

ATTACHMENT I
DOCUMENTATION OF OYO Data Reduction-Rev04.xlt

INTENTIONALLY LEFT BLANK

SPREADSHEET OYO Data Reduction-Rev04.xlt USED FOR ANALYSES OF P-S SUSPENSION LOG DATA

The spreadsheet template, OYO Data Reduction Rev04.xlt, used for shear wave velocity, compressional wave velocity and Poisson's ratio analyses based on suspension logs, was created in Microsoft Excel 97, SR-2.

This spreadsheet template consists of the following 15 worksheets:

- Explanatory worksheets:

Sheet: Instruction
Sheet: Revision Log

- Data input worksheets:

Sheet: Data, R1-R2.
Sheet: Data, S-R1

- Analysis worksheets:

Sheet: Analysis, R1-R2
Sheet: Analysis, S-R1

- Summary worksheets:

Sheet: Summary, R1-R2
Sheet: Summary, S-R1
Sheet: Summary, All

- Plot worksheets:

Sheet: R1-R2, Vs Plot
Sheet: R1-R2, Vs\&Vp Plot
Sheet: R1-R2 and S-R1, Vs Plot
Sheet: R1-R2 and S-R1, Vs\&Vp Plot
Sheet: Poisson's Ratio Plot
Sheet: Travel Time vs. z

PROCEDURE

Input Data

Sheet: ‘Data, R1-R2' and Sheet: 'Data, S-R1' were programmed to accommodate the required input data. Users need to import data to these two sheets per the following instructions:
(1) Input the data from the *.sps data file associated with the Near Receiver to Far Receiver travel times in Sheet: 'Data, R1-R2' begining in Cell A1. The depth and arrival times for the shallowest measurement depth should appear in Row 14. The entries in columns I through M (velocities and miscellaneous) are not used in calculations. Travel times are in milliseconds. Depths in Column A are required to be input in feet. The depth input is the depth below ground surface of the midpoint between the receivers. A message about the unit used for depth appears in Cell N5. When Cell A9 is equal to 1, depth units in Column A are in feet, and the message " OK , depth units in column A are in feet." will show up in

Cell N5. Otherwise, the error message "ERROR: THIS SPREADSHEET REQUIRES DEPTHS TO BE INPUT IN FEET." will show up in Cell N5.
(2) Input the measured distance between the Receivers in inches in Cell N2 in Sheet: 'Data, R1-R2'.
(3) Input the data from the ${ }^{*}$.sps data file associated with the Source to the Near Reveiver travel times in Sheet: 'Data, S-R1', beginning in Cell A1. The depth and arrival times for the shallowest measurement depth should appear in Row 14. The entries in columns I through L (velocities and miscellaneous) are not used in calculations. Travel times are in milliseconds. Depths in Column A are required to be input in feet. The depth input is the depth below ground surface of the midpoint between the Source and the Near Receiver. A message about the unit used for depth appears in Cell N5. When Cell A9 equal to 1, depth units in Column A are in feet, and the message "OK, depth units in column A are in feet." will show up in Cell N5. Otherwise, error message "ERROR: THIS SPREADSHEET REQUIRES DEPTHS TO BE INPUT IN FEET." will show up in Cell N5.
(4) Input measured delay time in milliseconds in Cell N 2 in Sheet: 'Data, S-R1', and measured distance from Source to Near Receiver in feet in Cell N3 in Sheet: 'Data, S-R1'. Input the offset times, if any, in Column F in milliseconds in Sheet: 'Anaiysis, S-RI' starting with Kow 14. If no offset times are input, the default values are 0 .
(6) There are four additional values that need to be input, which will be described in the following two analysis worksheets.

Receiver to Receiver Analysis

Sheet: 'Analysis, R1-R2' was programmed to perform analysis on the Receiver to Receiver data automatically once the data are input. The following explains how this worksheet functions.
(7) Retrieve depth of midpoints between the Receivers. Column C retrieves depth of midpoints between the Receivers form Column A in Sheet: 'Data, R1-R1'.
(8) Retrieve wave travel times from Sheet: 'Data, R1-R2'. Columns E, F, I, and J retrieve shear wave (normal pulse) travel time from the Source to the Far Receiver, shear wave (reverse pulse) travel time from the Source to the Far Receiver, shear wave (normal pulse) travel time from the Source to the Near Receiver, and shear wave (reverse pulse) travel time from the Source to the Near Receiver from Columns C, D, F, and G in Sheet: 'Data, R1-R2', respectively. Shear wave (normal pulse) refers to the shear wave recorded from the first actuation of the solenoid. Shear wave (reverse pulse) refers to the shear wave recorded from the second actuation of the solenoid, which is in the direction opposite to the "normal" direction. Columns H and L retrieve compressional wave travel times from the Source to the Far Receiver and from the Source to the Near Receiver from Columns E and H in Sheet: 'Data, R1-R2', respectively. Logical tests are performed so that the missing travel times, identified by negative numbers (typically "-9999"), in Sheet: 'Data, R1-R2', are left blank in Sheet 'Analysis, R1-R2'.

Note: The term travel time is used to denote the time that elapses from the moment the signal is sent to the source to activate to the time when the wave of interest (shear or compression) arrives at the receivers. This travel time includes some "delay time" at the
beginning of the test that must be accounted in the source-to-receiver analysis, but which cancels out in the receiver-to-receiver analysis.
(9) Calculate the depths of the Far and Near Receivers, as well as the depth of point A, in Columns A, B, and D, respectively. Point A is located midway between the midpoint between the Receivers for the current measurement depth and the midpoint between the Receivers for the next deeper measurement interval. American units are used throughout the analyses.

Depth of the Far Receiver

$=$ Depth of midpoint between the Receivers - Measured Distance between the Receivers/2
Depth of the Near Receiver
$=$ Depth of midpoint between the Receivers + Measured Distance between the Receivers/2
Depth of Point A
in Cell D13, for Point A right prior to the shallowest measurement
$=$ Depth of the midpoint between the Receivers for the first depth interval$0.5 *$ (Depth of the midpoint between the Receivers for the second depth interval- Depth of the midpoint between the Receivers for the first depth interval)
starting from Cell D14,
$=$ Average of the depths of the midpoints between the Receivers for the current and next depth intervals
(10) The average of the shear wave travel times from the Source to the Far Receiver for the normal and reverse source pulses is calculated in Column G, and the average shear wave travel times from the Source to the Near Receiver in Column K:

Average Shear Wave Travel Time, in milliseconds
$=$ (Shear Wave Travel Time interpreted for the normal pulse + Shear Wave Travel Time interpreted for the reverse pulse) $/ 2$
(11) Shear wave velocity (v_{s}), compressional wave velocity ($\mathrm{v}_{\mathfrak{p}}$), and Poisson's ratio (v), are calculated in Columns O, P and S , respectively:

Shear Wave Velocity, v_{s}, in $\mathrm{ft} / \mathrm{sec}$
$=1000$ * Measured Distance between the Receivers/(Average Shear Wave Travel Time from the Source to the Far Receiver - Average Shear Wave Travel Time from the Source to the Near Receiver)
Compressional Wave Velocity, v_{p}, in $\mathrm{f} / \mathrm{sec}$
$=1000$ * Measured Distance between the Receivers/(Compressional Wave Travel Time from the Source to the Far Receiver - Compressional Wave Travel Time from the Source to the Near Receiver)

Poisson's Ratio, v

$$
=\frac{\left(\frac{v_{s}}{v_{p}}\right)^{2}-0.5}{\left(\frac{v_{s}}{v_{p}}\right)^{2}-1.0}
$$

If the travel times are missing, the corresponding wave velocities can not be calculated. A message "Delete" in red color with yellow highlight will show up in the corresponding cell. If the calculated value of Poisson's ratio <0.0, the number will appear in red color in the corresponding row in Column S. If the calculated value of Poisson's ratio >0.5, the number will appear in blue color. In either case, the value of Poisson's ratio is unreasonable for a linearly elastic material and it may be appropriate to reexamine the arrival picks or to delete the data point.
(12) Simulate downhole wave travel times. In order to compare the suspension seismic results with downhole seismic results obtained at the same borehole, if any, the shear wave and compressional wave travel times calculated based on interval velocities obtained in this sheet from the suspension test data are accumulated from the ground surface to Point A according to the equations shown below. Figure $\mathrm{I}-1$ illustrates the definition of Point A and the calculation of the accumulated travel time schematically.

Simulated Downhole Shear Wave Arrival Time, in milliseconds
$=$ Simulated Downhole Shear Wave Arrival Time at the previous depth + (Depth of the midpoint between Receivers for next depth interval-Depth of the midpoint between Receivers for current depth interval)/Shear Wave Velocity associated with the current depth interval

Simulated Compressional Wave Downhole Arrival Time, in milliseconds
$=$ Simulated Downhole Compressional Wave Arrival Time at the previous depth + (Depth of the midpoint between Receivers for the next depth interval- Depth of the midpoint between Receivers for the current depth interval)/Compressional Wave Velocity associated with the current depth interval

The simulated downhole shear wave arrival time corresponding to point A is based on the shear wave velocity in Column Y and is calculated in Column M. Note that the difference between Columns O and Y , which both contains shear wave velocity, is that Column O lists a shear wave velocity only when it is calculated from interpreted travel times at that depth and is blank when the supporting data is incomplete. On the other hand, Column Y replaces missing shear wave velocities with the velocity from the closest depth interval above or below for which a velocity was calculated based on time. The "closest" depth interval is determined by simply counting the number of intervals between the intervals without data and the first shallower interval with a velocity and the first deeper interval with a velocity, which is equivalent to distance for usual case where the distance between
measurements is a constant. The counting of numbers of intervals between the depth with missing data and the shallower interval with a velocity and the deeper interval with a velocity is implemented in Columns V and W , respectively. In the case of a tie, the average of the velocities of the shallower and the deeper intervals is used. Note that the velocity values in Column Y are used only for the purpose of calculating the "simulated downhole" travel time in Column M.
The simulated downhole compressional wave arrival time corresponding to point A is based on the compressional wave velocity in Columns AD and is calculated in Column N. Note that the difference between Columns P and AD , which both contain compressional wave velocity, is that Column P lists a compressional wave velocity only when it is calculated from interpreted travel times at that depth and is blank when the supporting data is incomplete. On the other hand, Column AD replaces missing velocities with the velocity from the closest depth interval above or below for which a velocity was calculated based on time. The closest depth intervals are determined as discussed in the above paragraph. The counting of numbers of intervals between the depth with missing data and the shallower interval and the deeper interval is implemented in Columns $A A$ and $A B$, respectively. In the case of a tie, the average of the velocities of the shallower and the deeper intervals is used. Note that the velocity values in Column AD are used only for the purpose of calculating the "simulated downhole" travel time in Column N .
(13) The first numbers in Columns M and N should be estimated so that the simulated downhole arrival time will match the actual downhole results at some arbitrary depth. Column M and N are programmed in such a manner that message "Enter Initial Estimate" will show up in red color with yellow highlight in the cells where the estimates need to be input. The second numbers and the subsequent numbers in Columns M and N will be calculated as discussed above.

Source to Receiver Analysis

Sheet: 'Analysis, S-R1' was programmed to perform analysis on the Source to the Near Receiver data automatically once the data are input. The following explains how this worksheet functions.
(14) Retrieve depth of midpoints between the Receivers. Column C retrieves depth of midpoints between the Receivers form Column A in Sheet: 'Data, R1-R1'.
(15) Retrieve wave travel times from Sheet: 'Data, S-Rl'. Column G retrieves shear wave (normal pulse) travel time from the Source to the Near Receiver from Column F in Sheet: 'Data, S-R1'. Columns H retrieves compressional wave travel times from the Source to the Near Receiver from Column H in Sheet: 'Data, R1-R2', respectively. Logical tests are performed so that the missing travel times, identified by negative numbers (typically "9999') in Sheet: 'Data, S-R1', are left blank in Sheet 'Analysis, S-R1'.

Note: The term travel time is used to denote the time that elapses from the moment the signal is sent to the source to activate to the time when the wave of interest (shear or compression) arrives at the receivers. This travel time includes some "delay time" at the
beginning of the test that must be accounted in the source-to-receiver analysis, but which cancels out in the receiver-to-receiver analysis.
(16) Calculate the depths of the Source, the Near Receiver, the midpoint between the Source and the Near Receiver, and point B in Columns A, B, C, and D, respectively. Point B is located midway between the midpoints between the Source and the Near Receiver, American units are used throughout the analyses.

Depth of the Source
$=$ Depth of midpoint between the Receivers + Measured Distance between the Receivers $/ 2+$ Measured Distance between the Source and the Near Receiver
Depth of the Near Receiver
$=$ Depth of midpoint between the Receivers + Measured Distance between the Receivers/2
Depth of midpoint between the Source and the Near Receiver
$=$ Depth of midpoint between the Receivers + Measured Distance between the Receivers $/ 2+$ Measured Distance between the Source and une Near Receiver/2
Depth of Point B
in Cell D13, for Point B immediately above the shallowest measurement
$=$ Depth of the midpoint between the Source to the Near Receiver for the first depth interval- 0.5^{*} (Depth of the midpoint between the Source to the Near .-. Receiver for the second depth interval- Depth of the midpoint between the Source and the Near Receiver for the first depth interval)
starting from Cell D14,
$=$ Average of the depths of the midpoints between the Source and the Near Receiver for the current and next measurement emplacements
(17) The shear wave and compressional wave travel times from the Source to the Near Receiver are corrected for both the delay time and offset time:

Corrected Shear Wave Travel Time (normal pulse)
$=$ Shear Wave Travel Time interpreted from the normal pulse + Offset Time Delay Time
Corrected Compressional Wave Travel Time
$=$ Compressional Wave Travel Time interpreted from the vertical pulse + Offset Time - Delay Time

The offset is used to adjust for the effect of a significant change in spring characteristics during a logging run, such as would occur if the spring broke.
(18) Shear wave velocity v_{s}, compressional wave velocity v_{p}, and Poisson's ratio, v, are calculated in Columns M, N and Q , respectively:

Shear Wave Velocity, v_{s}, in $\mathrm{ft} / \mathrm{sec}$
$=1000^{*}$ Measured Distance between the Source and the Near Receiver/Corrected Shear Wave Travel Time from the Source to the Near Receiver (normal pulse)
Compressional Wave Velocity, v_{p}, in ff/sec
$=1000^{*}$ Measured Distance between the Source and the Near Receiver/Corrected Compressional Wave Travel Time from the Source to the Near Receiver
Poisson's Ratio, v

$$
=\frac{\left(\frac{v_{s}}{v_{p}}\right)^{2}-0.5}{\left(\frac{v_{s}}{v_{p}}\right)^{2}-1.0}
$$

If the travel times are missing, the corresponding wave velocities can not be calculated. A message "Delete" in red color with yellow highlight will show up in the corresponding cell. If the calculated value of Poisson's ratio <0.0, the number will appear in red color in the corresponding row in Column Q . If the calculated value of Poisson's ratio >0.5, the number will appear in blue color. In either case, the value of Poisson's ratio is unreasonable for a linearly elastic material and it may be appropriate to reexamine the arrival picks or to delete the data point.
(19) Simulate downhole wave travel time. In order to compare the suspension seismic results with downhole seismic results obtained at the same borehole, the shear wave and the compressional wave travel times calculated based on the shear wave and the compressional wave velocities obtained in this sheet from the suspension test data are accumulated from the ground surface to Point B in each measurement interval according to the equations shown below. Figure I-2 illustrates the definition of Point B and the calculation of the accumulated travel time schematically.

Simulated Downhole Shear Wave Arrival Time (normal pulse), in milliseconds
$=$ Simulated Downhole Shear Wave Arrival Time at the previous depth + (Depth of the midpoint between the Source and the Near Receiver for the next depth interval - Depth of the midpoint between the Source and the Near Receiver for the current depth interval)/Shear Wave Velocity associated with the current depth interval
Simulated Downhole Compressional Wave Arrival Time, in milliseconds
$=$ Simulated Downhole Compressional Wave Arrival Time at the previous depth + (Depth of the midpoint between the Source and the Near Receiver for the next depth interval - Depth of the midpoint between the Source and the Near Receiver for the current depth interval)/Compressional Wave Velocity associated with the current depth interval

The simulated downhole shear wave arrival time corresponding to point B is based on the shear wave velocity in Column W and is calculated in Column K. Note that the difference
between Columns M and W , which both contain shear wave velocity, is that Column M lists a shear wave velocity only when it is calculated from interpreted travel times at that depth and is blank when the supporting data is incomplete. On the other hand, Column W replaces missing shear wave velocities with the velocity from the closest depth interval above or below for which a velocity was calculated based on time. The "closest" depth interval is determined as discussed in previous section describing the Receiver to Receiver Analysis. The counting of numbers of intervals without data and the first shallow interval with a velocity and the first deeper interval with a velocity is implemented in Columns T and U, respectively. In the case of a tie, the average of the velocities of the shallower and the deeper intervals is used. Note that the velocity values in Column W are used only for the purpose of calculating the "simulated downhole" travel time in Column K .
The simulated downhole compressional wave arrival time corresponding to point B is based on the compressional wave velocity in Column AB and is calculated in Column L. Note that the difference between Columns N and AB , which both contains compressional, wave velocity, is that Column N lists a compressional wave velocity only when it is calculated from the interpreted travel time and is blank when the supporting data is incomplete. On the other hand, Column $A B$ replaces missing compressional wave velocity with the velocity from the closest depth interval above or bellow for which a velocity was calculated based on time. The "closest" depth interval is determined as discussed in the previous section describing the Receiver to Receiver Analysis. The counting of the number of depth intervals between the intervals with missing data and the first shallower interval with a velocity and the first deeper interval with a velocity is implemented in Columns Y and Z , respectively. In the case of a tie, the average of the velocities of the shallower and the deeper intervals is used. Note that the velocity values in Column $A B$ are used only for the purpose of calculating the "simulated downhole" travel time in Column L.
(20)

The first numbers in Columns K and L should be estimated so that the simulated downhole arrival time will match the actual downhole results at some arbitrary depth. Columns K and L were programmed in such a manner that message "Enter Initial Estimate" will show up in red color with yellow highlight in the cells where the initial estimates need to be input. The second number and the subsequent number in Columns K and L will be calculated as discussed above.

User Manual Clean up

After all the required data are input and the analyses are performed automatically in the two analysis worksheets as discussed above, users need to do some cleaning up work manually.
(21) After entering the required data, click on the two Analysis Tabs and the three Summary tabs to edit the five sheets in Group Mode. Delete the rows between rows 14 and 619 that are not populated with data. For example, if there are 200 measurement depths, the data will populate rows 14 through 213. In this case, delete rows 214 through 619. Deleting these rows will adjust the plot ranges on all the plots, which will be discussed in the following section, to end with the last row populated with data, and will also eliminate unused rows on the two Analysis sheets and the three Summary sheets so that they can be printed easily. After deleting these rows, click on one of the other sheet tabs to exit the Group Mode (very important!).

Abstract

Also, look for cells whose contents must be deleted, specifically, those cells with "\#Ref" or "Delete". For example, where a travel time cannot be interpreted, the $\mathrm{v}_{\mathrm{s}} / \mathrm{v}_{\mathrm{p}}$ ratio and Poisson's ratio cannot be calculated and the contents of these cells must be deleted. Be especially careful when a travel time is missing at either the deepest or the shallowest depth and delete the equations that refer to cells with missing data.

Summary

Results are summarized and presented automatically in the following three summary worksheets. Sheet: 'Summary, All' is the sheet that presents data for figures plotted using Grapher (version 2.02).
(22) Tables that summarize the depths of midpoints between the receivers, shear wave velocities and compressional wave velocities in both American and Système International units, and Poisson's ratios, are presented in 'Summary, R1-R2' for data obtained from Receiver to Receiver analysis.
(23) Tables that summarize the depths of midpoints between the Source and the Near Receiver, shear wave velocities and compressional wave velocities in both American and Système International units, and Poisson's ratios are presented in Sheet: 'Summary, S-R1' for data obtained from the Source to Receiver analysis.
(24) Sheet: 'Summary, All' presents the results shown on Sheet: 'Summary, R1-R2' and Sheet: 'Summary, S-R1', as well as the simulated wave travel times for both Receiver to Receiver analysis and Source to Receiver analysis. This sheet was created primarily to facilitate the plotting of figures using commercial graphical software Grapher (Version 2.02).

Figures

Plots of $\mathrm{v}_{\mathrm{s}}, \mathrm{v}_{\mathrm{p}}$, Poisson's ratio, and simulated downhole travel time attached in this workbook are for the purposes of quick checking only.
(25) Plot shear wave velocities and compressional wave velocities, as well as Poisson's ratio for quick checking:

- Shear wave velocity, v_{s}, obtained from the Near Receiver to the Far Receiver data are plotted versus depth in American units in Sheet: 'R1-R2, Vs Plot'. The x and $y-$ coordinates correspond to data in Columns O and C in Sheet: 'Analysis, R1-R2', respectively.
- Both shear wave velocity, v_{s}, and compressional wave velocity, v_{p}, obtained from the Near Receiver to the Far Receiver data versus depth are plotted in American units in Sheet: 'R1-R2, Vs\&Vp Plot'. The x-coordinates for the v_{s} and v_{p} curves correspond to data in Columns O and P in Sheet: 'Analysis, R1-R2', respectively. The y-coordinates for both curves correspond to data in Column C in the same sheet.
- Shear wave velocities v_{s} obtained from both the Near to Far Receivers data, and the Source to the Near Receiver data versus depth are plotted in American units in Sheet: 'R1-R2 and S-R1, Vs Plot'. The x and y-coordinates for the v_{s} curve obtained from the Near Receiver to the Far Receiver data correspond to data in Columns O and C in Sheet: 'Analysis, R1-R2', respectively. The x and y-coordinates for the v_{s} curve obtained from the Source to the Near Receiver data correspond to data in Columns M and C in Sheet: 'Analysis, S-R1', respectively.
- Both shear wave velocities, v_{s}, and compressional wave velocities, v_{p}, obtained from the Near Receiver to the Far Receiver data, and the Source to the Near Receiver data versus depth in American units are plotted in Sheet: 'R1-R2 and S-R1, Vs\&Vp Plot'. The x and y -coordinates for the v_{s} curve obtained from the Near Receiver to the Far Receiver data correspond to data in Columns O and C in Sheet: 'Analysis, R1-R2', respectively. The x and y-coordinates for the v_{p} curve from the Near to the Far Receiver data correspond to data in Columns P and C in the same sheet, respectively. The x and y -coordinates for v_{s} curve obtained from the Source to the Near Receiver data correspond to data in Columns M and C in Sheet: 'Analysis, S-R1'. The x and y coordinates for v_{p} curve obtained from the Source to the Near Receiver data correspond to data in Columns N and C in the same sheet, respectively.
- Poisson's Ratio derived from both the Near Receiver to the Far Receiver data and the Source and the Near Receiver data versus depth are plotted in Sheet: 'Poisson's Ratio Plot'. The x and y -coordinates correspond to data in Columns S and C in Sheet: 'Analysis, R1-R2' for the series associated with the Near Receiver to the Far Receiver data and Columns Q and C in Sheet: 'Analysis, S-R1' for the series associated with the Source to the Near Receiver data.

EXAMINATION

- Hand calculations shown in the following section "Hand Calculation Verification" and spot check are performed to ensure that equations and values obtained are correct.
- Figures I-3 through I-53 following the hand calculation shows values and equations in the cells in each worksheet, as well as the plots for checking purpose. Please note that only the first 30 to 50 rows are shown in order to save space. The equations in each column are identical unless otherwise noted.
- There are no macros present in any sheet. Only simple equations and logical statements exist in this workbook.

Z_{i} is depth below ground surface of the midpoint between receivers for suspension test at the ith depth interval
$\Delta Z_{i}=Z_{i}+1-Z_{i}$
Note: Athough the two tests are performed along a vertical line, they are shown with a horizontal offset for clarity.

Figure I-1 Schematic illustration of simulation of downhole wave travel time based on receiver to receiver data

Figure I-2 Schematic illustration of simulation of downhole travel time based on source to near receiver data

HAND CALCULATION VERIFICATION

Sample calculation presented as follows are based on suspension test data acquired at Borehole UE-25 RF\#13. Data for measurement depth interval 18.04 feet are used in the following handcalculation verification, which corresponds to Row 17 in the worksheets. Copies of sheets from the workbook that show Row 17 are shown in Figures I-3 through I-53.

Input:

(1) Data imported to Sheet: 'Data, R1-R2':

Depth of midpoint between the Receivers:
Cell A17 $=18.04$ feet
Shear Wave (normal pulse) Travel Time from the Source to the Far Receiver:
Cell C17 $=8.75$ milliseconds
Shear Wave (reverse pulse) Travel Time from the Source to the Far Receiver:
Cell D17 $=8.91$ milliseconds
Compressional Wave Travel Time from the Source to the Far Receiver:
Cell E17 $=4.925$ milliseconds
Shear Wave (normal pulse) Travel Time from the Source to the Near Receiver:
Cell F17 $=6.82$ milliseconds
Shear Wave (reverse pulse) Travel Time from the Source to the Near Receiver:
Cell G17 $=6.93$ milliseconds
Compressional Wave Travel Time from the Source to the Near Receiver:
Cell H17 $=4.12$ milliseconds
Measured Distance between the Receivers:
Cell N2 $=39.37$ inches
Correspondingly,
Cell N3 $=$ Cell N2/12 $=3.28$ feet
(2) Data imported to Sheet: 'Data, S-R1':

Depth of midpoint between the Receivers:

$$
\text { Cell A17 }=18.04 \text { feet }
$$

Shear Wave (normal pulse) Travel Time from the Source to the Near Receiver:
Cell F17 $=6.35$ milliseconds
Compressional Wave Travel Time from the Source to the Near Receive:
Cell H17 $=4.43$ milliseconds
Delay Time:
Cell N2 $=3.0$ milliseconds
Measured Distance between the Source to the Near Receiver:
Cell N3 $=7.0$ feet
(3) Data input to Sheet: 'Analysis, S-R1':

Offset Time:
Cell F17 $=0.0$ milliseconds

Analyses Performed in Sheet: 'Analysis, R1-R2':

(1) Depth:

Depth of midpoint between the Receivers:
Cell C17 = Cell A17 (in Sheet: 'Data, R1-R2')
$=18.04$ feet
Depth of the Far Receiver:
Cell A17 $=$ Depth of midpoint between the Receivers - Measured Distance between the Receivers/ 2
= Cell A17 (in Sheet: 'Data, R1-R2') - Cell N3 (in Sheet: 'Data, R1R2')/2
$=18.04-3.28 / 2$ feet
$=16.3996=16.40$ feet
Depth of the Near Receiver:
Cell B17 $=$ Depth of midpoint between the Receivers + Measured Distance between the Receivers/ 2
$=$ Cell A17 (in Sheet: 'Data, R1-R2') + Cell N3 (in Sheet: 'Data, R1R2')/2
$=18.04+3.28 / 2$ feet
$=19.6804=19.68$ feet
Depth of Point A:
Cell D17 = Average of the depths of the midpoints between the Receivers for the current and next depth intervals
$=0.5 *[$ Cell A17 (in Sheet: 'Data, R1-R2') + Cell C18]
$=0.5^{*}(18.04+19.69)$ feet
$=18.8650=18.87$ feet
(2) Travel Times:

Shear Wave (normal pulse) Travel Time from the Source to the Far Receiver:

$$
\begin{aligned}
\text { Cell E17 } & =\text { Cell C17 (in Sheet: 'Data, R1-R2') } \\
& =8.75 \text { milliseconds }
\end{aligned}
$$

Shear Wave (reverse pulse) Travel Time from the Source to the Far Receiver:
Cell F17 = Cell D17 (in Sheet: 'Data, R1-R2')
$=8.91$ milliseconds
Average Shear Wave Travel Time from the Source to the Far Receiver:
Cell G17 $=($ Shear Wave Travel Time (normal pulse) + Shear Wave Travel Time (reverse pulse))/2
$=[$ Cell C17 (in Sheet: 'Data, R1-R2')+ Cell D17 (in Sheet: 'Data, R1R2')]/2
$=(8.75+8.91) / 2$ milliseconds
$=8.83$ milliseconds
Compressional Wave Travel Time from the Source to the Far Receiver:

> Cell H17 = Cell E17 (in Sheet: 'Data, R1-R2')

$$
=4.93 \text { milliseconds }
$$

Shear Wave (normal pulse) Travel Time from the Source to the Near Receiver:
Cell I17 = Cell F17 (in Sheet: 'Data, R1-R2')
$=6.82$ milliseconds
Shear Wave (reverse pulse) Travel Time from the Source to the Near Receiver:
Cell J17 $=$ Cell G17 (in Sheet: 'Data, R1-R2')
$=6.93$ milliseconds
Average Shear Wave Travel Time from the Source to the Near Receiver:
Cell K17 = (Shear Wave Travel Time (normal pulse) + Shear Wave Travel Time (reverse pulse))/2
$=[$ Cell F17 (in Sheet: 'Data, R1-R2')+ Cell G17 (in Sheet: ‘Data, R1R2')]/2
$=(6.82+6.93) / 2$ milliseconds
$=6.875=6.88$ milliseconds
Compressional Wave Travel Time from the Source to the Near Receiver:
Cell L17 = Cell H17 (in Sheet: 'Data, R1-R2')
$=4.12$ milliseconds
(3) Wave velocities:

Shear Wave Velocity, v_{s} :
Cell O17 $=1000^{*}$ Measured Distance between the Receivers/(Average Shear Wave Travel Time from the Source to the Far Receiver - Average Shear Wave Travel Time from the Source to the Near Receiver)
$=1000 *$ Cell N3 (in Sheet: 'Data, R1-R2')/(Cell G17 - Cell K17)
$=1000 * 3.28 /(8.83-6.875)$
$=1678.2=1678$ feet $/$ second
Compressional Wave Velocity, v_{p} :
Cell P17 $=1000^{*}$ Measured Distance between the Receivers/(Compressional Wave Travel Time from the Source to the Far Receiver Compressional Wave Travel Time from the Source to the Near Receiver)
$=1000 *$ Cell N3 (in Sheet: 'Data, R1-R2')/(Cell H17-Cell L17)
$=1000 * 3.28 /(4.925-4.12)$
$=4075.6=4076$ feet $/$ second
(4) Calculations of Poisson's Ratio, v :

$$
\begin{aligned}
\text { Cell Q17 } & =\mathrm{v}_{\mathrm{s}} / \mathrm{v}_{\mathrm{p}} \\
& =\text { Cell O17/Cell P17 } \\
& =1678.2 / 4076.6 \\
& =0.4118=0.41 \\
\text { Cell R17 } & =\left(\mathrm{v}_{\mathrm{s}} / \mathrm{v}_{\mathrm{p}}\right)^{2} \\
& =(\text { Cell Q17 })^{2} \\
& =(0.4118)^{2} \\
& =0.1696=0.170
\end{aligned}
$$

> Poisson's Ratio, v:

$$
\begin{aligned}
\text { Cell S17 } & =\frac{\left(\frac{v_{s}}{v_{p}}\right)^{2}-0.5}{\left(\frac{v_{s}}{v_{p}}\right)^{2}-1.0} \\
& =(\text { Cell R17-0.5)/(Cell R17-1.0) } \\
& =(0.1696-0.5) /(0.1696-1.0) \\
& =0.3979=0.40
\end{aligned}
$$

(5). Simulated Downhole Arrival Times:

Messages "Enter Initial Estimate" in Cells M15 and N15 indicate estimates of downhole travel time at the corresponding depth of Point A , which is 15.58 feet, need to be input. Messages "Delete" in red color with yellow highlight appear in the cells in Columns M and N prior to row 15 indicate those cells should be deleted. The numbers in Cells M15 and N 15 are chosen so that the simulated downhoie arrival time will match the actual downhole results at depth of 15.58 . In this sample calculation:

Cell M15 $=18.40$ milliseconds
Cell N15 $=8.74$ milliseconds
Wave velocities, shown in Columns ${ }^{-} \mathrm{Y}$ and AD , associated with this depth interval for the purpose of calculating the "simulated downhole" travel time in Columns M and N are determined as follows:
Since no travel time data missing for this depth interval,
Cell V16 $=0$
Cell U17 $=$ Cell O17 $=1678.2$ feet $/$ second
Cell Y17 $=$ Cell U17 $=1678.2$ feet $/$ second
Cell AA16=0
Cell $\mathrm{Z17}=$ Cell P17 $=4075.6$ feet $/$ second
Cell AD17 $=$ Cell Z17 $=4075.6$ feet $/$ second
Simulated Downhole Shear Wave Arrival Time:
Cell M17 = Simulated Downhole Shear Wave Arrival Time at the previous depth + (Depth of the midpoint between Receivers for next depth intervalDepth of the midpoint between Receivers for current depth interval)/Shear Wave Velocity associated with the current depth interval
$=$ Cell M16 $+1000 *($ Cell C18 - Cell C17)/CellY17
$=19.2448+1000^{*}(19.69-18.04) / 1678.2$
$=20.2280=20.23$ milliseconds
Simulated Downhole Compressional Wave Arrival Time:
Cell N17 = Simulated Downhole Compressional Wave Arrival Time at the previous depth + (Depth of the midpoint between Receivers for the next depth interval- Depth of the midpoint between Receivers for
the current depth interval)/Compressional Wave Velocity associated with the current depth interval
$=$ Cell N16 + 1000*(Cell C18 - Cell C17)/Cell AD17
$=9.1324+1000^{*}(19.69-18.04) / 4075.6$
$=9.5372=9.54$ milliseconds
Analyses Performed in Sheet: ‘Analysis, S-R1’:
(1) Depth:

Depth of midpoint between the Receivers:
Cell E17 = Cell A17 (in Sheet: 'Data, R1-R2')
$=18.04$ feet
Depth of the Source:
Cell A17 $=$ Depth of midpoint between the Receivers + Measured Distance between the Receivers $/ 2+$ Measured Distance between the Source and the Near Receiver
$=$ Cell A17 (in Sheet: 'Data, R1-R2') + Cell N3 (in Sheet: 'Data, R1R2') $/ 2+$ Cell N2 (in Sheet: 'Data, S-R1')
$=18.04+3.28 / 2+7.0$
$=26.68$ feet
Depth of the Near Receiver:
Cell B17 $=$ Depth of midpoint between the Receivers + Measured Distance between the Receivers/2
$=$ Cell A17 (in Sheet: 'Data, R1-R2') + Cell N3-(in Sheet: 'Data, R1R2')/2
$=18.04+3.28 / 2$
$=19.68$ feet
Depth of midpoint between the Source and the Near Receiver:
Cell C17 $=$ Depth of midpoint between the Receivers + Measured Distance between the Receivers/ $2+$ Measured Distance between the Source and the Near Receiver/2
$=$ Cell A17 (in Sheet: 'Data, R1-R2') + Cell N3 (in Sheet: 'Data, R1-
R2')/2 + Cell N3 (in Sheet: 'Data, S-R1') / 2
$=18.04+3.28 / 2+7.0 / 2$
$=23.18$ feet
Depth of Point B:
Cell D17 = Average of the depths of the midpoints between the Source and the Near Receiver for the current and next measurement emplacements
$=($ Cell C17 + Cell C18 $) / 2$
$=(23.1804+24.8304) / 2$
$=24.01=24.0$ feet
(2) Travel Times:

Shear Wave (normal pulse) Travel Time from the Source to the Near Receiver:
Cell G17 = Cell F17 (in Sheet: 'Data, S-R1')
$=6.35$ milliseconds
Compressional Wave Travel Time from the Source to the Near Receiver:

Cell H17 = Cell'H17 (in Sheet: 'Data, S-R1')
$=4.43$ milliseconds
Corrected Shear Wave (normal pulse) Travel Time from the Source to the Near Receiver:
Cell I17: = Shear Wave Travel Time from the Source to the Near Receiver (normal pulse) + Offset Time - Delay Time
= Cell F17 (in Sheet: 'Data, S-R1') + Cell F17 - Cell N2 (in Sheet: 'Data, S-R1')
$=6.35+0.0-3.0$
$=3.35$ milliseconds
Corrected Compressional Wave Travel Time from the Source to the Near Receiver in Column J:

Cell J 17 = Compressional Wave Travel Time from the Source to the Near Receiver + Offset Time - Delay Time
$=$ Cell H17 (in Sheet: 'Data, S-R1') + Cell F17 - Cell N2 (in Sheet: 'Data, S-R1')
$=4.43+0.0-3.0$
$=1.43$ milliseconds
(3) Wave velocities:

Shear Wave Velocity, v_{s} :
Cell M17 $=1000^{*}$ Measured Distance between the Source and the Near Receiver/Corrected Shear Wave Travel Time (normal pulse) from the Source to the Near Receiver
$=1000^{*}$ Cell N3 (in Sheet: 'Data, S-R1')/Cell I17
$=1000 * 7.0 / 3.35$
$=2089.6=2090 \mathrm{feet} /$ second
Compressional Wave Velocity, v_{p} :
Cell N17 $=1000^{*}$ Measured Distance between the Source and the Near Receiver/Corrected Compressional Wave Travel Time from the Source to the Near Receiver
$=1000$ * Cell N3 (in Sheet: 'Data, S-R1')/Cell J17
$=1000^{*} 7.0 / 1.43$
$=4895.1=4895$ feet $/$ second
(4) Calculations for Poisson's Ratio, v in Columns O, P, and Q :

$$
\begin{aligned}
\text { Cell O17 } & =v_{\mathrm{s}} / \mathrm{v}_{\mathrm{p}} \\
& =\text { Cell M17/Cell N17 } \\
& =2089.6 / 4895.1 \\
& =0.4269=0.43 \\
\text { Cell P17 } & =\left(v_{\mathrm{s}} / \mathrm{v}_{\mathrm{p}}\right)^{2} \\
& =(\text { Cell O17 })^{2} \\
& =(0.4269)^{2} \\
& =0.1822=0.182
\end{aligned}
$$

Poisson's Ratio, v:

$$
\begin{aligned}
\text { Cell Q17 } & =\frac{\left(\frac{v_{s}}{v_{p}}\right)^{2}-0.5}{\left(\frac{v_{s}}{v_{p}}\right)^{2}-1.0} \\
& =(\text { Cell P17-0.5)/(Cell P17-1.0) } \\
& =(0.1822-0.5) /(0.1822-1.0) \\
& =0.3886=0.39
\end{aligned}
$$

(5) Simulated Downhole Arrival Times:

Messages "Enter Initial Estimate" in Cells K13 and L13 indicate estimates of downhole travel time at the corresponding depth of Point B , which is 17.44 feet, need to be input. The numbers in Cells K13 and L13 are chosen so that the simulated downhole arrival time will match the actual downhole results at depth of 17.44. In this sample calculation:

Cell K13 $=19.64$ milliseconds
Cell L13 $=9.33$ milliseconds
Wave velocities, shown in Columns W and $A B$, associated with this depth interval for the purpose of calculating the "simulated downhole" travel time in Columns K and L are determined as follows:

Since no travel time data missing for this depth interval,
Cell T17 $=0$
Cell S17 $=$ Cell M17 $=2089.6$ feet $/$ second
Cell W17 $=$ Cell S17 $=2089.6$ feet $/$ second
Cell Y17 $=0$
Cell X17 $=$ Cell N17 $=4895.1$ feet $/$ second
Cell $\mathrm{AB} 17=$ Cell X17 $=4895.1$ feet/second
Simulated Downhole Shear Wave (normal pulse) Arrival Time:
Cell K17 = Simulated Downhole Shear Wave Arrival Time at the previous depth + (Depth of the midpoint between the Source and the Near Receiver for the next depth interval - Depth of the midpoint between the Source and the Near Receiver for the current depth interval)/Shear Wave Velocity associated with the current depth interval
$=$ Cell K16+1000*(Cell C18-Cell C17)/Cell W17
$=21.8915+1000 *(24.83-23.18) / 2089.6$
$=22.6811=22.68$ milliseconds
Simulated Downhole Compressional Wave Arrival Time:
Cell L17 $=$ Simulated Downhole Compressional Wave Arrival Time at the previous depth + (Depth of the midpoint between the Source and the Near Receiver for the next depth interval - Depth of the midpoint between the Source and the Near Receiver for the current depth
interval)/Compressional Wave Velocity associated with the current depth interval
$=$ Cell L16+1000*(Cell C18-Cell C17)/Cell AB17
$=10.2742+1000 *(24.83-23.18) / 4895.1$
$=10.6112=10.61$ milliseconds

Figure I－3 Data input worksheet＇Data，R1－R2＇

X Microsoll Excel - nYa Dala Reduction-Rev04-RI13.xls

Il Aria

Ready
Figure I-4 Data input worksheet 'Data; S-R1'

Figure I-5 Analysis worksheet 'Analysis, R1-R2' - Columns A through L

Figure I-6 Analysis worksheet 'Analysis, R1-R2' before manual clean up and entering estimates for downhole travel times - Columns L through AE
 larial

Figure I-7 Analysis worksheet 'R1-R2' after manual clean up and entering the estimates for downhole travel times - Columns L through AF

X Mictosoft Excel－0YO Data feduction－hev04－Rf13 x／s									为国			
$\mathrm{AB224}^{\text {gle }}$ ，${ }^{\text {d }}$												
5 Table Ta T－T－												
5 Compresslonal Wave Velocity，Shear Wave Velocity，Simulated Downhole Arrival Time，and Polsson＇s Ra：Based on Source－to－Recelver Travel Time Data－Borehole UE－25 RF \＃13												
8 ＂												
5			Depth					Travel	Time ${ }^{(5)}$		Simulated Do	wnhole Trave！
10.			Midpoint Batwean		Midpoin！		To Near	Receiver	Corre	$\operatorname{ctad}^{(7)}$	Time ${ }^{(8)}$ to	o Point B
17	Source ${ }^{(1)}$	$\left\|\begin{array}{c} \text { Near } \\ \text { Receiver } r^{(2)} \end{array}\right\|$	Source and Near Raceiver	$\left.\begin{gathered} \text { At Point } \\ \mathrm{B}^{(3)} \end{gathered} \right\rvert\,$	Between Recaivers	Offset ${ }^{(4)}$	Shear Wave （Normal）${ }^{(6)}$	Compression Wave	Shear Wave （Normal）	Compression Wave	Shear Wave Normal	Compression Wave
12.	（f）	（f）	（f）	（f）	（f）	（msac）	（msec）	（msec）	（msec）	（msec）	（msec）	（msec）
13.				17.44							Enter Initial Estimate	Enter Initlal Estimate
14	21.76	14.76	18.26	19.08	13.12	0.00	6.09	4.34	3.09	1.34	\＃VALUEI	AVALUE！
15	23.40	16.40	15.90	20.72	14.76	0.00	6.27	4.17	3.27	1.17	\＃VALUE！	\＃VALUEI
16	25.04	18.04	21.54	22.36	16.40	0.00	6.25	4.53	3.25	1.53	\＃VALUE！	\＃VALUEI
17	26.68	19.68	23.18	24.01	18.04	0.00	6.35	4.43	3.35	1.43	\＃VALUEI	\＃VALUEI
18．	28.33	21.33	24.83	25.65	19.69	0.00	6.39	4.53	3.39	1.53	\＃VALUEI	\＃VALUE！
19	29.97	22.97	26.47	27.29	21.33	0.00	5.69	4.17	2.69	1.17	\＃ V ALUEI	HVALUEI
20.	31.61	24.61	28.11	28.99	22.97	0.00	5.67	4.20	2.67	1.20	\＃VALUEI	\＃VALUE！
21	33.25	26.25	29.75	30.57	24.61	0.00	5.67	4.26	2.67	1.26	\＃VALUEI	\＃VALUEI
22	34.89	27.89	31.39	32.21	26.25	0.00	5.81	4.21	2.81	1.21	\＃VALUEI	\＃VALUEI
23	36.53	29.53	33.03	33.85	27.89	0.00	5.59	4.15	2.59	1.15	\＃VALUEI	\＃VALUEI
24	38.17	31.17	34.67	35.49	29.53	0.00	5.83	4.31	2.83	1.31	\＃VALUEI	\＃VALUEI
25	39.81	32.81	36.31	37.13	31.17	0.00	5.34	4.25	2.34	1.25	\＃VALUEI	\＃VALUE！
26	41.45	34.45	37.95	38.77	32.81	0.00	5.34	4.28.	2.34	1.28	\＃VALUEI	\＃VALUEI
27.	43.09	36.09	39.59	40.41	34.45	0.00	5.66	4.26	2.66	1.26	\＃VALUEI	\＃VALUE！
28	44.73	37.73	41.23	42.05	36.09	0.00	5.84	4.25	2.84	1.25	\＃VALUEI	\＃VALUEI
29	46.37	39.37	42.87	43.69	37.73	0.00	5.88	4.29	2.86	1.29	\＃VALUEI	HVALUEI
$30:$	48.01	41.01	44.51	45.33	39.37	0.00	6.03	4.31	3.03	1.31	\＃VALUEI	\＃VALUEI
31	49.65	42.65	46.15	46.97	41.01	0.00	5.71	4.25	2.71	1.25	\＃VALUEI	\＃VALUEI
32	51.29	44.29	47.79	48.61	42.65	0.00	6.33	4.62	3.33	1.52	\＃VALUEI	\＃VALUEI
33.	52.93	45.93	49.43	50.25	44.29	0.00	5.60	4.10	2.50	1.10	\＃VALUEI	\＃VALUEI
34.	54.57	47.57	51.07	51.89	45.93	0.00	6.35	4.67	3.35	1.67	\＃VALUEI	\＃VALUEI
	C542	A9．71	Revisintos 51.5		$\frac{47.5}{\text { R1 } 1.22}$	Sina	$\mathrm{F}^{5.55}$	R1－R2 ${ }^{4}$ Cobe	${ }_{\text {R1 }}{ }^{\text {a Analysi }}$	${ }^{1}$	5 \＃${ }^{\text {a }}$	
	dy ar $^{\text {a }}$	4nten	whetat	2	56	$5 \mathrm{ta}$		$\text { W+ }+1$	Tre	Tप ${ }^{3}$	1 HNb	W以

Figure I－8 Analysis worksheet＇Analysis，S－R1＇before entering the estimates for downhole travel times－
Columns A through L

Figure I-9 Analysis worksheet 'Analysis, S-RI' atter entering the estimates for downhole travel times Columns A through L
X Niciosoft Excef - OYD Data Reduction-Rev04-RI13.xis

Figure 1-10 Analysis worksheet 'Analysis, S-Rl' - Columns M through AG
 Ara
 Sitmmary of Comprossional Wave Velocity, Shear Wave Velacity, and Passon's
Based on Receiver-to-Receiver Travel Time Data - Borehole UE-25 RF \#13

Metric Units			
Depth at Midpoint Between Recelvers	Velocity		Poisson's Ratio
	V_{5}	V_{p}	
(m)	(m/s)	(m/s)	
4.0	-	-	-
4.5	\cdot	-	-
5.0	590	1270	0.36
5.5	510	1240	0.40
6.0	720	1590	0.37
6.5	550	1080	0.32
7.0	500	-	-
7.5	730	1720	0.39
8.0	680	1340	0.33
8.5	440	900	0.34
9.0	1000	1960	0.33
9.5	680	2170	0.44
10.0	720	1490	0.35
10.5	570	1200	0.35
11.0	590	1340	0.38
11.5	710	1680	0.39
12.0	780	1890	0.40
12.5	460	1200	0.41
13.0	1130	2220	0.33
13.5	540	1390	0.41
14.0	960	-	-
14.5	620	1430	0.39
15.0	920	2060	0.38
15.5	780	.	-
16.0	830	-	-
16.5	870	2020	0.39
12 n	710	173 n	025

Figure I-11 Summary worksheet 'Summary, R1-R2'

Figure I-12 Summary worksheet 'Summary, S-R1'

Figure I-13 Formulas in analysis worksheet 'Analysis, R1-R2'- Columns A through B

Figure I-14 Formulas in analysis worksheet 'Analysis, R1-R2' - Columns C through F

Figure I-15 Formulas in analysis worksheet 'Analysis, R1-R2' - Columns G through J

Figure I-16 Formulas in analysis worksheet 'Analysis, R1-R2' - Columns K through M

 Arial

 Ready

Figure I-17. Formulas in analysis worksheet 'Analysis, R1-R2' - Column N

Figure I-18 Formulas in analysis worksheet 'Analysis, R1-R2' - Column O
2. Micmonft Excel - DYa Data Reduction-Rev04-Ril3. xls

Figure I-19 Formulas in analysis worksheet 'Analysis, R1-R2' - Column P

X Miciosonf Excel - OYO Data Reduclion-Reveva -ifins.n|s

 Aria 5223 ,

Figure I-20 Formulas in analysis worksheet 'Analysis, R1-R2' - Columns Q through S

Figure I-21 Formulas in analysis worksheet 'Analysis, R1-R2' - Columns T through X

Figúre I-22 Formulas in analysis worksheet 'Analysis, R1-R2' - Columns Y through AB

Figure I-23 Formulas in analysis worksheet 'Analysis, R1-R2' - Columns AC through AD

Figure I-24 Formulas in analysis worksheet 'Analysis, S-R1' - Column A

Figure I-25 Formulas in analysis worksheet 'Analysis, S-R1' - Column B

Figure I-26 Formulas in analysis worksheet 'Analysis, S-R1' - Column C

Figure I-27 Formulas in analysis worksheet 'Analysis, S-RI' - Columns D through F

Figure I-28 Formulas in analysis worksheet 'Analysis, S-R1' - Columns G through H

Aral
Arial

$$
\text { F209 } \quad \text { 人) }
$$

Figure I-29 Formulas in analysis worksheet 'Analysis, S-R1' - Columns I through J

Figure I-30 Formulas in analysis worksheet 'Analysis, S-R1' - Columns K through L

Figure I-31 Formulas in analysis worksheet 'Analysis, S-R1' - Column M

Figure I-32 Formulas in analysis worksheet 'Analysis, S-RI' - Column N

Figure I-33 Formulas in analysis worksheet 'Analysis, S-R1' - Columns O through R

Figure I-34 Formulas in analysis worksheet 'Analysis, S-R1' - Columns R through W

Figure I-35 Formulas in analysis worksheet 'Analysis, S-R1' . Column X through AB

WS Micrasalt Excel－0Y0 Data Reduction－Revid－Rf13．xls	－回 $x^{\text {a }}$
178 团迷	
8 －CONCATENATE E＇Based on Receiver－to－Receiver	
10	American linits
	cily
12 Midpoint Between Receivers	V_{5}
13 （t）	（f／s）
14 －Depth MiddlaOfReceiverToReceiver	
15：＝Depth MiddleOfReceiverToReceiver	
16.1 Depth MiddleOfReceiverToReceiver	＝IF（OR（V／s NearFarReceivers＝＂Delete＂，Vs NearFarReceivers＝＂＂）．＂．ROUNDNs NearFarReceivers，－1］
17．＝Depth MiddleORReceiverToReceiver	
18 ＝Depth MiddisOfRaceiverToReceiver	
19 ＝Depth MiddleOfReceiverToRaceiver	
20 ＝Depth MiddleOfReceiverToReceiver	＝IF＇OR（Vs NearFarReceivers $=$＂Delete＂，Vs NearFarRaceivers＝＂＂），＂＇ROUND（Vs NearFarRecgivers，-1$)$ ）
21 ＝Depth MiddloORReceiverToReceiver	＝IF（OR $V_{\text {s }}$ NearFarReceivers＝＂Delete＂，Vs NearFarRaceivers＝＂$), "$＂，ROUND（Vs NearFarReceivers -1$)$ ）
22 ＝Depth MiddlaOfReceivarToRacaiver	
23 ＝Dapth MiddleOfReceiverToReceiver	$=\mathrm{FF}$（OR（／S NearFarReceivers＝＂Delete＂，Vs NearFarRaceivers＝＂＂），＂－＂ROUND（Vs NearFarReceivers，－1）
24 ＝Depth MiddloOReceivartoReceiver	＝IF（ORNS NearF arReceivers＝＂Delete＂，Vs NearF arReceivers＝＂＂），＂＊ROUND（Vs NearFarReceivers－1）
25 ＝Depth MiddleOfReceiverToReceiver	
2 E ＝Depth MiddleOfReceiverToReceiver	
27．＝Depth MiddleOfR aceiverToRecoiver	
28 ＝Depth＿MiddleOfReceiverToReceiver	
29 ＝Depth MiddleORReceiverToRecaiver	
30 ＝Depth MiddleORReceiverToReceiver	
31．＝Depth MiddleOfReceiverToReceiver	＝IF（ORNs NearFarReceivers＝＂Delete＂，Vs NearF arReceivers＝＂＂）．＂，ROUND（Vs NearF arReceivers，－1）
32 ＝Depth MiddleOfReceiverToRaceiver	
33.15	$=1 F$（ORNS NearF arReceivers＝＂Delete＂，Ys NearFarReceivers＝＂り），＂－＂，ROUNDNs NearFarReceivers，－1）
34 ＝Depth MiddleOfReceiverToReceiver	
35：＝Depth MiddieOfReceiverToReceiver	
35 ＝Depth MiddleOfReceiverToReceiver	＝IF（OR（Vs NearFarReceivers＝＂Delete＂，Vs NearFarReceivers＝＂＂），＂－＂，ROUNDNs NearFarReceivers，－1））
37．＝Depth MiddleOfReceiverToReceiver	
39：＝Depth MiddleOfReceiverTo Receiver	
39 ＝Depth MiddleORReceiverToReceiver	
an 1 Renth MiddlentReciportaRorsizor 	

Figure I－36 Formulas in summary worksheet＇Summary，R1－R2＇－Colunns A through B

$478 \quad-\operatorname{Za}$

10 Velocity

31
(ft/s)

$15:=I F\left(O R\left(V p\right.\right.$ NearFarReceivers $=$ "Delete", Vp NearFarReceivers $="{ }^{*}{ }^{*}=*$ ROUNONp NearFarReceivers, -1$\left.)\right)$

IF (ORPDissonRatio Near =IFIOR(PoissonRatio_NearF -IF (OR (PoissonRatio NearF =IF(OR(PoissonRatio NearF IFRRIPoissonRatio Nearf IFIORPDoissonR atio Narar -IFTORPoissonRatio Near FIOR(PoissonRatio Near IF/OR(PoissonRatio Noarf IF(OR(PoissonRatio NearF IF(OR(PoissonRatio NearF FIORPDissonRatio NearF
 Near

 =IF (ORIPoissonRatio Nearf =IFIOR(PoissonRatio Nearf
 IF(OR(PoissonRatio NearF FIRP
 FOR(PoissonRalio Near

 H OR PuissonRatio Nearf IF(ORP PoissonRatio Nearf $=$ IF(OR(PoissonRatio Noarf =IF(OR(PoissonRatio NearF =IF(ORPPoissonRatio NearF IF (ORPDoissonRatio Nearf =IF(ORPDoissonRatio Near =IF(ORPRoissonRatio NearF

Figure I-37 Formulas in summary worksheet 'Summary, R1-R2' - Column C

Figure I-38 Formulas in summary worksheet 'Summary, R1-R2' - Columns D through E

Arial ${ }^{\text {a }} 10$	
C221 $\square^{\text {a }}$ -	

Figure I-39 Formulas in summary worksheet 'Summary, R1-R2' - Columns F through G

Figure I-40 Formulas in summary worksheet 'Summary, R1-R2' - Column H

Figure I-41 Formulas in summary worksheet 'Summary, R1-R2' - Column I

2X Microsolt Excel - OYB Data Reduction-Rev04-Rif13.xl

Figure I-42 Formulas in summary worksheet 'Summary, S-R1' - Columns A through B

B Microsolf Excel - OYO Data Reduction-Rev04-R113.xls

国 x

Figure I-43 Formulas in summary worksheet 'Summary, S-R1' - Column C

Figure I-44 Formulas in summary worksheet 'Summary, S-R1' - Columns D through E

6	
7	
8	
9	
10	
11 Depth at Midpoint	Velocity
12 Between Source and Near Receiver	V_{s}
13 (m)	(m / s)
14 = Depth MiddleOfSourceToNearRecaiver*0. 3048	
15: =Depth MiddleOfSourceToNearReceiver0.3048	=IFSOR(Vs SourcenearReceiver='Delete", Vs SourceNearReceiver=""),"-*,ROUND(Vs SourcenearReceiver*0.3048, -1)
16 = Depth MiddleOfSourceToNearReceiver*0.3048	=IF(OR(Vs SourceNearReceiver="Delete", Vs SourceNearReceiver=""),"",ROUND (Vs SourceNearReceiver*0,3048,-1)
17 = Depth MiddleOfSourceToNearReceiver ${ }^{\text {to }}$, 3048	
110 =Depth MiddleOfSourceToNearRecsiver². 3048	
19: $=$ Depth MiddleOfSourceToNarReceiver ${ }^{\circ} \mathrm{O} .3048$	
20.0 Depth MiddleOfSourceToNearReceiver'0. 3048	$=1 F(O R 1 / 2$ SourceNearReceiver="Delete", Vs SourceNearReceiver=""),"-",ROUND(Vs SourceNearReceiver'0.3048,-1))
21.15 Depth MiddleOfSourceToNarReceiver*0.3048	
22 = Depth MiddleOfSourceToNaarReceiver 0.3048	=IF(ORNs SourceNearReceiver="Lelete", Vs SourceNearReceiver=""),"-",ROUNDNs SourcenearReceiver"0.3048,-1)
23.15 - Depth MiddleOrSource ToNearReceiver'0.3048	
24. $=$ Depth MiddleOfSourceTo NearReceiver*0.3048	
25 =Depth MiddleOfSourceToNearReceiver ${ }^{2} 0.3048$	= IF(OR(Vs SourceNearReceiver="Delete", Vs SourceNearReceiverw"),"-",ROUND(Vs SourceNearReceiver"0.3048,-1))
26.5 Depth MiddleOfSource ToNearReceiver ${ }^{+0.3048}$	
27.0 Depth MiddleOfSource To NearReceiver*0.3048	=IF(OR(Vs SourceNearReceiver="Delete",Vs SourceNearReceiver=""), "- ROUNDNs SourceNearReceiver*0.3048,-1))
28 EDepth MiddleOfSourceToNearReceiver*0.3048	
29. = Depth MiddleOrSourceToNearReceiver ${ }^{2} 0.3048$	
$30{ }^{\circ}=$ Depth MiddleOfSourceToNearReceiver'0. 3048	
31.0 Depth MiduleOrSourceToNearReceiver ${ }^{*} 0.3048$	
32 = Depth MiddleOfSourceToNearReceiver"0.3048	
	=IFROR(Vs SourceNearReceiver="Delete", Vs SourceNearReceiver=""), "*,ROUND(Vs SourceNearReceiver*0.3048,-1)
34: $=$ Depth MiddleOfSourceToNearReceiver'0.3048	
35 = Depth MiddleOfSourceToNearReceiver*0.3048	
36 = Depth Middle OfSourceToNearReceiver 0.3048	
37. =Depth MiddleOfSourceToNearReceiver*O. 3048	$=$ FFIORNs SourceNearReceiver="Delete",Vs SourcenearReceiver=""),"*, ROUND (Vs SourceNearReceiver"0.3048,-1)3
Ready	

Figure I-45 Formulas in summary worksheet 'Summary, S-RI' - Columns F through G

Figure I-46 Formulas in summary worksheet 'Summary, S-R1' - Column H

Figure I-47 Formulas in summary worksheet 'Summary, S-RI' - Columns I through J

X Microsolf Excel-0YO Data Reduction-Rev04-R113.xls

Ready \boldsymbol{R}
Figure I-49 Plot worksheet 'R1-R2, Vs\&Vp Plot'
\square

Figure I-50 Plot worksheet 'R1-R2 \& S-R1, Vs Plot'

Figure I-51 Plot worksheet 'R1-R2 \& S-R1, Vs\&Vp Plot'

Figure I-52 Plot worksheet 'Poisson's Ratio Plot'

Figure I-53 Plot worksheet 'Travel Time vs. z '

