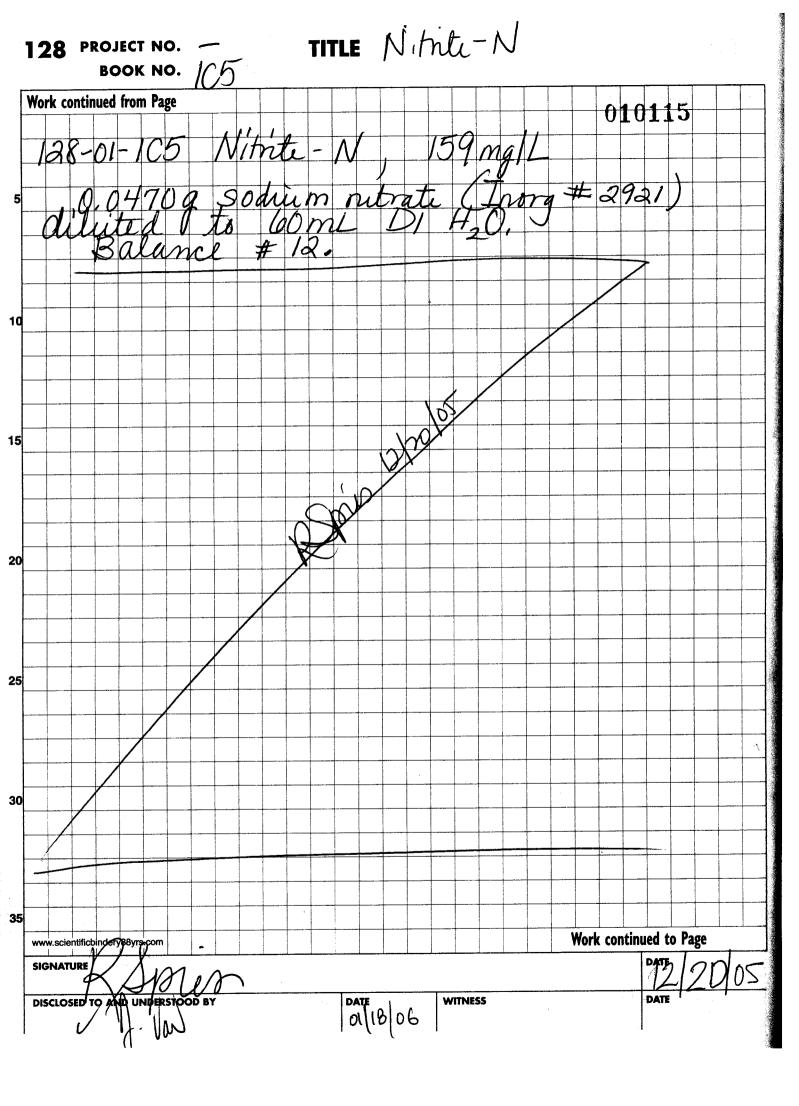
DE water Logbook located in Lab 49

<u>115-02-105</u> <u>15ppm</u> 3mL <del>103</del>-01-105 + ImL DI H20. 115 KG 105 incorrect entry 20 <u>115-03-1C5 10ppm</u> 2mL 115-01-1C5 + 2mL DI H2O. 115-04-105 5ppm 2ml_115-03-105 + 2mL DI HzO. 115-05-105 1ppm 1 mL 115-04-105 + 4mL DI HzO. "<u>II5-06-1C5 D.5ppm</u> "ZML 115-05-1C5 + 2ML DI H20. 115-07-165 0.1 ppm 1mL 115-06-105 + 4mL DI H20

0.2mL 1000mg/L

35 <u>15-D8-1C5</u> www.scientificbindery88yrs.com ppm 14-0. SIGNATURE

Wrothin (1) Willel!


DISCLOSED TO AND UNDERSTOOD BY

DATE

WITNESS

Work continued to Page

DATE 11/16/05 12/12/05



SOUTHWEST RESEARCH INSTITUTE NUCLEAR PROJECT CLIENT: Division 20 TASK ORDER: 051219-5 SRR: 28420 SDG: 271245 CASE: L. Yang VTSR: December 16, 2005 PROJECT#: 06002.01.322

# **Certificates of Analysis**



### TRACEMETAL GRADE NITRIC ACID CERTIFICATE OF ANALYSIS

B H: Kedury

Dr. B. McKelvey QA/QC Manager

1.

CATALOG NUMBER: A509 LOT NUMBER: 1106042 RELEASE DATE: July, 2005 EXPIRY DATE: July, 2006

Tests	Maximum	Actual	Units		
	Specification	Value			
ASSAY (HNO, www):	67 - 70%	70%	% by w/w	•	
Color:	10	<10	APHA		
COM.	10	10	AFUA		
	Maximum	Actual		Maximum	Actual
Analyte	Specification	Value (in ppb)	Analyte	Specification	Value (in ppb)
		مهمية كيني في من المستعمر	<u> </u>		
Aluminum (Al)	1 ppo	<0.5	Neodymium (Nd)	0.5 ppb	<0.1
Antimony (Sb)	1 ppb	<0.1	Nickel (Ni)	1 ppb	<0.1
Arsenic (As)	1 ppb	<0.1	Niobium (Nib)	0.5 ppb	<0.1
Barlum (Ba)	1 ppb	<0.1	Palladium (Pd)	0.5 ppb	<0.1
Beryllium (Be)	1 ppb	<0.1	Platinum (Pt)	0.5 ppb	<0.1
Bismuth (Bi)	1 ppb	<0.1	Potassium (K)	1 ppb	<0.2
Boron (B)	1 ppb	<0.5	Praseodymium (Pr)	0.5 ppb	<0.1
Cadmium (Cd)	1 ppb	<0.1	Rhenium (Re)	0.5 ppb	<0.1
Calcium (Ca)	1 ppb	<0.5	Rhodium (Rh)	0.5 ppb	<0.1
Cerium (Ce)	0.5 ppb	<0.1	Rubidium (Rb)	0.5 ppb	<0.1
Cesium (Cs)	0.5 ppb	<0.1	Ruthenium (Ru)	0.5 ppb	<0.1
Chromium (Cr)	1 ppb	<0.5	Samarium (Sm)	0.5 ppb	<0.1
Cobalt (Co)	1 ppb	<0.1	Scandium (Sc)	0.5 ppb	<0.1
Copper (Cu)	1 ppb	<0.1	Selenium (Se)	1 ppb	<0.1
Dysprosium (Dy)	0.5 ppb	<0.1	Silver (Ag)	1 ppb	<0.1
Erbium (Er)	0.5 ppb	<0.1	Sodium (Na)	1 ppb	<0.2
Europium (Eu)	0.5 ppb	<0.1	Strontium (Sr)	1 ppb	<0.1
Gadolinium (Gd)	0.5 pph	<0.1	Tantalum (Ta)	Information Only	<0.1
Galilium (Ga)	0.5 ppb	<0.1	(eT) muhulleT	0.5 ppb	<0.1
Germanium (Ge)	0.5 ppb	<0.1	(Terbium (Tb)	0.5 ppb	<0.1
Gold (Au)	0.5 ppb	<0.1	Thallium (TI)	0.5 ppb	<0.1
Hafnium (Hf)	0.5 ppb	<0.1	Thorium (Th)	1 ppb	<0.1
Holmium (Ho)	0.5 ppb	<0.1	Thuium (Tm)	0.5 ppb	<0.1
indium (in)	0.5 ppb	<0.1	Tin (Sn)	1 ppb	<0.1
tron (Fe)	1 ppb	<0.5	Titanium (TI)	1 ppb	<0.1
Lanthanum (La)	0.5 ppb	<0.1	Tungsten (W)	0,5 ppb	<0.1
Lead (Pb)	1 ppb	<0.1	Uranium (U)	1 ppb	<0.1
Lithium (Li)	1 ppb	<0.1	Vanadium (V)	1 ppb	<0.1
Lutetium (Lu)	0.5 ppb	<0.1	Ytterbium (Yb)	0.5 ppb	<0.1
Magnesium (Mg)	1 ppb	<0.2	Yttrium (Y)	0.5 ppb	<0.1
Manganese (Mn)	1 ppb	<0.1	Zinc (Zn)	1 ppb	<0.2
Mercury (Hg)	1 ppb	<0.2	Zirconium (Zr)	1 ppb	<0.1
Molybdenum (Mo)	1 ppb	<0,1			
	Maximum	Actual		Maximum	Actual
Analyte	Specification	Value (in p pm)	Analyte	Specification	Value (in p pm)
Chloride (CI)	0.2 ppm	<0.2	Total Sulfur (S)	0.3 ppm	<0.3
		<0.01		are bluu	-9.9
Total Phosphorus (P)	0.01 ppm	<0.01	I		

INDRGANIC LABS/RADCHEM LABS DATE RECEIVED: 12/5/45 DATE EXPIRED: 12/12/02 DATE OPENED: 12/12/02 DATE OPENED: 12/12/15 INDRG: 54847548 PO: 54647

Element concentrations are et the point of bottling. Concentrations of some elements in particular, Ca, Si, K, Na, B, Al, Mg & Mn will increase due to storage in glass bottles.



ł

For customer service, call 1-800-766-7000. To fax an order, use 1-800-925-1165. To order online: www.fishersci.com

# **F** Fisher Scientific

### TRACEMETAL GRADE NITRIC ACID CERTIFICATE OF ANALYSIS

B Mikdug			САТА	LOG NUMBER:		
Dr. B. McKelvey QA/QC Manager				RELEASE DATE: EXPIRY DATE:	May, 2005	
Tests	Maximum	Actual	Units			
	Specification	Value		-		
ASSAY (HNO3, w/w):	67 - 70%	70%	% by w/w			
Color:	10	<10	APHA			
	Maximum	Actual		Maximum	Actual	
Analyle	Specification	Value (inppb)	Analyte	Specification	Value (inppb)	
Aluminum (Al)	1 ppb	<0.5	Neodymium (Nd)	0.5 ppb	<0.1	
Antimony (Sb)	1 ppb	<0.1	Nickel (Ni)	1 ppb	<0.1	
Arsenic (As)	1 ppb	<0.1	Niobium (Nb)	0.5 ppb	<0.1	
Barium (Ba)	1 ppb	<0.1	Pallpdium (Pd)	0.5 ppb	<0.1	
Beryllium (Be)	1 ppb	<0.1	Platinum (Pt)	0.5 ppb	<0.1	
Bismuth (Bi)	1 ppb	<0.1	Potassium (K)	1 ppb	<0.2	04442
Soron (B)	1 ppb	<0.5	Praseodymium (Pr)	0.5 ppb	<0.1	
Cadmium (Cd)	1 ppb	<0.1	Rhenium (Re)	0.5 ppb	<0.1	
Calcium (Ca)	1 ppb	<0.5	Rhodium (Rh)	0.5 ppb	<0.1	
Cerium (Ce)	0.5 ppb	<0.1	Rubidium (Rb)	0.5 ppb	<0.1	K M YOX
Cesium (Cs)	0.5 ppb	<0.1	Ruthenium (Ru)	0.5 ppb	<0.1	
Chromium (Cr)	1 ppb	<0.5	Samarium (Sm)	0.5 ppb	<0.1	
Cobalt (Co)	1 ppb	<0.1	Scandium (Sc)	0.5 ppb	<0.1	
Copper (Cu)	1 ppb	<0.1	Selenium (Se)	1 ppb	<0.1	
Dysprosium (Dy)	0.5 ppb	<0.1	Silver (Ag)	1 ppb	<0.1	
Erbium (Er)	0.5 ppb	<0.1	Socium (Na)	1 ppb	<0.2	5 0
Europium (Eu)	0.5 ppb	<0.1	Strontium (Sr)	1 ppb	<0.1	Freeze R
Gadolinium (Gd)	0.5 ppb	<0.1	Tantalum (Ta)	Information Only	<0.1	THEF
Gallium (Ga)	0.5 ppb	<0.1	Tellurium (Te)	0.5 ppb	<0.1	Pise
Germanium (Ge)	0.5 ppb	<0.1	Terbium (Tb)	0.5 ppb	<0.1	
Gold (Au)	0.5 ppb	<0.1	Thallium (TI)	0.5 ppb	<0.1	
Hatnium (Ht)	0.5 ppb	<0.1	Thorium (Th)	1 ppb	<0.1	
Helmium (Ho)	0.5 ppb	<0.1	Thulium (Tm)	0.5 ppb	<0.1	
Indium (in)	0.5 ppb	<0.1	Tin (Sn)	1 ppb	<0.1	
imn (Fe)	1 ppb	<0.5	Titanium (Ti)	1 ppb	<0.1	
Lanthanum (La)	0.5 ppb	<0.1	Tungsten (W)	0.5 ppb	<0.1	MM m
Lead (Pb)	1 ppb	<0.1	Urahium (U)	1 ppb	<0.1	
Lithium (Li)	1 ppb	<0.1	Variadium (V)	1 ppb	<0.1	
Lutetium (Lu)	0.5 ppb	<0.1	Ytterbium (Yb)	0.5 ppb	<0.1	
Magnesium (Mg)	1 ppb	<0.2	Yttrum (Y)	0.5 ppb	<0.1	
Manganese (Min)	1 000	<0.1	Zinc (Zn)	1 ppb	<0.2	
Mercury (Hg)	1 ppb	<0.2	Zirconium (Zr)	1 ppb	<0.1	
Molybdenum (Mo)	1 ppb	<0.1		• •		

Element concentrations are at the point of bottling. Concentrations of some elements in particular, Ca, Si, K, Na, B, Al, Mg & Mn will increase due to storage in glass bottles.



For customer service, call 1-800-766-7000. To fax an order, use 1-800-925-1165. To order online: www.fishersci.com



### TRACEMETAL GRADE HYDROCHLORIC ACID CERTIFICATE OF ANALYSIS

B ME Kelver

Dr. B. McKelvey QA/QC Manager CATALOG NUMBER: A508 LOT NUMBER: 4105050 RELEASE DATE: July, 2005 EXPIRY DATE: July, 2008

Tests	Maximum	Actual	Units		
	Specification	Value			
ASSAY (HCI, WAW):	34 - 37%	36%	% by w/w		
Color:	10	<10	APHA		
	Maximum	Actual		Maximum	Actual
Analyte	Specification	Value (inppb)	Analyte	Specification	Value (in ppb)
Aluminum (Al)	1 ppb	<0.5	Neodymium (Nd)	0.5 ppb	<0.1
Antimony (Sb)	1 ppb	<0.1	Nickel (Ni)	1 ppb	<0.1
Arsenic (As)	1 ppb	<0.1	Niobium (Nb)	0.5 ppb	<0.1
Barium (Ba)	1 ppb	<0.1	Palladium (Pd)	Information Only	<0.5
Beryllium (Be)	1 ppb	<0.1	Platinum (Pt)	Information Only	<0.5
Bismuth (Bi)	1 ppb	<0.1	Potassium (K)	1 ppb	<0.1
Boron (B)	1 ppb	<0.5	Praseodymium (Pr)	0.5 ppb	<0.1
Cadmium (Cd)	1 ppb	<0.1	Rhenium (Re)	0.5 ppb	<0.1
Calcium (Ca)	1 ppb	< 0.5	Rhodium (Rh)	0.5 ppb	<0.1
Cerium (Ce)	0.5 ppb	<0.1	Rubidium (Rb)	0.5 ppb	<0.1
Cesium (Cs)	0.5 ppb	<0.1	Ruthenium (Ru)	0.5 ppb	<0.1
Chromium (Cr)	1 ppb	< 0.1	Samarium (Sm)	0.5 ppb	<0.1
Cobalt (Co)	1 ppb	<0.1	Scandium (Sc)	0.5 ppb	<0.1
Copper (Cu)	1 ppb	<0.1	Selenium (Se)	1 ppb	<0.1
Dysprosium (Dy)	0.5 ppb	<0.1	Silver (Ag)	1 ppb	<0.1
Erbium (Er)	0.5 ppb	<0.1	Sodium (Na)	1 ppb	<0.5
Europium (Eu)	0.5 ppb	<0.1	Strontium (Sr)	1 ppb	<0.1
Gadolinium (Gd)	0.5 ppb	<0.1	Tantalum (Ta)	Information Only	<1
Gallum (Ga)	0.5 ppb	<0.1	Tellurium (Te)	0.5 ppb	<0.1
Gold (Au)	0.5 ppb	<0.1	Terbium (Tb)	0.5 ppb	<0.1
Hafnium (Hf)	0.5 ppb	<0.1	Thallium (TI)	0.5 ppb	<0.1
Holmium (Ho)	0.5 ppb	<0.1	Thorium (Th)	1 ppb	<0.1
Indium (In)	0.5 ppb	<0.1	Thulium (Tm)	0.5 ppb	<0.1
ron (Fe)	1 ppb	<0.5	Tin (Sn)	1 ppb	<0.1
Lanthanum (La)	0.5 ppb	<0.1	Titanium (Ti)	1 ppb	<0.1
Lead (Pb)	1 ppb	<0,1	Tungsten (W)	0.5 ppb	<0.1
Lithium (Li)	1 ppb	<0.1	Uranium (U)	1 ppb	<0.1
Lutetium (Lu)	0.5 ppb	<0.1	Vanadium (V)	1 ppb	<0.1
Magnesium (Mg)	1 ppb	<0.5	Ytterblum (Yb)	0.5 ppb	<0.1
Manganese (Mn)	1 ppb	<0.1	Yttrium (Y)	0.5 ppb	<0.1
Mercury (Hb)	1 ppb	<0.2	Zinc (Zn)	1 ppb	<0.5
Molybdenum (Mo)	1 ppb	<0.1	Zirconium (Zr)	1 ppb	<0.1
	Maximum	Actual		Maximum	Actual
Analyte	Specification	Value (in ppm)	Analyte	Specification	Value (in ppm)
Bromide (Br)	10 ppm	<10	Total Sulphur (S)	0.3 ppm	<0.3
			<b>₹</b>		

Element concentrations are at the point of bottling. Concentrations of some elements in particular, Ca, Si, K, Na, B, Al, Mg & Mn will increase due to storage in glass bottles.

< 0.01

Free Chlorine (C12)



0.01 ppm

Total Phosphorus (P)

For customer service, call 1-800-766-7000. To fax an order, use 1-800-925-1165. To order online: www.fishersci.com

0.5 ppm

< 0.5

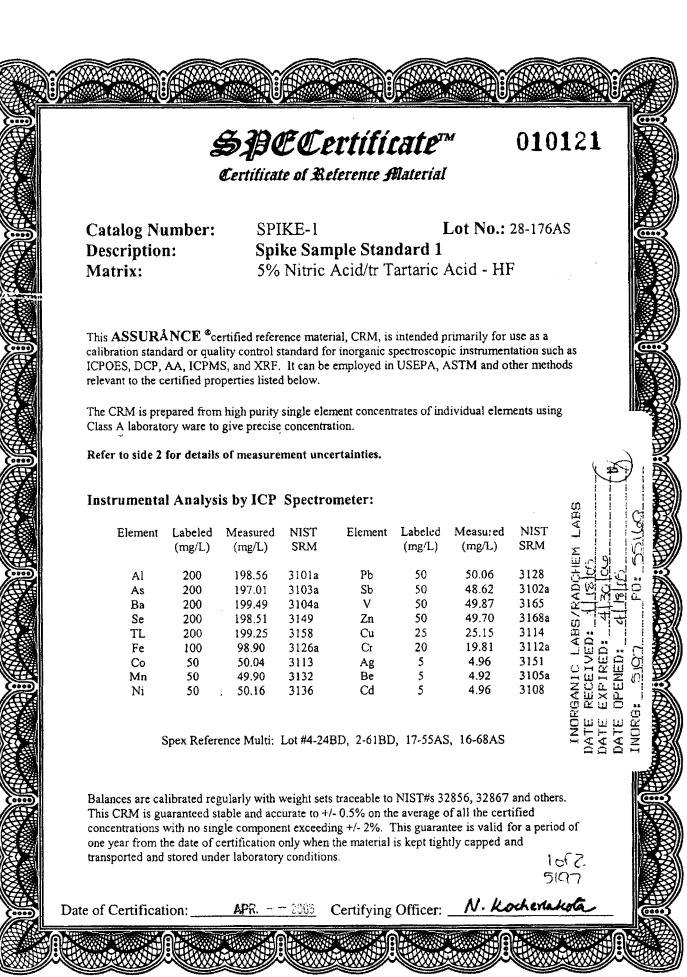
INDRGANIC LABS/RADCHEM LABS DATE RECEIVED: 10100 A/-DATE EXPIRED: 101005 D/ DATE OPENED: 101005 D/ INDRG: 5475-75480 PD: F56664

# F Fisher Scientific

### TRACEMETAL GRADE HYDROCHLORIC ACID CERTIFICATE OF ANALYSIS

8 Mikdury

Dr. B. McKelvey QA/QC Manager CATALOG NUMBER: A508 LOT NUMBER: 4105031 RELEASE DATE: July, 2005 EXPIRY DATE: July, 2008


Tests	Maximum	Actual	Units		
	Specification	Value			
ASSAY (HC), w/w ):	34 - 37%	36%	% by w/w		
Color	10	<10	APHA		
		A		h	<b>6</b>
	Maximum	Actual	L	Maximum	Actual
Analyte	Specification	Value (inppb)	Analyte	Specification	Value (inppb)
Aluminum (AI)	1 ppb	<0.5	Neodymium (Nd)	0.5 ppb	<0.1
Antimony (Sb)	1 ppb	<0.1	Nickel (Ni)	1 ppb	<0.1
Arsenic (As)	t pob	<0.1	Niobium (Nb)	0.5 pob	<0.1
Barium (Ba)	1 ppb	<0.1	Palladium (Pd)	Information Only	<0.5
Bervilium (Be)	1 ppb	<0.1	Platinum (Pt)	Information Only	<0.5
Bismuth (B)	1 ppb	<0.1	Potassium (K)	1 ppb	<0.1
Boron (B)	1 ppb	<0.5	Praseodymium (Pr)	0.5 ppb	<0.1
Cadmium (Cd)	1 ppb	<0.1	Rhenium (Re)	0.5 ppb	<0.1
Calcium (Ca)	1 ppb	<0.5	Rhodium (Rh)	0.5 ppb	<0.1
Cerium (C e)	0.5 ppb	<0.1	Rubidium (Rb)	0.5 ppb	<0.1
Cesium (Cs)	0.5 ppb	<0.1	Ruthenium (Ru)	0,5 ppb	<0.1
Chromium (Cr)	1 ppb	<0.1	Samanum (Sm)	0.5 ppb	<0.1
Cobalt (Co)	1 ppb	<0.1	Scandium (Sc)	0.5 ppb	<0.1
Copper (Cu)	1 ppb	<0.1	Selenium (Se)	1 ppb	<0.1
Dysprosium (Dy)	0.5 ppb	<0.1	Silver (Ag)	1 ppb	<0.1
Erbium (Er)	0.5 ppb	<0.1	Sodium (Na)	1 ppb	<0.5
Europium (Eu)	0.5 ppb	<0.1	Strontium (Sr)	1 ppb	<0.1
Gadolinium (Gd)	0.5 ppb	<0.1	Tantalum (Ta)	Information Only	<1
Gallium (Ga)	0.5 ppb	<0.1	Tellurium (Ta)	0.5 ppb	<0.1
Gold (Au)	0.5 ppb	<0.1	Terbium (Tb)	0.5 ppb	<0.1
Hatnium (Hf)	0.5 ppb	<0.1	Thallium (11)	0.5 ppb	<0.1
Holmium (Ho)	0.5 ppb	<0.1	Thorium (Th)	1 ppb	<0.1
Indium (In)	0.5 ppb	<0.1	Thulium (Tm)	0.5 ppb	<0.1
Iron (Fe)	1 ppb	<0.5	Tin (Sn)	1 ppb	<0.1
Lanthanum (La)	0.5 ppb	<0.1	Titanium (Ti)	1 ppb	<0.1
Lead (Pb)	1 ppb	<0.1	Tungsten (W)	0.5 ppb	<0.1
Lithium (Li)	1 ppb	<0.1	Uranium (Ù)	1 ppb	<0.1
Lutetium (Lu)	0.5 ppb	<0.1	Vanadium (V)	1 ppb	<0.1
Magnesium (Mg)	1 ppb	<0.5	Ytterblum (Yb)	0.5 ppb	<0.1
Manganese (Mn)	1 ppb	<0.1	Yttrium (Y)	0.5 ppb	<0.1
Mercury (Hg)	1 ppb	<0.2	Zinc (Zin)	1 ppb	<0.5
Molybdenum (Mo)	1 ppb	<0.1	Zirconium (Zr)	1 ppb	<0.1
	Maximum	Actual		Maximum	Actual
Analyle	Specification	Value (in ppm)	Analyte	Specification	Value (in ppm)
Bromide (Br )	10 ppm	<10	Total Sulphur (S)	0.3 ppm	<0.3
Total Phosphorus (P)	0.01 ppm	<0.01	Free Chlorine (C12)	0.5 ppm	<0.5
				-	

INDRGANIC LABS/RADCHEM LABS RECEIVED: EXPIRED INORG: 5 DATE DATE ш DATI

Element concentrations are at the point of bottling. Concentrations of some elements in particular, Ca, Si, K, Na, B, Al, Mg & Mn will increase due to storage in glass bottles.



For customer service, call 1-800-766-7000. To fax an order, use 1-800-925-1165. To order online: www.fishersci.com



© 2004 SPEX CertiPrep, Inc.

### **Report of Certification**

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement – Second Edition ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers ISO/REMCO N280

#### **Material Source:**

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

#### **Instructions for Use:**

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

#### **Method of Preparation:**

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

#### Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression  $k_s = s^2 m$  is employed to determine the sampling size

s = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty) m = the sub-sampling mass

 $k_s$  = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

#### Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X =True value (Labeled Value), U= Expanded uncertainty

 $U=ku_c$  where k=2 is the coverage factor at the 95% confidence level

 $u_c$  is obtained by combining the individual element standard uncertainty components  $u_i$  and  $u_{c*}\sqrt{\Sigma u_i^2}$ 

#### **Certification Traveler Report:**

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

#### Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.







203 Norcross Avenue • Metuchen, NJ 08840 USA



Certificate of Reference Material

Catalog Number: Description: Matrix:

### ICAL-1 Lot No.: 28-64AS Instrument Calibration Standard 1 5% Nitric Acid

010123

ABG-

INDRGANIC

N. Kochertak

JAT

This ASSURANCE [®]certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

The CRM is prepared from high purity single element concentrates of individual elements using Class A laboratory ware to give precise concentration.

Refer to side 2 for details of measurement uncertainties.

#### Instrumental Analysis by ICP Spectrometer:

Element	Labeled (mg/L)	Measured (mg/L)	NIST SRM
Ca	5,000	5011.87	3109a
K	5,000	5011.80	3141a
Mg	5,000	5020.86	3131a
Na	5,000	4995.13	3152a

Spex Reference Multi: Lot #6-28VY, 6-104VY, 25-178AS-REF

Balances are calibrated regularly with weight sets traceable to NIST#s 32856, 32867 and others. This CRM is guaranteed stable and accurate to +/-0.5% on the average of all the certified concentrations with no single element exceeding +/-2%. This includes uncertainty of measurements and other effects, such as transpiration losses. This guarantee is valid for a period of one year from the date of certification only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

Certifying Officer: ____

© 2004 SPEX CertiPrep, Inc.

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement – Second Edition ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers ISO/REMCO N280

#### **Material Source:**

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

#### **Instructions for Use:**

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

#### **Method of Preparation:**

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

#### Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression  $k_s=s^2m$  is employed to determine the sampling size

s = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 $k_s$  = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

#### Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X =True value (Labeled Value), U= Expanded uncertainty

U=kuc where k=2 is the coverage factor at the 95% confidence level

 $u_c$  is obtained by combining the individual element standard uncertainty components  $u_i$  and  $u_{c=}\sqrt{\Sigma u_i^2}$ 

#### **Certification Traveler Report:**

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

#### Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.





203 Norcross Avenue • Metuchen, NJ 08840 USA

732-549-7144 • 1-800-LAB-SPEX • Fax: 732-603-9647 • CRMSales@snexcsh.com • www.snexcsh.com

#### inorganic ventures i v /



195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

### certificate of analysis

- Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statisical Principles."
- **DESCRIPTION OF CRM** Custom-Grade 1000 µg/mL Scandium in 5% (abs) HNO3 2.0

Catalog Number:	CGSC1-1, CGSC1-2, and CGSC1-5
Lot Number:	X-SC02063
Starting Material:	Sc2O3
Starting Material Purity (%):	99.996919
Starting Material Lot No	BSC-632-1-5736
Matrix:	5% (abs) HNOз

#### 3.0 **CERTIFIED VALUES AND UNCERTAINTIES**

Certified Concentration:	1007 ± 2 µg/mL
--------------------------	----------------

**Certified Density:** 1.037 g/mL (measured at 22° C)

The Certified Value is the ICP value. The following equations are used in the calculations of the certified value and the uncertainty:

Certified Value (3) = $\Sigma_{\chi_{L}}$	(35) = mean
п	x. = individual results
	n = number of measurements
Uncertainty $(\pm) = 2[(\sum_{s_1})^{s_1}]^{s_2}$	$\Sigma_{s_1}$ = The summation of all significant estimated errors.
(n) ^{''''}	(Most common are the errors from instrumental measurement,
	weighing, dilution to volume, and the fixed error reported on the NIST
	SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

#### 4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

C "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or International standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1	Assay Method #1	<b>1007 ± 2 μg/mL</b> ICP Assay NIST SRM 3148a Lot Number: 792111	
	Assay Method #2	1006 ± 2 μg/mL	
		EDTA NIST SRM 928 Lot Number: 392110	
	INDRGANIC DATE RECEIN DATE EXPIRE DATE OPENEL INORG: 540	not the the first over the sale and star and the sale and the sale of the sale of the	Pg. lofd Sclod

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001.Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 Is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.
- 5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN μg/mL Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 μm.

				1
<u>Q</u> AI < 0.00100	<u>M</u> Dy < 0.00598	<u>M</u> LI < 0.00997	<u>M</u> Pr < 0.00030	<u>M</u> Te < 0.02990
<u>M</u> Sb < 0.00050	<u>M</u> Er < 0.00498	<u>M</u> Lu < 0.00040	<u>M</u> Re < 0.00100	<u>M</u> Tb < 0.00030
<u>M</u> i As < 0.00997	<u>M</u> Eu < 0.00299	Q Mg 0.00010	<u>M</u> Rh < 0.00100	M TI < 0.00100
<u>M</u> Ba < 0.00997	<u>M</u> Gd < 0.00100	<u>M</u> Mn < 0.00399	<u>M</u> Rb < 0.00100	M Th 0.01175
<u>M</u> Be < 0.00050	<u>M</u> Ga < 0.00100	<u>Q</u> Hg < 0.01000	<u>M</u> Ru < 0.00199	<u>M</u> Tm ≤ 0.00040
<u>M</u> Bi < 0.00040	<u>M</u> Ge < 0.00598	<u>M</u> Mo < 0.00199	<u>M</u> Sm < 0.00100	<u>M</u> Sn <⊥0.00498
<u>M</u> B < 0.06976	<u>M</u> Au < 0.00299	<u>M</u> Nd < 0.00199	<u>s</u> Sc	Q Ti < 0.00100
<u>M</u> Cd < 0.00299	<u>M</u> Hf < 0.00199	Q Ni < 0.00090	<u>M</u> Se < 0.00797	<u>M</u> W < 0.00997
<u>Q</u> Ca 0.01149	<u>M</u> Ho < 0.00050	<u>M</u> Nb < 0.00050	Q Si 0.00200	<u>M</u> U < 0.00199
<u>M</u> Ce < 0.00498	<u>M</u> In < 0.00997	<u>n</u> Os	<u>M</u> Ag < 0.00199	<u>M</u> V < 0.00199
<u>M</u> Cs < 0.00030	<u>M</u> Ir < 0.00498	<u>M</u> Pd < 0.00498	Q Na < 0.09000	<u>M</u> Yb < 0.00100
<u>O</u> Cr 0.00047	<u>Q</u> Fe 0.00037	<u>n</u> P	<u>M</u> Sr < 0.00050	Q Y < 0.00100
<u>M</u> Co < 0.00299	<u>M</u> La < 0.00050	<u>M</u> Pt < 0.00199	<u>O</u> S < 0.02500	Q Zn 0.00060
<u>O</u> Cu < 0.00140	<u>M</u> Pb < 0.00299	<u>O</u> K < 0.10000	<u>M</u> Ta < 0.00698	<u>Q</u> Zr 0.02298
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference	n - Not Checked For	s - Solution Standard Element

#### 6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

- ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP
  - For the validation of analytical methods
  - For the preparation of "working reference samples"
  - For Interference studies and the determination of correction coefficients
  - For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

20FC| 5404

#### 7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at  $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Formin Solution - 44.95591; +3; 6;  $Sc(HzO)e^{2}$ Chemical Compatibility - Soluble in HCI, HzSO and HNO2. Avoid HF, HzPO and neutral to basic media. Stable with most metals and inorganic anions forming an insoluble carbonate, oxide, oxalate, and fluoride. Avoid mixing with elements / solutions containing moderate amounts of fluoride. The fluoride is soluble in excess HF forming ScFe² (not recommended for standard preparations).

Stability - 2:100 ppb levels stable for months in 1% HNO3/LDPE container. 1-10,000 ppm solutions chemically stable for years in 5-10% HNO3/LDPE container. Small atomic radius increases hydrolysis requiring higher acid levels than other Rare Earths.

Sc Containing Samples (Preparation and Solution) - Metal (Soluble in acids), Oxide (Dissolve by heating in HzO / HNO₃); Ores (Carbonate fusion in Pt^D followed by HCI dissolution); Organic Matrices (Dry ash and dissolve in 1:1 HzO / HCI or HNO₃), (Aqua Regia or nitric / perchloric / sulfuric acid digestions can be used. Exercise caution when using perchloric acid.)

		cadial/axial view):

Technique/Line		Estimated D.L.	Order	Type	interferences (underlined indicates severe)			
ICP-OES	335.373 nm	0.004 / 0.00002 µg/mL	1	ion				
ICP-OES	337.215 nm	0.004 / 0.00002 µg/mL	1	ion	Ti, U, Ni, Rh			
ICP-OES	424.683 nm	0.003 / 0.00002 µg/mL	1	ioņ	Çe .			
ICP-MS	45 amu	2.3 ppt	n/a	M	Çe ¹⁶ oz ¹² CH, ²² Si ¹⁶ O, ⁵² Zr⁺ ²			

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

#### 10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB) Standards Council of Canada (SCC) Dutch Council for Accreditation (RVA) Entidad Mexicana de Acreditacion, a.c.(EMA) Members of IQ Net International Certification Network:



Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS)

10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"
 Chemical Testing - Accredited A2LA Certificate Number 883.01



10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers" - Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chlnese Talpei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spaln (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

10.4 10CFR50 Appendix B - Nuclear Regulatory Commission - Domestic Licensing of Production and Utilization Facilities

10.5 10CFR21 - Nuclear Regulatory Commission - Reporting Defects and Non-Compliance

10.6 MIL-STD-45662A (Obsolete/Observed)

#### 11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY



- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a property packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: December 14, 2004

Expiration Date: EXPIRES 1:2006-

#### 12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:	Nick Maida, QA Administrator
Certificate Approved By:	Katalin Le, QC Manager
Certifying Officer:	Paul Galnes, Chemist, Senior Technical Director

DJucholas Maide Knowlin de Pauk Aain

4 of cf 5404



### inorganic ventures / lv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

## certificate of analysis

- 1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statisical Principles."
- 2.0 DESCRIPTION OF CRM Cus

1.4

Custom-Grade 10000 µg/mL Scandium in 5% (abs) HNO3

Catalog Number:	CGSC10-1, CGSC10-2, and CGSC10-5
Lot Number:	X-SC02061
Starting Material:	Sc2O3
Starting Material Purity (%):	99.996918
Starting Material Lot No	BSC-632-1-5736
Matrix:	5% (abs) HNO3

#### 3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:	10,007 ± 21 µg/mL
--------------------------	-------------------

Certified Density: 1.071 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the cartified value and the uncertainty:

Certified Value (s) = $\sum x_{j}$	(a) = mean
n	x, = individual results
-	n = number of measurements
Uncertainty (±) = $2[(\sum_{s_i})^{2}]^{1/2}$	$\Sigma S =$ The summation of all significant estimated errors
(n) ^{1/2}	(Most common are the errors from instrumental measurement,
	weighing, dilution to volume, and the fixed error reported on the
	NIST SPM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

#### 4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

• "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

• This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1		Assay Method #1	10,005 ± 26 μg/mL
			ICP Assay NIST SRM 3148a Lot Number: 792111
	£	Assay Method #2	10,007 ± 21 µg/mL
			EDTA NIST SRM 928 Lot Number: 880710
		INORGA	NIC LABS/RADCHEM LABS
		DATE RE	CEIVED: 3/31 los
			PIRED: 51 1000 In
		DATE OF	ENED: 331 03
		INORG:	5175 PO: 12140

lofd

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001.Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

#### 5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

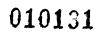
<u>0</u>	Al	<	0.00100	м	Dy	<	0.00598	М	IJ	<	0.00997	M	Pr	<	0.00030	<u> </u> <u></u>	Te	<	0.02990
Μ	Sb	<	0.00050	M	Er	<	0.00498	М	Lu	<	0.00040	M	Re	<	0.00100	M	ТЪ	<	0.00030
М	As	<	0.00997	M	Eu	<	0.00299	Q	Mg		0.00100	M	Rh	<	0.00100	M	TI	<	0.00100
<u>M</u>	Ba	<	0.00997	М	Gd	<	0.00100	М	Mn	<	0.00399	M	Rb	<	0.00100	M	Th		0.11759
М	Be	<	0.00050	М	Ga	<	0.00100	Q	Hg	<	0.01000	M	Ru	<	0.00199	M	Tm	<	0.00040
М	BI	<	0.00040	м	Ge	<	0.00598	М	Мо	<	0.00199	м	Sm	<	0.00100	M	Sn	<	0.00498
M	B	<	0.06976	М	Au	<	0.00299	М	Nd	<	0.00199	ŝ	Sc			Q	Ti	<	0.00100
М	Cd	<	0.00299	М	Hf	<	0.00199	Q	Ni	<	0.00090	M	Se	<	0.00797	M	W	<	0.00997
Q	Са		0.11500	М	Ho	<	0.00050	М	Nb	<	0.00050	<u>0</u>	Si		0.02000	M	U	<	0.00199
М	Ce	<	0.00498	М	In	<	0.00997	ם	Os			M	Ag	<	0.00199	∣⊻	v	<	0.00199
М	Cs	<	0.00030	M	Ir	<	0.00498	<u>M</u>	Pd	<	0.00498	2	Na	<	0.09000	M	Yb	<	0.00100
<u>0</u>	Cr		0.00470	Q	Fe		0.00370	ם	Р			M	Sr	<	0.00050	<u> </u> 0	Y	<	0.00100
М	Co	<	0.00299	M	La	<	0.00050	M	Pt	<	0.00199	<u>♀</u>	S	<	0.02500	<u>o</u>	Zn		0.00600
Q	Си	<	0.00140	<u>M</u>	Pb	<	0.00299 ´	Q	к	<	0.10000	M	Та	<	0.00698	<u>0</u>	Zr		0.23000
M - C	heck	ed	by ICP-MS	0-	Che	cked	by ICP-OES	i - S	pect	al I	nterference	n - I	Vot C	heo	cked For	s -	Soluti	on	Standard Element

#### 6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods


For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

2084



severe at # concs.)

#### 7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Stange & Hendling - Keep tightly sealed when not in use. Store and use at 20 ± 4°C. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Velonce; Courdination Number; Chemical Form in Solution - 44.95591; +3, 6; So(H₂O),¹³ Chemical Comparison of the Soluble in HCl, H₂SO, and HNO₈. Avoid HF, H₂PO, and neutral to basic media. Stable with most metals and morganic anions forming an insoluble carbonate, oxide, cellate, and fluoride. Avoid mixing with elements / solutions containing moderate amounts of fluoride. The fluoride is soluble in excess HF forming ScF₂^{*}(not recommended for standard preparations).

Stability - 2-100 ppb levels stable for months in 1% HNO, / LDPE container. 1-10,000 ppm solutions chemically stable for years in 5-10% HNO, / LDPE container. Small stomic radius increases hydrolysis requiring higher add levels than other Rare Earths. Sc Containing Sumples @reperation and Solution) - Metal (Solutide in acids); Oxide (Dissolve by heating in H₂O / HNO, ); Ores (Carbonate Jusion in Pt* followed by HCI dissolution); Organic Matrices (Dry ash and dissolve in 1:1 H₂O / HCI or HNO, ); Aqua Regis or ntric / perchibric / sulture acid digestions can be used. Exercise caution when using perchibric acid.) Addition (CP-OES DL s are given as radial/axiel view);

A CONTRACT A CONTRACT OF A CONTRACT OF A CONTRACT AND A CONTRACT AND A CONTRACT AND A CONTRACT AND A CONTRACT A CONTRACTACT A CONTRACT A CONTRACTACT A CONTRACT A CONTRACTACT A CONTRACTACT A CONTRACTACTACTIANA CONTRACTACTACTIANA CONTRACTACTACTACTIANA CONTRACTACTACTACTIANA CONTRACTACTIANA CONTRACTACTIANA CONTRACTACTIANA CONTRACTACTIANA CONTRACTACTIANA CONTRACTIANA CONTRACTIANA CONTRACTIANA CONTRACTIANA CONTRACTIANA CONTRACTIANA CONTRACTIANA CONTRACTACTIANA CONTRACTIANA CONTRACTIANA CONTRACTIANA CONTRACTIANA CONTRA										
Technique	/Une	Estimated D.L.	Order	Type	Interferences (underlined indicates					
ICP-OES	335373 nm -	Eetimeted D.L. 0.004 / 0.00002 µg/mL	1	ion						
ICP-OES	337.215 nm	0.004 / 0.00002 ug/mL	1	ion	Ti, U, Ni, Rh					
ICP-OES	424 683 nm	0.003 / 0.00002 µg/mL	1	ion	Ce					
ICP-MS	45 amu -	2.3 ppt	nia	M'	"Oz"CH, "Si"O, "Zr'2					

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

#### **10.0 QUALITY STANDARD DOCUMENTATION**

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB) Standards Council of Canada (SCC) Dutch Council for Accreditation (RVA) Entidad Mexicana de Acreditacion, a.c.(EMA) Members of IQ Net International Certification Network:



Argentina (IRAM), Australia (QAS), Austria (QQS), Belglum (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS).

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration" - Chemical Testing - Accredited A2LA Certificate Number 883.01



10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers" - Reference Materials Production - Accredited A2LA Certificate Number 883.02 A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipel (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, treland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

3 cf 4 6175

#### 11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY



- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a property packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs Indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: July 01, 2004

**Expiration Date:** 



#### NAMES AND SIGNATURES OF CERTIFYING OFFICERS 12.0

Certificate Prepared By:	Nick Maida, QA Administrator	-
Certificate Approved By:	Katalin Le, QC Manager	J

Prebolas Maide unonen in Pauk Aain

**Certifying Officer:** 

]

Paul Gaines, Chemist, Senior Technical Director

		•		Ertiti erence M			
Catalog N	Jumbon	PI B0-23	τηνα		Lot No.	10-119B	IND
			L Boron		LUI 110.	IV II)D	RG
Description	011:	H2O	1. BOION				••
Matrix:							4
calibration sta	ndard or qu P, AA, ICPI	ality control MS, and XRF	standard for . It can be e	inorganic sp	ectroscopic in	narily for use as a istrumentation such as M and other methods	
<b>Certified</b> V							
Uncertainty					ng/L		_
Certified Va							Ç
	e listed is th	e average of	values obtain	ned by classic		O Lot# 08001E. The and ICP spectrometer analysis	
Refer to side				rtainties.			:
Classical V Methods m	•		-	DI1.1.4	L - 1 - f	· · · · · · · · · · · · · · · · · · ·	•
				ng Phenoipht alate NIST S		cator. Sodium Hydroxide	ħ
	l Propert	ies: 1@22.3 D	egrees Cels	ius		1S Analysis:	
Element	mg/L	Element	mg/L	Element	mg/L		
A1	0.06	Cu	<0.001	Pb	<0.001		
As Ag	<0.001 0.002	Fe Ga	0.001 <0.001	Re Rb	⊲0.001 ⊲0.001		
Ba	<0.001	In	<0.001	Sr	<0.001		
Be	⊲0.001	К	⊲0.06	Sb	<0.001		6
Bi	0.03	Li	<0.001	Si	0.01		
Cd Co	⊲0.001 ⊲0.001	Mn Mo	<0.001 <0.001	Tî TI	⊲0.001 ⊲0.001		
Ca	0.001	Mg	<0.001	v	0.003		
Cr	⊲0.001	Na	0.01	Zr	⊲0.001		
This CRM is of measureme	guaranteed ints and oth cation. This ad stored un	stable to +/-0 er effects, suc s guarantee is der laborator	.5% of the c h as transpir valid only v	ertified concernation losses, when the mate	entration inch for a period o erial is kept ti	#32857 and others. usive of uncertainty of one year from the ghtly capped and r. <u>N. Koch extaketa</u>	

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement – Second Edition ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers ISO/REMCO N280

#### Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

#### Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

#### Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

#### Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression  $k_s = s^2 m$  is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

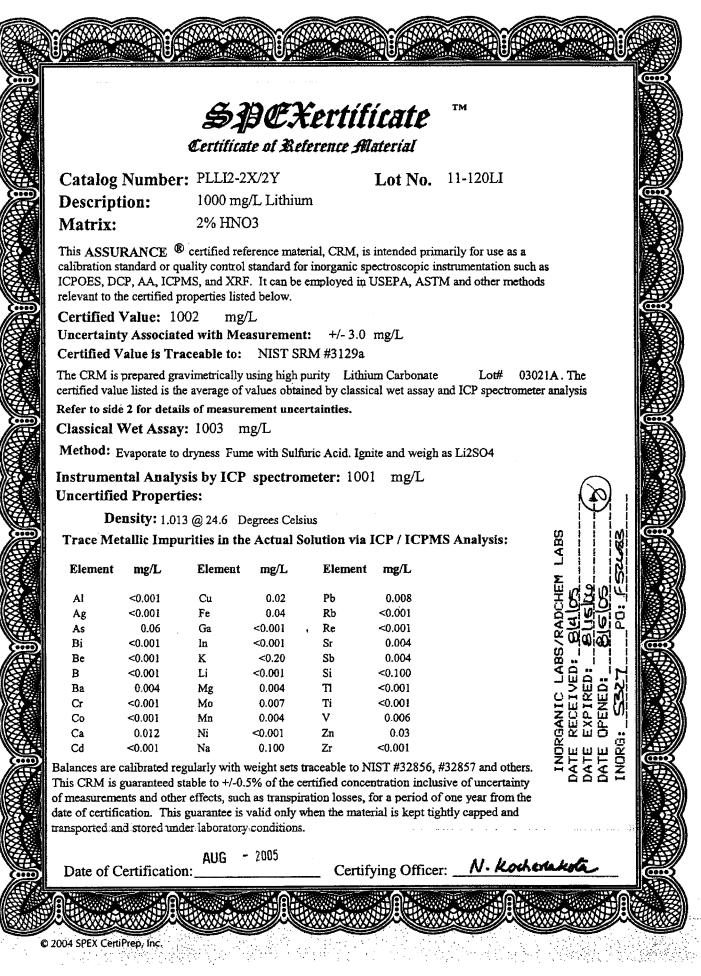
 $k_s = mass$  of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

#### Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+-U where X = True value (Labeled Value), U= Expanded uncertainty

U=ku, where k=2 is the coverage factor at the 95% confidence level

 $u_c$  is obtained by combining the individual element standard uncertainty components  $u_i$  and  $u_{in} \sqrt{\Sigma u_i^2}$ 


#### **Certification Traveler Report:**

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

#### Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.





This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995 EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement -- Second Edition ASTM Guide D6362-98 ISO Guide 34: Quality system guidelines for the production of reference materials. ISO Guide 17025: Certification of reference materials, general and statistical principles ISO Guide 31: Contents of certificates of reference materials NIST Technical Note 1297 ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers ISO/REMCO N280

#### Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

#### **Instructions for Use:**

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

#### **Method of Preparation:**

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohun, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

#### Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression  $k_s = s^2 m$  is employed to determine the sampling size

s = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty) m = the sub-sampling mass

 $k_s$  = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

#### Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X =True value (Labeled Value), U= Expanded uncertainty

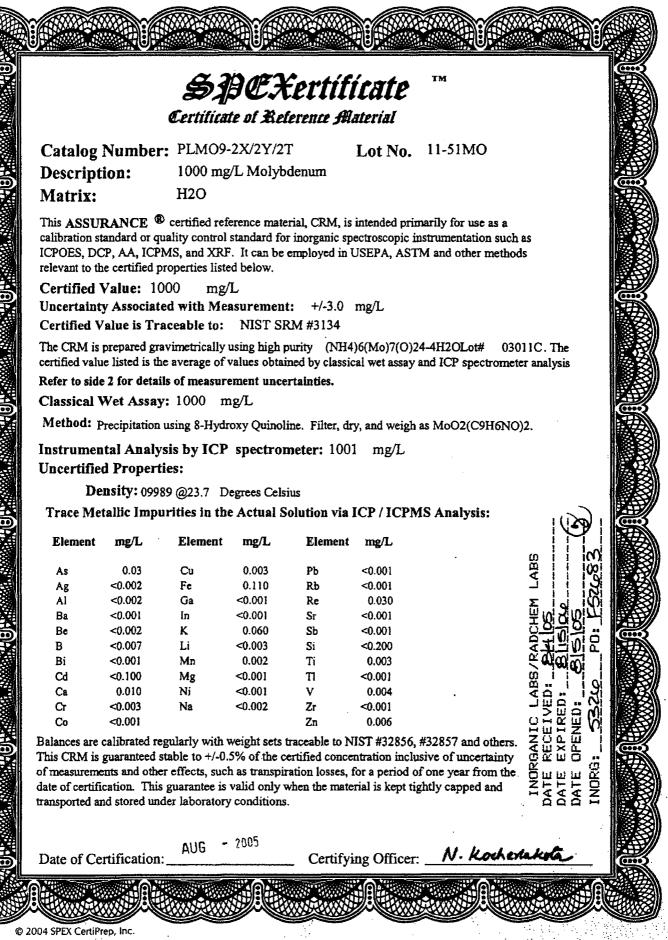
 $U=ku_c$  where k=2 is the coverage factor at the 95% confidence level

 $u_e$  is obtained by combining the individual element standard uncertainty components  $u_{\perp}$  and  $u_{e^*}\sqrt{\Sigma u_i^2}$ 

#### **Certification Traveler Report:**

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

#### **Legal Notice:**


SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.





203 Norcross Avenue • Metuchen, NJ 08840 USA

732-549-7144 • 1-800-1 AR-SPFY • Fax: 732-603-9647 • CRASalos@povern.com • water spovern.com



This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement – Second Edition ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers ISO/REMCO N280

#### **Material Source:**

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

#### **Instructions for Use:**

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

#### **Method of Preparation:**

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohin, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

#### Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression  $k_s = s^2 m$  is employed to determine the sampling size

s = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty) m = the sub-sampling mass

 $k_s$  = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

#### Statistical estimator and Confidence limits:

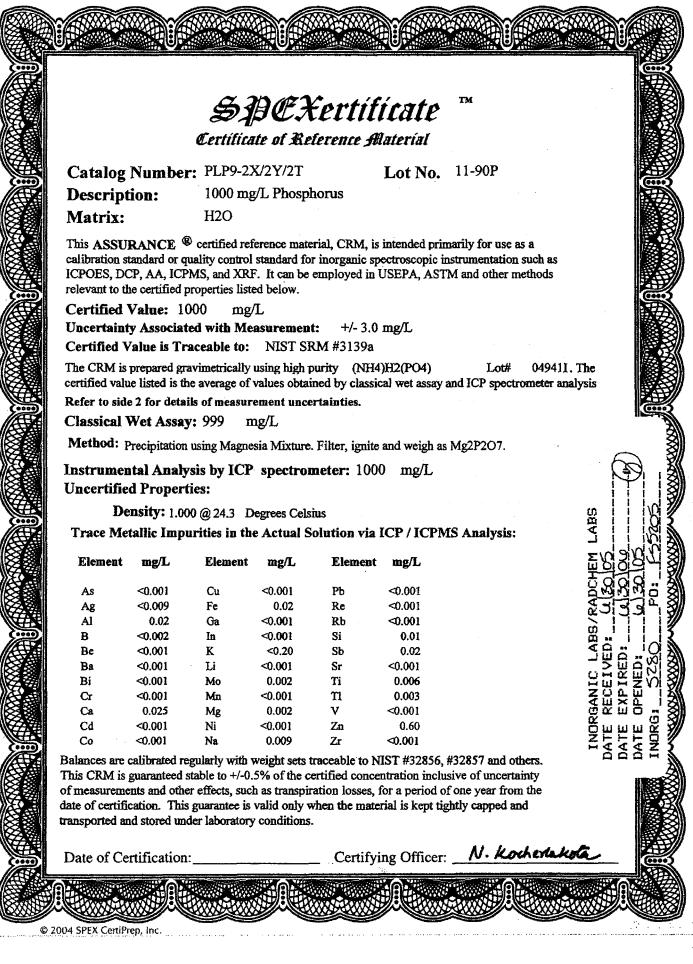
The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X =True value (Labeled Value), U= Expanded uncertainty

 $U=ku_c$  where k=2 is the coverage factor at the 95% confidence level

 $u_c$  is obtained by combining the individual element standard uncertainty components  $u_i$  and  $u_c \sqrt{\Sigma u_i^2}$ 

#### **Certification Traveler Report:**

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.


#### Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.





203 Norcross Avenue • Metuchen, NJ 08840 USA 32-549-7144 • **1-800-I AR-SPFY** • Fav: 732-603-9647 • CPMS-loc@covver.com • Uniov ensurement of



This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995 EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement – Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers ISO/REMCO N280

#### **Material Source:**

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

#### **Instructions for Use:**

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

#### **Method of Preparation:**

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

#### **Homogeneity:**

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression  $k_s = s^2 m$  is employed to determine the sampling size

s = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty) m = the sub-sampling mass

 $k_s$  = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

#### Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as

X = x+-U where X =True value (Labeled Value), U= Expanded uncertainty

U=ku, where k=2 is the coverage factor at the 95% confidence level

 $u_e$  is obtained by combining the individual element standard uncertainty components  $u_i$  and  $u_e \sqrt{\Sigma u_i^2}$ 

### **Certification Traveler Report:**

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

#### Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.





203 Norcross Avenue • Metuchen, NJ 08840 USA

-549-7144 • 1-800-1 AR-SPFY • Fax: 732-603-9647 • CPM4Salos@snovers.com • Musuus snovers.com

•

				ertífi		TM	INORG:
		Certifica	te of Re	lerence M	ateríal		50
Catalog	Number	PLSI9-22	X/2Y/2T	·	Lot No.	11-33SI	03
Descript			/L Silicon	l			00
Matrix:		H2O / 0.4	4% F-				
calibration s ICPOES, DO relevant to the	tandard or qu CP, AA, ICP he certified p	ality control MS, and XRF roperties liste	standard for . It can be d below.	inorganic spe	ctroscopic i	narily for use as a astrumentation such as M and other methods	PO: <u>FSS</u>
		01.5 mg/			mall		148
	•	ed with Mea aceable to:		t: +/-3.0 ∶ ≥M #3150	unth tr		
The CRM is	prepared gra	vimetrically	using high p	ourity (NH4)	2SiF6 al wet assay	Lot# 02021D. The and ICP spectrometer analysis	
Refer to sid	e 2 for detai	is of measure	ment unce	rtainties.			
Classical	Wet Assay	7:1004 m	ıg/L				
		using Ammor Si(Mo12O40		date and 8-H	droxy Quind	oline. Filter, dry, and weigh as	
Instrume	ntal Analy	sis by ICP	spectron	neter: 999	mg/L		
Uncertifie	ed Propert	ies:				х ⁴	
D	ensity: 1.00	1@23.7 D	egrees Cels	ius			
Trace Me	etallic Imp	arities in the	Actual S	olution via	CP / ICPM	IS Analysis:	
Element	mg/L	Element	mg/L	Element	mg/L		
Al	0.003 <0.001	Cu Fe	<0.001 0.02	Рb Rb	<0.001 <0.001		
Å۵	<0.06	Ga	<0.001	Re .	< 0.001		
Ag As		ln	<0.001	Sr	<0.001		
	⊲0.001	K	0.14	Sb	<0.001		
As Ba Be	<0.001		0.008	Ti	<0.001		
As Ba Bc B	<0.001 <0.004	Li Ma		TT	<0.001		
As Ba Bc B Bi	<0.001 <0.004 <0.001	Мо	<0.001	TI V	≪0.001 ≪0.001		
As Ba Be B	<0.001 <0.004			TI V Zn	<0.001 <0.001 0.002		
As Ba Bc B Bi Cd	<0.001 <0.004 <0.001 <0.001	Mo Mg	<0.001 <0.001	V	<0.001		
As Ba B Bi Cd Ca Cr Co	<ul> <li>&lt;0.001</li> <li>&lt;0.004</li> <li>&lt;0.001</li> <li>&lt;0.001</li> <li>&lt;0.001</li> <li>&lt;0.016</li> <li>&lt;0.001</li> <li>&lt;0.001</li> <li>&lt;0.001</li> </ul>	Mo Mg Mn Na Ni	<0.001 <0.001 <0.001 0.003 <0.004	V Zn Zr	<0.001 0.002 0.002		
As Ba Bc Bi Cd Ca Cr Co Balances are	<pre>&lt;0.001 &lt;0.004 &lt;0.001 &lt;0.001 &lt;0.001 0.016 &lt;0.001 &lt;0.001 &lt;0.001 calibrated reference</pre>	Mo Mg Mn Na Ni cgularly with v	<0.001 <0.001 <0.001 0.003 <0.004 weight sets	V Zn Zr traceable to N	<0.001 0.002 0.002 IST #32856,	#32857 and others.	
As Ba Be Bi Cd Ca Cr Co Balances are This CRM is of measurem date of certif	<0.001 <0.004 <0.001 <0.001 <0.001 0.016 <0.001 <0.001 <0.001 calibrated residuents and other ication. This	Mo Mg Mn Na Ni egularly with v stable to +/-0. er effects, suc	<0.001 <0.001 <0.001 0.003 <0.004 weight sets 5% of the c h as transpir valid only v	V Zn Zr traceable to N ertified conce ration losses, i when the mate	<0.001 0.002 0.002 IST #32856, ntration inclution inclution a period of the second	#32857 and others. sive of uncertainty of one year from the ghtly capped and	
As Ba Be Bi Cd Ca Cr Co Balances are This CRM is of measurem date of certif	<0.001 <0.004 <0.001 <0.001 <0.001 0.016 <0.001 <0.001 <0.001 calibrated residuents and other ication. This	Mo Mg Mn Na Ni egularly with v stable to +/-0. er effects, suc s guarantee is der laboratory	<0.001 <0.001 <0.001 0.003 <0.004 weight sets 5% of the c h as transpir valid only v	V Zn Zr traceable to N ertified conce ration losses, i when the mate	<pre>&lt;0.001 0.002 0.002 IST #32856, ntration inclu for a period of rial is kept tig</pre>	sive of uncertainty of one year from the	

© 2004 SPEX CertiPrep, Inc.

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995 EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement – Second Edition

ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers ISO/REMCO N280

#### Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

#### Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

#### **Method of Preparation:**

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

#### **Homogeneity:**

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression  $k_s = s^2 m$  is employed to determine the sampling size

s = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 $k_s$  = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

#### Statistical estimator and Confidence limits:

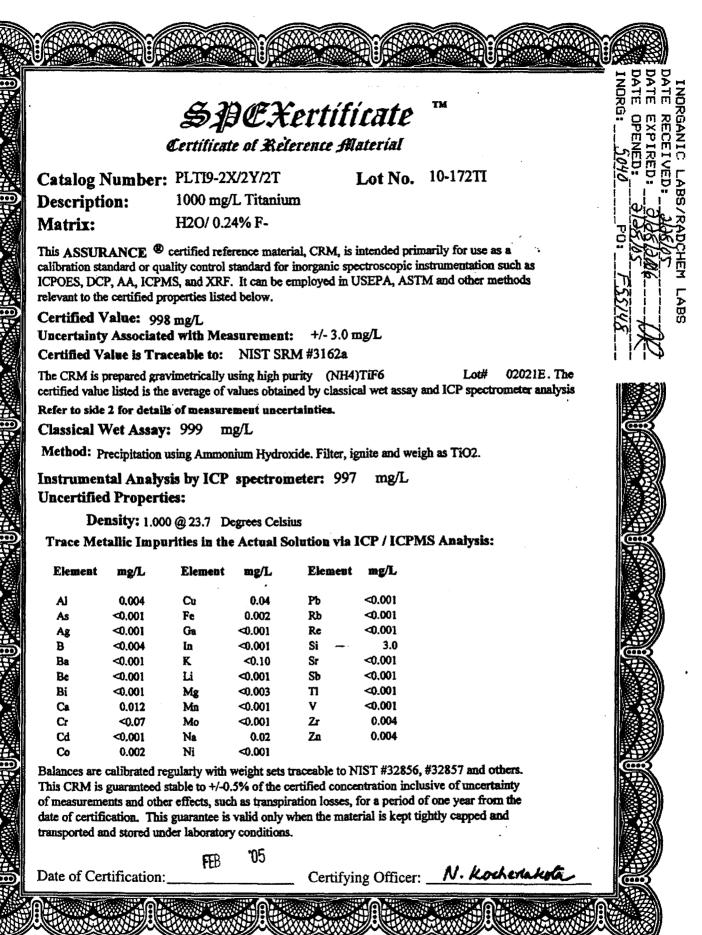
The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as

X = x+-U where X =True value (Labeled Value), U= Expanded uncertainty U=ku_c where k=2 is the coverage factor at the 95% confidence level

 $u_c$  is obtained by combining the individual element standard uncertainty components  $u_i$  and  $u_c \sqrt{\Sigma u_i^2}$ 

### **Certification Traveler Report:**

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.


#### Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.





203 Norcross Avenue • Metuchen, NJ 08840 USA



© 2004 SPEX CertiPrep, Inc.

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement – Second Edition ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers ISO/REMCO N280

### Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

#### Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the dihuent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

#### Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohum, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

#### Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression  $k_{s} = s^{2}m$  is employed to determine the sampling size

s = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 $k_s$  = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

#### Statistical estimator and Confidence limits: .

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U= Expanded uncertainty

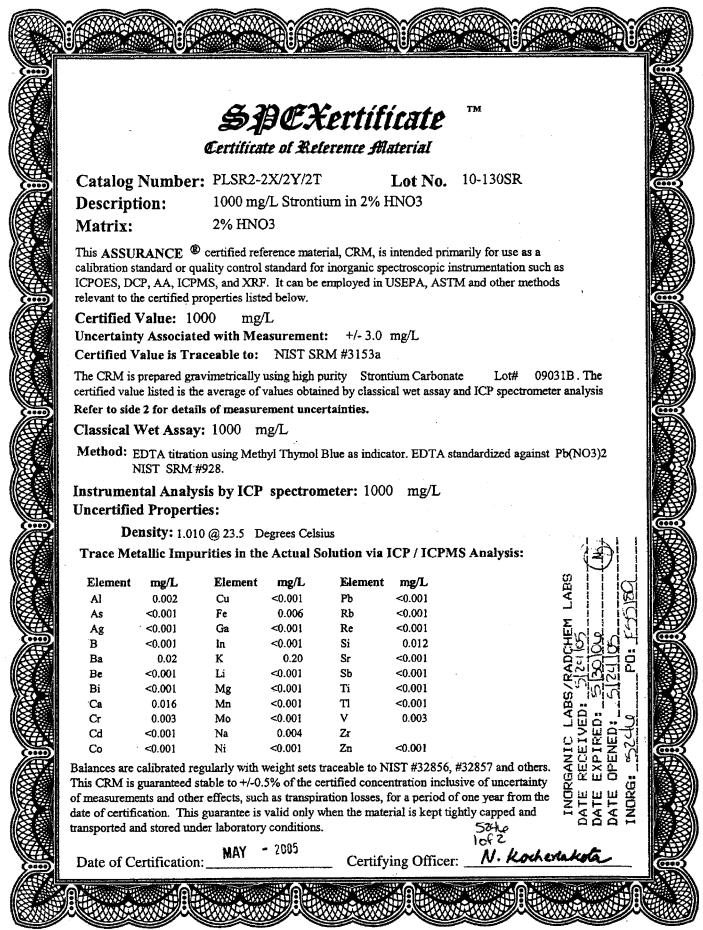
U=kue where k=2 is the coverage factor at the 95% confidence level

 $u_e$  is obtained by combining the individual element standard uncertainty components  $u_i$  and  $u_e \sqrt{\Sigma u_i^2}$ 

#### **Certification Traveler Report:**

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

#### Legal Notice:


SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.





203 Norcross Avenue • Metuchen, NJ 08840 USA

732-549-7144 • 1-800-LAB-SPEX • Fax: 732-603-9647 • CRMSales@spexcsp.com • www.spexcsp.com



© 2004 SPEX CertiPrep, Inc.

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement – Second Edition ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

#### NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers ISO/REMCO N280

#### **Material Source:**

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

#### **Instructions for Use:**

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

#### **Method of Preparation:**

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

#### Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression  $k_s = s^2 m$  is employed to determine the sampling size

s = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 $k_s = mass$  of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

#### Statistical estimator and Confidence limits:

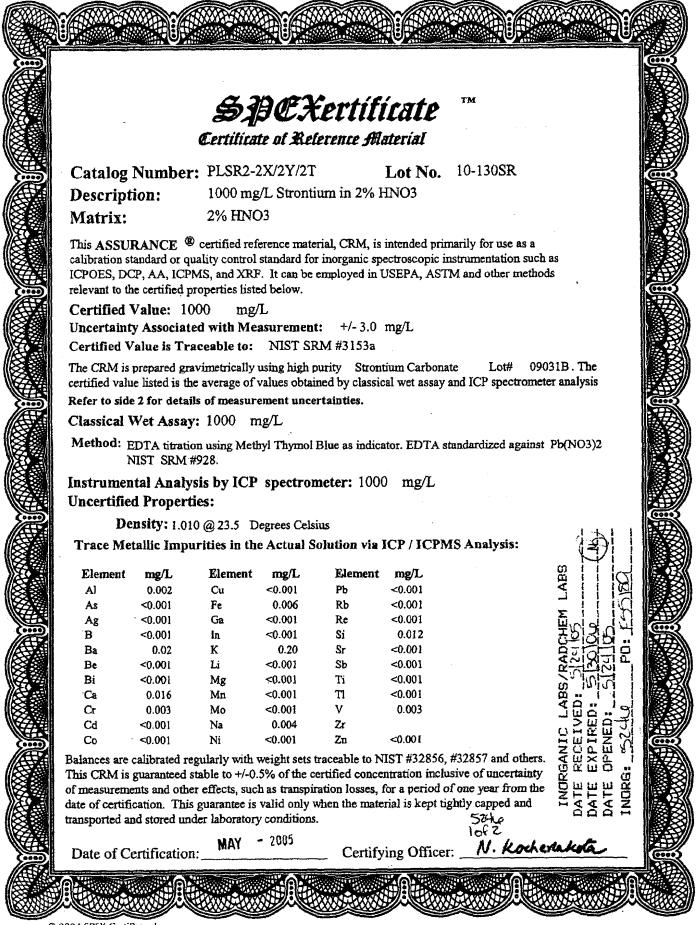
The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X =True value (Labeled Value). U= Expanded uncertainty

U=ku, where k=2 is the coverage factor at the 95% confidence level

 $u_c$  is obtained by combining the individual element standard uncertainty components  $u_i$  and  $u_{c-1}\sqrt{2}u_i^2$ 

#### **Certification Traveler Report:**

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.


#### Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.





203 Norcross Avenue • Metuchen, NJ 08840 USA



© 2004 SPEX CertiPrep, Inc.

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement – Second Edition ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers ISO/REMCO N280

#### **Material Source:**

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

#### **Instructions for Use:**

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

#### **Method of Preparation:**

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

#### Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression  $k_{s}=s^{2}m$  is employed to determine the sampling size

s = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 $k_s$  = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

#### Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X =True value (Labeled Value), U= Expanded uncertainty

U=kue where k=2 is the coverage factor at the 95% confidence level

 $u_c$  is obtained by combining the individual element standard uncertainty components  $u_i$  and  $u_c \sqrt{\Sigma u_i^2}$ 

#### **Certification Traveler Report:**

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

#### **Legal Notice:**

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.





203 Norcross Avenue • Metuchen, NJ 08840 USA

				ELIII terence A			,	
~						11.10(7)7		
		: PLBI4-2			Lot No.	11-136BI		
Descript	tion:	-	⊈/L Bismu	th			• •	
Matrix:		10% HN	103	· .				
calibration s ICPOES, DO	tandard or qu CP, AA, ICP	ality control	standard for F. It can be	r inorganic sj	pectroscopic in	narily for use a astrumentation M and other m	such as	
Certified	Value: 10	003 mg/	L					
	•	ed with Me			mg/L			
ertified V	alue is Tr	aceable to:	NIST SF	RM #3106				•
		wimetrically e average of				Lot# and ICP spectr	07931E. 1 ometer analy	
Refer to side	e 2 for detai	ls of measur	ement unce	rtainties.				
Classical V	Wet Assay	r: 1003 n	ng/L					
	EDTA titratio SRM #928.	on using Xyle	enol Orange	as indicator.	EDTA standa	ardized against	РЬ(NO3)2 ]	NIST
5	SRM #928.					ardized against	РЬ(NO3)2 ]	NIST
s Instrumen	SRM #928.	sis by ICP				ardized against	РЬ(NO3)2 ]	NIST
s Instrumen Uncertifie	SRM #928. Ital Analy d Propert	sis by ICP ies:	spectron	neter: 100		ardized against	Pb(NO3)2 ]	NIST
S nstrumen Uncertifie De	SRM #928. Ital Analy d Propert ensity: 1.05	sis by ICP ies: 2 @ 25.1 D	spectron	neter: 100	2 mg/L	ardized against IS Analysis:		NIST
S Instrumen Uncertifie De	SRM #928. ntal Analy d Propert ensity: 1.05 tallic Impu mg/L	sis by ICP ies: 2 @ 25.1 D urities in the Element	spectron egrees Cels: e Actual S mg/L	neter: 100	2 mg/L ICP / ICPM	• • •	Pb(NO3)2 ]	NIST
s nstrumen Jncertifie De Trace Me Element As	SRM #928. Ital Analy d Propert ensity: 1.05 tallic Impu mg/L <0.001	sis by ICP ies: 2 @ 25.1 D urities in the Element Cu	spectron egrees Cels: e Actual S mg/L <0.001	neter: 100 ius olution via Element Pb	2 mg/L ICP / ICPM mg/L 0.002	• • •		NIST
S Instrumen Uncertifie De Trace Me Element As Al	SRM #928. Ital Analy d Propert ensity: 1.05 tallic Impu mg/L <0.001 0.002	sis by ICP ies: 2 @ 25.1 D urities in the Element Cu Fe	spectron egrees Cels: e Actual S mg/L <0.001 0.01	neter: 100 ius olution via Element Pb Rb	2 mg/L ICP / ICPM mg/L 0.002 <0.001	• • •		NIST
s nstrumen Jncertifie De Trace Me Element As	SRM #928. Ital Analy d Propert ensity: 1.05 tallic Impu mg/L <0.001 0.002 <0.04	sis by ICP ies: 2 @ 25.1 D urities in the Element Cu	spectron egrees Cels: e Actual S mg/L <0.001	neter: 100 ius olution via Element Pb Rb Re	2 mg/L ICP / ICPM mg/L 0.002 <0.001 <0.001	• • •		NIST
S nstrumen Uncertifie De Trace Me Element As Al Ag	SRM #928. Ital Analy d Propert ensity: 1.05 tallic Impu mg/L <0.001 0.002	sis by ICP ies: 2 @ 25.1 D urities in the Element Cu Fe Ga	spectron egrees Cels: e Actual S mg/L <0.001 0.01 <0.001	neter: 100 ius olution via Element Pb Rb	2 mg/L ICP / ICPM mg/L 0.002 <0.001	• • •		1105 PD: DRODOL30
S Instrumen Uncertifie De Trace Me Element As Al Ag B	SRM #928. <b>ital Analy</b> <b>d Propert</b> <b>ensity:</b> 1.05 <b>tallic Impu</b> <b>mg/L</b> <0.001 0.002 <0.04 <0.03 <0.001 <0.002	sis by ICP ies: 2 @ 25.1 D urities in the Element Cu Fe Ga In	spectron egrees Cels: e Actual S mg/L <0.001 0.01 <0.001 <0.001 <0.001 <0.001 <0.001	neter: 100 ius olution via Element Pb Rb Re Sb Si Sr	2 mg/L ICP / ICPM mg/L 0.002 <0.001 <0.001 <0.001	• • •		POI E DE ONDOLESO
S Instrumen Uncertifie De Trace Me Element As Al Ag B Ba Ba Be Cr	SRM #928. tal Analy d Propert ensity: 1.05 tallic Impu mg/L <0.001 0.002 <0.04 <0.03 <0.001 <0.002 <0.001 <0.002 <0.001	sis by ICP ies: 2 @ 25.1 D urities in the Element Cu Fe Ga In K Li Mo	spectron egrees Cels: e Actual S mg/L <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	neter: 100 ius olution via Element Pb Rb Re Sb Si Si Sr Tl	2 mg/L ICP / ICPM mg/L 0.002 <0.001 <0.001 <0.001 0.027 <0.001 <0.001	• • •		IDITIOS POLITIOS
S Instrumen Uncertifie De Trace Me Element As Al Ag B Ba Ba Be Cr Co	SRM #928. tal Analy d Propert ensity: 1.05 tallic Impu mg/L <0.001 0.002 <0.04 <0.03 <0.001 <0.002 <0.001 <0.001 <0.001	sis by ICP ies: 2 @ 25.1 D urities in the Element Cu Fe Ga In K Li Mo Mn	spectron egrees Cels: e Actual S mg/L <0.001 0.01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	neter: 100 ius olution via Element Pb Rb Re Sb Si Sr Tl Ti Ti	2 mg/L ICP / ICPM mg/L 0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	• • •		Di IOIITIOS 37 PO: DEODOUSO 37 PO: DEODOUSO
S nstrumen Jncertifie De Trace Me Element As Al Ag B Ba Be Cr Co Co Cd	SRM #928. tal Analy d Propert ensity: 1.05 tallic Impu mg/L <0.001 0.002 <0.04 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	sis by ICP ies: 2 @ 25.1 D urities in the Element Cu Fe Ga In K Li Mo Mn Mg	spectron egrees Cels: e Actual S mg/L <0.001 0.01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	neter: 100 ius olution via Element Pb Rb Re Sb Si Sr Tl Ti V	2 mg/L ICP / ICPM mg/L 0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	• • •		RED: 10/15/00 DI TIN
S nstrumen Uncertifie De Trace Me Element As Al Ag B Ba Ba Ba Cr Cr Co	SRM #928. tal Analy d Propert ensity: 1.05 tallic Impu mg/L <0.001 0.002 <0.04 <0.03 <0.001 <0.002 <0.001 <0.001 <0.001	sis by ICP ies: 2 @ 25.1 D urities in the Element Cu Fe Ga In K Li Mo Mn Mg Ni	spectron egrees Cels: e Actual S mg/L <0.001 0.01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	neter: 100 ius olution via Element Pb Rb Re Sb Si Sr Ti Ti V Zr	2 mg/L ICP / ICPM mg/L 0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	• • •	IC LABS/RADCHEM LABS	PIRED: 10/15/64 (A) IST ENED: 10/17/05 (A) IST 9/37 PU: DAOMOUSO
strumen ncertifie De Frace Me Element As Al Ag B Ba Ba Be Cr Co Cd Ca	SRM #928. Ital Analy d Propert ensity: 1.05 tallic Impu Mg/L <0.001 0.002 <0.04 <0.001 <0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.001 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.00	sis by ICP ies: 2 @ 25.1 D urities in the Element Cu Fe Ga In K Li Mo Mn Mg Ni Na	spectron egrees Cels: e Actual S mg/L <0.001 0.01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	neter: 100 ius olution via Element Pb Rb Re Sb Si Sr Tl Ti V Zr Zn	2 mg/L ICP / ICPM mg/L 0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.05	IS Analysis:	IC LABS/RADCHEM LABS	CPENED: 10/15/05 () IS TO COPENED: 10/17/05 () IS
S astrument ncertifie De Frace Me Element As Al Ag B Ba Be Cr Co Cd Ca clances are	SRM #928. Ital Analy d Propert ensity: 1.05 tallic Impu Mg/L <0.001 0.002 <0.04 <0.001 <0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.00	sis by ICP ies: 2 @ 25.1 D rrities in the Element Cu Fe Ga In K Li Mo Mn Mg Ni Na gularly with	spectron egrees Cels: e Actual S mg/L <0.001 0.01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.003 weight sets t	neter: 100 ius olution via Element Pb Rb Re Sb Si Sr Tl Ti V Zr Zn traceable to f	2 mg/L ICP / ICPM mg/L 0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <	IS Analysis: #32857 and ot	IC LABS/RADCHEM LABS	EXPIRED: 10/15/00 OPENED: 10/17/05 6: 3/32 PO: DLOTOUSO
S nstrument ncertifie De Frace Me Element As Al Ag B Ba Be Cr Co Cd Ca llances are is CRM is	SRM #928. Ital Analy d Propert ensity: 1.05 tallic Impu mg/L <0.001 0.002 <0.04 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.004 <0.001 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.005 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.00	sis by ICP ies: 2 @ 25.1 D rrities in the Element Cu Fe Ga In K Li Mo Mn Mg Ni Na gularly with table to +/-0.	spectron egrees Cels: e Actual S mg/L <0.001 0.01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 solution <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003 <0.003	neter: 100 ius olution via Element Pb Rb Re Sb Si Sr Tl Ti V Zr Zn traceable to f ertified conce	2 mg/L ICP / ICPM mg/L 0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <	IS Analysis: #32857 and ot sive of uncerta	日記 ADRGANIC LABS/RADCHEM LABS TE RECEIVED: 10/105	EXPIRED: 10/15/00 OPENED: 10/17/05 6: 3/32 PO: DLOTOUSO
S nstrumen Jncertifie De Trace Me Element As Al Ag B Ba Ba Be Cr Co Cd Ca alances are his CRM is f measureme	SRM #928. <b>Ital Analy</b> <b>d Propert</b> <b>ensity:</b> 1.05 <b>tallic Impu</b> <b>mg/L</b> <0.001 <0.002 <0.04 <0.003 <0.001 <0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.001 <0.002 <0.004 <0.001 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0.004 <0	sis by ICP ies: 2 @ 25.1 D urities in the Element Cu Fe Ga In K Li Mo Mn Mg Ni Na gularly with table to +/-0.	spectron egrees Cels: e Actual S mg/L <0.001 0.01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 solution (0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.003 <0.003 <0.003 <0.003 <0.003 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	neter: 100 ius olution via Element Pb Rb Re Sb Si Sr Tl Ti V Zr Zn Traceable to P ertified concorration losses,	2 mg/L ICP / ICPM mg/L 0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <	IS Analysis: #32857 and ot	時代報 INORGANIC LABS/RADCHEM LABS ATE RECEIVED: 10/105	DATE EXPIRED: 10/15/60 (1) 12 DATE OPENED: 10/17/05 (2) 13 INDRG: 2/32 PO: DAONDUSO
S nstrumen Uncertifie De Trace Me Element As Al Ag B Ba Ba Be Cr Co Cd Ca Salances are his CRM is f measurement ate of certific	SRM #928. <b>Ital Analy</b> <b>d Propert</b> <b>ensity:</b> 1.05 <b>tallic Impu</b> <b>mg/L</b> <0.001 <0.002 <0.04 <0.03 <0.001 <0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.004 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.	sis by ICP ies: 2 @ 25.1 D urities in the Element Cu Fe Ga In K Li Mo Mn Mg Ni Na gularly with table to +/-0.	spectron egrees Cels: e Actual S mg/L <0.001 0.01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.002 <0.003 weight sets t valid only v y conditions	neter: 100 ius olution via Element Pb Rb Re Sb Si Sr Ti Ti V Zr Zn traceable to 1 ertified conc- ration losses, vhen the mat	2 mg/L ICP / ICPM mg/L 0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <	IS Analysis: #32857 and ot sive of uncerta f one year from	時代報 INORGANIC LABS/RADCHEM LABS ATE RECEIVED: 10/105	EXPIRED: 10/15/00 OPENED: 10/17/05 6: 3/32 PO: DLOTOUSO
S Instrument Uncertifie De Trace Me Element As Al Ag B Ba Ba Ba Be Cr Co Cd Ca Balances are his CRM is f measurement ate of certific ransported an	SRM #928. <b>Ital Analy</b> <b>d Propert</b> <b>ensity:</b> 1.05 <b>tallic Impu</b> <b>mg/L</b> <0.001 <0.002 <0.04 <0.03 <0.001 <0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.004 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.	sis by ICP ies: 2 @ 25.1 D urities in the Element Cu Fe Ga In K Li Mo Mn Mg Ni Na gularly with stable to +/-0. r effects, suc guarantee is der laboratory	spectron egrees Cels: e Actual S mg/L <0.001 0.01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.002 <0.003 weight sets t xisfi value y val	neter: 100 ius olution via Element Pb Rb Re Sb Si Sr Ti Ti V Zr Zn traceable to M ertified conc- ration losses, when the mat	2 mg/L ICP / ICPM mg/L 0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <	IS Analysis: #32857 and ot sive of uncerta f one year from ghtly capped ar	時代報 INORGANIC LABS/RADCHEM LABS ATE RECEIVED: 10/105	DATE EXPIRED: 10/15/00 DATE OPENED: 10/17/05 INDRG: 9/37 PO: DEOTOUSO

© 2004 SPEX CertiPrep, Inc.

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

#### ISO/REMCO N280

#### **Material Source:**

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

#### **Instructions for Use:**

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

#### **Method of Preparation:**

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

#### **Homogeneity:**

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression  $k_s = s^2 m$  is employed to determine the sampling size

s = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 $k_s$  = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

#### **Statistical estimator and Confidence limits:**

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X =True value (Labeled Value), U= Expanded uncertainty

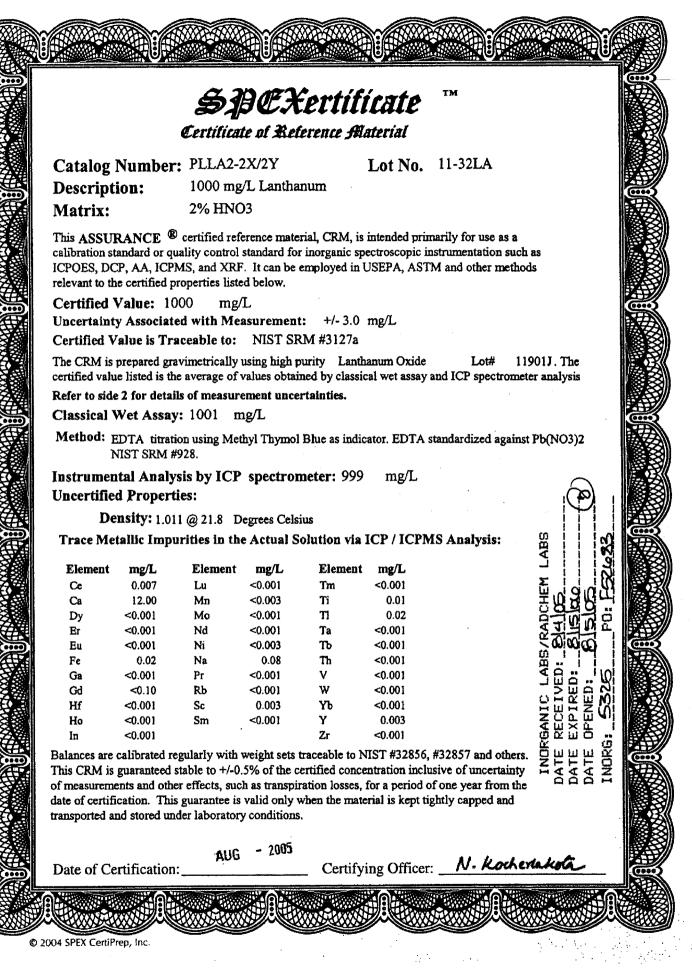
U=ku_c where k=2 is the coverage factor at the 95% confidence level

 $u_c$  is obtained by combining the individual element standard uncertainty components  $u_i$  and  $u_c = \sqrt{\Sigma u_i^2}$ 

#### **Certification Traveler Report:**

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

#### **Legal Notice:**


SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.





203 Norcross Avenue • Metuchen, NJ 08840 USA

732-549-7144 • 1-800-LAB-SPEX • Fax: 732-603-9647 • CRMSales@spexcsp.com • www.spexcsp.com



This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement – Second Edition ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers ISO/REMCO N280

#### Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

#### **Instructions for Use:**

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

#### Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

#### **Homogeneity:**

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression  $k_s = s^2 m$  is employed to determine the sampling size

s = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty) m = the sub-sampling mass

 $k_s$  = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

#### Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as

X = x+-U where X =True value (Labeled Value), U= Expanded uncertainty U=ku_c where k=2 is the coverage factor at the 95% confidence level.

 $u_c$  is obtained by combining the individual element standard uncertainty components  $u_i$  and  $u_{c*}\sqrt{\Sigma u_i^2}$ 

#### **Certification Traveler Report:**

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

#### Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.





203 Norcross Avenue • Metuchen, NJ 08840 USA

27.540.7144 • 1.801.1 AR.SPFY • Fav: 732.603.9647 • CPMS-loc@covers.com • unususpevers.com

129 200									
				Ser Over					
			<b>A</b>	ia apa	Eertífi	iesto	тм		
			_						
			Certitica	te ot Kei	terence Al	aterial			
	Catalog	Number	r: PLY2-2	X/2Y/2T		Lot No.	11-84Y		
	Descript	tion:		g/L Yttriu	m				
	Matrix:		2% HNC	)3					
	calibration s ICPOES, DO relevant to th	tandard or q CP, AA, ICP he certified p	uality control MS, and XRI properties liste	standard fo F. It can be	r inorganic spo	ectroscopic in	narily for use as a astrumentation suc M and other metho		
	Certified		U			<b>/</b> /			
		•	ed with Me aceable to:		t: +/- 3.0 RM #3167	mg/L			
					purity Yttriu	m Oxide	Lot# 04	041A.The	
	certified valu	ue listed is th	ne average of	values obtai	ined by classic		and ICP spectrome	• • • • • • • • • • • • •	
			ils of measur		rtainties.				
		•	у: 1000 п	-					
	Method: H	EDTA titrati NIST SRM #	on using Metl 1928.	ıyl Thymol	Blue as indica	tor. EDTA s	tandardized again	st Pb(NO3)2	
			-	spectror	meter: 997	mg/L			
	Uncertifie	-							
			1@24.0 D			- -			
	Trace Me	tallic Impu	irities in the	e Actual S	olution via l	CP / ICPM	IS Analysis:		
	Element	mg/L	Element	mg/L	Element	mg/L			
				<0.001	Tm	<0.001			
	Ca	0.02 <0.001	Lu	<0.001	Ti				
	Ca Ce	0.02 <0.001 <0.001	Lu La Mn	<0.001 <0.001	Ti Tl	<0.001		LAE 0720	
	Ca	<0.001	La					EM LAE	
	Ca Ce Dy Er Eu	<0.001 <0.001 <0.001 <0.001	La Mn Mo Nd	<0.001 <0.001 <0.001	Tl Tb Th	<0.001 <0.001 <0.001 <0.001		CHEM LAE LOS DS SCOTOO	
	Ca Ce Dy Er Eu Fe	<0.001 <0.001 <0.001 <0.001 0.005	La Mn Mo Nd Na	<0.001 <0.001 <0.001 0.001	TI Tb Tb Ta	<0.001 <0.001 <0.001 <0.001 <0.001		ADCHEM LAE 5 CU 1 105 PD: DUDTOO	
	Ca Ce Dy Er Eu Fe Ga	<0.001 <0.001 <0.001 <0.001 0.005 <0.001	La Mn Mo Nd Na Ni	<0.001 <0.001 <0.001 0.001 <0.001	TI Tb Th Ta V	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001		CRADCHEM LAE	
	Ca Ce Dy Er Bu Fe Ga Gd	<0.001 <0.001 <0.001 <0.001 0.005 <0.001 <0.001	La Mn Nd Na Ni Pr	<0.001 <0.001 <0.001 0.001 <0.001 <0.001	TI Tb Th Ta V W	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001		IO LITIOS IO LITIOS IO LITIOS O LITIOS PO: DUOTOO	
	Ca Ce Dy Er Eu Fe Ga Gd Ho	<0.001 <0.001 <0.001 0.005 <0.001 <0.001 <0.001	La Mn Nd Na Ni Pr Rb	<0.001 <0.001 <0.001 0.001 <0.001 <0.001 <0.001	TI Tb Th Ta V W Yb	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001		DI IOLITIOS DI IOLITIOS DI IOLISIQU IOLITIOS	
	Ca Ce Dy Er Bu Fe Ga Gd	<0.001 <0.001 <0.001 <0.001 0.005 <0.001 <0.001	La Mn Nd Na Ni Pr	<0.001 <0.001 <0.001 0.001 <0.001 <0.001	TI Tb Th Ta V W	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001		LABS/RADCHEM LAB IVED: 10 17 105 2ED: 10 15 10 4 2ED: 10 11 105 35 10 11 105	
	Ca Ce Dy Er Eu Fe Ga Gd Ho Hf In	<0.001 <0.001 <0.001 <0.001 0.005 <0.001 <0.001 <0.001 <0.001 <0.001	La Mn Nd Na Ni Pr Rb Sm Sc	<0.001 <0.001 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	TI Tb Th Ta V W Yb Zr	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	#32857 and others	NIC LABS/RADCHEM LAB DETVED: 10 (17 05 PIRED: 10 (15 04 ENED: 10 (15 04 S(3 ( PD: 040700	
	Ca Ce Dy Er Eu Fe Ga Gd Ho Hf In Balances are This CRM is	<0.001 <0.001 <0.001 0.005 <0.001 <0.001 <0.001 <0.001 <0.001 calibrated reguaranteed s	La Mn Mo Nd Na Ni Pr Rb Sm Sc scularly with v stable to +/-0.	<0.001 <0.001 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 weight sets t 5% of the ca	TI Tb Th Ta V W Yb Zr traceable to NI ertified concer	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 ST #32856, intration inclusion	sive of uncertainty		
	Ca Ce Dy Er Eu Fe Ga Gd Ho Hf In Balances are This CRM is of measurement	<0.001 <0.001 <0.001 0.005 <0.001 <0.001 <0.001 <0.001 <0.001 calibrated reguaranteed sents and other	La Mn Mo Nd Na Ni Pr Rb Sm Sc sc egularly with v stable to +/-0. er effects, suct	<0.001 <0.001 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 weight sets t 5% of the ca h as transpir	TI Tb Th Ta V W Yb Zr traceable to NI ertified concer ration losses, f	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 ST #32856, intration inclusion a period of	sive of uncertainty f one year from the	RBA REA DPIC	
	Ca Ce Dy Er Eu Fe Ga Gd Ho Hf In Balances are This CRM is of measuremed date of certifi	<0.001 <0.001 <0.001 0.005 <0.001 <0.001 <0.001 <0.001 <0.001 calibrated re guaranteed s ents and othe ication. This	La Mn Mo Nd Na Ni Pr Rb Sm Sc egularly with y stable to +/-0. er effects, such s guarantee is	<0.001 <0.001 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 weight sets t 5% of the c h as transpir valid only v	TI Tb Th Ta V W Yb Zr traceable to NI ertified concer ration losses, f when the mater	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 ST #32856, intration inclusion a period of	sive of uncertainty	RBA REA DPIC	
	Ca Ce Dy Er Eu Fe Ga Gd Ho Hf In Balances are This CRM is of measurement	<0.001 <0.001 <0.001 0.005 <0.001 <0.001 <0.001 <0.001 <0.001 calibrated re guaranteed s ents and othe ication. This	La Mn Mo Nd Na Ni Pr Rb Sm Sc egularly with y stable to +/-0. er effects, such s guarantee is	<0.001 <0.001 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 weight sets t 5% of the c h as transpir valid only v	TI Tb Th Ta V W Yb Zr traceable to NI ertified concer ration losses, f when the mater	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 ST #32856, intration inclusion a period of	sive of uncertainty f one year from the	BAI DPE	
	Ca Ce Dy Er Eu Fe Ga Gd Ho Hf In Balances are This CRM is of measuremed date of certifi	<0.001 <0.001 <0.001 0.005 <0.001 <0.001 <0.001 <0.001 <0.001 calibrated re guaranteed s ents and othe ication. This	La Mn Mo Nd Na Ni Pr Rb Sm Sc egularly with y stable to +/-0. er effects, such s guarantee is der laboratory	<0.001 <0.001 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 solutions 5% of the cather of the cather h as transpir valid only v y conditions.	TI Tb Th Ta V W Yb Zr traceable to NI ertified concer ration losses, f when the mater	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 ST #32856, intration inclusion a period of	sive of uncertainty f one year from the	RBA REA DPIC	
	Ca Ce Dy Er Eu Fe Ga Gd Ho Hf In Balances are This CRM is of measuremed date of certifit transported an	<0.001 <0.001 <0.001 0.005 <0.001 <0.001 <0.001 <0.001 <0.001 calibrated re guaranteed s ents and othe ication. This	La Mn Mo Nd Na Ni Pr Rb Sm Sc egularly with y stable to +/-0. er effects, such s guarantee is der laboratory	<0.001 <0.001 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 weight sets t 5% of the c h as transpir valid only v	TI Tb Th Ta V W Yb Zr traceable to NI ertified concer ration losses, f when the mater	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 ST #32856, intration inclusion or a period optial is kept tig	sive of uncertainty f one year from the htly capped and	INORGA DATE RE( DATE EX DATE OP( DATE OP( INORG:	
	Ca Ce Dy Er Eu Fe Ga Gd Ho Hf In Balances are This CRM is of measuremed date of certifi	<0.001 <0.001 <0.001 0.005 <0.001 <0.001 <0.001 <0.001 <0.001 calibrated re guaranteed s ents and othe ication. This	La Mn Mo Nd Na Ni Pr Rb Sm Sc egularly with y stable to +/-0. er effects, such s guarantee is der laboratory	<0.001 <0.001 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 solutions 5% of the cather of the cather h as transpir valid only v y conditions.	TI Tb Th Ta V W Yb Zr traceable to NI ertified concer ration losses, f when the mater	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 ST #32856, intration inclusion a period of	sive of uncertainty f one year from the htly capped and	INORGA DATE RE( DATE EX DATE OP( DATE OP( INORG:	
	Ca Ce Dy Er Eu Fe Ga Gd Ho Hf In Balances are This CRM is of measuremed date of certifit transported an	<0.001 <0.001 <0.001 0.005 <0.001 <0.001 <0.001 <0.001 <0.001 calibrated re guaranteed s ents and othe ication. This	La Mn Mo Nd Na Ni Pr Rb Sm Sc egularly with y stable to +/-0. er effects, such s guarantee is der laboratory	<0.001 <0.001 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 solutions 5% of the cather of the cather h as transpir valid only v y conditions.	TI Tb Th Ta V W Yb Zr traceable to NI ertified concer ration losses, f when the mater	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 ST #32856, intration inclusion or a period optial is kept tig	sive of uncertainty f one year from the htly capped and	INORGA DATE RE( DATE EX DATE OP( DATE OP( INORG:	
	Ca Ce Dy Er Eu Fe Ga Gd Ho Hf In Balances are This CRM is of measuremed date of certifit transported an	<0.001 <0.001 <0.001 0.005 <0.001 <0.001 <0.001 <0.001 <0.001 calibrated re guaranteed s ents and othe ication. This	La Mn Mo Nd Na Ni Pr Rb Sm Sc egularly with y stable to +/-0. er effects, such s guarantee is der laboratory	<0.001 <0.001 0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 solutions 5% of the cather of the cather h as transpir valid only v y conditions.	TI Tb Th Ta V W Yb Zr traceable to NI ertified concer ration losses, f when the mater	<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 ST #32856, intration inclusion or a period optial is kept tig	sive of uncertainty f one year from the htly capped and	INORGA DATE RE( DATE EX DATE OP( DATE OP( INORG:	

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers ISO/REMCO N280

#### Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

#### **Instructions for Use:**

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

#### **Method of Preparation:**

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

#### Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression  $k_s = s^2 m$  is employed to determine the sampling size

s = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty) m = the sub-sampling mass

 $k_s$  = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

#### Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+-U where X = True value (Labeled Value), U= Expanded uncertainty

 $U=ku_c$  where k=2 is the coverage factor at the 95% confidence level

 $u_c$  is obtained by combining the individual element standard uncertainty components  $u_i$  and  $u_{c*}\sqrt{\Sigma u_i^2}$ 

#### **Certification Traveler Report:**

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

#### Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.





203 Norcross Avenue • Metuchen, NJ 08840 USA

732-549-7144 • 1-800-1 AR-SPFY • Fax: 732-603-9647 • CPMS-alex@spoy.com • Willow spoy.com c

Descript Matrix: This ASSU		: PLPD3-2		terence M	laterial		2 i	11
Descript Matrix: This ASSU			2X/2Y					
Matrix: This ASSUI	ion:	1000 mg			Lot No.	9-99PD		ļ
This ASSUI		1000 mg	/L Palladi	ium				1
		10% HC	1					
ICPOES, DC	andard or qu P, AA, ICPI	uality control	standard for . It can be	r inorganic sp	ectroscopic in	earily for use as a strumentation su M and other met	ich as	ć
Certified V	Value: 99	9 mg/L						÷ f
				<b>t:</b> +/-3.0 п	ng/L			
Certified V	'alue is Tra	aceable to:	NIST SF	RM #3138				-
				purity Pallac		Lot# ( and ICP spectror	06021C. The	• •
		le average of		-	cal wet assay	and ICF specific	neter analysis	÷
		/: 999 1						
	•		-	na Eiltar dru	and weigh a	Pd(C4H7O2N2	<b>1</b> 7	•
							<i>, 2</i> .	, I
	-	sis by ICP	spectror	meter:	1000 mg/L			
Uncertifie	a Propert	les:					· · ·	
-	•						· · ·	
		7@24.2 D				~	•••••	,
		-			ICP / ICPM	S Analysis:		
		-			ICP / ICPM mg/L	S Analysis:	· · · · ·	
Trace Me	tallic Impu	arities in th	e Actual S	olution via		S Analysis:		
Trace Mer Element Al Au	tallic Impu mg/L 0.002 0.002	Element Fc Ga	e Actual S mg/L 0.033 <0.001	olution via Element Re Rh	mg/L <0.001 <0.001	S Analysis:	· · · · · · · · · · · · · · · · · · ·	
Trace Mer Element Al Au Ag	tallic Impv mg/L 0.002 0.002 <0.001	Element Fc Ga Ir	e Actual S mg/L 0.033 <0.001 <0.001	Colution via Element Re Rh Rb	mg/L <0.001 <0.001 <0.001	S Analysis:		
Trace Mer Element Al Au Ag B	tallic Impu mg/L 0.002 0.002 <0.001 <0.001	Element Fc Ga Ir In	e Actual S mg/L 0.033 <0.001 <0.001 <0.001	Colution via Element Re Rh Rb Ru	mg/L <0.001 <0.001 <0.001 <0.001	S Analysis:		
Trace Mer Element Al Au Ag B Be	tallic Impu mg/L 0.002 0.002 <0.001 <0.001 <0.001	Fc Ga Ir Mg	e Actual S mg/L 0.033 <0.001 <0.001 <0.001 0.001	Colution via Element Re Rh Rb Ru Sn	mg/L <0.001 <0.001 <0.001 <0.001 <0.001	S Analysis:		
Trace Mer Element Al Au Ag B Be Be Bi	tallic Impu mg/L 0.002 0.002 <0.001 <0.001 <0.001 <0.001	Element Fc Ga Ir In Mg Mn	e Actual S mg/L 0.033 <0.001 <0.001 <0.001 0.001 <0.001	Colution via Element Re Rh Rb Ru Sn Te	mg/L <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	S Analysis:		
Trace Mer Element Al Au Ag B Be Bi Ca	tallic Impu mg/L 0.002 0.002 0.001 0.001 0.001 0.001 0.006	Element Fc Ga Ir In Mg Mn Na	e Actual S mg/L 0.033 <0.001 <0.001 <0.001 0.001 <0.001 0.005	Colution via Element Re Rh Rb Ru Sn Te Ti	mg/L <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	S Analysis:		
Trace Mer Element Al Au Ag B Be Bi Ca Ca Cd	tallic Impu mg/L 0.002 <0.001 <0.001 <0.001 <0.001 0.006 <0.001	Element Fc Ga Ir In Mg Mn Na Ni	e Actual S mg/L 0.033 <0.001 <0.001 <0.001 <0.001 <0.001 0.005 0.001	Colution via Element Re Rh Rb Ru Sn Te Ti W	mg/L <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	S Analysis:		
Trace Mer Element Al Au Ag B Be Bi Ca Ca Cd Co	tallic Impu mg/L 0.002 <0.001 <0.001 <0.001 <0.001 0.006 <0.001 <0.001 <0.001	Element Fc Ga Ir In Mg Mn Na	e Actual S mg/L 0.033 <0.001 <0.001 <0.001 0.001 0.005 0.001 0.005 0.001 0.002	Colution via Element Re Rh Rb Ru Sn Te Ti Ti W Zr	mg/L <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	S Analysis:		
Trace Mer Element Al Au Ag B Be Bi Ca Ca Cd	tallic Impu mg/L 0.002 <0.001 <0.001 <0.001 <0.001 0.006 <0.001	Fe Ga Ir In Mg Mn Na Ni Pb	e Actual S mg/L 0.033 <0.001 <0.001 <0.001 <0.001 <0.001 0.005 0.001	Colution via Element Re Rh Rb Ru Sn Te Ti W	mg/L <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	S Analysis:		
Trace Mer Element Al Au Ag B Be Bi Ca Cd Co Co Cr Cr Cu	tallic Impu mg/L 0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.002 0.002	Element Fc Ga Ir In Mg Mn Na Ni Pb Pt	e Actual S mg/L 0.033 <0.001 <0.001 <0.001 0.001 0.005 0.001 0.005 0.001 0.002 0.008	Colution via Element Re Rh Rb Ru Sn Te Ti W Zr Zn	mg/L <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.06	•	ers.	
Trace Mer Element Al Au Ag B Be Bi Ca Cd Co Cr Cu Balances are	tallic Impu mg/L 0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.002 0.002 calibrated re	Fc Ga Ir In Mg Mn Na Ni Pb Pt Sgularly with	e Actual S mg/L 0.033 <0.001 <0.001 <0.001 0.001 0.005 0.001 0.005 0.001 0.002 0.008 weight sets	Element Re Rh Rb Ru Sn Te Ti W Zr Zn traceable to N	mg/L <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	#32857 and oth	ers. Ity	
Trace Mer Element Al Au Ag B Be Bi Ca Cd Co Cr Cu Balances are This CRM is	tallic Impu mg/L 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 calibrated re guaranteed	Fc Ga Ir In Mg Mn Na Ni Pb Pt egularly with stable to +/-0	e Actual S mg/L 0.033 <0.001 <0.001 <0.001 0.001 0.005 0.001 0.005 0.001 0.002 0.008 weight sets .5% of the c	Element Re Rh Rb Ru Sn Te Ti W Zr Zn traceable to N certified conce	mg/L <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.06 NIST #32856, entration inclu	#32857 and othe sive of uncertain	nty	
Trace Mer Element Al Au Ag B Be Bi Ca Cd Ca Cd Co Cr Cu Balances are This CRM is of measurem	tallic Impu mg/L 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.002 0.002 calibrated re guaranteed ents and other	Fc Ga Ir In Mg Mn Na Ni Pb Pt egularly with stable to +/-0 er effects, suc	e Actual S mg/L 0.033 <0.001 <0.001 <0.001 0.001 0.005 0.001 0.005 0.001 0.002 0.008 weight sets .5% of the och as transpi	Element Re Rh Rb Ru Sn Te Ti W Zr Zn traceable to N certified conce iration losses,	mg/L <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.06	#32857 and othe sive of uncertain f one year from	nty the	
Trace Mer Element Al Au Ag B Be Bi Ca Cd Co Cr Cu Balances are This CRM is of measurem date of certifi	tallic Impu mg/L 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 calibrated re guaranteed s ents and othe ication. This	Fc Ga Ir In Mg Mn Na Ni Pb Pt egularly with stable to +/-0 er effects, suc	e Actual S mg/L 0.033 <0.001 <0.001 <0.001 <0.001 0.005 0.001 0.005 0.001 0.002 0.008 weight sets .5% of the c ch as transpi valid only	Element Re Rh Rb Ru Sn Te Ti W Zr Zn traceable to N certified conce iration losses, when the mat	mg/L <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.06	#32857 and othe sive of uncertain	nty the	
Trace Mer Element Al Au Ag B Be Bi Ca Cd Co Cr Cu Balances are Fhis CRM is of measurem late of certifi ransported a	tallic Impu mg/L 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 calibrated re guaranteed s ents and othe ication. This	Element Fe Ga Ir In Mg Mn Na Ni Pb Pt egularly with stable to +/-0 er effects, suc s guarantee is der laborator	e Actual S mg/L 0.033 <0.001 <0.001 <0.001 <0.001 0.005 0.001 0.005 0.001 0.002 0.008 weight sets .5% of the c ch as transpi valid only	Element Element Re Rh Rb Ru Sn Te Ti W Zr Zn traceable to N certified conce iration losses, when the matass	mg/L <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.06 NIST #32856, entration inclu for a period o erial is kept ti	#32857 and othe sive of uncertain f one year from	nty the 1	

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement – Second Edition ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

#### Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

#### **Instructions for Use:**

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

#### Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

#### Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k=s²m is employed to determine the sampling size

S = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m =the sub-sampling mass

 $k_s = mass$  of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

#### Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U= Expanded uncertainty

U=ku, where k=2 is the coverage factor at the 95% confidence level

 $u_c$  is obtained by combining the individual element standard uncertainty components  $u_i$  and  $u_{ce} \sqrt{\Sigma u_i^2}$ 

#### Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

#### Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.



								INORGAN DATE REC DATE EXP DATE OPE INORG:
			<b>R</b> .(	ICX.				IREI IREI Sal
		(	L'ettilica	te of Rele	егепсе зи	alerial		
	Catalog	Number:	PLS9-22	K/2Y/2T		Lot No.	11-638	H HA
Ď	Descript	ion:	1000 mg	/L Sulfur				3 HAR
	Matrix:		H2O					LUAVE
	calibration st ICPOES, DC	andard or qua	lity control IS, and XRI	standard for i	norganic sp	ectroscopic in	narily for use as a strumentation such as M and other methods	M LARS
5	Certified '	Value: 100	)1.5 mg/	'L		•		$\sim$
		y Associated				mg/L		
		value is Trac prepared grav		NIST SRN		anium Sulfata	Lot# 05891M. The	1
							and ICP spectrometer analysis	
	Refer to side	e 2 for details	of measur	ement uncert	ainties.			
5	Classical V	Wet Assay:	1003 n	ng/L				
	• • • Method: • F	recipitation u	sing Bariun	1 Chloride: Fi	lter, ignite a	nd weigh as B	BaSO4.	
		tal Analysi		spectrom	eter: 1000	) mg/L		
		d Propertie						
	•	nsity: 1000	-	-				
2	Trace Me	tallic Impur	ities in th	e Actual Sol	lution via	ICP / ICPM	IS Analysis:	
	Element	mg/L	Element	mg/L	Element	mg/L		
<b>3</b>	Ag	<0.001	Cu	<0.001	Pb	<0.001		
	Al	<0.001	Fe	0.01	Re	<0.001		
劉	As Be	<0.001 <0.002	Ga In	<0.001 <0.001	Rb Si	<0.001 0.033		
	Ba	<0.001	ĸ	0.009	Sb	<0.001		(0000)
	В	<0.001	Li	<0.001	Sr	<0.001		
	Bi	<0.001	Mg	0.004	Ti	<0.001		
2	Cd	<0.001	Mn	<0.001	TI V	0.02		
	Co Ca	<0.001 0.015	Mo Na	<0.001 0.01	V Zn	<0.002 0.03	. •	
	Čr j	<0.005	Ni	<0.001	Zı	<0.001		
	This CRM is of measureme	guaranteed sta ents and other cation. This g	able to +/-0. effects, suc guarantee is	.5% of the cer h as transpirat valid only wh	tified conce tion losses, f	ntration inclusion inclusion for a period of	#32857 and others. sive of uncertainty fone year from the htly capped and	
	Date of Cer	tification:	JUL -	2005	Certifyin	g Officer:	N. Kocheraksta	
1111	10120402020204000000	ADVINE 1191 BUILDE	not the Cooper		CT4410/0000-CT444	1171-00000071		

.

© 2004 SPEX CertiPrep, Inc.

		S	PE:	<i>¥ertíf</i>	icate	тм	
		_		eterence M			
Catalog	g Numbe	r: PLTH2-	2X/2Y		Lot No.	11-82TH	
Descrip	otion:	1000 m	g/L Thori	um			• • • • • • • • • • • •
Matrix	•	2% HN	D3			`	
calibration ICPOES, I	standard or o CP, AA, ICI	quality control	standard for standard for standard for the standard for t	or inorganic sp	ectroscopic i	narily for use as astrumentation M and other me	such as
Certified	Value: 1	000 mg	/L				
	-			nt: +/- 3.0	mg/L		
		aceable to:				·	
				purity Th(N ained by classic		Lot# and ICP spectro	01851R. The
		ils of measur		•	•	•	
Classical	Wet Assa	y: 1001 n	ng/L				
Method:	EDTA titrati	ion using Xyle	enol Orango	e as indicator.	EDTA standa	ardized against	Pb(NO3)2 NIST
Instrume	SRM #928. ental Analy	ysis by ICP	' spectro	meter: 999	mg/L		
Uncertifi	ental Analy ed Proper	ties:			mg/L		
Uncertifi D	ental Analy ed Proper Pensity: 1.0	<b>ties:</b> 10 @ 24.1 D	egrees Cel			[S Analysis:	BS BS
Uncertifi D Trace M Element	ental Analy ed Proper ensity: 1.0 etallic Imp mg/L	ties: 10@24.1 D urities in th Element	egrees Cel e Actual S mg/L	sius	ICP / ICPM mg/L	[S Analysis:	LABS
Uncertifi D Trace M Element Ca	ental Analy ed Proper ensity: 1.0 etallic Imp mg/L <0.02	ties: 10@24.1 D urities in th Element Lu	egrees Cel e Actual S mg/L <0.001	sius Solution via Element Th	ICP / ICPM mg/L <0.001	[S Analysis:	IEM LABS
Uncertifi D Trace M Element Ca Ce	ental Analy ed Proper ensity: 1.0 etallic Imp mg/L <0.02 0.01	ties: 10 @ 24.1 D urities in th Element Lu La	Degrees Cel. e Actual S mg/L <0.001 0.003	sius Solution via Element Th Tb	ICP / ICPM mg/L <0.001 <0.001	[S Analysis:	CHEM LABS
Uncertifi D Trace M Element Ca	ental Analy ed Proper ensity: 1.0 etallic Imp mg/L <0.02	ties: 10@24.1 D urities in th Element Lu	egrees Cel e Actual S mg/L <0.001	sius Solution via Element Th	ICP / ICPM mg/L <0.001	[S Anałysis:	ADCHEM LABS
Uncertifi D Trace M Element Ca Ce Dy Er Eu	ental Analy ed Proper ensity: 1.0 etallic Imp : mg/L <0.02 0.01 <0.001 <0.001 <0.001 <0.001	ties: 10 @ 24.1 D urities in th Element Lu La Mo Mn Na	Degrees Cell e Actual S mg/L <0.001 0.003 <0.001 <0.001 0.04	sius Solution via Element Th Tb Tm Ta Ta Tl	ICP / ICPM mg/L <0.001 <0.001 <0.001 <0.001 <0.001	[S Analysis:	ARADCHEM LABS
Uncertifi D Trace M Element Ca Ce Dy Er Eu Fe	ental Analy ed Proper ensity: 1.0. etallic Imp : mg/L <0.02 0.01 <0.001 <0.001 <0.001 <0.001 <0.001	ties: 10 @ 24.1 D urities in th Element Lu La Mo Mn Na Na Nd	Degrees Cel. e Actual S mg/L <0.001 0.003 <0.001 <0.001 0.04 0.003	sius Solution via Element Th Tb Tm Ta Tl Tl Ti	ICP / ICPM mg/L <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	[S Anałysis:	ABS/RADCHEM LABS
Uncertifi D Trace M Element Ca Ce Dy Er Eu Fe Gd	ental Analy ed Proper ensity: 1.0. etallic Imp : mg/L <0.02 0.01 <0.001 <0.001 <0.001 <0.001 <0.01 <0.01 <0.01	ties: 10 @ 24.1 D urities in th Element Lu La Mo Mn Na Na Nd Ni	Degrees Cell e Actual S 	sius Solution via Element Th Tb Tm Ta Tl Ti V	<b>mg/L</b> <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	[S Anałysis:	LABS/RADCHEM LABS VED: 51305 ED: 513050 BD: 000000000000000000000000000000000000
Uncertifi D Trace M Element Ca Ce Dy Er Eu Eu Fe	ental Analy ed Proper ensity: 1.0. etallic Imp : mg/L <0.02 0.01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	ties: 10 @ 24.1 D urities in th Element Lu La Mo Mn Na Nd Ni Pr	Degrees Cell e Actual S 	sius Solution via Element Th Tb Tm Ta Tl Tl Ti	ICP / ICPM mg/L <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	[S Analysis:	IC LABS/RADCHEM LABS 11VED: 813/05 (RED: 8130/04 (RED: 8130/05 PD: 1072/05
Uncertifi D Trace M Element Ca Ce Dy Er Eu Fe Gd Ga	ental Analy ed Proper ensity: 1.0. etallic Imp : mg/L <0.02 0.01 <0.001 <0.001 <0.001 <0.001 <0.01 <0.01 <0.01	ties: 10 @ 24.1 D urities in th Element Lu La Mo Mn Na Na Nd Ni	Degrees Cell e Actual S 	sius Solution via Element Th Tb Tm Ta Ti Ti V W	<b>mg/L</b> <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	[S Anałysis:	PIRED: 830 DOL FIRED: 830 DOL FIRED: 830 DOL FIRED: 830 DOL FIRED: 831 05
Uncertifi D Trace M Element Ca Ce Dy Er Eu Fe Gd Ga Hf Ho	ental Analy ed Proper ensity: 1.0. etallic Imp mg/L, <0.02 0.01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	ties: 10 @ 24.1 D urities in th Element Lu La Mo Mn Na Nd Ni Pr Rb Sm	Degrees Cell e Actual S mg/L <0.001 0.003 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	sius Solution via Element Th Tb Tm Ta Ti Ti V W Y Yb	<b>mg/L</b> <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.002 <0.001	[S Anałysis:	ANIC LABS/RADCHEM LABS ECEIVED: 8305 XPIRED: 83060 PENED: 83105
Uncertifi D Trace M Element Ca Ce Dy Er Eu Fe Gd Ga Hf Ho In Balances ard This CRM i of measuren date of certific	ental Analy ed Propers ensity: 1.0. etallic Imp etallic Imp : mg/L <0.02 0.01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <	ties: 10 @ 24.1 D urities in th Element Lu La Mo Mn Na Nd Ni Pr Rb Sm Sc egularly with stable to +/-0. er effects, suc s guarantee is	Degrees Cell e Actual S mg/L <0.001 0.003 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	sius Solution via Element Th Tb Tm Ta Ti Ti V W Y Yb Zr traceable to N certified conce iration losses, when the mate	ICP / ICPM mg/L <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.002 <0.001 0.002 <0.001 0.001 TIST #32856, ntration inclu for a period of	<b>#32857 and oth</b> sive of uncertai f one year from thtly capped and	the NLLLC
Uncertifi D Trace M Element Ca Ce Dy Er Eu Fe Gd Ga Hf Ho In Balances ard This CRM i of measuren date of certific	ental Analy ed Propers ensity: 1.0. etallic Imp etallic Imp : mg/L <0.02 0.01 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <	ties: 10 @ 24.1 D urities in th Element Lu La Mo Mn Na Nd Ni Pr Rb Sm Sc egularly with stable to +/-0. er effects, suc	Degrees Cell e Actual S mg/L <0.001 0.003 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001	sius Solution via Element Th Tb Tm Ta Ti Ti V W Y Yb Zr traceable to N certified conce iration losses, when the mate	ICP / ICPM mg/L <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.002 <0.001 0.002 <0.001 0.001 TIST #32856, ntration inclu for a period of	#32857 and oth sive of uncertai f one year from	the NLLLC

••••

## Report of Certification

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement – Second Edition ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers ISO/REMCO N280

#### **Material Source:**

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

#### **Instructions for Use:**

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

#### **Method of Preparation:**

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

#### **Homogeneity:**

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression  $k_{*}=s^{2}m$  is employed to determine the sampling size

s = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty) m = the sub-sampling mass

 $k_s$  = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

#### Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+J. Where X = True value (Labeled Value), U= Expanded uncertainty

 $U=ku_c$  where k=2 is the coverage factor at the 95% confidence level

 $u_c$  is obtained by combining the individual element standard uncertainty components  $u_i$  and  $u_c = \sqrt{\Sigma u_i^2}$ 

#### **Certification Traveler Report:**

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

#### Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.





203 Norcross Avenue • Metuchen, NJ 08840 USA

737-549-7144 • 1-800-1 AR-SPEY • Fax: 737-603-9647 • CRAASales@Enorces.com • UNION EDOVER COM



This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement – Second Edition ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers ISO/REMCO N280

#### **Material Source:**

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

#### **Instructions for Use:**

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

#### **Method of Preparation:**

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohin, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

#### **Homogeneity:**

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression  $k_s = s^2 m$  is employed to determine the sampling size

s = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 $k_s$  = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

#### Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X =True value (Labeled Value). U= Expanded uncertainty

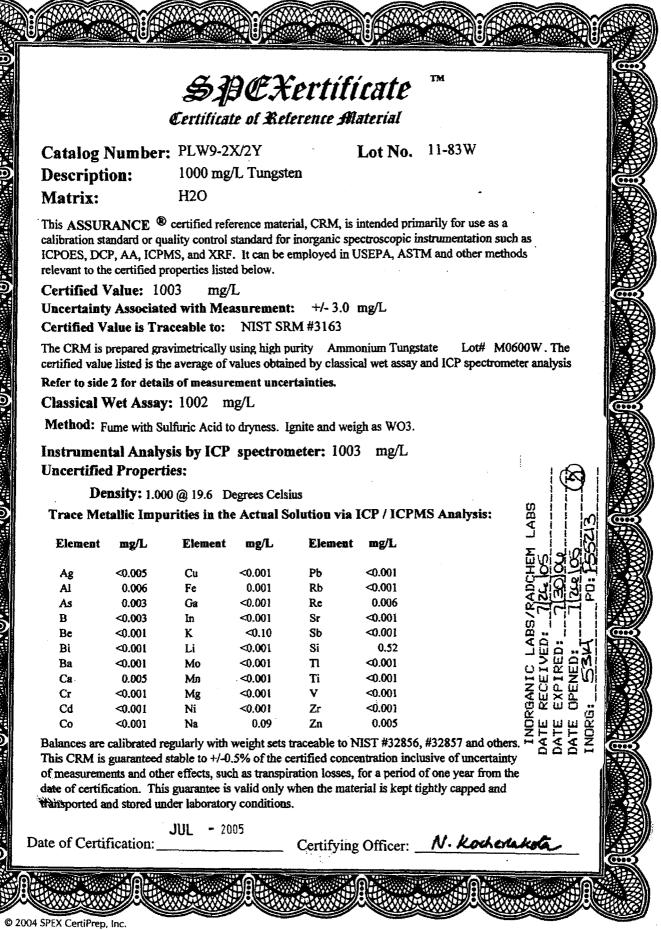
U= $ku_c$  where k=2 is the coverage factor at the 95% confidence level

 $u_o$  is obtained by combining the individual element standard uncertainty components  $u_i$  and  $u_{o*}\sqrt{\Sigma u_i^2}$ 

#### **Certification Traveler Report:**

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

#### Legal Notice:


SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.





203 Norcross Avenue • Metuchen, NJ 08840 USA

32-549-7144 • 1-800-LAB-SPEX • Fax: 732-603-9647 • CRMSales@spexcsp.com • www.spexcsp.com



This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000; Guidelines for the requirements for the competence of reference materials producers

### ISO/REMCO N280

#### **Material Source:**

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

#### **Instructions for Use:**

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

#### **Method of Preparation:**

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohin, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

#### **Homogeneity:**

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression  $k_s = s^2 m$  is employed to determine the sampling size

s = relative standard deviation in % for one component of the sample. (ic. The sub-sampling uncertainty)

m = the sub-sampling mass

 $k_s$  = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

#### **Statistical estimator and Confidence limits:**

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+-U where X = True value (Labeled Value), U= Expanded uncertainty

 $U=ku_{e}$  where k=2 is the coverage factor at the 95% confidence level

 $u_c$  is obtained by combining the individual element standard uncertainty components  $u_i$  and  $u_c \sqrt{\Sigma u_i^2}$ 

#### **Certification Traveler Report:**

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

#### Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.





203 Norcross Avenue • Metuchen, NJ 08840 USA

732-549-7144 • 1-800-LAB-SPEX • Fax: 732-603-9647 • CRMSales@spexcsp.com • www.spexcsp.com

			<b>S</b> 1	AOFA	ertífi	irsto	тм	
			-		lerence Al			PENE S
	Catalog	Number	: PLZR2-2	X/2Y/2T	•	Lot No.	11-69ZR	
	-			/L Zircon		LULINU.		
	Descript	1011:	-	•	10111			PER D
	Matrix:		2% HNC	)3				3 KE
	calibration s ICPOES, DO relevant to th	tandard or qu CP, AA, ICPI	ality control MS, and XRI roperties liste	standard for 5. It can be 2d below.	r inorganic sp	ectroscopic in	narily for use as a estrumentation such as M and other methods	2004 D
	Uncertaint	y Associate	ed with Me	asuremen	<b>t:</b> +/- 3.0	mg/L		
	Certified V	alue is Tra	aceable to:	NIST SF	RM #3169			
					ourity Zircon		Lot# 02041A. The and ICP spectrometer analysis	
			ls of measur			·····	······································	
	<b>Classical</b>	Wet Assay	и: 1004 п	ng/L				
	Method: ]	Fume with St	ulfuric Acid t	o dryness. I	gnite and weig	gh as ZrO2.		
	Instrumer	ital Analy	sis by ICP	spectron	meter: 1004	4 mg/L		
	Uncertifie	d Propert	ies:	-				
	De	ensity: 1.01	1@22.6 D	egrees Cels	ius			
	Trace Me	tallic Impu	arities in th	e Actual S	olution via	ICP / ICPM	IS Analysis:	
	Element	mg/L	Element	mg/L	Element	mg/L		
	As	<0.001	Cu	<0.001	РЪ	<0.001		
	Ag	0.03	Fe	0.02	Re	<0.001 <0.001		
	Al Ba	0.004 <0.002	Ga In	<0.001 <0.001	Rb Sb	<0.001		
	Be	< 0.001	K	<0.20	Sr	<0.001		
IA SA	Bi	0.15	Li	<0.001	Si	<0.10		
	В	<0.004	Mn	<0.001	TI	<0.001		
	Cr	<0.001	Mg	<0.001	Ti	<0.003		
	Cd Co	<0.001 <0.002	Mo Ni	<0.001 <0.001	V Zn	<0.001 0.001		
	Ca	<0.002	Na	0.001	يلامية ال	Q.QO1		
	Balances are This CRM is	calibrated re guaranteed s	gularly with stable to +/-0	weight sets .5% of the c	ertified conce	ntration inclu	#32857 and others. sive of uncertainty f one year from the	
		ication. This	s guarantee is	valid only	when the mate		ghtly capped and	
	•		,					
			FEB	'05		-	Al barbara i A	
	Date of Co	ertification	• •		Certify	ing Officer	N. Kochertakota	

© 2004 SPEX CertiPrep, Inc.

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement – Second Edition ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers ISO/REMCO N280

#### **Material Source:**

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

#### Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

#### Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

#### Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression  $k_s = s^2 m$  is employed to determine the sampling size

s = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 $k_s$  = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

#### Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value). U= Expanded uncertainty

 $U=ku_c$  where k=2 is the coverage factor at the 95% confidence level

 $u_c$  is obtained by combining the individual element standard uncertainty components  $u_i$  and  $u_c \sqrt{\Sigma u_i^2}$ 

#### **Certification Traveler Report:**

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

#### Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.





203 Norcross Avenue • Metuchen, NJ 08840 USA

				Ertít Sertít		тм	DATE RE DATE EX DATE OP
				ieienie Ji			
	log Number			•	Lot No.	V9-56NA	
Desci	ription:		ng/L Sodi	um			
Matr	ix:	5% HNC	03				
calibrati ICPOES relevant Certifi	ion standard or q S, DCP, AA, ICF to the certified p ied Value: 99	puality control PMS, and XRI properties liste 984 mg/L	standard fo 7. It can be ed below.	r inorganic sp employed in	ectroscopic i USEPA, AST	marily for use as a nstrumentation such as M and other methods	34 <u>95</u> 1 <u>3094</u>
	ainty Associat				) mg/L		T X
	ed Value is Tr			RM # 3152a			
	M is prepared gr					and ICP spectrometer ana	
	side 2 for deta	-			cal wel assay	and ICF spectrometer ana	irysis
792	al Wet Assa						
	d: Evaporate to	-	-	uric Acid Ion	ite and weigh	28 No2804	
Uncert	mental Analy ified Propert Density: 1.04 Metallic Imp	ties: 48 @ 23.1 D	egrees Cels	ius	. –	15 Analysis:	
Elem		Element	mg/L	Element	mg/L	·	
EA I	<0.001	Cu	0.01	РЪ	0.009		
As	<0.01	Fe	0.02	Re	<0.001		
	⊲0.02	Ga	<0.001	Rb	<0.001		
Ag Ag	-0.06	I		<b>C</b> _			
В	<0.05 0.01	ln K	<0.001	Sr Sh	<0.002		
	<0.05 0.01 <0.009	ln K Li	<0.001 2.50 <0.002	Sr Sb Si			
B Ba	0.01	K	2.50	Sb	<0.002 <0.001		
B Ba Be Bi Ca	0.01 <0.009 0.001 0.75	K Li Mg Mn	2.50 <0.002 0.20 0.001	Sb Si Ti Ti	<0.002 <0.001 0.14 <0.02 <0.001		
B Ba Be Bi Ca Cr	0.01 <0.009 0.001 0.75 <0.02	K Li Mg Mn Mo	2.50 <0.002 0.20 0.001 <0.001	Sb Si Ti TI V	<0.002 <0.001 0.14 <0.02 <0.001 0.002		
B Ba Be Bi Ca Cr Cd	0.01 <0.009 0.001 0.75 <0.02 <0.001	K Li Mg Mn	2.50 <0.002 0.20 0.001	Sb Si Ti TI V Zr	<0.002 <0.001 0.14 <0.02 <0.001 0.002 <0.01		
B Ba Ba Bi Ca Cr Cd Co Balances This CRM of measure date of ce	0.01 <0.009 0.001 0.75 <0.02 <0.001 <0.001 are calibrated re is guaranteed a rements and other	K Li Mg Mn Mo Ni egularly with v stable to +/-0.: er effects, such s guarantee is der laboratory	2.50 <0.002 0.20 0.001 <0.001 <0.006 weight sets t 5% of the connection of the conne	Sb Si Ti Tl V Zr Zn raceable to N ertified conce ation losses, f when the mate	<0.002 <0.001 0.14 <0.02 <0.001 0.002 <0.01 0.02 IST #32856, ntration inclu for a period o	#32857 and others. sive of uncertainty f one year from the ghtly capped and	
B Ba Ba Bi Ca Cr Cd Co Balances This CRM of measur date of ce transporte	0.01 <0.009 0.001 0.75 <0.02 <0.001 <0.001 are calibrated re frements and other artification. This	K Li Mg Mn Mo Ni egularly with v stable to +/-0.: er effects, such s guarantee is der laboratory	2.50 <0.002 0.20 0.001 <0.001 <0.006 weight sets t 5% of the connection as transpir valid only w	Sb Si Ti Tl V Zr Zn raceable to N ertified conce ation losses, i when the mate	<0.002 <0.001 0.14 <0.02 <0.001 0.002 <0.01 0.02 IST #32856, ntration inclu for a period o rial is kept tig	sive of uncertainty f one year from the	

## Report of Certification

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

### ISO/REMCO N280

#### Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

#### Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

#### Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

#### Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression k, =s²m is employed to determine the sampling size

s = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty) m = the sub-sampling mass

 $k_s = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single$ determination

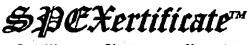
#### Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+-U where X = True value (Labeled Value), U= Expanded uncertainty

U=kue where k=2 is the coverage factor at the 95% confidence level

 $u_c$  is obtained by combining the individual element standard uncertainty components  $u_i$  and  $u_c \sqrt{\Sigma u_i^2}$ 

#### **Certification Traveler Report:**


All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

#### Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.



DATE NA N



Certificate of Reference Alaterial

Catalog Number: ICV-2A **Description:** Matrix:

Lot No.: 29-175AS **Initial Calibration Verification Standard II** 5% Nitric Acid

This ASSURANCE [®]certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

The CRM is prepared from high purity single element concentrates of individual elements using Class A laboratory ware to give precise concentration.

#### Instrumental Analysis by ICP Spectrometer:

Element	Labeled (mg/L)	Measured (mg/L)	NIST SRM	Element	Labeled (mg/L)	Measured (mg/L)	NIST SRM	
Ca	2,000	1,995.81	3109a	Ni	500	499.54	3136	
K	2,000	1,995.56	3141a	<b>v</b>	500	499.79	3165	3
Mg	2,000	1,995.61	3131a	Cr	. 200	199.97	·3112a	
Na	2,000	1,995.63	3152a	Cu	200	199.98	3114	č
A1	1,000	989.06	3101a	Ag	100	99.44	3151	5
Ba	1,000	999.68	3104a	Be	100	99.16	3105a	
Fe	1,000	995.89	3126a	Mn	100	100.03	3132	1
Co	500	500.41	3113	Zn	100	100.06	3168a	i i

Spex Reference Multi: Lot # 1-58GM, 15-37AS, 11-171AS REF

INDRGAN Balances are calibrated regularly with weight sets traceable to NIST#s 32856, 32867 and others. This CRM is guaranteed stable and accurate to +/- 0.5% on the average of all the certified concentrations with no single component exceeding +/- 2%. This guarantee is valid for a period of one year from the date of certification only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

OCT. - - 2005

Certifying Officer: ______ N. Kochevaka

© 2004 SPEX CertiPrep, Inc.

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement – Second Edition ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers ISO/REMCO N280

#### **Material Source:**

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

#### Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A-volumetric glassware.

### Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

#### Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression  $k_i = s^2 m$  is employed to determine the sampling size

s = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty) m = the sub-sampling mass

 $k_s =$  mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

#### Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+-U where X = True value (Labeled Value), U= Expanded uncertainty

U=kuc where k=2 is the coverage factor at the 95% confidence level

 $u_c$  is obtained by combining the individual element standard uncertainty components  $u_i$  and  $u_c \sqrt{\Sigma u_i^2}$ 

#### **Certification Traveler Report:**

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

#### Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.





203 Norcross Avenue • Metuchen, NJ 08840 USA

732-549-7144 • 1-800-1 AB-SPFX • Fax: 732-603-9647 • CRMSaler@enevron.com • www.enevron.com

10000								
Ð								
X			æ2	p n z Y	anti	fiesta	ТМ	
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<b>BU</b> A	em	fícate		
			Certifica	te of Reli	erence s	Alateríal		
	Catalog	Number	PLSB7-2	2X/2Y/2T		Lot No.	11-02SB	
11	Descript			/L Antimo	nv -	2001.00		
X	Matrix:		-	6% Tart.A	•	NO3		
							narily for use as a	
					-		namy for use as a an an astrumentation such a	15
	ICPOES, DO	CP, AA, ICP	MS, and XRI	F. It can be e			M and other methods	
3		-	roperties liste					
X	Certified Uncertaint		97 mg/ ed with Me		: +/- 3	0 mg/I.		
		-	aceable to:			-		
₩ ₩						timony Metal		IA. The
				,		ssical wet assay	and ICP spectromete	r analysis
			ls of measur	_	rtainties.			
R	Classical '	•		ng/L				
	Method:]	Evaporate to	dryness. Fun	e with nitric	acid. Igni	te and weigh as	Sb2O4.	
		-	sis by ICP	spectron	neter: 9	97 mg/L		
	Uncertifie	-						
翔			3@31.6 D	-				
2	Trace Me	tallic Impu	irities in th	e Actual So	olution v	ia ICP / ICPN	18 Analysis:	LABS
	Element	mg/L	Element	mg/L	Eleme	nt mg/L		
	Al Ag	0.02 <0.001	Cu Fe	0.002 35.00	Pb Rb	0.002 <0.001		
	As	0.03	Ga	<0.001	Re	<0.001		
3	Ba	0.005	In	<0.001	Sr	0.001		
I	B B;	<0.50 0.003	K , Li	0.90 <0.004	Si Ti	0.08 0.004		
	Bi Be	<0.003	Mo	<0.004 <0.001	TI	0.004		
		<0.01	Mg	0.07	v	<0.004		
	Cr	~0.01						二元 计合体 机
	Ca	4.00	Mn	<0.003	Zr	<0.001		
	Ca Co	4.00 <0.001	Mn Ni	<0.001	Zr Zn			RGAN REA DPF
	Ca Co Cd	4.00 <0.001 <0.001	Mn Ni Na	<0.001 0.03	Zn	<0.001 2.00	#27057	SC S
	Ca Co Cd Balances are	4.00 <0.001 <0.001 calibrated re	Mn Ni Na gularly with	<0.001 0.03 weight sets t	Zn raceable t	<0.001 2.00 0 NIST #32856,	#32857 and others.	INDRGAN DATE REC DATE EXF DATE EXF DATE OPE INDRG:
	Ca Co Cd Balances are This CRM is	4.00 <0.001 <0.001 calibrated re guaranteed s	Mn Ni Na egularly with stable to +/-0	<0.001 0.03 weight sets t .5% of the ce	Zn raceable t ertified co	<0.001 2.00 o NIST #32856, ncentration inclu	sive of uncertainty	ZEEEO 🕨
	Ca Co Cd Balances are This CRM is of measurem	4.00 <0.001 <0.001 calibrated re guaranteed s ents and other	Mn Ni Na egularly with stable to +/-0 er effects, suc	<0.001 0.03 weight sets t .5% of the ce h as transpire	Zn raceable t ertified co ation loss	<0.001 2.00 o NIST #32856, ncentration inch es, for a period o		INDRGAN DATE REC DATE EXF DATE OPE INDRG:
	Ca Co Cd Balances are This CRM is of measurem	4.00 <0.001 <0.001 calibrated re guaranteed : ents and othe ication. This	Mn Ni Na egularly with stable to +/-0 er effects, suc s guarantee is	<0.001 0.03 weight sets t .5% of the ce h as transpir valid only w	Zn raceable t ertified co ation losse when the m	<0.001 2.00 o NIST #32856, ncentration inch es, for a period o	sive of uncertainty of one year from the	INDRGAN DATE REC DATE EXE DATE OPE INDRG:
A A A A A A A A A A A A A A A A A A A	Ca Co Cd Balances are This CRM is of measurem date of certifi	4.00 <0.001 <0.001 calibrated re guaranteed : ents and othe ication. This	Mn Ni Na egularly with stable to +/-0 er effects, suc s guarantee is	<0.001 0.03 weight sets t .5% of the ce h as transpir valid only w	Zn raceable t ertified co ation losse when the m	<0.001 2.00 o NIST #32856, ncentration inch es, for a period o	sive of uncertainty of one year from the	INDRGAN DATE REC DATE EXE DATE OPE INDRG:
	Ca Co Cd Balances are This CRM is of measurem date of certift transported a	4.00 <0.001 <0.001 calibrated re guaranteed : ents and othe ication. This	Mn Ni Na cgularly with stable to +/-0 er effects, suc s guarantee is der laborator	<0.001 0.03 weight sets t .5% of the ce h as transpir valid only w	Zn raceable t ertified co ation loss when the m	<0.001 2.00 o NIST #32856, ncentration inches, for a period o paterial is kept ti	sive of uncertainty of one year from the	
	Ca Co Cd Balances are This CRM is of measurem date of certift transported a	4.00 <0.001 <0.001 calibrated re guaranteed s ents and othe ication. This nd stored un	Mn Ni Na cgularly with stable to +/-0 er effects, suc s guarantee is der laborator	<0.001 0.03 weight sets t .5% of the ce h as transpir valid only w y conditions.	Zn raceable t ertified co ation loss when the m	<0.001 2.00 o NIST #32856, ncentration inches, for a period o paterial is kept ti	isive of uncertainty of one year from the ghtly capped and	
	Ca Co Cd Balances are This CRM is of measurem date of certift transported a	4.00 <0.001 <0.001 calibrated re guaranteed s ents and othe ication. This nd stored un	Mn Ni Na cgularly with stable to +/-0 er effects, suc s guarantee is der laborator	<0.001 0.03 weight sets t .5% of the ce h as transpir valid only w y conditions.	Zn raceable t ertified co ation loss when the m	<0.001 2.00 o NIST #32856, ncentration inches, for a period o paterial is kept ti	isive of uncertainty of one year from the ghtly capped and	

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression $k_{i}=s^{2}m$ is employed to determine the sampling size

s = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty) m = the sub-sampling mass

 $k_s = mass$ of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+-U where X =True value (Labeled Value), U= Expanded uncertainty

 $U=ku_c$ where k=2 is the coverage factor at the 95% confidence level

 u_c is obtained by combining the individual element standard uncertainty components u_i and $u_c \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

203 Norcross Avenue • Metuchen, NJ 08840 USA

732-549-7144 . 1-800-1 AR SPFY . For. 732 603 0647 . CBASalas Consuces and a

LABS

DATE DATE Þ

Certificate of Reference Material

Catalog Number: **Description:** Matrix:

ICV-2C Lot No.: 29-176AS Initial Calibration Verification Standard II 5% Nitric Acid

This ASSURANCE [®]certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for inorganic spectroscopic instrumentation such as ICPOES, DCP, AA, ICPMS, and XRF. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

The CRM is prepared from high purity single element concentrates of individual elements using Class A laboratory ware to give precise concentration.

Refer to side 2 for details of measurement uncertainties.

Instrumental Analysis by ICP Spectrometer:

Element	Labeled (mg/L)	Measured (mg/L)	NIST SRM
As	500	499.69	3103a
Pb	500	499.61	3128
Se	500	499.91	3149
TL	500	499.92	3158
Cd	100	99.90	3108

Balances are calibrated regularly with weight sets traceable to NIST#s 32856, 32867 and others. This CRM is guaranteed stable and accurate to +/- 0.5% on the average of all the certified concentrations with no single element exceeding +/- 2%. This includes are measurements and other effects, such as transmission of one year from the date of transported and stored under laboratory conditions.

OCT. - - 2005 Date of Certification:

Certifying Officer: N. Kochertako

© 2004 SPEX CertiPrep, Inc.

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement – Second Edition ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression $k_s = s^2 m$ is employed to determine the sampling size

s = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty) m = the sub-sampling mass

 k_s = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+J. Where X =True value (Labeled Value), U= Expanded uncertainty

U=ku, where k=2 is the coverage factor at the 95% confidence level

 u_c is obtained by combining the individual element standard uncertainty components u_i and $u_c \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

203 Norcross Avenue • Metuchen, NJ 08840 USA

737-549-7144 • 1-RAALI AR.SPFY • Fax: 737.603.0647 • CPAASalar@enovers.com • 48-84 enovers.com

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

- 1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statisical Principles."
- 2.0 DESCRIPTION OF CRM Custom-Grade 10000 µg/mL Aluminum in 5% (abs) HNO3

Catalog Number:	CGAL10-1, CGAL10-2, and CGAL10-5
Lot Number:	X-AL04021
Starting Material:	Al metal
Starting Material Purity (%):	99.997990
Starting Material Lot No	607116
Matrix:	5% (abs) HNO3

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration: 10,030 ± 19 µg/mL

Certified Density:

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (34) = $\Sigma_{X_{i}}$	(35) = mean
n	x, = individual results
	n = number of measurements
Uncertainty $(\mathbf{t}) = 2[(\sum_{i \in J})]^{n}$	$\Sigma_{\mathbf{S}_1}$ = The summation of all significant estimated errors.
(ŋ) ⁴	(Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the NIST SRM certificate of analysis.)

1.071 g/mL (measured at 22° C)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

"Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1	Assay Method #1	10,030 ± 19 μg/mL						
		ICP Assay NIST SRM 3101a Lot Number: 010808						
	Assay Method #2	10,022 ± 21 µg/mL						
		EDTA NIST SRM 928 Lot Number: 392110						

INORGANIC LABS/RADCHEM LABS DATE RECEIVED: 92305 DATE EXPIRED: 10 DATE OPENED: _____Q_2710F INORG: 5405 PO: DO

pg.16Fd

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>s</u> Al	<u>M</u> Dy < 0.03378	<u>O</u> Li < 0.00020 <u>M</u> Pr < 0.00169	<u>M</u> Te < 0.16892
<u>M</u> Sb < 0.00282	<u>M</u> Er < 0.02815	<u>M</u> Lu < 0.00225 <u>M</u> Re < 0.00563	<u>M</u> Tb < 0.00169
<u>M</u> As < 0.05631	<u>M</u> Eu < 0.01689	<u>Q</u> Mg 0.00498 <u>M</u> Rh < 0.00563	<u>M</u> TI < 0.00563
<u>M</u> Ba < 0.05631	<u>M</u> Gd < 0.00563	<u>M</u> Mn < 0.02252 <u>M</u> Rb < 0.00563	<u>M</u> Th < 0.00563
<u>O</u> Be < 0.00017	<u>M</u> Ga < 0.00563	<u>Q</u> Hg < 0.00700 <u>M</u> Ru < 0.01126	<u>M</u> Tm < 0.00225
<u>M</u> Bi < 0.00225	<u>M</u> Ge < 0.03378	<u>M</u> Mo < 0.01126 <u>M</u> Sm < 0.00563	<u>M</u> Sn < 0.02815
<u>O</u> B 0.01173	<u>M</u> Au < 0.01689	M_Nd < 0.01126 M_Sc < 0.05631	<u>O</u> Ti 0.00213
<u>M</u> Cd < 0.01689	<u>M</u> Hf < 0.01126	<u>Q</u> № < 0.00600 <u>M</u> Se < 0.04505	<u>M</u> W < 0.05631
<u>Q</u> Ca 0.01013	<u>M</u> Ho < 0.00282	<u>M</u> Nb < 0.00282 <u>O</u> Si 0.07462	<u>M</u> U ≤ 0.01126
<u>M</u> Ce < 0.02815	<u>M</u> In < 0.05631	<u>n</u> Os <u>M</u> Ag < 0.01126	<u>M</u> V < 0.01126
<u>M</u> Cs < 0.00169	<u>M</u> Ir < 0.02815	<u>M</u> Pd < 0.02815 <u>Q</u> Na 0.06396	<u>M</u> Yb < 0.00563
Q Cr 0.00533	<u>O</u> Fe 0.00586	<u>Q</u> P < 0.03000 <u>M</u> Sr < 0.00282	M Y ≤ 0.22523
<u>M</u> Co < 0.01689	<u>M</u> La < 0.00282	<u>M</u> Pt < 0.01126 <u>O</u> S < 0.10000	<u>M</u> Zn 0.00450
<u>M</u> Cu < 0.03378	<u>M</u> Pb < 0.01689	<u>O</u> K 0.01208 <u>M</u> Ta < 0.03942	<u>M</u> Zr < 0.02815
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 °C. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence, Coordination Number; Chemical Form in Solution - 26.98154; +3; 6;Al(HzO)

Chemical Compatibility - Soluble in HCI, HNO2, HF and HzSO4. Avoid neutral media. Soluble in strongly basic NaOH forming the $AI(OH)4(HzO)2^{+}$ species. Stable with most metals and inorganic anions. The phosphate is insoluble in water and only slightly soluble in acid.

Stability - 2-100 ppb levels stable for months in 1% HNO3/LDPE container. 1-10,000 ppm solutions chemically stable for years in 2-5% HNO3/LDPE container.

Al Containing Samples (Preparation and Solution) - Metal (Best dissolved in HCI / HNO3); α- AlzO3 (NazCO3 fusion in Pt⁻);

 $\dot{\gamma}$ -AlzO₃ (Soluble in acids such as HCI); Ores (Carbonate fusion in Pt[®] followed by HCI dissolution); Organic Matrices (sulfuric/peroxide digestion or nitric / sulfuric / perchloric acid decomposition, or dry ash and dissolution in dilute HCI.

Atomic Spectroscopic Information (ICP-OES D.L.s are given as <u>radial/axial</u> view):										
<u>Technique/Line</u>	Estimated D.L.	<u>Order</u>	Type	Interferences (underlined indicates severe)						
ICP-OES 394.401 nm	0.05 / 0.006 µg/mL	1	atom	U, Ce						
ICP-OES 396.152 nm	0.03 / 0.006 µg/mL	1	atom	Mo, Zr, Ce						
ICP-OES 167.078 nm	0.1 / 0.009 µg/mL	1	ion	Fe						
ICP-MS 27 amu	30 ppt .	n/a	M*	Fe 'č '\$ '²c '\ 'H ² c '\ 'B'60, ^s 'Cr ² , ^s Fe ² '						

8.0 HAZARDOUS INFORMATION - Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.

9.0 HOMOGENEITY - This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB) Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS)

10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

- Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers" - Reference Materials Production - Accredited A2LA Certificate Number 883.02 A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

10.4 10CFR50 Appendix B - Nuclear Regulatory Commission - Domestic Licensing of Production and Utilization Facilities

10.5 10CFR21 - Nuclear Regulatory Commission - Reporting Defects and Non-Compliance

10.6 MIL-STD-45662A (Obsolete/Observed)

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: December 28, 2004

Expiration Date: EXPIRES 1**420**06-

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By: Nick Maida, QA Administrator

Certificate Approved By:

Katalin Le, QC Manager

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

D/scholas Vojaida

4050 5405

inorganic ventures 1 i v labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

- Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials." and ISO Guide 35-1989 "Certification of Reference Materials - General and Statisical Principles."
- **DESCRIPTION OF CRM** 2.0

Custom-Grade 10000 ug/mL Calcium in 1.4% (abs) HNO3

Catalog Number:	CGCA10-1, CGCA10-2	2, and CGCA10-5
Lot Number: Starting Material:	X-CA03030 CaO	INDRGANIC LABS/RADCHEM LABS
Starting Material Purity (%): Starting Material Lot No Matrix:	99.999155 C27L01 1.4% (abs) HNO3	DATE RECEIVED: //27/05 DATE EXPIRED: DATE OPENED: INORG: INORG: DATE OPENED: INORG: DATE OPENED: DATE OPENED: INORG: DATE OPENED: INORG: DATE OPENED: DATE OPENED: INORG: DATE OPENED: INORG: DATE OPENED: INORG: DATE OPENED: INORG: DATE OPENED: INORG: DATE OPENED: INORG: DATE OPENED: INORG:

CERTIFIED VALUES AND UNCERTAINTIES 3.0

Certified Concentration: 10.035 ± 24 ug/mL

Certified Density:

1.037 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Uncertainty (+) = $2[(\sum_{x})^2]^{1/2}$

Certifled Value (s) = $\sum x_1$

(s) = mean $x_i = individual results$ n = number of measurements 5S = The summation of all significant estimated errors. Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

4.0

TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

"Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1	Assay Method #1	10,035 ± 24 μg/mL					
		EDTA NIST SRM 928 Lot Number: 392110					
	Assay Method #2	10,046 ± 65 µg/mL					
		ICP Assay NIST SRM 3109a Lot Number: 000622					

- 4.2 BALANCE CALIBRATION All balances are discleding using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are lested annually by a NIST / NVLAP accredited calibration tab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.; 789543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

Q	Al		0.00069	М	Dy	/ <	0.04098	۰ <u>۵</u>	u	<	0.00002	M	Pr	<	0.00205	N	1	Te	<	0.20492
М	Sb	<	0.00342	М	Er		0.03415	М	łu	<	0.00273	M	Re	<	0.00683	N	1	ГЬ	<	0.00205
<u>M</u>	As	<	0.06831	М	Eu) <	0.02049	Q	Mg		0.05295	M	Rh	<	0.00683	h	1 1	TI	<	0.00683
<u>0</u>	Ba		0.00065	M	G	d <	0.00683	Q	Mn		0.00038	M	Rb	<	0.00683	M	! 1	Th	<	0.00683
Q	Be	<	0.00009	М	Ga	з <	0.00683	Q	Hg	<	0.01100	M	Ru	<	0.01366	N	<u> </u> . 1	Tm	<	0.00273
М	Bí	<	0.00273	М	G	a <	0.04098	М	Мо	<	0.01366	M	Sm	<	0.00683	N	1	Sn	<	0.03415
<u>0</u>	в	<	0.00054	М	A	, <	0.02049	М	Nd	<	0.01366	Q	Sc	<	0.00002	b	1	Ti	<	0.34153
Q	Cd	<	0.00450	М	Н	· <	0.01366	<u>0</u>	Ni	<	0.00230	Q	Se	<	0.00620	Ņ	1 \	W	<	0.06831
<u>s</u>	Ca			М	Н	,	0.00342	М	Nb	<	0.00342	Q	SI		0.00132	N	1 (U	<	0.01366
М	Ce	<	0.03415	Q	In	<	0.00200	n	Os			M	Ag	<	0.01366	Ω	<u></u>	V	<	0.00090
М	Cs	<	0.00205	М	Ir	<	0.03415	м	Pd	<	0.03415	Q	Na		0.01000	Δ	1	Yb	<	0.00683
<u>0</u>	Cr		0.00103	Q	Fe	•	0.00110	<u>0</u>	Ρ	<	0.00480	Q	Sr		0.03530	ß	1 `	Y	<	0.27323
Q	Co	<	0.00120	М	Lā	• •	0.00342	М	Pt	<	0.01366	Q	S		0.00412	Ω	2	Zn		0.02353
Q	Cu	<	0.00400	М	Pł	o ≺	0.02049	Q	к	<	0.00170	М	Та	<	0.04782	M	1 2	Zr	<	0.03415
м-с	heck	ed	by ICP-MS	0-	Ch	ecke	d by ICP-OES	1-5	spect	ral I	nterference	n - i	Not C	hea	cked For	S	So	dutic	on	Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

2064

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4°C. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 40.078 +2; 6 Ca(H,O), ' Chemical Compatibility - Soluble in HCI and HNO, . Avoid H,SO., HF, H,PO, and neutral to basic media. Stable with most metals and inorganic anions forming insoluble silicate, carbonate, hydroxide, odde, fluoride, suitate, oxalate, chromate, arsenate and tungstate in neutral aqueous media.

Stability - 2-100 ppb levels stable for months in 1% HNO, / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-10% HNO, / LDPE container.

Ca Containing Samples (Preparation and Solution) - Metal (best dissolved in diluted HNO,) Ores (Carbonate fusion in Pt⁴ followed by HCi dissolution); Organic Matrices (dry ash and dissolution in dilute HCi. Do not heat when dissolving to avoid precipitation of SiO₂). The oxide, hydroxide, carbonate, phosphate, and fluoride of calcium are soluble in % levels of HCi or HNO₂. The sulfates (gypsum, anhydrite, etc.), certain silicates and complex compounds require fusion with Na,CO₂ followed by HCi / water dissolution. Contamination is a very real problem when analyzing for trace levels.

Atomic Spectroscopic Information (ICP-OES D.L.s are given as radial/axial view):

Techniq	Je/Line	Estimated D.L.	Order	Type	Interferences (underlined indicates severe at+ conce	s.)
ICP-OES	393.366 nm	0.0002/0.00004 µg/mL	1 -	ion	U, Ce	
ICP-OES	396.847 nm	0.0005 / 0.00006 µg/mL	1	ion	Th	
ICP-OES	422.673 nm	0.01 / 0.001 µg/mL	1	atom	Ge	
ICP-MS	44 amu	1200 ppt	n/a	M	**O3+*C1 **S1**O1 **S1**	
		••				

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for Information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by: Registrar Accreditation Board (ANSI-RAB) Standards Council of Canada (SCC) Dutch Council for Accreditation (RVA) Entidad Mexicana de Acreditacion, a.c.(EMA) Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

0.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration" - Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"
 Reference Materials Production - Accredited A2LA Certificate Number 883.02
 A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLÄS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

11968

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical Instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: September 20, 2004

Expiration Date: EXPIRES

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

Nick Maida, QA Administrator

Certificate Approved By:

j

Certifying Officer:

Katalin Le, QC Manager

Paul Gaines, Chemist, Senior Technical Director

Dfuebolas Maida

4988

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

- 1.0 Inorganic Ventures / IV Labs Is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statisical Principles."
- 2.0

DESCRIPTION OF CRM Custom-Grade 10000 µg/mL Iron in 4.8% (abs) HNOs

Catalog Number:	CGFE10-1, CGFE10-2	2, and CGFE10-5
Lot Number:	X-FE03041	
Starting Material:	Fe metal	,
Starting Material Purity (%):	99.998667	INORGANIC LABS/RADCHEM LABS
Starting Material Lot No	23387	DATE RECEIVED: 2128/05
Matrix:	4.8% (abs) HNO3	DATE EXPIRED:
	•	INORG: 5048 PO: F55/48

3.0 CERTIFIED VALUES AND UNCERTAINTIES

```
Certified Concentration: 10,041 ± 21 µg/mL
```

Certified Density: 1.061 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (s) = $\sum x_1$	(s) = mean
n .	x _i = individual results
~	n = number of measurements
Uncertainty (±) = $2!(\sum_{s_i})^{2}!^{1/2}$	$\Sigma S =$ The summation of all significant estimated errors.
(1) ^{1/2}	(Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the NIST SFM-sentificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

• "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

• This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1	Assay Method #1	10,041 ± 21 µg/mL
		EDTA NIST SRM 928 Lot Number: 880710
	Assay Method #2	10,017 ± 40 μg/mL
		ICP Assay NIST SRM 3126a Lot Number: 000606

- BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights 4.2 used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 - Class 1 and 692476A - Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION - The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001, Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos, 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION - In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN ug/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

				1								1				1			
Q	A	<	0.00270	M	Dy	/ <	0.02528	<u>0</u>	Li	<	0.00003	M	Pr	<	0.00126	M	Те	<	0.12640
М	Sb	<	0.00211	Μ	Er	<	0.02107	M	Lu	<	0.00169	M	Re	<	0.00421	M	ТЪ	<	0.00126
М	As	<	0.04213	М	Et	I <	0.01264	Q	Mg	<	0.00006	M	Rh	<	0.00421	M	TI	<	0.00421
Μ	Ba	<	0.04213	M	G	t <	0.00421	Q	Mn	<	0.05000	M	Rb	<	0.00421	M	Th	<	0.00421
<u>0</u>	Be	<	0.00005	M	Ga	3 <	0.00421	٥	Hg	<	0.01100	M	Ru	<	0.00843	м	Tm	<	0.00169
M	Bi	<	0.00169	ì	Ge	9		M	Мо	<	0.00843	M	Sm	<	0.00421	M	Sn	<	0.02107
Q	B	<	0.00090	М	Au	. <	0.01264	Μ	Nd	<	0.00843	M	Sc	<	0.04213	M	Π	<	0.21066
M	Cd	<	0.01264	M	Hf	<	0.00843	Q	NI	<	0.00230	M	Se	<	0.03371	М	w	<	0.04213
Q	Ca		0.03107	М	Ho) <	0.00211	М	Nb	<	0.00211	2	Si		0.01673	M	U	<	0.00843
М	Ce	<	0.02107	М	In	<	0.04213	n	Os	•		м	Ag	<	0.00843	M	v	<	0.00843
М	Cs	<	0.00126	М	Ir	<	0.02107	М	Pd	<	0.02107	0	Na		0.00956	M	Yb	<	0.00421
М	Cr	<	0.02107	<u>s</u>	Fe	I		I	Ρ			M	Sr	<	0.00211	M	Y	<	0.16853
<u>0</u>	Co		0.01195	М	La	<	0.00211	м	Pt	<	0.00843	<u>0</u>	S	<	0.07200	M	Zn		0.08761
М	Cu	<	0.02528	М	Pt) <	0.01264	Q	к		0.00239	М	Та	<	0.02949	М	Zr	<	0.02107
M - C	heck	ed	by ICP-MS	0-	Che	cke	d by ICP-OES	1-8	ipect	al I	nterference	n-I	Not C	hed	ked For	s - :	Soluti	on	Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP For the validation of analytical methods

For the preparation of "working reference samples" For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4°C. Do not pipet from conteiner. Do not return portions removed for pipetting to conteiner.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 55.847; +3; & Fe(H,O),*

Chamical Compatibility - Stable in HCI, HNO₂, H₂SO₄, HF and H₂PO₄. Avoid basic media. Stable with most metals and inorganic anions in acidic media.

Stability - 2-100 ppb levels stable for months in 1% HNOs / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNOs / LDPE container.

Fe Containing Samples (Preparation and Solution) - Metal (Soluble in HCI) Oxides (If the oxide has been at a high temperature then Na₂CO₃ fusion in Pt^a tollowed by HCI dissolution otherwise dissolve in dilute HCI). Ores (See Oxides above using only the tusion approach).

	Atomic Spectroscopic Information (ICP-OES D.L.s are given as <u>redus/axial</u> view):					
. 3	lectrique	Line	Estimated D.L.	Order	Type	Interferences funderlined indicates severe at = concs.)
- Î	CP-OES	238,204 nm	0.005 / 0.001 µg/mL	1	ion	Ru, Co
1	CP-OES	239.562 nm	0.005 / 0.001 µg/mL	1	ion	Co, W, Cr
1	CP-OES	259.940 nm	0.006 / 0.001 µg/mL	1	ion	Hr, Nb
- 1	CP-MS	56 amu	970 ppt	n/a	M' _	"Ar'™'H, "Ar'©, =Ar''O'H , =Ar'®, *CI®O'H, *C&®O

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Recognized by: Registrar Accreditation Board (ANSI-RAB) Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA) Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbla (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portunal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzeriand (SQS)

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration" - Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers" - Reference Materials Production - Accredited A2LA Certificate Number 883.02 A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipel (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a property packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: July 22, 2004

Expiration Date: EXPIRES 182006

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By:

Nick Malda, QA Administrator

Certificate Approved By:

]

Katalin Le, QC Manager

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

Dfreholas Maida Known in Park Aains

5848 2,54

010186 inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

- 1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statisical Principles."
- 2.0 DESCRIPTION OF CRM

Custom-Grade 10000 µg/mL Potassium in 1.4% (abs) HNO3

Catalog Number:	CGK10-1, CGK10-2, and CGK10-5					
Lot Number:	Y-K02129					
Starting Material:	KNO3 ·	INORGANIC LABS/RADCHEM LABS				
Starting Material Purity (%):	99.998112	DATE EXPIRED: 1201 04				
Starting Material Lot No:	B19P01	DATE UPENED:				
Matrix:	1.4% (abs) HNO3	INDRG: 5471 PO: 0200724720				

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration: $9983 \pm 5 \mu g/mL 9759 \pm 5 \mu g/g$

Certified Density:

1.023 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value $(\bar{x}) = \Sigma \underline{x}_1$

Uncertainty (±) $= 2[(\Sigma s_1)^2]^{1/2}$ (n)^{1/2} $\begin{array}{l} (x) = mean \\ x_1 = individual results \\ n = number of measurements \\ \Sigma s_1 = The summation of all significant estimated errors. \\ (Most common are the errors from instrumental measurement, weighing, dilution to volume, and the fixed error reported on the NIST SRM certificate of analysis.) \\ \end{array}$

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

*Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

This IV product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.

4.1	Assay Method #1	9926 ± 36 µg/mL 9703 ± 35 µg/g ICP Assay NIST SRM 3141a Lot Number: 891312				
	Assay Method #2	9983 ± 5 μg/mL 9759 ± 5 μg/g Gravimetric NIST SRM Lot Number: See Sec. 4.2				

- 69

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A glassware used in the manufacture and quality control of CRM's.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

CRM's solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>O AI 0.00072</u>	<u>M</u> Dy < 0.00597	<u>O</u> Li < 0.00001	<u>M</u> Pr < 0.00030	<u>M</u> Te < 0.02986
	0.00397	0.00001	0.00030	0.02988
<u>M</u> Sb < 0.00050	<u>M</u> Er < 0.00498	<u>M</u> Lu < 0.00040	<u>M</u> Re < 0.00100	<u>M</u> Tb < 0.00030
<u>M</u> As < 0.00995	<u>M</u> Eu < 0.00299	<u>O</u> Mg 0.00068	<u>M</u> Rh < 0.00100	M TI < 0.00100
<u>M</u> Ba < 0.00995	<u>M</u> Gd < 0.00100	<u>O</u> Mn 0.00020	M Rb 0.55238	<u>M</u> Th < 0.00100
<u>O</u> Be < 0.00003	<u>M</u> Ga < 0.00100	<u>O</u> Hg < 0.00255	<u>M</u> Ru < 0.00199	<u>M</u> Tm < 0.00040
<u>M</u> Bi < 0.00040	<u>O</u> Ge < 0.00026	<u>M</u> Mo < _{0.00199}	<u>M</u> Sm < 0.00100	<u>M</u> Sn < 0.00498
<u>O</u> B < 0.00010	Q Au < 0.00051	<u>M</u> Nd < 0.00199	<u>O</u> Sc < 0.00002	<u>O</u> Ti < 0.00012
<u>M</u> Cd < 0.00299	<u>M</u> Hf < 0.00199	<u>Q</u> Ni < 0.00039	<u>O</u> Se < 0.00851	<u>M</u> W < 0.00995
<u>O</u> Ca 0.00357	<u>M</u> Ho < 0.00050	<u>M</u> Nb < 0.00050	Q Si ≺ 0.00058	<u>M</u> U < 0.00199
<u>M</u> Ce < 0.00498	<u>M</u> In < 0.00995	<u>n</u> Os	<u>M</u> Ag < 0.00199	<u>O</u> V < 0.00015
<u>M</u> Cs < 0.00030	<u>M</u> Ir < 0.00498	<u>M</u> Pd < 0.00498	<u>O</u> Na 0.15315	<u>M</u> Yb < 0.00100
<u>M</u> Cr < 0.00498	<u>O</u> Fe 0.00048	<u>O</u> P < 0.00043	<u>M</u> Sr < 0.00050	<u>M</u> Y < 0.03981
<u>M</u> Co < 0.00299	M La < 0.00050	<u>M</u> Pt < 0.00199	<u>O</u> S < 0.01225	<u>O</u> Zn 0.00068
<u>M</u> Cu < 0.00597	<u>M</u> Pb 0.08559	s K	<u>M</u> Ta < 0.00697	<u>M</u> Zr < 0.00498
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

2056 EA71

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at $20 \pm 4^{\circ}$ C. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 29.0983; +1; (6); K*(aq) (Coordination Number in parentheses is assumed, not certain.)

Chemical Compatibility - Soluble in HCI, HNO₃, H₂SO₄ and HF aqueous matrices. Avoid use of HCIO₄ due to insolubility of the perchlorate. Stable with all metals and inorganic anions except CIO₄. Stability - 2-100 ppb levels stable for months in 1% HNO₃ / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO₃ / LDPE container.

K Containing Samples (Preparation and Solution) - Metal (Dissolves very rapidly in water); Ores (Sodium carbonate fusion in Pt⁰ followed by HCl dissolution-blank levels of K in sodium carbonate critical); Organic Matrices (Sulfuric/peroxide digestion)

Atomic S	Atomic Spectroscopic Information (ICP-OES D.L.s are given as <u>radial/axial</u> view):						
Technique	e/Line	Estimated D.L.	Order	Type	Interferences (underlined indicates severe)		
ICP-OES	766.490 nm	0.4 / 0.001 µg/mL	1	atom	2 nd order radiation from R.E.s on some optical designs		
ICP-OES	771.531 nm	1.0 / 0.03 µg/mL	1	atom	2 rd order radiation from R.E.s on some optical designs		
ICP-OES ICP-MS	404.721 nm 39 amu	1.1 / 0.05 µg/mL 10 ppt	1 n/a	atom M⁺	<u>U, Ce,</u> ³⁸ ArH, ²³ Na ¹⁶ O, ⁷⁸ Se		

8.0 HAZARDOUS INFORMATION - Please refer to the enclosed Material Safety Data sheet for information regarding this CRM.

9.0 HOMOGENEITY - This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB) Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network: Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS)

10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration" - Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers" - Reference Materials Production - Accredited A2LA Certificate Number 883.02 A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a properly packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date:

October 17, 2005

Expiration Date:

EXPIRES 0122006

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By: Nick Maida, QA Administrator

Thebolas Maida

Certificate Approved By: Katalin Le, QC Manager Kn. In. K.

Certifying Officer: Paul Gaines, PhD., Technical Director Park Hame

010190 inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

- 1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statisical Principles."
- 2.0 DESCRIPTION OF CRM Custom-Grade 10000 µg/mL Magnesium in 1.4% (abs) HNO3

Catalog Number:	CGMG10-1, CGMG10-2, and CGMG10-5
Lot Number:	X-MG03018
Starting Material:	Mg metal
Starting Material Purity (%):	99.994984
Starting Material Lot No	91191
Matrix:	1.4% (abs) HNO3

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration:	10,039 ± 31 µg/mL
--------------------------	-------------------

Certified Density: 1.051 g/mL (measured at 22° C)

The Certified Value is the instrument analysis value. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (x) = $\sum x_{j}$	(s) = mean
ń	x, = individual results
5	n = number of measurements
Uncertainty (±) = $2!(\sum_{s_i})^{s_i}$	$\Sigma S =$ The summation of all significant estimated errors.
(n) ^{1/2}	(Most common are the errors from instrumental measurement,
	weighing, dilution to volume, and the fixed error reported on the
	NIST SPM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

□ "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

C This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1	Assay Method #1	10,039 ± 31 μg/mL		
		ICP Assay NIST SRM 3131a Lot Number: 991107		
	Assay Method #2	10,079 ± 21 µg/mL		

EDTA NIST SRM 928 Lot Number: 880710

INOF	GANIC LABS/	RADCHEM LABS
DATE	RECEIVED:	7/22/05
DATE	EXPIRED:	51100
DATE	OPENED:	7122/05
INORG		PD: F55213

P3.10f4 5312

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2587078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>O</u> Al 0.04714	<u>M</u> Dy < 0.03601	<u>O</u> Li 0.00623	<u>M</u> Pr < 0.00180	<u>M</u> Te < 0.18002
<u>M</u> S5 < 0.00300	<u>M</u> Er < 0.03000	<u>M</u> Lu < 0.00240	<u>M</u> Re < 0.00600	<u>M</u> Tb < 0.00180
<u>M</u> As < 0.06001	<u>M</u> Eu < 0.01800	<u>s</u> Mg	<u>M</u> Rh < 0.00600	<u>M</u> TI < 0.00600
<u>M</u> 8a < 0.06001	<u>M</u> Gd < 0.00600	<u>O</u> Mn 0.07408	<u>M</u> Rb < 0.00600	<u>M</u> Th < 0.00600
<u>O</u> Be < 0.00017	<u>M</u> Ga < 0.00600	<u>O</u> Hg < 0.00900	<u>M</u> Ru < 0.01200	<u>M</u> Tm < 0.00240
<u>M</u> Bi < 0.00240	<u>M</u> Ge < 0.03601	<u>M</u> Mo < 0.01200	<u>M</u> Sm < 0.00600	<u>M</u> Sn < 0.03000
<u>O</u> B 0.00303	<u>M</u> Au < 0.01800	M Nd < 0.01200	<u>M</u> Sc < 0.06001	<u>O</u> Ti 0.09765
<u>M</u> Cd < 0.01800	<u>M</u> Hf < 0.01200	<u>O</u> Ni 0.01229	<u>M</u> Se < 0.04801	<u>M</u> W < 0.06001
<u>Q</u> Ca 0.14984	<u>M</u> Ho < 0.00300	<u>M</u> Nb < 0.00300	<u>Q</u> Si 0.02357	<u>M</u> U < 0.01200
<u>M</u> Ce < 0.03000	<u>M</u> In < 0.06001	<u>n</u> Os	M Ag < 0.01200	<u>M</u> V < 0.01200
<u>M</u> Cs < 0.00180	<u>M</u> Ir < 0.03000	<u>M</u> Pd < 0.03000	<u>O</u> Na 0.02189	<u>M</u> Yb < 0.00600
<u>Q</u> Cr 0.02189	<u>O</u> Fe 0.03704	Q P < 0.01600	<u>M</u> Sr < 0.00300	MY 0.02021
<u>M</u> Co < 0.01800	<u>M</u> La < 0.00300	<u>M</u> Pt < 0.01200	<u>n</u> S	<u>O</u> Zn 0.00572
<u>O</u> Cu 0.00674	<u>O</u> Pb 0.02694	<u>о</u> к < 0.05000	<u>M</u> Ta < 0.04201	<u>M</u> Zr < 0.03000
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

- ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP
- For the validation of analytical methods
- For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

- For detection limit and linearity studies
- For additional intended uses, contact IV Technical Staff

2054 5312

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4"C. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 24.305; +2; 6; Mg(HzO),*2

Chemical Compatibility - Soluble in HCl, HNO₂, and H₂SO, avoid HF, H₂PO, and neutral to basic media. Stable with most metals and inorganic anions forming insoluble silicates, carbonates, hydroxides, oxides, and tungstates in neutral and slightly acidic media.

Stability - 2-100 ppb levels stable for months in 1% HNO, / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-10% HNO, / LDPE container.

Mg Containing Samples (Preparation and Solution) - Metal (Best dissolved in diluted HNO₂); Oxide (Readily soluble in above compatible aqueous acidic solutions) Ores (Carbonate fusion in Pt^e followed by HCI dissolution); Organic Matrices (Sulfuric / peroxide digestion or nitric / sulfuric / perchloric acid decomposition, ordry ash and dissolution in dilute HCI).

wante abortoscolar histotokant for -vea naris geoliseri es tignistenet acadi						
Technique	Line	Estimated D.L.	Order	Type	Interferences (underlined indicates severe at + concs.)	
ICP-OES	279.553 nm	0.0002 / 0.00003 µg/mL	1	ion	Th	
ICP-OES	280.270 nm	0.0003/0.00005µg/mL	1	ion	U, V	
ICP-OES	285.213 nm	0.002 / 0.00003 µg/mL	1	atom	U, Hf, Cr, Zr	
ICP-MS	24 amu .	42 ppt	n/a	M'	"Li*O, *#Ti*2 , **Ca!2	

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105 Recognized by:

Registrar Accreditation Board (ANSI-RAB) Standards Council of Canada (SCC) Dutch Council for Accreditation (RVA) Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

(T) (CNor

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Bekgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland (PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS)

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration" - Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"
 Reference Materials Production - Accredited A2LA Certificate Number 883.02
 A2LA Mutual Recognition Agreement Partners;

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Talpel (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a property packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: April 15, 2004

Expiration Date:

92805

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By: JoAnn Struthers, QA Administrative Assistant Certificate Approved By: Katalin Le, QC Manager **Certifying Officer:** Paul Gaines, Chemist, Senior Technical Director

folen Stutten Knonen ka Pauk Aai

4054 5312

labs inorganic ventures 1 i v

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

- Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: 1.0 Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statisical Principles."
- **DESCRIPTION OF CRM** Custom-Grade 10000 µg/mL Sodium in 1.4% (abs) HNO3 2.0

Catalog Number:	CGNA10-1, CGNA10-2, and CGNA10-5
Lot Number:	X-QNA02148
Starting Material:	Na2CO3
Starting Material Purity (%):	99.999819
Starting Material Lot No:	42063
Matrix:	1.4% (abs) HNO3

CERTIFIED VALUES AND UNCERTAINTIES 3.0

10,006 ± 6 µg/mL **Certified Concentration:**

Certified Density:

1.032 g/mL (measured at 22° C)

The Certified Value is based upon the most precise method used to analyze this CRM. The following equations are used in the calculation of the certified value and the uncertainty:

Certified Value (ㅋ) = 수정	
n	
Uncertainty (±) = $2\left[\left(\sum_{s}\right)^{s}\right]^{1/2}$	

5

(x) = mean x1 = individual results n = number of measurements $\Sigma_{s_1=}$ The summation of all significant estimated errors. Most common are the errors from instrumental measurement. weighing, dilution to volume, and the fixed error reported on the NIST SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

· "Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

. This IV product is Traceable to NIST via an unbroken chain of comparisons. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors. In rare cases where no NIST SRMs are available, the term 'in-house std.' is specified.

4.1	Assay Method #1	10,019 ± 33 μg/mL ICP Assay NIST SRM 3152a Lot Number: 990907
	Assay Method #2	10,006 ± 6 μg/mL Gravimetric NIST SRM Lot Number: See Sec. 4.2
	INORGANIC DATE RECEN DATE EXPIR DATE OPENE INORG:	ED: <u>Blilae</u>

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION- In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.
- 5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>0</u> AI < 0.00090	<u>M</u> Dy < 0.00600	QLI < 0.00003	<u>M</u> Pr < 0.00030	<u>M</u> Te < 0.02998
<u>M</u> Sb < 0.00050	<u>M</u> Er < 0.00500	<u>M</u> Lu < 0.00040	<u>M</u> Re < 0.00100	<u>М</u> То < 0.00030
<u>M</u> As < 0.00999	<u>M</u> Eu < 0.00300	Q Mg 0.00010	<u>M</u> Rh < 0.00100	M TI < 0.00100
<u>M</u> Ba < _{0.00999}	<u>M</u> Gd < 0.00100	<u>Q</u> Mn < 0.00003	<u>M</u> Rb < 0.00100	<u>M</u> Th < 0.00100
<u>O</u> Be < 0.00020 、	<u>M</u> Ga < 0.00100	Q Hg < 0.01500	<u>M</u> Ru < 0.00200	<u>M</u> Tm < 0.00040
<u>M</u> Bi < 0.00040	<u>O</u> Ge < 0.00150	<u>M</u> Mo < 0.00200	<u>M</u> Sm < _{0.00100}	<u>M</u> Sn < 0.00500
<u>O</u> B < 0.00060	Q Au < 0.00300	<u>M</u> Nd < 0.00200	<u>O</u> Sc < 0.00002	<u>O</u> Ti < 0.00070
<u>M</u> Cd < _{0.00300}	<u>M</u> Hf < 0.00200	Q Ni < 0.00230	<u>Q</u> Se < 0.05000	<u>M</u> W < 0.00999
<u>O</u> Ca _{0.00050}	<u>M</u> Ho < 0.00050	M Nb < 0.00050	<u>O</u> Si < 0.00340	<u>M</u> U < 0.00200
<u>M</u> Ce < _{0.00500}	<u>M</u> In < 0.00999	<u>n</u> Os	<u>M</u> Ag < 0.00200	<u>Q</u> V < _{0.00090}
<u>M</u> Cs < _{0.00030}	<u>M</u> Ir < 0.00500	<u>M</u> Pd < 0.00500	<u>S</u> Na	<u>M</u> Yb < 0.00100
<u>M</u> Cr < 0.00500	<u>O</u> Fe < 0.00110	<u>Q</u> P < 0.04000	<u>M</u> Sr < _{0.00050}	<u>M</u> Y < 0.03997
<u>M</u> Co < 0.00300	<u>M</u> La < 0.00050	<u>M</u> Pt < 0.00200	<u>O</u> S < 0.07200	<u>O</u> Zn 0.00250
<u>O</u> Cu < 0.00140	<u>M</u> Pb < 0.00300	<u>O</u> K 0.04000	<u>M</u> Ta < _{0.00700}	<u>M</u> Zr < 0.00500
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference	n - Not Checked For	s - Solution Standard Element

6.0 INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

- ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP
- For the validation of analytical methods
- For the preparation of "working reference samples"
- For interference studies and the determination of correction coefficients
- For detection limit and linearity studies
- For additional intended uses, contact IV Technical Staff

53D

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4°C. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Form in Solution - 22.98977; +1; (6); Na*(eq) largely ionic in nature (Coordination Number in parentheses is assumed, not certain.)

Chemical Compatibility - Soluble in HCI, HNO2, H2SO4 and HF aqueous matrices. Stable with all metals and inorganic anions.

Stability - 2-100 ppb levels stable for months in 1 % HNO3 / LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO3 / LDPE container.

Na Containing Samples (Preparation and Solution) - Metal (Dissolves very repidly in water); Ores (Lithium carbonate fusion in graphite crucible followed by HCI dissolution - blank levels of Na in lithium carbonate critical); Organic Matrices (Sulfuric / peroxide digestion or nitric/sulfuric/perchloric acid decom position). Atomic Spectroscopic Information (ICP-OES BL, s are given as radial/axial view);

Technique	-	Estimated 0.1. 0.07 / 0.00009 µg/mt.	Onder 1	Loc	Interferences (underlined indicates severe) 2 rd order radiation from R.E.s on some optical
ICP-OES	588.995 nm	0.03 / 0.006 µg/mL	1	atom	designs 2 rd order radiation from R.E.s on some optical
ICP-OES ICP-MS	330.237 nm 23 timu	2.0 / 0.09 µg/mL 310 ppt	1 n/a	atom M	designs Pd. Zn. "Ti", "Ca

8.0 HAZARDOUS INFORMATION - Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.

9.0 HOMOGENEITY - This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

- 10.1 ISO 9001:2000 Quality Management System Registration QMI Certificate Number 010105 Recognized by:
 - Registrar Accreditation Board (ANSI-RAB)
 - Standards Council of Canada (SCC)
 - Dutch Council for Accreditation (RVA)
 - Entidad Mexicana de Acreditacion, a.c. (EMA)
 - Members of IQ Net International Certification Network:

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS)

10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration"

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers"
 Reference Materials Production - Accredited A2LA Certificate Number 883.02
 A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BrnwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC). Chinese Taipei (CNLA). Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zeatand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

10.4 10CFR50 Appendix B - Nuclear Regulatory Commission - Domestic Licensing of Production and Utilization Facilities

10.5 10CFR21 - Nuclear Regulatory Commission - Reporting Defects and Non-Compliance

10.6 MIL-STD-45662A (Obsolete/Observed)

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a property packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at linorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date:

October 11, 2004

Expiration Date:

EXPIRES 102006-

12.0 NAMES AND SIGNATURES OF CERTIFYING OFFICERS

Certificate Prepared By: Nick Maida, QA Administrator

Certificate Approved By: Katalin Le, QC Manager

Certifying Officer:

Paul Gaines, Chemist, Senior Technical Director

Rubolas Maida Know Know Know

inorganic ventures / iv labs

195 lehigh avenue, suite 4, lakewood, nj 08701 usa phone: 800-669-6799 • 732-901-1900 • fax: 732-901-1903 e-mail: ivsales@ivstandards.com • website: www.ivstandards.com

certificate of analysis

- 1.0 Inorganic Ventures / IV Labs is an ISO Guide 34-2000 Certified Reference Material (CRM) Manufacturer: Certificate #883-02. The certificate is designed and the certified value(s) and uncertainty(ies) are determined in accordance with ISO Guide 31-2000 (Reference Materials - Contents of certificates and label(s), ISO Guide 34-2000 "Quality System Guidelines for the Production of Reference Materials," and ISO Guide 35-1989 "Certification of Reference Materials - General and Statisical Principles."
- 2.0 DESCRIPTION OF CRM Custom-Grade 1000 µg/mL Lithium in 0.07% (abs) HNO3

Catalog Number:	CGLI1-1, CGLI1-2, and CGLI1-5			
Lot Number:	X-LI02079	INDRGANIC LABS/RADCHEM LABS		
Starting Material:	Li2CO3	DATE RECEIVED: 51905		
Starting Material Purity (%):	99.997165	DATE EXPIRED: 6106		
Starting Material Lot No	1123	INORG: 5244 FO: 55180		
Matrix:	0.07% (abs	B) HNO3		

3.0 CERTIFIED VALUES AND UNCERTAINTIES

Certified Concentration: 999 ± 3 µg/mL

Certified Density: 1.004 g/mL (measured at 22° C)

The Certified Value is the ICP value. The following equations are used in the calculations of the certified value and the uncertainty:

Certified Value (3) = Σ_{X_1}	·(⊅) ≠ mean
n	$x_i = individual results$
	n = number of measurements
Uncertainty $(\pm) = 2\left[\left(\sum_{i=1}^{n} 1\right)^{ix}\right]^{ix}$	$\Sigma_{s,s}$ = The summation of all significant estimated errors.
(n) ^{***}	(Most common are the errors from instrumental measurement,
	weighing, dilution to volume, and the fixed error reported on the NIST
	SRM certificate of analysis.)

The independent samples t-test was used to determine if there is agreement between the above assay methods at the 95% confidence interval. Both methods were compared and showed agreement within the stated uncertainties. This agreement is a confirmation of the accuracy of this CRM.

4.0 TRACEABILITY TO NIST AND VALUES OBTAINED BY INDEPENDENT METHODS

 *Property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons all having stated uncertainties." (ISO VIM, 2nd ed., 1993, definition 6.10)

 This IV product is Traceable to NIST via direct comparison to NIST SRMs. The uncertainties for each certified value are reported, taking into account the SRM uncertainty error and the measurement, weighing and volume dilution errors.

4.1	Assay Method #1	999 ± 1 μg/mL	
		Gravimetric NIST SRM Lot Number: See Sec. 4.2	
	Assay Method #2	999 ± 3 μg/mL	
		ICP Assay NIST SRM 3129a Lot Number: 000505	

- 4.2 BALANCE CALIBRATION All balances are checked daily using in-house procedure number 6-IMM-001. The weights used for testing are annually compared to Gerhart Scale Corporation's master weights and are traceable to the National Institute of Standards and Technology (NIST). The NIST Traceability numbers are 692476 Class 1 and 692476A Class 2. The NIST test number is 822/260017-98. All analytical balances are calibrated every 4 months by Gerhart Scale Corp. of South Amboy. The balances are calibrated with a class 1 and/or class 2 analytical weight set. These weights are tested annually by a NIST / NVLAP accredited calibration lab. The NIST test number is 822/260017-98.
- 4.3 THERMOMETER CALIBRATION The thermometers used in the determination of the final densities are calibrated vs standard thermometer No. 903-2680 which was certified in accordance with the procedures outlined by ASTM E77-87 and NIST Monograph 150 using NIST Test Nos. and Std Nos.: 769543, 217368/769543, 217368/P14452, 176240/P14452, 176240. The in-house procedure No. is 2-QC-001. Thermometers which are not calibrated vs standard thermometer No. 903-2680 are traceable to NIST Identification Nos. 92564, 119016, 471047 and NIST test report Nos. 811/258522, 811/2557078, and 236090.
- 4.4 GLASSWARE CALIBRATION In-house procedure 3-QC-002 is used to calibrate all Class A Glassware used in the manufacture and quality control of Custom Grade Standards.

5.0 TRACE METALLIC IMPURITIES (TMI) DETERMINED BY ICP/MS AND ICP-OES IN µg/mL

Custom-Grade solutions are tested for trace metallic impurities by Axial ICP-OES and ICP-MS. The result from the most sensitive method for each element, is reported below. Solutions tested by ICP-MS were analyzed in an ULPA-Filtered Clean Room. An ULPA-Filter is 99.9985% efficient for the removal of particles down to 0.3 µm.

<u>O</u> Al 0.00120	M Dy < 0.01199	<u>S</u> Li <u>M</u> Pr < 0.00060	M Te < 0.05994
<u>M</u> Sb < 0.00100	<u>M</u> Er < 0.00999	<u>M</u> Lu < 0.00080 <u>M</u> Re < 0.00200	<u>M</u> Tb < 0.00060
<u>M</u> As < 0.01998	<u>M</u> Eu < 0.00599	<u>O</u> Mg 0.00650 <u>M</u> Rh < 0.00200	<u>M</u> TI < 0.00200
<u>M</u> Ba < 0.01998	<u>M</u> Gd < 0.00200	<u>Q</u> Mn 0.00006 <u>M</u> Rb < 0.00200	<u>M</u> Th < 0.00200
<u>Q</u> Be < 0.00020	<u>M</u> Ga < 0.00200	Q Hg < 0.01500 M Ru < 0.00400	M Tm < 0.00080
<u>M</u> Bi < 0.00080	<u>M</u> Ge < 0.01199	<u>M</u> Mo < 0.00400 <u>M</u> Sm < 0.00200	Q Sn < 0.00600
<u>Q</u> B 0.00020	M Au < 0.00599	<u>M</u> Nd < 0.00400 <u>M</u> Sc < 0.01998	<u>O</u> TI < 0.00070
<u>M</u> Cd < 0.00599	M Hf < 0.00400	<u>Q</u> Ni < 0.00230 <u>M</u> Se < 0.01598	<u>O</u> W < 0.00400
<u>Q</u> Ca 0.04050	M Ho < 0.00100	<u>M</u> Nb < 0.00100 <u>Q</u> Si 0.04650	M U < 0.00400
<u>M</u> Ce < 0.00999	<u>Q</u> In < 0.00400	<u>n</u> Os <u>M</u> Ag < 0.00400	<u>O</u> V 0.00009
<u>M</u> Cs < 0.00060	<u>M</u> ir < 0.00999	M_Pd < 0.00999 Q_Na 0.03200	<u>M</u> Yb < 0.00200
<u>M</u> Cr < 0.00999	Q Fe 0.00200	<u>Q</u> P < 0.00250 <u>Q</u> Sr 0.00026	<u>M</u> Y < 0.07992
<u>M</u> Co < 0.00599	<u>M</u> . La < 0.00100	M Pt < 0.00400 Q S 0.01250	<u>O</u> Zn 0.00145
<u>Q</u> Cu 0.00100	M Pb < 0.00599	<u>О</u> К 0.00950 <u>М</u> Та < 0.01399	<u>M</u> Zr < 0.00999
M - Checked by ICP-MS	O - Checked by ICP-OES	i - Spectral Interference n - Not Checked For	s - Solution Standard Element

6.0 INTENDED US

INTENDED USE

For the calibration of analytical instruments including but not limited to the following:

ICP-MS, ICP-OES, FAAS, GFAA, XRF, and DCP

For the validation of analytical methods

For the preparation of "working reference samples"

For interference studies and the determination of correction coefficients

For detection limit and linearity studies

For additional intended uses, contact IV Technical Staff

5244 2.0F4

7.0 INSTRUCTIONS FOR THE CORRECT USE OF THIS REFERENCE MATERIAL

Storage & Handling - Keep tightly sealed when not in use. Store and use at 20 ± 4 °C. Do not pipet from container. Do not return portions removed for pipetting to container.

Atomic Weight; Valence; Coordination Number; Chemical Formin Solution - 6.941; +1; (6); Li'(aq) large effective radius due to hydration sphere (Coordination Number in parentheses is assumed, not certain.)

Chemical Compatibility - Soluble in HCI, HNO3, H2SO4 and HF aqueous matrices. Stable with all metals and inorganic anions.

Stability - 2-100 ppb levels stable for months in 1% HNO3/LDPE container. 1-10,000 ppm solutions chemically stable for years in 1-5% HNO3/LDPE container.

Li Containing Samples (Preparation and Solution) - Metal (Dissolves very rapidly in water), Ores (Sodium carbonate tusion in R¹ followed by HCI dissolution blank levels of Li in sodium carbonate entical); Organic Matrices (Sulfuric / percode digestion or nitric / sulfuric / perchloric add decomposition).

Atomic Spectroscopic Information (JCP-OES D.L.s are given as	racial/axial view;
Technique/Line Estimated D.L. Order Type	
ICP-DES 670,784 nm 0.002/0.00002 ug/mL 1 etom	2 th order radiation from R.E.s on some optical
	clesigns
ICP-OES 460.286 nm 0.9 / 0.04 µg/mL 1 atom	Zr, Th
ICP-OES 323.261 nm 1.1/0.05 ug/mL 1 etcm	SD. Th. Ni
ICP-MS 7 amu 10 ppt n/a	M

- 8.0 HAZARDOUS INFORMATION Please refer to the enclosed Material Saftey Data sheet for information regarding this CRM.
- 9.0 HOMOGENEITY This solution was mixed according to procedure IV-MPM-004 and is guaranteed to be homogeneous.

10.0 QUALITY STANDARD DOCUMENTATION

10.1 ISO 9001:2000 Quality Management System Registration - QMI Certificate Number 010105

Recognized by: Registrar Accreditation Board (ANSI-RAB)

Standards Council of Canada (SCC)

Dutch Council for Accreditation (RVA)

Entidad Mexicana de Acreditacion, a.c.(EMA)

Members of IQ Net International Certification Network:

010200

Argentina (IRAM), Australia (QAS), Austria (ÖQS), Belgium (Avinter), Brazil (FCAV), Canada (QMI), Hong Kong (HKQAA), Columbia (ICONTEC), Czech Republic (CQS), Denmark (DS), Finland (SFS), France (AFAQ), Germany (DQS), Greece (ELOT), Hungary (MSZT), Ireland (NSAI), Israel (SII), Italy (CISQ), Japan (JQA), Korea (KSA-QA), Netherlands (KEMA), Norway (NCS), Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS)

Poland(PCBC), Portugal (APCER), Singapore (PSB), Slovenia (SIQ), Spain (AENOR), Switzerland (SQS) 10.2 ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration" - Chemical Testing - Accredited A2LA Certificate Number 883.01

10.3 ISO/IEC Guide 34 - 2000 "General Requirements for the Competence of Reference Material Producers" - Reference Materials Production - Accredited A2LA Certificate Number 883.02

A2LA Mutual Recognition Agreement Partners:

Australia (NATA), Austria (BmwA), Belgium (BELTEST) (BKO-OBE), Canada (SCC), Chinese Taipei (CNLA), Czech Republic (NAO), Denmark (DANAK), Finland (FINAS), France (COFRAC), Germany (DAR), Hong Kong (HKAS, Ireland (NAB), Italy (SIT) (SINAL), Japan (JAB) (JNLA), Republic of Korea (KOLAS), The Netherlands (RvA), New Zealand (IANZ), Norway (NA), Portugal (IPQ), Singapore (SAC-SINGLAS), Spain (ENAC), Sweden (SWEDAC), Switzerland (SAS), United Kingdom (UKAS) and United States (NVLAP) (ICBO ES)

- 10.4 10CFR50 Appendix B Nuclear Regulatory Commission - Domestic Licensing of Production and Utilization Facilities
- 10.5 10CFR21 Nuclear Regulatory Commission Reporting Defects and Non-Compliance
- 10.6 MIL-STD-45662A (Obsolete/Observed)

11.0 DATE OF CERTIFICATION AND PERIOD OF VALIDITY

SHEL RMCertification Ship Dete Stell Dats to Years) H₅₀(ii)

- 11.1 IV Shelf Life The period of time during which the concentration of the analyte(s) in a property packaged, unopened, and unused standard stored under environmentally controlled and monitored conditions will remain within the specified uncertainty range. Shelf life is limited primarily by transpiration (loss of water from the solution) and infrequently, by chemical instability. Transpiration studies (P-SP01020) of chemically-stable solutions performed at Inorganic Ventures / IV Labs indicate a CRM shelf-life of four years for solutions packaged in 500-mL low density polyethylene bottles. When stored under special conditions that minimize transpiration and instability, the shelf life can be extended past this limit.
- 11.2 Expiration Date The date after which a CRM should not be used. Routine laboratory use of a CRM increases transpiration losses and the chance of contamination which affect the integrity of the CRM and limit its useful life. Inorganic Ventures / IV Labs concurs with state and federal regulatory agencies' recommendations that solution standards be assigned a one-year expiration date.

Certification Date: December 10, 2004

Expiration Date:

NAMES AND SIGNATURES OF CERTIFYING OFFICERS 12.0

Certificate Prepared By:

Nick Malda, QA Administrator

Certificate Approved By:

Katalin Le, QC Manager

Certifying Officer:

]

Paul Gaines, Chemist, Senior Technical Director

Dfrebolas Maida xnonen en Paux Aain

CertificateorAnalysis

Product Name	Sodium nitrite, ≥99.99%	
Product Number	431605	
Product Brand	Sigma-Aldrich	
CAS Number	7632-00-0	
Molecular Formula	NaNO ₂	
Molecular Weight	69.00	
-		
TEST	SPECIFICATION	LOT 06721HI RESULTS
APPEARANCE	OFF-WHITE TO PALE YELLOW CRYSTALS OR POWDER	OFF WHITE CRYSTALS
TITRATION	97.0% NANO2 (MINIMUM) (WITH KMNO4)	102.7% NANO2 (WITH KMNO4)
TRACE ANALYSIS, ICP	100 PPM (MAXIMUM) TOTAL METALLIC IMPURITIES	ZN 2.0 PPM
		CA 1.2
		TL 0.9
		B,PD 0.8
		AG 0.7
		PT 0.6
		MG 0.3
		FE,BI,AL 0.1 PPM
	CONFIRMS SODIUM COMPONENT.	CONFIRMS SODIUM COMPONENT
	0.01% (MAXIMUM) (C=10%, H2O)	0.004% *
CALCIUM	0.01% (MAXIMUM)	0.001% *
CHLORIDE	0.005% (MAXIMUM)	0.003% *
IRON	0.001% (MAXIMUM)	0.0001% *
HEAVY METALS	0.001% (MAXIMUM) (AS PB)	0.001% AS PB *
POTASSIUM	0.005% (MAXIMUM)	0.0005% *
SULFATE	0.01% (MAXIMUM)	0.002% *
	APPROVED FEBRUARY 22, 1999 JSB	* SUPPLIER CERTIFICATE
	OR	* SUPPLIER CERTIFICATE
	APPROVED FEBRUARY 22, 1999 JSB	MEETS OR EXCEEDS ALL ACS 9TH ED REQUIREMENTS
	OR	MEETS OR EXCEEDS ALL ACS 9TH ED REQUIREMENTS
QUALITY CONTROL ACCEPTANCE DATE		AUGUST 2000

INORGANIC LA	BS/RADCHEM LABS	
DATE RECEIVED	1: 7/16/01	
DATE EXPIRED:	7/16/2012	
DATE OFENED:	7/10/01	
INORG: ZA21	PO: NA	

pg lof Z

https://www.sigmaaldrich.com/cgi-bin/hsrun/Suite7/Suite/HAHTpage/Suite.HsExternalProd... 12/12/05

ExternalProductDisplay

Page 2 of 2

010203

Ronnie J. Martin, Supervisor Quality Control Milwaukee, Wisconsin USA

Pg ZofZ

 $https://www.sigmaaldrich.com/cgi-bin/hsrun/Suite7/Suite/HAHTpage/Suite.HsExternalProd...\ 12/12/05$

INORGANIC

DATE DATE DATE

Certificate of Reference Haterial

Catalog Number: Description: Matrix:

ICMIX2-100 Lot No.: 28-164AS IC Instrument Check Standard 2 H₂O

This ASSURÅNCE [®]certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for Ion Chromatography instrumentation. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

The CRM is prepared from high purity single ion concentrates of individual elements using Class A laboratory ware to give precise concentration. Refer to side 2 for details of measurement uncertainties.

Instrumental Analysis by ION Chromatography:

NOV.

Analyte	Labeled (mg/L)	Measured (mg/L)	NIST SRM
F	100	100	3183
Cl	200	196	3182
Br	400	400	3184
NO ₃ ⁻	400	402	3185
HPO_4^{-2}	600	596	3186
SO_4^{-2}	400	400	3181

Spex Reference Multi: Lot #IC-6-186VY

Balances are calibrated regularly with weight sets traceable to NIST#s 32856, 32867 and other. This CRM is guaranteed stable and accurate to \pm -0.5% on the average of all the certified concentrations with no single component exceeding \pm -2%. This guarantee is valid for a period of one year from the date of certification only when the material is kept tightly capped and transported and stored under laboratory conditions.

2005 - -

Date of Certification:

28 Certifying Officer: N. Kochertakol

© 2004 SPEX CertiPrep, Inc.

Report of Certification

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995 EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement – Second Edition ASTM Guide D6362-98 ISO Guide 34: Quality system guidelines for the production of reference materials. ISO Guide 17025: Certification of reference materials, general and statistical principles ISO Guide 31: Contents of certificates of reference materials NIST Technical Note 1297 ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers ISO/REMCO N280 Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression $k_s = s^2 m$ is employed to determine the sampling size

s = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 k_s = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X =True value (Labeled Value), U= Expanded uncertainty

 $U=ku_c$ where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_{e^{\pm}}\sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

203 Norcross Avenue • Metuchen, NJ 08840 USA 732-549-7144 • **1-800-I AR-SPFX** • Fax: 732-603-9647 • CPMSalor@rovers.com • versus covers.com

1001 West Saint Paul Avenue Milwaukee, WI 53233 USA Tel.: 800-558-9160 • (414) 273-3850 Fax: 800-962-9591 • (414) 273-4979 e-mail: aldrich@sial.com

Certificate of Analysis

SOUTHWEST RESEARCH INST DANNY RAMIREZ 6220 CULEBRA RD SAN ANTONIO TX 78238 PO NBR: 130686E

INDREANICS LAB /29/30/34 INUNGANICE LAB 27/28/29/80/34 DATE RECEIVED: 1/9/201 DATE EXPIRED: 1/9/2012 DR DATE OPENED: 1/9/2012 INCRG: 2626 PO: 1306865

PRODUCT NUMBER: 236527-500G

LOT NUMBER: 15308EI

PRODUCT NAME: SODIUM HYDROGENCARBONATE, 99.7+%, A.C.S. REAGENT

FORMULA: NAHCO3

FORMULA WEIGHT: 84.01

APPEARANCE	WHITE POWDER
TITRATION	100.3 % (WITH HCL)
ICP ASSAY	CONFIRMS SODIUM COMPONENT
INSOLUBLE MATTER	0.001% *
CALCIUM	0.0050%
CHLORIDE	0.0014% *
IRON	< 0.0001% *
HEAVY METALS	<5PPM (AS PB) *
POTASSIUM	<0.0020 % *
MAGNESIUM	0.00025%
AMMONIUM	<5PPM *
PHOSPHATE	<0.001% *
CALCIUM, MAGNESIUM & R2O3 PRECIPITATE	0.016% *

CONTINUED ON NEXT PAGE

ALDRICH CHEMICAL COMPANY DAVID SWESSEL JANUARY 5, 2001

Sigma-Aldrich, Inc. warrants that its products conform to the information contained in this and other Sigma-Aldrich publications. Purchaser must determine the suitability of the product(s) for their particular use. Additional terms and conditions may apply. Please see reverse side of the invoice or packing slip. Aldrich brand products are sold exclusively through Sigma-Aldrich, Inc.

Organics and Inorganics for Chemical Synthesis.

We are Committed to the Success of our Customers through Science, Technology and Service.

010207

CertificateofAnalysis

	Codium combonata
Product Name	Sodium carbonate, ACS reagent (primary standard), anhydrous 99.95-100.05% as dry basis
Product Number	22,348-4
Product Brand	ALDRICH
CAS Number	497-19-8
Molecular Formula	CNa ₂ O ₃
Molecular Weight	105.99
TEST	LOT 04922MO RESULTS
APPEARANCE	WHITE GRANULAR POWDER
TITRATION	99.97% (WITH HCL)
LOSS ON DRYING	<0.1% (285 DEG C) *
ICP ASSAY	CONFIRMS SODIUM COMPONENT
INSOLUBLE MATTER	<0.002 (10%, H2O) *
AMMONIUM HYDROXIDE	0.002% *
PRECIPITATE	
CALCIUM	0.004% *
CHLORIDE	0.0006% *
IRON	<3 PPM *
HEAVY METALS	<3 PPM (AS PB) *
POTASSIUM	0.0005% *
MAGNESIUM	0.002% *
NITROGEN COMPOUNDS	<0.001% *
PHOSPHATE	0.0005% *
SULFUR COMPOUNDS	<0.003% *
SILICA	<0.005% *
	* SUPPLIER DATA
	MEETS REQUIREMENTS OF ACS 9TH ED
QUALITY CONTROL	DECEMBER, 2001

OUALITY CONTROL ACCEPTANCE DATE

are s

Ronnie J. Martin, Supervisor Quality Control Milwaukee, Wisconsin USA

INOF	RGANIC LAB	3S/RA	рснем	LABS
DATE	RECEIVED:	11	11 /0Z	
DATE	EXPIRED:	- 11	11/2012	- 197
	OPENED:	111	1/02	
INOR	3: 3757	P	0: 33	34588Ê

https://www.sigmaaldrich.com/cgi-bin/hsrun/Suite7/Suite/HAHTpage/Suite.HsExternalProductDisplay.run... 04/14/05

ABS

ABS

SPEXertificate	
Certificate of Reference Material	

тм

Lot No. 27-122AS

Catalog Number:	AS-F9-2X/2Y
Description:	1000 mg/L Fluoride
Matrix:	H2O

This **ASSURANCE** [®] certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for lon Chromatography instrumentation. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

Certified Value: 998 mg/L

Uncertainty Associated with Measurement: +/- 3.0 mg/L Certified Value is Traceable to: NIST SRM 3183

The CRM is prepared gravimetrically using high purity Sodium Fluoride Lot# M44142. The certified value listed is the average of values obtained by classical wet assay and lon Chromatography analysis.

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 997 mg/L:

Method: Potentiometric using Fluoride combination electrode

Instrumentation Analysis By Ion Chromatography:999 mg/L:

Uncertified Properties:

Trace Ionic Impurities in the Actual Solution via IC Analysis:

lon	mg/L	Ion	mg/L
Br	<0.2	NO3 '	<0.2
CI	<10	PO4	<
NO2	<0.2	SO4	<0.5

Balances are calibrated regularly with weight sets traceable to NIST #32856, #32857 and others. This CRM is guaranteed stable to +/-0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

JAN. - - 2005

Date of Certification:

Certifying Officer: ______ N. Kochertak

© 2004 SPEX CertiPrep, inc.

Report of Certification

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995 EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement – Second Edition ASTM Guide D6362-98 ISO Guide 34: Quality system guidelines for the production of reference materials. ISO Guide 17025: Certification of reference materials, general and statistical principles ISO Guide 31: Contents of certificates of reference materials NIST Technical Note 1297 ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers ISO/REMCO N280 Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression $k_s = s^2 m$ is employed to determine the sampling size

s = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 k_s = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+-U where X =True value (Labeled Value), U= Expanded uncertainty

 $U=ku_c$ where k=2 is the coverage factor at the 95% confidence level

 u_c is obtained by combining the individual element standard uncertainty components u_i and $u_{c*}\sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

203 Norcross Avenue • Metuchen, NJ 08840 USA

	<u>5</u>]	IEC.	ertífícat		
	20		eference Alate		
Catalog Nun		AS-CL9-2		Lot No.:26-150AS	DATE
Description: Matrix:		Water	of Chloride		e e
		vv alci		•	Ŧ
calibration standar	d or quality cont	rol standard fo	or Ion Chromatogray	ed primarily for use as a phy instrumentation. It can be fied properties listed below.	50
Certified Value Traceable to: N			/L <u>+</u> 3 mg/L		
	listed is the ave			oride (NaCl) Lot#02001F. al wet assay and Ion	05 F55119
Refer to side 2 for	· details of meas	urement unc	ertainties.		
weighing as AgCl	etric analysis by	precipitation u	sing Silver Nitrate, ography: 997	filtering, drying and mg/L	
Tr	ace Anion Impu	rities in the A	ctual Solution via	IC Analysis:	
Tr	ace Anion Impu Component	irities in the A	Actual Solution via Component	•	
Tr	-	mg/L	Component	mg/L	
Tr	F PO ₄ ³⁻	mg/L <0.05 <0.15	Component NO ₃ ⁻ Br ⁻	mg/L <0.15 <0.2	
Tr	Component F	mg/L <0.05	Component NO ₃ ⁻	mg/L <0.15	
Tr	F PO ₄ ³⁻	mg/L <0.05 <0.15	Component NO ₃ ⁻ Br ⁻	mg/L <0.15 <0.2	
Balances are calibra This CRM is guara of measurements an	Component F^{-} PO_{4}^{3-} SO_{4}^{2-} ated regularly winteed stable to + and other effects, a. This guarantee	mg/L <0.05 <0.15 <0.15 ith weight sets /- 0.5% of the such as transp e is valid only	Component NO ₃ Br NO ₂ traceable to NIST# certified concentrat iration losses, for a j when the material is	mg/L <0.15 <0.2	
Balances are calibra This CRM is guara of measurements and date of certification	Component F^{-} PO_{4}^{3-} SO_{4}^{2-} ated regularly winteed stable to + and other effects, a. This guarantee	mg/L <0.05 <0.15 <0.15 ith weight sets /- 0.5% of the such as transp e is valid only	Component NO ₃ Br NO ₂ traceable to NIST# certified concentrat iration losses, for a j when the material is	mg/L <0.15 <0.2 <0.2 <0.2 s 32856, 32867 and others. ion inclusive of uncertainty period of one year from the	
Balances are calibra This CRM is guara of measurements and date of certification	Component F^{-} PO_{4}^{3-} SO_{4}^{2-} ated regularly winteed stable to + and other effects, a. This guaranteer red under labora	mg/L <0.05 <0.15 <0.15 ith weight sets /- 0.5% of the such as transp e is valid only tory condition	Component NO ₃ Br NO ₂ traceable to NIST# certified concentrat iration losses, for a j when the material is	mg/L <0.15 <0.2 <0.2 <0.2 s 32856, 32867 and others. ion inclusive of uncertainty period of one year from the	
Balances are calibra This CRM is guara of measurements and date of certification	Component F^{-} PO_{4}^{3-} SO_{4}^{2-} ated regularly winteed stable to + and other effects, a. This guarantee	mg/L <0.05 <0.15 <0.15 <0.15	Component NO ₃ Br ⁻ NO ₂ traceable to NIST# certified concentrat iration losses, for a j when the material is s.	mg/L <0.15 <0.2 <0.2 <0.2 s 32856, 32867 and others. ion inclusive of uncertainty period of one year from the	
Balances are calibra This CRM is guara of measurements and date of certification transported and stor	Component F^{-} PO_{4}^{3-} SO_{4}^{2-} ated regularly winteed stable to + and other effects, a. This guaranteer red under labora	mg/L <0.05 <0.15 <0.15 <0.15	Component NO ₃ Br ⁻ NO ₂ traceable to NIST# certified concentrat iration losses, for a j when the material is s.	mg/L <0.15 <0.2 <0.2 s 32856, 32867 and others. ion inclusive of uncertainty period of one year from the skept tightly capped and	

Report of Certification

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement – Second Edition ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression $k_s = s^2 m$ is employed to determine the sampling size

s = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty) m = the sub-sampling mass

 $k_s = mass$ of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+-U where X = True value (Labeled Value), U= Expanded uncertainty

 $U=ku_{c}$ where k=2 is the coverage factor at the 95% confidence level

 u_c is obtained by combining the individual element standard uncertainty components u_i and $u_{cr} \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

203 Norcross Avenue • Metuchen, NJ 08840 USA

-ABS

Certificate of Reference Alaterial

Catalog Number: **Description:** Matrix:

Lot No.: 27-141AS AS-NO₂N9-2X/2Y 1000 mg/L of Nitrite-N H_2O

This ASSURANCE [®]certified reference material, CRM, is intended primarily for use as a calibration standard or quality control standard for Ion Chromatography instrumentation. It can be employed in USEPA, ASTM and other methods relevant to the certified properties listed below.

Certified Value: Nitrite-N (NO₂-N): 994 mg/L ± 3 mg/L Traceable to: SPEX CRM #0902NO2

The CRM is prepared gravimetrically using high purity Sodium Nitrite (NaNO₂) Lot#0791R. The certified value listed is the average of values obtained by classical wet assay and Ion Chromatography analysis.

Refer to side 2 for details of measurement uncertainties.

Classical Wet Assay: 999 mg/L Method: Titrimetric analysis using KMnO4. KMnO4 standardized with As₂O₃ NIST SRM #83d.

Instrumental Analysis by Ion Chromatography: 995 mg/L

Trace Anion Impurities in the Actual Solution via IC Analysis:

Element	mg/L
F	<0.4
SO4 ⁻²	<0.4
PO4-3	<0.8
Cl	<20
Br	<20
NO3	<40

Balances are calibrated regularly with weight sets traceable to NIST#s 32856, 32867 and others. This CRM is guaranteed stable to +/- 0.5% of the certified concentration inclusive of uncertainty of measurements and other effects, such as transpiration losses, for a period of one year from the date of certification. This guarantee is valid only when the material is kept tightly capped and transported and stored under laboratory conditions.

Date of Certification:

2005 MAR.

Certifying Officer: N. Kochertake

© 2004 SPEX CertiPrep, Inc.

Report of Certification

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995 EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement – Second Edition ASTM Guide D6362-98 ISO Guide 34: Quality system guidelines for the production of reference materials. ISO Guide 17025: Certification of reference materials, general and statistical principles ISO Guide 31: Contents of certificates of reference materials NIST Technical Note 1297 ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers ISO/REMCO N280 Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression $k_s = s^2 m$ is employed to determine the sampling size

s = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty) m = the sub-sampling mass

 k_s = mass of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

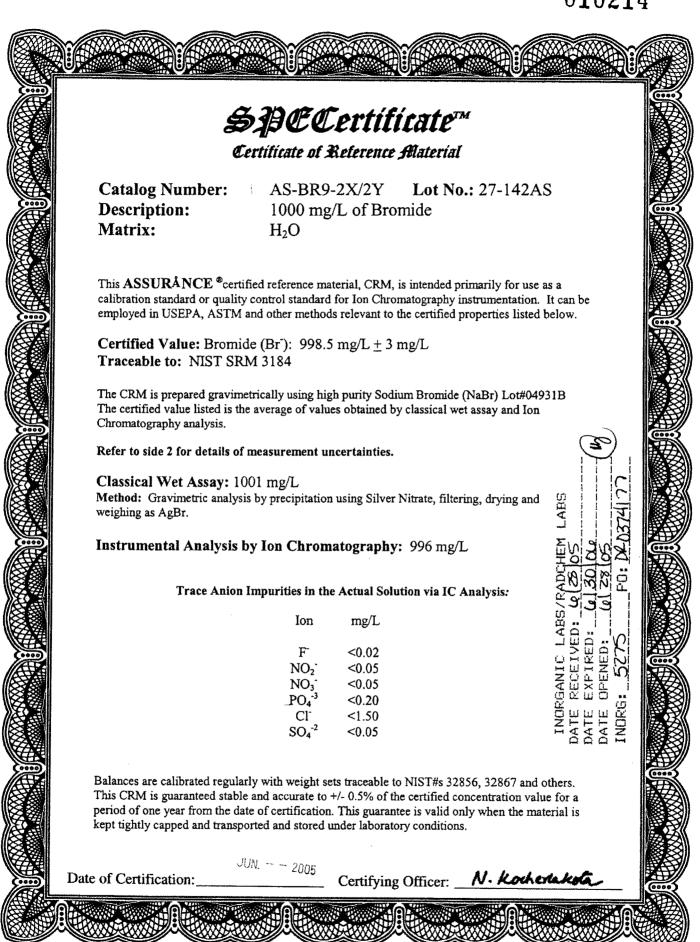
The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X =True value (Labeled Value), U= Expanded uncertainty

 $U=ku_c$ where k=2 is the coverage factor at the 95% confidence level

 u_c is obtained by combining the individual element standard uncertainty components u_i and $u_c \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.


Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

203 Norcross Avenue • Metuchen, NJ 08840 USA

© 2004 SPEX CertiPrep, Inc.

Report of Certification

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers **ISO/REMCO N280**

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohin. double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression $k_s = s^2 m$ is employed to determine the sampling size

s = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty) m = the sub-sampling mass

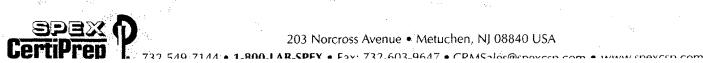
 $k_s = mass$ of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

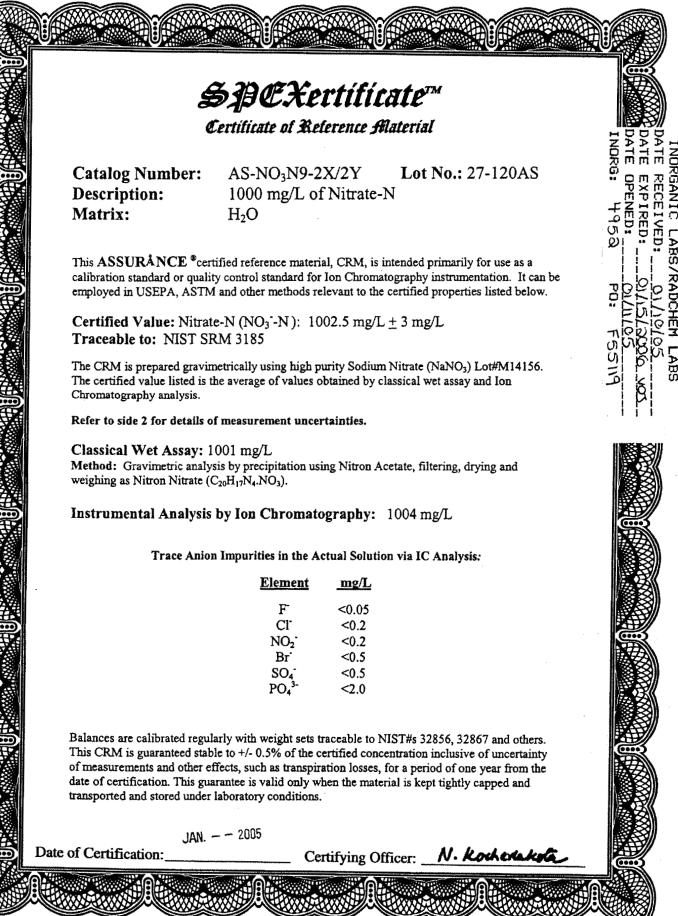
The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+-U where X = True value (Labeled Value), U= Expanded uncertainty

 $U=ku_c$ where k=2 is the coverage factor at the 95% confidence level

 u_c is obtained by combining the individual element standard uncertainty components u_i and $u_{c-1}\sqrt{\Sigma u_i^2}$


Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.


Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

203 Norcross Avenue • Metuchen, NJ 08840 USA

© 2004 SPEX CertiPrep, Inc.

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement – Second Edition ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers

ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression $k_{r}=s^{2}m$ is employed to determine the sampling size

s = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 $k_s = mass$ of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+/-U where X = True value (Labeled Value), U= Expanded uncertainty

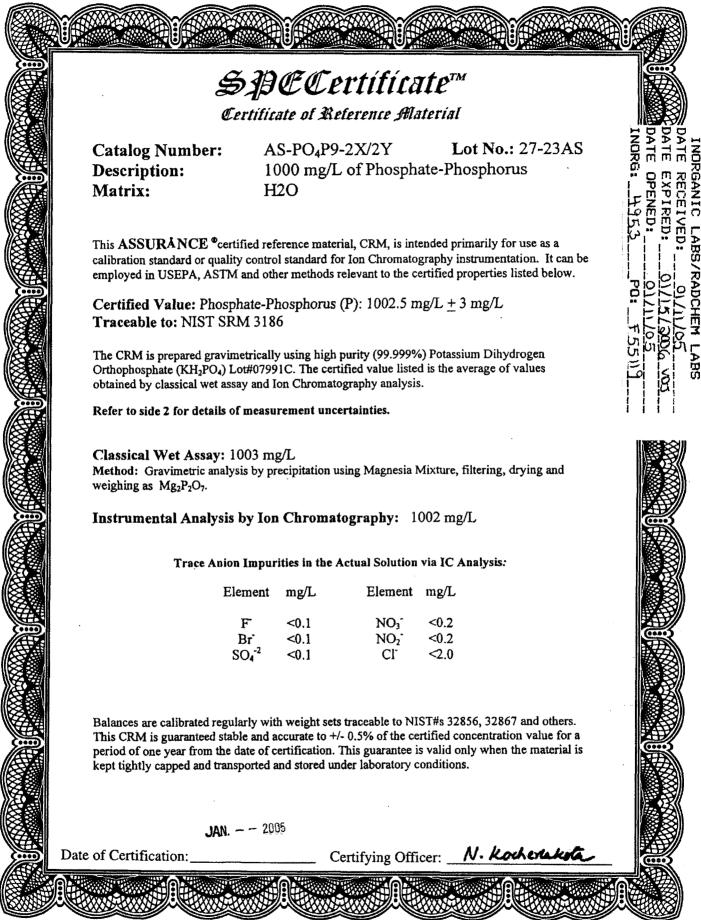
U=ku, where k=2 is the coverage factor at the 95% confidence level

 u_e is obtained by combining the individual element standard uncertainty components u_i and $u_e \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:


SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

203 Norcross Avenue • Metuchen, NJ 08840 USA 549-7144 • 1-800-LAB-SPEX • Fax: 732-603-9647 • CRMSales@spexcsp.com • www.spexcsp.com

010218

© 2004 SPEX CertiPrep, Inc.

This Certified Reference Material has been prepared and certified under an ISO 9001 system consistent with the following guides:

Guide To The Expression Of Uncertainty In Measurement 1995

EURACHEM/CITAC Guide: Quantifying Uncertainty in Analytical Measurement - Second Edition ASTM Guide D6362-98

ISO Guide 34: Quality system guidelines for the production of reference materials.

ISO Guide 17025: Certification of reference materials, general and statistical principles

ISO Guide 31: Contents of certificates of reference materials

NIST Technical Note 1297

ILAC-G12-2000: Guidelines for the requirements for the competence of reference materials producers ISO/REMCO N280

Material Source:

All analytes and matrix materials are obtained and verified by SPEX CertiPrep from pre-qualified vendors as per ISO 9000 guidelines. Vendor identifications are proprietary, however sources of all materials used in the preparation and testing of SPEX CertiPrep CRMs are tracked and documented. For further information contact CRM Sales.

Instructions for Use:

Primary usage of this CRM is in neat form or diluted serially with matrix of a purity at or greater than the purity of the original matrix solution. If dilution is required the diluent must be compatible with all certified analytes and contain stabilizers appropriate for the period of intended use. The CRM can also be used as a spike or with a spike, again with appropriate compatibility considerations. All solutions should be thoroughly mixed, by shaking, prior to use and never pipetted directly from the bottle. All surfaces that come in contact with the solution must be thoroughly cleaned and leached prior to use. Dilutions should be performed only with Class A volumetric glassware.

Method of Preparation:

Clean laboratory procedures and techniques have been used throughout the preparation. All materials, equipment, analytical instrumentation and personnel have been qualified prior to use. The highest purity acids applicable, 18 megohm, double deionized water, acid-leached triple-rinsed bottles, and Class A glassware have been used in all preparations.

Homogeneity:

The Homogeneity of the CRM has been confirmed by procedures consistent with ISO guide 17025, ISO/REMCO N280 and ASTM D6362-98 Appendix X2. Random, replicate samples of the final, packaged material have been analyzed for the certified values by procedures consistent with the intended use of the CRM.

The mathematical expression $k = s^2 m$ is employed to determine the sampling size

s = relative standard deviation in % for one component of the sample. (ie. The sub-sampling uncertainty)

m = the sub-sampling mass

 $k_s = mass$ of sub-sample necessary to ensure a relative sub-sampling error of 1% (68% confidence level) in a single determination

Statistical estimator and Confidence limits:

The certified value 'x' listed on the reverse of this document is at the 95% level of confidence and can be expressed as X = x+-U where X = True value (Labeled Value), U= Expanded uncertainty

U=ku, where k=2 is the coverage factor at the 95% confidence level

ue is obtained by combining the individual element standard uncertainty components u_i and $u_r \sqrt{\Sigma u_i^2}$

Certification Traveler Report:

All certified values reported were derived from Traveler Report (Spex CertiPrep's traceability documentation) identified by the lot number of this CRM. For further information contact CRM Sales.

Legal Notice:

SPEX CertiPrep reference materials are not for any cosmetic, drug or household application and are to be used only by qualified individuals who are trained in appropriate procedures. No claims against SPEX CertiPrep, Inc. of any kind whatsoever, whether based on breach of warranty, alleged negligence, or otherwise, with respect to this RM shall be greater than the purchase price. In no event shall SPEX CertiPrep, Inc. be liable for any loss of profits or any incidental, special, or consequential damages.

203 Norcross Avenue • Metuchen, NJ 08840 USA

732-549-7144 • 1-800-LAB-SPEX • Fax: 732-603-9647 • CRMSales@spexcsp.com • www.spexcsp.com

010220

				N
	SPEXer	tificate	гм	
	Certificate of Referen	ce Alaterial		
Catalog Number:	AS-SO49-2X/2Y	Lot No. 2	8-26AS	
Description:	1000 mg/L Sulfate			
Matrix:	H2O			
calibration standard or qu. ICPOES, DCP, AA, ICPN relevant to the certified pr Certified Value: 100	00.5 mg/L	anic spectroscopic inst yed in USEPA, ASTM	rumentation such as	
-	d with Measurement: + ceable to: NIST SRM 31	_		
The CRM is prepared gra- certified value listed is the	vimetrically using high purity e average of values obtained by s of measurement uncertaint	Potassium Sulfate classical wet assay an	Lot# X34146 . The d ICP spectrometer analysis	
•	sing Barium Chloride, filtered,	ignited and weighed a	s BaSO4	
Instrumental Analys Uncertified Properti	sis by ICP spectrometer es:	:1001 mg/L		
Trace Metallic Impu	rities in the Actual Solution	on via ICP / ICPMS	Analysis:	
Element mg/L	Element mg/L			
Cl ⁻ <0.01 F ⁻ <0.005 NO2 ⁻ <0.01	Br' <0.01 NO3' <0.01 PO4' <0.10			. •
]	INDRGANIC LABS/R DATE RECEIVED: 7 DATE EXPIRED: 7 DATE OPENED: 7 INORG: 5305	1905	(D)	
This CRM is guaranteed s of measurements and othe	gularly with weight sets tracea table to +/-0.5% of the certifie r effects, such as transpiration guarantee is valid only when t der laboratory conditions.	d concentration inclusi losses, for a period of (ve of uncertainty one year from the	
Date of Certificatio	on:	Certifying Office	. N. Kochertakota	
	T DAXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	AND ADDOD ALT OF TAXAON		

SOUTHWEST RESEARCH INSTITUTE NUCLEAR PROJECT CLIENT: Division 20 TASK ORDER: 051219-5 SRR: 28420 SDG: 271245 CASE: L. Yang VTSR: December 16, 2005 PROJECT#: 06002.01.322

Pipette Calibrations

04 029 Book/Page

Γ

Γ

Γ

Γ

J

ſ

Γ

ſ

ſ

[]

Balance #: <u> </u>		ometer #: <u>6-011</u>		· · · · ·
Eppendorf #	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)
Lab30	1000	1.0099	1.0078	1.0101
TMA1	1000 ,	1,0045	,1,0072	1.004500
TMA2	1000 . 985		1.0068 .98	
TMA3	1000	NOT	FOUND	// ×3
TMA6	1000	1.0088	1.0016	1.0018
TMB1	900	,9004	.9051	. 9001
TMC1	800	,8004	.8003	, 8001
TMDD1	750	.7577	,7556	.7504
TMD1	700	,7078	,7030	. 6994
TMD2	700	,7052	.7048	,7045
TME1	600	,6009	.6004	.6021
TMF2	500	, 1999	,4998	,507
TMF5	500	.5068	,5061.	, 5073
ICF1	500	,5036	.5040	,5031
L30-500	500	. 5082	.5064	. 5029
TMG3	400	,4016	4001	,4003
TMH1	300	Out Of	SErvice	
TMH2	300	3032	.3008	.2997
TMJ1	250	12525	.2546	,2514
TMJ2	250	,25(3	,2509	,2502
TMJ3	250	,2539	.2518	,2563
TMK2	200	.2017	.2038	2020
TML1	150	,1513	,1501	. [511
TMM1	120	,1210	.1214	1208
TMN3	100	out of	SErvice	
ICN1	دىيە 100	,1019	,1011	. 1010
TMQ1	دری 80 عرب ^ی 80 عرب	22 7070802	Foant .0804	,0799
TMR1	70	out of	SErvice	
TMS1	60	out of	Service	
LAB-30A	50	out of	Service	·
TMU1	40	,0400	.0400	.0397
TMU2	40	.0401	,0398	0399
TMV1	30	.0300	,0299	.0300
L30-20	20	.0304	.0200	. 0198
TMW1	25	,0252	,0251	.0254
TMY1	15	Dui of	SERVICE	
Analyst:	-Wille Khef EO.	Di	ate: <u>11-23-05</u> ate: <u>11-28-05</u>	

FRM-243-b (Rev 3/Mar 03)

04 030 Book/Page:

010223

Swift - Div. 01, Inorganic Labs' Fixed Volume Pipette Verification Log

(Space provide for Inorganic Laboratories' Fixed Volume Pipette Verification Spreadsheet)

SwRI - Div. 01, Inorganic Labs' Fixed Volume Pipette Spreadsheet

Eppendorf #	True Value (uL)	1st Reading (g)) 2nd Reading (g) 3rd Reading (g)	Avg Wt (g)	% of True Value
Lab30	1000	1.009	1.007	B 1.0101		100.93
TMA1	1000	0.985				98.51
TMA2	1000	1.0046	1.0068			100.51
TMA3	1000	NOT	FOUND			
TMA6	1000	1.0088	1.0016	6 1.0018	1.00	100.41
TMB1	900	0.9004	0.902		0.90	100.10
TMC1	800	0.8004	0.8003	0.8001	0.80	100.03
TMDD1	750	0.7577	0.7556		0.75	100.61
TMD1	700	0.7078	0.7030		0.70	100.49
TMD2	700	0.7052	0.7048		0.70	100.69
TME1	600	0.6009	0.6004		0.60	100.19
TMF2	500	0.4999	0.4998	0.5007	0.50	100.03
TMF5	500	0.5068	0.5061	0.5073	0.51	101.35
ICF1	500	0.5036		0.5028	0.50	100.69
L30-500	500	0.5082	0.5064	0.5028	0.51	101.16
TMG3	400	0.4016			0.40	100.17
TMH1	300	OUT	OF	SERVICE		
TMH2	300	0.3032		0.2997	0.30	100.41
TMJ1	250	0.2525	0.2546	0.2516	0.25	101.16
TMJ2	250	0.2513	0.2509	0.2502	0.25	100.32
TMJ3	250	0.2539	0.2518	0.2563	0.25	101.60
TMK2	200	0.2017	0.2038	0.2020	0.20	101.25
TML1	150	0.1513	0.1501	0.1511	0.15	100.56
TMM1	120	0.1210	0.1214	0.1208	0.12	100.89
TMN3		OUT	OF	SERVICE		
ICN1	100	0.1019	0.1011	0.1010	0.10	101.33
TMQ1	80	0.0802	0.0804	0.0799	0.08	100.21
TMR1		OUT		SERVICE		
TMS1		TUC		SERVICE		
LAB-30A		TUC	OF	SERVICE		
TMU1	40	0.0400	0.0400	0.0397	0.04	99.75
TMU2	40	0.0401	0.0398	0.0399	0.04	99.83
TMV1		0.0300	0.0299	0.0300	0.03	99.89
L30-20	20 .	0.0204	0.0200	0.0198	0.02	100.33
TMW1	25	0.0252	0.0251	0.0254	0.03	100.93
TMY1	15	DUT	OF	SERVICE		1

Note: TMA2-1000 needed lubrications because the borneland plungers where sticking. Ju TMQ1 was relocated 11-2305, reals 100.21 % accuri

FRM-246 (Rev 1/Mar 03)

FRM-243-a (Rev 3/Mar 03)

08 035 Book/page:_

SwRI – Div. 01, Inorganic Labs' Adjustable Volume Pipette Verification Log (Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet) KUMPOS JI-11-05

Eppendorf #	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	20	0.0199	0.0200	0.0200	0.020	99.83
ADJ200-A	100	0.0985	0.0990	0.1022	0.100	99.90
	200	0.1991	0.1994	0.1997	0.199	99.70
	20					
ADJ200-C	100	OUT	OF	SERVICE		
	200			·		
	20	0.0202	0.0200	0.0203	0.020	100.83
ADJ200-D	100	0.0984	0.0991	0.0988	0.099	98.77
	200	0.1978	0.1984	0.1983	0.198	99.08
	20					
ADJ200-G	100					
	200					
	20					
ADJ200-H	100					
	200					
	20					
ADJ200-J	100					
	200					· · · · · · · · · · · · · · · · · · ·
	20					
ADJ200-K	100	NOT	IN USE-	GLOVEBOX		
	200					
	20					
ADJ200	100					
	200					
	20					
ADJ200	100	T				
	200					

FRM-247a (Rev 4/Apr 04)

....

Book/page: U8 U36

SwRI Div. 01 – Inorganic Laboratory Adjustable Pipette Verification Log 010225

Ba	1	~~~	#.	
Da	ы	ice	Ħ.	

31

Thermometer #: <u>G-011</u> diH20 Temperature (° C) <u>_</u>

[Eppendorf #	True Value (µL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		20	,0199	,0200	.0300
] [ADJ200-A	100	,0985	.0990	,1022
[200	.1991	1994	. 1997
[20			
[ADJ200-C	100	OUT	OF	SErvice
[200			
[20	,0202	.0200	,0203
	ADJ200-D	100	, 0 984	.0991	. 0988
5		200	,1978	,1984	. 1983
		20			
200	ADJ200-G	100			
2		200			
		20			\searrow
	ADJ200-H	100		118-05	
1		200			
20	·	20		F	
2	ADJ200-J	100			
Ĺ		200			
		20		· · · · · · · · · · · · · · · · · · ·	
	ADJ200-K	100	NOT	in use -	GLOVEbex
L		200			
		. 20		211-18-05	
	ADJ200	100		esti i	
		200			

Analyst: Reviewed by

Date: 11-18-05 Date: 12/21 C.

FRM-244 (a) (Rev 5/Apr 04)

Book/page: 08 037

SwRI – Div. 01, Inorganic Labs' Adjustable Volume Pipette Verification Log

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

010226

		2nd Reading (g)	3rd Reading (g)	IAVa Wt (q)	% of True Value
True Value (µL)	1st Reading (g)	2nd Reading (g)	Jid Reading (9)		
20	<u> </u>				
100					
200					
20		/t-			
100		11.			
200					
20			[<u> </u>	
100					
200	K			0.0100	99.33
20	0.0199	0.0199			100.97
100	0.1013	0.1011			99.52
200	0.1989	0.1990	0.1992		
20	0.0203	0.0201	0.0201		100.83
	0.0995	0.0997	0.0996		99.60
	0.1999	0.1993	0.1994		99.77
the second s	0.0203	0.0201	0.0202	0.0202	101.00
		0.0996	0.0993	0.0995	99.50
		0.1992	0.1990	0.1992	99.58
	20 100 200 20 100 20 20 20 100 200 20 20 20 100	20 100 200 20 100 20 100 20 100 200 200 200 200 200 200 200 200 200 200 200 200 200 0.0199 100 0.0203 100 0.0995 200 0.0203 100 0.0203 100 0.0996	20 100 200 20 20 100 20 100 200 100 200 100 200 100 200 100 200 100 200 0.0199 100 0.0199 200 0.0199 200 0.0113 200 0.1989 200 0.0203 200 0.0203 200 0.1999 200 0.1999 200 0.1999 200 0.0203 100 0.0995 200 0.0203 200 0.0203 200 0.0203 200 0.0203 200 0.0203 200 0.0203 200 0.0203 200 0.0203	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

SwRI – Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

FRM-244 (Rev 2/Sept 02)

4	•	-
Deeldmana	- () 8	038
Book/page:		

Balanc	e #: <u>16</u>	Thermometer #	# GD11	diH20 Tempera	ature (° C) <u>21° C</u>
	Eppendorf #	True Value (µL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
	······	20			
	ADJ200-A	100			
		200		lax	
		20		1 101	
	ADJ200-C	100	4		
		200		10.	
		20			
	ADJ200-D	100			
		200			
		20	0.0199	0.2199	0.0148
	ADJ200-G	100	0.1013	0.1011	0.1004
1		200	0.1989	0.1993	0.1992
		20	0.0203	0.0201	0.020'
]	ADJ200-H	100	0.0995	00997	0.0996
٤		200	0.1999	0.1993	0.19944
		20	0.0203	0.0201	0.020
l	ADJ200-J	100	0.0996	0.0996	0.0493
		200	D.1992	0.1992	0.1990
		20			$ \longrightarrow $
	ADJ200-K	100		1,12	
		200		1 12/01	<i>x</i>
		20		11	
	ADJ200	100			
		200			

Analyst: Reviewed by:

Π

 Γ

ļ

ļ

Date: Date: 12 σ5

FRM-244 (a) (Rev 5/Apr 04)

Book/page: <u>U8 U95</u> SwRI – Div. 01, Inorganic Labs' Adjustable Volume Pipette Verification Log (Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet) 010228

Eppendorf #	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
•	100	0.1006	0.1005	0.1008	0.101	100.63
ADJ1000-C	500	0.4926	0.4925	0.4943	0.494	98.86
	1000	0.9964	1.0052	1.0026	1.001	100.14
	100	0.1007	0.0999	0.1001	0.100	100.23
ADJ1000-D	500	0.4929	0.4952	0.4971	0.495	99.01
	1000	0.9946	0.9942	0.9936	0.994	99.41
	100	0.1008	0.1010	0.1011	0.101	100.97
ADJ1000-E	500	0.4976	0.4971	0.4980	0.498	99.51
	1000	1.0036	0.9972	1.0011	1.001	100.06
	100	0.1017	0.1012	0.101	0.102 2	102 101.587
ADJ1000-F	500	0.4969	0.4978	0.4986	0.498	99.55
	1000	0.9993	1.0003	0.9985	0.999	99.94
	100					
ADJ1000-G	500					
	1000					
	100					
ADJ1000-H	500					
	1000					
	100					
ADJ1000-J	500					
	1000					
	100					
ADJ1000-K	500	NOT	IN USE-	GLOVEBOX		
	1000					
	100					
ADJ1000	500	Ī				
	1000					

SwRI – Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

FRM-247b (Rev 3/Apr 04)

Book/page: 08 096

diH20 Temperature (° C)_

SwRI Div. 01 – Inorganic Laboratory Adjustable Pipette Verification Log 010229

Balance #: 34

.

_____TI

Thermometer #: 6011

1st Reading (g) 2nd Reading (g) 3rd Reading (g) Eppendorf # True Value (µL) 100 ,1008 .1006 1005 ADJ1000-C 500 ,4943 .4926 4925 1000 9964 1.0052 1.0026 100 0999 ,1007 1001 . 4929 ADJ1000-D 500 4952 . 1971 ,9942 .9936 ,9946 1000 100 ,1008 , 1010 ,1011 ADJ1000-E ,4976 ,4980 500 .4971 1.0036 1000 .9972 1.0011 100 . 1017 1012 ,1018 ADJ1000-F 500 .4969 ,4978 ,4986 1000 ,9993 9985 1.0003 100 ADJ1000-G 500 1000 1-18-28 100 ADJ1000-H 500 CC 1000 100 ADJ1000-J 500 1000 100 SLOUGBOX ADJ1000-K 500 NOT IN USE -1000 100 Jew11-18-05 ADJ1000 500 1000

Analyst Reviewed by

oaloalog Date: 11-18 Date: 12/21/05

FRM-244 (b) (Rev 4/Apr 04)

Book/page: 08 097

SwRI - Div. 01, Inorganic Labs' Adjustable Volume Pipette Verification Log

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

010230

SwRI - Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

	Malua (rd.)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
Eppendorf #	True Value (µL)	1st Reading (g)	Zilu Keading (g)		0.000	0.00
	100				0.000	0.00
ADJ1000-C	500				0.000	0.00
	1000				0.000	0.00
	100		105		0.000	0.00
ADJ1000-D	500		als'		0.000	0.00
	1000		m		0.000	0.00
	100				0.000	0.00
ADJ1000-E	500		K		0.000	0.00
	1000	7			0.000	0.00
	100	/			0.000	0.00
ADJ1000-F	500	<i>/</i>			0.000	0.00
	1000			0.0080	0.099	98.70
	100	0.0988	0.0984	0.0989	0.498	99.67
ADJ1000-G	500	0.4990	0.4983	0.4978	0.996	99.56
	1000	0.9948	0.9957	0.9963	0.099	98.63
	100	0.0987	0.0983	0.0989	0.494	98.70
ADJ1000-H	500	0.4923	0.4943	0.4939	0.988	98.80
	1000	0.9859	0.9879	0.9903	0.102	101.70
	100	0.1002	0.1022	0.1027		99.55
ADJ1000-J	500	0.4972	0.4978	0.4983	0.498	99.32
	1000	0.9901	0.9951	0.9945	0.993	0.00
	100				0.000	
ADJ1000	500				0.000	0.00
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1000		10103	Ĺ	0.000	0.00
	100		·		0.000	0.00
ADJ1000	500	34	1		0.000	0.00
AD01000	1000				0.000	0.00

FRM-244 (Rev 2/Sept 02)

Book/p	age:	U	8	U	9	Ö
--------	------	---	---	---	---	---

Ba	SWRI DIV. 01	- Inorganic Labor			a tion Log) 1 02 ture (° C <u>) </u>
[Eppendorf #	True Value (µL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		100			
[ADJ1000-C	500		· ·	
· · [1000			
		100			
	ADJ1008-D	500		TI	
[1000		I Hoilor	
		100		20/06	
	ADJ1000-E	500			
[1000			
J		100			
	ADJ1000-F	500	· · ·		
2		1000			
1000		100	0.0988	0.0984	0.0989
ìL	ADJ1000-G	500	0.4990	0.4983	0.4978
╹╻┝		1000	0.9948	0.9957	0.9963
ӡ∟		100	0.0987	0.0983	0,0789
	ADJ1000-H	500	0.4923	0-4943	04939
90		1000	0.9859	0.9879	0.9903
Z L		100	Q 10B2	0.1022	0.1027
	ADJ1000-J	500	0.4972	0.4978	0.4983
		1000	0.9901	0.981	0.9945
		100	JV .2/.10	5	
L	ADJ1000-K	500			
		1000		g/ 10/01/2	5
L		100		11.	
	ADJ1000	500		*	
		1000			

Analyst: Reviewed by:

Т

0

10

n

Ω

0

Ą

Į

ļ

ļ

Date: 12 0/ Date: 12/21/05

FRM-244 (b) (Rev 4/Apr 04)

08 155 Book/page:__

SwRI – Div. 01, Inorganic Labs' Adjustable Volume Pipette Verification Log

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet) 010232

Eppendorf #	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
	500	0.4940	0.4989	0.4993	0.497	99.48
ADJ5000-C	2500	2.4980	2.4976	2.4981	2.498	99.92
	5000	5.0261	5.0106	5.0099	5.016	100.31
	500					_
ADJ5000-G	2500	OUT	OF	SERVICE		
	5000					
	500 、					
ADJ5000-H	2500	OUT	OF	SERVICE		
	5000					
	500	0.4994	0.5037	0.5031	0.502	100.41
ADJ5000-I	2500	2.4983	2.4989	2.4978	2.498	99.93
	5000	4.9899	5.0093	5.0049	5.001	100.03
	500					
ADJ5000-J	2500					
	5000					
-	500					
ADJ5000-K	2500					
	5000					
	500					
ADJ5000-L	2500					
	5000					
	500					
ADJ5000-M	2500	NOT	IN USE-	GLOVEBOX		
	5000					
	500	0.4952	0.4966	0.4966	0.496	99.23
ADJ5000-N	2500	2.4982	2.4984	2.5006	2.499	99.96
	5000	5.0333	5.0114	5.0118	5.019	100.38
	500	0.4992	0.5000	0.4981	0.499	99.82
ADJ5000	2500	2.4988	2.4852	2.4967	2.494	99.74
	5000	5.0008	4.9954	4.9904	4.996	99.91
	500					
ADJ5000	2500					
	5000					

SwRI - Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

FRM-247c (Rev 3/Apr 04)

08 156 Book/page:

SwRI Div. 01 – Inorganic Laboratory Adjustable Pipette Verification Log 10233

D

۲

-

њ.

 Balance #: 3.4
 Thermometer #: 6-011
 diH20 Temperature (° C) 31

	Eppendorf #	True Value (µL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		500	.4940	. 4989	.1993
	ADJ5000-C	2500	3.4980	3.4976	2.4981
		5000	5.0261	5.0106	5.0099
		500			
	ADJ5000-G	2500	OUT	OF	SErvice
		5000			
} {		500			
[ADJ5000-H	2500	out	of	SERVICE
		5000			
} [500	. 4994	,5037	,5031
	ADJ5000-I	2500	2.4983	7.469.8 4989	5.4978
_		5000	4.9899	5.0093 3	4.45 5-0049
17		500			
5000	ADJ5000-J	2500			
S		5000			
S		500		6.04	
	ADJ5000-K	2500		0/1-11 03	
╎╹╻┝		5000		A second se	
		500			
	ADJ5000-L	2500			
8		5000			
500	· · · · · · · · · · · · · · · · · · ·	500			
	ADJ5000-M	2500	NOT	in use	- 6 Lovebox
		5000			
-		500	.4952	. 4966	. 4966
·.	ADJ5000-N	2500	J. 4982	2.4984	3.5006
╞		5000	5.0333	5.0114	5.0118
-	40.15000	500	. 1992	5000	.4981
	ADJ5000~0	2500	3-4988	2.4852	3-4967
-		5000	5.0008	4.9954	4.9904
-	AD 15000	500		J 11-1805	· · ·
-	ADJ5000	2500		211-19-0	
		5000	\sim		

Analyst Reviewed by:

Date: 11-18-05 Date: 12/21/05

FRM-244 (c) (Rev 3/Apr 04)

Book/page:____

08 157

SwRI – Div. 01, Inorganic Labs' Adjustable Volume Pipette Verification Log

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

010234

E		1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
Eppendorf #	True Value (µL)	ist Reading (g)			0.000	0.00
	500				0.000	0.00
ADJ5000-C	2500 5000				0.000	0.00
					0.000	0.00
	500		105	F	· 0.000	0.00
ADJ5000-G	2500				0.000	0.00
	5000		ale t		0.000	0.00
	500				0.000	0.00
ADJ5000-H	2500		<u>r</u>		0.000	0.00
	5000	<u>></u>			0.000	0.00
	500				0.000	0.00
ADJ5000-I	2500	/			0.000	0.00
	5000					100.23
	500	0.5009	0.5003	0.5022	0.501	
ADJ5000-J	2500	2.5099	2.5010	2.5087	2.507	100.26
	5000	5.0105	5.0111	5.0101	5.011	100.21
	500	0.5005	0.5019	0.5022	0.502	100.31
ADJ5000-K	2500	2.5009	2.5001	2.5007	2.501	100.02
	5000	5.0201	5.0191	5.0187	5.019	100.39
	500	0.5072	0.5066	0.5052	0.506	101.27
ADJ5000-L	2500	2.4903	2.4909	2.4909	2.491	99.63
ADJ3000-L	5000	4.9833	4.9799	4.9758	4.980	99.59

SwRI – Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

FRM-244 (Rev 2/Sept 02)

	SwPI Div 01	Inorgania Labor	atom Adjustable		ge: <u>081</u>
Bala	ance #: 16	- Inorganic Labor Thermometer #		diH20 Temperat	ure (° C)
	Eppendorf #	True Value (µL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		500			
	ADJ5000-C	2500			
		5000			
		500			
	ADJ5000-G	2500			
		5000			
Γ		500			
	ADJ5000-H	2500	· · · · · · · · · · · · · · · · · · ·	1. 1201/0	
		5000			
Γ		500			
	ADJ5000-I	2500			
	· · · · ·	5000			
2		500	0. 600	0.5003	.5022
nnnc	ADJ5000-J	2500	25099	2.501081	oilos 2.5087
SĽ		5000	5.0105	5.01K	5.0101
รโ		500	0.5005	5.0.1917.	\$ 5.022
Ϋ́	ADJ5000-K	2500	2.5009	2.5001	2.5007
! [5000	5.0 201	5.0191	5.0187
		500	0,5072	0.5066	0.5052
┸	ADJ5000-L	2500	2.4903	2.4909	2.4909
2[5000	4,9833	4.9799	4.9758
		500			>
	ADJ5000-M	2500			
		5000		1	
		500		11/ 12/01	105
	ADJ5000-N	2500			
		5000			
		500			
	ADJ5000	2500			
		. 5000			
	· · · · · · · · · · · · · · · · · · ·	500			
	ADJ5000	2500			,,
		5000 _			

Analyst: 5 Reviewed by:

01 12 01 Date: <u>iàlai</u> Date: × d

• . •

£ .

FRM-244 (c) (Rev 3/Apr 04)

Book/page:____

08 038

Bal	ance #: <u>16</u>	. Thermometer #	<u>GD[1</u>	diH20 Tempera	ture (° C) 2910
Г	Eppendorf #	True Value (µL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		20			
ſ	ADJ200-A	100			
Γ		200		125	
Γ		20		1 101	
Γ	ADJ200-C	100			
		200	5	10.	
		20			
	ADJ200-D	100			
5		200			
		20	0.0199	0.2199	0.0148
D N N N	ADJ200-G	100	0.1013	0.1011	0.1005
N		200	0.1999	0.1990	0 1992
		20	D.0203	0.0201	0.0201
	ADJ200-H	100	0.0995	UDAZZ	0.0996
3		200	0.1999	0.1993	0 19944
D		20	0.0203	0.0201	0.0202
N	ADJ200-J	100	0.0996	0.0996	0.0293
L		200	D. 19913	0.1992	0.1990
		20			\geq
	ADJ200-K	100			4
L		200	ļ	11 12/2/1	
		20		2	
L	ADJ200	100			
		200			

Analyst: Reviewed by:

VL Date: 12/21/05 Date:

SwRI – Div. 01, Inorganic Labs' Adjustable Volume Pipette Verification Log

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
Eppendorf #						
	20					
ADJ200-A	100	}				
	200	┟	<u> </u>	1,105		
	20			12/01/23		
ADJ200-C	100					
	200		+		+	1
	20		1		+	
ADJ200-D	100					
	200	۷		0.0198	0.0199	99.33
	20	0.0199	0.0199		0.1010	100.97
ADJ200-G	100	0.1013	0.1011	0.1005	0.1990	99.52
ADJ200-G	200	0.1989	0.1990	0.1992		100.83
	200	0.0203	0.0201	0.0201	0.0202	
		0.0995	0.0997	0.0996	0.0996	99.60
ADJ200-H	100		0.1993	0.1994	0.1995	99.77
	200	0.1999	0.0201	0.0202	0.0202	101.00
	20	0.0203		0.0993	0.0995	99.50
ADJ200-J	100	0.0996	0.0996		0.1992	99.58
	200	0.1993	0.1992	0.1990		

SwRI – Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

FRM-244 (Rev 2/Sept 02)

Book/page:_	08	U	9	3)

1 - --

		Inorganic Labora			
Ba	lance #: 16	Thermometer #:	<u>G011</u>	diH20 Temperat	ure (° C) <u>21 D</u>
	Eppendorf #	True Value (µL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		100	\langle		
	ADJ1000-C	500			
		1000			
		100			
	ADJ1000-D	500		TI	
		1000		V. Asiloi	
		100		20102	
	ADJ1000-E	500			
		1000			
Z		100			
0	ADJ1000-F	500			
0		1000			
1000		100	0.0988	0.0984	0.0989
	ADJ1000-G	500	0.4990	0.4983	0.4978
1		1000	D.9948	0.9951	0.4963
-		100	0.0987	0.0983	0.0989
	ADJ1000-H	500	0.4923	D UGUZ	04939
100		1000	0.9359	0.9879	0.9905
10		100	Q 1032	D:1022	01021
•	ADJ1000-J	500	0.4412	0.4978	0.4983
		1000	O. Max	0.981	0 4945
		100	JV '2 oi	ذ ب	
	ADJ1000-K	500			
		1000		1 10/01/	5
		100		11.	
	ADJ1000	500			
		1000			

Analyst: Reviewed by:)0

12 ΟĹ Date: ٥ί 12/21/05 Date:

FRM-244 (b) (Rev 4/Apr 04)

Book/page: 08 097

SwRI – Div. 01, Inorganic Labs' Adjustable Volume Pipette Verification Log

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

010239

% of True Value 3rd Reading (g) Avg Wt (g) 2nd Reading (g) 1st Reading (g) True Value (µL) Eppendorf # 0.00 0.000 100 0.00 0.000 500 ADJ1000-C 0.00 0.000 1000 0.00 0.000 100 0.00 D 0.000 500 ADJ1000-D 0.00 0.000 1000 0.00 0.000 100 0.00 0.000 500 ADJ1000-E 0.00 0.000 1000 0.00 0.000 100 0.00 0.000 500 ADJ1000-F 0.00 0.000 1000 98.70 0.099 0.0989 0.0988 0.0984 100 99.67 0.498 0.4978 0.4983 0.4990 ADJ1000-G 500 99.5<u>6</u> 0.996 0.9963 0.9957 1000 0.9948 98.63 0.0989 0.099 0.0983 0.0987 100 98.70 0.494 0.4939 0.4943 0.4923 ADJ1000-H 500 98.80 0.988 0.9903 0.9879 0.9859 1000 101.70 0.102 0.1027 0.1022 0.1002 100 99.55 0.498 0.4983 0.4978 0.4972 500 ADJ1000-J 99.32 0.993 0.9945 0.9951 0.9901 1000 0.00 0.000 100 0.00 0.000 ADJ1000 500 0.00 Ō С 0.000 0 1000 0.00 0.000 100 0.00 0.000 500 ADJ1000 0.00 0.000 1000

SwRI - Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

FRM-244 (Rev 2/Sept 02)

Book/page:____

08 158

ر. ويدري

	st. est	1. 🖓 - 1. 1. 1.	e, forsentil	a antra part	and a start of the start	DOON page	· · ·
Sv	vRI Div.	01 – Ino	rganic Labo	ratory Adjus	stable Pipett	e Verification	Log

Balance #: _16

Thermometer #: (50 W)

diH20 Temperature (° C) 21°

Г	Eppendorf #	True Value (µL)	1 st Reading (g)	2 nd Reading (g)	3 rd Reading (g)
		500			
Γ	ADJ5000-C	2500			~~~~
Γ		5000			
		500			
Γ	ADJ5000-G	2500			
		5000			
		500			
	ADJ5000-H	2500		N. 2010	
		5000			
		500			
	ADJ5000-1	2500			
<u>_</u>][5000			
3		500	O. LOOG	0.5003	.5022
2000	ADJ5000-J	2500	25099	2.50108	6162.5087
2[-	5000	5.0105	5011	5.0101
ы С		500	0.5005	5.0101713	5.022
	ADJ5000-K	2500	2.5003	2 5001	2.5007
╹		5000	5.0 201	5.0191	5.0187
┥┟		500	0.5072	0.5066	0.5057
◄	ADJ5000-L	2500	2.4903	2.4909	2.4909
200	<u> </u>	5000	4.9833	4.9749	4.9758
		500			
	ADJ5000-M	2500			
L		5000			
		500	<	11 12/0	105
	ADJ5000-N	2500			
L		5000			
		500			
	ADJ5000	2500			
		5000		ſ	
Γ		500			
	ADJ5000	2500			
Γ		5000			

Analyst: Reviewed by:

Date: 12 01 Date: ____ <u>iàlai</u>

FRM-244 (c) (Rev 3/Apr 04)

Book/page:_

08 157

SwRI – Div. 01, Inorganic Labs' Adjustable Volume Pipette Verification Log

(Space provided for Inorganic Laboratories' Adjustable Volume Pipette Verification Spreadsheet)

010241

SwRI – Div. 01, Inorganic Laboratory Adjustable Pipette Verification Spreadsheet

Eppendorf #	True Value (µL)	1st Reading (g)	2nd Reading (g)	3rd Reading (g)	Avg Wt (g)	% of True Value
Eppendon #	500	10111020			0.000	0.00
ADJ5000-C	2500				0.000	0.00
ADJ5000-C	5000				0.000	0.00
	500				0.000	0.00
ADJ5000-G	2500	· · · · · · · · · · · · · · · · · · ·	102	· · · · · · · · · · · · · · · · · · ·	0.000	0.00
ADJ5000-9	5000		alot	······································	0.000	0.00
	500				0.000	0.00
ADJ5000-H	2500				0.000	0.00
ADJ3000-H	5000		1		0.000	0.00
	500				0.000	0.00
ADJ5000-I	2500				0.000	0.00
ADJ 50004	5000				0.000	0.00
	500	0.5009	0.5003	0.5022	0.501	100.23
ADJ5000-J	2500	2.5099	2.5010	2.5087	2.507	100.26
ADJ5000-J	5000	5.0105	5.0111	5.0101	5.011	100.21
	500	0.5005	0.5019	0.5022	0.502	100.31
	2500	2.5009	2.5001	2.5007	2.501	100.02
ADJ5000-K	5000	5.0201	5.0191	5.0187	5.019	100.39
		0.5072	0.5066	0,5052	0.506	101.27
	500	2.4903	2.4909	2.4909	2,491	99.63
ADJ5000-L	2500 5000	4.9833	4.9799	4.9758	4.980	99.59

FRM-244 (Rev 2/Sept 02)

SOUTHWEST RESEARCH INSTITUTE NUCLEAR PROJECT CLIENT: Division 20 TASK ORDER: 051219-5 SRR: 28420 SDG: 271245 CASE: L. Yang VTSR: December 16, 2005 PROJECT#: 06002.01.322

010242

Balance Calibrations

#1-SN:99-JS0526-15 #2-SN:99-JS0031-1

Southwest Research Institute® Division 01 BALANCE VERIFICATION LOG

BALANCE #:	LOCATION:	SERIAL #:	TOLERANCE:	COMMENTS:
12	Bldg. 70 Lab 47	1122510787	±0.0005	
Date	Std Wt (g)	Recorded Wt (g)	Operator	
12-16-05	2.0000	2.000	KE)
r	100.0000	99.9998	~	2
12-19-05	2.0000	1.9999	ré	
<i>#</i>	100.0000	99,9996	rl	2
12-22-05	2.0000	1.9999	KE	
M	100.000	100.0000	U U	2
·				
L			· · · · · · · · · · · · · · · · · · ·	
 			L	

If balance is out of limits, clean the balance and re-calibrate using Class "S" weights.

If balance is still out of limits, place a "DO NOT USE" sign on it and call (DQA) for service.

Page 25 of 30

#1- SN: 99-550624-5 #2 - SN: 5537

Southwest Research Institute® **Division 01 BALANCE VERIFICATION LOG**

BALANCE #:	LOCATION:	SERIAL #:	TOLERANCE:	COMMENTS:
19	Bldg. 70 Lab 47	0068597	±0.05	
Date	Std Wt (g)	Recorded Wt (g)	Operator	
12-14-05	10.00	10.01	кE]
1	400.04	399.99	17	2
12-15-05	10:00	10.01	KE	
A	400.04	399,96	N N	2
12-16-05	10.00	10:00	KE	1
M	400.04	399.95	1	2
12-19-05	10.00	10,00	x.E	
N	400.04	399.95	1)	2
12-20-05	10.00	10.01	KE	
11	400.04	399.93	V	2_

If balance is out of limits, clean the balance and re-calibrate using Class "S" weights. If balance is still out of limits, place a "DO NOT USE" sign on it and call (DQA) for service.

Page 19 of 30

#1- SN:99-J56526-15

#2 = SN! 99- J 50031-1

Southwest Research Institute® **Division 01 BALANCE VERIFICATION LOG**

BALANCE #:	LOCATION:	SERIAL #:	TOLERANCE:	COMMENTS:
34	Bldg. 70 Lab 47	1116031935	±0.0005/0.00005	
Date	Std Wt (g)	Recorded Wt (g)	Operator	
13-DEC-2005	2,0000	2,0000	Ot	1
13-DEL-2005	100,0000	100,0000	DK.	2
12-14-05	2.0000	2,0000	KE	1
~	1000000	100.0002	N	2
12-15-05	2,0000	2.0000	KE	1
N	100.0000	99.9996	V	2
12-16-05	210000	2.0000	μE	
N	100,0000	99.9999	N	·2
12-19-05	2.0000	2.0000	μÊ	
~	100.0000	99.9999	33	2

If balance is out of limits, clean the balance and re-calibrate using Class "S" weights. If balance is still out of limits, place a "DO NOT USE" sign on it and call (DQA) for service.

Page 27 of 30

*1- 5N199-J50526-15

۰.

2 - SN: 99-550031-1

Southwest Research Institute Division 01 BALANCE VERIFICATION LOG

BALANCE #:	LOCATION:	SERIAL #:	TOLERANCE:	COMMENTS:
34	Bldg. 70 Lab 47	1116031935	±0.0005/0.00005	
Date	Std Wt (g)	Recorded Wt (g)	Operator	
12-20-05	2.0000	1.9999	¥e	
N	100,0000	100,0000	<i>c</i> i	2
12-21-05	2.0000	2.0000	KË	
n	100,0000	99.9998	1	2
12-22-05	2.0000	1.9999	K.E	
N	100.0000	99,9995	₩	2
12-23-05	20000	2.0000	ĸč	1
	100.0000	100,0004	IJ	2
13-27-05 9	200-00 3.000	0 1.9999	Jul .	1
1- 0	100.0000	99.9999	07	

If balance is out of limits, clean the balance and re-calibrate using Class "S" weights. If balance is still out of limits, place a "DO NOT USE" sign on it and call (DQA) for service.

Page 28 of 30

FRM-112 (Rev 2/Aug 03)

010246

#1-SN: 99 -JS0526-15 #2-SN: 99-J50031-1

Southwest Research Institute® **Division 01 BALANCE VERIFICATION LOG**

BALANCE #:	LOCATION:	SERIAL #:	TOLERANCE:	COMMENTS:
12	Bldg. 70 Lab 47	1122510787	±0.0005	
Date	Std Wt (g)	Recorded Wt (g)	Operator	
12-16-05	2.0000	2.000	KE)
r	100.0000	99.9998	N	2
12-19-05	2.0000	1.9999	¥ E	
p	100.0000	98,9996	n	2
12-22-05	2.0000	1.9999	KE	
M	100.0000	100.0000	V	ン
12-22-05	2.0000	1,9998	KE	1
<u>^</u>	100,0000	99.9999	~	2
12-23-05	2.0000	1.9959	KE	1
11	100.0000	100.0003	N	2

If balance is out of limits, clean the balance and re-calibrate using Class "S" weights. If balance is still out of limits, place a "DO NOT USE" sign on it and call (DQA) for service.

Page 25 of 30

#1- SN:99-J50526-15

#2 = SN! 99 - J 50031-1

Southwest Research Institute[®] Division 01 BALANCE VERIFICATION LOG

BALANCE #:	LOCATION:	SERIAL #:	TOLERANCE:	COMMENTS:
34	Bldg. 70 Lab 47	1116031935	±0.0005/0.00005	
Date	Std Wt (g)	Recorded Wt (g)	Operator	
13-DEC-2005	2,0000	2,0000	OF	1
13-DEC-2005	100,0000	100,0000	DX-	2
12-14-05	2.0000	2.0000	KE	
m	1000000	100.0002	N	2
12-15-05	2,0000	2.0000	KE	1
N	100.0000	99.9996	V	2
12-16-05	2,0000	2.0000	μE	
~	100,0000	99.9999	n*	2
12-19-05	2:0000	2.0000	њЕ	
~	100.0000	99.9999	n	2

If balance is out of limits, clean the balance and re-calibrate using Class "S" weights. If balance is still out of limits, place a "DO NOT USE" sign on it and call (DQA) for service.

Page 27 of 30

010249

SOUTHWEST RESEARCH INSTITUTE NUCLEAR PROJECT CLIENT: Division 20 TASK ORDER: 051219-5 SRR: 28420 SDG: 271245 CASE: L. Yang VTSR: December 16, 2005 PROJECT#: 06002.01.322

DI Water Verification

D.I. WATER SYSTEM NOTEBOOK SOUTHWEST RESEARCH INSTITUTE BUILDING 70

Contact U.S. Filter (1-800-466-7873) for repairs/exchanges. (Make sure to have a P.O.)

HIGH PURITY SYSTEM (HP)

010250

		RESISTIVIT	MONITOR	QC LI	GHTS	USAGE	
DATE / TIME	INITIALS	(M OHMS)	QC LT.	QC 1	QC 2	(GALS)	COMMENTS
11/29/05 730	DR	18.01	1	2	V	12708.4	L
11/30/05 Dom	DR	18.02	\checkmark	7	\rangle	1228.6	2
12/1/05 7300m	OR	18.03	\checkmark	\checkmark	\checkmark	12744,2	
DOTOF FLOOM	pp	18,02	V	V	1	12766.7	-
12/5/05 738pm	DA	18.03	$\mathbf{\mathcal{V}}$	V	$\overline{\mathcal{V}}$	12789,8	<u> </u>
12/6/05 GAURM	DR	18.02	V	\checkmark	7	12809,1	·
12/705 for	pA	18.02	V	2	Ľ	12837.4	L
12/8/15 20500	DR	18.03	V	V	1	12868.0	
10/9/05 530pm	OR	18,02	ン	\checkmark	レ	12899.4	<u> </u>
HHOS HOPM	DR	15,07	1	V	\checkmark	6923,2	
13/05 6 Star	NR	18.01	\checkmark	\mathcal{V}	V	12948.0	L
12/14/05 GODDM	pR	18.02	V	レ	ン	12975,4	L
DUSIOS S410m	DN	18.02	V	レ	レ	13003,3	1
12/16/05 S100m	DA	15,03	V	ν)	13011,0	
0119/05 Wigm	DA	16.00		1	\sim	13021.0	
iah 1/05 915pm	DR	18.00		\boldsymbol{r}	\checkmark	13031.6	

Legend: Check = Green (OK); X = Red (call for service)

LOW PURITY SYSTEM (LP)

		QC I	IGHTS	USAGE	
DATE / TIME	INITIALS	QC 1	QC 2	(GALS)	COMMENTS
11/29/05 731	DR	X	13	31005,0	slichturace.
11/3005 Dolom	DR	V	12V	31008,3	
12/1/05 23/0m	DR	Y	12,5 1	31009,5	dichtusege
12/2/05 HIDM	DR	V	131	31009. 9	L'
12/ Slos 7390m	pr	\checkmark	13,52	3100 3/01/.3	
121405 6410m	NON	Y	13 1	DR. NISTOS 31011, 3	wharge
HIPlo5 Folom	OR	V	13.5V	3/011.4	diartuseco
1218/05 7060m	DR	K	12.50	3101). 4	No usan
1219165 531pm	θR	Vt	12.51	31011.4	No enjoya
MOLEGION	DN	Y	13 /	31011.9	Aight 1, age
13/15 653en	DR		10,5 V	31013,4	
W114105 Gin	DIR	V	4.50	31014.5	
WIISlug Stop	012		111	31015,6	
ioliulus silin	DN	¥	NISV	31017.4	Slight wood
12/19/05 DION	DR	Ú	11.	31020,1	
12/20/05 9/6pm	DR	J/	10.5 1	51020.3	diget usage

Legend: Check = Green (OK); X = Red (call for service)

FRM-019 (Rev 0/Jan 04)

D.I. WATER SYSTEM NOTEBOOK SOUTHWEST RESEARCH INSTITUTE BUILDING 70

010251

Contact U.S. Filter (1-800-466-7873) for repairs/exchanges. (Make sure to have a P.O.)

HIGH PURITY SYSTEM (HP)

		RESISTIVITY	MONITOR	QC LI	GHTS	USAGE	
DATE / TIME	INITIALS	(M OHMS)	QC LT.	QC 1	QC 2	(GALS)	COMMENTS
1/3/05 723m	OR	18,03	V	ν	\checkmark	12021.7	\sim
11/4/05 755pm	DR	18.07	1	u	V	12243.4	2
11/2/05 220m	D/L	18,03		2	V	12294,8	2
ULEOS HOM	IR	18,02	$\boldsymbol{\mathcal{V}}$)	V	12308,2	
11180 820pm	DA	15.01	$\overline{\mathcal{V}}$	\mathcal{L}	$\overline{\mathcal{L}}$	12336,4	
11/10/05 Som	DR	18.01	\checkmark	V	\mathcal{L}	12346,1	
IIIIIos adom	DK	18.07	V	V	V	12362,9	
illigor Goipm	DR	16.01		X		12372.8	Vauchgett.
11/15/05-9300m	DR	18.02		X	\checkmark	12417.9	U.S. Filler (All of
11/Kelas 83:00	DR	18,03		\checkmark	1	12465.0	Mixed Bad and Curran bin Huge . Hull
IIIA/05 Magar	p/l	18.02	\mathcal{V}	1	\mathcal{L}	12549.2	
Illialos Josen	OR	18,03	V	\checkmark	\checkmark	12581.8	
11/21/05 Davin	DIZ	18.02	V	~	\checkmark	12619.3	1
1100105 6100m	OR	18.07	\checkmark	\checkmark	\mathcal{I}	12650,7	
11/23/05 450pm	NR	18.02	\checkmark	\mathcal{V}	<u> </u>	12672.3	L-
ulaslos ssupm	PR	18.03		2	$\mathbf{\mathcal{I}}$	12678.7	L

Legend: Check = Green (OK); X = Red (call for service)

LOW PURITY SYSTEM (LP)

		QC	LIGHTS	USAGE	
DATE / TIME	INITIALS	QC 1	QC 2	(GALS)	COMMENTS
11/3/05 724pm	DN	V	V6,5	30940.3	
11/4/05 7.59pm	DR	X	VA	30940.5	slight usage
11/7/15 tolom	DR	X	V615	30941.5	slightusiac
11/8/057160r	DR	X	V 4.5	309411.5	to usage
1119/058210m	DR	X	V 6.5	30943,5	might be dive for Atmn & x-ch time
11/0/05 8010m	DR	X	V 6	30944,8	alight usage
11/11/05 63/0m	OR	\checkmark	V 6.5	30845.5	20
11/14/05 6240m	DR	χ	V 6.5	309215.8	need P.D. for Service Call
nhitos 93 km	pr	X	V 6	30948.9	U.S.Filter Malled
illidos 238 pm	DR		V13.5	30977.2	CArbon Mixed Bed X-chinge AULK
11/17/05 Jolom	PR	V	V 13.5	30989,0	
11/18/05 766pm	DR	\checkmark	V 14	30990.1	
hibilor fabom	DR	V	14	3099 8.0	
nladlos 6110m	OR	_X	V 14.5	3099 6.0	nu wage
11123/05 45/0m	DR	X	V 14.5	309 8.0	no usace
11/20/05 55/pm	DR	1	V 12	31001.5	\sim

Legend: Check = Green (OK); X = Red (call for service)

FRM-019 (Rev 0/Jan 04)

D.I. WATER SYSTEM NOTEBOOK SOUTHWEST RESEARCH INSTITUTE BUILDING 70

Contact U.S. Filter (1-800-466-7873) for repairs/exchanges. (Make sure to have a P.O.)

HIGH PURITY SYSTEM (HP)

010252

.

	,	RESISTIVITY	MONITOR	QC LI	GHTS	USAGE	
DATE / TIME	INITIALS	(M OHMS)	QC LT.	QC 1	QC 2	(GALS)	COMMENTS
11/29/05 730	OR	18.01	7	\checkmark	7	12708.4	
11/30/15 Dom	DR	18.02	\mathbf{v}	レ		12728.6	2
12/1/05 7300m	DR	18.03	\checkmark	\checkmark	く	12744,2	L
DOTOF FLOOM	pr	18,02	V	ν	\checkmark	12766,7	
12/5/05 738pm	DA	18,03	\checkmark	く	\mathcal{V}	12789,8	
1216/05 6400m	OR	18.02	\checkmark	\checkmark	7	12809,1	·
12/705 for	pr	18.02	V	\sim	\mathcal{L}	12837,4	
12/8/05 205pm	DR	18.03	V	く	1	12868.0	
12/9/05 530pm	OA	18,02	く	~	レ	12899,4	
HHOS HOPM	DR	15,07	V	\checkmark	\checkmark	12923,2	
13/05 6.5Apr	DR.	15.01	V	V	レ	12948.0	
12/14/05 Gadom	DR-	18.02	V.	レ	ン	12975,4	1
DUSIOS S410m	DA	18.02	\checkmark	$\overline{\mathcal{V}}$	\checkmark	13003,3	1
12/16/05 S100m	DR	15,03	V	$\overline{\nu}$	/	13011,0	
Allylus wigh	DA	16.00	$\overline{\checkmark}$	\checkmark	\checkmark	13021.0	
iah 1/05 915pm	DR	18.00	\checkmark		\checkmark	13031.6	

Legend: Check = Green (OK); X = Red (call for service)

		QC LIGHTS		USAGE	1
DATE / TIME	INITIALS	QC 1	QC 2	(GALS)	COMMENTS
11/28/05 731	DR	X	13	31005,0	slichturace.
11/30/05 Dolom	DR		12 V	31008,3	L' O
12/1/05 23/0m	DR	K	12,5 1	31009.5	dichtusage
12/2/05 HIDM	DR	V	13 1	31009. 9	
12/5/05 7390m	pR	\checkmark	13,52	3100 3/011.3	
12)405 6410m	pr	Y	13 1	DR 15165 31011, 3	willinge
HIPlos Folom	OR	V	13.5V	31011.4	digituses
1218/05 7060m	DR	X	12.50	3101). 4	AJ USAR
1219/65 531pm	βA	V	12.51	31011.4	no usage
Males John	DA	Y	13 1	31017.9	dicht usage
P13/05 65300	pR	\sim	10,5 /	31013,4	
D/14/05 GUM	DIR	V	4.50	31014,5	
115/05 Stam	012		111	31015,6	
iotulus silin	DN	Y	1.5 V	3101 7.4	Olis Wellow
12/19/05 Dlon	pp	$\tilde{\mathcal{V}}$	111	31020,1	
12120105 9160N	DR	J.	10.5 1	51020.3	dight usage

LOW PURITY SYSTEM (LP)

Legend: Check = Green (OK); X = Red (call for service)

FRM-019 (Rev 0/Jan 04)

SOUTHWEST RESEARCH INSTITUTE NUCLEAR PROJECT CLIENT: Division 20 TASK ORDER: 051219-5 SRR: 28420 SDG: 271245 CASE: L. Yang VTSR: December 16, 2005 PROJECT#: 06002.01,322

SURVEILLANCE REPORTS From Division 30

		01025
R		
lr	nstitute Quality Assurance	
	Surveillance Report	
Project Number: 20-06002	Report Number; 2005 SR 0055 2/4/ 6	Page 1 of 1
Surveillance Scope: Review of a D Regulatory Analysis. This is a Nucle	ivision 01 test package for Div. 20, the Cear Surveillance.	Center for Nuclear Waste
Reference Documents: Document	ation test packages for Task Orders 05	1021-6, 051110-8, and 051219-5
Starting Date: 2006-02-07	Ending Date: 2006	5-02-07
Institute QA Representative: Mark	R. Ehnstrom	
Person(s) Conducting Test/Exam/		
Satisfactory Findings		
 Certificates of Analysis Reports of Certificates Certificates of Reference Ma 	on was provided which showed traceab eviewed by Division 01 supervisory per	ility back to the National Institute
Unsatisfactory Findings: None		· · · · · · · · · · · · · · · · · · ·
Nonconformance Report Number:	N/A CAR/SCAR Numb	er: N/A
Attachments: None		weeks
Recommendations/Actions: N/A		
Equipment Calibration: See above	· · · · · · · · · · · · · · · · · · ·	
Approved:	et	Distribution: Original – IQS Records CC: M.R.Ehnstrom (30) PM – R. Presas (01)
Institute Quality Assur	ance	J. Boyd (01)
