APPENDIX 3-1

DESIGN CONTROL SUMMARY	
CLIENT: BNFL Inc. UNIT NO.: PROJECT NAME: Big Rock Point Major Component Removal PROJECT NO.: $\mathbf{1 0 5 2 5 - 0 2 0}$ \square CALC. NO.: N-10525-020-0001 \square TITLE: Reactor Vessel Heat Rates and Shielding $\boxed{\text { NOT NUCLEAR SAFETY-RELATED }}$ EQUIPMENT NO.: 	QA SERIAL NO.
IDENTIFICATION OF PAGES ADDED/REVISED/SUPERSEDEDNOIDED \& REVIEW METHOD	
Initial Issue: 39 pages issued as Revision 0. INPUTS/ ASSUMPTIONS VERIFIED UNVERIFIED	
IDENTIFICATION OF PAGES ADDEDIREVISED/SUPERSEDEDNOIDED \& REVIEW METHOD	
Revision 1: All pages superseded. 38 pages issued as Revision 1. INPUTS/ASSUMPTIONS	
IDENTIFICATION OF PAGES ADDED/REYISEDISUPERSEDEDNOIDED \& REVIEW METHOD	
$\begin{array}{cl}\text { INPUTS/ASSUMPTIONS } \\ \square & \text { VERIFIED } \\ \square & \text { UNVERIFIED }\end{array}$	

* The reviewer's signature indicates compliance with S\&L procedure SOP-0402 and the verification of, as a minimum, the following items: correctness of mathematics for manual calculations, appropriateness of input data, appropriateness of assumptions, and appropriateness of the calculation method.

NOTE: PRINT AND SIGN IN THE SIGNATURE AREAS

			For Reactor Vess	Rates and			Calc		$\mathrm{N}-10$	-020-0001
-	,						Rev.	1	Date	12/08/00
		\mathbf{x}	Important to Saf	egory A		Non-Safety Related	Page		2	
Client BNFL, Inc.				Prepared by G. Douglas Cole				Date		
Project	Big Rock Point Major Component Removal			Reviewed by	Roman Kahn			Date		
Proj. No	10525-020		Equip. No.	Approved by		William J. Johnson		Date		

Table of Contents

	Page No.	Sub-page No.
Cover Sheet: Form SOP-0402-03	1	
Table of Contents	2	
1.0 Purpose and Scope	3	
2.0 References	4	
3.0 Design Input	5	
4.0 Assumptions	8	
5.0 Methodology and Acceptance Criteria	10	
6.0 Calculations	11	
7.0 Summary and Conclusions	17	
8.0 Attachments:		
a. Attachment A: Exhibit 2, "BRP Thermal Shield Characterization Survey Form - 2: Azimuthal Distribution", Report WMG-9902, Revision 1, June 1999, Appendix A, 1 page;		
b. Attachment B: Table 4-1, "Estimated Component Activity and NRC Classification Status", Report WMG-9902, Revision 1, June 1999; and "Comparison of Activities and Part 61 Classification at Big Rock Point as of September 1, 2002", Attachment A, Corrected Total Activity (Ci), Revised Characterization and Classification Results; WMG Report 8057, March 10, 2000; 2 pages;		
c. Attachment C: Figures 2-2 and 2-3, Radial and Axial Thermal Flux Distributions, Report WMG-9902, Revision 1, June 1999, 2 pages;		
d. Attachment D: Table 1-2, "Reactor Vessel Package Radioactivity and A_{2} Fractions", Trojan Nuclear Plant Safety Analysis Report, PGE-1076, Revision 1, July 1999, 1 page;		
e. Attachment E: "PR-2 and PR-7 Series Specifications", DOSITEC, Inc., Sheet \#8201-0293, 1 page.		

			For Reactor Vess	Rates and		Calc	$\mathrm{N}-10$	-020-0001
	-xan					Rev.	Date	12/08/00
		\mathbf{X}	Important to Saf	tegory A		Page	3	
Client BNFL, Inc.				Prepared by		G. Douglas Cole	Date	
Project	Big Rock Point Major Component Removal			Reviewed by		Roman Kahn	Date	
Proj. No	10525-020		Equip. No.	Approved by	William J. Johnson		Date	

f. Attachment F: Gamma-ray Transmission Fractions for

Concrete ($147 \mathrm{lb} / \mathrm{ft}^{3}$ density) and Iron; "Radiological Health
Handbook", Revised Edition, January 1970, U.S.
Department of Health, Education and Welfare, Public
Health Service, Food and Drug Administration, Bureau
of Radiological Health; 1 page;
g. Attachment G: Program ISOSHLD-PC Output, 14 pages.

1.0 Purpose and Scope

1.1 Purpose

The purpose of this calculation is to determine upper bound heat generation rates which originate with the radioactive components that comprise the integrated unit of Big Rock Point's Reactor Vessel Assembly and Internals (RVAI). The heat generation rates in turn depend on the radioactivity caused by the products of neutron activation on the various component's constituent metals. A secondary purpose of this calculation employs the radioactivity determinations to provide general shielding design information whereby surface and two meter dose rates from the packaged RVAI may be estimated.

1.2 Scope

The scope of this calculation is limited to the heat rates of the vessel and the vessel internals; it will not account for heat sources outside the radioactive RVAI components. The shielding design information and the dose rates are general and preliminary only; shielding design information will be sufficiently connected to detailed computer-supported models in a future calculation. Achieving detailed heat rate determinations in association with specific RVAI components is necessary to the extent that only those for the Grid Bar (i.e. Top Guide) End Pieces are identified as distinct from the total.

1.3 Background

The RV Assembly and Internals will be physically processed to obtain an integrated unit. The RV Internals are already fixed in position, but a low-density cement grout will be pumped into the RV to surround the remaining internals. This operation serves to prevent the movement of superficial radioactive contaminants. The grout will also form a readily identifiable boundary at the RV's nozzles and orifices. It is expected that the RV Head will not be a part of the RV integrated unit. Some other enclosure, like a steel plate, will be attached to the remaining RV Assembly and Internals.

The RVAI unit will be packaged for the purposes of transport to and near surface burial at the Barnwell, South Carolina Waste Management Facility. The packaged RVAI is the essential item that is a part of the Reactor Vessel Transportation System (RVTS). To create the RVTS package, the RVAl unit will be positioned in the package and surrounded by more cement grout. This grout will maintain the RVAl's optimal position, and also serve to insulate and radiologically shield the RVAl. The package itself will provide additional radiological shielding and be of sufficient construction to withstand the expected rigors of handling, transport and burial.

In many aspects, the package's outer surface is the physical point where the engineered adequacy of the RVTS is determined by virtue of its structural strength, its surface dose rates, its maximum temperature and pressure. Also to be determined are the package's internal pressure, the bounding dimensions of the overall package and its constituent steel shielding. More specifically, it will be necessary to associate heat rates with specific components not only because of the likelihood of disproportionate amounts of heat production, but also because of their potentially problematic locations.

Aspects of federal regulation with regard to low-level radioactive waste, especially in Chapter 10 of the Code of Federal Regulations, Parts 20, 61 and 71, are accommodated in this calculation. Part 61 allows flexibility with respect to scaling from better characterized radionuclide concentrations to estimate concentrations which, in this case, are those of the as-yet unclassified (for burial) RVAl. Federal, state and facility waste transportation requirements with respect to shipment manifesting also compel the indicated scaling approach, which also provides activity estimates for $\mathrm{H}-3$ and $\mathrm{C}-14$, especially, but also Tc-99.

2.0 References

2.1 "Big Rock Point Reactor Vessel and Internals Characterization and Classification", Report WMG-9902, Revision 1, June 1999, WMG Project 8057;
2.2 "Trojan Nuclear Plant Reactor Vessel and Internals Removal Project Safety Analysis Report", PGE-1076, Revision 1, July 1999, Portland General Electric Company;
2.3 Program ISOSHLD-PC, Program 03.7.310-1.0/O, June 1, 1999, Sargent \& Lundy ${ }^{\text {LLC }}$;
2.4 "Dose Rate Evaluation 3 Meters from Big Rock Point's Reactor Vessel", Prepared by A.G. Klazura, April 14, 1999, Sargent \& Lundy ${ }^{\text {LLC }}$;
2.5 "PR-2 and PR-7 Series Specifications", DOSITEC, Inc., Sheet \#8201-0293;
2.6 "Handbook of Chemistry and Physics", Edited by D.R. Lide et al., $78^{\text {th }}$ Edition, 1997-98, CRC Press ${ }^{\text {LLC }}$;
2.7 "Radiological Health Handbook", Revised Edition, January 1970, U.S. Department of Health, Education and Welfare, Public Health Service, Food and Drug Administration, Bureau of Radiological Health;
2.8 Code of Federal Regulations, Title 10, Volume 2, Part 61, Revised January 1, 1999, U.S. Government Printing Office via GPO Access, "Waste Classification" (...61.55), "(8) Determination of concentrations in wastes."
2.9 "Revised Characterization and Classification Results; WMG Project 8057", Revision to Reference 2.1, March 10, 2000, WMG Inc.;

			For Reactor Vess	Rates and	ding	Calc		N-10	-020-0001
rge	mad					Rev.	1	Date	12/08/00
		\mathbf{X}	Important to Saf	tegory A	Non-Safety Related	Page		5	
Client BNFL, Inc.				Prepared by	G. Douglas Cole		Date		
Project	Big Rock Point Major Component Removal			Reviewed by	Roman Kahn		Date		
Proj. No	10525-020	Equip. No.		Approved by	William J. Johnson		Date		

2.10 "Concentration Averaging of Grid Bar End Pieces for Disposal of BRP Reactor Vessel and Internals", Report WMG-20024-20091, October 2000, WMG Inc., 16 Bank Street, Peekskill, NY;
2.11 "Nuclear Power Plants No Longer in Service", Nuclear News, March 2000, Vol.43, Number 3, pg. 57, American Nuclear Society Inc., LaGrange Park, IL, USA;
2.12 "Reactor Vessel Transport System Radiation Source Term", Calculation No. N-10525-020-004, Rev. 1, Big Rock Point Major Component Removal, December 2000, Sargent \& Lundy ${ }^{\text {LLC }}$.

3.0 Design Input

3.1 Units (Reference 2.6, pgs. 1-24-1-31, 1-38):
a. $\quad 1$ Curie $(\mathrm{Ci})=3.7 \mathrm{E}+10$ Bequerels $=3.7 \mathrm{E}+10$ disintegrations (dis.) /second;
b. $\quad 1$ electronvolt $(\mathrm{eV})=1.602 \mathrm{E}-19$ joules (J);
c. $\quad 1$ British Thermal Unit (BTU, mean) $=1.056 \mathrm{E}+3 \mathrm{~J}$;
d. $\quad 1$ hour $=3.600 \mathrm{E}+3$ seconds (sec).
3.2 Dose Rate-Activity Basis (RVAl's Thermal Shield (TS), Reference 2.1, Appendix A, Exhibit 2, positions "F", "G", and "H"; see Attachment A): Table 3-1 demonstrates that most of the TS dose rates are well within the calibrated ranges of the PR-2 radiation monitor, as is the average dose rate. These dose rates are associated with the TS activity of $7.45 \mathrm{E}+3$ Curies (see Attachment B).

Table 3-1. Thermal Shield Characteristics

Azimuthal Position by elevation	Dose Rate
$604^{\prime} 144^{\circ}(\mathrm{F})$	$1500 \mathrm{R} /$ hour
$606^{\prime} 144^{\circ}(\mathrm{F})$	$1625 \mathrm{R} / \mathrm{hour}$
$604^{\prime} 162^{\circ}(\mathrm{G})$	$1500 \mathrm{R} /$ hour
$606^{\prime} 162^{\circ}(\mathrm{G})$	$2125 \mathrm{R} /$ hour
$604^{\prime} 180^{\circ}(\mathrm{H})$	$1500 \mathrm{R} / \mathrm{hour}$
$606^{\prime} 180^{\circ}(\mathrm{H})$	$1375 \mathrm{R} / \mathrm{hour}$
average	$1604 \mathrm{R} /$ hour

3.3 Component Characteristics (Reference 2.1, Table 4-1, and Reference 2.9, Attachment
$A ;$ see Attachment B): These data are excerpted from the referenced table and attachment. The RV Cladding weight datum is from Reference 2.1, Table 4-11. The references state that these activities have been decayed to a date of September 1, 2002. Also note that the Neutron Windows' and Top Guide's entries have not been included since they will not be part of the RVAI.

Table 3-2. Reactor Vessel (RV) Component Characteristics

Component	Weights	Corrected Total Activtiy (Ci)
Thermal Shield	$1.30 \mathrm{E}+4 \mathrm{lbs}$	$7.40 \mathrm{E}+3$
Steam Baffle	$1.64 \mathrm{E}+3 \mathrm{lbs}$	$1.08 \mathrm{E}+1$
Sparger	$1.30 \mathrm{E}+2 \mathrm{lbs}$	$8.60 \mathrm{E}-1$
Top Guide Plate	$8.13 \mathrm{E}+2 \mathrm{lbs}$	$1.14 \mathrm{E}+3$
Seal Housing	$1.07 \mathrm{E}+3 \mathrm{lbs}$	$1.30 \mathrm{E}+2$
Thermal Shield Retainer	$5.47 \mathrm{E}+2 \mathrm{lbs}$	$1.14 \mathrm{E}+2$
Seal Weights	$5.08 \mathrm{E}+3 \mathrm{lbs}$	$1.10 \mathrm{E}+3$
Core Support Plate	$2.54 \mathrm{E}+3 \mathrm{lbs}$	$1.4 \mathrm{E}-1$
Inlet Diffuser	$1.98 \mathrm{E}+2 \mathrm{lbs}$	$2.24 \mathrm{E}-2$
Inlet Baffle	$2.32 \mathrm{E}+3 \mathrm{lbs}$	$1.63 \mathrm{E}-1$
RV Insulation	$5.18 \mathrm{E}+3 \mathrm{lbs}$	$5.81 \mathrm{E}+1$
RV Cladding	$5.03 \mathrm{E}+3 \mathrm{lbs}$	$2.45 \mathrm{E}+2$
RV Wall	$2.03 \mathrm{E}+5 \mathrm{lbs}$	$1.11 \mathrm{E}+3$

3.4 PR-2 Energy Response and Accuracy (Reference 2.5; see Attachment E).
a. Energy Response: $\quad+/-30 \%$ from 80 KeV to 3 MeV ;
b. Accuracy: $\quad+/-15 \%$ for all ranges from 20% to 80% of full scale, calibrated with $\mathrm{Cs}-137$.
3.5 Radionuclide Total Disintegration Energy (Reference 2.6, "Table of the Isotopes", pgs. 11-41-11146). See Table 3-4.
3.6 Trojan Reactor Vessel Package Radioactivity Fractions (Reference 2.2, Table 1-2; see Attachment D, "Activity, Activation (Curies)").

Table 3-3. Trojan RV Radionuclide Curies and Radionuclide Energy Characteristics

Nuclide	Activation (Curies)	Fraction	Total Disintegration Energy (MeV)
$\mathrm{H}-3$	$6.55 \mathrm{E}+2$	$3.26 \mathrm{E}-4$	0.01859
$\mathrm{C}-14$	$2.18 \mathrm{E}+2$	$1.08 \mathrm{E}-4$	0.1565
$\mathrm{Sb}-125$	$4.04 \mathrm{E}-1$	$2.01 \mathrm{E}-7$	0.767
$\mathrm{Mn}-54$	$2.16 \mathrm{E}+3$	$1.07 \mathrm{E}-3$	1.377
$\mathrm{Eu}-152$	$2.54 \mathrm{E}+1$	$1.26 \mathrm{E}-5$	1.86
$\mathrm{Fe}-55$	$6.97 \mathrm{E}+5$	$3.47 \mathrm{E}-1$	0.2316
$\mathrm{Co}-60$	$1.15 \mathrm{E}+6$	$5.72 \mathrm{E}-1$	2.824
$\mathrm{Ni}-59$	$9.53 \mathrm{E}+2$	$4.74 \mathrm{E}-4$.---
$\mathrm{Ni}-63$	$1.57 \mathrm{E}+5$	$7.81 \mathrm{E}-2$	0.067
$\mathrm{Nb}-94$	$3.29 \mathrm{E}+0$	$1.64 \mathrm{E}-6$	2.045
$\mathrm{Tc}-99$	$7.06 \mathrm{E}-1$	$3.51 \mathrm{E}-7$	0.294
Total	$2.01 \mathrm{E}+6$		

3.7 Section 6.9.1 of Reference 2.12 provides the total Curie content for the Grid Bar End Pieces (GBEP) to be 1800 Curies.
3.8 Table 6.3.2-2 of Reference 2.12 is translated below as Table 3-4 for the purpose of distinguishing the RV Wall radionuclide activities from the distribution used for all other RVAI components. The primary differences are in the $\mathrm{Fe}-55$ and $\mathrm{Co}-60$ activities. The reason for the different distribution is primarily that the RV Wall is the only carbon steel component. The Curie activities in the final column will be used in the Calculation section (Section 6.5).

Table 3-4 RV Wall Inventory

	Trojan Nuclide Distrib'n	WMG Co-60	Mod. Co-60	Inc. Fe55	
nuclide	Ratio	Ci	Ci		
H3	$3.26 \mathrm{E}-04$	$3.62 \mathrm{E}-01$	$3.62 \mathrm{E}-01$	$3.62 \mathrm{E}-01$	$3.62 \mathrm{E}-01$
C14	$1.09 \mathrm{E}-04$	$1.21 \mathrm{E}-01$	$1.21 \mathrm{E}-01$	$1.21 \mathrm{E}-01$	$1.21 \mathrm{E}-01$
SB125	$2.01 \mathrm{E}-07$	$2.23 \mathrm{E}-04$	$2.23 \mathrm{E}-04$	$2.23 \mathrm{E}-04$	$2.23 \mathrm{E}-04$
MN54	$1.08 \mathrm{E}-03$	$1.19 \mathrm{E}+00$	$1.19 \mathrm{E}+00$	$1.19 \mathrm{E}+00$	$1.19 \mathrm{E}+00$
EU152	$1.26 \mathrm{E}-05$	$1.40 \mathrm{E}-02$	$1.40 \mathrm{E}-02$	$1.40 \mathrm{E}-02$	$1.40 \mathrm{E}-02$
FE55	$3.47 \mathrm{E}-01$	$3.85 \mathrm{E}+02$	$3.85 \mathrm{E}+02$	$3.85 \mathrm{E}+02$	$7.90 \mathrm{E}+02$
CO60	$5.73 \mathrm{E}-01$	$6.36 \mathrm{E}+02$	$2.01 \mathrm{E}+02$	$2.31 \mathrm{E}+02$	$2.31 \mathrm{E}+02$
NI59	$4.75 \mathrm{E}-04$	$5.27 \mathrm{E}-01$	$5.27 \mathrm{E}-01$	$5.27 \mathrm{E}-01$	$5.27 \mathrm{E}-01$
NI63	$7.82 \mathrm{E}-02$	$8.68 \mathrm{E}+01$	$8.68 \mathrm{E}+01$	$8.68 \mathrm{E}+01$	$8.68 \mathrm{E}+01$
NB94	$1.64 \mathrm{E}-06$	$1.82 \mathrm{E}-03$	$1.82 \mathrm{E}-03$	$1.82 \mathrm{E}-03$	$1.82 \mathrm{E}-03$
TC99	$3.52 \mathrm{E}-07$	$3.90 \mathrm{E}-04$	$3.90 \mathrm{E}-04$	$3.90 \mathrm{E}-04$	$3.90 \mathrm{E}-04$
Total	$1.00 \mathrm{E}+00$	$1.11 \mathrm{E}+03$	$6.75 \mathrm{E}+02$	$7.05 \mathrm{E}+02$	$1.11 \mathrm{E}+03$

3.9 Transmission Fractions (Reference 2.7, pgs. 149; Attachment F).
3.10 The Top Guide Grid Bar End Pieces (GBEP), physical dimensions and dose rates (Reference 2.10).
a. Grid Bar End Pieces (cut; page 2 of 10):
b. $\quad 6^{\prime \prime}$ GBEP (Table 2-2):
c. Grid Bar End Pieces (cut; page 2 of 10):
d. 10 " GBEP (Table 2-2):
e. Survey Information (Table 2-2):

Locale Locale Locale Locale $4 \quad 11340$ R/hour; Locale $5 \quad 8980$ R/hour; Locale $6 \quad 8590$ R/hour; Locale $7 \quad 7540$ R/hour; Locale $8 \quad 3030$ R/hour; Locale $9 \quad 12880$ R/hour; Locale $10 \quad 3340$ R/hour;
Locale $11 \quad 10660$ R/hour
Locale $12 \quad 15850 \mathrm{R} /$ hour;
Locale 1310800 R/hour;
Locale $14 \quad 11820$ R/hour;
Locale $15 \quad 15990$ R/hour;
Locale $16 \quad 13030$ R/hour;
Locale $17 \quad 4130$ R/hour;
Locale $18 \quad 2670$ R/hour.

4.0 Assumptions

4.1 With the exception of the Neutron Windows and Top Guide, the Curie contents associated with RV components in Reference 2.1 are assumed to be correct because the estimates appear to have been based on dose rates that were measured with a calibrated PR-2 radiation monitor.
4.2 Only the Thermal Shield had survey information unequivocally associated with it and that was within the calibrated ranges of the PR-2 monitor. However, the characteristics of all of the other components listed in Table 4-1 of Reference 2.1 and Attachment A of Reference 2.9, are assumed to be as acceptable as those for the Thermal Shield.

4.3 The RV insulation, Wall, and Cladding components include contributions from the RV Head even though it is likely that the RV Head will not be part of the RVAI nor in the RVTS. It should also be pointed out that there is no RV Cladding entry in Reference 2.1, Table 4-1. That information must be taken from Table 4-11 of Reference 2.1 (weight) and Attachment A of Reference 2.9 (Curies).
4.4 The relative radionuclide abundances from the Trojan RV activation activities are assumed to provide a more reliable and complete radionuclide profile for all of the Big Rock RVAI components except the RV Wall. This assumption is compelling for the following reasons:
a. The Trojan RV packaging, shipment, and burial, as well as the supporting Safety Analysis Report (Reference 2.2), were complete with full regulatory compliance in 1999;
b. While the June 1999 WMG Report (Reference 2.1) appears generally thorough, tritium (H-3) has a characterization that includes the designation, "<LLD>". It would be advantageous to be able to manifest a H-3 activity, especially, without the LLD designation. Employing the Trojan profile allows a basis by which to do this;
c. The RV Wall and Insulation components are not as fully characterized as all the other components in the WMG Report; this calculation applies the same profile, i.e. Trojan's, to all of the RVAI components as an integrated unit;
d. There is reasonable consistency between the Big Rock RVAI (0.53 from Attachment B [page 2, "LLRW Subtotals" Corrected $\mathrm{Co}-60$ to the Corrected Total Activities ratio]) and the Trojan RV (0.57 from Table 3.4) when comparing Co-60 abundances; utilizing the Trojan profile effectively conservatively skews the Big Rock RVAl to greater Co-60 Curies;
e. The radionuclide decay time from the end of reactor operations to that for the activity determinations is the same for Big Rock's characterization (August 1997 to September 2002; see Attachment B, page 2, title) as for Trojan's (November 1992 to November 1997; Reference D, Note 1). See Reference 2.11 for the August 1997 and November 1992 dates ("closed" dates).

This approach depends on the concepts given in Reference 2.8. The scaling implied above relies on the Trojan RV relative radionuclide abundances as meeting the regulation's intent with respect to "indirect methods [which] can be correlated to actual measurements".
4.5 The dose rate information in Section 3.10 makes clear that the GBEP activities are not symmetric. All the GBEP are situated in a narrow axial band above the annular components and completely within an approximate 180° azimuthal distribution. There are apparent peaks in this azimuthal distribution, as well, with one 90° section having more activity than the other section. The ratio of the more-to-less active section, on average, is about $3: 2$. There are activity peaks in each section as well, which would imply activity "hot" spots in both sections, again with average ratios each of $3: 2$. A conservative result of this approach would be to assume that half of total GBEP activity is in a single hot spot, essentially within an infinitesimal azimuthal angle roughly at the axial level of the Top Guide Plate.

4.6 An important assumption is that all of the radionuclide disintegration energy is deposited in the surrounding materials. Thus, 100% of the disintegration energy is converted to heat.
4.7 The Program ISOSHLD-PC is useful to this calculation by virtue of its capabilities to estimate heat rates. Dose rate results are also available from ISOSHLD, but the program is not so employed for this calculation.
4.8 The working outer diameter of the RVTS is assumed to be 13 feet. With a centered RVAI unit of radius 61.25 inches, the thickness of 16.75 inches is the difference between the RVAl's outer radius (i.e. RV Insulation's outer radius; Reference 2.1 Table 2-1) and that for the RVTS. The thickness measurement therefore spans the RV Insulation's outermost surface to the exterior of the RVTS, using the axial cross section.
4.9 The assumption of a dose-rate-to-distance relationship of $1 / r$ instead of $1 / r^{2}$ accounts for the RVAI being more like a "line" radiation source than a point source. Actual exterior, and especially side axial, dose rate measurements are a necessary check on such an assumption, but are as yet not available.
4.10 Application of the Transmission Fractions (Reference 2.7, pgs. 149) requires the assumption that all of the dose is due to $\mathrm{Co}-60$. In the case of the concrete transmission of gamma rays, the fraction must be increased by a factor of approximately 3 to account for the lower density of the grout (i.e., $50 \mathrm{lbs} / \mathrm{ft}^{3}$ as compared to concrete at $147 \mathrm{lbs} / \mathrm{ft}^{3}$ indicated in the referenced curves).

5.0 Methodology and Acceptance Criteria

5.1 This calculation's methodology primarily relies on the total Curie contents associated with the various RV components from Reference 2.1. After the GBEP' total Curie content is recalculated, which is indirectly from Reference 2.1, it is summed with all the other RV component's Curie contents to produce a total for the RVAI. This total is then apportioned for specific radionuclide Curies (radionuclide profile) based on the relative abundance of the various radionuclides from the already shipped and buried Trojan RV package. The above assumptions finally allow the estimation of heat rates for the entire RVAI.

The 3-meter dose rates for the various components from Reference 2.4 can be summed to obtain a total dose rate directly associated with the referenced total Curie content. The RVAI Curie content will be compared to the Reference 2.4 Curies to determine a new 3 -meter dose rate appropriate to the estimated RVAI Curie content. This dose rate can then be proportioned for different distances and proposed shielding situations.

5.2 The acceptance criteria are largely based on meeting the requirements of 10 CFR 71, such that:
a. Under normal conditions of transport, there would be no loss or dispersal of radioactive contents from the RVTS package, no significant increase in external surface radiation levels, and no substantial reduction in the effectiveness of the packaging;
b. Account must be taken of the behavior of the RVTS materials under irradiation;
c. The RVTS package must be designed, constructed, and prepared for transport so that in still air and in the shade, no accessible surface of the package would have a temperature exceeding $122^{\circ} \mathrm{F}$ in a nonexclusive use shipment, or $185^{\circ} \mathrm{F}$ in an exclusive use shipment.
d. The conditions defined as normal for transport are evaluated as applicable and are given in 10 CFR 71.71.
5.3 The acceptance criteria must generally account for the dose rate limits applicable to the RVTS package (10 CFR 71.47), such that:
a. External (contact) dose rates shall not exceed 200 millirem/hour on any accessible surface;
b. In the case of an open transport vehicle, the dose rates shall not exceed 200 millirem/hour at any point on the vertical planes projected from the outer edges of the vehicle, on the upper surface of the package, and on the lower external surface of the vehicle;
c. At any point two meters from, in the case of an open vehicle, the vertical planes projected from the outer edges of the conveyance, 10 millirem/hour must not be exceeded.

However, the intent of this calculation is not to provide design details of the RVTS. The above limits are thus used as guidelines only, with RVTS package design elements generally estimated after reasonably conservative Curie content, heat rate, and dose rate assumptions are applied. The shielding design information and the dose rates are general and preliminary only; shielding design information will be sufficiently connected to detailed computer-supported models in a future calculation.

6.0 Calculations

6.1 Calculate the total Curies for the RVAI unit, including all RV components except the RV Wall and the GBEP.

The Top Guide, which is separate from the Top Guide Plate, is excluded because this component will not be included in the RVAI. The total Curie content is the sum of the Curies that will be included in the RVAI.

The RV Insulation, Wall, and Cladding components include contributions from the RV Head even though it is likely that the RV Head will not be in the RVTS. It should also be pointed out that there is no RV Cladding entry in Reference 2.1, Table 4-1 (Attachment B). That information must be taken from Reference 2.9 , Attachment A. The Cladding activity is $2.45 \mathrm{E}+2$ Curies.

The following information is from Table 3-2.

Component	Activity
Thermal Shield	$7.40 \mathrm{E}+3$ Curies
Steam Baffle	$1.08 \mathrm{E}+1$ Curies
Sparger	$8.60 \mathrm{E}-1$ Curies
Top Guide Plate	$1.14 \mathrm{E}+3$ Curies
Seal Housing	$1.30 \mathrm{E}+2$ Curies
TS Retainer	1.14 E+2 Curies
Seal Weights	$1.10 \mathrm{E}+3$ Curies
Core Support Plate	$1.40 \mathrm{E}-1$ Curies
Inlet Diffuser	2.24 E-2 Curies
Inlet Baffle	$1.63 \mathrm{E}-1$ Curies
RV Insulation	$5.81 \mathrm{E}+1$ Curies
RV Cladding	$2.45 \mathrm{E}+2$ Curies
Total	1.02 E+4 Curies

6.2 Invoking the Accuracy item from Reference 2.5, the potential 15\% under-response would be applied to the total Curies. This percentage is applicable only within the calibrated range of the radiation monitor. Therefore,
1.02E +4 Curies $\times 1.15=1.173 \mathrm{E}+4$ Curies.

It should be noted that this consideration is separate from and in addition to the 1.25 factor cited in Reference 2.1 , which is intended to specifically correct for a $\mathrm{Cs}-137$ calibrated instrument actually performing measurements in predominantly Co-60 fields.
6.3 Calculate the total Curies for the RVAI unit, including all RV components, the GBEP, but not including the activities from the RV Wall.

The activity for the GBEP has been determined independently to be 1800 Curies (see Section 3.7). Thus, the total is...

```
1.173 E+4 + 1.8 E+3 Curies = 1.353 E+4 Curies.
```


6.4 Calculate the radionuclide profile comprising the RVAl's Curie content.

The fractional radionuclide abundances for the Trojan RV package shall be applied to the total Curie content for the Big Rock RVAI. The radionuclide abundances expressed as fractions are taken from Table 3-3.

Nuclide	Fraction Activity
H-3	1.35 E+4 Curies $\times(3.26 \mathrm{E}-4)=4.41 \mathrm{E}+0$ Curies;
C-14	$1.35 \mathrm{E}+4$ Curies $\times(1.08 \mathrm{E}-4)=1.46 \mathrm{E}+0$ Curies;
Sb-125	$1.35 \mathrm{E}+4$ Curies $\times(2.01 \mathrm{E}-7)=2.72 \mathrm{E}-3$ Curies;
Mn-54	$1.35 \mathrm{E}+4$ Curies $\times(1.07 \mathrm{E}-3)=1.45 \mathrm{E}+1$ Curies;
Eu-152	$1.35 \mathrm{E}+4$ Curies $\times(1.26 \mathrm{E}-5)=1.70 \mathrm{E}-1$ Curies;
Fe-55	1.35 E+4 Curies $\times(3.47 \mathrm{E}-1)=4.70 \mathrm{E}+3$ Curies;
Co-60	1.35 E+4 Curies $\times(5.72 \mathrm{E}-1)=7.72 \mathrm{E}+3$ Curies;
Ni -59	1.35 E+4 Curies $\times(4.74 \mathrm{E}-4)=6.41 \mathrm{E}+0$ Curies;
Ni-63	$1.35 \mathrm{E}+4$ Curies $\times(7.81 \mathrm{E}-2)=1.06 \mathrm{E}+3$ Curies;
Nb-94	1.35 $\mathrm{E}+4$ Curies $\times(1.64 \mathrm{E}-6)=2.22 \mathrm{E}-2$ Curies;
Tc-99	1.35 E+4 Curies $\times(3.51 \mathrm{E}-7)=4.75 \mathrm{E}-3$ Curies.

6.5 Calculate the radionuclide profile comprising the RV Wall's Curie content.

The radionuclide activities for the RV Wall are obtained by multiplying the activities from Table 3-4 by the instrument underresponse factor, similar to Step 6.2, as follows:

Nuclide		Factor	Activity
H-3	3.62 E-1 Curies	$\times 1.15$	$=4.16 \mathrm{E}-1$ Curies;
C-14	1.21 E-1 Curies	$\times 1.15$	$=1.39 \mathrm{E}-1$ Curies;
Sb-125	2.23 E-4 Curies	$\times 1.15$	$=2.56 \mathrm{E}-4$ Curies;

Mn-54	1.19E+0 Curies x 1.15	$=1.37 \mathrm{E}+0$ Curies;
Eu-152	1.40 E -2 Curies $\times 1.15$	$=1.61$ E-2 Curies;
Fe-55	7.90 E+2 Curies $\times 1.15$	$=9.09 \mathrm{E}+2$ Curies;
Co-60	2.31 E+2 Curies $\times 1.15$	$=2.66 \mathrm{E}+2$ Curies;
$\mathrm{Ni}-59$	5.27E-1 Curies x 1.15	$=6.06 \mathrm{E}-1$ Curies;
Ni-63	8.68 E+1 Curies $\times 1.15$	$=9.98 \mathrm{E}+1$ Curies;
Nb-94	1.82 E -3 Curies $\times 1.15$	$=2.09 \mathrm{E}-3$ Curies;
Tc-99	3.90 E -4 Curies $\times 1.15$	$=4.48 \mathrm{E}-4$ Curies .
Total		1.27 E+3 Curies

6.6 Convert the various radionuclide's Curies to energy deposition rate.

The energy deposition rate is determined by converting Curies to disintegration rate, then using the total energy per disintegration values found in Reference 2.6. The activity column first sums the radionuclide activities from Steps 6.4 and 6.5.

Nuclide Activity	Total Energy $/ \mathrm{dis}$.	Total Energy
$\mathrm{H}-3$	$4.83 \mathrm{E}+0 \mathrm{Cix}\left(3.7 \mathrm{E}+10 \mathrm{dis} . \mathrm{sec}^{-1} / \mathrm{Ci}\right) \times(0.01859 \mathrm{MeV} / \mathrm{dis})=.3.32 \mathrm{E}+9 \mathrm{MeV} / \mathrm{sec} ;$	
$\mathrm{C}-14$	$1.60 \mathrm{E}+0 \mathrm{Ci} \times\left(3.7 \mathrm{E}+10 \mathrm{dis} . \mathrm{sec}^{-1} / \mathrm{Ci}\right) \times(0.1565 \mathrm{MeV} / \mathrm{dis})=.9.27 \mathrm{E}+9 \mathrm{MeV} / \mathrm{sec} ;$	

Sb-125 2.98 E-3 $\mathrm{Ci} \times\left(3.7 \mathrm{E}+10 \mathrm{dis} . \mathrm{sec}^{-1} / \mathrm{Ci}\right) \times(0.767 \mathrm{MeV} / \mathrm{dis})=.8.45 \mathrm{E}+7 \mathrm{MeV} / \mathrm{sec}$;
Mn-54 1.59 E+1 Cix(3.7 E+10 dis. $\left.\mathrm{sec}^{-1} / \mathrm{Ci}\right) \times(1.377 \mathrm{MeV} / \mathrm{dis})=.8.09 \mathrm{E}+11 \mathrm{MeV} / \mathrm{sec}$;
Eu-152 1.87 E-1 $\mathrm{Ci} \times\left(3.7 \mathrm{E}+10 \mathrm{dis} . \mathrm{sec}^{-1} / \mathrm{Ci}\right) \times(1.86 \mathrm{MeV} / \mathrm{dis})=.1.28 \mathrm{E}+10 \mathrm{MeV} / \mathrm{sec}$;
Fe-55 $5.61 \mathrm{E}+3 \mathrm{Ci} \times\left(3.7 \mathrm{E}+10 \mathrm{dis} . \mathrm{sec}^{-1} / \mathrm{Ci}\right) \times(0.2316 \mathrm{MeV} / \mathrm{dis})=.4.81 \mathrm{E}+13 \mathrm{MeV} / \mathrm{sec}$;
Co-60 8.00 E+3 Ci $\times\left(3.7 \mathrm{E}+10 \mathrm{dis} . \mathrm{sec}^{-1} / \mathrm{Ci}\right) \times(2.824 \mathrm{MeV} / \mathrm{dis})=.8.36 \mathrm{E}+14 \mathrm{MeV} / \mathrm{sec} ;$
Ni-59 [7.02 E+0 Ci $\times\left(3.7 \mathrm{E}+10\right.$ dis. $\left.\left.\sec ^{-1} / \mathrm{Ci}\right)\right] \times$ (no entry) $=$ not applicable;
Ni-63 1.16 E+3 Ci $\times\left(3.7 \mathrm{E}+10 \mathrm{dis} . \mathrm{sec}^{-1} / \mathrm{Ci}\right) \times(0.067 \mathrm{MeV} / \mathrm{dis})=.2.87 \mathrm{E}+12 \mathrm{MeV} / \mathrm{sec}$;

Tc-99 4.88 E-3 Cix(3.7 E+10 dis. $\left.\mathrm{sec}^{-1} / \mathrm{Ci}\right) \times(0.294 \mathrm{MeV} / \mathrm{dis})=.5.30 \mathrm{E}+7 \mathrm{MeV} / \mathrm{sec}$.

Total
8.88 E+14 MeV/sec.
6.7 Convert the total energy deposition rate to heat rate:

```
8.88 E+14 MeV/sec x(3.6 E+3 sec/hour) x(1.0 E+6 eV /MeV )
    x(1.602 E-19 J/eV) x (1.0 BTU / 1.056 E+3 J) =
```


4.85 E+2 BTU/hour .

6.7 Provide confirmatory results utilizing ISOSHLD-PC (Reference 2.3).

The radionuclide profile from Step 6.4 may be employed in ISOSHLD-PC to confirm the approximate value of the total heat rate. However, this code does not allow the input of values for Ni-59 and Ni-63. Instead, the nickel isotopic Curies are "rolled into" the C-14 value with appropriate alterations for the differences in total disintergration energies. With those changes, the total heat rate was estimated to be $3.98 \mathrm{E}+2$ BTU/hour. The difference with the value in Step 6.6 is not significant given the differences in the nuclide disintegration energy libraries. The preferred library is that from Table 3-3; thus, the conservative value from Step 6.6 will be carried forward.
6.8 Determine the average heat rate in the GBEP and necessary distributions.

The data from Step 6.3 (above) can be used to determine the average heat rate contribution of the eighteen GBEP. The following fraction's denominator is the RVAl's total Curies comprised of the sum from Step 6.3 and that from Step 6.5 ...

```
4.85 E+2 BTU/hour x (1.80 E+3 Ci/ 1.48E+4Ci)}
```


5.9 E+1 BTU/hour.

Table 2-2 and Figure 2-1 of Reference 2.10 imply a gross distrubution of the GBEP activity in a narrow axial band above the annular components and completely within a 180° azimuthal distribution. The heat rate thus is concentrated completely on one half of the outer circular cross section of the RVAI.

This distribution is not uniform however. It can be conservatively assumed, per Section 4.5 , that the maximum point-source heat rate is half of the total heat rate. That peak point heat rate would thus be 2.95 E+1 BTU/hour.
6.9 The maximum dose rate is expected to occur directly opposite the location of the Top Guide Plate at the side (axially) of the RVAI. It is assumed that a thickness of 16.75 inches, i.e. 42.5 cm , spans the RV Insulation's outermost surface to the RVTS surface, along the entire axial side of the RVTS.

The following approach applies a proportionality based on the information-only Evaluation cited in Reference 2.4, where the RVAl's unshielded cumulative three meter dose rate is 4.53 rem/hour. Thus, from the Evaluation:

Component	Dose Rate with Build-up (R/hour)	Comment
RV Liner	0.0731	
RV Wall	1.465	Activity homogeneously distributed;
RV Insulation	1.809	
Top Guide Plate	0.345	Estimate; includes GBEP;
Thermal Shield	0.585	
Seal Weights	0.257	Three seal weights estimated.
Total	4.53	

6.10 Provide a general determination of the maximum dose rate on the surface of the proposed RVTS package. This amounts to hypothetically moving a dose rate detector from 300 cm (Step 6.9) to 42.5 cm from the side surface of the RVAI. A $1 / \mathrm{r}$ relationship will be assumed, with the radius, r, measured from the cylindrical source's center, as follows:

Distance, RVAI center to RVAI exterior	$\left(61.25^{\prime \prime}\right)$	$155.58 \mathrm{~cm} ;$
Distance, RVAI center to RVAI exterior +300 cm	$455.58 \mathrm{~cm} ;$	
Distance, RVAI center to RVAI exterior +42.5 cm	198.08 cm	

The dose rates at the RVTS package's side surface, i.e. 42.5 cm from the RVAl's side, are thus:
$4.53 \mathrm{R} /$ hour $\times(455.58 \mathrm{~cm} / 198.08 \mathrm{~cm})=1.04 \mathrm{E}+1 \mathrm{R} /$ hour .
6.11 General shielding considerations suggest a working thickness of 3 inches of the RVTS side thickness be constructed of steel to reduce the RVTS surface dose rate maximum. The transmission factors are taken from Reference 2.7, pgs. 149 (Attachment F) with the conservative assumption that all of the radiation is from Co-60.
$1.04 \mathrm{E}+1 \mathrm{R} /$ hour $\times 0.14=1.46 \mathrm{R} /$ hour;
...and with the remainder 13.73 inches filled with $50 \mathrm{lbs} / \mathrm{ft}^{3}$ grout,

$$
\text { 1.04 } \mathrm{E}+1 \mathrm{R} / \text { hour } \times(0.14) \times(0.118)=1.72 \mathrm{E}-1 \text { R/hour } .
$$

At two meters from the surface of this proposed RVTS package,
$1.72 \mathrm{E}-1 \mathrm{R} /$ hour $\mathrm{x}(198.08 \mathrm{~cm} / 355.58 \mathrm{~cm})=9.60 \mathrm{E}-2 \mathrm{R} /$ hour.

Client	BNFL, Inc.
Project	Big Rock Point Major Component Removal
Proj. No	$10525-020$

Prepared by G. Douglas Cole	Date
Reviewed by Roman Kahn	Date
Approved by William J. Johnson	Date

7.0 Summary and Conclusions

This calculation provides a total heat rate value of about $500 \mathrm{BTU} /$ hour. The contribution from the GBEP is about 12% of this total, or about $60 \mathrm{BTU} / \mathrm{hour}$. It is estimated that the GBEPs' heat rate, about $30 \mathrm{BTU} / \mathrm{hour}$, peaks on one side of the RVAl's exterior and at a point axially just above what would be the position of the Top Guide Plate. Additional thermodynamic properties may now be determined via appropriate modeling such that internal and surface temperatures, internal pressure, and insolence effects, among others, are estimated.

A calculation subsequent to this one will employ detailed computer modeling and sensitivity analyses to realistically determine shielding design details for the RVTS package. The general shielding aspects given in this calculation are instructive in their implications. With a suggested thickness of 3 inches of steel, symmetric both axially and radially, the proposed RVTS package is a massive structure probably sufficient to meet the package's contact regulatory limit but not sufficient for the package's 2-meter dose rates.

8.0 Attachments

A. Exhibit 2, "BRP Thermal Shield Characterization Survey Form - 2: Azimuthal Distribution", Report WMG9902, Revision 1, June 1999, Appendix A, 1 page;
B. Table 4-1, "Estimated Component Activity and NRC Classification Status", Report WMG-9902, Revision 1, June 1999; and "Comparison of Activities and Part 61 Classification at Big Rock Point as of September 1, 2002", Attachment A, Corrected Total Activity (Ci), Revised Characterization and Classification Results; WMG Report 8057, March 10, 2000; 2 pages;
C. Figures 2-2 and 2-3, Radial and Axial Thermal Flux Distributions, Report WMG-9902, Revision 1, June 1999, 2 pages;
D. Table 1-2, "Reactor Vessel Package Radioactivity and A_{2} Fractions", Trojan Nuclear Plant Safety Analysis Report, PGE-1076, Revision 1, July 1999, 1 page;
E. "PR-2 and PR-7 Series Specifications", DOSITEC, Inc., Sheet \#8201-0293, 1 page;
F. Gamma-ray Transmission Fractions for Concrete ($147 \mathrm{lb} / \mathrm{ft}^{3}$ density) and Iron; "Radiological Health Handbook", Revised Edition, January 1970, U.S. Department of Health, Education and Welfare, Public Health Service, Food and Drug Administration, Bureau of Radiological Health; 1 page;
G. Output: "Big Rock RPV+Internals Source", Program ISOSHLD-PC, 14 pages.

Exhibit 2
ERP Thermal Shield Characterization Survey Form -2: Azimuthal Distribution (Six measurements 18° apart with approximately 31 linear inches between survey locations)

Instrument Used: $P R-2 \quad S / N: 469$
Calibration Due: $11-3-99$ Standotilnches 6" (12" Bia)
Performed By: M. Shedleck

Data: \qquad 12-16-98

Reviewed By: \qquad Date: \qquad
Notes:
All readings taken at $6^{\prime \prime}$ distance using $12^{\prime \prime}$ diag. standoff.
(2) All readings have been corrected to coco using a. corr Factor of 1.2 S All readings pilisedes precenduot AP 9.72
(3) Readings Alg Rock Point RiPV and Internals Radiation Survey Plan

TABLE 4-1

Estimated Component Activity and NRC Classification Status

	Drawing Numbers	Wetted Surface Area (ft^{2})	Volume (ft	Weight .(bs)	Total Curies	$\begin{aligned} & \text { Co-60 } \\ & \text { Curies } \end{aligned}$	Part 61 Table 1 Fraction	Part 61 Table 2 Fraction
GTCC Material Top Guide	197 E 861	$2.05 \mathrm{E}+01$	$3.05 \mathrm{E}+00$	$1.53 \mathrm{E}+03$	4.84E+04	$2.12 \mathrm{E}+04$	8.56	11.87
LLRW Internals Steam Baffle	Subtotal. $794 E 830$	$2.05 \mathrm{E}+01$ $1.82 \mathrm{E}+02$	$\begin{aligned} & 3.05 E+00 \\ & 3.27 E+00 \end{aligned}$	$\begin{aligned} & 1.53 E+03 \\ & 1.64 E+03 \end{aligned}$	$\begin{aligned} & 4.84 \mathrm{E}+042 \\ & 1.09 \mathrm{E}+01 \end{aligned}$	$\begin{gathered} 2.12 E+04 \\ 4.95 E+00 \end{gathered}$	0.02	< 0.01
Sparger	$\begin{aligned} & \hline \text { M248 } \\ & \text { Sh 46-1, 41-2 } \end{aligned}$	$2.05 \mathrm{E}+01$	2.60E-01	1.30E+02	8.78E-01	3.97E-01	0.03	< 0.01
Top Guide Plate	197E118	$3.90 \mathrm{E}+1$	$1.63 \mathrm{E}+00$	$8.13 E+02$	$1.17 \mathrm{E}+03$	$5.38 \mathrm{E}+02$	0.41	0.54
Seal Housing	706 E 276	$3.00 \mathrm{E}+1$	$2.15 \mathrm{E}+00$	$1.07 \mathrm{E}+03$	$1.45 \mathrm{E}+02$	6.60E+01	0.04	0.05
Thermal Shield	197E853	4.14E+02	$2.59 \mathrm{E}+01$	$1.30 \mathrm{E}+04$	$7.45 \mathrm{E}+03$	$3.83 \mathrm{E}+03$	0.18	0.20
Thermal Shield Retainer (6 units)	237E956	1.39E+01	1.09E+00	$5.47 \mathrm{E}+02$	$1.18 \mathrm{E}+02$	$5.94 \mathrm{E}+01$	0.07	0.08
Retainer (6 units) Seal Weights (12 units)	$\begin{aligned} & \hline \text { 706E276; } \\ & \text { 104R175 } \end{aligned}$	$2.59 \mathrm{E}+02$	1.02E+01	5.08E+03	8.54E+02	5.89E+02	0.08	0.04
(12utron Windows	107C353-9	$4.48 \mathrm{E}+01$	$2.46 \mathrm{E}+00$	$1.23 \mathrm{E}+03$	1.37E+04	$6.92 \mathrm{E}+03$	2.09	2.67
Core SOupport Plate	$\begin{aligned} & \hline 762-D 2291 \\ & \text { E201-809-3 } \end{aligned}$	$1.53 \mathrm{E}+02$	$5.08 \mathrm{E}+00$	$2.54 \mathrm{E}+03$	1.4E-01	1.36E-01	0.01 .	< 0.01
Inlet Diffuser '2 units)	795E369	$2.44 \mathrm{E}+01$	3.97E-01	$1.98 \mathrm{E}+02$	2.24E-02	$2.18 \mathrm{E}-02$	0.02	<0.01
.nlet Baffle	795 E 421	$1.78 \mathrm{E}+02$	$4.64 \mathrm{E}+00$	2.32E+03	1.63E-01	1.59E-01	0.01	< 0.01
	Subtotal	$1.36 \mathrm{E}+03$	5.71E+01	$2.85 \mathrm{E}+04$	$2.35 \mathrm{E}+04$	1.20E+04		
Reactor Vessel Assembly Reactor Vessel	197E853, 104R175, F 230-791-2	7.69E+02	4.14E+02	$2.03 E+05$	$7.98 \mathrm{E}+02$	2.82E+02	<0.01	<0.01 <0.01
Reactor Vessel Insulation	795E369	NA	$2.59 \mathrm{E}+02$	$5.18 \mathrm{E}+03$	$5.21 \mathrm{E}+01$	$13.05 E+01$		01
.	Subtotal	7:69E+02	$6.73 \mathrm{E}+02$	$2.08 \mathrm{E}+05$	8.49E+02	$23.13 \mathrm{E}+02$		
Reactor and Internals	s TOTAL	2.15E+03	$7.33 \mathrm{E}+02$	$2.38 \mathrm{E}+05$	7.27E+04	$43.35 \mathrm{E}+04$		

Comparison of Activities and Pait 61 Classification at Big Rock Point as of September 1, 2002
(Note Results Include Surface Contaminants)

Attachment
Page 2 of 2 , FINAL
Revision 1

BRP-MWP-1.3.02 - Work Steps for Preparation of Reactor Vessel	Project Number: 03-5339
	Revision Number: 0
Big Rock Point Major Component Removal Project Charlevoix, MI	Page 5 of 11
	Issue Date:

6.1.3 Radiological Hazards

- Contaminated Surfaces
- Activated material in the reactor vessel and surroundings

6.2 Limitations

6.2.1 Access to reactor vessel nozzles can only be accomplished after the following components are removed: refueling tank, aggregate retainer, block walls, some mirror insulation, some reactor vessel supports, some ventilation duct work and asbestos insulation.
6.2.2 No load shall be suspended above the Spent Fuel Pool.
6.2.3 Heavy loads shall follow the designated Safe Load Path specified in reference 3.8.

7.0 PREREQUISITES

7.1 The WMC is ready to accept materials from this MWP
7.2 Asbestos insulation has been removed from piping up to walls.
7.3 All systems having components to be removed have been declared "Out of service" and "Available for decommissioning."
7.4 During the pre-job briefing the Handling and Lay down Instructions have been read and understood.
7.5 Hot Work Permits have been issued for this MWP.
7.6 Reactor Vessel grid bars and neutron windows have been removed.
7.7 Reactor Vessel and Refueling Tank have been drained.
7.8 Reference 3.10 is field complete.
7.9 Plant stack HEPA filtering system is in operation.
7.10 All Prerequisites have been completed.

Calculation No.: N-10525-020-0001
Revision 1
Attachment D
Page 1 of 1, FINAL

Table 1-2
Reactor Vessel Package Radiosctivity and $A_{\mathbf{2}}$ Fractions

Nuclide	Activity		A 2 Limit (Curies)	Frection A_{3} Value
	Surface Contamination (Curies)	Activation (Curies)		
$\mathrm{H}-3$	8.11E-02	$6.55 E+02$	1080	6.07E-01
C-14	1.15E-01	$2.18 \mathrm{E}+02$	54.1	$4.03 \mathrm{E}+\infty 0$
Sb-125	$1.67 E+00$	4.04E-01	24.3	8.53E-02
Ce-144	4.64E-02:		5.41	8.58E-03
Mn-54	8.57E-02	$2.16 \mathrm{E}+03$	27.0	$8.00 \mathrm{E}+01$
Eu-152		$2.54 \mathrm{E}+01$	24.3	$1.05 \mathrm{E}+00$
Fe-55	2.77E+01	$6.97 \mathrm{E}+05$	1080	6.45E+02
Co-60	$9.92 E+01$	$1.15 \mathrm{E}+06$	10.8	$1.06 \mathrm{E}+05$
Ni-S9		$9.53 \mathrm{E}+02$	1080	8.82E-01
$\mathrm{Ni}-63$	$2.00 \mathrm{E}+01$	$1.57 \mathrm{E}+05$	811	$1.94 E+02$
$\mathrm{Nb}-94$		$3.29 \mathrm{E}+00$	16.2	2.03E-01
Sr-90	$9.24 \mathrm{E}-01$		2.7	$3.42 \mathrm{E}-01$
Tc.99		$7.66 \mathrm{E}-01$	24.3	2.91E-02
Pu-238	8.35E-02		0.00541	$1.54 \mathrm{E}+01$
Pu-239/240	9.33E-02		0.00541	$1.72 \mathrm{E}+01$
Pu-241	$5.07 \mathrm{E}+00$.	0.27	$1.88 \mathrm{E}+01$
Pu-242	4.70E-04		0.00541	8.69E-02
Cm-242	1.56E-05		0.27	S.78E-05
Cm-243	3.60E-02		0.00811	$4.44 E+00$
Cm-244	3.41E-02		0.0108	$3.16 \mathrm{E}+00$
Am-241	1.10E-01		0.00541	$2.03 \mathrm{E}+01$
Toral ${ }^{2}$	155.2	$2.01 \mathrm{E}+06$		1.08E+05

Notes: 1. Activity values have been decayed to 11/01/97.
2. Total does not include the contribution from U-234 ($7.02 \mathrm{E}-03 \mathrm{Ci}$ surface contamination and no activation), which is negligible.

PR-7 Underwater Montor

GENERAL DESCRIPTION

The Dositec Portable Remore Monitor PR-2 and PR-7 Series (PR-2L, PR-2M, PR-2H. PR-2XH and PR-7) are designed forrenote underwater survey applicauors: in garmma rachiation fields up to 5,500 , $5,000,50,000$ and 50,000 R/hr, respectively. They can be uscol at distances up to 2000 fect; the Underwater Probe can - used lo a depth of 1.50 feet.
. Weth of the PR-2 and PR-7 Series Monitors Consists of an Underwater Probe, a Meter Unit, and a Cable. The PR-2 and PR-7 Series Monitors employ energycompensated solici-statedetoctors, which do not require high voltage. Power is supplied by a 9 volt Alkaline battery included.

Each of the PR-2 and PR-7 Series Monitors has an Aralog Meter, whicla indicates sadiation dose rates in three linemr ranges for PR-2 and scveu linear ranges for PR-7.

Calitration of the PR-2 and PR-7 Series Monitor is performed by simple adjustment of the potentionacters on the merer woit. Calibration is independent of cable length, up to 500 feet for PR-2 and 2000 feet for PR-7. For lunger distances, reculibration is required.

PR-2 and PR-7 Series Specifications

DETECTON

Detector Type	Energy-compensated solid-state CaTe or Si-Detector
Radiation	X and Gamma Ray
Encrgy Respmese	$\pm 30 \%$ from 80 Kev to 3 Mev .
Dose Rate Range	
Mode J'IR-2L	0-0.05, 0.0.5, and 0-5 R/mr
Model PR-2M	0-5, 0-50, sand 0-500 R.hr
Mudel PR-2H	0-50, 0-500, and 0.5,000 R / hr
Madelpr-7	$0-11.05,0-0.5,0-5,0-50,0-500,0-5,000$ and 0-50,000 R/mt
Accuracy	$\pm 15 \%$ for all ranges from 20% to 80% orlinlsinke, calibxated with Cs 137

UNDERWATER PROBE

Depth Capability Housing
Detector L.ocution
Connector
Dimensiuns
Weight

METER UNTT

Display

Rexponnte Time
Buttery.
Dimension(approx.)
PR-2
PR-7
Weight
Callibration

CABLE

Up to $150 \mathrm{n}(45 \mathrm{~m})$
Nickel-plated Aluminum; 0.5 " Wall, 0.2^{2} bottom
10 mra from bottom center
Quick-comnect to Cable
$2.375^{* \prime}$ dia. $\times 5^{\prime \prime}$ lengdh (60 mm dia. $\times 127 \mathrm{~mm}$ length) 1.5 ths (0.7 kg)

Analog Mater
5 to 20 scuonds, 0 to 90% of final reading one 9 volt Alkaline battery with 100 hosurs lifs
$2.50^{\prime \prime} \times 4.50^{\prime \prime} \times 1.75^{\prime \prime}(65 \mathrm{~mm} \times 114 \mathrm{~mm} \times 45 \mathrm{~mm})$
$2.62^{\prime \prime} \times 4.75^{\prime \prime} \times 1.50^{\prime \prime}(66 \mathrm{~mm} \times 121 \mathrm{~mm} \times 38 \mathrm{~mm})$
$1 \mathrm{lb}(0.5 \mathrm{~kg})$.
Potentiometer adjustment per range; indcpendent of cable length. up to 500 ft for PR-2, and up to 2000 feet for PR-7
$50 \mathrm{ft}(1.5 \mathrm{~m}), 2.5 \mathrm{lbs}(1.1 \mathrm{~kg})$ standard; up to $2000 \mathrm{nf}(600 \mathrm{~m})$ available

Transmission through concrete (density $1.47 \mathrm{lb} / \mathrm{ft}^{3}$) of gamma rays from radium [14]; cobalt 60 , cesium 137 , gold 198 [7]; iridium 192 [15].

Transmission through iron of gamma rays from radium [14]; cobalt 60, cesium 137 [7]; iridium 192 [15].

```
Program : ISOSHLD-PC
        Page : 1
Number : 03.7.310-1.0 0
    Date : 11/21/2000
Created : 11:35:42 04/27/1999
    Time : 16:02:31.02
*****************************************************
*
* ISOSHLD-PC
* Big Rock RPV+Internals, DIT Run1;
* "Big Rock RPV+Internals Source"
*
*********************************************************
* M1. Source Mode MODE=2
    2
*
* A1. Title
    Big Rock RPV+Internals: Reactor Vessel Assembly and Internals Decay Heat Calcul
*
* B1. Control option NEXT
* NEXT
    1
*
* Cla and C1b, Source strength parameters and
* ISOGROUP Nobles Halogens Allothers NSKIP
    9 452, 496.85 473, 15.85 474, 5608.1 481, 8000.0 141,0.0050
    451,4.83 111,0.024 269, 0.003 408, 0.187
```



```
*
* D1. Material composition data
* NCMP MATS
    1 1
*
* Material # Partial Densities
    26 7.86
*
* E1. Dose Rate Calculation Parameters
* ISPEC NBRS NCON NEPS
```

3 1 1 2 0
*

* E2.
* LINESP NTERP OPTION KLEEN IHEAT
1 2 0 1 1
*
* E3a. Geometry data
* IGEOM NSHLD JBUF (comp\#, unit, T)
0 1 20 1,3, 3.0
*
* E3b. Additional geometry data
* (unit,SLTH)
1,185.0
*
* E3c
0.89
*
* F1. Dose point location
Program : ISOSHLD-PC
Page : 2
Number : 03.7.310-1.0 0
Date : 11/21/2000
Created : 11:35:42 04/27/1999
Time : 16:02:31.02
 * (unit, X) (unit, DELR)
1,92.5 1,7.63
 *
 * END of Isoshld data
7
Program : ISOSHLD-PC
Page : 3
Number : 03.7.310-1.0 0
Date : 11/21/2000
Time : 16:02:31.24


```
                                    Sargent & Lundy Engineers
                            Chicago, Illinois
                    MODE = 2 (1-2-3-4) = (RIBD Source-Curie Source-Photons/sec Source-Curie Source fro
m File)
\square
    Program : ISOSHLD-PC
        Page : 4
    Number : 03.7.310-1.0 0
        Date : 11/21/2000
    Created : 11:35:42 04/27/1999
        Time : 16:02:31.24
t Calcul
                    Isotope Selection Data
                    A Scale Factor of 1.000E+00 has been Applied to All Isotope Activities
                                    Isotope Activities(Curies)
                            NB 94 TC 99 SB 125 EU 152 H
                2.400E-02 5.000E-03 3.000E-03 1.870E-01 4.830E+00 4.969E+02 1.585E+01 5.608E+03 8.000E+0
3
Program : ISOSHLD-PC
    Page : 5
    Number : 03.7.310-1.0 0
    Date : 11/21/2000
    Created : 11:35:42 04/27/1999
        Time : 16:02:31.24
```


Calculation No.: N-10525-020-0001
 Revision 1
 Attachment G
 Page 4 of 14

Big Rock RPV+Internals: Reactor Vessel Assembly and Internals Decay Heat Calc Page 4

Shield Composition Data

Calculation No.: N-10525-020-0001) Attachment \mathbf{G} Page 5 of 14

$00 E+00$	$\begin{gathered} 0 . \cup U O E+00 \\ 10 \end{gathered}$	$\begin{aligned} & 0.000 \mathrm{E}+00 \\ & 2.000 \mathrm{E}-01 \end{aligned}$	$1.085 \mathrm{E}+00$	$0.000 E+00$	$0.000 \mathrm{E}+00$	0.0				
OOE + 00	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$					0.000F+00	$0.000 E+00$	$0.000 \mathrm{E}+00$	0.0
	11	$3.000 \mathrm{E}-01$	$8.355 \mathrm{E}-01$	$0.000 E+00$	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	0.000E+00	$0.000 \mathrm{t}+00$	0.0
OOE+00	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$								
	12	4.000E-01	7.231E-01	$0.000 \mathrm{E}+00$	0.0					
OOE+00	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$								
	13	5.000E-01	$6.513 \mathrm{E}-01$	$0.000 \mathrm{E}+00$	$0.000 E+00$	0.0				
OOE +00	$0.000 \mathrm{E}+00$	$0.000 E+00$								
	14	6.000E-01	5.985E-01	$0.000 \mathrm{E}+00$	$0.000 E+00$	0.0				
OOE +00	$0.000 E+00$	$0.000 \mathrm{E}+00$								
	15	8.000E-01	5.225E-01	$0.000 \mathrm{E}+00$	$0.000 E+00$	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	0.0
$00 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$								0
	16	$1.000 \mathrm{E}+00$	4.686E-01	$0.000 \mathrm{E}+00$	0.0					
OOE +00	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$								
	17	1.500E+00	$3.827 \mathrm{E}-01$	$0.000 \mathrm{E}+00$	0.0					
00E+00	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$								
	18	$2.000 \mathrm{E}+00$	$3.345 \mathrm{E}-01$	$0.000 \mathrm{E}+00$	0.0					
00E+00	$0.000 E+00$	$0.000 \mathrm{E}+00$								
	19	$3.000 \mathrm{E}+00$	$2.843 \mathrm{E}-01$	$0.000 \mathrm{E}+00$	0.0					
00E+00	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$								
	20	$4.000 \mathrm{E}+00$	$2.601 \mathrm{E}-01$	$0.000 \mathrm{E}+00$	0.0					
OOE+00	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$								
	21	$5.000 \mathrm{E}+00$	$2.471 \mathrm{E}-01$	$0.000 E+00$	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	$0.000 E+00$	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	0.0
OOE+00	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$								
	22	$6.000 \mathrm{E}+00$	$2.401 \mathrm{E}-01$	$0.000 \mathrm{E}+00$	0.0					
00E+00	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$								
	23	$8.000 \mathrm{E}+00$	$2.349 E-01$	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	$0.000 E+00$	$0.000 \mathrm{E}+00$	0.0
O0E+00	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$								
	24	$1.000 \mathrm{E}+01$	$2.352 \mathrm{E}-01$	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	$0.000 E+00$	$0.000 \mathrm{E}+00$	0.0
$00 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$								
	25	1.500E+01	$2.430 \mathrm{E}-01$	$0.000 \mathrm{E}+00$	0.0					
$00 \mathrm{E}+00$	$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$								
\square										
Progra	m : ISOSHI	LD-PC								
	Page :	6								
Number	: 03.7.31	310-1.0 0								
	Date : 11	1/21/2000								
Create	d : 11:35	: 42 04/27								
	Time : 1	$6: 02: 31.29$								
								Iculation No.: N vision 1	J-10525-020-000	
								tachment G		
					ge 6			ge 6 of 14		

Exposure Buildup Factors for Water


```
            Ou it
```



```
95E+02 5.43E+02 6.90E+02
    .800 1.53E+00 2.21E+00
15E+02 2.85E+02 3.52E+02
    1.000 1.49E+00 2.10E+00
39E+02 1.79E+02 2.17E+02
        1.500 1.44E+00 1.94E+00
87E+01 8.49E+01 1.01E+02
        2.000 1.40E+00 1.84E+00
52E+01 5.45E+01 6.34E+01
        3.000 1.35E+00 1.71E+00
72E+01 3.19E+01 3.64E+01
        4.000 1.31E+00 1.62E+00
96E+01 2.27E+01 2.59E+01
        5.000 1.28E+00 1.55E+00
56E+01 1.79E+01 2.03E+01
        6.000 1.26E+00 1.51E+00
34E+01 1.50E+01 1.65E+01
        8.000 1.22E+00 1.42E+00
04E+01 1.18E+01 1.34E+01
        10.000 1.19E+00 1.36E+00
78E+00 9.94E+00 1.13E+01
        15.000 1.14E+00 1.27E+00
53E+00 7.23E+00 7.95E+00
\square
    Program : ISOSHLD-PC
        Page : 7
    Number : 03.7.310-1.0 0
        Date : 11/21/2000
    Created : 11:35:42 04/27/1999
            Time : 16:02:32.01
```

Gamma Immersion Calculation Calcul

```
                            1.98E+00
                            2.54E+00
            2.85E+00
            2.59E+00
        3.59E+00
            4.57E+00
            6.02E+00
            8.46E+00
                            1.09E+01 1.33E+01
```

Ou it
$7.38 E+00$$9.46 E+00$1.15E+01 1.$2.42 \mathrm{E}+00$$6.40 E+00$$7.63 E+00$$3.84 E+00$E+00$3.03 E+00$$3.94 \mathrm{E}+00$$4.85 E+00$$5.74 \mathrm{E}+006$$2.11 E+00$$2.49 \mathrm{E}+00$2.1.6.4.2.1.1.

$$
3.27 \mathrm{E}+00
$$

$$
4.10 E+00
$$

$$
5.33 E+00
$$

$$
7.38 \mathrm{E}+00
$$

$$
1
$$

$$
2.83 \mathrm{E}+00 \quad 3.47 \mathrm{E}+00
$$

$$
4.41 E+00
$$

$$
5.95 \mathrm{E}+00
$$

$$
7.49 F+00
$$

$$
7.49 E+00
$$

$$
8.98 \mathrm{E}+00 \quad 1
$$

$$
5.12 \mathrm{E}+00
$$

$$
8
$$

$$
6
$$

Cylindrical Source Cylindrical Shields $0 \mathrm{E}+01$ (cm)

```
Distance to Detector \(7.620 \mathrm{E}+00(\mathrm{~cm})\) Detector Elevation \(=9.25\) Length \(=\)
\(1.850 \mathrm{E}+02(\mathrm{~cm})\)
```

```
5E+04 (cc)
```

5E+04 (cc)
Calculation No.: N-10525-020-0001

	Buildup Data for		with Ef	ctive Atom	c Number of	0 Used.		
.	Shield Number Thickness (cm) Composition	7.620	1 +00 1					
		Energy	Energy	Influx	Carbon Factor	Dose/Photon	Number of	Converge
nce		\#	(MeV)	($\mathrm{MeV} / \mathrm{cm} 2)$	$(\mathrm{mrad} / \mathrm{hr}) /$	(mrad/hr)/	Integration	Criteri
on					($\mathrm{MeV} / \mathrm{cm} 2-\mathrm{sec}$)	(photon/sec)	Points	EPSI
L								
		1	1.500E-02	$0.000 \mathrm{E}+00$	3.099E-02	$0.000 \mathrm{E}+00$	27	5.000 E
-02		2	$2.000 \mathrm{E}-02$	$4.041 \mathrm{E}-10$	1.198E-02	$4.841 \mathrm{E}-12$	9983	5.000 E
-02		3	$3.000 \mathrm{E}-02$	$1.617 \mathrm{E}-08$	$3.433 \mathrm{E}-03$	5.552E-11	903	5.000 E
-02		4	$4.000 \mathrm{E}-02$	$7.909 \mathrm{E}-08$	$1.768 \mathrm{E}-03$	$1.398 \mathrm{E}-10$	1107	5.000 E
-02		5	$5.000 \mathrm{E}-02$	$2.606 \mathrm{E}-07$	1.348E-03	$3.513 \mathrm{E}-10$	667	5.000 E
-02.		6	$6.000 \mathrm{E}-02$	$6.256 \mathrm{E}-07$	$1.221 \mathrm{E}-03$	$7.638 \mathrm{E}-10$	715	5.000 E
-02		7	$8.000 \mathrm{E}-02$	$1.919 \mathrm{E}-06$	$1.181 \mathrm{E}-03$	2.267E-09	675	5.000 E
-02		8	$1.000 \mathrm{E}-01$	3.728E-06	$1.244 \mathrm{E}-03$	4.638E-09	307	5.000 E
-02		9	$1.500 \mathrm{E}-01$	$8.160 \mathrm{E}-06$	$1.417 \mathrm{E}-03$	1.156E-08	3351	5.000 E
-03		10	$2.000 \mathrm{E}-01$	$1.213 \mathrm{E}-05$	$1.532 \mathrm{E}-03$	$1.859 \mathrm{E}-08$	2811	5.000 E
-03		11	3.000E-01	$1.833 \mathrm{E}-05$	1.659E-03	3.042E-08	2611	5.000 E
-03		12	4.000E-01	$2.428 \mathrm{E}-05$	$1.705 \mathrm{E}-03$	4.140E-08	2035	5.000 E
-03		13	$5.000 \mathrm{E}-01$	$3.030 \mathrm{E}-05$	$1.716 \mathrm{E}-03$	$5.199 \mathrm{E}-08$	999	5.000 E
-03		14	$6.000 \mathrm{E}-01$	$3.641 \mathrm{E}-05$	$1.711 \mathrm{E}-03$	6.230. ${ }^{\text {n }}$		${ }^{\text {r }}$ n $\mathrm{nnm}^{\text {mm }}$
-03		14	$6.000 \mathrm{E}-01$	Page	1.711 ± 03		lation No.: N -10525 ion 1 ment G 9 of 14	5-020-0001

15	8.000E-01	$4.937 \mathrm{E}_{-0}^{\text {out }}$	1.670E-03	8.244E-08	d	5.000 E
16	$1.000 \mathrm{E}+00$	$6.310 \mathrm{E}-05$	1.613E-03	1.018E-07	667	5.000 E
17	$1.500 \mathrm{E}+00$	$1.008 \mathrm{E}-04$	1.480E-03	$1.491 \mathrm{E}-07$	619	5.000 E
18	$2.000 \mathrm{E}+00$	1.407E-04	1.371E-03	1.929E-07	619	5.000 E
19	$3.000 \mathrm{E}+00$	2.214E-04	$1.210 \mathrm{E}-03$	$2.679 \mathrm{E}-07$	767	5.000 E
20	$4.000 \mathrm{E}+00$	2.995E-04	1.100E-03	$3.294 \mathrm{E}-07$	827	5.000 E
21	$5.000 \mathrm{E}+00$	$3.737 \mathrm{E}-04$	1.025E-03	$3.830 \mathrm{E}-07$	923	5.000 E
22	$6.000 \mathrm{E}+00$	4.453E-04	$9.734 \mathrm{E}-04$	4.334E-07	939	5.000E
23	$8.000 \mathrm{E}+00$	5.736E-04	8.986E-04	$5.154 \mathrm{E}-07$	939	5.000E
24	$1.000 \mathrm{E}+01$	6.902E-04	8.467E-04	$5.844 \mathrm{E}-07$	1043	5.000 E
25	$1.500 \mathrm{E}+01$	9.501E-04	7.601E-04	$7.222 \mathrm{E}-07$	1087	5.000 E

Aitken iterated interpolation is done using 2 points.
Dose rates from decay gammas are calculated using discrete spectral energies.

\square

Program : ISOSHLD-PC
Page : 8^{8}
Number : 03.7.310-1.0 0
Date : 11/21/2000
Created : 11:35:42 04/27/1999
Time : 16:02:32.01
t Calcul
Big Rock RPV+Internals: Reactor Vessel Assembly and Internals Decay Hea

Output

PhotonGroup	utp				Dose/Phot (mrad/hr)/	
	Average Energy	Decay Gammas	Bremsstrahlung Gammas	Total Gammas		
\#	(MeV)	(photons/sec)	(photons/sec)	(photons/sec)	(photons/sec)	(mrad
1	1.500E-02	$5.871 \mathrm{E}+13$	$3.729 \mathrm{E}+12$	$6.244 \mathrm{E}+13$	$0.000 \mathrm{E}+00$	0.000
2	$2.500 \mathrm{E}-02$	$4.068 \mathrm{E}+07$	$5.682 \mathrm{E}+11$	$5.682 \mathrm{E}+11$	$1.854 \mathrm{E}-11$	1.053
3	3.500E-02	$1.455 \mathrm{E}+09$	$3.481 \mathrm{E}+11$	$3.495 \mathrm{E}+11$	$9.107 \mathrm{E}-11$	3.189
4	4.500E-02	$3.677 \mathrm{E}+09$	$2.049 \mathrm{E}+11$	$2.086 \mathrm{E}+11$	$2.274 \mathrm{E}-10$	4.721
5	$5.500 \mathrm{E}-02$	$0.000 \mathrm{E}+00$	$1.290 \mathrm{E}+11$	$1.290 \mathrm{E}+11$	5.272E-10	6.800
6	6.500E-02	$0.000 \mathrm{E}+00$	$9.160 \mathrm{E}+10$	$9.160 \mathrm{E}+10$	1.034E-09	9.469
7	$7.500 \mathrm{E}-02$	$0.000 \mathrm{E}+00$	$6.277 \mathrm{E}+10$	$6.277 \mathrm{E}+10$	$1.776 \mathrm{E}-09$	1.115
8	8.500E-02	$1.073 \mathrm{E}+03$	$4.470 \mathrm{E}+10$	$4.470 \mathrm{E}+10$	$2.753 \mathrm{E}-09$	1.231
9	9.500E-02	$0.000 \mathrm{E}+00$	$1.060 \mathrm{E}+11$	$1.060 \mathrm{E}+11$	3.934E-09	4.170
10	$1.500 \mathrm{E}-01$	$1.975 \mathrm{E}+09$	$4.320 \mathrm{E}+10$	$4.518 \mathrm{E}+10$	1.156E-08	5.139
11	$2.500 \mathrm{E}-01$	$5.488 \mathrm{E}+08$	$8.985 \mathrm{E}+08$	$1.447 \mathrm{E}+09$	$2.437 \mathrm{E}-08$	3.511
12	$3.500 \mathrm{E}-01$	$1.903 \mathrm{E}+09$	$1.332 \mathrm{E}+06$	$1.904 \mathrm{E}+09$	3.588E-08	6.727
13	$4.750 \mathrm{E}-01$	$4.592 \mathrm{E}+08$	$6.641 \mathrm{E}+05$	$4.598 \mathrm{E}+08$	4.934E-08	2.079
14	$6.500 \mathrm{E}-01$	4.952E+10	$2.364 \mathrm{E}+05$	4.952E+10	$6.735 \mathrm{E}-08$	3.553
15	$8.250 \mathrm{E}-01$	$5.884 \mathrm{E}+11$	7.119E+04	$5.884 \mathrm{E}+11$	8.487E-08	5.050
16	$1.000 \mathrm{E}+00$	$1.921 \mathrm{E}+09$	$1.988 \mathrm{E}+04$	1.921E+09	$1.018 \mathrm{E}-07$	1.985
17	$1.225 \mathrm{E}+00$	$5.920 \mathrm{E}+14$	1.892E+03	$5.920 \mathrm{E}+14$	$1.232 \mathrm{E}-07$	7.449
18	$1.475 \mathrm{E}+00$	$1.487 \mathrm{E}+09$ Page	$11.0 .000 \mathrm{E}+00$	1.487E.	ulation No.: $\mathrm{N}-10525$ sion 1 chment G 11 of 14	$20-0001$

Output

```
E+02
E+00
E+00
E+00
E+00
E+00
E+00
E+00
E+00
E+OO
E+07
1 9
700E+00 0.000E+00
0.000E+00 0.000E+00
1.668\textrm{E}-(}00.00
\begin{tabular}{lllllll}
20 & \(1.900 \mathrm{E}+00\) & \(0.000 \mathrm{E}+00\) & \(0.000 \mathrm{E}+00\) & \(0.000 \mathrm{E}+00\) & \(1.842 \mathrm{E}-07\) & 0.000 \\
21 & \(2.100 \mathrm{E}+00\) & \(0.000 \mathrm{E}+00\) & \(0.000 \mathrm{E}+00\) & \(0.000 \mathrm{E}+00\) & \(2.006 \mathrm{E}-07\) & 0.000 \\
22 & \(2.300 \mathrm{E}+00\) & \(0.000 \mathrm{E}+00\) & \(0.000 \mathrm{E}+00\) & \(0.000 \mathrm{E}+00\) & \(2.160 \mathrm{E}-07\) & 0.000 \\
23 & \(2.500 \mathrm{E}+00\) & \(0.000 \mathrm{E}+00\) & \(0.000 \mathrm{E}+00\) & \(0.000 \mathrm{E}+00\) & \(2.311 \mathrm{E}-07\) & 0.000 \\
24 & \(2.700 \mathrm{E}+00\) & \(0.000 \mathrm{E}+00\) & \(0.000 \mathrm{E}+00\) & \(0.000 \mathrm{E}+00\) & \(2.460 \mathrm{E}-07\) & 0.000 \\
25 & \(3.000 \mathrm{E}+00\) & \(0.000 \mathrm{E}+00\) & \(0.000 \mathrm{E}+00\) & \(0.000 \mathrm{E}+00\) & \(2.679 \mathrm{E}-07\) & 0.000 \\
26 & \(6.143 \mathrm{E}+00\) & \(0.000 \mathrm{E}+00\) & \(0.000 \mathrm{E}+00\) & \(0.000 \mathrm{E}+00\) & \(4.396 \mathrm{E}-07\) & 0.000 \\
27 & \(7.112 \mathrm{E}+00\) & \(0.000 \mathrm{E}+00\) & \(0.000 \mathrm{E}+00\) & \(0.000 \mathrm{E}+00\) & \(4.802 \mathrm{E}-07\) & 0.000
\end{tabular}
6.514E+14
    5.328E+12
    6.567E+14
    7.454
Elapsed time for this calculation is 7.700E-01 (seconds).
\square
    Program : ISOSHLD-PC
        Page : 9
    Number : 03.7.310-1.0 0
    Date : 11/21/2000
    Created : 11:35:42 04/27/1999
            Time : 16:02:32.01
        Heat Rate Calculation Big Rock RPV+Internals: Reactor Vessel Assembly and Internals Decay Heat Calcu
l
Total Radiation Heating in the System
    Units Assume Total Curie Inventory Input
    No Shields, No Geometry. Just Heating.
\begin{tabular}{cccc} 
Group & Total Group & Group & Total Group
\end{tabular} \begin{tabular}{c} 
Group \\
System
\end{tabular}
```

:Rate J/hr 3E-01 1E-03 2E-03 5E-03 OE-03 $7 \mathrm{E}-03$ 5E-03 8E-03 8E-03 7E-03 9E-04 6E-04 5E-04

1E-02
6E-01
1E-03
$7 E+02$ OE-03

Production Rate

Photons/sec
$5.871 \mathrm{E}+13$
$4.068 \mathrm{E}+07$
$1.455 \mathrm{E}+09$
$3.677 \mathrm{E}+09$
$0.000 \mathrm{E}+00$
$0.000 \mathrm{E}+00$
$0.000 \mathrm{E}+00$
$1.073 \mathrm{E}+03$
$0.000 \mathrm{E}+00$
1.975E+09
$5.488 \mathrm{E}+08$
$1.903 \mathrm{E}+09$
4.592E+08
4.952E+10
$5.884 \mathrm{E}+11$
1.921E+09
$5.920 \mathrm{E}+14$
1.487E+09
$0.000 \mathrm{E}+00$

Output
Bremsstrahlun

Photons/sec	Betas/sec
$3.729 \mathrm{E}+12$	$0.000 \mathrm{E}+00$
$5.682 \mathrm{E}+11$	$0.000 \mathrm{E}+00$
$3.481 \mathrm{E}+11$	$0.000 \mathrm{E}+00$
$2.049 \mathrm{E}+11$	$0.000 \mathrm{E}+00$
$1.290 \mathrm{E}+11$	$0.000 \mathrm{E}+00$
$9.160 \mathrm{E}+10$	$0.000 \mathrm{E}+00$
$6.277 \mathrm{E}+10$	$0.000 \mathrm{E}+00$
$4.470 \mathrm{E}+10$	$0.000 \mathrm{E}+00$
$1.060 \mathrm{E}+11$	$0.000 \mathrm{E}+00$
$4.320 \mathrm{E}+10$	$0.000 \mathrm{E}+00$
$8.985 \mathrm{E}+08$	$0.000 \mathrm{E}+00$
$1.332 \mathrm{E}+06$	$0.000 \mathrm{E}+00$
$6.641 \mathrm{E}+05$	$0.000 \mathrm{E}+00$
$2.364 \mathrm{E}+05$	$0.000 \mathrm{E}+00$
$7.119 \mathrm{E}+04$	$0.000 \mathrm{E}+00$
$1.988 \mathrm{E}+04$	$0.000 \mathrm{E}+00$
$1.892 \mathrm{E}+03$	$0.000 \mathrm{E}+00$
$0.000 \mathrm{E}+00$	$0.000 \mathrm{E}+00$

Production Rate Average Energy (Hea
MeV

Betas/sec	MeV	BI
$0.000 \mathrm{E}+00$	$1.500 \mathrm{E}-02$	5.12
$0.000 \mathrm{E}+00$	$2.500 \mathrm{E}-02$	7.77
$0.000 \mathrm{E}+00$	$3.500 \mathrm{E}-02$	6.69
$0.000 \mathrm{E}+00$	$4.500 \mathrm{E}-02$	5.13
$0.000 \mathrm{E}+00$	$5.500 \mathrm{E}-02$	3.88
$0.000 \mathrm{E}+00$	$6.500 \mathrm{E}-02$	3.25
$0.000 \mathrm{E}+00$	$7.500 \mathrm{E}-02$	2.57
$0.000 \mathrm{E}+00$	$8.500 \mathrm{E}-02$	2.07
$0.000 \mathrm{E}+00$	$9.500 \mathrm{E}-02$	5.50
$0.000 \mathrm{E}+00$	$1.500 \mathrm{E}-01$	3.70
$0.000 \mathrm{E}+00$	$2.500 \mathrm{E}-01$	1.97
$0.000 \mathrm{E}+00$	$3.500 \mathrm{E}-01$	3.64
$0.000 \mathrm{E}+00$	$4.750 \mathrm{E}-01$	1.19
$0.000 \mathrm{E}+00$	$6.500 \mathrm{E}-01$	1.76
$0.000 \mathrm{E}+00$	$8.250 \mathrm{E}-01$	2.65
$0.000 \mathrm{E}+00$	$1.000 \mathrm{E}+00$	1.05
$0.000 \mathrm{E}+00$	$1.225 \mathrm{E}+00$	3.96
$0.000 \mathrm{E}+00$	$1.475 \mathrm{E}+00$	200
$0.000 \mathrm{E}+00$		2.700

Calculation No.: $\mathrm{N}-10525-020-0001$

Revision 1

Attachment G
Page 13 of 14

* The reviewer's signature indicates compliance with S\&L procedure SOP-0402 and the verification of, as a minimum, the following items: correctness of mathematics for manual calculations, appropriateness of input data, appropriateness of assumptions, and appropriateness of the calculation method.

NOTE: PRINT AND SIGN IN THE SIGNATURE AREAS

TABLE OF CONTENTS

DESCRIPTION

PAGENO.

Issue Summary

1

Table of Contents 2
1.0 Purpose and Scope

3-4
2.0 Design Inputs $5-8$
3.0 Assumptions

8-9
4.0 Methodology and Acceptance Criteria 10-22
5.0 Calculations 23-28
6.0 Results

29-30
7.0 References

31-32
$\begin{array}{ll}\text { Figures } & 33-38 \\ \text { Tables } & 39-53\end{array}$
Attachments
A HEATING 7.2 f Input/Output Files and Audit Trail Listing
A1-A3
B Microsoft Excel Spreadsheet Cell Formulas for Tables 2 and 3
C RVTS Drawing
D Correspondence from Carboline Company

B1-B3
C1-C4
D1

1.0 Purpose and Scope

One of the tasks associated with the decommissioning of Big Rock Point Nuclear Plant is removal and transportation of the Reactor Vessel to its final disposal site. A Reactor Vessel Transport System (RVTS) has been specifically designed for transportation and disposal of the Big Rock Point Nuclear Plant Reactor Vessel. The purpose of this calculation is to determine the thermal response of the RVTS under design conditions prescribed in Title 10 of the Code of Federal Regulations, Part 71, "Packaging and Transportation of Radioactive Materials". The RVTS thermal response will be evaluated to ensure that compliance with 10 CFR 71 is met.

Package approval standards are identified in 10 CFR 71 Subpart E. Demonstration of compliance with these standards is specified in 10 CFR 71.41 (a), repeated below.
"The effects on a package of the tests specified in §71.71 ("Normal conditions of transport"), and the tests specified in $\S 71.73$ ("Hypothetical accident conditions"), and $\$ 71.61$ (Special requirements for irradiated nuclear fuel shipments"), must be evaluated by subjecting a specimen or scale model to a specific test, or by another method of demonstration acceptable to the Commission, as appropriate for the particular feature being considered."

The general standards for all transportation packages are identified in 10 CFR 71.43. The standards applicable to the thermal response of the RVTS, paragraphs 10 CFR $71.43(\mathrm{f})$ and 10 CFR 71.43(g) respectively, are listed below.
"A package must be designed, constructed, and prepared for shipment so that under the tests specified in $\S 71.71$ ("Normal conditions of transport") there would be no loss or dispersal of radioactive contents, no significant increase in external surface radiation levels, and no substantial reduction in the effectiveness of the packaging."
"A package must be designed, constructed, and prepared for transport so that in still air at $38^{\circ} \mathrm{C}$ ($100^{\circ} \mathrm{F}$) and in the shade, no accessible surface of a package would have a temperature exceeding $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$ in a nonexclusive use shipment, or $85^{\circ} \mathrm{C}\left(185^{\circ} \mathrm{F}\right)$ in an exclusive use shipment."

The RVTS temperature distribution results of this calculation will be used in external analyses to assess the structural integrity of the RVTS under the Normal Conditions of Transport (NCT), and the Hypothetical Accident Conditions (HAC). This calculation will also document the maximum accessible surface temperature of the RVTS to demonstrate compliance with 10 CFR $71.43(\mathrm{~g})$ for an exclusive use transportation package.

Specifically, this calculation will document the thermal response of the RVTS under four conditions as outlined below. The basis for the selection of these scenarios is documented in Section 4.2.

Case 1: The maximum accessible surface temperature with an ambient temperature of $100^{\circ} \mathrm{F}$ and no solar insolation will be evaluated to ensure that the steady-state surface temperature of the container does not exceed $185^{\circ} \mathrm{F}$.

Case 2: Under NCT with an ambient temperature of $100^{\circ} \mathrm{F}$ in still air, and with a solar insolation of 400 g $\mathrm{cal} / \mathrm{cm}^{2}$ (for curved surfaces) for a 12 -hour period.

Case 3: Under NCT with an ambient temperature of $-40^{\circ} \mathrm{F}$ in still air, and without solar insolation.
Case 4: Under HAC where the RVTS is fully engulfed in a hydrocarbon fuel/air fire, with an average flame temperature of at least $800^{\circ} \mathrm{C}$ (approximately $1475^{\circ} \mathrm{F}$) for a period of 30 minutes.

The thermal analysis documented in this calculation is based on the RVTS design parameters outlined in the Big Rock Point Restoration Project Reactor Vessel Removal Package Design Criteria, the RVTS shielding design, and the schematic drawing of the RVTS as included in Attachment C.

Revision 1 of this calculation addresses the heat load associated with the Grid Bar End Pieces (GBEP). The GBEP are the stubs that remain in the reactor vessel after the Top Guide Grid Bars were cut and removed (Reference 7.26). The Top Guide Grid Bars are attached to the Top Guide Plate, located near the top of the active region of the reactor vessel. Additional details of the GBEP modeling are included in Section 4.1 of this calculation.

The initial WMG, Inc. radiation source term characterization (Reference 7.11) did not anticipate leaving GBEP in the reactor vessel. Reference 7.26 determined that the activity associated with the GBEP is 1800 Curies. The total heat load of the RVTS is evaluated in Reference 7.9, including the GBEP contribution, and is used in the RVTS thermal model documented in this calculation.

2.0 Design Inputs

2.1 The following Reactor Vessel dimensional data is provided by the indicated references.

Parameter	Value	Reference
Reactor Vessel		
RV Base Metal Inner Radius	$53^{\prime 7 / 32^{\prime \prime}}$	Ref. 7.12
RV Base Metal Thickness	$5.5^{\prime \prime}$	Ref. 7.12
SS Cladding Thickness	$5 / 32^{\prime \prime}$	Ref. 7.12
Distance from Inside Base of RV to Bottom of Thermal Shield	$7^{\prime}-3.75^{\prime \prime}$	Ref. 7.14
Distance from Inside Base of RV to Top of Thermal Shield	$14^{\prime}-11.75^{\prime \prime}$	Ref. 7.14
Distance from Inside Base of RV to RV Head Flange Mating Surface	$23^{\prime}-6^{\prime \prime}$	Ref. 7.14
Other Components		
Thermal Shield Inner Radius	$50^{\prime \prime}$	Ref. 7.16
Thermal Shield Thickness	$1.5^{\prime \prime}$	Ref. 7.16
Thermal Shield Length	$92.0^{\prime \prime}$	Ref. 7.16
SS Insulation Thickness	$3^{\prime \prime}$	Ref. 7.11, page 36
Top Guide Plate Thickness	$1^{\prime \prime}$	Ref. 7.11, page 27
Seal Weights (12 total)	$1^{\prime \prime} \times 18^{\prime \prime} \times 81^{\prime \prime}$	Ref. 7.11, page 31

2.2 The dimensions and materials of the RVTS modeled in this calculation are listed below. These are based on the RVTS design specifications, and are consistent with those given in Reference 7.24 and the schematic drawing of the RVTS, Reference 7.30 (see Attachment C).

Description	Dimension / Material
RVTS Outer Diameter	13^{\prime}
RVTS Modeled Length	$24^{\prime}-11.25^{\prime \prime}$
RVTS Minimum Wall Thickness	$3^{\prime \prime}$
RVTS Bottom Plate Thickness	$4^{\prime \prime}$
RVTS Top Lifting Plate Thickness	$4^{\prime \prime}$
RVTS Material	ASTM A516 Grade 70
Internal Grout (refer to Assumption 3.3)	Low Density Cellular Concrete $\left(30 \mathrm{lb}_{\mathrm{m}} / \mathrm{ff}^{3}\right)$
External Grout (refer to Assumption 3.3)	Low Density Cellular Concrete $\left(50 \mathrm{lb} \mathrm{lb}_{\mathrm{m}} \mathrm{ff}^{\prime}\right)$
RVTS Wall Thickness in Modeled Active Region	$7^{\prime \prime}$
Vertical Length of 4" Plate in Modeled Active Region	$96^{\prime \prime}$

2.3 The Reactor Vessel and RV internal components are comprised of the following materials, with references as cited.

Component	Material	Reference
Thermal Shield	Type 304 Stainless Steel	Ref. 7.11, page 3
Reactor Vessel Internal Components	Type 304 Stainless Steel	Ref. 7.11, page 3
Reactor Vessel Wall	SA-302 Grade B	Ref. 7.13
Reactor Vessel Cladding	Type 304 Stainless Steel	Ref. 7.13, Ref. 7.11
Reactor Vessel Insulation	Type 304 Stainless Steel Foil	Ref. 7.17

2.4 Reference 7.21 gives the following densities and chemical compositions (in percent) of the various types of steel used in the HEATING model.

Carbon Steel A516 Grade 70:
Alloy Steel A302 Grade B:
Type 304 Stainless Steel:

Steel Type	Carbon	Manganese	Silicon	Molybdenum	Nickel	Chromium
SA-516 Grade 70	0.31 max	$0.85-1.20$	$0.15-0.30$	N/A	N/A	N/A
SA-302 Grade B	0.25 max	$1.15-1.50$	$0.15-0.30$	$0.45-0.60$	N/A	N/A
Type 304 SS	0.08	2.0	1.0	N/A	$8-12$	$18-20$

Based on the chemical compositions of the various types of steels, the thermal conductivity and thermal diffusivity of the steels is obtained from Reference 7.5 for use in the HEATING model, as shown below.

	A 516-70 Steel $(\mathrm{C}-\mathrm{Mn}$-Si)		302 Grade B Steel $(\mathrm{Mn}-1 / 2 \mathrm{Mo})$		Stainless Steel Type 304 $(18 \mathrm{Cr}-8 \mathrm{Ni})$	
Temp.	Thermal Conductivity	Thermal Diffusivity	Thermal Conductivity	Thermal Diffusivity	Thermal Conductivity	Thermal Diffusivity
$\left({ }^{\circ} \mathrm{F}\right)$	$\left(\mathrm{Btu/hr-ft-{ }}^{\circ} \mathrm{F}\right)$	$\left(\mathrm{ft}^{2} / \mathrm{hr}\right)$	$\left(\right.$ (Btu/hr-ft- $\left.{ }^{\circ} \mathrm{F}\right)$	$\left(\mathrm{ft}^{2} / \mathrm{hr)}\right.$	$\left(\mathrm{Btu} / \mathrm{hr}-\mathrm{ft}-{ }^{\circ} \mathrm{F}\right)$	$\left(\mathrm{ft}^{2} / \mathrm{hr}\right)$
70	23.6	0.454	23.3	0.455	8.6	0.151
200	24.4	0.422	24.4	0.437	9.3	0.156
400	24.2	0.386	24.6	0.398	10.4	0.165
600	23.1	0.346	23.5	0.353	11.3	0.174
800	21.7	0.298	22.0	0.300	12.2	0.184
1200	18.2	0.197	18.6	0.193	14.0	0.203
1500	15.1	0.169	15.5	0.164	15.3	0.216

2.5 The following physical properties of Low Density Cellular Concrete (LDCC) are given in Chapter 24, Table 4 of Reference 7.10.

Description	Density $\left(\mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}\right)$	Thermal Conductivity $\left(\mathrm{Btu-in} / \mathrm{hr}-\mathrm{ft}-{ }^{\circ} \mathrm{F}\right)$	Thermal Conductivity $\left(\mathrm{Btu} / \mathrm{hr} \mathrm{ft}-{ }^{\circ} \mathrm{F}\right)$	Specific Heat $\left(\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}{ }^{-} \mathrm{F}\right)$
Lightweight Aggregate: perlite, vermiculite, and polystyrene beads	40	$1.4-1.5$	$0.117-0.125$	$0.15-0.23$
Foam and Cellular Concrete	60	2.1	0.175	-
Foam and Cellular Concrete	40	1.4	0.117	-
Foam and Cellular Concrete	20	0.8	0.0667	-

Interpolating between the data presented for cellular concrete, the following thermal conductivities are used in the HEATING model:

For LDCC with a density of $50 \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}$ (refer to Assumption 3.3), $k=0.146 \mathrm{Btu} / \mathrm{hr}-\mathrm{ft}-{ }^{\circ} \mathrm{F}$ For LDCC with a density of $30 \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}$ (refer to Assumption 3.3), $k=0.0917 \mathrm{Btu} / \mathrm{hr}-\mathrm{ft}-{ }^{\circ} \mathrm{F}$

2.6 Table A-3 of Reference 7.3 and Table A. 4 of Reference 7.4 provide the following physical properties of air at atmospheric pressure.

Temperature	Thermal Conductivity, k	Prandtl Number, Pr	Property Group, $\rho^{2} g \beta / \mu^{2}$
$\left({ }^{\circ} \mathrm{F}\right)$	$\left(\mathrm{Btu} / \mathrm{hr} \mathrm{ft}-{ }^{\circ} \mathrm{F}\right)$	$(\mathrm{N} / \mathrm{A})$	$\left(1 / \mathrm{ft}^{3}-{ }^{\circ} \mathrm{F}\right)$
-100	0.01046	0.737	1.34 E 7
0	0.0133	0.73	4.20 E 6
100	0.0154	0.72	1.76 E 6
200	0.0174	0.72	8.50 E 5
400	0.0212	0.689	2.58 E 5
600	0.0250	0.685	1.06 E 5
800	0.0286	0.697	4.98 E 4

2.7 Reference 7.7, Appendix D, provides the following data for emissivity of steel: Sheet with skin due to rolling, $\varepsilon=0.66$
2.8 Reference 7.9 provides the following Curie content for various reactor vessel components, from which decay heat loads are obtained. The total Curie content for the reactor vessel and internals is given by Reference 7.9 as 1.481 E4 Curies. After appropriate margins are included, the total heat load due to the reactor vessel and internals is given as $485 \mathrm{Btu} / \mathrm{hr}$. The individual decay heat loads for the various reactor vessel components are computed below, based on the fractional Curie content of the respective component. Components not specifically identified below are grouped together, and modeled as a homogeneous heat load in the low density cellular concrete of the active fuel region.

Component or Region	Curies, Ci	Fraction of Total Curie Content; $\sim \mathrm{Ci} / 1.481 \mathrm{E4}$	Decay Heat Load; = Fraction * 485 (Btu/hr)
Thermal Shield	8510	0.575	278.8
Top Guide Plate	1311	0.089	43.0
Top Guide Grid Bar End Pieces	1800	0.122	59.0
Seal Weights (12 total)	1265	0.085	41.4
Reactor Vessel Insulation	66.8	0.005	2.19
Reactor Vessel Cladding	281.8	0.019	9.23
Reactor Vessel Wail	1277	0.086	41.8
Miscellaneous Components in Active Fuel Region	294.4	0.02	9.64
Totals	1.481 E 4	1.00	$\mathbf{4 8 5 . 1}$

2.9 The ambient temperature boundary conditions are specified by Reference 7.1 as shown below for the various scenarios analyzed in this calculation.

Case No.	Case Description	Ambient Temperature
Case 1	Maximum Surface Temperature	$100^{\circ} \mathrm{F}$
Case 2	Normal Conditions of Transport with Solar Insolätion	$100^{\circ} \mathrm{F}$
Case 3	Normal Conditions of Transport without Solar Insolation	$-40^{\circ} \mathrm{F}$
Case 4	Hypothetical Accident Condition	-20 to $100^{\circ} \mathrm{F}$ before and after test $14755^{\circ} \mathrm{F}$ during 30 minute test

3.0 Assumptions

3.1 The hemispherical portion of the lower reactor vessel head is modeled as flat plate, as shown in Figure 1. This modeling simplification is reasonable, as the decay heat sources are primarily located in the active fuel region.
3.2 For the HAC scenario, the ambient temperature is $1475^{\circ} \mathrm{F}$ for the 30 -minute duration of the fire. 10 CFR 71.73(a) specifies that the hypothetical accident fire thermal analysis be performed after the RVTS has been subjected to free drop and puncture tests. Potential damage resulting from these tests are considered minimal to the RVTS and of no significant effect, likely limited to small surface indentations and/or deformations. These types of damage will have negligible impact on the ability of the RVTS surface to transfer heat to the ambient. Therefore the HEATING model for the HAC analysis is unchanged from the NCT analysis.
3.3 The LDCC internal filler is assumed to have a density of $30 \mathrm{Ib}_{\mathrm{m}} / \mathrm{ft}^{3}$, and the LDCC external filler is assumed to have a density of $50 \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}$. These values represent the lower bound of the respective density ranges to be used in the RVTS, specifically $30 \mathrm{l} \mathrm{b}_{\mathrm{m}} / \mathrm{ft}^{3}$ to $36 \mathrm{I} \mathrm{l}_{\mathrm{m}} / \mathrm{ft}^{3}$ for the internal LDCC filler, and $50 \mathrm{lb} / \mathrm{ft}^{3}$ to $60 \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}$ for the external LDCC filler. The use of lower bound densities is conservative for maximizing the temperature response of the RVTS under the transient conditions associated with the HAC. For the steady-state analyses of the Maximum Accessible Surface Temperature, and the NCT, the choice of LDCC density is arbitrary, as the steady-state temperature distribution is independent of material density.
3.4 Laminar natural convection heat transfer is assumed to occur at the surface of the RVTS, conservatively neglecting any possible turbulent natural convection heat transfer mechanisms. This assumption is conservative for the purposes of maximizing the computed RVTS surface temperature, as potentially turbulent natural convection mechanisms would transfer more heat from the RVTS surface to the ambient.
3.5 The cask end plates are modeled as vertical plates for the purposes of computing natural convection heat transfer coefficients. This assumption is appropriate, as the RVTS will be transported in the horizontal position, therefore the end plates will be in the vertical orientation.

Client	BNFL, Inc.	
Project	Big Rock Point Major Component Removal	
Proj. No	$10525-020$	Equip. No.

Prepared by	Mark C. Handrick	Date
Reviewed by	Michael E. Duffy	Date
Approved by	Robert J. Peterson	Date

3.6 The densities of all materials employed in the HEATING model are assumed to be constant. Material density has no effect on computed steady-state temperature profiles.
3.7 The emissivity of the steel transportation cask is assumed to be 0.66 , consistent with the value listed in Appendix D of Reference 7.7 for rolled steel. The RVTS may be covered with an epoxybased coating, similar to the type cited in the correspondence from Carboline Company (see Attachment D). The epoxy coating mentioned in Attachment D has an emittance, or emissivity, of 0.91 . The author of the Carboline correspondence indicates that he is uncertain whether thermal emittance is the same physical quantity as thermal emissivity. The two words are used interchangeably when discussing thermal radiant heat transfer. Since the epoxy coating emissivity is greater than that of steel, the use of the steel-based emissivity of 0.66 is conservative for the purposes of maximizing the RVTS surface temperature.
3.8 The RVTS support cradle can potentially cause local obstructions to convective-driven air currents at the RVTS cylindrical surface, which adversely affect natural convective heat transfer from the RVTS surface to the ambient. To account for any local obstructions, the natural convection heat transfer coefficient computed in Section 5.3 .2 will be conservatively reduced by 25 percent. A review of Drawing No. SD-10525-020-002 (Reference 7.31) indicates that considerably less than 25 percent of the RVTS surface area is obstructed by tie-downs, supports, etc. Therefore, the use of a 25 percent reduction in the natural convection heat transfer coefficient is conservative.
3.9 Physical properties of steels at $-40^{\circ} \mathrm{F}$ are assumed to be identical to those at $70^{\circ} \mathrm{F}$, as listed in Design Input 2.4, for use in the HEATING model. The lowest temperature value cited in ASME Boiler and Pressure Vessel Code, Section II, Part D, for the steels modeled in this calculation is $70^{\circ} \mathrm{F}$. A review of Design Input 2.4 shows that there is negligible change in thermal conductivity of A516 Grade 70 steel in the temperature range of $70^{\circ} \mathrm{F}$ to $200^{\circ} \mathrm{F}$. Therefore, this assumption has a negligible impact on the temperature profiles used to evaluate the thermal stresses of the RVTS shell for the Case 3 analyses.
3.10 The specific heat of LDCC is taken as $0.15 \mathrm{Btu} / \mathrm{lb}_{m^{-}}{ }^{-} \mathrm{F}$, which is the lowest value given in Design Input 2.5. Selecting the lowest value will conservatively maximize the RVTS temperatures during the HAC transient.
3.11 The thermal conductivities of the LDCC are assumed to be constant. The assumption of uniform thermal conductivity of low-density concrete is appropriate based on Figure 6.7.1 of the ACl Manual of Concrete Practice, Part 3-1998 (Ref. 7.20). This figure shows that the thermal conductivities of lightweight concretes have little variation for a temperature range of $0{ }^{\circ} \mathrm{F}$ to $1800^{\circ} \mathrm{F}$.
3.12 The total decay heat load for the RVTS is $485 \mathrm{BTU} / \mathrm{hr}$ per Design Input 2.8. Of this value, only $9.64 \mathrm{BTU} / \mathrm{hr}$, or approximately 2 percent of the total, is attributable to miscellaneous components inside the thermal shield. Specifically, these include the steam baffle, sparger, seal housing, TS retainer, core support plate, inlet diffuser, and the inlet baffle (see Calculation No. N-10525-0200001, Reference 7.9). A detailed geometric model of these internal components is not required, given the low heat loads of these components when compared to the total heat load of the RVTS.

4.0 Methodology and Acceptance Criteria

4.1 RVTS Thermal Model Development

The thermal analysis of the RVTS will be performed using the HEATING7.2f computer code. HEATING is a finite difference thermal analysis code capable of solving steady-state and transient thermal analysis problems in one, two, or three dimensions in a rectangular, cylindrical, or spherical coordinate system. HEATING was developed by Oak Ridge National Laboratory, and the solutions algorithms have been verified against a large number of representative problems presented in the literature having analytical solutions. The code is capable of modeling conduction, radiation, and natural or forced convection heat transfer mechanisms. A flexible input structure allows the user to model a wide variety of boundary conditions, encompassing all of the postulated scenarios required per 10 CRF 71.

The three-dimensional RVTS model consists of the following regions, listed in the direction of increasing radius: reactor vessel internal components and LDCC internal filler, stainless steel cladding, the reactor vessel wall, stainless steel insulation, LDCC exterior filler, and the RVTS cask steel wall. The LDCC filler acts to stabilize the reactor vessel internal components, immobilize any potential loose radioactive contamination, and to fill any gaps or voids in the RVTS. In the Active Fuel Region, the thermal shield, seal weights, and top plate are modeled. The axial, or vertical, dimensions of the RVTS are modeled to encompass edge effects for the upper and lower RVTS end plates. The RVTS cask wall thickness in the active fuel region is 7 inches thick. This is accomplished by welding a 4 -inch plate to the 3 -inch thick RVTS wall, as shown in Reference 7.24. This 4 -inch thick plate is 96 inches in length, and extends approximately four inches above the thermal shield, encompassing the active fuel region as shown in Reference 7.14 . For the purposes of this calculation, the active region is assumed to be that 96 -inch axial region of the RVTS which is surrounded by the 4 -inch steel plate, as shown in Reference 7.24. A section view of the HEATING model is shown in Figure 1 on page 12. A section view of the model including dimensions, consistent with Design Input 2.1, is shown in Figure 2.

In the active region, the thermal shield, seal weights, top guide plate, and top plate grid bar end pieces are modeled in detail, as these components represent approximately 87 percent of the total RVTS heat load as shown in Design Input 2.8. The thermal shield is 92 inches in length and 1.5 inches thick. The seal weights are located in the annular region between the thermal shield and the reactor vessel wall. The seal weights span an axial length of approximately 84 inches, from the top guide plate to the bottom of the thermal shield as shown in Reference 7.27. There are 12 seal weights, spaced in approximately equal intervals along the circumference of the thermal shield as shown in Reference 7.18. The top guide plate is a circular plate one inch thick, with a diameter of 99.1875 inches per Reference 7.29. To simplify the HEATING model, the top plate is assumed to have a diameter of 100 inches, abutting the thermal shield as shown in Reference 7.27. A plan view of the active region is presented in Figure 3 on page 14, showing the radial dimensions of the top plate, thermal shield, reactor vessel wall, and stainless steel insulation. A section view of the active region is presented in Figure 4, illustrating the axial dimension of the top plate, seal weights, and the thermal shield.

The center portion of the top plate is cut out to accommodate the fuel assemblies, as shown in References 7.14 and 7.29. To simplify the HEATING model, the top plate is modeled with a smooth inner diameter of 88 inches as shown in Figure 6. The top guide grid bars are hinged to the top plate at equally spaced intervals along one-half of the circumference of the top plate, per a review of Reference 7.28. A plan view of the top plate showing the spacing of the grid bar hinge points is shown in Figure 5 on page 16. The grid bars have been cut off from the top plate at the hinge points, however the grid bar end stubs which remain are a radioactive source term which contribute to the total RVTS heat load as described in References 7.9 and 7.26.

The heat load associated with the grid bar end pieces ($59.0 \mathrm{Btu} / \mathrm{hr}$) is partitioned, and added to the heat load of the top plate for three distinct regions between 0° and 180°, as shown in Figure 6. Reference 7.9 states that small, localized regions of high activity, or hot spots, may be present in the top plate. Following the guidance provided in Assumption 4.5 of Reference 7.9, one-half of the total GBEP heat load will be modeled as a hot spot on the top plate. The hot spot is modeled with azimuthal boundaries of 89° and 91°, representative of a small, localized heat source. The remaining 50% of the GBEP heat load is divided equally between the two regions of the top plate with GBEP activity, with azimuthal boundaries of 0° to 89°, and 91° to 180° respectively.

Per Design Input 2.8 , the total heat load of the top plate is $43.0 \mathrm{Btu} / \mathrm{hr}$. The combined heat load of the top plate and the GBEP is 102.0 Btu/hr. The partitioning of the GBEP heat load and the top plate heat load are given below, as shown in Figure 6.
Region 16 (0° to 89°):
$(89 / 360) * 43.0+(0.25) * 59.0=25.38 \mathrm{Btu} / \mathrm{hr}$
Region 17 (89° to 91°):
$(2 / 360) * 43.0+(0.50) * 59.0=29.74 \mathrm{Btu} / \mathrm{hr}$
Region 18 (91° to 180°):
$(89 / 360) * 43.0+(0.25) * 59.0=25.38 \mathrm{Btu} / \mathrm{hr}$
Region 19 (180° to 360°):
$(180 / 360) * 43.0$
$=21.50 \mathrm{Btu} / \mathrm{hr}$

Total
The table below lists the regions of the RVTS model, which correspond to the numbered components shown in Figures 1 through 6.

Region No.	Region Description
1	4" Thick Bottom End Plate of RVTS Cask
2	3" Thick Side Wall of RVTS Cask Below Active Region
3	7 " Thick Side Wall of RVTS Cask In Active Region
4	3" Thick Side Wall of RVTS Cask Above Active Region
5	$4^{\prime \prime}$ Top Lifting Plate of RVTS Cask
6	External LDCC ($50 \mathrm{lb} \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}$) below Reactor Vessel
7	Annular External LDCC ($50 \mathrm{lb} / \mathrm{lff}^{3}$) Along Reactor Vessel Below Active Region
8	Annular External LDCC ($50 \mathrm{l} \mathrm{b}_{\mathrm{m}} / \mathrm{tf}^{\text {3 }}$) Along Reactor Vessel In Active Region
9	Annular External LDCC ($50 \mathrm{lb} / \mathrm{lft}^{3}$) Along Reactor Vessel Above Active Region
10	$3^{\prime \prime}$ Stainless Steel Insulation around Reactor Vessel
11	$5.25{ }^{\prime \prime}$ Bottom Portion of Reactor Vessel Wall
12	$5.25{ }^{\prime \prime}$ Side Wall of Reactor Vessel
13	Stainless Steel Cladding on Inside Wall of Reactor Vessel
14	Interior LDCC ($30 \mathrm{lbm} / \mathrm{ft}^{3}$) Filler Below Active Region
15	Interior LDCC ($30 \mathrm{lb} / \mathrm{ft}^{3}$) Filler Above Active Region
16	Top Guide Plate including 25\% of Heat Load of the Grid Bar End Pieces ($0^{\circ}-89^{\circ}$)
17	Top Guide Plate including 50% of Heat Load of the Grid Bar End Pieces ($89^{\circ}-91^{\circ}$)
18	Top Guide Plate including 25% of Heat Load of the Grid Bar End Pieces ($91^{\circ}-180^{\circ}$)
19	Top Guide Plate without Grid Bar End Pieces ($180^{\circ}-360^{\circ}$)
20	Thermal Shield (92 " in length)
21-32	Seal Weights in Annular Region between Thermal Shield and RV Wall (12 total)
33-45	Interior LDCC ($\left.30 \mathrm{lb} \mathrm{l}_{\mathrm{m}} / \mathrm{f}^{3}\right)$) Filler in between the Seal Weights
46	Interior LDCC ($30 \mathrm{l} \mathrm{b}_{m} / \mathrm{f}^{3}$) Filler in Active Region below Top Guide Plate
47	Interior LDCC ($30 \mathrm{lb} \mathrm{l}_{\mathrm{m}} / \mathrm{t}^{3}$) Filler within Top Guide Plate (cutout region)
48	Interior LDCC ($30 \mathrm{l} \mathrm{b}_{\mathrm{m}} / \mathrm{ft}^{3}$) Filler in Active Region above Top Guide Plate within Thermal Shield
49	Interior LDCC ($30 \mathrm{lb} \mathrm{l}_{\mathrm{m}} / \mathrm{f}^{3}$) between RV Wall and Thermal Shield above Seal Weights

Figure 1
Section View of RVTS Model

FIGURE WITHHELD UNDER 10 CFR 2.390

Figure 5
Top Guide Plate

Table 2 lists all the dimensional data used to construct the HEATING model, based on the regions identified in Table 1. The linear dimensions are converted from inches to feet, the angular dimensions are converted from degrees to radians, and the regional volume is computed. For those regions which contain a decay heat source term, the decay heat load is divided by the region volume to obtain a volumetric heat load (Btu/hr-fit) for use in the model.

Table 3 lists the thermal conductivity, k, thermal diffusivity, α, and specific heat, c_{p}, for the various steels of the HEATING model. The thermal conductivity and thermal diffusivity listed under Design Input 2.4 are used to compute the specific heat according to the following definition: $\alpha=k /\left(\rho^{*} c_{\rho}\right)$

4.2 Applied Boundary Conditions for the RVTS Model

The boundary conditions applied at the RVTS outer surface are consistent with the requirements of Reference 7.1. The ambient temperatures are specified as $100{ }^{\circ} \mathrm{F}$ for the Maximum Surface Temperature (Case 1) and the NCT with Solar Insolation (Case 2) scenarios. For the NCT without Solar Insolation (Case 3), the ambient temperature is specified as $-40^{\circ} \mathrm{F}$, per 10 CFR 71.71 (c)(2). The Case 4 analysis models the RVTS completely engulfed in a hydrocarbon fuel/air fire at $1475{ }^{\circ} \mathrm{F}$.

A total solar insolation of $400 \mathrm{~g} \mathrm{cal} / \mathrm{cm}^{2}$ on the curved RVTS surfaces, for a 12 -hour period, is specified for the Case 2a scenario. For the flat, vertical end plates of the RVTS, a total insolation of $200 \mathrm{~g} \mathrm{cal} / \mathrm{cm}^{2}$ is specified per 10 CFR 71.71(c)(1).

For Case 1 through Case 3, heat transfer from the RVTS outer surface to the ambient is modeled with parallel heat transfer mechanisms of laminar natural convection and radiation. The natural convection heat transfer coefficient is computed in Section 5.3.2, based on correlations for natural convection applicable to horizontal cylinders. The RVTS end plates are treated as flat vertical plates for the purposes of computing the natural convection heat transfer coefficient, with details presented in Section 5.3.3. Radiation heat transfer is governed by the emissivity of the RVTS outer surface, taken as $\varepsilon=0.66$ per Design Input 2.7. Cases 1, 2, and 3 are modeled with the HEATING steady-state solution option.

Two scenarios are run for the NCT without solar insolation. In Case 3a, the ambient air temperature is $40{ }^{\circ} \mathrm{F}$, as specified in 10 CFR 71.71 (c)(2). In Case 3 b , the ambient air temperature is $-20^{\circ} \mathrm{F}$. This case is used to develop the initial temperature distribution in the RVTS for use in the Case 4 analysis.

To determine the sensitivity of the model results on the RVTS surface emissivity, the Case 1a scenario is duplicated using an emissivity value of $\varepsilon=0.0$. This scenario is named Case 1b. The results of Case 1b show that the computed RVTS surface temperature increases by approximately $2.5^{\circ} \mathrm{F}$ for an emissivity value of 0.0 . This relatively small temperature increase indicates that the model results for Case 1 are not particularly sensitive to the value of RVTS surface emissivity.

Case 2 b is a sensitivity run to determine the potential effects of crushed stainless steel insulation surrounding the reactor vessel. If this insulation is crushed, the displaced volume will be filled with the 50 $\mathrm{Ib}_{\mathrm{m}} / \mathrm{ft}^{3}$ LDCC, and the thermal properties of this region will change, with a corresponding change in the computed temperature gradient. For the Case 2 b scenario, the thermal conductivity of the insulation region is modeled as that of $50 \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}$ LDCC, or $0.146 \mathrm{Btu} / \mathrm{hr}-\mathrm{ft}-{ }^{\circ} \mathrm{F}$ per Design Input 2.5. The density and specific heat of the stainless steel insulation region are unchanged for the Case 2 b scenario, as the density and specific heat values for the insulation are smaller than that of the $50 \mathrm{Ib}_{\mathrm{m}} / \mathrm{ft}^{3} \mathrm{LDCC}$, which is conservative for the purposes of maximizing temperatures.

For the hypothetical accident fire of Case 4, the ambient temperature is $1475^{\circ} \mathrm{F}$ for the 30 -minute duration of the fire. 10 CFR 71.73(a) specifies that the hypothetical accident fire thermal analysis be performed after the RVTS has been subjected to free drop and puncture tests. Potential damage resulting from these tests are considered minimal to the RVTS and of no significant effect, likely limited to small surface indentations and/or deformations. These types of damage will have negligible impact on the ability of the RVTS surface to transfer heat to the ambient. Therefore the HEATING model for the HAC analysis is unchanged from the NCT analysis.

During the fire, heat is transferred from the fire/flame environment to the RVTS surface by the parallel mechanisms of forced convection and radiation. The forced convection heat transfer coefficient is computed in Section 5.3.5, based on the methodology presented in Reference 7.22. The emissivity coefficient for radiation heat transfer is specified as 0.9 , consistent with Reference 7.1, §71.73(c)(4).

Cases 4 a and 4 b are modeled with the HEATING transient solution option. The initial temperature distributions of the RVTS are obtained from the results of the Case 1a and Case 3b analyses, where the ambient temperatures are $100^{\circ} \mathrm{F}$ and $-20^{\circ} \mathrm{F}$ respectively. The hydrocarbon fire boundary conditions are then imposed for a period of 30 minutes. After the 30 minute period, the fire boundary conditions are removed, replaced with the natural convection boundary conditions used in the Case 1a and Case 3b analyses. For Case 4 a , the ambient temperature is taken as $100^{\circ} \mathrm{F}$ after the 30 minute duration of the postulated fire. For Case 4 b , the ambient temperature is taken as $-20^{\circ} \mathrm{F}$ after the 30 minute duration of the postulated fire. A cooldown period of 60 minutes is modeled, to examine potential thermal lag effects on the RVTS internal temperature distribution. No significant material or geometrical deformation is expected to occur as a result of the HAC, therefore the steady-state temperature distribution of the RVTS following removal of the applied heat sources is essentially the same as the initial temperature profile employed for Cases 4 a and 4 b .

Two additional sensitivity cases are modeled to examine the effect of a potential gap between the 3-inch RVTS wall and the 4 -inch shield plate welded to the RVTS wall in the active region. Per Note 10 of Reference 7.30 (Attachment C), a maximum permissible gap of 0.0625 inches is allowed between the RVTS wall and the shield plate. To determine the potential effects of such a gap, the RVTS model is conservatively modified to create a 0.125 -inch gap between the 3 -inch RVTS wall and the 4 -inch shield plate, as shown in Figure 7 on the following page. The gap is assumed to exist along the entire circumference of the shield plate to conservatively estimate the temperature gradient across the gap. Thermal radiation heat transfer across the gap region is modeled per the methodology given in Reference 7.2, as discussed in Section 5.3.6. The first sensitivity run, Case Gap1, employs the thermal boundary conditions of Case 1a. The second sensitivity run, Case Gap2, employs the thermal boundary conditions of Case 2a where solar insolation effects are modeled.

A summary of the applied boundary conditions is shown below for all cases analyzed in this calculation.

Case No.	Ambient Temp.	Total Solar Insolation for a 12-hour Period	Convection at RVTS Surface	Radiation at RVTS Surface
	(${ }^{\circ} \mathrm{F}$)	$\left(\mathrm{g} \mathrm{cal} / \mathrm{cm}^{2}\right.$)		
Case-1a	- 100	$0.0-$	Natural convection to ambient	RVTS to ambient, $\varepsilon=0.66$
Case 1b	100	0.0	Natural convection to ambient	None, $\varepsilon=0.0$
Case 2a	100	400 (curved surfaces) 200 (flat vertical surfaces)	Natural convection to ambient	RVTS to ambient, $\varepsilon=0.66$
Case 2b	100	400 (curved surfaces) 200 (flat vertical surfaces)	Natural convection to ambient	RVTS to ambient, $\varepsilon=0.66$
Case 3a	-40	0.0	Natural convection to ambient	RVTS to ambient, $\varepsilon=0.66$
Case 3b	-20	0.0	Natural convection to ambient	RVTS to ambient, $\varepsilon=0.66$
Case 4a	100	0.0	Forced convection from flame at $1475^{\circ} \mathrm{F}$ to RVTS	Flame at $1475{ }^{\circ} \mathrm{F}$ to RVTS, $\varepsilon=0.9$
Case 4b	-20	0.0	Forced convection from flame at $1475{ }^{\circ} \mathrm{F}$ to RVTS	Flame at $1475^{\circ} \mathrm{F}$ to RVTS, $\varepsilon=0.9$
Case Gap1	100	0.0	Natural convection to ambient	RVTS to ambient, $\varepsilon=0.66$
Case Gap2	100	400 (curved surfaces) 200 (flat vertical surfaces)	Natural convection to ambient	RVTS to ambient, $\varepsilon=0.66$

4.3 Acceptance Criteria

The acceptance criteria for the thermal analysis of the RVTS is provided by Reference 7.1. For the Case 1 analysis, Reference $7.1 \$ 71.43(\mathrm{~g})$ specifies that the maximum accessible surface of a transportation package not exceed $85^{\circ} \mathrm{C}\left(185^{\circ} \mathrm{F}\right)$ in an exclusive use shipment. The RVTS is considered an exclusive transportation package, therefore the RVTS design meets the 10 CFR 71.43 acceptable criteria if the maximum RVTS surface temperature computed by the HEATING model under the Case 1 boundary conditions is less than $185^{\circ} \mathrm{F}$.

In addition to the specific acceptance criteria for maximum accessible surface temperature, general approval standards for all radioactive material transportation packages are specified in 10 CFR 71.41 (a) and 10 CFR $71.43(\mathrm{f})$, repeated below respectively.

"The effects on a package of the tests specified in $\S 71.71$ ("Normal conditions of transport"), and the tests specified in $\$ 71.73$ ("Hypothetical accident conditions"), and $\$ 71.61$ (Special requirements for irradiated nuclear fuel shipments"), must be evaluated by subjecting a specimen or scale model to a specific test, or by another method of demonstration acceptable to the Commission, as appropriate for the particular feature being considered."
"A package must be designed, constructed, and prepared for shipment so that under the tests specified in $\S 71.71$ ("Normal conditions of transport") there would be no loss or dispersal of radioactive contents, no significant increase in external surface radiation levels, and no substantial reduction in the effectiveness of the packaging."

Compliance with 10 CFR 71.43 (f) will be ensured in external structural analyses of the RVTS, based on the temperature distributions documented in this calculation. The temperature distribution inside the RVTS can be used to determine the maximum internal pressure, considering initial gas trapped inside the RVTS, the vapor pressure from the moisture within the concrete matrix, and the gas pressure from radiolysis for the duration of transport. The reported temperature distributions can also be used to evaluate the stresses due to thermal gradients across the various portions of the RVTS.

The temperature distribution in the RVTS following the HAC, Case 4, can be used to ensure that the RVTS design meets the requirements given in 10 CFR 71.51 (a)(2).

4.4 Computer Programs Used

The following computer programs were used in the preparation of this calculation:

- HEATING 7.2f, Multidimensional, Finite-Difference Heat Conduction Analysis, Sargent \& Lundy Program No. 03.7.564-7.2
- Microsoft Excel 97, Sargent \& Lundy Program No. 03.2.081-1.0

These computer programs are maintained by S\&L's Software Center as validated for safety-related use. HEATING7.2f and Microsoft Excel 97 were executed through S\&L's network server SNL4A_SYS3 on PC No. 5765. The validation of data computed using Microsoft Excel 97 is implicit in the detailed review of the calculation, in compliance with S\&L's Quality Assurance Procedure SOP-0402.

5.0 Calculations

5.1 Nomenclature

$A_{s} \quad$ Surface area (ft^{2})
$c_{\rho} \quad$ Specific heat (Btu/b b_{m} - $^{\circ} \mathrm{F}$)
$g \quad$ Gravitational acceleration ($32.174 \mathrm{ft} / \mathrm{sec}^{2}$)
D Diameter (f)
Gr Grashof number
$h \quad$ Heat transfer coefficient (Btu/hr-ft ${ }^{2}-{ }^{\circ} \mathrm{F}$)
$k \quad$ Thermal conductivity (Btu/hr-ft- ${ }^{\circ} \mathrm{F}$)
$L \quad$ Length (ft)
Nu Nusselt Number
Pr Prandtl Number
$q \quad$ Heat rate (Btu/hr)
$q^{\prime \prime} \quad$ Heat flux (Btu/hr-ft ${ }^{2}$)
$q^{\prime \prime \prime} \quad$ Volumetric heat generation rate (Btu/hr-ft ${ }^{3}$)
Ra Rayleigh Number
Re Reynolds Number
$t \quad$ Time (hr)
$T \quad$ Temperature (${ }^{\circ} \mathrm{F}$)
$\Delta T \quad$ Temperature difference (${ }^{\circ} \mathrm{F}$)
$V \quad$ Flame velocity ($\mathrm{ft} / \mathrm{sec}$)
$\beta \quad$ Coefficient of thermal expansion (${ }^{\circ} \mathrm{R}^{-1}$)
$\rho \quad$ Density $\left(\mathrm{Ib}_{\mathrm{m}} / \mathrm{ft}^{3}\right)$
$\varepsilon \quad$ Emissivity
$\sigma \quad$ Stephan-Boltzmann Constant ($0.1714 \times 10^{-6} \mathrm{Btu} / \mathrm{hr}-\mathrm{ft}^{2}-{ }^{\circ} \mathrm{R}$)
$\mu \quad$ Dynamic viscosity of fluid ($\mathrm{lb}_{m} / \mathrm{hr}-\mathrm{ft}$)
$v \quad$ Kinematic viscosity of fluid ($\mathrm{ft}^{2} / \mathrm{hr}, \mathrm{ft}^{2} / \mathrm{sec}$)
Subscripts
air Air
L Characteristic length
s Surface

5.2 RVTS Dimensional and Material Property Data

5.2.1 Surface Area of RVTS

The RVTS is a circular cylinder with a diameter of 13 feet, and a total length of 24.9375 feet per Figure 2. The outer surface area of the RVTS is computed as shown below.

Cylindrical shell: $\quad A_{s}=\pi^{*} D^{*} L=\pi^{*}(13.0)^{*}(24.9375)=1018.47 \mathrm{ft}^{2}$
Circular end plates: $\quad A_{s}=2^{*}\left[(\pi / 4)^{*} D^{2}\right]=2^{*}(\pi / 4)^{\star}(13.0)^{2}=2^{\star}(132.73)=265.46 \mathrm{ft}^{2}$
Total surface area: $\quad A_{s}=1018.47 \mathrm{ft}^{2}+265.46 \mathrm{ft}^{2}=1283.93 \mathrm{ft}^{2}$

		Calc For Thermal Response of Reactor Vessel Transport System					Calc No.	M-10525-020-001
							Rev.	Date
		X	Important to Safety - Category A			Non-Safety Related	Page	24
Client	BNFL, Inc.			Prepared by		Mark C. Handrick		Date
Project	Big Rock Point Major Component Removal			Reviewed by		Michael E. Duffy		Date
Proj. No	10525-020		Equip. No.	Approved by Robert J. Peterson				Date

5.2.2 Stainless Steel Insulation

The Reactor Vessel is surrounded by a three-inch thick blanket of insulation, comprised of corrugated foils of type 304 stainless steel, as shown in Reference 7.17. Since the insulation is not a solid region, the air gaps between the stainless steel foils must be considered, and a set of composite material properties chosen for input to the HEATING model. Reference 7.19 is a test report documenting the thermal transference of Johns-Manville metallic pipe and flat panel insulation. The flat panels tested contained-five insulating layers, with a foil thickness of 0.003 inches (see Figure 4 of Reference 7.19). This configuration is very similar to the reactor vessel insulation, which has six layers and a foil thickness of 0.003 inches, as shown on Reference 7.17 . Therefore, the material property information contained in Reference 7.19 can be considered as representative of the insulation surrounding the reactor vessel.

The density of the stainless steel insulation region is obtained from the data listed in Reference 7.19. The flat panel dimensions are given as $23.875^{\prime \prime} \times 23.875^{\prime \prime} \times 3^{\prime \prime}$, and the panel weight is listed as $12.75 \mathrm{lb}_{\mathrm{m}}$. Dividing the insulation mass by the volume results in a density of $12.88 \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}$ as shown below.

Volume $=23.875^{\prime \prime} \times 23.875^{\prime \prime} \times 3^{\prime \prime}=1710.0 \mathrm{in}^{3}=0.99 \mathrm{ft}^{3}$
Density $=12.75 \mathrm{lb}_{\mathrm{m}} / 0.99 \mathrm{ft}^{3}=12.88 \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}$.
The specific heat of the insulation region is taken as that of type 304 stainless steel, which is appropriate considering the mass of air within the insulation region is negligible compared to the stainless steel mass. The thermal conductivity of the insulation region is obtained from the thermal test data provided in Table 1 of Reference 7.19.

The test data reported includes temperatures on both the hot and cold side of the insulation panel, as well as the heat flux to the ambient. The test data is used to obtain an effective thermal conductivity of the insulation, through the use of Fourier's law of heat conduction, shown below.

$$
\begin{equation*}
q^{\prime \prime}=k \frac{d T}{d x} \tag{Eq.5-1}
\end{equation*}
$$

For a rectangular geometry, the temperature gradient is linear, and the effective thermal conductivity of the insulation can be obtained by rearranging Equation 5-1.

$$
\begin{equation*}
k=q^{\prime \prime} \frac{\Delta x}{\Delta T} \tag{Eq.5-2}
\end{equation*}
$$

The value of Δx is three inches, or 0.25 feet. The temperature difference and heat flux values are obtained directly from the test report, and the effective thermal conductivity of the insulation can be computed using Equation 5-2. The thermal conductivities computed below are used as input for the HEATING model, being dependent on the average insulation temperature listed below.

Hot Surface Temp.	Cold Surface Temp.	Temperature Difference, ΔT	Average Temp.	Heat Flux $q^{\prime \prime}$	Effective Thermal Conductivity
$\left({ }^{\circ} \mathrm{F}\right)$	$\left({ }^{\circ} \mathrm{F}\right)$	$\left({ }^{\circ} \mathrm{F}\right)$	$\left({ }^{\circ} \mathrm{F}\right)$	$\left(\mathrm{Btu} / \mathrm{hr}-\mathrm{ft}^{2}\right)$	$\left(\right.$ Btu/hr-ft$\left.{ }^{\circ} \mathrm{F}\right)$
316	126	190	221	17.61	0.0232
393	146	247	269.5	26.88	0.0272
506	170	336	338	45.45	0.0338
601	195	406	398	64.97	0.040

5.2.3 Computation of HEATING Regions Volumes

Each region of the HEATING model is assigned a minimum and maximum coordinate, in the (r, θ, z) coordinate system, which defines the boundary of the individual region. The volume of each region is then computed, using the equation shown below.

$$
\begin{equation*}
\text { Volume }=\frac{1}{2}\left(R_{\max }^{2}-R_{\min }^{2}\right)\left(\theta_{\max }-\theta_{\min }\right)\left(Z_{\max }-Z_{\min }\right) \tag{Eq.5-3}
\end{equation*}
$$

where: $\quad R=$ radius boundary (ft)
$\theta=$ azimuthal boundary (radians)
$Z=$ axial boundary (ft)
Table 2 lists all the dimensional data used to construct the HEATING model, based on the regions identified in Table 1. For those regions which contain a decay heat source term, the decay heat load provided by Design Input 2.7 is divided by the region volume to obtain a volumetric heat load (Btu/hr-ft ${ }^{3}$) for use in the model.

5.3 Thermal Boundary Conditions

5.3.1 Solar Insolation Heat Loads

Per Reference 7.1, a solar insolation of 400 g -cal/ cm^{2} is specified for curved surfaces for a 12 -hour period. The value of 400 g -cal/ $/ \mathrm{cm}^{2}$ is equal to $1474.7 \mathrm{Btu} / \mathrm{ft}^{2}$. Dividing the total solar insolation by 12 hours gives a heat flux of $\left(1474.7 \mathrm{Btu} / \mathrm{ft}^{2}\right) /(12 \mathrm{hr})=122.9$ Btu/hr- ft^{2}. This steady-state heat flux is applied to the curved surfaces of the transportation cask for Case 2. For the flat, vertical ends of the cask, a heat flux of $61.5 \mathrm{Btu} / \mathrm{hr}-\mathrm{ft}^{2}$ is applied, consistent with the value of $200 \mathrm{~g}-\mathrm{cal} / \mathrm{cm}^{2}$ specified in §71.71 of Reference 7.1.

5.3.2 Natural Convection for Horizontal Cylindrical Surfaces

The laminar natural convection heat transfer coefficient associated with the RVTS outer surface is computed using Equation (7-27) of Reference 7.3, as shown below.

$$
\begin{equation*}
h=\frac{0.27}{D^{1 / 4}} \Delta T^{1 / 4} \tag{Eq.5-4}
\end{equation*}
$$

For the RVTS diameter of 13 feet, the natural convection heat transfer coefficient is given as:

$$
\begin{equation*}
h=0.142 \Delta T^{1 / 4} \tag{Eq.5-5a}
\end{equation*}
$$

where the temperature difference is the surface temperature minus the ambient temperature.
Per Assumption 3.8, a 25 percent reduction is taken to account for possible obstruction to heat transfer due to the RVTS support saddle. Therefore, the natural convection heat transfer coefficient for the RVTS cylindrical surface is taken as:

$$
\begin{equation*}
h=0.107 \Delta T^{1 / 4} \tag{Eq.5-5b}
\end{equation*}
$$

Client	BNFL, Inc.	
Project	Big Rock Point Major Component Removal	
Proj. No	$10525-020$	Equip. No.

Prepared by	Mark C. Handrick	Date
Reviewed by	Michael E. Duffy	Date
Approved by	Robert J. Peterson	Date

5.3.3 Natural Convection for Vertical Surfaces

For the vertical end plates of the RVTS, the laminar natural convection heat transfer coefficient is determined using Equation (7-19b) of Reference 7.3.

$$
\begin{equation*}
h=0.555 \frac{k}{L}\left(G r_{L} P r\right)^{1 / 4} \tag{Eq.5-6}
\end{equation*}
$$

The characteristic length, L, is taken as the RVTS diameter for the purposes of computing the heat transfer coefficient at the vertical end plates.

The Grashof number is defined as shown below, with the fluid properties evaluated at the film temperature, defined as the average of the surface and the ambient temperatures.

$$
\begin{equation*}
G r_{L}=\frac{\rho^{2} g \beta \Delta T L^{3}}{\mu^{2}} \tag{Eq.5-7}
\end{equation*}
$$

Substituting the expression for the Grashof number into Equation 5-6 gives the following expression for the natural convection heat transfer coefficient for vertical plates.

$$
\begin{equation*}
h=0.555 \frac{k}{L^{1 / 4}}\left(\frac{\rho^{2} g \beta}{\mu^{2}} \operatorname{Pr}\right)^{1 / 4} \Delta T^{1 / 4} \tag{Eq.5-8}
\end{equation*}
$$

It is convenient to form the temperature-dependent properties into a single grouping for ease of use in computations. The grouping has the form shown below, and is renamed $C_{\text {, }}$ for brevity.

$$
\begin{equation*}
C_{1}=\frac{\rho^{2} g \beta}{\mu^{2}} \tag{Eq.5-9}
\end{equation*}
$$

Simplifying Equation 5-8 through the use of Equation 5-9 leads to the expression

$$
\begin{equation*}
h=0.555 \frac{k}{L^{1 / 4}}\left(C_{1} P r\right)^{1 / 4} \Delta T^{1 / 4}=C_{2} \Delta T^{1 / 4} \tag{Eq.5-10}
\end{equation*}
$$

where C_{2} is a function of the film temperature. The value of C_{2} is evaluated below for use in the HEATING model, based on air property data obtained from Design Input 2.6.

Temperature	Thermal Conductivity k	Property Grouping C_{1}	Prandtl Number Pr	C_{2}
$\left({ }^{\circ} \mathrm{F}\right)$	$\left(\right.$ Btu/hr-ft- $\left.{ }^{\circ} \mathrm{F}\right)$	$\left(1 / \mathrm{ft}^{3}-{ }^{\circ} \mathrm{F}\right)$	$(\mathrm{N} / \mathrm{A})$	$\left(\mathrm{Btu} / \mathrm{hr}-\mathrm{ft}^{2}-{ }^{\circ} \mathrm{F}^{5 / 4}\right)$
-100	0.01046	1.34 E 7	0.737	0.171
0	0.0133	4.20 E 6	0.73	0.163
100	0.0154	1.76 E 6	0.72	0.151
200	0.0174	8.50 E 5	0.72	0.142
400	0.0212	2.58 E 5	0.689	0.127
600	0.0250	1.06 E 5	0.685	0.120
800	0.0286	4.98 E 4	0.697	0.114

Client	BNFL, Inc.
Project	Big Rock Point Major Component Removal
Proj. No	$10525-020$

Prepared by	Mark C. Handrick	Date
Reviewed by	Michael E. Duffy	Date
Approved by	Robert J. Peterson	Date

5.3.4 Radiation Heat Transfer from RVTS to Ambient

To model radiation from the surface of the RVTS to the ambient environment, an emissivity, ε_{s}, of 0.66 is employed per Design Input 2.7.

The total heat transfer rate from the RVTS surface to the ambient air is then calculated from the relation

$$
\begin{equation*}
q_{\text {radiation }}=\varepsilon_{s} \sigma A_{s}\left(T_{s}^{4}-T_{a i r}^{4}\right) \tag{Eq.5-11}
\end{equation*}
$$

where the temperatures are in absolute units of ${ }^{\circ} R$.

5.3.5 Forced Convection Heat Transfer from Combustion Flames

Convective heat transfer from the combustion gases of the hypothetical accident fire to the RVTS are dominated by forced convection. Equation 18a of Reference 7.22, shown below, is based on measurements of turbulent, steady-state convection for flows parallel to flat plates. A turbulent forced convection heat transfer coefficient is conservatively employed for all ranges of Reynolds numbers. The length scale used in the correlation is the length of the surface in the direction of flow. For vertical flow, the length scale of interest in this analysis is the RVTS diameter, D.

$$
\begin{align*}
& N u=0.037 R e^{0.8} \mathrm{Pr}^{0.6} \tag{Eq.5-12}\\
& h=\frac{k N u}{D} \tag{Eq.5-13}
\end{align*}
$$

The Reynolds number is defined as shown below, where V is the flame velocity in feet/second.

$$
\begin{equation*}
\operatorname{Re}=\frac{V D}{v} \tag{Eq.5-14}
\end{equation*}
$$

Figure 7.1.3 of Reference 7.23 reports a range of flame velocities for various hydrocarbons burned in air at atmospheric conditions. The maximum hydrocarbon flame velocity is approximately 5.0 feet/sec for $\mathrm{C}_{2} \mathrm{H}_{2}$ gas, although a flame velocity of approximately 8.0 feet/sec is shown for hydrogen, H_{2}. To envelop this data, a flame velocity of 10.0 feet/sec is chosen to conservatively estimate the forced convection heat transfer coefficient.

Gas properties for carbon dioxide $\left(\mathrm{CO}_{2}\right)$ and water vapor $\left(\mathrm{H}_{2} \mathrm{O}\right)$ are taken from Table A-3 of Reference 7.3 at temperatures which are representative of the $1475^{\circ} \mathrm{F}$ flame temperature specified in Reference 7.1. CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ are selected for evaluation as these are the primary gaseous products of a hydrocarbon/air combustion process.

Gas	Thermal Conductivity	Kinematic Viscosity	Prandtl Number	Reynolds Number	Nusselt Number	Heat Transfer Coefficient
	$\left(\mathrm{Btu} / \mathrm{hr}-\mathrm{ft}{ }^{\circ} \mathrm{F}\right)$	$\left(\mathrm{ft}^{2} / \mathrm{sec}\right)$	$(\mathrm{N} / \mathrm{A})$	$(\mathrm{N} / \mathrm{A})$	$(\mathrm{N} / \mathrm{A})$	$\left(\mathrm{Btu} / \mathrm{hr}-\mathrm{ft}^{2}{ }^{\circ} \mathrm{F}\right)$
$\mathrm{CO}_{2} @ 1500^{\circ} \mathrm{F}$	0.0420	0.000925	0.73	140540.5	402.2	1.30
$\mathrm{H}_{2} \mathrm{O} @ 1400^{\circ} \mathrm{F}$	0.053	0.00178	0.87	73033.7	264.7	1.08

To conservatively bound any uncertainties in the estimation of the heat transfer coefficient, a factor of two is applied to the maximum value computed in the above table. Therefore, a forced convection heat transfer coefficient of $2.6 \mathrm{Btu} / \mathrm{hr}-\mathrm{ft}^{2}-{ }^{\circ} \mathrm{F}$ is used for the hypothetical accident case. The PATRAM 1986 Symposium presentation, Heat Transfer Boundary Conditions in Pool Fires recommends an average heat transfer coefficient of $1.7 \mathrm{BTU} / \mathrm{hr}-\mathrm{ft}^{2}-{ }^{\circ} \mathrm{F}$ for HAC fire conditions. Therefore, the usage of a forced convection heat transfer coefficient of $2.6 \mathrm{BTU} / \mathrm{hr}-\mathrm{ft}^{2}-{ }^{\circ} \mathrm{F}$ is conservative.

5.3.6 Radiation Heat Transfer Across Gap Region

To model radiation heat transfer across the gap region shown in Figure 7, the methodology cited in Reference 7.2 is employed to approximate one-dimensional radiation exchange for narrow gaps. An effective heat transfer coefficient for radiation exchange, h_{r}, is provided as Equation 3.8 of Reference 7.2, shown below.

$$
\begin{equation*}
h_{r}=\frac{\sigma}{1 / \varepsilon_{1}+\left(A_{1} / A_{2}\right)\left(1 / \varepsilon_{2}-1\right)} \tag{Eq.5-15}
\end{equation*}
$$

where $\quad A_{1}=$ the surface area corresponding to the smaller radius
$A_{2}=$ the surface area corresponding to the larger radius
$\varepsilon_{1}=$ emissivity of surface corresponding to the smaller radius
$\varepsilon_{2}=$ emissivity of surface corresponding to the larger radius

The numeric value of the surface area ratio A_{1} / A_{2} equal to the ratio of radii r_{1} / r_{2}. This value is determined from a review of Figure 7, and is computed to be $74.875 / 75.0=0.9983$. The emissivity values are the same for each surface, with $\varepsilon=0.66$. Solving for h_{r} gives:

$$
h_{\mathrm{r}}=\frac{0.1714 E-8}{1 / 0.66+(0.9983)(1 / 0.66-1)}=8.446 \times 10^{-10} \mathrm{Btu} / \mathrm{hr}-\mathrm{ft}^{2}-\mathrm{R}
$$

This heat transfer coefficient is applied to gap region number 51, as shown in Figure 7. The HEATING model is modified to per Figure 7 accommodate the gap region for Cases Gap1 and Gap2.

6.0 Results

The results of the HEATING analysis are summarized below, with computer code input and output files documented in Attachment A for the various cases examined in this calculation.

6.1 Maximum Accessible Surface Temperature

For the Case 1a analysis, the maximum accessible surface temperature of the RVTS is $101.2^{\circ} \mathrm{F}$. This surface temperature occurs on the top surface, at an elevation of $z=24.94$ feet. A sensitivity run is made with an RVTS surface emissivity value of $\varepsilon=0.0$. The maximum surface temperature computed for this scenario, Case 1 b , is $103.8^{\circ} \mathrm{F}$, which is a $2.6^{\circ} \mathrm{F}$ temperature increase over the Case 1 a result. A plot of the radial temperature profile, at the top plate of the active region, is shown in Figure 8. The profile shown in Figure 8 is for the limiting azimuthal angle of $\theta=90^{\circ}$, consistent with the location of the GBEP hot spot, as discussed on page 11. The peak in the radial profile of Figure 8 occurs at the modeled location of the GBEP hot spot.

The maximum RVTS surface temperature is below the acceptance criteria of $185^{\circ} \mathrm{F}$, therefore the requirements of 10 CRF 71.43 have been met.

Other results of this calculation are presented below, for use in structural analyses of the RVTS.

6.2 Normal Conditions of Transport

For the Case 2a scenario, NCT with applied solar insolation heat loads at an ambient temperature of 100 ${ }^{\circ} \mathrm{F}$, the maximum temperature inside the RVTS is $191.18^{\circ} \mathrm{F}$. This point is located near the center of the active fuel region, at the elevation of $z=11.91$ feet. The maximum outer surface temperature of the RVTS is $191.2^{\circ} \mathrm{F}$. Plots of radial temperature profiles at various z elevations are shown in Figure 9 and Figure 10.
The Case 2 b sensitivity run models a crushed stainless steel insulation region, where the thermal conductivity of the insulation is replaced with that of $50 \mathrm{Ib}_{\mathrm{m}} / \mathrm{ft}^{3}$ LDCC. The thermal gradient in the insulation region for Case 2 b is approximately $1.5^{\circ} \mathrm{F}$, compared to $6.7^{\circ} \mathrm{F}$ for Case 2 a . The maximum outer surface temperature of the RVTS is $191.1^{\circ} \mathrm{F}$. The results of the Case 2 b scenario indicate that the consequences of potentially crushed reactor vessel insulation are negligible in terms of RVTS thermal performance.

For the Case 3a scenario, NCT with no solar insolation and an ambient temperature of $-40^{\circ} \mathrm{F}$, the maximum temperature inside the RVTS is $-21.72^{\circ} \mathrm{F}$, occurring at the top plate at elevation 15.45 feet. The minimum RVTS surface temperature for the Case 3a analysis is $-39.4^{\circ} \mathrm{F}$. The corresponding maximum internal temperature and minimum surface temperature for the Case 3 b analysis are $-1.81{ }^{\circ} \mathrm{F}$ and $-19.45{ }^{\circ} \mathrm{F}$ respectively. Plots of radial temperature profiles at the active fuel region midpoint elevation are shown in Figure 11 for Cases 3a and 3b. The profile shown in Figure 11 is for the limiting azimuthal angle of $\theta=90^{\circ}$, consistent with the location of the GBEP hot spot. The peak in the radial profile of Figure 11 occurs at the modeled location of the GBEP hot spot.

The effects of a postulated 0.125 -inch gap between the 3 -inch RVTS wall and the 4 -inch shield plate are examined in sensitivity runs Case Gap1 ($100^{\circ} \mathrm{F}$ ambient air with no solar insolation) and Case Gap2 ($100{ }^{\circ} \mathrm{F}$ ambient air with solar insolation). For Case Gap1, the temperature drop across the gap region is approximately $0.3^{\circ} \mathrm{F}$. For Case Gap2, the temperature drop across the gap region is approximately 0.5 ${ }^{\circ} \mathrm{F}$. The change in RVTS surface temperature in the active region is less than $0.1^{\circ} \mathrm{F}$, when compared to

the results of Cases 1a and 2a. Therefore, the effect of a postulated 0.125 -inch gap between the RVTS wall and the shield plate is negligible in terms of RVTS thermal performance.

6.3 Hypothetical Accident Condition

For the Case 4a scenario, the maximum temperature is reached at 30 minutes after initiation of the postulated hydrocarbon fire. The maximum temperature is $1457.6^{\circ} \mathrm{F}$, located on the outer surface of the RVTS at $z=0.0$ feet and $r=6.5$ feet. Figure 12 shows time-dependent radial temperature profiles at the midpoint elevation of the active region for the Case $4 a$ analysis. The temperature in the RVTS outer wall and the external grout are shown to increase sharply during the postulated hydrocarbon fire, with the maximum temperatures occurring at the RVTS outer surface. After the 30 minute fire, the RVTS outer wall begins to cool, however the peak RVTS wall temperature is still approximately $1100^{\circ} \mathrm{F} 30$ minutes after the postulated fire has been extinguished.

The results of Case $4 b$ are similar to those of Case $4 a$, however the peak surface temperatures are slightly less than the Case 4a results. However, the temperature gradient in the RVTS wall is greater for the Case 4 b scenario, due to the colder initial RVTS temperature distribution.

The temperature distribution for all cases analyzed in this calculation are tabulated in Table 4 for use in external structural analyses of the RVTS.

6.4 Other Considerations

The potential use of additional local shielding on the RVTS surface, nominally 0.5 -inch thick steel plate, will have negligible impact on the thermal response of the RVTS documented in this calculation.

The thermal resistance (per unit area) to radial heat conduction of the RVTS wall and the 50 pcf LDCC in the active region, combined in series, is computed below based on the material thickness and thermal conductivity of the respective materials. See page 6 and page 39 for thermal conductivities and material thickness.

```
=(7"/12)/23.6 Btu/hr-ft-F+ (9.53"/12)/0.146 Btu/hr-ft-F
=0.0247 hr-ft2 -F/Btu + 5.439 hr-ft fr-F/Btu
= 5.464 hr-ft - 2-F/Btu
```

The thermal resistance of the 0.5 inch additional local shielding is equal to $(0.5 " / 12) / 23.6=0.00177 \mathrm{ft}^{2}$ -hr-F/Btu. Since this value is negligible compared to the thermal resistance of the LDCC and RVTS wall, the temperature gradients documented in this calculation will be essentiaily unaffected by the potential use of 0.5 -inch additional local shielding on the RVTS surface.

7.0 References

7.1 United States Nuclear Regulatory Commission Rules and Regulations, Title 10, Part 71,
"Packaging and Transportation of Radioactive Materials", January 30, 1998.
7.2 HEATING 7.2f, Multidimensional, Finite-Difference Heat Conduction Analysis, Sargent \& Lundy Program No. 03.7.564-7.2.
7.3 Principles of Heat Transfer, Frank Kreith, 3rd Edition, 1973.
7.4 Introduction to Heat Transfer, Frank P. Incropera \& David P. DeWitt, Second Edition, 1990.
7.5 ASME Boiler and Pressure Vessel Code, Section II, Part D, "Properties", 1995 Edition, July 1, 1995.
7.6 SFPE Handbook of Fire Protection Engineering, Second Edition, 1995.
7.7 Thermal Radiation Heat Transfer, Siegel and Howell, 1972.
7.8 Flow of Fluids Through Valves, Fittings, and Pipe, Crane Technical Paper No. 410, Twenty Fifth Printing, 1991.
7.9 Sargent \& Lundy Calculation No. N-10525-020-0001, Rev. 1, "Reactor Vessel Heat Rates and Shielding.
7.10 1997 ASHRAE Handbook, Fundamentals, Inch-Pound Edition.
7.11 WMG Inc. Report WMG-9902, Rev. 1, "Big Rock Point Reactor Vessel and Internals Characterization and Classification", June 1999.
7.12 Combustion Engineering Drawing No. F-230-791-2, Rev. 2, "General Arrangement - Reactor Vessel".
7.13 Combustion Engineering Drawing No. E-201-806-4, Rev. 4, "Closure Head Forming \& Welding Reactor Vessel".
7.14 General Electric Drawing No. 197E853, Rev. 2, "Vessel \& Core Arrangement".
7.15 General Electric Drawing No. 107C3539, Rev. 0, "Window".
7.16 General Electric Drawing No. 141F797, Rev. 5, "Thermal Shield".
7.17 Johns-Manville Co. Drawing No. BL-13954-1, Rev. 4, "Blanket Insulation".
7.18 General Electric Drawing No. 104R175, Sheet 4, Rev. 3, "Assembly Reactor Vessel".
7.19 Determination of Thermal Transference of Metallic Pipe Insulation, Prepared for Johns-Manville Corporation by Colorado School of Mines Research Institute, January 26, 1973.

7.20 ACI Manual of Concrete Practice, Part 3-1998; ACI 216R-89 (Reapproved 1994), "Guide for Determining the Fire Endurance of Concrete Elements".
7.21 Steels for Nuclear Applications, Chapter 3: Mechanical and Physical Properties of Steels for Nuclear Applications, United States Steel Corporation, 1967.
7.22 NUREG/CR-3779, SAND83-2579, Vol. 2, "Hydrogen Burn - Equipment Response Algorithm (HYBER): Reference Manual", August, 1984.
7.23 Marks' Standard Handbook for Mechanical Engineers, Ninth Edition, Ed. Eugene A. Avallone, McGraw-Hill Book Company, New York, 1987.
7.24 Sargent \& Lundy Calculation No. N-10525-020-0002, Rev. 1, "Transport Package Shielding Design".
7.25 Deleted
7.26 Sargent \& Lundy Calculation No. N-10525-020-004, Rev. 1, "Reactor Vessel Transport System Radiation Source Term.
7.27 General Electric Drawing No. 104R175, Sheet 2, Rev. 6, "Assembly Reactor Vessel".
7.28 General Electric Drawing No. 197E861, Rev. 4, "Top Guide".
7.29 General Electric Drawing No. 198E118, Rev. 2, "Top Plate".
7.30 Sargent \& Lundy Drawing No. SD-10525-020-001, Rev. 1, "RVTS Cask - Major Component Removal Big Rock Point Restoration", (See Attachment C, pages C1-C2).
7.31 Sargent \& Lundy Drawing No. SD-10525-020-002, Rev. 1, "RVTS Tie-Down System - Major Component Removal Big Rock Point Restoration", (See Attachment C, pages C3-C4).

Case 1: Maximum Surface Temperature with No Insolation

Temperature Profile at Top Plate in Active Region, $\theta=90^{\circ}, Z=15.45$ feet

results-rev1.xls Case 1 - Top Plate

Case 2a: Normal Conditions of Transport with Solar Insolation

Radial Temperature Profiles at $\theta=90^{\circ}$

BNFL In
Big Rock Point Major Component Removal
Project No. 10525-020

Case 2a: Normal Conditions of Transport with Solar Insolation
Radial Temperature Profiles at $\theta=90^{\circ}$

Case 3: Normal Conditions of Transport without Solar Insolation
Temperature Profile at Top Plate in Active Region, $\theta=90^{\circ}, Z=15.45$

results-rev1.xls Case 3 - Reactor Vessel

BNFL In
Big Rock Point Major Component Removal
Project No. 10525-020

Figure 12
Calculation No. M-10525

Temperature Profiles at Top Plate in Active Region, $\theta=90^{\circ}, Z=15.45^{\circ}$

Ambient Air Temperature of $100^{\circ} \mathrm{F}$ Before and After Fire

Temperature Profiles at Top Plate in Active Region, $\theta=90^{\circ}, Z=15.45^{\circ}$ Ambient Air Temperature of - $20^{\circ} \mathrm{F}$ Before and After Fire

results-rev1.xls Case 4b - Reactor Vessel

Region	Description	Min R (in)	$\operatorname{Max} \mathrm{R}$ (in)	$\operatorname{Min} \theta$ (${ }^{\circ}$	$\operatorname{Max} \theta$ ${ }^{\circ}$)	$\operatorname{Min} Z$ (in)	Max 7 (iin)	Materal	Mat No.	Heat I oad (Btu. his)
1	Bottom of Cask		78	0	360	0	$\bigcirc 4$	ASTM A516 Grade 70	1	0.0
2	Side Wall of Cask Below Active Region	75	78	0	360	4	101.375	ASTM A S16 Grade 70	1	0.0
3	Side Wall of Cask in Active Region	$\therefore 71$	$\therefore 78$	0	360	101.375	197.375	ASTM A516 (irade 70	1	0.0
4	Side Wall of Cask Above Active Region	-75	-78	0	360	197.375	299.25	ASTM A516 Grade 70	1	0.0
5	Top Lifting Plate of Cask	+0	75	0	360	295.25	299.25	ASTM A 516 (irade 70	1	0.0
6	External LDCC Below Vessel		75	0	360	4	8	Grout ($50 \mathrm{lb} \mathrm{m}_{\mathrm{m}} / \mathrm{ft}^{3}$)	2	0.0
7	External LDCC Along Vessel Below Active Region	61.46875	75	0	360	8	101.375	Grout (50 $\mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}$)	2	0.0
8	External LDCC Along Vessel in Active Region	61.46875	71	0	360	101.375	197.375	Grout (50 $\mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{2}$)	2	0.0
9	External LDCC Along Vessel Above Active Region	61.46875	75	0	360	197.375	295.25	Grout ($50 \mathrm{lb} \mathrm{m}^{\prime} / \mathrm{ft}^{2}$)	2	0.0
10	SS Insulation on Reactor Vessel Exterior	$58: 46875$	61.46875	0	360	8	295.25	SS 304 Folded Foil	3	2.19
11	Reactor Vessel Bottom	$\text { + } 0$	58.46875	0	360	8	13.25	SA-302 Grade B	4	0.0
12	Reactor Vessel Side Wall	53.21875	58.46875	0	360	13.25	295.25	SA-302 Grade B	4	41.8
13	SS Cladding on Reactor Vessel Interior	53.0625	53.21875	0	360	13.25	295.25	SS 304	5	9.23
14	Interior LDCC Below Active Region	0	53.0625	0	360	13.25	101.375	Grout (30 $\mathrm{lb}_{\mathrm{ml}} \mathrm{ft}^{3}$)	6	0.0
15	Interior LDCC Above Active Region	$\bigcirc 0$	53.0625	0	360	193.375	295.25	Grout (30 $\mathrm{hbrem} / \mathrm{ft}^{\prime}$)	6	0.0
16	Top Guide Plate with GBEP	44	50	0	89	184.375	185.375	SS 304	5	25.4
17	Top Guide Plate with GBEP Hot Spot	44	50	89	91	184.375	185.375	5 S 304	5	29.74
18	Top Guide Plate with GBEP	44	50	91	180	184.375	185.375	SS 304	5	25.4
19	Top Guide Plate without Top Guide End Stubs	$\square 44$	50	180	360	184.375.	185.375	SS 304	5	21.5
20	Thermal Shield	50	51.5	0	360	101.375	193.375	SS 304	5	278.8
21	Scal Weight	51.5	53.0625	5	25	101.375	185.375	SS 304	5	3.45
22	Seal Weight	515	53.0625	35	55	101.375	185.375	SS 304	5	3.45
23	Scal Weight	515	53.0625	65	85	101.375	185,375	SS 304	5	3.45
24	Seal Weight	بSIS	53.0625	. 95	$\therefore 115$	101.375	185.375	SS 304	5	3.45
25	Seal Weight	+515	53.0625	\cdots	145	101.375	185.375	SS 30.4	5	3.45

BNFL Inc.
Big Rock Point Major Component Removal
Project No. 10525-020

Region	Description	Min R (in)	$\operatorname{Max} \mathrm{R}$ (in)	$\begin{gathered} \operatorname{Min} 0 \\ \left(^{\circ}\right) \\ \hline \end{gathered}$	$\operatorname{Max} 0$ $\left({ }^{\circ}\right)$	Min Z (iin)	$\operatorname{Max} Z$ (in)	Material	Mat No .	$\begin{aligned} & \text { Heat Load } \\ & \text { (Btu ho) } \\ & \hline \hline \end{aligned}$
26	Seal Weight	515	53.0625	155	175	101.375	185.375	SS 304	5	3.45
27	Seal Weight	51.5	53.0625	185	205	101.375	185.375	SS 304	5	3.45
28	Seal Weight	51.5	53.0625	215	235	101.375	185.375	SS 304	5	3.45
29	Scal Weight	51.5	53.0625	245	265	101.375	185.375	$5 S 304$	5	3.45
30	Seal Weight	515	53.0625	275	295	101.375	185.375	5 SO 4	5	3.45
31	Seal Weight	515	53.0625	305	325	101.375	185.375	SS 304	5	3.45
32	Scal Weight	5 515	53.0625	335	355	101.375	185.375	SS 304	5	3.45
33	LDCC Space between Seal Weights	515	53.0625	0	5	101.375	185.375	Grout ($30 \mathrm{fb}_{\mathrm{m}}$ (ft t^{2})	6	0.00
34	LDCC Space between Seal Weights	$51 \leqslant 5$	53.0625	25	35	101.375	${ }^{185.375}$	Grout ($30 \mathrm{lb} \mathrm{mm}_{\text {/ }} \mathrm{fl}^{2}$)	6	0.00
35	LDCC Space between Seal Weights	55	53,0625	55	65	101.375	185.375	Grout ($30 \mathrm{lb} \mathrm{m}_{\mathrm{m}} / \mathrm{ft}^{3}$)	6	0.00
36	LDCC Space between Seal Weights	+545	53.0625	85	+95	101.375	185.375	Grout ($30 \mathrm{lb}_{\mathrm{ml}} / \mathrm{ft}^{3}$)	6	0.00
37	LDCC Space between Scal Weights	$51,5$	53.0625	115	125	101.375	185.375	Grout ($301 \mathrm{bb}_{\mathrm{m}} / \mathrm{tt}^{2}$)	6	0.00
38	LDCC Space between Seal Weights	- 515	53.0625	145	155	101.375	185.375	Grout ($30 \mathrm{hbm}_{\mathrm{m}} / \mathrm{ft}^{2}$)	6	0.00
3)	LDCC Space between Seal Weights	51.5	53.0625	175	185	101.375	185.375	Grout ($30 \mathrm{fh}_{\mathrm{ml}} / \mathrm{ft}^{2}$)	6	0.00
4)	LDCC Space between Seal Weights	$51,5$	53.0625	205	215	101.375	185.375	Grout ($301 \mathrm{lb}_{\text {m }} / \mathrm{ft}^{\mathbf{3}}$)	6	0.00
41	LDCC Space between Seal Weights	51.5	53.0625	235	245	101.375	185.375	Grout ($30 \mathrm{lb}_{\mathrm{m}}, \mathrm{fl}^{2}$)	6	0.00
42	LDCC Space between Seal Weights	51.5	53.0625	265	275	101.375	185.375		6	0.00
43	LDCC Space between Scal Weights	51.5	53.0625	295	305	101.375	185.375	(iroub ($301 \mathrm{~lm}, \mathrm{ft}^{\text {a }}$)	$1)$	0.00
44	LDCC Space between Seal Weights	51.5	53.0625	325	335	101.375	185.375		6	0.00
45	LDCC Space between Seal Weights	51.5	53.0625	355	360	101.375	185.375	Grout ($30 \mathrm{lb} \mathrm{m}_{\mathrm{m}} \mathrm{ft}^{\prime}$)	6	0.00
46	Interior LDCC in Active Region below Top Guide	0	50	0	360	101.375	184.375	Grout ($30 \mathrm{fh} \mathrm{mer}^{\left(\mathrm{fl}^{3}\right)}$	6	9.64
47	Interior LDCC within Top Guide Plate	$\text { Y } 0$	44	0	360	184.375	$\frac{185.375}{}$	(Grout ($301 \mathrm{lb}_{1 \mathrm{~m}} \cdot \mathrm{ff}^{7}$)	6	0.00
48	Interior LDCC in Active Region above Top Guide LDCC Between RV Wall \& Thermal Shield above Seat	YKO	50	0	360	185.375	$\begin{aligned} & 193.375 \\ & \frac{1}{x} \end{aligned}$	Grout ($30 \mathrm{lb} \mathrm{m}_{\mathrm{m}} / \mathrm{f}^{3}$)	0	0.00
49	Weights	E5 LS	53.0625	0	. 360	185.375	193.375	Grout ($30 \mathrm{lb}_{\mathrm{ml}} / \mathrm{ft}^{3}$)	6	0.00

Region	$\operatorname{Min} R$ (in)	Max R (iii)	Min 0 $\left({ }^{\circ}\right)$	$\begin{gathered} \operatorname{Max} 0 \\ \left({ }^{\circ}\right) \\ \hline \end{gathered}$	$\operatorname{Min} Z$ (in)	Max Z (in)	$\operatorname{Min} \mathrm{R}$ (feet)	$\begin{gathered} \text { Max } R \\ (\text { feet }) \end{gathered}$	$\begin{gathered} \operatorname{Min} \theta \\ (\text { radians) } \end{gathered}$	$\operatorname{Max} \theta$ (radians)	Min 7. (feet)	$\begin{gathered} \text { Max } 7 . \\ \text { (feel) } \end{gathered}$	Volume (ft')	Heat load ($\mathrm{Bl} / \mathrm{h} / \mathrm{hr}$)	Heat Source $\left(B+u f t^{3}-h r\right)$
26	51.5	53.0625	155	${ }^{1} 175$	101.375	$-185: 375$	4.2917	4.4219	2.7053	3.0543	8.4479	15.447)	1.39	3.45	2.49
27	51.5	53.0625	185	205	101.375	185.375	4.2917	4.4219	3.2289	3.5779	8.4479	15.4479	1.39	3.45	2.49
28	51.5	53.0625	215	\%235	101.375	185375	4.2917	4.4219	3.7525	4.1015	8.4479	15.4479	1.39	3.45	2.49
29	51.5	53.0625	245	2265	101.375	185.375	4.2917	4.421^{\prime}	4.2761	4.6251	8.4479	15.4479	1.39	3.45	2.49
30	51.5	53,0625	275	295	101.375	185,375	4.2917	4.4219	4.7997	5.1487	8.4479	15.4479	1.39	3.45	240
31	51.5	53.0625	305	+325	101.375	185.375	4.2917	4.4219	5.3233	5.6723	8.4479	15.4479	134	3.45	2.49
32	51.5	53.0625	335	355	101.375	185.375	4.2917	44219	5.8469	0.1959	8.4479	15.4479	1.31)	3.45	249
33	51.5	53.0625	0	\& 5	101.375	185.375	4.2917	4.4219	0.00000	0.0873	8.4479	154479	0.35	0.0	0.0
34	51:5.	53.0625	25	द35	101.375	185:375	4.2917	4.4219	0.4363	0.6109	8.4479	15.4479	0.69	0.0	0.0
35	51.5	53.0625	55	-65	101.375	185375	4.2917	4.4219	0.9599	1.1345	8.4479	15.4479	0.69	0.0	0.0)
36	51.5w	53.0625	85	95	$101,375$	3185375	4.2917	4.4219	1.4835	1.6581	8.4479	15.4479	0.69	0.0	0.0
37	51.54	53.0625	115	2125	101.375	$\underline{185} 375$	4.2917	4.4219	2.0071	2.1817	8.4479	15.4479	0.69	0.0	0.0
38	51.5	53.0625	145	1155	101.375	185.375	4.2917	4.4219	2.5307	2.7053	8.4479	15.4479	0.69	0.0	0.)
39	51.5	53.0625	175	-185	101.375	185,375	4.2917	4.4219	3.0543	3.2289	8.4479	15.4470	0.69	0.0	0.0
40	51.5	53.0625	205	215	101.375	$185: 375$	4.2917	4.4219	3.5779	3.7525	8.4479	15.4479	0.69	0.0	0.0
41	51.51	53.0625	235	245 3	101.375	185:375	4.2917	4.4219	4.1015	4.2761	8.4479	15.4479	0.69	0.0	0.0
42	51.5	53.0625	265	275	101.375	185.375	4.2917	4.4219	4.6251	4.7997	8.4479	15.447)	0.69	0.0	0.0
43	51.5	53.0625	295	305	101.375	185.375	4.2917	4.4219	5.1487	5.3233	8.4479	15.4479	0.69	0.0	0.0
44	51.5	53.0625	325	335	101.375	185375	4.2917	4.4219	5.6723	5.8469	8.447)	15.4479	0. 69	0.0	10.0
45	51.5	53.0625	355	360	101.375	$185: 375$	4.2917	4.4219	6.1959	6.2832	8.4479	15.4479	0.35	0.0	0.0
46	OR:	50	0^{*}	360	101375	184375	0.0	4.1667	0.0	6.2832	8.4479	15.3640	377.25	9.64	0.020
47	0	$\checkmark 44$	0	460	184.375	185375	0.0	3.6667	0.0	6.2832	15.3646	15.4479	352	0.0	0.0
48	0	50	0	1360	185.375	193375	0.0	4.1667	0.0	6.2832	15.4479	16.1146	36.36	0.0	0.0
49	51.5	53.0625	0	360	185.375	193.375	4.2917	4.4219	0.0	6.2832	15.4479	16.1146	2.38	0.0	0.0

$\left.\begin{array}{cccc}\begin{array}{c}\text { Material No. 1 } \\ \text { A516 Grade 70 }\end{array} & \begin{array}{c}\text { Transport Cask } \\ (\mathrm{C}-\mathrm{Mn}-\mathrm{Si})\end{array} & & \\ \text { Density, } \rho\left(\mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}\right)\end{array} \quad \begin{array}{cccc} & 490.8\end{array}\right)$

Material No. 4 SA 302 Grade B	Reactor Vessel (Mn-1/2Mo)		
Density, $\rho\left(\mathrm{lb}_{\mathrm{m}} / \mathrm{ff}^{3}\right)$	489.0		
Temperature	Thermal Conductivity	Thermal Diffusivity	Specific Heat
T	k	α	c_{p}
(${ }^{\text {F }}$)	(Btu/hr-ft- ${ }^{\text {F }}$)	$\left(\mathrm{ft}^{2} / \mathrm{hr}\right)$	($\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}{ }^{-} \mathrm{F}$)
70	23.3	0.455	0.10
200	24.4	0.437	0.11
400	24.6	0.398	0.13
600	23.5	0.353	0.14
800	22.0	0.300	0.15
1200	18.6	0.193	0.20
1500	15.5	0.164	0.19

Material No. 5 SS 304	Stainless Steel $(18 \mathrm{Cr}-8 \mathrm{Ni})$		
Density, $\rho\left(\mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}\right)$	501.1		
Temperature	Thermal Conductivity	Thermal Diffusivity	Specific Heat
T	k	α	c_{p}
$\left({ }^{\circ} \mathrm{F}\right)$	$\left(\mathrm{Btu} / \mathrm{hr}-\mathrm{ft}-{ }^{\circ} \mathrm{F}\right)$	$\left(\mathrm{ft}^{2} / \mathrm{hr}\right)$	$\left(\mathrm{Btu} / \mathrm{lb}_{\mathrm{m}}-{ }^{-} \mathrm{F}\right)$
70	8.6	0.151	0.11
200	9.3	0.156	0.12
400	10.4	0.165	0.13
600	11.3	0.174	0.13
800	12.2	0.184	0.13
1200	14.0	0.203	0.14
1500	15.3	0.216	0.14

Case 1a: Steady-State Temperature Distribution																			
Elev. (ft)																			
24.94	100.73	100.76	100.81	100.91	101.05	101.14	101.17	101.18	101.19	101.16	101.07	101	100.94	100.87	100.82	100.78	100.75	100.74	100.73
24.6	100.74	100.76	100.82	100.91	101.05	101.16	101.19	101.24	101.24	101.23	101.1	101.01	100.94	100.88	100.82	100.78	100.73	100.72	100.72
22.57	102.22	102.25	102.29	102.34	102.4	102.43	102.44	102.45	102.45	102.44	101.23	101.08	100.94	100.79	100.65	100.54	100.42	100.42	100.42
20.53	103.58	103.63	103.67	103.7	103.71	103.71	103.71	103.7	103.7	103.7	101.64	101.39	101.15	100.91	100.68	100.5	100.32	100.32	100.32
18.49	104.99	105.09	105.17	105.22	105.19	105.11	105.09	105.07	105.07	105.07	102.12	101.77	101.43	101.1	100.79	100.54	100.3	100.3	100.3
16.45	106.54	106.77	107.1	107.51	107.71	107.16	106.94	106.67	106.67	106.66	102.37	101.84	101.34	100.85	100.37	100.35	100.34	100.34	100.34
16.11	106.78	107.04	107.45	108.16	109.38	108.74	108.73	106.98	106.97	106.96	102.44	101.89	101.36	100.85	100.36	100.35	100.35	100.35	100.34
15.45	107.23	107.55	108.14	109.6	117.54	110.46	110.02	107.59	107.59	107.54	102.59	102	101.43	100.88	100.36	100.36	100.35	100.35	100.35
15.36	107.29	107.6	108.2	109.7	117.4	110.18	109.88	107.65	107.65	107.59	102.61	102.01	101.44	100.89	100.36	100.36	100.35	100.35	100.35
13.64	107.84	108	108.14	108.27	108.22	107.74	107.74	107.56	107.56	107.55	102.62	102.02	101.45	100.9	100.36	100.36	100.36	100.36	100.35
11.91	107.85	107.9	107.9	107.81	107.6	107.47	107.47	107.35	107.35	107.34	102.55	101.97	101.42	100.88	100.36	100.36	100.36	100.35	100.35
10.18	107.47	107.49	107.45	107.35	107.18	107.09	107.09	106.97	106.96	106.95	102.43	101.88	101.35	100.84	100.35	100.35	100.35	100.35	100.34
8.45	106.65	106.67	106.65	106.59	106.51	106.51	106.51	106.36	106.36	106.35	102.25	101.75	101.27	100.8	100.35	100.34	100.33	100.33	100.33
6	105.35	105.36	105.36	105.35	105.32	105.29	105.29	105.28	105.28	105.28	102.2	101.83	101.47	101.13	100.8	100.54	100.29	100.28	100.28
3.55	104.24	104.26	104.28	104.3	104.33	104.35	104.35	104.35	104.35	104.35	101.86	101.56	101.26	100.98	100.71	100.49	100.28	100.27	100.27
1.1	103.02	103.04	103.1	103.2	103.35	103.45	103.49	103.53	103.53	103.54	101.53	101.28	101.05	100.83	100.64	100.48	100.33	100.32	100.32
0.67	103.01	103.03	103.09	103.19	103.34	103.43	103.45	103.47	103.47	103.47	101.54	101.11	100.86	100.68	100.54	100.44	100.35	100.35	100.35
0.33	100.81	100.81	100.79	100.76	100.7	100.65	100.64	100.63	100.62	100.57	100.52	100.49	100.47	100.44	100.42	100.4	100.38	100.37	100.37
0	100.8	100.8	100.78	100.75	100.69	100.64	100.63	100.61	100.61	100.55	100.52	100.49	100.46	100.44	100.42	100.4	100.39	100.38	100.38
	0	0.92	1.83	2.75	3.67	4.17	4.29	4.42	4.43	4.87	5.12	5.32	5.52	5.72	5.92	6.08	6.25	6.38	6.5

Case 1b: Steady-State Temperature Distribution

Elev. (ft)																			
24.94	103.34	103.36	103.42	103.52	103.65	103.73	103.75	103.77	103.77	103.74	103.65	103.57	103.5	103.43	103.37	103.33	103.3	103.29	103.28
24.6	103.34	103.37	103.43	103.52	103.66	103.75	103.78	103.81	103.81	103.8	103.67	103.58	103.51	103.44	103.37	103.32	103.27	103.26	103.26
22.57	104.73	104.76	104.81	104.85	104.91	104.93	104.94	104.95	104.95	104.95	103.66	103.5	103.35	103.2	103.05	102.92	102.8	102.8	102.8
20.53	106.02	106.07	106.11	106.13	106.14	106.14	106.14	106.14	106.14	106.13	103.95	103.69	103.43	103.18	102.94	102.75	102.55	102.55	102.55
18.49	107.37	107.46	107.54	107.59	107.56	107.49	107.46	107.44	107.44	107.44	104.35	103.97	103.62	103.28	102.95	102.69	102.44	102.44	102.44
16.45	108.86	109.09	109.42	109.82	110.02	109.48	109.26	108.98	108.98	108.97	104.52	103.97	103.45	102.94	102.44	102.42	102.41	102.41	102.41
16.11	109.09	109.35	109.76	110.46	111.68	111.03	111.02	109.28	109.28	109.26	104.58	104.01	103.47	102.94	102.42	102.42	102.41	102.41	102.41
15.45	109.53	109.84	110.43	111.89	119.82	112.75	112.31	109.88	109.88	109.83	104.73	104.11	103.52	102.96	102.42	102.41	102.41	102.41	102.41
15.36	109.58	109.9	110.49	111.99	119.68	112.47	112.17	109.94	109.94	109.88	104.74	104.12	103.53	102.96	102.42	102.41	102.41	102.41	102.41
13.64	110.1	110.26	110.4	110.53	110.47	110	110	109.82	109.82	109.8	104.73	104.11	103.52	102.95	102.4	102.4	102.4	102.4	102.39
11.91	110.08	110.14	110.13	110.04	109.83	109.7	109.7	109.58	109.58	109.57	104.64	104.04	103.47	102.92	102.38	102.38	102.38	102.38	102.37
10.18	109.67	109.7	109.66	109.56	109.38	109.29	109.29	109.17	109.17	109.16	104.5	103.93	103.39	102.86	102.36	102.36	102.35	102.35	102.35
8.45	108.84	108.85	108.83	108.77	108.69	108.69	108.69	108.54	108.54	108.54	104.3	103.79	103.29	102.8	102.34	102.33	102.32	102.32	102.32
6	107.51	107.52	107.52	107.51	107.47	107.45	107.44	107.44	107.44	107.43	104.23	103.84	103.47	103.12	102.78	102.5	102.24	102.23	102.23
3.55	106.38	106.4	106.42	106.44	106.47	106.48	106.49	106.49	106.49	106.49	103.88	103.57	103.26	102.97	102.68	102.45	102.22	102.22	102.22
1.1	105.15	105.17	105.23	105.33	105.47	105.58	105.61	105.65	105.65	105.66	103.57	103.31	103.07	102.85	102.64	102.48	102.32	102.32	102.32
0.67	105.14	105.16	105.22	105.32	105.46	105.55	105.57	105.59	105.59	105.6	103.6	103.16	102.89	102.7	102.56	102.45	102.35	102.35	102.35
0.33	102.96	102.96	102.93	102.87	102.79	102.73	102.71	102.69	102.69	102.62	102.57	102.53	102.5	102.46	102.44	102.41	102.39	102.38	102.38
0	102.95	102.94	102.92	102.86	102.78	102.72	102.7	102.68	102.68	102.6	102.56	102.52	102.49	102.46	102.43	102.41	102.4	102.39	102.39
	0	0.92	1.83	2.75	3.67		4.29	4.42			5.12	532							,
$\begin{array}{lllllllllllllllllllll}\text { Radius (feet) } & & 1.83 & 2.75 & 3.67 & 4.17 & 4.29 & 4.42 & 4.43 & 4.87 & 5.12 & 5.32 & 5.52 & 5.72 & 5.92 & \mathbf{6 . 0 8} & 6.25 & 6.38 & 6.5\end{array}$																			

Case 2a: Steady-State Temperature Distribution

Elev. (ft)																			
24.94	156.09	156.41	157.42	159.22	162.04	164.12	164.67	165.2	165.25	166.26	167.29	168.25	169.33	170.51	171.79	172.9	173.95	174.45	174.69
24.6	156.18	156.51	157.52	159.34	162.2	164.39	165.08	165.88	165.91	166.33	167.49	168.48	169.58	170.81	172.2	173.53	175.11	175.3	175.45
22.57	165.74	165.96	166.55	167.5	168.76	169.51	169.7	169.89	169.89	169.91	178.76	179.87	181	182.17	183.36	184.38	185.42	185.44	185.48
20.53	171.5	171.64	171.94	172.39	172.92	173.22	173.29	173.36	173.36	173.37	182.85	184	185.13	186.24	187.33	188.24	189.13	189.14	189.16
18.49	175.51	175.65	175.87	176.14	176.38	176.47	176.49	176.51	176.51	176.52	185.1	186.13	187.13	188.09	189.02	189.78	190.51	190.52	190.52
16.45	178.7	178.97	179.39	179.95	180.37	179.93	179.72	179.44	179.44	179.45	187.28	188.23	189.17	190.09	191	191.03	191.04	191.04	191.04
16.11	179.15	179.44	179.94	180.79	182.24	181.9	181.88	179.92	179.92	179.91	187.49	188.41	189.31	190.19	191.05	191.05	191.06	191.06	191.07
15.45	179.96	180.29	180.96	182.54	190.48	183.64	183.22	180.84	180.84	180.8	187.82	188.67	189.5	190.31	191.09	191.1	191.1	191.11	191.11
15.36	180.05	180.39	181.06	182.67	190.35	183.38	183.09	180.93	180.93	180.89	187.85	188.7	189.52	190.32	191.1	191.1	191.11	191.11	191.12
13.64	181.21	181.38	181.59	181.82	181.91	181.53	181.53	181.37	181.37	181.37	188.08	188.89	189.67	190.43	191.17	191.17	191.17	191.18	191.88
11.91	181.48	181.56	181.61	181.63	181.56	181.51	181.51	181.4	181.4	181.41	188.1	188.91	189.69	190.44	191.17	191.18	191.18	191.18	191.19
10.18	181.07	181.11	181.14	181.15	181.12	181.12	181.12	181.01	181.01	181.01	187.94	188.78	189.58	190.37	191.12	191.13	191.13	191.14	191.14
8.45	179.91	179.95	180	180.07	180.16	180.28	180.28	180.13	180.13	180.13	187.53	188.43	189.3	190.16	191	191.01	191.02	191.02	191.03
6	177.52	177.56	177.64	177.76	177.92	178.01	178.03	178.06	178.06	178.06	185.5	186.4	187.27	188.12	188.94	189.61	190.27	. 190.27	190.28
3.55	174.49	174.55	174.71	174.96	175.27	175.46	175.51	175.56	175.56	175.56	182.74	183.62	184.51	185.4	186.29	187.05	187.81	187.82	187.85
1.1	170.02	170.14	170.47	171.02	171.78	172.28	172.43	172.61	172.62	172.67	175.2	175.63	176.23	177	177.91	178.77	179.71	179.74	179.82
0.67	169.97	170.08	170.42	170.97	171.72	172.19	172.29	172.38	172.39	172.47	170.62	171.02	171.74	172.7	173.87	175	176.29	176.34	176.45
0.33	156.58	156.78	157.41	158.54	160.34	161.72	162.12	162.56	162.6	164.28	165.39	166.38	167.46	168.65	169.99	171.27	172.81	173.33	173.59
0	156.45	156.65	157.26	158.39	160.17	161.54	161.94	162.37	162.42	164.07	165.18	166.16	167.22	168.37	169.6	170.64	171.59	172.07	172.33
	0	0.92	1.83	2.75	3.67	4.17	4.29	4.42	4.43	4.87	5.12	532	5.52	5.72	5.92	6.08	6.25	6.38	6.5

Case 2b: Steady-State Temperature Distribution

Elev. (ft)																			
24.94	156.45	156.79	157.83	159.7	162.64	164.81	165.37	165.92	165.97	166.96	167.89	168.79	169.8	170.93	172.16	173.24	174.26	174.74	174.99
24.6	156.55	156.89	157.94	159.84	162.81	165.09	165.81	166.65	166.68	167.1	168.1	169.02	170.06	171.23	172.57	173.85	175.39	175.58	175.73
22.57	167.29	167.51	168.15	169.17	170.53	171.36	171.56	171.77	171.77	171.79	174.39	176.39	178.34	180.26	182.17	183.76	185.35	185.37	185.41
20.53	173.94	174.09	174.43	174.93	175.54	175.9	175.98	176.08	176.08	176.09	178.63	180.57	182.45	184.27	186.05	187.51	188.95	188.96	188.98
18.49	178.6	178.75	178.99	179.3	179.6	179.74	179.77	179.8	179.8	179.81	181.93	183.54	185.09	186.59	188.03	189.19	190.33	190.33	190.34
16.45	182.24	182.51	182.95	183.55	184.02	183.6	183.39	183.12	183.12	183.13	185.06	186.55	188	189.42	190.82	190.85	190.87	190.87	190.88
16.11	182.74	183.03	183.55	184.44	185.95	185.69	185.67	183.65	183.65	183.64	185.47	186.88	188.24	189.57	190.87	190.88	190.89	190.9	190.9
15.45	183.65	183.98	184.67	186.28	194.27	187.45	187.03	184.64	184.64	184.61	186.19	187.42	188.62	189.79	190.93	190.94	190.94	190.95	190.96
15.36	183.75	184.09	184.78	186.43	194.14	187.19	186.9	184.74	184.74	184.7	186.26	187.48	188.66	189.82	190.94	190.94	190.95	190.96	190.96
13.64	185.07	185.24	185.46	185.71	185.83	185.47	185.46	185.31	185.31	185.31	186.77	187.88	188.96	190.01	191.02	191.03	191.03	191.04	191.04
11.91	185.41	185.48	185.55	185.58	185.54	185.51	185.51	185.41	185.41	185.41	186.85	187.95	189.01	190.04	191.04	191.04	191.05	191.05	191.06
10.18	184.98	185.03	185.07	185.09	185.1	185.12	185.12	185.01	185.01	185.02	186.55	187.71	188.84	189.93	190.99	190.99	191	191	191.01
8.45	183.73	183.77	183.84	183.94	184.07	184.23	184.23	184.07	184.07	184.07	185.79	187.11	188.39	189.64	190.86	190.87	190.88	190.89	190.89
6	181.04	181.09	181.19	181.35	181.55	181.67	181.7	181.73	181.73	181.74	183.42	184.7	185.94	187.13	188.29	189.23	190.15	190.15	190.16
3.55	177.51	177.58	177.77	178.06	178.44	178.67	178.73	178.79	178.79	178.8	180.52	181.84	183.13	184.39	185.65	186.69	187.73	187.74	187.77
1.1	172.24	172.37	172.75	173.37	174.23	174.82	175	175.21	175.21	175.27	175.57	175.95	176.49	177.19	178.05	178.87	179.77	179.8	179.87
0.67	172.17	172.3	172.69	173.31	174.17	174.7	174.82	174.92	174.93	175.01	172.45	172.01	172.31	173.05	174.09	175.15	176.38	176.43	176.54
0.33	157.01	157.21	157.82	158.93	160.7	162.05	162.44	162.87	162.91	164.54	165.63	166.59	167.65	168.82	170.14	171.4	172.93	173.44	173.7
0	156.87	157.06	157.67	158.77	160.52	161.86	162.24	162.67	162.71	164.33	165.41	166.36	167.4	168.54	169.74	170.78	171.72	172.19	172.45
$\begin{array}{cccccccccccccll}0 & 0.92 & 1.83 & 2.75 & 3.67 & 4.17 & 4.29 & 4.42 & 4.43 & 4.87 & 5.12 & 5.32 & 5.52 & 5.72 & 5.92\end{array}$																			

Case 3a: Steady-State Temperature Distribution

Case 3b: Steady-State Temperature Distribution

Elev. (f)																			
24.94	-18.77	-18.74	. 18.69	-18.59	-18.45	. 18.36	-18.34	-18.32	-18.32	-18.35	-18.44	-18.51	-18.58	-18.65	-18.71	-18.75	-18.78	-18.79	-18.8
24.6	-18.76	-18.74	-18.68	-18.58	-18.45	-18.35	-18.31	-18.27	-18.27	-18.28	-18.42	-18.5	-18.58	-18.64	-18.71	-18.76	-18.81	-18.81	-18.82
22.57	-17.3	-17.27	-17.23	-17.18	-17.13	-17.1	-17.09	-17.08	-17.08	-17.09	-18.34	-18.5	-18.65	-18.8	-18.95	-19.07	-19.19	-19.19	-19.19
20.53	-15.96	-15.91	-15.87	-15.84	-15.83	-15.84	-15.84	-15.84	-15.84	-15.84	-17.97	-18.23	-18.49	-18.73	-18.96	-19.16	-19.34	-19.34	-19.35
18.49	-14.56	-14.46	- 14.38	-14.33	-14.36	-14.44	-14.46	-14.48	-14.48	-14.48	-17.51	-17.88	-18.23	-18.56	-18.88	-19.14	-19.39	-19.39	-19.39
16.45	-13.02	-12.78	-12.45	-12.03	-11.82	-12.38	-12.61	-12.89	-12.89	-12.9	-17.29	-17.82	-18.34	-18.84	-19.33	-19.35	-19.36	-19.36	-19.36
16.11	-12.78	-12.51	-12.09	-11.38	-10.13	-10.79	-10.81	-12.58	-12.58	-12.6	-17.22	-17.77	-18.32	-18.84	-19.34	-19.35	-19.35	-19.35	-19.36
15.45	-12.32	-12.01	-11.4	-9.91	-1.81	-9.03	-9.48	-11.96	-11.96	-12.01	-17.06	-17.67	-18.25	-18.81	-19.34	-19.35	-19.35	-19.35	-19.35
15.36	-12.27	-11.95	-11.34	-9.81	-1.96	-9.32	-9.62	-11.9	-11.9	-11.96	-17.05	-17.66	-18.24	-18.8	-19.34	-19.35	-19.35	-19.35	-19.35
13.64	-11.72	-11.57	-11.42	-11.29	-11.34	-11.82	-11.82	-12	-12	-12.02	-17.04	-17.65	-18.23	-18.8	-19.34	-19.34	-19.35	-19.35	-19.35
11.91	-11.73	-11.68	-11.68	-11.77	-11.97	-12.1	-12.1	-12.23	-12.23	-12.24	-17.11	-17.7	-18.27	-18.82	-19.35	-19.35	-19.35	-19.35	-19.36
10.18	-12.13	-12.1	-12.14	-12.24	-12.41	-12.5	-12.5	-12.63	-12.63	-12.64	-17.24	-17.8	-18.34	-18.86	-19.36	-19.36	-19.36	-19.37	-19.37
8.45	-12.95	-12.94	-12.96	-13.02	-13.1	-13.09	-13.09	-13.24	-13.25	-13.25	-17.43	-17.94	-18.43	-18.91	-19.37	-19.38	-19.38	-19.38	-19.38
6	-14.27	-14.26	-14.26	-14.28	-14.31	. 14.33	. 14.34	-14.34	. 14.34	-14.35	. 17.49	-17.87	-18.23	-18.58	-18.91	-19.18	-19.44	-19.44	-19.44
3.55	-15.39	-15.38	-15.36	-15.33	-15.31	-15.29	-15.29	-15.29	-15.29	-15.29	-17.83	. 18.14	-18.44	-18.72	-19	-19.23	-19.45	-19.45	-19.45
1.1	-16.63	-16.6	-16.54	-16.44	-16.3	-16.19	-16.16	-16.12	-16.12	-16.11	. 18.15	-18.4	-18.63	-18.85	-19.05	-19.22	-19.37	-19.37	-19.37
0.67	-16.64	-16.61	-16.55	-16.45	-16.31	-16.22	-16.2	-16.18	-16.18	-16.17	-18.13	-18.56	-18.82	-19	- 19.14	-19.24	-19.34	-19.34	. 19.34
0.33	-18.8	-18.8	-18.83	-18.87	-18.94	-18.99	-19.01	-19.03	-19.03	-19.09	. 19.14	-19.17	-19.21	-19.23	-19.26	-19.28	-19.3	-19.31	-19.31
0	-18.81	-18.81	-18.84	-18.88	-18.95	-19.01	-19.02	-19.04	-19.04	-19.11	-19.15	-19.18	-19.21	-19.24	-19.26	-19.28	-19.3	-19.3	-19.31
	0	0.92	1.83	2.75	3.67	4.17	4.29	4.42	4.43	4.87	5.12	5.32	5.52	5.72	5.92	6.08	6.25	6.38	6.5

Radius (feet)

Case 4a:
Transient Temperature Distribution at Time Equal 0.00 Hours
Elev. (ft)

24.94	100.73	100.76	100.81	100.91	101.05	101.14	101.17	101.18	101.19	101.16	101.07	101	100.94	100.87	100.82	100.78	100.75	100.74	100.73
24.6	100.74	100.76	100.82	100.91	101.05	101.16	101.19	101.24	101.24	101.23	101.1	101.01	100.94	100.88	100.82	100.78	100.73	100.72	100.72
22.57	102.22	102.25	102.29	102.34	102.4	102.43	102.44	102.45	102.45	102.44	101.23	101.08	100.94	100.79	100.65	100.54	100.42	100.42	100.42
20.53	103.58	103.63	103.67	103.7	103.71	103.71	103.71	103.7	103.7	103.7	101.64	101.39	101.15	100.91	100.68	100.5	100.32	100.32	100.32
18.49	104.99	105.09	105.17	105.22	105.19	105.11	105.09	105.07	105.07	105.07	102.12	101.77	101.43	101.1	100.79	100.54	100.3	100.3	100.3
16.45	106.54	106.77	107.1	107.51	107.71	107.16	106.94	106.67	106.67	106.66	102.37	101.84	101.34	100.85	100.37	100.35	100.34	100.34	100.34
16.11	106.78	107.04	107.45	108.16	109.38	108.74	108.73	106.98	106.97	106.96	102.44	101.89	101.36	100.85	100.36	100.35	100.35	100.35	100.34
15.45	107.23	107.55	108.14	109.6	117.54	110.46	110.02	107.59	107.59	107.54	102.59	102	101.43	100.88	100.36	100.36	100.35	100.35	100.35
15.36	107.29	107.6	108.2	109.7	117.4	110.18	109.88	107.65	107.65	107.59	102.61	102.01	101.44	100.89	100.36	100.36	100.35	100.35	100.35
13.64	107.84	108	108.14	108.27	108.22	107.74	107.74	107.56	107.56	107.55	102.62	102.02	101.45	100.9	100.36	100.36	100.36	100.36	100.35
11.91	107.85	107.9	107.9	107.81	107.6	107.47	107.47	107.35	107.35	107.34	102.55	101.97	101.42	100.88	100.36	100.36	100.36	100.35	100.35
10.18	107.47	107.49	107.45	107.35	107.18	107.09	107.09	106.97	106.96	106.95	102.43	101.88	101.35	100.84	100.35	100.35	100.35	100.35	100.34
8.45	106.65	106.67	106.65	106.59	106.51	106.51	106.51	106.36	106.36	106.35	102.25	101.75	101.27	100.8	100.35	100.34	100.33	100.33	100.33
6	105.35	105.36	105.36	105.35	105.32	105.29	105.29	105.28	105.28	105.28	102.2	101.83	101.47	101.13	100.8	100.54	100.29	100.28	100.28
3.55	104.24	104.26	104.28	104.3	104.33	104.35	104.35	104.35	104.35	104.35	101.86	101.56	101.26	100.98	100.71	100.49	100.28	100.27	100.27
1.1	103.02	103.04	103.1	103.2	103.35	103.45	103.49	103.53	103.53	103.54	101.53	101.28	101.05	100.83	100.64	100.48	100.33	100.32	100.32
0.67	103.01	103.03	103.09	103.19	103.34	103.43	103.45	103.47	103.47	103.47	101.54	101.11	100.86	100.68	100.54	100.44	100.35	100.35	100.35
0.33	100.81	100.81	100.79	100.76	100.7	100.65	100.64	100.63	100.62	100.57	100.52	100.49	100.47	100.44	100.42	100.4	100.38	100.37	100.37
0	100.8	100.8	100.78	100.75	100.69	100.64	100.63	100.61	100.61	100.55	100.52	100.49	100.46	100.44	100.42	100.4	100.39	100.38	100.38
	0	0.92	1.83	2.75	3.67	4.17	4.29	4.42	4.43	4.87	5.12	5.32	5.52	5.72	5.92	6.08	6.25	6.38	6.5

Case 4a: Transient Temperature Distribution at Time Equal 0.25 Hours

$\begin{array}{rllllllllll}\text { Elev.(ft) } & & & & & & & & & & \\ 24.94 & 1372.21 & 1372.21 & 1372.21 & 1372.21 & 1371.81 & 1364.55 & 1353.18 & 1337.28 & 1336.19 & 1336.99\end{array}$
 Radius (feet)

Case 4a: \quad Transient Temperature Distribution at Time Equal 0.50 Hours

Elev. (f)
$\begin{array}{llllllllllllllllllll}24.94 & 1405.43 & 1405.43 & 1405.43 & 1405.38 & 1403.95 & 1389.9 & 1376.83 & 1360.62 & 1359.5 & 1360.13 & 1385.27 & 1393.83 & 1397.85 & 1401.18 & 1406.81 & 1414.55 & 1418.15 & 1418.14 & 1443.99\end{array}$

24.6	1136.76	1136.77	1136.76	1136.43	1125.75	1012.83	889.04	701.18	695.54	705.04	971.08	1043.46	1075.33	1100.89	1144.68	1215.49	1336.03	1368.82	1427.19
22.57	103.89	103.92	103.96	104.01	104.06	104.11	106.49	120.45	120.51	120.94	102.94	102.54	102.51	104.45	133.54	359.21	1354.91	1379.53	1430.51
20.53	103.58	103.63	103.67	103.7	103.71	103.71	103.75	104.04	104.04	104.05	101.65	101.4	101.26	103.08	132.06	357.92	1355.02	1379.62	1430.54
18.49	104.99	105.09	105.17	105.22	105.19	105.11	105.09	105.08	105.08	105.07	102.12	101.77	101.55	103.36	132.85	358.53	1354.19	1378.98	1430.32
16.45	106.54	106.77	107.1	107.51	107.71	107.16	106.94	106.67	106.67	106.66	102.38	102.1	106.23	171.05	783.1	916.82	1231.01	1302.06	1408.04
16.11	106.78	107.04	107.45	108.16	109.38	108.74	108.73	106.98	106.97	106.96	102.46	102.21	107.13	179.61	821.26	881.67	1033.12	1187.92	1380.94
15.45	107.23	107.55	108.14	109.6	117.54	110.46	110.02	107.59	107.59	107.54	102.62	102.32	107.12	178.14	803.15	856.92	999.68	1163.69	1375.49
15.36	107.29	107.6	108.2	109.7	117.4	110.18	109.88	107.65	107.65	107.59	102.63	102.32	107.11	177.99	801.51	855.09	997.72	1162.29	1375.18
13.64	107.84	108	108.14	108.27	108.22	107.74	107.74	107.56	107.56	107.55	102.64	102.34	107.12	177.89	800.18	853.78	996.62	1161.57	1375.02
11.91	107.85	107.9	107.9	107.81	107.6	107.47	107.47	107.35	107.35	107.34	102.58	102.29	107.09	177.87	800.2	853.8	996.64	1161.58	1375.02
10.18	107.47	107.49	107.45	107.35	107.18	107.09	107.09	106.97	106.96	106.95	102.45	102.2	107.04	178.08	802.71	856.34	998.96	1163.13	1375.36
8.45	106.65	106.67	106.65	106.59	106.51	106.51	106.51	106.36	106.36	106.35	102.27	102.09	107.44	185.3	871.29	952.99	1152.84	1255.24	1396.27
6	105.35	105.36	105.36	105.35	105.32	105.29	105.29	105.28	105.28	105.28	102.2	101.83	101.59	103.38	132.74	358.32	1354	1378.83	1430.27
3.55	104.24	104.26	104.28	104.31	104.33	104.35	104.35	104.37	104.37	104.37	101.86	101.56	101.38	103.15	132.09	357.92	1355.02	1379.62	1430.54
1.1	106.88	106.91	106.97	107.07	107.16	106.77	106.21	105.26	105.22	105.11	101.95	101.63	101.5	103.34	132.35	358.2	1355.07	1379.66	1430.55
0.67	111.32	111.34	111.4	111.5	111.61	111.54	111.52	111.55	111.57	113.4	170.05	157.09	155.99	158.29	187.37	403.98	1354.46	1379.41	1430.49
0.33	1202.15	1202.15	1202.15	1202.15	1202.14	1202.14	1202.15	1202.16	1202.16	1202.35	1203.15	1204.93	1209.47	1220.28	1243.91	1281.5	1341.28	1377.93	1430.65
0	1414.13	1414.13	1414.13	1414.13	1414.13	1414.13	1414.13	1414.13	1414.13	1414.16	1414.27	1414.53	1415.2	1416.82	1420.46	1426.48	1436.37	1445.36	1457.55
															-...-		-------	------	-...-
	$\stackrel{0}{0}$	0.92	1.83	2.75	3.67	4.17	4.29	4.42	4.43	4.87	5.12	5.32	5.52	5.72	5.92	6.08	6.25	6.38	6.5

Radius (feet)

BNFL Inc.
Big Rock Point Major Component Removal
Project No. 10525-020

22.57	106.51	106.54	106.58	106.62	106.64	108.07	119.63	153.98	154.06	154.53	106.44	105.12	106.54	120.65	215.36	547.49	1177.13	1164.71	1125.22
20.53	103.59	103.64	103.68	103.71	103.72	103.77	104.19	105.8	105.81	105.84	101.72	101.56	102.92	116.89	211.72	544.94	1177.23	1164.82	1125.33
18.49	104.99	105.09	105.17	105.22	105.19	105.12	105.11	105.13	105.13	105.13	102.14	101.94	103.29	117.68	213.86	546.15	1174.92	1162.57	1123.31
16.45	106.54	106.77	107.1	107.51	107.71	107.16	106.94	106.67	106.67	106.66	102.93	105.63	134.21	315.11	1007.41	1039.14	1067.61	1058.85	1029.69
16.11	106.78	107.04	107.45	108.16	109.38	108.74	108.73	106.98	106.97	106.96	103.07	106.05	136.54	322.99	1004.11	1009.27	1008.06	994.82	969.13
15.45	107.23	107.55	108.14	109.6	117.54	110.46	110.02	107.59	107.59	107.54	103.22	106.1	135.9	316.82	964.65	965.73	958.66	944.47	921.53
15.36	107.29	107.6	108.2	109.7	117.4	110.18	109.88	107.65	107.65	107.6	103.23	106.1	135.82	316.22	961.12	961.97	954.6	940.38	917.66
13.64	107.84	108	108.14	108.27	108.22	107.74	107.74	107.56	107.56	107.55	103.24	106.1	135.76	315.55	956.21	956.94	949.49	935.39	912.98
11.91	107.85	107.9	107.9	107.81	107.6	107.47	107.47	107.35	107.35	107.34	103.17	106.06	135.73	315.55	956.26	956.99	949.54	935.44	913.03
10.18	107.47	107.49	107.45	107.35	107.18	107.09	107.09	106.97	106.97	106.96	103.05	105.98	135.8	316.49	961.74	962.55	955.07	940.79	918.02
8.45	106.65	106.67	106.65	106.59	106.51	106.51	106.51	106.36	106.36	106.35	102.93	106.21	138.9	337.34	1052.43	1059.6	1053.43	1039.77	1010.72
6	105.35	105.36	105.36	105.35	105.32	105.29	105.29	105.28	105.28	105.28	102.22	102	103.32	117.58	213.37	545.67	1174.89	1162.53	1123.28
3.55	104.26	104.27	104.29	104.32	104.35	104.36	104.39	104.5	104.5	104.5	101.88	101.72	103.03	116.95	211.74	544.95	1177.24	1164.83	1125.34
1.1	115.01	115.03	115.08	115.14	114.78	112.85	111.54	109.63	109.56	109.18	103.65	103.26	104.57	118.55	213.3	546.05	1177.07	1164.65	1125.18
0.67	120.01	120.03	120.09	120.14	119.83	118.63	118.27	118.01	118	119.94	250.79	232.98	231.13	244.34	330.54	626.53	1174	1160.94	1121.55
0.33	1173.53	1173.53	1173.53	1173.53	1173.53	1173.58	1173.65	1173.77	1173.78	1174.88	1177.45	1180.83	188.92	1191.86	1194.89	1188.86	1168.37	1146.81	1106.48
0	1106.75	1106.75	1106.75	1106.75	1106.76	1106.8	1106.85	1106.95	1106.96	1107.83	1109.7	1112.35	1116.2	1120.33	1121.34	1114.48	1095.6	1071.27	1036.75
	$\stackrel{0}{0}$	0.92	1.83	2.75	3.67	4.17	4.29	4.42	4.43	4.87	5.12	5.32	5.52	5.72	5.92	6.08	6.25	6.38	6.5

Case 4b: \quad Transient Temperature Distribution at Time Equal 0.00 Hours

	Case 4b:			Transient Temperature Distribution at Time Equal 0.00 Hours															
Elev. (ft)																			
24.94	-18.77	-18.74	-18.69	-18.59	-18.45	-18.36	-18.34	-18.32	-18.32	-18.35	-18.44	-18.51	-18.58	-18.65	-18.71	-18.75	-18.78	-18.79	-18.8
24.6	-18.76	-18.74	-18.68	-18.58	-18.45	-18.35	-18.31	-18.27	-18.27	-18.28	-18.42	-18.5	-18.58	-18.64	-18.71	-18.76	-18.81	-18.81	-18.82
22.57	-17.3	-17.27	-17.23	-17.18	-17.13	-17.1	-17.09	-17.08	-17.08	-17.09	. 18.34	-18.5	-18.65	-18.8	-18.95	-19.07	-19.19	-19.19	-19.19

BNFL Inc.
Big Rock Point Major Component Removal
Project No. 10525-020

20.53	-15.96	-15.91	-15.87	-15.84	-15.83	-15.84	-15.84	-15.84	-15.84	-15.84	-17.97	-18.23	. 18.49	-18.73	. 18.96	-19.16	-19.34	-19.34	-19.35
18.49	-14.56	-14.46	-14.38	-14.33	-14.36	-14.44	-14.46	-14.48	-14.48	-14.48	-17.51	-17.88	-18.23	-18.56	-18.88	-19.14	-19.39	-19.39	-19.39
16.45	-13.02	-12.78	-12.45	-12.03	-11.82	-12.38	-12.61	-12.89	-12.89	-12.9	-17.29	-17.82	-18.34	. 18.84	-19.33	-19.35	-19.36	-19.36	- 19.36
16.11	-12.78	-12.51	-12.09	-11.38	-10.13	-10.79	-10.81	-12.58	-12.58	-12.6	-17.22	-17.77	-18.32	-18.84	-19.34	-19.35	-19.35	-19.35	-19.36
15.45	-12.32	-12.01	-11.4	-9.91	-1.81	-9.03	-9.48	-11.96	-11.96	-12.01	-17.06	-17.67	. 18.25	-18.81	-19.34	-19.35	-19.35	-19.35	-19.35
15.36	-12.27	-11.95	-11.34	-9.81	-1.96	-9.32	-9.62	-11.9	-11.9	-11.96	-17.05	-17.66	-18.24	-18.8	-19.34	-19.35	-19.35	-19.35	-19.35
13.64	-11.72	-11.57	-11.42	-11.29	-11.34	-11.82	-11.82	-12	-12	-12.02	-17.04	-17.65	-18.23	-18.8	-19.34	-19.34	-19.35	-19.35	-19.35
11.91	-11.73	-11.68	-11.68	-11.77	-11.97	-12.1	-12.1	-12.23	-12.23	-12.24	-17.11	-17.7	-18.27	-18.82	-19.35	-19.35	-19.35	-19.35	-19.36
10.18	-12.13	-12.1	-12.14	-12.24	-12.41	-12.5	-12.5	-12.63	-12.63	-12.64	-17.24	-17.8	-18.34	-18.86	-19.36	-19.36	-19.36	-19.37	-19.37
8.45	-12.95	-12.94	-12.96	-13.02	-13.1	-13.09	-13.09	-13.24	-13.25	-13.25	-17.43	-17.94	-18.43	-18.91	-19.37	-19.38	-19.38	-19.38	-19.38
6	-14.27	-14.26	-14.26	-14.28	-14.31	-14.33	-14.34	-14.34	-14.34	-14.35	-17.49	-17.87	-18.23	-18.58	-18.91	-19.18	-19.44	-19.44	-19.44
3.55	-15.39	-15.38	-15.36	-15.33	-15.31	-15.29	-15.29	-15.29	-15.29	-15.29	. 17.83	-18.14	-18.44	-18.72	-19	-19.23	-19.45	-19.45	-19.45
1.1	-16.63	-16.6	-16.54	-16.44	-16.3	-16.19	-16.16	-16.12	-16.12	-16.11	-18.15	-18.4	-18.63	-18.85	-19.05	-19.22	-19.37	-19.37	-19.37
0.67	-16.64	-16.61	-16.55	-16.45	-16.31	-16.22	-16.2	-16.18	-16.18	-16.17	-18.13	-18.56	-18.82	-19	-19.14	-19.24	-19.34	-19.34	-19.34
0.33	-18.8	-18.8	-18.83	-18.87	-18.94	-18.99	-19.01	-19.03	-19.03	-19.09	-19.14	-19.17	-19.21	-19.23	-19.26	-19.28	-19.3	-19.31	-19.31
0	-18.81	-18.81	-18.84	-18.88	-18.95	-19.01	-19.02	-19.04	-19.04	-19.11	-19.15	-19.18	-19.21	-19.24	-19.26	-19.28	-19.3	-19.3	-19.31
	${ }_{0}$	0.92	1.83	2.75	3.67	4.17	4.29	4.42	4.43	4.87	5.12	5.32	5.52	5.72	5.92	6.08	6.25	6.38	6.5

Case 4b: Transient Temperature Distribution at Time Equal 0.50 Hours
Elev. (fi)

	1403.94	1403.57	1403.57	1403.57	1403.52	1401.98	1387.18	1373.55	1356.59	1355.43	1356.1	1382.36	1391.3	1395.55	1399.08	1404.99	1413.06	1416.84	1416.74	1443.41
24.6	1122.94	1122.94	1122.94	112.56	1110.87	989.81	858.92	660.39	654.31	664.41	945.7	1022.77	1057.08	1084.63	1131.13	1205.44	1331.37	1365.48	1426.12	
22.57	-15.44	-15.41	-15.37	-15.32	-15.28	-15.21	-12.38	4.06	4.14	4.64	-16.44	-16.88	-16.89	-14.72	17.56	266.02	1351	1376.71	1429.57	
20.53	-15.96	-15.91	-15.87	-15.84	-15.83	-15.83	-15.78	-15.44	-15.44	-15.43	-17.97	-18.23	-18.35	-16.31	15.86	264.55	1351.12	1376.81	1429.6	

BNFL Inc. (
Big Rock Point Major Component Removal
Project No. 10525-020

18.49	-14.56	-14.46	-14.38	-14.33	-14.36	-14.44	-14.46	-14.47	-14.47	-14.48	-17.51	-17.87	-18.09	-16.04	16.71	265.22	1350.22	1376.12	1429.37
16.45	-13.02	-12.78	-12.45	-12.03	-11.82	-12.38	-12.61	-12.89	-12.89	-12.9	-17.27	-17.52	-12.72	61.07	746.96	888.82	1219.69	1294.45	1406.02
16.11	-12.78	-12.51	-12.09	-11.38	-10.13	-10.79	-10.81	-12.58	-12.58	-12.6	-17.19	-17.4	- 11.66	71.03	789.76	853.5	1012.26	1174.74	1378.02
15.45	-12.32	-12.01	-11.4	-9.91	-1.81	-9.03	-9.48	-11.96	-11.96	-12.01	-17.03	-17.3	-11.67	69.51	770.78	827.54	977.07	1149.22	1372.36
15.36	-12.27	-11.95	-11.34	-9.81	-1.96	-9.32	-9.62	-11.9	-11.9	-11.96	-17.02	-17.29	-11.68	69.35	769.05	825.6	975	1147.74	1372.04
13.64	-11.72	-11.57	-11.42	-11.29	-11.34	-11.82	-11.82	-12	-12	-12.02	-17.02	-17.28	-11.68	69.23	767.57	824.15	973.79	1146.95	1371.87
11.91	-11.73	-11.68	-11.68	-11.77	-11.97	-12.1	-12.1	-12.23	-12.23	-12.24	-17.09	-17.34	-11.71	69.21	767.6	824.18	973.82	1146.96	1371.87
10.18	-12.13	-12.1	-12.14	-12.24	-12.41	-12.5	-12.5	-12.63	-12.63	-12.64	-17.22	-17.43	-11.76	69.45	770.36	826.96	976.34	1148.63	1372.23
8.45	-12.95	-12.94	-12.96	-13.02	-13.1	-13.09	-13.09	-13.24	-13.25	-13.25	-17.4	-17.55	-11.34	77.17	843.52	929.33	1138.43	1245.7	1393.94
6	-14.27	-14.26	-14.26	-14.28	-14.31	-14.33	-14.34	-14.34	-14.34	-14.35	-17.49	-17.86	-18.09	-16.07	16.54	264.95	1350.02	1375.96	1429.32
3.55	-15.39	-15.38	-15.36	-15.33	-15.3	-15.29	-15.29	-15.26	-15.26	-15.27	-17.83	-18.13	-18.31	-16.3	15.82	264.5	1351.11	1376.81	1429.6
1.1	-12.21	-12.19	-12.13	-12.03	-11.94	-12.41	-13.04	-14.12	-14.17	-14.3	-17.67	-18.01	-18.13	-16.05	16.15	264.83	1351.16	1376.85	1429.61
0.67	-7.22	-7.19	-7.13	-7.04	-6.93	-7.02	-7.06	-7.02	-7.01	-4.95	58.28	43.73	42.5	45.06	77.25	315.51	1350.51	1376.55	1429.54
0.33	1192.54	1192.54	1192.54	1192.54	1192.53	1192.53	1192.54	1192.55	1192.55	1192.76	1193.65	1195.57	1200.37	1211.65	1236.15	1275.09	1337.06	1375.05	1429.7
0	1412.73	1412.73	1412.73	1412.73	1412.73	1412.73	1412.73	1412.73	1412.74	1412.76	1412.89	1413.17	1413.87	1415.55	1419.28	1425.44	1435.57	1444.76	1457.26

Case 4b: \quad Transient Temperature Distribution at Time Equal 0.75 Hours

Case 4b: Transient Temperature Distribution at Time Equal 1.00 Hours

Elev. (ft)																			
24.94	1071.1	1071.09	1070.98	1068.86	1037.33	905.78	864.23	826.15	823.32	823.64	906.37	969.28	1018.9	1057.24	1089.28	1112.39	1132.81	1132.05	1098.03
24.6	1138.42	1138.42	1138.3	1135.96	1099.22	934	869.1	796.67	794.99	796.56	931.07	1016.24	1077.76	1123.45	1160.17	1179.48	1173.7	1157.56	1117.13
22.57	-12.56	-12.53	-12.49	-12.44	-12.44	-10.69	3.03	43.93	44.03	44.62	-12.44	-14.01	-12.45	3.13	107.33	472.42	1171.22	1159.02	1119.45
20.53	-15.95	-15.9	-15.86	-15.83	-15.82	-15.76	-15.26	-13.35	-13.34	-13.3	-17.88	-18.04	-16.52	-1.1	103.26	469.57	1171.32	1159.13	1119.56
18.49	-14.56	-14.46	-14.38	-14.33	-14.36	-14.44	-14.44	-14.41	-14.41	-14.41	-17.49	-17.69	-16.16	-0.26	105.62	470.92	1168.84	1156.71	1117.39

BNFL Inc.
Big Rock Point Major Component Removal
Project No. 10525-020

16.45	-13.02	-12.78	-12.45	-12.03	-11.82	-12.38	-12.61	-12.89	-12.89	-12.89	-16.65	-13.54	18.66	220.57	986.45	1021.27	1053.91	1045.71	1017.05
16.11	-12.78	-12.51	-12.09	-11.38	-10.13	-10.79	-10.81	-12.58	-12.58	-12.6	-16.49	-13.05	21.36	229.78	984.22	990.16	990.06	977.59	952.6
15.45	-12.32	-12.01	-11.4	-9.91	-1.81	-9.03	-9.48	-11.96	-11.96	-12.01	-16.34	-13	20.71	223.39	942.73	944.26	937.79	924.19	901.95
15.36	-12.27	-11.95	-11.34	-9.81	-1.96	-9.32	-9.62	-11.9	-11.9	-11.96	-16.33	-13	20.64	222.76	939.01	940.29	933.48	919.84	897.83
13.64	-11.72	-11.57	-11.42	-11.29	-11.34	-11.82	-11.82	. 12	-12	-12.02	-16.33	-13	20.56	222.03	933.7	934.85	927.96	914.43	892.73
11.91	-11.73	-11.68	-11.68	-11.77	-11.97	-12.1	-12.1	-12.23	-12.23	-12.24	-16.4	-13.06	20.52	222.02	933.76	934.91	928.02	914.48	892.79
10.18	-12.13	-12.1	-12.14	-12.24	-12.41	-12.5	-12.5	-12.63	-12.63	-12.64	-16.53	-13.14	20.6	223.05	939.68	940.92	934	920.28	898.22
8.45	-12.95	-12.94	-12.96	-13.02	-13.1	-13.09	-13.09	-13.24	-13.24	-13.25	-16.66	-12.89	23.89	245.05	1035.23	1043.59	1038.89	1025.74	997.2
6	-14.27	-14.26	-14.26	-14.28	-14.31	-14.33	-14.34	-14.34	-14.34	-14.34	-17.46	-17.68	-16.18	-0.41	105.03	470.37	1168.81	1156.69	1117.37
3.55	-15.38	-15.36	-15.34	-15.32	-15.29	-15.27	-15.24	-15.11	-15.11	-15.12	-17.8	-17.96	-16.48	-1.1	103.22	469.54	1171.32	1159.14	1119.57
1.1	-3.05	-3.03	-2.97	-2.93	-3.35	-5.55	. 7.03	-9.17	-9.25	-9.67	-15.78	-16.2	-14.73	0.71	104.97	470.78	1171.16	1158.96	1119.41
0.67	2.58	2.6	2.65	2.7	2.32	0.94	0.53	0.22	0.21	2.39	147.19	127.17	125.04	139.55	234.26	559.51	1168.1	1155.22	1115.74
0.33	1164.64	1164.64	1164.64	1164.64	1164.64	1164.69	1164.76	1164.89	1164.91	1166.09	1168.83	1172.41	1177.78	1184.14	1187.71	1182.19	1162.23	1140.75	1100.32
0	1097.52	1097.52	1097.52	1097.52	1097.52	1097.57	1097.63	1097.74	1097.75	1098.69	1100.68	1103.48	1107.56	1111.99	1113.35	1106.78	1088.08	1063.78	1029.17
	-------	0.92	1.83		\qquad 3.67	.-.-.... 4.17 4.29 4.42	...---- 4.43	$------$	5.12	$-$	\cdots	${ }_{5.72}$	5.92	$------$	$\cdots .-\cdots-\cdots$	6.38	6.5

Radius (feet)

Case Gap1: Steady-State Temperature Distribution

Elev. (ft)

Elev. (f)	100.74	100.76	100.82	100.91	101.06	101.15	101.18	101.19	101.2	101.17	101.08	101.01	100.94	100.88	100.83	100.79	100.76	100.76	100.75	100.74
24.6	100.74	100.77	100.82	100.92	101.06	101.17	101.2	101.25	101.25	101.24	101.1	101.02	100.95	100.89	100.83	100.78	100.74	100.73	100.73	100.72
22.57	102.24	102.27	102.31	102.36	102.42	102.45	102.46	102.47	102.47	102.46	101.24	101.09	100.95	100.8	100.66	100.55	100.44	100.43	100.43	100.43
20.53	103.61	103.66	103.7	103.73	103.74	103.74	103.73	103.73	103.73	103.73	101.66	101.41	101.16	100.93	100.7	100.52	100.34	100.33	100.33	100.33
18.49	105.03	105.13	105.21	105.26	105.23	105.15	105.13	105.11	105.11	105.11	102.16	101.8	101.46	101.13	100.82	100.58	100.34	100.33	100.32	100.32
16.45	106.59	106.82	107.15	107.56	107.76	107.21	106.99	106.72	106.72	106.71	102.47	101.96	101.46	100.98	100.5	100.48	100.45	100.38	100.38	100.38

BNFL inc.
Big Rock Point Major Component Removal
Project No. 10525-020

Calculation No. M-
$20-001$
Rev. 1
Page No. 53
FINAL

16.11	106.82	107.09	107.5	108.21	109.43	108.8	108.78	107.03	107.03	107.01	102.56	102.02	101.5	101	100.51	100.51	100.51	100.36	100.36	100.36
15.45	107.28	107.6	108.19	109.65	117.59	110.52	110.08	107.65	107.64	107.6	102.75	102.16	101.6	101.07	100.56	100.56	100.55	100.32	100.32	100.32
15.36	107.34	107.65	108.26	109.76	117.45	110.24	109.94	107.71	107.7	107.65	102.76	102.17	101.61	101.08	100.56	100.56	100.56	100.32	100.32	100.32
13.64	107.9	108.05	108.2	108.32	108.28	107.8	107.8	107.62	107.62	107.61	102.81	102.23	101.67	101.14	100.62	100.62	100.62	100.28	100.28	100.28
11.91	107.9	107.96	107.96	107.87	107.66	107.53	107.53	107.41	107.41	107.4	102.75	102.19	101.65	101.13	100.62	100.62	100.62	100.28	100.28	100.28
10.18	107.52	107.55	107.51	107.41	107.23	107.15	107.15	107.02	107.02	107.01	102.59	102.06	101.54	101.05	100.57	100.57	100.57	100.3	100.3	100.3
8.45	106.71	106.72	106.7	106.64	106.56	106.56	106.56	106.42	106.42	106.41	102.34	101.85	101.37	100.91	100.46	100.45	100.44	100.38	100.37	100.37
6	105.4	105.41	105.41	105.39	105.36	105.34	105.33	105.33	105.33	105.32	102.23	101.86	101.5	101.16	100.83	100.57	100.32	100.3	100.3	100.3
3.55	104.28	104.29	104.31	104.34	104.37	104.38	104.39	104.39	104.39	104.39	101.88	101.57	101.28	101	100.72	100.51	100.3	100.28	100.28	100.28
1.1	103.05	103.07	103.13	103.23	103.38	103.48	103.52	103.56	103.56	103.57	101.54	101.29	101.06	100.84	100.64	100.49	100.34	100.33	100.33	100.33
0.67	103.04	103.06	103.12	103.22	103.37	103.46	103.48	103.5	103.5	103.51	101.55	101.13	100.86	100.69	100.55	100.45	100.36	100.36	100.36	100.35
0.33	100.82	100.82	100.8	100.77	100.71	100.66	100.65	100.63	100.63	100.57	100.53	100.5	100.47	100.45	100.42	100.4	100.39	100.39	100.38	100.38
0	100.81	100.8	100.79	100.75	100.7	100.65	100.64	100.62	100.62	100.56	100.52	100.49	100.47	100.44	100.42	100.4	100.39	100.39	100.39	100.38
												532		5772	5.92	6.08	6.24	6.25	6.38	6.5
	dius (feet)	0.92	1.83	2.75	3.67	4.17	4.29	4.42	4.43	4.87	5.12	5.32	5.52	5.72	5.92	6.08	6.24			

Case Gap2: Steady-State Temperature Distribution

Elev. (ft)																				
24.94	156.08	156.41	157.41	159.21	162.03	164.11	164.65	165.19	165.23	166.25	167.28	168.24	169.32	170.5	171.79	172.86	173.88	173.94	174.44	174.68
24.6	156.18	156.5	157.52	159.34	162.19	164.38	165.06	165.87	165.9	166.32	167.48	168.47	169.57	170.81	172.19	173.47	174.99	175.1	175.29	175.45
22.57	165.72	165.93	166.53	167.48	168.74	169.49	169.67	169.87	169.87	169.88	178.75	179.86	180.99	182.16	183.35	184.34	185.35	185.41	185.43	185.47
20.53	171.47	171.6	171.91	172.35	172.88	173.17	173.25	173.32	173.32	173.33	182.82	183.98	185.11	186.22	187.32	188.2	189.07	189.12	189.13	189.15
18.49	175.47	175.61	175.82	176.08	176.32	176.41	176.43	176.45	176.45	176.46	185.05	186.09	187.09	188.05	188.99	189.72	190.44	190.49	190.49	190.5
16.45	178.67	178.94	179.35	179.88	180.25	179.82	179.62	179.36	179.36	179.37	187.12	188.06	188.99	189.9	190.81	190.84	190.87	190.96	190.97	190.97
16.11	179.12	179.42	179.91	180.72	182.03	181.67	181.66	179.84	179.84	179.83	187.31	188.21	189.1	189.97	190.81	190.82	190.82	191.04	191.04	191.05
15.45	179.95	180.3	180.97	182.5	189.88	183.22	182.83	180.75	180.75	180.72	187.59	188.43	189.24	190.02	190.79	190.79	190.79	191.15	191.15	191.16
15.36	180.05	180.4	181.09	182.65	189.69	182.89	182.66	180.85	180.85	180.81	187.62	188.45	189.25	190.03	190.78	190.79	190.79	191.16	191.16	191.17
13.06	181.31	181.45	181.59	181.71	181.7	181.47	181.47	181.33	181.33	181.33	187.8	188.59	189.34	190.07	190.77	190.77	190.78	191.27	191.27	191.27
10.75	181.21	181.26	181.29	181.29	181.24	181.22	181.22	181.11	181.11	181.11	187.74	188.54	189.32	190.06	190.78	190.79	190.79 .	191.23	191.23	191.24
8.45	179.86	179.89	179.94	180.01	180.09	180.2	180.2	180.05	180.05	180.05	187.4	188.3	189.17	190.02	190.85	190.86	190.87°	190.96	190.96	190.97
6	177.46	177.5	177.58	177.7	177.86	177.95	177.97	177.99	177.99	178	185.46	186.36	187.24	188.09	188.91	189.57	190.21	190.25	190.25	190.26
3.55	174.45	174.51	174.66	174.91	175.22	175.41	175.46	175.51	175.51	175.51	182.72	183.6	184.49	185.38	186.28	187.02	187.76	187.81	187.82	187.84
1.1	169.99	170.1	170.44	170.99	171.74	172.24	172.39	172.57	172.58	172.63	175.19	175.61	176.22	176.99	177.9	178.74	179.65	179.71	179.74	179.81
0.67	169.93	170.05	170.38	170.94	171.69	172.15	172.25	172.34	172.35	172.43	170.6	171	171.73	172.7	173.86	174.96	176.2	176.28	176.34	176.45
0.33	156.58	156.78	157.4	158.53	160.33	161.71	162.11	162.55	162.6	164.27	165.38	166.37	167.45	168.65	169.98	171.22	172.69	172.81	173.32	173.59
0	156.44	156.64	157.26	158.38	160.17	161.53	161.93	162.36	162.41	164.07	165.18	166.15	167.21	168.36	169.59	170.6	171.53	171.58	172.06	172.32
	0	0.92	1.83	2.75	3.67	4.17	4.29	4.42	4.43	4.87	5.12	5.32	5.52	5.72	5.92	6.08	6.24	6.25	6.38	6.5

Attachment A
 HEATING 7.2 f Input/Output Files and Audit Trail Listing

HEATING72 Version 7.2f - Sargent \& Lundy Program No. 03.7.564-7.2F
User 0K0212 on PC5765 Thursday, December 14, 2000 Time: 17:56:06 Controlled Files:

Drive $V:=$ SNLAA_SYS3: 1
Volume in drive V is SYS3
[Base] \H72. EXE
[Base] \H7LINE.EXE
[Base] \H7MAP. EXE
[Base] \H7MONITO. EXE
[Base] \H7TECPLO.EXE
[Base] \CONCVR.EXE
[Base] \H7MATLIB
[Base] \F77L3.EER
[Base] HEATING . BAT
[Base] H 7. BAT

$03-29-1995$	$09: 18$
$01-25-1995$	$11: 32$
$03-31-1995$	$11: 19$
$03-21-1995$	$10: 37$
$01-24-1995$	$16: 54$
$01-26-1995$	$12: 04$
$10-22-1992$	$15: 44$
$08-27-1993$	$11: 03$
$06-27-1996$	$16: 00$
$06-27-1996$	$16: 02$

Active Data Directory:
Volume in drive C is PC5765
Volume Serial Number is 36A5-AE37
Directory of $C: \backslash W O R K \backslash B I G-R O C K \backslash C A S K \backslash R E V I \backslash M O D E L$

		<DIR>		$12-14-00$
		<DIR>	$10: 34 \mathrm{a}$	
C.	$12-14-00$	$10: 34 \mathrm{a}$		
casela	inp	8,041	$12-14-00$	$2: 31 p$
casela	map	217,186	$12-14-00$	$3: 12 p$
case1a	out	103,532	$12-14-00$	$2: 42 p$
case1b	inp	8,066	$12-14-00$	$2: 31 p$
case1b	map	217,186	$12-14-00$	$3: 12 p$
case1b	out	104,202	$12-14-00$	$3: 02 p$
case2a	inp	8,122	$12-14-00$	$2: 08 p$
case2a	map	217,186	$12-14-00$	$3: 03 p$
case2a	out	104,738	$12-14-00$	$2: 29 p$
case2b	inp	8,214	$12-14-00$	$2: 30 p$
case2b	map	217,186	$12-14-00$	$3: 33 p$
case2b	out	104,202	$12-14-00$	$3: 33 p$
case3a	inp	8,072	$12-14-00$	$3: 04 p$
case3a	map	217,186	$12-14-00$	$3: 44 p$
case3a	out	103,532	$12-14-00$	$3: 43 p$
case3b	inp	8,072	$12-14-00$	$3: 04 p$
case3b	map	217,186	$12-14-00$	$3: 54 p$
case3b	out	103,532	$12-14-00$	$3: 53 p$
case4a	inp	8,328	$12-14-00$	$3: 04 p$
case4a	map	$1,303,116$	$12-14-00$	$4: 32 p$
case4a	out	129,510	$12-14-00$	$4: 31 p$
case4b	inp	8,328	$12-14-00$	$3: 05 p$

End of Controlled File Information scope

HEATING 7.2 f Input/Output Files on CD ROM
This calculation is classified as Important to Safety - Category A

FIGURE WITHHELD UNDER 10 CFR 2.390

Athehment C Page Cl

FIGURE WITHHELD UNDER 10 CFR 2.390

FIGURE WITHHELD UNDER 10 CFR 2.390

FIGURE WITHHELD UNDER 10 CFR 2.390

FAX FR ${ }^{-1}$ CARBOLISE COMPANY

Carbolene.

350 Manley ..dustrial Court • St. Louis, Missouri 63144
To: Bart Simp
Company: Sargent +handy
FaX \#:

From: Girt Smith
Date: \quad a/ $19 / 00$ Time: 11:30 Am
\# of Pages:
Doc. \#: \qquad
If you do not receive all the pages indicated please call: (314) 644-1000

A white epoxy is reported to have a
Thermal remittance of 0.91. This certainly relates to thermal emissivity but I am not sure if it is identical.

APPENDIX 3-3

Page 1

* The reviewer's signature indicates compliance with S\&L procedure SOP-0402 and the verification of, as a minimum, the following items: correctness of mathematics for manual calculations, appropriateness of input data, appropriateness of assumptions, and appropriateness of the calculation method.

NOTE: PRINT AND SIGN IN THE SIGNATURE AREAS

sargerte curndy".		Calc For Pressure Response of Reactor Vessel Transport System					Calc No.		M-10525-020-002
							Rev.	2	Date
		x	Important to Safety - Category A			Non-Safety Related	Page		2
Client	BNFL, Inc.			Prepared by	Frank A. Nezrick				Date
Project	Big Rock Point Major Component Removal			Reviewed by	Daniel A. Tallitsch			Date	
Proj. No	10525-020		Equip. No.	Approved by		Robert J. Peterson		Date	

TABLE OF CONTENTS

DESCRIPTION

PAGE NO.

Issue Summary 1
Table of Contents 2
Purpose and Scope 3
Design Inputs 5
Assumptions 6
Methodology and Acceptance Criteria 7
Calculations 11
Results 15
References 16
Tables 17-19
Attachments
None

Client	BNFL, Inc.
Project	Big Rock Point Major Component Removal
Proj. No	$10525-020$

Prepared by	Frank A. Nezrick	Date
Reviewed by	Daniel A. Tallitsch	Date
Approved by	Robert J. Peterson	Date

1.0 Purpose and Scope

One of the tasks associated with the decommissioning of Big Rock Point Nuclear Plant is removal and transportation of the Reactor Vessel to its final disposal site. A Reactor Vessel Transport System (RVTS) has been specifically designed for transportation and disposal of the Big Rock Point Nuclear Plant Reactor Vessel. The purpose of this calculation is to determine the internal pressure of the RVTS under design conditions prescribed in Title 10 of the Code of Federal Regulations (CFR), Part 71, "Packaging and Transportation of Radioactive Material." The RVTS bounding normal operating pressures and the maximum pressure during hypothetical accident conditions will be evaluated to ensure compliance with 10 CFR 71.

The transport package maximum normal operating pressure is defined in 10 CFR 71.4 and is given below. The heat condition specified in 10 CFR 71.71(c)(1) is also given.
"Maximum normal operating pressure means the maximum gauge pressure that would develop in the containment system in a period of 1 year under the heat condition specified in $\S 71.71$ (c)(1), in the absence of venting, external cooling by an ancillary system, or operational controls during transport."

Package approval standards are identified in 10 CFR 71 Subpart E. Demonstration of compliance with these standards is specified in 10 CFR 71.41(a), repeated below.
"The effects on a package of the tests specified in $\S 71.71$ ("Normal conditions of transport"), and the tests specified in $\S 71.73$ ("Hypothetical accident conditions"), and §71.61 (Special requirements for irradiated nuclear fuel shipments"), must be evaluated by subjecting a specimen or scale model to a specific test, or by another method of demonstration acceptable to the Commission, as appropriate for the particular feature being considered."

The general standards for all transportation packages are identified in 10 CFR 71.43. The standard applicable to the finding the bounding normal operating pressures of the RVTS, paragraph 10 CFR $71.43(\mathrm{f})$, is listed below.
"A package must be designed, constructed, and prepared for shipment so that under the tests specified in §71.71 ("Normal conditions of transport") there would be no loss or dispersal of radioactive contents, no significant increase in external surface radiation levels, and no substantial reduction in the effectiveness of the packaging."

The RVTS pressure results of this calculation will be used in external analyses to assess the structural integrity of the RVTS under the Normal Conditions of Transport (NCT) and the Hypothetical Accident Conditions (HAC).

Specifically, this calculation will document the bounding pressures of the RVTS under the four conditions outlined below. The basis for the selection of these scenarios is given in 10 CFR 71.71 (b), 10 CFR 71.71(c)(1), 10 CFR 71.71 (c)(2), and 10 CFR 71.73 (c)(4) and is documented in Section 4.1.

Case 1: Under NCT with an ambient temperature of $100^{\circ} \mathrm{F}$ in still air, and with a solar insolation of 400 g $\mathrm{cal} / \mathrm{cm}^{2}$ (for curved surfaces) for a 12 -hour period. (Maximum Initial and Heat Condition)

Case 2a:Under NCT with an ambient temperature of - $20^{\circ} \mathrm{F}$ in still air, and without solar insolation. (Minimum Initial Condition)

Case 2b: Under NCT with an ambient temperature of $-40^{\circ} \mathrm{F}$ in still air, and without solar insolation. (Cold Condition)

Case 3: Under HAC where the RVTS is fully engulfed in a hydrocarbon fuel/air fire, with an average flame temperature of at least $800^{\circ} \mathrm{C}$ (approximately $1475^{\circ} \mathrm{F}$) for a period of 30 minutes.

Case 1 will be used to determine the maximum normal operating pressure and Cases 2 a and 2 b will be used to determine the minimum normal operating pressure. Case 3 will be used to determine the maximum pressure during the HAC.

$2.0 \quad$ Design Inputs
2.1 The concentration of radiolysis products inside the RVTS after one year is given below (Ref. 7.4):
$\left[\mathrm{H}_{2}\right]=3.7 \%$ by volume
Note that the hydrogen concentration given in Reference 7.4 is for the Low Density Cellular Concrete (LDCC) surrounding the reactor vessel; therefore, it is conservative to apply this concentration to the entire RVTS.
2.2 The highest point in the Appalachian Mountains is Mount Mitchell in North Carolina which has a peak elevation of 6684 feet (Ref. 7.5).
2.3 The maximum and minimum temperatures in the LDCC for Cases 1, 2a, and 2 b are taken from Calculation M-10525-020-001 (Ref. 7.3) and are given below.

Case No.	Case Description	Bounding Temperature in LDCC
Case 1	NCT with Solar Insolation (Maximum Initial Condition)	$191.17^{\circ} \mathrm{F}$ at Elevation 11.91 ft, Radius 5.92 ft (Case 2a in Ref. 7.3)
Case 2a	NCT without Solar Insolation (Minimum Initial and Heat Condition)	$-19.45^{\circ} \mathrm{F}$ at Elevation 3.55 ft, Radius 6.25 ft. (Case 3b in Ref. 7.3)
Case 2b	NCT without Solar Insolation (Cold Condition)	$-39.4^{\circ} \mathrm{F}$ at Elevation 3.55 ft, Radius 6.25 ft.
(Case 3a in Ref. 7.3)		

Note that the temperature profile for the LDCC in the outer region of the RVTS at 0.5 hours from Case 4a of Reference 7.3 is also used but is not presented here as Design Input. It is given in Table 1 (see page 16).
2.4 The saturation pressure of water at various temperatures is given below (Ref. 7.2).
$\mathrm{P}_{\text {saturation }}=9.58 \mathrm{psia}$ at $191.17^{\circ} \mathrm{F}$
$\mathrm{P}_{\text {saturation }}=79.6 \mathrm{psia}$ at $311.70^{\circ} \mathrm{F}$
2.5 The elevation of the Reactor Building centerline at Big Rock Point Plant is 591 feet (Ref. 7.6).
2.6 The atmospheric pressure is taken from Table 13.37 of the Compressed Air and Gas Handbook (Ref. 7.7).

At Elevation 0 feet: 14.69 psia
At Elevation 500 feet: 14.42 psia
At Elevation 1000 feet: 14.16 psia
At Elevation 6500 feet: 11.55 psia
At Elevation 7000 feet: 11.33 psia
At Elevation 591 feet: 14.37 psia (interpolated)
At Elevation 6684 feet: 11.47 psia (interpolated)

3.0 Assumptions

3.1 The initial relative humidity of the gas trapped inside of the porous concrete is taken as 0\% (dry air) and at 1 year the relative humidity is taken as 100%. This assumption is conservative since it will result in the greatest increase in the amount of water in the pores, thus leading to largest pressure increase from initial to final conditions.
3.2 The heat of curing of the LDCC is considered negligible. This is conservative when calculating maximum operating pressures and is considered acceptable when calculating the minimum normal operating pressure.
3.3 For this analysis, the RVTS is assumed to have a tight seal; i.e. there will be no leakage of gases to the atmosphere from the RVTS or from the atmosphere to the RVTS. This seal also makes the inside of the RVTS impervious to changes in elevation which may be encountered during transport. This is conservative since it will lead to higher pressures. However, it should be noted that, in reality, some leakage from the RVTS to the atmosphere may be permissible.'
3.4 Reference 7.10 states that due to interconnectivity of air voids within concrete, the concrete is inherently pervious to water. Therefore, a pressure applied to a portion of the RVTS (constructed of low density concrete) allows equal pressurization to occur throughout. Because of this, localized high pressures will not exist in the RVTS.
3.5 It is assumed that no chemical decomposition of the LDCC will occur at high temperatures. This is reasonable since the LDCC does not contain limestone aggregate (Ref. 7.8).
3.6 The LDCC is assumed to be poured when the ambient temperature is between $60^{\circ} \mathrm{F}$ and $85^{\circ} \mathrm{F}$. This is consistent with Note 5d of Reference 7.9.

Client	BNFL, Inc.
Project	Big Rock Point Major Component Removal
Proj. No	$10525-020$

Prepared by	Frank A. Nezrick	Date
Reviewed by	Daniel A. Tallitsch	Date
Approved by	Robert J. Peterson	Date

4.0 Methodology and Acceptance Criteria

4.1 Model Development

In order to determine the maximum RVTS internal pressure, the following components must be considered: initial gas trapped inside the RVTS, the vapor pressure from the moisture within the LDCC matrix, and the gas pressure from radiolysis for the duration of transport.

The initial conditions for all-cases are taken as the conditions which exist when the LDCC is poured into the cask. The relative humidity at this time is conservatively taken as 0% (see Assumption 3.1). In addition, at this time radiolysis has not begun. Thus, the only gas trapped inside the RVTS initially is air at the ambient temperature and pressure.

In order to determine the bounding normal operating pressures, three scenarios are considered: one in which the RVTS is exposed to $100^{\circ} \mathrm{F}$ still air and insolation for a 12 hour period (Case 1), another in which the RVTS is exposed to $-20^{\circ} \mathrm{F}$ still air and shade without insolation (Case 2a), and another in which the RVTS is exposed to $-40^{\circ} \mathrm{F}$ still air and shade without insolation (Case 2b). These three conditions are outlined in 10 CFR 71.71 (b), (c)(1) and (c)(2). Case 1 is used to determine the maximum normal operating pressure under maximum initial and heat conditions within the RVTS and Cases $2 a$ and $2 b$ will be used to determine the minimum normal operating pressure within the RVTS under minimum initial and cold conditions, respectively. Cases $2 a$ and $2 b$ are of interest since the gases trapped within the RVTS may "shrink," thus leading to slightly negative pressures.

In addition, one scenario is analyzed to determine the maximum pressure during HAC (Case 3). Under HAC, the RVTS is fully engulfed in a hydrocarbon fuel/air fire, with an average flame temperature of at least $800^{\circ} \mathrm{C}$ (approximately $1475^{\circ} \mathrm{F}$) for a period of 30 minutes.

4.1.1 Case 1 - Maximum Normal Operating Pressure for NCT

The maximum normal operating pressure will be calculated at one year per Reference 7.1. At this point in time, there are four species of gas present within the RVTS: air, water vapor, hydrogen, and oxygen. The hydrogen and oxygen are the products of radiolysis. The temperature used for this case is the maximum steady state temperature attained when the RVTS is exposed to $100^{\circ} \mathrm{F}$ still air and insolation for a 12 hour period since this temperature will lead to the highest pressure increase in the air pressure and vapor pressure. The total pressure of gases within the RVTS can be broken down as follows:

$$
\begin{equation*}
P_{\text {total }}=P_{\mathrm{air}}+P_{\text {vapor }}+P_{\mathrm{H} 2}+P_{\mathrm{O}} \tag{Eq.4.1}
\end{equation*}
$$

where:

$P_{\text {total }}$	total pressure in the RVTS [psia]
$P_{\text {aia }}$	partial pressure of air in the RVTS [psia]
$P_{\text {vapor }}$	partial pressure of water vapor in the RVTS [psia]
$P_{\mathrm{H} 2}$	partial pressure of hydrogen from radiolysis in the RVTS [psia]
P_{O2}	partial pressure of oxygen from radiolysis in the RVTS [psia]

The partial pressure of air in the RVTS ($P_{\text {air }}$) can be calculated using the ideal gas law (Ref. 7.2), given below:
$P V=m R T$
where:
$P \quad$ pressure of the gas [psfa]

Since the volume inside of the RVTS ($V_{\text {air }}$) and the amount of air within the RVTS ($m_{\text {air }}$) are constant, the ideal gas law can be rearranged as follows:

$$
\begin{align*}
& \frac{P_{a n}}{T_{\mathrm{aji}}}=\frac{m_{\mathrm{ain}} \cdot R}{V_{\mathrm{ai}}}=\text { constant } \tag{4.3a}\\
& \frac{P_{r_{-} a i}}{T_{1, \text { aii }}}=\frac{P_{2_{-} a i}}{T_{2_{-} \text {ai }}} \tag{4.3b}\\
& P_{2_{- \text {ai }}}=P_{1_{- \text {air }}} \cdot \frac{T_{z_{-} \text {air }}}{T_{1_{-} \text {air }}} \tag{4.3c}
\end{align*}
$$

where:
$P_{\dagger_{\text {_air }}}$ initial air pressure [psfa, psia]
$P_{2_{2}}$ air maximum air pressure attained within the RVTS [psfa, psia]
T_{1} air initial air temperature [${ }^{\circ} \mathrm{R}$]
$T_{2}{ }_{2}$ air maximum air temperature attained within the RVTS [${ }^{\circ} R$]
Note that to conservatively maximize the pressure increase, the lower bound LDCC pour temperature is used for the air's initial temperature. This gives the greatest change in temperature. The initial air pressure is taken as 14.37 psia, which is the atmospheric pressure for an elevation of 591 feet (Design Input 2.6).

The partial pressure of water vapor in the RVTS ($P_{\text {vapor }}$) can also be found since the relative humidity is conservatively assumed to be 100% (see Assumption 3.1). At 100% relative humidity, the vapor pressure is equal to the saturation pressure.

Reference 7.4 gives the hydrogen concentration (from radiolysis) at one year from the time the vessel is closed as a percentage by volume. From this, the oxygen concentration can be deduced since one mole of oxygen is produced for every two moles of hydrogen produced per the equation below:

$$
\begin{equation*}
2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2}+\mathrm{O}_{2} \tag{Eq.4.4}
\end{equation*}
$$

The partial pressures of the hydrogen and oxygen can be found using the Amagat-Leduc Law of Additive Volumes (Ref. 7.2), which shows that the mole fraction of a component in a mixture is equal to its volume fraction. However, the mole fraction of a component in a mixture is also equal to its partial pressure. This is demonstrated by Dalton's Law of Additive Pressures (Ref. 7.2). This leads to the following:

$$
\begin{equation*}
\frac{V_{i}}{V_{\text {treat }}}=\frac{P_{i}}{P_{\text {tatala }}}=\frac{n_{i}}{n_{\text {total }}}=y_{i} \tag{Eq.4.5}
\end{equation*}
$$

where:
$V_{i} \quad$ volume of component gas
$P_{i} \quad$ pressure of component gas
$n_{i} \quad$ number of moles of component gas

Thus, the partial pressures of hydrogen $\left(P_{\mathrm{H}_{2}}\right)$ and oxygen $\left(\mathrm{P}_{\mathrm{O} 2}\right)$ from radiolysis can be found in terms of the total pressure as follows:

$$
\begin{align*}
& P_{H 2}=P_{\text {toat }} \cdot \frac{V_{\text {Hi2 }}}{V_{\text {totat }}}=P_{\text {totat }} \cdot \frac{\left(\% H_{2} \text { by volume }\right)}{100} \tag{Eq.4.6a}\\
& P_{02}=P_{\text {tatat }} \cdot \frac{V_{o 2}}{V_{\text {total }}}=P_{\text {totaal }} \cdot \frac{\left(\% \mathrm{O}_{2} \text { by volume }\right)}{100} \tag{Eq.4.6b}
\end{align*}
$$

With the partial pressures of air and water vapor known and the partial pressures of hydrogen and oxygen given in terms of the total pressure, equation 4.1 can be solved to find the maximum pressure.

4.1.2 Cases 2a/2b - Minimum Normal Operating Pressure for NCT

The minimum pressure is calculated in order to provide a lower bound for normal operating pressures. The temperatures used for these cases are the minimum steady state temperature attained when the RVTS is exposed to $-20^{\circ} \mathrm{F}$ and $-40^{\circ} \mathrm{F}$ still air and shade since these temperatures will lead to the greatest decrease in the air pressure. However, it should also be noted that water vapor will not be present at these temperatures. In order to be conservative, the effects of radiolysis are also neglected.

Since a conservative lower bound pressure is being calculated, the total pressure within the RVTS is only a function of the air pressure. The pressure within the RVTS will decrease since the temperature decreases. Equation 4.3 c will be used to calculate the pressure decrease. However, the initial temperature used will be the upper bound LDCC pour temperature since this will give the largest temperature differential.

4.1.3 Case 3 - Maximum Pressure During Hypothetical Accident Conditions (HAC)

The maximum pressure which will occur during HAC will be calculated using the same methodology as that for the maximum normal operating pressure (Case 1). The accident will be assumed to occur after radiolysis has been occurring within the cask for a period of one year. However, the temperature which will be used to determine this pressure will not be the maximum attained within the LDCC in the cask during accident conditions. Using the maximum temperature would lead to artificially high, localized pressures within the cask, which would not exist due to pressure equalization via concrete porosity (see Assumption 3.4). Therefore, a volume average temperature will be used. In addition, the temperatures from Reference 7.3 conservatively ignore the latent heat of vaporization of water within the cask. In order to convert water to vapor, energy is consumed, therefore neglecting this phenomenon results in more energy being applied to the air, and higher temperatures.

The analysis in Reference 7.3 shows that the only portion of the cask internals that are subject to significant heating is the annular region between the RPV and the cask walls, which is the region filled with LDCC. Although the LDCC inside the RPV is also subject to heating, it is not as great as that experienced by the LDCC in the annular region. The volume average LDCC temperature in the annular region at the end of the half hour fire specified in 10 CFR 71.73 (c)(4) will be used to determine the volume average temperature. To compute the volume average temperature, the annular region is divided into concentric

rings using the divisions of Reference 7.3. The concentric rings are stacked to form the annular LDCC region.

The temperature assigned to each ring is found by first taking the average of the temperature on the top of the ring and the temperature on the bottom of the ring and then by taking the average of the temperature at the outer radius of the ring and the temperature at the inner radius of the ring. The volume average temperature is then defined as follows:

$$
\begin{equation*}
T_{\text {volume_Arexiges }}=\frac{\sum_{i}^{n}\left(T_{i-\text { ing }} \cdot V_{i_{-} \text {ing }}\right)}{\sum_{i}^{i} V_{i} . \text { mpe }} \tag{Eq.4.7}
\end{equation*}
$$

where:

$T_{\text {volume_average }}$	volume average temperature temperature of ring i
$T_{T_{\text {_ing }}}$	volume of ring i
$V_{i} i$ _-_ng	ring element subscript
n	total number of ring elements

Once the volume average temperature is known, the total pressure can be found using the equations developed for Case 1 (Section 4.1.1).

4.2 Acceptance Criteria

The acceptance criteria for the thermal analysis of the RVTS is provided by Reference 7.1. For this analysis, Reference $7.1, \S 71.4$, specifies that the maximum pressure in the RVTS must be less than 100 psig in order to be classified as a Type B Package.

In addition to the specific acceptance criteria for maximum normal operating pressure, general approval standards for all radioactive material transportation packages are specified in 10 CFR 71.41 (a) and 10 CFR 71.43 (f), repeated below respectively.
"The effects on a package of the tests specified in $\$ 71.71$ ("Normal conditions of transport"), and the tests specified in $\S 71.73$ ("Hypothetical accident conditions"), and $\$ 71.61$ (Special requirements for irradiated nuclear fuel shipments"), must be evaluated by subjecting a specimen or scale model to a specific test, or by another method of demonstration acceptable to the Commission, as appropriate for the particular feature being considered."
"A package must be designed, constructed, and prepared for shipment so that under the tests specified in $\S 71.71$ ("Normal conditions of transport") there would be no loss or dispersal of radioactive contents, no significant increase in external surface radiation levels, and no substantial reduction in the effectiveness of the packaging."

Compliance with 10 CFR 71.43(f) will be ensured in external structural analyses of the RVTS, based on the pressures documented in this calculation.

The pressure in the RVTS following the HAC, Case 3, can be used to ensure that the RVTS design meets the requirements given in 10 CFR 71.51(a)(2).

5.0 Calculations

The bounding pressures within the RVTS are calculated below. Note that all gauge pressures calculated below are with regard to the atmospheric pressure at 591 feet above sea level which is 14.37 psia.

However, it should be noted that in transport from Big Rock Point to the storage facility in South Carolina, higher elevations may be encountered in the Appalachian Mountains. Mount Mitchell in North Carolina is the highest point in the Appalachians with an elevation of 6684 feet. The atmospheric pressure at this elevation is 11.47 psia. Thus, at these high elevations, the gauge pressure will be higher than when using 14.37 psia as a basis. Lower elevations may also be encountered, but they will not adversely affect maximum pressure calculations.

5.1 Case 1 - Maximum Pressure for NCT

The maximum pressure is calculated using the lowest initial temperature and the highest temperature attained in the RVTS when subjected to $100^{\circ} \mathrm{F}$ still air and 12 hours of $400 \mathrm{~g}-\mathrm{cal} / \mathrm{cm}^{2}$ insolation. The minimum initial temperature is the lower bound of the LDCC pour temperature, which is $60^{\circ} \mathrm{F}$ (Assumption 3.6), and the maximum temperature within the RVTS after 12 hours of the prescribed insolation is $191.17^{\circ} \mathrm{F}$ (Design Input 2.3).

The total pressure is given by equation 4.1, repeated below:

$$
P_{\text {total }}=P_{\text {air }}+P_{\text {vapor }}+P_{\mathrm{H} 2}+P_{\mathrm{O}}
$$

For the maximum partial pressure of air, equation 4.3 c is used.

$$
P_{\text {air }}=P_{2_{2} \text { air }}=P_{1_{1} \text { air }} \cdot \frac{T_{2_{2}} \text { air }}{T_{1_{1} \text { air }}}=14.37[\text { psia }] \cdot \frac{(191.17+459.67)^{\circ} R}{(60+459.67)^{\circ} R}=18.00 \mathrm{psia}
$$

The partial pressure of water vapor is conservatively taken as the saturation pressure of water at 191.17 ${ }^{\circ} \mathrm{F}$ (relative humidity $=100 \%$). Thus,

$$
P_{\text {vapor }}=P_{\text {sat_191.17\%F }}=9.58 \mathrm{psia}
$$

Design Input 2.1 states that the hydrogen concentration after one year is 3.7% by volume. For conservatism, this concentration is taken as 4% by volume. Thus, the oxygen concentration is 2% by volume. The partial pressures of hydrogen and oxygen resulting from radiolysis are given in terms of the total pressure per equations 4.6 a and 4.6 b .

$$
\begin{aligned}
& P_{\mathrm{H} 2}=P_{\text {total }} \cdot \frac{\left(\% \mathrm{H}_{2} \text { by volume }\right)}{100}=P_{\text {total }} \cdot \frac{4}{100}=0.04 \cdot P_{\text {total }} \\
& P_{\mathrm{o} 2}=P_{\text {totes }} \cdot \frac{\left(\% \mathrm{O}_{2} \text { by volume }\right)}{100}=P_{\text {total }} \cdot \frac{2}{100}=0.02 \cdot P_{\text {total }}
\end{aligned}
$$

The above partial pressures can now be substituted into equation 4.1 to solve for the total pressure.

$$
\begin{aligned}
& P_{\text {total }}=18.00+9.58+0.04 P_{\text {total }}+0.02 P_{\text {total }} \\
& P_{\text {total }}=29.34 \mathrm{psia}=15.0 \mathrm{psig}
\end{aligned}
$$

Thus, the maximum normal operating pressure within the RVTS is 15.0 psig at elevation 591 feet. At elevation 6684 feet, the maximum normal operating pressure within the RVTS is 17.9 psig . The partial pressures are summarized below.

$$
\begin{aligned}
& P_{\text {air }}=18.00 \mathrm{psia} \\
& P_{\text {vapor }}=9.58 \mathrm{psia} \\
& P_{\mathrm{H} 2}=1.17 \mathrm{psia} \\
& P_{\mathrm{O} 2}=0.59 \mathrm{psia}
\end{aligned}
$$

5.2 Case 2a - Minimum Pressure for NCT Based on Minimum Initial Condition

The minimum pressure is calculated using the highest initial temperature and the lowest temperature attained in the RVTS when subjected to $-20^{\circ} \mathrm{F}$ still air and shade. The maximum initial temperature is the upper bound of the LDCC pour temperature, which is $85^{\circ} \mathrm{F}$ (Assumption 3.6), and the minimum temperature within the RVTS is $-19.45^{\circ} \mathrm{F}$ (Design Input 2.3).

The total pressure is given by equation 4.1, repeated below:

$$
P_{\text {total }}=P_{\text {air }}+P_{\text {vapor }}+P_{\mathrm{H} 2}+P_{\mathrm{O}}
$$

However, as is discussed in Section 4.1.2, at a temperature of $-19.45^{\circ} \mathrm{F}$, water vapor will not exist and, to be conservative, radiolysis is neglected. Therefore, the total pressure is only dependent on the air component. For the minimum pressure of air (total pressure), equation 4.3 c is used.

$$
P_{\text {total }}=P_{\text {air }}=P_{2_{-} \text {air }}=P_{1_{-} \text {air }} \cdot \frac{T_{2_{2} \text { air }}}{T_{1_{-} \text {air }}}=14.37[p \mathrm{pia}] \cdot \frac{(-19.45+459.67)^{\circ} \mathrm{R}}{(85+459.67)^{\circ} \mathrm{R}}=11.61 \mathrm{psia}=-2.8 \mathrm{psig}
$$

Thus, the minimum normal operating pressure within the RVTS is -2.8 psig at an elevation 591 feet and a still air temperature of $-20^{\circ} \mathrm{F}$. The partial pressures are summarized below.

$$
\begin{aligned}
& P_{\text {air }}=11.61 \mathrm{psia} \\
& P_{\text {vepor }}=0.0 \mathrm{psia} \\
& P_{\mathrm{H} 2}=0.0 \mathrm{psia} \\
& P_{\mathrm{O} 2}=0.0 \mathrm{psia}
\end{aligned}
$$

5.3 Case 2b - Minimum Pressure for NCT Based on Cold Condition

The minimum pressure is calculated using the highest initial temperature and the lowest temperature attained in the RVTS when subjected to $-40^{\circ} \mathrm{F}$ still air and shade. The maximum initial temperature is the upper bound of the LDCC pour temperature, which is $85^{\circ} \mathrm{F}$ (Assumption 3.6), and the minimum temperature within the RVTS is $-39.4^{\circ} \mathrm{F}$ (Design Input 2.3).

The total pressure is given by equation 4.1, repeated below:

$$
P_{\text {total }}=P_{\text {air }}+P_{\text {vapor }}+P_{H 2}+P_{02}
$$

However, as is discussed in Section 4.1.2, at a temperature of $-39.4^{\circ} \mathrm{F}$, water vapor will not exist and, to be conservative, radiolysis is neglected. Therefore, the total pressure is only dependent on the air component. For the minimum pressure of air (total pressure), equation 4.3 c is used.

$P_{\text {total }}=P_{\text {air }}=P_{2_{-} \text {air }}=P_{1_{\text {_air }}} \cdot \frac{T_{2 _ \text {air }}}{T_{1 _ \text {air }}}=14.37[\mathrm{psia}] \cdot \frac{(-39.4+459.67)^{\circ} \mathrm{R}}{(85+459.67)^{\circ} \mathrm{R}}=11.09$ psia $=-3.3 \mathrm{psig}$

Thus, the minimum normal operating pressure within the RVTS is -3.3 psig at an elevation 591 feet and a still air temperature of $-40^{\circ} \mathrm{F}$

$$
\begin{aligned}
& P_{\text {air }}=11.09 \mathrm{psia} \\
& P_{\text {vapor }}=0.0 \mathrm{psia} \\
& P_{\mathrm{H} 2}=0.0 \mathrm{psia} \\
& P_{\mathrm{O} 2}=0.0 \mathrm{psia}
\end{aligned}
$$

5.4 Case 3-Maximum Pressure for HAC

The maximum pressure is calculated using the lowest initial temperature and the volume average temperature, which is computed in Table 1 (attached). The minimum initial temperature is the lower bound of the LDCC pour temperature, which is $60^{\circ} \mathrm{F}$ (Assumption 3.6), and the volume average temperature is $311.70^{\circ} \mathrm{F}$ (see Table 1).

The total pressure is given by equation 4.1, repeated below:

$$
P_{\text {total }}=P_{\text {air }}+P_{\text {vapor }}+P_{H 2}+P_{O 2}
$$

For the maximum partial pressure of air, equation 4.3 c is used.

$$
P_{\text {air }}=P_{2_{-} \text {air }}=P_{1_{-} \text {air }} \cdot \frac{T_{2_{2} \text { air }}}{T_{1_{-} \text {air }}}=14.37[p \mathrm{psia}] \cdot \frac{(311.70+459.67)^{\circ} R}{(60+459.67)^{\circ} R}=21.33 \mathrm{psia}
$$

The partial pressure of water vapor is conservatively taken as the saturation pressure of water at 311.70 ${ }^{\circ} \mathrm{F}$ (relative humidity $=100 \%$). Thus,

$$
P_{\text {vapor }}=P_{\text {sat_31.70 }} \text { F }=79.6 \text { psia }
$$

Design Input 2.1 states that the hydrogen concentration after one year is 3.7% by volume. For conservatism, this concentration is taken as 4% by volume. Thus, the oxygen concentration is 2% by volume. The partial pressures of hydrogen and oxygen resulting from radiolysis are given in terms of the total pressure per equations 4.6 a and 4.6 b .

$$
\begin{aligned}
& P_{H 2}=P_{\text {toata }} \cdot \frac{\left(\% H_{2} \text { by volume }\right)}{100}=P_{\text {total }} \cdot \frac{4}{100}=0.04 \cdot P_{\text {total }} \\
& P_{02}=P_{\text {toata }} \cdot \frac{\left(\% \mathrm{O}_{2} \text { by volume }\right)}{100}=P_{\text {toata }} \cdot \frac{2}{100}=0.02 \cdot P_{\text {total }}
\end{aligned}
$$

The above partial pressures can now be substituted into equation 4.1 to solve for the total pressure.

Thus, the maximum pressure within the RVTS due to HAC is 93.0 psig at elevation 591 feet. At elevation 6684 feet, the maximum pressure within the RVTS is 95.9 psig . The partial pressures are summarized below.

$$
\begin{aligned}
& P_{\text {air }}=21.33 \mathrm{psia} \\
& P_{\text {vapor }}=79.6 \mathrm{psia} \\
& P_{\mathrm{H} 2}=4.29 \mathrm{psia} \\
& P_{\mathrm{O} 2}=2.15 \mathrm{psia}
\end{aligned}
$$

Client	BNFL, Inc.
Project	Big Rock Point Major Component Removal
Proj. No	$10525-020$

Prepared by	Frank A. Nezrick	Date
Reviewed by	Daniel A. Tallitsch	Date
Approved by	Robert J. Peterson	Date

6.0 Results

6.1 Conclusions

For Case 1, which has Normal Conditions of Transport with applied solar insolation heat loads at an ambient temperature of $100^{\circ} \mathrm{F}$ corresponding to the maximum initial and heat conditions, the maximum LDCC steady state temperature inside the RVTS is $191.17^{\circ} \mathrm{F}$. Using this maximum temperature with a hydrogen concentration of 4% at one year gives a maximum normal operating pressure within the RVTS of 15.0 psig at elevation 591 feet. At elevation 6684 feet, the maximum normal operating pressure within the RVTS is 17.9 psig. This pressure is below the 100 psig limit for Type B Packages.

For Case 2a, which has Normal Conditions of Transport with an ambient temperature of $-20^{\circ} \mathrm{F}$ corresponding to the minimum initial condition, the minimum LDCC steady state temperature inside the RVTS is $-19.45^{\circ} \mathrm{F}$. Using this minimum temperature gives a minimum normal operating pressure within the RVTS of -2.8 psig.

For Case 2 b , which has Normal Conditions of Transport with an ambient temperature of $-40^{\circ} \mathrm{F}$ corresponding to the cold condition, the minimum LDCC steady state temperature inside the RVTS is $39.4^{\circ} \mathrm{F}$. Using this minimum temperature gives a minimum normal operating pressure within the RVTS of -3.3 psig.

For Case 3, which has Hypothetical Accident Conditions with a $1475{ }^{\circ} \mathrm{F}$ flame applied to the RVTS, the volume average temperature of the LDCC in the annular region is $311.70^{\circ} \mathrm{F}$. Using this temperature gives a maximum pressure within the RVTS of 93.0 psig at elevation 591 feet. At elevation 6684 feet, the maximum pressure within the RVTS is 95.9 psig . This pressure is below the 100 psig limit for Type B Packages.

The results of the analysis are summarized below.

	Case 1 (Maximum Pressure for NCT) under Maximum Initial and Heat Condition	Case 2a (Minimum Pressure for NCT) under Minimum Initial Condition	Case 2b (Minimum Pressure for NCT) under Cold Condition	Case 3 (Maximum Pressure for HAC
Pressure	15.0 psig at el. 591 feet (17.9 psig at el. 6684 feet)	-2.8 psig at el. 591 feet	-3.3 psig at el. 591 feet	93.0 psig at el. 591 feet (95.9 psig at el. 6684 feet)

It should be noted that since the initial pressure in all cases is taken as 14.37 psia (0 psig), the gauge pressures are the pressure differentials from the initial LDCC pour.

6.2 Recommendations

It is recommended that the LDCC inside the RVTS be poured when the ambient temperature is between $60^{\circ} \mathrm{F}$ and $85^{\circ} \mathrm{F}$. This is assumed in this calculation (Assumption 3.6).

7.0 References
7.1 United States Nuclear Regulatory Commission Rules and Regulations, Title 10, Part 71, "Packaging and Transportation of Radioactive Material," March 31, 1999.
7.2 Fundamentals of Engineering Thermodynamics, John R. Howell \& Richard O. Buckius, Second Edition, 1992.
7.3 Sargent \& Lundy Calculation No. M-10525-020-001, Rev. 1, "Thermal Response of Reactor Vessel Transport System."
7.4 Sargent \& Lundy Calculation No. N-10525-042-001, Rev. 1, "Reactor Vessel Transport System Hydrogen Gas Generation."
7.5 Encyclopedia.com (http://encyclopedia.com) by Electronic Library, "Appalachian Mountains."
7.6 Big Rock Point Plant Drawing No. C-3, Rev. AC, "Site Plan."
7.7 Compressed Air and Gas Handbook, Rollins, J. P. Editor, $5^{\text {th }}$ Edition, Compressed Air and Gas Institute, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1989.
7.8 Pan Pacific Engineering Pty. Ltd. Technical Information (LITEBUILT® Aerated Concrete).
7.9 Sargent \& Lundy Drawing No. SD-10525-020-001, Rev. 0, "RVTS Cask - Major Component Removal Big Rock Point Restoration".
7.10 "Composition and Properties of Concrete", $2^{\text {nd }}$ Edition, Troxell, Davis, Kelly, McGraw-Hill Civil Engineering Series.

Elev. (t) Temperature Distribution in Annular LDCC Region at $t=0.5$ hours ('F) (Rel. 7.3)							
24.6	971.08	1043.46	1673.35	11018.89	114tas	1215.44	133603
22.57	102.94	102.54	102.51	119.45	1385	:54 ? 1	1354.91
20.53	101.65	101.4	101.26	105.10	132010	359	135502
18.49	102.12	101.77	101.55	103.36	13285	3ix 5	1354.14
16.45	1102.38	102.1	106.23	171.15	7x:1	U16\%	1231.01
16.11	102.46	102.21	107.15	179.61	2?1?		
15.45	102.62	102.32	107.12	178.14	x0: 15		
15.36	102.63	102.32	107.11	17194	x015 5		
13.64	102.64	102.34	107.12	177.84	xolis ix		
11.91	102.58	102.29	107.09	177.87	xim:		
10.18	102.45	102.2	107.04	178.08	81927		
8.45	102.27	102.09	107.44	185.3	871.24	45.59	1152.84
6.0	102.2	101.83	101.59	115.38	13274	Six ${ }^{\text {\% }}$	1554
3.55	101.86	101.56	101.38	115.15	1526	357.9	1355.122
1.1	101.95	111.63	101.5	105.54	132.3:	Sisx	1355.17
0.67	170.05	157.09	153.99	158.24	187.37	113,	1554.46
0.33	1203.15	1204.93	1209.47	1220.28	$124: 41$	12×15	$13+1.28$
		532	--......	-----.. 5			6.25
				Radius (t)			
Average Temperatures in Radial Direction (${ }^{\circ} \mathrm{F}$)							
555.01	580.96	595.80	620,89	713.23	1066.41		
102.13	101.93	102:83	118.28	245.68	856.77		
101.74	101.50	102.31	117.84	24534	856.42		
102.09	102.91	120.55	297.59	54783	96514		
102.29	104.42	141.01	488.76				
102.40	104.70	143.00	495.54				
102.47	104.72	142.59	490.20				
102.48	104.72	142.53	489.39				
102.46	104.71	142.49	489.04				
102.38	104.66	142.52	489.72				
102.25	104.69	144.47	509.35				
102.10	103.24	124.43	323.18	578.84	954.54		
101.86	101.59	102.38	117.84	245.27	856.32		
101.75	101.52	102.34	117.73	245.14	856.55		
132.68	129.05	129.78	145.34	270.48	867.93		
683.81	681.87	686.01	702.46	779.19	1095.31		

| | Average. Temperatures in Vertical Direction ('s) | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 537.01 | 573.00 | 588.92 | 602.67 | 639.11 | 787.35 | 134547 |
| 102.30 | 101.97 | 101.89 | 103.77 | 132.80 | 358.57 | 1354.97 |
| 101.89 | 101.59 | 101.41 | 103.22 | 132.46 | 358.23 | 1354.61 |
| 102.25 | 101.94 | 103.89 | 137.21 | 457.98 | 637.68 | 1292.60 |
| 102.42 | 102.16 | 106.68 | 175.33 | 802.18 | | |
| 102.54 | 102.27 | 107.13 | 178.88 | 812.21 | | |
| 102.63 | 102.32 | 107.12 | 178.07 | 802.33 | | |
| 102.64 | 102.33 | 107.12 | 177.94 | 800.85 | | |
| | | | | | | |
| 102.61 | 102.32 | 107.11 | 177.88 | 800.19 | | |
| 102.52 | 102.25 | 107.07 | 177.98 | 801.46 | | |
| 102.36 | 102.15 | 107.24 | 181.69 | 837.00 | | |
| 102.24 | 101.96 | 104.52 | 144.34 | 502.02 | 655.66 | 125342 |
| 102.03 | 101.70 | 101.49 | 103.27 | 132.42 | 358.12 | 1354.51 |
| 101.91 | 101.60 | 101.44 | 103.25 | 132.22 | 358.06 | 1355.05 |
| 136.00 | 129.36 | 128.75 | 130.82 | 159.86 | 381.09 | 1354.77 |
| 686.60 | 681.01 | 682.73 | 689.29 | 715.64 | 842.74 | 1347.87 |

		Volumes $\left(\mathrm{ff}^{3}\right)$			
13.32	13.83	14.34	14.85	12.24	13.37
13.38	13.89	14.41	14.92	12.30	13.43
13.38	13.89	14.41	14.92	12.30	13.43
13.38	13.89	14.41	14.92	12.30	13.43
2.23	2.32	2.40	2.49		
4.33	4.50	4.66	4.83		
0.59	0.61	0.64	0.66		
11.28	11.71	12.15	12.58		
11.35	11.78	12.22	12.65		
11.35	11.78	12.22	12.65		
11.35	11.78	12.22	12.65		
16.07	16.69	17.30	17.92	14.78	16.13
16.07	16.69	17.30	17.92	14.78	16.13
16.07	16.69	17.30	17.92	14.78	16.13
2.82	2.93	3.04	3.14	2.59	2.83
2.23	2.32	2.40	2.49	2.05	2.24
Sub-Totals					
159.20	165.30	171.40	177.50	98.14	107.14
Total Vol.	878.69	ft			

	Average Temperature ${ }^{*}$ Volume (${ }^{\circ} \mathrm{F}$ - ft 3)				
7390.49	8032.51	8541.60	9218.15	8733.27	14255.49
1366.70	1416.22	1481.41	1764.75	3023.12	11509.43
1361.38	1410.21	1474.03	1758.11	3018.91	11504.73
1368.17	1429.91	1736.74	4439.98	6740.98	12965.26
228.13	241.80	338,58	1215.35		
443.34	470.63	666.54	2391.97		
60.50	64.19	90.63	322.66		
1156.27	1226.81	1731.30	6156.28		
1162.76	1233.80	1740.94	6187.55		
1161.83	1233.15	1741.28	6196.16		
1160.38	1233.59	1765.04	6444.53		
1640.82	1722.71	2152.92	5790.82	B554.05	15400.01
1637.05	1695.22	1771.36	2111.50	3624.58	13815.34
1635.24	1694.01	1770.79	2109.58	3622.69	13819.17
374.24	377.96	394.11	457.07	701.53	2457.61
1525.08	1579.03	1647.23	1746.77	1597.99	2452.31
Sub-Totals					
23670.4	25061.7	29044.5	58311.2	39617.1	98179.3
Total	273884.3	${ }^{*} \mathrm{~F}-\mathrm{H}^{3}$			

Table

	A	B	c	D	E	F	c	H	$1]$	k	1
2	Elev, (if)	Temperalure Dist									
3	2.6	971.08	$119+3.46$	11075.33	$11(4.80$	114.68	1215.49	11396.03		$=(83+84) / 2$	$=(C 3+C 4) / 2$
1	22.57	102.94	102.54	1112.51	104.45	133.54	351.21	1351.91		= $(84485) / 2$	$=(C 4+C 5) / 2$ $=(C 5+C 6) / 2$
5	21.53	1101.65	101.4	171.26	${ }^{113.188}$	132.0\%	357, 31	1358.12		$=(85+86) / 2$ $=(86+87) / 2$	$=(C 5+C 6) / 2$ $=(C 6+C 7) / 2$
6	18.49	110.12	101.77	${ }^{111.55}$		132.85 7×31	${ }_{3}^{38 \times 6 \times 2}$	1231 19		$=(86+878 / 2$ $=(87+88) / 2$	$=(C 7+C 8) / 2$
7	${ }^{16.45}$		102.1 102.21 10.2	1164.23 117713	177.15 179.15	$\times 21.26$				= $(88+89) / 2$	= (C8.C9)/2
$\frac{8}{9}$	${ }_{15.15}^{16.15}$	1112.16 112.62		1177.12	179.14	$\underset{813.15}{ }$				$=(89+B 60) / 2$	$=(C 9+C 10) 12$
(10)	15.36	1112.6 .9	1101.32	1117.11	(77.\%)	x111. 51				$=(810+81)^{1 / 2}$	$=1610+C+11) / 2$
11	13.f4	1112.14	1102.3	1177.12	177.89	ximi.1. ${ }^{\text {a }}$				$=($ B12 +811)/2	$=(\mathrm{C} 12+\mathrm{C} 11)^{2}$
12	11.91	112.58	112.29	1107.12	177.87					= $=(812+81)^{(813+B 12) / 2}$	$=(C 13+C 12) / 2$
1.3		1112.45 1112.27	${ }^{112122}$	107.04	178.0 .3 185.	x $\times 12.21$	923.91	1152.44		$=(814+813) / 2$	$=(C 14+C 13) / 2$
$\frac{15}{15}$	${ }_{6}$	112.27 102.2	1102, $\times 3$	(171.51)	${ }^{16193.38}$	1:32.74		1355		$=(815+814) / 2$	$=(\mathrm{C} 15+\mathrm{C} 14) / 2$
16	3.s.	${ }_{801.86}$	101.85	${ }^{101.75}$	113.15	132.99\%	357.92	1355.12		$=(816+815) / 2$	$=(C 16+C 15) / 2$
17	1.1	101.25	101.6 .3	101.5	103.31	132.35	358.2	1355.17		$=\mathrm{C}(\mathrm{BI7} 7+816) / 2$	
in	10.67	170.145	157.019	$155.94)$ $12119+17$		187.37 124.3 .91		(1354.16		$x(818+817) 2$ $=(819+818) / 2$	= (C19+C18)/2
19	9,33	12013.15	1204.93	12119.47	12211.28	124.391		13 +1.2		(${ }^{\text {(1) }}$	
21		5.12	5.32	$5 . .52$	5.72	S.92	6.08	6.25			
22					Radius (ti)						
23											
$2+$	$=(K 3+13) / 2$										
25	= $=(\mathrm{K} 3+2 \mathrm{~L}) / 2$	= $=(\mathrm{L}+\mathrm{M}+\mathrm{M} 4)^{2} / 2$	$=(\mathrm{M} 4+\mathrm{N} 4)^{2}$	$=(\mathrm{Na}+\mathrm{O4}) / 2$	= ${ }^{(04+P 4 \text {)/2 }}$	$=(\mathrm{P} 4+\mathrm{Ca}) / 2$				$=P 10 \times\left(C 521 \times 2-8521^{1} 2\right)^{* A B S(S A 4.5 A 5)}$	=P10*(DS21~2-Cs21^2)A ABS(SA4-5A5)
27	$=(\mathrm{KF}+\mathrm{L} 5) / 2$	$=(2.5+M 5) / 2$	$=(\mathrm{MS}+\mathrm{NS}) / 2$	$=(\mathrm{NS}+05)^{2}$	$=(05+P 5) / 2$	$=($ P5 + Cos) $/ 2$					
$2 \mathrm{2x}$	$=(\mathrm{K} 6+\mathrm{L} 6) / 2$	$=(\mathrm{L} .6+\mathrm{M}) / 2$	$=(\mathrm{M} 6+\mathrm{N} 6) / 2$		$=(06+P 6) / 2$	$=(P 6+Q 8) / 2$					$=\mathrm{P} 10^{\circ}\left(\mathrm{DS} 21^{1}{ }^{2}-\mathrm{CS2} 1^{\wedge} 2\right)^{*} \mathrm{ABS}(\mathrm{SAG}-5 A 7)$
20	$=(K 7+17 / 2$	$=(17+M 7) / 2$	$=($ M $7+N 7) / 2$	=(N7+07)/2							$=P 10^{\circ}\left(D \$ 21^{\wedge} 2-C \$ 21^{\wedge} 2\right)^{*} A B S(S A B-5 A 9)$
30	=($\mathrm{K} 8+\mathrm{L}$ 8)/2	$=(L .8+M 8) / 2$	$x(M 8+N 8) / 2$								
$\frac{31}{31}$	$=(K 9+L 9 / 2)$ $=(K 10+L 10) / 2$	$=(2.9+M 9) / 2$ $=(L 10+M 10) / 2$	$=($ (M9+N9)/2 $=(M 10+N 10) / 2$								
33											
34	$=(\mathrm{K} 12+\mathrm{L} 12) / 2$	$=(\mathrm{L} 12+\mathrm{M} 12) / 2$	=(M12+N12)/2	=($\mathrm{N} 12+\mathrm{O} 2$)/2							
33	$=(\mathrm{K} 13+\mathrm{L} 13) / 2$	$=($ L23+M13)/2	=(M13+N13)/2	$=$ (N13+013)/2							
3.6	$=(\mathrm{K} 14+\mathrm{L} 14) / 2$	$=(L 14+M 14) / 2$	$=(\mathrm{M} 14+\mathrm{N14}) / 2$	=(N14+014)/2							
37	$=\left(\mathrm{K} 15+\mathrm{L}\right.$ 15) ${ }^{2}$	$=($ (LT5+M15)/2	=(M15+N15)/2		$=(015+P 15) / 2$ $=(016+P 16) / 2$	$x(P 15+015) / 2$ $=(\mathrm{P} 16+016) / 2$					
38		$=(L+6+\mathrm{M} 18) / 2$ $=(\mathrm{L} 17+\mathrm{M} 77 / 2$	$=(M 16+N 16) / 2$ $=(\mathrm{M} 17+\mathrm{N} 17) / 2$	$=(\mathrm{N} 1 \mathrm{~B}+\mathrm{O} 16) / 2$ $=(\mathrm{N} 17+\mathrm{O} 17) / 2$	$=(017+$ P17) 2	${ }_{=}(\mathrm{P} 17+\mathrm{Q} 17) / 2$					
d17	$=(\mathrm{K} 18+\mathrm{L} 18) / 2$	$=(L 18+\mathrm{M} 18 \mathrm{~B} / 2$	$=(\mathrm{M} 18+\mathrm{N} 18) / 2$	$=(\mathrm{N} 18+018) / 2$	$=(018+P 18) / 2$	$=(P 18+018) / 2$					
1	$=(K 19+L 19) / 2$	$=(L 19+$ M19) $/ 2$	=(M19+N19)/2	= ${ }^{(19+019}$)/2	=(019+P19)/2	$=(\mathrm{P} 19+\mathrm{Q} 19) / 2$					
${ }^{1}$										Sub-Totals	
4.3										=SUMMK25:K41)	=Sumpl25:141)
4										Total Vol	=SUM(K43:P43)
13											
15											
17	=A25*K25	=825*L25	=C25*M25	=D25*N25	-E25.025	=F25PP25					
+18	$=A 26 \cdot \times 26$	=826*L26	=C25*M26	=026'N26	-E26.026						
(17)	=A27*K27	=8274.27	=C27-M27	=027* 27	= $\mathrm{E} 27 \cdot 027$	${ }^{\text {aF27PP27 }}$					
517	=A28*K2B	* $828{ }^{\circ} \mathrm{L} 28$	= $\mathrm{C} 28 .^{\text {M }}$ 28	$=028 \cdot \mathrm{~N} 28$	=E28.028	$=F 28 \cdot{ }^{28}$					
51	=A29*K29	=829 ${ }^{\text {L29 }}$	=C29 ${ }^{\text {M29 }}$	= $229 \cdot \mathrm{~N} 29$							
52	$=A 30 * \% 30$	= $830 \cdot L 30$	-с30-M30	$=\mathrm{D} 30 \times$ N30							
53	=A31**31	=831\% 231	=C31 M 31	$=$ D31*N31							
34	=A32*K32	$=832 \cdot L 32$	=C32-M32	-0.32'N32							
- 5	=A34*K34	=834-L34	=C34-M34	= ${ }^{\text {2 }}$ * N 34							
57	=A35*K35	=835 ${ }^{\text {L }} 35$	= C35'M35	$=035 \times 35$							
5	=A36*K36		=С36.M38	=036* 36							
5	=A37* 37	=837* 37	- C37-M37	=037*N37	- $3^{37 * 037}$	${ }^{\text {aF }} 37 \times{ }^{\text {P }} 37$					
6	$=\mathrm{A} 33^{\prime} \times 38$	$=838 \mathrm{~L} 238$	= С 38.1438	$=$ D $38 \times$ N38 $=039 * * 39$							
61	=A39 ${ }^{\circ} \times 39$	$=838 \cdot \mathrm{~L} 39$	=С39.M39	=D39*N39	EE39.039	=F39PP39					
6		= 840×140	$=C 40 \times 440$ $=C 41$	$=D 40$ N40 $=0.10 \times 41$	EE40.040 $=$ E44*O4						
0.3	=A41 K41 Sub-Totals	=841 ${ }^{\text {L4 } 41}$	=C41 M4t	=041N41	=E410041	=F41P841					
$\frac{1}{65}$	$=\operatorname{sum}(A 47: A B 3)$	=SUM(347:883)	=SUM(C47:C63)	=SUM(047:D83)	=SUM(E47:E63)	=SUM(F47:F63)					
侐	Total	=SUM(A65;F65)	'F.f13								
$\frac{16}{6 \times 1}$	Volume Average			=8860.44	.						

.$d 1$

	M	N	0	L_ P	Q
T)					
$\frac{2}{3}$	$=(03+D 4) / 2$	=(E3+E4)/2	=(F3+F4)/2	$=(63+G 4) / 2$	$=(\mathrm{H} 3+\mathrm{H} 4) / 2$
-	$=(04+05) / 2$	$=(E 4+E 5) / 2$	= (F4+F5)/2	${ }_{=(G 4+G 5) / 2}$	$=(14+H 5) / 2$
5	$=(05+06) / 2$	$=(E 5+E 6) / 2$	=(F5+F6)/2	$=(G 5+G 6) / 2$	($\mathrm{H} 5+\mathrm{H} 6$)/2
6	$=(\mathrm{D}+\mathrm{D7}) / 2$	$=(E 6+E 7) / 2$	$=(F 6+F 7) / 2$	$=(\mathrm{G}+\mathrm{G} 7)^{2}$	$=(\mathrm{H} 6+\mathrm{H} 71 / 2$
7	$=(07+D 8) / 2$	= (E7+E8)/2	= (F7+F8)/2		
8.	$=(\mathrm{OS}+\mathrm{D9} 9 / 2$	$=(E 8+E 9) / 2$	$=(F 8+F 9) / 2$		
9.	$=(\mathrm{D9}+\mathrm{D} 10) / 2$	$=($ E9+E10) $/ 2$	$=($ F9+F10)/2		
1ii)	$=(010+D 11) / 2$	$=(E 10+E 11) / 2$	$=(F 10+F 11) / 2$		
12)	=(012+D11)/2	$=(E 12+E 11) / 2$	= (F12+F11)/2		
13	$=(\mathrm{D} 13+012)^{12}$	$=(E 13+E 12) / 2$	$=(F 13+F 12) / 2$		
17:	$=(\mathrm{D} 14+\mathrm{D}+3) / 2$	=(E14+E13)/2	=(F14+F13)/2		
15	$=(015+014) / 2$	=(E15+E14)/2	$=(F 15+F 14) / 2$	$=(G 15+G 14) / 2$	$=(\mathrm{H} 15+\mathrm{H} 414) / 2$
160	$=(016+D 15) / 2$	=(E16+E15) $/ 2$	$=(F 18+F 15) / 2$	$=(\mathrm{G} 16+\mathrm{G} 15) / 2$	=($\mathrm{H} 165+\mathrm{H} 15$)/2
17	$=(017+D 16) / 2$		$=(F 17+F 16) / 2$	=(G17+G16) ${ }^{2}$	$=\left(\begin{array}{l}177+\mathrm{H} \\ \hline 16) / 2\end{array}\right.$
1818 $=$	$=(018+D 17) / 2$	= $=(E 18+E 17) / 2$	=(F18+F17)	$=(G 18+\mathrm{G} 17 \mathrm{~T} / 2$	$2(H 18+$ H17) $=(1+19+H 18) / 2$
10,	$=(019+018) / 2$	$=(E 19+E 18) / 2$	$=(F 19+F 18) / 2$	$=(\mathrm{G} 19+\mathrm{G} 18) / 2$	$=(\mathrm{H} 19+\mathrm{H} 18) / 2$
$\frac{21}{22}$					
23					
-21					
25		=P10* ${ }^{(5521 \wedge}$			
2610 ${ }^{27}$ =				=P10*(H521^2.GS21^2)*ABS(\$A4-SAS)	
-27 ${ }^{27}$					
$2 \mathrm{zk}=$					
29					
231) $=$					
31	$=P 10{ }^{\circ}\left(E S 21^{\wedge} 2-D 521^{\wedge} 2\right)^{*} A B S(S A Q-S A 10)$				
32	$=P 100\left(E 524 \times 2 . D 5211^{2}\right)^{* A B S(5 A 10-S A 11)}$				
-31					
31					
38	$=P 10\left(E S 21^{\wedge} 2-D S 21^{\wedge} 2\right)^{*} A B S(S A 13-S A 12)$				
$\frac{36}{37}$					
37			=P10*(GS21^2-F521^2)*ABS(SA15-SA14)	$=P 10 \cdot(-1521 \sim 2-G 521 \wedge 2) \cdot A B S(S A 15-5 A 14)$	
238					
(39)	$=P 10 \%\left(E 521^{\wedge} 2.0521^{2}\right) \cdot A B S(\$ A 17-\$ A 16)$				
1010				$=P 10^{*}($ (H521^2-G521^2)*ABS(SA18-SA17)	
+1					
+ +2	=SUM(M25:M41)	-sumerosar)			
+1-1	Hi^{3}	-sum (noski)	=sum(023.04)	-sum(P2s.P4)	
45					
\pm					
$\frac{17}{18}$					
+10					
50					
51					
$\frac{5}{51}$					
51					
35					
$\frac{56}{57}$					
38					
30					
$\frac{610}{611}$					
(61)					
$4{ }^{6}$					
6					
6 6					
6					
0.8					

APPENDIX 4-1

[^0]NOTE: PRINT AND SIGN IN THE SIGNATURE AREAS

1.0 Purpose and Scope

1.1 Purpose

The purpose of this calculation is to evaluate the extent to which hydrogen gas may be present in the Big Rock Point's Reactor Vessel Transport System (RVTS). Molecuiar hydrogen gas (H_{2}) may be produced by radiolysis which would originate with the radioactivity in and on the Reactor Vessel Assembly and Internals (RVAI). Molecular hydrogen can explosively recombine with oxygen if present in sufficient fraction of a defined volume. This revision will also include the contribution from the radioactivity in and on the Grid Bar End Pieces (GBEP) which will add to the amount of molecular hydrogen production.

1.2 Scope

The scope of this calculation is directed to the determination of the amount of hydrogen gas that could be present in the partially-free RVTS volume otherwise comprised of the low density cellular concrete (LDCC). The LDCC will fill the interstices between the RVAI and the integrated structural steel shielding of the RVTS package. The rate of gas production will be related to restrictions from the Nuclear Regulatory Commission based on a fractional limit after one year of the sealing of the RVTS package.

1.3 Background

The RVAI will be physically processed to obtain an integrated unit. The RV Internals are already fixed in position, but LDCC will be pumped into the RV to surround the remaining internals. This operation serves to prevent the movement of superficial radioactive contaminants. The LDCC will also contribute to the formation of a readily identifiable boundary at the RV's nozzles and orifices. It is expected that the RV Head will not be a part of the RV integrated unit. Some other enclosure, like a steel plate, will be attached to the remaining RV Assembly and Internals in place of the RV Head.

The RVAI unit will be packaged for the purposes of transport to and near surface burial at the Barnwell, South Carolina Waste Management Facility. The packaged RVAI is the essential item that is a part of the Reactor Vessel Transportation System (RVTS). To create the RVTS package, the RVAl unit will be positioned in the package and surrounded by low density cellular concrete. The LDCC will help maintain the RVAl's optimal position, and also serve to insulate and radiologically shield the RVAI. The package itself will provide additional radiological shielding and be of sufficient construction to withstand the expected rigors of handling, transport and burial.

Federal regulations with regard to low-level radioactive waste, especially in Chapter 10 of the Code of Federal Regulations, Parts 20,61 and 71, are accommodated in this calculation. The general standards for all packages specified in Part 71 (71.43 and .71) receive primary consideration in this calculation with respect to the RVTS' capability to retain its radioactive contents due to internal gaseous pressure.

2.0 References

2.1 "Reactor Vessel Heat Rates and Shielding", Calculation No. N-10525-020-0001, Rev.1, Big Rock Point Major Component Removal, December 2000, Sargent \& Lundy ${ }^{\text {LLC }}$;
2.2 "Handbook of Chemistry and Physics", Edited by D.R. Lide, et al., $78^{\text {th }}$ Edition, 1997-98, CRC Press ${ }^{\text {LLC }}$;
2.3 "Radiolytic and thermal generation of gases from Hanford grout samples", D. Meisel, et al., Argonne National Laboratory, IL (USA), October 1993, DOE Contract W31109DNG38, Sup. Document \#E 1.99:DE94005377;
2.4 Code of Federal Regulations, Title 10, Volume 2, Part 71, Revised January 1, 1999, U.S. Government Printing Office via GPO Access; Table A-1, Appendix A;
2.5 "Clarification of Conditions for Waste Shipments Subject to Hydrogen Gas Generation", Information Notice No. 84-72, U.S. Nuclear Regulatory Commission, September 10, 1984, Washington, D.C.;
2.6 "Methodology for Calculating Combustible Gas Concentration in Radwaste Containers", NP-4938, Research Project 2558, March 1987, Electric Power Research Institute, California (USA);
2.7 "RVTS Component Weights", DIT No. DIT-BNFL-MCR-001-01, S. Reed--Preparer, Issue Date $5 / 5 / 2000$, Sargent \& Lundy ${ }^{\text {LLC }}$;
2.8 "Reactor Vessel Transport System Radiation Source Term", Calculation No. N-10525-020-004, Rev.1, Big Rock Point Major Component Removal, December 2000, Sargent \& Lundy ${ }^{\text {LLC }}$;
2.9 "RVTS Cask", Drawing No. SD-10525-020-001, Rev. A, General Note 5.a, Big Rock Point Major Component Removal, December 11, 2000, BNFL, Inc., Sargent \& Lundy ${ }^{\text {L'C }}$.

3.0 Design Input

3.1 Conversion Factors (Reference 2.2, pgs. 1-24-1-31; 1-19):
a. 1 pound $=0.4536$ kilograms (kg);
b. $\quad 1 \mathrm{~kg}=1000$ grams (g);
c. 1 Curie $(\mathrm{Ci})=3.7 \mathrm{E}+10$ Bequerels $=3.7 \mathrm{E}+10$ disintegration (dis.)/second;
d. $1 \mathrm{MeV}=1 \mathrm{E}+6 \mathrm{eV}$;
e. 1 Liter (L) $=1000$ milliliter $=1000 \mathrm{~cm}^{3}$;

	Calc For Reactor Vessel Transport System Hydrogen Gas			Calc No. $\quad \mathrm{N}$-10525-042-001			
	Generation			Rev.	1	Date	01/31/01
	\mathbf{x}	Important to Safety - Category A	Non-Safety Related	Page		5	

Client BNFL, Inc. Project Big Rock Point Major Component Removal			Prepared by	G. Douglas Cole	Date
			Reviewed by	Roman Kahn	Date
Proj. No	10525-042	Equip. No.	Approved by		Date

f.	1 hour (hr) $=3600$ second (sec);	
g.	1 day	$=24$ hour;
h.	1 year	$=365.25$ day;
i.	1 mole	$=6.022 \mathrm{E}+23$ units of a specie (in this case, H_{2} molecules).

3.2 Reactor Component Activation Activties (Reference 2.1, Section 6.6) by radionuclide. These data are excerpted from the cited calculation step and have been decayed to a date of September 1. 2002.

Table 3-1. RVAl Activation Activities

Nuclide	Activity, Curies
$\mathrm{H}-3$	$4.83 \mathrm{E}+0$
$\mathrm{C}-14$	$1.60 \mathrm{E}+0$
$\mathrm{Sb}-125$	$2.98 \mathrm{E}-3$
$\mathrm{Mn}-54$	$1.59 \mathrm{E}+1$
$\mathrm{Eu}-152$	$1.87 \mathrm{E}-1$
$\mathrm{Fe}-55$	$51 \mathrm{E}+3$
$\mathrm{Co}-60$	$8.00 \mathrm{E}+3$
$\mathrm{Ni}-59$	$7.02 \mathrm{E}+0$
Ni-63	$1.16 \mathrm{E}+3$
$\mathrm{Nb}-94$	$2.43 \mathrm{E}-2$
Tc-99	$4.88 \mathrm{E}-3$
Total	$1.48 \mathrm{E}+4$

			For Reactor Ves	sport System		$\mathrm{N}-1$	5-042-001
rege	-		Generation			Date	01/31/01
		X	Important to Saf	tegory A		6	
Client BNFL, Inc.				Prepared by	G. Douglas Cole	Date	
Project	Big Rock Point Major Component Removal			Reviewed by	Roman Kahn	Date	
Proj. No	10525-042		Equip. No.	Approved by		Date	

3.3 For the radionuclides given in Table 3-1, Total Disintegration Energies are obtained from Reference 2.2, "Table of the Isotopes", pgs, 11-41-11-146. Only beta and beta-gamma radioactive nuclides have an associated energy listing.

Table 3-2. Radionuclide Decay Energy Characteristics

Nuclide	Total Disintegration Energy, MeV/dis
$\mathrm{H}-3$	0.01859
$\mathrm{C}-14$	0.1565
$\mathrm{Sb}-125$	0.767
$\mathrm{Mn}-54$	1.377
$\mathrm{Ce}-144$	0.319
$\mathrm{Eu}-152$	1.86
$\mathrm{Fe}-55$	0.2316
$\mathrm{Co}-60$	2.824
$\mathrm{Ni}-59$	(no entry)
$\mathrm{Ni}-63$	0.06
$\mathrm{Zn}-65$	1.3514
$\mathrm{Sr}-90$	0.546
$\mathrm{Nb}-94$	2.045
$\mathrm{Tc}-99$	0.294
$\mathrm{l}-129$	0.194
$\mathrm{Pu}-238$	(alpha)
$\mathrm{Pu}-239 / 240$	(alpha)
$\mathrm{Pu}-241$	0.021
$\mathrm{Pu}-242$	(alpha)
$\mathrm{Cm}-242$	(alpha)
$\mathrm{Cm}-243$	(alpha)
$\mathrm{Cm}-244$	(alpha)
$\mathrm{Am}-241$	(alpha)

3.4 Reactor Component Surface Contamination Activation Activties (Reference 2.8, Table 6.2.3-1) by radionuclide. These data are excerpted from the Table and include only the radionuclides that will contribute beta and beta-gamma decay energy to the cellular concrete layer of the RVTS. The activities are decayed to a date of September 1, 2002.

Table 3-3. RVAI Surface Contamination Activities

Nuclide	Activity, Curies
$\mathrm{H}-3$	$5.30 \mathrm{E}-4$
$\mathrm{C}-14$	$7.51 \mathrm{E}-4$
$\mathrm{Sb}-125$	$1.09 \mathrm{E}-2$
$\mathrm{Mn}-54$	$8.22 \mathrm{E}-3$
$\mathrm{Fe}-55$	$1.99 \mathrm{E}-1$
$\mathrm{Co}-60$	$2.49 \mathrm{E}+0$
$\mathrm{Ni}-63$	$1.42 \mathrm{E}-1$
$\mathrm{Zn}-65$	$1.36 \mathrm{E}-3$
$\mathrm{Sr}-90$	$6.04 \mathrm{E}-3$
$\mathrm{Tc}-99$	$6.07 \mathrm{E}-4$
$\mathrm{l}-129$	$1.33 \mathrm{E}-3$
$\mathrm{Ce}-144$	$3.03 \mathrm{E}-4$
$\mathrm{Pu}-241$	$3.31 \mathrm{E}-2$
Total	$2.90 \mathrm{E}+0$

3.5 Average radiolytic generation rate of hydrogen gas in concrete by virtue of deposition of betagamma energy, independent of dose rate, from Reference 2.3:
$G\left(H_{2}\right)=0.047$ molecules $/ 100 \mathrm{eV}$.
3.6 Physical constants for H_{2} (Reference 2.2, pg. 4-61).
a. Molecular weight: $\quad 2.016$ grams per mole;
b. Density: $\quad 0.088 \mathrm{~g} / \mathrm{L}$, at $25^{\circ} \mathrm{C}$ and 101.325 kPascal (Standard Temperature and Pressure).
3.7 The annulus region between the RVAI and the RVTS steel shielding will be filled with cellular concrete with a density range of $50-60 \mathrm{lbs} / \mathrm{ft}^{3}$ (see Reference 2.9). Within the RVAI, the cellular concrete employed will have a density range of $30-36 \mathrm{lbs} / \mathrm{ft}^{3}$. This less dense concrete will also span the baffle-sparger component layer near the top of the RV up to the RVTS package's top plate.

4.0 Assumptions

4.1 The radionuclides in Table 3-2 have associated Total Disintegration Energies only if they are beta and beta-gamma decay types. The nuclides that are listed as "alpha" emitters are taken to deposit no energy in the LDCC layer. See Reference 2.2.
a. The alpha particles that result from the indicated nuclides have considerable energies (from 4-6 MeV/dis) but very short mean free paths; the resultant associated gamma decays have generally low energies ($<500 \mathrm{keV}$), which are considered to remain completely in the RVAI metal layers;
b. The beta and gamma-ray energies are assumed to be completely deposited in the LDCC. This will translate later to a fractional energy conversion of unity (100%).
4.2 The hydrogen gas of interest in this calculation is assumed to be generated in the LDCC between the RVAl's exterior and the RVTS steel walls by the deposition of beta- and gamma-particle energies in the LDCC layer.
4.3 Organic compounds are assumed to not be present to the extent that they can contribute no hydrogen gas to that created in the LDCC. Neither surface contaminant radioactive materials nor entrained radioactivity are considered to be present in the LDCC.

5.0 Methodology and Acceptance Criteria

5.1 This calculation's methodology will utilize the references, design input, and assumptions to provide an evaluation of the potential accumulation of hydrogen gas in the air volume comprising a portion of the RVTS' LDCC layer. The model is related to that from Reference 2.6 (page 2-8), which allows the determination of a gas production rate by employing the simple product of the absorbed energy with the gas production rate per unit of absorbed energy. Additional factors may be employed which account for the difference between the available energy and the absorbed energy, and allow conversion to the desired rate-dependent quantitiy, e.g. volume of gas after a set period of time.

5.2 The primary acceptance criteria are based on the dictates of 10 CFR 71 (71.43 and .71) with respect to the RVTS' capability to retain its radioactive contents due to internal gaseous pressure. The presence of hydrogen gas in sufficient quantity to cause an explosion may reasonably also need to be considered.
5.3 Strictly, the explosion-potential considerations from Reference 2.5 do not apply to radioactive waste comprised of solidified activated reactor components. However, the informal criteria related, if not completely applicable, to the Information Notice is that the radiolytically-produced hydrogen gas in the RVTS be less than 5% by volume after a period of time that is twice the expected shipment time. Such criteria conservatively suggest consideration of a completely packaged and sealed RVAI in the RVTS awaiting transport and/or in transit for one year prior to receipt at the RVTS package's disposal site.

6.0 Calculations

6.1 Table 6-1 combines the design input from Tables 3-1 and 3-3 to allow calculation of the the betagamma energy deposition rate shown in the last column of the table. The calculation requires the conversion of Curies to disintegrations/second, then to energy deposition rate in MeV/sec. The following uses Co-60 as an example:
$8.00 \mathrm{E}+3$ Curies $\times 3.7 \mathrm{E}+10 \mathrm{dis} \mathrm{sec}^{-1} /$ Curie $\times 2.824 \mathrm{MeV} / \mathrm{dis}=$
8.36 E+14 MeV/sec .

Table 6-1. RVAI Activation and Contamination Activities

Nuclide	Activity, Curies	Total Disintegration Energy, $\mathrm{MeV} /$ dis	Disintegration Energy rate, $\mathrm{MeV} / \mathrm{sec}$
H-3	$4.83 \mathrm{E}+0$	0.01859	$3.32 \mathrm{E}+9$
C-14	$1.60 \mathrm{E}+0$	0.1565	$9.27 \mathrm{E}+9$
Sb-125	$1.39 \mathrm{E}-2$	0.767	$3.94 \mathrm{E}+8$
Mn-54	$1.59 \mathrm{E}+1$	1.377	$8.10 \mathrm{E}+11$
Ce-144	$3.03 \mathrm{E}-4$	0.319	$3.58 \mathrm{E}+6$
Eu-152	$1.87 \mathrm{E}-1$	1.86	$1.28 \mathrm{E}+10$
$\mathrm{Fe}-55$	$5.61 \mathrm{E}+3$	0.2316	$4.81 \mathrm{E}+13$
Co-60	$8.00 \mathrm{E}+3$	2.824	$8.36 \mathrm{E}+14$
Ni -59	---	---	0
Ni -63	1.16 E+3	0.06	$2.58 \mathrm{E}+12$
Sr -90	$6.07 \mathrm{E}-4$	0.546	1.23 E+7
Nb-94	2.43 E-2	2.045	$1.84 \mathrm{E}+9$
Tc-99	$5.49 \mathrm{E}-3$	0.294	$5.97 \mathrm{E}+7$
Pu-238	---	(aipha)	0
Pu-239/240	---	(alpha)	0
Pu-241	$3.31 \mathrm{E}-2$	0.021	$2.57 \mathrm{E}+7$
Pu-242	---	(alpha)	0
Cm-242	---	(alpha)	0
Cm-243	---	(alpha)	0
Cm-244	---	(alpha)	0
Am-241	---	(alpha)	0
l-129	$1.53 \mathrm{E}-3$	0.194	$1.10 \mathrm{E}+7$
Zn -65	$1.36 \mathrm{E}-3$	1.3514	$6.80 \mathrm{E}+7$
Total	$1.48 \mathrm{E}+4$		$8.88 \mathrm{E}+14$

6.2 The total beta-gamma energy depositon rate may be converted to a rate of hydrogen gas production using Reference 2.3:
$8.88 \mathrm{E}+14 \mathrm{MeV} / \mathrm{sec} \times 1 \mathrm{E}+6 \mathrm{eV} / \mathrm{MeV} \times 0.047 \mathrm{H}_{2}$ molecules $/ 100 \mathrm{eV}=$
4.17 E+17 H_{2} molecules $/ \mathrm{sec}$.

			For Reactor Vess	sport Syste	n Gas	$\mathrm{N}-1$	5-042-001
			Generation			Date	01/31/01
		\mathbf{x}	Important to Saf	tegory A	Non-Safety Relat	11	
Client BNFL, Inc.				Prepared by	G. Douglas Cole	Date	
Project	Big Rock Point Major Component Removal			Reviewed by	Roman Kahn	Date	
Proj. No	10525-042		Equip. No.	Approved by		Date	

6.3 This production rate may be re-calculated as an annual rate, as follows:
$4.17 \mathrm{E}+17 \mathrm{H}_{2}$ molecules $/ \mathrm{sec} \times 3600 \mathrm{sec} / \mathrm{hr} \times 24 \mathrm{hr} /$ day $\times 365.25$ day $/$ year $=$
1.32 $\mathrm{E}+25 \mathrm{H}_{2}$ molecules/year.
6.4 The annual hydrogen gas production rate may be converted to moles:
$1.32 \mathrm{E}+25 \mathrm{H}_{2}$ molecules /year $\times\left(6.022 \mathrm{E}+23 \mathrm{H}_{2} \text { molecules/mole }\right)^{-1}=$
21.9 mole H_{2} gas /year .
6.5 This production rate may be converted to gas volume produced annually:
21.9 mole $\mathrm{H}_{2} /$ year $\times 2.016 \mathrm{~g} /$ mole $\times(0.088 \mathrm{~g} / \mathrm{L})^{-1}=$

502 L /year of H_{2} gas .
6.6 Compare this annual production rate to the LDCC available volume in the RVTS. That volume may be calculated by using the weight of the "RV External Cellular Concrete" from Attachment B, as follows:

```
LDCC Volume \(=47,770 \mathrm{lbs} /\left(50 \mathrm{lbs} / \mathrm{ft}^{3}\right)=955.4 \mathrm{ft}^{3} ;\)
LDCC Volume \(=955.4 \mathrm{ft}^{3} \times(12 \mathrm{in} / \mathrm{ft} \times 2.54 \mathrm{~cm} / \mathrm{in})^{3} \times 1 \mathrm{~L} / 1000 \mathrm{~cm}^{3}=\)
\(2.705 \mathrm{E}+4 \mathrm{~L}\);
```

6.7 This RVTS inner volume must be adjusted for the fact that only 50% of the volume is available for the hydrogen gas to occupy. The 50% factor is a conservative interpretation of the proportionality of the outer annulus cellular concrete with that for regular concrete (see Reference 2.1, Attachment F). In this case the more conservative value of the range, i.e. $60 \mathrm{lbs} / \mathrm{ft}^{3}$, is used.

$$
\text { Void Fraction }=1.0-\left(60 \mathrm{lbs} / \mathrm{ft}^{3}\right) /\left(147 \mathrm{lbs} / \mathrm{ft}^{3}\right)=0.59>0.5 \text { (used) }
$$

6.8 The 50% factor may then be applied to the result of Step 6.6, as follows:

```
2.705 E+4 L x 0.5 = 1.35 E+4 L.
```

6.9 Thus, after one year, the amount of hydrogen gas present in the LDCC layer of the RVTS is:

$$
\mathrm{H}_{2}(\mathrm{RVTS})=502 \mathrm{~L} \text { hydrogen } / 1.35 \mathrm{E}+4 \mathrm{~L}=0.037 \text { or } 3.7 \% .
$$

7.0 Summary and Conclusions

This calculation provides an evaluation of the potential for hydrogen gas production due to radiolysis in the cellular concrete between the RVAI and the interior surfaces of the RVTS. The production rate of 501 L/year of molecular hydrogen gas may be used with other input to assess the integrity of the sealed RVTS package in terms of the package's ability to withstand internal pressure.

A number of assumptions and calculation steps allows the comparison of this hydrogen production rate to the available void volume in the LDCC. This provides a comparison akin to that called for in the previously cited NRC Information Notice (Reference 2.5). That notice indicated that "...over a period of time that is twice the expected shipment time," the hydrogen gas shall be limited to no more than 5% by volume in the available secondary container gas void. This calculation suggests that the volume limit would not be exceeded over the period of one year, as the resultant level is 3.7% hydrogen by volume in the Big Rock RVTS.

8.0 Attachments

A. (REPORT RECORD), "Radiolytic and thermal generation of gases from Hanford grout samples," D. Meisel, et al., Argonne National Laboratory, IL (USA), October 1993, 1 page;
B. "RVTS Component Weights", DIT No. DIT-BNFL-MCR-001-01, S. Reed -Preparer, Issue Date $5 / 5 / 2000$, Sargent \& Lundy ${ }^{\text {LLC }}, 1$ page;
C. "Clarification of Conditions for Waste Shipments Subject to Hydrogen Gas Generation", NRC Information Notice No. 84-72, U.S. Nuclear Regulatory Commission, September 10, 1984, Washington D.C., 2 pages .

REPORT RECORD

See Bottom of Page for Report Location Information

Radiolytic and thermal generation of gases from Hanford grout samples . Meisel, D.; Jonah, C.D.; Kapoor, S.;Matheson, M.S.; Mulac, W.A. . Argonne National Lab., IL (United States) . Oct 1993.45p . DOE Contract W31109ENG38 . Sup.Doc.Num. E 1.99:DE94005377. NTIS Order Number DE94005377. Primary Report Number: ANL--93/42. Source: OSTI (DOE and DOE contractors only); NTIS (Public Sales); GPO Dep. (Depository Libraries)

Gamma irradiation of WHC-supplied samples of grouted Tank 102-AP simulated nonradioactive waste has been carried out at three dose rates, $0.25,0.63$, and $130 \mathrm{krad} / \mathrm{hr}$. The low dose rate corresponds to that in the actual grout vaults; with the high dose rate, doses equivalent to more than 40 years in the grout vault were achieved. An average $G(H\{$ sub 2$\})=0.047$ molecules $/ 100 \mathrm{eV}$ was found, independent of dose rate. The rate of H 2 production decreases above 80 Mrad . For other gases, $\mathrm{G}(\mathrm{N}\{$ sub 2\} $)=0.12, \mathrm{G}(\mathrm{O}\{$ sub 2 $\})=0.026, \mathrm{G}(\mathrm{N}\{$ sub 2$\} \mathrm{O})=0.011$ and $\mathrm{G}(\mathrm{CO})=0.0042$ at $130 \mathrm{krad} / \mathrm{hr}$ were determined. At lower dose rates, $\mathrm{N}\{$ sub 2$\}$ and $\mathrm{O}\{$ sub 2$\}$ could not be measured because of interference by trapped air. The value of $\mathrm{G}(\mathrm{H}\{\operatorname{sub} 2\})$ is higher than expected, suggesting segregation of water from nitrate and nitrite salts in the grout. The total pressure generated by the radiolysis at $130 \mathrm{krad} / \mathrm{h}$ has been independently measured, and total amounts of gases generated were calculated from this measurement. Good agreement between this measurement and the sum of all the gases that were independently determined was obtained. Therefore, the individual gas measurements account for most of the major components that are generated by the radiolysis. At 90 \{degree\}C, H \{sub 2\}, $N\{$ sub 2 \}, and $N\{$ sub 2$\} O$ were generated at a rate that could be described by exponential formation of each of the gases. Gases measured at the lower temperatures were probably residual trapped gases. An as yet unknown product interfered with oxygen determinations at temperatures above ambient. The thermal results do not affect the radiolytic findings.

KEYWORDS:

HANFORD RESERVATION/tanks;GROUTING/irradiation;GROUTING/radiolysis; TANKS;RADIOACTIVE WASTES;GROUTING;IRRADIATION;RADIOLYSIS;RADIATION DOSES; THERMAL ANALYSIS;GAS ANALYSIS;RADIOACTIVE WASTE STORAGE
GPO SUBJECT CATEGORIES TEXT: NUCLEAR FUELS
GPO SUBJECT CATEGORY NUMBERS: 0430-M-05
GPO SUBJECT CATEGORY NUMBERS - PACKED: 0430M05
DOE/EDB SUBJECT CATEGORY TEXT: NUCLEAR FUELS
DOE/EDB SUBJECT CATEGORY NUMBERS: 052002

PACKED PRIMARY REPORT NUMBER:

ANL9342
DATE OF PUBLICATION:

This transmitral supercedes DIT No. DIT-BNFL-MCR-001.

IDENTIFICATION OF THE SPECIFIC DESIGN INFORMATION TRANSMITTED AND PURPOSE OF ISSUE
(List any supporting documents attached to DIT by its title, revision and/or issue date, and total number of pages for each supporting document.)
e purpose of this DIT is to issue the individual component weights that comprise part of the Reactor Vessel Transport System mVTS) that are needed for the hydrogen generation calculation. The necessary component weights are as follows:

1. Reactor Vessel Shell $=183,665 \mathrm{lbs}$.
2. Reactor Vessel Internals $=27,343 \mathrm{lbs}$.
3. Reactor Vessel Insulation $=3,300 \mathrm{lbs}$. (This value does not include the weight of the insulation covering the RV base because it will be removed.)
4. Reactor Vessel Internal Cellular Concrete (30 pcf) $=38,985 \mathrm{lbs}$.

5: Reactor Vessel External Cellular Concrete (50 pcf) $=47,770 \mathrm{lbs}$.
SOURCE OF INFORMATION

UNITED STATES
NUCLEAR REGULATORY COMMISSION
OFFICE OF INSPECTION AND ENFORCEMENT WASHINGTON, D. C. 20555

September 10, 1984
IE INFORMATION NOTICE NO. 84-72: CLARIFICATION OF CONDITIONS FOR WASTE SHIPMENTS SUBJECT TO HYDROGEN GAS GENERATION

Addressees:

All nuclear power reactor facilities holding an operating license (OL) or construction permit (CP) and certain registered users of NRC Certificates of Compliance for transport packages.

Purpose:

The NRC's Office of Nuclear Materials Safety and Safeguards (NMSS) has identified a need to clarify conditions relating to the use of NRC-certified packages for shipment of wastes.

Discussion:
A potential exists for the generation of combustible quantities of hydrogen for certain waste forms containing radioactive material. This is pertinent to shipments of resins, binders, waste sludge, and wet filters. It is not pertinent to dry compacted or uncompacted waste and irradiated hardware.

In general, applications for waste package certificates of compliance have not addressed the potential for generation of combustible gas mixtures. Generic requirements have recently been included in certain NRC Certificates of Compliance to preclude the possibility of significantly reducing packaging effectiveness in use. These conditions are typically stated as follows:
(1) For any package containing water and/or organic substances that could radiolytically generate combustible gases, it must be determined by tests and measurements of a representative package whether or not the following criteria are met over a period of time that is twice the expected shipment time:
(a) The hydrogen generated must be limited to a molar quantity that would be no more than 5% by volume (or equivalent limits for other inflammable gases) of the secondary container gas void, if present, at STP (i.e., no more than 0.063 g-moles/ft-3 at 14.7 psia and $70<d e g>F$) or
(b) The secondary container and cask cavity must be inerted with a diluent to ensure that oxygen must be limited to 5% by volume in those portions of the package that could have hydrogen greater than 5\%.

For any package delivered to a carrier for transport, the secondary container must be prepared for shipment in the same manner in which determination for gas generation is made. The shipment period begins when the package is prepared (sealed) and must be completed within twice the expected shipment time.
2) For any package containing materials with radioactivity concentration not exceeding that for low specific activity (LSA) material, and shipped within 10 days of preparation, or within 10 days after venting of drums or other secondary containers, the determination in (1) above need not be made, and the time restriction in (1) above does not apply.

The generation of combustible gases is dependent on the waste form, radioactive concentration and isotope, free volume, total mass and accumulated dose in the waste. In addition, packaging limitations such as effective shielding provided may preclude the radioactive concentrations and hence the generation of combustible gases.

It is believed, in most cases, that the above combustible gas criteria for waste not exceeding LSA concentrations will be met by ensuring that waste packages are shipped within 10 days of preparation. However, in those cases where this is not feasible, licensees may request a specific approval for their proposed shipment. The application should address those factors that would preclude the generation of combustible gases over at least twice the expected shipment time. Such applications should be directed to NMSS.

In all other cases, a determination must be made in accordance with the provisions of the certificate that the requirements of (1) above are met. Any tests and measurements that are representative of the waste to be shipped and address the factors that affect gas generation may be used. The determination should be documented and retained as part of the records for the shipment.

Recipients of this notice should review the information discussed for possible applicability to their waste shipments. No written response to this information notice is required. If you have any questions regarding this matter, please contact NMSS.

Edward L. Jordan, Director Division of Emergency Preparedness and Engineering Response Office of Inspection and Enforcement

Technical Contact: C. E. MacDonald, NMSS 301-427-4122

Attachment:
List of Recently Issued IE Information Notices []

APPENDIX 4-2

Form SOP-0402-03, Revision 2

Page 1

* The reviewer's signature indicates compliance with S\&L procedure SOP-0402 and the verification of, as a minimum, the following items: correctness of mathematics for manual calculations, appropriateness of input data, appropriateness of assumptions, and appropriateness of the calculation method.

NOTE: PRINT AND SIGN IN THE SIGNATURE AREAS

Table of Contents

		Page No.	Sub-page No.
Cover Sheet: Form SOP-0402-03	1		
Table of Contents	2		
1.0	Purpose and Scope	3	
2.0	References	4	
3.0	Design Input	5	
4.0	Assumptions	8	
5.0	Methodology and Acceptance Criteria	9	
6.0	Calculations	10	
7.0	Summary and Conclusions	12	
8.0	Attachments	(none)	

Client	BNFL, Inc.
Project	Big Rock Point Major Component Removal
Proj. No	$10525-043$

Prepared by	G. Douglas Cole	Date
Reviewed by Roman Kahn	Date	
Approved by	William J. Johnson	Date

1.0 Purpose and Scope

1.1 Purpose

The purpose of this calculation is to evaluate Big Rock Point's Reactor Vessel Transportation System (RVTS) package for compliance with the containment requirements of 10 CFR 71. As the RVTS will be designed and designated for transport of normal form (" A_{2} " values) radioactive material, Type B package allowable release limits for the RVTS will be determined. This revision also includes the contribution from the Grid Bar End Pieces (GBEP).

1.2 Scope

The scope of this calculation is primarily directed to the determination of the A_{2} value for the mixture of surface contamination radioactive materials in the RVTS package using the 10 CFR 71 Appendix A methodology. The package's release limits are based on the estimated total surface contamination activity, the A_{2} (mix), and the formulations described in the American National Standard Institute's (ANSI) N14.5-1997.

1.3 Background

The Reactor Vessel Assembly and Internals (RVAI) will be physically processed to obtain an integrated unit. The RV Internals are already fixed in position, but a low-density cellular concrete (LDCC) will be pumped into the RV to surround the remaining internals. This operation serves to prevent the movement of superficial radioactive contaminants. The LDCC will also contribute to the formation of a readily identifiable boundary at the RV's nozzles and orifices. The RV Head will not be a part of the RV integrated unit. Some other enclosure, like a steel plate, will be attached to the remaining RVAI in place of the RV Head.

The RVAl unit will be packaged for the purposes of transport to and near surface burial at the Barnwell, South Carolina Waste Management Facility. The packaged RVAl is the essential item that is a part of the RVTS. To create the RVTS package, the RVAl unit will be positioned in the package and surrounded by LDCC. The LDCC will help maintain the RVAl's optimal position, and also serve to insulate and radiologically shield the RVAI. The package itself will provide additional radiological shielding and be of sufficient construction to exceed the expected rigors of handling, transport and burial.

Federal regulations with regard to low-level radioactive waste, especially in Chapter 10 of the Code of Federal Regulations, Parts 20, 61 and 71, are accommodated in this calculation. The normal form radioactive material quantities specified in Part 71 receive primary consideration in this calculation with respect to their contribution to the RVTS' leakage characteristics.

2.0 References

2.1 "Leakage Tests on Packages [for Radioactive Materials --] for Shipment", ANSI N14.5-1997, February 5, 1998, American National Standards Institute, Inc., New York;
2.2 "LSA Evaluation of the Unpackaged Object", Calculation No. N-10525-020-003, Rev. 1, Big Rock Point Major Component Removal, December 2000, Sargent \& Lundy ${ }^{\text {LLC }}$;
2.3 "Big Rock Point Reactor Vessel and Internals Characterization and Classification", Report WMG9902, Rev. 1, June 1999, WMG Project 8057;
2.4 Code of Federal Regulations, Title 10, Volume 2, Part 71, Revised January 1, 1999, U.S. Government Printing Office via GPO Access, Table A-1, Appendix A;
2.5 Not used;
2.6 Not used;
2.7 "Handbook of Chemistry and Physics", Edited by D.R. Lide, et al., $78^{\text {th }}$ Edition, 1997-98, CRC Press ${ }^{\text {LLC }}$
2.8 "Reactor Vessel Transport System Radiation Source Term", Calculation No. N-10525-020-004, Rev. 1, Big Rock Point Major Component Removal, December 2000, Sargent \& Lundy ${ }^{\text {LLC } \text {; }}$
2.9 "Dose Projections due to Hypothetical Drops of the Reactor Vessel", Calculation No. RPC 97-007 Rev. 2,-Trojan Nuclear Plant, 8/4/1998, Portland General Electric Company;
2.10 "Calculation of Allowable Test Leakage Rate for Reactor Vessel Package per ANSI 14.5", Calculation No. 97-006, Trojan Nuclear Plant, 2/25/1997, Portland General Electric Company.

		Calc For Leakage Test Qualification of the Reactor Vessel				Calc No. N -10525-043-001			
-	unay ${ }^{\text {a }}$	Transportation System				Rev.	1	Date	12/22/00
		X	Important to Safety - Category A		Non-Safety Related	Page		5	
Client	BNFL, inc.			Prepared by	G. Douglas Cole			Date	
Project	Big Rock Point Major Component Removal			Reviewed by	Roman Kahn			Date	
Proj. No	10525-043		Equip. No.	Approved by	William J. Johnson			Date	

3.0 Design Input

3.1 Conversion Factors (Reference 2.7, pgs. 1-24-1-31, 1-38) :
a. 1 Curie (Ci) $=3.7 \mathrm{E}+10$ Bequerels $=3.7 \mathrm{E}+10$ disintegrations (dis.)/second;
b. $\quad 1$ hour $(\mathrm{hr}) \quad=3.600 \mathrm{E}+3$ seconds (sec);
c. 1 day $=24$ hours;
d. 1 week (wk) = 7 days;
e. $\quad 1$ inch (in) $=0.0254$ meter $(\mathrm{m})=2.54$ centimeter (cm);
f. 1 liter (L) $=1000$ milliliter $=1000 \mathrm{~cm}^{3}$.
3.2 Physical measurements of the RV Wall (Tables 2-1 and 4-1, Reference 2.3):
a. Wetted (outer) Surface Area $=7.69 \mathrm{E}+2 \mathrm{ft}^{2}$;
b. Outer Diameter $=116.938$ inches;
c. Height $=287.625$ inches;
d. Volume
$=\quad 4.14 \mathrm{E}+2 \mathrm{ft}^{3}$.

			For Leakage Tes	cation of the	or Vessel	Calc		$\mathrm{N}-1$	5-043-001
arger			Transportatio			Rev.	1	Date	12/22/00
		\mathbf{x}	Important to Saf	tegory A	on-Safety Related	Page		6	
Client BNFL, Inc.				Prepared by G. Douglas Cole			Date		
Project	Big Rock Point Major Component Removal			Reviewed by	Roman Kahn		Date		
Proj. No	10525-043		Equip. No.	Approved by	William J. Johnson		Date		

3.3 Normal Form A Values (" A_{2} ") from Reference 2.4, Appendix A, Table A-1:

Table 3-1. A_{2} Values

Nuclide	A_{2}, Curies
$\mathrm{H}-3$	1080
$\mathrm{C}-14$	54.1
$\mathrm{Sb}-125$	24.3
$\mathrm{Mn}-54$	27.0
$\mathrm{Ce}-144$	5.41
$\mathrm{Eu}-152$	24.3
$\mathrm{Fe}-55$	1080
$\mathrm{Co}-60$	10.8
$\mathrm{Ni}-59$	1080
$\mathrm{Ni}-63$	811
$\mathrm{Zn}-65$	54.1
$\mathrm{Sr}-90$	2.70
$\mathrm{Nb}-94$	16.2
$\mathrm{Tc}-99$	24.3
$\mathrm{l}-129$	unlimited
$\mathrm{Pu}-238$	0.00541
$\mathrm{Pu}-239 / 240$	0.00541
$\mathrm{Pu}-241$	0.270
$\mathrm{Pu}-242$	0.00541
$\mathrm{Cm}-242$	0.270
$\mathrm{Cm}-243$	0.00811
$\mathrm{Cm}-244$	0.0108
$\mathrm{Am}-241$	0.00541

3.4 Reactor Component Surface Contamination Activation Activities (Reference 2.2, Table 3-3) by radionuclide. These data are excerpted from the Table and the activities are decayed to a date of September 1, 2002.

Table 3-2. RVAI Surface Contamination Activities

Nuclide	Activities, Curies	Fraction
$\mathrm{H}-3$	$5.30 \mathrm{E}-4$	$1.83 \mathrm{E}-3$
$\mathrm{C}-14$	$7.51 \mathrm{E}-4$	$2.59 \mathrm{E}-4$
$\mathrm{Sb}-125$	$1.09 \mathrm{E}-2$	$3.76 \mathrm{E}-3$
$\mathrm{Mn}-54$	$8.22 \mathrm{E}-3$	$2.84 \mathrm{E}-3$
$\mathrm{Ce}-144$	$3.03 \mathrm{E}-4$	$1.05 \mathrm{E}-4$
$\mathrm{Fe}-55$	$1.99 \mathrm{E}-1$	$6.87 \mathrm{E}-2$
$\mathrm{Co}-60$	$2.49 \mathrm{E}+0$	$8.60 \mathrm{E}-1$
$\mathrm{Sr}-90$	$6.04 \mathrm{E}-3$	$2.08 \mathrm{E}-3$
$\mathrm{Ni}-63$	$1.42 \mathrm{E}-1$	$4.90 \mathrm{E}-2$
$\mathrm{Zn}-65$	$1.36 \mathrm{E}-3$	$4.70 \mathrm{E}-4$
$\mathrm{Tc}-99$	$6.07 \mathrm{E}-4$	$2.10 \mathrm{E}-4$
$\mathrm{I}-129$	$1.53 \mathrm{E}-3$	$5.28 \mathrm{E}-4$
$\mathrm{Pu-238}$	$5.83 \mathrm{E}-4$	$2.01 \mathrm{E}-4$
$\mathrm{Pu}-239 / 240$	$6.93 \mathrm{E}-4$	$2.39 \mathrm{E}-4$
$\mathrm{Pu}-241$	$3.31 \mathrm{E}-2$	$1.14 \mathrm{E}-2$
$\mathrm{Pu}-242$	$3.07 \mathrm{E}-6$	$1.06 \mathrm{E}-6$
$\mathrm{Cm}-242$	$3.79 \mathrm{E}-7$	$1.31 \mathrm{E}-7$
$\mathrm{Cm}-243$	$2.35 \mathrm{E}-4$	$8.11 \mathrm{E}-5$
$\mathrm{Cm}-244$	$2.23 \mathrm{E}-4$	$7.70 \mathrm{E}-5$
$\mathrm{Am}-241$	$8.81 \mathrm{E}-4$	$3.04 \mathrm{E}-4$
Total	$2.90 \mathrm{E}+0$	1.0

4.0 Assumptions

4.1 The component of interest is the RV Wall to the extent that it is assumed to be the only significant containment structure other than the RVTS. This affects the inputs to the normal transport conditions allowable release rate calculations. In addition, the volume of the RV Wall is assumed to satisfy the definitions in Reference 2.1, Section 2.2 (${ }^{\left(C_{A}\right.}$ " and " C_{N} ") as the medium's volume from which the average activity of radioactive material could escape. This approach is similar to that documented in Reference 2.10.

A conceptual model featuring the primacy of the RV Wall starts with an assumption that all of the contamination activity is located on the inner surface of the RV Wall or coats the reactor internals inside the RV. Employing the RV Wall's entire volume to determine the " C_{A} " and " C_{N} " values logically follows as all of the contamination would necessarily have to escape from or through the RV Wall.

4.2 The nature of the normal or hypothetical accident release is that 1% of the surface contamination activity is assumed to become airborne (Reference 2.9, Section 5.6) and respirable. The amount of airborne activity must be known to calculate the quantity of radioactive material that could escape from the RVTS containment system.
4.3 The normal and accident leakage rates are strictly those at standard temperature and pressure. Those conditions are: 1 atmosphere absolute, ambient pressure; and $25^{\circ} \mathrm{C}$ temperature in surrounding air. The RVTS package will be assumed to be at standard conditions during the design, fabrication, maintenance, periodic and pre-shipment testing phases.
4.4 Applicability of the ANSI Standard assumes that a Type B package is being evaluated. This calculation must therefore assume that the RVTS package is Type B (Reference 2.1).

5.0 Methodology and Acceptance Criteria

5.1 This calculation's methodology will utilize the references, design input, and assumptions to provide an evaluation of the RVTS package's leakage characteristics according to ANSI Standard N14.5-1997.

The radioactive material to be considered is the surface contamination present on the RVAI. It is the radioactivity potentially releasable during either normal or hypothetical accident situations. The total surface contamination activity is conservatively estimated and will also be distributed by radionuclide in order to obtain the normal form, A_{2}, value for the mixture.
If the total releasable contents are less than the A_{2} (mix) quantity, then there is no limit on the release rate of radioactive material from the package under hypothetical accident conditions. The ANSI Standard also explicitly gives formulations for calculating the release limits, if required, under normal conditions of transport and under hypothetical accident conditions. Less explicitly described are the determinations related to the activity per unit volume in the containment system, i.e., the RVTS package, or within the containment system. Both the release limits and the activity densities are necessary to determine the allowable leakage rates.
5.2 Two allowable leakage rates will be calculated; that for conditions normally incident to transport, and for hypothetical accident conditions. The two leakage rates are compared and the more restrictive value is then taken to be the reference air leakage rate, L_{R}. The normal and accident leakage rates are determined at standard temperature and pressure, while L_{R} is the more restrictive of the two rates. The utility of L_{R} is to dictate in what manner actual design, fabrication, maintenance, periodic and pre-shipment leakage rate tests on the Type B package will be conducted.
5.3 No acceptance criteria are strictly applicable. However, to the extent that the calculated L_{R} exceeds $0.1 \mathrm{~cm}^{3} / \mathrm{sec}$ ref,L_{R} becomes $0.1 \mathrm{~cm}^{3} / \mathrm{sec}_{\text {ref }}$ when the container's test requirements from ANSI N14.5 are considered and eventually employed.

6.0 Calculations

6.1 The following regulatory elements are listed and calculated to demonstrate adherence to the A_{2} (mix) formulation. Table 6-1 combines the information from Tables 3-1 and 3-2. The final column is the result of dividing the fraction for each radionuclide by the corresponding A_{2} value:

Table 6-1. RVTS Surface Contamination Regulatory Elements

Nuclide	Activity, Curies	Fraction	A_{2}, Curies	Fraction $/ \mathrm{A}_{2}, ~$ Curies
$\mathrm{H}-3$	$5.30 \mathrm{E}-4$	$1.83 \mathrm{E}-4$	1080	$1.69 \mathrm{E}-7$
$\mathrm{C}-14$	$7.51 \mathrm{E}-4$	$2.59 \mathrm{E}-4$	54.1	$4.79 \mathrm{E}-6$
$\mathrm{Sb}-125$	$1.09 \mathrm{E}-2$	$3.76 \mathrm{E}-3$	24.3	$1.55 \mathrm{E}-4$
$\mathrm{Mn}-54$	$8.22 \mathrm{E}-3$	$2.84 \mathrm{E}-3$	27.0	$1.05 \mathrm{E}-4$
$\mathrm{Ce}-144$	$3.03 \mathrm{E}-4$	$1.05 \mathrm{E}-4$	5.41	$1.94 \mathrm{E}-5$
$\mathrm{Fe}-55$	$1.99 \mathrm{E}-1$	$6.87 \mathrm{E}-2$	1080	$6.36 \mathrm{E}-5$
$\mathrm{C}-60$	$2.49 \mathrm{E}+0$	$8.60 \mathrm{E}-1$	10.8	$7.96 \mathrm{E}-2$
$\mathrm{Sr}-90$	$6.04 \mathrm{E}-3$	$2.08 \mathrm{E}-3$	2.70	$7.70 \mathrm{E}-4$
Ni-63	$1.42 \mathrm{E}-1$	$4.90 \mathrm{E}-2$	811	$6.04 \mathrm{E}-5$
Zn-65	$1.36 \mathrm{E}-3$	$4.70 \mathrm{E}-4$	54.1	$8.69 \mathrm{E}-6$
$\mathrm{~T}-99$	$6.07 \mathrm{E}-4$	$2.10 \mathrm{E}-4$	24.3	$8.64 \mathrm{E}-6$
$\mathrm{l}-129$	$1.53 \mathrm{E}-3$	$5.28 \mathrm{E}-4$	unlimited	0
Pu-238	$5.83 \mathrm{E}-4$	$2.01 \mathrm{E}-4$	0.00541	$3.72 \mathrm{E}-2$
$\mathrm{Pu}-239 / 240$	$6.93 \mathrm{E}-4$	$2.39 \mathrm{E}-4$	0.00541	$4.42 \mathrm{E}-2$
Pu-241	$3.31 \mathrm{E}-2$	$1.14 \mathrm{E}-2$	0.270	$4.13 \mathrm{E}-2$
Pu-242	$3.07 \mathrm{E}-6$	$1.06 \mathrm{E}-6$	0.00541	$1.96 \mathrm{E}-4$
$\mathrm{Cm}-242$	$3.79 \mathrm{E}-7$	$1.31 \mathrm{E}-7$	0.270	$4.85 \mathrm{E}-7$
$\mathrm{Cm}-243$	$2.35 \mathrm{E}-4$	$8.11 \mathrm{E}-5$	0.00811	$1.00 \mathrm{E}-2$
$\mathrm{Cm}-244$	$2.23 \mathrm{E}-4$	$7.70 \mathrm{E}-5$	0.0108	$7.13 \mathrm{E}-3$
Am-241	$8.81 \mathrm{E}-4$	$3.04 \mathrm{E}-4$	0.00541	$5.62 \mathrm{E}-2$
Total	$2.90 \mathrm{E}+0$	1.0		$2.76 \mathrm{E}-1$

6.2 The A_{2} value for the mixture of " i " radionuclides is obtained using the formulation from Reference 2.4, as follows:

$$
A_{2}(\text { mix })=\left(\text { SUM }_{\mathrm{i}}\left[\text { Fraction }_{\mathrm{i}} / \mathrm{A}_{2, i}\right]\right)^{-1}=\left(2.76 \mathrm{E}-1 \text { Curies }^{-1}\right)^{-1}=
$$

6.3 The release limits for normal conditions of transport and under hypothetical accident conditions employ the ANSI N14.5, Section 5.4, formulations, as follows:

$$
\begin{aligned}
\mathrm{R}_{\mathrm{N}} & =10^{-6} \mathrm{~A}_{2} \text { (mix) per hour }=2.78 \mathrm{E}-10 \mathrm{~A}_{2} \text { (mix) per second; } \\
\mathrm{R}_{\mathrm{N}} & =10^{-6} \times 3.62 \text { Curies per hour } \quad=3.62 \mathrm{E}-6 \text { Curies } / \text { hour } \\
& =3.62 \mathrm{E}-6 \text { Curies } / \mathrm{hr} \times 1 \mathrm{hr} / 3600 \mathrm{sec}=1.01 \mathrm{E}-9 \text { Curies } / \mathrm{sec} .
\end{aligned}
$$

6.4 The release limits under hypothetical accident conditions are calculated, as follows:

$$
\begin{aligned}
R_{A}= & A_{2}(\text { mix }) \text { per week }=1.65 \mathrm{E}-6 \mathrm{~A}_{2}(\text { mix }) \text { per second; } \\
R_{A}= & 3.62 \text { Curies per week }=3.62 \text { Curies } / \text { week } \times 1 \text { week } / 7 \text { days } \times \\
& 1 \text { day } / 24 \text { hours } \times 1 \mathrm{hr} / 3600 \mathrm{sec}=5.99 \mathrm{E}-6 \text { Curies } / \mathrm{sec} .
\end{aligned}
$$

6.5 The average activity of radioactive material per unit volume that could escape under normal conditions of transport shall be based on 1% of the available surface contamination activity becoming airborne and thus available for leakage from the RVTS (Section 4.4). The total activity is also reduced by a factor that is the RV Wall's surface area fraction from Table 6.2.1-1 of Reference 2.8. The volume is that for the RV Wall.

$$
C_{N}=\frac{2.90 \mathrm{Ci} \times\left(7.69 \mathrm{E}+2 \mathrm{ft}^{2} / 2.09 \mathrm{E}+3 \mathrm{ft}^{2}\right) \times 0.01}{4.14 \mathrm{E}+2 \mathrm{ft}^{3} \times(12 \mathrm{in} / \mathrm{ft} \times 2.54 \mathrm{~cm} / \mathrm{in})^{3}}=9.10 \mathrm{E}-10 \mathrm{Ci} / \mathrm{cm}^{3} .
$$

6.6 The average activity of radioactive material per unit volume for accident conditions shall be based on 1% of the available surface contamination activity becoming airborne and thus available for leakage from the RVTS. The activity is the entire surface contamination inventory.

$$
C_{A}=\frac{2.90 \mathrm{Ci} \times 0.01}{4.14 \mathrm{E}+2 \mathrm{ft}^{3} \times(12 \mathrm{in} / \mathrm{ft} \times 2.54 \mathrm{~cm} / \mathrm{in})^{3}}=2.47 \mathrm{E}-09 \mathrm{Ci} / \mathrm{cm}^{3} .
$$

6.7 The maximum permissible leakage rate from the package during transport under normal conditions of transport is calculated using the formulation in Reference 2.1, Section 6, as follows:

$$
\begin{aligned}
L_{N}=R_{N} / C_{N} & =1.01{\mathrm{E}-9 \mathrm{Ci} \mathrm{sec}^{-1} / 9.10 \mathrm{E}-10 \mathrm{Ci} \mathrm{~cm}^{-3}} \\
& =1.11 \mathrm{~cm}^{3} / \mathrm{sec} .
\end{aligned}
$$

6.8 The maximum permissible leakage rate from the package during transport under accident conditions is calculated as follows:

$$
\begin{aligned}
L_{A}=R_{A} / C_{A} & =5.99{\mathrm{E}-6 \mathrm{Ci} \mathrm{sec}^{-1} / 2.47 \mathrm{E}-9 \mathrm{Ci} \mathrm{~cm}^{-3}} \\
& =2.42 \mathrm{E}+3 \mathrm{~cm}^{3} / \mathrm{sec} .
\end{aligned}
$$

7.0 Summary and Conclusions

This calculation's methodology utilizes the references, design input, and assumptions to provide an evaluation of the RVTS package's leakage characteristics according to ANSI Standard N14.5-1997. Employing the standard assumes the RVTS package must be a Type B containment system.

With the package's contents estimated at 2.90 Curies, its comparison to the A_{2} (mix) value of 3.62 Curies indicates that release rate limits under hypothetical accident conditions do not need to be determined. Even so, two allowable leakage rates are calculated for the surface contamination contained in the RVTS. The rate for conditions considered normal for transport is estimated to be $1.11 \mathrm{~cm}^{3} / \mathrm{sec}$; that for hypothetical accident conditions is $2.42 \mathrm{E}+3 \mathrm{~cm}^{3} / \mathrm{sec}$. The dictates of the ANSI Standard associate the reference leakage rate, L_{R}, to the lower value. The value of L_{R} is thus $1.10 \mathrm{~cm}^{3} / \mathrm{sec}$.
Further application of the standard states that since L_{R} exceeds $0.1 \mathrm{~cm}^{3} / \mathrm{sec}{ }_{\text {ref }}, L_{R}$ becomes 0.1 $\mathrm{cm}^{3} / \mathrm{sec}_{\text {ref }}$ when the test requirements of ANSI N 14.5 are considered and eventually employed. The utility of this L_{R} value is to dictate in what manner actual design, fabrication, maintenance, periodic and preshipment leakage rate tests on the Type B package will be conducted. The reference value is in units of one cm^{3} of dry air volume per second at 1 atmosphere absolute pressure and $25^{\circ} \mathrm{C}$.

8.0 Attachments

(none)

APPENDIX 4-3

[^1]NOTE: PRINT AND SIGN IN THE SIGNATURE AREAS

Calc. For: Breach Of Containment									Calc No.	N-10525-041-001

Client	BNFL, Inc.		Date				
Project	Big Rock Point Major Component Removal						
Proj. No	$10525-041$	Equip. Nohn Rich	Date		Reviewed by	Roman Kahn	Date
:---	:---	:---					
Approved by	W. J. Johnson						

TABLE OF CONTENTS

Issue Summary 1
Table Of Contents 2
1 Purpose and Scope 3
1.1 Definitions 3
Purpose 4
1.3 Scope 4
1.4 Background 4
2 Design Inputs 4
2.1 Source Term 4
2.2 RV (Reactor Vessel) Dimensions 6
2.3 LDCC (Low Density Cellular Concrete) 6
2.4 Transport Cask Dimensions 6
2.5 Corrosion Rates 6
3 Assumptions and Limitations 7
3.1 Radioactive Source Term 7
Breach Of Containment Due To Post-HAC Damage 7
3.3 Liquid Release (Leached Activity) 7
3.4 Source Term 7
4 Methodology 8
4.1 Direct Dose 8
4.2 Airborne Release 8
4.3 Leach Rates 8
5 Acceptance Criteria 8
6 Calculations 8
6.1 RVAI A ${ }_{2}$, Leachable Activity (All Radionuclides) 8
6.2 RVAI A , Potentially Airborne Nuclides (Surface Contamination) 9
6.3 Direct Dose 11
6.3.1 Component And Source Descriptions 11
6.3.2 RV Insulation Equivalent Thickness and Density 12
6.3.3 Intact Containment (Shielded) Dose Rates 13
6.3.4 Breach Of Containment Dose Rates 14
6.4 Leached Activity 19
7 Summary And Conclusions 22
7.1 Summary 22
7.1.1 Direct Dose Rate 22
7.1.2 Leak Rate Into Air 22
7.1.3 Leach Rate Into Water 22
7.2 Conclusions 23
8 References 23
9 Attachments 24
Attachment A MicroShield Files And Listings Pages A1-A121
Attachment B Corrosion Handbook (Selected Pages) Pages B1 - B3

1 Purpose and Scope

Definitions are presented first in this section because they are key to the calculation write-up.

1.1 Definitions

HAC -Hypothetical Accident Conditions
Hypothetical Accident Conditions are defined in 10 CFR 71.73 as a set of tests and test conditions to be applied to the package. In this calculation, the assumed damage is greater than the damage that could result from these tests and test conditions.

LDCC - Low Density Cellular Concrete (LDCC)
Low density cellular concrete is concrete which has entrained air to decrease the density. Two densities are used; $30-36 \mathrm{lb} / \mathrm{ft}^{3}$ inside the reactor vessel and $50-60 \mathrm{lb} / \mathrm{ft}^{3}$ in the annular space between the reactor vessel insulation and the outermost steel shell of the containment. The minimum densities are assumed in this calculation.

RV - Reactor Vessel

In this calculation, the reactor vessel does not include the head.
RVAI - Reactor Vessel And Internals (RVAI)
In this calculation the RVAI includes the Reactor Vessel (RV), RV insulation, RV clad, Seal Weights (SW), Thermal Shield and Thermal Shield retainer (TS), steam baffle, sparger, top guide plate, seal housing and LDCC inside the RV.

RVTS - Reactor Vessel Transport System (RVTS)
In this calculation the RVTS includes the RVAI and steel shell and LDCC surrounding the RVAI.

Containment
In this calculation the containment is the outer steel container, not the RV. The outer steel container is the outermost cylindrical steel shell plus the top and bottom covers.

Leaching
In this calculation leaching is the process of radioactivity being released to water. All of the radioactivity in the RVAI is available for leaching. Therefore A_{2} for leaching is based on the entire radioactive content of the RVAI.

Leaking
In this calculation leaking is the process of radioactivity being released to air. Only the surface contamination is available for leaking, because the activation products are bound in the steel matrix. Therefore A_{2} for leaking is based only on the radioactivity in the surface contamination.

DDE - Deep Dose Equivalent
This is the dose which applies to external whole body exposure as defined in 10 CFR 20.1003 [Ref. 8.28]. It is the dose equivalent at a tissue depth of $1 \mathrm{~cm}\left(1000 \mathrm{mg} / \mathrm{cm}^{2}\right)$.

Wetted Surface Area
This is the area of the surfaces inside the RV that have been in contact with reactor water. It includes the entire inner surface of the RV clad and the surfaces of the components that

are still in the RV, such as the thermal shield and support plates. It excludes the outer surfaces of the RV because these surfaces were not in continuous contact with reactor water under operating conditions.

1.2 Purpose

The purpose of this calculation is to determine the upper bound radiological consequences from hypothetical accident conditions (HAC) postulated for the RVAI/RVTS. These consequences, dose rates and releases, will then be compared with the criteria in 10CFR 71.51 [Ref. 8.27].

1.3 Scope

The scope of this calculation includes radiation dose, leach rate (due to immersion in water), and leak rate (airborne release).

1.4 Background

The doses in this calculation are intentionally greater than the doses that could reasonably be expected to result from an accident, and therefore should not be interpreted as being the expected consequence. They are values that will not be exceeded, and are to be used for comparison with appropriate guidelines.

The potential accidents are undefined at the time of this calculation, so bounding assumptions are used to evaluate the radiological consequences. The assumptions include; (a) postulated gaps in the shielding, (b) a release of airborne radioactivity, and (c) a release of radioactivity into water. The gaps in the shielding and the releases are not to be interpreted as being the expected result of an accident. They are assumed solely for the purpose of ensuring that the calculated radiological consequences are bounding.

These assumptions do not depend on the transportation mode or transportation route. They are selected to ensure that any accident scenario is bounded. (For example, the effect of complete submersion following breach of containment is evaluated even though water transportation is not considered at this time. This scenario does, however, envelop the case where the RVAI/RVTS package is assumed to fall from a bridge into a river.)

2 Design Inputs

2.1 Source Term

The RVAI radionuclide inventories are obtained from Reference 8.24. The source terms for the accident releases are determined by applying reduction factors to the RVAI inventories. The reduction factors account for the fact that the radioactivity is bound in either (a) the steel matrix itself (activation products) or (b) between the steel and LDCC (surface contamination). Table 2.1-1 lists the activation inventory, Table 2.1-2 lists the surface contamination inventory, and Table 2.1-3 lists the total inventory.

Client	BNFL, Inc.
Project	Big Rock Point Major Component Removal
Proj. No	$10525-041$
Equip. No.	

Prepared by John Rich	Date
Reviewed by Roman Kahn	Date
Approved by W. J. Johnson	Date

Table 2.1-1. RVAI Activation Inventory [Ref. 8.24]

Nuclide	Fraction	Activity
$\mathrm{H}-3$	$3.26 \mathrm{E}-4$	$4.28 \mathrm{E}+0$ Curies
$\mathrm{C}-14$	$1.09 \mathrm{E}-4$	$1.42 \mathrm{E}+0$ Curies
$\mathrm{Sb}-125$	$2.01 \mathrm{E}-7$	$2.64 \mathrm{E}-3$ Curies
$\mathrm{Mn}-54$	$1.08 \mathrm{E}-3$	$1.41 \mathrm{E}+1$ Curies
Eu-152	$1.26 \mathrm{E}-5$	$1.66 \mathrm{E}-1$ Curies
Fe-55	$3.47 \mathrm{E}-1$	$4.96 \mathrm{E}+3$ Curies
$\mathrm{Co}-60$	$5.73 \mathrm{E}-1$	$7.11 \mathrm{E}+3$ Curies
$\mathrm{Ni}-59$	$4.75 \mathrm{E}-4$	$6.23 \mathrm{E}+0$ Curies
$\mathrm{Ni}-63$	$7.82 \mathrm{E}-2$	$1.03 \mathrm{E}+3$ Curies
Nb-94	$1.64 \mathrm{E}-6$	$2.15 \mathrm{E}-2$ Curies
Tc-99	$3.52 \mathrm{E}-7$	$4.61 \mathrm{E}-3$ Curies
Total	1.0	$1.31 \mathrm{E}+4$ Curies

Table 2.1-2 RVAI Design Basis Surface Contamination Inventory [Ref. 8.24]

Nuclide	(Ci)	Nuclide	(Ci)
C14	$7.51 \mathrm{E}-04$	Ce144	$3.03 \mathrm{E}-04$
Fe55	$1.99 \mathrm{E}-01$	H 3	$5.30 \mathrm{E}-04$
1129	$1.53 \mathrm{E}-03$	Am241	$8.81 \mathrm{E}-04$
Ni63	$1.42 \mathrm{E}-01$	Cm242	$3.79 \mathrm{E}-07$
Sr90	$6.04 \mathrm{E}-03$	Cm243	$2.35 \mathrm{E}-04$
Tc99	$6.07 \mathrm{E}-04$	Cm244	$2.23 \mathrm{E}-04$
Mn54	$8.22 \mathrm{E}-03$	Pu238	$5.83 \mathrm{E}-04$
Co60	$2.49 \mathrm{E}+00$	Pu239/240	$6.93 \mathrm{E}-04$
Zn65	$1.36 \mathrm{E}-03$	Pu241	$3.31 \mathrm{E}-02$
Sb125	$1.09 \mathrm{E}-02$	Pu242	$3.07 \mathrm{E}-06$
		Total	$2.89 \mathrm{E}+00$

Table 2.1-3 RVAI Design Basis Total Inventory [Ref. 8.24]

Nuclide	(Ci)	Nuclide	(Ci)
C14	$1.42 \mathrm{E}+00$	Ce144	$3.03 \mathrm{E}-04$
Fe55	$4.96 \mathrm{E}+03$	Eu 152	$1.66 \mathrm{E}-01$
1129	$1.53 \mathrm{E}-03$	H 3	$4.28 \mathrm{E}+00$
Ni59	$6.23 \mathrm{E}+00$	Am241	$8.81 \mathrm{E}-04$
Ni63	$1.03 \mathrm{E}+03$	Cm242	$3.79 \mathrm{E}-07$
Sr90	$6.04 \mathrm{E}-03$	Cm243	$2.35 \mathrm{E}-04$
Tc99	$5.22 \mathrm{E}-03$	Cm244	$2.23 \mathrm{E}-04$
Mn54	$1.41 \mathrm{E}+01$	Pu238	$5.83 \mathrm{E}-04$
C060	$7.11 \mathrm{E}+03$	Pu239/240	$6.93 \mathrm{E}-04$
Zn65	$1.36 \mathrm{E}-03$	Pu241	$3.31 \mathrm{E}-02$
Nb94	$2.15 \mathrm{E}-02$	Pu242	$3.07 \mathrm{E}-06$
Sb125	$1.35 \mathrm{E}-02$	Total	$1.31 \mathrm{E}+04$

2.2 RV (Reactor Vessel) Dimensions

For the purposes of this calculation, the required information is only diameters, heights, an estimate of the total surface area, and thicknesses for selected components. Therefore, these dimensions do not reflect the nozzles, penetrations, or other surface features of the RV and insulation. All RV heights are measured from lowest point on the inside (wetted) surface of the RV.

Table 2.2-1 RVAI Dimensions

Dimension	Value	Reference
Total Vessel Height	$34413 / 32 \mathrm{in}$.	DWG F-230-791-2 [Ref. 8.4]
Vessel Head Height	62 13/32 in.	DWG F-230-791-2 [Ref. 8.4]
Vessel Height to Flange	282 in.	DWG F-230-791-2 [Ref. 8.4]
Vessel Inner Diameter	106 7/16 in.	DWG F-230-791-2 [Ref. 8.4]
Vessel Base Metal Thickness	$51 / 4 \mathrm{in}$.	DWG F-230-791-2 [Ref. 8.4]
Vessel Clad Thickness	5/32 in.	DWG F-230-791-2 [Ref. 8.4]
Height to Tangent Line	52 27/32 in.	DWG F-230-791-2 [Ref. 8.4]
Insulation Thickness	3 in	DWG 198E79 [Ref. 8.5]
Active Fuel Height	70 in.	DWG 197E853 [Ref. 8.7]
Thermal Shield Inner Radius	50 in.	Calc. N-10525-020-0002 [Ref. 8.1]
Thermal Shield Thickness	1.5 in .	Calc. $\mathrm{N}-10525-020-0002$ [Ref. 8.1]
Seal Weight Inner Radius	51.5 in .	Calc. N-10525-020-0002 [Ref. 8.1]
Seal Weight Thickness	1.0 in.	Calc. N-10525-020-0002 [Ref. 8.1]
Seal Weight Height	$27 \mathrm{in}$.	Calc. $\mathrm{N}-10525-020-0002$ [Ref. 8.1]
Seal Weight Width	18 in .	Calc. $\mathrm{N}-10525-020-0002$ [Ref. 8.1]

2.3 LDCC (Low Density Cellular Concrete)

The LDCC has a permissible range as shown in the table below. The minimum density is used in this calculation because it yields the highest dose rates, and is therefore conservative and bounding.

Parameter	Value	Reference
Density Inside RV	$30-36 \mathrm{pcf}$	[Ref. 8.8]
Density Outside RV	$50-60 \mathrm{pcf}$	[Ref. 8.8]

2.4 Transport Cask Dimensions

Outside Diameter	$13 \mathrm{ft}-0 \mathrm{in}$.	[Ref. 8.8]
Height	$24 \mathrm{ft}-11 \frac{1}{2}$ in.	[Ref. 8.8]
Steel thickness over active core region		
7 in.	[Ref. 8.8]	

2.5 Corrosion Rates

In order to bound the leach rates, salt water corrosion rates are used for the activity bound in the steel matrix.

Salt Water Corrosion Rate	Value	Reference
Stainless Steel Mild Steel	3.34 MDD * 18.6 MDD* *	Corrosion Handbook [Ref. 8.15] Corrosion Handbook [Ref. 8.15]

MDD \equiv milligrams per day per square decimeter

3 Assumptions and Limitations

There are no limitations associated with this calculation. The following assumptions are used in this calculation.

3.1 Radioactive Source Term

The source term has been decay corrected to $9 / 1 / 2002$. It is assumed that the hypothetical accident takes place on $9 / 1 / 2002$. No credit is taken for further radiodecay.

3.2 Breach Of Containment Due To Post-HAC Damage

Four openings are conservatively assumed for the breach of containment. It is assumed that these openings bound the post-HAC damage. This assumption is supported by calculation S-10525-020-012 [Ref. 8.29, Sections 5.2 and 8].
a) A horizontal 1 inch wide segment of the RV and insulation are unshielded around the circumference of the vessel at the core midplane.
b) A vertical 1 inch wide by 48 inch long segment of the RV and insulation are unshielded, centered on the core midplane.
c) A 6 inch diameter segment of the RV and insulation are unshielded, centered on the core midplane.
d) The entire top shield plate is removed.

In addition, to bound the release of radioactivity to water, it is non-mechanistically assumed that the entire outer surface of the RV and all surfaces of the mirror insulation are exposed to water. To bound the release of radioactivity to air, it is non-mechanistically assumed that the entire inventory of surface contamination is available for release.

For cases a, b, and c, this is equivalent to completely removing the 7 inch thick steel shell, and ~ 9 inch thick LDCC over the segment. For case d the entire 4 inch thick plate is removed.

The core midplane has the highest flux, and therefore the highest concentration of activation products. It is assumed that the axial peaking factor is 1.2 , so a factor of 1.2 is applied to account for the increased dose rates at the core mid-plane.

3.3 Liquid Release (Leached Activity)

At the time of this calculation, the transportation route and accident scenarios have not yet been developed. These assumptions below are judged to bound the leached activity for possible accidents.

It is assumed that 50% of the surface contamination is leached out of the RVAI in 7 days. It is also assumed that sea water corrosion rates are applicable. The assumption that 50% of the surface contamination leaches out in 7 days is consistent with half of the wetted surface area being completely exposed. Since the reactor vessel is filled with LDCC which fixes the surface contamination, and the vessel is robust ($51 / 4 \mathrm{in}$. thick steel) it is not considered credible that this much of the surface area could be exposed. Nevertheless, these assumptions are used to demonstrate that even under worst case conditions, the leach rate will be less than $A_{2} /$ week.

3.4 Source Term

For the purposes of this calculation it is assumed that the source term is distributed over a 70 inch height,
\qquad regardless of the actual geometry. This is the length of the active fuel, and is, in general, conservative. For example, the entire reactor vessel source is concentrated in a 70 inch long cylinder, even though the vessel itself is 282 inches long.

Client	BNFL, Inc.
Project	Big Rock Point Major Component Removal
Proj. No	10525-041

Prepared by John Rich	Date
Reviewed by Roman Kahn	Date
Approved by	W. J. Johnson

4 Methodology

4.1 Direct Dose

Direct dose rates are calculated using MicroShield [Ref. 8.14]. The geometries, activities, and materials are taken from References 8.1 and 8.24. The MicroShield dose rates are benchmarked to the QAD dose rates in Reference 8.1. MicroShield has been qualified under S\&L's Quality Assurance Program. The file listings are contained in Attachment A.

4.2 Airborne Release

Airborne releases are calculated using a non-mechanistic model that assumes all of the surface contamination is released, regardless of the accident scenario or location.

4.3 Leach Rates

Leach rates are calculated using salt-water corrosion rates for stainiess and carbon steel and a nonmechanistic release of 50% of the surface contamination (Assumption 3.3).

5 Acceptance Criteria

The purpose of this calculation is to determine the radiological consequences of an accident. Therefore, the acceptance criteria are taken from the 10 CFR 71 limits for hypothetical accident conditions. They are:

1. No escape of krypton exceeding A_{2} in 1 week (10 CFR 71.51(a) (2));
2. No escape of other radioactive material exceeding a total amount A_{2} in 1 week (10 CFR 71.51 (a) (2));
3. No external, radiation dose rate exceeding $10 \mathrm{mSv} / \mathrm{h}(1 \mathrm{rem} / \mathrm{h})$ at $1 \mathrm{~m}(40 \mathrm{in})$ from the external surface of the package (10 CFR 71.51(a) (2)).

6 Calculations

6.1 RVAI A_{2}, Leachable Activity (All Radionuclides)

The value of A_{2} for all radionuclides in the RVAI is calculated using the formula in 10CFR71, APP A for a mixture [Ref. 8.23]. This formula is:

$$
A_{2}=1 /\left\{\Sigma f(i) / A_{2}(i)\right\}
$$

Where: $A_{2}=A_{2}$ value for the mixture
$f(i)=$ fraction of activity of nuclide i in the mixture
$A_{2}(i)=$ appropriate A_{2} value for nuclide i from 10CFR71, Table A-1.
The RVAl radioactivity is the sum of 1.31 E 4 Ci of activation products that are bound in the steel matrix, and 2.89 Ci of surface contamination that is bound between the LDCC and steel surfaces. The value of A_{2} for the RVIA is calculated in Table 6.1-1 below.

Client	BNFL, Inc.	
Project	Big Rock Point Major Component Removal	
Proj. No	$10525-041$	Equip. No.

Prepared by John Rich	Date
Reviewed by Roman Kahn	Date
Approved by W. J. Johnson	Date

Table 6.1-1; RVAI A ${ }_{2}$ Limit, Leachable Activity

Nuclide	Activity (Ci)	Fraction (f)	A 2 (Ci)	f/A2 $(1 / \mathrm{Ci})$
H 3	$4.28 \mathrm{E}+00$	$3.262 \mathrm{E}-04$	$1.080 \mathrm{E}+03$	$3.020 \mathrm{E}-07$
C 14	$1.42 \mathrm{E}+00$	$1.086 \mathrm{E}-04$	$5.410 \mathrm{E}+01$	$2.007 \mathrm{E}-06$
Sb125	$1.35 \mathrm{E}-02$	$1.033 \mathrm{E}-06$	$2.430 \mathrm{E}+01$	$4.250 \mathrm{E}-08$
Mn54	$1.41 \mathrm{E}+01$	$1.076 \mathrm{E}-03$	$2.700 \mathrm{E}+01$	$3.985 \mathrm{E}-05$
Ce 144	$3.03 \mathrm{E}-04$	$2.310 \mathrm{E}-08$	$5.410 \mathrm{E}+00$	$4.270 \mathrm{E}-09$
Eu152	$1.66 \mathrm{E}-01$	$1.265 \mathrm{E}-05$	$2.430 \mathrm{E}+01$	$5.204 \mathrm{E}-07$
Fe 55	$4.96 \mathrm{E}+03$	$3.779 \mathrm{E}-01$	$1.080 \mathrm{E}+03$	$3.499 \mathrm{E}-04$
$\mathrm{Co60}$	$7.11 \mathrm{E}+03$	$5.419 \mathrm{E}-01$	$1.080 \mathrm{E}+01$	$5.018 \mathrm{E}-02$
Ni59	$6.23 \mathrm{E}+00$	$4.745 \mathrm{E}-04$	$1.080 \mathrm{E}+03$	$4.393 \mathrm{E}-07$
Ni63	$1.03 \mathrm{E}+03$	$7.818 \mathrm{E}-02$	$8.110 \mathrm{E}+02$	$9.640 \mathrm{E}-05$
Sr90	$6.04 \mathrm{E}-03$	$4.601 \mathrm{E}-07$	$2.700 \mathrm{E}+00$	$1.704 \mathrm{E}-07$
Nb94	$2.15 \mathrm{E}-02$	$1.638 \mathrm{E}-06$	$1.620 \mathrm{E}+01$	$1.011 \mathrm{E}-07$
Tc99	$5.22 \mathrm{E}-03$	$3.978 \mathrm{E}-07$	$2.430 \mathrm{E}+01$	$1.637 \mathrm{E}-08$
Pu238	$5.83 \mathrm{E}-04$	$4.442 \mathrm{E}-08$	$5.410 \mathrm{E}-03$	$8.210 \mathrm{E}-06$
Pu239/240	$6.93 \mathrm{E}-04$	$5.279 \mathrm{E}-08$	$5.410 \mathrm{E}-03$	$9.757 \mathrm{E}-06$
Pu241	$3.31 \mathrm{E}-02$	$2.524 \mathrm{E}-06$	$2.700 \mathrm{E}-01$	$9.349 \mathrm{E}-06$
Pu242	$3.07 \mathrm{E}-06$	$2.340 \mathrm{E}-10$	$5.410 \mathrm{E}-03$	$4.326 \mathrm{E}-08$
Cm 242	$3.79 \mathrm{E}-07$	$2.892 \mathrm{E}-11$	$2.700 \mathrm{E}-01$	$1.071 \mathrm{E}-10$
Cm 243	$2.35 \mathrm{E}-04$	$1.792 \mathrm{E}-08$	$8.110 \mathrm{E}-03$	$2.210 \mathrm{E}-06$
Cm 244	$2.23 \mathrm{E}-04$	$1.698 \mathrm{E}-08$	$1.080 \mathrm{E}-02$	$1.572 \mathrm{E}-06$
Am241	$8.81 \mathrm{E}-04$	$6.712 \mathrm{E}-08$	$5.410 \mathrm{E}-03$	$1.241 \mathrm{E}-05$
I 29	$1.53 \mathrm{E}-03$	$1.169 \mathrm{E}-07$	Unlimited	
Zn65	$1.36 \mathrm{E}-03$	$1.037 \mathrm{E}-07$	$5.410 \mathrm{E}+01$	$1.916 \mathrm{E}-09$
SUM	$1.31 \mathrm{E}+04$	$1.000 \mathrm{E}+00$		$5.071 \mathrm{E}-02$

$A_{2}=1 /\left\{\Sigma f(i) / A_{2}(i)\right\}$
$A_{2}=1 / 5.071 \mathrm{E}-2$
$\mathrm{A}_{2}=19.72 \mathrm{Ci}$

6.2 RVAI A ${ }_{2}$, Potentially Airborne Nuclides (Surface Contamination)

One of the requirements of 10CFR71.51(a)(2) is "... there would be no escape of krypton-85 exceeding $10 A_{2}$ in one week, no escape of other radioactive material exceeding a total amount A_{2} in one week ..." [Ref. 8.27]. The only radioactive material available for escape via pathways other than dissolution (leaching) is the surface contamination because all other activity is bound in the steel matrix of large components. Therefore the A_{2} is calculated for the surface contamination.

The value of A_{2} for the RVAl surface contamination is calculated using the formula in 10CFR71, APP A for a mixture [Ref. 8.23]. This formula is given below.

$A_{2}=1 /\left\{\Sigma f(i) / A_{2}(i)\right\}$
Where: $A_{2}=A_{2}$ value for the mixture
$f(i)=$ fraction of activity of nuclide i in the mixture
$A_{2}(i)=$ appropriate A_{2} value for nuclide i from 10CFR71, Table A-1.
The RVAI surface contamination radioactivity is 2.89 Ci , which is bound between the LDCC and steel surfaces. The value of A_{2} for the RVAI is calculated in Table 6.2-1 below.

As can be seen from Table 6.2-1, the total quantity of activity available for airborne release, 2.89 Ci , is less than $A_{2}, 3.59 \mathrm{Ci}$. Therefore, the quantity of radioactivity that could leak from the package will always be less than A_{2}, and meet this acceptance criterion.

Table 6.2-1; RVAI A2 Limit, Releasable Activity (Other Than Leaching)

Nuclide	Activity (Ci)	Fraction (f)	A2 (Ci)	f/A2 $(1 / \mathrm{Ci})$
H 3	$5.30 \mathrm{E}-04$	$1.83 \mathrm{E}-04$	$1.08 \mathrm{E}+03$	$1.69 \mathrm{E}-07$
C 14	$7.51 \mathrm{E}-04$	$2.60 \mathrm{E}-04$	$5.41 \mathrm{E}+01$	$4.80 \mathrm{E}-06$
Sb125	$1.09 \mathrm{E}-02$	$3.77 \mathrm{E}-03$	$2.43 \mathrm{E}+01$	$1.55 \mathrm{E}-04$
Mn54	$8.22 \mathrm{E}-03$	$2.84 \mathrm{E}-03$	$2.70 \mathrm{E}+01$	$1.05 \mathrm{E}-04$
Ce 144	$3.03 \mathrm{E}-04$	$1.05 \mathrm{E}-04$	$5.41 \mathrm{E}+00$	$1.94 \mathrm{E}-05$
Eu152	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	$2.43 \mathrm{E}+01$	$0.00 \mathrm{E}+00$
Fe55	$1.99 \mathrm{E}-01$	$6.88 \mathrm{E}-02$	$1.08 \mathrm{E}+03$	$6.37 \mathrm{E}-05$
Co60	$2.49 \mathrm{E}+00$	$8.60 \mathrm{E}-01$	$1.08 \mathrm{E}+01$	$7.96 \mathrm{E}-02$
Ni59	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	$1.08 \mathrm{E}+03$	$0.00 \mathrm{E}+00$
Ni63	$1.42 \mathrm{E}-01$	$4.92 \mathrm{E}-02$	$8.11 \mathrm{E}+02$	$6.07 \mathrm{E}-05$
Sr90	$6.04 \mathrm{E}-03$	$2.09 \mathrm{E}-03$	$2.70 \mathrm{E}+00$	$7.72 \mathrm{E}-04$
Nb94	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	$1.62 \mathrm{E}+01$	$0.00 \mathrm{E}+00$
Tc99	$6.07 \mathrm{E}-04$	$2.10 \mathrm{E}-04$	$2.43 \mathrm{E}+01$	$8.63 \mathrm{E}-06$
Pu238	$5.83 \mathrm{E}-04$	$2.01 \mathrm{E}-04$	$5.41 \mathrm{E}-03$	$3.72 \mathrm{E}-02$
Pu239/240	$6.93 \mathrm{E}-04$	$2.39 \mathrm{E}-04$	$5.41 \mathrm{E}-03$	$4.42 \mathrm{E}-02$
Pu241	$3.31 \mathrm{E}-02$	$1.14 \mathrm{E}-02$	$2.70 \mathrm{E}-01$	$4.24 \mathrm{E}-02$
Pu242	$3.07 \mathrm{E}-06$	$1.06 \mathrm{E}-06$	$5.41 \mathrm{E}-03$	$1.96 \mathrm{E}-04$
Cm242	$3.79 \mathrm{E}-07$	$1.31 \mathrm{E}-07$	$2.70 \mathrm{E}-01$	$4.86 \mathrm{E}-07$
Cm243	$2.35 \mathrm{E}-04$	$8.12 \mathrm{E}-05$	$8.11 \mathrm{E}-03$	$1.00 \mathrm{E}-02$
Cm244	$2.23 \mathrm{E}-04$	$7.70 \mathrm{E}-05$	$1.08 \mathrm{E}-02$	$7.13 \mathrm{E}-03$
Am241	$8.81 \mathrm{E}-04$	$3.04 \mathrm{E}-04$	$5.41 \mathrm{E}-03$	$5.62 \mathrm{E}-02$
I 129	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	Unlimited	
Zn65	$1.36 \mathrm{E}-03$	$4.70 \mathrm{E}-04$	$5.41 \mathrm{E}+01$	$8.69 \mathrm{E}-06$
SUM	$2.89 \mathrm{E}+00$	$1.00 \mathrm{E}+00$		$2.78 \mathrm{E}-01$

$$
\begin{aligned}
& A_{2}=1 /\left\{\sum f(i) / A_{2}(i)\right\} \\
& A_{2}=1 / 2.78 \mathrm{E}-1 \\
& A_{2}=3.59 \mathrm{Ci}
\end{aligned}
$$

6.3 Direct Dose

There is no fuel and less than 0.05 gram of fissile material [Ref. 8.24]. Therefore, the neutron source is negligible and only gamma dose rates are considered.

The gamma dose rates are calculated using MicroShield [Ref. 8.14]. The input for the MicroShield runs is developed below. MicroShield has been validated and verified under S\&L's QA program for computer applications.

The total direct dose rate at 1 meter from the package is the sum of two dose rates:
(a) The dose rate from the fully shielded RVAI, and
(b) The dose rate from the unshielded segment of the RVAI.

The unshielded segments that are considered are:
(a) A horizontal 1 inch wide segment of the RV and insulation are unshielded around the circumference of the vessel at the core midplane.
(b) A vertical 1 inch wide by 48 inch long segment of the RV and insulation are unshielded, centered on the core midplane.
(c) A 6 inch diameter segment of the RV and insulation are unshielded, centered on the core midplane.
(d) The entire top shield plate is removed (dose rate taken from reference 8.1).

The 7 in. thick steel shield and ~ 9 in. thick LDCC shield are assumed to be completely removed from unshielded segments in cases a, b, and c. The segments are centered on the core midplane because the midplane has the highest concentration of activation products, and is therefore conservative. A factor of 1.2 is applied to the core midplane dose rates to account for the increased activation product inventory. (See Assumption 3.2)

The MicroShield model does not include components that are above and below the active core region (grid bar stubs, etc.) The shielding calculation, $\mathrm{N}-10525-020-0002$ [Ref. 8.1], does include these components. Therefore, the MicroShield model is benchmarked against Reference 8.1 to determine correction factors that incorporate the contributions from the segments above and below the active fuel region. (This is discussed in more detail where the factors are calculated below.)

6.3.1 Component And Source Descriptions

The sources are calculated using the nuclide ratios and total activities from Reference 8.24. They are calculated in Table 6.3.1-1 below .

Client	BNFL, Inc.
Project	Big Rock Point Major Component Removal
Proj. No	$10525-041$

| Prepared by John Rich | Date |
| :--- | :--- | :--- |
| Reviewed by Roman Kahn | Date |
| Approved by W. J. Johnson | Date |

Table 6.3.1-1 RV Sources

Nuclide	Fraction	Thermal Shield (Ci)	Thermal Shield Ret. (Ci)	Seal Weights (Ci)	RV Wall (Ci)	RV Clad (Ci)	RV Insulation (Ci)
Total		$7.40 \mathrm{E}+03$	$1.14 \mathrm{E}+02$	$1.10 \mathrm{E}+03$	$1.11 \mathrm{E}+03$	$2.45 \mathrm{E}+02$	$5.81 \mathrm{E}+01$
H3	$3.26 \mathrm{E}-04$	$2.41 \mathrm{E}+00$	$3.72 \mathrm{E}-02$	$3.59 \mathrm{E}-01$	$3.62 \mathrm{E}-01$	$7.99 \mathrm{E}-02$	$1.90 \mathrm{E}-02$
C14	$1.09 \mathrm{E}-04$	$8.03 \mathrm{E}-01$	$1.24 \mathrm{E}-02$	$1.19 \mathrm{E}-01$	$1.21 \mathrm{E}-01$	$2.66 \mathrm{E}-02$	$6.31 \mathrm{E}-03$
Sb125	$2.01 \mathrm{E}-07$	$1.49 \mathrm{E}-03$	$2.29 \mathrm{E}-05$	$2.21 \mathrm{E}-04$	$2.23 \mathrm{E}-04$	$4.93 \mathrm{E}-05$	$1.17 \mathrm{E}-05$
Mn54	$1.08 \mathrm{E}-03$	$7.96 \mathrm{E}+00$	$1.23 \mathrm{E}-01$	$1.18 \mathrm{E}+00$	$1.19 \mathrm{E}+00$	$2.64 \mathrm{E}-01$	$6.25 \mathrm{E}-02$
Eu152	$1.26 \mathrm{E}-05$	$9.36 \mathrm{E}-02$	$1.44 \mathrm{E}-03$	$1.39 \mathrm{E}-02$	$1.40 \mathrm{E}-02$	$3.10 \mathrm{E}-03$	$7.35 \mathrm{E}-04$
Fe55	$3.47 \mathrm{E}-01$	$2.57 \mathrm{E}+03$	$3.96 \mathrm{E}+01$	$3.82 \mathrm{E}+02$	$7.90 \mathrm{E}+02$	$8.50 \mathrm{E}+01$	$2.02 \mathrm{E}+01$
Co60	$5.73 \mathrm{E}-01$	$4.24 \mathrm{E}+03$	$6.53 \mathrm{E}+01$	$6.30 \mathrm{E}+02$	$2.31 \mathrm{E}+02$	$1.40 \mathrm{E}+02$	$3.33 \mathrm{E}+01$
Ni59	$4.75 \mathrm{E}-04$	$3.51 \mathrm{E}+00$	$5.41 \mathrm{E}-02$	$5.22 \mathrm{E}-01$	$5.27 \mathrm{E}-01$	$1.16 \mathrm{E}-01$	$2.76 \mathrm{E}-02$
Ni63	$7.82 \mathrm{E}-02$	$5.79 \mathrm{E}+02$	$8.91 \mathrm{E}+00$	$8.60 \mathrm{E}+01$	$8.68 \mathrm{E}+01$	$1.92 \mathrm{E}+01$	$4.54 \mathrm{E}+00$
Nb94	$1.64 \mathrm{E}-06$	$1.21 \mathrm{E}-02$	$1.87 \mathrm{E}-04$	$1.80 \mathrm{E}-03$	$1.82 \mathrm{E}-03$	$4.01 \mathrm{E}-04$	$9.52 \mathrm{E}-05$
Tc99	$3.52 \mathrm{E}-07$	$2.60 \mathrm{E}-03$	$4.01 \mathrm{E}-05$	$3.87 \mathrm{E}-04$	$3.90 \mathrm{E}-04$	$8.61 \mathrm{E}-05$	$2.04 \mathrm{E}-05$

In the MicroShield model, the thermal shield and thermal shield retainer are combined for convenience. The total is shown in Table 6.3.1-2 below.

Table 6.3.1-2 Thermal Shield + Thermal Shield Retainer

Nuclide	Thermal Shield (Ci)	Thermal Shield Ret. (Ci)	TS + TS Ret. (Ci)
Total	$7.40 \mathrm{E}+03$	$1.14 \mathrm{E}+02$	$7.51 \mathrm{E}+03$
H 3	$2.41 \mathrm{E}+00$	$3.72 \mathrm{E}-02$	$2.45 \mathrm{E}+00$
C 14	$8.03 \mathrm{E}-01$	$1.24 \mathrm{E}-02$	$8.16 \mathrm{E}-01$
Sb125	$1.49 \mathrm{E}-03$	$2.29 \mathrm{E}-05$	$1.51 \mathrm{E}-03$
Mn54	$7.96 \mathrm{E}+00$	$1.23 \mathrm{E}-01$	$8.08 \mathrm{E}+00$
Eu152	$9.36 \mathrm{E}-02$	$1.44 \mathrm{E}-03$	$9.50 \mathrm{E}-02$
Fe55	$2.57 \mathrm{E}+03$	$3.96 \mathrm{E}+01$	$2.61 \mathrm{E}+03$
Co60	$4.24 \mathrm{E}+03$	$6.53 \mathrm{E}+01$	$4.30 \mathrm{E}+03$
Ni59	$3.51 \mathrm{E}+00$	$5.41 \mathrm{E}-02$	$3.57 \mathrm{E}+00$
Ni63	$5.79 \mathrm{E}+02$	$8.91 \mathrm{E}+00$	$5.87 \mathrm{E}+02$
Nb94	$1.21 \mathrm{E}-02$	$1.87 \mathrm{E}-04$	$1.23 \mathrm{E}-02$
Tc99	$2.60 \mathrm{E}-03$	$4.01 \mathrm{E}-05$	$2.64 \mathrm{E}-03$

6.3.2 RV Insulation Equivalent Thickness and Density

The insulation equivalent thickness is the sum of the thicknesses of the corrugated spacers and
separation sheets. From Drawing BL-13954-2 [Ref. 8.12] there are 6 corrugated spacers, and 6 separator sheets in a $11 / 2$ inch section. Each of these is 0.009 in. thick. The insulation is 3 inches thick (two $11 / 2$ inch thick sections). The total equivalent metal thickness is calculated below.

$$
\begin{aligned}
& \mathrm{T}_{E Q}=2 \times(6 \times 0.009+6 \times 0.009) \\
& \mathrm{T}_{E Q}=0.216 \mathrm{in} .
\end{aligned}
$$

The actual thickness is 3 in., and the insulation is made of stainless steel. The equivalent density is:

$$
\begin{aligned}
& \mathrm{D}_{\mathrm{EQ}}=(0.216 / 3.0) \times \rho_{\mathrm{Ss}} \\
& \mathrm{D}_{\mathrm{EQ}}=0.566 \mathrm{gm} / \mathrm{cc}
\end{aligned}
$$

Where: $0.216=$ total thickness of stainless steel in insulation $3.0=$ thickness of insulation (including air between corrugations) $\rho_{\mathrm{ss}}=$ density of stainless steel, $7.86 \mathrm{gm} / \mathrm{cc}$

6.3.3 Intact Containment (Shielded) Dose Rates

Shielded dose rates are calculated as a function of distance from the outer surface of the RVTS package for each component (RV wall, RV insulation, etc.). These are then summed to yield the total shielded dose rates. (The RVTS is the reference surface because these dose rates are for an intact RVTS.)

The dose rates that are calculated in the MicroShield runs do not include the radiation from above and below the active core region. (The MicroShield runs only cover the active core region, which is ~ 70 inches tall.) Correction factors are calculated to include the radiation from above and below the active core region. The correction factors are the ratio of the dose rate in Reference 8.1 to the dose rate from the MicroShield runs at; (a) contact (1 inch from the RVTS) and (b) 2 meters. This is because the dose rates in Reference 8.1 do include the dose rate contributions from above and below the active core region. Note however, that Reference 8.1 uses $\mathrm{mrem} / \mathrm{hr}$ - $\underline{\text { tissue, and }}$, the doses in this calculation are $\mathrm{mrem} / \mathrm{hr}$ DDE. For the purposes of calculating the correction factor, $1 \mathrm{R} / \mathrm{hr}=1 \mathrm{rem} / \mathrm{hr}$. Therefore the ratio is calculated using $\mathrm{mR} / \mathrm{hr}$ from the MicroShield runs, and then applied to the DDE dose rates.

The source terms are from Tables 6.3.1-1 and 6.3.1-2. The geometric input is derived from the input data in Section 2.2. The geometric input is summarized in Tables 6.3.3-1 and 6.3.3-2 below. The MicroShield file listing is in Attachment A.

Table 6.3.3-1, Thicknesses For Fully Shielded Case

Source Comp.	30 pcf LDCC Thck. (in.)	Thermal Shield Thck. (in.)	Seal Weight Thck. (in.)	Seal Weight to RV Clad (in.)	RV Clad Thck. (in.)	RV Wall Thck. (in.)	RV Insulation Thck. (in.)	50 pcf LDCC Thck. (in.)	Shield Steel Thck. (in.)	Total Radial Distance (in.)
Th. Shld	50.000	1.500	1.000	0.5625	0.156	5.250	3.000	9.531	7.000	78.000
Seal Wt.	51.500		1.000	0.5625	0.156	5.250	3.000	9.531	7.000	78.000
RV Clad	53.063				0.156	5.250	3.000	9.531	7.000	78.000
RV Wall	53.219					5.250	3.000	9.531	7.000	78.000
RV Ins.	53.219					5.250	3.000	9.531	7.000	78.000

	Caic. For: Breach Of Containment			Calc No. N-10525-041-001			
				Rev.	1	Date	02/22/01
	\mathbf{x}	Important To Safety - Category A	Non-Safety Related	Page 14			

Client	BNFL, Inc.
Project	Big Rock Point Major Component Removal
Proj. No	$10525-041$

Prepared by John Rich	Date	
Reviewed by Roman Kahn	Date	
Approved by	W. J. Johnson	Date

Table 6.3.3-2. Shielded Case Dose Point Distances

Distance From		
RVTS Surface	RVTS Radius (in.)	Distance To RV Center (in.)
Comp. Thk	N/A	N/A
$1 \mathrm{in}$.	78.00	79.00
1 m	78.00	117.37
2 m	78.00	156.74

The 1 inch (contact) and 2 meter dose rates ($\mathrm{mR} / \mathrm{hr}$) from MicroShield and Calculation N-10525-020-0002 ($\mathrm{mrem} / \mathrm{hr}$) [Ref. 8.1] are shown in Table 6.3.3-3 below. The correction factor is the ratio of "Calculation N -10525-020-0002" dose rate to the "Total Shielded Dose Rate." The 1 meter correction factor is a linear interpolation between the $1^{\prime \prime}$ and 2 m correction factors.

Table 6.3.3-3, Shielded Dose Rate Correction Factor

	Distance	Thermal Shield (mR/hr)	Seal Weight (mR/hr.)		$\begin{gathered} \text { RV } \\ \text { Wall } \\ (\mathrm{mR} / \mathrm{hr}) \\ \hline \end{gathered}$	RV Insulation ($\mathrm{mR} / \mathrm{hr}$)	Total Shielded (mR/hr)	$\begin{gathered} \text { Calc. } \\ \mathrm{N}-10525-020- \\ 0002 \\ \text { (mrem } / \mathrm{hr}) \\ \hline \end{gathered}$	Calculated Dose Correction Factor
Shielded	Contact	5.55E-01	2.57E-01	9.49E-02	$5.67 \mathrm{E}+00$	$4.56 \mathrm{E}+00$	1.11E+01	$1.11 \mathrm{E}+01$	9.96E-01
Shielded	1 meter	3.49E-01	1.61E-01	5.92E-01	$3.36 \mathrm{E}+00$	$2.67 \mathrm{E}+00$	7.13E+00	N/A	$1.08 \mathrm{E}+00$
Shielded	2 meters	2.16E-01	9.83E-02	3.60E-02	$1.93 \mathrm{E}+00$	$1.51 \mathrm{E}+00$	$3.79 \mathrm{E}+00$	$4.39 \mathrm{E}+00$	$1.16 \mathrm{E}+00$

The corrected DDE dose rates ($\mathrm{mrem} / \mathrm{hr}$) for the shielded RVTS are shown in Table 6.3.3-4 below.
Table 6.3.3-4, DDE for Shielded RVTS (mrem/hr)

Distance	Thermal Shield DDE (mSv/hr)	Seal Weight DDE (mSv/hr.)	RV Clad DDE (mSV/hr)	RV Wall DDE (mSV/hr)	RV Insulation DDE (mSv/hr)	Total Shielded DDE ($\mathrm{mSv} / \mathrm{hr}$)	Total Shielded DDE (mrem $/ \mathrm{hr}$)	Shielded Dose Correction Factor	Corrected Shielded DDE (mrem/hr)
1 in .	5.476E-03	$2.541 \mathrm{E}-03$	9.375E-04	5.609E-02	4.514E-02	1.10E-01	$1.10 \mathrm{E}+01$	9.96E-01	1.10E+01
1 m	$3.443 \mathrm{E}-03$	$1.586 \mathrm{E}-03$	5.843E-04	3.324E-02	2.641E-02	6.53E-02	$6.53 \mathrm{E}+00$	$1.08 \mathrm{E}+00$	$7.03 \mathrm{E}+00$
2 m	2.129E-03	9.705E-04	3.560E-04	$1.911 \mathrm{E}-02$	1.493E-02	3.75E-02	$3.75 \mathrm{E}+00$	$1.16 \mathrm{E}+00$	$4.34 \mathrm{E}+00$

6.3.4 Breach Of Containment Dose Rates

The dose rates for the breach of containment are the sum of the dose rates from the unshielded segment plus the dose rate from the fully shielded RVTS. The dose rates for the unshielded segments are calculated for 4 configurations.
a) A horizontal 1 inch wide band of the RV and insulation are unshielded around the circumference of the vessel at the core midplane.
b) A vertical 1 inch wide by 48 inch long band of the RV and insulation are unshielded, centered on the core midplane.
c) A 6 inch diameter hole goes through the shielding and exposes a 6 inch diameter segment of the RV and insulation at the core midplane.
d) The entire top shield plate is removed.

Cases a, b, and c are calculated below. Case d is calculated in Reference 8.1 and the dose rate is included in this calculation for completeness.

The unshielded segments are centered on the core midplane because it has the highest flux, and therefore the highest concentration of activation products. It is assumed that the axial peaking factor is 1.2, so a factor of 1.2 is applied to the unshielded segment dose rates (Assumption 3.2). The dose rate contributions from above and below the shielding gaps are taken into account in the dose rates from the shielded RVTS (Section 6.3.3) which is added to gap dose rates.

The total component source terms are from Table 6.2.1-1. They are modified by correction factors. The correction factors reduce the source term so that it is correct for the volume of metal in the MicroShield model. The MicroShield models and the correct source term are calculated below for each case.

Case a, horizontal 1 inch unshielded segment
The MicroShield model is a 1 inch high cylinder. As stated in Assumption 3.4, the entire RVTS is modeled as a 70 inch tall cylinder. Therefore the 1 inch band has $1 / 70$ of the total source for each component, and the correction factor is $1.429 \mathrm{E}-2$. The source term for case a is calculated below.

Table 6.3.4-1, 1 inch Horizontal Segment Source

Nuclide	Fraction	Thermal Shield (Ci)	Seal Weights (Ci)	RV Clad (Ci)	RV Wall (Ci)	RV Insulation (Ci)
Corr. Fctr.	$1.00 \mathrm{E}+00$	$1.43 \mathrm{E}-02$				
Total	$1.00 \mathrm{E}+00$	$1.07 \mathrm{E}+02$	$1.57 \mathrm{E}+01$	$3.50 \mathrm{E}+00$	$1.59 \mathrm{E}+01$	$8.3 \mathrm{E}-01$
$\mathrm{H}-3$	$3.26 \mathrm{E}-04$	$3.50 \mathrm{E}-02$	$5.13 \mathrm{E}-03$	$1.14 \mathrm{E}-03$	$5.17 \mathrm{E}-03$	$2.71 \mathrm{E}-04$
$\mathrm{C}-14$	$1.09 \mathrm{E}-04$	$1.17 \mathrm{E}-02$	$1.71 \mathrm{E}-03$	$3.80 \mathrm{E}-04$	$1.72 \mathrm{E}-03$	$9.01 \mathrm{E}-05$
$\mathrm{Sb}-125$	$2.01 \mathrm{E}-07$	$2.16 \mathrm{E}-05$	$3.16 \mathrm{E}-06$	$7.04 \mathrm{E}-07$	$3.19 \mathrm{E}-06$	$1.67 \mathrm{E}-07$
$\mathrm{Mn}-54$	$1.08 \mathrm{E}-03$	$1.15 \mathrm{E}-01$	$1.69 \mathrm{E}-02$	$3.76 \mathrm{E}-03$	$1.71 \mathrm{E}-02$	$8.93 \mathrm{E}-04$
$\mathrm{Eu}-152$	$1.26 \mathrm{E}-05$	$1.36 \mathrm{E}-03$	$1.99 \mathrm{E}-04$	$4.43 \mathrm{E}-05$	$2.01 \mathrm{E}-04$	$1.05 \mathrm{E}-05$
$\mathrm{Fe}-55$	$3.47 \mathrm{E}-01$	$3.73 \mathrm{E}+01$	$5.45 \mathrm{E}+00$	$1.21 \mathrm{E}+00$	$1.13 \mathrm{E}+01$	$2.88 \mathrm{E}-01$
$\mathrm{Co}-60$	$5.73 \mathrm{E}-01$	$6.15 \mathrm{E}+01$	$9.00 \mathrm{E}+00$	$2.00 \mathrm{E}+00$	$3.30 \mathrm{E}+00$	$4.75 \mathrm{E}-01$
$\mathrm{Ni}-59$	$4.75 \mathrm{E}-04$	$5.09 \mathrm{E}-02$	$7.46 \mathrm{E}-03$	$1.66 \mathrm{E}-03$	$7.53 \mathrm{E}-03$	$3.94 \mathrm{E}-04$
$\mathrm{Ni}-63$	$7.82 \mathrm{E}-02$	$8.39 \mathrm{E}+00$	$1.23 \mathrm{E}+00$	$2.74 \mathrm{E}-01$	$1.24 \mathrm{E}+00$	$6.49 \mathrm{E}-02$
$\mathrm{Nb}-94$	$1.64 \mathrm{E}-06$	$1.76 \mathrm{E}-04$	$2.57 \mathrm{E}-05$	$5.73 \mathrm{E}-06$	$2.60 \mathrm{E}-05$	$1.36 \mathrm{E}-06$
$\mathrm{TC}-99$	$3.52 \mathrm{E}-07$	$3.77 \mathrm{E}-05$	$5.52 \mathrm{E}-06$	$1.23 \mathrm{E}-06$	$5.58 \mathrm{E}-06$	$2.92 \mathrm{E}-07$

Case b, vertical 1 inch wide, 48 inch long unshielded segment
The MicroShield model is a rectangular piece, 1 inch wide, 48 inches long, and as thick as the component, e.g., $5 \frac{1}{4}$ inches thick for the RV wall. The correction factor is the ratio of the volume of the model to the volume of the component.

$\mathrm{R}=\mathrm{V}_{\text {MODEL }} / \mathrm{V}_{\text {COMP }}$
Where; $\mathrm{V}_{\text {MODEL }}=$ source volume in MicroShield model
$V_{\text {COMP }}=$ component volume
$V_{\text {MODEL }}=L \times W \times T$
Where; $L=$ MicroShield source volume height
$=48$ inch
W = MicroShield source volume width
$=1$ inch
$T=$ MicroShield source volume thickness
= component thickness (e.g., $51 / 4$ in for RV wall)
$V_{\text {COMP }}=\pi \times\left(r_{2}^{2}-r_{1}^{2}\right) \times L$
Where; $r_{1}=$ inner radius of component
$r_{2}=$ outer radius of component
$=\mathrm{r}_{1}+\mathrm{T}$
The correction factors and source terms for case b are calculated in the tables below.
Table 6.3.4-2, 1 Inch Vertical Segment Correction Factors

Component	Component Thickness (in)	Component inner Radius (in)	Component Height (in)	Component Volume (in)	Source Area (in)	Source Volume (in)	Source Fraction (in)
Therm. Shld	$1.500 \mathrm{E}+00$	50.000	70	$3.348 \mathrm{E}+04$	$4.800 \mathrm{E}+01$	$7.200 \mathrm{E}+01$	$2.150 \mathrm{E}-03$
Seal Weight	$1.000 \mathrm{E}+00$	51.500	70	$2.287 \mathrm{E}+04$	$4.800 \mathrm{E}+01$	$4.800 \mathrm{E}+01$	$2.099 \mathrm{E}-03$
RV Clad	$1.560 \mathrm{E}-01$	53.063	70	$3.646 \mathrm{E}+03$	$4.800 \mathrm{E}+01$	$7.488 \mathrm{E}+00$	$2.054 \mathrm{E}-03$
RV Wall	$5.250 \mathrm{E}+00$	53.219	70	$1.289 \mathrm{E}+05$	$4.800 \mathrm{E}+01$	$2.520 \mathrm{E}+02$	$1.954 \mathrm{E}-03$
RV Ins.	$3.000 \mathrm{E}+00$	58.469	70	$7.913 \mathrm{E}+04$	$4.800 \mathrm{E}+01$	$1.440 \mathrm{E}+02$	$1.820 \mathrm{E}-03$

Table 6.3.4-3, 1 Inch Vertical Segment Source Terms

Nuclide	Fraction	therm. Shld (Ci)	Seal Weight (Ci)	RV Clad (Ci)	RV Wall (Ci)	RV Ins. (Ci)
Corr. Factor	$1.00 \mathrm{E}+00$	$2.15 \mathrm{E}-03$	$2.10 \mathrm{E}-03$	$2.05 \mathrm{E}-03$	$1.95 \mathrm{E}-03$	$1.82 \mathrm{E}-03$
Total	$1.00 \mathrm{E}+00$	$1.62 \mathrm{E}+01$	$2.31 \mathrm{E}+00$	$5.03 \mathrm{E}-01$	$2.17 \mathrm{E}+00$	$1.06 \mathrm{E}-01$
$\mathrm{H}-3$	$3.26 \mathrm{E}-04$	$5.27 \mathrm{E}-03$	$7.53 \mathrm{E}-04$	$1.64 \mathrm{E}-04$	$7.08 \mathrm{E}-04$	$3.45 \mathrm{E}-05$
$\mathrm{C}-14$	$1.09 \mathrm{E}-04$	$1.75 \mathrm{E}-03$	$2.51 \mathrm{E}-04$	$5.46 \mathrm{E}-05$	$2.36 \mathrm{E}-04$	$1.15 \mathrm{E}-05$
$\mathrm{Sb}-125$	$2.01 \mathrm{E}-07$	$3.25 \mathrm{E}-06$	$4.64 \mathrm{E}-07$	$1.01 \mathrm{E}-07$	$4.36 \mathrm{E}-07$	$2.13 \mathrm{E}-08$
$\mathrm{Mn}-54$	$1.08 \mathrm{E}-03$	$1.74 \mathrm{E}-02$	$2.48 \mathrm{E}-03$	$5.41 \mathrm{E}-04$	$2.33 \mathrm{E}-03$	$1.14 \mathrm{E}-04$
$\mathrm{Eu}-152$	$1.26 \mathrm{E}-05$	$2.04 \mathrm{E}-04$	$2.92 \mathrm{E}-05$	$6.36 \mathrm{E}-06$	$2.74 \mathrm{E}-05$	$1.34 \mathrm{E}-06$
$\mathrm{Fe}-55$	$3.47 \mathrm{E}-01$	$5.61 \mathrm{E}+00$	$8.01 \mathrm{E}-01$	$1.75 \mathrm{E}-01$	$1.54 \mathrm{E}+00$	$3.67 \mathrm{E}-02$
$\mathrm{Co}-60$	$5.73 \mathrm{E}-01$	$9.25 \mathrm{E}+00$	$1.32 \mathrm{E}+00$	$2.88 \mathrm{E}-01$	$4.52 \mathrm{E}-01$	$6.06 \mathrm{E}-02$
$\mathrm{Ni}-59$	$4.75 \mathrm{E}-04$	$7.67 \mathrm{E}-03$	$1.10 \mathrm{E}-03$	$2.39 \mathrm{E}-04$	$1.03 \mathrm{E}-03$	$5.02 \mathrm{E}-05$
$\mathrm{Ni}-63$	$7.82 \mathrm{E}-02$	$1.26 \mathrm{E}+00$	$1.81 \mathrm{E}-01$	$3.93 \mathrm{E}-02$	$1.70 \mathrm{E}-01$	$8.27 \mathrm{E}-03$
$\mathrm{Nb}-94$	$1.64 \mathrm{E}-06$	$2.65 \mathrm{E}-05$	$3.78 \mathrm{E}-06$	$8.24 \mathrm{E}-07$	$3.55 \mathrm{E}-06$	$1.73 \mathrm{E}-07$
$\mathrm{Tc}-99$	$3.52 \mathrm{E}-07$	$5.68 \mathrm{E}-06$	$8.12 \mathrm{E}-07$	$1.77 \mathrm{E}-07$	$7.63 \mathrm{E}-07$	$3.72 \mathrm{E}-08$

Case $c, 6$ inch diameter unshielded segment
The MicroShield model is a solid cylinder, 6 inches in diameter and as thick as the component, e.g., $51 / 4$ inches thick for the RV wall. The correction factor is the ratio of the volume of the model to the volume of the component.

```
\(\mathrm{R}=\mathrm{V}_{\text {MODEL }} / \mathrm{V}_{\text {COMP }}\)
Where; \(\mathrm{V}_{\text {MODEL }}=\) source volume in MicroShield model
            \(V_{\text {COMP }}=\) component volume
\(V_{\text {MODEL }}=\pi \times 3^{2} \times T\)
Where; \(3=\) MicroShield source volume radius
                            \(T=\) MicroShield source volume thickness
                            = component thickness (e.g., \(51 / 4\) in for RV Wall)
\(V_{\text {COMP }}=\pi \times\left(r_{2}{ }^{2}-r_{1}{ }^{2}\right) \times L\)
Where; \(r_{1}=\) inner radius of component
    \(r_{2}=\) outer radius of component
        \(=r_{1}+\mathrm{T}\)
```

The correction factors and source terms for case \mathbf{c} are calculated in the tables below.
Table 6.3.4-4, 6 inch Diameter Segment Correction Factors

Comp.	Comp. Thk. (in)	Comp. IR (in)	Comp. Hgt (in)	Comp. Vol. (in)	Src. Area. (in)	Src. Vol. (in)	Src. Frctn. (in)
Ther. Shld	$1.500 \mathrm{E}+00$	50.000	70	$3.348 \mathrm{E}+04$	$6.000 \mathrm{E}+00$	$4.241 \mathrm{E}+01$	$1.267 \mathrm{E}-03$
Seal Weight	$1.000 \mathrm{E}+00$	51.500	70	$2.287 \mathrm{E}+04$	$6.000 \mathrm{E}+00$	$2.827 \mathrm{E}+01$	$1.236 \mathrm{E}-03$
RV Clad	$1.560 \mathrm{E}-01$	53.063	70	$3.646 \mathrm{E}+03$	$6.000 \mathrm{E}+00$	$4.411 \mathrm{E}+00$	$1.210 \mathrm{E}-03$
RV Wall	$5.250 \mathrm{E}+00$	53.219	70	$1.289 \mathrm{E}+05$	$6.000 \mathrm{E}+00$	$1.484 \mathrm{E}+02$	$1.151 \mathrm{E}-03$
RV Ins.	$3.000 \mathrm{E}+00$	58.469	70	$7.913 \mathrm{E}+04$	$6.000 \mathrm{E}+00$	$8.482 \mathrm{E}+01$	$1.072 \mathrm{E}-03$

Table 6.3.4-5, 6 Inch Diameter Segment Source Terms

Nuclide	Fraction	Thermal Shield (Ci)	Seal Weights (Ci)	RV Clad (Ci)	RV Wall (Ci)	RV Insulation (Ci)
Corr. Fctr.	$1.00 \mathrm{E}+00$	$1.27 \mathrm{E}-03$	$1.24 \mathrm{E}-03$	$1.21 \mathrm{E}-03$	$1.15 \mathrm{E}-03$	$1.07 \mathrm{E}-03$
Total	$1.00 \mathrm{E}+00$	$9.52 \mathrm{E}+00$	$1.36 \mathrm{E}+00$	$2.96 \mathrm{E}-01$	$1.28 \mathrm{E}+00$	$6.23 \mathrm{E}-02$
$\mathrm{H}-3$	$3.26 \mathrm{E}-04$	$3.10 \mathrm{E}-03$	$4.44 \mathrm{E}-04$	$9.67 \mathrm{E}-05$	$4.17 \mathrm{E}-04$	$2.03 \mathrm{E}-05$
$\mathrm{C}-14$	$1.09 \mathrm{E}-04$	$1.03 \mathrm{E}-03$	$1.48 \mathrm{E}-04$	$3.22 \mathrm{E}-05$	$1.39 \mathrm{E}-04$	$6.76 \mathrm{E}-06$
$\mathrm{Sb}-125$	$2.01 \mathrm{E}-07$	$1.91 \mathrm{E}-06$	$2.74 \mathrm{E}-07$	$5.96 \mathrm{E}-08$	$2.57 \mathrm{E}-07$	$1.25 \mathrm{E}-08$
$\mathrm{Mn}-54$	$1.08 \mathrm{E}-03$	$1.02 \mathrm{E}-02$	$1.46 \mathrm{E}-03$	$3.19 \mathrm{E}-04$	$1.37 \mathrm{E}-03$	$6.70 \mathrm{E}-05$
$\mathrm{Eu}-152$	$1.26 \mathrm{E}-05$	$1.20 \mathrm{E}-04$	$1.72 \mathrm{E}-05$	$3.75 \mathrm{E}-06$	$1.62 \mathrm{E}-05$	$7.88 \mathrm{E}-07$
$\mathrm{Fe}-55$	$3.47 \mathrm{E}-01$	$3.30 \mathrm{E}+00$	$4.72 \mathrm{E}-01$	$1.03 \mathrm{E}-01$	$9.09 \mathrm{E}-01$	$2.16 \mathrm{E}-02$
$\mathrm{Co}-60$	$5.73 \mathrm{E}-01$	$5.45 \mathrm{E}+00$	$7.79 \mathrm{E}-01$	$1.70 \mathrm{E}-01$	$2.66 \mathrm{E}-01$	$3.57 \mathrm{E}-02$
$\mathrm{Ni}-59$	$4.75 \mathrm{E}-04$	$4.52 \mathrm{E}-03$	$6.45 \mathrm{E}-04$	$1.41 \mathrm{E}-04$	$6.06 \mathrm{E}-04$	$2.96 \mathrm{E}-05$
$\mathrm{Ni}-63$	$7.82 \mathrm{E}-02$	$7.44 \mathrm{E}-01$	$1.06 \mathrm{E}-01$	$2.32 \mathrm{E}-02$	$9.99 \mathrm{E}-02$	$4.87 \mathrm{E}-03$
$\mathrm{Nb}-94$	$1.64 \mathrm{E}-06$	$1.56 \mathrm{E}-05$	$2.23 \mathrm{E}-06$	$4.86 \mathrm{E}-07$	$2.09 \mathrm{E}-06$	$1.02 \mathrm{E}-07$
$\mathrm{TC}-99$	$3.52 \mathrm{E}-07$	$3.35 \mathrm{E}-06$	$4.78 \mathrm{E}-07$	$1.04 \mathrm{E}-07$	$4.49 \mathrm{E}-07$	$2.19 \mathrm{E}-08$

The MicroShield geometry input consists of the source volume geometry, shield thicknesses, and dose point distances. The thicknesses and dose point distances are calculated below. The source area dimensions are predefined but are reproduced below for completeness. The source thicknesses are the same as the component., e.g. $51 / 4 \mathrm{in}$. for the RV wall.

Table 6.3.4-6, Source Volume Dimensions

Case	Length (in)	Width (in)	Radius (in)
a	N/A	1	N/A
b	48	1	N/A
c	N/A	N/A	3

In the table below, a single air shield replaces the LDCC and outer steel shield. This is the only difference between the fully shielded case and the unshielded source cases.

Table 6.3.4-7. Thicknesses For Unshielded Source Cases

Source Comp.	30 pcf LDCC Thck. (in.)	Thermal Shield Thck. (in.)	Seal Weight Thck. (in.)	Seal Weight to RV Clad (in.)	RV Clad Chck. (in.)	RV Wall (hck. (in.)	RV Insulation Thck. (in.)	Air Thck. (in.)	Total Radial Distance (in.)
Th. Shld	50.000	1.500	1.000	0.5625	0.156	5.250	3.000	16.531	78.000
Seal Wt.	51.500		1.000	0.5625	0.156	5.250	3.000	16.531	78.000
RV Clad	53.063				0.156	5.250	3.000	16.531	78.000
RV Wall	53.219					5.250	3.000	16.531	78.000
RV Ins.	53.219					5.250	3.000	16.531	78.000

The distances to the dose points are calculated from the center of the RVTS for cylindrical geometry (case a) and from the 'back' of the source for the other geometries (cases b and c).

Table 6.3.4-8, Dose Points For Unshielded Source Cases

		Case a	Cases b and c					
Distance From RVTS Surface	RVTS Radius (in.)	Distance RV Cente (in.)	Thermal Shield (in.)	Seal Weights (in.)	RV Clad (in.)	RV Wall (in.)	RV Insulation (in.)	
Comp. Thk	N/A	N/A	1.500	1.000	0.156	5.250	3.000	
1 in.	78.00	79.00	29.00	27.50	25.94	25.78	20.531	
1 m	78.00	117.37	67.37	65.87	64.31	64.15	58.90	
2 m	78.00	156.74	106.74	105.24	103.68	103.52	98.27	

The DDE dose rates ($\mathrm{mrem} / \mathrm{hr}$) for the unshielded segments are shown in Tables 6.3.4-9 through 11.

		Calc. For: Breach Of Containment				Calc No.	N-10525-041-001	
						1	Date	02/22/01
		x	Important To Safety - Category A		Non-Safety Related	Page	19	
Client BNFL, Inc.				Prepared by	John Rich	Date		
Project	Big Rock Point Major Component Removal			Reviewed by	Roman Kahn	Date		
Proj. No	10525-041 Equip. No.			Approved by		Date		

Table 6.3.4-9, DDE For 1 Inch Horizontal Gap (mrem/hr)

Distance	Thermal Shield DDE ($\mathrm{mSv} / \mathrm{hr}$)		RV Clad DDE $(\mathrm{mSv} / \mathrm{hr})$	RV Wall DDE ($\mathrm{mSv} / \mathrm{hr}$)	RV Insulation DDE $(\mathrm{mSv} / \mathrm{hr})$	$\begin{gathered} 1 \text { inch } \\ \text { Gap } \\ \text { DDE } \\ \text { (} \mathrm{mSv} / \mathrm{hr} \text {) } \end{gathered}$	$\begin{gathered} 1 \text { inch } \\ \text { Gap } \\ \text { DDE } \\ \text { (mrem/hr) } \\ \hline \end{gathered}$	Core Midplane Dose Correction Factor	Corrected 1 inch Gap DDE (mrem/hr)	Total Dose Rate ($\mathrm{mrem} / \mathrm{hr}$)
1 in .	4.330E-01	1.967E-01	$7.321 \mathrm{E}-02$	$3.342 \mathrm{E}+00$	$2.709 \mathrm{E}+00$	6.75E+00	$6.75 \mathrm{E}+02$	1.20	$8.10 \mathrm{E}+02$	02
1 m	$1.226 \mathrm{E}-01$	$5.431 \mathrm{E}-02$	$1.974 \mathrm{E}-02$	$8.071 \mathrm{E}-01$	6.125E-01	$1.62 \mathrm{E}+00$	$1.62 \mathrm{E}+02$	1.20	$1.94 \mathrm{E}+02$	02
2 m	5.745E-02	2.530E-02	9.143E-03	3.654E-01	2.786E-01	7.36E-01	$7.36 \mathrm{E}+01$	1.20	$8.83 \mathrm{E}+01$	9.26E+01

Table 6.3.4-10. DDE For 1 Inch Vertical Gap (mrem/hr)

Distance	Thermal Shield DDE (mSv/hr)	Seal Weight DDE ($\mathrm{mSv} / \mathrm{hr}$.	RV Clad DDE $(\mathrm{mSv} / \mathrm{hr})$	RV Wall DDE $(\mathrm{mSv} / \mathrm{hr})$	RV Insulation DDE (mSv/hr)	$\begin{gathered} \hline 1 \text { inch } \\ \text { Gap } \\ \text { DDE } \\ (\mathrm{mSV} / \mathrm{hr}) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 1 \text { inch } \\ \text { Gap } \\ \text { DDE } \\ (\mathrm{mrem} / \mathrm{hr}) \\ \hline \end{array}$	Core Midplane Dose Correction Factor	Corrected 1 inch Gap DDE (mrem/hr)	Total Dose Rate (mrem/hr)
1 in .	$6.073 \mathrm{E}-01$	2.697E-01	1.003E-01	$3.674 \mathrm{E}+00$	$2.269 \mathrm{E}+00$	$6.92 \mathrm{E}+00$	$6.92 \mathrm{E}+02$	1.20	$8.30 \mathrm{E}+02$	$8.41 \mathrm{E}+02$
1 m	1.754E-01	$7.316 \mathrm{E}-02$	2.612E-02	6.623E-01	3.308E-01	$1.27 \mathrm{E}+00$	$1.27 \mathrm{E}+02$	1.20	$1.52 \mathrm{E}+02$	$1.59 \mathrm{E}+02$
2 m	$7.562 \mathrm{E}-02$	3.088E-02	1.087E-02	2.523E-01	$1.202 \mathrm{E}-01$	4.90E-01	4.90E+01	1.20	$5.88 \mathrm{E}+01$	$6.31 \mathrm{E}+01$

Table 6.3.4-11, DDE For 6 inch Diameter Gap (mrem/hr)

ance	Thermal Shield DDE (mSv/hr)	Seal Weight DDE (mSv/hr.)	RV Clad DDE $(\mathrm{mSv} / \mathrm{hr})$	$\begin{gathered} \text { RV } \\ \text { Wall } \\ \text { DDE } \\ (\mathrm{mSv} / \mathrm{hr}) \end{gathered}$	$\begin{gathered} \mathrm{RV} \\ \text { Insulation } \\ \mathrm{DDE} \\ (\mathrm{mSv} / \mathrm{hr}) \end{gathered}$	6 inch Dia. Gap DDE ($\mathrm{mSv} / \mathrm{hr}$)	$\begin{array}{\|c\|} \hline 6 \text { inch } \\ \text { Dia. Gap } \\ \text { DDE } \\ \text { (mrem/hr) } \\ \hline \end{array}$	Core Midplane Dose Correction Factor	$\begin{gathered} \hline \text { Corrected } \\ 6 \text { inch dia Gap } \\ \text { DDE } \\ \text { (mrem/hr) } \\ \hline \end{gathered}$	Total Dose Rate (mrem/hr)
	$6.687 \mathrm{E}-01$	$2.891 \mathrm{E}-01$	1.076E-01	3.129E+00	1.865E+00	6.06E +00	$6.06 \mathrm{E}+02$	1.20	$7.27 \mathrm{E}+02$	$7.38 \mathrm{E}+02$
1 m	1.211E-01	4.985E-02	1.775E-02	$4.130 \mathrm{E}-01$	$2.057 \mathrm{E}-01$	8.07E-01	$8.07 \mathrm{E}+01$	1.20	9.69E+01	$1.04 \mathrm{E}+02$
2 m	$4.759 \mathrm{E}-02$	1.930E-02	6.793E-03	$1.505 \mathrm{E}-01$	7.210E-02	2.96E-01	$2.96 \mathrm{E}+01$	1.20	$3.56 \mathrm{E}+01$	$3.99 \mathrm{E}+01$

6.4 Leached Activity

The activity that is leached from the RVAI comes from two sources; (a) the surface contamination and, (b) the activation products which are bound in the steel matrix.

Released Surface Contamination

For the purpose of determining an upper bound leach rate, it is conservatively assumed that 50% of the surface contamination is leached out in 7 days. This is equivalent to completely uncovering half of the wetted surface area that has been covered with LDCC inside the reactor vessel (including the thermal shield, seal weights, etc.). This is assumed even though a breach of the RV itself is not considered credible because of the innate strength of the vessel combined with the protection afforded by the outer steel and LDCC shielding.

Released Bound Activation Products

The majority of the radioactivity is bound in the steel matrix (RV walls, RV clad, RV insulation, etc.). The quantity of radioactivity that is leached from the steel matrix over a 7day period is:

$$
\begin{aligned}
& A=\left(S A_{1} \times L_{S S}+S A_{R V} \times L_{M S}\right) \times t \\
& \text { Where: } A=\text { total leached radioactivity (Ci) } \\
& S A_{1}=R V \text { insulation specific activity (Ci/gm) } \\
& S A_{R V}=R V \text { wall specific activity (Ci/gm) } \\
& L_{S S}=\text { mass leach rate for stainless steel insulation (gm/day) } \\
& L_{M S}=\text { mass leach rate for mild steel } \mathrm{RV} \text { wall (gm/day) } \\
& \mathrm{t}=\text { time (days) }
\end{aligned}
$$

Specific Activity, SA

For activity bound in the steel matrix, the outer vessel wall and mirror insulation are assumed (nonmechanistically) to be entirely and directly exposed to the water (Assumption 3.2). The specific activities are:
$S A=A M$
Where: $S A=$ specific activity ($\mathrm{Ci} / \mathrm{gm}$)
$A=$ component activity (Ci)
$M=$ component mass (gm)
RV Insulation Activity $=58.1 \mathrm{Ci}$
RV insulation mass $=3300 \mathrm{lbs}$ (1.50 E 6 gm) [Ref. 8.8]
RV Wall Activity $=1110 \mathrm{Ci}$
RV Wall mass $=183,665 \mathrm{lbs}(8.35 E 7 \mathrm{gms})$ [Ref. 8.8]
$\mathrm{SA}_{1}=58.1 \mathrm{Ci} / 1.50 \mathrm{E} 6 \mathrm{gm}$
$S A_{1}=3.87 \mathrm{E}-5 \mathrm{Ci} / \mathrm{gm}$
$S A_{R V}=1110 \mathrm{Ci} / 8.35 \mathrm{E} 7 \mathrm{gm}$
$S A_{R V}=1.33 E-5 \mathrm{Ci} / \mathrm{gm}$

Leach Rate, L

$$
L=S \times C R \times 0.01
$$

Where: L = mass leach rate ($\mathrm{gm} / \mathrm{day}$)
$\mathrm{S}=$ surface area (cm^{2})
CR = corrosion rate $\left(\mathrm{mg} / \mathrm{dm}^{2}\right)$
$0.01=$ conversion from dm^{2} to cm^{2}
$S_{s s}=$ surface area of insulation stainless steel $=3.29 E 7 \mathrm{~cm}^{2}$ (See below.)
$\mathrm{S}_{\text {MS }}=$ surface area of RV mild steel $=8.07 \mathrm{E} 5 \mathrm{~cm}^{2}$ (See below.)
$C R$ for stainless steel insulation (salt water) $=3.34 \mathrm{mg} / \mathrm{dm}^{2}$ per day [Ref. 8.15]
CR for mild steel RV (salt water) $=18.6 \mathrm{mg} / \mathrm{dm}^{2}$ per day [Ref. 8.15]
Corrosion rates for salt water are used because this is conservative.
$L=S \times C R \times 0.01$
$L_{\mathrm{ss}}=3.29 E 7 \mathrm{~cm}^{2} \times 3.34 \mathrm{mg} / \mathrm{dm}^{2}$ per day $\times 0.01$
$L_{s s}=1.10 E 6 \mathrm{mg} /$ day $(1.1 \mathrm{~kg} /$ day $)$
$L_{\text {MS }}=8.07 E 5 \mathrm{~cm}^{2} \times 18.6 \mathrm{mg} / \mathrm{dm}^{2}$ per day $\times 0.01$
$L_{M S}=1.50 \mathrm{E} 5 \mathrm{mg} /$ day ($150 \mathrm{gm} /$ day)

Surface Area, $\mathbf{S}_{\text {ss }}$, For Stainless Steel

The only stainless steel accessible to water following an accident is the stainless steel insulation outside the RV. As discussed above, this is because the RV itself will not be breached. Per Reference 8.8, the insulation on the bottom of the vessel will be removed, so only the cylindrical portion of the insulation remains. Per Reference 8.12, the 1.5 inch thick insulation has 12 layers, so the 3 inch thick insulation has 24 layers.

$S_{S S}=2 \times \pi \times r \times h \times 2 n \times 2.54^{2}$
Where; $r=$ nominal insulation radius

$$
\begin{aligned}
&=R V \text { radius }+1 / 2 \text { insulation thickness } \\
&=58.469 \text { in. }+1 / 2 \times 3.0 \mathrm{in} . \\
&=59.969 \text { in. } \\
& h=\text { nominal insulation height (cylindrical RV section height to flange) } \\
&=282 \text { in. [Ref. } 8.4] \\
& n=\text { number of layers in insulation } \\
&=24 \text { [Ref. } 8.12] \text { (} 12 \text { layers per each } 11 / 2 \text { inch thickness, } 3 \text { inch total) } \\
& 2.54^{2}=\text { conversion from inch } \text { to }^{2} \mathrm{~cm}^{2}
\end{aligned}
$$

$S_{S S}=2 \times \pi \times 59.969 \times 282 \times 2 \times 24 \times 2.54^{2}$
$S_{S S}=3.29 E 7 \mathrm{~cm}^{2}$

Surface Area, $S_{\text {MS }}$, For Mild Steel

The only mild steel accessible to water following an accident is the outside surface of the RV. As, discussed above, this is because the RV itself will not be breached.

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{MS}}=\left(2 \times \pi \times r \times h+2 \times \pi \times r^{2}\right) \times 2.54^{2} \\
& \begin{aligned}
\text { Where; } r & =R V \text { outside radius } \\
& =58.469 \text { in. } \\
\quad h & =\text { nominal } R V \text { height (cylindrical section) } \\
& =282 \text { in. (Section } 2.3) \\
2.54^{2} & =\text { conversion from inch }{ }^{2} \text { to } \mathrm{cm}^{2}
\end{aligned} \\
& \begin{aligned}
S_{\text {MS }} & =\left(2 \times \pi \times 58.469 \times 282+2 \times \pi \times 58.469^{2}\right) \times 2.54^{2} \\
S_{\text {MS }} & =8.07 E 5 \mathrm{~cm}^{2}
\end{aligned}
\end{aligned}
$$

Released Bound Activation Products

The activity released from the activated metal is now calculated as:

```
\(A=\left(S A_{1} \times L_{S S}+S A_{R V} \times L_{M S}\right) \times t\)
\(A=(3.87 E-5 \times 1.10 E 3+1.33 E-5 \times 1.50 E 2) \times 7\)
\(A=0.312 \mathrm{Ci}\)
```


Total Released Activity

The total radioactivity that is released over 7 days is thus:

```
\(A_{\text {TOTAL }}=A_{S C}+A_{A M}\)
Where: \(A_{\text {total }}=\) total released activity (Ci)
            \(A_{S C}=\) surface contamination activity that is released (Ci)
                            \(A_{A M}=\) activated metal contamination activity that is released \((\mathrm{Ci})\)
\(A_{\text {TOTAL }}=A_{\text {SC }}+A_{\text {AM }}\)
\(A_{\text {TOTAL }}=50 \% \times 2.89(\mathrm{Ci})+0.312(\mathrm{Ci})\)
\(A_{\text {TOTAL }}=1.76 \mathrm{Ci}\)
```

Thus, the total activity that is expected to be leached in a period of 1 week is less than 1.76 Ci . The A_{2} value is 19.72 Ci (Section 6.1). Therefore, using conservative assumptions and data it has been shown that leaching from the RVAI/RVTS is within the requirement of 10 CFR 71.51(a)(2).

7 Summary And Conclusions

7.1 Summary

Conservative data and assumptions have been used to calculate radiological consequences that bound those that could result from potential land and/or water based accidents regardless of location or scenario. The radiological consequences are well within the acceptance criteria set forth in 10CFR71.

7.1.1 Direct Dose Rate

The acceptance criterion for accident conditions is from 10CFR71.51(a)(2). The external radiation dose rate shall not exceed "... $10 \mathrm{mSv} / \mathrm{h}(1 \mathrm{rem} / \mathrm{h})$ at $1 \mathrm{~m}(40 \mathrm{in})$ from the external surface of the package." Dose rates for 4 damage conditions have been calculated. These four (4) damage conditions bound possible accident damage to the RVTS, and in all 4 cases the dose rates are much less than $1 \mathrm{rem} / \mathrm{hr}$ at 1 meter. This is summarized below.
$\frac{\text { Damage }}{1 \text { inch horizontal gap around vessel at core midplane }}$
1 inch by 48 inch vertical gap at core midplane
6 inch diameter hole through shielding
loss of top cover plate

Dose Rate	
$0.20 \mathrm{rem} / \mathrm{hr} \mathrm{Re}$	Table $6.3 .4-9$
$0.16 \mathrm{rem} / \mathrm{hr}$	Table 6.3.4-10
$0.10 \mathrm{rem} / \mathrm{hr}$	Table $6.3 .4-11$
$0.79 \mathrm{rem} / \mathrm{hr}$	Ref. 8.1

7.1.2 Leak Rate Into Air

The acceptance criteria for accident conditions are from 10CFR71.51(a)(2). "... there would be no escape of krypton-85 exceeding $10 \mathrm{~A}_{2}$ in 1 week, no escape of other radioactive material exceeding a total amount A_{2} in 1 week, ..."

There is no krypton-85 in the package so the krypton criterion is met regardless of accident scenario or location.

The RVTS is a monolithic package in which the radioactive material is either bound in the matrix of steel components (activation products) or is in the form of surface contamination that is fixed in place by LDCC. The activation products are not available for release, but it is conservatively assumed that all of the surface contamination is available for release. Under this assumption the total quantity of radioactive material available for release is 2.89 Ci (Section 6.2). The A_{2} value for the releasable radioactivity is 3.59 Ci (section 6.2). Therefore the total quantity available for release is less than A_{2} so this criterion is met regardless of accident scenario or location.

7.1.3 Leach Rate Into Water

The acceptance criterion for leaching is from 10CFR71.51 (a)(2):
"... there would be no escape of krypton-85 exceeding $10 \mathrm{~A}_{2}$ in 1 week and no escape of other radioactive material exceeding a total amount A_{2} in 1 week." (10CFR71.51(a)(2))

The upper bound leach rate has been calculated using salt water corrosion rates. Under these conditions the total activity that could be leached out in 1 week is less than 1.76 Ci (Section 6.4). The A_{2} value is 19.72 Ci (Section 6.1). Therefore the quantity of radioactivity that could be leached out of the package is less than A_{2} and is well within the criterion stated above.

Client	BNFL, Inc.	
Project	Big Rock Point Major Component Removal	
Proj. No	$10525-041$	Equip. No.

Prepared by John Rich	Date
Reviewed by Roman Kahn	Date
Approved by W. J. Johnson	Date

7.2 Conclusions

The radiological consequences of possible post-HAC damage from the tests and conditions specified in 10 CFR 71.73 have been conservatively calculated. It has been shown that the calculated radiological consequences are bounding and well within the criteria stated in 10 CFR 71.51.

8 References

8.1 Calculation N-10525-020-0002, "Transport Package Shielding Design," Rev. 1.
8.2 Not Used
8.3 Not Used
8.4 CE Drawing, F-230-791-2, "General Arrangement, Reactor Vessel," 8/17/61.
8.5 GE Drawing, 198E179, "Reactor Vessel Insulation," 1/13/61.
8.6 Not Used
8.7 GE Drawing 197E853, Rev. 2, 6/30/61.
8.8 Dwg. SD-10525-020-001, Rev. B, "RVTS Cask"
8.9 Not Used
8.10 Not Used
8.11 Not Used
8.12 Johns-Manville Drawing BL-13954-2, 4/23/62.
8.13 Not Used
8.14 MicroShield 5.05, S\&L Program No. 03.7.508-5.05.
8.15 Corrosion Handbook, Uhlig, H.H. Ed., John Wiley \& Sons, (Attachment B).
8.16 Not Used
8.17 Not Used
8.18 Not Used
8.19 Not Used
8.20 Not Used
8.21 Not Used
8.22 Not Used

8.23 10CFR71, App. A, "Determination of A_{1} and A_{2}.
8.24 "Reactor Vessel Transport System Radiation Source Term," Calculation N-10525-020-004, Rev. 1.

8.25 Not Used

8.26 Not Used
8.27 10CFR71.51(a)(2), "Additional Requirements for Type B Packages."
8.28 10CFR20.1003, "Definitions."
8.29 Calculation S-10525-020-012, "Reactor Vessel Transport Cask Stress Analysis," Rev. 0, Sections 5.2 and 8.

9 Attachments
Attachment A Attachment B

MicroShield Files And Listings Corrosion Handbook (Selected Pages)

FINAL

CALCULATION N-10525-041-001 REVISION 2

ATTACHMENT "A" NOT INCLUDED

CORROSION HANDBOOK

edited by
HERBERT H. UHLIG, ph.d.
professor of metallurgy in charge of the CORROSION LABORATORY, MASSAGHUSETTS INSTITUTF. OF TECHNOI.OCY, CAMBRIDGE, MASSACHUSETTS
and sponsored by
THE ELECTROCHEMICAL SOCIETY, INC.
NEW YORK, N. Y.

JOHN WILEY \& SONS: Inc.
New York - Chichester • Brisbane - Toronto - Singapore

ATTACHMENT B

Calc. No.: N-10525-041-001
Proj. No.: 10525-041
Rev.: 1
Page 82

METHODS TO

According to theory anc expedients are recommend environment or the metal.

Stainlese 8teol	Sea-Water Immeraion, 1 Year, Bobton Harbor. Spec.: $7.7 \times 12.8 \times$ $0.35 \mathrm{~cm}(3 \times 5 \times 34$ in.). Badly fouled at end of test. (Av. of 5 Spec.)	$4 \% \mathrm{NaCl}, 00^{\circ} \mathrm{C} \pm 0.1$. 24-hour Immersion. Aerated: $40-75 \mathrm{ml}$ air per min, 3 夋 L. soln. Spec: $2.5 \times 12.8 \times$ $0.35 \mathrm{~cm}(1 \times 5 \times 3$ in.). (Av. of 2 or 3 Spec.)	$10 \% \mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{3} \mathrm{O} . \dagger 4$ Hour Contmet, Room Temp. Ares of Spec. Exposed: 5.74. eq om (0.89 eq in.). (Av. of 2 or more spec.)
$18-8,3 \% \mathrm{Mo}$ 18-8:	0.013 (no pite)	2.54 (no. pita)	2.1 (no pits)
Manuleoturer A	2.08	4.83	570
" B	1.84	820
$\begin{aligned} & \text { " C (Steckel } \\ & \text { mill, oold-rolled) } \end{aligned}$	2.76	28.2	3,620
18\% Cr	3.34	38.3 (1 spec.)	6,120
18-8, 0.2 \% Ti	0.78	4.4	8,540
18-8, $0.4 \% \mathrm{Ti}$		3.55	16,000
18-8, $0.9 \% \mathrm{Cb}$		7.45	4,200
Mild iteel (abraded \#180 emery)	18.6 (no pita)	86.0 (bo pita)

- Based on Progrese Report 6 to Chemical Foundation, Corrosion Committee of Maseachusetta Institute of Teohnology, 1938, and also unpublished data of the muthor.
\dagger Uiding "Drop Teater," H. A. Smith, Proures: Report 2 to Chemioal Foundation, Corrosion Committee of Masachinette Institute of Technology, 1036.

Table 3. analyses of stainless steels in table 2

Stainlems 8teel	Cr	Ni	C	Mn	$8 i$	s	\mathbf{P}	
18-8, 3 \% Mo	20.92	9.75	0.06	0.40	0.36	0.02	0.014	2.90\% Mo
18-8								
A	18.75	10.55	0.06	0.41	0.41	0.01	0.009	
B	18.00.	9.68	0.07	0.38	0.25	0.01	0.008	
C	18.18	8.20	0.095	0.45	0.40	0.02	0.018	
(Steokel Mill)								
$18 \% \mathrm{Cr}$	17.00	\ldots	0.095	0.45	0.40	0.02	0.018	
18-8, 0.2% Ti	17.92	8.97	0.09	0.48	0.45	0.01	0.018	0.2\% Ti
18-8, $0.4 \% \mathrm{Ti}$	18.6	8.8	0.03	0.36	0.41	0.002	0.02	0.36\% Ti
18-8. $0.9 \% \mathrm{Cb}$	7.98	9.4	0.07	0.60	0.65	0.006	0.02	0.86\% Cb

CONTACT CORROSION

This is corrosion produced at the region of contact of usually non-metallic materials with passive metals. It is also called crevice corrosion. ${ }^{10}$ lt may occur at washers, under barnacles, sand grains or applied protective films, and at pockets formed by threaded joints. Whether or not stuinless steels are free of pit nuclei, they are always susceptible to this kind of corrosion, because a nucleus is not ncessary.

Contact corrosion may begin through action of an oxygen concentration cell. The accumulation of passivity-destroying corrosion products at stagnant areas soon convert the cell to a more rapidly acting passive-active cell. Corrosion then proceeds by a mechanism identical to that described above for pit growth. Contact corrosion of stainless steels is discussed further, beginning p. 155.

[^2]
Environment

1. Avoid concentration o
2. Insure uniform oxyget of stagnant liquid.
3. Either increase oxyg capacity of the solutic $\mathrm{H}_{2} \mathrm{SO}_{4}$, through whicl of 400 mdd , but at passive). ${ }^{11}$ On the ot] for example in salt so
4. Increase $p \mathrm{H}$. Apprec compared with neutre
5. Operate at lowest te:
6. Add passivators to chromate is effectivi examples of passiva: halogen ions should
7. Apply cathodic prol cathodically by galv. water. (See Beharion

The Alloy

1. Homogenize. Rapidl
2. Treat final article in for 15 to 30 min . Tt A more active pickl It consists of 10 vol $150^{\circ} \mathrm{F}$). The latter Ventilation is impel
3. Cleanse and burnist Alkaline cleaners as
4. Use alloy containiu added to nickel-str chloride solutions eventually may ocr also appreciably m contact or crevice

- In a atudy of crevice com oneen out of 200 (48%), wher unly 11 dases out of 48 (23% York, N. Y.)
th R. MeKiy and R. Wortl Corp., New York, 1936.
Li F. IL LiqQue, (Disousaiol

Tabie 19. CONVERSION FACTORS FOR CORROSION UNITS
(Propared loy the Editor)

Multiply	by	1o Oblain
ill, penctration por yr (ipy)	$696 \times$ deusity	mig per eq din per day (mdd)
cm jeuctration jer yr (cmpy)	$274 \times$ donsity	${ }^{\prime}$
oz yor sq ft per duy	3050	\%
grams per eq meter per yr	0.0274	${ }^{\prime}$
grams per sq meter per day	10	"
grams per sq metor per hour	240	${ }^{\prime}$
mg per sq dm per day (mdd)	0.00144/dousity	ju. penetration per yr (ipy)
cus penctration per yr (cmpy)	0.304	4
oz por 89 ft per day	4.39/donsity	"
grams per sq meter por yr	$0.0000394 /$ deusity	"
grams per sq mueter per day	0.0144/density	*
grams per sq mucter per hour	0.346/density	.

Metal	Density (granus per cc)	$\frac{0.00144}{\text { Density }}$	$696 \times$ Density
Aluminum	2.72	0.000529	1890
Aluminum-mugnesiun-silicon (98, 0.5, 1.0)	2.69	0.000535	1870
Aluminum-mangauese (99, 1)	2.73	0.000528	-1901
Aluminum-copper (duralumin) ($\mathrm{Cu} 4, \mathrm{Mn} 0.5$. Mg 0.5, Al remainder)	2.79	0.000516	1940
Brass (Admiralty)	8.54	0.000168	5950
Brass (rod)	8.75	0.000164	6100
Brass (yellow)	8.47	0.000170	5880
Bronse (10% tin)	8.77	0.000164	6100
Bronse (18\% tin)	S.80	0.000163	6135
Bronze (phosphorus, 5\% tin)	8.86	0.000162	6170
Bronze (silicon)	8.54	0.000168	5950
Bronse (manganese) (Cu 60.5, Zn 19, Al b, Fe 4.5, Mn 4)	7.89	0.000182	5500
Cadmium	8.65	0.000167	6020
Columbium	8.4	0.000171	5850
Copper	8.92	0.000161	6210
Copper-nickel (70, 30)	8.95	0.000161	6210
Copper-nickel-zinc ($\mathbf{7 5 , 2 0 , 5 \text {) }}$	8.86	0.000162	6170
Copper-nickel-zinc (65, 18, 17)	8.75	0.000164	6100
Copper-silicon-manganese ($90,3,1$)	8.53	0.000188	5950
Copper-nickel-tin (70, 29, 1)	8.87	0.000162	6170
Iron	7.87	0.000183	5489
Iron-chromium (86-88, 12-14, 0.3 ())	7.7	0.000187	5360
Iron-chromium (82-84, 16-18, .12 C)	7.7	0.000187	5360
Iron-chromium (73-77, 23-27, 35 C)	7.6	0.000189	5290
$\begin{aligned} & \text { Iron-chromium-nickel [18-8] } \quad(75-79,17-19, \\ & 8-10, .1 \mathrm{C}) \end{aligned}$	7.9	0.000182	5500
Iron-8ilicon (Duriron) ($84,14.5,0.9 \mathrm{C}, 0.4 \mathrm{Mn}$)	7.0	0.000205	4870

Lead (chemical)
Lead (antimnny) (99, I)
Magnesium
Nickel
Nickel-copper (Monel) (70, 3
Nickel-chromium-iron incor
Nickel-molyhdenum-iron (H:
20)
Silver
Tantalum
Tin
Zinc

[^0]: * The reviewer's signature indicates compliance with S\&L procedure SOP-0402 and the verification of, as a minimum, the following items: correctness of mathematics for manual calculations, appropriateness of input data, appropriateness of assumptions, and appropriateness of the calculation method.

[^1]: * The reviewer's signature indicates compliance with S\&L procedure SOP-0402 and the verification of, as a minimum, the following items: correctness of mathematics for manual calculations, appropriateness of input data, appropriateness of assumptions, and appropriateness of the calculation method.

[^2]: ${ }^{10}$ E. H. Wyohe, L. R. Voigh, and F. L. LaQue, Trana, Electrochem. Soc., 88, 149 (1948).

