Dresden Nuclear Power Station, Units 2 and 3
Renewed Facility Operating License Nos. DPR-19 and DPR-25
NRC Docket Nos. 50-237 and 50-249

Subject: Additional Information Supporting Request for License Amendment Regarding Offsite Power Instrumentation and Voltage Control

References: 1. Letter from P. R. Simpson (Exelon Generation Company, LLC) to U. S. NRC, "Request for License Amendment Regarding Offsite Power Instrumentation and Voltage Control," dated April 4, 2005
2. Letter from M. Banerjee (U. S. NRC) to C. M. Crane (Exelon Generation Company, LLC), "Dresden Nuclear Power Station, Units 2 and 3 Request for Additional Information (RAI) Re: Technical Specification Changes Related to Offsite Power Instrumentation and Voltage Control (TAC Nos. MC6712 and MC6713)," dated November 3, 2005

In Reference 1, Exelon Generation Company, LLC (EGC) requested an amendment to Renewed Facility Operating License Nos. DPR-19 and DPR-25 for Dresden Nuclear Power Station (DNPS), Units 2 and 3. The proposed changes revise Technical Specification Section 3.3.8.1, "Loss of Power (LOP) Instrumentation," and also revise the Updated Final Safety Analysis Report to implement use of automatic load tap changers on transformers that provide offsite power to DNPS, Units 2 and 3.

In Reference 2, the NRC requested additional information to support its review. In response to Reference 2, EGC has prepared the attached information.

EGC has reviewed the information supporting a finding of no significant hazards consideration that was previously provided to the NRC in Attachment 1 of Reference 1. The supplemental information provided in this submittal does not affect the bases for

January 13, 2006
U. S. Nuclear Regulatory Commission Page 2
concluding that the proposed license amendment does not involve a significant hazards consideration.

There are no regulatory commitments contained in this letter. Should you have any questions related to this letter, please contact Mr. Kenneth M. Nicely at (630) 657-2803.

I declare under penalty of perjury that the foregoing is true and correct. Executed on the 13th day of January 2006.

Respectfully,

Attachments:

1. Response to Request for Additional Information
2. Calculation 8982-13-19-6, "Second Level Undervoltage Relay Setpoint - Unit 2," Revision 005
3. Calculation 8982-17-19-2, "Second Level Undervoltage Relay Setpoint - Unit 3," Revision 004
4. Procedure MA-DR-771-402, "Unit $2-4 \mathrm{kV}$ Tech Spec Undervoltage and Degraded Voltage Relay Routines," Revision 03
5. Procedure MA-DR-771-403, "Unit 3-4 kV Tech Spec Undervoltage and Degraded Voltage Relay Routines," Revision 3

NRC Request 1

Describe what testing will be performed on the automatic load tap changer (LTC) transformers to demonstrate functionality.

Response

The LTC transformers for both Dresden Nuclear Power Station (DNPS), Units 2 and 3, were recently installed. The Unit 2 transformer has been in service in the manual mode of operation for approximately two years, and the Unit 3 transformer was installed in November 2005. Both transformers were subjected to standard transformer tests during acceptance testing. These tests include Doble/sweep frequency response, transformer through-fault, core ground, turns ratio on all taps, low voltage excitation, winding megger, and alternating current impedance testing. Also, operation of the LTC on each transformer was verified over the full range of tap positions.

For both Unit 2 and Unit 3, LTC transformer control circuits, controls, and control switches were verified to function properly in accordance with the applicable schematic diagrams. Also, the local and control room indication for the transformer LTC were checked for proper functionality.

Testing of the main and backup controllers included verifying with a simulated voltage input that the LTC regulating relay provided the correct raise/lower response and the LTC backup relay provided the proper blocking function.

Additionally, on a two year frequency, the LTC will be verified both manually and electrically for proper timing and sequencing of operation. On a six year frequency, preventive maintenance consisting of inspection of contacts for damage and pitting, checks for loose or damaged components, and functional testing of the LTC (i.e., similar to the two year test) will be performed.

NRC Request 2

What is the response time of the LTC transformers (i.e., how fast can a tap change occur) and in the event of a voltage dip, how responsive will the LTC be in preventing a trip of the degraded voltage relays?

Response

The regulating relays controlling the LTCs are set with an initial delay of 1 second (i.e., the voltage must be out of band for 1 second before the controls initiate a tap change). Once given a signal to change taps, either manually or automatically, the tap changer will complete a tap change in two seconds.

In the event of a voltage dip with no accident signal present, the second-level degraded voltage relay scheme includes a nominal 5 -minute timer to allow voltage to recover before the safety buses are disconnected from offsite power. The 5-minute timer allows adequate time to complete needed tap changes to correct the transient before disconnecting from offsite power.

ATTACHMENT 1 Response to Request for Additional Information

In the event of a voltage dip concurrent with an accident, the second-level degraded voltage relays are set with a nominal time delay of 7 seconds after which, if the voltage does not recover, the safety buses will be disconnected from offsite power. If a loss-of-coolant accident were to occur at full power operations, it has been determined that two tap changes are required to support the additional continuous load imposed on the transformer and compensate for the resulting switchyard voltage drop due to loss of the unit. Considering the additional time needed for the 1 second initial delay before the two tap changes begin, the LTC will complete voltage correction in 5 seconds. The allowable value for the nominal 7 -second degraded voltage time delay is ≥ 5.7 seconds and ≤ 8.3 seconds, as specified in Technical Specification (TS) Table 3.3.8.1-1, "Loss of Power Instrumentation." Therefore, the LTC will be successful in preventing a trip of the degraded voltage relays in the event of a voltage dip, precluding unnecessary disconnection of the safety buses from offsite power.

NRC Request 3

Provide the setpoint methodology with setpoint calculation used at Dresden to establish the allowable value (AV), trip setpoint, as-left (value) tolerance band, and as-found (value) tolerance band.

Response

The setpoint methodology used at DNPS is described in engineering standard NES-EIC-20.04, "Analysis of Instrument Channel Setpoint Error and Instrument Loop Accuracy." This methodology was provided to the NRC as Attachment 1 of Reference 1, in support of the conversion to Improved Technical Specifications (ITS). In Reference 2, further clarification regarding the setpoint methodology used at DNPS was provided to the NRC. The NRC approved the conversion to ITS for DNPS in Reference 3, and concluded that the instrument setpoint methodology is acceptable.

Attachments 2 and 3 provide calculations 8982-13-19-6, Revision 005, "Second Level Undervoltage Relay Setpoint - Unit 2," and 8982-17-19-2, Revision 004, "Second Level Undervoltage Relay Setpoint - Unit 3." These calculations establish the AV, trip setpoint, as-left (value) tolerance band, and as-found (value) tolerance band.

NRC Request 4

Discuss the channel calibration procedure and channel operational test procedure. Include in your discussion how the technical specification (TS) surveillances ensure the operability of the instrument channel.

Response

The function of the degraded voltage relay is to monitor Essential Service System (ESS) bus voltage to ensure adequate voltage is maintained to support operation of required equipment. In the event that the minimum required voltage is not maintained, the buses are disconnected from offsite power and connected to the onsite emergency diesel generator. The Channel Functional Test is performed on each required channel to ensure that the channel will perform

ATTACHMENT 1
 Response to Request for Additional Information

the intended function. A successful test of the required contact(s) of a channel relay may be performed by the verification of the change of state of a single contact of the relay.

A Channel Calibration is a complete check of the instrument loop and the sensor. This test verifies the channel responds to the measured parameter within the necessary range and accuracy. Channel Calibration leaves the channel adjusted to account for instrument drifts between successive calibrations consistent with the plant specific setpoint methodology.

The ESS bus degraded voltage relays are surveilled, by means of calibration and functional testing, on an 18 -month frequency. The instruments are isolated by test switches, removed from the panel, and then calibrated. If, during calibrations, the relays are found to be outside the setting tolerance, the relays are re-calibrated. After calibration is complete, the relays are reinstalled in the panel and a functional test is performed. The functional test involves tripping the relays by means of test switches and verifying the degraded voltage relay contacts operate properly for both trip and reset conditions.

The degraded voltage relay surveillance is specified in procedures MA-DR-771-402, Revision 03, "Unit 2 - 4 kV Tech Spec Undervoltage and Degraded Voltage Relay Routines" and MA-DR-771-403, Revision 3, "Unit $3-4$ kV Tech Spec Undervoltage and Degraded Voltage Relay Routines." These procedures are provided as Attachments 4 and 5, respectively.

NRC Request 5

Explain why this amendment request is not applicable to the TS requirements of 10 CFR 50.36 related to limiting safety system settings.

Response

10 CFR 50.36, "Technical specifications," requires that the TS include safety limits (SL), limiting safety system settings (LSSS), and limiting conditions for operation (LCO) among other items. 10 CFR 50.36(c)(1)(i)(A) sets forth the criteria for safety limits, and 10 CFR 50.36(c)(1)(ii)(A) sets forth the criteria for LSSS.

- 10 CFR 50.36(c)(1)(i)(A) states "Safety limits for nuclear reactors are limits upon important process variables that are found to be necessary to reasonably protect the integrity of certain of the physical barriers that guard against the uncontrolled release of radioactivity."
- 10 CFR 50.36(c)(1)(ii)(A) states "Limiting safety system settings for nuclear reactors are settings for automatic protective devices related to those variables having significant safety functions. Where a limiting safety system setting is specified for a variable on which a safety limit has been placed, the setting must be so chosen that automatic protective action will correct the abnormal situation before a safety limit is exceeded."

As required by 10 CFR 50.36, the DNPS SLs and LSSS are defined in the TS. The DNPS SLs are defined in TS Section 2.1 as follows.

- TS SL 2.1.1.1 requires that the THERMAL POWER shall be $\leq 25 \%$ rated thermal power with the reactor steam dome pressure <785 psig or core flow $<10 \%$ rated core flow.

ATTACHMENT 1 Response to Request for Additional Information

- TS SL 2.1.1.2 requires that the minimum critical power ratio (MCPR) for Unit 2 shall be ≥ 1.11 for two recirculation loop operation or ≥ 1.12 for single recirculation loop operation, and the MCPR for Unit 3 shall be ≥ 1.10 for two recirculation loop operation or ≥ 1.11 for single recirculation loop operation, with the reactor steam dome pressure ≥ 785 psig and core flow $\geq 10 \%$ rated core flow.
- TS SL 2.1.1.3 requires that the reactor vessel water level shall be greater than the top of active irradiated fuel.
- TS SL 2.1.2 requires that the reactor steam dome pressure shall be ≤ 1345 psig.

Prior to implementation of Improved Technical Specifications (ITS), the DNPS TS defined the SLs and LSSS parameters in Section 2.0. This section clearly indicated that the only LSSS parameters at DNPS were those associated with the Reactor Protection System (RPS). This LSSS section became part of the RPS section as a result of NRC approval of ITS. The Background section of the RPS TS Bases was revised as part of ITS implementation to address how the LSSS parameters are directly monitored by RPS.

The LSSS are clearly specified for parameters directly monitored by the RPS. Whether the LSSS concept applies to systems or instrumentation outside of RPS is not presently defined. As documented in Reference 4, the NRC staff stated that the systems the LSSS related instruments are typically associated with are RPS and emergency core cooling systems (ECCS) for boiling water reactors. In Reference 4, the NRC also stated that there may be other plantspecific systems that could be included within the scope of systems covered by 10 CFR 50.36.

Exelon Generation Company, LLC (EGC) agrees that there are LSSS parameters monitored by RPS and select ECCS instrumentation. EGC has evaluated whether the loss of power (LOP) instrumentation directly protects an SL. The LOP instrumentation is required for the Engineered Safety Features to function in any accident with a loss of offsite power. The LOP instrumentation monitors the 4160 V ESS buses. Offsite power is the preferred source of power for the 4160 V ESS buses. If the LOP instrumentation determines that insufficient voltage is available, the buses are disconnected from the offsite power sources and connected to the onsite diesel generator (DG) power sources.

Based on the definition of an LSSS as provided in 10 CFR 50.36, the settings that are to be classified as an LSSS in TS shall protect the SLs contained in TS Section 2.1. The trip setpoint values for these parameters must be directly associated with an SL for the parameter to be an LSSS. The results of the evaluation of the LOP instrumentation parameters against the above SLs are provided below.

Reactor Core Safety Limits (Thermal Power \& MCPR) and LOP Instrumentation

SLs as defined in TS Sections 2.1.1.1 and 2.1.1.2 are protected by the settings associated with certain RPS functions. The RPS setpoints, in combination with other LCOs, are designed to prevent any anticipated combination of transient conditions for reactor coolant system water level, pressure, and thermal power level that would result in reaching the MCPR SL. A reactor scram is initiated by these RPS functions to ensure that fuel limits are not exceeded. Protection of the thermal power and MCPR SLs does not require the standby AC system (i.e., DGs) or LOP instrumentation.

ATTACHMENT 1

Response to Request for Additional Information

$\underline{\text { Reactor Coolant System Pressure SL and LOP Instrumentation }}$

TS SL 2.1.2 is protected by both the RPS reactor vessel steam dome pressure-high scram function as well as the pressure relief function of the safety/relief valves, which are defined as LSSS. The LOP instrumentation function is not required to protect SL 2.1.2.

Reactor Vessel Water Level SL and LOP Instrumentation

The top of active fuel SL is protected by both the RPS low level scram function and the low level initiation of the ECCS. Establishment of ECCS initiation setpoints higher than this SL provides margin such that the SL will not be reached or exceeded.

The DNPS ECCS consists of High Pressure Coolant Injection, Automatic Depressurization System, Low Pressure Coolant Injection, and Core Spray. These systems have initiation signals based on low reactor pressure vessel water level, which are required to protect the SL. Based on this, the associated ECCS settings are considered as LSSS in the DNPS TS.

Successful operation of the required safety functions of the ECCS is dependent upon the availability of adequate power sources for energizing the various components such as pump motors, motor operated valves, and the associated control circuits. The LOP instrumentation monitors the 4160 V ESS buses. Offsite power is the preferred source of power for the 4160 V ESS buses. If the monitors determine that insufficient voltage is available, the buses are disconnected from the offsite power sources and connected to the onsite DG power sources.

The primary effect of the assumption that the offsite power becomes unavailable coincident with a LOCA is an increase in the time delay for injection by the low pressure ECCS. Therefore, based on the transfer function from offsite power sources to the onsite power sources, the LOP instrumentation is required for the transfer function, which in turn is required for ECCS operation. Since the LOP instrumentation affects the availability of adequate power sources for certain ECCS functions and not the safety limit (i.e., reactor vessel water level) directly, the LOP instrumentation is not an LSSS.

Conclusion

The settings for the LOP instrumentation are based on station voltage regulation studies to assure that safety related equipment has an adequate power supply. In accordance with Instrument Society of America (ISA) S67.04, "Setpoints for Nuclear Safety-Related Instrumentation," instrument settings are derived from Analytical Limits (ALs), which are "established by the safety analysis to ensure that a safety limit is not exceeded." The voltage regulation analysis is not directly tied to any of the SLs. Since the LOP instrument settings are not derived to directly protect the SLs via automatic action, they are not an LSSS as specified in 10 CFR 50.36.

References

1. Letter from R. M. Krich (Commonwealth Edison Company) to U. S. NRC, "Supplemental Information to Support Request for Technical Specifications Changes," dated June 5, 2000

ATTACHMENT 1

Response to Request for Additional Information

2. Letter from R. M. Krich (Commonwealth Edison Company) to U. S. NRC, "Supplemental Information to Support Request for Technical Specifications Changes," dated November 30, 2000
3. Letter from S. N. Bailey (U. S. NRC) to O. D. Kingsley (Exelon Generation Company, LLC), "Issuance of Amendments (TAC Nos. MA8382 and MA8383)," dated March 30, 2001
4. Letter from J. A. Lyons (U. S. NRC) to A. Marion (Nuclear Energy Institute), "Instrumentation, Systems, and Automation Society S67.04 Methods for determining Trip Setpoints and Allowable Values for Safety-Related Instrumentation," dated March 31, 2005

Calculation 8982-13-19-6, "Second Level Undervoltage
Relay Setpoint - Unit 2," Revision 005

Last Page No. 15

Description of Revision (list affected pages for partials): Incorporate ITS DCR 990552 (EC 13947) and minor revision 4A. Apply latest methodology to determine new setpoint, Allowable Values and Expanded Tolerances. Reformat entire calc. Revision bars shown only for content changes, not for format or section numbering changes.

ATTACHMENT 2

Owners Acceptance Review Checklist for External Design Analysis Page 1 of 1

DESIGN ANALYSIS NO. $8982-13-19-6 \quad$ REV: 005

EXELON REVIEWER: DALE EAMAN/Pal Print/ sign DATE: 8-16-04

*

REVISION OOF SUPPORTS A LICENSE AMENDMENT REQUEST (LAR). THE DESIGN INPUTS AND THE RESULTS/CONCLUSIONS ARE COMPATIBLE WITH THE LAR

CALCULATION TABLE OF CONTENTS

CALC NO.: 8982-13-19-6	REV. NO.: 005	PG NO. 2
SECTION	PAGE NO.:	SUB PAGE NO.:
DESIGN ANALYSIS COVER SHEET TABLE OF CONTENTS 1. PURPOSE 2. METHODOLOGY 3. ACCEPTANCE CRITERIA 4. ASSUMPTIONS/ENGINEERING JUDGEMENTS 5. INPUT DATA 6. REFERENCES 7. CALCULATIONS 8. SUMMARY AND CONCLUSIONS Attachments A DIT DR-EPED-0671-00 B Fluke 45 Dual Display Multimeter User's Manual, Appendix A C S\&L Interoffice Memorandum from J. F. White D GE Document 7910 Dated 6-20-77 E Telecon Between S. Hoats (ABB) and A. Runde (S\&L) F Telecon Between C. Downs (ABB) and H. Ashrafi (S\&L) G Calculation MLEA 91-014 H DIT DR-EPED-0671-01 I S\&L Interoffice Memorandum from B. Desai J RSOs for 2nd Level UV Relays K DOC ID 0006191944 L Telecon Between J. Kovach (ComEd) and C. Tobias (S\&L) M DIT BB-EPED-0178		

DESIGN ANALYSIS NO. 8982-13-19-6 REVISION 005 PAGE NO. 3 of 15

1. PURPOSE

The purpose of this calculation is to determine a setpoint, the allowable values, and the expanded tolerances for the second-level undervoltage relays at Dresden Unit 2 based on post LOCA voltage analysis.
The setpoint will consider the setpoint error of the circuit that monitors the voltage at the 4.16 kV safetyrelated switchgears 23-1 (Div. I) and 24-1 (Div. II). The circuit consists of a GE type JVM-3 4200-120 volt potential transformer (PT) (catalog no. 643X94) and an ITE-27N undervoltage relay (catalog number 411T4375-L-HF-DP).

2. METHODOLOGY

The methodology for determining the loop uncertainties, setpoints, allowable values, and extended tolerances is done in accordance with NES-EIC-20.04 (Ref. 6.14) and the main body of Reference 6.17 with the clarifications as identified below. Appendix 1 of Reference 6.17 does not apply to this calculation because Appendix 1 is a documentation of guidelines for the Exelon calculations prepared under a different scope of work. However, where the setting tolerance (ST) is greater than the drift tolerance interval (DTIc), the methodology identified on page 23 of Reference 6.17 (part of Appendix 1) is used to determine loop random errors. The nomenclature for the relay setpoint terms, such as pickup, dropout, and reset is taken directly from the relay instruction bulletin (Reference 6.1.3).
2.1. The error associated with the PT will be established. The error for the PT is classified as a random process error and will be based on the accuracy assigned the PT by the manufacturer. It is not expected that the PT performance will be significantly affected by environmental factors. Therefore, no additional error for the PT will be introduced for environmental factors.
2.2. The error associated with the second-level undervoltage relay will be established. The following items will be considered in determining the setpoint error as a result of the relay:

- Reference accuracy (defined by the mfr as repeatability at constant temperature and control voltage). Per the methodology of Reference 6.14, reference accuracy or repeatability as specified by the manufacturer are taken as 2σ values, unless specified otherwise.
- Calibration instrument error (defined by the mfr). The error due to calibration standards is considered negligible per the methodology of Reference 6.14.
- Temperature effect (defined by the mfr as repeatability over temperature range)
- Control voltage effect (defined by the mfr as repeatability over the allowable dc control power range)
- Relay setting tolerance (see Input Data Section 5.4)
- Drift error

The following items will be evaluated for their effect on the relays' functional capability:

- Seismic error
- Humidity error
- Pressure error
- Radiation error
2.3. Per the methodology of Reference 6.14 , the errors identified above will be combined into total error by adding the total random error to the total non-random error, as follows.

DESIGN ANALYSIS NO. 8982-13-19-6
 REVISION 005 PAGE NO. 4 of 15

All random error are converted to 1σ values and combined by the "Square root of the sum of the squares"(SRSS) method. The outcome of the SRSS is then doubled to a 2σ value.
All non-random error will be added together by straight addition.
2.4. The nominal dropout for the two relays will be determined by adding the total error to the Analytical Limits. No margin will be considered in this calculation since all applicable components in the circuit have been accurately represented.
2.5. The drift based on vendor specifications (DTlv) is determined by calculating the square root sum of squares of reference accuracy (RA), calibration error (CAL), setting tolerance (ST), and drift (DR).
If specific values for drift are not provided by the vendor, then a default random [2б] value of $\pm 1 \%$ of span per refueling cycle for mechanical components and $\pm 0.5 \%$ of span per refueling cycle for electrical components is assigned (Section 3.1 of Ref. 6.14).
2.6. Allowable Value

An allowable value will be determine utilizing the following equations based on Appendix C of Reference 6.14 as applicable:

$$
\begin{array}{ll}
\mathrm{AV} & \geq \mathrm{SPC}-\left|\mathrm{Zav}^{+}\right| \text {[lower limit] } \\
\mathrm{AV} & \leq \mathrm{SPC}+\left|\mathrm{Zav}^{-}\right| \text {[upper limit] } \\
\text { Where } \mathrm{AV} \text { : is the allowable value } \\
& \mathrm{SPc} \text { is the calculated setpoint }
\end{array}
$$

$\mathrm{Zav}^{+}, \mathrm{Zav}^{-}$is the total error (positive, negative) applicable during calibration.
Note: The names of the terms in the generic equations shown above may be modified in accordance with specific loop designations.
The errors that are included for the determination of the allowable values (Zav) are only those applicable during calibration. Thus, only reference accuracy (RA), calibration errors (CAL), setting tolerance (ST), drift (DR) and if applicable, the input error (oin) are included. If DTIc is available, then RA, CAL, ST and DR errors will be replaced by the calculated drift (DTIC).
2.7. Expanded Tolerances (ET)

Expanded tolerances are determined as follows:
a. $E T= \pm\left[0.7^{*}(\right.$ Zav $\left.-S T)+S T\right]$, where $S T$ is used at a 2σ value.
b. If any of the tolerances determined using the equations above result in an expanded tolerance (ET) value that is less than the setting tolerance (ST), then $\mathrm{ET}=\mathrm{ST}$ is specified.
The expanded tolerance is specified as an acceptable tolerance for as-found values. It is expected that the calibration setting tolerance is still utilized as the as-left tolerance.

3. ACCEPTANCE CRITERIA

The relay setpoints will be chosen such that the lowest possible voltage for relay operation, considering setpoint error, will be no lower than the Analytical Limits as identified in Section 5.6 of this calculation:

3820 V or 91.8% of 4160 V at Switchgear $23-1$ (Div I)
3820 V or 91.8% of 4160 V at Switchgear 24-1 (Div II)
There are no acceptance criteria for the allowable value determination. The allowable value is calculated in accordance with the methodology and the results are provided for use.
The expanded tolerances are determined in accordance with Section 2.7 and are acceptable if the result is greater than or equal to the application setting tolerance and do not result in a violation of an applicable limit.
4. ASSUMPTIONS/ENGINEERING JUDGEMENTS

None

5. INPUT DATA

5.1. Instrument Channel Configuration (per Reference 6.1.1)

The ABB/ITE 27 N undervoltage relay trip unit is fed from a $4200-120$ volt PT. The 4200 volt side of the PT is connected to two phases of the 4160 volt source at the safety-related switchgear. The trip unit is connected to the 120 volt side of the PT. The trip unit is powered by a 125 volt dc source. Per Reference 6.19 , the burden on the PT is within the standard test burden of the PT.
5.2. Loop Element Data (per Reference 6.1.2, 6.5, 6.6, \& 6.1.3)
5.2.1. The PT is a GE, type JVM-3 (catalog number 643X94)(See Reference 6.6)

Voltage ratio: 4200-120
Accuracy class: $\quad 0.3 \mathrm{~W}, \mathrm{X}, \mathrm{M}, \mathrm{Y}$
Frequency: $\quad 50 \mathrm{~Hz}, 60 \mathrm{~Hz}$
Burden: $\quad 750 \mathrm{VA} @ 55^{\circ} \mathrm{C}$ rise above $30^{\circ} \mathrm{C}$ Ambient
500 VA @ $30^{\circ} \mathrm{C}$ rise above $55^{\circ} \mathrm{C}$ Ambient
BIL: 60 kV
5.2.2. The trip unit is an $A B B / I T E$, type 27 N undervoltage relay with a Harmonic Filter (catalog number 411T4375-L-HF-DP, Ref. 6.1.2)
Setpoint Ranges (per Ref. 6.1.3)

Humidity:	0 to 100% no condensation (Reference 6.10, Section 10.3)	
Pressure:	Atmospheric, to 5000 ft	
Radiation:	Gamma 100 k rads over 40 yrs	
Repeatability Tolerances (per Reference 6.1 .3$)$		
@ const temp \& const control volt:	$+/-0.1 \%$	
for volt. range $100-140 \mathrm{Vdc}:$	$+/-0.1 \%$	
for temp. range	+10 to $+40^{\circ} \mathrm{C}:$	$+/-0.4 \%$
	0 to $+55^{\circ} \mathrm{C}:$	$+/-0.75 \%$
	-20 to $+70^{\circ} \mathrm{C}:$	$+/-1.50 \%$

The 3 tolerances are cumulative and are taken as 2σ values per Reference 6.7).
For the tolerance over temperature range, the repeatability effect is linear over the range of 0 to $+55^{\circ} \mathrm{C}$, as indicated in Reference 6.7.
5.3. Calibration Instrument Data (per References 6.2 and 6.13)

The Fluke 45 Digital Multimeter will be used for the calibration of the trip unit (see Ref. 6.13 included as Attachment J).

Reference Accuracy:	$+/-0.2 \%+10$ digits
Full Scale:	$300 \mathrm{Vac}, 5$ digits
Minimum Gradation:	0.01 V

5.4. Calibration Procedure Data

The setting tolerance when setting the trip unit voltage is $\pm 0.2 \mathrm{~V}$ (Ref. $6.13,6.15$ and 6.18 which is taken as a 3σ value per the methodology in Reference 6.14.

5.5. Station Data

The circuits for these two processes are located entirely in the Reactor Building in Environment Zone 26 per Reference 6.1.2. The following are the conditions that the circuits will be subject to:
Normal Conditions
Control Voltage Range: $\quad 95-140 \mathrm{Vdc}$ (Ref. 6.13)
Temperature Range: $\quad+18.33-+39.44^{\circ} \mathrm{C}$ (see Ref. 6.11)
Humidity Range:
0-90\%
Radiation Level:
<10k rads over 40 years
Accident Conditions
Control Voltage Range: $\quad 95-140 \mathrm{Vdc} ; 89 \mathrm{Vdc}$ for 1 sec . (Ref. 6.13)
Temperature Range: $\quad+18.33-+3944^{\circ} \mathrm{C}$ (see Ref. 6.11)
Humidity Range: $\quad 0-100 \%$ non-condensing
As noted in Reference 6.12, the maximum actual temperature inside the cubicle where the relays are installed will be approximately $2.78^{\circ} \mathrm{C}$ higher than the ambient temperature outside the cubicle. The minimum actual temperature inside the cubicle where the relays are installed will be approximately $0.39^{\circ} \mathrm{C}$ higher than the ambient temperature outside the cubicle. Therefore, the relays will experience temperatures in the range, of $18.72^{\circ} \mathrm{C}$ to $42.22^{\circ} \mathrm{C}$.

The relay has already been qualified for humidity variation, seismic events, radiation exposure, and pressure variation as discussed in References 6.1.2, 6.5, and 6.10.

DESIGN ANALYSIS NO. 8982-13-19-6

REVISION 005 PAGE NO. 7 of 15
5.6. Analytical Limit of Switchgear Voltage

The minimum voltages required at the 4160 V safety-related switchgear for adequate auxiliary system performance are taken from References 6.3, 6.4 and 6.16 as:

3820 V or 91.8% of 4160 V at Switchgear 23-1 (Div I)
3820 V or 91.8% of 4160 V at Switchgear $24-1$ (Div II)
5.7. Per Reference 6.19 , the burden on the PT is within the standard test burden of the PT.

6. REFERENCES

6.1. DIT Number DR-EPED-0671-00, entitled,"ITE-27N Undervoltage Relay and Potential Transformer Technical Informatino", dated 1-22-92 (Attachment A). The following were included in the DIT:
6.1.1. Dresden Unit 2 Drawings:

12E-2301, Sheet 3, Rev. AD
12E-2334, Rev. T
12E-2345, Sheet 3, Rev. AD
12E-2346. Sheet 3, Rev. AD
12E-2655G, Rev. T
6.1.2. Work Request Number D-97548/D-97549, Rev. 0, entitled "Minor Plant Design Change Package for Commonwealth Edison Company, Dresden Unit 2, Replacement of SecondLevel Undervoltage Relays," dated 1-15-92.
6.1.3. ABB Instruction Bulletin Number I.B. 7.4.1.7-7: Issue D for ITE-27N relays and others.
6.2. User's Manual for Fluke 45 Dual Display Multimeter, Appendix A, Rev. 4, dated 7/97 (Attachment B).
6.3. S\&L Calculation Number 9198-18-19-1, Rev. 3, entitled "Calc. for Dresden 2/I Safety-related Continuous Loads - Running/Starting Voltages"
6.4. S\&L Calculation Number 9198-18-19-2, Rev. 3, entitled "Calc. for Dresden 2/II Safety-related Continuous Loads - Running/Starting Voltages"
6.5. S\&L Interoffice Memorandum from J. F. White, entitled "Seismic Qualification of ITE/ABB Undervoltage Relay Model 27N, Series 411T," which references ABB document number RC-5039-A, entitled "Equipment Performance Specifications, 27N Undervoltage Relay." (Attachment C)
6.6. GE document 7910, page 131, providing information for type JVM-3 Potential Transformer, dated 6-20-77 (Attachment D).
6.7. Memorandum of Telephone Conversation between S. Hoats of ABB and A. Runde of S\&L concerning ITE-27N relay characteristics, dated 1-23-92 (Attachment E).
6.8. Dresden Unit 2 Technical Specification Number DPR-15, Amendment number 108, specifically table 3.2 .2 , page $3 / 4.2-10$. This reference provides the second-level undervoltage relay time delay requirement.
6.9. Memorandum of Telephone Conversation between C. Downs of ABB and H. Ashrafi of S\&L concerning effect of temperature on the ITE-27N relays with Harmonic Filter Units, dated 3-30-92 (Attachment F).

NES-G-14.02

Effective Date:

04/14/00

DESIGN ANALYSIS NO. 8982-13-19-6 REVISION 005 PAGE NO. 8 of 15

6.10. Main Line Engineering Associates (MLEA) Calculation No. MLEA 91-014 for Commonwealth Edison Company, entitled, "Environmental Qualification of Dresden Second Level Undervoltage System and Equipment for RWCU Line break Environmental Conditions", dated 1-23-92 (Attachment G).
6.11. DIT Number DR-EPED-0671-01, "Reactor Building Ventilation, Minimum Temperature," dated 5-0892 (Attachment I).
6.12. DIT Number BB-EPED-0178, "Undervoltage Relay Accuracy Calculation Input Data," dated 5-07-92 (Attachment M).
6.13. Interoffice Memorandum from Bipin Desai (EPED), dated December 1, 1993 to R. M. Higdon (EAD) which contains information required for assumption verification (Attachment I).
6.14. NES-EIC-20.04, Revision 3, "Analysis of Instrument Channel Setpoint Error and Instrument Loop Accuracy" (Not Attached)
6.15. Current Relay Setting Orders for the Second Level Undervoltage Relays (Attachment J)
6.16. DOC ID 0006191944 , Rev. 5-DIT transmitting Improved Technical Specification (ITS) Analytical Limits (Attachment K).
6.17. "Improved Technical Specifications and 24-Month Technical Specification Project Technical Plan", Revision 2 dated 04/28/2000
6.18. Telecon between John Kovach of ComEd and Craig Tobias of Sargent \& Lundy dated 4/20/2000 verifying the relay setting orders for the degraded voltage and loss of voltage relays (Attachment L).
6.19. EC 8228, ITS Disconnect U2 Watt-Hr Meter at 23-1 \& 24-1, Rev. 0, Work Order 99261478-01

7. CALCULATIONS

7.1. Per inputs 5.1 and 5.2 .1 , the PT has a standard published error of $\pm 0.3 \%$ and the burden of the PT is within the standard test burden of the PT. Therefore, the maximum error of $\pm 0.3 \%$ will be considered in this calculation. PT testing would have to be performed to justify a smaller error. The error contributed by the PT is considered to be a process error since the PT is not a calibrated device. This is classified as a random 2σ error. Therefore the PT 1σ error value is $\pm 0.15 \%$.
7.2. Second Level Undervoltage Relay Random Errors:

7.2.1. Reference accuracy (RA):

Per Input 5.2.2, repeatability at constant temperature and control voltage is $\pm 0.1 \%$ of voltage reading [$2 \sigma]$. Dividing by 2 to take to a 1σ value:
$R A=0.05 \%$ of reading [1 σ].
7.2.2. Calibration Instrument error (CAL):

The reference accuracy at medium sampling rate (Reference 6.13) of a 60 Hz voltage signal is $\pm(0.2 \%$ of reading +10 least significant digits), to a 2σ value per the methodology of
Reference 6.14. The linear resolution at medium sampling rate on the 300 V range is 0.01 V . Thus, each digit corresponds to 0.01 V . Therefore, the 2σ reference accuracy is $\pm(0.2 \%$ of reading $+10^{*} 0.01 \mathrm{~V}$).
Conservatively taking this at a reading 112 V , which is slightly larger than the existing relay setpoint value, and dividing by 2 to get a 1σ value:

$$
\text { CALv }= \pm(0.2 \% * 112 \mathrm{~V}+10 * 0.01 \mathrm{~V}) / 2=0.162 \mathrm{~V}[1 \sigma]
$$

In terms of $\%$ of reading (taken at a reading of 112 V):

$$
\mathrm{CAL}=\mathrm{CALv} / 112 \mathrm{~V}=0.162 \mathrm{~V} / 112 \mathrm{~V}=0.145 \% \text { of reading [1 } \sigma]
$$

Since the instrument has a digital readout, there is no reading error.
Also, since the calibration instrument and the relay are calibrated within the allowable range as specified by the calibration instrument manufacturer, there is no temperature effect for the calibration instrument. (See Input Data Section 5.3)
7.2.3. Setting Tolerance (ST)

Per Input Section 5.4, the relay setting tolerance is a random error of $\pm 0.2 \mathrm{~V}[3 \sigma]$.
Converting this to terms of $\%$ of reading, for a 112 V reading, and dividing by 3 to get the 1σ value:
$\mathrm{ST}= \pm(0.2 \mathrm{~V}) /((112 \mathrm{~V}) * 3)= \pm 0.060 \%$ of reading $[1 \sigma]$
7.2.4. Drift (DR)

According to Reference 6.7 , no drift error is expected for the relay as long as the relay is calibrated at reasonable intervals. Thus, $\mathrm{DR}=0$. However, this is not the case. From operating experience it is known that these relays do drift some. Unfortunately, there is not enough data to perform a drift uncertainty calculation.
Based on the above discussion, a drift value is needed. It is considered conservative to use the default drift effect of 0.5% of span per refueling cycle (reference 6.14). This specification conservatively encompasses the 18 month calibration interval plus 25% late factor (22.5 months) considered in this calculation. The 0.5% of span is a 2σ value. Per Section 5.2.2,
the relay functions over a voltage range of 70 V to 120 V , for a span of 50 V . Converting the drift to $\%$ of reading, by conservatively setting the reading at 112 V , and taking to a 1σ value:
$\mathrm{DR}=(\pm 0.5 \% \text { of span })^{*}(120 \mathrm{~V}-70 \mathrm{~V}) /(112 \mathrm{~V}) / 2= \pm 0.112 \%$ of reading
7.2.5. Random Input Error (oin)

The random input error present at the relay is the random error from the PT, which per Section 7.1 is 0.15%. Thus:

$$
\text { } \sigma \text { in }=0.15 \% \text { of reading }[1 \sigma]
$$

7.2.6. Drift Tolerance Interval (DTIv)

$$
\begin{aligned}
& D T I v= \pm\left(R A^{2}+C A L^{2}+S T^{2}+D R^{2}\right)^{1 / 2} \\
& \text { Where } \quad R A=\text { reference accuracy }=0.050 \% \text { per Section 7.2.1 } \\
& \mathrm{CAL}=\text { calibration error }=0.145 \% \text { per Section } 7.2 .2 \\
& \text { ST }=\text { setting tolerance }=0.060 \% \text { per Section } 7.2 .3 \\
& \text { DR } \quad=\mathrm{drift}=0.112 \% \text { per Section } 7.2 .4
\end{aligned}
$$

Thus:
DTIV $= \pm\left[(0.050 \%)^{2}+(0.145 \%)^{2}+(0.060 \%)^{2}+(0.112 \%)^{2}\right)^{1 / 2}$
DTIV $= \pm 0.199 \%$ of reading $[1 \sigma]$
7.2.7. Total Random Error (σ)

The total random error is the SRSS of the random errors from Sections 7.2.1 through 7.2.6. Therefore:
$\sigma= \pm\left(R A^{2}+C A L^{2}+S T^{2}+D R^{2}+\sigma \mathrm{in}^{2}\right)^{1 / 2}$
$\sigma= \pm\left[(0.050 \%)^{2}+(0.145 \%)^{2}+(0.060 \%)^{2}+(0.112 \%)^{2}+(0.150 \%)^{2}\right)^{1 / 2}$
$\sigma= \pm 0.249 \%$ of reading [1 σ]

7.3. Relay Non-Random Errors

7.3.1. Temperature effect (eT):

Per Input 5.2, the temperature effect is $\pm 0.75 \%$, and the absolute effect is 1.5% over the temperature range of 0 to $+55^{\circ} \mathrm{C}$. Per References 6.7 and 6.9 , the relay operating voltage increases or decreases approximately linearly with temperature. Applying the 1.5% linearly across the 0 to $55^{\circ} \mathrm{C}$ range results in a rate of $1.5 \% /(55-0)^{\circ} \mathrm{C}=0.0273 \% /{ }^{\circ} \mathrm{C}$.

The actual pickup or dropout voltage is lower than the setpoint value if the operating temperature is higher than the temperature at which the relay was calibrated.

Similarly the pickup or dropout voltage is higher than the setpoint value if the operating temperature is lower than the calibration temperature.
Then, for a temperature range of +18.72 to $+42.22^{\circ} \mathrm{C}$ and a relay calibration temperature range of 21 to $24^{\circ} \mathrm{C}$ (per Reference 6.13), the temperature effect is developed below:

Negative Temperature Effect:

In determining the error due to relay negative temperature effect, it will be considered that the relay is calibrated at a temperature of $24^{\circ} \mathrm{C}$ (per Reference 6.13). This will provide a conservative reference point from which the temperature effect for the relay can be incorporated into the determination of the nominal dropout. At $24^{\circ} \mathrm{C}$, a larger portion of the error used in the calculation for relay temperature effect will be negative, which will provide a conservative nominal dropout.

DESIGN ANALYSIS NO. 8982-13-19-6
 REVISION 005 PAGE NO. 11 of 15

Neg. Temp. Effect:

$$
-\mathrm{eT}=\left(24-18.72^{\circ} \mathrm{C}\right)^{*} 0.0273 \% /^{\circ} \mathrm{C}=0.144 \%
$$

Positive Temperature Effect:

In determining the error due to relay positive temperature effect, it will be considered that the relay is calibrated at a temperature of $21^{\circ} \mathrm{C}$ (per Reference 6.13). This will provide a conservative reference point from which the temperature effect for the relay can be incorporated into the determination of the maximum dropout of the relay.
At $21^{\circ} \mathrm{C}$ rather than $24^{\circ} \mathrm{C}$, a larger portion of the error used in the calculation for relay temperature effect will be positive, which will provide a conservative determination of the relay maximum dropout.
Pos. Temp. Effect:

$$
+\mathrm{eT}=\left(42.22-21^{\circ} \mathrm{C}\right)^{*} 0.0273 \% /^{\circ} \mathrm{C}=0.579 \%
$$

Thus, the temperature effect is $-0.579 \% /+0.144 \%$.
This is classified as a non-random error.

7.3.2. Control Voltage Effect (CV)

Per Input 5.2, control voltage effect is $\pm 0.1 \%$ over the dc control voltage range of $100-140$ Vdc . This is classified as a non-random error.
$C V= \pm 0.1 \%$ of reading
7.3.3. Environmental Effects

By comparison of the acceptable relay conditions provided in Section 5.2.2 with the expected station conditions provided in Section 5.5 , it is evident that no effect on functional capability is introduced as a result of pressure variation or humidity variation.
7.3.4. Seismic Effects

As discussed in Reference 6.1.2, section 1.7, no effect on functional capability of the relay is introduced as a result of a seismic event since the relay capability envelops the seismic requirement for the relay locations.
7.3.5. Total Non-Random Error

The total non-random error is the sum of the non-random errors from sections 7.3.1 through
7.3.2. Therefore:

Negative non-random error is the addition of the negative relay temperature effect (-eT) from Section 7.3.1 and the negative control voltage effect (CV) from Section 7.3.2:
$\Sigma \mathrm{e}-=-\mathrm{e} T+(-\mathrm{CV})=(-0.579 \%)+(-0.1 \%)=-0.679 \%$ of reading
Positive non-random error is the addition of the positive relay temperature effect (+eT) from Section 7.3.1 and the positive control voltage effect (CV) from Section 7.3.2:

$$
\Sigma e^{+}=+e T+(+C V)=(+0.144 \%)+(+0.1 \%)=+0.244 \% \text { of reading }
$$

7.4. Total Error

It should be noted that this calculation utilizes the methodology defined in Sections 2.3 and 2.4 to calculate the dropout setpoint. The calculation uses the Total Negative Error (TNE) in determining the dropout setpoint and the Total Positive Error (TPE) in determining the maximum dropout value. These definitions of error do not follow the methodology defined in Sections 2.6 and 2.7 for calculating the Allowable Values and Expanded Tolerances. Thus, TNE and TPE are used in the determination of the dropout setpoint and maximum dropout value, and $\mathrm{Z}+, \mathrm{Z}$-, $\mathrm{Zav}+$ and Zav - are used in the determination of the Allowable Values and Expanded Tolerances.

The total error present at the relay is the combination of the random and non-random errors determined in Sections 7.2.7 and 7.3.5.

> Total Error $=2 \sigma+\Sigma \mathrm{e}$
> Total Negative Error $(\mathrm{TNE})=2^{*}(0.249 \%)+(0.679 \%)=1.177 \%$ of reading
> Total Positive Error $(\mathrm{TPE})=2^{*}(0.249 \%)+(0.244 \%)=0.742 \%$ of reading
> Converting to 4 kV voltage process units, by conservatively taking the relay voltage reading at 112 V , and then multiplying by the voltage ratio:
> TNE $=1.177 \%^{*}(112 \mathrm{~V})^{*}(4200 \mathrm{~V} / 120 \mathrm{~V})=46 \mathrm{~V}$ (in the 4 kV process)
> TPE $=0.742 \%^{*}(112 \mathrm{~V})^{*}(4200 \mathrm{~V} / 120 \mathrm{~V})=29 \mathrm{~V}$ (in the 4 kV process)

In this calculation, the terms of Total Positive Error (TPE) and Total Negative Error (TNE) are used for calculating the setpoint. A positive error is one that would cause the actual trip value to be higher than the setpoint value. Using this definition when the errors are applied to calculating the Allowable Values and Expanded Tolerances results in the following relationships:

$$
\begin{aligned}
& Z+=\text { TNE } \\
& Z-=\text { TPE } \\
& \Sigma e^{+}=\text {Negative Non-Random Errors }=0.679 \% \text { of reading } \\
& \Sigma e-=\text { Positive Non-Random Errors }=0.244 \% \text { of reading }
\end{aligned}
$$

Per Section 2.6, $Z_{A V}$ will be used to determine the allowable value random errors. Because the relay is bench calibrated, $Z_{A V}$ includes only the contributions of DTIV, which from Section 7.2 .6 , is $\pm 0.199 \%$ of reading. Therefore,

$$
\sigma_{\mathrm{AV}}=\mathrm{DTIV}= \pm 0.199 \% \text { of reading }
$$

Per Section 2.6, the total errors for determining allowable values are:
$Z_{\mathrm{AV}^{+}}=2 \sigma_{\mathrm{AV}^{+}}=2^{*}(+0.199 \%)=+0.398 \%$ of reading
$Z_{A V^{-}}=2 \sigma_{A V}{ }^{-}=2^{*}(-0.199 \%)=-0.398 \%$ of reading
Converting to voltage at relay, by using a reading at 112 V :
$Z_{A V}=(0.398 \% \text { of reading })^{*}(112 \mathrm{~V})=0.45 \mathrm{~V}$ at relay
7.5. Setpoint Determination

The setpoints for $4160 \vee$ Switchgear 23-1 (Div. I) and 24-1 (Div. 2) are calculated as:
Nominal Trip Setpoint for Dropout (NTSP ${ }_{\text {DO }}$) = Analytical Limit (AL) + TNE

$$
\begin{aligned}
\text { NTSP }_{\text {DO }} \quad & =\mathrm{AL}+\text { TNE (Using values from Sections } 5.6 \text { and } 7.4) \\
& =3820 \mathrm{~V}+46 \mathrm{~V}=3866 \mathrm{~V} \text { at } 4.19 \mathrm{kV} \text { bus }
\end{aligned}
$$

Converting to voltage read at the relay by multiplying by the voltage ratio:

$$
\begin{aligned}
\mathrm{NTSP}_{\mathrm{DO}-\mathrm{R}} & =\mathrm{NTSP}_{\mathrm{DO}} *(120 \mathrm{~V}) /(4200 \mathrm{~V})=(3866 \mathrm{~V}) *(120 \mathrm{~V}) /(4200 \mathrm{~V}) \\
& =110.46 \mathrm{~V} \approx 110.5 \mathrm{~V} \text { at relay } \\
& \text { NTSP }_{\text {PU-R }} \\
& =\mathrm{NTSP}_{\mathrm{DO}-\mathrm{R}} / 0.995=110.5 \mathrm{~V} / 0.995 \\
& =111.06 \mathrm{~V} \approx 111.1 \mathrm{~V} \text { at relay }
\end{aligned}
$$

From the nominal dropout, the maximum dropout and pickup voltages can be determined:

$$
\begin{aligned}
\text { Maximum Dropout } & =N T S P_{\mathrm{DO}}+\mathrm{TPE}=(3866 \mathrm{~V})+(0.74 \% * 3866) \\
& =3895 \mathrm{~V} \text { at } 4.16 \mathrm{kV} \text { bus }
\end{aligned}
$$

Converting to terms of voltage at the relay: $(3895 \mathrm{~V}) *(120 \mathrm{~V}) /(4200 \mathrm{~V})=111.3 \mathrm{~V}$
Maximum Pickup $=$ Maximum Dropout $/($ dropout/pickup ratio $)=3895 \mathrm{~V} / 0.995$
$=3915 \mathrm{~V}$ at 4.16 kV bus
Converting to terms of voltage at the relay: $(3915 \mathrm{~V})^{*}(120 \mathrm{~V}) /(4200 \mathrm{~V})=111.9 \mathrm{~V}$ (The Max. Pickup is the relay Max. Reset Voltage)
7.6. Allowable Value Determination

Per Section 2.6, the Allowable Value is determined.
The lower allowable value for the dropout setpoint is determined as:

$$
\begin{aligned}
\mathrm{AV}_{\mathrm{DOL}} \geq & \mathrm{SPc}-\left|\mathrm{Z}_{\mathrm{AV}}+\right| \quad \text { [lower limit] } \\
& \mathrm{SPC}_{\mathrm{DO}}=3866 \mathrm{~V} \text { at } 4.16 \mathrm{kV} \text { bus } \quad(\text { Section } 7.5) \\
& \left.\mathrm{Z}_{A \mathrm{~V}^{+}}=0.398 \% \text { of reading } \quad \text { (Section } 7.4\right) \\
\mathrm{AV}_{\mathrm{DOL}} \geq & (3866 \mathrm{~V})-\left(0.398 \%^{*}(3866 \mathrm{~V})\right)=3851 \mathrm{~V}
\end{aligned}
$$

Converting to voltage at the relay, by multiplying by the voltage ratio:

$$
A V_{D O L-R} \geq(3851 \mathrm{~V})^{*}(120 \mathrm{~V}) /(4200 \mathrm{~V})=110.029 \mathrm{~V} \approx 110.0 \mathrm{~V}
$$

Applying the applicable uncertainties to determine the upper dropout AV :

$$
\begin{aligned}
& \mathrm{A} \mathrm{~V}_{\mathrm{DOU}} \leq \mathrm{SPc}+\left|\mathrm{Z}_{\mathrm{AV}}+\right| \quad[\text { lower limit }] \\
& \mathrm{A} \mathrm{~V}_{\mathrm{DOU}} \leq(3866 \mathrm{~V})+(0.398 \% *(3866 \mathrm{~V}))=3881 \mathrm{~V}
\end{aligned}
$$

Converting to voltage at the relay, by multiplying by the voltage ratio:

$$
A V_{\text {DOU-R }} \leq(3881 \mathrm{~V})^{*}(120 \mathrm{~V}) /(4200 \mathrm{~V})=110.886 \mathrm{~V} \approx 110.9 \mathrm{~V}
$$

DESIGN ANALYSIS NO. 8982-13-19-6
 REVISION 005 PAGE NO. 14 of 15

7.7. Expanded Tolerance Determination

Per Section 2.7, the Expanded Tolerance is determined as:

$$
\begin{aligned}
\mathrm{ET}= \pm & {\left[0.7^{*}\left(\left|\mathrm{Z}_{\mathrm{AV}}+\right|-\mathrm{ST}\right)+\mathrm{ST}\right] \quad \text { where } \mathrm{ST} \text { is taken to a } 2 \sigma \text { value } } \\
& \mathrm{Z}_{\mathrm{AV}}{ }^{+}=0.398 \% \text { of reading (Section 7.4) } \\
& \mathrm{ST}=0.2 \mathrm{~V}[3 \sigma] \text { (Section 5.4) }
\end{aligned}
$$

Taking the ET at a reading of 112 V at the relay:

$$
\begin{aligned}
& \mathrm{ET}= \pm\left[\left(0.7^{*}((0.398 \% \text { of reading }) *(112 \mathrm{~V})-(0.2 \mathrm{~V} * 2 / 3))+(0.2 \mathrm{~V} * 2 / 3)= \pm 0.352 \mathrm{~V}\right.\right. \text { at relay } \\
& \mathrm{ET} \approx \pm 0.35 \mathrm{~V} \text { at relay }
\end{aligned}
$$

The ET is now checked to ensure that the applicable limits are maintained:

Check 1:	ET	$\geq S T ?$	
	$\pm 0.35 \mathrm{~V}$	$\geq \pm 0.2 \mathrm{~V}$	PASS

Check 2: $\mathrm{SPc}-\mathrm{ET} \geq \mathrm{AV}$? [lower limit] $110.5-0.35 \mathrm{~V} \geq 110.0 \mathrm{~V}$ $110.15 \mathrm{~V} \geq 110.0 \mathrm{~V}$ PASS

Check 3: $\mathrm{SPc}+\mathrm{ET} \leq \mathrm{AV}$? [upper limit] $110.5+0.35 \mathrm{~V} \leq 110.9 \mathrm{~V}$ $110.85 \leq 110.9 \mathrm{~V}$ PASS

DESIGN ANALYSIS NO. 8982-13-19-6 REVISION 005 PAGE NO. 15 of 15 FINAL

8. SUMMARY AND CONCLUSIONS

The following are the recommended settings for the Division I and II second-level undervoltage relays:
The results summarized below are applicable for normal and accident operating conditions, for the existing Analytical Limit of 3820 V . It should be noted that the field setpoint value is required to be revised per this calculation.

Calculated Values Summary

Description	Div. I/IIV at relay	Div. $1 /$ II (4.16kV equiv.)
SPc (DO)	110.5	3866
SPc(PU)	111.1	3885
AV(DO) lower	≥ 110.0	≤ 3851
AV(DO) upper	≤ 110.9	≤ 3881
Max.DO	111.3	3895
Max.PU	111.9	3915

NOTE: Pickup (PU) is 99.5\% of Dropout (DO) (see Section 5.2.2)
The delay setting for the relay was not analyzed in this calculation nor was it intended to be. Thus, the delay of the relay should be set to the same value as previously required per the Dresden Unit 2 Technical Specifications (Reference 6.8), which is 7 seconds.
Please utilize the Instruction Bulletin I.B. 7.4.1.7-7, Issue D (Reference 6.1.3) when setting the relay since the setpoints and setpoint terminology in this calculation are based on this instruction bulletin

Calibration Summary

The calibration information used to support the results of this calculation is defined below. In addition, the field calibration setpoint and expanded tolerances are identified.

Calibration Setpoint / Allowable Value (for Dropout (DO)):

EPN	Parameter	Process Units
$127-3(4)-$ B23-1	Field Calibration Setpoint	$\geq 110.5 \mathrm{~V}$
$127-3(4)-$ B24-1	Allowable Value - Lower	$\geq 110.0 \mathrm{~V}$
	Allowable Value - Upper	$\leq 110.9 \mathrm{~V}$

Calibration Frequency, Setting Tolerances and Expanded Tolerances:

	Surveillance Interval	Setting Tolerance	Expanded Tolerance
Channel Calibration	18 months	$\pm 0.2 \mathrm{~V}$	$\pm 0.35 \mathrm{~V}$

The values calculated above are dependent on the relays being calibrated with a Fluke 45, set on medium rate, to read the voltage at the relay, in the 300 Vac range. Use of other M\&TE is only permitted if it is analyzed to be of equal or better accuracy than the Fluke 45.

ATTACHMENT A

DIT DR-EPED-0671-00

Calculation No. 8982-13-19-6
Revision 005
Attachment: Page A1 of A72

MINOR PLANT CHANGE DESIGN PACKAGE

FOR
COMMONWEALTH EDISON COMPANY
DRESDEN STAIION
UNIT 2

REPLACEMENT OF SECOND LEVEL UNDERVOLTAGE RELAYS

January 15, 1992

Minor Plant Change Design Package for

Commonwealth Edison Company
Dresden Station - Unit 2
Replacement of Second Level Undervoltage Relays
Connected to the Class $1 E$ Buses 23-1 \& 24-1
Revision 0 Date: January 15, 1992

PROJECT IDENTIFICATION:

CECO:		AE:
P.O./Release	327125/NED 753	Project No. 8982-58
W.R./Function	\# D-97548, D-97549/59139-2084	(Other)
Budget \#	N/A	
AIR \#	N/A	
Mod \#	N/A	

PROJECT MANAGEMENT:

CECO.
Project Eng. Cog. Eng. Tech. Staff Eng.
B. M. Vieh
C. M. Collins
I. Rivera

Phone Number

$(815) 942-2870$
$(815) 942-2873$
$(815) 942-2549$

AE:
Project Mgr.

```
                                R. H. Jason
```

Proj. Mech. Eng. N/A
Senior Struct. T. J. Ryan
Senior Elect. T. R. Eisenbart
Elect. Proj. Eng. M. E. Hill
Elect. Eng. J.W. Hyrc

(312)	$269-6480$
N / A	
(312)	$269-7098$
(312)	$269-6670$
(312)	$269-2190$
(312)	$269-3535$

COMMITMENTS:

NRC Required Completion
INPO Commitment
Outage Requirement

$\frac{\text { None }}{\text { None }}$
Yes

CLASSIFICATION:

Safety-Related Non-Safety-Related Reliability Related Environmental Qualification Regulatory-Related \qquad
Calculation No. $\frac{8982-13-19-6}{005}$
Revision $\frac{A}{\text { Attachment: }}$
Page A4 of A72

W.R. No.: D-97548/D-97549
 Rev.: 0
 Date: January 15, 1992
 Page 2

REVISION STATUS

Revision Purpose

Revision

Page A5 of A72

$$
\begin{aligned}
& \text { W.R. No.: D-97548/D-97549 } \\
& \text { Rev.: o } \\
& \text { Date: January 15, } 1992 \\
& \text { Page } 3
\end{aligned}
$$

DESIGN INPUT REQUIREMENTS - TABLE OF CONTENTS

Section Description Page
1.0 DESIGN INPUT REQUIREMENTS (DIR) 5
1.1 BASIC FUNCTIONS TO BE PERFORMED 5
1.2 PERFORMANCE REQUIREMENTS 5
1.3 CODES, STANDARDS, REGULATORY REQUIREMENTS, AND QA REQUIREMENTS 5
1.4 DESIGN CONDITIONS 7
1.5 DESIGN LOADS 7
1.6 ENVIRONMENTAL CONDITIONS 8
1.7 SEISMIC QUALIFICATIONS 9
1.8 ENVIRONMENTAL QUALIFICATIONS 9
1.9 INTERFACE REQUIREMENTS 10
1.10 MATERIAL REQUIREMENTS 10
1.11 STRUCTURAL REQUIREMENTS 10
1.12 ELECTRICAL REQUIREMENTS 11
1.13 LAYOUT AND ARRANGEMENT REQUIREMENTS 12
1.14 OPERATIONAL REQUIREMENTS 12
1.15 INSTRUMENTATION AND CONTROL REQUIREMENTS 12
1.16 TECHNICAL SPECIFICATION CHANGES 12
1.17 FSAR/UFSAR CHANGES 13
1.18 REDUNDANCY, DIVERSITY, AND SEPARATION REQUIREMENTS 13
1.19 FAILURE EFFECTS REQUIREMENTS 13
1.20 TEST, NDE, AND WELDING REQUIREMENTS 13
1.21 ACCESSIBILITY, MAINTENANCE, REPAIR, AND ISI 13
1.22 RISK TO HEALTH AND SAFETY OF THE PUBLIC 14
1.23 SUITABILITY OF PARTS, EQUIPMENT, PROCESSES, AND MATERIALS 14
1.24 PERSONNEL SAFETY 14
1.25 CATHODIC PROTECTION REQUIREMENTS 14
1.26 INDUSTRY EXPERIENCE (SER/SOER KEYWORD INDEX) 14
1.27 STANDARD INSTALLATION SPECIFICATIONS 15
1.28 STANDARD STATION INSTALLATION PROCEDURES AND QC PROCEDURES 15
1.29 ENGINEERING CHECKLISTS 15
1.29.1 SYSTEM INTERACTION 16
1.29.2 ACCEPTANCE TESTING 16
1.29.3 ALARA 16
1.29.4 ENVIRONMENTAL QUALIFICATION 17
1.29.5 FIRE PROTECTION 17
2.0 HALKDOWNS 17
2.1 DESIGNER'S WALKDOWN 17
2.2 INSTALLER'S WALKDOWN 17
3.0 CONCEPTUAL DESIGN DOCUMENTS 17
4.0 SAFETY-RELATED COMPONENT OR MASTER EQUIPMENT LIST 18
5.0 COMPONENT CLASSIFICATION 18
6.0 INSTALLATION PROCEDURES 18

```
W.R. No.: D-97548/D-97549
Rev.: 0
Date: January 15, 1992
Page 4
```

7.0 PROCUREMENT DOCUMENTS 18
7.1 BILL OF MATERIALS 18
7.2 EQUIPMENT SPECIFICATIONS 18
7.3 MATERIAL SPECIFICATIONS 18
7.4 EQUIPMENT REQUIREMENTS SCHEDULES (ERS) 18
7.5 PURCHASE ORDERS 19
8.0A AC/DC LOAD TICKETS 19
8.OB ELECTRICAL PROTECTIVE DEVICE SETTINGS 19
9.0 ENGINEERING DESIGN EVALUATION (QP 3-1) 19
10.0 REFERENCE TO CONFIRMATORY ANALYSES 19
10.1 CALCULATIONS 19
10.2 TECHNICAL REPORTS 19
10.3 STRESS REPORTS/OVERPRESSURE PROTECTION REPORT 19
10.4 COMPUTER I/O LISTINGS 20
11.0 ATTACHMENTS 20
11.1 ENGINEERING CHECKLISTS
11.2 WALKDOWN CHECKLISTS
11.3 ENC-QE-12.1 FORMS
11.4 DC LOAD DATA FORMS/LOAD TICKETS
Calculation No. $\frac{8982-13-19-6}{005}$
Revision
Attachment: $\frac{A}{\text { A }} 1+$ of A72

```
W.R. No.: D-97548/D-97549
Rev.: 0
Date: January 15, 1992
Page 5
```


1.0 DESIGN INPUT REQUIREMENTS

1.1 BASIC FUNCTIONS TO BE PERFORMED

The basic function to be performed by this Minor Plant Change is to replace the existing second level undervoltage relays Type ITE-27D connected to the Class 1E 4.16-kV Buses 23-1 and 24-1 with Type ITE-27N. This Minor Plant Change also relocates the second level undervoltage Panel 2252-83 and routes new cables to it from 4.16-kV Switchgear 23-1.

1.2 PERFORMANCE REQUIREMENTS

The performance requirement is for the second level degraded voltage protection scheme relays for the Class 1E 4.16-kV Buses $23-1$ and $24-1$ to be able to reset (once they drop out) when the system voltage recovers to an acceptable level within the time delay setting. This can be achieved by replacing the existing ITE-27D with ITE-27N relays.
1.3 CODES, STANDARDS, REGULATORY REQUIREMENTS, AND OA REOUIREMENTS

The codes and standards listed below will be used as guidelines for this Minor Plant Change. Some portions of the Minor Plant Change may not be designed or procured according to these, but the design will conform to them whenever practical.

Code
A) ANSI C37.90
B) ANSI C37.90A
C) ANSI C37.98-1978
D) ANSI N45.2-1971 or NQA-1 (1986)

Standard
Relay and Relay System Associated with Electric Power Apparatus.

Guide for Surge Withstand Capability.

Standard Seismic Testing of Relays.

Quality Assurance Program Requirements for Nuclear Facilities.
Calculation No. $\frac{8982-13-19-6}{005}$
Revision $\frac{A}{\text { Attachment: } \frac{A}{\text { A }} \text { A72 }}$
Page A8 of

		```W.R. No.: D-97548/D-97549 Rev.: 0 Date: January 15, 1992 Page 6```
E)	ANSI N45.2.2-1978	Packaging, Shipping,   Receiving, Storage and Handling of Items for Nuclear Power Plants.
F)	*IEEE-308-1980	Criteria for Class $1 E$ Power Systems for Nuclear Power Generating Stations.
G)	*IEEE-323-1983	Standard for Qualifying Class 1E Equipment for Nuclear Power Generating Stations.
H)	*IEEE-344-1975	Recommended Practices for Seismic Qualification of Class IE Equipment.
I)	10 CFR 21	Reporting of Defects and Noncompliance.
J)	10 CFR 50, App. A	General Design Criteria.
K)	10 CFR 50, App. B	Quality Assurance.
L)	10 CFR 50.49	Environmental Qualification of Electrical Equipment Important to Safety for Nuclear Power Plants.
M)	$\begin{aligned} & \text { Specification K-4080 } \\ & \text { Rev. } 5 \end{aligned}$	General Work Specification for Maintenance/Modification Work.
N)	$\begin{aligned} & \text { Specification } \\ & 13524-068-\mathrm{N} 102 \text {, Rev. } 3 \end{aligned}$	Equipment Qualification Specification (by Bechtel).
$0)$	DC-SE-002-DR, Rev. 2	Dresden Seismic Design Criteria.
P)	$\begin{aligned} & \text { Specification } \\ & \text { 13524-068-N101, Rev. } 1 \end{aligned}$	Bechtel Radiation Study
Q)	Nuclear Station Work Procedures	

$$
\begin{aligned}
& \text { W.R. No.: D-97548/D-97549 } \\
& \text { Rev.: o } \\
& \text { Date: January 15, } 1992
\end{aligned}
$$

Page 7
R) CECo Electrical

Installation Standard (EIS), Rev. 2
S) 10 CFR 50.59

Changes, Tests, and Experiments
T) AWS D.1.1, Rev. 1
U) $\quad D C-S E-01-D Q$
V) *IEEE-383-1974

Structural Welding Code
Project Structural Design Criteria

Type Test of Class $1 E$ Electrical Cable, Field Splices, and Connections for Nuclear Power Generating Stations.

Note: An asterisk (*) designates a code or standard to which CECo has committed Dresden Station, Unit 2. The revision committed to is not necessarily the same one as is to $b$. used in the design of this Minor Plant Change.

### 1.4 DESIGN CONDITIONS

The Type ITE-27N relays shall operate under all plant operating conditions and in the environmental conditions given in Section 1.6. The ITE-27N relays will be purchased with an internal harmonic filter to eliminate harmonic distortion in the ac input circuit. The ITE-27N relay has a lower pickup voltage/dropout voltage ratio, which allows the relay to reset (once it drops out) when the system voltage recovers to an acceptable level. Thus, avoiding unnecessary tripping of the off-site power source and transferring of the Class 1E $4.16-\mathrm{kV}$ buses to the on-site diesel generators. See also Section 1.12 for electrical design conditions.
1.5 DESIGN LOADS

The new ITE-27N relays are the same size as the existing ITE-27D relays. Structural loading will be affected as the result of relocation of Panel 2252-83, however, the weight increase in the new panel location will not be significant. Structural loads (i.e., seismic and dead weight) have been evaluated for this Minor Plant Change and found acceptable (see also
Calculation No. $\frac{8982-13-19-6}{005}$
Revision $\quad$ A
Attachment: $\quad$ A72
Page A10 of A72

```
W.R. No.: D-97548/D-97549
Rev.: 0
Date: January 15, 1992
Page }
```

Sections 1.7 and 1.11). The new relay has an input circuit at $0.5 \mathrm{VA} / 120 \mathrm{Vac}$ and a control circuit at $0.05 \mathrm{~A} / 125 \mathrm{Vdc}$ which are less than $1.2 \mathrm{VA} / 120 \mathrm{Vac}$ and $0.08 \mathrm{~A} / 125 \mathrm{Vdc}$ for the existing relay. The new relays will have no significant thermal heat contribution to the area where they will be located.

### 1.6 ENVIROHMENTAL CONDITIONS

The existing Dresden, Unit 2 second level undervoltage relays are mounted in Panels 2252-83 and 2252-84:. Each panel contains two undervoltage relays. These panels are associated with and located just behind 4160-kV Switchgear Buses 23-1 and 24-1, respectively. These switchgears and panels are located on elevation 545'-6" of the Unit 2 Reactor Building. This area is Environmental Zone 26. The environmental parameters (based on E. Q. Binder 44D and Bechtel Specification 13524-068-N101, Rev. 1) were determined for the present locations of these undervoltage relays as presented below:

Parameter	Normal	LOCA
Temperature	$104^{\circ} \mathrm{F}$	$104^{\circ} \mathrm{F}$
Pressure	14.7 psia	14.7 psia
Humidity	<90\%	100\% (non-condensing)
Radiation	<1.0E04	*
Duration	40 years	1 year

* Further detailed reviews (based on distances from radiation sources) have determined that Core Spray Pipe 1404-12" is the relevant radiation source for the panel locations. The existing location of Panel 2252-83 is 6 feet away from the core spray pipe and the radiation level at its location is 2.8 E 05 rads. This radiation level exceeds the vendor radiation limit for the new replacement undervoltage relays (ITE-27N), which is $1.0 E 05$ rads. Therefore, Panel 2252-83 will be relocated to the distance of 18 feet from the pipe in order to decrease the radiation level below the relay's limit. Comparison of the distances of both panels from this pipe provided the one-year post Loss Of Coolant Accident (LOCA) doses as shown in the following:
Calculation No. $\frac{8982-13-19-6}{005}$
Revision $\frac{A}{\text { Attachment: } \quad \text { A }}$
Page A11 of A72

Rev.: 0
Date: January 15, 1992
Page 9

Panel No.
2252-83
2252-84

Distance From
Pipe 1404-12"
18 feet (new location)
27 feet

Dose (rads)
3.5E04 (mild)
3.0E04 (mild)

Panels 2253-83 and 2253-84 are subject to the effects of an RWCU line break at this location. This area is considered to be a harsh environment in the event of an RWCU line break. However, per EQ binder 44D, the second level undervoltage relay is not required to mitigate the consequences of an RWCU line break (Bechtel Chron 13303 and MLEA Calculation 88011-03, dated 11/15/88).

### 1.7 SEISMIC QUALIFICATIONS

The seismic information contained in ABB Certification Report RC-5039-A (submitted for Modification M12-3-89-53) was compared against the seismic requirements for the location of the relays in each subject panel. The Seismic Desigr, Eriteria DC-SE-002-DR provides the response spectra damping values and seismic design requirements for the Dresden Station. The new conduit supports and support for Panel 2252-83 will be seismically qualified (Reference Calculation 8900-03-EE-S, Rev. 1). The results of this review is that the ITE-27N relays, purchased to the ABB Report mentioned above, do indeed envelop the seismic requirements for this location and the relays would, therefore, maintain their functional ability during and after a seismic event (Reference Calculation CQD-051325, Rev. 1). Seismic evaluation of Panel 2252-83 relocation is provided in Calculation CQD-510158, Rev. 0.

### 1.8 ENVIRONMENTAL QUALIFICATIONS

The new relays will be installed in Panels 2252-83 and 2252-84. Panel 2252-83 will be relocated to an area with a lower radiation level. For a LOCA condition, Panels 2252-83 and 2252-84 are considered to be in a mild environment. For a HELB condition, specifically an RWCU line break, these panels are considered to be in a harsh environment. But, second level undervoltage relays are not required to mitigate the consequences of an RWCU line break (see EQ Checklist ENC-QE-6.6). Therefore, the second level undervoltage relays do not require environmental qualifications.
Calculation No. $\frac{8982-13-19-6}{005}$
Revision $\frac{\text { A }}{\text { Attachment: } \frac{\text { A72 }}{}}$
Page A12 of

```
W.R. No.: D-97548/D-97549
Rev.: 0
Date: January 15, 1992
Page 10
```


### 1.9 INTERFACE REQUIREMENTS

This Minor Plant Change is limited to the second level undervoltage protection of the Class lE $4.16-\mathrm{kV}$ Buses 23-1 and 24-1. No other plant system is impacted. This Minor Plant Change will increase the reliability of the second level undervoltage protection by using ITE-27N relays, which have a lower pickup voltage/dropout voltage ratio.

### 1.10 MATERIAL REQUIREMENTS

In addition to the ABB ITE-27N undervoltage relays, the following materials are required for this Minor Plant Change:
a) Terminal lugs for \#14 AWG SIS wires.
b) Switchboard wires, \#14 AWG, and 600-V Type SIS.
c) Control Cable.
d) Conduits
e) Conduit Supports
f) Mounting hardware for Panel 2252-83

### 1.11 STRUCTURAL REQUIREMENTS

The impact of replacing the second level undervoltage relays on Panels 2252-83 and 2252-84 have been seismically evaluated (see Section 1.7 above). The new relays provide no significant change to the structural loading of the subject panels. The new conduit supports and new support for Panel 2252-83 shall be designed to meet allowable stress requirements under normal seismic loading conditions as described in FSAR, Section 12, Seismic Design Criteria DC-SE-002-DR, and Project Structural Design Criteria DC-SE-01-DQ. The building structure was evaluated for the additional loads from the new conduit supports and relocated Panel 2252-83. The normal and seismic loads were found to be within the allowable stress requirements described in FSAR, Section 12 and DC-SE-01-DQ.
Calculation No. $\frac{8982-13-19-6}{005}$
Revision
Attachment: $\frac{\mathrm{A}}{\text { Page A13 of A72 }}$

```
W.R. No.: D-97548/D-97549
 Rev.: 0
 Date: January 15, 1992
 Page 1l
```


### 1.12 ELECTRICAL REOUIREMENTS

This Minor Plant Change does not change the existing design and electrical function of the second level undervoltage relays. The new undervoltage relays shall meet the following specifications:

Detailed Description:

Type:

Control Voltage:
Input Voltage:
Input Frequency:
Case:
Mountinq:
Operating Time:

Harmonic Filter:
Standards: Per IEEE-344 (1975) ANSI C37.90 and C37.98

## Catalog No.:

ABB ITE-27N (High Accuracy Undervoltage Protective Relay)

125 Vdc (Nominal)
125 Vac (Nominal), Single-Phase
60 Hz
Test Case
Semi-Flush
Definite Time Delay Unit (Dropout Range 1 to 10 Seconds)

Yes

41174375-L-HF-DP

Replacement relays will have the same settings as the existing relays. System Planning will issue the relay setting order and Electrical/Instrument and Control Group may review the relay setting order.

The Dresden Station Technical Specification, ELMS, electrical design drawings, vendor supplied information, and field walkdowns are utilized to establish the necessary electrical parameters for the second level undervoltage relays.

```
W.R. No.: D-97548/D-97549
Rev.: 0
Date: January 15, 1992
Page 12
```


### 1.13 LAYOUT AND ARRANGEMENT REQUIREMENTS

The outline dimensions and panel drilling for the new ITE-27N undervoltage relays are identical to the existing ITE-27D relays. Therefore, there will be no additional layout arrangement requirements. Layout of new box location will be specified on Engineering Change Notice 12-00470E.

### 1.14 OPERATIONAL REQUIREMENTS

The plant operational requirements are not changed by this Minor Plant Change.

The second level undervoltage relays are required to protect Class IE 4.16-kV Buses 23-1 and 24-1 against a degraded voltage condition. The relays are required to initiate a timer (five-minute time delay setting) if a degraded voltage condition persists (see Tech. Spec. Table 3.2.2). After the delay, the relays actuate associated circuits to trip off-site power source breakers, initiate load shedding and start the diesel generators. The relays are also required to be able to reset when the line voltage recovers to an acceptable level within the time delay setting. Thus, overriding unnecessary tripping of off-site power source breaker, load-shedding and starting of the diesel generator.

### 1.15 INSTRUMENTATION AND CONTROL REQUIREMENTS

There are no additional instrumentation and control requirements since this Minor Plant Change does not change the function or logic circuitry of the second level undervoltage protection scheme.

### 1.16 TECHNICAL SPECIFICATION CHANGES

This Minor Plant Change does not change any set points or time delay settings for the existing undervoltage protection scheme. The new relay has a drop out tolerance of $+/-0.5 \%$ which is bounded by the existing relay tolerance of $+/-2 \%$. This tolerance is stated in Table 3.2.2 of the Technical Specification. The lower reset voltage is an internal characteristic of the new undervoltage relay. Therefore, no changes to the Technical Specifications are required as result of
Calculation No. $\frac{8982-13-19-6}{005}$

Revision
Attachment: $\frac{\text { A }}{0}$ A72
Page A15 of A72

```
W.R. No.: D-97548/D-97549
Rev.: 0
Date: January 15, 1992
Page 13
```

this Minor Plant Change. The Dresden station, Unit 2,Technical Specifications, Sections 3.2 and 3.9, andTable 3.2.2 were reviewed in making thisdetermination.
1.17 FSAR/UFSAR CHANGES
This Minor Plant Change does not require changes tothe Dresden Station, Unit 2 Final Safety AnalysisReport (FSAR)/Updated Final Safety Analysis Report(UFSAR). The FSAR/UFSAR, Section 8.2.3.1. wasreviewed in making this determination.
1.18 REDUNDANCY, DIVERSITY, AND SEPARATION REQUIREMENTS
The redundancy, diversity, and separation requirementsfor the Class IE 4.16-kV Buses 23-1 (Division I) and24-1 (Division II) are not affected by this MinorPlant Change.
1.19 FAILURE EFFECTS REQUIREMENTS
This Minor Plant Change will reduce the probability ofinadvertent tripping of the Class $1 E 4.16-\mathrm{kV}$ busesoff-site power source when the system voltage is at anacceptable level, and thus minimize unnecessary loadshedding and starting of the diesel generators. Noother failure effects are changed by thismodification.
1.20 TEST, NDE, AND WELDING REQUIREMENTS
CECo and S\&L will define the applicable tests and theacceptance criteria for the tests. This test declaresthe relays operable after the implementation of thisMinor Plant Change. Welding of the conduit support toits base should conform to the requirements of AWSD.1.1.
1.21 ACCESSIBILITY, MAINTENANCE, REPAIR, AND ISIThis Minor Plant Change does not affect or change theaccessibility for maintenance, repair, and in-serviceinspection of the undervoltage relays.
1.22 RISK TO HEALTH AND SAFETY OF THE PUBLIC
This Minor Plant Change will not increase the risk tothe health and safety of the public.
1.23 SUITABILITY OF PARTS, EQUIPMENT, PROCESSES, AND MATERIALS
All components used for this Minor Plant Change shallbe compatible with the existing design and shallcomply with the requirements in Sections 1.2, 1.6,$1.7,1.8,1.9,1.10,1.11$, and 1.12 .
1.24
PERSONNEL SAFETY
No special personnel safety requirements exist forinstalling this Minor Plant Change. Standardprecautions for working on electrical equipment areconsidered adequate for this project. No hazardousmaterials (e.g., asbestos) are to be used.
1.25 CATHODIC PROTECTION REQUIREMENTS
Cathodic protection is not required for this MinorPlant Change, since no new metal pipes or structuresare being added.
1.26 INDUSTRY EXPERIENCE (SER/SOER KEYWORD INDEX)
After the degraded system voltage events at theMillstone Unit 2 Nuclear Plant in 1976, the NuclearRegulatory Commission concluded that system designalone does not ensure the adequacy of the off-sitepower supply, and therefore, undervoltage relayingschemes should be installed on the system to protectagainst the possibility of degraded system voltage.Experience with the added protection system over thepast 10 years has revealed some problems in schemelogic and application that caused loss of the off-sitepower supply. The following is a brief review of oneof these occurrences:
On August 1, 1983, the Monticello NuclearGenerating Plant experienced an actuation of thedegraded voltage protection system. The plantwas operating at rated power. The safety buseswere running at $95.2 \%$ of nominal bus voltage.This is $1.8 \%$ higher than the degraded voltageprotection system setpoint. During this time, a

$$
\begin{aligned}
& \text { W.R. No.: D-97548/D-97549 } \\
& \text { Rev.: 0 } \\
& \text { Date: January 15, } 1992 \\
& \text { Page } 15
\end{aligned}
$$

large safety-related pump motor was started.
The voltage dip from starting the motor caused the voltage to drop below the degraded voltage protection system's setpoint. This activated the undervoltage relay and initiated the time intended to allow the protection system override such motor starting events. After the motor started, the voltage at the bus recovered to about 95\% of bus nominal voltage, the same voltage level prevailing before the motor starting event. This, however, did not allow the undervoltage relay to reset at a higher level than the voltage of the buses even prior to the motor starting (95.8\%). This actuated the degraded voltage protection system. This event suggested that the undervoltage relay reset characteristics have not been carefully considered in analyzing the system or selecting the hardware. In this case, the relay reset point is $2.6 \%$ higher than the trip setpoint. This would require that the bus voltage be maintained at a level $2.6 \%$ higher than the relay setpoint to prevent inadvertent loss of off-site power.

This Minor Plant Change is being initiated to prevent a similar occurrence at the Dresden Station, Unit 2.

### 1.27 STANDARD INSTALLATION SPECIFICATIONS

Installation work for this Minor Plant Change will be performed in accordance with the CECo's EIS, NSWP, General Work Specification K-4080, and Asea Brown Boveri Instruction Manual for ITE-27N relays.
1.28 STANDARD STATION INSTALLATION PROCEDURES AND OC PROCEDURES

Standard Station Installation and QC Procedures will be used for this Minor Plant Change.

ENGINEERING CHECKLISTS
Attachment 11.1 contains the following engineering checklists required by Procedure ENC-QE-06.
Calculation No. $\frac{8982-13-19-6}{005}$
Revision $\frac{\text { A }}{005}$
Attachment: $\quad$ A72
Page A18 of A

```
W.R. No.: D-97548/D-97549
Rev.: 0
Date: January 15, 1992
Page 16
```

1.29 .1
System Interaction
The Nuclear Engineering Department (NED)Procedure ENC-QE-06.2, Exhibit A, "SystemInteraction Checklist," was used to evaluatesystem interactions that might be created bythe installation of this Minor Plant Changeand, therefore, must be considered in itsdesign. Input for this evaluation was takenfrom the Dresden Final Safety Analysis Report(FSAR), Updated Final Safety Analysis Report(UFSAR), applicable station drawings, vendorinformation, and walkdown information. Thereare no system interactions that must beaccounted for.
1.29.2 Acceptance Testing
The NED Procedure QE-06.4, Exhibit A,"Modification Acceptance Testing Checklist,"was used to evaluate the testingrequirements. The testing requirements aredescribed in the Summary of TestingAcceptance Criteria. Input for thisevaluation is from the documents used as theguidance for writing the test procedures andother references listed in the Summary ofTesting Acceptance Criteria.
1.29 .3 ALARAThe NED Procedure ENC-QE-06.5, Exhibit A,"ALARA Review Checklist," was used toevaluate the ALARA requirements for thisMinor Plant Change. Input for thisevaluation is from station personnel,Radiation Zone Maps, Regulatory Guide 8.8,and the modification description.
The radiological impact of this Minor PlantChange is minimal. Therefore, a formal ALARAplan is not required and that standardradiological control procedures may befollowed.

Calculation No.	8982-13-1
Revision	005
Attachment:	A
Page A19	of A72

```
W.R. No.: D-97548/D-97549
Rev.: 0
Date: January 15, 1992
Page 17
```


### 1.29.4 Environmental Qualification

The NED Procedure ENC-QE-06.6, Exhibit A, "Equipment Environmental Qualification Flowchart Checklist" was used to evaluate the environmental qualification requirements for this Minor Plant Change. Input for this evaluation is from Bechtel's Specification 13524-068-N101, Dresden Station UFSAR, and Mr. Hunsader to Mr. Viehl letter, dated January 8, 1992.
1.29.5 Fire Protection

The NED Procedure ENC-QE-06.7, Exhibit A, "Fire Protection Review Checklist," was used to evaluate the fire protection and safe shutdown requirements for this Minor Plant Change. The Fire Protection System in the surrounding area where the undervoltage relays are located is not required to be modified as a result of this Minor Plant Change. No other fire protection or safe shutdown concerns were identified.

### 2.0 HALKDOHNS

### 2.1 Designer's Walkdown <br> The Designer's Walkdown was performed on January 3, 1992, to confirm and provide input for the detailed design of this Minor Plant Change. The Designer's Walkdown Checklist is included as an attachment.

### 2.2 Installer's Walkdown

The Installer's Walkdown was on January 13, 1992, to verify constructability of this Minor Plant Change. The Installer's Walkdown Checklist is included in the Minor Plant Change Design.

### 3.0 CONCEPTUAL DESIGN DOCUMENTS

No conceptual design documents were required for this Minor Plant Change.
Calculation No. $\frac{8982-13-19-6}{005}$

Revision | Attachment: $\quad$ A |
| :--- |
| Page A20 of A72 |

```
W.R. No.: D-97548/D-97549
Rev.: 0
Date: January 15, 1992
Page 18
```


### 4.0 SAFETY-RELATED COMPONENT OR MASTER EQUIPMENT LIST

The new second level undervoltage relays for the Class $1 E 4.16-\mathrm{kV}$ Buses 23-1 and 24-1 are classified as safety-related. The Master Equipment List should be updated to include the device numbers for the new relays. the Master Equipment List Update Form (Exhibit C, ENC-QE-12.1) is included as an attachment.

### 5.0 COMPONENT CLASSIFICATION

The new second level undervoltage relays are classified as safety-related. The Classification of Component Form (Exhibit B, ENC-QE-12.1) is included as an attachment.

### 6.0 INSTALLATION PROCEDURES

Installation work for this Minor Plant Change shall be performed in accordance with the CECO EIS and standard procedures for safety-related work.

### 7.0 PROCUREMENT DOCUMENTS

### 7.1 Bill of Materials

Bill of Materials associated with conduit supports and panel mounting apply for this Minor Plant Change. They are specified in the conduit support drawings of the ECNs and ERSs.

### 7.2 Equipment Specifications <br> No equipment specifications are required for this Minor Plant Change.

7.3 Material Specifications
No material specifications are required for this Minor Plant Change.
7.4 Equipment Requirements Schedules (ERS)

Materials other than the protective relays required for this Minor Plant Change are specified in the ERS.

$$
\begin{aligned}
& \text { H.R. No.: D-97548/D-97549 } \\
& \text { Rev.: o } \\
& \text { Date: January 15, } 1992 \\
& \text { Page } 19
\end{aligned}
$$

### 7.5 Purchase Orders

The undervoltage relays have already been procured and are on site. Therefore, no purchase orders are required for this Minor Plant Change.

### 8.0A AC/DC LOAD TICKETS

DC Load Data forms have been completed to reflect the new undervoltage relays (ITE-27N). The affected dc bus circuits include other loads, therefore, the total load on the circuit is the combination of the relays and the other loads. Thus, the load ticket reflects the combination of all the loads on the circuit. The data forms and load tickets are included as an attachment.

### 8.0B ELECTRICAL PROTECTIVE DEVICE SETTINGS

System Planning will issue the relay setting order to CECo. Electrical/Instrument and Control group may review the relay setting order. New relays will have the same settings.

### 9.0 ENGINEERING DESIGN EVALUATION (OP 3-1)

The design documents for this Minor Plant Change have been reviewed in accordance with Quality Procedures 3.1.
10.0 REFERENCE TO CONFIRMATORY ANAL YSES

### 10.1 Calculations

Seismic Qualification Calculation CQD-051325
Calculation CQD-510158
Structural Calculation 8900-03-EE-S
Electrical Calculation 7056-00-19-5, Rev. 12

### 10.2 Technical Reports

There are no Technical Reports prepared for this Minor Plant Change.
10.3 Stress Reports/Overpressure Protection Report
This Minor Plant Change does not require a Stress Report or Overpressure Protection Report.
W.R. No.: D-97548/D-97549
Rev.: 0
Date: January 15, 1992
Page 20
10.4 Computer I/O Listings
No Computer I/O Listings were generated for this Minor Plant Change.
11.0 ATTACHMENTS
11.1 Engineering Checklists
11.2 Walkdown Checklists
11.3 ENC-QE-12.1 Forms
11.4 DC Load Data Forms/Load Tickets
Approved by:

$\qquad$ ..... Date:
JWH:dmd
WDOC2433.EP

## ATTACHMENTS 11.0

Calculation No. 8982-13-19-6
Revision
Attachment: 005

## ATTACHMENTS 11.1

## Engineering Checklists

System Interaction Exhibit A, ENC-QE-06.2Modification Acceptance TestingALARA ReviewEquipment Environmental Qualification FlowchartFire Protection Review

Exhibit A, ENC-QE-06.4.
Exhibit A, ENC-QE-06.5 Exhibit A, ENC-QE-06.6 Exhibit A, ENC-QE-06.7

Calculation No. 8982-13-19-6
Revision
Attachment: 005

Page A25 of A72

MOD. NO. W.R. NOS. D-97548 \& D-97549

## SYSTEMS INTERACIION CHECKLIST

I. General Evaluation
A. Does this modification connect non-safety-
related equipment (piping, electrical, etc.
to safety-related equipment?
Documents reviewed during determination of
answer to this question; Station Drawings
B. Does this modification result in the interconnection of safety-related systems that provide the same safety function? Documents reviewed during determination of answer to this question; Station Drawings
C. Does this modification require the connection to/interface with (ie, core holes, expansion anchors, anchor bolts, steel beams, embedded plate attachments, HVAC seals, etc.) Safety-Related Structural components? Note: Identify in "Safety Classification" and/ or "Component Classification" sections of Mod. Approval Letter and Mod. Package. (See Master Equipment List/Q List) Documents revieved during determination of answer to this question; Structural Calculation $8900-03-E E-S, E C N \quad 12-00470 E$
D. Does this modification add equipaent that increases the floor loading?
Documents reviewed during determination of answer to this question; Structural Calculation $8900-03-E E-S, E C N$ 12-00470E
E. Is this equipaent to be installed in close proximity to safety-related equipment? Documents reviewed during determination of answer to this question; Station Drawings, ECN 12-00470E
F. Will this modification introduce any new or revised operating modes for existing systems or equipment? Note: If new or revised modes are introduced, ensure the equipaent is evaluated for operation in these modes and operating procedure limits are considered.
Documents revieved during determination of answer to this question; Station Drawings
Calculation No. $\frac{8982-13-19-6}{005}$

Revision
Attachment:
Page A26 of A72

MOD. :10. W.R. NOS. D-97548 \& $0-97549$
Exhibit A
ENC-QE-06. 2
Revision 3
Page 2 of 4

## SYSTEMS INTERACTION CHECKLIST

Yes No N.A.
I. G. Does this modification effect other modifications or temporary alteration? Docurents reviewed during determination of answer to this question; Verification with Mod. Coord. and Temp. Alt. Log
H. Does this modification result in (or cause) increased system or component operating voltage and/or pressure? Impact of increased voltage/pressure on existing system components
 Documents revieved during determination of answer to this question; ABB Instruction Manual, IB 7.4.1.7-7, Issue D
II. Mechanical Interaction

Have the following been considered for their affect on nearby safety-related equipment?
A. Missile Generation
B. Pipe Whip
C. High Energy Equipment
D. Fire in the Equipment
E. Primary Containment Penetrations
F. Secondary Containment Penetrations
G. Structural Loading or Alteration of

X	*
	*
	$\star$
	*
	*
	*
X	$\cdots$

H. HELB Analysis (including EQ)
I. MSLB/LOCA Analysis (including EQ)
J. Any Attachments to Masonry Walls (conduit, supports, fire protection, etc.)
K. Damage to Safety-Related Equipment Due to Seismic
III. Electrical Interactions

Have the following been considered for their affect on nearby safety-related equipment?
A. Cable Qualifications
B. Cable Separation
C. Additional Diesel Loading
D. Additional Battery Loading
E. Load Shed Coordination
F. Fault Trip Coordination
G. Electromagnetic Capability (EMC)
H. Additional Loading to a Safety-Related AC Distribution Circuit
I. Damage to Safety-Related Equipment due to Seismic


Calculation No.	8982-13-1
Revision	005
Attachment:	A
Page A27	of A72

MOD. N. W.R. NOS. D-97548\&D-97549 $\quad$| Exhibit A |
| :--- |
| ENC-QE-06.2 |
| Revision 3 |
| Page 3 of 4 |

SYSTEMS INTERACIION CHECKLIST

			Yes	No	N.A.
IV.	Fire   A.	Protection Will this modification impact the safe shutdown analysis?	*	X	
	B.	Will this modification add significantly to the fire loading determined in the fire hazards analysis?	*	$X$	
	c.	Will this modification add a fire hazard not considered in the fire hazard analysis?	*	$X$	
	D.	Is additional fire detection and protection required?	*	$\frac{x}{x}$	
	E.	Are new fire stops or fire seals required?	*	X	
	F.	Is the need to repair existing fire stops documented?		$\star$	$X$
	G.	Has the cable tray fill density in an electrical fire stop been exceeded?	*		$X$
v.	Security				
	A.	Will this modification alter barriers to allow unauthorized access to protected or vital areas?	*	-	$X$
	B.	Will this modification remove equipment that forms part of a security barrier such as piping, valves, that would allow passage of small objects into or out of a vital area?	*		$X$
	C.	Will, this modification create holes in protected or vital area barriers to facilitate construction?	*		$X$
	D.	Will this modification leave vital area door alarms in access mode after work completion?	*		X
	E.	Will this modification effect essential security telephones/communication systems, computer systems or lighting?	$\star$	-	$X$
	$F .$	Will this modification place equipment structures or vehicles within the isolation zones of the protected area or within exterior "clear" zones of sensitive facilities, such as storage vaults?	*	-	$X$
VI.	Impact on Plant Simulator				
	A.	Does this modification affect any controls, meters, recorders, alarms, CRT displays or any other items on the Main Control Board which will require alterations to the plant simulator?	*		$X$
	B.	Does this modification affect parameters which will affect the response of the plant simulator (e.g., auto-matic initiation interlocks. transient responses, time delay relays, etc.)?	*	-	$X$

Revision 005
Attachment: A
Page A28 of A72

SYSTEMS INTERACTION CHECKLIST


#### Abstract

Yes No N.A. VII. a) Does this mod affect the process computer inputs to SPDS? $\underline{X}$ b) Does this mod affect the instrumentation providing process computer inputs to SPDS? c) Does this mod affect the SPDS CRI display? $\stackrel{+}{*} \quad-\quad \frac{X}{X}$ d) Does this mod affect the operating limits or values of parameters on SPDS? * $\quad X$ e) Does this mod affect the logic for computing parameters on SPDS? $\because \quad \mathrm{X}$ VIII. Explain any * Marked Answers Below. (Attach Additional Page If Necessary)


See below.

PREPARED BY: $\qquad$ DATE: $\qquad$

APPROVED BY:
DATE: $\qquad$
I.C. Panel 2252-83 will be relocated to Column $39-N$ in the Reactor Building. It will be mounted to the column utilizing concrete expansion anchors and unistruts.
I.E. The second level undervoltage relays are safety-related and are connected to the safety-related $4.16-\mathrm{kV}$ Buses $23-1$ and $24-1$. The replacement relays and Panel 2252-83 will be seismically mounted so that they will not affect nearby safety-related equipment.
Revision $\frac{005}{\text { Attachment: } \quad \text { A }}$
Page A29 of A72

*Panel 2252-83 will be moved to Col/Row 39-N
1.5 If questions $1.2,1.3$, or 1.4 are answered "yes," this is a radiologically significant modification. A level 2 ALARA INSTALLATION review mant be completed and attached.

Prepared By: $\qquad$ Date $\qquad$
1.6 This modification does NOT require a level 2 ALARA DNSTALLATION review.

Prepared By: $\qquad$


```
ALARA REVIEW CHECKLIST
LEVEL 1 REVIEW WR No. D-97548
Modification No.: WR NO. D-97549
Echibit A
ENC-QE-06.5
Revision 3
Page 2 of 2
```


## radiological screrning

2. PART 2: DESIG Yes NO2.1 Does this modification alter syatems which contain or couldcontain radioactivity (e.g., liquid, gaseous, or solid rad-waste; BVAC in contaminated areas; postaccident recoverysysteme, etc.)?Comment
[If "Yes" go to Item 2.5. If "No" continue.]
2.2 Does this modification alter parts or components that could ..... [ ] [X]Comment
[If "Yes" go to Item 2.5. If ' $\mathrm{No}^{\prime}$ continue.]
2.3 Does this modification alter or add radiation shielda? ..... [ ] [X]Cownent
[If "Yes" go to Item 2.5. If "No" continue.]2.4 Is the estimed additional annual operating dose from thismodification greater than 1.0 man-rem (calculation below)t$[1[X]$
be in a flov path leading to the reactor core?[ ] [X]Coment No anticipated maintenance
[If "Yes" go to Item 2.5. If "No" go to Item 2.6.]
ADDITIONAL OPERATING DOSE CALCULATIO

Area Description
Unit-2 Reactor Bldg.
El $545^{\prime}-6^{\prime \prime}$
:---:
:---

2.5 If questions $2.1,2.2,2.3$, or 2.4 are anowered "Jes," this is a radiologically significant modification. A level 2 aluna desicn review must be completed and attached.

Prepared By: $\qquad$ Date $\qquad$
2.6 This modification does NOT require a level 2 Alara mstallation review.

Prepared By: $\qquad$ Date $\qquad$
$Q E-06.5(6)$
Calculation No. $\frac{8982-13-19-6}{005}$
Revision
Attachment: $\frac{A}{\text { A }}$
Page A31 of A72


## FIRE PROTECIION REVIEW CHECKLISI

: Any of the questions which are answered ' j es' shall be explained. If a change to the design is made so that a question can be answered 'no'" then this change should also be explained.
I. POST FIRE SAFE SHUTDOWN ANALYSIS
A. Will the modification alter the function or location of a safe shutdown system or component as described in the safe shutdown report?

See the attached sheet.
B. Is an electrical cable (power, control, instrumentation) being added or rerouted or is an electrical control circuit being modified? (If 'No', proceed directly to Question I.D. if "Yes", continue).

See the atthaced sheet.

1. Will operation of a hot or cold post fire shutdown system be affected by a circuit fault in any way?

YES* NQ* N/A
 .
2. Will potential fire induced circuit or cable faults introduce additional spurious operations of equipment (e.g., breakers or valves) adverse to safe shutdown and not previously analyzed?
3. Dces the circuit share a common power source with post fire safe shutdown equipment in a manner that degrades the availability of that equipment?
4. Does the circuit create a safe shutdown "common enclosure" problem?

C. If any question I.B.1 through I.B. 4 is answered "Yes" continue. Otherwise go to Question I.D.

1. Are the physical separation and electrical isolation commitments in the post fire safe shutdown report violated?

I. C. | 2. Are additional design features (e.g., |
| :--- |
| isolation switch) or manual actions |
| necessary for hot shutdown? |

3. Are additional repair procedures or
manual actions necessary for cold
shutdown?
II. FIRE EAZARDS ANALYSIS
A. Will the modification significantly alter the fire loading considered in the fire hazards analysis?
$\qquad$
$\qquad$ hazards not considered in the fire hazards analysis?
C. Will this modification violate the separation requirements of the station?

## III. FIRE PROTECTION MEASURES

A. Are the fire detection or suppression systems, rated fire barriers, or curbs being modified or proposed? If 'No'", go to Question III.B.

1. Have any deviations to applicable NFPA code commitments been identified?
2. If a new water suppression system is installed, is drainage inadequate?

```
Exhioit A
ENC-QE-06.7
Revision 2
Page }3\mathrm{ Of }
```

FIRE PROTECTIQN REVIEW CHECKLISI

YES: NQ* N/A
$\qquad$
foam, dry chemical) is being motified,
are there any adverse effects of
actuation on safe shutdown equipment
(water spray, local freezing,
pressurization, flooding at lower
elevations)?
4. If the fire water system or a water suppression system is altered, will the supply from the fire water system be degraded?
5. Is a new fire rated barrier being installed or has the rating of an existing barrier (rated or unrated) been upgraded? (If so, all penetrations should have the same rating as the barrier).
6. Has a new curb been added? (If so, adequate drainage and/or retention capacity must be provided.)
B. The performance of existing fire protection measures may be degraded by any of the following:

1. Will the modification involve a physical change (e.g.. the routing of cable. conduit, $H V A C$ ducts, or piping; change of ventilation air flow; change in a structural element) to a fire area/zone with a detection and/or with a suppression system? (If so, the installation must not prevent a suppression or detection system from performing its intended function).

See the attached sheet.
Calculation No. $\frac{8982-13-19-6}{005}$
Revision
Attachment: $\frac{A}{\text { A } A 72}$

## FIRE PROTECIION REVIEW CHECKLISI

III.B. 2. Will the modification block access to or reduce coverage of any of the following manual fire protection equipment.
a. hose stations
b. fire extinguishers
c. fire protection control panels
d. fire system valves
e. manual pull stations.
3. The following types of modifications may affect the performance of a barrier to fire:
a. Does this modification affect the protective coating on structural steel?
b. Will this modification involve an alteration to any of the existing fire barriers through the installation, removal, or modification of a penetration or penetration seal?
i. fire doors
ii. pipe and HVAC ducts penetration seals
iii. fire dampers
iv. electrical penetration seals of trays. conduits, risers
v. access openings
4. a. Will the modification route cables through cable tray fire break (Dresden only)?
b. Do modification design drawings reflect the passage of cables through (not around) cable tray fire breaks (Dresden only)?
New cables do not pass through fire breaks
5. a. Will the modification require the disturbance of a cable tray wrap?
Calculation No. $\frac{8982-13-19-6}{005}$
Revision
Aftachment: $\frac{\text { A }}{\text { Page A36 of A72 }}$
EIRE FROTECEION RE:YEN GHEGKLIST

```
III. B. 5. b. Does the modification involve
 routing items above fire-wrapped
 conduits or cable trays or their
 supports.
```

    - X
    6. Have curbs, door sills, ramps, in tray $\qquad$ water stops, waterproofing, etc. designed to contain flammable or combustible liquids or water from suppression systems been altered?
7. a. Has smoke removal capability been affected?

b. Will the modification affect the hold $\qquad$ time or concentration of a gaseous suppression system?

## IV. CONTROL OF COMBUSTIBLES

A. Identify Fire Zone(s) associated with this change. 1.1.2.3
B. Identify fire protection documentation which might be affected by this change:

FIRE ZONE
1.1.2.3
3.2 .2

SER
DEVIATION/ EXEMPTION

SAFE SHUTDOWN
3.5.4.3 ANALYSIS
4.2

FHA
4.2.3
C. Does this change involve an incroase or reduction of fixed combustibles (including electrical cable) in anv Zone identified in A?
$\qquad$

```
If iES. identif:% fer the fr!lvuins trle:
If NO, proceed to D.
```

$$
\mathrm{QE}-06.7(10)
$$

Calculation No. 8982-13-19-6
Revision
Page A37 of A72

$$
\begin{array}{ll}
\text { GD. NO. W.R. Nos. D-97548, D-97549 } & \begin{array}{l}
\text { Exhibit A } \\
\text { ENC-QE-06.7 } \\
\\
\text { Revision } 2 \\
\text { Page } 6 \text { of } 7
\end{array}
\end{array}
$$

## FIRE PROTECTION REVIEN CHECKLIST

FIRE ZONE	EQUIPMENT	COMbUSTIBLE	$\begin{aligned} & \text { QTY } \\ & (\mathrm{ET}) \end{aligned}$	heat content BTU/ET	$\begin{aligned} & \text { HEAT LOAD } \\ & \text { BTU } \end{aligned}$
1.1.2.3	Electrical Cable	Insulation	12	1612	19,344*

* This is negligible compared to existing heat load of $2.1 \times 10^{8}$ BTU. FHA need not be revised.

1. Is fixed combustible heat load higher than that identified in the Appendix $R$ SERs and/or Exemption Requests? $\qquad$
If YES, attach NRC submittal. Applicable portion of work may not proceed until NRC approval is granted.
2. Provide FHA text revisions here and submit to Maintenance and Station Support Fire Protection Group for concurrence prior to installations.
3. Provide technical justification and answer the three $10 C F R 50.59$ questions for the revised heat load.
D. Does this change require any estimated temporary increase in combustible heat loads (i.e., during installation and testing)? $\qquad$
If YES, inform the Station Fire Marshall through the Mod Approval Letter for concurrence and appropriate administrative controls.

EIRE ZONE EQUIPMENT COMBUSTIBLE QTY HEAT CONTENT BEAT LOAD

QE-06.7(11)

## FIRE PROTECTION REVIEW CHECKLIST

YES* NO* N/A

## V. DOCUMENTATION MAINTENANCE

A. Does this modification change a fire protection commitment to the NRC or change a justification in an approved Appendix $R$ exemption or deviation?
B. Is a revision to the Fire Protection Report or Safe Shutdown Report or a supporting document necessary (egg., hydraulic analysis)?
C. Is a revision to NFPA code deviation report necessary?
D. Will this modification require a revision to the fire protection drawings? (Dresden and Quad Cities only.)
E. Will this modification change plant conditions as currently described in the Fire Hazards Analysis?
F. Will this modification impact any other part of the fire protection documentation not addressed in Questions $A$ through $E$ above?
G. Will the modification impact the Station's Pref- Fire Plans?
H. Will any question answered "YES" in Section I, II, III, or IV above impact the Fire Hazards Analysis, Pre-Fire Plans or Fire Protection Drawings?

$-$ $\qquad$ ?


Any of the questions which are answered "yes" shall be explained. If a change to the design is made so that a question can be answered "no", then this change should also be explained.
$\qquad$
$\qquad$
QE-06.7(12 - LAST)
A

## Attachment to ENC-QE-06.7, Exhibit A

Following are the explanations related to the questions answered "Yes" in the fire protection review checklist:
I.A. Second level undervoltage relays for 4.16-kV Buses 23-1 and 24-1 will be replaced. Panel 2252-83 with undervoltage relays for Bus 23-1 will be relocated to a new location within the same fire zone. The new relays will provide the same safe shutdown function as the existing ones.
I.B. A control cable will be routed to the new location of Panel 2252-83. None of the electrical control circuits will be altered. The cable routing will be confined to one fire zone. The new cable routing will not block the access to or the function of any fire detection or protection equipment.
III.B.1 The Minor Plant Change does involve routing of new control cables from Bus 23-1 to the new location of the panel. Existing cables from the old location of the panel to Bus 23-1 will be removed. Since the new location is within the same fire zone, no fire boundaries need to breached.

## ATTACHMENT 11.2

## Walkdown Checklists

Exhibit C, ENC-QE-62
Exhibit D, ENC-QE-62

Calculation No. 8982-13-19-6
Revision 005


* See Last Pane "Resolunon remora"


## Waikdown tontruction

1. The designer (Station or NED) is responsible for arranging this walkdown and notifying participants, and coordinating this activity with Nit.
2. The assigned Station representative is responsible for arranging all necessary access clearances and notifying Station waikdown participants.
3. The Designer is responsible for preparing the Designer's Welkdown Checkilet (to be completed fully -- N/A in advance as appropriate) and for recording walkdown observations.
4. Each observation should be clearly identified, including location, such as building, room number, elevation, plant coordinates, etc.
5. Clarifying photographs or sketches should be utilized when appropriate.
6. Individual observations should not be lumped into single entries.
7. The Desirer is responsible for the resolution of all observations.
8. Copies of previous walkdown checklist: with attachment a shall be provided for subsequent walkdown reference.
9. The Designer' Walkdown checklist shall be included|ia the applicable project plan.
QE-62(15)


## DESTGNERIS WALKDOKN CEECCHIST

 097548Modification Number: 092549

9. Will the desisn increase radiation/
contmiagtion ievela? $-x-N_{0}$ contamination apread?
$-\underline{x}-N_{0}$
i1. Is inatrunantation or opegating equipaent located to minimize installation and operating persomnel radiation exposure? $X \ldots N_{0}$
12. Are alternate designs fanible to reduce
potential radiation expopuref

Endbit C
ENC-QE-62
Revielon 2
pase 4 of 7


## DRSIGNCRIS HALEDOME CBECKLIST

$$
097548
$$

Modification Number:

$$
097549
$$



5xhibit $C$
ENC-QE-62
Reviaion 2
Pase 6 of 7

## DRSIGNDR'S UALKDOUN CBECCLIST

097548
Modification Number:
097549

35. Ig intarface information available, e.s. X tie-ina?
36. Are spares availabla, e.8.
penetrations? penetrations?

37. Is alectrical and I\&C informetion avallable 6.8. spare/correct ize MCC compartment?

X $\ldots \quad \mu_{0}$
38. What are station practicen - electrical. I\&C, piping and structurall
$x-\quad=$

## ELEZTRICAL AND <br> GIRUCTUAKL

39. What are warehouse inventory stock teeme?


40. For electicical modisications, do the drawinge reflect actual ifald laftalled condition for all terninal points which will be utilized for the modification?

Note: Develop additional or revised quetiont depending on the modification cope prior to conductin the walkdown.

Calculation No
Revision Attachment:
Page $\qquad$ A47 8982-13-19-6

Endblt C

$$
\text { NC-0 }-62
$$

Revision 2
page 7 of 7

DFSIGNDR'S UALKDOLN RESOLITHTON RECORT


* AT THE TME OF THE DESIGNERES WHLGDOWN THE INSTALCBE WAS NOT KNOWN. NO SMATON MANTENANGE GROUP WAS AUAILABLETOWALK DOWN THE DESIGN. I HAP REQUEETEN JEFF SWORD AND Jerry Jurgek to andopgndewty walk Down THE CONCGPTUAL.DESTGN TOSNE IF TTHENEW


 FROM AN OPCRRATTONS STNND PONNF. ALE THNGE INDINIDUARS WERE. LIUEN SHETZAES OFENHK



 OH VN.F 3 , Reracacumadls.
On $1 / 5 / 92$ Jopre Susons congiemaro ms ro siy nor ntbo no PROISCEM WIM THF NEN LOCATION OF HET ENRLE URO

 LOCATZON SHOUCD SONO PROECWM FODM AN OPGRATZALS SMAD POINV.

Calculation No.	8982-13-19-6
Revision	005
Attachment:	A
Page A48	of A72

## ATTACHMENT 11.3

## ENC-QE-12.1 Forms

Classification of Component
Master Equipment List Update

Exhibit B, ENC-QE-12.1
Exhibit C, ENC-QE-12.1
Aof

Directions: To complete this form, provide written documentation and specific reference(s) for each item. (A Yes, No or N/A answer without a written explanation is not acceptable.)

## A. EVALUATION

*1. Identify the system and system classification of the component to be classified.

The second level undervoltage protection for Class $1 E 4.16-\mathrm{kV}$ Buses 23-1 and 24-1; Safety-Related.
2. List the components equipment identification number or stores item number as applicable.

127-3-B23-1, 127-4-B23-1, 127-3- B24-1, and 127-4-B24-1
3. Identify the pertinent documents required in describing the operation and required safety function of the component. (Drawings, P\&ID's, Wiring Diagrams, Technical Manuals, etc).

Technical Specification DPR-19, Section 3.2, Table 3.2.2; Updated Final Safety Analysis Report, Section 8
4. Identify the failure modes of the component and the effects of a failure on the safety-related system.

Failure of the second level undervoltage relays will result in long-time degraded voltage condition at 4.16-kV Buses 23-1 and 24-1; other undervoltage protection devices are in place to protect these buses.
*5. Do any of these failure modes prevent the system from performing its safety-related function?

Yes. This failure is a design basis of the Updated Final Safety Analysis Report.
6. Must the component maintain the pressure boundary of a safety-related system.

No. $\qquad$
*7. Would leakage prevent the system from performing its safety related function?

N/A
*8. Is the component required to function to ensure the proper operation of the safety-related system?
Yes. When offsite power has a degraded voltage, the second level undervoltage relays ensure the transfer of the safety-related Buses 23-1 and 24-1 to the diesel generators.
9. Identify special requirements or documentation required for purchase or installation (e.g., Certified Material Test Report, Certificate of Compliance, Environmental Qualification, etc.)

Seismic Test Report, Certified Test Report for Dielectric and Surge Withstand Capability
10. List the persons contacted to discuss the components function and/or operation.

Name
Date
Comments

## N/A

> * These items must be evaluated, other items are for documentation purposes. The answers to these questions essentially determine whether the component should be classified as Safety-Related or Non Safety-Related.

$$
Q E-12.1(13)
$$


Exhibit B ENC-QE-12.1 Revision 3 Page 3 of 3

## CLASSIFICATION OF COMPONENT

## B. CLASSIFICATION OF THE COMPONENT

From the results of this evaluation, it is concluded that the component is:
NON SAFETY-RELATED
Component malfunction does not prevent the proper operation of the safety-related system. However, since these components are used for Fire Protection Systems, these components are classified as Regulatory-Related.

## X SAFETY-RELATED

Component malfunction prevents the proper operation of the Safety-Related System.

Prepared by: _ـ_ Date:

Approved by: $\qquad$ Date:
$\qquad$ Dresden


## ATTACHMENT 11.4

## DC Load Data Forms/Load Tickets

Undervoltage Relay 127-3-B23-1
Undervoltage Relay 127-4-B23-1
Undervoltage Relay 127-3-824-1
Undervoltage Relay 127-4-B24-1





```
JATE:0I-0马-马E ** SAFGENT & LHNDY -- ELMS-DC VEFI. 2O ***
UTILITY: CECO
STATIOH : DRESDEH(FILE: DEDEYLS.M14 2nd Level UU) UHIT NO. 2
DC LOAD TICKET

GATTEFY NAME : UNIT 2 12SUDC EATTERY NOMINAL VOLTS = 125.0
*** Fiecord number = 3今***
Load name 4KV EUS 23-1 MN 10F4
Status (E,N, or M)M (Existing, New, or Modified)
Inrush current - amps 32.747
Inrush duration - sec }
Cont load current - amps 2.747
Time load starts - MM.ss00
Load duration - MM.ss }1
Source bus or panel FB EUS 2 CKT 2
System code
Source of equipment data CALC 705E00 19-5
Drawing or other reference .. 12E-2322
Revision
Modification
Cable number
```

FOUTING：

Calculation No．$\frac{8982-13-19-6}{005}$

Revision | A |
| :--- |
| Attachment：$\frac{\text { A }}{0}$ |
| Page A59 of A72 |


-1ILIT : CECO
FROJECT HO. 59B2-53

DC LOAD TICKET

*** Record number $=3 E$
Load mane .................... $4 K \cup$ EUS 24-1 iTN 10F4
Status (E, $N$, or Ti ........... M (Existing, New, or Modified)
Inrush current -- amps ....... 3.440
Inrush duration - sec ....... 5
Cont load current - imps .... 3.440
Time load starts - MM.s5 .... . 00
Load duration - Mm. ss ....... . 10
Source bus or panel ......... Ę-1 CKT 4
Systen code
Source of equipment data .... SALC $70560017-5$
Drawing or other reference .. 12E-EGSEE
Fevision
Modification
Cable number

FOUTING:

Calo No. $7056-00-19-5$	
Rev. 12 bate	
Page A-425	
Proj No. $8982-58$	

FREFARED EY:


Calculation No. 8982-13-19-6

SWITCHGEAR DATA, CONC.
H. Percentage of water absorbed in bus supports per ASTM Test D570 (plastic) of
 (K)
I. Minimum clearance between buses:
a. Phase-to-phase
b. Phase-to-ground
d. $\qquad$
J. Bus spacing center-to-center $\qquad$
K. Tap spacing center-to-center.....(inches)
L. Type and description of bus joints
M. Size and material of main bus
N. Size and material of ground bus
O. Watthour meter
P. Circuit breaker control switch
Q. Overcurrent relay
R. Overcurrent ground relay
S. Undervoltage relay
T. Elapsed time meter
U. Potential transformer

Accuracy.
V. Current transformer

Accuracy
W. Cubicle Space Heaters:

Watts per cubicle.
Vol.tage rating
9. BUS DUCT ASSEMBLIES (Furnish information for both indoor and outdoor designs, where different):
A. High potential withstand test at factory on assembled structure:

60-cycle (1 minute).................(kv)


Revision Attachment: Attach $\qquad$ 005 A61 -

IB 7.4.1.7-7 Issue D

INSTRUCTIONS
$\begin{array}{ll}\text { Type 27N } & \text { HIGH ACCURACY UNDERVOLTAGE RELAY } \\ \text { Type } 59 N & \text { HIGH ACCURACY OVERVOLTAGE RELAY }\end{array}$

Type 27N
Type 27N
Type 59N
Type 59N

Catalog Series 211T
Catalog Series 411T
Catalog Series 2114
Catalog Series 411 U

Standard Case
Test Case
Standard Case
Test Case


ASEA BROWN BOVERI
Calculation No. 8982-13-19-6
Revision

```
IB 7.4.1.7-7 Single-Phase Voltage Relays
```


## TABLE OF CONTENTS



## INTRODUCTION

These instructions contain the information required to properly install, operate, and test certain single-phase undervoltage relays type 27 N , catalog series 211 T and 411 T ; and overvoltage relays, type 59 N , catalog series 211 U and 411 U .

The relay is housed in a case suitable for conventional semiflush panel mounting. All connections to the relay are made at the rear of the case and are clearly numbered. Relays of the 411 T , and 411 l catalog series are similar to relays of the 211 t , and 2110 series. Both series provide the same basic functions and are of totally drawout construction; however, the 411 T and 411 l series relays provide integral test facilities. Also, sequenced disconnects on the 410 series prevent nuisance operation during withdrawal or insertion of the relay if the normally-open contacts are used in the application.

Basic settings are made on the front panel of the relay, behind a removable clear plastic cover. Additional adjustment is provided by means of calibration potentiometers inside the relay on the circuit board. The target is reset by means of a pushbutton extending through the relay cover.

## PRECAUTIONS

The following precautions should be taken when applying these relays:

1. Incorrect wiring may result in damage. Be sure wiring agrees with the connection diagram for the particular relay before energizing.
2. Apply only the rated control voltage marked on the relay front panel. The proper polarity must be observed when the de control power connections are made.
3. For relays with dual-rated control voltage, withdraw the relay from the case and check that the movable link on the printed circuit board is in the correct position for the system control voltage.
4. High voltage insulation tests are not recommended. See the section on testing for additional information.
5. The entire circuit assembly of the relay is removable. The unit should insert smoothly. Do not use excessive force.
6. Follow test instructions to verify that the relay is in proper working order.

CAUTION: since troubleshooting entails working with energized equipment, care should be taken to avoid personal shock. Only competant technicians familiar with good safety practices should service these devices.

## placing the relay into service

## 1. RECEIVING, HANDLING, STORAGE

Upon receipt of the relay (when not included as part of a switchboard) examine for shipping damage. If damage or loss is evident, file a claim at once and promptly notify Asea Brown Boveri. Use normal care in handiing to avoid mechanical damage. Keep clean and dry.
Calculation No. $\frac{8982-13-19-6}{005}$
Revision $\frac{805}{005}$
Attachment: $\quad$ A
Page A63 of A72

## 2. INSTALLATION

Mounting:
The outline dimensions and panel drilling and cutout information is given in Fig. 1.
Connections:
Typical external connections are shown in figure 2 . Internal connections and contact logic are shown in figure 3. Control power must be connected in the proper polarity.

For relays with dual-rated control power: before energizing, withdraw the relay from its case and inspect that the movable link on the lower printed circuit board is in the correct position for the system control voltage. (For units rated $110 v d c$, the link should be placed in the position marked $125 v d c$. )

These relays have an external resistor wired to terminals 1 and 9 which must be in place for normal operation. The resistor is supplied mounted on the relay.

These relays have metal front panels which are connected through printed circuit board runs and connector wiring to a terminal at the rear of the relay case. The terminal is marked " $G$ ". In all applications this terminal should be wired to ground.

## 3. SETTINGS

PICKUP
The pickup voltage taps identify the voltage level which the relay will cause the output contacts to transfer.

DROPOUT
The dropout voltage taps are identified as a percentage of the pickup voltage. Taps are provided for $70 x, 80 \%, 90 \%$, and $99 x$ of pickup, or, $30 \%, 40 \%$, $50 x$, and $60 x$ of pickup.

Note: operating voltage values other than the specific values provided by the taps can be obtained by means of an internal adjustment potentiometer. See section on testing for setting procedure.

## TIME DIAL

The time dial taps are identified as $1,2,3,4,5,6$. Refer to the time-voltage characteristic curves in the Application section. Time dial selection is not provided on relays with an Instantaneous operating characteristic. The time delay may also be varied from that provided by the fixed tap by using the internal calibration adjustment.

## 4. OPERATION INDICATORS

The types 27 N and 59 N provide a target indicator that is electronically actuated at the time the output contacts transfer to the trip condition. The target must be manually reset. The target can be reset only if control power is available, AND if the input voltage to the relay returns to the "normal" condition.

An led indicator is provided for convenience in testing and calibrating the : slay and to give operating personnel information on the status of the relay. See Figure 4 for the operation of this indicator.

Units with a "-L" suffix on the catalog number provide a green led to indicata the presence of control power and internal power supply voltage.
Calculation No. $\frac{8982-13-19-6}{005}$
Revision
Attachment: $\frac{A}{\text { A } A 72}$

## APPLICATION DATA

Single-phase undervoltage relays and overvoltage relays are used to provide a wide range of protective functions, including the protection of motors and generators, and to initiate bus transfer. The type 27 N undervoltage relay and type 59 N overvoltage relay are designed for those applications where exceptional accuracy, repeatability, and long-term stability are required.

Tolerances and repeatability are given in the Ratings section. Remember that the accuracy of the pickup and dropout settings with respect to the printed dial markings is generally not a factor, as these relays are usually calibrated in the field to obtain the particular operating values for the application. At the time of field calibration, the accuracy of the instruments used to set the relays is the important factor. Multiturn internal calibration potentiometers provide means for accurate adjustment of the relay operating points, and allow the difference between pickup and dropout to be set as low as $0.5 x$.

The relays are supplied with instantaneous operating time, or with definite-time delay characteristic. The definite-time units are offered in two time delay ranges: 1-10 seconds, or $0.1-1$ second.

An accurate peak detector is used in the types 27 N and 59 N . Harmonic distortion in the AC waveform can have a noticible effect on the relay operating point and on measuring instruments used to set the relay. An internal harmonic filter is available as an option for those applications where waveform distortion is a factor. The harmonic filter attenuates all harmonics of the $50 / 60 \mathrm{~Hz}$. input. The relay then basically operates on the fundamental component of the input voltage signal. See figure 5 for the typical filter response curve. To specify the harmonic filter add the suffix "-HF" to the catalog number. Note in the section on ratings that the addition of the harmonic filter does reduce somewhat the repeatability of the relay vs. temperature variation. In applications where waveform distortion is a factor, it may be desirable to operate on the peak voltage. In these cases, the harmonic filter would not be used.

CHARACTERISTICS OF COMMON UNITS


## IMPORTANT NOTES:

1. Each of the listed catalog numbers for the types 27 N and 59 N contains an " $x$ " for the control voltage designation. To complete the catalog number, replace the " $x$ " with the proper control voltage code digit:

$48 / 125$	voc	$\ldots . .$.	7
250 vac	$\ldots .$.	5	
220 vac	...	2	
$48 / 110$ vac	....	0	

2. To specify the addition of the harmonic filter module, add the suffix "-HF". For example: 411T4175-HF. Harmonic filter not available on type 27 N with instantaneous delay timing characteristic.
Calculation No. $\frac{8982-13-19-6}{005}$
Revision $\frac{\text { A }}{005}$
Attachment: $\quad$ A72
```
I8 7.4.1.7-7
Single-Phase Voltage Relays
Page 6
```



Figure 1: Relay Outline and Panel Drilling


Figure 2: Typical External Connections

Calculation No. 8982-13-19-6
Revision 005
Attachment
Page A66 of A72

Figure 3: INTERNAL CONNECTION DIAGRAM AND OUTPUT CONTACT LOGIC
The following table and diagram define the output contact states under all possible conditions of the measured input voltage and the control power supply. "AS SHOWN" means that the contacts are in the state shown on the internal connection diagram for the relay being considered. "TRANSFERRED" means the contacts are in the opposite state to that shown on the internal connection diagram.
Condition
Normal Control Power
AC Input Voltage Below Setting
Normal Control Power
AC Input Voltage Above Setting


Figure 4a: ITE-27N Operation of Dropout Indicating Light

Figure 4b: ITE-59N Operation of Pickup Inditating Light

Figure 4: Operation of Pickup/Dropout Light-Emitting-Diode Indicator
Calculation No. $\frac{8982-13-19-6}{005}$
Revision $\frac{\text { A }}{005}$
Attachment: $\quad$ A $\quad$ A72

```
IB 7.4.1.7-7 Single-Phase Voltage Relays
page 8
```



- mot ro afeter inpur matime


Figure 5: Normalized Frequency Response - Optional Marmonic filter Module


Figure 6: Typical Circuit Board Layouts, types 27 N and 59 N


Figure 7: Typical Circuit Board Layout - Harmonic Filter Module

Calculation No. 8982-13-19-6
Revision 005
Attachment: A
Page $\qquad$ of A72

## TESTING

## 1. MAINTENANCE AND RENEWAL PARTS

No routine maintenance is required on these relays. Follow test instructions to verify that the relay is in proper working order. We recommend that an inoperative relay be returned to the factory for repair; however, a circuit description booklet CD7.4.1.7-7 which includes schematic diagrams, can be provided on request. Renewal parts will be quoted by the factory on request.

## 211 Series Units

Drawout circuit boards of the same catalog number are interchangible. A unit is identified by the catalog number stamped on the front panel and a serial number stamped on the bottom side of the drawout circuit board.

The board is removed by using the metal pull knobs on the front panel. Removing the board with the unit in service may cause an undesired operation.

An 18 point extender board (cat 200x0018) is available for use in troubleshooting and calibration of the relay.

## 411 Series Units

Metal handes provide leverage to withdraw the relay assembly from the case. Removing the unit in an application that uses a normally closed contact will cause an operation. The assembly is identified by the catalog number stamped on the front panel and a serial number stamped on the bottom of the circuit board.

Test connections are readily made to the drawout relay unit by using standard banana plug leads at the rear vertical circuit board. This rear board is marked for easier identification of the connection points.

Important: these relays have an external resistor mounted on rear terminals 1 and 9. In order to test the 'rawout unit an equivilent resistor must be connected to terminals, 9 on the rear vertical circuit board of the drawout unit. The resistance value must be the same as the resistor used on the relay. A 25 or 50 watt resistor will be sufficient for testing. If no resistor is available, the resistor assembly mounted on the relay case could be removed and used. If the resistor from the case is used, be sure to remount it on the case at the conclusion of testing.

Test plug:
A test plug assembly, catalog number $400 \times 0002$ is available for use with the 410 series units. This device plugs into the relay case on the switchboard and allows access to all external circuits wired to the case. See Instruction Book IB 7.7.1.7-8 for details on the use of this device.

## 2. HIGH POTENTIAL TESTS

High potential tests are not recommended. A hi-pot test was performed at the factory before shipping. If a control wiring insulation test is required, partially withdraw the relay unit from its case sufficient to break the rear connections before applying the test voltage.

## 3. BUILT-IN TEST FUNCTION

Be sure to take all necessary precautions if the tests are run with the main circuit energized.

The built-in test is provided as a convenient functional test of the relay and associated circuit. When you depress the button labelled TRIP, the measuring and timing circuits of the relay are actuated. When the relay times out, the output contacts :ransfer to trip the circuit breaker or other associated circuitry, and the target is fisplayed. The test button must be held down continuously until operation is obtained.
Calculation No. $\frac{8982-13-19-6}{005}$
Revision $\frac{A}{\text { A }}$
Attachment: $\frac{\text { A72 }}{\text { Page A70 of }}$

## 4. ACCEPTANCE TESTS

Follow the test procedures under paragraph 5. ... ..............we units, select Time Dial \#3. For the type 27N, check timing by dropping the voltage to 50\% of the dropout voltage set (or to zero volts if preferred for simplification of the test). For the type 59 N check timing by switching the voltage to 105\% of pickup (do not exceed max. input voltage rating.) Tolerances should be within those shown on page 5 . If the settings required for the particular application are known, use the procedures in paragraph 5 to make the final adjustments.

## 5. CALIBRATION TESTS

Test Connections and Test Sources:
Typical test circuit connections are shown in figure 8. Connect the relay to a proper source of de control voltage to match its nameplate rating (and internal plug setting for dual-rated units). Generally the types 27 N and 59 N are used in applications where high accuracy is required. The ac test source must be stable and free of harmonics. A test source with less than $0.3 x$ harmonic distortion, such as a "linecorrector" is recommended. Do not use a voltage source that employs a ferroresonant transformer as the stabilizing and regulating device, as these usually have high harmonic content in their output. The accuracy of the voltage measuring instruments used must also be considered when calibrating these relays.

If the resolution of the ac test source adjustment means is not adequate, the arrangement using two variable transformers shown in Figure 9 to give "coarse" and "fine" adjustments is recommended.

When adjusting the ac test source do not exceed the maximum input voltage rating of the relay.

LED Indicator:
A light emitting diode is provided on the front panel for convenience in determining the pickup and dropout voltages. The action of the indicator depends on the voltage level and the direction of voltage change, and is best explained by referring to Figure 4.

The calibration potentiometers mentioned in the following procedures are of the multi-turn type for excellent resolution and ease of setting. For catalog series 211 units, the 18 point extender board provides easier access to the calibration pots. If desired, the calibration potentiometers can be resealed with a drop of nail polish at the completion of the calibration procedure.

Setting Pickup and Dropout Voltages:
Pickup may be varied between the fixed taps by adjusting the pickup calibration potentiometer R27. Pickup should be set first, with the dropout tap set at 99x (60x on "low dropout units"). Set the pickup tap to the nearest value to the desired setting. The calibration potentiometer has approximately a $+/-5 x$ range. Decrease the voltage until dropout occurs, then check pickup by increasing the voltage. Readjust and repeat until pickup occurs at precisely the desired voltage.

Potentiometer R 16 is provided to adjust dropout. Set the dropout tap to the next lower tap to the desired value. Increase the input voltage to above pickup, and then lower the voltage until dropout occurs. Readjust R16 and repeat until the required setting has been made.

Setting Time Delay:
Similarly, the time delay may be adjusted higher or lower than the values shown on the time-voltage curves by means of the time delay calibration potentiometer R41. On the type 27 N , time delay is initiated when the voltage drops from above the pickup value to below the dropout value. On the type 59 N , timing is initiated when the voltage increases from below dropout to above the pickup value. Referring to Fig. 4, the relay is "timing out" when the led indicator is lighted.

External Resistor Values: The following resistor values may be used when testing 411 series units. Connect to rear connection points $1 \& 9$.

Relays rated 48/125 vdc: 5000 ohms; (-HF models with harmonic filter 4000 ohms) $48 / 110$ vdc: 4000 ohms; (-HF models with harmonic filter 3200 ohms)
250 vdc: 10000 ohms; (-HF models with harmonic filter 9000 ohms) 250 vdc: 10000 ohms; (-HF models with harmonic filter 9000 ohms) 220 vdc: 10000 ohms; (-HF models with harmonic filter 9000 ohms)

Calculation No.	8982-13-1
Revision	005
Attachment:	A
Page A71	of A72

ABB Power Transmission Inc.
Protective Relay Division
35 N . Snowdrift Rd.


Figure 8: Typical Test Connections

T1, T2	Variable Autotransformers	( 1.5 amp rating)
T3	Filament Transformer	
$V$	Accurate AC Voltmeter	(1 amp secondary)



Figure 9: AC Test Source Arrangement

These instructions do not purport to cover all details or variations in equipment, nor to provide for every possible contingency to be met in conjunction with installation, operation, or maintenance. Should particular problems arise which are not covered sufficiently for the purchaser's purposes, the matter should be referred to Asea Brown Boveri.
Calculation No. $\frac{8982-13-19-6}{005}$

Revision
Attachment:
Page A72

## ATTACHMENT B

Fluke 45 Dual Display Multimeter User's Manual, Appendix A

## Appendix A Specifications

## Introduction

Appendix A contains the specifications of the Fluke 45 Dual Display Multimeter.
These specifications assume:

- A 1-year calibration cycle
- An operating temperature of $18^{\circ} \mathrm{C}$ to $28^{\circ} \mathrm{C}\left(64.4^{\circ} \mathrm{F}\right.$ to $\left.82.4^{\circ} \mathrm{F}\right)$
- Relative humidity not exceeding $90 \%$ (non-condensing) ( $70 \%$ for $1,000 \mathrm{k} \Omega$ range
Accuracy is expressed as + (percentage of reading + digits).
Display Counts and Reading Rates

Rate	Readings per Second	Full Range Display Counts
Slow	2.5	$99,999^{*}$
Medium	5	30,000
Fast	20	3,000
* Ohms full range will typically be 98,000 counts		

RS-232 and IEEE-488 Reading Transfer Rates

Rate	Reading Per Second		
	Internal Trigger   Operation (TRIGGER 1)	Internal Trigger Operation   (TRIGGER 4)	Print Mode Operation   (Print set at 1)
	2.5	1.5	2.5
Medium	4.5	2.4	5.0
Fast	4.5	3.8	13.5

## Response Times

Refer to Section 4 for detailed information.
Calculation No. $\frac{8982-13-19-6}{005}$
Revision $\frac{\text { A-1 }}{0}$
Attachment: $\frac{\mathrm{B}}{\text { Page B3 of B12 }}$

DC Voltage

Range	Resolution			Accuracy	
	Slow	Medium	Fast	$(6$ Months $)$	$(1$ Year)
300 mV	-	$10 \mu \mathrm{~V}$	$100 \mu \mathrm{~V}$	$002 \%+2$	$0.025 \%+2$
3 V	-	$100 \mu \mathrm{~V}$	1 mV	$0.02 \%+2$	$0.025 \%+2$
30 V	-	1 mV	10 mV	$0.02 \%+2$	$0.025 \%+2$
300 V	-	10 mV	100 mV	$0.02 \%+2$	$0.025 \%+2$
1000 V	-	100 mV	1 V	$0.02 \%+2$	$0.025 \%+2$
100 mV	$1 \mu \mathrm{~V}$	-	-	$0.02 \%+6$	$0.025 \%+6$
1000 mV	$10 \mu \mathrm{~V}$	-	-	$0.02 \%+6$	$0.025 \%+6$
10 V	$100 \mu \mathrm{~V}$	-	-	$0.02 \%+6$	$0.025 \%+6$
100 V	1 mV	-	-	$0.02 \%+6$	$0.025 \%+6$
1000 V	10 mV	-	-	$0.02 \%+6$	$0.025 \%+6$

## Input Impedance

$10 \mathrm{M} \Omega$ in parallel with $<100 \mathrm{pF}$
Note
In the dual display mode, when the volts ac and volts dc functions are selected, the $10 \mathrm{M} \Omega \mathrm{dc}$ input divider is in parallel with the $1 \mathrm{M} \Omega$ ac divider.

## Normal Mode Rejection Ratio

$>80 \mathrm{~dB}$ at 50 Hz or 60 Hz , slow and medium rates
$>54 \mathrm{~dB}$ for frequencies between $50-440 \mathrm{~Hz}$, slow and medium rates
$>60 \mathrm{~dB}$ at 50 Hz , fast rate (Note: Fast rate has no filtering)
Maximum Allowable AC Voltage While Measuring DC Voltage or (AC + DC) Voltages

Range		Max Allowable Peak AC   Voltage	Peak Normal Mode Signal	
	NMRR* $>80 \mathrm{~dB} \dagger$	NMRR $>60 \mathrm{~dB} \dagger$		
300 mV	100 mV	15 V	15 V	15 V
3 V	1000 mV	15 V	15 V	15 V
30 V	10 V	1000 V	50 V	300 V
300 V	100 V	1000 V	50 V	300 V
1000 V	1000 V	1000 V	200 V	1000 V

* NMRR is the Normal Mode Rejection Ratio
$\dagger$ Normal Mode Rejection Ratio at 50 Hz or $60 \mathrm{~Hz} \pm 0.1 \%$


## Common Mode Rejection Ratio

$>90 \mathrm{~dB}$ at do, 50 or 60 Hz , ( $1 \mathrm{k} \Omega$ unbalanced, medium and slow rates)
Calculation No. $\frac{8982-13-19-6}{005}$
Revision $\frac{\mathrm{B}}{\text { Attachment: } \frac{\mathrm{B}}{\mathrm{B} 12}}$
Page

## Maximum Input

1000 V dc or peak ac on any range

## True RMS AC Voltage, AC-Coupled

Range	Resolution		
	Slow	Medium	Fast
300 mV	-	$10 \mu \mathrm{~V}$	$100 \mu \mathrm{~V}$
3 V	-	100 V	1 mV
30 V	-	1 mV	10 mV
300 V	-	10 mV	100 mV
750 V	-	100 mV	1 V
100 mV		-	-
1000 mV		-	-
10 V	$1 \mu \mathrm{~V}$	-	-
100 V	$10 \mu \mathrm{~V}$	-	-

## Accuracy

Frequency	Linear Accuracy			dB Accuracy		Power*	Max   Input at   Upper   Freq
	Slow	Medium	Fast	Slow/Med	Fast		
$20-50 \mathrm{~Hz}$	$1 \%+100$	$1 \%+10$	$7 \%+2$	0.15	0.72	$2 \%+10$	750 V
$50 \mathrm{~Hz}-10 \mathrm{kHz}$	$0.2 \%+100$	$0.2 \%+10$	$0.5 \%+2$	0.08	0.17	$0.4 \%+10$	750 V
$10-20 \mathrm{kHz}$	$0.5 \%+100$	$0.5 \%+10$	$0.5 \%+2$	0.11	0.17	$1 \%+10$	750 V
$20-50 \mathrm{kHz}$	$2 \%+200$	$2 \%+20$	$2 \%+3$	0.29	0.34	$4 \%+20$	400 V
$50-100 \mathrm{kHz}$	$5 \%+500$	$5 \%+50$	$5 \%+6$	0.70	0.78	$10 \%+50$	200 V

*Error in power mode will not exceed twice the linear accuracy specification
Accuracy specifications apply within the following limits, based on reading rate:
Slow Reading Rate: Between 15,000 and 99,999 counts (full range)
Medium Reading Rate: Between 1,500 and 30,000 counts (full range)
Fast Reading Rate: Between 150 and 3,000 counts (full range)

## Decibel Resolution

Resolution	
Slow \& Medium	Fast
0.01 dB	0.1 dB

$\qquad$

## Decibel Reference Resistance

$8000 \Omega$	$500 \Omega$	$124 \Omega$	$8 \Omega \dagger$
$1200 \Omega$	$300 \Omega$	$110 \Omega$	$4 \Omega \dagger$
$1000 \Omega$	$250 \Omega$	$93 \Omega$	$2 \Omega \dagger$
$900 \Omega$	$150 \Omega$	$75 \Omega$	
$800 \Omega$	$135 \Omega$	$50 \Omega$	
$600 \Omega^{*}$	$125 \Omega$	$16 \Omega \dagger$	
$*$	Default resistance		
$\dagger$	Reading displayed in watts (POWER)		

## Input Impedance

$1 \mathrm{M} \Omega$ in parallel with $<100 \mathrm{pF}$
Maximum Crest Factor
3.0

## Common Mode Rejection Ratio

$>60 \mathrm{~dB}$ at 50 Hz or 60 Hz ( $1 \mathrm{k} \Omega$ unbalanced medium rate)

## Maximum Input

750 V rms, 1000 V peak
2 X 107 Volt-Hertz product on any range, normal mode input
$1 \times 106$ Volt-Hertz product on any range, common mode input

## (AC + DC) Voltage Accuracy

Total Measurement Error will not exceed the sum of the separate ac and dc accuracy specifications, plus 1 display count. Refer to the table under "Maximum Allowable AC Voltage while Measuring DC Voltage or (AC + DC) Voltages" located on page A3.

## Note

When measuring ac $+d c$, (or any dual display combination of ac and $d c$ ) in the fast reading rate, the Fluke 45 may show significant reading errors. This results from a lack of filtering on the dc portion of the measurement for the fast reading rate. To avoid this problem, use only the "slow" and "medium" reading rates for ac + dc or ac and dc combinations.

## Maximum Frequency of AC Voltage Input While Measuring AC Current

When the meter makes ac current and ac voltage measurements using the dual display, the maximum frequency of the voltage input is limited to the maximum frequency of the current function. For example, if you are making an ac current measurement on the 10 A range, the maximum frequency of the voltage input must be less than 2 kHz .
Calculation No. $\frac{8982-13-19-6}{005}$

Revision | Con |
| :--- |
| Attachment: |
| Page B6 of B12 |

## DC Current

Range	Resolution			Accuracy	Burden   Voltage
	Slow	Medium	Fast		
30 mA	-	$1 \mu \mathrm{~A}$	$10 \mu \mathrm{~A}$	$0.05 \%+3$	0.45 V
100 mA	-	$10 \mu \mathrm{~A}$	$100 \mu \mathrm{~A}$	$0.05 \%+2$	1.4 V
10 A	-	1 mA	10 mA	$0.2 \%+5$	0.25 V
10 mA	100 nA	-	-	0.05\% +	0.14 V
100 mA	$1 \mu \mathrm{~A}$	-	-	$50.05 \%+5$	1.4 V
10 A	$100 \mu \mathrm{~A}$	-	-	0.2\% + 7	0.25 V

## Maximum Input

To be used in protected, low energy circuits only, not to exceed 250 V or 4800 Volt-Amps. (IEC 664 Installation Category II.)
$\mathrm{mA} \quad 300 \mathrm{~mA} \mathrm{dc}$ or ac rms. Protected with a $500 \mathrm{~mA}, 250 \mathrm{~V}$, IEC 127 -sheet 1 , fast blow fuse

A $\quad 10 \mathrm{~A} \mathrm{dc}$ or ac rms continuous, or 20 A dc or ac rms for 30 seconds maximum. Protected with a $15 \mathrm{~A}, 250 \mathrm{~V}, 10,000 \mathrm{~A}$ interrupt rating, fast blow fuse.

Note
Resistance between the COM binding post and the meter's internal measuring circuits is approximately $.003 \Omega$.

## AC Current

Range	Resolution			Burden   Voltage *
	Slow	Medium	Fast	
10 mA	100 nA	-	-	0.14 V
30 mA	-	$1 \mu \mathrm{~A}$	$10 \mu \mathrm{~A}$	0.45 V
100 mA	$1 \mu \mathrm{~A}$	$10 \mu \mathrm{~A}$	$100 \mu \mathrm{~A}$	1.4 V
10 A	$100 \mu \mathrm{~A}$	1 mA	10 mA	0.25 V

[^0]$\qquad$ B
$\qquad$ of

Accuracy

Range	Frequency		Accuracy		
		Slow	Medium	Fast	
$\mathrm{mA}($ To 100 mA$)$	$20-50 \mathrm{~Hz}$	$2 \%+100$	$2 \%+10$	$7 \%+2$	
$\mathrm{~mA}($ To 100 mA$)$	$50 \mathrm{~Hz}-10 \mathrm{kHz}$	$0.5 \%+100$	$0.5 \%+10$	$0.8 \%+2$	
$\mathrm{~mA}($ To 100 mA$)$	$10-20 \mathrm{kHz}$	$2 \%+200$	$2 \%+20$	$2 \%+3$	
$\mathrm{~A}(1-10 \mathrm{~A})$	$20-50 \mathrm{~Hz}$	$2 \%+100$	$2 \%+10$	$7 \%+2$	
$\mathrm{~A}(1-10 \mathrm{~A})$	$50 \mathrm{~Hz}-2 \mathrm{kHz}$	$1 \%+100$	$1 \%+10$	$1.3 \%+2$	
$\mathrm{~A}(0.5$ to 1 A$)$	$20-50 \mathrm{~Hz}$	$2 \%+300$	$2 \%+30$	$7 \%+4$	
$\mathrm{~A}(0.5$ to 1 A$)$	$50 \mathrm{~Hz}-2 \mathrm{kHz}$	$1 \%+300$	$1 \%+30$	$1.3 \%+4$	

[^1]
## Maximum Crest Factor

3.0

## Maximum Input

To be used in protected, low energy circuits only, not to exceed 250 V or 4800 Volt-Amps. (IEC 664 Installation Category II.)
$\mathrm{mA} \quad 300 \mathrm{~mA}$ dc or ac rms. Protected with a $500 \mathrm{~mA}, 250 \mathrm{~V}$, IEC 127 -sheet 1, fast blow fuse

A $\quad 10 \mathrm{Adc}$ or ac rms continuous, or 20 Adc or ac rms for 30 seconds maximum. Protected with a $15 \mathrm{~A}, 250 \mathrm{~V}, 10,000 \mathrm{~A}$ interrupt rating, fast blow fuse.

Note
Resistance between the COM binding post and the meter's internal measuring circuits is approximately $.003 \Omega$.
Calculation No. $\frac{8982-13-19-6}{005}$
Revision $\frac{\mathrm{B}}{\text { Attachment: } \frac{\mathrm{B}}{\mathrm{B}} \mathrm{of} \mathrm{B12}}$
Page B8

## Ohms

Range	Resolution			Accuracy	Typical Full Scale Voltage	Max Current Through the Unknown
	Slow	Medium	Fast			
$300 \Omega$	-	10 ms 2	100 MS 2	$0.05 \%+2+0.0282$	0.25	1 mA
$3 \mathrm{k} \Omega$	-	$100 \mathrm{M} \Omega$	$1 \Omega$	$0.05 \%+2$	0.24	$120 \mu \mathrm{~A}$
$30 \mathrm{k} \Omega$	-	$1 \Omega$	$10 \Omega$	$0.05 \%+2$	0.29	$14 \mu \mathrm{~A}$
$300 \mathrm{k} \Omega$	-	$10 \Omega$	$100 \Omega$	$0.05 \%+2$	0.29	$1.5 \mu \mathrm{~A}$
$3 \mathrm{M} \Omega$	-	$100 \Omega$	$1 \mathrm{k} \Omega$	$0.06 \%+2$	0.3	$150 \mu \mathrm{~A}$
$30 \mathrm{M} \Omega$	-	$1 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$0.25 \%+3$	2.25	$320 \mu \mathrm{~A}$
$300 \mathrm{M} \Omega^{*}$	-	$100 \mathrm{k} \Omega$	$1 \mathrm{M} \Omega$	2\%	2.9	$320 \mu \mathrm{~A}$
$100 \Omega$	$1 \mathrm{~m} \Omega$	-	-	$0.05 \%+8+0.02 \Omega$	0.09	1 mA
$1000 \Omega$	$10 \mathrm{~m} \Omega$	-	-	$0.05 \%+8+0.02 \Omega$	0.10	$120 \mu \mathrm{~A}$
$10 \mathrm{k} \Omega$	$100 \mathrm{~m} \Omega$	-	-	$0.05 \%+8$	0.11	$14 \mu \mathrm{~A}$
$100 \mathrm{k} \Omega$	$1 \Omega$	-	-	0.05\% + 8	0.11	$1.5 \mu \mathrm{~A}$
$1000 \mathrm{k} \Omega$	$10 \Omega$	-	-	0.06\% + 8	0.12	$150 \mu \mathrm{~A}$
$10 \mathrm{M} \Omega$	$100 \Omega$	-	-	$0.25 \%+6$	1.5	$150 \mu \mathrm{~A}$
$100 \mathrm{M} \Omega^{*}$	$100 \mathrm{k} \Omega$	-	-	$2 \%+2$	2.75	$320 \mu \mathrm{~A}$

*Because of the method used to measure resistance, the $100 \mathrm{M} \Omega$ (slow) and $300 \mathrm{M} \Omega$ (medium and fast) ranges cannot measure below 3.2 MS and $20 \mathrm{M} \Omega$, respectively. "UL" (underload) is shown on the display for resistances below these nominal points, and the computer interface outputs " $+1 \mathrm{E}-9$ ".

## Open Circuit Voltage

3.2 V maximum on the $100 \Omega, 300 \Omega, 30 \mathrm{M} \Omega, 100 \mathrm{M} \Omega$, and $300 \mathrm{M} \Omega$ ranges, 1.5 V maximum on all other ranges.

## Input Protection

500 V dc or rms ac on all ranges

## Diode Test/Continuity

	Maximum Reading	Resolution
Slow	999.99 mV	$10 \mu \mathrm{~V}$
Medium	2.5 V	$100 \mu \mathrm{~V}$
Fast	2.5 V	1 mV

## Test Current

Approximately 0.7 mA when measuring a forward biased junction.

## Audible Tone

Continuous tone for continuity. Brief tone for normal forward biased diode or semiconductor junction.

Calculatio	8982
Revision	005
Attachment:	B
Page B9	of B12

## Open Circuit Voltage

3.2 V maximum

Continuity Capture Time
50 us maximum, 10 us typical

## Input Protection

500 volts dc or rms ac

## Note

When the meter is set to measure frequency and there is no input signal (i.e., input terminals are open), the meter may read approximately 25 kHz (rather than the expected zero). This is due to internal capacitive pickup of the inverter power supply into the high-impedance, input circuitry. With source impedance of $<2 \mathrm{k} \mathrm{\Omega}$, this pickup will not affect the accuracy or stability of the frequency a reading.

## Frequency

Frequency Range
5 Hz to $>1 \mathrm{MHz}$
Applicable Functions
Volts ac and Current AC

Range	Resolution		Accuracy
	Slow \& Medium	Fast	
1000 Hz	.01 Hz	.1 Hz	$05 \%+2$
10 kHz	.1 Hz	1 Hz	$.05 \%+1$
100 kHz	1 Hz	10 Hz	$.05 \%+1$
1000 kHz	10 Hz	100 Hz	$.05 \%+1$
1 MHz	100 Hz	1 kHz	Not Specified
${ }^{*}$ Specified to 1 MHz , but will measure above 1 MHz.			

Sensitivity of AC Voltage

Frequency	Level (sine wave)
$5 \mathrm{~Hz}-100 \mathrm{kHz}$	30 mV rms
$100 \mathrm{kHz}-300 \mathrm{kHz}$	100 mV rms
$300 \mathrm{kHz}-1 \mathrm{MHz}$	1 VV rms
Above 1 MHz	Not specified

## Sensitivity Level of AC Current

Frequency	Input	Level
$5 \mathrm{~Hz}-20 \mathrm{kHz}$	100 mA	$>3 \mathrm{~mA} \mathrm{~ms}$
$45 \mathrm{~Hz}-2 \mathrm{kHz}$	10 A	$>3 \mathrm{Arms}$

## Note

When the meter is set to measure frequency and there is no input signal (i.e., the input terminals are open), the meter may read approximately 25 kHz (rather than zero). This is due to internal capacitive pickup of the inverter power supply into the high-impedance, input circuitry. With source impedance of $<2 \mathrm{kS}$, this pickup will not affect the accuracy or stability of the frequency reading.

## Environmental

Warmup time	1 hour to rated specifications for warmup < 1 hour, add $0.005 \%$ to all accuracy specifications.
Temperature Coefficient	$<0.1$ times the applicable accuracy specification per degree C for $0^{\circ} \mathrm{C}$ to $18^{\circ} \mathrm{C}$ and $28^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $64.4^{\circ} \mathrm{F}$ and $82.4^{\circ} \mathrm{F}$ to $122{ }^{\circ} \mathrm{F}$ )
Operating Temperature	$0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.122^{\circ} \mathrm{F}\right)$
Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
	Elevated temperature storage of battery will accelerate battery self-discharge. Maximum storage time before battery must be recharged:
	$20^{\circ} \mathrm{C}-25^{\circ} \mathrm{C} \quad 1000$ days
	$50^{\circ} \mathrm{C} \quad 180$ days
	$70^{\circ} \mathrm{C} \quad 40$ days
Relative Humidity (non-condensing)	To $90 \%$ at $0^{\circ} \mathrm{C}$ to $28^{\circ} \mathrm{C}\left(32-82.4{ }^{\circ} \mathrm{F}\right)$,
	To $80 \%$ at $28^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}\left(82.4-95^{\circ} \mathrm{F}\right)$,
	To $70 \%$ at $35^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}\left(95^{\circ} \mathrm{F}-122^{\circ} \mathrm{F}\right.$ ) except to $70 \%$ at $0^{\circ} \mathrm{C}$ to 50 ${ }^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}-122^{\circ} \mathrm{F}\right)$ for the $1000 \mathrm{k} \Omega, 3 \mathrm{M} \Omega, 10 \mathrm{M} \Omega, 30 \mathrm{M} \Omega, 100 \mathrm{M} \Omega$, and $300 \mathrm{M} \Omega$ ranges.
Altitude	Operating 0 to 10,000 feet
	Non-operating 0 to 40,000 feet
Electromagnetic Compatibility	In an RF field of $1 \mathrm{~V} / \mathrm{m}$ on all ranges and functions: Total Accuracy $=$ Specified Accuracy $+0.4 \%$ of range. Performance above $1 \mathrm{~V} / \mathrm{m}$ is not specified
Vibration	$3 \mathrm{G} @ 55 \mathrm{~Hz}$
Shock	Half sine 40 G. Per Mil-T- 28800D, Class 3, Style E. Bench Handling. Per Mil-T-28800D, Class 3.

Calculation No. $\frac{8982-13-19-6}{005}$
Revision $\frac{\text { A-9 }}{005}$
Attachment: $\frac{B}{\text { B11 of } B 12}$
Page

## General

Common Mode Voltage	1000 V dc or peak ac maximum from any input to earth
Size	9.3 cm high, 21.6 cm wide, 28.6 cm deep ( 3.67 in high, 8.5 in wide, 11.27 in deep)
Weight	Net, 2.4 kg ( 5.2 lbs ) without battery;   $3.2 \mathrm{~kg}(7.0 \mathrm{lbs})$ with battery;   Shipping, $4.0 \mathrm{~kg}(8.7 \mathrm{lbs})$ without battery;   4.8 ( 10.5 lbs ) with battery
Power Standards	90 V to 264 V ac (no switching required), 50 Hz and $60 \mathrm{~Hz}<15 \mathrm{VA}$ maximum
	Complies with: IEC 348, UL1244, CSA Bulletin 566B
RS-232-C	EMC: Part 15 subpart J of FCC Rules, and VDE 0871.
	Baud rates: 300, 600,1200,2400,4800 and 9600
	Odd, even or no parity
	One stop bit
Options	
Battery (Option -01 K)	Type 8 V , Lead-Acid
	Operating Time 8 hours (typical). $\#$ lights when less than    $1 / 2$ hour of battery operation remains.    Meter still meets specifications.
	Recharge Time   16 hours (typical) with meter turned off and plugged into line power. Battery will not charge when meter is turned on.
IEEE-488 (Option -05K)	Capability codes SH1, AH1, T5, L4, SRI, RL1, PP0, DC1,    DT1, E1, TED, LEO and C0
	External Trigger Input
	VIH $\quad 1.35 \mathrm{~V}$ minimum
	VIL $\quad 1.25 \mathrm{~V}$ maximum
	Input Threshold Hysteresis 0.6 V minimum

Calculation No. $\frac{8982-13-19-6}{005}$

Revision
Attachment:
Page B12
P of
B12

## ATTACHMENT C

S\&L Interoffice Memorandum from J. F. White<br>"Seismic Qualification of ITE/ABB Undervoltage Relay Model 27N, Series 411T"

INTEROFFICE MEMORANDUM


Calculation No. $\frac{8982-13-19-6}{005}$
Revision $\frac{\mathrm{C}}{00}$
Attachment: $\quad$ of C 2
Page C 2

## ATTACHMENT D

## GE Document 7910 Dated 6-20-77


(Phere 1234s73)
Fig. 1. Type JVM-3 veltege Inamformer (untused)

(Pinve 1234974)
Fg. 2 Type JVM-3 volmege muasformer (onotuen decisa)

(Pume 123407s)
Pig. 3 Type SVM-S volunge mateformet (no-fves clesign)

APPLICA TION-The Type JVM- 3 voitage transformer is designed for indoor service and is suitable for operating meters, instruments, relays and control devices.
CONSTRUCTION AND INSULATION-See Section 7907, item 1.4. CORE-See Section 7907. item 2.3.
Colls-Enamel insulated wire is used in the primary and secondary coils. The primary is wound and cast in epoxy resin. The secondary is inside the primary nex: to the core.

## DIMENSIONS

Deminuan	Cumanaminman		
	Halicm	Lemon	whan
Untued	S'\%	10\%	6\%
wrun amo primery tree.	7\%	10\%	*\%
Wmin mop iommery trien.	7\%	10\%	61\%.0.

DATA TABLE (For Pricing Information, see Section 7901)


WITH ONE PRIMARY FUSE (Noutral toominal Insulation to groumd- 2.5 KvyI

2400	20.1	$763 \times 21042$	750	300	0.3 W, X, M, Fi 1.2 z	$0.3 \mathrm{w}, \mathrm{X}_{1} 1.2 \mathrm{~m}$	0.3 W, X, M, Y', 1.2 Z	210		2400	1	9P604asogl	37	
2400	20:1	$643 \times 5$	750	300	$0.3 w, x, M, r_{i} 1.2 z$	$\underline{\sim}$	$03 W^{\prime}, x^{\prime}, M^{\prime} \chi^{\prime} 1.2 \frac{2}{2}$	1100			1	\%proticoot	37	
4200	35:1	$643 \times 91$	750	300	O.3 W, X M Y $\mathrm{H}_{1} 1.22$	$0.3 \mathrm{w}, \mathrm{X}, 1.2 \mathrm{Mr}$	O5 w, $\chi^{\prime}, M, v_{1} 1.2 \frac{2}{2}$	4200			4	905	37	3
4800	40.1	$643 \times 96$	750	300	$0.3 w, x, M, Y, 1.22$	0.3 w, $\mathrm{x}_{1} 1.2 \mathrm{my}$	O3 w, x, M, Y'il2	400	Tany		0.5	cotrews	37	
WITH TWO Petmant \%UsES														
2400	10, 1	$703 \times 21040$	750	500	0.3W, X M, Y: 1.2 z	$0.3 \mathrm{~W} \mathrm{X}_{4} 1.2 \mathrm{M}^{(1)}$		2100	$\Delta *$	2400		\$promas007	38	
4200	35:1	643x97	750	500 300	$0.3 W \mathrm{M}$ M $\mathrm{y}_{1} 1.22$	9.3 $w, x, 1.2 m y$	$03 \mathrm{w}, \mathrm{x}^{\prime}, \mu^{\prime} \mathrm{r}, 1 \frac{2}{2}$	4200	$\Delta \cdots$	2400	0.5	colabeos	38	
4800	40.1	$843 \times 97$	750	300	$0.3 W, X, M, Y: 1.2 \%$	0.1 W, 成 1.2 My	O3 w, x, Mr, rilsz	$4{ }^{100}$	$\Delta{ }^{-1}$	4100	05	0		

- The pnme symbol (') is used to signify that these burdens do not correspond to standard ANSI definitions.
- On transformers with one primary fuse the neutral terminal insulation 10 ground is 2500 voits.
OFor contunuous operation. the transformer-rated primary voltage should not be exceeded by more than $10 \%$ Under emergency
conditions, overvoltage must be limited to 1.25 times the transform primary-voltage rating.
* For Y connections, it is preferred practice to connect one lead from ear voltage trangformer directly to the grounded neutral. using a fuse on in the line side of the primary. By this comnection a transformer $c:$ never be "alive" from the line side by reasom of a blown fuse on $t$ : grounded side.
June $20.1977 \quad 2400$ to 4800 Volts $\quad 50.60 \mathrm{~Hz} \quad$ Bill-60 Kv

RY TERMINALS-The primary ter..hous on the unfused models consist of tapped holes in the center of a flat boss with lock washer and screw. On the two-fuse models, both terminals are bolts attached directly to the fuse supports and provided with lock washers and nuts. On the one-fuse design the line terminal is on the fuse support and the neutral terminal is a stud protruding from the back a short distance above the base plate. This stud is insulated
from the base plate to permit primary insulation-resistance testing at voltages up to 2500 volts.

FUSES-Current-limiting fuses, Type EJ-1, are used.

SECONDARY TERMINALS-The mecondary terminals are soldertess champ type. The terminal cover is made of transparear
plastic. Provision is made for sealing the cover.

POLARTP-See Section 7907, item 6.2
NAMEPLATE-See Section 7907, item 5.3.
BASE AND MOUNTHNO-The base is made of beary steel plate and is provided with holes and slots adapting it for mounting by either bolts or pipe clampa.

DIMENSIONS


Fig. 4. Dimencions of (NMM3 (untused)

if. ©. Dimensions of JVM-3 tonefuse designl. Cot. Me's. 643xes



Fig. 3. Dimonelons of Nim-3 Cen Mole 763x21042 and $763 \times 21040$. (tee Fine 4 for hese)



$\qquad$
$\qquad$ of $\qquad$

## ATTACHMENT E

## Telecon Between S. Hoats (ABB) and A. Runde (S\&L)

|  | Date $1-23-92$ | Time 9:30 A |
| :---: | :---: | :---: | :---: |
| Person Called |  |  |
| Steve Moats | Company |  |
| Person Calling | ABB (215) 395-7333 |  |
| A. J. Ronde | Company |  |
| Project | S\&L EAD (312) 269 6799 |  |
| Dresden Unit 2 | Project No. |  |

## Subject Discussed

Repeatability of the ITE-27N Undervoltage Relay

Mr. Hoats provided the following information:

- The tolerances listed in IB 7.4.1.7-7 Issue $D$ do not include an considerations for instrument drift. However, no drift error i. expected if the relay is calibrated at reasonable intervals.
- The absolute range of repeatability over temperature range is twice the published values. For example, the absolute range of repeatability over a temperature range of $0^{\circ}$ to $55^{\circ} \mathrm{C}$ for a relay with a harmonic filter is $2 \times 0.75 \%$ or $1.5 \%$ based on the published data.
- The published tolerances are generally twice the tested tolerances, so they are quite conservative.
- The information on the attached sheets from Cliff Downs of ABB concerning the linearity of the published tolerances over the identified ranges is applicable to both the 27D and the 27 N relay.
- Al Wetter of CECO may have further information regarding the 27N relay tolerances by test methods.

NOTE: THIS CONSTITUTES OUR UNDERSTANDING OF THE DISCUSSIONS. IF ABOVE WILL BE ASSUMED CORRECT.

CC:
Steve Moats - ABB

File

()

AJR:lsc
C: \EADMAS-TELE-AJR
Calculation No. $\frac{8982-13-19-6}{005}$
Revision $\frac{E}{2}$
Attachment:
Page E2 of E2

## ATTACHMENT F

Telecon Between C. Downs (ABB) and H. Ashrafi (S\&L)


OCt c
Mr y y y mm Fry

THIS DOCUMENT (REDUCED SAMPLE ABOVE) WAS SENT

## ** COUNT **

\# 3
** ( $\operatorname{sEND}$ **

NC	REMOTE STATION I. D.	START TIME	DURATION	\#PAGES	COMMENT
1	917085157181	$4-1-9272: 41 P M$	$1.39^{\circ}$	3	

XEROX TELECOPIER 7021

Calculation No 8982-13-19-6
Revision 005

Attachment: $\qquad$ F

Page


Summary of Discussion, Decisions, and Commitments:
Based on earlier conversations, it was understood by S\&L that the deviation in the relay set point of ITE 27N Relays (from the calibration point) is linear over an operating temperature range of $0-55^{\circ} \mathrm{C}$. It was also understood that the actual pickup or dropout voltage is lower than the set point value if the operating temperature is lower than the temperature at which the relay was calibrated. similarly, the actual pickup or dropout voltage is higher with higher than calibration temperature.

It was later noted from the type test report (Page 6 of RC-6004) that this trend is not +rue for ITE 27 N Relays with Harmonic Filter Units. The actual pickup or dropout voltage decreased with increased operating temperature and vice versa.

Mr. Cliff Downs informed me that this inverse relationship between pickup or dropout voltage and operating temperature is true because of the presence of the Harmonic Filter Unit in the ITE 27 N Relays. He pointed out that the test results for the ITE 27N Relay without Harmonic Filters (on top of page 6 of RC 6004) does show direct relationship between pickup or dropout voltage and the operating temperature. He, therefore, mentioned that the information provided during earlier conversations was probably related to Relays without Harmonic Filters.

He suggested that, while it can be assumed that the deviation is linear over the operating temperature range of $0-55^{\circ} \mathrm{C}$, the inverse relationship between pickup or dropout voltage and operative temperature shovid be considered in any calculation where ITE 27N Relays with Harmonic Filters are involved.

```
Note: THIS CONSTITUTES MY UNDERSTANDING OF OUR DISCUSSION.
 PLEASE CONTACT ME AT 312/269-2041 IF YOU HAVE ANY COMMENTS
 PERTAINING TO THE ACCURACY OF THE ABOVE SUMMARY.
```

CC: C. Downs-ABB
File: Relays
(HA) kam $7 B W$
A: 1 Relays.HA



From: STEVEN E. HOATS

ABB Power T\&D Co. Protective Relay Div. 7036 Snowdrift Rd. Allentown, PA 18106 Telephone 2153957333 Telefax 2153951055

Date: 3/16/92 Total pages: 2
To: Andy Rundle
Reference: 87 N Relay performance
cc: $\qquad$

Andy.
Please find in the attachment the TUPE TEST certificate for our 27 N clay. These are the actual test cesuits from our e laboratory tests as jour can see the results of thine tests are typically Doubled when published in our I.L.'s

I hope this document will Help satiny
your problems.

$\qquad$
$\qquad$
$\qquad$

Calculation No. 8982-13-19-6
Revision
 005
Attachment: F $\qquad$

Temperature Tests:

Temperature	Pickup   Voltage	Variation from Room Temperature	Dropout Voltage	Variation from Room Temperature
$25^{\circ} \mathrm{C}$	$100.04 v$	---	$99.95 v$	---
0	100.04	$0.00 \%$	99.94	-0.01x
-20	100.04	$0.00 \%$	99.94	-0.01x
40	100.11	+0.07 \%	99.93	-0.02\%
55	100.15	+0.11 \%	99.96	+0.01\%
70	100.21	+0.17 \%	100.10	+0.15\%


Temperature	Time Delay	Variation from Room Temperature
$25^{\circ} \mathrm{C}$	0.997 sec	-----
0	0.996	-0.1\%
-20	0.993	-0.4x
+40	0.998	+0.1x
+55	1.007	+1.0\%
+70	1.013	+1.6\%

Results of Test: relay characteristics are stable with temperature and within published specifications.

Relay Tested: 211 Date of Test: 10/15/82
Tester: W.C. Martin

Temperature Test with Harmonic Filter Option:

	Pickup	Variation fiom	Dropout	Variation from
Temperature	Voltage	Room Temperature	Voltage	Room Temperature

Results of Test: relay operation is stable with temperature and within published specifications.

Relay Tested: 211T0175-HF Date of Test: 3/6/84
Tester: C.L. Downs



subject Diccumaed：Effect of Temperature on the ITE－27\％
Relays with Harmonic Filter Unite

Sw：maxy of Discursion，Decisions，and Commamernes
Based on earlier conversations，it wan understood by stilL that the deviation in the relay aet point of IME 27M Relays（from the calibration point is instar over an operating temperature range of 0－53．C．It mas also understood that the actual pickup or dropout voltage if lower than the set point value if the operating temperature is lower than the temperature at which the relay was calibrated．similarly，the actual pickup or dropout voltage is higher with higher than calibration temperature．

It was later noted from the type test report（Page 6 of Re－6004）that this trend is rot true for ITs 27N Relay with harmonic Filter Unite． the actual pickup or dropout voltage decreased with increased operating temperature and vice verna．

Mr．Cliff Down informed me that this inverse relationship between pickup or dropout voltage and operating temperature is true because of the presence of the Harmonic Filter unit in the Prs 27 M Relays．Et pointed out that the test results for the Irs 27 malay without harmonic Filters （on top of page 6 of re 6004）does show direct relationship between pickup of dropout voltage and the operating temperature．He，therefore， mentioned that the information provided during earlier conversations was probably related to relays without Harmonic Filtarm．

Ha suggested that，while it can be asmumad that the deviation is linear over the operating temperature range of 0－55 ${ }^{\circ} \mathrm{C}$ ，the inverse ralationahip between pickup or dropout voltage and operative temperature should be considered in any calculation where ITI $27 N$ Relay with Harmonic Filters are involved．


Ce：C．DCwEIE－RE：
File：Relays

Calculation No．$\frac{8982-13-19-6}{005}$
Revision $\frac{005}{\text { F }}$
Attachment：- FO
Page F6 of

## ATTACHMENT G

Calculation MLEA 91-014

Revision 005
Attachment: G
Page G1 of G22


January 23, 1992
Serial No. 92-024
Mr. Boris Plkelny
Commonwealth Edison Cumpany
Nuclear Engineering Department
1400 Opus Piace, Suitc 300
Downers Grove, Il. 60515
Subject: Transmittal of Environmental Qualification of Dresden Second Level Undervoluge System and Equipment for RWCU Line Break Environmental Conditions, Dreaden Nuclear Power Station Units 2 and 3, MLEA Calculation MLEA-91-014, Revision 0, dated 1/23/92, System Code 6705

Dear Mr. Pikelny:
Attached is the subject document for use. Please contact us if you have any questions.

## Prepared by:

## mantim noyulus <br> Aanette M. McHugh <br> Senior Project Engineer

Approved by:

C. J. Crane

Project Manager/Manager of Engineering
cc: (per DDL OO20 and Steve Hunsader)
H. Massin (CECO/NED)(Letter Only)
N. Sminh (CECO/NED)(Letter Only)
S. Hunsader (CECO/NED)(Letter Only)
D. Wheeler (CECo/Dresden)(Leller Only)
E. Eenigenburg (CECo/Dresden)(Letter Only)
R. Tyler (CECo/NED)(P.O. Box 767 34FNW)(Tetter Only)

CHRON Syatem
B. Wong (CECoNED)(Letter Only)
F. Petrusich (CECo/Dresden)(Lctter Only)

MLEA Project File M0071
MLEA Serial File (Letter Only)
Calculation No. $\frac{8982-13-19-6}{005}$
Revision $\frac{005}{G}$
Attachment: $\quad \mathrm{G}$
Page G2 of G22


MLEF-103/2
Rev 0

Calculation No.	8982-13-
Revision	005
Attachment:	G
Page G3	of G22


| Calculation No. MEA-A1-014 |
| :--- | :--- |

## TABLE OF CONTENTA

1.0 Purpose of the Evaluation
2.0 Statement of Qualifoation and Surnmary of the Evaluation
3.0 Lint of Reterences
4.0 Qualification Criteria
5.0 Method of Quaticration and Teet Sequence
6.0 Equipment Deacription and Similarity to Tested Equipment
7.0 Safoty Function and Required Operating Tirne
8.0 Qualtied Lite
9.0 Qualicication for Radiation
10.0 Qualificiton for High Temperature Sieam Environments
10.1 Plant Accidert Environmental Protile
10.2 Equipment Performance Characteristics
10.3 Enects of Humidiy
10.4 Accidert Simutation Teeing
10.5 Margin
11.0 Synergintic Effecte
12.0 Mantenance and Surveillance
Autachment 1 - References
$\qquad$G22


### 1.0 Pupoen of the Evelution

The Environmental Qualification (EQ) evalumion cortained herein demonstratee qualificmion for the 4Kvac Second Level Undervoliage Crculty and Equipmert for Dreaden Station 4Kvac Buses 23-1, 24-1, 33-1, and 34-1 for the harsh tempenature and humidiky ernironmental conditions resuking from RWCU line break.

Dresden Station EO Binder EQ-44D, Genaral Electric Swithgear Componerte, Model MC-4.78, Rev. 06 (Ref. 3.10) demonstrates ervironmental quarification in accordance with References 3.1 and 3.2 of the General Electric 4Kvac switchgeer associated whin Drescien Station buses 23-1, 24-1, 33-1, and 34-1 for a pose LOCA radiation exposure of 3.08E+05 rads. Peference 3.17 establashed that the switchgeser associnted with Dresden Station buses 23-1 and 33-1 Located In Environmertal Zone 20 (Reference3.18) are ervironmentally qualified for the harah temperature and humidiay ( $212 \mathrm{~F} / 100 \% \mathrm{RH}$ ) condions resuting from a postulated break in the FWCU piping (Reference 3.5).

The second level undervoltage protection equipment for buses 23-1, 33-1, 24-1 and 34-1 ara located in separate parnals (2252-63, 2253-83, 2252-94, and 2253-84) in Environmental Zona 26 and are also sutject to the harsh temperature and humidiky (212 F/100\% RH) environmert reeuting from the RWCU line break (Ref. 3.r). Reference 3.3 establiahed that the second level undervoltage equipmert for buses 23-1 and 33-1 must not fail in a manner which would prevern closure of the AC powered RWCU isolation valve in the first 40 seconcs after RWCU line break. Reference 3.3 provided a Justification for Continued Operation and determined that failure of the second hevel undervotage equipment is unikehy during the first 40 seconcls of the RWCU line break accident when the break is isclated bu that there is a possiblity that tha long term pertormance of the equipment could be adversely affected by the elvated temperature and humidity conditions resuking from RWCU line break (Reterence 3.5).

Reference 3.7 provided a test plan for HELB simulation stoam testing of the second level undervollage circuiry and equipment. The acceptance crienta for the test was thas the undervoltage relay equipmert must not fail by changing stete during the first minute of the steem expolure. Reference 3.8 contains the results of steam exposure testing which demonstrate that the second level undervoltage equipment does not fail for the one hour duration of the HELB exposert.

MEFFTOSA Hasy	
Calculation No.	8982-13-19-6
Revision	005
Attachment:	G
Page G5	of G22



## 20 gemmant of Oumicetion and Bumney of the Evatition

This calculation demonatrates the qualification of the Dresden second level undervoltage circuitry and components located in environmental zone 26 for the harsh temperature and tumbliy conditions ( $212^{2}$ F/100\% RH) caused by RWCU Ina break (Reterencea.5). The calcutition iderxitise the specitc componerts which are requred to be quarfied for the postuated He $B$ in the RWCU syetem (see section 6 of this calculation). The instatiod componamis are similar (Reterence 3.7) to thowe tested for Hel B condivone as deecribed in Wyle Test Report 17199.1 (Reference 3.8). Qualification for radiation conditione is not required (See secton 9.0).
Calculation No. $\frac{8982-13-19-6}{005}$
Revision $\frac{G}{\text { A }}$
Attachment: $\frac{\mathrm{G}}{\text { Page G6 of } \mathrm{G22}}$


MLEF-109/3
Calculation No. $\frac{8982-13-19-6}{005}$
Revision $\frac{00}{G}$
Attachment: $\frac{G}{\text { Gage G7 of G22 }}$


Summary Repon for Mechanically Equvaien Device Model 47D. (DTT-71-03n)
3.12 ASEA Brown Boveri Report RC-5039-A with AC-5139-A, dated 1/1090, Clane EE Electrical Equipmert Qualmeation, 27N undervoltage Rotey with Appendix "A", Component Aging Evaluations and Appendlx "B", Seimic Summery Report. (DTT-71-032)
*3.13 Agastan Nuchear Environmertal Quatification Teat Pepon on Agestat ECP, EML, and EIR Cortrol Melays by Control Products Division Amerace Corporation Tent Report ES-2000, Rev. A dated 7/11/80. (Containad in CECO EQ filew, Pages 1. 2, 3, and 7 are attached.) (DII 71-045)
3.14 Memorandum from C. Collins (CECo/Dresden) to C. Crane (MLEA) dated September 11, 1991, Subjact: Replacament of 2nd Level Undervolvege Releye Drescien Unit 2. (DTT-71-034)
3.15 Telecopy from C. Collins (CECO/Dresden) to J. Murphy (MLEA) cortaining CECO Requisition No. D66469B, dated 10/1/91, Subjocr: Increase Desaription of Rolmy to Beter Specly the Green Light Emituing Diode \& Duat Proot Bezel \& Correction in Pert Number. (DTT-71-033)
*3.16 Dresden Station EQ Binder EQ-44D, General Electnc Switchgear Componenta Model MC-4.76, Rev. 06 datod 11/14/89.
*3.17 MEA Calculation No. 89011 -03, Rev. 1. deted $2 / 9 / 90$, Envionmental Qualfication of GE Swhengesw, MC-4.76, buas 20-1 (33-1), Dresden Station RWCU Line Break.
*3.18 Bechter Specification N102, Rev. 3, dated 10/21/88, Response to IE Bultetin 70 01B. Procecture for Use of Environmental Zone Mape for Dreaden Nucleer Power Station Units 2 and 3. Commonweakth Edison Company. (DIT-64-007)
*3.21 Mah Line Engineoring Associates Report M0004-a, Justilication for Cortirued Operation Tectrical Evatuation and Erwirommental Qualication Deviation, Aswesement for RWCU LOCA Scenario for ABB/ITE Type 27D Solid Sene Undervolage Relay, Agastat ETF Time Detay Relays, and Agastat Cortrol Paliys Contained in the Clicuiry for 4 KVac Bus 23-1, Drescen Nuclaar Power Station Uni 2, Revition 2. 5-20-01.

*     - Indicares thex the referenced document is not attached and controled within this calcutation.
Calculation No. $\frac{8982-13-19-6}{005}$
Revision $\frac{G}{\text { Attachment: } \frac{G}{G 2}}$
Page G8 of G22



## 4.0 aumbition criale

Crievie used to demonstrate qualification is in accorctance with the following (indicate documents which are applicablo):
X. USNRC DOR-Guidelnes, "Guidelmes for Evaluating Environmental Qualication of Cless 1E Eectrical Equipmert in Operating Reactors, November 1979

USNRC NUREG-O588, Revision 1, "Interim Staff Position on Environmertal Quavication of Satery-Aetated Elactrical Equipmerr, Juy 1891 Category I _ Catagory II

10CFR50.49, "Environmemal Qualfication of Electric Equipmert Important to Satety for Nuctear Power Plarts", February 22. 1963.

- USNRC Regulmory Guide 1.29 Revision 1, "Enwronmertal Oualification of Certain Equipment Important to Safety for Nuclear Power Plants", June 1984, Paragraph C.8.e.
X. IEEE 320-1974, "IEEE Standard for Quaflying Class 1E Electrical Equipment for Nuctoer Power Generating stations.
- Othar, Specily:

Calculation No	8982-13-19-6
Revision	005
Attachment:	G
Page G9	G22


	Calculation Sheet	Calculation No. MLEA-1-014
		Page 8 of 20
		Revision: 0
		Proparer den noviewor cle

## 50 Muthod of Curlicition and Teat Sequmioe

(1) Methodology (Chack only one block)

- Test of Identical tram Under Idertical Condikions or Under Simiter Condlitons when Supporing Anaysis
X. Teat of Simitar hems with Supporting Analyeis

Analysis in Comblnation with Parial Type Test Data that Supports the Anaintioal Assumptions and Conclusions

- Experience with Iderticas or Sirnitar Equipment Under Similar Conditions with Supporing Anaysis

Wyle Laboratones report 17199-1 (Reference 3.8) demonstrates that the circultry and equipment simiter to that ussed in the Drescien 4Kvac second heval undervoltage equiprnerx located in ervitormental zone 28 was exposed to a steam ervironment which envelops the harsh temperature and humidity (212 F/100\% PH ) described in Reference 3.5 and meets the acceptance criteria ( Le, the equipment does nox change state as a result of the steam exposure in the first minute of the HELB envionmentu).
(2) Teur Sequance: (Referance 3.8 Section 10.0)

- Equipmera was inspected for damage and corformity to test plan description by Wylo Labs. (Re/ 3.8. 10.1)
- Trme delays for Agastat Time delay relay ETR14038003was ser at 4.98 seconds and for ETR14D3NO02 was set at 5 minutes, 7 seconcte. (Ret, 3.8, 10.2)
- Base line functional testing (Ref. 3.8, 10.3):
(a) With the DC control votage at 125 Vdc , the 120 Vac voltage was reduced to 107 Vac to verily that the ABB undervoltage relays would chenge stetes epproximately 7 seconde atier the AC input votage reached 10a, 1 Vac. in addtion, it was also verifed the the Agintan ETR1403NOO2 retry changed stwe approximatefy 5 mirnuree after the ABB undervoltage relays changed steta.
(b) The on-off switch of the Agastat ETR14038003 relay was closed to verily the if would change staze after approximettly 5 seconde.
(c) The AC input voltage was ncreased to 120 Vac to verty that al specimerse would return to their intial condition at normal votage.
(d) Proper operation of all wired specimen conracts was aso vertied.
- HELB Test (Ref. 9.8, 10.4.2): Inital ramp to $212^{\circ} \mathrm{F}$ followed by a gradual reduction to approximately $1422^{\circ} \mathrm{Fax}$ one hour ater stan of the tert. The
Calculation No. $\frac{8982-13-19-6}{005}$
Revision $\frac{005}{\text { G }}$
Attachment: $\quad \mathrm{G}$
Page G10 of G22

specimens were moritored for any unirtended change of atate during the HELB teen.
- Pou HELB Functional Test (Ret. 8, 10.5): The functional iests described in Reference 3.8, paragraph 10.3 were repeated.
- Poer Teat inspection (Ref. 3.8, 10.6): The spectmens were visuathy inepected, and the condition of the speciments was recorded.

MLIF-108/3

Calculation 8982-13-19-6

Revision 005

Attachment: $\qquad$ G

Page $\qquad$ G11 of G22

8.0

The following tabla lieta the equipmert inatallod in Oreacen Stedion os idertited in fieterence 3.7 and the Eqipmert tested as idertited in Referencea 3.4, 3.7, 3.8, and 3.15.

Intalyd Equment
ABB Type 270 Rakay Cen 211 R4176
AB8 Type 27N Prony Cat. 411T4375-L-HF-DP
Wertinghouse FT-1 Swich Style 129A501G01
Agastra Tima Delay Relay EIR1403N002
Agustat Tirne Deloy Relay ETR14038002
Agastat Control Relays (2) EGPDOO2
Marminon 1600 Series Terminal Blocks
Hofiman Junction Box Cat. A3024201P
Junction Box Back Panel Cet. A30p24
Agastert Retay Socket Base ECR0095001
Agastri Locking Strap ECR0155001
Amerthe $3^{\prime}$ Flex Condtle
Top Enry $\mathbf{J}^{\mathbf{c}}$ condut Fiting GE Vultene 14 AWG Sis Wro
Fockbestos 14 AWG Frewall Wre

Teoted Eou Dmert
A8B Type 270 Relay Cat 411R4175
ABB Type 27N Redy Cot 411T4375-HF-DP Weotinghouss FT-1 Swhich Style 1294501G01
Agastrex Time Detry Reby EIT1403Nocos Agastet Time Deliny Retry EIR1403S003 Agastrit Control Retrys (4) ECPDOC2 Merathon 1600 Series Tominal Blocks Hollman Junction Bax Cat. A30zazoLP Junction Box Baok Panel Cot Acopa4 Agactax Reby Sockek Base ECRO095001 Agastat Locking Strap ECRO155001 Anacondi Seaite $3^{3}$ Flex Condit Top Entry 3" 0-Z/Cedney condul Fiting Rookbentoe 14 AWC B18 Wre
Rockbestos 14 AWC SIS Wre

Referenca 3.7 essabishas that the equipment and circuiry listed above and tested in Reference 3.8 are simitar to the equipment and circuitry instated in the Dresden Station Second Leval Undervoltage ctrcuite.

Reference 3.15 transmitred a revised CECO purchase requisition for the ABB type 27 N solid state undervolkige relays for Instaliation at Dresden Station (Reference 3.4). Reference 3.18, requirsd the installation of the DP Bezel (as in the tested ABB Type 27N undervoltage reltay) and also required a green light emiting diode to be added to indicate the presence of DC control power ("L" option) in addition to the red lights emiting diode normely installed for indicution that the reky has changed stera.

The ABB type 27N test specimen did not have the green light emiting diode for indication of DC control power. The test specimen was based on the origirual CECO purchase requintion, Reference 3.6. However, it was not known that the "L" decignator was required to be apecihad to ABB.

Reference 3.8 shows the green light emiting diode as "L" opelon, inctalled in seriee with a 15 kohm replator across the positive and negative sides of the DC control power portion of the retay circul. The green figfremiting diode is installed in the same marner as the normaly installed red light emiting diode, which is installed in seriee with a 15 kohm reeistor as shown on Reference 3.9.
Calculation No. $\frac{8982-13-19-6}{005}$
Revision $\frac{0}{\text { Attachment: } \frac{G}{\text { G12 }} \text { of } \mathrm{G} 22}$
Page


The normaly instalied red ight emiting diode performed satisfactorly during the Hels exposure testing described in Reference 3.8. Since the green foll emining diode added to the A8B type 27N relays for Dresden Station by Reference 3.15 is ineteled in the same menner (and is the same device) as the normely installed red light erniting clode (viz. in series with a 15 kohm resistor) and the normaty installed red light emiting diode performed satinfectorty under HELB conditons, the green ligit emeting diode added to the type ABB 27N solld atme undervoltage redays by Reference 3.15 is qualliad by similarity for HEL 8 exposura.

Therctore, the testing of simiter equipment to tha Dresden aKVac Second Level Undervolegop Protection crrcuity and equipmert estobisthes that the Instalod equiprnert and circuitry are environmentaly qualfied by Reforence 3.8 for the harsh temperature and humidily conchions ( $212^{\circ} \mathrm{F} / 100 \% \mathrm{RH}$ ) reouning from RWCU line break.
Calculation No. $\frac{8982-13-19-6}{005}$
Revision $\frac{00}{G}$
Attachment: $\frac{G}{\text { Gage G13 of G22 }}$


## gevay Furction trad Ruquilad Opering Tine

Duing normal plart operation, the function of the second level undervolage circuliry and equpmert is to provide protection agyinat a degraded voleage condition on the samtiy related 4 KVac busee. A degraded voltage condition will cause induction motors to draw move ourrim and may reail in overneming of the motor wirdinges. The second bovel undervolagea raliget are set between 3708 Vac and 3784 Vac . If a degraded condtion perssta for 7 8econds, an armunciator alerts the operator and a 5 minute time delay is initiacd. It the bue voleges is not restored to normal operating voltage within 5 minutes, the diesel generator is started the incoming breakers are trippod, bad shedding is initinted, and the diesel generator breakers close when all permissivee are satiefied fiel. 3.3).

In the evert of FWCU tine break, 4 KVac buses 25-1(33-1) must provide AC power to 480 Vao motor control certers MCC 18-1A(28-1A) for at least 40 seconds after the line break in order to close the AC RWCU isolation valves MO-2(3)-1201-1 and isomete the FWCU Ine break (Ret. 3.s).

The nesd to maintain the second level undervolage protection, coincident with a FWCU fine break scenario, is not considered to be necessary and the scenario is not conaidered to be a credible event ((Ref. 3.7).

Therefore, the second tevel undervotage protection circuil must not changa state dering the first 40 seconds of exposure to the harsh tempergture and humidity environment ( $\mathbf{2 1 2}{ }^{4} \mathrm{~F} / 100 \%$ RH) caused by FWCU tine break (Ref. 3.3).
Calculation No. $\frac{8982-13-19-6}{005}$
Revision $\frac{005}{G}$
Attachment: $\quad$ G14 of G22
Page


## 8.0

Ocmind Ub

8.1 ARP Type 27D and Type 27N solld stre undomprapo retme:

In Reterences 3.11 and 3.12 , A88 provides analyees of the componerts used in the Type 27D and 27 N solld state undervolage retrys. The method uoed is a combtrition of Ammerics evolumions of ineckation materials used in the relays and MIL-HDBK-217 evaluations of the effectes of electrical and thermal stresses on the ciectronic componerxe used in the relays. References 3.11 and 3.12 conctude that the queltind We of the Type 270 and Type 27 N sold state undervolege relmys is in exceess of 40 years at an average ambiert air temperature of $45^{\circ} \mathrm{C}$, an irxemal air temperaure of $60^{\circ} \mathrm{C}$, and a control volmge of 131 Vdc .
8.2 Agastat EIT Tlme Detey Relaye and Ecp Control Fetny:

Peterence 3.13 identifies the qualited life of the Agastax ETR and ECP relays as 10
 fint
Q. 3 Mrrathon 1600 Series Terminal Blocks:

Dreaden EO Binder EQ48D, Revision B, esteblishes a 40 year qualiod life of the Marathon 1600 series terminal blocks used in Dresden Station both inside and ourside containment. (Thes binder is located in the CECO Oreseden EO files.)
8.4 Westinohouse FT-1 Swich:

Relerence 3.19 identiles the material of construction of the case and cover of the Westinghouse FT-1 swich as polycorbonate. Feference 3.20 liets the fife of a ypioul polycarbonate material as 31,290 years at a temperature of $10 \circ^{\circ} \mathrm{F}$.

Therefore, is conctuded that, with the exception of the Agestat ETR and ECP relays, the second leval undervolage equipmert installed in Dresden Station for the Safery-felated 4 KVec Duses is quatiod for 40 years at 104 F (the maximum ambiant temperature in Zona 28 as idertified in Fef. 3.18). The quatified life of the Agastat ETA and EGP relays is 10 yem a from the date of manulacrure or 25,000 operations whichever comes first The 34 wire ured by CECO trroughour the plart is environmentally qualifiad for $\mathbf{4 0}$ yoar fifetime and the informaton is cortained in the CECO Dresden EO fine.
Calculation No. $\frac{8982-13-19-6}{005}$
Revision $\frac{G}{\text { Attachment: } \frac{G}{\text { G15 }} \text { of G22 }}$
Page G15


## 90 Currertion for Padintion

The second level undervotege circultry and equipment for Dreeden Station 4 KVac butes 24-1, 33-1, and 34-1 are located in a mild radietion ervirommert in the overt of LOCA. Dreaden Station 4 KVac bus 23-1 is subjact to a harsh radation ervirormert in the evert of LOCA Reference 3.21 esteblished that the Agastet EIR time delay refrys and ECP control relaye, the Marathon 1600 serims terminal blocks and the Westinghouse FT-1 swich are qualified tor the radistion ervironment to which they would be subipcted in the evert of LOCA. Reforenoes 3.21 also establushod that the ABB Type 27D solid strue undervoliage relays are operitia in the radation erwironmert caused by LOCA alkhough the time deliy is increased from 7 seconcle to approxinesely 20 seconcta.

Feference 3.14 states thet the ABB Type 27 D relays asscctated with 4 KVac bus 22-1 will be replaced with ABB Type 27N relays (Reference 3.4) and that the panel cortaining the second level undervolage equipment for 4 KVac bus $23-1$ will be moved to a location which is mid for radiation in the evert of LOCA.

MLEF-103/3
Calculation No. $\frac{8982-13-19-6}{\frac{005}{2}}$
Revision $\frac{G}{2}$
Attachment: $\frac{G}{\text { G16 of } \quad \mathrm{G} 22}$
Page G16

	Calculation Sheet	Calculation No. Mlea-01-014
		Page 15 of 20
		Revision: 0
		Preparasfor neviewer //C

10.1 Plart Accident Profis:

Reference 3.5, Figuras 2 and 3, provide the temperadure in the mezzanine area of the Dreeden Station Reactor Building (envitormental zone 26i) as a furction of time ather FWCU line break. The tempermure rises to 212 $F$ at approximately 40 seconds ather the break (at which thme tha break is isolated). The tempersture then fats of to approximately $140^{\circ} \mathrm{F}$ at one hour after the FWCU ine breat occura. Figures 2 and 3 of Reference 3.5 are reproduced on pages 17 and 18 of this calcutation.

Figures 2 and 3 of Reference 3.5 are based on a double ended, gullotine break in the 6 inch RWCU piping in the FWCU heat exchanger room (Referenca 3.3).
10.2 Equipmert Pertormance Charactersicica:

Reference 3.7, Section 8. and Reference 3.3. Section 8.2, note thet the second lovel undervoltage protection circuitry and equipment ane not required to function to mitionete the PWCU line break. but must not fall (viz, change state) during the first minute efter PWCU Ino break in any marmer which would prevent closure of the AC FWCU botation valve (MO-2(3)-1201-1).
10.3 Enects of Humidiv:

Reference 3.5 does not specifically ldertly the relative humidily in the mezzanine area of the reactor building. Therefore for conservatism, a relative humidity of 100\% has been assumed in this calcukzaion.

The AB8 Type 270 and Type 27N solid state undervotage relays and the Agastat ETR relays in the second level undervoltage protection circultry are electronic devices. Reference 3.3 indicates that movsture intriaion and condensation on the evectronios might sctversely affect the pertomance of the equipmert. Reterence 3.3. conchuded thin it is unikely that the evectronics would be exposed to moisture during the first forty seconcle after RWCU ine break.

Peference 3.8 is the report of steam testing (100\% PHi) of the second level undervotage protection equipment. The report demorsurates thrit the equpment is not adversely affected (i.e., does not change state) when exposed to a stam erniromrient for one hour.

## Aecident Simulation Testing and Regliag:

Felerence 3.8 describes HELB simutation (steam exposure) testing of the Orescien Second Level Undervolage relay equipmert and circulary. The tes profite shown on peges 41 through 45 of Reference 3.8 envelopes the acciclent temperature profit shown on Figures 2 and 3 of Reference 3.5. The test was conducted using steam which ensured that the relative humidity was at 100\% throughout the test Page 45 of Reference 3.8 shows that the internal temperature of the finction box which contained
Calculation No. $\frac{8982-13-19-6}{005}$
Revision $\frac{G}{\text { Attachment: } \frac{G}{G 22}}$
Page G17 of G22

the second bevel undervolage equipmert substantialy legs the temperature of the steam environmern.

Reference 3.8, pages 46 through 53, demonstrates that tha undervokinge equipmert did not change state throughour the HELB simulation teeting. In addition, post Hel. teat functionsl testing (Pefermince 3.8, page 9) demonstrated thet the undervotage equipmert pertormed within design specification requiremens (Reference 3.7, Section 6.0).

### 10.5 Matoni

Alhough Reterence 3.8 demonatrates a tempersture margin of $4^{\circ} \mathrm{F}$ to $15^{\circ} \mathrm{F}$ during the HELB simukation testing, the qualification margin for the Dresden $4 K V a c$ Second Level Undervoltege Protection Clrecutry and Equipment is a Thim margin.

The Dresden 4KVac Second Level Undervoltage Protection Circutry and Equipmert. must not change state during the first 40 seconds after RWCU line braak (fioterence 3.3) in order to assure cosure of the AC RWCU system isolation valve (MO-2(3)-12011). The HELB simulation testing described in Reforence 3.8 established that the Dresden 4 KV ac Second Level Undervoltags Protection Circuiry and Equipment did not change state for one hour ator RWCU line break. This time margin meets the recommended tine margin of Regutatory Guide 1.89 (1 hour phus operating time),
Calculation No. $\frac{8982-13-19-6}{005}$
Revision $\frac{005}{G}$
Attachment: $\frac{G}{\text { Gage G18 of G22 }}$

	Calculation Sheet	Calculation No. MLEA-1-014
		Page 17 of 20
		Revision: 0
		Prepares len Renvewar C/C
	Bechtel Ea	m Power Company

Eigure 2



Revision $\qquad$ 005

Attachment: $\qquad$
$\qquad$
Page G19 of G22

Fisure 3

$\qquad$


### 11.0 Synurgute Electe

Synergistic effects are associsted with interactions of temperature (Aging) and radimtion dowe rates. The second level undervolage circuitry and equipmert instatiod in Dremden Stmion are bcated in mitd radistion onvironments and therefore would not exhibit synergetic eftects dwe to amblewt tomperature and radiation dose rate.

References 3.11 and 3.12 address synergistic effects for the ABB Type 270 and Type 27 N solld state undervotage relays and state that no synergistic effects have been identified for the equiprner.

Extensive tessing of Agastan ETR and EGP relays described in Reference 3.13 indicate that there are no synergistic effects associated with these relay.

Dreaden EQ Binder EQ-48D establishes that there are no synergistic effects for Marathon 1500/1600Series torminal blocks.

A review of available ilierature on polycarbonate mareriale established that there are no identified synerglstic effects caused by gamma dose/dose rate and temperzature. (Some waur formutations of polycarbonate have shown sensidivy to utraviolet figr and temperature but the Westinghouse FT-1 swich is not constructed of clear potycarbonate and therefore not subiect to synergistic effects due to ulraviolet lighta)

Calculation No. $\frac{8982-13-19-6}{}$| Revision |
| :--- |
| Attachment: $\quad \mathrm{G}$ |
| Page G21 of G 22 |



## 12．0 Marterimice and Survelmioe


In Peterences 3.11 and 3.12 ABB recommends that the testing identiliod in the ABB indicuction manusis for the equipmert，wrich are contained in Appendix B to Reterence 3．7，be conducted at two yoar irtarrate．

The pertormance of the Agastix EIR Time Dotay Reloys and Agastar EGPD Control Retays can be montored during pertormance of the ABB Sold Sime Undervoliage Relays every two years．In Reforence 3．13．Afrerace Corp．states the the Agester ETR and EGPD retays musa be replaced ten（10）yoars atter the dete of manufacture or attor 25,000 operations，whichever comes firse．

Orescon station EQ Binder，EQ－480，Tab E，cortalns the maintenark，and surveillance requiremerts for Marathon 1600 serios terminal blocks．No othar mairtenance or surveilince is required for the Maraction 1600 Series terminal blocks installod in the junction boxes for the second level undervolage equipmert．

12．4 Wheinghoum FTo1 Ewiect：
In Reference 3．19，Westinghousa does not provide any requimements for manternance or surveilance of the FT－ 1 switch．However，Reference 3.3 established that the FT－1 switch is esserstaty a terminal block．Therofore，the maintenance and survitiance recommended in Tab E of Oresden EQ Binder EQ－480 for Marathon terminal blocks shouid be applied to the Westinghouse FT－1 switch．

Calculation No	8982－13－19－6
Revision	005
Attachment：	G
Page G22	of G22

## ATTACHMENT H

## DIT DR-EPED-0671-01



THIS DIT IS SUPPLEMENT TO DIT DR-EPED-06T1-OO THIS DIT PROVIDE THE MINIMUM REACTOR BUILDING
AND THE TURBINE BUILDING ENVIOVRNMENTAL TEMPERATE ACCORDING TO THE DRESDEN UFSAR. (SECTION 10.11.2-1) PAGE 2 OF THE DIT IS THE PAGE FROM UFSAR. PREVIOUS DIT(\#DR-EPED-0671-00) DID NOT PROVIDE THE MINIMUM TEMPERATURE.

SOURCE OF INFORMATION
Talc. no. $\qquad$
$\qquad$ Report no. $\qquad$
$\qquad$
Rev. and/or date
Rev. and/or date
Other UFSAR (DRESDEN)

DISTRIBUTION
E.SCHUMACFER/RN.SCFIAVONI/FILE-IOT7-2I ORGINAL FILE- $15 D$
R.H.JJSON

K, サ/
$-21$

3A (1/2)
01-87. FT

Calculation No. 8982-13-19-6

Revision 005 $\qquad$
Attachment: $\qquad$ H
Page $\mathrm{H}_{2}$ of H 3

```
 The zlant neating, rentilating and air zonai:ioning system consists
si the sienents reguired to effect and control the following space air
processes: supply and exnaust; distribution and recirculation; velocity;
difierential and static pressure control; filtration of particulate con-
taminates; cooling and heating; complete air conditioning; and area iso-
lation.
```

Elements necessary to perform and control the space air requirements are filters，danpers，cooling and heating coils，electric duct heaters， air washers，refrigerating equipment，fans，and the necessary control and support equipment．

The overall system is related，but divided into subsystems which are designed to control the air requirements in a particular area（see Figures 10．11．2：1 thru 10．11．2：5）．They are as follows：

1．Reactor Building Ventilation；Min $65^{\circ} \mathrm{F}$ ，Max $103^{\circ} \mathrm{F}$
2．Turbine Building Ventilation；Min $65^{\circ} \mathrm{F}$ ，Max $120^{\circ} \mathrm{F}$
3．Radwaste Building：
Occupied areas； $\operatorname{Hin} 50^{\circ} \mathrm{F}, \operatorname{Max} 103^{\circ} \mathrm{F}$
Cells and Collector Tank Room；Min $50^{\circ} \mathrm{F}$ ，Max $120^{\circ} \mathrm{F}$
Concentrator \＆Concentrator Waste Tank Cells；Min $50^{\circ} \mathrm{F}$ ， Max $150^{\circ} \mathrm{F}$

4．Main Control Room；Min $70^{\circ} \mathrm{F}$ ，Max $80^{\circ} \mathrm{F}$
5．Drywell Ventilation：
Normal； $135^{\circ} \mathrm{F}$ Average
8 hrs after Shutdown； $105^{\circ} \mathrm{F}$ Average

$\qquad$

## ATTACHMENT I

## S\&L Interoffice Memorandum from B. Desai

## DEGRADED VOLTAGE CALCULATIONS ASSUMPTION VERIFICATION

Assumption - 9. 15The setting tolerance used for setting the trip unit voltage is assumed to be$+/-0.2 \mathrm{~V}$ which corresponds to about $+/-0.182 \%$ for a setpoint expected to beused near 110 V .
Reference Calculations
8982-13-19-6, Revision 2
8982-17-19-2, Revision 1
Verification Description
The attached relay setting order for Dresden Station Unit 2, Buses 23-1, 24-1,and Unit 3, Buses 33-1 and 34-1 from CECo System Planning already addressestolerance of $\pm 0.2 \mathrm{~V}$ and setpoints are near 110 V . Therefore, this assumptiondoes not require further verification.
Follow Up Action
Incorporate assumption verification in the calculation.
Attachment:

$\qquad$
Page 12 of 142


$$
\text { ggn. } 13.1 g \cdot 6 \text { ReN } 2
$$




$\qquad$
$\qquad$

## DEGRADED VOLTAGE CALCULATIONS ASSUMPTION VERIFICATION

Assumptions $10 \& 16$
The dc control voltage for the undervoltage relays will be within the relay'sacceptance range of 100 to 140 -Vdc during both normal and accidental conditions.
Reference Calculations
(1) 8982-13-19-6, Revision 2
(2) 8982-17-19-2, Revision
Verification Description
To verify above assumption calculation 9198-42-19-1 was prepared.
The calculation demonstrates that there are sufficient terminal voltages at thesecond-level UV relays during the first seven seconds of a LOCA (no LOOP)combined with a degraded voltage condition. The calculation also shows thatthese relays will not be exposed to terminal voltages exceeding their maximumlimit during battery equalization.
Follow-Up Action
Incorporate assumption verification in the calculationwo: G: \ELECTDOC\OOC3545.EP


1. The battery chargers are rated at 200A (Reference 16) and are set to currenlimit at $100 \%$ of the charger rating (Reference 15 ).
J. The characteristics of the NCX-21 battery cells for the $125-\mathrm{Vdc}$ battery (Reference 5) are the same as those of the NCX-1500 battery cells of the 250-Vdc batteries (References 6 and 21).

## IV. ASSUMPTIONS

## Assumptions not Requiring Verification

A. Fuse resistances are not included in this calculation. The fuses which are upstream of the control circuits where the second-level UV relays are installed, are all 35 A (Reference 10). The resistances of the 35 A fuses are negligible when compared to the resistances of the cables. (ENGINEERING JUDGMENT)
B. Contact resistance for switches, breakers, and relays are assumed negligible. This is based on Dresden Station Design lli:ormation Transmitta. DR-EPED-0503-00 (Reference 11) which shows that contact resistances vary from 0.0028 to 0.0002 OHMS. (ENGINEERING JUDGMENT)
C. The battery is fully charged at the time of LOCA initiation. The battery voltages are checked daily by personnel from the station operations department (Reference 12).
D. No LOOP condition exists.
E. The new main feed to Panel 903-34 on Bus 3A-2 (Reference 22) has been installed. (ENGINEERING JUDGMENT - This loading is conservative relative te premodification loading on the same bus).

## V. ACCEPTANCE CRITERIA

The input voltage at the terminals of the second level UV relays must not be below the established minimum value of 95 Vdc or above the maximum value of 140 Vdc as determined by vendor information (References 7 and 19). However, the relay will also tolerate a one second dip in minimum (Reference 19) terminal voltage to 89 Vdc .
$\qquad$
Page $\qquad$ of $\qquad$


Prepared by	Date
Revienad by	Date
Acproved by	Date

Table 1 shows that during the worst interval (Switchgear 24-1, from -6.917 to -6 seconds), the battery is still able to supply the minimum voltage to the UV relay, and would discharge from a fully charged state in about 15 minutes if this load were kept constant. Since the time delay for the UV relays is only seven seconds long, it is evident from the table that all UV relays will have the minimum necessary control voltage to operate during this time period.

The tables in Attachments $A$ and $B$ show the loading during a dual unit lOCA with no LOOP. However, the design basis for the station is a single unit LOCA only. Therefore, the results shown in Table 1 are conservative.

- The maximum battery equalization voltage is 135 V when the battery is connected to the bus. Therefore, the maximum voltage of 140 V at the terminals of the undervoltage relays will not be exceeded.


## VIII. COMPARISON OF RESULTS HITH ACCEPTANCE CRITERIA

From the analysis of Section VII, the terminal 21 tages of all second level UV relays will be within their minimum and maximum established limits under the postulated conditions.
IX. CONCLUSIONS

The calculation demonstrates that there are sufficient terminal voltages at the second-level UV relays during the first seven seconds of a LOCA (no LOOP) combine with a degraded voltage condition. The calculation also shows that these relays will not be exposed to terminal voltages exceeding their maximum limit during battery equalization.

## $X$. RECOMENDATIONS

Not Applicable.
XI. REFERENCES

1. Sargent \& Lundy Standard ESA-102, Revision 04-14-93
2. Sargent \& Lundy Standard ESI-253, Revision 12-06-91
3. Sargent \& Lundy Standard ESC-291, Revision 05-23-91
4. Design Information Transmittal DR-EDD-0086-00, dated 08-02-93 (attached)
5. Sargent \& Lundy Calculation 7056-00-19-5, Revision 23, dated 08-27-93
```
 1 Calc. No. 8982-17-19-2
 = Rev.}
 = Rev. R25 of
 -'Project No. 8982-64
 &
 Teieonone: :15-395-7333
 Teiecc=y: こ:5-ミミミ-:055
```

sate： $10 / 14 / 93 \quad$ ages ：including cover sheet： 1
$\qquad$
FROM：CGIFF DOWNS－ProDuct MAr
REFERENCE： $\qquad$ $27 N$

MESSAGE： $\qquad$ Per your request，this

IS TO CONFIRM THAT THE ALLOWABLE
DC CONTROL VOLTAGE RANGE FOR TYPE
27N WITH HARMONIC FILTER IS 95－140V
AND THAT A 1 SECOND ExCURSION TO 89VDĆ WILL NOT APPELT ITS OPERATION．

THIS ASSUMES THE RESISTOR INSTALLED
BETWEEN TERMINALS 1 AND 9 HAS A
VALUE OF 4000 OHmS．
CeHSDOM
$\qquad$
$\qquad$ of 142

## DRESDEN STATION

UNITS 2 AND 3

## DEGRADED VOLTAGE CALCULATIONS ASSUMPTION VERIFICATION

## Assumptions - 11, 17

"It is assumed that the voltmeter used for setting the relay is a fluke 45 Digital Multimeter. It is also assumed this voltmeter has been set to a user selected reading rate of 5 (medium) readings per second."

Assumptions - 12. 18
"It is assumed that the multimeter is calculated to meet its technical accuracy specifications as identified in the Fluke 45 literature (Reference D). Furthermore, it is assumed that the relay is calibrated at a temperature that is within the range of $21^{\circ}$ to $24^{\circ}$. This assumption is necessary to limit the conservatism in the error due to relay temperature effect to a reasonable level."

## Reference Calculations

8982-13-19-6, Revision ?
8982-17-19-2, Revision i

## Verification Description

Dresden Relay Setting Procedure DOS 6600-09, Revision 8, specify to: a) use calibrated model-Fluke 45 digital multimeter b) relays must be calibrated to an ambient temperature between $70^{\circ}$ and $75^{\circ} \mathrm{F}$.

Commonwealth Edison Company will revise Procedure DOS 6600-09 to include the use of Fluke 45 Digital Multimeter with user-selected reading rate of five (medium) readings per second.

Follow Up Action
Incorporate assumption verification in calculation. 1
$\qquad$

## To: J.J. Horwath

$$
\begin{array}{ll}
\text { Subject: Second Level Degraded Voltage Relay Settings } \\
& \text { Switchgear 23-1 (Div. I) \& Switchgear 33-1 (Div. I) } \\
\text { Dresden Station, Unit } 2 \& 3
\end{array}
$$

Ref.: 1. S\&L Calculation Number 8982-13-19-6, Rev.2, entitled "Calc. for Second-Level Undervoltage Relay Setpoint", Dresden Unit 2, CHRON \# 186718.

Ref.: 2. S\&L Calculation Number 8982-17-19-2, Rev.1, entitled "Calc. for Second-Level Undervoltage Relay Setpoint", Dresden Unit 3, CHRON \# 186716.

Ref.: 3. Operability Determination of Safety Related Equipment Affected by the Second Level Undervoltage Relay Setpoint Change on Division I of Units 2 and 3, Dresden Station, CHRON \# 186841.

The above listed references are for your files. Reference 1 and 2 establish the design basis for the, setpoints of the subject relays. In order to expedite issuing new Relay Setting Orders reference 1 and 2 were previously sent to you and discussed via phone on June 2, 1992. The need to adjust the existing settings is due to incorrectly applied vendor information which changed the ambient temperature effect tolerance in the original calculations. This setpoint adjustment will restore margin to the level established in our current setpoint methodology. It is our understanding that Relay Setting Orders for the subject relays have been issued as follows:

Dresden Unit 2 - Division I
primary Trip Setting : 3835 volts nominal
Secondary Trip Setting : 109.57 volts +/- . 2 volts
Reset Bandwidth : set to minimum achievable by device, approximately .5\% (. 55 volts) above trip setpoint i.e. 110.12 volts

Timing : 7 seconds +/- 20\%

Dresden Unit 3 - Division I
Primary Trip Setting : 3884 volts nominal
Secondary Trip Setting : 110.97 volts $+/-.2$ volts
Reset Bandwidth : set to minimum achievable by device, approximately . 5\%
(. 56 volts) above trip setpoint i.e. 111.53 volts

Timing : 7 seconds $+/-20 \%$

It should be noted that the existing setpoints on the Division II second level undervoltage relays are conservatively set above the values indicated in the revised S\&L calculations (see Ref. 3). Therefore it is not required at this time to adjust the Division II settings.

The setpoint calculation has several stipulations for setting these relays which must be adhered to by the Operational Analysis Department. They are as follows:

1. A Fluke Model 45 multimeter, must be used to set the relay and have been calibrated within the manufacturer's specified tolerance range of 18 to 28 degrees Centigrade. The Fluke 45 must be set for a 60 Hz signal and at the medium sampling rate. If another voltmeter is to be used then it must have an accuracy equal to or better than the Model 45 in the appropriate volt range and be approved for use in this application by the Nuclear Engineering Department.
2. The relay must be set (calibrated) at a temperature between 21 to 24 degrees Centigrade ( 70 to 75 degrees Fahrenheit).
3. Utilize ABB instruction bulletin I.B.7.4.1.7-7 Issue D when setting the $A B B / I T E$, type 27 N undervoltage relay with harmonic filter.

A copy of this letter has been sent to the station for appropriate setpoint control review. If you have any questions or concerns regarding this matter please call stan Gaconis, X7644 or Mike Tucker, X7648.


## Attachment

```
cC: H.L. Terhune w/O attachment
 G.P. Wagner w/o attachment
 C.W. Schroeder w/o attachment
 H.L. Massin w/o attachment
 K.E. Faber w/o attachment
 M.S. Tucker w/o attachment
 S.L. Gaconis w/o attachment
```

$\qquad$
Page 111 of 142

## CHRON \# 190945

## Subject: Second Level Undervoltage Protection <br> Relay Setting Orders <br> Dresden and Quad Cities Stations

## Mr. T.T. Clark:

Please provide copies of the Second Level Undervoltage (Degraded Voltage Protection) Relay Setting orders for the ABB 27N relays installed for 4160 Volt buses 13-1, 14-1, 231 and 24-1 for Station 4, Quad Cities, and for 4160 Volt buses 23-1, 24-1, 33-1 and 34-1 for Station 12, Dresden. NED requires copies of the actual relay setting orders to close out some of the assumptions made in the degraded voltage calculations and for the FSAR rebaseline project.

We would appreciate copies of the subject Relay Setting orders by August 31, 1992. If you have any questions. please call me on extension 7648 at Downers Grove.

Prepared:


Date:

 M.F. Pietraszewski E/\&C Design Supervisor

cc: M.L. Reed
D. VanPeit
T.S. Kriz
H.S. Mirchandani
$\qquad$
$\qquad$ of 142

## InterOffice Memo

To:	Bipin Desai
From:	Mike Tucker
Date:	September 2. 1992
Subject:	Calculation Assumpuons.   Relay Setting Orders   Degraded Voltage

Tom Clark of System Planning has sent copies of the Second Level Undervoltage Relay Settings as you requested. However, note that the new RSO for Quad Cities Unit I has not been issued at this time. Therefore, only the relay setting orders for Quad Cities Unit 2. Dresden Unit 2 and Unit 3 are attached.

The relay setting order does not address the type of meter to be used. much less specify that the medium sampling rate only be user selected. Therefore. we ${ }^{d}$ are going to have to determine an alternate course of action.

If you have any questions, please call me on ext. 7648.


CC: ML Reed
'The term "we" in this context should be best interpreted to mean "you."
$\qquad$




$\qquad$
Attachment: $\qquad$
Page 115 of 142



OOESIGNATIONS NOT COVERED GLOVE ON FLOW, SUCH AS BINE NO.. NEV ON OLD SETTING. ETC.

Calculation No.
Revision 005
Attachment: $\qquad$
$\qquad$
Page

DATE:

to. Mike Tucker

TELECOPIER NUMBER: $\qquad$ 7299

FROM: $\qquad$ J. Crates COVER SHEET PLUS B PAGE (S)

DO YOU WANT TELECOPY BACX? HA YES :ono
IF YOU HAVE ANY PROBLEMS RECEIVING YOUR TELECOPY, PLEASE CALL (815) 942-2920 EXT. -0-

Tclecopy * 815-942-2920
Extension 2265
***NOTES***
mike,

Sent: $\qquad$
Time: $\qquad$
8 ya $\qquad$

## TESTING OF ECCS UNDERVOLTAGE

 and degraded voltace relays
## Requirementa:

Fechnical Specificationa Section 4.2, Table 4.2.1

## Special Controlg/Review:

NONE.
1
$\square$

Lh Hyara orisínator
3. Shere

Independent Reviever/Verifier (If Applicable)
$\qquad$

1. Eiedler

Dopartment Procedure Writer
M. Kacebumaky

Department Supervisor
APPROVED
$\mu 605$ '92
A. PIRPOSE:

This procedure verifies the undervoltage relay settinge for Emergency Core Cooling system (ECCS) Buase 23-1, 24-1, 28 and 29 (33-1, 34-1, 38 and 39) and aseurea celibracion of related Diseel Generator power instruments.
B. USER REFFRDNCES:

1. Technical Specifications:
a. Section 4.2, Table 4.2.1, Hinimu Tast and Calibration Frequency for Core and Cootainment Cooling Syatean Inetrumentation, Rod Blocke and isolations.
2. Procedures:
a. Relay Calibration Procedure (Supplied by Operactonal Aanifsis Departmant).
3. Printe:
a. 122-2334, Relaying and Metering Diagran - 4160 V Switch Group 23-1 \& 24-1.
b. 12E-2335, Relay and Metering Diagrea - 480 Y Switch Groups $25,26,27,28$ 29.
c. 128-2344, Schematic Control Diagran, 4160 V Buses $23-15^{--}$ 24-1 Main Feed BRrs.
d. 12I-2345, Schematic Control Diagsan, 4160 V Bus 23-1 4RV SWER Iu. 40 Feed BKR.
-. 128-2346. Schecontic Control Diagram, 4160 V Bue 24-2 Standby Diesel 2 Feed \& 34-1 Ile Eraker.
4. 128-3334, Relaying and Metering Diagran - 6160 V swisch Group 33-1 4 34-1.
5. 128-3335, Relay and Matering Dlagran - 480 V Switch Groupa 35, $36,37,38,39,30$ and h160 v sucx Cus 15.
h. 128-334h, Schematic Control Diagran, 4160 V suses 33-1 \& 34-1 Maln Teed BKRS.
6. 12L-3345, Schematic Control Diagram, 4160 V Bua 33-1 4KV SWGR Bue 40 Feed BKR.
f. 12L-3346, Schematic Conerol Diagrim, 4160 V Bus 34-1 standby Diesel 3 Feed 4 2b-i Ife Braster.
c. surghpiatig:
L. Checkist A, ICCS Bu: Relay Iess.
D. sourpmint reouisin:
7. Timer (Calibrated per DAF 11-12). Record Serial Number and Calibration Due Date on Checrilist $A$.
8. Fluke Model 45 Multimeter. Record Serial Number and Calibration Due Date on Checkliat A. ( $\mathrm{N}-2, \mathrm{~W}-3, \mathrm{H}-\mathrm{b}$ )
9. Disital Thermoneter. Record Serial Number and Calibration Due Date on Checklist A.
E. EREREOULSITEA:

10. Reactor in Cold Shutdom or Refuel.
11. Bus beisf tested is out of service for the Operational Analyais Department (OAD).
12. Operational Analysie Departaent (OAD) has verified the relay aettiage for the relaye liated in Checklist A.
13. Permiasion to atart the undervoltage test on each bua (Bus 25-7, 24-1. 33-1 of 34-1) has been obtained from the Shift Insineer.
F. prxcautrones
14. Use proper aequences vhen discoanecting or recoanecting the relays to avoid epurious bus tripe.
15. Limitariong and actiont:
16. A Fluke Model 45 Multipeter must be uned to calibrate the ECC8 degraded voltage relaye. If anothar voltoeter in to be uned. 2ITI the Nuciear Engineerias Department aust approve it'a uee.

## G. ACMRPTANCE CLITASIA:

1. All operating voltages and tgip timen ahall be within the tolerances listed in Chacklist A.
2. IF any of the AS FOUND values fall outaide of the creckliat $A$ tolerances. TRM nocify the Cperationa Shift Supervisor and oubmit an out-of-tolerance notification sheet to the Technical Staff Supervisor.
$\qquad$
Page 120 of 142
```
日. 3. Acceptance criteria ia amotated by acceptance critaria (AC)
 before the atep.
1. RROCEmURE:
NOTE
Indicacion of complezion of the relay testa is accomplished |
by completing Checkliet A.
I
1. Renove the undervoltage relaye ta follows:
a. laolate the trips by removiag the LONER paddle.
b. Iaolate the voltage ameing circuitg by removiag the UPFR paddle.
c. Remove the relay.
2. Remove the degraded voltage relay as follow:
A. Isolate the tripe by opening Iest Switch \(E\) in the Teat 8vitch Group TS 23-1 WV (TB 33-1 UV) and T8 24-1 WV (IS 34-1 W) directiy below the relay.
b. Isolate the voltage emolng edrcuita by opening Tent Switches A, B. C, and D in the Teet gwitch Group TS 23-1 w (T8 33-1 W) or TS 24-1 WV (58 34-1 UV) directiy below the relay.
c. Remove the relay.
3. Complete the following on anch ralay:
8. Verify relay setsings.
b. Clean the relay.
e. Note enything aboormel.
d. Complete Checkilse A, ECCS Bu Relay Test.
4. Inatall the degraded voltage relay: at follow:
a. Inatall the relay.
b. Connect the voltage senaing circuits by closing Teat Switches A, B, C, and D in the Tent Switch Group is 23-1 w (T8 33-1 UV) or IS 24-1 WV (T3 34-1 W) diractiy below the relay.
```

    \(\therefore\). b. 6. Connect the eripa by cloaing Iest 5
        Switch Group TS 23-1 WV (TS 33-1 WV) or IS 24-1 WV (T3 34-1
        (W) directly below the relay.
    5. Inesall the undervoltage relays as follove:
        a. Inatall the relay.
        b. Connect the voltage atnalng circuits by inatalling the
        UREE paddle.
    c. Connect the trips by installing the LONER paddle.
    6. (AC) All operating voltages and trip times are within the
        tolerances listed on Checklist A.
                    (Indtial or \(N / A\) )
    $\qquad$ .
a. If any of the an found values fall outaide of the Checkilat A tolermees, I\#RN noelfy the Jperationa Shift Supervisor and aubait an out-of-tolerance notification abeet to the Technical Staff Supervisor.
(Initial or $N / A$ ) $\qquad$ $\therefore$
7. Notify the Operations Shift Supervisor of test complecion and give hie the complered checklist.
J. DIScussion:
Theae tests are basod on a nominel bus voltage of 4160 volta and a potential erandormer rasio of 35 ( 4200 volta/120 volta). The -nomial voltage at the relay is 118.86 volts.
W. hRITERS REDERENCES:

1. Rusponse to IE Information Notice 84-02, dated June 20, 1984.
2. Electrical Dietribution Syeten Punctional Inepaction, July 1991.
3. S \& 1 Calculation 8982-13-19-6 Kep. 2, Second-Level Ondervoltage Relay Setpoint.
4. 36 I Calculation 8982-17-19-2 Rev. 1, Second-Lavel Ondervoltage Relay Setpoint.
$\square$

- 

Page 122 of 142
Prerequisites Complotes Initlal/Date__
Unit $\qquad$
gecs Bun Uadervol:age Relay Teat
(Tap setting is 93)

.Relay	$\begin{aligned} & \text { Lever } \\ & \text { seteing } \\ & \text { Lo Nrepinal. } \end{aligned}$		Contact Cloaure Voltage (U) 29.6 to 87.2 rolen			
	FOHD	1FET	round	IRIX	Eown	HET
127-1-23-1(33-1)						
127-2-23-1(33-1)						
222-1-28 (38)						
227-2-28 (38)						

ECCS But Desraded Voltage Rolay Taztat Ambitet Temperature ${ }^{-7}$

Relur	$\begin{aligned} & \text { Lever } \\ & \text { setting } \\ & \text { Se Noninal } \end{aligned}$		Coneact ClogureVoltage (by)109.37 to $109.27 y$		Time to Contact cloune 120 to 00   3.6 to 8.4	
	Iound	185\%	pound	185	FOmn	18ET
227-3-23-1						
127-4-23-1						
Relar	$\begin{array}{r} \text { Leve } \\ \text { Sett } \\ \text { S. } \mathrm{NH} \end{array}$		$\begin{array}{r} \text { Contact } \\ \text { roltag } \\ 110.71 \text { to } \end{array}$	Clasure (0) $\qquad$	Time 50 Closure 5,6 to	oneact   $20 t 0$   4 4
	Founn	Inter	Fowns	1712	Found	LXIE
127-3-33-1						
127-4-33-1						
					$\begin{gathered} \text { Timet } \\ 5 \min ^{c} \\ 5 \text { mine } \end{gathered}$	
Ink 23-1 (33-1)						



* These relaya muat be calibrated at an ambient temperature betwean 70 and $75^{\circ}$ \%, utilizing All Inatruction Bulletin I.8. 7.4.d.7-7 Iatue D.

2005/137
2W/198
$60^{*}$
$\qquad$
Page 123 of 142

Prerequiaitea Complete: Initial/Date__

Unit $\qquad$

ECCS Dug Uadervoltage Relay Ieat
(Tap eetting 1s 93)

Relay	LeverSettingh Nominal		Contace closure Doltage (WV)   72.6. to din yolth		Time to Contact closure 120 to ov   1.89 to 2.31 aec.	
	rompe	105	yoind	LEET	pown	
127-1-24-1(34-1)						
127-2-28-1 $34-1)$						
227-1-29 (39)						
227-1-29 (39)						


Belar	LeverSetting5el Namion		Contact CloureVoltage (W7)108.25 fa 102.35		Tha to ContactCloure 120 to os5.6 to 8.6 ane	
	cound	LHET	Fomb	URET	jown	Usic
127-3-24-1						
127-4-24-1						
selat	$\begin{aligned} & \text { Lever } \\ & \text { serting } \\ & 50 \text { Nominal } \end{aligned}$		$\begin{aligned} & \text { Contact cloaure } \\ & \text { Voltage (VV) } \\ & 110.4 \text { to, } 110.8 \mathrm{~F} \end{aligned}$		Itme to Contact Clonure 120 to 00 5.6 to 8.4.ine	
-	mound	185	Fousin	1812	Foinh	185
127-3-36-1						
127-4-34-1						



* These relaje must be calibrated at an ablent teaperature batween 70 and $75^{\circ}$ \%, utilizing as8 Inetruction 8ulletin I.8. 7.4.1.7-7 Insue D.

2D05/1137
24/198
$\qquad$


## DRESDEN STATION

## UNITS 2 AND 3

## degraded voltage calculations assuaption verification

Assumptions - 13, 19
The Containment Cooling Service Water System (CCSW) pump cubicle cooler fans andthe Diesel Generator $2 / 3$ starting air compressor need not be considered indetermining the minimum allowable $4.16-\mathrm{kV}$ system voltage.
The CCSW pump cubicle cooler fans need not be considered in determining theminimum allowable $4.16-\mathrm{kV}$ system voltage.
Reference Calculations
8982-13-19-6, Revision 2, and 8982-17-19-2, Revision 1.
Verification Description
See the attached CECo CHRON 179857 for swing diesel starting air compressorassessment.
The existing CCSW cubicle cooler fan motors are acceptable. The Calculation No.9215-99-19-1, Rev. 1 (calculation for evaluatic., of 3 H.P.; 460 Volt CCSW motorminimum voltage starting requirements) demonstrates that the existing 460 VoltCCSW cooler fan motors will start during degraded voltage conditions withouttripping their protective devices or exceeding their thermal capability limits.
Follow Up Action
Incorporate assumption verification in the calculation.



Date: $2 / 2 / 92$

DRSDN EDSFI SADVA.DOC
MT:mst
attachments

cc: C.A. Grier	H.Z. Massin	M.F. Pietraszewski
R. Radtke	D. Taylor	M. R. Richter
B.M. Viehl	M.C.Strait	G.A. Gates
S.A. Lawson	NEDCC	

Calculation No. 8982-13-19 ${ }^{\circ}$.
Revision 005
Attachment: 1
Page 127 of 142

## Attachment A

## Affects of Degraded Voltage on Non-Safery Equipment

Certain non-safety related equipment is shown in the critical voltage analysis below the NEMA acceptance criteria. These are the $2 / 3$ diesel generator starting air compressor, the 250 V battery charger 2 and the 250 V battery charger 2/3.

## Swing Diesel Starting Air Compressor

The diesel generator starting air compressor 2/3A would have 408.6 Volts at the motor terminals at the new second level undervoltage relay setpoint, slightly less than the NEMA required 414 Volts. To assure the NEMA criteria is met for this motor, the relay would have to be set to assure 3827 Volts at Bus 23-1 as compared to the 3784 required to assure operation of the $2 / 3$ diesel generator cooling water pump. The safety related portion of the air start system relies on accumulators of stored air, and would be fully charged prior to starting the diesel generator. The air compressor would have adequate voltage when it would normally be expected to charge the receiver tank. The air compressor may start after the diesel has started due to low receiver pressure; however, as the diesel has already started, recharging the accumulator is not required. Therefore, low voltage at the 2/3A starting air compressor is not a concern. Starting air compressor 2A and $2 B$ have adequate voltage at the new relay setpoint.

## 250 Volt Battery Chargers

The 250 Volt battery chargers are indicated as non-safety related in the Master Equipment List. The batteries were sized based on a loss of offsite power with n̄o credit from the chargers. Unlike induction motors, the battery chargers are rated for 480 Volts nominal. Therefore, to meet the NEMA criteria of $90 \%$ terminal voltage, 432 V is required. Further, the manufacturer of the battery charger, Power Conversion Products, specifies output voltage regulation and output current capability based on an input of $480 V+15,-10 \%$. To assure 432 Volts at the charger terminals, an operationally unacceptable setpoint would be required for the Second Level Undervoltage Relay.

NED has assessed the effect on the charger output at 414 Volts $186.25 \%$ of 480 Volt rating) and has concluded there would be less than a $4 \%$ reduction in output voltage. This would be sufficient to prevent a discharge of the 250 V battery. The charger maximum current output capability is also reduced; however, with off-site power available the load demand on the DC system would be less than the design basis loading. Therefore the small reduction in charger output is acceptable.

Attachment A to SADVA.DOC
Page 1 of 1

- ORSDN EDSFIATTA.DOC 2/2/92 9:07 AM


## Attachment 8

## Affects of Degraded Voltage on Safety-Related Equipment

Certain safety related electrical equipment is shown in the degraded voltage analysis with available terminal voltage below the NEMA acceptance criteria. Some of the safety related motors may have lower terminal voltage than vendor recommendations to assure successful starting. An assessment of this condition follows.

## CCSW Cubicle Cooling Fans

The Containment Cooling Service Water System (CCSW) provides long term decay heat removal. This system has a total of four pumps. CCSW pump $A$ and $B$ are ESS Division $I$ and pumps $C$ and $D$ are Division II. Two of the CCSW pumps, $B$ and $C$, are in vaults to provide protection against local flooding. Each of these two pumps have four cooling fans fed by the respective ESS division power source. See Table 1 below. CCSW Pumps A and $D$ are not in vaults. Therefore, these pumps do not require cooling fans. Only one CCSW pump is required per the FSAR.

Table 1

CCSW Pump	ESS Division	In Vault?	CCSW Cubicle Cooling Fans						
A	Division 1	No	None						
B	Division 1	Yes	A Fan 1, A Fan 2, B Fan 1						
and B Fan 2				$	$	C	Division II	Yes	C Fan 1, C Fan 2, D Fan 1   and D Fan 2
:---:	:---:	:---:	:---:						
$D$	Division II	No	None						

The voltage available to the Division II fans (C and D) is adequate for starting and running these motors at the second level undervoltage relay setpoint issued per calculation 8982-13-19-6 Revision 1. However, setting the relay to assure starting of the Division I fans (A and B) would result in an unacceptably high relay setpoint.

The simultaneous events of flood, LOCA and degraded voltage with off site power available is not considered to be credible. This event is estimated to be on the order of $9.9 \times 10^{-12}$ per year (see $1 / 20 / 92$ C.A. Grier memo). Therefore, the potential low voltage at the Division I cooling fans is not a concern.

Diesel Generator Cooling Water Pump Minimum Starting Voltage
The purpose of this assessment is to evaluate the voltage available for starting the Diesel Generator Cooling Water Pumps (DGCWP). The critical voltage calculations used to determine the second level undervoitage relay setpoint have determined that the swing DGCWP has an available terminal voltage of 370.6 Volts under starting conditions. This is $80.6 \%$ of rated. The Unit 2 Division I critical voltage was determined in calculation 8982-13-19-1 Rev. 0 dated 1/8/92 (CHRON \# 179302). Division I bounds Division II as shown by calculation 8982-15-19-3 Rev. O dated 1/14/92 (Unit 2 Division II, CHRON \# 179755); this calcultation determined that DGCWP 2 has 372.3 Volts available for starting.

The vendor of the Diesel Generator Cooling Water Pumps (DGCWP), Chempump Division of Crane Company, does not specify a minimum starting voltage requirement. In response to a request by CECo for a minimum starting voltage requirement, the vendor responded that the motor was guaranteed to start and run at $90 \%$ of the 460 Volt rating (or 414 Volts) and may not start if the line voltage dips by more than $15 \%(85 \%$ of rated or 391 Volts). However, the $85 \%$ number was based on engineering judgement, and no actual testing was performed under degraded voltage conditions (under $90 \%$ of rated voltage). The vendor was unable to provide a motor torque-speed curve applicable to this pump. This specific motor is no longer used by Crane, and they no longer have one available for testing.

Crane obtained a standard motor for each of Dresden's DGCWPs. The pump vendor modified each motor to allow for use in a submerged location. To accomplisf this, the vendor machined the rotor to increase air gap and installed a liner in the motor. This liner protects the windings from moisture, thus creating a submersible combination pump/motor in a common enclosure. A water cooling jacket was also provided integral with the housing. Machining the rotor and providing a custom enclosure is standard practice for the vendor. The pumps were supplied to CECo in 1973.

A test of the Unit 3 Diesel Generator Cooling Water pump was performed to obtain the torque - speed characteristic curve by developing an analytical model of the motor. Torque - speed curves would normally be obtained using a dynamometer. Due to the design of the DGCWP, the motor shaft can not be connected to a dynamometer. Dynamometer testing may also result in motor failure. Therefore, this method of testing was impractical for the Dresden DGCWP.
Calculation No. 8982-13-1936.
Revision $\frac{005}{}$
Attachment: $\frac{1}{142}$
Page 130 of 142

Alternate analytical methods are available to determine torque - speed characteristics of induction motors. Generally, these methods are not used by manufacturers as potentially destructive dynamometer testing of redundant motors is more economical than the enginerring effort required to develop the analytical model. For the Dresden DGCWP, developing an analytical model of the motor based on test data was the only possible alternative. The test measured the three phase currents and voltage values from the initial inrush current until reaching a steady state value, indicating that the motor had started. Current and potential transformers were installed in the motor circuit to allow the use of a digital fault recorder to obtain the required data. The DGCWP was then started in accordance with normal station operating procedures. The testing accurately monitored the motor and pump as it is installed in the plant with the actual mechanical load applied to the pump impeller (cooling water flow to the Unit 3 diesel generator).

An analytical model of the motor was developed and benchmarked against the test data for validity. This type of model can be used to predict motor behavior under all conditions. This type of motor model accurately represents the motor speed - torque curve, the changing rotor impedance with time and allows assessment of machine capability in response to available voltage. The motor circuit model developed is independent of starting voltage actually present during the test. The minimum starting voltage required to start and accelerate the motor was then calculated from the motor analytical circuit model. The test data, methodology and the torque - speed curve developed are documented in calculation 8982-13-19. 4, Revision 0,-dated 1/6/92.

Two requirements must be met at the minimum acceptable starting voltage. Adequate torque must be provided at reduced voltage and the protective devices must not trip on overcurrent before the inrush drops to the steady state value. The torque - speed curve determined by the testing shows that the motor will successfully start at $70 \%$ of rated voltage. The overload relay will not trip during a degraded voltage start, and the maximum current drawn by the motor is below the trip curve of the breaker.

The motor develops adequate breakdown and pull-up torque at $70 \%$ of rated voltage to assure successful starting. The critical factor in this application, by the test data, is net accelerating torque available. A minimum value of $25 \%$ of load torque must be provided to accelerate the load in a reasonable time, or about $50 \mathrm{lb} .-\mathrm{ft}$. in this application; an accelerating torque of $73.8 \mathrm{lb} .-\mathrm{ft}$. is available at $70 \%$ voltage, providing a

[^2]Page 3 of 6

- DRSDN EDSFIATTB.DOC 2/2/92 19:00 AM

conservative margin in the calculated resuit. This will accelerate the pump to operating speed in 1.65 seconds.

At locked rotor current, the overload relay will trip in 13 to 29 seconds, assuring that the thermal rating of the motor is not compromised. As the motor will start in less than two seconds, the overload will not trip the motor under starting conditions at $70 \%$ of rated voltage. The maximum current will be drawn when the motor starts under the highest expected voltage, which causes a locked rotor current of 626 Amperes at $110 \%$ of rated voltage. The 200 Amp TFJ breaker will take 27 seconds to trip at this current.

Therefore, at $70 \%$ voltage, the motor has adequate torque to start and no undesired protective trip will occur.

## 125 Volt Battery Chargers

The 125 Volt Battery Chargers are rated 480 V , not 460 V as most motors. Therefore, to meet the NEMA criteria of $90 \%$ voltage, 432 V is required at the charger terminals. Further, the manufacturer of the chargers (Power Conversion Products) has a published specification of $130 \mathrm{~V} \pm 1 \%$ output voltage from no load to 200 Amperes with an input of $480 \mathrm{~V}+15,-10 \%$. To assure 432 Volts to the charger would require an operationally unacceptable setpoint for the Second Level Undervoltage Relay.

NED has assessed the effect on the charger output at 414 Volts $186.25 \%$ of 480 Volt rating) and has concluded there would be less than a $4 \%$ reduction in output voltage. This would be sufficient to prevent a discharge of the 125 Vbattery . The charger maximum current output capability is also reduced; however, with off-site power available the load demand on the DC system would be less than the design basis loading (e.g. fewer breaker and solenoid operations; inverters remain on AC power). Therefore the small reduction in charger output is acceptable. Additionally it should be noted that the batteries were sized based on a loss of off site power with no credit from the battery chargers.

## 120 Volt Contaciors

Five safety related 120 Volt contactors on Dresden Unit 2 do not meet the vendor stipulated minimum voltage requirement of $75 \%$ of the 120 Volt rating at the new second level relay setpoint. These contactors control motor operated valves required for LPCl injection. These valves are:

Reactor Recirculation Pump 2A Discharge Valve, 2-202-5A<br>Reactor Recirculation Pump 2B Discharge Valve, 2-202-5B<br>LPCI Injection Valve 2A, 2-1501-22A<br>LPCI Injection Valve 2B, 2-1501-22B<br>LPCI Full Flow Test Valve 2C, 2-1501-38B

At the new relay setpoint of $3820 \pm 7$ Volts, a minimum critical voltage of 3784 Volts is assured on the 4 kV bus. This critical voltage is based on the minimum acceptable running voltage on all required safety related equipment under the highest auxiliary power system loading condition. The setpoint includes' a tolerance for the lower analytical limit of the potential transformer, undervoltage relay and calibration equipment. The relay setpoint was determined in calculation 8982-13-19-6, dated 1-29-92 (CHRON \# 179508). The critical voltage used was based on Unit 2 Division I (calculation 8982-13-19-1 Rev. O dated 1/8/92, CHRON \# 179302). This value of critical voltage bounds the Unit 2 Division II analysis.

The worst case valve, LPCI Injection Valve 1501-22B, has 72.7\% of rated voltage available at the contactor under these conditions. Raising the relay setpoint to freet the conservative vendor voltage requirement these contactors would result in an unacceptable relay setpoint. A higher relay setpoint would trip the preferred power source when it is still capable of supplying critical loads. This would challenge the diesel generators unnecessarily. Therefore, the higher relay setpoint is unacceptable, both from an operating perspective and considering overall plant safety.

The five contactors for the valves listed above were replaced during the fall 1991 outage with safety-related, environmentally qualified General Electric (GE) Series 300 contactors. CECo has tested the minimum pickup of a 300 Series contactor. The test data shows that the GE Series 300 contactor minimum pickup is $58 \%$ of rated voltage when new. The GE value for pickup of $75 \%$ is to allow aging over the useful life of the device ( 40 years) and to provide a margin for conservatism.

The minimum expected voltage on the 4 kV bus is 3840 Volts. This is an extreme condition which would only occur at the highest off site power system loading condition with two transmission system contingences and a LOCA on Unit 2. CECo is a summer peaking utility, and the highest off site power system loading condition occurs on the hottest day of the year. Lower loading conditions of both the transmission system and the station auxiliary power system will provide higher available voltage during spring, 1992. This will assure pickup of the contactors under worst case loading conditions.

Based on; 11 the qualified GE Series contactor design which assures $75 \%$ voltage pickup at the end of its 40 year life; 21 the demonstrated $58 \%$ of rated pickup voltage of a new Series 300 contactor through testing; 3) the installation of new Series 300 contactors in all five safety related circuits in question; and 4) the minimum expected voltages during the Spring ' 92 time period, all contactors will properly perform their safety function.

Modifications will be completed by March 31, 1992 to assure that there is adequate voltage for contactor pickup at the new second level relay setpoint.
$\square$
Page 134 of 142

Me. C.W. Schronder
Station Nanager
Drasdan
Subject: sataty Ascasment
Depraded Volerge
Dreaden Ondt 3

Dant. Mer. Sehrooder:

The Elactricel/ISC gromp of the Tuclens Erginearing Dopartmant has


 battery chargarn, carthin $120 \%$ contactorg balmp abjected to a $l$ ower voltage than the manifmetarer's ceocmmaled velse an the uoe of teet data to doternane the mindme atareder noltage requifed for the diesel gomprater coollan witer prupe. Cepter of the calaly mucumanes ase attrened. Muclaar migirearing has coneluded that this equipment is eapable of perforaing all intended safety fmorions and is curreuty operable.

The attachnart to this letter contalns acticms reauired to be complated by maren 31, 1958 to onaure egulpmat operability during the sumer monthe.

If you have any quastions, please call rika macker as axtanaion 764 at Downers Grove.


attachmans
ce: C.A. Grier
R.M. Radtke
E.L. Kasesm
M.Y. Pletrasemeki
B.M. VIats
8.A. Laween
D.L. saylor
M.E. Rlaber
M.C. Stindt
G.A. Gates

$\qquad$

## Alfects of Degraded Volman Elactrical Eouinmans

Cortain electricat equipment is shown in the degraded vortage analysis with availuble terminal voltage delow the NEMA acceptance criteria. Some of the safety related motora mav have lower ierminal voltage than vendor recommencations to asaure succosstul cratting. An asasasmont of thia condition follows.

## CCEMV Cuhirin Caollare Fans

The Conzainmemt Cooling Service Water System (CCSW) providas long term decay heat removal. This syatem thas a total of four pumps. CCSW pump $A$ and 8 are ESS Dlvision I and pumps C and D are Divisian II. Two of the ECSW pumpa, $B$ and $C$, are in vauts to provide proteotion against local flooding. Each of these two pumps have four cooling fans fed oy the respective ESS division power source. See Table 1 below. CCSW Purmes A and $D$ are not in vauts. Therafore, these purnps do not require cooling fans. Only one CCSW pump is required per the FSAR.

Table 1

CCSW Pumo	ESS Division	In Vautr	CCSW Cubicie Cooung Fans
A	Dhision 1	No	None'
B	Dhision!	Yes	A Fan 1, A Fan 2, B Fan 1 and 8 Fon 2
C	Division II	Yes	C Fan 1, C Fan 2, D Fan 1 and 0 Fan 2
0	Division 11	No	Nons

The vottage available to the Division I fans ( A and B ) is adequate for starting and running these motors at the second level undervotrage relay serpoint issued per calculation 8982-17-19-2 Revision 0 . However, setting the relay to assure starting of the Division II fans (C and D) would resutt in an unacceptably high reley satpoint.

The simultaneous events of hood, LOCA and degraded voltage with off site power available is not considered to be cradibla. This event is estimated to be on the order of $9.9 \times 10^{-12}$ per year (see 1/20/32 C.A. Grier memol. Theretors, the potential low voltage at the Division II ccoiling tans is not a concern.
Calculation No. 8982-13-19-6
Revision $\frac{005}{}$
Attachment: $\frac{1}{13}$
Page 136 of 142

## Diesel Generaror Cooling Whret Pume Minimum Stecting Votrian

The nurpose of this assassment is to evaluate the voltage available for starting the Diesel Generator Cooling Water Pumps (DGCWP). The critical voltage calcutations used to determine the second level undervotage relay sempoimt have determined that the swing DGCWP has an available terminal voltege of 342.7 Volts under starting conditlons. This is $74 \% \%$ of ratad. The Unit 3 Division I critucat voitage was determined in calculation 8982-17-19-1 Rev. 0 dated 1/21/92 (CHRON 179719). Dhision I bounds Dhision II as shown by calculation 8982-19-19-1 Rev. 1 dated $2 / 3 / 92$ (Unit 3 Division II, CHRON * 180205); this calcultation determined that DGCWP 3 has 349.6 Voltu available for starting ( $78 \%$ of rated).

The vendor of the Diesel Generator Cooling Water Pumps (DGCWP), Chempump Division of Crane Company, does not spectfy a minimum starting voltage requiremem. In response to a request by CECo for a minimum starting voltege requiramant, the vendor reaponded that the motor was guaranteed to start and run at $90 \%$ of the 460 Volt rating (or 414 Voits) and may not start if the line voltage dips by more than $15 \% \quad 185 \%$ of rated or 391 Volts). However, the $\mathbf{8 5 \%}$ number was beacd on engineering judgemant, and no actual testing was performed under degraded voltage conditions (undef 90\% of rated voltage). The vendor was unable to provide a motor torque-spesd curve applicable to this pump. This speotife motor is no longer used by Crane, and thoy no longer have one avallable for testing.

Crane obtained a standard motor for each of Drasden's DGCWPs. The pump vendar modified each motor to allow for use in a submerged location. To accompliath this, the vendor machined the rotor to increase air gap and installed a liner in the motor. This liner protects the windings from moisture. thus creating a submersibic combination pump/motor in a common enclosure. A water cooling jecket was also provided integral with the housing. Machining the rotor and providing a custom enclosure is standard practice for the vendor. The pumps were supplied to CECo in 1973.

A test of the Unit 3 Diesel Genarator Cooling Watar purnp was performed to obtain the torque - speed characteristic curve by developing an analytical model of the motor. Torque - speed curves would normally be obsained using a dynamomater. Due to the design of the DGCWP, the motor shatt can not be connected to a dynamometer. Dynamometer testing may aleo result in motor failure. Therefore, this method of terting was impractical far the Drescen DGCWP.

[^3]

Alrernate anaivtical metnods are available to determine rorque - speed characteristics of induction motors. Generally, ineae methods are not used by manufacturers as potentially destructive dynamometer tasing of redundant motors is more economical than the enginerring effort requirad to davelop the analytical model. For the Dresden DGCWP, developing an anatytical model of the motor based on test data was the only possibla arternative. The rest measured the three phase currents and votrage values from the intial innush current undll reaching a steady atate value, indioating that the motor had started. Current and potantial transformars were insralled in the motor circuir to allow the use of a digital faut recorder to obtain the required data. The DGCWP was then started in accordance with normal station operating proceduras. The tasting accurately montrored tha motor and pump as it is inatalied in the plamt with the actual mactiantal load applied to the pump trmpeller (coollng water flow to the Unit 3 diaal generator).

An analytical model of the motor was devaloped and banchmarked apainst the test data for validity. This type of model can be used to predict moter behavior under all condtions. This type of motor model accurately represenss the motor speed - sorque curve, the changing rotor impedance with time and allows assasamert of machine capability in response to available voltage. The moror circuit model devoloped is independent of starting voltage actually presamt during the test. The minimum starting. voltage required to star and accelerate the momp was then calculated from the motor analytical circuit inod The teat dats, methodalogy and the torque - speed curve developed are documented in calculation 8982-13-194. Revision 0, dated 1/0/82.

Two requirements must be met at the minimum acceptable starting voitage. Adequate torque must be provided at reduced voltape and ine protertive devices must not trin an overcument bafore the inrush drops to the steady state value. The toraue-speed curve determined by the resting shows that the motor will succesatully stant at $70 \%$ of rated voltage. The overtosd reiay will not trip durting a degraded voltage stark, and the maximum curremt arawn by the motor is below the titp curve of the braaker.

The motor develops adequate breakdown and pull-up torque at $70 \%$ of rated'vortage to assure succeatul starting. The critical factor in this application, by the test data, is nar accelarating rorque available. A minimum value of $25 \%$ of load torque must be provided to accelerate the load in a reasomadie tima, or about 50 lb .-th. in this application; an accalerating torque of $73.8 \mathrm{lb} . \circ \mathrm{ft}$. is avallable at $70 \%$ voltage, providing a
$\qquad$ of 142
conservative margin in the caiculated result. This will accelerate the pump to operating speed in 1.65 seconds.

At locked rotor current, the overtoad relay will trip in 13 to 21 seconds, assuring that the tharmal rating of the motor is not compromised. As the moror will start in less than two seconds, the ovarioad will not trip the motor under starting conditions at 70\% of rated voltage. The maximum current will be drawn whon the motor starts under the highast expected voltage, which causes a locked rotor currem of 828 Ampares at $110 \%$ of rated voltage. The 200 Amp TFJ breaker will take 27 seconds to trip at this current.

Therefore, at 70\% votrage, ine mowar has adequate torque to start and no undesired protective trip will occur.

## 125 and 250 Yoh Bamect Chingers

The Battery Chargers are rated 480V, not 460V as most mozors. Therefore, to meer the NEMA critaria of $90 \%$ votrage, 432 V is required at the charger terminals. Further, the manutacturer of the chargers (Power Converaion Products) has a published spectication of $130 \mathrm{~V} \pm 1 \%$ output voltege from no load to 200 Amperes with an input of 480V + 15, -10\%. To assure 432 Volts to the charger would require an operationally unaccaprable setpoint for the Second Level Undervoltage Reley.

Tha worst case battary chargar is 125 V Bettary Charger 3 which has 410.9 Volts ataine terminats during summer LOCA steady state conditions. All other chargers have greater than 420 V available.

NED has asseased the effect on the charger output at 410.9 Volts $185.6 \%$ at 480 Vott rating) and has concluded thare would bs leas than a $0 \%$ reduction in output voltage. This would be sufficient to prevent a disciarge of the batteries. The charger maximum current output capabllity is also reduced; however, wth off-site power available the load demand on the DC system would be leas than the deaign basis loading le.g. fower breaker and solenoid operations; invertere remain on AC poweri. Theratore the small reduction in enarger output is acceprable. Additionally it should be noted that the barteries were sized based on a loss of off site power with no credit trom the battery chargers.
Revision $\frac{005}{\text { Attachment: } \frac{1}{139} 142}$

## 120 Yolt Cons:crat

Five safety related 120 Vot contactors on Dresden Unit 3 do not meat the vendor stipulated minimum yotrage requirement of $75 \%$ of the 120 Vort rating at the new second laval relay setpoint. These contactors control motor operated velves required for LPCI Injection. These valvas are:

Reactor Recirculation Pump 3A Discharge Valve, 3-202-5A<br>Reactor Recirculation Pump 38 Dlecharge Valve, 3-202-58<br>LPCt Injection Valve 3A, 3-1501-22A<br>LPCI Injection Valve 38, 3-1801-228<br>LPCI full fiow Teit Valve 3A, 3-1801-38A

At the new retay satpoint of $3870 \pm 7$ Volts, a minimum critical voltage of 3832 Volts is assured on the 4 kV bus. This critical voltage is based on the minimum accaptable running vottage on all required safoty relared equipment under the highest auxiliary power systam loading condtion. The soupoint inctudes a woterance for the lower anaryical limit of the potemtal transformer, undervottage retay and callbration equipment. The ralay setpoint was detarmined in calculation 8982-17-19-2, dated 2-6-92. The critical voltage used was based on Unit 3 Dlvision I (calculation 8982-17-181 Rev. 0 dated $1 / 21 / 92$, CHRON 179719 ). This value of critical voltage bounds the Unit 3 Dlvision II analysia (Calculation 8982-19-19-1 Rev. 1 dated 2/3/92. CHRON * 180285).

The worst case valve, LPCI Injection Valve 1501-22A, has 68.47\% of rated voitage available at the connector under these conditions. Raising' the relay setpoint to meet the conservative vendor valtage requirement these contactors would result in an unacceptable relay sotpoimt. A higher relay satpoint would trip the preferred power source when it is still capable of supplying cittical loads. This would chaliange the diesel generators unnecessarily. Theretore, the higher relay setpoint is unacceptable, both from an operating perspective and considaring overall plemt safety.

The five convartors for the valves listed above were reptaced during the tall 1991 ourage with safoty-rolated, environmentally qualified General Electrte (GE) Series 300 contactora. CECO has tested the minimum pickup of a 300 Series contactor. The test date shows that the GE Series 300 contactor minimum pickup is $58 \%$ of rared voltage when naw. The GE value for pickup of $75 \%$ is to allow aging over the useful life of the device ( 40 vaars) and to provide a margin for conservatiarn.

Aftermmeri U3SAOVA.DOC
Page 6 of 6
On:ON EDSRU3ATT.DCe 2ร18.92 9:18 AM
$\qquad$ Page 140 of 142

The minimum expected voltage on the 4 KV bus is 3924 Votrs (M.L. Reed. Evaluation of Dresdan Station Unit 2 \& 3 Dagraded Volrage Condition, dated 2/3/92. CHRON 179942). This is an extreme condition which would onty occur at the nigneat off ste power system loading condition with iwo tranemission systam contingences and a LOCA on Unit 3. CECo is a summar peaking utility, and the higheat off site power system loading condtion occurs on the hortest day of thie yuar. Lower loading condtions of both the rransmisaion system and the stution auxiliary power system will provide higher avallable vottage during spring, 1992. This will assure pickup of the comtactors under worat case loading conditiona.

Based on: 11 the qualified GE Saries comtactor design which assures $78 \%$ voltage pickup at the end of its 40 year lita; 21 the demonatreted $58 \%$ of rated pickup voltage of a new.Series 300 contactor through testing; 31 the instatiation of naw Series 300 contactors in all five safaty related circtiss in question: and 41 the minimum expected votrages during the Spring ' 92 trme pariod, all contactors will property perform thair safoty function.

Modifications will be compierad by March 31, 1992 to asaure that there is adequare votrage for contactor pickup at the now socond leval ralay setpoint.
Assumption - 14"The existing location of Panel 2252-83, which will contain one of theundervoltage relays is too close to the core spray pipe to be within the relaysacceptable radiation level. Therefore, it is assumed that the panel has beenrelocated as planned such that the radiation level experienced by the relay isacceptable."
Reference Calculation
8982-13-19-6, Revision 2
Verification Description
Panel 2252-83 has been relocated.
Reference ECN 12-00470E - To itech ' (his) ..... W.R. No.: D-97548
Follow Un Action
Incorporate assumption verification in calculation.

## ATTACHMENT J

## RSOs for $\mathbf{2 d}^{\text {nd }}$ Level UV Relays



## NOTE:

The setpoint calculation has several stipulations for setting (calibrating) these relays which must be adhered to by the Station and the Operational Analysis Department. They are as follows:

1. A Fluke Model 45 multimeter, must be used to set the relay and have been calibrated within the manufacturer's specified tolerance range of 18 to 28 degrees Centigrade. Furthermore, the Fluke 45 must be set to a user selected reading rate of 5 (medium) readings per second. If another voltmeter is to be used then it must have an accuracy equal to or better than the Model 45 in the appropriate volt range and be approved for use in this application by the Nuclear Engineering Department.
2. The relay must be set (calibrated) at a temperature between 21 to 24 degrees Centigrade ( 70 to 75 degrees Fahrenheit).
3. $A B B$ instruction bulletin I.B.7.4.1.7-7 Issue $D$ can be referenced when setting the $A B B / I T E$, type $2 T \mathrm{~N}-\mathrm{R}$ undervoltage relay with harmonic filter.
$\qquad$




Calculation No.
Revision $\square$ 005
Attachment: $\qquad$ J
Page $\qquad$ of $\qquad$

## ATTACHMENT K

DOC ID 0006191944

[ X ]Safety-Related   [ ]Non-Safety-Related   [ ]Augmented Quality	Design Information Transmittal   Dresden Station   Unit(s): 2 and 3	DOC ID _0006191944   Revision - 05   Page_1_of_3_	
Mr. William A. Barasa			
Organization: Sargent \& Lundy $L$ c			
tion: 55 E. Monroe, Chicago, IL 60603-5780			
Subject: Improved Technical Specification (ITS) Analytical Limits			
Status of Information: $\square$ Verified $\square$ Unverified   For Unverified DITs, include the Method and Schedule of Verification in the "Description of Information"   List Action Tracking \# assigned for verification of "Unverified" information: $\qquad$			
Description of Information: The attached table identifies the Analytical Limits, Allowable Values and References for the Timer, Time Delay Relay, Limit Switch, Displacer Switch, and Protective Relay functions identified in the Technical Specifications for use in the preparation of calculations to support the ITS submittal. For many of these functions, the actual Analytical Limits are unknown or unavailable (* Actual AL available). As such, "The Analytical Limits (AL) for these functions and devices shall be conservatively set equal to the current Technical Specification LCO values". This statement shall also be included in the Methodology section of each calculation prepared. Rev. 2 change 4160 V ESS Bus Undervoltage (Degraded Voltage) value to 3820 volts per Calc. \# 9198-18-19-1 Rev.3, 9198-18-19-2 Rev.3, 9198-18-19-3 Rev. 3 \& 9198-18-19-4 Rev.3. Rev. 3 of this DIT changes 4160V ESS Time Delay (No LOCA) Setpoint and Tolerance per page 3. Rev. 4 of this DIT changes device type and calibration frequency for Condensate Storage Tank Level. Rev. 5 of this DIT changes the calibration frequency of calc.\#8982-13-19-6 (DCR\# 990552) and 8982-17-19-2 (DCR\# 990560) due to not having valid site specific and vendor data.			
Purpose of Issuance: This Design Information Transmittal supersedes Revision 03 dated 7/05/00 in its entirety. For use in determining Allowable Values for the ITS calculations submittal.			
Limitations: None			
References (Source of Information):Current Technical Specification/DCR $\# 990552$ \& 990560			
Prepared by:	$8 \sqrt{8} \sqrt{\text { Printed Nana } / \text { Slquatire }}$	Date: $9 / 5 / 00$	
Reviewed by: $\qquad$	Pral Kaman	Date:	9-6-0
Approved by: Steve	Printed Nume / Siqnature	Date:	
Distribution: Doc ID File, R. Peak, DG Central File, D. Eaman, T. Thorsell, T.Loch, D. Ugorcak,			

Calculation No. 8982-13-19-6
Revision 005
Attachment: K
Page K2 of K4


# DOC ID\# \#0006191944 Rev. \#. 5 <br> Subject: $\quad$ Second Level Degraded Voltage 5-Minute Time Delay Basis for Setpoint and Tolerance 

A reviewed of the UFSAR and historical documentation was performed to determine if a basis exists for the current Time Delay setting of 5 -Minutes $+/-15$ Seconds. The following description is provided in UFSAR section 8.3.1.7:
'The 7 -second time delay prevents circuit initiation due to grid disturbances and motor starting transients, whereas the 5 -minute time allows the operator to attempt restorationof normal bus voltage. The 5 -minute timer is bypassed on high drywell pressure / lowlow reactor water level."

The NRC Staff SER of May 19, 1982 states:
"The five-minute time delay is of sufficient duration to prevent spurious operation of the second level loss of voltage relays during short bus voltage disturbances that may result from starting large motors or short term grid disturbances. Additional, this time delay will allow operator action to attempt restoration of grid voltage by means available to him."

This subject was also discussed with several: individuals involved with the early-degraded voltage issues. Based on these discussions and the documentation review conducted, it is concluded that there is no analytical basis for the establishment of the specific time delay of 5 -minutes with a tolerance of $+/-15$ seconds: It is therefore reasonable to accept an increase in the setpaint tolerance (i.e., $+/-30$ seconds) as a result of calculated drift errors.

Calculation No. $-8982-13-19-6$
Revision $\frac{005}{\mathrm{~K}}$
Attachment: $\frac{\mathrm{K}}{\text { Page } \mathrm{K4} \text { of } \mathrm{K4}}$

## ATTACHMENT L

## Telecon Between J. Kovach (ComEd) and C. Tobias (S\&L)

1 Date: 4/20/00 3:13 PM
Sender: John.G.Kovach@ucm.com
To: craig tobias
Priority: Normal
Receipt requested
Subject:FW: Telecon Documenting RSOs
Craig, I conewx-with the indicated RSO's as being current and
the latest on
file for the indicated services. Please note that the completion date (op
authorization) for both Bus 23-1 and 24-1 Degraded Voltage
RSO's is
08/23/96.
Regards, John
> -----Original Message-----
> From: craig_tobiasemail.sargentlundy.com
> [SMTP:craig tobiasemail.sargentiundy.com]
> Sent: Thursday, April 20, 2000 9:15 AM
> To: john.g.kovacheucm.com
> Subject: Telecon Documenting RSOs
$>$ John,
$>$ As we spoke on the phone, I am creating an email message to document our
phone
$>$ call on 4/18/2000. The topic discussed was the confirmation that the
> relay
$>$ setting orders (RSO) that I obtained at Dresden were the most recent relay
setting orders.
Please confirm the relay setting orders that $I$ obtained from Dresden
$>$ are the
$>$ most recent relay setting orders. The RSOs are identified below:
$>$
Loss of Voltage Relays RSOs
Bus 23-1 Issued 2/11/86 Completed 3/1/86
Bus 24-1 Issued 2/11/86 Completed 3/1/86
Bus 33-1 Issued 2/11/86 Completed 3/1/86
Bus 34-1 Issued 2/11/86 Completed 3/1/86
Degraded Voltage Relay RSOz
Bus 23-1 Issued 6/27/96
Bus 24-1 Issued 7/11/96
Bus 33-1 Issued 3/16/94 Completed 4/28/94
Bus 34-1 Issued 10/31/96 Completed 11/8/96
$>$ Please review this information and verify that it is correct.
If you
$>$ agree with
> the information, please reply to the message and make a
statement to that
> effect. This document will then serve as telecon for the
calculations


```
being
performed.
Thank you for your time and support.
Yours truly,
Craig Tobias
Sargent & Lundy, LLC
312-269-6577
```

```
***)
************#####
*
This E-mail and any of its attachments may contain Unicom
proprietary
information, which is privileged, confidential, or subject to
copyright
belonging to the Unicom family of Companies. This E-mail is
intended
solely for the use of the individual or entity to which it is
addressed. If
you are not the intended recipient of this E-mail, you are
hereby notified
that any dissemination, distribution, copying, or action taken
in relation
to the contents of and attachments to this E-mail is strictly
prohibited
and may be unlawful. If you have received this E-mail in
error, please
notify the sendex immediately and permanently delete the
original and
any copy of this E-mail and any printout. Thank You.

*
```


## ATTACHMENT M

## DIT BB-EPED-0178

Revision 005
Attachment: M
Page M1 of M3

 profining or repuires further varibamion (rviow) thall be so idemifen.)

This information is approved for use and requires no further verification.

IDEAYIFICATION OF THE SPECIFIC DESIGN INPORMATION TRANSMITTED AND PURPOSE


The following information is for use in the preparation of the Degraded Voltage Relay. Accuracy calculation:

Switchgear Room Environmental Coilditions

- Minimum Temp. $\quad=65^{\circ} F=!\zeta . \vdots$
- Maximum Temp. $\quad=108^{\circ} \mathrm{F}=42.22^{\circ}$
- Relative Humidity $=8$ to 70\%
- Radiation exposure $=\leq 10^{4}$ rads
- Internal Switchgear Temp. Rise $=\leq 5^{\circ} \mathrm{F}$

Potential Transformer Data

- Westinghouse 4200-120 V; Model 9146D46G02
- Accuracy $=0.3 \mathrm{~W}, \mathrm{X}, \mathrm{Y}$ and 1.2 Z


## References

1. UFSAR Section
a) 9.4 .5 .4 .2
b) 3.11 (Table 3.11-2)
2. Westinghouse Instruction Book, Volume 3A (Dwg. EN018-6A)
3. Specification F/L-2737-01, Amd. 1, dated 3-3-78
4. Byron Station Walkdown Data, dated 5-11-92 (copy attached)

JURCE OF INFORMATION


Calculation No	8982-13-19-6
Revision	005
Attachment:	M
Page M2	of M3

BYRON WALKDOWN

DATA COLECTED USING INSTR BY 444
'i -UKE" $8024 B$ MULTI METER W/FLUKE $8 O T-150$ TEMP. PRO:
OUTSIDE AIR TEMP (NEAR UNIT I TRACKWAY) $79.8^{\circ}$ AT $1: 25$

$8 U S$	INSIDE SUR CUB
141	$89.3^{\circ}$
142	$85.5^{\circ}$
241	$88.4^{\circ}$
242	$89.9^{\circ}$

OUTSIDE SUR CUB

$$
\begin{aligned}
& 86.3^{\circ} \\
& 84.2^{\circ} \\
& 87.5^{\circ} \\
& 89.2^{\circ}
\end{aligned}
$$

* UITH DOOR closed to allow temperature to stabilize, then tor was opened i TEMPPRATURE READ IMMEDIATEY. TEMPERATURE TAKEN INSIDE CUBICLE WHICH CONTAINS lITE DEGRADED VOLTAGE RELAY.
NOTE: BOTH UNITS OPERATING AND VENTILATION SYSTEMS IN ALL SWGR BUS ROOMS OPERATING. THE TEMPERATURE OUTSIDE THE cUBICLE wAS measured near the supply air duct to ensure thin coolest temperature (resulting in the greatest TEMPERATURE DIFFERENTIAL) WAS RECORDED.



## ATTACHMENT 3

Calculation 8982-17-19-2, "Second Level Undervoltage
Relay Setpoint - Unit 3," Revision 004


THIS DESIGN ANALYSIS SUPERCEDES: 8982-17-19-02 Revision 3, 3A, 3Bé ptu 1.19-64

# ATTACHMENT 2 <br> Owners Acceptance Review Checklist for External Design Analysis Page 1 of 1 

DESIGN ANALYSIS NO. 8982-17-19-2_ REV: 004


EXELON REVIEWER: DALE EAMAN/Print/Sign Sale Samoan DATE: 8-16-04

$$
\begin{aligned}
& \text { * REVISION OOH SUPPORTS A LICENSE AMENDMENT } \\
& \text { REQUEST (LAR). THE DESIGN INPUTS AND THE } \\
& \text { RESULTS/ CON CLUSIONS ARE COMPATIBLE WITH } \\
& \text { THE LAR. }
\end{aligned}
$$

CALCULATION TABLE OF CONTENTS

CALC NO.: 8982-17-19-2	REV. NO.: 004	PG NO. 2
SECTION	PAGE NO.:	SUB PAGE NO.:
DESIGN ANALYSIS COVER SHEET   TABLE OF CONTENTS   1. PURPOSE   2. METHODOLOGY   3. ACCEPTANCE CRITERIA   4. ASSUMPTIONS/ENGINEERING JUDGEMENTS   5. INPUT DATA   6. REFERENCES   7. CALCULATIONS   8. SUMMARY AND CONCLUSIONS   Attachments   A DIT DR-EPED-0685-00   B Fluke 45 Dual Display Multimeter User's Manual, Appendix A   C S\&L Interoffice Memorandum from J. F. White   D GE Document 7910 Dated 6-20-77   E Telecon Between S. Hoats (ABB) and A. Runde (S\&L)   F ABB Instruction Bulletin I.B 7.4.1.7-7, Issue D   G Telecon Between C. Downs (ABB) and H. Ashrafi (S\&L)   H Calculation MLEA 91-014   I DIT DR-EPED-0671-01   J S\&L Interoffice Memorandum from B. Desai   K RSO's for 2nd LVI UV Relays \& E-Mail from J. Kovach   L DOC ID 0006191944   M Telecon Between J. Kovach (ComEd) and C. Tobias (S\&L)   N DIT BB-EPED-0178	1   2   2   3   3   5   5   5      7   9      15      A1-A27   B1-B12   C1-C2   D1-D3   E1-E2   F1-F12   G1-G6   H1-H22   11-13   J1-J42   K1-K4   L1-L4   M1-M3   N1-N3	

## 1. PURPOSE

The purpose of this calculation is to determine a setpoint, the allowable values, and the expanded tolerances for the second-level undervoltage relays at Dresden Unit 3 based on post LOCA voltage analysis.
The setpoint will consider the setpoint error of the circuit that monitors the voltage at the 4.16 kV safetyrelated switchgears 33-1 (Div. I) and 34-1 (Div. II). The circuit consists of a GE type JVM-3 4200-120 volt potential transformer (PT) and an ITE-27N undervoltage relay (catalog number 411T4375-L-HF).

## 2. METHODOLOGY

The methodology for determining the loop uncertainties, setpoints, allowable values, and extended tolerances is done in accordance with NES-EIC-20.04 (Ref. 6.15) and the main body of Reference 6.18 with the clarifications as identified below. Appendix 1 of Reference 6.18 does not apply to this calculation because Appendix 1 is a documentation of guidelines for the Exelon calculations prepared under a different scope of work. However, where the setting tolerance (ST) is greater than the drift tolerance interval (DTIc), the methodology identified on page 23 of Reference 6.18 (part of Appendix 1) is used to determine loop random errors. The nomenclature for the relay setpoint terms, such as pickup, dropout, and reset is taken directly from the relay instruction bulletin (Reference 6.9).
2.1. The error associated with the PT will be established. The error for the PT is classified as a random process error and will be based on the accuracy assigned the PT by the manufacturer. It is not expected that the PT performance will be significantly affected by environmental factors. Therefore, no additional error for the PT will be introduced for environmental factors.
2.2. The error associated with the second-level undervoltage relay will be established. The following items will be considered in determining the setpoint error as a result of the relay:

- Reference accuracy (defined by the mfr as repeatability at constant temperature and control voitage). Per the methodology of Reference 6.15, reference accuracy or repeatability as specified by the manufacturer are taken as $2 \sigma$ values, unless specified otherwise.
- Calibration instrument error (defined by the mfr). The error due to calibration standards is considered negligible per the methodology of Reference 6.15.
- Temperature effect (defined by the mfr as repeatability over temperature range)
- Control voltage effect (defined by the mfr as repeatability over the allowable dc control power range)
- Relay setting tolerance (see Input Data Section 5.4)
- Drift error

The following items will be evaluated for their effect on the relays' functional capability:

- Seismic error
- Humidity error
- Pressure error
- Radiation error
2.3. Per the methodology of Reference 6.15 , the errors identified above will be combined into total error by adding the total random error to the total non-random error, as follows.
All random error are converted to $1 \sigma$ values and combined by the "Square root of the sum of the squares"(SRSS) method. The outcome of the SRSS is then doubled to a $2 \sigma$ value.


## DESIGN ANALYSIS NO. 8982-17-19-2 REVISION 004 PAGE NO. 4 of 15

All non-random error will be added together by straight addition.
2.4. The nominal dropout for the two relays will be determined by adding the total error to the Analytical Limits. No margin will be considered in this calculation since all applicable components in the circuit have been accurately represented.
2.5. The drift based on vendor specifications (DTIV) is determined by calculating the square root sum of squares of reference accuracy (RA), calibration error (CAL), setting tolerance (ST), and drift (DR).
If specific values for drift are not provided by the vendor, then a default random [2б] value of $\pm 1 \%$ of span per refueling cycle for mechanical components and $\pm 0.5 \%$ of span per refueling cycle for electrical components is assigned (Section 3.1 of Ref. 6.15).

### 2.6. Allowable Value

An allowable value will be determine utilizing the following equations based on Appendix C of Reference 6.15 as applicable:

AV $\quad \geq \mathrm{SPc}-\left|\mathrm{Zav}^{+}\right|$[lower limit]
$\mathrm{AV} \quad \leq \mathrm{SPc}+\left|\mathrm{Zav}^{-}\right|$[upper limit]
Where AV : is the allowable value
SPc is the calculated setpoint
$\mathrm{Zav}^{+}, \mathrm{Zav}^{-}$is the total error (positive, negative) applicable during calibration.
Note: The names of the terms in the generic equations shown above may be modified in accordance with specific loop designations.
The errors that are included for the determination of the allowable values (Zav) are only those applicable during calibration. Thus, only reference accuracy (RA), calibration errors (CAL), setting tolerance (ST), drift (DR) and if applicable, the input error ( $\sigma \mathrm{in}$ ) are included. If DTIc is available, then RA, CAL, ST and DR errors will be replaced by the calculated drift (DTIC).
2.7. Expanded Tolerances (ET)

Expanded tolerances are determined as follows:
a. $E T= \pm\left[0.7^{*}(\mathrm{Zav}-\mathrm{ST})+\mathrm{ST}\right]$, where ST is used at a $2 \sigma$ value.
b. If any of the tolerances determined using the equations above result in an expanded tolerance ( ET ) value that is less than the setting tolerance $(\mathrm{ST})$, then $\mathrm{ET}=\mathrm{ST}$ is specified.
The expanded tolerance is specified as an acceptable tolerance for as-found values. It is expected that the calibration setting tolerance is still utilized as the as-left tolerance.
DESIGN ANALYSIS NO. 8982-17-19-2 REVISION 004 PAGE NO. 5 of 15

## 3. ACCEPTANCE CRITERIA

The relay setpoints will be chosen such that the lowest possible voltage for relay operation, considering setpoint error, will be no lower than the Analytical Limits as identified in Section 5.6 of this calculation:

> 3820 V or $91.8 \%$ of 4160 V at Switchgear $33-1$ (Div I)
> 3820 V or $91.8 \%$ of 4160 V at Switchgear $34-1$ (Div II)

There are no acceptance criteria for the allowable value determination. The allowable value is calculated in accordance with the methodology and the results are provided for use.
The expanded tolerances are determined in accordance with Section 2.7 and are acceptable if the result is greater than or equal to the application setting tolerance and do not result in a violation of an applicable limit.
4. ASSUMPTIONS/ENGINEERING JUDGEMENTS

None

## 5. INPUT DATA

### 5.1. Instrument Channel Configuration (per Reference 6.1.1)

The ABB/ITE 27 N undervoltage relay trip unit is fed from a $4200-120$ volt PT. The 4200 volt side of the PT is connected to two phases of the 4160 volt source at the safety-related switchgear. The trip unit is connected to the 120 volt side of the PT. The trip unit is powered by a 125 volt dc source. Per Reference 6.20 , the burden on the PT is within the standard test burden of the PT.
5.2. Loop Element Data (per Reference 6.1.2, 6.1.3, 6.5, 6.6, \& 6.9)
5.2.1. The PT is a GE, type JVM-3 (See References 6.1 .3 and 6.6)

Voltage ratio: $\quad 4200-120$
Accuracy class: $\quad 0.3 \mathrm{~W}, \mathrm{X}, \mathrm{M}, \mathrm{Y}: 1.2 \mathrm{Z}$
Frequency:
Burden:
$50 \mathrm{~Hz}, 60 \mathrm{~Hz}$
$\quad 750 \mathrm{VA} @ 55^{\circ} \mathrm{C}$ rise above $30^{\circ} \mathrm{C}$ Ambient
BIL: 500 VA @ $30^{\circ} \mathrm{C}$ rise above $55^{\circ} \mathrm{C}$ Ambient 60 kV
5.2.2. The trip unit is an $A B B / I T E$, type 27 N undervoltage relay with a Harmonic Filter (catalog number 411T4375-L-HF, Ref. 6.1.2)
Setpoint Ranges (per Ref. 6.9)


NES-G-14.02

## Effective Date:

04/14/00

## DESIGN ANALYSIS NO. 8982-17-19-2 REVISION 004 PAGE NO. 6 of 15

Humidity:	0 to $100 \%$ no condensation (Reference 6.11, Section 10.3)	
Pressure:	Atmospheric, to 5000 ft	
Radiation:	Gamma 100k rads over 40 yrs	
Repeatability Tolerances (per Reference 6.9 )		
@ const temp \& const control volt:	$+/-0.1 \%$	
for volt. range $100-140 \mathrm{Vdc}$		
for temp. range	+10 to $+40^{\circ} \mathrm{C}:$	$+/-0.1 \%$
	0 to $+55^{\circ} \mathrm{C}:$	$+/-0.4 \%$
	-20 to $+70^{\circ} \mathrm{C}:$	$+/-1.75 \%$

The 3 tolerances are cumulative and are taken as $2 \sigma$ values per Reference 6.7).
For the tolerance over temperature range, the repeatability effect is linear over the range of 0 to $+55^{\circ} \mathrm{C}$, as indicated in Reference 6.7.
5.3. Calibration Instrument Data (per References 6.2 and 6.14)

The Fluke 45 Digital Multimeter will be used for the calibration of the trip unit (see Ref. 6.14 included as Attachment J).

Reference Accuracy:	$+/-0.2 \%+10$ digits
Full Scale:	$300 \mathrm{Vac}, 5$ digits
Minimum Gradation:	0.01 V

5.4. Calibration Procedure Data

The setting tolerance when setting the trip unit voltage is $\pm 0.2 \mathrm{~V}$ (Ref. $6.14,6.16$ and 6.19 which is taken as a $3 \sigma$ value per the methodology in Reference 6.15.
5.5. Station Data

The circuits for these two processes are located entirely in the Reactor Building in Environment Zone 26 per Reference 6.1.2. The following are the conditions that the circuits will be subject to:
Normal Conditions
Control Voltage Range: $\quad 95-140 \mathrm{Vdc}($ Ref. 6.14$)$
Temperature Range: $\quad+18.33-+39.44^{\circ} \mathrm{C}$ (see Ref. 6.12)
Humidity Range: $0-90 \%$
Radiation Level: <10k rads over 40 years
Accident Conditions
Control Voltage Range: $\quad 95-140 \mathrm{Vdc} ; 89 \mathrm{Vdc}$ for 1 sec . (Ref. 6.14)
Temperature Range: $\quad+18.33-+3944^{\circ} \mathrm{C}$ (see Ref. 6.12)
Humidity Range: $\quad 0-100 \%$ non-condensing
As noted in Reference 6.13, the maximum actual temperature inside the cubicle where the relays are installed will be approximately $2.78^{\circ} \mathrm{C}$ higher than the ambient temperature outside the cubicle. The minimum actual temperature inside the cubicle where the relays are installed will be approximately $0.39^{\circ} \mathrm{C}$ higher than the ambient temperature outside the cubicle. Therefore, the relays will experience temperatures in the range, of $18.72^{\circ} \mathrm{C}$ to $42.22^{\circ} \mathrm{C}$.

The relay has already been qualified for humidity variation, seismic events, radiation exposure, and pressure variation as discussed in References 6.1.2, 6.5, and 6.11.
5.6. Analytical Limit of Switchgear Voltage

The minimum voltages required at the 4160 V safety-related switchgear for adequate auxiliary system performance are taken from References 6.3, 6.4 and 6.17 as:

3820 V or $91.8 \%$ of 4160 V at Switchgear 33-1 (Div I)
3820 V or $91.8 \%$ of 4160 V at Switchgear 34-1 (Div II)
5.7. Per Reference 6.20, the burden on the PT is within the standard test burden of the PT.

## 6. REFERENCES

6.1. DIT Number DR-EPED-0685-00, entitled,"ITE-27N Undervoltage Relay and Potential Transformer Technical Data", dated 2-3-92 (Attachment A). The following were included in the DIT:
6.1.1. Dresden Unit 3 Drawings:

12E-3301, Sheet 3, Rev. Z
12E-3334, Rev. K
12E-3345, Sheet 2, Rev. AB
12E-3346. Sheet 2, Rev. AF
12E-3655G, Rev. K
6.1.2. Work Request Number D-97546/D-97547, Rev. 0, entitled "Minor Plant Design Change Package for Commonwealth Edison Company, Dresden Unit 3, Replacement of SecondLevel Undervoltage Relays," dated 6-26-91.
6.1.3. 4160 V Switchgear Proposal Data Sheet (page 6) of Specification number K-2175 R.
6.2. User's Manual for Fluke 45 Dual Display Multimeter, Appendix A, Rev. 4, dated $7 / 97$ (Attachment B).
6.3. S\&L Calculation Number 9198-18-19-3, Rev. 3, entitled "Calc. for Dresden 3/I Safety-related Continuous Loads - Running/Starting Voltages"
6.4. S\&L Calculation Number 9198-18-19-4, Rev. 3, entitled "Calc. for Dresden 3/II Safety-related Continuous Loads - Running/Starting Voltages"
6.5. S\&L Interoffice Memorandum from J. F. White, entitled "Seismic Qualification of ITE/ABB Undervoltage Relay Model 27N, Series 411T," which references ABB document number RC-5039-A, entitled "Equipment Performance Specifications, 27N Undervoltage Relay." (Attachment C)
6.6. GE document 7910, page 131, providing information for type JVM-3 Potential Transformer, dated 6-20-77 (Attachment D).
6.7. Memorandum of Telephone Conversation between S. Hoats of ABB and A. Runde of S\&L concerning ITE-27N relay characteristics, dated 1-23-92 (Attachment E).
6.8. Dresden Unit 3 Technical Specification Number DPR-25, Amendment number 103, specifically table 3.2 .2 , page $3 / 4.2-10$. This reference provides the second-level undervoltage relay time delay requirement (See Attachment A Page A27).
6.9. ABB Instruction Bulletin Number I.B. 7.4.1.7-7: Issue $D$ for ITE-27N relays and others (Attachment F).
6.10. Memorandum of Telephone Conversation between C. Downs of ABB and H. Ashrafi of S\&L concerning effect of temperature on the ITE-27N relays with Harmonic Filter Units, dated 3-30-92 (Attachment G).

REVISION
6.11. Main Line Engineering Associates (MLEA) Calculation No. MLEA 91-014 for Commonwealth Edison Company, entitled, "Environmental Qualification of Dresden Second Level Undervoltage System and Equipment for RWCU Line break Environmental Conditions", dated 1-23-92 (Attachment H).
6.12. DIT Number DR-EPED-0671-01, "Reactor Building Ventilation, Minimum Temperature," dated 5-0892 (Attachment I).
6.13. DIT Number BB-EPED-0178, "Undervoltage Relay Accuracy Calculation Input Data," dated 5-07-92 (Attachment N ).
6.14. Interoffice Memorandum from Bipin Desai (EPED), dated December 1, 1993 to R. M. Higdon (EAD) which contains information required for assumption verification (Attachment J ).
6.15. NES-EIC-20.04, Revision 3, "Analysis of Instrument Channel Setpoint Error and Instrument Loop Accuracy" (Not Attached)
6.16. Current Relay Setting Orders for the Second Level Undervoltage Relays plus e-mail memo from John G, Kovach to Craig Tobias dated 07/14/00, which discussed the RSO for the second-level undervoltage relay for Bus 33-1 (Attachment K).
6.17. DOC ID 0006191944, Rev. 5-DIT transmitting Improved Technical Specification (ITS) Analytical Limits (Attachment L).
6.18. "Improved Technical Specifications and 24-Month Technical Specification Project Technical Plan", Revision 2 dated 04/28/2000
6.19. Telecon between John Kovach of ComEd and Craig Tobias of Sargent \& Lundy dated 4/20/2000 verifying the relay setting orders for the degraded voltage and loss of voltage relays (Attachment M).
6.20. EC 8229, ITS Disconnect U3 Watt-Hr Meter At 33-1 \& 34-1, Rev. 0

## DESIGN ANALYSIS NO. 8982-17-19-2 <br> REVISION <br> 004 PAGE NO. 9 of 15

## 7. CALCULATIONS

7.1. Per inputs 5.1 and 5.2 .1 , the PT has a standard published error of $\pm 0.3 \%$ and the burden of the PT is within the standard test burden of the PT. Therefore, the maximum error of $\pm 0.3 \%$ will be considered in this calculation. PT testing would have to be performed to justify a smaller error. The error contributed by the PT is considered to be a process error since the PT is not a calibrated device. This is classified as a random $2 \sigma$ error. Therefore the PT $1 \sigma$ error value is $\pm 0.15 \%$.
7.2. Second Level Undervoltage Relay Random Errors:

### 7.2.1. Reference accuracy (RA):

Per Input 5.2.2, repeatability at constant temperature and control voltage is $\pm 0.1 \%$ of voltage reading [ $2 \sigma$ ]. Dividing by 2 to take to a $1 \sigma$ value:
RA $=0.05 \%$ of reading [1 $\sigma$ ].
7.2.2. Calibration Instrument error (CAL):

The reference accuracy at medium sampling rate (Reference 6.14) of a 60 Hz voltage signal is $\pm(0.2 \%$ of reading +10 least significant digits), to a $2 \sigma$ value per the methodology of
Reference 6.15. The linear resolution at medium sampling rate on the 300 V range is 0.01 V . Thus, each digit corresponds to 0.01 V . Therefore, the $2 \sigma$ reference accuracy is $\pm(0.2 \%$ of reading $+10^{*} 0.01 \mathrm{~V}$ ).
Conservatively taking this at a reading 112 V , which is slightly larger than the existing relay setpoint value, and dividing by 2 to get a $1 \sigma$ value:

$$
\text { CALv }= \pm(0.2 \% * 112 \mathrm{~V}+10 * 0.01 \mathrm{~V}) / 2=0.162 \mathrm{~V}[1 \sigma]
$$

In terms of $\%$ of reading (taken at a reading of 112 V ):

$$
\text { CAL }=\text { CALV } / 112 \mathrm{~V}=0.162 \mathrm{~V} / 112 \mathrm{~V}=0.145 \% \text { of reading }[1 \sigma]
$$

Since the instrument has a digital readout, there is no reading error.
Also, since the calibration instrument and the relay are calibrated within the allowable range as specified by the calibration instrument manufacturer, there is no temperature effect for the calibration instrument. (See Input Data Section 5.3)
7.2.3. Setting Tolerance (ST)

Per Input Section 5.4, the relay setting tolerance is a random error of $\pm 0.2 \mathrm{~V}[3 \sigma]$.
Converting this to terms of $\%$ of reading, for a 112 V reading, and dividing by 3 to get the $1 \sigma$ value:
$\mathrm{ST}= \pm(0.2 \mathrm{~V}) /((112 \mathrm{~V}) * 3)= \pm 0.060 \%$ of reading $[1 \sigma]$
7.2.4. Drift (DR)

According to Reference 6.7, no drift error is expected for the relay as long as the relay is calibrated at reasonable intervals. Thus, $\mathrm{DR}=0$. However, this is not the case. From operating experience it is known that these relays do drift some. Unfortunately, there is not enough data to perform a drift uncertainty calculation.
Based on the above discussion, a drift value is needed. It is considered conservative to use the default drift effect of $0.5 \%$ of span per refueling cycle (reference 6.15 ). This specification conservatively encompasses the 18 month calibration interval plus $25 \%$ late factor ( 22.5 months) considered in this calculation. The $0.5 \%$ of span is a $2 \sigma$ value. Per Section 5.2.2,

## DESIGN ANALYSIS NO. 8982-17-19-2 REVISION 004 PAGE NO. 10 of 15

the relay functions over a voltage range of 70 V to 120 V , for a span of 50 V . Converting the drift to $\%$ of reading, by conservatively setting the reading at 112 V , and taking to a $1 \sigma$ value:
$\mathrm{DR}=( \pm 0.5 \% \text { of span })^{*}(120 \mathrm{~V}-70 \mathrm{~V}) /(112 \mathrm{~V}) / 2= \pm 0.112 \%$ of reading
7.2.5. Random Input Error (oin)

The random input error present at the relay is the random error from the PT, which per Section 7.1 is $0.15 \%$. Thus:

$$
\sigma \mathrm{in}=0.15 \% \text { of reading }[1 \sigma]
$$

7.2.6. Drift Tolerance Interval (DTIv)
$D T I V= \pm\left(R A^{2}+C A L^{2}+S T^{2}+D R^{2}\right)^{1 / 2}$
Where RA = reference accuracy $=0.050 \%$ per Section 7.2.1
CAL $=$ calibration error $=0.145 \%$ per Section 7.2 .2
ST $\quad=$ setting tolerance $=0.060 \%$ per Section 7.2 .3
$\mathrm{DR}=$ drift $=0.112 \%$ per Section 7.2.4
Thus:
DTIV $= \pm\left[(0.050 \%)^{2}+(0.145 \%)^{2}+(0.060 \%)^{2}+(0.112 \%)^{2}\right)^{1 / 2}$
DTIv $= \pm 0.199 \%$ of reading [1б]
7.2.7. Total Random Error ( $\sigma$ )

The total random error is the SRSS of the random errors from Sections 7.2.1 through 7.2.6. Therefore:
$\sigma= \pm\left(R A^{2}+C A L^{2}+S T^{2}+D R^{2}+\sigma \mathrm{in}^{2}\right)^{1 / 2}$
$\sigma= \pm\left[(0.050 \%)^{2}+(0.145 \%)^{2}+(0.060 \%)^{2}+(0.112 \%)^{2}+(0.150 \%)^{2}\right)^{1 / 2}$
$\sigma= \pm 0.249 \%$ of reading [1 $\sigma$ ]

### 7.3. Relay Non-Random Errors

7.3.1. Temperature effect (eT):

Per Input 5.2, the temperature effect is $\pm 0.75 \%$, and the absolute effect is $1.5 \%$ over the temperature range of 0 to $+55^{\circ} \mathrm{C}$. Per References 6.7 and 6.10 , the relay operating voltage increases or decreases approximately linearly with temperature. Applying the $1.5 \%$ linearly across the 0 to $55^{\circ} \mathrm{C}$ range results in a rate of $1.5 \% /(55-0)^{\circ} \mathrm{C}=0.0273 \% /{ }^{\circ} \mathrm{C}$.
The actual pickup or dropout voltage is lower than the setpoint value if the operating temperature is higher than the temperature at which the relay was calibrated.
Similarly the pickup or dropout voltage is higher than the setpoint value if the operating temperature is lower than the calibration temperature.
Then, for a temperature range of +18.72 to $+42.22^{\circ} \mathrm{C}$ and a relay calibration temperature range of 21 to $24^{\circ} \mathrm{C}$ (per Reference 6.14), the temperature effect is developed below:

## Negative Temperature Effect:

In determining the error due to relay negative temperature effect, it will be considered that the relay is calibrated at a temperature of $24^{\circ} \mathrm{C}$ (per Reference 6.14). This will provide a conservative reference point from which the temperature effect for the relay can be incorporated into the determination of the nominal dropout. At $24^{\circ} \mathrm{C}$, a larger portion of the error used in the calculation for relay temperature effect will be negative, which will provide a conservative nominal dropout.

Neg. Temp. Effect:

$$
-\mathrm{eT}=\left(24-18.72^{\circ} \mathrm{C}\right)^{*} 0.0273 \% /^{\circ} \mathrm{C}=0.144 \%
$$

## Positive Temperature Effect:

In determining the error due to relay positive temperature effect, it will be considered that the relay is calibrated at a temperature of $21^{\circ} \mathrm{C}$ (per Reference 6.14). This will provide a conservative reference point from which the temperature effect for the relay can be incorporated into the determination of the maximum dropout of the relay.
At $21^{\circ} \mathrm{C}$ rather than $24^{\circ} \mathrm{C}$, a larger portion of the error used in the calculation for relay temperature effect will be positive, which will provide a conservative determination of the relay maximum dropout.
Pos. Temp. Effect:

$$
+\mathrm{eT}=\left(42.22-21^{\circ} \mathrm{C}\right)^{*} 0.0273 \% /^{\circ} \mathrm{C}=0.579 \%
$$

Thus, the temperature effect is $-0.579 \% /+0.144 \%$.
This is classified as a non-random error.
7.3.2. Control Voltage Effect (CV)

Per Input 5.2 , control voltage effect is $\pm 0.1 \%$ over the dc control voltage range of $100-140$ Vdc. This is classified as a non-random error.
$C V= \pm 0.1 \%$ of reading
7.3.3. Environmental Effects

By comparison of the acceptable relay conditions provided in Section 5.2 .2 with the expected station conditions provided in Section 5.5, it is evident that no effect on functional capability is introduced as a result of pressure variation or humidity variation.
7.3.4. Seismic Effects

As discussed in Reference 6.1.2, section 1.7, no effect on functional capability of the relay is introduced as a result of a seismic event since the relay capability envelops the seismic requirement for the relay locations.

### 7.3.5. Total Non-Random Error

The total non-random error is the sum of the non-random errors from sections 7.3.1 through 7.3.2. Therefore:

Negative non-random error is the addition of the negative relay temperature effect ( -eT ) from Section 7.3.1 and the negative control voltage effect (CV) from Section 7.3.2:
$\Sigma \mathrm{e}-=-\mathrm{e} \mathrm{T}+(-\mathrm{CV})=(-0.579 \%)+(-0.1 \%)=-0.679 \%$ of reading
Positive non-random error is the addition of the positive relay temperature effect (+eT) from Section 7.3.1 and the positive control voltage effect (CV) from Section 7.3.2:
$\Sigma \mathrm{e}+=+\mathrm{eT}+(+\mathrm{CV})=(+0.144 \%)+(+0.1 \%)=+0.244 \%$ of reading

### 7.4. Total Error

It should be noted that this calculation utilizes the methodology defined in Sections 2.3 and 2.4 to calculate the dropout setpoint. The calculation uses the Total Negative Error (TNE) in determining the dropout setpoint and the Total Positive Error (TPE) in determining the maximum dropout value. These definitions of error do not follow the methodology defined in Sections 2.6 and 2.7 for calculating the Allowable Values and Expanded Tolerances. Thus, TNE and TPE are used in the determination of the dropout setpoint and maximum dropout value, and $\mathrm{Z}+, \mathrm{Z}-\mathrm{Zav}+$ and Zav - are used in the determination of the Allowable Values and Expanded Tolerances.
The total error present at the relay is the combination of the random and non-random errors determined in Sections 7.2.7 and 7.3.5.

## Total Error $=2 \sigma+\Sigma e$

Total Negative Error (TNE) $=2 *(0.249 \%)+(0.679 \%)=1.177 \%$ of reading
Total Positive Error (TPE) $=2 *(0.249 \%)+(0.244 \%)=0.742 \%$ of reading
Converting to 4 kV voltage process units, by conservatively taking the relay voltage reading at 112 V , and then multiplying by the voltage ratio:
TNE $=1.177 \%$ * $(112 \mathrm{~V}) *(4200 \mathrm{~V} / 120 \mathrm{~V})=46 \mathrm{~V}$ (in the 4 kV process)
TPE $=0.742 \%^{*}(112 \mathrm{~V}) *(4200 \mathrm{~V} / 120 \mathrm{~V})=29 \mathrm{~V}$ (in the 4 kV process)
In this calculation, the terms of Total Positive Error (TPE) and Total Negative Error (TNE) are used for calculating the setpoint. A positive error is one that would cause the actual trip value to be higher than the setpoint value. Using this definition when the errors are applied to calculating the Allowable Values and Expanded Tolerances results in the following relationships:

$$
\begin{aligned}
& Z^{+}=\text {TNE } \\
& Z-=\text { TPE } \\
& \Sigma e^{+}=\text {Negative Non-Random Errors }=0.679 \% \text { of reading } \\
& \Sigma e-=\text { Positive Non-Random Errors }=0.244 \% \text { of reading }
\end{aligned}
$$

Per Section $2.6, Z_{A V}$ will be used to determine the allowable value random errors. Because the relay is bench calibrated, $\mathrm{Z}_{\mathrm{AV}}$ includes only the contributions of DTIv, which from Section 7.2.6, is $\pm 0.199 \%$ of reading. Therefore,

$$
\sigma_{\mathrm{AV}}=\mathrm{DTIV}= \pm 0.199 \% \text { of reading }
$$

Per Section 2.6, the total errors for determining allowable values are:
$\mathrm{Z}_{\mathrm{AV}^{+}}=2 \sigma_{\mathrm{AV}^{+}}=2^{*}(+0.199 \%)=+0.398 \%$ of reading
$Z_{A V^{-}}=2 \sigma_{A V^{-}}=2^{*}(-0.199 \%)=-0.398 \%$ of reading
Converting to voltage at relay, by using a reading at 112 V :
$\mathrm{Z}_{\mathrm{AV}}=(0.398 \% \text { of reading })^{*}(112 \mathrm{~V})=0.45 \mathrm{~V}$ at relay

## REVISION

004
PAGE NO. 13 of 15
7.5. Setpoint Determination

The setpoints for $4160 \vee$ Switchgear 33-1 (Div. I) and 34-1 (Div. 2) are calculated as:
Nominal Trip Setpoint for Dropout ( $\mathrm{NTSP}_{\text {DO }}$ ) = Analytical Limit (AL) + TNE

$$
\begin{aligned}
\text { NTSP } & =A L+\text { TNE (Using values from Sections } 5.6 \text { and } 7.4) \\
& =3820 \mathrm{~V}+46 \mathrm{~V}=3866 \mathrm{~V} \text { at } 4.19 \mathrm{kV} \text { bus }
\end{aligned}
$$

Converting to voltage read at the relay by multiplying by the voltage ratio:

$$
\begin{aligned}
\text { NTSP }_{\mathrm{DO}-\mathrm{R}} & =\mathrm{NTSP}_{\mathrm{DO}} *(120 \mathrm{~V}) /(4200 \mathrm{~V})=(3866 \mathrm{~V}) *(120 \mathrm{~V}) /(4200 \mathrm{~V}) \\
& =110.46 \mathrm{~V} \approx 110.5 \mathrm{~V} \text { at relay } \\
& \text { NTSP }_{\text {PU-R }} \\
& =\mathrm{NTSP}_{\mathrm{DO}-\mathrm{R}} / 0.995=110.5 \mathrm{~V} / 0.995 \\
& =111.06 \mathrm{~V} \approx 111.1 \mathrm{~V} \text { at relay }
\end{aligned}
$$

From the nominal dropout, the maximum dropout and pickup voltages can be determined:

$$
\begin{aligned}
\text { Maximum Dropout } & =\text { NTSP } \\
& =3895 \mathrm{~V} \text { at } 4.16 \mathrm{kV} \text { bus }
\end{aligned}
$$

Converting to terms of voltage at the relay: $(3895 \mathrm{~V}) *(120 \mathrm{~V}) /(4200 \mathrm{~V})=111.3 \mathrm{~V}$
Maximum Pickup $=$ Maximum Dropout $/($ dropout/pickup ratio $)=3895 \mathrm{~V} / 0.995$ $=3915 \mathrm{~V}$ at 4.16 kV bus
Converting to terms of voltage at the relay: $(3915 \mathrm{~V})^{*}(120 \mathrm{~V}) /(4200 \mathrm{~V})=111.9 \mathrm{~V}$ (The Max. Pickup is the relay Max. Reset Voltage)
7.6. Allowable Value Determination

Per Section 2.6, the Allowable Value is determined.
The lower allowable value for the dropout setpoint is determined as:

$$
\begin{aligned}
\mathrm{AV}_{\mathrm{DOL}} \geq & \mathrm{SPc}-\left|\mathrm{Z}_{\mathrm{AV}}+\right| \quad \text { [lower limit] } \\
& \mathrm{SPC}_{\mathrm{DO}}=3866 \mathrm{~V} \text { at } 4.16 \mathrm{kV} \text { bus } \quad(\text { Section } 7.5) \\
& \left.\mathrm{Z}_{\mathrm{AV}}+=0.398 \% \text { of reading } \quad \text { (Section } 7.4\right) \\
\mathrm{AV}_{\mathrm{DOL}} \geq & (3866 \mathrm{~V})-(0.398 \% *(3866 \mathrm{~V}))=3851 \mathrm{~V}
\end{aligned}
$$

Converting to voltage at the relay, by multiplying by the voltage ratio:

$$
A V_{D O L-R} \geq(3851 \mathrm{~V})^{*}(120 \mathrm{~V}) /(4200 \mathrm{~V})=110.029 \mathrm{~V} \approx 110.0 \mathrm{~V}
$$

Applying the applicable uncertainties to determine the upper dropout $A V$ :

$$
\begin{aligned}
& \mathrm{A} \mathrm{~V}_{\mathrm{DOU}} \leq \mathrm{SPC}+\left|\mathrm{Z}_{\mathrm{AV}}+\right| \quad[\text { lower limit }] \\
& \mathrm{A} \mathrm{~V}_{\mathrm{DOU}} \leq(3866 \mathrm{~V})+\left(0.398 \%^{*}(3866 \mathrm{~V})\right)=3881 \mathrm{~V}
\end{aligned}
$$

Converting to voltage at the relay, by multiplying by the voltage ratio:

$$
A V_{D O U-R} \leq(3881 \mathrm{~V})^{*}(120 \mathrm{~V}) /(4200 \mathrm{~V})=110.886 \mathrm{~V} \approx 110.9 \mathrm{~V}
$$

## REVISION 004 PAGE NO. 14 of 15

### 7.7. Expanded Tolerance Determination

Per Section 2.7, the Expanded Tolerance is determined as:

$$
\mathrm{ET}= \pm\left[0.7^{*}\left(\left|\mathrm{Z}_{\mathrm{AV}}+\right|-\mathrm{ST}\right)+\mathrm{ST}\right] \quad \text { where } \mathrm{ST} \text { is taken to a } 2 \sigma \text { value }
$$

$\mathrm{Z}_{\mathrm{AV}}{ }^{+}=0.398 \%$ of reading (Section 7.4)
$\mathrm{ST}=0.2 \mathrm{~V}[3 \mathrm{\sigma}]$ (Section 5.4)
Taking the ET at a reading of 112 V at the relay:
$\mathrm{ET}= \pm\left[\left(0.7^{*}((0.398 \%\right.\right.$ of reading $) *(112 \mathrm{~V})-(0.2 \mathrm{~V} * 2 / 3))+(0.2 \mathrm{~V} * 2 / 3)= \pm 0.352 \mathrm{~V}$ at relay
$E T \approx \pm 0.35 \mathrm{~V}$ at relay
The ET is now checked to ensure that the applicable limits are maintained:
Check 1: ET $\geq \mathrm{ST}$ ?
$\pm 0.35 \mathrm{~V} \quad \geq \pm 0.2 \mathrm{~V} \quad$ PASS
Check 2: SPc-ET $\geq$ AV ? [lower limit]
$110.5-0.35 \mathrm{~V} \geq 110.0 \mathrm{~V}$
$110.15 \mathrm{~V} \geq 110.0 \mathrm{~V} \quad$ PASS
Check 3: SPc + ET $\leq \mathrm{AV}$ ? [upper limit]
$110.5+0.35 \mathrm{~V} \leq 110.9 \mathrm{~V}$
$110.85 \leq 110.9 \mathrm{~V}$ PASS

## 8. SUMMARY AND CONCLUSIONS

The following are the recommended settings for the Division I and II second-level undervoltage relays:
The results summarized below are applicable for normal and accident operating conditions, for the existing Analytical Limit of 3820 V . It should be noted that the field setpoint value is required to be revised per this calculation.
Calculated Values Summary

Description	Div. I/IIV at relay	Div. I/II (4.16kV equiv.)
SPc (DO)	110.5	3866
SPc (PU)	111.1	3885
AV(DO) lower	$\geq 110.0$	$\geq 3851$
AV(DO) upper	$\leq 110.9$	$\leq 3881$
Max. DO	111.3	3895
Max. PU	111.9	3915

NOTE: Pickup (PU) is $99.5 \%$ of Dropout (DO) (see Section 5.2.2)
The delay setting for the relay was not analyzed in this calculation nor was it intended to be. Thus, the delay of the relay should be set to the same value as previously required per the Dresden Unit 2
Technical Specifications (Reference 6.8), which is 7 seconds.
Please utilize the Instruction Bulletin I.B. 7.4.1.7-7, Issue D (Reference 6.9) when setting the relay since the setpoints and setpoint terminology in this calculation are based on this instruction bulletin

## Calibration Summary

The calibration information used to support the results of this calculation is defined below. In addition, the field calibration setpoint and expanded tolerances are identified.

Calibration Setpoint / Allowable Value (for Dropout (DO)):

EPN	Parameter	Process Units
$127-3(4)-$-B33-1	Field Calibration Setpoint	$\geq 110.5 \mathrm{~V}$
$127-3(4)-$-B34-1	Allowable Value - Lower	$\geq 110.0 \mathrm{~V}$
	Allowable Value - Upper	$\leq 110.9 \mathrm{~V}$

Calibration Frequency, Setting Tolerances and Expanded Tolerances:

	Surveillance Interval	Setting Tolerance	Expanded Tolerance
Channel Calibration	18 months	$\pm 0.2 \mathrm{~V}$	$\pm 0.35 \mathrm{~V}$

The values calculated above are dependent on the relays being calibrated with a Fluke 45 , set on medium rate, to read the voltage at the relay, in the 300 Vac range. Use of other M\&TE is only permitted if it is analyzed to be of equal or better accuracy than the Fluke 45.

## ATTACHMENT A

## DIT DR-EPED-0685-00



IDENTIFICATION OF THE SPECIFIC DESIGN INFORMATION TRANSMITTED AND PURPOSE OF ISSUE (List any supporting documents attached to DIT by its title. revision and/or issue date, and total number of pages for each supporting document.)


SOURCE OF INFORMATION
Calc. no. $\quad$ Rev. and/or date
Other

```
DISTRIBUTION
 ES/RMS - FILE IOTT CRIGINAL FILE - 15D
 R.H:JASCA - 21
 K:llp - 2l
```

    Fil3A (1/2)
    \begin{tabular}{l} 
    F113A (1/2 <br>
$01-47$. <br>
\hline 1
\end{tabular}

Calculation No. 8982-17-19-2 Revision 004 Attachment:
$\frac{A}{\text { of } A 27}$
MINOR PLANT CHANGE DESIGN PACKAGEFOR
COMPOWMEALTH EDISON COMPANY
DRESDEN STATIO
UNIT 3
REPLACEHENT OF SECOND LEVEL
UNDERVOLTAGE RELAYS MOOIFICATION
June 26, ..... 1991
Calculation No. 8982-17-19-2
Revision ..... 004

## DESIGN INPUT REQUIREMENTS - TABLE OF CONTENTS

Section Description ..... Page
1.0 DESIGN INPUT REQUIREMENTS ..... 1
1.1 BASIC FUNCTIONS TO BE PERFORMED ..... 1
1.2 PERFORMANCE REQUIREMENTS ..... 1
1.3 CODES, STANDARDS, REGULATORY REQUIREMENTS, AND QA REQUIREMENTS ..... 2
1.4 DESIGN CONDITIONS ..... 3
1.5 DESIGN LOADS ..... 3
1.6 ENVIRONMENTAL CONDITIONS ..... 3
1.7 SEISMIC QUALIFICATION ..... 4
1.8 ENVIRONMENTAL QUALIFICATIONS ..... 4
1.9 INTERFACE REQUIREMENTS ..... 5
1.10 MATERIAL REQUIREMENTS ..... 5
1.11 STRUCTURAL REQUIREMENTS ..... 5
1.12 ELECTRICAL REQUIREMENTS ..... 5
1.13 LAYOUT AND ARRANGEMENT REQUIREMENTS ..... 6
1.14 OPERATIONAL REQUIREMENTS ..... 6
1.15 INSTRUMENTATION AND CONTROL REQUIREMENTS ..... 7
1.16 TECHNICAL SPECIFICATION CHANGES ..... 7
1.17 FSAR/UFSAR CHANGES ..... 7
1.18 REDUNDANCY, DIVERSITY, AND SEPARATIO:" REQUIREMENTS ..... 7
1.19 FAILURE MODES AND EFFECTS REQUIREMENTS ..... 8
1.20 TEST, NDE, AND WELDING REQUIREMENTS ..... 8
1.21 ACCESSIBILITY, MAINTENANCE, REPAIR, AND ISI ..... 8
1.22 RISK TO health and safety of the public ..... 8
1.23 SUITABILITY OF PARTS, EQUIPMENT, PROCESSES, AND MATERIALS ..... 8
1.24 PERSONNEL SAFETY ..... 8
1.25 CATHODIC PROTECTION REQUIREMENTS ..... 9
1.26 INDUSTRY EXPERIENCE (SER/SOER KEYWORD INDEX) ..... 9
1.27 STANDARD INSTALLATION SPECIFICATIONS ..... 10
1.28 STANDARD STATION INSTALLATION PROCEDURES AND QC PROCEDURES ..... 10
1.29 ENGINEERING CHECKLISTS ..... 10
1.29.1 SYSTEM INTERACTION ..... 10
1.29.2 ACCEPTANCE TESTING ..... 11
1.29.3 ALARA ..... 11
1.29.4 ENVIRONMENTAL QUALIFICATION ..... 11
1.29.5 FIRE PROTECTION ..... 12
2.0 VALKDOMAS
2.1 DESIGNER'S WALKDOWN ..... 12
2.2 INSTALLER'S WALKDOHN ..... 12
3.0 CONCEPTUAL DESIGN DOCLHENTS ..... 12
4.0 MOTES FRON CONCEPTUAL DESIGN PROJECT REVIEN KICKOFF MEETING ..... 12
5.0 SAFETY-RELATED COMPONENT OR MASTER EQUIPMENT LIST ..... 12
6.0 COHPONENT CLASSIFICATION ..... 13
7.0 INSTALLATION PROCEDURES ..... 13
8.0 PROCUREMENT DOCLMENTS ..... 13
8.1 BILL OF MATERIALS ..... 13
8.2 EQUIPMENT SPECIFICATIONS ..... 13
8.3 MATERIAL SPECIFICATIONS ..... 13
8.4 EQUIPMENT REQUIREMENTS ..... 13
8.5 PURCHASE ORDERS ..... 13
Calculation No. $\frac{8982-17-19-2}{004}$
Revision $\frac{A}{\text { Attachment: } \frac{A}{\text { A }} \mathrm{A} 27}$
Page A4 of
9.0A AC/DC LOAD TICKETS ..... 14
9.0B ELECTRICAL PROTECTIVE DEVICE SETTINGS ..... 14
10.0 ENGINEERING DESIGN EVALUATION (QP 3-1) ..... 14
11.0 REFERENCE TO CONFIRMATORY ANALYSES ..... 14
11.1 CALCULATIONS ..... 14
11.2 TECHNICAL REPORTS ..... 14
11.3 STRESS REPORTS/OVERPRESSURE PROTECTION REPORT ..... 14
11.4 COMPUTER I/O LISTINGS ..... 14
12.0 ATTACHMENTS ..... 1512.1 ENGINEERING CHECKLISTS
12.2 WALKDOWN CHECKLIST
12.3 ENC-QE-12.1 FORMS
12.4 NOTES OF CONCEPTUAL DESIGN REVIEW KICKOFF MEETING/CONCEPTUAL DESIGN SKETCHES
12.5 LOAD TICKETS

```
W.R. No.: D-97546/D-97547
Rev.: 0
Date: June 26, 1991
Page 1
```


### 1.0 DESIGM INPUT REQUIREMENTS


Calculation No. $\frac{8982-17-19-2}{004}$

Revision | Attachment: $\frac{\text { A }}{\text { A }}$ |
| :--- |
| Page A6 of A27 |

W.R. No.: D-97546/D-97547
Rev.: 0
Date: June 26, 1991
Page 2

E)	ANSI N45.2.2-1978 (*1972)	Packaging, Shipping, Receiving, Storage and Handling of Items for Nuclear Power Plants.
F)	$\begin{aligned} & \text { *IEEE-308-1980 } \\ & (* 1971) \end{aligned}$	Criteria for Class $1 E$ Power Systems for Nuclear Power Generating Stations.
G)	$\begin{aligned} & \text { *IEEE-323-1983 } \\ & (* 1974) \end{aligned}$	Standard for Qualifying Class IE Equipment for Nuclear Power Generating Stations.
H)	*IEEE-344-1975	Recommended Practices for Seismic Qualification of Class 1E Equipment.
I)	10 CFR 21	Reporting of Defects and Noncompliance.
J)	10 CFR 50, App. A	General Design Criteria.
K)	10 CFR 50, App. B	Quality Assurance.
L)	10 CFR 50.49	Environmental Qualification of Electrical Equipment Important to Safety for Nuclear Power Plants.
M)	Specification $K 4080$ Rev. 2	General Work Specification for Maintenance/Modification Work.
N)	$\begin{aligned} & \text { Specification } \\ & 13524-068-\mathrm{N} 102 \text {, Rev. } 3 \end{aligned}$	Equipment Qualification Specification (by Bechtel).
0)	DC-SE-002-DR, Rev. 2	Dresden Seismic Design Criteria.
P)	$\begin{aligned} & \text { Specification } \\ & \text { 13524-068-N101, Rev. } 1 \end{aligned}$	Bechtel Radiation Study
Q)	Nuclear Station Work Procedures (NSWP), Vol. III, Rev.	

Calculation No. $\frac{8982-17-19-2}{004}$
Revision $\frac{A}{\text { Attachment: } \frac{A}{\text { A27 }}}$
Page A7 of

```
W.R. No.: D-97546/D-97547
Rev.: 0
Date: June 26, 1991
Page 3
```

> R) CECo Electrical Installation Standard (EIS), Rev. 2

Note: An asterisk (*) designates a code or standard to which Commonwealth Edison Company (CECO) has committed Dresden Station, Unit 3. The revision committed to is not necessarily the same one as is to be used in the design of this modification.

### 1.4 DESIGN CONDITIONS

The Type ITE-27N relays shall operate under all plant operating conditions and in the environmental conditions given in Section 1.6. The ITE-27N relays will be purchased with an internal harmonic filter to eliminate harmonic distortion in the ac input circuit. The ITE-27N relay has a lower pickup voltage/dropout voltage ratio, which allows the relay to reset (once it drops out) when the system voltage recovers to an acceptable level. Thus, avoiding unnecessary tripping of the off-site power source and transferring of the Class $1 E 4.16-\mathrm{kV}$ buses to the on-site diesel generators. See also Section 1.12 for electrical design conditions.

### 1.5 DESIGN LOADS

The new ITE-27N relays are the same size as the existing ITE-27D relays. There is no significant change in structural loading of the panels where the relays will be installed. Structural loads (i.e., seismic and dead weight) have been evaluated for this modification and found acceptable (see also Sections 1.7 and 1.11). The new relay has an input circuit at $0.5 \mathrm{VA} / 120 \mathrm{Vac}$ and a control circuit at $0.05 \mathrm{~A} / 125 \mathrm{Vdc}$ which are less than $1.2 \mathrm{VA} / 120$ Vac and $0.08 / 125 \mathrm{Vdc}$ for the existing relay. The new relays will have no significant thermal heat contribution to the area where they will be located.

### 1.6 ENVIRONMENTAL CONDITIONS

The existing Dresden, Unit 3 second level undervoltage relays are mounted in Panels 2253-83 and 2253-84. Each panel contains two undervoltage relays. These panels are associated with and located just behind
Calculation No. $\frac{8982-17-19-2}{004}$
Revision $\frac{\text { A }}{\text { Attachment: } \quad \text { A27 }}$
Page A8 of A

```
W.R. No.: D-97546/D-97547
Rev.: 0
Date: June 26, 1991
Page 4
```

4160-kV Switchgear Buses 33-1 and 34-1, respectively. These switchgears and panels are located on elevation 545-6" of the Unit 3 Reactor Building. This area is Environmental Zone 26. The environmental parameters (based on E. Q. Binder 440 and Bechtel Specification 13524-068-N101, Rev. 1) were determined for the present locations of these undervoltage relays as presented below:

Parameter	Normal	LOCA
Temperature	$104{ }^{\circ} \mathrm{F}$	$104{ }^{\circ} \mathrm{F}$
Pressure	14.7 psia	14.7 psia
Humidity	<90\%	100\% (non-condensing)
Radiation	<1.0E04	*
Duration	40 years	1 year
Further detailed reviews (based on distances from		
radiation sources) have determined that Core Spray		
Pipe 1404-12" is the relevant radiation source for all		
the panel locations. Comparison of the distances of		
each panel from this pipe provided the one-year post		
Loss Of Coolant Accident (LOCA) doses as shown in the following:		
	Distance From	
Panel No.	Pipe 1404-12"	Dose (rads)
2253-83	18 feet	$3.5 E 04$ (mild)
2253-84	43 feet	1.0504 (mild)

Panels 2253-83 and 2253-84 are subject to the effects of an RWCU line break at this location. This area is considered to be a harsh environment in the event of an RWCU line break. However, per EQ binder 44D, the second level undervoltage relay is not required to mitigate the consequences of an RWCU line break (Bechtel Chron 13303 and MLEA Calc. No. 88011-03, dated $11 / 15 / 88$ ). CECO is currently evaluating environmental status of the second level undervoltage relays.

### 1.7 SEISMIC QUALIFICATION

The seismic information contained in ABB Certification Report No. RC-5039-A (submitted for Modification M12-3-89-53) was compared against the seismic requirements for the location of the relays in each
Calculation No. $\frac{8982-17-19-2}{004}$
Revision $\frac{\text { A }}{\text { Attachment: }}$
Page A9 of A27

```
W.R. No.: D-97546/D-97547
Rev.: 0
Date: June 26, 1991
Page 5
```

    subject panel. The Seismic Design Criteria
    DC-SE-002-DR (Rev. 2) provides the response spectra
damping values and seismic design requirements for the
Dresden Station. The results of this review is that
the ITE-27N relays, purchased to the ABB Report
mentioned above, do indeed envelop the seismic
requirements for this location and the relays would,
therefore, maintain their functional ability during
and after a seismic event (Reference Calculation
CQD-051325, Rev. 1).

### 1.8 ENVIRONMENTAL QUALIFICATIONS

The new relays will be installed in the same location within Panels 2253-83 and 2253-84. For a LOCA condition, Panels 2253-83 and 2253-84 are considered to be in a mild environment. For a HELB condition, specifically a RWCU line break, these panels are considered to be in a harsh environment. But, second undervoltage relays are not required to mitigate the consequences of a RUCU line break. Therefore, the second level undervoltage relays do not require environmental qualifications.

### 1.9 INTERFACE REOUIREMENTS

This modification is limited to the second level undervoltage protection of the Class IE 4.16-kV Buses 33-1 and 34-1. No other plant system is impacted. This modification will increase the reliability of the second level undervoltage protection by using ITE-27N relays, which have a lower pickup voltage/dropout voltage ratio.
1.10 MATERIAL REQUIREMENTS
In addition to the ABB ITE-27N undervoltage relays, the following materials are required for this modification:
a) Terminal lugs for \#14 AWG SIS wires.
b) Switchboard wires, \#14 ANG, and 600-V Type SIS.
Calculation No. $\frac{8982-17-19-2}{004}$
Revision $\frac{\text { A }}{\text { Attachment: } \frac{\text { A27 }}{}}$
Page A10 of A

```
W.R. No.: D-97546/D-97547
Rev.: 0
Date: June 26, 199]
Page 6
```

1.11 STRUCTURAL REQUIREMENTS
The impact of replacing the second level undervoltage relayson Panels 2253-83 and 2253-84 have been seismicallyevaluated (see Section 1.7 above). The new relays provideno significant change to the structural loading of thesubject panels. Therefore, the design capabilities of thestructures are not affected.
1.12 ELECTRICAL REOUIREMENTSThis modification does not change the existing design andelectrical function of the second level undervoltage relays.The new undervoltage relays shall meet the followingspecifications:
Detailed Description:
Type: ABB ITE-27N (High Accuracy Undervoltage Protective Relay)
Control Voltage: 125 Vdc (Nominal)
Input Voltage: 125 Vac (Nominal), Single-Phase
Input Frequency: ..... 60 Hz
Case: Test Case
Mounting
Semi-Flush
Operating Time: Definite Time Delay Unit (DropoutRange 1 to 10 Seconds)
Harmonic Filter: ..... Yes
Standards: ..... Per IEEE-344 (1975) ANSI C37.SU andC37. 98
Catalog No.: ..... 41174375-HF
Calculation No. $\frac{8982-17-19-2}{004}$
Revision $\frac{A}{\text { Attachment: } \frac{A}{\text { A27 }}}$
Page A11 of A

```
W.R. No.: D-97546/D-97547
Rev.: 0
Date: June 26, 199]
Page 7
```

Replacement relays will have the same settings as the existing relays. System Planning will issue the relay setting order and Electrical/Instrument and Control Group will review the relay setting order.

The Oresden Station Technical Specification, ELMS electrical design drawings, vendor supplied information, and field walkdowns are utilized to establish the necessary electrical parameters for the second level undervoltage relays.

### 1.13 LAYOUT AND ARRANGEMENT REQUIREMENTS

The outline dimensions and panel drilling for the new ITE-27N undervoltage relays are identical to the existing ITE-27D relays. Therefore, there will be no additional layout arrangement. requirements.

### 1.14 OPERATIONAL REOUIREMENTS

The plant operational requirements are not changed by this modification.

The second level undervoltage relays are required to protect Class $1 E 4.16-\mathrm{kV}$ Buses $33-1$ and 34-1 against a degraded voltage condition. The relays are required to initiate a timer (five-minute time delay setting) if a degraded voltage condition persists (see Tech. Spec. Table 3.2.2). After the delay, the relays actuate associated circuits to trip off-site power source breakers, initiate load shedding and start the diesel generators. The relays are also required to be able to reset when the line voltage recovers to an acceptable level within the time delay setting. Thus, overriding unnecessary tripping of off-site power source breaker, load-shedding and starting of the diesel generator.

### 1.15 INSTRUMENTATION AND CONTROL REOUIREMENTS

There are no additional instrumentation and control requirements since this modification does not change the function or logic circuitry of the second level undervoltage protection scheme.
Calculation No. $\frac{8982-17-19-2}{004}$
Revision $\frac{A}{\text { A }}$

Attachment: | A |
| :--- |
| Page A12 of A27 |

1.16 TECHNICAL SPECIFICATION CHANGES
This modification does not change any set points ortime delay settings for the existing undervoltageprotection scheme. The new relay has a drop outtolerance of $+/-0.5 \%$ which is bounded by the existingrelay tolerance of $+/-2 \%$. This tolerance is statedin Table 3.2.2 of the Technical Specification. Thelower reset voltage is an internal characteristic ofthe new undervoltage relay. Therefore, no changes tothe Technical Specifications are required as result ofthis modification. The Dresden station, Unit 3,Technical Specifications, Sections 3.2 and 3.9, andTable 3.2.2 were reviewed in making thisdetermination.
1.17 FSAR/UFSAR CHANGES
This modification does not require changes to the Dresden Station, Unit 3 Final Safety Analysis Report (FSAR)/Updated Final Safety Analysis Report (UFSAR). The FSAR/UFSAR, Section 8.2.3.1. was reviewed in making this determination.
1.18 REDUNDANCY, DIVERSITY, AND SEPARATION REQUIREMENTS
The redundancy, diversity, and separation requirementsfor the Class 1E 4.16-kV Buses 33-1 (Division I) and34-1 (Division II) are not affected by thismodification.
1.19 FAILURE MODES AND EFFECTS REOUIREMENTSThis modification will reduce the probability ofinadvertent tripping of the Class 1E 4.16-kV busesoff-site power source when the system voltage is at anacceptable level, and thus minimize unnecessary loadshedding and starting of the diesel generators. Noother failure effects are changed by thismodification.

Calculation No	8982-17-19-2
Revision	004
Attachment:	A
Page A13	of A27

## W.R. No.: D-97546/D-97547

Rev.: 0
Date: June 26, 1991
Page 9
1.20 TEST, NDE, AND WELDING REOUIREMENTS
CECO and S\&L will define the applicable tests and theacceptance criteria for the tests. The newundervoltage relays are required to be tested per CECoTest Procedure DOS 6600-09. This test declares therelays operable after the implementation of thismodification. There are no NDE or weldingrequirements.
1.21 ACCESSIBILITY, MAINTENANCE, REPAIR AND ISI
This modification does not affect or change theaccessibility for maintenance, repair, and in-serviceinspection of the undervoltage relays.
1.22 RISK TO HEALTH AND SAFETY OF THE PUBLIC
This modification will not increase the risk to thehealth and safety of the putlic.
1.23 SUITABILITY OF PARTS, EQUIPMENT, PROCESSES, AND MATERIALS
All components used for this modification shall becompatible with the existing design and shall complywith the requirements in Sections 1.2, 1.6, 1.7, 1.8,1.9, 1.10, and 1.12.
1.24 PERSONNEL SAFETYNo special personnel safety requirements exist forinstalling this modification. Standard precautionsfor working on electrical equipment are consideredadequate for this project. No hazardous materials(e.g., asbestos) are to be used.
1.25 CATHODIC PROTECTION REQUIREMENTS
Cathodic protection is not required for this modification since no new metal pipes or structures are being added.
Calculation No. $\frac{8982-17-19-2}{004}$

Revision | Attachment: $\quad A$ |
| :--- |
| Page A14 of A27 |

### 1.26 INDUSTRY EXPERIENCE (SER/SOER KEYWORK INDEX)

After the degraded system voltage events at the Millstone Unit 2 Nuclear Plant in 1976, the Nuclear Regulatory Commission concluded that system design alone does not ensure the adequacy of the off-site power supply, and therefore, undervoltage relaying schemes should be installed on the system to protect against the possibility of degraded system voltage. Experience with the added protection system over the past 10 years has revealed some problems in scheme logic and application that caused loss of the off-site power supply. The following is a brief review of one of these occurrences:

On August 1, 1983, the Monticello Nuclear Generating Plant experienced an actuation of the degraded voltage protection system. The plant was operating at rated power. The saf-ty buses were running at $95.2 \%$ of nominal bus voltage. This is $1.8 \%$ higher than the degraded voltage protection system setpoint. During this time, a large safety-related pump motor was started. The voltage dip from starting the motor caused the voltage to drop below the degraded voltage protection system's setpoint. This activated the undervoltage relay and initiated the time intended to allow the protection system override such motor starting events. After the motor started, the voltage at the bus recovered to about $95 \%$ of bus nominal voltage, the same voltage level prevailing before the motor starting event. This, however, did not allow the undervoltage relay to reset at a higher level than the voltage of the buses even prior to the motor starting (95.8\%). This actuated the degraded voltage protection system. This event suggested that the undervoltage relay reset characteristics have not been carefully considered in analyzing the system or selecting the hardware. In this
Calculation No. $\frac{8982-17-19-2}{004}$
Revision $\frac{1}{004}$

Attachment: | A |
| :--- |
| Page A15 of A27 |

```
W.R. No.: D-97546/D-97547
Rev.: 0
Date: June 26, 1991
Page 11
```

case, the relay reset point is $2.6 \%$ higher
than the trip setpoint. This would
require that the bus voltage be maintained
at a level $2.6 \%$ higher than the relay
setpoint to prevent inadvertent loss of
off-site power.

This modification is being initiated to prevent a similar occurrence at the Dresden Station, Unit 3.

### 1.27 STANDARD INSTALLATION SPECIFICATIONS

Installation work for this modification will be performed in accordance with the CECO's EIS, General Work Specification K4080, and Asea Brown Boveri Instruction Manual for ITE-27N relays.

### 1.28 STANDARD STATION INSTALLATION PROCEDURES AND OC PROCEDURES

Standard Station Installation and QC Procedures will
be used for this modification.

### 1.29 ENGINEERING CHECKLISTS

Attachment 12.1 contains the following engineering checklists required by Procedure ENC-QE-06.
1.29.1 System Interaction

The Nuclear Engineering Department (NED) Procedure ENC-QE-06.2, Exhibit A, "System Interaction Checklist," was used to evaluate system interactions that might be created by the installation of use of this minor plant change and, therefore, must be considered in its design. Input for this evaluation was taken from the Dresden Final Safety Analysis Report (FSAR), Updated Final Safety Analysis Report (UFSAR), applicable station drawings, vendor information, and walkdown information. There are no system interactions that must be accounted for.
Calculation No. $\frac{8982-17-19-2}{004}$
Revision $\frac{A}{\text { A }}$

Attachment: | Page A16 of A27 |
| :--- |

```
W.R. No.: D-97546/D-97547
Rev.: 0
Date: June 26, 1991
Page }1
```


### 1.29.2 Acceptance Testing

The NED Procedure QE-06.4, Exhibit A, "Modification Acceptance Testing Checklist," was used to evaluate the testing requirements. The testing requirements are described in the Summary of Testing Acceptance Criteria. Input for this evaluation is from the documents used as the guidance for writing the test procedures and other references listed in the Summary of Testing Acceptance Criteria.
1.29.3 ALARA

The NED Procedure ENC-QE-06.5, Exhibits A, B, and C, "ALARA Review Checklist," was used to evaluate the ALARA requirements for this minor plant change. Input for this evaluation is from station personnel, Radiation Zone Maps, Regulatory Guide 8.8, and the modification description.

The radiological impact of this minor plant change is minimal. Therefore, a formal ALARA plan is not required and that standard radiological control procedures may be followed.

### 1.29.4 Environmental Qualification

The NED Procedure ENC-QE-06.6, Exhibit A, "Equipment Environmental Qualification Flowchart Checklist" was used to evaluate the environmental qualification requirements for this minor plant change. Input for this evaluation is from Bechtel's Specification 13524-068-N102 and Dresden Station UFSAR. Relays are located in a mild environment for a LOCA accident. For a HELB accident, relays are located in a harsh environment, but are not required for operation.
Calculation No. $\frac{8982-17-19-2}{004}$
Revision $\frac{\text { A }}{004}$
Attachment: $\frac{\text { A }}{\text { A }}$ Page A17

```
W.R. No.: D-97546/D-97547
Rev.: 0
Date: June 26, 1991
Page 13
```


### 1.29.5 Fire Protection

The NED Procedure ENC-QE-06.7, Exhibit A, "Fire Protection Review Checklist," was used to evaluate the fire protection and safe shutdown requirements for this minor plant change. The Fire Protection System in the surrounding area where the undervoltage relays are located are not required to be modified as a result of this minor plant change. No other fire protection or safe shutdown concerns were identified.

### 2.0 HALKDONSS

### 2.1 Designer's Walkdown

The Designer's Walkdown was performed on April 26, 1991, to confirm and provide input for the detailed design of this minor plant change. The Designer's Walkdown Checklist is included as an attachment.

### 2.2 Installer's Walkdown

The Installer's Walkdown has been performed on June 4, 1991, to verify constructability of this minor plant change. The Installer's Walkdown Checklist will be included in the Minor Plant Change Design.

### 3.0 CONCEPTUAL DESIGN DOCUMENTS

Conceptual design sketches of the second level undervoltage protection scheme for Class $1 E 4.16-\mathrm{kV}$ Buses $33-1$ and $34-1$ are included as an attachment. The sketches include schematic, wiring, and single line diagrams.

### 4.0 MOTES FROM CONCEPTUAL DESIGN PROJECT REVIEN KICKOFF MEEIIHG <br> The notes from the Project Kickoff meeting and photographs taken during the Designer's Walkdown are included as an attachment.

Calculation No. $\frac{8982-17-19-2}{004}$
Revision $\frac{\text { A }}{\text { Attachment: }}$
Page A18 of A27

```
W.R. No.: D-97546/D-97547
Rev.: O
Date: June 26, 1991
Page 14
```

5.0 SAFETY-RELATED COMPONENT OR MASTER EOUIPMENT LISTThe new second level undervoltage relays for the Class $1 E 4.16-\mathrm{kV}$Buses 33-1 and 34-1 are classified as safety-related. The MasterEquipment list should be updated to include the device numbers forthe new relays. the Master Equipment List Update Form (Exhibit C,ENC-QE-12.1) is included as an attachment.
6.0 CONPONENT CLASSIFICATION
The new second level undervoltage relays are classified as safety-related. The Classification of Component Form (Exhibit B, ENC-QE-12.1) is included as an attachment.
7.0 INSTALLATIOM PROCEDURESInstallation work for this minor plant change shall be performed inaccordance with the CECO EIS and standard procedures for safety-relatedwork.
8.0 PROCUREMENT DOCUMENTS
8.1 Bills of MaterialNo Bill of Material is required for this minor plant change.
8.2 Equipment Specifications
No equipment specifications are required for thisminor plant change.
8.3 Material SpecificationsNo material specifications are required for this Minor PlantChange.
8.4 Equipment Requirements Schedules (ERS)Materials other than the protective relays required for thisminor plant change are specified in the ERS.
Calculation No. $\frac{8982-17-19-2}{004}$

Revision | Attachment: $\quad$ A |
| :--- |
| Page A19 of A27 |

```
W.R. No.: D-97546/D-97547
Rev.: 0
Date: June 26, 1991
Page 15
```


### 8.5 Purchase Orders

Purchase orders for the undervoltage relays have been issued by CECo to the appropriate manufacturer.

### 9.0A AC/DC LOADS

Input load tickets have been completed to reflect the new model number (ITE-27N) and are included as an attachment (see attachments).

### 9.0B ELECTRICAL PROTECTIVE DEVICE SETTINGS

System Planning will issue the relay setting order and CECo. Electrical/Instrument and Control group will review the relay setting order. New relays will have the same settings.

### 10.0 ENGINEERING DESIGN EVALUATION (OP 3-1)

The design documents for this minor plant change have been reviewed in accordance with Quality Procedures 3.1.

### 11.0 REFERENCE TO CONFIRMATORY ANALYSES

### 11.1 Calculations

Seismic Qualification Calculation No. CQD-051325.

### 11.2 Technical Reports

There are no Technical Reports prepared for this minor plant change.

### 11.3 Stress Reports/Overpressure Protection Report <br> This minor plant change does not require a Stress Report or Overpressure Protection Report.

11.4 Computer $1 / 0$ Listings

No Computer I/O Listings were generated for this minor plant change.
Calculation No. $\frac{8982-17-19-2}{004}$
Revision $\frac{\text { A }}{\text { Attachment: } \quad \text { A }} 1$
Page A20 of A27

### 12.0 ATTACHMEMTS

## Approved by:

$\qquad$ Date:

REO: kdf
WDOC1834.EP


Calculation No. 8982-17-19-2

DATA FORM PREPARATION				DATA ENTRY INTO (ELMS)			
DATE	PREPARER	REVIEMER	REV.	Date	PREPARER	REYIEMER	REY.
$5 / 249$	T/SAUV	R.L. BHana	0				

[^4]




Jresaen そールra j ju j


TABLE 3.2 .2
Instrunentation imat imitiates or comtrols the core and containtemt coolimg systems

Min. No. of Operable Inst. Channels per   Trip Systee (1)	Trip function	Irip Level Setting	Remarks
(2)	Reacsor Low tow water level	84" (Dius 4, ainus 0 inches) above top of active fuel (S)	1. In conjunction vith low reactor pressure initiales cort spray and LPCL.   2. In conjunction mith high ary-vell pressure, 120 sec. time delay, and low pressure core cooling interlock initiates auto blordown.   3. Initiates HPCI and SBGTS.   4. Initiates starting of diesel generators.
2	High Orywell Pressure (2), (3)	$\begin{aligned} & \text { Less than or equal to } \frac{1}{2} \\ & 2 \text { psiG } \end{aligned}$	1. Initiates core spray LPCI, MPCI, and SEGTS.   2. In conjunction with low low water level 120 sec . tiee delay and lom pressure core cooling interlock initiates auta blowdown.   3. Initiates starting of diesel generators.
1	Reactor Low Pressure	```Greater than or equal to 300 PSIG }4\mathrm{ less than or equal to 350 PSIG```	1. Permissive for opening care spray and LPCI adission values.   2. In conjunction with low low reactor water level initiates cort spray and LPCI.
1(4)	Containemt Spray Interiock $2 / 3$ Care Heignt	Greater than or equal to $2 / 3$ core height	Prevents inadvertant operation of containment spray during accident conditions.
2(4)	Conta inment Migh Pressure	Greater than or equal to 0.5 PSIC 1 less thamor equal to 1.5 PSIG	Prevents inadvertent operation of containment spray during accioent canditions.
1	Timer Auto 8 lowdown	Less than or equal to 120 seconas	In conjunction wish low low reactor water level, high ary-well pressure and low pressure core cooling interlock initiates aute blambern.
2	Low Pressure Core Cooling Pump Disenarge Pressure	Greater than or equal to so PSIG a less than or equal 100 PSIG	- Defers Apllactuation pencing confiration of low pressure core cooling system operation.
2/Bus	4 KY Loss of Voltage Emergency Buses	Trip on 2930 volts plus or minus 58 decreasing voltage	1. Initiates starting of diesel generators.   2. Pernissive for starting ECCS pups.   3. Rewores momesential loads from buses.   4. Trips amerguncy bus normsil feed breakers.
2	Sustained High Reactor Pressure	Less than or equal to 1070 PSIG for 15 seconas	Initiates isolation condenser.
2/8us	Degraced Voltage on 4 XY Emergency luses	Grenter than or equal to 3708 volts (eguals 3784 volts less 2 toler ance) after less inan or equal to 5 minutes (plus 58 tolerance) with a 7 second (plus or minus 20x) inmerent sime delay	Intiates alarm and dicks wo time delay relay. Dlesel generitor picks up load if degraded yoltage not corracted after tim delay.

[^5]| Calculation No. | 8982-17-19 |
| :---: | :---: |
| Revision | 004 |
| Attachment: | A |
| Page A27 | of A27 |

## ATTACHMENT B

Fluke 45 Dual Display Multimeter User's Manual, Appendix A
$\square$

Users Manual

## Appendix A Specifications

## Introduction

Appendix A contains the specifications of the Fluke 45 Dual Display Multimeter.
These specifications assume:

- A 1-year calibration cycle
- An operating temperature of $18^{\circ} \mathrm{C}$ to $28^{\circ} \mathrm{C}\left(64.4^{\circ} \mathrm{F}\right.$ to $\left.82.4^{\circ} \mathrm{F}\right)$
- Relative humidity not exceeding $90 \%$ (non-condensing) ( $70 \%$ for $1,000 \mathrm{k} \Omega$ range
Accuracy is expressed as + (percentage of reading + digits).


## Display Counts and Reading Rates

Rate	Readings per Second	Full Range Display Counts
Slow	2.5	$99,999^{*}$
Medium	5	30,000
Fast	20	3,000
*Ohms full range will typically be 98,000 counts		

RS-232 and IEEE-488 Reading Transfer Rates

Rate	Reading Per Second		
	Internal Trigger   Operation (TRIGGER 1)	Internal Trigger Operation   (TRIGGER 4)	Print Mode Operation   (Print set at 1)
	2.5	1.5	2.5
Medium	4.5	2.4	5.0
Fast	4.5	3.8	13.5

## Response Times

Refer to Section 4 for detailed information.
Calculation No. $\frac{8982-17-19-2}{004}$
Revision $\frac{B}{\text { Attachment: } \frac{B}{B 12}}$
Page of B3 B12

DC Voltage

Range	Resolution			Accuracy	
	Slow	Medium	Fast	(6 Months)	(1 Year)
300 mV	-	$10 \mu \mathrm{~V}$	$100 \mu \mathrm{~V}$	$002 \%+2$	$0.025 \%+2$
3 V	-	$100 \mu \mathrm{~V}$	1 mV	$0.02 \%+2$	$0.025 \%+2$
30 V	-	1 mV	10 mV	$0.02 \%+2$	$0.025 \%+2$
300 V	-	10 mV	100 mV	$0.02 \%+2$	$0.025 \%+2$
1000 V	-	100 mV	1 V	$0.02 \%+2$	$0.025 \%+2$
100 mV	$1 \mu \mathrm{~V}$	-	-	$0.02 \%+6$	$0.025 \%+6$
1000 mV	$10 \mu \mathrm{~V}$	-	-	$0.02 \%+6$	$0.025 \%+6$
10 V	$100 \mu \mathrm{~V}$	-	-	$0.02 \%+6$	$0.025 \%+6$
100 V	1 mV	-	-	$0.02 \%+6$	$0.025 \%+6$
1000 V	10 mV	-	-	$0.02 \%+6$	$0.025 \%+6$

## Input Impedance

$10 \mathrm{M} \Omega$ in parallel with $<100 \mathrm{pF}$

## Note

In the dual display mode, when the volts ac and volts dc functions are selected, the 10 MS dc input divider is in parallel with the 1 MS ac divider.

## Normal Mode Rejection Ratio

 $>80 \mathrm{~dB}$ at 50 Hz or 60 Hz , slow and medium rates $>54 \mathrm{~dB}$ for frequencies between $50-440 \mathrm{~Hz}$, slow and medium rates $>60 \mathrm{~dB}$ at 50 Hz , fast rate (Note: Fast rate has no filtering)Maximum Allowable AC Voltage While Measuring DC Voltage or (AC + DC) Voltages

Range		Max Allowable Peak AC Voltage	Peak Normal Mode Signal	
			NMRR* ${ }^{\text {c }} 80 \mathrm{~dB} \dagger$	NMRR > $60 \mathrm{~dB} \dagger$
300 mV	100 mV	15 V	15 V	15 V
3 V	1000 mV	15 V	15 V	15 V
30 V	10 V	1000 V	50 V	300 V
300 V	100 V	1000 V	50 V	300 V
1000 V	1000 V	1000 V	200 V	1000 V

* NMRR is the Normal Mode Rejection Ratio
$\dagger$ Normal Mode Rejection Ratio at 50 Hz or $60 \mathrm{~Hz} \pm 0.1 \%$


## Common Mode Rejection Ratio

$>90 \mathrm{~dB}$ at do, 50 or 60 Hz , ( $1 \mathrm{k} \Omega$ unbalanced, medium and slow rates)

## Maximum Input

1000 V dc or peak ac on any range
True RMS AC Voltage, AC-Coupled

Range	Resolution		
	Slow	Medium	Fast
300 mV	-	$10 \mu \mathrm{~V}$	$100 \mu \mathrm{~V}$
3 V	-	$100 \mu \mathrm{~V}$	1 mV
30 V	-	1 mV	10 mV
300 V	-	10 mV	100 mV
750 V	-	100 mV	1 V
	-		
100 mV		-	-
1000 mV		-	-
10 V	$1 \mu \mathrm{~V}$	-	-
750 V	$100 \mu \mathrm{~V}$	-	-

Accuracy

Frequency	Linear Accuracy			dB Accuracy		Power*	Max   Input at   Upper   Freq
	Slow	Medium	Fast	Slow/Med	Fast		
$20-50 \mathrm{~Hz}$	$1 \%+100$	$1 \%+10$	$7 \%+2$	0.15	0.72	$2 \%+10$	750 V
$50 \mathrm{~Hz}-10 \mathrm{kHz}$	$0.2 \%+100$	$0.2 \%+10$	$0.5 \%+2$	0.08	0.17	$0.4 \%+10$	750 V
$10-20 \mathrm{kHz}$	$0.5 \%+100$	$0.5 \%+10$	$0.5 \%+2$	0.11	0.17	$1 \%+10$	750 V
$20-50 \mathrm{kHz}$	$2 \%+200$	$2 \%+20$	$2 \%+3$	0.29	0.34	$4 \%+20$	400 V
$50-100 \mathrm{kHz}$	$5 \%+500$	$5 \%+50$	$5 \%+6$	0.70	0.78	$10 \%+50$	200 V
E Error in power mode will not exceed twice the linear accuracy specification							

Accuracy specifications apply within the following limits, based on reading rate:
Slow Reading Rate: Between 15,000 and 99,999 counts (full range)
Medium Reading Rate: Between 1,500 and 30,000 counts (full range)
Fast Reading Rate: Between 150 and 3,000 counts (full range)

## Decibel Resolution

Resolution	
Slow \& Medium	Fast
0.01 dB	0.1 dB

$\qquad$ B

Decibel Reference Resistance

$8000 \Omega$	$500 \Omega$	$124 \Omega$	$8 \Omega \dagger$
$1200 \Omega$	$300 \Omega$	$110 \Omega$	$4 \Omega \dagger$
$1000 \Omega$	$250 \Omega$	$93 \Omega$	$2 \Omega \dagger$
$900 \Omega$	$150 \Omega$	$75 \Omega$	
$800 \Omega$	$135 \Omega$	$50 \Omega$	
$600 \Omega^{*}$	$125 \Omega$	$16 \Omega \dagger$	
$*$	Default resistance		
$\dagger$	Reading displayed in watts (POWER)		

## Input Impedance

$1 \mathrm{M} \Omega$ in parallel with $<100 \mathrm{pF}$

## Maximum Crest Factor

3.0

## Common Mode Rejection Ratio

$>60 \mathrm{~dB}$ at 50 Hz or 60 Hz ( $1 \mathrm{k} \Omega$ unbalanced medium rate)

## Maximum Input

750 V rms, 1000 V peak
$2 \times 107$ Volt-Hertz product on any range, normal mode input
$1 \times 106$ Volt-Hertz product on any range, common mode input

## (AC + DC) Voltage Accuracy

Total Measurement Error will not exceed the sum of the separate ac and dc accuracy specifications, plus 1 display count. Refer to the table under "Maximum Allowable AC Voltage while Measuring DC Voltage or (AC + DC) Voltages" located on page A3.

Note
When measuring $a c+d c$, (or any dual display combination of ac and $d c$ ) in the fast reading rate, the Fluke 45 may show significant reading errors. This results from a lack of filtering on the dc portion of the measurement for the fast reading rate. To avoid this problem, use only the "slow" and "medium" reading rates for ac $+d c$ or ac and dc combinations.

## Maximum Frequency of AC Voltage Input While Measuring AC Current

When the meter makes ac current and ac voltage measurements using the dual display, the maximum frequency of the voltage input is limited to the maximum frequency of the current function. For example, if you are making an ac current measurement on the 10 A range, the maximum frequency of the voltage input must be less than 2 kHz .
Calculation No. $\frac{8982-17-19-2}{004}$
Revision $\frac{B}{\text { Attachment: } \quad \text { B6 } \quad \mathrm{B12}}$
Page B6 of

## DC Current

Range	Resolution			Accuracy	Burden   Voltage
	Slow	Medium	Fast		0.45 V
30 mA	-	$1 \mu \mathrm{~A}$	$10 \mu \mathrm{~A}$	$0.05 \%+3$	1.4 V
100 mA	-	$10 \mu \mathrm{~A}$	$100 \mu \mathrm{~A}$	$0.05 \%+2$	0.25 V
10 A	-	1 mA	10 mA	$0.2 \%+5$	
					$0.05 \%+$
10 mA	100 nA	-	-	0.14 V	
100 mA	$1 \mu \mathrm{~A}$	-	-	$0.05 \%+5$	1.4 V
10 A	$100 \mu \mathrm{~A}$	-	-	$0.2 \%+7$	0.25 V
*Typical at full range					

## Maximum Input

To be used in protected, low energy circuits only, not to exceed 250 V or 4800
Volt-Amps. (IEC 664 Installation Category II.)
$\mathrm{mA} \quad 300 \mathrm{~mA}$ dc or ac rms. Protected with a $500 \mathrm{~mA}, 250 \mathrm{~V}$, IEC 127 -sheet 1, fast blow fuse
A $\quad 10 \mathrm{~A} \mathrm{dc}$ or ac rms continuous, or 20 Adc or ac rms for 30 seconds maximum. Protected with a $15 \mathrm{~A}, 250 \mathrm{~V}, 10,000 \mathrm{~A}$ interrupt rating, fast blow fuse.

## Note

Resistance between the COM binding post and the meter's internal measuring circuits is approximately $003 \Omega$.

## AC Current

Range	Resolution			Burden   Voltage *
	Slow	Medium	Fast	
10 mA	100 nA	-	-	0.14 V
30 mA	-	$1 \mu \mathrm{~A}$	$10 \mu \mathrm{~A}$	0.45 V
100 mA	$1 \mu \mathrm{~A}$	$10 \mu \mathrm{~A}$	$100 \mu \mathrm{~A}$	1.4 V
10 A	$100 \mu \mathrm{~A}$	1 mA	10 mA	0.25 V
*Typical at full range				


Calculation No.	8982-17-1
Revision	004
Attachment:	B
Page B7	of B12

## Accuracy

Range	Frequency		Accuracy			
		Slow	Medium			Fast
$\mathrm{mA}($ To 100 mA$)$	$20-50 \mathrm{~Hz}$	$2 \%+100$	$2 \%+10$	$7 \%+2$		
$\mathrm{~mA}($ To 100 mA$)$	$50 \mathrm{~Hz}-10 \mathrm{kHz}$	$0.5 \%+100$	$0.5 \%+10$	$0.8 \%+2$		
$\mathrm{~mA}($ To 100 mA$)$	$10-20 \mathrm{kHz}$	$2 \%+200$	$2 \%+20$	$2 \%+3$		
$\mathrm{~A}(1-10 \mathrm{~A})$	$20-50 \mathrm{~Hz}$	$2 \%+100$	$2 \%+10$	$7 \%+2$		
$\mathrm{~A}(1-10 \mathrm{~A})$	$50 \mathrm{~Hz}-2 \mathrm{kHz}$	$1 \%+100$	$1 \%+10$	$1.3 \%+2$		
$\mathrm{~A}(0.5$ to 1 A$)$	$20-50 \mathrm{~Hz}$	$2 \%+300$	$2 \%+30$	$7 \%+4$		
$\mathrm{~A}(0.5$ to 1 A$)$	$50 \mathrm{~Hz}-2 \mathrm{kHz}$	$1 \%+300$	$1 \%+30$	$1.3 \%+4$		

mA accuracy specifications apply within the following limits, based on reading rate:
Slow Reading Rate: $\quad$ Between 15,000 and 99,999 counts (full range)
Medium Reading Rate: Between 1,500 and 30,000 counts (full range)
Fast Reading Rate: $\quad$ Between 150 and 3,000 counts (full range)

## Maximum Crest Factor

3.0

## Maximum Input

To be used in protected, low energy circuits only, not to exceed 250 V or 4800 Volt-Amps. (IEC 664 Installation Category II.)
$\mathrm{mA} \quad 300 \mathrm{~mA}$ dc or ac rms. Protected with a $500 \mathrm{~mA}, 250 \mathrm{~V}, \mathrm{IEC} 127$-sheet 1 , fast blow fuse
A $\quad 10 \mathrm{Adc}$ or ac rms continuous, or 20 A dc or ac rms for 30 seconds maximum. Protected with a $15 \mathrm{~A}, 250 \mathrm{~V}, 10,000 \mathrm{~A}$ interrupt rating, fast blow fuse.

Note
Resistance between the COM binding post and the meter's internal measuring circuits is approximately $.003 \Omega$.


## Ohms

Range	Resolution			Accuracy	Typical Full Scale Voltage	Max Current Through the Unknown
	Slow	Medium	Fast			
$300 \Omega$	-	10 ms 2	$100 \mathrm{M} \Omega$	$0.05 \%+2+0.02 \Omega 2$	0.25	1 mA
$3 \mathrm{k} \Omega$	-	$100 \mathrm{M} \Omega$	$1 \Omega$	$0.05 \%+2$	0.24	$120 \mu \mathrm{~A}$
$30 \mathrm{k} \Omega$	-	$1 \Omega$	$10 \Omega$	$0.05 \%+2$	0.29	$14 \mu \mathrm{~A}$
$300 \mathrm{k} \Omega$	-	$10 \Omega$	100 s 2	$0.05 \%+2$	0.29	$1.5 \mu \mathrm{~A}$
$3 \mathrm{M} \Omega$	-	$100 \Omega$	$1 \mathrm{k} \Omega$	$0.06 \%+2$	0.3	$150 \mu \mathrm{~A}$
$30 \mathrm{M} \Omega$	-	$1 \mathrm{k} \Omega$	$10 \mathrm{k} \Omega$	$0.25 \%+3$	2.25	$320 \mu \mathrm{~A}$
$300 \mathrm{M} \Omega^{*}$	-	$100 \mathrm{k} \Omega$	$1 \mathrm{M} \Omega$	2\%	2.9	$320 \mu \mathrm{~A}$
$100 \Omega$	$1 \mathrm{~m} \Omega$	-	-	$0.05 \%+8+0.02 \Omega$	0.09	1 mA
$1000 \Omega$	$10 \mathrm{~m} \Omega$	-	-	$0.05 \%+8+0.02 \Omega$	0.10	$120 \mu \mathrm{~A}$
$10 \mathrm{k} \Omega$	$100 \mathrm{~m} \Omega$	-	-	$0.05 \%+8$	0.11	$14 \mu \mathrm{~A}$
$100 \mathrm{k} \Omega$	$1 \Omega$	-	-	0.05\% + 8	0.11	$1.5 \mu \mathrm{~A}$
$1000 \mathrm{k} \Omega$	$10 \Omega$	-	-	$0.06 \%+8$	0.12	$150 \mu \mathrm{~A}$
$10 \mathrm{M} \Omega$	$100 \Omega$	-	-	0.25\% + 6	1.5	$150 \mu \mathrm{~A}$
$100 \mathrm{M} \mathbf{2}^{*}$	$100 \mathrm{k} \Omega$	-	-	2\% + 2	2.75	$320 \mu \mathrm{~A}$

*Because of the method used to measure resistance, the $100 \mathrm{M} \Omega$ (slow) and $300 \mathrm{M} \Omega$ (medium and fast) ranges cannot measure below 3.2 MS 2 and $20 \mathrm{M} \Omega$, respectively. "UL" (underload) is shown on the display for resistances below these nominal points, and the computer interface outputs " $+1 \mathrm{E}-9$ ".

## Open Circuit Voltage

3.2 V maximum on the $100 \Omega, 300 \Omega, 30 \mathrm{M} \Omega, 100 \mathrm{M} \Omega$, and $300 \mathrm{M} \Omega$ ranges, 1.5 V maximum on all other ranges.

## Input Protection

500 V dc or ms ac on all ranges
Diode Test/Continuity

	Maximum Reading	Resolution
Slow	999.99 mV	$10 \mu \mathrm{~V}$
Medium	2.5 V	$100 \mu \mathrm{~V}$
Fast	2.5 V	1 mV

## Test Current

Approximately 0.7 mA when measuring a forward biased junction.

## Audible Tone

Continuous tone for continuity. Brief tone for normal forward biased diode or semiconductor junction.

Calculation No	8982-17-19-2
Revision	004
Attachment:	B
Page B9	of B12

## Open Circuit Voltage

### 3.2 V maximum

Continuity Capture Time
50 us maximum, 10 us typical

## Input Protection

500 volts dc or rms ac
Note
When the meter is set to measure frequency and there is no input signal (i.e., input terminals are open), the meter may read approximately 25 kHz (rather than the expected zero). This is due to internal capacitive pickup of the inverter power supply into the high-impedance, input circuitry. With source impedance of $<2 \mathrm{k} \Omega$, this pickup will not affect the accuracy or stability of the frequency a reading.

## Frequency

Frequency Range
5 Hz to $>1 \mathrm{MHz}$
Applicable Functions
Volts ac and Current AC

Range	Resolution		Accuracy
	Slow \& Medium	Fast	
1000 Hz	.01 Hz	.1 Hz	$05 \%+2$
10 kHz	1 Hz	1 Hz	$.05 \%+1$
100 kHz	1 Hz	10 Hz	$.05 \%+1$
1000 kHz	10 Hz	100 Hz	$.05 \%+1$
1 MHz	100 Hz	1 kHz	Not Specified
*Specified to 1 MHz, but will measure above 1 MHz.			

Sensitivity of AC Voltage

Frequency	Level (sine wave)
$5 \mathrm{~Hz}-100 \mathrm{kHz}$	30 mV ms
$100 \mathrm{kHz}-300 \mathrm{kHz}$	100 mV rms
$300 \mathrm{kHz}-1 \mathrm{MHz}$	1 VV ms
Above 1 MHz	Not specified

## Sensitivity Level of AC Current

Frequency	Input	Level
$5 \mathrm{~Hz}-20 \mathrm{kHz}$	100 mA	$>3 \mathrm{~mA} \mathrm{~ms}$
$45 \mathrm{~Hz}-2 \mathrm{kHz}$	10 A	$>3 \mathrm{Arms}$

Calculation No. $\frac{8982-17-19-2}{004}$

Revision $\frac{B}{\text { Attachment: } \frac{B}{\text { B10 of B12 }}}$| Page |
| :--- | (

## Note

When the meter is set to measure frequency and there is no input signal (i.e., the input terminals are open), the meter may read approximately 25 kHz (rather than zero). This is due to internal capacitive pickup of the inverter power supply into the high-impedance, input circuitry. With source impedance of $<2 \mathrm{k} \Omega$, this pickup will not affect the accuracy or stability of the frequency reading.

## Environmental

Warmup time	1 hour to rated specifications for warmup < 1 hour, add $0.005 \%$ to all accuracy specifications.
Temperature Coefficient	$<0.1$ times the applicable accuracy specification per degree C for $0^{\circ} \mathrm{C}$ to $18^{\circ} \mathrm{C}$ and $28^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $64.4^{\circ} \mathrm{F}$ and $82.4^{\circ} \mathrm{F}$ to $122^{\circ} \mathrm{F}$ )
Operating Temperature	$0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.122^{\circ} \mathrm{F}\right)$
Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
	Elevated temperature storage of battery will accelerate battery self-discharge. Maximum storage time before battery must be recharged:
	$20^{\circ} \mathrm{C}-25^{\circ} \mathrm{C} \quad 1000$ days
	$50^{\circ} \mathrm{C} \quad 180$ days
	$70^{\circ} \mathrm{C} \quad 40$ days
Relative Humidity (non-condensing)	To $90 \%$ at $0^{\circ} \mathrm{C}$ to $28^{\circ} \mathrm{C}\left(32-82.4{ }^{\circ} \mathrm{F}\right)$,
	To $80 \%$ at $28^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}\left(82.4-95^{\circ} \mathrm{F}\right)$,
	To $70 \%$ at $35^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}\left(95^{\circ} \mathrm{F}-122^{\circ} \mathrm{F}\right)$ except to $70 \%$ at $0^{\circ} \mathrm{C}$ to 50 ${ }^{\circ} \mathrm{C}\left(32{ }^{\circ} \mathrm{F}-122{ }^{\circ} \mathrm{F}\right.$ ) for the $1000 \mathrm{k} \Omega, 3 \mathrm{M} \Omega, 10 \mathrm{M} \Omega, 30 \mathrm{M} \Omega, 100 \mathrm{M} \Omega$, and $300 \mathrm{M} \Omega$ ranges.
Altitude	Operating 0 to 10,000 feet
	Non-operating 0 to 40,000 feet
Electromagnetic Compatibility	In an RF field of $1 \mathrm{~V} / \mathrm{m}$ on all ranges and functions: Total Accuracy $=$ Specified Accuracy $+0.4 \%$ of range. Performance above $1 \mathrm{~V} / \mathrm{m}$ is not specified
Vibration	3 G @ 55 Hz
Shock	Half sine 40 G. Per Mil-T- 28800D, Class 3, Style E. Bench Handling. Per Mil-T-28800D, Class 3.

Calculation No. $\frac{8982-17-19-2}{004}$
Revision $\frac{B}{\text { B }}$

Attachment: $\frac{B}{\text { B11 }}$| of $B 12$ |
| :--- |

## General

Common Mode Voltage	1000 V dc or peak ac maximum from any input to earth
Size	9.3 cm high, 21.6 cm wide, 28.6 cm deep ( 3.67 in high, 8.5 in wide, 11.27 in deep)
Weight	Net, 2.4 kg ( 5.2 lbs ) without battery; $3.2 \mathrm{~kg}(7.0 \mathrm{lbs})$ with battery; Shipping, $4.0 \mathrm{~kg}(8.7 \mathrm{lbs})$ without battery; 4.8 ( 10.5 lbs ) with battery
Power ${ }^{\text {P }}$ (tandards	90 V to 264 V ac (no switching required), 50 Hz and $60 \mathrm{~Hz}<15 \mathrm{VA}$ maximum
	Complies with: IEC 348, UL.1244, CSA Bulletin 566B
RS-232-C	EMC: Part 15 subpart J of FCC Rules, and VDE 0871.
	Baud rates: 300, 600,1200,2400,4800 and 9600 Odd, even or no parity
	One stop bit
Options	
Battery (Option -01 K)	Type 8 V , Lead-Acid
	Operating Time   8 hours (typical). Em lights when less than 1/2 hour of battery operation remains. Meter still meets specifications.
	Recharge Time   16 hours (typical) with meter turned off and plugged into line power. Battery will not charge when meter is turned on.
IEEE-488 (Option -05K)	Capability codes SH1, AH1, T5, L4, SRI, RL1, PP0, DC1,    DT1, E1, TED, LEO and C0
	External Trigger input
	VIH $\quad 1.35 \mathrm{~V}$ minimum
	VIL $\quad 1.25 \mathrm{~V}$ maximum
	Input Threshold Hysteresis 0.6 V minimum

Calculation No. $\frac{8982-17-19-2}{004}$

Revision $\frac{B}{\text { Attachment: } \frac{B}{B 12}}$| Page of B12 |
| :--- |

## ATTACHMENT C

## S\&L Interoffice Memorandum from J. F. White

## "Seismic Qualification of ITE/ABB Undervoltage Relay Model 27N, Series 411T"



Client commonwealth Edison co._ stan. Dresden Unit 2 \& 3
subject Seismic Qualification of ITE/ABB Undervoltage Relay
Model 27 N, Series 411 T
TO: J. Sinnappan - 22 (1/0)
$C C:$ K. L. Aalon $-22(1 / 0)$
R. W. Germier $-22(1 / 0)$
E. Zacharias $-22(1 / 1)$
CQD File - 22 (1/1)

Reference: Asea Brown Boveri (ABB) Equipment Performance Specification $R C-5039-A$, dated $1-10-90$, including Qualification Report Summary RC-5139-A, dated 1-10-90 for ${ }^{\text {Tr }}$ ndervoltage Relay Type 27 N .

CQD has reviewed the Referenced Test Report and found it to be acceptable. This revision is being made to add a reference from the vendor that clarifies identification of the tested model. The seismic test levels meet the requirements for the intended application of the relay, and the test requirements of IEEE 344-1975. Therefore, the relay is seismically qualified for use in panels 2252(3)-83(4), at elevation 545'-6" in the Reactor Building at the Dresden Station.

By copy of this memorandum, the Checklist for Dynamic Qualification of Mechanical and Electrical Equipment, supporting documents, are being sent to the CQD file.



## ATTACHMENT D

## GE Document 7910 Dated 6-20-77


(Phore 1234873)
Fig. 1. Type JVM-3 vohoge Irensformer (unfused)

(Pheow 1234874)
Fig. 2 Type NMM-3 voliege mansformer (oneture design)

(Ameo 1234875)
Fig. 3. Tyue JVh-s veltage trandormer (twe-fuse design)

APPLICATION-The Type JVM-3 voltagetransformer is designed for indoor service and is suitable for operating meters, instruments, relays and control devices.
CONSTRUCTION AND INSULATION-See Section 7907, item 1.4. CORE-See Section 7907, item 2.3.
Colls-Enamel insulated wire is used in the primary and secondary coils. The primary is wound and cast in epoxy resin. The secondary is inside the primary nex: to the core.

## DIMENSIONS

Onecrimina	Onmanuene in hathes		
	Helope	Lengin	Widh
Uniced	3'\%.	10\%	8\%
When one peimary fue.	7\%/	10\%	6\%
Wim tro primory tures	7\%	10\%	$61 \%$ 。

DATA TABLE (For Pricing Information, see Section 7901)


WITH ONE PRIMARY FUSE (Neutral terminal Insulation to greutalm-2.5 Kv)

2400 2400 4200 4800	20.1 20.1 $35: 1$ 40.1	$\begin{aligned} & 763 \times 21042 \\ & 643 \times 85 \\ & 643 \times 91 \\ & 643 \times 96 \\ & \hline \end{aligned}$	$\begin{aligned} & 750 \\ & 750 \\ & 750 \\ & 750 \\ & \hline \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & 300 \end{aligned}$				$\begin{array}{r} \mathbf{2 4 0 0} \\ \mathbf{4 1 6 0} \\ \mathbf{4} 200 \\ \mathbf{4 8 0 0} \end{array}$	$Y$ ondy Yont $Y$ ordy $Y$ onty		$\begin{aligned} & 1 \\ & 0.5 \\ & 0.5 \end{aligned}$	\$4004A8001 $9 F 60880001$ 9\%60s 0905 9660180905	37 37 37 37	\%
WITH TWO PRIMARYFUSES														
$\begin{array}{r} 2400 \\ 4700 \\ 4800 \\ \hline \end{array}$	$\begin{array}{r} 20.1 \\ 35: 1 \\ 40.1 \\ \hline \end{array}$	$\begin{aligned} & 763 \times 21040 \\ & 643 \times 92 \\ & 643 \times 97 \\ & \hline \end{aligned}$	$\begin{aligned} & 730 \\ & 750 \\ & 730 \end{aligned}$	$\begin{aligned} & 500 \\ & 500 \\ & 500 \\ & \hline \end{aligned}$				2400 4200 4800	$\begin{aligned} & \Delta o r y \\ & \Delta o r y \\ & \Delta o r y \end{aligned}$	$\begin{aligned} & 2400 \\ & 4800 \\ & 4800 \end{aligned}$	1.5 0.5	9F60AA1601 9R60 20905 9F60 60005	$3{ }^{38} 8$	2

- The pnme symbol (') is used to signify that these burdens do not correspond to standard ANSI definitions.
- On transformers with one primary fuse the neutral terminal insulation 10 ground is 2500 volts.
©For continuous operation, the transformer-rated primary voltage should not be exceeded by more than $10 \%$. Under emergency
conditions, overvoltage must be limited to 1.25 times the transform primary-voluge rating.
* For Y connections, it is preferred practice to connect one lead from ea voltage transformer directly to the grounded neutral, using a fuse on in the line side of the primary. By this connection a transformer c : never be "alive" from the line side by reason of a blown fuse on : grounded side.

Complare revision since Dec 23, 1974 iswue. formerir page 123.	$16 / \mathrm{c}$	Date whicet to ehange witheur sont
$\begin{aligned} & 700.701,702,711.713 .721 .723,731,733-737 \\ & \text { Gw35. SW35, CwisicE, Sw3siGE } \end{aligned}$	794 Tab 2	ERAL* ELECTRI

RY TERMINALS-The primary ter.an..ns on the unfused models consist of tapped holes in the center of a flat boss with lock washer and screw. On the nwo-fuse models, both terminals are boits attached directly to the fuse supports and provided with lock washers and nuts. On the one-fuse design the line terminal is on the fuse support and the neutral terminal is a stud protruding from the back a short distance above the base plate. This stud is insulated
from the base plate to permit primary insulation-resistance testing at voltages up to 2500 volts.

FUSE5-Current-limiting fuex, Type EJ-1, are used.

SECONDARY TERMINALS-The secondary terminals are solderiess champ type. The terminal cover is made of transparent
plantic. Provision is made for sealing the cover.

Polarity-See Section 7907, item 6.2.
NAMEPLATE-See Section 7907, item 5.3.
BSE AND MOUNTME-The base is made of beavy steel plate and is provided with holes and slots adapting it for mounting by either bolts or pipe clamps.

DIMENSIONS


Fig. 4. Dimensions of JVM-3 (unfuicd)

is. 6. Dimensions of JVM-3 (onefuce design), Cor. No's. 643X8s, $643 \times 9$, and $643 \times 96$. (Soe Fig. 4 for base)


Fig. 5. Dimenalona of JVM-3 Cot. No'e. $783 \times 21042$ and $763 \times 21040$ (See Fig. 4 for beal)

 ond 643x7\%. (5oe Fig 4 fer bato)

## ATTACHMENT E

Telecon Between S. Hoats (ABB) and A. Runde (S\&L)

Date 1-23-92 Time 9:30 A

Person Called	
Steve Hoars	Company
Person Calling	ABB (215) 395-7333
A. J. Ronde	Company
Project	
Dresden Unit 2	S\&L EAD (312) 269 6799

## Subject Discussed

Repeatability of the ITE-27N Undervoltage Relay

Mr. Hots provided the following information:

- The tolerances listed in IB 7.4.1.7-7 Issue $D$ do not include an considerations for instrument drift. However, no drift error i. expected if the relay is calibrated at reasonable intervals.
- The absolute range of repeatability over temperature range is twice the published values. For example, the absolute range of repeatability over a temperature range of $0^{\circ}$ to $55^{\circ} \mathrm{C}$ for a relay with a harmonic filter is $2 \times 0.75 \%$ or $1.5 \%$ based on the published data.
- The published tolerances are generally twice the tested tolerances, so they are quite conservative.
- The information on the attached sheets from Cliff Downs of ABB concerning the linearity of the published tolerances over the identified ranges is applicable to both the 27 D and the 27 N relay.
- Al Wetter of CECo may have further information regarding the 27 N relay tolerances by test methods.

NOTE: THIS CONSTITUTES OUR UNDERSTANDING OF TEE DISCUSSIONS. IF WRITTEN COMMENTS ARE NOT RECEIVED WITHIN FIVE WORKING DAYS, THE ABOVE WILL BE ASSUMED CORRECT.
cc:
Steve Boats - ABB

File


AJR:1sc
C: \EAOMAS-TELE-AJR
Calculation No. $\frac{8982-17-19-2}{004}$
Revision $\frac{E}{0}$

Attachment: | E2 of E2 |
| :--- | Page E2 of

## ATTACHMENT F

## ABB Instruction Bulletin I.B 7.4.1.7-7, Issue D

IB 7.4.1.7-7
Issue D

INSTRUCTIONS

## Single Phase Voltage Relays

$\begin{array}{ll}\text { Type 27N } & \text { HIGH accuracy undervoltage relay } \\ \text { Type 59N } & \text { HIGH accuracy overvoltage relay }\end{array}$

Type 27N	Catalog Series 211T	Standard Case
Type 27N	Catalog Series 411T	Test Case
Type 59N	Catalog Series 211U	Standard Case
Type 59N	Catalog Series 411U	Test Case



## ASEA BROWN BOVERI

Calculation No. $\frac{8982-17-19-2}{004}$
Revision $\frac{00}{\text { F }}$
Attachment:
Page F2 of F 12

```
IB 7.4.1.7-7 Single-Phase Voltage Relays
Page 2
```

TABLE OF CONTENTS


## INTRODUCTION

These instructions contain the information required to properly install, operate, and test certain single-phase undervoltage relays type 27 N, catalog series 211 T and 411 T ; and overvoltage relays, type $59 \mathrm{~N}, \mathrm{catalog}$ series 211 U and 411 U .

The relay is housed in a case suitable for conventional semiflush panel mounting. All connections to the relay are made at the rear of the case and are clearly numbered. Relays of the 411 T , and 411 U catalog series are similar to relays of the 211 T , and $211 \mathrm{series}$. totally drawout construction; however, the 411 T and 411 l series relays provide integral test facilities. Also, sequenced disconnects on the 410 series prevent nuisance operation during withdrawal or insertion of the relay if the normally-open contacts are used in the application.

Basic settings are made on the front panel of the relay, behind a removable clear plastic cover. Additional adjustment is provided by means of calibration potentiometers inside the relay on the circuit board. The target is reset by means of a pushbutton extending through the relay cover.

## PRECAUTIONS

The following precautions should be taken when applying these relays:

1. Incorrect wiring may result in damage. Be sure wiring agrees with the connection diagram for the particular relay before energizing.
2. Apply only the rated control voltage marked on the relay front panel. The proper polarity must be observed when the dc control power connections are made.
3. For relays with dual-rated control voltage, withdraw the relay from the case and check that the movable link on the printed circuit board is in the correct position for the system control voltage.
4. High voltage insulation tests are not recommended. See the section on testing for additional information.
5. The entire circuit assembly of the relay is removable. The unit should insert smoothly. Do not use excessive force.
6. Follow test instructions to verify that the relay is in proper working order.

CAUTION: since troubleshooting entails working with energized equipment, care should be taken to avoid personal shock. Only competant technicians familiar with good safety practices should service these devices.
placing the relay into service

## 1. RECEIVING, HANDLING, STORAGE

Upon receipt of the relay (when not included as part of a switchboard) examine for shipping damage. If damage or loss is evident, file a claim at once and promptly notify Asea Brown Boveri. Use normal care in handling to avoid mechanical damage. Keep clean and dry.

Calculation No	8982-17-19-2
Revision	004
Attachment:	F
Page F3	of F12

## 2. INSTALLATION

Mounting:
The outline dimensions and panel drilling and cutout information is given in Fig. 1.
Connections:
Typical external connections are shown in figure 2. Internal connections and contact logic are shown in figure 3. Control power must be connected in the proper polarity.

For relays with dual-rated control power: before energizing, withdraw the relay from its case and inspect that the movable link on the lower printed circuit board is in the correct position for the system control voltage. (For units rated liovdc, the link should be placed in the position marked $125 v d c$. )

These relays have an external resistor wired to terminals 1 and 9 which must be in place for normal operation. The resistor is supplied mounted on the relay.

These relays have metal front panels which are connected through printed circuit board runs and connector wiring to a terminal at the rear of the relay case. The terminal is marked " $G$ ". In all applications this terminal should be wired to ground.

## 3. SETTINGS

PICKUP
The pickup voltage taps identify the voltage level which the relay will cause the output contacts to transfer.

## DROPOUT

The dropout voltage taps are identified as a percentage of the pickup voltage. Taps are provided for $70 \%$, $80 \%, 90 \%$, and $99 \%$ of pickup, or, $30 \%, 40 \%$, $50 \%$, and 60x of pickup.

Note: operating voltage values other than the specific values provided by the taps can be obtained by means of an internal adjustment potentiometer. See section on testing for setting procedure.

## TIME DIAL

The time dial taps are identified as $1,2,3,4,5,6$. Refer to the time-voltage characteristic curves in the Application section. Time dial selection is not provided on relays with an Instantaneous operating characteristic. The time delay may also be varied from that provided by the fixed tap by using the internal calibration adjustment.

## 4. OPERATION INDICATORS

The types 27 N and 59 N provide a target indicator that is electronically actuated at the time the output contacts transfer to the trip condition. The target must be manually reset. The target can be reset only if control power is available, AND if the input voltage to the relay returns to the "normal" condition.

An led indicator is provided for convenience in testing and calibrating the : alay and to give operating personnel information on the status of the relay. See figure 4 for the operation of this indicator.

Units with a "L" suffix on the catalog number provide a green led to indicate the presence of control power and internal power supply voltage.

Calculation No.	8982-17-19-2
Revision	004
Attachment:	F
Page F4	of F12

## APPLICATION DATA

Single-phase undervoltage relays and overvoltage relays are used to provide a wide range of protective functions, including the protection of motors and generators, and to initiate bus transfer. The type 27 N undervoltage relay and type 59 N overvoltage relay are designed for those applications where exceptional accuracy, repeatability, and long-term stability are required.

Tolerances and repeatability are given in the Ratings section. Remember that the accuracy of the pickup and dropout settings with respect to the printed dial markings is generally not a factor, as these relays are usually calibrated in the field to obtain the particular operating values for the application. At the time of field calibration, the accuracy of the instruments used to set the relays is the important factor. Multiturn internal calibration potentiometers provide means for accurate adjustment of the relay operating points, and allow the difference between pickup and dropout to be set as low as 0.5\%.

The relays are supplied with instantaneous operating time, or with definite-time delay characteristic. The definite-time units are offered in two time delay ranges: 1-10 seconds, or $0.1-1$ second.

An accurate peak detector is used in the types 27 N and 59 N . Harmonic distortion in the AC waveform can have a noticible effect on the relay operating point and on measuring instruments used to set the relay. An internal harmonic filter is available as an option for those applications where waveform distortion is a factor. The harmonic filter attenuates all harmonics of the $50 / 60 \mathrm{~Hz}$. input. The relay then basically operates on the fundamental component of the input voltage signal. See figure 5 for the typical filter response curve. To specify the harmonic filter add the suffix "-HF" to the catalog number. Note in the section on ratings that the addition of the harmonic filter does reduce somewhat the repeatability of the relay vs. temperature variation. In applications where waveform distortion is a factor, it may be desirable to operate on the peak voltage. In these cases, the harmonic filter would not be used.

CHARACTERISTICS OF COMMON UNITS

Type	Pickup Range	Dropout Range	Time   Pickup	Delay Dropout	Catalog   Std Case	Numbers Test Case
27N	60-110v	70\% - 99x	Inst Inst Inst	$\begin{array}{r} \text { Inst } \\ 1-10 \mathrm{sec} \\ 0.1-1 \mathrm{sec} \end{array}$	$\begin{aligned} & 211 T 01 \times 5 \\ & 211 T 41 \times 5 .- \\ & 211761 \times 5 \end{aligned}$	411 T01×5   411 T41×5   411 T61×5
	$70-120 v$	70x - 99x	Inst Inst Inst	$\begin{gathered} \text { Inst } \\ 1-10 \mathrm{sec} \\ 0.1-1 \mathrm{sec} \end{gathered}$	$\begin{aligned} & 211 T 03 \times 5 \\ & 211 T 43 \times 5 \\ & 211 T 63 \times 5 \end{aligned}$	$\begin{array}{r} 411 T 03 \times 5 \\ -411 T 43 \times 5 \\ 411 T 63 \times 5 \end{array}$
	$60-110 \vee$	30x-60x	Inst Inst Inst		$\begin{aligned} & 211 \mathrm{~T} 02 \times 5 \\ & 211 \mathrm{~T} 2 \times 5 \\ & 211 \mathrm{~T} 62 \times 5 \end{aligned}$	$411702 \times 5$ $411142 \times 5$ 411 T62×5
59N	100-150V	70x-99x	$\begin{gathered} \text { Inst } \\ 1-10 \mathrm{~s} \\ 0.1-1 \mathrm{~s} \end{gathered}$	Inst Inst Inst	$\begin{aligned} & 211 \cup 01 \times 5 \\ & 211 \cup 41 \times 5 \\ & 211 \cup 61 \times 5 \end{aligned}$	411 U01×5   $411 U 41 \times 5$   $411 \cup 61 \times 5$

1. Each of the listed catalog numbers for the types 27 N and 59 N contains an " $x$ " for the control voltage designation. To complete the catalog number, replace the " $x$ " with the proper control voltage code digit:

$48 / 125$	vdc	.....	7
250 vdc	$\ldots .$.	5	
220 vdc	$\ldots .$.	2	
$48 / 110$ vdc	....	0	

2. To specify the addition of the harmonic filter module, add the suffix "-HF". For example: 411T4175-HF. Harmonic filter not available on type 27 N with instantaneous delay timing characteristic.
Calculation No. $\frac{8982-17-19-2}{004}$
Revision $\frac{F}{\text { Attachment: }}$
Page F5 of F12
```
IB 7.4.1.7-7
Single-Phase Voltage Relays
Page 6
```



Figure 1: Relay Outline and Panel Drilling


Figure 2: Typical External Connections

Calculation No. 8982-17-19-2
Revision 004
Attachment: $\qquad$ F
Page F6
F 6 of F12

Figure 3: INTERNAL CONNECTION DIAGRAM AND OUTPUT CONTACT LOGIC
The following table and diagram define the output contact states under all possible conditions of the measured input voltage and the control power supply. "As SHOWN" means that the contacts are in the state shown on the internal connection diagram for the relay being considered. "TRANSFERRED" means the contacts are in the opposite state to that shown on the internal connection diagram.
Condition Contact State
Normal Control Power
AC Input Voltage Below Setting
Normal Control Power
AC Input Voltage Above Setting Transferred As Shown
No Control Voltage


Figure 4a: ITE-27N Operation of
Figure 4b: 1TE-59N Operation of Pickup Indicating Light

Figure 4: Operation of Pickup/Dropout Light-Emitting-Diode Indicator




Figure 5: Normalized Frequency Response - Optional Harmonic Filter Module
Calculation No. $\frac{8982-17-19-2}{004}$
Revision $\frac{\mathrm{F}}{2}$
Attachment: $\quad$
Page F8 of F12


Figure 6: Typical Circuit Board Layouts, types 27 N and 59 N


Figure 7: Typical Circuit Board Layout - Harmonic Filter Module

Calculation No.	8982-17-
Revision	004
Attachment:	F
Page F9	of F12

## 1. MAINTENANCE AND RENEWAL PARTS

No routine maintenance is required on these relays. Follow test instructions to verify that the relay is in proper working order. We recommend that an inoperative relay be returned to the factory for repair: however, a circuit description booklet CD7.4.1.7-7 which includes schematic diagrams; can be provided on request. Renewal parts will be quoted by the factory on request.

## 211 Series Units

Drawout circuit boards of the same catalog number are interchangible. A unit is identified by the catalog number stamped on the front panel and a serial number stamped on the bottom side of the drawout circuit board.

The board is removed by using the metal pull knobs on the front panel. Removing the board with the unit in service may cause an undesired operation.

An 18 point extender board (cat 200x0018) is available for use in troubleshooting and calibration of the relay.

## 411 Series Units

Metal handles provide leverage to withdraw the relay assembly from the case. Removing the unit in an application that uses a normally closed contact will cause an operation. The assembly is identified by the catalog number stamped on the front panel and a serial number stamped on the bottom of the circuit board.

Test connections are readily made to the drawout relay unit by using standard banana plug leads at the rear vertical circuit board. This rear board is marked for easier identification of the connection points.

Important: these relays have an external resistor mounted on rear terminals 1 and 9. In order to test the rawout unit an equivilent resistor must be connected to terminals 1 on the rear vertical circuit board of the drawout unit. The resistance value must be the same as the resistor used on the relay. A 25 or 50 watt resistor will be sufficient for testing. If no resistor is available, the resistor assembly mounted on the relay case could be removed and used. If the resistor from the case is used, be sure to remount it on the case at the conclusion of testing.

Test Plug:
A test plug assembly, catalog number $400 \times 0002$ is available for use with the 410 series units. This device plugs into the relay case on the switchboard and allows access to all external circuits wired to the case. See Instruction Book IB 7.7.1.7-8 for details on the use of this device.

## 2. HIGH POTENTIAL TESTS

High potential tests are not recommended. A hi-pot test was performed at the factory before shipping. If a control wiring insulation test is required, partially withdraw the relay unit from its case sufficient to break the rear connections before applying the test voltage.

## 3. BUILT-IN TEST FUNCTION

Be sure to take all necessary precautions if the tests are run with the main circuit energized.

The built-in test is provided as a convenient functional test of the relay and associated circuit. When you depress the button labelled TRIP, the measuring and timing circuits of the relay are actuated. When the relay times out, the output contacts ransfer to trip the circult breaker or other associated circuitry, and the target is jisplayed. The test button must be held down continuously until operation is obtained.
Calculation No. $\frac{8982-17-19-2}{004}$
Revision $\frac{004}{}$
Attachment: $\frac{F}{\text { Page F10 of F12 }}$

## 4. ACCEPTANCE TESTS

Follow the test procedures under paragraph 5. .... w....wewne units, select Time Dial 3. For the type 27 N , check timing by dropping the voltage to $50 x$ of the dropout voltage set (or to zero volts if preferred for simplification of the test). For the type 59 N check timing by switching the voltage to $105 \%$ of pickup (do not exceed max. input voltage rating.) Tolerances should be within those shown on page 5 . If the settings required for the particular application are known, use the procedures in paragraph 5 to make the final adjustments.

## 5. CALIBRATION TESTS

Test Connections and Test Sources:
Typical test circuit connections are shown in Figure a. Connect the relay to a proper source of de control voltage to match its nameplate rating (and internal plug setting for dual-rated units). Generally the types 27 N and 59 N are used in applications where high accuracy is required. The ac test source must be stable and free of harmonics. A test source with less than $0.3 x$ harmonic distortion, such as a " 1 inecorrector" is recommended. Do not use a voltage source that employs a ferroresonant transformer as the stabilizing and regulating device, as these usually have high harmonic content in their output. The accuracy of the voltage measuring instruments used must also be considered when calibrating these relays.

If the resolution of the ac test source adjustment means is not adequate, the arrangement using two variable transformers shown in figure 9 to give "coarse" and "fine" adjustments is recommended.

When adjusting the ac test source do not exceed the maximum input voltage rating of the relay.

LED Indicator:
A light emitting diode is provided on the front panel for convenience in determining the pickup and dropout voltages. The action of the indicator depends on the voltage level and the direction of voltage change, and is best explained by referring to Figure 4.

The calibration potentiometers mentioned in the following procedures are of the multi-turn type for excellent resolution and ease of setting. For catalog series 211 units, the 18 point extender board provides easier access to the calibration pots. If desired, the calibration potentiometers can be resealed with a drop of nail polish at the completion of the calibration procedure.

## Setting Pickup and Dropout Voltages:

pickup may be varied between the fixed taps by adjusting the pickup calibration potentiometer R27. Pickup should be set first, with the dropout tap set at 99x (60\% on "low dropout units"). Set the pickup tap to the nearest value to the desired setting. The calibration potentiometer has approximately a $+/-5 \%$ range. Decrease the voltage until dropout occurs, then check pickup by increasing the voltage. Readjust and repeat until pickup occurs at precisely the desired voltage.

Potentiometer R16 is provided to adjust dropout. Set the dropout tap to the next lower tap to the desired value. Increase the input voltage to above pickup, and then lower the voltage until dropout occurs. Readjust R16 and repeat until the required setting has been made.

Setting Time Delay:
Similarly, the time delay may be adjusted higher or lower than the values shown on the timevoltage curves by means of the time delay calibration potentiometer R41. On the type 27 N, time delay is initiated when the voltage drops from above the pickup value to below the dropout value. On the type 59 N , timing is initiated when the voltage increases from below dropout to above the pickup value. Referring to Fig. 4, the relay is "timing out" when the led indicator is lighted.

External Resistor Values: The following resistor values may be used when testing 411 series units. Connect to rear connection points 189.

Relays rated $48 / 125$ vde: 5000 ohms; (-HF models with harmonic filter 4000 ohms)
$48 / 110$ vde: 4000 ohms; (-HF models with harmonic filter 3200 ohms)
250 vde: 10000 ohms; (-HF models with harmonic filter 9000 ohms)
220 vdc: 10000 ohms; (-HF models with harmonic filter 9000 ohms)
Calculation No. $\frac{8982-17-19-2}{004}$
Revision $\frac{F}{\text { F }}$
Attachment: $-\mathrm{F}_{11}-$ of

ABB Power Transmission Inc.
Protective Relay Division
35 N. Snowdrift Rd.
Allentown, Pa. 18106 Issue O (2/89)
215-395-7333 Supersedes Issue $C$


Figure 8: Typical Test Connections

T1, T2	Variable Autotransformers	
T3	Filament Transformer	$(1.5$ amp rating)
$V$	Accurate AC Voltmeter	(1 amp secondary)



Figure 9: AC Test Source Arrangement

These instructions do not purport to cover all details or variations in equipment, nor to provide for every possible contingency to be met in conjunction with installation, operation, or maintenance. Should particular problems arise which are not covered sufficiently for the purchaser's purposes, the matter should be referred to Asea Brown Boveri.
Calculation No. $\frac{8982-17-19-2}{004}$
Revision $\frac{004}{\mathrm{~F}}$
Attachment: $\frac{\mathrm{F}}{\text { Page } \mathrm{F} 12} \mathrm{~F}$ of F 2

## ATTACHMENT G

## Telecon Between C. Downs (ABB) and H. Ashrafi (S\&L)













pigex, osx=
pigex, osx=
























Een=1"my=a in
Een=1"my=a in









THIS DOCUMENT (REDUCED SAMPLE ABOVE) WAS SENT

## ** COUNT **

\# 3
*** SEND ****

NC	REMOTE STATION I. D.	START TIME	DURATION	\#PAGES	COMMENT
1	917085157181	$4-1-9272: 41 P M$	$1^{\circ} 39^{\circ}$	3	


Calculation No	8982-17-19-2
Revision	004
Attachment:	G
Page G2	of G6



Summary of Discussion, Decisions, and Commitments:
Based on earlier conversations, it was understood by S\&L that the deviation in the relay set point of ITE 27N Relays (from the calibration point) is linear over an operating temperature range of $0-55^{\circ} \mathrm{C}$. It was also understood that the actual pickup or dropout voltage is lower than the set point value if the operating temperature is lower than the temperature at which the relay was calibrated. Similarly, the actual pickup or dropout voltage is higher with higher than calibration temperature.

It was later noted from the type test report (Page 6 of RC-6004) that this trend is not true for ITE 27N Relays with Harmonic Filter Units. The actual pickup or dropout voltage decreased with increased operating temperature and vice versa.

Mr. Cliff Downs informed me that this inverse relationship between pickup or dropout voltage and operating temperature is true because of the presence of the Harmonic Filter Unit in the ITE 27 N Relays. He pointed out that the test results for the ITE 27N Relay without Harmonic Filters (on top of page 6 of RC 6004) does show direct relationship between pickup or dropout voltage and the operating temperature. He, therefore, mentioned that the information provided during earlier conversations was probably related to Relays without Harmonic Filters.

He suggested that, while it can be assumed that the deviation is linear over the operating temperature range of $0-55^{\circ} \mathrm{C}$, the inverse relationship between pickup or dropout voltage and operative temperature shocid be considered in any calculation where ITE 27N Relays with Harmonic Filters are involved.

NOte: THIS CONSTITUTES MY UNDERSTANDING OF OUR DISCUSSION. PLEASE CONTACT ME AT 312/269-2041 IF YOU HAVE ANY COMMENTS PERTAINING TO THE ACCURACY OF THE ABOVE SUMMARY.

```
CC: C. Downs-ABB
File: Relays
(HA): kam フBW
A: \Relays.HA
```

H/8ic	
H. Åshrafi	
Calculation No.	8982-17-19-2
Revision	004
Attachment:	G
Page G3	of G6

Date: 3/16/92 Total pages: 2 To: Andy Ronde
Reference: 27N Relay performance

From: STEVEN E. EOATS
ABB Power T\&D Co. Protective Relay Div. 7036 Snowdrift Rd. Allentown, PA 18106 Telephone 2153957333 Telefax 2153951055
cc: $\qquad$
$\qquad$

Andy.
Please find in the attachment the TOPE TEST certificate for our 37 N clay. These are the actual test results from our laboratory tests as you can see the results of thine tests are tgically Doubled when published in our I.L.'s

I hope this document will Help satisfy
your problems.

$\qquad$
$\qquad$
$\qquad$

Calculation No. 8982-17-19-2
Revision
004
Attachment: $G$ Page G4 of G6

Temperature Tests:


Temperature Test with Harmonic Filter Option:

	Pickup   Voltage	Variation fiom   Room Temperature	Dropout	Voltage Ration from
Temperature	Room Temperature			

Results of Test: relay operation is stable with temperature and within published specifications.

Relay Tested: 211 T0175-HF $\quad \begin{aligned} & \text { Date of Test: 3/8/84 } \\ & \text { Tester: C.L. Downs }\end{aligned}$

Calculation No	8982-17-19-2
Revision	004
Attachment:	G
Page G5	of G6



Bubject Discumed: Brfect of Temperature on the ITE-27\%
Relays with garranic Filtar unita

Sumary of Diecuceion, Decieions, and Comitmeners
Based on aarlier conversations, it was understood by SEL that the deviation in the relay aet point of IFI 27\% Ralays (from the callbration point) is linear ovar an oparating temparature range of $0-55^{\circ} \mathrm{C}$. It ras aiso understood that the actual pickup or dropout voltage is lovar than the set point value if the operating temperature is lower than the teaparatura at which the relay was calibrated. similarly, tha actural pickup or dropout voltage is higher with higher than calibration temperature.

It was latar noted from the type tast raport (Paga 6 of RC-5004) that this trend is not true for IIS 27N Relays with Harmonic Filtar Units. The actual pickup or dropout voltage aecreased with incraased operating samperature and vice verma.

Xr. Cliff Down informed me that this inverse relationchip between pickup or dropout voltage and operating tamperature is true becaume of the presence of the Hacmonic Filter unit in the ris 27 Relays. İ pointed out that tha test reaults for the IHE 27f Ralay without Ramonic Filtars (on top of page 6 of Re 6004 ) does show direct relationmip betwan piakup ar aropout voltage and the operating temperature. He, tharefore, mantioned that the information provided during aariler conversations was probably related to Relays without Harmonic Filtera.

He auggested that, while it can be asmaned that the doviation is linear ovar the oparating temperature range of $0-55^{\circ} \mathrm{C}$, the inveras ralationship betwaen pickup or dropout voltage and operative temperature should be conaldered in any calculation where Iwz 27N Relays with Harmonic Filtera are involved.

Ce: C. Downs-xis
File: Relays
BA: kam フBW
: : (Relays, H


## ATTACHMENT H

## Calculation MLEA 91-014

Calculation No. 8982-17-19-2
Revision 004

Attachment: H Page H 1 of H 22

January 23, 1992
Serial No. 92-004

Mr. Boris Pikelny<br>Commonwealth Edison Cumpany<br>Nuclear Engineering Department<br>1400 Opus Place, Suite 300<br>Downers Grove, IL 60515

Subject: Transmittal of Environmental Qualification of Dresden Second Level Undervoltage Syatem and Equipment for RWCU Line Break Environmental Conditions, Dresden Nuclear Power Station Unita 2 and 3, MLEA Calculation MLEA-91-014, Revision 0, dated 1/23/92, System Code 6705

Dear Mr. Pikelny:
Attached is the subject document for use. Please contact us if you have any questions.

## Prepared by:

bunettim nayluok
Annettc M. Mchugh
Senior Project Engineer

Approved by:
C. . Comen
c. J. Crane

Project Managcr/Manager of Engineering
cc: (per DDL C020 and Steve Hunsader)
H. Massin (CECO/NED)(Letter Only)
N. Smith (CECO/NED)(Letter Only)
S. Hunsader (CECO/NED)(Letter Only)
D. Wheeler (CECO/Dresden)(Letur Only)
E. Eenigenburg (CECO/Dresden)(Letter Only)
R. Tyler (CECO/NED)(P.O. Box 767 34FNW)(Tetter Only)

CHRON Syatem
B. Wong (CECONED)(Letter Only)
F. Petrusich (CECO/Dresden)(Lctler Only)

MLEA Project File MOO71
MLEA Serial File (Letter Only)
$\qquad$


MLEF-103/2
Rev 0
$\qquad$ H


## TABLE OF CONTENTA

### 1.0 Purpose of the Evaluation

### 2.0 Statemert of Qualifcation and Summery of the Evaluation

### 3.0 Lint of References

### 4.0 Qualication Crieria

5.0 Method of Quavication and Teet Sequence
6.0 Equipment Deacription and Sirnitarity to Testod Equipmert
7.0 Saftey Function and Required Operating Tirre
8.0 Qualisied Lio
9.0 Qualication for Radiation
10.0 Qualifation for High Temperature Steam Environmerta
10.1 Plant Accidert Environmental Protile
10.2 Equipmern Performance Characteristica
10.3 Erects of Humidity
10.4 Accident Simutation Teering
10.5 Margin
11.0 Synargiefic Effacts
12.0 Maintenance and Surveillance

Altachment 1-References


## 1.0

Puppes of tive Evimion
The Environmentai Qualification (EQ) evaluntion contained herein demonstratea quaricmion for the 4Kvac Second Level Undervoltage Crcutry and Equipmert for Dresden Strition akvec Buses 23-1, 241, 33-1, and 34-1 for the harsh temperature and humidiy environmented conditons resuking from RWCU line break.

Dresclen Station EQ Binder EQ-44D, General Electic Swithngear Componerita, Model MC-4.78, Fev. 08 (Ret. 3.16) demonatrates ervironmental quarication in sccordance with References 3.1 and 3.2 of the General Electric 4Kvac swichgeer associated with Drescen Station buses 22-1, 24-1, 33-1, and 34-1 for a post LOCA radiation exposure of 3.08E+05 rack. Reference 3.17 easablished that the switchgeer associned with Drescion Station buses 23-1 and 33-1 Loceted In Ervironmertal Zone 28 (Reference 3.18) are ervironmentally qualified for the harah temperature and murnidiy ( $212 \mathrm{~F} / 100 \% \mathrm{RH}$ ) conditions reeuting from a postulated break in the RWCU piping (Reference 3.5).

The second level undervoltage protection equipment for buses 25-1, 33-1, 24-1 and 34-1 are bocated in separate paneis (2252-83, 2253-83, 2252-84, and 2253-84) in Environmertal Zona 26 and are also subject to the harsh temparature and humidity ( $212^{\circ} \mathrm{F} / 100 \% \mathrm{RH}$ ) environment resulting from the FWCU line break (Rat. 3.f). Refarence 3.3 establiehed that the spcond iovel undervoinge equlpmert for buses 23-1 and 33-1 must not fall in a manner which would prevent closure of the AC powered RWCU isolation valve in the first 40 seconcts atter RWCU line break. Reference 3.3 provided a Justification for Continued Operation and determinnd that failure of the second level undervotiage equipment is untikety during the first 40 seconcis of the RWCU line break accident when the break is isolated but that there la a possiblity that the long term performance of the equipment could be adversely affected by the elevated temperature and humidity conditions resuking from RWCU line break (Reference 3.5).

Reference 3.7 provided a teat plan for HELB simulation steam testing of the second level undervolage circuiry and equipment. The acceptance criberia for the test was that the undervolage relay equipment must not fall by changing stite during the first minute of the steam expotira. Reterence 3.8 contains the results of steam exposure testing which demonstrate that the second level undervoltage equipmert does not fail for the one hour duration of the HELB exposura.

## MLEF-109/a

Pam


	Cakculation Sheet	Calculation No. MLEA-01-014
		Page 4 of 20
		Rovision: 0

## 20 getmmert of Qumicetion and Bumnary of the Evitivon

This calculation dernonatrates the qualification of the Dresden second level undervalesge circuitry and componerus located in ervironmertal zone 26 for the harsh temperature and humidily conditors ( $212^{2}$ F/100\% RH) ceused by RWCU lina break (Reference 3.5). The calcutation ldentifies the specinc componertis which are recured to be qualified for the postuated Hipl 8 in the RWCU syatem (see section 6 of this calcuition). The instatod componerss are stmitar (Reference 3.7) to thoee tested for Hew condifions as desoribed in Wyle Test Report 17199-1 (Relerence 3.8). Qualfication for radiation conditions is not required (See Section 9.0).
$\qquad$


### 3.0 Lit of Riderincem

*3.1 IEEE Standard 323-1974," Qualiying Clasa 1E Equipment for Nuciear Pown Genortaing Stations.

* 3.2 10CFR50.49,"Envionmertal Qualication of Eloctrical Equipment Importert to Satety for Nuclear Power Planta, Januery 1, 1987".

33 Main Line Engheering Aesociates Feport MOce4-11, Juetication for Corntmued Operation Techical Eveluetion and Ervironmertal Quaviciotion Devtation, Assesemert for fWCU Line Break Scenario for ABB/ITE Type 27D Sold Steme Undervolage Relay, Agastat ETR Time Delay Relays, and Agastat Control Relays Contained in the Circuitry for 4 KVac Bus 23-1, Dreeden Nucher Power Samion Unt 2, Revision 1, 5-30-01.

* 3.4 S8L Letter No. 890003-0020E, dated 7/5/91; with Attachment: Engineoring Change Notices (ECN) 12.00311E, Pages 1 through 7 and ECN 12-00312E, Pages 1 through 8, for Construction. (OIT-71-003)
3.5 Bectatel Letter Chron 13503, dated July 8, 1988, Subipet: Equipmert Qualtication, Reactor Water Cloanyp Syatem Line Break Anstysis, (DTT-71-016)
3.6 CECO Requalition No. D66469, dated 8/19/91 for 23 ABB TEE-27N Undervolage Relays (DIT-71-007)
3.7 Appendx Vi to Wyle Nuclear Ervironmental Qualifoesion Teet Report No. 17199-1 dmed September 25, 1891, HELB Smulation Test Program on Undenvolage Circuil Componencs: "MLEA Test Pian MO071-007-TP, Rev, 0 For Use, dated 9/12/91, Tess Ptan for HaLs Sirmitation Tenting of Second Lovil Undervothage Clreutry and Equipmert Inchuding ABB Type 270 Solid Stete Undervoltage Felays, ABB Type 27N Solid State Undervolage Relayg, Aceanet ECPDOO2 Control Rekeys, Agastat ETRI4D3NOD2 Time Delay Reky, Agastat EIR14038003 Time Delay Relay, Westhghouse FT-1 Switch and Maretion 1800 Terminal Blocks." (This reference is contained in reference 3.8 below.)
3.8 Wytu Nuctar Environmental Quenication Teet Report No. 17199-1 deted September 23, 1991, HELB Simulation Test Program on Undervoliage Cricut Componertia.

ABE Drawing No. 611896-003, Rovision 003, dated $9 / 11 / 00$, Schemetio, Bingle Phase Undervoltage Relay, Type 27N (w/Harmoric Fiter Mods). (DTT-71-0se)

AB8 Drawing No. 611798-001. Revision 0, daned 3/27/80, Hamonic Filer Schernetic. (DTT-71-032)

ASEA Brown Boverl Repor RC-5005B with RC-5105-B, dated 11/12/88, Cless 1E Electrtcal Equipment Qualification of 270/H Undervokage Rekys with Appendix "A", Component Aging Evaluations and Appendix "B", Selamio
Calculation No. $8982-17-19-2$
Revision $\frac{004}{\mathrm{H}}$
Attachment:
Page $\mathrm{H7}$ of H 22


3.12	ASEA Brown Boveri Report RC-5039-A with RC-5139-A, dated 1/10/50, Cleme E Electrical Equipmert Qualification, 27 N undervotigee Roley with Appendix ' $A$ ", Componert Aging Evaluations and Appendte "B', Seimic Summary Report. (DT1-71-082)
-3.13	Agastal Nuciear Enviranmertal Quallication Test Popon on Agestan EGP, EML, and ETR Cortrod Relays by Control Products Division Arnerace Corporition, Teat Report ES-2000, Rev. A dated 7/11/80. (Containad in CECO EQ filee, Pages 1, 2, 3, and 7 are attached.) (DIT 71 -045)
3.14	Memorandum from C. Collins (CECO/Dreeden) to C. Crane (MLEA) dated September 11, 1991, Subject: Replacsment of 2nd Level Undervolege Releye Drescen Unik 2. (DTT-71-034)
3.15	Telecopy from C. Collirs (CECO/Drescion) to J. Mupty (MLEA) Cortaining CECO Requisition No. D66469B, dated 10/1/91, Subject Incrasse Desaription of Relay to Berer Specily the Green Ligtr Emiting Diocie \& Duas Proof Beade \& Correction in Part Number. (DTT-71-033)
*3.16	Dresden Station EQ Binder EQ-44D. General Electric Swithgear Components, Model MC-4.76, Fev, O8 dated 11/14/89.
*3.17	MLEA Calculation No. 88011-03, Rev. 1, dated 2/9/90, Envirormertal Qualification of GE Swhchgear, MC-4.76, bus 22-1(33-1), Dresden Suation FWCU Line Break.
*3.18	Bechtel Specificetion N102. Rev. 3, dated 10/21/86, Response to IE Bultain 78 018. Procecture for Use of Environmental Zane Mape for Dreeden Nucleer Power Station Units 2 and 3. Commorwealth Edison Compary. (DIT-G4-007)
3.19	Westinghouse Descriptive Bultetin 41-075C, dated December, 1977, Flexicest Swith Type FT-1.
3.20	Telecopy from Bill Denny (SE Technologitas, Inc.) to Joe Marphy (MLEA) detad October 28, 1991, Subfect: Thermal Aging Data for Polycarboneta. (DrT-71-075)
*3.21	Maln Line Engineering Aseociztes Report Mo0e4-a, Justilication for Coriinum Operation Techrical Evaluation and Erwironmental Quafrication Deviation, Aneessmert for RWCU LOCA Scenario for ABB/ITE TYpe 27D Solld Sum Undervoltage Rekay, Agastak ETP Time Detay Relays, and Agastat Control Relaye Cortained in the Circuity for 4 KVac Bus 23-1, Dresden Nuclear Power Stution Unit 2, Rovition 2. 5-20-91.

*     - Indicates that the referenced docurnent is not attached and controlled within this calcuation.
Calculation No. $\frac{8982-17-19-2}{}$
Revision $\frac{004}{\text { Attachment: } \frac{\mathrm{H}}{\mathrm{H} 22}}$
Page HB of



### 4.0 Oumbemon Orinit

Criteria used to demonstrate qualification is in accordance with tha following (Indicate docimerts which are appicable):
x. USNAC DOR-Guidelnes, "Guideines for Evaluating Environmental Qualication of Clase 1E Electrical Equipmert in Operating Reactors', November 1979.

- USNRC NUREG-0588, Revision 1, "Imerim Staff Position on Environmental Qumirication of Safery-fletated Electrical Equipmenr, July 1991 Categry I _ Category II _

10CFR50.49, "Environmental Qualfication of Electic Equipmert Importam to Satety for Nuclemr Power Plants', February 22, 1989.

X_ USNRC Regulatory Guide 1.89 Revision 1, "Environmental Quarfication of Certain Equipment Important to Sadety for Nuclear Power Plarts", June 1984, Paragraph C.6.e.

X IEEE 323-1974, "IEEE Standard for Quaifying Class 1E Electrical Equipment for Nurloar Power Generating Stations".

Other, Specify:

	Calculation Sheet	Calculation No. MLEA-11-014
		Page 8 of 20
		Revision: 0
		Properer Sen-Aovewar cle

### 5.0 Method of Cunticution and Tem Bequence

(1) Methooblogy (Check onty one block)

- Test of Idertical trem Under Idertical Condikions or Under Similer Condeltore with Supporting Anayzis
X. Tus of Simitar hems with Supporting Analyeis
- Aneysis in Combrration with Partial Type Test Data that Supports the Arnaytioal Assumptions and Conclusions
- Experience with Identical or Sirmiar Equipment Under Similar Conditions with Supporting Analysite

Wyle Laboratores report 17199-1 (Reference 3.8) demonstrates that the circultry and equipment similer to that used in the Dresden 4Kvac second hevel undervoltage equipment located in ervtronmentil zone 26 was exposed to a steam ervironment which envelops the harsh temperature and humidity ( $212^{F} / 100 \% \mathrm{RH}$ ) described in Reference 3.5 and meets the acceptance criteria ( La, the equipment does not change state as a resut of the staam exposure in the first minute of the HELB erviromenti).
(2) Teut Sequance: (Reterance 3.8 Section 10.0)

- Equipmera was inspected for damage and contormity to test plan description by Wyle Labs. (Rof 3.8, 10.1)
- Trne delays for Agastat Tme delay retsy ETR14038003 was set at 4.98 seconds and for ETR14D3NDO2 was set at 5 minutes, 7 seconde. (Ref, 3.8, 10.2)
- Base line functional testing (Ret. 3.a, 10.3):
(a) With the DC control votage 125 Vdc, the 120 Vac voltage was reduced to 107 Vac to verity that the ABB undervotage retays would chenge steteme approximatty 7 secondes attor the AC inpue volage reached 100,1 vac. in addtrion, $i$ was abo verifed that the Agmatal ETh14D3N002 relay changed steto approximately 5 mirutas after the ABB undervoltage relays changed steme.
(b) The on-off swich of the Agastat ETR1403B003 relay was closed to verily that if would change state after approximately 5 seconcls.
(c) The AC input voluage was ncreased to 120 VaC to verity that al specimera would retum to their intivel condition at normal votaage.
(d) Proper operation of all wired specimen corracts was also verified.
- HELB Tess (Red. 9.8, 10.4.2): Intial ramp to 212"F followed by a gradual recuction to approximately $142^{\circ} \mathrm{F}$ al one hour after stant of the teet. The

MLEF-105/3

Calculation No.
Revision $\qquad$
Attachment:
$\qquad$ Page H 10
$\qquad$ H
$\qquad$ of $\qquad$

specimens were moritored for any unintended change of state curing the HELB teat.

- Poen Hel. Functional Test (Red. 8, 10.5): The functional iests described in Felerence 3.8, paragraph 10.3 were repented.
- Poot Teat inspection (Aet. 3.8, 10.6): The specimens were visually inapected and the condition of the specimers was recorded.


The following tabla lista the equipmert Inetalled in Dreeden Station es identilied in Rederence 3.7 and the Equpmert teated as identiled in References 3.4, 3.7, 3.8, and 3.15.


## Inctaltod Equmpers

ABB Type 270 Ratay Cas 211 R4175
ABB Type 27N Revay Cat 411T4375-L-HF-DP Weuthgnouse FT-1 Swich Style 129A501G01 Agastan Time Dolay Retay ETR14D3N002 Agastar Tme Detay Retay ETr14038002 Agastax Control Relays (2) EGPD002 Maration 1600 Series Termhnal Blocks Hofman Junction Box Cat A3024201P Junction Box Back Panol Cat Asope24 Agastax Relay Socket Base ECR0095001 Agastat Locking Strap ECA0155001 Arnertite 3 Flesx Condth Top Entry $3^{\circ}$ condut Fiting GE Vultene 14 AWG SIS Wre Fockbestos 14 AWG Frewall Wirs

## Tested Erumert

ABB Type 270 Relay Cat. 411R4175
ABB Type 27N Relay Cat, 411T4373-HF-DP Weatinghouse FT-1 Switch Style 120at501c01 Agastrim Time Delay Relay ETR14D3N002 Agment Time Devin Folay EIR1403s003 Apastat Conmol Remys (2) ECPDOO2 Marathon 1600 Series Terminal Blocke Hoffman Junction Box Cat A3cenzolp Junction Box Back Panel Cax Asop24 Agartat Reky Socket Base ECPOpos001 Agestat Locking Strap ECFO155001 Anaconde Seatite $3^{\circ}$ Flex Condit Top Entry $3^{\circ} 0$-z/Cectney condili Fiting Rookbentos 14 AWG BtB Wre Aockbestos 14 AWG SIS Wre

Reference 3.7 establsties that the equipment and circuity listed above and tested in feterence 3.8 are simitar to the equipmert and circuitry installed in the Dresden Station Second Level Undervollage crcuits.

Reference 3.15 transmited a revised CECO purchase requisition for the ABB type 27N wolid sterte undervoltage relays for instalation at Dresden Station (Reference 3.4). Reference 3.15, required the installation of the DP Bezel (as in the tested ABB Type 27N undervokage retay) and also required a green ligtr emitting diode to be added to indicate the preeence of DC control power ("L" option) in addition ta the red ligtt emiting diode normaly metaliod for indication thas the retay has changed state.

The ABB type 27 N test specimen did nox have the green light emiting diode for indication of DC control power. The test specimen was based on the orighal CECO purctase requition, Reference 3.6. However, it was not known that the "L' designator was required to be apecitiod to ABB.

Reference 3.9 showe the green fight emilting diode as "L" option, instated in seribe with a 13 kohm reatator across the positive and negative sides of the DC control power portion of the relay circut. The green ligtr emiting diode is installed in the same manner sa the normaty installod red light emititing diode, which is installed in sertee with a 15 kohm reestor as shown on Reference 3.9.


	Calculation Sheet	Calculation No. mlearot-014
		Page 11 of 20
		Revision: 0
		Proparer 20 m -
		0

The normaly installed red ight emiting diode performed satistactorly curtng the HELB exposure testing described in Reference 3.8. Since the green fert emiting diode added to the ABB type 27 N relays for Dresden Station by Reference 3.15 is inetelad in the same manner (and ts the same device) as tha normslly installed red light emiting diode (viz, in series with a 15 kohm resistor) and the normaly installed red light emitting diode performed setivesectorly under HELB condtions, the green light emiting diode added to the type ABB 27 N solld zete undervoknge reteys by Reference 3.15 is qualifad by simitariy for HEL 18 exposure.

Therctore, the testing of simiter equipmert to the Droeden 4KVac Second Level Undervoligge Protection cricuitry and equipment estabishes that the installed equipment and circuity are envionmertally qualfied by Reforence 3.8 for the harsti temperature and humidity conchions ( 212 F/100\% RH) reouting from RWCU ine break.

	Calculation Sheet	Calculation No. MLEA-1-014
		Page 12 of 20
		Revision: 0

### 7.0 8utriy Furction and Required Operatho Tine

During normal plart operation, the function of the second bevel undervolage circuitry and equipmert is to provide protection against a degraded volage condition on the seftay revered 4 KVac buseas. A degraded votage condition will cause induction motions to drew more ourrent and may reatit in overheathg of the mocor windinge. The second fovel undervotage reinys are set between 3708 Vac and 3784 Vac . If a degraded condition perstets for 7 secondia, an amunciator alants the operator and a 5 minute time delay is initizated. It the bue voltage is not restored to normel operating voltage witthin 5 minutea, the diesel generator is startod the incoming breakers are itppeed, bad shedding is inititated, and the diesel generator breakers close when all permissives are satiefled Red. 3.3).

In the evert of RWCU line break, 4 KVac buses $28-1$ (33-1) must provide AC power to 480 Vao motor control centers MCC 18-1A(28-1A) for at least 40 seconds atter the ine break in order to close the AC RWCU lsolation valves MO-2(3)-1201-1 and isolate the FWCU line break (Ret. 3.s).

The noed to maintain the second level undervotage protection, coincident with a RWCU line break scenario, is not considered to be necessery and the scenario is nct considered to be a credible evert (Ref, 3.7).

Therefore, the second level undervotage protection circuit muet not change state during the flrst 40 seconds of exposure to the harsh temperature and humidity environmert ( $212^{\circ} \mathrm{F} / 100 \%$ RH) caused by fwCU the break (Ref. 3.3).

MLEF-103s

- A

Calculation No. 8982-17-19-2

Revision 004
Attachment: $\qquad$
$\qquad$ of H 22


## 8.0

Ounlind Lib
9.1 ABB TVPe 27D and Troe 27N solld stete undemolyon reime:

In Reterences 3.11 and 3.12, ABB provides analyses of the componarts used in the Type 27D and 27 N solld state undervolegge retrys. The method uned is a combinition of Armerius evatuators of heudation materials used in the relays and Mil HDEK-217 valuritons of the effectes of electrical and thermad streases on the electronic componerne used in the rebaya. References 3.11 and 3.12 conctude thre the quarind We of the Type 27D and Type 27N solid stete undervolege releye is in excess of 40 years an an average ambient air temperature of $45^{\circ} \mathrm{C}$, an irternat air temperriure of $60^{\circ} \mathrm{C}$, and a control volinge of 131 Vde .
8.2 Agatat EIF The Dety Retays and ECP Control Rethy:

Peforence 3.13 identitios the qualifed lies of the Agestax ETR and ECP retays as 10
 fin
Q. 3 Mersthon 1600 Series Teming: Blocks:

Dresden EO Bindar EQ480, Revision 8, estrblishes a 40 yoar quatiod life of the Maranon 1600 series terminal blocks used in Dresden Station both inside and ouxside cortainnert. (This binder is located in the CECO Dreaden EQ filea.)

### 8.4 Westinohouse FT-1 Swich:

Reference 3.19 idernines the material of construction of the case and cover of the Westinghouse FT-1 swich as polycarbonate. Reference 3.20 lists the life of a typiom polycarbonate materiad as 31,200 years at a temperature of 105 F .

Therefore, i is conctuded that, with the exception of the Agastat ETR and ECP relyye, the second lavel undervolage equprnert installed in Dresden Station for the Satey-fletated 4 KVec buses is qualitied for 40 years at 104 ${ }^{\circ} \mathrm{F}$ (the maximum amblant temperature in Zone 28 as identiod in Pet. 3.18). The qualifed try of the Agastat EIP and EGP relays is 10 yours from the date of manufacture or $\mathbf{2 5 , 0 0 0}$ operations whichever compe first. The sis wire uned by CECO throughout the ptart is environmentaly qualifiad for 40 year fietime and the informadon is corxained in the CECO Dresden EO fles.



## 90 Ountraton for Redrution

The second lovel undervoltage circutiry and equipmerx for Dreeden Station 4 KVac buses 241, 33-1, and 34-1 are loczited in a mild radistion ervironmert in the overt of LOCA. Dremonn Station 4 KVac bus 23-1 is subpect to a harsh radiation environmert in the everi of LOCA. Reterence 3.21 eatabished that the Agastit ETR time delay relays and ECP cortrol relays, the Marathon 1600 series terminsl blocks and the Westinghouse FT-1 switch are qualified for the radition envirorment to which they would be subipcted in the event of LOCA. Rofevence 321 aboo establishod that the ABB Type 27D solid stere undervolege relays are operable in the radtation envirorment Cassed by LOCA alkhough the time delay is increased from 7 aeconche to approxinnatey 20 asconds.

Reforence 3.14 states that the ABB Type 27D relays associsted with 4 KVec bus 20-1 will be replaced with ABB Type 27N relays (Reference 3.4) and that the parnal containing the aecond level undervolage equipment for 4 KVac bus $23-1$ will be moved to a location which is mid for radtation in the overt of LOCA.

MLEF-103/3

$\begin{aligned} & \text { RIM } \\ & \text { (c) } \end{aligned}$	Calculation Sheet	Calculation No. MLEA-01-014
		Page 15 of 20
		Revision: 0
		Proparugam_nevinwer $/ 1 C$

### 10.1 Plar_Acctdent Profis:

Reference 3.5, Figures 2 and 3, provide the temperature in the mezzanine aree of the Dresden Station Reactor Building (ervironmental zone 26) as a furction of time ether RWCU line break. The temperature rises to $212 \%$ at approximately 40 seconds ather the break (at which time the break is isoletacd). The rempersiure then fals off to approximately 140 F at one hour after the RWCUS line braak occura. Fiource 2 and 3 of Reference 3.5 are reproduced on pages 17 and 18 of this caicutation

Figures 2 and 3 of Reference 3.5 are based on a double ended, guillotine break in the 8 hich RWCU piping in the RWCU heat exchanger room (Reterence 3.3).
10.2 Eorimmet Performanct Characteristica:

Fefevence 3.7, Section 8. and Reterence 3.3. Section 8.2, note that the second fovel undervoltage protection circutry and equipment are not required to furction to mitigute the PWCU line break, bui must not fall (Nte, change state) during the first minite efter FWCU IIne break in ary manner which would prevent ciosure of the AC RWCU botation valve (MO-2(3)-1201-1).
10.3 Effects of Humithy

Reference 3.5 does not specifically identily the relative humidily in the mezzanine eree of the reacior building. Therefore, for conservatism, a relative tumidity of 100\% has been assumed in this calcuation.

The ABB Type 27D and Type 27N solld state undervohage relays and the Agastar ETR relays in the second level undervoltage protection circultry are electronic devioses Reference 3,3 indicates that moksture intrusion end conclemeation on the ebectronices might edversely affect the pertormancs of the equipmert. Reference 3.3. conchuded then it is unclikely that the efectronics would be exposed to moisture during the first forty seconds after RWCU line break.

Relerence 3.8 is the report of staarn testing (100\% PHH) of the second level undervokage protection equipment. The report demonserates thrix the equipment is not adversety aftected (i.e., does not change state) when exposed to a stearn environment for one hour.
10.4 Aecedent Simulation Testing and Beguta:

Feferance 3.8 describes HELB simulation (steam toxposure) testing of the Oresden Second Level Undervoltage relay equipmert and circuiry. The tew profite shown on peges 41 through 45 of Reterence 3.8 erwolopes the accident temperaure profie shown on Figures 2 and 3 of Reference3.5. The test was conducted using eteam which ermured that the relative humidily was at $100 \%$ throughout the test. Page 45 of Reference 3.8 shows that the internal temperature of the function box which contained

MEFF-1093
Amen 19
Calculation No. 8982-17-19-2


the second level undervotage equipmert substantaly lage the tempernure of the steam ervironmers.

Reference 3.8, pages 46 through 53, demonstrates that the undervoltege equipment did not change state throughoul the HELB simulation testing. In addition, post HeLB teat functional testing (Referince 3.8, page 9) demonstrated itht the undervolage equipmert performed within design specification requirements (Reference 3.7, Section 6.0).
10.5 Maron:

Athough Reference 3.8 demonatrates a temperawure margin of $4^{\circ} \mathrm{F}$ to $15^{\circ} \mathrm{F}$ during the HELB simulation testing, the quatification margin for the Oresden 4KVac Second Level Undervoltage Protection Clrctitry and Equipment is a Time margin.

The Dresden 4KVac Second Level Undervoltage Protection Circultry and Equipmert must not change state during the first 40 seconds atter RWCU line break (Feference 3.3) in order to assure closure of the AC RWCU system isolation valve (MO-2(3)-12011). The HELB simulation testing described in Peforence 3.8 established that the Dresden 4 KVac Second Level Undervotage Protection Circuiry and Equipment did not change state for one hour atter RWCU line break. This time margin meets the recommended time margin of Regutatory Gulde 1.89 (1 hour phis operating time).

MLEP-109/3
mana

Calculation No. 8982-17-19-2

Revision 004

Attachment: $\qquad$ H

Page $\qquad$ of $\qquad$


Eigure 2



Calculation No. 8982-17-19-2
Revision 004
Attachment: H
Page +H 19 of $\qquad$

Figura 3


Calculation No. 8982-17-19-2
Revision 004
Attachment: $\square$
Page $\qquad$ H 2 O of $\qquad$


### 11.0 Symurate Elects

Synergistic effects are associated with Intermctions of temperature (Aging) and radition dous rates. The second level undervoligge circiiry and equipment inctalled in Draeden Station ere located in mild radiston environments and therefore would not exchibit synergestio effects due to ambient temperature and radiation dose rate.

Referances 3.11 and 3.12 address synergistic effects for the ABB Type 270 and Type 27 N soid state undervolage relays and states that no synergistic afiects have been identified for the equipment.

Extensive testing of Agastax ETP and EGP relays described in Feference 3.13 indicate that there are no synergistic effects associated whth these relays.

Dreaden EO Binder EO-48D establishes that there are no synergistic effects for Marathon 1500/1600Series terminal blocks.

A reviow of available lierature on polycarbonate materiais establishod that there ara no identied synergistic effects caused by gamma dose/dose rate and temperaure. (Some war formutations of polycarbonate have stown sensitivity to utraviolet fight and remperature bue the Westinghouse FT-1 swich is not conetructed of clear polycarbonate and therefore not subject to synergistic effects due to uhraviolet light.)


### 12.0 Marbanmice and Eurvilunow

121 Ane Type 270 and Type 27N 80id gent Undavoluge Finges
In Peterences 3.11 and 3.12 ABB recommends that the tesing identiled in the ABE inetruction manuets for the equpment, which are contained in Appendxe 8 to Reference 3.7, be conducted at two year irtervala.

122 Acmin EfR Thie Dohy Ravye and ECPD Conted Robyt:
The peftormance of the Agastu ETR Tume Dotay Releys and Agastat ECPD Control Retays can be montored during performance of the ABB solld suate undenvolange Redays every wo years. In Reference 3.13. Anerace Corp. states that the Agestas ETT and EGPD retays musa be replaced ten (10) years atter the dive of manutacture or ither 25,000 operations, whichever comea firse.


In Reference 3.19, Westinghouse does not provide any requintementa for mainterance or eurvellance of the FT-1 swich. However, Reference 3.3 established thet the FT-1 swith is essertiaty a terminal block. Therofore, the maintenance and surveitance recommended in Tab E of Oresden EQ Binder EQ-480 for Marathon termind blocks should be applied to the Westinghouse FT. 1 swith

## ATTACHMENT I

DIT DR-EPED-0671-01


Calculation No. 8982-17-19-2
Revision 004
Attachment: $\qquad$
Page $\qquad$ of $\qquad$

The jiant reating, ventilating ano air zonai :ioning system consists of the alements reauired to effect and control the following space air processes: supply and exnaust; distribution and recirculation; velocity; differential and static pressure control; filtration of particulate contaminates; cooling and heating; complete air conditioning; and area isolation.

Elements necessary to perform and control the space air requirements are filters, dampers, cooling and heating coils, electric duct heaters, air washers, refrigerating equipment, fans, and the necessary control and support equipment.

The overall system is related, but divided into subsystems which are designed to control the air requirements in a particular area (see figures 10.11.2:1 thru 10.11.2:5). They are as follows:

1. Reactor Building Ventilation; Min $65^{\circ} \mathrm{F}, \operatorname{Max} 103^{\circ} \mathrm{F}$
2. Turbine Building Ventilation; Min $65^{\circ} \mathrm{F}$, Max $120^{\circ} \mathrm{F}$
3. Radwaste Building:

Occupied areas; $\operatorname{Min} 50^{\circ} \mathrm{F}, \operatorname{Max} 103^{\circ} \mathrm{F}$
Cells and Collector Tank Room; Min $50^{\circ} \mathrm{F}$, Max $120^{\circ} \mathrm{F}$
Concentrator \& Concentrator Waste Tank Cells; Min $50^{\circ} \mathrm{F}$, $\operatorname{Max} 150^{\circ} \mathrm{F}$
4. Main Control Room; Min $70^{\circ} \mathrm{F}$, Max $80^{\circ} \mathrm{F}$
5. Orywell Ventilation:

Normal; $135^{\circ} \mathrm{F}$ Average
8 hrs after Shutdown; $105^{\circ} \mathrm{F}$ Average


Calculation No. 8982-17-19-2
Revision 004
Attachment: $\qquad$
$\qquad$ of 13

## ATTACHMENT J

## S\&L Interoffice Memorandum from B. Desai

## DEGRADED VOLTAGE CALCULATIONS ASSUMPTION VERIFICATION

Assumption - 9. 15
The setting tolerance used for setting the trip unit voltage is assumed to be$+/-0.2 \mathrm{~V}$ which corresponds to about $+/-0.182 \%$ for a setpoint expected to beused near 110 V .
Reference Calculations
8982-13-19-6, Revision 2
8982-17-19-2, Revision 1
Verification Description
The attached relay setting order for Dresden Station Unit 2, Buses 23-1, 24-1,and Unit 3, Buses 33-1 and 34-1 from CECo System Planning already addressestolerance of $\pm 0.2 \mathrm{~V}$ and setpoints are near 110 V . Therefore, this'assumptiondoes not require further verification.
Follow Up Action
Incorporate assumption verification in the calculation.
$\qquad$
$\qquad$ of $J 42$


$$
\text { ggr.13.1g. } 6 \text { Ren. } 2
$$



Calculation No. 8982-17-19-2
Revision 004
Attachment: $\qquad$ $J$
Page J3 of J 42


- OESIGNATIONS MOT COVEMED ALOVE ON aELOW. SUCH AS LINE NO.. NEV OM OLO SETTAMG. ETE.


$\qquad$ of $\qquad$


## DRESDEN STATIOH <br> UNITS 2 AND 3 <br> DEGRADED VOLTAGE CALCULATIONS ASSUMPTION VERIFICATION

Assumptions $10 \& 16$
The dc control voltage for the undervoltage relays will be within the relay'sacceptance range of 100 to 140 -Vdc during both normal and accidental conditions.
Reference Calculations
(1) 8982-13-19-6, Revision 2
(2) 8982-17-19-2, Revision 1
Verification Description
To verify above assumption calculation 9198-42-19-1 was prepared.
The calculation demonstrates that there are sufficient terminal voltages at thesecond-level UV relays during the first seven seconds of a LOCA (no LOOP)combined with a degraded voltage condition. The calculation also shows thatthese relays will not be exposed to terminal voltages exceeding their maximum1 imit during battery equalization.
Follow-UD Action
Incorporate assumption verification in the calculation
w: G: \ELEC 1 DOC $100 C 3545 . E P$


1. The battery chargers are rated at 200A (Reference 16) and are set to curren limit at 100\% of the charger rating (Reference 15).
J. The characteristics of the NCX-2l battery cells for the 125 -Vdc battery (Reference 5) are the same as those of the NCX-1500 battery cells of the 250-Vdc batteries (References 6 and 21).

## IV. ASSUMPTIONS

## Assumptions not Requiring Verification

A. Fuse resistances are not included in this calculation. The fuses which are upstream of the control circuits where the second-level UV relays are installed, are all 35 A (Reference 10). The resistances of the 35 A fuses are negligible when compared to the resistances of the cables. (ENGINEERING JUDGMENT)
B. Contact resistance for switches, breakers, and relays are assumed negligible. This is based on Dresden Station Design Ili:ormation Transmitta' DR-EPED-0503-00 (Reference 11) which shows that contact resistances vary from 0.0028 to 0.0002 OHMS. (ENGINEERING JUDGMENT)
C. The battery is fully charged at the time of LOCA initiation. The battery voltages are checked daily by personnel from the station operations department (Reference 12).
D. No LOOP condition exists.
E. The new main feed to Panel 903-34 on Bus 3A-2 (Reference 22) has been installed. (ENGINEERING JUDGMENT - This loading is conservative relative ts premodification loading on the same bus).

## v. ACCEPTANCE CRITERIA

The input voltage at the terminals of the second level UV relays must not be below the established minimum value of 95 Vdc or above the maximum value of 140 Vdc as determined by vendor information (References 7 and 19). However, the relay will also tolerate a one second dip in minimum (Reference 19) terminal voltage to 89 Vdc .
$\qquad$ Page J 6 of J 42


Table 1 shows that during the worst interval (Switchgear 24-1, from -6.917 to -6 seconds), the battery is still able to supply the minimum voltage to the UV relay, and would discharge from a fully charged state in about 15 minutes if this load were kept constant. Since the time delay for the UV relays is only seven seconds long, it is evident from the table that all UV relays will have the minimum necessary control voltage to operate during this time period.

The tables in Attachments $A$ and $B$ show the loading during a dual unit LOCA with no LOOP. However, the design basis for the station is a single unit LOCA only. Therefore, the results shown in Table 1 are conservative.

- The maximum battery equalization voltage is 135 V when the battery is connected to the bus. Therefore, the maximum voltage of 140 V at the terminals of the undervoltage relays will not be exceeded.


## VIII. COMPARISON OF RESULTS HITH ACCEPTANCE CRITERIA

From the analysis of Section VII, the terminal .altages of all second level UV relays will be within their minimum and maximum established limits under the postulated conditions.

## IX. CONCLUSIONS

The calculation demonstrates that there are sufficient terminal voltages at the second-level UV relays during the first seven seconds of a LOCA (no LOOP) combine with a degraded voltage condition. The calculation also shows that these relays will not be exposed to terminal voltages exceeding their maximum limit during battery equalization.
X. RECOMPENDATIONS

Not Applicable.

## XI. REFERENCES

1. Sargent \& Lundy Standard ESA-102, Revision 04-14-93
2. Sargent \& Lundy Standard ESI-253, Revision 12-06-91
3. Sargent \& Lundy Standard ESC-291, Revision 05-23-91
4. Design Information Transmittal DR-EDD-0086-00, dated 08-02-93 (attached)
5. Sargent \& Lundy Calculation 7056-00-19-5, Revision 23, dated 08-27-93

Calculation No. 8982-17-19-2
Revision 004
Attachment:
Page $\mathrm{J7}$ of J 42

$$
\begin{aligned}
& \text { - talc. No. 8982-17-19-2 } \\
& =\text { Rev. } 2 \\
& \text { Page R25 of } \\
& \text { - Project No. 8982-64 } \\
& 1 \\
& \text { Teieorone: こ: 5-395-:333 } \\
& \text { Teiecsey: =:5-ミミミー: 0ミ5 }
\end{aligned}
$$

SATE： $\qquad$ $10114 / 93$

PAGES INCLUDING COVER GHEE：： $\qquad$


REFERENCE： $\qquad$ $27 N$
message：Per your request，this
IS TO CONFIRM THAT THE ALLOWABLE
DC CONTROL VOLTAGE RANGE FOR TYPE
27N WITH HARMONIC FILTER IS $95-140 \mathrm{~V}$
AND THAT A 1 SECOND EXCURSION TO 89VDC WILL NOT AFREET ITS OPERATION．

THIS ASSUMES THE RESISTOR INSTALLED
BETWEEN TERMINALS 1 AND 9 HAS A
VALUE OF 4000 ont．
Clefs Dome

## DEGRADED VOLTAGE CALCULATIONS ASSUMPTION VERIFICATION

Assumptions - 11. 17
"It is assumed that the voltmeter used for setting the relay is a fluke 45Digital Multimeter. It is also assumed this voltmeter has been set to a userselected reading rate of 5 (medium) readings per second."
Assumptions - 12, 18
"It is assumed that the multimeter is calculated to meet its technical accuracy specifications as identified in the Fluke 45 literature (Reference D). Furthermore, it is assumed that the relay is calibrated at a temperature that is within the range of $21^{\circ}$ to $24^{\circ}$. This assumption is necessary to limit the conservatism in the error due to relay temperature effect to a reasonable level."
Reference Calculations
8982-13-19-6, Revision 2
8982-17-19-2, Revision i
Verification Description
Dresden Relay Setting Procedure DOS 6600-09, Revision 8, specify to: a) usecalibrated model-Fluke 45 digital multimeter b) relays must be calibrated toan ambient temperature between $70^{\circ}$ and $75^{\circ} \mathrm{F}$.Commonwealth Edison Company will revise Procedure DOS 6600-09 to include theuse of Fluke 45 Digital Multimeter with user-selected reading rate of five(medium) readings per second.
Follow Up Action
Incorporate assumption verification in calculation.Page
$\qquad$
$\qquad$ of J42

TO: J.J. Horwath
Subject: Second Level Degraded Voltage Relay Settings Switchgear 23-1(Div. I) \& Switchgear 33-1(Div. I) Dresden Station, Unit $2 \& 3$

Ref.: 1. S\&L Calculation Number 8982-13-19-6, Rev.2, entitled "Calc. for Second-Level Undervoltage Relay Setpoint", Dresden Unit 2, CHRON \# 186718.

Ref.: 2. S\&L Calculation Number 8982-17-19-2, Rev.1, entitled "Calc. for Second-Level Undervoltage Relay Setpoint", Dresden Unit 3, CHRON \# 186716.

Ref.: 3. Operability Determination of Safety Related Equipment Affected by the Second Level Undervoltage Relay Setpoint Change on Division I of Units 2 and 3, Dresden Station, CHRON $\# 186841$.

The above listed references are for your files.
Reference 1 and 2 establish the design basis for the setpoints of the subject relays. In order to expedite issuing new Relay Setting Orders reference 1 and 2 were previously sent to you and discussed via phone on June 2 , 1992. The need to adjust the existing settings is due to incorrectly applied vendor information which changed the ambient temperature effect tolerance in the original calculations. This setpoint adjustment will restore margin to the level established in our current setpoint methodology. It is our understanding that Relay Setting orders for the subject relays have been issued as follows:


Attachment: J
Page J 10 of J 42

It should be noted that the existing setpoints on the Division II second level undervoltage relays are conservatively set above the values indicated in the revised S\&L calculations (see Ref. 3). Therefore it is not required at this time to adjust the Division II settings.

The setpoint calculation has several stipulations for setting these relays which must be adhered to by the Operational Analysis Department. They are as follows:

1. A Fluke Model 45 multimeter, must be used to set the relay and have been calibrated within the manufacturer's specified tolerance range of 18 to 28 degrees Centigrade. The Fluke 45 must be set for a 60 Hz signal and at the medium sampling rate. If another voltmeter is to be used then it must have an accuracy equal to or better than the Model 45 in the appropriate volt range and be approved for use in this application by the Nuclear Engineering Departiment.
2. The relay must be set (calibrated) at a temperature between 21 to 24 degrees centigrade ( 70 to 75 degrees Fahrenheit).
3. Utilize ABB instruction bulletin I.B.7.4.1.7-7 Issue D when setting the ABB/ITE, type 27 N undervoltage relay with harmonic filter.

A copy of this letter has been sent to the station for appropriate setpoint control review. If you have any questions or concerns regarding this matter please call stan Gaconis, X7644 or Mike Tucker, X7648.


Attachment

```
cc: H.L. Terhune w/O attachment
 G.P. Wagner w/O attachment
 C.W. Schroeder w/o attachment
 H.I. Massin w/o attachment
 K.E. Faber w/o attachment
 M.S. Tucker w/o attachment
 S.L. Gaconis w/o attachment
```

Revision 004
Attachment: J
Page $\qquad$ of $\qquad$

## CHRON\# 190945

## Subject: Second Level Undervoltage Protection <br> Relay Setting Orders <br> Dresden and Quad Cities Stations

Mr. T.T. Clark:
Please provide copies of the Second Level Undervoltage (Degraded Voltage Protection) Relay Setting orders for the ABB 27 N relays installed for 4160 Volt buses 13-1, 14-1, 23 1 and 24-1 for Station 4, Quad Cities, and for 4160 Volt buses 23-1, 24-1, 33-1 and 34-1 for Station 12, Dresden. NED requires copies of the actual relay setting orders to close out some of the assumptions made in the degraded voltage calculations and for the FSAR rebaseline project.

We would appreciate copies of the subject Relay Setting orders by August 31, 1992. If you have any questions, please call me on extension 7648 at Downers Grove.



$\square$
Page J 12 of J 42

## InterOffice Memo

To: Bipin Desai

From: Mike Tucker
Date: $\quad$ September 2, 1992
Subject: Calculation Assumpuons.
Relay Setting Orders
Degraded Voltage
Tom Clark of System Planning has sent copies of the Second Level Undervolage Relay Settings as you requested. However, note that the new RSO for Quad Cities Unit 1 has not been issued at this time. Therefore, only the relay setting orders for Quad Cities Unit 2, Dresden Unit 2 and Unit 3 are attached

The relay setting order does not address the type of meter to be used. much less specify that the medium sampling rate only be user selected. Therefore. we ${ }^{\frac{1}{2}}$ are going to have to determine an alternate course of action.

If you have any questions, please call me on ext. 7648.


CC: M.L Reed
'The term "we" in this context should be best interpreted to mean "you."

relay setting order c．E．co．orates 3．0 3

P品 SOM ELEC


Station 4 Quad Cities			kv $4.16{ }^{\text {mine }} \mathrm{mTE}$ ITE－27N－HF			
		＝$\square$	$\cdots \square$	阿吅口	uf．$\square$	снG．$X$ ceactuate $\square$
－Bus 24－1 2ND $^{\text {ND }}$ Lel Undenvoltage						
zoneon						
	35：1	7				
	M／A	7				
ALAMO	70－120V	HMRINEOK			4iation olvty	
fitiming	3.886					
Stice	$111.03 \mathrm{~V}+1-2.2 \mathrm{~V}$					
conmitito	110 V Tdp					
Ress						
IIminc	7.0 See－Tap 5					
Propout at 99.570 use 9990 Tap						



Calculation No．
Revision
Attachment
Page $\qquad$ 004 04 J号 of J 42



Calculation No.
Revision $\qquad$
Attachment:
Page $\qquad$ of



$$
\begin{aligned}
& \text { Calculation No. } \quad 8982-17-19-2 \\
& \text { Revision } \frac{004}{} \\
& \text { Altachment: }-\mathrm{J} \\
& \text { Page } \quad \mathrm{J} 16 \text { of } \mathrm{J} 42
\end{aligned}
$$

FACSIMILETRANSMITTALSHEET

DATE: $\qquad$

TO: $\qquad$ Mike Tucker

TELECOPIER NUMBER: $\qquad$ 7299

FROM: $\qquad$ J. Gates
cover sheet plus $\Theta$ page (s)
DO YOU WANT TELECOPY BACK? Y/ YES BeArd
IF YOU HAVE ANY PROBLEMS RECEIVING YOUR TELECOPY, PLEASE CALL (815) 942-2920 EXT. -0-

Telecopy * 815-942-2920
Extension 2265
***NOTES***
mike,

$$
\begin{aligned}
& \text { I'll look for the appropriate } \\
& \text { CAM/ACAD procedures and fox them }
\end{aligned}
$$

Sent: $\qquad$
Time: $\qquad$
89: $\qquad$

Revision 004
Attachment: $\quad \mathrm{J}$
Page 117 of 142

## Requirements:

Fechnical Specifications Section 4.2, Table 4.2.1

## Special Controls/Reviews:

nore.
-
$\rightarrow$

## 1. Mivare

Originator

> Independent Reviever/Verifier (If Applicable)
D. Fiedler

Department Procedure Writer
M. Korchenaty

Deparement Supervisor

## APPROVED

N6 $05^{\prime} 92$
$2005 / 137$
241198
1 O\& 8
D.O.S.R.
$.1 \% 18$

Calculation No. 8982-17-19-2
Revision 004
Attachment: J
Page 118 of $J 42$
A. 2lliposf:

This procedure verifies the undervoltage relay settings for emeriency Core Cooling Syatem (ECCS) Buans 23-1, 24-1, 28 and 29 (33-1, 34-1, 38 and 39) and anaures calibration of related Diesel Generator power instruments.

## B. USRR REFEAMTCES:

1. Technical Specifications:
a. Section 4.2, Table 4.2.1, Minimu Tat and Calibration Frequency for Cort and Coataiment Cooling Syateman inatrumentation, Rod Block and iaciations.
2. Procedures:
a. Relay Calibration Procedure (Supplied by Operational Aaclyois Department).
3. Printas
a. 12E-2334, Relaying and Meterias Diagram - 4160 V Switeh Group 23-1 © 26-1.
b. 12E-2335, Relay and Metering Diagran - 480 V 5witch Groups $25,26,27,28$ \& 29 .
c. $128-2344$, Schematic Coatrol Diagran. 4160 V buaes $23-1 \mathrm{c}^{-}{ }^{-}$ 24-1 Main Feed bKRS.
d. 12I-2345, Schearte Control Diagram, 4160 V Dui 23-1 4KV SNGR sus 40 Feed BRR.
e. 128-2346, Schemaic Control Diagrae, 4160 V Bue 26-1 9 tendby Diesel 2 Feed $634-1$ Tie Ireaker.
4. 128-3334, Relaying and Metering Diagram - 4160 V swiech Group 33-1 34-1.
5. 128-3335, Relay and Mecering Diagram - 480 V Sritch Groupa 35, 36, 37, 38, 39, 630 and 4160 v ENGR CUS 15.
h. 128-334h, Schemetic Control Diagram, 4160 V Buses 33-1 6 34-1 Maln Teed BKRS.
6. 12E-3345, Schematic Control Diagran, 4160 V Bua 33-1 4KV SNGR Bua 40 foed BRR.
j. 12E-3346, Schematic Control Diagram, 6160 V Bus 34-1 Standby Diesel 3 Feed 24 -1 Ife Braker.
C. sincurginfis:
7. Checklist $A$, LCCS Bus Relay Tess.
D. EOUMPMat seouirsp:
8. Timer (Calibrated per DaP 11-12). Record Serial Number and Calibration Due Date on Checklist A.
9. ©Fluke Model 45 Multimeter. Record Serial Number and Calibracion Due Date on Checklist A. ( $\mathrm{N}-2, \mathrm{H}-\mathrm{H}, \mathrm{W}-\mathrm{h}$ )
10. Digital Thermoneter. Record Serial Number and Calibration Due Date on Checklist A.
E. ERERROULSITEA:

11. Reactor in Cold Shutdown or Refuel.
12. Bue being tested is out of service for the operational Analysis Departaent (OAD).
13. Oparational Analysia Department (OND) has verified the relay ecetiage for the celaye listed in Checklist $A$.
14. Permiasion to atart the undervoltage kent on each bue (Bue 25-7, 24-1, 33-1 or 34-1) has been obtained from the suift zngincer.

## F. brECAITIONS:

1. Use proper sequences when disconnecting or recoanecting the relays to avoid apurious bus eripe.
G. LIMITATIONR AND ACTIONR:
2. A Fiuk Model 45 Multiveter muat be usad to calibrata the eccs degraded voltage relayn. If another voltoreter is to be uned, 2ITM the Nuclear Engineerins Departmat must approve it'a use.
B. ACCEFTANCE CNITERTA:
3. All operating voltages and trip times shall be within the tolarances listed in Checklist A.
4. IF any of the AS FOUND valuas fall outside of the checrisat $A$ tolerances, IRP notify the Cperntiona Shift Supervisor and aubait an out-of-tolerance notification sheet to the Techaical Staff Supervisor.
$\qquad$ J 20 of J42
```
日. 3. Acceptance criteria is amotated by acceptance critaria (AC)
 before the step.
```

I. procemure:


1. Renove the undervoltage relaye at follows:
a. Isolate the trips by removiat the LONER padile.
b. Isolate the voltage sensing circuita by ramoviag the UPPER paddle.
c. Remove the ralay.
2. Remove the degraded voltage relay an follove:
e. Ieolate the tripe by opening Test Switeh $E$ in the Teat 8witch Group TS 23-1 WV (TS 33-1 WV) and I8 24-1 UV (TS 34-1 (W) directly below the relay.
b. Isolate the voltage sencing circuita by opening Tost Switchea $A, B$. $C$, and $D$ in the Tent Ivitch Group T3 23-1 uv (TS 33-1 WV) or TS 24-1 WV (2s 34-1 UV) directiy below the, relay.
c. Remove the relay.
3. Complete the following on each relay:
a. Verify ralay settinge.
b. Claan the relay.
e. Note anything aboormel.
d. Complete Checklist $A$, ECCS Iue Relay Tent.
4. Inatall the degraded voltage pelaya an follow:
a. Inatall the relay.
b. Conncct the voltage senaing circuite by closing Jest Switehes $A, 1, C$, and $D$ in the Ient switet Croup is 23-1 uv (TI 33-1 UV) or TS 24-1 WV (T3 34-1 WV) directly belov the rolay.
5. 4. G. Comnect the teipa by cloaing Toat 5
Switch Group TS 23-1 WV (TS 33-1 W) or TS 24-1 W (Ts 34-1
(W) directly below the relay.
5. Inatall tho undervoltage relays an follova:
a. Inatall the relay.
b. Connect the voltage amaing circuite by installing the
URPE paddle.
e. Connect the trips by installing the LOWER paddle.
6. (AC) All operatias voltagea and trip times are within the
tolerances listed on Checkliat A.
(Indtial or $N / A$ ).
$\qquad$ .
a. II any of the an found values fall outaide of the Checklist A tolermese, THN notify the Operations Shift Supervisor and subait an out-of-tolerance notification sheat to the Tectanical staff Supervisor.
(Initial or n/A) $\qquad$
1. Notify the Operations Shift Supervisor of test completion and sire him the completed checklist.

## J. Duscussion:

Theae teate are based on nominal bue voltage of 4160 volts and a potential traneformer ratio of 35 ( 4200 volteli20 volts). The -- مcominal voltage at the relay is 118.86 volta.

## W. hritilis refergices:

1. Response to IE Information Notice 84-02, dated Jume 20, 1984.
2. Electrical Diatribution Syaten Functional Inapection, July 1991.
3. S 4 L Calculation 8982-13-19-6 Rev. 2, Second-Leval Ondervoltage Roley Setpoint.
4. Sf L Calculation 8982-17-19-2 Xev. 1, Second-Level Dadervoltage helay setpoint.

Prerequisites Complate:
Inithal/Date

Uait $\qquad$
rCCS Bua Uudervol:age Relay Tent
(Tap aetting is 93)

. Relar	Leversetting1. O Nominal		Contact Cloaur Voltage (U) 12.6 to 87.2 role		Time to Coneset closure 120 to 00   1.22 Ee 2,31 sne	
	punde	IEIT	round	LEL	Found	LET
127-1-23-1(33-1)						
127-2-23-1(33-1)						
227-1-28 (38)						
227-2-28 (38)						


Belng	$\begin{aligned} & \text { Lever } \\ & \text { Sotting } \\ & \text { S. N Nominal. } \end{aligned}$		Contact Cloaur$701 t a g e$ (0V)102.37 to $109.27 \%$		Tlme to contactClosure 120 to ov5.6 to	
	raund	Lrer	pound	2185	FOMnd	L8FT
127-3-23-1						
127-4-23-1						
Relay	$\begin{aligned} & \text { Lever } \\ & \text { sutting } \\ & \text { S.e Nominal. } \end{aligned}$		Contace closure Poltage (UT) 110.77 to 111.177		Time to Contact Closure 120 50 0V 3.6 to 844nee	
	Poun	Wrer	Fomin	12010	FOLEND	2xer
127-3-33-1						
127-4-33-1						



- These relaye must be calibrated at an amblent texperature betveen 70 and $75^{\circ}$ F. utillefng ABE lnatruction Bulletin I.8. 7.4.1.7-7 Jatue D.
2005/137
2W/198


Calculation No. 8982-17-19-2
Revision 004
Attachment: J
Page $\qquad$ of 142

## CBECXIIST A (Continued)

ECCS BUS RELAY TEST
Prerequiaites Complete:
Unit $\qquad$ Initial/Date. 1 ECCS Bua Uodervoltage Relay Ieat (Tap eetting 1a 93)

gelay	$\begin{aligned} & \text { Lever } \\ & \text { Setting } \\ & \text { LeNominal } \end{aligned}$		Contact Closurt Voltage (UV) 72.6 te 87.2 valten		Time to Contact Cloure 120 to OV 1.89 to 2.31 aec	
	cound	LeT	cound	LEET	mound	LPFT
127-1-24-1(34-1)						
127-2-24-1(34-1)						
227-1-22 (30)						
227-1-22 (39)						


Belar	$\begin{aligned} & \text { Lever } \\ & \text { Setting } \\ & \text { se Hioninal } \end{aligned}$		Contact Cloare Voltage (0V) 108.95 to $109.35 \%$		Thae to Contact Clpaur 120 to ov   clopur 120 eo or	
	F010n	LEIT	50ms	UPE	momin	L5\%
127-3-24-1						
127-4-24-1						
kelat	$\begin{gathered} \text { Lev } \\ \text { sett } \\ 50 \mathrm{~N} \end{gathered}$			$\begin{aligned} & \text { l1osure } \\ & \text { (10) } \\ & 10.8 \mathrm{~F} \end{aligned}$	Irme to closure 5.6 to	
-	noind	185	rourin	2xt	Foinm	IRET
127-3-34-1						
122-4-34-1						



- These relaye muat be calibrated at an ambieat temperature batween 70 and $75^{\circ}$ \%, utdifing ABs instruction sulletin 1.B. 7.4.1.7-7 Is ave $D$.
$\qquad$


## CHECKLIST A (Continued)

gecs bus remay test

## Abnormal Findinga and Comments:

$\qquad$
$\qquad$
$\qquad$
$\square$

## Ther Serial Number

$\qquad$
Calibracion Due Date $\qquad$
OAD Representacive $\qquad$

## Voltaeter Sorial Number <br> $\qquad$

Calibration Dua Date
Digital Thermoneter Serial thume:

Calibration Due Dete

```
 1/ -17.18=i
```

Calculation No. 8982-17-19-2


## DRESDEN STATION

## UNITS 2 AND 3

## dEGRADED VOLTAGE CALCULATIONS ASSUMPTION VERIFICATION

## Assumptions - 13, 19

The Containment Cooling Service Water System (CCSW) pump cubicle cooler fans and the Diesel Generator $2 / 3$ starting air compressor need not be considered in determining the minimum allowable $4.16-\mathrm{kV}$ system voltage.

The CCSW pump cubicle cooler fans need not be considered in determining the minimum allowable $4.16-\mathrm{kV}$ system voltage.

## Reference Calculations

8982-13-19-6, Revision 2, and 8982-17-19-2, Revision 1.

## Verification Description

See the attached CECo CHRON 179857 for swing diesel starting air compressor assessment.

The existing CCSW cubicle cooler fan motors are acceptable. The Calculation No. 9215-99-19-1, Rev. 1 (calculation for evaluatic. of 3 H.P.; 460 Volt CCSW motor minimum voltage starting requirements) demonstrates that the existing 460 Volt CCSW cooler fan motors will start during degraded voltage conditions without tripping their protective devices or exceeding their thermal capability limits.

Follow Up Action
Incorporate assumption verification in the calculation.


Revision 004
Attachment: J
Page J 27 of J 42

## Attachment A

## Affects of Degraded Voltage on Non-Safery Equipment

Certain non-safety related equipment is shown in the critical voltage analysis below the NEMA acceptance criteria. These are the $2 / 3$ diesel generator starting air compressor, the 250V battery charger 2 and the 250 V battery charger 2/3.

## Swing Diesel Starting Air Compressor

The diesel generator starting air compressor 2/3A would have 408.6 Volts at the motor terminals at the new second level undervoltage relay setpoint. slightly less than the NEMA required 414 Voits. To assure the NEMA criteria is met for this motor, the relay would have to be set to assure 3827 Volts at Bus 23-1 as compared to the 3784 required to assure operation of the $2 / 3$ diesel generator cooling water pump. The safety related portion of the air start system relies on accumulators of stored air, and would be fully charged prior to starting the diesel generator. The air compressor would have adequate voltage when it would normally be expected to charge the receiver tank. The air compressor may start after the diesel has started due to low receiver pressure; however, as the diesel has already started, recharging the accumulator is not required. Therefore, low voltage at the 2/3A starting air compressor is not a concern. Starting air compressor 2A and $2 B$ have adequate voltage at the new relay setpoint.

## 250 Volt Battery Chargers

The 250 Volt battery chargers are indicated as non-safety related in the Master Equipment List. The batteries were sized based on a loss of offsite power with no credit from the chargers. Unlike induction motors, the battery chargers are rated for 480 Volts nominal. Therefore, to meet the NEMA criteria of $90 \%$ terminal voltage, 432 V is required. Further, the manufacturer of the battery charger, Power Conversion Products, specifies output voltage regulation and output current capability based on an input of $480 V+15,-10 \%$. To assure 432 Volts at the charger terminals, an operationally unacceptable setpoint would be required for the Second Level Undervoltage Relay.

NED has assessed the effect on the charger output at 414 Volts $\mathbf{8 6 . 2 5 \%}$ of 480 Volt rating) and has concluded there would be less than a $4 \%$ reduction in output voltage. This would be sufficient to prevent a discharge of the 250 V battery. The charger maximum current output capability is also reduced; however, with off-site power available the load demand on the DC system would be less than the design basis loading. Therefore the small reduction in charger output is acceptable.


## Attachment B

## Affects of Degraded Voltage on Saferv-Related Equipment

Certain safety related electrical equipment is shown in the degraded voltage analysis with available terminal voltage below the NEMA acceptance criteria. Some of the safety related motors may have lower terminal voltage than vendor recommendations to assure successful starting. An assessment of this condition follows.

## CCSW Cubicie Cololing Fans

The Containment Cooling Service Water System (CCSW) provides lang term decay heat removal. This system has a total of four pumps. CCSW pump $A$ and $B$ are ESS Division I and pumps $C$ and $D$ are Division II. Two of the CCSW pumps, $B$ and $C$, are in vaults to provide protection against local flooding. Each of these two pumps have four cooling fans fed by the respective ESS division power source. See Table 1 below. CCSW Pumps A and $D$ are not in vaults. Therefore, these pumps do not require cooling fans. Only one CCSW pump is required per the FSAR.

Table 1

CCSW Pump	ESS Division	In Vault?	CCSW Cubicle Cooling Fans						
A	Division I	No	None						
B	Division I	Yes	A Fan 1, A Fan 2, B Fan 1						
and B Fan 2				$	$	C	Division II	Yes	C Fan 1, C Fan 2, D Fan 1   and D Fan 2
:---:	:---:	:---:	:---:						
D -	Division II	No	None						

The voltage available to the Division II fans (C and D) is adequate for starting and running these motors at the second level undervoltage relay setpoint issued per calculation 8982-13-19-6 Revision 1. However, setting the relay to assure starting of the Division I fans (A and B) would result in an unacceptably high relay setpoint.

The simultaneous events of flood, LOCA and degraded voltage with off site power available is not considered to be credible. This event is estimated to be on the order of $9.9 \times 10^{-12}$ per year (see $1 / 20 / 92$ C.A. Grier memo). Therefore, the potential low voltage at the Division I cooling fans is not a concern.
$\qquad$

## Diesel Generator Cooling Water Pump Minimum Starting Voltage

The purpose of this assessment is to evaluate the voltage available for starting the Diesel Generator Cooling Water Pumps (DGCWP). The critical voltage calculations used to determine the second level undervoltage relay setpoint have determined that the swing DGCWP has an available terminal voltage of 370.6 Voits under starting conditions. This is $80.6 \%$ of rated. The Unit 2 Division I critical voltage was determined in calculation 8982-13-19-1 Rev. 0 dated 1/8/92 (CHRON \# 179302). Division I bounds Division II as shown by calculation 8982-15-19-3 Rev. 0 dated 1/14/92 (Unit 2 Division II, CHRON \# 179755); this calcultation determined that DGCWP 2 has 372.3 Volts available for starting.

The vendor of the Diesel Generator Cooling Water Pumps (DGCWP), Chempump Division of Crane Company, does not specify a minimum starting voltage requirement. In response to a request by CECo for a minimum starting voitage requirement, the vendor responded that the motor was guaranteed to start and run at $90 \%$ of the 460 Volt rating (or 414 Volts) and may not start if the line voltage dips by more than $15 \%(85 \%$ of rated or 391 Volts). However, the $85 \%$ number was based on engineering judgement, and no actual testing was performed under degraded voltage conditions (under $90 \%$ of rated voltage). The vendor was unable to provide a motor torque-speed curve applicable to this pump. This specific motor is no longer used by Crane, and they no longer have one available for testing.

Crane obtained a standard motor for each of Dresden's DGCWPs. The pump vendor modified each motor to allow for use in a submerged location. To accomplisf this, the vendor machined the rotor to increase air gap and installed a liner in the motor. This liner protects the windings from moisture, thus creating a submersible combination pump/motor in a common enclosure. A water cooling jacket was also provided integral with the housing. Machining the rotor and providing a custom enclosure is standard practice for the vendor. The pumps were supplied to CECO in 1973.

A test of the Unit 3 Diesel Generator Cooling Water pump was performed to obtain the torque - speed characteristic curve by developing an analytical model of the motor. Torque - speed curves would normally be obtained using a dynamometer. Due to the design of the DGCWP, the motor shaft can not be connected to a dynamometer. Dynamometer testing may also result in motor failure. Therefore, this method of testing was impractical for the Dresden DGCWP.
$\qquad$
Calculation No. $\quad$ 8982-17-19-2
Revision 004
Attachment: J
Page 330 of $\sqrt{ } 42$

Alternate analytical methods are available to determine torque - speed characteristics of induction motors. Generally, these methods are not used by manufacturers as potentially destructive dynamometer testing of redundant motors is more economical than the enginerring effort required to develop the analytical model. For the Dresden DGCWP, developing an analytical model of the motor based on test data was the only possible alternative. The test measured the three phase currents and voltage values from the initial inrush current until reaching a steady state value, indicating that the motor had started. Current and potential transformers were installed in the motor circuit to allow the use of a digital fault recorder to obtain the required data. The DGCWP was then started in accordance with normal station operating procedures. The testing accurately monitored the motor and pump as it is installed in the plant with the actual mechanical load applied to the pump impeller (cooling water flow to the Unit 3 diesel generator).

An analytical model of the motor was developed and benchmarked against the test data for validity. This type of model can be used to predict motor behavior under all conditions. This type of motor model accurately represents the motor speed - torque curve, the changing rotor impedance with time and allows assessment of machine capability in response to available voltage. The motor circuit model developed is independent of starting voltage actually present during the test. The minimum starting voltage required to start and accelerate the motor was then calculated from the motor analytical circuit model. The test data, methodology and the torque - speed curve developed are documented in calculation 8982-13-194, Revision 0,-dated 1/6/92.

Two requirements must be met at the minimum acceptable starting voltage. Adequate torque must be provided at reduced voltage and the protective devices must not trip on overcurrent before the inrush drops to the steady state value. The torque - speed curve determined by the testing shows that the motor will successfully start at $70 \%$ of rated voltage. The overload relay will not trip during a degraded voltage start, and the maximum current drawn by the motor is below the trip curve of the breaker.

The motor develops adequate breakdown and pull-up torque at $70 \%$ of rated voltage to assure successful starting. The critical factor in this application, by the test data, is net accelerating torque available. A minimum value of $25 \%$ of load torque must be provided to accelerate the load in a reasonable - time, or about $50 \mathrm{lb} . \mathrm{ft}$. in this application; an accelerating torque of $73.8 \mathrm{lb} .-\mathrm{ft}$. is available at $70 \%$ voltage, providing a
conservative margin in the calculated result. This will accelerate the pump to operating speed in 1.65 seconds.

At locked rotor current, the overload relay will trip in 13 to 21 seconds, assuring that the thermal rating of the motor is not compromised. As the motor will start in less than two seconds, the overload will not trip the motor under starting conditions at $70 \%$ of rated voltage. The maximum current will be drawn when the motor starts under the highest expected voltage, which causes a locked rotor current of 626 Amperes at $110 \%$ of rated voltage. The 200 Amp TFJ breaker will take 27 seconds to trip at this current.

Therefore, at $70 \%$ voltage, the motor has adequate torque to start and no undesired protective trip will occur.

## 125 Volt Battery Chargers

The 125 Volt Battery Chargers are rated 480V, not 460 V as most motors. Therefore, to meet the NEMA criteria of $90 \%$ voltage, 432 V is required at the charger terminals. Further, the manufacturer of the chargers (Power Conversion Products) has a published specification of $130 \mathrm{~V} \pm, 1 \%$ output voltage from no load to 200 Amperes with an input of $480 \mathrm{~V}+15,-10 \%$. To assure 432 Volts to the charger would require an operationally unacceptable setpoint for the Second Level Undervoltage Relay.

NED has assessed the effect on the charger output at 414 Volts $186.25 \%$ of 480 Volt rating! and has concluded there would be less than a $4 \%$ reduction in output voltage. This would be sufficient to prevent a discharge of the 125 Vbattery . The charger maximum current output capability is also reduced; however, with off-site power available the load demand on the DC system would be less than the design basis loading (e.g. fewer breaker and solenoid operations; inverters remain on AC power). Therefore the small reduction in charger output is acceptable. Additionally it should be noted that the batteries were sized based on a loss of off site power with no credit from the battery chargers.
Calculation No. $\frac{8982-17-19-2}{}$
Revision $\frac{004}{}$
Attachment: $\frac{J}{\text { Page } \quad \mathrm{J} 32 \text { of } \mathrm{J} 42}$

## 120 Volt Contactors

Five safety reiated 120 Voit contactors on Dresden Unit 2 do not meet the vendor stipulated minimum voltage requirement of $75 \%$ of the 120 Volt rating at the new second level relay setpoint. These contactors control motor operated valves required for LPCI injection. These valves are:

Reactor Recirculation Pump 2A Discharge Valve, 2-202-5A<br>Reactor Recirculation Pump 2B Discharge Valve, 2-202-5B<br>LPCI Injection Valve 2A, 2-1501-22A<br>LPCI Injection Valve 2B, 2-1501-22B<br>LPCI Full Flow Test Valve 2C, 2-1501-38B

At the new relay setpoint of $3820 \pm 7$ Volts, a minimum critical voltage of 3784 Volts is assured on the 4 kV bus. This critical voltage is based on the minimum acceptable running voltage on all required safety related equipment under the highest auxiliary power system loading condition. The setpoint includes a tolerance for the lower analytical limit of the potential transformer, undervoltage relay and calibration equipment. The relay setpoint was determined in calculation 8982-13-19-6, dated 1-29-92 (CHRON \# 179508). The critical voltage used was based on Unit 2 Division I (calculation 8982-13-19-1 Rev. O dated 1/8/92, CHRON \# 179302). This value of critical voltage bounds the Unit 2 Division II analysis.

The worst case valve, LPCI Injection Valve 1501-22B, has $72.7 \%$ of rated voltage available at the contactor under these conditions. Raising the relay setpoint to meet the conservative vendor voltage requirement these contactors would resuit in an unacceptable relay setpoint. A higher relay setpoint would trip the preferred power source when it is still capable of supplying critical loads. This would challenge the diesel generators unnecessarily. Therefore, the higher relay setpoint is unacceptable, both from an operating perspective and considering overall plant safety.

The five contactors for the valves listed above were replaced during the fall 1991 outage with safety-related, environmentally qualified General Electric (GE) Series 300 contactors. CECo has tested the minimum pickup of a 300 Series contactor. The test data shows that the GE Series 300 contactor minimum pickup is $58 \%$ of rated voltage when new. The GE value for pickup of $75 \%$ is to allow aging over the useful life of the device ( 40 years) and to provide a margin for conservatism.

Artachment B to SADVA.DOC


The minimum expected voltage on the 4 kV bus is 3840 Volts. This is an extreme condition which would only occur at the highest off site power system loading condition with two transmission system contingences and a LOCA on Unit 2. CECo is a summer peaking utility, and the highest off site power system loading condition occurs on the hottest day of the year. Lower loading conditions of both the transmission system and the station auxiliary power system will provide higher available voltage during spring, 1992. This will assure pickup of the contactors under worst case loading conditions.

Based on; 1) the qualified GE Series contactor design which assures $75 \%$ voltage pickup at the end of its 40 year life; 2) the demonstrated $58 \%$ of rated pickup voltage of a new Series 300 contactor through testing; 3) the installation of new Series 300 contactors in all five safety related circuits in question; and 4) the minimum expected voltages during the Spring ' 92 time period, all contactors will properly perform their safety function.

Modifications will be completed by March 31, 1992 to assure that there is adequate voltage for contactor pickup at the new second level relay setpoint.


Calculation No. 8982-17-19-2
Revision 004
Attachment: J
Page $\sqrt{35}$ of $J 42$

## Alfacts of Degraded Volman Elempical Enuimmat

Cortain olectrical equipment is shown in the degraded vortage analysis with available turminal voltage delow the NEMA acceprance criteria．Some of the safety related motors mav have lower terminal vortage than vandor recommendations to assure successtul starting．An assossmamt of this condition follows．

## CCEN Cubicte Coollon Fans

The Containmert Cooling Service Water System（CCSW）provides long term decay heat removal．This system has a total of four pumpe．CCSW pump A and 8 are ESS Dlvision I and oumps C and D are Dlvision II．Two of the CCSW pumps，B and $C$ ，are in vautte to provide proteotion against local flooding．Each of these two pumps have four coollng fans fed by the respective ESS division power source．See Table 1 below．CCSW Purnes a and $D$ are not in vauts．Therotore，these purmpe do nos require cooling fans．Only one CCSW pump is required per the FSAR．

Table 1

ccsw Pumo	ESS Division	In Vautir	CCSW Cubicin Coollng Fans
A	Division 1	No	Nont
B	Dwision！	Yes	A Fan 1，A Fan 2，B Fan 1 and 8 Fan 2
c	Dhision 11	Yes	C Fan 1，C Fan 2， 0 Fan 1 and D Fan 2
0	Division 11	No	None

$-$
The vottage available to the Division I fans（ $A$ and $B$ ）is adequate for starting and running these motors at the second lovel undervortage relay setpoint isaued per calculation 8982－17－19－2 havision 0 ．However，setting the relay to assure starting of the Division II fans（C and D）would resutt in an unsccedtably high relay satpoint．

The simultaneous events of Hood，LOCA and degraded voltage with off site power available is not considered to be credible．This event is astimated to be on the order of $9.9 \times 10^{-12}$ per year（see 1／20／92 C．A．Giler memol． Theretore，the porential low voltage at the Division II cooiling fans is not a concern．
$\qquad$
$\qquad$
$\qquad$ of $\sqrt{42}$

## Dlesel Generaror Cocting Warer Pume Minimum Startine Votreas

The nurnose of this assessment is to evaluate the voltage available for starting the Diesel Generator Cooling Water Pumps (DGCWP). The critical vortage calcutations used to determine the second level undervotrage ralay setpoimt have determined that the swing DGCWP has an available terminal voltage of 342.7 Volts under starting conditions. This is $74 \mathrm{y} \%$ of rated. The Untr 3 Division I crideal vortage was determined in calculation 8982-17-19-1 Rev. 0 datad 1/21/92 (CHRON \$179719). Division I bounds Olvision II as shown by calculation 8982-19-19-1 Rev. 1 dated 2/3/92 (Unit 3 Division II, CHRON * 180263); this calcultation determined thet DGCWP 3 has 349.6 Volts available for starting ( $76 \%$ of rated).

The vandor of the Diesel Generator Cooling Water Pumps (DGCWP), Chempump Division of Crane Company, does not spectiv a minimum starting voltage requirement. In response to a request by CECO for a minimum starting voltage requiremert, the vendor responded that the motor was guaranteed to start and run at $90 \%$ of the 460 Vat rating for 414 Volta) and may not start if the line voltage dips by more than $\mathbf{1 5 \%}$. $88 \%$ of rated or 391 Voltsl. However, the 85\% number was based on engineering judgemant, and no actual testing was performed under degraded voltage concitions (unaps $90 \%$ of rated voltage). The vendor was unable to provide a motor torque-spead curve applicable to this pump. This speaific motor la no longer used by Crane, and they no longer have one avaliable for testing.

Crane obtained a standard motor for each of Drasden's DGCWPs. The pump vendor modified each motor to allow for use in a submerged location. To aceomplish this, the vendor mechined the rotor to increase atr gap and installed a liner in the motor. This liner protects the windings from moisture. thus creating a submerable combination pump/motor in a common enclosure. A water cooling jecket was also provided irtagral with the housing. Mactining the rotor and providing a custom enclosure is standard practice for the vandor. The pumps were supplied to CECO in 1973.

A test of the Unit 3 Diesel Generator Cooling Water pump was pertormed to obtain the torque - speed characteristic curve by devetoping an analytical model of the motor. Torque - speed curves would normally be obrained using a dynamometer. Due to the design of the DGCWP, the moror shath can not be connected to a dynamometer. Dynamometer testing may also result in motor fallure. Therefors, this method of testing was impractical for the Drescien DGCWP.
Calculation No. $\quad 8982-17-19-2$
Revision $\frac{004}{\text { Attachment: } \frac{J}{J 42}}$
Page of

Alternate analytical methods are availeble to determine torque - speed charactaristics of induction motors. Generaty, inese methods are not used by manufacturers as potentially destrucuive dynamometer iasting of redundant motors is more economical than the enginarring effort required to develop the analytical model. For the Dreaden DGCWP, developing an enalytical model of the motor based on test dats was the only possibla arernative. The test measured the three phase curtemts and voltage values from the initial innush curremt untl reaching a stasdy state value, indicating that the motor had started. Curremt and potental transformars were installed in the motor circuit to allow the use of a digital faut recorder to obtain the required data. The DGCWP was then started in accordance with normal station operating procedures. The testing accuratily montored the motor and pump as it is installed in the plam whth the actual mocrantica load applied to the pump impeller (cooling water flow to the Unit 3 diesa generatorl.

An analytical model of the motor was doveloped and benchmarked acrinat the teat data for validity. This type of model can be used to predict motor behavior under all conditions. This type af motor model securately represenss the motor speed - sorque curve, the changing rowor impedance with ume and atlows assessmam of mactine capabillity in response to available voltage. The motor circuit model developed is independert of starting voitage actually presamt during the tast. The minimum starting voltage required to start and accelerate the motor was then calculated from the moror anglytical circuit tordel. The reat data, methodotoey and the rorque - speed curve developed are documented in calculation 8982-13-194. Reviation 0 , dated $1 / 0 / 82$.

Two requirements must be mat at the minimum acceptable starting voltage. Adequert torque must be provided at reduced voltage anct the protective davices must not trip ea overcumat betore the inrush droos to the steady state value. The roroue-speed curve determined by the resting showe that the motor will succasatully stant at $76 \%$ of rated voltage. The overiosed relay will not trip during a degraded voltage start, and the maximum current drawn by the motor is below the trip curve of the breaker.

The motor develops adequate breakdown and pull-up torque at $70 \%$ of rated'vorage to assure successtul staring. The critical factor in this application, by the test data, is net accalerating torque available. A minimum value of $25 \%$ of load torque must be provided to accelerate the load in a reasomade imm, or about $50 \mathrm{lb} . \mathrm{ot}$. in this application; an accelerating torque of $73.8 \mathrm{lb} . \mathrm{ft}$. is available at $70 \%$ voltage. providing a

Ammenmem U3SADVA.DOC
proe 3 of 6
ORSDN EDSMU3ATT.DOC 2119n2 9:15 w

conservative margin in the calculated resuh. This will accalerate the pump to operating spoed in 1.65 seconds.

At locked rotor current, the overtoad relay will trip in 13 to 21 seconds. assuring that the thermal rating of the motor is not compromised. As the motor will star in less than two seconds, the overioad will not trip the moror under starting conditions at 70\% of rated voltage. The maximum curremt will be drawn when the motor strast under the highast expected voltage, which causes a locked rotor currem of 828 Amparses at $110 \%$ of rated voltage. The 200 Amp TFJ breaker will take 27 seconds to trip at this curfent.

Therefors, at 70\% votrage, mow has adequate torque to start and no undesired protective trip will oceur.

## 125 and 250 Yoh Bamac Chnerm

The Eettery Chargers are rated 480V, not 460V as most motors. Therafore, to meer the NEMA criteria of $90 \%$ voltage, 432 V is required at the charger terminals. Further, the manutacturer of the chargers (Power Corveraion Products) has a published spectication of $130 \mathrm{~V} \pm 1 \%$ output vottage from no load to 200 Amperes with an input of $480 \mathrm{~V}+15,-10 \%$. To assure 432 Volts to the charger would require an operationally unacceprable setpoint for the Second Level Undervaltage Relay.

The worst case batrary chargar in 125 V Bertery Charger 3 which has 410.9 Volts ataine terminals during summer LOCA steady state conditions. All other chargers have greater than 420 V available.

NED has assessed the effect on the charger output at 490.9 Volts $185.6 \%$ of 480 Volt rating) and has concluded thare would be leas than a $6 \%$ reduction in output voltape. This would be sufficient to prevert a discnarga of the batteries. The charger maximum currem output capability is also reduced; however, with off-site power available the load demand on the DC system would be less than the design basis loading le.g. fower braaker and solenoid operations; inverters remain on AC powert. Theretore the small reduction in enarger output is acesprable. Additionally it should be noted that the barterise were sized based on a loss of off site power with no credit from the battery chargers.

## 120 Yolt Contrators

Five safaty related 120 Vot conractors on Dresden Unit 3 do not meet the vendor stipulated minimum yontage requirement of $75 \%$ of the 120 Vort rating at the new second leval relay satpoint. These contactors control motor operated valves required for LPCI injection. These valves are:

Reactor Recirculation Pump 3A Discharge Valve. 3-202-5A<br>Reactor Recircuiation Pump 38 Discharge Valve, 3-202-88<br>LPCI Infaction Valve 3A, 3-1501-22A<br>LPCI Injection Vatve 38, 3-1801-228<br>LPCI Full Flow Test Vatve 3A, 3-1801-38A

At the new retsy setpoint of $3870 \pm 7$ Volts, a minimum critical voltage of 3832 Votss is assured on the 4 kV bus. This criteal voltage is based on the minimum accaptable running votrage on all required satety related equipment under the highest auxillary power syatem loading condition. The sompolm inctudes a morance for the lower analyacal limit of the perential tranaformer, undervottage relay and callbration equipmant. The relay sotpoim was determined in calculation 8982-17-19-2, dated 12-6-82. The critical voltage used was based on Unit 3 Division 1 (calculation 8982-17-181 Rev. 0 dated 1/21/92. CHRON 179719). This value of critical voltage bounds the Unit 3 Division II analysis (Calculation 8982-19-19-1 Rev. 1 dated 2/3/92. CHRON \$18028E)..

The worst case valve, LPCI Injection Valve 1301-22A, has 68.47\% of rated votrage "available at the contaetor under these conditions. Raising' the relay setpoint to meat the conservative vandor voltage requirament these contactors would reaut in an unacceprable relay satpoint. A higher relay satpoint would trip the preferred power source when it is exill capable of supplying critical losds. This would challange the diesel generators unnecessartly. Tharsfore, the highar reiay setpoint is unacceptable, both from an operating perspective and considaring overall plam safety.

The five contactors for the valves llated above were reptaced during the tall 1991 outage with satety-related, environmentally qualified General Electrie (GE) Saries 300 contactors. CECo has testad the minimum pickup of a 300 Series contactor. The test date shows that the GE Series 300 contactor minimum pickup is $58 \%$ of rated voltage when new. The GE value for pickup of $75 \%$ is to allow aging over the usoful life of the device ( 40 years) and to provide a margin for conservatiam.

## Attermmert U3SAOVA.DOC

Puge 5 of 6
DREON EDSFHUSATT.DOC 2f1892 3:18 AM
Calculation No. $\quad 8982-17-19-2$
Revision $\frac{004}{}$
Attachment: $\frac{J}{\text { Page } J 40 \text { of } J 42}$

The minimum expected voitage on the 4 kV bus is 3924 Vohs (M.L. Reed, Evaluarion of Drescan Station Unit 2 \& 3 Dagraded Valtage Condition, dated 2/3/92. CHRON 179942). This is an extreme condition which would onty oceur at the nigneat off site power system loacing concition with two iransmission syatam contingences and a LOCA on Untt 3. CECO is a summer peaking utility, and the highest off site power syatem loading condition occurs on the hotrest day of this year. Lower loading conditions of both the tranamisaion system and the station auxiliary power system will provide higher avallable votrage during spring, 1992. This will assure pickup of the contactors under worat case loading conditions.

Besed on; 1) the quaified GE Series contactor design which assures 78\% voltage pickup at the end of its 40 year life; 2) the demonstrated $58 \%$ of rated pickup voltage of a naw.Series 300 contactor through testing; 38 the instalation of new Series 300 contactors in all five safaty ratated circuits in question; and 4) the minimum expectsed volsages during the Spring '92 thme pariod, all contactors will property perform their safety function.

Modifications will be complated by March 31. 1992 to sseure that there is adequare voltage for contactor plekup st the new second leval relay setpoint.

Atmehment U3SAOVA.DOC
Page 6 of 8
OHSON EDSANU3ATT.DOC 2f18 2 3 3:18 AM

$$
15: 14-17 F
$$

$\qquad$ of J 42

## DRESDEN STATION

## UNITS 2 AND 3

$$
=0
$$

## DEGRADED VOLTAGE CALCULATIONS ASSUMPTION VERIFICATION


#### Abstract

Assumption - 14 "The existing location of Panel 2252-83, which will contain one of the undervoltage relays is too close to the core spray pipe to be within the relays acceptable radiation level. Therefore, it is assumed that the panel has been relocated as planned such that the radiation level experienced by the relay is acceptable."


## Reference Calculation

8982-13-19-6, Revision 2

## Verification Description

Panel 2252-83 has been relocated.
Reference ECN 12-00470E T To itect. 'his?.
W.R. No.: D-97548

## Follow UD Action

Incorporate assumption verification in calculation.
$\square$

## ATTACHMENT K

RSO's for $\mathbf{2 n d}^{\text {nd }}$ LvI UV Relays \& E:Mail from J. Kovach

Calculation No. 8982-17-19-2
Revision 004
Attachment: K
Page K1 of K4

$\qquad$
$\qquad$ K2 of $\qquad$
-

RELAY SETTING ORDER
C.EICO. so-4tion 5. 13
from $Q_{\text {sta. elect. }}$On $\qquad$ DIV. ENG.


- DESIGNATIONS NOT COVERED ABOVE ON EEL OW, SUCH AS LINE NO.. NEW ON OLD SETTING, ETC.

301: John.G.Kovacheucm.com at nxmime
e: $7 / 14 / 00 \quad 10: 20 \mathrm{AM}$
*'M: Normal
Requeated
|craig tobias at SNLPOBIA
Thomas.J.Menoencm.com at nxmime
jject: Bus 33-1 Degraded Voltage Relay Rso
aig, per your regest, this is to document that the requirement to adjust e dropout/pickup ratio greater than or equal to 0.995 also applies to the bject relay. RSO's for Bus 23-1, 24-1, and 34-1 already reflect this quirement. Bus 33-1 RSO has not been revised since 1994. The noted opout/pickup ratio will be reflected in the next revision of the Rso that .Il be required to implement the new setpoint changes.
egards,
ohn G. Kovach
resden $\mathrm{X}-3645$
;/I\&C Design Engineering

```
**
*
This E-mail and any of its attachments may contain Unicom proprietary
information, which ia privileged, confidential, or subject to copyright
belanging to the Unicom family of Companies. This E-mail is intended
 Y for the use of the individual or entity to which it is addressed. If
 ~u are not the intended recipient of this E-mail, you are hereby notified
 lat any dissemination, distribution, copying, or action taken in relation
Co the contents of and attachments to this E-mail ia strictly prohibited
and may be unlawful. If you have received this E-mail in error, please.
notify the sender immediately and permanently delete the original and
any copy of this E-mail and any printout. Thank You,
**
```

* 


## ATTACHMENT L

DOC ID 0006191944

[ X ]Safety-Related Design Information Transmittal   [ ]Non-Safety-Related Dresden Station   [ ]Augmented Quality Unit(s): $\mathbf{2}$ and $\mathbf{3}$	$\begin{aligned} & \text { DOC ID_0006191944 } \\ & \text { Revision - } 05 \\ & \text { Page_1_of_3_ } \end{aligned}$
To: Mr. William A. Barasa	
Organization: $\quad$ Sargent \& Lundy ${ }^{\text {LL }}$	
Address/Location: $\quad 55$ E. Monroe, Chicago, IL 60603-5780	
Subject: Improved Technical Specification (TTS) Analytical Limits	
Status of Information: $\square$ Verified $\square$ Unverified   For Unverified DITs, include the Method and Schedule of Verification in the "Description of Information"   List Action Tracking \# assigned for verification of "Unverified" information: $\qquad$	
Description of Information: The attached table identifies the Analytical Limits, Allowable Values and References for the Timer, Time Delay Relay, Limit Switch, Displacer Switch, and Protective Relay functions identified in the Technical Specifications for use in the preparation of calculations to support the ITS submittal. For many of these functions, the actual Analytical Limits are unknown or unavailable (* Actual AL available). As such, "The Analytical Limits (AL) for these functions and devices shall be conservatively set equal to the current Technical Specification LCO values". This statement shall also be included in the Methodology section of each calculation prepared. Rev. 2 change 4160V ESS Bus Undervoltage (Degraded Voltage) value to 3820 volts per Calc. \# 9198-18-19-1 Rev.3, 9198-18-19-2 Rev.3, 9198-18-19-3 Rev. 3 \& 9198-18-19-4 Rev.3. Rev. 3 of this DIT changes 4160V ESS Time Delay (No LOCA) Setpoint and Tolerance per page 3. Rev. 4 of this DIT changes device type and calibration frequency for Condensate Storage Tank Level. Rev. 5 of this DIT changes the calibration frequency of calc.\#8982-13-19-6 (DCR\# 990552) and 8982-17-19-2 (DCR\# 990560) due to not having valid site specific and vendor data.	
Purpose of Issuance: This Design Information Transmittal supersedes Revision 03 dated 7/05/00 in its entirety. For use in determining Allowable Values for the ITS calculations submittal.	
Limitations: None	
References (Source of Information):Curremt Technical Specification/DCR $\$ 990552$ \& 990560	
Prepared by: Sujal J. Patel / $\int_{\text {Primad }} 5$	Date: 9/5/00
Reviewed by: Dale R. Eaman/ Pal Elaman	Date: 9-6-00
Approved by:	Date: 9-6-an

Distribution: Doc ID File, R. Peak, DG Central File, D. Eaman, T. Thorsell, T.Loch, D. Ugorcak, Thit form has been reviewod ngtinat the requiraments of CC-AA-310, Rev. 0 and Site Engineering Policy Statemem No. 6
Calculation No. $\quad 8982-17-19-2$
Revision 004
Attachment: $\frac{L}{L}$
Page $L 2$ of $L 4$

Station	Function	ITS Table	ITS Line Item	Current Tech. Specification LCO Value	Device Type	Cal Freg
Dresden	MS Isolation Vaive Closure	3.3.1.1-1	5	$\leq 10 \%$ closed	Limit Switch	24M
Dresden 1	Turbine Stop Valve Closure	3.3.1.1-1	8	$\leq 10 \%$ closed	Limit Switch	24M
Dresden P	Rx Vsi Water Level Low Low Time Delay	3.3.4.1	SR 3.3.4.1.4a	28 seconds and $\leq 10$ seconds	Time Delay Relay	24M
Dresden	CS CS Pump Start Time Delay Relay	3.3.5.1-1	18	$\leq 14$ seconds (Note 1)	Time Dolay Relay	24M
Dresden	LPCI Pump Start Time Delay Relay	3.3.5.1-1	2e	$\leq 9$ seconds (Note 1)	Time Delay Relay	24M
Dresden	LPCI Recirc Pump dP Time Delay Relay	3.3.5.1-1	21	Deleted. See DRE00-0035 for now values.	Time Delay Relay	24M
Dresden	LPCI Rx Vsi Dome Pressure Time Delay Relay	3.3.5.1-1	$2 i$	Deleted. See DRE00-0035 for new values.	Time Delay Relay	24M
Dresden	LPCI Recirc Riser dP Time Delay Relay	3.3.5.1-1	2k	Deleted. See DRE00-0035 for new values.	Time Delay Relay	24M
Dresden	HPCI Condensate Storage Tank Level Low	3.3.5.1-1	3d	10.8' for A CST and 7.25' for B CST*	Mech. Level Switch	24M
Drasden	HPCI Suppression Pool Water Level High	3.3.5.1-1	30	$\leq 15$ feet-81/4 inches **	Mech. Displacer Switch	24M
Dresden	ADSA Intiation Timer	3.3.5.1-1	4 c	$\leq 120$ seconds	Timer	24M
Dresden	ADSA Low Low Water Level Actuation Timer	3.3.5.1-1	41	$\leq 10$ minutes	Timer	24M
Dresden	ADSB Initiation Timer	3.3.5.1-1	5c.	$\leq 120$ seconds	Timer	24M
Dresden	ADSB Low Low Water Level Actuation Timer	3.3.5.1-1	$5{ }^{\text {f }}$	$\leq 10$ minutes	Timer	24M
Drasden	HPCI Steam Line Flow Timer	3.3.6.1-1	3b	23 seconds and $\leq 9$ seconds	Time Delay Relay	92D
Dresden	Low Set RV Reactuation Time Delay	3.3.6.3-1	1 b	28.5 seconds and $\leq 14.5 \mathrm{sec}$.(Note 1)	Time Delay Relay	24M
Dresden	4160V ESS Bus Undervoltage (Loss of Voltage)	3.3.8.1-1	1	$\geq 2784$ volits and $\leq 3076$ volts	Protectivo Relay	24M
Dresden	4160V ESS Bus Undervoltage Time Delay	3.3.8.1-1	2 a	$\geq 5.6$ seconds and $\leq 8.4 \mathrm{sec}$.	Time Delay Relay	24M
Dresden	4160V ESS Bus Undervoltage (Degraded Voltage)	3.3.8.1-1	2a	23820 volts (Note 3)	Protective Relay	Note 4
Dresden	4160V ESS Time Delay (No LOCA)	3.3.8.1-1	2b	$\geq 270$ seconds and $\leq 330 \mathrm{sec}$ (See page 3)	Time Delay Relay	24M
Dresden	RPS Elec. Power Monltoring - Overvoltage Trip	3.3.8.2	SR 3.3.8.2.2a	$\leq 129.6$ volts	Protective Relay	24M
Dresden	RPS Elec. Power Monitoring - Undervoltage Trip	3.3.8.2	SR 3.3.8.2.2b	$\geq 105.3$ volts	Protective Relay	24M
Dresden	RPS Elec. Power Monitoring - Underfrequency Trip	3.3.8.2	SR 3.3.8.2.2c	255.4 Hz	Protective Relay	24M
Dresden	1 RPS Elec. Power Monitoring-Overvoltage Time Delay	3.3.8.2	SR 3.3.8.2.2a	$\leq 4$ eeconds (Note 2)	Time Delay Relay	24M
Dresdon	RPS Elec. Power Monitoring-Undervoitage Time Delay	3.3.8.2	SR 3.3.8.2.2b	$\leq 4$ seconds (Note 2)	Time Delay Relay	24M
Dresden	RPS Elec. Power Monitoring-Underfrequency Time	3.3.8.2	SR 3.3.8.2.2c	$\leq 4$ seconds (Note 2)	Time Delay Relay	24M

* Actual AL Number (Refer to NDIT SEC-DR-00-018)
* Actual AL Number (Refer to DRE98-0030)

Note 3: Calc. \# 9198-18-19-1 Rev.3, 8198-18-19-2
Rev.3, 8198-18-19-3 Rev. 3 \& 9198-18-19-4 Rev. 3
Note 1: Current Specified Value
Note 2: Allowable Value per DOC ID \# 0006046402
Note 4: Due to a lack of plant spectic date and to be consistent with Quad and LaSalle, a calibration frequency of 18M is selected. See Calc. $\begin{gathered}\text { *8982-13-10-6 (DCR*990552) \& 8982-17-19-2 (DCR**800560). }\end{gathered}$

## DOC ID\# 0006191944

Rev. \#. 5
Subject: $\quad$ Second Level Degraded Voltage 5-Minute Time Delay Basis for Setpoint and Tolerance

A reviewed of the UFSAR and historical documentation was performed to determine if a basis exists for the current Time Delay setting of 5 -Minutes $+/-15$ Seconds. The following description is provided in UFSAR section 8.3.1.7:
'The 7 -second time delay prevents circuit initiation due to grid disturbances and motor starting transients, whereas the 5 -minute time allows the operator to attempt restoration* of normal bus voltage. The 5 -minute timer is bypassed on high drywall pressure / lowlow reactor water level."

The NRC Staff SER of May 19, 1982 states:
"The five-minute time delay is of sufficient duration to prevent spurious operation of the second level loss of voltage relays during short bus voltage disturbances that may result from starting large motors or short term grid disturbances. Additional, this time delay will allow operator action to attempt restoration of grid voltage by means available to him."

This subject was also discussed with several individuals involved with the early-degraded voltage issues. Based on these discussions and the documentation review conducted, it is concluded that there is no analytical basis for the establishment of the specific time delay of 5 -minutes with a tolerance of $+/-15$ seconds. It is therefore reasonable to accept an increase in thee setpoint tolerance (ie., $+/ \mathbf{3 0}$ seconds) as a result of calculated drift errors.


$\qquad$ of $\qquad$

## ATTACHMENT M

## Telecon Between J. Kovach (ComEd) and C. Tobias (S\&L)

```
Date: 4/20/00 3:13 PM
Sender: John.G.Kovach@ucm.com
To: craig tobias
Priority: Normal
Receipl requested
Subject:FW: Telecon Documenting RSOs
Craig, I concur with the indicated RSO's as being current and
the latest on
file for the indicated services. Please note that the
completion date (op
authorization) for both Bus 23-1 and 24-1 Degraded Voltage
RSO's is
08/23/96.
Regards, John
> -----Original Message-----
> From: craig_tobiasemail.sargentlundy.com
> [SMTP:craig_tobiasemail.sargentlundy.com]
Sent: Thursday, April 20, 2000 9:15 AM
To: john.g.kovacheucim.com
Subject: Telecon Documenting RSOs
John,
As we spoke on the phone, I am creating an email message to
document our
phone
Call on 1/18/2000. The topic discussed was the confirmation
that the
relay
setting orders (RSO) that I obtained at Dresden.were the most
recent relay
setting orders.
Please confirm the relay setting orders that I obtained
from Dresden
are the
most recent relay setting orders. The RSOs are identified
below:
```



```
 Loss of Voltage Relays RSOs
 Bus 23-1 Issued 2/11/86 Completed 3/1/86
 Bus 24-1 Issued 2/11/86 Completed 3/1/86
 Bus 33-1. Issued 2/11/86 Completed 3/1/86
 Bus 34-1 Issued 2/11/86 Completed 3/1/86
 Degraded Voltage Relay RSOs
 Bus 23-1 Issued 6/27/96
 Bus 24-1 Issued 7/11/96
 Bus 33-1 Issued 3/16/94
 Completed 4/28/94
 Bus 34-1 Issued 10/31/96 Completed 11/8/96
 Please review this information and verify that it is correct.
If you
agree with
> the information, please reply to the message and make a
statement to that
> effect. This document will then serve as telecon for the
calculations
```

Revision 004
Attachment: $\square$ M
Page M2 of M3

```
being
performed.
Thank you for your time and support.
Yours truly,
Craig Tobias
Sargent & Lundy, LLC
312-269-6577
```

```
* + + + + * + + * + + * + * + + *
*
This E-mail and any of its attachments may contain Unicom
proprietary
information, which is privileged, confidential, or subject to
copyright
belonging to the Unicom family of Companies. This E-mail is
intended
solely for the use of the individual or entity to which it is
addressed. If
you are not the intended recipient of this E-mail; you are
hereby notified
that any dissemination, distribution, copying, or action taken
in relation
to the contents of and attachments to this E-mail is strictly
prohibited
and may be unlawful. If you have received this E-mail in
error, please
notify the sender immediately and permanently delete the
original and
any copy of this E-mall and any printout. Thank You.
***)
* t***************
*
```

Calculation No.

## ATTACHMENT N

## DIT BB-EPED-0178



This information is approved for use and requires no further verification.
IDENTIFICATION OF THE SPECIPIC DESIGN INFORMATION TRANSMITTED AND PURPOSE

The following information is for use in the preparation of the Degraded Voltage Relay. Accuracy calculation:

Switchgear Room Envirommental Coiiditions
$\begin{array}{lll}\text { - Minimum Temp. } & =65^{\circ} F=S . \\ \text { - Maximum Temp. } & =108^{\circ} \mathrm{F}=42.22^{\circ} \\ \text { - Relative Humidity } & & =8 \text { to } 70 \% \\ \text { - Radiation exposure } & & =510^{4} \text { rads } \\ \text { - Internal Switchgear Temp. Rise } & =55^{\circ} \mathrm{F}\end{array}$
Potential Transformer Data

- Westinghouse 4200-120 v; Model 9146046GO2
- Accuracy $=0.3 \mathrm{~W}, \mathrm{X}, \mathrm{Y}$ and 1.2 Z


## References

1. UFSAR Section
a) 9.4 .5 .4 .2
b) 3.11 (Table 3.11-2)
2. Westinghouse Instruction Book, Volume 3A (Dwg. EN018-6A)
3. Specification F/L-2737-01, Amd. 1, dated 3-3-78
4. Byron Station Walkdown Data, dated 5-11-92 (copy attached)

JURCE OF INFORMATION


Calculation No. $\frac{8982-17-19-2}{004}$
Revision $\frac{\mathrm{N}}{\text { Attachment: } \frac{\mathrm{N}}{\mathrm{N}}}$
Page of N 2

DATA CALGETED USING INSTR BY BY
'i -UKE" $8024 B$ MULTI METER W/FLUKE BOT-150 TEMP.PRCL:
OUTSIDE AIR TEMP (NEAR UNIT 1 TRACKWAY) $79.8^{\circ}$ AT $1: 25$

BUS		
141	$89.3^{\circ}$	OUTSIDE SUR SUR CUB
142	$85.5^{\circ}$	$86.3^{\circ}$
241	$88.4^{\circ}$	$84.2^{\circ}$
242	$89.9^{\circ}$	$87.5^{\circ}$
		$89.2^{\circ}$

* With door closed to allow temperature to stabilize, then TOR WAS OPENED \& TEMPERATURE READ IMMEDIATELY. TEMPERATURE TAKEN INSIDE CUBICLE WHICH CONTAINS lITE DEGRADED VOLTAGE RELAY.
NOTE: BOTH UNITS OPERATING AND VENTILATION SYSTEMS IN ALL SWGR BUS ROOMS OPERATING. THE TEMPERATURE OUTSIDE THE CUBICLE WAS measured near the supply air duct to ENSURE TI COOLEST TEMPERATURE RESITING IN THE GREATEST TEMPERATURE DIFFERENTIAL) WAS RECORDED.
prepared:
VERIFIED:

$$
\begin{aligned}
& 5-11.92 \\
& 5-11-92
\end{aligned}
$$

$\qquad$
Attachment: $\qquad$
Page $\qquad$ of $\qquad$

## ATTACHMENT 4

Procedure MA-DR-771-402, "Unit 2 - 4 kV Tech Spec Undervoltage and Degraded Voltage Relay Routines," Revision 03

# UNIT 2-4 KV TECH SPEC UNDERVOLTAGE AND DEGRADED VOLTAGE RELAY ROUTINES 

## 1. PURPOSE

1.1. This procedure provides the necessary administrative controls to perform testing of Dresden Unit 24 KV -Tech Spec Undervoltage and Degraded Voltage protective relays. This procedure also provides the guidance for the isolation, calibration, functional test, and restoration of these protective relays.
2. MATERIAL AND SPECIAL EQUIPMENT
2.1. Material - None
2.2. Special Equipment
2.2.1. Voltage Test Source
2.2.2. 4 each General Electric Test Paddles
2.2.3. Certified test equipment as required to perform quality measurements.
2.2.4. Fluke 45
2.2.5. Calibrated Thermometer

## 3. PRECAUTIONS, LIMITATIONS, AND PREREQUISITES

3.1. Precautions
3.1.1. OBSERVE personal safety precautions and treat all equipment as potentially live.
3.1.2. Foreign Material Exclusion (FME) Notice - Throughout the procedure care shall be taken to prevent the entry of Foreign Material into the protective relays and relay cases.
3.2. Limitations
3.2.1. NOTIFY the appropriate Operating personnel if any inadvertent operations occur during the performance of this procedure. If any inadvertent operations occur, STOP and PLACE equipment in a safe condition until the station and NOAD management makes a complete evaluation.
3.2.2. NOTIFY Unit Operating Engineer or Shift Manager of any discrepancies noted during this test.
3.2.3. GENERATE a Condition Report (CR) if any problem(s) are found.
3.2.4. DOCUMENT Temporary Alterations, Jumpers, Lifted Leads (LL), and other applicable items in accordance with appropriate Station Procedures.
3.2.5. INFORM the Unit Operator of any alarms they will receive during functional testing.
3.2.6. MARK N/A the steps in this procedure not required to be performed.

### 3.3. Prerequisites

3.3.1. Use controlled copies of schematic drawings and relay/metering diagrams to determine the function(s) of relay(s) to be tested in the associated circuit.
3.3.2. Determine if any isolating switches external to the relay package under test need to be opened to preclude unwanted operation of, or interference with equipment external to the relay package under test.
3.3.3. SIGN into work package.
3.3.4. VERIFY that test switches, panels, and relays are labeled correctly and agree with the appropriate attachment prior to the performance of any relay inspection, calibration, sensing circuit test, or trip checks.
3.3.5. PERFORM protective relay calibration of the relays to be tested using MA-AA-772-700 Series "Calibration of Protective Relays" and the applicable relay data sheets.
3.3.6. Attachments 1 and 2 may be performed with the Bus energized or de-energized. Attachments 3 and 4 are to be performed with the Bus energized.
4. MAIN BODY
4.1. Control Isolation
4.1.1. LIST any additional test switches not identified on the attachment that will be manipulated during the procedure, on a station approved temporary alteration sheet.
4.1.2. LIST all test switches that need to be isolated during the performance of any relay inspection, calibration, or trip checks to prevent any unwanted operations.
4.1.3. LIST all test switches that will be manipulated during the performance of any relay inspection, calibration, or trip checks.
4.1.4. LIST all test switches that are not identified on the station approve temporary alteration sheet that would be manipulated during the performance of any relay inspection, calibration, or trip checks.
4.2. $\quad$ Functional Testing

Acceptance Criteria: Protective relay functional testing is acceptable if relays and control devices, including all diodes in the trip circuit, perform and function per control schematic.
4.2.1. INFORM Operations/Control Room of any alarms they will receive during the functional testing.
4.2.2. Functionally $\mathbf{C H E C K}$ the control functions of the schematic.

## 5. RETURN TO NORMAL

5.1. The test switches are restored and equipment is released back to service.
5.2. End of Procedure
5.2.1. NOTIFY Operations shift personnel that the relay routine is complete.
5.3. Evaluation
5.3.1. INITIAL and DATE as each attachment is completed.
6. REFERENCES
6.1 Commitments - None

### 6.2. Documents

6.2.1. Controlled Current and Potential Schematic
6.2.2. Controlled Tripping Schematic
6.2.3. MA-AA-772-700 Series "Protective Relay Calibration"
6.2.4. Company Instruction No. 36-0, Periodic Protective Relay Tests.
6.2.5. Generation Station Safety Rule Book
6.2.6. AD-AA-106 Corrective Action Program (CAP) Process Procedure
6.2.7. Tech Spec 3.3.8.1.1

## 7. ATTACHMENTS

The following is a list of relay routine attachments contained within this procedure and the completed attachments will be part of the completed work package.
7.1. Attachment 1 - 4 KV Bus 23-1 Bus Undervoltage Relays.
7.2. Attachment 2 - 4 KV Bus 24-1 Bus Undervoltage Relays.
7.3. Attachment 3-4 KV Bus 23-1 Degraded Voltage Relays.
7.4. Attachment 4-4 KV Bus 24-1 Degraded Voltage Relays.

## ATTACHMENT 1

Relay Routine for 4 KV Bus 23-1 Undervoltage Relays
Page 1 of 11

1. References
1.1. 12E-2345 Sh. 3- Schematic Diagram $4160 V$ Bus 23-1, 4 kv Swgr 40 Feed Breaker.
1.2. $12 \mathrm{E}-2655 B$ - Wiring Diagram $4160 V$ Swgr Bus $23-1$ Cubicles $9,10,11,12,13, \& 14$.
1.3. 12E-2655G-4160V Swgr Bus 23-1 Cubicle 13 Internal Schematic and Device Location Diagram.
2. Control Isolation

CAUTION: ISOLATE 4 KV Bus 23-1 Undervoltage trips BEFORE removing Undervoltage relays for calibration:

NOTE: If 4 KV Bus 23-1 is de-energized, then Alarm 2041, Window 29 " 4 KV BUSES 23-1 \& 24-1 VOLT LO" on Panel 902-8 will clear in the Control Room.
2.1 NOTIFY Operating that Isolating the following 3 test switches in the Isolation step of this UV surveillance will inhibit LPCI System 1 and Core Spray System 1 from starting during the performance of this surveillance.

TS 127B23-1X "A" INTLK LPCI SYS 1
TS 127B23-1X "I" INTLK CORE SPRAY SYS 1
TS 159SD2/3 "G" INTLK LPCI SYS 1

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

Exelun.

\author{

# Revision 03 <br> <br> Level 1 - Continuous Use 

}

## ATTACHMENT 1 <br> Relay Routine for 4 KV Bus 23-1 Undervoltage Relays Page 2 of 11

2.2. OPEN the following test switches at Bus 23-1, Cubicle 13:

Print Number	Test Switch	Test Switch Label	CV/ Date	WV / Date
12E-2345 Sh. 3	TS 127B23-1X "A"	INTLK LPCI SYS 1		
12E-2345 Sh. 3	TS 127B23-1X "B"	TRIP BUS 23-1 FROM BUS 33-1		
12E-2345 Sh. 3	TS 127B23-1X "C"	TRIP BKR 152-2331		
12E-2345 Sh. 3	TS 127B23-1X "D"	TRIP BKR 152-2330		
12E-2345 Sh. 3	TS 127B23-1X "E"	TRIP BKR CUB 8		
12E-2345 Sh. 3	TS 127B23-1X "F"	TRIP BKR 152-2326		
12E-2345 Sh. 3	TS 127B23-1X "G"	TRIP BKR 152-2325		
12E-2345 Sh. 3	TS 127B23-1X "H"	TRIP BKR 152-2323		
12E-2345 Sh. 3	TS 127B23-1X "I"	INTLK CORE SPRAY SYS 1		
12E-2345 Sh. 3	TS 127B23-1X "J"	TRIP BKR 152-2321		
12E-2345 Sh. 3	TS 159SD2/3 "A"	TRIP BUS 23-1 FEED BKR		
12E-2345 Sh. 3	TS 159SD2/3 "B"	ALARM BUS 23-1 \& 24-1 VOLTS LO PNL 902-8 W29.		
12E-2345 Sh. 3	TS 159SD2/3 "F"	D/G 2/3 START RELAY ASR 2/3-2		
12E-2345 Sh. 3	TS 159SD2/3 "G"	INTLK LPCI SYS 1		

3. Relay Calibration
3.1. REMOVE relays from 4 KV Bus 23-1 Cubicle 13 listed below and Initial/Date.

Relay Number	Service Description	Relay Type	WV/Date
127-1-B23-1	Bus 23-1 Undervoltage Relay Phase A-B	IAV69A	
127-2-B23-1	Bus 23-1 Undervoltage Relay Phase B-C	IAV69A	

3.2. VERIFY that the data sheets for this cubicle agree with the Relay Setting Orders (RSO).


ATTACHMENT 1
Relay Routine for 4 KV Bus 23-1 Undervoltage Relays
Page 3 of 11

### 3.3. CALIBRATE 127-1-B23-1.

$$
\overline{W ~ V}^{\prime} \frac{}{\text { Date }}
$$

Allowable Value: $\quad 79.91$ VAC < VAC < 87.52 VAC
Expanded Tolerance: $\quad 80.86$ VAC < VAC < 86.50 VAC
Setting Tolerance: $\quad 81.00$ VAC $<$ VAC $<86.40$ VAC
Recommended Setpoint: 83.7 VAC
3.3.1. IF setting is outside the Allowable Value, THEN NOTIFY the Unit Supervisor.

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

3.3.2. IF setting is outside the expanded tolerance, THEN INITIATE a condition report while continuing with this procedure.

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

3.3.3. IF the setting is outside the setting tolerance, THEN INITIATE a Condition Report while continuing with this procedure. Re-calibration of the relay will need to be done per the applicable NOAD procedure.

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

# ATTACHMENT 1 

Relay Routine for 4 KV Bus 23-1 Undervoltage Relays Page 4 of 11

### 3.4. CALIBRATE 127-2-B23-1.



Allowable Value:	79.91 VAC < VAC < 87.52 VAC
Expanded Tolerance:	80.86 VAC < VAC < 86.50 VAC
Setting Tolerance:	81.00 VAC < VAC < 86.40 VAC
Recommended Setpoint:	83.7 VAC

3.4.1. IF setting is outside the Allowable Value, THEN NOTIFY the Unit Supervisor.

3.4.2. IF setting is outside the expanded tolerance, THEN INITIATE a condition report while continuing with this procedure.

3.4.3. IF the setting is outside the setting tolerance, THEN INITIATE a Condition Report while continuing with this procedure. Re-calibration of the relay will need to be done per the applicable NOAD procedure.

3.5. INSTALL relays into 4 KV Bus 23-1 Cubicle 13 listed below and Initial/Date.

Relay Number	Service Description	Relay Type	WV/Date
127-1-B23-1	Bus 23-1 Undervoltage Relay Phase A-B	IAV69A	
127-2-B23-1	Bus 23-1 Undervoltage Relay Phase B-C	IAV69A	

## ATTACHMENT 1

Relay Routine for 4 KV Bus 23-1 Undervoltage Relays
Page 5 of 11

## 4. Functional Testing with Bus 23-1 Energized

NOTE: If 4 KV Bus $23-1$ is de-energized, then N/A Section 4.0 of this procedure and perform Functional Testing using Section 5.0 of this procedure.
4.1. PREPARE four each GE Test Paddles by INSTALLING the connecting links in all terminals EXCEPT terminals 5 and 6.

4.2. REMOVE upper and lower relay connection paddles from IAV69A relay 127-1-B23-1 at Bus 23-1, Cubicle 13 and REPLACE them with two GE Test Paddle as modified in step 4.1. After relay disc moves to its reset position, VERIFY that Bus 23-1 Undervoltage HFA Auxiliary relays 127B23-1X1, 127B23-1X2, 127B23-1X3, and 127B23-1X4 do not actuate.

4.3. REMOVE both GE Test Paddle from IAV69A relay 127-1-B23-1 at Bus 23-1, Cubicle 13. REPLACE upper and lower relay connection paddles and VERIFY that relay disc moves to its energized position.

4.4. REMOVE upper and lower relay connection paddles from IAV69A relay 127-2-B23-1 at Bus 23-1, Cubicle 13 and REPLACE them with GE Test Paddles as modified in step 4.1. After relay disc moves to its reset position, VERIFY that Bus 23-1 Undervoltage HFA Auxiliary relays 127B23-1X1, 127B23-1X2, 127B23-1X3, and 127B23-1X4 do not actuate. Do not remove GE Test Paddles.

4.5. REMOVE upper and lower relay connection paddles from IAV69A relay 127-1-B23-1 at Bus 23-1, Cubicle 13 and REPLACE them with two GE Test Paddles as modified in step 4.1. After relay disc moves to its reset position, VERIFY that:
4.5.1. Bus 23-1 Undervoltage HFA Auxiliary relay 127B23-1X1 actuates.


## ATTACHMENT 1

Relay Routine for 4 KV Bus 23-1 Undervoltage Relays
Page 6 of 11
4.5.2. Bus 23-1 Undervoltage HFA Auxiliary relay 127B23-1X2 actuates.

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

4.5.3. Bus 23-1 Undervoltage HFA Auxiliary relay 127B23-1X3 actuates.

4.5.4. Bus 23-1 Undervoltage HFA Auxiliary relay 127B23-1X4 actuates.

4.5.5. Breaker Close Undervoltage Agastat Timer relay 27XTD-23-1 actuates.

4.6. REMOVE both GE Test Paddles from IAV69A relay 127-1-B23-1 at Bus 23-1, Cubicle 13.

REPLACE upper and lower relay connection paddles. After relay disc moves to its energized position, VERIFY that Bus 23-1 Undervoltage HFA Auxiliary relays 127B231X1, 127B23-1X2, 127B23-1X3, and 127B23-1X4 remain actuated.

4.7. REMOVE both GE Test Paddles from IAV69A relay 127-2-B23-1 at Bus 23-1, Cubicle 13. REPLACE upper and lower relay connection paddles. After relay disc moves to its energized position, VERIFY that:
4.7.1. Bus 23-1 Undervoltage HFA Auxiliary relay 127B23-1X1 resets.

$$
\overline{W V V}^{\prime} \frac{}{\text { Date }}
$$

4.7.2. Bus 23-1 Undervoltage HFA Auxiliary relay 127B23-1X2 resets.


## ATTACHMENT 1

Relay Routine for 4 KV Bus 23-1 Undervoltage Relays Page 7 of 11
4.7.3. Bus 23-1 Undervoltage HFA Auxiliary relay 127B23-1X3 resets.

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

4.7.4. Bus 23-1 Undervoltage HFA Auxiliary relay 127B23-1X4 resets.

4.7.5. Breaker Close Undervoltage Agastat Timer relay 27XTD-23-1 resets.

5. Bus 23-1 Undervoltage Relays Functional Testing with Bus De-energized

NOTE: If 4 KV Bus $23-1$ is energized and functional tests were performed using Section 4.0 of this procedure, then N/A Section 5.0 of this procedure.
5.1. VERIFY that Bus 23-1 Undervoltage HFA Auxiliary relays 127B23-1X1, 127B23-1X2, 127B23-1X3, and 127B23-1X4 are actuated.

5.2. OPEN test switch TS 23-1UV "E" at Panel 2252-83.

5.3. PLACE a jumper between test switches TS 23-1 UV "F" and "G" on Panel 2252-83. VERIFY that Agastat relay 459X1-23-1 actuates.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{W V}^{\prime} \overline{\text { Date }}
$$

## ATTACHMENT 1

Relay Routine for 4 KV Bus 23-1 Undervoltage Relays Page 8 of 11
5.4. ACTUATE IAV69A relay 127-1-B23-1 at Bus 23-1, Cubicle 13 by moving relay disc to its energized position. VERIFY that Bus 23-1 Undervoltage HFA Auxiliary relays 127B231X1, 127B23-1X2, 127B23-1X3, and 127B23-1X4 remain actuated.

$$
\overline{\mathrm{WVV}}^{\prime} \overline{\text { Date }}
$$

5.5. RELEASE relay disc to its de-energized position.

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

5.6. ACTUATE IAV69A relay 127-2-B23-1 at Bus 23-1, Cubicle 13 by moving relay disc to its energized position, VERIFY that:
5.6.1. Bus 23-1 Undervoltage HFA Auxiliary relay 127B23-1X1 resets.

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

5.6.2. Bus 23-1 Undervoltage HFA Auxiliary relay 127B23-1X2 resets.

$$
\overline{\mathrm{WVV}}^{\prime} \frac{}{\text { Date }}
$$

5.6.3. Bus 23-1 Undervoltage HFA Auxiliary relay 127B23-1X3 resets.

$$
\overline{\mathrm{WV}}^{\prime} \frac{}{\text { Date }}
$$

5.6.4. Bus 23-1 Undervoltage HFA Auxiliary relay 127B23-1X4 resets.

5.6.5. Breaker Close Undervoltage Agastat Timer relay 27XTD-23-1 resets.

5.7. RELEASE relay disc to its de-energized position. VERIFY that:
5.7.1. Bus 23-1 Undervoltage HFA Auxiliary relay 127B23-1X1 actuates.

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

## ATTACHMENT 1 <br> Relay Routine for 4 KV Bus 23-1 Undervoltage Relays <br> Page 9 of 11

5.7.2. Bus 23-1 Undervoltage HFA Auxiliary relay 127B23-1X2 actuates.

$$
\overline{\mathrm{WV}}^{\prime} \frac{}{\text { Date }}
$$

5.7.3. Bus 23-1 Undervoltage HFA Auxiliary relay 127B23-1X3 actuates.

$$
\overline{\mathrm{WVV}}^{\prime} \frac{}{\text { Date }}
$$

5.7.4. Bus 23-1 Undervoltage HFA Auxiliary relay 127B23-1X4 actuates.

$$
\overline{\mathrm{WV} \mathrm{~V}}^{\prime} \frac{}{\text { Date }}
$$

5.7.5. Breaker Close Undervoltage Agastat Timer relay 27XTD-23-1 actuates.

5.8. REMOVE jumper between test switches TS 23-1 UV "F" and "G" on Panel 2252-84. VERIFY that Agastat relay 459X1-23-1 resets.

5.9 CLOSE test switch TS 23-1UV "E" at Panel 2252-83.

6. Bus 23-1 Undervoltage Relays Trip Restoration
6.1. VERIFY all taps and time levers in all relays are in their "In Service" position as specified by each relay's "As Left" data.


## ATTACHMENT 1 <br> Relay Routine for 4 KV Bus 23-1 Undervoltage Relays Page 10 of 11

6.2. REPLACE relay covers.

6.3. REVIEW, INITIAL and DATE appropriate data sheets.


CAUTION: If 4 KV Bus 23-1 is energized, then VERIFY 4 KV Bus 23-1 Undervoltage HFA Auxiliary relays 127B23-1X1, 127B23-1X2, 127B23-1X3, and 127B23-1X4 are reset BEFORE restoring Bus 23-1 Undervoltage relays trip test switches.

NOTE: If 4 KV Bus 23-1 is de-energized, then Alarm 1539, Window E-03 "4 KV BUSES 23-1 \& 24-1 VOLT LO" on Panel 902-8 will annunciate in the Control Room when Test Switch TS 159SD2/3 "B" is closed.
6.4. CLOSE the following test switches at Bus 23-1, Cubicle 13:

Print Number	Test Switch	Test Switch Label	CV/ Date	WV / Date
12E-2345 Sh. 3	TS 127B23-1X "A"	*INTLK LPCI SYS 1		
12E-2345 Sh. 3	TS 127B23-1X "B"	TRIP BUS 23-1 FROM BUS 33-1		
12E-2345 Sh. 3	TS 127B23-1X "C"	TRIP BKR 152-2331		
12E-2345 Sh. 3	TS 127B23-1X "D"	TRIP BKR 152-2330		
12E-2345 Sh. 3	TS 127B23-1X "E"	TRIP BKR CUB 8		
12E-2345 Sh. 3	TS 127B23-1X "F"	TRIP BKR 152-2326		
12E-2345 Sh. 3	TS 127B23-1X "G"	TRIP BKR 152-2325		
12E-2345 Sh. 3	TS 127B23-1X "H"	TRIP BKR 152-2323		
12E-2345 Sh. 3	TS 127B23-1X "I"	*INTLK CORE SPRAY SYS 1		
12E-2345 Sh. 3	TS 127B23-1X "J"	TRIP BKR 152-2321		
12E-2345 Sh. 3	TS 159SD2/3 "A"	TRIP BUS 23-1 FEED BKR		
12E-2345 Sh. 3	TS 159SD2/3 "B"	ALARM BUS 23-1 \& 24-1 VOLTS LO PNL 902-8 W29.		
12E-2345 Sh. 3	TS 159SD2/3 "F"	D/G 2/3 START RELAY ASR 2/3-2		
12E-2345 Sh. 3	TS 159SD2/3 "G"	*INTLK LPCI SYS 1		

*Note: The following three (3) test switches could have 125VDC across the test switches:
TS 127B23 1X "A"; TS 127B23 1X "I" and TS 159SD 2/3 "G". Since these test switches are used for monitoring permissives, it is acceptable to close them.

## ATTACHMENT 1

Relay Routine for 4 KV Bus 23-1 Undervoltage Relays
Page 11 of 11
7. Return to Normal
7.1. VERIFY all relays are reset (or actuated if Bus 23-1 de-energized).

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

7.2. VERIFY targets reset (or actuated if Bus is 23-1 de-energized).

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

7.3. NOTIFY Operations/Control Room shift personnel that the relay routine is complete.

$$
\overline{\mathrm{WV}}^{\prime} \frac{}{\text { Date }}
$$

# ATTACHMENT 2 

Relay Routine for 4 KV Bus 24-1 Undervoltage Relays
Page 1 of 10

## 1. References

1.1. 12E-2346 Sh. 3-Schematic Control Diagram 4160V Bus 24-1 Standby Diesel 2 Feed \& 34-1 Tie Breaker.
1.2. 12E-2656A - Wiring Diagram 4160V Swgr Bus $24-1$ Cub's 1, 2, 3, 4, 5, 6, 7, \& 8.
1.3. 12E-2656E -Internal Schematic and Device Location Diagram 4160V Swgr Bus 24-1 Cubicle 3.
2. Control Isolation

CAUTION: ISOLATE 4 KV Bus 24-1 Undervoltage trips BEFORE removing Undervoltage relays for calibration:

NOTE: If 4 KV Bus 24-1 is de-energized, then Alarm 2042, Window 29 " 4 KV BUSES 23-1 \& 24-1 VOLT LO" on Panel 902-8 will clear in the Control Room.
2.1 NOTIFY Operating that Isolating the following 3 test switches in the Isolation step of this UV surveillance will inhibit LPCI System 2 and Core Spray System 2 from starting during the performance of this surveillance.

TS 159SD2 "C"
TS 159SD2 "D"
TS 159SD2 "E"

INTLK LPCI SYS 2
INTLK CORE SPRAY SYS 2
INTLK LPCI SYS 2

$$
\overline{W ~ V}^{\prime} \frac{}{\text { Date }}
$$

## ATTACHMENT 2

Relay Routine for 4 KV Bus 24-1 Undervoltage Relays
Page 2 of 10
2.2. OPEN the following test switches at Bus 24-1, Cubicle 3:

Print Number	Test Switch	Test Switch Label	CV/ Date	WV / Date
12E-2346 Sh. 3	TS 127B24-1X3 "A"	TRIP BUS 24-1 FEED BKR		
12E-2346 Sh. 3	TS 127B24-1X3 "C"	TRIP RWCU RECIRC PMP 2B BKR		
12E-2346 Sh. 3	TS 127B24-1X3 "D"	TRIP CORE SPRAY PMP 2B BKR		
12E-2346 Sh. 3	TS 127B24-1X3 "E"	TRIP SDC PMP 2B BKR		
12E-2346 Sh. 3	TS 127B24-1X3 "F"	TRIP LPCI PMP 2D BKR		
12E-2346 Sh. 3	TS 127B24-1X3 "G"	TRIP LPCI PMP 2C BKR		
12E-2346 Sh. 3	TS 127B24-1X3 "H"	TRIP 152-2424 UNASSIGN BKR		
12E-2346 Sh. 3	TS 127B24-1X3 "I"	TRIP 152-2423 UNASSIGN BKR		
12E-2346 Sh. 3	TS 127B24-1X3 "J"	TRIP RX BLDG CLG WTR PMP $2 / 3$ BKR		
12E-2346 Sh. 3	TS 159SD2 "A"	ALARM BUS 23-1 \& 24-1 VOLTS LO PNL 902-8 W29.		
12E-2346 Sh. 3	TS 159SD2 "B"	D/G 2 START RELAY ASR-2		
12E-2346 Sh. 3	TS 159SD2 "C"	INTLK LPCI SYS 2		
12E-2346 Sh. 3	TS 159SD2 "D"	INTLK CORE SPRAY SYS 2		
12E-2346 Sh. 3	TS 159SD2 "E"	INTLK LPCI SYS 2		

3. Relay Calibration
3.1. REMOVE relays from 4 KV Bus 24-1 Cubicle 3 listed below and Initial/Date.

Relay Number	Service Description	Relay Type	WV/Date
127-1-B24-1	Bus 24-1 Undervoltage Relay Phase A-B	IAV69A	
127-2-B24-1	Bus 24-1 Undervoltage Relay Phase B-C	IAV69A	

3.2. VERIFY that the data sheets for this cubicle agree with the Relay Setting Orders (RSO).


ATTACHMENT 2
Relay Routine for 4 KV Bus 24-1 Undervoltage Relays
Page 3 of 10

### 3.3. CALIBRATE 127-1-B24-1.



Allowable Value: $\quad 79.91$ VAC $<$ VAC $<87.52$ VAC
Expanded Tolerance: $\quad 80.86$ VAC < VAC < 86.50 VAC
Setting Tolerance: $\quad 81.00$ VAC $<$ VAC $<86.40$ VAC
Recommended Setpoint: 83.7 VAC
3.3.1. IF setting is outside the Allowable Value, THEN NOTIFY the Unit Supervisor.

3.3.2. IF setting is outside the expanded tolerance, THEN INITIATE a condition report while continuing with this procedure.

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

3.3.3. IF the setting is outside the setting tolerance, THEN INITIATE a Condition Report while continuing with this procedure. Re-calibration of the relay will need to be done per the applicable NOAD procedure.

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

# ATTACHMENT 2 <br> Relay Routine for 4 KV Bus 24-1 Undervoltage Relays <br> Page 4 of 10 

3.4. CALIBRATE 127-2-B24-1.
$\qquad$

Allowable Value: $\quad 79.91$ VAC $<$ VAC $<87.52$ VAC
Expanded Tolerance: $\quad 80.86$ VAC < VAC < 86.50 VAC
Setting Tolerance: $\quad 81.00$ VAC $<$ VAC $<86.40$ VAC
Recommended Setpoint: 83.7 VAC
3.4.1. IF setting is outside the Allowable Value, THEN NOTIFY the Unit Supervisor.

3.4.2. IF setting is outside the expanded tolerance, THEN INITIATE a condition report while continuing with this procedure.

3.4.3. IF the setting is outside the setting tolerance, THEN INITIATE a Condition Report while continuing with this procedure. Re-calibration of the relay will need to be done per the applicable NOAD procedure.

3.5. INSTALL relays into 4 KV Bus 24-1 Cubicle 3 listed below and Initial/Date.

Relay Number	Service Description	Relay Type	WV/Date
127-1-B24-1	Bus 24-1 Undervoltage Relay Phase A-B	IAV69A	
127-2-B24-1	Bus 24-1 Undervoltage Relay Phase B-C	IAV69A	

# Exelun <br> Nuclear 

ATTACHMENT 2
Relay Routine for 4 KV Bus 24-1 Undervoltage Relays
Page 5 of 10
4. Functional Testing with Bus 24-1 Energized

NOTE: If 4 KV Bus $24-1$ is de-energized, then N/A Section 4.0 of this procedure and perform Functional Testing using Section 5.0 of this procedure.
4.1. PREPARE four each GE Test Paddles by INSTALLING the connecting links in all terminals EXCEPT terminals 5 and 6 .

4.2. REMOVE upper and lower relay connection paddles from IAV69A relay 127-1-B24-1 at Bus 24-1, Cubicle 3 and REPLACE them with two GE Test Paddle as modified in step 4.1. After relay disc moves to its reset position, VERIFY that Bus 24-1 Undervoltage HFA Auxiliary relays 127B24-1X1, 127B24-1X2, and 127B24-1X3 do not actuate.

4.3. REMOVE both GE Test Paddle from IAV69A relay 127-1-B24-1 at Bus 24-1, Cubicle 3. REPLACE upper and lower relay connection paddles and VERIFY that relay disc moves to its energized position. $\qquad$
4.4. REMOVE upper and lower relay connection paddles from IAV69A relay 127-2-B24-1 at Bus 24-1, Cubicle 3 and REPLACE THEM with GE Test Paddle as modified in step 4.1. After relay disc moves to its reset position, VERIFY that Bus 24-1 Undervoltage HFA Auxiliary relays 127B24-1X1, 127B24-1X2, and 127B24-1X3 do not actuate. Do not remove GE Test Paddles.

4.5. REMOVE upper and lower relay connection paddles from IAV69A relay 127-1-B24-1 at Bus 24-1, Cubicle 3 and REPLACE them with two GE Test Paddle as modified in step 4.1. After relay disc moves to its reset position, VERIFY that:
4.5.1. Bus $24-1$ Undervoltage HFA Auxiliary relay 127B24-1X1 actuates.


ATTACHMENT 2
Relay Routine for 4 KV Bus 24-1 Undervoltage Relays Page 6 of 10
4.5.2. Bus 24-1 Undervoltage HFA Auxiliary relay 127B24-1X2 actuates.

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

4.5.3. Bus 24-1 Undervoltage HFA Auxiliary relay 127B24-1X3 actuates.

$$
\overline{\mathrm{WV}}^{\prime} \frac{}{\text { Date }}
$$

4.5.4. Breaker Close Undervoltage Agastat Timer relay 27XTD-24-1 actuates.

4.6. REMOVE both GE Test Paddles from IAV69A relay 127-1-B24-1 at Bus 24-1, Cubicle 3. REPLACE upper and lower relay connection paddles. After relay disc moves to its energized position, VERIFY that Bus 24-1 Undervoltage HFA Auxiliary relays 127B241X1, 127B24-1X2, and 127B24-1X3 remain actuated.

4.7. REMOVE both GE Test Paddles from IAV69A relay 127-2-B24-1 at Bus 24-1, Cubicle 3. REPLACE upper and lower relay connection paddles. After relay disc moves to its energized position, VERIFY that:
4.7.1. Bus 24-1 Undervoltage HFA Auxiliary relay 127B24-1X1 resets.

4.7.2. Bus 24-1 Undervoltage HFA Auxiliary relay 127B24-1X2 resets.

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

4.7.3. Bus 24-1 Undervoltage HFA Auxiliary relay 127B24-1X3 resets.

$$
\overline{\mathrm{WVV}}^{\prime} \frac{}{\text { Date }}
$$

4.7.4. Breaker Close Undervoltage Agastat Timer relay 27XTD-24-1 resets.

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

## ATTACHMENT 2

Relay Routine for 4 KV Bus 24-1 Undervoltage Relays
Page 7 of 10

## 5. Bus 24-1 Undervoltage Relays Functional Testing with Bus De-energized

NOTE: If 4 KV Bus $24-1$ is energized and functional tests were performed using Section 4.0 of this procedure, then N/A Section 5.0 of this procedure.
5.1. VERIFY that Bus 24-1 Undervoltage HFA Auxiliary relays 127B24-1X1, 127B24-1X2, and 127B24-1 X3 are actuated.

5.2. OPEN test switch TS 24-1UV "E" at Panel 2252-84.

5.3. PLACE a jumper between test switches TS 24-1 UV " $F$ " and " $G$ " on Panel 2252-84. VERIFY that Agastat relay 459X1-24-1 actuates.

$$
\overline{C V}^{\prime} \overline{\text { Date }} \quad \overline{W V}^{\prime} \overline{\text { Date }}
$$

5.4. ACTUATE IAV69A relay 127-1-B24-1 at Bus 24-1, Cubicle 3 by moving relay disc to its energized position. VERIFY that Bus 24-1 Undervoltage HFA Auxiliary relays 127B241X1, 127B24-1X2, and 127B24-1X3 remain actuated.

5.4. RELEASE relay disc to its de-energized position.

5.6. ACTUATE IAV69A relay 127-2-B24-1 at Bus 24-1, Cubicle 3 by moving relay disc to its energized position. VERIFY that:
5.6.1. Bus 24-1 Undervoltage HFA Auxiliary relay 127B24-1X1 resets.

5.6.2. Bus 24-1 Undervoltage HFA Auxiliary relay 127B24-1X2 resets.

5.6.3. Bus 24-1 Undervoltage HFA Auxiliary relay 127B24-1X3 resets.


## ATTACHMENT 2

## Relay Routine for 4 KV Bus 24-1 Undervoltage Relays Page 8 of 10

5.6.4. Breaker Close Undervoltage Agastat Timer relay 27XTD-24-1 resets.

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

5.7. RELEASE relay disc to its de-energized position. VERIFY that:
5.7.1. Bus 24-1 Undervoltage HFA Auxiliary relay 127B24-1X1 actuates.

$$
\overline{\mathrm{WV}}^{\prime} \frac{}{\text { Date }}
$$

5.7.2. Bus 24-1 Undervoltage HFA Auxiliary relay 127B24-1X2 actuates.

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

5.7.3. Bus 24-1 Undervoltage HFA Auxiliary relay 127B24-1X3 actuates.

$$
\overline{\mathrm{WVV}}^{\prime} \overline{\text { Date }}
$$

5.7.4. Breaker Close Undervoltage Agastat Timer relay 27XTD-24-1 actuates.

$$
\overline{\mathrm{W} \mathrm{~V}}^{\prime} \frac{}{\text { Date }}
$$

5.8. REMOVE jumper between test switches TS 24-1 UV " $F$ " and " $G$ " on Panel 2252-84. VERIFY that Agastat relay 459X1-24-1 resets.

5.9. CLOSE test switch TS 24-1UV "E" at Panel 2252-84.

6. Bus 24-1 Undervoltage and Degraded Voltage Trip Restoration
6.1. VERIFY all taps and time levers in all relays are in their "In Service" position as specified by each relay's "As Left" data.

6.2. REPLACE relay covers.

$$
\overline{\mathrm{WVV}}^{\prime} \frac{}{\text { Date }}
$$

6.3. REVIEW, INITIAL and DATE appropriate data sheets.

$$
\overline{\mathrm{WVV}}^{\prime} \frac{}{\text { Date }}
$$

## ATTACHMENT 2

Relay Routine for 4 KV Bus 24-1 Undervoltage Relays
Page 9 of 10

CAUTION: If 4 KV Bus 24-1 is energized, then VERIFY 4 KV Bus 24-1 Undervoltage HFA Auxiliary relays 127B24-1X1, 127B24-1X2, and 127B24-1X3 are reset BEFORE restoring Bus 24-1 Undervoltage relays trip test switches.
NOTE: If 4 KV Bus 24-1 is de-energized, then Alarm 2042, Window 29 " 4 KV BUSES 23-1 \& 24-1 VOLT LO" on Panel 902-8 will annunciate in the Control Room when Test Switch TS 159SD2 "A" is closed.
6.4. CLOSE the following test switches at Bus 24-1, Cubicle 3:

Print Number	Test Switch	Test Switch Label	CV/ Date	WV / Date
12E-2346 Sh. 3	TS 127B24-1X3 "A"	TRIP BUS 24-1 FEED BKR		
12E-2346 Sh. 3	TS 127B24-1X3 "C"	TRIP RWCU RECIRC PMP 2B BKR		
12E-2346 Sh. 3	TS 127B24-1X3 "D"	TRIP CORE SPRAY PMP 2B BKR		
12E-2346 Sh. 3	TS 127B24-1X3 "E"	TRIP SDC PMP 2B BKR		
12E-2346 Sh. 3	TS 127B24-1X3 "F"	TRIP LPCI PMP 2D BKR		
12E-2346 Sh. 3	TS 127B24-1X3 "G"	TRIP LPCI PMP 2C BKR		
12E-2346 Sh. 3	TS 127B24-1X3 "H"	TRIP 152-2424 UNASSIGN BKR		
12E-2346 Sh. 3	TS 127B24-1X3 "I"	TRIP 152-2423 UNASSIGN BKR		
12E-2346 Sh. 3	TS 127B24-1X3 "J"	TRIP RX BLDG CLG WTR PMP $2 / 3$ BKR		
12E-2346 Sh. 3	TS 159SD2 "A"	ALARM BUS 23-1 \& 24-1 VOLTS LO PNL 902-8 W29.		
12E-2346 Sh. 3	TS 159SD2 "B"	D/G 2 START RELAY ASR-2		
12E-2346 Sh. 3	TS 159SD2 "C"	*INTLK LPCI SYS 2		
12E-2346 Sh. 3	TS 159SD2 "D"	*INTLK CORE SPRAY SYS 2		
12E-2346 Sh. 3	TS 159SD2 "E"	*INTLK LPCI SYS 2		

*Note: The following three (3) test switches could have 125VDC across the test switches: TS 159SD2 "C", TS 159SD2 "D" and TS 159SD2 "E". Since these test switches are used for monitoring permissives, it is aceptable to close them.
7. Return to Normal
7.1. VERIFY all relays are reset (or actuated if Bus 24-1 de-energized).

7.2. VERIFY targets reset (or actuated if Bus 24-1 de-energized).


## Level 1 - Continuous Use

## ATTACHMENT 2

Relay Routine for 4 KV Bus 24-1 Undervoltage Relays Page 10 of 10
7.3. NOTIFY Operations/Control Room shift personnel that the relay routine is complete.

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

## ATTACHMENT 3

## Relay Routine for 4 KV Bus 23-1 Degraded Voltage Relays Page 1 of 11

1. References
1.1. 12E-2334 Relay and Metering Diagram - 4160. Switch Group 23-1 \& 24-1.
1.2. $12 \mathrm{E}-2345$ Sh. $2-$ Schematic Diagram 4160 V Bus $23-1,4 \mathrm{kV}$ Swgr 40 Feed Breaker.
1.3. 12E-2345 Sh. 3-Schematic Diagram 4160 V Bus 23-1, 4 kV Swgr 40 Feed Breaker.
2.3. 12E-2655B - Wiring Diagram 4160V Swgr Bus 23-1 Cubicles 9, 10, 11, 12, 13, \& 14.
2.4. 12E-2655G-4160V Swgr Bus 23-1 Cubicle 13 Internal Schematic and Device Location Diagram.
2.5. 12E-2650B - Wiring Diagram 4 KV Bus 23-1 $2^{\text {nd }}$ Level Undervoltage Panel 2252-83.
2. Relay Isolation and Relay Removal
2.1. VERIFY that the data sheets for this relay agree with the Relay Setting Orders (RSO).

$$
\overline{\mathrm{CVV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

2.2. INFORM Operations that the $2 / 3$ DG will be inop to D 2 prior to performing the following step.

$$
\overline{\mathrm{WVV}}^{\prime} \frac{}{\text { Date }}
$$

2.3. OPEN test switch TS 23-1UV "E".

2.4. INSTALL a jumper between TS 23-1 UV "F" and TS 23-1 UV "G".

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

Note: After the Jumper is installed on the relay, care shall be taken to ensure that the jumper does not become disconnected.

## ATTACHMENT 3

Relay Routine for 4 KV Bus 23-1 Degraded Voltage Relays Page 2 of 11
2.5. REMOVE TDR-23-1 at Panel 2252-83.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

2.6. OPEN test switches TS 23-1UV " $A$ " and " $B$ " at Panel 2252-83.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

2.7. VERIFY that relay 127-3-B23-1 trip target is illuminated.
2.8. REMOVE relay 127-3-B23-1 from Panel 2252-83

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

2.9. OPEN test switches TS 23-1UV " $C$ " and " $D$ " at Panel 2252-83.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{W V}^{\prime} \overline{\text { Date }}
$$

2.10. VERIFY that relay 127-4-B23-1 trip target is illuminated.

2.11. REMOVE relay 127-4-B23-1 from Panel 2252-83

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

# ATTACHMENT 3 <br> Relay Routine for 4 KV Bus 23-1 Degraded Voltage Relays <br> Page 3 of 11 

3. Relay Calibration
3.1. VERIFY room temperature is between the range of 21 to 24 Deg. C.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \frac{}{\text { Date }}
$$

3.2. SET the Fluke 45 on the medium sampling rate.

3.3. CALIBRATE relay 127-3-B23-1.


Allowable Value: $\quad 110.3$ VAC $<$ VAC $<111.5$ VAC
Expanded Tolerance: $\quad 110.4$ VAC $<$ VAC $<111.0$ VAC
Setting Tolerance: $\quad 110.5$ VAC $<$ VAC $<110.9$ VAC
Recommended Setpoint: 110.7 VAC
Allowable Value: $\quad 5.7$ seconds $<$ Time $<8.3$ seconds
Expanded Tolerance: $\quad 6.2$ seconds < Time $<7.8$ seconds
Setting Tolerance: $\quad 6.3$ seconds $<$ Time $<7.7$ seconds
Recommended Setpoint: 7.0 seconds
3.3.1. IF setting is outside the Allowable Value, Then NOTIFY the Unit Supervisor.

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

3.3.2. IF setting is outside the expanded tolerance, Then INITIATE a condition report while continuing with this procedure.

$$
\overline{\mathrm{WV}}^{\prime} \frac{}{\text { Date }}
$$

3.3.3. IF the setting is outside the setting tolerance, Then INITIATE a Condition Report while continuing with this procedure. Re-calibration of the relay will need to be done per the applicable NOAD procedure.


# ATTACHMENT 3 <br> Relay Routine for 4 KV Bus 23-1 Degraded Voltage Relays Page 4 of 11 

3.4. CALIBRATE relay 127-4-B23-1.


Allowable Value: $\quad$ 110.3 VAC $<$ VAC $<111.5$ VAC
Expanded Tolerance: $\quad 110.4$ VAC < VAC < 111.0 VAC
Setting Tolerance:
Recommended Setpoint: 110.5 VAC < VAC < 110.9 VAC 110.7 VAC

Allowable Value: $\quad 5.7$ seconds < Time < 8.3 seconds
Expanded Tolerance: $\quad 6.2$ seconds < Time < 7.8 seconds
Setting Tolerance: $\quad 6.3$ seconds $<$ Time $<7.7$ seconds
Recommended Setpoint: 7.0 seconds
3.4.1. IF setting is outside the Allowable Value, Then NOTIFY the Unit Supervisor.

3.4.2. IF setting is outside the expanded tolerance, Then INITIATE a condition report while continuing with this procedure.

3.4.3. IF the setting is outside the setting tolerance, Then INITIATE a Condition Report while continuing with this procedure. Re-calibration of the relay will need to be done per the applicable NOAD procedure.


# ATTACHMENT 3 <br> Relay Routine for 4 KV Bus 23-1 Degraded Voltage Relays Page 5 of 11 

3.5. CALIBRATE TDR-23-1 relay.


Allowable Value: $\quad 279.0$ seconds < Time < 321.0 seconds
Expanded Tolerance: 297.8 seconds < Time < 317.2 seconds
Setting Tolerance: $\quad 300.0$ seconds < Time $<315.0$ seconds
Recommended Setpoint: 307.5 seconds
3.5.1. IF setting is outside the Allowable Value, Then NOTIFY the Unit Supervisor.

3.5.2. IF setting is outside the expanded tolerance, Then INITIATE a condition report while continuing with this procedure.

3.5.3. IF the setting is outside the setting tolerance, Then INITIATE a Condition Report while continuing with this procedure. Re-calibration of the relay will need to be done per the applicable NOAD calibration procedure.

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

## ATTACHMENT 3

## Relay Routine for 4 KV Bus 23-1 Degraded Voltage Relays

 Page 6 of 114. Relay Installation
4.1. INSTALL relay 127-3-B23-1 into Panel 2252-83.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{W V}^{\prime} \overline{\text { Date }}
$$

4.2. VERIFY that relay 127-3-B23-1 power indicating light is lit.

4.3. CLOSE test switches TS 23-1UV "A" and "B" at Panel 2252-83.

4.4. RESET relay 127-3-B23-1 trip target.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

4.5. INSTALL relay 127-4-B23-1 into Panel 2252-83.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

4.6. VERIFY that relay 127-4-B23-1 power indicating light is lit.

4.7. CLOSE test switches TS 23-1UV "C" and "D" at Panel 2252-83.

4.8. RESET relay 127-4-B23-1 trip target.


## ATTACHMENT 3

Relay Routine for 4 KV Bus 23-1 Degraded Voltage Relays Page 7 of 11
4.9. INSTALL TDR-23-1 relay into Panel 2252-83.

5.0 Functional Testing
5.1. CONNECT VOM \#1 to TB 1-6 and TB 1-8 in 2252-83 to monitor relay TDR-23-1 contact T1 and M1 VERIFYING no continuity (ohms) across contact. Do not disconnect VOM.

$$
\overline{C V}^{\prime} \overline{\text { Date }} \quad \overline{W V}^{\prime} \overline{\text { Date }}
$$

5.2. CONNECT VOM \#2 to TB 1-5 and TS 23-1 UV "l" to monitor TDR-23-1 coil VERIFYING no 125VDC across coil. Do not disconnect VOM.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{W V}^{\prime} \overline{\text { Date }}
$$

5.3. REMOVE jumper previously installed between TS 23-1 UV "F" and TS 23-1 UV "G".

$$
\overline{C V}^{\prime} \overline{\text { Date }} \overline{W V}^{\prime} \overline{\text { Date }}
$$

5.4. CONNECT VOM \#3 between TS 23-1 UV "F" and TS23-1 UV "G", VERIFYING no 125VDC. Do not disconnect VOM.

$$
\overline{C V}^{\prime} \overline{\text { Date }} \quad \overline{W V}^{\prime} \overline{\text { Date }}
$$

5.5. TRIP Relay 127-3-B23-1 by OPENING test switch TS 23-1 UV "A"

$$
\overline{C V}^{\prime} \overline{\text { Date }} \quad \overline{W V}^{\prime} \overline{\text { Date }}
$$

5.6. VERIFY that relay 127-3-B23-1 trip target is illuminated.

$$
\overline{C V}^{\prime} \overline{\text { Date }} \quad \overline{W V}^{\prime} \overline{\text { Date }}
$$

## ATTACHMENT 3

Relay Routine for 4 KV Bus 23-1 Degraded Voltage Relays Page 8 of 11
5.7. VERIFY no 125 VDC on VOM \#2 connected across relay TDR-23-1 coil.

5.8. VERIFY 125 VDC on VOM \#3 connected to TS 23-1 UV "F" and TS 23-1 UV "G".

$$
\overline{\mathrm{CV}}^{\prime} \frac{}{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \frac{}{\text { Date }}
$$

5.9. RESET Relay 127-3-B23-1 by CLOSING test switch TS 23-1 UV "A"

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV} \mathrm{~V}}^{\prime} \frac{}{\text { Date }}
$$

5.10. RESET target on relay 127-3-B23-1.

5.11. VERIFY no 125C VDC on VOM \#2 connected across relay TDR-23-1 coil.

5.12. VERIFY no 125 VDC on VOM \#3 connected to TS 23-1 UV "F" and TS 23-1 UV "G".

5.13. TRIP Relay 127-4-B23-1 by OPENING test switch TS 23-1 UV "D".

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

## ATTACHMENT 3

Relay Routine for 4 KV Bus 23-1 Degraded Voltage Relays Page 9 of 11
5.14. VERIFY that relay 127-4-B23-1 trip target is illuminated.

$$
\overline{\mathrm{WV}}^{\prime} \frac{}{\text { Date }}
$$

5.15. VERIFY no 125 VDC on VOM \#2 connected across relay TDR-23-1 coil.

5.16. VERIFY no 125 VDC on VOM \#3 connected to TS 23-1 UV "F" and TS 23-1 UV "G".

5.17. PRIOR to performing the next step, NOTIFY Operations that the " 4 KV Bus $23-1$ Voltage Degraded" alarm on the 902-8 F-07 window will be received.

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

5.18. TRIP Relay 127-3-B23-1 by OPENING test switch TS 23-1 UV "A"

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

5.19. VERIFY that relay 127-3-B23-1 trip target is illuminated.

5.20. VERIFY 125 VDC on VOM \#2 connected across relay TDR-23-1 coil.

$$
\overline{C V}^{\prime} \overline{\text { Date }} \quad \overline{W V}^{\prime} \overline{\text { Date }}
$$

5.21 VERIFY 125 VDC on VOM \#3 connected to TS 23-1 UV "F" and TS 23-1 UV "G".

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

## ATTACHMENT 3

Relay Routine for 4 KV Bus 23-1 Degraded Voltage Relays Page 10 of 11
5.22 VERIFY continuity (ohms) on VOM \#1 across terminal T1 and Terminal M1 of relay TDR-23-1 after 6 minutes.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

5.23. VERIFY Operations received the "4KV Bus 23-1 Voltage Degraded" alarm on the 902-8 F-07 window.

$$
\overline{\mathrm{WV}}^{\prime} \frac{}{\text { Date }}
$$

5.24. RESET Relay 127-3-B23-1 by CLOSING test switch TS 23-1 UV "A"

5.25. RESET target on relay 127-3-B23-1.

5.26. RESET Relay 127-4-B23-1 by CLOSING test switch TS 23-1 UV "D"

5.27. RESET target on relay 127-4-B23-1.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

5.28. VERIFY no continuity (ohms) on VOM \#1 connected across terminal T1 and Terminal M1 of relay TDR-23-1 and REMOVE VOM.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

5.29. VERIFY no 125 VDC on VOM \#2 connected across relay TDR-23-1 coil and REMOVE VOM.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

## ATTACHMENT 3

Relay Routine for 4 KV Bus 23-1 Degraded Voltage Relays Page 11 of 11
5.30. VERIFY no 125 VDC on VOM \#3 connected to TS 23-1 UV "F" and TS 23-1 UV "G" and REMOVE VOM.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

6. Restoration
6.1. VERIFY no voltage across test switch TS 23-1UV "E" and then CLOSE test switch TS 23-1UV "E".

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

6.2. INFORM Operations that the $2 / 3 \mathrm{DG}$ to D 2 is operable.

7. Return to Normal
7.1. VERIFY all relays are reset.

7.2. VERIFY targets are reset.

7.3. NOTIFY Operations/Control Room shift personnel that the relay routine is complete.


## ATTACHMENT 4

Relay Routine for 4 KV Bus 24-1 Degraded Voltage Relays Page 1 of 11

1. References
1.1. 12E-2334 Relay and Metering Diagram - 4160. Switch Group 23-1 \& 24-1.
1.2. $12 \mathrm{E}-2346$ Sh. $2-$ Schematic Diagram 4160 V Bus $24-1,4 \mathrm{kV}$ Swgr 40 Feed Breaker.
1.3. $12 \mathrm{E}-2346$ Sh. 3-Schematic Diagram 4160 V Bus $24-1,4 \mathrm{kV}$ Swgr 40 Feed Breaker.
1.4. 12E-2656A - Wiring Diagram 4160V Swgr Bus 24-1 Cubicles 1, 2,3, 4, 5, 6, 7, \& 8.
1.5. 12E-2656E - 4160V Swgr Bus 24-1 Cubicle 3 Internal Schematic and Device Location Diagram.
1.6. $12 \mathrm{E}-2650 \mathrm{C}$ - Wiring Diagram 4 KV Bus 24-1 $2^{\text {nd }}$ Level Undervoltage Panel 2252-84.
2. Relay Isolation and Relay Removal
2.1. VERIFY that the data sheets for this relay agree with the Relay Setting Orders (RSO).

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

2.2. INFORM Operations that the 2 DG will be inop to D2 prior to performing the following step.

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

2.3. OPEN test switch TS 24-1UV "E".

2.4. INSTALL a jumper between TS 24-1 UV "F" and TS 24-1 UV "G".

$$
\overline{\mathrm{CV}}^{\prime} \frac{}{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

Note: After the Jumper is installed on the relay, care shall be taken to ensure that the jumper does not become disconnected.

## ATTACHMENT 4

Relay Routine for 4 KV Bus 24-1 Degraded Voltage Relays Page 2 of 11
2.5. REMOVE TDR-24-1 at Panel 2252-84.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

2.6. OPEN test switches TS 24-1UV " $A$ " and " $B$ " at Panel 2252-84.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

2.7. VERIFY that relay 127-3-B24-1 trip target is illuminated.
2.8. REMOVE relay 127-3-B24-1 from Panel 2252-84

$$
\overline{\mathrm{C} \mathrm{~V}}^{\prime} \overline{\text { Date }} \quad \overline{W V}^{\prime} \overline{\text { Date }}
$$

2.9. OPEN test switches TS 24-1UV "C" and "D" at Panel 2252-84.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{W V}^{\prime} \overline{\text { Date }}
$$

2.10. VERIFY that relay 127-4-B24-1 trip target is illuminated.

2.11. REMOVE relay 127-4-B24-1 from Panel 2252-84

$$
\overline{\mathrm{CV}}^{\prime} \frac{}{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

## ATTACHMENT 4

Relay Routine for 4 KV Bus 24-1 Degraded Voltage Relays Page 3 of 11

## 3. Relay Calibration

3.1. VERIFY room temperature is between the range of 21 to 24 Deg. C.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

3.2. SET the Fluke 45 on the medium sampling rate.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

3.3. CALIBRATE relay 127-3-B24-1.

Allowable Value: $\quad$ 110.3 VAC $<$ VAC $<111.5$ VAC
Expanded Tolerance: $\quad 110.4$ VAC $<$ VAC $<111.0$ VAC
Setting Tolerance: $\quad 110.5$ VAC $<$ VAC $<110.9$ VAC
Recommended Setpoint: 110.7 VAC
Allowable Value: $\quad 5.7$ seconds < Time < 8.3 seconds
Expanded Tolerance: $\quad 6.2$ seconds < Time < 7.8 seconds
Setting Tolerance: $\quad 6.3$ seconds $<$ Time $<7.7$ seconds
Recommended Setpoint: 7.0 seconds
3.3.1. IF setting is outside the Allowable Value, Then NOTIFY the Unit Supervisor.

3.3.2. IF setting is outside the expanded tolerance, Then INITIATE a condition report while continuing with this procedure.

3.3.3. IF the setting is outside the setting tolerance, Then INITIATE a Condition Report while continuing with this procedure. Re-calibration of the relay will need to be done per the applicable NOAD procedure.


ATTACHMENT 4
Relay Routine for 4 KV Bus 24-1 Degraded Voltage Relays Page 4 of 11
3.4. CALIBRATE relay 127-4-B24-1.


Allowable Value:
Expanded Tolerance:
Setting Tolerance:
Recommended Setpoint:
Allowable Value: $\quad 5.7$ seconds < Time < 8.3 seconds
Expanded Tolerance: $\quad 6.2$ seconds < Time $<7.8$ seconds
Setting Tolerance: $\quad 6.3$ seconds $<$ Time $<7.7$ seconds
Recommended Setpoint: 7.0 seconds
3.4.1. IF setting is outside the Allowable Value, Then NOTIFY the Unit Supervisor.

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

3.4.2. IF setting is outside the expanded tolerance, Then INITIATE a condition report while continuing with this procedure.

3.4.3. IF the setting is outside the setting tolerance, Then INITIATE a Condition Report while continuing with this procedure. Re-calibration of the relay will need to be done per the applicable NOAD procedure.


# ATTACHMENT 4 <br> Relay Routine for 4 KV Bus 24-1 Degraded Voltage Relays <br> Page 5 of 11 

3.5. CALIBRATE TDR-24-1 relay.


Allowable Value: $\quad 279.0$ seconds < Time < 321.0 seconds
Expanded Tolerance: 297.8 seconds < Time < 317.2 seconds Setting Tolerance: $\quad 300.0$ seconds < Time $<315.0$ seconds Recommended Setpoint: 307.5 seconds
3.5.1. IF setting is outside the Allowable Value, Then NOTIFY the Unit Supervisor.

3.5.2. IF setting is outside the expanded tolerance, Then INITIATE a condition report while continuing with this procedure.
$\qquad$
3.5.3. IF the setting is outside the setting tolerance, Then INITIATE a Condition Report while continuing with this procedure. Re-calibration of the relay will need to be done per the applicable NOAD calibration procedure.


## ATTACHMENT 4

Relay Routine for 4 KV Bus 24-1 Degraded Voltage Relays Page 6 of 11
4. Relay Installation
4.1. INSTALL relay 127-3-B24-1 into Panel 2252-84.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

4.2. VERIFY that relay 127-3-B24-1 power indicating light is lit.

$$
\overline{\mathrm{WV}}^{\prime} \frac{}{\text { Date }}
$$

4.3. CLOSE test switches TS 24-1UV "A" and "B" at Panel 2252-84.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

4.4. RESET relay 127-3-B24-1 trip target.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

4.5. INSTALL relay 127-4-B24-1 into Panel 2252-84.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

4.6. VERIFY that relay 127-4-B24-1 power indicating light is lit.

4.7. CLOSE test switches TS 24-1UV "C" and "D" at Panel 2252-84.

4.8. RESET relay 127-4-B24-1 trip target.


# ATTACHMENT 4 <br> Relay Routine for 4 KV Bus 24-1 Degraded Voltage Relays Page 7 of 11 

4.9. INSTALL TDR-24-1 relay into Panel 2252-84.

5.0 Functional Testing
5.1. CONNECT VOM \#1 to TB 1-6 and TB 1-8 in 2252-84 to monitor relay TDR-24-1 contact T1 and M1 VERIFYING no continuity (ohms) across contact. Do not disconnect VOM.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

5.2. CONNECT VOM \#2 to TB 1-5 and TS 24-1 UV "I" to monitor TDR-24-1 coil VERIFYING no 125VDC across coil. Do not disconnect VOM.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

5.3. REMOVE jumper previously installed between TS 24-1 UV "F" and TS 24-1 UV "G".

5.4. CONNECT VOM \#3 between TS 24-1 UV "F" and TS 24-1 UV "G", VERIFYING no 125VDC. Do not disconnect VOM.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{W V}^{\prime} \overline{\text { Date }}
$$

5.5. TRIP Relay 127-3-B24-1 by OPENING test switch TS 24-1 UV "A"

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

5.6. VERIFY that relay 127-3-B24-1 trip target is illuminated.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{W V}^{\prime} \frac{}{\text { Date }}
$$

5.7. VERIFY no 125 VDC on VOM \#2 connected across relay TDR-24-1 coil.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

5.8. VERIFY 125 VDC on VOM \#3 connected to TS 24-1 UV "F" and TS 24-1 UV "G".

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

5.9. RESET Relay 127-3-B24-1 by CLOSING test switch TS 24-1 UV "A"

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{W V}^{\prime} \overline{\text { Date }}
$$

5.10. RESET target on relay 127-3-B24-1.

5.11. VERIFY no 125 VDC on VOM \#2 connected across relay TDR-24-1 coil.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

5.12. VERIFY no 125 VDC on VOM \#3 connected to TS 24-1 UV "F" and TS 24-1 UV "G".

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

5.13. TRIP Relay $127-4-\mathrm{B} 24-1$ by OPENING test switch TS 24-1 UV "D".

$$
\overline{\mathrm{C} \mathrm{~V}}^{\prime} \overline{\text { Date }} \quad \overline{W V}^{\prime} \overline{\text { Date }}
$$

5.14. VERIFY that relay 127-4-B24-1 trip target is illuminated.

$$
\overline{\mathrm{WV}}^{\prime} \frac{}{\text { Date }}
$$

5.15. VERIFY no 125 VDC on VOM \#2 connected across relay TDR-24-1 coil.

5.16. VERIFY no 125 VDC on VOM \#3 connected to TS 24-1 UV "F" and TS 24-1 UV "G".

5.17. PRIOR to performing the next step, NOTIFY Operations that the " 4 KV Bus $24-1$ Voltage Degraded" alarm on the $902-8 \mathrm{H}-10$ window will be received.

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

5.18. TRIP Relay $127-3-\mathrm{B} 24-1$ by OPENING test switch TS 24-1 UV "A"

5.19. VERIFY that relay 127-3-B24-1 trip target is illuminated.

$$
\overline{\mathrm{WVV}}^{\prime} \frac{}{\text { Date }}
$$

5.20. VERIFY 125 VDC on VOM \#2 connected across relay TDR-24-1 coil.

5.21. VERIFY 125 VDC on VOM \#3 connected to TS 24-1 UV "F" and TS 24-1 UV "G".


## ATTACHMENT 4

Relay Routine for 4 KV Bus 24-1 Degraded Voltage Relays Page 10 of 11
5.22 VERIFY continuity (ohms) on VOM \#1 across terminal T1 and Terminal M1 of relay TDR-24-1 after 6 minutes.

5.23. VERIFY Operations received the "4KV Bus 23-1 Voltage Degraded" alarm on the 902-8 $\mathrm{H}-10$ window.

5.24. RESET Relay 127-3-B24-1 by CLOSING test switch TS 24-1 UV "A"

5.25. RESET target on relay 127-3-B24-1.

5.26. RESET Relay 127-4-B24-1 by CLOSING test switch TS 24-1 UV "D"

5.27. RESET target on relay 127-4-B24-1.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

5.28. VERIFY no continuity (ohms) on VOM \#1 connected across terminal T1 and Terminal M1 of relay TDR-24-1 and REMOVE VOM.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

5.29. VERIFY no 125 VDC on VOM \#2 connected across relay TDR-24-1 coil and REMOVE VOM.

$$
\overline{\mathrm{CV}}^{\prime} \frac{}{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

## ATTACHMENT 4

Relay Routine for 4 KV Bus 24-1 Degraded Voltage Relays
Page 11 of 11
Page 11 of 11
5.30. VERIFY no 125 VDC on VOM \#3 connected to TS 24-1 UV "F" and TS 24-1 UV "G" and REMOVE VOM.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

6. Restoration
6.1. VERIFY no voltage across test switch TS 24-1UV "E" and then CLOSE test switch TS 24-1UV "E".

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{W V}^{\prime} \overline{\text { Date }}
$$

6.2. INFORM Operations that the 2 DG to D 2 is operable. $\qquad$
7. Return to Normal
7.3. VERIFY all relays are reset.

7.4. VERIFY targets are reset.

7.4. NOTIFY Operations/Control Room shift personnel that the relay routine is complete.

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

Procedure MA-DR-771-403, "Unit 3-4 kV Tech Spec Undervoltage and Degraded Voltage Relay Routines," Revision 3

# UNIT 3 - 4 KV TECH SPEC UNDERVOLTAGE AND DEGRADED VOLTAGE RELAY ROUTINES 

## 1. PURPOSE

1.1. This procedure provides the necessary administrative controls to perform testing of Dresden Unit 34 KV -Tech Spec Undervoltage and Degraded Voltage protective relays. This procedure also provides the guidance for the isolation, calibration, functional test, and restoration of these protective relays.
2. MATERIAL AND SPECIAL EQUIPMENT
2.1. Material - None
2.2. Special Equipment
2.2.1. Voltage Test Source
2.2.2. 4 each General Electric Test Paddles
2.2.3. Certified test equipment as required to perform quality measurements.
2.2.4. Fluke 45
2.2.5. Calibrated Thermometer

## 3. PRECAUTIONS, LIMITATIONS, AND PREREQUISITES

3.1. Precautions
3.1.1. OBSERVE personal safety precautions and treat all equipment as potentially live.
3.1.2. Foreign Material Exclusion (FME) Notice - Throughout the procedure care shall be taken to prevent the entry of Foreign Material into the protective relays and relay cases.
3.2. Limitations
3.2.1. NOTIFY the appropriate Operating personnel if any inadvertent operations occur during the performance of this procedure. If any inadvertent operations occur, STOP and PLACE equipment in a safe condition until the station and NOAD management makes a complete evaluation.
3.2.2. NOTIFY Unit Operating Engineer or Shift Manager of any discrepancies noted during this test.
3.2.3. GENERATE a Condition Report (CR) if any problem(s) are found.
3.2.4. DOCUMENT Temporary Alterations, Jumpers, Lifted Leads (LL), and other applicable items in accordance with appropriate Station Procedures.
3.2.5. INFORM the Unit Operator of any alarms they will receive during functional testing.
3.2.6. $\quad$ MARK N/A the steps in this procedure not required to be performed.

### 3.3. $\quad$ Prerequisites

3.3.1. Use controlled copies of schematic drawings and relay/metering diagrams to determine the function(s) of relay(s) to be tested in the associated circuit.
3.3.2. Determine if any isolating switches external to the relay package under test need to be opened to preclude unwanted operation of, or interference with equipment external to the relay package under test.
3.3.3. SIGN into work package.
3.3.4. VERIFY that test switches, panels, and relays are labeled correctly and agree with the appropriate attachment prior to the performance of any relay inspection, calibration, sensing circuit test, or trip checks.
3.3.5. PERFORM protective relay calibration of the relays to be tested using MA-AA-772-700 Series "Calibration of Protective Relays" and the applicable relay data sheets.
3.3.6. Attachments 1 and 2 may be performed with the Bus energized or de-energized. Attachments 3 and 4 are to be performed with the Bus energized.
4. MAIN BODY
4.1. Control Isolation
4.1.1. LIST any additional test switches not identified on the attachment that will be manipulated during the procedure, on a station approved temporary alteration sheet.
4.1.2. LIST all test switches that need to be isolated during the performance of any relay inspection, calibration, or trip checks to prevent any unwanted operations.
4.1.3. LIST all test switches that will be manipulated during the performance of any relay inspection, calibration, or trip checks.
4.1.4. LIST all test switches that are not identified on the station approve temporary alteration sheet that would be manipulated during the performance of any relay inspection, calibration, or trip checks.

### 4.2. Functional Testing

Acceptance Criteria: Protective relay functional testing is acceptable if relays and control devices, including all diodes in the trip circuit, perform and function per control schematic.
4.2.1. INFORM Operations/Control Room of any alarms they will receive during the functional testing.
4.2.2. Functionally $\mathbf{C H E C K}$ the control functions of the schematic.

## 5. RETURN TO NORMAL

5.1. The test switches are restored and equipment is released back to service.
5.2. End of Procedure
5.2.1. NOTIFY Operations shift personnel that the relay routine is complete.

### 5.3. Evaluation

5.3.1. INITIAL and DATE as each attachment is completed.
6. REFERENCES
6.1. Commitments - None
6.2. Documents
6.2.1. Controlled Current and Potential Schematic
6.2.2. Controlled Tripping Schematic
6.2.3. MA-AA-772-700 Series "Protective Relay Calibration"
6.2.4. Company Instruction No. 36-0, Periodic Protective Relay Tests.
6.2.5. Generation Station Safety Rule Book
6.2.6. AD-AA-106 Corrective Action Program (CAP) Process Procedure
6.2.7. Tech Spec 3.3.8.1.1

## 7. $\quad$ ATTACHMENTS

The following is a list of relay routine attachments contained within this procedure and the completed attachments will be part of the completed work package.
7.1. Attachment 1 - 4 KV Bus 33-1 Bus Undervoltage Relays.
7.2. Attachment 2 - 4 KV Bus 34-1 Bus Undervoltage Relays.
7.3. Attachment 3-4 KV Bus 33-1 Degraded Voltage Relays.
7.4. Attachment 4-4 KV Bus 34-1 Degraded Voltage Relays.

## ATTACHMENT 1

Relay Routine for 4 KV Bus 33-1 Undervoltage Relays
Page 1 of 10

## 1. References

1.1. 12E-3345 Sh. 2- Schematic Diagram 4160V Bus 33-1, Undervoltage Relays Control Switch Development.
1.2. 12E-3655B - Wiring Diagram 4160V Swgr Bus 33-1 Cubicles 9, 10, 11, 12, 13, \& 14.
1.3. 12E-3655G-4160V Swgr Bus 33-1 Cubicle 13 Internal Schematic and Device Location Diagram.
2. Control Isolation

CAUTION: ISOLATE 4 KV Bus 33-1 Undervoltage trips BEFORE removing Undervoltage relays for calibration:

NOTE: If 4 KV Bus 33-1 is de-energized, then Alarm 4041, Window E-03 "4 KV BUSES 33-1 \& 34-1 VOLT LO" on Panel 903-8 E-03 will clear in the Control Room.
2.1 NOTIFY Operating that Isolating the following 3 test switches in the Isolation step of this UV surveillance will inhibit LPCI System 1 and Core Spray System 1 from starting during the performance of this surveillance.

TS 127B33-1X "H" INTLK LPCI SYS 1
TS 127SD-3X "A" INTLK CORE SPRAY SYS 1
TS 127SD-3X "E" INTLK LPCI SYS 1


## ATTACHMENT 1 <br> Relay Routine for 4 KV Bus 33-1 Undervoltage Relays Page 2 of 10

2.2. OPEN the following test switches at Bus 33-1, Cubicle 13:

Print Number	Test Switch	Test Switch Label	CV/ Date	WV / Date
12E-3345 Sh. 2	TS 127B33-1X "B"	TRIP ILRT AIR COMP BRK		
12E-3345 Sh. 2	TS 127B33-1X "C"	TRIP CORE SPRAY PMP 3A BRK		
12E-3345 Sh. 2	TS 127B33-1X "D"	TRIP LPCI PMP 3B BRK		
12E-3345 Sh. 2	TS 127B33-1X "E"	TRIP SDC PMP 3A BRK		
12E-3345 Sh. 2	TS 127B33-1X "F"	TRIP 152-3328 BRK		
12E-3345 Sh. 2	TS 127B33-1X "G"	TRIP LPCI PMP 3A BRK		
12E-3345 Sh. 2	TS 127B33-1X "H"	INTLK LPCI SYS 1		
12E-3345 Sh. 2	TS 127B33-1X "I"	TRIP RWCU RECIRC PMP 3A BRK		
12E-3345 Sh. 2	TS 127B33-1X "J"	TRIP BUS 33-1 FEED TO BUS 23-1		
12E-3345 Sh. 2	TS 127SD-3X "A"	INTLK CORE SPRAY SYS 1		
12E-3345 Sh. 2	TS 127SD-3X "B"	TRIP BUS 33-1 FEED BRK		
12E-3345 Sh. 2	TS 127SD-3X "C"	D/G START RELAY ASR 2/3-3		
12E-3345 Sh. 2	TS 127SD-3X "D"	ALARM BUS 33-1 34-1 VOLTS LO PNL 903-8 W29		
12E-3345 Sh. 2	TS 127SD-3X "E"	INTLK LPCI SYS 1		

3. Relay Calibration
3.1. REMOVE relays from 4 KV Bus 33-1 Cubicle 13 listed below and Initial/Date.

Relay Number	Service Description	Relay Type	WV/Date
127-1-B33-1	Bus 33-1 Undervoltage Relay Phase A-B	IAV69A	
127-2-B33-1	Bus 33-1 Undervoltage Relay Phase B-C	IAV69A	

3.2. VERIFY that the data sheets for this cubicle agree with the Relay Setting Orders (RSO).

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

### 3.3. CALIBRATE 127-1-B33-1.

$\overline{W V}^{\prime} \frac{}{\text { Date }}$

$$
\begin{array}{ll}
\text { Allowable Value: } & \text { 79.91 VAC < VAC < 87.52 VAC } \\
\text { Expanded Tolerance: } & \text { 80.86 VAC < VAC < 86.50 VAC } \\
\text { Setting Tolerance: } & 81.00 \text { VAC < VAC < 86.40 VAC } \\
\text { Recommended Setpoint: } & 83.7 \text { VAC }
\end{array}
$$

3.3.1. IF setting is outside the Allowable Value, THEN NOTIFY the Unit Supervisor.

$$
\overline{\mathrm{WV}}^{\prime} \frac{}{\text { Date }}
$$

3.3.2. IF setting is outside the expanded tolerance, THEN INITIATE a condition report while continuing with this procedure.

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

3.3.3. IF the setting is outside the setting tolerance, THEN INITIATE a Condition Report while continuing with this procedure. Re-calibration of the relay will need to be done per the applicable NOAD procedure.


## ATTACHMENT 1

Relay Routine for 4 KV Bus 33-1 Undervoltage Relays Page 4 of 10

### 3.4. CALIBRATE 127-2-B33-1.



Allowable Value:	79.91 VAC < VAC < 87.52 VAC
Expanded Tolerance:	80.86 VAC < VAC < 86.50 VAC
Setting Tolerance:	81.00 VAC < VAC < 86.40 VAC
Recommended Setpoint:	83.7 VAC

3.4.1. IF setting is outside the Allowable Value, THEN NOTIFY the Unit Supervisor.

3.4.2. IF setting is outside the expanded tolerance, THEN INITIATE a condition report while continuing with this procedure.

3.4.3. IF the setting is outside the setting tolerance, THEN INITIATE a Condition Report while continuing with this procedure. Re-calibration of the relay will need to be done per the applicable NOAD procedure.

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

3.5. INSTALL relays into 4 KV Bus 33-1 Cubicle 13 listed below and Initial/Date.

Relay Number	Service Description	$\underline{\text { Relay Type }}$	WV/Date
127-1-B33-1	Bus 33-1 Undervoltage Relay Phase A-B	IAV69A	
127-2-B33-1	Bus 33-1 Undervoltage Relay Phase B-C	IAV69A	

## ATTACHMENT 1

Relay Routine for 4 KV Bus 33-1 Undervoltage Relays
Page 5 of 10

## 4. Functional Testing with Bus 33-1 Energized

NOTE: If 4 KV Bus $33-1$ is de-energized, then N/A Section 4.0 of this procedure and perform Functional Testing using Section 5.0 of this procedure.
4.1. PREPARE four each GE Test Paddles by INSTALLING the connecting links in all terminals EXCEPT terminals 5 and 6.

4.2. REMOVE upper and lower relay connection paddles from IAV69A relay 127-1-B33-1 at Bus 33-1, Cubicle 13 and REPLACE them with two GE Test Paddle as modified in step 4.1. After relay disc moves to its reset position, VERIFY that Bus 33-1 Undervoltage HFA Auxiliary relays 127B33-1X1, 127B33-1X2, and 127B33-1X3 do not actuate.

$$
\overline{\mathrm{WV}}^{\prime} \frac{}{\text { Date }}
$$

4.3. REMOVE both GE Test Paddle from IAV69A relay 127-1-B33-1 at Bus 33-1, Cubicle 13. REPLACE upper and lower relay connection paddles and VERIFY that relay disc moves to its energized position.

4.4. REMOVE upper and lower relay connection paddles from IAV69A relay 127-2-B33-1 at Bus 33-1, Cubicle 13 and REPLACE them with GE Test Paddles as modified in step 4.1. After relay disc moves to its reset position, VERIFY that Bus 33-1
Undervoltage HFA Auxiliary relays 127B33-1X1, 127B33-1X2, and 127B33-1X3 do not actuate. Do not remove GE Test Paddles.

4.5. REMOVE upper and lower relay connection paddles from IAV69A relay 127-1-B33-1 at Bus 33-1, Cubicle 13 and REPLACE them with two GE Test Paddles as modified in step 4.1. After relay disc moves to its reset position, VERIFY that:
4.5.1. Bus 33-1 Undervoltage HFA Auxiliary relay 127B33-1X1 actuates.

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

## ATTACHMENT 1 <br> Relay Routine for 4 KV Bus 33-1 Undervoltage Relays Page 6 of 10

4.5.2. Bus 33-1 Undervoltage HFA Auxiliary relay 127B33-1X2 actuates.

$$
\overline{\mathrm{WVV}}^{\prime} \frac{}{\text { Date }}
$$

4.5.3. Bus 33-1 Undervoltage HFA Auxiliary relay 127B33-1X3 actuates.

4.5.4. Breaker Close Undervoltage Agastat Timer relay 27XTD-33-1 actuates.

4.6. REMOVE both GE Test Paddles from IAV69A relay 127-1-B33-1 at Bus 33-1, Cubicle 13. REPLACE upper and lower relay connection paddles. After relay disc moves to its energized position, VERIFY that Bus 33-1 Undervoltage HFA Auxiliary relays 127B33-1X1, 127B33-1X2, and 127B33-1X3 remain actuated.

4.7. REMOVE both GE Test Paddles from IAV69A relay 127-2-B33-1 at Bus 33-1, Cubicle 13. REPLACE upper and lower relay connection paddles. After relay disc moves to its energized position, VERIFY that:
4.7.1. Bus 33-1 Undervoltage HFA Auxiliary relay 127B33-1X1 resets.

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

4.7.2. Bus 33-1 Undervoltage HFA Auxiliary relay 127B33-1X2 resets.

4.7.3. Bus 33-1 Undervoltage HFA Auxiliary relay 127B33-1X3 resets.


## ATTACHMENT 1 <br> Relay Routine for 4 KV Bus 33-1 Undervoltage Relays Page 7 of 10

4.7.4. Breaker Close Undervoltage Agastat Timer relay 27XTD-33-1 resets.

$$
\overline{\mathrm{WV}}^{\prime} \frac{}{\text { Date }}
$$

5. Bus 33-1 Undervoltage Relays Functional Testing with Bus De-energized

NOTE: If 4 KV Bus 33-1 is energized and functional tests were performed using Section 4.0 of this procedure, then N/A Section 5.0 of this procedure.
5.1. VERIFY that Bus 33-1 Undervoltage HFA Auxiliary relays 127B33-1X1, 127B33-1X2, and 127B33-1X3 are actuated.

5.2. OPEN test switch TS 33-1UV "E" at Panel 2253-83.

5.3. PLACE a jumper between test switches TS 33-1 UV "F" and "G" on Panel 2253-83. VERIFY that Agastat relay 459X1-33-1 actuates.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

5.4. ACTUATE IAV69A relay 127-1-B33-1 at Bus 33-1, Cubicle 13 by moving relay disc to its energized position. VERIFY that Bus 33-1 Undervoltage HFA Auxiliary relays 127B33-1X1, 127B33-1X2, and 127B33-1X3 remain actuated.

5.5. RELEASE relay disc to its de-energized position.


## ATTACHMENT 1 <br> Relay Routine for 4 KV Bus 33-1 Undervoltage Relays Page 8 of 10

5.6. ACTUATE IAV69A relay 127-2-B33-1 at Bus 33-1, Cubicle 13 by moving relay disc to its energized position, VERIFY that:
5.6.1. Bus 33-1 Undervoltage HFA Auxiliary relay 127B33-1X1 resets.

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

5.6.2. Bus 33-1 Undervoltage HFA Auxiliary relay 127B33-1X2 resets.

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

5.6.3. Bus 33-1 Undervoltage HFA Auxiliary relay 127B33-1X3 resets.

$$
\overline{\mathrm{WV}}^{\prime} \frac{}{\text { Date }}
$$

5.6.4. Breaker Close Undervoltage Agastat Timer relay 27XTD-33-1 resets.

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

5.7. RELEASE relay disc to its de-energized position. VERIFY that:
5.7.1. Bus 33-1 Undervoltage HFA Auxiliary relay 127B33-1X1 actuates.

$$
\overline{\mathrm{WV}}^{\prime} \frac{}{\text { Date }}
$$

5.7.2. Bus 33-1 Undervoltage HFA Auxiliary relay 127B33-1X2 actuates.

5.7.3. Bus 33-1 Undervoltage HFA Auxiliary relay 127B33-1X3 actuates.

$$
\overline{W ~ V}^{\prime} \frac{}{\text { Date }}
$$

## ATTACHMENT 1

Relay Routine for 4 KV Bus 33-1 Undervoltage Relays Page 9 of 10
5.7.4. Breaker Close Undervoltage Agastat Timer relay 27XTD-33-1 actuates.

$$
\overline{\mathrm{WVV}}^{\prime} \frac{}{\text { Date }}
$$

5.8. REMOVE jumper between test switches TS 33-1 UV "F" and "G" on Panel 2253-83. VERIFY that Agastat relay 459X1-33-1 resets.

5.9 CLOSE test switch TS 33-1UV "E" at Panel 2253-83.

6. Bus 33-1 Undervoltage Relays Trip Restoration
6.1. VERIFY all taps and time levers in all relays are in their "In Service" position as specified by each relay's "As Left" data.

6.2. REPLACE relay covers.

$$
\overline{W ~ V}^{\prime} \frac{}{\text { Date }}
$$

6.3. REVIEW, INITIAL and DATE appropriate data sheets.

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

CAUTION: If 4 KV Bus $33-1$ is energized, then VERIFY 4 KV Bus 33-1 Undervoltage HFA Auxiliary relays 127B33-1X1, 127B33-1X2, and 127B33-1X3 are reset BEFORE restoring Bus 33-1 Undervoltage relays trip test switches.

NOTE: If 4 KV Bus 33-1 is de-energized, then Alarm 1539, Window E-03 "4 KV BUSES 33-1 \& 34-1 VOLT LO" on Panel 903-8 will annunciate in the Control Room when Test Switch TS 127SD-3X " $D$ " is closed.

## ATTACHMENT 1

Relay Routine for 4 KV Bus 33-1 Undervoltage Relays Page 10 of 10
6.4. CLOSE the following test switches at Bus 33-1, Cubicle 13:

Print Number	Test Switch	Test Switch Label	CV/ Date	WV / Date
12E-3345 Sh. 2	TS 127B33-1X "B"	TRIP ILRT AIR COMP BRK		
12E-3345 Sh. 2	TS 127B33-1X "C"	TRIP CORE SPRAY PMP 3A BRK		
12E-3345 Sh. 2	TS 127B33-1X "D"	TRIP LPCI PMP 3B BRK		
12E-3345 Sh. 2	TS 127B33-1X "E"	TRIP SDC PMP 3A BRK		
12E-3345 Sh. 2	TS 127B33-1X "F"	TRIP 152-3328 BRK		
12E-3345 Sh. 2	TS 127B33-1X "G"	TRIP LPCI PMP 3A BRK		
12E-3345 Sh. 2	TS 127B33-1X "H"	*INTLK LPCI SYS 1		
12E-3345 Sh. 2	TS 127B33-1X " ${ }^{\text {" }}$	TRIP RWCU RECIRC PMP 3A BRK		
12E-3345 Sh. 2	TS 127B33-1X "J"	TRIP BUS 33-1 FEED TO BUS 23-1		
12E-3345 Sh. 2	TS 127SD-3X "A"	*INTLK CORE SPRAY SYS 1		
12E-3345 Sh. 2	TS 127SD-3X "B"	TRIP BUS 33-1 FEED BRK		
12E-3345 Sh. 2	TS 127SD-3X "C"	D/G START RELAY ASR 2/3-3		
12E-3345 Sh. 2	TS 127SD-3X "D"	ALARM BUS 33-1 34-1 VOLTS LO PNL 903-8 W29		
12E-3345 Sh. 2	TS 127SD-3X "E"	*INTLK LPCI SYS 1		

*Note: The following three (3) test switches could have 125VDC across the test switch:
TS 127B33-1X "H", TS 127SD-3X "A", TS 127SD-3X "E"
Since these test switches are used for monitoring permissives, it is acceptable to close them.

## 7. Return to Normal

7.1. VERIFY all relays are reset (or actuated if Bus 33-1 de-energized).

7.2. VERIFY targets reset (or actuated if Bus is 33-1 de-energized).

7.3. NOTIFY Operations/Control Room shift personnel that the relay routine is complete.


## ATTACHMENT 2 <br> Relay Routine for 4 KV Bus 34-1 Undervoltage Relays <br> Page 1 of 9

## 1. References

1.1. 12E-3346 Sh. 2- Schematic Control Diagram 4160V Bus 34-1 Standby Diesel 2 Feed \& 34-1 Tie Breaker.
1.2. 12E-3656B - Wiring Diagram 4160V Swgr Bus 34-1 Cub’s 9, 10, 11, 12, 13 \& 14.
1.3. 12E-3656H -Internal Schematic and Device Location Diagram 4160V Swgr Bus 34-1 Cubicle 13.
2. Control Isolation

CAUTION: ISOLATE 4 KV Bus 34-1 Undervoltage trips BEFORE removing Undervoltage relays for calibration:

NOTE: If 4 KV Bus $34-1$ is de-energized, then Alarm 4042, Window E-03 "4 KV BUSES 33-1 \& 34-1 VOLT LO" on Panel 903-8 will clear in the Control Room.
2.1 NOTIFY Operating that Isolating the following 3 test switches in the Isolation step of this UV surveillance will inhibit LPCI System 2 and Core Spray System 2 from starting during the performance of this surveillance.

TS 127B34-1H "H"
TS 159SD3X "A"
TS 159SD3X "H"

INTLK CORE SPRAY SYS 2
INTLK LPCI SYS 2
INTLK LPCI SYS 2
$\qquad$

## ATTACHMENT 2

Relay Routine for 4 KV Bus 34-1 Undervoltage Relays Page 2 of 9
2.2. OPEN the following test switches at Bus 34-1, Cubicle 13:

Print Number	Test Switch	Test Switch Label	CV/ Date	WV / Date
12E-3346 Sh. 2	TS 127-B34-1X "A"	TRIP BKR 152 3424		
12E-3346 Sh. 2	TS 127-B34-1X "B"	TRIP SHUT DOWN COOLG PMP 3C BRK		
12E-3346 Sh. 2	TS 127-B34-1X "C"	TRIP LPCI PMP 3D BRK		
12E-3346 Sh. 2	TS 127-B34-1X "D"	TRIP SHUT DOWN COOLG PMP 3B BRK		
12E-3346 Sh. 2	TS 127-B34-1X "E"	TRIP CORE SPRAY PMP 3B BRK		
12E-3346 Sh. 2	TS 127-B34-1X "F"	TRIP RX BLDG COOLG WTR PMP 2/3 BRK		
12E-3346 Sh. 2	TS 127-B34-1X "G"	TRIP LPCI PMP 3C BKR		
12E-3346 Sh. 2	TS 127-B34-1X "H"	INTLK CORE SPRAY SYS 2		
12E-3346 Sh. 2	TS 127-B34-1X "I"	TRIP RWCU RECIRC PMP 3B		
12E-3346 Sh. 2	TS 159SD3X "A"	INTLK LPCI SYS 2		
12E-3346 Sh. 2	TS 159SD3X "C"	TRIP INTLK BUS 34-1 FEED BRK		
$12 E-3346$ Sh. 2	TS 159SD3X "D"	ALARM BUS 33-1 34-1 VOLTS LO PNL 903-8		
$12 E-3346$ Sh. 2	TS 159SD3X "F"	W29		
$12 E-3346$ Sh. 2	TS 159SD3X "H"	D/G START REL ASR-3		

3. Relay Calibration
3.1. REMOVE relays from 4 KV Bus 34-1 Cubicle 13 listed below and Initial/Date.

Relay Number	Service Description	Relay Type	WV/Date
127-1-B34-1	Bus 34-1 Undervoltage Relay Phase A-B	IAV69A	
127-2-B34-1	Bus 34-1 Undervoltage Relay Phase B-C	IAV69A	

3.2. VERIFY that the data sheets for this cubicle agree with the Relay Setting Orders (RSO).


## ATTACHMENT 2

Relay Routine for 4 KV Bus 34-1 Undervoltage Relays
Page 3 of 9

### 3.3. CALIBRATE 127-1-B34-1.

## $\overline{W V}^{\prime} \frac{}{\text { Date }}$

Allowable Value:	79.91 VAC < VAC < 87.52 VAC
Expanded Tolerance:	80.86 VAC < VAC < 86.50 VAC
Setting Tolerance:	81.00 VAC < VAC < 86.40 VAC
Recommended Setpoint:	83.70 VAC

3.3.1. IF setting is outside the Allowable Value, THEN NOTIFY the Unit Supervisor.

3.3.2. IF setting is outside the expanded tolerance, THEN INITIATE a condition report while continuing with this procedure.

3.3.3. IF the setting is outside the setting tolerance, THEN INITIATE a Condition Report while continuing with this procedure. Re-calibration of the relay will need to be done per the applicable NOAD procedure.


## ATTACHMENT 2

Relay Routine for 4 KV Bus 34-1 Undervoltage Relays Page 4 of 9

### 3.4. CALIBRATE 127-2-B34-1.



Allowable Value:	79.91 VAC < VAC < 87.52 VAC
Expanded Tolerance:	80.86 VAC < VAC < 86.50 VAC
Setting Tolerance:	81.00 VAC < VAC < 86.40 VAC
Recommended Setpoint:	83.7 VAC

3.4.1. IF setting is outside the Allowable Value, THEN NOTIFY the Unit Supervisor.

3.4.2. IF setting is outside the expanded tolerance, THEN INITIATE a condition report while continuing with this procedure.

3.4.3. IF the setting is outside the setting tolerance, THEN INITIATE a Condition Report while continuing with this procedure. Re-calibration of the relay will need to be done per the applicable NOAD procedure.
3.5. INSTALL relays into 4 KV Bus 34-1 Cubicle 13 listed below and Initial/Date.

Relay Number	Service Description	Relay Type	WV/Date
127-1-B34-1	Bus 34-1 Undervoltage Relay Phase A-B	IAV69A	
$127-2-B 34-1$	Bus 34-1 Undervoltage Relay Phase B-C	IAV69A	

## ATTACHMENT 2

Relay Routine for 4 KV Bus 34-1 Undervoltage Relays
Page 5 of 9
4. Functional Testing with Bus 34-1 Energized

NOTE: If 4 KV Bus $34-1$ is de-energized, then N/A Section 4.0 of this procedure and perform Functional Testing using Section 5.0 of this procedure.
4.1. PREPARE four each GE Test Paddles by INSTALLING the connecting links in all terminals EXCEPT terminals 5 and 6.

4.2. REMOVE upper and lower relay connection paddles from IAV69A relay 127-1-B34-1 at Bus 34-1, Cubicle 13 and REPLACE them with two GE Test Paddle as modified in step 4.1. After relay disc moves to its reset position, VERIFY that Bus 34-1 Undervoltage HFA Auxiliary relays 127B34-1X1, 127B34-1X2, and 127B34-1X3 do not actuate.

4.3. REMOVE both GE Test Paddle from IAV69A relay 127-1-B34-1 at Bus 34-1, Cubicle 13. REPLACE upper and lower relay connection paddles and VERIFY that relay disc moves to its energized position.

4.4. REMOVE upper and lower relay connection paddles from IAV69A relay 127-2-B34-1 at Bus 34-1, Cubicle 13 and REPLACE THEM with GE Test Paddle as modified in step 4.1. After relay disc moves to its reset position, VERIFY that Bus 34-1 Undervoltage HFA Auxiliary relays 127B34-1X1, 127B34-1X2, and 127B34-1X3 do not actuate. Do not remove GE Test Paddles. $\qquad$
4.5. REMOVE upper and lower relay connection paddles from IAV69A relay 127-1-B34-1 at Bus 34-1, Cubicle 13 and REPLACE them with two GE Test Paddle as modified in step 4.1. After relay disc moves to its reset position, VERIFY that:
4.5.1. Bus 34-1 Undervoltage HFA Auxiliary relay 127B34-1X1 actuates.

$$
\overline{\mathrm{WV}}^{\prime} \frac{}{\text { Date }}
$$

4.5.2. Bus 34-1 Undervoltage HFA Auxiliary relay 127B34-1X2 actuates.


## ATTACHMENT 2 <br> Relay Routine for 4 KV Bus 34-1 Undervoltage Relays <br> Page 6 of 9

4.5.3. Bus 34-1 Undervoltage HFA Auxiliary relay 127B34-1X3 actuates.

$$
\overline{W V ~ V}^{\prime} \frac{}{\text { Date }}
$$

4.5.4. Breaker Close Undervoltage Agastat Timer relay 27XTD-34-1 actuates.

4.6. REMOVE both GE Test Paddles from IAV69A relay 127-1-B34-1 at Bus 34-1, Cubicle 13. REPLACE upper and lower relay connection paddles. After relay disc moves to its energized position, VERIFY that Bus 34-1 Undervoltage HFA Auxiliary relays 127B34-1X1, 127B34-1X2, and 127B34-1X3 remain actuated.

4.7. REMOVE both GE Test Paddles from IAV69A relay 127-2-B34-1 at Bus 34-1, Cubicle 13. REPLACE upper and lower relay connection paddles. After relay disc moves to its energized position, VERIFY that:
4.7.1. Bus 34-1 Undervoltage HFA Auxiliary relay 127B34-1X1 resets.

$$
\overline{\mathrm{WV}}^{\prime} \frac{}{\text { Date }}
$$

4.7.2. Bus 34-1 Undervoltage HFA Auxiliary relay 127B34-1X2 resets.

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

4.7.3. Bus 34-1 Undervoltage HFA Auxiliary relay 127B34-1X3 resets.

$$
\overline{\mathrm{WVV}}^{\prime} \frac{}{\text { Date }}
$$

4.7.4. Breaker Close Undervoltage Agastat Timer relay 27XTD-34-1 resets.

$$
\overline{\mathrm{WVV}}^{\prime} \frac{}{\text { Date }}
$$

## ATTACHMENT 2

Relay Routine for 4 KV Bus 34-1 Undervoltage Relays
Page 7 of 9

## 5. Bus 34-1 Undervoltage Relays Functional Testing with Bus De-energized

NOTE: If 4 KV Bus $34-1$ is energized and functional tests were performed using Section 4.0 of this procedure, then N/A Section 5.0 of this procedure.
5.1. VERIFY that Bus 34-1 Undervoltage HFA Auxiliary relays 127B34-1X1, 127B34-1X2, and 127B34-1X3 are actuated.

5.2. OPEN test switch TS 34-1UV "E" at Panel 2253-84.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

5.3. PLACE a jumper between test switches TS 34-1 UV "F" and "G" on Panel 2253-84. VERIFY that Agastat relay 459X1-34-1 actuates.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

5.4. ACTUATE IAV69A relay 127-1-B34-1 at Bus 34-1, Cubicle 13 by moving relay disc to its energized position. VERIFY that Bus 34-1 Undervoltage HFA Auxiliary relays 127B34-1X1, 127B34-1X2, and 127B34-1X3 remain actuated.

$$
\overline{W V}^{\prime} \overline{\text { Date }}
$$

5.4. RELEASE relay disc to its de-energized position.

5.6. ACTUATE IAV69A relay 127-2-B34-1 at Bus 34-1, Cubicle 13 by moving relay disc to its energized position. VERIFY that:
5.6.1. Bus 34-1 Undervoltage HFA Auxiliary relay 127B34-1X1 resets.

5.6.2. Bus 34-1 Undervoltage HFA Auxiliary relay 127B34-1X2 resets.

5.6.3. Bus 34-1 Undervoltage HFA Auxiliary relay 127B34-1X3 resets.


## ATTACHMENT 2

Relay Routine for 4 KV Bus 34-1 Undervoltage Relays Page 8 of 9
5.6.4. Breaker Close Undervoltage Agastat Timer relay 27XTD-34-1 resets.

5.7. RELEASE relay disc to its de-energized position. VERIFY that:
5.7.1. Bus 34-1 Undervoltage HFA Auxiliary relay 127B34-1X1 actuates.

5.7.2. Bus 34-1 Undervoltage HFA Auxiliary relay 127B34-1X2 actuates.

5.7.3. Bus 34-1 Undervoltage HFA Auxiliary relay 127B34-1X3 actuates.

5.7.4. Breaker Close Undervoltage Agastat Timer relay 27XTD-34-1 actuates.

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

5.8. REMOVE jumper between test switches TS 34-1 UV "F" and "G" on Panel 2253-84. VERIFY that Agastat relay 459X1-34-1 resets.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

5.9. CLOSE test switch TS 34-1UV "E" at Panel 2253-84. $\qquad$
$\qquad$ / $\overline{\text { Date }}$
6. Bus 34-1 Undervoltage and Degraded Voltage Trip Restoration
6.1. VERIFY all taps and time levers in all relays are in their "In Service" position as specified by each relay's "As Left" data.

6.2. REPLACE relay covers.

6.3. REVIEW, INITIAL and DATE appropriate data sheets.


CAUTION: If 4 KV Bus $34-1$ is energized, then VERIFY 4 KV Bus 34-1 Undervoltage HFA Auxiliary relays 127B34-1X1, 127B34-1X2, and 127B34-1X3 are reset BEFORE restoring Bus 34-1 Undervoltage relays trip test switches.

## ATTACHMENT 2

Relay Routine for 4 KV Bus 34-1 Undervoltage Relays Page 9 of 9

NOTE: If 4 KV Bus $34-1$ is de-energized, then Alarm 4042, Window E-03 " 4 KV BUSES 33-1 \& 34-1 VOLT LO" on Panel 903-8 will annunciate in the Control Room when Test Switch TS 159SD3X "D" is closed.
6.4. CLOSE the following test switches at Bus 34-1, Cubicle 13:

Print Number	Test Switch	Test Switch Label	CV/ Date	WV / Date
12E-3346 Sh. 2	TS 127B34-1X "A"	TRIP BKR 152 3424		
12E-3346 Sh. 2	TS 127B34-1X "B"	TRIP SHUT DOWN COOLG PMP 3C BRK		
12E-3346 Sh. 2	TS 127B34-1X "C"	TRIP LPCI PMP 3D BRK		
12E-3346 Sh. 2	TS 127B34-1X "D"	TRIP SHUT DOWN COOLG PMP 3B BRK		
12E-3346 Sh. 2	TS 127B34-1X "E"	TRIP CORE SPRAY PMP 3B BRK		
12E-3346 Sh. 2	TS 127B34-1X "F"	TRIP RX BLDG COOLG WTR PMP 2/3 BRK		
12E-3346 Sh. 2	TS 127B34-1X "G"	TRIP LPCI PMP 3C BKR		
12E-3346 Sh. 2	TS 127B34-1X "H"	*INTLK CORE SPRAY SYS 2		
12E-3346 Sh. 2	TS 127B34-1X "I"	TRIP RWCU RECIRC PMP 3B		
12E-3346 Sh. 2	TS 159SD3X "A"	*INTLK LPCI SYS 2		
$12 E-3346$ Sh. 2	TS 159SD3X "C"	TRIP INTLK BUS 34-1 FEED BRK		
$12 E-3346$ Sh. 2	TS 159SD3X "D"	ALARM BUS 33-1 34-1 VOLTS LO PNL 903-8		
$12 E-3346$ Sh. 2	TS 159SD3X "F"	W29		
$12 E-3346$ Sh. 2	TS 159SD3X "H"	D/G START REL ASR-3		

*Note: The following three (3) test switches could have 125VDC across the test switch:
TS 127B34-1X "H", TS 159SD-3X "A", TS 159SD-3X "H"
Since these test switches are used for monitoring permissives, it is acceptable to close them.
7. Return to Normal
7.1. VERIFY all relays are reset (or actuated if Bus 34-1 de-energized).

7.2. VERIFY targets reset (or actuated if Bus 34-1 de-energized).


Exelun.
Nuclear
7.3. NOTIFY Operations/Control Room shift personnel that the relay routine is complete.

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

## ATTACHMENT 3 <br> Relay Routine for 4 KV Bus 33-1 Degraded Voltage Relays Page 1 of 11

## 1. References

1.1. 12E-3334 Relay and Metering Diagram - 4160. Switch Group 33-1 \& 34-1.
1.2. 12E-3345 Sh. 2- Schematic Diagram 4160V Bus 33-1, 4 kV Swgr 40 Feed Breaker.
1.3. 12E-3345 Sh. 3- Schematic Diagram 4160V Bus 33-1, 4 kV Bus 33-1 \& 23-1 Tie Breaker.
2.3. 12E-3655B - Wiring Diagram 4160V Swgr Bus $33-1$ Cubicles 9, 10, 11, 12, 13, \& 14.
2.4. 12E-3655G - 4160V Swgr Bus 33-1 Cubicle 13 Internal Schematic and Device Location Diagram.
2.5. $12 \mathrm{E}-3650 \mathrm{~B}$ - Wiring Diagram 4 KV Bus 33-1 $2^{\text {nd }}$ Level Undervoltage Panel 2253-83.
2. Relay Isolation and Relay Removal
2.1. VERIFY that the data sheets for this relay agree with the Relay Setting Orders (RSO).

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \frac{}{\text { Date }}
$$

2.2. INFORM Operations that the $2 / 3$ DG will be inop to D 3 prior to performing the following step.

2.3. OPEN test switch TS 33-1UV "E".

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

2.4. INSTALL a jumper between TS 33-1 UV "F" and TS 33-1 UV "G".


Note: After the Jumper is installed on the relay, care shall be taken to ensure that the jumper does not become disconnected.

## ATTACHMENT 3 <br> Relay Routine for 4 KV Bus 33-1 Degraded Voltage Relays Page 2 of 11

2.5. REMOVE TDR-33-1 at Panel 2253-83.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

2.6. OPEN test switches TS 33-1UV " $A$ " and " $B$ " at Panel 2253-83.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

2.7. VERIFY that relay 127-3-B33-1 trip target is illuminated.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

2.9. OPEN test switches TS 33-1UV "C" and "D" at Panel 2253-83.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

2.10. VERIFY that relay 127-4-B33-1 trip target is illuminated.

2.11. REMOVE relay 127-4-B33-1 from Panel 2253-83


## ATTACHMENT 3 <br> Relay Routine for 4 KV Bus 33-1 Degraded Voltage Relays Page 3 of 11

## 3. Relay Calibration

3.1. VERIFY room temperature is between the range of 21 to 24 Deg. C.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

3.2. SET the Fluke 45 on the medium sampling rate.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

3.3. CALIBRATE relay 127-3-B33-1.

Allowable Value: $\quad$ 110.3 VAC < VAC < 111.5 VAC
Expanded Tolerance: $\quad 110.4$ VAC $<$ VAC $<111.0$ VAC
Setting Tolerance: $\quad 110.5$ VAC $<$ VAC $<110.9$ VAC
Recommended Setpoint: 110.7 VAC
Allowable Value: $\quad 5.7$ seconds < Time $<8.3$ seconds
Expanded Tolerance: $\quad 6.2$ seconds < Time $<7.8$ seconds
Setting Tolerance: $\quad 6.3$ seconds $<$ Time $<7.7$ seconds
Recommended Setpoint: 7.0 seconds
3.3.1. IF setting is outside the Allowable Value, Then NOTIFY the Unit Supervisor.

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

3.3.2. IF setting is outside the expanded tolerance, Then INITIATE a condition report while continuing with this procedure.

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

3.3.3. IF the setting is outside the setting tolerance, Then INITIATE a Condition Report while continuing with this procedure. Re-calibration of the relay will need to be done per the applicable NOAD procedure.


# ATTACHMENT 3 <br> Relay Routine for 4 KV Bus 33-1 Degraded Voltage Relays Page 4 of 11 

3.4. CALIBRATE relay 127-4-B33-1.


Allowable Value:	110.3 VAC < VAC < 111.5 VAC
Expanded Tolerance:	110.4 VAC < VAC < 111.0 VAC
Setting Tolerance:	$110.5 \mathrm{VAC}<\mathrm{VAC}<110.9$ VAC
Recommended Setpoint:	110.7 VAC
Allowable Value:	5.7 seconds $<$ Time $<8.3$ seconds
Expanded Tolerance:	6.2 seconds $<$ Time $<7.8$ seconds
Setting Tolerance:	6.3 seconds $<$ Time $<7.7$ seconds
Recommended Setpoint:	7.0 seconds

3.4.1. IF setting is outside the Allowable Value, Then NOTIFY the Unit Supervisor.

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

3.4.2. IF setting is outside the expanded tolerance, Then INITIATE a condition report while continuing with this procedure.

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

3.4.3. IF the setting is outside the setting tolerance, Then INITIATE a Condition Report while continuing with this procedure. Re-calibration of the relay will need to be done per the applicable NOAD procedure.

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

## ATTACHMENT 3 <br> Relay Routine for 4 KV Bus 33-1 Degraded Voltage Relays Page 5 of 11

### 3.5. CALIBRATE TDR-33-1 relay.

$\qquad$
Allowable Value: $\quad 279.0$ seconds < Time < 321.0 seconds
Expanded Tolerance: 297.8 seconds < Time < 317.2 seconds
Setting Tolerance: $\quad 300.0$ seconds < Time < 315.0 seconds
Recommended Setpoint: 307.5 seconds
3.5.1. IF setting is outside the Allowable Value, Then NOTIFY the Unit Supervisor.

$$
\overline{\mathrm{WV} \mathrm{~V}}^{\prime} \frac{}{\text { Date }}
$$

3.5.2. IF setting is outside the expanded tolerance, Then INITIATE a condition report while continuing with this procedure.

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

3.5.3. IF the setting is outside the setting tolerance, Then INITIATE a Condition Report while continuing with this procedure. Re-calibration of the relay will need to be done per the applicable NOAD calibration procedure.

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

## ATTACHMENT 3

Relay Routine for 4 KV Bus 33-1 Degraded Voltage Relays Page 6 of 11
4. Relay Installation
4.1. INSTALL relay 127-3-B33-1 into Panel 2253-83.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

4.2. VERIFY that relay 127-3-B33-1 power indicating light is lit.

4.3. CLOSE test switches TS 33-1UV "A" and "B" at Panel 2253-83.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

4.4. RESET relay 127-3-B33-1 trip target.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

4.5. INSTALL relay 127-4-B33-1 into Panel 2253-83.

$$
\overline{\mathrm{CV}}^{\prime} \frac{}{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \frac{}{\text { Date }}
$$

4.6. VERIFY that relay 127-4-B33-1 power indicating light is lit.

4.7. CLOSE test switches TS 33-1UV "C" and "D" at Panel 2253-83.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

4.8. RESET relay 127-4-B33-1 trip target.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

## ATTACHMENT 3

Relay Routine for 4 KV Bus 33-1 Degraded Voltage Relays Page 7 of 11
4.9. INSTALL TDR-33-1 relay into Panel 2253-83.

5.0 Functional Testing
5.1. CONNECT VOM \#1 to TB 1-6 and TB 1-8 in 2253-83 to monitor relay TDR-33-1 contact T1 and M1 VERIFYING no continuity (ohms) across contact. Do not disconnect VOM.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

5.2. CONNECT VOM \#2 to TB 1-5 and TS 33-1 UV "I" to monitor TDR-33-1 coil VERIFYING no 125VDC across coil. Do not disconnect VOM.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV} \mathrm{~V}}^{\prime} \overline{\text { Date }}
$$

5.3. REMOVE jumper previously installed between TS 33-1 UV "F" and TS 33-1 UV "G".

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

5.4 CONNECT VOM \#3 between TS 33-1 UV "F" and TS 33-1 UV "G", VERIFYING no 125VDC. Do not disconnect VOM.

5.5. TRIP Relay 127-3-B33-1 by OPENING test switch TS 33-1 UV "A"

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

5.6. VERIFY that relay 127-3-B33-1 trip target is illuminated.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

## ATTACHMENT 3 <br> Relay Routine for 4 KV Bus 33-1 Degraded Voltage Relays Page 8 of 11

5.7. VERIFY no 125 VDC on VOM \#2 connected across relay TDR-33-1 coil.

$$
\overline{\mathrm{C} \mathrm{~V}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \frac{}{\text { Date }}
$$

5.8. VERIFY 125 VDC on VOM \#3 connected to TS 33-1 UV "F" and TS 33-1 UV "G".

5.9. RESET Relay 127-3-B33-1 by CLOSING test switch TS 33-1 UV "A"

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \frac{}{\text { Date }}
$$

5.10. RESET target on relay 127-3-B33-1.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{W V}^{\prime} \overline{\text { Date }}
$$

5.11. VERIFY no 125 VDC on VOM \#2 connected across relay TDR-33-1 coil.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

5.12. VERIFY no 125 VDC on VOM \#3 connected to TS 33-1 UV "F" and TS 33-1 UV "G".

5.13. TRIP Relay 127-4-B33-1 by OPENING test switch TS 33-1 UV "D".

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

# ATTACHMENT 3 <br> Relay Routine for 4 KV Bus 33-1 Degraded Voltage Relays Page 9 of 11 

5.14. VERIFY that relay 127-4-B33-1 trip target is illuminated.

$$
\overline{\mathrm{WV}}^{\prime} \frac{}{\text { Date }}
$$

5.15. VERIFY no 125 VDC on VOM \#2 connected across relay TDR-33-1 coil.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

5.16. VERIFY no 125 VDC on VOM \#3 connected to TS 33-1 UV "F" and TS 33-1 UV "G".

5.17. PRIOR to performing the next step, NOTIFY Operations that the " 4 KV Bus $33-1$

Voltage Degraded" alarm on the 903-8 C-04 window will be received.

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

5.18. TRIP Relay $127-3-\mathrm{B} 33-1$ by OPENING test switch TS 33-1 UV "A"

5.19. VERIFY that relay 127-3-B33-1 trip target is illuminated.

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

5.20. VERIFY 125 VDC on VOM \#2 connected across relay TDR-33-1 coil.

$$
\overline{\mathrm{CVV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

5.21. VERIFY 125 VDC on VOM \#3 connected to TS 33-1 UV "F" and TS 33-1 UV "G".

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

## ATTACHMENT 3 <br> Relay Routine for 4 KV Bus 33-1 Degraded Voltage Relays <br> Page 10 of 11

5.22 VERIFY continuity (ohms) on VOM \#1 across terminal T1 and Terminal M1 of relay TDR-33-1 after 6 minutes.

5.23. VERIFY Operations received the "4KV Bus 33-1 Voltage Degraded" alarm on the 9038 C-04 window.

5.24. RESET Relay 127-3-B33-1 by CLOSING test switch TS 33-1 UV "A"

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

5.25. RESET target on relay 127-3-B33-1.

5.26. RESET Relay 127-4-B33-1 by CLOSING test switch TS 33-1 UV "D"

5.27. RESET target on relay 127-4-B33-1.

5.28. VERIFY no continuity (ohms) on VOM \#1 connected across terminal T1 and Terminal M1 of relay TDR-33-1 and REMOVE VOM.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV} \mathrm{~V}}^{\prime} \frac{}{\text { Date }}
$$

5.29. VERIFY no 125 VDC on VOM \#2 connected across relay TDR-33-1 coil and REMOVE VOM.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

## ATTACHMENT 3

Relay Routine for 4 KV Bus 33-1 Degraded Voltage Relays Page 11 of 11
5.30. VERIFY no 125 VDC on VOM \#3 connected to TS 33-1 UV "F" and TS 33-1 UV "G" and REMOVE VOM.

6. Restoration
6.1. VERIFY no voltage across test switch TS 33-1UV "E" and then CLOSE test switch TS 33-1UV "E".

$$
\overline{C V}^{\prime} \overline{\text { Date }} \quad \overline{W V}^{\prime} \overline{\text { Date }}
$$

6.2. INFORM Operations that the $2 / 3 \mathrm{DG}$ to D 3 is operable.

7. Return to Normal
7.1. VERIFY all relays are reset.

7.2. VERIFY targets are reset.

$$
\overline{C V}^{\prime} \overline{\text { Date }} \quad \overline{W V}^{\prime} \overline{\text { Date }}
$$

7.3. NOTIFY Operations/Control Room shift personnel that the relay routine is complete.

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

## ATTACHMENT 4 <br> Relay Routine for 4 KV Bus 34-1 Degraded Voltage Relays Page 1 of 11

## 1. References

1.1. 12E-3334 Relay and Metering Diagram - 4160. Switch Group 33-1 \& 34-1.
1.2. 12E-3346 Sh. 1- Schematic Diagram 4160V Bus 34-1, 4 kV Diesel 3 Feed Breaker \& 24-1 Tie Breakder.
1.3. 12E-3346 Sh. 2- Schematic Diagram 4160V Bus 34-1, Diesel 3 Feed Breaker \& 24-1 Tie Breaker.
1.4. 12E-3656A - Wiring Diagram 4160V Swgr Bus 34-1 Cubicles $1,2,3,4,5,6,7, \& 8$.
1.5. 12E-3655G-4160V Swgr Bus 34-1 Cubicle 13 Internal Schematic and Device Location Diagram.
1.6. 12E-3650C - Wiring Diagram 4 KV Bus 34-1 $2^{\text {nd }}$ Level Undervoltage Panel 2253-84.
2. Relay Isolation and Relay Removal
2.1. VERIFY that the data sheets for this relay agree with the Relay Setting Orders (RSO).

2.2. INFORM Operations that the 3 DG will be inop to D3 prior to performing the following step.

$$
\overline{\mathrm{WVV}}^{\prime} \frac{}{\text { Date }}
$$

2.3. OPEN test switch TS 34-1UV "E".

2.4. INSTALL a jumper between TS 34-1 UV "F" and TS 34-1 UV "G".

$$
\overline{C V}^{\prime} \overline{\text { Date }} \quad \overline{W V}^{\prime} \overline{\text { Date }}
$$

Note: After the Jumper is installed on the relay, care shall be taken to ensure that the jumper does not become disconnected.

# ATTACHMENT 4 <br> Relay Routine for 4 KV Bus 34-1 Degraded Voltage Relays Page 2 of 11 

2.5. REMOVE TDR-34-1 at Panel 2253-84.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \frac{}{\text { Date }}
$$

2.6. OPEN test switches TS 34-1UV "A" and "B" at Panel 2253-84.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

2.7. VERIFY that relay 127-3-B34-1 trip target is illuminated.
2.8. REMOVE relay 127-3-B34-1 from Panel 2253-84

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

2.9. OPEN test switches TS 34-1UV "C" and "D" at Panel 2253-84.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \frac{}{\text { Date }}
$$

2.10. VERIFY that relay 127-4-B34-1 trip target is illuminated.

2.11. REMOVE relay 127-4-B34-1 from Panel 2253-84


## ATTACHMENT 4

Relay Routine for 4 KV Bus 34-1 Degraded Voltage Relays Page 3 of 11

## 3. Relay Calibration

3.1. VERIFY room temperature is between the range of 21 to 24 Deg. C.

3.2. SET the Fluke 45 on the medium sampling rate.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{W V}^{\prime} \overline{\text { Date }}
$$

3.3. CALIBRATE relay 127-3-B34-1. $\qquad$
Allowable Value: $\quad$ 110.3 VAC < VAC < 111.5 VAC
Expanded Tolerance: $\quad 110.4$ VAC < VAC < 111.0 VAC
Setting Tolerance: $\quad 110.5$ VAC $<$ VAC $<110.9$ VAC
Recommended Setpoint: 110.7 VAC
Allowable Value: $\quad 5.7$ seconds < Time < 8.3 seconds
Expanded Tolerance: $\quad 6.2$ seconds < Time $<7.8$ seconds
Setting Tolerance: $\quad 6.3$ seconds < Time $<7.7$ seconds
Recommended Setpoint: 7.0 seconds
3.3.1. IF setting is outside the Allowable Value, Then NOTIFY the Unit Supervisor.

3.3.2. IF setting is outside the expanded tolerance, Then INITIATE a condition report while continuing with this procedure.

3.3.3. IF the setting is outside the setting tolerance, Then INITIATE a Condition Report while continuing with this procedure. Re-calibration of the relay will need to be done per the applicable NOAD procedure.

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

# ATTACHMENT 4 <br> Relay Routine for 4 KV Bus 34-1 Degraded Voltage Relays Page 4 of 11 

3.4. CALIBRATE relay 127-4-B34-1. $\qquad$

Allowable Value:	$110.3 \mathrm{VAC}<\mathrm{VAC}<111.5 \mathrm{VAC}$
Expanded Tolerance:	$110.4 \mathrm{VAC}<\mathrm{VAC}<111.0 \mathrm{VAC}$
Setting Tolerance:	$110.5 \mathrm{VAC}<\mathrm{VAC}<110.9 \mathrm{VAC}$
Recommended Setpoint:	110.7 VAC
Allowable Value:	5.7 seconds $<$ Time $<8.3$ seconds
Expanded Tolerance:	6.2 seconds $<$ Time $<7.8$ seconds
Setting Tolerance:	6.3 seconds $<$ Time $<7.7$ seconds
Recommended Setpoint:	7.0 seconds

3.4.1. IF setting is outside the Allowable Value, Then NOTIFY the Unit Supervisor.

$$
\overline{W V}^{\prime} \overline{\text { Date }}
$$

3.4.2. IF setting is outside the expanded tolerance, Then INITIATE a condition report while continuing with this procedure.

$$
\overline{W V}^{\prime} \overline{D a t e}
$$

3.4.3. IF the setting is outside the setting tolerance, Then INITIATE a Condition Report while continuing with this procedure. Re-calibration of the relay will need to be done per the applicable NOAD procedure.

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

## ATTACHMENT 4 <br> Relay Routine for 4 KV Bus 34-1 Degraded Voltage Relays Page 5 of 11

3.5. CALIBRATE TDR-34-1 relay.


Allowable Value: $\quad 279.0$ seconds < Time < 321.0 seconds
Expanded Tolerance: 297.8 seconds < Time < 317.2 seconds
Setting Tolerance: $\quad 300.0$ seconds < Time < 315.0 seconds
Recommended Setpoint: 307.5 seconds
3.5.1. IF setting is outside the Allowable Value, Then NOTIFY the Unit Supervisor.

3.5.2. IF setting is outside the expanded tolerance, Then INITIATE a condition report while continuing with this procedure.

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

3.5.3. IF the setting is outside the setting tolerance, Then INITIATE a Condition Report while continuing with this procedure. Re-calibration of the relay will need to be done per the applicable NOAD calibration procedure.

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

## ATTACHMENT 4

Relay Routine for 4 KV Bus 34-1 Degraded Voltage Relays Page 6 of 11
4. Relay Installation
4.1. INSTALL relay 127-3-B34-1 into Panel 2253-84.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

4.2. VERIFY that relay 127-3-B34-1 power indicating light is lit.

4.3. CLOSE test switches TS 34-1UV "A" and "B" at Panel 2253-84.

4.4. RESET relay 127-3-B34-1 trip target.

4.5. INSTALL relay 127-4-B34-1 into Panel 2253-84.

4.6. VERIFY that relay 127-4-B34-1 power indicating light is lit.

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$

4.7. CLOSE test switches TS 34-1UV "C" and "D" at Panel 2253-84.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

4.8. RESET relay 127-4-B34-1 trip target.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

## ATTACHMENT 4

Relay Routine for 4 KV Bus 34-1 Degraded Voltage Relays Page 7 of 11
4.9. INSTALL TDR-34-1 relay into Panel 2253-84.

$$
\overline{C V}^{\prime} \overline{\text { Date }} \quad \overline{W V}^{\prime} \overline{\text { Date }}
$$

5.0 Functional Testing
5.1. CONNECT VOM \#1 to TB 1-6 and TB 1-8 in 2253-84 to monitor relay TDR-34-1 contact T1 and M1 VERIFYING no continuity (ohms) across contact. Do not disconnect VOM.

$$
\overline{C V}^{\prime} \overline{\text { Date }} \quad \overline{W V}^{\prime} \overline{\text { Date }}
$$

5.2. CONNECT VOM \#2 to TB 1-5 and TS 34-1 UV "l" to monitor TDR-34-1 coil VERIFYING no 125VDC across coil. Do not disconnect VOM.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{W V}^{\prime} \overline{\text { Date }}
$$

5.3. REMOVE jumper previously installed between TS 34-1 UV "F" and TS 34-1 UV "G".

$$
\overline{C V}^{\prime} \overline{\text { Date }} \quad \overline{W V}^{\prime} \overline{\text { Date }}
$$

5.4. CONNECT VOM \#3 between TS 34-1 UV "F" and TS 34-1 UV "G", VERIFYING no 125VDC. Do not disconnect VOM.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

5.5. TRIP Relay $127-3-B 34-1$ by OPENING test switch TS 34-1 UV "A"

5.6. VERIFY that relay 127-3-B34-1 trip target is illuminated.

$$
\overline{C V}^{\prime} \overline{\text { Date }} \quad \overline{W V}^{\prime} \overline{\text { Date }}
$$

## ATTACHMENT 4

Relay Routine for 4 KV Bus 34-1 Degraded Voltage Relays Page 8 of 11
5.7. VERIFY no 125 VDC on VOM \#2 connected across relay TDR-34-1 coil.

$$
\overline{\mathrm{CVV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

5.8. VERIFY 125 VDC on VOM \#3 connected to TS 34-1 UV "F" and TS 34-1 UV "G".

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

5.9. RESET Relay 127-3-B34-1 by CLOSING test switch TS 34-1 UV "A"

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{W V}^{\prime} \overline{\text { Date }}
$$

5.10. RESET target on relay 127-3-B34-1.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

5.11. VERIFY no 125 VDC on VOM \#2 connected across relay TDR-34-1 coil.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \frac{}{\text { Date }}
$$

5.12. VERIFY no 125 VDC on VOM \#3 connected to TS 34-1 UV "F" and TS 34-1 UV "G".

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \frac{}{\text { Date }}
$$

5.13. TRIP Relay 127-4-B34-1 by OPENING test switch TS 34-1 UV "D".

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{W V}^{\prime} \overline{\text { Date }}
$$

## ATTACHMENT 4

Relay Routine for 4 KV Bus 34-1 Degraded Voltage Relays Page 9 of 11
5.14. VERIFY that relay 127-4-B34-1 trip target is illuminated.

5.15. VERIFY no 125 VDC on VOM \#2 connected across relay TDR-34-1 coil.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \frac{}{\text { Date }}
$$

5.16. VERIFY no 125 VDC on VOM \#3 connected to TS 34-1 UV "F" and TS 34-1 UV "G".

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

5.17. PRIOR to performing the next step, NOTIFY Operations that the " 4 KV Bus $34-1$ Voltage Degraded" alarm on the 903-8 D-04 window will be received.

5.18. TRIP Relay 127-3-B34-1 by OPENING test switch TS 34-1 UV "A"

5.19. VERIFY that relay 127-3-B34-1 trip target is illuminated.

$$
\overline{\mathrm{WV}}^{\prime} \frac{}{\text { Date }}
$$

5.20. VERIFY 125 VDC on VOM \#2 connected across relay TDR-34-1 coil.


## ATTACHMENT 4

Relay Routine for 4 KV Bus 34-1 Degraded Voltage Relays Page 10 of 11
5.21. VERIFY 125 VDC on VOM \#3 connected to TS 34-1 UV "F" and TS 34-1 UV "G".

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

5.22 VERIFY continuity (ohms) on VOM \#1 across terminal T1 and Terminal M1 of relay TDR-34-1 after 6 minutes.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

5.23. VERIFY Operations received the "4KV Bus 33-1 Voltage Degraded" alarm on the 9038 D-04 window.

$$
\overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

5.24. RESET Relay 127-3-B34-1 by CLOSING test switch TS 34-1 UV "A"

5.25. RESET target on relay 127-3-B34-1.

$$
\overline{\mathrm{CVV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

5.26. RESET Relay 127-4-B34-1 by CLOSING test switch TS 34-1 UV "D"

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

5.27. RESET target on relay 127-4-B34-1.

5.28. VERIFY no continuity (ohms) on VOM \#1 connected across terminal T1 and Terminal M1 of relay TDR-34-1 and REMOVE VOM.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

5.29. VERIFY no 125 VDC on VOM \#2 connected across relay TDR-34-1 coil and REMOVE VOM.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \overline{\text { Date }}
$$

## ATTACHMENT 4

Relay Routine for 4 KV Bus 34-1 Degraded Voltage Relays Page 11 of 11
5.30. VERIFY no 125 VDC on VOM \#3 connected to TS 34-1 UV "F" and TS 34-1 UV "G" and REMOVE VOM.

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{\mathrm{WV}}^{\prime} \frac{}{\text { Date }}
$$

6. Restoration
6.1. VERIFY no voltage across test switch TS 34-1UV "E" and then CLOSE test switch TS 34-1UV "E".

$$
\overline{\mathrm{CV}}^{\prime} \overline{\text { Date }} \quad \overline{W V}^{\prime} \overline{\text { Date }}
$$

6.2. INFORM Operations that the 3 DG to D3 is operable.

7. Return to Normal
7.1. VERIFY all relays are reset.

7.2. VERIFY targets are reset.

7.3. NOTIFY Operations/Control Room shift personnel that the relay routine is complete.

$$
\overline{W V}^{\prime} \frac{}{\text { Date }}
$$


[^0]:    * Typical at full range

[^1]:    mA accuracy specifications apply within the following limits, based on reading rate:
    Slow Reading Rate: Between 15,000 and 99,999 counts (full range)
    Medium Reading Rate: Between 1,500 and 30,000 counts (full range)
    Fast Reading Rate: $\quad$ Between 150 and 3,000 counts (full range)

[^2]:    Attachment $B$ to SADVA.DOC

[^3]:    Arucrinem ussaova.doc
    Pion 2 of 6
    DREDN EDSMUצATT.DOC 218 12 2:18

[^4]:    FINGRR OR-RGK

[^5]:    motes: (See next page)

