

LEGEND

POTENTIALLY ELIGIBLE FOR THE NATIONAL REGISTER

IDENTIFIED AS SUITABLE FOR ARCHAEOLOGICAL TESTING

PHASE IB SURVEY RECOMMENDED PRIOR TO ANY GROUND-DISTURBING ACTIVITIES

SOURCES: CRCG, 1994 AND 1995

5 Waterside Crossing Windsor, CT 06095 (860) 298–9692

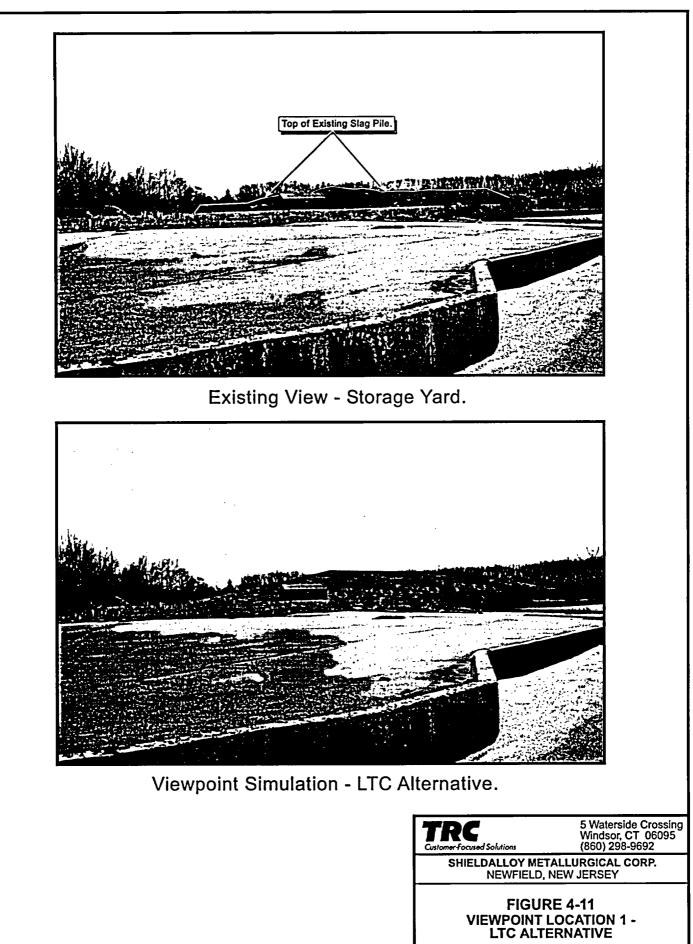
030

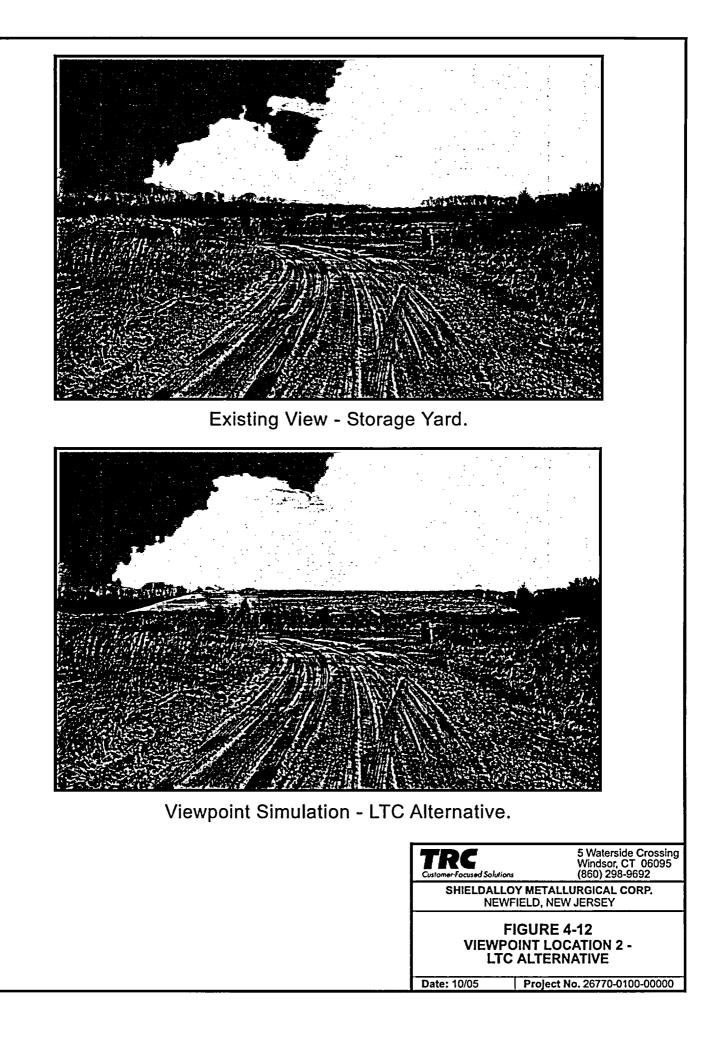
SHIELDALLOY METALLURGICAL CORPORATION NEWFIELD, NEW JERSEY

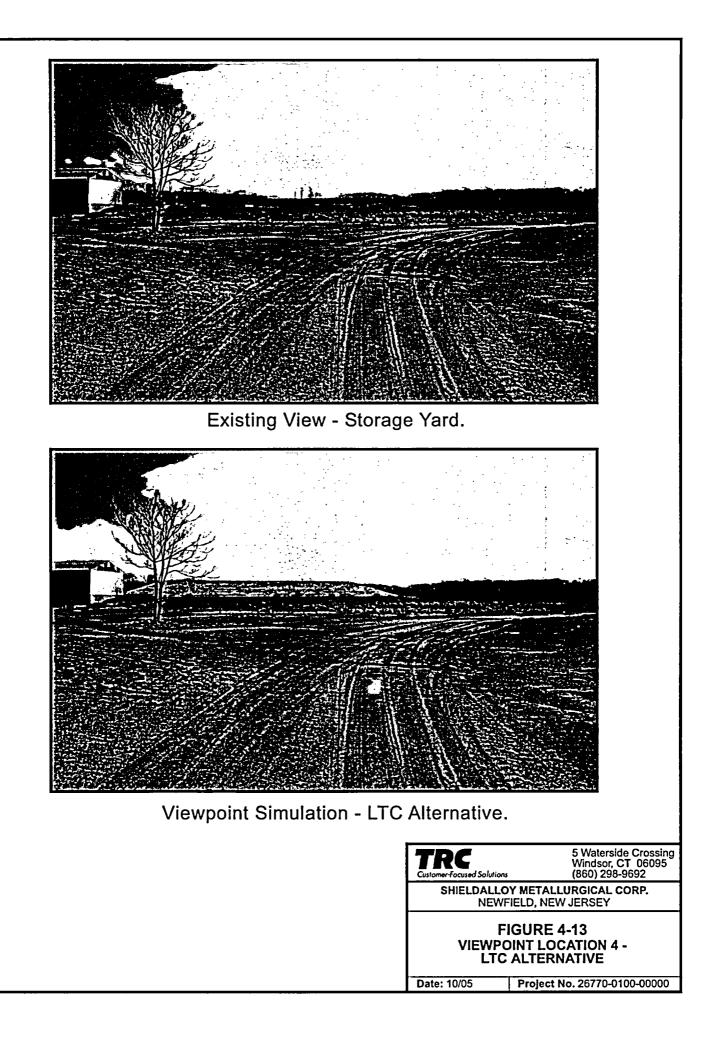
FIGURE 4-8 LOCATION OF STABILIZED STORAGE PILE RELATIVE TO POTENTIAL CULTURAL RESOURCE AREAS

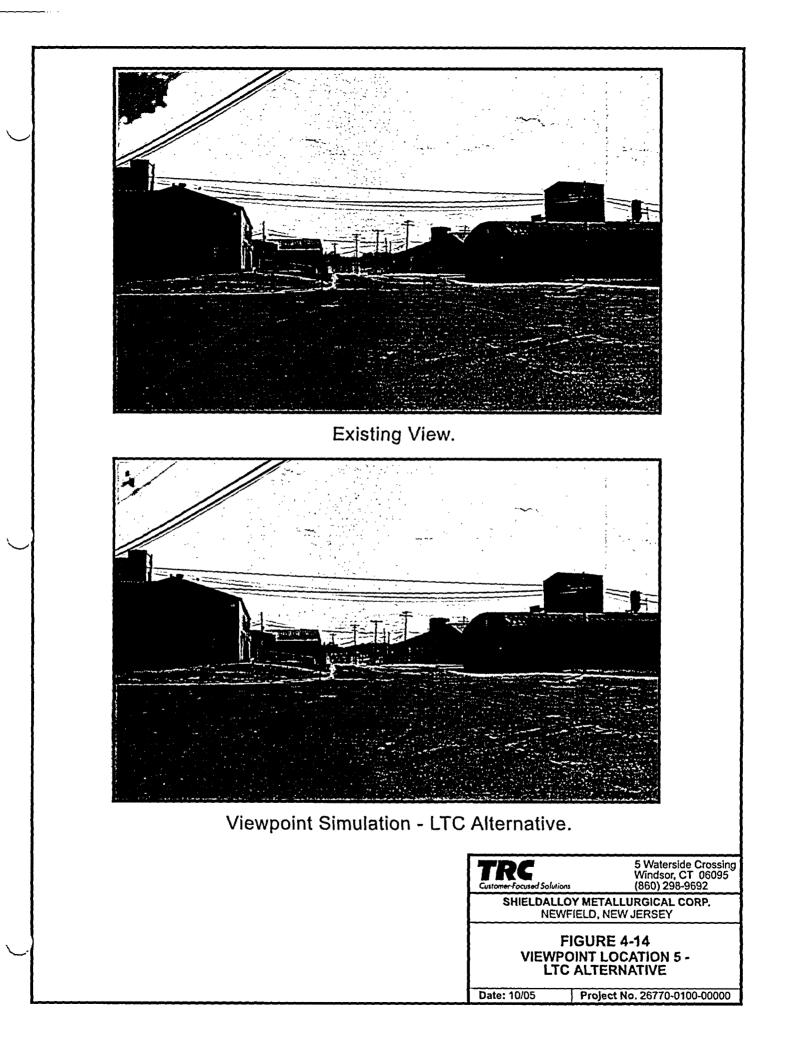
Date: 04/05

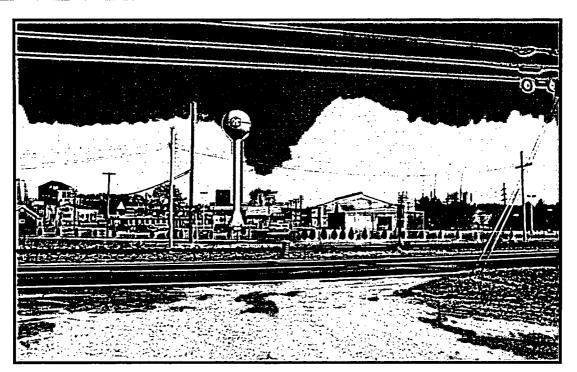
Project No. 26770-0100-00000



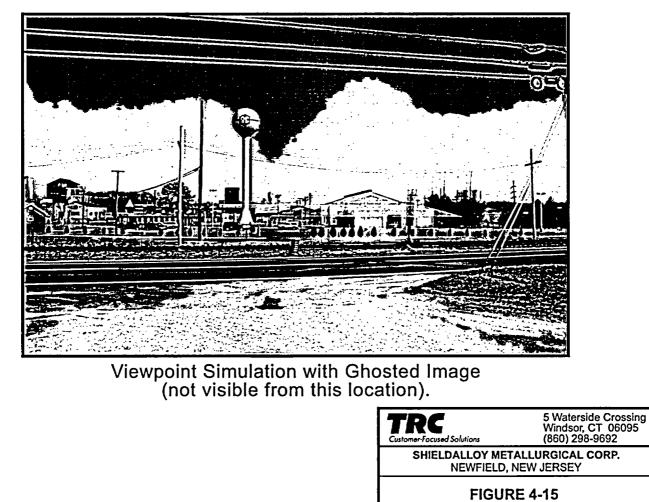


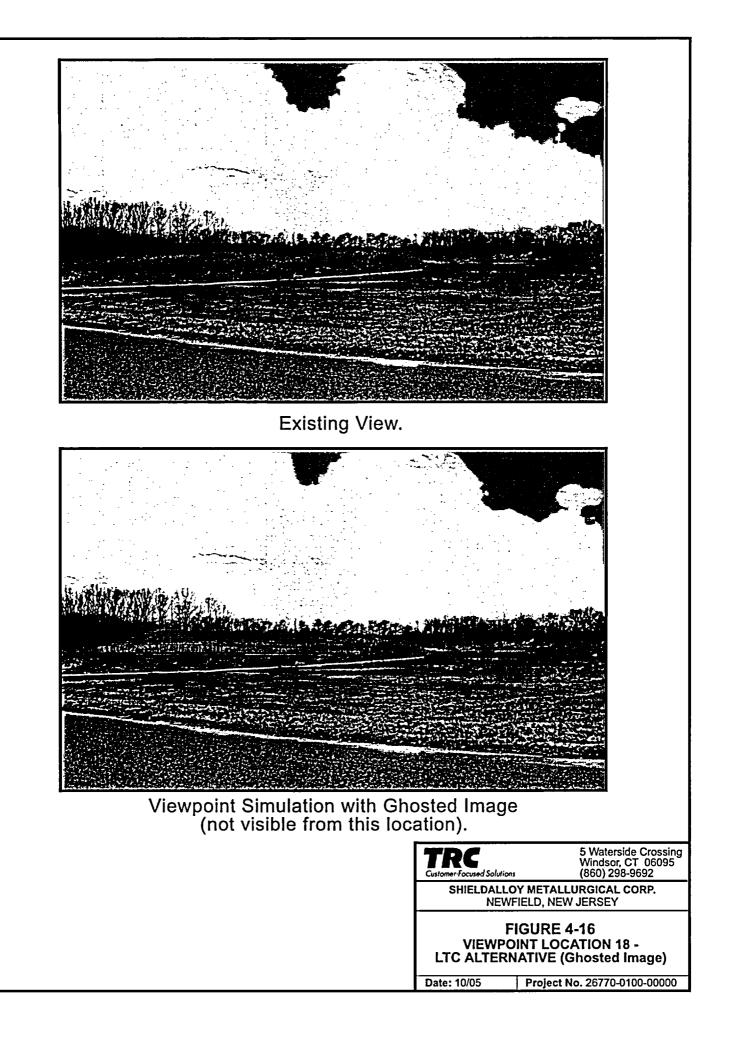

C31

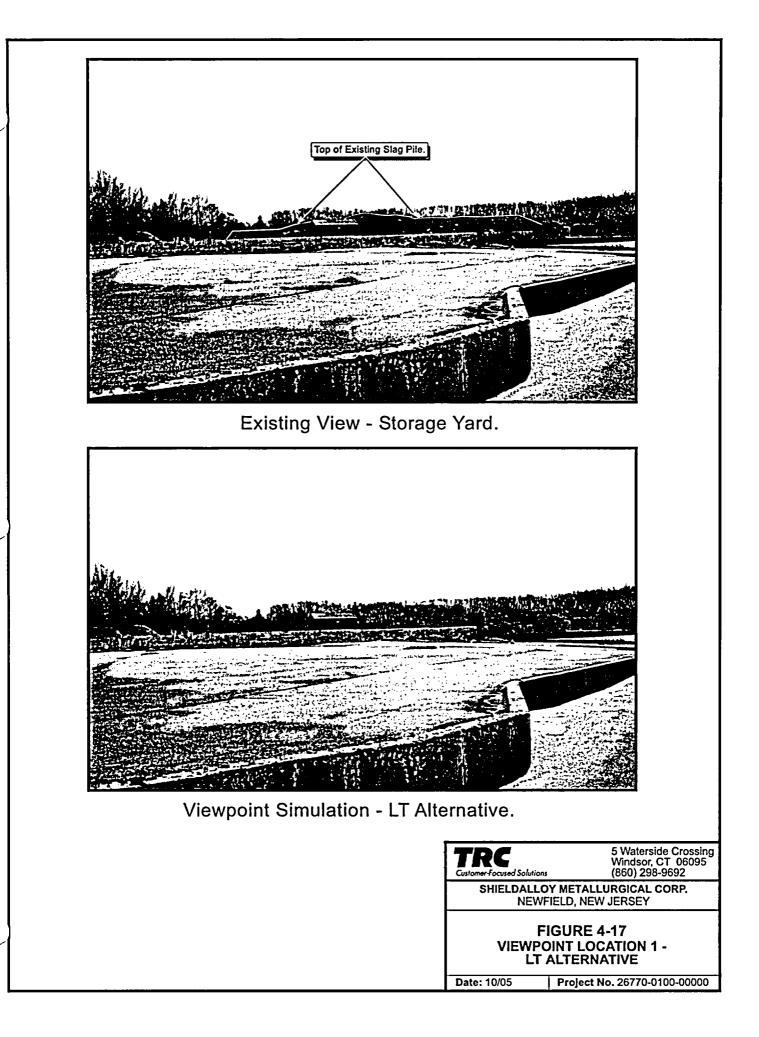


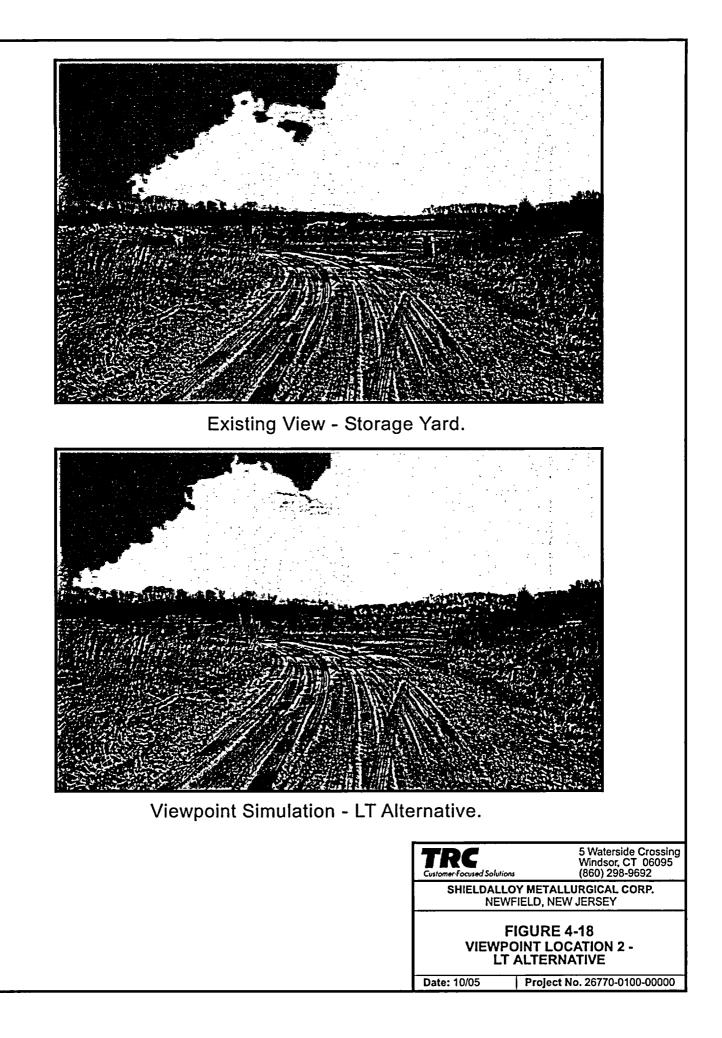


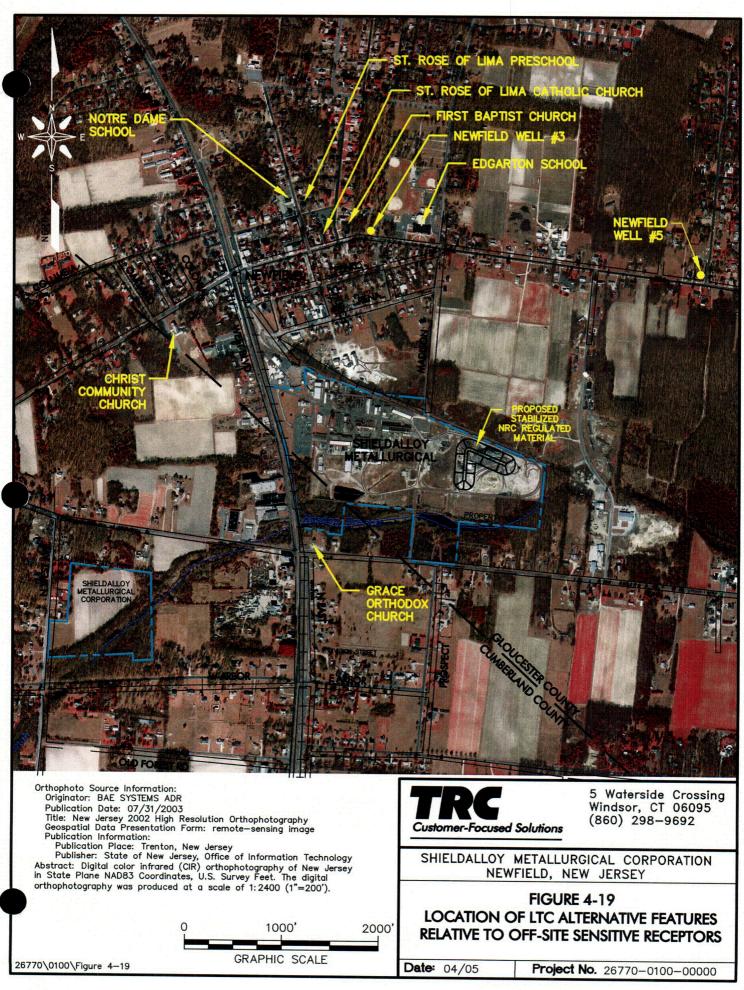
Date: 10/05 Project No. 26770-0100-00000








Existing View.



VIEWPOINT LOCATION 23 -LTC ALTERNATIVE (Ghosted Image)
Date: 10/05 Project No. 26770-0100-00000

C33

APPENDIX A - SELECT LAND USE INFORMATION

APPENDIX A - SELECT LAND USE INFORMATION

Soils Defined as Prime and Other Important Farmlands Gloucester County Cumberland County

Gloucester County, New Jersey

Map symbol	Map unit name	Farmland classification
AucB	Aura loamy sand, 0 to 5 percent slopes	All areas are prime farmland
AugA	Aura sandy loam, 0 to 2 percent slopes	All areas are prime farmland
AugB	Aura sandy loam, 2 to 5 percent slopes	All areas are prime farmland
AupB	Aura loam, 2 to 5 percent slopes	All areas are prime farmland
AvsB	Aura-Sassafras loamy sands, 0 to 5 percent slopes	All areas are prime farmland
AvtB	Aura-Sassafras sandy loams, 2 to 5 percent slopes	All areas are prime farmland
BumA	Buddtown-Deptford complex, 0 to 2 percent slopes	All areas are prime farmland
CogB	Collington loamy sand, 0 to 5 percent slopes	All areas are prime farmland
CokA	Collington sandy loam, 0 to 2 percent slopes	All areas are prime farmland
CokB	Collington sandy loam, 2 to 5 percent slopes	All areas are prime farmland
CosB	Colts Neck sandy loam, 2 to 5 percent slopes	All areas are prime farmland
DoeA	Downer sandy loam, 0 to 2 percent slopes	All areas are prime farmland
DoeB	Downer sandy loam, 2 to 5 percent slopes	All areas are prime farmland
FrfB	Freehold loamy sand, 0 to 5 percent slopes	All areas are prime farmland
FrkA	Freehold sandy loam, 0 to 2 percent slopes	All areas are prime farmland
FrkB	Freehold sandy loam, 2 to 5 percent slopes	All areas are prime farmland
KemB	Keyport sandy loam, 2 to 5 percent slopes	All areas are prime farmland
KeoA	Keyport loam, 0 to 2 percent slopes	All areas are prime farmland
MaoB	Mariton sandy loam, 2 to 5 percent slopes	All areas are prime farmland
SacA	Sassafras sandy loam, 0 to 2 percent slopes	All areas are prime farmland
SacB	Sassafras sandy loam, 2 to 5 percent slopes	All areas are prime farmland
"'eeB	Westphalia fine sandy loam, 2 to 5 percent slopes	All areas are prime farmland
,oeA	Woodstown sandy loam, 0 to 2 percent slopes	All areas are prime farmland
WoeB	Woodstown sandy loam, 2 to 5 percent slopes	All areas are prime farmland
WokA	Woodstown-Glassboro complex, 0 to 2 percent slopes	All areas are prime farmland
AugC	Aura sandy loam, 5 to 10 percent slopes	Farmland of statewide importance
AvsC	Aura-Sassafras loamy sands, 5 to 10 percent slopes	Farmland of statewide importance
AVIC	Aura-Sassafras sandy loams, 5 to 10 percent slopes	Farmland of statewide importance
CogC	Collington loamy sand, 5 to 10 percent slopes	Farmland of statewide importance
CokC	Collington sandy loam, 5 to 10 percent slopes	Farmland of statewide importance
CosC	Colts Neck sandy loam, 5 to 10 percent slopes	Famland of statewide importance
DocB	Downer loamy sand, 0 to 5 percent slopes	Farmland of statewide importance
Docc	Downer loamy sand, 5 to 10 percent slopes	Farmland of statewide importance
FamA	Fallsington sandy loam, 0 to 2 percent slopes	Farmland of statewide importance
	Failsington loam, 0 to 2 percent slopes	Familand of statewide importance
FapA FrfC	Freehold loamy sand, 5 to 10 percent slopes	Farmland of statewide importance
FrkC	Freehold sandy loam, 5 to 10 percent slopes	Familand of statewide importance
HbmB	Hammonton loamy sand, 0 to 5 percent slopes	·
	Jade Run fine sandy loam, 0 to 2 percent slopes	. Farmland of statewide importance
JdrA Kao A		Farmland of statewide importance Farmland of statewide importance
KreA	Kresson fine sandy loam, 0 to 2 percent slopes	
LenA	Lenni loam, 0 to 2 percent slopes	Farmland of statewide importance
	Mariton sandy loam, 5 to 10 percent slopes	Farmland of statewide importance
MaoC2	Mariton sandy loam, 5 to 10 percent slopes, eroded	Farmland of statewide importance
MumA	Mullica sandy loam, 0 to 2 percent slopes	Farmland of statewide importance
OTKA	Othello and Fallsington soils, 0 to 2 percent slopes	Farmland of statewide importance
SabB	Sassafras loamy sand, 0 to 5 percent slopes	Farmland of statewide importance
SabC	Sassafras loamy sand, 5 to 10 percent slopes	Farmland of statewide importance
SacC	Sassafras sandy loam, 5 to 10 percent slopes	Farmland of statewide importance
fB	Tinton sand, 0 to 5 percent slopes	Farmland of statewide importance

Gloucester County, New Jersey

Map symbol	Map unit name	Farmland classification
WeeC	Westphalia fine sandy loam, 5 to 10 percent slopes	Farmland of statewide importance
AtsA	Atsion sand, 0 to 2 percent slopes	Farmland of unique importance
AtsAr	Atsion sand, 0 to 2 percent slopes, rarely flooded	Farmland of unique importance
BerAr	Berryland sand, 0 to 2 percent slopes, rarely flooded	Farmland of unique importance
BEXAS	Berryland and Mullica soils, 0 to 2 percent slopes, occasionally flooded	Farmland of unique importance
MakAt	Manahawkin muck, 0 to 2 percent slopes, frequently flooded	Farmland of unique importance
MamnAv	Mannington-Nanticoke complex, 0 to 1 percent slopes, very frequently flooded	Farmland of unique importance
MamuAv	Mannington-Nanticoke-Udorthents complex, 0 to 1 percent slopes, very frequently flooded	Farmland of unique importance

-

In an effort to identify the extent and location of important farmlands, the Natural Resources Conservation Service, in cooperation with other interested deral, State, and local government organizations, has inventoried land that can be used for the production of the Nation's food supply.

mportant farmlands consist of prime farmland, unique farmland, and farmland of statewide or local importance.

Prime farmland is of major importance in meeting the Nation's short- and long-range needs for food and fiber. Because the supply of high-quality farmland is limited, the U.S. Department of Agriculture recognizes that responsible levels of government, as well as individuals, should encourage and facilitate the wise use of our Nation's prime farmland.

Prime farmland, as defined by the U.S. Department of Agriculture, is land that has the best combination of physical and chemical characteristics for producing food, feed, forage, fiber, and oilseed crops and is available for these uses. It could be cultivated land, pastureland, forestland, or other land, but it is not urban or built-up land or water areas. The soil quality, growing season, and moisture supply are those needed for the soil to economically produce sustained high yields of crops when proper management, including water management, and acceptable farming methods are applied. In general, prime farmland has an adequate and dependable supply of moisture from precipitation or irrigation, a favorable temperature and growing season, acceptable acidity or alkalinity, an acceptable salt and sodium content, and few or no rocks. The water supply is dependable and of adequate quality. Prime farmland is permeable to water and air. It is not excessively erodible or saturated with water for long periods, and it either is not frequently flooded during the growing season or is protected from flooding. Slope ranges mainly from 0 to 6 percent. More detailed information about the criteria for prime farmland is available at the local office of the Natural Resources Conservation Service.

A recent trend in land use in some areas has been the loss of some prime farmland to industrial and urban uses. The loss of prime farmland to other uses puts pressure on marginal lands, which generally are more erodible, droughty, and less productive and cannot be easily cultivated.

The map units in the survey area that are considered prime farmland are listed in this table ("Important Farmlands"). This list does not constitute a recommendation for a particular land use. On some soils included in the list, measures that overcome a hazard or limitation, such as flooding, wetness, and droughtiness, are needed. Onsite evaluation is needed to determine whether or not the hazard or limitation has been overcome by corrective measures. The extent of each listed map unit is shown in table entitled "Acreage and Proportionate Extent of the Soils." The location is shown on the detailed soil maps.

Unique farmland is land other than prime farmland that is used for the production of specific high-value food and fiber crops, such as citrus, tree nuts, olives, cranberries, and other fruits and vegetables. It has the special combination of soil quality, growing season, moisture supply, temperature, humidity, air drainage, elevation, and aspect needed for the soil to economically produce sustainable high yields of these special crops when properly managed. The water supply is dependable and of adequate quality. Nearness to markets is an additional consideration. Because it is not based on national criteria, unique farmland can differ from one area to another. Unique farmland commonly is in areas where there is a special microclimate, such as the wine country in California.

tome areas land that does not meet the criteria for prime or unique farmland is considered to be farmland of statewide importance for the production ood, feed, fiber, forage, and oilseed crops. The criteria for defining and delineating farmland of statewide importance are determined by the appropriate State agencies. Generally, this land includes areas of soils that nearly meet the requirements for prime farmland and that economically produce high yields of crops when treated and managed according to acceptable farming methods. Some areas may produce as high a yield as prime farmland if conditions are favorable. Farmland of statewide importance may include tracts of land that have been designated for agriculture by State law.

In some areas that are not identified as having national or statewide importance, land is considered to be farmland of local importance for the production of food, feed, fiber, forage, and oilseed crops. This farmland is identified by the appropriate local agencies. Farmland of local importance may include tracts of land that have been designated for agriculture by local ordinance.

·

.

Cumberland County, New Jersey

Map symbol	Map unit name	Farmland classification
AucB	Aura loamy sand, 0 to 5 percent slopes	All areas are prime farmland
AugA	Aura sandy loam, 0 to 2 percent slopes	All areas are prime farmland
AugB	Aura sandy loam, 2 to 5 percent slopes	All areas are prime farmland
AuhB	Aura gravelly sandy loam, 2 to 5 percent slopes	All areas are prime farmland
ChtA	Chillum silt loam, 0 to 2 percent slopes	All areas are prime farmland
ChtB	Chillum silt loam, 2 to 5 percent slopes	All areas are prime farmland
DoeA	Downer sandy loam, 0 to 2 percent slopes	All areas are prime farmland
DoeB	Downer sandy loam, 2 to 5 percent slopes	All areas are prime farmland
HboA	Hammonton sandy loam, 0 to 2 percent slopes	All areas are prime farmland
HboB	Hammonton sandy loam, 2 to 5 percent slopes	All areas are prime farmland
MbrA	Matapeake silt loam, 0 to 2 percent slopes	All areas are prime farmland
MbrB	Matapeake silt loam, 2 to 5 percent slopes	All areas are prime farmland
MbuA	Mattapex silt loam, 0 to 2 percent slopes	All areas are prime farmland
MbuB .	Mattapex silt loam, 2 to 5 percent slopes	All areas are prime farmland
SacA	Sassafras sandy loam, 0 to 2 percent slopes	All areas are prime farmland
SacB	Sassafras sandy loam, 2 to 5 percent slopes	All areas are prime farmland
SadA	Sassafras gravelly sandy loam, 0 to 2 percent slopes	All areas are prime farmland
SadB	Sassafras gravelly sandy loam, 2 to 5 percent slopes	All areas are prime farmland
WoeA	Woodstown sandy loam, 0 to 2 percent slopes	All areas are prime farmland
WoeB	Woodstown sandy loam, 2 to 5 percent slopes	All areas are prime farmland
DocB	Downer loamy sand, 0 to 5 percent slopes	Farmland of statewide importance
⊃ວເ⊂	Downer loamy sand, 5 to 10 percent slopes	Farmland of statewide importance
,imA	Fallsington sandy loam, 0 to 2 percent slopes	Farmland of statewide importance
FodB	Fort Mott loamy sand, 0 to 5 percent slopes	Farmland of statewide importance
GamB	Galloway loamy sand, 0 to 5 percent slopes	Farmland of statewide importance
HbmB	Hammonton loamy sand, 0 to 5 percent slopes	Farmland of statewide importance
MbrC	Matapeake silt loam, 5 to 10 percent slopes	Farmland of statewide importance
OthA	Othello silt loam, 0 to 2 percent slopes	Farmland of statewide importance
ΟΤΚΑ	Othelio and Fallsington soils, 0 to 2 percent slopes	Farmland of statewide importance
ΟΤΜΑ	Othello, Fallsington, and Trussum soils, 0 to 2 percent slopes	Farmland of statewide importance
SacC	Sassafras sandy loam, 5 to 10 percent slopes	Farmland of statewide importance
SadC	Sassafras gravelly sandy loam, 5 to 10 percent slopes	Farmland of statewide importance
AptAv	Appoquinimink-Transquaking-Mispillion complex, 0 to 1 percent slopes, very frequently flooded	Farmland of unique importance
AtsAr	Atsion sand, 0 to 2 percent slopes, rarely flooded	Farmland of unique importance
BEXAS	Berryland and Mullica soils, 0 to 2 percent slopes, occassionally flooded	Farmland of unique importance
BrvAv	Broadkill silt loam, 0 to 1 percent slopes, very frequently flooded	Farmland of unique importance
MakAt	Manahawkin muck, 0 to 2 percent slopes, frequently flooded	Farmland of unique importance
MmtAv	Mispillion-Transquaking-Appoquinimink complex, 0 to 1 percent slopes, very frequently flooded	Farmland of unique importance
PdwAv	Pawcatuck-Transquaking complex, 0 to 1 percent slopes, very frequently flooded	Farmland of unique importance
TrkAv	Transquaking mucky peat, 0 to 1 percent slopes, very frequently flooded	Farmland of unique importance

.

In an effort to identify the extent and location of important farmlands, the Natural Resources Conservation Service, in cooperation with other interested deral, State, and local government organizations, has inventoried land that can be used for the production of the Nation's food supply.

Tmportant farmlands consist of prime farmland, unique farmland, and farmland of statewide or local importance.

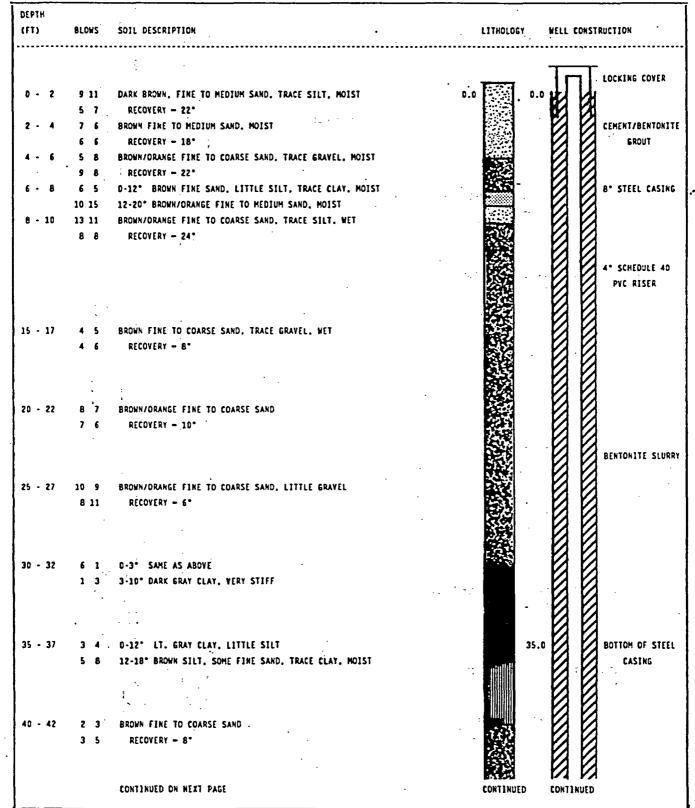
Prime farmland is of major importance in meeting the Nation's short- and long-range needs for food and fiber. Because the supply of high-quality farmland is limited, the U.S. Department of Agriculture recognizes that responsible levels of government, as well as individuals, should encourage and facilitate the wise use of our Nation's prime farmland.

Prime farmland, as defined by the U.S. Department of Agriculture, is land that has the best combination of physical and chemical characteristics for producing food, feed, forage, fiber, and oilseed crops and is available for these uses. It could be cultivated land, pastureland, forestland, or other land, but it is not urban or built-up land or water areas. The soil quality, growing season, and moisture supply are those needed for the soil to economically produce sustained high yields of crops when proper management, including water management, and acceptable farming methods are applied. In general, prime farmland has an adequate and dependable supply of moisture from precipitation or irrigation, a favorable temperature and growing season, acceptable acidity or alkalinity, an acceptable salt and sodium content, and few or no rocks. The water supply is dependable and of adequate quality. Prime farmland is permeable to water and air. It is not excessively erodible or saturated with water for long periods, and it either is not frequently flooded during the growing season or is protected from flooding. Slope ranges mainly from 0 to 6 percent. More detailed information about the criteria for prime farmland is available at the local office of the Natural Resources Conservation Service.

A recent trend in land use in some areas has been the loss of some prime farmland to industrial and urban uses. The loss of prime farmland to other uses puts pressure on marginal lands, which generally are more erodible, droughty, and less productive and cannot be easily cultivated.

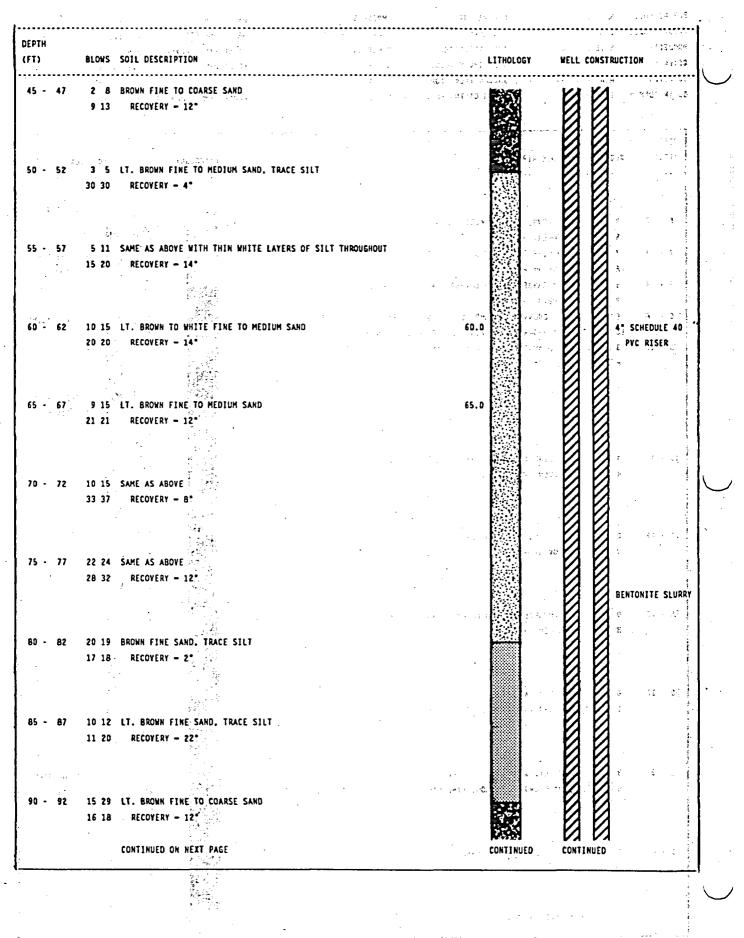
The map units in the survey area that are considered prime farmland are listed in this table ("Important Farmlands"). This list does not constitute a recommendation for a particular land use. On some soils included in the list, measures that overcome a hazard or limitation, such as flooding, wetness, and droughtiness, are needed. Onsite evaluation is needed to determine whether or not the hazard or limitation has been overcome by corrective measures. The extent of each listed map unit is shown in table entitled "Acreage and Proportionate Extent of the Soils." The location is shown on the detailed soil maps.

Unique farmland is land other than prime farmland that is used for the production of specific high-value food and fiber crops, such as citrus, tree nuts, olives, cranberries, and other fruits and vegetables. It has the special combination of soil quality, growing season, moisture supply, temperature, humidity, air drainage, elevation, and aspect needed for the soil to economically produce sustainable high yields of these special crops when properly managed. The water supply is dependable and of adequate quality. Nearness to markets is an additional consideration. Because it is not based on national criteria, unique farmland can differ from one area to another. Unique farmland commonly is in areas where there is a special microclimate, such as the wine country in California.


some areas land that does not meet the criteria for prime or unique farmland is considered to be farmland of statewide importance for the production /food, feed, fiber, forage, and oilseed crops. The criteria for defining and delineating farmland of statewide importance are determined by the appropriate State agencies. Generally, this land includes areas of soils that nearly meet the requirements for prime farmland and that economically produce high yields of crops when treated and managed according to acceptable farming methods. Some areas may produce as high a yield as prime farmland if conditions are favorable. Farmland of statewide importance may include tracts of land that have been designated for agriculture by State law.

In some areas that are not identified as having national or statewide importance, land is considered to be farmland of local importance for the production of food, feed, fiber, forage, and oilseed crops. This farmland is identified by the appropriate local agencies. Farmland of local importance may include tracts of land that have been designated for agriculture by local ordinance.

APPENDIX B - SELECTED GEOLOGIC/SOIL DATA


APPENDIX B - SELECTED GEOLOGIC/SOIL DATA

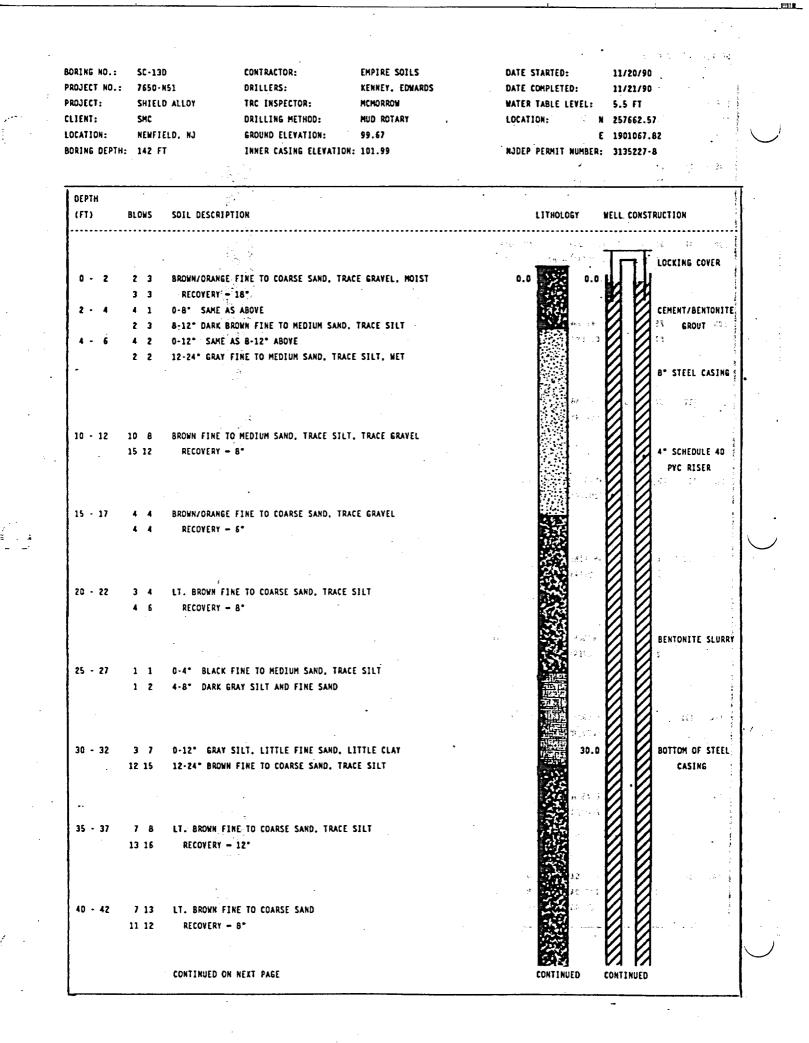
Select SMC Soil Borings Hudson's Branch Exposure Rates (uR/hour) Uranium-238 Concentrations in Soil, Sediment and Water Samples Thorium-232 Concentrations in Soil and Water Samples Radium-226 Concentrations in Soil, Sediment and Water Samples BORING NO.: SC-12D CONTRACTOR: EMPIRE SOILS DATE STARTED: 11/16/90 PROJECT NO.: 7650-N51 DRILLERS: KENNEY. EDWARDS DATE COMPLETED: 11/19/90 TRC INSPECTOR: PROJECT: SHIELD ALLOY NCHORROW WATER TABLE LEVEL: 9.0 FT -HUD ROTARY CLIENT: SHC DRILLING METHOD: LOCATION: N 258008.45 LOCATION: NEWFIELD, NJ GROUND ELEVATION: 102.16 E 1901049.83 BORING DEPTH: 142 FT INNER CASING ELEVATION: 103.19 NJDEP PERMIT NUMBER: 3135226-0

SC-12D PAGE 2 OF 3

EBIE

and the second second second

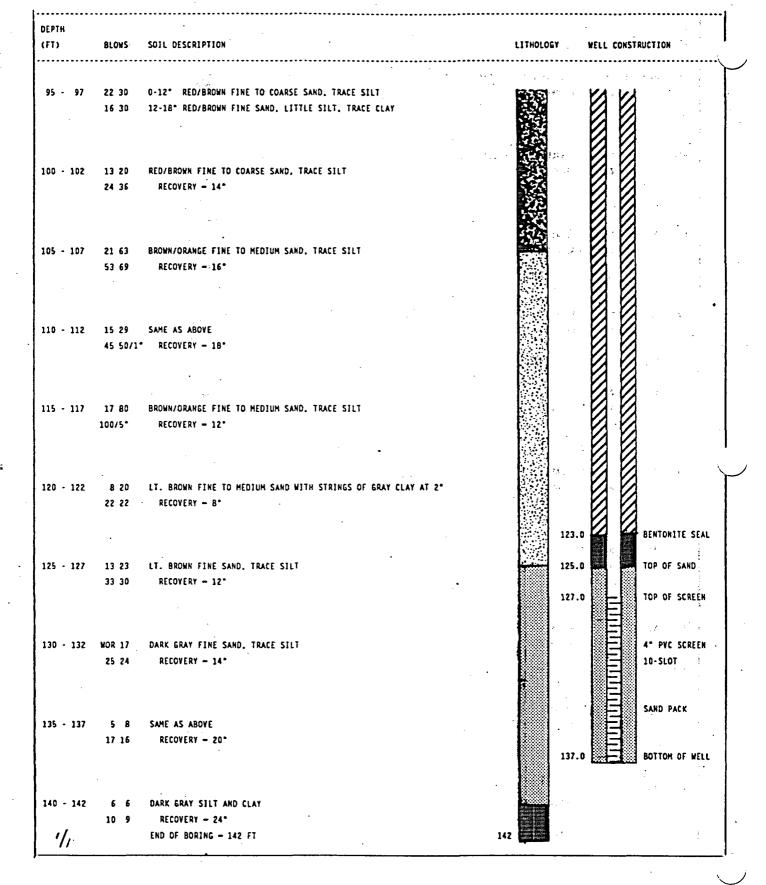
SC-12D PAGE 3 OF 3


í

DEPTH	_			. •	· .
(FT) 	BLOWS	SOIL DESCRIPTION		LITHOLOGY	WELL CONSTRUCTION
95 - 97	19 21	LT. BROWN FINE TO COARSE SAND	· .	incrost	
		RECOVERY - 12"	•	A 2 4	
			· ·		
100 - 102	35 47	BROWN/ORANGE FINE TO COARSE SAND, TRACE SILT			
		RECOVERY - B*		3:32	
	•••	RECOLUL - D		5.671	
		· · ·			
		·			
105 - 107	25 52	SAME AS ABOVE		25.5	8 8
•	67 100	RECOVERY - 14"			
			. ·		<u> </u>
					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
110 - 112	34 100/	5*SAME AS ABOVE			N N
		RECOVERY - B*		1357	8 B
	``				
				1000	N N
115 - 117	100/5-	BROWN/RED FINE TO MEDIUM SAND. TRACE SILT			NN .
	•	RECOVERY - 3°			
			. ·		
					N N
					N N
120 - 122		BROWN FINE SAND. LITTLE SILT			88 -
	19 28	RECOVERY - 10°			
		•		· · · · · · · · · · · · · · · · · · ·	22.0
					24.0 TOP OF SAND
196 197					
125 - 127		LT. BROWN FINE SAND. LITTLE SILT		- III .	26.0 TOP OF SCREE
	20 18	RECOVERY - 12"		· · · · · · · · · · · · · · · · · · ·	26.0 TOP OF SCREE
	-		,		
					4. PYC SCREE
130 - 132	6 6	DARK GRAY FINE SAND AND SILT			E 10-SLOT
486	99	RECOVERY - 14*			
	•			記録	SAND PACK
					E
135 - 137	56	SAME AS ABOYE			E
	58	RECOVERY - 20*			36.0 E BOTTOM OF WE
		•			
	\$			影響	
	•		*		
140 - 142	35	0-18" SAME AS ABOVE			
	12 16	18-24" DARK GRAY SILT, SOME CLAY			
		END OF BORING - 142 FT		142	

.

.


.

a. Mata sa kata sa sa SC-13D PAGE 2 OF 3

FT)	BLOWS	SOIL DESCRIPTION	LITHOLOGY	WELL CONSTRUCTION
45 - 47	10 14	LT. BROWN FINE TO COARSE SAND	њ27	
	17 25	RECOVERY - 8*		
	•••••	NEWLEN - V		
	•		SC2	
			2.2	
		LT. BROWN FINE TO COARSE SAND. TRACE SILT		
50 - 52			K	
	21 24	RECOVERY - 10*	351	
			253	
•				
55 - 57	B 14	SAME AS ABOVE		\mathbf{N}
	Z1 25	RECOVERY - 10"		
			35	
			1.6-5	
			10.0	
60 - 62	5 15	SAME AS ABOVE, COLORS RANGE FROM REDDISH BROWN, TO WHITE, TO LT. BROWN 60	.0	N N
	18 19	BACK TO REDDISH BROWN. RECOVERY - B*		
			王公	A. SCHEDULE
	•		12 X	PYC RISER
			22	
65 - 67	15 20	REDDISH BROWN FINE TO MEDIUM SAND, TRACE COARSE SAND, TRACE SILT 65	.0	10 10 I
	30 30	RECOVERY - 12"		<u> </u>
				$\alpha \alpha$
70 - 72	21 44	SAME AS ABOVE		
10 - 12	64 62	RECOVERY - 18"		
	64 62	RECUTERI - 10		
	•	· · ·		<u> </u>
		· · · · · · · · · · · · · · · · · · ·		N N
75 - 77	23 36			<u> </u>
	34 39	RECOVERY - 14"		
				BENTONITE S
				12 12 I
				<u> </u>
BO - 82	23 30	SAME AS ABOYE	1353	10 N
	50/5*	RECOVERY - 14*		N N N
				N N
				1 1 1 1 1 1 1 1 1 1
	. 1			หห
85 - 87	20 30	SAME AS ABOVE		12 IN 12
	33 37	RECOVERY - 12°		
				หห
	-			N N .
	•			10 10 I
90 - 92	17 35	RED FINE TO MEDIUM SAND, TRACE SILT		<u> </u>
	32 30	RECOVERY - 12*		
	J. JV			
				1/1 1/2

SC-13D PAGE 3 OF 3

·- -

BORING NO .:	SC • 17D .	CONTRACTOR:	EMPIRE SOILS	DATE STARTED:	11/14/90	
PROJECT NO.:	7650-N51	DRILLERS:	EMPSON, SNYDER	DATE COMPLETED:	11/28/90	
PROJECT:	SHIELD ALLOY	TRC INSPECTOR:	GLEZEN	WATER TABLE LEVEL:	16.0 FT	
CLIENT:	SHC	DRILLING METHOD:	MUD ROTARY	LOCATION:	N 257933.78	
LOCATION:	NEWFIELD, NJ	GROUND ELEVATION:	106.48		E 1899201.04	
BORING DEPTH:	155 FT	INNER CASING ELEVATION:	108.07	NJDEP PERMIT NUMBER	: 3135223-5	

(FT)	BLOWS	SOIL DESCRIPTION	LITHOLOGY	r 	WELL CON	STRUCTION
						LOCKING COVER
0 - 2	31	ORANGE/BROWN SILT AND FINE SAND. SOME WOOD FRAGMENTS IN TIP D.	.0	0.0		4
		RECOVERY - 3*			R A 14	H.
2 - 4		ORANGE FINE SAND AND SILT, TRACE MEDIUM SAND, TRACE GRAVEL			12 12	2
	8 11	RECOVERY - 12°	· X 百) 元 王 二	• :•	KI K	
4 - 6		DRANGE FINE TO MEDIUM SAND AND GRAVEL, TRACE COBBLES	STORE &	•	12 F	CEMENT/BENTONITE
	24 28	RECOVERY - 12"			12 F	SROUT
6 - 8	17 26	ORANGE FINE TO MEDIUM SAND, SOME GRAVEL, TRACE COBBLES			12 12	8
	28 28	RECOVERY - 18"			หห	2
8 - 10	17 24	ORANGE FINE TO MEDIUM SAND, SOME COARSE SAND, LITTLE GRAVEL, TRACE SILT			11 11	
	26 27	RECOVERY - 22°			12 I N	
10 - 12	65	ORANGE MEDIUM TO COARSE SAND. SOME GRAVEL			12 1	8
	9 12	RECOVERY - 18"	o D		N 1	4" SCHEDULE 40
12 - 14	12 7	SAME AS ABOVE	0		หห	PVC RISER
	13 13	RECOVERY - 18*			12	
14 - 16	16 22	DRANGE FINE TO MEDIUM SAND, TRACE SILT, MOIST	994493. 1		12 12	2
	20 27	RECOVERY - 19"			14	2
16 - 18		DRANGE FINE TO MEDIUM SAND, SOME COARSE SAND, TRACE SILT, WET		16.0	12 I	a –
		RECOVERY - 18"			14 N	1 .
		· · ·			12 K	
	•				KA 1	3
20 - 22	11 18	LT. BROWH MEDIUM TO COARSE SAND, LITTLE GRAVEL	2008) 2008		14	A .
	22 29	RECOVERY - 18*			64 6	A [*]
		•			12	
	•		Q :		12 1	BENTONITE SLURRY
					14	8
25 • 27	10 12	LT. TAN FINE TO MEDIUM SAND, TRACE COARSE SAND, 3° OF WHITE SILTY	5.85288 2407226		KA (A .
	11 26	CLAY IN TIP OF SPOON. RECOVERY - 8"			14 K	2
					11 12	
					12 1	
					1 2 E	
30 - 32	10 16	BROWN MEDIUM TO COARSE SAND, SOME GRAVEL, TRACE CLAY	X: 2		12 E	8
	16 21	RECOVERY - 14*			ผเ	8
			0		ยห	1
			D		12	
					12 K	
35 - 37		LT. BROWN/PINK FINE TO MEDIUM SAND	1.15		14 H	8
		RECOVERY - 12*			10	8
					14 N	
	• .	, <i>,</i>		·	10 U	X ·
40 . 42	90 64	TT TAVIDTUR FINE TO MENTIN CAUN. THIPE POINEE BAND. TIPUT			1 2 E	8
4D - 42	28 54	LT. TAN/PINK FINE TO MEDIUM SAND, TRACE COARSE SAND, TIGHT RECOVERY - 12*			N 1	X
	73 78	RELUTERT - 16	6.22		หห	A
					1 2:1	
		CONTINUED ON NEXT PAGE	CONTINUE	υ	CONTINUE	.u

. .

SC-17D PAGE 2 OF 4

..... DEPTH (FT) BLOWS SOIL DESCRIPTION LITHOLOGY WELL CONSTRUCTION 15 35 LT. TAN/PINK FINE TO MEDIUM SAND, TRACE COARSE SAND, TIGHT 45 - 47 65 65 RECOVERY - 5* 50 - 52 12 14 LT. BROWN MEDIUM TO COARSE SAND, LITTLE GRAVEL 25 32 ... RECOVERY - 12* 55 - 57 21 35 TAN/PINK FINE TO MEDIUM SAND, TRACE COARSE SAND 100/6* RECOYERY - 4" 4" SCHEDULE 40 PVC RISER 60 - 62 22 43 LT. TAN/PINK FINE TO MEDIUM SAND. TRACE COARSE SAND, TIGHT 44 59 RECOVERY - 12" . 65. - 67 18 60 LT. TAN/PINK FINE SAND, TRACE MEDIUM SAND, TIGHT 71 60 RECOVERY - 8" 70 - 72 24 26 SAME AS ABOVE. SOME COARSE SAND 35 32 RECOVERY - 8* BENTONITE SLURRY LT. TAN/PINK FINE TO MEDIUM SAND, SOME COARSE SAND, LITTLE GRAVEL 75 - 77 35 22 28 28 RECOVERY - 8" 80 - 82 18 22 LT. TAN/PINK FINE SAND, SOME SILT, WITH FINE LAMINATIONS OF WHITE SILT RECOVERY - 14" 26 26 85 - 87 6 13 LT. TAN FINE TO VERY FINE SAND, SOME SILT, WITH SMALL WHITE SILT LAYERS 16 35 RECOVERY - 14" 88 - 90 18 35 PINK/TAN FINE TO VERY FINE SAND, LITTLE SILT 75/6* RECOVERY - B* CONTINUED ON NEXT PAGE CONTINUED CONTINUED

SC-17D PAGE 3 OF 4

DEPTH (FT)	BLOWS . S	DIL DESCRIPTION	LITHOLOGY	WELL CONSTRUCTION
93 - 95		ROWN/ORANGE FINE SAND. TRACE SILT. SOME SMALL WHITE SILTY CLAY LAMINATIONS. RECOVERY - 18°		
98 - 100		T. TAN FINE SAND. LITTLE MEDIUM SAND. TRACE SILT. SOME SMALL VARVED CLAY LAYERS. RECOVERY - 14*		4" SCHEDULE 40 PVC RISER
103 - 105	35 75/6° 8	ROWN/ORANGE FINE TO MEDIUM SAND. SOME COARSE SAND. TRACE CLAY RECOVERY - 12°		
108 - 110		T. TAN FINE TO COARSE SAND. LITTLE FINE GRAVEL RECOVERY - 12*		BENTONITE SLUR
113 - 115	38 75/6° B	ROWN/ORANGE FINE TO MEDIUM SAND, SOME COARSE SAND, TRACE GRAVEL RECOVERY - 6°		
116 - 120	38 75/6° 8	ROWN/ORANGE FINE TO MEDIUM SAND. LITTLE SILI RECOVERY - 4*		
123 - 125		T. TAN FINE TO MEDIUM SAND. SOME COARSE SAND. LITTLE GRAYEL RECOVERY - 14*		
128 - 130	46 26 N 16 10	IC RECOVERY		
133 - 135	15 22 L 24 30	.T. TAN FINE TO VERY FINE SAND. SOME MEDIUM SAND. LITTLE SILT RECOVERY — 12"		
	c	CONTINUED ON NEXT PAGE	CONTINUED	CONTINUED

.

.

•

SC-17D PAGE 4 OF 4

EPTH (FT)	BLOWS	SOIL DESCRIPTION	LITHOLOGY	WELL CONSTRUCTION
		·····		
.38 - 140		LT. TAN/GRAY FINE TO VERY FINE SAND AND SILT. TRACE CLAY RECOVERY - 12*	139. 141.	
43 - 145	12 27 27 23	SAME AS ABOVE	143. 243.	
48 - 150	69 92	0-8° LT. TAN FINE TO COARSE SAND AND GRAVEL		4º PVC SCREEN 10-SLOT
40 - 130		8-12" LT. TAN FINE SAND AND SILT, LITTLE CLAY		SAND PACK
53 - 155	8 10 17 23	VARVED DARK GRAY SILTY CLAY. WITH SMALL SILT LAYERS	155.0	O BOTTOM OF WELL
·		END OF BORING - 155 FT		
			•	
				X
			· .	
			-	
				· . · .
			······································	

LIII.

• · · ·

PROJECT NO.: PROJECT: CLIENT:	SC-22D 7650-N51 SHIELD ALLOY SMC NEWFIELD, NJ	CONTRACTOR: DRILLERS: TRC INSPECTOR: DRILLING METHOD:		DATE STARTED: DATE COMPLETED: WATER TABLE LEV LOCATION:	EL: 5.0'1 N 2575	FT 93.05
BORING DEPTH:		GROUND ELEVATION: INNER CASING ELEVATION:		NJDEP PERMIT NU	E 19004 MBER: 3135	
DEPTH	· · ·			· · · · · · · · ·		
	SLOWS SOIL DESCR	IPTION		LITHOLOGY	WELL CO	DINSTRUCTION
		• • • • • • • • • • • • • • • • • • • •	•••••••••••••••••••••••••••••		· · · · · · · · · · · · · · · · · · ·	•••••
					TE	LOCKING COVER
0 - 2	3 3 BROWN MEDI	UH SAND. SOME GRAVEL, MOIST		0.0	0.0	
.	2 2 RECOVERY	- 10*				
2 - 4	1 1 BROWN COAR	SE TO NEDIUM SAND, SOME GRAV	EL, MOIST			CEMENT/BENTONI
	2 Z RECOVERY	- 10*	•			GROUT
4 - 6	3 3 SAHE AS AB	OVE. NET			- 1	
	5 6 RECOVERY	- 10*			11	0
	•					B" STEEL CASIN
				10.1		
9 - 11	2 2 SAME AS AB	045			N N	0
J - 11	4 3 RECOVERY		•		И	12
		- 10	• •		N	4" SCHEDULE 40
					N	PVC RISER
			,			
14 - 16	2 2 TAN/DRANGE	COARSE SAND, TRACE GRAVEL			1	4
	4 6 .	•			$\boldsymbol{\mathcal{A}}$	Ø
			•	注 港	12	8
	•					И ·
				5		0
		· · · · · · · · · · · · · · · · · · ·		の次	N	8
3		IUM TO COARSE SAND, TRACE G	LAVEL	- 202000	N	12
	17 21 RECOVERY	- 5*			N	8
1			`		N N	BENTONITE SLUR
1	· · ·	•			N	N
25 - 27		GE MEDIUM TO COARSE SAND, SO	HE FINE SAND, TRACE GRAVE		8	ห
1	17 15 RECOVERY				N	14
	•				1 2	
1	•	•			N	ห
l	•	•			· /	ผ
30 - 32		BROWN/RED SILT AND CLAY. SO			N	8
		N/RED FINE SAND, SOME SILT.			ห	Ø
	NOTE: CLA	Y OCCURS IN WHITE/PINK LAYE			I II	1 2
1					N	1 2
					N	1 2
35 - 37	· · · · · · · · · · · · · · · · · · ·	IX FINE TO VERY FINE SAND, SO	ME SIEL, SUME CEAT WILK S	INTURE	N	14
1	8 7 RECOVERY	-, 10 · ·			12	K
			•		· // ·	KI :
	· ·				VA	1/1

BOTTOM OF STEEL CASING

41.0

CONTINUED

1944

CONTINUED

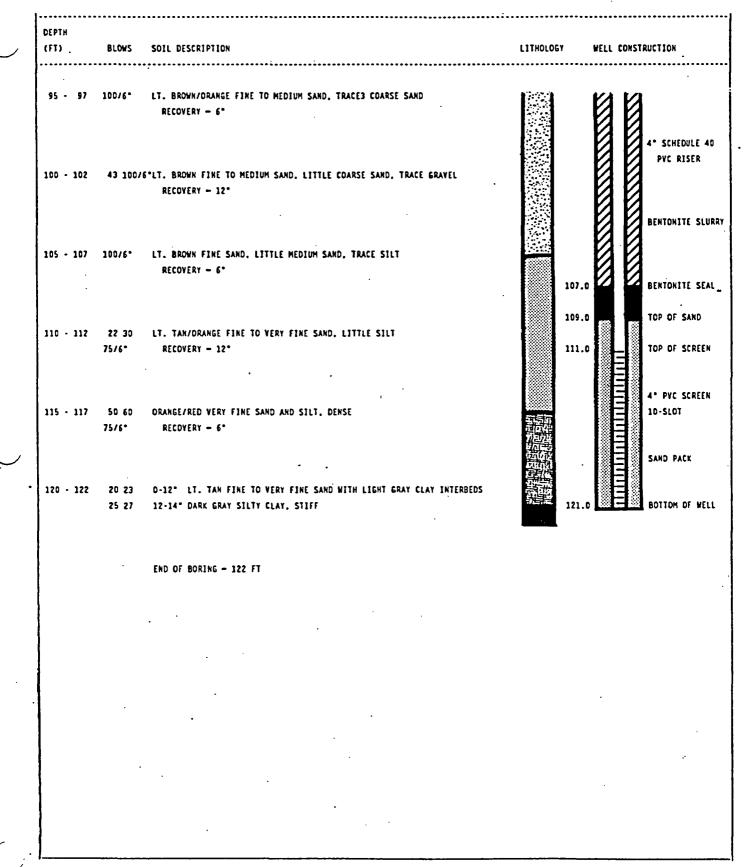
.

40 - 42 2 2 ORANGE SILT AND FINE SAND WITH WHITE/GRAY CLAY LAYERS 3 2 RECOVERY - 24*

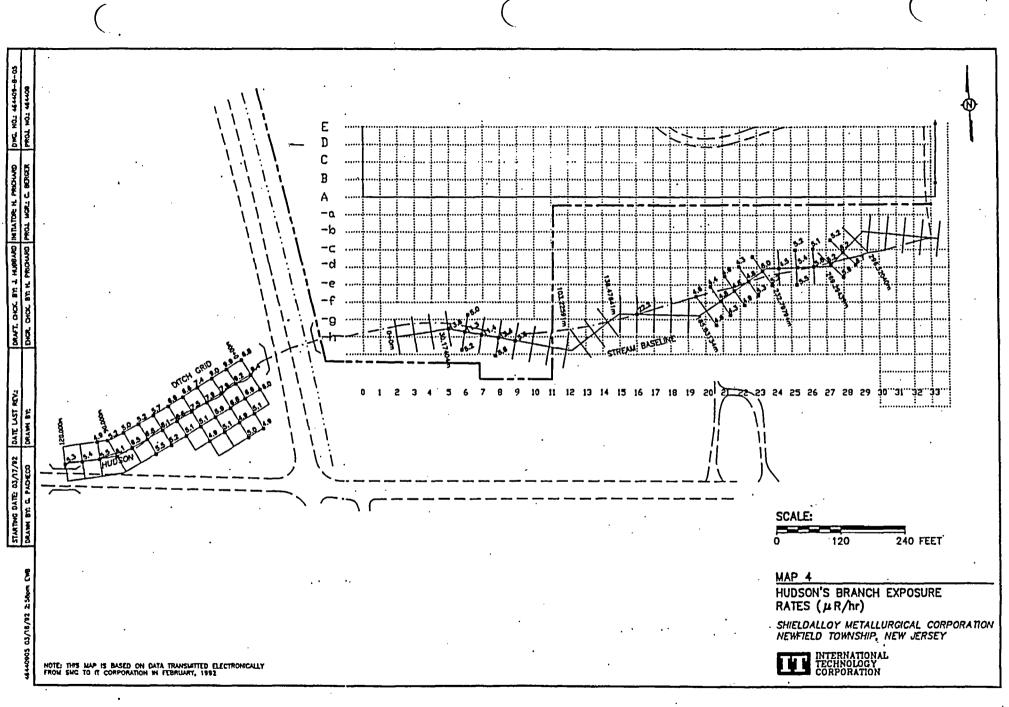
CONTINUED ON NEXT PAGE

(

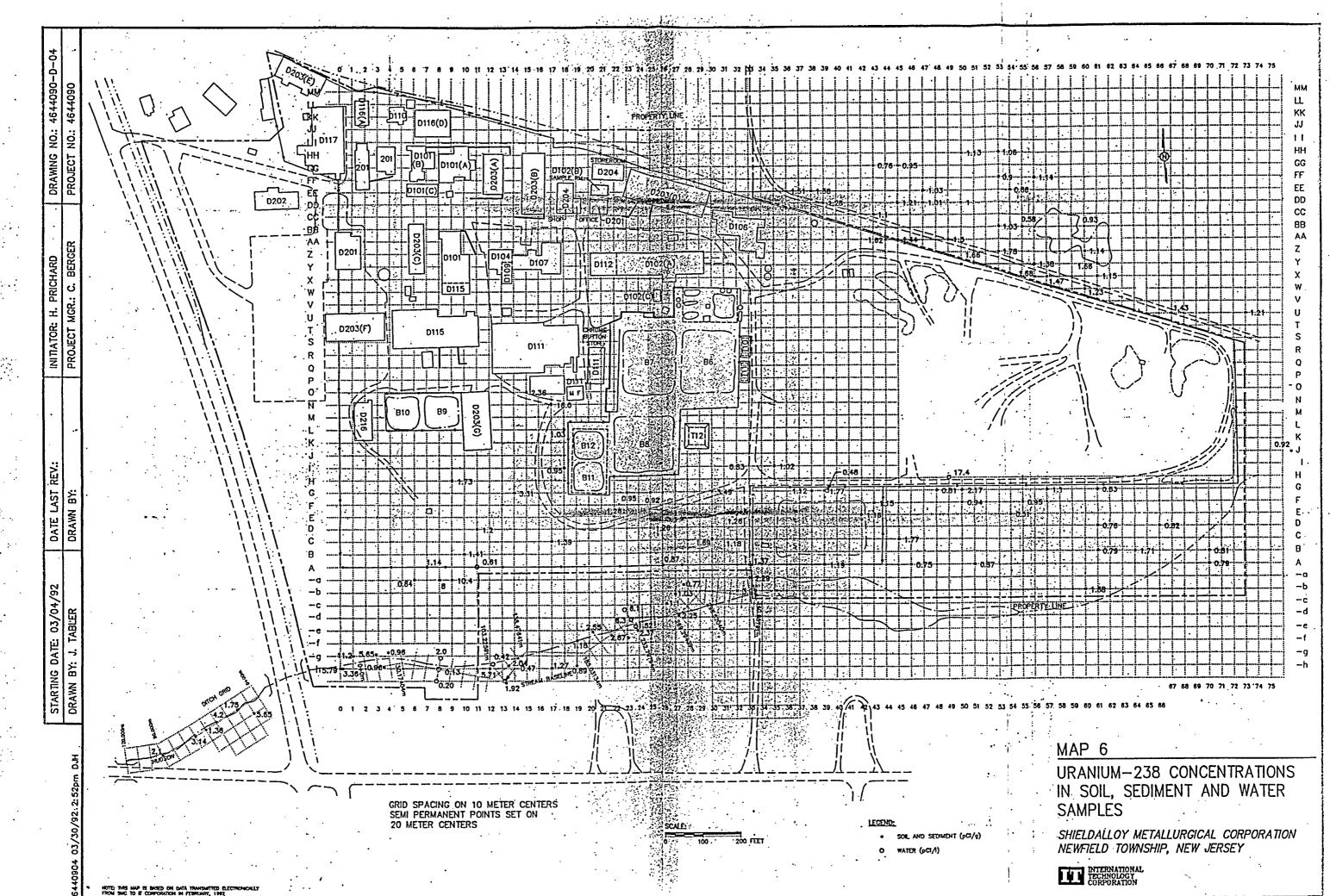
``

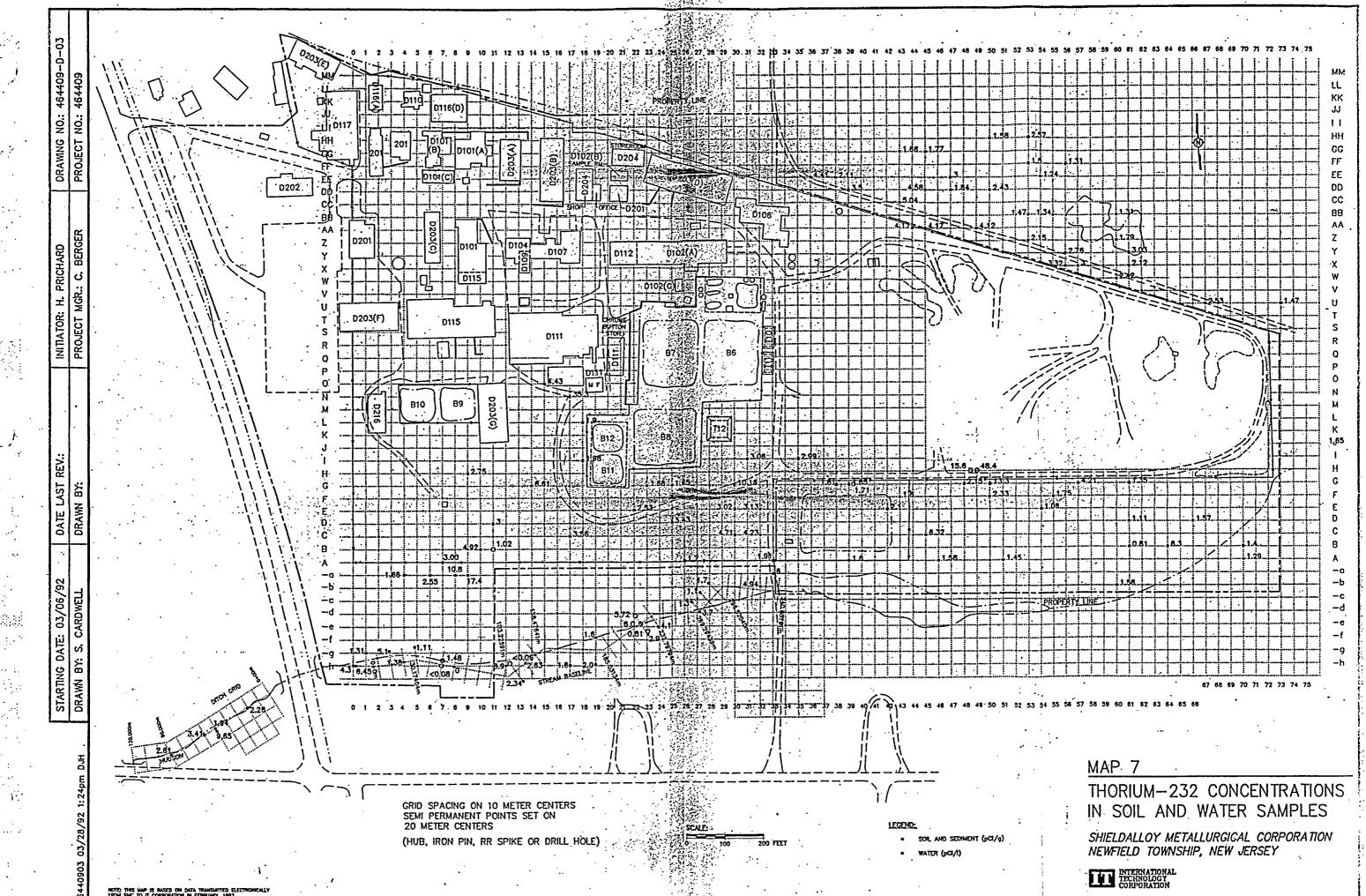

UN MERT PAGE

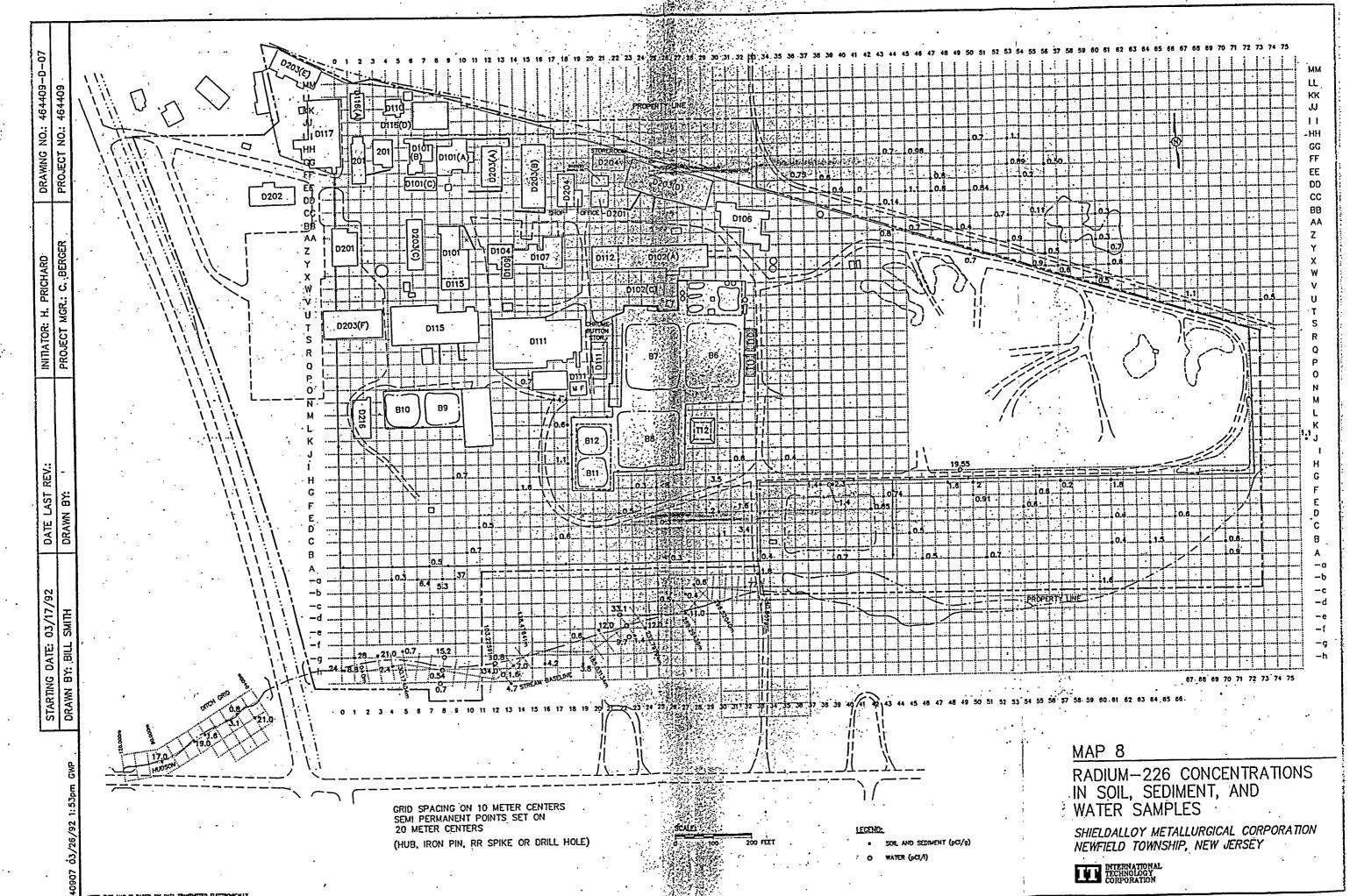
. SC-22D PAGE 2 OF 3


(T	BLOWS	SOIL DESCRIPTION	LITHOLOGY	WELL CONSTRUCTION
15 - 47	33 33 48 42	RED/ORANGE MEDIUM TO COARSE SAND. SOME FINE SAND. TRACE GRAVEL RECOVERY - 18"		
50 - 52	34 43 48 53	ORANGE MEDIUM SAND, SOME COARSE SAND, LITTLE FINE SAND, TRACE GRAVEL RECOVERY - 14*		
55 - 57	8 12 19 24	LT. TAN/PINK FINE TO MEDIUM SAND. SOME COARSE SAND. TRACE GRAVEL RECOVERY - 18°		4° SCHEDULE 40 PYC RISER
50 - 62	18 23 26 30	ORANGE MEDIUM TO COARSE SAND. SOME FINE SAND, TRACE SILT RECOVERY - 14*		
i5 - 6 7	13 25 28 28	LT. TAN FINE TO MEDIUM SAND. TRACE COARSE SAND. TRACE SILT RECOVERY - 12*		
10 - 72	8 12 13 13	TAN FINE TO MEDIUM SAND. LITTLE SILT Recovery -12"		BENTONITE SLURRY
75 - 77	24 43 38 50	TAN/PINK MEDIUM TO COARSE SAND. SOME FINE SAND. LITTLE GRAYEL RECOVERY - 14*		
30 - 82	15 9 7 7	DRANGE FINE TO MEDIUM SAND. TRACE CLAY RECOYERY - 7*		
85 - 87	60 100/	'6°BROWN MEDIUM TO COARSE SAND. SOME GRAYEL, LITTLE FINE SAND RECOYERY - 12°		
90 - 92	43 100/	'6"BROWN/PINK FINE TO MEDIUM SAND. SOME COARSE SAND RECOVERY - 12"		
		CONTINUED ON NEXT PAGE	CONTINUED	CONTINUED

......


SC-22D PAGE 3 OF 3


•



,

٠÷

TTE THIS WAP IS BASED ON DATA TRUNSMITTED ELECT

APPENDIX C - HYDROLOGIC DATA FOR THE MAURICE RIVER BASIN

APPENDIX C - HYDROLOGIC DATA FOR THE MAURICE RIVER BASIN

Average Monthly Discharges at the Maurice River Gauging Station (1/2003-12/2004)

Average Monthly Streamflows between 1932 and 2003

Water Quality Data for the Maurice River Basin

Low-Flow Characteristics and Flow Duration of New Jersey Streams – Maurice River Data

STATION 01411500 MAURICE RIVER AT NORMA, NJ

US GEOLOGICAL SURVEY PROVISIONAL DATA - SUBJECT TO CHANGE UNREGULATED FLOW DRAINAGE AREA = 112 SQUARE MILES NUMBER OF YEARS=73.0 DATE OF PLOT=02/28/05 7Q10=38.0

SOLID LINE = CURRENT DAILY VALUE FLOW DASHED LINE = 7-DAY MINIMUM FLOW WITH A RECURRENCE INTERVAL OF 10 YEARS BLUE (UPPER) BAND = 90- TO 100-PERCENTILE FLOWS (VERY WET CONDITIONS) GREEN (MIDDLE) BAND = 25- TO 75-PERCENTILE FLOWS (NORMAL CONDITIONS) GOLD (LOWER) BAND = 0- TO 10-PERCENTILE FLOWS (VERY DRY CONDITIONS) Wily flows less than or equal to zero are set to 0.01 cubic feet per second. USGS Surface Water data for USA: Monthly Streamflow Statistics

変に必定す												
Nater Resource	:S						Data Ca Surface	tegory: e Water		ographic nited Sta		1
Ionthl	v St	rea	mfl	w	i fafi	stic	s fo	r th	e Na	atio	n	
SGS 01411												
	这 你有											
Avail	able da	ata for	this si	te Si	Inface-wa	ater: Mo	nthly str	eamflow	statistic	s 💽	GO.	
פו		Ninty N	Vew Jer			2 - 1 - 2		<u>191596</u> 838287	17 4 4 4 4 ()) (* 2 * 7	a na serie de la compañía de la com Compañía de la compañía	212 - 24 - 24 - 24 - 24 - 24 - 24 - 24 -	
H	vdrolog	ic Unit	Code 0	204020)6			n: 1991年)	put for		対象	
L	atitude	39°29'	44", Lo	ngitude	75:04	37" NA	D83	ITML ta	ble of	all data		
			12.00 s		illes .00.squ	aře mil		Tab-sep	arated	<u>data</u>		
					ea level			Reselect	t outpu	t forma	ц Ш	
		71633.(1773 22.3.1729.18-	STATES ASL MA			FRAME		<u> i Cing</u>		بلور و کرد. ویکھر موریک و در		ا میں کی کی تک استخدہ مذہب
YEAR				<u>, Mo</u>	nthly m	iean str	eamflo	w, in f	³ /s			2000 - 15 1993 - 159 1994 - 159
	Jan	Feb	Mar ;	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	De
1932										88.5	251	<u>E91</u>
1933	<u>a</u> 219	247	263	: 306	241	126	164	. 250	246	138	:144	-y1
1934	183	118	229	<u>-219</u>	206	130	蕊117	194	148	153	149	图1
1935	<u>, 214</u>	<u>†</u> 270	258	3247	184	3/152	91.8	80.1	270	121	219	1
1936	380	333	<u>_358</u>	300	147	125	100	62.2	<u>×117</u>	101	80.7	51
1937	<u>ି 254</u>	242	226	3207	210	148	<u>91.6</u>	92.6	95.2	139	203	<u>1</u>
1938	<u>155</u>	<u>171</u>	172	3-141	110	130	293	230	298	252	: 212	24
<u>1939: (</u>		5 418			231			·			143	
1940		5,143	219	276	250			133	591	2157	208	
1941	216	200	241	188	121		<u>114</u>	74.5	50.7		72.0	
1942	94.6	145	<u></u> 190	161	<u>, 93.6</u>		90.5	140	78.8	-128	129	
1943	195	219	221	207	202		89.3	56.1	46.2	93.8	162	
1944	193	139	243	286 169	<u>56,199</u>	134	71.8	76.1	122	92.9	111	· · · · · ·
1945 1946	<u>173</u>	172	214		172	2106	204	184	128	118	133	2:
1946	5414	222	220 189	<u>189</u>	228	239	204	94.6	99.0 77.6	-97.3 1 65.5	97.4 130	
1947	204	200	227	248	220	277	95.7 167	225		<u> </u>	130	2
1949	328	371	330	272	249	129	107	70.8	87.6	-81.7	134	1
1950	106	161	186	156	153	118	101		140		138	19
1951	159	208	216	257	透171	131	129	94.8	· · · · · · · · · · · · · · · · · · ·		177	26
0.000000000	1.4. 6	<u></u>						1	1 - <u></u>	1202201		

USGS Surface Water data for USA: Monthly Streamflow Statistics

	1952	280	304	323	290	304	-227	134	254	149	105	166	210
	1953 · · ·	249	239	<u>.</u> 331	334	-271	230	/ 132	114	65.7	76.4	137	317
	1954	3149	.142	5 181	153	153	71.3	52.0	-54.8	117	67:2	115	13
	1955	j133	144	176	145	87.1	121	56.9	180	103	116	118	86.
	1956	94.6	5 181	206	187	141	1119	140	106	106	102	233	20
	1957	170	190	186	163	101	86.7	46.2	36.2	68.3	72.5	94.2	16
1	1958	209	223	401	361	387	185	224	- 327	-234	. 262	220	18
	1959	183	1.186	200	202	150	146	183	154	112	103	150	15
	1960	172	3193	200	201	169	123	94.4	118	345	- 222	186	17
	1961	263	<u>.</u> 310	377	337	1.233	163	132	121	.97.3	3 103	;92.3	12
	1962	155	;-145	255	266	146	128	96.7	87.7	72.5	285.4	137	<u>\$12</u>
	1963	129	3147	- 247	140	影115	105	55.8	.67.4	<u>્</u> 67.6	67.8	145	[1]
	1964	<u>3192</u>	211	<u>195</u>	<u>241</u>	189	96.1	. 74.4	<u>47.5</u>	::44.8	3.83.3	63.2	<u>[]</u>]
	1965	130	152	; 143	<u>}</u> 152	<u>. 91.1</u>	73.7	59.7	39.9	340.6	48.6	46.7	57
1.	1966	64.7	::109	106	_90.9	<u>}:96.0</u>	57.7	35.6	34.6	64.7	137	110	[[12]
	1967	159	<u>156</u>	:: 236	185	187	109	<u>, 126</u>	322	[書171]	159	138	27
	1968	291	<u>183</u>	259	178	. 186	247	<u>i 133</u>	75.8	<u>:55.9</u>	63.4	5112	封1
	1969	109	134	149	<u>142</u>	115	75.0	1 219	224	150	×111	111	23
	1970	<u>ે</u> 238	2:208	174	341	193	158	106	-99.6	46.3	.77.8	142	.13
	<u>1971</u>	<u>155</u>	235	249	<u>:202</u>	2184	116		188	<u>課247</u>	<u>198</u>	264	28
	1972	240	277	278	<u>). 269</u>	253	247	234	120	101	140	330	<u>_</u> 38
	1973	289	415	288	346	272	: 236	169	. 93.5	<u>1</u> 93.0	79.4	.92.1	318
	1974	213	160	184	243	163	114	81.7	<u>ે</u> .112	<u>117</u>	.96.5	86.6	217
	1975	- 215	200	278	240	264	212	333	_183	220	. 223	223	17
	1976	: 303	272	199	164	<u>130</u>	3.82.9	77.0	86.5	: 55.1	115		<u>، 1</u> 0
	1977	100	<u>: 102</u>	145	<u>138</u>	79.5			57.4	53.6		165	25
	1978	376	229	282	- 225	287	178	185	169	108	30.6	85.5	15 IS
	1979	313	327	427	281	264	7 291	<u>, 172</u>	218	225	264	230	<u>}</u> 20
	1980	202	159	211	<u>282</u>	200	156	127	97.5	66.0	88.6	96.8	<u>85</u>
	1981	71:8	95.7	97.2	118	155	129	104	86.3	76.2	77:3)	84.3	3.12
	1982	141	178	148	179	163	161	98.8	72.6	57.2	258.5	86.9	
	1983 1984	107	124	234	412	322	264	123	75.7	75.3	· 95.7	173	24
		199	239	350	437	268	259	290	160	117	117	119	12
	1985 1986	101 148	147 211	108 178	291.8 187	<u>145</u>	99.9 76.0	85.8 69.6	63.9	110 63.1	.138 79.2	121	16 [::23
i	1980	242	-196	. 178	254	124 197	117	136	86.3	79.4	97.7	122	12
	1987	138	208	169	173	166	90.1	74.0	.65.7	73.2	68.0	114	12
	1988	115	143	109	203	318	242	243	275	260	266	222	16
24	F 20-707	1	1. 125	[요문(오]	202	1.210	1.7444	J	- 4 13	200	200	444	1.22.10

1990	232	204	187	220	243	191	126	155	110	108	99.1	137
1991	á 280	173	217	- 229	157	-118	103	-92.1	82:4	. 94.3	77.8	3132
1992	3111	<u>108</u>	: <u>129</u>	110	<u>*</u> 193:5	144	86.5	98.5	80.5	. 74.0	<u>113</u>	濟171
1993	156	161	283	278	176	3129	81.6	71.5	. 60.4		87.4	173
1994	<u>. 197</u>	243	<u>.</u> 371	311	186		<u>107</u>	142	88.1	73.5	-81.3	104
1995	124	.107	127	<u>- 96.7</u>	113	: 69.3	<u>57.3</u>	50.3	- 56.1	90.4	<u> </u>	- 127
1996	.204		205	266		140	183	<u>158</u>	1127	. 179	<u>::138</u>	348
1997	241	282	1.290	282	214	136	95.8	<u>145</u>	82.3	78.7	<u>્ર 141</u>	124
1998	<u> 171</u>	224	:339	: 239	238	and a block of the set	96.2	·82.0	55.9	155.1	<u>356.2</u>	<u>}61.7</u>
1999	166	<u>137</u>	185	167	,		<u>66.9</u>	<u>67.3</u>	<u>-162</u>	122	<u>119</u>	147
2000	126	176	260	220	140	<u>5114</u>	95.2	114	100	84.7	<u>89.4</u>	149
2001	158	5200	214	221	140	154	77.6	.60.3	54.3	<u>58.8</u>		68.7
<u>, 2002</u>	<u>i 79.5</u>	69.4	<u>.</u> 89.9	.92.7	104	<u>\$111</u>	57.6	32:1	53.8	77.4	<u>151</u>	173
2003		196	311	244	1214	331	185	182	210			
Mean												
of monthly	187	198	230	. 224	188	<u>)</u> 148	122	123	120	\$111	::136	164
streamflows												

Questions about data <u>Water Webserver Team</u> Feedback on this website<u>NWISWeb Support Team</u> Surface Water data for USA: Monthly Streamflow Statistics http://waterdata.usgs.gov/nwis/monthly?

Retrieved on 2005-04-29 16:21:40 EDT Department of the Interior, U.S. Geological Survey Privacy Statement || Disclaimer || Accessibility || FOIA 137 1.12 nadww01

5.15

<u>Lop</u> ::: Explanation of terms

file.//III./IIA 784 ATIORACIORAC REALER DIL Clammer Freedman and Bar and Amara din Amara Stations

01411466 INDIAN BRANCH NEAR MALAGA, NJ

LOCATION.--Lat 39°35'27", long 75°03'35", Gloucester County, Hydrologic Unit 02040206, at bridge on U.S. Route 47 (Delsea Drive), 0.4 mi upstream of Malaga Lake, and 1.4 mi north of Malaga.

DRAINAGE AREA.--6.50 mi².

PERIOD OF RECORD .-- Water years 1998 to current year.

REMARKS.-Total nitrogen (00600) equals the sum of dissolved ammonia plus organic nitrogen (00623), dissolved nitrite plus nitrate nitrogen (00631), and total particulate nitrogen (49570).

COOPERATION -- Determination of dissolved ammonia, total ammonia, dissolved nitrite, dissolved orthophosphate, biochemical oxygen demand, total suspended solids, fecal coliform, E. coli, and enterococcus bacteria was performed by the New Jersey Department of Health and Senior Services, Public Health and Environmental Laboratories, Environmental and Chemical Laboratory Services. Determination of chlorophyll a was performed by the New Jersey Department of Environmental Protection, Bureau of Freshwater and Biological Monitoring Laboratory.

COOPERATIVE NETWORK SITE DESCRIPTOR.--Undeveloped Land Use Indicator, New Jersey Department of Environmental Protection Watershed Management Area 17.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Instan- taneous dis- charge, cfs (00061)	Tur- bidity, water, unfltrd field, NTU (61028)	UV absorb- ance, 254 nm, wat flt units /cm (50624)	UV absorb- ance, 280 nm, wat flt units /cm (61726)	Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	Hard- ness, water, unfittd mg/L as CaCO3 (00900)
NOV						• 32	and the second second				•		
25	1010	7.3	0.7	0.728	0.552	762	8.6	70	3.7	93	15.0	6.5	11
MAR 05 MAY	0940	19	0.6	0.658	0.502	750	10.4	80	3.3	76	12.0	3.4	9
13	0950	13 ·	0.6	0.935	0.726	748	5.3	52	3.7	63	15.5	13.3	7
AUG 12	1000	11	0.8	1.64	1.29	762	3.8	42	4.1	60	23.1	19.7	8

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

ノ	Date	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium, water, fltrd, mg/L (00930)	ANC, wat unf fixed end pt, lab, mg/L as CaCO3 (90410)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Sulfate water, fitrd, mg/L (00945)	Residue on evap. at 180degC wat flt mg/L (70300)	Residue total at 105 deg. C, sus- pended, mg/L (00530)	Ammonia + org-N, water, fltrd, mg/L as N (00623)	Ammonia water, flurd, mg/L as N (00608)
	NOV 25 MAR	1.75	1.49	0.73	3.26		5.38	<0.17	8.3	12.6	70 ·	2	0.44	<0.030
	05 MAY	1.50	1.16	0.85	2.92	<2	5.13	<0.17	5.9	11.5	57	1	0.37	<0.030
	13 AUG	1.24	0.939	0.86	3.08		6.41	<0.17	5.6	7.1	59	1	0.46	<0.030
·	12	1.42	0.995	0.86	3.33		6.53	<0.17	8.0	4.4	74	1	0.84	0.036

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Ammonia water, unfltrd mg/L as N (00610)	Nitrite + nitrate water fltrd, mg/L as N (00631)	Nitrite water, fltrd, mg/L as N (00613)	Ortho- phos- phate, water, fltrd, mg/L as P (00671)	Partic- ulate nitro- gen, susp, water, mg/L (49570)	Phos- phorus, water, fltrd, mg/L (00666)	Phos- phorus, water, unfitrd mg/L (00665)	Total nitro- gen, water, fltrd, mg/L (00602)	Total nitro- gen, water, unfltrd mg/L (00600)	Total carbon, suspnd sedimnt total, mg/L (00694)	Inor- ganic carbon, suspnd sedimnt total, mg/L (00688)	Organic carbon, suspnd sedimnt total, mg/L (00689)	Organic carbon, water, flurd, mg/L (00681)
NOV 25 MAR	<0.030	0.34	E.003		0.03	0.006	0.007	0.78	0.81	0.2	<0.1	0.2	17.0
05 MAY	0.030	0.50	0.004	<0.020	0.03	0.004	0.016	0.88	0.90	0.3	<0.1	0.3	13.1
13 AUG	0.037	0.35	<0.003	<0.020	<0.02	0.005	0.008	0.81		0.2	<0.1	0.2	17.9
12	0.033	0.21	0.004	<0.020	0.03	0.011	0.013	1.0	1.1	0.2	<0.1	0.2	30.0

01411466 INDIAN BRANCH NEAR MALAGA, NJ-Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	BOD, water, unfltrd 5 day, 20 degC mg/L (00310)	Chloro- phyll a fluoro- metric method, corrctd ug/L (32209)	Boron, water, fltrd, ug/L (01020)	Iron, water, fltrd, ug/L (01046)
NOV	ngî n ⊡	× .	•	n an an trainin an Anna Anna Anna Anna Anna Anna A
25	<1.0		19	
MAR	• •		• • •	
05	<1.0		- 15 -	9 1 1
MAY 13	<1.0	1.60	13	
AUG	<1.0	1.00	:	
12	<1.0	0.400	13	1,330
< Les	odes used in ss than imated value			

WATER-COLUMN BACTERIA ANALYSES

Samples were collected synoptically over a 30-day period during the summer.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Entero- cocci, m-E MF, water, col/ 100 mL (31649)	E coli, m-TEC MF, water, col/ 100 mL	Fecal coli- form, ECbroth water, MPN/ 100 mL (31615)	ι.	. ,	Date	Time	Entero- cocci, m-E MF, water, col/ 100 mL (31649)	E coli, m-TEC MF, water, col/ 100 mL (31633)	Fecal coli- form, ECbroth water, MPN/ 100 mL (31615)		
JUL		•					AUG	£ •			2		
09	1005	<10	<100	40		. * .,	06	1045	180	500	230	·	
16	1030	30	200	20									
23	1030		700	1,100							÷ -		
30	1035	20	200	40							•	•	
	2							•			• •	1.2	

Remark codes used in this table: < -- Less than

 \mathbb{C}

355 🖧

 $\mathbb{Q}_{n} \in \mathbb{P}$

1. Ai

~ (****** ٩A

1.23

.

356

MAURICE RIVER BASIN

01411500 MAURICE RIVER AT NORMA, NJ

LOCATION.-Lat 39°29'44", long 75°04'37", Salem County, Hydrologic Unit 02040206, at bridge on Almond Road (County Route 540) in Norma, 0.8 mi downstream from Blackwater Branch, and 2.9 mi west of Vineland.

DRAINAGE AREA.--112.0 mi².

PERIOD OF RECORD.-Water years 1953, 1962-63, 1965 to September 1997, December 1998 to current year.

REMARKS.-- Total nitrogen (00600) equals the sum of dissolved ammonia plus organic nitrogen (00623), dissolved nitrite plus nitrate nitrogen (00631), and total particulate nitrogen (49570).

COOPERATION.-Field data and samples for laboratory analyses were provided by the New Jersey Department of Environmental Protection. Determination of dissolved ammonia, total ammonia, dissolved nitrite, dissolved orthophosphate, biochemical oxygen demand, total suspended solids, fecal coliform, E. coli, and enterococcus bacteria was performed by the New Jersey Department of Health and Senior Services, Public Health and Environmental Laboratories, Environmental and Chemical Laboratory Services. Determination of chlorophyll a was performed by the New Jersey Department of Environmental Protection, Bureau of Freshwater and Biological Monitoring Laboratory.

COOPERATIVE NETWORK SITE DESCRIPTOR.--Watershed Integrator, New Jersey Department of Environmental Protection Watershed Management Area 17.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Instan- taneous dis- charge, cfs (00061)	Tur- bidity, water, unfitrd field, NTU (61028)	UV absorb- ance, 254 nm, wat flt units /cm (50624)	UV absorb- ance, 280 nm, wat flt units /cm (61726)	Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)
NOV 13	1000	146	1.7	0.402	0.319	762	7,3	68	6.2	105	8.0	12.0	25
FEB 10	1000	143	1.9	0.185	0.141	758	11.8	88	6.1	116	1.4	2.8	23
MAY 21:	1000	166	2.2	0.500	0.389	764	7.6	75	6.3	99	12.8	15.1	22
AUG 19	0 900 .	178	5.2	0.956	0.753	765	· 5.8	67	6.3	90	23.4	22.3	20

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium, water, fltrd, mg/L (00930)	ANC, wat unf fixed end pt, lab, mg/L as CaCO3 (90410)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Sulfate water, fitrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Residue on evap. at 180degC wat flt mg/L (70300)	Residue total at 105 deg. C, sus- pended, mg/L (00530)	Ammonia + org-N, water, filrd, mg/L , as N (00623)
NOV * 13 FEB	5.40	2.92	3.18	7.31	E6	12.8	<0.17	6.6	15.2	-	82	. 3	0.33
10 MAY	4.62	2.78	1.78	8.40	5	13.8	<0.17	6.6	10.9	61	71	3	0.24
21 AUG	4.69	2.55	2.07	7.62	7	13.0	<0.17	4.9	7.8	54	80	3	0.49
19	4.15	2.37	2.20	7.13	10	12.7	<0.17	8.1	4.5	52	88	5	0.86

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Ammonia water, fitrd, mg/L as N (00608)	Ammonia water, unfltrd mg/L as N (00610)	Nitrite + nitrate water fltrd, mg/L as N (00631)	Nitrite water, fitrd, mg/L as N (00613)	Ortho- phos- phate, water, fltrd, mg/L, as P (00671)	Partic- ulate nitro- gen, susp, water, mg/L (49570)	Phos- phorus, water, fltrd, mg/L (00666)	Phos- phorus, water, unfltrd mg/L. (00665)	Total nitro- gen, water, fltrd, mg/L (00602)	Total nitro- gen, water, unfltrd mg/L (00600)	Total carbon, suspnd sedimnt total, mg/L (00694)	Inor- ganic carbon, suspnd sedimnt total, mg/L (00688)	Organic carbon, suspnd sedimnt total, mg/L (00689)
NOV			•		•								
13	<0.030	0.048	0.97	<0.003	<0.020	0.05	0.005	0.014	1.3	1.4	0.5	<0.1	0.5
FEB 10	0.030	0.036	1.93	<0.003	<0.020	0.04	0.006	0.010	2.2	2.2	0.3	<0.1	0.3
MAY						- Á-				• •			
21 AUG	<0.030	0.054	1.50	0.003	<0.020	0.07	0.010	0.018	2.0	2.0	0.7	<0.1	0.7
19	0.066	0.065	0.87	0.007	<0.020	0.19	0.020	0.040	1.7	1.9	2.0	<0.1	1.9

ノ

01411500 MAURICE RIVER AT NORMA, NJ-Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Organic carbon, water, fltrd, mg/L (00681)	BOD, water, unfltrd 5 day, 20 degC mg/L (00310)	Chloro- phyll a fluoro- metric method, corrctd ug/L (32209)	Boron, water, fltrd, ug/L (01020)	Iron, water, fltrd, ug/L (01046)
NOV	$\mathcal{F}_{i} = \mathcal{F}_{i} + \mathcal{F}_{i}$				
13	10.7	E1.2		95	. <u></u> `,
FEB	· ·				
10	4.4	<1.0		25	`
MAY	eta a constante de la constante				1 J.
21	9.4	<1.0	1.00	32	
AUG					
. 19	17.0	<1.0	1.90	30	1,080
< Les	odes used in is than imated value				· · ·

WATER-COLUMN BACTERIA ANALYSES

Samples were collected synoptically over a 30-day period during the summer.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Entero- cocci, E coli, m-E m-TEC MF, MF, water, water, col/ col/ 100 mL 100 mL (31649) (31633)	Fecal coli- form, ECbroth water, MPN/ 100 mL (31615)		Date	Time	Entero- cocci, m-E MF, water, coV 100 mL (31649)	E coli, m-TEC MF, water, col/ 100 mL (31633)	Fecal coli- form, ECbroth water, MPN/ 100 mL (31615)	
AUG		the second second		S	EP ·					
06	1057	490 <100	800		.03	1015	100	200	110	
18	1155	110 100	20		· 				-	
20	1030	. 60 <100	110			-				
27	1040	90 <100	<20							

Remark codes used in this table: < -- Less than

01411955 GRAVELLY RUN AT LAUREL LAKE, NJ

LOCATION.-Lat 39°20'14", long 75°03'03", Cumberland County, Hydrologic Unit 02040206, at culvert on Battle Lane, 0.3 mi upstream from mouth and Buckshutem Creek, 1.1 mi west of community of Laurel Lake, and 2.5 mi southeast of Millville Municipal Airport.

DRAINAGE AREA.--3.19 mi².

PERIOD OF RECORD .-- Water years 1998 to current year.

REMARKS.-For definition of the type of quality-control data listed under SAMPLE TYPE, refer to "Water-Quality Control Data" in the Explanation of Water-Quality Records section of this report. Total nitrogen (00600) equals the sum of dissolved ammonia plus organic nitrogen (00623), dissolved nitrite plus nitrate nitrogen (00631), and total particulate nitrogen (49570).

COOPERATION.--Determination of dissolved ammonia, total ammonia, dissolved nitrite, dissolved orthophosphate, biochemical oxygen demand, total suspended solids, total ammonia + organic nitrogen in bed sediment, total phosphorus in bed sediment, fecal coliform, E. coli, and enterococcus bacteria was performed by the New Jersey Department of Health and Senior Services, Public Health and Environmental Laboratories, Environmental and Chemical Laboratory Services. Determination of chlorophyll a was performed by the New Jersey Department of Environmental Protection, Bureau of Freshwater and Biological Monitoring Laboratory.

COOPERATIVE NETWORK SITE DESCRIPTOR .- Background, New Jersey Department of Environmental Protection Watershed Management Area 17.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Instan- taneous dis- charge, efs (00061) •	Tur- bidity, water, unfltrd field, NTU (61028)	UV absorb- ance, 254 nm, wat flt units /cm (50624)	UV absorb- ance, 280 nm, wat flt units /cm (61726)	Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)
NOV 05	1520	0.71	0.6	0.150	0.119	765	9,3	79	4.2	36	8.5	8.5	6
FEB 25	1120	4.4	1.1	0.374	0.281	771	12.6	92	3.9	59	5.0	2.7	6
MAY 22	1240	1.4	0.7	0.170	0.134	764	8.6	80	4.5	28	14.0	12.5	4
AUG 21	1130	0.69	0.8	0.187	0.151	764	7.3	77	4.2	26	28.0	18.1	3

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Calcium water, fltrd, mg/L (00915)	Magnes- ium, water, fitrd, mg/L. (00925)	Potas- sium, water, flưd, mg/L (00935)	Sodium, water, fltrd, mg/L (00930)	ANC, wat unf fixed end pt, lab, mg/L as CaCO3 (90410)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Sulfate water, fltrd, mg/L (00945)	Residue on evap. at 180degC wat flt mg/L (70300)	Residue total at 105 deg. C, sus- pended, mg/L (00530)	Ammonia + org-N, water, fltrd, mg/L as N (00623)	Ammonia water, fltrd, mg/L as N (00608)
NOV 05	0.80	0.867	0.44	2.49	4	4.16	<0.17	7.7	4.8	26	2	E.10	<0.030
FEB 25	0.82	0.881	0.53	2.96		4.52	<0.17	5.4	8.5	46	</td <td>0.23</td> <td><0.030</td>	0.23	<0.030
MAY 22	0.52	0.540	0.52	2.29	4	4.39	<0.17	5.6	2.7	27	1	0.11	<0.030
AUG 21	0.56	0.479	0.42	2.21	2	4.22	<0.17	7.5	1.5	32	7	0.17	0.036

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Ammonia water, unfltrd mg/L as N (00610)	Nitrite + nitrate water fltrd, mg/L as N (00631)	Nitrite water, flurd, mg/L as N (00613)	Ortho- phos- phate, water, fltrd, mg/L as P (00671)	Partic- ulate nitro- gen, susp, water, mg/L (49570)	Phos- phorus, water, fltrd, mg/L (00666)	Phos- phorus, water, unfltrd mg/L (00665)	Total nitro- gen, water, fltrd, mg/L (00602)	Total nitro- gen, water, unfltd mg/L (00600)	Total carbon, suspnd sedimnt total, mg/L (00694)	Inor- ganic carbon, suspnd sedimnt total, mg/L (00688)	Organic carbon, suspnd sedimnt total, mg/L (00689)	Organic carbon, water, fltrd, mg/L (00681)
NOV	<0.030	0.10	<0.003	<0.020 [°] .	<0.02	<0.004	E.003	• •		<0.1	<0.1	<0.1	4.1
05 FEB	<0.030	0.10	<0.005	< 0.020	<0.02	<0.004	E.005	- -		CO.1			4.1
25	<0.030	0.10	0.003	0.024	<0.02	E.002	0.005	0.33		0.3	<0.1	0.3	8.7
MAY				•									
22	<0.030	0.09	<0.003	<0.020	<0.02	<0.004	E.003	0.20	6 -2	0.2	<0.1	0.2	4.0
AUG 21	0.032	0.14	<0.003	<0.020	0.03	0.005	0.007	0.30	0.33	0.3	<0.1	0.3	3.4

01411955 GRAVELLY RUN AT LAUREL LAKE, NJ-Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	BOD, water, unfltrd 5 day, 20 degC mg/L (00310)	Chloro- phyll a fluoro- metric method, corrctd ug/L (32209)	Boron, water, fltrd, ug/L (01020)
NOV			
05	E1.9		E9.0
FEB			
25	E2.0		16
MAY	• •	6 60	FO O
22	2.3	6.50	E9.9
AUG 21	E1.7	0.200	14
	odes used in	this table:	

< -- Less than E -- Estimated value

WATER-COLUMN AND BED-MATERIAL TRACE-ELEMENT ANALYSES

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

				Ammonia	• .		Inor-			Beryll-	-	
				+	Phos-	Total	ganic		Barium,	ium,	Boron,	
		•	pH	org-N,	phorus,	carbon,	carbon,		water,	water,	water,	
			bed	bed sed	bed	bed	bed	Arsenic	unfltrd	unfltrd	unfltrd	
			sedimnt	total,	sedimnt	sedimnt	sedimnt	water	recover	recover	recover	
D _1		Committe damas	std	mg/kg	total,	total,	total,	unfltrd	-able,	-able,	-able,	•
Date	Time	Sample type	units (70310)	as N (00626)	mg/kg (00668)	g/kg (00693)	g/kg (00686)	ug/L (01002)	ug/L (01007)	ug/L. (01012)	ug/L (01022)	
			(70310)	(00020)	(00008)	(00093)	(00000)	(01002)	(01007)	(01012)	(01022)	
AUG		- 5			•			-				
21	1128	Sampler Blank										
21	1129	Field Blank								'		
21	1130	Environmental						<2	15.0	E.06	10	
21	1130	Bed material	3.98	240	770	2.3	<0.2					

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Cadmium water, unfltrd ug/L (01027)	Chrom- ium, water, unfltrd recover -able, ug/L (01034)	Copper, water, fltrd, ug/L (01040)	Copper, water, unfltrd recover -able, ug/L (01042)	Iron, water, unfltrd recover -able, ug/L (01045)	Lead, water, fltrd, ug/L (01049)	Lead, water, unfltrd recover -able, ug/L (01051)	Mangan- ese, water, unfltrd recover -able, ug/L (01055)	Mercury water, fltrd, ug/L (71890)	Mercury water, unfltrd recover -able, ug/L (71900)	Nickel, water, fltrd, ug/L (01065)	Nickel, water, unfltrd recover -able, ug/L (01067)	Selen- ium, water, unfltrd ug/L (01147)	
AUG														
21				••					••					
21			<0.2	` 		<0.08			< 0.02		<0.06			
21	<0.04	<0.8		E.3	170		0.87	3.3		<0.02		0.53	E.4	
21											**			

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Silver, water, unfltrd recover -able, ug/L (01077)	Zinc, water, fltrd, ug/L (01090)	Zinc, water, unfltrd recover -able, ug/L (01092)	Arsenic bed sedimnt total, ug/g (01003)	Cadmium bed sedimnt recover -able, ug/g (01028)	Chrom- ium, bed sedimnt recover -able, ug/g (01029)	Cobalt bed sedimnt recover -able, ug/g (01038)	Copper, bed sedimnt recover -able, ug/g (01043)	Iron, bed sedimnt total, ug/g (01170)	Lead, bed sedimnt recover -able, ug/g (01052)	Mangan- ese, bed sedimnt recover -able, ug/g (01053)	Mercury bed	Nickel, bed sedimnt recover -able, ug/g (01068)
AUG 21			•										
21		< <u> </u>						••		••	••	. •••	
		2		**		••							
21	<0.16		5			••							
21				<1	0.010	2.4	0.320	<2	1,600	5.1	5.8	<0.01	1.1

359 ---

÷

01411955 GRAVELLY RUN AT LAUREL LAKE, NJ-Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

								5112002 1	O OLA ILAN		•		
Date	Selen- ium, bed sedimnt total, ug/g (01148)	Zinc, bed sedimnt recover -able, - ug/g (01093)	1,2-Di- methyl- naphth- alene, bed sed 2 mm, ug/kg (49403)	1,6-Di- methyl- naphth- alene, bed sed <2 mm, ug/kg (49404)	1Methyl -9H- fluor- ene, bed sed <2 mm, ug/kg (49398)	1- Methyl- phenan- threne, bed sed <2 mm, ug/kg (49410)	pyrene, bed sed <2 mm, wsv nat ug/kg	236Tri- methyl- naphth- alene, bed sed <2 mm, ug/kg (49405)	2,6-Di- methyl- naphth- alene, bed sed <2 mm, ug/kg (49406)	2-Ethyl naphth- alene bed sed <2 mm wsv nat ug/kg (49948)	2- Methyl- anthra- cene, bed sed <2 mm, ug/kg (49435)	Cyclo- penta- phenan- threne, bed sed <2 mm, ug/kg (49411)	9H- Flour- bed sed <2 mm, wsv nat ug/kg (49399)
AUG				•									
21			••	••	••	••					·`		
21 21	••	-	••						••	 .	••		
21	<1	4.5	<u>ح</u> ق	<u>ح</u> 0	<u>ح</u> 0	<u>ح</u> 0	<u>ය</u>	ر ک	E13	<50	<50	<50	<50
			WATER-Q	UALITY				ER 2002 1	O SEPTEM	IBER 2003	5		
	Ace-	Ace-	Anthra-	Benzo-	Benzo-	Benzo-	Benzo-	Benzo-	Chry-	Dibenzo	Fluor-	Indeno-	Iso-
	naphth-	naphth-	cene,	[a]-	[a]-	[b]-	[ghi]-	[k]-	sene, bed sed	-[a,h]-	anthene	[1,2,-	phorone
	ene, bed sed	ylene, bed sed	bed sed ⊲ mm.	anthra- cene.	pyrene, bed sed	fluor- anthene	ene,	fluor- anthene	$<2 \mathrm{mm}$.	anthra- cene,	bed sed	3-cd]- pyrene	bed sed <2 mm.
	<2 mm,	<2 mm,	wsv nat	bed sed	<2 mm,	bed sed	bed sed	bed sed	wsv nat	bed sed	wsv nat	bed sed	wsv nat
_	wsv nat	wsv nat	field,	<2 mm,	wsv nat	<2 mm	<2 mm,	<2 mm	field,	`<2 mm,		<2 mm	field,
Date	ug/kg (49429)	ug/kg (49428)	ug/kg (49434)	ug/kg (49436)	ug/kg (49389)	ug/kg (49458)	ug/kg (49408)	ug/kg (49397)	ug/kg (49450)	ug/kg (49461)	ug/kg (49466)	ug/kg (49390)	ug/kg (49400)
	(47427)	(49420)	(49434)	(49430)	(49309)			(49397)	(49430)	(49401)	(49400)	(49390)	(49400)
AUG 21							· .	·	·				
21			••• ·	••		·	••	· ••					
21	. .	-				-					·		
21	<50	് 0	⊲ 0 ·	<50	<0	<u>ଏ</u>	<u>ଏ</u>	<20	<50	<50	· E11	<50	< 50
			WATER-O	UALITY	DATA, WA	TER YEA	R OCTOB	ER 2002 T	O SEPTEM	IBER 2003	5		
•	•		· p	- Phe	nan- Pher	nan-	· R	ed E	led B	éd B	Bed B	ed B	ed
	Nan	hth-	Cre										di-
		ene,	bed										ent,
,			Bs, <2 ⊓										ldia
			ed wsv imnt fiel										wat cent
Г			/kg ug/								08mm < 01		Imm
			519) (494										283)
AUC	3		•							· .			
21	' · -						• ·	·• .					-
- 21						1 -		-	·			••••••••••••••••••••••••••••••••••••••	-
21		- ·				0 EI	0 9		 2.8 3	5 4			- .1
			-					•		- · · ·		V	
	ark codes us Less than		aure:			1.12	·• . •				•		
	- Estimated					• • • •							

WATER-COLUMN VOLATILE ORGANIC COMPOUND ANALYSES

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	1,1,1- Tri- chloro- ethane, water, unfltrd ug/L (34506)	CFC-113 water unfltrd ug/L (77652)	1,1-Di- chloro- ethane, water unfltrd ug/L (34496)	1,1-Di- chloro- ethene, water, unfltrd ug/L (34501)	1,2-Di- chloro- benzene water unfltrd ug/L (34536)	1,2-Di- chloro- ethane, water, unfltrd ug/L (32103)	1,2-Di- chloro- propane water unfltrd ug/L (34541)	1,3-Di- chloro- benzene water unfltrd ug/L (34566)	1,4-Di- chloro- benzene water unfltrd ug/L (34571)	Benzene water unfltrd ug/L (34030)	Bromo- di- chloro- methane water unfltrd ug/L (32101)	Chloro- benzene water unfltrd ug/L (34301)	
FEB 25	1120	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

ر	Date	cis- 1,2-Di- chloro- ethene, water, unfltrd ug/L (77093)	Di- bromo- chloro- methane water unfltrd ug/L (32105)	Di- chloro- di- fluoro- methane wat unf ug/L (34668)	Di- chloro- methane water unfltrd ug/L (34423)	Di- ethyl ether, water, unfltrd ug/L (81576)	Diiso- propyl ether, water, unfltrd ug/L (81577)	Ethyl- benzene water unfltrd ug/L (34371)	Methyl tert- pentyl ether, . water, unfltrd ug/L (50005)	meta- + para- Xylene, water, unfltrd ug/L (85795)	o- Xylene, water, unfltrd ug/L (77135)	Styrene water unfltrd ug/L (77128)	t-Butyl ethyl ether, water, unfltrd ug/L (50004)	Methyl t-butyl ether, water, unfltrd ug/L (78032)	
	FEB 25	<0.1	<0.2	< 0.2	<0.2	<0.2	<0.2	<0.1	<0.2	<0.2	<0.1	<0.1	<0.1	<0.2	

01411955 GRAVELLY RUN AT LAUREL LAKE, NJ-Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003 .

Date	Tetra- chloro- ethene, water, unfltrd ug/L (34475)	Tetra- chloro- methane water unfltrd ug/L (32102)	Toluene water unfltrd ug/L (34010)	trans- 1,2-Di- chloro- ethene, water, unfltrd ug/L (34546)	Tri- bromo- methane water unfltrd ug/L (32104)	Tri- chloro- ethene, water, unfltrd ug/L (39180)	Tri- chloro- fluoro- methane water unfltrd ug/L (34488)	Tri- chloro- methane water unfltrd ug/L (32106)	Vinyl chlor- ide, water, unfltrd ug/L (39175)
FEB 25	<0.1	<0.2	<0.1	<0.1	<0.2	<0.1	<0.2	0.2	<0.2
Remark co	des used in	this table:		•					

< -- Less than

WATER-COLUMN PESTICIDE ANALYSES

The following were determined using laboratory schedule 2001 (listed in its entirety, with laboratory reporting levels, in "Laboratory Measurements" in the Explanation of Water-Quality Records section of this report). Only pesticides detected in one or more surface-water samples are listed in the following table.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	2,6-Di- ethyl- aniline water fltrd 0.7u GF ug/L (82660)	CIAT, water, fltrd, ug/L (04040)	Aceto- chlor, water, fltrd, ug/L (49260)	Ala- chlor, water, fltrd, ug/L (46342)	alpha- HCH, water, fltrd, ug/L (34253)	Atra- zine, water, fltrd, ug/L (39632)	Azin- phos- methyl, water, fltrd 0.7u GF ug/L (82686)	Ben- flur- alin, water, fltrd 0.7u GF ug/L (82673)	Butyl- ate, water, fltrd, ug/L (04028)	Car- baryl, water, fltrd 0.7u GF ug/L (82680)	Carbo- furan, water, fltrd 0.7u GF ug/L (82674)	cis- Per- methrin water fltrd 0.7u GF ug/L (82687)
MAY 22	1240	<0.006	<0.006	<0.006	<0.004	<0.005	<0.007	<0.050	<0.010	<0.002	<0.041	<0.020	<0.006

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	DCPA, water fltrd 0.7u GF ug/L (82682)	Desulf- inyl fipro- nil, water, fltrd, ug/L (62170)	Diazi- non, water, fltrd, ug/L (39572)	Diel- drin, water, fltrd, ug/L (39381)	EPTC, water, fltrd 0.7u GF ug/L (82668)	Desulf- inyl- fipro- nil amide, wat flt ug/L (62169)	Fipro- nil sulfide water, fltrd, ug/L (62167)	Fipro- nil sulfone water, fltrd, ug/L (62168)	Fipro- nil, water, fltrd, ug/L (62166)	Mala- thion, water, fltrd, ug/L (39532)	Metola- chlor, water, fltrd, ug/L (39415)	Metri- buzin, water, fltrd, ug/L (82630)	Naprop- amide, water, fltrd 0.7u GF ug/L (82684)	

MAY 22...

< 0.004

< 0.005

< 0.005

< 0.003

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

< 0.005

<0.005

< 0.007

< 0.027

<0.013

<0.006

<0.007

< 0.009

Date	Pendi- meth- alin, water, fltrd 0.7u GF ug/L (82683)	Prome- ton, water, fltrd, ug/L (04037)	Sima- zine, water, fltrd, ug/L (04035)	Tebu- thiuron water fltrd 0.7u GF ug/L (82670)	Terba- cil, water, fltrd 0.7u GF ug/L (82665)	Tri- flur- alin, water, fltrd 0.7u GF ug/L (82661)	
MAY 22	<0.022	<0.01	<0.005	<0.02	<0.034	<0.009	
Remark co	des used in	this table:					

< -- Less than

< 0.002

WATER-COLUMN BACTERIA ANALYSES

Samples were collected synoptically over a 30-day period during the summer.

01411955 GRAVELLY RUN AT LAUREL LAKE, NJ-Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Entero- cocci, m-E MF, water, col/ 100 mL (31649)	E coli, m-TEC MF, water, col/ 100 mL (31633)	Fecal coli- form, ECbroth water, MPN/ 100 mL (31615)	5 - 11 1 - 40 1 - 40	· · · ·	ate	Time	Entero- cocci, m-E MF, water, col/ 100 mL (31649)	E coli, m-TEC MF, water, col/ 100 mL (31633)	ECbroth water,
AUG 06 19 20 27	0940 1120 0935 0935	220 110 50 110	<100 100 <100 <100	110 130 40 20		SEP 03.		0914	230	<100	170
Remark co < Les		this table:			· · · ·						
					арда Сал Ал Бара С С С С С С С С С С С С С С С С С С		·	•	· · ·	• • •	
					,				• - *		
					, 1	4 1 .					
				•		/• • • • •			• .		
		·.									
					- (j) - (j) - (j) - (j)	•	i				
			•		en deb e				.*		
					•		• .		• :		

01412005 MENANTICO CREEK AT ROUTE 49, AT MILLVILLE, NJ

LOCATION.-Lat 39°23'11", long 74°59'21", Cumberland County, Hydrologic Unit 02040206, at bridge on State Route 49, 1.1 mi upstream of Menantico Ponds, 2.8 mi east of Millville, and 4.5 mi west of Cumberland.

DRAINAGE AREA.-- 26.32 mi².

PERIOD OF RECORD.--December 2002 to September 2003.

REMARKS.-- Total nitrogen (00600) equals the sum of dissolved ammonia plus organic nitrogen (00623), dissolved nitrite plus nitrate nitrogen (00631), and total particulate nitrogen (49570).

COOPERATION.--Field data and samples for laboratory analyses were provided by the New Jersey Department of Environmental Protection. Determination of dissolved ammonia, total ammonia, dissolved nitrite, dissolved orthophosphate, biochemical oxygen demand, total suspended solids, total ammonia + organic nitrogen in bed sediment, total phosphorus in bed sediment, fecal coliform, E. coli, and enterococcus bacteria was performed by the New Jersey Department of Health and Senior Services, Public Health and Environmental Laboratories, Environmental and Chemical Laboratory Services. Determination of chlorophyll a was performed by the New Jersey Department of Environmental Protection, Bureau of Freshwater and Biological Monitoring Laboratory.

COOPERATIVE NETWORK SITE DESCRIPTOR .-- Statewide Status, New Jersey Department of Environmental Protection Watershed Management Area 17.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

y Date	Time	Tur- bidity, water, unfltrd field, NTU (61028)	UV absorb- ance, 254 nm, wat flt units /cm (50624)	UV absorb- ance, 280 nm, wat flt units /cm (61726)	Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301)	pH, water, unfltrd field, std units (00400)	Specif. conduc- tance, wat unf uS/cm 25 degC (00095)	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	Hard- ness, water, unfltrd mg/L as CaCO3 (00900)	Calcium water, fltrd, mg/L (00915)
DEC 04	1000	2.6	0.121	0.092	772	11.6	85	7.0	143	4.7	3.1	46	10.4
MAR	1000	2.0	0.121	0.072		11.0	65	7.0	145	4.7	5.1	40	10.4
06	1030	4.4	0.295	0.225	752	10.3	84	6.5	161	8.5	6.1	46	10.2
MAY													
20	1000	3.4	0.155	0.119	768	7.2	6 6	6.5	149	22.4	11.9	42	9.50
AUG 26	0900	1.8	0.165	0.129	760	7.2	76	6.8	147	23.3	18.1	50	11.1

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium, water, fltrd, mg/L (00930)	ANC, wat unf fixed end pt, lab, mg/L as CaCO3 (90410)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fltrd, mg/L (00950)	Silica, water, fltrd, mg/L (00955)	Sulfate water, fltrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)	Residue on evap. at 180degC wat flt mg/L (70300)	Residue total at 105 deg. C, sus- pended, mg/L (00530)	Ammonia + org-N, water, fltrd, mg/L as N (00623)	Ammonia water, fltrd, mg/L as N (00608)
DEC 04	4.93	4.25	5.39	5	12.6	<0.17	10.5	20.0	94	101	9	0.25	0.035
MAR 06	4.87	4.77	8.40	4	18.5	<0.17	6.6	19.1	99	113	4	0.42	<0.030
MAY 20 AUG	4.34	4.33	5.48	6	13.2	<0.17	9.0	15.0	88	108	4	0.32	<0.030
26	5.42	5.07	6.12	11	14.5	<0.17	9.1	14.5	95	93	11	0.33	<0.020

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Ammonia water, unfltrd mg/L as N (00610)	Nitrite + nitrate water fltrd, mg/L as N (00631)	Nitrite water, fltrd, mg/L as N (00613)	Ortho- phos- phate, water, fltrd, mg/L as P (00671)	Partic- ulate nitro- gen, susp, water, mg/L (49570)	Phos- phorus, water, fltrd, mg/L (00666)	Phos- phorus, water, unfltrd mg/L (00665)	Total nitro- gen, water, fltrd, mg/L (00602)	Total nitro- gen, water, unfitrd mg/L (00600)	Total carbon, suspnd sedimnt total, mg/L (00694)	Inor- ganic carbon, suspnd sedimnt total, mg/L (00688)	Organic carbon, suspnd sedimnt total, mg/L (00689)	Organic carbon, water, fltrd, mg/L (00681)
DEC 04	0.062	5.24	0.005	0.032	0.03	0.010	0.037	5.5	5.5	0.4	<0.1	0.4	3.4
MAR 06	<0.030	5.38	0.004	0.025	0.13	0.021	0.055	5.8	5.9	0.7	<0.1	0.7	6.6
MAY 20 AUG	<0.030	5.22	0.006	<0.020	0.12	0.015	0.049	5.5	5.7	0.7	<0.1	0.7	3.6
26	<0.020	5.17	0.006	<0.020	0.05	0.017	0.036	5.5	5.6	0.2	<0.1	0.1	3.8

01412005 MENANTICO CREEK AT ROUTE 49, AT MILLVILLE, NJ-Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

•

Date	20 degC mg/L	Chloro- phyll a fluoro- metric method, corrctd ug/L (32209)	Boron, water, fltrd, ug/L
DEC			
04	<1.0		19
MAR			
06	<1.0		23
MAY			
20	EI.9	1.30	15
AUG			
26	E1.3	0.900	24
Remark co	des used in than	this table:	

E -- Estimated value

~~ .

WATER-COLUMN AND BED-MATERIAL TRACE-ELEMENT ANALYSES

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

	WATER-QUALITY DATA, WATER TEAR OCTOBER 2002 TO SEPTEMBER 2003													
Date	Time	pH bed sedimnt std units (70310)	Ammonia + org-N, bed sed total, mg/kg as N (00626)	Phos- phorus, bed sedimnt total, mg/kg (00668)	Total carbon, bed sedimnt total, g/kg (00693)	Inor- ganic carbon, bed sedimnt total, g/kg (00686)	Arsenic water unfltrd ug/L	Barium, water, unfitrd recover -able, ug/L (01007)	Beryll- ium, water, unfltrd recover -able, ug/L (01012)	Boron, water, unflud recover -able, ug/L (01022)	Cadmium water, unfitrd ug/L (01027)	Chrom- ium, water, unfltd recover -able, ug/L (01034)	Copper, water, unfltrd recover -able, ug/L (01042)	
AUG 26 26	0900 0900	6.34	20	900	 1.0	<0.2	2	89.0	E.05	19 	0.05	<0.8	0.6 	
			WATER-0	QUALITY	DATA, WA	ATER YEA	R OCTOB	ER 2002 T	O SEPTEN	IBER 2003				
			Mangan-	-			•				Chrom-			
·	Iron, water, unfltrd recover -able,	Lead, water, unfltrd recover -able,	ese, water, unfltrd recover -able,	Mercury water, unfltrd recover -able,	Nickel, water, unfltrd recover -able,	Selen- ium, water, unfltrd	Silver, water, unfltrd recover -able,	Zinc, water, unfltrd recover -able,	Arsenic bed sedimnt total,	Cadmium bed sedimnt recover -able.	ium, bed sedimnt recover -able,	Cobalt bed sedimnt recover -able,	Copper, bed sedimnt recover -able,	
Date	ug/L* (01045)	ug/L (01051)	ug/L (01055)	ug/L (71900)	ug/L (01067)	ug/L (01147)	ug/L (01077)	ug/L (01092)	ug/g (01003)	ug/g (01028)	ug/g (01029)	ug/g (01038)	ug/g (01043)	
AUG 26 26	300	0.28	14.1	E.01	2.16	0.5	<0.16	6	 <1	0.020	.0.5	0.070	~	
			MATTO A			• • • • • • • • • •	DOCTOD	CD 2002 T	CEPTEN					
	WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003													
Date	Iron, bed sedimnt total, ug/g (01170)	Lead, bed sedimnt recover -able, ug/g (01052)	Mangan- ese, bed sedimnt recover -able, ug/g (01053)	Mercury bed sedimnt recover -able, ug/g (71921)	Nickel, bed sedimnt recover -ablc, ug/g (01068)	Selen- ium, bed sedimnt total, ug/g (01148)	Zinc, bed sedimnt recover -able, ug/g (01093)	1,2-Di- methyl- naphth- alene, bed sed <2 mm, ug/kg (49403)	1,6-Di- methyl- naphth- alene, bed sed <2 mm, ug/kg (49404)	IMethyl -9H- fluor- ene, bed sed <2 mm, ug/kg (49398)	J- Methyl- phenan- threne, bed sed <2 mm, ug/kg (49410)	1- Methyl- pyrene, bed sed <2 mm, wsv nat ug/kg (49388)	236Tri- methyl- naphth- alene, bed sed <2 mm, ug/kg (49405)	
AUG														
26 26	150	1.5	<0.3	<0.01	0.157	<1	⊲.1	<u>م</u>	<u>ح</u>	<50	<50	<50	<50	
			WATER-0	QUALITY	DATA, WA	ATER YEA	R OCTOB	ER 2002 TO	O SEPTEM	IBER 2003				
	2,6-Di- methyl- naphth- alene, bed sed <2 mm,	2-Ethyl naphth- alene bed sed <2 mm wsv nat	2- Methyl- anthra- cene, bed sed <2 mm,	Cyclo- penta- phenan- threne, bed sed <2 mm,	9H- Flour- ene, bed sed <2 mm, wsv nat	Ace- naphth- ene, bed sed <2 mm, wsv nat	Ace- naphth- ylene, bed sed <2 mm, wsv nat	Anthra- cene, bed sed <2 mm, wsv nat field,	Benzo- [a]- anthra- cene, bed sed <2 mm,	Benzo- [a]- pyrene, bed sed <2 mm, wsv nat	Benzo- [b]- fluor- anthene bed sed <2 mm	Benzo- [ghi]- peryl- ene, bed sed <2 mm,	Benzo- [k]- fluor- anthene bed sed <2 mm	
Date	ug/kg (49406)	ug/kg (49948)	ug/kg (49435)		ug/kg (49399)	ug/kg (49429)	ug/kg (49428)	ug/kg (49434)	ug/kg (49436)	ug/kg (49389)	ug/kg (49458)	ug/kg (49408)	ug/kg (49397)	
AUG 26 26	Ē13	 <0		 <50	<u>ح</u> 0	40	<50	- -50	- 50	<50	- <0	 <50	- <0	

364

,

01412005 MENANTICO CREEK AT ROUTE 49, AT MILLVILLE, NJ-Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Chry- sene, bed sed <2 mm, wsv nat field, ug/kg (49450)	Dibenzo -[a,h]- anthra- cene, bed sed <2 mm, ug/kg (49461)	Fluor- anthene bed sed <2 mm wsv nat field, ug/kg (49466)	Indeno- [1,2,- 3-cd]- pyrene, bed sed <2 mm ug/kg (49390)	Iso- phorone bed sed <2 mm, wsv nat field, ug/kg (49400)	Naphth- alene, bed sed <2 mm wsv nat ug/kg (49402)	PCBs, bed sedimnt ug/kg (39519)	p- Cresol, bed sed <2 mm, wsv nat field, ug/kg (49451)	Phenan- threne, bed sed <2 mm, wsv nat field, ug/kg (49409)	Phenan- thri- dine, bed sed <2 mm, wsv nat ug/kg (49393)	Pyrene, bed sed <2 mm, wsv nat field, ug/kg (49387)	Bed sedi- ment, dry svd sve dia percent <.063mm (80164)
AUG 26 26		 <50	 <50	 <0	 <50	 <50	 -5	 <50	 <50	 <50	EII	<1.0

< -- Less than E -- Estimated value

WATER-COLUMN VOLATILE ORGANIC COMPOUND ANALYSES

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date .	Time	I,1,1- Tri- chloro- ethane, water, unfltrd ug/L (34506)	CFC-113 water unfltrd ug/L (77652)	1,1-Di- chloro- ethane, water unfltrd ug/L (34496)	1,1-Di- chloro- ethene, water, unfltrd ug/L (34501)	1,2-Di- chloro- benzene water unfltrd ug/L (34536)	1,2-Di- chloro- ethane, water, unfltrd ug/L (32103)	1,2-Di- chloro- propane water unfltrd ug/L (34541)	1,3-Di- chloro- benzene water unfltrd ug/L (34566)	1,4-Di- chloro- benzene water unfltrd ug/L (34571)	Benzene water unfltrd ug/L (34030)	Bromo- di- chloro- methane water unfltrd ug/L (32101)	Chloro- benzene water unfltrd ug/L (34301)
MAR 06	1030	<0.1	<0.1	<0.1	<0.1	<0.1	<0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	cis- 1,2-Di- chloro- ethene, water, unfltrd ug/L (77093)	Di- bromo- chloro- methane water unfltrd ug/L (32105)	Di- chloro- di- fluoro- methane wat unf ug/L (34668)	Di- chloro- methane water unfltrd ug/L (34423)	Di- ethyl ether, water, unfitrd ug/L (81576)	Diiso- propyl ether, water, unfltrd ug/L (81577)	Ethyl- benzene water unfltrd ug/L (34371)	Methyl tert- pentyl ether, water, unfltrd ug/L (50005)	meta- + para- Xylene, water, unfltrd ug/L (85795)	o- Xylene, water, unfltrd ug/L (77135)	Styrene water unfltrd ug/L (77128)	t-Butyl ethyl ether, water, unfltrd ug/L (50004)	Methyl t-butyl ether, water, unfltrd ug/L (78032)	
MAR 06	<0.1	<0.2	<0.2	<0.2	<0.2	<0.2	<0.1	<0.2	<0.2	<0.1	<0.1	<0.1	<0.2	

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Tetra- chloro- ethene, water, unfltrd ug/L (34475)	Tetra- chloro- methane water unfltrd ug/L (32102)	Toluene water unfitrd ug/L (34010)	trans- 1,2-Di- chloro- ethene, water, unfitrd ug/L (34546)	Tri- bromo- methane water unfitrd ug/L (32104)	Tri- chloro- ethene, water, unfltrd ug/L (39180)	Tri- chloro- fluoro- methane water unfltrd ug/L (34488)	Tri- chloro- methane water unfitrd ug/L (32106)	Vinyl chlor- ide, water, unfltrd ug/L (39175)
MAR 06	<0.1	<0.2	<0.1	<0.1	<0.2	<0.1	<0.2	<0.1	<0.2

Remark codes used in this table:

< -- Less than

365

01412005 MENANTICO CREEK AT ROUTE 49, AT MILLVILLE, NJ-Continued

WATER-COLUMN PESTICIDE ANALYSES

The following were determined using laboratory schedule 2001 (listed in its entirety, with laboratory reporting levels, in "Laboratory Measurements" in the Explanation of Water-Quality Records section of this report). Only pesticides detected by the analyses in one or more surface-water samples are listed in the following table.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	2,6-Di- ethyl- aniline water fitrd 0.7u GF ug/L (82660)	CIAT, water, fitrd, ug/L (04040)	Aceto- chlor, water, fltrd, ug/L (49260)	Ala- chlor, water, fltrd, ug/L (46342)	alpha- HCH, water, fltrd, ug/L (34253)	Atra- zine, water, fitrd, ug/L (39632)	Azin- phos- methyl, water, fltrd 0.7u GF ug/L (82686)	Ben- flur- alin, water, fltrd 0.7u GF ug/L (82673)	Butyl- ate, water, fltrd, ug/L (04028)	Car- baryl, water, fltrd 0.7u GF ug/L (82680)	Carbo- furan, water, fltrd 0.7u GF ug/L (82674)	cis- Per- methrin water fitrd 0.7u GF ug/L (82687)
MAY 20	1000	<0.006	<0.006	<0.006	<0.004	<0.005	.<0.007	<0.050	<0.010	<0.002	E.029	<0.020	<0.006
			ALL A DECEM	OTTAT TTA	DATEA 317	A 7777 13 3787 A	D OCTOR	TD 0000 m		DED 6000			

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	DCPA, water fltrd 0.7u GF ug/L (82682)	Desulf- inyl fipro- nil, water, flưd, ug/L (62170)	Diazi- non, water, fltrd, ug/L (39572)	Diel- drin, water, fltrd, ug/L (39381)	EPTC, water, fitrd 0.7u GF ug/L (82668)	Desulf- inyl- fipro- nil amide, wat fit ug/L (62169)	Fipro- nil sulfide water, fltrd, ug/L (62167)	Fipro- nil sulfone water, fltrd, ug/L (62168)	Fipro- nil, water, fltrd, ug/L (62166)	Mala- thion, water, fltrd, ug/L (39532)	Metola- chlor, water, fltrd, ug/L (39415)	Metri- buzin, water, fltrd, ug/L (82630)	Naprop- amide, water, fltrd 0.7u GF ug/L (82684)
MAY 20	<0.003	<0.004	<0.005	<0.005	<0.002	<0.009	<0.005	<0.005	<0.007	<0.027	0.022	<0.006	<0.007

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

… ·

Date	Pendi- meth- alin, water, fltrd 0.7u GF ug/L (82683)	Prome- ton, water, fltrd, ug/L (04037)	Sima- zine, water, fltrd, ug/L (04035)	Tebu- thiuron water fltrd 0.7u GF ug/L (82670)	Terba- cil, water, fltrd 0.7u GF ug/L (82665)	Tri- flur- alin, water, fltrd 0.7u GF ug/L (82661)	
MAY 20	<0.022	<0.01	<0.005	<0.02	<0.034	<0.009	
Remark co	odes used in ss than	this table:		. .	•		

E -- Estimated value

. ..

WATER-COLUMN BACTERIA ANALYSES

Samples were collected synoptically over a 30-day period during the summer.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2002 TO SEPTEMBER 2003

Date	Time	Entero- cocci, m-E MF, water, col/ 100 mL (31649)	E coli, m-TEC MF, water, col/ 100 mL (31633)	Fecal coli- form, ECbroth water, MPN/ 100 mL (31615)	Date	Time	Entero- cocci, m-E MF, water, col/ 100 mL (31649)	E coli, m-TEC MF, water, col/ 100 mL (31633)	Fecal coli- form, ECbroth water, MPN/ 100 mL (31615)
AUG	10.40	5 00			SEP	0055			
06	1040	590	100	500	03	0955	410	200	1,100
19	1150	210	100	300					
20	1015	240	<100	20				•	
27	1020	140	100	20					

Remark codes used in this table:

< -- Less than

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

. . . .

. . . .

LOW-FLOW CHARACTERISTICS AND FLOW DURATION OF NEW JERSEY STREAMS

By Brian D. Gillespie and Robert D. Schopp

Open-File Report 81-1110

.

Prepared in cooperation with the NEW JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION, DIVISION OF WATER RESOURCES

> Trenton, New Jersey January 1982

UNITED STATES DEPARTMENT OF THE INTERIOR

JAMES G. WATT, Secretary

GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information, write to:

U.S. Geological Survey Room 430, Federal Building 402 East State Street Trenton, New Jersey 08608

DELAWARE BAY BASINS

	STATION NUMBER	STATION NAME	QUADRANGLE MAP 7.5 MINUTE SERIES	PACE
		DELAWARE BAY BASINS FISHING CREEK BASIN	•	
• 1	01411400	FISHING CREEK AT BIO GNANDE	RIO GRANDE	116 -
2	01411404	GREEN CREEK AT GREEN CREEK		
3	01411408	DIAS CREEK NEAR CAPE MAY COURT HOUSE	STONE HARBOR	116
		BIDWELL DITCH BASIN BIDWELL DITCH:		
	01411410	BIDWELL DITCH TRIBUTARY NEAR CAPE HAY COURT HOUSE	STOKE HARBOR	116
5	01411412	BIDWELL DITCH TRIBUTARY NO. 2 NEAR CAPE HAY COURT HOUSE		117
•				
6	01411418	GOSHEN CREEK AT GOSHEN	VOODBINE	117
	••••••	DENNIS CREEK BASIN		
		DETRIX CIFFE:		
7	01411430	SLUICE CREEK AT CLERMONT	VOODBINE	117
•	••••••	NAURICE BIVER BASIN		
8	01411500	HAURICE TIVEN AT NORMA	MILLVILLE	117
ă	01411800	MAURICE RIVER NEAR MILLVILLE		118
10	01411850	MILL CREEK WEAR MILLVILLE		118
ii	01412000	MEMANTICO CREEK NEAR MILLVILLE-		118
12	01412100	MANUHUSIIN BIVER NEAR MANUAUSIN		118
13	01412500	WEST BRANCH COHANSEY RIVER AT SEELEY	SHILDHeensen	119
	0.112300	STOU COFFY BASTN		
14	01413050	STOW CREEK AT JERICHO	SHTLON-	119
15	01413060	CANTON DALTA MEAS CANTON		119
15	01413000	CARICA VALLA REAL CARICATORSECCESCONSECASCONSECCESCONSE	J466044444444	

121.71

t 10

41

• •

5

£

....

Ś

(··· o c

n den Serten de Nacional de la companya de la compa Nacional de la companya de la company Nacional de la companya de la company

e e constanta e E constanta e co E constanta e c

.

••

•

DELAWARE BAY BASINS

01411412 BIDWELL DITCH TRIBUTARY NO. 2 NEAR CAPE MAY COURT HOUSE, NJ

LOCATION -- LAT 39 06 25, LONG 074 50 12, CAPE MAY COUNTY, AT CULVERT PIPE ON GOSHEN ROAD, 1.8 MI (2.9 KM) NORTHWEST OF CAPE MAY COURT HOUSE, 2.3 MI (3.7 KM) SOUTHEAST OF GOSHEN, AND 3.6 MI (5.8 KM) UPSTREAM

7

7

7

BORINESS OF CAPE HAT COURT HOUSE, 2.3 AT (3.7 KH) SOUTHERST OF COURTER, AND 310 AT (3.0 MAY COURT FROM HOUTH. DRAINAGE AREA -- 0.19 SQ-HI (0.49 SQ-KH) TRIBUTARY TO -- BIDWELL DITCH STATION TTFE -- LOW-FLOW PARTIAL-RECORD STATION REMARKS -- LOW-FLOW FREQUENCY ESTIMATES BASED ON CORRELATIONS WITH GAGING STATIONS 01409500, 01410000, 01411000 AND 01411500. CORRELATIONS RATED GOOD.

LOW-FLOW FREQUENCY -- PERIOD 1967-72 PERIOD OF AVERAGE ANNUAL MINIMUM DISCHARGE IN CU FT/3 (CU M/S) FOR INDICATED RECURRENCE INTERVALS CONSECUTIVE DATS

2 YEARS

0.0 (0.00)

10	ILAKS
0.0	(0.00)

01411418 GOSHEN CREEK AT GOSHEN, NJ

LOCATION -- LAT 39 07 39, LONG 074 50 45, CAPE MAY COUNTY, AT CULTERT PIPE ON GOSHEN ROAD, 1.0 MI (1.6 KM) SOUTHEAST OF GOSHEN, 3.3 MI (5.3 KM) NORTHNEST OF CAPE MAY COURT HOUSE, AND 3.3 MI (5.3 KM) UPSTREAM FROM MOUTH. DRAINAGE AREA -- 0.33 SO-MI (0.65 SO-KM) TRIBUTARY TO -- DELAMARE BAY STATION TYPE -- LOW-FLOW PRATIAL-RECORD STATION REMARKS -- LOW-FLOW FREQUENCY ESTIMATES BASED ON CORRELATIONS WITH GAGING STATIONS 01409500, 01411000 AND 01411500. CORRELATIONS RATED GOOD.

LOW-FLOW FREQUENCY -- PERIOD 1967-72 PERIOD OF AVERAGE ANNUAL MINIMUM DISCHARGE IN CU FT/S (CU M/S) FOR INDICATED RECURRENCE INTERVALS CONSECUTIVE DAYS

2 YEARS	10 YEARS
0.0 (0.00)	0.0 (0.00)

01411430 SLUICE CREEK AT CLERHONT, NJ

LOCATION -- LAT 39 09 26, LONG 074 46 18, CAPE MAY COUNTY, AT CULVERT PIPE ON STATE ROUTE 83, 0.6 MI (1.0 KM) MORTHWEST OF CLERMONT, 3.7 MI (6.0 KM) SOUTHEAST OF DENNISVILLE, AND 5.6 MI (9.0 KM) UPSTREAM FROM HOUTH.

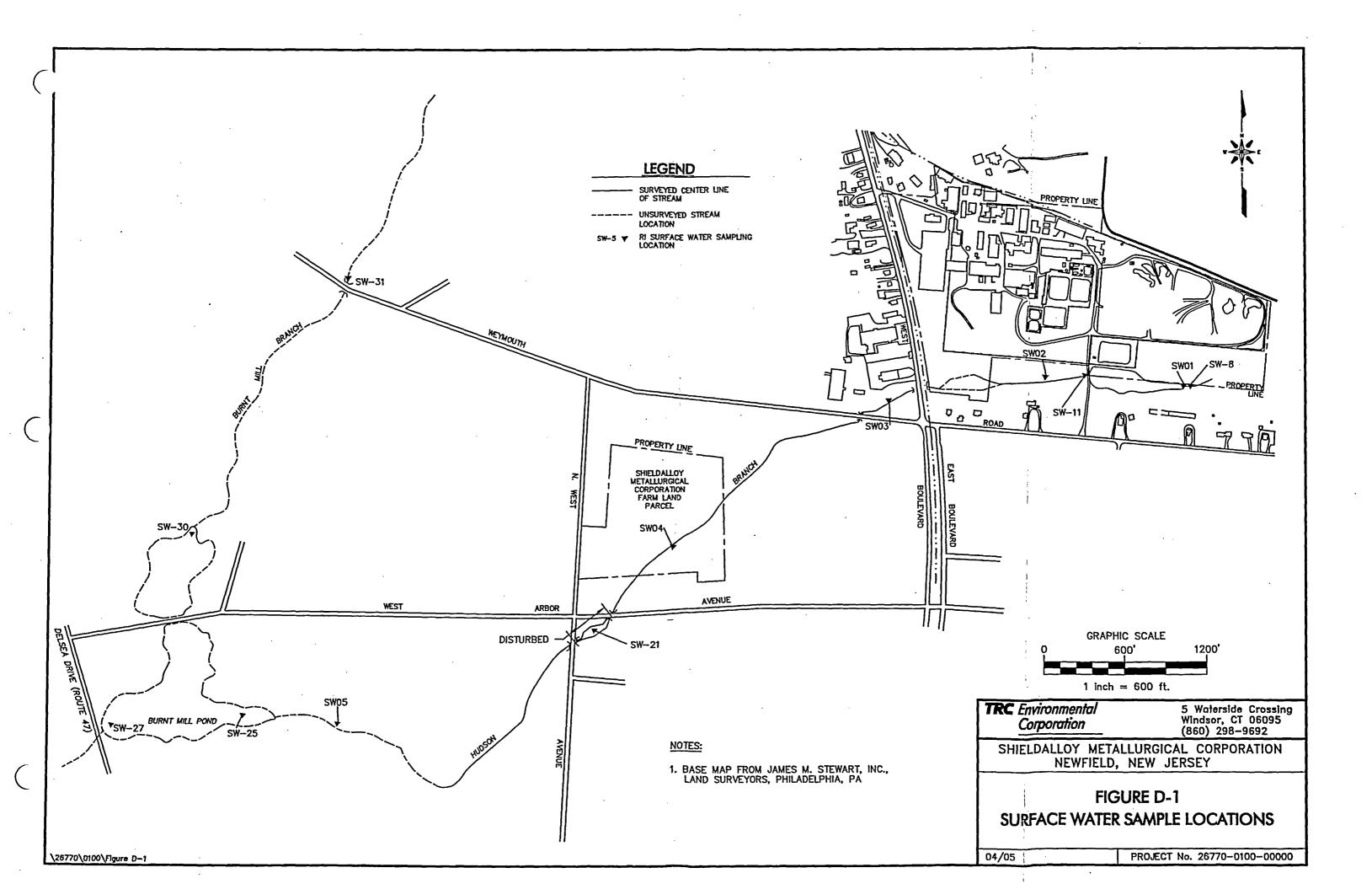
TROUTN. DRAINAGE AREA -- 0.67 SQ-HI (1.74 SQ-XH) TRIBUTARY TO -- DENNIS CREEK STATION TYPE -- LOW-FLOW FRATIAL-RECORD STATION REMARKS -- LOW-FLOW FRACUENCY ESTIMATES BASED ON CORRELATIONS WITH GAGING STATIONS 01409500, 01411000 AND 01411500. CORRELATIONS RATED GOOD.

LOW-FLOW FREQUENCY -- PERIOD 1967-72 PERIOD OF AVERAGE ANNUAL MINIMUM DISCHARGE IN CU FT/S (CU M/S) FOR INDICATED RECURRENCE INTERVALS DAYS

2 YEARS	ID YEARS
0.0 (0.00)	0.0 (0.00)

01411500 MAURICE RIVER AT NORMA, NJ

LOCATION -- LAT 39 29 42, LONG 075 04 38, SALEN COUNTY, ON RIGHT BANK JUST UPSTREAM FROM ALMOND ROAD BRIDGE IN NORMA, AND 0.8 MI (1.3 KM) DOWNSTREAM FROM BLACKWATER BRANCH. DRAINAGE AREA -- 113 SQ-HI (293 SQ-KM) TRIBUTARY TO -- DELAWARE BAY STATION TYPE -- CONTINUOUS RECORD GAGING STATION AVERAGE DISCHARGE -- 168 CU FT/S (4.76 CU M/S) DAILY DISCHARGE EITREMES -- MAXIMUM 526 CU FT/S (149 CU M/S) MINIMUM 23 CU FT/S (149 CU M/S) REMARKS -- OCCASIONAL REGULATION; PROBABLY NOT SIGNIFICANT. DURATION TABLE OF DAILY FLOW -- PERIOD 1933-75 DISCHARGE WHICH WAS EXCEEDED FOR INDICATED PERCENT OF TIME 2.05 5.05 10.05 20.05 30.05 40.05 50.05 60.05 70.05 80.05 90.05 95.05 98.05 99.05 99.55 CU FT/S 430 345 287 233 198 173 150 129 108 90.0 68.8 55.3 44.5 37.7 33.5 12.2 9.77 8.13 6.60 5.61 CU H/S ₩.90 4.25 3.65 3.06 2.55 1.95 1.57 1.25 1.07 0.949 LOW-FLOW FREQUENCY -- PERIOD 1934-75 PERIOD OF AVERAGE ANNUAL MINIMUM DISCHARGE IN CU FT/S (CU M/S) FOR INDICATED RECURRENCE INTERVALS DATS


	2 YEARS	5 YEARS	10 TEARS	20 YEARS
3	53 (1.5)	39 (1.1)	33 (0.93)	28 (0.79)
7 30	59 (1.7)	44 (1.2)	37 (1.0)	32 (0.91)
90	70 (2.0) 90 (2.5)	51 (1.4) 66 (1.9)	43 (1.2) 55 (1.6)	38 (1.1) 47 (1.3)
30	90 (2.3)	00 (1.97	JJ (1.0)	41 (1.37

APPENDIX D - SURFACE WATER SAMPLING RESULTS

· · · ·

APPENDIX D - SURFACE WATER SAMPLING RESULTS

Figure D-1 - Surface Water Sample Locations Summary of Field Measurements - 1990 RI Chemical Analysis Results - 1990 RI (Table 31a-31d) Chemical Analysis Results - 1995 Supplemental Sampling (Table 1-9)

TABLE 7

•

SHIELDALLOY METALLURGY CORPORATION SURFACE WATER FIELD MEASUREMENTS

SAMPLE ID NUMBER	TEMPERATURE (degree C)	рН	SPECIFIC CONDUCTIVITY (micromhos)
SMC-SW01-01	3.8	6.98	273
SMC-SW02-01	5.4	6.99	275
SMC-SW03-01	4.3	7.76	270
SMC-SW04-01	4.9	7.28	265
SMC-SW05-01	5.8	7.60	250
- .			

. .

• • •

· · ·

. .

TABLE 31a SHIELDALLOY METALLURGICAL CORPORATION SUMMARY OF VOLATILE ORGANIC COMPOUNDS DETECTED IN SURFACE WATER SAMPLES

VOLATILE ORGANICS (ppb) CHLOROMETHANE	SAMPLE IDENTIFICATION:	SW1-01	SW2-01	SW3-01	SW10+01	SW4-01	SW5-01	SW6-01	SW7-01	SW8+01	SW9-01
CHLOROMETHANE - <			•						•••		
BROMOMETHANE - <t< td=""><td></td><td></td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>					•						
VINUY CHLORIDE -		- .	·	. 🗕	•	9 J	-	-	-	-	-
CHLOROETHANE - <t< td=""><td></td><td>-</td><td></td><td>. –</td><td>-</td><td>. –</td><td>• 🗕</td><td>-</td><td>-</td><td>. 🗕</td><td>-</td></t<>		-		. –	-	. –	• 🗕	-	-	. 🗕	-
METHYLENE CHLORIDE 19 R* 17 R* 18 R* 18 R* 10 BJ* 10 BJ* 41 R* 36 R* 35 R* 19 R* ACETONE 12 BJ* 6 JB 6 JB 5 JB 7 JB 7 JB 6 N* 10 N* 9 N* 4 N* CARBON DISULFIDE - - - - - 2 N* 2 N* <td></td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td>· • ·</td> <td>-</td> <td>- ·</td> <td>-</td> <td>-</td>		-	-	-			· • ·	-	- ·	-	-
ACETONE 12 BJ* 6 JB 6 JB 5 JB 7 JB 7 JB 6 N* 10 N* 9 N* 4 N* CARBON DISULFIDE - - - - - 2 N*		-	· _	· .		-	-		- .	-	-
CARBON DISULFIDE - - - - 2N*											19 R*
1,1-DICHLORETHENE -		12 BJ*	6 JB	6 JB	5 JB	7 JB	7 JB	6 N*	10 N*	9 N*	4 N*
1,1-DICHLORETHANE -	CARBON DISULFIDE	-		-	-			2 N*	2 N*	2 N*	2 N*
1,2-DICHLORETHENE (tota) - - - 2 - </td <td>1,1-DICHLORETHENE</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>. –</td> <td></td> <td>-</td> <td>_</td> <td>-</td> <td>-</td>	1,1-DICHLORETHENE	-	-	-	-	. –		-	_	-	-
CHLOROFORM -	1,1-DICHLORETHANE	-	-	-	-		-		-		-
1.2-DICHLORETHANE -	1,2-DICHLORETHENE (total)	-	· 🕳 .	· 🗕		2 J		-	-	-	-
2-BUTANONE -		-	-	-		-		-	_ `	- '	-
1,1,1-TRICHLOROETHANE -	1.2-DICHLORETHANE	-		-	· _	-	· _ ·	-	-	· _	<u> </u>
CARBON TETRACHLORIDE -	2-BUTANONE	· _ ·	-	—	· 🗕	-	-	-	. .	-	-
VINYL ACETATE - <	1,1,1-TRICHLOROETHANE		-	-	· 🗕	_	-	-	·	<u> </u>	· _
VINYL ACETATE - <	CARBON TETRACHLORIDE	· 🕳	-	-	-	_ ·	_	-	· 	-	-
1,2-DICHLOROPROPANE -		-		-	-	-	-	-	-	-	-
1,2-DICHLOROPROPANE -	BROMODICHLOROMETHANE	-	-	<u>ن</u> ـــــ	_	-	. .	-	<u></u>	-	· 🗕
TRICHLOROETHENE - - - 3 J -		-	-	÷	. — '	· -	· 🗕	-	-		· _
DIBROMOCHLOROMETHANE -	cis-1,3-DICHLOROPROPENE	_	-	·		– .		-	- '	-	-
DIBROMOCHLOROMETHANE -		·	-	-	-	ЗJ	-		-	-	· _
1,1,2-TRICHLOROETHANE -		_ '	-	<u> </u>	_		-	_	-	-	-
BENZENE - </td <td></td> <td>. 🛥</td> <td>_</td> <td></td> <td>-</td> <td></td> <td>-</td> <td>_</td> <td></td> <td>_</td> <td>***</td>		. 🛥	_		-		-	_		_	***
trans-1,3-DICHLOROPROPENE -<		-	-		-		-	-	-	-	_
BROMOFORM -			- ·	_ '	_	_	· _		-		
4-METHYL1-2-PENTANONE -		·				-		-	_	·	·· _
2-HEXANONE -			_ ·	_	_	— .	_	-	-	-	-
TETRACHLOROETHENE -			-	-	-	_	-			_	<u>.</u>
1,1,2,2-TETRACHLOROETHANE -<		-	-	-	. <u>.</u>	-	-			-	_
TOLUENE - <t< td=""><td></td><td>-</td><td>-</td><td>÷</td><td>_</td><td>_</td><td>_</td><td></td><td>-</td><td>_</td><td>_</td></t<>		-	-	÷	_	_	_		-	_	_
CHLOROBENZENE -		_	-	<u> </u>	· _	-	-	_	_	_	
ETHYLBENZENE		-	_	_	_				-	_	_
STYRENE				· _	_	_	_	-	_	_	_ ·
XYLENE (total)		-	<u></u>		· _	_	_	-	-	 	_
		-	-	-	-	_	_	_		_	-
TOTAL VOC8 12 6 6 5 31 17 8 0 0 0	TOTAL VOCS	12	6	6	5	31	17	. 8	0	0	0

B – QUALIFIER USED WHEN THE ANALYTE IS FOUND IN THE ASSOCIATED METHOD BLANK AS WELL AS IN THE SAMPLE. IT INDICATES POSSIBLE / PROBABLE CONTAMINATION.

J – QUALIFIER USED TO INDICATE AN ESTIMATED VALUE. THE CONCENTRATION IS QUANTITATIVELY QUALIFIED AND THE FINAL RESULT REPORTED IS ESTIMATED.

N - QUALIFIER INDICATES THE CONCENTRATION FOUND IN THE SAMPLE IS LESS THAN THREE TIMES THE CONCENTRATION FOUND IN THE ASSOCIATED BLANKS. THE PRESENCE OF THE ANALYTE IS NEGATED DUE TO LABORATORY CONTAMINATION.

 R – DATA IS REJECTED DUE TO HOLDING TIME EXCEEDED, BLANK CONTAMINATION, INSTRUMENT CALIBRATION ERROR, OR OTHER MAJOR CONTROLLING LIMITS ARE EXCEEDED.
 * – INDICATES QUALIFIER PLACED BY TRC-ECI.

N/A - NOT ANALYZED FOR THIS COMPOUND

'--' - NOT DETECTED TO THE REPORTED DETECTION LIMIT

TABLE 31b SHIELDALLOY METALLURGICAL CORPORATION SUMMARY OF VOLATILE ORGANIC COMPOUNDS DETECTED IN SURFACE WATER SAMPLES PAGE 1 OF 2

SAMPLE IDENTIFICATION:	WIMDIS	8W2-01	81/3401	SW10+01	SW4-01	8W5-D1	SW6-01		SWA401	SWamni
BASE NEUTRAL / ACIDS (ppb)		UTL UT					<u> </u>			0110-01
PHENOL	. –	N/A	N/A	N/A	-	N/A	. <u> </u>	-	-	-
bis(2-CHLOROETHYL)ETHER	-	N/A	N/A	N/A	. – '	N/A	-	-	-	_
2-CHLOROPHENOL		N/A	N/A	N/A	-	N/A	-	-	_	
1.3-DICHLOROBENZENE	-	N/A	N/A	N/A		N/A	. 🗕	_		-
4-DICHLORBENZENE	-	N/A	N/A	N/A	_	N/A	· _	-	-	_
BENZYL ALCOHOL	- .	N/A	N/A	N/A	. .	N/A	-	_	· _	_ ·
1.2-DICHLOROBENZENE	-	N/A	N/A	N/A	_	N/A	-		-	-
2-METHYLPHENOL	-	N/A	N/A	N/A	-	N/A	-	-	-	-
bis(2-CHLOROISOPROPYL)ETHI	-	N/A	N/A	N/A	-	N/A	 ·	<u> </u>	-	-
4-METHYLPHENOL	-	N/A	N/A	N/A	-	N/A	-	-	·	-
N-NITROSO-DI-N-PROPYLAN	-	N/A	N/A	N/A	-	-N/A	-	_	-	·
HEXACHLOROETHANE	-	N/A	N/A	N/A	-	N/A	-	-	-	-
NITROBENZENE	-	N/A	N/A	N/A	-	N/A	-	-		-
SOPHORONE	-	N/A	N/A	N/A	_	N/A			– '	
2-NITROPHENOL		N/A	N/A	N/A	-	N/A	-		-	-
2,4-DIMETHYLPHENOL	— '	N/A	N/A	N/A	- .	N/A		-		-
BENZOIC ACID		N/A	N/A	N/A	-	N/A	-	_	-	-
bis(2-CHLOROETHOXY)METHAN	-	N/A	N/A	N/A	· _	• N/A	-	-		-
2,4-DICHLOROPHENOL	-	N/A	N/A	N/A	-	N/A	-	-		-
2.4-TRICHLOROBENZENE	-	N/A -	N/A	N/A	-	' N/A	-	<u> </u>	· 🗕	-
NAPHTHALENE		N/A	N/A	N/A	-	N/A	-	-	-	· _
-CHLOROANILINE		N/A	N/A	N/A		N/A		_		-
HEXACHLOROBUTADIENE	-	. N/A	N/A	N/A	-	N/A	-	-	<u> </u>	-
-CHLORO-3-METHYLPHENO	— ·	N/A	N/A	N/A	_	N/Å	-		-	-
2-METHYLNAPHTHALENE	 `	N/A	N/A	N/A	-	N/A	-	— `	-	-
HEXACHLOROCYCLOPENTADIE	-	N/A	N/A	N/A	-	N/A	-	-	-	<u> </u>
2,4,6-TRICHLOROPHENOL	-	N/A	N/A	• N/A	· _	N/A	-	-	·	-
2,4,5-TRICHLOROPHENOL	-	N/A	N/A	N/A	· 🕳	N/A	-	-	-	-
2-CHLORONAPHTHALENE	-	N/A	N/A	N/A	-	N/A	<u> </u>	-	-	
2-NITROANILINE	-	N/A	N/A	N/A	_ .	N/A	- '		. —	-
DIMETHYLPHTHALATE	-	N/A	N/A.	N/A	-	N/A	-	-	 '	-
ACENAPHTHYLENE	-	N/A	N/A	N/A	-	N/A	-	-	-	_
2,6-DINITROTOLUENE	-	N/A	N/A	N/A	<u> </u>	N/A		-		

B – QUALIFIER USED WHEN THE ANALYTE IS FOUND IN THE ASSOCIATED METHOD BLANK AS WELL AS IN THE SAMPLE. IT INDICATES POSSIBLE / PROBABLE CONTAMINATION.

J – QUALIFIER USED TO INDICATE AN ESTIMATED VALUE. THE CONCENTRATION IS QUANTITATIVELY QUALIFIED AND THE FINAL RESULT REPORTED IS ESTIMATED.

N – QUALIFIER INDICATES THE CONCENTRATION FOUND IN THE SAMPLE IS LESS THAN THREE TIMES THE CONCENTRATION FOUND IN THE ASSOCIATED BLANKS. THE PRESENCE OF THE ANALYTE IS NEGATED DUE TO LABORATORY CONTAMINATION.

R – DATA IS REJECTED DUE TO HOLDING TIME EXCEEDED, BLANK CONTAMINATION, INSTRUMENT CALIBRATION ERROR, OR OTHER MAJOR CONTROLLING LIMITS ARE EXCEEDED.

* - INDICATES QUALIFIER PLACED BY TRC-ECI.

N/A - NOT ANALYZED FOR THIS COMPOUND '-' - NOT DETECTED TO THE REPORTED DETECTION LIMIT

TABLE 31b SHIELDALLOY METALLURGICAL CORPORATION SUMMARY OF VOLATILE ORGANIC COMPOUNDS DETECTED IN SURFACE WATER SAMPLES PAGE 2 OF 2

ISAMPLE IDENTIFICATION:	W1-01	SW2-01	SW9+01	SW10-01	SW4-01	SW5-01	SW6+01	SW7-01	SW8-01	SW9-01
BASE NEUTRAL / ACIDS (ppb)										
(continued)				·						•
3-NITROANILINE	-	N/A	· N/A	' N/A	- :	N/A :	—	-	-	
ACENAPHTHENE	-	N/A	N/A	N/A	-	N/A		-	-	
1,4-DINITROPHENOL		N/A	N/A	N/A		N/A	. – .	-	-	
4-NITROPHENOL		N/A	N/A	N/A		N/A	-	-	-	-
DIBENZOFURAN		N/A	N/A	• N/A	-	N/A		~ ·	-	·
2,4-DINITROTOLUENE	-	N/A	. N/A·	N/A	-	. N/A	-	-	-	-
DIETHYLPHTHALATE	-	N/A	. N/A	N/A	-	N/A	-	-	-	-
4-CHLOROPHENYL-PHENYLET	-	N/A	N/A ·	N/A	-	N/A	-	-	-	-
FLUORENE	-	N/A	N/A	N/A	- '	N/A	-	-	-	-
4-NITROANILINE	-	N/A	. N/A	N/A	-	N/A	-	-	-	
4,6-DINITRO-2-METHYLPHENC	-	N/A	N/A	N/A		N/A ·	· -	-	-	÷ .
N-NITROSODIPHENYLAMINE	-	N/A	N/A	N/A	_ ·	N/A	-	· 🗕		-
4-BROMOPHENYL-PHENYLETH	-	N/A	N/A	N/A		N/A	-	· -	÷	-
HEXACHLOROBENZENE	- ·	N/A	N/A	N/A	-	N/A	· _	. -	-	
PENTACHLOROPHENOL	<u> </u>	N/A	N/A	N/A		N/A	-	_ `	-	· – .
PHENANTHRENE	-	N/A	N/A	N/A		N/A	-	-	-	-
ANTHRACENE	_ '	N/A	N/A	N/A	-	N/A	-	· _	_ '	-
DI-n-BUTYLPHALATE	1 J	N/A	N/A	N/A	1 J	N/A	-	2 J	2 J	1 J
FLUORANTHENE	-	N/A	N/A	N/A	-	N/A	-	-	-	-
PYRENE		N/A	N/A	N/A		N/A	-		-	_
BUTYLBENZYLPHTHALATE	-	N/A	N/A	N/A	-	N/A	. _	-	. — '	-
3.3'-DICHLOROBENZIDINE	-	N/A	N/A	N/A	_ '	N/A	_	-	-	•_
BENZO(a)ANTHRACENE	-	N/A	N/A	N/A	-	N/A	· _	-	- ·	-
CHRYSENE		N/A	N/A	N/A	-	N/A	-	-	-	-
bis(2-ETHYLHEXYL)PHTHALATE	·	N/A	N/A	N/A	2 J	N/A	-	-	 .	· _
DI-n-OCTYL PHTHALATE	_	N/A	N/A	N/A		N/A		_	_	_
BENZO(b) FLUORANTHENE	-	N/A	N/A	N/A	-	N/A		 	-	
BENZO(k) FLUORANTHENE	-	N/A	N/A	N/A	-	N/A	_		_	-
BENZO (a) PYRENE	-	N/A	N/A	N/A		N/A	_	_	<u></u>	 ·
INDENO(1,2,3-cd) PYRENE	•••• ·	N/A	· N/A	N/A	-	N/A	-	_ .	-	· _
DIBENZO (A,H) ANTHRACENE	-	N/A	N/A	· N/A	_	N/A	-	-	 .	_
BENZO(g,h,i) PERYLENE	_	N/A	N/A	· N/A		N/A	_	_		_
TOTAL caPAH	0	N/A N/A	N/A N/A	N/A N/A		N/A	0	. 0	0	0
	<u> </u>	11/14	11/1	DV/A				· v	V	<u> </u>

B - QUALIFIER USED WHEN THE ANALYTE IS FOUND IN THE ASSOCIATED METHOD BLANK AS WELL AS IN THE SAMPLE. IT INDICATES POSSIBLE / PROBABLE CONTAMINATION.

J - QUALIFIER USED TO INDICATE AN ESTIMATED VALUE. THE CONCENTRATION IS QUANTITATIVELY QUALIFIED AND THE FINAL RESULT REPORTED IS ESTIMATED.

N – QUALIFIER INDICATES THE CONCENTRATION FOUND IN THE SAMPLE IS LESS THAN THREE TIMES THE CONCENTRATION FOUND IN THE ASSOCIATED BLANKS. THE PRESENCE OF THE ANALYTE IS NEGATED DUE TO LABORATORY CONTAMINATION.

R – DATA IS REJECTED DUE TO HOLDING TIME EXCEEDED, BLANK CONTAMINATION, INSTRUMENT CALIBRATION ERROR, OR OTHER MAJOR CONTROLLING LIMITS ARE EXCEEDED.

* - INDICATES QUALIFIER PLACED BY TRC-ECI.

N/A - NOT ANALYZED FOR THIS COMPOUND

'-' - NOT DETECTED TO THE REPORTED DETECTION LIMIT

TABLE 31c SHIELDALLOY METALLURGICAL CORPORATION SUMMARY OF PESTICIDES/PCB COMPOUNDS DETECTED IN SURFACE WATER SAMPLES

SAMPLE IDENTIFICATION:	SW12n1:	SW2-nt	CRW9201	SW10-01	SWALAN	SWREnt	SWEDDI	80/7-01	SWALD.	10SW9-01
OAM CLIDENT IOANON.	<u></u>					0110 01				130113 2012
PESTICIDES/PCB'S (ppb)								.•		
ALPHA-BHC		N/A	N/A	N/A		N/A	• _	_		·
BETA-BHC	- '	N/A	N/A	N/A	_	N/A	· 🗕	-	_	_
DELTA-BHC	-	N/A	N/A	N/A	_	N/A	· _	-	-	. 🗕
GAMMA-BHC(LINDANE)	_	N/A	N/A	N/A	-	N/A	-	-	_	_
· HEPTACHLOR	_	N/A	N/A	N/A	-	N/A	-	-		_
ALDRIN		N/A	N/A	N/A	-	N/A	_	_	-	
HEPTACHLOR EPOXIDE	_	N/A	N/A	N/A	<u> </u>	N/A	-	-		-
ENDOSULFANI	-	N/A	N/A	N/A	_	N/A	-	_	· _	· •
DIELDBIN	-	N/A	N/A	N/A	· ·	N/A	· _	_	_	· 👝
4.4-DDE	_	N/A	N/A	N/A		N/A		-	-	_
ENDRIN	· <u> </u>	N/A	N/A	N/A		N/A		-		. –
ENDOSULFAN II		N/A	N/A	N/A	_ ·	N/A	-	-	_	· _
4.4-DDD	-	N/A	N/A	N/A		N/A	-	-	-	-
ENDOSULFAN SULFATE	-	N/A	N/A	N/A	-	* N/A	-	-	-	-
4.4-DDT	· 🗕	N/A	N/A	N/A	-	N/A	_	_	•	-
METHOXYCHLOR	-	N/A	N/A	N/A	-	N/A	_	-		· _ ·
ENDRIN KETONE	<u> </u>	N/A	N/A	N/A	-	N/A		-	• 🗕	• -
ALPHA-CHLORDANE	-	N/A	N/A	N/A	·	N/A		<u> </u>		· · _
GAMMA-CHLORDANE	· _ ·	N/A	N/A	N/A	-	N/A	-	-	-	-
TOXAPHENE	-	N/A	N/A	N/A	-	N/A	· _	-	-	-
· AROCLOR-1016		N/A	N/A	N/A	-	N/A	-	-	-	-
AROCLOR-1221	-	N/A	N/A	N/A	-	N/A		-	-	-
AROCLOR-1232	-	N/A	N/A	N/A		N/A	-	-	-	-
AROCLOR-1242	-	N/A	N/A	N/A	-	N/A			_	
AROCLOR-1248	-	N/A	N/A	N/A	-	N/A	-	-	-	-
AROCLOR-1254	-	N/A	N/A	N/A	-	N/A	-	-	_ '	-
AROCLOR-1260		N/A	N/A	N/A	- '	N/A			-	-

B - QUALIFIER USED WHEN THE ANALYTE IS FOUND IN THE ASSOCIATED METHOD BLANK AS WELL AS IN THE SAMPLE. IT INDICATES POSSIBLE / PROBABLE CONTAMINATION.

J – QUALIFIER USED TO INDICATE AN ESTIMATED VALUE. THE CONCENTRATION IS QUANTITATIVELY QUALIFIED AND THE FINAL RESULT REPORTED IS ESTIMATED.

N – QUALIFIER INDICATES THE CONCENTRATION FOUND IN THE SAMPLE IS LESS THAN THREE TIMES THE CONCENTRATION FOUND IN THE ASSOCIATED BLANKS. THE PRESENCE OF THE ANALYTE IS NEGATED DUE TO LABORATORY CONTAMINATION. R – DATA IS REJECTED DUE TO HOLDING TIME EXCEEDED, BLANK CONTAMINATION, INSTRUMENT CALIBRATION ERROR, OR

OTHER MAJOR CONTROLUNG LIMITS ARE EXCEEDED.

* - INDICATES QUALIFIER PLACED BY TRC-ECI.

N/A - NOT ANALYZED FOR THIS COMPOUND

'-' - NOT DETECTED TO THE REPORTED DETECTION LIMIT

TABLE 31d SHIELDALLOY METALLURGICAL CORPORATION SUMMARY OF INORGANIC COMPOUNDS DETECTED **IN SURFACE WATER SAMPLES**

SAMPLE IDENTIFICATION: ** **INORGANICS (ppb)**	<u>SW1-01</u>		· · · ·		<u></u>		<u>, , , , , , , , , , , , , , , , , , , </u>			
ALUMINUM	4610	44800	544	442	319	224	3450	48100	12800	9300
ANTIMONY	44.2 B	151	· 🗕	-	-	_	-	·	- :	
ARSENIC	2.0 B	34.6	- '	-	2.4 B	-	-	116	2.4 B	2.2 B
BARIUM	78.2 B	962	44.4 B	43.6 B	40.8 B	24.5 B	205	400	65.1 B	160 B
BERYLLIUM	1.3 B	25.1	1.0 B	1.0 B	1.0 B	-	· _	468	15.4	. 37.2
CADMIUM	<u> </u>	9.0	- .	-	_ ·	-	-	5.2	-	-
CALCIUM	5480	18100	4040 B	3960 B	4600 B	4940 B	9200	30300	13300	11000
CHROMIUM	43.3	8520	120	106	208	99.0	29.8	313	91.4	283
CHROMIUM VI	-	-	-	-	0.054	-	0.031	0.057	0.028	0.14
COBALT	-	62.2	· ·	-	_ '	-	·	13.1 B	-	
COPPER	8.0 B	432	13.7 B	11.8 B	7.7 B	7.3 B	6.3 B	64.2	16.3 B	23.28
CYANIDE, TOTAL (UG/L)	. –	11.0J*	_	_	_	-		94.4	-	12,3
RON	4660	71000	1210	1020	933	697	128	13900	14200	6820
LEAD	28.0	-	7.6	9.3	3.8 B	5.5 B	8	1240	1050	170
MAGNESIUM	9250 ·	5670	1700 B	1690 B	2060 B	2400 B	16500	63200	12000	2780
MANGANESE	622	2590	220	219	342	131	10.7 B	1160	223	500
MERCURY	, -	21.4	· 🕳	-		<u></u>	-	. 🗕	-	
NICKEL	20.8 B	618	29.6 B	34.5 B	17.7 B	17.1 B		415	49.2	242
POTASSIUM	8670	4670 B	1610 B	1890 B	4310 B	4490 B	9300	171000	6890	14400
SELENIUM		-	<u> </u>	- .	-		~	29 B	-	2.1 B
SILVER	-	-	-	-	-	. 🗕	÷	-	-	-
SODIUM	25900	20300	24400	23900	107000	65200	64900	90100	23800	8070
THALLIUM	-	-	-	· 🕳	-	.	-	-	· _	<u> </u>
VANADIUM	272	5700	310	307	246	286	1410	8650	3380	8350
ZINC	56.4	1070	41.8	32.4	25.4	20.8	58.6	942	108	234
BORON	828	N/A	N/A	' N/A	585	N/A	14100	4960	286	320
NIOBIÚM		N/A	N/A	N/A		N/A		527	_ .	-
STRONTIUM	-	N/A	N/A	N/A	-	N/A	221	-	-	<u> </u>
TITANIUM	- .	N/A	N/A	N/A	-	N/A	·	443	193	143
ZIRCONIUM	-	N/A	N/A	N/A	-	N/A	N/A	N/A	N/A	N/A
FLUORIDE	0.87	0.92	1.1	1.1	0.84	0.97	N/A	N/A	N/A	N/A
SULPHATE	68.7	25.8	12.2	.11.7	139	80.2	N/A	N/A	N/A	N/A

B – INDICATES THAT THE REPORTED VALUE IS LESS THAN THE CRDL BUT GREATER THAN THE IDL. J – QUALIFIER USED TO INDICATE AN ESTIMATED VALUE. THE CONCENTRATION IS QUANTITATIVELY QUALIFIED AND THE FINAL **RESULT REPORTED IS ESTIMATED.**

* - INDICATES QUALIFIER PLACED BY TRC-ECI. N/A - NOT ANALYZED FOR THIS COMPOUND

'-' - NOT DETECTED TO THE REPORTED DETECTION LIMIT

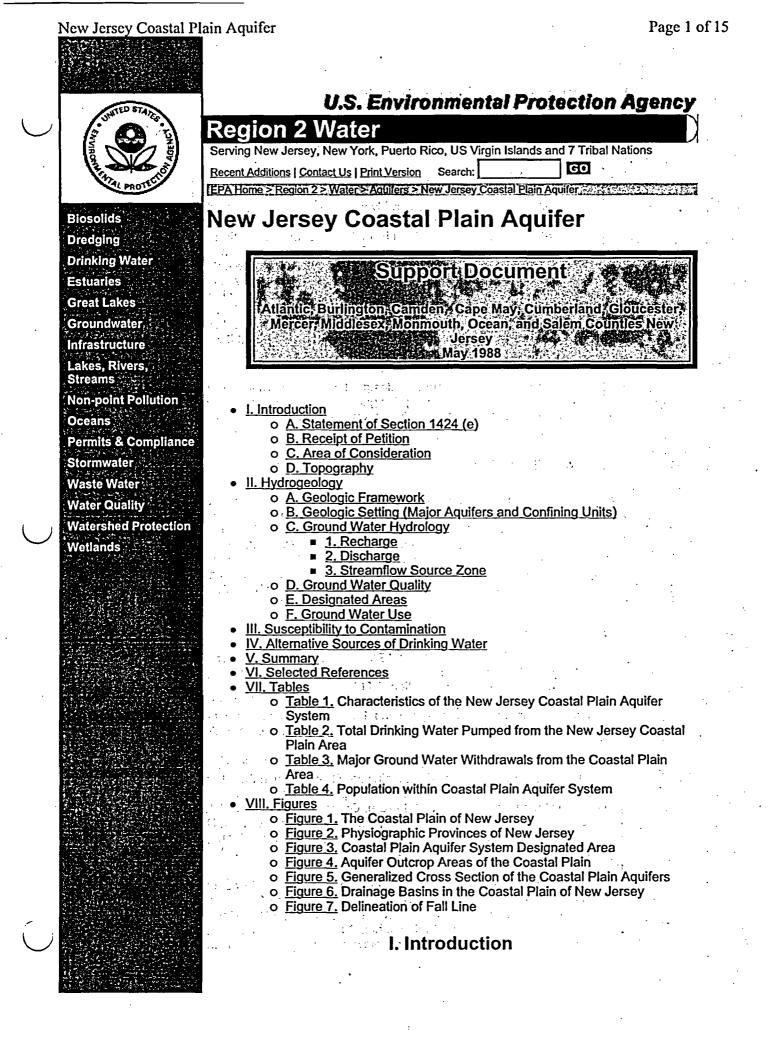
CRDL - CONTRACT REQUIRED DETECTION LIMITS.

IDL - INSTRUMENT DETECTION LIMITS.

TABLE 1-9 SURFACE WATER SUMMARY TABLE INORGANICS SUPPLEMENTAL SAMPLING INVESTIGATION SHIELDALLOY METALLURGICAL CORPORATION

SAMPLE ID:	SW-8	SW-11	SW-32	SW-21	SW-25	SW-27.	SW-30	SW-31
		D	up of SW-11					
NORGANICS (µg/L)		· · ·		•				·
Aluminum	979	1,770	227	169	2310	. 286	163	127
Antimony	27.2 u	27.2 u	27.2 U	27.2 u	27.2 u	27.2 u	27.2 U	27.2 1
vsenic	3.2	1.8 u	1.8 u	1.8 u	2.8	1.8 [°] u	1.8 u	1.8 (
Sarium	34	53.3	21.1	40.4	87.1	119	174	162
Beryllium	0.7 u	0.7 u	0.7 u	1	2.6	1	0.7 u	0.7
Cadmium ·	2.9 u	2.9 u	2.9 u	2.9 u	3.1 u	3.1 u	3.1 u	3.1
Calcium	3,650	4,250	4,200	5,189	4660	5220	8960	8330
hromlum	101	47.6	23	19.6	46.8	38.7	2.7 u	2.7
hromium VI (mg/L)	0.02 u	0.02 u	0.02 tł ·	0.02 u	0.02 u	0.02 u	0.02 u	0.02
Cobalt	2.9 U	4.9	2.9 u	2.9 u	. 10.1	7.4	6.3	7.9
Copper	23.2	· 17.6	13.5	6.2	7.9	6	2.7	3.3
ron	. 655	1,710	143	150	3080	374	301	259
ead	2.9	0.7 u	0.7 u	0.7 u	. 2,7	3.4	0.9 u	0.9
Aagnesium	3,210	7,770	3,620	3,860	8670	2620	4440	4160
langanese	42.3	42.3	28.2	9.4	88	194	180	271
Aercury	0.1 u	0.1 u	0.1 u	0.1 u	0.1 u	0.1 u	0.1 u	0.1
lickel	10.2 ·	12.3	6.8 u	6.8 u	19.2	8.1	6.9 u	10.5
otassium	18,600	21,000	22,700	15,800	8960	4890	3080	2600
Selenium	4.4	1.2 U	1.2 u	1.2 u	1.7	1.5 u	1.5 u	1.5
Silver	2.5 บ	2.5 u	2.5 u	2.5 U	2.5 u	2.5 u	2.5 u	2.5
Sodium	177,000	196,000	215,000	150,000	44,600	15,000	6390	5970
/anadium	64.3	33	33.9	257	413	144	3.5 U	. 3.5
linc	287	54.1	54.4	47.5	24.6	55.1	77.6	85.9
hallium	2 บ	2 u	2 u	2 u	2 u	2 U	2 u	2
Syanide	· 5 u'	5 u	5 u	5 u	• 5 u	5 u	5 u	5
Hardness (mg/L)	21.6	22.5	22.5	20.6	. 23.5	29.4	38,3	37.4

µg/L=micrograms per liter mg/L=milligrams per liter u=Analyzed, Not Detected


APPENDIX E - REGIONAL HYDROGEOLOGIC INFORMATION

•

APPENDIX E - REGIONAL HYDROGEOLOGIC INFORMATION

Qualitative Description of the New Jersey Coastal Plain Aquifer System New Jersey Coastal Plain Aquifer System Sole Source Aquifer Designation Regional Ground Water Quality: Gloucester and Cumberland Counties, New Jersey; USGS Well MW-24

Regional Ground Water Quality: Gloucester and Cumberland Counties, New Jersey; USGS Well OU02

http://www.ena.gov/region02/water/amifer/coast/coastnln.htm

A. Statement of Section 1424 (e)

The Safe Drinking Water Act (SDWA), Public Law 93-523, of December 16, 1974 contains a provision in Section 1424(e), which states that:

If the Administrator determines, on his own initiative or upon petition, that an area has an aquifer which is the sole or principal drinking water source for the area and which, if contaminated, would create significant hazard to public health, he shall publish notice of that determination in the Federal Register. After the publication of any such notice, no commitment for Federal financial assistance (through a grant, contract, loan guarantee, or otherwise) may be entered into for any project which the Administrator determines may contaminate such aquifer through a recharge zone so as to create a significant hazard to public health, but a commitment for Federal financial assistance may, if authorized under another provision of law, be entered into to plan or design the project to assure that it will not so contaminate the aquifer. contaminate the aquifer.

This section allows for the specific designation of areas which are dependent upon ground water supplies. Following designation, the review process will ensure that federal agencies will not commit funds toward projects which may contaminate these around water supplies.

B. Receipt of Petition

On December 4, 1978 the Environmental Defense Fund, Inc. and Sierra Club New. Jersey Chapter petitioned the U.S. Environmental Protection Agency (EPA) Administrator to determine that the Counties of Monmouth, Burlington, Ocean, Camden, Gloucester, Atlantic, Salem, Cumberland, Cape May and portions of Mercer and Middlesex Counties, New Jersey, constitute an area whose aquifer system is "the sole or principal drinking water source for the area and which, if contaminated, would create a significant hazard to public health".

C. Area of Consideration

e the third and the estimate The area of the New Jersey Coastal Plain Aquifer System includes the area for the Counties of Monmouth, Burlington, Ocean, Camden, Gloucester, Atlantic, Salem, Cumberland, Cape May and portions of Mercer and Middlesex Counties, New Jersey. Pursuant to section 1424(e), Federally assisted projects proposed for construction in the New Jersey Coastal Plain Area and the project review area within portions of its streamflow source zone will be subject to EPA review.

3,420.00

The streamflow source zone for the New Jersey Coastal Plain Aquifer System includes upstream portions of the Delaware River Basin in the States of Delaware (New Castle County), New Jersey (Mercer-part, Hunterdon-part, Sussex-part, and Warren Counties), New York (Delaware, Orange, Sullivan and Ulster Counties), and Pennsylvania (Berks-part, Bucks, Carbon-part, Chester-part, Delaware, Lackawanna-part, Lancaster, Lehigh, Luzerne-part, Monroe, Montgomery, Northampton, Philadelphia, Pike, Schuykill and Wayne Counties).

管理任何期後のほどはない

The project review area includes that portion of the streamflow source zone which lies within two miles of the Delaware River in the States of New Jersey (in Mercer, Hunterdon, Sussex and Warren Counties), Delaware (in New Castle County), Pennsylvania (in Delaware, Philadelphia, Bucks, Monroe, Northampton, Pike and Wayne Counties) and New York (in Delaware, Orange and Sullivan Counties).

D. Topography

The New Jersey Coastal Plain is part of the Atlantic Plain physiographic province. The Coastal Plain physiographic province lies along the Atlantic and Gulf Coasts from Long Island to Mexico and contains one of the most prolific system of aquifers in the country. The area petitioned by the Environmental Defense Fund, Inc. and the Sierra Club New Jersey Chapter is the New Jersey Coastal Plain Aquifer System, which is located between the Delaware River and Bay, the Atlantic Coast, Staten Island and a belt of more rugged, generally higher terrain called the Piedmont province. A Fall Line, extending northeast along the Delaware River and through Mercer and Middlesex counties, separates the Coastal Plain from the Appalachian Highlands. The Fall Line separates areas with major differences in topography, geology, and hydrology.

The New Jersey Coastal Plain Aquifer System, lying southeast of the Fall Line, covers about 4,200 square miles. More than half of the land area is below an altitude of fifty feet (50') above sea level (NGVD). The area is largely surrounded by salty or brackish water and is bounded by the Delaware River on the west, Delaware Bay on the south, the Atlantic Ocean on the east, and Raritan Bay on the north.

The land surface is divided into drainage basins. A drainage basin is an area that contributes runoff to a stream and its tributaries. A drainage divide marks the topographic boundary between adjacent drainage basins. A major stream divide in the Coastal Plain of New Jersey separates streams flowing to the Delaware River and the Atlantic Ocean.

II. Hydrogeology

A. Geologic Framework

The following physiographic and hydrogeologic descriptions are excerpted from the United States Geological Survey (USGS) Report on the New Jersey Coastal Plain Area (Vowinkel and Foster, 1981). The New Jersey Coastal Plain is underlain by a wedge shaped mass of unconsolidated sediments composed of clay, silt, sand and gravel. The wedge thins to a featheredge along the Fall Line and attains a thickness of over six-thousand feet (6,000') at the tip of Cape May County, New Jersey. These sediments range in age from Cretaceous to Holocene and can be classified as continental, coastal or marine deposits. The Cretaceous and Tertiary age sediments generally strike on a northeast-southwest direction and dip gently to the southeast from ten to sixty feet (10 - 60') per mile. The overlying Quaternary deposits, where present, are basically flat lying. The unconsolidated Coastal Plain deposits, are unconformably underlain by a Pre-Cretaceous basement bedrock complex, which consists primarily of Precambrian and early Paleozoic age rocks. Locally, along the Fall Line in Mercer and Middlesex Counties, Triassic age rocks underlie the unconsolidated sediments.

Potomac Raritan Magothy aquifer system is divided into two aquifers. They are the Farrington aquifer and the Old Bridge aquifer. These aquifers are both upper Cretaceous in age and would be stratigraphically equivalent to the Raritan and Magothy formations, respectively.

B. Geologic Setting (Major Aquifers and Confining Units)

The wedge of sediment comprises one interrelated aquifer system that includes several aquifers and confining units. These sediments range in age from Cretaceous to Holocene and can be classified as continental, coastal or marine

deposits. In general, aquifers and confining units in the Coastal Plain Aquifer, System correspond to the geologic formations presented in Table 1. However, the boundaries of the aquifers and confining beds may not be the same as the geologic formations for the following reasons: (1) the formations may change in physical character from place to place and may act as an aquifer in one area or a confining bed in another; (2) some formations are divided into several aquifers and confining beds; and (3) adjacent formations may form a single aguifer or confining bed. 11 33年格拉的日本地址成立的。 11

There are five major aquifers in the New Jersey Coastal Plain Aquifer System. They are the Potomac-Raritan-Magothy aquifer system, Englishtown aquifer, Wenonah-Mount Laurel aquifer, lower "800 foot" sand aquifer of the Kirkwood Formation and the Kirkwood-Cohansey aquifer. The major aquifers and their respective confining units are described in ascending order from the bedrock surface.

Overlying the consolidated rocks of the bedrock is the Potomac-Raritan-Magothy, aquifer system. This wedgeshaped mass of sediments of Cretaceous age is composed of alternating layers of clay, silt, sand, and gravel. These deposits range in thickness from a featheredge along the Fall Line to more than 4,100 feet beneath Cape May County: The Potomac-Raritan-Magothy aguifer system is exposed in a narrow outcrop along the Fall Line and the Delaware River. The aquifer is confined except in outcrop areas by the underlying crystalline rocks and the overlying Merchantville-Woodbury confining unit. In the northern part of the Coastal Plain, the Potomac-Raritan-Magothy aquifer system is divided into two aquifers. They are the Farrington aquifer (mainly Raritan age) and the Old Bridge aquifer (Magothy age). ी केंग्रे की इसक 2013

The Merchantville Formation and Woodbury Clay form a major confining unit throughout most of the Coastal Plain of New Jersey. Although their permeability is very low, the Merchantville-Woodbury confining unit can transmit significant quantities of water when sizeable differences in potentiometric head exist between overlying and underlying aquifers. 5. S. Mar.

The Englishtown aquifer overlies the Merchantville and Woodbury confining unit in the central and northern parts of the Coastal Plain. The aquifer is a significant source of water for Ocean and Monmouth Counties. In northern and eastern Ocean County, the Englishtown aquifer can be subdivided into two waterbearing sands. Upper and lower units of quartz sand with thin interbeds of dark sandy silt are separated by a thick sequence of sandy and clayey lignitic silt (Nichols, 1977). ¥ प्रकृत वत्यति १० तेह वर्ष

The Marshalltown Formation overlies the Englishtown sand in most of the Coastal Plain but overlies the Woodbury Clay in much of Salem County. The formation has a maximum thickness of thirty feet (30'). Because the Marshalltown Formation is thin and contains some slightly to moderately permeable beds, it acts as a leaky confining bed.

Although the Wenonah Formation and Mount Laurel Sand are distinct lithologic units, they are hydraulically connected and together form the Wenonah-Mount Laurel aquifer. The Mount Laurel Sand, a coarser sandunit than the Wenonah Formation, is the major component of the aquifer. The combined thickness of the Wenonah Formation and Mount Laurel Sand in outcrop is as much as one hundred feet (100'). In the subsurface they range in thickness from forty feet (40') to slightly more than two hundred feet (200') (Nemickas, 1976). The Wenonah-Mount Laurel aquifer is an important water producing aquifer in the northern and western parts of the Coastal Plain. Upring and bris statistics of

Overlying the Wenonah-Mount Laurel aquifer is a confining unit that comprises several geologic units. The confining unit consists of the Navesink Formation, Red Bank Sand; Tinton Sand, Hornerstown Sand, Vincentown Formation, Manasquan Formation, Shark River Marl, Piney Point Formation and the basal clay of the

್ ಗೆಗೆ ಮಿಂದ್ರೆ ಬ್

5/4/2005

Kirkwood Formation. Some of these geologic units may act as aquifers on a local basis.

The Kirkwood Formation includes several waterbearing units. The major Kirkwood aquifer is the principal artesian aquifer within the Kirkwood Formation, also known as the Atlantic City "800 foot" sand (Barksdale and others, 1936). The Kirkwood "800 foot" sand aquifer extends along the Atlantic Coast from Cape May to Barnegat Light and some distance inland. In Cape May and Cumberland Counties, the upper artesian aquifer of the Kirkwood Formation is defined as the Rio Grande waterbearing zone (Gill, 1962). This aquifer is productive only locally in Cape May County. Along the coast north of Barnegat Light and inland from the coast in Ocean, Burlington, Atlantic, and the western part of Cumberland Counties, the sands of the upper part of the Kirkwood Formation are hydraulically connected to the overlying Cohansey Sand.

The Cohansey Sand is typically a lightcolored quartzose sand with lenses of silt and clay. The Cohansey Sand is exposed throughout most of the outer part of the Coastal Plain and attains a maximum thickness of about two hundred fifty feet (250'). Ground water in the Cohansey aquifer occurs generally under watertable conditions except Cape May County, where the aquifer is confined. Inland from the coast and in the northern part of Ocean County, the upper part of the Kirkwood Formation is in hydraulic connection with the Cohansey Sand and they act as a single aquifer.

C. Ground Water Hydrology

Man has modified the natural equilibrium of the New Jersey Coastal Plain Aquifer System by increasing the rate of outflow from the system to the ocean. One major effect of the increased outflow of water is a regional decline in ground water levels. This decline in potentiometric head (the level to which water will rise under a given pressure with respect to aknown datum) within the aquifers may change the direction of ground water flow and cause induced recharge and/or saltwater encroachment into the system. Significant regional waterlevel declines have occurred in the Potomac-Raritan-Magothy aquifer system, Englishtown aquifer, Wenonah-Mount Laurel aguifer and the "800 foot" sand aguifer of the Kirkwood Formation. Ground water withdrawals from the Potomac-Raritan-Magothy aquifer system have resulted in ground water level declines of 1.5 to 2.5 feet per year from 1966 to 1976 (Luzier, 1980). These declines in head are causing a reversal in the direction of ground water flow near pumping centers. Model studies have indicated that about forty three percent (43%) of the total inflow to the Potomac-Raritan-Magothy aquifer system in 1973 was induced recharge from the Delaware River (Luzier, 1980). Saline water in the Delaware River Estuary threatens water quality in the aquifers along Salem and Gloucester Counties. sustained increases in the rate of withdrawal from the Potomac-Raritan-Magothy and in the consumptive uses of Delaware River water portends continued and increased movement of inferior quality water into the aquifer.

The head reductions in the Potomac-Raritan-Magothy aquifer system have also increased leakage from the overlying Englishtown and Wenonah-Mount Laurel aquifers through the Merchantville Formation Woodbury Clay confining unit. In model simulation, approximately thirty percent (30%) of the recharge to the Potomac-Raritan-Magothy aquifer system in 1973 was due to leakage from overlying aquifers (Luzier, 1980).

Withdrawal of water from the Englishtown aquifer has had a marked effect on the water level in the overlying Wenonah-Mount Laurel aquifer. Decline in head in the Englishtown aquifer from 1959 to 1970 was 8 to 12 ft/yr over a large area. As a consequence of this change in head, increased quantities of water apparently leak from the Wenonah-Mount Laurel aquifer, through the confining layers, and into the

http://www.ena.gov/region02/water/aguifer/coact/coactnln.htm

New Jersey Coastal Plain Aquifer

Englishtown aquifer (Nichols, 1977).

Since the recharge from precipitation and induced infiltration is insufficient to replace ground water in heavily pumped areas close to the saltwater-freshwater interface, the interface can advance toward pumping centers.

1. Recharge

1201

The Delaware River and Estuary, Sandy Hook Bay, the Atlantic Coast and the older, harder rocks of the Piedmont province constitute the the recharge boundaries of the New Jersey Coastal Plain aquifers. These hydrographic features represent the interfaces across which water either moves into or out of the ground water reservoir. Natural recharge occurs primarily through direct precipitation on the outcrop area of the geologic formations. A smaller component of natural recharge to the deeper layers of the system occurs by vertical

both leakage from the upper layers. This accounts for a small percentage about of the total amount of recharge; however, over a large area and a long period of time the amount of water transmitted can be significant.

Natural recharge to the New Jersey Coastal Plain Area occurs
 primarily through direct precipitation on the outcrop area of the geologic formations. Based primarily on estimates of ground water, contributing to streamflow and basin runoff, several estimates of ground water recharge in the Coastal Plain have been made. In the outcrop areas of the Potomac - Raritan - Magothy aquifer system, where it is unconfined, recharge to the aquifer is about twelve (12) inches per year (in/yr). In the outcrop area of the Farrington aquifer, the recharge to ground water is twelve (12) in/yr. Recharge ranges from twelve to twenty (12 - 20) in/yr in the outcrop of the Old Bridge aquifer.

Another component of natural recharge to deep, confined aquifers is primarily by vertical leakage from the upper layers. Only a small percentage of the water within the unconfined ground water system leaks to the confined aquifers; but over a large area and a long period of time, the amount of water transmitted can be significant (Vowinkel & Foster, 1981).

25 bula

2. Discharge Research and Agreed

The New Jersey Coastal Plain Aquifer discharges to the surface through streams, springs and evapotranspiration. Many streams
 through streams, springs and evapotranspiration. Many streams
 ultimately flow into bays or directly into the ocean. Development of the ground water reservoir as a water supply source constitutes another. discharge component which today accounts for a significant portion of discharge from the overall system. In certain areas (e.g., along the Delaware River) heavy pumping has caused a reversal in the normal discharge from the aquifer (Raritan-Magothy) such that the surface stream (Delaware River) now recharges the aquifer. This phenomenon implies that, in addition to the New Jersey Coastal Plain Area, the Delaware River Basin within Delaware, New Jersey, Pennsylvania and New York must be regarded as a streamflow source zone (an upstream headwaters area which drains into a recharge zone), which flows into the Coastal Plain Area.

infod G real operation

3. Streamflow Source Zone

The New Jersey Coastal Plain Aquifer System discharge to the surface through streams, springs and evapotranspiration. Many streams ultimately flow into bays or directly into the ocean. Development of the ground water reservoir as a water supply source constitutes another discharge component which today accounts for a significant portion of discharge from the overall system. In certain areas (e.g. along the Delaware River) heavy pumping has caused a reversal in the normal discharge from the aquifer (Raritan-Magothy) such that the surface stream (Delaware River) now recharges the aquifer. This phenomena implies that, in addition to the New Jersey Coastal Plain Area, a major portion of the Delaware River Basin must be regarded as a streamflow source zone (an upstream headwaters area which drains into a recharge zone), which flows into the designated area.

D. Ground Water Quality

Fresh, uncontaminated ground water in the New Jersey Coastal Plain is low in dissolved solids (generally less than 150 milligrams per liter (mg/l). Calcium and bicarbonate are usually dominant ions in solution with smaller amounts of sodium, potassium, magnesium sulfate and chloride. Locally, concentrations of iron and manganese present a problem near the water table because the ground water tends to have a low pH. These waters are treated to make them palatable. Historically, no significant quantities of heavy metals, pesticides, organics or coliform bacteria have been found in the artesian aquifers. Except for specific parameters (e.g. iron) and contamination incidents, water quality in the artesian ground water system meets or exceeds Federal and State drinking water standards. The quality of ground water in the outcrop area, on the other hand, is variable, being largely determined by local conditions at the land surface.

A large part of the Potomac-Raritan-Magothy aquifer system in the southern Coastal Plain of New Jersey contains salty ground water with chloride concentrations ranging from less than 250 to as high as 27,000 mg/L (Luzier, 1980). The concentrations of chloride increase with depth as well as toward the ocean.

· . . · · ·

E. Designated Areas

The proposed Sole Source Aquifer designation areas for the New Jersey Coastal Plain Aquifer System are defined within the Counties of Monmouth, Burlington, Ocean, Cumberland and Cape May, and portions of Mercer and Middlesex Counties, New Jersey, and that portion of the streamflow source zonewhich lies within two miles of the Delaware River in the States of New Jersey (in Mercer, Hunterdon, Sussex and Warren Counties), Delaware (in New Castle County), Pennsylvania (in Delaware, Philadelphia, Bucks, Monroe, Northampton, Pike and Wayne Counties) and New York (in Delaware, Orange and Sullivan Counties). Outside the New Jersey Coastal Plain Area and further than two miles from the Delaware River in the streamflow source zone, only those Federally assisted proposed projects requiring the preparation of an Environmental Impact Statement will be reviewed. The two-mile limit for the project review area along the Delaware River is based on the climate and hydrologic setting of the area.

F. Ground Water Use

Ground water use for public supply in the Coastal Plain area, was about 250 million gallons per day (MGD) in 1978. Use of surface water for public supply in this same area amounts to 79 MGD. Of the estimated 400 MGD withdrawn from the Coastal Plain aquifer system in 1978, approximately seventy-five percent (75%) was used

New Jersey Coastal Plain Aquifer

Page 8 of 15

for drinking water purposes to serve 2.3 million people.

Estimates for industrial and commercial consumption of ground water range from 75 MGD (USGS, 1978) to 97 MGD (NJ Water Supply Master Plan, WSMP, 1976). Agriculture is also a major consumer of ground water, pumping anywhere from 11 MGD (USGS, 1978) to 50 MGD (NJWSMP, 1976).

के होमां होमांचु शिक्षण, श्री श

na i p

No accurate tally of domestic consumption in the Coastal Plain Area is available; however, the New Jersey Water Supply Master Plan estimates that as much as 40 MGD of ground water was pumped to private households.

The PotomacRaritanMagothy aquifer system is the most widely used aquifer in the Coastal Plain, but it is not the primary source of drinking water for every county. The Cohansey and Kirkwood aquifers are the primary sources of ground water in Atlantic, Cape May and Cumberland County. In these counties, the Potomac-Raritan-Magothy aquifer contains saltwater. The Englishtown and Wenonah-Mount Laurel aquifers are productive mainly in the northern and central counties of the Coastal Plain.

III. Susceptibility to Contamination

The New Jersey Coastal Plain Aquifer System is susceptible to contamination across several interfaces. In the outcrop areas, the water table conditions and the highly permeable nature of the soil, with its low attenuation capability, facilitate the movement of contaminants from the land surface into the system. Significant pollution sources include septic tanks, landfills, chemical spills and dumping, chemical storage leaks, industrial waste lagoons, highway deicing and agricultural chemicals. These sources have immediate local impacts as well as long term cumulative impacts as they progress through to the lower system.

EPA has identified roughly 150 hazardous waste disposal sites within the New Jersey Coastal Plain area which have the potential for contaminating the environment.

Municipal Land Disposal

Municipal land disposal sites frequently are discovered to contain other than municipal wastes. One example is Jackson Township, Ocean County. The Township disposal site has been found to be leaching chlorinated industrial solvents and other toxic organic chemicals into the aquifer that serves private drinking water wells of more than 100 homes in a nearby development. A second site is the Price Landfill in Pleasantville, New Jersey. The contamination emanating from this site does threaten the Atlantic City water supply.

Pipelines and Storage Tanks

in contract and

Pipelines and tanks which carry and store petroleum products and other chemicals are subject to accidental rupture, external corrosion, and structural failure from a wide variety of causes. In the Pinelands, there are fourteen (14) storage tanks which are required to have Federal and/or State permits because of their size. Approximately 13.9 million gallons are stored in these facilities, and additional amounts are transferred through them.

Industrial Waste Lagoons

and the states of the second

Industrial waste lagoons are constructed for the primary purpose of providing temporary storage of waste materials. Seven industrial lagoons have been

identified in the Pinelands, and three have been linked to contaminated wells (New Jersey Pinelands Comprehensive Management Plan, 1980).

Hazardous Waste Sites

The lower Delaware along the TriCounty and Salem County area is highly industrialized, densely populated and contains a concentration of hazardous waste sites as well as an assortment of treatment, storage and disposal facilities. The potential for pointsource contamination of ground and surface water quality is therefore greater in this area.

Fertilizer

In the Pinelands, there is increasing evidence to support an association between fertilizer use and nitrate in ground water. For example, high ground water nitrate levels possibly stemming from agricultural fertilization has been noted in Winslow Township. (New Jersey Pinelands Comprehensive Management Plan)

Hydraulic Gradient Variability Across Confining Units

.. . .

1 11

Contamination across the confining units is another mechanism through which the Coastal Plain aquifer system is susceptible to contamination. Significant hydraulic gradients and variabilities in the integrity of these units has facilitated the migration of pollutants from one formation into another in South Brunswick (Geraghty and Miller, 1979)

Salt Water Encroachment

The Coastal Plain aquifers are also susceptible to contamination by saltwater encroachment. A large part of the Potomac-Raritan-Magothy aquifer system in the southern Coastal Plain of New Jersey contains saline ground water. m e concentrations of chloride increase with depth as well as distance toward the ocean. According to Luzier (1980), head reductions caused by withdrawal of ground water near the saltwater interface are more than sufficient to cause the slow migration of the saltwater toward pumping centers.

Lateral Salt Water Intrusion

·· .

Lateral saltwater intrusion is occurring in a part of the Old Bridge aquifer in the vicinity of Keyport and Union Beach Boroughs in Monmouth County, NJ. The reduction in water levels has caused a reversal in the direction of ground water flow in the Old Bridge aquifer. Prior to development, water in the aquifer flowed into Raritan Bay; however, saltwater is now flowing inland from the submerged (exposed) outcrop of the aquifer beneath Raritan Bay. As previously discussed, saltwater contamination is a threat to the Potomac-Raritan-Magothy Aquifer along the Delaware River.

In summary, problems in the New Jersey Coastal Plain Aquifer System revolve around rapid migration of contaminants as a result of the predominantly permeable hydrogeology. This poses an immediate threat to existing water supplies, as in the case of the Price Landfill, or may result in a more chronic contamination of the large interrelated aquifers.

IV. Alternative Sources of Drinking Water

The New Jersey Coastal Plain Aquifer System area is heavily dependent upon the ground water system for its drinking water supply. The many streams throughout

New Jersey Coastal Plain Aquifer

the area might be considered alternative supplies; however, the streams are not as readily accessible to everyone as is ground water. Since the ground water has historically been the primary source of supply, considerable cost would be associated with tapping, treating and distributing this surface resource as an alternative supply. Most importantly, the close interrelationship between the ground water system and quality and baseflow of the streams precludes stream resource as a viable longterm alternative in the event of ground water contamination. The Delaware River may be considered an alternative source of supply for portions of the area; however, existing competitive uses severely limit the availability of additional water for drinking purposes.

In the event of contamination, it is possible to relocate drinking water wells to different depths and, in some portions of the Coastal Plain, to different formations. Deeper wells inevitably incur higher costs for drilling, piping and pumping. As evidenced in the discussions on ground water movement and susceptibility to contamination, the practical lifetime of this alternative can be limited and very costly.

Desalinization is also an alternative source of drinking water for the Coastal and Bay areas; however, conversion of saltwater requires considerable energy and the economic constraints make desalinization an impractical alternative.

Since the ground water resources of the New Jersey Coastal Plain Aquifer System are vast in magnitude and distribution, no alternative sources of water supply are considered viable.

V. Summary

Based upon the information presented, the New Jersey Coastal Plain Aquifer System, as defined in this document, meet the technical requirements for Sole Source Aquifer designation. More than fifty percent (50%) of the drinking water for the aquifer service areas is supplied by the aquifer system. In addition, there are no economically feasible alternative drinking water sources which could replace the aquifer systems. Therefore, it is recommended that the New Jersey Coastal Plain Aquifer System be designated a Sole Source Aquifer. This will provide an additional review of ground water protection measures, incorporating state and local measures whenever possible, for only those projects which request Federal financial assistance.

The Coastal Plain Aquifer System of New Jersey is an interrelated hydrologic system which responds to natural and manmade stresses. The wedge of unconsolidated sediments underlying the Coastal Plain Aquifer System of New Jersey is comprised of a series of hydrologic units that have varying thickness, lateral extent, and waterbearing characteristics. Some of the units act as aquifers, while others act as confining beds. Previous to development by wells, the groundwater system is in a state of dynamic equilibrium.

Withdrawal of ground water by wells is a stress superimposed on a previously balanced groundwater system. The response of an aquifer to pumping stresses may result in an increase in recharge to the aquifer, a decrease in the natural discharge, a loss of storage within the aquifer, or a combination of these effects. Also, the response of an aquifer to stress may extend beyond the limits of the aquifer being evaluated.

The following findings, which are the basis for the determination:

(1.) The New Jersey Coastal Plain Area depends upon the under-lying Coastal Plain Aquifer System for seventy-five percent (75%) or more of its drinking water to

serve 3 million people.

(2.) Data show that the formations of the New Jersey Coastal Plain Area are hydrologically inter-connected such that they respond collectively as an interrelated aquifer system.

(3.) If the aquifer were to become contaminated, exposure of the persons served by the system would constitute a significant hazard to public health.

(4.) Alternative supplies capable of providing fifty (50) percent or more of the drinking water to the designated area are not available at similar economic costs.

VI. Selected References

1. Atlantic County Ground Water Quality Management Planning Agency, <u>208 Water</u> <u>Quality Management Plan, Atlantic County, New Jersey</u>.

2. Betz, Converse and Murdoch, Inc., <u>Potential Impact of Development on Flow</u> <u>Regime</u>, Technical Memorandum SW III2, February 1980.

3. Delaware River Basin Commission, January 1967, <u>Delaware River Basin</u> <u>Compact</u>, West Trenton, New Jersey.

4. Delaware River Basin Commission, October 1979, <u>Final Report; Environmental</u> <u>Impact Statement of the Level B Study</u>.

5. Delaware Valley Regional Planning Commission, 1977, <u>Draft 208 Water Quality</u> <u>Management Plan, Burlington, Camden and Gloucester Counties</u>.

6. Disko, M. Associates, 1978, <u>Draft Report, Groundwater Management Planning</u>, prepared for the Ocean County 208 Project.

7. Geraghty and Miller, Inc., October 1976, <u>Groundwater, Description of</u> <u>Groundwater System</u>, prepared for Delaware Valley Regional Planning Commission, 208 AreaWide Waste Treatment Management Planning.

8. Geraghty and Miller, Inc., 1971, <u>Status of Groundwater Resources in 1970 in</u> <u>Cape May County, New Jersey</u> prepared for Cape May County Water Policy Advisory Committee and the Cape May County Board of Chosen Freeholders.

9. Geraghty & Miller, Inc., APRIL 1979, Investigation of Ground Water Contamination in South Brunswick Township, New Jersey.

بذفاء المراج

10. Geraghty and Miller, Inc., August 1979, <u>Statewide Water Supply Master Plan</u>, <u>Task 7.C., Ground Water Management Interim Output</u>.

11. Geraghty and Miller, Inc., March 1980, <u>Pinelands Commission New Jersey</u> <u>Hydrogeology Assessment</u>, prepared for Betz, Converse, Murdock, Inc.

12. Gill, Harold E., 1962, <u>Groundwater Resources of Cape May County, N.J.</u> <u>Saltwater Invasion of Principal Aquifers</u>, State of New Jersey Department of Conservation and Economic Development, Division of Water Policy and Supply, Special Report 18.

13.Gill, H. E., and Farlekas, G. M., 1976, <u>Geohydrologic Maps of the Potomac</u> Raritan-Magothy Aquifer System in the New Jersey Coastal Plain; U.S. Geological

New Jersey Coastal Pl	ain Aquifer			Page 12 of 15							
	Survey Hydro	ologic Investigations Atl	as, HA557.								
	14. Harbaugh, A. W., James E. Luzier, and Flavaian Stellerine, May 1980, Computer Model Analysis of the Use of Delaware River Water to Supplement Water from the Potomac-Raritan-Magothy Aquifer System in Southern New Jersey, Water Resources Investigation 9021										
		Water Resources Investigation 8031.									
		tember 1979. Task 2.7.		Quality Management Planning ource Characterization for							
	AND CONTRACTOR										
	Potomac-Rai		stem, Coas	<u>tection of head changes in the</u> t <u>al Plain, New Jersey;</u> U.S. ns No. 8011.							
	Management Recreation A	Plan for the Pinelands	National Re	30, <u>Draft Comprehensive</u> <u>serve (National Parks and</u> <u>Jersey Pinelands Protection Act,</u>							
		astal Plain of New Jerse		nglishtown Formation in the logical Survey WaterResources							
	and Mullica F	River Basin in Southern	New Jersey	r resources of the Wharton Tract : New Jersey Department of ources Special Report No. 36.							
		New Jersey, Departmen gement Plan Monmout		nental Protection, <u>Draft Water</u> <u>ew Jersey</u> .							
		y Corps of Engineers, F Urban Study, Volumes		District, April 1980, <u>Camden</u>							
	and Recreation	on Service, September	1980, Draft	nal Office, Heritage Conservation Environmental Impact Statement, the Pinelands National Reserve.							
		Eric F. and W. Rendal I Plain of New Jersey, (il 1981, <u>Hydrogeologic Conditions</u> port 81405.							
	24. WAPORA, Inc., December 26, 1979, <u>Analysis of Sole Source Designations</u> <u>Pursuant to Section 1424(e) of the Safe Drinking Water Act and the Proposed</u> <u>Coastal New Jersey Designation</u> , prepared for the Homebuilders League of South Jersey and submitted to EPA for inclusion in the public record.										
	3.	V	ll. Tables	الله المراجع المراجع (1993) 1993 - مراجع المراجع (1993) 1993 - مراجع (1993)							
	Toble 4 O										
		naracteristics of t	ne New Je System	ersey Coastal Plain Aquifer							
	esti astronomi Revetatori	Formation	Thickers	l tithalamı							
	System	Formation Alluvial & Cape May	Thickness								
	Quaternary	Formation	80'	Sand, silt, black mud							
		Pennsauken &		Sand, quartz, light-colored							

New Jersey Coastal Plain Aquifer

•

	•		· · · · ·
Tertiary	Bridgeton Formation	200'	clayey, pebbly, glauconite
	Beacon Hill Formation	40'	Gravel, quartz, light-colored sandy
	Cohansey Sand	250'	Sand, quartz, light-colored, medium to coarse-grained, pebbly; local clay beds
	Kirkwood Formation	780'	Sand, quartz, gray to tan, very fine- to medium-grained, micaceous
	Piney Point Formation	220'	Sand, quartz and glauconite, fine- to coarse-grained
	Shark River Marl	140' ?	Sand, quartz and glauconite, gray, brown, and green, fine- to coarse-grained, clayey and green silty and sandy clay
	Manasquan Formation	180'	Sand, quartz and glauconite, gray, brown, and green, fine- to coarse-grained, clayey and green silty and sandy clay
	Vincentown Formation	100'	Sand, quartz, gray and green, fine- to coarse-grained, glauconitic, and brown clayey, very fossiliferous, glauconite and quartz calcarenite
	Homerstown Sand	35'	Sand, glauconite, green, medium- to coarse-grained, clayey
Cretaceous	Tinton Sand	25'	Sand, quartz, and glauconite, brown and gray, fine- to coarse grained, clayey, micaceous
	Red Band Sand	150'	Sand, quartz, and glauconite, brown and gray, fine- to coarse grained, clayey, micaceous
	Navesink Formation	50'	Sand, glauconite, and quartz, green, black and brown, medium- to coarse grained, clayey
	Mount Laurel Sand / Wenonah Formation	220'	Sand, quartz, brown and gray, fine- to coarse-grained, glauconitic
	Marshalltown Formation	30'	Sand, quartz, and glauconite, gray and black, very fine- to medium-grained, very clayey
	Englishtown Formation	220'	Sand, quartz, tan and gray, fine- to medium-grained; local clay beds
	Woodbury Clay / Merchantville Formation	325'	Clay, gray and black, micaceous, glauconitic, silty
	Magothy - Rariton - Potomac Formations	4100'	Sand, quartz, light-gray, fine- to coarse-grained, pebbly, arkosic, dark-gray lignitic clay/red, white and varigated clay/alternating clay, silt, sand and grave!

New Jersey Coastal Plain Aquifer

Page 14 of 15

	Pre-Cretaceous
re-	Unconsolidated rocks and Wissahickon Formation

Precambrian and lower Paleozoic crystalline rocks, metamorphic schist and gneiss; locally Triassic basalt, 4 sandstone, and shale

Table 2. Total Drinking Water Pumped from the New Jersey **Coastal Plain Area**

?

n an		(Million Gallons per day)								
County	USGS (a)	208 Plan (b)	NJWSMP ©	Est. Private Use ©						
Atlantic	20.1	28.5	17.7	4.4 . 75 - p ⁻¹						
Burlington	30.5	25.5	32.4	4:7						
Camden	67.5	66.7	70.3	2.4						
Cape May	10.9	9.0	11.3	2.5						
Cumberland	14.2	13.5	13.5	4.2						
Gloucester	16.6	15.0	16.0	4.0						
Mercer	7.2	6.5	4.5	1.5						
Middlesex	24.7	25.8	24.1	1.5						
Monmouth	26.0	28.6	28.6	4.2						
Ocean	29.6	28.5	29.5	3.1						
Salem	2.8	3.0	3.0	2.2						
TOTAL	251.0	251.0	251.0	39.6						

Sources of information:

< 1.1

1 3

(a) USGS Report on the NJ Coastal Plain Area; Database: 1978. (b) Respective Water Quality Management Plans; database: 1970-75. © New Jersey Water Supply Master Plan; database: 1976.

Table 3. Major Ground Water Withdrawals from the Coastal Plain Area

	(Million Gallons per day)							
County	PRM	PRM E W-MK K-C C						
Atlantic				9.12	16.75	0.30		
Burlington	38.96	0.49	1.14		0.36			
Camden	69.57	0.76	0.88		0.04	0.98		
Cape May				5.36	0.38	0.56		
Cumberland			:	0.80	20.12	0.45		
Gloucester	25.19		0.02	·	1.76	¹		
Mercer	8.12							
Middlesex	49.38					[]		
Monmouth	21.60	6.25	1.31		1.14	0.31		
Ocean	11.53	4.59	0.03	4.22	12.50	4.84		

http://www.ena.gov/region02/water/aquifer/coast/coastnln.htm

Ne. L o el sue l 1.

Salem	6.10		1.32		1.86	0.82
TOTAL	230.45	12.09	4.70	19.50	60.92	8.26

PRM = Potomac-Raritan-Magothy W = Englishtown WM = Wenonah-Mount Laurel K = Kirkwood KC = Kirkwood-Cohansey Source: Vonwinkle and Foster, 1981.

Table 4. Population within Coastal Plain Aquifer System

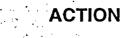
County	1985	2000	Change	
Atlantic	226,800	277,400	50,600	
Burlington	372,900	471,900	99,000	
Camden	482,600	555,900	73,300	
Cape May	85,500	91,600	6,100	
Cumberland	135,100	142,600	7,500	
	206,300	269,100	62,800	
Gloucester		111,602		
Mercer	100,330		11,272	
Middlesex	256,440	302,840	46,400	
Monmouth	515,700	588,200	72,500	
Ocean	370,100	447,300	77,200	
Salem	66,500	6,100	2,600	
TOTAL	2,818,270	3,327,542	509,272	

VIII. Figures

Coastal Plain Figures

For information on this page, contact: Rinaldo.Lawrence@epamail.epa.gov

EPA Home | Privacy and Security Notice | Contact Us


Last updated on Wednesday, June 25th, 2003 URL: http://www.epa.gov/region02/water/aquifer/coast/coastpin.htm

ITED STAL	U.S. Environmental Protection Agency
ANN PROTECTION	Region 2 Water Serving New Jersey, New York, Puerto Rico, US Virgin Islands and 7 Tribal Nations Recent Additions Contact Us Print Version Serving New Persey Coastal Plain Aquifer
Biosolids	New Jersey Coastal Plain Aquifer
Dredging	
Drinking Water	Federal Devictor Nation
Estuaries	Federal Register Notice
Great Lakes	Volume 53, No. 122, Page 23791
Groundwater	Friday, June 24, 1988
Infrastructure '	Sole Source Aquifer Determination for the New Jersey Coastal Plain Aquifer System
Lakes, Rivers, Streams	Lior me ren deisey obastar Flant Aquiler Oystem j
Non-point Pollution	
Oceans	AGENCY ACTION
Permits & Compliance	• SUMMARY
Stormwater	DATES SUPPLEMENTARY INFORMATION
Waste Water	o <u>I. Background</u>
Water Quality	o II. Basis for the Determination
Watershed Protection	 III. Description of the New Jersey Coastal Plain Area Aquifer Systems, Its Recharge Zone and Its Streamflow Source Zone
Wetlands	o IV. Information Utilized in Determination
wenanus	o V. Project Review

o VI. Summary and Discussion of Public Comments

AGENCY

Environmental Protection Agency

Notice.

SUMMARY

Notice is hereby given that, pursuant to section 1424(e) of the Safe Drinking Water Act, the Administrator of the U.S. Environmental Protection Agency (EPA) has determined that the New Jersey Coastal Plain Aquifer System, underlying the New Jersey Coastal Plain Area, is the sole or principal source of drinking water for the Counties of Monmouth, Burlington, Ocean, Camden, Gloucester, Atlantic, Salem, Cumberland, Cap May and portions of Mercer and Middlesex Counties, New Jersey, and that the aquifer, if contaminated, would create a significant hazard to public health.

As a result of this action EPA will review Federally assisted projects (projects which receive Federal financial assistance through a grant, contract, loan guarantee, or otherwise) proposed for constructed in a project review area which includes the New Jersey Coastal Plain Area and a portion of the aquifer streamflow source zone.

The streamflow source zone includes upstream portions of the Delaware River Basin in the States of Delaware, New Jersey, New York and Pennsylvania. Federally assisted projects will be reviewed to ensure that they are designed and constructed so that they do not

100 E

create a significant hazard to public health. Projects outside of the project review area but within the streamflow source zone will be reviewed if they require an Environmental Impact Statement (EIS).

DATES

This determination shall be promulgated for purposes of judicial review at 1:00 P.M., Eastern Time on July 7, 1988. This determination shall become effective on August 8, 1988.

ADDRESS: The data on which these findings are based, detailed maps of the New Jersey Coastal Plain Area and the project review area, a compilation of public comments and the Agency's response to those comments, are available to the public and may be inspected during normal business hours at the U.S. Environmental Protection Agency, Water Management Division, 26 Federal Plaza, New York, New York 10278. In addition, copies of a map showing the designated area and a responsiveness summary to public comment are available upon request.

FOR FURTHER INFORMATION CONTACT: John S. Malleck, Chief, Office of Ground Water Management, U.S. Environmental Protection Agency, 26 Federal Plaza, New York, NY 10278, (212) 264-5635.

SUPPLEMENTARY INFORMATION

Notice is hereby given that pursuant to section 1424(e) of the Safe Drinking Water Act (42 U.S.C., 300f, 300h-3(e), Pub. L. 93-523), the Administrator of the U.S. Environmental Protection Agency (EPA) has determined that the New Jersey Coastal Plain Aquifer System, underlying the New Jersey Coastal Plain Area, is the sole or principal source of drinking water for the Counties of Atlantic, Burlington, Camden, Cape May, Cumberland, Gloucester, Monmouth, Ocean, Salem, and portions of Mercer and Middlesex Counties, New Jersey.

Pursuant to section 1424(e), Federally assisted projects proposed for construction in the New Jersey Coastal Plain Area and the project review area within portions of its streamflow source zone will be subject to EPA review.

The streamflow source zone for the New Jersey Coastal Plain Aquifer System includes upstream portions of the Delaware River Basin in the States of Delaware (New Castle County), New Jersey (Mercer-part, Hunterdon-part, Sussex-part, and Warren Counties), New York (Delaware, Orange, Sullivan and Ulster Counties), and Pennsylvania (Berkspart, Bucks, Carbon-part, Chester-part, Delaware, Lackawanna-part, Lancaster, Lehigh, Luzerne-part, Monroe, Montgomery, Northampton, Philadelphia, Pike, Schuykill and Wayne Counties).

The project review area includes that portion of the streamflow source zone which lies within two miles of the Delaware River in the States of New Jersey (in Mercer, Hunterdon, Sussex and Warren Counties), Delaware (in New Castle County), Pennsylvania (in Delaware, Philadelphia, Bucks, Monroe, Northampton, Pike and Wayne Counties) and New York (in Delaware, Orange and Sullivan Counties).

I. Background

Section 1424(e) of the Safe Drinking Water Act states: (e) If the Administrator determines, on his own initiative or upon petition, that an area has an aquifer which is the sole or principal drinking water source for the area and which, if contaminated, would create a significant hazard to public health, he shall publish a notice of the determination in the Federal Register. After the publication of any such notice, no commitment for Federal financial assistance (through a grant, contract, loan guarantee, or otherwise) may be entered into for any project which the Administrator determines may contaminate such aquifer through a recharge zone so as to create a significant hazard to public health, but a

commitment for Federal financial as-sistance may, if authorized under another provision of law, be entered into to plan or design the project to assure that it will not so contaminate the aquifer.

On December 4, 1978 the Environmental Defense Fund, Inc., and Sierra Club New Jersey Chapter petitioned the EPA Administrator to determine that the Counties of Monmouth, Burlington, Ocean, Camden, Gloucester, Atlantic, Salem, Cumberland, Cap May and portions of Mercer and Middlesex Counties, New Jersey, constitute an area whose aquifer system is "the sole or principal drinking water source for the area and which, if contaminated, would create a significant hazard to public health." On March 21, 1979, EPA published the petition in the Federal Register. Public hearings on the petition request were heal May 1, 15 and 17, 1979 in Lindenwold, Trenton, Freehold and Pomona, New Jersey. A May 19, 1983 Federal Register notice announced the availability of additional technical information and the extension of public comment period to July 15, 1983.

II. Basis for the Determination

Among the factors to be considered by the Administrator in con-nection with the designating an area under section 1424(e) are:

(1) Whether the aquifer is the area's sole or principal source of drinking water and (2) whether contamination of the aquifer would create a significant hazard to public health.

On the basis of information available to this Agency, the Administrator has made the following findings, which are the basis for the determination noted above:

(1.) The New Jersey Coastal Plain Area depends upon the under-lying Coastal Plain Aquifer System for seventy-five (75) percent or more of its drinking water to serve 3 million people.

(2.) Data show that the formations of the New Jersey Coastal Plain Area are hydrologically inter-connected such that they respond collectively as an interrelated aquifer system.

(3.) If the aquifer were to become contaminated, exposure of the persons served by the system would constitute a significant hazard to public health.

(4.) Alternative supplies capable of providing fifty (50) percent or more of the drinking water to the designated area are not available at similar economic costs.

The New Jersey Coastal Plain Aquifer System is highly susceptible to contamination through its recharge zone from a number of sources, including but not limited to, chemical spills, leachate from landfills, stormwater runoff, highway deicing, faulty septic systems, wastewater treatment systems and waste disposal lagoons. The aquifer is also susceptible to contamination to a lesser degree fro the same sources through its streamflow source zone. Since ground water contamination can be difficult or impossible to reverse completely and since the aquifer in this area is solely or principally relied upon for drinking water purposes by the population of the New Jersey Coastal Plain Area, contamination of the aquifer could pose a significant hazard to public health.

III. Description of the New Jersey Coastal Plain Area Aquifer Systems, its Recharge Zone and its Streamflow Source Zone

The New Jersey Coastal Plain Aquifer System consists of a wedge-shaped mass of unconsolidated sediments composed of clay, silt, sand and gravel. The wedge thins to a feathered edge along the Fall Line and attains a thickness of 6,000 feet at the tip of Cape May County, New Jersey.

These sediments range in age from Cretaceous to Holocene and can be classified as continental, coastal or marine deposits. There are five major aquifers within the Coastal Plain Aquifer System. They are the Potomac-Raritan-Magothy Aquifer System, Englishtown

Aquifer, Wenonah-Mount Laurel Aquifer, Kirkwood Aquifer and the Cohansey Aquifer. Natural recharge to the New Jersey Coastal Plain Aquifer System occurs primarily through direct precipitation on the outcrop area of the geologic formations. A smaller component of natural recharge to the deeper layers of the system occurs by vertical leakage from the upper layers. This accounts for a small percentage of the total amount of recharge; however, over a large area and a long period of time the amount of water transmitted can be significant.

The New Jersey Coastal Plain Aquifer discharges to the surface through streams, springs and evapotranspiration. Many streams ultimately flow into bays or directly into the ocean. Development of the ground water reservoir as a water supply source constitutes another discharge component which today accounts for a significant portion of discharge from the overall system. In certain areas (e.g., along the Delaware River) heavy pumping has caused a reversal in the normal discharge from the aquifer (Raritan-Magothy) such that the surface stream (Delaware River) now recharges the aquifer. This phenomenon implies that, in addition to the New Jersey Coastal Plain Area, the Delaware River Basin within Delaware, New Jersey, Pennsylvania and New York must be regarded as a streamflow source zone (an upstream headwaters area which drains into a recharge zone), which flows into the Coastal Plain Area.

IV. Information Utilized in Determination

The information utilized in this determination includes the petition, written and verbal comments submitted by the public, and various technical publications. The above data are available to the public and may be inspected during normal business hours at the U.S. Environmental Protection Agency, Region II, Water Management Division, 26 Federal Plaza, New York, New York 10278.

V. Project Review

When the EPA Administrator publishes his determination for a sole or principal drinking water source, no commitment for Federal financial assistance may be committed if the Administrator finds that the Federally assisted project may contaminate the aquifer through a recharge zone so as to create a significant hazard to public health...Safe Drinking Water Act section 1424(e), 42 U.S.C. 300h-3(e). In many cases, these Federally assisted projects would also be analyzed in an "Environmental Impact Statement" (EIS) under the National Environ-mental Policy Act (NEPA), 42 U.S.C. 4332(2)(C). All EIS's, as well as any other proposed Federal actions affecting an EPA program or responsibility, are required by Federal law (under the so-called "NEPA/309" process) to be reviewed and commented upon by the EPA Administrator. Therefore, in order to streamline EPA's review of the possible environmental impacts on designated aguifers, when an action is analyzed in an EIS, the two reviews will be consolidated and both authorities cited. The EPA review (under the Safe Drinking Water Act) of Federally assisted projects potentially affecting sole or principal source aquifers, will be included in the EPA review (under the "NEPA/309" process) of any EIS accompanying the same Federally assisted project. The letter transmitting EPA's comments on the final EIS to the lead agency will be the vehicle for informing the lead agency of EPA's actions under Section 1424(e).

All Federally assisted proposed projects will be reviewed, within the New Jersey Coastal Plain Area (Counties of Monmouth, Burlington, Ocean, Cumberland and Cape May, and portions of Mercer and Middlesex Counties, New Jersey (as delineated on maps included in the petition), and that portion of the streamflow source zone which lies within two miles of the Delaware River in the States of New Jersey (in Mercer, Hunterdon, Sussex and Warren Counties), Delaware (in New Castle County), Pennsylvania (in Delaware, Philadelphia, Bucks, Monroe, Northampton, Pike and Wayne Counties) and New York (in Delaware, Orange and Sullivan Counties) (asdelineated on maps included in the public record).

Outside the New Jersey Coastal Plain Area and further than two miles from the Delaware River in the streamflow source zone, only those Federally assisted proposed projects requiring the preparation of an EIS will be reviewed. The Agency has chosen a two-mile limit for the project review area along the Delaware River based on the climate and hydrologic setting of the area. The two-mile distance is consistent with the two-mile review radius included in the EPA guidelines for Ground Water Classification and is protective of human health.

VI. Summary and Discussion of Public Comments

There has been much controversy over the possible designation of this aquifer system. The majority of the public comments from the original 1979 public hearings were in direct opposition to such a designation. More than half of all responses received were against designation. Several commenters felt constrained by the original comment period and thereby requested an extension. EPA complied with this request on two occasions, once by announcing at the four public hearings it held throughout the area under consideration that the agency had extended the formal comment period from May 14, 1979, to December 31, 1979, and again in a May 19, 1983 Federal Register Notice that announced the availability of additional information and extension of the public comment period to July 15, 1983. Although a number of ground water protection measures are available at the Federal, State and local level, none of these, either individually or collectively, permit EPA to act as directly as would a sole source aquifer designation in the review and approval of Federally assisted projects. In addition, EPA feels that the sole source project review process will foster integration rather than duplication of environmental review efforts. Memoranda of Understanding have been negotiated with various Federal agencies with the purpose of streamlining the review process and minimizing project delays. Most of the commenters expressed concern that a designation would be a duplication of efforts already existing on the state and local levels. Some commenters felt that a sole source aquifer designation would give EPA the power to reject any applications for Federally funded projects indiscriminately and to delay any project underway. Another main concern of many commenters was that a designation would cause a strong negative impact on the area in question and curtail needed development, thus eliminating jobs. EPA is sympathetic to the concerns of the commenters; however, the Agency feels that a sole source aguifer designation would not interfere with economic development. Federal financial assistance will be withheld only in those instances where it is determined that a proposed project may contaminate the aquifer so as to create a significant hazard to public health and no acceptable remedial measures are available to prevent the potential hazard.

Dated: June 16, 1988. Lee M. Thomas, Administrator

[FR Doc. 8814293 Filed 6/23/88; 8:45 am] BILLING CODE 656050M

For information on this page, contact: Rinaldo.Lawrence@epamail.epa.gov

EPA Home | Privacy and Security Notice | Contact Us

Last updated on Wednesday, June 25th, 2003 URL: http://www.epa.gov/region02/water/aquifer/coast/fr_coast.htm

USGS1WellIMW=242StationNumber 39401407506000118Camder INJISGIoUcester County 798000							
	Unis	MarkiConcentration					
Parameter		1211 8/22/2000 2010 1					
_	· · ·	· ·					
Temperature	deg C	16					
Barometric pressure	mm Hg	765 ·					
Specific conductance	ms/cm	245					
Dissolved oxygen mg/L	mg/L	10.5					
pH		4.5					
Ammonia (filtered)	mg/L	0.02					
Nitrite (filtered)	mg/L	0.01					
Ammonia	mg/L	0.09					
Nitrite	mg/L	10.9					
Orthophosphate	mg/L	0.01					
Organic carbon	mg/L	3.2					
Calcium	mg/L	20.1					
Magnesium	mg/L	6.56					
Sodium	mg/L	1.85					
Potassium	mg/L	3.01					
Chloride	mg/L	16.2 ·					
Sulfate	mg/L	. 29.1					
Fluoride	mg/L	0.1					
Silica	mg/L	8.2					
Arsenic	mg/L	0.9					
Barium	mg/L	331					
Boron	mg/L	12					
Cadmium	mg/L	1					
Chromium	mg/L	0.8					
Copper	mg/L	1.2					
Iron	· mg/L	7					
Lead	mg/L	1.73					
Manganese	mg/L	93.5					
Silver	mg/L	1					
Zinc	mg/L	1					
Aluminum	mg/L	383					
Selenium	mg/L	2.5					
Gross beta radioactivity	pci/L	4					
Propachlor	ug/L	0.007					
Butylate	-	0.002					
Simazine	ug/L ug/L	0.002					
Prometon		0.005					
	ug/L						
2-Chloro-4-isopropylamino-6-amino-s-triazine	ug/L	0.093					
Cyanazine	ug/L	0.004					
Fonofos	ug/L	0.003					
Alpha radioactivity	ug/L	6.2					
Bromodichloromethane	ug/L	0.1					
Tetrachloromethane	ug/L	0.2					
1,2-Dichloroethane	ug/L	· 0.2					

.

USGS:Well:MW:241StationINtimber39401407506	0001 Camden NUE	Gloucester County Marine		
Ramater	Unis	Manual Concentration Manual		
Tratameter	CUIIIS MARK	8/22/2000		
	•			
Tribromomethane	ug/L	0.2		
Dibromochloromethane	ug/L	0.2		
Trichloromethane	ug/L	0.1		
Toluene	ug/L	0.1		
Benzene	ug/L	0.1		
alpha-HCH	ug/L	0.002		
Chlorobenzene	ug/L	0.1		
Ethylbenzene	ug/L	0.1		
Dichloromethane	ug/L	0.2		
Tetrachloroethene	ug/L	0.1		
Trichlorofluoromethane	ug/L	· 0.2		
1,1-Dichloroethane	ug/L	0.1		
1,1-Dichloroethene	ug/L	0.1		
1,1,1-Trichloroethane	ug/L	0.1		
1,2-Dichlorobenzene	ug/L	0.1		
1,2-Dichloropropane	ug/L	· 0.1		
trans-1,2-Dichloroethene	ug/L	0.1		
1,3-Dichlorobenzene	ug/L	0.1		
1,4-Dichlorobenzene	ug/L	0.1		
p,p'-DDE	ug/L	0.006		
Dichlorodifluoromethane	ug/L	· 0.2		
Chlorpyrifos	ug/L	0.004		
Vinyl chloride	ug/L	0.2		
Trichloroethene	ug/L	0.1		
Lindane	ug/L	0.004		
Dieldrin	ug/L	0.013		
Metolachlor	ug/L	0.002		
Malathion	ug/L	0.005		
Parathion	ug/L	0.004		
Diazinon	ug/L	0.002		
Atrazine	ug/L	0.177		
Alachior	ug/L	0.013		
Acetochlor	ug/L	0.002		
tert-Butyl ethyl ether	ug/L	0.1		
Methyl tert-pentyl ether	ug/L	0.2		
Turbidity	ug/L	4.2		
Mercury	ug/L	0.2		
Alpha radioactivity 2-sigma	ug/L	3.2		
Beta radioactivity 2-sigma	ug/L	4.1		
cis-1,2-Dichloroethene	ug/L	0.1		
		•		
-	-			
Styrene o-Xylene 1,1,2-Trichloro-1,2,2-trifluoroethane Methyl tert-butyl ether	ug/L ug/L ug/L ug/L ug/L	0.1 0.1 0.1 0.2		

USGS:WelliMW:244Station:Numbel:394014075060001#Camden#NJEGloucester/County#04454							
Remember	Unis	Concentration					
Taranne e sa anna an	UILS A	制的数据8/22/2000克莱斯提出					
· · · · · · · · · · · · · · · · · · ·							
Diethyl ether	ug/L	0.2					
Diisopropyl ether	ug/L	0.2					
Sampling method	ug/L	4040					
Metribuzin	. ug/L	0.004					
2,6-Diethylaniline	ug/L	0.003					
Trifluralin	ug/L	0.002					
Ethalfluralin	ug/L	0.004					
Phorate	ug/L	0.002					
Terbacil	ug/Ľ	- 0.007					
Linuron	ug/L	0.002					
Methyl parathion	ug/L	0.006					
EPTC	ug/L	0.002					
Pebulate	ug/L	0.004					
Tebuthiuron	ug/L	0.01					
Molinate	ug/L	0.004					
Ethoprop	ug/L	0.003					
Benfluralin	. ug/L	0.002					
Carbofuran	ug/L	0.003 .					
Terbufos	ug/L	0.01					
Propyzamide	ug/L	0.003					
Disulfoton	ug/L	0.02					
Triallate	ug/L	0.001					
Propanil	ug/L	0.004					
Carbaryl	ug/L	0.003					
Thiobencarb	ug/L	0.002					
DCPA	ug/L	0.002					
Pendimethalin	ug/L	0.004					
Napropamide	ug/L	0.003					
Propargite	ug/L	0.01					
Azinphos-methyl	ug/L	0.001					
cis-Permethrin	ug/L	0.005					
m-Xylene plus p-xylene	ug/L	0.2					
Specific conductance	ug/L	227					
Acid neutralizing capacity	ug/L	 ·1					
Diazinon-d10	ug/L	. 104					
alpha-HCH-d6	ug/L	85.5					
1,2-Dichloroethane-d4, surrogate	ug/L	106					
Toluene-d8, surrogate	ug/L	103					
1-Bromo-4-fluorobenzene	ug/L	87.8					

.

USGS Well OU02 Station No	Imbert3929	2007501190	1. Vineland	NJaCum	erland Col	hty Backson			
Parnilla	iUnis [®]						12/18/1996		
*									
Temperature	dec C						15.8	15.9	20
Barometric Pressure	mm Hg						756		763
Specific conductance	ms/cm						232	236	250
Dissolved Oxygen	mg/L						6.3	5.7	6
pH Bicarbonate							4.4	4.5	4.4
	mg/L						0	- 04	- 00
Ammonia	mg/L						≤.01 < 010	≤.01 . 0.01	≤.02 < 010
Nitrite	mg/L						≤.010	0.01	≤.010
Ammonia Nitrite	mg/L						0.04	≤.20	0.1
	mg/L						4.3	4.3	2.77
Phosphorus	mg/L						≤.01 < 01	< 0.1	- 04
Orthophosphorus	mg/L						≤.01 0.0	≤.01 0.0	≤.01
Organic Carbon Calcium	mg/L						0.9	0.9	0.9
	mg/L ma/l						8.5	8.6 2.6	10.1
Magnesium Sodium	mg/L		•				3.4	3.6	4.21
Potassium	mg/L						25 3	23	23.5
Chloride	mg/L						3 26	2.9	3.89
Sulfate	mg/L								43.2
*	mg/L			•			38		27
Fluoride Silica	mg/L						≤.1 4.0	-	≤.1 °
	mg/L						4.9	5	6
Arsenic	ug/L		1					≤1 00	≤1 140
Barium,	ug/L							82	116
Beryllium	ug/L							≤1.00	
Boron	ug/L							44	
Cadmium	ug/L							≤1.00	≤1.0
Chromium	ug/L			·				2	≤1.0
Cobalt	ug/L							4	4.5
Copper	ug/L						22	≤1.0	1.5
Iron	ug/L						23	4	≤10
Lead	ug/L						30	≤1.00	≤1 00.0
Manganese	ug/L						30	30	36.8
Molybdenum Nickel	ug/L							≤1.0 °	
Silver	ug/L							3	
Strontium	ug/L ug/L							≤1.0 23	≤1.0
Zinc	ug/L							6	23
Antimony ·	ug/L							≤1.00	23
Aluminum	ug/L				•			315	470
Selenium	ug/L							515	1
Gross beta	pCi/L	•							25.6
Propachlor	ug/L					:	≤.007		≤.007
Butylate	ug/L						≤.002		≤.007 ≤.002
Bromacil	ug/L ug/L						≤.002 ≤.04		5.002
Simazine	ug/L						5.04 Est.≤.004		≤.005 [°]
Prometon	ug/L ug/L						≤.02		≤.005 ≤.02
CIAT	ug/L ug/L						≤.02 ≤.002		≤.02 ≤.002
Cyanazine	ug/L ug/L				•		≤.002 ≤.004		≤.002 ≤.004
Fonofos	ug/L ug/L	1					≤.004 ≤.003		≤.004 ≤.003
Gross Alpha	pCi/L	· · ·					3.005		35.4
Ra-226,	pCi/L pCi/L	I						0.42	33.4
Ira-220, Uranium		1						0.42 ≤1.00	
Dibromomethane	ug/L					240		≥1.00	
Dibromometnane Bromodichloromethane	ug/L					≤.10 ≤.10			
	ug/L					≤.10 < 05			≤.1
Tetrachloromethane	ug/L					≤.05 < 1			≤.2 < 2
1,2-Dichloroethane Tribromomethane	ug/L	ļ				≤.1 ⊂ 20			≤.2
momomemane	ug/L					≤.20			≤.2

• .

USGS Well:OU021Station N	and the second secon								
Parinolov		19/24/1996							
Debromochlormethane	ug/L					≤.1			≤.2
Trechloromethane	ug/L					Est.≤.04			≤.1
Toluene	ug/L					≤.05		1	<u>s.1</u>
Benzene	ug/L			,		≤.05			≤.1
Acrolien	ug/L					≤2		1	
Acrylonitrile	ug/L					<u>\$2</u>			
Alpha-HCH	ug/L						≤.002		≤.002
Chlorobenzene	ug/L					≤.05			≤.1
Chloroethane	Ug/L					≤.1		1	
Ethylbenzene	ug/L					≤.05			≤.1
Hexachloroethane	ug/L					≤.1			
Bromomethane	ug/L					<u>s.1</u>			
Chloromethane	ug/L					≤.2			
Dichloromethane	ug/L					≤.1			≤.2
Tetrachloroethene	ug/L					≤.1		J	≤.1
Trichlorofluoromethane	ug/L					≤.10			≤.2
1.1-Dichloroethane	ug/L					≤.05			≤.1
1.1-Dichloroethene	ug/L					≤.10			≤.1
1.1.1-Trichloroethane	ug/L					≤.05		1	≤.1
1,1,2-Tetrachloroethane	ug/L				•	≤.10			
1,1,2,2-Tetrachloroethane	ug/L					≤.10			
1,2-Dichlorobenzene	ug/L			•		≤.05		Í	≤.1
1,2-Dichloropropane	ug/L					≤.05			≤.1
1,2-Dichloroethene	ug/L					≤.05			≤.1
1,2,4-Trichlorobenzene	ug/L					≤.2			
1,3-Dichlorobenzene	ug/L					≤.05 [¯]			≤.1
1.4-Dichlorobenzene	ug/L					≤.05			≤.1
p,p'-DDE,	ug/L					2.00	≤.006	1	≤.006
Dichlorodofluoromethane	ug/L					≤.2	4.000		≤.2
Naphthalene,	ug/L ug/L					<u> </u>		· ·	3.2
trans-1,3-Dichloropropene	ug/L ug/L					 ≤.10		1	
cis-1,3-Dichloropropene	ug/L					≤.10 ≤.10			
Dicamba	ug/L ug/L					5.10	≤.04		
Linuron	ug/L ug/L						≤.04 ≤.02		
MCPA	ug/L ug/L		·				≤.02 ≤.05		
MCPB	ug/L ug/L						≤.05 ≤.04		
Methiocarb	ug/L ug/L		· ·				≤.04 ≤.03		
Propoxur	ug/L ug/L						≤.03 ≤.04		
Bentazon	-						≤.04 ≤.01		
	ug/L						≤.01 ≤.04		
2,4-DB Fluometuron	ug/L		•				≤.04 ≤.04		
Oxamyl	ug/L								
	ug/L						≤.02		< 004
Chlorpyrifos	ug/L						≤.004		≤.004
Vinyl Chloride	ug/L					. <u>≤.1</u>			≤.2
Trichloroethene	ug/L					≤.05	- 04		≤.1
Aldrin	ug/L						≤.01 ≤.001		- 004
Lindane	ug/L						≤.004		≤.004
Chlordane	ug/L						≤.1 < 04		
p,p'-DDD	ug/L						≤.01		
p,p'-DDE	ug/L	,					≤.01		
p,p'-DDT	ug/L						≤.01		
Dieldrin	ug/L				[]		0.06		0.108
Endrin	ug/L						≤.01		
Toxaphene	ug/L						≤1		
Heptachlor	ug/L						≤.01		
Metolachlor	ug/L						≤.002		≤.002
Heptachlorepoxide	ug/L						≤.01		-

THE REAL PROPERTY AND ADDRESS OF					Conce)	ntration	AND DESCRIPTION OF	TONE LACKED	
Paramolor .								1241841996	
PCBs	ug/L						. ≤.1		
Malathion	ug/L						≤.005		≤.005
Parathion	ug/L						≤.004		≤.004
Diazinon	ug/L						≤.002		≤.002
Atrazine	ug/L						≤.001		≤.004
Hexachlorobutadiene	ug/L			•		≤.2			
Picloram	ug/L						≤.01		
2,4-D	ug/L						≤.01		
2,4-D	ug/L						≤.04		
2,4,5-T	ug/L						≤.01		
2,4,5-T	ug/L						≤.04		
Mirex	ug/L						≤.01		
Silvex	ug/L	I					≤.01		
Silvex	ug/L						≤.02		•
Alachior	ug/L						≤.002		≤.002
Tridopyr	ug/L						≤.05		
Propham	ug/L						≤.04		
Acetochlor	ug/L						≤.002		≤.002
Picloram	ug/L						≤.05		
Oryzalin	ug/L						≤.02		
Norflurazon	ug/L						≤.02		;
Neburon	ug/L	•					≤.01		
1-Naphthol	ug/L						≤.01		
Methomyl	ug/L						≤.02		
Fenuron	ug/L	1					≤.01		
Esfenvalerate	ug/L						≤.02		
2Methyl4,6dinitrophenot	ug/L			• •			≤.04		
Diuron	ug/L						≤.02		
Dinoseb	ug/L						≤.04		
Dichlorprop	ug/L						≤.03		
Dichlobenil	ug/L						≤.02		
Dacthalmonoacid	ug/L		•				≤.02		
Clopyralid	ug/L						≤.05		
Chlorothalonil	ug/L						<u>≤.03</u>		
Hydroxycarbofuran	ug/L						≤.01		
Carbofuron	ug/L						≤.03		
Carbaryl	ug/L	1					≤.008		
Bromoxynil	ug/L						≤.04		
Aldicarb	ug/L						≤.02		
Aldicarb sulfone	ug/L						≤.02		
Aldicarbsulfoxide	ug/L					· ·	≤.02		· .
Acifluorfen	ug/L						≤.02 ≤.04		
Methylacrylate	ug/L	· .				≤2		•	
Tetramethylbenzene	ug/L					<u>≤.1</u>			
1,2,3,5-Tetramethylbenzene	ug/L			•		1 ≤.1	•	·	
Bromoethene	ug/L				•	≤.1 ≤.1			
-Butylethylether	ug/L					≤.10			≤.1
Vethyltertpentylether	ug/L					 ≤.1			≤.2
Turbidity	NTU					I		0.2	5.z 4.1
Chlorambenmethylester							≤.01	0.2	4.1
Solids	ug/L	0.6	0.5	0.4	0.4		5.01		
Solids	mm	1.4	0.5 1.5	0.4 1.1	0.4 0.9				
Solids,	mm	1.4 2.4	3.1	1.1	0.9 ·1.4				
	mm ma/l	2.4	5.1	, 4	• 1.4		0.08		
Bromide	mg/L			·			0.08	0.2	≤.1
Mercury	ug/L					2E A		0.2	5.1
rans-1,4-Dichlorobutene	ug/L					≤5.0 ≤1.0			
Ethylmethacrylate	ug/L					≤1.0			

Regional Ground Water	Quality:	Gloucester	and Cu	umberland	Counties, New Jersey
(S	ource: U	SGS Water	Quality	/ Database)	

Paramatana	者们於語言		·公司的第三人称单	1.2.2.M. 2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.	Concei	ntration			NUSAC SEALER
And Raramoler - Caramoler - Ca		19/24/1996	9/24/1996	9/24/1996	19/24/1996	12/18/1996	12/18/1996	12/18/1996	19/13/199
Alpha radioactivity	pCi/L							ļ	6.8
Beta radioactivity	pCi/L								5.3
Ra-228	pCi/L							1.4	
Ra-226	pCi/L						•	0.07	
Rn-222	pCi/L							36	
Carbon disulfide	ug/L					≤.05			
Vinyl acetate	ug/L					≤5			
cis-1,2-Dichloroethene	ug/L					≤.05		•	≤.1
Methyl n-butylketone	ug/L					≤5.0			
Styrene	ug/L	`				≤.05			≤.1
Xylene	ug/L					≤.05			≤.1
1,1-Dichloropropene	ug/L					≤.05 ≤.05			
2,2-Dichloropropane	ug/L					≤.05			
1,3-Dichloropropane	ug/L ug/L					<u></u>			
Ethyltoluene	ug/L					≤.05			
1,2,3-Trimethylbenzene	ug/L ug/L					<u></u> 3.05 ≤.1			
1,2,3-Trimethylbenzene	ug/L ug/L					≤.05			
•				i		≤.05 ≤.05			
Isopropylbenzene	ug/L					≤.05 ≤.05			
n-propylbenzene	ug/L					≤.05 ≤.05			
1,3,5-Trimethylbenzene	ug/L								
2-Clorotoluene	ug/L					≤.05 < 05			
4-Chlorotoluene	ug/L					≤.05			
Bromochloromethane	ug/L					≤.10			
n-Butylbenzene	ug/L					≤.1			
sec-Butylbenzene	ug/L					≤.05			
tert-Butylbenzene	ug/L					≤.05			
4-Isopropyltoluene	ug/L					≤.05			
lodomethane	ug/L					Má			
1,2,3-Trichloropropane	ug/L					≤.2		·	
1,1,1,2-Tetrachloroethane	ug/L					≤.05			
1m2m3-Trechlorobenzene	ug/L					≤.2			
1,2-Dibromoethane	ug/L					≤.10	·		
CFC-113	ug/L					≤.05			≤.1
Methyl-t-butylether	ug/L					0.3			0.4
Chloropropene	ug/L					≤.1			
Isobutylmethylketone	ug/L					≤5.0			
Ra-228	pCi/L							6	
Acetone	ug/L					≤5			
Bromobenzene	ug/L					≤.05			
Di-ethylether	ug/L					≤.1			≤.2
Diisopropylether	ug/L							[≤.2
Methylacrylonitrile	ug/L					≤2.0		-	
Ethylmethylketone	ug/L					≤5			
Methylmethacrylate	ug/L					≤1.0			
Tetrahydrofuran	ug/L					≤5			
Dicamba	ug/L					·	≤.01		
Dichlorprop	ug/L						≤.01		
Rn-222	pCi/L				•			300	
p,p'-Ethyl-DDD	ug/L						≤.1		
p,p'-Methoxychlor	ug/L						≤.01		
alpha-Endosulfan	ug/L				•		≤.01		
PCNs	ug/L						≤.1		
Dibromochloropropane	ug/L					≤.5			
Metribuzin	ug/L						≤.004		≤.004
2,6-Di-ethylaniline	ug/L						≤.003		≤.003
Trifluralin	ug/L					,	≤.002		≤.002
			•					-	

.

APPENDIX F - LOCAL HYDROGEOLOGIC DATA

APPENDIX F - LOCAL HYDROGEOLOGIC DATA

 Table F-1A Summary of Large Capacity Well Search Results

Table F-1B Summary of Well Search Results – Lower Capacity Wells

Figure F-1 - Locations of Large Capacity Water Supply Wells

Figure F-2 - Well Restriction Area

City of Vineland Well Restriction Area

Figure F-3 - Ground Water Contours - Shallow Wells, July 2005

Figure F-4 - Ground Water Contours - Deep Wells, July 2005

Table F-2 July 2005 Quarterly Ground Water Sampling Results - On-site WellsTable F-3 July 2005 Quarterly Ground Water Sampling Results - Off-site WellsGround Water Contaminant Isopleth Maps

Figure F-5	TCE Concentration	(ppb): Shallow	Wells, April 2005
		(ppo), on and the	,,

Figure F-6 TCE Concentration (ppb); Deep Wells, April 2005

- Figure F-7 Total Chromium Concentration (ppb); Shallow Wells, April 2005
- Figure F-8 Total Chromium Concentration (ppb); Deep Wells, April 2005
- Figure F-9 Hexavalent Chromium Concentration (ppb); Shallow Wells, April 2005

Figure F-10 Hexavalent Chromium Concentration (ppb); Deep Wells, April 2005

Table F-4 Ground Water/Suspended Solids Radiological Results - April 2004 June 9, 2005 Letter Report - Results of Ground Water Sampling (April 13, 2005)

		Permit	Local			Distance / Direction	Well Depth	Pump Capacity	Withdrawal
Number	Owner's Name	Number	Identification	Latitude	Longitude	(miles) / (Compass)	(feet)	(gpm)	Rate (gpd)
2237P	Shieldalloy Metalurgical Corp.	3119648	W9	393224	750120	0.30/SW	130	100	70000
2237P	Shieldalloy Metalurgical Corp.	3105842	Layne	393224	750123	0.33/SW	47	100	30000
2237P	Shieldalloy Metalurgical Corp.	3128710	RW6S	393220	750128	0.43/SW	75	100	135000
2237P	Shieldalloy Metalurgical Corp.	3128711	RW6D	393220	750128	0.43/SW	125	100	130000
2237P	Shieldalloy Metalurgical Corp.	3128712	RIW2	393213	750143	0.69/SW	75	200	220000
5147	Newfield Borough Water Dept	3104559	3	393254	750121	0.54/NW	162	400	265000
5147	Newfield Borough Water Dept	5100046	5	393246	750031	0.59/NE	140	500	335000
CU0029	Sepers Nursery	5500158	Well 5	393232	750157	0.84/W	85	300	108000
CU0129	Petronglo Farms, Inc.	3121627	Well 6	393213	750146	0.73/SW	100	350	126000
CU105R	Lopergolo, Mike	3500032	Well 1	393147	750143	0.89/SW	129	90	21,600*
GL0048	Pine Grove Camp, Inc.	3503230	Well 1	393148	750145	0.91/SW	100	500	180000
GL0182	Leshay Farms, Samuel	3104823	Well 2	393243	750132	0.59/NW	130	1000	360000
GL0182	Leshay Farms, Samuel	5100392	Well 1	393253	750045	0.49/N	104	1000	360000
	Leshay Farms, Samuel**	3122330	Well 3	393241	750035	0.43/NE ·	130		
	Leshay Farms, Samuel**	3158063	Well 4	393233	750128	0.45/NW	100		
	Leshay Farms, Samuel**	3163314	Well 5	393238	750059	0.20/N	109		
	Leshay Farms, Samuel**	3106890	Well 6	393239	750102	0.22/NW	100		•

Table F-1A Summary of Large Capacity Well Search Results Shieldalloy Metallurgical Corporation

Notes:

Source: NJDEP - Water Supply Element, Bureau of Water Allocation; Large Capacity (100,000 GPD) Well Search Within 5 Miles of Site Focus; Performed on 3/17/00 Number field indicates either a Water Allocation Permit, Agricultural Certification, or Registration Number

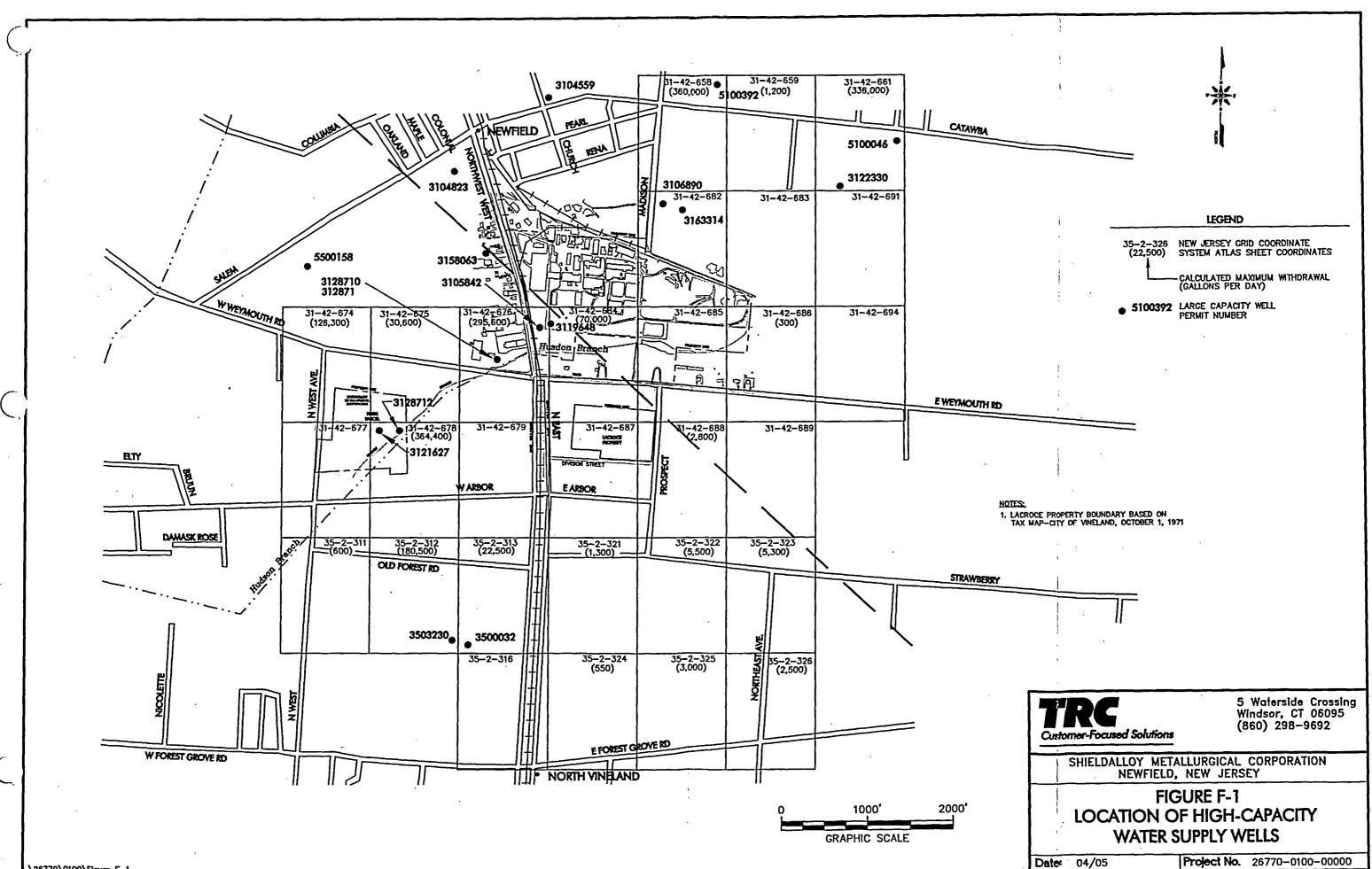
Distance field indicates the distance in miles between the well current slag pile.

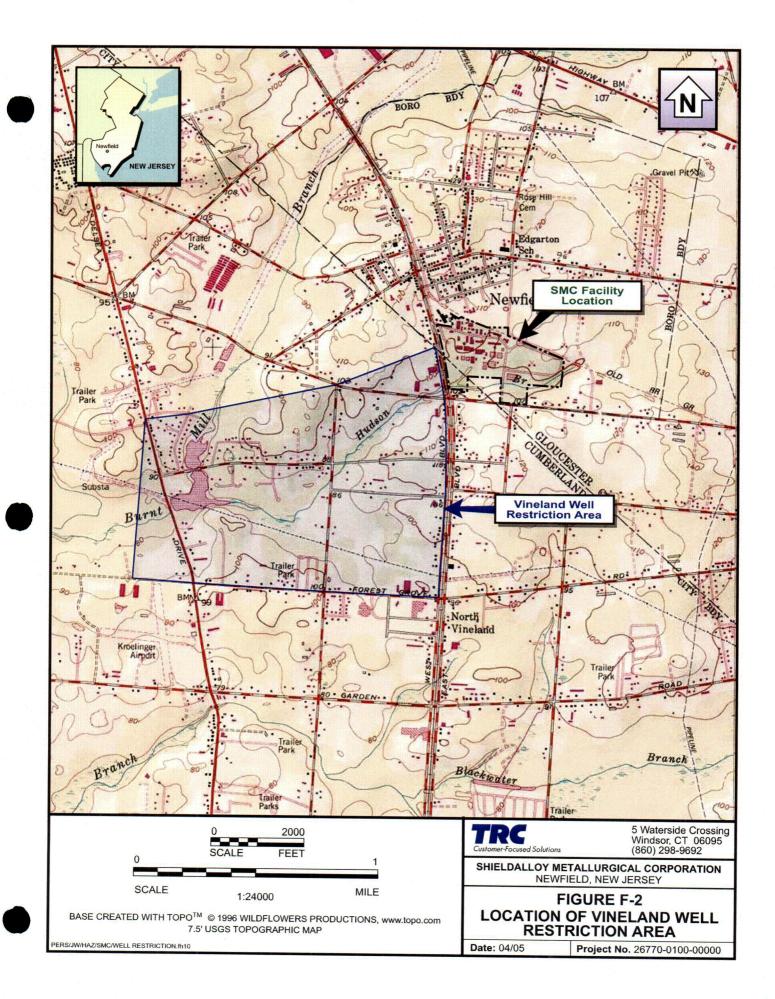
Direction field indicates compass direction from the search focus.

Withdrawal rate for Shieldallow Metalurgical Corp. wells based on ground water remediation system operation records

Withdrawal rates for Newfield Borough Water Dept wells based on reports by Mr. Jack Harris, Water Department Superintendant, Borough of Newfield

* Maximum pumping rate from well permit


** Information provided to TRC by NJDEP July 26, 2004


——		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	· · · · · · · · · · · · · · · · · · ·					T					
		1			· ·			Screened	Average	Maximum	Specific	Pump	
Permit Number	instal Date	Well Owner	Owner's Address	Well Location Address	Atlas Sheet Coordinates	Well Location Lot/Block	Screen Diameter	(FBG)	Withdrawel (GPD)	Pumping Rate (GPD)	Capacity (GPM/FT)	Capacity (GPM)	Well Usage
Sheet 31													
31-6890	4/18/1973	Leshay Bros.	Newfield	Catawba Ave	31 42 658		6	70-100			50		trigation .
31-31660	8/29/1989	Sam Le Shay	Catawba Ave., Newfield	Same	31 42 659	17/24	4	75-85			1.58		Domestic
31-31859	8/29/1989	Sam Le Shay	Catavoa Ave., Newfield	Same	31,42,659	184/24	4	80-90			1.58	1	Domestic
31-20606	3/20/1984	D&M Builders	595 Clayton Rd., Franklin Twp.		31 42 001	3c/519	2	55-59	500	500		9	Domestic
31-20755	7/20/1984	D&M Builders	596 Clayton Rd., Franklin Twp.		31 42 661	34/519	2	54-58	500	500		9	Domestic
31-21627	6/12/1984	Carman Petronglo	5014 N. Delsea Drive, Vineland		31 42 674	13/83	5	40-00				350"	Inigation
31-28468	5/20/1989	Sol Finkeistein	882 S. Spring Rd, Vineland		31 42 674	1.05/43	2	145-150	150	300	1	10	Domestic
31-19465	9/18/1982	James Bringer	555 E. Em Rd., Vineland	1	31 42 675	3/968	(4	75-85				15	Domestic
31-143	5/15/1950	Gus Hauser	Weymouth Rd., Newfield		31 42 675		4	140-150		30,000	2.5	Nł	Inigation
31-49153	4/27/1995	Eugene Magliocco	756 Strawberry Ave., Vineland	Same '	31 42 676	4/6901	4	90-100				12	Domestic
31-19723	4/5/1983	Petrongio Farms	5014 N. Deisea Drive, Newfield		. 31 42 678	10/83	6	42-62			1	. '	Inigation
31-9125	8/14/1975	J, Ruberto	605 W. Arbor Ave., Vineland	Arbor Ave/West Ave	31 42 678	1	2	51-61	300	400	i .	50	Domestic
31-23513	9/12/1985	Bruce Wean	A.D. 1 Box 511 W. Garden Rd.	Pottsgrove Twp.	31 42 678	46/67	3	62-72			1	50	Intgation
31-6092	11/3/1969	Borough of Newfield	Borough Hall, Newfield	Main St., Newfield	31 42 685		10	129-149			21.91	500	Public Supply
31-13812	6/13/1978	Krykory Torgover	Weymouth Rd., Vineland	Same	31 42 685	60/581	2	53-58	200	300			Domestic
31-21871	9/1/1984	Newin Caudii	Aura Willow Grove Rd.	Weymouth Rd.	31 42 688		4	90-100	500	600		12	Domestic
31-21871	9/25/1984	Newin Caudii	Aura Willow Grove Rd.	Weymouth Rd.	31 42 668	0:/581	4	80-90	500	800	ł	16	Domestic
31-19468	9/27/1982	Richard Krason	3151 North East Ave., Vineland	East Avenue	31 42 688		3	70-80				15	Domestic
. 31-1066	7/10//53	Louis Pelts	Prospect Ave., Vineland	Same	31 42 688		4	45-51.	500	600		10	Domestic and Poultry
31-1133	9/12/1953	Alfred Osterman	Arbor Ave , Vineland	Same	31 42 688			65-71	300	400	5.5	10	Domestic
Sheet 35	8/12/1953	Arried Osterman			3142000	L	•	1 63-71		400		<u> </u>	Oomesse
35-12130	7/15/1991	Frank Marchisella	3183 N. East Blvd, Vineland	Same	35 02 311	12/114	4	90-100	r · · · ·		<u> </u>	11	Domestic
35-2734	1/1982	Gene Brenner	Arbor Ave, Vineland	Same	35 02 312		2	65-70	· 200	500		12	Domestic
35-3230	4/12/1982	Joseph Petrongio Jr.	4724 N. Delsea Dr.	Weet Ave	35 02 312		3	34-64	200		1.	500*	Inigation
35-32	7/12/1950	Frank Russo	West Blvd, N. Vineland	Same	35 02 313	1	4	99-129	1	21600	8.25	30	Irrigation
35-4248	7/1/1984	Bob Carpenter	168 Arbor Ave., Vineland	Same	35 02 313	8/83	2	90-95	1			10	Domestic
35-75	3/5/1952	Joseph Girard	E. Blvd & Stawberry Ave., Vineland	Same	35 02 313	0.00	1	25.5-31.5	300	300		8	Domestic
35-14281	8/16/1993	John Ruggiano	311 Baylor Ave., Vineland	Stavberry Ave.	35 02 321	24.03/114	1	80-90				· ·	Return
35-1653	5/10/1978	Ronald Jacobson	181 Stravberry Ave		35 02 321		3	84-94	200	400			Domestic
35-18262	12/14/1997	W. Serad	745 Strawberry Ave.	Same	35 02 321	67/7004	i i	90-100				12	Domestic
35-5352	2/24/1955	Leo Palmonal	3127 N.E. BM		35 02 321	10/114		80-90	150	300	· ·		Domestic
35-11946	5/16/1991	Richard Bruno	3120 N, East Ave., Vineland	Same	35 02 322	25/114	4	95-105	400	600		25	Domestic
35-12525	1/7/1992	Richard Lorenzini	3181 N, East Ave., Vineland	Same	35 02 322	20/121 .	1	90-100	400	000		10	Domestic
35-13775	8/16/1993	John & Margaret Ruggiano	311 Baylor Ave., Vineland	Strawberry Ave.	35 02 322	24.03/114	4	85-95				25	Domestic
35-14414	9/27/94	Richard Linn	1059 Linda Lane, Vineland	Strawberry Ave.	35 02 322	24.02/114	1	108-118	500	750		20	Domestic
35-14783	4/11/1995	Wells Comel	1022 Holmes Ave, Vineland	Stawberry Ave.	35 02 322	24.03/114		.73-83	500	1800	2.08	[Domestic
35-15257	9/27/1994	Richard Linn	1019 Linda Lane, Vineland	Stawberry Ave.	35 02 322	24.02/114	4	100-110					Heat Pump
							1						Discharge
35-3132	2/2/1982	Daniel S. Falasca	Box 127 Morris Ave.	Strawberry Ave.	35 02 322	1	3	69-79				15	Domestic
35-3133	2/2/1982	Daniel S. Falasca	Box 127 Morris Ave.	Stawberry Ave.	35 02 322	1	3	69-79	1		ł	15	Domestic
35-06267	5/15/1987	KDR Contractors	PO Box 2370, Vineland		35 02 323	32.01/114	2	84-90	500	600		10	Domestic
35-10153	1/24/1990	James Schrier	560 E. Forest Grove Rd.	Same	35 02 323	11/121	4	115-130		1		15	Domestic
35-12597	11/13/1992	Phil Schreiber	935 Magnolia Rd	N.E.Ave	35 02 323	32/114	4	80-90				25	Domestic
35-12842	3/21/1992	Louis Dalesandro	3005 N. East Ave., Vineland	Same	35 02 323	15/121	4	58-68	500	1800	1	12	Domestic
35-13276	8/28/1992	Charles Schaser	3176 N, East Ave., Vineland	Same	35 02 323	1	4	110-120	400	600	1	20	Domestic
35-3611	3/17/1983	Charles R. Johnson	741 Strawberry Ave.		35 02 323	1B/583	2	120-127					Domestic
35-4916	9/14/1985	Robert Petronglo	2050 Weymouth Rd.	1	35 02 323	1/46	4	125-135	200	500		25	Domestic
35-08272	2/16/1989	Garden Homes	N. Delses Dr. / Garden Rd.	Forest Grove Rd.	35 02 324	32.02/114	4	73-83	150	150	1.1	11	Domestic
35-13626	12/23/1992	Mary H. Gamba	3095 North East Blvd, Vineland	Same	35 02 324	9/114	2	88-98	300	400	7.8	10	Domestic
35-05892	5/20/1987	Daniel McDermott	2568 Division St, Vineland	Same	35 02 325	34/114	2	75-85			l		Domestic
35-14509	12/17/1993	Philo & Maxine Chapman	2388 N, East Ave	Same	35 02 325	5/127	4	80-90	400	600	l	15	Domestic
35-15381	10/31/1994	Mary C. Meyer-Bowen	855 E. Forest Grove Rd., Vineland	Same	35 02 325	4/128	4	86-96	400	600		10	Domestic
35-17000	6/21/1996	Audrey McDermott	330 Grove Road, Vineland	Same	35 02 325	35/114	4	73-83	l		1	20	Domestic
35-17367	1/20/1997	Edward & Bridget Conrow	311 Central Ave, Vineland	Forest Grove Rd.	35 02 325	1/124	4	90-100	ľ	1	1	25	Domestic
35-15575	1/20/1995	Steven Gatier	267 E. Forest Grove Rd.	Same	35 02 326	6/123	4	75-85	300	400		8	Domestic
35-02260	4/1/1981	Richard McDermott	Division Street	1	35 02 326		2	71-76	200	500	· ·	18	Domestic
35-3929	11/15/1984	William Sirawatka		·	35 02 326	9.10/121	2	72-79	l			NI	Domestic
35-07901	7/2/1988	Lottie Reed Jones	304 E. Forest Grove Rd.	Same	35 02 325	36/114	4	90-100	500	750 ·	1	1 11	Domestic

.

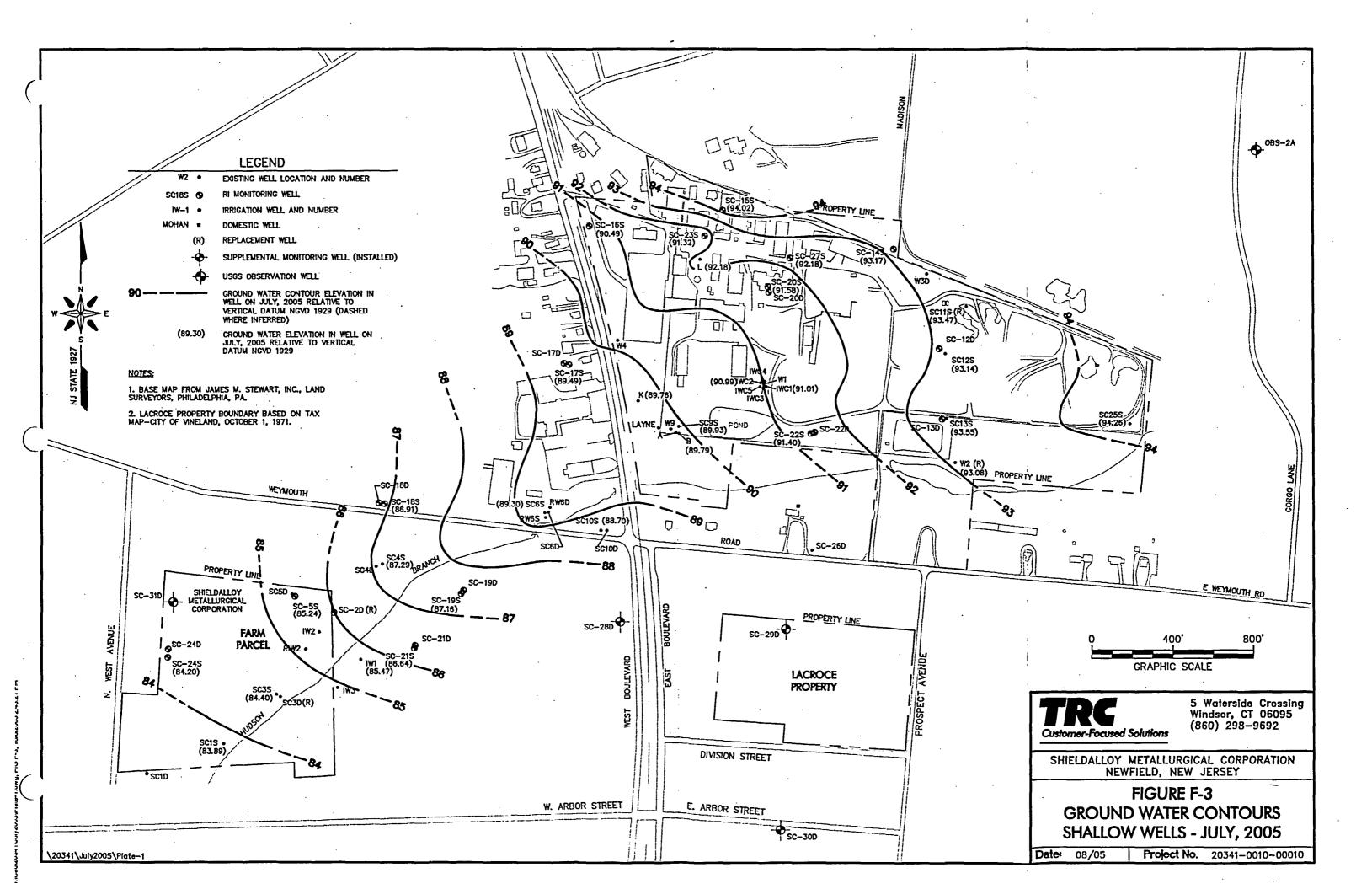
¹ Source: NJDEP - Water Supply Element, Bureau of Water Allocation; Well Permit Search Within 1 Mile of Site Focus; Performed March 2000 NI - Pump not installed * - Pump capacity reported in Large Capacity Well Search

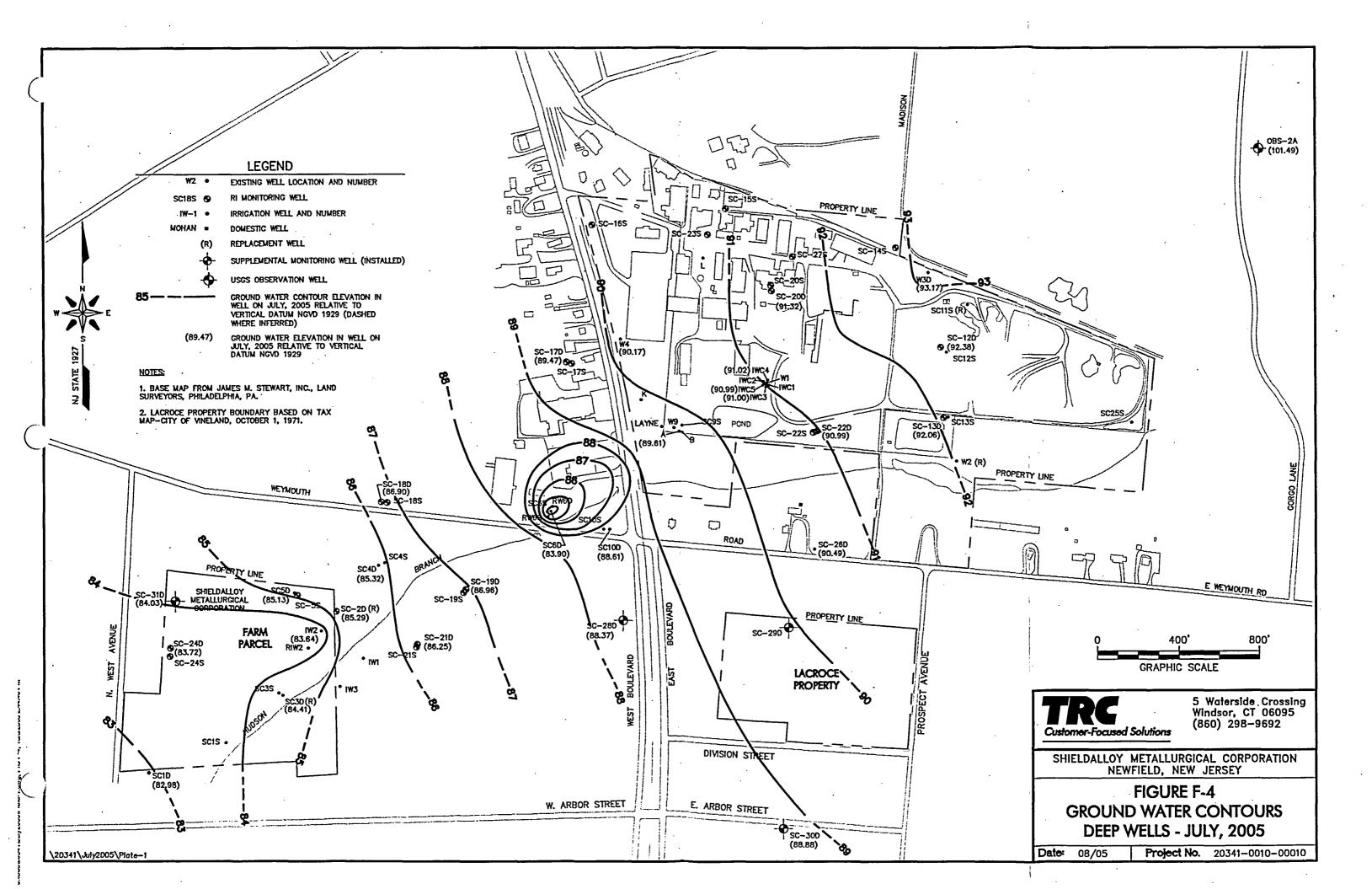
.

IT.BY:SMC	NEWFIELD	;	6-	5-96	;	1

-96 ; 2:04PM ;

		•		
	· · ·	•	· ·	
CITY OF VINELAND WATER-LOWER UTILITY	•	· · · ·	•	•.
•	. •		• .	•
			•	
•	PACEIMILE COVER SHEE	T	•	
		•	,	•
DATE: 6-3-91	FAX NO:	697-90	25	
		•	•	•
TOI SHING A	ust			
ATTENTION: MR.	Jim VALENERE			
FROMI PAUL	•	•		
\bigcirc				
• Total NUMBER of SHE	ETS INCLUDING COVER 3		·	•
COMMENTER	ESCRIPTION OF WR	L RESTRICT	int	· · · · · ·
	- in NORTH VINELA	و ما	· · · · · · · · · · · · · · · · · · ·	· · · · ·
			• 	••
	· · · · · · · · · · · · · · · · · · ·	•	·	• •
•				•
				•
FAX # 609-794-6181		••••	·	•
TEL # 609-794-4036	•	•••	•	· ·


MHERHAS, the State legislature has provided, in N.J.S. 40:63-52, et seq., for local ordinances requiring mandatory connection with water systems, and the State of New Jersey, Department of Environmental Protection, has ordered mandatory scaling of walls in accordance with N.J.S.A. 58:4A-4.1 at seq., and N.J.S.A. 58:12A-1 at seq.;


NNUWATER UTILIT

NOW, THEREFORE, BE IT ORDAINED by the City Council of the City of Vincland, County of Oumberland, and State of New Jersey, as Eollows:

1. All buildings located upon a street in which the public water supply main is constructed in the area designated by the State of New Jersey, Department of Environmental Protection, identified in Section 2 of this Ordinance, shall be connected with the public water supply main, and the private water supply well shall be permanently . sealed.

2. All private water supply wells in the following area shall be sealed pursuant to mandatory order issued by the State Department of Environmental Protection, and the City of Vineland shall contract therefor upon connection of all properties to the Municipal Mater Utility's distribution mains in said area: N. West Avenue, from Weymouth Road to Forest Grove Road; N. Arbor Avenue, from N.J. Route No. 47 (Delses . Drive) to N. West Boulevard; Old Forest Road, from N. West Avenue to N. West Boulevard; N. Forest Grove Road, from 1,225 foot west of N.J. Route No. 47 (Delses Drive) to N. West Boulevard; N.J. Route No. 47, from W. Forest Grove Road to 1,200 feet north of W. Arbor Avenue; N. West Boulevard, from W. Forest Grove Road to City Limit; W. Weymouth Road, from 210 foot west of N. West Avenue to N. West Boulevard; Gerow Avenue, from W. Arbor Avenue to Bity Avenue; Bity Avenue, from Gorow Avenue to Briam Avenue; Brian Avenue, from Elty Avenue to W. Arbor Avenue; Burnt Hill Road, from W. Arbor Avenue to Regina Elena Avenue: Temm Court, from Burnt Mill Drive to cul-de-sac; Regina Elena Avenue, from Burnt Mill Drive to easterly terminus.

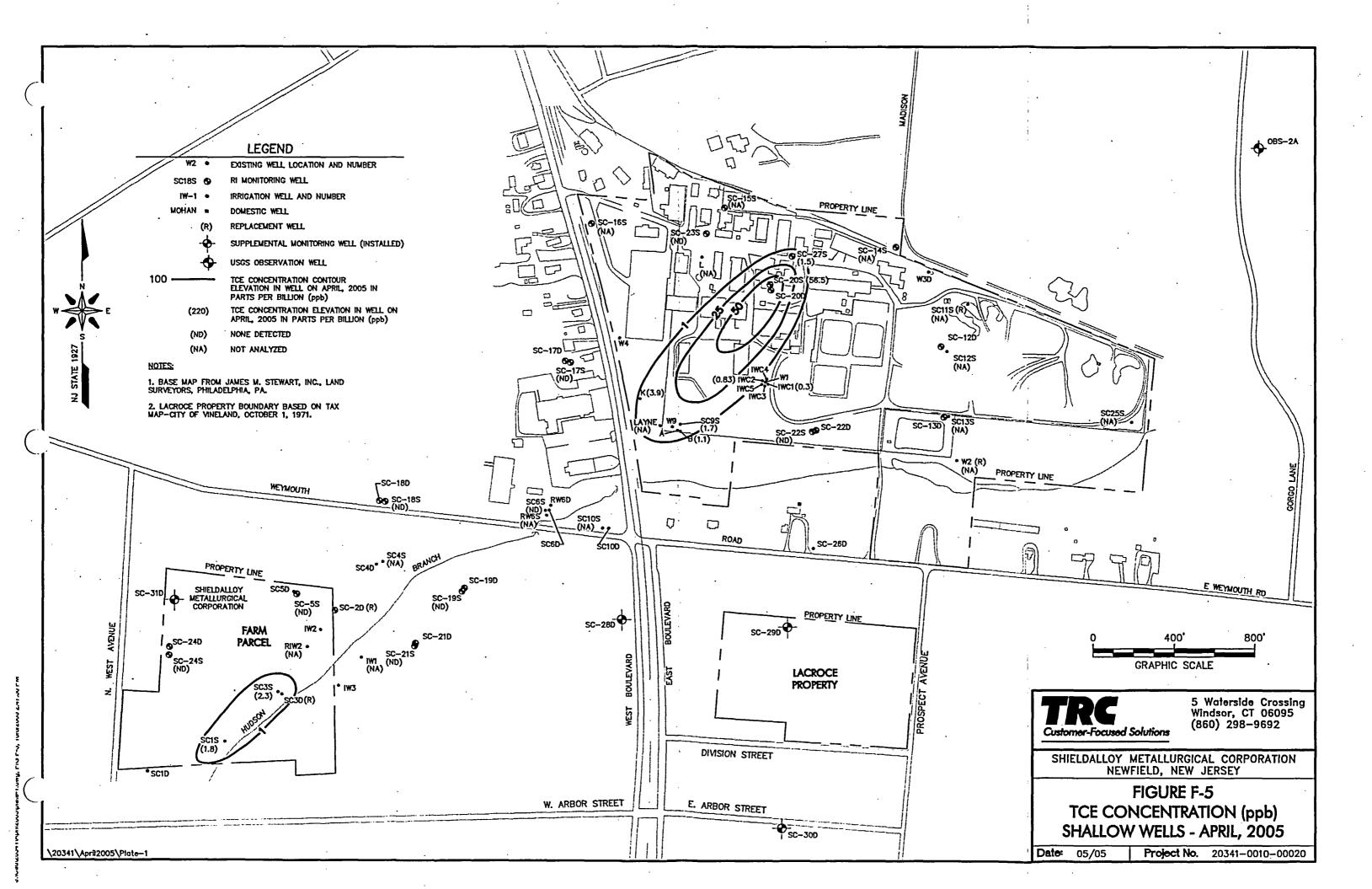
													_					TABLE METALLU NEWFIE ATER AN/ ONSITE JULY	RGICAL LD, NJ ALYTICA WELLS				_							1		•				
WELL NUMBER	•	в	к	SC345 ^p		IWC1	IWC2			4 WC	5 W2 (F) W4	SC9S	SC11S (R	SC12S	SC32S (1	I) SC120	SC13S	SC130	SC14S	SC15S	SC16S	SC20S	SC20D	SC22S	SC22D	SC23S	SOME	SC27S	w9	LAYNE	PLANT		TR071005	TB071905A	TROTOOS
SCREENED INTERVAL (FT)	114-124				42-52	15-20	35-40	55-6	0 75-8	0 95-10	0 2-17	55-75	15-30	9-24	15-25	15-25	126-13	5 14.7-24	7 127-13			5 12.27	7.22			1111-121		7-22		110-130				100/1903	180719054	18072005
PARAMETER										·	·										ŀ	Ì			ļ	1			ļ							
VOCs (ug/L) Chloromethane		.υ	1		NA	NA	U	NA	NA	11	NA	NA	U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	U	U		NA.	NA	NA	NA					
Bromomethane	Ŭ	Ū	Ū	Ŭ	NA	NA	Ū	NA NA	NA NA	U	NA	NA	Ū	NA	NA	NA	(NA	(NA	NA NA	Í NA	NA	NA	NA	NA	Ŭ	Ū	Ŭ	'NA	NA	NA	NA	ŭ	Ŭ	ŭ	Ŭ	Ŭ
Chioroethane		U	UU		NA NA	NA NA		NA NA	NA NA		NA NA	NA NA	UU	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	U			NA NA	NA NA	NA NA	NA NA	U	U U		U H	U
1,2-Dichloroethene (total)	Ŭ	Ŭ	0.28J	0.321	NA	NA	Ŭ	NA NA	NA	Ū	NA	NA	Ū	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Ŭ	0.55J	Ŭ	NA	NA	NA	NA	1.7	Ŭ	Ŭ	Ŭ	Ŭ
Acetone Carbon Disutfide	ើរ	UU	U U	U U	NA NA	NA NA	U U	NA NA	NA NA		NA NA	NA NA	U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA				NA NA	NA NA	NA NA	NA NA	U			U U	U
Methylene Chloride	Ŭ	U.	Ŭ.	Ū	NA	NA	Ŭ	NA	NA	Ū	NA	NA	Ŭ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Ū	Ŭ	Ŭ	NA	NA	NA	NA	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ
1,1-Dichloroethane cis-1,2-Dichloroethene	Ŭ	U U	UU	U U	NA NA	NA NA	UU	NA NA	NA NA		NA NA	NA NA	UU	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		U		NA NA	NA NA	NA NA	NA NA				U 11	U 11
2-Butanone Chloroform	l u	U U	U U	l u	NA NA	NA NA	U U	NA	NA	U U	NA	NA NA	U	NA	NA	NA	NA	NA /	NA	NA	NA	NA	NA	NA	Ū	Ŭ	Ū	NA	NA	NA	NA	Ŭ	Ŭ	Ŭ	Ŭ.	Ŭ
1,1,1-Trichioroethane	Ŭ	Ũ	Ŭ	Ŭ	NA	NA	Ŭ	NA NA	NA NA	ĬŬ	NA NA	NA	υ	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	UU	UU	UU	NA NA	NA NA	NA NA	NA NA	0.5J	U.		U .	U
Benzene 1,4-Dichlorobenzene	. U	U	U 2.1	U 2.1	NA NA	NA NA	UU	NA NA	NA NA		NA NA	NA NA	UU	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA	NA	Ū	Ŭ	Ŭ	NA	NA	NA	NA	U	Ŭ	Ŭ	Ŭ	Ŭ
1,2-Dichloroethane	Ŭ	Ū	U	U	NA	NA	Ū	NA	NA	l ū	NA	NA	Ŭ	NA	NA	NA	NA	NA	NA	NA NA	NA	NA NA	NA NA	NA NA	0	υ) U U	NA NA	NA NA	NA NA	NA NA	UU	U U			
Trichloroethene 1.2-Dichloropropane	86	0.89J	3.8	3.8	NA NA	NA NA	0.74J	NA NA	NA NA	0,43	NA NA	NA NA	2	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	U	29 U	UU	NA NA	NA NA	NA NA	NA NA	8.8 U	Ŭ	U	Ū	Ŭ
Bromodichloromethane	Ŭ	Ŭ	Ŭ	Ŭ	NA	NA	Ū	NA	NA	Ŭ	NA	NA NA) ŭ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Ŭ	υ	Ŭ	NA	NA	NA	NA NA	υ	Ŭ	υ	υ	U U
Toluene 1,1,2,2-Trichforoethane	U U	U	U U	U U	NA NA	NA NA		NA NA	NA NA	U	NA NA	NA NA	U U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	UU	U	34.1 U	NA NA	NA NA	NA · NA	NA NA	U	U		· U	U
Chlorobenzene	Ŭ	Ŭ	Ŭ	Ŭ	NA	NA	Ŭ	NA NA	NA NA		NA	NA	Ŭ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	Ū	Ū	Ū	NA	NA	NA	NA	Ŭ	Ŭ	Ŭ	Ŭ	ŭ
Fetrachloroethene Ethylbenzene	UU	UU	U U		NA NA	NA NA		NA NA	NA NA		NA NA	NA NA		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	UU	U . U	U 607	NA NA	NA NA	NA NA	NA NA	2			U U	U
Total Xylenes	Ŭ	Ŭ	Ŭ	Ū	NA	NA	Ŭ	NA NA	NA	U	NA	NA	Ŭ	NA	NA	NA	NA	NA NA	NA	NA	NA	I NA	NA	NA	U	0.92J	2830	NA	NA	NA	NA	Ū	Ŭ	Ŭ	Ŭ	Ŭ
Vinyî Chloride	ľ	U	U	U	NA	NA .	U	NA	NA	U	NA	NA	U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	U	U	U	NA	NA	· NA	NA	U	U	U	U	U
Volatile TICs INORGANICS (ug/L)	<u> </u>	<u> </u>	<u> </u>	<u> </u>	NA	NA	<u></u>			<u> </u>	NA	NA	<u> </u>	NA	_NA_	NA	NA	NA	NA	NA_	<u>. NA</u>	NA	NA	NA	<u> </u>	9.56JN	6111.6JN	I NA	NA	NA	NA	<u> </u>		<u> </u>	<u> </u>	<u> </u>
Aluminum	NA	NA	NA	NA	NA	NA	NA	NA			603	NA	NA	243	383	370	259	823	398	U	NA	NA	NA	NA	NA	NA	NA	429	NA	NA	NA	NA	NA.	NA	NA	NA
Boron Chromium (Totai)	NA 9210	NA 336	NA 785	NA 749	NA 98.6	NA NA	NA 1140	NA NA	NA NA	NA 338	125	NA NA	NA 11.1	474 10.3	6200 400	5800 357	U.	2620	U	1180 108	NA NA	NA NA	NA NA	NA NA	NA	NA 34600	NA 415	6960 U	NA NA	NA 5150	NA 1150	NA	NA	NA NA	NA	NA
Hexavalent Chromium	U	U	730	720	1 U	NA	980	NA	NA	33	14	NA	υ	U	97	120	υ	Ŭ	Ū	73	NA	NA	NA	NA	Ū	U	200	Ŭ	NA	5700	1200	NA	NA	NA	NA NA	NA NA
Nickel Sodium	NA 19800	NA 182000	NA 56500	55300	NA 13500	NA NA	NA 14700	O NA			2800	NA NA	NA 85500	U 15600	U 170000	160000	U 2630	213000	U 3510	18500	NA NA	NA NA	NA NA	NA NA	NA 42100	NA 648000	NA 35100	U 67000	NA NA	NA 74300	NA 126000	NA NA	NA NA	NA NA	NA NA	NA NA
Vanadium	· NA	NA	NA	_NA	NA	NA	NA	NA			892	NA	NA		2160	2400	U	27100	<u> </u>	U	NA_	NA	NA .	NA	NA	NA	NA	<u> </u>	NA	NA	NA	NA	NA	NA	NA .	NA
DTHER PARAMETERS (mg/L)	7.20	7.00	6.79	6.79	6.70	NA	7.70	NA	NA	11.00	7.32	NA	7.22	8.86	7.30	7.30	7.44	10.06	7,75	6 01	NA	NA	NA	NA	7.11	12 07	6.53	8.25	NΔ	7.62	7.09	6.85	7.68	NA	NA	NA
Sulfate	46 8	_207			50		85.6	NA	NA	4.8	6.7	NA	64.6		81.4	79.5	7.8	154	66	17	NA	NA	NA	NA	30	60.4	71.6	7,1	NA NA	70.9	114	NA	NA	NA	NA	NA_
VOC Analysis performed via Me Total metals performed via Meth TT - Feet below ground surface. U - Indicates compound analyze J - Indicates an estimated value B - The analyte is found in the as NA - Not analyzed (1) - D nolicate sample of well St	od 6010B d for but r (organics ssociated	not detection).	ed (orga	nics and ir	norganic	s).	•				om a read	ding that t	vas less t	han the Coi	ntract Requ	uired Detec	tion Limit (CRDL) but	not greate	r than or e	qual to the	Instrumen	t Detection	Limit (IDL)) (înorgan	ics).				:						

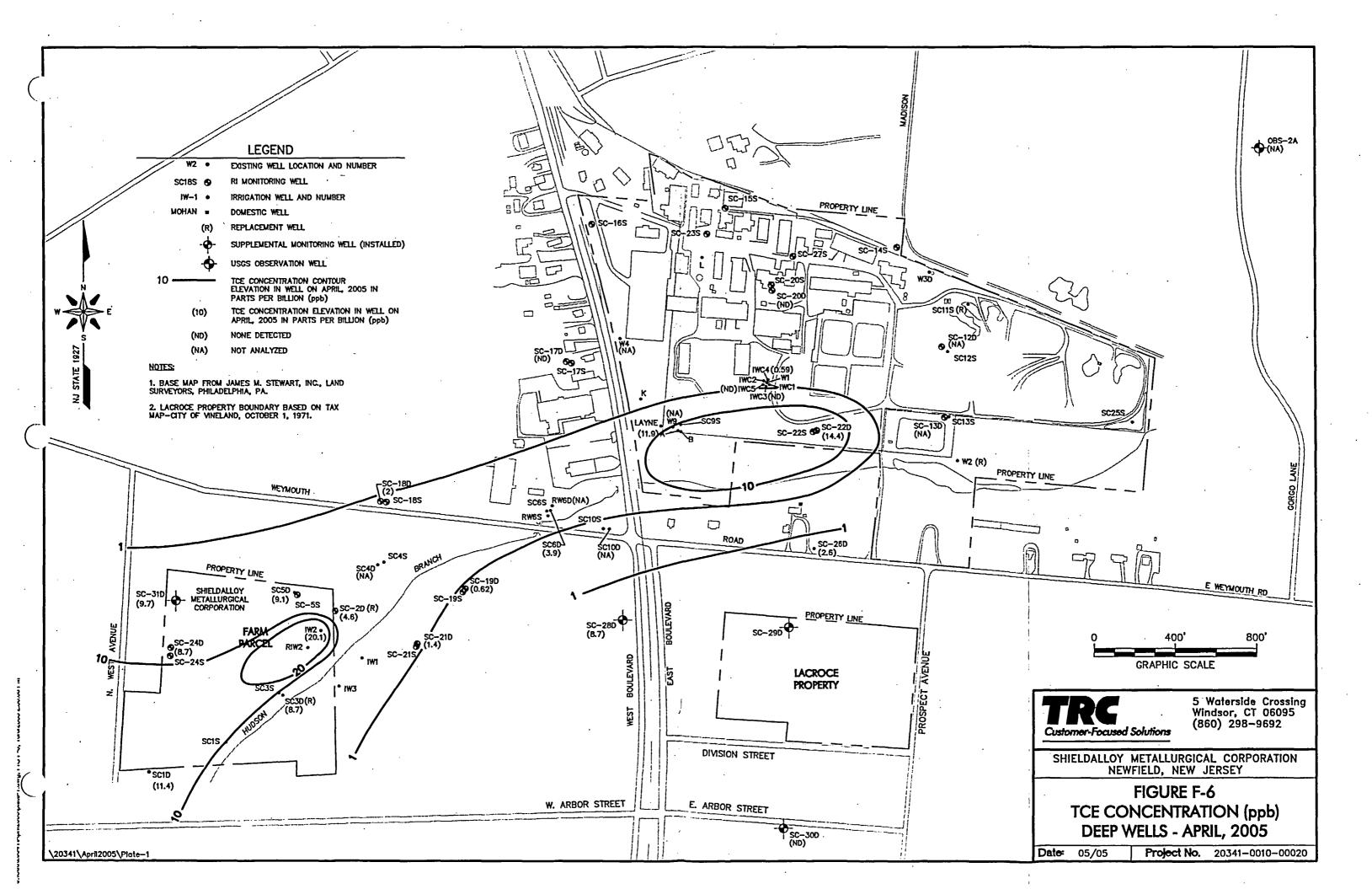
(,)

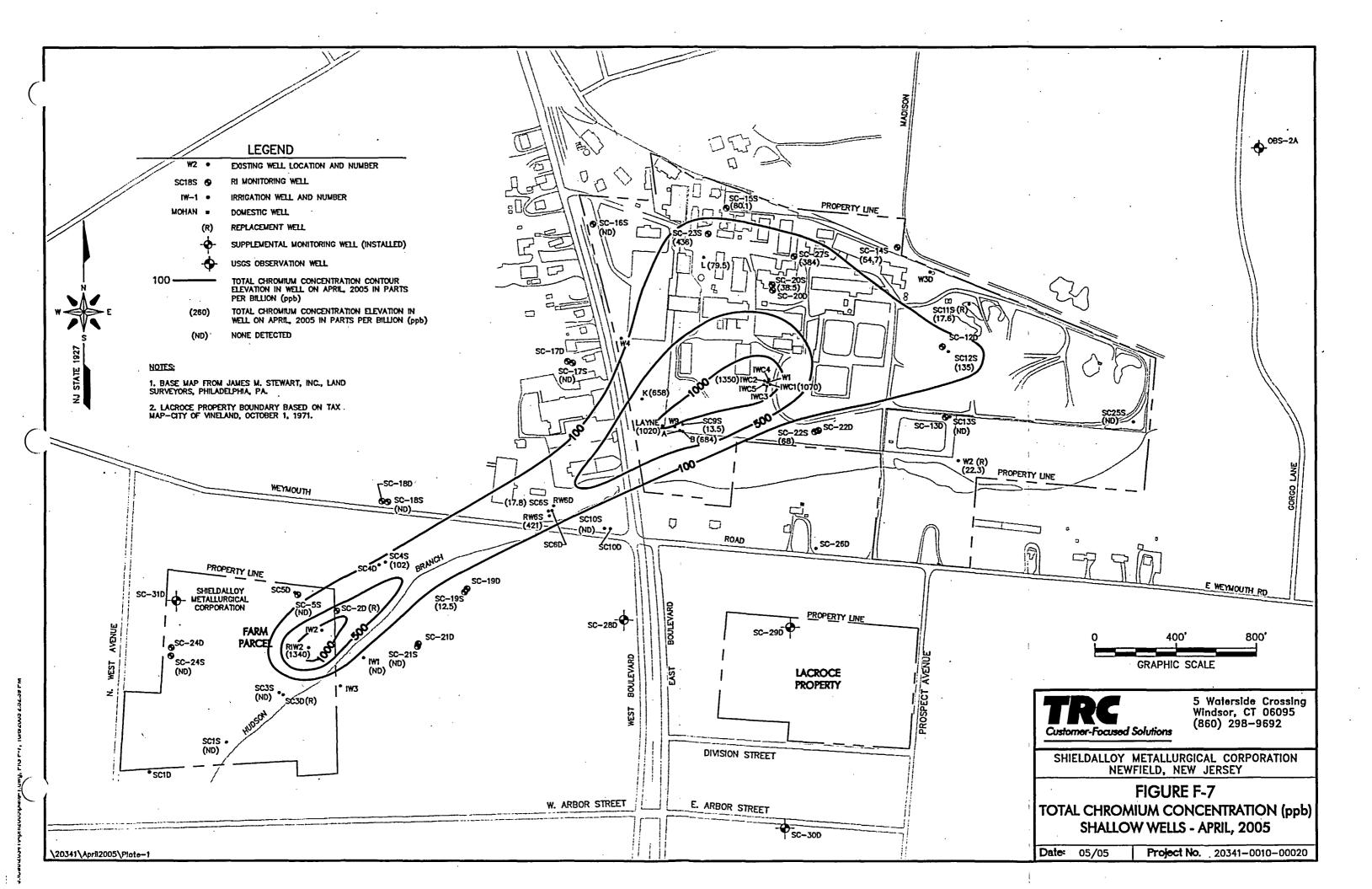
(

.

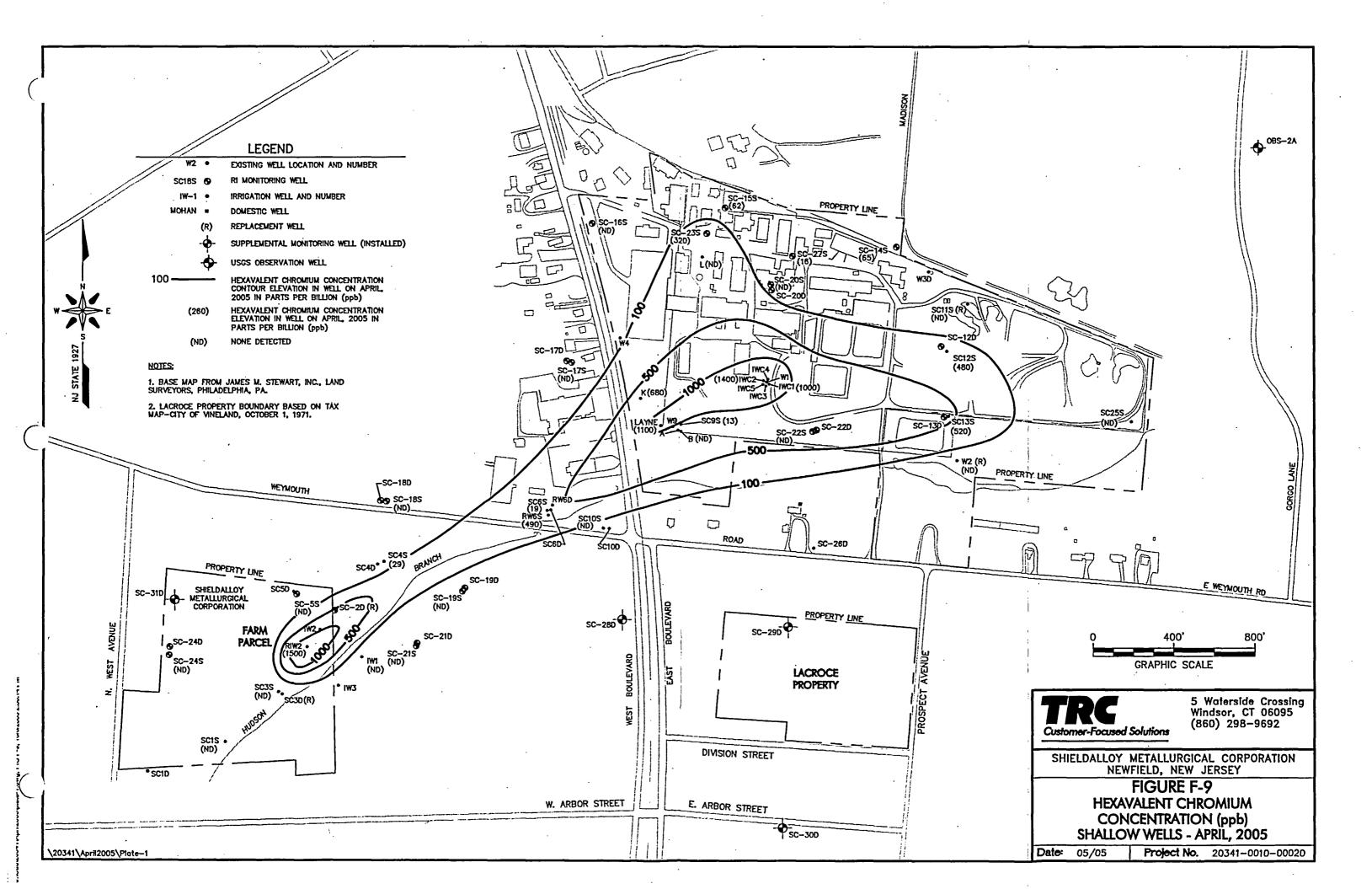
(1) - Duplicate sample of well SC12S (2) - Duplicate sample of well K


															GROUN	LOY ME N ID WATI OF	TABLE I TALLUR EWFIELI ER ANAL F-SITE V JULY 20	GICAL C D, NJ .YTICAL VELLS															•				
WELL NUMBER SCREENED INTERVAL (FT) PARAMETER		SC1D 85-95/ 100-115	SC2D (R) 106-116	SC3S 35-55	SC3D (R) 102-112	SC32D(R) ⁽¹⁾ 102-112	SC45 35-45	SC4D 110-120	SC5S 5-20	SC5D 90-120	SC6S 45-75	SC6D 110-120	SC10S 35-55	SC10D 105-125	SC17S 13-28	SC17D 143-153	SC18S 4-19	SC18D 119-129	SC19S 2-17	SC19D 120-130	SC21S 3-18	SC21D 125-135	SC24S 5-20	SC24D 105-115	SC26D 127-137	SC28D 133-153	SC-30D 147-157	SC-31D 120-130	IW1 32-62	IW2 40-70	RW6S 55-75	RW6D 90-125	RIW2 30-55	OBS-2A 129-149	TB071905	TB0719054	TB072005
VOCs (ug/L) Chloromethane Bromomethane Chloroethane 1,1-Dichloroethene 1,2-Dichloroethene 1,2-Dichloroethene Carbon Disulfide Methytene Chloride 1,1-Dichloroethane cis-1,2-Dichloroethene p-Dichlorobenzene trans-1,2-Dichloroethylene 2-Butanone Chloroform 1,1,1-Trichloroethane Brazene 1,2-Dichloroethane Trichloroethane 1,2-Dichloropthane Trichloroethane 1,2-Dichloropthane Trichloroethane Trichloroethane Trichloroethane Trichloroethane Toluene 1,2-Dichloropthane Toluene 1,2,2-Trichloroethane Toluene 1,1,2,2-Trichloroethane Chlorobenzene Tetrachloroethene Ethylbenzene Total Xylenes Virnyl Chloride Naphthalene Volatile TICs	כ בבכבבבבלאַכבכבבבבבבבבבבבבבב	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ บ	ິ ບັບ ບັບ ບັບ ບັບ ບັບ ບັບ ບັບ ບັບ ບັບ ບັ	00000000000000000000000000000000000000		NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA NA NA NA NA NA NA NA NA NA NA NA NA N		ง บบบบ บบบบ บบบบ บบบ บบบ บบบ บบบ บบบ บบ			× × × × × × × × × × × × × × × × × × ×	NA A NA A A A A A A A A A A A A A A A A	*****	******	NA N	Ğ <u></u>	し し し し し し し し U U U U U U U U U U U U	り し し し し し し し し し し し し し し し し し し し	ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ ບ	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	v vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv	U U U U U U U U U U U U U U U U U U U	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	U U U U U U U U U U U U U U U U U U U	ບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບບ	U U U U U U U U U U U U U U U U U U U	÷ 555555555555555555555555555555555555	UUUU211 1.6 UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	2222222222222222222222222222222222222	NA NA NA NA NA NA NA NA NA NA NA NA NA N	NA N	NA N	U U U U U U U U U U U U U U U U U U U	ប ប ប ប ប ប ប ប ប ប ប ប ប ប ប ប ប ប ប	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
INORGANICS (ug/L) Chromium (Total) Hexavalent Chromium Sodium_	ບ ບ 66000	U U 48200	7020 5400 60500	U U 87200	U U 31000	U U 31300	NA NA NA	NA NA NA	U U 4840	320 300 41400	15.8 U 97200	1840 1500 108000	U U 108000	1070 1100 225000	NA NA NA	NA NA NA	NA NA NA	NA NA NA	U U 4250	U U 24500	U U 7440	U U 17200	U U 8890	U U 33000	U 3340	96.1 94 169000	U U 4500	U U 38900	U U 62900	2880 2500 72000	505 430 134000	3640 2600 111000	1480 1400 74200	NA NA NA	NA NA NA	NA NA NA	NA NA NA
OTHER PARAMETERS (mg/L) pH Sulfate	6,42 80,1	[6.38 49 6	5.54 123	6.04 22.1	6.04 22 9	NA NA	NA	5.11 9.2	5.56 49.9	6.58 128	6.65 178	6.65 105	6.22 136	NA NA	NA NA	NA NA	NA NA	5.56 28.5	4.78	6.70 25.4	5.08 7.5	4.49	5.33 48	5.67 U	6.56 160	5.05 U	5.14 34	6.20 71.4	6.19 51.8	6.48 106	6.80 118	5.82 114	NA NA	NA NA	NA NA	NA NA
FT - Feet below ground surface. VOC Analysis performed via Method Total metals performed via Method U - Indicates compound analyzed fo J - Indicates an estimated value (or B - The analyte is found in the asso NA - Not analyzed. (1) - Duplicate sample of well SC3D	8010B; È r but not anics), dated bla	Hexavalent t detected	Chromlum v (organics an	via Metho Id Inorgan	id 7196A; and Nics).	d Suffate via Me			n a readin	g that wa	s less th	an the Cor	ntract Req	uired Dete	ection Limit	(CRDL) b	ut not gre	ater than	of equal 1	o the Inst	rument D	etection Li	mit (IDL) ((inorganics)).					· .					•		


•


1

• •


· .

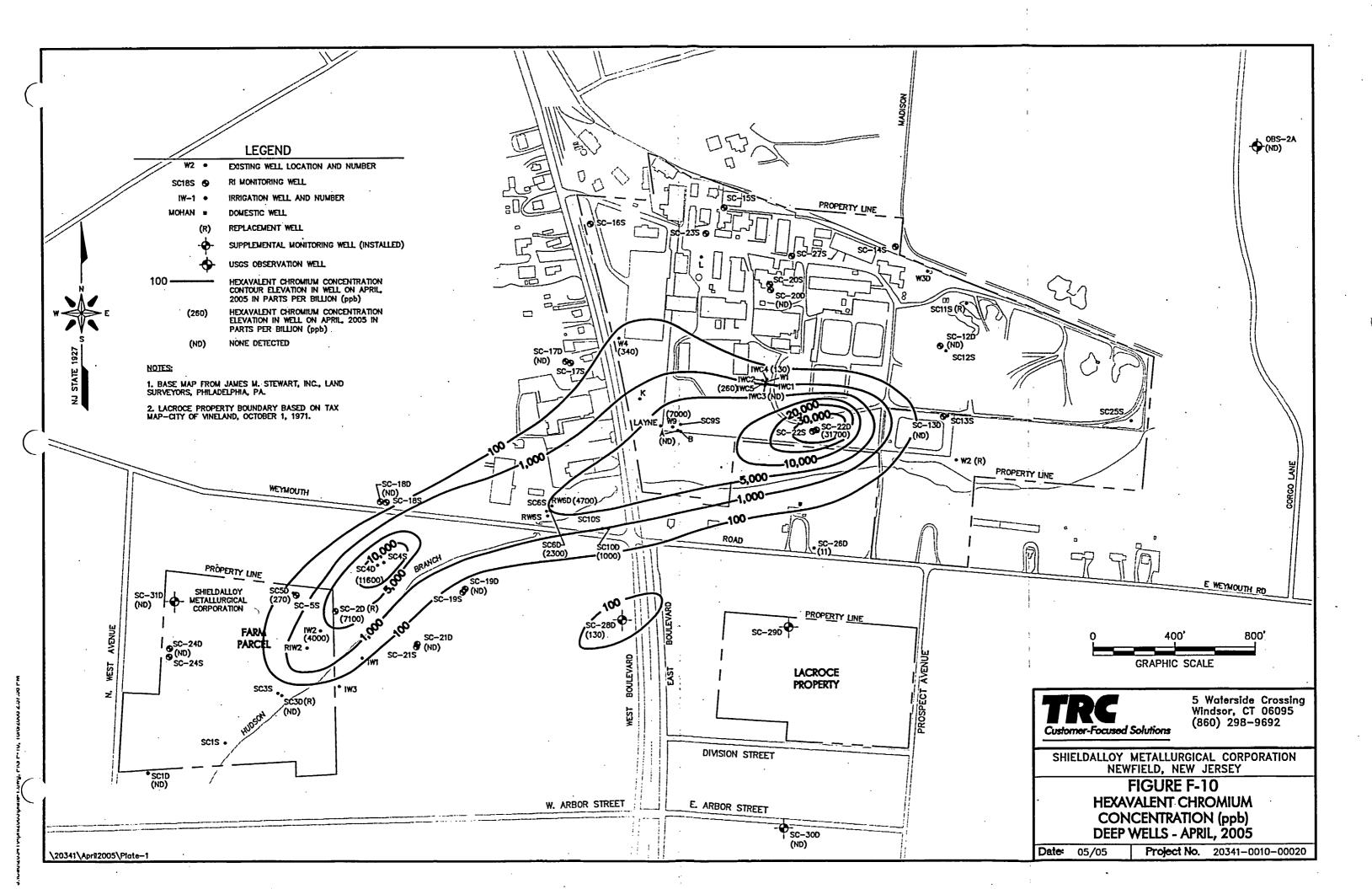


TABLE F-4

GROUND WATER / SUSPENDED SOLIDS RADIOLOGICAL RESULTS SHIELDALLOY METALLURGICAL CORPORATION NEWFIELD, NJ APRIL 2004

WELL NUMBER SCREENED INTERVAL (FT) LABORATORY ID NUMBER	F4D100111-008	A 114-124 F4D100111-014	E4D100111-022	F4D100111-005	W2(R) 2-17 E40100111-013	E40100111-021	E4D100111-008	OBS-2A ⁽¹⁾ 129-149	F4D100111-024	F4D100111-002	SC11S(R) 9-24 F4D100111-010	E4D100111-018
UNFILTERED/FILTERED/FILTER PAPER	Unfiltered	Filtered	Filter Paper	Unfiltered	Filtered	Filter Paper	Unfütered	Flitered	Filter Paper	Unfiltered	Filtered	Filter Paper
PARAMETERS												
Radiochemical Parameter (pCI/L)			_									
Gross Alpha	0.7U +/- 1.1	0.55U +/- 0.9	NA	1.75J +/- 0.98	0.32U +/- 0.57	NA	4.0 +/- 1.2	2.08J +/- 0.83	NA	0.59U +/- 0.87	0.52U +/- 0.56	NA
Gross Beta	1.9J +/- 1.2	13.0 +/• 2.0	NA	3.4J +/- 1.2	1.6U +/• 1.1	NA	3.4J +/- 1.2	3.0J +/- 1.2	NA	2.7J +/- 1.2	2.5J +/- 0.94	NA
Radium 226	0.1U +/- 0.1	0.11U +/- 0.12	NA	0.05U +/- 0.13	0.13U +/- 0.11	NA	0.95J +/- 0.26	1.23 +/- 0.28	NA	0.140 +/- 0.13	0.17U +/- 0.13	NA
Radium 228	-0.11U +/- 0.3	0.38U +/- 0.38	NA	0.16U +/- 0.34	0.22U +/- 0.34	NA	0.58J +/- 0.33	0.68J +/- 0.39	NA	-0.14U +/- 0.27	0.24U +/- 0.36	NA
Uranium 238 (pCl/sample) ⁽⁴⁾	NA	NA	0.31J +/- 0.12	NA	NA	0.38J +/• 0.13	NA	NA	0.32J +/- 0.13	NA	NA	0.29J +/- 0.12
		1		1	1		1			T	1	

WELL NUMBER SCREENED INTERVAL (FT) LABORATORY ID NUMBER UNFILTERED/FILTERED/FILTER PAPER PARAMETERS	F4D100111-003 Unflitered ⁽³⁾	SC12S 15-25 F4D100111-011 Filtered	F4D100111-019 Filter Paper	F4D100111-004 Unflitered ⁽²⁾	SC32S ⁽²⁾ 15-25 F4D100111-012 Filtered	F4D100111-020 Filter Paper	F4D100111-007 Unfiltered	SC13S 14.7-24.7 F4D100111-015 Filtered	F4D100111-023 Filter Paper	F4D1001111-001 Unfiltered	SC14S 12-27 F4D100111-009 Filtered	F4D100111-017 Filter Paper
Radiochemical Parameter (pCVL) Gross Alpha Gross Beta Radium 226 Radium 228 Uranium 238 (pCVsample) ⁽⁴⁾	8.8U +/- 9.8 128 +/- 16.0 0.52J +/- 0.18 0.42U +/- 0.31 NA	0.91U +/- 0.97 14.0 +/- 2.1 0.82J +/- 0.24 0.58U +/- 0.41 NA	NA NA NA 0.43J +/- 0.14	14.0U +/- 10.0 115 +/- 15.0 0.98J +/- 0.24 0.61J +/- 0.37 NA	0.29U +/- 0.85 15.3 +/- 2.3 1.09 +/- 0.26 1.24 +/- 0.43 NA	NA NA NA 0.48J +/~ 0.15	2.6U +/- 2.4 17.6 +/- 2.5 0.3J +/- 0.17 0.39U +/- 0.27 NA	-0.3U +/- 1.5 2.3J +/- 1.2 0.41J +/- 0.17 0.1U +/- 0.36 NA	NA NA NA 0.24J +/- 0.11	1.1U +/- 1.0 5.3 +/- 1.5 0.11U +/- 0.1 0.91J +/- 0.36 NA	0.41U +/- 0.84 7.3 +/- 1.4 0.33J +/- 0.15 0.89J +/- 0.32 NA	NA NA NA 0.31J +/- 0.12

Notes:

FT - Feet below ground surface. pCI/L - Picocuries per liter

NA - Not analyzed

V - Result is greater than sample detection limit but less than stated reporting limit
 V - Result is less than the sample detection limit.

(1) - USGS observation well (NJ-WRD Well Number 15-0372) located northeast of the SMC site.

(2) - Duplicate sample of well SC12S.

(3) - The standard reporting limit was exceeded due to a reduction of sample size attributed to the sample's high residual mass. The analytical results are reported with the MDA achieved.

(4) • Isotopic uranium (U-238) analysis was conducted on the sediment retained on the filter.

Sample Analyses:

Gross Alpha/Beta by GFPC (EPA 900.0 MOD). Radium-226 by EPA 903.0 MOD. Radium-228 by GFPC (EPA 904 MOD). Isotopic Uranium by Alpha Spectroscopy (DOE A-01-R MOD). June 9, 2005

Mr. David R. Smith Shieldalloy Metallurgical Corporation 12 West Boulevard, PO Box 768 Newfield, NJ 08344

Re: Results of Ground Water Sampling (April 13, 2005)

Dear Mr. Smith:

Integrated Environmental Management, Inc. (IEM) is pleased to provide you with the Certificates of Analysis from a groundwater sampling round that took place on April 13, 2005. The samples were collected from four (4) on-site wells and from a well that belongs to the Borough of Newfield.¹

The samples were collected by a representative of TRC, Inc., and forwarded, without preservative, to Outreach Laboratory in Broken Arrow, OK.² Attachment 1 contains the specifications for analysis of the samples. Attachment 2 contains the Certificates of Analysis. Table 1, below, is a summary of findings for an "unfiltered" aliquot:^{3,4}

Well ID		F	Radionuclide	o Concentra	tion (picocu	ries per liter)	ř.	
	Ra-226	Ra-228	Th-232	Th-230	Th-228	U-238	U-235	U-234
SC25S	< 0.454	16.9	<0.335	<0.751	<0.455	0.725	0.628	3.65
SC11S	<0.293	179	<0.336	<0.636	. <0.366	3.03		2.89
SC12S	<0.325	4.47	<0.246	<0.674	<0.227	<0.272	<0.154	0.427
SC13S	<0.418	7.64	<0.219	<0.606	<0.267	1.86	<0.498	2.57
BN4-05	<1.00	5.54	0.144	<0.653	<0.405	<0.271	0.532	0.645

Table 1

* Statistically-significant results are shaded.

** Background (up-gradient and off of the Shieldalloy property) well

² Outreach Laboratory is a NELAC-Certified laboratory for radioanalytical services.

³ The gross alpha and gross beta results, which would typically be useful as screening values, are not reported in the tables in this letter since isotopic analyses were performed on all samples. They are, however, contained in the Certificates of Analysis.

⁴ If an analytical result did not have statistical confidence (i.e., the result is lower than the minimum detectable concentration calculated for each analysis), a "<MDC" value is recorded in the tables instead.

¹ The Newfield well is up-gradient of the Shieldalloy Metallurgical Corporation (Shieldalloy) plant, and is thus representative of "background" groundwater.

Table 2 is a summary of findings for a "filtered" aliquot, the result of which can be compared to applicable drinking water standards:

Well ID		·	Radionuclide	Concentra	ation (picocur	ies per liter)	;	
	Ra-226	Ra-228 [·]	Th-232	Th-230	Th-228	U-238	U-235	U-234
SC25S	<0.352	1:18	<0.301	<0.811	<0.455	0.725	0.628	3.65
SC11S	<0.431	5.50	<0.256	<0.696	0.373	<1.77	<0.942	<1.91
SC12S	0.598	2.28	0.312	<0.648	<0.222	<0.483	<0.281	0.666
SC13S	<0.715	<0.532	<0.207	<0.587	<0.232	1.25	<0.220	1.14
BN4-05"	<0.459	6.39	0.310	<0.616	0.177		0.331	1.23

Table 2

* Statistically-significant results are shaded.

** Background (up-gradient and off of the Shieldalloy property) well

To interpret the Table 2 data, a comparison to the maximum contaminant levels (MCLs) for radionuclides promulgated by the U. S. Environmental Protection Agency in 40 CFR §141.66 may be helpful.⁵ A specific MCL is given for Ra-226 and Ra-228, combined, in 40 CFR §141.66(b). For the remaining radionuclides shown in Table 2, 40 CFR §141.66(d)(2) limits the concentration to that which would deliver a radiation dose of four (4) millirem per year if ingested at the rate of two liters of water per day for 365 days as follows:

$$\frac{picocurie}{\ell} \times \frac{2\ell}{day} \times \frac{365 \ day}{year} \times DCF \left(\frac{millirem}{picocurie}\right) < \frac{4 \ millirem}{year}$$

where picocurie/l = the concentration of the radionuclide in question, and DCF = a dose conversion factor that translates ingestion intake into radiation dose. Using the ingestion dose conversion factors listed in the USEPA's Federal Guidance Report No. 11 for the calculations, the following table of MCLs results:⁶

·	Maximum	Contaminant I e	Table 3 vels in Drinking	Water (nicocur	ies ner liter)	<u></u>
Ra-226 + Ra-228	Th-232	Th-230	Th-228	U-238	U-235	U-234
5	2	. 10	14	231	205	210

While MCL for the radium isotopes stands alone, the radiation dose limit of four (4) millirem per year is for all other radionuclides combined. Therefore, in order to determine compliance with the MCLs for the non-radium isotopes, the "unity rule", where the sum of the ratio of isotopes to its MCL must be less than one (1). In other words:

$$\frac{[Th-232]}{MCL_{Th-232}} + \frac{[Th-230]}{MCL_{Th-230}} + \frac{[Th-228]}{MCL_{Th-228}} + \frac{[U-238]}{MCL_{U-238}} + \frac{[U-235]}{MCL_{U-235}} + \frac{[U-234]}{MCL_{U-234}} < 1$$

⁵ Title 40, Code of Federal Regulations, Part 141, "National Primary Drinking Water Regulations".

⁶ U. S. Environmental Protection Agency, EPA-520/1-88-020, "Limiting Values of Radionuclide Intake and Air Concentration and Dose Conversion Factors for Inhalation, Submersion and Ingestion: Federal Guidance Report No. 11", September, 1988.

Using the Table 2 results for the sample collected from the Borough of Newfield's well as an example:⁷

$$\frac{0.310}{2} + \frac{0.616}{10} + \frac{0.117}{14} + \frac{0.527}{231} + \frac{0.331}{205} + \frac{1.23}{210} = 0.23$$

Because the result is less than unity, the non-radium isotopes in that sample meet the USEPA's drinking water standard for those radionuclides. On the other hand, because the combined Ra-226 and Ra-228 result is slightly greater than five (5) picocuries per liter, the standard for radium cannot be met. However, it is important to note that demonstration of compliance with the drinking water standards for public water supplies is based upon an annual average radionuclide concentration (i.e., multiple analyses per year or one analysis of a composite sample collected over a period of one year), not on one sample collected at a single point in time.⁸

An important finding from this sampling campaign is that the radionuclide content of the groundwater under the Shieldalloy site cannot be distinguished from background. It is thus reasonable to conclude that the presence of licensed radioactive materials at the plant over all of these years is having no impact on the radiological quality of the groundwater.

Thank you for the opportunity of assisting you in completing this interesting assessment. If I can answer any questions or provide you with additional information on this or any other radiation-related matter, please don't hesitate to call me at (240) 631-8990. I look forward to speaking with you again soon.

Sincerely,

INTEGRATED ENVIRONMENTAL MANAGEMENT, INC.

Carol D. Berger, CHP

Fil 94005.01

* See 40 CFR §141.26, "Monitoring Frequency and Compliance Requirements for Radionuclides in Community Water Systems".

⁷ To ensure a level of conservatism in this evaluation, the minimum detectable concentrations shown in Table 2 are taken to be actual concentrations.

APPENDIX G - ECOLOGICAL DATA

• APPENDIX G - ECOLOGICAL DATA

Table G-1 - Partial List of Plant Species within Forested Uplands

Table G-2 - Wildlife Species that May Potentially Inhabit the Upland Grasslands, Forested Wetlands/Uplands, and the Hudson Branch

Table G-3 - Results of Qualitative Macroinvertebrate Collection from Selected Sampling Locations

New Jersey Natural Heritage Program Correspondence

U.S. Fish and Wildlife Program Correspondence

Endangered and Threatened Plant Species Survey Report (Amy S. Greene, Inc., 1994)

TABLE G-1 PLANT RECEPTOR SPECIES

Common Name	Scientific Name
Н	erbs
Cattail	Typha latifolia
Giant Reed	Phragmites australis
Sensitive Fern	Onoclea sensibilis
Cinnamon Fern	Osmunda cinnamomea
Soft Rush	Juncus effusus
Japanese Knotweed	Polygonum cuspidatum
Sphagnum Moss	Sphagnum spp.
Poison Ivy	Rhus radicans
Jewel Weed	Impatiens capensis
Common Elder	Sambucus canadensis
Duckweed	Lemna spp.
Marsh Marigold	Caltha palustris
Goldenrod	Salidago spp.
Bracken Fern	Pteridium aquilinum
Crows Foot Club Moss	Lycopodium
Sh	rubs
Swamp Magnolia	Magnolia virginiana
Sweet Pepperbush	Clethra alnifolia
Blueberry	Vaccinium spp.
Mountain Laurel	Kalmia latifolia
Greenbrier	Smilax spp.
Multiflora Rose	Rosa multiflora
Honeysuckle	Lonicera spp.
Bear Qak	Quercus ilicifolia
Holly	Ilex opaca
Staghorn Sumac	Rhus typhina
T	rees
Black Tupelo	Nyssa sylvatica
Red Maple	Acer rubrum
Atlantic Eastern Red Cedar	Juniperus virginiana
Atlantic White Cedar	Chamaecyparis thyoides
Willow	Salix spp.
White Oak	Quercus alba
Northern Red Oak	Quercus tubu Quercus rubra
Pitch Pine	Pinus rigida

.

.

,

TABLE G-1PLANT RECEPTOR SPECIES

Common Name	Scientific Name
H	erbs
Box Elder	Acer negundo
Black Cherry	Prunus serotina
Bigtooth Aspen	Populus grandidentata
Sassafras	Sassafras albidum
Flowering Dogwood	Cornus florida
Norway Maple	Acer platanoides
Black Locust	Robinia pseudoacacia

•

									d'Alexand
Family	Common Name	Scientific Name	Guild(2)	Forage Method	Breeding Substrate	Pond/Stre	am 🐔	Grass	Forest
Amphibians	· · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·				3	
Bufonidae	Fowler's Toad	Bufo woodhousei fowleri	I ·	Ground Ambusher	Water	2 . X		X	х
Hylidae	Gray Treefrog	Hyla versicolor	Ι.	Bark Ambusher	Water	X	• •		х
	Northern Cricket Frog	Acris crepitans	Ι	Riparian Ambusher	. · Water	X			. '.
•	Northern Spring Peeper	Pseudacris c. crucifer	Ι	Riparian Ambusher	Water	· X	••		х
Pelobatidae	Eastern Spadefoot	Scaphiopus holbrookii	Ι	Ground Ambusher	Water				х
Plethodontidae	Mud Salamander	Pseudotriton montanus	I	Water Gleaner	Water	- X	. '		
	Redback Salamander	Plethodon c. cinereus	Ι	Ground Gleaner	Terrestrial Subsurface				x
Ranidae	Bullfrog	Rana catesbeiana	С	Water Ambusher	Water	х			
	Green Frog	Rana clamitans melanota	I	Riparian Ambusher	Water	X			х
	Southern Leopard Frog	🕐 Rana utricularia	Ι	Riparian Ambusher	Water	х	,		
	Wood Frog	. Rana sylvatica	· I	Ground Ambusher	Water	$\sim \mathbf{X}$,		Х
Salamandridae	Red-spotted Newt	Notophthalmus	· I	Water Gleaner	Water	• X .	·	.;	X
		viridescens	•	i	· · · ·			i	•
Birds		·· · ·	• •		** ,	· ()	statte -		
Accipitridae	Broad-winged Hawk	Buteo platypterus	С	Ground Pouncer	Tree-Branch			x	x
Recipititude	Red-tailed Hawk	Buteo jamaicensis	c	Ground Pouncer	Tree-Branch			x	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Alcedinidae	Belted Kingfisher	Ceryle alcyon	P	Water Plunger	Riparian Subsurface	x			
Anatidae	Canada Goose	Branta canadensis	H	Ground Grazer	Riparian Ground	x	•	х	
inanauc	Mallard	Anas platyrhynchos	G	Water Forager	Riparian Ground	x			
	Wood Duck	Aix sponsa	G	Water Forager	Riparian Tree Cavity	x			
Apodidae	Chimney Swift	Chaetura pelagica	I	Air Screener	Buildings			X	
Ardeidae	Great Blue Heron	Ardea herodias	C	Water Ambusher	Riparian Twig-Branch	х			
	Green-backed Heron	Butorides striatus	-C	Water Ambusher	Riparian Shrub	. X			
Bombycillidae .	Cedar Waxwing	Bombycilla cedrorum	F	Upper Canopy Gleaner	Tree-Twig			х	
Caprimulgidae	Common Nighthawk	Chordeiles minor	Ī	Air Screener	Buildings			x	
Charadriidae	Killdeer	Charadrius vociferus	Ī	Ground Gleaner	Ground-Herb			X	
Columbidae	Mourning Dove	Zenaida macroura	G	Ground Gleaner	Tree-Branch			х	х
	Rock Dove	Columba livia	0	Ground Gleaner	Buildings			X	-
Corvidae	American Crow	Corvus brachyrhynchos	0	Ground Gleaner	Tree-Branch			х	

-	And the state of the	The source of the second states	13-594-17-15-		SPACE AND	1000000	a Sector Mills	SCLAIM /
					的复数方法的代表的 (1) · · · · · · · · · · · · · · · · · · ·	Ha Pond/Stream		
Family ON	Common Name					Pond/Stream	Grass	
	Blue Jay	Cyanocitta cristata	0.	Ground Gleaner	Tree-Branch			X
Cuculidae	Black-billed Cuckoo	Coccyzus erythropthalmus	Ι	Lower Canopy Gleaner	Tree-Branch			X
	Yellow-billed Cuckoo	Coccyzus americanus	1	Lower Canopy Gleaner	Tree-Branch			Х
Falconidae	American Kestrel	Falco sparverius	С	Ground Pouncer	Tree Cavity-Crevice		X	
Fringillidae	American Goldfinch	Carduelis tristis	0	Ground Gleaner	Shrub		Х	
	Blue Grosbeak	Guiraca caerulea	0	Ground Gleaner	Shrub	X		х
	Chipping Sparrow	Spizella passerina	0	Ground Gleaner	Shrub		Х	х
	Field Sparrow	Spizella pusilla	0	Ground Gleaner	Ground-Herb		·X	
	Indigo Bunting	Passerina cyanea	I	Lower Canopy Gleaner	Ground-Herb		Х	Х
	Northern Cardinal	Cardinalis cardinalis	0	Ground Gleaner	Shrub			Х
	Song Sparrow	Melospiza melodia	0	Ground Gleaner	Ground-Herb	Х	Х	
	Swamp Sparrow	Melospiza georgiana	Ι	Ground Gleaner	Riparian Ground	Х	•	
Hirundinidae	Barn Swallow	Hirundo rustica	Ι	Air Screener	Buildings		Х	
	Tree Swallow	Tachycineata bicolor	I	Air Screener	Tree Cavity-Crevice	Х	Х	
Icteridae	Baltimore Oriole	Icterus galbula	0	Upper Canopy Gleaner	Tree-Twig			Х
	Brown-headed Cowbird	Molothrus ater	0	Ground Gleaner	Nest Parasite	х	X	х
	Common Grackle	Quiscalus quiscula	0	Ground Gleaner	Tree-Branch	x	Х	х
	Red-winged Blackbird	Agelaius phoeniceus	0	Ground Gleaner	Shrub	х	Х	
Laridae	Herring Gull	Larus argentatus	С	Coastal Scavenger	Beach-Rock-Dune		Х	
Mimidae	Brown Thrasher	Toxostoma rufum	0	Ground Gleaner	Shrub		Х	
	Gray Catbird	Dumetella carolinensis	0	Ground Gleaner	Shrub	х	Х	Х
	Northern Mockingbird	Mimus polyglottos	0	Ground Gleaner	Shrub		х	
Paridae	Carolina Chickadee	Parus carolinensis	Ι	Lower Canopy Gleaner	Tree Cavity-Crevice			Х
	Tufted Titmouse	Parus bicolor	I	Lower Canopy Gleaner	Tree Cavity-Crevice			х
Parulidae	American Redstart	, Setophaga ruticilla	I	Lower Canopy Gleaner	Tree-Twig			X
	Black-and-White Warbler	Mniotilta varia	I	Bark Gleaner	Ground-Herb			х
	Common Yellowthroat	Geothlypis trichas	Ī	Lower Canopy Gleaner	Ground-Herb	х		х
	Prothonotary Warbler	Protonotaria citrea	Ī	Ground Gleaner	Tree Cavity-Crevice	x		X
	Yellow Warbler	Dendroica petechia	I	Lower Canopy Gleaner	Shrub	x		
Phasianidae	Northern Bobwhite	Colinus virginianus	• O`	Ground Gleaner	Ground-Herb		х	
Picidae	Downy Woodpecker	Picoides pubescens	ī	Bark Gleaner	Tree Cavity-Crevice	·· ··		

.

			的發展			Hab		
Family	Common Name	Scientific Name	Guild(2)		Breeding Substrate	Pond/Stream		Forest
- ·	Northern Flicker	Colaptes auratus	I	Ground Gleaner	Tree Cavity-Crevice		X	• • X
Ploceidae	House Sparrow	Passer domesticus	G	Ground Gleaner	Buildings		X ·	
Scolopacidae	American Woodcock	Scolopax minor	, I	Ground Prober	Ground-Herb		· X	х
	Spotted Sandpiper	Actitis macularia	Ò	Riparian Gleaner	Ground-Herb	X ·		
Sittidae	White-breasted Nuthatch	Sitta carolinensis	Ι	Bark Gleaner	Tree Cavity-Crevice			Х
Strigidae	Eastern Screech-Owl	Otus asio	С	Ground Pouncer	Tree Cavity-Crevice	•	Х	
•	Great Horned Owl	Bubo virginianus	С	Ground Pouncer	Tree-Branch		х	х
Sturnidae	European Starling	Sturnus vulgaris	0	Ground Gleaner	Buildings	Χ	Х	
Sylviidae	Blue-gray Gnatcatcher	Polioptila caerulea	Ï	Upper Canopy Gleaner	Tree-Branch	· · · .		х
Thraupidae	Scarlet Tanager	Piranga olivacea	Ι	Upper Canopy Gleaner	Tree-Twig			X .
Trochilidae	Ruby-throated Hummingbird	Archilochus colubris	0	Floral Hover-Gleaner	Tree-Branch	• •.•		х
Troglodytidae	Carolina Wren	Thryothorus ludovicianus	I	Lower Canopy Gleaner	Tree Cavity-Crevice	۰. <u>-</u>	•• •	Х
	House Wren	Troglodytes aedon	I	Lower Canopy Gleaner	Tree Cavity-Crevice		ta disar	X
Furdidae	American Robin	Turdus migratorius	0	Ground Gleaner	Tree-Branch	$= \mathbf{X} \cdot \mathbf{y} \mathbf{f} \cdot \mathbf{y}$	X	x
	Eastern Bluebird	Sialia sialis	· 0	Ground Gleaner	Tree Cavity-Crevice		- X	
	Wood Thrush	Hylocichla mustelina	0	Ground Gleaner	Tree-Branch	· ·	1.	. X
Tyrannidae	Eastern Kingbird	Tyrannus tyrannus	Ι	Air Sallier	Tree-Twig	X	х	
	Eastern Phoebe	Sayornis phoebe	I	Air Sallier	Buildings	х	х	
	Eastern Wood-Pewce	Contopus virens	Ι	Air Sallier	Tree Branch			· X
Tytonidae	Common Barn-Owl	Tyto alba	С	Ground Pouncer	Buildings		X	
Vireonidae	Red-eyed Vireo	Vireo olivaceus	I	Upper Canopy Gleaner	Tree-Twig	•		X
Mammals			_		;	i		
Canidae	Coyote	Canis latrans	0	Ground Forager	Terrestrial Subsurface			Х
	Red Fox	Vulpes vulpes	0	Ground Forager	Terrestrial Subsurface		х	Х
Cervidae	White-tailed Deer	Odocoileus virginianus	Н	Ground Grazer	Ground-Herb		X	Х
Cricetidae	Meadow Vole	Microtus pennsylvanicus	H	Ground Grazer	Terrestrial Subsurface		Х	
	Muskrat	Ondatra zibethicus	H	Water Grazer	Riparian Subsurface	Χ		
•	White-footed Mouse	Peromyscus leucopus	0	Ground Forager	Terrestrial Subsurface		х	х
	Woodland Vole	Microtus pinetorum	Н	Ground Grazer	Terrestrial Subsurface			Х
Didelphidae	Virginia Opossum	Didelphis virginiana	0	Ground Forager	Tree Cavity-Crevice	Х	Х	Х

						Hab		
Family		Scientific Name				Pond/Stream		
Leporidae	Eastern Cottontail	Sylvilagus floridanus	H	Ground Grazer	Ground-Herb		Х	Х
Muridae	House Mouse	Mus musculus	0	Ground Forager	Buildings		X	
	Norway Rat	Rattus norvegicus	0	Ground Forager	Terrestrial Subsurface		X	
Mustelidae	Ermine	Mustela erminea	С	Ground Pursuer	Ground-Herb			X
	Long-tailed Weasel	Mustela frenata	С	Ground Pursuer	Terrestrial Subsurface			X
	Striped Skunk	Mephitis mephitis	0	Ground Forager	Terrestrial Subsurface		Х	X
Procyonidae	Raccoon	Procyon lotor	0	Ground Forager	Tree Cavity-Crevice	х	Х	X
Sciuridae	Red Squirrel	Tamiasciurus hudsonicus	G	Upper Canopy Forager	Tree Cavity-Crevice	•		Х
	Woodchuck	Marmota monax	ΗÌ	Ground Grazer	Terrestrial Subsurface		Х	
Soricidae	Masked Shrew	Sorex cinereus	Ι	Ground Gleaner	Terrestrial Subsurface		Х	Х
	N. Short-tailed Shrew	Blarina brevicauda	Ι	Ground Gleaner	Terrestrial Subsurface		Х	Х
Falpidae	Eastern Mole	Scalopus aquaticus	· 1	Ground Gleaner	Terrestrial Subsurface		Х	
Vespertilionidae	Big Brown Bat	Eptesicus fuscus	I	Air Hawker	Buildings	х	X	
	Little Brown Bat	Myotis lucifugus	I	Air Hawker	Buildings	х	Х	
	Red Bat	Lasiurus borealis	Ι	Air Hawker	Tree-Twig	х	х	Х
Zapodidae	Meadow Jumping Mouse	Zapus hudsonius	0	Ground Forager	Ground-Herb		Х	Х
	Woodland Jumping Mouse	Napaeozapus insignis	0	Ground Forager	Ground-Herb			х
Reptiles						· .		
Chelydridae	Snapping Turtle	Chelydra serpentina	0	Bottom Forager	Riparian Subsurface	Х		
Colubridae	Black Rat Snake	Elaphe o. obsoleta	С	Ground Ambusher	Terrestrial Subsurface			X .
	Eastern Garter Snake	Thamnophia s. sirtalis	C	Ground Ambusher	Terrestrial Subsurface	х	Х	Х
•	Eastern Hognose Snake	Heterodon platyrhinos	С	Ground Ambusher	Terrestrial Subsurface		Х	
	Eastern Kingsnake	Lampropeltis getulus	С	Ground Ambusher	Terrestrial Subsurface	X		х
	Eastern Milk Snake	Lampropeltis t. triangulum	С	Ground Ambusher	Terrestrial Subsurface		х	х
	Eastern Ribbon Snake	Thamnophis s. sauritus	С	Water Ambusher	Riparian Subsurface	Χ.		
	Northern Black Racer	Coluber c. constrictor	С	Ground Ambusher	Terrestrial Subsurface	i.	х	х
	Northern Brown Snake	Storeria d. dekayi	Ι	Ground Ambusher	Terrestrial Subsurface		х	х
	Northern Redbelly Snake	Storeria o. occipitomaculata	I	Ground Ambusher	Terrestrial Subsurface		х	X

and the second second

.

A State of the second second			Tradicional And			Hal	oitats Used	
Family	Common Name	Scientific Name	Guild(2)	Forage Method	Breeding Substrate	Pond/Stream	Grass	- Forest 🤄
	Northern Ringneck Snake	Diadophis punctatus edwardsi	С	Ground Ambusher	Terrestrial Subsurface		x	x
	Northern Water Snake	Nerodia s. sipedon	С	Water Ambusher	Riparian Subsurface	Х		х
	Rough Green Snake	Opheodrys aestivus	С	Ground Ambusher	Riparian Subsurface	Х		Х
Emydidae	Eastern Box Turtle	Terrapene c. carolina	0	Ground Forager	Terrestrial Subsurface		х	х
•	Eastern Painted Turtle	Chrysemys p. picta	0	Bottom Forager	Terrestrial Subsurface	Х		
	Red-bellied Turtle	Chrysemys rubriventris	0	Bottom Forager	Terrestrial Subsurface	Х		
	Spotted Turtle	Clemmys guttata	0	Bottom Forager	Riparian Subsurface	х		
Kinosternidae	Musk Turtle	Sternotherus odoratus	С	Bottom Forager	Riparian Subsurface	х		
	Mud Turtle	Kinosternon subrubrum	0	Bottom Forager	Riparian Subsurface	X		
Scincidae	Five-lined Skink	Eumeces fasciatus	I	Ground Ambusher	Terrestrial Subsurface			X

(1) Includes resident and breeding amphibian, avian, mammalian, and reptilian species within the areas of aquatic habitat, grassland, and forest. Migratory and wintering species are also likely to use the area; however, these species would have a lesser potential for exposure to site contaminants than species inhabiting the site for extended periods.

(2) Guilds include:

C: Carnivore I: Insectivore P: Piscivore H: Herbivore O: Omnivore G: Granivore F: Frugivore (fruit-eating)

TABLE G-3

MACROBENTHIC SURVEY RESULTS

					Samp	le ID'			
	Function al Group	SD- 9A	SD- 10-	SD- 14\	SD- 17	SD- 19	SD- 23	SD- 30	SD- 35
EPHEMEROPTERA Caenis Baetis Callibaetis Siphlonurus TOTAL	COLLECTOR COLLECTOR COLLECTOR COLLECTOR	97 0 6 0 103	34 0 6 0 40	0 0 5 1 6	1 19 0 20	9 4 3 0 16	0 0 0 0	0 0 0 0	0 1 0 . 0 1
ODONATA Enallagma Tetragoneuria Calopteryx Argia Erythemis Aeshna Anax Pantala Tramea Libellula Neurocordulia Basiaeschna TOTAL	PREDATOR PREDATOR PREDATOR PREDATOR PREDATOR PREDATOR PREDATOR PREDATOR PREDATOR PREDATOR PREDATOR	131 1 0 1 4 0 0 0 0 0 0 0 137	74 0 0 0 5 2 3 0 0 84	1 0 0 0 0 0 0 0 4 0 5	0 0 1 3 0 0 0 0 0 0 0 0 4	36 0 0 0 0 0 6 1 0 0 0 43	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1 0 0 0 0 0 1 0 0 2	16 0 8 0 0 0 0 0 0 1 4 29
HEMIPTERA Ranatra Pelocoris Belostoma Buenoa Notonecta Rheumatobates Limnogonus Callecorixia TOTAL	PREDATOR PREDATOR PREDATOR PREDATOR PREDATOR PREDATOR PREDATOR		0 4 1 2 1 0 0 9	0 0 0 0 0 0 1 1 0	0 0 1 0 0 0 1 2	0 1 0 0 0 1 0 2	0 0 0 0 0 0 0 0 0	0 1 0 0 0 6 0 7	0 0 0 5 0 6 0 11
MEGALOPTERA Sialis TOTAL	PREDATOR	1	0	0	0 0	2 2	0	0 0	0
TRICHOPTERA Ptilostomis Cheumatopsyche Occitis Polycentropus Platycentropus Limnephilus TOTAL	SHREDDER COLLECTOR PREDATOR PREDATOR PREDATOR SHREDDER	0 0 0 0 0 0 0	0 0 0 0 0 0 0	2 1 2 0 0 0 4	1 6 0 0 0 0 7	0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 2 1 4 7
LEPIDOPTERA Paraponynx TOTAL	SHREDDER	0 0	0	0 0	0 0	0 0	0 0	0	1
COLEOPTERA Dineutus Peltodytes Laccophilus Agabus Elmidae(?)	PREDATOR PREDATOR PREDATOR PREDATOR SCRAPER	0 0 0 0 0	1 1 1 0 0	0 0 0 0 0	1 4 0 0 0	0 3 0 0 0	0 0 0 0 0	0 0 0 0 1	0 0 0 6 0

TABLE G-3

An 12713 43 787 - 275 - 119 15	マンチ あいたい たいがく もい	05 300-96 60	3.035.045.0000	aler and the second	TA LANDAU AL		antination of the		The Providence
					Samp	le ID			
	Function al Group	-SD- 9A ∋:	SD- 10	SD- 14	SD- 17	SD- 19	SD- 23	SD- 30	SD. 35
TOTAL		0	3	0	5	3	0	1	6
DIPTERA Chironomidae Tipula Tabanus Bezzia Stratiomys TOTAL	COLLECTOR SHREDDER PREDATOR PREDATOR COLLECTOR	93 0 0 1 94	186 0 0 0 186	48 0 1 1 0 50	19 0 0 0 19	46 0 0 0 46	0 0 0 0 0	5 - 0 0 0 6	14 0 0 0 0 14
OLIGOCHAETA	COLLECTOR	2	4	1	2	1	0	24	15
MOLLUSCA Pisidium Planorbidae Physidae TOTAL	FILTERER SCRAPER SCRAPER	0 0 31 31	0 0 37 37	0 2 2	0 0 0 0	0 0 3 3	113 0 184 297	15 0 1 16	15 1 5 21
CRUSTACEA Orconectes Hyalella Caecidotea TOTAL	COLLECTOR COLLECTOR COLLECTOR	0 17 0 17	0 20 0 20	0 0 0 0	3 1 0 4	0 0 0 0	0 0 0 0	0 62 0 62	0 0 6 6
HIRUDINEA	PARASITE	0	1	0	0	0	1	2	. 0
HYDRACHNIDIA Rhyncholimnochares Protzia TOTAL	PARASITE PARASITE	5 0 5	0 1 1	0 0 0	1 0 1	3 0 3	0 0 0	0 0 0	0 0 0

MACROBENTHIC SURVEY RESULTS

NA = Not Available

State of New Jersey

Department of Environmental Protection

Bradley M. Campbell Commissioner

Division of Parks and Forestry Office of Natural Lands Management Natural Heritage Program P.O. Box 404 Trenton, NJ 08625-0404 Tel. #609-984-1339 Fax. #609-984-1427

January 20, 2005

Jean Oliva TRC Environmental Corporation 5 Waterside Crossing Windsor, CT 06095-1563

Re: Shieldalloy Metallurgical Corporation, 12 West Boulevard, Newfield, NJ

Dear Ms. Oliva:

Richard J. Codey

Acting Governor

Thank you for your data request regarding rare species information for the above referenced project site in Newfield Borough and Vineland City, Gloucester and Cumberland Counties.

Searches of the Natural Heritage Database and the Landscape Project (Version 2) are based on a representation of the boundaries of your project site in our Geographic Information System (GIS). We make every effort to accurately transfer your project bounds from the topographic map(s) submitted with the Request for Data into our Geographic Information System. We do not typically verify that your project bounds are accurate, or check them against other sources.

We have checked the Natural Heritage Database and the Landscape Project habitat mapping for occurrences of any rare wildlife species or wildlife habitat on the referenced site. Please see Table 1 for species list and conservation status.

Table 1 (on referenced site).

Common Name	Scientific Name	Federal Status	State Status	Grank	Srank
eastem box turtle	Terrapene carolina		Special Concern	G5	S5B

Neither the Natural Heritage Database nor the Landscape Project has records for any additional rare wildlife species or wildlife habitat within 1/4 mile of the referenced site.

We have also checked the Natural Heritage Database for occurrences of rare plant species or natural communities. The Natural Heritage Data Base does not have any records for rare plants or natural communities on or within 1/4 mile of the site.

Attached are lists of rare species and natural communities that have been documented from Gloucester and Cumberland Counties. If suitable habitat is present at the project site, these species have potential to be present.

Status and rank codes used in the tables and lists are defined in the attached EXPLANATION OF CODES USED IN NATURAL HERITAGE REPORTS.

If you have questions concerning the wildlife records or wildlife species mentioned in this response, we recommend that you visit the interactive I-Map-NJ website at the following URL, http://www.state.nj.us/dep/gis/imapnj/imapnj.htm or contact the Division of Fish and Wildlife, Endangered and Nongame Species Program.

PLEASE SEE THE ATTACHED 'CAUTIONS AND RESTRICTIONS ON NHP DATA'.

Thank you for consulting the Natural Heritage Program. The attached invoice details the payment due for processing this data request. Feel free to contact us again regarding any future data requests.

Sincerely,

Herbert a. Lord

Herbert A. Lord Data Request Specialist

cc:

Robert J. Cartica Lawrence Niles NHP File No. 05-3907551 CAUTIONS AND RESTRICTIONS ON NATURAL HERITAGE DATA

The quantity and quality of data collected by the Natural Heritage Program is dependent on the research and observations of many individuals and organizations. Not all of this information is the result of comprehensive or site-specific field surveys. Some natural areas in New Jersey have never been thoroughly surveyed. As a result, new locations for plant and animal species are continuously added to the database. Since data acquisition is a dynamic, ongoing process, the Natural Heritage Program cannot provide a <u>definitive</u> statement on the presence, absence, or condition of biological elements in any part of New Jersey. Information supplied by the Natural Heritage Program summarizes existing data known to the program at the time of the request regarding the biological elements on the elements or locations in question. They should never be regarded as final statements on the elements or areas being considered, nor should they be substituted for on-site surveys required for environmental assessments. The attached data is provided as one source of information to assist others in the preservation of natural diversity.

This office cannot provide a letter of interpretation or a statement addressing the classification of wetlands as defined by the Freshwater Wetlands Act. Requests for such determination should be sent to the DEP Land Use Regulation Program, P.O. Box 401, Trenton, NJ 08625-0401.

The Landscape Project was developed by the Division of Fish & Wildlife, Endangered and Nongame Species Program to map critical habitat for rare animal species. Some of the rare species data in the Landscape Project is in the Natural Heritage Database, while other records were obtained from other sources. Natural Heritage Database response letters will list <u>all</u> species (if any) found during a search of the Landscape Project. However, any reports that are included with the response letter will only reference specific records if they are in the Natural Heritage Database. This office. cannot answer any inquiries about the Landscape Project. All questions should be directed to the DEP Division of Fish and Wildlife, Endangered and Nongame Species Program, P.O. Box 400, Trenton, NJ 08625-0400.

This cautions and restrictions notice must be included whenever information provided by the Natural Heritage Database is published.

69

NJ Department of Environmental Protection Division of Parks and Forestry Natural Lands Management

EXPLANATIONS OF CODES USED IN NATURAL HERITAGE REPORTS

FEDERAL STATUS CODES

The following U.S. Fish and Wildlife Service categories and their definitions of endangered and threatened plants and animals have been modified from the U.S. Fish and Wildlife Service (F.R. Vol. 50 No. 188; Vol. 61, No. 40; F.R. 50 CFR Part 17). Federal Status codes reported for species follow the most recent listing.

	LE	Taxa formally listed as endangered.	•		:
	LT	Taxa formally listed as threatened.	. ·		•
-	PE	Taxa already proposed to be formally listed as endangered.	•	· · · ·	
	РТ	Taxa already proposed to be formally listed as threatened.	•		-
	•		. •		•
	c [·]	Taxa for which the Service currently has on file sufficient information	n on biological vulner	rability and threat(s) to suppor	rt proposals to list
	•	them as endangered or threatened species.	· .		
	S/A	Similarity of appearance species.		,	

STATE STATUS CODES

Ε

11

Two animal lists provide state status codes after the Endangered and Nongame Species Conservation Act of 1973 (NSSA 23:2A-13 et. seq.): the list of endangered species (N.J.A.C. 7:25-4.13) and the list defining status of indigenous, nongame wildlife species of New Jersey (N.J.A.C. 7:25-4.17(a)). The status of animal species is determined by the Nongame and Endangered Species Program (ENSP). The state status codes and definitions provided reflect the most recent lists that were revised in the New Jersey Register, Monday, June 3, 1991.

D Declining species-a species which has exhibited a continued decline in population numbers over the years.

Endangered species-an endangered species is one whose prospects for survival within the state are in immediate danger due to one or many factors – a loss of habitat, over exploitation, predation, competition, disease. An endangered species requires immediate assistance or extinction will probably follow.

EX Extirpated species-a species that formerly occurred in New Jersey, but is not now known to exist within the state.

Introduced species-a species not native to New Jersey that could not have established itself here without the assistance of man.

INC Increasing species-a species whose population has exhibited a significant increase, beyond the normal range of its life cycle, over a long term period.

Threatened species-a species that may become endangered if conditions surrounding the species begin to or continue to deteriorate.

Peripheral species-a species whose occurrence in New Jersey is at the extreme edge of its present natural range.

Stable species-a species whose population is not undergoing any long-term increase/decrease within its natural cycle.

Undetermined species-a species about which there is not enough information available to determine the status.

Status for animals separated by a slash(/) indicate a duel status. First status refers to the state breeding population, and the second status refers to the migratory or winter population.

Plant taxa listed as endangered are from New Jersey's official Endangered Plant Species List NJ.S.A. 131B-15.151 et seq.

E Native New Jersey plant species whose survival in the State or nation is in jeopardy.

REGIONAL STATUS CODES FOR PLANTS

LP Indicates taxa listed by the Pinelands Commission as endangered or threatened within their legal jurisdiction. Not all species currently tracked by the Pinelands Commission are tracked by the Natural Heritage Program. A complete list of endangered and threatened Pineland species is included in the New Jersey Pinelands Comprehensive Management Plan.

EXPLANATION OF GLOBAL AND STATE ELEMENT RANKS

The Nature Conservancy has developed a ranking system for use in identifying elements (rare species and natural communities) of natural diversity most endangered with extinction. Each element is ranked according to its global, national, and state (or subnational in other countries) rarity. These ranks are used to prioritize conservation work so that the most endangered elements receive attention first. Definitions for element ranks are after The Nature Conservancy (1982: Chapter 4, 4.1–1 through 4.4.1.3–3).

GLOBAL ELEMENT RANKS

51

	GI	Critically imperiled globally because of extreme rarity (5 or fewer occurrences or very few remaining individuals or acres) or because of
		some factor(s) making it especially vulnerable to extinction.
\bigcirc	с2	Imperiled globally because of rarity (6 to 20 occurrences or few remaining individuals or acres) or because of some factor(s) making it very vulnerable to extinction throughout its range.
	Ğ3	Either very rare and local throughout its range or found locally (even abundantly at some of its locations) in a restricted range (e.g., a single western state, a physiographic region in the East) or because of other factors making it vulnerable to extinction throughout it's range; with the number of occurrences in the range of 21 to 100.
•••••	G4	Apparently secure globally; although it may be quite rare in parts of its range, especially at the periphery.
	GS	Demonstrably secure globally; although it may be quite rare in parts of its range, especially at the periphery.
	СН	Of historical occurrence throughout its range i.e., formerly part of the established biota, with the expectation that it may be rediscovered
	GU.	Possibly in peril range-wide but status uncertain; more information needed.
	CX	Believed to be extinct throughout range (e.g., passenger pigeon) with virtually no likelihood that it will be rediscovered.
	G?	Species has not yet been ranked.
STATE E		RANKS

Critically imperiled in New Jersey because of extreme rarity (5 or fewer occurrences or very few remaining individuals or acres). Elements so ranked are often restricted to very specialized conditions or habitats and/or restricted to an extremely small geographical area of the state. Also included are elements which were formerly more abundant, but because of habitat destruction or some other critical factor of its biology, they have been demonstrably reduced in abundance. In essence, these are elements for which, even with intensive searching, sizable additional occurrences are unlikely to be discovered.

Imperiled in New Jersey because of rarity (6 to 20 occurrences). Historically many of these elements may have been more frequent but **S2** are now known from very few extant occurrences, primarily because of habitat destruction. Diligent searching may yield additional occurrences. **S**3 Rare in state with 21 to 100 occurrences (plant species in this category have only 21 to 50 occurrences). Includes elements which are . widely distributed in the state but with small populations/acreage or elements with restricted distribution, but locally abundant. Not yet imperiled in state but may soon be if current trends continue. Searching often yields additional occurrences. Apparently secure in state, with many occurrences. **S4** Demonstrably secure in state and essentially ineradicable under present conditions. S5 SA Accidental in state, including species (usually birds or butterflies) recorded once or twice or only at very great intervals, hundreds or even thousands of miles outside their usual range; a few of these species may even have bred on the one or two occasions they were recorded; examples include European strays or western birds on the East Coast and vice-versa. Elements that are clearly exotic in New Jersey including those taxa not native to North America (introduced taxa) or taxa deliberately or · SE accidentally introduced into the State from other parts of North America (adventive taxa). Taxa ranked SE are not a conservation priority (viable introduced occurrences of G1 or G2 elements may be exceptions). SH Elements of historical occurrence in New Jersey. Despite some searching of historical occurrences and/or potential habitat; no extant occurrences are known. Since not all of the historical occurrences have been field surveyed, and unsearched potential habitat remains, historically ranked taxa are considered possibly extant, and remain a conservation priority for continued field work. Element has potential to occur in New Jersey, but no occurrences have been reported. ŚP SR Elements reported from New Jersey, but without persuasive documentation which would provide a basis for either accepting or rejecting the report. In some instances documentation may exist, but as of yet, its source or location has not been determined. SRF Elements erroneously reported from New Jersey, but this error persists in the literature. Elements believed to be in peril but the degree of rarity uncertain. Also included are rare taxa of uncertain taxonomical standing. More SU . information is needed to resolve rank. SX Elements that have been determined or are presumed to be extirpated from New Jersey. All historical occurrences have been searched and a reasonable search of potential habitat has been completed. Extirpated taxa are not a current conservation priority. SXC Elements presumed extirpated from New Jersey, but native populations collected from the wild exist in cultivation. SZ Not of practical conservation concern in New Jersey, because there are no definable occurrences, although the taxon is native and appears regularly in the state. An SZ rank will generally be used for long distance migrants whose occurrences during their migrations are too irregular (in terms of repeated visitation to the same locations), transitory, and dispersed to be reliably identified, mapped and protected. In other words, the migrant regularly passes through the state, but enduring, mappable element occurrences cannot be defined.

Typically, the SZ rank applies to a non-breeding population (N) in the state – for example, birds on migration. An SZ rank may in a few instances also apply to a breeding population (B), for example certain lepidoptera which regularly die out every year with no significant return migration.

Page 3

Although the SZ rank typically applies to migrants, it should not be used indiscriminately. Just because a species is on migration does not mean it receives an SZ rank. SZ will only apply when the migrants occur in an irregular, transitory and dispersed manner. Refers to the breeding population of the element in the state. B Refers to the non-breeding population of the element in the state. N Element ranks containing a "T" indicate that the infraspecific taxon is being ranked differently than the full species. For example Stachys т palustris var. homotricha is ranked "GST? SH" meaning the full species is globally secure but the global rarity of the var. homotricha has not been determined; in New Jersey the variety is ranked historic. 0 Elements containing a "Q" in the global portion of its rank indicates that the taxon is of questionable, or uncertain taxonomical standing, e.g., some authors regard it as a full species, while others treat it at the subspecific level. .1 Elements documented from a single location. To express uncertainty, the most likely rank is assigned and a question mark added (e.g., G2?). A range is indicated by combining two ranks (e.g., Note: G1G2, S1S3). **IDENTIFICATION CODES** codes refer to whether the identification of the species or community has been checked by a reliable individual and is indicative of significant habitat. Y Identification has been verified and is indicative of significant habitat. BLANK Identification has not been verified but there is no reason to believe it is not indicative of significant habitat. ? Either it has not been determined if the record is indicative of significant habitat or the identification of the species or community may be confusing or disputed.

.

.

Page

30 AUG 2004

1

**

CUMBERLAND COUNTY RARE SPECIES AND NATURAL COMMUNITIES PRESENTLY RECORDED IN THE NEW JERSEY NATURAL HERITAGE DATABASE

	NAME	COMMON NAME	FEDERAL STATUS	STATE STATUS	REGIONAL STATUS	GRANK	SRANK
** Vertebrates					,		
	ACCIPITER COOPERII	COOPER'S HAWK		T/T		G5	S3B, S4N
	AMBYSTOMA TIGRINUM TIGRINUM	EASTERN TIGER SALAMANDER		E		G5T5	S2
	AMMODRAMUS HENSLOWII	HENSLOW'S SPARROW		E		G4	SIB
	Ammodramus Savannarum	GRASSHOPPER SPARROW		T/S		G5	S2B
	ARDEA HERODIAS	GREAT BLUE HERON		s/s		G5	S2B, S4N
	BUTEO LINEATUS	RED-SHOULDERED HAWK		E/T		G5	S1B, S2N
	CALIDRIS CANUTUS	RED KNOT	•	T		G5	S3N
	CIRCUS CYANEUS	NORTHERN HARRIER		E/U	•	G\$	S1B, S3N
	CISTOTHORUS PLATENSIS	SEDGE WREN		E	•	G5	S1B
	CROTALUS HORRIDUS HORRIDUS	TIMBER RATTLESNAKE		E .		G4T4	52
	ELAPHE GUTTATA GUTTATA	CORN SNAKE		E		G5T5	Sl
	EUMECES FASCIATUS	FIVE-LINED SKINK		U		G5	S3
	FALCO PEREGRINUS	PEREGRINE FALCON		E		G4	S1B, S7N
	HALIAEETUS LEUCOCEPHALUS	BALD EAGLE	LT	E		G4	S1B, S2N
	HYLA ANDERSONII	PINE BARRENS TREEFROG		T		G4	S3
	HYLA CHRYSOSCELIS	COPE'S GRAY TREEFROG		E		G5	S2
	IXOBRYCHUS EXILIS	LEAST BITTERN		D/S		G5	S3B
	LATERALLUS JAMAICENSIS	BLACK RAIL		T/T		G4	S2B
	MELANERPES ERYTHROCEPHALUS	RED-HEADED WOODPECKER		T/T		G5	S2B, S2N
	NOTROPIS CHALYBAEUS	IRONCOLOR SHINER				G4	S1S2
	PANDION HALIAETUS	OSPREY		T/T		Ġ5	S2B
	PASSERCULUS SANDWICHENSIS	SAVANNAH SPARROW		T/T		G5	S2B, S4N
	PITUOPHIS MELANOLEUCUS	NORTHERN PINE SNAKE		T		G4T4	S3
	MELANOLEUCUS						
	POOECETES GRAMINEUS	VESPER SPARROW		Ē		G5	S1B, S2N
	STERNA ANTILLARUM	LEAST TERN		E		G4	SIB
	STRIX VARIA	BARRED OWL		T/T		GS	S3B
	SYNAPTOMYS COOPERI	SOUTHERN BOG LEMMING		υ		G5	S2
	VIRGINIA VALERIAE VALERIAE	EASTERN SMOOTH EARTH SNAKE		υ		G5T5	ຣບ

CUMBERLAND COUNTY RARE SPECIES AND NATURAL COMMUNITIES PRESENTLY RECORDED IN THE NEW JERSEY NATURAL HERITAGE DATABASE

.

	·					•		
	NAME	COMMON NAME	FEDERAL	STATE	REGIONAL	GRANK	SRANK	
			STATUS	STATUS	STATUS			
*** Ecosystems	· · ·		ι,					
	BRACKISH TIDAL MARSH COMPLEX	BRACKISH TIDAL MARSH COMPLEX				G4	S27	
	CAREX STRIATA VAR BREVIS	WALTER'S SEDGE COASTAL PLAIN				G7	S1S3	
	HERBACEOUS VEGETATION	INTERMITTENT POND HERBACEOUS						
		VEGETATION					.*	
	COASTAL PLAIN INTERMITTENT POND	VERNAL POND				G3?	5253	
	FRESHWATER TIDAL MARSH COMPLEX	FRESHWATER TIDAL MARSH COMPLEX				G4?	S3?	•
	PANICUM RIGIDULUM VAR	REDTOP PANICGRASS - ROSETTE	•			G2	S2	· . ·
	PUBESCENS - DICHANTHELIUM SP	GRASS / SPHAGNUM MOSS COASTAL						
	/ SPHAGNUM SPP HERBACEOUS	PLAIN INTERMITTENT POND						
	VEGETATION :	HERBACEOUS VEGETATION	-					
	PANICUM VIRGATUM HERBACEOUS	SWITCHGRASS COASTAL PLAIN			•	G7	S17	
	VEGETATION	INTERMITTENT POND HERBACEOUS		. •		•		
	· ·	VEGETATION						
	RHEXIA VIRGINICA - PANICUM	VIRGINIA MEADOW-BEAUTY - WARTY				G2G3	S1S3	•• .
	VERRUCOSUM HERBACEOUS	PANICGRASS COASTAL PLAIN		-				•
	VEGETATION	INTERMITTENT POND HERBACEOUS						
		VEGETATION						
*** Invertebrates								
	ANAX LONGIPES	COMET DARNER		· .		G5	S2S3	
	APAMEA APAMIFORMIS	A NOCTUID MOTH				G4	5254	
	APAMEA INEBRIATA	A NOCTUID MOTH				G3G4	S2S4	
	BOLORIA SELENE MYRINA	A SILVER-BORDERED FRITILLARY		T	<i>·</i> .	G5T5	S2	
·	CALLOPHRYS HENRICI	HENRY'S ELFIN				G5	S354	
	CALLOPHRYS HESSELI	HESSEL'S HAIRSTREAK			•	G3G4	S354	•
	CALLOPHRYS IRUS .	FROSTED ELFIN		т		G3	S2S3	
	CATOCALA CONSORS SORSCONI	THE CONSORT UNDERWING			•	G4T2T4	5153 [.]	

CUMBERLAND COUNTY RARE SPECIES AND NATURAL COMMUNITIES PRESENTLY RECORDED IN THE NEW JERSEY NATURAL HERITAGE DATABASE

NAME	Common NAME	FEDERAL	STATE	REGIONAL	GRANK	SRANK
		STATUS	STATUS	STATUS		
CATOCALA PRETIOSA PRETIOSA	PRECIOUS UNDERWING				G4T2T3	S2S3
CELITHEMIS MARTHA	MARTHA'S PENNANT				G4	S3S4
CELITHEMIS VERNA	DOUBLE-RINGED PENNANT				G5	S2
CHLOROPTERYX TEPPERARIA	ANGLE WINGED EMERALD MOTH			,	G4	SU
CISTHENE KENTUCKIENSIS	KENTUCKY LICHEN MOTH				G4	SH
ENALLAGMA PICTUM	SCARLET BLUET				G3	S3
ENALLAGMA RECURVATUM	PINE BARRENS BLUET				G3	S3 .
EUSARCA FUNDARIA	A GEOMETRID MOTH				G4	S2S3
FARONTA RUBRIPENNIS	PINK STREAK				G3G4	S3
GOMPHUS APOMYIUS	BANNER CLUBTAIL				G4	S1
HEMARIS GRACILIS	GRACEFUL CLEARWING				G3G4	SU
HESPERIA ATTALUS SLOSSONAE	DOTTED SKIPPER				G3G4T3	S2S3
HESPERIA LEONARDUS	LEONARD'S SKIPPER				G4	S2
IDAEA OBFUSARIA	RIPPLED WAVE				G4G5	S2S4
IDAEA VIOLACEARIA	A GEOMETRID MOTH				G4	S1S3
LIBELLULA AURIPENNIS	GOLDEN-WINGED SKIMMER				G5	S1S2
LIBELLULA AXILENA	BAR-WINGED SKIMMER				G5	\$3B, \$2N
LIGUMIA NASUTA	EASTERN PONDMUSSEL		T		G4G5	S1
LITHOPHANE LEMMERI	LEMMER'S NOCTUID MOTH				G3G4	S2
LITHOPHANE LEPIDA ADIPEL	A NOCTUID MOTH				G4T4	S3S4
LYCAENA HYLLUS	BRONZE COPPER		Е		G5	S2
MACROCHILO HYPOCRITALIS	A NOCTUID MOTH				G4	S3S4
MACROCHILO SANTERIVALIS	A NOCTUID MOTH				G3G4	S1S3
MACROCHILO SP 1	A NOCTUID MOTH				G3	S3
MEROPLEON TITAN	A NOCTUID MOTH				G2G4	S1
METARRANTHIS PILOSARIA	COASTAL BOG METARRANTHIS				G3G4	S3S4
METARRANTHIS SP 1	A GEOMETRID MOTH				G3	S2
PAPAIPEMA STENOCELIS	CHAIN FERN BORER MOTH				G4	S3
PROBLEMA BULENTA	RARE SKIPPER				G2G3	S2
SOMATOCHLORA PROVOCANS	TREETOP EMERALD				G4	S2S3

.

4

**

.

CUMBERLAND COUNTY RARE SPECIES AND NATURAL COMMUNITIES PRESENTLY RECORDED IN THE NEW JERSEY NATURAL HERITAGE DATABASE

.

		•						
	NAME	COMMON NAME	FEDERAL	STATE	REGIONAL	GRANK	SRANK	
			STATUS	STATUS	STATUS			
	SPEYERIA IDALIA	REGAL FRITILLARY				G3	SH	
	SYMPETRUM AMBIGUUM	BLUE-FACED MEADOWHAWK				G5	S2	
	TARACHIDIA SEMIFLAVA	HALF YELLOW MOTH				G4	5254	
*** Other types						•		
	BALD EAGLE WINTERING SITE	BALD EAGLE WINTERING SITE				G7	S?	
	MIGRATORY SHOREBIRD	MIGRATORY SHOREBIRD				G7	S?	
	CONCENTRATION SITE	CONCENTRATION SITE						
	PRIMEVAL FOREST	PRIMEVAL FOREST				G3?	S1	
•	· · · · · · · · · · · · · · · · · · ·	and the second						
*** Vascular plants		· , · , · ,				- 	÷	
	AESCHYNOMENE VIRGINICA	SENSITIVE JOINT-VETCH	LT	Ε.	LP	G2	S1.	
	AGASTACHE SCROPHULARIIFOLIA	PURPLE GIANT-HYSSOP	••••			G4 ·	S2	
	ARETHUSA BULBOSA	DRAGON MOUTH	.*		·	G4	S2 .	
	ARISTIDA VIRGATA	WAND-LIKE THREE-AWN GRASS				G5T4T5 .	S2	
	ASCLEPIAS RUBRA	RED MILKWEED			LP	G4G5	S2	
•	ASCLEPIAS VARIEGATA	WHITE MILKWEED			•	GS	S2	
	ASTER CONCOLOR	EASTERN SILVERY ASTER			LP	G4?	S2	
	BIDENS BIDENTOIDES .	ESTUARY BURR-MARIGOLD				G3	S2	
	BOLTONIA ASTEROIDES VAR	ASTER-LIKE BOLTONIA				G5T4T5	S2	
,	ASTEROIDES	. ·						
	CALYSTEGIA SPITHAMAEA	ERECT BINDWEED		E		G4G5T4T5	. 51	
	CAREX BARRATTII	BARRATT'S SEDGE			LP	G4	S4	
	CAREX MITCHELLIANA .	MITCHELL'S SEDGE			•	G3G4	S2	
	CAREX TYPHINA	CAT-TAIL SEDGE				G5	S3	
	CAREX UTRICULATA	BOTTLE-SHAPED SEDGE				G5	S2	
	CHENOPODIUM PRATERICOLA	NARROW-LEAF GOOSEFOOT				G5	S2	
	CHIONANTHUS VIRGINICUS	FRINGETREE				G5	S3	
	CLITORIA MARIANA	BUTTERFLY-PEA		E		G5 .	S1	
	COREOPSIS ROSEA	ROSE-COLOR COREOPSIS			LP	G3	S2	
						•		

CUMBERLAND COUNTY RARE SPECIES AND NATURAL COMMUNITIES PRESENTLY RECORDED IN THE NEW JERSEY NATURAL HERITAGE DATABASE

					• •		
	NAME	COMMON NAME	FEDERAL	STATE	REGIONAL	GRANK	SRANK
			STATUS	STATUS	STATUS		
	CROTON WILLDENOWII	ELLIPTICAL RUSHFOIL			LP	G5	S2
•	CUSCUTA CORYLI	HAZEL DODDER				G5	S2
	CUSCUTA POLYGONORUM	SMARTWEED DODDER				G5 ·	\$2
	CYPERUS ENGELMANNII	ENGELMANN'S FLAT SEDGE				G4Q	S2
	CYPERUS POLYSTACHYOS	COAST FLAT SEDGE		E		G5T5	Sl
	DESMODIUM LAEVIGATUM	SMOOTH TICK-TREFOIL				G5	\$3
	DESMODIUM STRICTUM	PINELAND TICK-TREFOIL			LP	G4	S2
	DESMODIUM VIRIDIFLORUM	VELVETY TICK-TREEFOIL				G57	S2
	DIOSCOREA VILLOSA VAR	HAIRY-STEM WILD YAM				G4G5T3Q	S2
	HIRTICAULIS					•	
	ELATINE AMERICANA	AMERICAN WATERWORT				G4	S2
	ELATINE MINIMA	SMALL WATERWORT				G5	\$2
	ELEOCHARIS EQUISETOIDES	KNOTTED SPIKE-RUSH		E	LP	G4	S1
	ELEOCHARIS MELANOCARPA	BLACK-FRUIT SPIKE-RUSH		Е		G4	S1
	ELEOCHARIS QUADRANGULATA	ANGLED SPIKE-RUSH				G4	S2
	ELEOCHARIS TORTILIS	TWISTED SPIKE-RUSH		E		G5	S1
	ERAGROSTIS HIRSUTA	STOUT LOVE GRASS				G5	S1.1
	ERIOCAULON PARKERI	PARKER'S PIPEWORT				G3	\$2
	ERIOPHORUM TENELLUM	ROUGH COTTON-GRASS		E		G5	S1
	EUPATORIUM AROMATICUM VAR	SMALLER WHITE SNAKEROOT				GSTS	S1
	AROMATICUM						
	EUPATORIUM CAPILLIFOLIUM	DOG-FENNEL THOROUGHWORT		E		G5	S1
	EUPATORIUM RESINOSUM	PINE BARREN BONESET		Е	LP	G3.	S2
	GALACTIA VOLUBILIS	DOWNY MILK-PEA		E		G5	SH
	GENTIANA AUTUMNALIS	PINE BARREN GENTIAN			LP	G3	53
	GENTIANA VILLOSA	STRIPED GENTIAN				G4	SX.1
	GNAPHALIUM HELLERI	SMALL EVERLASTING		E		G4G5T3?	SH
	GRATIOLA VIRGINIANA	ROUND-FRUIT HEDGE-HYSSOP		• •		G5	S2
	HELONIAS BULLATA	SWAMP-PINK	LT	Е	LP	G3	S3
	HYPERICUM ADPRESSUM	BARTON'S ST. JOHN'S-WORT		Е		G2G3	S2

6

<u>}.</u>

.

CUMBERLAND COUNTY RARE SPECIES AND NATURAL COMMUNITIES PRESENTLY RECORDED IN THE NEW JERSEY NATURAL HERITAGE DATABASE

NAME	Common NAME	FEDERAL STATUS	STATE STATUS	REGIONAL STATUS	GRANK	SRANK
		•				
HYPERICUM GYMNANTHUM	CLASPING-LEAF ST. JOHN'S-WORT			. *	G4	S1 (
JUNCUS CAESARIENSIS	NEW JERSEY RUSH		E	LP	G2	S2.
LESPEDEZA STUEVEI ·	STUEVE'S DOWNY BUSH-CLOVER				G4?	S2
LOBELIA CANBYI	CANBY'S LOBELIA			LP	GÅ	S3
MALUS ANGUSTIFOLIA VAR	SPINY WILD CRABAPPLE				G57T2T4	S2
PUBERULA	·					
MUHLENBERGIA TORREYANA	PINE BARREN SMOKE GRASS			LP	G3	S3
MYRIOPHYLLUM PINNATUM	· CUTLEAF WATER-MILFOIL		E		GS	S1
MYRIOPHYLLUM VERTICILLATUM	WHORLED WATER-MILFOIL		E		G5 -	SH
NUPHAR MICROPHYLLUM	SMALL YELLOW POND-LILY		E .		G5T4T5	SH :
NYMPHOIDES CORDATA	FLOATINGHEART			LP	G5 ·	S3
OBOLARIA VIRGINICA	VIRGINIA PENNYWORT				G5	S2 、
ONOSMODIUM VIRGINIANUM	VIRGINIA FALSE-GROMWELL		E	•	G4	S1
OPHIOGLOSSUM VULGATUM VAR	SOUTHERN ADDER'S-TONGUE		E .		G5	S1 🖉
PYCNOSTICHUM	· · · · · · · · · · · · · · · · · · ·					
PANICUM HEMITOMON	MAIDEN-CANE		·	LP .	G5?	S2
PANICUM WRIGHTIANUM	WRIGHT'S PANIC GRASS	•			G4	S2
PASPALUM DISSECTUM	MUDBANK CROWN GRASS				G47	S2
PENSTEMON LAEVIGATUS	SMOOTH BEARDTONGUE		. E		G5	S1
PHORADENDRON LEUCARPUM	AMERICAN MISTLETOE			LP	G5 .	S2
PINUS SEROTINA	POND PINE				G5	S2
PINUS TAEDA	LOBLOLLY PINE			•	G5	S2
PLATANTHERA CILIARIS	YELLOW FRINGED ORCHID			LP	G5	S2 -
Polygala incarnata	PINK MILKWORT		Е		G5	SH
POLYGALA MARIANA	MARYLAND MILKWORT			LP	GS	S2
POLYGALA POLYGAMA	RACEMED MILKWORT				G5	S2 ·
POLYGONUM DENSIFLORUM	DENSE-FLOWER KNOTWEED		E		G5 Č	S1
POTAMOGETON OAKESIANUS	OAKES' PONDWEED				G4	S2
PRENANTHES AUTUMNALIS	PINE BARREN RATTLESNAKE-ROOT			LP	G4G5	S2
PRUNUS ANGUSTIFOLIA	CHICKASAW PLUM		E		G5T4T5	S2
	-					

7

CUMBERLAND COUNTY RARE SPECIES AND NATURAL COMMUNITIES PRESENTLY RECORDED IN THE NEW JERSEY NATURAL HERITAGE DATABASE

NAME	COMMON NAME	FEDERAL	STATE	REGIONAL	GRANK	SRANK
		STATUS	STATUS	STATUS		•
PUCCINELLIA FASCICULATA	SALTMARSH ALKALI GRASS				G3G5	\$ 2
QUERCUS LYRATA	OVERCUP OAK		E	•	G5	si
QUERCUS NIGRA	WATER OAK		E		G5	S1
RHODODENDRON ATLANTICUM	DWARF AZALEA		E		G4G5	S1
RHYNCHOSPORA MICROCEPHALA	SMALL-HEAD BEAKED-RUSH		E		G5T5	S1
RHYNCHOSPORA NITENS	SHORT-BEAKED BALD-RUSH				G4?	\$2
RHYNCHOSPORA PALLIDA	PALE BEAKED-RUSH				G3	S3
RUELLIA CAROLINIENSIS	CAROLINA PETUNIA		E		G5	SH
SAGITTARIA SUBULATA	AWL-LEAF ARROWHEAD				G4	\$2
SCHIZAEA PUSILLA	CURLY GRASS FERN			LP	G3	S3
SCHOENOPLECTUS NOVAE-ANGLIAE	NEW ENGLAND BULRUSH				G5	\$2
SCHWALBEA AMERICANA	CHAFFSEED	LE	Е	LP '	G2	S1
SCIRPUS MARITIMUS	SALTMARSH BULRUSH		E		G5	sh
SCLERIA MINOR	SLENDER NUT-RUSH			LP	G4	S4
SENECIO TOMENTOSUS	WOOLLY RAGWORT				G4G5	S2
SETARIA MAGNA	GIANT FOX-TAIL				G4G5	S2
SISYRINCHIUM FUSCATUM	SAND-PLAIN BLUE-EYED GRASS				G5?	S2
SPIRANTHES ODORATA	FRAGRANT LADIES'-TRESSES				G5	S2
SPOROBOLUS COMPOSITUS VAR	LONG-LEAF RUSH-GRASS				G5T5	S2
COMPOSITUS						
STACHYS HYSSOPIFOLIA	HYSSOP HEDGE-NETTLE				GS .	S2
STYLOSANTHEŚ BIFLORA	PENCIL-FLOWER	•			G5	S3
TRICHOSTEMA SETACEUM	NARROW-LEAF BLUECURLS				G5	S2
UTRICULARIA PURPUREA	PURPLE BLADDERWORT			LP	G5	S3
VALERIANELLA RADIATA	BEAKED CORNSALAD		Е		G5	S1
VERNONIA GLAUCA	BROAD-LEAF IRONWEED		E		G5	S1
VIOLA BRITTONIANA VAR	BRITTON'S COAST VIOLET				G4G5T4T5	S3
BRITTONIANA						

179 Records Processed

GLOUCESTER COUNTY RARE SPECIES AND NATURAL COMMUNITIES PRESENTLY RECORDED IN THE NEW JERSEY NATURAL HERITAGE DATABASE

•	· · ·					•	
	NAME	COMMON NAME	FEDERAL	STATE	REGIONAL	GRANK	SRANK
		•	STATUS	STATUS	STATUS		
** Vertebrates	•	X			•		
	ACCIPITER COOPERII	COOPER'S HAWK		T/T		G5	S3B, S4N
	AMBYSTOMA TIGRINUM TIGRINUM	EASTERN TIGER SALAMANDER		E		G\$T5	S2
	AMMODRAMUS HENSLOWII	HENSLOW'S SPARROW		E		G4	SIB
	AMMODRAMUS SAVANNARUM	GRASSHOPPER SPARROW		T/S		G5	S2B
	ARDEA HERODIAS	GREAT BLUE HERON		s/s		G5	S2B,S4N
	BARTRAMIA LONGICAUDA	UPLAND SANDPIPER		E		G5	SIB
	BUTEO LINEATUS	RED-SHOULDERED HAWK		E/T		G5	S1B,S2N
	CLEMMYS INSCULPTA	WOOD TURTLE		T		G4	S3
•	CLEMMYS MUHLENBERGII	BOG TURTLE	LT	E		G3	S2
	DOLICHONYX ORYZIVORUS	BOBOLINK		T/T		G5	S2B
 An end of the second sec	FALCO PEREGRINUS	PEREGRINE FALCON		E		G4	S1B, S7N
	HALIAEETUS LEUCOCEPHALUS	BALD EAGLE	LT	E		G4	S1B, S2N
•	HYLA ANDERSONII	PINE BARRENS TREEFROG	•	T		G4	S3
•	MELANÉRPES ERYTHROCEPHALUS	RED-HEADED WOODPECKER	• .	T/T		G5	S2B, S2N
	PANDION HALIAETUS	OSPREY		T/T		G5	S2B
	PITUOPHIS MELANOLEUCUS	NORTHERN PINE SNAKE		T	•	G4T4	S3
	MELANOLEUCUS						
	PODILYMBUS PODICEPS	PIED-BILLED GREBE		E/S		G5	S1B, S3N
	POOECETES GRAMINEUS	VESPER SPARROW		E		GS	S1B, S2N
	STRIX VARIA	BARRED OWL		T/T		G5	S3B
•	· · · · ·						•
** Ecosystems	•	•					
	CLADIUM MARISCOIDES	TWIG-RUSH COASTAL PLAIN				G3	S2
	HERBACEOUS VEGETATION	INTERMITTENT POND HERBACEOUS				•	

VEGETATION

GLOUCESTER COUNTY RARE SPECIES AND NATURAL COMMUNITIES PRESENTLY RECORDED IN THE NEW JERSEY NATURAL HERITAGE DATABASE

	NAME	COMMON NAME	FEDERAL	STATE STATUS	REGIONAL STATUS	GRANK	SRANK
	ELEOCHARIS (OLIVACEA,	SPIKERUSH (SMALLFRUIT, BRIGHT				G2	S2
	MICROCARPA, ROBBINSII) -	GREEN, ROBBIN'S) - YELLOWEYED					
	XYRIS (DIFFORMIS VAR	GRASS (BOG, SMALL'S) COASTAL					
	DIFFORMIS, SMALLIANA)	PLAIN INTERMITTENT POND					
	HERBACEOUS VEGETATION	HERBACEOUS VEGETATION					
	FRESHWATER TIDAL MARSH COMPLEX	FRESHWATER TIDAL MARSH COMPLEX				G4?	S37
•	RHEXIA VIRGINICA - PANICUM	VIRGINIA MEADOW-BEAUTY - WARTY				G2G3	S1S3
	VERRUCOSUM HERBACEOUS	PANICGRASS COASTAL PLAIN					
	VEGETATION	INTERMITTENT POND HERBACEOUS					
		VEGETATION					
*** Invertebrates							
	ALASMIDONTA UNDULATA	TRIANGLE FLOATER		т		G4	S3
	CATOCALA PRETIOSA PRETIOSA	PRECIOUS UNDERWING				Ġ4T2T3	S2S3
	CELITHEMIS MARTHA	MARTHA'S PENNANT				G4	S3S4
	ENALLAGMA PICTUM	SCARLET BLUET				G3	· \$3
	FARONTA RUBRIPENNIS	PINK STREAK				G3G4	S3
	GOMPHUS APOMYIUS	BANNER CLUBTAIL				G4	S1
	ITAME SP 1	BARRENS ITAME				G3	S3
	LAMPSILIS CARIOSA	YELLOW LAMPMUSSEL		т		G3G4	S1
	LAMPSILIS RADIATA	EASTERN LAMPMUSSEL		т		G5	S3 -
	LEPTODEA OCHRACEA	TIDEWATER MUCKET		T		G4	S1
	LIBELLULA AURIPENNIS	GOLDEN-WINGED SKIMMER				G5	S1S2
	LIGUMIA NASUTA	EASTERN PONDMUSSEL		T		G4G5	S1
	LITHOPHANE LEMMERI	LEMMER'S NOCTUID MOTH				G3G4	S2
	MACROCHILO LOUISIANA	A NOCTUID MOTH				G4	S2S3
	MACROCHILO SANTERIVALIS	A NOCTUID MOTH				G3G4	S1S3
	MONOLEUCA SEMIFASCIA	A SLUG MOTH			•	G4G5	S2S3
	NICROPHORUS AMERICANUS	AMERICAN BURYING BEETLE	LE	E		G2G3	SH

3 30 AUG 2004

GLOUCESTER COUNTY RARE SPECIES AND NATURAL COMMUNITIES PRESENTLY RECORDED IN THE NEW JERSEY NATURAL HERITAGE DATABASE

	NAME	Common NAME	FEDERAL STATUS	STATE STATUS	REGIONAL STATUS	GRANK	SRANK
•	PYRGUS WYANDOT	APPALACHIAN GRIZZLED SKIPPER		Е		G2	SH
	ZANCLOGNATHA SP 1	A NOCTUID MOTH				G3G4	S3
*** Other types		、		•			
	BALD EAGLE WINTERING SITE	BALD EAGLE WINTERING SITE				G?	S?
	.						
*** Vascular plants	· · · ·						
	AESCHYNOMENE VIRGINICA	SENSITIVE JOINT-VETCH	LT	E	LP	G2	S1 ·
	AGASTACHE NEPETOIDES	YELLOW GIANT-HYSSOP				G5	S2
	ALOPECURUS CAROLINIANUS	TUFTED MEADOW-FOXTAIL				G5	S354
	AMIANTHIUM MUSCITOXICUM	FLY POISON				G4G5	S2
	ANEMONE CANADENSIS	CANADA ANEMONE		:		G5	SX ·
	APLECTRUM' HYEMALE	PUTTYROOT		E		G5	S1
	ARISTIDA DICHOTOMA VAR	CURTISS' THREE-AWN GRASS				GSTS	S2
	CURTISSII	· ·		•		•	
	ASCLEPIAS RUBRA	RED MILKWEED			LP .	G4G5	* S2
	ASCLEPIAS VARIEGATA	WHITE MILKWEED				G5	S2 ·
	ASCLEPIAS VERTICILLATA	WHORLED MILKWEED				G5	S2
	ASIMINA TRILOBA	PAWPAW		Е		GS .	S1
	ASTER CONCOLOR	EASTERN SILVERY ASTER			LP	G4?	S2
	ASTER RADULA	LOW ROUGH ASTER		Е		G5	S1
	BIDENS BIDENTOIDES	ESTUARY BURR-MARIGOLD		·		G3	S2
	BOUTELOUA CURTIPENDULA	SIDE-OATS GRAMA GRASS		Е		G5T5	S1 .
	CACALIA ATRIPLICIFOLIA	PALE INDIAN PLANTAIN		E		G4G5	S1
	CALLITRICHE PALUSTRIS	MARSH WATER-STARWORT				G5	S2
	CARDAMINE LONGII	LONG'S BITTERCRESS		E		G3	SH
	CAREX BARRATTII	BARRATT'S SEDGE		-	LP	G4	54 54
	CAREX FRANKII	FRANK'S SEDGE				G5	54 S3
	CAREX LIMOSA	MUD SEDGE		Е		G5	
	CAREX MITCHELLIANA	MITCHELL'S SEDGE		2			S1
						G3G4	S2

30 AUG 2004

4

1

GLOUCESTER COUNTY RARE SPECIES AND NATURAL COMMUNITIES PRESENTLY RECORDED IN THE NEW JERSEY NATURAL HERITAGE DATABASE

.

NAME	COMMON NAME	FEDERAL STATUS	STATE STATUS	REGIONAL STATUS	GRANK	SRANK
CAREX POLYMORPHA	VARIABLE SEDGE		E		G3	S1
CAREX PRAIREA	PRAIRIE SEDGE				G57	52
CAREX UTRICULATA	BOTTLE-SHAPED SEDGE				G5	S2
CASTANEA PUMILA	CHINQUAPIN		Е		G5	S1
CASTILLEJA COCCINEA	SCARLET INDIAN-PAINTBRUSH				G5	S2
CORALLORHIZA WISTERIANA	SPRING CORALROOT				G5	sx
COREOPSIS ROSEA	ROSE-COLOR COREOPSIS			LP	G3	S2
CROTON WILLDENOWII	ELLIPTICAL RUSHFOIL			LP	G5	S2
CUPHEA VISCOSISSIMA	BLUE WAXWEED				G57	S3
CYPERUS ENGELMANNII	ENGELMANN'S FLAT SEDGE				G4Q	S2
CYPERUS LANCASTRIENSIS	LANCASTER FLAT SEDGE		Е		G5	S1
CYPERUS RETROFRACTUS	ROUGH FLATSEDGE		Е		G5	SH
DALIBARDA REPENS	ROBIN-RUN-AWAY		Е		G5	SH.1
DESMODIUM LAEVIGATUM	SMOOTH TICK-TREFOIL	· .			G5	S3
DESMODIUM STRICTUM	PINELAND TICK-TREFOIL			LP	G4	S2
DESMODIUM VIRIDIFLORUM	VELVETY TICK-TREEFOIL				G5?	S2
DOELLINGERIA INFIRMA	CORNEL-LEAF ASTER				G5	S2
DRABA REPTANS	CAROLINA WHITLOW-GRASS		E		G5	SH
ELEOCHARIS EQUISETOIDES	KNOTTED SPIKE-RUSH		E	LP	G4	Sl
ELEOCHARIS TORTILIS	TWISTED SPIKE-RUSH		E		G5	\$1
ELEPHANTOPUS CAROLINIANUS	CAROLINA ELEPHANT-FOOT		E		G5 .	SH
EPILOBIUM ANGUSTIFOLIUM SSP	NARROW-LEAF FIREWEED				G5T5	S1
CIRCUMVAGUM						
EPILOBIUM STRICTUM	DOWNY WILLOWHERB				G57	S2
ERIOCAULON PARKERI	PARKER'S PIPEWORT				G3	S2
ERIOPHORUM GRACILE	SLENDER COTTON-GRASS		E		G5T?	SH
ERIOPHORUM TENELLUM	ROUGH COTTON-GRASS		E		G5	Sl
EUPATORIUM RESINOSUM	PINE BARREN BONESET		E .	LP	G3	S2
GLYCERIA LAXA	NORTHERN MANNA GRASS				G5	S1
GYMNOPOGON BREVIFOLIUS	SHORT-LEAF SKELETON GRASS		E		GS	S1

GLOUCESTER COUNTY RARE SPECIES AND NATURAL COMMUNITIES PRESENTLY RECORDED IN THE NEW JERSEY NATURAL HERITAGE DATABASE

FEDERAL

STATUS

LT

STATE

STATUS

Е

Е

Е

E

Е

Е

Е

Е

Е

Е

REGIONAL

STATUS

LP

LP

LP

LP

LP

LP

LP

LP

GRANK

G3

G4

G4?

G5

G5

G4

G5

G5

G5

GH

G3

G5

G5

G4

G4G5

G4?

G5

G4T?

G5T?

G5

G5

G5

G5

G5

G5T?Q

G5T4T5

G5T7

GST4T5

SRANK

S3 ·

S2

S2

S2

S2

S2

S2

S3

S2

S1

SH

S1

S3

\$3

S2

S1

S1

S2

S1

S2

S3

S2

S2

S2

SH

S2

S2

S2

COMMON NAME

SWAMP-PINK

BOUQUET MUD-PLANTAIN

NORTHERN BOG CLUB-MOSS

LOWLAND LOOSESTRIFE

GREEN ADDER'S-MOUTH

VIRGINIA BUNCHFLOWER

LONG-AWN SMOKE GRASS

VIRGINIA PENNYWORT

PINE BARREN SMOKE GRASS

VIRGINIA FALSE-GROMWELL

BRISTLING PANIC GRASS

MUDBANK CROWN GRASS

SMOOTH BEARDTONGUE

AMERICAN MISTLETOE

YELLOW FRINGED ORCHID

OPELOUSAS WATER-PEPPER

WILD KIDNEY BEAN

SPOTTED PHLOX

PINK MILKWORT

CHICKASAW PLUM

MARYLAND MILKWORT

POND PINE

NUTTALL'S MUDWORT

FLOATINGHEART

HAIRY WOOD-RUSH

CLIMBING FERN

STUEVE'S DOWNY BUSH-CLOVER

NARROW-LEAF PRIMROSE-WILLOW

. *

HELONIAS BULLATA

LESPEDEZA STUEVEI

LUDWIGIA LINEARIS

LUZULA ACUMINATA

LYCOPODIELLA INUNDATA

MELANTHIUM VIRGINICUM

MUHLENBERGIA CAPILLARIS

MUHLENBERGIA TORREYANA

ONOSMODIUM VIRGINIANUM

NYMPHOIDES CORDATA

OBOLARIA VIRGINICA

PANICUM ACICULARE

PASPALUM DISSECTUM

POLYSTACHIOS .

PINUS SEROTINA

PENSTEMON LAEVIGATUS

PHASEOLUS POLYSTACHIOS VAR

PHLOX MACULATA VAR MACULATA

POLYGONUM HYDROPIPEROIDES VAR

PHORADENDRON LEUCARPUM

PLATANTHERA CILIARIS

POLYGALA INCARNATA

PRUNUS ANGUSTIFOLIA

POLYGALA MARIANA

OPELOUSANUM

MICRANTHEMUM MICRANTHEMOIDES

LYGODIUM PALMATUM

LYSIMACHIA HYBRIDA

MALAXIS UNIFOLIA

HETERANTHERA MULTIFLORA

NAME

6

GLOUCESTER COUNTY RARE SPECIES AND NATURAL COMMUNITIES PRESENTLY RECORDED IN THE NEW JERSEY NATURAL HERITAGE DATABASE

NAME	COMMON NAME	FEDERAL STATUS	STATE STATUS	REGIONAL STATUS	GRANK	SRANK
PUCCINELLIA FASCICULATA	SALTMARSH ALKALI GRASS				G3G5	S2
PYCNANTHEMUM TORREI	TORREY'S MOUNTAIN-MINT		Е		G2	· S1
QUERCUS IMBRICARIA	SHINGLE OAK		E		G5	S1.1
QUERCUS MUEHLENBERGII	YELLOW OAK				G5	S3
RANUNCULUS AMBIGENS	WATER-PLANTAIN SPEARWORT				G4	52
RANUNCULUS LONGIROSTRIS	LONG-BEAK WATER BUTTERCUP				G5	S2
RHYNCHOSPORA GLOBULARIS	COARSE GRASS-LIKE BEAKED-RUSH		E		G5?	S1
RHYNCHOSPORA INUNDATA	SLENDER HORNED-RUSH			LP	G3G4	52
RHYNCHOSPORA NITENS	SHORT-BEAKED BALD-RUSH				G47	S2
RHYNCHOSPORA PALLIDA	PALE BEAKED-RUSH				G3 ·	S3 ·
RHYNCHOSPORA SCIRPOIDES	LONG-BEAK BALD-RUSH				G4	S2
ROTALA RAMOSIOR	TOOTHCUP				G5	S3
SAGITTARIA SUBULATA	AWL-LEAF ARROWHEAD				G4	S2
SCHEUCHZERIA PALUSTRIS	ARROW-GRASS		E		G5T5	SH
SCHIZAEA PUSILLA	CURLY GRASS FERN			LP	G3	S3
SCUTELLARIA NERVOSA	VEINED SKULLCAP				G5	S2
SISYRINCHIUM FUSCATUM	SAND-PLAIN BLUE-EYED GRASS				G5?	S2
SPHENOPHOLIS PENSYLVANICA	SWAMP OATS				G4	S2
SPIRANTHES LACINIATA	LACE-LIP LADIES'-TRESSES		Е		G4G5	S1
SPIRANTHES ODORATA	FRAGRANT LADIES'-TRESSES				G5	S2
SPOROBOLUS COMPOSITUS VAR	LONG-LEAF RUSH-GRASS				G5T5	S2
COMPOSITUS						
STACHYS HYSSOPIFOLIA	HYSSOP HEDGE-NETTLE				G5	S2
STACHYS TENUIFOLIA	SMOOTH HEDGE-NETTLE				G5	\$3
THASPIUM BARBINODE	HAIRY-JOINT MEADOW-PARSNIP				G5	SX
TIPULARIA DISCOLOR	CRANEFLY ORCHID				G4G5	S3
TRICHOSTEMA SETACEUM	NARROW-LEAF BLUECURLS				G5	S2
UTRICULARIA BIFLORA	TWO-FLOWER BLADDERWORT		E		G5	S1
UTRICULARIA GIBBA	HUMPED BLADDERWORT			LP	G5	S3
VALERIANELLA RADIATA	BEAKED CORNSALAD		E		G5	S1

GLOUCESTER COUNTY

RARE SPECIES AND NATURAL COMMUNITIES PRESENTLY RECORDED IN

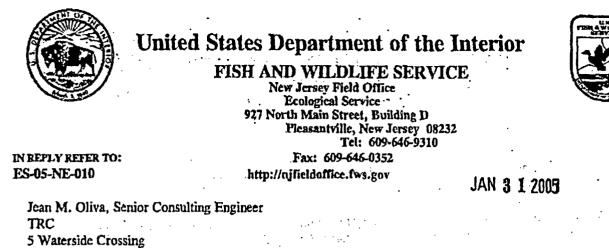
• .

THE NEW JERSEY NATURAL HERITAGE DATABASE

NAME	COMMON NAME	FEDERAL STATUS	STATE STATUS	REGIONAL STATUS	GRANK	SRANK
VERBENA SIMPLEX VERNONIA GLAUCA VULPIA ELLIOTEA	NARROW-LEAF VERVAIN BROAD-LEAF IRONWEED SQUIRREL-TAIL SIX-WEEKS GRASS		e e		G5 G5 G5	51 51 5H

154 Records Processed.

۰.


· ·

.

. .

91/31/2005

10:34

Windsor, Connecticut 06095-1563 Fax number: (860) 298-6399

.Reference:

Threatened and endangered species review within the vicinity of the proposed Shieldalloy Metallurgical Corporation radio logical remedial action (TRC Project No. 26770-0100-00000), located within Newfield, Gloucester County New Jersey

The U.S. Fish and Wildlife Service (Service) has reviewed the above-referenced proposed project pursuant to Section 7 of the Endangered Species Act of 1973 (87 Stat. 884, as amended; 16 U.S.C. 1531 et scq.) to ensure the protection of federally listed endangered and threatened species. The following comments do not address all Service concerns for fish and wildlife resources and do not preclude separate review and comment by the Service as afforded by other applicable environmental legislation.

Except for an occasional transient bald eagle (Haliaeetus leucocephalus), no other federally listed or proposed endangered or threatened flora or fauna under Service jurisdiction are known to occur within the vicinity of the proposed project site. Therefore, no further consultation pursuant to Section 7 of the Endangered Species Act is required by the Service. This determination is based on the best available information. If additional information on federally listed species becomes available, or if project plans change, this determination may be reconsidered. Please be aware that this determination is valid for 90 days; therefore, if the project is not initiated within this time, the Service should be contacted prior to project implementation to verify the accuracy of this information. The Service will review current information to ensure that no federally listed threatened or endangered species will be adversely affected by the proposed project.

Enclosed is current information regarding federally listed and candidate species occurring in New Jersey. The Service encourages federal agencies and other planners to consider candidate species in project planning. The addresses of State agencies that may be contacted for current site-specific information regarding federal candidate and State-listed species are also enclosed.

Authorizing Supervisor:

Enclosures: Current summaries of federally listed and candidate species in New Jerse Addresses for additional information on candidate and State-listed species

Sect 7 (es-NEcot7.fax) 11/24/03

FEDERALLY LISTED ENDANGERED AND THREATENED SPECIES IN NEW JERSEY

An ENDANGERED species is any species that is in danger of extinction throughout all or a significant portion of its range.

A THREATENED species is any species that is likely to become an endangered species within the foreseeable future throughout all or a significant portion of its range.

	COMMON NAME	SCIENTIFIC NAME	STATUS
FISHES	Storing ose Stude con a state of the state o	Acipenser brevirostrum	E
REPTILES		Clemmys muhlenbergii	T
		Lepidochelys kempii	Е
		Chelonia mydas	<u> </u>
		Eretmachelys imbricata	E
		Dermochelys coriacea	E
		Caretta caretta	T
BIRDS		Haliaeetus leucocephalus	T
		Charadrius melodus	Т
	ROSENTE JEDUS AUGUSTION	Sterna dougallii dougallii	E
MAMMALS		Felis concolor couguar	E+
		Myotis sodalis	E
		Canis lupus	E+
	Delmanyarioxisquirtel	Sciurus niger cinercus	E+
	Bluewhalest at a Million Million	Balaenoptera musculus	E
	FinDack whale and Milling and Milling	Balaenoptera physalus	E
	Humpback whale	Megaptera novaeangliae	E
•	Humpback whale	Balaena glacialis	E
	Right whale:	Balaenoptera borealis	E
	Sperm whale*	Physeter macrocephalus	E

01/31	/2005
-------	-------

10:34

•	. COMMON NAME	SCIENTIFIC NAME	STATUS
INVERTEBRATES		Alasmidonta heterodon	E
•		Cicindela dorsalis dorsalis	T
		Neonympha m. mitchellii	E+
		Nicrophorus americanus	E+
PLANTS		Isotria medeoloides	T
		Helonias bullata	Т
•		Rhynchospora knieskernii	Т
		Schwalbea americana	E
		Aeschynomene virginica	T
	Seabeachamanntheastan	Amaranthus pumilus	Т

	TATUS ANT SAME STAT		
E	endangered species	PE	proposed endangered

T	threatened species	PT	proposed threatened	
+	presumed extirpated**			
	· · · · · · · · · · · · · · · · · · ·			-

- * Except for sea turtle nesting habitat, principal responsibility for these species is vested with the National Marine Fisheries Service.
- ** Current records indicate the species does not presently occur in New Jersey, although the species did occur in the State historically.

.. _...-.Note: for a complete-listing of Endangered and-Threatened Wildlife and Plants, refer to 50 CFR 17.11-und 17:12.-

1.1. L

For further information, please contact:

U.S. Fish and Wildlife Service New Jersey Field Office 927 N. Main Street, Building D Pleasantville, New Jersey 08232 Phone: (609) 646-9310 Fax: (609) 646-0352

;

Revised 12/15/04

FEDERAL CANDIDATE SPECIES IN NEW JERSEY

CANDIDATE SPECIES are species that appear to warrant consideration for addition to the federal List of Endangered and Threatened Wildlife and Plants. Although these species receive no substantive or procedural protection under the Endangered Species Act, the U.S. Fish and Wildlife Service encourages federal agencies and other planners to give consideration to these species in the environmental planning process.

SPECIES	SCIENTIFIC NAME
	Narthecium americanum
	Dichanthelium hirstii

Note: For complete listings of taxa under review as candidate species, refer to <u>Federal Register</u> Vol. 69, No. 86, May 4, 2004 (Endangered and Threatened Wildlife and Plants; Review of Species that are Candidates or Proposed for Listing as Endangered or Threatened).

Revised June 2004

10:34

FEDERAL CANDIDATE AND STATE-LISTED SPECIES

Candidate species are species under consideration by the U.S. Fish and Wildlife Service (Service) for possible inclusion on the List of Endangered and Threatened Wildlife and Plants. Although these species receive no substantive or procedural protection under the Endangered Species Act, the Service encourages federal agencies and other planners to consider federal candidate species in project planning.

The New Jersey Natural Heritage Program maintains the most up-to-date information on federal candidate species and State-listed species in New Jersey and may be contacted at the following address:

Coordinator Natural Heritage Program Division of Parks end Forestry P.O. Box 404 Trenton, New Jersey 08625 (609) 984-0097

Additionally, information on New Jersey's State-listed wildlife species may be obtained from the following office:

Dr. Larry Niles Endangered and Nongame Species Program Division of Fish and Wildlife P.O. Box 400 Trenton, New Jersey 08625 (609) 292-9400

If information from either of the aforementioned sources reveals the presence of any federal candidate species within a project area, the Service should be contacted to ensure that these species are not adversely affected by project activities.

Revised 07/03

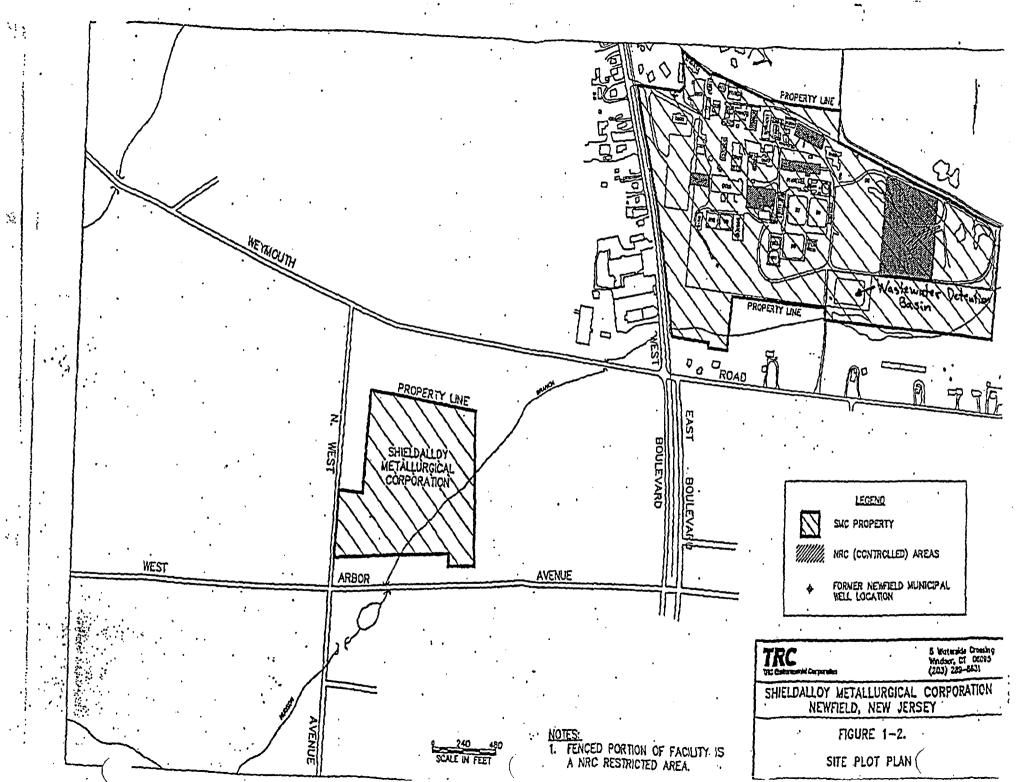
AMY S. GREENE ENVIRONMENTAL CONSULTANTS, INC.

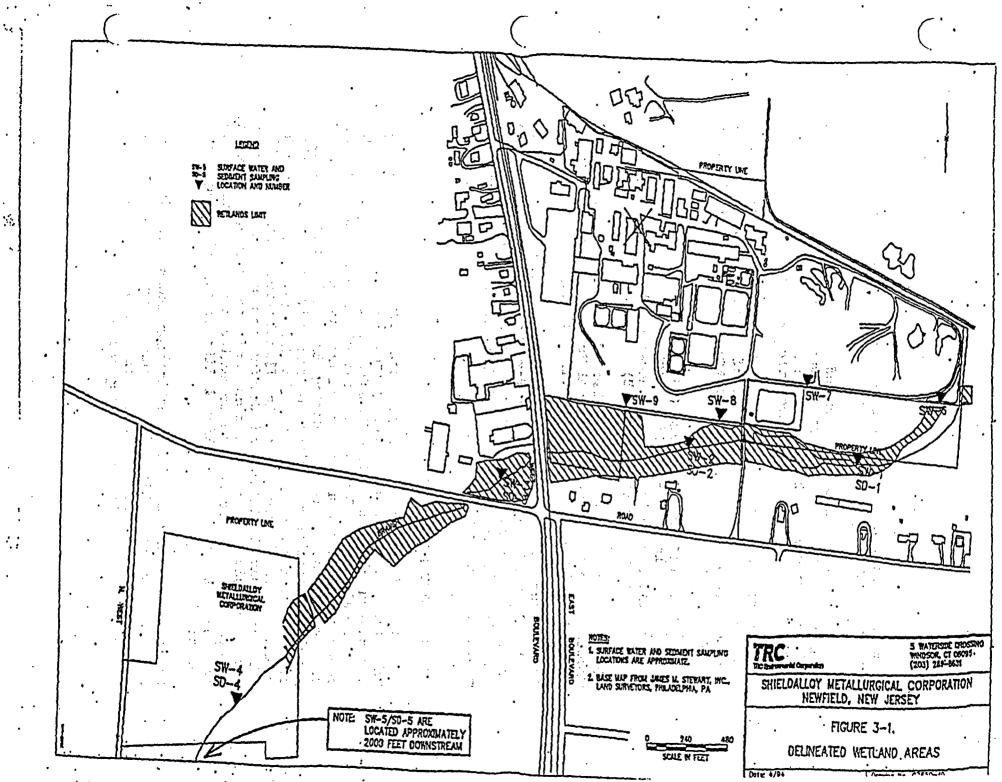
18 COMMERCE STREET PLAZA • FLEMINGTON, NJ 08822 (908) 788-9676 • FAX (908) 788-6788 PA (610) 250-0773

June 14, 1994

Mr. Sean Hayden TRC Environmental Corporation 5 Waterside Crossing Windsor, CT 06095

Re: Endangered and Threatened Plant Species Survey and Stressed Vegetation Survey Shieldalloy Metallurgical Corporation Superfund Site Newfield Borough, Gloucester County, NJ City of Vineland, Cumberland County, NJ ASGECI Project #1111


Dear Mr. Hayden:


We are pleased to submit this Endangered and Threatened Plant Species Survey and Stressed Vegetation Survey Report for the above referenced site. The objective of these Surveys is to determine the presence or absence of the following species of concern: Barratt's sedge (Carex barrattii), pink tickseed (Coreopsis rosea), Pine Barren boneset (Eupatorium resinosum) and swamp pink (Helonias bullata) and analysis of the existence of stressed vegetation. Resumes of preparers of this report have been included.

The following summarizes the findings of the field investigation and review of existing information for the Shieldalloy Metallurgical Corporation Superfund Site located in Newfield Borough, Gloucester County, and the City of Vineland, Cumberland County, New Jersey. The field investigation was performed on June 6, 1994.

. I. Introduction

The survey was conducted over approximately 100 acres, of which the manufacturing facility occupies approximately 60 acres. The northern property, containing the facility, is an irregularly shaped parcel located in Newfield Borough (Figure 1-2). The study area included adjacent wetlands in Newfield and Vineland that are primarily forested and associated with the Hudson Branch (Figure 3-1). The overall

•

CU 11

topography of the study area consisted of relatively flat to gently sloping terrain.

The study area is located in the Maurice River Watershed within the Delaware Bay Drainage Basin. The wetlands are drained by the Hudson Branch which is tributary to the Burnt Mill Branch of the Maurice River.

According to the State of New Jersey List of Endangered Plant Species and Plant Species of Concern (N.J.A.C. 7:5C-1.1 et seq.), the species of concern have been classified as follows:

- ^o Barratt's sedge rare (S3)
- o pink tickseed imperiled (S2)
- ^o Pine Barren boneset endangered (E)
- o swamp pink endangered (E)

Additionally, swamp pink is also classified as threatened according to the Federally Listed Endangered and Threatened Species in New Jersey (50 CFR 17.11 & 17.12, 1990).

Evaluations of the study area were made as to the suitability of existing habitat for these rare species. The stressed vegetation survey was conducted in order to visually identify evidence of the effects of potential contamination on plant species.

II. SAMPLING METHODOLOGY

A habitat evaluation was conducted over the Shield Metallurgy Corporation facility including adjacent wetlands associated with the Hudson Branch. In order to perform the biological survey for the species of concern and stressed vegetation survey, a meander survey was conducted to cover the entire study area. During the field investigation, special attention was given to areas with suitable habitat for the species of concern. The Britton and Brown (1970) plant identification key "An Illustrated Flora of the Northern United States and Canada" was used to determine plant species characteristics and to provide habitat information. Other sources to evaluate the habitat onsite included the use of published literature, site maps and topographic maps.

During the course of the investigation items including, but not limited to, chlorosis, stunted growth and abnormal physiological characteristics were used as criteria to evaluate evidence of stressed vegetation.

III. RESULTS OF STUDY

-5-

Our findings of the biological survey indicate that there were no occurrences of Barratt's sedge, pink tickseed, Pine Barren boneset and swamp pink within the study area.

The stressed vegetation survey conducted in conjunction with the biological survey indicated relatively normal growth over the study area, although the site has been subject to manmade disturbances in the past. These disturbances have led to invasive plant species becoming dominant in some portions of wetland and upland areas.

The forested wetlands onsite supported a dominant canopy layer of red maple (Acer rubrum), black gum (Nyssa sylvatica) and black willow (Salix nigra). An often dense, understory growth included southern arrowwood (Viburnum dentatum), silky dogwood (Cornus amomum), highbush blueberry (Vaccinium corymbosum), sweet pepperbush (Clethra alnifolia), elderberry (Sambucus canadensis) and greenbrier (Smilax rotundifolia). The herbaceous layer consisted of an abundance of cinnamon fern (Osmunda cinnamomea), tussock sedge (Carex stricta) and spotted jewelweed (Impatiens capensis). Scrub/shrub wetlands also observed onsite were generally overgrown with similar understory species including fetterbush (Leucothoe racemosa).

Emergent wetlands located on the facility site, within a wastewater detention pond, and associated with the Hudson Branch contained a dominance of spike rush (Eleocharis spp.), bog rush (Juncus pelocarpus), common rush, three square (Scirpus americanus), whitened sedge (Carex albolutescens), Canada rush (Juncus canadensis), slender rush (Juncus tenuis), common reedgrass (Phragmites australis), tussock sedge (Carex stricta), pointed broom sedge (Carex scoparia), sallow sedge (Carex lurida), larger water-starwort (Callitriche heterophylla) and spotted jewelweed.

Sector 2.

Forested upland areas throughout the study area contained a dominant canopy layer of southern red oak (Quercus falcata), scarlet oak (Quercus coccinea), white oak (Quercus alba), red maple, black locust (Robinia psuedoacacia), mockernut (Carya tomentosa) and sand hickory (Carya pallida). The understory was supported by similar species in the sapling layer and the dominant vegetation in the shrub layer consisted of black huckleberry (Gaylussacia baccata), dangleberry (Gaylussacia frondosa), lowbush blueberry (Vaccinium vacillans), mountain laurel (Kalmia latifolia), sheep laurel (Kalmia angustifolia), multiflora

1

r. uo

-6-

rose (Rosa multiflora), greenbrier (Smilax rotundifolia) and Japanese honeysuckle (Lonicera Japonica).

The forested areas in the study area appeared to be secondary growth, not mature, which have undergone disturbances in the past. Based on professional judgement, the trees appeared to be the proper height for their age. Other vegetation did not show signs of stunted growth or chlorosis.

The biological survey for Barratt's sedge revealed no findings of this rare species within the study area. Habitat requirements are open, undisturbed, emergent wetlands; not usually occurring in standing water. This habitat was not found due to the sites' disturbed nature. Barratt's sedge is commonly associated with Pineland swamps and bogs, blooming and fruiting from late April to July.

No species of pink tickseed were found over the study area. Pink tickseed habitat requirements are vernal ponds (i.e., shallow, isolated ponds not fed by a spring or stream) or open, emergent wetland areas which are ponded for most of the year and dry up in the summer. The biological survey for this species was conducted at a time of year when sufficient growth for identification may not be present. Pink tickseed flowers from July through late September. The only potential habitat identified within the study area was on the facility site within the wastewater detention basin (reference Figure 1-2). This area was observed to contain emergent wetland species and ponding. An additional site visit later in the growing season may be warranted in order to definitively assess the presence or absence of pink tickseed.

Pine Barren boneset was not identified within the study area limits. Habitat for this species of concern is open, undisturbed, emergent wetland communities and streamsides; located mostly in the Pine Barrens. Flowering of this species occurs from early July to October.

The biological survey for swamp pink was conducted at a time of the year when it would be in flower; the evergreen leaves, which grow in a basal rosette, are also readily identifiable. No swamp pink populations were found. The habitat type that supports swamp pink consists of deciduous, forested wetland communities and stands of Atlantic white cedar (*Chamaecyparis thyoides*). The forested wetland areas onsite would not provide habitat for swamp pink due to their disturbed nature and lack of Atlantic white cedar occurrences. Additionally, dense scrub/shrub wetland areas

-7-

provided inadequate sunlight and increased competition among plant species thereby creating poor habitat for swamp pink.

IV. Conclusion

In summary, habitats specific to the species of concern (Barratt's sedge, pink tickseed, Pine Barren boneset and swamp pink) were thoroughly searched and no specimens were identified as a result of our detailed biological survey. No suitable habitat was found onsite for Barratt's sedge, Pine Barren boneset and swamp pink. However, based on the field survey, the facility portion of the study area may contain potentially suitable habitat within the wastewater detention basin (emergent wetland) to support pink tickseed; although no individuals were identified during the site investigation.

No evidence of stressed vegetation within the wetland and upland communities was observed during the meander survey.

If you have any questions or comments concerning this submission please contact me.

Sincerely, AMY S. GREENE ENVIRONMENTAL CONSULTANTS, INC.

toyos >

Thomas S. Brodde Project Manager

enc.

APPENDIX H - CULTURAL RESOURCE INFORMATION

·

APPENDIX H - CULTURAL RESOURCE INFORMATION

NJDEP State Historic Preservation Office Correspondence NJDEP Comments on TRC 1995 Feasibility Study

State of New Jersey

Christine Todd Whitman Governor Department of Environmental Protection Division of Parks and Forestry Historic Preservation Office CN-404 TRENTON, N.J. 08625-0404 TEL: (609) 292-2023 FAX: (609) 984-0578

Robert C. Shinn, Jr. Commissioner

HPO-A96-37

MEMORANDUM

- TO: Bruce Venner, Chief Bureau of Federal Case Management, NJ DEP
- FROM: Dorothy Guzzo, Administrator, Historic Preservation Office, Deputy State Historic Preservation Officer

DATE: January 5, 1995

RE: Gloucester County, Newfield Borough Shieldalloy Metallurgical Superfund Site Section 106 Consultation Comments

I am offering consultation comments on this proposed undertaking under Section 106 of the National Historic Preservation Act in response to your memorandum of October 24, 1995 requesting review of the following report:

The Cultural Resource Consulting Group August 1995 <u>Phase II Cultural Resources Study, Specialty Glass</u> <u>Corporation Melting Tank, Proposed Remediation of Shieldalloy</u> <u>Metallurgical Corporation Property</u>

As Deputy State Historic Preservation Officer for New Jersey, in accordance with 36 CFR Part 800: Protection of Historic Properties, as published in the Federal Register 2 September 1986 (51 31115-31125), I am providing the following comments.

800.4 Identifying Historic Properties

I concur with the Phase II Cultural Resource Study's conclusion that the stack/melting tank is eligible for the National Register under Criteria C and D. The stack/melting tank is eligible under Criterion C as a well preserved, and rare, example of a glass stack/melting tank. The stack is eligible under Criterion D because of the information it may convey about New Jersey's historic glass industry given its rarity as a surviving glass melting stack.

800.5 Assessing Effects

The demolition of the stack will, of course, have an adverse effect on the stack/melting tank. Given the deteriorating condition of the stack, the high cost associated with stabilization of tall masonry stacks, and the groundwater pollution problems which are related to the metallurgical use of the stack since the 1950's, I see no feasible alternative to demolition of the stack.

Because the project will have an adverse effect on the stack, the Advisory Council on Historic Preservation must be notified of the adverse effect and sent the documentation listed under 800.8 (b) (copy attached). I have enclosed a draft Memorandum of Agreement (MOA) for the project for consideration. As mitigation for the demolition of the stack, the MOA calls for documentation of the stack to HABS/HAER Standards. The level of HABS/HAER documentation for a property is determined by the National Park Service (see the attached sheet). I suggest that a copy of the <u>Phase II Cultural Resource Study</u> be sent to the NPS to help in their determination of the appropriate level of documentation.

Should you have any questions, please contact Dan Saunders of my staff at (609) 984-0140.

Sincerely,

mithy files for

Dorothy P. Guzzo Deputy State Historic Preservation Officer

DPG/ds96226

c: Advisory Council On Historic Preservation Joseph Gowers, EPA John Vetter, EPA Donna Gaffigan, NJDEP-BFCM David R. Smith, SMC

MEMORANDUM OF AGREEMENT AMONG

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY, NEW JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION, BUREAU OF FEDERAL CASE MANAGEMENT, SHIELDALLOY METALLURGICAL CORPORATION AND THE NEW JERSEY STATE HISTORIC PRESERVATION OFFICER SUBMITTED TO THE ADVISORY COUNCIL ON HISTORIC PRESERVATION PURSUANT TO 36 CFR 800.6(A)

WHEREAS, the Environmental Protection Agency (EPA) has determined that the remediation of the Shieldalloy Metallurgical Corporation (SMC) site will have an adverse effect on the Specialty Glass Corporation Melting Tank, a property which is eligible for listing on the National Register of Historic Places, and has consulted with the New Jersey State Historic Preservation Officer (SHPO) pursuant to the regulations (36 CFR Part 800) implementing Section 106 of the National Historic Preservation Act (16 U.S.C> Part 470f0; and

WHEREAS, EPA has considered the alternatives to demolition of the Specialty Glass Corporation Melting Tank and concluded, in concurrence with the New Jersey SHPO, that there is no reasonable way to avoid the adverse effect of demolition of the Glass Melting Tank; and

WHEREAS, New Jersey Department of Environmental Protection, Bureau of Federal Case Management (NJDEP-BCA) and SMC, the owner of the site, have participated in the consultation and have been invited to concur in this Memorandum of Agreement,

NOW, THEREFORE, the EPA, NJDEP-BCA, the New Jersey SHPO, and SMC agree that the undertaking shall be implemented in accordance with the following stipulation in order to take into account the effect of the undertaking on historic properties.

Stipulations

EPA will ensure that the following measures are carried out:

1. The applicant shall contact the National Park Service (NPS), Northeast Field Office to determine what level and kind of HABS/HAER recordation is required for the Melting Tank. The applicant will complete all required recordation and secure NPS approval prior to initiating demolition of the Melting Tank. Copies of this documentation with original photographs will be provided to the Corps, the NJ SHPO, and Wheaton Village.

Execution of this Memorandum of agreement and implementation of its terms evidence that EPA has afforded the Council an opportunity to comment on the demolition of the Specialty Glass Corporation Melting tank, and that EPA taken into account the effect of the undertaking on historic properties.

ENVIRONMENTAL PROTECTION AGENCY DATE: BY: NEW JERSEY STATE HISTORIC PRESERVATION OFFICER BY: DATE: CONCUR: NEW JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION, BUREAU OF FEDERAL CASE MANAGEMENT DATE: BY:____ SHIELDALLOY METTALURGICAL CORPORATION DATE: BY:____ ACCEPTED: ADVISORY COUNCIL ON HISTORIC PRESERVATION ____DATE: BY:_____

Specialty Glass Corporation Melting Tank MOA Page 2

ţ.

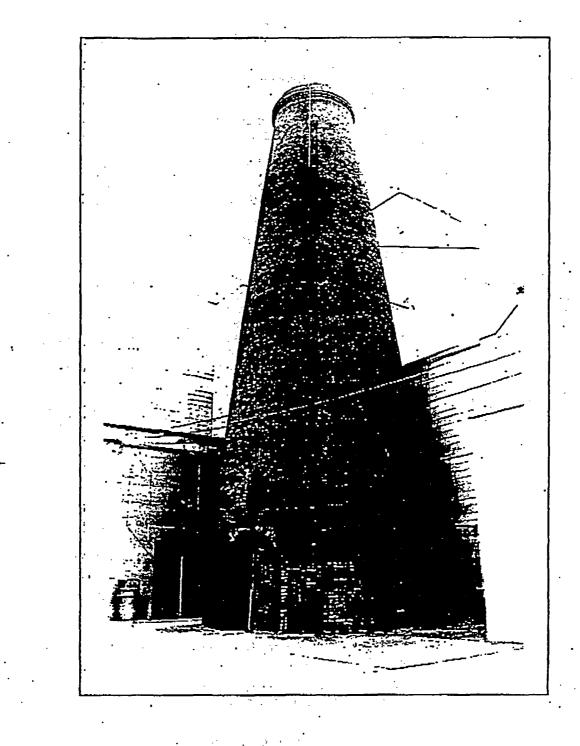


Illustration 13: Current condition of the glassworks stack (August 1995).

photographer: Richard Veit date: August 1995 roll 3, neg. 9, exp. 21

.

Documentation required for consultation

Documentation required for submitting a signed MOA for Council review

Documentation required for requesting written Council comment, absent an MOA (b) Finding of adverse effect. The required documentation is as follows:

(1) A description of the undertaking, including photographs, maps, and drawings, as necessary;

(2) A description of the efforts to identify historic properties;

(3) A description of the affected historic properties, using materials already compiled during the evaluation of significance, as appropriate; and

(4) A description of the undertaking's effects on historic properties.

(c) Memorandum of Agreement. When a memorandum is submitted for review in accordance with Section 800.6(a)(1), the documentation, in addition to that specified in Section 800.8(b), shall also include a description and evaluation of any proposed mitigation measures or alternatives that were considered to deal with the undertaking's effects and a summary of the views of the State Historic Preservation Officer and any interested persons.

(d) Requests for comment when there is no agreement. The purpose of this documentation is to provide the Council with sufficient information to make an independent review of the undertaking's effects on historic properties as the basis for informed and meaningful comments to the Agency Official. The required documentation is as follows:

(1) A description of the undertaking, with photographs, maps, and drawings, as necessary;

(2) A description of the efforts to identify historic properties;

(3) A description of the affected historic properties, with information on the significant characteristics of each property;

(4) A description of the effects of the undertaking on historic properties and the basis for the determinations;

(5) A description and evaluation of any alternatives or mitigation measures that the Agency Official proposes for dealing with the undertaking's effects;

(6) A description of any alternatives or mitigation measures that were considered but not chosen and the reasons for their rejection;

(7) Documentation of consultation with the State Historic Preservation Officer regarding the identification and evaluation of historic properties, assessment of effect, and any consideration of alternatives or mitigation measures;

(8) A description of the Agency Official's efforts to obtain and consider the views of affected local governments, Indian tribes, and other interested persons;

(9) The planning and approval schedule for the undertaking; and

IN REPLY REFER TO

United States Department of the Interior

NATIONAL PARK SERVICE MID-ATLANTIC REGION NATIONAL REGISTER PROGRAMS DIVISION U.S. CUSTOM HOUSE, ROOM 251 2ND & CHESTNUT STREET PHILADELPHIA, PA 19106

Information Needed to Obtain a Level of Documentation for the Historic American Building Survey / Historic American Engineering Record (HABS/HAER)

To provide a level of documentation, the National Park Service (NPS) Regional Office requires concise information on the property's appearance and significance. Information on the condition of the property is only necessary when it can help determine whether there is original material that can still be documented; this is most often applicable to interiors of buildings. Lengthy reports or justifications of why the property must be demolished are <u>not</u> necessary; once the decision to document the property has been reached between the Federal Agency and the State Historic Preservation Office, the NPS's only role is to determine the level of documentation, which is based on the property's significance and complexity.

Please write to this office to request a level of HABS/HAER documentation for the property. Include with your request:

- 1. A copy of the signed Memorandum of Agreement or other document requiring HABS/HAER documentation. If some or all signatures are still pending, include correspondence from the State Historic Preservation Office indicating that HABS/HAERdocumentation will be required. Other correspondence on the project is generally not necessary, unless it provides other required information.
- 2. The name, address/location of the property, and the county in which it is located. If it is not located in a town or city, please identify the nearest town or city, (not a township) in the same State.
- 3. Concise information on the history and appearance of the property. This can usually be excerpted from existing documents (such as a survey report, National Register nomination, or correspondence from the State Historic Preservation Office) without doing additional work. Snapshots (not Polaroids) are usually necessary to convey the scale, and the amount of architectural or engineering detail, of the property. When there are no photographs of a building's interior, indicate how much original detailing, furnishings and/or equipment are inside; this will help us determine how much of the interior needs to be documented.

If you have questions about what to send, call the National Park Service at (215) 597-6484. You should receive a Schedule of Documentation, including guidelines for preparing the required documentation, within 30 days of our receipt of your request.

(November 1994)

State of New Jersey

Department of Environmental Protection

Robert C. Shinn, Jr. Commissioner

JUL 2 4 1996

Jean Oliva Senior Consulting Engineer TRC Environmental Corporation 5 Waterside Crossing Windsor CT 06095

Dear Ms. Oliva:

Christine Todd Whitman

Governor

Enclosed please find a disk containing NJDEP's comments on the Feasibility Study and Ecological Risk Assessment for the Shieldalloy Metallurgical Corporation site. The file is named FS&ERA.SMC.

If you have any questions, you may contact me at (609) 633-1394.

Sincerely,

Jonna L. Gaffigor

Donna L. Gaffigan, Case Manager Bureau of Federal Case Management

Enclosure

New Jersey is an Equal Opportunity Employer Recycled Paper

effen, alle Billion alle Alle

Draft Final FEASIBILITY STUDY REPORT - VOLUME II Soil Feasibility Study

1. <u>General</u>

NJDEP's Guidance Document for the Remediation of Contaminated Soils dated June 1994 contains information on capping as a remedial action. Of particular importance is the section on post-capping operation, maintenance and monitoring since such actions will be required after implementation of the remedy.

2. <u>Risk Commission Report</u>

TRC has elected to support its proposal to use a one in one hundred thousand (1×10^{-5}) cancer risk endpoint based on a draft report issued by the Environmental Risk Assessment and Risk Management Study Commission. This Commission was established in 1994 pursuant to a provision in HSRA. The NJDEP's cancer risk endpoint is currently 1×10^{-6} . The Commission's proposal to modify the cancer risk value for developing soil remediation standards is still only a draft recommendation. Until such time that a new risk level is promulgated by the New Jersey legislature, the Department will continue to require the 1×10^{-6} value.

3. Compliance Averaging, Section 2.1

It should be noted that although "guidance" has been developed for compliance averaging, the concept and the particular conditions for implementing compliance averaging have a regulatory basis and are contained in the *Technical Requirements for Site Remediation* (N.J.A.C. 7:26E-4.9(c)3i).

4. <u>Compliance in Manufacturing Area - Dept 102, Section 2.1.1</u>

Elevated chromium and hexavalent chromium contamination has been detected in the Department 102 area. Based on the minimum exceedances, TRC has proposed no further action. This is acceptable provided the existing containment (pavement) is properly maintained as part of the remedial action and the subsequent O&M phase.

- 5. <u>Compliance in Manufacturing Area RR Siding, Section 2.1.1</u> Elevated arsenic contamination has been detected in one sample collected in the Railroad Siding area. Based on the minimum exceedances, TRC has proposed no further action. This is acceptable provided the existing containment (pavement) is properly maintained as part of the remedial action and the subsequent O&M phase.
- 6. <u>Compliance in Manufacturing Area Beryllium, Section 2.1.1</u> a. The FS states that the compliance averaging ceiling for beryllium is 2 ppm. While this is true using the RDCSCC, SMC is utilizing the NRDCSCC values for the interior of the site (not off-

2

site). Since the health-based criteria for beryllium at non-residential sites is 0.7 ppm, the compliance averaging ceiling is 7 ppm. This adjusted many of the calculations for beryllium and thus reduced the total area of soil requiring remediation. This issue was discussed at a meeting held on May 19, 1996 between NJDEP and TRC. The agreements reached will be summarized in a letter from TRC, however, they must be reflected in the FS as well, unless superseded by the results of the bioavailability study discussed below.

b. There have been discussions with TRC/SMC regarding an Alternate Cleanup Standard (ACS) application for beryllium based on bioavailability. At NJDEP recommendation, SMC submitted a work plan on May 24, 1996 outlining how they proposed to determine site-specific bioavailability percentages. This data will assist the NJDEP in making a risk management decision based on the strength of evidence surrounding the beryllium contaminant levels at the site and the appropriateness of an ACS.

7. <u>Compliance - Former Material Storage Area, Section 2.1.2</u>

PCB contamination in excess of the NRDCSCC values has been discovered in the Former Material Storage Area. The FS Report must include this area of concern (AOC) as an area requiring remediation. Pre-design sampling can be employed to further define the limits of contamination.

<u>Compliance - North/South Subsurface DDT Areas, Section 2.1.2</u> Due to the depth of the reported contamination and the inability to reconfirm the results, the DDT contamination in these two AOCs is either very limited or non-existent. Therefore, the existing soil "cap" is sufficient and SMC may consider no further action for these. However, the "presence" of these AOCs must be documented in the DER.

9. Compliance - On-Site Delineated Wetlands Area, Section 2.1.2

Elevated contaminant levels at RA-12 were compared to the SCC values in the FS Report. Since this area is within the delineated wetlands, it can be questioned whether these results should be compared to soil or sediment criteria. It is recommended that the results should be compared to both criteria. When compared to the SCC, there are exceedances for several inorganic parameters, therefore, the recommendation on page 2-12 with respect to no further action in this area is not acceptable. Further, this statement is inconsistent with Section 2.4.3 (page 2-43) which defers the remediation of this area to Volume III of the FS (Surface Water and Sediment) and is also inconsistent with Volume III, itself.

10.

• •

8.

Compliance - Other Areas of Concern, Section 2.1.2

Due to the depth of the reported contamination and the inability to reconfirm the results, the beryllium contamination at SB-25 and SB-12 is either very limited or non-existent. Therefore, the existing soil "cap" is sufficient and SMC may consider no further action for these areas. However, the "presence" of these AOCs must be documented in the DER.

3

12.

Compliance - Off-Site Delineated Wetlands Area, Section 2, 1.5, p. 2-25

Elevated contaminant levels at RA-13 and RA-14, located on SMC's property boundary, were compared to the SCC values in the FS Report. Since this area is within the delineated wetlands, it can be questioned whether these results should be compared to soil or sediment criteria. It is recommended that the results should be compared to both criteria. Two issues are involved here, the on-site and the off-site areas adjacent to the site.

a. On-site - Based on the SCC, there are exceedances for several inorganic parameters. Therefore, the on-site portion of this area requires remediation, but is not discussed in the document. This is inconsistent with Volume III which show that remediation of this area is proposed.

b. Off-site-Based on the RDCSCC no further action is acceptable, but it may not be acceptable based on the sediment criteria and may be inconsistent with Volume III of the FS Report (see Figure 3-2 of Volume III).

13. Department 106, Section 2.1.1

There is no discussion regarding the Department 106 building and the level of contamination coating the building materials. As identified in NJDEP's letter dated November 3, 1995, SMC must discuss the need to remediate the building as a source of chromium contamination to soil and/or groundwater.

Alternative S-4-1 (Glass Stack), Section 4.2.7

a. There is concern about the proposal under recommended Soil Alternative S-4-1 to remediate potential chromium contaminated soil in the Department 101(b) Glass Stack Area. The Glass Stack was determined to be eligible for inclusion in the National Register of historic Places and is, therefore, subject to National Historic Preservation Act (NHPA) requirements. The proposal is to raze the stack and to excavate the soil in its footprint. The need for remedial action in this area seems to be based primarily upon the results of one soil sample (RA-64) collected from the tunnel adjacent to the stack. Additional soil samples should be collected from beneath the stack to show that the remedial action proposed is justified as discussed in the May 7 meeting.

b. It is indicated on page 4-16 that the cultural resource survey was submitted to the New Jersey State Historic Preservation Office (SHPO) with a request for determination of Historic American Building Survey (HABS) documentation required prior to the stack's demolition. It should be noted that the National Park Service (NPS) makes the determination of what level of documentation is required and whether HABS or Historic American Engineering Record (HAER) criteria are appropriate. Furthermore, it is the function of EPA to request a HABS/HAER determination from the NPS. The Soil FS shall be revised to reflect that the ARAR requirements with respect to the NHPA have not yet been completed.

Remedial Alternative Recommendation, Section 4.5 14.

NJDEP partially concurs with TRC's recommendation for the remediation of soils at the SMC site. Alternative S-4-1 (Remediation of Chromium Source Areas and Landfill Containment with Institutional Controls) will adequately address soil contamination at the site. However, Option A (10⁻⁶ risk-based) is dictated by HSRA and must be employed instead of the recommended Option B (10⁻⁵ risk-based).

5

APPENDIX I - VISUAL RESOURCE SURVEY

APPENDIX I - VISUAL RESOURCE SURVEY

Details of Visual Site Analysis Process

- Figure I-1 Projected Existing Viewshed Relative to Agricultural and Forested Areas
- Figure I-2 Projected Proposed Action Viewshed Relative to Agricultural and Forested Areas

Photo Log

Photos - Existing Conditions

DETAILS OF VISUAL SITE ANALYSIS PROCESS

Geographic Information Systems (GIS) are proven tools in the evaluation of the relationship between land-use and development. TRC uses GIS methodologies to analytically evaluate potential visibility issues. These methods include viewshed analyses and photosimulations or renderings of proposed projects, as described in more detail below.

<u>Viewshed Mapping</u> - A viewshed analysis was completed to predict the existing visual impact of current conditions at the SMC facility as well as evaluate the potential visual impact of the decommissioning alternatives. The study area consisted of a 1-mile radius, using the center of the facility as the reference point. Base mapping and analytical data were acquired from the State of New Jersey GIS office. Site-specific existing and proposed topography was based on current site survey data and information developed in support of the evaluation of the Decommissioning Plan alternatives. State-issued Digital Elevation grids (DEM 10M) were merged with the site-specific survey (1-foot resolution) to attain an accurate representation of the landscape. Once the elevation data were merged, vegetation coverage was processed as an impediment layer. The vegetation layer assigns a conservative vegetation height to areas containing vegetation cover exceeding 3 meters in height. Based on this information the visibility of the existing conditions is evaluated, as indicated in Figure I-1. For the alternatives undergoing analysis, the proposed elevation change is added and the visibility analysis is recomputed for the proposed conditions. The visibility analysis for the proposed action is presented in Figure I-2. The output mapping is used to determine potential visibility of the project from areas within the 1-mile radius. It is also used as a guide for the selection of potential visual vantage points for renderings.

<u>Photosimulation Methodologies</u> - Computer-assisted photo simulations create very accurate representations of what a proposed project will look like. The process uses sophisticated computer imaging technology to allow decision-makers to evaluate the visibility and visual effect of a proposed project from a number of locations. It is critical that the process used is rigorous and scientifically accurate. In general, computerized perspective views rely on three-dimensional engineering models of proposed structures in a geo-referenced real-world environment. The model positions the viewer at the approximate receptor point, and specifies a field of view equal to that of the lens used to capture the actual photograph upon which the

I-1

rendering is based. The computerized perspective views are then superimposed on the photographs to represent a visual depiction of the proposed changes at the site.

The photosimulation process begins with the collection of photographic images in the field at selected visual vantage points, referred to as viewpoints. Because photographic simulations are typically presented from a variety of prominent views and at different distances, photographs are taken at a variety of viewpoints based on the information gathered during the viewshed analysis. Information noted in the field during the collection of photographic images includes global positioning system (GPS) coordinates for the photo location, the compass angle of the camera at each location, the focal length of the camera, the time of day and date of the photo, the general direction of the target view of concern (in this instance, the Storage Yard area), and the height of the camera. The GPS position measured in the field determines the exact location of the camera and the location of specific reference points in the foreground to ensure accurate camera alignment. The day and time information is used to adjust for sun angle in the simulations, allowing computer graphics specialists to simulate lighting conditions for different times of day or days of the year.

Simulating a proposed project initially involves the input of information about the project's "structures," such as the location and size of structures, as well as proposed changes to the landscape. For the proposed action (the LTC alternative), the model of the stabilized pile was created based on the pile's engineering dimensions, while the model of the off-site disposal with license termination (LT) alternative was based on the total removal of all licensed materials and the return of the Storage Yard area to natural site elevations. This information, along with the field-collected data, is entered and accurately plotted within an AutoCAD® environment. This ensures that the positioning data (two-dimensional or 2D) is based on representative geographic coordinates. Next, the 2D data is converted to three-dimensional (3D) data to account for the height information (i.e., camera locations, existing structures, existing topography, and proposed changes in topography). The 3D data is processed using a computer program called Studio VIZ® 4.0. At this point, the alignment of all known points (longitude, latitude and height) is confirmed. Next, the lighting is calculated by creating a "sun" for a specific time and day of year. This information is used to create highlights and shadows for each of the photo elements. Finally, once the lighting is created, the overall image is rendered. The resulting renderings are intended to show not only the form and scale of the proposed changes,

I-2

but also the texture and materials proposed in the design. The final image is checked to ensure its accuracy in terms of location, scale and perspective.

When simulated and actual photos are placed side-by-side, the positioning and visibility of the simulated elements are often nearly identical. Because of their accuracy, visual simulations developed using such methods are well-received and accepted by regulatory agencies as an appropriate way to evaluate visual impacts.

PHOTO LOG NOTES

Photos were taken on March 14, 2005, looking towards the SMC facility, as indicated in the attached photo log. In some cases, upon completion of the initial photographic effort, it was determined that the direction in which the original photo was taken might capture the view towards the manufacturing portion of the facility, but would not necessarily completely capture the view in the direction of the Storage Yard. Therefore, on May 17, 2005, additional photos were taken from several of the viewpoints in a compass direction more reflective of the view towards the Storage Yard. These photos verified that the view of the Storage Yard from these locations would be blocked, mainly by existing vegetation.

Photo _____.g Shieldalloy Metallurgical Corporation, March 14, 2005

Photo #	Location	GPS Location	Compass heading	Distance of location from Storage Yard area	Land Use	Height of Camera	Focal Length for 35mm
1	Shieldalloy on-site- directly west of the pile	39°32 539N 075° 01.100W	130°	~600 feet west	Industrial	5.2'	35mm (f.stop 16)
2	Shieldalloy on-site – southwest of pile	39°32 428N 075° 01.115W	75°	~650 feet southwest	Industrial	5.2'	35mm (f.stop 16) Digital
3	Shieldalloy on-site - near Water Treatment Bldg	39°32 447N 075° 01.241W	88°	~1300 feet west and looking West	Industrial	5.2'	Digital
4 (2 digital photos)	Shieldalloy on-site - near Water Treatment Bldg	39°32 446N 075° 01.250W	88°	~1320 feet west	Industrial	5.2'	35mm (f.stop 16) Digital
5	Shieldalloy on-site - Truck entry roadway	39°32 559N 075° 01.296W	113°	~1450 feet west	Industrial	5.2'	35mm (f.stop 16) Digital
6	Strawberry Ave- development site for Genco Homes	39°31 964N 075° 00.862W	338°	~2950 feet south	Residential	5.2'	35mm (f.stop 16)
7	West Blvd north of power line	39°31 741N 075° 01.371W	8°	~4650 feet southwest	Highway/ Residential	5.2'	35mm (f.stop 16) Digital
8 (2 digital	West Blvd near Arbor Avenue	39°32 118N 075° 01.343W	6°	~2400 feet southwest	Residential	5.2'	35mm (f.stop 16) Digital

\mathcal{C}		Ċ
		Photo L.
	•	Shieldalloy Metallurgical Corporation, March 14, 2005

Photo # photos)	Location	GPS Location	Compass hcading	Distance of location from Storage Yard area	Land Use	Height of Camera	Focal Length for 35mm
9	Arbor Avenue and North West Avenue	39°32 070N 075° 01.903W	30°	~4800 feet southwest	Residential	5.2'	35mm (f.stop 16) Digital
10	North West Avenue north of Arbor Avenue intersection	39°32 162N 075° 01.894W	60°	~4600 feet southwest	Residential	5.5'	Digital only
11	Weymouth Road at Salem Avenue	39°32 461N 075° 02.213W	100°	~5100 feet west	Residential	5.2'	Digital only
12 (2 digital photos)	Catawba Avenue and West Blvd.	39°32 790N 075° 01.504W	146°	~3100 feet north west	Commercial	5.2'	35mm (f.stop 16) Digital
13	Church Street south of Catawba Avenue	39°32 818N 075° 01.334W	162°	~5100 feet north	Residential	5.2'	Digital only
14	Edgarton School at Madison/Catawba Ave	39°32 847N 075° 01.051W	182°	~1900 feet north	Institutional	5.2'	Digital only
15	Edgarton School parking lot on Catawba Ave	39°32 857N 075° 01.128W	191°	~2100 feet north	Institutional	5.2'	Digital only

· . . .

.

C
Photo
Shieldalloy Metallurgical Corporation, March 14, 2005
Distance of location

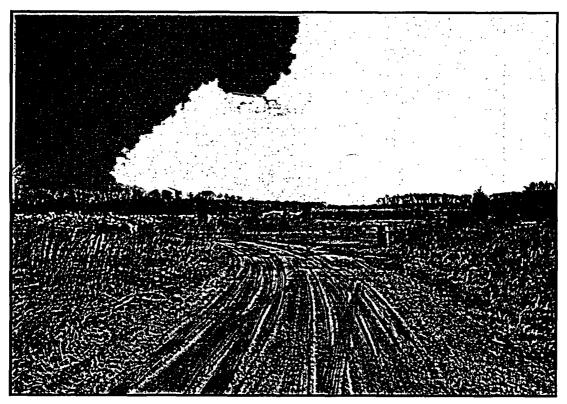
17Woodlawn Avenue at Covey Lane39°32 975N 075° 00.433W193° 193°~3700 feet northeast covey LaneResidential5.2'Digital only18Gorgo Lane south of Newfield water tower39°32 540N 075° 00.730W228° to 280°~1300 feet northeastResidential/ Undeveloped5.2'35mm (f.stop 16) Digital19Grace Orthodox Church – Weymouth near West Blvd39°32 317N 075° 01.320W41° to 280°~1600 feet southwestMixed Residential5.2'Digital20 digital photos)Columbia Avenue at County Bridge39°32 797N 075° 02.121W128° to 159°~5280 feet northwestResidential5.2' DigitalDigital21Christ Community Salem Avenue west of West Blvd.39°32 662N 075° 01.620W130° r~3300 feet northwestResidential Residential5.2' S.2'Jigital Digital22Notre Dame School on Church Street south of Conwell39°32 539N 075° 01.416W98° 98°~1980 feet west ResidentialMixed Residential5.2' S.2'35mm (f.stop 16)2346 West Blvd- Cabinet Source Store39°32 539N 075° 01.416W98° 98°~1980 feet west ResidentialMixed Residential5.2' S.2'35mm (f.stop 16)	Photo # 16	Location Rosemont Avenue and Fawn Drive	GPS Location 39°33 320N 075° 01.251W	Compass heading 172°	Distance of location from Storage Yard area ~5200 feet north	Land Use Residential	Height of Camera 5.2'	Focal Length for 35mm Digital only
(3-35 mm & Dig. Photos)Newfield water tower075° 00.730Wto 280°Undeveloped(f.stop 16) Digital19Grace Orthodox Church – Weymouth near West Blvd39°32 317N41°~1600 feet southwestMixed Residential5.2'Digital20Columbia Avenue at (3 digital39°32 797N 075° 02.121W128° to 159°~5280 feet northwestResidential5.2'Digital21Christ Community Church parking lot- Salem Avenue west of West Blvd.39°32 662N 075° 01.620W130° and 159°~3300 feet northwestResidential another to another the set of West Blvd.5.2'35mm Digital22Notre Dame School on Church Street south of Conwell39°32 922N 075° 01.362W160° another to another the set of West Blvd.Institutional/ Set on the set of West Blvd.5.2'Digital2346 West Blvd-39°32 539N98° another to another the set of West Blvd.39°32 539N98° another to another the set of West Blvd.Mixed set of West Blvd-5.2'35mm	17	1		193°	~3700 feet northeast	Residential	5.2'	
19Grace Orthodox Church – Weymouth near West Blvd39°32 317N 075° 01.320W41° 41°~1600 feet southwest church – Weymouth near West BlvdMixed Digital5.2' Digital20Columbia Avenue at Gigital photos)39°32 797N 075° 02.121W128° to 159°~5280 feet northwest of to 159°Residential5.2' DigitalDigital21Christ Community Church parking lot- Salem Avenue west of West Blvd.39°32 662N 075° 01.620W130° 130°~3300 feet northwest of Sol 01.620WResidential5.2' Digital35mm (f.stop 16)22Notre Dame School on Church Street south of Conwell39°32 922N 075° 01.362W160° of Sol 01.362W~3300 feet north- northwestInstitutional/ Residential5.2' Digital2346 West Blvd-39°32 539N98° of Sol 232 539N~1980 feet westMixed5.2' Sol 5.2'35mm	(3 -35 mm & Dig.	v		to	~1300 feet northeast		5.2'	(f.stop 16)
(3 digital photos)County Bridge075° 02.121Wto 159°Digital21Christ Community Church parking lot- Salem Avenue west of West Blvd.39°32 662N 		Church – Weymouth		41°	~1600 feet southwest		5.2'	Digital
Church parking lot- Salem Avenue west of West Blvd.075° 01.620W075° 01.620W(f.stop 16)22Notre Dame School on Church Street south of Conwell39°32 922N 075° 01.362W160° 075° 01.362W~3300 feet north- northwestInstitutional/ Residential5.2' Digital2346 West Blvd-39°32 539N98° 98°~1980 feet westMixed5.2' S.2'35mm	(3 digital			to	~5280 feet northwest	Residential	5.2'	Digital
22Notre Dame School on Church Street south of Conwell39°32 922N 075° 01.362W160°~3300 feet north- 	21	Church parking lot- Salem Avenue west		130°	~3300 feet northwest	Residential	5.2'	(f.stop 16)
	22	Notre Dame School on Church Street		160°			5.2'	
Digital	23			98°	~1980 feet west		5.2'	(f.stop 16)

•

. . (

•

Photo
Shieldalloy Metallurgical Corporation, March 14, 2005


Photo #	Location	GPS Location	Compass heading	Distance of location from Storage Yard area	Land Use	Height of Camera	Focal Length for 35mm
24 (2 digital photos)	West Blvd and Sandy Drive	39°33 132N 075° 01.680W	140°	~5280 feet northwest	Residential	5.2'	Digital
25	Strawberry Avenue east of City Line Avenue	39°31 934N 075° 00.355W	295°	~3900 feet southeast	Residential	5.2'	35mm (f.stop 16)

Supplemental Photo Log Shieldalloy Metallurgical Corporation, May 17, 2005

Supplemental Photo #	Location	Compass heading	Distance of location from Storage Yard area
15A	Edgarton School parking lot on Catawba Ave	165°	~2100 feet north
19A	Grace Orthodox Church – Weymouth near West Blvd	55°	~1600 feet southwest
20A	Columbia Avenue at County Bridge	120°	~5280 feet northwest
25A	Strawberry Avenue east of City Line Avenue	325°	~3900 fect southeast

Photo 1. View of northern portion of Storage Yard taken just west of the Storage Yard.

Photo 2. View of southern portion of Storage Yard taken from the unpaved SMC access road.

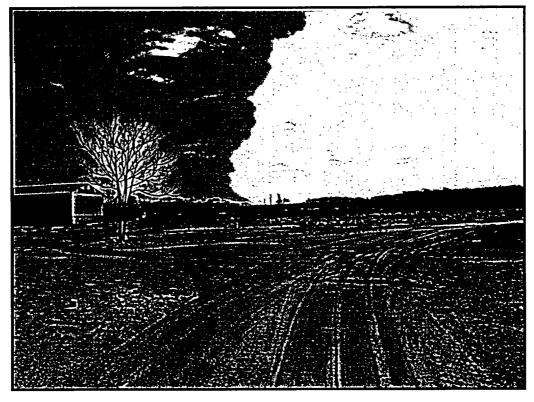


Photo 3. View toward the Storage Yard, taken near the SMC pond.

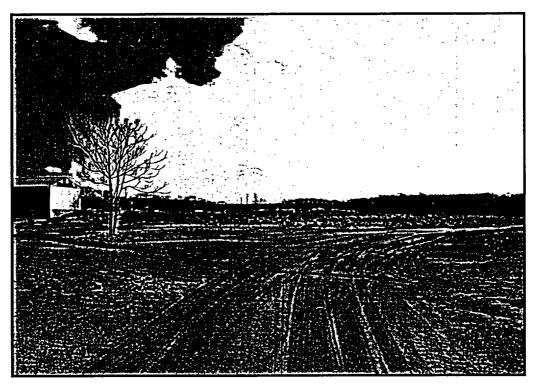


Photo 4. View toward the Storage Yard, taken near the SMC pond.

Photo 5. View toward the Storage Yard, from near the SMC administration building.

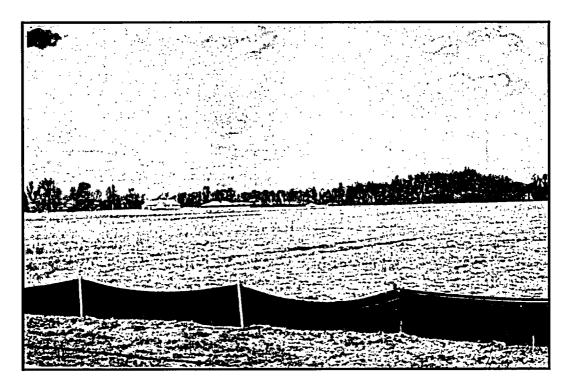


Photo 6. View toward the SMC site from Strawberry Ave- development site for Genco Homes.

Photo 7. View toward the SMC site from West Blvd north of power line.

Photo 8. View toward the SMC site from West Blvd near Arbor Avenue

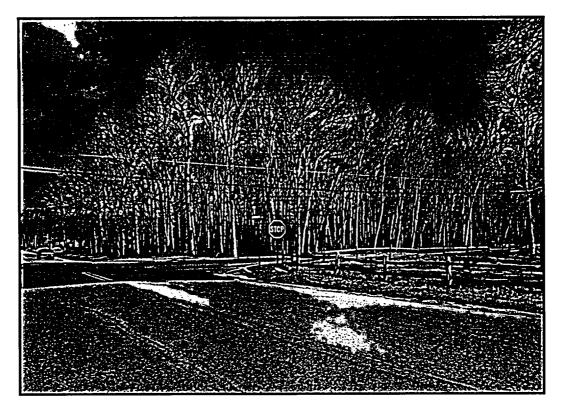


Photo 9. View toward the SMC site from Arbor Avenue and North West Avenue

Photo 10. View toward the SMC site from North West Avenue north of Arbor Avenue intersection

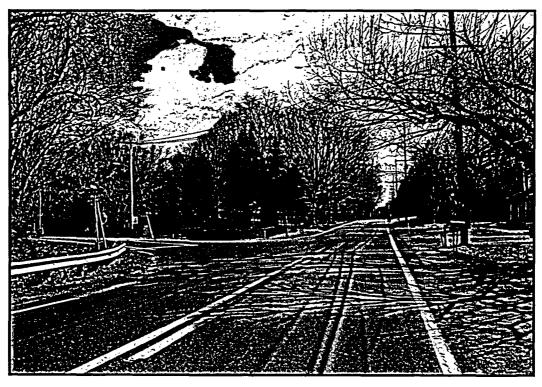


Photo 11. View toward the SMC site from Weymouth Road at Salem Avenue

Photo 12. View toward the SMC site from Catawba Avenue and West Blvd.

Photo 13. View toward the SMC site from Church Street south of Catawba Avenue.

Photo 14. View toward the SMC site from Edgarton School at Madison/Catawba Ave

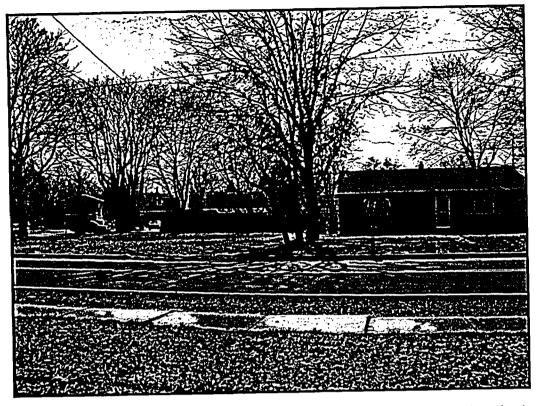


Photo 15. View toward the SMC site from Edgarton School parking lot on Catawba Ave.

Photo 16. View toward the SMC site from Rosemont Avenue and Fawn Drive.

Photo 17. View toward the SMC site from Woodlawn Avenue at Covey Lane

Photo 18. View toward the SMC site from Gorgo Lane south of Newfield water tower

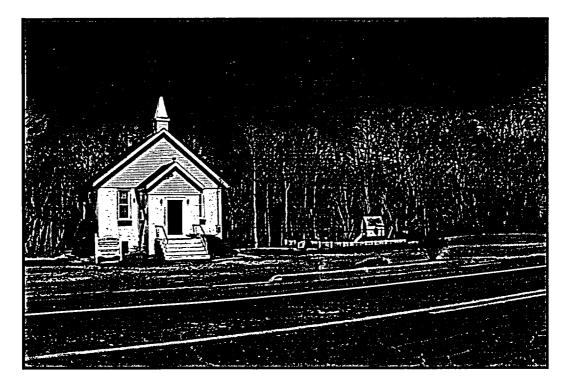


Photo 19. View toward the SMC site from Grace Orthodox Church at Weymouth near West Blvd



Photo 20. View toward the SMC site from Columbia Avenue at County Bridge

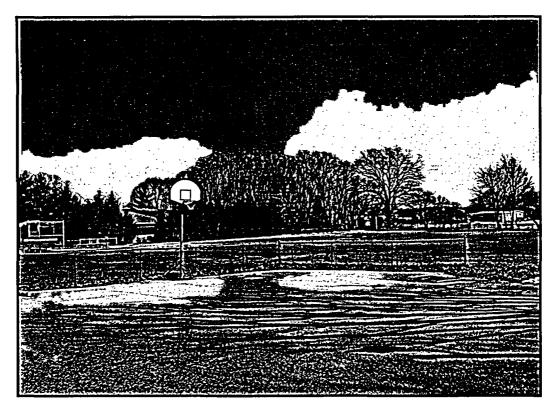


Photo 21. View toward the SMC site from Christ Community on Church Salem Avenue.

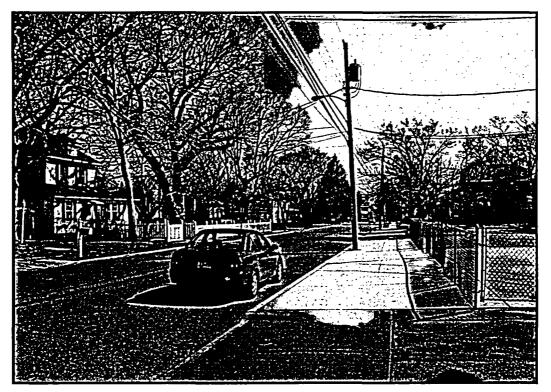


Photo 22. View toward the SMC site from Notre Dame School on Church Street.

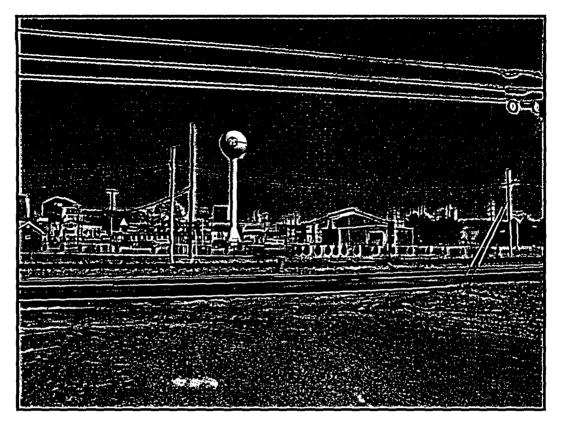



Photo 23. View toward the SMC site from 46 West Blvd- Cabinet Source Store.

Photo 24. View toward the SMC site from West Blvd and Sandy Drive.

Photo 25. View toward the SMC site from Strawberry Avenue, east City Line Avenue.

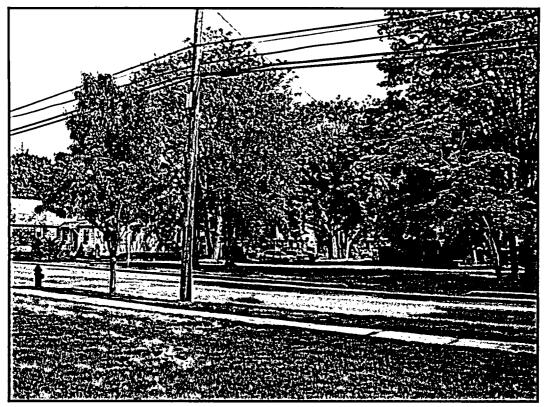
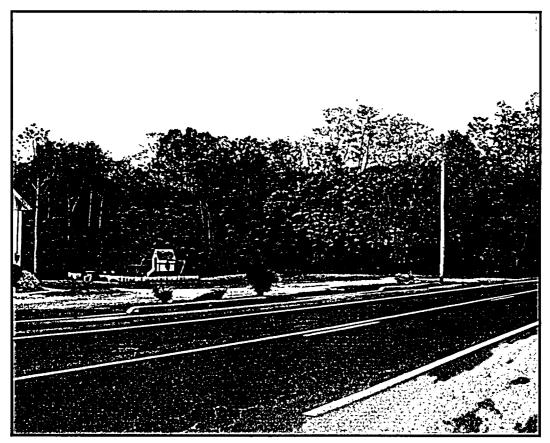



Photo 15A. View toward Storage Yard at the SMC site from Edgarton School parking lot on Catawba Avenue.

Photo 19A. View toward Storage Yard at the SMC site from Grace Orthodox Church at Weymouth near West Blvd.

Photo 20A. View toward Storage Yard at the SMC site from Columbia Avenue at County Bridge.

Photo 25A. View toward Storage Yard at the SMC site from Strawberry Avenue east of City Line Avenue.

APPENDIX J - SELECT SOCIOECONOMIC DATA

.

APPENDIX J - SELECT SOCIOECONOMIC DATA

Census Data

Total Population – by State, County and Block

Hispanic and Latino, or Not Hispanic or Latino, by Race – by State, County and Block Group

Poverty Status in 1999 by Age Race – by State, County and Block Group Poverty Status in 1999 of Families by Family Type Race – by State,

County and Block Group

American FactFinder³**

Se steat Fredhods Falls GICSSARY Sawhlen

20/14/2005

P1. TOTAL POPULATION [1] - Universe: Total population Data Set: Census 2000 Summary File 1 (SF 1) 100-Percent Data

NOTE: For information on confidentiality protection, nonsampling error, definitions, and count corrections see http://factfinder.census.gov/home/en/datanotes/expsf1u.htm.

	New Jersey	Cumberland County, New Jersey	Gloucester County, New Jersey	Group 1, Census	Block 1001, Block Group 1, Census Tract 409.02, Cumberland County, New Jersey	Block 1002, Block Group 1, Census Tract 409.02, Cumberland County, New Jersey	Block 1003, Block Group 1, Census Tract 409.02, Cumberland County, New Jersey	Block 1017, Block Group 1, Census Tract 409.02, Cumberland County, New Jersey	Block 1018, Block Group 1, Census Tract 409.02, Cumberland County, New Jersey	Block 2007, Block Group 2, Census Tract 409.02, Cumberland County, New Jersey
Total	8,414,350	146,438	254,673	6	0	78	45	0	2	50

U.S. Census Bureau

Census 2000

Census count corrections for American Indian and Alaska Native Areas (AIANAs), states, counties, places, county subdivisions, census tracts, and blocks may have been released as a result of an external challenge through the <u>Count Question Resolution</u> Prooram.

* history

Standard Error/Variance documentation for this dataset:

Accuracy of the Data: Census 2000 Summary File 1 (SF 1) 100-Percent Data (PDF 44KB)

يتركب والمنافع والمتحد والمتحد والمتحد والمحاد والمحاد

http://fi___hder.census.gov/servlet/DTTable?_bm=d&-context=dt&-Ti___)=DEC_2000_SF1_U_P001&-ds_name=DEC_2000_SF1_..

White a sound stream of a source strate state and the second sources and the second sources and the sources an

P1. TOTAL POPULATION [1] - Universe: Total population Data Set: Census 2000 Summary File 1 (SF 1) 100-Percent Data

NOTE: For information on confidentiality protection, nonsampling error, definitions, and count corrections see http://factfinder.census.gov/home/en/datanotes/expsf1u.htm.

	Block 2008,	Block 2009,	Block 2010,	Block 2011,	Block 2012,	Block 2019,	Block 2020,	Block 2021,	Block 2022,	Block 2023,
· ·	Block Group 2,									
	Census Tract									
	409.02,	409.02,	409.02,	409.02,	409.02,	409.02,	409.02,	409.02,	409.02,	409.02,
	Cumberland									
	County, New									
	Jersey									
Total	32	0	0	38	16	56	0	0	31	32

U.S. Census Bureau Census 2000

Census <u>count corrections</u> for American Indian and Alaska Native Areas (AIANAs), states, counties, places, county subdivisions, census tracts, and blocks may have been released as a result of an external challenge through the <u>Count Question Resolution</u> <u>Program</u>.

Standard Error/Variance documentation for this dataset: Accuracy of the Data: Census 2000 Summary File 1 (SF 1) 100-Percent Data (PDF 44KB) FactFinder

Main Statute iFeedpack. S. 361.5 Glossary Hom

Site May

برأ بمنهجهوه والكابر الوافر فالبعا الوراف وأوا

and the second secon

P1. TOTAL POPULATION [1] - Universe: Total population Data Set: Census 2000 Summary File 1 (SF 1) 100-Percent Data

NOTE: For information on confidentiality protection, nonsampling error, definitions, and count corrections see http://factfinder.census.gov/home/en/datanotes/expsf1u.htm.

	Block 2024,	Block 1006,	Block 1007,	Block 1006,	Block 1007,	Block 1008,	Block 1012,	Block 1013,	Block 1014,	Block 1015,
	Block Group 2,	Block Group 1,								
1	Census Tract	Census Tract	· Census Tract	Census Tract	Census Tract	Census Tract	Census Tract	Census Tract	Census Tract	Census Tract
1	409.02,	5017.03,	5017.03,	5018,	5018,	5018,	5018,	5018,	5018,	5018,
	Cumberland	Gloucester								
1 1	County, New	County; New	County, New	County, New	County, New	. County, New	County, New	County, New	County, New	County, New
	Jersey									
Total	112	202	0	92	62	35	15	13	64	. 0

U.S. Census Bureau Census 2000

Census count corrections for American Indian and Alaska Native Areas (AIANAs), states, counties, places, county subdivisions, census tracts, and blocks may have been released as a result of an external challenge through the Count Question Resolution Program.

Standard Error/Variance documentation for this dataset:

Accuracy of the Data: Census 2000 Summary File 1 (SF 1) 100-Percent Data (PDF 44KB)

American FactFinder

in the state of the

P1. TOTAL POPULATION [1] - Universe: Total population Data Set: Census 2000 Summary File 1 (SF 1) 100-Percent Data

NOTE: For information on confidentiality protection, nonsampling error, definitions, and count corrections see http://factfinder.census.gov/home/en/datanotes/expsf1u.htm.

Bureau

	Block 1016,	Block 1017,	Block 1018,	Block 1019,	Block 1020,	Block 1021.	Block 1022,	Block 1023,	Block 2000,	Block 2003,
	Block Group 1,	Block Group 2,	Block Group 2,							
	Census Tract									
	5018,	5018,	5018,	5018,	5018,	5018,	5018,	5018,	5018,	5018,
	Gloucester									
	County, New									
	Jersey									
Total	0	51	61	25	21	25	22	0	289	68

U.S. Census Bureau Census 2000

Census <u>count corrections</u> for American Indian and Alaska Native Areas (AIANAs), states, counties, places, county subdivisions, census tracts, and blocks may have been released as a result of an external challenge through the <u>Count Question Resolution</u> <u>Program</u>.

Standard Error/Variance documentation for this dataset: Accuracy of the Data: Census 2000 Summary File 1 (SF 1) 100-Percent Data (PDF 44KB)

5

merican FactFinder

Mand Messell and Frankland Messellar and Charley Heard Man S-HOPT

P1. TOTAL POPULATION [1] - Universe: Total population Data Set: Census 2000 Summary File 1 (SF 1) 100-Percent Data

NOTE: For information on confidentiality protection, nonsampling error, definitions, and count corrections see http://tactfinder.census.gov/home/en/datanotes/expsf1u.htm.

	Block 2004,	Block 2005,	Block 2006,	Block 2007,	Block 2008,	Block 2009,	Block 2014,	Block 2015,	Block 2016,	Block 2017,
1 1	Block Group 2,									
1 1	Census Tract									
	5018,	5018,	5018,	5018,	5018,	5018,	5018,	5018,	5018,	5018,
	Gloucester									
	County, New									
	Jersey									
Total	51	35	· 0	0	0	. 8	17	32	39	25

U.S. Census Bureau

Census 2000

Census <u>count corrections</u> for American Indian and Alaska Native Areas (AIANAs), states, counties, places, county subdivisions, census tracts, and blocks may have been released as a result of an external challenge through the <u>Count Question Resolution</u> Program.

Standard Error/Variance documentation for this dataset: Accuracy of the Data: Census 2000 Summary File 1 (SF 1) 100-Percent Data (PDF 44KB)

FactFinder

Main States and States and States and States and - Heller 111100

P1. TOTAL POPULATION [1] - Universe: Total population Data Set: Census 2000 Summary File 1 (SF 1) 100-Percent Data

NOTE: For information on confidentiality protection, nonsampling error, definitions, and count corrections see http://factfinder.census.gov/home/en/datanotes/expsf1u.htm.

Block 2018, Block Group 2, Census Tract 5018, Gloucester County, New Jersey 66

Bureau

Total

U.S. Census Bureau Census 2000

Census count corrections for American Indian and Alaska Native Areas (AIANAs), states, counties, places, county subdivisions, census tracts, and blocks may have been released as a result of an external challenge through the Count Question Resolution Program.

Standard Error/Variance documentation for this dataset: Accuracy of the Data: Census 2000 Summary File 1 (SF 1) 100-Percent Data (PDF 44KB)

U.S. Census Bureau

Landel - Segrado e Breezburk (1984) Radia - Challen events a setembra - Challen e and

P4. HISPANIC OR LATINO, AND NOT HISPANIC OR L'ATINO BY RACE [73] - Universe: Total

population

Data Set: Census 2000 Summary File 1 (SF 1) 100-Percent Data

...

erican FactFinder

NOTE: For information on confidentiality protection, nonsampling error, and definitions, see <u>http://factfinder.census.gov/home/en/datanotes/exps11u.htm</u>.

· · · · · · · · · · · · · · · · · · ·	New Jersey	Cumberland County, New Jersey	Gloucester County, New Jersey	Block Group 1, Census Tract 409.02, Cumberland County, New Jersey	Block Group 2, Census Tract 409.02, Cumberland County, New Jersey	Block Group 1, Census Tract 5017.03, Gloucester County, New Jersey	Block Group 1, Census Tract 5018, Gloucester County, New Jersey	Block Group 2, Census Tract 5018, Gloucester County, New Jersey
Total:	8,414,350	146,438	254,673	1,264	1,527	1,018	731	885
Hispanic or Latino	1,117,191	27,823	6,583	273	132	58	20	42
Not Hispanic or Latino:	7,297,159	118,615	248,090	991	1,395	960		843
Population of one race:	7,163,470	116,234	245,294	966	1,377	950	706	830
White alone	5,557,209	85,510	· 218,262	509	1,304	926	693	
Black or African American alone	1,096,171	28,134	22,562	445	71	. 17	9	12
American Indian and Alaska Native alone	. 11,338	- 1,077	426	4	. 0	1	1	1
Asian alone	477,012	1,338	3,763	. 2	2	6	3	6
Native Hawaiian and Other Pacific Islander alone	- 2,175			.1	0	. 0	0	0
Some other race alone	19,565	136	221	5	0	0 111 11	0	1
Population of two or more races:	133,689	2,381	2,796	25	- 18	- 10	- 5	13
Population of two races:	126,411	2,171	2,588	22	18	. 8	5	13
White; Black or African American	18,066	487	· 921	2	<u>·</u> _3	0	2	1
White; American Indian and Alaska Native	9,760	377	421	7	3	3	2	3
White; Asian	21,700	195	478	2	3	0	1	2
White; Native Hawaiian and Other Pacific Islander	1,008		40	0	0		0	0
White; Some other race	35,669	400	317	4	2	5	0	5
Black or African American; American Indian and Alaska Native	6,538	330	171	3	2	0	0	2
Black or African American; Asian	3,482	49	45	1	0	0	0	0
Black or African American; Native Hawaiian and Other Pacific Islander	1,307	35	. 12	0	0	· 0	· 0	0
Black or African American; Some other race	16,291	203	72	3	1	0	0	0
American Indian and Alaska Native; Aslan	2,067	10	13	0	0	0	0	0
American Indian and Alaska Native; Native Hawaiian and Other Pacific Islander	40	5	0	0	0	0	0	0

White; Black or African American; Asian	555	10	13	0	0	0	0	
White; Black or African American; Native Hawaiian and Other Pacific Islander	57	. 4	0	. 0	0	0	0	
White: Black or African American: Some other race	837	17	30	0	0	0	0	
White; American Indian and Alaska Native; Asian		1	3	0	0		0	A DESCRIPTION OF A DESC
White; American Indian and Alaska Native;								· · · · · · · · · · · · · · · · · · ·
Native Hawaiian and Other Pacific Islander	35	0	0	0	0	0	0	
White; American Indian and Alaska Native; Some other race	144		15	0	0	2	0	
White; Asian; Native Hawaiian and Other Pacific Islander	286	2	3	0	0		0	
White; Asian; Some other race	647	4	16	0	0			the second s
White; Native Hawaiian and Other Pacific Islander; Some other race	36	0	2	0	0			÷
Black or African American; American Indian and Alaska Native; Asian	138	5	2	0	0	0	0	
Black or African American; American Indian and Alaska Native; Native Hawaiian and Other Pacific Islander	45	1	0	0	0	0	0	
Black or African American; American Indian and Alaska Native; Some other race	187	. 6	0	0	0	0	. 0	
Black or African American; Asian;	78	3	2	2	0	0	0	
Native Hawailan and Other Pacific Islander		-						ļ
Black or African American; Asian;Some other race	232	2	3	0	. 0	0	0	
Black or African American; Native Hawaiian and Other Pacific Islander; Some other race	70	1	1	0	0	0	0	
American Indian and Alaska Native; Asian; Native Hawalian and Other Pacific Islander	19	1	0	0	0	0	0	
American Indian and Alaska Native; Asian; Some other race		0	1	0	0	0	0	
American Indian and Alaska Native; Native Hawalian and Other Pacific Islander; Some other race	1	0	0	0	0	0	0	
Asian; Native Hawaiian and Other Pacific Islander; Some other race	48	1	0	0	0	0	0	{
Population of four races:	535	9	14	0	0	. 0	0	
White; Black or African American; American Indian and Alaska Native; Asian	349	4	8	0	0	0	0	
White; Black or African American; American Indian and Alaska Native; Native Hawalian and Other Pacific Islander	17	1	4	0	0	0	0	
White; Black or African American; American Indian and Alaska Native; Some other race	55	2	. 1	0	0	0	0	
White; Black or African American; Asian; Native Hawaiian and Other Pacific Islander	28	0	1	0	0	0	0	
White; Black or African American; Asian; Some other race	30	0	0	0	0	0	0	
White; Black or African American; Native Hawaiian and Other Pacific Islander; Some other race	5	0	0	0	0	0	0	
White; American Indian and Alaska Native; Asian; Native Hawaiian and Other Pacific Islander	16	2	0	0	0	0	0	·
White; American Indian and Alaska Native; Asian; Some other race	. 4	0	0	0	0	0	0	
White; American Indian and Alaska Native; Native Hawaiian and Other Pacific Islander; Some other race	1	0	0	0	0	0	0	
White; Asian; Native Hawaiian and Other Pacific Islander; Some other race		0	0	0	0	0	Ö	
Black or African American; American Indian and Alaska Native; Asian; Native Hawaiian and Other Pacific Islander	5	0	0	0	0	0	0	

4/4/2005

۲

Black or African American; American Indian and Alaska Native; Aslan; Some other race	4	0	0	0	0	0	0	
Black or African American; American Indian and Alaska Native; Native Hawaiian and Other Pacific Islander; Some other race	3	0	0	0	0	0	0	
Black or African American; Aslan; Native Hawaiian and Other Pacific Islander; Some other race	5	0	· 0	. 0	0	0	• 0	
American Indian and Alaska Native; Asian; Native Hawaiian and Other Pacific Islander; Some other race	2	0	0	0	0	0	0	
Population of five races:	193	4	2	. 0	0	0	0	
White; Black or African American; American Indian and Alaska Native; Asian; Native Hawaiian and Other Pacific Islander	148	1	· 1	0	0	0	O	
White; Black or African American; American Indian and Alaska Native; Asian; Some other race	26	· 3	1	0	0	0	0	
White; Black or African American; American Indian and Alaska Native; Native Hawaiian and Other Pacific Islander; Some other race	0	. 0	0	0	. 0	мар О	0	
White; Black or African American; Asian; Native Hawaiian and Other Pacific Islander; Some other race	11	0	0	, 0	0	0	0	
White; American Indian and Alaska Native; Asian; Native Hawaiian and Other Pacific Islander; Some other race	6	0	0	0	0	0	0	
Black or African American; American Indian and Alaska Native; Asian; Native Hawaiian and Other Pacific Islander; Some other race	2	0	0	0	0	0	0	
Population of six races:	16	0	0	0	0	· 0	0	
White; Black or African American; American Indian and Alaska Native; Asian; Native Hawaiian and Other Pacific Islander; Some other race	16	0	0	0	0	0	· · 0	

Census 2000

Standard Error/Variance documentation for this dataset: Accuracy of the Data: Census 2000 Summary File 1 (SF 1) 100-Percent Data (PDF 44KB)

file://C:\DOC___/E~1\JOliva\LOCALS~1\Temp\6J2QN8V3.htm

цэн р17-а

· · · ·

· · · ·

______ 4/4/2005

U.S. Census Bureau

P87. POVERTY STATUS IN 1999 BY AGE [17] - Universe: Population for whom poverty status is

determined

Data Set: Census 2000 Summary File 3 (SF 3) - Sample Data

NOTE: Data based on a sample except in P3, P4, H3, and H4. For information on confidentiality protection, sampling error, nonsampling error, and definitions see http://factfinder.census.gov/home/en/datanotes/expsf3.htm.

	New Jersey	Cumberland County, New Jersey	Gloucester County, New Jersey	Block Group 1, Census Tract 409.02, Cumberland County, New Jersey	Block Group 2, Census Tract 409.02, Cumberland County, New Jersey	Block Group 1, Census Tract 5017.03, Gloucester County, New Jersey	Block Group 1, Census Tract 5018, Gloucester County, New Jersey	Block Group 2, Census Tract 5018, Gloucester County, New Jersey
Total:	8,232,588	135,350	249,843	755	1,492	1,002	721	889
Income in 1999 below poverty level:	699,668	20,367	15,395	92	56	26	61	44
Under 5 years	63,044	2,000	1,167	20	0	0	7	7
5 years	13,402	472	190	17	0	0	2	0
6 to 11 years	82,757	2,775	1,605	0	0	0	12	8
12 to 17 years	68,551	2,286	1,618	0	0	0	2	0
18 to 64 years	388,578	10,537	8,809	21	31	26	27	26
65 to 74 years	38,435	1,115	838	8	0	0	2	1
75 years and over	44,901	1,182	1,168	26	25	0	9	2
Income in 1999 at or above poverty level:	7,532,920	114,983	234,448	663	1,436	976	660	845
Under 5 years	486,798	6,667	14,993	22	90	31	34	46
5 years	103,544	1,445	3,059	0	48	0	13	11
6 to 11 years	644,822	10,376	21,829	39	111	67	62	66
12 to 17 years	592,171	10,396	21,631	111	60	74	57	62
18 to 64 years	4,724,939	70,598	146,407	410	934	680	386	552
65 to 74 years	531,283	8,276	15,034	. 42	94	63	53	50
75 years and over	449,363	7,225	11,495	39	99	61	55	58

Hir ip

U.S. Census Bureau

Census 2000

Standard Error/Variance documentation for this dataset: Accuracy of the Data: Census 2000 Summary File 3 (SF 3) - Sample Data (PDF 141.5KB)

U.S. Census Bureau

American FactFinder

C. Main in a salarah (2011) Fusion and C. Martin F. Adaptica Glassica (1995) (2015) (1995) Haraya

<u>P90. POVERTY STATUS IN 1999 OF FAMILIES BY FAMILY TYPE BY PRESENCE OF RELATED</u> <u>CHILDREN UNDER 18 YEARS BY AGE OF RELATED CHILDREN [41] - Universe: Families</u> Data Set: Census 2000 Summary File 3 (SF 3) - Sample Data

NOTE: Data based on a sample except in P3, P4, H3, and H4. For information on confidentiality protection, sampling error, nonsampling error, and definitions see http://factfinder.census.gov/home/en/datanotes/expsf3.htm.

Income in 1999 below poverty level: 135,549 4,004 2,873 12 0 Married-couple family: 50,751 1,157 946 6 0 With related children under 18 years: 32,125 718 551 6 0 Under 5 years only 6,588 157 97 0 0 Under 5 years and 5 to 17 years 9,897 257 164 6 0 S to 17 years only 15,640 304 290 0 0 No related children under 18 years 18,626 439 395 0 0 Other tamily: 84,798 2,847 1,927 6 0 0 Mate householder, no wife present: 12,537 416 268 0 0 0 Under 5 years only 2,275 102 46 0 <th>ct Census Tract 5018, Gloucester</th> <th>1505 Tract Census Tract Ce 1017.03, 5018, Gloucester 5018 oucester County, New Co</th> <th>ck Group 2, nsus Tract , Gloucester unty, New Jersey</th>	ct Census Tract 5018, Gloucester	1505 Tract Census Tract Ce 1017.03, 5018, Gloucester 5018 oucester County, New Co	ck Group 2, nsus Tract , Gloucester unty, New Jersey
Married-couple family: 50,751 1,157 946 6 0 With related children under 18 years: 32,125 718 551 6 0 Under 5 years only 6,588 157 97 0 0 Under 5 years and 5 to 17 years 9,897 257 164 6 0 5 to 17 years only 15,640 304 290 0 0 No related children under 18 years 18,626 439 395 0 0 Other family: 84,798 2,847 1,927 6 0 With related children under 18 years: 9,128 353 217 0 0 Under 5 years only 2,275 102 46 0 0 0 Under 5 years and 5 to 17 years 2,183 107 49 0 0 0 Under 5 years and 5 to 17 years 3,409 63 51 0 0 0 Female householder, no husband present: 72,261 2,431 1,659 6 </th <th>272 216</th> <th>272 216</th> <th>26</th>	272 216	272 216	26
With related children under 18 years: 32,125 718 551 6 0 Under 5 years only 6,588 157 97 0 0 Under 5 years only 15,640 304 290 0 0 No related children under 18 years 18,626 439 395 0 0 Other family: 84,798 2,847 1,927 6 0 0 Male householder, no wife present: 12,537 416 268 0 0 0 With related children under 18 years: 9,128 353 217 0 0 0 Under 5 years only 2,275 102 46 0 0 0 Under 5 years and 5 to 17 years 2,183 107 49 0 0 0 S to 17 years only 4,670 144 122 0 0 0 Female householder, no husband present: 72,281 2,431 1,659 6 0 0 0 0 0 0 <td>0 12</td> <td>0 12</td> <td>1</td>	0 12	0 12	1
Under 5 years only 6,588 157 97 0 0 Under 5 years only 15,640 304 290 0 0 S to 17 years only 15,640 304 290 0 0 No related children under 18 years 18,626 439 395 0 0 Other family: 84,798 2,847 1,927 6 0 Male householder, no wife present: 12,537 416 268 0 0 With related children under 18 years: 9,128 353 217 0 0 Under 5 years only 2,275 102 46 0 0 0 Under 5 years only 2,275 102 46 0 0 0 Under 5 years only 4,670 144 122 0 0 0 S to 17 years only 4,670 144 122 0 0 0 No related children under 18 years: 2,646 2,155 1,472 6 0 <	0 6	0 6	
Under 5 years and 5 to 17 years 9,897 257 164 6 0 5 to 17 years only 15,640 304 290 0 0 No related children under 18 years 18,626 439 395 0 0 Other family: 84,798 2,847 1,927 6 0 0 Male householder, no wife present: 12,537 416 268 0 0 0 With related children under 18 years: 9,128 353 217 0 0 0 Under 5 years only 2,275 102 46 0 0 0 Under 5 years only 2,275 102 46 0 0 0 Under 5 years only 4,670 144 122 0 0 0 No related children under 18 years 3,409 63 51 0 0 0 With related children under 18 years 62,646 2,155 1,472 6 0 0 0 0 0	0 6	0 6	
5 to 17 years only 15,640 304 290 0 0 No related children under 18 years 18,626 439 395 0 0 Other family: 84,798 2,847 1,927 6 0 Male householder, no wife present: 12,537 416 268 0 0 With related children under 18 years: 9,128 353 217 0 0 Under 5 years only 2,275 102 46 0 0 0 Under 5 years only 4,670 144 122 0 0 0 S to 17 years only 4,670 144 122 0 0 0 No related children under 18 years: 3,409 63 51 0 0 Female householder, no husband present: 72,261 2,431 1,659 6 0 Under 5 years only 10,266 391 263 0 0 0 Under 5 years only 10,266 391 263 0	0 2	0 2	
No related children under 18 years 18,626 439 395 0 0 Other family: 84,798 2,847 1,927 6 0 Male householder, no wife present: 12,537 416 268 0 0 With related children under 18 years: 9,128 353 217 0 0 Under 5 years only 2,275 102 46 0 0 0 Under 5 years and 5 to 17 years 2,183 107 49 0 0 0 5 to 17 years only 4,670 144 122 0 0 0 No related children under 18 years 3,409 63 51 0 0 0 Female householder, no husband present: 72,261 2,431 1,659 6 0 0 Under 5 years only 10,266 391 263 0 0 0 Under 5 years only 34,859 1,103 869 6 0 0 0 0 0 0	0 2	0 2	
Other family: 84,798 2,847 1,927 6 0 Male householder, no wife present: 12,537 416 268 0 0 With related children under 18 years: 9,128 353 217 0 0 Under 5 years only 2,275 102 46 0 0 Under 5 years only 2,275 102 46 0 0 5 to 17 years only 4,670 144 122 0 0 No related children under 18 years 3,409 63 51 0 0 Female householder, no husband present: 72,261 2,431 1,659 6 0 With related children under 18 years: 62,646 2,155 1,472 6 0 Under 5 years only 10,266 391 263 0 0 0 Under 5 years only 34,859 1,103 869 6 0 0 S to 17 years only 34,859 1,103 869 6 0 0 </td <td>0 2</td> <td>0 2</td> <td></td>	0 2	0 2	
Male householder, no wife present: 12,537 416 268 0 0 With related children under 18 years: 9,128 353 217 0 0 Under 5 years only 2,275 102 46 0 0 Under 5 years and 5 to 17 years 2,183 107 49 0 0 Sto 17 years only 4,670 144 122 0 0 0 No related children under 18 years: 3,409 63 51 0 0 Female householder, no husband present: 72,261 2,431 1,659 6 0 With related children under 18 years: 62,646 2,155 1,472 6 0 Under 5 years only 10,266 391 263 0 0 0 Under 5 years and 5 to 17 years 17,521 661 340 0 0 0 Under 5 years only 34,859 1,103 869 6 0 0 0 Income in 1999 at or above poverty level: 2,	0 0	0 0	
With related children under 18 years: 9,128 353 217 0 0 Under 5 years only 2,275 102 46 0 0 Under 5 years and 5 to 17 years 2,183 107 49 0 0 5 to 17 years only 4,670 144 122 0 0 No related children under 18 years 3,409 63 51 0 0 Female householder, no husband present: 72,261 2,431 1,659 6 0 With related children under 18 years: 62,646 2,155 1,472 6 0 Under 5 years only 10,266 391 263 0 0 0 Under 5 years only 10,266 391 263 0 0 0 Under 5 years only 10,266 391 263 0 0 0 Under 5 years only 34,859 1,103 869 6 0 0 0 0 0 0 0 0 0	0 6	0 6	
Under 5 years only 2,275 102 46 0 0 Under 5 years and 5 to 17 years 2,183 107 49 0 0 0 5 to 17 years only 4,670 144 122 0 0 0 No related children under 18 years 3,409 63 51 0 0 0 Female householder, no husband present: 72,261 2,431 1,659 6 0 0 With related children under 18 years: 62,646 2,155 1,472 6 0	0 0	0 0	
Under 5 years and 5 to 17 years 2,183 107 49 0 0 5 to 17 years only 4,670 144 122 0 0 No related children under 18 years 3,409 63 51 0 0 Female householder, no husband present: 72,261 2,431 1,659 6 0 With related children under 18 years: 62,646 2,155 1,472 6 0 Under 5 years only 10,266 391 263 0 0 0 Under 5 years only 10,266 391 263 0 0 0 Under 5 years and 5 to 17 years 17,521 661 340 0 0 0 No related children under 18 years 9,615 276 187 0 0 0 Income in 1999 at or above poverty level: 2,032,028 31,369 64,655 192 426 2 Married-couple family: 1,617,865 22,993 53,061 120 362 2 With rel	0 0	0 0	
5 to 17 years only 4,670 144 122 0 0 No related children under 18 years 3,409 63 51 0 0 Female householder, no husband present: 72,261 2,431 1,659 6 0 With related children under 18 years: 62,646 2,155 1,472 6 0 Under 5 years only 10,266 391 263 0 0 0 Under 5 years and 5 to 17 years 17,521 661 340 0 0 0 5 to 17 years only 34,859 1,103 869 6 0 0 No related children under 18 years 9,615 276 187 0 0 0 Income in 1999 at or above poverty level: 2,032,028 31,369 64,655 192 426 2 Married-couple family: 1,617,865 22,993 53,061 120 362 2 With related children under 18 years: 803,675 10,959 27,617 81 153	0 0	0 0	
No related children under 18 years 3,409 63 51 0 0 Female householder, no husband present: 72,261 2,431 1,659 6 0 With related children under 18 years: 62,646 2,155 1,472 6 0 Under 5 years only 10,266 391 263 0 0 0 Under 5 years and 5 to 17 years 17,521 661 340 0 0 0 5 to 17 years only 34,859 1,103 869 6 0 0 Income in 1999 at or above poverty level: 2,032,028 31,369 64,655 192 426 2 Married-couple family: 1,617,865 22,993 53,061 120 362 2 With related children under 18 years: 803,675 10,959 27,617 81 153 Under 5 years only 165,127 1,744 4,760 0 26 48 5 to 17 years only 472,280 6,977 17,427 55 79	0 0	0 0	
Female householder, no husband present: 72,261 2,431 1,659 6 0 With related children under 18 years: 62,646 2,155 1,472 6 0 Under 5 years only 10,266 391 263 0 0 0 Under 5 years and 5 to 17 years 17,521 661 340 0 0 0 5 to 17 years only 34,859 1,103 869 6 0 0 No related children under 18 years 9,615 276 187 0 0 0 Income in 1999 at or above poverty level: 2,032,028 31,369 64,655 192 426 2 Married-couple family: 1,617,865 22,993 53,061 120 362 2 With related children under 18 years: 803,675 10,959 27,617 81 153 Under 5 years only 165,127 1,744 4,760 0 26 48 5 to 17 years only 472,280 6,977 17,427 55 79 <td>0 0</td> <td>0 0</td> <td></td>	0 0	0 0	
With related children under 18 years: 62,646 2,155 1,472 6 0 Under 5 years only 10,266 391 263 0 0 0 Under 5 years and 5 to 17 years 17,521 661 340 0 0 0 5 to 17 years only 34,859 1,103 869 6 0 0 No related children under 18 years 9,615 276 187 0 0 0 Income in 1999 at or above poverty level: 2,032,028 31,369 64,655 192 426 2 Married-couple family: 1,617,865 22,993 53,061 120 362 2 With related children under 18 years: 803,675 10,959 27,617 81 153 Under 5 years only 165,127 1,744 4,760 0 26 Under 5 years and 5 to 17 years 166,268 2,238 5,430 26 48 5 to 17 years only 472,280 6,977 17,427 55 79	0 0	0 0	
Under 5 years only 10,266 391 263 0 0 Under 5 years and 5 to 17 years 17,521 661 340 0 0 0 5 to 17 years only 34,859 1,103 869 6 0 0 No related children under 18 years 9,615 276 187 0 0 0 Income in 1999 at or above poverty level: 2,032,028 31,369 64,655 192 426 2 Married-couple family: 1,617,865 22,993 53,061 120 362 2 With related children under 18 years: 803,675 10,959 27,617 81 153 Under 5 years only 165,127 1,744 4,760 0 26 Under 5 years and 5 to 17 years 166,268 2,238 5,430 26 48 5 to 17 years only 472,280 6,977 17,427 55 79	0 6	0 6	
Under 5 years and 5 to 17 years 17,521 661 340 0 0 5 to 17 years only 34,859 1,103 869 6 0 No related children under 18 years 9,615 276 187 0 0 Income in 1999 at or above poverty level: 2,032,028 31,369 64,655 192 426 2 Married-couple family: 1,617,865 22,993 53,061 120 362 2 With related children under 18 years: 803,675 10,959 27,617 81 153 Under 5 years only 165,127 1,744 4,760 0 26 Under 5 years and 5 to 17 years 166,268 2,238 5,430 26 48 5 to 17 years only 472,280 6,977 17,427 55 79	0 6	0 6	
5 to 17 years only 34,859 1,103 869 6 0 No related children under 18 years 9,615 276 187 0 0 0 Income in 1999 at or above poverty level: 2,032,028 31,369 64,655 192 426 2 Married-couple family: 1,617,865 22,993 53,061 120 362 2 With related children under 18 years: 803,675 10,959 27,617 81 153 Under 5 years only 165,127 1,744 4,760 0 26 Under 5 years and 5 to 17 years 166,268 2,238 5,430 26 48 5 to 17 years only 472,280 6,977 17,427 55 79	0 0	0 0	
No related children under 18 years 9,615 276 187 0 0 Income in 1999 at or above poverty level: 2,032,028 31,369 64,655 192 426 2 Married-couple family: 1,617,865 22,993 53,061 120 362 2 With related children under 18 years: 803,675 10,959 27,617 81 153 Under 5 years only 165,127 1,744 4,760 0 26 Under 5 years and 5 to 17 years 166,268 2,238 5,430 26 48 5 to 17 years only 472,280 6,977 17,427 55 79	0 0	0 0	
Income in 1999 at or above poverty level: 2,032,028 31,369 64,655 192 426 2 Married-couple family: 1,617,865 22,993 53,061 120 362 2 With related children under 18 years: 803,675 10,959 27,617 81 153 Under 5 years only 165,127 1,744 4,760 0 26 Under 5 years and 5 to 17 years 166,268 2,238 5,430 26 48 5 to 17 years only 472,280 6,977 17,427 55 79	0 6	0 6	
Married-couple family: 1,617,865 22,993 53,061 120 362 2 With related children under 18 years: 803,675 10,959 27,617 81 153 Under 5 years only 165,127 1,744 4,760 0 26 Under 5 years and 5 to 17 years 166,268 2,238 5,430 26 48 5 to 17 years only 472,280 6,977 17,427 55 79	0 0	0 0	
With related children under 18 years: 803,675 10,959 27,617 81 153 Under 5 years only 165,127 1,744 4,760 0 26 Under 5 years and 5 to 17 years 166,268 2,238 5,430 26 48 5 to 17 years only 472,280 6,977 17,427 55 79	272 204	272 204	24
Under 5 years only 165,127 1,744 4,760 0 26 Under 5 years and 5 to 17 years 166,268 2,238 5,430 26 48 5 to 17 years only 472,280 6,977 17,427 55 79	230 167	230 167	21
Under 5 years and 5 to 17 years 166,268 2,238 5,430 26 48 5 to 17 years only 472,280 6,977 17,427 55 79	83 59	83 59	9
5 to 17 years only 472,280 6,977 17,427 55 79			1
5 to 17 years only 472,280 6,977 17,427 55 79	0 . 17	0 . 17	1
	66 39	66 39	6
	147 108	147 108	11
	42 37	42 37	3

http://facti._er.census.gov/servlet/DTTable?_bm=y&-context=dt&-ds_name=DEC_2000_SF3_U&-CONTEXT=dt&-mt_name=DEC_2...4/4/2005

Male householder, no wife present:	113,465	2,247	3,181	20	· 8	ol	9	13
With related children under 18 years:	53,687	1,392	1,892	5	· 0	0	. 8	10
Under 5 years only	12,813	373	337	. 0	0	0	4	3
Under 5 years and 5 to 17 years	7,667	206	215	0	0	0	3	0
5 to 17 years only	33,207	813	1,340	5	0	0	1	7
No related children under 18 years	59,778	855	1,289	15	8	0	1	3
Female householder, no husband present:	300,698	6,129	8,413	52	56	42	28	24
With related children under 18 years:	165,656	3,734	4,665	8	5	19	15	15
Under 5 years only	23,885	. 496	718	0	5	7	0	3
Under 5 years and 5 to 17 years	22,926	611	425	0	0	0	2	2
5 to 17 years only	118,845	2,627	3,522	8	0	12	13	10
No related children under 18 years	135,042	2,395	3,748	. 44	51	23	13	9

http://factfinder.census.gov/servlet/DTTable?_bm=y&-context=dt&-ds_name=DEC_2000_SF3_U&-CONTEXT=dt&-mt_name=DEC_2...+4/4/2005

.

U.S. Census Bureau Census 2000

Standard Error/Variance documentation for this dataset: Accuracy of the Data: Census 2000 Summary File 3 (SF 3) - Sample Data (PDF 141.5KB)

APPENDIX K – AIR MODELING INFORMATION

,

· ·

APPENDIX K – AIR MODELING INFORMATION

Air Quality Modeling Information

Figure K-1 Map Showing Geometry of Potential Emission Sources for the Proposed Decommissioning Alternatives

On-Site Stabilization and Long-Term Control (LTC) Alternative Spreadsheets Off-Site Disposal and License Termination (LT) Alternative Spreadsheets Visual Effects Screening Analysis Output Sheet

APPENDIX K AIR QUALITY MODELING INFORMATION

Project Emissions

1.1.1.1

For the two active alternatives, air pollutant emissions will be generated from multiple operations and equipment. Combustion source emissions will be generated from engine exhaust systems, which, depending on the alternative being evaluated, have been assumed to include: triaxle dump trucks, loader(s), dozer, dust control vehicle, and rock crusher's engine, and/or locomotive engine. Fugitive emissions will be generated from material handling (storage piles, heavy equipment operation, drop emissions), wind erosion of exposed material surfaces, and vehicle travel on paved and unpaved roadways. Daily and annual emissions have been estimated for each alternative. The estimate of daily emissions conservatively represents a "worst-case" day of operations that includes the expected number of construction vehicles and fugitive emissions sources.

Of potential concern for this proposed project are nitrogen dioxide (NO₂), sulfur dioxide (SO₂), and particulate matter less than or equal to 10 micrometers in aerodynamic diameter (PM₁₀). National Ambient Air Quality Standards (NAAQS) have been established for PM₁₀, SO₂, and NO₂.

Emission estimation methodologies for each of the alternatives are presented below.

On-Site Stabilization and Long-Term Control Alternative (LTC)

This alternative involves consolidating the radioactive materials within a section of the Storage Yard and constructing a multi-layer engineered barrier over the final consolidated pile. These calculations conservatively assume that areas from which stored materials are removed that are located outside of the footprint of the final pile will be covered with clean soil following material consolidation activities (associated materials are referred to herein as cover materials). To analyze emissions generated from this alternative, the following operational areas have been considered (see Figure K-1):

Area 1	Existing Storage Yard
	The existing consolidated radioactive material pile will be consolidated within this area.
Area 2	Temporary D111 and D102/D112 Demolition Material Storage Area
	The demolition materials will be moved from this area to the consolidated pile area located in Area 1.
Area 4	Roadways
	The roadways are comprised of the paved and unpaved roads the

construction vehicles associated with this alternative will utilize.

As Area 3, the Staging Area, is used only for materials crushing and train loading for the Off-Site Disposal and License Termination Alternative, it is not considered under the LTC alternative.

Emissions for the project steps that are expected to occur during implementation of this alternative, from material relocation through the placement of soil cover materials, were estimated. Multiple spreadsheets were used to estimate emissions, as presented in the attached tables. The following is a summary of the emission estimation methodologies and emission factors presented in each of the tables:

Table 1: Air Emission Details

The operational assumptions that are common to multiple aspects of the various emission estimates are summarized on Table 1. Included in the operational assumptions are operational times and material amounts handled.

Table 2: Material Description

The Storage Yard consists of several subpiles of different types of materials. This table presents the area, volume, mass, and physical characteristics of each subpile. The D111 and D102/D112 piles and the materials needed for the engineered barrier and soil cover are also listed in this table. Based on material composition the material density, silt content, and moisture content have been estimated for each subpile. Each material was matched with a similar material found in the USEPA Compilation of Air Pollutant Emission Factors AP-42 Table 13.2.4-1. Table 2 also presents a weighted average of the materials' physical characteristics that is used in some of the emission estimation tables.

Table 3: Material Handling – "Drop Emissions"

Fugitive PM₁₀ "drop emissions" are created when a truck dumps material onto a pile or when material is loaded from a pile into a truck. The equation to estimate drop emissions is found in AP-42 Chapter 13.2.4, Aggregate Handling and Storage Piles. For this alternative, it is assumed that the drop emissions will occur when soil materials for the engineered barrier and soil cover are dumped on-site and when a loader moves material from an existing pile to the consolidated pile. One of the variables used in the equation, mean wind speed, is from the table of "Normals, Means, and Extremes for Philadelphia PA (PHL)" from Local Climatological Data (ISSN 0198-4535) published by the National Climatic Data Center (NCDC)(see Table 3-5). The pound per day emission estimate for each subpile assumes that every subpile has some material handling; therefore, the "Active 8-Hour Day" is a total of all the subpiles in each area.

Table 4: Material Handling – Active/Inactive Pile Emissions

Fugitive PM_{10} emissions are generated once a pile is disturbed and becomes "active," which is when pile material is dumped, loaded or otherwise handled. Per AP-42 Chapter 13.2.4, once a pile is disturbed the fines are may be disaggregated and released by wind events. There are also fugitive PM_{10} emissions generated when a disturbed pile is inactive due to wind erosion. As the undisturbed pile weathers, the potential for emissions is greatly reduced.

The emissions are estimated by using two emission factors published in the <u>Air Pollution</u> <u>Engineering Manual 1992</u> (AP-40), Chapter 15, Table 1 (page 779), "Uncontrolled Particulate Emission Factors for Sand and Gravel Processing." One emission factor is for active storage piles during an active day. The active storage pile emission factor includes the following operations: loading (drop emissions), equipment traffic, and wind erosion. As there is no loading onto the storage piles being relocated, the emissions estimated using these factors will be conservative. The emission factor assumes that there is 8 to 10 hours of activity per 24 hours. The second emission factor is for a disturbed pile (recently active) that is inactive for the entire day. This emission factor represents wind erosion emissions. Both emission factors are for sand and gravel processing plants; the materials that are stored in Area 1 and Area 2 are similar to the types of materials associated with such operations.

The estimated daily emissions assume that only two subpiles have been disturbed and become active. Since the emission factor is based on the pile size, the daily emissions from the two largest subpiles are estimated (only the disturbed portion of the pile that will be removed and consolidated within the footprint of the final pile is considered). For the purposes of modeling each hour of the day, the wind erosion portion of the active emission factor was extracted. Material handling is assumed to occur for 8 work hours each day and thus material handling emissions are calculated based on 8 hours per day. Wind erosion is assumed to occur 24 hours per day. The emission factor was then adjusted to represent the 8 hour portion of the day that is active and the 16 hour inactive portion of the day when only wind erosion is a source of emissions.

Table 5: Heavy Equipment Operation

The emission factor used to estimate the fugitive PM_{10} emissions due to the operation of heavy equipment is from AP-42 Chapter 11.9 Western Surface Coal Mining. The heavy equipment assumed to be in use includes a dozer, loader and excavator. A dozer and loader are assumed to be used in Area 1 to consolidate the existing piles. The excavator and dozer are assumed to be used to shape the final pile and place the soil cap material. Only the loader is expected to be used in Area 2 to relocate the two piles. Dozer emissions are estimated using an equation for estimating emissions associated with the bulldozing of overburden. It is assumed that the emission rates for the loader and the excavator are the same as the dozer.

Table 6: Unpaved Roadways – Access Road

The emission estimates for fugitive PM_{10} from the unpaved access road are based on emission factors from AP-42 Chapter 13.2.2 Unpaved Roads. It is assumed that the vehicles using the road will be represented by heavy duty tri-axle trucks. The equation for unpaved surfaces at industrial sites is used for this project. Included in the equation is the number of days with precipitation greater than 0.01 inches. The precipitation data is from "Normals, Means, and Extremes for Philadelphia PA (PHL)" from Local Climatological Data (ISSN 0198-4535) published by NCDC (Table 3-5). The silt loading value is the weighted average of the materials' physical characteristics from Table 2. These calculations assume the unpaved roads will be treated each month with a chemical dust suppressant (palliative), which is expected to reduce PM_{10} emissions by 80% per AP-42 Figure 13.2.2-5. The daily number of vehicles assumes that the deliveries for the engineered barrier soils and cover soils occur on the same days.

Table 7: Paved Roadway Emissions

The emission estimates for fugitive PM_{10} from the paved road are based on AP-42 Chapter 13.2.1 Paved Roads. It is assumed that the vehicles using the road will be represented by heavy duty tri-axle trucks. AP-42 Chapter 13.2.1 Equation 1 is used to estimate emissions from the paved roads and the silt loading is the value for iron and steel production as presented in AP-42 Table 13.2.1-3. The daily number of vehicles assumes that the deliveries for the engineered barrier soil materials and cover materials occur on the same days.

Table 8: Exposed Ground Area Emissions

The emission factor for fugitive PM_{10} from the exposed ground area is presented in AP-42 Chapter 11.9.1, Table 11.9.4. Following USEPA guidance, the emission estimates assume that the wind erosion emissions from the exposed ground area will end during the revegetation period, 7 months after the start of material relocation. The emission factor is for PM_{30} , but the AP-42 table refers to Chapter 13.2.5 which has a particle distribution table that states typically 50% of PM_{30} emissions are PM_{10} when wind speed is a factor.

K-4

Table 9: Off-Road Diesel Engine Emissions

The emissions estimated and presented in this table are combustion emissions from offroad vehicle engines. Off-road vehicles have different emission factors than on-road vehicles because the manufacturers are subject to different emission standards for engine designs. The emission factors are from USEPA Report No. NR-009A Exhaust Emission Factors for Non-Road Engine Modeling $\frac{1}{2}$ Compression-Ignition, dated February 13, 1998, revised June 15, 1998. It is assumed that the engines were manufactured between 2003 and 2006 and are regulated by Tier 2 emission standards for PM and NO_x. Due to expected USEPA implementation of the Ultra-Low Sulfur Diesel Rule in June 2006, it is assumed that the diesel fuel has a sulfur content of 15 parts per million.

Table 10: On-Road Engine Emissions

The emissions estimated and presented in this table are emissions from the on-road vehicle engines. Emission estimates include exhaust, brake, and tire wear. Emissions estimates are based on MOBILE6.2, a computerized model that provides emission estimates of present and future emissions from highway motor vehicles and is available through the EPA Office of Transportation and Air Quality. MOBILE6.2 allows the use of site specific and fleet specific parameters in order to develop emission estimates that best represent expected conditions and site location. Fleet vehicles that are less than 10 years old, utilized diesel fuel with 15 ppm sulfur content, and had an average speed of 10 miles per hour were modeled.

Table 11: Emissions Summary

The emissions from each of the tables described above are summarized by area on this table.

.

th an in a

Off-Site Disposal and License Termination Alternative (LT)

This alternative involves removing the radioactive materials from the site by railcar, with some materials requiring crushing prior to off-site removal. It also conservatively assumes the placement of clean soil (cover material) over the Storage Yard after the materials have been removed. Under this alternative, active decommissioning measures will occur for eight hours per day, five days per week, five months per year, over a two year period. To analyze emissions generated from this alternative, the following operational areas have been considered:

Area 1

Existing Storage Yard

The majority of the material to be transported off-site is located in the Storage Yard. The material will be removed and brought to the Staging Area.

Area 2 Temporary D111 and D102/D112 Demolition Material Storage Area The demolition material will be removed and brought to the Staging Area. Area 3 Staging Area The Staging Area is used for materials crushing and train loading operations. Area 4 Roadways The roadways are comprised of the paved and unpaved roads the

111

The roadways are comprised of the paved and unpaved roads the construction vehicles associated with the project will utilize.

Emissions were estimated for the project steps that are expected to occur during implementation of this alternative from material relocation through transportation off-site. Multiple spreadsheets were used to estimate emissions, as presented in the attached tables. The following is a summary of the emission estimation methodologies and emission factors presented in each of the tables:

Table 1: Air Emission Details

The operational assumptions that are common to multiple aspects of the various emission estimates are summarized on Table 1. Included in the operational assumptions are operational times and material amounts handled.

Table 2: Material Description

This table presents the area, volume, mass, and physical characteristics of each subpile of material in the Storage Yard as well as the D111 and D102/D112 piles and cover materials. Based on material composition the density, silt content, and moisture content of each material was estimated. Each material was matched with a similar material found in AP-42 Table 13.2.4-1. Table 2 also presents weighted average of the materials' physical characteristics that is used in some of the emission estimation tables.

Table 3: Material Handling – "Drop Emissions"

Fugitive PM_{10} "drop emissions" are created when a truck dumps material onto a pile or when material is loaded from a pile into a truck. The equation to estimate drop emissions is found in AP-42 Chapter 13.2.4, Aggregate Handling and Storage Piles. For this alternative, it is assumed that the drop emissions will occur when cover materials are dumped on-site, when material is loaded onto a tri-axle truck for transfer to the Staging Area, and when the train is loaded with material. One of the variables used in the equation, mean wind speed, is from the table of "Normals, Means, and Extremes for Philadelphia PA (PHL)" from Local Climatological Data (ISSN 0198-4535) published by the NCDC (Table 3-5).

Table 4: Material Handling - Crushing Emissions

Fugitive PM_{10} emissions are created when mechanical crushing is employed for material size reduction. Only piles with large material will be processed in the crusher. The emission factor is from EPA's Factor Information Retrieval (FIRE) Data System version 6.25. The source classification code (SCC) for the process is 3-05-020-02, which is for stone quarrying – processing, secondary crushing (no emission factors were available for primary crushing). The emission factor is for a crusher that employs wet suppression technology as an emission control.¹¹ The daily amount of material crushed and the estimated PM_{10} emissions are limited by the amount of material that can be loaded into a rail car. Annual emissions assume that half the material will be crushed in the first year and the other half crushed in the second year.

Table 5: Material Handling – Active/Inactive Pile Emissions

Fugitive PM_{10} emissions are generated once a pile is disturbed and becomes "active", which is when pile material is dumped, loaded, or otherwise handled. Per AP-42 Chapter 13.2.4, once a pile is disturbed, the fines may be disaggregated and released by wind events. There are also fugitive PM_{10} emissions generated when a disturbed pile is inactive due to wind erosion. As the undisturbed pile weathers, the potential for emissions is greatly reduced.

The emissions are estimated by using two emission factors published in the <u>Air Pollution</u> <u>Engineering Manual 1992</u> (AP-40), 'Chapter 15, Table 1 (page 779), "Uncontrolled Particulate Emission Factors for Sand and Gravel Processing". One emission factor is for active storage piles during an active day. The active storage pile emission factor includes the following operations: loading (drop emissions), equipment traffic, and wind erosion. The "drop emission" for loading into the Staging Area pile is included in the active pile emission factor. The emission factor assumes that there is 8 to 10 hours of activity per 24 hours. The second emission factor is for a disturbed pile (recently active) that is inactive for the entire day.¹ This emission factor represents wind erosion emissions. Both emission factors are for sand and gravel processing plants; the materials that are stored in Area 1 and Area 2 are similar to the types of materials associated with such operations.

The estimated daily emissions assume that only two subpiles have been disturbed and become active. Since the emission factor is based on the pile size, the daily emissions from the two largest subpiles are estimated. For the purposes of modeling each hour of the day, the wind erosion portion of the active emission factor was extracted. Material handling is assumed to occur for 8 work hours each day and thus material handling emissions are calculated based on 8 hours per day. Wind erosion is assumed to occur 24 hours per day. The emission factor was then adjusted to represent the 8 hour portion of the day that is active and the 16 hour inactive portion of the day when only wind erosion is a source of emissions. Annual emissions assume that half the piles have been disturbed

and removed during the first year and the remaining piles are disturbed and removed during the second year

Table 6: Heavy Equipment Operation

The emission factor used to estimate the fugitive PM_{10} emissions due to the operation of heavy equipment is from AP-42 Chapter 11.9 Western Surface Coal Mining. The heavy equipment assumed to be used includes a dozer, loaders and an excavator. A dozer and loader are assumed to be used in Area 1 to remove the existing piles. Only the loader is expected to be used in Area 2 to relocate the two piles. A second loader is expected to be operating at the Staging Area. Dozer emissions are estimated using an equation for estimating emissions associated with the bulldozing of overburden materials. It is assumed that the emission rate for the loader is the same as the dozer.

Table 7: Unpaved Roadways - Access Road

The emission estimates for fugitive PM_{10} from the access road are based on emission factors from AP-42 Chapter 13.2.2 Unpaved Roads. It is assumed that the vehicles using the road will be represented by heavy duty tri-axle trucks. The equation for unpaved surfaces at industrial sites is used for this project. Included in the equation is the number of days with precipitation greater than 0.01 inches. The precipitation data is from "Normals, Means, and Extremes for Philadelphia PA (PHL)" from Local Climatological Data (ISSN 0198-4535) published by NCDC (Table 3-5). The silt loading value is the weighted average of the materials' physical characteristics from Table 2. The calculations assume the unpaved roads will be treated each month with a chemical dust suppressant, which is expected to reduce PM_{10} emissions by 80%, per AP-42 Figure 13.2.2-5. The daily number of vehicles assumes that the material transfer and the cover material deliveries occur on the same days.

Table 8: Paved Roadway Emissions

The emission estimates for fugitive PM_{10} from the paved road are based on AP-42 Chapter 13.2.1 Paved Roads. It is assumed that the vehicles using the road will be represented by heavy duty tri-axle trucks. AP-42 Chapter 13.2.1 Equation 1 is used to estimate emissions from the paved roads and the silt loading is the value for iron and steel production as presented in AP-42 Table 13.2.1-3.

Table 9: Exposed Ground Area Emissions

The emission factor for fugitive PM_{10} from the exposed ground area is presented in AP-42 Chapter 11.9.1, Table 11.9.4. Following EPA guidance, the emission estimates assume that re-vegetation (after the end of material relocation) will end the wind erosion emissions from the exposed ground area. The emission factor is for PM_{30} , but the AP-42 table refers to AP-42 Chapter 13.2.5, which has a particle distribution table that states typically 50% of PM_{30} emissions are PM_{10} when wind speed is a factor.

Table 10: Off-Road Diesel Engine Emissions

The emissions estimated and presented in this table are emissions from off-road vehicle engines. Emissions estimates include exhaust, brake and tire wear. Off-road vehicles have different emission factors than on-road vehicles because the manufacturers are subject to different emission standards for engine designs. The emission factors are from USEPA Report No. NR-009A Exhaust Emission Factors for Non-Road Engine Modeling – Compression-Ignition, dated February 13, 1998, revised June 15, 1998. It is assumed that the engines were manufactured between 2003 and 2006 and are regulated by Tier 2 emission standards for PM and NO_x. Due to expected USEPA implementation of the Ultra-Low Sulfur Diesel Rule in June 2006, it is assumed that the diesel fuel has a sulfur content of 15 parts per million.

Table 11: Crusher - Engine Emissions

The emissions estimated and presented in this table are combustion point source emissions from the diesel engine that powers the crusher. For the purpose of estimating emissions, it is assumed that the engine has a power rating of 300 HP. The emission factors used to estimate emissions are published in AP-42 Chapter 3.3, Table 3.3-1. Due to expected USEPA implementation of the Ultra-Low Sulfur Diesel Rule in June 2006, it is assumed that the diesel fuel has a sulfur content of 15 parts per million.

Table 12: Locomotive – Diesel Powered

The emissions estimated and presented in this table are combustion emissions from the diesel engine that powers the train. For the purpose of estimating emissions, it is assumed that the locomotive operates under "switch duty-cycle" as defined by USEPA and the engine has a power rating of 1,000 HP. The emission factors used to estimate emissions are published in USEPA's "Emission Standards Reference Guide for Heavy-Duty and Nonroad Engines – Locomotives". Emissions are based on the assumption that the engines were manufactured from 2000 to 2004. Due to expected USEPA implementation of the Ultra-Low Sulfur Diesel Rule in June 2006, it is assumed that the diesel fuel has a sulfur content of 15 parts per million.

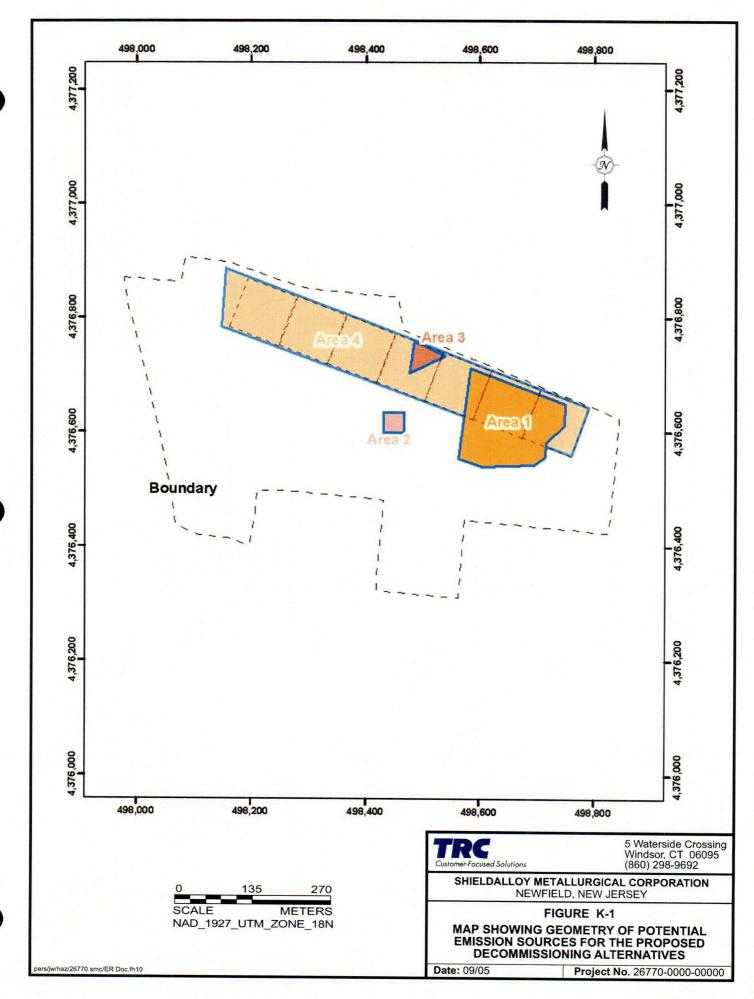
Table 13: On-Road Engine Emissions

The emissions estimated and presented in this table are combustion emissions from the on-road vehicle engines. Emissions estimates are based on MOBILE6.2, a computerized model that provides emission estimates of present and future emissions from highway motor vehicles and is available through the EPA Office of Transportation and Air Quality. MOBILE6.2 allows the use of site-specific and fleet-specific parameters in order to develop emission estimates that best represent expected conditions and site location. TRC modeled fleet vehicles that are less than 10 years old, utilized diesel fuel with 15 ppm sulfur content, and had an average speed of 10 miles per hour. Emission estimates include brake and tire wear.

11 11

Table 14: Emissions Summary

The emissions from each of the tables described above are summarized by area on this table.


License Continuation Alternative (LC)

The LC Alternative involves leaving the existing storage piles in-place. Under this alternative, it is expected that the area would become largely naturally vegetated over the long term. Areas that do not support vegetation, such as large pieces of slag, have been exposed to the wind for some time and wind erodible particles have been removed. USEPA notes that erodible materials are removed from an undisturbed surface in a matter of minutes by wind, and as long as the surface remains undisturbed, it is no longer a source of particle emissions (USEPA, <u>AP-42</u>, <u>Compilation of Air Pollution Emission Factors</u>, Section 13.2.5). Piles containing finer material will tend to form a natural crust, and again the erodible materials from the crusted surface have already been removed. There would be no vehicles or construction equipment used under this scenario.

There will be no emissions of NO_x attributable to this alternative, since there will be no combustion sources or engines employed. Airborne particle emissions under the LC Alternative will be negligible. USEPA does not consider inactive exposed areas and storage piles within industrial facilities to be sources of particle emissions. Under the LC Alternative, the site would have inconsequential impacts on air quality, since there would be virtually no emissions. Under this scenario, the air quality concentrations would be equal to the background concentrations.

Project Visibility Screening Modeling

The worst-case emission scenario (LT Alternative) was modeled using the EPA's visibility screening model, VISCREEN, to determine whether the Project would have any significant visibility impact on the nearest Prevention of Significant Deterioration (PSD) Class I area, the Brigantine National Wildlife Refuge. Modeling was performed in accordance with the Federal Land Manager's Air Quality Related Values Working Group (FLAG) Phase I Report (U.S. Forest Service, December 2000). The output of the VISCREEN model is attached and shows that the screening criteria for the maximum visual impacts are not exceeded either inside or outside the Class I area. Thus, since the other alternatives have lower emission rates, all of the remediation alternatives will comply with the visibility screening criteria.

C37

......

On-Site Stabilization and Long-Term Control

	On-Sile Stabiliza	tion and Eong-Term Control			
	Table 1				
		tello			
\bigcirc	Air Emission De	talis			
	Engineered Ba	crier Material			•
		Amount of Topsoli (cubic yards)			3,667 CAD-based Estimate
		Amount of Soll Isolation & Frost Protection (cubic yards)			15,000 CAD-based Estimate
		Amount of Sand Cushion (cubic yards)			6,000 CAD-based Estimate
		Material Total (cubic yards)			24,667
		· · · · · · · · · · · · · · · · · · ·			5,197 Cubic Yards x Pounds per Cubic Yard
		Amount of Topsoil (tons) Amount of Soil Isolation & Frost Protection (tons)			21,253 Cubic Yards x Pounds per Cubic Yard
		Amount of Sand Cushion (tons)	• • •		8,910 Cubic Yards x Pounds per Cubic Yard
		Material Total (tons)	• •		35,370
		•	•		
		Number of Trucks			1,233 Material Needed / Yards per Load
		Yards per Load	,		20 Given 24,667 Number of Trucks x Yards per Load
		Cubic Yards of Engineered Barrier Material Delivered Pounds per Cubic Foot of Topsoil & Soil Isolation, Density			- 105 From Table 2
		Pounds per Cubic Yard, Density			2,835 Pounds per Cubic Foot x 27
		Grams per Cubic Centimeter			1.68 From Table 2
		Pounds per Cubic Foot of Sand, Density			110 Given
		Pounds per Cubic Yard, Density			2,970 Pounds per Cubic Foot x 27
		Grams per Cubic Centimeter			1.76 From Table 2
		Soil Material Loaded per Truck (tons)			28 Yards per Load x Pounds per Cubic Yard
		Weight per Empty Truck (tons)			15 Given
		Weight per Loaded Truck (tons)			43 Load per Truck + Weight of Empty Truck
		Average Weight of a Soli Material Truck (tons)	•		29 Average of Empty Truck and Loaded Truck
		Average Number of Wheels per Truck (10 unloaded, 14 loaded)			12 Given
		Tautha and Deviced Soli Material			1,233 Assumes Cover Operation = 90 Calendar Days (64 work days)
		Trucks per Project, Soll Material Trucks per Day, Soil Material	,		19.3 Trucks per Project / Time for Engineered Barrier (64 work days)
		Tons Loaded per Day, Soil Material			546 Trucks per Day x Tons Loaded per Truck
		Tons Loaded per Project, Soit Material			34,965 Trucks per Project x Tons Loaded per Truck
			,	,	
	Soli Material f	or the Relocated Pile Area			AND AND A DEVICE
		Engineered Barrier Area Size (square feet)			196,858 CAD-based Estimate 310,687 CAD-based Estimate
		Total Storage Yard Area Size (square feet) Size of Area to be Covered (square feet)		,	113,829 Total Storage Yard Area - Engineered Barrier Area
		Depth of Cover (leet)			1 Given
		Number of Yards of Cover Needed (cubic yards)			4,216 Size of Area x Depth of Cover
		Number of Trucks			211 Cover Needed / Yards per Load
		Yards per Load			 20 Given 24 Annual 21 and and light (2 Marth Day)
		Trucks per Day			24 Assume 3 Loads per Hour / 8 Hours Day 480 Yards per Load x Trucks per Day
		Yards per Day Pounds per Cubic Foot (same as Topsoil & Soil Insolation above)			105 From Table 2
		Ton per Project			5,976 Pounds per Cubic Yard / Yards of Cover
· · ·		Number of Days Needed			9 Number of Trucks / Yards per Load
<u> </u>	Material Reloo	ation by Truck (D111/D112)			100 Outly March of March and Land
		Number of Trucks from Piles to Engineered Barrier Area		•	100 Cubic Yards / Yards per Load 20 Given
		Yards per Load Material to be Moved (cubic yards)			2,000 From Table 2
		Material to be Moved (tons)			3,240 From Table 2
		Trucks per Day			24 Assume 3 loads per Hour / 8 Hours Day
		Tons Material Loaded per Truck			32 Tons Material Moved / Number of Trucks
		Weight per Empty Truck (tons)			15 Given 47 Tons Material Moved + Ton per Empty Truck
		Weight per Loaded Truck (tons) Average Weight of a Material Truck (tons)			. 31 Average of Empty Truck and Loaded Material Truck
		Average Weight of All Trucks (tons)	•		29 Weighted Average Weight (material trucks and cover trucks)
					• • • •
	Operation Du				
		Total Time (MONTHS)	0-1	t	7 Given (see Figure 18.12 Project Schedule)
		Time for Creating Consolidated Pile to Engineered Barrier (DAYS)	Calendar Work		90 Given (see Figure 18.12 Project Schedule) 64 Assumed
		Time for moving two piles (DAYS)	Work		4.2 Number of Trucks Material Relocation / Trucks per Day
		Time for Engineered Barrier (DAYS)	Calendar	11	90 Given (see Figure 18.12 Project Schedule)
			Work		64 Assumed
		Placement of Sand and Soil Barrier Layer (DAYS)	Calendar		60 Given (see Figure 18.12 Project Schedule)
			Work		44 Assumed 30 Given (see Figure 18.12 Project Schedule)
		Placement of Vegetation Layer (DAYS)	Calendar Work		30 Given (see Figure 18.12 Project Schedule) 20 Assumed
		Vegetation Establishment Period (DAYS)	TUR		60 Given (see Figure 18.12 Project Schedule)
		Soil Cover for Non-Engineered Barrier Area (DAYS)	Calendar		13 Assumed
		••••••••••	Work		9 Assumed
		Days per Week			5 Assumed 8 Assumed
		Hours per Day			a magument
		Length of UNPAVED Roadway (leet) - from Pile to Engineered Bas	rder		550 D111/D112 Material Piles Moved
		Length of UNPAVED Roadway (leet) - to paved roadway	-		1,200 Cover & Engineered Barrier Material
		Length of PAVED Roadway (feet)			1,650 Cover & Engineered Barrier Material
	Daily/Annual Operating	Rates			B Assumed
	Loader(s)	= Maximum Operating Hours per Day = Operating Hours per Year			8 Assumed 1057 Assumed
	Down	= Operating Hours per Tear r = Maximum Operating Hours per Day			8 Assumed
		= Operating Hours per Year			1057 Assumed
	Excavato	= Maximum Operating Hours per Day			4 Assumed
		. Operating Hours per Year			256 Assumed
	Dust Control Truck	= Maximum Operating Hours per Day			2 Assumed 1 Assumed
		 Number of Trips per Month Number of Trips for Project 			7 Assumed
	•	- transfer of tribe for the loss		•	4

On-Site Stabilization and Long-Term Control

Table 2 **Material Description**

Parcel #	Material Type	Volume	Pile Size	Der	nsity	Mass	Silt *	Moisture*	AP-42 Material* Match
		(cubic yard)	(acre)	(15s/11 ³)	(g/cm³)	(tons)	(%)	(%)	14420.55
1	Excavated Soil Mixed with Slag	15,000	0.9	120	1.9	24,300	9.0	12.0	Cover
2	Excavated Soil from D111	1,000	0.2	105	1.68	1,418	9.0	12.0	Cover
3	Canal Slag (In & Out of Supersacs)	3,000	0.2	165	2.6	6,683	5.3	0.92	Slag
4	Slag	30,000	1.0	140	2.2	56,700	5.3	0.92	Slag
5	Slag & Demointion Concrete	5,000	0.5	140	2.2	9,450	5.3	0.92	Slag
6	Hi-Ratio Slag	2,000	0.3	140	2.2	3,780	5.3	0.92	Slag
7	Hi-Ratio Slag & D111 Flex Kleen Bags & D116 Polishing Compound Contaminated Equipment & Cleaning	1,000	0.3	<u>,</u> 130	2.1	1,755	5.3	0.92	Slag
8	Baghouse Dust	13,000	0.9	100	1.6	17,550	13.0	7.0	Flue Dust
9	Baghouse Dust Mixed with Slag	4,000	0.4	145	2.3	7,830	5.3	0.92	Slag
T12	D111/D112 Concrete	500	0.05	120	1.9	810	3.9	2.10	Limestone Products
W of Storage	D111/D112 Concrete	1,500	0.1	120	1.9	2,430	3.9	2.10	Limestone Products
Yard CVR1	Cover for moved pile areas	4,216	0.5	105	1.68	5,976	9.0	12.00	Cover
EB1	Topsoit	3,667	0.5	105	1.68	5,197	9.0	12.00	Cover
EB2	Soil Isolation & Frost Protection	15,000	0.5	105	1.68	21,263	9.0	12.00	Cover
EB3	Sand	6,000	0.5	110	1.8	8,910	2.6	7.40	Sand
Weighted Average	(includes engineered barrier material and cover material)			123	2.0		7.44	6.17	
na	Unpaved Roadway						6.0	·	
na	Total Volume & Mass of Material	104,882				174,051			
	Contro	lled Materials:	76,000	cubic yards	5				

Moisture and Sitt percentages are from EPA's AP-42 Chapter 13.2.4, Table 13.2.4-1
 ** Assumed pile size for D112/D113 concrete similar by ratio of weight to Pile 5.

1.1.1

On-Site Stabilization and Long-Term Control

. ...

The "drop emission" factor accounts for the batch dropping of material while loaded or unloaded. Although batch dropping occurs when material is loaded into piles, the drop emissions associated with each activity are included in the emission factor for those processes.

Table 3 Material Handling - "Drop Emissions"

.

$E = k(0.0032) \times (U/5)^{1.3} / (M/2)^{1.4}$ Emission factor equation from AP-42 5th Edition Section 13.2.4, January 1995

Γ	Materiał Type	Parcel#	Pile & Material Type	Amount of Pile	Material Amounts	Material to be Handled	Number of Working Days	Material	Particulate Size	k Particulate Size Multiplier	M Material Moisture Content	U Mean Wind Speed	E Calculated Emission Factor	Calculated Emissions	Calculated Emissions
1		• •	, 	(%)	(tons/project)	(tons)		(tons/day)		(dimensionless)	(%)	(mph)	(ib/ton)	(Ib/day)	(ton/project)
	EB Soll Placement	EBI	Topsoil	100	5,197	5,197	20	260	PM10	0.35	12.00	9.6	2.1E-04	0.06	5.5E-04
	EB Soli Placement	EB2	Soil Isolation & Frost Protection	100	21,263	21,263	44	483	PM10	0.35	12.00	9.6	2.1E-04	0.10	2.3E-03
	EB Sand Placement	EB3	Sand	-100	8,910	8,910	44	203	PM10	0.35	9.7	9.6	2.9E-04	0.06	1.3E-03
	Cover Placement	CVR1	Cover for moved pile areas	100	5,976	5,976	9	664	PM10	0.35	9.7	9.6	2.9E-04	0.19	8 6E-04,
	Loader Unloading	1	Excavated Soil Mixed with Slag	100	24,300	24,300	64	380	PM10	0.35	12	9.6	2.1E-04	0.08	2.5E-03
	Loader Unloading	2	Excavated Soil from D111	100	1,418	1,418	64	22	PM10	0.35	12	9.6	2.1E-04	4.7E-03	1.5E-04
	Loader Unicading	3	Canal Slag (in & Out of Supersacs)	50	6,683	3,341	64	52	PM10	0.35	0.92	9.6	7.8E-03	0.40	1.3E-02
	Loader Unloading	4	Slag	25	56,700	14,175	. 64	221	PM10	0.35	0.92	96	7.8E-03	1.72	5.5E-02
	Loader Unloading	5	Siag & Demolition Concrete	0	9,450	0	64	0	PM10	0.35	0.92	9.6	7.85-03	0.0E+00	0.0E+00
	Loader Unloading	6	HI-Ratio Slag	20	3,780	756	64	12	PM10	0.35	0.92	9.6	7.85-03	0.09	2.95-03
·	Loader Unloading	. 7.	Hi-Ratio Siag & D111 Flex Kleen Bags & D116 Polishing	0	1,755	0	64	0	PM10	0.35	1	9.6	7.8E-03	0.0E+00	0.0E+00
	Loader Unloading	8	Baghouse Dust	20	17,550	3,510	64	55	PM10	0.35	7	9.6	4.5E-04	0.02	7.9E-04
	Loader Unloading	9	Baghouse Dust Mixed with Stag	10	7,830	783	64	12	PM10	0.35	1	9.6	7.8E-03	9.5E-02	3.0E-03
	Loader Unloading	T12	D111/D112 Concrete	100	810	810	64	13	PM10	0.35	2.10	9.6	2.4E-03	0.03	9.9E-04
	Loader Unloading	E of N-S road; W of Storage Yard	D111/D112 Concrete	100	2,430	2,430	64	38	PM10	0.35	2.10	96	2.4E-03	0.09	3.0E-03
ŀ											Active 8 Hour Day (Ibs/day)		March to Oct. (fbs/project)	Annual (ton/year)	March - Oct. (ton/project)
								Pr	imary Control Area	i	2.83	0	165	0.082	0.082
								Secor	ndary Storage Area	ı	0.124	۰.	7.91	0.004	0.004
L										· .					

Estimates based on AP-42 Chapter 13.2.4 - Aggregate Handling and Storage Piles. Material moisture content are mean values of similar materials from AP-42 Table 13.2.4-1 and the mean wind speed is from Local Climatological Data (ISSN 0198-4535) Philadelphia, Pennsylvaria. EB = Encineered Barrier

On-Site Stabilization and Long-Term Control

.

The emissions factor includes the emissions from loading material (drop emissions) into the pile, equipment traffic in the storage area, and wind eroson.

• . .

Table 4

SMC

Material Handling - Active/Inactive Pile Emissions

Parcel Number	Material Type	Activity	Estimated Pile Size (tone)	Estimated Pile Size (acre)	Amount of pile to be Moved or Uncovered (%)	Annual* Celendar Days of Operation (days/yr)	Fugdive Particulate Size	Emission Factor (Ib/acre/day)	Calculated Emissions (b/day)	Celculated Emissione (Ibs/project)	Calculated Emissione (ton/project)
1	Excevaled Soli Mixed with Siag	Active Inactive	24,300 24,300	0 9 0.9	100 100	84 28	PM10 PM10	6.3 1.7	5.67 1.53	363 40	0.18 0.02
2.	Excavated Sol from D111	Active Inactive	1,418 1,418	0.2 0.2	100 100	64 26	PM10 PM10	6.3 1.7	1.01 0.27	65 7	3 2E-02 0.004
3	Canal Sing (in & Out of Supersecs)	Active Insclive	6,683 6,683	0 2 0.2	50 50	32 58	PM10 PM10	6.3 1.7	0.60 0.16	19 9	9.6E-03 0 005
4	Sieg	Active Inactive	56,700 56,700	1.0 1.0	25 25	18 74	PM10 PM10	63 1.7	1.64 0.44	26 33	0 01 0 02
5	Sing & Demokton Concrete	Active inactive	9,450 9,450	0 5 0.5	0 0	0 90	PM10 PM10	6.3 1.7	0 00 0.00	0 0	0.000 0.00
6 .	Hi-Ratio Slag	Active Inactive	3,780 3,780	0.3 0.3	20 20	13 77	PM10 PM10	6.3 1.7	0.40 0.11	5 . 8	2 6E-03 0.00
7	Hi-Ratio Stag & D111 Flax Kleen Bage & D116 Poliating Compound Contaminated Equipment & Cleaning	Active Inactive	1,755 1,755	0.3 0.3	0 0	0 90	PM10 PM10	6.3 1.7	0.00 0.00	0 0	0.0E+00 0.000
8	Seghouse Dust	Active Inactive	17,550 17,550	0.9 0.9	20 20	13 77	PM10 PM10	6.3 1.7	1.17 0.32	15 24	0.01 0.012
9	Baghouse Dust Mixed with Slag	Active inactive	7,830 7,830	0 4 0.4	10 10	- 6 84	PM10 PM10	6.3 1.7	0 28 0.07	2 6	0 001 0 003
T12	D111/D112 Concrete	Active Inactive	810 810	0.06 0.05	100 100	1 0	PM10 PM10	6.3 1.7	0.30 0.08	0.31 0	1.5E-04 0.0E+00
I N-S road, W of Storage Yard	D111/D112 Concrete	Active Inactive	2.430 2.430	0.1 0.1	100 100	3 0	PM10 PM10	6.3 1.7	0 89 0 24	2.8 0	1.4E-03 0.0E+00
EBI	Торвой	Active Inactive	5,197 5,197	0.5 0.5	100 100	20 10	PM10 PM10	6 3 1.7	3.15 0.85	63 9	3 2E-02 0.004
EB2	Soil Isolation & Frost Projection	Active Inactive	21,263 21,263	0.5 0.5	100 100	44 16	PM10 PM10	6.3 1.7	3.15 0 85	139 14	6.9E-02 0 007
EB3	Sand	Active Inactive	8,910 8,910	0 5 0.5	100 100	44 16	PM10 PM10	6.3 1.7	3.15 0.85	139 14	6.9E-02 0.007
CVRI	Cover for moved pile areas	Active Inactive	5,976 5,976	05 05	100 100	9	PM10 PM10	6.3 1,7	3.15 0.85	28 3	1.4E-02 0.002
										March to Ool. (Belyr)	Annual (Toe'yr)
									Primary Control Area Secondary Control Area	1,030 3.08	1,030
Only maximum emission activity will not be maximu	idays are modaled, ao weekend emissions with no im emission days.			Max Active Day Total Day Worst Pile 24 Hr Day (Ibe/day)	Max Inactive Day Worst Pile 24 Ht Day (Ibe/day)	Max Active Day Active Hours Worst Plie 6 Hr Day (lbe/day)	Max Active Day Insolive Hours Worst Pile 16 Hr Day (Ba/day)		Max Inactive Day" (weekday) 24 Hr Day (Be/day)	•	
			*Primary Control Area Secondary Control Area	5 67 0 888	1.53 0.240	4 65	1 02		0 44		

Emission factor is from Ar Polution Engineering Manual 1992 (AP-40), Chapter 15, Table 1 (page 779) - Uncontrolled Particulaie Emission Factors for Sand and Gravel Processing. Emission factor represents the following steps in the storage cycle: 1) loading of appropriate onto storage pase (batch or continuous drop operations). 2) explorment traffic in storage areas, 3) word loading of poly (batch or continuous drop operations). 3) word loading of poly (batch or continuous drop operations). 3) end loading of poly (batch or continuous drop operations). 3) word loading of poly (batch or continuous drop operations). 3) end loading of poly (batch or continuous drop operations). 3) end loading of poly (batch or continuous drop operations). 3) end loading of poly (batch or continuous drop operations). 3) end loading of poly (batch or continuous drop operations). 3) end loading of poly (batch or continuous drop operations). 3) end loading of poly (batch or continuous drop operations). 3) end loading of poly (batch or continuous drop operations). 3) end loading of poly (batch or continuous drop operations). 3) end loading of poly (batch or continuous drop operations). 3) end loading of poly (batch or continuous drop operations). 3) end loading of poly (batch or continuous drop operations). 3) end loading of poly (batch or continuous drop operations). 3) end loading of poly (batch or continuous drop operations). 3) end loading of poly (batch or continuous drop operations). 3) end loading of poly (batch or continuous drop operations). 3) end loading of poly (batch or continuous drop operations). 3) end loading of poly (batch or continuous drop operations). 5) end loading of poly (batch or continuous drop operations). 5) end loading of poly (batch or continuous drop operations). 5) end loading of poly (batch or continuous drop operations). 5) end loading of poly (batch or continuous drop operations). 5) end loading of poly (batch or continuous drop operations). 5) end loading of poly (batch or c

On-Site Stabilization and Long-Term Control

Table 5

Heavy Equipment Operation

Emission Factor Equations

Loader & Dozer Equation

 $PM10 lbs/hr = 0.75 (1.0(s)^{1.5}) / (M)^{1.4}$ Emission factor equations from AP-42 5th Edition Supplement E, Table 11.9.1 July 1998

these emissions estimates are double counted when the equipment is working with a pile.

Heavy	Hours of	Operation	Vehicle Miles	s Site Estimated	M AP-42 Material	S Average	Particulate	Calculated	Calculated	Calculated	Calculated	Calculated	Calculated
Туре	Hours per Day (hours)	Based on (hours/year)	Traveled (miles)	Material Sitt Content (%)	Moisture Content (%)	Speed (mph)	Size	Emission Factor (ib/hour)	Emission Factor (Ib/VMT)	Emissions	Emissions 7 months (ibs/year)	Emissions 7 months (ton/yr)	Emissions (ton/projec
Loader	8	1,057	-	7.44	6.17	- -	PM10	1.19	-	9.5	1,260	0.63	0.63
Dozer	8	1,057		7.44	6.17	•	PM10	1.19	· • 	9.5	1,260	0.63	0.63
Excavator	4	256		7.44	6.17		PM10	1.19		4.77	305	0.15 ,	• • 0.15
Movin	g Materials from	In Storage Area Secondary Area Barrier Material	4	work days work days work days			<u></u>	-	Controlled Area	8 Hr Day (ibs/day) 23.8 19.1	March to Oct. (Ibs/year) 2,745 79.4	Annual (Ibs/year) 2,745 79.4	
• •					· .				Roadways	0	0	0	

The emission factor estimates emissions from the handling of material and the emissions from movement and traveling on the material. Some of

Emissions are based on AP-42 Chapter 11.9 - Western Surface Coal Mining.

On-Site Stabilization and Long-Term Control

Table 6

UnPaved Roadways - Access Road

This equation is utilized to estimate emissions from the movement of vehicles on unpaved roadways. The particulate emissions estimated do not include particulate emissions from the engines.

Predictive Emission Factor Equation 1a from AP-42 5th Edition Section 13.2.2 Industrial Site Unpaved Roads dated December, 2003 $E = k (s/12)^{a} (W/3)^{b}$

 $\mathbf{Z} = \mathbf{R} \left(\mathbf{Z} + \mathbf{Z} \right) \left(\mathbf{U} + \mathbf{U} \right)$

Adjustment Factor Equation 2 Eext = E[(365-p)/365]

Given Variables for Estimating PM10 Emissions

1.5 k = base emission factor for pounds of PM-10 particulate per vehicle mile traveled

6.00 s = road surface silt loading (see Table 2)

0.9 a = per Table 13.2.2-2. Constants for Equations 1a and 1b

29.3 W = average weight (tons) of vehicle traveling road

0.45 b = per Table 13.2.2-2. Constants for Equations 1a and 1b

2.24 E = Emission factor, uncontrolled, from Equation 1a

80% Percent of control, based on Fig. 13.2.2-5, one month re-application, 0.17 gal/yd² petroleum resin

0.45 E = Emission factor, controlled, from Equation 1a

119 P = number of days with at least 0.01 inches of precipitation

0.30 Eext = annual size specific emission factor for natural mitigation, Ib/vmt

D111/D112 Move to Engineered Barrier Area

550 Estimated feet traveled per vehicle one way, IN

550 Estimated feet traveled per vehicle one way, OUT

1,100 Estimated feet traveled per vehicle trip

24 Maximum number of vehicles per day

100 Maximum number of trucks making the trip per project

5.0 Maximum vehicle miles traveled per day

21 Maximum vehicle miles traveled per project

PM-10 Emissions Actual

2.24 Pounds per day of operation (assuming no rain on worst case day)

6 Pounds per Project

3.15E-03 Tons per Project

3.15E-03 Tons per Year

Engineered Barrier Material & Cover Material Vehicles & Dust Control Vehicle

1,200 Estimated feet traveled per vehicle one way, IN

1,200 Estimated feet traveled per vehicle one way, OUT

2,400 Estimated feet traveled per vehicle trip

43 Maximum number of vehicles per day

1 Dust Control vehicles per month

1,451 Maximum number of trucks making the trip per project

20.1 Maximum vehicle miles traveled per day

660 Maximum vehicle miles traveled per project

PM-10 Emissions Actual

9.03 Maximum pounds per day of operation (assuming no rain on worst case day)

199 Pounds per Project

0.10 Tons per Project

0.10 Tons per Year

Table 7Paved Roadway Emissions

This equation is utilized to estimate emissions from the movement of vehicles on paved roadways. The particulate emissions estimated do not include particulate emissions from the engines.

Predictive Emission Factor Equation from AP-42 5th Edition Section 13.2 Paved Roads $E = (k(sL/2)^{0.65}) \times (W/3)^{1.5}$

Given Variables

7.3 k = base emission factor for grams of PM-10 particulate per vehicle mile traveled
9.7 sL = road surface silt loading (grams per square meter for Iron & Steel Production))
29.175 W = average weight (tons) of vehicle traveling road

618 E = emission factor, grams of PM-10 particulate per vehicle mile traveled

1.36 E = emission factor, pounds of PM-10 particulate per vehicle mile traveled

Site variables

1,650 Estimated feet of traveled per vehicle one way, IN

1,650 Estimated feet of traveled per vehicle one way, OUT

0.63 Estimated miles of traveled per vehicle trip

43 Maximum number of vehicles per day

1,444 Number of trucks making the trip per project

27.0 Maximum vehicle miles traveled per day

903 Vehicle miles traveled per project

Estimated Emissions

PM-10 Emissions Actual

36.8 Pounds per day of operation

- 1,229 Pounds per project
- 0.61 Tons per project
- 0.61 Tons per year

On-Site Stabilization and Long-Term Control

Table 8Exposed Ground Area Emissions

This table estimates the emissions due to wind erosion to an exposed ground area. Emissions will only occur when the exposed ground is not vegetated.

Material	4	Exposed Ground	Exposed Ground	Particulate	Emission Factor	Emission Estimate					
Туре	Area	Area (sq ft)	Area (acre)	Size	(ton/acre/year)	Daily (Ibs/day)	Hourly (lbs/hr)	Project (Ibs/project)	Annual (lbs/year)		
xposed Ground Areas	Storage Area (EB Area)	196,858	4.52	PM30 (TSP)	0.35	8.67	0.361	1,845	1,845		
Exposed Ground Areas	Storage Area (Non-EB Area)	113,829	2.61	PM30 (TSP)	0.35	5.01	0.209	1067	1,067		
					·····	Daily (lbs/day)	Hourly (lbs/hr)	March to Oct. (lbs/project)	Annual (Ibs/year)		
					PM10* PM30	6.8 13.7	0.285 0.570	1,456 2,912	1,456 2,912		

Emission factor is from AP-42 Chapter 11.9.1, Table 11.9-4 - Uncontrolled Particulate Emission Factors for Open Dust Sources at Western Surface Coal Mines. Emission rate is an average for a year, typically emission rates decay sharply with time. From the time an area is disturbed until the new vegetation emerges, all disturbed areas are subject to wind erosion. This emission estimate assumes that the area will be become vegetated within 7 months of starting the material relocation/pile construction phase.

*The PM10 emission factor has been adjusted from the PM30 emission factor, Table 11.9-4 refers to Section 13.2.5 which presents a distribution of particle sizes that are comparable for fugitive dust sources where wind speed is a factor.

Physical properties of the material used for development of the emission factor: silt range of 5.1 - 21 with a mean of 15 moisture range of 2.8 - 20 with a mean of 6.9 Physical properties of the sand/gravel: silt range of 1.2 - 4.2 with a mean of 2.16 (site specific data) sand moisture content, a mean of 7.4 (AP-42 Table 13.2.4-1)

EB = Engineered Barrier

•

On-Site Stabilization and Long-Term Control

ble 9 f-Road Diese	I Engine Emission	S		emitted fr		A portion of the pa	quipment only estim rticulate emissions					
Lo	4 Days pe 1057 Hours p	er Day er Primary Contro er Secondary Co er Project	ol Area ntrol Area Ions per hour (base	d on 7.05 lbs/gal)								
D	4 Days pe 1057 Hours p 7.08 Estimat	er Day or Primary Contro or Secondary Col er Project ed Fuel Use, gal		• •	• •		Excavalor	4 64 256	Estimated HP Hours per Day Days per Primary Hours per Project Estimated Fuel U	t	ur (based on 7.05 l	bs/gal)
Pollutant	Emission		Loader			Dozer		······	Excavator		Tot	als
	Factor Units	Emission Factor	pounds/day	pounds/year	Emission Factor	pounds/day	pounds/year	Emission Factor	pounds/day	pounds/year	pounds/day	pounds/yea
	· ·		· · · · · · · · · · · · · · · · · · ·									
РМ	g/hp-hr	0,100	0.256	34	0.100	0.233	30.8	0.100	0.128	8.2	0.62	73
NOx	g/hp-hr	4 50	11.508	1,521	4.50	10.48	1,385	4.50	5.754	368,	27.7	3,274
SOx ·	1b/1,000 gals	0.213	0.013	1.71	0.213	0.012	1.59	0.213	0.0065	0.41	0.03	3.7
		I	Primary Control Are	a		Se	condary Control Ar	92			Roadways	
		8 Hr Day (!bs/day)	March to Oct. (Ibs/7 months)	Annual (ibs/year)		8 Hr Day (Ibs/day)	March to Oct. (Ibs/7 months)	Annual (Ibs/year)		8 Hr Day (Ibs/day)	March to Oct. (Ibs/7 months)	Annuai (ibs/year
		0.616	71	71		0.489	2.04	2.04		0	o	0
	PM	0.010								•		
	PM NOx	27.7	3,182	3,182		22.0	91.6	91.6		0	0	0

Assumptions: The payloader is a L60E Volvo with a 145 HP engine, excavator is a Caterpillar 22B with a 145 HP engine, and the dozer is a Caterpillar D5H 132 HP engine. Emission factors are from USEPA Report No. NR-009A Exhaust Emission Factors for Nonroad Engine Modeling -- Compression-Ignition, dated February 13, 1998, revised June 15, 1998. For the emission estimates of NOx and PM it is assumed that the equipment was manufactured between 2003 and 2008 which would be regulated under Tier 2 requirements. The SOx emissions are based on fuel sulfur content.

· · · · · · · · ·

.

On-Site Stabilization and Long-Term Control

.

Table 10On-Road Engine EmissionsEPA Model MOBILE 6.2

EPA Model MOBILE6.2 estimates emission rates for a variety of vehicle classes. The emissions estimates are the engine exhaust emissions. The emissions below are for two classes of heavy duty diesel vehicles.

		EB Soil Material		D111/D112 Relocation	
Maximum Miles per Day	·	Trucks per day	19.3	Trucks per day	24.0
HDDV8A Miles per Day	13.1	Trucks for project	1,233	Trucks for project	100
HDDV8B Miles per Day	13.1	Trucks per year	1233	Trucks per year	100
Miles per Year		Miles per truck	1.08	Miles per truck	0.21
HDDV8A Miles per Year	792				
HDDV8B Miles per Year	792	Cover		Dust Control Truck	
Idling		Trucks per day	24	Trucks per day	1
Total hours of idling on site per day	1	Trucks for project	211	Trucks for project	7
Total hours of idling on site per year	132	Trucks per year	211	Trucks per year	7
- · · ·		Miles per truck	1.08	Miles per truck	0.66

Pollutant	Operating Condition	(1		DV8A Vehicle •.>60,000 GV	N)	HDDV8B (Heavy Duty Diesel Vehicle - 33,001 - 60,000 GVW)						
		grams/mile	grams/hour	max. pounds/day	pounds/year	grams/mile	grams/hour	max. pounds/day	pounds/year			
РМ10	10 mph average kiling	0.254 NA	NA 1.0040	0.0073 <u>0.0022</u> 0.0095	0.44 <u>0.29</u> 0.74	0.25 NA	NA 1.0040	0.0073 <u>0.0022</u> 0.0095	0.44 <u>0.29</u> 0.73			
SO2	10 mph average	0.0144	NA	4.2E-04	0.03	0.015	NA	4.4E-04	0.03			
NOX	10 mph average	12.3	NA	0.354	21.4	13.9	NA	0.402	24.3			
	·····		P max. pounds/day	M10 pounds/year	S(max. pounds/day	D2 pounds/year	n max. pounds/day	NOx pounds/year				
	Secondary St	ntrol Area (50%) lorage Area (0%) Roadways (50%)	0.0095 0 0.0095	0.734 0 · 0.734	4.3E-04 0 4.3E-04	0.0258 0 0.0258	0.378 0 0.378	22.9 0 22.9	·			

Emissions estimates are based on EPA's MOBILE6.2 Mobile Source Emission Factor Model. The emission factors include 6.65 starts per day. All particulate matter is 10 micrometers or less. EB = Engineered Barrier

On-Site Stabilization and Long-Term Control

Table 11 Emissions Summary

,		rea 1 - Primary (Controlled Are	a .	1	vea 2 - Seconda	ry Storage Ar	ea	Area 4 - Roadways		
Source	Active Piles				Active Piles	PM-10 En Active Day Active Piles	inactive Piles	12 month	Active Day	PM-10 Emissions	12 month
	lbs/day 8 hours	(inactive portion) lbs/day <u>16 hours</u>	lbs/day 24 hours	lbs/year	ibs/day 8 hours	(inactive portion) lbs/day <u>16 hours</u>	ibs/day 24 hours	lbs/year	ibs/day 8 hours		ibs/year
Material Handiing (Table 3) Active/Inactive Piles (Table 4) Heavy Equipment (Table 5)	2.83 4.65 23.8	1.02	0.44	165 1,030 2,745	0.124 0.729 19.1	0.160	0.080	7.91 3 08 79.4			
Unpaved Roadways (Table 6) Paved Roadways (Table 7) Exposed Ground Area (Table 8)	2.28		6.8	1,456					11.3 36.8		206 1,229
Off-Road Engines (Table 9) On-Road Engines (Table 10) TOTAL	0.616 0.0095 34.2		7.3	70.7 0.734 5467.5	0.489 20.4		0.1	2.04 92.5	0 0.0095 48.1		0 0,734 1435 9
		rea 1 - Primary				Area 2 - Seconda				Area 4 - Roadway	
Source .	Active Day Ibs/day 8 hours	SOx Emi	ssions	12 month Ibs/year	Active Day Ibs/day 8 hours	SOx Em	Issions	12 month Ibs/year	Active Day Ibs/day a hours	SOx Emissions	12 month Ibs/year
Off-Road Engines (Table 9) On Road Engines (Table 10)	0.032 4.3E-04			3.62 0.0258	0.025 0			0.104 0	0 4.3E-04		0 0.0258
	A	rea 1 - Primary (Controlled Are	a	4	Vrea 2 • Seconda	ry Storage Ar	ea	,	Vrea 4 • Roadway	s
Source	Active Day Ibs/day 8 hours	NOx Emi	ssions	12 month Ibs/year	Active Day Ibs/day 8 hours	NOx Em	issions	12 month Ibs/year	Active Day Ibs/day s hours	NOx Emissions	12 month Ibs/year
Dfl-Road Engines (Table 9) Dn-Road Engines (Table 10)	27.7 0.378			3,182 22.9	22.0 0			91.6 0	0 0.378		0 22.9

nination

SMC .
Off-Site Disposal and License Termination
Table 1 Air Emission Details
Truck Operations
Soil Cover After Removal of Piles
Depth of Cover (leet) Area to be Covered (square leet)
Area to be Covered (square teet)
Material Needed for Cover (cubic yards)
Yards per Load
Number of Truck Trips
Cubic Yards of Cover Delivered
Pounds per Cubic Foot of Cover, Density
Pounds per Cubic Yard, Density
Tons Cover Loaded per Truck
 Weight per Empty Truck (tons)
Weight per Loaded Truck (tons)
Average Weight of a Cover Truck (tons)
Average Number of Wheels per Truck (10 unloaded, 14 loaded)
Trucks per Year (last year of project, 5 months)
Trucks per Day
Tons Loaded per Day
Tons Loaded per Project
Material to Be Removed
Number of Truck Trips to Staging Area
Yards per Load
Cubic Yards of Material to be Removed
Trucks per Day
Weight of Material Loaded per Truck (tons)
10/sight and Emphy Taugh (topo)

Truck (tons) Weight per Empty Truck (tons) Weight per Loaded Truck (tons) Average Weight of a Material Truck (tons) Average Weight of All Trucks (tons)

Number of Train Cars Capacity per Train Car (tons) Total Tons of Material Removed Train Cars per Year Train Cars per Day (also Trucks to Staging Area) Tons Loaded per Day Tons Removed from D111/112 Area Days to Remove Material from D111/D112

Project Duration

Total Time (MONTHS) Time for Removal (MONTHS/year) Time for Cover (MONTHS) Days per Week Weeks per Yea Hours per Day

Length of UNPAVED Roadway (teet) - storage area to staging area Length of UNPAVED Roadway (teet) - to paved roadway Length of PAVED Roadway (teet) Material Removed, TONS

Operating Daily/Hourly Operating Rates

Loader(s) = Maximum Operating Hours per Day = Operating Hours per Year = Yards moved each day (train load + truck load) Dozer = Maximum Operating Hours per Day = Operating Hours per Year Train = Maximum Operating Hours per Day = Operating Hours per Year Crusher = Maximum Operating Hours per Day = Operating Hours per Year Dust Control Vehicle = Maximum Operating Hours per Day = Number of Tips per Day = Number of Trips per Month

1 Given 310,687 Cad-Based Estimate 7.1 Square Feet / 43,560 11,507 Depth x Area of Cover / 27 20 Given 575 Material Needed / Yards per Load 11,507 Number of Truck Trips x Yards per Load 105 From Table 2 2,835 Pounds per Cubic Foot x 27 28 Yards per Load x Pounds per Cubic Yard 15 Given 43 Load per Truck + Weight of Empty Truck 29 Average of Empty and Loaded Truck 12 575 Assumes Cover Operation Duration = 5 Months 5.31 Trucks per Year / (5/12 Months * 52 Weeks * 5 Days) 151 Trucks per Day x Tons of Cover per Truck 16,311 Trucks per Year x Tons of Cover per Truck 3,800 Cubic Yards / Yards per Load 20 Given 76,000 From Table 2 18 Assumes Material Removal Operation = 2 Years @ 21 Weeks per 5 Days 35 Number of Truck Trips / Total Tons Material Removed 15 Given 30 Tons Material Loaded per Truck + Tons per Empty Truck 32 Average of an Empty Truck and a Loaded Material Truck 32 Weighted Average Weight (material trucks and cover trucks) 1,475 Tons of Material Removed / Capacity per Train Car 90 given 132,705 Tons from Table 2 737 Number of Train Cars / 2 (which represents the two 5 month periods) 7.0 Trains per Year / (Weeks per Year x Days per Week) 632 Capacity per Train Car x Train Cars per Day 3240 Tons from Table 2 5 Tons Removed from D111/D112 Area / Tons Loaded per Day 10 Given

5 Given (lor 2 years) 5 Assumed 5 Assumed 21 Assumed 8 Assumed 1,100 Trip Length for Material Removed 1,200 Trip Length for Cover Delivered 1,650 Trip Length for Cover Delivered 132,705 Number of Train Cars x Capacity per Train Car

16 Assumed

1680 Assumed 724 Assumed 2 Assumed 210 Assumed 2 Assumed 210 Assumed 3 Assumed 315 Assumed 1 Assumed 1 Assumed

1 Assumed

.

Off-Site Disposal and License Termination

Table 2 **Material Description**

Parcel #	Material Type	Volume*	Pile Size	Bulk De	ensity**	Mass	Silt ***	Moisture***	AP-42 Material***
		(cubic yard)	(acre)	(lbs/ft ³)	(g/cm³)	(tons)	(%)	(%)	Match
1	Excavated Soil Mixed with Slag	15,000	0.9	120	1.92	24,300	9.0	12.0	Cover
2	Excavated Soil from D111	1,000	0.2	105	[•] 1.68	1,418	9.0	12.0	Cover
3	Canal Slag (In & Out of Supersacs)	3,000	0.2	165	2.64	6,683	5.3	0.92	Slag
4	Slag	30,000	1.0	140	2.24	56,700	5.3	0.92	Slag
5	Slag & Demolition Concrete	5,000	0.5	140	2.24	9,450	5.3	0.92	Slag
6	Hi-Ratio Slag	2,000	0.3	140	2.24	3,780	5.3	0.92	Stag
7	Hi-Ratio Slag & D111 Flex Kleen Bags & D116 Polishing Compound Contaminated Equipment & Cleaning	1,000	0.3	130	2.08	1,755	5.3	0.92	Slag
8	Baghouse Dust	13,000	0.9	100	1.60	17,550	13.0	7.0	Flue Dust
9	Baghouse Dust Mixed with Slag	4,000	0.4	145	2.32	7,830	5.3	0.92	Slag
10	Cover (final amount of cover for the Off- Site Disposal Atternative)	11,500	7.1	105	1.68	16,301	9.0	12.0	Cover
T12	D111/D112 Concrete	500	0.05	120	1.92	810	3.9	2.10	Limestone Products
E of N-S road; W of Storage Yard	D111/D112 Concrete	1,500	0.1	120	1.92	2,430	3.9	2.10	Limestone Products
11	Staging Area Day Pile (weighted average of non-cover material)	1,000	0.1	129	2.07	1,746	7.4	4.3	Weighted Average
na	Unpaved Roadway						6.0		• •
na	Weighted average (includes cover)			126	2.0		7.6	5.3	Weighted Average
na	Total Volume & Mass of Material (excluding cover and staging area pile)	76,000				132,705			
	Total Volum	e (non-cover)	76,000	cubic yards	3				

Assumed pile size for D111/D112 similar by ratio of weight to Pile 5.
 Densities stated are bulk densities not material densities.
 Moisture and Silt percentages are from EPA's AP-42 Chapter 13.2.4, Table 13.2.4-1

Off-Site Disposal and License Termination

Table 3

Material Handling - "Drop Emissions"

The "drop emission" factor accounts for the batch dropping of material while loaded or unloaded. Although batch dropping occurs when material is loaded into piles and into/out of the crusher, the drop emissions associated with each activity are included in the emission factor for those processes. .

E۳	* k(0.0032) x (U/5) ^{1.3} / (M/2) ^{1.4}	
Emise	ion factor equation from AP-42 5th Edition Section 13 2 4, January 1995	

- Material Type	Parcel#	Pile & Material Type	Material Amounts (tons/day)	Material Amounts (tons/project)	Particulate Size	k Particulate Size Multiplier (dimensionless)	M Material Moisture Content (%)	U Mean Wind Speed (mph)	E Calculated Emission Factor (Ib/ton)	Calculated Emissions (fb/day)	Calculated Emissions (ton/year)	Calculated Emissions (ton/project)
Truck Unloading	10	Cover (final amount of cover for the Off-Site Disposal Alternative)	151	16,301	PM10	0.35	12	9.6	2.1E-04	0.03	1.7E-03	0.0017
Truck Loading Train Loading	1	Excavated Soil Mixed with Slag	632 632	24,300 24,300	PM10 PM10	0.35 0.35	12 12	9.6 9.6	2.1E-04 2.1E-04	. 0.13 0.13	0.001 0.001	0.0026 0.0026
Truck Loading Train Loading	2	Excavated Soil from D111	632 632	1,418 1,418	PM10 PM10	0 35 0.35	12 12	9.6 9.6	2.1E-04 2.1E-04	0.13 0.13	7.5E-05 7.5E-05	0.0002 0.0002
Truck Loading Train Loading		Canal Slag (In & Out of Supersacs)	632 632	6,683 6,683	PM10 PM10	0.35 0.35	0.92 0.92	9.6 9.6	7.8E-03 7.8E-03	4.90 4.90	0.013 0.013	0.0259 0.0259
Truck Loading Train Loading	4	Siag	632 632	56,700 56,700	PM10 PM10	0.35 0.35	0.92 0.92	96 96	7.8E-03 7.8E-03	4.90 . 4.90	0.110 0.110	0.2199 0.2199
Truck Loading Train Loading	5 .	Slag & Demolition Concrete	632 632	9,450 9,450	PM10 PM10	0.35 0.35	0.92 0.92	9.6 9.6	7.8E-03 7.8E-03	4.90 4.90	0.018 0.018	0.0366 0.0366
Truck Loading Train Loading	6	HI-Ratio Slag	632 632	3,780 3,780	PM10 PM10	0.35 0.35	0.92 0.92	9.6 9.6	7.8E-03 7.8E-03	4.90 4.90	0.007 0.007	0.0147 0.0147
Truck Loading Train Loading	7	Hi-Ratio Slag & D111 Flex Kleen Bags & D116 Polishing Compound	632 632	1,755 1,755	PM10 PM10	0.35 0.35	1 0.92	9.6 9.6	7.8E-03 7.8E-03	4.90 4.90	3.4E-03 3.4E-03	0.0068
Truck Loading Train Loading	8	Baghouse Dust	632 632	17,550 17,550	PM10 PM10	0.35 0.35	7 7	9.6 9.6	4.5E-04 4.5E-04	0.29 0.29	2.0E-03 2.0E-03	0.0040 0.0040
Truck Loading Train Loading	9 .	Baghouse Dust Mixed with Slag	632 632	7,830 7,830	PM10 PM10	0.35 0.35	1 0.92	9.6 9.6	7.8E-03 7.8E-03	4.90 4.90	1.5E-02 1.5E-02	0.0304 0.0304
Truck Loading Train Loading	T12	D111/D112 Concrete	632 632	810 810	PM10 PM10	0.35 0.35	2.10 2.10	96 96	2.4E-03 2.4E-03	1.54 1.54	9.9E-04 9.9E-04	0.0010 0.0010
Truck Loading	E of N-S road; W of Storage Yard	D111/D112 Concrete	632	2,430	PM10	0.35	2.10	9.6	2.4E-03	1.54	3.0E-03	0.0030
Train Loading	Storage Taru		632	2,430	PM10	0.35	2.10	96	2.4E-03	1.54	3.0E-03	0 0030
· • •	•	·	. =							•		
						Total (except for con Total (includes con			PM10 PM10	4.90 4.93	0.349 0.351	0 690 0.692
·							ruck Loading 1	Pri. Control Area Pri. Control Area Staging Area	PM10 PM10 PM10	0.032 4.90 4.90	1.7E-03 0.174 0.174	1.7E-03 0.345 0.345
		· . ·		-		. <i>.</i>		ecd. Storage Area	PM10	1.54	4 0E-03	4.0E-03

Estimates based on AP-42 Chapter 13.2.4 - Aggregate Handling and Storage Piles. Material moisture content are mean values of similar materials from AP-42 Table 13.2.4-1 and the mean wind speed is from Local Climatological Data (ISSN 0198-4535) Philadelphia, Pennsylvania. The annual emisison total assumes that all the activity in the Secondary Storage Area occurs in one year.

Off-Site Disposal and License Termination

Table 4 Material Handling - Crushing Emissions Emission factor used to estimate emissions is for secondary crushing/screening (no factors for primary crushing are available). The emission estimate assumes well suppression technology utilized to control emissions. It also assumes that half of each pile is crushed in the first year of operations and the other half in the next year.

Parcel Number	Material Type	Material Amounts (tons/hour)	Matenal Amounts (tons/day)	Material Arnounts (tons)	Particulate Size	Uncontrolled Particulate Size Multiplier (Ib/ton)	Controlled Particulate Size Multiplier (Ib/ton)	Uncontrolied Errissions (1b/day)	Controlled Emissions (lb/day)	Uncontrolled Emissions Maximum (tons/year)	Controlled Emissions Maximum (tons/year)	Uncontrolled Emissions (tons/project)	Controlled Emissions (ton/project)
4	Slag	158	632	56,700	PM10	8.70E-03	7.40E-04	5.50	0.468	0.123	0.010	0.247	0.021
5	Slag & Demolition Concrete	158	632	9,450 ·	PM10	8.70E-03	7.40E-04	5.50	0.468	0.021	0.002	0.041	3.5E-03
6	H-Ratio Slag	158	632	3,780	PM10	8.70E-03	7.40E-04	5.50	0.468	8.2E-03	7.0E-04	0.016	1.4E-03
9	Baghouse Dust Mixed with Slag	158	632	7,830	PM10	8.70E-03	7.40E-04	5.50	0.468	0.017	1.4E-03	0.034	2.9E-03
T12	D111/D112 Concrete	158	632	810	PM10	8.70E-03	7.40E-04	5.50	0.468	0.002	1.5E-04	0.004	3.0E-04
E of N-S road; W of Storage Yard	D111/D112 Concrete	158	632	2,430	PM10	8.70E-03	7.40E-04	5.50	0.468	0.005	4.5E-04	0.011	9.0E-04
				Total Material	PM10			5.498	0.468	0.176	0.015	0.352	0.030
	,			81,000									

.

Emission factors are from EPA's Factor Information Retrieval (FIRE) Data System 6.25. SCC for the crushing process is 3-05-020-02.

SMC

The erms ons factor inclu es the emi ding r al (drop e mio the pile, equic secciated with the pile, and wind erosion, ; •

Material Handling - Active/Inactive Pile Emissions

Parcel Number	Material - Type	Activity	Estimated Pile Size (tons)	Estimated Pile Size (acre)	Annual Days of Operation (days/yr)	Fugitive Particulate Size	Emission Factor (1b/acre/day)	Calculated Emissions (Ib/day)	Calculated Emissions (Ibs/project)	Calculated Emissions (ton/project)
1	Excevated Soil Mixed with Slag	Active Inactive	24,300 24,300	09 0.9	38	PM10 PM10	63 1.7	5 67 1.53	218	0 11
2	Excavaled Sol from D111	Active Inactive	1,418 1,418	0.2 0.2	2	РМ10 РМ10	8.3 1.7	1.01 0.27	23	1.1E-03
3	Canal Stag (In & Out of Supersecs)	Active Inscrive	6,683 6,683	02 02	- 11	PM10 PM10	6.3 1.7	1.20 0 32	13	6 3E-03
4	Sing	Active Inscrive	\$6,700 \$6,700	1.0 1 0	9 0	PM10 PM10	63 1.7	6 55 1 77	588	0 29
5	Slag & Demoiltion Concrete	Active Insclive	9,450 9,450	0.5 0.5	15	PM10 PM10	83 17	2 96 0 80	44 -	0 022
6	Hi-Ratio Slag	Active Inactive	3,780 3,780	0.3 0.3	6	PM10 PM10	63 1.7	2 02 0 54	12	8 0E-03
7	Hi-Ratio Slag & D111 Flax Kieen Bags & D118 Polishing Compound Contaminated Equipment & Cleaning	Active Inactive	1,755 1,755	03 03	3	PM10 PM10	63 1.7	1.70 0.46	47	2 4E-03
8	Baghouse Dust	Active Insclive	17,550 17,550	0 9 0.9	28	- PM10 PM10	6.3 1.7	5 86 1.58	163	0.08
9	Baghouse Dust Mixed with Stag	Active Insclive	7,830 7,830	0.4 0.4	12	PM10 PM10	63 17	2 <i>7</i> 7 075	34	0 017
11	Staging Area Day Pile (weighted average of non-cover material)	Active Inactive	1,746 1,746	0.1 0.1	105 42	PM10 PM10	. 83 1.7	0 63 0.17	66 2 7.1	3 3E-02 3 6E-03
T12	D111/D112 Concrete	Active Insctive	810 810	0.05	1	PM10 PM10	63 1.7	0 30 0 08	0.38	1 9E-04
45 road; W of Storage Yard	D111/D112 Concrete	Active Inscrive	2,430 2,430	0.1 0.1	4	PM10 PM10	63 1.7	0.89 0.24	34	1.7E-03
area will be active and re	e that for the first 5 months, hall the pile moved, while the other hall is inactive, here are no inactive pile emissions, only			Acres	Active Days 10 Months	Active Days	One Year Inactive Weekend Days During 5 Months	Insciwe Days During 3.5 Months		Annual Emissions (tons)
Area of Piles" Includes 42 during an active day an a	ission, The "Annual Emission" for "Total 2 weekend days and an assumption that werage pile size will be inactive during the 4 the Primary & Secondary Control Area	1	ies (no Staging Area) Primary Control Area	4.9 4.7	210 205	105 `	42	109		1 15
is based on a ratio of the		540	condary Control Area Staging Area	0.2 0.1	5 210	105	42	0		0 04 3 7E-02 1.18
	on days are modeled, so weekend Ry will not be maximum emission days			Max Active Day Total Day Worst Pile 24 Hr Day (Ba/day)	Max Inactive Day Worst Pile 24 Hr Day (ba/day)	Max Active Dey Active Hours Worst Pile 8 Hr Day (De/dey)	Max Active Day Inactive Hours Worst Pile 16 Hr Day (ba/day)		fax Inactive Day (weekday) 24 Hr Day (Da/day)	
			Primery Control Area xondary Control Area Staging Area	6.55 0.89 0.63	177 024 017	<u>5 37</u> 0 73 0 52	1 18 0.16 0.11	.	1 58 0 080 0 17	1

٠

on factor is from Air Pollution Engineering Manual 1992 (AP-40), Chapter 15, Table 1 (page 779) - Uncontrolled Particulate Emission Factors for Sand and Gravel Processing. Emission factor repre Emi ving steps in the storage ris the folk Emission factor is from AP reveals Engressive grants and a strain of the president and that on the second of the presents maximum inactive day, one is active (the largest emitting pie used as the "Worst Pie") the other is inactive (the 2nd largest emitting pie).

ċ

Table 5

٠¢

Off-Site Disposal and License Termination

Table 6

The emission factor estimates emissions from the handling of material and the emissions from movement and traveling on the material. Some of these emissions estimated are double counted when the equipment is working with a pile or bringing material to the crusher or material from the crusher.

Heavy Equipment Operation

Loader & Dozer Equation

PM10 lbs/hr = $0.75 (1.0 \times (s)^{1.5}) / (M)^{1.4}$

Emission factor equations from AP-42 5th Edition Supplement E, Table 11.9.1 July 1998

Heavy Equipment Type	Hours of Hours per Day (hours)	Operation Based on (hours/year)	Vehicle Miles Traveled (miles)	S Site Estimated Material Silt Content (%)	M AP-42 Material Moisture Content (%)	S Average Speed (mph)	Particulate Size	Calculated Emission Factor (Ib/hour)	Calculated Emission Factor (Ib/VMT)	Calculated Emissions (lb/day)	Calculated Emissions 5 months (Ibs/year)	Calculated Emissions 5 months (tor/yr)	Calculated Emissions (ton/project)
· Loader(s) Dozer	16 [.] 2	1680 210		7.57 7.57	5.33 5.33		РМ10 РМ10	1.50 1.50		24.0 3.00	2,522 315	1.26 0.16	2.52 0.32
					For Or	ll Equipment le Payloader lr One Dozer	PM10 PM10 PM10			27.0 12.0 3.0	2,837 1,261 315	1.42 0.630 0.16	2.84 1.26 0.32
				<u> </u>		Primar Secondary	y Control Area Storage Area Staging Area			Calculated Emissions (Ib/day) 15.0 12.0 12.0	Calculated Emissions 5 months (Ibs/year) 1,515 61.6 1,261	Calculated Emissions 5 months (ton/yr) 0.76 0.031 0.63	Calculated Emissions (ton/project) 1.51 0.031 1.26

.

1

Emissions are based on AP-42 Chapter 11.9 - Western Surface Coal Mining.

The 5 month emission total assumes that the activity in the Secondary Storage Area happens in one year.

Off-Site Disposal and License Termination

Table 7 UnPaved Roadways - Access Road

This equation is utilized to estimate emissions from the movement of vehicles on unpaved roadways. The particulate emissions estimated do not include particulate emissions from the engines.

Predictive Emission Factor Equation 1a from AP-42 5th Edition Section 13.2.2 Industrial Site Unpaved Roads dated December, 2003

 $E = k (s/12)^{a} (W/3)^{b}$

Adjustment Factor Equation 2 Eext = E[(365-p)/365]

Given Variables for Estimating PM10 Emissions

1.5 k = base emission factor for pounds of PM-10 particulate per vehicle mile traveled

6.00 s = road surface silt loading (AP-42 Table 13.2.2-1 for Iron & Steel Production)

0.9 a = per Table 13.2.2-2. Constants for Equations 1a and 1b32.0 W = average weight (tons) of vehicle traveling road

0.45 b = per Table 13.2.2-2. Constants for Equations 1a and 1b

2.33 E = Emission factor from Equation 1a

80% Percent of control, based on Fig. 13.2.2-5, one month re-application, 0.17 gal/ydf petroleum resin

0.47 E = Emission factor, controlled, from Equation 1a

119 P = number of days with at least 0.01 inches of precipitation

data from Comparative Climatic Data (NOAA) - Philadelphia, Pennsylvania.

0.31 Eext = annual size specific emission factor for natural mitigation, lb/vmt

Cover Vehicle

1,200 Estimated feet of traveled per vehicle one way, IN

1,200 Estimated feet of traveled per vehicle one way, OUT

2,400 Estimated feet of traveled per vehicle trip

- 5 Maximum number of vehicles per day
- 575 Maximum number of trucks making the trip per project
- 2.4 Maximum vehicle miles traveled per day

262 Maximum vehicle miles traveled per project

PM-10 Emissions Actual

0.8 Pounds per day of operation

82 Pounds per Project

0.04 Tons per Project

0.04 Tons per Year (5 months, 2nd year)

Material Transfer Vehicle & Dust Control Vehicle

1,100 Estimated feet of traveled per vehicle one way, IN

1,100 Estimated feet of traveled per vehicle one way, OUT

2,200 Estimated feet of traveled per vehicle trip

18 Maximum number of vehicles per day

1 Dust control vehicles per day (once per month)

3,810 Maximum number of trucks making the trip per project

8.0 Maximum vehicle miles traveled per day

1,588 Maximum vehicle miles traveled per project

PM-10 Emissions Actual

2.5 Pounds per day of operation

499 Pounds per Project

0.25 Tons per Project

0.12 Tons per Year (5 months)

Off-Site Disposal and License Termination

Table 8Paved Roadway Emissions

This equation is utilized to estimate emissions from the movement of vehicles on paved roadways. The particulate emissions estimated do not include particulate emissions from the engines.

Predictive Emission Factor Equation from AP-42 5th Edition Section 13.2 Paved Roads

 $E = (k(sL/2)^{0.65}) \times (W/3)^{1.5}$

Given Variables

7.3 k = base emission factor for grams of PM-10 particulate per vehicle mile traveled

9.7 sL = road surface silt loading (grams per square meter for Iron & Steel Production)) 29.175 W = average weight (tons) of vehicle traveling road

618 E = emission factor, grams of PM-10 particulate per vehicle mile traveled

1.36 E = emission factor, pounds of PM-10 particulate per vehicle mile traveled

Site variables

1,650 Estimated feet of traveled per vehicle one way, IN

1,650 Estimated feet of traveled per vehicle one way, OUT

0.63 Estimated miles of traveled per vehicle trip

5 Number of vehicles per day

575 Number of trucks making the trip per project

3.3 Vehicle miles traveled per day

360 Vehicle miles traveled per project

Estimated Emissions

PM-10 Emissions Actual

4.5 Pounds per day of operation

490 Pounds per Project

0.24 Tons per Project

0.24 Tons per Year (5 months, 2nd year)

Off-Site Disposal and License Termination

Table 9 Exposed Ground Area Emissions

This table estimates the emissions due to wind erosion to an exposed ground area. Emissions will only occur when the exposed ground is not vegetated.

Material Type	Area	Exposed Ground Area (acre)	Particulate Size		Emissions (ton/yr)	Calculated Emissions (lb/day)	Year 1 May - Dec (ton/yr)	Year 2 Jan - Sept (ton/yr)
Exposed Ground Areas	Storage Area	3.57	PM10 PM30 (TSP)	0.175 0.350	0.62 1.25	3.42 6.84	0.364 0.728	
Exposed Ground Areas	Storage Area	7.13	PM10 ••• PM30 (TSP) •	0.175	1.25 2.50 ···	6.8 - 13.7		0.94
	•	•• <u> </u>	8	*	· · · ·	T T `	•	4
Exposed Ground Areas	Staging Area	0.10	PM10 PM30 (TSP)	0.175 0.350	0.02 0.04	0.10 0.19	0.01 0.02	0.01 0.03
· · · · · · · · · · · · · · · · · · ·		· · ·	-	•••		×	•* •	
Total Acres of Ex	posed Storage Yard Are	a 7.13						
	•	•.	PM10* PM30 (TSP)				0.374 0.749	0.949 1.90

Emission factor is from AP-42 Chapter 11.9.1, Table 11.9-4 - Uncontrolled Particulate Emission Factors for Open Dust Sources at Western Surface Coal Mines. Emission rate is an average for a year, typically emission rates decay sharply with time. From the time an area is disturbed until the new vegetation emerges, all disturbed areas are subject to wind erosion.

*The PM10 emission factor has been adjusted from the PM30 emission factor, Table 11.9-4 refers to Section 13.2.5 which presents a distribution of particle sizes that are comprable for fugitive dust sources where wind speed is a factor.

Physical properties of the material used for development of the emission factor: silt range of 5.1 - 21 with a mean of 15 moisture range of 2.8 - 20 with a mean of 6.9

Off-Site Disposal and License Termination

Table 10Off-Road Diesel Engine Emissions

These estimates for the operation of heavy equipment only estimate the emissions from the engine of the equipment, which would emitted from the exhaust. This estimate is different to other diesel engines to due regulatory requirements. A portion of the particulate emissions are double counted due to the testing methods when developing the emissions factors associated with the crusher and the piles.

Loaders 145 Estimated HP 16 Hours per Day 1680 Hours per Project 7.61 Estimated Fuel Use, gallons per hour (based on 7.05 lbs/gal)

Dozer

132 Estimated HP 2 Hours per Day

210 Hours per Project

7.08 Estimated Fuel Use, gallons per hour (based on 7.05 lbs/gal)

Poilutant	Emission Factor	Loaders				Dozer	Totals		
	Units	Emission Factor	pounds/day	pounds/year	Emission Factor	pounds/day	pounds/year	pounds/day	pounds/year
РМ	g/hp-hr	0.100	0.511	54	0.100	0.058	6.1	0.57	60
NOx	g/hp-hr	4.50	23.016	2,417	4.50	2.62	275	25.6	2,692
SOx	b/1,000 gais	0.213	0.026	2.72	0.213	0.003	0.32	0.029	3.04
		I	<u> </u>	PM pounds/day	pounds/year	pounds/day	NOx		Ox
		Prim	ary Control Area	0.31	31.7	14.1	pounds/year 1,424	pounds/day 1.6E-02	pounds/year 1.61
			ary Storage Area Staging Area	0.26 0.26	1,31 26.9	11.5 11.5	59.0 1,208	1.3E-02 1.3E-02	6.6E-02 1.36

0.0015 % (15 ppm) Sulfur percentage content in fuel

Assumptions: The payloader is a L60E Volvo with a 145 HP engine, and the dozer is a Caterpillar D5H 132 HP engine. Emission factors are from USEPA Report No. NR-009A Exhaust Emission Factors for Nonroad Engine Modeling -- Compression-Ignition, dated February 13, 1998 and revised June 15, 1998. For the emission estimates of NOx and PM it is assumed that the equipment was manufactured between 2003 and 2006 which would be regulated under Tier 2 requirements. The SOx emissions are based on fuel sulfur content.

One loader will be used at the Staging Area and the other will be used at the Primary Control Area and the Secondary Storage Area.

Off-Site Disposal and License Termination

Table 11 Crusher - Engine Emissions Internal Combustion Engine, <600 HP

Potential Operating Hours (or permitted hours)	8,760
Type Fuel	Diesel
Fuel Higher Heating Value, (Btu/gal)	137,000
Gallons per Hour	15.3 estimated
Fuel Input in MMBtu per Hour	2.100 estimated
BHP Rating	300
Operating Hours	
Per Day	4
Per Year (5 months)	315
Actual Fuel Usage (gals/year)	4,828
Sulfur percentage content in fuel	0.0015 %, (15ppm)

These emission factors estimate particulate emissions from the engine. Particulate emissions from the crushing of material are not included; those emissions are addressed in Table 4.

Per Day Per Year (5 months) Actual Fuel Usage (gals/year) Sulfur percentage content in fuel	/ear (5 months) 315 Fuel Usage (gals/year) 4,828								
Pollutant	CAS#	Emission Factor Source	Emission Factor (Ibs/MMBtu)		Emis: (Ib/day)	Potential Emissions 5 months (Ib/hr) (tor/vr)			
<u> </u>			(IOS/MIMDIU)		(invoay)	(1b/yr)	(ton/yr)	(Long)	(ton/yr)
РМ	na	1	0.31	0.651	2.60	205	0.103	0.651	2.85
PM10	na	1	0.31	0.651	2.60	205	0.103	0.651	2.85
SOx	na	1	1.52E-03	3.18E-03	1.27E-02	1.00	5.01E-04	3.18E-03	1.39E-02
NOx	na	1	4.41	9.261	37.04	2,917	1.46	9.261	40.6
•			•	· ·					

Footnotes:

1 Emission factors are from EPA's AP-42 Table 3.3-1 dated November, 1996. The SCCs for this source are 2-02-001-01 for industrial size equipment and 2-03-001-01 for commercial/institutional size equipment. SOx emission factor is based on sulfur content.

Off-Site Disposal and License Termination

Table 12

		Emission Factor	Emissio	n Factors	Actual Emissions				
Pollutant	CAS#	Source			(lb/day)	(lb/yr)	5 months (ton/yr)		
PM	na	1	0.54	g/bhp-hr	2.38	250	0.125		
PM10	na	1	0.54	g/bhp-hr	2.38	250	0.125		
SOx	na	2	1.52E-03	lbs/MMBtu	0.02	2.23	1.1E-03		
NOx	na	1	11.00	g/bhp-hr	48.50	5,093	2.55		

. 121 **II** _

Footnote

Emission factors are based on Tier I EPA emission limits for engines that were manufactured from 2000 to 2004. This assumes that if the engine was older than 2000 it would have been rebuilt and is required to comply with modern emission standards. The emission limits were published in the EPA's *Emission Standards Reference Guide for Heavy-Duty and Nonroad Engines - Locomotives. Emissions include idling time and assumes that PM=PM10.

Off-Site Disposal and License Termination

Table 13 On-Road Engine Emissions EPA Model MOBILE 6.2	5		EPA Model MOBILE6.2 (road engines are required estimates are the engine below are for two classes	t to comply with diffe exhaust emissions a	rent standards than Ind emissions form b	non-road engines. 1	The emissions		
Miles per Day HDDV8A Miles per Day (loaded) HDDV8B Miles per Day (unloaded) Miles per Year HDDV8A Miles per Year HDDV8B Miles per Year Idling Total hours of idling on site per year		6.9 6.9 708 708 1 105		over Trucks per day Trucks for project Trucks per year Miles per truck faterial Trucks per day Trucks for project Trucks per year Miles per truck	5.3 575 575 1.08 18 3,800 1900 0.42		Dust Control Vehici Trucks per day Trucks for project Trucks per year Miles per truck	e 1 10 5 0.45	
Pollutant	Operating Condition	: · ·	HDD\ (Heavy Duty Diesel Ve	/8A hicle - >60,000 GVV	N .	(He	HDD eavy Duty Diesel Vehic		
		grams/mile	grams/hour	pounds/day	pounds/year (5 months)	grams/mile	grams/hour	, pounds/day	pounds/year (5 months)
РМ10	10 mph average Idling	0.254 NA	NA 1.0040	0.0038 <u>0.0022</u> 0.0060	0.40 <u>0 23</u> 0.63	0.25 NA	NA 1.0040	0.0038 <u>0.0022</u> 0.0060	0.39 <u>0.23</u> 0.63
SO2	10 mph average	0.0144	АИ	2.2E-04	0.02	0.015	NA	2.3E-04	0.02
NOx	10 mph average	12.3	NA	0.186	19.1	13.9	NA	0.211	21.7
	Area Primary Control Area condary Storage Area Staging Area Roadways	Distributed Emissions 34% 2% 34% 30%	PM1 max pounds/day 4.1E-03 2.4E-04 4.1E-03 3.6E-03	0 pounds/year 0.43 0.025 0.43 0.38	SC max pounds/day 1.5E-04 8.9E-06 1.5E-04 1.3E-04	D2 pounds/year 1.6E-02 9.2E-04 1.6E-02 1.4E-02	NC max pounds/day 1.3E-01 7.9E-03 1.3E-01 1.2E-01	Dx pounds/year 13.9 0.62 13.9 12.3	·

Emissions estimates are based on EPA's MOBILE6.2 Mobile Source Emission Factor Model, input and output files are included in this report. The emission factors include 6.65 starts per day. All particulate matter is 10 micrometers or less.

Off-Site Disposal and License Termination

Table 14 Modeling Summary PM-10 Emissions Summary

	_	Area 1 - Primary Controlled Area			Area 2 - Secondary Storage Area				Area 3 - Staging Area				Area 4 • Roadways			
		(PM-10 En Active Day Active Piles inactive portion	Inactive Piles	12 month	(Active Day Active Piles Inactive portic		12 month	(i	Active Day Active Piles nactive portio		12 month	Active Day	M-10 Emissio Inactive Day	12 month
Source		lbs/day 8 hours	lbs/day 16 hours	lbs/day 24 hours	lbs/year	lbs/day 8 hours	lbs/day 16 hours	ibs/day 24 hours	lbs/year	lbs/day 8 hours	lbs/day 16 hours	lbs/day 24 hours	lbs/year	lbs/day 8 hours	lbs/day	lbs/year
Material Handing = Cover = Material Removed Crushing - Controled (Table 4) Active/inactive Piles (Table 5) Heavy Equipment (Table 5) Unpaved Road (Table 7) Paved Road (Table 8)		0.032 4.90 5.37 15.0	1,18	1.58	3.47 341 2,203 1,515	1.54 0.73 12.0	Q.16	0.080	7.91 88 61.6	4.90 0.458 0.52 12.0	0.11	0.17	349 30.0 73.3 1,261	0 3,3 4,52		0 332 490
Area Erosion (Table 9) Off-Road Diesel Engine (Table 10) Crusher Engine Emissions (Table 11) Train Engine Emissions (Table 12) On-Road Engine Emissions (Table 13)		0.31 4.1E-03		6.8	1872 31.7 0.43	0.26 2.4E-04			1.31 0.025	0.28 2.60 2.38 4.1E-03		0.10	26 26.9 205 250 0.43	0 3.6E-03		0 0.38
	Total	25.6		8.4	5,967	14.5		8.0E-02	159	23.1		2.7E-01	2,222	7.8		822
			SOx Em	issions			SOx En	nissions			SOx En	nissions			Ox Emission	\$
Off-Road Diesel Engine (Table 10) Crusher Engine Emissions (Table 11)		1.6E-02			1.61	1.3E-02			6.6E-02	1.3E-02 0.013			1.36 1.00	0		٥
Train Engine Emissions (Table 12) On-Road Engine Emissions (Table 13)		1.5E-04			1.6E-02	8.9E-05			9.2E-04	0.021 1.5E-04			2.23 1.6E-02	1.3E-04		1.4E-02
	Total	1.6E-02	_		1.63	1.3E-02			6.7E-02	0.05			4.6	1.3E-04		1.4E-02
			NOx Em	issions			NOx En	nissions			NOx En	nissions		4	iOx Emission	\$
Off-Road Diesel Engine (Table 10) Crusher Engine Emissions (Table 11) Train Engine Emissions (Table 12)		14.1			1,424	11.5			59.0	11.5 37.04 48.50			1,208 2,917	0		٥
On-Road Engine Emissions (Table 12)		1.3E-01			13 9	7.9E-03			0.82	48.50 1.3E-01			5,093 13.9	1.25-01		12.26
	Totai	14 3			1,438	11.5			59.8	97.2			9,232	0.119		12.3

Assumptions One psyloader at the staging area at all times, the other psyloader is at the primary and secondary storage areas. The D111/D112 piles will be removed in 5 days. On-road engine emission emissions are assumed to be split as followe; 30% while on the roadwaye, 34% in the Primary Control Area, 34% in the Staging Area, and 2% in the Secondary Storage Area.

Visual Effects Screening Analysis for Source: SMC Class I Area: Brigantine

*** Level-1 Screening ***

Input Emissions for

Particulates	4.59	TON/YR
NOx (as NO2)	5.37	TON/YR
Primary NO2	.00	TON/YR
Soot	.00	TON/YR
Primary SO4	.00	TON/YR

**** Default Particle Characteristics Assumed

Transport Scenario Specifications:

Background Ozone:	.04	ppm
Background Visual Range:	186.30	km
Source-Observer Distance:	49.00	km
Min. Source-Class I Distance:	49.00	km
Max. Source-Class I Distance:	66.00	km
Plume-Source-Observer Angle:	11.25	degrees
Stability: 6		
Wind Speed: 1.00 m/s		

RESULTS

Asterisks (*) indicate plume impacts that exceed screening criteria

Maximum Visual Impacts INSIDE Class I Area Screening Criteria ARE NOT Exceeded

			-		Delta E		Contrast			
					=====	=====	=====	======		
Backgrnd	Theta	a Azi	Distance	Alpha	Crit	Plume	Crit	Plume		
=======	=====		=======	=====	====	=====	====	=====		
SKY	10.	141.	66.0	28.	2.00	.067	.05	.001		
SKY	140.	141.	66.0	28.	2.00	.017	.05	001		
TERRAIN	10.	84.	49.0	84.	2.00	.1.47	.05	.001		
TERRAIN	140.	84.	49.0	84.	2.00	.009	.05	.000		

Maximum Visual Impacts OUTSIDE Class I Area Screening Criteria ARE NOT Exceeded

					Delta E		Con	trast
					=====	======	=====	======
Backgrnd	Theta	Azi	Distance	Alpha	Crit	Plume	Crit	Plume
=======	=====	===	========	====	====	=====	====	=====
SKY	10.	0.	1.0	169.	2.17	1.009	.05	.015
SKY	140.	Ο.	1.0	169.	2.00	.195	.05	007
TERRAIN	10.	0.	1.0	169.	2.00	1.354	.05	.013
TERRAIN	140.	0.	1.0	169.	2.00	.232	.05	.006
TERRAIN	10.	0.	1.0	169.	2.00	1.354	.05	.013

This report was prepared under the direction of Shieldalloy Metallurgical Corporation

1

2

3

4

5

6

7

•

70

11

12

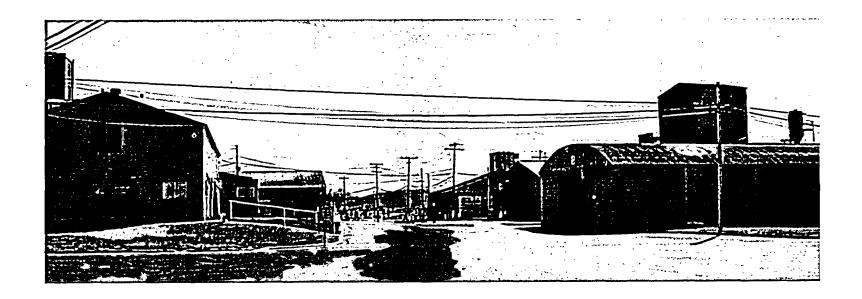
13

14

15

16

17


18

by

Billy R. Thomas, CHP, CIH Jay J. Maisler, CHP R. Alan Duff, RRPT Carol D. Berger, CHP Integrated Environmental Management, Inc. 2705 N. Main Street, Suite 202 Findlay, Ohio 45840 (419) 423-4701

and

Jean Oliva, PE Carl N. Stopper, PE TRC Environmental Corporation 5 Waterside Crossing Windsor, Connecticut 06095 (860) 289-8631

TRC

· - · *** ·